MODIFICATION APPLICATION TO GENERAL PERMIT REGISTRATION G40-C003G MILLVILLE QUARRY

Prepared for:

Bardon, Inc.

6401 Golden Triangle Drive, Suite 400 Greenbelt, Maryland 20770

Prepared by:

Potesta & Associates, Inc.

7012 MacCorkle Avenue, S.E. Charleston, West Virginia 25304 Phone: (304) 342-1400 Fax: (304) 343-9031 Email: potesta@potesta.com

Project No. 0101-18-0274

August 2018

POTESTA

TABLE OF CONTENTS

Application for General Permit Registration	SECTION I
Business Certificate	ATTACHMENT A
Process Description	ATTACHMENT B
Description of Fugitive Emissions	ATTACHMENT C
Process Flow Diagram	ATTACHMENT D
Plot Plan	ATTACHMENT E
Area Map	ATTACHMENT F
Equipment Data Sheets and Registration Section Applicability Form	ATTACHMENT G
Emissions Calculations	ATTACHMENT I
Class I Legal Advertisement	ATTACHMENT J
Electronic Submittal	ATTACHMENT K
General Permit Registration Application Fee	ATTACHMENT L
Emissions Summary Sheets	ATTACHMENT O

Attachments not required for this application: H, M, N, and Other.

SECTION I

APPLICATION FOR GENERAL PERMIT REGISTRATION

THE ST AND	WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTE DIVISION OF AIR QUALITY 601 57 th Street, SE Charleston, WV 25304 Phone: (304) 926-0475 • www.dep.wv.gov		APPLICATION FOR GENERAL PERMIT REGISTRATION CONSTRUCT, MODIFY, RELOCATE OR ADMINISTRATIVELY UPDATE A STATIONARY SOURCE OF AIR POLLUTANTS		
	JCTION MODIFICATION	RELOCA	ATION CLASS I ADMINISTRATIVE UPDATE CLASS II ADMINISTRATIVE UPDATE		
	CHECK WHICH TYPE OF GENERAL PE		EGISTRATION YOU ARE APPLYING FOR:		
□ G10-D – Coal	Preparation and Handling		■ G40-C – Nonmetallic Minerals Processing		
G20-B – Hot M	/ix Asphalt		G50-B – Concrete Batch		
G33-A – Spar	< Ignition Internal Combustion Engines		G60-C - Class II Emergency Generator		
			G65-C – Class I Emergency Generator		
	SECTION L G	ENERAI			
1. Name of application	ant (as registered with the WV Secretary of State's		2. Federal Employer ID No. (FEIN):		
Bardon, Inc.			54-1544548		
3. Applicant's mail	ing address:	4. Applicant's physical address:			
Bardon, Inc.	angle Drive Suite 400	57 Blair Road			
Greenbelt, MD	angle Drive, Suite 400 20770	Harpers Ferry, WV 25425			
5. If applicant is a	subsidiary corporation, please provide the name o	f parent c	orporation: N/A		
6. WV BUSINESS	REGISTRATION. Is the applicant a resident of th	e State of	West Virginia?		
rţ>	IF YES, provide a copy of the Certificate of Inco change amendments or other Business Regist		/ Organization / Limited Partnership (one page) including any name tificate as Attachment A.		
с >	IF NO , provide a copy of the Certificate of Auth amendments or other Business Certificate as A		thority of LLC / Registration (one page) including any name change nt A.		
	SECTION IL				
modified, relocated	facility (stationary source) to be constructed, or administratively updated (e.g., coal		andard Industrial AND 8b. North American Industry		
	primary crusher, etc.):	Classifi	ication (SIC) code: 1422 System (NAICS) code: 212312		
-	oposed/replacement conveyors at Millville				
Quarry.					
9. DAQ Plant ID N	o. (for existing facilities only):		t all current 45CSR13 and other General Permit numbers associated s process (for existing facilities only): 2003G		
037-00015					

A: PRIMARY OPERATING SITE INFORMATION

11A. Facility name of primary operating site:	12A. Address of primary operating site:					
Millville Quarry	Mailing: See Box 3 Physical:See Box 4					
13A. Does the applicant own, lease, have an opti ➡ IF YES , please explain: Applicant owns		posed site?				
······································						
IF NO, YOU ARE NOT ELIGIBLE FOR A P	ERMIT FOR THIS SOURCE.					
nearest state road;		lirections to the present location of the facility from the				
For Construction or Relocation permits, MAP as Attachment F.	please provide directions to the proposed new	i site location from the nearest state road. Include a				
From Charles Town, take U.S. 340 heading road; if you get to the railroad tracks, you ha		onto Blair Road. Go about 2 miles on winding e Quarry just before the railroad tracks.				
15A. Nearest city or town:	16A. County:	17A. UTM Coordinates:				
Millville	Jefferson	Northing (KM): 4,352.354 Easting (KM): 259.027 Zone: 18				
18A. Briefly describe the proposed new operation Installation of proposed/replacement convey BC16 (M29); and 3600.331-BC17 (M30)	,	19A. Latitude & Longitude Coordinates (NAD83, Decimal Degrees to 5 digits):Latitude:39.287Longitude:-77.794				
B: 1 ST ALTERNATE OPERATI	NG SITE INFORMATION (only available for					
11B. Name of 1 st alternate operating site:	12B. Address of 1 st alternate operating site:					
Not Applicable	Mailing:	Physical:				
13B. Does the applicant own, lease, have an opti		posed site? YES NO				
□ IF NO , YOU ARE NOT ELIGIBLE FOR A P	ERMIT FOR THIS SOURCE.					
14B. ➡ For Modifications or Administrative U nearest state road;	pdates at an existing facility, please provide of	lirections to the present location of the facility from the				
For Construction or Relocation permits, MAP as Attachment F.	please provide directions to the proposed new	v site location from the nearest state road. Include a				

15B. Nearest city or town:	16B. County:	17B. UTM Coordinates:
		Northing (KM): Easting (KM): Zone:
18B. Briefly describe the proposed new operation	or change (s) to the facility:	19B. Latitude & Longitude Coordinates (NAD83, Decimal Degrees to 5 digits):
		Latitude:

C: 2ND ALTERNATE OPERATING SITE INFORMATION (only available for G20, G40, & G50 General Permits):

11C. Name of 2 nd alternate operating site:	12C. Address of	2 nd alternate operating site:				
Not Applicable	Mailing:		Physical:			
13C. Does the applicant own, lease, have an option of the second			ed site?	□ YES	□ NO	
□ IF NO, YOU ARE NOT ELIGIBLE FOR A P	ERMIT FOR THIS	SOURCE.				
 14C. ➡ For Modifications or Administrative Updates at an existing facility, please provide directions to the present location of the facility from the nearest state road; ➡ For Construction or Relocation permits, please provide directions to the proposed new site location from the nearest state road. Include a MAP as Attachment F. 						
15C. Nearest city or town:	16C. County:		17C. Northing (KM): _ Easting (KM): _ Zone: _			
18C. Briefly describe the proposed new operation	or change (s) to th	e facility:	19C. Latitude & I (NAD83, Decimal Latitude: Longitude:			
20. Provide the date of anticipated installation or c	hange:	21. Date of anticipated Start	-up if registration is	granted:		
10/01/2018	-	11/01/2018				
□ If this is an After-The-Fact permit application, provide the date upon which the proposed change did happen: :						
//						
22. Provide maximum projected Operating Sche other than 24/7/52 may result in a restriction to the			n if other than 8760	hours/year.	(Note: anything	
Hours per day 24 Days per week 7 Weeks per year 52 Percentage of operation 100						

SECTION III. ATTACHMENTS AND SUPPORTING DOCUMENTS

23. Include a check payable to WVDEP – Division of Air Quality with the appropriate application fee (per 45CSR22 and 45CSR13).

24. Include a Table of Contents as the first page of your application package.

All of the required forms and additional information can be found under the Permitting Section (General Permits) of DAQ's website, or requested by phone.

25. Please check all attachments included with this permit application. Please refer to the appropriate reference document for an explanation of the attachments listed below.

- ATTACHMENT A : CURRENT BUSINESS CERTIFICATE
- ATTACHMENT B: PROCESS DESCRIPTION
- ATTACHMENT C: DESCRIPTION OF FUGITIVE EMISSIONS
- ATTACHMENT D: PROCESS FLOW DIAGRAM
- ATTACHMENT E: PLOT PLAN
- ATTACHMENT F: AREA MAP
- ATTACHMENT G: EQUIPMENT DATA SHEETS AND REGISTRATION SECTION APPLICABILITY FORM
- □ ATTACHMENT H: AIR POLLUTION CONTROL DEVICE SHEETS
- ATTACHMENT I: EMISSIONS CALCULATIONS
- ATTACHMENT J: CLASS I LEGAL ADVERTISEMENT
- ATTACHMENT K: ELECTRONIC SUBMITTAL
- ATTACHMENT L: GENERAL PERMIT REGISTRATION APPLICATION FEE
- □ ATTACHMENT M: SITING CRITERIA WAIVER
- □ ATTACHMENT N: MATERIAL SAFETY DATA SHEETS (MSDS)
- ATTACHMENT O: EMISSIONS SUMMARY SHEETS
- □ OTHER SUPPORTING DOCUMENTATION NOT DESCRIBED ABOVE (Equipment Drawings, Aggregation Discussion, etc.)

Please mail an original and two copies of the complete General Permit Registration Application with the signature(s) to the DAQ Permitting Section, at the address shown on the front page of this application. Please DO NOT fax permit applications. For questions regarding applications or West Virginia Air Pollution Rules and Regulations, please refer to the website shown on the front page of the application or call the phone number also provided on the front page of the application.

SECTION IV. CERTIFICATION OF INFORMATION

This General Permit Registration Application shall be signed below by a Responsible Official. A Responsible Official is a President, Vice President, Secretary, Treasurer, General Partner, General Manager, a member of a Board of Directors, or Owner, depending on business structure. A business may certify an Authorized Representative who shall have authority to bind the Corporation, Partnership, Limited Liability Company, Association, Joint Venture or Sole Proprietorship. Required records of daily throughput, hours of operation and maintenance, general correspondence, Emission Inventory, Certified Emission Statement, compliance certifications and all required notifications must be signed by a Responsible Official or an Authorized Representative. If a business wishes to certify an Authorized Representatively incomplete or improperly signed or unsigned Registration Application will be returned to the applicant.

FOR A CORPORATION (domestic or foreign)

I certify that I am a President, Vice President, Secretary, Treasurer or in charge of a principal business function of	the
corporation	

FOR A PARTNERSHIP

certify that	I am a General	Partner

FOR A LIMITED LIABILITY COMPANY

I certify that I am a General Partner or General Manager

FOR AN ASSOCIATION

I certify that I am the President or a member of the Board of Directors

FOR A JOINT VENTURE

I certify that I am the President, General Partner or General Manager

FOR A SOLE PROPRIETORSHIP

I certify that I am the Owner and Proprietor

□ *I hereby certify that* (please print or type)

is an Authorized Representative and in that capacity shall represent the interest of the business (e.g., Corporation, Partnership, Limited Liability Company, Association Joint Venture or Sole Proprietorship) and may obligate and legally bind the business. If the business changes its Authorized Representative, a Responsible Official shall notify the Director of the Office of Air Quality immediately, and/or,

I hereby certify that all information contained in this General Permit Registration Application and any supporting documents appended hereto is, to the best of my knowledge, true, accurate and complete, and that all reasonable efforts have been made to provide the most comprehensive information possible

comprehensive information possible	
Signature Switcher	8 13 2018
(please use blue ink) Responsible Official	Date
Name & Title <u>Stephen Ward, Vice President</u> (please print or type)	
Signature	
(please use blue ink) Authorized Representative (if applicable)	Date
Applicant's Name Bardon, Inc.	
Phone & Fax (301) 982-1400, Ext. 60520	(855) 293-6428
Phone	Fax
Email Lisa Hunt, Area Environmental Manager at lisa.hunt@aggregate-us.com	

ATTACHMENT A

BUSINESS CERTIFICATE

I, Natalie E. Tennant, Secretary of State of the State of West Virginia, hereby certify that

BARDON, INC.

Control Number: 99R50

a corporation formed under the laws of Maryland has filed its "Application for Certificate of Authority" to transact business in West Virginia as required by the provisions of the West Virginia Code. I hereby declare the organization to be registered as a foreign corporation from its effective date of September 23, 2011.

Therefore, I issue this

CERTIFICATE OF AUTHORITY

to the corporation authorizing it to transact business in West Virginia

Given under my hand and the Great Seal of the State of West Virginia on this day of September 23, 2011

Materii Eyem

Secretary of State

ATTACHMENT B

PROCESS DESCRIPTION

ATTACHMENT B

PROCESS DESCRIPTION

Introduction to Project

Bardon, Inc. is applying for a revised registration under General Permit G40-C to include replacement of the existing Conveyor Belt M9 (3600.331-ST02) with a new conveyor belt identified as M9 (3600.331-ST02). The hourly rate and the yearly rate of the new conveyor belt will be 400 tons per hour and 250,000 tons per year. Two additional conveyor belts identified as M29 (3600.331-BC16) and M30 (3600.331-BC17) will be installed. Their transfer rates are 400 tons per hour and 3,500,000 tons per year. This change will also include modifying the structure of M24 (3600.331-BC15). Total facility production remains the same with a feed rate of 1,200 tons per hour and 6.0 million tons per year.

