Reference No. 11135230

April 13, 2017

Mr. William Durham Director, Division of Air Quality WV Department of Environmental Protection 601 57th Street, SE Charleston, West Virginia 25304

Dear Mr. Durham:

Re: G50-B General Permit Registration Modification Application Jane Lew General Permit Registration G50-B060 Plant ID Number: 041-00061 C&J Energy Services

On behalf of C&J Energy Services, GHD would like to submit this G50-B General Permit Modification application that we prepared for a concrete batch plant identified as Jane Lew.

On January 31, 2017, a Notice of Violation (NOV) was issued to the facility for exceeding the maximum annual production permit limit and installation of new storage silos and associated equipment. In reference to the NOV response letter dated March 3, 2017 from C&J Energy Services, this submittal addresses the non-compliances cited in the NOV including the projected increase in annual throughput.

Enclosed are the following documents:

- Original copy of the G50-B General Permit Application.
- Two CD copies of the G50-B General Permit Application.
- The application fee with check no. 474807 in the amount of \$ 500.00.

Please let us know if you have any questions or require additional information.

Sincerely,

GHD Services Inc.

201tmg

Manuel Bautista

MB/ma/1

Encl.

cc: John Srock – C&J Energy Services Les Teague – C&J Energy Services

General Permit G50-B Modification Application

Jane Lew Facility

C&J Energy Services

GHD | 6320 Rothway Suite 100 Houston Texas 77040 11135230 | Report No 1 | April 2017

CONSTRUCT		′daq DCATION	C A ST/	PPLICATION FOR GENERAL PERMIT REGISTRATION CONSTRUCT, MODIFY, RELOCATE OR ADMINISTRATIVELY UPDATE ATIONARY SOURCE OF AIR POLLUTANTS CLASS I ADMINISTRATIVE UPDATE				
	CLASS II ADMINIST	FRATIVE	E UPDATE	<u> </u>				
	CHECK WHICH TYPE OF GENERAL PERMIT REGISTRATION YOU ARE APPLYING FOR:							
G10-D – Coal P	reparation and Handling		G4	40-C – Nonmetallic Minerals Processing				
G20-B – Hot Mix	Asphalt		XG	5 50-B – Concrete Batch				
G33-A – Spark le	gnition Internal Combustion Engines			60-C - Class II Emergency Generator				
			G6	55-C – Class I Emergency Generator				
	SECTION I. GE			ATION				
1. Name of	applicant (as registered with the WV Secretary of S			2. Federal Employer ID No. (FEIN):				
C&J Spe	c-Rent Services, Inc., DBA C&J Energy Services			87-0750712				
Applicant's mail	ing address:	4.	4. Applicant's physical address:					
3990 Rogerdale	, Houston, TX 77042	<u>3990 Rogerdale, Houston, TX 77042</u>						
5. If applicant is a	subsidiary corporation, please provide the name of	parent co	orporation:					
6. WV BUSINESS	REGISTRATION. Is the applicant a resident of the		0					
-	name change amendments or other Business Re			ation / Limited Partnership (one page) including any e as Attachment A.				
-	IF NO, provide a copy of the Certificate of Auth change amendments or other Business Certifica			LLC / Registration (one page) including any name				
SECTION II. FACILITY INFORMATION								
	facility (stationary source) to be constructed,		ndard Indus					
preparation plant, p	primary crusher, etc.):) code: 3273 System (NAICS) code: 327320				
Installation of silos and storage tank								
			10. List all current 45CSR13 and other General Permit numbers associated with this process (for existing facilities only):					
<u>041-00061</u> <u>G50</u>			<u>G50-B060</u>					

A: PRIMARY OPERATING SITE INFORMATION

11A. Facility name of primary operating site:	12A. Address of primary operating site:							
Jane Lew	Mailing: <u>1650 Hackers Creek Rd., Jane Lew, WV 26378</u> Physical:							
13A. Does the applicant own, lease, have an option to buy, or otherwise have control of the proposed site? X YES NO - IF YES, please explain:								
– IF NO , YOU ARE NOT ELIGIBLE FOR A PE								
14A. – For Modifications or Administrative the nearest state road;	Updates at an existing facility, please provide	directions to the present location of the facility from						
 For Construction or Relocation permits MAP as Attachment F. 	, please provide directions to the proposed ne	w site location from the nearest state road. Include a						
From the intersection of US-119 and I-79, head north toward Clarksburg for 6 miles. Take exit 105 for County Rd 7 toward Jane Lew for 0.3 mile. Turn right onto Hackers Creek Rd. Destination will be on the right.								
15A. Nearest city or town:	16A. County:	17A. UTM Coordinates:						
Jane Lew	Lewis County	Northing (KM):4326.628 NorthingEasting (KM):552.986 EastingZone:17						
18A. Briefly describe the proposed new operation or change (s) to the facility: Decimal Degrees to 5 digits):								
Installation of additional silos and storage tank; increase in production throughput Latitude: <u>39.087164</u> Longitude: <u>-80.387344</u>								

B: 1ST ALTERNATE OPERATING SITE INFORMATION (only available for G20, G40, & G50 General Permits)

11B. Name of 1 st alternate operating site:	12B. Address of 1 st alternate operating site:						
	Mailing:	Physical:					
13B. Does the applicant own, lease, have an option to buy, or otherwise have control of the proposed site? YES NO - IF YES, please explain:							
- IF NO , YOU ARE NOT ELIGIBLE FOR A PERMIT FOR THIS SOURCE.							
14B. – For Modifications or Administrative Updates at an existing facility, please provide directions to the present location of the facility from the nearest state road;							
 For Construction or Relocation permits MAP as Attachment F. 	 For Construction or Relocation permits, please provide directions to the proposed new site location from the nearest state road. Include a MAP as Attachment F. 						

15B. Nearest city or town:	16B. County:	17B. UTM Coordinates:
		Northing (KM): Easting (KM):
		Zone:
18B Briefly describe the proposed new operation	19B. Latitude & Longitude Coordinates	
18B. Briefly describe the proposed new operation or change (s) to the facility:		(NAD83, Decimal Degrees to 5 digits):
		Latitude:
		Longitude:

C: 2ND ALTERNATE OPERATING SITE INFORMATION (only available for G20, G40, & G50 General Permits):

11C. Name of 2 nd alternate operating site:	12C. Address of 2 nd alternate operating site:						
	Mailing:		Physical:				
 13C. Does the applicant own, lease, have an option IF YES, please explain:	-			ES NO			
- IF NO , YOU ARE NOT ELIGIBLE FOR A PE	ERMIT FOR THIS S	OURCE.					
14C. – For Modifications or Administrative the nearest state road;	Updates at an exis	sting facility, please provide dire	ections to the present lo	ocation of the fa	cility from		
 For Construction or Relocation permits MAP as Attachment F. 	s, please provide di	rections to the proposed new s	ite location from the nea	arest state road	. Include a		
					_		
15C. Nearest city or town:	16C. County:		17C. UTI	M Coordinates:			
			Northing (KM):				
			Zone:				
18C. Briefly describe the proposed new operation	or change (s) to th	e facility:	19C. Latitude & Long	aitude Coordina	tos		
Too. Blieny describe the proposed new operation	or change (s) to th	e lacinty.	(NAD83, Decimal De				
			Latitude: Longitude:				
20. Provide the date of anticipated installation or c	hange:	21. Date of anticipated Start-	up if registration is grar	nted:			
//		//					
	□ If this is an After-The-Fact permit application, provide the date						
upon which the proposed change did happen: :							
<u>03/25/2015</u> 22. Provide maximum projected Operating Schedule of activity/activities outlined in this application if other than 8760 hours/year. (Note: anything							
other than 24/7/52 may result in a restriction to the	e facility's operation).			anything		
Hours per day 24 Days per week 7 Weeks per year 52 Percentage of operation							

SECTION III. ATTACHMENTS AND SUPPORTING DOCUMENTS

23. Include a check payable to WVDEP - Division of Air Quality with the appropriate application fee (per 45CSR22 and 45CSR13).

24. Include a Table of Contents as the first page of your application package.

All of the required forms and additional information can be found under the Permitting Section (General Permits) of DAQ's website, or requested by phone.

