West Virginia Department of Environmental Protection

TE TETRA TECH

May 2018

Draft Report

Total Maximum Daily Loads for the Hughes River Watershed, West Virginia

Prepared for West Virginia Department of Environmental Protection Division of Water and Waste Management Watershed Assessment Branch, TMDL Section Prepared by Tetra Tech, Inc. 803 Quarrier Street, Suite 400 Charleston, WV 25301

June 5, 2018

Agenda

- > Project Timeline/History
- > TMDL/Water quality standards recap
- > Overview of TMDL effort
- Explanation/demonstration of electronic documents, spreadsheets, tools
- Questions and answers

WVDEP TMDL Process (4 yrs)

- Stream Selection (2/2014)
- Pre-TMDL monitoring, source identification and characterization - (7/2014 – 6/2015)
- Contract to model water quality and hydrology (7/2016)
- Determine baseline condition and allocate pollutant loads
- Draft Report comment period (5/22 6/22)
- > Draft TMDL Public Meeting 6/5
- Finalization and EPA approval

What's a TMDL?

 "Total Maximum Daily Load"
 (1) How much pollutant a stream can receive and remain healthy
 (2) Pollution Budget - prescribes reductions (where needed) of pollutants that result in the restoration of an impaired stream

TMDL development required by Clean
 Water Act for streams impaired by a pollutant

$\mathsf{TMDL} = \Sigma \mathsf{WLA} + \Sigma \mathsf{LA} + \mathsf{MOS}$

∑ = "sum of"
WLA = "wasteload allocations"
LA = "load allocations"
MOS = "margin of safety"

 > WLAs - pollutant loads from "point sources"
 > Discharge from point
 > Need NPDES permit

 LAs - pollutant loads from "nonpoint sources" and background
 Precipitation/runoff driven
 No permit required

What's an impaired stream?

- Stream that doesn't meet water quality standards
- West Virginia Water Quality Standards are codified in 47 CSR 2
 - <u>http://apps.sos.wv.gov/adlaw/csr/readfile.aspx?DocId=27572&F</u> <u>ormat=PDF</u>
- Standards include "Designated Uses" for WV waters and "water quality criteria" to protect those uses

- > Criteria can be numeric or narrative
- Impaired streams are enumerated on the 303(d) list

West Virginia Section 303(d) List / Integrated Report

LJC1

2016 West Virginia Draft Section 303(d) List With Decision Rationale and Supplements

dep

2014 WEST VIRGINIA DRAFT SECTION 303(d) LIST WITH DECISION RATIONALE AND SUPPLEMENTS

2012 Final West Virginia Integrated Water Quality Monitoring and Assessment Report

Numeric Criteria of Concern

> Total Iron

Aquatic Life/Public Water Supply

- Not to exceed 1.5 mg/l (warmwater) as a 4 day average concentration more than once in a three year period
- Public Water Supply 1.5 mg/l

Fecal Coliform

- > Water Contact Recreation/Public Water Supply
- Shall not exceed 200 counts/100ml as a monthly geometric mean (5 samples/month)
- Nor to exceed 400 counts/100 ml in more than 10% of samples in a month

Narrative Criteria Previous 47 CSR 2 - 3.2.i Assessment

Based on Benthic Macroinvertebrates (aquatic insects)

Stream scored based on abundance and type of benthics present

Streams with impaired communities were placed on the 303(d) list and slated for TMDLs

Narrative Criteria 2012 Legislative Changes

- Senate Bill 562 passed by the 2012 West Virginia Legislature amended the WV Water Pollution Control Act
- Requires DEP to develop and secure legislative approval of new rules to interpret 47 CSR 2-3.2.i
- Section 22-11-7b:

http://www.legis.state.wv.us/wvcode/ChapterEntire.cfm?chap=22&art=11

- No biological TMDLs are part of this effort
- Stressor Identification determines what pollutant/s impacts biology

Stressor Identification Process

Method to evaluate stressor/s of biologically impacted streams

 Process used to evaluate if numeric criteria TMDLs (iron, fecal) will address biological stressors

Information will be retained and may be used to delist streams in the future (Table 4.1 draft)