Permitting History Since Entering the General Permit Program

Bardon, Inc. was initially registered under the General Permit G40 by G40-003 in December 2000; an amendment to the registration was approved in September 2001 under G40-003A, then an initial flooding registration G40-003B was approved on July 26, 2002. Afterwards, the registration was modified to allow the installation of log washers on February 29, 2003 (G40-003C). G40-003D for facility streamlining was issued on February 22, 2005. G40-C003E for replacement of several pieces of equipment was issued on November 24, 2015. The current existing registration issued as G40-C003F on August 17, 2016 was for replacing a Hazemag Crusher with a Metso Model HP6 Crusher. G40-C003G issued on October 6, 2017 was for replacing Conveyor Belts 3600.331-ST01, 3600.331-BC02 and 3600.331-BC03 with a new conveyor belt identified as M2 (3600.331-BC02), replacing Crusher 3600.341-B101 (Nordberg Barmac V1400) with a new crusher (Impact Service Corp Model ISC77) and rebuilding a reclaim tunnel and feeders for Conveyor 3600.331-BC01.

Facility and Process Description

The stone production facilities involve the operations of trucking from the quarry pits, stone sizing and crushing, and final product loadout. The facility is comprised of primary crushing and screening, main plant operations for sized aggregate production, and Wash 1 and Wash 2 operations. Final sized products are loaded to truck and rail via endloaders. For the potential to emit, the hourly emissions estimate is based on the entire facility concurrently operating except for the duplicate screens - full hourly rates are only shown through one screen in the screen pair. The yearly emissions are based on the total yearly throughput and worst-case transfers to avoid double counting of throughput. Operating rates are listed in the affected source sheets for the processing and conveying equipment.

Primary Crushing Operation

Quarried rock is loaded in the pits and trucked and dumped into the Dump Box (3600.311-HP01) at a maximum rate of 1,200tph/6,000,000tpy. The Dump Box is followed with a grizzly screen (3600.311-RZ01) which scalps off the large rock and sends it directly to the Jaw Crusher (3600.311-JC01). The crushed rock and the pass-through rock from the grizzly transfer to conveyor P1 (3600.311-BC01) then to P2 (3600.311-BC02) then to screen PS1 (3600.311-VS01). Screen pass through goes to reversing conveyor P3 (3600.311-BC03) then to either P4 (3600.311-BC04) or to P6 (3600.321-BC01). Material from P3 transfers to P4 (3600.311-BC04) to stacker P5 (3600.311-ST01) to stockpile SP1. Oversize from PS1 is diverted to the gabion stockpile SP2 or to the 7 Crusher (3600.321-CZ01. Material from 7 Crusher transfers to P6. From P6, the material can drop to the surge pile SP3 or transfer to P7 (3600.321-BC02) then to SP3 or P8 (3600.321-BC03) then to SP3 or P9 (3600.321-BC04) then to SP3.

<u>Main Plant</u>

Material from SP3 is reclaimed by conveyor M1 (3600.331-BC01) and transferred to the new conveyor belt M2 (3600.331-BC02). Existing M2 (3600.331-ST01), M3 (3600.331-BC02) and M4 (3600.331-BC03) conveyors are being replaced with the new M2 (3600.331-BC02) conveyor. M2 (3600.331-BC02) transfers material to screens MS1 (3600.331-VS01) and MS2 (3600.331-VS02). Oversize from MS1 and MS2 scalps off to M5 (3600.331-BC04) to M6 (3600.331-BC05) to Hopper Feed Bin 5 (3600.331-BC10), and S1 (3600.352-BC03). M14 transfers to screens MS3 (3600.331-VS03) and MS4 (3600.33-VS04). M7 transfers to M8 (3600.331-BC11) to stacker M9 (3600.331-ST02) to stockpile SP7. S1 transfers to S2 (3600.352-BC04) to the Sand Screen (3600.352-VS01). The Sand Screen is proposed to be replaced with like equipment in 2015. Material from Hopper Feed Bin 5 transfers to the Metso Crusher (3600.331-CZ03) to conveyor M10 (3600.331-BC06) to screens MS5 (3600.331-VS05) and MS6 (3600.331-VS06).

MS3 and MS4 send oversize to conveyor M11 (3600.331-BC07) to M13 (3600.331-BC08) to Hopper Feed Bin 9 (3600.331-HP09). Pass-through materials transfer to M22 (3600.331-BC13), M15 (3600.351-BC01), and M19 (3600.351-BC04). M22 transfers material to M29 (3600.331-BC16), M29 to either M30 (3600.331-BC17) or M24 (3600.331-BC15). M30 transfers material to M27 (3600.352-BC01). M24 transfers material to stacker M25 (3600.331-ST03) to stockpile SP14. M24's (3600.331-BC15) position is rearranged such that it receives material from the new conveyor M29 (3600.331-BC16) instead of M22 (3600.331-BC13). M15 transfers to M16 (3600.351-BC02) to wash screen MS7 (3600.351-VS01). M19 transfers to M20 (3600.351-BC05) to wash screen MS8 (3600.351-VS02). Hopper Feed Bin 9 transfers to crushers HP500 (3600.331-CZ02). Material from HP500 and HP300 transfers to M14 and back to screens MS3 and MS4.

MS5 and MS6 send oversize to conveyor M12 (3600.331-BC12) to M13 to Hopper Feed Bin 9 to HP500 and HP300 to M14. Pass-through materials go to reversing conveyor M23 (3600.331-BC14), M15 (see above), and M19 (see above). M23 can send material to either M24 (see above) or to M27 (3600.352-BC01) to M28 (3600.352-BC02) to S2 (see above).

<u>Wash 1</u>

Wash screen MS7 sends material to M17 (3600.351-BC03) and the 67s Screw (3600.351-SY01). M17 transfers to stacker M18 (3600.351-ST01) to stockpile SP13. The 67s Screw transfers to M26 (3600.351-BC07) to M29 (3600.331-BC16). Wash screen MS8 transfers to stacker M21 (3600.351-ST02) to stockpile SP9.

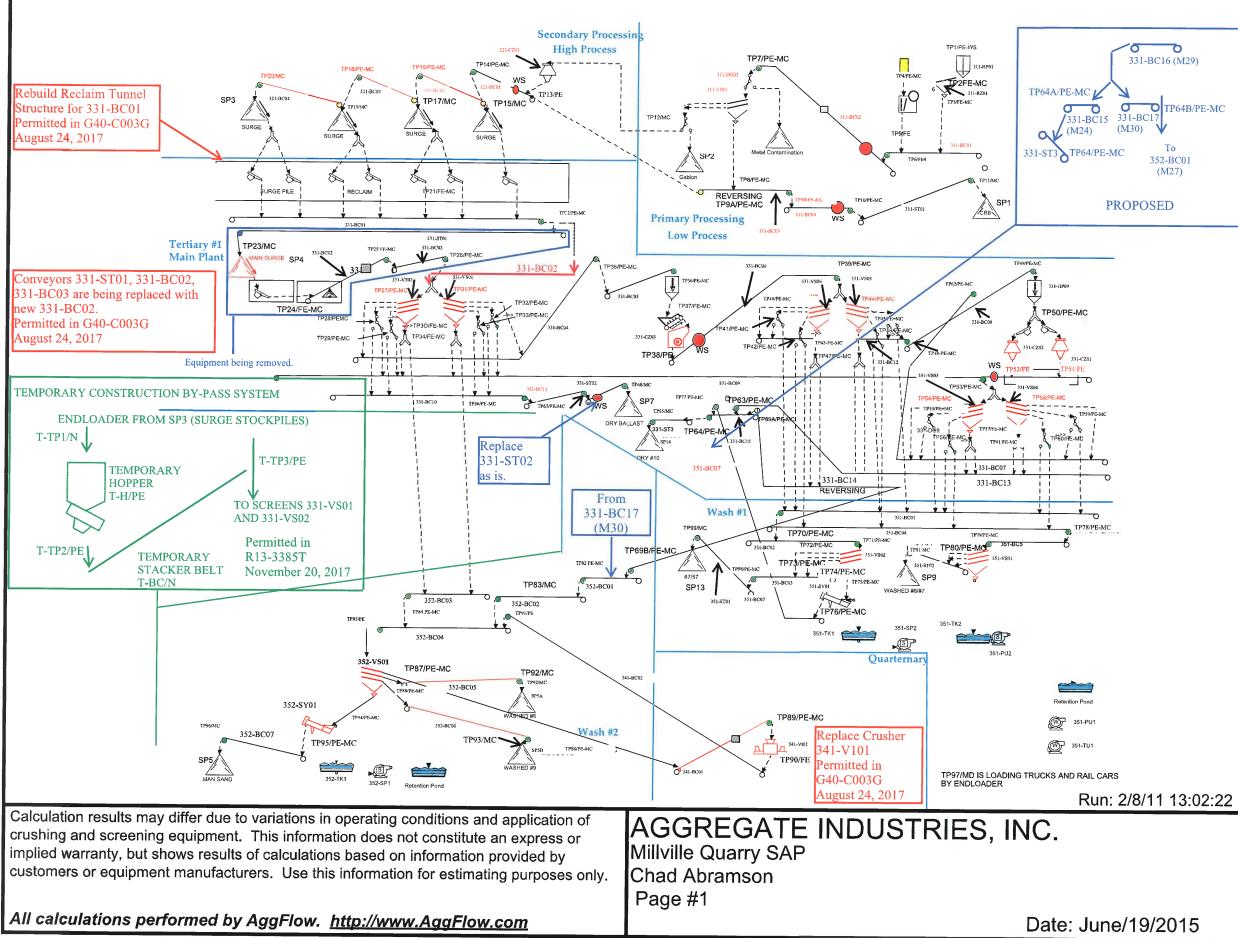
Wash 2

The Sand Screen (a wash screen) transfers oversize to S3 (3600.341-BC01) to an Impact Service Corp Model ISC 77 Crusher (3600.341-VI01) to S4 (3600.341-BC02) to S2 and back to the Sand Screen. Screen pass through transfers to S5 (3600.352-BC05), S6 (3600.352-BC06), or the Sand Screw (3600.352-SY01). S5 transfers to stockpile SP5A, S6 to stockpile SP5B, and the Sand Screw to S7 (3600.352-BC07) to SP5.

Product stockpiles are reclaimed by endloader to truck for transport to remote stockpiling (SP6, 8, 10, 11, 12, 15, 16, 17, and 18) or off site, or reclaimed by endloader to railcar.