25. Please check all attachments included with this permit application. Please refer to the appropriate reference document for an explanation of the attachments listed below.

- X ATTACHMENT A : CURRENT BUSINESS CERTIFICATE
- X ATTACHMENT B: PROCESS DESCRIPTION
- X ATTACHMENT C: DESCRIPTION OF FUGITIVE EMISSIONS
- X ATTACHMENT D: PROCESS FLOW DIAGRAM
- X ATTACHMENT E: PLOT PLAN
 - ATTACHMENT F: AREA MAP
- X ATTACHMENT G: EQUIPMENT DATA SHEETS AND REGISTRATION SECTION APPLICABILITY FORM
- X ATTACHMENT H: AIR POLLUTION CONTROL DEVICE SHEETS
- X ATTACHMENT I: EMISSIONS CALCULATIONS
- X ATTACHMENT J: CLASS I LEGAL ADVERTISEMENT ATTACHMENT K: ELECTRONIC SUBMITTAL
- X ATTACHMENT L: GENERAL PERMIT REGISTRATION APPLICATION FEE

ATTACHMENT M: SITING CRITERIA WAIVER

ATTACHMENT N: MATERIAL SAFETY DATA SHEETS (MSDS)

ATTACHMENT O: EMISSIONS SUMMARY SHEETS

OTHER SUPPORTING DOCUMENTATION NOT DESCRIBED ABOVE (Equipment Drawings, Aggregation Discussion, etc.)

Please mail an original and two copies of the complete General Permit Registration Application with the signature(s) to the DAQ Permitting Section, at the address shown on the front page of this application. Please DO NOT fax permit applications. For questions regarding applications or West Virginia Air Pollution Rules and Regulations, please refer to the website shown on the front page of the application or call the phone number also provided on the front page of the application.

SECTION IV. CERTIFICATION OF INFORMATION

This General Permit Registration Application shall be signed below by a Responsible Official. A Responsible Official is a President, Vice President, Secretary, Treasurer, General Partner, General Manager, a member of a Board of Directors, or Owner, depending on business structure. A business may certify an Authorized Representative who shall have authority to bind the Corporation, Partnership, Limited Liability Company, Association, Joint Venture or Sole Proprietorship. Required records of daily throughput, hours of operation and maintenance, general correspondence, Emission Inventory, Certified Emission Statement, compliance certifications and all required notifications must be signed by a Responsible Official or an Authorized Representative. If a business wishes to certify an Authorized Representatively incomplete or improperly signed or unsigned Registration Application will be returned to the applicant.

FOR A CORPORATION (domestic or foreign)

I certify that I am a President, Vice President, Secretary, Treasurer or in charge of a principal business function of the corporation

FOR A PARTNERSHIP

G

G I certify that I am a General Partner

FOR A LIMITED LIABILITY COMPANY

G I certify that I am a General Partner or General Manager

FOR AN ASSOCIATION

G I certify that I am the President or a member of the Board of Directors

FOR A JOINT VENTURE

G I certify that I am the President, General Partner or General Manager

FOR A SOLE PROPRIETORSHIP

G I certify that I am the Owner and Proprietor

G I hereby certify that (please print or type) Les Teague, Director of Environmental

is an Authorized Representative and in that capacity shall represent the interest of the business (e.g., Corporation, Partnership, Limited Liability Company, Association Joint Venture or Sole Proprietorship) and may obligate and legally bind the business. If the business changes its Authorized Representative, a Responsible Official shall notify the Director of the Office of Air Quality immediately, and/or,

I hereby certify that all information contained in this General Permit Registration Application and any supporting documents appended hereto is, to the best of my knowledge, true, accurate and complete, and that all reasonable efforts have been made to provide the most comprehensive information possible

Signature	8-APR-2017
(please use blue ink) Responsible Official	Date
Name & Title John Srock, Vice-President, QHSE	2
(please print or type)	- 1 2 2 - C
Signature	5 APR 2017
(please use blue ink) Authorized Representative (if applicable)	Date
Applicant's Name C&J Spec-Rent DBA C&J Energy Services	
Phone & Fax713-325-6000	
Phone Phone	Fax
Email John.Srock@cjes.com; les.teague@cjes.com	
	6

Page 5 of 5

Date of Last Application Revision 1/27/2017

Table of Contents

G50-B General Permit Application

Attachment A	Current Business Certificate
Attachment B	Process Description
Attachment C	Description of Fugitive Emissions
Attachment D	Process Flow Diagram
Attachment E	Plot Plan
Attachment F	Area Map - Not Applicable
Attachment G	Affected Source Sheets
Attachment H	Air Pollution Control Device Data Sheet
Attachment I	Emissions Calculations
Attachment J	Class I Legal Advertisement
Attachment K	Electronic Submittal - Not Applicable
Attachment L	General Permit Registration Application Fee
Attachment M	Siting Criteria Waiver - Not Applicable
Attachment N	Material Safety Data Sheets - Not Applicable
Attachment O	Emission Summary Sheets

Attachment A Current Business Certificate

I, Mac Warner, Secretary of State of the State of West Virginia, hereby certify that

C&J SPEC-RENT SERVICES, INC.

a corporation formed under the laws of Indiana filed an application to be registered as a foreign corporation authorizing it to transact business in West Virginia. The application was found to conform to law and a "Certificate of Authority" was issued by the West Virginia Secretary of State on July 26, 2013.

I further certify that the corporation has not been revoked by the State of West Virginia nor has a Certificate of Withdrawal been issued to the corporation by the West Virginia Secretary of State.

Accordingly, I hereby issue this

CERTIFICATE OF AUTHORIZATION

Validation ID:3WV5H_3HN79

Given under my hand and the Great Seal of the State of West Virginia on this day of

April 04, 2017

Mac Warner

Secretary of State

Notice: A certificate issued electronically from the West Virginia Secretary of State's Web site is fully and immediately valid and effective. However, as an option, the issuance and validity of a certificate obtained electronically may be established by visiting the Certificate Validation Page of the Secretary of State's Web site, https://apps.wv.gov/sos/businessentitysearch/validate.aspx entering the validation ID displayed on the certificate, and following the instructions displayed. Confirming the issuance of a certificate is merely optional and is not necessary to the valid and effective issuance of a certificate.

Attachment B Process Description

Process Description Jane Lew Facility Lewis County, West Virginia

Cement, fly ash, and rock dusts are stored in fully enclosed silos (BS-1 to BS-6). These materials are unloaded pneumatically into their respective storage silos from delivery trucks.

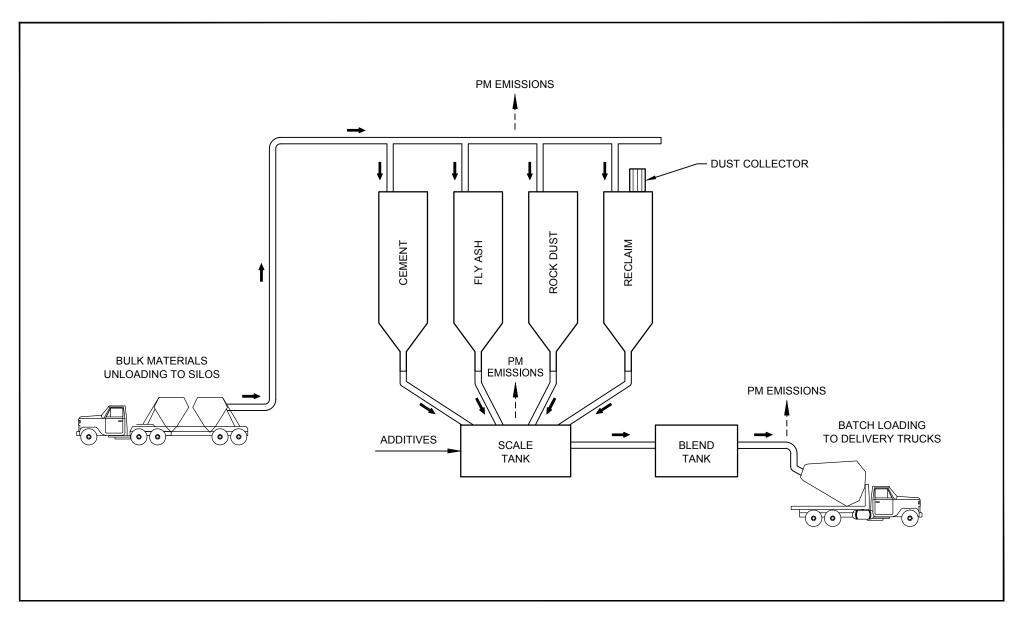
Cement, fly ash, and rock dust are conveyed into the weigh hopper (scale tank). Small amount of additives are added manually into the scale tank. Mixed raw materials from the scale tank are then transferred to the weight batch blender and finally to the mixer truck for delivery to customers.

