

Williams Ohio Valley Midstream LLC Park Place Corporate Center 2 2000 Commerce Drive Pittsburgh, PA 15275-1016

April 20, 2018 (Via Federal Express)

Beverly D. McKeone New Source Review Program Manager Division of Air Quality West Virginia Department of Environmental Protection 601 57th Street SE Charleston, WV 25304-2345

Subject: Application for 45CSR13 NSR Permit Modification Williams Ohio Valley Midstream LLC Conner Compressor Station NSR Permit No. R13-3168B Plant ID No 051-00195 Marshall County, West Virginia

Dear Ms. McKeone:

Williams Ohio Valley Midstream LLC (OVM) is submitting one (1) original paper copy and two (2) CD-ROMs of an Application for 45CSR13 New Source Review (NSR) Permit Modification for the existing Conner Compressor Station (CCS), located ~800 ft South of Kull Ln (Airport Access), ~0.4 mi East of CR-21/Roberts Ridge Rd, Moundsville, in Marshall County, West Virginia.

This application for a Permit Modification has been prepared and submitted to amend PTE calculations to account for:

- 1) Emission **increase** due to increase in the number of fittings used to determine the **Process Piping Fugitive (FUG-G and FUG-L)** emissions.
- 2) Emission increase due to improved estimate of Filter Change-Out (SSM/FCO) emissions.
- 3) Emission **increase** due inclusion of aldehydes and methanol to determine total VOC emissions from the **Compressor Engines (CE-01 thru CE-03)**.
- 4) Emission **decrease** due to "leaner" wet gas analysis used with GRI-GLYCalc to determine emissions from the **Dehydrators (RSV-01 and RSV-02)**.
- 5) Emission decrease due to improved protocol to determine Compressor Rod Packing (CRP) emissions.
- 6) Emission Increase due to inclusion of Engine Crankcase (ECC) Emissions.

These changes, and other less substantive changes, are summarized below:

Beverly McKeone WVDEP – Division of Air Quality April 13, 2018 Page 02 of 02

Criteria Pollutants	Potential Emissions (Including Fugitives)				
(ton per year (tpy))	R13-3168B	Change	R13-3168C (Proposed)		
Nitrogen Oxides (NOX)	25.04	0.12	25.16		
Carbon Monoxide (CO)	23.78	0.24	24.02		
Volatile Organic Compounds (VOC)	132.12 31.82		163.94		
Particulate Matter (PM10/2.5)	2.88	(0.91)	1.97		
Sulfur Dioxide (SO2)	0.53	(0.40) 0.13			
Hazardous Air Bollutanta	Potentia	al Emissions (Including I	Fugitives)		
Hazardous Air Polititants	R13-3168B	Change	R13-3168C (Proposed)		
Acetaldehyde		0.16	0.16		
Acrolein		0.11	0.11		
Benzene	0.93	(0.60)	0.33		
Butadiene, 1,3-	()	0.01	0.01		
Ethylbenzene	0.80	(0.62)	0.18		
Formaldehyde (HCHO)	2.83 (0.07)		2.76		
n-Hexane	1.67	7.69	9.36		
Methanol (MeOH)	1	0.07	0.07		
Polycyclic Organic Matter (POM/PAH)		0.01	0.01		
Toluene	1.01	(0.23)	0.78		
2,2,4-Trimethylpentane (TMP)	1 	0.28	0.28		
Xylenes	0.94	0.80	1.74		
Other/Trace HAP*	4.68	(4.68)	0.01		
Total Hazardous Air Pollutants (HAPs)	12.86	2.93	15.79		
Other Regulated Pollutants	Potentia	I Emissions (Including F	⁻ ugitives)		
(Other than Criteria and HAP)	R13-3168B	Change	R13-3168C (Proposed)		
Carbon Dioxide (CO ₂)	42,557	(14,748)	27,809		
Methane (CH ₄)	261.00	(46)	215		
Nitrous Oxide (N ₂ O)	0.08	(0.03)	0.05		
CO ₂ equivalent (CO ₂ e)	49,098	(15,899)	33,199		

*Other/Trace HAPs include: Carbon Tetrachloride, Chlorobenzene, Chloroform, Dichloropropene, 1,3-Dichloropropene, Ethylene Dibromide, Methylene Chloride, Phenol, Propylene Oxide, Styrene,

1,1,2,2-Tetrachloroethane, 1,1,2-Trichloroethane, and Vinyl Chloride (as per AP-42).

If you have any questions concerning this submittal, or need additional information, please contact me by telephone at (304) 843-3188 or by e-mail at Joe.Marecic@Williams.com.

Sincerely,

9

Joe Marecic Supervisor, EH&S

Enclosures:

Application for 45CSR13 NSR Permit Modification Attachments A thru S Supplements S1 thru S4 Check for Application Fee

Application for 45CSR13 New Source Review (NSR) Permit Modification

For the: Ohio Valley Midstream LLC (OVM) Conner Compressor Station (CCS) Plant ID No. 051-00195 Marshall County, West Virginia

Submitted to:

West Virginia Department of Environmental Protection Division of Air Quality

Submitted by:

Williams Ohio Valley Midstream LLC (OVM) Park Place Corporate Center 2 2000 Commerce Drive Pittsburgh, PA 15275-1016

Prepared by:

EcoLogic Environmental Consultants, LLC 864 Windsor Court Santa Barbara, CA 93111-1037

April 2018

Application for 45CSR13 New Source Review (NSR) Permit Modification

Williams Ohio Valley Midstream LLC (OVM)

Conner Compressor Station (CCS)

Plant ID No. 051-00195 Marshall County, West Virginia

Table of Contents

Cover Letter

Title Page / Table of Contents

Application for NSR Permit Modification

- Section I. General Information
- Section II. Additional Attachments and Supporting Documents
- Section III. Certification of Information

Attachments to the NSR Application

- Attachment A Business Certificate
- Attachment B Map(s)
- Attachment C Installation and Start-Up Schedule
- Attachment D Regulatory Discussion
- Attachment E Plot Plan
- Attachment F Process Flow Diagram(s) (PFD)
- Attachment G Process Description
- Attachment H Safety Data Sheets (MSDS)
- Attachment I Emission Units Table
- Attachment J Emission Points Data Summary Sheet(s)
- Attachment K Fugitive Emissions Data Summary Sheet(s)
- Attachment L Emissions Unit Data Sheet(s)
- Attachment M Air Pollution Control Device Sheet(s)
- Attachment N Supporting Emissions Calculations
- Attachment O Monitoring/Recordkeeping/Reporting/Testing Plans
- Attachment P Public Notice
- Attachment Q Business Confidential Claims (Not Applicable)
- Attachment R Authority Forms (Not Applicable)
- Attachment S Title V Permit Revision Information (Not Applicable)

Supplements to the NSR Application

- Supplement S1 Lab Analysis (Inlet Gas)
- Supplement S2 Vendor Data (CAT G3516B Compressor Engine,
 - CAT G3306B TA Compressor Engine,
 - Frederick Logan Thermal Oxidizer)
- Supplement S3 Emission Program Data (GRI-GLYCalc and ProMax Simulation)
 - Supplement S4 AP-42 / EPA Emission Factors

Application Fee

Application for 45CSR13 New Source Review (NSR) Permit Modification

- Section I. General
- Section II. Additional Attachments and Supporting Documents
- Section III. Certification of Information

STATE AND	NTAL PROTECTION DIVISION OF AIR QUALITY 601 57 th Street, SE Charleston, WV 25304 (304) 926-0475 www.dep.wv.gov/daq	APPI TI	LICATION FOR NSR PERMIT AND TLE V PERMIT REVISION (OPTIONAL)		
PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KNOWN): PLEASE CHECK TYPE OF 45CSR30 (TITLE V) REVISION (IF AN CONSTRUCTION MODIFICATION RELOCATION CLASS I ADMINISTRATIVE UPDATE TEMPORARY SIGNIFICANT MODIFICATION CLASS II ADMINISTRATIVE UPDATE AFTER-THE-FACT IF ANY BOX ABOVE IS CHECKED, INCLUDE TITLE V REVISION INFORMATION AS ATTACHMENT S TO THIS APPLICATION					
FC	OR TITLE V FACILITIES ONLY: Please refer to "Title V Revision "Title V Permit Revision Flowchart") and ability to opera	Guidance" to deter ate with the change	rmine your Title V Revision options (Appendix A, as requested in this Permit Application.		
	Section	l. General			
1.	Name of applicant (as registered with the WV Secretary of Williams Ohio Valley Midstream LLC (OVM)	State's Office):	2. Federal Employer ID No. (FEIN): 27-0856707		
3.	Name of facility (if different from above): Conner Compressor Station (CCS)		 4. The applicant is the: ☐ OWNER ☐ OPERATOR ⊠ BOTH 		
5A.	Applicant's mailing address: Park Place Corporate Center 2 2000 Commerce Dr Pittsburgh, PA 15275-1016	5B. Facility's p ~800 ft Sc ~0.4 mi E Moundsv	Facility's present physical address: ~800 ft South of Kull Ln (Airport Access) ~0.4 mi East of CR-21/Roberts Ridge Rd Proctor Moundsville, in Marshall County, WV 26055		
6.	 6. West Virginia Business Registration. Is the applicant a resident of the State of West Virginia?				
7.	If applicant is a subsidiary corporation, please provide the r	name of parent co	rporation: The Williams Companies, Inc.		
8.	Does the applicant own, lease, have an option to buy, or ot – If YES , please explain: Applicant owns or has an opt – If NO , you are not eligible for a permit for this source.	herwise have con tion to purchase	trol of the <i>proposed site</i> ? XES NO the compressor station.		
9.	 9. Type of plant or facility (stationary source) to be constructed, modified, relocated, administratively updated or temporarily permitted (e.g., coal preparation plant, primary crusher, etc.): Natural Gas Compressor Station 				
11A.	DAQ Plant ID No. (existing facilities): 0 5 1 – 0 0 1 9 5	11B. List all curr numbers as R13-3168	ent 45CSR13 and 45CSR30 (Title V) permit ssociated with this process (existing facilities): B – Issued 10/10/17		
12A.	Directions to the facility: - For Modifications, Administrative Updates or Tempor present location of the facility from the nearest state road; - For Construction or Relocation permits , please provid	rary permits at an	e existing facility, please provide directions to the proposed new site location from the nearest		
	state road. Include a MAP as Attachment B. From SR-872/12th Street in Moundsville:				

3) Turn Left onto CR-21/Roberts Ridge Rd 5) Take slight Right onto access road	~2.1 mi; ~800 ft;	4) Turn Left onto Kull Ln Airport Acc ~0.4 mi;6) Destination is on the Left.
All the required forms and additional information can be	found und	er the Permitting Section of DAQ's website or requested by phone.

1) Head South on SR-2/Lafayette Ave

~0.8 mi; 2) Turn Left onto SR-2 Alt

~250 ft;

12.B.	New site address (if applicable):	12C. Nearest city or town:			County:				
	~800 ft South of Kull Ln (Airport Acc) ~0.4 mi East of CR-21/Roberts Ridge Rd		Moundsville		Marshall				
12.E.	UTM Northing (KM):	12F.	UTM Easting (KM):	12G.	UTM Zone:				
	4,414.45 km Northing		521.65 km Easting		17S				
13.	. Briefly describe the proposed change(s) at the facility:								
	This application is submitted to request modifications to the facility's potential-to-emit (PTE), resulting from:								
	 Use of lesser "net" control efficiency to determine emissions from the Dehydrators (RSV-01 and RSV-02). Emission increase due to improved estimate of Filter Change-Out (SSM/FCO) emissions. Emission increase due to increase in the number of fittings used to determine the Process Piping Fugitive (FUG-G, FUG-L) emissions 								
14A.	Provide the date of anticipated installation o	r chan	ge:	14B.	Date of anticipated Start-Up				
	 If this is an After-The-Fact permit applica proposed change did happen: na 	tion, p	rovide the date upon which the		if a permit is granted: na				
14C.	14C. Provide a Schedule of the planned Installation of/Change to and Start-Up of each of the units proposed in this permit application as Attachment C (if more than one unit is involved).								
15.	. Provide maximum projected Operating Schedule of activity/activities outlined in this application: Hours Per Day: 24 Days Per Week: 7 Weeks Per Year: 52								
16.	Is demolition or physical renovation at an existing facility involved?								
17.	Risk Management Plans. If this facility is subject to 112(r) of the 1990 CAAA, or will become subject due to proposed changes (for applicability help see www.epa.gov/ceppo), submit your Risk Management Plan (RMP) to U.S. EPA Region III.								
18.	 Regulatory Discussion. List all Federal and State air pollution control regulations that you believe are applicable to the proposed process (<i>if known</i>). A list of possible applicable requirements is also included in Attachment S of this application (Title V Permit Revision Information). Discuss applicability and proposed demonstration(s) of compliance (<i>if known</i>). Provide this information as Attachment D. 								
	Section II. Additiona	al att	achments and supporting	g doc	uments.				
19.	 Include a check payable to WVDEP – Division of Air Quality with the appropriate application fee (per 45CSR22 and 45CSR13). 								
20.	Include a Table of Contents as the first page	je of y	our application package.						
21.	Provide a Plot Plan , e.g. scaled map(s) and source(s) is or is to be located as Attachme	/or ske nt E (l	etch(es) showing the location of the Refer to <i>Plot Plan Guidance</i>).	property	y on which the stationary				
	Indicate the location of the nearest occup	pied st	ructure (e.g. church, school, busines	ss, resic	lence).				
22.	Provide a Detailed Process Flow Diagram(s) showing each proposed or modified emissions unit, emission point and control device as Attachment F .								

23. Provide a Process Description as Attachment G.

Also describe and quantify to the extent possible all changes made to the facility since the last permit review (if applicable).

24. Provide Material Safety Data Sheets (MSDS) for all materials processed, used or produced as Attachment H.

For chemical processes, provide a MSDS for each compound emitted to the air.

25. Fill out the Emission Units Table and provide it as Attachment I.

26. Fill out the Emission Points Data Summary Sheet (Table 1 and Table 2) and provide it as Attachment J.

27. Fill out the Fugitive Emissions Data Summary Sheet and provide it as Attachment K.

All the required forms and additional information can be found under the Permitting Section of DAQ's website or requested by phone.

28.	Check all applicable Emissions Unit Data Sheets listed below:							
	☑ Bulk Liquid Transfer Operations (Ld)	Haul Road Emissions	Quarry					
	🔀 Chemical Processes* (Le)	Hot Mix Asphalt Plant	Solid Materials Sizing, Handling					
	Concrete Batch Plant	Incinerator	and Storage Facilities					
	Grey Iron and Steel Foundry	Indirect Heat Exchanger	⊠ Storage Tanks (Lc)					
	🛛 General Emission Unit, specify:							
	Natural Gas Compressor/Generator Engine Data Sheet (La)							
	 Natural Gas Glycol Dehydration Un 	it Data Sheet (Lb)						
	(*) Leak Source Data Sheet Only							
	Fill out and provide the Emissions Unit Data	a Sheet(s) as Attachment L.						
29.	Check all applicable Air Pollution Control	Device Sheets listed below:						
	Absorption Systems	Baghouse	⊠ Flare (Mc)					
	Adsorption Systems		Mechanical Collector					
	Afterburner	Electrostatic Precipitator	Wet Collecting System					
	Other Collectors, specify:							
	OxCat (Ma)NSCR (Mb)							
	Fill out and provide the Air Pollution Control	I Device Sheet(s) as Attachment M.						
30.	Provide all Supporting Emissions Calculations as Attachment N or attach the calculations directly to the forms listed in Items 28 through 31.							
	Monitoring, Recordkeeping, Reporting and Testing Plans. Attach proposed monitoring, recordkeeping, reporting and testing plans to demonstrate compliance with the proposed emissions limits and operating parameters in this permit application. Provide this information as Attachment O .							
31.	Monitoring, Recordkeeping, Reporting an testing plans to demonstrate compliance with application. Provide this information as Atta	d Testing Plans. Attach proposed mon the proposed emissions limits and op chment O.	nitoring, recordkeeping, reporting and erating parameters in this permit					
31. >	Monitoring, Recordkeeping, Reporting an testing plans to demonstrate compliance with application. Provide this information as Atta Please be aware that all permits must be pra Additionally, the DAQ may not be able to acc by the applicant, DAQ will develop such plan	d Testing Plans. Attach proposed mo in the proposed emissions limits and op chment O. actically enforceable whether the applic cept all measures proposed by the appli- is and include them in the permit.	onitoring, recordkeeping, reporting and erating parameters in this permit ant chooses to propose such measures. licant. If none of these plans are proposed					
31. > 32.	Monitoring, Recordkeeping, Reporting an testing plans to demonstrate compliance with application. Provide this information as Atta Please be aware that all permits must be pra Additionally, the DAQ may not be able to acc by the applicant, DAQ will develop such plan Public Notice. At the time that the applicat circulation in the area where the source is o <i>Advertisement</i> for details). Please submit th	d Testing Plans. Attach proposed mon in the proposed emissions limits and op chment O. actically enforceable whether the applic cept all measures proposed by the appli- is and include them in the permit. Tion is submitted, place a Class I Legal r will be located (See 45CSR§13-8.3 the e Affidavit of Publication as Attachmedication and the second secon	onitoring, recordkeeping, reporting and erating parameters in this permit ant chooses to propose such measures. licant. If none of these plans are proposed Advertisement in a newspaper of general hrough 45CSR§13-8.5 and <i>Example Legal</i> bent P immediately upon receipt.					
31. → 32. 33.	Monitoring, Recordkeeping, Reporting an testing plans to demonstrate compliance with application. Provide this information as Atta Please be aware that all permits must be pra Additionally, the DAQ may not be able to acc by the applicant, DAQ will develop such plan Public Notice. At the time that the applicat circulation in the area where the source is o <i>Advertisement</i> for details). Please submit th Business Confidentiality Claims. Does th	d Testing Plans. Attach proposed mon in the proposed emissions limits and op chment O. actically enforceable whether the applic cept all measures proposed by the applic is and include them in the permit. ion is submitted, place a Class I Legal r will be located (See 45CSR§13-8.3 the e Affidavit of Publication as Attachment is application include confidential inform	onitoring, recordkeeping, reporting and erating parameters in this permit ant chooses to propose such measures. licant. If none of these plans are proposed Advertisement in a newspaper of general hrough 45CSR§13-8.5 and <i>Example Legal</i> tent P immediately upon receipt. nation (per 45CSR31)?					
31. > 32. 33.	Monitoring, Recordkeeping, Reporting an testing plans to demonstrate compliance with application. Provide this information as Atta Please be aware that all permits must be pra Additionally, the DAQ may not be able to acc by the applicant, DAQ will develop such plan Public Notice. At the time that the applicate circulation in the area where the source is o Advertisement for details). Please submit the Business Confidentiality Claims. Does the Day YES	d Testing Plans. Attach proposed mon in the proposed emissions limits and op chment O. Actically enforceable whether the applic cept all measures proposed by the applic is and include them in the permit. Action is submitted, place a Class I Legal r will be located (See 45CSR§13-8.3 the Affidavit of Publication as Attachmon is application include confidential inform ⊠ NO	onitoring, recordkeeping, reporting and erating parameters in this permit ant chooses to propose such measures. licant. If none of these plans are proposed Advertisement in a newspaper of general hrough 45CSR§13-8.5 and <i>Example Legal</i> nent P immediately upon receipt. nation (per 45CSR31)?					
31. > 32. 33. >	Monitoring, Recordkeeping, Reporting an testing plans to demonstrate compliance with application. Provide this information as Atta Please be aware that all permits must be pra Additionally, the DAQ may not be able to acc by the applicant, DAQ will develop such plan Public Notice. At the time that the applicant circulation in the area where the source is o <i>Advertisement</i> for details). Please submit th Business Confidentiality Claims. Does th L YES If YES, identify each segment of information segment claimed confidential, including the o <i>Notice – Claims of Confidentiality"</i> guidan	d Testing Plans. Attach proposed mon in the proposed emissions limits and op chment O. Actically enforceable whether the applic cept all measures proposed by the appli- is and include them in the permit. Action is submitted, place a Class I Legal r will be located (See 45CSR§13-8.3 the Affidavit of Publication as Attachme is application include confidential inform ⊠ NO on each page that is submitted as com- criteria under 45CSR§31-4.1, and in ac- ice found in the General Instructions as	ponitoring, recordkeeping, reporting and erating parameters in this permit ant chooses to propose such measures. licant. If none of these plans are proposed I Advertisement in a newspaper of general hrough 45CSR§13-8.5 and <i>Example Legal</i> bent P immediately upon receipt. nation (per 45CSR31)? fidential and provide justification for each cordance with the DAQ's <i>"Precautionary</i> Attachment Q .					
31. > 32. 33. >	Monitoring, Recordkeeping, Reporting an testing plans to demonstrate compliance with application. Provide this information as Atta Please be aware that all permits must be pra Additionally, the DAQ may not be able to acc by the applicant, DAQ will develop such plan Public Notice. At the time that the applicat circulation in the area where the source is o <i>Advertisement</i> for details). Please submit th Business Confidentiality Claims. Does th	d Testing Plans. Attach proposed mon in the proposed emissions limits and op chment O. Actically enforceable whether the applic cept all measures proposed by the appli- as and include them in the permit. Tion is submitted, place a Class I Legal r will be located (See 45CSR§13-8.3 the Affidavit of Publication as Attachment is application include confidential inform ⊠ NO on each page that is submitted as com- criteria under 45CSR§31-4.1, and in ac- ice found in the <i>General Instructions</i> as II. Certification of Information	onitoring, recordkeeping, reporting and erating parameters in this permit ant chooses to propose such measures. licant. If none of these plans are proposed Advertisement in a newspaper of general hrough 45CSR§13-8.5 and <i>Example Legal</i> hent P immediately upon receipt. nation (per 45CSR31)? fidential and provide justification for each cordance with the DAQ's <i>"Precautionary</i> Attachment Q . ion					
31. > 32. 33. > 34.	Monitoring, Recordkeeping, Reporting an testing plans to demonstrate compliance with application. Provide this information as Atta Please be aware that all permits must be pra Additionally, the DAQ may not be able to acc by the applicant, DAQ will develop such plan Public Notice. At the time that the applicat circulation in the area where the source is o <i>Advertisement</i> for details). Please submit th Business Confidentiality Claims. Does th YES If YES, identify each segment of information segment claimed confidential, including the o <i>Notice – Claims of Confidentiality</i> " guidant Section I Authority/Delegation of Authority. Only re Check applicable Authority Form below:	d Testing Plans. Attach proposed mon in the proposed emissions limits and op chment O. Actically enforceable whether the applic cept all measures proposed by the appli- is and include them in the permit. Action is submitted, place a Class I Legal r will be located (See 45CSR§13-8.3 the e Affidavit of Publication as Attachme is application include confidential inform ⊠ NO on each page that is submitted as con- criteria under 45CSR§31-4.1, and in ac- ice found in the <i>General Instructions</i> as a contraction of Information equired when someone other than the ri- na	ant chooses to propose such measures. licant. If none of these plans are proposed Advertisement in a newspaper of general hrough 45CSR§13-8.5 and <i>Example Legal</i> hent P immediately upon receipt. nation (per 45CSR31)? fidential and provide justification for each cordance with the DAQ's <i>"Precautionary</i> Attachment Q. ion responsible official signs the application.					
31. > 32. 33. > 34.	Monitoring, Recordkeeping, Reporting an testing plans to demonstrate compliance with application. Provide this information as Atta Please be aware that all permits must be pra Additionally, the DAQ may not be able to acc by the applicant, DAQ will develop such plan Public Notice. At the time that the applicat circulation in the area where the source is o Advertisement for details). Please submit the Business Confidentiality Claims. Does the Segment claimed confidential, including the or Notice – Claims of Confidentiality" guidant Section I Authority/Delegation of Authority. Only re Check applicable Authority Form below:	d Testing Plans. Attach proposed mon in the proposed emissions limits and op chment O. actically enforceable whether the applic cept all measures proposed by the applic so and include them in the permit. ion is submitted, place a Class I Legal r will be located (See 45CSR§13-8.3 the e Affidavit of Publication as Attachme is application include confidential inform ⊠ NO on each page that is submitted as com- criteria under 45CSR§31-4.1, and in ac- ce found in the <i>General Instructions</i> as <i>II. Certification of Informatic</i> equired when someone other than the r na as Entity ☐ Authority of Part	ant chooses to propose such measures. licant. If none of these plans are proposed Advertisement in a newspaper of general hrough 45CSR§13-8.5 and <i>Example Legal</i> hent P immediately upon receipt. nation (per 45CSR31)? fidential and provide justification for each cordance with the DAQ's <i>"Precautionary</i> Attachment Q . ion responsible official signs the application. nership					
31. > 32. 33. > 34.	Monitoring, Recordkeeping, Reporting an testing plans to demonstrate compliance with application. Provide this information as Atta Please be aware that all permits must be pra Additionally, the DAQ may not be able to acc by the applicant, DAQ will develop such plan Public Notice. At the time that the applicat circulation in the area where the source is o <i>Advertisement</i> for details). Please submit th Business Confidentiality Claims. Does th YES If YES, identify each segment of information segment claimed confidential, including the o <i>Notice – Claims of Confidentiality</i> " guidant Section I Authority/Delegation of Authority. Only re Check applicable Authority Form below: Authority of Corporation or Other Busines	d Testing Plans. Attach proposed monimum of the proposed emissions limits and op chment O. actically enforceable whether the applic cept all measures proposed by the applies and include them in the permit. tion is submitted, place a Class I Legal r will be located (See 45CSR§13-8.3 the Affidavit of Publication as Attachmerics application include confidential inform ⊠ NO on each page that is submitted as concerteria under 45CSR§31-4.1, and in actice found in the General Instructions as <i>II. Certification of Informatic</i> equired when someone other than the read set Entity Authority of Part	ant chooses to propose such measures. licant. If none of these plans are proposed Advertisement in a newspaper of general hrough 45CSR§13-8.5 and <i>Example Legal</i> bent P immediately upon receipt. nation (per 45CSR31)? fidential and provide justification for each cordance with the DAQ's <i>"Precautionary</i> Attachment Q . ion responsible official signs the application. nership ted Partnership					
31. > 32. 33. > 34.	Monitoring, Recordkeeping, Reporting an testing plans to demonstrate compliance with application. Provide this information as Atta Please be aware that all permits must be pra Additionally, the DAQ may not be able to acc by the applicant, DAQ will develop such plan Public Notice. At the time that the applicat circulation in the area where the source is o Advertisement for details). Please submit the Business Confidentiality Claims. Does the Segment claimed confidential, including the or Notice – Claims of Confidentiality" guidant Section I Authority/Delegation of Authority. Only re Check applicable Authority Form below: Authority of Governmental Agency Submit completed and signed Authority Form	d Testing Plans. Attach proposed monomers In the proposed emissions limits and operation In the proposed by the application In the proposed by the application include them in the permit. It is application include confidential inform Image: Instruction of the proposed as a structure of the proposed emission include confidential inform Image: Instruction of the proposed emission Image: Instruction of the proposed emission Image:	ant chooses to propose such measures. licant. If none of these plans are proposed Advertisement in a newspaper of general hrough 45CSR§13-8.5 and <i>Example Legal</i> hent P immediately upon receipt. Ination (per 45CSR31)? fidential and provide justification for each cordance with the DAQ's <i>"Precautionary</i> Attachment Q . ion responsible official signs the application. nership ted Partnership					

35A. Certification of Information. To certify this permit application, a Responsible Official (45CSR§13-2.22 and 45CSR§30-2.28) or Authorized Representative shall check the appropriate box and sign below.

Certification of Truth, Accuracy, and Completeness

I, the undersigned \boxtimes **Responsible Official** / \square **Authorized Representative**, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.

Compliance Certification

Except for requirements identified in the Title V Application for which compliance is not achieved, I, the undersigned hereby certify that, based on information and belief formed after reasonable inquiry, all air contaminant sources identified in this application are in compliance with all applicable requirements.

SIC	GNATURE: Paul Herry		DATE	04	120/2018
	(Please use blue ink)				(Please use blue ink)
35B.	Printed name of signee:	35C.	Title:		
	Paul V. Hunter		Vice President		
35D.	E-mail:	36E.	Phone:	36F.	FAX:
	PaulV.Hunter@Williams.com		(412) 787-7300		(412) 787-6006
36A.	Printed name of contact person:	36B.	Title:		
	Joe Marecic		Supervisor, EH&S		
36C.	E-mail:	36D.	Phone:	36E.	FAX:
	Joe.Marecic@Williams.com		(304) 843-3188	7	(304) 843-3196

PLEASE CHECK ALL APPLICABLE ATTACHMENTS INCLUDED WITH THIS PERMIT APPLICATION:					
⊠ Attachment A: Business Certificate	Attachment K: Fugitive Emissions Data Summary Sheet				
Attachment B: Map(s)	Attachment L: Emissions Unit Data Sheet(s)				
Attachment C: Installation and Start Up Schedule	Attachment M: Air Pollution Control Device Sheet(s)				
Attachment D: Regulatory Discussion	Attachment N: Supporting Emissions Calculations				
🛛 Attachment E: Plot Plan	Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans				
Attachment F: Detailed Process Flow Diagram(s)	Attachment P: Public Notice				
Attachment G: Process Description	Attachment Q: Business Confidential Claims) (NA)				
Attachment H: Material Safety Data Sheets (MSDS)	Attachment R: Authority Forms) (NA)				
Attachment I: Emission Units Table	Attachment S: Title V Permit Revision Information (NA)				
Attachment J: Emission Points Data Summary Sheet	Application Fee				

Please mail an original and three (3) copies of the complete permit application with the signature(s) to the DAQ, Permitting Section, at the address listed on the first page of this application. Please DO NOT fax permit applications.