ATTACHMENT C

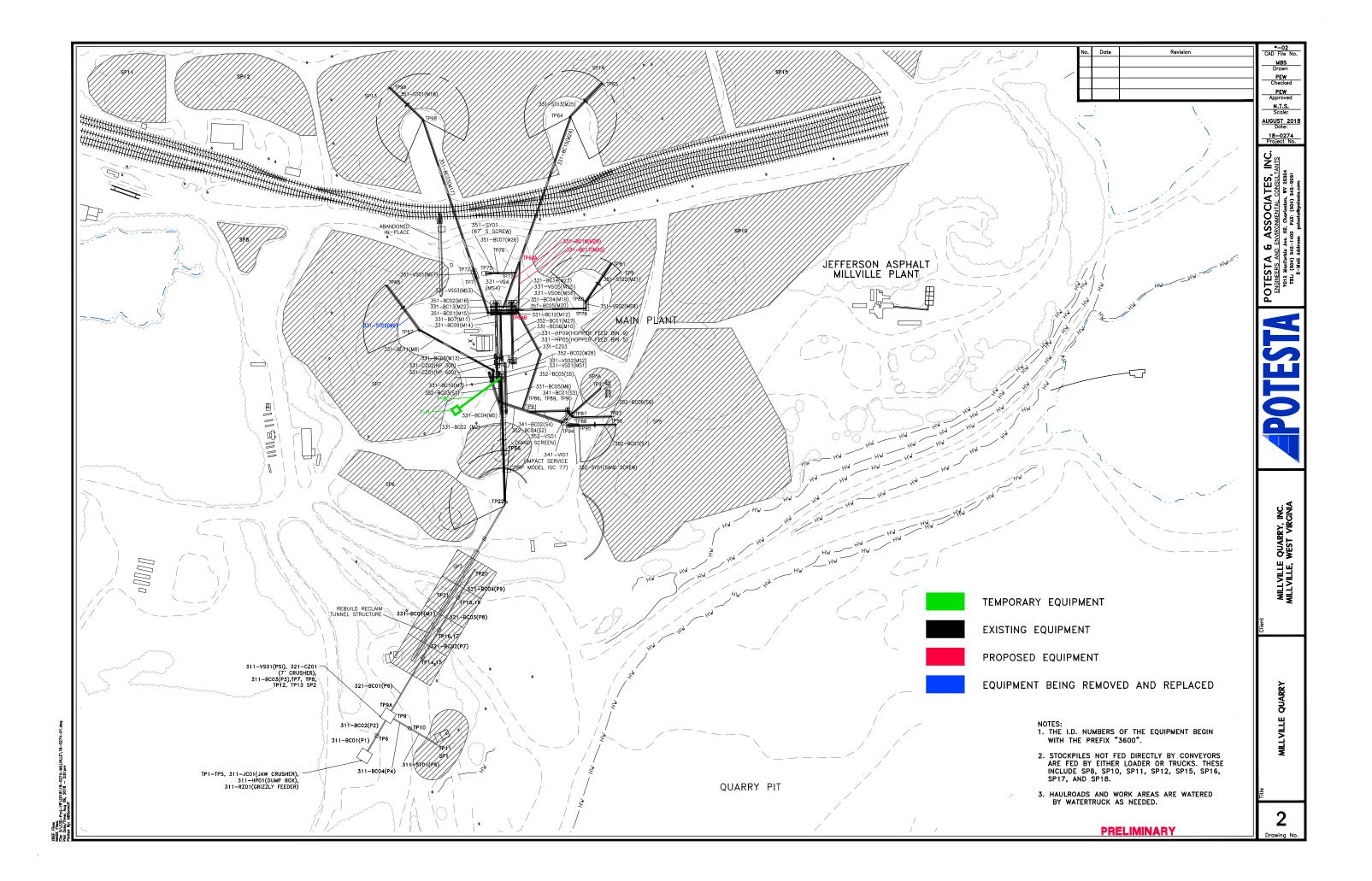
DESCRIPTION OF FUGITIVE EMISSIONS

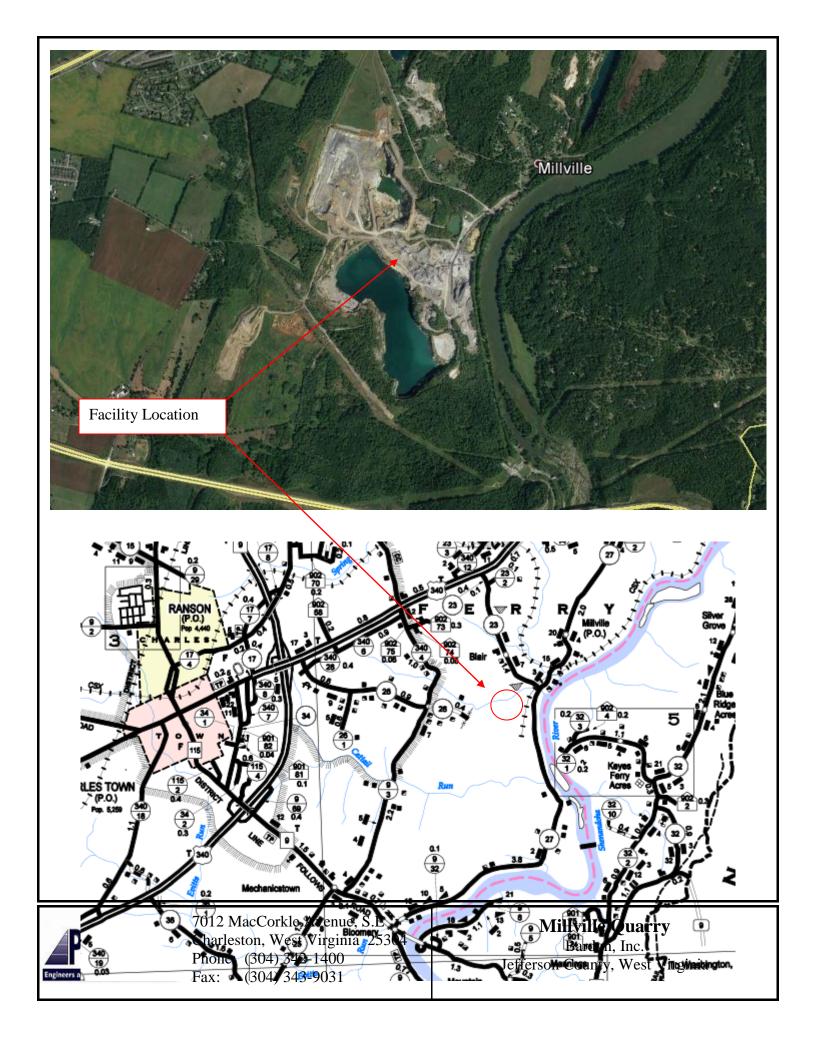

ATTACHMENT C

DESCRIPTION OF FUGITIVE EMISSIONS

Fugitive emissions from the facility include particulate emissions from haulroads, stockpiles, and work areas. Water is applied to the haulroads as needed via a water truck. Water is also applied to the work areas around the stockpiles and plant by the water truck to control particulate emissions.

ATTACHMENT D


PROCESS FLOW DIAGRAM


ATTACHMENT E

PLOT PLAN

ATTACHMENT F

AREA MAP

ATTACHMENT G

EQUIPMENT DATA SHEETS AND REGISTRATION SECTION APPLICABILITY FORM

General Permit G40-C Registration Section Applicability Form

General Permit G40-C allows qualified registrants to seek registration for a variety of sources. These sources include nonmetallic mineral processing plants which include crushers, screens, transfer points (loading, unloading, etc.), open stockpiles, bins, haulroads, reciprocating internal combustion engine driven compressors, emergency standby generators, and tanks. All registered facilities will be subject to Sections 1.0, 1.1, 2.0, 3.0 and 4.0.

General Permit G40-C allows the registrant to choose which sections of the permit that they wish to seek registration under. Therefore, please mark which sections that you are applying for registration under. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

Section 5 ¹	Nonmetallic Mineral Processing Operations	\boxtimes
Section 6	Standards of Performance for Nonmetallic Mineral Processing Plants	\boxtimes
	that Commenced Construction, Reconstruction or Modification after	
	August 31, 1983 but before April 22, 2008 (40CFR60 Subpart OOO)	
Section 7	Standards of Performance for Nonmetallic Mineral Processing Plants	\boxtimes
	that Commenced Construction, Reconstruction or Modification on	
	or after April 22, 2008. (40CFR60 Subpart OOO)	
Section 8 ²	Reciprocating Internal Combustion Engines (R.I.C.E.)	
Section 9	Tanks	
Section 10	Standards of Performance for Stationary Compression Ignition Internal	
	Combustion Engines (40CFR60 Subpart IIII)	
Section 11	Standards of Performance for Stationary Spark Ignition Internal	
	Combustion Engines (40CFR60 Subpart JJJJ)	

- 1 Affected facilities that are subject to Section 5 may also be subject to Sections 6 and 7. Therefore, if the applicant is seeking registration under multiple sections, they will need to select all applicable sections.
- 2 Affected facilities that are subject to Section 8 may also be subject to Sections 10 or 11. Therefore, if the applicant is seeking registration under multiple sections, they will need to select all applicable sections.

CRUSHING AND SCREENING AFFECTED SOURCE SHEET

Source Identification Number ¹		3600.311- JC01 (Jaw Crusher)	3600.321- CZ01 (7 Crusher)	331-CZ03 Metso Crusher	3600.331- CZ01 (HP 500)	3600.331- CZ02 (HP 300)	3600.341- VI01 (Barmac Crusher replaced by Impact Service Corp Crusher)
Type of Crusher or S	creen ²	JC	CC	CC	CC	CC	IMP
Make, Model No., Se	rial No. ³	NA	NA	HP6	NA	NA	Model ISC 77
Date of Construction, Rec or Modification (Mont		2001	2001	2016	2006	1999	2017
Mariana Thanakart	tons/hour	600	700	800	1,000	1,000	400
Maximum Throughput ⁵	tons/year	3,000,000	4,000,000	2,500,000	2,000	0,000	750,000
Material sized from	n/to:6	0"-6"	4"-8"	0.5"-4"	0.5"-2.5"	0.5"-2.5"	0.5"-2.5"
Average Moisture Con	tent $(\%)^7$	1.5	1.5	1.5	1.5	1.5	1.5
Control Device ID N	umber ⁸	FE	FE	FE	FE	FE	FE
	height (ft)						
	diameter (ft)						
Baghouse Stack	volume (ACFM)						
Parameters ⁹	exit temp (F)						
	UTM Coordinat es						
	hours/day	24	24	24	24	24	24
Maximum Operating Schedule ¹⁰	days/year	365	365	365	365	365	365
Senedule	hours/year	8,760	8,760	8,760	8,760	8,760	8,760

the crushers should be designated CR-1, CR-2, CR-3 etc. beginning with the breaker or primary crusher. Multiple screens should be designated S-1, S-2, S-3 etc.

2. Describe types of crushers and screens using the following codes:

			0	0				
	HM	Hammermill	SS	Stationary S	Screen	DR	Doub	le Roll Crusher
	SD	Single Deck Screen		BM	Ball Mill		DD	Double-Deck Screen
	RB	Rotary Breaker		TD	Triple Deck Screen		JC	Jaw Crusher
	GC	Gyratory Crusher		OT	Other	CC	Cone Crusher	IMP Impact Crusher
E		a data and the second second at a	· · · · · 1. · · · · 6 · 1. ·					

3. Enter the make, model number, and serial number of the crusher/screen.

4. Enter the date that each crusher and screen was constructed, reconstructed, or modified.

5. Enter the maximum throughput for each crusher and screen in tons per hour and tons per year.

6. Describe the nominal material size reduction (e.g. +2"/-3/8").

7. Enter the average percent moisture content of the material processed.

8. Enter the appropriate Control Device Identification Number for each crusher and screen. Refer to Table A - *Control Device Listing* and *Control Device Identification Number Instructions* in the *Reference Document* for Control Device ID prefixes and numbering.

9. Enter the appropriate stack parameters if a baghouse control device is used.

10. Enter the maximum operating schedule for each crusher and screen in hours per day, days per year and hours per year.

CRUSHING AND SCREENING AFFECTED SOURCE SHEET CON'T

Source Identification Number ¹		Grizzly Screen (3600.311- RZ01)	3600.311- VS01 (PS1)	3600.331- VS01 (MS1)	3600.331- VS02 (MS2)	3600.331- VS03 (MS3)	3600.331- VS04 (MS4)
Type of C	rusher or Screen ²	Grizzly	DD	TD	TD	TD	TD
Make, Mod	el No., Serial No. ³	NA	NA	NA	NA	NA	NA
	action, Reconstruction, tion (Month/Year) ⁴	2001	2009	2004	2004	2004	2011
Maximum	tons/hour	1,200	1,200	1,000	1,000	1,000	1,000
Throughput ⁵	tons/year	6,000,000	6,000,000	6,000	0,000	4,500,000	
Material	sized from/to:6	0"-8"	0"-8"	0"-4"	0"-4"	0"-2"	0"-2"
Average Mo	isture Content (%) ⁷	1.5	1.5	1.5	1.5	1.5	1.5
Control De	evice ID Number ⁸	МС	PE-MC	PE-MC	PE-MC	PE-MC	PE-MC
	height (ft)						
Baghouse	diameter (ft)						
Stack	volume (ACFM)						
Parameters ⁹	exit temp (F)						
	UTM Coordinates						
Maximum	hours/day	25	24	24	24	24	24
Operating	days/year	365	365	365	365	365	365
Schedule ¹⁰	hours/year	8,760	8,760	8,760	8,760	8,760	8,760

1. Enter the appropriate Source Identification Number for each crusher and screen. For example, in the case of an operation which incorporates multiple crushers, the crushers should be designated CR-1, CR-2, CR-3 etc. beginning with the breaker or primary crusher. Multiple screens should be designated S-1, S-2, S-3 etc.

2. Describe types of crushers and screens using the following codes:

HM	Hammermill	SS	Stationary Screen	DR	Double Roll Crusher
SD	Single Deck Screen	BM	Ball Mill	DD	Double-Deck Screen
RB	Rotary Breaker	TD	Triple Deck Screen	JC	Jaw Crusher
GC	Gyratory Crusher	OT	Other		

3. Enter the make, model number, and serial number of the crusher/screen.

4. Enter the date that each crusher and screen was constructed, reconstructed, or modified.

5. Enter the maximum throughput for each crusher and screen in tons per hour and tons per year.

6. Describe the nominal material size reduction (e.g. $+2"/ -\frac{3}{8}"$).

7. Enter the average percent moisture content of the material processed.

8. Enter the appropriate Control Device Identification Number for each crusher and screen. Refer to Table A - *Control Device Listing* and *Control Device Identification Number Instructions* in the *Reference Document* for Control Device ID prefixes and numbering.