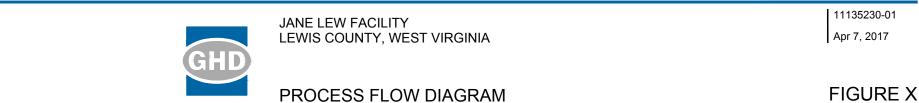
To minimize fugitive emissions, materials are conveyed to the scale tank and weight batch blender via fully enclosed conveyors. Emissions from unloading of materials into the silos are controlled by the dust collector (APCD-1) installed on the reclaim silo.

All emissions/ materials captured by the dust collector are stored in the reclaim silo and used for lower grade cement mix products.

The facility has two 6500-gal storage tanks for 35% hydrochloric acid. The hydrochloric acid is delivered via trucks and is further diluted prior to delivery to customers. HCl emissions from the storage tanks are controlled by a water scrubber.

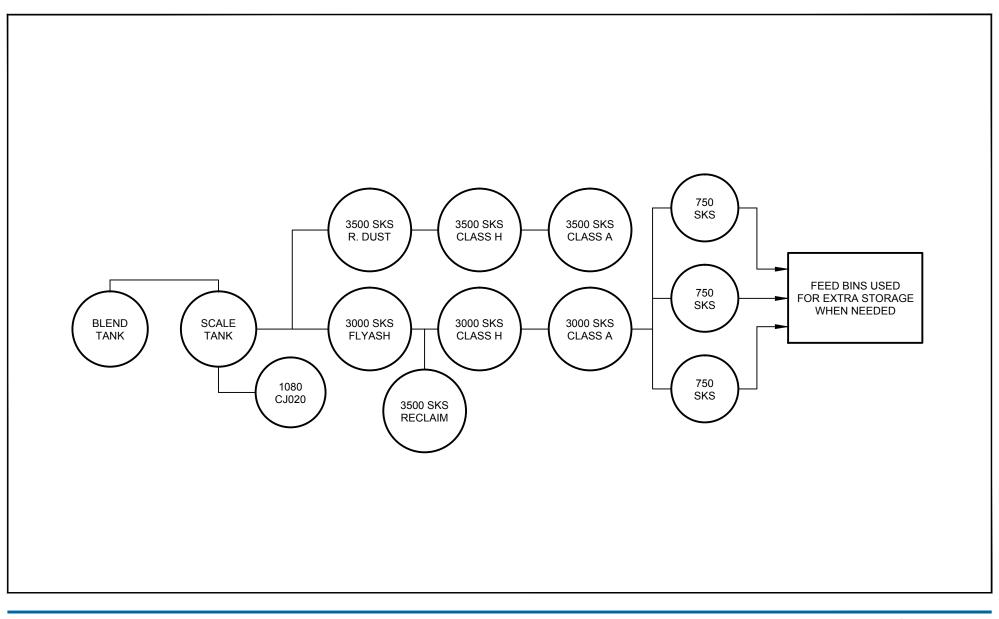
Attachment C Description of Fugitive Emissions


Description of Fugitive Emissions Jane Lew Facility Lewis County, West Virginia


Fugitive emissions occur during the transfer of raw materials (cement, fly ash, and rock dust) from the bulk delivery trucks into their respective storage silos. These fugitive emissions are controlled by dust collectors with an efficiency of 99%.

Fugitive emissions also occur during the transfer of raw materials from their respective storage silos to the scale tank and weight batch blender via conveyor. The fugitive emissions from the conveyor will be minimized by providing full enclosure.

Haul roads are sources of fugitive emissions which occur when bulk delivery trucks and mixer trucks travel in and out of the facility. Haul road emissions are controlled by a water truck spraying water on an as-needed basis.


Attachment D Process Flow Diagram

CAD File: P:\drawings\11135000s\11135230\11135230-reports\11135230-01(001)\11135230-01(001)GN\11135230-01(001)GN-WA001.dwg

Attachment E Plot Plan

JANE LEW FACILITY LEWIS COUNTY, WEST VIRGINIA 11135230-01 Apr 4, 2017

FIGURE Y

CAD File: P:\drawings\11135000s\11135230\11135230-reports\11135230-01(001)\11135230-01(001)GN\11135230-01(001)GN

Attachment G Affected Source Sheets

CBP PRODUCTION AFFECTED SOURCE SHEET

	Source Identification Number ¹	WH-1	
	Manufacturer & Model Number		
	Date of Manufacture		
	Maximum Design Production Rate ²	25	tons per hour
CBP	Maximum Annual Production ³	22,000	tons per year
Production Information	Daily Operation	24	hours/day
	Annual Operation	365	days/year
		8760	hours/year
	Approximate Percentage	25	Jan - Mar
	of Operation from:	25	April - June
		25	July - Sept
		25	Oct - Dec

1. Enter the appropriate Source Identification Number for each concrete batch plant production weigh hopper or central mixer. Batch plant weigh hopper should be designated WH-1, WH-2, etc. Batch plant central mixer should be designated CM-1, CM-2, etc.

2. Enter the manufacturer's Maximum Design Production Rate of the concrete batch plant production equipment. Specify units in tons/hour.

3. Enter the Maximum Annual Production of the concrete batch plant. Specify units of cubic yards per year or tons per year. To calculate Maximum Annual Production, multiply the Maximum Design Production Rate (tons/hr) by the Annual Operation (hrs/yr).

CBP PARTICULATE MATTER CAPTURE SYSTEM AFFECTED SOURCE SHEET

Pursuant to Section 2.2.4 of General Permit G50-B, the registrant shall not cause, suffer, allow, or permit any registered concrete batch plant to operate that is not equipped with an effective particulate matter capture system(s) and associated air pollution control device(s) to minimize the emission of particulate matter from production equipment, storage structures and silos. The particulate matter capture system shall ensure the lowest fugitive particulate emissions reasonably achievable.

A particulate matter capture system shall be used to confine, collect, and transport displaced particulate matter from production weigh hoppers, cement and flyash storage structures and/or silos to an air pollution control device. Particulate matter capture systems may include but not be limited to: hoods, bins, ductwork, enclosures and air pollution control devices such as fabric filter baghouses, associated fans, discharge socks and filter vents.

Provide a written description of the concrete batch plant's particulate matter capture system below:

The particulate matter capture system consists of a dust collector/ filter house. The dust collector is located on top of the reclaim silo and captures the PM emissions during unloading of cement, fly ash, and rock dust from the bulk delivery trucks.

All PM emissions from material tranfers to the scale tanks and weigh batch blender are also captured by the dust collection system. PM emissions are minimized through usd of fully enclosed conveyors.

The dust collector has cartridge type filters which are cleaned by jet pulse. Pressure drop across the filter cartridges are monitored regularly and are replaced when the pressure drop is below the manufacturer's recommended operating parameters.