Hughes River North Bend Lake –

not listed as impaired and not part of this effort

Impaired Waters

TMDL Watershed	NHD Code	Stream Name	WV Code	Fe	FC
Hughes River	WV-OLK-31	Hughes River	WVLKH	x	x
Silver Run	WV-OLK-31-B	Silver Run	WVLKH-1	x	x
Lyda Run	WV-OLK-31-C	Lyda Run	WVLKH-2	М	X
Gooseneck Run	WV-OLK-31-D	Gooseneck Run	WVLKH-3	М	
Goose Creek	WV-OLK-31-E	Goose Creek	WVLKH-4	M	x
Goose Creek	WV-OLK-31-E-1	Fox Run	WVLKH-4-0.5A	М	
Goose Creek	WV-OLK-31-E-2	Lick Run	WVLKH-4-A	М	x
Goose Creek	WV-OLK-31-E-3	Second Big Run	WVLKH-4-B		X
Goose Creek	WV-OLK-31-E-11	Oil Spring Run	WVLKH-4-G	x	x
Goose Creek	WV-OLK-31-E-13	Myers Fork	WVLKH-4-H		x
Goose Creek	WV-OLK-31-E-14	Lynn Run	WVLKH-4-H.5	М	
Goose Creek	WV-OLK-31-E-17	Long Run	WVLKH-4-I	М	x
Goose Creek	WV-OLK-31-E-18	Short Run	WVLKH-4-J		x
Goose Creek	WV-OLK-31-E-25	Nutter Fork	WVLKH-4-L	М	x
Goose Creek	WV-OLK-31-E-25-A	UNT/Nutter Fork RM 0.91	WVLKH-4-L-1	М	
Goose Creek	WV-OLK-31-E-31	Brushy Fork	WVLKH-4-N	м	x
Goose Creek	WV-OLK-31-E-36	Layfields Run	WVLKH-4-0	М	x
Goose Creek	WV-OLK-31-E-4	Combs Run	WVLKH-4-C	м	
Goose Creek	WV-OLK-31-E-41	Douglas Run	WVLKH-4-Q		x
Goose Creek	WV-OLK-31-E-7	Pigeonroost Run	WVLKH-4-E	М	
Rock Run	WV-OLK-31-F	Rock Run	WVLKH-5	X	x
Flint Run	WV-OLK-31-J	Flint Run	WVLKH-8		x
S. Fork/Hughes R.	WV-OLK-31-K	South Fork/Hughes River	WVLKH-9	х	x
S. Fork/Hughes R.	WV-OLK-31-K-4	Big Island Run	WVLKH-9-C		x
S. Fork/Hughes R.	WV-OLK-31-K-7	Louthers Run	WVLKH-9-E	М	
S. Fork/Hughes R.	WV-OLK-31-K-8	UNT/South Fork RM 5.98/Hughes River	WVLKH-9-E.3	М	
S. Fork/Hughes R.	WV-OLK-31-K-13	Laurel Run	WVLKH-9-F	М	x
S. Fork/Hughes R.	WV-OLK-31-K-13-B	UNT/Laurel Run RM 1.57	WVLKH-9-F-2	М	
S. Fork/Hughes R.	WV-OLK-31-K-15	MacFarlan Creek	WVLKH-9-G	x	x
S. Fork/Hughes R.	WV-OLK-31-K-15-A	Left Fork/Macfarlan Creek	WVLKH-9-G-1	M	
S. Fork/Hughes R.	WV-OLK-31-K-15-F	UNT/Macfarlan Creek RM 4.21	WVLKH-9-G-1.8	м	
S. Fork/Hughes R.	WV-OLK-31-K-16	Dutchman Run	WVLKH-9-H	М	x
S. Fork/Hughes R.	WV-OLK-31-K-16-C	Left Fork/Dutchman Run	WVLKH-9-H-1	М	
S. Fork/Hughes R.	WV-OLK-31-K-20	Indian Creek	WVLKH-9-J	X	X

96 named streams

Table 3.3 beginning on page 11

MDAS Model

> Watershed Model

- > Runs dynamically on a 1-hour time step
- Represents land use (hydrologic processes) and river processes
- Recognizes exposure duration and exceedance frequency components of criteria
 Can include nonpoint and point sources
 Streambank Erosion component

Modeling Approach

Segment watershed
 Configure model to represent all sources
 Calibrate model for hydrology (flow) and water quality

> Iron> Fecal> Sediment

Run MDAS for Baseline conditions (existing)
 Run MDAS for TMDL scenario(s)