9. Enter the appropriate stack parameters if a baghouse control device is used.

10. Enter the maximum operating schedule for each crusher and screen in hours per day, days per year and hours per year.

CRUSHING AND SCREENING AFFECTED SOURCE SHEET CON'T

Source Identification Number ¹		3600.331- VS05 (MS5)	3600.331- VS06 (MS6)	3600.351- VS01 (MS7)	3600.351- VS02 (MS8)	3600.352- VS01 (Sand Screen)
Type of C	rusher or Screen ²	TD	TD	TD	TD	TD
Make, Mod	el No., Serial No. ³	NA	NA	NA	NA	NA
	ction, Reconstruction, tion (Month/Year) ⁴	2005	2005	2013	2011	2015
Maximum	tons/hour	800	800	400	600	500
Throughput ⁵	tons/year	2,500,000		1,500,000	3,500,000	750,000
Material sized from/to:6		0"-1.5"	0"-1.5"	0"-3"	0"-3"	0"-1.5"
Average Moisture Content (%) ⁷		1.5	1.5	Wet	Wet	Wet
Control De	evice ID Number ⁸	PE-MC	PE-MC	Wet	Wet	Wet
	height (ft)					
Baghouse	diameter (ft)					
Stack	volume (ACFM)					
Parameters9	exit temp (F)					
	UTM Coordinates					
Maximum	hours/day	24	24	24	24	24
Operating	days/year	365	365	365	365	365
Schedule ¹⁰	hours/year	8,760	8,760	8,760	8,760	8,760

- 1. Enter the appropriate Source Identification Number for each crusher and screen. For example, in the case of an operation which incorporates multiple crushers, the crushers should be designated CR-1, CR-2, CR-3 etc. beginning with the breaker or primary crusher. Multiple screens should be designated S-1, S-2, S-3 etc.
- 2. Describe types of crushers and screens using the following codes:

21		0	0			
HM	Hammermill	SS	Stationary Screen	DR	Double Roll Crusher	
SD	Single Deck Screen	BM	Ball Mill	DD	Double-Deck Screen	
RB	Rotary Breaker	TD	Triple Deck Screen	JC	Jaw Crusher	
GC	Gyratory Crusher	OT	Other	CC	Cone Crusher IMP I	mpact
		Crusher				

- 3. Enter the make, model number, and serial number of the crusher/screen.
- 4. Enter the date that each crusher and screen was constructed, reconstructed, or modified.
- 5. Enter the maximum throughput for each crusher and screen in tons per hour and tons per year.
- 6. Describe the nominal material size reduction (e.g. +2"/ -3%").
- 7. Enter the average percent moisture content of the material processed.
- 8. Enter the appropriate Control Device Identification Number for each crusher and screen. Refer to Table A *Control Device Listing* and *Control Device Identification Number Instructions* in the *Reference Document* for Control Device ID prefixes and numbering.
- 9. Enter the appropriate stack parameters if a baghouse control device is used.
- 10. Enter the maximum operating schedule for each crusher and screen in hours per day, days per year and hours per year.

Source	Date of Construction, Reconstruction , or Material		Size of Material		n Material er Rate ⁵	Average Moisture Content	Control Device ⁷
Identification Number ¹	Modification (Month/Year) ²	Handled ³	Handled ⁴	tons/hour	tons/year	$(\%)^6$	Device
3600.311-BC01 (P1)	2001	Aggregate	0"-8"	1,200	6,000,000	1.5	Ν
3600.311-BC02 (P2)	2001	Aggregate	0"-8"	1,200	6,000,000	1.5	WS
3600.311-BC03 (P3)	2001	Aggregate	0"-4"	500	2,000,000	1.5	Ν
3600.311-BC04 (P4)	2001	Aggregate	0"-4"	300	2,000,000	1.5	Ν
3600.311-ST01 (P5)	2001	Aggregate	0"-4"	300	2,000,000	1.5	Ν
3600.321-BC01 (P6)	2001	Aggregate	0"-4"	1,200	6,000,000	1.5	WS
3600.321-BC02 (P7)	2001	Aggregate	0"-4"	1,200	6,000,000	1.5	Ν
3600.321-BC03 (P8)	2001	Aggregate	0"-4"	1,200	6,000,000	1.5	Ν
3600.321-BC04 (P9)	2001	Aggregate	0"-4"	1,200	6,000,000	1.5	Ν
3600.331-BC01 (M1)	2001	Aggregate	0"-4"	1,200	6,000,000	1.5	PE
3600.331-BC02 (M2)	2017	Aggregate	0"-4"	1,000	6,000,000	1.5	Ν
3600.331-BC04 (M5)	1984	Aggregate	0"-4"	800	2,500,000	1.5	Ν
3600.331-BC05 (M6)	2005	Aggregate	0"-4"	800	2,500,000	1.5	Ν
3600.331-BC06 (M10)	2005	Aggregate	0"-1.5"	800	2,500,000	1.5	WS
3600.331-BC12 (M12)	2005	Aggregate	0"-1.5"	300	2,000,000	1.5	Ν

CONVEYING AFFECTED SOURCE SHEET

1. Enter the appropriate Source Identification Number for each conveyor using the following codes. For example, multiple belt conveyors should be designated BC-1, BC-2, BC-3 etc. Transfer points are considered emission points, not sources, and should not be included in the *Conveying Affected Source Sheet*. Transfer Point Identification Numbers shall be assigned in the *Emission Calculation Sheet*.

BC	Belt Conveyor	BE	Bucket Elevator	DL	Drag-link Conveyor
PS	Pneumatic System	SC	Screw Conveyor	VC	Vibrating Conveyor
~					

OT Other

2. Enter the date that each crusher and screen was constructed, reconstructed, or modified.

3. Enter the type of material being handled - Raw Material (RM) Sized Material (SM) Refuse (R) Other (O)

4. Enter the nominal size of the material being conveyed (e.g. sized material- ³/₄" x 0). If more than one material is handled by the listed conveyor, list each material and enter the appropriate data for each material.

5. Enter the maximum material transfer rate for each conveyor in tons per hour and tons per year.

6. Enter the average percent moisture content of the conveyed material.

7. Enter the control device for the conveyor. PE - Partial Enclosure (example 3/4 hoop), FE - Full Enclosure, N - None

CONVEYING AFFECTED SOURCE SHEET CON'T

Source	Date of Construction, Reconstruction	Type of Material	Size of Material		n Material er Rate ⁵	Average Moisture	Control
Identification Number ¹	Modification (Month/Year) ²	Handled ³	Handled ⁴	tons/hour	tons/year	Content (%) ⁶	Device ⁷
3600.331-BC08 (M13)	1984	Aggregate	0"-1.5"	600	2,000,000	1.5	Ν
3600.331-BC09 (M14)	1984	Aggregate	0"-1.5"	1,000	4,500,000	1.5	WS
3600.331-BC10 (M7)	1984	Aggregate	4"	400	250,000	1.5	Ν
3600.331-BC11 (M8)	1984	Aggregate	4"	400	250,000	1.5	Ν
3600.331-ST02 (M9)	2018	Aggregate	4"	400	250,000	1.5	WS
3600.331-BC07 (M11)	1984	Aggregate	0"-1.5"	300	2,000,000	1.5	Ν
3600.331-BC13 (M22)	1984	Aggregate	0"-1.5"	200	1,752,000	1.5	Ν
3600.331-BC14 (M23)	1984	Aggregate	0"-1.5"	200	1,752,000	1.5	Ν
3600.331-BC15 (M24)	2018	Aggregate	0"-1.5"	400	3,500,000	1.5	Ν
3600.331-ST03 (M25)	2005	Aggregate	0"-1.5"	400	3,500,000	1.5	Ν
3600.331-BC16 (M29)	2018	Aggregate	0"-1.5"	400	3,500,000	1.5	Ν
3600.331-BC17 (M30)	2018	Aggregate	0"-1.5"	400	3,500,000	1.5	Ν
3600.351-BC01 (M15)	2005	Aggregate	0"-1.5"	600	3,500,000	1.5	N
3600.351-BC02 (M16)	2005	Aggregate	0"-1.5"	600	3,500,000	1.5	Ν
3600.351-BC03 (M17)	2005	Aggregate	0"-1.5"	600	3,500,000	1.5	Ν
3600.351-ST01 (M18)	2014	Aggregate	0"-1.5"	600	3,500,000	1.5	N
3600.351-SY01 (67's Screw)	2013	Aggregate	0"-1.5"	50	438,000	1.5	Wet
3600.351-BC07 (M26)	2013	Aggregate	0"-1.5"	50	438,000	1.5	N
3600.351-BC04 (M19)	2005	Aggregate	0"-1.5"	400	1,500,000	1.5	N
3600.351-BC05 (M20)	2005	Aggregate	0"-1.5"	400	1,500,000	1.5	N

1. Enter the appropriate Source Identification Number for each conveyor using the following codes. For example, multiple belt conveyors should be designated BC-1, BC-2, BC-3 etc. Transfer points are considered emission points, not sources, and should not be included in the *Conveying Affected Source Sheet*. Transfer Point Identification Numbers shall be assigned in the *Emission Calculation Sheet*.

BC	Belt Conveyor	BE	Bucket Elevator	DL	Drag-link Conveyor
PS	Pneumatic System	SC	Screw Conveyor	VC	Vibrating Conveyor
OT	Other				

2. Enter the date that each crusher and screen was constructed, reconstructed, or modified.

3. Enter the type of material being handled - Raw Material (RM) Sized Material (SM) Refuse (R) Other (O)

4. Enter the nominal size of the material being conveyed (e.g. sized material- ³/₄" x 0). If more than one material is handled by the listed conveyor, list each material and enter the appropriate data for each material.

5. Enter the maximum material transfer rate for each conveyor in tons per hour and tons per year.

6. Enter the average percent moisture content of the conveyed material.

7. Enter the control device for the conveyor. PE - Partial Enclosure (example 3/4 hoop), FE - Full Enclosure, N - None

CONVEYING AFFECTED SOURCE SHEET CON'T

Source Identification Number ¹	Date of Construction, Reconstruction, or Modification	• 1	Material		n Material er Rate ⁵	Average Moisture	Control
Identification Number ¹	(Month/Year) ² I		Handled ³ Handled ⁴		tons/year	Content (%) ⁶	Device ⁷
3600.351-ST02 (M21)	2005	Aggregate	0"-1.5"	400	1,500,000	1.5	Ν
3600.352-BC01 (M27)	1998	Aggregate	0"-1.5"	200	750,000	1.5	Ν
3600.352-BC02 (M28)	1998	Aggregate	0"-1.5"	200	750,000	1.5	Ν
3600.352-BC03 (S1)	1998	Aggregate	0"-1.5"	300	750,000	1.5	Ν
3600.352-BC04 (S2)	1998	Aggregate	0"-1.5"	500	750,000	1.5	Ν
3600.352-BC05 (S5)	1998	Aggregate	0"-1.5"	400	750,000	1.5	Ν
3600.352-BC06 (S6)	1998	Aggregate	0"-1.5"	200	750,000	1.5	Ν
3600.352-SY01 (Sand Screw)	1998	Sand	Sand	400	750,000	Wet	Wet
3600.352-BC07 (S7)	1998	Sand	Sand	400	750,000	1.5	Ν
3600.341-BC01 (S3)	1998	Aggregate	0"-1.5"/sand	400	750,000	1.5	Ν
3600.341-BC02 (S4)	1998	Aggregate	0"-1.5"/sand	400	750,000	1.5	N

1. Enter the appropriate Source Identification Number for each conveyor using the following codes. For example, multiple belt conveyors should be designated BC-1, BC-2, BC-3 etc. Transfer points are considered emission points, not sources, and should not be included in the *Conveying Affected Source Sheet*. Transfer Point Identification Numbers shall be assigned in the *Emission Calculation Sheet*.

BC	Belt Conveyor	BE	Bucket Elevator	DL	Drag-link Conveyor
PS	Pneumatic System	SC	Screw Conveyor	VC	Vibrating Conveyor
OT	Other				

- 2. Enter the date that each crusher and screen was constructed, reconstructed, or modified.
- 3. Enter the type of material being handled Raw Material (RM) Sized Material (SM) Refuse (R) Other (O)
- 4. Enter the nominal size of the material being conveyed (e.g. sized material- $\frac{3}{4}$ " x 0). If more than one material is handled by the listed conveyor, list each material and enter the appropriate data for each material.
- 5. Enter the maximum material transfer rate for each conveyor in tons per hour and tons per year.
- 6. Enter the average percent moisture content of the conveyed material.
- 7. Enter the control device for the conveyor. PE Partial Enclosure (example 3/4 hoop), FE Full Enclosure, N None

STORAGE ACTIVITY AFFECTED SOURCE SHEET

Source Identification Number ¹	311-HP01 (Dump Box)	331-HP05 (Hopper Feed Bin 5)	331-HP09 (Hopper Feed Bin 9)	SP1	SP2	SP3
Type of Material Stored ²	Raw Aggregate	Aggregate	Aggregate	CR6	Gabion Stone	Surge Pile
Average Moisture Content (%) ³	1.5	1.5	1.5	1.5	1.5	1.5
Maximum Yearly Storage Throughput (tons) ⁴	6,000,000	2,500,000	1,750,000	2,000,000		6,000,000
Maximum Storage Capacity (tons) ⁵	200	30	30	100,000		37,500
Maximum Base Area (ft ²) ⁶	NA	NA	NA	90,000	10,000	74,000
Maximum Pile Height (ft) ⁷	NA	NA	NA	50	40	40
Method of Material Load-in ⁸	TD	SS	SS	RS	FC	SS
Load-in Control Device Identification Number ⁹	PE-WS	PE-MC	PE-MC	MC	MC	МС
Storage Control Device Identification Number ⁹	PE	PE	PE	Ν	Ν	Ν
Method of Material Load-out ⁸	FC	FC	FC	FE	FE	UC
Load-out Control Device Identification Number ⁹	FE	FE-MC	PE-MC	MD	MD	FE-MC

Enter the appropriate Source Identification Number for each storage activity using the following codes. For example, if the facility utilizes 1. three storage bins, four open stockpiles and one storage building (full enclosure), the Source Identification Numbers should be BS-1, BS-2, and BS-3; OS-1, OS-2, OS-3, and OS-4; and SB-1, respectively.