CBP MATERIAL STORAGE & HANDLING AFFECTED SOURCE SHEET

AFFECTED	JOURCE	SHEET				
Source Identification Number ¹	1	2	3	4	5	6
Material Stored ²	Cement	Cement	Cement	Cement	Fly Ash	Rock Dust
Maximum Yearly Throughput (tons/year) ³	4000	4000	4000	4000	3000	3000
Typical Moisture	0%	0%	0%	0%	0%	0%
Content (%) ⁴						
Average % of Material Passing Through 200 Mesh	100	100	100	100	99	
Sieve ⁵ Maximum Stockpile						
Base Area (ft ²) ⁶	-	-	-	-	-	-
Maximum Stockpile						
Height $(ft)^7$	-	-	-	-	-	-
Maximum Storage						
Capacity (tons) ⁸	240	240	210	180	145	240
Dust Control Method						
	FE	FE	FE	FE	FE	FE
Applied to Storage ⁹						
Method of Material	ST	ST	ST	ST	ST	ST
Load-in to Bin or Stockpile ¹⁰	<u> </u>	0.	0.	0.	0.	0.
Dust Control Method	FF					FF
Applied During Load-in ¹¹	FE	FE	FE	FE	FE	FE
Method of Material Load-out from Bin or Stockpile ¹⁰	ST	ST	ST	ST	ST	ST
Dust Control Method					гг	
Applied During Load-out ¹¹	FE	FE	FE	FE	FE	FE
 Enter the appropriate Source Identification Number for each storage activity using th Source Identification Numbers should be OS-1, OS-2, OS-3, and OS-4; and BS-1, respe 		r example, if the	facility utilizes	four open stock	cpiles and one st	torage silo, the
OS Open Stockpile E3 Enclosure (three-sided enclosure)	cuvery.					
BS Bin or Storage Silo (full enclosure) SB Storage Building (full enclosure)						
SF Stockpiles with wind fences OT Other (p	lease specify)					
2. Describe the type of material stored or stockpiled.	1 .,					
3. Enter the maximum yearly storage throughput for each storage activity.						
4. Enter the average percent moisture content of the stored material.						
5. Enter the average percent of material that will pass through a 200 mesh sieve.						
6. For stockpiles, enter the maximum stockpile base area.						
7. For stockpiles, enter the maximum stockpile height.						
8. Enter the maximum storage capacity for each storage activity in tons (e.g. silo capacit	ty, maximum stockpile	e size, etc.).				
9. Enter the dust control method applied to storage activity using the following codes:						
CA Crusting Agent WS Water Spray						
FE Full Enclosure NO None						ſ
OT Other (please specify)						
10. Enter the method of load-in or load-out to/from stockpiles or bins using the following codes:						
FE Front Endloader SS Stationary Conveyor/Stacker						
ST Stacking Tube MC Mobile Conveyor/Stacker CS Clamshell TD Truck Dump						
11. Enter the dust control method applied during load-in or load-out using the following codes:						
CA Crusting Agent WS Water Spray FE Full Enclosure MD Minimize Drop Height						
FE Full Enclosure MD Minimize Drop Height ST Stacking Tube NO None						
OT Other (please specify)						
/L						

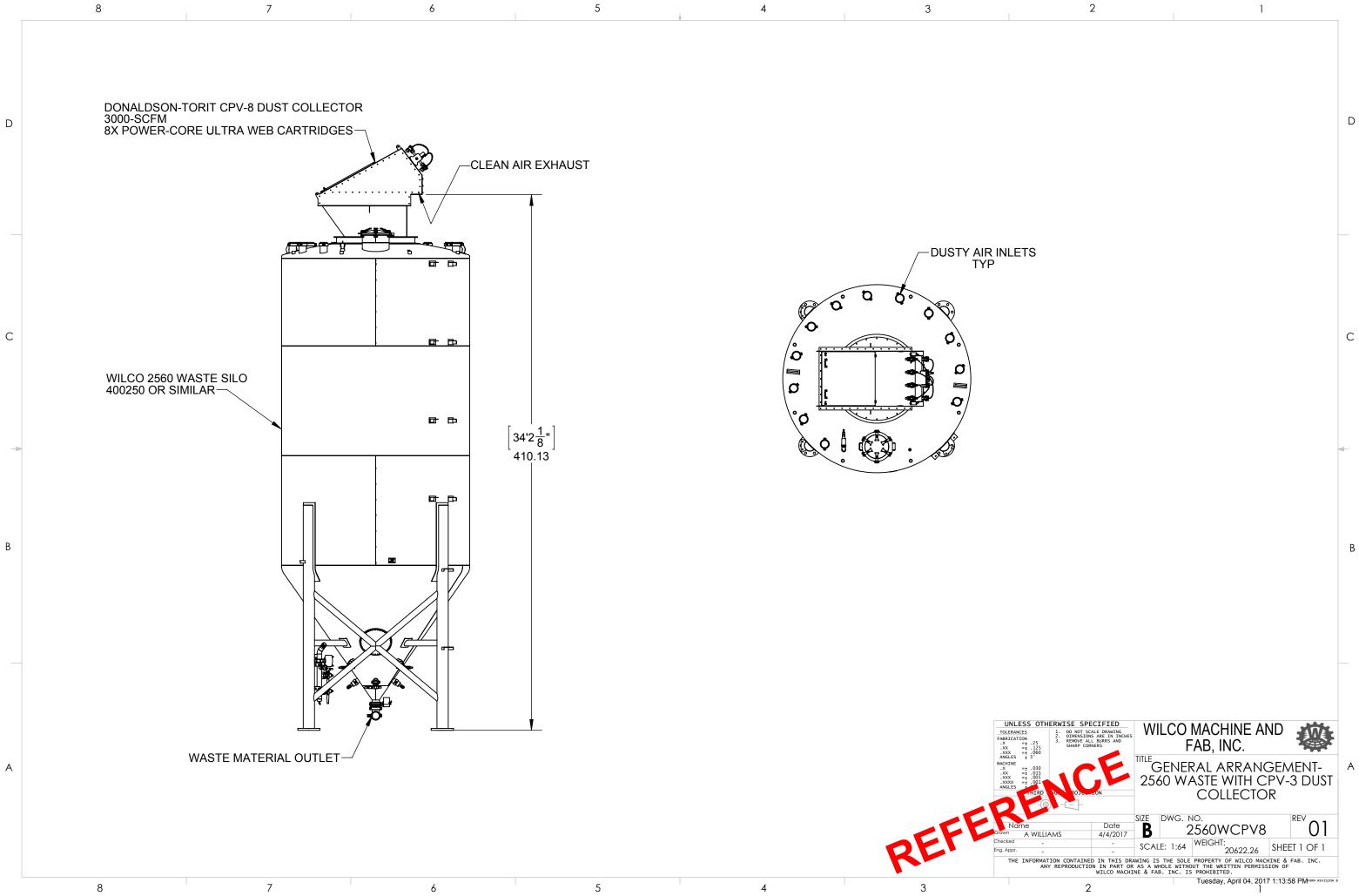
CBP STORAGE TANK AFFECTED SOURCE SHEET

Source Identification	Content ²	Length ³	Dia ⁴	Volume⁵	Throughp ut ⁶	Orientation ⁷	Liquid Height ⁸
Number ¹		(ft)	(ft)	(gallons)	(gal/yr)		(ft)
T-1	35% HCI	14	10	6500	140000	VERT	10
T-2	35% HCI	14	10	6500	140000	VERT	10
		ļ					

1.Enter the appropriate Source Identification Number for each storage tank located at the concrete batch plant.

Storage tanks should be designated T-1, T-2, T-3, etc.

 $\ensuremath{\text{2.Enter storage tank content (#2 fuel oil, asphaltic cement, water, etc.)}$


3.Enter storage tank length in feet.

4.Enter storage tank diameter in feet.

- 5. Enter storage tank volume in gallons. Storage tank volume may be calculated using the following mathematical relationship: (length of tank) X (area conversion) X (tank diameter)² X (liquid volume conversion) or, $(L_{tank} ft) X (3.14/4) X (d_{tank}^2 ft^2) X (7.48 gallons/ft^3)$
- Enter storage tank throughput in gallons per year.
- 7. Enter storage tank orientation using the following codes: VERT Vertical Tank HORZ Horizontal Tank
- 8. Enter storage tank average liquid height in feet.
- 9. Storage tank emissions may be calculated using TANKS emission calculation program.