186 streams

8 TMDL Watersheds

447 subwatersheds

Baseline Condition

Design precipitation period

- Hourly precipitation data for a six-year period
- Design period includes wet and dry years
- Applied to present day land uses
- Permitted discharges equal to permit limits

Annual precipitation totals for the Mid-Ohio Valley Regional Airport (WBAN 03804) weather station

TMDL Condition

 Existing pollutant sources reduced such that TMDL endpoints are achieved in each modeled subwatershed recognizing
 Criteria value, duration and exceedence frequency
 Margin of safety

Margin of Safety Required component of TMDLs Explicit 5% used in most TMDLs > TMDL endpoints for numeric criteria are 95% of criterion value (ex.1.425 mg/l for 1.5 mg/l Fe criterion)

Allocation Methodology

- Universal Reduction of targeted sources
 Streambank erosion, Failing Septics, etc
- Top-down approach
 Headwater subwatersheds analyzed first
- Allocation strategy dictates
 order and magnitude of reduction
- If necessary, loads are reduced then routed to downstream subwatershed

Allocation Methodology

> WVDEP priorities:
 > Ensure criteria compliance at all sws outlets
 > Target the primary causative sources

Strategy in general
 Critical conditions must be considered
 Sometimes only one significant source in sws
 Always some amount of professional judgement

Fecal Coliform Sources

> Point sources > HAUs > Package Plants > Municipal Sewage Plant

> Nonpoint source

- Failing septic systems and/or straight pipe illicit discharges
- Stormwater runoff from urban/residential lands outside of MS4 areas
- Stormwater runoff from agricultural lands

Fecal Coliform Strategy

 > 100% reduction of all untreated sewage discharges (failing septics, straight pipes) as required by WV Bureau for Public Health regulations

Sensitivity analysis to address severity of agricultural vs. urban/residential impacts

Iron Sources

> Streambank erosion > Upland Sediment Sources ≻Barren land >Harvested/Burned Forest ≻Oil and Gas ≻Agriculture >Urban Residential outside MS4 areas ≻Roads Construction Stormwater General Permits

Iron Allocation Strategy

- Streambank erosion loadings reduced to best available in watershed
- Sediment sources set to iron loadings equivalent to 100 mg/I TSS
- > Harvested Forest were reduced to loadings associated with Forest

Point sources were at 1.5 mg/l end of pipe in impaired watersheds – no reductions needed

Iron Allocation Strategy continued

Future growth for Construction Stormwater area initially allocated at 4% of undeveloped subwatershed area with some raised to 6% for operations currently permitted

Future Growth Highlights

- New facility anywhere in watershed if meeting water quality criteria end of pipe
- Subwatershed-specific future growth allowances have been provided, where possible, for site registrations under the Construction Stormwater General Permit
- Further details on Future Growth can be found in Section 9.0 of the Draft report

Hughes River Watershed TMDL Path Forward

Formal public comment period ends 6/22/2018

 Address comments, prepare final draft and submit to EPA for approval (final draft will include Response Summary)

TMDL Products

Main Report – Overall description of the TMDL development process for the Hughes River watersheds

> Technical Report with detailed appendices Draft Report

Total Maximum Daily Loads for the Hughes River Watershed, West Virginia

Prepared for West Virginia Department of Environmental Protection Division of Water and Waste Management Watershed Assessment Branch, TMDL Section Prepared by Tetra Tech, Inc. 803 Quarrier Street, Suite 400 Charleston, WV 25301

May 2018

TE TETRA TECH

TMDL Products

Allocation spreadsheets:
 Fecal Coliform, Iron
 TMDL for each stream,
 WLAs and LAs by SWS
 Filterable

 GIS shapefiles, along with Technical Report and Appendices, available on CD

Public Comment

- Public Comment period ends <u>June 22, 2018</u>
 Documents may be reviewed/downloaded from DEP webpage: <u>www.dep.wv.gov/tmdl</u>
- CD available upon request CD includes GIS Shapefiles and Technical Report
- Comments should be submitted to Mindy Ramsey at Mindy.S.Ramsey@wv.gov
- Questions contact Mindy Ramsey, Jim Laine, Mike McDaniel
- > (304) 926-0499 (Ext 1063, 1061, 1055)
 - Mindy.S.Ramsey@wv.gov
 - James.C.Laine@wv.gov
 - Michael.L.McDaniel@wv.gov

Spreadsheet/GIS Demonstration

Discussion/Questions