People Powered. Asset Strong.

April 20, 2017

West Virginia – Dept. of Environmental Protection Division of Air Quality Beverly McKeone, NSR Manager 601 57th Street, SE Charleston, WV 25304

Reference: General Permit Registration Modification Goff West Compressor Station G35-A107D Facility ID # 033-00187 Clarksburg, Harrison County, West Virginia

Dear Ms. McKeone:

MK Midstream Holdings, LLC is submitting this General Permit G35-D Registration Modification (1 paper copy and 2 PDF copies on a CD) for the Goff West Compressor Station facility, Facility ID # 033-00187, located in Clarksburg, Harrison County, West Virginia. This facility currently operates under a G35-D registration issued February 27, 2017 to MK Midstream Holdings LLC which includes equipment at three locations: Goff Compressor Station, Goff M&R and Cather Compression Station. Please note, MK Midstream Holdings, LLC recently changed its name (only) to Arsenal Midstream, LLC, a legal subsidiary, wholly owned by Arsenal Resources LLC. A name change will be officially completed after the West Virginia Business Registration Certificate for Arsenal Midstream, LLC is received.

The purpose of this modification is to add a seventh engine and compressor at the Goff West Compressor Station. As requested, the permit modification includes information regarding the addition of the engine and compressor. Once this modification is completed the following equipment will be located at the facility.

Engines:

- CE-1R Caterpillar G3516B LE Compressor Engine Goff Compressor Station
- CE-2R Caterpillar G3516B LE Compressor Engine Goff Compressor Station
- CE-5R Caterpillar G3608TALE Compressor Engine Cather Compressor Station
- CE-6R Caterpillar G3606TALE Compressor Engine Cather Compressor Station
- CE-7R Caterpillar G3516B LE Compressor Engine Goff Compressor Station
- CE-8R Caterpillar G3516B LE Compressor Engine Goff Compressor Station
- CE-9R Caterpillar G3516 B LE Compressor Engine Goff Compressor Station

Dehydration Units:

- RSV-1 Exterran Dehydration Unit 2012, 67 mmscf/day-Goff M&R
- RBV-1 Exterran Reboiler 2012, 1.0 mm BTU/Hr -Goff M&R
- RSV-2 Exterran Dehydration Unit 2013, 67 mmscf/day-Goff M&R
- RBV-2 Exterran Reboiler Unit 2013, 1.0 mm BTU/Hr -Goff M&R

6031 Wallace Road Ext, Suite 300 Wexford, PA 15090 P: 724-940-1100 F: 800-428-0981 www.arsenalresources.com

People Powered. Asset Strong.

Tanks:

- TK-1, TEG/Produced Liquid Goff M&R
- TK-2, Oil Catch Storage Tank Goff Compressor Station
- TK-3, Produced Liquid Goff Compressor Station
- TK-4, Stormwater/Leaked Oils Cather Compressor Station
- TK-5, Stormwater/Leaked Oils Cather Compressor Station

The combined potential emissions from the listed equipment do not exceed major facility thresholds.

Please feel free to contact me at 724-940-1112, if the WVDEP-DAQ has any questions regarding the information in this General Permit Registration Modification.

Sincerely, Arsenal Resources LLC

Meghan M.B. Yingling Environmental Compliance Manager

cc: Stacey Lucas, Vice President, HSE, Arsenal Resources LLC William Veigel, Director of Production, Arsenal Resources LLC Thomas S. Seguljic, PE, HRP Associates, Inc.

> 6031 Wallace Road Ext, Suite 300 Wexford, PA 15090 P: 724-940-1100 F: 800-428-0981 www.arsenalresources.com

dep	west virginia department of environmental protection	Division of Air Quality 601 57 th Street SE Charleston, WV 25304 Phone (304) 926-0475 Fax (304) 926-0479 www.dep.wv.gov
G35-D GEN	VERAL PERMIT REGISTRATION	APPLICATION
	ONTROL OF AIR POLLUTION IN REGARD TO THE CONS RELOCATION, ADMINISTRATIVE UPDATE AND OPERAT ATURAL GAS COMPRESSOR AND/OR DEHYDRATION FA	TION OF
□CONSTRUC X MODIFICA □RELOCATIO	TION CLASS II ADMINISTR	
	SECTION 1. GENERAL INFORMATION	
Name of Applicant (as r MK MIDSTREAM HOL	egistered with the WV Secretary of State's Office): DINGS, LLC	
Federal Employer ID No	. (FEIN):47-1919654	
Applicant's Mailing Add	ress: 65 PROFESSIONAL PLACE SUITE 200	
City:BRIDGEPORT	State: WV	ZIP Code:26330
Facility Name: GOFF W	EST COMPRESSOR STATION	nan an
Operating Site Physical If none available, list roa	Address:50 E. DAVISSON RUN RD. CLARKSBURG, HARRISO Id, city or town and zip of facility.	N COUNTY, WV
City:CLARKSBURG	Zip Code:26302	County:HARRISON
Latitude & Longitude Co Latitude: 39.275550 Longitude: -80.403099	ordinates (NAD83, Decimal Degrees to 5 digits):	
SIC Code: 1311 NAICS Code: 211111	DAQ Facility ID No. (For 033-00187	existing facilities)
	CERTIFICATION OF INFORMATION	
Official is a President, M Directors, or Owner, dep authority to bind t Proprietorship. Requ compliance certifica Representative. If a busin off and the appropria unsigned G35-D Registr utilized, the	ermit Registration Application shall be signed below by a Respon Vice President, Secretary, Treasurer, General Partner, General Ma ending on business structure. A business may certify an Authoriz he Corporation, Partnership, Limited Liability Company, Associa ired records of daily throughput, hours of operation and maintena tions and all required notifications must be signed by a Responsil ness wishes to certify an Authorized Representative, the official a the names and signatures entered. Any administratively incompl ation Application will be returned to the applicant. Furtherm application will be returned to the applicant. No substitution	anager, a member of the Board of ed Representative who shall have tion, Joint Venture or Sole nnce, general correspondence, ble Official or an Authorized greement below shall be checked ete or improperly signed or more, if the G35-D forms are not of forms is allowed.
interest of the business (a Proprietorship) and may	han M.B. Yingling is an Authorized Representative and in that ca .g., Corporation, Partnership, Limited Liability Company, Assoc obligate and legally bind the business. If the business changes its 1 notify the Director of the Division of Air Quality immediately.	iation Joint Venture or Sole
documents appended here	formation contained in this G35-D General Permit Registration A to is, to the best of my knowledge, true, accurate and complete, a te the most comprehensive information possible.	Application and any supporting and that all reasonable efforts
Responsible Official Sigr Name and Title: Stacey L Email: slucas@arsenalres	ucas, Vice President of Health, Safety, and Environment Phor	ne: 724-940-1118 Fax:
If applicable: Authorized Representativ Name and Title: Meghan Email: myingling@arsena	M.B. Yingling, Environmental Compliance Manager Phone:	724-940-1112 Fax:
If applicable: Environmental Contact Name and Title: Email:	Phone: Fax: Date:	

OPERATING SITE INFORMATION

Briefly describe the proposed new operation and/or any change(s) to the facility: The purpose of this modification is to add a seventh engine (CE-9R) and compressor (COMP-9) to the Goff Compressor Station.

Directions to the facility: From I-79 South; (1.) At exit 119, take ramp right for US-50 West toward Clarksburg, Travel 7.0 miles (2.) Turn left onto WV-98/Old US 50 / Sun Valley Rd. travel 0.4 miles (3.) turn left to stay on WV-98 and ravel 0.3 miles (4.) arrive at the PDC West Compressor Station on the right.

ATTACHMENTS AND SUPPORTING DOCUMENTS

I have enclosed the following required documents:

Check payable to WVDEP - Division of Air Quality with the appropriate application fee (per 45CSR13 and 45CSR22).

 \Box Check attached to front of application.

□ I wish to pay by electronic transfer. Contact for payment (incl. name and email address):

X I wish to pay by credit card.Contact for payment (incl. name and email address): Thomas Seguijic

tom.seguljic@hrpassociates.com

X \$500 (Construction, Modification, and Relocation)□\$300 (Class II Administrative Update)

X \$1,000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ and/or OOOO and/or OOOOa¹

□ \$2,500 NESHAP fee for 40 CFR63, Subpart ZZZZ and/or HH²

PLEASE NOTE \$4,000 FEE WAS SUBMITTED UNDER PREVIOUS WITHDRAWN PERMIT APPLICATION ¹ Only one NSPS fee will apply.

² Only one NESHAP fee will apply. The Subpart ZZZZ NESHAP fee will be waived for new engines that satisfy requirements by complying with NSPS, Subparts IIII and/or JJJJ.

NSPS and NESHAP fees apply to new construction or if the source is being modified.

X Responsible Official or Authorized Representative Signature (if applicable)

X Single Source Determination Form (must be completed in	its entirety)– Attachment A
□Siting Criteria Waiver (if applicable) – Attachment B	X Current Business Certificate – Attachment C
X Process Flow Diagram – Attachment D	X Process Description – Attachment E

X Plot Plan – Attachment F X Area Map – Attachment G

X G35-D Section Applicability Form – Attachment H X Emission Units/ERD Table – Attachment I

X Fugitive Emissions Summary Sheet – Attachment J

□ Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable) – Attachment K

□ Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Heater Treaters, In-Line Heaters if applicable) – Attachment L

X Internal Combustion Engine Data Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment M

□ Tanker Truck Loading Data Sheet (if applicable) – Attachment N

 \Box Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalcTM input and output reports and information on reboiler if applicable) – Attachment O

□ Pneumatic Controllers Data Sheet – Attachment P

□ Centrifugal Compressor Data Sheet – Attachment Q

X Reciprocating Compressor Data Sheet – Attachment R

X Blowdown and Pigging Operations Data Sheet - Attachment S

 \Box Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment T

X Emission Calculations (please be specific and include all calculation methodologies used) – Attachment U

X Facility-wide Emission Summary Sheet(s) – Attachment V

X Class I Legal Advertisement – Attachment W

X One (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments

All attachments must be identified by name, divided into sections, and submitted in order.

ATTACHMENT	Δ_	SINGLE	SOURCE	DETERMINATION	FORM
	n -	SINGLE	SOUNCE	DETERMINATION	

Classifying multiple facilities as one "stationary source" under 45CSR13, 45CSR14, and
45CSR19 is based on the definition of Building, structure, facility, or installation as given
in §45-14-2.13 and §45-19-2.12. The definition states:

"Building, Structure, Facility, or Installation" means all of the pollutant-emitting activities which belong to the same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the control of the same person (or persons under common control). Pollutant-emitting activities are a part of the same industrial grouping if they belong to the same "Major Group" (i.e., which have the same two (2)digit code) as described in the Standard Industrial Classification Manual, 1987 (United States Government Printing Office stock number GPO 1987 0-185-718:QL 3).

The Source Determination Rule for the oil and gas industry was published in the Federal Register on June 3, 2016 and will become effective on August 2, 2016. EPA defined the term "adjacent" and stated that equipment and activities in the oil and gas sector that are under common control will be considered part of the same source if they are located on the same site or on sites that share equipment and are within ¹/₄ mile of each other.

-	uipment and activities in the same industrial grouping y SIC code)? No \Box
Is there eq person/peo Yes X	1
share equi	uipment and activities located on the same site or on sites that pment and are within ¹ /4 mile of each other? No X

Please see the Attached Discussion for Further Detail

Attachment A Cont.

To determine if aggregation of facilities is appropriate, the following three-prong test must be completed;

1. The sources belong to a single major industrial grouping (same two-digit major SIC code);

The Compressor Stations and well pads are both listed as SIC Code 1311 which includes:

Establishments primarily engaged in operating oil and gas field properties. Such activities may include exploration for crude petroleum and natural gas; drilling, competing, and equipping wells; operation of separators, emulsion breakers, distilling equipment, and field gathering lines for crude petroleum; and all other activities in the preparation of oil and gas up to the point of shipment from the producing property. This industry includes the production of oil through the mining and extraction of oil from oil sands and the production of gas and hydrocarbon liquids through gasification, liquid faction, and pyrolysis at the mine site.

2. The sources are under common control of the same person (or persons under common control);

The sources are under common control of the same person (or persons under common control) since MK Midstream Holdings LLC is the majority owner of the Goff West Station and MK Midstream Holdings LLC employees work and manage both the well pads and Goff West Compressor Station.

3. The sources are located on one or more "contiguous or adjacent" properties

The WVDEP has established that any operations within ¹/₄ mile are considered contiguous or adjacent. None of Arsenal Resources' wellpads are located within ¹/₄ mile of the Goff West Compressor Station

In summary, since the facilities are greater than 1/4 mile apart, the Single source determination does not apply.

ATTACHMENT C-CURRENT BUSINESS CERTIFICATE

If the applicant is a resident of West Virginia, the applicant should provide a copy of the current Business Registration Certificate issued to them from the West Virginia Secretary of State's Office. If the applicant is not a resident of the State of West Virginia, the registrant should provide a copy of the Certificate of Authority/Authority of LLC/Registration. This information is required for all sources to operate a business in West Virginia regardless of whether it is a construction, modification, or administrative update.

If you are a new business to West Virginia and have applied to the West Virginia Secretary of State's Office for a business license, please include a copy of your application.

Please note: Under the West Virginia Bureau of Employment Programs, 96CSR1, the DAQ may not grant, issue, or renew approval of any permit, general permit registration, or Certificate to Operate to any employing unit whose account is in default with the Bureau of Employment Programs Unemployment Compensation Division.

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO: MK MIDSTREAM HOLDINGS, LLC 65 PROFESSIONAL PL 200 BRIDGEPORT, WV 26330-1889

BUSINESS REGISTRATION ACCOUNT NUMBER: 2306-9776

This certificate is issued on: 02/19/2015

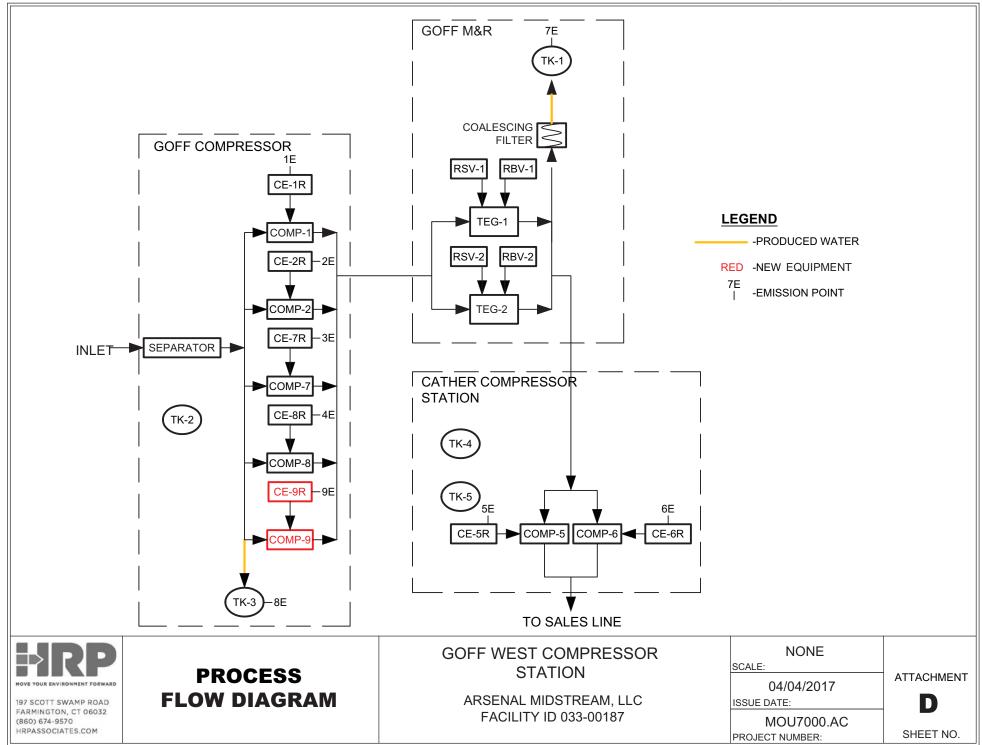
This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.


atL006 v.4 L0264094016

ATTACHMENT D – PROCESS FLOW DIAGRAM

Provide a diagram or schematic that supplements the process description of the operation. The process flow diagram must show all sources, components or facets of the operation in an understandable line sequence of operation. The process flow diagram should include the emission unit ID numbers, the pollution control device ID numbers, and the emission point ID numbers consistent with references in other attachments of the application. For a proposed modification, clearly identify the process areas, emission units, emission points, and/or control devices that will be modified, and specify the nature and extent of the modification.

Use the following guidelines to ensure a complete process flow diagram:

- The process flow diagram shall logically follow the entire process from beginning to end.
- Identify each emission source and air pollution control device with proper and consistent emission unit identification numbers, emission point identification numbers, and control device identification numbers.
- The process flow lines may appear different for clarity. For example, dotted lines may be used for vapor flow and solid lines used for liquid flow and arrows for direction of flow.
- The process flow lines may be color coded. For example: new or modified equipment may be red; old or existing equipment may be blue; different stages of preparation such as raw material may be green; and, finished product or refuse, another color.

ATTACHMENT E – PROCESS DESCRIPTION

Provide a detailed written description of the operation for which the applicant is seeking a permit. The process description is used in conjunction with the process flow diagram to provide the reviewing engineer a complete understanding of the activity at the operation. Describe in detail and order the complete process operation.

Use the following guidelines to ensure a complete Process Description:

- The process flow diagram should be prepared first and used as a guide when preparing the process description. The written description shall follow the logical order of the process flow diagram.
- All emission sources, emission points, and air pollution control devices must be included in the process description.
- When modifications are proposed, describe the modifications and the effect the changes will have on the emission sources, emission points, control devices and the potential emissions.
- Proper emission source ID numbers must be used consistently in the process description, the process flow diagram, the emissions calculations, and the emissions summary information provided.
- Include any additional information that may facilitate the reviewers understanding of the process operation.

The process description is required for all sources regardless of whether it is a construction, modification, or administrative update.

Pipeline quality natural gas (dry) is supplied to five (5) 1380 BHP (CE-1R, CE-2R, CE-7R, CE-8R and CE-9R), one (1) 2370 BHP(CE-5R), and one (1) 1775 BHP (CE-6R) Caterpillar Internal combustion engines each equipped with Catalytic Converters.

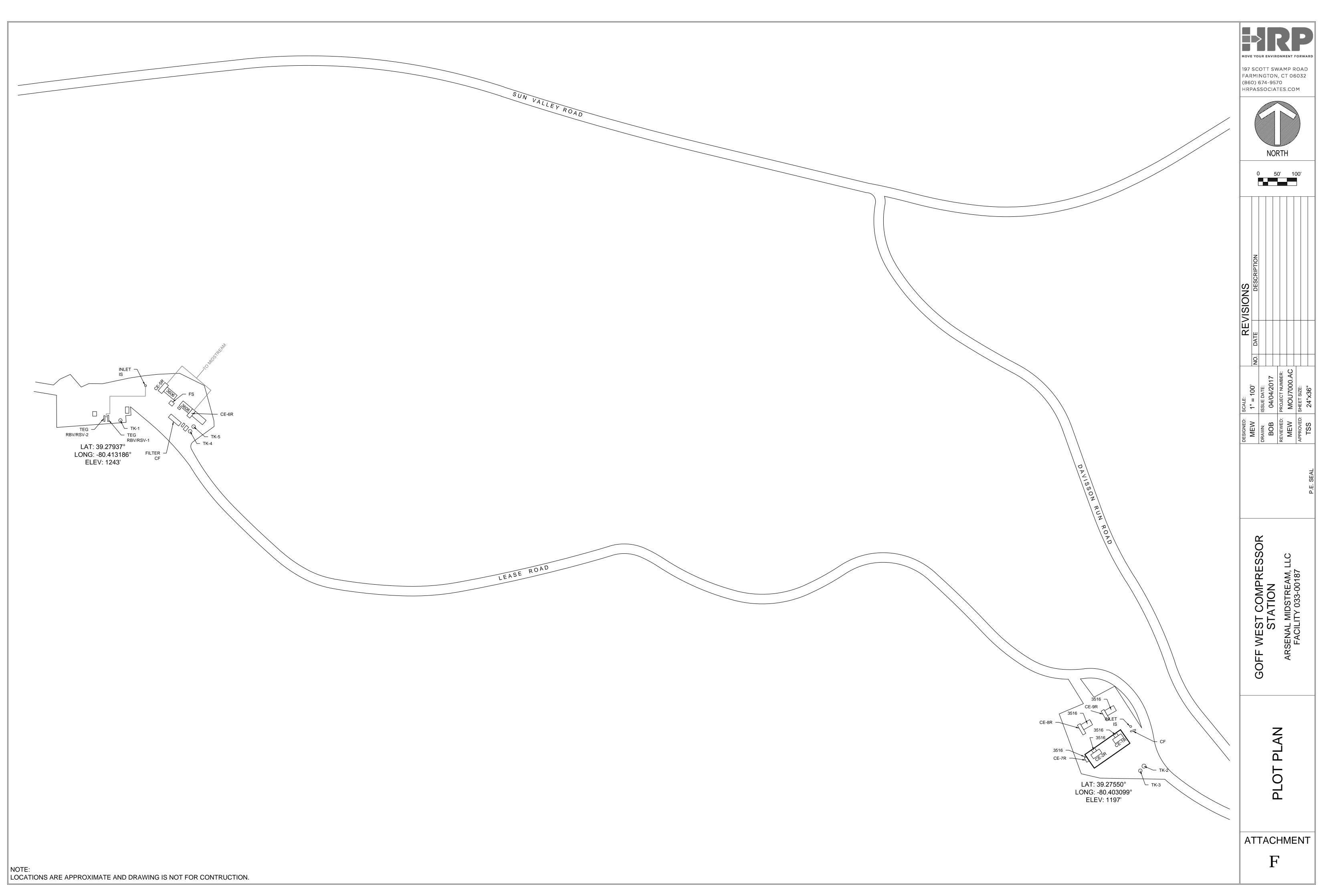
The engines drive compressors to move the natural gas through a pipeline into two (2) 67 MMCFD Tri-Ethylene Glycol (TEG) Dehydrators (TEG-1 and TEG-2) for drying the gas to below 7.0lbs/MMSCFD of Water Content and eventually into a sales line.

Produced liquid, which is mainly water with minimal levels of VOCs, from initial separation and dehydration, is stored within tanks TK-1 and TK-3. The produced liquids are transferred from the tanks to trucks via transfer hoses for off-site treatment/disposal. In addition, stormwater collected from the pads and oil collected from the compressors is stored in tanks TK-2, TK-4 and TK-5.

There are fugitive emissions associated with piping connection, valves and controllers. These emissions occur due to potential seepage from connections, flanges and open ended lines.

This permit modification includes the addition of a seventh engine (CE-9R) and compressor (COMP-9).

