

WVWRAM Restoration Supplement Version 1.0

WV Department of Environmental Protection Division of Water and Waste Management Watershed Assessment Branch 601 57th St SE, Charleston, WV 25304 Phone: 304-926-0499 https://dep.wv.gov/WWE/watershed/wetland

Contents

1. Introduction	1
1.1 Limitations and constraints of WVWRAM	1
2. How do WVWRAM restoration scores differ from impact scores?	2
2.1 The Project Area is the primary Assessment Area for restoration assessments	2
2.2 The GIS-derived Site Biodiversity Rank is not applied to restoration scores	2
3. Expected WVWRAM scores at mitigation sites	3
3.1 What is the expected range of re-establishment lift over time?	3
3.2 What is the expected range of enhancement lift over time?	3
3.3 How do restored sites compare to randomly selected sites?	4
4. Which metrics are a function of location rather than design?	5
5. Which restoration actions result in a positive change to the WVWRAM score?	6
6. Where do restoration actions appear on the WVWRAM datasheet?	8
6.1 Vegetation improvement	8
6.2 Soils, hydrology, topography, structural patches	. 11
6.3 Buffer	. 15
7. Case studies	. 16
7.1 Re-establishment, Preston County	. 16
7.2 Enhancement, Pendleton County	. 18
7.3 Re-establishment, Randolph County headwater stream	. 20
8. Restoration Design with WVWRAM	. 23
8.1 Get familiar with your site	. 23
8.2 Calculate the baseline WVWRAM score	. 24
8.3 Design your restoration actions	. 25
8.4 Calculate scores over time	. 25
9. Summary of point breakdowns	. 28
9.1 Variable names and brief descriptions	. 30
10. Annotated field form showing metric names	. 30

1. Introduction

This document is a supplement to the WVWRAM User Manual and WVWRAM Reference Manual. The information presented in this document is intended to assist restoration professionals with designing and scoring their wetland restoration projects. The WVWRAM Reference Manual contains significantly more detail on each metric, including all of the equations used to calculate the WVWRAM score. Please note that the WVWRAM Reference Manual equations are used to calculate regulatory function, wetland condition, and state land acquisition scores. The integer scores in the WVWRAM Reference Manual are divided by 85 to arrive at the decimal scores that make up the regulatory function score. In this document, the division has already been done, and the subscores shown are the regulatory function scores. Note also that while many of the subscores are simply added, some are combined with other metrics and the maximum or minimum is taken, or a cap is applied. The way subscores are summed up to arrive at the regulatory score is summarized in Section 9 of this document "Summary of point breakdowns" and described in detail in the WVWRAM Reference Manual.

1.1 Limitations and constraints of WVWRAM

WVWRAM, including both GIS and rapid field assessment of wetland functions, is not intended to answer all questions about wetlands. The following are important limitations:

- WVWRAM does not change any current procedures for determining wetland jurisdictional status or delineating wetland boundaries.
- WVWRAM does not assess all possible functions, values, and services that a wetland might support, but rather focuses on water quality, flood attenuation, and habitat/ecological integrity.
- WVWRAM is not intended to address the important question, "Is a wetland mitigation project in a *geomorphically appropriate* location?" That is, is the project sited in a location where key processes can be expected to adaptively sustain the wetland and wetland functions?
- WVWRAM is an additional tool for monitoring mitigation banks or other wetland restoration projects but does not replace more detailed performance criteria or standards required for release. WVWRAM scores may not be sufficiently sensitive to detect, in the short term, mild changes in some functions. Quantifying smaller changes will often require more intensive measurement protocols.
- The numeric estimates WVWRAM provides of wetland functions are not actual direct measures of those attributes. Rather, they are estimates of those attributes arrived at by using standardized scoring models that systematically combine well-accepted indicators that have been validated by other states or through peer-reviewed research.

2. How do WVWRAM restoration scores differ from impact scores?

2.1 The Project Area is the primary Assessment Area for restoration assessments.

- a. Allows for better change/trajectory detection, with some loss in repeatability. A WVWRAM score for the Project Area wetlands should be submitted with each monitoring report.
- b. If there is a surface water connection between the mitigation wetland and existing contiguous wetlands, then the hydrology metrics (floodplain, dominant water source, outlet, connection to stream continuum, hydrology stressors) should be filled out for the entire Wetland Unit rather than for just the project area.
- c. If the Project Area is part of a larger Wetland Unit, i.e., if contiguous wetlands exist, then a baseline WVWRAM and final release WVWRAM should be conducted on contiguous wetlands to ensure they have not been drained, flooded, invaded, or otherwise degraded by the restoration project. Credits may be reduced if contiguous wetlands are damaged by the restoration project.

2.2 The GIS-derived Site Biodiversity Rank is not applied to restoration scores.

- a. Pre-existing rare elements are not counted toward restoration scores.
- b. If rare elements move in naturally (without assistance), and if they are documented and accepted into the Natural Heritage database, they may be counted toward the restoration score in the field-based Site Biodiversity Rank. This will not happen often.

3. Expected WVWRAM scores at mitigation sites

3.1 What is the expected range of re-establishment lift over time?

The range for 39 sites is 0.35 - 0.68. A realistic target for well-designed and constructed reestablishment sites within a 10-year monitoring period is 0.60-0.66.

3.2 What is the expected range of enhancement lift over time?

We anticipate that a typical lift for enhancement will be about 0.2-0.3. The range for 4 known sites is lower, at 0.14 - 0.27. None of these are mitigation sites; they are all voluntary restorations. We anticipate that mitigation sites will score higher, since they will be tied to performance standards.

3.3 How do restored sites compare to randomly selected sites?

WVDEP has begun a statewide probabilistic monitoring program for wetlands. These randomly selected wetlands are representative of West Virginia wetlands as a whole, including a wide range of wetland conditions from natural to highly disturbed sites on both public and private land. Restored sites have lower median scores and a narrower range of scores as compared to randomly selected wetlands. As our state's wetland restoration expertise increases, we expect restored wetlands to eventually score higher than randomly selected wetlands.

4. Which metrics are a function of location rather than design?

Certain metrics are largely a function of location and do not generally depend on restoration design. In some cases, however, certain metrics such as location in a floodplain can be influenced by restoration design. Note that the scores below for individual metrics are not strictly additive – see the WVWRAM Reference Manual for how these scores are rolled up into a final score.

Soil and Structure

• Karst and Limestone-influenced Wetlands (0.035)

Hydrology

- Floodplain Location (changes metric roll-up strategy; floodplains can score 0.035 higher)
- Headwater Location (0.012)
- Impaired Waters Impacting Wetland (0.024)
- Wetland Discharges to Impaired Waters (0.012)
- Runoff from Contributing Watershed (0.024)
- Surface Water Outflow (0.047)

Buffer Condition and Extent

- Discharges to Wetland (0.024)
- Roads and Railroads (0.024)
- Landscape Integrity (0.035)

Landscape or Watershed Scale

- Aquatic Area Abundance (0.024)
- Biodiversity Rank of 12-digit HUC (0.012)
- Location in a DNR Conservation Focus Area (0.012)
- Land Use Disturbance in Contributing Watershed (0.012)
- Water Quality Issues in 12-digit HUC (0.012)
- Mean Slope of Contributing Watershed (0.024)
- Wetland Breeding Bird Occupancy (0.012)
- Watershed Position (0.012)
- Watershed Wetland Size and Uniqueness (0.012)

5. Which restoration actions result in a positive change to the WVWRAM

score?

The WVWRAM regulatory score is built from 65 metrics that have both GIS and field components. Each metric relates to specific physical, chemical, or biological functions of the wetland. Changes or improvements to hydrology, vegetation, soils, buffer, and stressors will change the value of specific metrics. Some metrics, especially those related to siting (e.g., landscape context, geology, topographic position) will not improve based on restoration actions. The actions and metrics that can improve WVWRAM scores, and their location on the field forms, are presented below. The potential score increases are based on the low-to-high range of scores of actual sites currently in the WVWRAM database of 230 field-sampled sites. Although each metric is scored separately, many of the metrics are interconnected and as one goes up, others will also go up. For example, re-connecting a wetland to the adjacent stream will affect multiple metrics.

Vegetation improvement

0.4 (floodplain) or 0.29 (non-floodplain) maximum lift Note that vegetation is also the most reliable indicator of successful improvements to hydrology/soil.

Vegetation metrics can be changed by rehabilitation or enhancement activities.

- Re-vegetate; vegetation changes from none to vegetated (0-0.012)
- Create PEM on marl (0-0.035)
- Create vegetated wetland 10m wide that fringes open water (0-0.012)
- Improve floristic quality (0-0.129)
- Create multiple natural vegetation types: horizontal interspersion (0-0.035)
- Remove livestock or stop mowing: persistent ungrazed veg (0-0.059)
- Create several strata in forested wetland (e.g., remove herbivory to restore shrub/herb layer); vertical structure (0-0.035)
- Plant woody veg (0-0.059)

Fix hydrology, expose hydric soil, add micro- and macro-topography

0.34 (floodplain) – 0.28 (non-floodplain) maximum lift

Abiotic metrics can be changed by rehabilitation or enhancement activities.

- Expose buried hydric soils containing clay or organic material near surface, or have them develop naturally after fixing hydrology (0-0.035)
- Create depressions that store water for several days after a storm (0-0.059)
- Create a diffuse and irregular upland-wetland boundary (0-0.012)
- Create microtopography (0-0.024)
- Remove soil stressors/compactors such as ATVs, livestock (0-0.024)
- Add structural patches such as coarse woody debris (0-0.035)
- Re-connect wetland to adjacent stream (0-0.024)

- Increase portion of wetland that is flooded by stream (0-0.024)
- Remove hydrologic stressors to restore intact hydrology (0-0.071)
- Create small (a few to tens of square yards) areas of surface water (0-0.012)
- Increase the proportion of wetland with seasonal ponding/saturation (0-0.035)
- Increase the complexity of the wetland-stream boundary (0-0.024)
- Proximity to other wetlands and aquatic resources (0-0.024)

Buffer rehabilitation

0.08 maximum lift (all wetlands) Note that buffers are explicitly included in the SWVM, and only their direct impact on the wetland, e.g. sedimentation, discharges, etc. are included here.