Attachment H Air Pollution Control Device Data Sheet

AIR F	POLLUTION CONTROL DEV	CE AFFECTED SO	URCE SH	EET
CBP Air Pollution Control Device Data Sheet		Fabric Filter Baghouse	Filter Vent	Fabric Filter Discharge Sock
General	APCD Identification Number ¹	APCD-1		
Information	Manufacturer & Model Number	Donaldson Torit CPV-8		
	Number of Compartments	1		
	Gas Inlet Area (ft ²)	2.18		
	Gas Outlet Area (ft ²)	1.4		
	Fabric Filter Cleaning Mechanism ²	Pulse Jet with timer		
	Total Cloth (fabric) Area (ft ²)	1584		
	Draft Fan HP	-		
	Outlet Stack Area (ft ²)	-		
Operational	Minimum Design PD (in H_2O)	TBD		
Parameters	Maximum Design PD (in H_2O)	TBD		
	Inlet Gas Flow Rate (ACFM)	10200		
	Inlet Gas Temperature (°F)	ambient		
	Inlet Gas Pressure (PSIA)	-		
	Inlet Gas Velocity (ft/sec)	-		
	PM Inlet Rate (grains/scf)	TBD		
	PM Outlet Rate (grains/scf)	TBD - Capture efficier	ncy is >99%	
	Operating Air/Cloth Ratio (ft/min)	-		
	Air Pollution Control Device Identification Nur ated APCD-1, APCD-2, APCD-3, etc.	nber for each fabric filter bagh	nouse, filter vent	or discharge sock. T
2. Enter method used to c	lean bags: shaker, pulse jet, reverse jet or othe	er.		
B. Complete more than on	e CBP Air Pollution Control Device Data Shee	t if necessary.		
. Enter the fractional effic	eiency of the fabric filter baghouse.			

Donaldson.

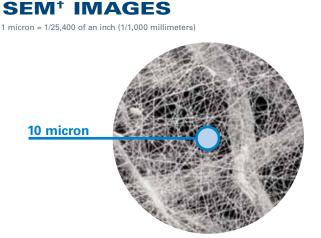
POWERCORE® CP FILTER PACK

ENGINEERED FOR DUST COLLECTION

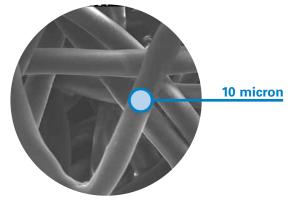
- Ultra-Web[®] nanofiber media ensures longer filter life at a significantly lower pressure drop
- Superior particle release due to surface filtration
- Fluted media construction prevents bridging in fibrous or agglomerative applications
- Smaller and lightweight filter pack design with built-in handles
- Easy filter changeout for quicker maintenance

 no tools required
- MERV* 13 filtration efficiency rating per ASHRAE 52.2-2007

PROVEN TECHNOLOGY THAT PERFORMS



PowerCore® CP Filter Pack (Available in Standard, Spunbond and Anti-Static)


Proven and proprietary Ultra-Web[®] filter media delivers longer filter life, cleaner air and greater cost savings than other traditional filter media. It is made with an electrospinning process that produces a very fine, continuous, resilient fiber of 0.2-0.3 microns in diameter.

PowerCore filter packs with Ultra-Web media keep dust on the surface of the fluted channels where it is easily cleaned off unlike conventional filter bag material that depth loads, like 16 oz. (453.6 g) polyester.

- Surface loading promotes filter cleaning and longer life
- Better pulse cleaning lowers operational pressure drop and energy use

Ultra-Web Nanofiber Technology (600x)

16 oz. Polyester (600x)

* Refer to Technical Information on page 2.

APPLICATIONS

- Premium performance on fine, dry, fibrous and/or abrasive dust
- Longer life in aggressive/challenging applications
- Optional Spunbond or Anti-Static (AS) media available
- Spunbond version has excellent moisture and chemical resistance

MEDIA COMPATIBILITY DATA

Temperature Resistance	150°F 65°C			
Moisture Absorption**	Maximum 14% @ 70°F (21°C) and 65% RH			
Chemical Tolerance***	Acids→Poor Bases→Fair	Oxidants→Poor Solvents→Fair		
Abrasion Resistance	Excellent per TAPPI 476 (Taber Method)			
Moisture Absorption** for Spunbond	0.2–0.5% @ 70°F (21°C) and	65% RH		
Chemical Tolerance*** for Spunbond	Acids→Good Bases→Good	Oxidants→Good Solvents→Good		

SPECIFICATIONS

MEDIA CON	MPOSITION	MEDIA EFFICIENCY	(
Nanofiber	Durable proprietary synthetic filter media	U.S. Efficiency Rating	MERV* 13 per ASHRAE 52.2-2007			
Technology	fiber and polymer Mean fiber diameter of 0.2 μm	FILTER PACK CONSTRUCTION				
Substrates	 Proprietary blend of cellulose fibers Spunbond Polyester Anti-static (AS) version per ESD STM 11.11-2001 Resistance less than 10⁸ OHM 	Standard Construction	Obround design Fluted media configuration Urethane gasket Built-in handle			

CURRENT AVAILABLE CONFIGURATIONS

	Dime	ensions	PowerCore				
Collector Models	in	mm	Standard	Spunbond	Anti-Static		
CPC	22.3 x 7.5 x 7.0	566.42 x 190.50 x 177.80	•	•	•		
CPV	22.3 x 7.5 x 7.0	566.42 x 190.50 x 177.80	•	•	•		

* The Minimum Efficiency Reporting Value (MERV) of this filter cartridge has been determined through independent laboratory testing using ASHRAE 52.2 (2007) test standards. The MERV rating was determined at a face velocity of 118 feet per minute (36.0 meters per minute) and loading up to four inches (101.6 millimeters) water gauge. Actual efficiency of any filter cartridge will vary according to the specific application parameters. Dust concentration, airflow, particle characteristics, and pulse cleaning methods all affect filtration efficiency.

** Environmental conditions involving combinations of high temperature, corrosive material, and moisture can reduce media strength. Reduction in media strength may compromise cartridge integrity and performance.

*** A combination of chemicals may alter fiber resistance to the specified performance level. Chemical attack may compromise cartridge integrity and performance.

Significantly improve the performance of your collector with genuine Donaldson Torit replacement filters and parts. **Call Donaldson Torit today 800-365-1331.**

Tel 800-365-1331 (USA) Tel 800-343-3639 (within Mexico)

donaldsontorit@donaldson.com

Donaldson Company, Inc. Torit P.O. Box 1299 Minneapolis, MN 55440-1299 U.S.A.

donaldsontorit.com

EXACTLY WHAT YOU NEED.™

Powercore CP Filter Pack (11/12) © 2009 Donaldson Co., Inc. All Rights Reserved. All products, product specifications, and data (airflow, capacity, dimensions, or availability) are subject to change without notice, and may vary by region or country. Donaldson Torit, Torit PowerCore, Ultra-Web, and the color blue are registered trademarks of Donaldson Company, Inc. Contains Donaldson proprietary technology.

Attachment I Emissions Calculations

Attachment I Emission Calculations Jane Lew, Lewis County, WV

G50-B Emission Calculation Spreadsheets

For purposes of the General Permit for concrete batch plants, the following emission calculation methods will provide an adequate estimate of facility emissions from point sources and fugitive emission sources. However, where source (facility) specific tests are available, such information is preferable. Other emission factors may be acceptable provided documentation as to accuracy and appropriateness are provided by the applicant.

Completely fill out the following pages with all requested facility specific information.

Applicant Name <u>C&J Spec-Rent Services, Inc DBA C&J Energy Services</u>

Facility Name Jane Lew

Please print out all pages of the completed spreadsheet and submit with Registration Application.