ATTACHMENT F – PLOT PLAN

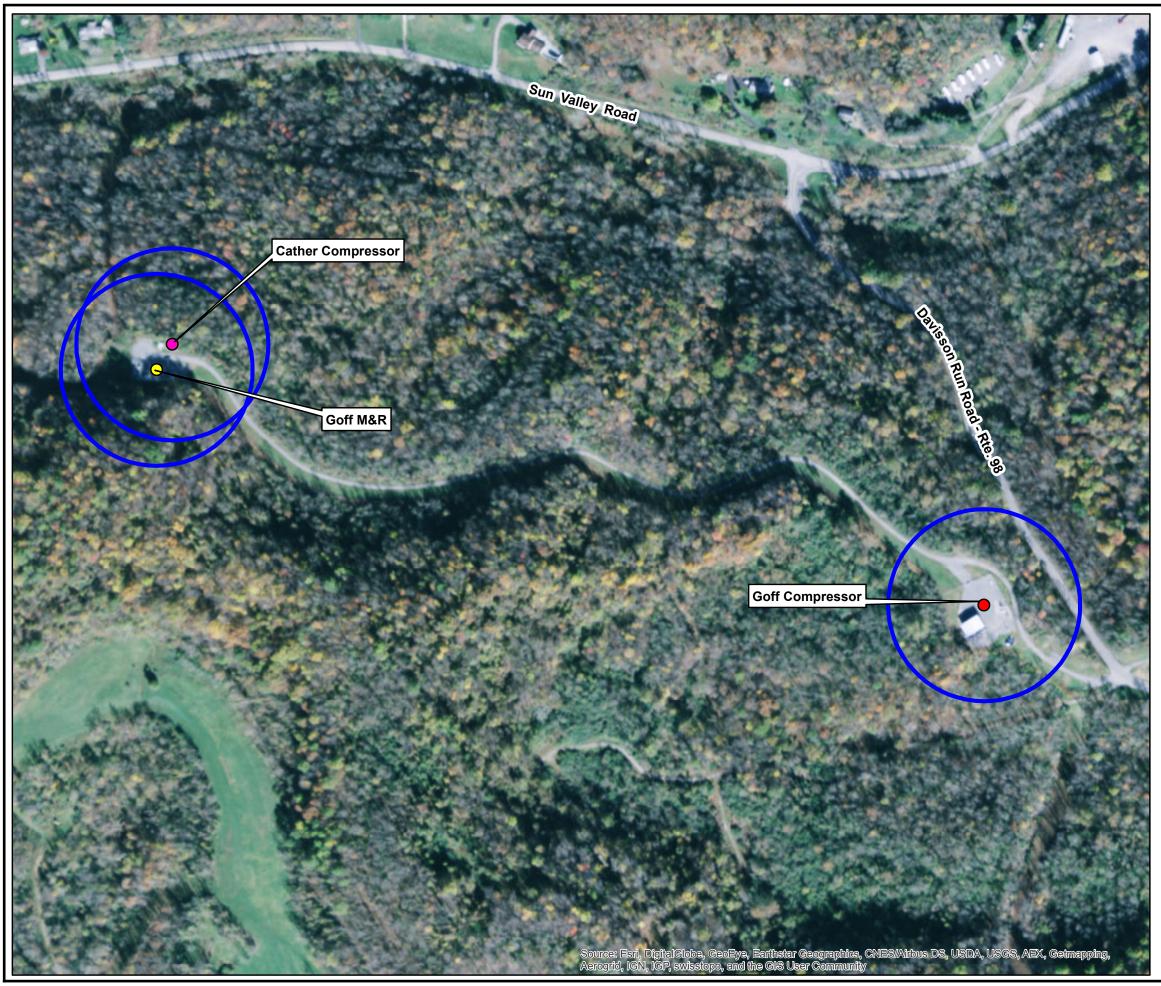

Provide an accurately scaled and detailed Plot Plan showing the locations of all emission units, emission points, and air pollution control devices. Show all emission units, affected facilities, enclosures, buildings and plant entrances and exits from the nearest public road(s) as appropriate. Note height, width and length of proposed or existing buildings and structures.

A scale between 1"=10' and 1"=200' should be used with the determining factor being the level of detail necessary to show operation or plant areas, affected facilities, emission unit sources, transfer points, etc. An overall small scale plot plan (e.g., 1"=300') should be submitted in addition to larger scale plot plans for process or activity areas (e.g., 1"=50') if the plant is too large to allow adequate detail on a single plot plan. Process or activity areas may be grouped for the enlargements as long as sufficient detail is shown.

Use the following guidelines to ensure a complete Plot Plan:

- Facility name
- Company name
- Company facility ID number (for existing facilities)
- Plot scale, north arrow, date drawn, and submittal date.
- Facility boundary lines
- Base elevation
- Lat/Long reference coordinates from the area map and corresponding reference point elevation
- Location of all point sources labeled with proper and consistent source identification numbers

This information is required for all sources regardless of whether it is a construction, modification, or administrative update.



ATTACHMENT G – AREA MAP

Provide an Area Map showing the current or proposed location of the operation. On this map, identify plant or operation property lines, access roads and any adjacent dwelling, business, public building, school, church, cemetery, community or institutional building or public park within a 300' boundary circle of the collective emission units.

Please provide a 300' boundary circle on the map surrounding the proposed emission units collectively.

This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Legend

- Goff Compressor
- O Goff M-R
- Cather Compressor

300 foot Buffer

197 SCOTT SWAMP ROAD FARMINGTON, CT 06032 (860) 674-9570 HRPASSOCIATES.COM

			Nor	th				
0		150	3	00 Fee	et			
Revisions	No. Date							
d By:			Drawn By: BOB		S S S			
Issue Date:	7		MOU7000.AC	Sheet Size: 11x17				
ap		Compressor Station Project No: MOU7000./		Facility ID 033-00187				
	ATTACHMENT G							

ATTACHMENT H-G35-D SECTION APPLICABILITY FORM

General Permit G35-D Registration Section Applicability Form

General Permit G35-D was developed to allow qualified applicants to seek registration for a variety of sources. These sources include storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, centrifugal compressors, reciprocating compressors, reciprocating internal combustion engines (RICEs), tank truck loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G35-D allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply.Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

(GENERAL PERMIT G35-D APPLICABLE SECTIONS		
X Section 5.0	Storage Vessels Containing Condensate and/or Produced Water ¹		
\Box Section 6.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO/OOOOa)		
Section 7.0Control Devices and Emission Reduction Devices not subject to N Subpart OOOO/OOOOa and/or NESHAP Subpart HH			
X Section 8.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc		
□Section 9.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO/OOOOa)		
□ Section 10.0	Centrifugal Compressor Affected Facility (NSPS, Subpart OOOO/OOOOa) ²		
X Section 11.0	Reciprocating Compressor Affected Facility (NSPS, Subpart OOOO/OOOOa) ²		
X Section 12.0	Reciprocating Internal Combustion Engines, Generator Engines. Microturbine Generators		
X Section 13.0	Tanker Truck Loading ³		
X Section 14.0	Glycol Dehydration Units ⁴		
X Section 15.0	Blowdown and Pigging Operations		
X Section 16.0	Fugitive Emission Components (NSPS, Subpart OOOOa)		

1 Applicants that are subject to Section 5 may also be subject to Section 6 if the applicant is subject to the NSPS, Subpart OOOO/OOOOa control requirements or the applicable control device requirements of Section 7.

2 Applicants that are subject to Section 10 and 11 may also be subject to the applicable RICE requirements of Section 12.

3 Applicants that are subject to Section 13 may also be subject to control device and emission reduction device requirements of Section 7.

4 Applicants that are subject to Section 14may also be subject to the requirements of Section 8 (reboilers). Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 7.

ATTACHMENT I – EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment K table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type ⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
CE-1R	1E	Caterpillar G3516B LE Compressor Engine	2011	After 2010	1380 hp/1,400 rpm	Existing	Oxidation Catalyst	1D
CE-2R	2 E	Caterpillar G3516B LE Compressor Engine	2011	After 2010	1380 hp/1,400 rpm	Existing	Oxidation Catalyst	2D
CE-7R	3 E	Caterpillar G3516B LE Compressor Engine	2017	11/16/2012	1380 hp/1,400 rpm	Existing	Oxidation Catalyst	3D
CE-8R	4 E	Caterpillar G3516B LE Compressor Engine	2017	3/17/2013	1380 hp/1,400 rpm	Existing	Oxidation Catalyst	4D
CE-5R	5E	Caterpillar G3608 TALE Compressor Engine	2015	4/11/2011	2370 hp/1,000 rpm	Existing	Oxidation Catalyst	5D
CE-6R	6E	Caterpillar G3606 TALE Compressor Engine	2015	12/12/2014	1775 hp/1,000 rpm	Existing	Oxidation Catalyst	6D
CE-9R	9E	Caterpillar - G3516 BLE	2017	2013	1380BHP	New	Oxidation Catalyst	7 D
TEG-1	RSV-1	Exterran Dehydration Unit	2012	2012	67 mmscf.day	Existing	N/A	NA
TEG-1	RBV-1	Exterran Reboiler	2012	2012	1.0mmBtu/hr	Existing	N/A	NA
TEG-2	RSV-2	Exterran Dehydration Unit	2013	2012	67 mmscf/day	Existing	N/A	NA
TEG-2	RBV-2	Exterran Reboiler	2013	2012	1.0 mmBtu/hr	Existing	N/A	NA
TK-1	7 E	TEG/Produced Liquid	2011	2011	210 bbl	Existing	N/A	NA
ТК-3	8E	Produced Liquid	2016	2016	100 bbl	Existing	N/A	NA

¹ For Emission Units (or Sources) use the following numbering system: 1S, 2S, 3S,... or other appropriate designation.

² For Emission Points use the following numbering system: 1E, 2E, 3E, ... or other appropriate designation.

³ When required by rule

⁴ New, modification, removal, existing

⁵ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

⁶ For ERDs use the following numbering system: 1D, 2D, 3D,... or other appropriate designation.

	Source	es of fu	igitive emissions may inc	lude loading operations, e	quipment leaks	, blowdown	emissions,	etc.
			Use extra pages for	each associated source or	equipment if n	ecessary.		
Source/Equipmen	t: Facility-	Wide						
Leak Detection M	lethod Used		□ Audible, visual, and olfactory (AVO) inspections	□Infrared (FLIR) cameras	□Other (please	describe)		X None required*
Is the facility sub	ject to quar	terly LD	AR monitoring under 40CFR60 S	Subpart OOOOa? X Yes 🗆 N	No. If no, why?			
Component	Closed Vent	Cou	Source	e of Leak Factors	Stream type (gas, liquid,]	Estimated Emis	ssions (tpy)
Туре	System		(EPA,	, other (specify))	etc.)	VOC	HAP	GHG (CO ₂ e)
Pumps	□ Yes X No	9	13.3 scf/hr/component,	Physical Count	X Gas Liquid Both	3.16	<0.001	498.15
Valves	□ Yes X No	223	0.027 scf/hr/component	0.027 scf/hr/component, Valve maintenance records			<0.001	25.06
Safety Relief Valves	□ Yes X No	24	-	0.040 scf/hr/component, Relief valve test records/component count		0.00253	<0.001	4.00
Open Ended Lines	□ Yes X No	5	0.061 scf/hr/component	0.061 scf/hr/component, one per tank		0.0080	<0.001	1.27
Sampling Connections	□ Yes □ No				□ Gas □ Liquid □ Both			
Connections(Not sampling)	□ Yes X No	538	0.003 scf/hr/component	, Drawings	X Gas □ Liquid □ Both	0.0425	<0.001	6.72
Compressors**	□ Yes X No				□ Gas □ Liquid □ Both			
Flanges	□ Yes □ No	317	0.003 scf/hr/component	0.003 scf/hr/component, Drawings		0.0251	<0.001	3.96
Other ¹	□ Yes □ No				□ Gas □ Liquid □ Both			

*None required to date, will complete necessary LDAR per the requirements of Subpart OOOOa by June 3, 2017

**Compressor fugitive emissions accounted for in compressor blowdown in Attachment S

Please provide an explanation of the sources of fugitive emissions (e.g. pigging operations, equipment blowdowns, pneumatic controllers, etc.): Pigging operations and equipment blowdowns

Please indicate if there are any closed vent bypasses (include component):

NA

Specify all equipment used in the closed vent system (e.g. VRU, ERD, thief hatches, tanker truck loading, etc.)

NA

ATTACHMENT M – INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. *Generator(s) and microturbine generator(s) shall also use this form.*

shall also u	use this form	•						
Emission Unit I	D#1	CE	E-IR	CE	E-2R	CE-7R		
Engine Manufacturer/Model		CAT C	G3516B	CAT C	G3516B	CAT	G3516B	
Manufacturers F	ated bhp/rpm	1380	/1400	1380	/1400	1380	0/1400	
Source Status ²		E	S	E	ES	1	NS	
Date Installed/ Modified/Remov	ved/Relocated ³	20)11	20	011	20	017	
Engine Manufac /Reconstruction	tured Date ⁴	After	2010	After	r 2010	11/	16/12	
Check all applicable Federal Rules for the engine (include EPA Certificate of Conformity if applicable) ⁵		X 40CFR60 Subpart JJJJ JJJJ Certified? 40CFR60 Subpart IIII IIII Certified? 40CFR63 Subpart ZZZZ X NESHAP ZZZZ/ NSPS JJJJ Window NESHAP ZZZZ Remote Sources		X 40CFR60 Subpart JJJJ JJJJ Certified? 40CFR60 Subpart IIII IIII Certified? 40CFR63 Subpart ZZZZ X NESHAP ZZZZ/ NSPS JJJJ Window NESHAP ZZZZ Remote Sources		X 40CFR60 Subpart JJJJ JJJJ Certified? 40CFR60 Subpart IIII IIII Certified? 40CFR63 Subpart ZZZZ X NESHAP ZZZZ/NSP: JJJJ Window NESHAP ZZZZ Remote Sources		
Engine Type ⁶		4S	LB	48	LB	45	SLB	
APCD Type ⁷		Ox	Cat	Ох	Cat	07	Cat	
Fuel Type ⁸		R	G	RG		RG		
H ₂ S (gr/100 scf))	0.025		0.025		0.025		
Operating bhp/rpm		1380/1400		1380/1400		1380/1400		
BSFC (BTU/bhr	p-hr)	7301		73	7301		7301	
Hourly Fuel Thr	oughput	11,340 ft ³ /hr gal/hr		11,340 ft ³ /hr gal/hr		11,340 ft ³ /hr gal/hr		
Annual Fuel The (Must use 8,760) emergency gene	hrs/yr unless	MMft ³ /yr 99.3 gal/yr		MMft ³ /yr 99.3 gal/yr		MMft ³ /yr 99.3 gal/yr		
Fuel Usage or H Operation Meter		Yes X No 🗆		Yes X No 🗆		Yes X No 🗆		
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	
OT(Stack Test/Spec Sheet)	NO _x	1.47	6.46	1.26	5.51	1.52	6.66	
OT(Stack Test/Spec Sheet)	СО	0.4100	1.78	0.3000	1.31	3.70	16.19	
OT(Stack Test/Spec Sheet)	VOC	0.2200	0.9600	0.1300 0.5500		1.46	6.40	
OT(AP-42/Spec Sheet)	SO ₂	0.0059	0.0257	0.0059	0.0257	0.0067	0.0293	
OT(AP-42/Spec Sheet)	PM ₁₀	0.0008	0.0034	0.0008	0.0034	0.1140	0.4980	
OT(AP-42/Spec Sheet)	Formaldehyde	0.1308	0.5730	0.1308	0.5730	0.2100	0.9200	
OT(AP-42/Spec Sheet)	Total HAPs	0.3244	1.42	0.3270	1.43	0.4293	1.88	
OT(AP-42/Spec Sheet)	GHG (CO ₂ e)	1,098	4,809	1,112	4,873	1,743	7,634	

ATTACHMENT M – INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. *Generator(s) and microturbine generator(s) shall also use this form.*

shall also i	ise this form	1						
Emission Unit ID# ¹		CE	-8R	CE	-5R	CE-6R		
Engine Manufacturer/Model		CAT C	G3516B	CAT G3608TALE		CAT G3606TALE		
Manufacturers H	Rated bhp/rpm	1380	/1400	2370	/1000	1775	5/1000	
Source Status ²		Ν	IS	E	S	I	ES	
Date Installed/ Modified/Remo	ved/Relocated ³	20)17	20)15	20)15	
Engine Manufac /Reconstruction		3/17.	/2013	4/11	/2011	12/12	2/2014	
Check all applicable Federal Rules for the engine (include EPA Certificate of Conformity if applicable) ⁵		X 40CFR60 Subpart JJJJ JJJJ Certified? 40CFR60 Subpart IIII IIII Certified? 40CFR63 Subpart ZZZZ X NESHAP ZZZZ/ NSPS JJJJ Window NESHAP ZZZZ Remote Sources		X 40CFR60 Subpart JJJJ JJJJ Certified? 40CFR60 Subpart IIII IIII Certified? 40CFR63 Subpart ZZZZ X NESHAP ZZZZ/ NSPS JJJJ Window NESHAP ZZZZ Remote Sources		X 40CFR60 Subpart JJJJ JJJJ Certified? 40CFR60 Subpart IIII IIII Certified? 40CFR63 Subpart ZZZZ X NESHAP ZZZZ/NSPS JJJJ Window NESHAP ZZZZ Remote Sources		
Engine Type ⁶		45	LB	48	LB	45	SLB	
APCD Type ⁷		Ox	Cat	Ox	Cat	03	Cat	
Fuel Type ⁸		RG		RG		RG		
H ₂ S (gr/100 scf)	0.025		0.025		0.025		
Operating bhp/rpm		1380/1400		2370/1000		1775/1000		
BSFC (BTU/bhj	p-hr)	7,301		6,677		6,697		
Hourly Fuel Th	roughput	11,340 ft ³ /hr gal/hr		17,940 ft ³ /hr gal/hr		13,440 ft ³ /hr gal/hr		
Annual Fuel Th (Must use 8,760 emergency gene) hrs/yr unless	MMft ³ /yr 99.3 gal/yr		MMft ³ /yr 157.1 gal/yr		MMft ³ /yr 117.7 gal/yr		
Fuel Usage or H Operation Meter		Yes X No 🗆		Yes X No 🗆		Yes X No 🗆		
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	
OT(Stack Test/Spec Sheet)	NO _x	1.52	6.66	1.06	4.66	0.8600	3.78	
OT(Stack Test/Spec Sheet)	СО	3.70	16.19	0.0500	0.2200	0.0600	0.2700	
OT(Stack Test/Spec Sheet)	VOC	1.46	6.40	0.0800 0.3500		0.0400	0.1900	
OT(AP-42/Spec Sheet)	SO ₂	0.0067	0.0293	0.0082	0.0358	0.0060	0.0265	
OT(AP-42/Spec Sheet)	PM10	0.1140	0.4980	0.0011	0.0047	0.0008	0.0035	
OT(AP-42/Spec Sheet)	Formaldehyde	0.2100	0.9200	0.6800	2.98	0.5100	2.23	
OT(AP-42/Spec Sheet)	Total HAPs	0.4293	1.88	0.7970	3.49	0.5977	2.61	
OT(AP-42/Spec Sheet)	GHG (CO ₂ e)	1,743	7,634	1,530	6,699	1,131	4,954	

ATTACHMENT M – INTERNAL COMBUSTION ENGINE

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. *Generator(s) and microturbine generator(s) shall also use this form.*

Emission Unit ID#	# ¹	CE-9R						
Engine Manufacturer/Model		Caterpillar/G35	16BLE					
Manufacturers Rated bhp/rpm		1380/1400						
Source Status ²		NS						
Date Installed/ Modified/Remove	d/Relocated ³	5/2017						
Engine /Reconstruction	Manufactured on Date ⁴	7/22/2013						
Check all applicable Federal Rules for the engine (include EPA Certificate of Conformity if applicable) ⁵		X 40CFR60 Subpart JJJJ JJJJ Certified? 40CFR60 Subpart IIII IIII Certified? 40CFR63 Subpart ZZZZ X NESHAP ZZZZ/ NSPS JJJJ Window NESHAP ZZZZ Remote Sources		 ☐ 40CFR60 Subpart JJJJ ☐ JJJJ Certified? ☐ 40CFR60 Subpart IIII ☐ IIII Certified? ☐ 40CFR63 Subpart ZZZZ ☐ NESHAP ZZZZ/ NSPS JJJJ Window ☐ NESHAP ZZZZ Remote Sources 		 ☐ 40CFR60 Subpart JJJJ ☐ JJJJ Certified? ☐ 40CFR60 Subpart IIII ☐ IIII Certified? ☐ 40CFR63 Subpart ZZZZ ☐ NESHAP ZZZZ/ NSPS JJ. ₩indow ☐ NESHAP ZZZZ Remonstration Sources 		
Engine Type ⁶		4SLB						
APCD Type ⁷		OxCat						
Fuel Type ⁸		RG						
H ₂ S (gr/100 scf)		0.025						
Operating bhp/rpm	n	1380/1400 7,442 11,256 ft³/hr gal/hr 98.6 MMft³/yr gal/yr Yes X No □						
BSFC (BTU/bhp-	hr)					ft ³ /hr gal/hr		
Hourly Fuel Throu	ıghput			ft³/hr gal/hr				
Annual Fuel Thro (Must use 8,76 emergency ge	60 hrs/yr unless			MMft³/yr gal/yr Yes No		MMft³/yr gal/yr Yes No		
Fuel Usage or H Metered	ours of Operation							
Calculation Methodolo gy ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year) ¹¹	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year) ¹¹	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year) ¹¹	
MD	NO _x	1.52	6.66					
MD	СО	0.5200	2.27					
MD	VOC	0.7300	3.20					
MD	SO ₂	0.0067	0.0293					
MD	PM ₁₀	0.1140	0.4980					
MD	Formaldehyde	0.3144	1.38					
MD	Total HAPs	0.5227	2.29					
MD	GHG(CO ₂ e)	1,436	6,290					

- 1 Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc.Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc.If more than three (3) engines exist, please use additional sheets.
- 2 Enter the Source Status using the following codes:

NS	Construction of New Source (installation)	ES	Existing Source
MS	Modification of Existing Source	RS	Relocated Source

- REM Removal of Source
- 3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.
- 4 Enter the date that the engine was manufactured, modified or reconstructed.
- 5 Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6 Enter the Engine Type designation(s) using the following codes:

	2SLB 4SLB	Two Stroke Lean Burn Four Stroke Lean Burn	4SRI	B Fo	our Str	oke Rich Burn				
7	Enter th	e Air Pollution Control Device (APCD) type designa	ation(s)	using	the fo	llowing codes:				
	A/F HEIS PSC NSCR SCR	Air/Fuel Ratio High Energy Ignition System Prestratified Charge Rich Burn & Non-Selective Catalytic Reduction Lean Burn & Selective Catalytic Reduction		LI	R IPC EC xCat	Ignition Retard screw-in Precor Low Emission (Oxidation Catal	Combustion	nbers		
8	Enter th	e Fuel Type using the following codes:								
	PQ	Pipeline Quality Natural Gas R	G I	Raw N	Jatural	Gas /Production	Gas	D	Diesel	
9	Enter t	he Potential Emissions Data Reference design	ation u	using	the fo	ollowing codes	. Attach all	refer	ence data use	d.
	MD GR	Manufacturer's Data GRI-HAPCalc TM		AP OT	AP- Oth		(please list)			

10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

Engine Air Pollution Control Device (Emission Unit ID#CE-9R, use extra pages as necessary)

Air Pollution Control Device Manufacturer's Data Sheet included? Yes X No \Box

□NSCR	\Box SCR	X Oxidation Catalyst
Provide details of p	rocess control used for prop	er mixing/control of reducing agent with gas stream:
Manufacturer: DCI		Model #: DC64L2 – HSG +
Design Operating T	emperature: 800ºF	Design gas volume: 9000 scfm
Service life of catal	/st: 3-5 Yr.	Provide manufacturer data? □Yes X No
Volume of gas hand	lled: 9109 acfm at 992°F	Operating temperature range for NSCR/Ox Cat: From 600°F to 1200°F
Reducing agent use	d, if any: NA	Ammonia slip (ppm): NA
Pressure drop agai	nst catalyst bed (delta P): 3.5	5 inches of H ₂ O
-		hat protects unit when operation is not meeting design conditions:
Over Temperature	Warning to Shut Down Auto	
Over Temperature Is temperature and Yes X No	Warning to Shut Down Auto pressure drop of catalyst re st recommended or required	matically

ATTACHMENT R – RECIPROCATING COMPRESSOR DATA SHEET

Are there any reciprocating compressors at this facility that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?						
🖂 Yes 🗌 No						
	Please list:					
Emission Unit ID#	Compressor Description					
COMP-1	Ariel F35882					
COMP-2	Ariel F36217					
	e any reciprocating compressors at this facility that commenced tion, modification or reconstruction after September 18, 2015? Yes No Please list:					
	tion, modification or reconstruction after September 18, 2015?					
construc Emission	tion, modification or reconstruction after September 18, 2015?					
construc Emission Unit ID#	tion, modification or reconstruction after September 18, 2015? Yes No Please list: Compressor Description					
construc Emission Unit ID# COMP-5	tion, modification or reconstruction after September 18, 2015? Yes No Please list: Compressor Description Ariel F49981 Ariel F49981					
construc Emission Unit ID# COMP-5 COMP-6	tion, modification or reconstruction after September 18, 2015? Yes No Please list: Compressor Description Ariel F49981 Ariel F49871					

ATTACHMENT S – BLOWDOWN AND PIGGING OPERATIONS DATA SHEET

Will there be any blowdown and pigging operations that occur at this facility?