Individual buffer metrics that can be changed by restoration, with raw points:

- Restore natural vegetation and remove stressors from 10m perimeter (0-0.024)
- Restore natural vegetation and remove stressors from 50m water quality buffer (0-0.035)
- Restore natural vegetation and remove stressors from 300m wildlife buffer (0-0.024)

6. Where do restoration actions appear on the WVWRAM datasheet?

6.1 Vegetation improvement

(Note that vegetation is also the most reliable indicator of successful improvements to hydrology/soil)

The maximum predicted increase in WVWRAM score for this group of actions is 0.40 for floodplain wetlands and 0.29 for non-floodplain wetlands.

Plant Native Species, Remove Invasive Plants

Improve floristic quality by planting appropriate native species, removing invasive plants, and removing hydrology or soil stressors that inhibit growth of native plant communities. Metric: Floristic Quality

Potential WVWRAM regulatory score increase = 0.11

Pages 5 and 6 of field form:

			West	Virg	inia We	tland Rapid F	QA Datasheet		wv	Page : WRAM Field Form
Site r	name	9					Date	ə		
		NWI Wetland Type Code	<u>e</u> (p.69)	Don	ninant sp	ecies identified	<u>% of AA</u>		Total veg cover	Sum of
NWI	code	es must match codes on S	Soils sheet				field estimate or G	'S (p.69)	if < 100%	identified cove
I						1				
2						1				
3						1				
)omi	inant	t species identification (p.69) . Sum co	ver va	lues of ide	entified vascular pl	ant species across al	strata within	n each wetland ty	pe.
ND	wher the s	n all dominant vascular pla sum of species cover is ≥	ant species (≥ 80%. For NW	10% t I wetla	nd types	r across all strata) with total vegetativ	AND highly invasive (e cover of < 100% (e	bolded) plar .g., aquatic l	nts have been ide bed, mudflats), the	ntified e sum of
peci	es m	nust be $\geq 80\%$ of the total	vegetative cov	ver. Ex	ample: P	AB has total cover	of 40%. 80% of 40%	= 32% is th	e required sum of	species cover
spec	ies (Checklist. Circle space w	hen species h	as at I	east 10%	cover in wetland t	/pe. At the end of eac	ch wetland ty	/pe meander, reco	ord cover
				e unde	rlinod or			100/		
vitnir	i circ	eles. Highly invasive wetla	nd species are	<u>una</u>	Tracia al	id must be recorde	ed even if they have <	10% cover.	Write in any dom	ninant
peci	es no	cles. Highly invasive wetla ot listed. Use absolute cov	nd species are ver, not relative	e cove	r. Typical	cover values are 0	ed even if they have < .1, 1, 3, 5, 10, 20, 30	10% cover. , 40, 50, 60,	Write in any dom 70, 80, 90, or 100	ninant) percent.
ontnir speci Aqua	n circ es no tic P	cles. Highly invasive wetla ot listed. Use absolute cov Plants (true aquatic plants	nd species are /er, not relative that are subm	e cover	r. Typical t or have t	cover values are 0 floating leaves)	d even if they have < .1, 1, 3, 5, 10, 20, 30	10% cover.	Write in any dom 70, 80, 90, or 100	ninant) percent.
apeci Aqua WI v	es no tic P wetla	cles. Highly invasive wetla ot listed. Use absolute cov Plants (true aquatic plants and type #	nd species are /er, not relative that are subm	e cover ergent NWI	r. Typical t or have t wetland ty	cover values are 0 floating leaves) /pe #	d even if they have < .1, 1, 3, 5, 10, 20, 30 	10% cover. 40, 50, 60, wetland typ	Write in any dom 70, 80, 90, or 100 pe #	ninant) percent.
inir peci Aqua WU v 1	es no tic P wetla 2	cles. Highly invasive wetla ot listed. Use absolute cov Plants (true aquatic plants and type # 3 Brasenia schreber	nd species are ver, not relative that are subm	e cover lergent NWI 1	r. Typical t or have t wetland ty 2 3	cover values are 0 floating leaves) rpe #	d even if they have < .1, 1, 3, 5, 10, 20, 30 NW 1	10% cover. 40, 50, 60, wetland typ 2 3	Write in any dom 70, 80, 90, or 100 be #	ninant) percent.
Aqua IWI 1 1	es no tic P wetla 2	cles. Highly invasive wetla ot listed. Use absolute cov Plants (true aquatic plants and type # 3 Brasenia schreber Callitriche beternon	nd species are ver, not relative that are subm	e cover nergent NWI 1	r. Typical t or have t wetland ty 2 3	cover values are 0 floating leaves) pe # Lemna minor	d even if they have < .1, 1, 3, 5, 10, 20, 30 NW 1 	10% cover. 40, 50, 60, wetland typ 2 3	Write in any dom 70, 80, 90, or 100 pe # Potamogeton sp	ninant) percent. .(not P. crispus
Aqua NWI 1	es no tic P wetla 2 	cles. Highly invasive wetla ot listed. Use absolute cov Plants (true aquatic plants and type # 3 Brasenia schreben Callitriche heteropi Ceratophyllum den	nd species are ver, not relative that are subm nylla persum	NWI 1	r. Typical t or have t wetland ty 2 3	cover values are 0 floating leaves) //pe # Lemna minor Myriophyllum a	d even if they have < .1, 1, 3, 5, 10, 20, 30	: 10% cover. , 40, 50, 60, I wetland typ 2 3 	Write in any dom 70, 80, 90, or 100 De # Potamogeton sp Utricularia gibba Wolffia brasilien:	ninant) percent. .(not P. crispus
withir speci Aqua NWI 1	es no tic P wetla 2 	cles. Highly invasive wetla ot listed. Use absolute cov Plants (true aquatic plants and type # 3 Brasenia schreben Callitriche heteropi Ceratophyllum den Elodea canadensis	nd species are ver, not relative that are subm hylla hersum	NWI 1	r. Typical t or have t wetland ty 2 3 	a must be record cover values are 0 floating leaves) rpe # Lemna minor Myriophyllum a Nuphar lutea ssj	d even if they have < .1, 1, 3, 5, 10, 20, 30	: 10% cover. , 40, 50, 60, I wetland typ 2 3 	Write in any dom 70, 80, 90, or 100 De # Potamogeton sp Utricularia gibba Wolffia brasilien:	ninant) percent.

Increase the Diversity and Complexity of Natural Vegetation Types

Increase the number of natural vegetation types and the complexity of their boundaries. Create tall graminoid marsh habitat.

Metric: Horizontal Interspersion of Vegetation Types (VegHorInt)

Potential WVWRAM regulatory score increase = 0.035

Horizontal interspersion is calculated from field mapping by the GIS tool based on the number of NWI types present at the site and the complexity of their boundaries, combined with data from page 2 of the field form:

Skip if no PEM present. PEM canopy height(s). Check all that apply							
Height stratum covers \geq 5% of PEMs or occupies \geq 0.1 acre:							
□ < 30 cm (1 ft) □ 30-100 cm (1-3.3 ft) □ > 100 cm (3.3 ft)							
Tall (>100 cm) graminoid marsh Check one							
Tall marsh with at least seasonal standing water and cattails, sedges,							
bluejoint grass, or bulrushes occupies ≥ 0.1 acre.							
🗆 Yes 🛛 No							

Improve Structure of Vegetation

Create several strata in forested wetland, for example reduce herbivory, replant shrub/herb layer and promote regeneration of canopy tree species.

Metric: Vertical Structure of Vegetation (VegVerStr)

Potential WVWRAM regulatory score increase = 0.035

Vertical structure of vegetation is calculated from field mapping by the GIS tool based on the percentage of forested wetland and the percentage of vegetated wetland, combined with data from page 2 of the field form:

VEGETATION STRUCTURE

Skip if no PFO present. Forest structure. Check all that apply

Stratum covers \geq 5% of PFOs or occupies \geq 0.1 acre:

□ Canopy □ Understory □ Shrub □ Herb □ Moss

Skip if no PFO present. Forest regeneration. Check one

All native tree canopy species with >10% cover are present in the

sapling layer.

🗆 Yes 🛛 🖬 No

Re-vegetate Unvegetated Areas

Re-vegetate; vegetation changes from none to vegetated. Metric: All Vegetation Types (VegAll) Potential WVWRAM regulatory score increase = 0.012 Percent of vegetated wetlands is calculated from field mapping by the GIS tool.

Plant Trees and Shrubs

Plant appropriate native trees and shrubs (use the WV Planting Tool). Metric: Woody Vegetation (VegWoody) Potential WVWRAM regulatory score increase = 0.059 Woody vegetation is calculated from field mapping by the GIS tool.

Reduce Mowing and Grazing

Remove livestock or stop mowing to allow vegetation to grow above 15 cm (6 inches) in height. Metric: Persistent Ungrazed Vegetation (VegPerUng)

Potential WVWRAM regulatory score increase = 0.059Page 2 of field form:

Mowed or grazed wetland Check one											
Mov	Mowed < 15 cm (6") tall or livestock-grazed areas										
	none	trace - 33%	33-67%	□ > 67%							

Reduce Mowing, Grazing, Farming, Herbicide/Fertilizer Use

Remove stressors to vegetation, such as mowing, grazing, farming, herbicide use, or fertilizer application.

Metric: Vegetation Stressors (VegStress)

Potential WVWRAM regulatory score increase = 0.012

Page 3 of field form:

Vegetation Removal or Alteration. Check one box that best describes the wetland.

Minimal or no signs of anthropogenic vegetation removal or alteration OR impacts occurred in the past (typically > 80 years ago) and the wetland
 appears to have recovered to near natural conditions. Examples: mature forested examps, undisturbed beaus systems, undisturbed postfands

appears to have recovered to near-natural conditions. Examples: mature forested swamps, undisturbed beaver systems, undisturbed peatlands.

and the wetland is still in the process of recovering. Examples: successional swamps (black willow, box elder), young/unstructured swamps, many shrub/emergent.

Severe. More than half of wetland is impacted by regular mowing, clearing, grazing, timbering, farming, dredging of aquatic bed, herbicide/pesticide/fertilizer

application, burning, excessive herbivory or other form of on-going vegetation removal or alteration. Comment

Increase Width of Vegetation Along Open Water

Increase vegetated area of wetland that fringes open water to at least 10 m (33 ft) width. Metric: Vegetation Fringing Open Water (VegByLP) Potential WVWRAM regulatory score increase = 0.012 Page 2 of field form:

Vegetation fringing open water Check if applicable

□ At least 90% of open water boundaries (lake, pond ≥ 0.1 acre, perennial

stream) with wetland are fringed by band of vegetation \geq 10 m (33 ft) wide.