Revised 06/11/2007

General Pern	nit G50-B Em	ission Calculat	ion Spreadshee	et G50ECALC for C	oncrete Batc	h Plants		
	TRAN	SFER RATE	TYPE OF	CONTROL	PM	PM-10	PM	PM-10
TRANSFER POINT	TPH	TPY	CONTROL	EFFICIENCY	lb/hour	lb/hour	TPY	TPY
BATCH DROP/CONTINUOU	S DROP OPE	RATIONS						
	TRAN	SFER RATE	TYPE OF	CONTROL	PM	PM-10	PM	PM-10
TRANSFER POINT	TPH	TPY	CONTROL	EFFICIENCY	lb/hour	lb/hour	TPY	TPY
CEMENT UNLOADING TO I	ELEVATED S	TORAGE SILO	(PNEUMATIC)					
e=	0.7200 lb/ton	(PM emission fa	actor)	e=	0.46	00 lb/ton (PM-	10 emission f	actor)
truck to cement silo		25 16	,000 UL-BH	99.00	0.18	00 0.11	50 0.057	6 0.0368
CEMENT SUPPLEMENT UN		DELEVATED S	TORAGE SILO	(PNEUMATIC)				
e=	3.1400 lb/ton	(PM emission fa	actor)	e=	1.10	00 lb/ton (PM-	10 emission f	actor)
truck to cement silo		25 6	,000 UL-BH	99.00	0.78	50 0.27	50 0.094	2 0.0330
WEIGH HOPPER/ SCALE T	ANK LOADIN	G						
e=	0.0051 lb/ton	(PM emission fa	actor)	e=	0.00	24 lb/ton (PM-	10 emission f	actor)
silo to scale tank		25 22	,000 TC-BH	99.00	0.00	0.00	0.000	6 0.0003
BATCH BLENDER LOADIN	-							
e=	0.0051 lb/ton	(PM emission fa	actor)	e=	0.00	24 lb/ton (PM-	10 emission f	actor)
scale tank to batch blender		25 22	,000 TC-BH	99.00	0.00	0.00	0.000	6 0.0003
TRUCK LOADING (TRUCK	MIX)							
e=	0.9950 lb/ton	(PM emission fa	actor)	e=	0.27	80 lb/ton (PM-	10 emission f	actor)
batch blender to truck		25 22	,000 LR-TC	75.00	6.21	88 1.73	75 2.736	3 0.7645
TOTAL CEME	NT TRANSFI	ER EMISSIONS	i		7.18	63 2.12	37 2.889	2 0.8348
TOTAL TRANSFER EMISSI	ONS				7.18	63 2.12	87 2.889	2 0.8348

UNPAVED HAULROADS - Cement Tanker

PM EMISSIONS		PM-10 EMISSIC	DNS
k	4.9 particle size multiplier (assumed)	k	1.5 particle size multiplier (assumed)
S	10 silt in road surface (%)	S	10 silt in road surface (%)
а	0.7 equation constant	а	0.9 equation constant
b	0.45 equation constant	b	0.45 equation constant
S	5 mean vehicle speed (mph)	S	5 mean vehicle speed (mph)
W	65 mean vehicle weight (tons)	W	65 mean vehicle weight (tons)
w	18 mean number of wheels	W	18 mean number of wheels
р	150 days of precipitation (assumed)	р	150 days of precipitation (assumed)
е	17.2138 LB/VMT	е	5.0808 LB/VMT
TRAVEL	0.6800 VMT/HOUR	TRAVEL	0.6800 VMT/HOUR
TRAVEL	598.4000 VMT/YR	TRAVEL	598.4000 VMT/YR
CONTROLS	70.0 control efficiency (%)	CONTROLS	70.0 control efficiency (%)
EMISSIONS	3.5116 lb/hour	EMISSIONS	1.0365 lb/hour
EMISSIONS	1.5451 TPY	EMISSIONS	0.4561 TPY

UNPAVED HAULROADS - Concrete Mixer

PM EMISSION	IS	PM-10 EMISSIC	DNS
k	4.9 particle size multiplier (assumed)	k	1.5 particle size multiplier (assumed)
S	10 silt in road surface (%)	S	10 silt in road surface (%)
а	0.7 equation constant	а	0.9 equation constant
b	0.45 equation constant	b	0.45 equation constant
S	5 mean vehicle speed (mph)	S	5 mean vehicle speed (mph)
W	65 mean vehicle weight (tons)	W	65 mean vehicle weight (tons)
w	18 mean number of wheels	W	18 mean number of wheels
р	150 days of precipitation (assumed)	р	150 days of precipitation (assumed)
е	17.2138 LB/VMT	е	5.0808 LB/VMT
TRAVEL	0.6800 VMT/HOUR	TRAVEL	0.6800 VMT/HOUR
TRAVEL	598.4000 VMT/YR	TRAVEL	598.4000 VMT/YR
CONTROLS	70.0 control efficiency (%)	CONTROLS	70.0 control efficiency (%)
EMISSIONS	3.5116 lb/hour	EMISSIONS	1.0365 lb/hour
EMISSIONS	1.5451 TPY	EMISSIONS	0.4561 TPY

EMISSIONS SOURCE SUMMARY

	PM EMISSI	ONS	PM-10 EMISSIONS		
Point Source Emissions	lb/hour	ΤΡΥ	lb/hour	ΤΡΥ	
Transfer Point Emissions	7.19	2.89	2.13	0.83	
Point Source Emissions Total	7.19	2.89	2.13	0.83	
Fugitive Emissions	lb/hour	TPY	lb/hour	TPY	
Unpaved Haulroad Emissions	7.02	3.09	2.07	0.91	
Fugitive Emissions Total	7.02	3.09	2.07	0.91	
FACILITY EMISSIONS TOTAL	14.21	5.98	4.20	1.75	

Attachment I HCI Emission Calculations Jane Lew, Lewis County, WV

Uncontrolled HCI Loading Emissions		
Annual Average Temp (F)	72.0	
S (saturation factor)	0.6	
P (true vapor pressure)	2.70	
M (MW of vapor)	36.60	
Total Loading Loss (lb/10^3 gal)*	1.39	
Maximum Throughput (gallons/hr)**	4,800	
Annual Throughput (gallons/yr)	275,000	
Total Loading Emissions (lbs/hr)	6.67	
Total Loading Emissions (tpy)	0.19	
HCI Emissions based on 35% concentration		
Hourly Emisisons (lbs) = total loading emissions X 35%	= 6.67 X 35%	2.33
Annual Emissions (tons) = total loading emissions X 35%	=0.19 X 35%	0.07
Enter any notes here		
Using equation $L_L = 12.46^$ SPM/T from AP-42, Chapter 5, Section 5.2-4		

MW and TVP obtained from HCI physical properties

Annual Average Temp (F) obtained from Charleston, WV

S (saturation factor) is based on submerged loading

* Maximum throughput in gallons per hour obtained from actual transfer rate.

Loading emissions are vented to the atmosphere.

	Hourly (lbs per tank)	Annual (ton per tank
Uncontrolled Storage Tanks Working and Breathing HCI Emissions *	0.040	0.175

* - from Tanks 4.09d report

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: January, February, March, April, May, June, July, August, September, October, November, December

Jane Lew HCI ST - Vertical Fixed Roof Tank Charleston, West Virginia

	Losses(lbs)							
Components	Working Loss	Breathing Loss	Total Emissions					
Hydrochloric Acid 35%	165.70	184.13	349.82					

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification	
User Identification:	Jane Lew HCI ST
City:	Charleston
State:	West Virginia
Company:	C&J Energy
Type of Tank:	Vertical Fixed Roof Tank
Description:	6500 gal tank
Tank Dimensions	
Shell Height (ft):	14.00
Diameter (ft):	10.00
Liquid Height (ft) :	10.00
Avg. Liquid Height (ft):	8.00
Volume (gallons):	5,875.21
Turnovers:	23.83
Net Throughput(gal/yr):	140,000.00
Is Tank Heated (y/n):	Ν
Paint Characteristics	
Shell Color/Shade:	Gray/Medium
Shell Condition	Good
Roof Color/Shade:	Gray/Medium
Roof Condition:	Good
Roof Characteristics	
Туре:	Dome
Height (ft)	2.00
Radius (ft) (Dome Roof)	6.00
Breather Vent Settings	
Vacuum Settings (psig):	-0.03
Pressure Settings (psig)	0.03

Meterological Data used in Emissions Calculations: Charleston, West Virginia (Avg Atmospheric Pressure = 14.25 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Jane Lew HCI ST - Vertical Fixed Roof Tank Charleston, West Virginia