Please list:

Type of Event	# of Events (event/yr)	Amount Vented per event (scf/event)	MW of vented gas (lb/lb-mol)	Total Emissions (ton/yr)	VOC weight fraction	VOC emissions (ton/yr)
Compressor Blowdown	56	642.9	16.68	0.8369	7%	0.059
Compressor Startup	7	5000	16.68	0.81	7%	0.057
Plant Shutdown	0					
Low Pressure Pig Venting	42	69,444	16.68	67.93	7%	4.75
High Pressure Pig Venting						

Type of Event	# of Events (event/yr)	Amount Vented per event (scf/event)	MW of vented gas (lb/lb-mol)	Total Emissions (ton/yr)	HAP weight fraction	HAPemissions (ton/yr)
Compressor Blowdown	56	642.9	16.68	0.8369	<1%*	< 0.008
Compressor Startup	7	5,000	16.68	0.81	<1%*	<0.0081
Plant Shutdown	0					
Low Pressure Pig Venting	42	69,444	16.88	67.93	<1%*	<0.0067
High Pressure Pig Venting						

*Laboratory Analysis included in the Blowdown and Pigging Operations Data Sheet section of Attachment U indicated each analyzed HAP was below laboratory detection limit (20 ppb)

Gas Analytical Services

CHARLESTON, WV 304-677-9926

mpled	: 12/13/2016
	10/10/0010

Gas Analysis performed in	accordance with GPA 2286		Sample Count : 2200	00003
Comments:				
Real BTU Sat	1,017.14	1,020.40	1,022.81	1,043.70
Real BTU Dry	1,034.91	1,038.16	1,040.57	1,061.46
Real GPM	0.985	0.989	0.991	1.011
Ideal BTU Sat	1,014.62	1,017.86	1,020.26	1,041.05
Ideal BTU Dry	1,032.69	1,035.94	1,038.33	1,059.13
Ideal GPM	0.983	0.986	0.989	1.008
BTU @ (PSIA)	@14.65	@14.696	@14.73	@15.025
Ideal Gravity: 0.5761	Real Gravity: 0.577		C5+ Mole % : 0.01	
	2) @ 14.73 @ 60 Deg. F = 0.9979		C5+ GPM : 0.00	
TOTAL		100.0000	0.990	
C12's		0.0000	0.000	
C11's		0.0000	0.000	
C10's		0.0000	0.000	
C7's		0.0016	0.001	
C9's		0.0000	0.000	
C8's		0.00020	0.000	
C6's		0.0026	0.000	
	INE ENE/P-XYLENE	0.0000	0.000	
TOLUE		0.0000	0.000	
	NE BENZENE	0.0000	0.000	
Oxygen BENZE		0.0020	0.000	
	-Dioxide	0.1770 0.0020	0.000 0.000	
Nitroger		0.2624	0.000	
	Pentane	0.0022	0.001	
Iso-Pen		0.0038	0.001	
Neo-Pe		0.0006	0.000	
Normal-		0.0198	0.006	
Iso-Buta		0.0133	0.004	
Propane	e	0.2210	0.061	
Ethane		3.4142	0.915	
Methan	e	95.8791	0.000	
COMPC	DNENT	<u>MOL%</u>	<u>GPM@14.73(PSIA)</u>	
State : WV		San	n ple By : HT	
Area : 190 - U	JNKNOWN	Cyl	inder Type : Spot	
Lease : GOFF	WEST	Ten	n p : 60	
Producer :		Cyl	Pressure : 625	
Cylinder ID : 0280		Effe	ective Date : 01/0	1/2017
Station ID : 2601		Dat	e Analyzed : 12/1	9/2016
Customer : 0034 -	MK MIDSTREAM	Dat	e Sampled : 12/1	3/2016

Analytical Calculations performed in accordance with GPA 2172

Measurement Analyst: ____

___ Ashley Free

COC :

04049

LELAP Certification #

ATTACHMENT U-EMISSIONS CALCULATIONS

Provide detailed potential to emit (PTE) emission calculations for criteria and hazardous air pollutants (HAPs) for each emission point identified in the application. For hazardous air pollutants and volatile organic compounds (VOCs), the speciated emission calculations must be included.

Use the following guidelines to ensure complete emission calculations:

- All emission sources and fugitive emissions are included in the emission calculations, as well as all methods used to calculate the emissions.
- Proper emission point identification numbers and APCD and ERD identification numbers are used consistently in the emission calculations that are used throughout the application.
- A printout of the emission summary sheets is attached to the registration application.
- Printouts of any modeling must be included with the emission calculations. The modeling printout must show all inputs/outputs or assumptions that the modeled emissions are based upon.
- If emissions are provided from the manufacturer, the manufacturer's documentation and/or certified emissions must also be included.
- The emission calculations results must match the emissions provided on the emissions summary sheet.
- If calculations are based on a compositional analysis of the gas, attach the laboratory analysis. Include the following information: the location that the sample was taken as representative; the date the sample was taken; and, if the sample is considered representative, the reasons that it is considered representative (same gas field, same formation and depth, distance from actual site, etc.).
- Potential to emit (PTE) from the main or backup control device may be calculated based on the highest emission from a control device that could handle the stream, plus any intrinsic emission such as those from pilot flames.
- Provide any additional clarification as necessary. Additional clarification or information is especially helpful when reviewing modeling calculations to assist the engineer in understanding the basis of assumptions and/or inputs.

Please follow specific guidance provided on the emissions summary sheet when providing the calculations.

Fugitive Emission Calculations

MK Midstream Holdings - Goff West Compressor Station Facility ID# 033-00187 Fugitive Emission Calculations (See Attachment J)

Density					
Pollutant	Density (kg/m ³)	Density (lb/scf)			
VOC	1.38	0.0860			
CH4	0.656	0.0409			

Emission Factors ¹						
Component Type	Count⁵	(scf /hr/ component)				
Pumps	9	13.3				
Valves	223	0.027				
Safety Relief Valves	24	0.04				
Open Ended Lines	5	0.061				
Connections	538	0.003				
Flanges	317	0.003				

Emissions						
Componenty Type	VOC Emissions (tons/yr) ^{2,3}	Methane (tons/yr) ⁴	CO2 eq (tons/yr)			
Pumps	3.16	19.93	498.15			
Valves	0.1587	1.00	25.06			
Safety Relief Valves	0.0253	0.1598	4.00			
Open Ended Lines	0.0080	0.0508	1.27			
Connections	0.0425	0.2687	6.72			
Flanges	0.0251	0.1583	3.96			
Total	3.41	21.57	539.15			

Emissions are calculated as follows:

Emissions = Emission Factor (scf/hr/component) * Component Count * Density (lb/scf) * 8,760 (hrs/yr) * Constituent wt%

CO2e Emissions = Methane Emissions (tons/yr) * 25 (GWP)

¹ Emission Factors for Pumps, Valves. Safety Relief Valves, and Open Ended Lines taken from 40 CFR 98 Table W-1A. Flanges emission factor assumed to be equal to Connections emission factor

Notes:

² VOC calculated using gas analysis average of VOCs

³ VOC weight % approximated to be 7% of fugitive emissions based on gas analysis

⁴ Methane weight % assumed to be about 93% of fugitive emissions

⁵ Component counts were physiclaly counted on drawings or at the site and estimated

Engine Emission Calculations

MK Midstream Holdings - Goff West Compressor Station Facility ID# 033-00187 Engine Serial JEF01233 Emission Summary CE-1R Criteria Pollutants (See Attachment M)

Fuel Usage						
Fuel	Units	Total				
Natural Gas	ft ³	84,893,160				

Emission Factors ¹					
	Engine				
Pollutant	Natural Gas (lbs/ 10 ⁶ ft ³)				
Particulates	0.0794				
Sulfur Dioxide	0.6056				
Oxides of Nitrogen	473.00				
PM-10	0.0794				
VOC	71.26				
Carbon Monoxide	133.61				
CO2 Equiv	113,300				

Emissions							
	Engine						
Pollutant	Natural Gas Natural Gas Natural Gas (lbs/yr) (lbs/hr) (tons/yr)						
Particulates	6.74	0.0008	0.0034				
Sulfur Dioxide	51.41 0.0059 0.025						
Oxides of Nitrogen	40,154	1.47	6.46				
PM-10	6.74	0.0008	0.0034				
VOC	6,049	0.2200	0.9600				
Carbon Monoxide	11,342	0.4100	1.78				
CO2 Equiv	9,618,395	1,098	4,809				

Emissions are calculated as follows:

Natural Gas Usage = 9691 scfh (stack test) * 8760 hrs/yr = 84,893,160 scf/yr Emissions = Volume of Gas (ft^3) * Emission Factor ($lbs/10^6 ft^3$)

¹ Natural Gas Emission Factors were taken from AP-42 Table 3.2-2 (PM, PM-10, SO2, CO2e) and the attached stack test (CO, NOx, VOC)

Notes:

- Emissions assume 8,760 hours of operation for the engine per year

- Heating value of Natural Gas assumed to be 1030 Btu/ft³

MK Midstream Holdings - Goff West Compressor Station Facility ID# 033-00187 Engine Emission Summary (See Attachment M) HAPS (CE-1R)

Emissions are calculated as follows:

Emissions = Heat of Natural Gas (MMBtu) * Emission Factor (lbs/MMBtu)

¹ Natural Gas Emission Factors were taken from AP-42 Tables 3.2-2

² Formaldehyde is calculated using the engine specification of 0.43 g/bhp-hr and the controls have a 90% efficiency (see attached)

CE-1R - Natural Gas
4SLB
НАР
MMBtu/yr
87,440

		Natural Gas					
HAP Emissions		Engine					
		(lbs/yr)	(lbs/hr)	(tons/yr)			
НАР	Natural Gas ¹ (Ib/MMBtu)						
1,1,2,2-Tetrachloroethane	4.00E-05	3.50	0.0004	0.0017			
I,1,2-Trichloroethane	3.18E-05	2.78	0.0003	0.0014			
,3-Butadiene	2.67E-04	23.35	0.0027	0.0117			
,3-Dichloropropene	2.64E-05	2.31	0.0003	0.0012			
2-Methylnaphthalene	3.32E-05	2.90	0.0003	0.0015			
2,2,4-Trimethylpentane	2.50E-04	21.86	0.0025	0.0109			
Acenaphthene	1.25E-06	0.1093	1.25E-05	5.46E-05			
Acenaphthylene	5.53E-06	0.4835	5.52E-05	0.0002			
Acetaldehyde	8.36E-03	731.00	0.0834	0.3655			
Acrolein	5.14E-03	449.44	0.0513	0.2247			
Benzene	4.40E-04	38.47	0.0044	0.0192			
Benzo(b)fluoranthene	1.66E-07	0.0145	1.66E-06	7.26E-06			
Benzo(e)pyrene	4.15E-07	0.0363	4.14E-06	1.81E-05			
Benzo(g,h,i)perylene	4.14E-07	0.0362	4.13E-06	1.81E-05			
Bipheyl	2.12E-04	18.54	0.0021	0.0093			
Carbon Tetrachloride	3.67E-05	3.21	0.0004	0.0016			
Chlorobenzene	3.04E-05	2.66	0.0003	0.0013			
Chloroform	2.85E-05	2.49	0.0003	0.0012			
Chrysene	6.93E-07	0.0606	6.92E-06	3.03E-05			
thylbenzene	3.97E-05	3.47	0.0004	0.0017			
thylene Dibromide	4.43E-05	3.87	0.0004	0.0019			
luoranthene	1.11E-06	0.0971	1.11E-05	4.85E-05			
luorene	5.67E-06	0.4958	5.66E-05	0.0002			
Formaldehyde ²	-	1,146	0.1308	0.5730			
Methanol	2.50E-03	218.60	0.0250	0.1093			
Methylene Chloride	2.00E-05	1.75	0.0002	0.0009			
n-Hexane	1.11E-03	97.06	0.0111	0.0485			
Naphthalene	7.44E-05	6.51	0.0007	0.0033			
PAH	2.69E-05	2.35	0.0003	0.0012			
Phenanthrene	1.04E-05	0.9094	0.0001	0.0005			
Phenol	2.40E-05	2.10	0.0002	0.0010			
Pyrene	1.36E-06	0.1189	1.36E-05	5.95E-05			
Styrene	2.36E-05	2.06	0.0002	0.0010			
Fetrachloroethane	2.48E-06	0.2169	2.48E-05	0.0001			
Foluene	4.08E-04	35.68	0.0041	0.0178			
/inyl Chloride	1.49E-05	1.30	0.0001	0.0007			
(ylene	1.84E-04	16.09	0.0018	0.0080			
	Total:	2,842	0.3244	1.42			

Emissions Test Report

Prepared for: MK Midstream *Prepared by:* Tyler Frey Test Date: December 12, 2016

Regulatory Information

Regulatory information	parameters of			
Permit #:	G35-A107A			
Make:	Caterpillar			
Model:	G3516BLE			
Unit Number:	2185			
Serial Number:	JEF01233(3	7483hr)		
Regulatory Citation	40 CFR 60 S	ubpart JJ.	11	
Target Parameter(s)	NOx, CO, an	nd VOCs		
Contact Information	(0)	1		
Test Location	~		Test Company	
	(D			
MK Midstream			Ecotest Energy Services	
Goff West	<		142 S. Johnson Rd.	
Harrison County, WV			Houston, PA 15342	
	0			
	P			
Primary Facility Contact	0		Company Contact	
Stacey Lucas			Tyler Frey	
VP of Health, Safety and Env	ironment		Compliance Specialist	
MK Midstream			Tyler@Ecotest.us	
65 Professional Place Suite 2	00		(570)428-2133	
Bridgeport, WV, 26330				
724-940-1118			Wayne Philpot	

V.P. Operations Wayne@ecotest.us (325)348-8070

Introduction

Ecotest Energy Services (Ecotest) has been contracted by MK Midstream, to provide emissions testing on the Caterpillar 3516ULB Spark-Ignited engine located at the Goff West location in Harrison County, WV. The purpose of this testing was to demonstrate compliance with emission limitations contained in the sites air permit, permit G35-A107A, and 40 CFR 60 subpart JJJJ. There are emissions limitations for the oxides of nitrogen (NOx), carbon monoxide (CO) and volatile organic compounds (VOC) as non-methane non-ethane hydrocarbons (NMNEHC).

Testing was conducted in accordance with an approved test protocol from the WV Source Testing Manual and the United States Environmental Protection Agency (USEPA) test methods. Testing for the engine occurred on December 12, 2016 and was conducted by Tyler Frey of Ecotest.

	pounds	pounds / hour		tons / year		P-hr	ppmvd a	t 15% O ₂
Pollutant	Permitted	Emitted	Permitted	Emitted	Permitted	Emitted	Permitted	Emitted
СО	0.52	0.41	2.27	1.78	2.00	0.15	270	18
NOx	1.52	1.47	6.66	6.46	1.00	0.53	82	40
VOCs	0.73	0.22	3.20	0.96	0.70	0.08	60	6

Emissions Summary

	Test Run			
	1st	2nd	3rd	Average
Test Run				
Start Time	9:33 AM	10:38 AM	11:42 AM	
End Time	10:33 AM	11:38 AM	12:43 PM	
Interval (minutes)	60	60	61	60
Ambient Conditions				
Dry Bulb / Ambient Temperature (°F)	38.0	39.0	43.0	40.0
Wet Bulb Temperature (°F)	36.0	37.0	41.0	38.0
Calculated Relative Humidity (%)	80	80	82	81
Relative Humidity (%)	81.00	81.00	83.00	81.67
Barometric Pressure ("Hg)	29.97	29.97	29.97	29.97
Elevation (feet)		Y		
Emissions Source				
Manufacturer	Caterpillar			
Model	3516ULB			
Serial Number	JEF01192(4483hr)			
Unit ID	2185			
Manufacture/Rebuild Date				
Emissions Source Type	Engine			
Emissions Source Operational Data: Engine				
Fuel flow rate determined by:	Fuel Flow	Meter		
Fuel Flow Rate (SCFH)	9673	9712	9688	9691
Calculated Fuel Flow Rate (SCFH)	N/A	N/A	N/A	N/A
BSFC (BTU/BHP/hr), LHV				N/A
Calculated BSFC _{LHV} (BTU/BHP/hr)	7265	7294	7276	7278
Rich Burn / Lean Burn	Lean Burn	rn l		
Fuel Header Pressure (PSIG)				N/A
Calculated Load (%)	90.6	90.6	90.6	90.6
Current Power (BHP)	1250	1250	1250	1250
Max Rated Power (BHP)	1380			
Max Rated Speed (RPM)	1400			
Emissions Control Equipment	Catalyst			
Engine Type	Spark-Ignit	ted		

G3516B

GAS ENGINE TECHNICAL DATA

CATERPILLAR®

ENGINE SPEED (rpm): COMPRESSION RATIO: AFTERCOOLER TYPE: AFTERCOOLER - STAGE 2 INLET (°F): AFTERCOOLER - STAGE 1 INLET (°F): JACKET WATER OUTLET (°F): ASPIRATION: COOLING SYSTEM: CONTROL SYSTEM: EXHAUST MANIFOLD: COMBUSTION: NOX EMISSION LEVEL (g/bhp-hr NOX):	JW+OC+1AC, 2AC FUEL METH ADEM3 FUEL LHV (I)n: /el: EM: SURE RANGE(psi ANE NUMBER:	., . ,	EMP. (ft):	STANDARD GAS COMPRESSION CONTINUOUS NAT GAS CAT WIDE RANGE WITH AIR FUEL RATIO CONTROL 7.0-40.0 80 905 4000		
RATING	6	NOTES	LOAD	100%	75%	50%	
ENGINE POWER	(WITHOUT FAN)	(2)	bhp	1380	1035	690	
ENGINE EFFICIENCY	(ISO 3046/1)	(3)	%	34.8	32.5	30.3	
ENGINE EFFICIENCY	(NOMINAL)	(3)	%	34.2	31.9	29.7	
ENGINE D	ATA						
FUEL CONSUMPTION	(ISO 3046/1)	(4)	Btu/bhp-hr	7301	7820	8399	
FUEL CONSUMPTION	(NOMINAL)	(4)	Btu/bhp-hr	7443	7972	8562	
AIR FLOW (77°F, 14.7 psia)	(WET)	(5) (6)	ft3/min	3126	2452	1715	
AIR FLOW	(WET)	(5) (6)	lb/hr	13862	10874	7602	
FUEL FLOW (60°F, 14.7 psia)	, , , , , , , , , , , , , , , , , , ,	(0)(0)	scfm	189	152	109	
COMPRESSOR OUT PRESSURE			in Hg(abs)	103.8	91.8	69.4	
COMPRESSOR OUT TEMPERATURE			°F	381	354	274	
AFTERCOOLER AIR OUT TEMPERATURE			°F	133	133	131	
INLET MAN. PRESSURE		(7)	in Hg(abs)	94.6	76.8	54.0	
INLET MAN. TEMPERATURE	(MEASURED IN PLENUM)	(8)	°F	146	146	143	
TIMING	((9)	°BTDC	30	29	24	
EXHAUST TEMPERATURE - ENGINE OUTLET		(10)	°F	992	986	1006	
EXHAUST GAS FLOW (@engine outlet temp, 14.5	psia) (WET)	(11) (6)	ft3/min	9126	7138	5065	
EXHAUST GAS MASS FLOW	(WET)	(11) (6)	lb/hr	14380	11290	7900	
EMISSIONS DATA -					4		
NOx (as NO2)		(12)(13)	g/bhp-hr	0.50	0.50	0.50	
CO		(12)(13)	g/bhp-hr	2.43	2.61	2.56	
THC (mol. wt. of 15.84)		(12)(14)	g/bhp-hr	4.77	5.11	5.19	
NMHC (mol. wt. of 15.84)		(12)(14)	g/bhp-hr	0.72	0.77	0.78	
NMNEHC (VOCs) (mol. wt. of 15.84)		(12)(14)(15)	g/bhp-hr	0.48	0.51	0.52	
HCHO (Formaldehyde)		(12)(14)	g/bhp-hr	0.40	0.43	0.42	
CO2		(12)(14)	g/bhp-hr	474	506	549	
EXHAUST OXYGEN		(12)(14)	% DRY	9.0	8.7	8.3	
LAMBDA		(12)(16)	, BILL	1.68	1.64	1.60	
ENERGY BALAN				•	•	I	
		(17)	Btu/min	171179	137505	98460	
HEAT REJECTION TO JACKET WATER (JW)		(18)(26)	Btu/min	23412	21533	19930	
HEAT REJECTION TO ATMOSPHERE		(19)	Btu/min	6110	5092	4074	
HEAT REJECTION TO LUBE OIL (OC)		(20)(26)	Btu/min	4475	3978	3363	
HEAT REJECTION TO EXHAUST (LHV TO 77°F)		(21)(22)	Btu/min	62427	48810	34853	
HEAT REJECTION TO EXHAUST (LHV TO 350°F)		(21)	Btu/min	41619	32383	23415	
HEAT REJECTION TO A/C - STAGE 1 (1AC)		(23)(26)	Btu/min	10046	8308	2813	
HEAT REJECTION TO A/C - STAGE 2 (2AC)		(24)(27)	Btu/min	5358	5063	3334	
PUMP POWER		(25)	Btu/min	833	833	833	

CONDITIONS AND DEFINITIONS

Engine rating obtained and presented in accordance with ISO 3046/1. (Standard reference conditions of 77°F, 29.60 in Hg barometric pressure.) No overload permitted at rating shown. Consult the altitude deration factor chart for applications that exceed the rated altitude or temperature.