6.2 Soils, hydrology, topography, structural patches

The maximum predicted increase in WVWRAM score for this group of actions is 0.34 for floodplain wetlands and 0.28 for non-floodplain wetlands.

Expose Organic Soils or Accumulate Organic Material

Expose buried hydric soils containing organic material by scraping off surficial agricultural deposits, or have organic material develop naturally from vegetation growth after fixing hydrology.

Metric: Organic Soil Material (Organic)

Potential WVWRAM regulatory score increase = 0.035

Page 4 of field form:

_												
2 cm (0.8") organic material near surface							urfac	e	Remove duff layer. Collect sample from top 8 cm (3") of soil profile. Refer to <u>Organic Soils</u> reference sheet.			
Pea	Peat, mucky peat, muck, or mucky modified mineral soil in top 8 cm (3") below the soil surface.											
Soil sampling site #												
1	2	3	4	5	6	7	8	9				
									Present: at least 2 cm (0.8") thick organic layer or mucky modified mineral layer			
									Not present			

Deep Organic Soil. Excavate each soil hole to either 40 cm (16") depth of organic soil, or 80 cm (32") total soil depth, whichever comes first. <u>Histosol</u>: Peat, mucky peat, or muck soil with at least 12-18% organic matter by weight and >= 40 cm (16") deep within the upper 80 cm (32") of soil profile. <u>Histic epipedon</u>: Peat, mucky peat, or muck soil with at least 12-18% organic matter by weight and >= 20 cm (8") thick, but < 40 cm (16") thick, as a

									surface nonzon. Aquic condutoris of artificial drainage is required.					
Soil sampling site #									Add Soil modifier to NWI code	at top of page:				
1	2	3	4	5	6	7	8	9		organic (g)				
									Histosol present; NWI soil modifier = organic (g)	mineral (n)				
									listic epipedon present, but no histosol; NWI soil modifier = mineral (n)					
									leither histosol nor histic epipedon present; NWI soil modifier = mineral (n)					

Remove Livestock, ATVs, Soil Compaction

Remove soil stressors or compactors such as livestock, ATVs, or machinery. Metric: Soil Stressors (SoilIntact)

Potential WVWRAM regulatory score increase = 0.024

Page 3 of field form:

Soil Stressors. Check all that apply, then review total disturbance below.

- O Livestock (trampling, pugging, compaction, or heavy grazing that leads to erosion)
- O Machinery (plowing, filling, grading, dredging, compaction)
- O ATV or vehicles (ruts, compaction, other disturbance)
- O Removal of soil (mining, excavation)
- O Replacement of soil with waste or fill (mining spoil, landfill)
- O Other trampling or soil compaction
- O Other erosion, sedimentation, or stressor. Comment

Review the total soil disturbances above and rank severity of impact by checking one box below.

Intact: no anthropogenic disturbance.

Small to moderate stress to soil profile. On-going stressors affect < 10% of wetland OR impacts occurred in the past and the soil profile has largely recovered. Depth of disturbance typically < 10 cm (4"); ponding/channeling of water in disturbed areas has little or no impact on overall site hydrology.</p>

Substantial stress to soil profile with extensive and long-lasting impacts; depth of disturbance > 10 cm (4"), may cause significant ponding or

channeling of water that alters hydrology and vegetation.

Re-connect Wetland to Adjacent Stream

Re-connect wetland to adjacent stream through stream or floodplain restoration. Metric: Connectivity to the River Continuum (ConnectFL) Potential WVWRAM regulatory score increase = 0.024 Page 2 of field form:

Overbank flooding and connection to river continuum Check all that are observed within the wetland. Skip if no stream nearby/potentially connected.
active beaver dam
Inood deposits (sediment deposits, debris, drift deposits, flood wrack)
vegetation flattened and aligned along flow lines
L tree trunks with flood lines (water marks, silt coatings, staining, moss or lichen trim lines) or flood impact scars
absence of leaf litter under deciduous trees as a result of flooding (not livestock impacts)
braided stream channels, backwater sloughs, backchannels, or other flood drainage patterns present
□ flood-prone area (inundated at 2 x maximum bankfull depth) overlaps at least 10% of wetland
Disconnection from river continuum Check all that are observed at the stream that controls the floodplain. Skip if no stream potentially connected.
physical barriers between wetland & stream (roads, railbeds, hardened levees)
artificial drainage of floodplain between wetland and stream (ditches, drains, grading of land to improve drainage)
stream channel hardened (riprap, gabions, concrete)
stream channel straightened and/or moved to toeslope (meanders eliminated)
dam upstream significantly reduces flooding
land subsidence or significant streamflow reduction (sinking stream) in mined areas NOT on karst
stream channel banks are steep, eroding, have abundant bank slides or slumps, have < 50% cover of roots, or are unvegetated
stream is entrenched or moderately entrenched (Rosgen ER < 2.2 or Rosgen types A, F, G, B). Entrenchment is calculated as the flood-prone width
divided by the bankfull width. Flood-prone width is measured at the elevation equal to twice the maximum bankfull depth.
Maximum bankfull depth is the height of bankfull flow above the thalweg.
stream is incised; bank height ratio (BHR) > 1.5. Bank height ratio is calculated as the height of lowest bank divided by maximum bankful depth.
I flood prone area (inundated at 2 x maximum bankfull depth) does not extend to more than 10% of wetland
Optional workspace for entrenchment, incisement, and flood-prone area measurements
See user manual for diagrams and definitions. Any units may be used as long as they are consistent.
maximum bankfull depth: / =
2 x maximum bankfull depth: flood-prone width / bankfull width = entrenchment ratio (ER)
bankfull width:
flood-prone width:
lowest bank height: =
lowest bank height / maximum bankfull depth = bank height ratio (BHR)

Remove Drains, Fill Ditches, Breach Berms, Reduce Hydrologic Stressors

Reduce hydrologic stressors, for example by removing underground drains, filling ditches, breaching berms, managing stormwater runoff, or making the upland/wetland boundary more diffuse.

Metric: Hydrology Stressors (HydIntact) Potential WVWRAM regulatory score increase = 0.071 Page 3 of field form:

Hydrology Stre	ssors. Check all that apply, then review total disturbance below.							
0	Ditch							
0	Tile or drain							
0	Weir, spillway, standing pipe or water control structure							
0	Impoundment impacting hydrology (excluding beaver dams)							
0	Berm							
0	Road or impervious surface (paved and/or not at grade)							
0	RR track							
0	Undersized or perched culvert							
0	Pump, spring box, water well							
0	Filling/excavating/grading the land surface							
0	Dredging of aquatic bed							
0	Point source discharge							
0	Stormwater input							
0	Agricultural runoff							
0	Invasive vegetation concentrated along watercourses, with at least twice as much invasive cover as areas away from watercourses							
0	Adjacent stream channel/riparian zone aggrading, with fresh splays of sediment, partially buried culverts, or bar formation							
0	More than 25% of the upland-wetland edge is abrupt and straight, not a gradual and complex transition zone > 3 meters (10 ft) wide							
0	Other							
	Review the total hydrologic disturbances above and rank severity of impact by checking one box below.							
Intact: Hydro	logic regime is characterized by natural patterns, with no major hydrologic stressors present.							
Mild on-going	disturbance and/or past disturbance but now essentially recovered. For example, small ditches or diversions; berms or roads at/near							
grade; or mi	nor flow additions.							
Moderate on	-going disturbance and/or in the process of recovering from more severe disturbance in the past. For example, dams upstream or							
downstream	moderately affect hydroperiod; ditches or diversions < 1 m (3.3 ft) deep; two lane roads; culverts adequate for base stream flow but not flood							
flow; or mod	erate flow additions. Outlets may be moderately constricted, but flow is still possible.							
Severe on-ge	ping disturbance. For example, dams upstream or downstream moderately to substantially affect hydroperiod; a 4-lane highway;							
diversions u	estream or > 1 m (3.3 ft) deep that withdraw a significant portion of flow; large amounts of fill or excavation; significant artificial groundwater							
pumping; or	heavy flow additions. Outlets may be substantially constricted, blocking most flow.							
Hydrology is	entirely artificial; no natural inflows. E.g., a water treatment wetland constructed below the outflow from a wastewater treatment plant.							

Increase Area of Temporary or Seasonal Ponding/Saturation

Increase the proportion of wetland with temporary or seasonal ponding/saturation, i.e., NWI Water Regime = A, B, or C.

Metric: Seasonal Ponding (SeasonPond)

Potential WVWRAM regulatory score increase = 0.035

Page 4 of field form:

NWI Water Regime Refer						o NWI c	ode diag	ram, N	WI Wa	ater Regime Non-tidal Modif	iers, and NWI Water Regime Restri	ction reference sheets.
	So	il sampl	ing site	#						Add Water Regime modifie	r to NWI code at top of page:	intermittently exposed (G)
1	1	2	3	4	5	6	7	8	9	temporarily flooded (A)	continuously saturated (D)	permanently flooded (H)
										seasonally saturated (B)	seasonally flooded-saturated (E)	intermittently flooded (J)
										seasonally flooded (C)	semipermanently flooded (F)	artificially flooded (K)

Create a More Complex Upland/Wetland Boundary

Create a more irregular and complex upland-wetland boundary.

Metric: Complex Upland/Wetland Boundary (IrrEdge)

Potential WVWRAM regulatory score increase = 0.012

Irregular upland/wetland boundary is calculated from field mapping (GIS tool).

WVWRAM Restoration Supplement, 12 May 2023

Increase Cover of Small Surface Depressions

Increase the cover of small topographic or micro-topographic depressions that store water for several days after a storm (this action may be strongly limited by the topographic position). Metric: Surface Depressions (Depressions)

Potential WVWRAM regulatory score increase = 0.059

Page 1 of field form:

TOPOGRAPHY AND STRUCTURE										
Depressions	Check one									
none	L trace-10%	1 0-33%	□ >33%							

Increase Microtopographic Complexity

Increase the complexity of the microtopographic surface of the wetland, e.g. drunken bulldozer method.

Metric: Microtopographic Complexity (Microtopo)

Potential WVWRAM regulatory score increase = 0.024Page 1 of field form:

Microtopographic complexity Check one

a < 3% **b** 3-40% **b** > 40%

Add Coarse Woody Debris, Snags, and Structural Patches

Add structural patches such as coarse woody debris or snags. Adding patches of surface water can contribute to both Structural Patches and to Available Surface Water if other surface water is not available in the wetland.

