

April 10, 2018

Mr. William F. Durham Director WVDEP, Division of Air Quality 601 – 57th Street SE Charleston, West Virginia 25304

Re: Nytis Exploration Company, Rule 13 Permit Modification and Title V Permit Application Staten Run Compressor Station – Facility ID 039 - 00044

Dear Mr. Durham,

Nytis Exploration Company (Nytis) and SLR International Corporation (SLR) have prepared the attached Rule 13 Permit Modification and Title V Permit Application for Staten Run Compressor Station located in Kanawha County, West Virginia. This modification addresses the following:

Changes incorporated under the Rule 13 Modification portion of this Application

- Increase VOC and PM emissions for Emission Unit ID #4 (AJAX DPC 120) based on updated emission factors;
- Increase in VOC emissions associated with the dehydration unit (RSV-1) due to changes in gas composition;
- Addition of two produced liquids storage tanks (T05 & T06) and emissions associated with the new storage tanks as well as an increase in the existing produced liquids storage tank (T03) emissions based on a new annual throughput; and
- Addition of emissions associated with operations at the site due to truck loading emissions, (TL-1) and compressor blowdown venting emissions (Blowdowns).

Changes incorporated under the Title V Permit portion of this Application

Increase NOx and VOC emissions for Emission Unit IDs #1 and #2 (CAT 398-SI Compressor Engines) based on updated specifications;

The station's potential to emit (PTE) has been updated and new emission limits are proposed. The proposed emission limits will trigger new permitting program requirements for the Staten Run Station as an active Title V Major Source.

The public notice will be submitted to *The Charleston Gazette* for publication. The legal advertisement will be forwarded to your office as soon as SLR receives the original affidavit from the newspaper.

If any additional information is needed, please feel free to contact me by telephone at (304) 932-3107 or by e-mail at nlanham@slrconsulting.com

Sincerely, SLR International Corporation

N L Lanham

Nathaniel L. Lanham WV Operations Manager

Nytis Exploration Company LLC

Staten Run Compressor Station

Montgomery, West Virginia

Rule 13 Permit Modification Application

SLR Ref: 116.01914.00021

Rule 13 Permit Modification Application

Prepared for:

Nytis Exploration Company LLC

102 3rd St. Glasgow, West Virginia 25086

This document has been prepared by SLR International Corporation. The material and data in this permit application were prepared under the supervision and direction of the undersigned.

Chris Boggess Associate Engineer

Nathaniel L. Lanham. West Virginia Operations Manager

ATTACHMENTS

APPLICATION FOR PERMIT
ATTACHMENT A
ATTACHMENT B
ATTACHMENT C INSTALLATION AND STARTUP SCHEDULE (SEE NOTES)
ATTACHMENT D REGULATORY DISCUSSION
ATTACHMENT E PLOT PLAN
ATTACHMENT F PROCESS FLOW DIAGRAM
ATTACHMENT G PROCESS DESCRIPTION
ATTACHMENT H SAFETY DATA SHEETS
ATTACHMENT IEMISSION UNITS TABLE
ATTACHMENT J EMISSION POINTS DATA SUMMARY SHEET(S)
ATTACHMENT K FUGITIVE EMISSION DATA SUMMARY SHEET(S)
ATTACHMENT L EMISSION UNIT DATA SHEET(S)
ATTACHMENT M AIR POLLUTION CONTROL DEVICE SHEET(S) (SEE NOTES)
ATTACHMENT N SUPPORTING EMISSION CALCULATIONS
ATTACHMENT O. MONITORING/RECORDKEEPING/REPORTING/TESTING PLANS
ATTACHMENT P PUBLIC NOTICE
ATTACHMENT Q BUSINESS CONFIDENTIAL CLAIMS (SEE NOTES)
ATTACHMENT R AUTHORITY FORM (SEE NOTES)
ATTACHMENT S TITLE V PERMIT REVISION INFORMATION
APPLICATION FEE

Notes:

ATTACHMENT C – N/A – Application addresses permit coverage of already installed equipment

ATTACHMENT M – N/A – No change to APCD associated with this permit modification ATTACHMENT Q – N/A – No information contained within this application claimed as confidential

ATTACHMENT R - N/A - No delegation of authority necessary

APPLICATION FOR PERMIT

Rule 13 Permit Modification Application

Staten Run Compressor Station, Montgomery, West Virginia

Nytis Exploration Company LLC

102 3rd St. Glasgow, West Virginia

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALITY 601 57 th Street, SE Charleston, WV 25304 (304) 926-0475 WWW.dep.wv.gov/dag	APPLICATION FOR NSR PERMIT AND TITLE V PERMIT REVISION (OPTIONAL)			
Sectio	n I. General			
 Name of applicant (as registered with the WV Secretary of Nytis Exploration Company LLC 	f State's Office): 2. Federal Employer ID No. (FEIN): 82-1462663			
3. Name of facility (<i>if different from above</i>): 4. The applicant is the: Staten Run Compressor Station Image: Comparison of the state of the st				
5A. Applicant's mailing address: 5B. Facility's present physical address: 102 3 rd Street, Off U.S. Route 60 near Glasgow, WV 25086 Montgomery, WV				
 6. West Virginia Business Registration. Is the applicant a resident of the State of West Virginia? YES NO If YES, provide a copy of the Certificate of Incorporation/Organization/Limited Partnership (one page) including any name change amendments or other Business Registration Certificate as Attachment A. If NO, provide a copy of the Certificate of Authority/Authority of L.L.C./Registration (one page) including any name change amendments or other Business Certificate as Attachment A. 				
7. If applicant is a subsidiary corporation, please provide the	name of parent corporation:			
 8. Does the applicant own, lease, have an option to buy or otherwise have control of the <i>proposed site</i>? XES NO If YES, please explain: The applicant owns the site If NO, you are not eligible for a permit for this source. 				
 9. Type of plant or facility (stationary source) to be constructed, modified, relocated, administratively updated or temporarily permitted (e.g., coal preparation plant, primary crusher, etc.): Natural Gas Compressor Station with TEG Dehydration Unit. 10. North American Industry Classification System (NAICS) code for the facility: 211111 				
11A. DAQ Plant ID No. (for existing facilities only): 11B. 039-00044	List all current 45CSR13 and 45CSR30 (Title V) permit numbers associated with this process (for existing facilities only): R13-2863A			
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.				

- For **Modifications**, Administrative Updates or **Temporary permits** at an existing facility, please provide directions to the *present location* of the facility from the nearest state road;

Traveling southeast on US Route 60 from Glasgow, WV, travel approximately 7.2 miles towards Montgomery. The station gate is on US Route 60 on the left hand side of the road. The station is located approximately 0.2 miles from the gate.

 For Construction or Relocation permits, please provide directions to the proposed new site location from the nearest state road. Include a MAP as Attachment B.

12.B. New site address (if applicable):	12C. Nearest city or town:	12D. County:		
N/A	Montgomery	Kanawha County		
12.E. UTM Northing (KM): 4,226.742	12F. UTM Easting (KM): 471.779	12G. UTM Zone: 17		
13. Briefly describe the proposed change(s) at the facilit This permit modification application will address an incre based on more accurate emission factors. The modifica- unit due to changes in gas composition. In addition to th application will also address the addition of already insta permit. Lastly, the Rule 13 permit modification will addre sources (Compressor Engines #1 and #2) based on mar	ase in VOC and PM emissions associat tion will also address an increase in VO e increase in emissions from existing R lled equipment at the site that was not p ess an increase in NOx and VOC emissi sufacturer's emission factors.	C emissions from the dehydration ule 13 equipment the permit previously covered under the last		
 14A. Provide the date of anticipated installation or change If this is an After-The-Fact permit application, providence did happen: 03/2018 		14B. Date of anticipated Start-Up if a permit is granted: / /		
14C. Provide a Schedule of the planned Installation of/ application as Attachment C (if more than one uni		units proposed in this permit		
15. Provide maximum projected Operating Schedule o Hours Per Day 24 Days Per Week 7	f activity/activities outlined in this applica Weeks Per Year 52	ation:		
16. Is demolition or physical renovation at an existing fa	cility involved? 🗌 YES 🛛 🕅 NO			
17. Risk Management Plans. If this facility is subject to	112(r) of the 1990 CAAA, or will becom	ne subject due to proposed		
changes (for applicability help see www.epa.gov/ceppo), submit your Risk Management Plan (RMP) to U. S. EPA Region III.				
18. Regulatory Discussion. List all Federal and State a	air pollution control regulations that you	believe are applicable to the		
proposed process (if known). A list of possible applicable requirements is also included in Attachment S of this application				
(Title V Permit Revision Information). Discuss applicability and proposed demonstration(s) of compliance (if known). Provide this				
information as Attachment D.				
Section II. Additional attachments and supporting documents.				
 Include a check payable to WVDEP – Division of Air Quality with the appropriate application fee (per 45CSR22 and 45CSR13). 				
20. Include a Table of Contents as the first page of your application package.				
 Provide a Plot Plan, e.g. scaled map(s) and/or sketch(es) showing the location of the property on which the stationary source(s) is or is to be located as Attachment E (Refer to Plot Plan Guidance). 				
 Indicate the location of the nearest occupied structure 	e (e.g. church, school, business, residen	ce).		
22. Provide a Detailed Process Flow Diagram(s) showing each proposed or modified emissions unit, emission point and control device as Attachment F.				
23. Provide a Process Description as Attachment G.				
 Also describe and quantify to the extent possible and a second sec	all changes made to the facility since the	e last permit review (if applicable).		

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.			
24. Provide Material Safety Data Sheets (MSDS) for all materials processed, used or produced as Attachment H.			
- For chemical processes, provide a MSI	DS for each compound emitted	to the air.	
25. Fill out the Emission Units Table and	d provide it as Attachment I.		
26. Fill out the Emission Points Data Su	Immary Sheet (Table 1 and T	able 2) and provide it as Attachment J.	
27. Fill out the Fugitive Emissions Data	Summary Sheet and provide	it as Attachment K.	
28. Check all applicable Emissions Unit	Data Sheets listed below:		
Bulk Liquid Transfer Operations	Haul Road Emissions	Quarry	
Chemical Processes	Hot Mix Asphalt Plant	Solid Materials Sizing, Handling and Storage	
Concrete Batch Plant	Incinerator	Facilities	
Grey Iron and Steel Foundry	Indirect Heat Exchanger	🛛 Storage Tanks	
General Emission Unit, specify: Intern Unit Data Sheet, Tanker Truck Loading		Sheet, Small Reboilers Data Sheet, Glycol Dehydration	
Fill out and provide the Emissions Unit D	ata Sheet(s) as Attachment I		
29. Check all applicable Air Pollution Co	ontrol Device Sheets listed be	low:	
Absorption Systems	Baghouse	☐ Flare	
Adsorption Systems	Condenser	Mechanical Collector	
Afterburner	Electrostatic Precipi	ator 🗌 Wet Collecting System	
Other Collectors, specify			
Fill out and provide the Air Pollution Con	trol Device Sheet(s) as Attac	hment M.	
30. Provide all Supporting Emissions C Items 28 through 31.	alculations as Attachment N	, or attach the calculations directly to the forms listed in	
31. Monitoring, Recordkeeping, Reporting and Testing Plans. Attach proposed monitoring, recordkeeping, reporting and testing plans in order to demonstrate compliance with the proposed emissions limits and operating parameters in this permit application. Provide this information as Attachment O .			
Please be aware that all permits must be practically enforceable whether or not the applicant chooses to propose such measures. Additionally, the DAQ may not be able to accept all measures proposed by the applicant. If none of these plans are proposed by the applicant, DAQ will develop such plans and include them in the permit.			
32. Public Notice. At the time that the a	pplication is submitted, place a	a Class I Legal Advertisement in a newspaper of general	
circulation in the area where the source	ce is or will be located (See 45	CSR§13-8.3 through 45CSR§13-8.5 and <i>Example Legal</i>	
Advertisement for details). Please s	ubmit the Affidavit of Publica	tion as Attachment P immediately upon receipt.	
33. Business Confidentiality Claims. D	oes this application include co	nfidential information (per 45CSR31)?	
🗌 YES	⊠ NO		
	ng the criteria under 45CSR§3	bmitted as confidential and provide justification for each I-4.1, and in accordance with the DAQ's <i>"Precautionary</i> <i>I Instructions</i> as Attachment Q.	
Se	ction III. Certification	of Information	
34. Authority/Delegation of Authority. Check applicable Authority Form be		other than the responsible official signs the application.	
Authority of Corporation or Other Busin	ness Entity	Authority of Partnership	
Authority of Governmental Agency	Γ	Authority of Limited Partnership	
Submit completed and signed Authority Form as Attachment R.			
· · ·		Permitting Section of DAQ's website, or requested by phone.	

35A. Certification of Information. To certify this permit application, a Responsible Official (per 45CSR§13-2.22 and 45CSR§30-2.28) or Authorized Representative shall check the appropriate box and sign below.

Certification of Truth, Accuracy, and Completeness

I, the undersigned X Responsible Official / Authorized Representative, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.

Compliance Certification

Except for requirements identified in the Title V Application for which compliance is not achieved, I, the undersigned hereby certify that, based on information and belief formed after reasonable inquiry, all air contaminant sources identified in this application are in compliance with all applicable requirements.

SIGNATURE <u>Alayda Hall</u> D		PATE: <u>4/9/18</u> (Please use blue ink)
35B. Printed name of signee: Lloyd A. Hall		35C. Title: Vice President of Operations
35D. E-mail: Ihall@nytisky.com	36E. Phone: 859-299-0771, EXT 301	36F. FAX: 859-299-0772
36A. Printed name of contact person (if different from above): Jesse Hanshaw, P.E.		36B. Title: Principal Engineer SLR International Corporation
36C. E-mail: jhanshaw@slrconsulting.com	36D. Phone: 681-205-8949	36E. FAX: 681-205-8969

PLEASE CHECK ALL APPLICABLE ATTACHMENTS INCLUDE	D WITH THIS PERMIT APPLICATION:			
 Attachment A: Business Certificate Attachment B: Map(s) Attachment C: Installation and Start Up Schedule Attachment D: Regulatory Discussion Attachment E: Plot Plan Attachment F: Detailed Process Flow Diagram(s) Attachment G: Process Description Attachment H: Material Safety Data Sheets (MSDS) Attachment I: Emission Units Table Attachment J: Emission Points Data Summary Sheet 	 Attachment K: Fugitive Emissions Data Summary Sheet Attachment L: Emissions Unit Data Sheet(s) Attachment M: Air Pollution Control Device Sheet(s) Attachment N: Supporting Emissions Calculations Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans Attachment P: Public Notice Attachment Q: Business Confidential Claims Attachment R: Authority Forms Attachment S: Title V Permit Revision Information Application Fee 			
Please mail an original and three (3) copies of the complete permit application with the signature(s) to the DAQ, Permitting Section, at the address listed on the first page of this application. Please DO NOT fax permit applications.				
FOR AGENCY USE ONLY - IF THIS IS A TITLE V SOURCE:				
Forward 1 copy of the application to the Title V Permitting	g Group and:			
For Title V Administrative Amendments:				
NSR permit writer should notify Title V permit writ	er of draft permit,			
For Title V Minor Modifications:				
	fication to EPA and affected states within 5 days of receipt,			
□ NSR permit writer should notify Title V permit writ				
For Title V Significant Modifications processed in parallel				
□ NSR permit writer should notify a Title V permit with	• ·			
Public notice should reference both 45CSR13 and	nue v permus,			
EPA has 45 day review period of a draft permit.				
All of the required forms and additional information can be for	ound under the Permitting Section of DAQ's website, or requested by phone.			

ATTACHMENT A

BUSINESS CERTIFICATE

Rule 13 Permit Modification Application

Staten Run Compressor Station, Montgomery, West Virginia

Nytis Exploration Company LLC

102 3rd St. Glasgow, West Virginia

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO: NYTIS EXPLORATION COMPANY LLC 1700 BROADWAY 1170 DENVER, CO 80290-1704

BUSINESS REGISTRATION ACCOUNT NUMBER:

This certificate is issued on:

12/13/2012

1010-1965

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued. This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.4 L0401857920

ATTACHMENT B

MAP

Rule 13 Permit Modification Application

Staten Run Compressor Station, Montgomery, West Virginia

Nytis Exploration Company LLC

102 3rd St. Glasgow, West Virginia

Attachment B - Area Map

Nytis Exploration Company LLC Staten Run Compressor Station - Facility ID: 039-00044

UTM Coordinates of Site: Northing:4,226.742 km, Easting: 471.779 km, Zone: 17

Legend

Nytis - Staten Run Compressor Station

N

staten Run - 300' Barrier

Nytis - Staten Run Compressor Station

60

Hwy 60

800 ft

© 2018 Google

ATTACHMENT C

INSTALLATION AND STARTUP SCHEDULE NOT APPLICABLE (SEE NOTES)

Application addresses permit coverage of already installed equipment

Rule 13 Permit Modification Application

Staten Run Compressor Station, Montgomery, West Virginia

Nytis Exploration Company LLC

102 3rd St. Glasgow, West Virginia

ATTACHMENT D

REGULATORY DISCUSSION

Rule 13 Permit Modification Application

Staten Run Compressor Station, Montgomery, West Virginia

Nytis Exploration Company LLC

102 3rd St. Glasgow, West Virginia

REGULATORY DISCUSSION

APPLICABLE REGULATIONS

The changes associated with this Permit Application will increase the facility's NOx Potential to emit (PTE) estimated level above the 45CSR30 (Title V) major source threshold: updated PTE =~180 tons/year. This Rule 13 Modification and Title V Permit Application will re-establish active Title V Status for the Staten Run Station and be subject to 45CSR30 permitting requirements. The updated emissions associated with the proposed permit modification are subject to the following applicable rules and regulations:

Federal and State:

45 CSR 2 – To Prevent and Control Particulate Air Pollution Control from Combustion of Indirect Heat Exchangers

The indirect heat exchanger consists of the dehydration reboiler burner, which is subject to the visible emission standard of §45-2-3 as follows:

3.1. No person shall cause, suffer, allow or permit emission of smoke and/or particulate matter into the open air from any fuel burning unit which is greater than ten (10) percent opacity based on a six minute block average.

However, in accordance with the exemptions defined with §45-2-11 these sources have limited requirements as follows:

11.1. Any fuel burning unit(s) having a heat input under ten (10) million B.T.U.'s per hour will be exempt from sections 4, 5, 6, 8 and 9. However, failure to attain acceptable air quality in parts of some urban areas may require the mandatory control of these sources at a later date.

45 CSR 4 – To Prevent and Control the Discharge of Air Pollutants into the Open Air Which Causes or Contributes to an Objectionable Odor or Odors

45 CSR 11 – *Prevention of Air Pollution Emergency Episodes*

45 CSR 13 – Permits for Construction, Modification, Relocation, and Operation of Stationary Source of Air Pollutants

This proposed permit modification will address updated emission factors for theAjax DPC 120, 4SRB engine (Emission Unit CE-4) with t. In addition to this change the application will also address an increase in HAP and VOC emission associated with the dehydration unit due to changes in the gas composition since the last permit issuance. . Lastly in regards to proposed changes, the Rule 13 portion of this application will

include fugitive emissions associated with truck loading emissions (TL-1) and blowdown venting emissions (Blowdowns) from the compressor engines on site.

45 CSR 17 – To Prevent and Control Particulate Matter Air Pollution from Materials Handling, Preparation, Storage and Other Sources of Particulate Matter

45 CSR 30 – Requirements for Operating Permits – Title V of the Clean Air Act

The updated potential to emit (PTE) emission estimates prove the NOx to exceed 100 TPY (~180 TPY) for Staten Run Station; therefor, this facility meets the emission threshold to trigger a 45 CSR 30 Title V Operating Permit and is it subject to those Federal Standards.

40 CFR 63 Subpart HH – NESHAP from Oil and Natural Gas Production Facilities

The TEG Dehydration Unit is subject to the area source requirements of this subpart and complies by controlling the actual emissions with a BTEX Condenser.

40 CFR 60 Subpart OOOO – Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution

Reciprocating Compressor Packing

The reciprocating compressor associated with emission unit (CE-4) will be subject to the rod packing standards of §60.5385 that require them to be replaced/rebuilt every 26,000 hrs or 3 years. Records shall be maintained based on months or hours of operations since initial startup and each subsequent rebuild or replacement of the compressor's rod packing.

40 CFR 63 Subpart ZZZZ – NESHAP for Stationary Reciprocating Internal Combustion Engines

Emission Units CE-1, CE-2, CE-3, and CE-4, are all subject to Subpart ZZZZ and maintains compliance with the existing source work practice standards in accordance with §63.6640, Table 2d (Line 7) and Table 6 (Line 9) of Subpart ZZZZ. The reporting and recordkeeping requirements pertaining to this engine are in accordance with §63.6655.

NON-APPLICABILITY DETERMINATIONS

The following requirements have been determined "not applicable" to this modification application due to the following:

45 CSR 6 - To Prevent and Control Air Pollution from Combustion of Refuse

This state rule is geared towards reducing particulate matter emissions from the combustion of refuse and is specific to burning solid waste such as trash as well as combustion of waste gas in flares. The rule sets PM limits and establishes a 20%

visible emission limit, both of which shouldn't be any problem for a gas fired flare to meet, however the site does not operate a flare and therefore is not subject to the rule.

45 CSR 10 – To Prevent and Control Air Pollution from the Emission of Sulfur Oxides

The fuel burning unit utilized at this site is exempt from Sections 4 and 5 of this rule because the site does not meet the definition of manufacturing process or refinery process.

45 CSR 21 – To Prevent and Control Air Pollution from the Emission of Volatile Organic Compounds

The station is not engaged in the extraction or fractionation of natural gas which exempts the facility from 45CSR§21-29. No other VOC standards would apply to the emission units at this facility.

45 CSR 27 – To Prevent and Control the Emissions of Toxic Air Pollutants

Natural Gas is included as a petroleum product and contains less than 5% benzene by weight. 45CSR§27-2.4 exempts equipment "used in the production and distribution of petroleum products providing that such equipment does not produce or contact materials containing more than 5% benzene by weight". A representative wet gas analysis taken in 2017 shows the weight percent of benzene to be less than 0.02%.

40 CFR 60 Subpart Dc – Standards of Performance for Steam Generating Units

The dehydration reboiler at this facility is rated at below 10 million BTU/hr; hence, Subpart Dc is not applicable in accordance with §60.40c(a)

40 CFR 60 Subpart Kb – Standards of Performance for Volatile Organic Liquid Storage Vessels

This subpart does not apply because the storage vessels are below 75m³ (19,813 gallons) in capacity as specified in 60.11(b).

40 CFR 60 Subpart KKK – Standards of Performance for Equipment Leaks of VOC from Onshore Natural Gas Processing Plant

This subpart is not applicable because this station is not engaged in the extraction or fractionation of natural gas liquids from field gas, the fractionation of mixed natural gas liquids to natural gas products, or both.

40 CFR 60 Subpart IIII – Standards of Performance for Stationary Compression Ignition Internal Combustion Engines

There are no compression ignition engines at this facility; therefore this Subpart is not applicable.

40 CFR 60 Subpart JJJJ – Standards of Performance for Stationary Spark Ignition Internal Combustion Engines

All engines at this facility were manufactured pre June 12, 2006 applicability date listed in 60.4230(a)(4).

Reconstruction Costs were evaluated for each of the Compressor Engines and none exceed the fifty percent thresholds that would have re designated those units subject to Subpart JJJJ re-constructed regulatory standards.

40 CFR 60 Subpart OOOO – Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution

Storage Vessel NSPS

This subpart is not applicable because the storage vessels at this facility were installed prior to the NSPS applicability date of August 23, 2011.

40 CFR 60 Subpart OOOOa – Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification, or Reconstruction Commenced after September 18, 2015

The GHG and VOC requirements defined by this NSPS are not applicable to this site because all affected sources commenced construction, modification, or reconstruction prior to September 18, 2015 in accordance with [40CFR§60.5365a]

40 CFR 63 Subpart HHH – NESHAP from Natural Gas Transmission and Storage Facilities

This subpart is related to Natural Gas Transmission Facilities that are major sources of HAP emissions. Therefore, this subpart does not apply to this site since it is a defined as a minor source of HAPs

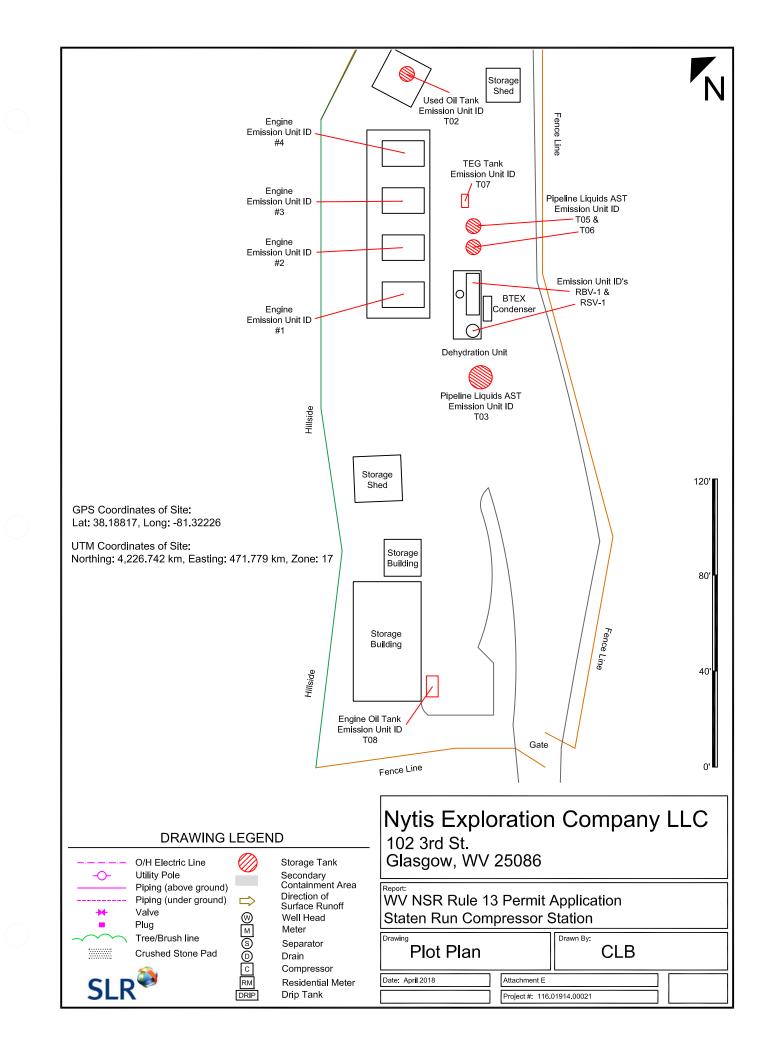
40 CFR 63 Subpart DDDDD – *NESHAP for Industrial, Commercial, and Institutional Boilers and Process Heaters*

This subpart is not applicable because this facility is not a major source of HAPs as defined in §63.7575.

40 CFR 63 Subpart JJJJJJ – NESHAP for Industrial, Commercial, and Institutional Boilers Area Sources

This subpart is not applicable since there are no steam generating boilers at this facility as defined in §63.11195.

ATTACHMENT E


PLOT PLAN

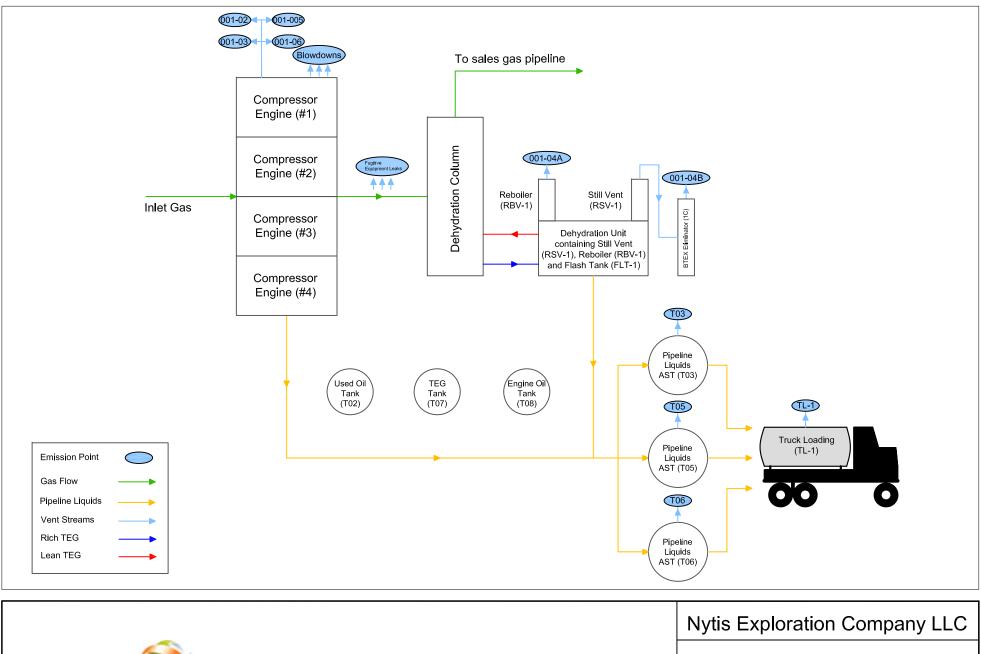
Rule 13 Permit Modification Application

Staten Run Compressor Station, Montgomery, West Virginia

Nytis Exploration Company LLC

102 3rd St. Glasgow, West Virginia

ATTACHMENT F


PROCESS FLOW DIAGRAM

Rule 13 Permit Modification Application

Staten Run Compressor Station, Montgomery, West Virginia

Nytis Exploration Company LLC

102 3rd St. Glasgow, West Virginia

SI R⁴

Attachment F - Process Flow Diagram

Staten Run Compressor Station

ATTACHMENT G

PROCESS DESCRIPTION

Rule 13 Permit Modification Application

Staten Run Compressor Station, Montgomery, West Virginia

Nytis Exploration Company LLC

102 3rd St. Glasgow, West Virginia

Introduction

Staten Run Compressor Station (Facility ID 039-00044) currently operates under West Virginia Rule 13 Permit R13-2863A. On behalf of Nytis Exploration Company (Nytis), SLR is requesting to modify the current permit to reflect updated emission factors that have increased the facility potential to emit (PTE) limitations for particulate matter (PM), NOx, and VOC (NMEHC).

After updating the PTE calculations for the existing CAT 398 compressor engines based on new emission factors provided by the manufacturer, as advised by the WVDEP DAQ, the station exceeds Title V Major Source emission thresholds. This application will update the station's Title V permit status to active and subject to 45CSR30. The facility was permitted as a Major Source under Title V until April of 2011, at which time the Title V permit was placed in inactive status following the facility's HAP emission levels decreasing below the 45CSR30 major source thresholds due to the addition of a BTEX Condenser and decrease of facility throughput capacity..

Facility Description

Staten Run Station is a natural gas compressor station that includes four natural gas compressor engines, one triethylene glycol (TEG) dehydration unit consisting of a reboiler, still column and BTEX Eliminator condenser control device, one pipeline liquids storage tank, two oil tanks and a glycol storage tank, all permitted under Rule 13. The station's primary use is to compress and dehydrate natural gas received via pipeline to be delivered downstream to end users.

Natural gas enters the facility via pipeline(s) and is raised to a higher pressure by the AJAX DPC 120 compressor engine. Before the second stage of compression, the natural gas is processed by a TEG dehydration unit. The dehydration unit uses TEG to absorb water from the natural gas by contacting the wet gas in a contacting tower. the rich (wet) TEG leaves the tower and is routed through the BTEX Eliminator condenser prior to being routed to a flash tank and system reboiler. The reboiler regenerates the rich TEG for re-use in the contacting tower. Condensate, with trace TEG is drained from the BTEX condenser to storage. Dehydrated gas leaves the tower and is then compressed a second time by two Caterpillar 398 Compressor Engines and one Cooper GMX-A6 Compressor Engine

Proposed Update

This permit modification application will involve the following changes;

Changes incorporated under the Rule 13 Modification portion of this Application

- Increase VOC and PM emissions for Emission Unit ID #4 (AJAX DPC 120) based on updated emission factors;
- Increase in VOC emissions associated with the dehydration unit (RSV-1) due to changes in gas composition;
- Addition of two produced liquids storage tanks (T05 & T06) and emissions associated with the new storage tanks as well as an increase in the existing produced liquids storage tank (T03) emissions based on a new annual throughput; and
- Addition of emissions associated with operations at the site due to truck loading emissions, (TL-1) and compressor blowdown venting emissions (Blowdowns)

Changes incorporated under the Title V Permit portion of this Application

Increase NOx and VOC emissions for Emission Unit IDs #1 and #2 (CAT 398-SI Compressor Engines) based on updated specifications;

The station's potential to emit (PTE) has been updated and new emission limits are proposed. The proposed emission limits will trigger new permitting program requirements for the Staten Run Station as an active Title V Major Source.

ATTACHMENT H

SAFETY DATA SHEETS (SDS)

Rule 13 Permit Modification Application

Staten Run Compressor Station, Montgomery, West Virginia

Nytis Exploration Company LLC

102 3rd St. Glasgow, West Virginia

SAFETY DATA SHEET

Date Issued : 9-6-2013 SDS No : 0002WV Date Revised : 9-6-2013 Revision No : 01

Sweet Produced Water (West Virginia)

1. PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME: Sweet Produced Water (West Virginia) **GENERAL USE:** Water extracted from natural gas well production.

DISTRIBUTOR

24 HR. EMERGENCY TELEPHONE NUMBERS

1-800-642-0300

2. HAZARDS IDENTIFICATION

This material is not considered hazardous according to OSHA criteria.

3. COMPOSITION / INFORMATIO N ON INGREDIENTS

Chemical Name	Vol. %	CAS
Water	>90	7732-18-5
Sodium Chloride	<10	7647-14-5

COMMENTS: Compositions given are typical values, not specifications. Composition may vary with geographic location, geologic formation, temperature and pressure.

4. FIRST AID MEASURES

EYES: Immediately flush with large amounts of water, holding eyelids open, for at least 20 minutes. Repeat if necessary. Remove contact lenses, if present and easy to do. If pain or redness persists, seek medical attention. If eye is exposed to hot liquid, cover eyes with cloth and seek medical attention immediately.

SKIN: In case of hot liquid exposure, do not remove clothing or treat, wash only unburned area and seek medical attention immediately.

INGESTION: Do not induce vomiting. If vomiting occurs spontaneously, keep head below hips to prevent aspiration of liquid into the lungs. Have exposed individual rinse mouth thoroughly with water. Never give anything by mouth to an unconscious person. Obtain medical assistance immediately and treat as directed by a medical professional.

INHALATION: Move victim to fresh air. Call 911, emergency medical service,

NOTES: Contact poison treatment center immediately if large quantities have been ingested or inhaled.

5. FIRE FIGHTING MEASURES

FLASH POINT: N/A

FLAMMABLE LIMITS: 0

FIRE FIGHTING PROCEDURES: PROTECTIVE ACTIONS TO TAKE DURING FIRE FIGHTING - Move containers from fire area if you can do it without risk. Dike fire-control water for later disposal; do not scatter the material. Do not get water inside containers.