Emission levels are at engine exhaust flange prior to any after treatment. Values are based on engine operating at steady state conditions, adjusted to the specified NOx level at 100% load. Tolerances specified are dependent upon fuel quality. Fuel methane number cannot vary more than ± 3.

For notes information consult page three.

CEIR-4R

Mailing address: P.O. Box 90, Concord, Ontario, Canada, L4K 1B2 Tall free: 1-800-872-1968 Phone: 905-660-6450 Fax: 905-660-6435 E-mail: info@dcl-inc.com

Phone Mark Davis To J-W Power Fax January 4, 2010

mdavis@jwenergy.com

EMISSIONS GUARANTEE RE:

Mark,

Date

We hereby guarantee that our QUICK-LIDTM Model DC65A-12 catalytic converter described below:

Email

Catalyst model	DC65
Catalyst coating	Oxidation (A coating)
Outside Diameter of catalyst substrate	30.75"
No. of catalyst substrates	1
Cell Density	300 cpsi

and sized for the following engine:

Engine model	CAT G3516 ULB
Power	1380 hp @ 1400 rpm
Fuel	Pipeline Quality Natural Gas

will perform as follows:

Emissions	After Catalyst (% destruction)
Carbon Monoxide (CO)	93%
Formaldehyde (CH2O)	90%
Volatile Organic Compounds	80%

for a period of I year or 8000 hours, whichever comes first, subject to all terms and conditions contained in the attached warranty document being respected and met.

Best regards, DCL, International, Inc.

Taurya Va Guoringer

Tawnya VanGroningen Account Manager North American Industrial Catalyst Division

Quote#16-1558

MK Midstream Holdings - Goff West Compressor Station Facility ID# 033-00187 Engine Serial JEF01237 Emission Summary CE-2R Criteria Pollutants (See Attachment M)

Fuel Usage						
Fuel	Units	Total				
Natural Gas	ft ³	86,014,440				

Emission Factors ¹						
	Engine					
Pollutant	Natural Gas (lbs/ 10 ⁶ ft ³)					
Particulates	0.0794					
Sulfur Dioxide	0.6056					
Oxides of Nitrogen	329.57					
PM-10	0.0794					
VOC	17.81					
Carbon Monoxide	53.44					
CO2 Equiv	113,300					

Emissions							
		Engine					
Pollutant	Natural GasNatural GasNatural Gas(lbs/yr)(lbs/hr)(tons/yr)						
Particulates	6.83	0.0008	0.0034				
Sulfur Dioxide	52.09	0.0059	0.0260				
Oxides of Nitrogen	28,348	1.26	5.51				
PM-10	6.83	0.0008	0.0034				
VOC	1,532	0.1300	0.5500				
Carbon Monoxide	4,597	0.3000	1.31				
CO2 Equiv	9,745,436	1,112	4,873				

Emissions are calculated as follows:

Natural Gas Usage = 9819 scfh (stack test) * 8760 hrs/yr = 86,014,440 scf/yr Emissions = Volume of Gas (ft^3) * Emission Factor ($lbs/10^6 ft^3$)

¹ Natural Gas Emission Factors were taken from AP-42 Table 3.2-2 (PM, PM-10, SO2, CO2e) and the attached stack test (CO, NOx, VOC)

Notes:

- Emissions assume 8,760 hours of operation for the engine per year

- Heating value of Natural Gas assumed to be 1030 Btu/ft³

MK Midstream Holdings - Goff West Compressor Station Facility ID# 033-00187 Engine Emission Summary (See Attachment M) HAPS (CE-2R)

Emissions are calculated as follows:

Emissions = Heat of Natural Gas (MMBtu) * Emission Factor (lbs/MMBtu)

¹ Natural Gas Emission Factors were taken from AP-42 Tables 3.2-2

² Formaldehyde is calculated using the engine specification of 0.43 g/bhp-hr and the controls have a 90% efficiency (see attached)

CE-2R - Natural Gas
4SLB
НАР
MMBtu/yr
88,595

		Natural Gas					
HAP Emi	issions		(1) Engine				
		(lbs/yr)	(lbs/hr)	(tons/yr)			
НАР	Natural Gas ¹ (Ib/MMBtu)						
1,1,2,2-Tetrachloroethane	4.00E-05	3.54	0.0004	0.0018			
I,1,2-Trichloroethane	3.18E-05	2.82	0.0003	0.0014			
,3-Butadiene	2.67E-04	23.65	0.0027	0.0118			
,3-Dichloropropene	2.64E-05	2.34	0.0003	0.0012			
-Methylnaphthalene	3.32E-05	2.94	0.0003	0.0015			
2,2,4-Trimethylpentane	2.50E-04	22.15	0.0025	0.0111			
cenaphthene	1.25E-06	0.1107	1.26E-05	5.54E-05			
Acenaphthylene	5.53E-06	0.4899	5.59E-05	0.0002			
Acetaldehyde	8.36E-03	740.65	0.0845	0.3703			
Acrolein	5.14E-03	455.38	0.0520	0.2277			
Benzene	4.40E-04	38.98	0.0044	0.0195			
Benzo(b)fluoranthene	1.66E-07	0.0147	1.68E-06	7.35E-06			
Benzo(e)pyrene	4.15E-07	0.0368	4.20E-06	1.84E-05			
Benzo(g,h,i)perylene	4.14E-07	0.0367	4.19E-06	1.83E-05			
Bipheyl	2.12E-04	18.78	0.0021	0.0094			
Carbon Tetrachloride	3.67E-05	3.25	0.0004	0.0016			
Chlorobenzene	3.04E-05	2.69	0.0003	0.0013			
Chloroform	2.85E-05	2.52	0.0003	0.0013			
Chrysene	6.93E-07	0.0614	7.01E-06	3.07E-05			
thylbenzene	3.97E-05	3.52	0.0004	0.0018			
thylene Dibromide	4.43E-05	3.92	0.0004	0.0020			
luoranthene	1.11E-06	0.0983	1.12E-05	4.92E-05			
luorene	5.67E-06	0.5023	5.73E-05	0.0003			
Formaldehyde ²	-	1,146	0.1308	0.5730			
Methanol	2.50E-03	221.49	0.0253	0.1107			
Nethylene Chloride	2.00E-05	1.77	0.0002	0.0009			
n-Hexane	1.11E-03	98.34	0.0112	0.0492			
laphthalene	7.44E-05	6.59	0.0008	0.0033			
PAH	2.69E-05	2.38	0.0003	0.0012			
Phenanthrene	1.04E-05	0.9214	0.0001	0.0005			
Phenol	2.40E-05	2.13	0.0002	0.0011			
yrene	1.36E-06	0.1205	1.38E-05	6.02E-05			
Styrene	2.36E-05	2.09	0.0002	0.0010			
Tetrachloroethane	2.48E-06	0.2197	2.51E-05	0.0001			
oluene	4.08E-04	36.15	0.0041	0.0181			
/inyl Chloride	1.49E-05	1.32	0.0002	0.0007			
(ylene	1.84E-04	16.30	0.0019	0.0082			
	Total:	2,864	0.3270	1.43			

Emissions Test Report

Prepared for: MK Midstream Prepared by: Steve LaRue Test Date: December 12, 2016

Regulatory Information

Permit #:	G35-A107A
Make:	Caterpillar
Model:	3516
Unit Number:	2177
Serial Number:	JEF01237(39727-HR)
Regulatory Citation	40 CFR 60 Subpart JJJJ
Target Parameter(s)	NOx, CO, and VOCs

Contact Information

Test Location

MK Midstream Goff West Harrison County, WV Test Company

Ecotest Energy Services 142 S. Johnson Rd. Houston, PA 15342

Primary Facility Contact Stacey Lucas VP of Health, Safety and Environment MK Midstream 65 Professional Place Suite 200 Bridgeport, WV, 26330 724-940-1118 Company Contact Tyler Frey Compliance Specialist Tyler@Ecotest.us (570)428-2133

Wayne Philpot V.P. Operations Wayne@ecotest.us (325)348-8070

Introduction

Ecotest Energy Services (Ecotest) has been contracted by MK Midstream, to provide emissions testing on the Caterpillar 3516 Spark-Ignited engine located at the Goff West location in Harrison County, WV. The purpose of this testing was to demonstrate compliance with emission limitations contained in the sites air permit, permit G35-A107A, and 40 CFR 60 subpart JJJJ. There are emissions limitations for the oxides of nitrogen (NOx), carbon monoxide (CO) and volatile organic compounds (VOC) as non-methane nonethane hydrocarbons (NMNEHC).

Testing was conducted in accordance with an approved test protocol from the WV Source Testing Manual and the United States Environmental Protection Agency (USEPA) test methods. Testing for the engine occurred on December 12, 2016 and was conducted by Steve LaRue of Ecotest.

Summary of Test Results

	pounds	/ hour	tons / year g/BHP-hr ppmvd at 1		tons / year g/BHP-hr		t 15% O ₂	
Pollutant	Permitted	Emitted	Permitted	Emitted	Permitted	Emitted	Permitted	Emitted
CO	0.52	0.30	2.27	1.31	2.00	0.11	270	13
NOx	1.52	1.26	6.66	5.51	1.00	0.46	82	34
VOCs	0.73	0.13	3.20	0.55	0.70	0.05	60	4

Emissions Summary

	Test Run			
	1st	2nd	3rd	Average
Test Run				
Start Time	8:39 AM	9:43 AM	10:47 AM	
End Time	9:40 AM	10:44 AM	11:48 AM	
Interval (minutes)		61	61	61
Ambient Conditions				
Dry Bulb / Ambient Temperature (°F)	39.0	41.0	43.0	41.0
Wet Bulb Temperature (°F)	37.0	38.0	41.0	38.7
Calculated Relative Humidity (%)	80	73	82	79
Relative Humidity (%)	79.00	78.00	79.00	78.67
Barometric Pressure ("Hg)	29.92	29.92	29.92	29.92
Elevation (feet)				
Emissions Source				
Manufacturer	Caterpillar			
Model	3516			
Serial Number	JEF01237(39727-HR)			
Unit ID	2177			
Manufacture/Rebuild Date				
Emissions Source Type	Engine			
Emissions Source Operational Data: Engine				
Fuel flow rate determined by:	Fuel Flow	Meter		
Fuel Flow Rate (SCFH)	9815	9822	9819	9819
Calculated Fuel Flow Rate (SCFH)	N/A	N/A	N/A	N/A
BSFC (BTU/BHP/hr), LHV				N/A
Calculated BSFC _{LHV} (BTU/BHP/hr)	7372	7377	7375	7374
Rich Burn / Lean Burn	Lean Burn			
Fuel Header Pressure (PSIG)				N/A
Calculated Load (%)	90.6	90.6	90.6	90.6
Current Power (BHP)	1250 1250		1250	1250
Max Rated Power (BHP)	1380			
Max Rated Speed (RPM)	1400			
Emissions Control Equipment	Catalyst			
Engine Type	Spark-Ignit	ted		

G3516B

GAS ENGINE TECHNICAL DATA

CATERPILLAR®

ENGINE SPEED (rpm): COMPRESSION RATIO: AFTERCOOLER TYPE: AFTERCOOLER - STAGE 2 INLET (°F): AFTERCOOLER - STAGE 1 INLET (°F): JACKET WATER OUTLET (°F): ASPIRATION: COOLING SYSTEM: CONTROL SYSTEM: EXHAUST MANIFOLD: COMBUSTION: NOX EMISSION LEVEL (g/bhp-hr NOX):	JW+OC+1AC, 2AC FUEL METH ADEM3 FUEL LHV (I)n: /el: EM: SURE RANGE(psi ANE NUMBER:	., . ,	EMP. (ft):	C	STANDARD S COMPRESSION CONTINUOUS NAT GAS AT WIDE RANGE RATIO CONTROL 7.0-40.0 80 905 4000
RATING	6	NOTES	LOAD	100%	75%	50%
ENGINE POWER	(WITHOUT FAN)	(2)	bhp	1380	1035	690
ENGINE EFFICIENCY	(ISO 3046/1)	(3)	%	34.8	32.5	30.3
ENGINE EFFICIENCY	(NOMINAL)	(3)	%	34.2	31.9	29.7
ENGINE D	ATA					
FUEL CONSUMPTION	(ISO 3046/1)	(4)	Btu/bhp-hr	7301	7820	8399
FUEL CONSUMPTION	(NOMINAL)	(4)	Btu/bhp-hr	7443	7972	8562
AIR FLOW (77°F, 14.7 psia)	(WET)	(5) (6)	ft3/min	3126	2452	1715
AIR FLOW	(WET)	(5) (6)	lb/hr	13862	10874	7602
FUEL FLOW (60°F, 14.7 psia)	, , , , , , , , , , , , , , , , , , ,	(0)(0)	scfm	189	152	109
COMPRESSOR OUT PRESSURE			in Hg(abs)	103.8	91.8	69.4
COMPRESSOR OUT TEMPERATURE			°F	381	354	274
AFTERCOOLER AIR OUT TEMPERATURE			°F	133	133	131
INLET MAN. PRESSURE		(7)	in Hg(abs)	94.6	76.8	54.0
INLET MAN. TEMPERATURE	(MEASURED IN PLENUM)	(8)	°F	146	146	143
TIMING	((9)	°BTDC	30	29	24
EXHAUST TEMPERATURE - ENGINE OUTLET		(10)	°F	992	986	1006
EXHAUST GAS FLOW (@engine outlet temp, 14.5	psia) (WET)	(11) (6)	ft3/min	9126	7138	5065
EXHAUST GAS MASS FLOW	(WET)	(11) (6)	lb/hr	14380	11290	7900
EMISSIONS DATA -					4	
NOx (as NO2)		(12)(13)	g/bhp-hr	0.50	0.50	0.50
CO		(12)(13)	g/bhp-hr	2.43	2.61	2.56
THC (mol. wt. of 15.84)		(12)(14)	g/bhp-hr	4.77	5.11	5.19
NMHC (mol. wt. of 15.84)		(12)(14)	g/bhp-hr	0.72	0.77	0.78
NMNEHC (VOCs) (mol. wt. of 15.84)		(12)(14)(15)	g/bhp-hr	0.48	0.51	0.52
HCHO (Formaldehyde)		(12)(14)	g/bhp-hr	0.40	0.43	0.42
CO2		(12)(14)	g/bhp-hr	474	506	549
EXHAUST OXYGEN		(12)(14)	% DRY	9.0	8.7	8.3
LAMBDA		(12)(16)	, BILL	1.68	1.64	1.60
ENERGY BALAN				•	•	I
		(17)	Btu/min	171179	137505	98460
HEAT REJECTION TO JACKET WATER (JW)		(18)(26)	Btu/min	23412	21533	19930
HEAT REJECTION TO ATMOSPHERE		(19)	Btu/min	6110	5092	4074
HEAT REJECTION TO LUBE OIL (OC)		(20)(26)	Btu/min	4475	3978	3363
HEAT REJECTION TO EXHAUST (LHV TO 77°F)		(21)(22)	Btu/min	62427	48810	34853
HEAT REJECTION TO EXHAUST (LHV TO 350°F)		(21)	Btu/min	41619	32383	23415
HEAT REJECTION TO A/C - STAGE 1 (1AC)		(23)(26)	Btu/min	10046	8308	2813
HEAT REJECTION TO A/C - STAGE 2 (2AC)		(24)(27)	Btu/min	5358	5063	3334
PUMP POWER		(25)	Btu/min	833	833	833

CONDITIONS AND DEFINITIONS

Engine rating obtained and presented in accordance with ISO 3046/1. (Standard reference conditions of 77°F, 29.60 in Hg barometric pressure.) No overload permitted at rating shown. Consult the altitude deration factor chart for applications that exceed the rated altitude or temperature.

Emission levels are at engine exhaust flange prior to any after treatment. Values are based on engine operating at steady state conditions, adjusted to the specified NOx level at 100% load. Tolerances specified are dependent upon fuel quality. Fuel methane number cannot vary more than ± 3.

For notes information consult page three.

CEIR-4R

Mailing address: P.O. Box 90, Concord, Ontario, Canada, L4K 1B2 Tall free: 1-800-872-1968 Phone: 905-660-6450 Fax: 905-660-6435 E-mail: info@dcl-inc.com

Phone Mark Davis To J-W Power Fax January 4, 2010

mdavis@jwenergy.com

EMISSIONS GUARANTEE RE:

Mark,

Date

We hereby guarantee that our QUICK-LIDTM Model DC65A-12 catalytic converter described below:

Email

Catalyst model	DC65
Catalyst coating	Oxidation (A coating)
Outside Diameter of catalyst substrate	30.75"
No. of catalyst substrates	1
Cell Density	300 cpsi

and sized for the following engine:

Engine model	CAT G3516 ULB
Power	1380 hp @ 1400 rpm
Fuel	Pipeline Quality Natural Gas

will perform as follows:

Emissions	After Catalyst (% destruction)			
Carbon Monoxide (CO)	93%			
Formaldehyde (CH2O)	90%			
Volatile Organic Compounds	80%			

for a period of I year or 8000 hours, whichever comes first, subject to all terms and conditions contained in the attached warranty document being respected and met.

Best regards, DCL, International, Inc.

Taurya Va Guoringer

Tawnya VanGroningen Account Manager North American Industrial Catalyst Division

Quote#16-1558

MK Midstream Holdings - Goff West Compressor Station Facility ID# 033-00187 Engine Serial BEN01121 Emission Summary CE-5R Criteria Pollutants (See Attachment M)

Fuel Usage						
Fuel	Units	Total				
Natural Gas	ft ³	118,260,000				

Emission Factors ¹						
	Engine					
Pollutant	Natural Gas (lbs/ 10 ⁶ ft ³)					
Particulates	0.0794					
Sulfur Dioxide	0.6056					
Oxides of Nitrogen	195.96					
PM-10	0.0794					
VOC	17.81					
Carbon Monoxide	8.91					
CO2 Equiv	113,300					

Emissions							
	Engine						
Pollutant	Natural GasNatural GasNatural Gas(lbs/yr)(lbs/hr)(tons/yr)						
Particulates	9.39	0.0011	0.0047				
Sulfur Dioxide	71.62	0.0082	0.0358				
Oxides of Nitrogen	23,174	1.06	4.66				
PM-10	9.39	0.0011	0.0047				
VOC	2,107	0.0800	0.3500				
Carbon Monoxide	1,053	0.0500	0.2200				
CO2 Equiv	13,398,858	1,530	6,699				

Emissions are calculated as follows:

Natural Gas Usage = 13500 scfh (stack test) * 8760 hrs/yr = 118,260,000 scf/ Emissions = Volume of Gas (ft³) * Emission Factor (lbs/ 10^6 ft³)

¹ Natural Gas Emission Factors were taken from AP-42 Table 3.2-2 (PM, PM-10, SO2, CO2e) and the attached stack test (CO, NOx, VOC)

Notes:

- Emissions assume 8,760 hours of operation for the engine per year
- Heating value of Natural Gas assumed to be 1030 Btu/ft³

MK Midstream Holdings - Goff West Compressor Station Facility ID# 033-00187 Engine Emission Summary (See Attachment M) HAPS (CE-5R)

Emissions are calculated as follows:

Emissions = Heat of Natural Gas (MMBtu) * Emission Factor (lbs/MMBtu)

¹ Natural Gas Emission Factors were taken from AP-42 Tables 3.2-2 and Formaldehyde emissions (lb/hr & tpy) were taken from the spec sheet

CE-5R - Natural Gas
4SLB
НАР
MMBtu
121,808

HAP Emissions		Natural Gas				
		4SLB				
		(lbs/yr)	(lbs/hr)	(tons/yr)		
НАР	Natural Gas ¹ (Ib/MMBtu)					
1,1,2,2-Tetrachloroethane	4.00E-05	4.87	0.0006	0.0024		
1,1,2-Trichloroethane	3.18E-05	3.87	0.0004	0.0019		
,3-Butadiene	2.67E-04	32.52	0.0037	0.0163		
1,3-Dichloropropene	2.64E-05	3.22	0.0004	0.0016		
2-Methylnaphthalene	3.32E-05	4.04	0.0005	0.0020		
2,2,4-Trimethylpentane	2.50E-04	30.45	0.0035	0.0152		
Acenaphthene	1.25E-06	0.1523	1.74E-05	7.61E-05		
Acenaphthylene	5.53E-06	0.6736	7.69E-05	0.0003		
Acetaldehyde	8.36E-03	1,018	0.1162	0.5092		
Acrolein	5.14E-03	626.09	0.0715	0.3130		
Benzene	4.40E-04	53.60	0.0061	0.0268		
Benzo(b)fluoranthene	1.66E-07	0.0202	2.31E-06	1.01E-05		
Benzo(e)pyrene	4.15E-07	0.0506	5.77E-06	2.53E-05		
Benzo(g,h,i)perylene	4.14E-07	0.0504	5.76E-06	2.52E-05		
Bipheyl	2.12E-04	25.82	0.0029	0.0129		
Carbon Tetrachloride	3.67E-05	4.47	0.0005	0.0022		
Chlorobenzene	3.04E-05	3.70	0.0004	0.0019		
Chloroform	2.85E-05	3.47	0.0004	0.0017		
Chrysene	6.93E-07	0.0844	9.64E-06	4.22E-05		
Ethylbenzene	3.97E-05	4.84	0.0006	0.0024		
Ethylene Dibromide	4.43E-05	5.40	0.0006	0.0027		
Iuoranthene	1.11E-06	0.1352	1.54E-05	6.76E-05		
luorene	5.67E-06	0.6907	7.88E-05	0.0003		
ormaldehyde	-	5,957	0.6800	2.98		
Vethanol	2.50E-03	304.52	0.0348	0.1523		
Methylene Chloride	2.00E-05	2.44	0.0003	0.0012		
n-Hexane	1.11E-03	135.21	0.0154	0.0676		
Vaphthalene	7.44E-05	9.06	0.0010	0.0045		
PAH	2.69E-05	3.28	0.0004	0.0016		
Phenanthrene	1.04E-05	1.27	0.0001	0.0006		
Phenol	2.40E-05	2.92	0.0003	0.0015		
Pyrene	1.36E-06	0.1657	1.89E-05	8.28E-05		
Styrene	2.36E-05	2.87	0.0003	0.0014		
Tetrachloroethane	2.48E-06	0.3021	3.45E-05	0.0002		
Toluene	4.08E-04	49.70	0.0057	0.0248		
/inyl Chloride	1.49E-05	1.81	0.0002	0.0009		
(ylene	1.84E-04	22.41	0.0026	0.0112		
	Total:	8,319	0.9497	4.16		

Emissions Test Report

Prepared for: MK Midstream Holdings, LLC Prepared by: Steve LaRue Test Date: May 4, 2016

Regulatory Information

Permit #:	G35-A107B
Make:	Caterpillar
Model:	3608
Unit Number:	2657
Serial Number:	BEN01121 (Run Hr-2805)
Regulatory Citation	40 CFR 60 Subpart JJJJ
Target Parameter(s)	NOx, CO, and VOCs

Contact Information

Test Location

MK Midstream Holdings, LLC Cather CS Harrison County, WV

Primary Facility Contact Dave Sweeley MK Midstream Holdings, LLC 65 Professional Place Suite 200 Bridgeport, WV, 26330 724-759-9822 dsweeley@mkmidstream.com Test Company

Ecotest Energy Services 142 S. Johnson Rd. Houston, PA 15342

Company Contact Tyler Frey Compliance Specialist (570)428-2133 Tyler@Ecotest.us (570)428-2133

Wayne Philpot V.P. Operations Wayne@ecotest.us (325)348-8070

Introduction

Ecotest Energy Services (Ecotest) has been contracted by MK Midstream, to provide emissions testing on the Caterpillar, 3608 Spark-Ignited engine located at the Cather location in Harrison County, WV. The purpose of this testing was to demonstrate compliance with emission limitations contained in the sites air permit, permit G35-A107B, and 40 CFR 60 subpart JJJJ. There are emissions limitations for the oxides of nitrogen (NOx), carbon monoxide (CO) and volatile organic compounds (VOC) as non-methane non ethane hydrocarbons (NMNEHC).