		Daily Liquid Surf.		Liquid Bulk Temp Vapor Pressure (psia)			Vapor Liquid						
Mixture/Component	Month	Avg.	perature (de Min.	eg F) Max.	Temp (deg F)	Avg.	Min.	(psia) Max.	Mol. Weight.	Mass Fract.	Mass Fract.	Mol. Weight	Basis for Vapor Pressure Calculations
Hydrochloric Acid 35%	Jan	50.00	43.75	56.26	58.06	0.8006	0.6496	1.0218	36.4600			36.46	Option 1: VP50 = .8005 VP60 = 1.1542
Hydrochloric Acid 35%	Feb	52.70	45.13	60.28	58.06	0.8961	0.6829	1.1673	36.4600			36.46	Option 1: VP50 = .8005 VP60 = 1.1542
Hydrochloric Acid 35%	Mar	59.05	49.51	68.60	58.06	1.1207	0.7886	1.5594	36.4600			36.46	Option 1: VP50 = .8005 VP60 = 1.1542
Hydrochloric Acid 35%	Apr	64.76	53.23	76.29	58.06	1.3787	0.9149	2.0243	36.4600			36.46	Option 1: VP60 = 1.1542 VP70 = 1.6254
Hydrochloric Acid 35%	May	70.02	57.22	82.81	58.06	1.6266	1.0560	2.4918	36.4600			36.46	Option 1: VP70 = 1.6254 VP80 = 2.2592
Hydrochloric Acid 35%	Jun	74.22	60.93	87.51	58.06	1.8927	1.1980	2.8800	36.4600			36.46	Option 1: VP70 = 1.6254 VP80 = 2.2592
Hydrochloric Acid 35%	Jul	75.41	62.83	87.98	58.06	1.9680	1.2874	2.9195	36.4600			36.46	Option 1: VP70 = 1.6254 VP80 = 2.2592
Hydrochloric Acid 35%	Aug	74.03	62.28	85.79	58.06	1.8810	1.2615	2.7379	36.4600			36.46	Option 1: VP70 = 1.6254 VP80 = 2.2592
Hydrochloric Acid 35%	Sep	69.64	59.11	80.18	58.06	1.6085	1.1226	2.2738	36.4600			36.46	Option 1: VP60 = 1.1542 VP70 = 1.6254
Hydrochloric Acid 35%	Oct	62.86	53.56	72.16	58.06	1.2891	0.9265	1.7624	36.4600			36.46	Option 1: VP60 = 1.1542 VP70 = 1.6254
Hydrochloric Acid 35%	Nov	56.75	49.74	63.77	58.06	1.0394	0.7943	1.3317	36.4600			36.46	Option 1: VP50 = .8005 VP60 = 1.1542
Hydrochloric Acid 35%	Dec	51.66	45.88	57.44	58.06	0.8592	0.7011	1.0635	36.4600			36.46	Option 1: VP50 = .8005 VP60 = 1.1542

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Jane Lew HCI ST - Vertical Fixed Roof Tank Charleston, West Virginia

Month:

January

Standing Losses (Ib):	5.1004	6.2767	11.3472	16.5985	22.9052	27.0549	27.4474	24.4600	17.7779	12.7278	7.4020	5.0289
Vapor Space Volume (cu ft):	553.9675	553.9675	553.9675	553.9675	553.9675	553.9675	553.9675	553.9675	553.9675	553.9675	553.9675	553.9675
Vapor Density (lb/cu ft):	0.0053	0.0059	0.0073	0.0089	0.0104	0.0120	0.0125	0.0120	0.0103	0.0084	0.0068	0.0057
Vapor Space Expansion Factor:	0.0723	0.0909	0.1277	0.1694 0.6599	0.2056	0.2308	0.2220	0.2026	0.1659	0.1310	0.0904	0.0678 0.7569
Vented Vapor Saturation Factor:	0.7697	0.7491	0.7047	0.6599	0.6219	0.5856	0.5761	0.5871	0.6245	0.6748	0.7202	0.7569
Tank Vapor Space Volume:												
Vapor Space Volume (cu ft):	553.9675	553.9675	553.9675	553.9675	553.9675	553.9675	553.9675	553.9675	553.9675	553.9675	553.9675	553.9675
Tank Diameter (ft):	10.0000	10.0000	10.0000 7.0533	10.0000	10.0000	10.0000 7.0533	10.0000	10.0000	10.0000 7.0533	10.0000	10.0000	10.0000
Vapor Space Outage (ft): Tank Shell Height (ft):	7.0533 14.0000	7.0533 14.0000	14.0000	7.0533 14.0000	7.0533 14.0000	14.0000	7.0533 14.0000	7.0533 14.0000	14.0000	7.0533 14.0000	7.0533 14.0000	7.0533 14.0000
Average Liquid Height (ft):	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000
Roof Outage (ft):	1.0533	1.0533	1.0533	1.0533	1.0533	1.0533	1.0533	1.0533	1.0533	1.0533	1.0533	1.0533
Roof Outage (Dome Roof)												
Roof Outage (ft):	1.0533	1.0533	1.0533	1.0533	1.0533	1.0533	1.0533	1.0533	1.0533	1.0533	1.0533	1.0533
Dome Radius (ft):	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000
Shell Radius (ft):	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000
Vapor Density												
Vapor Density (lb/cu ft):	0.0053	0.0059	0.0073	0.0089	0.0104	0.0120	0.0125	0.0120	0.0103	0.0084	0.0068	0.0057
Vapor Molecular Weight (lb/lb-mole):	36.4600	36.4600	36.4600	36.4600	36.4600	36.4600	36.4600	36.4600	36.4600	36.4600	36.4600	36.4600
Vapor Pressure at Daily Average Liquid												
Surface Temperature (psia):	0.8006	0.8961	1.1207	1.3787	1.6266	1.8927	1.9680	1.8810	1.6085	1.2891	1.0394	0.8592
Daily Avg. Liquid Surface Temp. (deg. R):	509.6722	512.3732	518.7236	524.4342	529.6887	533.8872	535.0758	533.7023	529.3110	522.5328	516.4248	511.3288
Daily Average Ambient Temp. (deg. F):	32.1000	35.5000	45.8500	54.8000	63.5000	71.4500	75.0500	73.9000	67.6500	56.2000	46.8000	37.0000
Ideal Gas Constant R (psia cuft / (Ib-mol-deg R)):	10.731	10.731	10.731	10.731	10.731	10.731	10.731	10.731	10.731	10.731	10.731	10.731
Liquid Bulk Temperature (deg. R):	517.7333	517.7333	517.7333	517.7333	517.7333	517.7333	517.7333	517.7333	517.7333	517.7333	517.7333	517.7333
Tank Paint Solar Absorptance (Shell):	0.6800	0.6800	0.6800	0.6800	0.6800	0.6800	0.6800	0.6800	0.6800	0.6800	0.6800	0.6800
Tank Paint Solar Absorptance (Roof):	0.6800	0.6800	0.6800	0.6800	0.6800	0.6800	0.6800	0.6800	0.6800	0.6800	0.6800	0.6800
Daily Total Solar Insulation												
Factor (Btu/sqft day):	625.9737	850.2836	1,184.6862	1,514.6470	1,780.2020	1,910.5999	1,836.9933	1,675.5029	1,369.9719	1,046.0392	678.9578	533.0136
Vapor Space Expansion Factor												
Vapor Space Expansion Factor:	0.0723	0.0909	0.1277	0.1694	0.2056	0.2308	0.2220	0.2026	0.1659	0.1310	0.0904	0.0678
Daily Vapor Temperature Range (deg. R):	25.0225	30.3014	38.1804	46.1189	51.1750	53.1538	50.3124	47.0216	42.1403	37.1966	28.0474	23.1086
Daily Vapor Pressure Range (psia):	0.3722	0.4844	0.7707	1.1094	1.4358	1.6820	1.6321	1.4764	1.1512	0.8359	0.5374	0.3624
Breather Vent Press. Setting Range(psia):	0.0600	0.0600	0.0600	0.0600	0.0600	0.0600	0.0600	0.0600	0.0600	0.0600	0.0600	0.0600
Vapor Pressure at Daily Average Liquid Surface Temperature (psia):	0.8006	0.8961	1.1207	1.3787	1.6266	1.8927	1.9680	1.8810	1.6085	1.2891	1.0394	0.8592
Vapor Pressure at Daily Minimum Liquid	0.0000	0.0301	1.1207	1.5707	1.0200	1.0327	1.3000	1.0010	1.0005	1.2031	1.0334	0.0332
Surface Temperature (psia):	0.6496	0.6829	0.7886	0.9149	1.0560	1,1980	1.2874	1.2615	1,1226	0.9265	0.7943	0.7011
Vapor Pressure at Daily Maximum Liquid												
Surface Temperature (psia):	1.0218	1.1673	1.5594	2.0243	2.4918	2.8800	2.9195	2.7379	2.2738	1.7624	1.3317	1.0635
Daily Avg. Liquid Surface Temp. (deg R):	509.6722	512.3732	518.7236	524.4342	529.6887	533.8872	535.0758	533.7023	529.3110	522.5328	516.4248	511.3288
Daily Min. Liquid Surface Temp. (deg R):	503.4166	504.7978	509.1785	512.9044	516.8950	520.5988	522.4977	521.9469	518.7759	513.2336	509.4130	505.5517
Daily Max. Liquid Surface Temp. (deg R): Daily Ambient Temp. Range (deg. R):	515.9278 18.2000	519.9485 19.6000	528.2687 21.7000	535.9639 24.0000	542.4825 24.0000	547.1757 23.3000	547.6539 21.3000	545.4577 21.0000	539.8460 22.3000	531.8319 24.0000	523.4367 21.0000	517.1060 18.0000
	10.2000	13.0000	21.7000	24.0000	24.0000	20.0000	21.0000	21.0000	22.0000	24.0000	21.0000	10.0000
Vented Vapor Saturation Factor												
Vented Vapor Saturation Factor:	0.7697	0.7491	0.7047	0.6599	0.6219	0.5856	0.5761	0.5871	0.6245	0.6748	0.7202	0.7569
Vapor Pressure at Daily Average Liquid: Surface Temperature (psia):	0.8006	0.8961	1.1207	1.3787	1.6266	1.8927	1.9680	1.8810	1.6085	1.2891	1.0394	0.8592
Vapor Space Outage (ft):	7.0533	7.0533	7.0533	7.0533	7.0533	7.0533	7.0533	7.0533	7.0533	7.0533	7.0533	7.0533
Working Losson (Ib):	0 1001	0.0750	11 2505	12 0620	16 4707	10 1697	10 0217	10.0500	16 2002	12 0557	10 5270	9 7045
Working Losses (lb): Vapor Molecular Weight (lb/lb-mole):	8.1081 36.4600	9.0756 36.4600	11.3505 36.4600	13.9630 36.4600	16.4737 36.4600	19.1687 36.4600	19.9317 36.4600	19.0500 36.4600	16.2903 36.4600	13.0557 36.4600	10.5270 36.4600	8.7015 36.4600
Vapor Pressure at Daily Average Liquid	30.4000	33.4000	55.4000	55.4000	00.4000	33.4000	50.4000	00.4000	00.4000	33.4000	55.4000	30.4000
Surface Temperature (psia):	0.8006	0.8961	1.1207	1.3787	1.6266	1.8927	1.9680	1.8810	1.6085	1.2891	1.0394	0.8592
Net Throughput (gal/mo.):	11,666.6667	11,666.6667	11,666.6667	11,666.6667	11,666.6667	11,666.6667	11,666.6667	11,666.6667	11,666.6667	11,666.6667	11,666.6667	11,666.6667
Annual Turnovers:	23.8290	23.8290	23.8290	23.8290	23.8290	23.8290	23.8290	23.8290	23.8290	23.8290	23.8290	23.8290
Turnover Factor:	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Maximum Liquid Volume (gal):	5,875.2057	5,875.2057	5,875.2057	5,875.2057	5,875.2057	5,875.2057	5,875.2057	5,875.2057	5,875.2057	5,875.2057	5,875.2057	5,875.2057
Maximum Liquid Height (ft):	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000
Tank Diameter (ft): Working Loss Product Factor:	10.0000 1.0000											
WORKING LOSS FIDUULI FACIDI.	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Total Losses (lb):		15.3524	22.6976	30.5616	39.3789	46.2236	47.3791	43.5100	34.0683	25.7834	17.9290	13.7304
	13.2084											