Forward 1 copy of the	application to the Title V Permitting Group and
For Title V Administra	live Amendments:
□ NSR permit write	r should notify Title V permit writer of draft permit
For Title V Minor Mod	ifications:
Title V permit wr	ter should send appropriate notification to EPA and affected states within 5 days of receipt,
□ NSR permit write	r should notify Title V permit writer of draft permit.
For Title V Significant	Nodifications processed in parallel with NSR Permit revision:
□ NSR permit write	r should notify a Title V permit writer of draft permit,
Public notice she	uld reference both 45CSR13 and Title V permits,
🔲 EPA has a 45-da	y review period of a draft permit.

Williams Ohio Valley Midstream LLC (OVM) Conner Compressor Station (SWCS) Application for 45CSR13 NSR Permit Modification Page 04 of 04

Attachment A

Business Certificate

"6. **West Virginia Business Registration**. Provide a copy of the Certificate of Authority/Authority of L.L.C./Registration (one page) including any name change amendments or other Business Certificate as Attachment A."

- Certificate of Amendment to the Certificate of Authority
 From: CAIMAN EASTERN MIDSTREAM, LLC
 To: WILLIAMS OHIO VALLEY MIDSTREAM LLC
 Date: May 15, 2012
 - Certificate of Authority of a Foreign Limited Liability Company
 - To: CAIMAN EASTERN MIDSTREAM, LLC
 - Date: September 11, 2009

I, Natalie E. Tennant, Secretary of State of the State of West Virginia, hereby certify that

the attached true and exact copy of the Articles of Amendment to the Articles of Organization of

CAIMAN EASTERN MIDSTREAM, LLC

are filed in my office, signed and verified, as required by the provisions of West Virginia Code §31B-2-204 and conform to law. Therefore, I issue this

CERTIFICATE OF AMENDMENT TO THE CERTIFICATE OF AUTHORITY

changing the name of the limited liability company to

WILLIAMS OHIO VALLEY MIDSTREAM LLC

Given under my hand and the Great Seal of the State of West Virginia on this day of May 15, 2012

talil E. Yerre

Secretary of State

I, Natalie E. Tennant, Secretary of State of the State of West Virginia, hereby certify that

CAIMAN EASTERN MIDSTREAM, LLC

Control Number: 99GIS

a limited liability company, organized under the laws of the State of Texas

has filed its "Application for Certificate of Authority" in my office according to the provisions of West Virginia Code §31B-10-1002. I hereby declare the organization to be registered as a foreign limited liability company from its effective date of September 11, 2009, until a certificate of cancellation is filed with our office.

Therefore, I hereby issue this

CERTIFICATE OF AUTHORITY OF A FOREIGN LIMITED LIABILITY COMPANY

to the limited liability company authorizing it to transact business in West Virginia

Given under my hand and the Great Seal of the State of West Virginia on this day of September 11, 2009

Secretary of State

Attachment B Map(s)

"12A. For Modifications, Administrative Updates or Temporary permits at an existing facility, please **provide directions to the present location** of the facility from the nearest state road. Include a MAP as Attachment B."

- Location: Conner Compressor Station (CCS) ~800 ft South of Kull Ln (Airport Access) ~0.4 mi East of CR-21/Roberts Ridge Rd Moundsville, Marshall County, WV 26041 Latitude and Longitude: Lat: 39°52'47.5" N Lon: -80°44'48.0" W Lat: 39.880° N Lon: -80.747° W • UTM: 521.65 km E x 4,414.45 km N x 17S • Elevation: ~1,200' USGS: 2016 USGS US Topo 7.5 - minute map for MOUNDSVILLE, OH-WV • Directions: From SR-872/12th Street in Moundsville: 1) Head South on SR-2/Lafayette Ave ~0.8 mi; 2) Turn Left onto SR-2 Alt ~250 ft; 3) Turn Left onto CR-21/Roberts Ridge Rd ~2.1 mi;
 - 4) Turn Left onto Kull Ln Airport Acc ~0.4 mi;
 5) Take slight Right onto access road ~800 ft;
 - 6) Destination is on the Left.

Williams Ohio Valley Midstream LLC (OVM)

Conner Compressor Station (CCS)

Application for 45CSR13 NSR Permit Modification

Attachment B - Location Map / Topographic Map

Attachment C

Installation and Start-Up Schedule

"14C. Provide a **Schedule** of the planned **Installation** of/**Change** to and **Start-Up** of each of the units proposed in this permit application as Attachment C."

NOTE: This application does not include installation of any new equipment or operations. Accordingly, Start-Up will be immediate upon permit issuance.

Attachment D

Regulatory Discussion

"18. **Regulatory Discussion**. List all Federal and State air pollution control regulations that you believe are applicable to the proposed process (if known). Discuss applicability and proposed demonstration(s) of compliance (if known). Provide this information as Attachment D."

Regulatory Discussion

- A. Applicability of New Source Review (NSR) Regulations
- B. Applicability of Federal Regulations
- C. Applicability of Source Aggregation
- D. Applicability of State Regulations

Williams Ohio Valley Midstream LLC (OVM) **Conner Compressor Station (CCS)** Application for 45CSR13 NSR Permit Modification

Attachment D **Regulatory Discussion**

A. Applicability of New Source Review (NSR) Regulations

The following New Source Review (NSR) regulations are potentially applicable to natural gas compressor stations. Applicability to the subject facility has been determined as follows:

1. Prevention of Significant Deterioration (PSD)

This rule does not apply because the facility is a "PSD Minor Source" for each regulated pollutant, as follows:

- NOx: PSD Natural Minor Source with Pre-Controlled PTE less than 250 tpy
- CO: • PSD Natural Minor Source with Pre-Controlled PTE less than 250 tpy
- VOC: PSD Synthetic Minor Source with Controlled PTE less than 250 tpy
- PM10/2.5: PSD Natural Minor Source with Pre-Controlled PTE less than 250 tpy
- SO2: PSD Natural Minor Source with Pre-Controlled PTE less than 250 tpy

2. Non-Attainment New Source Review (NNSR)

This rule does not apply. The facility is in Franklin Tax District of Marshall County, WV, an area designated at "non-attainment" for the 1-Hour 2010 Sulfur Dioxide National Ambient Air Quality Standard (NAAQS). Further, the area is included in the federal Clean Air Interstate Rule (CAIR) boundary for PM2.5 and ozone. Notwithstanding the foregoing area designations, the facility qualifies as an "NNSR Minor Source" as follows:

- NOx: • NNSR Natural Minor Source with Pre-Controlled PTE less than 100 tpy
- VOC: NNSR Synthetic Minor Source with Controlled PTE less than 100 tpy
- PM2.5: NNSR Natural Minor Source with Pre-Controlled PTE less than 100 tpy
- SO2: NNSR Natural Minor Source with Pre-Controlled PTE less than 100 tpy (http://www3.epa.gov/airquality/greenbook/ancl.html).

3. Major Source of Hazardous Air Pollutants (HAPs)

This rule <u>does not apply</u>. The entire facility qualifies as a "HAP Area Source" as follows:

- Each HAP: HAP Area Source with Controlled Individual HAP PTE less than 10 tpy
- Total HAPs: HAP Area Source with Controlled Total of All HAPs PTE less than 25 tpy

4. Title V Operating Permit (TVOP)

This rule does not apply. With the requested Federally Enforceable Limits (FEL), the facility qualifies as a "Title V Natural Minor Source" as follows:

- NOx: Title V Natural Minor Source with Pre-Controlled PTE less than 100 tpy •
- CO: Title V Synthetic Minor Source with Controlled PTE less than 100 tpy
- VOC: Title V Synthetic Minor Source with Controlled PTE less than 100 tpy

[Not Applicable]

[Not Applicable]

[Not Applicable]

[Not Applicable]

- PM10/2.5 Title V Natural Minor Source with Pre-Controlled PTE less than 100 tpy
- SO2: Title V Natural Minor Source with Pre-Controlled PTE less than 100 tpy
- Each HAP: Title V Synthetic Minor Source with Controlled PTE less than 10 tpy
- Total HAPs: Title V Synthetic Minor Source with Controlled PTE less than 25 tpy

B. Applicability of Federal Regulations

The following federal regulations are potentially applicable to natural gas compressor stations. Applicability to the facility has been determined as follows:

1. NSPS A, General Provisions

40CFR§60.1-§60.19

This rule does apply to all sources subject to an NSPS (unless a specific provision is excluded within the source NSPS). Requirements include notification (§60.7); recordkeeping and reporting (§60.7); source testing (§60.8, §60.11); and control device requirements (§60.18).

2. NSPS A, Control Devices - Flares

40CFR§60.18(b)

This rule <u>does not apply</u> to the Thermal Oxidizer (COMB-1) because it is not subject to any New Source Performance Standard.

3. NSPS D (also Da, Db, and Dc), Steam Generating Units

40CFR§60.40-§60.48

These rules do not apply because there are no steam generating units (including line heaters) at the facility with a maximum design heat input capacity equal to or greater than 10 MMBtu/hr (§60.40c(a)).

4. NSPS K (also Ka and Kb), Volatile Organic Liquid Storage Vessels 40CFR§60.40-§60.48

This rule does not apply because there is no Storage Vessel/Tank with capacity equal to or greater than 75 m3 (471.7 bbl or 19,813 gal) that is used to store volatile organic liquids (VOL) at the facility (§60.110(a)).

5. NSPS GG, Stationary Gas Turbines

40CFR§60.330-§60.335

This rule does not apply because there is no stationary gas turbine at the facility with a heat input at peak load equal to or greater than 10.7 gigajoules (10 million Btu) per hour, based on the lower heating value of the fuel fired (§60.330).

6. NSPS KKK, Leaks from Natural Gas Processing Plants 40CFR§60.630-§60.636

This rule does not apply because the facility is not a natural gas processing plant (§60.630(a)).

[Not Applicable]

[Applicable]

[Not Applicable]

[Not Applicable]

[Not Applicable]

[Not Applicable]

7. NSPS LLL, Onshore Natural Gas Processing: SO2 Emissions

40CFR§60.640-§60.648

[Not Applicable]

This rule <u>does not apply</u> because there is no gas sweetening operation at the facility (\$60.640(a)).

 8. NSPS IIII, Compression Ignition Reciprocating Internal Combustion Engines

 40CFR§60.4200-§60.4219
 [Not Applicable]

This rule <u>does not apply</u> because there is no stationary compression ignition engine at the facility (§60.4200(a)).

9. NSPS JJJJ, Stationary Spark Ignition (SI) Internal Combustion Engines (ICE) 40CFR§60.4230-§60.4248 [Applicable]

This rule <u>does apply</u> to the 1,380 bhp Caterpillar G3516B compressor engines (CE-01 and CE-02) because the maximum engine power is greater than 500 bhp and each engine was manufactured or reconstructed on or after 07/01/07 (§60.4230(a)(4)(i)).

The rule <u>does apply</u> to the 203 bhp Caterpillar G3306B TA compressor engine (CE-03) because the maximum engine power is less than 500 HP and the engine was manufactured or reconstructed on or after 07/01/08 (§60.4230(a)(4)(iii)).

Requirements include NOx, CO and VOC emission limits (§60.4233(e-f)); operating limits (§60.4243); performance testing (§60.4244); and notification and recordkeeping (§60.4245).

10. NSPS KKKK, Stationary Combustion Turbines

40CFR§60.4300-§60.4420

[Not Applicable]

This rule <u>does not apply</u> because there is no stationary combustion turbine at the facility with a heat input at peak load equal to or greater than 10.7 gigajoules (10 MMBtu) per hour, based on the higher heating value of the fuel (§60.4305).

11. NSPS OOOO, Crude Oil and Natural Gas Production

40CFR§60.5360-§60.5430

[Applicable]

This rule <u>does apply</u> to the reciprocating compressors driven by the CAT G3516B engines (CE-01 and CE-02) and the CAT G3306B TA (CE-03) engines because the facility is identified within the natural gas production segment and the compressors each commenced construction after 08/23/11 (§60.5360 and §60.5365(c)).

Requirements include replacing rod packing systems on a specified schedule (§60.5385(a)) and notification, monitoring, recordkeeping and reporting (§60.5410(c), §60.5415(c), §60.5420(b)(1) and §60.5420(b)(4)).

This rule <u>does not apply</u> to the produced water/condensate storage tanks (T01 and T02) (or any other tank) at the facility because each tank does not have the potential to emit more than 6 tpy of VOCs. Note, however, there is a requirement to document that the VOC PTE is less than 6 tpy per tank (§60.5420).

This rule <u>does not apply</u> to the pneumatic controllers because they are compressed air driven, else they have a bleed rate \leq 6 scfh, are located between the wellhead and point

of custody transfer, and they are not located at a natural gas processing plant ((60.5365(d)(1))).

12. NSPS OOOOa, Crude Oil and Natural Gas Production

40CFR§60.5360a-§60.5430a

This rule <u>does not apply</u> because the facility was constructed prior to September 18, 2015 (§60.5360a) and has not been modified since that time per the definition of "modification" (§60.5365a).

13. NESHAP Part 61 - Designated Source Standards

40CFR§61.01-§61.359

This rule <u>does not apply</u> because the facility is not a NESHAP Designated Facility (or Source).

Specifically, NESHAP J - Equipment Leaks (Fugitive Emission Sources) of Benzene and NESHAP V - Equipment Leaks (Fugitive Emission Sources) do not apply because all the fluids (liquid or gas) at the facility are less than 10 wt% volatile hazardous air pollutant (VHAP) ((§61.111 and §61.241).

14. NESHAP Part 63 (aka: MACT) - General Provisions

40CFR§63.1-§63.16

This rule <u>does apply</u> because the dehydrators (RSV-01 and RSV-02) are subject to NESHAP HH–Oil and Natural Gas Production Facilities. However, because each dehydrator has the potential annual average benzene emissions less than 0.9 megagrams per year, they are exempt from all requirements except to maintain records of actual annual average benzene emissions to demonstrate continuing exemption status (§63.764(e)(1)).

This rule <u>does not apply</u> to storage vessels (tanks), compressors, or ancillary equipment because the facility is an area source of HAP emissions (§63.760(b)(2)). In no case does this rule apply to engines or turbines.

15. NESHAP HH, Oil and Natural Gas Production Facilities

40CFR§63.760-§63.779

This rule <u>does apply</u> to the dehydrators (RSV-01 and RSV-02). However, because the facility is an area source of HAP emissions, and the actual average emissions of benzene from each glycol dehydration unit process vent to the atmosphere is less than 0.90 megagram per year (1.0 tpy), the dehydration units are exempt. The only requirement is to maintain records of the actual average benzene emissions per year ((33.774(d)(1)(i))).

This rule <u>does not apply</u> to storage vessels (tanks), compressors, or ancillary equipment because the facility is an area source of HAP emissions (§63.760(b)(2)). In no case does this rule apply to engines or turbines.

[Applicable/Exempt]

[Not Applicable]

[Applicable]

[Not Applicable]

16. NESHAP HHH, Natural Gas Transmission and Storage Facilities

40CFR§63.1270-§63.1289

[Not Applicable]

This rule <u>does not apply</u> because the facility is not a natural gas transmission or storage facility transporting or storing natural gas prior to local distribution (§63.1270(a)).

17. NESHAP YYYY, Stationary Combustion Turbines

40CFR§63.6080-§63.6175

[Not Applicable]

This rule <u>does not apply</u> because the facility is not a major source of HAP emissions and there is no stationary gas turbine at the subject facility (§63.6080).

18. NESHAP ZZZZ, Stationary Reciprocating Internal Combustion Engines (RICE) 40CFR§63.6580-§63.6675 [Applicable]

This rule <u>does apply</u> to the 1,380 bhp CAT G3516B (CE-01 and CE-02) and the 203 bhp CAT G3306B TA (CE-03) compressor engines. However, because each engine is "new" (i.e., commenced construction or reconstruction on or after 06/12/06) (§63.6590(a)(2)(iii)); the only requirement is compliance with §60.4230-§60.4248 (NSPS JJJJ) for Spark Ignition Internal Combustion Engines.

19. NESHAP DDDDD, Industrial, Commercial, and Institutional Boilers and Process Heaters – Major Sources

40CFR§63.7480 - §63.7575

[Not Applicable]

[Not Applicable]

This rule <u>does not apply</u> because the facility is not a major source of HAP emissions (§63.7485).

20. NESHAP JJJJJJ, Industrial, Commercial, and Institutional Boilers and Process Heaters – Area Sources

40CFR§63.11193 - §63.11237

This rule <u>does not apply</u> because the gas-fired reboilers (RBV-01/-02) do not meet the definition of "boiler" in §63.11237. Specifically, "boiler" is defined as an enclosed device using controlled flame combustion in which water is heated to recover thermal energy in the form of steam and/or hot water. Furthermore, waste heat boilers, process heaters, and autoclaves are excluded from the definition of "boiler".

21. Compliance Assurance Monitoring (CAM)

40CFR§64.1-§64.10

[Not Applicable]

This rule <u>does not apply</u> because the facility is not a major source required to obtain a Title V Operating Permit (§64.2(a)).

22. Chemical Accident Prevention Provisions (Risk Management Plan (RMP)) 40CFR§68.1-§68.220 [No

[Not Applicable]

This rule <u>does not apply</u> because the facility does not store more than a threshold quantity of a regulated substance in a process. Specifically, "Prior to entry into a natural gas processing plant or a petroleum refining process unit, regulated substances in naturally occurring hydrocarbon mixtures need not be considered when determining whether more than a threshold quantity is present at a stationary source" (§68.115(b)(2)(iii)).

23. Mandatory Greenhouse Gases (GHG) Reporting

40CFR§98.1-§98.9

[Applicable]

This rule <u>does apply</u> because the CO2e emissions from all stationary sources combined within the hydrocarbon basin as defined in 40 CFR Part 98 is \geq 25,000 metric ton/yr (§98.2(a)(3)).

Requirements include monitoring, recordkeeping, and annual reporting of GHG from stationary fuel combustion sources (§98.2(a)(3)).

C. Applicability of Source Aggregation

The operations of the facility have not been aggregated with any other gas production, midstream service facilities, or transportation operations because there are no other oil and gas facilities or operations that are both a) "contiguous and adjacent" <u>and</u> b) "under common control" to the facility.

D. Applicability of State Regulations

The following state regulations are potentially applicable to natural gas compressor stations. Applicability to the facility has been determined as follows:

1. Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers §45CSR2 [Applicable]

This rule <u>does apply</u>; however, because each reboiler (RBV-01 and -02) has a maximum design heat input (MDHI) rating less than 10 MMBtu/hr, the only requirement is to limit visible emissions to less than 10% opacity during normal operations (§45-02-3.1). The reboilers combust only natural gas which inherently conforms to the visible emission standards.

2. Prevent and Control the Discharge of Air Pollutants into the Open Air Which Causes or Contributes to an Objectionable Odor or Odors §45CSR4 [Applicable]

This rule <u>does apply</u> and states that an objectionable odor is an odor that is deemed objectionable when in the opinion of a duly authorized representative of the Air Pollution Control Commission (Division of Air Quality), based upon their investigations and complaints, such odor is objectionable.

3. Control of Air Pollution from Combustion of Refuse §45CSR6

[Applicable]

This rule <u>does apply</u> to the Thermal Oxidizer (COMB-1); however, the Thermal Oxidizer (COMB-1) combusts waste gas from natural gas operations which inherently conforms to the particulate emission and opacity standards.

4. Prevent and Control Air Pollution from the Emission of Sulfur Oxides §45CSR10 [Not Applicable]

This rule does not apply to the Compressor Engines (CE-01 thru CE-03), Reboilers (RBV-01 and RBV-02), Thermal Oxidizer (COMB-1) or other fuel burning units, manufacturing process sources, or combustion sources because each combust only natural gas (§45-10A-3.1.b).

5. Permits for Construction, Modification, Relocation and Operation of Stationary Sources of Air Pollutants, Notification Requirements, Administrative Updates, Temporary Permits, General Permits, and Procedures for Evaluation §45CSR13 [Applicable]

The rule does apply as Williams OVM is seeking a NSR Permit Modification for the facility. Williams OVM has published the required Class I legal advertisement notifying the public of the permit application and paid the appropriate application fee.

6. Permits for Construction and Major Modification of Major Stationary Sources of Air Pollutants for Prevention of Significant Deterioration 45CSR14 [Not Applicable]

The rule does not apply because the facility is neither a new PSD major source of pollutants nor is the proposed facility a modification to an existing PSD major source.

7. Standards of Performance for New Stationary Sources Pursuant to 40 CFR Part 60 45CSR16 [Applicable]

The rule does apply to this source by reference to §40CFR60 Subparts JJJJ and OOOO. The facility is subject to the notification, testing, monitoring, recordkeeping and reporting requirements of these Subparts.

8. Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution Which Cause or Contribute to Nonattainment

45CSR19

[Not Applicable] This rule does not apply because the facility is a minor (or "deferred") source of all regulated pollutants.

9. Regulation of Volatile Organic Compounds (VOC) 45CSR21

[Not Applicable]

This rule does not apply because facility is not located in Putnam, Kanawha, Cabell, Wayne, Wood, or Greenbrier Counties (§45-29-1).

10. Air Quality Management Fees Program

45CSR22

This rule <u>does apply</u>. It establishes a program to collect fees for certificates to operate and for permits to construct, modify or relocate sources of air pollution.

11. Prevent and Control Emissions of Toxic Air Pollutants (Best Available Control Technology (BAT)) 45CSR27 [Not Applicable]

This rule does not apply because the equipment used in the production and distribution of petroleum products is exempt, provided the product contains no more than 5% benzene by weight (§45-27-2.4).

12. Air Pollution Emissions Banking and Trading 45CSR28

This rule does not apply because the facility does not choose to participate in the voluntarily statewide air pollutant emissions trading program.

13. Emission Statements for VOC and NOX

45CSR29

This rule <u>does not apply</u> because the facility is not located in Putnam, Kanawha, Cabell, Wayne, Wood, or Greenbrier Counties (§45-29-1).

14. Requirements for Operating Permits

45CSR30

This rule does not apply because the facility qualifies as a "Title V Synthetic Minor Source".

Pursuant to the authority granted in West Virginia 45CSR§30-3.2 and 45CSR§30A-3.1, the DAQ is extending the deferral, which was set to expire December 15, 2000, of nonmajor sources to West Virginia 45CSR30 (Title V Program) from the obligation to submit an operating permit application.

15. Emission Standards for Hazardous Air Pollutants (HAP)

45CSR34

This rule does not apply because the facility is an area source of HAP emissions. Note: The provisions under Subparts HH and ZZZZ of 40 CFR Part 63 which apply to nonmajor area sources of hazardous air pollutants are excluded.

[Not Applicable]

[Not Applicable]

[Not Applicable]

[Not Applicable]

[Applicable]

Attachment E Plot Plan

"21. Provide a **Plot Plan**, e.g. scaled map(s) and/or sketch(es) showing the location of the property on which the stationary source(s) is or is to be located as Attachment E."

• Plot Plan – Conner Compressor Station (CCS)

Williams Ohio Valley Midstream LLC (OVM) Conner Compressor Station (CCS) Application for 45CSR13 NSR Permit Modification Attachment E - Plot Plan

<u>Unit No.</u>	Description	Unit No.	Description
CE-01	Compressor Engine 01 - CAT G3516B	HTR-01	Heater Treater 01
CE-02	Compressor Engine 02 - CAT G3516B	HTR-02	Condensate Stabilizer Heater 01
CE-03	Compressor Engine 01 - CAT G3306B TA	T01	Produced Water Storage Tank 01
RBV-1	Dehydrator Reboiler 01	TLO-1	Produced Water Truck Load-Out
	Dehydrator 01 - Still Vent (DSV-1)	TLO-2	Condensate Truck Load-Out
K3V-1	Dehydrator 01 - Flash Tank (DFT-1)	SSM	Compressor Blowdown (CBD)
RBV-2	Dehydrator Reboiler 02	CRP	Compressor Rod Packing (x-RPC)
	Dehydrator 02 - Still Vent (DSV-2)	HTR-03	Station Recycle Line Heater 01
KOV-Z	Dehydrator 02 - Flash Tank (DFT-2)	HTR-04	Condensate Stabilizer Heater 02
COMB-1	Thermal Oxidizer (98% T-Ox)	T02	Produced Water Storage Tank 02

Attachment F Process Flow Diagram(s) (PFD)

"22. Provide a **Detailed Process Flow Diagram(s)** showing each proposed or modified emissions unit, emission point and control device as Attachment F."

• Process Flow Diagram (PFD) – Conner Compressor Station (CCS)

Williams Ohio Valley Midstream LLC (OVM)

Conner Compressor Station (CCS)

Application for 45CSR13 NSR Permit Modification

Attachment F - Process Flow Diagram (PFD)

Attachment G

Process Description

"23. Provide a **Process Description** as Attachment G. Also describe and quantify to the extent possible all changes made to the facility since the last permit review (if applicable)."

• Process Description – Conner Compressor Station (CCS)

Williams Ohio Valley Midstream LLC CONNER COMPRESSOR STATION

Application for 45CSR13 NSR Permit Modification

Attachment G PROCESS DESCRIPTION

A. Project Overview

Williams Ohio Valley Midstream LLC owns and operates the existing Conner Compressor Station located east of Roberts Ridge Road, approximately 2.3 miles south-southwest of Moundsville (See Appendix B – Site Location Map). The facility receives natural gas from local production wells then compresses and dehydrates the gas for delivery to a gathering pipeline. Additionally, raw field condensate is received at the site, stabilized and then sent offsite via pipeline.

B. Reciprocating Engines

Two (2) natural gas-fueled CAT G3516B Compressor Engines (CE-01 and CE-02) are utilized. These are lean burn engines with oxidation catalysts (01-OxCat and 02-OxCat) to control CO, VOC, and HAP emissions.

One (1) natural gas-fueled CAT G3306B TA Compressor Engines (CE-03) is utilized. This is a rich burn engine with non-selective catalytic reduction (01-NSCR) to control NOx and CO emissions.

C. Compressor Rod Packing and Crankcase Emissions

The compressor and engine operations result in emissions from the wear of mechanical joints, seals, and rotating surfaces over time.

D. Startup/Shutdown/Maintenance

During routine operation of the facility the compressor engines will undergo periods of startup and shutdown. Often when the engines are shutdown, the natural gas contained within the compressor and associated piping is vented to atmosphere (CBD).

The Emergency Shutdown (ESD) system is periodically tested, resulting in venting natural gas to the atmosphere.

Purge Gas (PG) is used in the dispersion stack to prevent and explosive condition from occurring.

Three condensate vessels at the site are periodically opened to replace the filters inside. A portion of the condensate inside each vessel flashes to atmosphere during maintenance. These filter changeouts (FCO) result in VOC and HAP emissions.

The SSM emissions are generally vented through the dispersion stack.

E. Tri-Ethylene Glycol (TEG) Dehydrators

Two (2) Triethylene Glycol (TEG) Dehydrators are utilized at the facility. Each dehydrator is comprised of a Contactor/Absorber Tower (no vented emissions), a Flash Tank, and a Regenerator/Still Vent.

The TEG Dehydrators are used to remove water vapor from the inlet wet gas stream to meet pipeline specifications. In the dehydration process, the wet inlet gas stream flows through a contactor tower where the gas is contacted with lean glycol. The lean glycol absorbs the water in the gas stream and becomes rich glycol laden with water and trace amounts of hydrocarbons.

The rich glycol is then routed to a flash tank where the glycol pressure is reduced to liberate the lighter end hydrocarbons (especially methane). Whenever practical, the lighter end hydrocarbons are routed from the flash tank to the Reboiler for use as fuel; otherwise these off-gases are vented to a thermal oxidizer.

The rich glycol is then sent from the flash tank to the regenerator/still where the TEG is heated to drive off the water vapor and any remaining hydrocarbons. The off-gases from the regenerator/still are vented to a thermal oxidizer.

Once boiled, the glycol is returned to a lean state and used again in the process.

F. Tri-Ethylene Glycol (TEG) Reboilers

Two (2) natural gas-fired reboilers are associated with the dehydrators (RSV-01 and RSV 02).

G. Thermal Oxidizer

Emissions from the Dehydrators (RSV-01 and RSV-02) are controlled by the Frederick Logan Company Thermal Oxidizer (COMB-1).

H. <u>Heaters</u>

One (1) 1.55 MMBtu/hr heater-treater (HTR-01), one (1) 2.55 MMBtu/hr condensate stabilizer heater (HTR-02), One (1) 1.66 MMBtu/hr station recycle line heater (HTR-03), and one (1) 9.7 MMBtu/hr condensate stabilizer heater (HTR-04) will be used at the site.

I. Storage Tanks

There are tanks at the facility used to store various materials, including produced water, lube oil, fresh and spent TEG, etc. All of these tanks, except for the produced water storage tanks, generate de-minimis (insignificant) emissions.

The produced water tanks receive liquids from the dehydrator and inlet separator. Liquids removed through the dehydration process are cooled, condensed and sent to the atmospheric storage tanks (T01 and T02).

A ProMax simulation of was completed to determine the presence of flash emissions from the storage tanks. The ProMax process simulation showed minimal tank flash emissions and these losses are included in the emission estimates.