Testing was conducted in accordance with an approved test protocol from the WV Source Testing Manual and the United States Environmental Protection Agency (USEPA) test methods. Testing for the engine occurred on May 4, 2016 and was conducted by Steve LaRue of Ecotest.

Summary of Test Results

	pounds	/ hour	tons / year		g/BHP-hr		ppmvd at 15% O ₂	
Pollutant	Permitted	Emitted	Permitted	Emitted	Permitted	Emitted	Permitted	Emitted
CO	1.00	0.05	4.39	0.22	2.00	0.01	270	2
NOx	2.61	1.06	11.44	4.66	1.00	0.22	82	21
VOCs	1.65	0.08	7.21	0.35	0.70	0.02	60	2

Emissions Summary

		Test Run		
	1st	2nd	3rd	Average
Test Run				
Start Time	3:11 PM	4:16 PM	5:21 PM	
End Time	4:12 PM	5:17 PM	6:21 PM	
Interval (minutes)	61	61	60	61
Ambient Conditions				
Dry Bulb / Ambient Temperature (°F)				N/A
Wet Bulb Temperature (°F)				N/A
Calculated Relative Humidity (%)	N/A	N/A	N/A	N/A
Relative Humidity (%)				N/A
Barometric Pressure ("Hg)				N/A
Elevation (feet)				
Emissions Source				
Manufacturer	Caterpillar	Caterpillar		
Model	3608			
Serial Number	BEN01121 (Run Hr-28			
Unit ID	2657			
Manufacture/Rebuild Date				
Emissions Source Type	Engine			
Emissions Source Operational Data: Engine				
Fuel flow rate determined by:	Fuel Flow	Meter		
Fuel Flow Rate (SCFH)	13500	13500	13500	13500
Calculated Fuel Flow Rate (SCFH)	N/A	N/A	N/A	N/A
BSFC (BTU/BHP/hr), LHV				N/A
Calculated BSFC _{LHV} (BTU/BHP/hr)	5796	5796	5796	5796
Rich Burn / Lean Burn	Lean Burn		•	
Fuel Header Pressure (PSIG)				N/A
Calculated Load (%)	90.7	90.7	90.7	90.7
Current Power (BHP)	2150	2150	2150	2150
Max Rated Power (BHP)	2370			•
Max Rated Speed (RPM)	1000			
Emissions Control Equipment	Catalyst			
Engine Type	Spark-Ignit	ted		

Date of Manufacture	Manufacture April 11, 2011		BEN00694	Date Modified,	Reconstructed	Not Any	
Driver Rated HP	2370	Rated Speed in RPM	1000	Combustion Type		Spark Ignited 4 Strok	
Number of Cylinders	8	Compression Ratio	9:1	Combustion Se	tting	Ultra Lean Burn	
Total Displacement, in ³ 10350		Fuel Delivery Method	Fuel Injection	Combustion Air Treatment		T.C./Aftercooled	
Raw Engine Emissions (customer su	polied fuel gas with little to p	H2S)					
raw Engine Emissions (customer suj	oplied foergas with little to h	J H23)					
Fuel Consumption	6840 LHV BTU/bhp-hr	or 7589 HHV	V BTU/bhp-hr				
Altitude	1200 ft						
Maximum Air Inlet Temp	90 F						
		g/bhp-hr ¹	Ib/MMBTU ²	lb/hr	TPY		
Nitrogen Oxides (NOx)		0.5		2.61	11.44		
Carbon Monoxide (CO)		2.74		14.32	62.70		
Volatile Organic Compounds (VOC or	NMNEHC excluding CH2O)	0.63		3.29	14.42		
Formaldehyde (CH2O)		0.26		1.36	5.95		
Particulate Matter (PM) Filterable+Condens	sable		9.99E-03	1.80E-01	7.87E-01		
Sulfur Dioxide (SO2)			5.88E-04	1.06E-02	4.63E-02		
Sullar Dioxide (502)			5.002-04	1.002-02	4.052-02		
		g/bhp-hr ¹		lb/hr	Metric Tonne/yr		
		440		2299	9133		
Carbon Dioxide (CO2)		110					
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp		5.36 mer supplied fuel gas, 1200		28.01 lax Air Inlet Tempera	111.26		
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp	on 100% Load Operation. For ounds to allow for variation in s AP-42, Fifth Edition, Volume	5.36 omer supplied fuel gas, 1200 air permitting, it is recomme operating parameters and fi	ended to use a 20% safet uel gas quality.	28.01 Iax Air Inlet Tempera ty margin	111.26 iture.		
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp Note that g/bhp-hr values are based for CO, VOC and other organic comp ² Emission Factor obtained from EPA' Gas-Fired Reciprocating Engines, Tab	on 100% Load Operation. For ounds to allow for variation in s AP-42, Fifth Edition, Volume	5.36 omer supplied fuel gas, 1200 air permitting, it is recomme operating parameters and fi	ended to use a 20% safet uel gas quality.	28.01 Iax Air Inlet Tempera ty margin	111.26 iture.		
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp Note that g/bhp-hr values are based for CO, VOC and other organic comp ² Emission Factor obtained from EPA' Gas-Fired Reciprocating Englnes, Tab Catalytic Converter Emissions	on 100% Load Operation. For ounds to allow for variation in s AP-42, Fifth Edition, Volume le 3.2-2).	5.36 omer supplied fuel gas, 1200 air permitting, it is recomme operating parameters and fi I, Chapter 3: Stationary Inter	ended to use a 20% safet uel gas quality.	28.01 Iax Air Inlet Tempera ty margin	111.26 iture.		
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp Note that g/bhp-hr values are based for CO, VOC and other organic comp ² Emission Factor obtained from EPA' Gas-Fired Reciprocating Englnes, Tab Catalytic Converter Emissions Catalytic Converter Make and Model:	on 100% Load Operation. For ounds to allow for variation in s AP-42, Fifth Edition, Volume ole 3.2-2). <i>Emit, E</i>	5.36 omer supplied fuel gas, 1200 air permitting, it is recomme operating parameters and fi I, Chapter 3: Stationary Inter 2007-2022F	ended to use a 20% safet uel gas quality.	28.01 Iax Air Inlet Tempera ty margin	111.26 iture.		
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp Note that g/bhp-hr values are based for CO, VOC and other organic comp ² Emission Factor obtained from EPA' Gas-Fired Reciprocating Englnes, Tab Catalytic Converter Emissions Catalytic Converter Make and Model: Element Type:	on 100% Load Operation. For ounds to allow for variation in s AP-42, Fifth Edition, Volume ole 3.2-2). <i>Emit, E</i> Oxidat	5.36 omer supplied fuel gas, 1200 air permitting, it is recomme operating parameters and fi I, Chapter 3: Stationary Inter 2007-2022F	ended to use a 20% safet uel gas quality.	28.01 Iax Air Inlet Tempera ty margin	111.26 iture.		
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp Note that g/bhp-hr values are based for CO, VOC and other organic comp ² Emission Factor obtained from EPA' Gas-Fired Reciprocating Englnes, Tab Catalytic Converter Emissions Catalytic Converter Make and Model: Element Type: Number of Elements in Housing:	on 100% Load Operation. For ounds to allow for variation in s AP-42, Fifth Edition, Volume ole 3.2-2). <i>Emit, E</i> <i>Oxidat</i> 3	5.36 omer supplied fuel gas, 1200 air permitting, it is recomme operating parameters and fi I, Chapter 3: Stationary Inter 2007-2022F	ended to use a 20% safet uel gas quality.	28.01 Iax Air Inlet Tempera ty margin	111.26 iture.		
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp Note that g/bhp-hr values are based for CO, VOC and other organic comp ² Emission Factor obtained from EPA' Gas-Fired Reciprocating Englnes, Tab Catalytic Converter Emissions Catalytic Converter Make and Model: Element Type: Number of Elements in Housing:	on 100% Load Operation. For ounds to allow for variation in s AP-42, Fifth Edition, Volume ole 3.2-2). <i>Emit, E</i> <i>Oxidat</i> 3	5.36 omer supplied fuel gas, 1200 air permitting, it is recomme operating parameters and fi 1, Chapter 3: Stationary Inter 1, Chapter 3: Stationary Inter 1	ended to use a 20% safet uel gas quality.	28.01 lax Air Inlet Tempera ty margin (Section 3.2 Natura	111.26 Iture.		
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp Note that g/bhp-hr values are based for CO, VOC and other organic comp ² Emission Factor obtained from EPA' Gas-Fired Reciprocating Englnes, Tab Catalytic Converter Emissions Catalytic Converter Make and Model: Element Type: Number of Elements in Housing: Air/Fuel Ratio Control	on 100% Load Operation. For ounds to allow for variation in s AP-42, Fifth Edition, Volume ole 3.2-2). <i>Emit, E</i> <i>Oxidat</i> 3	5.36 omer supplied fuel gas, 1200 air permitting, it is recomme operating parameters and fi 1, Chapter 3: Stationary Inter (1X6200Z-2022F ion illor ADEM3 <u>% Reduction</u>	ended to use a 20% safet uel gas quality.	28.01 lax Air Inlet Tempera ty margin (Section 3.2 Natura Ib/hr	111.26 Iture.		
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp Note that g/bhp-hr values are based of for CO, VOC and other organic comp ² Emission Factor obtained from EPA' Gas-Fired Reciprocating Englnes, Tab Catalytic Converter Emissions Catalytic Converter Make and Model: Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx)	on 100% Load Operation. For ounds to allow for variation in s AP-42, Fifth Edition, Volume ole 3.2-2). <i>Emit, E</i> <i>Oxidat</i> 3	5.36 omer supplied fuel gas, 1200 air permitting, it is recomme operating parameters and fi 1, Chapter 3: Stationary Inter (LX6200Z-2022F ion illar ADEM3 <u>% Reduction</u> 0	ended to use a 20% safet uel gas quality.	28.01 lax Air Inlet Tempera ty margin (Section 3.2 Natura 	111.26 Inture.		
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp Note that g/bhp-hr values are based of for CO, VOC and other organic comp ² Emission Factor obtained from EPA' Gas-Fired Reciprocating Englnes, Tab Catalytic Converter Emissions Catalytic Converter Make and Model: Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx) Carbon Monoxide (CO)	on 100% Load Operation. For ounds to allow for variation in s AP-42, Fifth Edition, Volume ole 3.2-2). <i>Emit, E</i> <i>Oxidat</i> <i>3</i> <i>Caterp</i>	5.36 omer supplied fuel gas, 1200 air permitting, it is recomme operating parameters and fi 1, Chapter 3: Stationary Inter (1X6200Z-2022F ion illor ADEM3 <u>% Reduction</u>	ended to use a 20% safet uel gas quality.	28.01 lax Air Inlet Tempera ty margin (Section 3.2 Natura Ib/hr	111.26 Iture.		
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp Note that g/bhp-hr values are based of for CO, VOC and other organic comp ² Emission Factor obtained from EPA' Gas-Fired Reciprocating Englnes, Tab Catalytic Converter Make and Model: Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC or	on 100% Load Operation. For ounds to allow for variation in s AP-42, Fifth Edition, Volume ole 3.2-2). <i>Emit, E</i> <i>Oxidat</i> <i>3</i> <i>Caterp</i>	5.36 omer supplied fuel gas, 1200 air permitting, it is recomme operating parameters and fi I, Chapter 3: Stationary Inter UX6200Z-2022F ion illar ADEM3 <u>% Reduction</u> 0 93	ended to use a 20% safet uel gas quality.	28.01 lax Air Inlet Tempera ty margin (Section 3.2 Natura <u>Ib/hr</u> 2.61 1.00	111.26 ature. d <u>TPY</u> 11.44 4.39		
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp Note that g/bhp-hr values are based for CO, VOC and other organic comp ² Emission Factor obtained from EPA' Gas-Fired Reciprocating Englnes, Tab Catalytic Converter Emissions Catalytic Converter Make and Model: Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC or Formaldehyde (CH2O)	on 100% Load Operation. For ounds to allow for variation in s AP-42, Fifth Edition, Volume ole 3.2-2). <i>Emit, E</i> <i>Oxidat</i> <i>3</i> <i>Caterp</i>	5.36 omer supplied fuel gas, 1200 air permitting, it is recomme operating parameters and fi I, Chapter 3: Stationary Inter (IX6200Z-2022F ion illar ADEM3 <u>% Reduction</u> 0 93 50	ended to use a 20% safet uel gas quality.	28.01 lax Air Inlet Tempera ty margin (Section 3.2 Natura (Section 3.2 Natura 2.61 1.00 1.65	111.26 ature. d 		
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp Note that g/bhp-hr values are based for CO, VOC and other organic comp ² Emission Factor obtained from EPA' Gas-Fired Reciprocating Englnes, Tab Catalytic Converter Emissions Catalytic Converter Make and Model:	on 100% Load Operation. For ounds to allow for variation in s AP-42, Fifth Edition, Volume ole 3.2-2). <i>Emit, E</i> <i>Oxidat</i> <i>3</i> <i>Caterp</i>	5.36 omer supplied fuel gas, 1200 air permitting, it is recomme operating parameters and fi I, Chapter 3: Stationary Inter (IX62002-2022F fon illar ADEM3 <u>% Reduction</u> 0 93 50 50	ended to use a 20% safet uel gas quality.	28.01 lax Air Inlet Tempera ty margin (Section 3.2 Natura (Section 3.2 Natura 2.61 1.00 1.65 0.68	111.26 ature. d <u>TPY</u> 11.44 4.39 7.21 2.98		
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp Note that g/bhp-hr values are based for CO, VOC and other organic comp ² Emission Factor obtained from EPA' Gas-Fired Reciprocating Englnes, Tab Catalytic Converter Emissions Catalytic Converter Make and Model: Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC or Formaldehyde (CH2O) Particulate Matter (PM)	on 100% Load Operation. For ounds to allow for variation in s AP-42, Fifth Edition, Volume ole 3.2-2). <i>Emit, E</i> <i>Oxidat</i> <i>3</i> <i>Caterp</i>	5.36 omer supplied fuel gas, 1200 air permitting, it is recomme operating parameters and fi I, Chapter 3: Stationary Inter (IX6200Z-2022F for illar ADEM3 <u>% Reduction</u> 0 93 50 50 50 0	ended to use a 20% safet uel gas quality.	28.01 lax Air Inlet Tempera ty margin (Section 3.2 Natura (Section 3.2 Natura 2.61 1.00 1.65 0.68 1.80E-01	111.26 ature. d <u>TPY</u> 11.44 4.39 7.21 2.98 7.87E-01		
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp Note that g/bhp-hr values are based of for CO, VOC and other organic comp ² Emission Factor obtained from EPA' Gas-Fired Reciprocating Englnes, Tab Catalytic Converter Emissions Catalytic Converter Make and Model: Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC or Formaldehyde (CH2O) Particulate Matter (PM)	on 100% Load Operation. For ounds to allow for variation in s AP-42, Fifth Edition, Volume ole 3.2-2). <i>Emit, E</i> <i>Oxidat</i> <i>3</i> <i>Caterp</i>	5.36 omer supplied fuel gas, 1200 air permitting, it is recomme operating parameters and fi I, Chapter 3: Stationary Inter (XC6200Z-2022F ion illor ADEM3 <u>% Reduction</u> 0 93 50 50 50 0 0 0	ended to use a 20% safet uel gas quality.	28.01 lax Air Inlet Tempera ty margin (Section 3.2 Natura 	111.26 ature. I I I I I I I I I I I I I I I I I I I		

Prepared For:

Chris Magee USA COMPRESSION

INFORMATION PROVIDED BY CATERPILLAR

Engine:	G3608
Horsepower:	2370
RPM:	1000
Compression Ratio:	9.2
Exhaust Flow Rate:	16228 CFM
Exhaust Temperature:	858 °F
Reference:	DM8606-06-001
Fuel:	Natural Gas
Annual Operating Hours:	8760

Uncontrolled Emissions

	g/bhp-hr	Lb/Hr	Tons/Year
NOx:	0.50	2.61	11.44
CO:	2.74	14.32	62.71
THC:	6.30	32.92	144.18
NMHC	0.94	4.91	21.51
NMNEHC:	0.63	3.29	14.42
HCHO:	0.26	1.36	5.95
02:	12.00 %		

POST CATALYST EMISSIONS

	% Reduction	g/bhp-hr	Lb/Hr	Tons/Year
NOx:	Unaffected by	Oxidation Ca	atalyst	
CO:	>93 %	<0.19	<1.00	<4.39
VOC:	>50 %	<0.32	<1.65	<7.21
HCHO:	>50 %	<0.13	<0.68	<2.98

2585 Heartland Drive Sheridan, WY 82801 Office: | Direct: +1 (307) 675.5310 kdunham@emittechnologies.com

QUOTE: QUO-16705-Z2F9

CONTROL EQUIPMENT

Catalyst Housing

Model: Manufacturer: Element Size: Housing Type: Catalyst Installation: Construction: Sample Ports: Inlet Connections: Outlet Connections: Configuration: Silencer: Silencer Grade: Insertion Loss: ELX-6200-2022F-6CE0-362 EMIT Technologies, Inc Rectangle 36" x 15" x 3.5" 6 Element Capacity Accessible Housing 3/16" Carbon Steel 9 (0.5" NPT) 20" Flat Face Flange 22" Flat Face Flange End In / Side Out Integrated Hospital Enhanced 35-50 dBA

Catalyst Element

Model: Catalyst Type: Substrate Type: Manufacturer: Element Quantity: Element Size: RT-3615-Z Oxidation, Standard Precious Group Metals BRAZED EMIT Technologies, Inc 3 Rectangle 36" x 15" x 3.5"

CE-5R

The Information in this quotation, and any files transmitted with it, is confidential and may be legally privileged. It is intended only for the use of individual(s) within the company named above. If you are the intended recipient, be aware that your use of any confidential or personal information may be restricted by state and federal privacy laws

MK Midstream Holdings - Goff West Compressor Station Facility ID# 033-00187 Engine Serial 4ZS02061 Emission Summary CE-6R Criteria Pollutants (See Attachment M)

Fuel Usage					
Fuel	Units	Total			
Natural Gas	ft ³	87,451,080			

Emission Factors ¹				
	Engine			
Pollutant	Natural Gas (lbs/ 10 ⁶ ft ³)			
Particulates	0.0794			
Sulfur Dioxide	0.6056			
Oxides of Nitrogen	338.47			
PM-10	0.0794			
VOC	44.54			
Carbon Monoxide	62.35			
CO2 Equiv	113,300			

Emissions							
	Engine						
Pollutant	Natural GasNatural GasNatural Gas(lbs/yr)(lbs/hr)(tons/yr)						
Particulates	6.94	0.0008	0.0035				
Sulfur Dioxide	52.96	0.0060	0.0265				
Oxides of Nitrogen	29,600	0.8600	3.78				
PM-10	6.94	0.0008	0.0035				
VOC	3,895	0.0400	0.1900				
Carbon Monoxide	5,453	0.0600	0.2700				
CO2 Equiv	9,908,207	1,131	4,954				

Emissions are calculated as follows:

Natural Gas Usage = 9983 scfh (stack test) * 8760 hrs/yr = 87,451,080 scf/yr Emissions = Volume of Gas (ft^3) * Emission Factor ($lbs/10^6 ft^3$)

¹ Natural Gas Emission Factors were taken from AP-42 Table 3.2-2 (PM, PM-10, SO2, CO2e) and the attached stack test (CO, NOx, VOC)

Notes:

- Emissions assume 8,760 hours of operation for the engine per year
- Heating value of Natural Gas assumed to be 1030 Btu/ft³

MK Midstream Holdings - Goff West Compressor Station Facility ID# 033-00187 Engine Emission Summary (See Attachment M) HAPS (CE-6R)

Emissions are calculated as follows:

Emissions = Heat of Natural Gas (MMBtu) * Emission Factor (lbs/MMBtu)

¹ Natural Gas Emission Factors were taken from AP-42 Tables 3.2-2 and Formaldehyde emissions (lb/hr & tpy) were taken from the spec sheet