Metric: Structural Patches

Potential WVWRAM regulatory score increase = 0.035

Page 1 of field form:

Structural Pa	atch Type. \ge 3 m ² (32 ft ²) patch unless otherwise specified. Check all that apply
	Open water
	Oxbows, secondary channels, swales
	Pools inaccessible to fish
	Springs or upwelling groundwater
	Non-vegetated flats (mudflats, sandflats)
	Animal mounds or burrows
	Beaver dams or lodges
	Abundant deciduous leaf litter
	Plant hummocks or tussocks
	Plant hummocks or tussocks > 25% cover of wetland (abundant)
	Coarse woody debris at least 10 cm (4") diameter and 91 cm (36") long
	Coarse woody debris, abundant: > 3% cover of wetland
	Standing snags at least 7.6 cm (3") diameter and 137 cm (4.5') tall
	General Standing snags, abundant: ≥ 3/acre with dbh > 25 cm (10")
	Upturned tree root wads (tip-up mounds) and pits
Comment	

6.3 Buffer

Note that buffers are explicitly included in the SWVM, and only their direct impact on the wetland, e.g. sedimentation, discharges, etc. are included here.

The maximum predicted increase in WVWRAM score for this group of actions is 0.08 for all wetlands.

Restore Naturally Vegetated Perimeter

Restore natural vegetation and remove stressors from 10 m (33 ft) perimeter. Metric: Natural Perimeter (BufferPerim)

Potential WVWRAM regulatory score increase = 0.024

Page 1 of field form:

PERIMETER AND NATURAL BUFFER								
Natural per	imeter Check of	ne						
100%	1 75-99%	□ < 75%						

Restore Natural Vegetation in Water Quality & Floristic Quality Buffer

Restore natural vegetation and remove stressors from 50 m (164 ft) water quality and floristic quality buffer.

Metrics: Water Quality Buffer, Floristic Quality Buffer (Disturb50m) Potential WVWRAM regulatory score increase = 0.035 Page 1 of field form:

50m (164') natural buffer for water quality	
Check one	
□ > 90%	
□ 75-90%	
□ 50-75%	
□ < 50%	

Restore Natural Vegetation in Wildlife Buffer

Restore natural vegetation and remove stressors from 300 m (984 ft) wildlife buffer.

Metric: Wildlife Buffer (BufferContig)

Potential WVWRAM regulatory score increase = 0.024 Page 1 of field form:

Contiguous 300m (984') natural wildlife						
buffer	Check one					
□ > 90%	G 60-90%	□ < 60%				

7. Case studies

7.1 Re-establishment, Preston County

A small stream and tributary were disconnected during road construction. In 2007 mitigation was undertaken to re-connect the stream to wetlands and excavate a pond. In 2018, the wetland had become a shrub swamp with some open areas that receives regular overflow from the adjacent streams, in addition to stormwater. It is characterized by a high water table and mostly native vegetation.

Preston County site in 1997 & 2016.

Preston County site in 2018 (photo by Mark Haibach).

WVWRAM Restoration Supplement, 12 May 2023

Which metrics changed immediately post-construction?

Most metrics went from zero to a positive score, since this was a re-establishment project. The metrics directly impacted by restoration action rather than by location in the (estimated) post-construction phase are shown below:

Preston County wetland	Pre-	Post-
	construction	construction
Connection to the River	0	0.024
Continuum		
Depressions	0	0.035
Portion of Wetland in	0	0.024
Floodplain		
Lack of Hydrology	0	0.059
Stressors		
Available Surface Water	0	0.012
Seasonal	0	0.035
Ponding/Saturation		
Lack of Soil Stressors	0	0.012
Structural Patches	0	0.012
Vegetated Wetland	0	0.012
Vegetation Fringing Open	0	0.012
Water		
Regulatory Score	0	About 0.35

Which metrics changed most over time as part of restoration?

Metrics with significant changes over time (baseline, 2009, 2012, 2018) are shown below.

Preston County wetland	Baseline 2007	2009	2012	2018
Floristic Quality subscore	0	-0.012	0.012	0.047

WVWRAM Restoration Supplement, 12 May 2023

Vegetation Fringing Open	0	0	0.012	0.012
Water subscore				
Horizontal Interspersion of Vegetation subscore	0	0.012	0.012	0.035
Woody Vegetation subscore	0	0	0	0.024
Regulatory Score	0	0.49	0.53	0.67

7.2 Enhancement, Pendleton County

Figure 1. Limestone-influenced swamp in 1997 and 2021.

In 1998, cattle were fenced out of a limestone-influenced swamp in Pendleton County. The 8foot electric fence was designed to reduce deer crossing, and over the next 10 years trees were planted. The swamp had been a highly impacted emergent wetland and buried peatland at the

beginning of the restoration, with 99% cover of non-native plants (mostly pasture grasses). Twenty years later it is a shrub swamp with emergent wetland with 99% native plants, a central beaver complex, and organic-rich peatland returning. Tree growth is healthy and the swamp is on a trajectory to become a complex forested swamp with natural beaver openings.

Figure 2. Limestone-influenced swamp in 2018.

WVWRAM Restoration Supplement, 12 May 2023

Which metrics changed as a result of restoration success?

In the case of this limestone-influenced swamp, the metrics below changed as a result of restoration. Not included in the scores below is the fact that in this rare limestone-influenced swamp, several rare species returned and improved the Site Biodiversity Rank.

Limestone-influenced Swamp	1998	2005	2018
Regulatory Score	0.36	0.56	0.60
Deep Organic Soil	0.024	0.024	0.035
Available Surface Water	0	0.012	0.012
Microtopographic Complexity	0.012	0.012	0.024
Organic Material near Surface	0.024	0.035	0.035
Structural Patches	0.012	0.012	0.024
Floristic Quality	-0.012	0.047	0.047
Horizontal Interspersion of Vegetation	0.012	0.024	0.035
Persistent Ungrazed Vegetation	0	0.047	0.035
Woody Vegetation	0	0	0.024
Connection to Stream Continuum	0	0	0.012

7.3 Re-establishment, Randolph County headwater stream

The WVWRAM score at maturity can be estimated by exploring different site designs and restoration actions. Exploring 4 hypothetical WVWRAM scenarios results in the following scores:

- 1. Connect to floodplain, add microtopography & depressions, plant native shrubs, treat invasives $\rightarrow 0.66$
- 2. Connect to floodplain, plant native shrubs, treat invasives $\rightarrow 0.62$
- 3. Connect to floodplain, add microtopography & depressions, plant native trees to attain 30% tree cover by maturity, treat invasives $\rightarrow 0.73$
- 4. Add microtopography & depressions, plant native shrubs, treat invasives $\rightarrow 0.59$

Preconstruction: Lacking in hydrology and hydrophytic vegetation. WVWRAM Score = 0.

Actual WVWRAM score 2 years post-construction = 0.66

Stream reconnected to floodplain. Depressions show development of hydric soils. PSS with meadowsweet and silky willow. 1% invasive reed canary grass – mostly native vegetation.

Which metrics changed immediately post-construction at this site?

WVWRAM metric	Pre- construction	Post- construction	Maximum Possible
Connection to the river continuum	0	0.024	0.024
Create depressions	0	0.059	0.059
Create microtopography	0	0.024	0.024
Add structural patches	0	0.012	0.035
Portion of wetland in floodplain	0	0.024	0.024
Remove hydrologic stressors	0	0.059	0.071
Available surface water	0	0.012	0.012
Seasonal ponding/saturation	0	0.035	0.035
Lack of soil stressors	0	0.012	0.024
Plant natives & treat invasives (part of floristic quality)	0	0.012	0.129
Plant woody vegetation (shrubs)	0	0.012	0.059

WVWRAM Restoration Supplement, 12 May 2023

WVWRAM metric	1 yr post- construction	2 yrs post- construction	Maximum possible
Floristic quality	0.012	0.059	0.129
Persistent ungrazed vegetation	0.012	0.047	0.059
Woody vegetation	0.012	0.035	0.059
Development of multiple vegetation types	0	0	0.035
Development of vertical veg strata	0	0	0.035
Development of structural patches	0.012	0.012	0.035
Development of organic soils	0	0	0.035

Which metrics may continue to change over time at this site if the trajectory is good?

Which metrics at this site are a function of location rather than design?

Soil and Structure

• Karst and Limestone-influenced Wetlands = 0 at this site; maximum possible is 0.035

Hydrology

• Headwater Location = 0.012, which is the maximum possible

Buffer Condition and Extent

• Landscape Integrity = 0.035, which is the maximum possible

Landscape or Watershed Scale

- Biodiversity Rank of 12-digit HUC = 0.012, which is the maximum possible
- Location in a DNR Conservation Focus Area = 0.012, which is the maximum possible
- Wetland Breeding Bird Occupancy = 0.012, which is the maximum possible
- Watershed Position = 0.012, which is the maximum possible

8. Restoration Design with WVWRAM

WVWRAM metrics reflect wetland functions and landscape position. An example of maximizing WVWRAM scores based on a hypothetical restoration design is shown in this section. The game plan is to:

- 1. Get familiar with your site
- 2. Calculate the baseline WVWRAM score
- 3. Design your restoration actions
- 4. For post-construction, 5 yrs, 10 yrs, maturity
 - Make maps & submit to GIS tool
 - Fill out database for expected conditions
 - Import GIS results and calculate WVWRAM scores

8.1 Get familiar with your site

- Maps, photos, and site visits, and site notes
- WV Flood Tool: floodplain, drainage patterns, leaf-off imagery, and hillshade
- SoilWeb
- WVDEP GIS Viewer
- USGS Historical Topographic Map Explorer
- WV Water Resources Registry
- WV Planting Tool

8.2 Calculate the baseline WVWRAM score

- Re-establishment baseline score is zero.
- Enhancement:
 - Map existing wetlands & submit to GIS tool
 - Conduct rapid assessment & fill out database
 - Import GIS results & calculate WVWRAM restoration score
- Review the landscape metrics on your baseline. These won't change with restoration. Better "neighborhoods" have higher scores. If there are no existing wetlands, create a dummy wetland to get the landscape metrics.