J. Truck Load-Out

Produced water will be loaded into tanker trucks (TLO-01) and produce small quantities of VOC emissions. Additionally, under normal operating conditions, stabilized condensate will be sent offsite via pipeline; however, during unforeseen periods of pipeline outage, the stabilized condensate will be offloaded into tanker trucks (TLO-02), which will also create VOC emissions.

K. Piping and Equipment Fugitive Emissions

Piping and process equipment generate from leaks from different component types (connectors, valves, pumps, etc.) in gas-vapor service and light-liquid (condensate) service.

Attachment H

Safety Data Sheets (SDS) (And Representative Gas Analysis)

"24. Provide **Safety Data Sheets (SDS)** for all materials processed, used or produced as Attachment H. For chemical processes, provide a SDS for each compound emitted to the air."

• SAFETY DATA SHEETS (SDS):

Williams Safety Data Sheets (SDS) provide detailed information needed to use the products in a safe and environmentally acceptable manner and meet local, state and federal requirements.

Copies of SDS can be accessed at: <u>http://co.williams.com/safety/safety-data-sheets/</u>

- Butane, Normal
- Carbon Dioxide
- Crude Butadiene
- Debutanized Aromatic Concentrate
- Demethanized-Mix Y Grade
- Ethane/Propane Mix
- Ethane Purity
- Ethylene
- Isobutane
- Liquid Natural Gas LNG
- Mixed Butane
- Natural Gas Condensate Sour
- Natural Gas Condensate Sweet
- Natural Gas Liquids NGL
- Natural Gas
- Natural Gasoline
- Propane
- Propylene Polymer Grade
- Reclaimed Methanol
- Rich Water
- Wellhead Natural Gas

Attachment I Emission Units Table

"25. Fill out the Emission Units Table and provide it as ATTACHMENT I."

• Emission Unit Table – Conner Compressor Station (CCS)

Attachment I EMISSION UNITS TABLE

(Include all emission units and air pollution control devices

that will be part of this permit application review, regardless of permitting status.)

Emission Unit ID ¹	Emission Point ID ²	Control ID	Emission Unit Installed/ Design Description Modified Capacity		Type ³ and Date of Change	Control Device ⁴	
CE-01	1E	01-OxCat	Compressor Engine 01 - CAT G3516B	'14/'18	1,380 bhp	MOD	01-OxCat
CE-02	2E	02-OxCat	Compressor Engine 02 - CAT G3516B	'14/'18	1,380 bhp	MOD	02-OxCat
CE-03	3E	01-NSCR	Compressor Engine 03 - CAT G3306B TA	'14/'18	203 bhp	MOD	01-NSCR
RBV-1	4E		Dehydrator Reboiler 01	2014	1.66 MMBtu/hr	EXIST	
RSV-1	5E	01-COMB	Dehydrator 01 - Still Vent (DSV-1)	'14/'18	60.0 MMscfd	MOD	01-COMB
_	6E	01-COMB	Dehydrator 01 - Flash Tank (DFT-1)	_		_	
RBV-2	7E		Dehydrator Reboiler 02	2016	1.66 MMBtu/hr	EXIST	
RSV-2	8E	01-COMB	Dehydrator 02 - Still Vent (DSV-2)	'16/'18	60.0 MMscfd	мор	01-COMB
	9E	01-COMB	Dehydrator 02 - Flash Tank (DFT-2)	10, 10		mob	01.00112
COMB-1	10E		Thermal Oxidizer (98% T-Ox)	'14/'17	6.41 MMBtu/hr	EXIST	
HTR-01	11E		Heater Treater 01	2014	1.55 MMBtu/hr	EXIST	
HTR-02	12E		Condensate Stabilizer Heater 01	2014	2.55 MMBtu/hr	EXIST	
T01	13E		Produced Water Storage Tank 01	2014	48 bbl	EXIST	
TLO-1	14E		Produced Water Truck Load-Out	2014	563 Mgal/yr	EXIST	
TLO-2	15E		Condensate Truck Load-Out	2014	250 Mgal/yr	EXIST	
			Compressor Blowdown (CBD)		516 Events/yr		
SCM	165		Emergency Shutdown (ESD) Testing	'1 <i>4/</i> '19	1 Event/yr	MOD	
33101	IUE		Purge Gas (PG)	14/10	35 scf/hr	IVIOD	
			Filter Change-Out (FCO)		146 Events/yr		
CRP	18E		Compressor Rod Packing	'14/'18	5 Compressors	MOD	
HTR-03	19E		Station Recycle Line Heater 01	2015	1.66 MMBtu/hr	EXIST	
HTR-04	20E		Condensate Stabilizer Heater 02	2015	9.70 MMBtu/hr	EXIST	
T02	21E		Produced Water Storage Tank 02	2015	210 bbl	EXIST	
FUG-G	170		Process Piping Fugitives - Gas	14/'18	5,050 Fittings	MOD	
FUG-L	1/2		Process Piping Fugitives - Light Liquid	14/'18	4,556 Fittings	MOD	
ECC	22E		Engine Crankcase Leaks	14/'18	3 Engines	MOD	
	•	•		•		•	

¹ For Emission Units (or <u>Sources</u>) use the following numbering system: 1S, 2S, 3S, ... or other appropriate designation.

² For Emission Points use the following numbering system: 1E, 2E, 3E, ... or other appropriate designation.

³New, modification, removal, etc.

⁴ For Control Devices use the following numbering system: 1C, 2C, 3C, ... or other appropriate designation.

Attachment J

Emission Points Data Summary Sheet

"26. Fill out the **Emission Points Data Summary Sheet** (Table 1 and Table 2) and provide it as Attachment J."

• Table 1 – Emissions Data

- Compressor Engines (CE-01/1E thru CE-03)
- Reboilers (RBV-01 and RBV-02)
- o Dehydrators (RSV-01 and RSV-02)
- Thermal Oxidizer (Combustion Only) (COMB-1/10E)
- Heater Treater 01 (HTR-01/11E)
- o Condensate Stabilizer Heater 01 (HTR-02/12E)
- Produced Water Storage Tanks (T01/13E and T02/21E)
- Produced Water Truck Load-Out (TLO-1/14E)
- o Stabilized Condensate Truck Load-Out (TLO-2/15E)
- o Start/Stop/Maintenance (SSM/16E)
 - Compressor Blowdown (CBD)
 - Emergency Shutdown (ESD) Testing
 - Purge Gas (PG)
 - Filter Change-Out (FCO)
- Compressor Rod Packing (CRP/18E) (X-Rod Packing/Crankcase (RPC))
- Station Recycle Line Heater 01 (HTR-03/19E)
- o Condensate Stabilizer Heater 02 (HTR-04/20E)
- Process Piping Fugitives
 - Gas (FUG-G/17E)
 - Light Liquid (FUG-L/17E)
- Engine Crankcase (ECC/22E) (X-Rod Packing/Crankcase (RPC))
- Plant-Wide Summary (w/o Fugitives)
- o Plant-Wide Summary (w/ Fugitives)
- Table 2 Release Parameter Data
| | | | | | | Т | able 1: Er | nissions Data | | | | | | | |
|--|--|---|--|---|--|--------------------------------------|--|---|--------------------------------|---|-------------------------------|--|--|-------------------------------------|---|
| Emission
Point ID No.
(Must match
Emission
Units Table &
Plot Plan) | Emission
Point
Type ¹ | Emission
Vented Tl
This P
(Must m
Emission
Table & Ple | n Unit
nrough
oint
<i>aatch
Units</i>
ot Plan) | Air Pol
Control
(Must r
Emissio
Table & P | lution
Device
match
n Units
Plot Plan) | Vent T
Emissi
(Chei
process | ime for
on Unit
<i>mical</i>
es only) | All Regulated
Pollutants -
Chemical
Name/CAS ³
(Speciate
VOCs | Maxi
Pote
Uncor
Emiss | mum
ential
htrolled
sions ⁴ | Maxi
Pote
Cont
Emise | imum
ential
rolled
sions ⁵ | Emission
Form or
Phase
(At exit
conditions,
Solid, Liquid | Est.
Method
Used ⁶ | Emission
Concen-
tration ⁷
(ppmvd or
mg/m ³) |
| | | ID No. | Source | ID No. | Device
Type | Short
Term ² | Max
(hr/yr) | a nni oj | lb/hr | ton/yr | lb/hr | ton/yr | Gas/Vapor) | | |
| | | | | | | | | NOX | 1.52 | 6.66 | 1.52 | 6.66 | Gas | Vendor | |
| | 0 | | | | | 00) | | СО | 9.37 | 41.04 | 0.50 | 2.20 | Gas | Vendor | |
| | Corr | ipressor Eng
1.380 bhn C | ines 01 a | nd 02 (CE-0
SB (w/ OxCa | of and CE-
of) (Fach) | 02) | | NMNEHC | 3.22 | 14.13 | 0.53 | 2.33 | Gas | Vendor | |
| | | 1,000 kiip 0 | | | , (_uo) | | | VOC | 4.50 | 19.71 | 0.83 | 3.63 | Gas | Vendor | |
| | | | | | | | | PM10/2.5 | 0.11 | 0.49 | 0.11 | 0.49 | S/L/G | AP-42 | |
| | | | | | | | | SO2 | 0.01 | 0.03 | 0.01 | 0.03 | Gas | AP-42 | |
| | | | | | | | | Acetaldehyde | 0.09 | 0.41 | 0.02 | 0.07 | Gas | AP-42 | |
| | | | | | | | | Acrolein | 0.06 | 0.25 | 0.01 | 0.04 | Gas | AP-42 | |
| | | | | | | | | Benzene | 0.00 | 0.02 | 8E-04 | 4E-03 | Gas | AP-42 | |
| | | | | | | | | Butadiene | 3E-03 | 0.01 | 5E-04 | 2E-03 | Gas | AP-42 | |
| | | | | | | | | Ethylbenzene | 4E-04 | 2E-03 | 7E-05 | 3E-04 | Gas | AP-42 | |
| | | | | | | | | НСНО | 1.10 | 4.80 | 0.27 | 1.17 | Gas | Vendor | |
| CE-01 | Upward | 1E | CE-01 | 01-OxCat | | | | n-Hexane | 0.01 | 0.05 | 2E-03 | 0.01 | Gas | AP-42 | |
| CE-02 | Vertical
Stack | 2E | CE-02 | 02-OxCat | OxCat | С | 8,760 | Methanol | 0.03 | 0.12 | 5E-03 | 0.02 | Gas | AP-42 | |
| (Each) | Oldek | (Feeb) | (Feeb) | (Feeb) | (Each) | (Each) | (Each) | POM/PAH | 4E-03 | 0.02 | 6E-04 | 3E-03 | Gas | AP-42 | |
| (Each) | (Each) | (Each) | (Each) | (Each) | | | | Toluene | 5E-03 | 0.02 | 8E-04 | 3E-03 | Gas | AP-42 | |
| | | | | | | | | 2,2,4-TMP | 3E-03 | 0.01 | 5E-04 | 2E-03 | Gas | AP-42 | |
| | | | | | | | | Xylenes | 2E-03 | 0.01 | 3E-04 | 1E-03 | Gas | AP-42 | |
| | | | | | | | | Other HAP | 4E-03 | 0.02 | 6E-04 | 3E-03 | Gas | AP-42 | |
| | | | | | | | | Total HAP | 1.31 | 5.75 | 0.30 | 1.32 | Gas | Sum | |
| | | | | | | | | CO2 | 1,570 | 6,876 | 1,570 | 6,876 | Gas | Vendor | |
| | | | | | | | | CH4 | 5.99 | 26.25 | 5.99 | 26.25 | Gas | Vendor | |
| | | | | | | | | N2O | 2E-03 | 0.01 | 2E-03 | 0.01 | Gas | 40CFR98 | |
| | | | | | | | | CO2e | 1,720 | 7,536 | 1,720 | 7,536 | Gas | 40CFR98 | |

						1	Table 1: E	missions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emission Vented TI This P (Must m Emission Table & Ple	n Unit hrough oint patch Units ot Plan)	Air Pol Control (Must r Emission Table & P	lution Device match n Units Pot Plan)	Vent T Emissi (Che process	ime for on Unit <i>mical</i> es only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Maxi Pote Uncor Emise	mum ential htrolled sions ⁴	Maxi Pote Cont Emise	imum ential rolled sions⁵	Emission Form or Phase (At exit conditions, Solid, Liquid or	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmvd or mg/m ³)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& NAF 3)	lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)		
								NOX	6.83	29.91	0.22	0.98	Gas	AP-42	
		Comme		nine 02 (CE	02)			СО	6.83	29.91	0.90	3.92	Gas	AP-42	
		(20'	bhp Cat	G3306B TA	-03)			NMNEHC	0.11	0.47	0.11	0.47	Gas	AP-42	
		(/			VOC	0.21	0.93	0.21	0.93	Gas	AP-42	
								PM10/2.5	0.04	0.16	0.04	0.16	S/L/G	AP-42	
								SO2	1E-03	5E-03	1E-03	5E-03	Gas	AP-42	
								Acetaldehyde	5E-03	0.02	5E-03	0.02	Gas	AP-42	
								Acrolein	5E-03	0.02	5E-03	0.02	Gas	AP-42	
								Benzene	3E-03	0.01	3E-03	0.01	Gas	AP-42	
								Butadiene	1E-03	5E-03	1E-03	5E-03	Gas	AP-42	
								Ethylbenzene	5E-05	2E-04	5E-05	2E-04	Gas	AP-42	
								НСНО	0.09	0.39	0.09	0.39	Gas	AP-42	
								n-Hexane	0.01	0.02	0.01	0.02	Gas	AP-42	
CE-03	Upward Vertical	3E	CE-03	01-NSCR	NSCR	C	8 760	Methanol	0.01	0.02	0.01	0.02	Gas	AP-42	
02 00	Stack	0L	02 00		NOOR	0	0,700	POM/PAH	2E-04	8E-04	2E-04	8E-04	Gas	AP-42	
								Toluene	1E-03	4E-03	1E-03	4E-03	Gas	AP-42	
								2,2,4-TMP	1E-03	5E-03	1E-03	5E-03	Gas	AP-42	
								Xylenes	4E-04	2E-03	4E-04	2E-03	Gas	AP-42	
								Other HAP	3E-04	1E-03	3E-04	1E-03	Gas	AP-42	
								Total HAP	0.12	0.52	0.12	0.52	Gas	Sum	
								CO2	254	1,113	254	1,113	Gas	40CFR98	
								CH4	0.19	0.84	0.19	0.84	Gas	40CFR98	
								N2O	4E-04	2E-03	4E-04	2E-03	Gas	40CFR98	
								CO2e	259	1,135	259	1,135	Gas	40CFR98	

						Т	able 1: Er	nissions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emissior Vented Th This P <i>(Must m</i> <i>Emission</i> Table & Ple	n Unit hrough oint hatch Units ot Plan)	Air Pol Control <i>(Must I</i> Emissio Table & F	llution Device match n Units Plot Plan)	Vent T Emissi <i>(Che.</i> process	ime for on Unit <i>mical</i> es only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)	Maxi Pote Uncon Emiss	mum ential trolled sions ⁴	Maxi Pote Cont Emise	mum ential rolled sions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid or	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmvd or mg/m ³)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)		lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)		
								NOX	0.16	0.71	0.16	0.71	Gas	AP-42	
								CO	0.14	0.60	0.14	0.60	Gas	AP-42	
		Reboiler 01	and 02 (R 66 MMBtu	BV-01 and /hr (Fach)	RBV-02)			NMNEHC	9E-03	0.04	9E-03	0.04	Gas	AP-42	
		T.						VOC	9E-03	0.04	9E-03	0.04	Gas	AP-42	
								PM10/2.5	0.01	0.05	0.01	0.05	S/L/G	AP-42	
								SO2	1E-03	4E-03	1E-03	4E-03	Gas	AP-42	
								Acetaldehyde					Gas	AP-42	
								Acrolein					Gas	AP-42	
								Benzene	3E-06	1E-05	3E-06	1E-05	Gas	AP-42	
								Butadiene					Gas	AP-42	
								Ethylbenzene					Gas	AP-42	
								НСНО	1E-04	5E-04	1E-04	5E-04	Gas	AP-42	
RBV-01		4F	RBV-01					n-Hexane	3E-03	0.01	3E-03	0.01	Gas	AP-42	
RBV-02	Upward Vertical	7E	RBV-02	na	na	C	8760	Methanol					Gas	AP-42	
	Stack	(= -)	(F = = =)	na	na	C	(Each)	POM/PAH	1E-06	5E-06	1E-06	5E-06	Gas	AP-42	
(Each)		(Each)	(Each)				. ,	Toluene	6E-06	2E-05	6E-06	2E-05	Gas	AP-42	
								2,2,4-TMP					Gas	AP-42	
								Xylenes					Gas	AP-42	
								Other HAP	2E-06	9E-06	2E-06	9E-06	Gas	AP-42	
								Total HAP	3E-03	0.01	3E-03	0.01	Gas	Sum	
								CO2	194.18	851	194.18	851	Gas	40CFR98	
								CH4	4E-03	0.02	4E-03	0.02	Gas	40CFR98	
								N2O	4E-04	2E-03	4E-04	2E-03	Gas	40CFR98	
								CO2e	194.38	851	194.38	851	Gas	40CFR98	

						1	able 1: Er	nissions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emission Vented Tl This P (Must m Emission Table & Pl	n Unit hrough oint hatch Units ot Plan)	Air Pol Control (Must r Emissio Table & P	lution Device match n Units lot Plan)	Vent T Emissi <i>(Che</i> process	ime for on Unit <i>mical</i> es only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)	Maxi Pote Uncor Emise	mum ential itrolled sions ⁴	Max Pote Cont Emis	mum ential rolled sions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid or	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmvd or mg/m ³)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)		lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)		
								NOX					-		
			1 and 00 (CO			_		-		
	L 60.0	Denyarator U MMscfd (w/ (1 and 02 (Combusto	RSV-01 and	lenser) (E	ach)		NMNEHC	68.82	301.44	0.69	3.01	Gas	GLYCalc	
						,		VOC	68.82	301.44	0.69	3.01	Gas	GLYCalc	
								PM10/2.5					-		
								SO2					-		
								Acetaldehyde					-		
								Acrolein					-		
								Benzene	2.15	9.42	0.02	0.09	Gas	GLYCalc	
								Butadiene					-		
		55						Ethylbenzene	0.29	1.27	3E-03	0.01	Gas	GLYCalc	
		6E						НСНО					-		
RSV-01	Upward	(Total)	RSV-01					n-Hexane	3.29	14.39	0.03	0.14	Gas	GLYCalc	
RSV-02	Vertical Stack	8F	RSV-02	01-COMB	T-Ox	C	8760	Methanol					-		
(Each)	Oldok	9E		OT COME	1 0 1	Ŭ	(Each)	POM/PAH					-		-
(Eacir)	(Each)	(Total)	(Each)					Toluene	3.98	17.43	0.04	0.17	Gas	GLYCalc	
		(Fach)	× ,					2,2,4-TMP	0.04	0.15	4E-04	2E-03	Gas	GLYCalc	
		()						Xylenes	0.29	1.27	3E-03	0.01	Gas	GLYCalc	
								Other HAP							
								Total HAP	10.03	43.93	0.10	0.44	Gas	GLYCalc	
								CO2					-		
								CH4	22.89	100.26	0.23	1.00	Gas	GLYCalc	
								N2O							
								CO2e	572	2,506	5.72	25.06	Gas	40CFR98	