CE-6R - Natural Gas
4SLB
НАР
MMBtu
90,075

		Natural Gas			
HAP Emi	ssions	4SLB			
		(lbs/yr)	(lbs/hr)	(tons/yr)	
НАР	Natural Gas ¹ (Ib/MMBtu)				
1,1,2,2-Tetrachloroethane	4.00E-05	3.60	0.0004	0.0018	
,1,2-Trichloroethane	3.18E-05	2.86	0.0003	0.0014	
,3-Butadiene	2.67E-04	24.05	0.0027	0.0120	
,3-Dichloropropene	2.64E-05	2.38	0.0003	0.0012	
-Methylnaphthalene	3.32E-05	2.99	0.0003	0.0015	
2,2,4-Trimethylpentane	2.50E-04	22.52	0.0026	0.0113	
cenaphthene	1.25E-06	0.1126	1.29E-05	5.63E-05	
cenaphthylene	5.53E-06	0.4981	5.69E-05	0.0002	
Acetaldehyde	8.36E-03	753.02	0.0860	0.3765	
Acrolein	5.14E-03	462.98	0.0529	0.2315	
Benzene	4.40E-04	39.63	0.0045	0.0198	
Benzo(b)fluoranthene	1.66E-07	0.0150	1.71E-06	7.48E-06	
Benzo(e)pyrene	4.15E-07	0.0374	4.27E-06	1.87E-05	
Benzo(g,h,i)perylene	4.14E-07	0.0373	4.26E-06	1.86E-05	
Bipheyl	2.12E-04	19.10	0.0022	0.0095	
Carbon Tetrachloride	3.67E-05	3.31	0.0004	0.0017	
Chlorobenzene	3.04E-05	2.74	0.0003	0.0014	
Chloroform	2.85E-05	2.57	0.0003	0.0013	
Chrysene	6.93E-07	0.0624	7.13E-06	3.12E-05	
thylbenzene	3.97E-05	3.58	0.0004	0.0018	
thylene Dibromide	4.43E-05	3.99	0.0005	0.0020	
luoranthene	1.11E-06	0.1000	1.14E-05	5.00E-05	
luorene	5.67E-06	0.5107	5.83E-05	0.0003	
ormaldehyde	-	4,468	0.5100	2.23	
Methanol	2.50E-03	225.19	0.0257	0.1126	
Nethylene Chloride	2.00E-05	1.80	0.0002	0.0009	
n-Hexane	1.11E-03	99.98	0.0114	0.0500	
laphthalene	7.44E-05	6.70	0.0008	0.0034	
PAH	2.69E-05	2.42	0.0003	0.0012	
Phenanthrene	1.04E-05	0.9368	0.0001	0.0005	
Phenol	2.40E-05	2.16	0.0002	0.0011	
yrene	1.36E-06	0.1225	1.40E-05	6.13E-05	
Styrene	2.36E-05	2.13	0.0002	0.0011	
Tetrachloroethane	2.48E-06	0.2234	2.55E-05	0.0001	
Toluene	4.08E-04	36.75	0.0042	0.0184	
/inyl Chloride	1.49E-05	1.34	0.0002	0.0007	
(ylene	1.84E-04	16.57	0.0019	0.0083	
	Total:	6,215	0.7094	3.10	

Emissions Test Report

Prepared for: MK Midstream Holdings, LLC Prepared by: Steve LaRue Test Date: May 4, 2016

Regulatory Information

Permit #:	G35-A107B
Make:	Caterpillar
Model:	3606
Unit Number:	2669
Serial Number:	4ZS02061 (Run Hr- 2307)
Regulatory Citation	40 CFR 60 Subpart JJJJ
Target Parameter(s)	NOx, CO, and VOCs

Contact Information

Test Location

MK Midstream Holdings, LLC Cather CS Harrison County, WV

Primary Facility Contact Dave Sweeley MK Midstream Holdings, LLC 65 Professional Place Suite 200 Bridgeport, WV, 26330 724-759-9822 dsweeley@mkmidstream.com Test Company

Ecotest Energy Services 142 S. Johnson Rd. Houston, PA 15342

Company Contact Tyler Frey Compliance Specialist (570)428-2133 Tyler@Ecotest.us (570)428-2133

Wayne Philpot V.P. Operations Wayne@ecotest.us (325)348-8070

Introduction

Ecotest Energy Services (Ecotest) has been contracted by MK Midstream, to provide emissions testing on the Caterpillar, 3606 Spark-Ignited engine located at the Cather location in Harrison County, WV. The purpose of this testing was to demonstrate compliance with emission limitations contained in the sites air permit, permit G35-A107B, and 40 CFR 60 subpart JJJJ. There are emissions limitations for the oxides of nitrogen (NOx), carbon monoxide (CO) and volatile organic compounds (VOC) as non-methane non ethane hydrocarbons (NMNEHC).

Testing was conducted in accordance with an approved test protocol from the TX Source Testing Manual and the United States Environmental Protection Agency (USEPA) test methods. Testing for the engine occurred on May 4, 2016 and was conducted by Steve LaRue of Ecotest.

Summary of Test Results

	pounds	/ hour	tons / year		g/BHP-hr		ppmvd at 15% O ₂	
Pollutant	Permitted	Emitted	Permitted	Emitted	Permitted	Emitted	Permitted	Emitted
CO	0.75	0.06	3.29	0.27	2.00	0.02	270	3
NOx	1.96	0.86	8.57	3.78	1.00	0.24	82	23
VOCs	1.23	0.04	5.40	0.19	0.70	0.01	60	1

Emissions Summary

		Test Run		
	1st	2nd	3rd	Average
Test Run				
Start Time	11:19 AM	12:24 PM	1:29 PM	
End Time	12:20 PM	1:25 PM	2:29 PM	
Interval (minutes)	61	61	60	61
Ambient Conditions				
Dry Bulb / Ambient Temperature (°F)				N/A
Wet Bulb Temperature (°F)				N/A
Calculated Relative Humidity (%)	N/A	N/A	N/A	N/A
Relative Humidity (%)				N/A
Barometric Pressure ("Hg)				N/A
Elevation (feet)				
Emissions Source				
Manufacturer	Caterpillar	•		
Model	<mark>3606</mark>			
Serial Number	4ZS02061	(Run Hr- 23		
Unit ID	<mark>2669</mark>			
Manufacture/Rebuild Date				
Emissions Source Type	Engine			
Emissions Source Operational Data: Engine				
Fuel flow rate determined by:	Fuel Flow	Meter		
Fuel Flow Rate (SCFH)	9960	9986	10003	9983
Calculated Fuel Flow Rate (SCFH)	N/A	N/A	N/A	N/A
BSFC (BTU/BHP/hr), LHV				N/A
Calculated BSFC _{LHV} (BTU/BHP/hr)	5746	5761	5771	5759
Rich Burn / Lean Burn	Lean Burn			
Fuel Header Pressure (PSIG)				N/A
Calculated Load (%)	90.1	90.1	90.1	90.1
Current Power (BHP)	1600	1600	1600	1600
Max Rated Power (BHP)	1775			-
Max Rated Speed (RPM)	1000			
Emissions Control Equipment	Catalyst	•		
Engine Type	Spark-Ignit	ted		

CE-GR

Date of Manufacture	December 12, 2014	Engine Serial Number	42502061	Date Modified/	Reconstructed	Not An
Driver Rated HP	1775	Rated Speed in RPM	1000	Combustion Ty	pe .	Spark Ignited 4 Stroke
Number of Cylinders	6	Compression Ratio	9:1	Combustion Se		Ultra Lean Burr
Total Displacement, in ³	7762	Fuel Delivery Method	Fuel Injection	Combustion Ai		T.C./Aftercooled
Total Displacement, in		ruer beinery method	- ruer injection	combastion All	-	1.c./Atteressie
Raw Engine Emissions (Customer	Supplied Fuel Gas with littl	le to no H2S)				
Fuel Consumption	6860 LHV BTU/bhp-l	hr or 7611 HHV	/ BTU/bhp-hr			
Altitude	1200 ft					
Maximum Air Inlet Temp	90 F					
		g/bhp-hr ¹	Ib/MMBTU ²	lb/hr	ТРҮ	
Nitrogen Oxides (NOx)		0.5		1.96	8.57	
Carbon Monoxide (CO)		2.74		10.72	46.96	
Volatile Organic Compounds (VOC	or NMNEHC excluding CH2	O) 0.63		2.47	10.80	
Formaldehyde (CH2O)		0.26		1.02	4.46	
Particulate Matter (PM) Filterable+Con	densable		9.99E-03	1.35E-01	5.91E-01	
Sulfur Dioxide (SO2)			5.88E-04	7.94E-03	3.48E-02	
		g/bhp-hr ¹		lb/hr	Metric Tonne/yr	
		441		1726	6856	
Carbon Dioxide (CO2)		441				
Carbon Dioxide (CO2) Methane (CH4) ¹ g/bhp-hr are based on Caterpillar	r Specifications (GERP) Cust	2.66	elevation, and 90 F Max	10.41	41.35 e.	
Methane (CH4)	ed on 100% Load Operation mpounds to allow for variat PA's AP-42, Fifth Edition, Vo	2.66 omer supplied fuel gas, 1200 ft e . For air permitting, it is recomm ion in operating parameters and	nended to use a 20% saf fuel gas quality.	10.41 Air Inlet Temperatur ety margin	e.	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Note that g/bhp-hr values are base for CO, VOC and other organic cor ² Emission Factor obtained from El	ed on 100% Load Operation mpounds to allow for variat PA's AP-42, Fifth Edition, Vo	2.66 omer supplied fuel gas, 1200 ft e . For air permitting, it is recomm ion in operating parameters and	nended to use a 20% saf fuel gas quality.	10.41 Air Inlet Temperatur ety margin	e.	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillan Note that g/bhp-hr values are base for CO, VOC and other organic cor ² Emission Factor obtained from El Gas-Fired Reciprocating Engines, ¹ Catalytic Converter Emissions	ed on 100% Load Operation mpounds to allow for variat PA's AP-42, Fifth Edition, Vo Table 3.2-2).	2.66 omer supplied fuel gas, 1200 ft e . For air permitting, it is recomm ion in operating parameters and	nended to use a 20% saf fuel gas quality.	10.41 Air Inlet Temperatur ety margin	e.	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillan Note that g/bhp-hr values are base for CO, VOC and other organic cor ² Emission Factor obtained from El Gas-Fired Reciprocating Engines, T Catalytic Converter Emissions Cotalytic Converter Make amd Mo	ed on 100% Load Operation mpounds to allow for variat PA's AP-42, Fifth Edition, Vo Table 3.2-2). del: DCL	2.66 omer supplied fuel gas, 1200 ft e . For air permitting, it is recomm ion in operating parameters and lume I, Chapter 3: Stationary Int	nended to use a 20% saf fuel gas quality.	10.41 Air Inlet Temperatur ety margin	e.	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillai Note that g/bhp-hr values are base for CO, VOC and other organic cor ² Emission Factor obtained from El Gas-Fired Reciprocating Engines, T	ed on 100% Load Operation mpounds to allow for variat PA's AP-42, Fifth Edition, Vo Table 3.2-2). del: DCL	2.66 omer supplied fuel gas, 1200 ft e . For air permitting, it is recomm ion in operating parameters and lume I, Chapter 3: Stationary Int	nended to use a 20% saf fuel gas quality.	10.41 Air Inlet Temperatur ety margin	e.	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillan Note that g/bhp-hr values are base for CO, VOC and other organic con ² Emission Factor obtained from El Gas-Fired Reciprocating Engines, T Catalytic Converter Emissions Cotalytic Converter Make amd Mo Element Type:	ed on 100% Load Operation mpounds to allow for variat PA's AP-42, Fifth Edition, Vo Table 3.2-2). del: DCL DC- 2	2.66 omer supplied fuel gas, 1200 ft e . For air permitting, it is recomm ion in operating parameters and lume I, Chapter 3: Stationary Int	nended to use a 20% saf fuel gas quality.	10.41 Air Inlet Temperatur ety margin	e.	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillan Note that g/bhp-hr values are base for CO, VOC and other organic con ² Emission Factor obtained from El Gas-Fired Reciprocating Engines, T Catalytic Converter Emissions Cotalytic Converter Make amd Mo Element Type: Number of Elements in Housing:	ed on 100% Load Operation mpounds to allow for variat PA's AP-42, Fifth Edition, Vo Table 3.2-2). del: DCL DC- 2	2.66 omer supplied fuel gas, 1200 ft e . For air permitting, it is recomm ion in operating parameters and lume I, Chapter 3: Stationary Int , DC64-L2 24.23" Round	nended to use a 20% saf fuel gas quality.	10.41 Air Inlet Temperatur ety margin	e.	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillan Note that g/bhp-hr values are base for CO, VOC and other organic con ² Emission Factor obtained from El Gas-Fired Reciprocating Engines, T Catalytic Converter Emissions Cotalytic Converter Make amd Mo Element Type: Number of Elements in Housing:	ed on 100% Load Operation mpounds to allow for variat PA's AP-42, Fifth Edition, Vo Table 3.2-2). del: DCL DC- 2	2.66 omer supplied fuel gas, 1200 ft e . For air permitting, it is recomm ion in operating parameters and lume I, Chapter 3: Stationary Int , DC64-L2 24.23" Round erpillar ADEM A3, Burn Time	nended to use a 20% saf fuel gas quality.	10.41 Air Inlet Temperatur ety margin es (Section 3.2 Natur	e. al	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillan Note that g/bhp-hr values are base for CO, VOC and other organic con ² Emission Factor obtained from El Gas-Fired Reciprocating Engines, T Catalytic Converter Emissions Cotalytic Converter Make amd Mo Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx) Carbon Monoxide (CO)	ed on 100% Load Operation mpounds to allow for variat PA's AP-42, Fifth Edition, Vo Table 3.2-2). del: DCL DC- 2 Cata	2.66 omer supplied fuel gas, 1200 ft e . For air permitting, it is recomm ion in operating parameters and lume I, Chapter 3: Stationary Int , DC64-L2 24.23" Round erpillor ADEM A3, Burn Time <u>% Reduction</u> 0 93	nended to use a 20% saf fuel gas quality.	10.41 Air Inlet Temperatur ety margin es (Section 3.2 Natur Ib/hr	e. al TPY	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillan Note that g/bhp-hr values are base for CO, VOC and other organic con ² Emission Factor obtained from El Gas-Fired Reciprocating Engines, T Catalytic Converter Emissions Cotalytic Converter Make amd Mo Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx) Carbon Monoxide (CO)	ed on 100% Load Operation mpounds to allow for variat PA's AP-42, Fifth Edition, Vo Table 3.2-2). del: DCL DC- 2 Cata	2.66 omer supplied fuel gas, 1200 ft e . For air permitting, it is recomm ion in operating parameters and lume I, Chapter 3: Stationary Int , DC64-L2 24.23" Round erpillor ADEM A3, Burn Time <u>% Reduction</u> 0 93	nended to use a 20% saf fuel gas quality.	10.41 Air Inlet Temperatur ety margin es (Section 3.2 Natur section 3.2 Natur <u>Ib/hr</u> 1.96	e. ral TPY 8.57	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillan Note that g/bhp-hr values are base for CO, VOC and other organic con ² Emission Factor obtained from El Gas-Fired Reciprocating Engines, T Catalytic Converter Make amd Mo Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC	ed on 100% Load Operation mpounds to allow for variat PA's AP-42, Fifth Edition, Vo Table 3.2-2). del: DCL DC- 2 Cata	2.66 omer supplied fuel gas, 1200 ft e . For air permitting, it is recomm ion in operating parameters and lume I, Chapter 3: Stationary Int , DC64-L2 24.23" Round erpillor ADEM A3, Burn Time <u>% Reduction</u> 0 93	nended to use a 20% saf fuel gas quality.	10.41 Air Inlet Temperatur ety margin es (Section 3.2 Natur section 3.2 Natur b/hr 1.96 0.75	e. ral TPY 8.57 3.29	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillan Note that g/bhp-hr values are base for CO, VOC and other organic con ² Emission Factor obtained from El Gas-Fired Reciprocating Engines, T Catalytic Converter Emissions Cotalytic Converter Make amd Mod Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx)	ed on 100% Load Operation mpounds to allow for variat PA's AP-42, Fifth Edition, Vo Table 3.2-2). del: DCL DC- 2 Cata	2.66 omer supplied fuel gas, 1200 ft e . For air permitting, it is recomm ion in operating parameters and lume I, Chapter 3: Stationary Int , DC64-L2 24.23" Round erpillor ADEM A3, Burn Time <u>% Reduction</u> 0 93 O) 50	nended to use a 20% saf fuel gas quality.	10.41 Air Inlet Temperatur ety margin es (Section 3.2 Natur section 3.2 Natur b/hr 1.96 0.75 1.23	e. TPY 8.57 3.29 5.40	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillan Note that g/bhp-hr values are base for CO, VOC and other organic con ² Emission Factor obtained from El Gas-Fired Reciprocating Engines, Catalytic Converter Emissions Cotalytic Converter Make amd Mo Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC Formaldehyde (CH2O) Particulate Matter (PM)	ed on 100% Load Operation mpounds to allow for variat PA's AP-42, Fifth Edition, Vo Table 3.2-2). del: DCL DC- 2 Cata	2.66 omer supplied fuel gas, 1200 ft e . For air permitting, it is recomm ion in operating parameters and lume I, Chapter 3: Stationary Int . DC64-L2 24.23" Round erpillor ADEM A3, Burn Time <u>% Reduction</u> 0 93 O) 50 50	nended to use a 20% saf fuel gas quality.	10.41 Air Inlet Temperatur ety margin es (Section 3.2 Natur section 3.2 Natur b/hr 1.96 0.75 1.23 0.51	e. TPY 8.57 3.29 5.40 2.23	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillan Note that g/bhp-hr values are base for CO, VOC and other organic con ² Emission Factor obtained from El Gas-Fired Reciprocating Engines, T Catalytic Converter Emissions Cotalytic Converter Make amd Mo Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC Formaldehyde (CH2O)	ed on 100% Load Operation mpounds to allow for variat PA's AP-42, Fifth Edition, Vo Table 3.2-2). del: DCL DC- 2 Cata	2.66 omer supplied fuel gas, 1200 ft e . For air permitting, it is recomm ion in operating parameters and lume I, Chapter 3: Stationary Int . DC64-L2 24.23" Round erpillar ADEM A3, Burn Time <u>% Reduction</u> 0 93 O) 50 50 0	nended to use a 20% saf fuel gas quality.	10.41 Air Inlet Temperatur ety margin es (Section 3.2 Natur section 3.2 Natur 1.96 0.75 1.23 0.51 1.35E-01	e. al <u>TPY</u> 8.57 3.29 5.40 2.23 5.91E-01	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillan Note that g/bhp-hr values are base for CO, VOC and other organic con ² Emission Factor obtained from El Gas-Fired Reciprocating Engines, Catalytic Converter Emissions Cotalytic Converter Make amd Mo Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC Formaldehyde (CH2O) Particulate Matter (PM)	ed on 100% Load Operation mpounds to allow for variat PA's AP-42, Fifth Edition, Vo Table 3.2-2). del: DCL DC- 2 Cata	2.66 omer supplied fuel gas, 1200 ft e . For air permitting, it is recomm ion in operating parameters and lume I, Chapter 3: Stationary Int <i>pC64-L2</i> 24.23" Round erpillar ADEM A3, Burn Time $\frac{\frac{\% Reduction}{0}}{93}$ O) 50 0 0	nended to use a 20% saf fuel gas quality.	10.41 Air Inlet Temperatur ety margin es (Section 3.2 Natur 1.96 0.75 1.23 0.51 1.35E-01 7.94E-03	e. al <u>TPY</u> 8.57 3.29 5.40 2.23 5.91E-01 3.48E-02	

CE-GR

1610 Woodstead Ct, Suite 245, The Woodlands, Texas 77380 USA Tel: 877-965-8989 Fax: 281-605-5858 info@dcl-inc.com www.dcl-inc.com

GLOBAL LEADER IN EMISSION CONTROL SOLUTIONS

То:	Chris Magee	Phone:	
Company:	USA Compression	Email	
Date:	September 21, 2015	No. Pages:	1

Dear Chris,

We hereby guarantee that our Model DC64L2 specified below with two (2) elements installed as described below, and sized for the following engine:

Engine Data		
Engine Model	Caterpillar G3606	
Power	1775HP	
Fuel	High Methane NG	
Exhaust Flow Rate	12, 211 acfm	
Exhaust Temperature	847°F	

Catalyst Data	
Catalyst Model	DC64L2
Туре	Oxidation- A
# of Elements	2
Cell Density	300 cpsi
Approx Dimensions	See attached drawing
Approx Pressure Drop	4.1" w.c

will perform as follows:

Exhaust Component	Engine Output (g-bhp/hr)	Converter Output % reduction	
со	2.74	93%	
VOC	0.63	50%	
CH20	0.26	50%	

for a period of 1 year or 8000 hours, whichever comes first, subject to all terms and conditions contained in the attached warranty document being respected and met.

Best Regards,

On behalf of DCL America Inc.