FIRE FIGHTING EQUIPMENT: PRECAUTIONS FOR FIRE INVOLVING TANKS OR CAR/TRAILER LOADS - Fight fire from maximum distance or use unmanned hose holders or monitor nozzles.

6. ACCIDENTAL RELEASE MEASURES

SMALL SPILL: For emergency information and procedures to follow in the case of an accidental release, call the Emergency Telephone Number(s) listed in Section 1 of this SDS. As an immediate precautionary measure, isolate spill or leak area 50 meters (160 feet) in all directions. Keep unauthorized personnel away. Do not touch or walk through spilled material. 7Stop leak if you can do it without risk. Prevent entry into waterways, sewers. Dike far ahead of liquid for later disposal. Absorb or cover with dry earth, sand or other non-combustible material and transfer to containers.

LARGE SPILL: Use similar response procedures as indicated under Small Spill. Large releases may require the notification of local emergency response agencies.

7. HANDLING AND STORAGE

GENERAL PROCEDURES: Handle in accordance with good industrial hygiene and safety practices. These practices include but are not limited to avoiding unnecessary exposure and prompt removal of material from eyes, skin and dothing. Wash exposed skin and clothing frequently. If needed, take first aid actions as indicated in Section 4 of this SDS.

- HANDLING: Wear appropriate personal protective equipment and use exposure controls as indicated in Section 8. Avoid all contact with skin and eyes. Avoid breathing product dust or vapors. Wash with soap and water after working with this product.
- **STORAGE:** Keep in airtight container away from all heat sources. Store in a segregated and approved area. Store in a cool, dry location, away from direct sunlight, sources of intense heat, or where freezing is possible. Keep container in a well-ventilated area. Ground all containers during transfer. Store in the original container or an approved alternative made from compatible material. Do not store in unlabeled containers. Treat empty containers in a similar fashion as residual product may exist. Use appropriate containment to avoid environmental contamination.

STORAGE TEMPERATURE: Store containers of product in cool well ventilated location.

STORAGE PRESSURE: Store in a room with ambient pressure.

ELECTROSTATIC ACCUMULATION HAZARD: Not Established.

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE GUIDELINES

OSHA HAZA	RDOUS COMPONENTS (29 CFR191	0.1200)	
		OSHA PEL	ACGIH TLV
Chemical Name		ppm	ppm
Sodium Chloride	TWA	N/E	N/E
	STEL	N/E	N/E

ENGINEERING CONTROLS: Provide adequate general and local ventilation to maintain airborne chemical concentrations below applicable exposure limits.

PERSONAL PROTECTIVE EQUIPMENT

- **EYES AND FACE:** Employees should be provided with and required to use splash-proof safety goggles and full face splash shields where there is any possibility of product coming in contact with eyes. Contact lenses are not eye protective devices. Appropriate eye protection must be worn instead of contact lenses. Ensure that eye wash station is operable and nearby.
- SKIN: Consider wearing long-sleeve, FRC, otherwise normal working clothes should be worn. Wash contaminated clothing prior to reuse. If gloves are required for job operations involving this product, wear nitrile rubber or butyl rubber gloves.
- **RESPIRATORY:** Respiratory protection is normally not required except in emergencies or when conditions cause excessive airborne levels of mists or vapors. Select NIOSH-approved organic vapor air-purifying respirator, SCBA or air-supplied respirator where there may be potential for overexposure.
- **PROTECTIVE CLOTHING:** Long sleeve shirt and long pants or coveralls. Consider wearing butyl rubber apron or outerwear where splashing may occur. Fully encapsulating, vapor protective clothing should be worn for spills and leaks with no fire.
- **WORK HYGIENIC PRACTICES:** Use good personal hygiene practices. Avoid repeated and/or prolonged skin exposure. Wash hands before eating, drinking, smoking, or using toilet facilities. Promptly remove contaminated dothing and launder before reuse. Shower after work using plenty of soap and water.
- **COMMENTS: EXPOSURE LIMITS & SOURCES -** Refer to Section 16 Table 1 for additional exposure limits and sources for this product or its components, whichever applies.

9. PHYSICAL AND CHEMICAL PROPERTIES

ODOR: Salty. APPEARANCE: Clear or opaque liquid. pH: 7.26 to 7.75 PERCENT VOLATILE: Negligible. VAPOR PRESSURE: Not Established. VAPOR DENSITY: >1.0 (Air = 1) BOILING POINT: 212° F / 100° C **FREEZING POINT:** < 0℃ (<32°F) POUR POINT: Not Established. FLASH POINT: Not Applicable LOWER EXPLOSIVE LIMITS: Not Applicable SOLUBILITY IN WATER: Not Established. EVAPORATION RATE: Not Established. **SPECIFIC GRAVITY:** > 1.000 at 0 °C (32 °F) VISCOSITY: Not Established. COEFF. OIL/WATER: Not Established. **ODOR THRESHOLD:** Not Established.

10. STABILITY AND REACTIVITY

STABLE: Yes

HAZARDOUS POLYMERIZATIO N: No

STABILITY: CHEMICAL STABILITY - This product is anticipated to be stable under normal ambient storage and handling conditions of temperature and pressure.

POLYMERIZATION: This product is not anticipated to cause hazardous reactions or polymerizations under normal ambient storage and handling conditions of temperature and pressure.

CONDITIONS TO AVOID: Avoid contact with incompatible materials such as heat.

11. TOXICOLOGICAL INFORMATION

ACUTE

Chemical Name	ORAL LD ₅₀	DERMAL LD ₅₀	INHALATION
	(rat)	(rabbit)	LC ₅₀ (rat)
Sodium Chloride	3000 mg/kg	N/E	N/E

EYE EFFECTS: May cause moderate to severe eye irritation.

SKIN EFFECTS: May cause mild skin irritation. Prolonged or repeated contact may result in mild irritation. **CHRONIC:** Not Established.

CARCINOGENICITY: Not expected to cause cancer. This substance is not listed as a carcinogen by IARC, NTP, or OSHA. **SENSITIZATION:** This product is not expected to be a skin sensitizer.

NEUROTOXICITY: Not Established.

GENETIC EFFECTS: Not Established.

REPRODUCTIVE EFFECTS: Not Established.

TERATOG ENIC EFFECTS: Not Established.

MUTAGENICITY: Not Established.

12. ECOLOGICAL INFORMATION

ENVIRONMENTAL DATA: MOBILITY IN SOIL POTENTIAL - Not Established.

BIOACCUMULATION/ACCUMULATION: Not Established.

DISTRIBUTION: Do not discharge into or allow runoff to flow into sewers and natural waterways. Contain spill material and dike for proper disposal.

AQUATIC TOXICITY (ACUTE): This product is not expected to be harmful to aquatic life.

96-HOUR LC₅₀: 3930 - 5360 mg/L Pimephales promelas for calcium chloride.

48-HOUR EC₅₀: 52 mg/L for Daphnia magna for calcium chloride.

CHEMICAL FATE INFORMATION: PERSISTENCE & DEGRADABILITY - Not Established.

13. DISPOSAL CONSIDERATIONS

DISPOSAL METHOD: This product is not a listed hazardous waste.

EMPTY CONTAINER: Offer rinsed packaging material to local recycling facilities.

14. TRANSPORT INFORMATION

DOT (DEPARTMENT OF TRANSPORTATIO N)

Not Regulated

15. REGULATORY INFORMATION

UNITED STATES

SARA TITLE III (SUPERFUND AMENDMENTS AND REAUTHORIZATION ACT)

311/312 HAZARD CATEGORIES: Fire hazard. Immediate (acute) health hazard. Delayed (chronic) health hazard.

FIRE: No PRESSURE GENERATING: No REACTIVITY: No ACUTE: No CHRONIC: No

EPCRA SECTION 313 SUPPLIER NOTIFICATION

This material does not contain any chemicals subject to the reporting requirements of SARA 313 and 40 CFR 372.

CERCLA (COMPREHENSIVE RESPONSE, COMPENSATION, AND LIABILITY ACT)

This material does not contain any chemicals with CERCLA Reportable Quantities.

TSCA (TOXIC SUBSTANCE CONTROL ACT)

All components are either listed on the TSCA Inventory, or are not regulated under TSCA.

CALIFORNIA PROPOSITION 65

This material does not contain any chemicals which are known to the State of California to cause cancer, birth defects, or other reproductive harm at concentrations that trigger the warning requirements of California Proposition 65.

16. OTHER INFORMATIO N

RELEVANT R-PHRASES:

R36/37/38: Irritating to eyes, respiratory system and skin. R36/38: Irritating to eyes and skin. R65: Harmful: may cause lung damage if swallowed.

PREPARED BY: SLR International Corporation

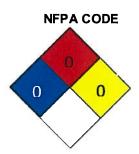
REVISION SUMMARY:

NATIONAL FIRE PROTECTION ASSOCIATION®HAZARD RATING

HEALTH: 0-Hazard No greater than Ordinary Material

FIRE: 0-Will Not Burn

REACTIVITY: 0- Stable


HAZARDOUS MATERIAL IDENTIFICATION SYSTEM® HAZARD RATING

HEALTH: 0-	Minimal	Hazard
------------	---------	--------

- FIRE: 0- Minimal Hazard
- PHYSICAL: 0- Minimal Hazard

HMIS RATING

Sweet Produced Water

ADDITIONAL MSDS INFORMATION:

KEY / LEGEND

ACGIH - American Conference of Governmental Industrial Hygienists

ADR - Agreement on Dangerous Goods by Road

CAA - Clean Air Act

CAS - Chemical Abstracts Service Registry Number

CDG - Carriage of Dangerous Goods by Road and Rail Manual

CERCLA - Comprehensive Environmental Response, Compensation, and Liability Act

CFR - Code of Federal Regulations

EINECS - European Inventory of Existing Chemical Substances Registry Number

NAERG - Emergency Response Guidebook

EPCRA - Emergency Planning and Community Right-to-Know Act

GHS - Globally Harmonized System of Classification and Labeling of Chemicals

IARC - International Agency for Research on Cancer

IATA - International Air Transport Association

ICAO - International Civil Aviation Organization

IMDG - International Maritime Dangerous Goods Code

IMO - International Maritime Organization

MSDS - Material Safety Data Sheet

N/E - Not Established

NOV - National Oil well Varco

NTP - National Toxicology Program

OSHA - Occupational Safety and Health Administration

PEL - Permissible Exposure Limit

PPE - Personal Protective Equipment

RCRA - Resource Conversation and Recovery Act

RID - Regulations Concerning the International Transport of Dangerous Goods by Rail

RQ - Reportable Quantities

SARA - Superfund Amendments and Reauthorization Act of 1986

SDS - Safety Data Sheet

TCC - Tag Closed Cup

TDG - Transportation of Dangerous Goods

TLV - Threshold Limit Value

TSCA - Toxic Substance Control Act

UN/NA - United Nations / North American Number

UNECE - United Nations Economic Commission for Europe

US DOT - United States Department of Transportation

US EPA - United States Environmental Protection Agency

Vol. - Volume

WHMIS - Workplace Hazardous Materials Information System

GENERAL STATEMENTS: Other information not included anywhere else in this SDS is included in this section if, in fact, such data exists.

MANUFACTURER DISCLAIMER: This information relates to the specific material designated and may not be valid for such material used in combination with any other materials or in any process. Such information is to the best of our knowledge and belief, accurate and reliable as of the date compiled. However, no representation, warranty or guarantee is made as to its accuracy, reliability or completeness. NO WARRANTY OF MERCANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY OTHER WARRANTY, EXPRESSED OR IMPLIED, IS MADE CONCERNING THE INFORMATION HEREIN PROVIDED. It is the user's responsibility to satisfy himself as to the suitability and completeness of such information for his own particular use. We do not accept liability for any loss or damage that may occur from the use of this information nor do we offer warranty against patent infringement.

SAFETY DATA SHEET

Date Issued : 9-6-2013 SDS No : 0001WV Date Revised : 9-6-2013 Revision No : 01

Natural Gas Condensate Petroleum (West Virginia)

1. PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME: Natural Gas Condensate **GENERAL USE:** Condensate extracted from natural gas well production.

DISTRIBUTOR

24 HR. EMERGENCY TELEPHONE NUMBERS 1-800-642-0300

2. HAZARDS IDENTIFICATION

GHS CLASSIFICATIONS

Health

Carcinogenicity, Category 1 Eye Irritant, Category 2B Skin Irritant, Category 2

GHS LABEL

WARNING H320: Causes eye irritation. H315: Causes skin irritation.	DANGER H350: May cause cancer.
DANGER	
H226 Flammable Liquid and Vapor	
PRECAUTIONARY STATEMENT(S)	
Prevention:	

P201: Obtain special instructions before use.

P202: Do not handle until all safety precautions have been read and understood.

P281: Use personal protective equipment as required.

P264: Wash thoroughly after handling.

P280:: Wear protective gloves.

Response:

P308+P313: IF exposed or concerned: Get medical advice/attention.

P305+P351+P338: IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.

P337+P313: If eye irritation persists: Get medical advice/attention. P302+P352: IF ON SKIN: Wash with plenty of soap and water. P332+P313: If skin irritation occurs: Get medical advice/attention.

P362: Take off contaminated clothing and wash before reuse.

Disposal:

P501: Dispose of contents/container in accordance with local/regional/national/international regulations.

EMERGENCY OVERVIEW

PHYSICAL APPEARANCE: Pale to Dark Brown liquid.

IMMEDIATE CONCERNS: HAZARD DESCRIPTION / WARNING INFORMATION SUMMARY - This product is a flammable liquid which may be harmful if ingested, inhaled, comes in contact with skin or eyes, or is released into the environment. Please read entire contents of Section 2 of this Safety Data Sheet (SDS) for details.

POTENTIAL HEALTH EFFECTS

EYES: Eye contact with vapors may cause eye irritation, watering of eyes and reddening. Eye contact with liquid may cause irritation and pain. Prolonged contact may result in tissue damage.

SKIN: Skin contact may cause skin irritation and redness. Repeated or prolonged skin contact may cause dermatitis.

INGESTION: Ingestion may cause irritation to the gastrointestinal tract with nausea and diarrhea. May be harmful if swallowed in large quantities.

INHALATION: Breathing the mist and vapors may be irritating to the respiratory tract.

SIGNS AND SYMPTOMS OF OVEREXPOSURE

CHRONIC EFFECTS: Skin, eye, and respiratory tract irritation. Gastrointestinal and vascular effects and death may occur at high concentrations. May cause nervous system effects, such as headache, nausea and drowsiness.

CARCINOGENICITY: Not Established.

MUTAGENICITY: Not Established.

REPRODUCTIVE TOXICITY

REPRODUCTIVE EFFECTS: Not Established.

TERATOGENIC EFFECTS: Not Established.

MEDICAL CONDITIONS AGGRAVATED: Benzene - Pre-existing blood system disorders, respiratory conditions, central nervous, liver, kidney, and cardio-vascular conditions may be aggravated by severe or chronic overexposure to benzene. Skin disorders may also be aggravated by exposures to benzene.

ROUTES OF ENTRY: Inhalation, skin contact, eye contact, ingestion.

TARGET ORGAN STATEMENT: May cause damage to eyes, skin and respiratory system.

CANCER STATEMENT: This product may cause cancer. Refer to Section 11 of this SDS for details.

SENSITIZATION: Not Established.

COMMENTS: ADDITIONAL MEDICAL AND TOXICOLOGICAL INFORMATION: Natural gas condensate and some of its fractions, which can contaminate produced water, have been shown to cause skin irritation, damage and even cancers when applied directly and repeatedly to skin. When laboratory animals inhale oil vapors at high concentration or ingest in repeated doses, various tumors have developed.

This product contains benzene, which can cause degeneration in blood forming bone marrow leading to anemia which may further degrade to leukemia, a type of cancer (see 29 CFR 1910.1028 of standard). Acute benzene is recognized as a human carcinogen by OSHA, NTP, ACGIH, and IARC.

3. COMPOSITION / INFORMATIO N ON INGREDIENTS

Chemical Name	Vol. %	CAS
Water	84-88	7732-18-5
Calcium Chloride	>0-1.0	10043-52-4
Potassium Chloride	>0-1.0	7447-40-7
Sodium Chloride	>0-1.0	7647-14-5
Benzene	>0-1.0	71-43-2
Toluene	>0-1.0	108-88-3
Ethyl benzene	>0-1.0	100-41-4
m-p- Xylene	>0-1.0	179601-23-1
o-Xylene	>0-1.0	95-47-6
Hexane	>0-1.0	110-54-3
Hydrogen Sulfide	>0-1.0	7783-06-4

COMMENTS: Compositions given are typical values, not specifications. Composition may vary with geographic location, geologic formation, temperature and pressure. Hydrogen sulfide composition is expressed as total sulfur content.

4. FIRST AID MEASURES

EYES: Immediately flush with large amounts of water, holding eyelids open, for at least 20 minutes. Repeat if necessary. Remove contact lenses, if present and easy to do. If pain or redness persists, seek medical attention. If eye is exposed to hot liquid, cover eyes with cloth and seek medical attention immediately.

- SKIN: In case of hot liquid exposure, do not remove clothing or treat, wash only unburned area and seek medical attention immediately.
- **INGESTION:** Do not induce vomiting. If vomiting occurs spontaneously, keep head below hips to prevent aspiration of liquid into the lungs. Have exposed individual rinse mouth thoroughly with water. Never give anything by mouth to an unconscious person. Obtain medical assistance immediately and treat as directed by a medical professional.
- **INHALATION:** Move victim to fresh air. Call 911, emergency medical service, or Emergency Phone Numbers(s) provided in Section 1 of this SDS. Give artificial respiration if victim is not breathing. Do not use mouth-to-mouth methods if victim ingested or inhaled the substance; give artificial respiration with the aid of a pocket mask equipped with a one-way valve or other proper respiratory medical device. Administer oxygen if breathing is difficult.

ANTIDOTES: Not Established.

NOTES TO PHYSICIAN: No specific treatment. Treat symptomatically. General supportive measures with continual monitoring of gas exchange, acid-base balance, electrolytes, and fluid intake are also required. Contact poison treatment specialist immediately if large quantities have been ingested or inhaled.

CLINICAL TESTING & MEDICAL MONITORING FOR DELAYED EFFECTS - Not Established.

COMMENTS: CONTRAINDICATIONS - Not Established.

5. FIRE FIGHTING MEASURES

FLASH POINT: <38°C (100°F)

FLAMMABLE LIMITS: 1 to 15

AUTOIGNITION TEMPERATURE: Not Established.

FIRE FIGHTING PROCEDURES: PROTECTIVE ACTIONS TO TAKE DURING FIRE FIGHTING - Move containers from fire area if you can do it without risk. Dike fire-control water for later disposal; do not scatter the material. Do not get water inside containers. Cool containers with flooding quantities of water until well after fire is out. Do not direct water at source of leak or

Natural Gas Condensate

safety devices; icing may occur. Persons involved in fire fighting response involving this product and its containers/packaging should refer to Section 8 of this SDS for the proper selection of exposure controls and personal protective equipment.

FIRE FIGHTING EQUIPMENT: PRECAUTIONS FOR FIRE INVOLVING TANKS OR CAR/TRAILER LOADS - Fight fire from maximum distance or use unmanned hose holders or monitor nozzles. Cool containers with flooding quantities of water until well after fire is out. ALWAYS stay away from tanks engulfed in fire. For massive fire, use unmanned hose holders or monitor nozzles; if this is impossible, withdraw from area and let fire burn.

COMMENTS:

SPECIFIC HAZARDS THAT MAY ARISE FROM THE PRODUCT - Vapors are flammable and heavier than air. Vapors may travel across the ground and reach remote ignition sources causing a flashback fire danger. Sudden reaction and fire may result if product is mixed with an oxidizing agent.

FIRE EXPLOSION: This product is primarily water but can have hydrocarbon gas that can be released with the potential of a fire hazard. Will be easily ignited by heat, sparks or flames. Vapors may form explosive mixtures with air. Vapors may travel to source of ignition and flash back. Most vapors are heavier than air. They will spread along ground and collect in low or confined areas (sewers, basements, tanks). Vapor explosion hazard indoors, outdoors or in sewers. Many liquids are lighter than water. Runoff to sewer may create fire or explosion hazard. Containers may explode when heated.

SENSITIVE TO STATIC DISCHARGE: Not Established.

SENSITIVITY TO IMPACT: Not Established.

6. ACCIDENTAL RELEASE MEASURES

SMALL SPILL: For emergency information and procedures to follow in the case of an accidental release, call the Emergency Telephone Number(s) listed in Section 1 of this SDS. Eliminate all ignition sources (no smoking, flares, sparks or flames in immediate area). As an immediate precautionary measure, isolate spill or leak area 50 meters (160 feet) in all directions. Evacuate building and all affected areas. Keep unauthorized personnel away. Do not touch or walk through spilled material. Stay upwind. Keep out of low areas. Stop leak if you can do it without risk. Prevent entry into waterways, sewers, basements or confined areas. Dike far ahead of liquid for later disposal. Absorb or cover with dry earth, sand or other non-combustible material and transfer to containers. Use clean non-sparking tools to collect absorbed material. Water spray may reduce vapor; but may not prevent ignition in closed spaces. A vapor suppressing foam may be used to reduce vapors. Provide sufficient ventilation in the affected area(s) and wear appropriate personal protective equipment as indicated in Section 8 when handling spill material.

LARGE SPILL: Use similar response procedures as indicated under Small Spill. Consider initial downwind evacuation for at least 100 meters (330 feet). Large releases may require the notification of local emergency response agencies. Wear self-contained breathing apparatus if conditions or air monitoring warrants.

7. HANDLING AND STORAGE

- **GENERAL PROCEDURES:** Handle in accordance with good industrial hygiene and safety practices. These practices include but are not limited to avoiding unnecessary exposure and prompt removal of material from eyes, skin and clothing. Wash exposed skin and clothing frequently. If needed, take first aid actions as indicated in Section 4 of this SDS.
- HANDLING: Wear appropriate personal protective equipment and use exposure controls as indicated in Section 8. Vent slowly to the atmosphere when opening. Avoid all contact with skin and eyes. Avoid breathing product dust or vapors. Use explosion-proof electrical (ventilating, lighting and material handling) equipment. Remove contaminated clothing immediately. Wash with soap and water after working with this product.
- **STORAGE:** Keep in airtight container away from all heat sources. Store in a segregated and approved area. Store in a cool, dry location, away from direct sunlight, sources of intense heat, or where freezing is possible. Keep container in a well-ventilated area. Ground all containers during transfer. Store away from incompatible materials. Cylinders should be separated from oxygen cylinders or other oxidizers by a minimum distance of 20 feet, or by a barrier of non-combustible material at least 5 feet high having a fire resistance rating of at least 1/2 hour. Store in the original container or an approved alternative made from compatible material. Do not store in unlabeled containers. Treat empty containers in a similar fashion as residual product may exist. Use appropriate containment to avoid environmental contamination.

STORAGE TEMPERATURE: Store containers of product in cool (between 50°F or below), well ventilated location.

STORAGE PRESSURE: Store in a room with ambient pressure.

ELECTROSTATIC ACCUMULATION HAZARD: Not Established.

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE GUIDELINES

		EXPOSURE LIMITS		
		OSHA PEL	ACGIH TLV	
Chemical Name		ppm	ppm	
Calcium Chloride	TWA	N/E	N/E	
	STEL	N/E	N/E	
Potassium Chloride	TWA	NE	N/E	
	STEL	N/E	N/E	
Sodium Chloride	TWA	N/E	N/E	
Sodium Chionde	STEL	N/E	N/E	
	TWA	0.1	0.5	
Benzene	STEL	1	2.5	
Toluene	TWA	200	20	
	STEL	300	N/E	
	TWA	100	20	
Ethyl benzene	STEL	N/E	N/E	
m-p Xylene	TWA	100	100	
	STEL	N/E	150	
o- Xylene	TWA	100	100	
	STEL	N/E	150	
Hexane	TWA	500	50	
	STEL	N/E	N/E	
Hydrogen Sulfide	TWA	N/E	1	
	STEL	20	5	

Footnotes:

1. OSHA has also assigned H₂S a STEL value of 50 ppm for a 10-minute peak that may be reached only once per 8-hour shift. C = Ceiling

ENGINEERING CONTROLS: Provide adequate general and local ventilation to maintain airborne chemical concentrations below applicable exposure limits, to prevent accumulation of flammable vapors and formation of explosive atmospheres, and to prevent formation of oxygen deficient atmospheres, especially in confined spaces. This product may release gases or vapors that can displace oxygen in enclosed areas.

PERSONAL PROTECTIVE EQUIPMENT

EYES AND FACE: Employees should be provided with and required to use splash-proof safety goggles and full face splash shields where there is any possibility of product coming in contact with eyes. Contact lenses are not eye protective devices. Appropriate eye protection must be worn instead of contact lenses. Ensure that eye wash station is operable and nearby.

SKIN: Consider wearing long-sleeve, FRC, otherwise normal working clothes should be worn. Wash contaminated clothing prior to reuse. If gloves are required for job operations involving this product, wear nitrile rubber or polyvinylalcohol (PVAL) gloves.

RESPIRATORY: Respiratory protection is normally not required except in emergencies or when conditions cause excessive airborne levels of mists or vapors. Select NIOSH-approved organic vapor air-purifying respirator, SCBA or air-supplied respirator where there may be potential for overexposure.

Natural Gas Condensate

PROTECTIVE CLOTHING: Long sleeve shirt and long pants or coveralls. Consider wearing butyl rubber apron or outerwear where splashing may occur. Fully encapsulating, vapor protective clothing should be worn for spills and leaks with no fire.

WORK HYGIENIC PRACTICES: Use good personal hygiene practices. Avoid repeated and/or prolonged skin exposure. Wash hands before eating, drinking, smoking, or using toilet facilities. Promptly remove contaminated dothing and launder before reuse. Shower after work using plenty of soap and water.

OTHER USE PRECAUTIONS: FIREFIGHTING AND OTHER IMMEDIATELY DANGEROUS TO LIFE OR DEATH CONDITIONS -A self-contained breathing apparatus with full face piece operated in a pressure-demand or other positive pressure mode is recommended for firefighting or other immediately dangerous to life and death conditions. Supplied-air respirator with full face piece and operated in pressure-demand or other positive pressure mode in combination with an auxiliary self-contained breathing apparatus operated in pressure-demand or other positive pressure mode may also be used.

COMMENTS: EXPOSURE LIMITS & SOURCES - Refer to Section 16 Table 1 for additional exposure limits and sources for this product or its components, whichever applies.

9. PHYSICAL AND CHEMICAL PROPERTIES

ODOR: Hydrocarbon. APPEARANCE: Dark Brown to Black. **pH:** 6 to 8 PERCENT VOLATILE: Negligible. VAPOR PRESSURE: Not Established. VAPOR DENSITY: 1.2 (Air = 1) BOILING POINT: Varies widely depending on hydrocarbon content. **FREEZING POINT:** < 0℃ (32°F) POUR POINT: Not Established. FLASH POINT: Variable organic oil and dissolved gas maybe flammable. SOLUBILITY IN WATER: Not Established. EVAPORATION RATE: Not Established. **SPECIFIC GRAVITY:** > 1.000 at 0 °C (32 °F) VISCOSITY: Not Established. COEFF. OIL/WATER: Not Established. **ODOR THRESHOLD:** Not Established.

10. STABILITY AND REACTIVITY

STABLE: Yes

HAZARDOUS POLYMERIZATIO N: No

STABILITY: CHEMICAL STABILITY - This product is anticipated to be stable under normal ambient storage and handling conditions of temperature and pressure.

POLYMERIZATION: This product is not anticipated to cause hazardous reactions or polymerizations under normal ambient storage and handling conditions of temperature and pressure.

CONDITIONS TO AVOID: Avoid contact with incompatible materials such as heat, open flame, other sources of ignition, and oxidizing materials such as chlorine and concentrated nitric acid.

HAZARDOUS DECOMPOSITION PRODUCTS: This product may produce carbon monoxide and carbon dioxide during decomposition.

11. TOXICOLOGICAL INFORMATION

ACUTE

Chemical Name	ORAL LD ₅₀ (rat)	DERMAL LD ₅₀ (rabbit)	INHALATION LC ₅₀ (rat)
Sodium Chloride	3000 mg/kg	N/E	N/E
Calcium Chloride	1000 mg/kg	2630 mg/kg	Not Established.
Xylene	5000 mg/kg	12400 mg/kg	4550 ppm (4 hours)
Hexane	25 g/kg	Not Established.	48000 ppm (4 hours)
Crude Oil	> 5000 mg/kg	> 2000 mg/kg	Not Established.
Toluene	636 mg/kg	14100 ug/kg	49 g/m ³ (4 hours)
Benzene	930 mg/kg	> 9400 ug/kg	10000 ppm (7 hours)
Ethyl benzene	<= 3500 mg/kg	<= 3500 mg/kg	<= 55000 mg/m ³
Hydrogen Sulfide	Not Established.	Not Established.	700 mg/m3 (4 hours)

EYE EFFECTS: May cause moderate to severe eye irritation.

SKIN EFFECTS: May cause mild skin irritation. Prolonged or repeated contact may result in mild irritation. May be absorbed through skin with toxic effects.

CHRONIC: This product contains benzene, which can cause degeneration in blood forming bone marrow leading to anemia, which may further degrade to leukemia, a type of cancer. Chronic exposure affects the hematopoietic system causing blood disorders including anemia and pancytopenia.

CARCINOGENICITY

Chemical Name	NTP Status	IAR C Status	OSHA Status
Crude Oil		3	
Benzene	1	1	Carcinogen.

SENSITIZATION: This product is not expected to be a skin sensitizer.

NEUROTOXICITY: Not Established. GENETIC

EFFECTS: Not Established. REPRODUCTIVE

EFFECTS: Not Established. TERATOG ENIC

EFFECTS: Not Established. MUTAGENICITY:

Not Established.

12. ECOLOGICAL INFORMATION

ENVIRONMENTAL DATA: MOBILITY IN SOIL POTENTIAL - Not Established.

BIOACCUMULATION/ACCUMULATION: Not Established.

DISTRIBUTION: Do not discharge into or allow runoff to flow into sewers and natural waterways. Contain spill material and dike for proper disposal.

AQUATIC TOXICITY (ACUTE): This product is not expected to be harmful to aquatic life.

96-HOUR LC₅₀: 3930 - 5360 mg/L Pimephales promelas for calcium chloride.

48-HOUR EC₅₀: 52 mg/L for Daphnia magna for calcium chloride.

CHEMICAL FATE INFORMATION: PERSISTENCE & DEGRADABILITY - Not Established.

GENERAL COMMENTS: Any other adverse environmental effects, such as environmental fate (exposure), ozone depletion potential, photochemical ozone creation potential, endocrine disrupting potential, and global warming potential are indicated in this section if data exists. Otherwise, this data has not been established.

13. DISPOSAL CONSIDERATIONS

DISPOSAL METHOD: This product is not a listed hazardous waste. However, when disposed of in containers it may meet the criteria of being an ignitable waste. It is the responsibility of the user to determine if the material disposed of meets federal, state, or local criteria to be defined as a hazardous waste and dispose of accordance with applicable Federal, state and local regulations.

EMPTY CONTAINER: Offer rinsed packaging material to local recycling facilities.

14. TRANSPORT INFORMATION

DOT (DEPARTMENT OF TRANSPORTATIO N)

PROPER SHIPPING NAME: Flammable liquid, n.o.s. PRIMARY HAZARD CLASS/DIVISION: 3 UN/NA NUMBER: 1993 PACKING GROUP: II NAERG: 128

15. REGULATORY INFORMATION

UNITED STATES

SARA TITLE III (SUPERFUND AMENDMENTS AND REAUTHORIZATION ACT)

311/312 HAZARD CATEGORIES: Fire hazard. Immediate (acute) health hazard. Delayed (chronic) health hazard.

FIRE: Yes PRESSURE GENERATING: No REACTIVITY: No ACUTE: Yes CHRONIC: Yes

EPCRA SECTION 313 SUPPLIER NOTIFICATION

Chemical Name	Vol. %	CAS
Benzene	>0-1.0	71-43-2

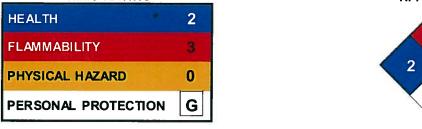
CERCLA (COMPREHENSIVE RESPONSE, COMPENSATION, AND LIABILITY ACT)

Chemical Name	Vol. %	CERCLA RQ
Benzene	>0-1.0	10
Hydrogen Sulfide	>0-1.0	100

TSCA (TOXIC SUBSTANCE CONTROL ACT)

Chemical Name	CAS
Sodium Chloride	7647-14-5
Calcium Chloride	10043-52-4
Crude Oil	8002-05-9
Benzene	71-43-2
Hydrogen Sulfide	7783-06-4

Chemical Name	Vol. %	CAS
Hydrogen Sulfide	>0-1.0	7783-06-4


STATES WITH SPECIAL REQUIREMENTS

Chemical Name Requirements	
Crude Oil	Massachusetts Hazardous Substance Minnesota Hazardous Substance Pennsylvania Hazardous Substance
Benzene	CA Hazardous Substance Delaware Air Quality Management Illinois Toxic Air Contaminant Maine Hazardous Air Pollutant Massachusetts Hazardous Substance Michigan Critical Material Minnesota Hazardous Substance New Jersey RTK Hazardous Substance New York Hazardous Substance North Carolina Toxic Air Contaminant Pennsylvania Hazardous Substance Washington PELs for Air Contaminants West Virginia Toxic Air Pollutant Wisconsin Hazardous Air Containment
Hydrogen Sulfide	CA Hazardous Substance Delaware Air Quality Management Idaho Air Pollutant Massachusetts Hazardous Substance Maine Hazardous Air Pollutant Minnesota Hazardous Substance New Jersey RTK Hazardous Substance New Jersey TCPA EHS New York Hazardous Substance North Carolina Toxic Air Contaminant Pennsylvania Hazardous Substance Washington PELs for Air Contaminants Wisconsin Hazardous Air Containment

CALIFORNIA PROPOSITION 65

Chemical Name	Vol. %	Listed
Benzene	< 1	Developmental Toxicity Male Reproductive

16. OTHER INFOR	MATION		
	RASES:R36/37/38: Irritating to eyes, respi	ratory system and skin.	
R45: May cause			
•	heritable genetic damage.		
R11: Highly flam			
	g to eyes and skin.		
R12: Extremely	nay cause lung damage if swallowed. flammable		
R26: Very toxic			
•	to aquatic organisms.		
-	SLR International Corporation		
REVISION SUMM	IARY:		
NATIONAL FIRE	PROTECTION ASSOCIATION®HAZARD RA	TING	
HEALTH:	2-Hazardous		
FIRE:	3-Below 100°F (flashpoint)		
REACTIVITY:	0- Stable		
HAZARDOUS M	ATERIAL IDENTIFICATION SYSTEM®HAZA	RD RATING	
HEALTH:	2*- Moderate Hazard (*Chronic)		
FIRE:	3- Serious Hazard		
PHYSICAL:	0- Minimal Hazard		
HMIS	RATING	NFPA CODES	
HEALTH	* 2		

DATA SOURCES:

REFERENCES

ACGIH. 2012 Guide to Occupational Exposure Values. Cincinnati, OH. Signature Publications, 2012.