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: January, February, March, April, May, June, July, August, September, October, November, December

Jane Lew HCI ST - Vertical Fixed Roof Tank Charleston, West Virginia

	Losses(lbs)		
Components	Working Loss	Breathing Loss	Total Emissions
Hydrochloric Acid 35%	165.70	184.13	349.82

Attachment J Class I Legal Advertisement

Attachment J

Air Quality Permit Notice Notice of Application Jane Lew Facility C&J Energy Services Lewis County, West Virginia

Notice is given that C&J Energy Services has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a G50-B General Permit Modification for a concrete batch plant located at 1650 Hackers Creek Road, Jane Lew in Lewis County, West Virginia 26378.

The latitude and longitude coordinates are: 39.08716 and -80.38734

The applicant estimates the increased potential to discharge the following Regulated Air Pollutants will be:

Pollutants	TOTALS (tpy):
PM	5.9794
PM10	1.7469
HCI	0.01

Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the ___ day of _____, 2017

By: C&J Energy Services John Srock Vice-President, QHSE 3990 Rogerdale Houston, TX 77042

Attachment L General Permit Registration Application Fee

Attachment O Emissions Summary Sheets

CBP EMISSION SUMMARY SHEET

	PM		PM ₁₀	
Source	PTE	PTE	PTE	PTE
	(lb/hr)	(ton/yr)	(lb/hr)	(ton/yr)
Total Aggregate Transfer Emissions ¹	-	-	-	-
Total Sand Transfer Emissions ¹	-	-	-	-
Cement Unloading to Elevated Storage Silo (Pneumatic) ²	0.180	0.058	0.115	0.037
Pneumatic Cement Additive Unloading to Silo ²	0.785	0.094	0.275	0.033
Weigh Hopper/Scale Tank Loading ³	0.001	0.001	0.001	0.000
Batch Blender Loading	0.001	0.001	0.001	0.000
Mixer Loading (Central) ³	-	-	-	-
Truck Mix Loading ³	6.219	2.736	1.738	0.765
Paved Haulroads ⁴	-	-	-	-
Unpaved Haulroads ⁴	7.023	3.090	2.073	0.912
Wind Erosion from Storage Piles ⁵	-	-	-	-
Total	14.210	5.979	4.202	1.747

1. Enter the potential to emit of PM and PM10 associated with the transfer of sand and aggregrate from stockpiles to elevated bins. Use appropriate emission factors and/or equations from the CBP Emission Factor Sheet. Emission calculations may also be determined using spreadsheet G50ECALC.

2. Enter the potential to emit of PM and PM10 associated with the pneumatic transfer of cement and cement additive to storage structures or silos. Use appropriate emission factors and/or equations from the CBP Emission Factor Sheet. Emission calculations may also be determined using spreadsheet G50ECALC.

3. Enter the potential to emit of PM and PM10 associated with loading of weigh hopper(s), central mixer and trucks. Use appropriate emission factors and/or equations from the CBP Emission Factor Sheet. Emission calculations may also be determined using spreadsheet G50ECALC.

4. Enter the potential to emit of PM and PM10 associated with vehicle activity on paved or unpaved haulroad(s). Use appropriate emission factors and/or equations from the CBP Emission Factor Sheet. Emission calculations may also be determined using spreadsheet G50ECALC.

5. Enter the potential to emit of PM and PM10 associated with wind erosion from sand and aggregate stockpiles. Use appropriate emission factors and/or equations from the CBP Emission Factor Sheet. Emission calculations may also be determined using spreadsheet G50ECALC.

6. Attach all potential emission calculations/spreadsheet output to this CBP Emission Summary Sheet.

Attachment O HCI Emission Calculations Jane Lew, Lewis County, WV

	Uncontrolled Emissions		Controlled Emissions	
	Hourly (lbs)	Annual (tons)	Hourly (lbs)	Annual (tons)
HCI Loading Emissions ¹	2.33	0.07	0.047	0.001
HCI Working and Breathing Emissions ²	0.08	0.35	0.002	0.007
Total HCI Emissions	2.41	0.42	0.05	0.01

1 - Maximum hourly loading emissions based on one tank loading at anytime

2 - Obtained from Tanks 4.09d report. Emission quantities in this table are based on two storage tanks

3- A 98% control efficiency is assumed for HCl scrubber.

Attachment O		
Emissions Summary		
Jane Lew, Lewis County, WV		

	Controlled Emissions	
	Hourly (lbs)	Annual (tons)
РМ	14.210	5.979
PM10	4.202	1.747
НСІ	0.05	0.01

www.ghd.com