E3 Enclosure (three sided enclosure)

- BS Bin or Storage Silo (full enclosure)
- OS Open Stockpile
- SB Storage Building (full enclosure) OT
- SF Stockpiles with wind fences Other Describe the type of material stored or stockpiled. (e.g. sized material, raw material, refuse, etc). 2.
- 3 Enter the average percent moisture content of the stored material.
- 4. Enter the maximum yearly storage throughput for each storage activity.
- Enter the maximum storage capacity for each storage activity in tons (e.g. silo capacity, maximum stockpile size, etc.) 5.

ST

TC

- 6. For stockpiles, enter the maximum stockpile base area.
- For stockpiles, enter the maximum stockpile height. 7.
- 8. Enter the method of load-in or load-out to/from stockpiles or bins using the following codes:
 - CS Clamshell
 - FC Fixed Height Chute from Bins
 - FE Front Endloader
 - MC Mobile Conveyor/Stacker
 - UC Under-pile or Under-Bin Reclaim Conveyor
 - RC Rake or Bucket Reclaim Conveyor
- PC Pneumatic Conveyor/Stacker

Telescoping Chute from Bins

SS Stationary Conveyor/Stacker

Stacking Tube

TD Truck Dump

OT Other RS Radial Stacker

West Virginia Department of Environmental Protection • Division of Air Quality

STORAGE ACTIVITY AFFECTED SOURCE SHEET CON'T

Source Identification Number ¹	SP5	SP5A	SP5A SP6		SP8
Type of Material Stored ²	Washed #8/#9/Sand	Washed #8	Various	Dry Ballast	Various
Average Moisture Content (%) ³	1.5	1.5	1.5	1.5	1.5
Maximum Yearly Storage Throughput (tons) ⁴	750	,000	5,000,000	250,000	20,000
Maximum Storage Capacity (tons) ⁵	130,000	700	23,000	120,000	2,000
Maximum Base Area (ft ²) ⁶	350,000	9,000	33,000	237,000	18,000
Maximum Pile Height (ft) ⁷	40	40	40	40	40
Method of Material Load-in ⁸	SS	SS	FE	RS	FE
Load-in Control Device Identification Number ⁹	MC	МС	MC	МС	МС
Storage Control Device Identification Number ⁹	N	Ν	Ν	Ν	Ν
Method of Material Load-out ⁸	FE	FE	FE	FE	FE
Load-out Control Device Identification Number ⁹	MD	MD	MD	MD	MD

- Enter the appropriate Source Identification Number for each storage activity using the following codes. For example, if the facility utilizes 1. three storage bins, four open stockpiles and one storage building (full enclosure), the Source Identification Numbers should be BS-1, BS-2, and BS-3; OS-1, OS-2, OS-3, and OS-4; and SB-1, respectively.
 - BS Bin or Storage Silo (full enclosure)
 - OS Open Stockpile

- E3 Enclosure (three sided enclosure) SB Storage Building (full enclosure)
- SF Stockpiles with wind fences
- OT Other RS Radial Stacker
- Describe the type of material stored or stockpiled. (e.g. sized material, raw material, refuse, etc). 2.
- 3 Enter the average percent moisture content of the stored material.
- Enter the maximum yearly storage throughput for each storage activity. 4
- Enter the maximum storage capacity for each storage activity in tons (e.g. silo capacity, maximum stockpile size, etc.) 5.

ST

TC

TD

PC

- 6. For stockpiles, enter the maximum stockpile base area.
- For stockpiles, enter the maximum stockpile height. 7.
- 8. Enter the method of load-in or load-out to/from stockpiles or bins using the following codes:
 - CS Clamshell
 - FC Fixed Height Chute from Bins
 - FE Front Endloader
 - MC Mobile Conveyor/Stacker
 - UC Under-pile or Under-Bin Reclaim Conveyor
 - RC Rake or Bucket Reclaim Conveyor
- OT Other

Stacking Tube

Truck Dump

SS Stationary Conveyor/Stacker

Telescoping Chute from Bins

Pneumatic Conveyor/Stacker

Enter the appropriate Control Device Identification Number for each storage activity. Refer to Table A - Control Device Listing and Control 9. Device Identification Number Instructions in the Reference Document for Control Device ID prefixes and numbering.

STORAGE ACTIVITY AFFECTED SOURCE SHEET CON'T

Source Identification Number ¹	SP9	SP10	SP11	SP12	SP13	SP14
Type of Material Stored ²	Washed #8/#7	Various	Various	Various	67/57	Dry #10
Average Moisture Content (%) ³	1.5	1.5	1.5	1.5	1.5	1.5
Maximum Yearly Storage Throughput (tons) ⁴	1,500,000	300,000	20,000	200,000	3,50	0,000
Maximum Storage Capacity (tons) ⁵	80,000	100,000	3,000	10,000	250,000	250,000
Maximum Base Area (ft ²) ⁶	97,000	219,000	50,000	83,000	277,000	222,000
Maximum Pile Height (ft) ⁷	40	40	40	40	40	40
Method of Material Load-in ⁸	RS	TD/FE	TD/FE	TD/FE	RS	RS
Load-in Control Device Identification Number ⁹	МС	MD	MD	MD	MC	МС
Storage Control Device Identification Number ⁹	Ν	Ν	N	Ν	Ν	Ν
Method of Material Load-out ⁸	FE	FE	FE	FE	FE	FE
Load-out Control Device Identification Number ⁹	MD	MD	MD	MD	MD	MD

- Enter the appropriate Source Identification Number for each storage activity using the following codes. For example, if the facility utilizes 1. three storage bins, four open stockpiles and one storage building (full enclosure), the Source Identification Numbers should be BS-1, BS-2, and BS-3; OS-1, OS-2, OS-3, and OS-4; and SB-1, respectively.
 - BS Bin or Storage Silo (full enclosure)
 - OS Open Stockpile
- SB Storage Building (full enclosure) OT Other
- SF Stockpiles with wind fences
- Describe the type of material stored or stockpiled. (e.g. sized material, raw material, refuse, etc). 2.
- 3 Enter the average percent moisture content of the stored material.
- Enter the maximum yearly storage throughput for each storage activity. 4
- Enter the maximum storage capacity for each storage activity in tons (e.g. silo capacity, maximum stockpile size, etc.) 5.
- 6. For stockpiles, enter the maximum stockpile base area.
- For stockpiles, enter the maximum stockpile height. 7. 8.
 - Enter the method of load-in or load-out to/from stockpiles or bins using the following codes:
 - CS Clamshell
 - FC Fixed Height Chute from Bins
 - FE Front Endloader
 - MC Mobile Conveyor/Stacker
 - UC Under-pile or Under-Bin Reclaim Conveyor
 - RC Rake or Bucket Reclaim Conveyor
- OT Other
- Enter the appropriate Control Device Identification Number for each storage activity. Refer to Table A Control Device Listing and Control 9. Device Identification Number Instructions in the Reference Document for Control Device ID prefixes and numbering.

- Truck Dump
- SS Stationary Conveyor/Stacker
- ST Stacking Tube
- TC Telescoping Chute from Bins

E3 Enclosure (three sided enclosure)

- TD
 - Pneumatic Conveyor/Stacker PC

STORAGE ACTIVITY AFFECTED SOURCE SHEET CON'T

Source Identification Number ¹	SP15	SP16	SP17	SP18	
Type of Material Stored ²	Various	Various	Various	Various	
Average Moisture Content (%) ³	1.5	1.5	1.5	1.5	
Maximum Yearly Storage Throughput (tons) ⁴	60,000	30,000	30,000	30,000	
Maximum Storage Capacity (tons) ⁵	20,000	10,000	30,000	10,000	
Maximum Base Area (ft ²) ⁶	128,000	85,000	129,000	61,000	
Maximum Pile Height (ft) ⁷	40	40	40	40	
Method of Material Load-in ⁸	TD/FE	TD/FE	TD/FE	TD/FE	
Load-in Control Device Identification Number ⁹	MD	MD	MD	MD	
Storage Control Device Identification Number ⁹	N	Ν	Ν	Ν	
Method of Material Load-out ⁸	FE	FE	FE	FE	
Load-out Control Device Identification Number ⁹	MD	MD	МС	МС	

- Enter the appropriate Source Identification Number for each storage activity using the following codes. For example, if the facility utilizes 1. three storage bins, four open stockpiles and one storage building (full enclosure), the Source Identification Numbers should be BS-1, BS-2, and BS-3; OS-1, OS-2, OS-3, and OS-4; and SB-1, respectively.
 - BS Bin or Storage Silo (full enclosure)
 - OS Open Stockpile
 - SF Stockpiles with wind fences
- Describe the type of material stored or stockpiled. (e.g. sized material, raw material, refuse, etc). 2.
- 3 Enter the average percent moisture content of the stored material.
- Enter the maximum yearly storage throughput for each storage activity.
- 6.
- For stockpiles, enter the maximum stockpile height.

 - CS Clamshell
 - FC Fixed Height Chute from Bins
 - FE Front Endloader
 - MC Mobile Conveyor/Stacker
 - UC Under-pile or Under-Bin Reclaim Conveyor
 - RC Rake or Bucket Reclaim Conveyor
- OT Other
- Enter the appropriate Control Device Identification Number for each storage activity. Refer to Table A Control Device Listing and Control 9. Device Identification Number Instructions in the Reference Document for Control Device ID prefixes and numbering.

- E3 Enclosure (three sided enclosure) SB Storage Building (full enclosure) OT Other
- 4
- Enter the maximum storage capacity for each storage activity in tons (e.g. silo capacity, maximum stockpile size, etc.) 5.
- For stockpiles, enter the maximum stockpile base area.
- 7. 8.
 - Enter the method of load-in or load-out to/from stockpiles or bins using the following codes:
 - SS Stationary Conveyor/Stacker
 - ST Stacking Tube
 - TC Telescoping Chute from Bins TD
 - Truck Dump Pneumatic Conveyor/Stacker PC

HAULROAD EMISSIONS

Include G40-C Emission Calculation Spreadsheet indicating haulroad emissions, or submit calculations indicating assumptions made to substantiate emission values.

Emission Source		d Emissions 0/PM2.5)	Controlled Emissions (PM/PM10/PM2.5)		
	Hourly (lb/hr)	Annual (tpy)	Hourly (lb/hr)	Annual (tpy)	
Raw Trucks	214.70/63.46/6.27	521.54/154.15/15.23	53.68/15.87/1.57	130.39/38.54/3.81	
Product Trucks	352.98/104.41/10.60	350.53/103.69/10.53	88.25/26.10/2.65	87.63/25.92/2.63	
Endloaders	11.24/3.32/0.33	33.72/9.96/0.99	2.81/0.83/0.08	8.43/2.49/0.25	

BAGHOUSE AIR POLLUTION CONTROL DEVICE SHEET NOT APPLICABLE

Complete a Baghouse Air Pollution Control Device Sheet for each baghouse control device.