Forsberg, K.; Mansdorf, S.Z. Quick Selection Guide to Chemical Protective Clothing. Fifth Edition. Hoboken, NJ. John Wiley & Sons, 2007.

0

Lide, D.R. CRC Handbook of Chemistry and Physics. 88th Edition. Boca Raton, FL. CRC Press, 2008.

UNECE. Globally Harmonized System of Classification and labeling of Chemicals (GHS). Third Revised Edition. New York and Geneva. United Nations, 2009.

US DOT; Pipeline and Hazardous Materials Safety Administration. 2008 Emergency Response Guidebook. Neenah, WI. J.J. Keller & Associates, Inc. 2008.

US EPA. Consolidated List of Chemicals Subject to the Emergency Planning and Community Right-To-Know Act (EPCRA) and Section 112(r) of the Clean Air Act. [Available] Online: <u>http://www.epa.go v/ceppo/pubs/title3.pdf</u>. Retrieved 02/02/2011.

ADDITIONAL MSDS INFORMATION:

KEY / LEGEND

ACGIH - American Conference of Governmental Industrial Hygienists

ADR - Agreement on Dangerous Goods by Road

CAA - Clean Air Act

CAS - Chemical Abstracts Service Registry Number

CDG - Carriage of Dangerous Goods By Road and Rail Manual

CERCLA - Comprehensive Environmental Response, Compensation, and Liability Act

CFR - Code of Federal Regulations

EINECS - European Inventory of Existing Chemical Substances Registry Number

Sweet Produced Water

ERG - Emergency Response Guidebook EPCRA - Emergency Planning and Community Right-to-Know Act GHS - Globally Harmonized System of Classification and Labeling of Chemicals IARC - International Agency for Research on Cancer IATA - International Air Transport Association ICAO - International Civil Aviation Organization IMDG - International Maritime Dangerous Goods Code IMO - International Maritime Organization N/E - Not Established NTP - National Toxicology Program OSHA - Occupational Safety and Health Administration PEL - Permissible Exposure Limit PPE - Personal Protective Equipment RCRA - Resource Conversation and Recovery Act RID - Regulations Concerning the International Transport of Dangerous Goods by Rail **RQ** - Reportable Quantities SARA - Superfund Amendments and Reauthorization Act of 1986 SDS - Safety Data Sheet TCC - Tag Closed Cup TDG - Transportation of Dangerous Goods TLV - Threshold Limit Value TSCA - Toxic Substance Control Act UN/NA - United Nations / North American Number UNECE - United Nations Economic Commission for Europe US DOT - United States Department of Transportation US EPA - United States Environmental Protection Agency Vol. - Volume WHMIS - Workplace Hazardous Materials Information System

GENERAL STATEMENTS: Other information not included anywhere else in this SDS is included in this section if, in fact, such data exists.

MANUFACTURER DISCLAIMER: This information relates to the specific material designated and may not be valid for such material used in combination with any other materials or in any process. Such information is to the best of our knowledge and belief, accurate and reliable as of the date compiled. However, no representation, warranty or guarantee is made as to its accuracy, reliability or completeness. NO WARRANTY OF MERCANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY OTHER WARRANTY, EXPRESSED OR IMPLIED, IS MADE CONCERNING THE INFORMATION HEREIN PROVIDED. It is the user's responsibility to satisfy himself as to the suitability and completeness of such information for his own particular use. We do not accept liability for any loss or damage that may occur from the use of this information nor do we offer warranty against patent infringement.

SAFETY DATA SHEET

Date Issued : 10/26/2012 SDS No : CA201-006 Date Revised : 12/20/2012 Revision No : 1

Sweet Natural Gas

1. PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME: Sweet Natural Gas **CHEMICAL FAMILY:** Hydrocarbon Mixture; Aliphatic Hydrocarbon **ALTERNATE TRADE NAME(S):** Well Head Gas, Casing Head Gas

24 HR. EMERGENCY TELEPHONE NUMBERS

(281) 589-4600

2. HAZARDS IDENTIFICATION

GHS CLASSIFICATIONS			
Health	Physical		
Carcinogenicity, Category 1 Hazard Not Otherwise Classified, Simple Asphyxiant	Gases Under Pressure, Liquefied gas Flammable Gases, Category 1		

GHS LABEL

WARNING	Flame
H000: May displace oxygen and cause rapid suffocation.	
	DANGER
	H220: Extremely flammable gas.
Gas cylinder	Health hazard
WARNING	DANGER
H280: Contains gas under pressure; may explode if heated.	H350: May cause cancer.

PRECAUTIONARY STATEMENT(S)

Prevention:

P210: Keep away from heat/sparks/open flames/hot surfaces - no smoking.

P201: Obtain special instructions before use.

P202: Do not handle until all safety precautions have been read and understood.

P281: Use personal protective equipment as required.

Response:

P377: Leaking gas fire: Do not extinguish unless leak can be stopped safely.

P381: Eliminate all ignition sources if safe to do so.

P308+P313: IF exposed or concerned: Get medical advice/attention.

Storage:

P403: Store in a well-ventilated place.

P410+P403: Protect from sunlight. Store in a well-ventilated place.

Disposal:

P501: Dispose of contents/container in accordance with local/regional/national/international regulations.

EMERGENCY OVERVIEW

IMMEDIATE CONCERNS: HAZARD DESCRIPTION / WARNING INFORMATION SUMMARY - This material is a flammable gas. This product is toxic; inhalation of this material may cause severe injury or death. Please read entire contents of Section 2 of this Safety Data Sheet (SDS) for details.

POTENTIAL HEALTH EFFECTS

EYES: This product is unlikely to cause eye irritation.

SKIN: This product is unlikely to cause skin irritation or injury.

INGESTION: This product is a compressed gas; hence oral exposure and resulting acute toxicity are unlikely.

INHALATION: This product is a simple asphyxiant. Excessive exposure may cause central nervous system effects such as dizziness, loss of balance and coordination, unconsciousness, coma, respiratory failure and death.

SIGNS AND SYMPTOMS OF OVEREXPOSURE

CARCINOGENICITY: No component of this product present at levels greater than or equal to 0.1% is identified as a probable, possible, or confirmed carcinogen by IARC, NTP, OSHA or ACGIH.

MUTAGENICITY: Not Established.

REPRODUCTIVE TOXICITY

REPRODUCTIVE EFFECTS: Not Established.

TERATOGENIC EFFECTS: Not Established.

MEDICAL CONDITIONS AGGRAVATED: Persons with pre-existing central nervous system disorders should refrain from contact with this material.

ROUTES OF ENTRY: Inhalation, skin contact, eye contact.

TARGET ORGAN STATEMENT: May cause damage to lungs and central nervous system.

SENSITIZATION: Not Established.

COMMENTS: OTHER HAZARDS - Not Established.

3. COMPOSITION / INFORMATION ON INGREDIENTS

Chemical Name	Vol. %	CAS	EINECS	Classification
Methane	70 - 94	74-82-8	200-812-7	T+,N; R61,
Ethane	5 - 10	74-84-0	200-814-8	F+; R12
Propane	1 - 4	74-98-6	200-827-9	F+; R12
i-Butane	0.5 - 3	75-28-5	200-857-2	F+; R12
n-Butane	0.5 - 2	106-97-8	203-448-7	F+; R12
Carbon Dioxide	0.5 - 10	124-38-9	204-696-9	
Nitrogen	0.5 - 10	7727-37-9	231-783-9	
Benzene	may contain	71-43-2	200-753-7	F, T; R45, R46, R11, R36/38, R48/23/24/25, R65
Hydrogen Sulfide	may contain	7783-06-4	231-977-3	F+, T+, N; R12, R26, R50

COMMENTS: This may not be a complete list of components. Compositions given are typical values, not specifications.

(Full text of R-Phrases can be found under heading 16)

4. FIRST AID MEASURES

EYES: Immediately flush eyes with plenty of water. Get medical attention, if irritation persists.

SKIN: Wash with soap and water. Get medical attention if irritation develops or persists.

INGESTION: This is not considered a major potential route of exposure.

INHALATION: Move victim to fresh air. Call 911, emergency medical service, or Emergency Phone Numbers(s) provided in Section 1 of this SDS. Give artificial respiration if victim is not breathing. Do not use mouth-to-mouth method if victim ingested or inhaled the substance; give artificial respiration with the aid of a pocket mask equipped with a one-way valve or other proper resipratory medical device. Administer oxygen if breathing is difficult.

ANTIDOTES: Not Established.

NOTES TO PHYSICIAN: CLINICAL TESTING & MEDICAL MONITORING FOR DELAYED EFFECTS - Effects of exposure (inhalation, ingestion or skin contact) to substance may be delayed. Provide general supportive measures and treat symptomatically.

5. FIRE FIGHTING MEASURES

FLASH POINT: -188 ℃ (-306.4 °F)

Notes: Based on methane.

FLAMMABLE LIMITS: 1.0 to 15.0

Notes: Flammable Limits given as percentage volume in air at normal atmospheric temperature and pressure.

AUTOIGNITION TEMPERATURE: 482 °C (900 °F) to 649 °C (1200 °F)

GENERAL HAZARD: DECOMPOSITION TEMPERATURE - Not Established.

EXTINGUISHING MEDIA:

SMALL FIRE - Class B fire extinguisher, carbon dioxide, multipurpose dry chemical, water fog or alcohol-resistant foam. **LARGE FIRE** - Water fog or alcohol-resistant foam.

HAZARDOUS COMBUSTION PRODUCTS: Any combustion, including incomplete combustion, may form carbon monoxide and carbon dioxide. Burning produces noxious and toxic fumes. Downwind personnel must be evacuated.

OTHER CONSIDERATIONS: INAPPROPRIATE EXTINGUISHING MEDIA - Do not use water jet.

FIRE FIGHTING PROCEDURES:

PROTECTIVE ACTIONS TO TAKE DURING FIRE FIGHTING - DO NOT extinguish a leaking gas flame unless the leak can be stopped. In many cases it will be preferable to allow continued burning. Move containers from fire area if you can do it without risk. Dike fire-control water for later disposal; do not scatter the material. Do not get water inside containers. Use water spray or fog; do not use straight streams. Note: Use of water spray when fighitng fire may be inefficient or cause a chemical reaction. Persons involved in fire fighting response involving this product and its containers/packaging should refer to Section 8 of this SDS for the proper selection of exposure controls and personal protective equipment.

FIRE FIGHTING EQUIPMENT: PRECAUTIONS FOR FIRE INVOLVING TANKS OR CAR/TRAILER LOADS - Fight fire from maximum distance or use unmanned hose holders or monitor nozzles. Cool containers with flooding quantities of water until well after fire is out. Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank. ALWAYS stay away from tanks engulfed in fire. Isolate for 1600 meters (1 mile) in all directions; also consider initial evacuation for 1600 meters (1 mile) in all directions. For massive fire, use unmanned hose holders or monitor nozzles; if this is impossible, withdraw from area and let fire burn.

FIRE EXPLOSION: HIGHLY FLAMMABLE. Will be easily ignited by heat, sparks or flames. Vapors may form explosive mixtures with air. Vapors may travel to source of ignition and flash back. Most vapors are heavier than air. They will spread along ground and collect in low or confined areas (sewers, basements, tanks). Vapor explosion hazard indoors, outdoors or in sewers. Runoff to sewer may create fire or explosion hazard. Containers may explode when heated.

COMMENTS:

SPECIFIC HAZARDS THAT MAY ARISE FROM THE PRODUCT - Vapors are flammable and heavier than air. Vapors may travel across the ground and reach remote ignition sources causing a flashback fire danger.

6. ACCIDENTAL RELEASE MEASURES

SMALL SPILL: For emergency information and procedures to follow in the case of an accidental release, call the Emergency Telephone Number(s) listed in Section 1 of this SDS. Remove any ignition sources and protect from ignition. Water spray may reduce vapor but may not prevent ignition in closed spaces. A vapor suppressing foam may be used to reduce vapors. Provide sufficient ventilation in the affected area(s) and wear appropriate personal protective equipment as indicated in Section 8 of this

SDS when handling spill material. Isolate the area until gas has dispersed. Never discharge releases directly into sewers or surface waters.

LARGE SPILL: Use similar response procedures as indicated under Small Spill.

- GENERAL PROCEDURES: MATERIALS & METHODS (EQUIPMENT & TECHNIQUES) FOR CONTAINMENT & CLEANUP -Call Emergency Telephone Number(s) provided in Section 1 of this SDS. As an immediate precautionary measure, isolate spill or leak area for at least 100 meters (330 feet) in all directions. Keep unauthorized personnel away. Stay upwind. Keep out of low areas. Ventilate closed spaces before entering.
- **RELEASE NOTES: ENVIRONMENTAL PRECAUTIONS -** Prevent entry into waterways, sewers, basements or confined areas. Inform the relevant authorities if the product has caused environmental pollution (sewers, waterways, soil or air). Avoid allowing water runoff to contact spilled material.
- SPECIAL PROTECTIVE EQUIPMENT: EMERGENCY & NON-EMERGENCY RESPONDERS Refer to Section 8 of this SDS for appropriate exposure controls and personal protective equipment (PPE).

7. HANDLING AND STORAGE

- **GENERAL PROCEDURES:** Handle in accordance with good industrial hygiene and safety practices. These practices include but are not limited to avoiding unnecessary exposure and prompt removal of material from eyes, skin and clothing. If needed, take first aid actions as indicated in Section 4 of this SDS.
- **HANDLING:** Use only with adequate ventilation. Wear appropriate personal protective equipment and use exposure controls as indicated in Section 8 of this SDS. Vent slowly to the atmosphere when opening. Avoid all contact with skin and eyes. Avoid breathing product dust or vapors. Use explosion-proof electrical (ventilating, lighting and material handling) equipment. Do not reuse container. Remove contaminated clothing immediately. Wash with soap and water after working with this product.
- **STORAGE:** Keep in airtight container away from all heat sources. Store in a segregated and approved area. Store in a cool, dry location, away from direct sunlight, sources of intense heat, or where freezing is possible. Keep container in a well-ventilated area. Ground all containers during transfer. Store away from incompatible materials. Cylinders should be separated from oxygen cylinders or other oxidizers by a minimum distance of 20 feet, or by a barrier of non-combustible material at least 5 feet high having a fire resistance rating of at least 1/2 hour. Store in the orginal container or an approved alternative made from compatible material. Do not store in unlabeled containers. Treat empty containers in a similar fashion as residual product may exist. Use appropriate containment to avoid environmental contamination.

STORAGE TEMPERATURE: Store containers in a room with ambient temperature.

STORAGE PRESSURE: Containers should be stored in room with ambient pressure.

SHELF LIFE:

HOW TO MAINTAIN THE INTEGRITY OF THE SUBSTANCE BY USE OF STABILIZERS OR ANTIOXIDANTS - Not Established.

ELECTROSTATIC ACCUMULATION HAZARD: To minimize the hazard of static electricity during transfer operations, bonding and grounding may be neccessary, but may not by themselves be sufficient. For more information, refer to OSHA Standard 29 CFR 1910.106; National Fire Protection Standard (NFPA) 77 - "Recommended Practice on Static Electricity"; and/or the American Petroleum Institute (API) Recommended Practice 2003 - "Protection Against Ignitions Arising Out of Static, Lighting and Stray Currents."

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE GUIDELINES

OSHA HAZARDOUS COMPONENTS (29 CFR1910.1200)					
		EXPOSURE LIMITS			
		OSHA PEL ACGIH TLV		H TLV	
Chemical Name		ppm	mg/m ³	ppm	mg/m ³
	TWA	N/E	N/E	1000	N/E
Ethane	STEL	N/E	N/E	N/E	N/E
Disease	TWA	1000	1800	1000	N/E
Propane	STEL	N/E	N/E	N/E	N/E
i-Butane	TWA	N/E	N/E	1000	N/E
	STEL	N/E	N/E	N/E	N/E
n-Butane	TWA	N/E	N/E	1000	N/E
	STEL	N/E	N/E	N/E	N/E
	TWA	5000	9000	5000	9000
Carbon Dioxide		N/E	N/E	30000	54000

ENGINEERING CONTROLS: Use only with adequate ventilation. Use process enclosures, local exhaust ventilation or other engineering controls to keep worker exposure to airborne contaminants below any recommended or statutory limits. The engineering controls also need to keep gas, vapor concentrations below any lower explosive limits. Use explosion-proof ventilation equipment.

PERSONAL PROTECTIVE EQUIPMENT

EYES AND FACE: Employees should be provided with and required to use splash-proof safety goggles and splash shields where there is any possibility of product coming in contact with eyes. Ensure that eye wash station is operable and nearby.

SKIN: GLOVES AND BOOTS - Any impervious gloves and boots including butyl rubber, nitrile rubber or neoprene rubber.

RESPIRATORY: Depending on airborne concentration a full-face supplied air respirator is recommended, because air purifying respirators can not provide adequate protection.

PROTECTIVE CLOTHING: Depending on the conditions of use, protective gloves, apron, boots, head and face protection should be worn. Cotton clothing is recommended.

WORK HYGIENIC PRACTICES: Consider the potential hazards of this material, applicable exposure limits, job activities, environmental working conditions, and other substances in the workplace when designing engineering controls and selecting personal protective equipment (PPE). The user should read and understand all manufacturer instructions and limitations supplied with the personal protection equipment before use.

9. PHYSICAL AND CHEMICAL PROPERTIES

ODOR: Generally odorless (if no H₂S is present and no no mercaptan added for odor).

APPEARANCE: Colorless gas. pH: Not Applicable. PERCENT VOLATILE: 100 VAPOR PRESSURE: Not Established. VAPOR DENSITY: 0.6 to 0.8 (Air = 1) BOILING POINT: -161 °C (-258 °F) Notes: Based on methane. FREEZING POINT: Not Applicable. MELTING POINT: Not Applicable. FLASH POINT: -188 °C (-306.4 °F)

Notes: Based on methane. EVAPORATION RATE: Not Established. DENSITY: Not Established. SPECIFIC GRAVITY: Not Established. VISCOSITY: Not Applicable. COEFF. OIL/WATER: Not Established. ODOR THRESHOLD: Not Established. COMMENTS: FLAMMABILITY - Refer to Section 2 and Section 5 of this SDS for classification and flammability characteristics.

10. STABILITY AND REACTIVITY

STABLE: Yes

HAZARDOUS POLYMERIZATION: No

STABILITY: This product is anticipated to be stable under normal ambient storage and handling conditions of temperature and pressure.

POLYMERIZATION: This product is not anticipated to cause hazardous reactions or polymerizations under normal ambient storage and handling conditions of temperature and pressure.

CONDITIONS TO AVOID: Avoid contact with incompatible materials. Avoid exposure to excess heat, sparks, open flame, or other potential ignition sources. Prevent vapor accumulation.

HAZARDOUS DECOMPOSITION PRODUCTS: Products of thermal decomposition include carbon oxides and nitrogen oxides. **INCOMPATIBLE MATERIALS:** Strong oxidizing agents, liquid oxygen, mineral acids and metal catalysts.

11. TOXICOLOGICAL INFORMATION

ACUTE	
-------	--

Chemical Name	ORAL LD ₅₀	DERMAL LD ₅₀	INHALATION
	(rat)	(rabbit)	LC ₅₀ (rat)
Ethane	Not	Not	> 800000 ppm
	Established.	Established.	(15 min)
Propane	Not	Not	658 mg/L (4
	Established.	Established.	hours)
i-Butane	Not	Not	658 mg/L (4
	Established.	Established.	hours)
n-Butane	Not Established.	Not Established.	658 g/m ³
Carbon Dioxide	Not	Not	30000 to 50000
	Established.	Established.	ppm (30 min)
Benzene	930 mg/kg	> 9400 ug/kg	10000 ppm (7 hours)
Hydrogen Sulfide	Not Established.	Not Established.	444 ppm

NOTES: ACUTE TOXICITY & HEALTH EFFECTS - This product is a simple asphyxiant; higher concentrations may cause dizziness. Refer to Section 2 of this SDS for additional hazards identification.

EYE EFFECTS: Not expected to cause prolonged or significant eye irritation.

SKIN EFFECTS: Not expected to cause prolonged or significant skin irritation.

CHRONIC: TOXICITY & HEALTH EFFECTS - This product is not expected to be toxic. Refer to Section 2 of this SDS for additional hazards identification.

CARCINOGENICITY

Chemical Name	NTP Status	IARC Status	OSHA Status
Benzene	1	1	Carcinogen.

Notes: No component of this product at levels greater than 0.1% is identified as a carcinogen by ACGIH, the International Agency for Research on Cancer (ARC), the U.S. National Toxicology Program (NTP) or the U.S. Occupational Safety and Health Act (OSHA).

SENSITIZATION: Not Established.

NEUROTOXICITY: Not Established.

GENETIC EFFECTS: Not Established.

REPRODUCTIVE EFFECTS: Not Established.

TARGET ORGANS: Contact may cause damage to the lungs and central nervous system.

TERATOGENIC EFFECTS: Not Established.

MUTAGENICITY: Not Established.

SYNERGISTIC MATERIALS: Not Established.

12. ECOLOGICAL INFORMATION

ENVIRONMENTAL DATA: MOBILITY IN SOIL POTENTIAL - Not Established.

ECOTOXICOLOGICAL INFORMATION: TERRESTRIAL/MICROORGANISM TOXICITY -

ACUTE: Ecological data does not exist for this mixture.

CHRONIC: Ecological data does not exist for this mixture.

BIOACCUMULATION/ACCUMULATION: Ecological data does not exist for this mixture.

AQUATIC TOXICITY (ACUTE): Ecological data does not exist for this mixture.

Notes: (CHRONIC) - Ecological data does not exist for this mixture.

CHEMICAL FATE INFORMATION: PERSISTENCE & DEGRADABILITY - Not Established.

GENERAL COMMENTS: Any other adverse environmental effects, such as environmental fate (exposure), ozone depletion potential, photochemical ozone creation potential, endocrine disrupting potential, and global warming potential are indicated in this section if data exists. Otherwise, this data has not been established.

COMMENTS: Data from laboratory studies and from scientific literature is noted in this section if available. Otherwise, data has not been established.

13. DISPOSAL CONSIDERATIONS

DISPOSAL METHOD: It is recommended that this product, in any form, be incinerated in a suitable combustion chamber for disposal. Empty containers should be disposed of in a similar fashion due to presence of product residue. Follow applicable Federal, state, and local regulations.

PRODUCT DISPOSAL: Persons conducting disposal of this product and its containers/packaging should refer to Section 8 of this SDS for the proper selection of exposure controls and personal protective equipment.

EMPTY CONTAINER: Do not pressurize, cut, weld, braze, solder, drill, grind, or expose such containers to heat, flame, sparks, static eclectricity, or other sources of ignition. They may explode and cause injury or death.

GENERAL COMMENTS: PHYSICAL & CHEMICAL PROPERTIES THAT MAY AFFECT DISPOSAL OPTIONS - Not Established. COMMENTS: Dispose of material in accordance with national, state, regional, and local regulations. Never discharge directly into sewers or surface waters. Consult with environmental regulatory agencies for guidance on acceptable disposal practices for the product, in any form, and its containers/packaging.

14. TRANSPORT INFORMATION

DOT (DEPARTMENT OF TRANSPORTATION)

PROPER SHIPPING NAME: Compressed gas, flammable, n.o.s.

PRIMARY HAZARD CLASS/DIVISION: 2.1

UN/NA NUMBER: 1954

NAERG: 115

LABEL: 2.1: Flammable Gas MARINE POLLUTANT #1: Not Listed.

15. REGULATORY INFORMATION

UNITED STATES

SARA TITLE III (SUPERFUND AMENDMENTS AND REAUTHORIZATION ACT)

311/312 HAZARD CATEGORIES: Fire Hazard. Immediate (Acute) Health Hazard.

FIRE: Yes PRESSURE GENERATING: No REACTIVITY: No ACUTE: Yes CHRONIC: Yes

CERCLA (COMPREHENSIVE RESPONSE, COMPENSATION, AND LIABILITY ACT)

Chemical Name	Wt.%	CERCLA RQ
Benzene	may contain	10
Hydrogen Sulfide	may contain	100

TSCA (TOXIC SUBSTANCE CONTROL ACT)

Chemical Name	CAS
Methane	74-82-8
Ethane	74-84-0
Propane	74-98-6
i-Butane	75-28-5
n-Butane	106-97-8
Carbon Dioxide	124-38-9
Nitrogen	7727-37-9

CLEAN AIR ACT

Chemical Name	Vol. %	CAS
Ethane	5 - 10	74-84-0
Propane	1 - 4	74-98-6
i-Butane	0.5 - 3	75-28-5
n-Butane	0.5 - 2	106-97-8

STATES WITH SPECIAL REQUIREMENTS

Chemical Name	Requirements
Ethane	Delaware Air Quality Management Massachusetts Hazardous Substance Minnesota Hazardous Substance New Jersey RTK Hazardous Substance New Jersey TCPA EHS Pennsylvania Hazardous Substance Washington PELs for Air Contaminants
Propane	Delaware Air Quality Management Massachusetts Hazardous Substance Minnesota Hazardous Substance New Jersey RTK Hazardous Substance Pennsylvania Hazardous Substance Washington PELs for Air Contaminants
	CA Hazardous Substance Delaware Air Quality Management Massachusetts Hazardous Substance

n-Butane	Minnesota Hazardous Substance New Jersey RTK Hazardous Substance Pennsylvania Hazardous Substance Pennsylvania Hazardous Substance Washington PELs for Air Contaminants
Carbon Dioxide	CA Hazardous Substance Maine Hazardous Air Pollutant Massachusetts Hazardous Substance Minnesota Hazardous Substance Pennsylvania Hazardous Substance Washington PELs for Air Contaminants
Benzene	CA Hazardous Substance Delaware Air Quality Management Illinois Toxic Air Contaminant Maine Hazardous Air Pollutant Massachusetts Hazardous Substance Michigan Critical Material Minnesota Hazardous Substance New Jersey RTK Hazardous Substance New York Hazardous Substance New York Hazardous Substance North Carolina Toxic Air Contaminant Pennsylvania Hazardous Substance Washington PELs for Air Contaminants West Virginia Toxic Air Pollutant Wisconsin Hazardous Air Containment
Hydrogen Sulfide	CA Hazardous Substance Delaware Air Quality Management Idaho Air Pollutant Massachusetts Hazardous Substance Maine Hazardous Air Pollutant Minnesota Hazardous Substance New Jersey RTK Hazardous Substance New Jersey TCPA EHS New York Hazardous Substance North Carolina Toxic Air Contaminant Pennsylvania Hazardous Substance Washington PELs for Air Contaminants Wisconsin Hazardous Air Containment

16. OTHER INFORMATION

RELEVANT R-PHRASES:R61: May cause harm to the unborn child.

R26: Very toxic by inhalation.

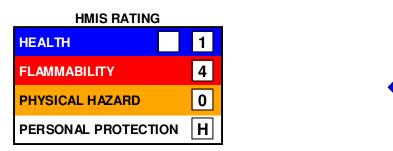
R48/23: Toxic : danger of serious damage to health by prolonged exposure through inhalation.

R50/53: Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

R12: Extremely flammable.

R45: May cause cancer.

R46: May cause heritable genetic damage.


R11: Highly flammable.

R36/38: Irritating to eyes and skin.

R65: Harmful: may cause lung damage if swallowed.

PREPARED BY: Total Safety d/b/a EHS Services

REVISION SUMMARY: This MSDS replaces the 10/26/2012 MSDS.

HMIS RATINGS NOTES: Please refer to Section 8 of this SDS for recommended personal protective equipment.

DATA SOURCES:

REFERENCES

ACGIH. 2012 Guide to Occupational Exposure Values. Cincinnati, OH. Signature Publications, 2012.

Forsberg, K.; Mansdorf, S.Z. Quick Selection Guide to Chemical Protective Clothing. Fifth Edition. Hoboken, NJ. John Wiley & Sons, 2007.

NFPA CODES

Δ

0

1

Lide, D.R. CRC Handbook of Chemistry and Physics. 88th Edition. Boca Raton, FL. CRC Press, 2008.

UNECE. Globally Harmonized System of Classification and labelling of Chemicals (GHS). Third Revised Edition. New York and Geneva. United Nations, 2009.

US DOT; Pipeline and Hazardous Materials Safety Administration. 2008 Emergency Response Guidebook. Neenah, WI. J.J. Keller & Associates, Inc. 2008.

US EPA. Consolidated List of Chemicals Subject to the Emergency Planning and Community Right-To-Know Act (EPCRA) and Section 112(r) of the Clean Air Act. [Available] Online: <u>http://www.epa.gov/ceppo/pubs/title3.pdf</u>. Retrieved 02/02/2011.

ADDITIONAL MSDS INFORMATION:

KEY / LEGEND

ACGIH - American Conference of Governmental Industrial Hygienists

ADR - Agreement on Dangerous Goods by Road

CAA - Clean Air Act

CAS - Chemical Abstracts Service Registry Number

CDG - Carriage of Dangerous Goods By Road and Rail Manual

CERCLA - Comprehensive Environmental Response, Conmensation, and Liability Act

CFR - Code of Federal Regulations

EINECS - European Inventory of Existing Chemical Substances Registry Number

ERG - Emergency Response Guidebook

EPCRA - Emergency Planning and Community Right-to-Know Act

GHS - Globally Harmonized System of Classification and Labelling of Chemicals

IARC - International Agency for Research on Cancer

IATA - International Air Transport Association

ICAO - International Civil Aviation Organization

IMDG - International Maritime Dangerous Goods Code

IMO - International Maritime Organization

N/E - Not Established

NTP - National Toxicology Program

OSHA - Occupational Safety and Health Administration

PEL - Permissible Exposure Limit

PPE - Personal Protective Equipment

RCRA - Resource Conversation and Recovery Act

RID - Regulations Concerning the International Transport of Dangerous Goods by Rail

RQ - Reportable Quantities

SARA - Superfund Amendments and Reauthorization Act of 1986

SDS - Safety Data Sheet

TCC - Tag Closed Cup

TDG - Transportation of Dangerous Goods

TLV - Threshold Limit Value

TSCA - Toxic Substance Control Act

UN/NA - United Nations / North American Number

UNECE - United Nations Economic Commission for Europe

US DOT - United States Department of Transportation US EPA - United States Environmental Protection Agency Vol. - Volume WHMIS - Workplace Hazardous Materials Information System

GENERAL STATEMENTS: Other information not included anywhere else in this SDS is included in this section if, in fact, such data exists.

MANUFACTURER DISCLAIMER: This information relates to the specific material designated and may not be valid for such material used in combination with any other materials or in any process. Such information is to the best of our knowledge and belief, accurate and reliable as of the date compiled. However, no representation, warranty or guarantee is made as to its accuracy, reliability or completeness. NO WARRANTY OF MERCANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY OTHER WARRANTY, EXPRESSED OR IMPLIED, IS MADE CONCERNING THE INFORMATION HEREIN PROVIDED. It is the user's responsibility to satisfy himself as to the suitabliity and completeness of such information for his own particular use. We do not accept liability for any loss or damage that may occur from the use of this information nor do we offer warranty against patent infringement.

ATTACHMENT I

EMISSION UNITS TABLE

Rule 13 Permit Modification Application

Staten Run Compressor Station, Montgomery, West Virginia

Nytis Exploration Company LLC

102 3rd St. Glasgow, West Virginia

April 2018

Attachment I

Emission Units Table

(includes all emission units and air pollution control devices

that will be part of this permit application review, regardless of permitting status)

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
#1	001-02	Reciprocating Engine; CAT 398-SI; 4SRB	1985	412 hp	Grandfathered	None
#2	001-03	Reciprocating Engine; CAT 398-SI; 4SRB	1985	412 hp	Grandfathered	None
RBV-1	001-04A	Dehydration Unit Reboiler; FLAMECO; Model # SB20-12	2011	0.75 mmBtu/hr	Existing	None
RSV-1	001-04B	Dehydration Unit Still Column; Sivalls; Model # UK	2011	12 mmscf/d	Modification	1C
#3	001-05	Reciprocating Engine; Cooper Bessemer GMX-A6; 2SLB	1975	375 hp	Grandfathered	None
#4	001-005	Reciprocating Engine; AJAX DPC 120; 2SLB	2013	115 bhp	Modification	None
T01	T01	Engine Oil Storage Tank	NA	3,000 gallons	Removal	NA
T02	T02	Used Oil Storage Tank	NA	2,150 gallons	Existing	NA
Т03	Т03	Pipeline Fluids AST	2011	2,100 gallons	Existing	NA
T04	T04	Glycol (TEG) Storage Tank	NA	300 gallons	Removal	NA
10	001-04B	JATCO No. 5-96 BTEX Eliminator	2011	Control Efficiency - 98% (VOCs & HAPs)	Existing	
T05	T05	Pipeline Liquids AST	2013	1,050 gallons	New	NA
T06	T06	Pipeline Liquids AST	2013	1,050 gallons	New	NA
TL-1	TL-1	Pipeline Liquids - Truck Loading	1983	229,950 gal/yr	New	NA
CE-BD	Blowdowns	Compressor Engine Blowdown Venting Emissions	1983	NA	New	NA

Equipment Leaks	Fugitives	Equipment Leaks	1983	NA	Existing	NA
² For <u>E</u> mission ³ New, modific	Points use the ation, removal	ces) use the following numbering system:1 following numbering system:1E, 2E, 3E, . following numbering system: 1C, 2C, 3C,.	or other appropriate	designation.	ation.	

ATTACHMENT J

EMISSION POINTS DATA SUMMARY SHEET(S)

Rule 13 Permit Modification Application

Staten Run Compressor Station, Montgomery, West Virginia

Nytis Exploration Company LLC

102 3rd St. Glasgow, West Virginia

April 2018

Attachment J EMISSION POINTS DATA SUMMARY SHEET

	Table 1: Emissions Data														
Emission Point ID No. (Must match Emission Units	Emission Point Type ¹	Point Through This F		Contro (Musi Emissi Table	Dilution I Device t match on Units & Plot lan)	Unit		All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)	Maximum Potential Uncontrolled Emissions ⁴		Potential ed Controlled_		Emission Form or Phase (At exit conditions, Solid, Liguid	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
Table-& Plot Plan)		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& ПАРЗ)	lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)		
001-04A	Vertical Stack	RBV-1	Dehydration Unit Reboiler; FLAMECO; Model # SB20- 12	NA	NA	NA	NA	NO _X CO VOC SO ₂ PM ₁₀ Total HAPs CO2e	$\begin{array}{c} 0.07 \\ 0.06 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ 87.76 \end{array}$	$\begin{array}{c} 0.33 \\ 0.28 \\ 0.02 \\ < 0.01 \\ 0.02 \\ 0.01 \\ 384.38 \end{array}$			Gas/ Vapor	EE	Can Supply Upon Request
001-04B	Vertical Stack	RSV-1	Dehydration Unit Still Column; Sivalls; Model # UK	NA	NA	NA	NA	VOC Benzene Toluene Ethylbenzene Xylene n-Hexane Total HAPs	$\begin{array}{c} 0.30\\ 0.03\\ 0.02\\ < 0.01\\ 0.02\\ 0.02\\ 0.02\\ 0.08 \end{array}$	1.29 0.11 0.08 0.01 0.01 0.07 0.37			Gas/ Vapor	EE	Can Supply Upon Request
001-005	Vertical Stack	#4	Reciprocating Engine; AJAX DPC 120; 2SLB	NA	NA	NA	NA	NO _X CO VOC SO ₂ PM ₁₀ CH ₂ O Total HAPs CO2e	$\begin{array}{c} 1.40\\ 0.43\\ 0.26\\ <0.01\\ 0.05\\ 0.08\\ 0.10\\ 121.11\end{array}$	$\begin{array}{c} 6.11 \\ 1.89 \\ 1.11 \\ 0.01 \\ 0.22 \\ 0.34 \\ 0.44 \\ 530.44 \end{array}$			Gas/ Vapor	EE	Can Supply Upon Request
T03	Relief Vent	T03	Pipeline Fluids AST	NA	NA	NA	NA	VOC	0.07	0.32			Gas/ Vapor	EE	Can Supply Upon Request
T04	Relief Vent	T04	Pipeline Fluids AST	NA	NA	NA	NA	VOC	0.07	0.32			Gas/ Vapor	EE	Can Supply Upon Request
T05	Relief Vent	T05	Pipeline Fluids AST	NA	NA	NA	NA	VOC	0.07	0.32			Gas/ Vapor	EE	Can Supply Upon Request
TL-1	Relief Vent	TL-1	Truck Loading	NA	NA	NA	NA	VOC	0.10	0.42			Gas/ Vapor	EE	Can Supply Upon Request

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

² Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).

³ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. **LIST** Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. **DO NOT LIST** H₂, H₂O, N₂, O₂, and Noble Gases.

Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁵ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch). 6

Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

⁷ Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m³) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO₂, use units of ppmv (See 45CSR10).

ATTACHMENT K

FUGITIVE EMISSIONS DATA SUMMARY SHEET(S)

Rule 13 Permit Modification Application

Staten Run Compressor Station, Montgomery, West Virginia

Nytis Exploration Company LLC

102 3rd St. Glasgow, West Virginia

April 2018

Attachment K

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS
1.)	Will there be haul road activities?
	□ Yes
	If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.
2.)	Will there be Storage Piles?
	□ Yes
	☐ If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.
3.)	Will there be Liquid Loading/Unloading Operations?
	Yes 🗌 No
	If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
5.)	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?
	⊠ Yes □ No
	☐ If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.
6.)	Will there be General Clean-up VOC Operations?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
7.)	Will there be any other activities that generate fugitive emissions?
	□ Yes
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.
	ou answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions nmary."

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants ⁻ Chemical Name/CAS ¹	Maximum Uncontrolled	Potential Emissions ²	Maximum Potential Controlled Emissions ³		Est. Method	
	Chemical Name/CAS	lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴	
Haul Road/Road Dust Emissions Paved Haul Roads						EE	
Unpaved Haul Roads						EE	
Storage Pile Emissions						EE	
Loading/Unloading Operations	VOC	0.10	0.42			EE	
Wastewater Treatment Evaporation & Operations						EE	
Equipment Leaks	VOC CO ₂ e	0.07 1.60	0.32 7.00			EE	
General Clean-up VOC Emissions						EE	
Other						EE	

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
 ³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

ATTACHMENT L

EMISSION UNIT DATA SHEET(S)

Rule 13 Permit Modification Application

Staten Run Compressor Station, Montgomery, West Virginia

Nytis Exploration Company LLC

102 3rd St. Glasgow, West Virginia

April 2018

ATTACHMENT L – GLYCOL DEHYDRATION UNIT DATA SHEET

Complete this data sheet for each Glycol Dehydration Unit, Reboiler, Flash Tank and/or Regenerator at the facility. Include gas sample analysis and GRI-GLYCalc[™] input and aggregate report. Use extra pages if necessary.

Emission Unit ID / Emission Point ID4DescriptionCalculation Methodology5PTE6Maximum Hourly Emissions (lb/hr)Maxim Maximum Ann Emissions (lb/hr)RBV-1/001-04AReboiler VentAPNOx0.070.3	input and aggin		Ose extra page	s if necessary.				
Design Type: □ TEG DEG EG Source Status ¹ : ES / MS Date Installed/Modified/Removed ² : 1977 / 2011 Regenerator Still Vent APCD/ERD ³ : CD Control Device/ERD ID# ² : 1C Fuel HV (BTU/scf): 1.020 H ₅ S Content (gr/100 scf): 0.25 Operation (hours/year): 8.760 Pump Rate (scfm): 5.00 gpm TEG Water Content (wt %) in: Wet Gas: Saturated Dry Gas: 7.0 lbs H2O / mmscf Is the glycol dehydration unit exempt from 40CFR63 Section 764(d)? ⊠ Yes No: If Yes, answer the follow The actual annual average flowrate of natural gas to the glycol dehydration unit is less than 85 thousand standard c meters per day, as determined by the procedures specified in 863.772(b)(1) of this subpart. □ Yes □ No The actual average emissions of benzene from the glycol dehydration unit process vent to the atmosphere are less th megagram per year (1 ton per year), as determined by the procedures specified in 863.772(b)(2) of this subpart. ⊠ No Is a lean glycol pump optimization plan being utilized? □ Yes ⊠ No Is a lean glycol pump optimization plan being utilized? □ Yes ⊠ No Is the reboiler configured to accept flash drum vapors (after a condenser)? ⊠ Yes □ No Is the reboiler configured to accept toth in the same operation? □ Yes ⊠ No Is the reboiler configured to accept toth in the same operation? □ Yes ⊠ No Is the reboiler configured to accept toth in the same operation? □ Yes ⊠ No Is the reboiler config	Aanufacturer: Sivalls	s		Model: UK				
Date Installed/Modified/Removed ³ : 1977 / 2011 Regenerator Still Vent APCD/ERD ³ : CD Control Device/ERD ID# ³ : 1C Fuel HV (BTU/scf): 1,020 H ₅ S Content (gr/100 scf): 0.25 Operation (hours/year): 8,760 Pump Rate (scfm): 5.00 gpm TEG Vater Content (wt %) in: Wet Gas: Saturated Dry Gas: 7.0 lbs H2O / mmscf Is the glycol dehydration unit exempt from 40CFR63 Section 764(d)? ⊠ Yes No: If Yes, answer the follow The actual anual average flowrate of natural gas to the glycol dehydration unit process went to the atmosphere are less th megagiam per year (1 ton per year), as determined by the procedures specified in §63.772(b)(1) of this subpart. □ Yes No Is the glycol dehydration unit located within an Urbanized Area (UA) or Urban Cluster (UC)? □ Yes ⊠ No Is a lean glycol pump optimization plan being utilized? □ Yes ⊠ No Is a lean glycol dehydration unit back to the flame zone of the reboiler. ○ Yes ○ No Is the reboiler configured to accept shill vent vapors (after a condenser)? ⊠ Yes No No Recycling the glycol dehydration unit back to the flame zone of the reboiler and mixed with fuel. ○ Yes ○ No Still vent emissions to the atmosphere. Still vent emissions to the atmosphere. ○ Sill vent emissions to grow pluz. ○ Yes No Still vent emissions top pluz. Fuel HV int ant vapors Stil	Aax. Dry Gas Flow F	Rate: 12.00 mmscf/	day	Reboiler Design Heat Input: 0.75 MMBTU/hr				
Control Device/ERD ID# ² : 1C Fuel HV (BTU/scf): 1,020 H ₂ S Content (gr/100 scf): 0.25 Operation (hours/year): 8,760 Pump Rate (scfm): 5.00 gpm TEG Water Content (wt %) in: Wet Gas: Saturated Dry Gas: 7.0 lbs H2O / mmsef Is the glycol dehydration unit exempt from 40CFR63 Section 764(d)? ⊠ Yes □ No: If Yes, answer the follow The actual annual average flowrate of natural gas to the glycol dehydration unit is less than 85 thousand standard c meters per day, as determined by the procedures specified in \$63.772(b(1) of this subpart. □ Yes □ No The actual average emissions of benzene from the glycol dehydration unit process vent to the atmosphere are less th megagram per year (1 ton per year), as determined by the procedures specified in \$63.772(b(1) of this subpart. ⊠ So Is the glycol dehydration unit located within an Urbanized Area (UA) or Urban Cluster (UC)? □ Yes ⊠ No Is a lean glycol pump optimization plan being utilized? □ Yes ⊠ No Is a lean glycol dehydration unit back to the flame zone of the reboiler. Wayes: No Is the reboiler configured to accept still vent vapors (atraight from the glycol dehydrator)? □ Yes ⊠ No Is the reboiler configured to accept studi with of fuel to the reboiler? Wayes: No Is the reboiler configured to accept shus off fuel to the reboiler? Wayes: No Is the reboiler configured to accept shus off fuel to the reboiler? Wayes:	Design Type: 🛛 TEG	B DEG	🗆 EG	Source Status ¹ : ES / MS				
H₂S Content (gr/100 scf): 0.25 Operation (hours/year): 8,760 Pump Rate (scfm): 5.00 gpm TEG Water Content (wt %) in: Wet Gas: Saturated Dry Gas: 7.0 lbs H2O / mmscf Is the glycol dehydration unit exempt from 40CFR63 Section 764(d)? ⊠ Yes □ No: If Yes, answer the follow: The actual annual average flowrate of natural gas to the glycol dehydration unit is less than 85 thousand standard c meters per day, as determined by the procedures specified in §63.772(b)(1) of this subpart. □ Yes □ No The actual average emissions of benzene from the glycol dehydration unit process vent to the atmosphere are less to megagram pry year (1 ton per year), as determined by the procedures specified in §63.772(b)(2) of this subpart. ⊠ No Is the glycol dehydration unit located within an Urbanized Area (UA) or Urban Cluster (UC)? □ Yes ⊠ No Is a lean glycol dehydration unit back to the flame zone of the reboiler. Yes □ No If yes: Is no laccept tabl drum vapors (straight from the glycol dehydrator)? □ Yes ⊠ No Is the reboiler configured to accept tabl drum vapors (straight from the glycol dehydrator)? □ Yes ⊠ No Is the reboiler configured to accept tabl drum vapors (straight from the glycol dehydrator)? □ Yes ⊠ No Is the reboiler configured to accept tabl drum vapors (straight from the glycol dehydrator)? □ Yes ⊠ No No Is the reboiler configured to accept tabl drum vapors (straight from the glycol dehydrator)? □ Yes ⊠ No No Is the reboiler configured to accept tabl drum vapors (straight from the glycol dehydratin unit back to the flame	Date Installed/Modifi	ied/Removed ² : 1977	/ / 2011	Regenerator Still Vent APCD/ERD ³ : CD				
Pump Rate (scfm): 5.00 gpm TEG Water Content (wt %) in: Wet Gas: Saturated Dry Gas: 7.0 lbs H2O / mmscf Is the glycol dehydration unit exempt from 40CFR63 Section 764(d)? Yes No: If Yes, answer the follow The actual annual average flowrate of natural gas to the glycol dehydration unit is less than 85 thousand standard c meters per day, as determined by the procedures specified in §63.772(b)(1) of this subpart. P ves The actual average emissions of benzene from the glycol dehydration unit process vent to the atmosphere are less th megagram per year (1 ton per year), as determined by the procedures specified in §63.772(b)(2) of this subpart. No Is the glycol dehydration unit located within an Urbanized Area (UA) or Urban Cluster (UC)? Yes No Is a lean glycol pump optimization plan being utilized? Yes No Is the reboiler configured to accept flash drum vapors (straight from the glycol dehydrator)? Yes No Is the reboiler configured to accept still vent vapors (after a condenser)? Yes No No Is the reboiler configured to accept study wapors (after a condenser)? Yes No No Is the reboiler configured to accept study wapors (after a condenser)? Yes No No Is the reboiler configured to accept study wapors (after a condenser)? Yes No No Still vent emissio	Control Device/ERD	ID# ³ : 1C		Fuel HV (BTU/scf)	: 1,020			
Water Content (wt %) in: Wet Gas: Saturated Dry Gas: 7.0 lbs H2O / mmscf Is the glycol dehydration unit exempt from 40CFR63 Section 764(d)? ⊠ Yes □ No: If Yes, answer the follow The actual annual average flowrate of natural gas to the glycol dehydration unit is less than 85 thousand standard c meters per day, as determined by the procedures specified in §63.772(b)(1) of this subpart. □ Yes □ No The actual average emissions of benzene from the glycol dehydration unit process vent to the atmosphere are less th megagram per year (1 ton per year), as determined by the procedures specified in §63.772(b)(2) of this subpart. ☑ No Is the glycol dehydration unit located within an Urbanized Area (UA) or Urban Cluster (UC)? □ Yes ☑ No Is a lean glycol pump optimization plan being utilized? □ Yes ☑ No Is a thereboiler configured to accept flash drum vapors (straight from the glycol dehydrator)? □ Yes ☑ No Is the reboiler configured to accept still vent vapors (after a condenser)? ☑ Yes □ No Is the reboiler configured to accept both in the same operation? □ Yes ☑ No Is the reboiler configured to accept still vent vapors (after a condenser)? ☑ Yes □ No Is the reboiler configured to accept still vent vapors (after a condenser)? ☑ Yes □ No Is the reboiler configured to accept still vent vapors (after a co	I ₂ S Content (gr/100	scf): 0.25		Operation (hours/ye	ear): 8,760			
Is the glycol dehydration unit exempt from 40CFR63 Section 764(d)? ⊠ Yes □ No: If Yes, answer the follow The actual annual average flowrate of natural gas to the glycol dehydration unit is less than 85 thousand standard c □ No: If Yes, answer the follow The actual average emissions of benzene from the glycol dehydration unit process vent to the atmosphere are less tl megagram per year (1 ton per year), as determined by the procedures specified in §63.772(b)(1) of this subpart. □ Yes □ No Is the glycol dehydration unit located within an Urbanized Area (UA) or Urban Cluster (UC)? □ Yes ⊠ No Is the glycol dehydration unit located within an Urbanized Area (UA) or Urban Cluster (UC)? □ Yes ⊠ No Is a lean glycol pump optimization plan being utilized? □ Yes ⊠ No Recycling the glycol dehydration unit back to the flame zone of the reboiler. ○ No Is the reboiler configured to accept still vent vapors (after a condenser)? ⊠ Yes □ No Is the reboiler configured to accept still vent vapors (after a condenser)? ⊠ Yes □ No Recycling the glycol dehydration unit back to the flame zone of the reboiler and mixed with fuel. ○ Yes □ No What happens when temperature controller shuts off fuel to the reboiler? □ No ○ No Is the reboiler configured to accept still vent vapors. □ No □ No Prease indicate if the following equipment is present. □ Sill vent emissions sto glow	Pump Rate (scfm): 5.	.00 gpm TEG						
The actual annual average flowrate of natural gas to the glycol dehydration unit is less than 85 thousand standard c meters per day, as determined by the procedures specified in §63.772(b)(1) of this subpart	Water Content (wt %) in:Wet Gas: SaturatedDry Gas: 7.0 lbs H2O / mmscf							
meters per day, as determined by the procedures specified in §63.772(b)(1) of this subpart. □ Yes □ No The actual average emissions of benzene from the glycol dehydration unit process vent to the atmosphere are less th megagram per year (1 ton per year), as determined by the procedures specified in §63.772(b)(2) of this subpart. □ □ No Is the glycol dehydration unit located within an Urbanized Area (UA) or Urban Cluster (UC)? □ Yes □ No Is the glycol dehydration unit located within an Urbanized Area (UA) or Urban Cluster (UC)? □ Yes □ No Recycling the glycol dehydration unit back to the flame zone of the reboiler. □ Yes □ No If yes: □ No Is the reboiler configured to accept flash drum vapors (after a condenser)? □ Yes □ No Is the reboiler configured to accept still vent vapors (after a condenser)? □ Yes □ No No Recycling the glycol dehydration unit back to the flame zone of the reboiler and mixed with fuel. □ Yes □ No What happens when temperature controller shuts off fuel to the reboiler? □ Still vent emissions to glow plug. □ Still vent emissions to glow plug. Please indicate if the following equipment is present. □ Still vent emissions to glow plug. □ Set Please indicate if the following equipment is present. □ Set 98% Emission Unit Description Calculation Methodology ⁵	s the glycol dehydra	tion unit exempt fro	om 40CFR63 Section	764(d)? 🛛 Yes	□ No: If Yes, answ	er the following:		
Is the glycol dehydration unit located within an Urbanized Area (UA) or Urban Cluster (UC)? □ Yes ⊠ No Is a lean glycol pump optimization plan being utilized? □ Yes ⊠ No Recycling the glycol dehydration unit back to the flame zone of the reboiler. ⊠ Yes □ No Is the reboiler configured to accept flash drum vapors (straight from the glycol dehydrator)? □ Yes ⊠ No Is the reboiler configured to accept still vent vapors (after a condenser)? ⊠ Yes □ No Is the reboiler configured to accept both in the same operation? □ Yes ⊠ No Recycling the glycol dehydration unit back to the flame zone of the reboiler and mixed with fuel. ⊠ Yes □ No What happens when temperature controller shuts off fuel to the reboiler? Still vent emissions to glow plug. Please indicate if the following equipment is present. ∑ Flash Tank Burner management system that continuously burns condenser or flash tank vapors Control Device Technical Data Pollutants Controlled Manufacturer's Guaranteed Control Efficiency VOCs & HAPs 98% Emission Unit Description Methodology ⁵ PTE ⁶ Emissions (lb/hr) AP No 0.07 0.3 RBV-1/001-04A Reboiler Vent AP CO 0.	neters per day, as de The actual average er negagram per year (1	etermined by the pro missions of benzene	from the glycol dehy	<pre>\$63.772(b)(1) of this vdration unit process</pre>	subpart.	□ No re are less than 0.90		
Recycling the glycol dehydration unit back to the flame zone of the reboiler. ⊠ Yes No If yes: Is the reboiler configured to accept flash drum vapors (straight from the glycol dehydrator)? Yes No Is the reboiler configured to accept still vent vapors (after a condenser)? ⊠ Yes No Is the reboiler configured to accept still vent vapors (after a condenser)? ⊠ Yes No Is the reboiler configured to accept both in the same operation? □ Yes ⊠ No Recycling the glycol dehydration unit back to the flame zone of the reboiler and mixed with fuel. ⊠ Wes Wes No No No What happens when temperature controller shuts off fuel to the reboiler? Still vent emissions to glow plug. Still vent emissions to glow plug. Please indicate if the following equipment is present. Still vent emissions to glow plug. No Pollutants Controlled Manufacturer's Guaranteed Control Efficiency VOCs & HAPs 98% 98% Emission Data Emission Unit ID / Emission Description AP NO _x 0.07 0.3 (BV-1/001-04A Reboiler Vent AP CO 0.06 0.2		tion unit located wi	thin an Urbanized Ar	ea (UA) or Urban Clu	uster (UC)? 🗆 Yes	🖾 No		
□ Yes □ No If yes: Is the reboiler configured to accept flash drum vapors (straight from the glycol dehydrator)? □ Yes □ No Is the reboiler configured to accept still vent vapors (after a condenser)? □ Yes □ No Is the reboiler configured to accept both in the same operation? □ Yes □ No Is the reboiler configured to accept both in the same operation? □ Yes □ No Recycling the glycol dehydration unit back to the flame zone of the reboiler and mixed with fuel. □ No □ Yes □ No What happens when temperature controller shuts off fuel to the reboiler? □ Still vent emissions to the atmosphere. □ Still vent emissions to glow plug. □ Still vent emissions to glow plug. Please indicate if the following equipment is present. □ Flash Tank □ Burner management system that continuously burns condenser or flash tank vapors □ Still vent emissions Data Control Device Technical Data VOCs & HAPs 98% Emission Data Emission Unit ID / Emission Description AP NO _x 0.07 0.3 RBV-1/001-04A Reboiler Vent AP CO 0.06 0.2	s a lean glycol pump	o optimization plan	being utilized? 🗆 Ye	s 🛛 No				
Control Device Technical Data Manufacturer's Guaranteed Control Efficiency VOCs & HAPs 98% Emissions Data Emission Unit ID / Emission Point ID ⁴ Description Calculation Methodology ⁵ PTE ⁶ Controlled Maximum Hourly Emissions (lb/hr) Controlled Maxin Emissions RBV-1/001-04A Reboiler Vent AP NO _x 0.07 0.3	Is the reboiler configured to accept flash drum vapors (straight from the glycol dehydrator)? □ Yes ⊠ No Is the reboiler configured to accept still vent vapors (after a condenser)? ⊠ Yes □ No Is the reboiler configured to accept both in the same operation? □ Yes ⊠ No Recycling the glycol dehydration unit back to the flame zone of the reboiler and mixed with fuel. ⊠ ☑ Yes □ No What happens when temperature controller shuts off fuel to the reboiler? ≦ Still vent emissions to the atmosphere. □ □ Still vent emissions to glow plug. Please indicate if the following equipment is present.							
Manufacturer's Guaranteed Control Efficiency VOCs & HAPs 98% Emission Data Emission Unit ID / Emission Point ID ⁴ Description Calculation Methodology ⁵ PTE ⁶ Controlled Maximum Hourly Emissions (lb/hr) Controlled Maxin Maxin Ann Emission RBV-1/001-04A Reboiler Vent AP NO _x 0.07 0.3	Burner manageme	nt system that conti	nuously burns conder	nser or flash tank vap	oors			
VOCs & HAPs 98% Emission Unit ID / Emission Point ID ⁴ Description Calculation Methodology ⁵ PTE ⁶ Controlled Maximum Hourly Emissions (lb/hr) Controlled Maximum Emissions (lb/hr) RBV-1/001-04A Reboiler Vent AP NO _x 0.07 0.3			Control Device	Technical Data				
Emissions Data Emission Unit ID / Emission Point ID ⁴ Description Calculation Methodology ⁵ PTE ⁶ Controlled Maximum Hourly Emissions (lb/hr) Controlled Maximum Emissions (lb/hr) Controlled Maximum Emissions RBV-1/001-04A Reboiler Vent AP NO _x 0.07 0.3	Po	ollutants Controlled		Manufacturer'	s Guaranteed Control	Efficiency (%)		
Emissions Data Emission Unit ID / Emission Point ID ⁴ Description Calculation Methodology ⁵ PTE ⁶ Controlled Maximum Hourly Emissions (lb/hr) Controlled Maximum Emissions (lb/hr) Controlled Maximum Emissions RBV-1/001-04A Reboiler Vent AP NO _x 0.07 0.3	OCs & HAPs					• • /		
Emission Unit ID / Emission Point ID4DescriptionCalculation Methodology5PTE6Controlled Maximum Hourly Emissions (lb/hr)Controlled Maximum Anni Emissions (lb/hr)Controlled Maximum Anni Emission 0.07Controlled Maximum Anni Emission 0.03RBV-1/001-04AReboiler VentAPNOx0.070.3								
RBV-1/001-04A Reboiler Vent AP CO 0.06 0.2	ID / Emission	Description	Calculation		Maximum Hourly Emissions	Controlled Maximum Annual Emissions (tpy)		
			AP	NO _x	0.07	0.33		
	RBV-1/ 001-04A	Reboiler Vent	AP	СО	0.06	0.28		
AP VOC <0.01 0.0			AP	VOC	<0.01	0.02		

		AP	SO_2	< 0.01	< 0.01
		AP	PM_{10}	0.01	0.02
		AP	GHG (CO ₂ e)	87.76	384.38
		GRI-GlyCalc TM	VOC	0.29	1.25
		GRI-GlyCalc TM	Benzene	0.03	0.11
DGW 1/001 004D	Glycol	GRI-GlyCalc TM	Toluene	0.02	0.08
RSV-1/ 001-004B	Regenerator Still Vent	GRI-GlyCalc TM	Ethylbenzene	< 0.01	0.01
		GRI-GlyCalc TM	Xylenes	0.02	0.01
		GRI-GlyCalc TM	n-Hexane	0.02	0.07
		GRI-GlyCalc [™]	VOC	0.01	0.04
		GRI-GlyCalc TM	Benzene	< 0.01	< 0.01
	Glycol Flash	GRI-GlyCalc TM	Toluene	< 0.01	< 0.01
FLT-1	Tank	GRI-GlyCalc TM	Ethylbenzene	< 0.01	< 0.01
		GRI-GlyCalc TM	Xylenes	< 0.01	< 0.01
		GRI-GlyCalc TM	n-Hexane	< 0.01	< 0.01

1 Enter the Source Status using the following codes:

NS Construction of New Source ES **Existing Source** MS Modification of Existing Source

Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source), 2 modification or removal.

3 Enter the Air Pollution Control Device (APCD)/Emission Reduction Device (ERD) type designation using the following codes and the device ID number: FL Flare CCCondenser/Combustion

NA None CDCondenser

Thermal Oxidizer O

Combination то Other (please list) Enter the appropriate Emission Unit ID Numbers and Emission Point ID Numbers for the glycol 4 dehydration unit reboiler vent and glycol regenerator still vent. The glycol dehydration unit reboiler vent and glycol regenerator still vent should be designated RBV-1 and RSV-1, respectively. If the compressor station incorporates multiple glycol dehydration units, a Glycol Dehydration Emission Unit Data Sheet all be completed for each, using Source Identification RBV-2 and RSV-2, RBV-3 and RSV-3, etc. 5

5	Enter the	Potent	ial E	missions	Data	Reference	designation	using the	following codes:
	MD	3.6		1 D .			4 D	4 D 40	

MD	Manufacturer's Data	AP	AP-42
GR	GRI-GLYCalc TM	ОТ	Other

(please list) GR GRI-GLYCalc^{1,64} OT Other (please list) Enter the Reboiler Vent and Glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated 6 pollutants in lbs per hour and tons per year. The Glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalc[™] (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalcTM Aggregate Calculations Report (shall include emissions reports, equipment reports, and stream reports) to this Glycol Dehydration Emission Unit Data Sheet(s). Backup pumps do not have to be considered as operating for purposes of PTE. This PTE data shall be incorporated in the Emissions Summary Sheet.

GRI-GLYCalc VERSION 4.0 - SUMMARY OF INPUT VALUES Case Name: Staten Run Compressor Station File Name: N:\West Virginia\Nytis\Projects\Glasgow Sissonville\Air Permitting\Staten Run\GlyCalc Staten Run R13 PTE Apr2018.ddf Date: April 05, 2018 DESCRIPTION: _____ Description: Wet Gas Sample taken (2/21/2017) Annual Emissions based on rolling totals (11/16 - 10/17)Max PTE for R13 Application Annual Hours of Operation: 8760.0 hours/yr WET GAS: _____ Temperature: 71.83 deg. F Pressure: 74.08 psig Pressure: Wet Gas Water Content: Subsaturated Specified Wet Gas Water Content: 64.17 lbs. H2O/MMSCF Component Conc. (vol %) ----- -----
 Carbon Dioxide
 0.0580

 Nitrogen
 0.3420

 Methane
 88.3930

 Ethane
 7.0520

 Propane
 2.2350

 Isobutane
 0.3700

 n-Butane
 0.6260

 Isopentane
 0.2360

 n-Pentane
 0.1810

 Cyclopentane
 0.0001
 n-Hexane 0.0830 Cyclohexane 0.0170 Other Hexanes 0.1560 Heptanes 0.1240 Methylcyclohexane 0.0310 2,2,4-Trimethylpentane 0.0001 Benzene 0.0030 Toluene 0.0040 Ethylbenzene 0.0001 Xylenes 0.0020 C8+ Heavies 0.0870 DRY GAS: _____ Flow Rate: 12.0 MMSCF/day Water Content: 21.5 lbs. H2O/MMSCF LEAN GLYCOL:

Page: 1

Glycol Type: TEG Water Content: 1.5 wt% H2O Flow Rate: 5.0 gpm PUMP: _____ Glycol Pump Type: Electric/Pneumatic FLASH TANK: _____ Flash Control: Combustion device Flash Control Efficiency: 50.00 % Temperature: 100.0 deg. F Pressure: 70.0 psig STRIPPING GAS: Source of Gas: Dry Gas Gas Flow Rate: 5.000 scfm REGENERATOR OVERHEADS CONTROL DEVICE: _____ Control Device: Condenser Temperature: 78.0 deg. F 14.7 psia Pressure: Control Device: Combustion Device Destruction Efficiency: 95.0 % Excess Oxygen: 5.0 % Ambient Air Temperature: 55.0 deg. F

Page: 1

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: Staten Run Compressor Station File Name: N:\West Virginia\Nytis\Projects\Glasgow Sissonville\Air Permitting\Staten Run\GlyCalc Staten Run R13 PTE_Apr2018.ddf Date: April 05, 2018

DESCRIPTION:

Description: Wet Gas Sample taken (2/21/2017) Annual Emissions based on rolling totals (11/16 - 10/17) Max PTE for R13 Application

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

CONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.5993	14.383	2.6248
Ethane	0.1111	2.665	0.4865
Propane	0.0681	1.634	0.2983
Isobutane	0.0194	0.465	0.0849
n-Butane	0.0397	0.952	0.1738
	0.0007	0.952	0.1/50
Isopentane	0.0199	0.477	0.0870
n-Pentane	0.0177	0.425	0.0776
Cyclopentane	<0.0001	0.001	0.0001
n-Hexane	0.0134	0.321	0.0586
Cyclohexane	0.0085	0.205	0.0374
Other Hexanes	0.0213	0.510	0.0931
Heptanes	0.0284	0.681	0.1243
Methylcyclohexane	0.0167	0.400	0.0730
2,2,4-Trimethylpentane	<0.0001	<0.001	0.0001
Benzene	0.0123	0.296	0.0539
- 1			
Toluene	0.0132	0.316	0.0577
Ethylbenzene	0.0003	0.006	0.0012
Xylenes	0.0052	0.125	0.0229
C8+ Heavies	0.0014	0.033	0.0061
Total Emissions	0.9957	23.898	4.3614
IOCAL EMISSIONS	0.9957	23.090	4.3014
Total Hydrocarbon Emissions	0.9957	23.898	4.3614
Total VOC Emissions	0.2854	6.850	1.2501
Total HAP Emissions	0.0444	1.065	0.1944
Total BTEX Emissions	0.0310	0.744	0.1357
ICCAL BIER EMISSIONS	0.0310	0.744	0.1337

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
-	· ·		
Methane	11.9949	287.878	52.5378
Ethane	2.2322	53.573	9.7771
Propane	1.3981	33.554	6.1236
Isobutane	0.4099	9.839	1.7956
n-Butane	0.8578	20.587	3.7571
Isopentane	0.4784	11.481	2.0952

n-Pentane Cyclopentane n-Hexane Cyclohexane	0.4545 0.0008 0.4693 0.3611	10.909 0.020 11.263 8.667	Page: 2 1.9908 0.0037 2.0554 1.5817
Other Hexanes	0.6615	15.877	2.8975
Heptanes	1.8583	44.599	8.1394
Methylcyclohexane	1.0960	26.304	4.8004
2,2,4-Trimethylpentane	0.0008	0.020	0.0036
Benzene	0.4852	11.645	2.1252
Toluene	1.2785	30.683	5.5997
Ethylbenzene	0.0606	1.455	0.2655
Xylenes	1.5254	36.610	6.6814
C8+ Heavies	13.6375	327.300	59.7322
Total Emissions	39.2609	942.263	171.9630
Total Hydrocarbon Emissions	39.2609	942.263	171.9630
Total VOC Emissions	25.0338	600.811	109.6480
Total HAP Emissions	3.8198	91.676	16.7308
Total BTEX Emissions	3.3497	80.393	14.6717

FLASH GAS EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.0348	0.836	0.1525
Ethane	0.0062	0.148	0.0271
Propane	0.0031	0.074	0.0136
Isobutane	0.0007	0.018	0.0032
n-Butane	0.0013	0.031	0.0057
Isopentane	0.0006	0.015	0.0028
n-Pentane	0.0005	0.012	0.0022
Cyclopentane	<0.0001	<0.001	<0.0001
n-Hexane	0.0003	0.007	0.0013
Cyclohexane	0.0001	0.001	0.0003
Other Hexanes	0.0006	0.013	0.0024
Heptanes	0.0006	0.014	0.0025
Methylcyclohexane	0.0001	0.003	0.0006
2,2,4-Trimethylpentane	<0.0001	<0.001	<0.0001
Benzene	<0.0001	<0.001	<0.0001
Toluene	<0.0001	<0.001	0.0001
Ethylbenzene	<0.0001	<0.001	<0.0001
Xylenes	<0.0001	<0.001	<0.0001
C8+ Heavies	0.0004	0.009	0.0017
Total Emissions	0.0494	1.184	0.2162
Total Hydrocarbon Emissions	0.0494	1.184	0.2162
Total VOC Emissions	0.0083	0.200	0.0365
Total HAP Emissions	0.0003	0.008	0.0015
Total BTEX Emissions	<0.0001	0.001	0.0002

FLASH TANK OFF GAS			
Component	lbs/hr	lbs/day	tons/yr
Methane Ethane Propane Isobutane n-Butane	0.0697 0.0124 0.0062 0.0015 0.0026	1.672 0.297 0.149 0.035 0.062	0.3051 0.0542 0.0272 0.0065 0.0113

Isopentane0.00130.0310.0056n-Pentane0.00100.0240.0044Cyclopentane<0.0001</td><0.001</td><0.0001</td>n-Hexane0.00060.0150.0027Cyclohexane0.00010.0030.0005
 Other Hexanes
 0.0011
 0.026
 0.0048

 Heptanes
 0.0012
 0.028
 0.0050

 Methylcyclohexane
 0.0003
 0.007
 0.0012

 2,2,4-Trimethylpentane
 <0.0001</td>
 <0.001</td>
 <0.0001</td>

 Benzene
 <0.0001</td>
 0.001
 0.0001
 Toluene<0.0001</th>0.001Ethylbenzene<0.0001</td><0.001</td>Xylenes<0.0001</td><0.001</td>C8+ Heavies0.00080.019 0.0001 <0.0001 0.0001 0.0035 Total Emissions 0.0987 2.369 0.4323 0.0987 Total Hydrocarbon Emissions 2.369 0.4323 Hydrocarbon Emissions0.0987Total VOC Emissions0.0167Total HAP Emissions0.0007Total BTEX Emissions0.0001
 2.369
 0.4323

 0.400
 0.0731

 0.016
 0.0030

 0.002
 0.0003

Page: 3

COMBINED REGENERATOR VENT/FLASH GAS EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.6341	15.218	2.7774
Ethane	0.1172	2.814	0.5135
Propane	0.0712	1.709	0.3119
Isobutane	0.0201	0.483	0.0882
n-Butane	0.0410	0.983	0.1794
Isopentane	0.0205	0.492	0.0898
n-Pentane	0.0182	0.438	0.0799
Cyclopentane	<0.0001	0.001	0.0001
n-Hexane	0.0137	0.329	0.0600
Cyclohexane	0.0086	0.206	0.0377
Other Hexanes	0.0218	0.523	0.0955
Heptanes	0.0289	0.695	0.1268
Methylcyclohexane	0.0168	0.404	0.0737
2,2,4-Trimethylpentane	<0.0001	<0.001	0.0001
Benzene	0.0123	0.296	0.0540
Toluene	0.0132	0.317	0.0578
Ethylbenzene	0.0003	0.006	0.0012
Xylenes	0.0052	0.126	0.0229
C8+ Heavies	0.0018	0.043	0.0078
Total Emissions Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions	1.0451 0.2937 0.0447 0.0310	25.082 25.082 7.050 1.074 0.745	4.5775 4.5775 1.2866 0.1959 0.1359