Lisa Barber

416-788-8021 lbarber@dcl-inc.com

MK Midstream Holdings - Goff West Compressor Station Facility ID# 033-00187 Engine Serial JEF02001 Emission Summary CE-7R

Criteria Pollutants (See Attachment M)

Fuel Usage				
Fuel Units Total				
Natural Gas	ft ³	96,184,800		

Emission Factors ¹			
	Engine		
Pollutant	Natural Gas (lbs/ 10 ⁶ ft ³)		
Particulates	33.38		
Sulfur Dioxide	1.96		
Oxides of Nitrogen	446.22		
PM-10	33.38		
VOC	214.19		
Carbon Monoxide	1,089		
CO2 Equiv	158,745		

Emissions				
	Engine			
Pollutant	Natural Gas (lbs/yr)	Natural Gas (lbs/hr)	Natural Gas (tons/yr)	
Particulates	996.00	0.1140	0.4980	
Sulfur Dioxide	58.60	0.0067	0.0293	
Oxides of Nitrogen	13,320	1.52	6.66	
PM-10	996.00	0.1140	0.4980	
VOC	6,400	0.7300	3.20	
Carbon Monoxide	32,380	3.70	16.19	
CO2 Equiv	15,268,872	1,743	7,634	

Notes:

¹ Fuel Usage taken from the Engine Specification Sheet (183 scfm * 525600 min/yr = 96,184,800 mmscf)

² Natural Gas Emission Factors were taken from the Engine Emission

³ Emissions are taken from the Engine Emission Specification Sheet (See attached)

- Emissions assume 8,760 hours of operation for the engine per year

MK Midstream Holdings - Goff West Compressor Station Facility ID# 033-00187 Engine Emission Summary (See Attachment M) HAPS (CE-7R)

Emissions are calculated as follows:

Emissions = Heat of Natural Gas (MMBtu) * Emission Factor (lbs/MMBtu)

¹ Natural Gas Emission Factors were taken from AP-42 Tables 3.2-2 and Formaldehyde emissions (lb/hr & tpy) were taken from the spec sheet

CE-7R - Natural Gas
4SLB
НАР
MMBtu
99,070

HAP Emissions		Natural Gas			
		Engine			
		(lbs/yr)	(lbs/hr)	(tons/yr)	
НАР	Natural Gas ¹ (Ib/MMBtu)				
1,1,2,2-Tetrachloroethane	4.00E-05	3.96	0.0005	0.0020	
,1,2-Trichloroethane	3.18E-05	3.15	0.0004	0.0016	
,3-Butadiene	2.67E-04	26.45	0.0030	0.0132	
,3-Dichloropropene	2.64E-05	2.62	0.0003	0.0013	
-Methylnaphthalene	3.32E-05	3.29	0.0004	0.0016	
2,2,4-Trimethylpentane	2.50E-04	24.77	0.0028	0.0124	
cenaphthene	1.25E-06	0.1238	1.41E-05	6.19E-05	
cenaphthylene	5.53E-06	0.5479	6.25E-05	0.0003	
Acetaldehyde	8.36E-03	828.23	0.0945	0.4141	
Acrolein	5.14E-03	509.22	0.0581	0.2546	
Benzene	4.40E-04	43.59	0.0050	0.0218	
Benzo(b)fluoranthene	1.66E-07	0.0164	1.88E-06	8.22E-06	
Benzo(e)pyrene	4.15E-07	0.0411	4.69E-06	2.06E-05	
Benzo(g,h,i)perylene	4.14E-07	0.0410	4.68E-06	2.05E-05	
Bipheyl	2.12E-04	21.00	0.0024	0.0105	
Carbon Tetrachloride	3.67E-05	3.64	0.0004	0.0018	
Chlorobenzene	3.04E-05	3.01	0.0003	0.0015	
Chloroform	2.85E-05	2.82	0.0003	0.0014	
Chrysene	6.93E-07	0.0687	7.84E-06	3.43E-05	
thylbenzene	3.97E-05	3.93	0.0004	0.0020	
thylene Dibromide	4.43E-05	4.39	0.0005	0.0022	
luoranthene	1.11E-06	0.1100	1.26E-05	5.50E-05	
luorene	5.67E-06	0.5617	6.41E-05	0.0003	
ormaldehyde	-	1,840	0.2100	0.9200	
Methanol	2.50E-03	247.68	0.0283	0.1238	
Nethylene Chloride	2.00E-05	1.98	0.0002	0.0010	
n-Hexane	1.11E-03	109.97	0.0126	0.0550	
laphthalene	7.44E-05	7.37	0.0008	0.0037	
PAH	2.69E-05	2.66	0.0003	0.0013	
Phenanthrene	1.04E-05	1.03	0.0001	0.0005	
Phenol	2.40E-05	2.38	0.0003	0.0012	
yrene	1.36E-06	0.1347	1.54E-05	6.74E-05	
Styrene	2.36E-05	2.34	0.0003	0.0012	
Tetrachloroethane	2.48E-06	0.2457	2.80E-05	0.0001	
Toluene	4.08E-04	40.42	0.0046	0.0202	
/inyl Chloride	1.49E-05	1.48	0.0002	0.0007	
(ylene	1.84E-04	18.23	0.0021	0.0091	
	Total:	3,761	0.4293	1.88	

USA Compression Unit 2408 Caterpillar G3516BLE Engine Emissions Date of Manufacture 11/16/2012 **Engine Serial Number** JEF02001 Date Modified/Reconstructed Not Any Driver Rated HP 1380 Rated Speed in RPM 1400 **Combustion Type** Spark Ignited 4 Stroke Number of Cylinders 16 **Compression Ratio** 8:1 **Combustion Setting** Ultra Lean Burn Carburetor Total Displacement (in³) 4211 Fuel Delivery Method **Combustion Air Treatment** T.C./Aftercooled Raw Engine Emissions (905 LHV BTU/SCF Fuel Gas with little to no H2S) Fuel Consumption 7442 LHV BTU/bhp-hr 8255 HHV BTU/bhp-hr or Altitude 1200 ft Maximum Air Inlet Temp 90 F g/bhp-hr¹ lb/MMBTU² lb/hr TPY Nitrogen Oxides (NOx) 0.5 1.52 6.66 Carbon Monoxide (CO) 2.43 7.39 32.38 Volatile Organic Compounds (VOC or NMNEHC) 0.48 1.46 6.40 Formaldehyde (CH2O) 0.43 1.31 5.73 Particulate Matter (PM) Filterable+Condensable 4.98E-01 9.99E-03 1.14E-01 Sulfur Dioxide (SO2) 5.88E-04 6.70E-03 2.93E-02 g/bhp-hr¹ lb/hr Metric Tonne/yr Carbon Dioxide (CO2) 472 1436 5705 4.04 Methane (CH4) 48.83 12.29 g/bhp-hr are based on Caterpillar Specifications (GERP) customer supplied fuel gas, 1200 ft elevation, and 90 F Max Air Inlet Temperature. Note that g/bhp-hr values are based on 100% Load Operation. For Air Permitting, it is recommended to add a safety margin to CO, VOC, and Formaldehyde to account for variations in fuel gas composition and load. ⁴ Emission Factor obtained from EPA's AP-42, Fifth Edition, Volume I, Chapter 3: Stationary Internal Combution Sources (Section 3.2 Natural Gas-Fired Reciprocating Engines, Table 3.2-2). Catalytic Converter Emissions Catalytic Converter Make amd Model: EMIT ELX-5000Z-1616F Element Type: EMIT RE-3615Z Number of Elements in Housing: 2 Air/Fuel Ratio Control Caterpillar ADEM3, NOx Feedback % Reduction g/bhp-hr lb/hr TPY Nitrogen Oxides (NOx) 0 0.5 1.52 6.66 Carbon Monoxide (CO) 16.19 50 1.22 3.70 Volatile Organic Compounds (VOC or NMNEHC) 50 0.24 0.73 3.20 Formaldehyde (CH2O) 50 0.22 0.65 2.86 Particulate Matter (PM) 0 0.037396376 1.14E-01 4.98E-01 0.002201747 2.93E-02 Sulfur Dioxide (SO2) 0 6.70E-03 % Reduction lb/hr Metric Tonne/yr Carbon Dioxide (CO2)

1436

12.29

5705 48.83

0

0

Methane (CH4)

Prepared For:

Chris Magee

USA COMPRESSION

APPLICATION INFORMATION DRIVER

Make:	CATERPILLAR
Model:	G3516B
Horsepower:	1380
RPM:	1400
Compression Ratio:	8.0
Exhaust Flow Rate:	9042 CFM
Exhaust Temperature:	982 °F
Reference:	DM8800-07
Fuel:	Natural Gas
Annual Operating Hours:	8760

UNCONTROLLED EMISSIONS DATA

	<u>g/bhp-hr</u>	<u>Lb/hr</u>	Tons/Year
NO _x :	0.50	1.52	6.66
CO:	2.43	7.39	32.38
THC:	475.00	14.45	63.30
NMHC:	0.71	2.16	9.46
NMNEHC	0.48	1.46	6.40
HCHO	0.43	1.31	5.73
Oxygen:	0.30%		

POST CATALYST EMISSIONS

	<u>g/bhp-hr</u>	<u>Lb/hr</u>	<u>Tons/Year</u>
NO _x :	Unaffected by O	xidation Catal	yst
CO:	<1.22	<3.70	<16.19
HCHO:	<0.07	<0.21	<0.92

2555 Heartland Drive Sheridan, WY 82801 Office: 307.673.0883 | Direct: 307.675.5073 cparisi@emittechnologies.com

QUOTE: QUO-13825-F8N1

CONTROL EQUIPMENT

Catalyst Housing

Model: Manufacturer: Element Size: Housing Type: Catalyst Installation: Construction: Sample Ports: Inlet Connections: Outlet Connections: Configuration: Silencer: Silencer Grade: Insertion Loss:

ELX-5000Z-1616F-30CEE-361 EMIT Technologies, Inc Rectangle, 36" x 15" x 3.5" 3 Element Capacity Accessible Housing 10 gauge Carbon Steel 6 (0.5" NPT) 16" Flat Face Flange 16" Flat Face Flange End In / End Out Integrated Hospital Enhanced 35-50 dBA

Catalyst Element

Model:	RT-3615-Z
Catalyst Type:	Oxidation, Standard Precious Group Metals
Substrate Type:	BRAZED
Element Size:	Rectangle, 36" x 15" x 3.5"
Element Quantity:	2

MK Midstream Holdings - Goff West Compressor Station Facility ID# 033-00187 Engine Serial JEF02167 Emission Summary CE-8R Criteria Pollutants (See Attachment M)

Fuel Usage				
Fuel	Units	Total		
Natural Gas	ft ³	96,184,800		

Emission Factors ¹			
	Engine		
Pollutant	Natural Gas (lbs/ 10 ⁶ ft ³)		
Particulates	33.38		
Sulfur Dioxide	1.96		
Oxides of Nitrogen	446.22		
PM-10	33.38		
VOC	214.19		
Carbon Monoxide	1,089		
CO2 Equiv	158,745		

Emissions					
	Engine				
Pollutant	Natural GasNatural GasNatural Gas(lbs/yr)(lbs/hr)(tons/yr)				
Particulates	996.00 0.1140		0.4980		
Sulfur Dioxide	58.60	0.0067	0.0293		
Oxides of Nitrogen	13,320	1.52	6.66		
PM-10	996.00	0.1140	0.4980		
VOC	6,400	0.7300	3.20		
Carbon Monoxide	32,380	3.70	16.19		
CO2 Equiv	15,268,872	1,743	7,634		

<u>Notes</u>

¹ Fuel Usage taken from the Engine Specification Sheet (183 scfm * 525600 min/yr = 96,184,800 mmscf)

² Natural Gas Emission Factors were taken from the Engine Emission Specification Sheet (See attached)

³ Emissions are taken from the Engine Emission Specification Sheet (See

- Emissions assume 8,760 hours of operation for the engine per year

MK Midstream Holdings - Goff West Compressor Station Facility ID# 033-00187 Engine Emission Summary (See Attachment M) HAPS (CE-8R)

Emissions are calculated as follows:

Emissions = Heat of Natural Gas (MMBtu) * Emission Factor (lbs/MMBtu)

¹ Natural Gas Emission Factors were taken from AP-42 Tables 3.2-2 and Formaldehyde emissions (lb/hr & tpy) were taken from the spec sheet

CE-8R - Natural Gas
4SLB
НАР
MMBtu
99,070

HAP Emissions		Natural Gas Engine			
НАР	Natural Gas ¹ (Ib/MMBtu)				
1,1,2,2-Tetrachloroethane	4.00E-05	3.96	0.0005	0.0020	
1,1,2-Trichloroethane	3.18E-05	3.15	0.0004	0.0016	
1,3-Butadiene	2.67E-04	26.45	0.0030	0.0132	
1,3-Dichloropropene	2.64E-05	2.62	0.0003	0.0013	
2-Methylnaphthalene	3.32E-05	3.29	0.0004	0.0016	
2,2,4-Trimethylpentane	2.50E-04	24.77	0.0028	0.0124	
Acenaphthene	1.25E-06	0.1238	1.41E-05	6.19E-05	
Acenaphthylene	5.53E-06	0.5479	6.25E-05	0.0003	
Acetaldehyde	8.36E-03	828.23	0.0945	0.4141	
Acrolein	5.14E-03	509.22	0.0581	0.2546	
Benzene	4.40E-04	43.59	0.0050	0.0218	
Benzo(b)fluoranthene	1.66E-07	0.0164	1.88E-06	8.22E-06	
Benzo(e)pyrene	4.15E-07	0.0411	4.69E-06	2.06E-05	
Benzo(g,h,i)perylene	4.14E-07	0.0410	4.68E-06	2.05E-05	
Bipheyl	2.12E-04	21.00	0.0024	0.0105	
Carbon Tetrachloride	3.67E-05	3.64	0.0004	0.0018	
Chlorobenzene	3.04E-05	3.01	0.0003	0.0015	
Chloroform	2.85E-05	2.82	0.0003	0.0014	
Chrysene	6.93E-07	0.0687	7.84E-06	3.43E-05	
Ethylbenzene	3.97E-05	3.93	0.0004	0.0020	
Ethylene Dibromide	4.43E-05	4.39	0.0005	0.0022	
luoranthene	1.11E-06	0.1100	1.26E-05	5.50E-05	
luorene	5.67E-06	0.5617	6.41E-05	0.0003	
Formaldehyde	-	1,840	0.2100	0.9200	
Viethanol	2.50E-03	247.68	0.0283	0.1238	
Methylene Chloride	2.00E-05	1.98	0.0002	0.0010	
n-Hexane	1.11E-03	109.97	0.0126	0.0550	
Naphthalene	7.44E-05	7.37	0.0008	0.0037	
РАН	2.69E-05	2.66	0.0003	0.0013	
Phenanthrene	1.04E-05	1.03	0.0001	0.0005	
Phenol	2.40E-05	2.38	0.0003	0.0012	
Pyrene	1.36E-06	0.1347	1.54E-05	6.74E-05	
Styrene	2.36E-05	2.34	0.0003	0.0012	
Fetrachloroethane	2.48E-06	0.2457	2.80E-05	0.0001	
Foluene	4.08E-04	40.42	0.0046	0.0202	
/inyl Chloride	1.49E-05	1.48	0.0002	0.0007	
Xylene	1.84E-04	18.23	0.0021	0.0091	
	Total:	3,761	0.4293	1.88	

2439 Caterpillar G3516BLE Engine Emissions

3/17/2013	Engine Serial Number	JEF02167	Date Modified/Reconstructed	Not Any
1380	Rated Speed in RPM	1400	Combustion Type	Spark Ignited 4 Stroke
16	Compression Ratio	8:1	Combustion Setting	Ultra Lean Burn
4230	Fuel Delivery Method	Carburetor	Combustion Air Treatment	T.C./Aftercooled
	1380 16	1380 Rated Speed in RPM 16 Compression Ratio	1380 Rated Speed in RPM 1400 16 Compression Ratio 8:1	1380 Rated Speed in RPM 1400 Combustion Type 16 Compression Ratio 8:1 Combustion Setting

With Customer Supplied Fuel Gas Analysis

Fuel Consumption	7442 LHV BTU/bhp-hr or	8255	HHV BTU/bhp-hr		
Altitude	1200 ft				
Maximum Air Inlet Temp	90 F				
		g/bhp-hr ¹	lb/MMBTU ²	lb/hr	ТРҮ
Nitrogen Oxides (NOx)		0.5		1.52	6.66
Carbon Monoxide (CO)		2.43		7.39	32.38
Volatile Organic Compounds	s (VOC or NMNEHC excluding CH2O)	0.48		1.46	6.40
Formaldehyde (CH2O)		0.43		1.31	5.73
Particulate Matter (PM) Filter	able+Condensable		9.99E-03	1.14E-01	4.98E-01
Sulfur Dioxide (SO2)			5.88E-04	6.70E-03	2.93E-02
		g/bhp-hr ¹		lb/hr	Metric Tonne/yr
Carbon Dioxide (CO2)		472		1436	5705
Methane (CH4)		4.04		12.29	48.83

¹ g/bhp-hr are based on Caterpillar Specifications (GERP) with customer supplied fuel gas, 1200 ft elevation, and 90 F Max Air Inlet Temperature. Note that g/bhp-hr values are based on 100% Load Operation. For Air Permitting, it is recommended to add a safety margin to CO, VOC, and Formaldehyde to account for variations in fuel gas composition and load.

² Emission Factor obtained from EPA's AP-42, Fifth Edition, Volume I, Chapter 3: Stationary Internal Combution Sources (Section 3.2 Natural Gas-Fired Reciprocating Engines, Table 3.2-2).

Catalytic Converter Emissions

Catalytic Converter Make and Model:	DCL, DC64L2-HSG+
Element Type:	DC64, 24.23" round A-Coat
Number of Elements in Housing:	2
Air/Fuel Ratio Control	Caterpillar ADEM3, NOx Feedback

	% Reduction	lb/hr	ТРҮ
Nitrogen Oxides (NOx)	0	1.52	6.66
Carbon Monoxide (CO)	50	3.70	16.19
Volatile Organic Compounds (VOC or NMNEHC)	50	0.73	3.20
Formaldehyde (CH2O)	50	0.65	2.86
Particulate Matter (PM)	0	1.14E-01	4.98E-01
Sulfur Dioxide (SO2)	0	6.70E-03	2.93E-02
	% Reduction	lb/hr	Metric Tonne/yr
Carbon Dioxide (CO2)	0	1436	5705
Methane (CH4)	0	12.29	48.83

Prepared For:

Chris Magee

USA COMPRESSION

APPLICATION INFORMATION DRIVER

Make:	CATERPILLAR
Model:	G3516B
Horsepower:	1380
RPM:	1400
Compression Ratio:	8.0
Exhaust Flow Rate:	9042 CFM
Exhaust Temperature:	982 °F
Reference:	DM8800-07
Fuel:	Natural Gas
Annual Operating Hours:	8760

UNCONTROLLED EMISSIONS DATA

	<u>g/bhp-hr</u>	<u>Lb/hr</u>	Tons/Year
NO _x :	0.50	1.52	6.66
CO:	2.43	7.39	32.38
THC:	475.00	14.45	63.30
NMHC:	0.71	2.16	9.46
NMNEHC	0.48	1.46	6.40
HCHO	0.43	1.31	5.73
Oxygen:	0.30%		

POST CATALYST EMISSIONS

	<u>g/bhp-hr</u>	<u>Lb/hr</u>	<u>Tons/Year</u>
NO _x :	Unaffected by O	xidation Catal	yst
CO:	<1.22	<3.70	<16.19
HCHO:	<0.07	<0.21	<0.92

2555 Heartland Drive Sheridan, WY 82801 Office: 307.673.0883 | Direct: 307.675.5073 cparisi@emittechnologies.com

QUOTE: QUO-13825-F8N1

CONTROL EQUIPMENT

Catalyst Housing

Model: Manufacturer: Element Size: Housing Type: Catalyst Installation: Construction: Sample Ports: Inlet Connections: Outlet Connections: Configuration: Silencer: Silencer Grade: Insertion Loss:

ELX-5000Z-1616F-30CEE-361 EMIT Technologies, Inc Rectangle, 36" x 15" x 3.5" 3 Element Capacity Accessible Housing 10 gauge Carbon Steel 6 (0.5" NPT) 16" Flat Face Flange 16" Flat Face Flange End In / End Out Integrated Hospital Enhanced 35-50 dBA

Catalyst Element

Model:	RT-3615-Z
Catalyst Type:	Oxidation, Standard Precious Group Metals
Substrate Type:	BRAZED
Element Size:	Rectangle, 36" x 15" x 3.5"
Element Quantity:	2

MK Midstream Holdings - Goff West Compressor Station Facility ID# 033-00187 Engine Serial JEF02341 Emission Summary Criteria Pollutants CE-9R (See Attachment M)

	Fuel Usage ¹	
Fuel	Units	Total
Natural Gas	ft ³	96,886,450

Emission Fa	actors ²
	Engine
Pollutant	Natural Gas (lbs/ 10 ⁶ ft ³)
Particulates	10.29
Sulfur Dioxide	0.6056
Oxides of Nitrogen	446.22
PM-10	10.29
VOC	428.37
Carbon Monoxide	2,169
CO2 Equiv	421,234

	Emissio	ns ³	
		Engine	
Pollutant	Natural Gas (lbs/yr)	Natural Gas (Ibs/hr)	Natural Gas (tons/yr)
Particulates	996.00	0.1140	0.4980
Sulfur Dioxide	58.60	0.0067	0.0293
Oxides of Nitrogen	13,320	1.52	6.66
PM-10	996.00	0.1140	0.4980
VOC	6,400	0.7300	3.20
Carbon Monoxide	4,540	0.5200	2.27
CO2 Equiv	12,579,360	1,436	6,290

Notes:

¹ Fuel Usage taken from the Engine Specification Sheet (183 scfm * 525600 min/yr = 96,184,800 mmscf)

² Natural Gas Emission Factors were taken from the Engine Emission Specification Sheet (See attached)

³ Emissions are taken from the Engine Emission Specification Sheet (See attached)

- Emissions assume 8,760 hours of operation for the engine per year

MK Midstream Holdings - Goff West Compressor Station Facility ID# 033-00187 Engine Serial JEF02341 Emission Summary HAPS CE-9R (See Attachment M)

Emissions are calculated as follows:

Emissions = Heat of Natural Gas (MMBtu) * Emission Factor (lbs/MMBtu)

- Natural Gas Emission Factors were taken from AP-42 Tables 3.2-2

- Formaldehyde emissions taken from the Engine Emission Specification Sheet (See attached)

CE-9R - Natural Gas
4SLB
НАР
MMBtu/yr
94,065

		Natural Gas			
HAP Emi	<u>ssions</u>	Engine Emissions			
		(lbs/yr)	(lbs/hr)	(tons/yr)	
НАР	Natural Gas (Ib/MMBtu)				
1,1,2,2-Tetrachloroethane	4.00E-05	3.76	0.0004	0.0019	
,1,2-Trichloroethane	3.18E-05	2.99	0.0003	0.0015	
,3-Butadiene	2.67E-04	25.12	0.0029	0.0126	
,3-Dichloropropene	2.64E-05	2.48	0.0003	0.0012	
-Methylnaphthalene	3.32E-05	3.12	0.0004	0.0016	
2,2,4-Trimethylpentane	2.50E-04	23.52	0.0027	0.0118	
cenaphthene	1.25E-06	0.1176	1.34E-05	5.88E-05	
Acenaphthylene	5.53E-06	0.5202	5.94E-05	0.0003	
Acetaldehyde	8.36E-03	786.38	0.0898	0.3932	
Acrolein	5.14E-03	483.49	0.0552	0.2417	
Benzene	4.40E-04	41.39	0.0047	0.0207	
Benzo(b)fluoranthene	1.66E-07	0.0156	1.78E-06	7.81E-06	
Benzo(e)pyrene	4.15E-07	0.0390	4.46E-06	1.95E-05	
Benzo(g,h,i)perylene	4.14E-07	0.0389	4.45E-06	1.95E-05	
Bipheyl	2.12E-04	19.94	0.0023	0.0100	
Carbon Tetrachloride	3.67E-05	3.45	0.0004	0.0017	
Chlorobenzene	3.04E-05	2.86	0.0003	0.0014	
Chloroform	2.85E-05	2.68	0.0003	0.0013	
Chrysene	6.93E-07	0.0652	7.44E-06	3.26E-05	
thylbenzene	3.97E-05	3.73	0.0004	0.0019	
thylene Dibromide	4.43E-05	4.17	0.0005	0.0021	
luoranthene	1.11E-06	0.1044	1.19E-05	5.22E-05	
luorene	5.67E-06	0.5333	6.09E-05	0.0003	
ormaldehyde	-	2,754	0.3144	1.38	
Methanol	2.50E-03	235.16	0.0268	0.1176	
Nethylene Chloride	2.00E-05	1.88	0.0002	0.0009	
n-Hexane	1.11E-03	104.41	0.0119	0.0522	
Japhthalene	7.44E-05	7.00	0.0008	0.0035	
РАН	2.69E-05	2.53	0.0003	0.0013	
Phenanthrene	1.04E-05	0.9783	0.0001	0.0005	
Phenol	2.40E-05	2.26	0.0003	0.0011	
Pyrene	1.36E-06	0.1279	1.46E-05	6.40E-05	
tyrene	2.36E-05	2.22	0.0003	0.0011	
Tetrachloroethane	2.48E-06	0.2333	2.66E-05	0.0001	
Toluene	4.08E-04	38.38	0.0044	0.0192	
/inyl Chloride	1.49E-05	1.40	0.0002	0.0007	
Kylene	1.84E-04	17.31	0.0020	0.0087	
	Total:	4,579	0.5227	2.29	

2477 Caterpillar G3516BLE Engine Emissions

Date of Manufacture	7/22/2013	Engine Serial Number	JEF02341	Date Modified/Reconstructed	Not Any
Driver Rated HP	1380	Rated Speed in RPM	1400	Combustion Type	Spark Ignited 4 Stroke
Number of Cylinders	16	Compression Ratio	8:1	Combustion Setting	Ultra Lean Burn
Total Displacement (in ³)	4230	Fuel Delivery Method	Carburetor	Combustion Air Treatment	T.C./Aftercooled

With Customer Supplied Fuel Gas Analysis

Fuel Consumption	7442 LHV BTU/bhp-hr or	8255	HHV BTU/bhp-hr		
Altitude	1200 ft				
Maximum Air Inlet Temp	90 F				
		g/bhp-hr ¹	lb/MMBTU ²	lb/hr	ТРҮ
Nitrogen Oxides (NOx)		0.5		1.52	6.66
Carbon Monoxide (CO)		2.43		7.39	32.38
Volatile Organic Compound	s (VOC or NMNEHC excluding CH2O)	0.48		1.46	6.40
Formaldehyde (CH2O)		0.43		1.31	5.73
Particulate Matter (PM) Filte	rable+Condensable		9.99E-03	1.14E-01	4.98E-01
Sulfur Dioxide (SO2)			5.88E-04	6.70E-03	2.93E-02
		g/bhp-hr ¹		lb/hr	Metric Tonne/yr
Carbon Dioxide (CO2)		472		1436	5705
Methane (CH4)		4.04		12.29	48.83

¹ g/bhp-hr are based on Caterpillar Specifications (GERP) with customer supplied fuel gas, 1200 ft elevation, and 90 F Max Air Inlet Temperature. Note that g/bhp-hr values are based on 100% Load Operation. For Air Permitting, it is recommended to add a safety margin to CO, VOC, and Formaldehyde to account for variations in fuel gas composition and load.