- 1. Baghouse Control Device Identification Number:
- 2. Manufacturer's name and model identification:
- 3. Number of compartments in baghouse:
- 4. Number of compartments online during normal operation and conditions:
- 5. Gas flow rate into baghouse: _____ ACFM @ _____°F and _____ PSIA
- 6. Total cloth area: _____ ft^2
- 7. Operating air to cloth ratio: _____ ft/min
- 8. Filter media type:
- 9. Stabilized static pressure drop across baghouse: _____ inches H₂O
- 10. Baghouse operation is:
 - \Box Continuous \Box Automatic \Box Intermittent
- 11. Method used to clean bags:
 - \Box Shaker \Box Pulse jet \Box Reverse jet \Box Other
- 12. Emission rate of particulate matter entering and exiting baghouse at maximum design operating conditions:
 - Entering baghouse: _____ lb/hr and _____ grains/ACF
 - Exiting baghouse: _____ lb/hr and _____ grains/ACF
- 13. Guaranteed minimum baghouse collection efficiency: ______%
- 14. Provide a written description of the capture system (e.g. hooding and ductwork arrangement), size of ductwork and hoods and air volume, capacity and operating horsepower of fan:
- 15. Describe the method of disposal for the collected material:

Air Pollution Control Device Sheet NOT APPLICABLE (WET COLLECTING SYSTEM-SCRUBBER)

Control Device ID No. (must match Emission Units Table):

		Equipment	Information					
1.	Manufacturer:		2. Method:	Packed Bed	Venturi			
	Model No.			Spray Tower	Cyclone			
	Woder No.			Other, specify				
3.	Provide diagram(s) of unit describing of				air volume, capacity,			
	horsepower of movers. If applicable, sta			•				
4.	Provide a scale diagram of the scrubbe configurations, baffle plates, and mist el		al construction.	Please include packing	g type and size, spray			
5.	What type of liquid entrainment eliminate mesh, and material of construction.	ators or system v	vill be used? Sub	mit a schematic diagra	am showing thickness,			
6.	Describe the scrubber's construction ma	terial:						
7.	What will be the power requirements of	the collector?						
	Fan HP		Inlet scru	bbing liquid pump:				
8.	What type of fan(s) will be used?							
	Type of fan blade: in.	Number of	blades:	Diameter of b	blade:			
	Also supply a fan curve for each fan to l	be used.						
9.	Estimated gas pressure drop at maximum	n flow rate:		inches H ₂ O)			
9.			or Characteristic)			
9. 10.					on, etc.):			
I	S			s				
I	Scrubbing Liquor	Scrubbing Lique	11. Scrubbing l	s	on, etc.):			
I	Scrubbing Liquor Composition	Scrubbing Lique	11. Scrubbing l	s iquor losses (evaporati	ion, etc.): gal/1000 ACF gas			
I	Scrubbing Liquor Composition	Scrubbing Lique	 Scrubbing I Liquor pres 	s iquor losses (evaporati sure to scrubber:	ion, etc.): gal/1000 ACF gas PSIA			
I	Scrubbing Liquor Composition	Scrubbing Lique	 Scrubbing I Liquor pres 	s iquor losses (evaporati	ion, etc.): gal/1000 ACF gas			
I	Scrubbing Liquor Composition	Scrubbing Lique	 Scrubbing I Liquor pres 	s iquor losses (evaporati sure to scrubber:	ion, etc.): gal/1000 ACF gas PSIA			
10.	Scrubbing Liquor Composition 1 2 3 4	Scrubbing Lique	 Scrubbing I Liquor pres Pressure dro 	s iquor losses (evaporati sure to scrubber: op through scrubber:	ion, etc.): gal/1000 ACF gas PSIA			
10.	Scrubbing Liquor Composition 1 2 3	Scrubbing Lique	 Scrubbing I Liquor pres Pressure dro Liquor flow 	s iquor losses (evaporati sure to scrubber:	ion, etc.): gal/1000 ACF gas PSIA			
10.	Scrubbing Liquor Composition 1 2 3 4	Scrubbing Lique	 Scrubbing I Liquor pres Pressure dro Liquor flow De 	s iquor losses (evaporati sure to scrubber: op through scrubber:	ion, etc.): gal/1000 ACF gas PSIA in. H ₂ O			
10.	Scrubbing Liquor Composition 1 2 3 4	Scrubbing Lique	 Scrubbing I Liquor pres Pressure dro Liquor flow De 	s iquor losses (evaporati sure to scrubber: op through scrubber: v rates to scrubber: esign maximum:	ion, etc.): gal/1000 ACF gas PSIA in. H ₂ O gal/min			
10.	Scrubbing Liquor Composition 1 2 3 4	Scrubbing Liquo	 Scrubbing I Liquor pres Pressure dro Liquor flow De 	s iquor losses (evaporati sure to scrubber: op through scrubber: v rates to scrubber: esign maximum:	ion, etc.): gal/1000 ACF gas PSIA in. H ₂ O gal/min			
10.	Scrubbing Liquor Composition	Scrubbing Liquo	 Scrubbing I Liquor pres Pressure dro Liquor flow De 	s iquor losses (evaporati sure to scrubber: op through scrubber: v rates to scrubber: esign maximum:	ion, etc.): gal/1000 ACF gas PSIA in. H ₂ O gal/min			
10.	Scrubbing Liquor Composition	Scrubbing Liquo	 Scrubbing I Liquor pres Pressure dro Liquor flow De 	s iquor losses (evaporati sure to scrubber: op through scrubber: v rates to scrubber: esign maximum:	ion, etc.): gal/1000 ACF gas PSIA in. H ₂ O gal/min			

17. Give the expected solids content of the liquor:

18. If the liquor is to be recirculated, describe any treatment performed: 19. Data for Venturi Scrubber: 20. Data for Packed Towers: **Throat Dimensions:** Type of Packing: (Specify Units) Superficial Gas Velocity through Bed: Throat Velocity: ft/sec **Gas Stream Characteristics** 21. Gas flow into the collector: 22. Gas stream temperature: °F Inlet: ACF @ °F and **PSIA** 24. Particulate Grain Loading in grains/scf: 23. Gas flow rate: Design Maximum: ACFM Inlet: Average Expected: ACFM Outlet: 25. Emission rate of each pollutant (specify) into and out of collector: Guaranteed OUT IN Minimum **Pollutant** Collection lb/hr grains/acf lb/hr grains/acf Efficiency Α В С D Е 26. Type of pollutant(s) controlled: \Box SO_x Odor Particulate (type): Other: 27. By what method were the uncontrolled emissions calculated? Material Balance Stack Test Pilot Test Other: ft. 28. Dimensions of stack: ft Height Diameter 29. Supply an equilibrium curve and/or solubility data (at various temperatures) for the proposed system.

٦

30.	Supply a curve	showing	proposed	collection	efficiency	versus ga	s volume	from 2	25 to	100 p	ercent of	design	rating of	2
	collector.													

Particulate Distribution

Г

31.	Describe any air pollution control device	inlet and	outlet gas	conditioning	processes (e	.g., gas	cooling,	gas re	heating,
	gas humidification):								

32. Describe the collection material disposal system:

33. Have you included Wet Collecting (Scrubber) Control Device in the Emissions Points Data Summary Sheet?

Please propose moni	4. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.								
MONITORING:		RECORDKEEPING:							
REPORTING:		TESTING:							
MONITORING:		parameters and ranges that are proposed to be monitored with the operation of this process equipment or air control							
RECORDKEEPING: REPORTING:									
TESTING:	Please describe any proposed emission control device.	sions testing for this process equipment on air pollution							

35. Manufacturer's Guaranteed Capture Efficiency for each air pollutant.

36. Manufacturer's Guaranteed Control Efficiency for each air pollutant.

37. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.

Source Iden	ntification Number ¹						
Engine Man	ufacturer and Model						
Manufactur							
Source Status ² Date Installed/Modified/Removed							
Engine Manufactu	ured/Reconstruction Date ⁴						
Is this a Certifie Ignition Engine acc IIII? (Yes or No) ⁵	d Stationary Compression ording to 40CFR60 Subpart						
Is this a Certified Engine according (Yes or No) ⁶	Stationary Spark Ignition to 40CFR60 Subpart JJJJ?						
	Engine Type ⁷						
	APCD Type ⁸						
. .	Fuel Type ⁹						
Engine, Fuel and	H ₂ S (gr/100 scf)						
Combustion Data	Operating bhp/rpm						
Data	BSFC (Btu/bhp-hr)						
	Fuel throughput (ft ³ /hr)						
	Fuel throughput (MMft ³ /yr)						
	Operation (hrs/yr)						
Reference ¹⁰	Potential Emissions ¹¹	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr
	NO _X						
	СО						
	VOC						
	SO_2						
	PM10						
	Formaldehyde						

ENGINE DATA SHEET NOT APPLICABLE

- Enter the appropriate Source Identification Number for each reciprocating internal combustion compressor/generator engine located at the facility. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Emergency Generator engines should be designated EG-1, EG-2, EG-3 etc. If more than three (3) engines exist, please use additional sheets.
- 2. Enter the Source Status using the following codes:
 - NS Construction of New Source (installation)
 - MS Modification of Existing Source
- ES Existing Source
- RS Removal of Source

- 3. Enter the date (or anticipated date) of the engine's installation (construction of source), modification or removal.
- 4. Enter the date that the engine was manufactured, modified or reconstructed.
- 5. Is the engine a certified stationary compression ignition internal combustion engine according to 40CFR60 Subpart IIII. If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintained in accordance with the manufacturer's emission-related testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance according to 40CFR§60.4210 as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6. Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart JJJJ. If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance according to 40CFR§60.4243a(2)(i) through (iii), as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

7. Enter the Engine Type designation(s) using the following codes:

LB2S	Lean Burn Two Stroke	RB4S	Rich Burn Four Stroke
LB4S	Lean Burn Four Stroke		

8. Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:

A/F	Air/Fuel Ratio	IR	Ignition Retard
HEIS	High Energy Ignition System	SIPC	Screw-in Precombustion Chambers
PSC	Prestratified Charge	LEC	Low Emission Combustion
NSCH	R Rich Burn & Non-Selective Catalytic Reduction	SCR	Lean Burn & Selective Catalytic Reduction
9. Enter the	Fuel Type using the following codes:		
PQ	Pipeline Quality Natural Gas	RG	Raw Natural Gas
2FO	#2 Fuel Oil	LPG	Liquid Propane Gas
10 5		.1 .0	

10. Enter the Potential Emissions Data Reference designation using the following codes. Attach all referenced data to this *Compressor/Generator Data Sheet(s)*.

MD	Manufacturer's Data	AP	AP-42	
GR	GRI-HAPCalc TM	ОТ	Other _	(please list)

11. Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

STORAGE TANK DATA SHEET NOT APPLICABLE

Source ID #1	Status ²	Content ³	Volume ⁴	Dia ⁵	Throughput ⁶	Orientation ⁷	Liquid Height ⁸

1. Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the facility. Tanks should be designated T01, T02, T03, etc.

2. Enter storage tank Status using the following:

EXIST Existing Equipment

NEW Installation of New Equipment

REM Equipment Removed

3. Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, etc.

4. Enter storage tank volume in gallons.

5. Enter storage tank diameter in feet.

6. Enter storage tank throughput in gallons per year.

7. Enter storage tank orientation using the following:

VERT Vertical Tank

8. Enter storage tank average liquid height in feet.

HORZ Horizontal Tank

ATTACHMENT I

EMISSIONS CALCULATIONS

Aggregate Industries Millville Quarry

Potesta & Associates, Inc. Project No. 0101-18-0274

By: ADM	Checked: PEW
Date: 08/07/2018	Date: 08/10/2018

Proposed Facility Emissions

Total Facility	Uncontro	Controlled		
	lb/hr tpy		lb/hr	tpy
PM	1,073.06	1,677.89	259.70	398.71
PM10	406.50	635.46	97.54	148.98
PM2.5	52.49	81.90	12.52	18.99

Existing PTE

Total Facility	Uncontro	lled	Controlled			
	lb/hr	tpy	lb/hr	tpy		
PM	1,068.66	1,675.49	258.82	398.23		
PM10	404.41	634.32	97.12	148.75		
PM2.5	52.18	81.72	12.45	18.95		

Change in PTE

Total Facility	Uncontro	olled	Controlled		
	lb/hr tpy		lb/hr	tpy	
PM	4.40	2.40	0.88	0.48	
PM10	2.10	1.14	0.42	0.23	
PM2.5	0.31	0.17	0.06	0.03	

Point Sources

Transfer Points	Uncontro	lled	Controlled		
	lb/hr	tpy	lb/hr	tpy	
PM	336.89	429.73	88.70	108.03	
PM10	160.42	204.63	42.24	51.44	
PM2.5	24.06	30.70	6.34	7.72	

Crushing	Uncontro	lled	Controlled		
	lb/hr	tpy	lb/hr	tpy	
PM	16.86	20.33	3.37	4.07	
PM10	8.03	9.68	1.60	1.94	
PM2.5	1.20 1.45		0.24	0.29	

Screening	Uncontr	olled	Controlled		
	lb/hr	lb/hr tpy		tpy	
PM	137.50	309.38	20.00	47.50	
PM10	65.48	147.32	9.52	22.62	
PM2.5	9.82	22.10	1.43	3.39	

Total	Uncontro	Controlled		
Point Source	lb/hr	tpy	lb/hr	tpy
PM	491.25	759.44	112.07	159.60
PM10	233.93	361.63	53.36	76.00
PM2.5	35.08	54.25	8.01	11.40

Aggregate Industries Millville Quarry

Potesta & Associates, Inc. Project No. 0101-18-0274

 By: ADM
 Checked: PEW

 Date: 08/07/2018
 Date: 08/10/2018

Proposed Facility Emissions

Fugitive Sources

Stockpiles	Uncontro	Controlled		
	lb/hr	tpy	lb/hr	tpy
PM	2.89	12.66	2.89	12.66
PM10	1.38	6.03	1.38	6.03
PM2.5	0.21	0.90	0.21	0.90