COMBINED REGENERATOR VENT/FLASH GAS EMISSION CONTROL REPORT:

Component Uncontrolled Controlled % Reduction tons/yr tons/yr

			Page: 4
Methane	52.8429	2.7774	94.74
Ethane	9.8313	0.5135	94.78
Propane	6.1507	0.3119	94.93
Isobutane	1.8020	0.0882	95.11
n-Butane	3.7685	0.1794	95.24
Isopentane	2.1008	0.0898	95.72
n-Pentane	1.9953	0.0799	96.00
Cyclopentane	0.0037	0.0001	96.48
n-Hexane	2.0581	0.0600	97.09
Cyclohexane	1.5822	0.0377	97.62
2			
Other Hexanes	2.9023	0.0955	96.71
Heptanes	8.1444	0.1268	98.44
Methylcyclohexane	4.8017	0.0737	98.47
2,2,4-Trimethylpentane	0.0037	0.0001	98.42
Benzene	2.1253	0.0540	97.46
Toluene	5.5998	0.0578	98.97
Ethylbenzene	0.2655	0.0012	99.56
	6.6814	0.0229	99.66
C8+ Heavies	59.7357	0.0078	99.99
Total Emissions	172.3953	4.5775	97.34
Total Hydrocarbon Emissions	172.3953	4.5775	97.34
Total VOC Emissions	109.7211	1.2866	98.83
Total HAP Emissions	16.7338	0.1959	98.83
Total BTEX Emissions	14.6720	0.1359	99.07

EQUIPMENT REPORTS:

CONDENSER AND COMBUSTION DEVICE

Condenser Outlet Temperature:	78.00	deg. F
Condenser Pressure:	14.70	psia
Condenser Duty:	9.05e-002	MM BTU/hr
Hydrocarbon Recovery:	1.56	bbls/day
Produced Water:	1.87	bbls/day
Ambient Temperature:	55.00	deg. F
Excess Oxygen:	5.00	010
Combustion Efficiency:	95.00	010
Supplemental Fuel Requirement:	9.05e-002	MM BTU/hr

Component	Emitted	Destroyed
Methane	5.00%	95.00%
Ethane	4.98%	95.02%
Propane	4.87%	95.13%
Isobutane	4.73%	95.27%
n-Butane	4.62%	95.38%
Isopentane	4.15%	95.85%
n-Pentane	3.90%	96.10%
Cyclopentane	3.49%	96.51%
n-Hexane	2.85%	97.15%
Cyclohexane	2.36%	97.64%
Other Hexanes	3.21%	96.79%
Heptanes	1.53%	98.47%
Methylcyclohexane	1.52%	98.48%
2,2,4-Trimethylpentane	1.52%	98.48%
Benzene	2.54%	97.46%

Toluene	1.03%	98.97%
Ethylbenzene	0.44%	99.56%
Xylenes	0.34%	99.66%
C8+ Heavies	0.01%	99.99%

ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages:	1.25
Calculated Dry Gas Dew Point:	8.67 lbs. H2O/MMSCF
Temperature: Pressure: Dry Gas Flow Rate: Glycol Losses with Dry Gas: Wet Gas Water Content: Specified Wet Gas Water Content: Calculated Lean Glycol Recirc. Ratio:	12.0000 MMSCF/day 0.0210 lb/hr

Component	Remaining in Dry Gas	Absorbed in Glycol
Water	13.50%	86.50%
Carbon Dioxide	99.92%	0.08%
Nitrogen	100.00%	0.00%
Methane	100.00%	0.00%
Ethane	99.98%	0.02%
Propane	99.95%	0.05%
Isobutane	99.91%	0.09%
n-Butane	99.88%	0.12%
Isopentane	99.85%	0.15%
n-Pentane	99.80%	0.20%
Cyclopentane	99.15%	0.85%
n-Hexane	99.56%	0.44%
Cyclohexane	98.14%	1.86%
Other Hexanes	99.69%	0.31%
Heptanes	98.92%	1.08%
Methylcyclohexane	97.33%	2.67%
2,2,4-Trimethylpentane	99.51%	0.49%
Benzene	84.34%	15.66%
Toluene	73.72%	26.28%
Ethylbenzene	56.72%	43.28%
Xylenes	45.52%	54.48%
C8+ Heavies	93.07%	6.93%

FLASH TANK Flash Control: Combustion device Flash Control Efficiency: 50.00 % Flash Temperature: 100.0 deg. F Flash Pressure: 70.0 psig

Left in Removed in Component Glycol Flash Gas

Water Carbon Dioxide Nitrogen	100.00% 99.39% 91.60%	Page: 0.00% 0.61% 8.40%	6
Methane Ethane	91.85% 97.82%		
Propane Isobutane n-Butane Isopentane n-Pentane	99.01% 99.39% 99.55% 99.63% 99.71%	0.99% 0.61% 0.45% 0.37% 0.29%	
Cyclopentane n-Hexane Cyclohexane Other Hexanes Heptanes	99.93% 99.85% 99.97% 99.80% 99.94%		
Methylcyclohexane 2,2,4-Trimethylpentane Benzene Toluene Ethylbenzene	99.98% 99.87% 100.00% 100.00% 100.00%		
Xylenes C8+ Heavies	100.00% 99.99%	0.00% 0.01%	

REGENERATOR

Regenerator Stripping Gas:

Dry Product Gas

Stripping Gas Flow Rate: 5.0000 scfm

Component	Remaining in Glycol	Distilled Overhead
Water	60.28%	39.72%
Carbon Dioxide	0.00%	100.00%
Nitrogen	0.00%	100.00%
Methane	0.00%	100.00%
Ethane	0.00%	100.00%
Propane Isobutane n-Butane Isopentane n-Pentane	0.00% 0.00% 0.50% 0.50%	100.00% 100.00% 100.00% 99.50% 99.50%
Cyclopentane	0.50%	99.50%
n-Hexane	0.50%	99.50%
Cyclohexane	3.20%	96.80%
Other Hexanes	1.00%	99.00%
Heptanes	0.50%	99.50%
Methylcyclohexane	4.00%	96.00%
2,2,4-Trimethylpentane	1.50%	98.50%
Benzene	5.00%	95.00%
Toluene	7.90%	92.10%
Ethylbenzene	10.40%	89.60%
Xylenes	12.90%	87.10%
C8+ Heavies	12.00%	88.00%

Page: 7

WET GAS STREAM Temperature:71.83 deg. FPressure:88.78 psiaFlow Rate:5.01e+005 scfh Conc. Component Loading (vol%) (lb/hr) _____ _____ Water 1.35e-001 3.21e+001 Carbon Dioxide 5.79e-002 3.36e+001 Nitrogen 3.42e-001 1.26e+002 Methane 8.83e+001 1.87e+004 Ethane 7.04e+000 2.79e+003 Propane 2.23e+000 1.30e+003 Isobutane 3.69e-001 2.83e+002 n-Butane 6.25e-001 4.80e+002 Isopentane 2.36e-001 2.24e+002 n-Pentane 1.81e-001 1.72e+002 Cyclopentane 9.99e-005 9.24e-002 n-Hexane 8.29e-002 9.43e+001 Cyclohexane 1.70e-002 1.89e+001 Other Hexanes 1.56e-001 1.77e+002 Heptanes 1.24e-001 1.64e+002 Methylcyclohexane 3.10e-002 4.01e+001 2,2,4-Trimethylpentane 9.99e-005 1.51e-001 Benzene 3.00e-003 3.09e+000 Toluene 3.99e-003 4.86e+000 Ethylbenzene 9.99e-005 1.40e-001 Xylenes 2.00e-003 2.80e+000 C8+ Heavies 8.69e-002 1.95e+002 _____ ____ Total Components 100.00 2.48e+004 DRY GAS STREAM Temperature: 71.83 deg. F Pressure: 88.78 psia Pressure: 88.78 psia Flow Rate: 5.00e+005 scfh Component Conc. Loading (vol%) (lb/hr) _____ ____ Water 1.83e-002 4.34e+000 Carbon Dioxide 5.80e-002 3.36e+001 Nitrogen 3.42e-001 1.26e+002 Methane 8.84e+001 1.87e+004 Ethane 7.05e+000 2.79e+003 Propane 2.23e+000 1.30e+003 Isobutane 3.70e-001 2.83e+002 n-Butane 6.25e-001 4.79e+002 Isopentane 2.36e-001 2.24e+002 n-Pentane 1.81e-001 1.72e+002 Cyclopentane 9.92e-005 9.16e-002 n-Hexane 8.26e-002 9.39e+001 Cyclohexane 1.67e-002 1.85e+001 Other Hexanes 1.56e-001 1.77e+002 Heptanes 1.23e-001 1.62e+002

Methylcyclohexane 3.02e-002 3.90e+001 2,2,4-Trimethylpentane 9.95e-005 1.50e-001 Benzene 2.53e-003 2.60e+000 Toluene 2.95e-003 3.58e+000 Ethylbenzene 5.67e-005 7.94e-002 Xylenes 9.10e-004 1.27e+000 C8+ Heavies 8.10e-002 1.82e+002 Total Components 100.00 2.48e+004

LEAN GLYCOL STREAM _____ Temperature: 71.83 deg. F Flow Rate: 5.00e+000 gpm Conc. Loading (wt%) (lb/hr) Component (lb/hr) _____ ____ TEG 9.84e+001 2.77e+003 Water 1.50e+000 4.22e+001 Carbon Dioxide 9.96e-014 2.80e-012 Nitrogen 2.02e-014 5.67e-013 Methane 1.02e-018 2.87e-017 Ethane 9.54e-009 2.68e-007 Propane 9.05e-010 2.55e-008 Isobutane 2.58e-010 7.25e-009 n-Butane 5.05e-010 1.42e-008 Isopentane 6.17e-005 1.73e-003 n-Pentane 6.30e-005 1.77e-003 Cyclopentane 1.41e-007 3.95e-006 n-Hexane 7.39e-005 2.08e-003 Cyclohexane 4.12e-004 1.16e-002 Other Hexanes 2.00e-004 5.62e-003 Heptanes 3.15e-004 8.86e-003 Methylcyclohexane 1.59e-003 4.47e-002 2,2,4-Trimethylpentane 4.03e-007 1.13e-005 Benzene 9.05e-004 2.55e-002 Toluene 3.89e-003 1.09e-001 Ethylbenzene 2.50e-004 7.03e-003 Xylenes 8.03e-003 2.26e-001 C8+ Heavies 6.56e-002 1.84e+000 _____ ____ Total Components 100.00 2.81e+003

RICH GLYCOL STREAM

Temperature: 71.83 deg. F Pressure: 88.78 psia Flow Rate: 5.10e+000 gpm NOTE: Stream has more than one phase. Component Conc. Loading (wt%) (lb/hr) TEG 9.66e+001 2.77e+003 Water 2.44e+000 7.00e+001 Carbon Dioxide 9.77e-004 2.80e-002

Nitrogen 1.98e-004 5.66e-003 Methane 2.98e-002 8.55e-001

Ethane 1.98e-002 5.68e-001 Propane 2.18e-002 6.25e-001 Isobutane 8.43e-003 2.42e-001 n-Butane 2.00e-002 5.73e-001 Isopentane 1.21e-002 3.47e-001 n-Pentane 1.24e-002 3.54e-001 Cyclopentane 2.76e-005 7.91e-004 n-Hexane 1.45e-002 4.16e-001 Cyclohexane 1.26e-002 3.62e-001 Other Hexanes 1.96e-002 5.62e-001 Heptanes 6.18e-002 1.77e+000 Methylcyclohexane 3.90e-002 1.12e+000 2,2,4-Trimethylpentane 2.64e-005 7.55e-004 Benzene 1.78e-002 5.09e-001 Toluene 4.84e-002 1.39e+000 Ethylbenzene 2.36e-003 6.76e-002 Xylenes 6.11e-002 1.75e+000 C8+ Heavies 5.37e-001 1.54e+001 Total Components 100.00 2.86e+003

FLASH TANK OFF GAS STREAM

_____ Temperature: 100.00 deg. F Pressure: 84.70 psia Flow Rate: 1.92e+000 scfh Conc. Loading (vol%) (lb/hr) Loading Component Water 6.30e-002 5.74e-005 Carbon Dioxide 7.69e-002 1.71e-004 Nitrogen 3.35e-001 4.75e-004 Methane 8.58e+001 6.97e-002 Ethane 8.13e+000 1.24e-002 Propane 2.78e+000 6.21e-003 Isobutane 5.01e-001 1.47e-003 n-Butane 8.80e-001 2.59e-003 Isopentane 3.50e-001 1.28e-003 n-Pentane 2.77e-001 1.01e-003 Cyclopentane 1.56e-004 5.54e-007 n-Hexane 1.39e-001 6.06e-004 Cyclohexane 2.90e-002 1.24e-004 Other Hexanes 2.52e-001 1.10e-003 Heptanes 2.27e-001 1.15e-003 Methylcyclohexane 5.61e-002 2.79e-004 2,2,4-Trimethylpentane 1.73e-004 1.00e-006 Benzene 5.51e-003 2.18e-005 Toluene 7.23e-003 3.37e-005 Ethylbenzene 1.59e-004 8.54e-007 Xylenes 2.71e-003 1.46e-005 C8+ Heavies 9.14e-002 7.88e-004 Total Components 100.00 9.94e-002

FLASH TANK GLYCOL STREAM

Temperature: 100.00 deg. F Flow Rate: 5.10e+000 gpm

Loading Component Conc. (wt응) (lb/hr) _____ ____ TEG 9.66e+001 2.77e+003 Water 2.44e+000 7.00e+001 Carbon Dioxide 9.71e-004 2.78e-002 Nitrogen 1.81e-004 5.18e-003 Methane 2.74e-002 7.85e-001 Ethane 1.94e-002 5.56e-001 Propane 2.16e-002 6.19e-001 Isobutane 8.38e-003 2.40e-001 n-Butane 1.99e-002 5.70e-001 Isopentane 1.21e-002 3.46e-001 n-Pentane 1.23e-002 3.53e-001 Cyclopentane 2.76e-005 7.90e-004 n-Hexane 1.45e-002 4.15e-001 Cyclohexane 1.26e-002 3.62e-001 Other Hexanes 1.96e-002 5.61e-001 Heptanes 6.18e-002 1.77e+000 Methylcyclohexane 3.90e-002 1.12e+000 2,2,4-Trimethylpentane 2.63e-005 7.54e-004 Benzene 1.78e-002 5.09e-001 Toluene 4.84e-002 1.39e+000 Ethylbenzene 2.36e-003 6.76e-002 Xylenes 6.11e-002 1.75e+000 C8+ Heavies 5.37e-001 1.54e+001 Total Components 100.00 2.86e+003

FLASH GAS EMISSIONS

Flow Rate: 4.32e+000 scfh Control Method: Combustion Device Control Efficiency: 50.00 Component Conc. Loading (vol%) (lb/hr) Water 4.99e+001 1.02e-001 Carbon Dioxide 2.78e+001 1.39e-001 Nitrogen 1.49e-001 4.75e-004 Methane 1.91e+001 3.48e-002 Ethane 1.81e+000 6.19e-003 Propane 6.19e-001 3.10e-003 Isobutane 1.11e-001 7.37e-004 n-Butane 1.96e-001 1.29e-003 Isopentane 7.79e-002 6.39e-004 n-Pentane 6.18e-002 5.07e-004 Cyclopentane 3.47e-005 2.77e-007 n-Hexane 3.09e-002 3.03e-004 Cyclohexane 6.46e-003 6.19e-005 Other Hexanes 5.62e-002 5.51e-004 Heptanes 5.05e-002 5.75e-004 Methylcyclohexane 1.25e-002 1.40e-004 2,2,4-Trimethylpentane 3.85e-005 5.01e-007 Benzene 1.23e-003 1.09e-005 Toluene 1.61e-003 1.69e-005 Ethylbenzene 3.54e-005 4.27e-007

Xylenes 6.04e-004 7.29e-006

4.

2.

Ο.

1.

Ο.

0.

Ο.

0.

1.

Ο.

C8+ Heavies 2.03e-002 3.94e-004

Total Components 100.00 2.91e-001

REGENERATOR OVERHEADS STREAM Temperature:212.00 deg. FPressure:14.70 psiaFlow Rate:9.86e+002 scfh Conc. Component Loading (vol%) (lb/hr) Water 5.94e+001 2.78e+001 Carbon Dioxide 4.20e-002 4.80e-002 Nitrogen 1.11e-001 8.09e-002 Methane 2.88e+001 1.20e+001 Ethane 2.86e+000 2.23e+000 Propane 1.22e+000 1.40e+000 Isobutane 2.71e-001 4.10e-001 n-Butane 5.68e-001 8.58e-001 Isopentane 2.55e-001 4.78e-001 n-Pentane 2.42e-001 4.55e-001 Cyclopentane 4.62e-004 8.41e-004 n-Hexane 2.10e-001 4.69e-001 Cyclohexane 1.65e-001 3.61e-001 Other Hexanes 2.95e-001 6.62e-001 Heptanes 7.14e-001 1.86e+000 Methylcyclohexane 4.30e-001 1.10e+000 2,2,4-Trimethylpentane 2.80e-004 8.32e-004 Benzene 2.39e-001 4.85e-001 Toluene 5.34e-001 1.28e+000 Ethylbenzene 2.20e-002 6.06e-002 Xylenes 5.53e-001 1.53e+000 C8+ Heavies 3.08e+000 1.36e+001 ----- ------Total Components 100.00 6.72e+001 CONDENSER PRODUCED WATER STREAM _____ Temperature: 78.00 deg. F Flow Rate: 5.44e-002 gpm Component Conc. Loading (wt%) (lb/hr) (ppm) Water 1.00e+002 2.72e+001 999859. Carbon Dioxide 1.69e-004 4.59e-005 2. Nitrogen 5.55e-006 1.51e-006 0. Methane 1.76e-003 4.79e-004 18. Ethane 4.28e-004 1.17e-004 Propane 1.78e-004 4.86e-005 Isobutane 2.92e-005 7.96e-006 n-Butane 8.36e-005 2.28e-005 Isopentane 3.15e-005 8.59e-006 n-Pentane 3.13e-005 8.52e-006 Cyclopentane 4.24e-007 1.16e-007 n-Hexane 2.15e-005 5.85e-006

Cyclohexane 8.97e-005 2.44e-005

Other Hexanes 2.65e-005 7.21e-006

Page: 12 Heptanes 2.68e-005 7.31e-006 0. Methylcyclohexane 8.72e-005 2.37e-005 1. 2,2,4-Trimethylpentane 7.70e-009 2.10e-009 0. Benzene 4.61e-003 1.25e-003 46. 44. Toluene 4.40e-003 1.20e-003 Ethylbenzene 7.24e-005 1.97e-005 1. Xylenes 2.07e-003 5.64e-00421.C8+ Heavies 4.82e-007 1.31e-0070. _____ ____ Total Components 100.00 2.72e+001 1000000. CONDENSER RECOVERED OIL STREAM ------Temperature: 78.00 deg. F Flow Rate: 4.55e-002 gpm Component Conc. Loading (wt응) (lb/hr) _____ ____ Water 1.66e-002 3.21e-003 Carbon Dioxide 4.48e-004 8.67e-005 Nitrogen 1.09e-004 2.12e-005 Methane 4.62e-002 8.93e-003 Ethane 5.62e-002 1.09e-002 Propane 1.86e-001 3.60e-002 Isobutane 1.14e-001 2.21e-002 n-Butane 3.33e-001 6.44e-002 Isopentane 4.18e-001 8.10e-002 n-Pentane 5.17e-001 1.00e-001 Cyclopentane 1.32e-003 2.55e-004 n-Hexane 1.04e+000 2.01e-001 Cyclohexane 9.84e-001 1.90e-001 Other Hexanes 1.22e+000 2.36e-001 Heptanes 6.67e+000 1.29e+000 Methylcyclohexane 3.94e+000 7.62e-001 2,2,4-Trimethylpentane 3.00e-003 5.80e-004 Benzene 1.23e+000 2.38e-001 Toluene 5.24e+000 1.01e+000 Ethylbenzene 2.86e-001 5.52e-002 Xylenes 7.34e+000 1.42e+000 C8+ Heavies 7.04e+001 1.36e+001 _____ ____ Total Components 100.00 1.93e+001 CONDENSER VENT STREAM Temperature: 78.00 deg. F Pressure: 14.70 psia Flow Rate: 3.58e+002 scfh Component Conc. Loading (vol%) (lb/hr) ----- ------Water 3.28e+000 5.58e-001 Carbon Dioxide 1.15e-001 4.79e-002 Nitrogen 3.06e-001 8.09e-002 Methane 7.92e+001 1.20e+001 Ethane 7.82e+000 2.22e+000 Propane 3.27e+000 1.36e+000

Isobutane 7.07e-001 3.88e-001 n-Butane 1.45e+000 7.93e-001 Isopentane 5.83e-001 3.97e-001 n-Pentane 5.21e-001 3.55e-001 Cyclopentane 8.86e-004 5.87e-004 n-Hexane 3.29e-001 2.68e-001 Cyclohexane 2.15e-001 1.71e-001 Other Hexanes 5.23e-001 4.25e-001 Heptanes 6.00e-001 5.67e-001 Methylcyclohexane 3.60e-001 3.34e-001 2,2,4-Trimethylpentane 2.34e-004 2.53e-004 Benzene 3.34e-001 2.46e-001 Toluene 3.03e-001 2.64e-001 Ethylbenzene 5.34e-003 5.35e-003 Xylenes 1.04e-001 1.05e-001 C8+ Heavies 1.72e-002 2.77e-002 Total Components 100.00 2.06e+001

COMBUSTION DEVICE OFF GAS STREAM

Temperature: 1000.00 deg. F Pressure: 14.70 psia Flow Rate: 1.72e+001 scfh		
Component		Loading (lb/hr)
Ethane Propane Isobutane	8.22e+001 8.13e+000 3.40e+000 7.34e-001 1.50e+000	1.11e-001 6.81e-002 1.94e-002
Cyclopentane	5.41e-001 9.20e-004 3.42e-001	1.77e-002 2.93e-005 1.34e-002
Methylcyclohexane 2,2,4-Trimethylpentane	6.23e-001 3.74e-001	2.84e-002 1.67e-002 1.26e-005
Toluene Ethylbenzene Xylenes C8+ Heavies	3.15e-001 5.55e-003 1.08e-001 1.79e-002	2.68e-004 5.23e-003
Total Components	100.00	9.96e-001

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: SLR International Corporation 8 Capitol Street, Suite 300 Charleston, West Virginia 25301

Sample: Cabot / Cranberry Pipeline

Staten Run Pre-Dehydrator Gas Spot Sample @ 78 psig & NA °F

Date Sampled: 02/21/2017

Job Number: 71606.071

COMPONENT	MOL%		GPM
Nitrogen	0.342		
Carbon Dioxide	0.058		
Methane	88.393		
Ethane	7.052		1.881
Propane	2.235		0.614
Isobutane	0.370		0.121
n-Butane	0.615		0.193
2-2 Dimethylpropane	0.011		0.004
Isopentane	0.236		0.086
n-Pentane	0.181		0.065
Hexanes	0.239		0.098
Heptanes Plus	0.268		<u>0.118</u>
Totals	100.000		3.181
Computed Real Character		tanes Plu	us:
Specific Gravity		3.553	(Air=1)
Molecular Weight		102.62	
Gross Heating Value		5390	BTU/CF
Computed Real Character	istics Of Tota	al Sample	: :
Specific Gravity			(Air=1)
Compressibility (Z)		0.9972	
Molecular Weight			
Gross Heating Value			
Dry Basis		1149	BTU/CF
Saturated Basis		1129	BTU/CF

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286

Base Conditions: 14.650 PSI & 60 Deg F

Sampled By: SLR-RSJ Analyst: NG Processor: NG Cylinder ID: T-3547 Certified: FESCO, Ltd. - Alice, Texas

David Dannhaus 361-661-7015

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286 TOTAL REPORT

Nitrogen 0.342 0.4	510
0	136
Methane 88.393 75.	
Ethane 7.052 1.881 11.2	
	251
•	146
	904
	042
	907
	696
	064
-	000
	096
	354
	202
	381
	072
	012
	076
,	123
,	117
	000
	159
	176
	162
	020
	282
	097
Ethylbenzene 0.000 0.000 0.00	000
,	011
	000
•	108
n-Nonane 0.004 0.002 0.0	027
Other C10's 0.002 0.001 0.0	015
n-Decane 0.001 0.001 0.0	800
Undecanes (11) 0.000 0.000 0.0	000
Totals 100.000 3.181 100.0	000
Computed Real Characteristics of Total Sample	
Specific Gravity 0.650 (Air=1)	
Compressibility (Z) 0.9972	
Molecular Weight 18.77	
Gross Heating Value	
Dry Basis 1149 BTU/CF	
Saturated Basis 1129 BTU/CF	

Page 2 of 3

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

Sample: Cabot / Cranberry Pipeline Staten Run Pre-Dehydrator Gas Spot Sample @ 78 psig & NA °F

Date Sampled: 02/21/2017

Job Number: 71606.071

GLYCALC FORMAT

COMPONENT	MOL%	GPM	Wt %
Carbon Dioxide	0.058		0.136
Hydrogen Sulfide			
Nitrogen	0.342		0.510
Methane	88.393		75.549
Ethane	7.052	1.881	11.297
Propane	2.235	0.614	5.251
Isobutane	0.370	0.121	1.146
n-Butane	0.626	0.198	1.946
Isopentane	0.236	0.086	0.907
n-Pentane	0.181	0.065	0.696
Cyclopentane	0.000	0.000	0.000
n-Hexane	0.083	0.034	0.381
Cyclohexane	0.017	0.006	0.076
Other C6's	0.156	0.064	0.716
Heptanes	0.124	0.054	0.647
Methylcyclohexane	0.031	0.012	0.162
2,2,4 Trimethylpentane	0.000	0.000	0.000
Benzene	0.003	0.001	0.012
Toluene	0.004	0.001	0.020
Ethylbenzene	0.000	0.000	0.000
Xylenes	0.002	0.001	0.011
Octanes Plus	<u>0.087</u>	<u>0.043</u>	<u>0.537</u>
Totals	100.000	3.181	100.000

Specific Gravity	4.010	(Air=1)
Molecular Weight	115.81	
Gross Heating Value	5939	BTU/CF

Real Characteristics Of Total Sample:

Specific Gravity	0.650	(Air=1)
Compressibility (Z)	0.9972	
Molecular Weight	18.77	
Gross Heating Value		
Dry Basis	1149	BTU/CF
Saturated Basis	1129	BTU/CF

ATTACHMENT L – SMALL HEATERS AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART DC DATA SHEET

Complete this data sheet for each small heater and reboiler not subject to 40CFR60 Subpart Dc at the facility. *The Maximum Design Heat Input (MDHI) must be less than 10 MMBTU/hr.*

Emission Unit ID# ¹	Emission Point ID# ²	Emission Unit Description (manufacturer, model #)	Year Installed/ Modified	Type ³ and Date of Change	Maximum Design Heat Input (MMBTU/hr) ⁴	Fuel Heating Value (BTU/scf) ⁵
RBV-1	001-04A	FLAMECO; Dehydration Unit Reboiler; Model No. SB20-12	2011	Existing	0.75	1,020

- ¹ Enter the appropriate Emission Unit (or Source) identification number for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.
- ² Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.
- ³ New, modification, removal
- ⁴ Enter design heat input capacity in MMBtu/hr.
- ⁵ Enter the fuel heating value in BTU/standard cubic foot.

ATTACHMENT L – INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. Generator(s) and microturbine generator(s) shall also use this form.

Emission Unit I	D#1	#	4					
Engine Manufac	cturer/Model	AJAX /	DPC 120					
Manufacturers I	Rated bhp/rpm	115	/475					
Source Status ²		N	IS					
Date Installed/ Modified/Remo	ved/Relocated ³	7/2	013					
Engine Manufac /Reconstruction	ctured Date ⁴	19	65					
Check all applic Rules for the en EPA Certificate if applicable) ⁵	gine (include	□40CFR60 S □JJJJ Certifi □40CFR60 S □IIII Certific ⊠40CFR63 S □ NESHAP 2 JJJJ Window □ NESHAP 2 Sources	ed? ubpart IIII ed? ubpart ZZZZ	□ NESHAP JJJJ Window	ied? Subpart IIII ed? Subpart ZZZZ ZZZZ/ NSPS	□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources		
Engine Type ⁶		28	LB					
APCD Type ⁷		No	one					
Fuel Type ⁸		Р	Q					
H_2S (gr/100 scf)	0.	25					
Operating bhp/r	pm	115/475						
BSFC (BTU/bhj	p-hr)	9,000						
Hourly Fuel The	roughput	1,015.0 ft ³ /hr						
Annual Fuel Th (Must use 8,760 emergency gene	hrs/yr unless	8.90 MN	Aft ³ /yr					
Fuel Usage or H Operation Mete		Yes 🗆	No 🖾	Yes 🗆 No 🗆		Yes 🗆	No 🗆	
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year) 11	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year) ¹¹	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year) ¹¹	
MD	NOx	1.40	6.11					
MD	со	0.43	1.89					
MD	VOC	0.26	1.11					
AP	SO ₂	<0.01	0.01					
AP	PM ₁₀	0.05	0.22					
MD	Formaldehyde	0.08 0.34						
AP	Total HAPs	0.10	0.44					
AP	GHG (CO ₂ e)	121.11	530.44					

1 Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.

2 Enter the Source Status using the following codes:

NS	Construction of New Source (installation)	ES	Existing Source
MS	Modification of Existing Source	RS	Relocated Source
DEM			

REM Removal of Source

3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.

4 Enter the date that the engine was manufactured, modified or reconstructed.

5 Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintained to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6 Enter the Engine Type designation(s) using the following codes:

	2SLB 4SLB	Two Stroke Lean Burn Four Stroke Lean Burn	4SRB	Four St	roke Rich Burn
7	Enter th	e Air Pollution Control Device (APCD) type designat	ion(s) us	ing the fo	llowing codes:
	A/F	Air/Fuel Ratio		IR	Ignition Retard
	HEIS	High Energy Ignition System		SIPC	Screw-in Precombustion Chambers
	PSC	Prestratified Charge		LEC	Low Emission Combustion
	NSCR	Rich Burn & Non-Selective Catalytic Reduction		OxCat	Oxidation Catalyst

	SCR	Lean Burn & Selective Catalytic Reduction	
8	Enter th	e Fuel Type using the following codes:	

	PQ	Pipeline Quality Natural Ga	IS	RG	Raw Natural	Gas /Production	Gas D	Diesel	
9	Enter th	ne Potential Emissions D	ata Reference	designation	using the fo	llowing codes.	Attach all refe	rence dat	a used.

		8		8
MD	Manufacturer's Data	AP	AP-42	
GR	GRI-HAPCalc [™]	OT	Other	(please list)

10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

Estimated Exhaust Emissions Based On PLQNG, 1500 FASL Elevation and an average Ambient Temperature of 65 Degrees F

For Emissions Permits, please contact Ajax for emissions data based on specific site conditions

Ajax	E	missic	ons (Gi	n / Bhpl	ר)						Exhaust Stack					No.		
Engine	NOx	со	нст	имнс	01120	BSFC	RPM	BHP	BMEP	Dia.	Height	Temp	Flow	Flow	Velocity	Of	Bore	Stroke
Model	NOX	0	пст		Сп2О					(in.)	(in.)	(Deg.F)	(acfm)	(lb/m)	(ft/m)	Cyl's		
EA-15	4.4	3.3	7.7	1.3	0.3	9900	900	14	49.6	4	31	500	140	5	1604	1	5	6.5
EA-22	4.4	3.3	7.7	1.3	0.3	9900	650	21	48.5	5	64	500	200	8	1467	1	6.5	8
EA-30	4.4	3.3	7.7	1.3	0.3	9900	650	29	53.1	5	80	500	250	10	1833	1	7.25	8
C-30	4.4	3.3	7.7	1.3	0.3	9400	525	29	49.2	5	101	450	260	11	1907	1	7.5	10
C-42	4.4	3.3	7.7	1.3	0.3	9900	525	40	53.6	6	137	565	380	14	1935	1	8.5	10
E-42	4.4	3.3	7.7	1.3	0.3	9900	525	40	53.6	6	137	565	380	14	1935	1	8.5	10
DP-60	4.4	1.7	4.4	1.0	0.3	9000	475	58	56.5	8	150	540	500	18	1432	1	9.5	12
DP-80	4.4	2.8	9.6	1.5	0.3	8900	400	77	57.1	10	164	470	610	24	1118	1	11.0	14
DP-81	6.6	1.1	3.8	0.9	0.3	8500	475	78	62.4	10	164	545	610	22	1118	1	10.5	12
DP-115	4.4	2.4	12.7	1.9	0.3	9000	360	110	55.0	12	190	440	880	36	1120	1	13.25	16
DP-125	5.0	2.7	12.0	1.8	0.3	8500	380	120	56.7	12	190	470	960	38	1222	1	13.25	16
DP-160	4.4	2.8	9.6	1.8	0.3	8900	400	154	57.1	10	164	470	1220	48	2237	2	11	14
DP-165	6.0	3.0	12.0	1.8	0.3	8500	380	158	58.4	13.25	260	450	1210	49	1264	1	15	16
DP-230	4.4	2.4	14.0	1.9	0.3	9000	360	221	55.0	12	190	440	1770	72	2254	2	13.25	16
DP-250	5.5	3.0	11.0	1.7	0.3	8500	380	240	56.7	12	190	460	1910	76	2432	2	13.25	16
DP-325	5.5	1.7	12.0	1.9	0.3	8400	380	312	57.5	13.25	260	450	2420	98	2527	2	15	16
DPC-60	4.4	1.7	4.4	1.0	0.3	9000	475	58	56.5	8	150	540	500	18	1432	1	9.5	12
DPC-80	4.4	2.8	8.8	1.5	0.3	8900	400	77	57.1	10	164	470	610	24	1118	1	11	14
DPC-81	6.6	1.1	3.8	0.9	0.3	8500	475	78	62.4	10	164	545	610	22	1118	1	10.5	12
DPC-105	4.4	2.8	6.6	1.2	0.3	8800	425	101	59.3	12	193	480	780	31	993	1	12	14
DPC-115	4.4	2.4	12.7	1.9	0.3	8700	360	110	55.0	12	190	440	870	36	1108	1	13.25	16
DPC-115 LE	2.0	2.2	7.7	1.3	0.3	8100	360	110	55.0	12	190	400	840	36	1070	1	13.25	16
DPC-120	5.5	1.7	4.4	1.0	0.3	9000	475	115	56.5	8	150	540	1000	37	2865	2	9.5	12
DPC-140	10.5	1.3	6.8	1.2	0.3	8200	400	134	60.3	12	190	490	1040	40	1324	1	13.25	16
DPC-140 LE	2.0	1.4	5.5	1.1	0.3	7800	400	134	60.3	12	190	450	1010	41	1286	1	13.25	16
DPC-160	4.4	2.7	8.8	1.4	0.3	8900	400	154	57.1	10	164	470	1220	48	2237	2	11	14
DPC-162	6.6	1.1	3.8	0.9	0.3	8500	475	156	62.4	10	164	545	1230	45	2255	2	10.5	12
DPC-180	6.3	1.4	14.6	2.1	0.3	8400	400	173	60.5	13.25	256	460	1290	52	1347	1	15	16
DPC-180 LE	2.0	1.1	6.6	1.2	0.3	7900	400	173	60.5	13.25	256	555	1450	53	1514	1	15	16

Site Altitude = 0 - 1500 FASL

Site Fuel Composition = Pipeline Quality Natural Gas (PLQNG)

Ambient Temp For Defining Maximum Load = 100 Deg F

Ambient Temp For Defining Exhaust Emissions = 65 Deg F

NOx = Nitrogen Oxide CO = Carbon Monoxide

HCT = Total Unburned Hydrocarbons NMHC= Non-Methane Hydrocarbons

CH2O = Formaldehyde

FASL = Feet Above Sea Level

ACFM = Actual Cubic Feet Per Minute

BMEP = Brake Mean Effective Pressure

BSFC = Brake Specific Fuel Consumption

The above emissions and performance data is contingent on:

1.) Engine must be maintained in good working order.