						Ţ	able 1: Er	nissions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emissic Vented T This F <i>(Must r</i> <i>Emission</i> Table & P	on Unit Through Point <i>natch</i> n Units Pot Plan)	Air Pol Control (Must I Emissio Table & F	llution Device match n Units Plot Plan)	Vent T Emissi <i>(Che</i> process	ime for on Unit <i>mical</i> es only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Maxi Pote Uncon Emise	mum ential itrolled sions⁴	Maxi Pote Cont Emis	imum ential rolled sions⁵	Emission Form or Phase (At exit conditions, Solid, Liquid or	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmvd or mg/m ³)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& <i>ח</i> אר <i>ס</i>	lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)		
								NOX			0.63	2.75	Gas	AP-42	
	T		(0,)) (OOND	4		CO			1.99	8.70	Gas	AP-42	
	in (ermal Oxidi	zer (Comb	ustion Only RSV-01 and	/) (COMB- d RSV-02)	1)		NMNEHC		(!	99% Contr	ol: See RS	V-01 and RS	/-02)	
	```		, aratoro		u no r 01)			VOC		(!	99% Contr	ol: See RS	SV-01 and RS	/-02)	
								PM10/2.5			0.05	0.21	S/L/G	AP-42	
								SO2			4E-03	0.02	Gas	AP-42	
								Acetaldehyde					Gas	AP-42	
								Acrolein					Gas	AP-42	
								Benzene		(	99% Contr	ol: See RS	SV-01 and RS	/-02)	-
								Butadiene					Gas	AP-42	
								Ethylbenzene		(	99% Contr	ol: See RS	SV-01 and RS	/-02)	
								НСНО			5E-04	2E-03	Gas	AP-42	
COMB-1								n-Hexane		(	99% Contr	ol: See RS	SV-01 and RS	/-02)	
(Comb-	Upward Vertical	10F	COMB-1	na	na	C	8 760	Methanol		(	99% Contr	ol: See RS	SV-01 and RS	/-02)	
ustion	Stack	102	COULD 1	na	na	U	0,100	POM/PAH			4E-06	2E-05	Gas	AP-42	
Only)								Toluene		(	99% Contr	ol: See RS	SV-01 and RS	/-02)	
								2,2,4-TMP		(	99% Contr	ol: See RS	SV-01 and RS	/-02)	
								Xylenes		(	99% Contr	ol: See RS	SV-01 and RS	/-02)	
								Other HAP			8E-06	3E-05	Gas	AP-42	
								Total HAP			5E-04	2E-03	Gas	Sum	
								CO2			750	3,284	Gas	40CFR98	
								CH4		(	99% Contr	ol: See RS	SV-01 and RS	/-02)	
								N2O			1E-03	6E-03	Gas	40CFR98	
								CO2e			750	3,286	Gas	40CFR98	

						Та	able 1: En	nissions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emission Vented T This P (Must n Emission Table & Pl	n Unit hrough ooint natch n Units ot Plan)	Air Po Control (Must / Emissio Table & F	llution Device match on Units Plot Plan)	Vent T Emissi <i>(Che.</i> process	ime for on Unit <i>mical</i> es only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Maxi Pote Uncor Emise	imum ential htrolled sions⁴	Max Pote Cont Emis	imum ential rrolled sions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid or	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmvd or mg/m ³ )
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAF 3)	lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)		
								NOX	0.15	0.67	0.15	0.67	Gas	AP-42	
					A)			СО	0.13	0.56	0.13	0.56	Gas	AP-42	
		Heat	er Treater 55 MMBtu	01 (HTR-0 ⁻ /hr (Fach)	1)			NMNEHC	8E-03	0.04	8E-03	0.04	Gas	AP-42	
				(_ao)				VOC	8E-03	0.04	8E-03	0.04	Gas	AP-42	
								PM10/2.5	1E-02	0.05	1E-02	0.05	S/L/G	AP-42	
								SO2	9E-04	4E-03	9E-04	4E-03	Gas	AP-42	
								Acetaldehyde					Gas	AP-42	
								Acrolein					Gas	AP-42	
								Benzene	3E-06	1E-05	3E-06	1E-05	Gas	AP-42	
								Butadiene					Gas	AP-42	
								Ethylbenzene					Gas	AP-42	
								НСНО	1E-04	5E-04	1E-04	5E-04	Gas	AP-42	
								n-Hexane	3E-03	0.01	3E-03	0.01	Gas	AP-42	
HTR-01	Upward Vertical	11F	HTR-01	na	na	С	8,760	Methanol					Gas	AP-42	
	Stack					Ū	0,1 00	POM/PAH	1E-06	5E-06	1E-06	5E-06	Gas	AP-42	
								Toluene	5E-06	2E-05	5E-06	2E-05	Gas	AP-42	
								2,2,4-TMP					Gas	AP-42	
								Xylenes					Gas	AP-42	
								Other HAP	2E-06	8E-06	2E-06	8E-06	Gas	AP-42	
								Total HAP	3E-03	0.01	3E-03	0.01	Gas	Sum	
								CO2	181	794	181	794	Gas	AP-42	
								CH4	3E-03	0.01	3E-03	0.01	Gas	AP-42	
								N2O	3E-04	1E-03	3E-04	1E-03	Gas	AP-42	
								CO2e	182	795	182	795	Gas	CFR98	

						Ta	able 1: En	nissions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emission Vented T This P (Must n Emission Table & Pl	n Unit hrough ooint natch n Units ot Plan)	Air Po Control (Must I Emissio Table & F	llution Device match n Units Plot Plan)	Vent T Emissi (Che process	ime for on Unit <i>mical</i> es only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Maxi Pote Uncor Emise	imum ential htrolled sions ⁴	Max Pote Cont Emis	imum ential rrolled sions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid or	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmvd or mg/m ³ )
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAF 3)	lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)		
								NOX	0.25	1.10	0.25	1.10	Gas	AP-42	
		0	01-1-11					CO	0.21	0.92	0.21	0.92	Gas	AP-42	
		Condensate	55 MMBtu	Heater 01 /hr (Fach)	(HTR-02)			NMNEHC	1E-02	0.06	1E-02	0.06	Gas	AP-42	
				(_ao)				VOC	1E-02	0.06	1E-02	0.06	Gas	AP-42	
								PM10/2.5	2E-02	0.08	2E-02	0.08	S/L/G	AP-42	
								SO2	2E-03	7E-03	2E-03	7E-03	Gas	AP-42	
								Acetaldehyde					Gas	AP-42	
								Acrolein					Gas	AP-42	
								Benzene	5E-06	2E-05	5E-06	2E-05	Gas	AP-42	
								Butadiene					Gas	AP-42	
								Ethylbenzene					Gas	AP-42	
								НСНО	2E-04	8E-04	2E-04	8E-04	Gas	AP-42	
								n-Hexane	5E-03	2E-02	5E-03	2E-02	Gas	AP-42	
HTR-02	Upward Vertical	12F	HTR-02	na	na	С	8,760	Methanol					Gas	AP-42	
	Stack					Ū.	0,1 00	POM/PAH	2E-06	8E-06	2E-06	8E-06	Gas	AP-42	
								Toluene	9E-06	4E-05	9E-06	4E-05	Gas	AP-42	
								2,2,4-TMP					Gas	AP-42	
								Xylenes					Gas	AP-42	
								Other HAP	3E-06	1E-05	3E-06	1E-05	Gas	AP-42	
								Total HAP	5E-03	2E-02	5E-03	2E-02	Gas	Sum	
								CO2	298	1,307	298	1,307	Gas	AP-42	
								CH4	6E-03	2E-02	6E-03	2E-02	Gas	AP-42	
								N2O	6E-04	2E-03	6E-04	2E-03	Gas	AP-42	
								CO2e	299	1,308	299	1,308	Gas	CFR98	

						Т	able 1: Er	nissions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emission Vented Tl This P (Must m Emission Table & Pl	n Unit hrough oint natch n Units ot Plan)	Air Pol Control (Must I Emissio Table & F	llution Device match n Units Plot Plan)	Vent T Emissi <i>(Che</i> process	ime for on Unit <i>mical</i> es only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Maxi Pote Uncon Emiss	mum ential trolled sions ⁴	Maxi Pote Cont Emise	imum ential rolled sions⁵	Emission Form or Phase (At exit conditions, Solid, Liquid or	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmvd or mg/m ³ )
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	a nn oj	lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)		
								NOX					Gas		
		Due due			u lua			CO					Gas		
		Produc (T01 - 4	ed water 48 bbl and	Storage 1a	nks bbl)			NMNEHC	0.17	0.75	0.17	0.75	Gas	ProMax	
		(			~~.,			VOC	0.17	0.75	0.17	0.75	Gas	ProMax	
								PM10/2.5					S/L/G		
								SO2					Gas		
								Acetaldehyde					Gas		
								Acrolein					Gas		
								Benzene	2E-04	8E-04	2E-04	8E-04	Gas	ProMax	
								Butadiene					Gas		
								Ethylbenzene	3E-04	1E-03	3E-04	1E-03	Gas	ProMax	
								НСНО					Gas		
T01		13E	T01				0700	n-Hexane	0.01	0.06	0.01	0.06	Gas	ProMax	
T02	Upward Vertical	21E	T02	na	na	C	8760	Methanol					Gas		
(Total)	Stack	(Total)	(Total)	na	na	U	(Each)	POM/PAH					Gas		
(Total)		(10(a))	(Total)					Toluene	7E-04	3E-03	7E-04	3E-03	Gas	ProMax	
								2,2,4-TMP	5E-04	2E-03	5E-04	2E-03	Gas	ProMax	
								Xylenes	3E-03	0.01	3E-03	0.01	Gas	ProMax	
								Other HAP					Gas		
								Total HAP	0.02	0.08	0.02	0.08	Gas	Sum	
								CO2	1E-03	0.01	1E-03	5E-03	Gas	ProMax	
								CH4	3E-03	0.01	3E-03	0.01	Gas	ProMax	
								N2O					Gas		
								CO2e	0.07	0.30	0.07	0.30	Gas	40CFR98	

						1	Table 1: Ei	nissions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emission Vented Tl This P (Must m Emission Table & Pla	n Unit hrough oint natch n Units ot Plan)	Air Po Control (Must I Emissio Table & F	llution Device match n Units Plot Plan)	Vent T Emissi (Che process	ime for on Unit <i>mical</i> es only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)	Maxi Pote Uncon Emiss	mum ential htrolled sions ⁴	Maxi Pote Cont Emis	mum ential rolled sions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid or	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmvd or mg/m ³ )
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	a nni oj	lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)		
								NOX					Gas		
								CO					Gas		
		Produced W	ater Truc	k Load-Out	t (TLO-1)			NMNEHC		0.45		0.45	Gas	AP-42	
								VOC		0.45		0.45	Gas	AP-42	
								PM10/2.5					S/L/G		
								SO2					Gas		
								Acetaldehyde					Gas		
								Acrolein					Gas		
								Benzene		5E-04		5E-04	Gas	MB	
								Butadiene					Gas		
								Ethylbenzene		8E-04		8E-04	Gas	MB	
								НСНО					Gas		
								n-Hexane		0.04		0.04	Gas	MB	
TI O-1	Upward Vertical	146	TI 0-1	na	na			Methanol					Gas		
TEO-T	Stack	176	120-1	na	па			POM/PAH					Gas		
								Toluene		2E-03		2E-03	Gas	MB	
								2,2,4-TMP		1E-03		1E-03	Gas	MB	
								Xylenes		0.01		0.01	Gas	MB	
								Other HAP					Gas		
								Total HAP		0.05		0.05	Gas	Sum	
								CO2		3E-03		3E-03	Gas		
								CH4		0.01		0.01	Gas	MB	
								N2O					Gas		
								CO2e		0.18		0.18	Gas	40CFR98	

						٦	Table 1: Ei	nissions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emission Vented Tl This P (Must m Emission Table & Pla	n Unit hrough oint natch n Units ot Plan)	Air Pol Control (Must I Emissio Table & F	lution Device match n Units Plot Plan)	Vent T Emissi <i>(Che</i> process	ime for on Unit <i>mical</i> es only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)	Maxi Pote Uncon Emiss	mum ential htrolled sions ⁴	Maxi Pote Cont Emis	mum ential rolled sions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid or	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmvd or mg/m ³ )
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	d finit by	lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)		
								NOX					Gas		
								CO					Gas		
	Sta	abilized Cone	densate T	ruck Load-	Out (TLO-:	2)		NMNEHC		2.47		2.47	Gas	AP-42	
								VOC		2.47		2.47	Gas	AP-42	
								PM10/2.5					S/L/G		
								SO2					Gas		
								Acetaldehyde					Gas		
								Acrolein					Gas		
								Benzene		3E-03		3E-03	Gas	MB	
								Butadiene					Gas		
								Ethylbenzene		0.00		0.00	Gas	MB	
								НСНО					Gas		
	Linus							n-Hexane		0.21		0.21	Gas	MB	
TLO-2	Upward Vertical	15E	TLO-2	na	na			Methanol					Gas		
	Stack	-	_	-	-			POM/PAH					Gas		
								Toluene		0.01		0.01	Gas	MB	
								2,2,4-TMP		0.01		0.01	Gas	MB	
								Xylenes		0.05		0.05	Gas		
								Other HAP					Gas		
								Total HAP		0.28		0.28	Gas	Sum	
								CO2		0.02		0.02	Gas		
								CH4		0.04		0.04	Gas	MB	
								N2O					Gas		
								CO2e		0.97		0.97	Gas	40CFR98	

						Т	able 1: Er	nissions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emissior Vented Th This P (Must m Emission Table & Pla	n Unit nrough oint <i>patch</i> <i>Units</i> ot Plan)	Air Po Control (Must I Emissio Table & F	llution Device match n Units Plot Plan)	Vent T Emissi <i>(Che</i> process	ime for on Unit <i>mical</i> es only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Maxi Pote Uncor Emise	imum ential htrolled sions⁴	Maxi Pote Cont Emis	imum ential rolled sions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid or	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmvd or mg/m ³ )
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	a nni oj	lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)		
								NOX					Gas		
		Start/St	top/Mainte	ernance (S	SM)			CO					Gas		
		(aka, Con	pressor l	Blowdown	(CBD)			NMNEHC		62.14		62.14	Gas	MB	
		and Emerger	ncy Shuto	lown (ESD)	) Testing)			VOC		62.14		62.14	Gas	MB	
								PM10/2.5					S/L/G		
								SO2					Gas		
								Acetaldehyde					Gas		
								Acrolein					Gas		
								Benzene		0.05		0.05	Gas	MB	
								Butadiene					Gas		
								Ethylbenzene		0.07		0.07	Gas	MB	
			CBD-01					НСНО					Gas		
0.014			CBD-02 CBD-03					n-Hexane		3.69		3.69	Gas	MB	
SSM	Upward Vertical	16F	ESD	na	na			Methanol					Gas		
(Total)	Stack	ICE	PG	na	na			POM/PAH					Gas		
			FCO					Toluene		0.17		0.17	Gas	MB	
			(Total)					2,2,4-TMP		0.11		0.11	Gas	MB	
								Xylenes		0.71		0.71	Gas	MB	
								Other HAP					Gas		
								Total HAP		4.81		4.81	Gas	Sum	
								CO2		0.29		0.29	Gas	MB	
								CH4		69.94		69.94	Gas	MB	
								N2O					Gas		
								CO2e		1,749		1,749	Gas	40CFR98	

						Т	able 1: Er	nissions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emission Vented Tl This P (Must m Emission Table & Pl	n Unit hrough oint natch n Units ot Plan)	Air Po Control (Must I Emissio Table & F	llution Device match n Units Plot Plan)	Vent T Emissi <i>(Che</i> process	ime for on Unit <i>mical</i> es only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Maxi Pote Uncon Emiss	mum ential htrolled sions ⁴	Maxi Pote Cont Emise	imum ential rolled sions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid or	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmvd or mg/m ³ )
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	a nn oj	lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)		
								NOX					Gas		
		<b>C</b>		De elvin er //				CO					Gas		
		(x-Rod P	essor Rod Packing/Ci	Packing (C rankcase (F	RPC))			NMNEHC	4.10	17.94	4.10	17.94	Gas		
		(						VOC	4.10	17.94	4.10	17.94	Gas	Vendor	
								PM10/2.5					S/L/G		
								SO2					Gas		
								Acetaldehyde					Gas		
								Acrolein					Gas		
								Benzene	1E-03	6E-03	1E-03	6E-03	Gas	MB	
								Butadiene					Gas		
								Ethylbenzene	1E-04	5E-04	1E-04	5E-04	Gas	MB	
								НСНО					Gas		
			CRP-01					n-Hexane	0.10	0.43	0.10	0.43	Gas	MB	
CRP	Upward Vertical	18F	CRP-02 CRP-03	na	na	C	8,760	Methanol					Gas		
(x-RPC)	Stack	IOL		na	na	0	(Each)	POM/PAH					Gas		
			(Total)					Toluene	2E-03	0.01	2E-03	0.01	Gas	MB	
								2,2,4-TMP	1E-03	0.01	1E-03	0.01	Gas	MB	
								Xylenes	1E-04	5E-04	1E-04	5E-04	Gas	MB	
								Other HAP					Gas		
								Total HAP	0.10	0.45	0.10	0.45	Gas	Sum	
								CO2	0.04	0.19	0.04	0.19	Gas	MB	
								CH4	10.47	45.88	10.47	45.88	Gas	MB	
								N2O					Gas		
								CO2e	262	1147	262	1,147	Gas	40CFR98	

						Та	able 1: En	nissions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emission Vented Tl This P (Must n Emission Table & Pl	n Unit hrough ooint natch n Units ot Plan)	Air Po Control (Must I Emissio Table & F	llution Device match n Units Plot Plan)	Vent T Emissi <i>(Che.</i> process	ime for on Unit <i>mical</i> es only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Maxi Pote Uncor Emise	imum ential htrolled sions ⁴	Max Pote Cont Emis	imum ential rolled sions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid or	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmvd or mg/m ³ )
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAF 3)	lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)		
								NOX	0.16	0.71	0.16	0.71	Gas	AP-42	
								CO	0.14	0.60	0.14	0.60	Gas	AP-42	
		Station Rec	sycle Line 66 MMBtu	Heater 01 ( /hr (Fach)	HIR-03)			NMNEHC	0.01	0.04	0.01	0.04	Gas	AP-42	
				()				VOC	0.01	0.04	0.01	0.04	Gas	AP-42	
								PM10/2.5	0.01	0.05	0.01	0.05	S/L/G	AP-42	
								SO2	1E-03	4E-03	1E-03	4E-03	Gas	AP-42	
								Acetaldehyde					Gas	AP-42	
							Acrolein		Gas	AP-42					
					Benzene 3E-06 1E-05 3E-06 1E-05	1E-05	Gas	AP-42							
								Butadiene					Gas	AP-42	
								Ethylbenzene					Gas	AP-42	
								НСНО	1E-04	5E-04	1E-04	5E-04	Gas	AP-42	
	Linus							n-Hexane	3E-03	0.01	3E-03	0.01	Gas	AP-42	
HTR-03	Upward Vertical	19F	HTR-03	na	na	С	8,760	Methanol					Gas	AP-42	
	Stack					Ū	0,1 00	POM/PAH	1E-06	5E-06	1E-06	5E-06	Gas	AP-42	
								Toluene	6E-06	2E-05	6E-06	2E-05	Gas	AP-42	
								2,2,4-TMP					Gas	AP-42	
								Xylenes					Gas	AP-42	
								Other HAP	2E-06	9E-06	2E-06	9E-06	Gas	AP-42	
								Total HAP	3E-03	0.01	3E-03	0.01	Gas	Sum	
								CO2	194	851	194	851	Gas	AP-42	
								CH4	4E-03	0.02	4E-03	0.02	Gas	AP-42	
								N2O	4E-04	2E-03	4E-04	2E-03	Gas	AP-42	
								CO2e	194	851	194	851	Gas	CFR98	

						Ta	able 1: En	nissions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emission Vented Tl This P (Must m Emission Table & Pl	n Unit hrough ooint natch n Units ot Plan)	Air Po Control (Must I Emissio Table & F	llution Device match n Units Plot Plan)	Vent T Emissi (Che process	ime for on Unit <i>mical</i> es only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Maxi Pote Uncor Emise	imum ential htrolled sions ⁴	Max Pote Cont Emis	imum ential rrolled sions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid or	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmvd or mg/m ³ )
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAF 3)	lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)		
								NOX	0.95	4.17	0.95	4.17	Gas	AP-42	
		0	01-1-11					CO	0.80	3.50	0.80	3.50	Gas	AP-42	
		Condensate 9.3	Stabilizer	Heater 02 /hr (Fach)	(HTR-04)			NMNEHC	0.05	0.23	0.05	0.23	Gas	AP-42	
				(_ao)				VOC	0.05	0.23	0.05	0.23	Gas	AP-42	
								PM10/2.5	0.07	0.32	0.07	0.32	S/L/G	AP-42	
								SO2	0.01	0.02	0.01	0.02	Gas	AP-42	
								Acetaldehyde		Gas	AP-42				
								Acrolein					Gas	AP-42	
								Benzene	2E-05	9E-05	2E-05	9E-05	Gas	AP-42	
								Butadiene					Gas	AP-42	
								Ethylbenzene					Gas	AP-42	
								НСНО	7E-04	3E-03	7E-04	3E-03	Gas	AP-42	
								n-Hexane	0.02	0.07	0.02	0.07	Gas	AP-42	
	Upward Vertical	20E		na	na	C	8 760	Methanol					Gas	AP-42	
11110-0-	Stack	201	111104	na	na	U	0,700	POM/PAH	7E-06	3E-05	7E-06	3E-05	Gas	AP-42	
								Toluene	3E-05	1E-04	3E-05	1E-04	Gas	AP-42	
								2,2,4-TMP					Gas	AP-42	
								Xylenes					Gas	AP-42	
								Other HAP	1E-05	5E-05	1E-05	5E-05	Gas	AP-42	
								Total HAP	0.02	0.08	0.02	0.08	Gas	Sum	
								CO2	1,135	4,970	1,135	4,970	Gas	AP-42	
								CH4	0.02	0.09	0.02	0.09	Gas	AP-42	
								N2O	2E-03	0.01	2E-03	0.01	Gas	AP-42	
								CO2e	1,136	4,975	1,136	4,975	Gas	CFR98	

						Т	able 1: Er	nissions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emissior Vented Th This P (Must m Emission Table & Pla	n Unit nrough oint patch Units ot Plan)	Air Po Control (Must I Emissio Table & F	llution Device match n Units Plot Plan)	Vent T Emissi (Che Process	ime for on Unit <i>mical</i> es Only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Maxi Pote Uncor Emiss	mum ential htrolled sions ⁴	Maxi Pote Cont Emise	imum ential rolled sions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid or	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmvd or mg/m ³ )
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	a nar 3j	lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)		
								NOX					Gas		
								CO					Gas		
		Process Pip	oing Fugit ina Fuaitiv	ives - Gas ves - Liquic	(FUG-G) 1 (FUG-I )			NMNEHC	14.94	65.43	14.94	65.43	Gas	AP-42	
			ing rugiti		. (. 00 L)			VOC	14.94	65.43	14.94	65.43	Gas	AP-42	
								PM10/2.5					S/L/G		
								SO2					Gas		
								Acetaldehyde					Gas		
								Acrolein	etaldenyde              Acrolein	Gas					
								Benzene	0.06	0.06	0.06	0.06	Gas	AP-42	
								Butadiene					Gas		
								Ethylbenzene	0.09	0.09	9 0.09	0.09	Gas	AP-42	
5110 0								НСНО					Gas		
FUG-G			FUG-G					n-Hexane	4.46	4.46	4.46	4.46	Gas	AP-42	
FUG-L	Upward Vertical	17E	FUG-L	na	na	C	8 760	Methanol					Gas		
(Total)	Stack	(Total)	(Total)	na	Па	0	0,700	POM/PAH					Gas		
(Total)			(10(a))					Toluene	0.22	0.22	0.22	0.22	Gas	AP-42	
								2,2,4-TMP	0.14	0.14	0.14	0.14	Gas	AP-42	
								Xylenes	0.93	0.93	0.93	0.93	Gas	AP-42	
								Other HAP					Gas		
								Total HAP	5.90	5.90	5.90	5.90	Gas	Sum	
								CO2	0.12	0.52	0.12	0.52	Gas	AP-42	
								CH4	9.93	43.48	9.93	43.48	Gas	AP-42	
								N2O					Gas		
								CO2e	248	1087	248	1087	Gas	40CFR98	

						Т	able 1: Er	nissions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emission Vented Tl This P (Must m Emission Table & Pl	n Unit hrough oint hatch Units ot Plan)	Air Po Control (Must I Emissio Table & F	llution Device match n Units Plot Plan)	Vent T Emissi <i>(Che</i> process	ime for on Unit <i>mical</i> es only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Maxi Pote Uncor Emiss	mum ential htrolled sions ⁴	Maxi Pote Cont Emise	imum ential rolled sions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmvd or mg/m ³ )
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)		lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)		
								NOX	0.01	0.04	0.01	0.04	Gas		
		F		(500				CO	0.05	0.22	0.05	0.22	Gas		
		Eng (x-Rod P	ine Crank Packing/Ci	case (ECC rankcase (F	) RPC))			NMNEHC	0.02	0.11	0.02	0.11	Gas		
		(A Hour	uoning, o	united 60 (1				VOC	0.02	0.11	0.02	0.11	Gas	Vendor	
								PM10/2.5	3E-03	3E-03	3E-03	3E-03	S/L/G		
-								SO2	4E-05	2E-04	4E-05	2E-04	Gas		
								Acetaldehyde	5E-04	2E-03	5E-04	2E-03	Gas		
								Acrolein 3E-04 1E-03 3E-04	1E-03	Gas					
					Benzene 3E-05 1E-04 3E-05 1E-04	1E-04	Gas	MB							
								Butadiene	2E-05	7E-05	2E-05	E-05 7E-05	Gas		
						Ethylbenzene 1E-04 1E-05 1E-04 1E	1E-05	Gas	MB						
								НСНО	0.01	0.03	0.01	0.03	Gas		
								n-Hexane	7E-05	0.00	7E-05	3E-04	Gas	MB	
ECC	Upward Vertical	22⋿	FCC	na	na	C	8 760	Methanol	2E-04	7E-04	2E-04	7E-04	Gas		
(x-RPC)	Stack	220	LOO	na	Па	U	0,700	POM/PAH	2E-05	9E-05	2E-05	9E-05	Gas		
								Toluene	2E-05	1E-04	2E-05	1E-04	Gas	MB	
								2,2,4-TMP	2E-05	7E-05	2E-05	7E-05	Gas	MB	
								Xylenes	1E-05	5E-05	1E-05	5E-05	Gas	MB	
								Other HAP	2E-05	8E-05	2E-05	8E-05	Gas		
								Total HAP	0.01	0.03	0.01	0.03	Gas	Sum	
								CO2	8.36	36.64	8.36	36.64	Gas	MB	
								CH4	0.03	0.14	0.03	0.14	Gas	MB	
								N2O	1E-05	6E-05	1E-05	6E-05	Gas		
								CO2e	9.17	40.15	9.17	40.15	Gas	40CFR98	

						Т	able 1: Er	nissions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emission Vented Tl This P (Must m Emission Table & Pl	n Unit hrough oint natch n Units ot Plan)	Air Po Control (Must i Emissio Table & F	llution Device match in Units Plot Plan)	Vent T Emissi <i>(Che</i> process	ime for on Unit <i>mical</i> es only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Maxi Pote Uncor Emise	imum ential htrolled sions⁴	Max Pote Cont Emis	imum ential rrolled sions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid or	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmvd or mg/m ³ )
		ID No. Source ID No. Device Type Sh Te Plant-Wide Summary (w/o Fugitives)							lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)		
								NOX	11.71	51.30	5.74	25.12	Gas	Varies	
		Dia	nt \A/ida	Summer				CO	27.12	118.77	5.44	23.81	Gas	Varies	
		Pia	nt-wide (w/o Euc	Summar <u>(</u> vitivos)	У			NMNEHC	149	716	6.92	95.35	Gas	Varies	
			<u>(₩/01 u</u>	<u>JIII VES</u> )				VOC	151	727	7.61	98.40	Gas	Varies	
							1	PM10/2.5	0.40	1.76	0.45	1.97	S/L/G	Varies	
								SO2	0.03	0.11	0.03	0.13	Gas	Varies	
								Acetaldehyde	0.19	0.85	0.04	0.16	Gas	Varies	
								Acrolein	0.12	0.53	0.02	0.10	Gas	Varies	
								Benzene	4.31	18.95	0.05	0.27	Gas	Varies	
								Butadiene	0.01	0.03	2E-03	0.01	Gas	Varies	
								Ethylbenzene	0.58	2.61	0.01	0.10	Gas	Varies	
								НСНО	2.28	9.99	0.62	2.73	Gas	Varies	
								n-Hexane	6.75	33.48	0.22	4.90	Gas	Varies	
								Methanol	0.06	0.27	0.01	0.07	Gas	Varies	
								POM/PAH	0.01	0.04	1E-03	0.01	Gas	Varies	
								Toluene	7.97	35.11	0.08	0.56	Gas	Varies	
								2,2,4-TMP	0.08	0.47	5E-03	0.14	Gas	Varies	
								Xylenes	0.59	3.34	0.01	0.81	Gas	Varies	
								Other HAP	0.01	0.03	2E-03	0.01	Gas	Varies	
								Total HAP	22.96	106	1.08	9.86	Gas	SUM	
								CO2	5,591	24,488	6,341	27,772	Gas	Varies	
								CH4	68	370	23.16	171	Gas	Varies	
								N2O	0.01	0.04	0.01	0.05	Gas	Varies	
								CO2e	7,306	33,748	6,923	32,072	Gas	40CFR98	