Haulroads	Uncontro	lled	Controlled		
	lb/hr	tpy	lb/hr	tpy	
PM	578.92	905.79	144.74	226.45	
PM10	171.19	267.80	42.80	66.95	
PM2.5	17.20	26.75	4.30	6.69	

Total	Uncontro	Controlled		
Fugitive Source	lb/hr	tpy	lb/hr	tpy
PM	581.81	918.45	147.63	239.11
PM10	172.57	273.83	44.18	72.98
PM2.5	17.41	27.65	4.51	7.59

Aggregate Industries	Potesta & Associates, Inc.
Millville Quarry	Project No. 0101-18-0274

By: ADM	Checked: PEW
Date: 08/07/2018	Date: 08/10/2018

Transfer Points

 $E(lbs/ton) = k*(0.0032)*[(U/5)^{1.3}]/[(M/2)^{1.4}]$

Where:

Vhere:	PM
k = particle size multiplier (dimensionless)	0.74
U = Mean Wind Speed (MPH)	7
M = Material Moisture Content (%)	1.5
E = Emission Factor (lbs/ton)	0.0055

Transfer Point	Material	Material	Control	Control	P	М		PM
ID Number	Throughput	Throughput	Device	Efficiency	Uncon	trolled	Cor	trolled
	(tph)	(tpy)		(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
TP1	1,200	6,000,000	PE-WS	80	6.60	16.50	1.32	3.30
TP2	1,200	6,000,000	FE-MC	90	6.60	16.50	0.66	1.65
TP3	1,200	3,000,000	FE-MC	90	6.60	8.25	0.66	0.83
TP4	600	3,000,000	FE-MC	90	3.30	8.25	0.33	0.83
TP5	600	3,000,000	FE	80	3.30	8.25	0.66	1.65
TP6	1,200	6,000,000	PE	50	6.60	16.50	3.30	8.25
TP7	1,200	6,000,000	PE-MC	80	6.60	16.50	1.32	3.3
TP8	500	6,000,000	FE-MC	90	2.75	16.50	0.28	1.65
TP9A	500	2,000,000	PE-MC	80	2.75	5.50	0.55	1.10
TP9B	300	0	PE-MC	80	1.65	0	0.33	0
TP10	300	0	PE-MC	80	1.65	0	0.33	0
TP11	300	0	MC	50	1.65	0	0.83	0
TP12	700	4,000,000	MC	50	3.85	11.00	1.93	5.5
TP13	700	4,000,000	PE	50	3.85	11.00	1.93	5.5
TP14	1,200	6,000,000	PE-MC	80	6.60	16.50	1.32	3.30
TP15	1,200	0	MC	50	6.60	0	3.30	0
TP16	1,200	6,000,000	PE-MC	80	6.60	16.50	1.32	3.30
TP17	1,200	0	MC	50	6.60	0	3.30	0
TP18	1,200	6,000,000	PE-MC	80	6.60	16.50	1.32	3.30
TP19	1,200	0	MC	50	6.60	0	3.30	0
TP20	1,200	6,000,000	MC	50	6.60	16.50	3.30	8.25
TP21	1,200	6,000,000	FE-MC	90	6.60	16.50	0.66	1.65
TP22	1,000	6,000,000	PE-MC	80	5.50	16.50	1.10	3.30
TP26	1,000	6,000,000	PE-MC	80	5.50	16.50	1.10	3.30
TP27	800	2,500,000	PE-MC	80	4.40	6.88	0.88	1.38
TP28	1,000	0	PE-MC	80	5.50	0	1.10	0
TP29	1,000	3,500,000	PE-MC	80	5.50	9.63	1.10	1.93
TP30	1,000	0	FE-MC	90	5.50	0	0.55	0
TP31	800	0	PE-MC	80	4.40	0	0.88	0
TP32	1,000	0	PE-MC	80	5.50	0	1.10	0
TP33	1,000	0	PE-MC	80	5.50	0	1.10	0

Aggregate Industries	Potesta & Associates, Inc.
Millville Quarry	Project No. 0101-18-0274

By: ADM	Checked: PEW
Date: 08/07/2018	Date: 08/10/2018

Transfer Points

 $E(lbs/ton) = k*(0.0032)*[(U/5)^{1.3}]/[(M/2)^{1.4}]$

Where:

Where:	PM
k = particle size multiplier (dimensionless)	0.74
U = Mean Wind Speed (MPH)	7
M = Material Moisture Content (%)	1.5
E = Emission Factor (lbs/ton)	0.0055

Transfer Point	Material	Material	Control	Control	Р	М]	PM
ID Number	Throughput	Throughput	Device	Efficiency	Uncon	trolled	Con	trolled
	(tph)	(tpy)		(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
TP34	1,000	0	FE-MC	90	5.50	0	0.55	0
TP35	800	2,500,000	PE-MC	80	4.40	6.88	0.88	1.38
TP36	800	2,500,000	PE-MC	80	4.40	6.88	0.88	1.38
TP37	800	2,500,000	FE-MC	90	4.40	6.88	0.44	0.69
TP38	800	2,500,000	PE	50	4.40	6.88	2.20	3.44
TP39	800	2,500,000	PE-MC	80	4.40	6.88	0.88	1.38
TP40	300	2,000,000	PE-MC	80	1.65	5.50	0.33	1.10
TP41	600	0	PE-MC	80	3.30	0	0.66	0
TP42	600	500,000	PE-MC	80	3.30	1.38	0.66	0.28
TP43	200	0	FE-MC	90	1.10	0	0.11	0
TP44	300	0	PE-MC	80	1.65	0	0.33	0
TP45	600	0	PE-MC	80	3.30	0	0.66	0
TP46	600	0	PE-MC	80	3.30	0	0.66	0
TP47	200	0	FE-MC	90	1.10	0	0.11	0
TP48	300	2,000,000	PE-MC	80	1.65	5.50	0.33	1.10
TP49	600	2,000,000	PE-MC	80	3.30	5.50	0.66	1.10
TP50	1,000	2,000,000	PE-MC	80	5.50	5.50	1.10	1.10
TP51	1,000	2,000,000	FE	80	5.50	5.50	1.10	1.10
TP52	1,000	0	FE	80	5.50	0	1.10	0
TP53	1,000	4,500,000	PE-MC	80	5.50	12.38	1.10	2.48
TP54	300	4,500,000	PE-MC	80	1.65	12.38	0.33	2.48
TP55	600	0	PE-MC	80	3.30	0	0.66	0
TP56	600	0	PE-MC	80	3.30	0	0.66	0
TP57	200	0	FE-MC	90	1.10	0	0.11	0
TP58	300	0	PE-MC	80	1.65	0	0.33	0
TP59	600	0	PE-MC	80	3.30	0	0.66	0
TP60	600	0	PE-MC	80	3.30	0	0.66	0
TP61	200	0	FE-MC	90	1.10	0	0.11	0
TP62	300	0	PE-MC	80	1.65	0	0.33	0
TP63	200	0	PE-MC	80	1.10	0.00	0.22	0
TP64	400	438,000	PE-MC	80	2.20	1.20	0.44	0.24
TP64A	400	438,000	PE-MC	80	2.20	1.20	0.44	0.24
TP64B	400	438,000	PE-MC	80	2.20	1.20	0.44	0.24
TP65	400	438,000	MC	50	2.20	1.20	1.10	0.60
TP66	400	250,000	PE-MC	80	2.20	0.69	0.44	0.14
TP67	400	250,000	PE-MC	80	2.20	0.69	0.44	0.14
TP68	400	250,000	MC	50	2.20	0.69	1.10	0.35
TP69A	200	0	PE-MC	80	1.10	0.00	0.22	0

Aggregate Industries	Potesta & Associates, Inc.
Millville Quarry	Project No. 0101-18-0274

By: ADM	Checked: PEW
Date: 08/07/2018	Date: 08/10/2018

Transfer Points

 $E(lbs/ton) = k*(0.0032)*[(U/5)^{1.3}]/[(M/2)^{1.4}]$

Where:

Vhere:	PM
k = particle size multiplier (dimensionless)	0.74
U = Mean Wind Speed (MPH)	7
M = Material Moisture Content (%)	1.5
E = Emission Factor (lbs/ton)	0.0055

Transfer Point	Material	Material	Control	Control	Р	М]	PM
ID Number	Throughput	Throughput	Device	Efficiency	Uncon	trolled	Con	trolled
	(tph)	(tpy)		(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
TP69B	200	750,000	PE-MC	80	1.10	2.06	0.22	0.41
TP70	600	3,500,000	PE-MC	80	3.30	9.63	0.66	1.93
TP71	600	3,500,000	PE-MC	80	3.30	9.63	0.66	1.93
TP72	600	0	PE-MC	80	3.30	0	0.66	0
TP73	600	0	PE-MC	80	3.30	0	0.66	0
TP74	600	0	PE-MC	80	3.30	0	0.66	0
TP75	50	438,000	PE-MC	80	0.28	1.20	0.06	0.24
TP76	50	438,000	PE-MC	80	0.28	1.20	0.06	0.24
TP77	50	438,000	PE-MC	80	0.28	1.20	0.06	0.24
TP78	400	1,500,000	PE-MC	80	2.20	4.13	0.44	0.83
TP79	400	1,500,000	PE-MC	80	2.20	4.13	0.44	0.83
TP80	400	1,500,000	PE-MC	80	2.20	4.13	0.44	0.83
TP81	400	1,500,000	MC	50	2.20	4.13	1.10	2.07
TP82	200	750,000	PE-MC	80	1.10	2.06	0.22	0.41
TP83	200	750,000	MC	50	1.10	2.06	0.55	1.03
TP84	300	0	PE-MC	80	1.65	0.00	0.33	0
TP85	500	750,000	PE	50	2.75	2.06	1.38	1.03
TP86	400	750,000	PE-MC	80	2.20	2.06	0.44	0.41
TP87	400	0	PE-MC	80	2.20	0	0.44	0
TP88	200	0	PE-MC	80	1.10	0	0.22	0
TP89	400	750,000	PE-MC	80	2.20	2.06	0.44	0.41
TP90	400	750,000	FE	80	2.20	2.06	0.44	0.41
TP91	400	750,000	PE	50	2.20	2.06	1.10	1.03
TP92	400	0	MC	50	2.20	0	1.10	0
TP93	200	0	MC	50	1.10	0	0.55	0
TP94	400	0	PE-MC	80	2.20	0	0.44	0
TP95	400	750,000	PE-MC	80	2.20	2.06	0.44	0.41
TP96	400	750,000	MC	50	2.20	2.06	1.10	1.03
TP97	1,000	2,938,000	MD	0	5.50	8.08	5.50	8.08
TP98	600	0	MC	50	3.30	0	1.65	0
TP99	600	0	MC	50	3.30	0	1.65	0
				Total PM		429.73	88.70	108.03
MS3, 4 Recycle	100%		-	Fotal PM10		204.63	42.24	51.44
			Т	otal PM2.5	24.06	30.70	6.34	7.72

1. PM conversion to PM10 and PM2.5:

Particle size multipliers (k) AP42 Section 13.2.4-4 (11/06):

PM	PM10	PM2.5
0.74	0.35	0.053
Conversion Factor	2.1	14

2. Rates/throughputs set to zero are not in the worst case material flow.

Aggregate Industries Millville Quarry

Date: 08/07/2018

Crushing and Screening

Emission Factors	PM	Source		Totals for Crus	shing and Screen	ning	
Primary Crushing	0.002	DAQ G40-C Emissions Worksheet		Uncor	ntrolled	Cont	rolled
Secondary & Tertiary Crushing	0.0054	AP-42 Section 11.19.2-8 (Table 11.19.2-2)		(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)
Screening	0.025	AP-42 Section 11.19.2-8 (Table 11.19.2-2)	PM	154.36	329.71	23.37	52
			PM10	73.51	157.00	11.12	25
			PM2.5	11.02	23.55	1.67	4

Crusher Emissions

Tusher Emissions									
Crusher Identification	ID	Th	roughput	Control	Control	Uncor	ntrolled	Cont	rolled
		(ton/hr)	(tons/yr)	Туре	Efficiency (%)	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)
Jaw Crusher	3600.311-JC01	600	3,000,000	FE	80	1.20	3.00	0.24	0.60
7 Crusher	3600.321-CZ01	700	4,000,000	FE	80	3.78	10.80	0.76	2.16
Metso Crusher	3600.331-CZ03	800	2,500,000	FE	80	4.32	2.50	0.86	0.50
HP500	3600.331-CZ01	1,000	2,000,000	FE	80	5.40	2.00	1.08	0.40
HP300	3600.331-CZ02	0	0	FE	80	0	0	0	0
Barmac Crusher	3600.341-VI01	400	750,000	FE	80	2.16	2.03	0.43	0.41
					PM	16.86	20.33	3.37	4.07
					PM10	8.03	9.68	1.60	1.94

PM2.5

1.20

1.45

0.24

Screen Emissions (3)

Screen Identification	ID	Th	roughput	Control	Control	Uncor	ntrolled	Controlled	
		(ton/hr)	(tons/yr)	Туре	Efficiency (%)	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)
PS1	3600.311-VS01	1,200	6,000,000	PE-MC	80	30.00	75.00	6.00	15.00
MS1	3600.331-VS01	1,000	6,000,000	PE-MC	80	25.00	75.00	5.00	15.00
MS2	3600.331-VS02	0	0	PE-MC	80	0	0	0	0
MS3	3600.331-VS03	1,000	4,500,000	PE-MC	80	25.00	56.25	5.00	11.25
MS4	3600.331-VS04	0	0	PE-MC	80	0	0	0	0
MS5	3600.331-VS05	800	2,500,000	PE-MC	80	20.00	31.25	4.00	6.25
MS6	3600.331-VS06	0	0	PE-MC	80	0	0	0	0
MS7	3600.351-VS01	400	1,500,000	Wet	100	10.00	18.75	0	0
MS8	3600.351-VS02	600	3,500,000	Wet	100	15.00	43.75	0	0
Sand Screen	3600.352-VS01	500	750,000	Wet	100	12.50	9.38	0	0
					PM	137.50	309.38	20.00	47.50
					PM10	65.48	147.32	9.52	22.62
					PM2.5	9.82	22.10	1.43	3.39

1. PM conversion to PM10 and PM2.5: Particle size multipliers (k)

) AP42 \$	Section 13.2.4-4 (11	1/06):	
	PM	PM10	PM2.5
	0.74	0.35	0.053

Conversion Factor 2.1 14 2. Rates/throughputs set to zero are not in the worst case material flow.