2.) Engine modifications or upgrades from the original factory configuration must meet Ajax specifications and installation guidelines.

3.) Engine operating parameters must be consistent with those specified in the Ajax manual.

Date: August 2004

Prepared By: Bruce Chrisman

Phone (405) 619-5058 Email: chrismanb@ccc-ces.com Fuel Composition (PLQNG):

Compound	Formula	% Volume	
Nitrogen	N2	0.72	
Carbon Dioxide	CO2	1.14	
Methane	CH4	92.84	
Ethane	C2H6	4.10	
Propane	C3H8	1.20	
Total Volume % = 100.0			

Estimated Exhaust Emissions Based On PLQNG, 1500 FASL Elevation and an average Ambient Temperature of 65 Degrees F

For Emissions Permits, please contact Ajax for emissions data based on specific site conditions

Ajax	E	missio	ns (Gr	n / Bhpł	ו)					Exhaust Stack					No.			
Engine			UOT		01100	BSFC	RPM	BHP	BMEP	Dia.	Height	Temp	Flow	Flow	Velocity	Of	Bore	Stroke
Model	NOx	со	нст	NMHC	CH2U					(in.)	(in.)	(Deg.F)	(acfm)	(lb/m)	(ft/m)	Cyl's		
DPC-230	4.4	2.4	12.7	1.8	0.3	8700	360	221	55.0	12	190	440	1730	71	2203	2	13.25	16
DPC-230 LE	2.0	2.2	7.7	1.3	0.3	8100	360	221	55.0	12	190	400	1670	72	2126	2	13.25	16
DPC-280	11.4	1.3	6.8	1.2	0.3	8200	400	269	60.3	12	190	470	2030	80	2585	2	13.25	16
DPC-280 LE	2.0	1.4	5.5	1.1	0.3	7800	400	269	60.3	12	190	450	1990	81	2534	2	13.25	16
DPC-300	4.1	1.9	16.0	2.2	0.3	8700	360	288	56.0	13.25	260	435	2210	91	2308	2	15	16
DPC-300 LE	2.0	1.6	8.8	1.4	0.3	8200	360	288	56.0	13.25	260	435	2230	92	2329	2	15	16
DPC-360	6.3	1.4	14.6	2.1	0.3	8400	400	346	60.5	13.25	260	480	2630	103	2747	2	15	16
DPC-360 LE	2.0	1.1	6.4	1.2	0.3	7900	400	346	60.5	13.25	260	480	2690	105	2809	2	15	16
DPC-450 LE	2.7	1.2	6.0	1.1	0.3	7800	400	432	64.6	17.25	190	500	3220	124	1984	3	13.25	16
DPC-540	8.6	1.3	12.3	1.4	0.3	8300	400	540	63.0	17.25	303	465	3890	155	2397	3	15	16
DPC-540 LE	2.0	1.0	6.0	1.1	0.3	7800	400	540	63.0	17.25	303	465	3970	158	2446	3	15	16
DPC-600	13.0	1.2	8.5	1.6	0.3	8200	400	576	67.2	17.25	303	515	4110	155	2532	3	15	16
DPC-600 LE	6.5	0.9	5.9	1.1	0.3	7800	400	576	67.2	17.25	303	515	4190	158	2582	3	15	16
DPC-720	9.5	1.3	9.0	1.8	0.3	8300	400	720	63.0	17.25	241	465	5190	207	3198	4	15	16
DPC-720 LE	2.0	1.0	6.0	1.1	0.3	7800	400	720	63.0	17.25	241	465	5300	211	3266	4	15	16
DPC-800	13.0	1.2	8.5	1.8	0.3	8200	400	768	67.2	17.25	241	515	5480	207	3377	4	15	16
DPC-800 LE	6.5	1.0	5.9	1.1	0.3	7800	400	768	67.2	17.25	241	515	5590	211	3444	4	15	16
DPC-2201	10.0	1.3	5.5	1.1	0.3	8000	440	148	60.4	12	190	490	1160	45	1477	1	13.25	16
DPC-2201 LE	2.0	1.4	5.4	1.2	0.3	7800	440	148	60.4	12	190	490	1200	47	1528	1	13.25	16
DPC-2202	10.0	1.3	5.5	1.1	0.3	8000	440	296	60.4	12	190	470	2280	90	2903	2	13.25	16
DPC-2202 LE	2.0	1.4	5.4	1.2	0.3	7800	440	296	60.4	12	190	470	2350	93	2992	2	13.25	16
DPC-2801	5.5	1.4	10.5	1.7	0.3	8200	440	192	61.1	13.25	256	460	1450	58	1514	1	15	16
DPC-2801 LE	2.0	1.2	6.1	1.2	0.3	7800	440	192	61.1	13.25	256	460	1490	60	1556	1	15	16
DPC-2802	5.5	1.3	10.5	1.7	0.3	8200	440	422	70.1	13.25	260	465	2910	116	3039	2	15	16
DPC-2802 LE	2.0	1.2	6.1	1.2	0.3	7800	440	384	61.1	13.25	260	465	3000	119	3133	2	15	16
DPC-2802 LE*	2.0	1.2	6.1	1.2	0.3	7800	440	384	61.1	14.13	260	465	3000	119	2757	2	15	16
DPC-2803	12.0	1.2	9.9	1.6	0.3	8000	440	634	67.3	17.25	303	465	4380	174	2699	3	15	16
DPC-2803 LE	2.0	1.2	6.1	1.2	0.3	7800	440	600	63.7	17.25	241	515	4740	179	2921	3	15	16
DPC-2804	12.0	1.2	9.9	1.6	0.3	8000	440	845	67.2	17.25	241	465	5840	233	3598	4	15	16
DPC-2804 LE	2.0	1.2	6.1	1.2	0.3	7800	440	800	63.7	17.25	241	515	6320	239	3894	4	15	16

Site Altitude = 0 - 1500 FASL Date: August 2004 Site Fuel Composition = Pipeline Quality Natural Gas (PLQNG)

```
Ambient Temp For Defining Maximum Load = 100 Deg F
```

The above emissions and performance data is contingent on:

1.) Engine must be maintained in good working order.

2.) Engine modifications or upgrades from the original factory configuration must meet Ajax specifications and installation guidelines.

3.) Engine operating parameters must be consistent with those specified in the Ajax manual.

* = DPC-2802LE Tilt Muffler Package

Prepared By: Bruce Chrisman, (405) 619-5058 Email: chrismanb@ccc-ces.com NOx = Nitrogen Oxide CO = Carbon Monoxide

CH2O = Formaldehyde

HCT = Total Unburned Hydrocarbons NMHC= Non-Methane Hydrocarbons FASL = Feet Above Sea Level ACFM = Actual Cubic Feet Per Minute

BMEP = Brake Mean Effective Pressure

BSFC = Brake Specific Fuel Consumption

```
Fuel Composition (PLQNG):
```

Compound	Compound Formula	
Nitrogen	N2	0.72
Carbon Dioxide	CO2	1.14
Methane	CH4	92.84
Ethane	C2H6	4.10
Propane	C3H8	1.20
-	100.00	

ATTACHMENT L - STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water . (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). **Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.**

The following information is **REQUIRED**:

- ⊠ Composition of the representative sample used for the simulation
- ☑ For each stream that contributes to flashing emissions:
 - \boxtimes Temperature and pressure (inlet and outlet from separator(s))
 - ⊠ Simulation-predicted composition
 - ⊠ Molecular weight
 - \boxtimes Flow rate
- ⊠ Resulting flash emission factor or flashing emissions from simulation
- \boxtimes Working/breathing loss emissions from tanks and/or loading emissions if simulation is used to quantify those emissions

Additional information may be requested if necessary.

GENERAL INFORMATION

1. Bulk Storage Area Name	2. Tank Name				
Staten Run Compressor Station	Pipeline Liquids AST				
3. Emission Unit ID number	4. Emission Point ID number				
T03	T03				
5. Date Installed , Modified or Relocated (for existing tanks)	6. Type of change:				
2011	\Box New construction \Box New stored material \boxtimes Other				
Was the tank manufactured after August 23, 2011?	\Box Relocation				
\Box Yes \boxtimes No					
7A. Description of Tank Modification (if applicable) Increase Throughput through storage tank					
7B. Will more than one material be stored in this tank? If so, a separate form must be completed for each material.					
\Box Yes \boxtimes No					
7C. Was USEPA Tanks simulation software utilized?					
□ Yes					
REPORT					
If Yes, please provide the appropriate documentation and items 8-42 below are not required.					

TANK INFORMATION

8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height.					
2100 gallons					
9A. Tank Internal Diameter (ft.)	9B. Tank Internal Height (ft.)				
10A. Maximum Liquid Height (ft.)	10B. Average Liquid Height (ft.)				
11A. Maximum Vapor Space Height (ft.)	11B. Average Vapor Space Height (ft.)				
12. Nominal Capacity (specify barrels or gallons). This is also known as "working volume"					
13A. Maximum annual throughput (gal/yr) 76,650 gal/yr	13B. Maximum daily throughput (gal/day) 210 gal/day				
14. Number of tank turnovers per year 73	15. Maximum tank fill rate (gal/min) 0.15 gal/min				
16. Tank fill method \boxtimes Submerged \square Splash	□ Bottom Loading				

17. Is the tank system a variable vapor space system? \Box Yes \boxtimes No						
If yes, (A) What is the volume expansion capacity of the system (gal)?						
(B) What are the number of transfers into the system per year?						
18. Type of tank (check all that apply):						
\Box Fixed Roof \Box vertical \Box horizontal \boxtimes flat roof \Box cone roof \Box dome roof \Box other (describe)						
\Box External Floating Roof \Box pontoon roof \Box double deck roof						
Domed External (or Covered) Floating Roof						
\Box Internal Floating Roof \Box vertical column support \Box self-supporting						
□ Variable Vapor Space □ lifter roof □ diaphragm						
\Box Pressurized \Box spherical \boxtimes cylindrical						
\Box Other (describe)						

PRESSURE/VACUUM CONTROL DATA

19. Check as many as apply	19. Check as many as apply:								
\Box Does Not Apply		\Box Rupture Disc (psig)							
□ Inert Gas Blanket of		\Box Carbon Adsorption ¹							
□ Vent to Vapor Combust	□ Vent to Vapor Combustion Device ¹ (vapor combustors, flares, thermal oxidizers, enclosed combustors)								
□ Conservation Vent (psig	g)		□ Conden	ser ¹					
Vacuum Setting Pro	essure Setting	g							
□ Emergency Relief Valv	e (psig)								
Vacuum Setting	Pre	ssure Settir	ıg						
□ Thief Hatch Weighted [\Box Yes \Box N	0							
¹ Complete appropriate Air	¹ Complete appropriate Air Pollution Control Device Sheet								
20. Expected Emission Rat	20. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application).								
Material Name Flashing Loss Working/Breathing Loss Total Emissions Estimation Method ¹									
	Flashing Loss Working/Breating Loss Loss								
	lb/hr	lb/hr tpy lb/hr tpy lb/hr tpy							
VOCs									

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

TANK CONSTRUCTION AND OPERATIO	N INFORMATION						
21. Tank Shell Construction:							
\Box Riveted \Box Gunite lined \Box Epox	y-coated rivets 🛛 Other (describe) Welded	d Seams.					
21A. Shell Color: Gray	A. Shell Color: Gray 21B. Roof Color: Gray 21C. Year Last Painted:						
22. Shell Condition (if metal and unlined):							
\boxtimes No Rust \square Light Rust \square Dense	Rust 🛛 Not applicable						
22A. Is the tank heated? \Box Yes \boxtimes No	22B. If yes, operating temperature:	22C. If yes, how is heat provided to tank?					
23. Operating Pressure Range (psig):							
Must be listed for tanks using VRUs wi	th closed vent system.						
24. Is the tank a Vertical Fixed Roof Tank ?	24A. If yes, for dome roof provide radius (ft):	24B. If yes, for cone roof, provide slop (ft/ft):					
\Box Yes \boxtimes No							
25. Complete item 25 for Floating Roof Tanks	25. Complete item 25 for Floating Roof Tanks Does not apply						
25A. Year Internal Floaters Installed:							
25B. Primary Seal Type (check one): Metallic (mechanical) shoe seal Liquid mounted resilient seal							
\Box Vapor mounted resilient seal \Box Other (describe):							
25C. Is the Floating Roof equipped with a secondary seal? \Box Yes \Box No							
25D. If yes, how is the secondary seal mounted? (check one) \Box Shoe \Box Rim \Box Other (describe):							
25E. Is the floating roof equipped with a weath	er shield? \Box Yes \Box No						

25F. Describe deck fittings:								
26. Complete the following section for Interna	26. Complete the following section for Internal Floating Roof Tanks 🛛 Does not apply							
26A. Deck Type: Bolted V	Velded	26B. 1	For bolted decks,	provide deck c	onstruction:			
26C. Deck seam. Continuous sheet construction	26C. Deck seam. Continuous sheet construction:							
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide	le 🛛 5 x 7.5 ft. wide	□ 5 x	12 ft. wide \Box	other (descr	ibe)			
26D. Deck seam length (ft.): 26E. Area	a of deck (ft ²):	26F. I	5G. For column supported					
		tanks,	# of columns:	ta	nks, diameter of column:			
27. Closed Vent System with VRU? Yes	□ No							
28. Closed Vent System with Enclosed Combu	stor? 🗆 Yes 🖾 No							
SITE INFORMATION								
29. Provide the city and state on which the data	a in this section are based	:						
30. Daily Avg. Ambient Temperature (°F):			nnual Avg. Maxi		ıre (°F):			
32. Annual Avg. Minimum Temperature (°F):		33. A	vg. Wind Speed ((mph):				
34. Annual Avg. Solar Insulation Factor (BTU	/ft ² -day):	35. Atmospheric Pressure (psia):						
LIQUID INFORMATION								
36. Avg. daily temperature range of bulk	36A. Minimum (°F):	36B. Maximum (°F):			ım (°F):			
liquid (°F):								
37. Avg. operating pressure range of tank	37A. Minimum (psig)	:	: 37B. Maximum (psig):					
(psig):		38B. Corresponding vapor pressure (psia):			• •			
38A. Minimum liquid surface temperature (°F)	:							
39A. Avg. liquid surface temperature (°F):			Corresponding va					
40A. Maximum liquid surface temperature (°F			Corresponding va					
41. Provide the following for each liquid or gas CALCULATIONS	s to be stored in the tank.	Add add	litional pages if r	necessary. SEE	PROMAX MODEL IN			
41A. Material name and composition:								
41B. CAS number:								
41C. Liquid density (lb/gal):								
41D. Liquid molecular weight (lb/lb-mole):								
41E. Vapor molecular weight (lb/lb-mole):								
41F. Maximum true vapor pressure (psia):								
41G. Maximum Reid vapor pressure (psia):								
41H. Months Storage per year.								
From: To:								
42. Final maximum gauge pressure and								
temperature prior to transfer into tank used as								
inputs into flashing emission calculations.								

ATTACHMENT L - STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water . (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). **Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.**

The following information is **REQUIRED**:

- ⊠ Composition of the representative sample used for the simulation
- ☑ For each stream that contributes to flashing emissions:
 - \boxtimes Temperature and pressure (inlet and outlet from separator(s))
 - ⊠ Simulation-predicted composition
 - ⊠ Molecular weight
 - \boxtimes Flow rate
- ⊠ Resulting flash emission factor or flashing emissions from simulation
- ⊠ Working/breathing loss emissions from tanks and/or loading emissions if simulation is used to quantify those emissions

Additional information may be requested if necessary.

GENERAL INFORMATION

1. Bulk Storage Area Name	2. Tank Name					
Staten Run Compressor Station	Pipeline Liquids AST					
3. Emission Unit ID number	4. Emission Point ID number					
T05 & T06	T05 & T06					
5. Date Installed , Modified or Relocated (for existing tanks)	6. Type of change:					
2013	\Box New construction \Box New stored material \boxtimes Other					
Was the tank manufactured after August 23, 2011?	\Box Relocation					
□ Yes						
7A. Description of Tank Modification (<i>if applicable</i>)	7A. Description of Tank Modification (<i>if applicable</i>)					
7B. Will more than one material be stored in this tank? If so, a separate form must be completed for each material.						
\Box Yes \boxtimes No	\Box Yes \boxtimes No					
7C. Was USEPA Tanks simulation software utilized?	7C. Was USEPA Tanks simulation software utilized?					
□ Yes	□ Yes					
REPORT						
If Yes, please provide the appropriate documentation and items 8-42 below are not required.						

TANK INFORMATION

8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height.					
2100 gallons					
9A. Tank Internal Diameter (ft.)	9B. Tank Internal Height (ft.)				
10A. Maximum Liquid Height (ft.)	10B. Average Liquid Height (ft.)				
11A. Maximum Vapor Space Height (ft.)11B. Average Vapor Space Height (ft.)					
12. Nominal Capacity (specify barrels or gallons). This is also known as "working volume"					
13A. Maximum annual throughput (gal/yr) 76,650 gal/yr	13B. Maximum daily throughput (gal/day) 210 gal/day				
14. Number of tank turnovers per year 73	15. Maximum tank fill rate (gal/min) 0.15 gal/min				
16. Tank fill method ⊠ Submerged □ Splash □ Bottom Loading					
17. Is the tank system a variable vapor space system? \Box Yes	No No				

If yes, (A) What is the volume expansion capacity of the system (gal)?						
(B) What are the number of	of transfers into the system per year?					
18. Type of tank (check all that a	apply):					
\Box Fixed Roof \Box vertical	\Box horizontal \boxtimes flat roof \Box cone roof \Box dome roof \Box other (describe)					
□ External Floating Roof	\Box pontoon roof \Box double deck roof					
□ Domed External (or Covered) Floating Roof					
□ Internal Floating Roof □ vertical column support □ self-supporting						
□ Variable Vapor Space	\Box lifter roof \Box diaphragm					
\Box Pressurized \Box spherical \boxtimes cylindrical						
□ Other (describe)						

PRESSURE/VACUUM CONTROL DATA

19. Check as many as apply	y:						
□ Does Not Apply	□ Rupture Disc (psig)						
□ Inert Gas Blanket of		_	□ Carbon	Adsorption ¹			
□ Vent to Vapor Combust	ion Device ¹	(vapor con	bustors, flares, t	thermal oxidize	rs, enclosed	combustors)
□ Conservation Vent (psig	g)		□ Conden	ser ¹			
Vacuum Setting Pre	essure Settin	g					
Emergency Relief Valve	e (psig)						
Vacuum Setting	Vacuum Setting Pressure Setting						
□ Thief Hatch Weighted □	\Box Thief Hatch Weighted \Box Yes \Box No						
¹ Complete appropriate Air	Pollution Co	ntrol Devi	ce Sheet				
20. Expected Emission Rat	e (submit Te	st Data or (Calculations here	e or elsewhere i	in the applica	ation).	
Material Name	Flachin	g Loss	Working/Bro	eathing Loss	Total En	nissions	Estimation Method ¹
	Fiasiiii	Flashing Loss Working/Breathing Loss Loss		SS			
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
VOCs							

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

TANK CONSTRUCTION AND OPERATIO	N INFORMATION					
21. Tank Shell Construction:						
\Box Riveted \Box Gunite lined \Box Epoxy-coated rivets \boxtimes Other (describe) Welded Seams.						
21A. Shell Color: Gray21B. Roof Color: Gray21C. Year Last Painted:						
22. Shell Condition (if metal and unlined):						
\boxtimes No Rust \square Light Rust \square Dense	Rust 🗌 Not applicable					
22A. Is the tank heated? \Box Yes \boxtimes No	22B. If yes, operating temperature:	22C. If yes, how is heat provided to tank?				
23. Operating Pressure Range (psig):						
Must be listed for tanks using VRUs wi						
24. Is the tank a Vertical Fixed Roof Tank ?	24A. If yes, for dome roof provide radius (ft): 24B. If yes, for cone roof, provide slop (ft					
\Box Yes \boxtimes No						
25. Complete item 25 for Floating Roof Tanks	s \Box Does not apply \boxtimes					
25A. Year Internal Floaters Installed:						
25B. Primary Seal Type (check one):	allic (mechanical) shoe seal \Box Liquid mo	unted resilient seal				
🗆 Vap	□ Vapor mounted resilient seal □ Other (describe):					
25C. Is the Floating Roof equipped with a secondary seal? \Box Yes \Box No						
25D. If yes, how is the secondary seal mounted	$? (check one) \square Shoe \square Rim \square Otherally Otherally (check one) \square Shoe \square Rim \square Otherally (check one) \square Shoe □ $	her (describe):				
25E. Is the floating roof equipped with a weath	er shield? 🗌 Yes 🗌 No					
25F. Describe deck fittings:						

26. Complete the following section	n for Interna	l Floating Roof Tanks	\boxtimes	Does not apply	ý	
26A. Deck Type: 🗌 Bolted	□ W	/elded	26B.	For bolted decks,	provide deck	construction:
26C. Deck seam. Continuous shee	t constructio	n:				
\Box 5 ft. wide \Box 6 ft. wide \Box	□ 7 ft. wid	e \Box 5 x 7.5 ft. wide	\Box 5 x	12 ft. wide	other (des	scribe)
26D. Deck seam length (ft.):	26E. Area	n of deck (ft ²):		For column suppo # of columns:	orted	26G. For column supported tanks, diameter of column:
27. Closed Vent System with VRU	J? □ Yes	🗆 No				
28. Closed Vent System with Enclo	osed Combu	stor? 🗆 Yes 🗵 No				
SITE INFORMATION						
29. Provide the city and state on w	hich the data	in this section are based	:			
30. Daily Avg. Ambient Temperate	ure (°F):		31. A	nnual Avg. Maxi	mum Temper	rature (°F):
32. Annual Avg. Minimum Tempe				vg. Wind Speed		
34. Annual Avg. Solar Insulation Factor (BTU/ft ² -day):			35. Atmospheric Pressure (psia):			
LIQUID INFORMATION						
36. Avg. daily temperature range of	f bulk	36A. Minimum (°F):			36B. Maxi	mum (°F):
liquid (°F):						
37. Avg. operating pressure range	of tank	37A. Minimum (psig):			37B. Maximum (psig):	
(psig):	(0)		200	<u> </u>		
38A. Minimum liquid surface temp		•		Corresponding va		-
39A. Avg. liquid surface temperatu40A. Maximum liquid surface tem		A.		Corresponding va Corresponding va		
40A. Maximum liquid surface tem 41. Provide the following for each						
CALCULATIONS	iiquid or gas	to be stored in the tank.	Add add	intonai pages ii i	lecessary. SE	LE PROMAA MODEL IN
41A. Material name and compositi	on:					
41B. CAS number:						
41C. Liquid density (lb/gal):						
41D. Liquid molecular weight (lb/l						
41E. Vapor molecular weight (lb/ll						
41F. Maximum true vapor pressure						
41G. Maximum Reid vapor pressu	ıre (psia):					
41H. Months Storage per year.						
From: To:						
42. Final maximum gauge pressure						
temperature prior to transfer into ta						
inputs into flashing emission calcul	ations.					

STORAGE TANK DATA TABLE

List all deminimis storage tanks (i.e. lube oil, glycol, diesel etc.)

Source ID # ¹	Status ²	Content ³	Volume ⁴
T02	Exist	Used Oil	2,150
T07	New	TEG	520
T08	New	Engine Oil	1,000

Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the well site. Tanks should 1. be designated T01, T02, T03, etc. 2.

Enter storage tank Status using the following:

EXIST Existing Equipment

NEW Installation of New Equipment

REM Equipment Removed

Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, diesel, mercaptan etc. 3.

4. Enter the maximum design storage tank volume in gallons.

global environmental solutions

Putnam B6 Compressor Station

Cranberry Pipeline Corporation

Glasgow District, West Virginia

Pressurized Separator Sampling and Emissions Estimation Report

SLR Ref: 116.00400.00064

August 2013

APPENDIX A

GPA METHOD 2286 LABORATORY RESULTS

Pressurized Separator Sampling and Emissions Estimation Report

Cranberry Pipeline Corporation c/o Cabot Oil & Gas Corporation 900 Lee Street East Suite 1500 Charleston, West Virginia 25301

August 2013

FESCO, Ltd. 1100 FESCO Avenue - Alice, Texas 78332

For: SLR International Corporation 900 Lee Street, Suite 200 Charleston, West Virginia 25301

Sample: Cabot Oil & Gas - Puttman B6 Separator Hydrocarbon Liquid Sampled @ 28 psig & 60 °F

Date Sampled: 04/25/13

Job Number: 33213.002

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2186-M

COMPONENT	MOL %	LIQ VOL %	WT %
Nitrogen	0.019	0.002	0.002
Carbon Dioxide	0.044	0.007	0.007
Methane	1.228	0.194	0.068
Ethane	1.343	0.335	0.139
Propane	1.724	0.443	0.262
Isobutane	0.292	0.089	0.058
n-Butane	1.395	0.410	0.279
2,2 Dimethylpropane	0.048	0.017	0.012
Isopentane	0.610	0.208	0.151
n-Pentane	0.932	0.315	0.231
2,2 Dimethylbutane	0.012	0.005	0.003
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.120	0.046	0.036
2 Methylpentane	0.457	0.177	0.136
3 Methylpentane	0.283	0.108	0.084
n-Hexane	0.940	0.360	0.279
Heptanes Plus	<u>90.554</u>	<u>97.285</u>	<u>98.254</u>
Totals:	100.000	100.000	100.000

Characteristics of Heptanes Plus:

Specific Gravity	0.8672	(Water=1)
°API Gravity	31.66	@ 60°F
Molecular Weight	315.3	
Vapor Volume	8.73	CF/Gal
Weight	7.23	Lbs/Gal

Characteristics of Total Sample:

Specific Gravity	0.8587	(Water=1)
°API Gravity	33.29	@ 60°F
Molecular Weight	290.6	
Vapor Volume	9.38	CF/Gal
Weight	7.15	Lbs/Gal

Base Conditions: 14.650 PSI & 60 °F

Certified: FESCO, Ltd. - Alice, Texas

Analyst: JCM Processor: Aldjv Cylinder ID: W-1109

David Dannhaus 361-661-7015

COMPONENT	Mol %	LiqVol %	Wt %
			VVI /0
Nitrogen	0.019	0.002	0.002
Carbon Dioxide	0.044	0.007	0.007
Methane	1.228	0.194	0.068
Ethane	1.343	0.335	0.139
Propane	1.724	0.443	0.262
Isobutane	0.292	0.089	0.058
n-Butane	1.395	0.410	0.279
2,2 Dimethylpropane	0.048	0.017	0.012
Isopentane	0.610	0.208	0.151
n-Pentane	0.932	0.315	0.231
2,2 Dimethylbutane	0.012	0.005	0.003
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.120	0.046	0.036
2 Methylpentane	0.457	0.177	0.136
3 Methylpentane	0.283	0.108	0.084
n-Hexane	0.940	0.360	0.279
Methylcyclopentane	0.528	0.174	0.153
Benzene	0.054	0.014	0.015
Cyclohexane	0.519	0.165	0.150
2-Methylhexane	0.418	0.181	0.144
3-Methylhexane	0.379	0.162	0.131
2,2,4 Trimethylpentane	0.000	0.000	0.000
Other C-7's	0.550	0.226	0.188
n-Heptane	1.093	0.470	0.377
Methylcyclohexane	1.528	0.573	0.516
Toluene	0.251	0.079	0.080
Other C-8's	2.887	1.279	1.095
n-Octane	1.425	0.681	0.560
E-Benzene	0.220	0.079	0.080
M & P Xylenes	0.586	0.212	0.214
O-Xylene	0.471	0.167	0.172
Other C-9's	2.953	1.461	1.283
n-Nonane	1.635	0.858	0.722
Other C-10's	4.741	2.578	2.305
n-decane	1.254	0.718	0.614
Undecanes(11)	5.356	2.989	2.710
Dodecanes(12)	5.045	3.041	2.795
Tridecanes(13)	4.918	3.178	2.962
Tetradecanes(14)	4.334	3.000	2.834
Pentadecanes(15)	3.784	2.806	2.682
Hexadecanes(16)	3.075	2.437	2.350
Heptadecanes(17)	2.764	2.316	2.254
Octadecanes(18)	2.683	2.367	2.317
Nonadecanes(19)	2.474	2.274	2.239
Eicosanes(20)	2.166	2.069	2.050
Heneicosanes(21)	1.881	1.891	1.884
Docosanes(22)	1.954	2.047	2.051
Tricosanes(23)	1.593	1.729	1.743
Tetracosanes(24)	1.905	2.143	2.170
Pentacosanes(25)	1.406	1.641	1.669
Hexacosanes(26)	1.487	1.799	1.838
Heptacosanes(27)	1.631	2.046	2.099
Octacosanes(28)	1.481	1.920	1.977
Nonacosanes(29)	1.181	1.581	1.634
Triacontanes(30)	1.004	1.386	1.437
Hentriacontanes Plus(31+)	<u>16.940</u>	<u>42.546</u>	45.761
Total	100.000	100.000	100.000
	100.000	100.000	100.000

Cabot Oil & Gas - Poca Coal	No. 6 Condensate Ta	ank -T-001.			
Component	Carbon Numer	Results (Mol%)	Inputs to E&P Tanks		
CO2		0.0440	0.0440		
02		0.0000	0.0000		
125		0.0000	0.0000		
Nitrogen		0.0190	0.0190		
Viethane	C1	1.2280	1.2280		
Ethane	C2	1.3430	1.3430		
Propane	С3	1.7240	1.7240		
so-Butane	C4H10	0.2920	0.2920		
n-Butane	C4H10	1.3950	1.3950		
so-Pentane	C5H12	0.6100	0.6100		
n-Pentane	C5H12	0.9320	0.9320		
n-Hexane	C6H14	0.9400	0.9400		
Cyclohexane	C6H12	0.5190	1.0100		
Hexanes	C6H14	1.4000	1.9190	Hexanes	Liq. Vol/ %
leptanes	C7H16	2.4400	2 0 0 0 0	2, 2 Dimethylbutane	0.012
Vethylcyclohexane	C7H14	1.5280	3.9680	2, 3 Dimethylbutane	0.12
2,2,4- Trimethylpentane	C8H18	0.0000	0.0000	2 Methylpentane	0.457
Benzene	С6Н6	0.0540	0.0540	3 Methylpentane	0.283
Toluene	С7Н8	0.2510	0.2510	Methylcyclopentane	0.528
thylbenzene	C8H10	0.2200	0.2200		•
(ylenes (listed below)	C8H10	1.0570	1.0570	Heptanes	Liq. Vol/ %
m/p- Xylene	C8H10	0.5860		2-methylhexane	0.418
- Xylene	C8H10	0.4710		3-methylhexane	0.379
8 Heavies (listed below)		4.3120	4.3120	n-Heptane	1.093
Dctanes	C8H18	1.4250		Other C-7's	0.55
Other C-8's	C8	2.8870			
C9 Heavies (listed below)		4.5880	4.5880		
Nonanes		1.6350			
Other C-9's	C9	2.9530			
Sum Total (C1 through C9)		24.8960			
All Other components	C+10	75.1040	75.1040		
· · · ·	TOTAL	100.0000	100.0000		

APPENDIX C

E&P TANKS VERSION 3.0 EMISSION ESTIMATE

Pressurized Separator Sampling and Emissions Estimation Report

Cranberry Pipeline Corporation c/o Cabot Oil & Gas Corporation 900 Lee Street East Suite 1500 Charleston, West Virginia 25301

August 2013

Report

* * * * * * Project Setup Information ***** : N:\West Virginia\Cabot\Projects\2013\Testing Project File Sampling\Tank Sampling\April 2013\Poca Coal No. 6 4-25-13 - Tanks Sampling\APPENDIX C - Poca Coal 6. ept Flowsheet Selection : Oil Tank with Separator Calculation Method : AP42 Control Efficiency : 100.0% Known Separator Stream : Low Pressure Oil Entering Air Composition : No Date : 2013.07.23 ***** Data Input Separator Pressure: 28.00[psig]Separator Temperature: 60.00[F]Ambi ent Pressure: 14.70[psia]Ambi ent Temperature: 70.00[F]C10+ SG: 0.8672C10+ MW: 315.30-- Low Pressure Oil -----_____ mol % No. Component H2S 0.0000 1 02 0.0000 2 3 C02 0.0440 4 0.0190 N2 5 1.2280 C1 1.3430 C2 6 1.7240 7 С3 8 i -C4 0.2920 9 1.3950 n-C4 10 i -C5 0.6100 0.9800 11 n-C5 12 C6 1.9190 Č7 3.9680 13 4.3120 14 C8 15 C9 4.5880 C10+ 75.0560 16 17 Benzene 0.0540 18 Tol uene 0. 2510 19 E-Benzene 0.2200 20 1.0570 Xyl enes 21 n-C6 0.9400 22 224Trimethylp 0.0000 -- Sales Oil _____ Production Rate : 5[bbl/day] Days of Annual Operation : 365 [days/year] Page 1

		Report
API Gravity Reid Vapor Pressure Bulk Temperature	e : 33.29 : 7.70[r : 60.00]	osi a] [F]
Tank and Shell [
Diameter Shell Height Cone Roof Slope Average Liquid Heig Vent Pressure Range Solar Absorbance	: 6.00[1 : 11.50] : 0.06 pht : 8.00[1 : 0.06[p : 0.17	ft] [ft] ft] osi]
Meteorological [
Ci ty Page 1	: Charle	eston, WV E&P TANK
Ambient Pressure Ambient Temperature Min Ambient Tempera Max Ambient Tempera Total Solar Insolat	: 14.70 : 70.00 ature : 44.00 ature : 65.50 :i on : 1123.0	psia] F] F] F] D0[Btu/ft^2*day]
***** * Calculation F *	Resul ts	***************************************
*****	7	
I tem	lincontrol Led	Uncontrolled
Total HAPs	[ton/yr] 0.000	[Ib/hr] 0.000 0.164 0.122 0.072 lb/hr)*(24hr/day)/(5bb1/day)=0.35 lby0c/bb1
Total HC VOCs, C2+ VOCs, C3+	0. 717 0. 536 0. 316	0.164 0.122 <mark>0.072 (0.072 lb/hr)*(24hr/day)/(5bbl/day)=0.35 lbvoc/bbl</mark>
Uncontrolled Recove	ery Info.	
Vapor HC Vapor GOR	52. 5300 x1E-3 51. 5000 x1E-3 10. 51	[MSCFD] [MSCFD] [SCF/bbl]
Emission Composi	tion	