8.3 Design your restoration actions

- Use the WVWRAM Restoration Supplement to match your actions to increases in scores
- Some actions show results immediately, e.g., removing stressors
- Some actions take time, e.g., vegetation growth
- Lay out actions on a time-scale
 - 1-year post-construction
 - o 5 yrs
 - o 10 yrs
 - o Maturity

8.4 Calculate scores over time

For 1 yr, 5 yrs, 10 yrs, and maturity

- Map expected wetland types & submit to GIS tool
- Fill out database for each scenario (you can make duplicates to avoid re-entering repeated data)
- Import GIS results & calculate WVWRAM restoration scores
- Track the changes in individual metrics with each scenario

See WV	VVWRAM Final WRAM Reference M	Score Sheet with All Metri anual for explanation of scores an	d metrics							
	SiteN	ame	SiteEventID							
	1 y	ear post-construction	323							
SiteEventCo	de	Assessment Area (m2)	Survey Date				nal Casua Cha			0
_post-c	construction	9789.7	3/9/2023	dep	· ·	WVWRAIN F	nal Score She	et with All M	etrics	
Regulatory Imp	act Score	Total Function	DNR Land Acquisition		See WV	WRAM Referen	ce Manual for exp	lanation of score	es and metrics	
Regulatory impo		45	41	no department d'analormento jede	ichini.					watershed assessment bran
0.435		Condition	BRankA							
Regulatory Restorat	tion Score	33	None	Subscores						
0.435				WQ Funct	tion WO	Potential V	Q Opportunity	WQ Society		
				13		6	3	4	1	
LeadSurveyorName	Survey	orNames		FA Funct	ion FA	Potential	A Opportunity	FA Society	1	
Elizabeth Byers				16		11	1	4	1	
TimeStart TimeEnd	Latitude	Longitude		H Functi	on H	Potential	H Opportunity	H Society	H FunctNoBran	k H Condition
15:00 16:00				16		11	5	0	16	16
Directions									1	1
Hypothetical mitigation sce	nario 1 year post-co	nstruction		Metrics						
					AquaAbund	BRankHUC	BufferContig	BufferLand	BufferPerim	ChemTime
					0	1	0	2	2	0
SiteNotes					ClavOrganio	ConnectFl	ConsFocus	Depressions	Discharges	Dist50mFQ
Baseline of 0.778 acres PEM	11Btn is hypothetica	lly enhanced and re-established w	ith the goal of becoming		0	0	2	1	2	0
0.778 acres of PFO1Ctn and	1.642 acres of PFO	LAth. One year post-construction	the following restoration		Disturb50m	DisturbWs	EconRisk	Fisheries	FloodArea	FloodIn
and 3% depressions are add	ied, coarse woody m	aterial is added, two large standi	ng snags are added, and		0	1	3	1	2	1
91% of the 50m buffer is pro	otected. Hydrology:	Re-connecting the Mud River is n	ot feasible, so one of the		Floodplain	Floodway	Headwater	Hinvest	Histosol	HUC12WO
main stressors will remain.	Plantings include ca	nopy, understory, shrub, and her	species to provide a multi-		TRUE	4	0	0	0	1
layered PFO. Plantings are b	based on the WV Pla	nting Tool for Cabell County, wetl	and restoration, with the		Hilse	Hydintact	HydroH	HydSW	ImpairedIn	ImpairedOut
wetter species planted in th	e PFO1C and the dr	ier species in the PFO1A. Saplings	are protected from deer		0	- Tyuntact	- Figure 1	1	- O	1
browse, but have not yet ex	operienced growth.	nvasive plants are present and are	e treated.		IntEdao	Karst	LandEco	Landlator	LandHudro	LandDas
AssessmentArea	AA_comment				1 1		2	Canoniceg		
entire wetiand	Burnoso comment				LowSleps	MariPENA	Microtone	Organic	OwnorAccore	RublicLice
pre-impact or pre-restoration	Hypothetical site 1 y	ear post-construction			Lowsidpe	MariPEM	1 INICIOLOPO	Organic	OwnerAccess	Publicose
Special comment	hypothetical site 1 y	ear post-construction			2 DecidDett	Dung	DuneffEore	Dunafolistat	Coo Don d Dot	Concer Deard
special_comment					коадкал	Kunöff	KUNOTTSOM	Runoffwshd	SeaPondkat	SeasonPond
OwnerAccess	OwnAcc comment				U CLODE	4	U	1 Callintari	1.0000	5 Starson Editor
private none					SLOPE	SlopeWsho	SoilH	Souintact	SoliOrgCalc	StreamEdge
	L				1	2	2	1	0	0
NWI wetland type(s) preser	nt				StrucPatch	SWOutflow	/ SWOutflw2	VegAll	VegByLP	VegFA
PEM1Btn PEM1Ctn					1	0	0	1	0	5
· · ·			· · ·		VegFQ	VegH	VegHorInt	VegPerUng	VegPerUn4	VegVerStr
					2	3	1	5	4	1
					VegStress	VegWood	VegWoody4	VegWoodyFor	VegWQ	WaterSupply
			1							
					0	0	0	0	5	2
				WetldBird	0 WFlowPath	0 WMC (FQA	0) WQPlan	0 WQUse	5 WshdPos	2 WshdUniq

Summary of score changes over time

			WVWRAM	WVWRAM	WVWRAM	WVWRAM	WVWRAM
Wetland ID	Form of Mitigation	Acres	baseline	1-yr	5-yr	10-yr	maturity
W1	Enhancement	0.778	0.329	0.435	0.447	0.529	0.659
W2	Re-establishment	1.642	0	0.435	0.447	0.529	0.659

9. Summary of point breakdowns

The maximum subscores for individual metrics are shown in the table below. The metric groups that can be improved through restoration action are highlighted in yellow, and the individual metrics that can be improved through restoration actions are asterisked.

WVWRAM Maximum Points Breakdown for Regulatory Scores		_
*indicates metrics that can be improved through restoration actions		
non-highlighted areas are metrics that are a function of landscape and cannot be improved tl	hrough restoratio	on actions
Water Quality		Non-
Intrinsic potential to provide function	<u>Floodplain</u>	<u>Floodplain</u>
Headwater location (Headwater)	0.012	0.012
*Vegetation (*VegWQ, capped as shown)	0.118	0.059
= *VegPerUng (0.059) + *VegWoody (0.059) + *VegByLP (0.012)		
Surface depressions (*Depressions)	0.059	-
Surface water outflow (*SWOutflow)	-	0.047
Organic soil material (*ClayOrganic, prorated by *SeaPondRatio)	-	0.035
Time and space for chemical reactions to occur (*Chemtime, capped as shown)	<u> </u>	<u>0.035</u>
= *SeasonPond, prorated by Slope (0.035) + *IrrEdge (0.012)	_	_
Subtotal WQ Potential	0.188	0.188
Landscape opportunity to provide function		
Discharges to the wetland (Discharge)	0.024	0.024
Land use disturbance within buffer (Disturb50m)	0.035	0.035
Land use disturbance in contributing watershed (DisturbWshd)	0.012	0.012
Roads and railroads (RoadRail)	0.024	0.024
Impaired waters, algal blooms, powerboat use (ImpairedIn)	0.024	0.024
Subtotal WQ Opportunity (capped as shown)	<u>0.059</u>	<u>0.047</u>
Maximum Water Quality Subscore	0.247	0.235
Flood Attenuation		
Headwater location (Headwater)	0.012	0.012
Median percent slope (<i>LowSlope</i>)	0.024	0.024

	Vegetation (* <i>VegFA</i> , capped at 0.059 for non-floodplain)	0.106	0.059
	= *VegAll (0.012) + *VegPerUn4 (0.047) + *VegWoody4 (0.047)		
	Runoff and Storage (*Runoff, capped as shown)	0.059	0.047
	= *SeasonPond (0.035) + *Microtopo (0.024) + *ConnectFL (0.024)		
	Surface Water Outflow (*SWOutflw2)		<u>0.024</u>
	Subtotal FA Potential	0.200	0.165
L	andscape opportunity to provide function		
	Overland flow delivered to wetland (FloodIn)	0.024	0.024
	= SlopeWshd + Runoff50m + RunoffWshd, prorated and capped at 0.024)		
	Connectivity to historic floodplain (*ConnectFL)	0.024	
	Subtotal FA Opportunity	<u>0.047</u>	<u>0.024</u>
۸	Naximum Flood Attenuation Subscore	0.247	0.188
Hab	itat/Ecological Integrity		
lı	ntrinsic potential to provide function	0.353	0.353
	Vegetation (*VegH: structure and floristic quality)	0.176	0.176
	= *VegFQT (*VegSum (0.106) + *VegStress (-0.024 to 0)) + *VegVerStr (0.035) +		
	*VegHorInt (0.035)	0.400	0.400
	Hydrology (* <i>HydroH</i> : intact regime, floodplain connectivity)	0.106	0.106
	= *HydIntact (0.0/1) + *ConnectFL (0.024) + *HydSW (0.012)	0.074	0.074
	Solis and structural patches (*SoliH)	<u>0.071</u>	<u>0.071</u>
	= *SoilIntact (0.024) + SoilOrgCalc (Histosol + Karst, capped at 0.012) +		
	"StrucPatch (0.035)	0.500	0.500
		0.506	0.506
L	Buffer and landscape integrity (* Buffer(and)	0.092	0.092
	= *PufferDerim (0.024) + *PufferCentia (0.024) + Landintea (0.025)	0.082	0.082
	- BujjerPerim (0.024) + BujjerContig (0.024) + Lunamiteg (0.035)	0.025	0.025
	= WchdPos (0.012) + AaugAbund (0.024)	0.035	0.035
	- Wshuros (0.012) + Aquuabunu (0.024)	0.035	0 035
	= BRankHIIC + ConsEccus + Webd Inia + WetdBird prorated & canned at 0.035	0.055	0.035
	Subtotal Habitat Opportunity	0 153	0 153
٨	Jaximum Habitat Subscore	0.135	0.135
Tota	al maximum score	1 000	0.929
1010		1.000	0.525
Wet	lands of Special Conservation Concern, including Exemplary Wetlands		
<u>с</u> с	ocumented rare natural heritage element occurrences: score range	0.012	- 1.176
Toto	Il maximum including wetlands of special conservation concern	2.176	2.105

9.1 Variable names and brief descriptions

See WVWRAM Reference Manual for definitions of variables.