3. Grizzly screen 311-RZ01 emissions are based on transfers of materials onto end of the screen and are included in transfer points.

I6 of I8

Potesta & Associates, Inc.

Project No. 0101-18-0274

Checked: PEW

0.29

Date: 08/10/2018

By: ADM

Aggregate Industries Millville Quarry

By: ADM Date: 08/07/2018 Potesta & Associates, Inc. Project No. 0101-18-0274

> Checked: PEW Date: 08/10/2018

Facility Stockpiles

Reference: AP-42 Section 11.2.3, Fugitive Emissions (May, 1983), Equation #2

E = 1.7 (s/1.5) ((365-p)/235) (f/15)

E =	?	Emissions factor, pound per day per acre, (lb/day/acre)
s =	2	Silt content of material (%)
p =	148	number of days with at least 0.254 mm (0.01 in.) of precipitation per year
f =	10	Time wind speed exceeds 12 mph (%)

E = **1.395** lb/day/acre

Rounding to 2

Stockpile	Stockpile	Base Area	Control	Control Eff.	Uncontrolle	d Emissions	Controlled	l Emissions
ID	Material	(acres)	Device	(%)	lb/hr	tpy	lb/hr	tpy
SP1	CR6	2.1	N	0	0.12	0.53	0.12	0.53
SP2	Gabion	0.2	N	0	0.01	0.05	0.01	0.05
SP3	Surge Pile	1.7	N	0	0.10	0.43	0.10	0.43
SP5	Washed #8/#9/Sand	8.0	N	0	0.47	2.04	0.47	2.04
SP5A	Washed #8	0.2	N	0	0.01	0.05	0.01	0.05
SP6	Various	0.8	N	0	0.05	0.20	0.05	0.20
SP7	Dry Ballast	5.4	N	0	0.31	1.37	0.31	1.37
SP8	Various	0.4	N	0	0.02	0.10	0.02	0.10
SP9	Washed #8/#7	2.2	N	0	0.13	0.56	0.13	0.56
SP10	Various	5.0	N	0	0.29	1.27	0.29	1.27
SP11	Various	1.1	N	0	0.06	0.28	0.06	0.28
SP12	Various	1.9	N	0	0.11	0.48	0.11	0.48
SP13	67/57	6.4	N	0	0.37	1.63	0.37	1.63
SP14	Dry #10	5.1	N	0	0.30	1.30	0.30	1.30
SP15	Various	2.9	N	0	0.17	0.74	0.17	0.74
SP16	Various	2.0	N	0	0.12	0.51	0.12	0.51
SP17	Various	3.0	N	0	0.17	0.76	0.17	0.76
SP18	Various	1.4	N	0	0.08	0.36	0.08	0.36
				PM:	2.89	12.66	2.89	12.66
				PM10:	1.38	6.03	1.38	6.03
				PM2.5	0.21	0.90	0.21	0.90

1. PM conversion to PM10 and PM2.5:

Particle size multipliers (k) AP42 Section 13.2.4-4 (11/06):

(k) / ii 42 Section 15.2.4-4 (11/00).								
PM	PM10	PM2.5						
0.74	0.35	0.053						
Conversion Factor	2.1	14						

Aggregate Industries Millville Quarry	Potesta & Associates, Inc. Project No. 0101-18-0274
By: ADM	Checked: PEW
Date: 08/07/2018	Date: 08/10/2018

Vehicular Traffic (VT)

Unpaved Haulroads

M										
Source	Vehicle Trips	Vehicle Trips	Miles	Emission	Uncontrolled	Uncontrolled	Control	Control	Controlled	Controlled
	per Hour	per Year	per Trip	Factor ⁽¹⁾			Device	Efficiency		
				(lb/VMT)	(lb/hr)	(tpy)		(%)	(lb/hr)	(tpy)
Raw Trucks	19	92,308	1.0	11.30	214.70	521.54	RWMW	75	53.68	130.39
Product Trucks	53	105,264	1.0	6.66	352.98	350.53	RWMW	75	88.25	87.63
Endloaders	50	300,000	0.02	11.24	11.24	33.72	RWMW	75	2.81	8.43
				Total	578.92	905.79		Total	144.74	226.45

DM 4	1	0	

Source	Vehicle Trips	Vehicle Trips	Miles	Emission	Uncontrolled	Uncontrolled	Control	Control	Controlled	Controlled
	per Hour	per Year	per Trip	Factor ⁽¹⁾			Device	Efficiency		
				(lb/VMT)	(lb/hr)	(tpy)		(%)	(lb/hr)	(tpy)
Raw Trucks	19	92,308	1.0	3.34	63.46	154.15	RWMW	75	15.87	38.54
Product Trucks	53	105,264	1.0	1.97	104.41	103.69	RWMW	75	26.10	25.92
Endloaders	50	300,000	0.02	3.32	3.32	9.96	RWMW	75	0.83	2.49
				Total	171.19	267.80		Total	42.80	66.95

PM2.5

Source	Vehicle Trips	Vehicle Trips	Miles	Emission	Uncontrolled	Uncontrolled	Control	Control	Controlled	Controlled
	per Hour	per Year	per Trip	Factor ⁽¹⁾			Device	Efficiency		
				(lb/VMT)	(lb/hr)	(tpy)		(%)	(lb/hr)	(tpy)
Raw Trucks	19	92,308	1.0	0.33	6.27	15.23	RWMW	75	1.57	3.81
Product Trucks	53	105,264	1.0	0.20	10.60	10.53	RWMW	75	2.65	2.63
Endloaders	50	300,000	0.02	0.33	0.33	0.99	RWMW	75	0.08	0.25
				Total	17.20	26.75		Total	4.30	6.69

	En	nission Factors ⁽¹⁾)	
	PM	PM10	PM2.5	
$\mathbf{k} =$	4.9	1.5	0.15	dimensionless, particle size multiplier
s =	10	10	10	%, surface material silt content
W _{raw} =	81	81	81	tons, mean vehicle weight
$W_{product} =$	25	25	25	
$W_{endloader} =$	80	80	80	
a =	0.7	0.9	0.9	constants
b =	0.45	0.45	0.45	constants
$\mathbf{p} =$	148	148	148	no. days/year with 0.1 in of rain
e =	11.30	3.34	0.33	lb/VMT Raw Trucks
e =	6.66	1.97	0.20	lb/VMT Product Trucks
e =	11.24	3.32	0.33	lb/VMT Endloaders
	Raw	Product	Endloaders	
Total Hauled (tpy) =	6,000,000	2,000,000	6,000,000	
Load Weight (tons) =	65	19	20	
Vehicles Per Year =	92,308	105,264	300,000	(1) Emission Equation AP-42 Section 13.2.2, Unpaved Roads (12/03), where:
Total Hauled (tph) =	1,200	1,000	1,000	$e = k [(s/12)^{a} (W/3)^{b}] [(365-p)/365]$
Load Weight (tons) =	65	19	20	e = Emission factor, pounds per vehicle-mile-traveled, (lb/VMT)
Vehicles Per Hour =	19	53	50	k, a & b = Constants for equation given in AP-42 Table 13.2.2-2 (dimensionless)
Empty Vehicle Weight (tons) =	48	15	70	s = Silt content of road surface material (%)
Loaded Vehicle Weight (tons) =	113	34	90	W = Mean vehicle weight, ton
Average Vehicle Weight (tons) =	81	25	80	p = Number of days with at least 0.01 in. of precipitation per year

ATTACHMENT J

CLASS I LEGAL ADVERTISEMENT

AIR QUALITY PERMIT NOTICE

Notice of Application

Notice is given that Bardon, Inc. has applied to the West Virginia Department of Environmental Protection, Division of Air Quality for a modification to General Permit Registration G40-C003G for Millville Quarry to install three new conveyors. The facility is located off of County Route 23 (Blair Road) near Millville in Jefferson County, West Virginia. The latitude and longitude coordinates are: 39.287, -77.794.

The applicant estimates the increased potential to discharge the following Regulated Air Pollutants will be: PM of 0.48 tons per year (tpy), PM_{10} of 0.23 tpy, and PM _{2.5} of 0.03 tpy.

Startup of operation is planned to begin on or about the 1st day of November, 2018. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304 for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the (Insert Date) day of September, 2018.

By: Bardon, Inc. Stephen Ward Vice President 6401 Golden Triangle Drive Greenbelt, Maryland 20770

ATTACHMENT K

ELECTRONIC SUBMITTAL

ATTACHMENT L

GENERAL PERMIT REGISTRATION APPLICATION FEE

L1 of L1

General Permit Levels Construction, Modification, Relocation, Administrative Update

Class II General Permits – G10-D (Coal Preparation and Handling), G20-B (Hot Mix Asphalt), G30-D (Natural Gas Compressor Stations), G35-A (Natural Gas Compressor Stations with Flares/Glycol Dehydration Units), G40-C (Nonmetallic Minerals Processing), G50-B (Concrete Batch Plant), G60-C (Emergency Generators)

Class I General Permit – G33-A (Spark Ignition Internal Combustion Engines 25 HP-500 HP), G65-C (Emergency Generators)

General Permit	Public Notice	Review Period as per 45CSR13	Application Fee	Criteria	Application Type
Class II General Permit (Construction)	30 days (applicant)	45 days	\$500 + applicable NSPS fees	6 lb/hr and 10 tpy of any regulated air pollutant OR 144 lb/day of any regulated air pollutant, OR 2 lb/hr of any hazardous air pollutant OR 5 tpy of aggregated HAP OR 45CSR27 TAP (10% increase if above BAT triggers or increase to BAT triggers) or subject to applicable standard or rule, but subject to specific eligibility requirements	Registration Application
Class II General Permit (Modification)	30 days (applicant)	45 days	\$500 + applicable NSPS fees Total fee \$1,500	Same as Class II General Permit (Construction) but subject to specific eligibility requirements	Registration Application
Administrative Update (Class I)	None	60 days	None	Decrease in emissions or permanent removal of equipment OR more stringent requirements or change in MRR that is equivalent or superior	Registration Application or Written Request
Administrative Update (Class II)	30 days (applicant)	60 days	\$300 + applicable NSPS fees	No change in emissions or an increase less than Class II Modification levels	Registration Application
Relocation	30 days (applicant)	45 days	\$500 + applicable NSPS fees	No emissions increase or change in facility design or equipment	Registration Application
Class I General Permit	None	45 days	\$250	Same as Class II General Permit (Construction) but subject to specific eligibility requirements	Registration Application

ATTACHMENT O

EMISSIONS SUMMARY SHEETS

	EN	IISSION	SUMMA	ET FOR (CRITERI	A POLLU	UTANTS			
						Registration Number (Agency Use) <u>G40-C</u>				
	Potential Emissions (lbs/hr)					Potential Emissions (tons/yr)				
Source ID No.	NOx	СО	VOC	SO ₂	PM10	NOx	СО	VOC	SO ₂	PM10
Transfer Points					42.24					51.44
Crushing					1.60					1.94
Screening					9.52					22.62
Stockpiles					1.38					6.03
Haul Roads					42.80					66.95
		1								
Total					97.54					148.98

EMISSION SUMMARY SHEET FOR HAZARDOUS/TOXIC POLLUTANTS NOT APPLICABLE												
							Registration Number (Agency Use) <u>G40-C</u>					
	Potential Emissions (lbs/hr)						Potential Emissions (tons/yr)					
Source ID No.	Benzene	Ethyl- benzene	Toluene	Xylenes	n- Hexane	Formalde- hyde	Benzene	Ethyl- benzene	Toluene	Xylenes	n- Hexane	Formalde- hyde