			Report
13	C7	0.007	0.002
14	C8	0.003	0. 001
15	C9	0.001	0.000
16	C10+	0.000	0.000
17	Benzene	0.000	0.000
18	Tol uene	0.000	0.000
19	E-Benzene	0.000	0.000
20	Xyl enes	0.000	0.000
21	n-C6	0.004	0.001
22	224Trimethylp	0.000	0.000
	Total	0.734	0. 168

-- Stream Data

No. Component Total Emissions	 MW	LP Oi I	Flash Oil	Sale Oil	Flash Gas	s W&S Gas
		mol %	mol %	mol %	mol %	mol %
mol % 1 H2S 0.0000	34.80	0.0000	0.0000	0.0000	0.0000	0.0000
2 02	32.00	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000 3 C02	44.01	0.0440	0. 0187	0. 0123	1. 1961	1. 3910
1. 2143 4 N2	28.01	0.0190	0.0014	0.0000	0. 8212	0.0005
0.7447 5 C1	16.04	1. 2280	0. 2362	0. 0545	46. 3174	29. 1183
44. 7149 6 C2	30. 07	1.3430	0. 7543	0. 5963	28. 1077	36. 5488
28.8942 7 C3	44.10	1.7240	1. 4153	1. 3282	15. 7583	22. 1847
16.3571 8 i-C4	58. 12	0. 2920	0. 2727	0. 2671	1. 1707	1. 6499
1.2154 9 n-C4	58.12	1. 3950	1.3365	1. 3192	4.0547	5. 6824
4.2063 10 i -C5	72. 15	0. 6100	0. 6084	0. 6075	0. 6818	0. 9360
0.7054 11 n-C5	72.15	0. 9800	0. 9835	0. 9837	0.8200	1. 1143
0.8474 12 C6	86.16	1. 9190	1.9517	1. 9589	0. 4339	0. 5689
0. 4464 13 C7	100. 20	3. 9680	4.0488	4. 0671	0. 2966	0. 3757
0.3040 14 C8	114. 23	4.3120	4. 4046	4. 4258	0. 1008	0. 1231
0. 1029 Page 2					E8	P TANK
15 C9	128. 28	4.5880	4. 6881	4. 7110	0. 0367	0. 0433
0.0373 16 C10+	315.30	75.0560	76. 7069	77.0841	0.0000	0.0000
0.0000 17 Benzene	78. 11	0.0540	0.0550	0. 0552	0. 0091	0. 0119
0. 0094 18 Tol uene	92.13	0. 2510	0. 2563	0. 2575	0. 0118	0. 0149
0.0121 19 E-Benzene	106. 17	0. 2200	0. 2248	0. 2259	0.0034	0. 0041
0. 0034 20 Xyl enes	106. 17	1.0570	1.0799	1. 0852	0. 0141	0. 0170
0.0143 21 n-C6	86. 18	0. 9400	0. 9570	0. 9608	0. 1658	0. 2153
0.1704 22 224Trimethylp	114.24	0. 0000 Page	0. 0000 3	0.0000	0.0000	0.0000

0.0000

Report

MW 29.10 Stream Mole Ratio 0.0237 Heating Value 1670.06 Gas Gravity 1.00		258.27	263.32	263.94	28.70	33.06
		1.0000	0. 9785	0. 9763	0. 0215	0. 0022
	[BTU/SCF]				1647.41	1890. 56
	[Gas/Air]				0.99	1.14
Bubble Pt. @ 100F	[psi a]	57.57	18.33	10. 94		
RVP @ 100F	[psi a]	65.45	37.28	30.77		
Spec. Gravity @ 100F	.	0. 721	0. 722	0. 722		

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	Staten Run - T02 - Used Oil Montgomery West Virginia Nytis Exploration Vertical Fixed Roof Tank Staten Run Compressor Station
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	5.00 8.50 5.00 2,150.00 5.00 10,750.00 N
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	White/White Good White/White Good
Roof Characteristics Type: Height (ft) Radius (ft) (Dome Roof)	Dome 1.00 8.50
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

Meterological Data used in Emissions Calculations: Charleston, West Virginia (Avg Atmospheric Pressure = 14.25 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Staten Run - T02 - Used Oil - Vertical Fixed Roof Tank Montgomery, West Virginia

			ily Liquid Si perature (de		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Distillate fuel oil no. 2	All	56.67	51.31	62.04	55.00	0.0058	0.0048	0.0070	130.0000			188.00	Option 1: VP50 = .0045 VP60 = .0065

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Staten Run - T02 - Used Oil - Vertical Fixed Roof Tank Montgomery, West Virginia

Annual Emission Calcaulations	
Standing Losses (lb):	0.2666
Vapor Space Volume (cu ft):	142.3861
Vapor Density (lb/cu ft):	0.0001
Vapor Space Expansion Factor:	0.0375
Vented Vapor Saturation Factor:	0.9992
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	142.3861
Tank Diameter (ft): Vapor Space Outage (ft):	8.5000 2.5092
Tank Shell Height (ft):	5.0000
Average Liquid Height (ft):	3.0000
Roof Outage (ft):	0.5092
Roof Outage (Dome Roof)	
Roof Outage (ft):	0.5092
Dome Radius (ft):	8.5000
Shell Radius (ft):	4.2500
Vapor Density	0.0004
Vapor Density (lb/cu ft): Vapor Molecular Weight (lb/lb-mole):	0.0001 130.0000
Vapor Pressure at Daily Average Liquid	130.0000
Surface Temperature (psia):	0.0058
Daily Avg. Liquid Surface Temp. (deg. R):	516.3441
Daily Average Ambient Temp. (deg. F):	54.9833
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R): Tank Paint Solar Absorptance (Shell):	514.6733 0.1700
Tank Paint Solar Absorptance (Sneif).	0.1700
Daily Total Solar Insulation	0.1100
Factor (Btu/sqft day):	1,250.5726
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0375
Daily Vapor Temperature Range (deg. R):	21.4567
Daily Vapor Pressure Range (psia):	0.0022
Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Liquid	0.0600
Surface Temperature (psia):	0.0058
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	0.0048
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	0.0070
Daily Avg. Liquid Surface Temp. (deg R):	516.3441 510.9799
Daily Min. Liquid Surface Temp. (deg R): Daily Max. Liquid Surface Temp. (deg R):	521.7082
Daily Ambient Temp. Range (deg. R):	21.5333
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.9992
Vapor Pressure at Daily Average Liquid:	0.0002
Surface Temperature (psia):	0.0058
Vapor Space Outage (ft):	2.5092
Working Losses (lb):	0.1941
Vapor Molecular Weight (lb/lb-mole):	130.0000
Vapor Pressure at Daily Average Liquid	0.0050
Surface Temperature (psia): Annual Net Throughput (gal/yr.):	0.0058 10.750.0000
Annual Turnovers:	5.0000
Turnover Factor:	1.0000
Maximum Liquid Volume (gal):	2,150.0000
Maximum Liquid Height (ft):	5.0000
Tank Diameter (ft):	8.5000
Working Loss Product Factor:	1.0000
Table and the	0.4007
Total Losses (lb):	0.4607

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Staten Run - T02 - Used Oil - Vertical Fixed Roof Tank Montgomery, West Virginia

	Losses(lbs)								
Components	Working Loss	Breathing Loss	Total Emissions						
Distillate fuel oil no. 2	0.19	0.27	0.46						

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	Staten Run - T07 - TEG Montgomery West Virginia Nytis Exploration Horizontal Tank Staten Run Compressor Station
Tank Dimensions Shell Length (ft): Diameter (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n): Is Tank Underground (y/n):	5.50 4.00 520.00 0.00 2,600.00 N
Paint Characteristics Shell Color/Shade: Shell Condition	Gray/Medium Good
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

Meterological Data used in Emissions Calculations: Charleston, West Virginia (Avg Atmospheric Pressure = 14.25 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Staten Run - T07 - TEG - Horizontal Tank Montgomery, West Virginia

			ily Liquid Si perature (de		Liquid Bulk Temp	Vapo	or Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Propylene glycol	All	63.43	53.60	73.25	58.06	0.0011	0.0007	0.0019	76.1100			76.11	Option 2: A=8.2082, B=2085.9, C=203.54

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Staten Run - T07 - TEG - Horizontal Tank Montgomery, West Virginia

Annual Emission Calcaulations	
Standing Losses (Ib):	0.0176
Vapor Space Volume (cu ft):	44.0223
Vapor Density (lb/cu ft):	0.0000
Vapor Space Expansion Factor:	0.0710
Vented Vapor Saturation Factor:	0.9999
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	44.0223
Tank Diameter (ft):	4.0000
Effective Diameter (ft):	5.2939
Vapor Space Outage (ft):	2.0000
Tank Shell Length (ft):	5.5000
Vapor Density	
Vapor Density (lb/cu ft):	0.0000
Vapor Molecular Weight (lb/lb-mole):	76.1100
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0011
Daily Avg. Liquid Surface Temp. (deg. R):	523.0962
Daily Average Ambient Temp. (deg. F): Ideal Gas Constant R	54.9833
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	517.7333
Tank Paint Solar Absorptance (Shell):	0.6800
Daily Total Solar Insulation Factor (Btu/sqft day):	1,250.5726
Vener Speer Furgerien Fester	
Vapor Space Expansion Factor Vapor Space Expansion Factor:	0.0710
Daily Vapor Temperature Range (deg. R):	39.3149
Daily Vapor Pressure Range (psia):	0.0013
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0011
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	0.0007
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	0.0019
Daily Avg. Liquid Surface Temp. (deg R):	523.0962
Daily Min. Liquid Surface Temp. (deg R):	513.2675
Daily Max. Liquid Surface Temp. (deg R):	532.9249
Daily Ambient Temp. Range (deg. R):	21.5333
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.9999
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	0.0011
Vapor Space Outage (ft):	2.0000
Working Longon (lb):	0.0054
Working Losses (lb): Vapor Molecular Weight (lb/lb-mole):	76.1100
Vapor Pressure at Daily Average Liquid	76.1100
Surface Temperature (psia):	0.0011
Annual Net Throughput (gal/yr.):	2,600.0000
Annual Turnovers:	0.0000
Turnover Factor:	1.0000
Tank Diameter (ft):	4.0000
Working Loss Product Factor:	1.0000
Total Losses (Ib):	0.0230

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Staten Run - T07 - TEG - Horizontal Tank Montgomery, West Virginia

	Losses(lbs)								
Components	Working Loss	Breathing Loss	Total Emissions						
Propylene glycol	0.01	0.02	0.02						

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	Staten Run - T08 - Engine Oil Montgomery West Virginia Nytis Exploration Horizontal Tank Staten Run Compressor Station
Tank Dimensions Shell Length (ft): Diameter (ft): Volume (gallons): Turmovers: Net Throughput(gal/yr): Is Tank Heated (y/n): Is Tank Underground (y/n):	10.00 4.25 1,000.00 0.00 5,000.00 N N
Paint Characteristics Shell Color/Shade: Shell Condition	Red/Primer Good
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

Meterological Data used in Emissions Calculations: Charleston, West Virginia (Avg Atmospheric Pressure = 14.25 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Staten Run - T08 - Engine Oil - Horizontal Tank Montgomery, West Virginia

			ily Liquid Si perature (de		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Distillate fuel oil no. 2	All	66.21	54.54	77.87	59.32	0.0081	0.0054	0.0114	130.0000			188.00	Option 1: VP60 = .0065 VP70 = .009

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Staten Run - T08 - Engine Oil - Horizontal Tank Montgomery, West Virginia

Annual Emission Calcaulations	
Standing Losses (Ib):	0.5192
Vapor Space Volume (cu ft):	90.3583
Vapor Density (lb/cu ft):	0.0002
Vapor Space Expansion Factor:	0.0849
Vented Vapor Saturation Factor:	0.9991
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	90.3583
Tank Diameter (ft): Effective Diameter (ft):	4.2500 7.3580
Vapor Space Outage (ft):	2.1250
Tank Shell Length (ft):	10.0000
Vapor Density	
Vapor Density (lb/cu ft):	0.0002
Vapor Molecular Weight (lb/lb-mole):	130.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0081 525.8765
Daily Avg. Liquid Surface Temp. (deg. R): Daily Average Ambient Temp. (deg. F):	54.9833
Ideal Gas Constant R	54.9655
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	518.9933
Tank Paint Solar Absorptance (Shell): Daily Total Solar Insulation	0.8900
Factor (Btu/sqft day):	1,250.5726
Manage Constant Frankrik	
Vapor Space Expansion Factor Vapor Space Expansion Factor:	0.0849
Daily Vapor Temperature Range (deg. R):	46.6683
Daily Vapor Pressure Range (psia):	0.0060
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0081
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia): Vapor Pressure at Daily Maximum Liquid	0.0054
Surface Temperature (psia):	0.0114
Daily Avg. Liquid Surface Temp. (deg R):	525.8765
Daily Min. Liquid Surface Temp. (deg R):	514.2094
Daily Max. Liquid Surface Temp. (deg R):	537.5436
Daily Ambient Temp. Range (deg. R):	21.5333
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.9991
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	0.0081
Vapor Space Outage (ft):	2.1250
Working Losson (lb):	0.1246
Working Losses (lb): Vapor Molecular Weight (lb/lb-mole):	130.0000
Vapor Pressure at Daily Average Liquid	130.0000
Surface Temperature (psia):	0.0081
Annual Net Throughput (gal/yr.):	5,000.0000
Annual Turnovers:	0.0000
Turnover Factor:	1.0000
Tank Diameter (ft):	4.2500
Working Loss Product Factor:	1.0000
Total Losses (Ib):	0.6438

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Staten Run - T08 - Engine Oil - Horizontal Tank Montgomery, West Virginia

	Losses(lbs)								
Components	Working Loss	Breathing Loss	Total Emissions						
Distillate fuel oil no. 2	0.12	0.52	0.64						

ATTACHMENT L - TANKER TRUCK LOADING DATA SHEET

Complete this data sheet for each new or modified bulk liquid transfer area or loading rack at the facility. This is to be used for bulk liquid transfer operations to tanker trucks. Use extra pages if necessary.

Truck Loadout Collection Efficiencies

The following applicable capture efficiencies of a truck loadout are allowed:

- For tanker trucks passing the MACT level annual leak test 99.2%
- For tanker trucks passing the NSPS level annual leak test 98.7%
- For tanker trucks not passing one of the annual leak tests listed above 70%

Compliance with this requirement shall be demonstrated by keeping records of the applicable MACT or NSPS Annual Leak Test certification for *every* truck and railcar loaded/unloaded. This requirement can be satisfied if the trucking company provided certification that its entire fleet was compliant. This certification must be submitted in writing to the Director of the DAQ. These additional requirements must be noted in the Registration Application and will be noted on the issued G35-C Registration.

Emission Unit ID#: TL-	1	Emission Point ID#: TL-1 Year Installed/Modified: 1983									
Emission Unit Descripti	on: Emissions	from Truc	k Loading a	re vented to A	Atmosph	ere					
			Loading	Area Data							
Number of Pumps: 1 / C	In Truck	Numbe	er of Liquids	Loaded: 1		Max numb (1) time: 1		trucks loading at one			
Are tanker trucks pressure tested for leaks at this or any other location? \Box Yes \Box No \boxtimes Not Required If Yes, Please describe:											
Provide description of c	losed vent syste	m and an	y bypasses.								
Are any of the following Closed System to tan Closed System to tan Closed System to tan	nker truck passi nker truck passi nker truck not p	ng a MAC ng a NSP assing an	CT level annu S level annua annual leak	al leak test? test and has y	•						
Pro	jected Maximu	m Operat	ing Schedul	e (for rack o	or transf	er point as	a who	ole)			
Time	Jan – M	ar	Apr	- Jun	J	ul – Sept		Oct - Dec			
Hours/day	24		2	.4		24		24			
Days/week	7		,	7		7		7			
	Bu	lk Liquid	Data (use e	xtra pages a	s necess	ary)					
Liquid Name	Pi	peline Li	quids								
Max. Daily Throughput (1000 gal/day)		0.63									
Max. Annual Throughpu (1000 gal/yr)	ıt	229.95									
Loading Method ¹		SUB									
Max. Fill Rate (gal/min))	0.44									
Average Fill Time (min/loading)		60									
Max. Bulk Liquid Temperature (°F)		65									
True Vapor Pressure ²		7.70									

Cargo Vessel	Condition ³	С	
Control Equi Method ⁴	pment or	None	
Max. Collect	ion Efficiency	0	
Max. Control (%)	Efficiency	0	
Max.VOC Emission	Loading (lb/hr)	0.10	
Rate	Annual (ton/yr)	0.42	
Max.HAP Emission	Loading (lb/hr)	0.00	
Rate	Annual (ton/yr)	0.00	
Estimation M	lethod ⁵	EPA	

1	BF	Bottom Fill	SP	Splash Fi	11		SUB	Submerged Fill
2	At maxi	mum bulk liquid temperature						
3	В	Ballasted Vessel	С	Cleaned		U	Uncleane	ed (dedicated service)
	0	Other (describe)						
4	List as	many as apply (complete and	l submit a	ppropriate A	Air Polluti	on Contr	ol Device	Sheets)
	CA	Carbon Adsorption		VB	Dedicate	d Vapor	Balance (closed system)
	ECD	Enclosed Combustion Dev	ice	F	Flare			•
	ТО	Thermal Oxidization or In	cineration	ı				
5	EPA	EPA Emission Factor in A	P-42			MB	Materia	l Balance
	ТМ	Test Measurement based u	pon test d	lata submitt	al	0	Other (de	escribe)

ATTACHMENT M

AIR POLLUTION CONTROL DEVICE SHEET(S) NOT APPLICABLE (SEE NOTES)

No change to APCD associated with this permit modification

Rule 13 Permit Modification Application

Staten Run Compressor Station, Montgomery, West Virginia

Nytis Exploration Company LLC

102 3rd St. Glasgow, West Virginia

ATTACHMENT N

SUPPORTING EMISSIONS CALCULATIONS

Rule 13 Permit Modification Application

Staten Run Compressor Station, Montgomery, West Virginia

Nytis Exploration Company LLC

102 3rd St. Glasgow, West Virginia

Table 1. Annual Potential To Emit (PTE) Summary Nytis Exploration Company - Staten Run Compressor Station

Current WV NSR Permit (R13-	2863A) Allo	wables - Crit		<i>ia Pollutants</i> Ints				
Source	PM	PM10	PM2.5	SO2	NOx	со	voc	CO2e
Engine (ton/yr)	0.177	0.177	0.177	0.002	6.11	1.89	0.437	
Reboiler (ton/yr)	0.024	0.024	0.024	0.002	0.33	0.28	0.02	
Dehy Unit (ton/yr)							1.260	
Fugitives (ton/yr)							0.317	6.999
Total Emissions (ton/yr)	0.201	0.201	0.201	0.004	6.437	2.168	2.032	6.999
Total Emissions (lb/hr)	0.046	0.046	0.046	0.001	1.470	0.495	0.464	1.598

Hazardous Air Pollutants (HAPs)

Current WV NSR Permit (R13-2	863A) Allo				,			
Source		Benzene	Toluene	Ethylbenzene	Xylene	n-Hexane	Formaldehyde	Total HAPs
Engine (ton/yr)		0.007	0.004	0.000	0.001	0.002	0.33	0.422
Reboiler (ton/yr)		0.000	0.000			0.006	0.000	0.006
Dehy Unit (ton/yr)		0.110	0.080	0.010	0.100	0.070		0.370
Fugitives (ton/yr)		0.000	0.000	0.000	0.000	0.006		0.006
Total Emissions (ton/yr)		0.117	0.084	0.010	0.101	0.083	0.333	0.804
Total Emissions (lb/hr)	-	0.027	0.019	0.002	0.023	0.019	0.076	0.184

Criteria Pollutants

Proposed Increase in Emissio	ns - Criteria	Pollutants						
Source	РМ	PM10	PM2.5	SO2	NOx	со	voc	CO2e
Total Emissions (ton/yr)	0.042	0.042	0.042				2.081	984.319
Total Emissions (lb/hr)	0.010	0.010	0.010				0 475	224 730

Hazardous Air Pollutants (HAPs)

Proposed Increase in Emissions - HAPs

Source		Benzene	Toluene	Ethylbenzene	Xylene	n-Hexane	Formaldehyde	Total HAPs
Total Emissions (ton/yr)	:		-	-		-	-	0.022
Total Emissions (lb/hr)								0.005

Criteria Pollutants Proposed R13 Permit Modification Allowables - Criteria Pollutants

Froposed KTS Fernin Mounica	ation Allowa	ables - Cillei	la Fonutan	13				
Source	PM	PM10	PM2.5	SO2	NOx	со	VOC	CO2e
Engine (ton/yr)	0.219	0.219	0.219	0.003	6.107	1.888	1.110	530.441
Reboiler (ton/yr)	0.024	0.024	0.024	0.002	0.330	0.280	0.020	384.378
Dehy Unit (ton/yr)							1.287	69.500
Tanks (ton/yr)							0.959	
Truck Loading (ton/yr)							0.421	
Fugitives (ton/yr)							0.317	6.999
Total Emissions (ton/yr)	0.243	0.243	0.243	0.005	6.437	2.168	4.113	991.317
Total Emissions (lb/hr)	0.056	0.056	0.056	0.001	1.470	0.495	0.939	226.328

Proposed R13 Permit Modifica	ation Allowa			r Pollutants (HA	Ps)			
Source		Benzene	Toluene	Ethylbenzene	Xylene	n-Hexane	Formaldehyde	Total HAPs
Engine (ton/yr)		0.009	0.004	0.000	0.001	0.002	0.333	0.443
Reboiler (ton/yr)		0.000	0.000			0.006	0.000	0.006
Dehy Unit (ton/yr)		0.110	0.080	0.010	0.100	0.070		0.370
Tanks (ton/yr)								
Truck Loading (ton/yr)								
Fugitives (ton/yr)		0.000	0.000	0.000	0.000	0.006		0.006
Total Emissions (ton/yr)		0.119	0.085	0.010	0.101	0.084	0.333	0.826
Total Emissions (lb/hr)		0.027	0.019	0.002	0.023	0.019	0.076	0.189

* Proposed HAP limits remain at previously permitted levels

Criteria Pollutants

Proposed Facility Wide PTE for	or Title V Ap	plicability S		mination - Criteria	Pollutants			
Source	PM	PM10	PM2.5	SO2	NOx	со	VOC	CO2e
Engine (ton/yr)	1.172	1.172	1.172	0.024	179.940	11.690	11.727	5078.032
Reboiler (ton/yr)	0.024	0.024	0.024	0.002	0.330	0.280	0.020	384.378
Dehy Unit (ton/yr)							1.287	69.500
Tanks (ton/yr)							0.959	
Truck Loading (ton/yr)							0.421	
Fugitives (ton/yr)							0.317	6.999
Total Emissions (ton/yr)	1.196	1.196	1.196	0.026	180.270	11.970	14.730	5538.909
Total Emissions (lb/hr)	0.273	0.273	0.273	0.006	41.158	2.733	3.363	1264.591

Hazardous Air Pollutants (HAPs)

Source	Benzene	Toluene	Ethylbenzene	Xylene	n-Hexane	Formaldehyde	Total HAP
Engine (ton/yr)	 0.069	0.028	0.002	0.009	0.006	1.377	2.023
Reboiler (ton/yr)	 0.000	0.000			0.006	0.000	0.006
Dehy Unit (ton/yr)	 0.110	0.080	0.010	0.100	0.070		0.370
Tanks (ton/yr)	 						
Truck Loading (ton/yr)	 						
Fugitives (ton/yr)	 0.000	0.000	0.000	0.000	0.006		0.006
Total Emissions (ton/yr)	 0.110	0.080	0.010	0.100	0.082	0.000	0.382
Total Emissions (lb/hr)	 0.025	0.018	0.002	0.023	0.019	0.000	0.087

Table 2. Reciprocating Engine / Compressor Emissions (#1)
Caterpillar G398-SI; 4SRB (Grandfathered Unit - 1985)
Nytis Exploration Company - Staten Run Compressor Station

Pollutant	Emis	sion Factor		PTE per Engine (lb/hr)	PTE per Engine (tons/yr)
Criteria Pollutants					
PM/PM10/PM2.5**	1.94E-02	lb/MMBtu	(1)	0.060	0.261
SO ₂	5.88E-04	lb/MMBtu	(1)	0.002	0.008
NOx	1.83E+01	g/hp-hr	(2)	16.622	72.803
со	8.00E-01	g/hp-hr	(2)	0.727	3.183
VOC	1.20E+00	g/hp-hr	(2)	1.090	4.774
Hazardous Air Pollutants					
1,1,2,2-Tetrachloroethane	2.53E-05	lb/MMBtu	(1)	0.000	0.000
1,1,2-Trichloroethane	1.53E-05	lb/MMBtu	(1)	0.000	0.000
1,3-Butadiene	6.63E-04	lb/MMBtu	(1)	0.002	0.009
1,3-Dichloropropene	1.27E-05	lb/MMBtu	(1)	0.000	0.000
Acetaldehyde	2.73E-03	lb/MMBtu	(1)	0.008	0.037
Acrolein	2.63E-03	lb/MMBtu	(1)	0.008	0.035
Benzene	1.58E-03	lb/MMBtu	(1)	0.005	0.021
Carbon Tetrachloride	1.77E-05	lb/MMBtu	(1)	0.000	0.000
Chlorobenzene	1.29E-05	lb/MMBtu	(1)	0.000	0.000
Chloroform	1.37E-05	lb/MMBtu	(1)	0.000	0.000
Ethylbenzene	2.48E-05	lb/MMBtu	(1)	0.000	0.000
Ethylene Dibromide	2.13E-05	lb/MMBtu	(1)	0.000	0.000
Formaldehyde	2.05E-02	lb/MMBtu	(2)	0.063	0.276
Methanol	3.06E-03	lb/MMBtu	(1)	0.009	0.041
Methylene Chloride	4.12E-05	lb/MMBtu	(1)	0.000	0.001
Naphthalene	9.71E-05	lb/MMBtu	(1)	0.000	0.001
PAH (POM)	1.41E-04	lb/MMBtu	(1)	0.000	0.002
Styrene	1.19E-05	lb/MMBtu	(1)	0.000	0.000
Toluene	5.58E-04	lb/MMBtu	(1)	0.002	0.008
Vinyl Chloride	7.18E-06	lb/MMBtu	(1)	0.000	0.000
Xylenes	1.95E-04	lb/MMBtu	(1)	0.001	0.003
Total HAP				0.099	0.436
Greenhouse Gas Emissions					
CO ₂	116.89	lb/MMBtu	(3)	359.26	1573.56
CH ₄	2.2E-03	lb/MMBtu	(3)	0.01	0.03
N ₂ O	2.2E-04	lb/MMBtu	(3)	0.00	0.00
CO ₂ e ^(b)	-	-		359.63	1575.19

** PM Emission Factor includes condesables and filterables

Hourly Emissions - If emission factor note 1 or 3 is used, use calculation (a). If emission factor note 2 is used, use calculation (b).

(a) Hourly Emissions (lb/hr) = Emission factor (lb/MMBtu) * (1MMBtu/1000000 Btu) * Engine Power Output (hp) * BSFC (Btu/hp-hr)

(b) Hourly Emissions (lb/hr) = Emission factor (g/hp-hr) * Engine Power Output (hp) * (lb/453.6g)

Annual Emissions - If emission factor note 1 or 3 is used, use calculation (c). If emission factor note 2 is used, use calculation (d).

(c) Annual emissions (tons/yr) = Emission factor (lb/MMBtu) * (1MMBtu/1000000Btu) * Engine Power Output (hp) * BSFC (Btu/hp-hr) * Annual Hours of operation (hr/yr) * (1ton/2000lbs)

(d) Annual emissions (tons/yr) = Emission factor (g/hp-hr) * Engine Power Output (hp) * Annual Hours of operation (hr/yr) * (1ton/2000lbs) * (lb/453.6g)

EMISSON INPUTS TABLE		ſ
Engine Power Output (kW) =	307	Ĩ.
Engine Power Output (hp) =	412	
Average BSFC (BTU/HP-hr) =	7,460	(4)
Heat Content Natural Gas(Btu/scf) =	1,020.0	(5)
Fuel Throughput (ft3/hr) =	3,013.3	(6)
PTE Hours of Operation =	8,760	

(b) CO₂ equivalent = [(CO₂ emissions)*(GWP_{CO2})]+[(CH₄ emissions)*(GWP_{CH4})]+[(N₂O emissions)*(GWP_{N2O})] Global Warming Potential (GWP)

CO ₂	1	(7)
CH₄	25	(7)
N ₂ O	298	(7)

Notes:

(1) AP-42, Chapter 3.2, Table 3.2-3. Natural Gas-fired Reciprocating Engines (7/00). Uncontrolled Emission Factors for 4-Stroke Rich-Burn Engines.

(2) Manufacturers Spec Sheet

(3) Emission factors are from 40 CFR 98, Subpart C, Table C-1 and C-2.

(4) Fuel consumption from manufacturer's specification sheet.

(5) Value obtained from AP-42, section 3.2

(6) Fuel throughput = BSFC (BTU/HP-hr) x Power (HP) / Heat Content (BTU/scf)

h	0				
				PTE per	PTE per
Pollutant	Emis	sion Factor		Engine	Engine
				(lb/hr)	(tons/yr)
Criteria Pollutants					
PM/PM10/PM2.5**	1.94E-02		(1)	0.060	0.261
SO ₂	5.88E-04	lb/MMBtu	(1)	0.002	0.008
NOx	1.83E+01		(2)	16.622	72.803
CO	8.00E-01		(2)	0.727	3.183
VOC	1.20E+00	g/hp-hr	(2)	1.090	4.774
Hazardous Air Pollutants					
1,1,2,2-Tetrachloroethane	2.53E-05	lb/MMBtu	(1)	0.000	0.000
1,1,2-Trichloroethane	1.53E-05		(1)	0.000	0.000
1.3-Butadiene	6.63E-04	lb/MMBtu	(1)	0.002	0.009
1,3-Dichloropropene	1.27E-05	lb/MMBtu	(1)	0.000	0.000
Acetaldehyde	2.73E-03	lb/MMBtu	(1)	0.008	0.037
Acrolein	2.63E-03	lb/MMBtu	(1)	0.008	0.035
Benzene	1.58E-03	lb/MMBtu	(1)	0.005	0.021
Carbon Tetrachloride	1.77E-05	lb/MMBtu	(1)	0.000	0.000
Chlorobenzene	1.29E-05	lb/MMBtu	(1)	0.000	0.000
Chloroform	1.37E-05	lb/MMBtu	(1)	0.000	0.000
Ethylbenzene	2.48E-05	lb/MMBtu	(1)	0.000	0.000
Ethylene Dibromide	2.13E-05	lb/MMBtu	(1)	0.000	0.000
Formaldehyde	2.05E-02	lb/MMBtu	(2)	0.063	0.276
Methanol	3.06E-03	lb/MMBtu	(1)	0.009	0.041
Methylene Chloride	4.12E-05	lb/MMBtu	(1)	0.000	0.001
Naphthalene	9.71E-05	lb/MMBtu	(1)	0.000	0.001
PAH (POM)	1.41E-04	lb/MMBtu	(1)	0.000	0.002
Styrene	1.19E-05	lb/MMBtu	(1)	0.000	0.000
Toluene	5.58E-04	lb/MMBtu	(1)	0.002	0.008
Vinyl Chloride	7.18E-06	lb/MMBtu	(1)	0.000	0.000
Xylenes	1.95E-04	lb/MMBtu	(1)	0.001	0.003
Total HAP				0.099	0.436
Greenhouse Gas Emissions CO ₂	116 90	lb/MMBtu	(2)	359.26	1573.56
CO ₂ CH₄		Ib/MMBtu	(3)	359.26 0.01	0.03
Cn₄ N₂O		lb/MMBtu	(3)	0.00	0.03
2	2.26-04		(3)		1575.19
CO ₂ e ^(b)	-	-		359.63	1575.19

Table 3. Reciprocating Engine / Compressor Emissions (#2) Caterpillar G398-SI; 4SRB (Grandfathered Unit - 1985) Nytis Exploration Company - Staten Run Compressor Station

** PM Emission Factor includes condesables and filterables

Hourly Emissions - If emission factor note 1 or 3 is used, use calculation (a). If emission factor note 2 is used, use calculation (b).

(a) Hourly Emissions (lb/hr) = Emission factor (lb/MMBtu) * (1MMBtu/1000000 Btu) * Engine Power Output (hp) * BSFC (Btu/hp-hr)

(b) Hourly Emissions (lb/hr) = Emission factor (g/hp-hr) * Engine Power Output (hp) * (lb/453.6g)

Annual Emissions - If emission factor note 1 or 3 is used, use calculation (c). If emission factor note 2 is used, use calculation (d).

(c) Annual emissions (tons/yr) = Emission factor (lb/MMBtu) * (1MMBtu/1000000Btu) * Engine Power Output (hp) * BSFC (Btu/hp-hr) * Annual Hours of operation (hr/yr) * (1ton/2000lbs)

(d) Annual emissions (tons/yr) = Emission factor (g/hp-hr) * Engine Power Output (hp) * Annual Hours of operation (hr/yr) * (1ton/2000lbs) * (lb/453.6g)

EMISSON INPUTS TABLE		
Engine Power Output (kW) =	307	
Engine Power Output (hp) =	412	
Average BSFC (BTU/HP-hr) =	7,460	(4)
Heat Content Natural Gas(Btu/scf) =	1,020.0	(5)
Fuel Throughput (ft3/hr) =	3,013.3	(6)
PTE Hours of Operation =	8,760	

(b) CO₂ equivalent = [(CO₂ emissions)*(GWP_{CO2})]+[(CH₄ emissions)*(GWP_{CH4})]+[(N₂O emissions)*(GWP_{N2O})] Global Warming Potential (GWP)

CO_2	1	(7)
CH_4	25	(7)
N ₂ O	298	(7)

Notes:

(1) AP-42, Chapter 3.2, Table 3.2-3. Natural Gas-fired Reciprocating Engines (7/00). Uncontrolled Emission Factors for 4-Stroke Rich-Burn Engines.

(2) Manufacturers Spec Sheet

(3) Emission factors are from 40 CFR 98, Subpart C, Table C-1 and C-2.

(4) Fuel consumption from manufacturer's specification sheet.