						T	able 1: Er	missions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emission Vented Tl This P (Must m Emission Table & Pl	n Unit hrough oint hatch Units ot Plan)	Air Po Control (Must i Emissio Table & F	llution Device match in Units Plot Plan)	Vent T Emissi <i>(Che</i> process	ime for on Unit <i>mical</i> es only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Maxi Pote Uncor Emise	imum ential htrolled sions⁴	Max Pote Cont Emis	imum ential rrolled sions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid or	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmvd or mg/m ³ )
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)		lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)		
								NOX	11.72	51.34	5.74	25.16	Gas	Varies	
		Dia	nt Wide	Summer				CO	27.17	118.99	5.49	24.02	Gas	Varies	
		Pia		Summar itivos)	У			NMNEHC	164	781	21.88	161	Gas	Varies	
			( <u>w/ i ug</u>	<u>itives</u> j				VOC	166	793	22.58	164	Gas	Varies	
							1	PM10/2.5	0.40	1.76	0.45	1.97	S/L/G	Varies	
								SO2	0.03	0.11	0.03	0.13	Gas	Varies	
								Acetaldehyde	0.19	0.85	0.04	0.16	Gas	Varies	
								Acrolein	0.12	0.53	0.02	0.11	Gas	Varies	
								Benzene	4.38	19.01	0.11	0.33	Gas	Varies	
								Butadiene	0.01	0.03	2E-03	0.01	Gas	Varies	
								Ethylbenzene	0.67	2.70	0.09	0.18	Gas	Varies	
								НСНО	2.29	10.02	0.63	2.76	Gas	Varies	
								n-Hexane	11.21	37.95	4.68	9.36	Gas	Varies	
								Methanol	0.06	0.27	0.02	0.07	Gas	Varies	
								POM/PAH	0.01	0.04	2E-03	0.01	Gas	Varies	
								Toluene	8.19	35.33	0.30	0.78	Gas	Varies	
								2,2,4-TMP	0.22	0.61	0.15	0.28	Gas	Varies	
								Xylenes	1.52	4.27	0.94	1.74	Gas	Varies	
								Other HAP	0.01	0.03	2E-03	0.01	Gas	Varies	
								Total HAP	28.87	112	6.99	15.79	Gas	SUM	
								CO2	5,599	24,525	6,349	27,809	Gas	Varies	
								CH4	78	414	33.11	215	Gas	Varies	
								N2O	0.01	0.04	0.01	0.05	Gas	Varies	
								CO2e	7,563	34,876	7,180	33,199	Gas	40CFR98	

**Conner Compressor Station (CCS)** 

Application for 45CSR13 NSR Permit Modification

### Attachment J EMISSION POINTS DATA SUMMARY SHEET - Continued

#### Table 1: Emissions Data - Continued

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

1. Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

2. Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).

3. List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS2, VOCs, H2S, Inorganics, Lead, Organics, O3, NO, NO2, SO2, SO3, all applicable Greenhouse Gases (including CO2 and methane), etc. DO NOT LIST H2, H2O, N2, O2, and Noble Gases.

4. Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

5. Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

6. Indicate method used to determine emission rate as follows:
MB = material balance; ST = stack test (give date of test);
EE = engineering estimate; O = other (specify).

7. Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m3) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO2, use units of ppmv (See 45CSR10).

#### **Conner Compressor Station (CCS)**

Application for 45CSR13 NSR Permit Modification

#### Attachment J EMISSION POINTS DATA SUMMARY SHEET - Continued

	Table 2: Release Parameter Data         Emission Point Elevation (ft)       UTM Coordinates (km)										
	Emission			Exit Gas		Emission Poir	t Elevation (ft)	UTM Coord	inates (km)		
Emission Unit ID	Point ID No. (Must match Emission Units Table)	Inner Diameter (ft.)	Temp. (oF)	Volumetric Flow ¹ (acfm) (At operating conditions)	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ² (Height of emissions above ground level)	Northing	Easting		
CE-01	1E	1.0	1,016	9,268	200.0	1,200 ft	15 ft	4,414.5	517.7		
CE-02	2E	1.0	1,016	9,268	198.0	1,200 ft	15 ft	4,414.5	517.7		
CE-03	3E	0.4	1,064	990		1,200 ft	15 ft	4,414.5	517.7		
RBV-1	4E	0.6	120			1,200 ft	10 ft	4,414.5	517.7		
RSV-1	5E 6E			Se	e Thermal Oxidiz	zer (COMB-1 (10	E))				
RBV-2	7E	0.6	120			1,200 ft	10 ft	4,414.5	517.7		
RSV-2	8E 9E			Se	e Thermal Oxidiz	zer (COMB-1 (10	E))				
COMB-1	10E	3.0	1,500	6,188	24.1	1,200 ft	20 ft	4,414.5	517.7		
HTR-01	11E		600			1,200 ft	10 ft	4,414.5	517.7		
HTR-02	12E		600			1,200 ft	10 ft	4,414.5	517.7		
T01	13E					1,200 ft		4,414.5	517.7		
TLO-1	14E					1,200 ft		4,414.5	517.7		
TLO-2	15E					1,200 ft		4,414.5	517.7		
						1,200 ft		4,414.5	517.7		
COM	165					1,200 ft		4,414.5	517.7		
22101	IOE					1,200 ft		4,414.5	517.7		
						1,200 ft		4,414.5	517.7		
CRP	18E					1,200 ft		4,414.5	517.7		
HTR-03	19E					1,200 ft		4,414.5	517.7		
HTR-04	20E					1,200 ft		4,414.5	517.7		
T02	21E					1,200 ft		4,414.5	517.7		
FUG-G	17F					1,200 ft		4,414.5	517.7		
FUG-L						1,200 ft		4,414.5	517.7		
ECC	22E					1,200 ft		4,414.5	517.7		
¹ Give at op ² Release h	perating condition neight of emissio	ns. Include inert	s. I level.								

# Attachment K

# **Fugitive Emissions Data Summary Sheet**

"27. Fill out the **Fugitive Emissions Data Summary Sheet** and provide it as Attachment K."

- Application Forms Checklist
- Fugitive Emissions Data Summary Sheet

**Conner Compressor Station (CCS)** 

Application for 45CSR13 NSR Permit Modification

#### **Attachment K - Fugitive Emissions**

#### **Fugitive Emissions Data Summary Sheet**

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

#### **APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS**

1.)	Will there be haul road activities?
	□ Yes
	□ If Yes, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.
2.)	Will there be Storage Piles?
	□ Yes ☑ No
	□ If Yes, then complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.
3.)	Will there be Liquid Loading/Unloading Operations?
	□ Yes ☑ No ((Truck Load-Out (TLO-1 and TLO-2) emissions are included in the Point Source Emissions ))
	□ If Yes, then complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?
	□ Yes ☑ No
	□ If Yes, then complete the GENERAL EMISSIONS UNIT DATA SHEET.
5.) sar	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, mpling connections, flanges, agitators, cooling towers, etc.)?
	☑ Yes □ No
	☑ If Yes, then complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS DATA SHEET.
6.)	Will there be General Clean-up VOC Operations?
	□ Yes ☑ No
	□ If Yes, then complete the GENERAL EMISSIONS UNIT DATA SHEET.
7.)	Will there be any other activities that generate fugitive emissions?
	□ Yes ☑ No
	□ If Yes, then complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.
	If you answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions Summary."

### Williams Ohio Valley Midstream LLC (OVM) **Conner Compressor Station (CCS)** Application for 45CSR13 NSR Permit Modification **Attachment K - Fugitive Emissions**

#### **Fugitive Emissions Data Summary Sheet - Continued**

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions.

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants Chemical	Maximum Pre-Controlle	n Potential ed Emissions ²	Maximum Controlled	n Potential Emissions ³	Est. Method
	Name/CAS	lb/hr	ton/yr	lb/hr	ton/yr	0300
Paved Haul Roads	na					
Unpaved Haul Roads	na					
Storage Pile Emissions	na					
Loading/Unloading Operations	(( Truck Load-Out (TL	O-1 and TLO-2) en	nissions are includ	ed in the Point Sou	rce Emissions ))	
Wastewater Treatment	na					
	NOX	0.01	0.04	0.01	0.04	Vendor
	СО	0.05	0.22	0.05	0.22	Vendor
Process and Piping Fugitives-Gas (FUG-G)	VOC	14.96	65.53	14.96	65.53	AP-42/Vendor
Engine Crankcase (ECC)	PM10/2.5	6E-04	3E-03	6E-04	3E-03	Vendor
(Total Combined)	SO2	4E-05	2E-04	4E-05	2E-04	Vendor
(	Total HAPs	5.91	5.93	5.91	5.93	Sum
	Carbon Dioxide Equivalent (CO2e)	0	0	257	1,128	40CFR98
General Clean-up VOC Emissions	na					
Other	na					

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases, etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in min (e.g. 5 lb VOC/20 min batch).

³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in min (e.g. 5 lb VOC/20 min batch).

⁴ Indicate method used to determine emission rate as follows:

MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

# Attachment L

# **Emissions Unit Data Sheet(s)**

# "28. Fill out the Emissions Unit Data Sheet(s) as Attachment L."

### Natural Gas-Fired Compressor/Generator Engine Data Sheet

- o 1,380 bhp CAT G3516B Compressor Engines CE-01/1E and CE-02/2E
- 203 bhp CAT G3306B TA Compressor Engine CE-03/3E

### Natural Gas Glycol Dehydrator Unit Data Sheet

- o 60.0 MMscfd Dehydrators RSV-01/5E,6E and RSV-02/8E,9E)
- o 1.66 MMBtu/hr Reboilers RBV-01/4E, RBV-02/7E
- o Dehydrators 40 CFR Part 63; Subpart HH & HHH Registration Form
- Dehydrators Subpart HH Exemption Status

### • Natural Gas-Fired Boiler/Line Heater Data Sheet

- 1.55 MMBtu/hr Heater Treater 01 HTR-01/11E
- o 2.55 MMBtu/hr Condensate Stabilizer Heater 01 HTR-02/12E
- o 1.66 MMBtu/hr Station Recycle Line Heater 01 HTR-03/19E
- o 9.70 MMBtu/hr Condensate Stabilizer Heater 02 HTR-04/20E

### • Storage Tank Data Sheet

- Produced Water Storage Tanks T01/13E and T02/21E
- Misc (Oil, TEG, Etc) Storage Tanks T03 thru T12

### Bulk Liquid Transfer Operations Data Sheet

- Produced Water Truck Loadout TLO-01/14E
- Stabilized Condensate Truck Loadout TLO-02/15E

### • Fugitive Emissions Data Summary Sheet

# NATURAL GAS COMPRESSOR/GENERATOR ENGINE DATA SHEET

Desc	ription	Compress	sor Engine	Compress	sor Engine	Compressor Engine CE-03/3E		
Source Identifi	ource Identification Number ¹ gine Manufacturer and Model		)1/1E	CE-0	)2/2E	CE-0	)3/3E	
Engine Manufac	cturer and Model	CAT G	3516B	CAT G	3516B	CAT G3	306B TA	
Manufacturer's	Rated bhp/rpm	1,380	/ 1,400	1,380	/ 1,400	203 /	1,800	
Source	Status ²	M	) DD	M	) DD	M	) DD	
Date Installed/M	odified/Removed ³	2015	/ 2018	2015	/ 2018	2015	/ 2018	
Manufactured/Re	construction Date ⁴	> 08/	23/11	> 08/	23/11	> 08/	23/11	
Certified Engine (40	CFR60 NSPS JJJJ) ⁵	Ν	lo	Ν	lo	Ν	lo	
U	Engine Type ⁶	4S	LB	4S	LB	4S	RB	
	APCD Type ⁷	Ox	Cat	Ox	Cat	NS	CR	
	Fuel Type ⁸	R	G	R	G	R	G	
	H ₂ S (gr/100 scf)	0.	20	0.	20	0.	20	
Engine, Fuel and	Operating bhp/rpm	1,380	/ 1,400	1,380	/ 1,400	203 / 1,800		
Compustion Data	BSFC (Btu/bhp-hr)	8,1	71	8,1	71	9,070		
	Fuel (ft ³ /hr)	11,	055	11,	055	1,805		
	Fuel (MMft ³ /yr)	96	.84	96	.84	15	.81	
	Operation (hrs/yr)	8,7	<b>'</b> 60	8,7	<b>'</b> 60	8,7	760	
Reference ⁹	PTE ¹⁰	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	
MD	NOX	1.52	6.66	1.52	6.66	0.22	0.98	
MD	CO	0.50	2.20	0.50	2.20	0.90	3.92	
MD	NMNEHC	0.53	2.33	0.53	2.33	0.11	0.47	
MD	VOC	0.83	3.63	0.83	3.63	0.21	0.93	
AP	PM10/2.5	0.11	0.49	0.11	0.49	0.04	0.16	
AP	SO2	0.01	0.03	0.01	0.03	1E-03	5E-03	
AP	Acetaldehyde	0.02	0.07	0.02	0.07	0.01	0.02	
AP	Acrolein	0.01	0.04	0.01	0.04	5E-03	0.02	
AP	Benzene	8E-04	4E-03	8E-04	4E-03	3E-03	0.01	
AP	Butadiene, 1,3-	5E-04	2E-03	5E-04	2E-03	1E-03	0.01	
AP	Ethylbenzene	7E-05	3E-04	7E-05	3E-04	5E-05	2E-04	
MD	Formaldehyde	0.27	1.17	0.27	1.17	0.09	0.39	
AP	n-Hexane	2E-03	0.01	2E-03	0.01	0.01	0.02	
AP	Methanol (MeOH)	5E-03	0.02	5E-03	0.02	0.01	0.02	
AP	POM/PAH	6E-04	3E-03	6E-04	3E-03	2E-04	8E-04	
AP	Toluene	8E-04	3E-03	8E-04	3E-03	1E-03	4E-03	
AP	2,2,4-TMP (i-Octane)	5E-04	2E-03	5E-04	2E-03	1E-03	0.01	
AP	Xylenes	3E-04	1E-03	3E-04	1E-03	4E-04	2E-03	
AP	Other/Trace HAP	6E-04	3E-03	6E-04	3E-03	3E-04	1E-03	
SUM	1 Total HAP		1.32	0.30	1.32	0.12	0.52	
MD	CO2		6,876	1,570	6,876	254	1,113	
MD	CH4	5.99	26.25	5.99	26.25	0.19	0.84	
40CFR98	N2O	2E-03	0.01	2E-03	0.01	4E-04	2E-03	
40CFR98	CO2e	1,720	7,536	1,720	7,536	259	1,135	

#### Notes to NATURAL GAS COMPRESSOR/GENERATOR ENGINE DATA SHEET

1. Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. If more than three (3) engines exist, please use additional sheets.

2. Enter the Source Status using the following codes:

NS = Construction of New Source (installation)

ES = Existing Source

MS = Modification of Existing Source

RS = Removal of Source

3. Enter the date (or anticipated date) of the engine's installation (construction of source), modification or removal.

4. Enter the date that the engine was manufactured, modified or reconstructed.

5. Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart JJJJ. If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance according to 40CFR§60.4243a(2)(i) through (iii), as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6. Enter the Engine Type designation(s) using the following codes: LB2S = Lean Burn Two Stroke RB4S = Rich Burn Four Stroke LB4S = Lean Burn Four Stroke

7. Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:

A/F = Air/Fuel Ratio IR = Ignition Retard HEIS = High Energy Ignition System SIPC = Screw-in Precombustion Chambers PSC = Prestratified Charge LEC = Low Emission Combustion NSCR = Non-Selective Catalytic Reduction SCR = Lean Burn & Selective Catalytic Reduction

- Enter the Fuel Type using the following codes: PQ = Pipeline Quality Natural Gas RG = Raw Natural Gas
- 9. Enter the Potential Emissions Data Reference designation using the following codes. Attach all referenced data to this Compressor/Generator Data Sheet(s).
- MD = Manufacturer's Data

AP = AP-42

GR = GRI-HAPCalcTM

OT = Other (please list)

10. Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the Emissions Summary Sheet.

### NATURAL GAS GLYCOL DEHYDRATION UNIT DATA SHEET

		Compa	ny ID	RS	V-1	RS	V-2
		Manufacturer	and Model	Frederick Lo	gan Co, Inc.	Frederick Lo	gan Co, Inc.
		Max Dry Gas Flow	Rate (MMscfd)	60	).0	60	0.0
		Heat Input (MM	Btu/hr) - HHV	1.	66	1.	66
Ge	neral Glycol	Design Type (I	DEG or TEG)	TE	EG	TE	G
Deh	ydration Unit	Source S	Status ²	M	OD	M	DD
	Data	Date Installed/Mod	dified/Removed ³	20	)14	20	16
		Regenerator Sti	II Vent APCD ⁴	Т	0	Т	0
		Fuel HV (Btu	/scf) - HHV	1,0	)20	1,0	)20
		H ₂ S Content	(gr/100 scf)	0.	20	0.	20
		Operation	(hrs/yr)	8,7	760	8,7	'60
Source ID # ¹	Vent	Reference ⁵	PTE ⁶	lbs/hr	tons/yr	lbs/hr	tons/yr
		GRI-GLYCalc	VOC	0.69	3.01	0.69	3.01
	Dehydrator	GRI-GLYCalc	Benzene	0.02	0.09	0.02	0.09
		GRI-GLYCalc	E-Benzene	3E-03	0.01	3E-03	0.01
RSV-1	Regenerator	GRI-GLYCalc	n-Hexane	0.03	0.14	0.03	0.14
RSV-2	and	GRI-GLYCalc	Toluene	0.04	0.17	0.04	0.17
	Flash Tank	GRI-GLYCalc	2,2,4-TMP	4E-04	2E-03	4E-04	2E-03
	Off-Gas (6E,9E)	GRI-GLYCalc	Xylenes	3E-03	0.01	3E-03	0.01
	(Vents thru COMB-1)	GRI-GLYCalc	Total HAP	0.10	0.44	0.10	0.44
		GRI-GLYCalc	CO2e	5.72	25.06	5.72	25.06
		AP-42	NOX	0.16	0.71	0.16	0.71
		AP-42	CO	0.14	0.60	0.14	0.60
		AP-42	VOC	9E-03	0.04	9E-03	0.04
		AP-42	PM10/2.5	0.01	0.05	0.01	0.05
		AP-42	SO2	1E-03	4E-03	1E-03	4E-03
		AP-42	Acetaldehyde				
		AP-42	Acrolein				
		AP-42	Benzene	3E-06	1E-05	3E-06	1E-05
		AP-42	Butadiene, 1,3-				
		AP-42	Ethylbenzene				
RB\/_1/5E	Rehoiler	AP-42	Formaldehyde	1E-04	5E-04	1E-04	5E-04
RBV-2/8E	01 and 02	AP-42	n-Hexane	3E-03	0.01	3E-03	0.01
		AP-42	Methanol				
		AP-42	POM/PAH	1E-06	5E-06	1E-06	5E-06
		AP-42	Toluene	6E-06	2E-05	6E-06	2E-05
		AP-42	TMP, 2,2,4-				
		AP-42	Xylenes				
		AP-42	Other HAP	2E-06	9E-06	2E-06	9E-06
		AP-42	Total HAP	3E-03	0.01	3E-03	0.01
		AP-42	CO2	194.18	851	194	851
		AP-42	CH4	4E-03	0.02	4E-03	0.02
		AP-42	N2O	4E-04	2E-03	4E-04	2E-03
		40CFR98	CO2e	194.38	851	194	851

**Conner Compressor Station (CCS)** 

Application for 45CSR13 NSR Permit Modification

#### Attachment L - Emission Unit Data Sheet

#### Notes to NATURAL GAS GLYCOL DEHYDRATION UNIT DATA SHEET

1. Enter the appropriate Source Identification Numbers for the glycol dehydration unit Reboiler Vent and glycol Regenerator Still Vent. The glycol dehydration unit Reboiler Vent and glycol Regenerator Still Vent should be designated RBV-1 and RSV-1, respectively. If the compressor station incorporates multiple glycol dehydration units, a Glycol Dehydration Unit Data Sheet shall be completed for each, using Source Identification #s RBV-2 and RSV-2, RBV-3 and RSV-3, etc.

2. Enter the Source Status using the following codes:

- NS = Construction of New Source
- ES = Existing Source
- MS = Modification of Existing Source
- RS = Removal of Source

3. Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source), modification or removal.

4. Enter the Air Pollution Control Device (APCD) type designation using the following codes:

- NA = None
- CD = Condenser
- FL = Flare
- CC = Condenser/Combustion Combination
- TO = Thermal Oxidizer

5. Enter the Potential Emissions Data Reference designation using the following codes:

MD = Manufacturer's Data AP = AP-42 GR = GRI-GLYCalcTM OT = Other (please list):

6. Enter the Reboiler Vent and glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in Ibs per hour and tons per year. The glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalcTM (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalc Aggregate Calculations Report to this Glycol Dehydration Unit Data Sheet(s). This PTE data shall be incorporated in the Emissions Summary Sheet.

Include a copy of the GRI-GLYCalcTM analysis. This includes a printout of the aggregate calculations report, which shall include emissions reports, equipment reports, and stream reports.

*An explanation of input parameters and examples, when using GRI-GLYCalcTM is available on our website.

**Conner Compressor Station (CCS)** 

Application for 45CSR13 NSR Permit Modification

Attachment L

#### 40 CFR Part 63; Subpart HH & HHH Registration Form

West Virginia Department of Environmental Protection

Division of Air Quality

#### 40 CFR Part 63; Subpart HH & HHH Registration Form

DIVISION OF AIR QUALITY: (304) 926-0475

WEB PAGE: http://www.wvdep.org

Complete this form for any oil and natural gas production or natural gas transmission and storage facility that uses an affected unit under HH/HHH, whether subject or not.

Section A: Facility Description		
Affected facility actual annual average natural gas throughput (scf/day):	60.0	MM
Affected facility actual annual average hydrocarbon liquid throughput: (bbl/day):	n	a
The affected facility processes, upgrades, or stores hydrocarbon liquids prior to custody transfer.	⊠ Yes	□ No
The affected facility processes, upgrades, or stores natural gas prior to the point at which natural gas (NG) enters the NG transmission and storage source category or is delivered to the end user. The affected facility is:	☑ Yes	□ No
The affected facility transports or stores natural gas prior to entering the pipeline to a local distribution company or to a final end user (if there is no local distribution company).	□ Yes	⊠ No
The affected facility exclusively processes, stores, or transfers black oil with an initial producing gas-to-oil ratio (GOR): <b>na</b> scf/bbl API gravity: <b>na</b> degrees	□ Yes	⊠ No

Section B: Dehydration Unit (if applicable) ¹									
Description: 60.0 MMs	Description: 60.0 MMscfd - Dehydrator 01 and 02 (Each)								
Date of Installation: '14/'16	Annual Operating Hours: 8,760 Burner rating (MMBtu/hr): 1.66								
Exhaust Stack Height (ft):	Stack Diameter (ft): Stack Temp. (oF):								
Glycol Type: 🗹 TEG	EG Other: na								
Glycol Pump Type: 🗹 Elect	Gas If Gas, what is the volume ratio?: <b>na</b>								
Condenser installed?   □ Yes	☑ No Exit Temp: na Condenser Pressure: na								
Incinerator/flare installed? I Yes	□ No Destruction Eff.: 99% Thermal Oxidizer (COMB-1 (10E))								
Other controls installed?	⊠ No Describe: <b>na</b>								
Wet Gas ² :	Gas Temperature: 70.00 oF Gas Pressure: 900.00 psig								
(Upstream of Contact Tower)	Saturated Gas?: Zes Do If no, water content?: na								
Dry Gas:	Gas Flowrate: Actual: 60.0 MMscfd Design: 60.0 MMscfd								
(Downstream of Contact Tower)	Water Content: 7.00 lb/MMscf								
Loop Clycol:	Circulation Rate: Actual ³ : <b>13.7 gpm</b> Max ⁴ : <b>13.7 gpm</b>								
Lean Giycol.	Pump make/model: na - Electric								
Clycol Elach Tank (if applicable);	Temp: 150.00 oF Pressure: 50.00 psig Vented: □ Yes ☑ No								
	If no, describe vapor control: 99% Thermal Oxidizer (COMB-1 (10E))								
	(Vapors may also be used as fuel gas)								
Stripping Gas (if applicable):	Source of Gas na Rate: na								

#### **Conner Compressor Station (CCS)**

Application for 45CSR13 NSR Permit Modification

#### Attachment L

#### 40 CFR Part 63; Subpart HH & HHH Registration Form - Continued

#### Applicable to Dehydrator RSV-1 (5E,6E) and Dehydrator RSV-2 (8E,9E)

#### Please attach the following required dehydration unit information:

- 1. System map indicating the chain of custody information. See Page 43 of this document for an example of a gas flow schematic. It is not intended that the applicant provide this level of detail for all sources. The level of detail that is necessary is to establish where the custody transfer points are located. This can be accomplished by submitting a process flow diagram indicating custody transfer points and the natural gas flow. However, the DAQ reserves the right to request more detailed information in order to make the necessary decisions.
- 2. Extended gas analysis from the Wet Gas Stream, including mole percent of C1-C8, benzene, ethylbenzene, toluene, xylene and n-hexane, using Gas Processors Association (GPA) 2286 (or similar). A sample should be taken from the inlet gas line, downstream from any inlet separator, and using a manifold to remove entrained liquids from the sample and a probe to collect the sample from the center of the gas line. GPA standard 2166 reference method or a modified version of EPA Method TO-14, (or similar) should be used.

3. GRI-GLYCalc Ver. 3.0 aggregate report based on maximum Lean Glycol circulation rate and maximum throughput.

4. Detailed calculations of gas or hydrocarbon flow rate.

Section C: Facility NESHAPS Subpart HH/HHH status					
✓ Subject to Subpart HH However, <u>EXEMPT</u> because the facility is an area source of HAP emissions <u>and</u> the actual average emissions of benzene from the glycol dehy- dration unit process vent to the atmosphere is < 0.90 megagram per year (1.0 tpy). (see 40CFR§63.764(e)(1)(ii))					
Affected facility status: (choose only one)	□ Subject to Subpart HHH				
	Not Subject Because:		< 10/25 TPY Affected facility exclusively handles black oil. Facility-wide actual annual average NG throughput is		
				< 650 thousand scf/day and facility-wide actual annual average hydrocarbon liquid is < 250 bpd. No affected source is present.	

#### **Conner Compressor Station (CCS)**

Application for 45CSR13 NSR Permit Modification

#### Attachment L

#### NATURAL GAS-FIRED BOILER/LINE HEATER DATA SHEET

Source ID	Point ID	Description	Status	Heat Input (MMBtu/hr)	Operation (hrs/yr)	Heating Value (Btu/scf)
HTR-01	11E	Heater Treater 01	EXIST	1.55 HHV	8,760	1,020 HHV
HTR-02	12E	Condensate Stabilizer Heater 01	EXIST	2.55 HHV	8,760	1,020 HHV
HTR-03	19E	Station Recycle Line Heater 01	EXIST	1.66 HHV	8,760	1,020 HHV
HTR-04	20E	Condensate Stabilizer Heater 02	EXIST	9.70 HHV	8,760	1,020 HHV

#### Notes to NATURAL GAS FIRED BOILER/LINE HEATER DATA SHEET

- Enter the appropriate Source Identification Numbers (Source ID #) for each boiler or line heater located at the compressor station. Boilers should be designated BLR-1, BLR-2, BLR-3, etc. Heaters or Line Heaters should be designated HTR-1, HTR-2, HTR-3, etc. Enter glycol dehydration unit reboiler vent data on the Glycol Dehydration Unit Data Sheet.
- Enter the Status for each boiler or line heater using the following: EXIST Existing Equipment NEW Installation of New Equipment Removed
- 3. Enter boiler or line heater design heat input in MMBtu/hr.
- 4. Enter the annual hours of operation in hours/year for each boiler or line heater.
- 5. Enter the fuel heating value in Btu/standard cubic foot.

#### **Conner Compressor Station (CCS)**

Application for 45CSR13 NSR Permit Modification

#### Attachment L

### STORAGE TANK DATA SHEET

Source ID	Point ID	Contents	Status	Volume (gal)	Diameter (ft)	Thru-Put (gal/yr)	Orientation	Ave Liq Height (ft)
T01	13E	Produced Water	EXIST	2,000	5.5	104,000	Horiz	3.0
T02	21E	Produced Water	EXIST	8,820	10.0	458,640	Vert	7.0
T03		Slop Oil	EXIST	2,000		24,000	Horiz	3.0
T04		Make-Up Oil	EXIST	3,000		36,000	Horiz	4.0
T05		Lube Oil	EXIST	55		660		
T06		Engine Oil	EXIST	520		6,240		
T07		Engine Oil	EXIST	520		6,240		
T08		Engine Oil	EXIST	520		6,240		
T09		Engine Oil	EXIST	520		6,240		
T10		Triethylene Glycol	EXIST	1,000		12,000		
T11		Monoethylene Glycol	EXIST	1,000		12,000		
T12		Monoethylene Glycol	EXIST	2,000		24,000		