² Emission Factor obtained from EPA's AP-42, Fifth Edition, Volume I, Chapter 3: Stationary Internal Combution Sources (Section 3.2 Natural Gas-Fired Reciprocating Engines, Table 3.2-2).

Catalytic Converter Emissions

Catalytic Converter Make and Model:	DCL, DC64L2-HSG+
Element Type:	DC64, 24.23" round A-Coat
Number of Elements in Housing:	2
Air/Fuel Ratio Control	Caterpillar ADEM3, NOx Feedback

0		
0	1.52	6.66
93	0.52	2.27
50	0.73	3.20
76	0.31	1.38
0	1.14E-01	4.98E-01
0	6.70E-03	2.93E-02
% Reduction	lb/hr	Metric Tonne/yr
0	1436	5705
0	12.29	48.83
	50 76 0 0 <u>% Reduction</u> 0	50 0.73 76 0.31 0 1.14E-01 0 6.70E-03 <u>% Reduction</u> Ib/hr 0 1436

1610 Woodstead Ct, Suite 245, The Woodlands, Texas 77380 USA Tel: 877-965-8989 Fax: 281-605-5858 info@dcl-inc.com www.dcl-inc.com

GLOBAL LEADER IN EMISSION CONTROL SOLUTIONS

То:	Chris Magee	Phone:	
Company:	USA Compression	Email	
Date:	November 18, 2014	No. Pages:	1

Dear Chris,

We hereby guarantee that our Model DC64A specified below with two (2) elements installed as described below, and sized for the following engine:

Engine Data	
Engine Model	Caterpillar
	G3516B
Power	1380HP
Fuel	PQNG
Exhaust Flow Rate	9109 acfm
Exhaust Temperature	992 °F

Catalyst Data	
Catalyst Model	DC64A
Туре	Oxidation- A
# of Elements	2
Cell Density	300 cpsi
Approx Dimensions	See attached
	drawing
Approx Pressure Drop	3.4" w.c

will perform as follows:

Exhaust Component	Converter Output (% Reduction)
СО	93%
VOC	50%
Formaldehyde (HCHO)	76%

for a period of 1 year or 8000 hours, whichever comes first, subject to all terms and conditions contained in the attached warranty document being respected and met.

Best Regards,

On behalf of DCL America Inc.

Lisa Barber 416-788-8021 Ibarber@dcl-inc.com

G3516B

ENGINE SPEED (rpm):

COMPRESSION RATIO:

AFTERCOOLER TYPE:

COMBUSTION:

SET POINT TIMING:

GAS COMPRESSION APPLICATION

AFTERCOOLER TYPE: AFTERCOOLER - STAGE 2 INLET (°F): AFTERCOOLER - STAGE 1 INLET (°F): JACKET WATER OUTLET (°F): ASPIRATION: COOLING SYSTEM: CONTROL SYSTEM: EXHAUST MANIFOLD:

NOx EMISSION LEVEL (g/bhp-hr NOx):

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Goff CS

RATING STRATEGY:

STANDARD CONTINUOUS CAT WIDE RANGE WITH AIR FUEL RATIO CONTROL

8	RATING LEVEL:
SCAC	FUEL SYSTEM:
130	
201	SITE CONDITIONS
210	FUEL:
ТА	FUEL PRESSURE
JW+OC+1AC, 2AC	FUEL METHANE N
ADEM3	FUEL LHV (Btu/scf)
DRY	ALTITUDE(ft):
LOW EMISSION	MAXIMUM INLET A
0.5	STANDARD RATE

1400

30

TE CONDITIONS:	
JEL:	
JEL PRESSURE RANGE(psig): (See note 1)	
JEL METHANE NUMBER:	
JEL LHV (Btu/scf):	
_TITUDE(ft):	
AXIMUM INLET AIR TEMPERATURE(°F):	
TANDARD RATED POWER:	

GOFF 1-5-17 7.0-40.0 89.3 936 1200 90 1380 bhp@1400rpm

			MAXIMUM RATING		TING AT N IR TEMPE	
RATING	NOTES	LOAD	100%	100%	75%	50%
ENGINE POWER (WITHOUT FAN)	(2)	bhp	1380	1380	1035	690
INLET AIR TEMPERATURE		°F	90	90	90	90
ENGINE DATA						
FUEL CONSUMPTION (LHV)	(3)	Btu/bhp-hr	7442	7442	7971	8561
FUEL CONSUMPTION (HHV)	(3)	Btu/bhp-hr	8255	8255	8841	9496
AIR FLOW (@inlet air temp, 14.7 psia) (WET)	(4)(5)	ft3/min	3202	3202	2511	1756
AIR FLOW (WET)	(4)(5)	lb/hr	13860	13860	10873	7601
FUEL FLOW (60°F, 14.7 psia)		scfm	183	183	147	105
INLET MANIFOLD PRESSURE	(6)	in Hg(abs)	94.6	94.6	76.8	54.0
EXHAUST TEMPERATURE - ENGINE OUTLET	(7)	°F	982	982	968	977
EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (WET)	(8)(5)	ft3/min	9042	9042	7032	4954
EXHAUST GAS MASS FLOW (WET)	(8)(5)	lb/hr	14340	14340	11258	7877
EMISSIONS DATA - ENGINE OUT						
NOx (as NO2)	(9)(10)	g/bhp-hr	0.50	0.50	0.50	0.50
со	(9)(10)	g/bhp-hr	2.43	2.43	2.60	2.55
THC (mol. wt. of 15.84)	(9)(10)	g/bhp-hr	4.75	4.75	5.09	5.17
NMHC (mol. wt. of 15.84)	(9)(10)	g/bhp-hr	0.71	0.71	0.76	0.78
NMNEHC (VOCs) (mol. wt. of 15.84)	(9)(10)(11)	g/bhp-hr	0.48	0.48	0.51	0.52
HCHO (Formaldehyde)	(9)(10)	g/bhp-hr	0.43	0.43	0.43	0.42
CO2	(9)(10)	g/bhp-hr	472	472	504	548
EXHAUST OXYGEN	(9)(12)	% DRY	9.0	9.0	8.7	8.3
HEAT REJECTION						
HEAT REJ. TO JACKET WATER (JW)	(13)	Btu/min	24285	24285	22640	21093
HEAT REJ. TO ATMOSPHERE	(13)	Btu/min	6110	6110	5092	4074
HEAT REJ. TO LUBE OIL (OC)	(13)	Btu/min	4475	4475	3978	3363
HEAT REJ. TO A/C - STAGE 1 (1AC)	(13)(14)	Btu/min	11577	11577	9642	3428
HEAT REJ. TO A/C - STAGE 2 (2AC)	(13)(14)	Btu/min	5517	5517	5202	3396
COOLING SYSTEM SIZING CRITERIA						
TOTAL JACKET WATER CIRCUIT (JW+OC+1AC)	(14)(15)	Btu/min	44239			
TOTAL AFTERCOOLER CIRCUIT (2AC)	(14)(15)	Btu/min	5793			
A cooling system safety factor of 0% has been added to the cooling system sizing criteria.						
CONDITIONS AND DEFINITIONS						

CONDITIONS AND DEFINITIONS Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

For notes information consult page three.

Blowdown and Pigging Operation Emission Calculations

MK Midstream Holdings – Goff West Compressor Station Facility ID# 033-00187 Blowdown and Pigging Operation Emissions (See Attachment S)

Compressor Blowdown

Assumptions:

- 642.9 scf/event summed from factors on page 137 of Background Technical Support Document – Petroleum and Natural Gas Industry (<u>https://www.epa.gov/sites/production/files/2015-05/documents/background-tsd-posted-4-12-10-epa-hq-oar-2009-0923-0027.pdf</u>)
- Events occur 56 times per year

$$\left(642.9\frac{scf}{event}\right) \left(\frac{28.32 L}{scf}\right) \left(\frac{gmol}{22.4 L}\right) \left(\frac{lbmol}{453.592 gmol}\right) \left(\frac{16.68 lb}{lbmol}\right) = 29.89\frac{lbs natural gas}{event}$$

$$\left(29.89\frac{lbs natural gas}{event}\right) \left(56\frac{events}{year}\right) = 1673.83\frac{lbs natural gas}{year} = 0.8369\frac{tons natural gas}{year}$$

$$\left(0.8369\frac{tons natural gas}{year}\right) (7\% wt VOC) = 0.059\frac{tons VOC}{year}$$

Low Pressure Pig Venting

Assumptions:

- 10 mmscf/day of gas flow
- Each event takes 10 minutes
- Events occurs 42 times per year

$$\left(10,000,000\frac{scf}{day}\right)\left(\frac{day}{1440\text{ min}}\right)\left(\frac{10\text{ min}}{event}\right) = 69,444\frac{scf}{event}$$

$$\left(69,444\frac{scf}{event}\right)\left(\frac{28.32\text{ L}}{scf}\right)\left(\frac{gmol}{22.4\text{ L}}\right)\left(\frac{lbmol}{453.592\text{ gmol}}\right)\left(\frac{16.68\text{ lb}}{lbmol}\right) = 3,235\frac{lbs\text{ natural gas}}{event}$$

$$\left(3,235\frac{lbs\text{ natural gas}}{event}\right)\left(\frac{42\text{ events}}{year}\right) = 135,870\frac{lbs\text{ natural gas}}{year} = 67.93\frac{tons\text{ natural gas}}{year}$$

$$\left(67.93\frac{tons\text{ natural gas}}{year}\right)(7\%\text{ wt VOC}) = 4.75\frac{tons\text{ VOC}}{year}$$

Compressor Startup

Assumptions:

- 5,000 scf/event taken from Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry footnote (e) from pdf page 297 (Table 5-23) (http://www.api.org/~/media/files/ehs/climate-change/2009_ghg_compendium.ashx)
- Events occur 7 times per year

$$\left(5,000\frac{scf}{event}\right) \left(\frac{28.32 L}{scf}\right) \left(\frac{gmol}{22.4 L}\right) \left(\frac{lbmol}{453.592 gmol}\right) \left(\frac{16.68 lb}{lbmol}\right) = 232.46 \frac{lbs natural gas}{event}$$

$$\left(232.46\frac{lbs natural gas}{event}\right) \left(\frac{7 events}{year}\right) = 1,627\frac{lbs natural gas}{year} = 0.81\frac{tons natural gas}{year}$$

$$\left(0.81\frac{tons natural gas}{year}\right) (7\% wt VOC) = 0.057\frac{tons VOC}{year}$$

Gas Analytical Services

CHARLESTON, WV 304-677-9926

: 0034 - MK MIDSTREAM

: 2601

Customer

Station ID

Date Sampled

Date Analyzed

Good

04049

LELAP Certification #

: 12/13/2016

: 12/19/2016

Ideal GPM Ideal BTU Dry		0.983 1,032.69	0.986 1,035.94	0.989 1,038.33	1.008 1,059.13			
BTU @ (PSIA)		@14.65	@14.696	@14.73	@15.02			
	vity: 0.5761	Real Gravity: 0.577		C5+ Mole % : 0.01				
Compressibil	lity Factor (Z) @ 14.	73 @ 60 Deg. F = 0.997	9	C5+ GPM : 0.00	200			
	TOTAL		100.0000	0.990				
	C12's		0.0000	0.000				
	C11's		0.0000	0.000				
	C10's		0.0000	0.000				
	C7's		0.0016	0.001				
	C9's		0.0000	0.000				
	C8's		0.0004	0.000				
	C6's		0.0026	0.001				
	M-XYLENE/P-X	YLENE	0.0000	0.000				
	TOLUENE		0.0000	0.000				
	ETHYLBENZEN	IE	0.0000	0.000				
	BENZENE		0.0000	0.000				
	Oxygen		0.0020	0.000				
	Carbon-Dioxide		0.2024	0.000				
	Normal-Pentane Nitrogen)	0.0022 0.2624	0.001 0.000				
	Iso-Pentane		0.0038	0.001				
	Neo-Pentane		0.0006	0.000				
	Normal-Butane		0.0198	0.006				
	Iso-Butane		0.0133	0.004				
	Propane		0.2210	0.061				
	Ethane		3.4142	0.915				
	Methane		95.8791	0.000				
	COMPONENT		<u>MOL%</u>	<u>GPM@14.73(PSIA)</u>				
State	: WV		Sar	mple By : HT				
Area	: 190 - UNKNO\	VN	Cyl	inder Type : Spot				
Lease	: GOFF WEST		Ter	np : 60				
Producer	:		Cyl	Pressure : 625				
Cylinder ID	: 0280		Effe	ective Date : 01/0	1/2017			
Station ID	: 2601		Dat	e Analyzed : 12/1	9/2016			

A	ТТАСНМ	IENT	V – FA	CILITY	-WIDE	CONT	ROLLE	ED EMI	SSION	IS SUM	MARY	SHEE	T		
List all sources of en	nissions ii	n this ta	able. U	se extra	pages if	fnecess	ary.								
	N	O _x	СО		V	VOC		SO ₂		PM ₁₀		PM _{2.5}		GHG (CO ₂ e)	
Emission Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
1E (CE-1R)	1.47	6.46	0.4100	1.78	0.2200	0.9600	0.0059	0.0257	0.0008	0.0034	0.0008	0.0034	1,098	4,809	
2E (CE-2R)	1.26	5.51	0.3000	1.31	0.1300	0.5500	0.0059	0.0257	0.0008	0.0034	0.0008	0.0034	1,112	4,873	
5E (CE-5R)	1.06	4.66	0.0500	0.2200	0.0800	0.3500	0.0082	0.0358	0.0011	0.0047	0.0011	0.0047	1,530	6,699	
6E (CE-6R)	0.8600	3.78	0.0600	0.2700	0.0400	0.1900	0.0060	0.0265	0.0008	0.0035	0.0008	0.0035	1,131	4,954	
3E (CE-7R)	1.52	6.66	3.70	16.19	1.46	6.40	0.0067	0.0293	0.1140	0.4980	0.1140	0.4980	1,743	7,634	
4E (CE-8R)	1.52	6.66	3.70	16.19	1.46	6.40	0.0067	0.0293	0.1140	0.4980	0.1140	0.4980	1,743	7,634	
RSV-1 (TEG-1)	NA	NA	NA	NA	0.6737	2.96	NA	NA	NA	NA	NA	NA	210	920	
RBV-1 (TEG-1)	0.0971	0.4252	0.0816	0.3572	0.0053	0.0234	0.0060	0.0026	0.0074	0.0323	0.0074	0.0323	116	510	
RSV-2 (TEG-2)	NA	NA	NA	NA	0.6737	2.95	NA	NA	NA	NA	NA	NA	1,033	4,522	
RBV-2 (TEG-2)	0.0971	0.4252	0.0816	0.3572	0.0053	0.0234	0.0060	0.0026	0.0074	0.0323	0.0074	0.0323	116	510	
7E (TK-1)	NA	NA	NA	NA	0.0161	0.0703	NA	NA	NA	NA	NA	NA	0.4369	1.91	
8E (TK-3)	NA	NA	NA	NA	0.0013	0.0058	NA	NA	NA	NA	NA	NA	0.3745	1.64	
LO-1	NA	NA	NA	NA	<0.0174	<0.0761	NA	NA	NA	NA	NA	NA	<0.8114	<3.55	
9E (CE-9R)	1.52	6.66	0.52	2.27	0.73	3.20	0.0067	0.0293	0.1140	0.4980	0.1140	0.4980	1,436	6,290	
TOTAL	9.40	41.24	8.90	38.94	5.51	24.16	0.0581	0.2068	0.3603	1.57	0.3603	1.57	11,270	49,362	

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

АТ	ТАСНМ	ENT V	– FACI	LITY-V	VIDE H	AP CON	TROL	LED E	MISSIO	NS SU	MMAI	RY SHE	ET	
List all sources of	emissions	s in this	table. U	Jse extra	ı pages i	f necess	ary.							
	Formaldehyde		Ben	zene	Tol	uene	Ethylbenzene		Xylenes		Hexane		Total HAPs	
Emission Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
1E (CE-1R)	0.1308	0.5730	0.0044	0.0192	0.0041	0.0178	0.0004	0.0017	0.0018	0.0080	0.0111	0.0485	0.3244	1.42
2E (CE-2R)	0.1308	0.5730	0.0044	0.0195	0.0041	0.0181	0.0004	0.0018	0.0019	0.0082	0.0112	0.0492	0.3270	1.43
5E (CE-5R)	0.6800	2.98	0.0061	0.0268	0.0057	0.0248	0.0006	0.0024	0.0026	0.0112	0.0154	0.0676	0.9497	4.16
6E (CE-6R)	0.5100	2.23	0.0045	0.0198	0.0042	0.0184	0.0004	0.0018	0.0019	0.0083	0.0114	0.0500	0.7094	3.10
3E (CE-7R)	0.2100	0.9200	0.0050	0.0218	0.0046	0.0202	0.0004	0.0020	0.0021	0.0091	0.0126	0.0550	0.4293	1.88
4E (CE-8R)	0.2100	0.9200	0.0050	0.0218	0.0046	0.0202	0.0004	0.0020	0.0021	0.0091	0.0126	0.0550	0.4293	1.88
RSV-1 (TEG-1)	NA	NA	0.0006	0.0026	0.0011	0.0048	0.0018	0.0081	0.0027	0.0119	0.0208	0.0909	0.0063	0.0274
RBV-1 (TEG-1)	7.28E-5	0.0003	2.04E-6	8.93E-6	3.30E-6	1.45E-5	NA	NA	NA	NA	0.0017	0.0077	0.0018	0.0080
RSV-2 (TEG-2)	NA	NA	0.0006	0.0026	0.0011	0.0048	0.0018	0.0081	0.0027	0.0119	0.0208	0.0909	0.0063	0.0274
RBV-2 (TEG-2)	7.28E-5	0.0003	2.04E-6	8.93E-6	3.30E-6	1.45E-5	NA	NA	NA	NA	0.0017	0.0077	0.0018	0.0080
7E (TK-1)	NA	NA	NA	NA	0.0002	0.0008	NA	NA	NA	NA	NA	NA	0.0004	0.0016
8E (TK-3)	NA	NA	0.0001	0.0005	0.0001	0.0005	4.81E-6	2.10E-5	3.36E-5	0.0001	NA	NA	0.0005	0.0023
LO-1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0010	0.0044
9E (CE-9R)	0.3144	1.38	0.0047	0.0207	0.0044	0.0192	0.0004	0.0019	0.0020	0.0087	0.0119	0.0522	0.5227	2.29
TOTAL	2.19	9.58	0.0354	0.1553	0.0342	0.1496	0.0066	0.0298	0.0198	0.0865	0.1312	0.5747	3.71	16.24

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT W – CLASS I LEGAL ADVERTISEMENT

Publication of a proper Class I legal advertisement is a requirement of the G35-D registration process. In the event the applicant's legal advertisement fails to follow the requirements of 45CSR13, Section 8 or the requirements of Chapter 59, Article 3, of the West Virginia Code, the application will be considered incomplete and no further review of the application will occur until this is corrected.

The applicant, utilizing the format for the Class I legal advertisement example provided on the following page, shall have the legal advertisement appear a minimum of one (1) day in the newspaper most commonly read in the area where the facility exists or will be constructed. The notice must be published no earlier than five (5) working days of receipt by this office of your application. The original affidavit of publication must be received by this office no later than the last day of the public comment period.

The advertisement shall contain, at a minimum, the name of the applicant, the type and location of the source, the type and amount of air pollutants that will be discharged (include fugitive emissions separately), the nature of the permit being sought, the proposed start-up date for the source, and a contact telephone number for more information.

The location of the source should be as specific as possible starting with: 1.) the street address of the source; 2.) the nearest street or road; 3.) the nearest town or unincorporated area, 4.) the county, and 5.) latitude and longitude coordinates in decimal format.

Types and amounts of pollutants discharged must include all regulated pollutants (Nitrogen Oxides, Carbon Monoxide, Particulate Matter-2.5, Particulate Matter-10, Volatile Organic Compounds, Sulfur Dioxide, Formaldehyde, Benzene, Toluene, Ethylbenzene, Xylenes, Hexane, Total Hazardous Air Pollutants) and their potential to emit or the permit level being sought in units of tons per year.

In the event the 30th day is a Saturday, Sunday, or legal holiday, the comment period will be extended until 5:00 p.m. on the following regularly scheduled business day.

A list of qualified newspapers that are eligible to publish legal ads may be found:

http://www.sos.wv.gov/elections/resource/Documents/Qualified%20Newspapers.pdf

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that MK Midstream Holdings, LLC (dba Arsenal Midstream LLC) has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a G35-D (General Permit Modification), for a natural gas compressor and/or dehydration facility located on Davisson Run Road, Clarksburg, in Harrison County, West Virginia. The latitude and longitude coordinates are: 39.27550 and -80.403099.

The applicant estimates the increased potential to discharge the following Regulated Air Pollutants will be:

- NOx 9.53 Tons per year;
- CO 2.50 Tons per year;
- VOC 4.34 Tons per year;
- SO2 0.0979 Tons per year;
- PM/PM-10 1.33 Tons per year;
- Total HAPS 8.16 Tons per year.

Startup of operation is planned to begin on or about May 1, 2017. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours. Dated this 14th day of April, 2017.

By: Arsenal Resources, LLC Meghan M.B. Yingling Environmental Compliance Manager 65 Professional Place, Suite 200 Bridgeport, WV 26330