AquaAbund: aquatic area abundance	Runoff roll-up: microtopography slows and stores runoff
BRankHUC: biodiversity rank of 12-digit HUC watershed	Runoff50m: lands producing runoff within 50m
BufferContig: contiguous 300m wildlife buffer	RunoffWshd: runoff from contributing watershed
BufferLand roll-up: buffer condition and extent	SeaPondRatio: seasonal ponding ratio
BufferPerim: undisturbed perimeter	SeasonPond: seasonal ponding
Chemtime roll-up: time and space for chemical reactions to occur	Slope: median percent slope
ClayOganic roll-up: organic soil near surface, prorated	SlopeWshd: mean slope of contributing watershed
ConnectFL: connectivity to the historic floodplain	SoilIntact: lack of soil disturbance
ConsFocus: conservation focus areas	SoilOrgCalc roll-up: deep organic or limestone-influenced soil
Depressions: surface depressions	StrucPatch: structural patches
Discharge: discharges to wetlands within 100 m (328 ft)	SWOutflow: surface water outflow
Disturb50m: water quality 50m buffer	VegAll: all vegetation types
DisturbWshd: land use disturbance in contributing watershed	VegByLP: vegetation finging open water
FloodIn roll-up: floodwaters delivered to wetland	VegFA roll-up: vegetation for flood attenuation
Headwater: headwater location	VegFQT: floristic quality
HydIntact: intactness of hydrologic regime	VegH roll-up: vegetation structure and quality
HydroH roll-up: hydrology for habitat and ecological integrity	VegHorInt: horizontal interspersion of vegetation
HydSW: available surface water	VegPerUn4/VegPerUng: persistent ungrazed vegetation
ImpairedIn: impaired waters impacting wetland	VegStress: vegetation stressors
IrrEdge: complex upland/wetland boundary	VegSum: raw floristic quality score
Karst: karst and limestone-influenced wetlands	VegVerStr: vertical structure of vegetation
LandHydro roll-up: landscape-level hydrologic connectivity	VegWoody/VegWoody4: woody vegetation
LandInteg: landscape integrity	VegWQ roll-up: vegetation for water quality
LowSlope: low slope with wetland	WetldBird: wetland breeding bird occupancy
Microtopo: microtopographic complexity	WshdPos: watershed position
Organic: organic soil near surface	WshdUniq: watershed wetland size and uniqueness
RoadRail: roads and railroads	

10. Annotated field form showing metric names

(see following pages)

West Virginia Wetland Rapid Assessment Datasheet

Site name	Date Si	teEventCode	
Crew leader name	Field crew name(s)		
Time (24 hr) Start End	gear decontaminated p	rior to entering site (p	p. 19)
Directions to site:	all datasheets checked	by crew leader at en	d of sampling
Notes on land use history, site conditions, wildlife observed, dis	scussions with landowner o	r other on-site persor	nnel, or deviations from protocol:
GPS make/model	GPS datum: DAD83	other	Photos of inlet, outlet, NWI types, soils,
Coordinates (decimal degrees):			stressors, and any other key features (p.23)
Assessment Area Check one (p.25)	Purpose of Assessment	Check all that apply	PERIMETER AND NATURAL BUFFER (p.33)
AA is the entire Wetland Unit (most sites).	pre-impact replica	ite 🖵 other	Natural perimeter Check one (p.34)
□ AA is a portion of the very large WU (> 25 acres)	□ restoration □ baseli		□ 100% □ 75-99% □ < 75%
AA is only the Project Area, smaller than the WU -	□ random □ years	post	BUFFERPERIM
see manual for exceptions when project area survey	□ reference Comment	t	50m (164') natural buffer for water quality
is acceptable	Special Conservation Co	oncern Check one(p32)	Check one (p.35)
Comment	B-rank from top	most box in	□ > 90%
Mapping All boxes should be checked at completion (p.28)	list below. Read definition	s in manual!	
current land use compared to air photo for	old-growth swamp (B3)		
50m (164 ft) and 300m (984 ft) buffer	□ large bog or fen (B4)	BRAINK	□ < 50%
□ NWI wetland types GPS'ed and/or drawn on air photo	mature forested swamp	o (B5)	Contiguous 300m (984') natural wildlife
perimeter walked; inlet, outlet, or other features GPS'ed	summit sinkhole (Ridge	&Valley only)(B5)	buffer Check one (p.35)
and/or drawn on air photo	no known special conce	ern (none)	□ > 90% □ 60-90% □ < 60%
Soil sample locations GPS'ed and/or drawn on air photo	Comment		BUFFERCONTIG
NON-REGULATORY ADDITIONAL INFORMATION For land	acquisition and full function	al scores (p.36)	
Ownership/Access Check one (p.36)	Investment Check one (p	o.36)	Recreation Infrastructure Check all that apply
public, or private with permanent unrestricted access	compensatory mitigation	on site	□ maintained parking (p.37)
private, with seasonal, partial, or case-by-case access	conservation easement	t	boardwalk
private, without public access	other conservation inverse	estment	informational kiosk or brochure
	no known conservation	investment	□ maintained road w/i 30m (100') with view
	Comment		🗅 maintain ditrai
Planning or scientific use check all that apply (p.37)	Other Public Use Check	an mat apply (p.3o)	D boat access
water quality plan includes wetland	wetland visible from pu	blic area <100m (328')	no infrastructure
habitat plan includes wetland	evidence of non-consult	m <mark>ptiv us : C</mark>	Comment
monitored > 2yrs, non-regulatory, data available to prove	Devidence o consumptiv		
no known planning or sustained scientific use	no evidence of public u	se	
Comment	Comment		
TOPOGRAPHY AND STRUCTURE (p.38)	Structural Patch Type. ≥	3 m ² (32 ft ²) patch ur	nless otherwise specified. Check all that apply
Depressions Check one (p.38)	Open wat	er HYDSW	(p.40)
□ none □ trace-10% □ 10-33% □ >33%	Oxbows,	secondary channels,	swales
DEPRESSIONS	Pools ina	ccessible to fish	
Microtopographic complexity Check one (p.39)	Springs o	r upwelling groundwa	iter
	Non-vege	tated flats (mudflats,	sandflats)
MICRUTUPU	Animal m	ounds or burrows	
Karst topography Check all that apply (p.39)	Beaver da	ams or lodges	STRUCPATCH
□ limestone spring	Abundant	deciduous leaf litter	
	Plant hun	nmocks or tussocks	
Sinking stream (not on mined land)	Plant hun	nmocks or tussocks >	 25% cover of wetland (abundant)
Isolated closed depression over limestone	Coarse w	oody debris at least 1	U cm (4") diameter and 91 cm (36") long
	Coarse w	oody debris, abundar	nt: > 3% cover of wetland
Lave adjacent	□ Standing	snags at least 7.6 cm	(3") diameter and 137 cm (4.5') tall
no evidence of karst	□ Standing	snags, abundant: ≥ 3	acre with dbh > 25 cm (10")
	Upturned	tree root wads (tip-up	o mounds) and pits
	Comment		

West Virginia Wetland Rapid Assessment Datasheet: Veg Structure and Hydrology

Γ

Site name	Date							
VEGETATION STRUCTURE (p.43)								
orested NWI wetland types (combine all PFO) Check all that apply	Emergent NWI wetland types (combine all PEM) Check all that apply							
Stratum covers $\ge 5\%$ of PFOs or occupies ≥ 0.1 acre: (p.44)	Height stratum covers \geq 5% of PEMs or occupies \geq 0.1 acre: (p.44)							
Canopy Understory Shrub Herb Moss	\Box < 30 cm (1 ft) \Box 30-100 cm (1-3.3 ft) \Box > 100 cm (3.3 ft)							
Forest regeneration (combine all PFO) Check one (p.44)	Tall (>100 cm) graminoid marsh Check one (p.45)							
All native tree canopy species with >10% cover are present in the	Tall marsh with at least seasonal standing water and cattails, sedges,							
sapling layer. VEGVERSTR	bluejoint grass, or bulrushes occupies ≥ 0.1 acre.							
Vegetation fringing open water Check one (p.45)	Mowed or grazed wetland Check one (p.46)							
At least 90% of open water (lake, pond \geq 0.1 acre, perennial stream)	Mowed < 15 cm (6") tall or livestock-grazed areas							
boundaries are fringed by band of wetland vegetation $\ge 10 \text{ m} (33 \text{ ft})$ wide.	□ none □ trace - 33% □ 33-67% □ > 67%							
U Yes U No ("no" includes sites not adjacent to open water) VEGBYLP	VEGPERUNG							
HYDROLOGY (p.46)								
Check one (p.46)								
□ Floodplain Wetland Unit (≥10% of wetland receives overland flow in 100-yr	flood or more frequently, or major beaver influence in headwater wetlands)							
Non-floodplain Wetland Unit (may have stream associated with it but overl. FLOODPLA	and flow or beavers impact <10% of wetland)							
Largest water source Check one; note stream order if perm. flowing (p.47)	Largest outlet is Check one (p.48)							
□ relatively permanently flowing and → □ 1st or 2nd □ 3+ order	relatively permanently flowing							
intermittent or ephemeral	relatively permanently flowing but highly constricted							
underground spring HEADWATER & QC								
no visible inlet (dispersed groundwater and precipation only)	no surface outlet (groundwater only)							
□ bidirectional (no stream; water level follows lake level or river flood stage)								
If largest water source is a surface stream: Check one if applicable	If largest outlet is a surface stream: Check one if applicable							
natural altered or constructed	natural							
Comment	Comment							
Overbank flooding and connection to river continuum Check all that are ob	pserved <u>within the wetland</u> . Skip if no stream nearby/potentially connected.							
I flyed deposits (sediment deposits, debris, drift deposits, floed wrack)	(pp.49.52)							
Legetation flattened and aligned along flow lines								
tree trunks with flood lines (water marks, silt coatings, staining, moss or lichen trim lines) or flood impact scars								
absence of leaf litter under deciduous trees as a result of flooding (not livestock impacts)								
braided stream channels, backwater sloughs, backchannels, or other flood drainage patterns present CONNECTFL								
□ flood-prone area (inundated at 2 x maximum bankfull depth) overlaps at least 10% of wetland								
Disconnection from river continuum Check all that are observed at the <u>stream that controls the floodplain</u> . Skip if no stream potentially connected.								
physical barriers between wetland & stream (roads, railbeds, hardened levees) (pp.49-52)								
artificial drainage of floodplain between wetland and stream (ditches, drains, grading of land to improve drainage)								
□ stream channel hardened (riprap, gabions, concrete)								
stream channel straightened and/or moved to toeslope (meanders eliminated)								
a dam upstream significantly reduces flooding								
□ land subsidence or significant streamflow reduction (sinking stream) in mined areas NOT on karst								
□ stream channel banks are steep, eroding, have abundant bank slides or slumps, have < 50% cover of roots, or are unvegetated								
□ stream is entrenched or moderately entrenched (Rosgen ER < 2.2 or Rosgen types A, F, G, B). Entrenchment is calculated as the flood-prone width								
divided by the bankfull width. Flood-prone width is measured at the elevation equal to twice the maximum bankfull depth.								
Maximum bankfull depth is the height of bankfull flow above the thalweg.								
U stream is incised; bank height ratio (BHR) > 1.5. Bank height ratio is calculated as the height of lowest bank divided by maximum bankful depth.								
I flood prone area (inundated at 2 x maximum bankfull depth) does not extend	t to more than 10% of wetland							
ptional workspace for entrenchment, incisement, and flood-prone area	measurements (pp. 50-52)							
See user manual for diagrams and definitions. Any units may be used as long a	as they are consistent.							
n aximum bankfull depth:	/ =							
2 k maximum bankfull depth:	flood-prone width / bankfull width = entrenchment ratio (ER)							
barkfull width:								
flood prone width:								
lowest pank height:	/ =							
	lowest bank height / maximum bankfull depth = bank height ratio (BHR)							