#### Notes to STORAGE TANK DATA SHEET

- 1. Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the compressor station. Tanks should be designated T01, T02, T03, etc.
- 2. Enter storage tank Status using the following:
  - EXIST Existing Equipment
  - NEW Installation of New Equipment
  - REM Equipment Removed
- 3. Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, etc.
- 4. Enter storage tank volume in gallons.
- 5. Enter storage tank diameter in feet.
- 6. Enter storage tank throughput in gallons per year.
- 7. Enter storage tank orientation using the following:
  - VERT Vertical Tank
  - HORZ Horizontal Tank
- 8. Enter storage tank average liquid height in feet.

**Conner Compressor Station (CCS)** 

Application for 45CSR13 NSR Permit Modification

Attachment L - Emission Unit Data Sheet

#### **Bulk Liquid Transfer Operations**

Furnish the following information for each new or modified bulk liquid transfer area or loading rack, as shown on the Equipment List Form and other parts of this application. This form is to be used for bulk liquid transfer operations such as to and from drums, marine vessels, rail tank cars, and tank trucks

Identification Number (as assigned on Equipment List Form):				O-1 and TLO-2	
1. Loading Area Name: Conner Compressor Station (CCS					
2. Type of cargo vess	sels accommodated at t	his rack or transfer poir	nt (check as many as ap	oply):	
🗆 Drums	Marine V	essels 🛛 🗆 Ra	il Tank Cars	Tank Trucks	
3. Loading Rack or T	ransfer Point Data:				
Number of Pumps	3		Two (2)		
Number of Liquids	s Loaded		Two (2)		
Maximum number tank trucks, tank o loading at one tim	r of marine vessels, cars, and/or drums e:		One (1)		
4. Does ballasting of	marine vessels occur a	t this loading area?:			
□ Yes	□ No	Doe	es Not Apply		
5. Describe cleaning	location, compounds a	nd procedure for cargo	vessels using this trans	fer point:	
na					
6. Are cargo vessels	pressure tested for leak	s at this or any other lo	cation?		
□ Yes	🛛 No				
If YES, describe:	na				
7. Projected Maximu	m Operating Schedule	(for rack or transfer poin	nt as a whole):		
Maximum Jan - Mar Apr - Jun Jul - Sep Oct - De					
hours/day	24	24	24	24	
days/week	7	7	7	7	
weeks/quarter	13	13	13	13	

#### Williams Ohio Valley Midstream LLC (OVM) Conner Compressor Station (CCS) Application for 45CSR13 NSR Permit Modification Attachment L - Emission Unit Data Sheet

### **Bulk Liquid Transfer Operations - Continued**

8. Bulk Liquid Data (add pages as necessary):					
Pump ID No.		1	2		
Liquid Name	9	Produced Water	Stabilized Condensate		
Max daily th	ruput (1,000 gal/day)	7	7		
Max annual	thruput (1,000 gal/yr)	563	250*		
Loading Me	thod ¹	SP	SP		
Max Fill Rat	e (gal/min)	200	200		
Ave Fill Tim	e (min/load)	60	60		
Max Bulk Li	quid Temperature (oF)	60	60		
True Vapor	Pressure ²	1.50	10.00		
Cargo Vess	el Condition ³	U	U		
Control Equ	ipment or Method ⁴	None	None		
Minimum Co	ontrol Efficiency	na	na		
Maximum	Loading (lb/hr)				
Rate:	Annual (lb/yr)	896	4,933		
Estimation N	Method ⁵	EPA	EPA		
¹ BF = Bottom	Fill SP = Splash Fill SUE	3 = Submerged Fill			
² At maximum bulk liquid temperature					
³ B = Ballasted Vessel, C = Cleaned, U = Uncleaned (dedicated service), O = other (describe)					
<ul> <li>⁴ List as many as apply (complete and submit appropriate Air Pollution Control Device Sheets): CA = Carbon Adsorption LOA = Lean Oil Adsorption CO = Condensation SC = Scrubber (Absorption) CRA = Compressor-Refrigeration-Absorption TO = Thermal Oxidation or Incineration CRC = Compression-Refrigeration-Condensation VB = Dedicated Vapor Balance (closed system) O = other (describe)</li> </ul>					
⁵ EPA = EPA Emission Factor as stated in AP-42 MB = Material Balance TM = Test Measurement based upon test data submittal Q = other (describe)					

*Note: The stabilized condensate will be loaded into tanker trucks only in when there is a disruption in the pipeline operations. The normal operating mode is to send the stabilized condensate offsite via pipeline.

### **Bulk Liquid Transfer Operations - Continued**

9. Proposed Monitoring	g, Recordkeeping, Reporting, and Testing		
Please propose mo parameters. Please	nitoring, recordkeeping, and reporting in a propose testing in order to demonstrate	order to demonstrate compliance with the proposed operating compliance with the proposed emissions limits.	
MONITORING:		RECORDKEEPING:	
As per Current Pern	nit	As per Current Permit	
		TESTING	
REFORTING.			
As per Current Pern	nit	As per Current Permit	
	Please list and describe the process p order to demonstrate compliance with	arameters and ranges that are proposed to be monitored in the operation of this process equipment or air control device.	
RECORDKEEPING	Please describe the proposed recordk	eeping that will accompany the monitoring.	
REPORTING	Please describe any proposed emissions testing for this process equipment on air pollution control device.		
TESTING	Please describe any proposed emission device.	ons testing for this process equipment on air pollution control	
10. Describe all operat	ing ranges and maintenance procedures	required by Manufacturer to maintain warranty.	
na			

Williams Ohio Valley Midstream LLC (OVM) Conner Compressor Station (CCS) Application for 45CSR13 NSR Permit Modification Attachment L - Emission Unit Data Sheet

**Fugitive Emissions Data Summary Sheet** 

### Leak Source Data Sheet

Source Category	Pollutant	Number of Source Components ¹	Number of Components Monitored by Frequency ²	Average Time to Repair (Days) ³	Estimated Annual Emission Rate (lb/yr) ⁴
Pumps⁵	Light Oil VOC ^{6,7}	28	na	na	6,929
	Heavy Liquid VOC ⁸				
	Non-VOC ⁹				
Valves ¹⁰	Gas VOC	1,199	na	na	26,046
	Light Oil VOC	1,472	na	na	71,089
	Heavy Liquid VOC				
	Non-VOC				
Safety Relief Valves ¹¹	Gas VOC	See "Other"	na	na	
	Light Oil VOC	See "Other"	na	na	
	Non-VOC				
Open Ended Lines ¹²	Gas VOC	6	na	na	58
	Light Oil VOC	7	na	na	195
	Non-VOC				
Sampling Connections ¹³	Gas VOC	See "Open Ended Lines"	na	na	
	Light Oil VOC	See "Open Ended Lines"	na	na	
	Non-VOC				
Compressors	Gas VOC	See "Other"	na	na	
	Non-VOC				
Flanges	Gas VOC	1,012	na	na	1,905
	Light Oil VOC	1,074	na	na	2,282
	Non-VOC				
Connectors	Gas VOC	3,803	na	na	3,672
	Light Oil VOC	2,849	na	na	11,554
	Non-VOC				
Other	Gas VOC	41	na	na	1,733
	Light Oil VOC	37	na	na	5,388
	Non-VOC				
Williams Ohio Valley Midstream LLC (OVM) Conner Compressor Station (CCS) Application for 45CSR13 NSR Permit Modification Attachment L - Emission Unit Data Sheet

## Notes for Leak Source Data Sheet

#### Notes for Leak Source Data Sheet

1. For VOC sources include components on streams and equipment that contain greater than 10% VOC, including feed streams, reaction/separation facilities, and product/by-product delivery lines. Do not include certain leakless equipment as defined below by category.

2. By monitoring frequency, give the number of sources routinely monitored for leaks, using a portable detection device that measures concentration in visual or soap-bubble leak detection ppm. Do not include monitoring by methods. "M/Q(M)/Q/SA/A/0" means the time period between inspections as follows: Monthly/Quarterly, with Monthly follow-up of repaired leakers/Quarterly/Semi-annual/Annually/other (specify time period)

If source category is not monitored, a single zero in the space will suffice. For example, if 50 gas-service valves are monitored quarterly, with monthly follow-up of those repaired, 75 are monitored semi-annually, and 50 are checked bimonthly (alternate months), with non checked at any other frequency, you would put in the category valves, gas service: 0/50/0/75/0/50 (bimonthly).

3. Give the average number of days, after a leak is discovered, that an attempt will be made to repair the leak.

4. Note the method used: MB - material balance; EE - engineering estimate; EPA - emission factors established by EPA (cite document used); 0 - other method, such as in-house emission factor (specify).

5. Do not include in the equipment count seal-less pumps (canned motor or diaphragm) or those with enclosed venting to a control device. (Emissions from vented equipment should be included in the estimates given in the Emission Points Data Sheet.)

6. Volatile organic compounds (VOC) means the term as defined in 40 CFR. 51.100 (s).

7. A Light Oil is defined as a fluid with vapor pressure equal to or greater than 0.04 psi (0.3 Kpa) at 20°C. For mixtures, if 20% w/w or more of the stream is composed of fluids with vapor pressures greater than 0.04 psi (0.3 Kpa) at 20°C, then the fluid is defined as a Light Oil.

8. A heavy liquid is defined as a fluid with a vapor pressure less than 0.04 psi (0.3 Kpa) at 20°c. For mixtures, if less than 20% w/w of the stream is composed of fluids with vapor pressures greater than 0.04 psi (0.3 Kpa) at 20°C. then the fluid is defined as a heavy liquid.

9. LIST CO, H2S, mineral acids, NO, NO, SO, etc. DO NOT LIST CO, H, H20, N, O, and Noble Gases.

10. Include all process valves whether in-line or on an open-ended line such as sample, drain and purge valves. Do not include safety-relief valves, or leakless valves such as check, diaphragm, and bellows seal valves.

11. Do not include a safety-relief valve if there is a rupture disk in place upstream of the valve, or if the valve vents to a control device.

12. Open-ended lines include purge, drain and vent lines. Do not include sampling connections, or lines sealed by plugs, caps, blinds or second valves.

13. Do not include closed-purge sampling connections.

# Attachment M

# Air Pollution Control Device Sheet(s)

"29. Fill out the Air Pollution Control Device Sheet(s) as Attachment M."

- Oxidation Catalysts 01-OxCat-01 and 02-OxCat (CE-01/1E and CE-02/2E)
- Non-Selective Catalytic Reduction 01-NSCR (CE-03/3E)
- Thermal Oxidizer COMB-1 (RSV-01/5E,6E and RSV-02/8E,9E)

# **Conner Compressor Station (CCS)**

Application for 45CSR13 NSR Permit Modification

# Attachment M

# Air Pollution Control Device (APCD) Sheet (OxCat)

Control Device Unit No. (must match Emission Units Table): 01-OxCat and 02-OxCat (Each)

# **Equipment Information**

1. Manufacturer:	2. Control Device Name:										
EMIT Technologies	Oxidation Catalyst (OxCat) (Each of 2)										
Model RE-3050-H (or equivalent)	(Controls CE-01/1E and CE-02/2E)										
3. Provide diagram(s) of unit describing capture system wi	ith duct arrangement and size of duct, air volume, capacity,										
horsepower of movers. If applicable, state hood face ve	locity and hood collection efficiency.										
4. On a separate sheet(s) supply all data and calculations used in selecting or designing this collection device.											
5. Provide a scale diagram of the control device showing internal construction.											
6. Submit a schematic and diagram with dimensions and flow rates.											
7. Guaranteed minimum collection efficiency for each pollutant collected:											
CO 100% NMN	EHC 100% HCHO 100%										
8. Attached efficiency curve and/or other efficiency informa	ition.										
9. Design inlet volume: 9,268 ACFM	10. Capacity: na										
11. Indicate the liquid flow rate and describe equipment provided to measure pressure drop and flow rate, if any.											
na											
12. Attach any additional data including auxiliary equipmen	t and operation details to thoroughly evaluate the control										
equipment. na											
13. Description of method of handling the collected materia	al(s) for reuse of disposal.										
na											
Gas Strea	m Characteristics										
14. Are halogenated organics present? □ Y	′es ☑ No										
Are particulates present?	′es ☑ No										
Are metals present?	∕es ☑ No										
15. Inlet emission stream parameters:	Maximum Typical										
Pressure (mmHg):	na na										
Heat Content (BTU/scf):	na na										
Oxygen Content (%):	na na										
Moisture Content (%):	na na										

# **Conner Compressor Station (CCS)**

Application for 45CSR13 NSR Permit Modification

# Attachment M

# Air Pollution Control Device (APCD) Sheet (OxCat)

Control Device Unit No. (must match Emission Units Table): 01-OxCat and 02-OxCat (Each)

# **Equipment Information - Continued**

<u> </u>									
16. Type of pollutant(s) controlled: $\Box$ SO2	□ Odor								
LI PM	✓ Other:		EHC/VOC, H	СНО					
17. Inlet gas velocity: na		18. Pollutar	nt specific gra	ivity:	varies				
19. Gas now into the collector:		20. Gas str	eam tempera						
9,268 ACFM			iniet:	1,016	0F				
01. One flow rates		00 Dertieur	Outlet:	na	OF				
21. Gas flow rate:		22. Particul	late Grain Loa	ading:					
Design Maximum: 9,268 ACFM			Inlet:	na	grains/scf				
Average Expected: 9,268 ACFM			Outlet:	na	grains/scf				
23. Emission rate of each pollutant (specify) into a	nd out of col	lector:	1	I		1			
Pollutant	IN Po	llutant	Capture	OUT P	ollutant	Control			
	g/bhp-hr	lb/hr	Efficiency	g/bhp-hr	lb/hr	Efficiency			
NOx	0.50	1.52		0.50	1.52				
CO	3.08	9.37	100%	0.17	0.50	<b>94.6%</b>			
NMNEHC (VOC w/o HCHO)*	1.06	3.22	100%	0.17	0.53	83.5%			
VOC (including aldehydes/MeOH)	1.48	4.50	100%	0.27	0.83	81.6%			
НСНО	0.36	1.10	100%	0.09	0.27	75.7%			
*Note: The vendor guarantee on NMNEHC er	missions ca	nnot be ach	ieved. The ra	ates above a	re				
based on source test data and are we	II below app	licable NSP	S JJJJ emis	sion standa	rds.				
24. Dimensions of stack: Height:	15.0	ft	Diameter:	1.0	ft				
25. Supply a curve showing proposed collection eff	ficiency versu	us gas volum	e from 25 to	130 percent o	of design rati	ng of			
collector.									
26. Complete the table:	Partic	cle Size Distr	ibution	Fraction Efficiency of Collector					
Particulate Size Range (microns)	Weigh	nt % for Size	Range	Weight % for Size Range					
0 – 2		na		na					
2 - 4		na			na				
4 - 6		na			na				
6 – 8		na			na				
8 – 10		na			na				
10 – 12		na			na				
12 – 16		na			na				
16 – 20		na			na				
20 – 30		na			na				
30 – 40		na			na				
40 – 50		na			na				
50 – 60		na			na				
60 - 70		na			na				
70 – 80		na			na				
80 – 90		na		na					
90 – 100		na		na					
>100		na			na				
	1			1					

# **Conner Compressor Station (CCS)**

Application for 45CSR13 NSR Permit Modification

# Attachment M

# Air Pollution Control Device (APCD) Sheet (OxCat)

Control Device Unit No. (must match Emission Units Table): 01-OxCat and 02-OxCat (Each)

# **Equipment Information - Continued**

<ol> <li>Describe any air po humidification):</li> </ol>	llution control device inlet a	nd outlet gas	conditioning p	processes (e.g., ga	is coolin	g, gas reheating, gas					
na											
28. Describe the collect	tion material disposal system	m:									
na											
29. Describe the collect	ion material disposal system	n:	na								
30. Proposed Monitoring	g, Recordkeeping, Reportin	g, and Testin	g								
Please propose mor parameters. Please	itoring, recordkeeping, and propose testing in order to	reporting in demonstrate	order to demor compliance wi	nstrate compliance ith the proposed e	e with the missions	e proposed operating s limits.					
MONITORING:			RECORDKEE	PING:							
As per NSPS JJJJ ar	nd Current Permit		As per NSPS JJJJ and Current Permit								
REPORTING:			TESTING:								
As per NSPS JJJJ ar	าd Current Permit		As per NSPS JJJJ and Current Permit								
MONITORING:	Please list and describe t order to demonstrate con	he process p npliance with	arameters and the operation o	ranges that are p of this process equ	roposed iipment	l to be monitored in or air control device.					
RECORDKEEPING	Please describe the prop	osed recordk	eeping that wil	I accompany the n	nonitorin	ıg.					
REPORTING	Please describe any prop device.	osed emissio	ons testing for t	this process equip	ment on	air pollution control					
TESTING	Please describe any prop device.	osed emissio	ons testing for t	his process equip	ment on	air pollution control					
31. Manufacturer's Gua	ranteed Collection Efficienc	y for each air	⁻ pollutant.								
CC	) 100%	NMNEHC	100%	F	ICHO	100%					
32. Manufacturer's Gua	ranteed <u>Control</u> Efficiency f	or each air po	ollutant.			75 70/					
33 Describe all operatir	y ranges and maintenance		os.5%	nufacturer to mai	ntain wa	rranty					
na		procedures			itain wa	nanty.					

# **Conner Compressor Station (CCS)**

Application for 45CSR13 NSR Permit Modification

# Attachment M

# Air Pollution Control Device (APCD) Sheet (NSCR)

Control Device Unit No. (must match Emission Units Table): 01-NSCR

# **Equipment Information**

1 Manufacturer	2. Control Device No										
	2. Control Device Na										
Miratech	Non-Selective Ca	Non-Selective Catalytic Reduction (01-NSCR)									
Model VXC-1610-05-XC1 (or Equivalent)	(Controls CE-03/	3E)									
3. Provide diagram(s) of unit describing capture sys	tem with duct arrangement and si	ze of duct, air volume, capacity,									
horsepower of movers. If applicable, state hood fa	ace velocity and hood collection e	fficiency.									
4. On a separate sheet(s) supply all data and calculations used in selecting or designing this collection device.											
5. Provide a scale diagram of the control device showing internal construction.											
6. Submit a schematic and diagram with dimensions and flow rates.											
7. Guaranteed minimum collection efficiency for each pollutant collected:											
NOx 100% CO	100%										
8. Attached efficiency curve and/or other efficiency in	nformation.										
9. Design inlet volume: 990 ACFM	10. Capacity:	na									
11. Indicate the liquid flow rate and describe equipment provided to measure pressure drop and flow rate, if any.											
na											
12. Attach any additional data including auxiliary equ	ipment and operation details to th	oroughly evaluate the control									
equipment. <mark>na</mark>											
13. Description of method of handling the collected r	naterial(s) for reuse of disposal.										
na											
Gas	Stream Characteristics										
14. Are halogenated organics present?	🗆 Yes 🗹 No										
Are particulates present?	🗆 Yes 🗹 No										
Are metals present?	🗆 Yes 🛛 No										
15. Inlet emission stream parameters:	Maximum	Typical									
Pressure (mmHg):	na	na									
Heat Content (BTU/scf):	na	na									
Oxygen Content (%):	na	na									
Moisture Content (%):	na	na									
Relative Humidity (%):	na	na									

# **Conner Compressor Station (CCS)**

Application for 45CSR13 NSR Permit Modification

# Attachment M

# Air Pollution Control Device (APCD) Sheet (NSCR)

Control Device Unit No. (must match Emission Units Table): 01-NSCR

# **Equipment Information - Continued**

16. Type of pollutant(s) controlled: □ SO2	□ Odor									
D PM	☑ Other:	NOX, CO								
17. Inlet gas velocity: na		18. Polluta	nt specific gra	vity:	varies					
19. Gas flow into the collector:		20. Gas sti	ream tempera	ture:						
990 ACFM			Inlet:	1,064 oF						
			Outlet:	na	oF					
21. Gas flow rate:		22. Particu	late Grain Loa	ading:						
Design Maximum: 990 ACFM			Inlet:	na	grains/scf					
Average Expected: 990 ACFM			Outlet:	na	grains/scf					
23. Emission rate of each pollutant (specify) into a	and out of col	lector:								
Dellutent	IN Po	llutant	Capture	OUT P	ollutant	Control				
Pollutant	g/bhp-hr	lb/hr	Efficiency	g/bhp-hr	lb/hr	Efficiency				
NOx	15.26	6.83	100%	0.50	0.22	96.7%				
CO	15.26	6.83	100%	2.00	0.90	86.9%				
						1				
						1				
						1				
24. Dimensions of stack: Height	10.0	ft	Diameter:	0.6	ft	1				
25. Supply a curve showing proposed collection et	ficiency versu	us gas volum	ne from 25 to	130 percent of	of design rati	ng of				
collector.	,	0		•	0	0				
26. Complete the table:	Partic	le Size Distr	ribution	Fraction Efficiency of Collector						
Particulate Size Range (microns)	Weigh	nt % for Size	Range	Weight % for Size Range						
0 – 2		na		na						
2 – 4		na		na						
4 - 6		na			na					
6 – 8		na			na					
8 – 10		na			na					
10 – 12		na			na					
12 – 16		na			na					
16 – 20		na			na					
20 – 30		na			na					
30 - 40		na			na					
40 – 50		na			na					
50 - 60		na			na					
60 - 70		na			na					
70 – 80		na			na					
80 – 90		na			na					
90 – 100		na			na					
>100	1	na			na					

# **Conner Compressor Station (CCS)**

Application for 45CSR13 NSR Permit Modification

# Attachment M

# Air Pollution Control Device (APCD) Sheet (NSCR)

# Control Device Unit No. (must match Emission Units Table): 01-NSCR

# **Equipment Information - Continued**

27. Describe any air pol humidification):	lution control device inlet and outlet gas	s conditioning processes (e.g., gas cooling, gas reheating, gas								
na										
28. Describe the collect	ion material disposal system:									
na										
29. Describe the collection	on material disposal system:	na								
30. Proposed Monitoring	, Recordkeeping, Reporting, and Testir	ng								
Please propose mon parameters. Please	itoring, recordkeeping, and reporting in propose testing in order to demonstrate	order to demonstrate compliance with the proposed operating e compliance with the proposed emissions limits.								
MONITORING:		RECORDKEEPING:								
As per Current Permi	t	As per Current Permit								
REPORTING:		TESTING:								
As per Current Permi	t	As per Current Permit								
MONITORING:	Please list and describe the process p order to demonstrate compliance with	I parameters and ranges that are proposed to be monitored in the operation of this process equipment or air control device.								
RECORDKEEPING	Please describe the proposed record	keeping that will accompany the monitoring.								
REPORTING	Please describe any proposed emissi device.	ons testing for this process equipment on air pollution control								
TESTING	Please describe any proposed emissi device.	ons testing for this process equipment on air pollution control								
31. Manufacturer's Guar	anteed Collection Efficiency for each a	ir pollutant.								
NO	c 100% CO 100%									
32. Manufacturer's Guar	anteed Control Efficiency for each air p	pollutant.								
NO»	<b>6.7% CO 86.9%</b>	and the Mark from the second data and the								
33. Describe all operatin	g ranges and maintenance procedures	required by Manufacturer to maintain warranty.								
IId										

# **Conner Compressor Station (CCS)**

Application for 45CSR13 NSR Permit Modification

# Attachment M

# Air Pollution Control Device (APCD) Sheet (Flare System)

#### Control Device Unit No. (must match Emission Units Table): 01-COMB

# **Equipment Information**

1. Manufacturer:	2. Method:   Elevated Flare
Frederick Logan Company, Inc.	Ground Flare (aka, thermal oxidizer)
Model No.:	🔲 Other
36" Vapor Oxidizer	Describe:
3. Provide diagram(s) of unit describing capture system with du	ct arrangement and size of duct, air volume, capacity,
horsepower of movers. If applicable, state hood face velocity	and hood collection efficiency.
4. On a separate sheet(s) supply all data and calculations used	in selecting or designing this collection device.
Steam Assisted Air Assisted	Pressure assisted Von-assisted
5. Maximum Capacity of flare:	6. Dimensions of stack:
60 scf/min	Diameter: 3.0 ft
3,600 scf/hr	Height: 20.0 ft
7. Estimated combustion efficiency:	8. Fuel Used in burners:
(Waste Gas Destruction Efficiency	Natural Gas
Estimated: 99 %	🔲 Fuel Oil
Guaranteed: 99 %	Other, Specify: na
9. Number of burners:	11. Describe method of controlling flame:
10. Will preheat be used?:  Ves  No	
12. Flame Height: na (Enclosed) ft	14. Natural gas flow rate to flare pilot:
13. Flare tip inside diameter: ft	8.3 scf/min 500 scf/hr
13. Number of pilot lights: One (1)	16. Will automatic re-ignition be used?:
Total: 510,000 Btu/hr	🗹 Yes 🗌 No
17. If automatic re-ignition will be used, describe the method:	
18. Is the pilot flame equipped with a monitor?	🗹 Yes 🗌 No
If yes, what type?   Thermocouple	□ Infra-Red
🔲 Ultra Violet	Camera w/ monitoring control room
🗌 Other	
19. Hours of unit operation per year:8,760	

## **Conner Compressor Station (CCS)**

Application for 45CSR13 NSR Permit Modification