(5) Value obtained from AP-42, section 3.2

(6) Fuel throughput = BSFC (BTU/HP-hr) x Power (HP) / Heat Content (BTU/scf)

Table 4. Reciprocating Engine / Compressor Emissions (#3) Cooper Bessemer GMX-A6; 2SLB (Grandfathered Unit - 1975) Nytis Exploration Company - Staten Run Compressor Station

			PTE per	PTE per
Pollutant	Emission Factor		Engine	Engine
			(lb/hr)	(tons/yr)
Criteria Pollutants				
PM/PM10/PM2.5**	4.83E-02 lb/MMBtu	(2)	0.132	0.430
SO ₂	5.88E-04 lb/MMBtu	(2)	0.002	0.005
NOx	3.17E+00 lb/MMBtu	(2)	8.642	28.227
CO	3.86E-01 lb/MMBtu	(2)	1.052	3.437
VOC	1.20E-01 lb/MMBtu	(2)	0.327	1.069
Hazardous Air Pollutants				
1,1,2,2-Tetrachloroethane	6.63E-05 lb/MMBtu	(2)	0.000	0.001
1,1,2-Trichloroethane	5.27E-05 lb/MMBtu	(2)	0.000	0.000
1,3-Butadiene	8.20E-04 lb/MMBtu	(2)	0.002	0.007
1,3-Dichloropropene	4.38E-05 lb/MMBtu	(2)	0.000	0.000
2-Methylnappthalene	2.14E-05 lb/MMBtu	(2)	0.000	0.000
2,2,4-Trimethylpentane	8.46E-04 lb/MMBtu	(2)	0.002	0.008
Acetaldehyde	7.76E-03 lb/MMBtu	(2)	0.021	0.069
Acrolein	7.78E-03 lb/MMBtu	(2)	0.021	0.069
Benzene	1.94E-03 lb/MMBtu	(2)	0.005	0.017
Biphenyl	3.95E-06 lb/MMBtu	(2)	0.000	0.000
Carbon Tetrachloride	6.07E-05 lb/MMBtu	(2)	0.000	0.001
Chlorobenzene	4.44E-05 lb/MMBtu	(2)	0.000	0.000
Chloroform	4.71E-05 lb/MMBtu	(2)	0.000	0.000
Ethylbenzene	1.08E-04 lb/MMBtu	(2)	0.000	0.001
Ethylene Dibromide	7.34E-05 lb/MMBtu	(2)	0.000	0.001
Formaldehyde	5.52E-02 lb/MMBtu	(2)	0.150	0.492
Methanol	2.48E-03 lb/MMBtu	(2)	0.007	0.022
Methylene Chloride	1.47E-04 lb/MMBtu	(2)	0.000	0.001
n-Hexane	4.45E-04 lb/MMBtu	(2)	0.001	0.004
Naphthalene	9.63E-05 lb/MMBtu	(2)	0.000	0.001
PAH (POM)	1.34E-04 lb/MMBtu	(2)	0.000	0.001
Phenol	4.21E-05 lb/MMBtu	(2)	0.000	0.000
Styrene	5.48E-05 lb/MMBtu	(2)	0.000	0.000
Toluene	9.63E-04 lb/MMBtu	(2)	0.003	0.009
Vinyl Chloride	2.47E-05 lb/MMBtu	(2)	0.000	0.000
Xylenes	2.68E-04 lb/MMBtu	(2)	0.001	0.002
Total HAP			0.162	0.708
Creambauga Cas Emissions				
Greenhouse Gas Emissions		1	040.07	1005 75
CO ₂	116.89 lb/MMBtu	(3)	318.67	1395.77
CH ₄	2.2E-03 lb/MMBtu	(3)	0.01	0.03
N ₂ O	2.2E-04 lb/MMBtu	(3)	0.00	0.00
CO ₂ e ^(b)		_	319.00	1397.21
0020			318.00	1331.21

** PM Emission Factor includes condesables and filterables

Hourly Emissions - If emission factor note 1 or 3 is used, use calculation (a). If emission factor note 2 is used, use calculation (b).

(a) Hourly Emissions (lb/hr) = Emission factor (lb/MMBtu) * (1MMBtu/1000000 Btu) * Engine Power Output (hp) * BSFC (Btu/hp-hr)

(b) Hourly Emissions (lb/hr) = Emission factor (g/hp-hr) * Engine Power Output (hp) * (lb/453.6g)

Annual Emissions - If emission factor note 1 or 3 is used, use calculation (c). If emission factor note 2 is used, use calculation (d).

(c) Annual emissions (tons/yr) = Emission factor (lb/MMBtu) * (1MMBtu/100000Btu) * Engine Power Output (hp) * BSFC (Btu/hp-hr) * Annual Hours of operation (hr/yr) * (1ton/2000lbs)

(d) Annual emissions (tons/yr) = [Emission Factor (lbs/MMBtu)] x Brake Specific Fuel Consumption (BTU/HP-hr)] x Power Output (HP)] x [Number of engines] x [8760 (hrs/yr)] x [1 ton/2000 lbs)

EMISSION INPUTS TABLE		1
Engine Power Output (kW) =	280	
Engine Power Output (hp) =	375	
Average BSFC (BTU/HP-hr) =	7,270	(4)
Heat Content Natural Gas(Btu/scf) =	1,020.0	(5)
Fuel Throughput (ft3/hr) =	2,672.8	(6)
PTE Hours of Operation =	8,760	

(b) CO_2 equivalent = [(CO_2 emissions)*(GWP_{CO2})]+[(CH_4 emissions)*(GWP_{CH4})]+[(N_2O emissions)*(GWP_{N2O})] Global Warming Potential (GWP)

CO2	1	(7)
CH_4	25	(7)
N ₂ O	298	(7)

Notes:

(1) Manufacturers Spec Sheet

(2) AP-42, Chapter 3.2, Table 3.2-1. Natural Gas-fired Reciprocating Engines (7/00). Uncontrolled Emission Factors for 2-Stroke Lean-Burn Engines.

(3) Emission factors are from 40 CFR 98, Subpart C, Table C-1 and C-2.

(4) Fuel consumption from manufacturer's specification sheet.

(5) Value obtained from AP-42, section 3.2
(6) Fuel throughput = BSFC (BTU/HP-hr) x Power (HP) / Heat Content (BTU/scf)

Table 5. Reciprocating Engine / Compressor Emissions (#4) AJAX DPC 120 2SLB Nytis Exploration Company - Staten Run Compressor Station

Pollutant	Emission Factor		PTE per Engine (lb/hr)	PTE per Engine (tons/yr)
Criteria Dellutente				
Criteria Pollutants PM/PM10/PM2.5**	4.83E-02 lb/MMBtu	J (1)	0.050	0.219
SO ₂	5.88E-04 lb/MMBtu		0.001	0.003
NOx	5.50E+00 g/hp-hr	(2)	1.394	6.107
CO	1.70E+00 g/hp-hr	(2)	0.431	1.888
VOC	1.00E+00 g/hp-hr	(2)	0.254	1.110
Hazardous Air Pollutants				
1,1,2,2-Tetrachloroethane	6.63E-05 lb/MMBtu	J (1)	0.000	0.000
1,1,2-Trichloroethane	5.27E-05 lb/MMBtu	J (1)	0.000	0.000
1,3-Butadiene	8.20E-04 lb/MMBtu	J (1)	0.001	0.004
1,3-Dichloropropene	4.38E-05 lb/MMBtu	J (1)	0.000	0.000
2-Methylnappthalene	2.14E-05 lb/MMBtu	J (1)	0.000	0.000
2,2,4-Trimethylpentane	8.46E-04 lb/MMBtu	J (1)	0.001	0.004
Acetaldehyde	7.76E-03 lb/MMBtu	J (1)	0.008	0.035
Acrolein	7.78E-03 lb/MMBtu	J (1)	0.008	0.035
Benzene	1.94E-03 lb/MMBtu	J (1)	0.002	0.009
Biphenyl	3.95E-06 lb/MMBtu	J (1)	0.000	0.000
Carbon Tetrachloride	6.07E-05 lb/MMBtu	J (1)	0.000	0.000
Chlorobenzene	4.44E-05 lb/MMBtu	J (1)	0.000	0.000
Chloroform	4.71E-05 lb/MMBtu	J (1)	0.000	0.000
Ethylbenzene	1.08E-04 lb/MMBtu	J (1)	0.000	0.000
Ethylene Dibromide	7.34E-05 lb/MMBtu	J (1)	0.000	0.000
Formaldehyde	3.00E-01 g/hp-hr	(2)	0.076	0.333
Methanol	2.48E-03 lb/MMBtu	J (1)	0.003	0.011
Methylene Chloride	1.47E-04 lb/MMBtu	J (1)	0.000	0.001
n-Hexane	4.45E-04 lb/MMBtu	J (1)	0.000	0.002
Naphthalene	9.63E-05 lb/MMBtu	J (1)	0.000	0.000
PAH (POM)	1.34E-04 lb/MMBtu	J (1)	0.000	0.001
Phenol	4.21E-05 lb/MMBtu	J (1)	0.000	0.000
Styrene	5.48E-05 lb/MMBtu	J (1)	0.000	0.000
Toluene	9.63E-04 lb/MMBtu	J (1)	0.001	0.004
Vinyl Chloride	2.47E-05 lb/MMBtu	J (1)	0.000	0.000
Xylenes	2.68E-04 lb/MMBtu	J (1)	0.000	0.001
Total HAP			0.101	0.443
Greenhouse Gas Emissions				
CO ₂	116.89 lb/MMBtu	J (3)	120.98	529.89
CH ₄	2.2E-03 lb/MMBtu	J (3)	0.00	0.01
N ₂ O	2.2E-04 lb/MMBtu	J (3)	0.00	0.00
CO ₂ e ^(b)			121.11	530.44

** PM Emission Factor includes condesables and filterables

Hourly Emissions - If emission factor note 1 or 3 is used, use calculation (a). If emission factor note 2 is used, use calculation (b).

(a) Hourly Emissions (lb/hr) = Emission factor (lb/MMBtu) * (1MMBtu/1000000 Btu) * Engine Power Output (hp) * BSFC (Btu/hp-hr) hr)

(b) Hourly Emissions (lb/hr) = Emission factor (g/hp-hr) * Engine Power Output (hp) * (lb/453.6g)

Annual Emissions - If emission factor note 1 or 3 is used, use calculation (c). If emission factor note 2 is used, use calculation (d).

(c) Annual emissions (tons/yr) = Emission factor (lb/MMBtu) * (1MMBtu/100000Btu) * Engine Power Output (hp) * BSFC (Btu/hp-hr) * Annual Hours of operation (hr/yr) * (1ton/2000lbs)

(d) Annual emissions (tons/yr) = Emission factor (g/hp-hr) * Engine Power Output (hp) * Annual Hours of operation (hr/yr) * (1ton/2000lbs) * (lb/453.6g)

EMISSON INPUTS TABLE		
Engine Power Output (kW) =	86	
Engine Power Output (hp) =	115	
Average BSFC (BTU/HP-hr) =	9,000	(4)
Heat Content Natural Gas(Btu/scf) =	1,020.0	(5)
Fuel Throughput (ft3/hr) =	1,014.7	(6
PTE Hours of Operation =	8,760	

(b) CO₂ equivalent = [(CO₂ emissions)*(GWP_{CO2})]+[(CH₄ emissions)*(GWP_{CH4})]+[(N₂O emissions)*(GWP_{N2O})] Global Warming Potential (GWP)

CO ₂	1	(7)
CH_4	25	(7)
N ₂ O	298	(7)

Notes:

(1) AP-42, Chapter 3.2, Table 3.2-1. Natural Gas-fired Reciprocating Engines (7/00). Uncontrolled Emission Factors for 2-Stroke Lean-Burn Engines.

(2) Manufacturers Spec Sheets

(3) Emission factors are from 40 CFR 98, Subpart C, Table C-1 and C-2.

(4) Fuel consumption from manufacturer's specification sheet.

(5) Value obtained from AP-42, section 3.2
(6) Fuel throughput = BSFC (BTU/HP-hr) x Power (HP) / Heat Content (BTU/scf)

FLAMECO; Model # SB20-12 Nytis Exploration Company - Staten Run Compressor Station						
Pollutant	Emission Factor		PTE per Burner (lb/hr)		PTE per Burner (ton/yr)	
Criteria Pollutants						
PM/PM10/PM2.5	7.6 lb/MMcf	(1)	0.006	(a)	0.024	(b)
SO ₂	0.6 lb/MMcf	(1)	0.000	(e)	0.002	(f)
NOx	100 lb/MMcf	(2)	0.074	(a)	0.322	(b)
CO	84 lb/MMcf	(2)	0.062	(a)	0.271	(b)
VOC	5.5 lb/MMcf	(1)	0.004	(a)	0.018	(b)
Hazardous Air Pollutants						
Arsenic	2.00E-04 lb/MMcf	(3)	0.000	(a)	0.000	(b)
Benzene	2.10E-03 lb/MMcf	(4)	0.000	(a)	0.000	(b)
Beryllium	1.20E-05 lb/MMcf	(3)	0.000	(a)	0.000	(b)
Cadmium	1.10E-03 lb/MMcf	(3)	0.000	(a)	0.000	(b)
Chromium	1.40E-03 lb/MMcf	(3)	0.000	(a)	0.000	(b)
Cobalt	8.40E-05 lb/MMcf	(3)	0.000	(a)	0.000	(b)
Dichlorobenzene	1.20E-03 lb/MMcf	(4)	0.000	(a)	0.000	(b)
Formaldehyde	7.50E-02 lb/MMcf	(4)	0.000	(a)	0.000	(b)
Hexane	1.80E+00 lb/MMcf	(4)	0.001	(a)	0.006	(b)
Lead	5.00E-04 lb/MMcf	(3)	0.000	(a)	0.000	(b)
Manganese	3.80E-04 lb/MMcf	(3)	0.000	(a)	0.000	(b)
Mercury	2.60E-04 lb/MMcf	(3)	0.000	(a)	0.000	(b)
Naphthalene	6.10E-04 lb/MMcf	(4)	0.000	(a)	0.000	(b)
Nickel	2.10E-03 lb/MMcf	(3)	0.000	(a)	0.000	(b)
PAH/POM	1.29E-03 lb/MMcf	(4)	0.000	(a)	0.000	(b)
Selenium	2.40E-05 lb/MMcf	(3)	0.000	(a)	0.000	(b)
Toluene	3.40E-03 lb/MMcf	(4)	0.000	(a)	0.000	(b)
Total HAP			0.00		0.006	
Greenhouse Gas Emission	IS					
CO ₂	116.89 lb/MMBtu	(6)	87.67	(c)	383.98	(d)
CH ₄	2.2E-03 lb/MMBtu	(6)	0.00	(c)	0.01	(d)
N ₂ O	2.2E-04 lb/MMBtu	(6)	0.00	(c)	0.00	(d)
CO ₂ e ^(g)			87.76		384.38	

Calculations: LB/MMCF

(a) Hourly emissions (lb/hr) = Emission Factor (lb/MMcf) * Fuel Use (MMCF/yr) / Annual hours of operation (hr/yr) (b) Annual emissions (ton/yr) = Emission Factor (lb/MMcf) * Fuel Use (MMcf/yr) * (1ton/2000lbs)

LB/MMBTU

(c) Hourly Emissions (lb/hr) = Emission Factor (lb/MMBtu) * Fuel Use (MMBtu/hr)

(d) Annual Emissions (ton/yr) = Emission Factor (lb/MMBtu) * Fuel Use (MMBtu/hr) * Hours of operation (hr/yr) * (1ton/2000lbs)

EMISSION INPUTS TABLE				
Fuel Use (MMBtu/hr) =	0.75			
Number of Reboilers =	1			
Hours of Operation (hr/yr) =	8760			
MMBtu/MMcf =	1020			
PTE Fuel Use (MMft3/yr) =	6.44			

 $(g) \ CO_2 \ equivalent = [(CO_2 \ emissions)^*(GWP_{CO2})] + [(CH_4 \ emissions)^*(GWP_{CH4})] + [(N_2O \ emissions)^*(GWP_{N2O})] + [($ Global Warming Potential (GWP)

CO_2	1	(7)
CH_4	25	(7)
N_2O	298	(7)

Notes:

(1) AP-42, Chapter 1.4, Table 1.4-2. Emission Factors For Criteria Pollutants and Greenhouse Gases From Natural Gas Combustion, July 1998.

(2) AP-42, Chapter 1.4, Table 1.4-1. Emission Factors For Nitrogen Oxides (Nox) and Carbon Monoxide(CO) From Natural Gas Combustion, July 1998.

(3) AP-42, Chapter 1.4, Table 1.4-4. Emission Factors For Metals From Natural Gas Combustion, July 1998.

(4) AP-42, Chapter 1.4, Table 1.4-3. Emission Factors for Speciated Organic Compounds from Natural Gas Combustion, July 1998.

(5) AP-42, Chapter 5.3, Section 5.3.1

(6) Emission factors are from 40 CFR 98, Subpart C, Table C-1 and C-2.

Pollutant	PTE ⁽¹⁾ (lbs/hr)	PTE ⁽¹⁾ (lbs/day)	PTE ⁽¹⁾ (tons/yr)	R13-2863A Allowables (ton/yr)	Proposed R13 Allowables (tons/yr)
Criteria Pollutants					
VOC	0.29	7.05	1.29	1.26	1.29
Hazardous Air Pollutants					
Benzene Toluene Ethylbenzene Xylenes n-Hexane Total HAPs	0.01 0.01 0.00 0.01 0.01 0.04	0.30 0.32 0.01 0.13 0.33 1.07	0.05 0.06 0.00 0.02 0.06 0.20	0.11 0.08 0.01 0.10 0.07 0.37	0.11 0.08 0.01 0.10 0.07 0.37
Greenhouse Gas Emissions					
CO ₂					
CH₄	0.63	15.22	2.78		2.78
N ₂ O					
CO ₂ e ^(a)	15.85	380.47	69.44		69.50

Table 7. Dehydration Unit Still Column Emissions (RSV-1)Sivalls; Model # UKNytis Exploration Company - Staten Run Compressor Station

Calculations:

GLYCALC 4.0 EMISSION ESTIMATES	INPUTS
Dehy Design Rating (MMscf/d) =	12.0
TEG Pump Rate (gpm) =	5.0
Pressure (psig) =	74.08
Temperature (°F) =	71.83
Wet Gas Water Content (lb H2O/mmscf) =	64.2
Dry Gas Water Content (lb H2O/mmscf) =	21.5
Hours of Operation =	8760

(a) CO₂ equivalent = [(CO₂ emissions)*(GWP_{CO2})]+[(CH₄ emissions)*(GWP_{CH4})]+[(N₂O emissions)*(GWP_{N2O})]

Global Warming Potential (GWP)

CO ₂	1	(2)
CH_4	25	(2)
N ₂ O	298	(2)

Notes:

(1) Current PTE emissions based on most recent wet gas analysis from 2017 are calculated utilizing GRI-GLYCalc 4.0 and reflect the controlled combined regenerator vent/flash gas emissions

Table 8. Tank Emissions Nytis Exploration Company - Staten Run Compressor Station

Emission Unit ID	Tank Capacity (gal)	Tank Contents	Control Devices	Tank Throughput (bbls/day)	VOC Emis Factor (lbs/		VOC Emissions (lbs/yr) ^(a)	VOC Emissions (lb/hr) ^(b)	VOC Emissions (tons/yr) ^(c)
T02	2150	Used Oil	None	0.70	1.80E-03	(2)	0.46	0.000	0.000
T03	2100	Pipeline Liquids	None	5.00	3.50E-01	(1)	638.75	0.073	0.319
T05	1050	Pipeline Liquids	None	5.00	3.50E-01	(1)	638.75	0.073	0.319
T06	1050	Pipeline Liquids	None	5.00	3.50E-01	(1)	638.75	0.073	0.319
T07	520	TEG	None	0.17	3.23E-04	(2)	0.02	0.000	0.000
T08	1000	Engine Oil	None	0.33	5.38E-03	(2)	0.64	0.000	0.000
Totals							1917.37	0.22	0.96

Calculations:

(a) VOC Emissions (lb/day) = Tank Throughput (bbls/day) * VOC Emission Factor (lbs/bbls)

(b) VOC Emissions (lb/hr) = VOC Emissions (lbs/yr) * (yr/8760hr)

(c) VOC Emissions (ton/yr) = VOC Emissions (lbs/yr) * (1ton/2000lbs)

Notes:

(1) VOC emission factor includes Flashing/Working/Breathing losses calculated from pressurized liquid sample (GOR= 0.35 lb VOC/bbl) direct flash measurement. The pressurized liquid sample was taken from the Putnam B6 site on 4/25/2013 and is considered to be worst case representative with respect to gas composition and pressure at the Station

(2) VOC emission factor includes Working/Breathing losses as calculated from TANKS 4.0.9.d

Table 9. Truck Loading (TL-1) VOC Emissions Nytis Exploration Company - Staten Run Compressor Station

Contents	Volume Transferred	Loading Loss ^(a) (lb VOC/1000gal)	PTE VOC Emissions (lb/hr)	PTE VOC Emissions (ton/yr) ^(b)
Pipeline Liquids	229,950 gal/yr	3.659	0.096	0.421
Total			0.096	0.421

Calculations:

(a) Loading Loss (lbs/1000 gal) = 12.46x[Saturation Factor] x [True Vapor Pressure of Liquid Loaded (psia)] x[Molecular Weight of Vapors(lbs/lbmole)]/ [Temperature of Bulk Liquid Loaded(°R)]

(b) Annual Emissions(tons/yr) = [Loading Loss (lb VOC/ 1000 gal)]*[Volume Transferred(gal/yr)]/1000/2000

	Pipeline liquids	
Saturation factor	0.60	Note (1)
Pvap (psia)	7.70	Note (2)
Molecular Weight Vap (lb/lbmol)	33.37	Note (2)
Bulk Liquid Tempurature (F)	65.00	Note (2)

Notes:

(1) AP-42 Section 5.2, Table 5.2-1 Saturation Factors for Calculating Petroleum Liquid Loading Losses, Submerged loading - dedicated normal service

(2) Putnam B6 Compressor Station Pressurized Separator Sampling and Emission Estimation Report, August 2013
 (3) Annual rates based on maximum throughput of 5 bbls/d

Table 10. Fugitive Leak Emissions Nytis Exploration Company - Staten Run Compressor Station

Pollutant	Emission Factor (1)	PTE ^{(a) Gas Service} (tons/yr)	PTE VOC emissions (ton/yr)	PTE CO ₂ e emissions (ton/yr)	PTE Total HAPs emissions (ton/yr)
Valves	9.9E-03 lb/hr/source	4.82	0.22	4.85	0.00
Pressure Relief Valves	1.9E-02 lb/hr/source	0.25	0.01	0.26	0.00
Connectors (2)	8.6E-04 lb/hr/source	1.80	0.08	1.81	0.00
Open Ended Lines	4.4E-03 lb/hr/source	0.08	0.00	0.08	0.00
Total		6.95	0.32	7.00	0.01

Pollutant	PTE Benzene emissions (ton/yr)	PTE Toluene emissions (ton/yr)	PTE Ethylbenzene emissions (ton/yr)	PTE Xylenes emissions (ton/yr)	PTE n-Hexane emissions (ton/yr)
Valves Pressure Relief Valves Connectors (2) Open Ended Lines	1.45E-04 7.64E-06 5.41E-05 2.32E-06	1.93E-04 1.02E-05 7.21E-05 3.09E-06	0.00E+00 0.00E+00 0.00E+00 0.00E+00	9.64E-05 5.09E-06 3.60E-05 1.54E-06	4.00E-03 2.11E-04 1.50E-03 6.41E-05
Total	0.00	0.00	0.00	0.00	0.01

Calculations:

(a) Annual emissions (tons/yr) = [Emission Factor (lb/hr/source)] x [Number of Sources] x [Hours of Operation per Year] x [ton/2000lb]

WET GAS INPUTS TABLE				
Gas Stream Components	Wt Percent			
Methane	88.39%			
Ethane	7.05%			
VOC	4.56%			
Benzene	0.00%			
Toluene	0.00%			
Ethylbenzene	0.00%			
Xylenes	0.00%			
n-Hexane	0.08%			

(3) Number of Components in Gas Service

Valves =	111
Pressure Relief Valves =	3
Connectors =	479
Open Ended Lines =	4
Maximum Hour of Operation =	8,760
Global Warming Potential (GWP)	
CO ₂	1

(1) Emission factors from 1995 EPA Protocol for Equipment Leak Emission Estimates, Table 2-4 Oil and Gas Production

 CH_4

 N_2O

(2) Connectors is assumed to include flange connections in the total count

(3) Default Average Component Counts for Major Onshore Natural Gas Production Equipment from 40 CFR 98, Subpart W, Table W-1B

25

298

(4)

(4)

(4)

	Maximum Hourly E	missions	Annual Emiss	ions
Pollutant	Emission Factor	PTE per Engine Event (Ib/hr)	Emission Factor	Annual PTE (tons/yr)
Criteria Pollutants				
VOC	1.59E+00 lb/Event (1	1.59 (a)	1.59E+00 lb/Event (1) 0.04 (a)

ATTACHMENT O

MONITORING/RECORDKEEPING/REPORTING/ TESTING PLANS

Rule 13 Permit Modification Application

Staten Run Compressor Station, Montgomery, West Virginia

Nytis Exploration Company LLC

102 3rd St. Glasgow, West Virginia

Monitoring

The company will at a minimum monitor hours of operation, site production throughputs, as well as planned and unplanned maintenance of permitted equipment comprising the facility.

Recordkeeping

Records of maintenance conducted on the unit, #4, shall be kept in accordance with §63.6655 and Table 2d (Line 6).

The unit, #4, will also be subject to the rod packing standards of §60.5385 that require them to be replaced/rebuilt every 26,000 hrs or 3 years. Records shall be maintained based on months or hours of operations since initial startup and each subsequent rebuild or replacement of the compressor's rod packing.

The company will retain records for five (5) years, two (2) years on site, certified by a company official at such time that the DAQ may request said records.

In addition to those mentioned above, the company will keep records of the items monitored, such as station throughput, hours of operation, benzene emissions, planned and unplanned maintenance activities, and any complaints regarding the facility.

Reporting

The company will report any equipment malfunctions, emission limit or visible emissions (VE) deviations.

Testing

The wet gas to the dehy will be sampled and tested periodically to assess compliance with TEG dehy's emission limitations.

ATTACHMENT P

PUBLIC NOTICE

Rule 13 Permit Modification Application

Staten Run Compressor Station, Montgomery, West Virginia

Nytis Exploration Company LLC

102 3rd St. Glasgow, West Virginia

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Nytis Exploration Company LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a Modification Permit, for a natural gas compressor station located off U.S. Route 60 near Montgomery, in Kanawha County, West Virginia. The latitude and longitude coordinates are: 38.18817, -80.32226.

The applicant estimates the increased potential to discharge of the following Regulated Air Pollutants will be:

Pollutant	Tons/yr
VOCs	2.08
PM/PM10/PM2.5	0.04
Total HAPs	0.02

Modification of operations are after the fact and are a result of estimating emissions with more accurate data. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the _____th of April, 2018.

By: Nytis Exploration Company LLC Lloyd A. Hall Vice President of Operations 2480 Fortune Dr., Suite 300 Lexington, KY 40509

ATTACHMENT Q

BUSINESS CONFIDENTIAL CLAIMS NOT APPLICABLE (SEE NOTES)

No information contained within this application claimed as confidential

Rule 13 Permit Modification Application

Staten Run Compressor Station, Montgomery, West Virginia

Nytis Exploration Company LLC

102 3rd St. Glasgow, West Virginia

ATTACHMENT R

AUTHORITY FORMS

NOT APPLICABLE (SEE NOTES)

No delegation of authority necessary

Rule 13 Permit Modification Application

Staten Run Compressor Station, Montgomery, West Virginia

Nytis Exploration Company LLC

102 3rd St. Glasgow, West Virginia

ATTACHMENT S

TITLE V PERMIT REVISION INFORMATION

Rule 13 Permit Modification Application

Staten Run Compressor Station, Montgomery, West Virginia

Nytis Exploration Company LLC

102 3rd St. Glasgow, West Virginia

Attachment S

Title V Permit Revision Information

1. New Applicable Requirements Summary	
Mark all applicable requirements associated with the chang	es involved with this permit revision:
SIP	☐ FIP
Minor source NSR (45CSR13)	PSD (45CSR14)
NESHAP (45CSR15)	Nonattainment NSR (45CSR19)
Section 111 NSPS (Subpart(s))	Section 112(d) MACT standards (Subpart(s))
Section 112(g) Case-by-case MACT	112(r) RMP
Section 112(i) Early reduction of HAP	Consumer/commercial prod. reqts., section 183(e)
Section 129 Standards/Reqts.	Stratospheric ozone (Title VI)
Tank vessel reqt., section 183(f)	Emissions cap 45CSR§30-2.6.1
NAAQS, increments or visibility (temp. sources)	45CSR27 State enforceable only rule
45CSR4 State enforceable only rule	Acid Rain (Title IV, 45CSR33)
Emissions Trading and Banking (45CSR28)	Compliance Assurance Monitoring (40CFR64) ⁽¹⁾
□ NO _x Budget Trading Program Non-EGUs (45CSR1)	\square NO _x Budget Trading Program EGUs (45CSR26)
⁽¹⁾ If this box is checked, please include Compliance Assur Specific Emission Unit (PSEU) (See Attachment H to Title explain why Compliance Assurance Monitoring is not ap	V Application). If this box is not checked, please

2. Non Applicability Determinations

List all requirements, which the source has determined not applicable to this permit revision and for which a permit shield is requested. The listing shall also include the rule citation and a rationale for the determination.

Permit Shield Requested (not applicable to Minor Modifications)

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

3. Suggested Title V Draft Permit Language

Are there any changes involved with this Title V Permit revision outside of the scope of the NSR Permit revision? \boxtimes Yes \square No If Yes, describe the changes below.

Also, please provide **Suggested Title V Draft Permit language** for the proposed Title V Permit revision (including all applicable requirements associated with the permit revision and any associated monitoring /recordkeeping/ reporting requirements), OR attach a marked up pages of current Title V Permit. Please include appropriate citations (Permit or Consent Order number, condition number and/or rule citation (e.g. 45CSR§7-4.1)) for those requirements being added / revised.

As the DAQ has noted, the updated PTE estimates NYTIS submitted to the agency were identified as exceeding Major Source Title V thresholds (NOx emissions at ~180 TPY). The Staten Run facility will be subject to 45CSR30 permitting requirements. Nytis Exploration requests to reopen Title V permit R30-03900044-2007 in active status. The permit was placed in inactive status after HAP emissions decreased below Title V Major Source thresholds in April 2011.

Attach "marked up pages" of previous/inactive Title V permit.

4. Active NSR Permits/Permit Determinations/Consent Orders Associated With This Permit Revision

Permit or Consent Order Number	Date of Issuance	Permit/Consent Order Condition Number
R13-2863A	11/19/2013	
	/ /	
	/ /	

5. Inactive NSR Permits/Obsolete H	Permit or Consent Orders Co	onditions Associated With This Revision
Permit or Consent Order Number	Date of Issuance	Permit/Consent Order Condition Number
R13-2863	01/11/2011	
R30-03900044-2007	01/23/2007	
	/ /	

6. Change in Potential Emissions	
Pollutant	Change in Potential Emissions (+ or -), TPY
NOx	+ 52.49 TPY
СО	- 91.73 TPY
VOC	+ 9.69 TPY
SO2	- 0.01 TPY

PM/PM10/ PM2.5	- 0.12 TPY
Formaldehyde	- 0.39 TPY
All of the required forms and additional information can be found u	nder the Permitting Section of DAQ's website, or requested by phone.

Note:	This certification must be signed by a responsible official. Applications without a signed certification will be returned as incomplete. The criteria for allowing the use of Minor Modification Procedures are as follows:
i.	Proposed changes do not violate any applicable requirement;
ii.	Proposed changes do not involve significant changes to existing monitoring, reporting, or
iii.	recordkeeping requirements in the permit; Proposed changes do not require or change a case-by-case determination of an emission
	limitation or other standard, or a source-specific determination for temporary sources o
iv.	ambient air quality impacts, or a visibility increment analysis; Proposed changes do not seek to establish or change a permit term or condition for which there
1.	is no underlying applicable requirement and which permit or condition has been used to avoid an applicable requirement to which the source would otherwise be subject (synthetic minor) Such terms and conditions include, but are not limited to a federally enforceable emissions cap used to avoid classification as a modification under any provision of Title I or any alternative emissions limit approved pursuant to regulations promulgated under § 112(j)(5) of the Clean
v.	Air Act; Proposed changes do not involve preconstruction review under Title I of the Clean Air Act o
vi.	45CSR14 and 45CSR19; Proposed changes are not required under any rule of the Director to be processed as
procedur permits,	standing subparagraph 45CSR§30-6.5.a.1.A. (items i through vi above), minor permit modification res may be used for permit modifications involving the use of economic incentives, marketable emissions trading, and other similar approaches, to the extent that such minor permit modification res are explicitly provided for in rules of the Director which are approved by the U.S. EPA as a part of
procedur permits, procedur the State operatin	es may be used for permit modifications involving the use of economic incentives, marketable emissions trading, and other similar approaches, to the extent that such minor permit modification es are explicitly provided for in rules of the Director which are approved by the U.S. EPA as a part o Implementation Plan under the Clean Air Act, or which may be otherwise provided for in the Title V g permit issued under 45CSR30. t to 45CSR\$30-6.5.a.2.C., the proposed modification contained herein meets the criteria for use
procedua permits, procedua the State operatin Pursuar of Mino	es may be used for permit modifications involving the use of economic incentives, marketable emissions trading, and other similar approaches, to the extent that such minor permit modification es are explicitly provided for in rules of the Director which are approved by the U.S. EPA as a part o Implementation Plan under the Clean Air Act, or which may be otherwise provided for in the Title V g permit issued under 45CSR30.
procedua permits, procedua the State operating Pursuar of Mino permit p	t to 45CSR\$30-6.5.a.2.C., the proposed modification contained herein meets the criteria for user permit modification contained herein meets the criteria for user permit modification procedures as set forth in Section 45CSR\$30-6.5.a.1.A. The use of Minor
procedua permits, procedua the State operatin Pursuar of Mino	The set of the set
procedur permits, procedur the State operatin Pursuar of Mino permit n Signed):	The set of the set
procedua permits, procedua the State operatin, Pursuar of Mino permit I Signed): Named (typ	The set of the set
procedur permits, procedur the State operatin, Pursuar of Mino permit 1 Signed): Named (typ	es may be used for permit modifications involving the use of economic incentives, marketable emissions trading, and other similar approaches, to the extent that such minor permit modification es are explicitly provided for in rules of the Director which are approved by the U.S. EPA as a part of Implementation Plan under the Clean Air Act, or which may be otherwise provided for in the Title V g permit issued under 45CSR30. t to 45CSR§30-6.5.a.2.C., the proposed modification contained herein meets the criteria for user permit modification procedures as set forth in Section 45CSR§30-6.5.a.1.A. The use of Minor modification procedures are hereby requested for processing of this application. (Please use blue ink) (Please use blue ink) (Please use blue ink)

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

APPLICATION FEE

Rule 13 Permit Modification Application

Staten Run Compressor Station, Montgomery, West Virginia

Nytis Exploration Company LLC

102 3rd St. Glasgow, West Virginia