Page 2

Site name	Date
Hydrology Stre	ssors. Check all that apply, then review total disturbance below. (p.53)
0	Ditch
0	Tile or drain
0	Weir, spillway, standing pipe or water control structure
0	Impoundment impacting hydrology (excluding beaver dams)
0	Berm
0	Road or impervious surface (paved and/or not at grade)
0	RR track
0	Undersized or perched culvert
0	Pump, spring box, water well
0	Filling/excavating/grading the land surface
O	Dredging of aquatic bed
0	Point source discharge
0	Stormwater input
0	Agricultural runoff
0	Invasive vegetation concentrated along watercourses, with at least twice as much invasive cover as areas away from watercourses
0	Adjacent stream channel/riparian zone aggrading, with fresh splays of sediment, partially buried culverts, or bar formation
0	More than 25% of the upland-wetland edge is abrupt and straight, not a gradual and complex transition zone > 3 meters (10 ft) wide
0	Other
	Review the total hydrologic disturbances above and rank severity of impact by checking one box below.
Intact: Hydro	logic regime is characterized by natural patterns, with no major hydrologic stressors present.
Mild on-going	J disturbance and/or past disturbance but now essentially recovered. For example, small ditches or diversions; berms or roads at/near
grade; or m	nor flow additions.
	going disturbance and/or in the process of recovering from more severe disturbance in the past. For example, dams upstream or
downstream	moderately affect hydroperiod; ditches or diversions < 1 m (3.3 ft) deep; two lane roads; culverts adequate for base stream flow but not flood
	erate now additions. Outlets may be moderately constricted, but now is still possible.
Severe on-ge	sing disturbance. For example, dans upstream of downstream moderately to substantially anect hydropenod, a 4-lane highway,
	becau flow additions. Outlete may be substantially constricted, blocking most flow
Pumping, or Hydrology is	entirely artificial: no natural inflows. E.g., a water treatment wetland constructed below the outflow from a wastewater treatment plant.
Water Quality	Strassors Check all that apply (n 53)
\square No water qua	ality stressors observed DISCHARGES
Discharges t	o the wetland: stormwater discharges livestock or agricultural runoff, straight pipes, drainage ditches, industrial discharges, oil slicks
sediment p	umes algal mats odors adjacent spoil piles leaking silt fences road salt. ROW herbicide or erosion on the unland edges
Contiguous V	vater body has algal bloom, power boat use, or other observable impairment.
□ Other	
Vegetation Rer	noval or Alteration. Check one box that best describes the wetland. (p.54) VECSTRESS (VECEO)
Minimal or n	b signs of anthropogenic vegetation removal or alteration OR impacts occurred in the past (typically > 80 years ago) and the wetland
appears to h	ave recovered to near-natural conditions. Examples: mature forested swamps, undisturbed beaver systems, undisturbed peatlands.
D Moderate. V	egetation removal or alteration is on-going and has moderate impact in terms of either severity or extent OR impacts occurred in the past and
wetland is sti	I in the process of recovering. Examples: successional swamps (black willow, box elder), young/unstructured swamps, many shrub/emergent.
Severe. Mor	e than half of wetland is impacted by regular mowing, clearing, grazing, timbering, farming, dredging of aquatic bed, herbicide/pesticide/fertilizer
application, I	burning, excessive herbivory or other form of on-going vegetation removal or alteration. Comment
Soil Stressors.	Check all that apply, then review total disturbance below. (p.55)
0	Livestock (trampling, pugging, compaction, or heavy grazing that leads to erosion)
0	Machinery (plowing, filling, grading, dredging, compaction)
0	ATV or vehicles (ruts, compaction, other disturbance)
0	Removal of soil (mining, excavation) SOLNTACT
O	Replacement of soil with waste or fill (mining spoil, landfill)
O	Other trampling or soil compaction
O	Other erosion, sedimentation, or stressor. Comment
	Review the total soil disturbances above and rank severity of impact by checking one box below.
Intact: no an	hropogenic disturbance.
Small to mod	lerate stress to soil profile. On-going stressors affect < 10% of wetland OR impacts occurred in the past and the soil profile has largely
recovered. [Depth of disturbance typically < 10 cm (4"); ponding/channeling of water in disturbed areas has little or no impact on overall site hydrology.
Substantial s	tress to soil profile with extensive and long-lasting impacts; depth of disturbance > 10 cm (4"), may cause significant ponding or

channeling of water that alters hydrology and vegetation.

I

|--|

|--|

Site name Date										
NWI Wetland Types Refer to NWI code sheets. List all NWI codes present in assessment area; minimum 1 soil sample per each NWI code;										
			miniı	mum 1	soil s	sample per eac	h 5 acres; NWI c	codes may be sampled more than once.		
	Assign	n Syster	n, Cla	ss, and	d Suk	class of the NV	VI code based o	n vegetation (ex. PEM1). Then sample soil ar	nd assign Water Regime,	
	pH, al	nd Soil	organi	ic/mine	eral m	odifiers. Add S	pecial modifiers	if present (ex. PEM1Abtn).	(p.55)	
NWI Wetland Ty	pe Coo	de				Sampled	Not sampled	Soil notes		
(refer to NWI Co	odes d	iagram)					(permanently	Optional notes on soil profile or soil features.		
NWI System	Sub-	¦Wat.	Spe-				ponded)			
& Class	class	reg.	cial	рН 🖁	Soil					
Examp. PEM	1	B	d	t	n			0-5cm sapric,5-15cm mucky mod min,15-	30+cm silt loam 25%redox conc	
		1	1							
1.		i i	1							
CIS To	ol In	but	inc	ludi	na					
2. 11/00/		put			ng					
HYDSV	V, Ir	KE	DG	E,						
3. VEGAL	L, V	'EG'	WC	OD)Y					
		1	1							
4.		1	1							
1		1	1							
5.		 	I							
		-								
6.		1	i I							
1						_	_			
7.										
NWI Water Regime Refer to NWI code diagram, NWI Water Regime Non-tidal Modifiers, and NWI Water Regime Restriction reference sheets. (p.56)										
Add Water Regi	me mo	difier to	NWI	code a	t top	of page:	SONPOND/S	SEAPONDRA IIO seasonally flooded-saturated (E)	permanently flooded (H)	
°,	tempo	rarily flo	oded	(A)		seasonally floo	oded (C)	semipermanently flooded (F)	intermittently flooded (J)	
	seasoi	, nally sa	turate	d (B)		continuously s	aturated (D)	intermittently exposed (G)	artificially flooded (K)	
Special Modifie	rs (Dnly if a	pplica	ble. Re	efer to	NWI Code dia	gram and definit	ions. (p.58)		
If applicable, add	d Spec	ial mod	ifier to	NWI	code a	at top of page.	Add only the firs	at applicable modifier, in this order: b. d. f. m. h	1. r. s. x	
beave	ər (b). к	oartly di	itched/	/draine	d (d).	farmed (f), ma	naged (m), diked	d/impounded (h), artificial substrate (r), spoil (s	s), excavated (x)	
Soil pH pH	/alue o	f soil at	10 cn	n (4") k	pelow	the surface (p.	59)			
Soil sampli	na site	#		()		ŭ	,	Add pH modi	fier to NWI code at top of page.	
\overline{Ex} 1	2	3	4	5		6 7			pH < 5.5 = acid (a)	
	_			-				,	pH 5.5-7.4 = circumneutral (t)	
5.7									pH > 7.4 = alkaline (i)	
ORGANIC MAT	ERIAL									
2 cm (0.8") Org	anic M	aterial	Near	Surfac	e	Remove duff la	aver. Collect san	nple from top 8 cm (3") of soil profile. Refer to	Organic Soils reference sheet.	
Peat, mucky peat, muck, or mucky modified mineral soil in top 8 cm (3") below the soil surface.										
Soil sampli	ng site	#	, and the			/			(2.00)	
1 2 3	4	5 6	7			(JKGA	NIC		
				Prese	ent: a	t least 2 cm (0.	8") thick organic	laver or mucky modified mineral laver		
				Not n	orese	nt	,			
Total Depth of S	Surficia	al Orga	nic M	aterial	(not	required for im	pact assessmen	t; required for condition & restoration monitori	ng)	
Soil sampli	na site	#			,	,		Description of Organic Material: peat/fibric	, mucky peat/hemic, muck/sapric	
	2	3	4	5		6 7		or mucky modified mineral soil. Fx. 0-5cm sa	pric. 5-15cm mucky mod min	
	-	Ū		0		- I		at agard agrha	atrocking	
15		_						or scored - carbol	in tracking	
Deep Organic S	oil. E	xcavate	e each	soil ho	ole to	either 40 cm (1	16") depth of ora	anic soil, or 80 cm (32") total soil depth. which	ever comes first.	
Histosol: Peat, mucky peat, or muck soil with at least 12-18% organic matter by weight and $>= 40$ cm (16") deen within the upper 80 cm (32") of soil profile										
Histic epipedon : Peat, mucky peat, or muck soil with at least 12-18% organic matter by weight and $>= 20 \text{ cm} (10^{\circ}) \text{ doop whilm the appendo of (10^{\circ}) of soil prometers and the soil of the$										
	surfac	e horizo	on. Aa	uic cor	nditio	ns or artificial d	rainage is require	ed. Note that muckv modified mineral soil is N	OT included in this section. (p.60)	
Soil sampli	ng site	#			2.001			Add Soil mod	ifier to NWI code at top of page:	
1 2 3	4	5 6	7				HIST	USUL	organic (g)	
			יםנ	Histo	sol n	resent: NWI soi	il modifier = orga	nic (a)	mineral (n)	
				Histic	; enin	edon present	but no histosol. N	WI soil modifier = mineral (n)		
				Neith	er his	stosol nor histic	epipedon prese	nt; NWI soil modifier = mineral (n)		
	_		_				1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	,		