# Attachment M

# Air Pollution Control Device (APCD) Sheet (Flare System)

Control Device Unit No. (must match Emission Units Table): 01-COMB

# **Equipment Information - Continued**

	Steam I	njection							
20. Will steam injection be used?"	✓ No	21. Steam P	ressure:						
			Minimum Expected:	na psig					
			Design Maximum:	na psig					
22. Total Steam flow rate: na	lb/hr	23. Tempera	ture:	na oF					
24. Velocity: na	ft/sec	25. Number	of jest streams:	na					
26. Diameter of stream jets: na	ft	27. Design b	asis for steam injection:	na					
28. How will steam flow be controlled?									
Characteristics	of the Wast	e Gas Strea	m to be Burned						
29. <b>Name</b>	<b>Qua</b> Grains of ⊦	<b>ntity</b> I2S/100 ft3	<b>Quantity</b> (lb/hr,ft3/hr, etc)	Source of Material					
Still Vent Off Gas	n	а	1,804 scf/hr	RSV-1 and RSV-2					
Flash Tank Off-Gas	n	a	2,980 scf/hr	RSV-1 and RSV-3					
30. Estimate total combustible to flare:				lb/hr or acf/hr					
(Maximum mass flow rate of waste gas)			5,284	scfm					
31. Estimate total flow rate to flare including materi	al to be burne	ed, carrier ga	s, auxiliary fuel, etc.:						
				lb/hr or acf/hr					
32. Give composition of carrier gas:									
		<b></b>							
33. Temperature of emissions stream:		34. Identify	and describe all auxiliary f	uels to be burned:					
212 oF		Natural gas							
Heating value of emission stream									
1,213 Btu/tt3									
Mean molecular weight of emission stream.	(Estimate)								
25. Temperature of flare gas: 212		26 Elaro da	flow rate:	99. cofm					
37. Elare das heat content: 1 213	OF Btu/scf	38 Flare das	s now rate.						
39 Maximum rate during emergency for one major	piece of equ	inment or pro		scfm					
40. Maximum rate during emergency for one major	piece of equ	ipment or pro	cess unit:	Btu/min					
41. Describe any air pollution control device inlet a	nd outlet gas	conditioning	processes (e.g., gas cooli	ng, gas reheating,					
gas humidification):	0	0							
na									
42. Describe the collection material disposal syster	n:								
na									
			<b>a</b> i (7						
43. Have you included Flare Control Device in the	Emissions Po	oints Data Su	mmary Sheet?	🗹 Yes 🗌 No					

#### **Conner Compressor Station (CCS)**

Application for 45CSR13 NSR Permit Modification

# Attachment M

# Air Pollution Control Device (APCD) Sheet (Flare System)

## Control Device Unit No. (must match Emision Units Table): 01-COMB

# **Equipment Information - Continued**

44. Proposed Monitor	ring, Recordkeeping, Reporting, and T	esting
Please propose mo	phitoring, recordkeeping, and reporting in e propose testing in order to demonstrate	order to demonstrate compliance with the proposed operating
MONITORING:		RECORDKEEPING:
As per Current Perr	nit	As per Current Permit
		TESTING
REFORTING.		
As per Current Perr	nit	As per Current Permit
MONITORING		
	Please list and describe the process p order to demonstrate compliance with	parameters and ranges that are proposed to be monitored in the operation of this process equipment or air control device.
RECORDKEEPING	Please describe the proposed record	keeping that will accompany the monitoring.
REPORTING	Please describe any proposed emissi device.	ons testing for this process equipment on air pollution control
TESTING	Please describe any proposed emissi device.	ons testing for this process equipment on air pollution control
45. Manufacturer's Gu	aranteed Capture Efficiency for each air	pollutant.
		VOC 100%
46. Manufacturer's Gu	aranteed <u>Control</u> Efficiency for each air p	ollutant.
		VOC 99.0%
47. Describe all operat	ing ranges and maintenance procedures	required by Manufacturer to maintain warranty.
na		

# Attachment N

# **Emissions Calculations**

"30. Provide all Supporting Emissions Calculations as Attachment N."

	_		
•	En	nission Summary Spreadsheets	
	0	Potential to Emit (PTE) – Criteria Pollutants – Controlled	01 of 23
	0	Potential to Emit (PTE) – Hazardous Air Pollutants (HAP) – Controlled	02 of 23
	0	Potential to Emit (PTE) – Greenhouse Gases (GHG) – Controlled	03 of 23
	0	Potential to Emit (PTE) – Criteria Pollutants – PRE-Controlled	04 of 23
	0	Potential to Emit (PTE) – Hazardous Air Pollutants (HAP) – PRE-Controlled	05 of 23
	0	Potential to Emit (PTE) – Greenhouse Gases (GHG) – PRE-Controlled	06 of 23
•	Ur	nit-Specific Emission Spreadsheets	
	0	Compressor Engines (CE-01/1E and CE-02/3E)	07 of 23
	0	Compressor Engine (CE-03/3E)	08 of 23
	0	Reboilers (RBV-01/4E and RBV-02/7E)	09 of 23
	0	Dehydrators (RSV-01 and RSV-02)	10 of 23
		<ul> <li>Dehydrator Flash Tanks (DFT-01/5E and DFT-02/8E)</li> </ul>	"
		<ul> <li>Dehydrator Still Vents (DSV-01/6E and DSV-02/9E</li> </ul>	"
	0	Thermal Oxidizer (Combustion Only) (COMB-1/10E)	11 of 23
	0	Heater Treater 01 (HTR-01/11E)	12 of 23
	0	Condensate Stabilizer Heater 01 (HTR-02/12E)	13 of 23
	0	Produced Water Storage Tanks (T01/13E and T02/21E)	14 of 23
	0	Produced Water Truck Load-Out (TLO-1/15E)	15 of 23
	0	Stabilized Condensate Truck Load-Out (TLO-2/15E)	16 of 23
	0	Start/Stop/Maintenance (SSM/16E)	17 of 23
		<ul> <li>Compressor Blowdown (CBD)</li> </ul>	"
		<ul> <li>Emergency Shutdown (ESD) Testing</li> </ul>	"
		<ul> <li>Purge Gas (PG)</li> </ul>	"
		<ul> <li>Filter Change-Out (FCO)</li> </ul>	"
	0	Compressor Rod Packing (CRP/18E)	18 of 23
	0	Station Recycle Line Heater 01 (HTR-03/19E)	19 of 23
	0	Condensate Stabilizer Heater 02 (HTR-04/20E)	20 of 23
•	Fu	aitive Emissions	
	0	Process Piping Fugitives-Gas (FUG-G/17E)	21 of 23
	0	Process Piping Fugitives-Light Liquid (FUG-L/17E)	22 of 23
	0	Engine Crankcase Leaks (ECC/22E)	23 of 23
	Ŭ		

#### **Criteria Pollutants - Controlled**

Unit	Point	Control	Departmen	Site Deting	N	ох	C	:0	VOC (w	/HCHO)	PM1	0/2.5	SC	02
ID	ID	ID	Description	Site Kating	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy
				Conner Compressor Sta	ation (CCS)	- Point Sour	ces							
CE-01	1E	01-OxCat	Compressor Engine 01 - CAT G3516B	1,380 bhp	1.52	6.66	0.50	2.20	0.83	3.63	0.11	0.49	0.01	0.03
CE-02	2E	02-OxCat	Compressor Engine 02 - CAT G3516B	1,380 bhp	1.52	6.66	0.50	2.20	0.83	3.63	0.11	0.49	0.01	0.03
CE-03	3E	01-NSCR	Compressor Engine 03 - CAT G3306B TA	203 bhp	0.22	0.98	0.90	3.92	0.21	0.93	0.04	0.16	1E-03	5E-03
RBV-1	4E		Dehydrator Reboiler 01	1.66 MMBtu/hr	0.16	0.71	0.14	0.60	0.01	0.04	0.01	0.05	1E-03	4E-03
PSV-1	5E	01-COMB	Dehydrator 01 - Still Vent (DSV-1)	60.0 MMsofd					0.32	1.39				
N3V-1	6E	01-COMB	Dehydrator 01 - Flash Tank (DFT-1)						0.37	1.62				
RBV-2	7E		Dehydrator Reboiler 02	1.66 MMBtu/hr	0.16	0.71	0.14	0.60	0.01	0.04	0.01	0.05	1E-03	4E-03
	8E	01-COMB	Dehydrator 02 - Still Vent (DSV-2)	60.0 MMcofd					0.32	1.39				
N3V-2	9E	01-COMB	Dehydrator 02 - Flash Tank (DFT-2)						0.37	1.62				
COMB-1	10E		Thermal Oxidizer (98% T-Ox)	6.41 MMBtu/hr	0.63	2.75	1.99	8.70	5E-04	2E-03	0.05	0.21	4E-03	0.02
HTR-01	11E		Heater Treater 01	1.55 MMBtu/hr	0.15	0.67	0.13	0.56	0.01	0.04	0.01	0.05	9E-04	4E-03
HTR-02	12E		Condensate Stabilizer Heater 01	2.55 MMBtu/hr	0.25	1.10	0.21	0.92	0.01	0.06	0.02	0.08	2E-03	0.01
T01	13E		Produced Water Storage Tank 01	48 bbl					0.03	0.14				
TLO-1	14E		Produced Water Truck Load-Out	563 Mgal/yr						0.45				
TLO-2	15E		Condensate Truck Load-Out	250 Mgal/yr						2.47				
			Compressor Blowdown (CBD)	516 Events/yr						21.78				
SSW .	165		Emergency Shutdown (ESD) Testing	1 Event/yr						0.93				
33101	IUE		Purge Gas (PG)	35 scf/hr						2.28				
			Filter Change-Out (FCO)	146 Events/yr						37.15				
CRP	18E		Compressor Rod Packing	5 Compressors					4.10	17.94				
HTR-03	19E		Station Recycle Line Heater 01	1.66 MMBtu/hr	0.16	0.71	0.14	0.60	0.01	0.04	0.01	0.05	1E-03	4E-03
HTR-04	20E		Condensate Stabilizer Heater 02	9.70 MMBtu/hr	0.95	4.17	0.80	3.50	0.05	0.23	0.07	0.32	0.01	0.02
T02	21E		Produced Water Storage Tank 02	210 bbl					0.14	0.62				
			Conner Compressor Static	on (CCS) - Point Sources	5.74	25.12	5.44	23.81	7.62	98.41	0.45	1.97	0.03	0.13
				Conner Compressor	Station (CCS	S) - Fugitives	S							
FUG-G	17⊑		Process Piping Fugitives - Gas	5,050 Fittings					3.81	16.71				
FUG-L	176		Process Piping Fugitives - Light Liquid	4,556 Fittings					11.12	48.72				
ECC	22E		Engine Crankcase Leaks	3 Engines	0.01	0.04	0.05	0.22	0.02	0.11	6E-04	3E-03	4E-05	2E-04
			Conner Compressor S	Station (CCS) - Fugitives	0.01	0.04	0.05	0.22	14.96	65.53	6E-04	3E-03	4E-05	2E-04
				Conner Compresso	or Station (C	CS) - Total			1		1			
			Conner Compres	sor Station (CCS) - Total	5.74	25.16	5.49	24.02	22.58	163.94	0.45	1.97	0.03	0.13
* = lb/hr is	based on 8,70	60 hr/yr, excep	t Truck Load-Out (TLO) and Start/Stop/Maintenance (S	SSM) which operate less freq	uent.									

Conner Compressor Station (CCS)

Criteria Pollutants - Controlled Attachment N - Emission Estimates - Page 01 of 23

#### Hazardous Air Pollutants (HAP) - Controlled

Unit	Acetalo	dehyde	Acro	olein	Ben	zene	Butadie	ene, 1,3-	Ethylb	enzene	HC	Ю	n-Hexane		Meth	Methanol		/PAH	Tolu	iene	TMP,	2,2,4-	Xylenes		Other HAP		TOTAL	TOTAL HAPs	
ID	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	
	_										Conne	er Compr	essor St	ation (CO	CS) - Poiı	nt Sourc	es										_		
CE-01	0.02	0.07	0.01	0.04	8E-04	4E-03	5E-04	2E-03	7E-05	3E-04	0.27	1.17	2E-03	0.01	5E-03	0.02	6E-04	3E-03	8E-04	3E-03	5E-04	2E-03	3E-04	1E-03	6E-04	3E-03	0.30	1.32	
CE-02	0.02	0.07	0.01	0.04	8E-04	4E-03	5E-04	2E-03	7E-05	3E-04	0.27	1.17	2E-03	0.01	5E-03	0.02	6E-04	3E-03	8E-04	3E-03	5E-04	2E-03	3E-04	1E-03	6E-04	3E-03	0.30	1.32	
CE-03	5E-03	0.02	5E-03	0.02	3E-03	0.01	1E-03	5E-03	5E-05	2E-04	0.09	0.39	0.01	0.02	0.01	0.02	2E-04	8E-04	1E-03	4E-03	1E-03	5E-03	4E-04	2E-03	3E-04	1E-03	0.12	0.52	
RBV-1					3E-06	1E-05					1E-04	5E-04	3E-03	0.01			1E-06	5E-06	6E-06	2E-05					2E-06	9E-06	3E-03	0.01	
RSV-1					0.02	0.09			3E-03	0.01			0.02	0.08					0.04	0.17	2E-04	9E-04	3E-03	0.01			0.09	0.37	
Nov I					6E-04	3E-03			3E-05	1E-04			0.01	0.06					7E-04	3E-03	1E-04	6E-04	3E-05	1E-04			0.02	0.07	
RBV-2					3E-06	1E-05					1E-04	5E-04	3E-03	0.01			1E-06	5E-06	6E-06	2E-05					2E-06	9E-06	3E-03	0.01	
RSV-2					0.02	0.09			3E-03	0.01			0.02	0.08					0.04	0.17	2E-04	9E-04	3E-03	0.01			0.09	0.37	
1101-2					6E-04	3E-03			3E-05	1E-04			0.01	0.06					7E-04	3E-03	1E-04	6E-04	3E-05	1E-04			0.02	0.07	
COMB-1											5E-04	2E-03					4E-06	2E-05							8E-06	3E-05	5E-04	2E-03	
HTR-01					3E-06	1E-05					1E-04	5E-04	3E-03	0.01			1E-06	5E-06	5E-06	2E-05					2E-06	8E-06	3E-03	0.01	
HTR-02					5E-06	2E-05					2E-04	8E-04	5E-03	0.02			2E-06	8E-06	9E-06	4E-05					3E-06	1E-05	5E-03	0.02	
T01					4E-05	2E-04			6E-05	2E-04			3E-03	0.01					1E-04	6E-04	9E-05	4E-04	6E-04	3E-03			4E-03	0.02	
TLO-1						5E-04				8E-04				0.04						2E-03		1E-03		0.01			-	0.05	
TLO-2						3E-03				4E-03				0.21						0.01		0.01		0.05				0.28	
						0.01				6E-04				0.52						0.01		0.01		6E-04				0.54	
SSM						3E-04				3E-05				0.02						4E-04		3E-04		3E-05				0.02	
3311						8E-04				6E-05				0.05						1E-03		8E-04		6E-05				0.06	
						0.04				0.06				3.10						0.16		0.10		7E-01				4.18	
CRP					1E-03	0.01			1E-04	5E-04			0.10	0.43					2E-03	0.01	1E-03	0.01	1E-04	5E-04			0.10	0.45	
HTR-03					3E-06	1E-05					1E-04	5E-04	3E-03	0.01			1E-06	5E-06	6E-06	2E-05					2E-06	9E-06	3E-03	0.01	
HTR-04					2E-05	9E-05					7E-04	3E-03	0.02	0.07			7E-06	3E-05	3E-05	1E-04					1E-05	5E-05	0.02	0.08	
T02					2E-04	7E-04			2E-04	1E-03			0.01	0.05					6E-04	3E-03	4E-04	2E-03	3E-03	0.01			0.02	0.07	
CCS-PS	0.04	0.16	0.02	0.10	0.05	0.27	2E-03	0.01	0.01	0.10	0.62	2.73	0.22	4.90	0.01	0.07	0.00	0.01	0.08	0.56	0.00	0.14	0.01	0.81	2E-03	0.01	1.08	9.86	
											Con	ner Com	pressor	Station	(CCS) - F	ugitives													
FUG-G					6E-03	0.01			5E-04	5E-04			0.40	0.40					8E-03	0.01	6E-03	0.01	5E-04	5E-04			0.42	0.42	
FUG-L					0.05	0.05			0.08	0.08			4.07	4.07					0.21	0.21	0.13	0.13	0.93	0.93			5.48	5.48	
ECC	5E-04	2E-03	3E-04	1E-03	3E-05	1E-04	2E-05	7E-05	2E-06	1E-05	0.01	0.03	7E-05	3E-04	2E-04	7E-04	2E-05	9E-05	2E-05	1E-04	2E-05	7E-05	1E-05	5E-05	2E-05	8E-05	0.01	0.03	
CCS-FUG	5E-04	2E-03	3E-04	1E-03	0.06	0.06	2E-05	7E-05	0.09	0.09	0.01	0.03	4.46	4.46	2E-04	7E-04	2E-05	9E-05	0.22	0.22	0.14	0.14	0.93	0.93	2E-05	8E-05	5.91	5.93	
																	•												
											C	onner Co	mpress	or Statio	n (CCS) -	Total													
CCS-TOT	0.04	0.16	0.02	0.11	0.11	0.33	2E-03	0.01	0.09	0.18	0.63	2.76	4.68	9.36	0.02	0.07	2E-03	0.01	0.30	0.78	0.15	0.28	0.94	1.74	2E-03	0.01	6.99	15.79	
* = lb/hr is b	based on 8	3,760 hr/y	/r, except	Truck Lo	oad-Out (	TLO) and	Start/Sto	p/Mainte	nance (S	SM) whic	h operate	e less frec	uent.																

Conner Compressor Station (CCS)

Hazardous Air Pollutants (HAP) - Controlled Attachment N - Emission Estimates - Page 02 of 23

Conner Compressor Station (CCS)

Application for 45CSR13 NSR Permit Modification

Greenhouse Gas (GHG) Pollutants - Controlled

Unit Co ID	Control	Description	Site Rating	Heat Input MMBtu/hr	Hours of Operation	CO2 GWP:	CO2e 1.00	CH4 GWP:	CO2e 25.00	N2O GWP:	CO2e 298.00	тот со	'AL 2e
ID	ID		<b>J</b>	(HHV)	hr/yr*	tpy	tpy	tpy	tpy	tpy	tpy	lb/hr*	tpy
			Conner Con	npressor Stati	on (CCS) - Po	int Sources					12		
CE-01	01-OxCat	Compressor Engine 01 - CAT G3516B	1,380 bhp	11.28	8,760	6,876	6,876	26.25	656	0.01	3.24	1,720	7,536
CE-02	02-OxCat	Compressor Engine 02 - CAT G3516B	1,380 bhp	11.28	8,760	6,876	6,876	26.25	656	0.01	3.24	1,720	7,536
CE-03	01-NSCR	Compressor Engine 03 - CAT G3306B TA	203 bhp	1.84	8,760	1,113	1,113	0.84	21.07	2E-03	0.53	259	1,135
RBV-1		Dehydrator Reboiler 01	1.66 MMBtu/hr	1.66	8,760	851	851	0.02	0.40	2E-03	0.48	194	851
	01-COMB	Dehydrator 01 - Still Vent (DSV-1)	CO O MMasfel		8,760			0.05	1.18			0.27	1.18
R5V-1	01-COMB	Dehydrator 01 - Flash Tank (DFT-1)			8,760			0.96	23.89			5.45	23.89
RBV-2		Dehydrator Reboiler 02	1.66 MMBtu/hr	1.66	8,760	851	851	0.02	0.40	2E-03	0.48	194	851
	01-COMB	Dehydrator 02 - Still Vent (DSV-2)	60.0 MMaafd		8,760			0.05	1.18			0.27	1.18
R3V-2	01-COMB	Dehydrator 02 - Flash Tank (DFT-2)			8,760			0.96	23.89			5.45	23.89
COMB-1		Thermal Oxidizer (98% T-Ox)	6.41 MMBtu/hr	6.41	8,760	3,284	3,284			0.01	1.84	750	3,286
HTR-01		Heater Treater 01	1.55 MMBtu/hr	1.55	8,760	794	794	0.01	0.37	1E-03	0.45	182	795
HTR-02		Condensate Stabilizer Heater 01	2.55 MMBtu/hr	2.55	8,760	1,307	1,307	0.02	0.62	2E-03	0.73	299	1,308
T01	T01 Produced Water Storage Tank 01 48 bbl 8,7							2E-03	0.05			0.01	0.06
TLO-1		Produced Water Truck Load-Out	563 Mgal/yr			3E-03	3E-03	0.01	0.17				0.18
TLO-2		Condensate Truck Load-Out	250 Mgal/yr			0.02	0.02	0.04	0.96				0.97
		Compressor Blowdown (CBD)	516 Events/yr			0.23	0.23	55.69	1,392				1,392
SSM		Emergency Shutdown (ESD) Testing	1 Event/yr			0.01	0.01	2.38	59.54				59.55
00101		Purge Gas (PG)	35 scf/hr			0.02	0.02	5.82	145				145
		Filter Change-Out (FCO)	146 Events/yr			0.02	0.02	6.05	151				151
CRP		Compressor Rod Packing	5 Compressors		8,760	0.19	0.19	45.88	1,147			262	1,147
HTR-03		Station Recycle Line Heater 01	1.66 MMBtu/hr	1.66	8,760	851	851	0.02	0.40	2E-03	0.48	194	851
HTR-04		Condensate Stabilizer Heater 02	9.70 MMBtu/hr	9.70	8,760	4,970	4,970	0.09	2.34	0.01	2.79	1,136	4,975
T02		Produced Water Storage Tank 02	210 bbl		8,760	4E-03	4E-03	1E-02	0.24			0.06	0.24
		C	Conner Compressor Static	on (CCS) - Poir	nt Sources	27,772	27,772	171	4,285	0.05	14.27	6,923	32,072
								-					
			Conner C	ompressor St	ation (CCS) -	Fugitives							
FUG-G          Process Piping Fugitives - Gas         5,050 Fittings          8,760         0.18         0.18         42.72         1,068          244								244	1,068				
FUG-L		Process Piping Fugitives - Light Liquid	4,556 Fittings		8,760	0.34	0.34	0.76	19			4.39	19.23
ECC      Engine Crankcase Leaks     3 Engines      36.64     36.64     0.14     3.50     6E-05     0.02     9.17										40.15			
			Conner Compressor	Station (CCS)	- Fugitives	37.16	37.16	43.62	1,090	6E-05	0.02	257	1,128
	TOTAL (Stationary Fuel Combustion (sans COMB-1)): 43.17 TOTAL (Stationary Fuel Combustion (sans COMB-1)): 28,786												
			Conner	Compressor	Station (CCS)	- Total							
	Conner Compressor Station (CCS) - Total 27,809 27,809 215 5,376 0.05 14.29 7,180 33,199												
* = lb/hr is ba	sed on 8,760 hr	/yr, except Truck Load-Out (TLO) and Start/Stop/Mainter	nance (SSM) which operate	less frequent.									

Greenhouse Gas (GHG) Pollutants - Controlled Attachment N - Emission Estimates - Page 03 of 23

Application for 45CSR13 NSR Permit Modification

Conner Compressor Station (CCS)

#### **Criteria Pollutants - PRE-Controlled**

Unit	t Point Control Description Site Ra	Site Beting	N	ох	C	:0	VOC (w	/HCHO)	PM1	0/2.5	S	02		
ID	ID	ID	Description	Site Rating	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy
				Conner Compressor Sta	ation (CCS)	- Point Sour	ces							
CE-01	1E	01-OxCat	Compressor Engine 01 - CAT G3516B	1,380 bhp	1.52	6.66	9.37	41.04	4.50	19.71	0.11	0.49	0.01	0.03
CE-02	2E	02-OxCat	Compressor Engine 02 - CAT G3516B	1,380 bhp	1.52	6.66	9.37	41.04	4.50	19.71	0.11	0.49	0.01	0.03
CE-03	3E	01-NSCR	Compressor Engine 01 - CAT G3306B TA	203 bhp	6.83	29.91	6.83	29.91	0.21	0.93	0.04	0.16	1E-03	5E-03
RBV-1	4E		Dehydrator Reboiler 01	1.66 MMBtu/hr	0.16	0.71	0.14	0.60	0.01	0.04	0.01	0.05	1E-03	4E-03
	5E	01-COMB	Dehydrator 01 - Still Vent (DSV-1)	60.0 MMcofd					31.73	138.98				
N3V-1	6E	01-COMB	Dehydrator 01 - Flash Tank (DFT-1)						37.09	162.46				
RBV-2	7E		Dehydrator Reboiler 02	1.66 MMBtu/hr	0.16	0.71	0.14	0.60	0.01	0.04	0.01	0.05	1E-03	4E-03
	8E	01-COMB	Dehydrator 02 - Still Vent (DSV-2)	60.0 MMaafd					31.73	138.98				
R3V-2	9E	01-COMB	Dehydrator 02 - Flash Tank (DFT-2)						37.09	162.46				
COMB-1	10E		Thermal Oxidizer (99% T-Ox)	6.41 MMBtu/hr										
HTR-01	11E		Heater Treater 01	1.55 MMBtu/hr	0.15	0.67	0.13	0.56	0.01	0.04	0.01	0.05	9E-04	4E-03
HTR-02	12E		Condensate Stabilizer Heater 01	2.55 MMBtu/hr	0.25	1.10	0.21	0.92	0.01	0.06	0.02	0.08	2E-03	0.01
T01	13E		Produced Water Storage Tank 01	48 bbl					0.03	0.14				
TLO-1	14E		Produced Water Truck Load-Out	563 Mgal/yr						0.45				
TLO-2	15E		Condensate Truck Load-Out	250 Mgal/yr						2.47				
			Compressor Blowdown (CBD)	516 Events/yr						21.78				
SCM	165		Emergency Shutdown (ESD) Testing	1 Event/yr						0.93				
331/1	IOE		Purge Gas (PG)	35 scf/hr						2.28				
			Filter Change-Out (FCO)	146 Events/yr						37.15				
CRP	18E		Compressor Rod Packing (x-RPC)	5 Compressors					4.10	17.94				
HTR-03	19E		Station Recycle Line Heater 01	1.66 MMBtu/hr	0.16	0.71	0.14	0.60	0.01	0.04	0.01	0.05	1E-03	4E-03
HTR-04	20E		Condensate Stabilizer Heater 02	9.70 MMBtu/hr	0.95	4.17	0.80	3.50	0.05	0.23	0.07	0.32	0.01	0.02
T02	21E		Produced Water Storage Tank 02	210 bbl					0.14	0.62				
			Conner Compressor Static	on (CCS) - Point Sources	11.71	51.30	27.12	118.77	151.23	727.43	0.40	1.76	0.03	0.11
				Conner Compressor	Station (CCS	S) - Fugitives	S							
FUG-G	17⊏		Process Piping Fugitives - Gas	5,050 Fittings					3.81	16.71				
FUG-L	176		Process Piping Fugitives - Light Liquid	4,556 Fittings					11.12	48.72				
ECC	22E		Engine Crankcase (x-RCP)	3 Engines	0.01	0.04	0.05	0.22	0.02	0.11	6E-04	3E-03	4E-05	2E-04
			Conner Compressor S	Station (CCS) - Fugitives	0.01	0.04	0.05	0.22	14.96	65.53	6E-04	3E-03	4E-05	2E-04
				Conner Compresso	or Station (C	CS) - Total					_			
			Conner Compres	sor Station (CCS) - Total	11.72	51.34	27.17	118.99	166.19	792.96	0.40	1.76	0.03	0.11
* = lb/hr is	based on 8,7	60 hr/yr, excep	t Truck Load-Out (TLO) and Start/Stop/Maintenance (S	SSM) which operate less freq	uent.									

Conner Compressor Station

Criteria Pollutants - PRE-Controlled Attachment N - Emission Estimates - Page 04 of 23

#### Hazardous Air Pollutants (HAP) - PRE-Controlled

Unit	Acetalo	lehyde	Acro	olein	Ben	zene	Butadie	ne, 1,3-	Ethylb	enzene	HC	Ю	n-He	exane	Meth	nanol	POM	/PAH	Tolu	iene	TMP,	2,2,4-	Xyle	enes	Other	HAP	TOTAL	HAPs
ID	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy
											Conne	er Compr	essor St	ation (CO	CS) - Poi	nt Sourc	es											
CE-01	0.09	0.41	0.06	0.25	5E-03	0.02	3E-03	0.01	4E-04	2E-03	1.10	4.80	0.01	0.05	0.03	0.12	4E-03	0.02	5E-03	0.02	3E-03	0.01	2E-03	0.01	4E-03	0.02	1.31	5.75
CE-02	0.09	0.41	0.06	0.25	5E-03	0.02	3E-03	0.01	4E-04	2E-03	1.10	4.80	0.01	0.05	0.03	0.12	4E-03	0.02	5E-03	0.02	3E-03	0.01	2E-03	0.01	4E-03	0.02	1.31	5.75
CE-03	0.01	0.02	5E-03	0.02	3E-03	0.01	1E-03	0.01	5E-05	2E-04	0.09	0.39	0.01	0.02	0.01	0.02	2E-04	8E-04	1E-03	4E-03	1E-03	0.01	4E-04	2E-03	3E-04	1E-03	0.12	0.52
RBV-1					3E-06	1E-05					1E-04	5E-04	3E-03	0.01			1E-06	5E-06	6E-06	2E-05					2E-06	9E-06	3E-03	0.01
PSV/1					2.09	9.16			0.29	1.25			1.93	8.46					3.91	17.11	0.02	0.09	0.29	1.25			8.52	37.34
1(30-1					0.06	0.26			3E-03	0.01			1.35	5.93					0.07	0.32	0.01	0.06	3E-03	0.01			1.51	6.59
RBV-2					3E-06	1E-05					1E-04	5E-04	3E-03	0.01			1E-06	5E-06	6E-06	2E-05					2E-06	9E-06	3E-03	0.01
RSV-2					2.09	9.16			0.29	1.25			1.93	8.46					3.91	17.11	0.02	0.09	0.29	1.25			8.52	37.34
1137-2					0.06	0.26			3E-03	0.01			1.35	5.93					0.07	0.32	0.01	0.06	3E-03	0.01			1.51	6.59
COMB-1																											1	
HTR-01					3E-06	1E-05					1E-04	5E-04	3E-03	0.01			1E-06	5E-06	5E-06	2E-05					2E-06	8E-06	3E-03	0.01
HTR-02					5E-06	2E-05					2E-04	8E-04	5E-03	0.02			2E-06	8E-06	9E-06	4E-05					3E-06	1E-05	5E-03	0.02
T01					4E-05	2E-04			6E-05	2E-04			3E-03	0.01					1E-04	6E-04	9E-05	4E-04	6E-04	3E-03			4E-03	0.02
TLO-1						5E-04				8E-04				0.04						2E-03		1E-03		0.01				0.05
TLO-2						3E-03				4E-03				0.21						0.01		0.01		0.05				0.28
						0.01				6E-04				0.52						0.01		0.01		6E-04				0.54
SSM						3E-04				3E-05				0.02						4E-04		3E-04		3E-05				0.02
00101						8E-04				6E-05				0.05						1E-03		8E-04		6E-05				0.06
						0.04				0.06				3.10						0.16		0.10		7E-01				4.18
CRP					1E-03	0.01			1E-04	5E-04			0.10	0.43					2E-03	0.01	1E-03	0.01	1E-04	5E-04			0.10	0.45
HTR-03					3E-06	1E-05					1E-04	5E-04	3E-03	0.01			1E-06	5E-06	6E-06	2E-05					2E-06	9E-06	3E-03	0.01
HTR-04					2E-05	9E-05					7E-04	3E-03	0.02	0.07			7E-06	3E-05	3E-05	1E-04					1E-05	5E-05	0.02	0.08
T02					2E-04	7E-04			2E-04	1E-03			0.01	0.05					6E-04	3E-03	4E-04	2E-03	3E-03	0.01			0.02	0.07
CCS-PS	0.19	0.85	0.12	0.53	4.31	18.95	7E-03	0.03	0.58	2.61	2.28	9.99	6.75	33.48	0.06	0.27	0.01	0.04	7.97	35.11	0.08	0.47	0.59	3.34	8E-03	0.03	22.96	105.70
			•								Con	ner Com	pressor	Station	(CCS) - F	ugitives												
FUG-G					6E-03	0.01			5E-04	5E-04			0.40	0.40					8E-03	0.01	6E-03	0.01	5E-04	5E-04			0.42	0.42
FUG-L					0.05	0.05			0.08	0.08			4.07	4.07					0.21	0.21	0.13	0.13	0.93	0.93			5.48	5.48
ECC	5E-04	2E-03	3E-04	1E-03	3E-05	1E-04	2E-05	7E-05	2E-06	1E-05	0.01	0.03	7E-05	3E-04	2E-04	7E-04	2E-05	9E-05	2E-05	1E-04	2E-05	7E-05	1E-05	5E-05	2E-05	8E-05	0.01	0.03
CCS-FUG	5E-04	2E-03	3E-04	1E-03	0.06	0.06	2E-05	7E-05	0.09	0.09	0.01	0.03	4.46	4.46	2E-04	7E-04	2E-05	9E-05	0.22	0.22	0.14	0.14	0.93	0.93	2E-05	8E-05	5.91	5.93
												-			(0.05)													
	-								1		C	onner Co	mpress	or Statio	n (CCS) ·	Total					1				1			
CCS-TOT	0.19	0.85	0.12	0.53	4.38	19.01	7E-03	0.03	0.67	2.70	2.29	10.02	11.21	37.95	0.06	0.27	8E-03	0.04	8.19	35.33	0.22	0.61	1.52	4.27	8E-03	0.03	28.87	111.64
* = lb/hr is b	based on 8	3,760 hr/y	r, except/	Truck Lo	oad-Out (	TLO) and	I Start/Sto	p/Mainte	nance (S	SM) whic	h operate	e less freq	uent.															

Conner Compressor Station (CCS)

Hazardous Air Pollutants (HAP) - PRE-Controlled Attachment N - Emission Estimates - Page 05 of 23

Conner Compressor Station (CCS)

Application for 45CSR13 NSR Permit Modification

#### Greenhouse Gas (GHG) Pollutants - PRE-Controlled

Unit ID	Control	Description	Site Rating	Heat Input	Hours of Operation	CO2	CO2e	CH4	CO2e	N2O	CO2e	TOT CO	TAL 2e
ID	ID	Description	One reating	(HHV)	br/vr*	tov	tov	tnv	23.00 tnv	tnv	230.00 tnv	lb/hr*	tnv
			Conner Con	npressor Stati	on (CCS) - Po	int Sources	ιpy	τρy	ιpy	ιpy	ւթյ	10/11	ιpy
CE-01	01-OxCat	Compressor Engine 01 - CAT G3516B	1.380 bhp	11.28	8.760	6.876	6.876	26.25	656	0.01	3.24	1.720	7.536
CE-02	02-OxCat	Compressor Engine 02 - CAT G3516B	1.380 bhp	11.28	8.760	6.876	6.876	26.25	656	0.01	3.24	1.720	7.536