Pp. 5-6 VEGFQ/VEGSUM West Virginia Wetland Rapid FQA Datasheet

(refer to WVWRAM User Manual pages 62-70)

Page 5
WVWRAM Field Form

Site	name)							Date			
NWI Wetland Type Code (p.65)					mina	nt sp	ecies identified	<u>% of AA</u>				Notes
NWI codes must match codes on Soils sheet					ee w	orkshe	eet on back	field estimate	or GI	S (p.6	5)	
											-	
1												
2												
_												
3 Snor		Chaol	list. Circle anose when anosise h		looot	100/	acuer in watland t	upp At the and a	4 0 0 0	huot	lond to	ine meender, record cover
Spec		Check	Clist. Circle space when species r	ias at		10%	cover in wetland t	ype. At the end c	or eac	n wet	iand ty	ype meander, record cover
withi	n circ	iles. F	Highly invasive wetland species and	e <u>unc</u>	or Tu	<u>ea</u> an miaglu	a must be recorde		ave <	10%	cover	. Write in any dominant
spec	ies n	Ot liste	(true equatio planta that are subm		er. Ty	pical (0.1, 1, 3, 5, 10, 20	J, 30,	40, 5	0, 60,	70, 80, 90, of 100 percent.
Aqua		'lants	(true aquatic plants that are subm	NIV		nave r	no #		NI\A/I	wotle		aa #
1	weite	and typ	pe #	1	o wetta	and ty	pe #		1	veuz	ina iyi o	Je #
1	Z	3	Processia cohrobari	I	Z	3	Lamna valdivian		I	Z	3	Determonation ariany
			Brasenia schreben									Potamogeton crispus
							<u>Myriophyllum a</u>	iquaticum minetum				Potamogeton sp.(not P. crispus)
			Ceratopnyllum demersum				<u>Myriophyllum s</u>	<u>picatum</u>				woittia brasiliensis
			<u>Hydrilla verticillata</u>				Nuphar lutea ss	o. advena				
.	- /						Nympnaea odon	ata				
Tree	s (wo	boay p	liants that typically mature to a ma	ximur	n nei	gnt > 0	o m)		N IX A / I			
NVVI	wetla	and typ	pe#	NVVI	wetla	and ty	pe #		NVVI	wetla	and typ	De #
1	2	3		1	2	3	0		1	2	3	Duran a sur l'a s
			Ables balsamea				Crataegus sp.					Prunus serotina
			Acer negundo				Fagus grandifoli	а				Quercus alba
			Acer rubrum				Fraxinus americ	ana				Quercus bicolor
			Acer saccharinum				Fraxinus nigra					Quercus palustris
			Acer saccharum				Fraxinus pennsy	/lvanica				Quercus rubra
			Aesculus flava				Juglans nigra					Robinia pseudoacacia
			Ailanthus altissima				Liquidambar sty	raciflua				Salix alba
			Betula alleghaniensis				Liriodendron tuli	pifera				Salix nigra
			Betula lenta				Nyssa sylvatica					Tsuga canadensis
			Betula nigra				Picea rubens					Ulmus americana
			Carpinus caroliniana ssp. virg.				Pinus rigida					Ulmus rubra
			Carya cordiformis				Platanus occide	ntalis				
			Carya ovata				Populus tremulo	ides				
Shru	ıbs (\	woody	plants with that typically mature to	o a m	aximu	ım he	ight < 6 m, often n	nulti-stemmed)				
NWI	wetla	and ty	pe #	NW	l wetla	and ty	pe #		NWI	wetla	and typ	be #
1	2	3		1	2	3			1	2	3	
			Alnus incana ssp. rugosa				Lindera benzoin					Spiraea tomentosa
			Alnus serrulata				Lonicera morrov	vii				Vaccinium angustifolia
			Aronia melanocarpa				Physocarpus op	ulifolius				Vaccinium mvrtilloides
			Asimina triloba				Rhododendron ı	naximum				Vaccinium oxycoccos
			Cephalanthus occidentalis				Rosa multiflora	1				Viburnum dentatum
			Cornus amomum				Rosa palustris					Viburnum nudum var. cassinoides
			Elaeagnus umbellata				Rubus nensilvar	nicus				Viburnum recognitum
			Cavlussacia baccata				Salix caroliniana	neus a				vibamamiceognitam
			Hyporicum donsiflorum				Salix caroliniana					
							Salix sericea					
							Salix Stilled	oon considerate				
			Kalmia latifolia				Samuucus nigla	รงp. เลเลนยารเร				
Wee	dy V	inco					opiraca alba					
**00	ay V	mes	Anion amoricana				Lonicara inno	ioo				Tovioodondron radioses
			Apius amenicana Clematis virginiana				Rubus hispidus					
Nor					oro r	at in al	udod in the demin	ant anapias asla	Intin	201		
NOI	-va50	uidi I	Sphagnum app	50185 6	areno	JUNCH			JIAUOI	13)		
			opnaynum spp. Total mosses & liverworts				riamenious Alg	ae				
			I JUSI THUSSES & IVE WULLS									

Pp. 5-6 VEGFQ/VEGSUM

· ·			0.014		Page 6
Site Name:				Date:	
Ferns					
NWI wetland typ	be #	NWI wetland typ	e#	NWI wetland ty	pe#
1 2 3		1 2 3		1 2 3	
	Dennstaedtia punctilobula		Osmunda regalis var. spectabilis		
	Onoclea sensibilis		Pteridium aquilinum		
	Osmunda cinnamomea		Thelypteris noveboracensis		
Forbs (broad-le	aved herbs, excluding true aquation	cs which are in th	e first section of the checklist)		
	Acorus calamus		Laportea canadensis		Ranunculus repens
	Alisma subcordatum		Lobelia cardinalis		Rudbeckia laciniata
	Apocynum cannabinum		Ludwigia palustris		Sagittaria latifolia
	Asclepias incarnata		Lycopus uniflorus		Saururus cernuus
	Asclepias syriaca		Lycopus virginicus		Scutellaria lateriflora
	Bidens frondosa		Lysimachia ciliata		Solidago canadensis
	Boehmeria cylindrica		Lysimachia nummularia		Solidago gigantea
	Caltha palustris		Lythrum salicaria		Solidago rugosa
	Chelone glabra		Mimulus ringens		Solidago uliginosa
	Dipsacus fullonum		Nasturtium officinale		Symphyotrichum lanceolatum
			Oxypolis rigialor		Symphyotrichum prenantholdes
	Eupatonum perioliatum		Packera aurea		Symphyotrichum puniceum
	Colium oporino		Peltandra Virginica		Symplocarpus loetidus
	Galium apanne		Pilea pumila		Veretrum viride
	Galum unclonum		Polygonum amprilolum		Verbana bastata
			Polygonum cuepidatum		
	Hibiscus moscheutos		Polygonum bydropiperoides		Vernonia noveboracensis
	Hypericum mutilum		Polygonum perfoliatum		Viola cucullata
	Hypericum nunctatum		Polygonum punctatum		Yola cuculata Xanthium strumarium
	Impatiens canonsis		Polygonum sagittatum		Xantinam Stramanam
	Iris pseudacorus		Ranunculus acris		
	Justicia americana		Ranunculus hispidus var. nitidus		
Graminoids (gr	rasses, sedges, rushes)		•		
(g.	Acorus calamus		Dichanthelium clandestinum		Leersia virginica
	Aarostis aigantea		Dichanthelium dichotomum		Microstegium vimineum
	Aarostis hvemalis		ssp. microcarpon		Phalaris arundinacea
	Andropogon gerardii		Dulichium arundinaceum		Phragmites australis
	Anthoxanthum odoratum		Echinochloa crus-galli		Phleum pratense
	Arthraxon hispidus		Eleocharis obtusa		Poa compressa/pratensis/trivialis
	Calamagrostis canadensis		Eleocharis palustris		Poa palustris
	Carex atlantica		Eleocharis tenuis		Rhynchospora alba
	Carex canescens		Eriophorum virginicum		Schoenoplectus tabernaemontani
	Carex crinita		Glyceria laxa		Scirpus atrovirens
	Carex echinata		Glyceria melicaria		Scirpus cyperinus
	Carex folliculata		Glyceria striata		Scirpus polyphyllus
	Carex gynandra		Holcus lanatus		Sparganium americanum or
	Carex intumescens		Juncus acuminatus		S. eurycarpum
	Carex lupulina		Juncus brevicaudatus or		Typha latifolia, Typha sp.
	Carex lurida		J. subcaudatus		
	Carex prasina		Juncus effusus		
	Carex scoparia		Juncus tenuis		
	Carex stipata		Leersia oryzoides		
	Carex stricta	Dominant spec	ies worksheet (sum cover values	across all strate	a within each wetland type)
	Carex trisperma	Sum of Species	Cover		(p.67)
	Carex utriculata		Stop when all dominant plant s	pecies (≥ 10%	total cover across all strata)
	Carex vulpinoidea		and highly invasive (bolded) pla	ints have been	identified AND the sum of
	Cinna arundinacea		species cover is ≥ 80%. For NV	VI wetland types	with total vegetative cover of
	Cinna latifolia	Total cover if <100%	< 100% (e.g., aquatic bed, mudfla	ats), the sum of	species must be $\geq 80\%$ of the
	Cyperus odoratus		total vegetative cover. Example: F	PAB has total co	over of 40%. 80% of 40% = 32%
	Danthonia compressa		is the required sum of species co	ver.	