CE-03	01-NSCR	Compressor Engine 03 - CAT G3306B TA	203 bhp	1.84	8,760	1,113	1,113	0.84	21.07	2E-03	0.53	259	1,135
RBV-1		Dehydrator Reboiler 01	1.66 MMBtu/hr	1.66	8,760	851	851	0.02	0.40	2E-03	0.48	194	851
50144	01-COMB	Dehydrator 01 - Still Vent (DSV-1)			8,760			4.71	118			26.89	118
RSV-1	01-COMB	Dehydrator 01 - Flash Tank (DFT-1)	60.0 MMscfd		8,760			95.55	2,389			545	2,389
RBV-2		Dehydrator Reboiler 02	1.66 MMBtu/hr	1.66	8,760	851	851	0.02	0.40	2E-03	0.48	194	851
DOV 0	01-COMB	Dehydrator 02 - Still Vent (DSV-2)	00.0 MM4-sfil		8,760			4.71	118			26.89	118
R5V-2	01-COMB	Dehydrator 02 - Flash Tank (DFT-2)	60.0 IVINISCIO		8,760			95.55	2,389			545	2,389
COMB-1		Thermal Oxidizer (98% T-Ox)	6.41 MMBtu/hr										
HTR-01		Heater Treater 01	1.55 MMBtu/hr	1.55	8,760	794	794	0.01	0.37	1E-03	0.45	182	795
HTR-02		Condensate Stabilizer Heater 01	8,760	1,307	1,307	0.02	0.62	2E-03	0.73	299	1,308		
T01		Produced Water Storage Tank 01	8,760	1E-03	1E-03	2E-03	0.05			0.01	0.06		
TLO-1		Produced Water Truck Load-Out	563 Mgal/yr			3E-03	3E-03	0.01	0.17				0.18
TLO-2		Condensate Truck Load-Out	250 Mgal/yr			0.02	0.02	0.04	0.96				0.97
		Compressor Blowdown (CBD)	516 Events/yr			0.23	0.23	55.69	1,392				1,392
Sew		Emergency Shutdown (ESD) Testing	1 Event/yr			0.01	0.01	2.38	59.54				59.55
3311		Purge Gas (PG)	35 scf/hr			0.02	0.02	5.82	145				145
		Filter Change-Out (FCO)	146 Events/yr			0.02	0.02	6.05	151				151
CRP		Compressor Rod Packing	5 Compressors		8,760	0.19	0.19	45.88	1,147			262	1,147
HTR-03		Station Recycle Line Heater 01	1.66 MMBtu/hr	1.66	8,760	851	851	0.02	0.40	2E-03	0.48	194	851
HTR-04		Condensate Stabilizer Heater 02	9.70 MMBtu/hr	9.70	8,760	4,970	4,970	0.09	2.34	0.01	2.79	1,136	4,975
T02		Produced Water Storage Tank 02	210 bbl		8,760	4E-03	4E-03	1E-02	0.24			0.06	0.24
		c	onner Compressor Static	on (CCS) - Poir	nt Sources	24,488	24,488	370	9,248	0.04	12.42	7,306	33,748
								-					
			Conner C	ompressor St	ation (CCS) -	Fugitives							
FUG-G		Process Piping Fugitives - Gas	5,050 Fittings		8,760	0.18	0.18	42.72	1,068			244	1,068
FUG-L		Process Piping Fugitives - Light Liquid	4,556 Fittings		8,760	0.34	0.34	0.76	19			4.39	19.23
ECC          Engine Crankcase Leaks         3 Engines          36.64         36.64         0.14         3.50         6E-05         0.02         9.17										40.15			
			Conner Compressor	Station (CCS)	- Fugitives	37.16	37.16	43.62	1,090	6E-05	0.02	257	1,128
		TOTAL (Stationary Fuel Combu	stion (sans COMB-1)):	43.17				тот	AL (Stationa	ary Fuel Combu	stion (sans	COMB-1)):	33,748
			Conner	Compressor	Station (CCS)	- Total							
	Conner Compressor Station (CCS) - Total 24,525 24,525 414 10,338 0.04 12.44 7,563 34,876												
* = lb/hr is ba	sed on 8,760 hr	/yr, except Truck Load-Out (TLO) and Start/Stop/Mainter	ance (SSM) which operate	less frequent.									

Conner Compressor Station (CCS)

Greenhouse Gas (GHG) Pollutants - PRE-Controlled Attachment N - Emission Estimates - Page 06 of 23

#### Compressor Engine (CE-01 and CE-02) Emissions

Source	Description	Reference	Pollutant		Pre-Con Emiss	trolled ions		Control		Controlled Emissions	
				g/bhp-hr	lb/MMBtu	lb/hr	tpy	Enciency	g/bhp-hr	lb/hr	tpy
		Vendor Data	NOX	0.50	0.13	1.52	6.66		0.50	1.52	6.66
	Compressor Engines	Vendor Data	CO	3.08	0.83	9.37	41.04	94.6%	0.17	0.50	2.20
	(OxCat-01 and OxCat-02)	Stack Test + 20%	NMNEHC	1.06	0.29	3.22	14.13	83.5%	0.17	0.53	2.33
	· · · · · · · · · · · · · · · · · · ·	Sum	VOC (w/Aldehydes)*	1.48	0.40	4.50	19.71	81.6%	0.27	0.83	3.63
		AP-42 Table 3.2-2	PM10/2.5	3.70E-02	9.99E-03	0.11	0.49		0.04	0.11	0.49
	G3516B (4SLB)	AP-42 Table 3.2-2	SO2	2.18E-03	5.88E-04	0.01	0.03		2E-03	0.01	0.03
	000.02 (1022)	AP-42 Table 3.2-2	*Acetaldehyde	3.10E-02	8.36E-03	0.09	0.41	83.5%	0.01	0.02	0.07
	1,380 bhp (Each)	AP-42 Table 3.2-2	*Acrolein	1.91E-02	5.14E-03	0.06	0.25	83.5%	3E-03	0.01	0.04
	8,760 hr/yr (Each)	AP-42 Table 3.2-2	Benzene	1.63E-03	4.40E-04	0.00	0.02	83.5%	3E-04	8E-04	4E-03
	1,400 rpm, 16 cyl	AP-42 Table 3.2-2	Butadiene, 1,3-	9.90E-04	2.67E-04	3E-03	0.01	83.5%	2E-04	5E-04	2E-03
CE-01 (1E)	264 in3/cyl	AP-42 Table 3.2-2	Ethylbenzene	1.47E-04	3.97E-05	4E-04	2E-03	83.5%	2E-05	7E-05	3E-04
CE-02 (2E)		Vendor Data	*Formaldehyde	0.36	0.10	1.10	4.80	75.7%	0.09	0.27	1.17
(5 1-)	1,016 Exhaust Temp (oF)	AP-42 Table 3.2-2	n-Hexane	4.11E-03	1.11E-03	0.01	0.05	83.5%	7E-04	2E-03	0.01
(Each)	9,268 Exhaust Flow (acfm)	AP-42 Table 3.2-2	*Methanol	9.27E-03	2.50E-03	0.03	0.12	83.5%	0.00	5E-03	0.02
		AP-42 Table 3.2-2	POM/PAH	1.28E-03	3.47E-04	4E-03	0.02	83.5%	2E-04	6E-04	3E-03
	MFD: > 08/23/11	AP-42 Table 3.2-2	Toluene	1.51E-03	4.08E-04	5E-03	0.02	83.5%	2E-04	8E-04	3E-03
	NSPS JJJJ Affected	AP-42 Table 3.2-2	TMP, 2,2,4-	9.90E-04	2.67E-04	3E-03	0.01	83.5%	2E-04	5E-04	2E-03
		AP-42 Table 3.2-2	Xylenes	6.82E-04	1.84E-04	2E-03	0.01	83.5%	1E-04	3E-04	1E-03
	8,171 Btu/bhp-hr (HHV)	AP-42 Table 3.2-2	Other/Trace HAP	1.19E-03	3.21E-04	4E-03	0.02	83.5%	2E-04	6E-04	3E-03
	11.28 MMBtu/hr (HHV) (Each)	AP-42 Table 3.2-2	Total HAP	0.43	0.12	1.31	5.75	77.0%	0.10	0.30	1.32
	11,055 scf/hr (Each)	Vendor Data	CO2 (GWP=1)	516	139.22	1,570	6,876		516	1,570	6,876
	96.84 MMscf/yr (Each)	Vendor Data	CH4 (GWP=25)	1.97	0.53	5.99	26.25		1.97	5.99	26.25
	1,020 Btu/scf (HHV)	40CFR98 - Table C2	N2O (GWP=298)	8.17E-04	2.20E-04	2E-03	0.01		8E-04	2E-03	0.01
		Weighted Sum	CO2e	565	153	1,720	7,536		565	1,720	7,536

* = Aldehyde/MeOH added to NMNEHC to get VOC

Bold Red Font Indicates Proposed Permit Limitation

Notes: 1 - The emissions shown are based on operation at 100% of rated load for 8,760 hr/yr. Actual load and operating hours will be less.

2 - As per vendor specifications, NMNEHC (non-methane/non-ethane hydrocarbons) do NOT include aldehydes. VOC is the sum of NMNEHC, Acetaldehyde, Acrolein, Formaldehyde, and Methanol.

3 - PM10/2.5 is filterable and condensable particulate matter; including PM10 and PM2.5

4 - "Other/Trace HAPs" includes: CarbonTetrachloride, Chlorobenzene, Chloroform, Dichloropropene, 1,3-Dichloropropene, Ethylene Dibromide, Methylene Chloride, Phenol, Propylene Oxide, Styrene, 1,1,2,2-Tetrachloroethane, 1,1,2-Trichloroethane, and Vinyl Chloride (as per AP-42).

5 - The fuel heating value will vary, 1,020 Btu/scf (HHV) is at the low end of the range and results in a high (conservative) fuel consumption estimate.

6 - Total NMNEHC, VOC, HCHO, HAP and CO2e emissions include Compressor Rod Packing (CRP), Compressor Blowdown (CBD), Engine Start-up (ESU), and Engine Crankcase (ECC) Emissions:

Description (Each Engine w/ Compressor)	NMNEHC	VOC	нсно	Tot HAP	CO2e
Engine Operations (See Above)	2.33 tpy	3.63 tpy	1.17 tpy	1.32 tpy	7,536 tpy
Compressor Rod Packing (CRP)	3.59 tpy	3.59 tpy		0.09 tpy	229 tpy
Compressor Blowdown (CBD)	9.94 tpy	9.94 tpy		0.25 tpy	635 tpy
Engine Start-up (ESU)		Electric or	Pneumatic Starters	s are utilized	
Engine Crankcase (ECC)	0.04 tpy	0.05 tpy	0.01 tpy	0.01 tpy	18.70 tpy
TOTAL:	15.89 tpy	17.20 tpy	1.18 tpy	1.68 tpy	8,419 tpy

7 - The vendor guarantee on NMNEHC emissions cannot be achieved. The rates above are based on source test data and are well below applicable NSPS JJJJ emission standards.

#### Compressor Engine (CE-03) Emissions

Source	Description	Reference	Pollutant		Pre-Con Emiss	trolled ions		Control		Controlled Emissions	
				g/bhp-hr	lb/MMBtu	lb/hr	tpy	Emolency	g/bhp-hr	lb/hr	tpy
		Vendor Data	NOX	15.26	3.71	6.83	29.91	96.7%	0.50	0.22	0.98
	Compressor Engine 03	Vendor Data	CO	15.26	3.71	6.83	29.91	86.9%	2.00	0.90	3.92
	(NSCR-01)	Vendor Data	NMNEHC	0.24	0.06	0.11	0.47		0.24	0.11	0.47
		Sum	VOC (w/Aldehydes)*	0.47	0.12	0.21	0.93		0.47	0.21	0.93
		AP-42 Table 3.2-2	PM10/2.5	7.99E-02	1.94E-02	0.04	0.16		0.08	0.04	0.16
	G3306B TA (4SBB)	AP-42 Table 3.2-2	SO2	2.42E-03	5.88E-04	1E-03	5E-03		2E-03	1E-03	5E-03
		AP-42 Table 3.2-2	*Acetaldehyde	1.15E-02	2.79E-03	0.01	0.02		0.01	0.01	0.02
	203 bhp	AP-42 Table 3.2-2	*Acrolein	1.08E-02	2.63E-03	5E-03	0.02		0.01	5E-03	0.02
	8,760 hr/yr	AP-42 Table 3.2-2	Benzene	6.50E-03	1.58E-03	3E-03	0.01		7E-03	3E-03	0.01
	1,800 rpm, 6 cyl	AP-42 Table 3.2-2	Butadiene, 1,3-	2.73E-03	6.63E-04	1E-03	5E-03		3E-03	1E-03	5E-03
	106 in3/cyl	AP-42 Table 3.2-2	Ethylbenzene	1.02E-04	2.48E-05	5E-05	2E-04		1E-04	5E-05	2E-04
		Vendor Data	*Formaldehyde	0.20	0.05	0.09	0.39		0.20	0.09	0.39
CE-03 (3E)	1,064 Exhaust Temp (oF)	AP-42 Table 3.2-2	n-Hexane	1.26E-02	3.06E-03	0.01	0.02		1E-02	0.01	0.02
	990 Exhaust Flow (acfm)	AP-42 Table 3.2-2	*Methanol	1.26E-02	3.06E-03	0.01	0.02		0.01	0.01	0.02
		AP-42 Table 3.2-2	POM/PAH	3.99E-04	9.71E-05	2E-04	0.00		4E-04	2E-04	8E-04
	MFD: > 08/23/11	AP-42 Table 3.2-2	Toluene	2.30E-03	5.58E-04	1E-03	0.00		2E-03	1E-03	4E-03
	NSPS JJJJ Affected	AP-42 Table 3.2-2	TMP, 2,2,4-	2.73E-03	6.63E-04	1E-03	0.01		3E-03	1E-03	5E-03
		AP-42 Table 3.2-2	Xylenes	8.02E-04	1.95E-04	4E-04	0.00		8E-04	4E-04	2E-03
	9,070 Btu/bhp-hr (HHV)	AP-42 Table 3.2-2	Other/Trace HAP	7.37E-04	1.79E-04	3E-04	0.00		7E-04	3E-04	1E-03
	1.84 MMBtu/hr (HHV)	AP-42 Table 3.2-2	Total HAP	0.26	0.06	0.12	0.52		0.26	0.12	0.52
	1,805 scf/hr	Vendor Data	CO2 (GWP=1)	568	138.06	254	1,113		568	254	1,113
	15.81 MMscf/yr	Vendor Data	CH4 (GWP=25)	0.43	0.10	0.19	0.84		0.43	0.19	0.84
	1,020 Btu/scf (HHV)	40CFR98 - Table C2	N2O (GWP=298)	9.07E-04	2.20E-04	4E-04	2E-03		9E-04	4E-04	2E-03
		Weighted Sum	CO2e	579	141	259	1,135		579	259	1,135

* = Aldehyde/MeOH added to NMNEHC to get VOC

Bold Red Font Indicates Proposed Permit Limitation

Notes: 1 - The emissions shown are based on operation at 100% of rated load for 8,760 hr/yr. Actual load and operating hours will be less.

2 - As per vendor specifications, NMNEHC (non-methane/non-ethane hydrocarbons) do NOT include aldehydes. VOC is the sum of NMNEHC, Acetaldehyde, Acrolein, Formaldehyde, and Methanol.

3 - PM10/2.5 is filterable and condensable particulate matter; including PM10 and PM2.5

4 - "Other/Trace HAPs" includes: CarbonTetrachloride, Chlorobenzene, Chloroform, Dichloropropene, 1,3-Dichloropropene, Ethylene Dibromide, Methylene Chloride, Phenol, Propylene Oxide, Styrene, 1,1,2,2-Tetrachloroethane, 1,1,2-Trichloroethane, and Vinyl Chloride (as per AP-42).

5 - The fuel heating value will vary, 1,020 Btu/scf (HHV) is at the low end of the range and results in a high (conservative) fuel consumption estimate.

6 - Total NMNEHC, VOC, HCHO, HAP and CO2e emissions include Compressor Rod Packing (CRP), Compressor Blowdown (CBD), Engine Start-up (ESU), and Engine Crankcase (ECC) Emissions:

Description (Each Engine w/ Compressor)	NMNEHC	VOC	нсно	Tot HAP	CO2e
Engine Operations (See Above)	0.47 tpy	0.93 tpy	0.39 tpy	0.52 tpy	1,135 tpy
Compressor Rod Packing (CRP)	3.59 tpy	3.59 tpy		0.09 tpy	229 tpy
Compressor Blowdown (CBD)	1.46 tpy	1.46 tpy		0.04 tpy	93 tpy
Engine Start-up (ESU)		Electric or	Pneumatic Starters	are utilized	
Engine Crankcase (ECC)	0.01 tpy	0.01 tpy	2E-03 tpy	2E-03 tpy	2.75 tpy
TOTAL	.: 5.53 tpy	5.99 tpy	0.39 tpy	0.65 tpy	1,461 tpy

#### Reboiler (RBV-01.-02) Emissions

Source	Description	Reference	Pollutant	Emis Fac	ssion ctor	Emis	sions
				lb/MMscf	lb/MMBtu	lb/hr	tpy
		EPA AP-42 Table 1.4-1	NOX	100	9.80E-02	0.16	0.71
		EPA AP-42 Table 1.4-1	CO	84	8.24E-02	0.14	0.60
	Dehydrator Reboiler 01 Dehydrator Reboiler 02	EPA AP-42 Table 1.4-2	NMNEHC	5.5	5.39E-03	0.01	0.04
	,	EPA AP-42 Table 1.4-2	VOC	5.5	5.39E-03	0.01	0.04
		EPA AP-42 Table 1.4-2	PM10/2.5	7.6	7.45E-03	0.01	0.05
		EPA AP-42 Table 1.4-2	SO2	0.6	5.88E-04	1E-03	4E-03
		EPA AP-42 Table 1.4-3	Acetaldehyde				-
		EPA AP-42 Table 1.4-3	Acrolein				-
	1.66 MMBtu/hr (HHV) (Each)	EPA AP-42 Table 1.4-3	Benzene	2.10E-03	2.06E-06	3E-06	1E-05
RBV-1 (4E) RBV-2 (7E)		EPA AP-42 Table 1.4-4	Butadiene, 1,3-				-
		EPA AP-42 Table 1.4-3	Ethylbenzene				-
		EPA AP-42 Table 1.4-3	Formaldehyde	0.08	7.35E-05	1E-04	5E-04
		EPA AP-42 Table 1.4-3	n-Hexane	1.80	1.76E-03	3E-03	0.01
(Each)		EPA AP-42 Table 1.4-3	Methanol				
	1,020 Btu/scf (HHV)	EPA AP-42 Table 1.4-3	POM/PAH	6.98E-04	6.85E-07	1E-06	5E-06
		EPA AP-42 Table 1.4-3	Toluene	3.40E-03	3.33E-06	6E-06	2E-05
		EPA AP-42 Table 1.4-3	TMP, 2,2,4-				
	8,760 hr/yr (Each)	EPA AP-42 Table 1.4-3	Xylenes				
		EPA AP-42 Table 1.4-3	Other/Trace HAP	1.20E-03	1.18E-06	2E-06	9E-06
		SUM	Total HAP	1.88	1.85E-03	3E-03	0.01
	1,627 scf/hr	40CFR98 - Table C-1	CO2 (GWP=1)	119,317	117	194	851
	14.26 MMscf/yr (Each)	40CFR98 - Table C-2	CH4 (GWP=25)	2.25	2.20E-03	4E-03	0.02
		40CFR98 - Table C-2	N2O (GWP=298)	0.22	2.20E-04	4E-04	2E-03
		40CFR98 - Table A-1	CO2e	119,440	117	194	851

Bold Red Font Indicates Proposed Permit Limitation

Notes: 1 - The emissions shown are based on operation at 100% of rated load for 8,760 hr/yr. Actual load and operating hours will be less.

2 - The fuel heating value will vary, 1,020 Btu/scf (HHV) is at the low end of the range and results in a high (conservative) fuel consumption estimate.

3 - PM10/2.5 is filterable and condensable particulate matter; including PM10 and PM2.5

4 - "Other/Trace HAPs" includes: CarbonTetrachloride, Chlorobenzene, Chloroform, Dichloropropene, 1,3-Dichloropropene, Ethylene Dibromide, Methylene Chloride, Phenol, Propylene Oxide, Styrene, 1,1,2,2-Tetrachloroethane, 1,1,2-Trichloroethane, and Vinyl Chloride (as per AP-42).

#### Dehydrator (RSV-01 and RSV-02) Emissions

					GRI-G Pre-Co	LYCalc ntrolled	Worst VOC/CH4:	-Case 20% Margin	Net Control	Contr	olled
Unit ID	Description	Capacity	Reference	Pollutant	Emis	sions	HAP:	50% Margin	Efficiency	Emiss	lions
					lb/hr	tpy	lb/hr	tpy	%	lb/hr	tpy
			GRI-GLYCalc 4.0	VOC	26.4419	115.82	31.73	138.98	99.0%	0.32	1.39
			GRI-GLYCalc 4.0	Benzene	1.3946	6.11	2.09	9.16	99.0%	0.02	0.09
		Flow Rate	GRI-GLYCalc 4.0	Ethylbenzene	0.1909	0.84	0.29	1.25	99.0%	3E-03	0.01
	Dehy 01 Still Vent(DSV-01) Dehy 02 Still Vent (DSV-02)	60.0	GRI-GLYCalc 4.0	n-Hexane	1.2882	5.64	1.93	8.46	99.0%	0.02	0.08
RSV-01 (5E)	2011, 02 0111 (201 02)	MMscfd	GRI-GLYCalc 4.0	Toluene	2.6045	11.41	3.91	17.11	99.0%	0.04	0.17
RSV-02 (8E)	(Still Vent Off-Gas	(Each)	GRI-GLYCalc 4.0	2,2,4-TMP	0.0139	0.06	2E-02	0.09	99.0%	2E-04	9E-04
	(COMB-1)		GRI-GLYCalc 4.0	Xylenes			0.29	1.25	99.0%	3E-03	0.01
	(22	8,760	GRI-GLYCalc 4.0	Tot HAP	5.4921	24.06	8.52	37.34	99.0%	0.09	0.37
		hr/yr	GRI-GLYCalc 4.0	CH4	0.8964	3.93	1.08	4.71	99.0%	0.01	0.05
			40CFR98 - Table A-1	CO2e	22.41	98.16	26.89	117.79		0.27	1.18
-											
			GRI-GLYCalc 4.0	VOC	30.9102	135.39	37.09	162	99.0%	0.37	1.62
	Dehy 01 Flash Tank (DFT-01) Dehy 02 Flash Tank (DFT-02)		GRI-GLYCalc 4.0	Benzene	0.0389	0.17	0.06	0.26	99.0%	0.00	3E-03
		Flow Rate	GRI-GLYCalc 4.0	Ethylbenzene	0.0021	0.01	0.00	0.01	99.0%	3E-05	1E-04
		60.0	GRI-GLYCalc 4.0	n-Hexane	0.9020	3.95	1.35	5.93	99.0%	0.01	0.06
RSV-01 (6E)	2011,02 1 12011 12111 (21 1 02)	MMscfd	GRI-GLYCalc 4.0	Toluene	0.0488	0.21	0.07	0.32	99.0%	7E-04	3E-03
RSV-02 (9E)	(Flash Tank Off-Gas	(Each)	GRI-GLYCalc 4.0	2,2,4-TMP	0.0096	0.04	0.01	0.06	99.0%	1E-04	6E-04
	(COMB-1)		GRI-GLYCalc 4.0	Xylenes			3E-03	0.01	99.0%	3E-05	1E-04
	(22	8,760	GRI-GLYCalc 4.0	Tot HAP	1.0014	4.39	1.51	6.59	99.0%	0.02	0.07
		hr/yr	GRI-GLYCalc 4.0	CH4	18.1787	80	21.81	96	99.0%	0.22	0.96
			40CFR98 - Table A-1	CO2e	454	1,991	545	2,389		5.45	23.89
								-			
			GRI-GLYCalc 4.0	VOC	57.3521	251.20	68.82	301.44	99.00%	0.69	3.01
			GRI-GLYCalc 4.0	Benzene	1.4335	6.28	2.15	9.42	99.00%	0.02	0.09
		Flow Rate	GRI-GLYCalc 4.0	Ethylbenzene	0.1930	0.85	0.29	1.27	99.00%	3E-03	0.01
	Dehy 01 (Total)	60.0	GRI-GLYCalc 4.0	n-Hexane	2.1902	9.59	3.29	14.39	99.00%	0.03	0.14
RSV-01	and Deby 02 (Total)	MMscfd	GRI-GLYCalc 4.0	Toluene	2.6533	11.62	3.98	17.43	99.00%	0.04	0.17
RSV-02		(Each)	GRI-GLYCalc 4.0	2,2,4-TMP	0.0235	0.10	0.04	0.15	99.00%	4E-04	2E-03
	(Each)		GRI-GLYCalc 4.0	Xylenes			0.29	1.27	99.00%	3E-03	0.01
		8,760	GRI-GLYCalc 4.0	Tot HAP	6.4935	28.44	10.03	43.93	99.00%	0.10	0.44
		hr/yr	GRI-GLYCalc 4.0	CH4	19.0751	84	22.89	100.26	99.00%	0.23	1.00
			40CFR98 - Table A-1	CO2e	476.8775	2,089	572	2,506		5.72	25.06

Bold Red Font Indicates Proposed Permit Limitation

Notes: 1 - Used GRI-GLYCalc V4.0 to calculate Flash Tank and Regenerator/Still Vent emissions.

	0										
2 - GRI-GLYCalc 4.0 Model Results are based on the following input:											
Wet Gas:	70 oF and 900 psig, H2O Saturated	Glycol Pump:	Electric/Pneumatic Pump								
Wet Gas Analysis:	See Supplement S1 - Wet Gas Summary	Flash Tank:	150 oF, 50 psig, 99% Combustion								
Dry Gas:	60.0 MMscfd, 7.0 lb-H2O/MMscf	Stripping Gas:	None								
Lean Glycol:	1.5 wt% H2O, 13.7 gpm	Regen Control:	99% Combustion								

3 - Total HAP includes n-hexane, benzene, toluene, ethylbenzene, xylene, and other components.

4 - A 20% contingency has been added to the GRI-GLYCalc model results to account for potential future changes in gas components.

#### Thermal Oxidizer (COMB-1) Emissions

Source	Description	Reference	Pollutant	Emi: Fa	ssion ctor	Emis	sions
				lb/MMscf	lb/MMBtu	lb/hr	tpy
		EPA AP-42 Table 1.4-1	NOX	119	0.10	0.63	2.75
	I hermal Oxidizer	EPA AP-42 Table 13.5-1	CO	376	0.31	1.99	8.70
	(compaction only)	See RSV-01 and RSV-02	NMNEHC		See RSV-01	and RSV-02	
	Frederick Logan (FLCo)	Combustion Related HAPs	VOC	0.09	7.54E-05	5E-04	2E-03
	(or equivalent)	EPA AP-42 Table 1.4-2	PM10/2.5	9.04	7.45E-03	0.05	0.21
		EPA AP-42 Table 1.4-2	SO2	0.71	5.88E-04	4E-03	0.02
	Capacity	EPA AP-42 Table 1.4-3	Acetaldehyde				
	>20 MMBtu/hr (HHV)	EPA AP-42 Table 1.4-3	Acrolein				
		See RSV-01 and RSV-02	Benzene	See RSV-0		and RSV-02	
	Site Rating	EPA AP-42 Table 1.4-4	Butadiene, 1,3-				
	6.41 MMBtu/hr (HHV)	See RSV-01 and RSV-02	Ethylbenzene		See RSV-01	and RSV-02	
COMB-1		EPA AP-42 Table 1.4-3	Formaldehyde	0.09	7.35E-05	5E-04	2E-03
(10E)	100.0% Capture Efficiency	See RSV-01 and RSV-02	n-Hexane		See RSV-01	and RSV-02	
	99.0% Destruction Efficiency	See RSV-01 and RSV-02	Methanol		See RSV-01	and RSV-02	
	99.0% Net Control Efficiency	EPA AP-42 Table 1.4-3	POM/PAH	8E-04	6.85E-07	4E-06	2E-05
		See RSV-01 and RSV-02	Toluene		See RSV-01	and RSV-02	
	1,213 Btu/scf (HHV)	See RSV-01 and RSV-02	TMP, 2,2,4-		See RSV-01	and RSV-02	
		See RSV-01 and RSV-02	Xylenes		See RSV-01	and RSV-02	
	8,760 hr/yr	EPA AP-42 Table 1.4-3	Other/Trace HAP	1E-03	1.18E-06	8E-06	3E-05
		SUM	Total HAP	0.09	7.54E-05	5E-04	2E-03
	5,284 scf/hr	40CFR98 - Table C-1	CO2 (GWP=1)	141,904	117	750	3,284
	46.29 MMscf/yr	See RSV-01 and RSV-02	CH4 (GWP=25)		See RSV-01	and RSV-02	
		40CFR98 - Table C-2	N2O (GWP=298)	0.27	2.20E-04	1E-03	0.01
		40CFR98 - Table A-1	CO2e	141,984	117	750	3,286

Notes: 1 - Dehydrator flash tank off-gases are sometimes burned as fuel in the reboilers. However, to be conservative, all flash tank off-gases are shown as being routed to the Thermal Oxidizer (T-Ox).

2 - Heat Input to the T-Ox was determined as follows:

Waste/Pilot Gas Stream	scf/hr	Btu/scf (HHV)	MMBtu/hr
RSV-01 - Still Vent (DSV-1)	1,490	500	0.75
RSV-01 - Flash Tank Off-Gas (DFT-1)	902	1,800	1.62
RSV-02 - Still Vent (DSV-2)	1,490	500	0.75
RSV-02 - Flash Tank Off-Gas (DFT-2)	902	1,800	1.62
Pilot/Fuel Gas	500	1,200	0.60
20% Contingency			1.07
Total Waste/Pilot Gas to the T-Ox:	5,284	1,213	6.41

3 - Reference: GRI-GLYCalc Results, Worst-Case Gas Analysis, and Engineering Judgement.



Frederick Logan (FLCo) 36" Thermal Oxidizer

#### Heater Treater (HTR-01) Emissions

Source	Description	Reference	Pollutant	Emis Fac	ssion ctor	Emis	sions
				lb/MMscf	lb/MMBtu	lb/hr	tpy
		EPA AP-42 Table 1.4-1	NOX	100	9.80E-02	0.15	0.67
		EPA AP-42 Table 1.4-1	CO	84	8.24E-02	0.13	0.56
	Heater Treater 02	EPA AP-42 Table 1.4-2	NMNEHC	5.5	5.39E-03	0.01	0.04
		EPA AP-42 Table 1.4-2	VOC	5.5	5.39E-03	0.01	0.04
		EPA AP-42 Table 1.4-2	PM10/2.5	7.6	7.45E-03	0.01	0.05
		EPA AP-42 Table 1.4-2	SO2	0.6	5.88E-04	9E-04	4E-03
		EPA AP-42 Table 1.4-3	Acetaldehyde				
		EPA AP-42 Table 1.4-3	Acrolein				
	1.55 MMBtu/hr (HHV)	EPA AP-42 Table 1.4-3	Benzene	2.10E-03	2.06E-06	3E-06	1E-05
		EPA AP-42 Table 1.4-4	Butadiene, 1,3-				
		EPA AP-42 Table 1.4-3	Ethylbenzene				
		EPA AP-42 Table 1.4-3	Formaldehyde	7.50E-02	7.35E-05	1E-04	5E-04
IIIK-01 (IIE)		EPA AP-42 Table 1.4-3	n-Hexane	1.80	1.76E-03	3E-03	0.01
		EPA AP-42 Table 1.4-3	Methanol				
	1,020 Btu/scf (HHV)	EPA AP-42 Table 1.4-3	POM/PAH	6.98E-04	6.85E-07	1E-06	5E-06
		EPA AP-42 Table 1.4-3	Toluene	3.40E-03	3.33E-06	5E-06	2E-05
		EPA AP-42 Table 1.4-3	TMP, 2,2,4-				
	8,760 hr/yr	EPA AP-42 Table 1.4-3	Xylenes				
		EPA AP-42 Table 1.4-3	Other/Trace HAP	1.20E-03	1.18E-06	2E-06	8E-06
		SUM	Total HAP	1.88	1.85E-03	3E-03	0.01
	1,520 scf/hr	40CFR98 - Table C-1	CO2 (GWP=1)	119,317	117	181	794
	13.31 MMscf/yr	40CFR98 - Table C-2	CH4 (GWP=25)	2.25	2.20E-03	3E-03	0.01
		40CFR98 - Table C-2	N2O (GWP=298)	0.22	2.20E-04	3E-04	1E-03
		40CFR98 - Table A-1	CO2e	119,440	117	182	795

Bold Red Font Indicates Proposed Permit Limitation

Notes: 1 - The emissions shown are based on operation at 100% of rated load for 8,760 hr/yr. Actual load and operating hours will be less.

2 - The fuel heating value will vary, 1,020 Btu/scf (HHV) is at the low end of the range and results in a high (conservative) fuel consumption estimate.

3 - PM10/2.5 is filterable and condensable particulate matter; including PM10 and PM2.5

4 - "Other/Trace HAPs" includes: CarbonTetrachloride, Chlorobenzene, Chloroform, Dichloropropene, 1,3-Dichloropropene, Ethylene Dibromide, Methylene Chloride, Phenol, Propylene Oxide, Styrene, 1,1,2,2-Tetrachloroethane, 1,1,2-Trichloroethane, and Vinyl Chloride (as per AP-42).

#### Condensate Stabilizer (HTR-02) Emissions

Source	Description	Reference	Pollutant	Emis Fac	ssion ctor	Emis	sions
				lb/MMscf	lb/MMBtu	lb/hr	tpy
		EPA AP-42 Table 1.4-1	NOX	100	9.80E-02	0.25	1.10
		EPA AP-42 Table 1.4-1	CO	84	8.24E-02	0.21	0.92
	Condensate Stabilizer 01	EPA AP-42 Table 1.4-2	NMNEHC	5.5	5.39E-03	0.01	0.06
		EPA AP-42 Table 1.4-2	VOC	5.5	5.39E-03	0.01	0.06
		EPA AP-42 Table 1.4-2	PM10/2.5	7.6	7.45E-03	0.02	0.08
		EPA AP-42 Table 1.4-2	SO2	0.6	5.88E-04	2E-03	7E-03
		EPA AP-42 Table 1.4-3	Acetaldehyde				
		EPA AP-42 Table 1.4-3	Acrolein				
	2.55 MMBtu/hr (HHV)	EPA AP-42 Table 1.4-3	Benzene	2.10E-03	2.06E-06	5E-06	2E-05
		EPA AP-42 Table 1.4-4	Butadiene, 1,3-				
		EPA AP-42 Table 1.4-3	Ethylbenzene				
		EPA AP-42 Table 1.4-3	Formaldehyde	7.50E-02	7.35E-05	2E-04	8E-04
111K-02 (12E)		EPA AP-42 Table 1.4-3	n-Hexane	1.80	1.76E-03	5E-03	0.02
		EPA AP-42 Table 1.4-3	Methanol				
	1,020 Btu/scf (HHV)	EPA AP-42 Table 1.4-3	POM/PAH	6.98E-04	6.85E-07	2E-06	8E-06
		EPA AP-42 Table 1.4-3	Toluene	3.40E-03	3.33E-06	9E-06	4E-05
		EPA AP-42 Table 1.4-3	TMP, 2,2,4-				
	8,760 hr/yr	EPA AP-42 Table 1.4-3	Xylenes				
		EPA AP-42 Table 1.4-3	Other/Trace HAP	1.20E-03	1.18E-06	3E-06	1E-05
		SUM	Total HAP	1.88	1.85E-03	5E-03	0.02
	2,500 scf/hr	40CFR98 - Table C-1	CO2 (GWP=1)	119,317	117	298	1,307
	21.90 MMscf/yr	40CFR98 - Table C-2	CH4 (GWP=25)	2.25	2.20E-03	0.01	0.02
		40CFR98 - Table C-2	N2O (GWP=298)	0.22	2.20E-04	6E-04	2E-03
		40CFR98 - Table A-1	CO2e	119,440	117	299	1,308

Bold Red Font Indicates Proposed Permit Limitation

Notes: 1 - The emissions shown are based on operation at 100% of rated load for 8,760 hr/yr. Actual load and operating hours will be less.

2 - The fuel heating value will vary, 1,020 Btu/scf (HHV) is at the low end of the range and results in a high (conservative) fuel consumption estimate.

3 - PM10/2.5 is filterable and condensable particulate matter; including PM10 and PM2.5

4 - "Other/Trace HAPs" includes: CarbonTetrachloride, Chlorobenzene, Chloroform, Dichloropropene, 1,3-Dichloropropene, Ethylene Dibromide, Methylene Chloride, Phenol, Propylene Oxide, Styrene, 1,1,2,2-Tetrachloroethane, 1,1,2-Trichloroethane, and Vinyl Chloride (as per AP-42).

#### Williams Ohio Valley Midstream LLC (OVM) CONNER COMPRESSOR STATION Application for 45CSR13 Permit Modification Attachment N - Supporting Emissions Calculations

#### Produced Water Storage Tank (T01 and T02) Emissions

Unit ID	Material Stored	Capacity	Turnovers per Year	Throughput	EPA-450/3-85-001a VOC Emission Factor (Working and Breathing	ProMax VOC Emission Factor (Flashing Losses)	V	oc	CC 0.704%	D2 VOC	Cł 1.551%	14 VOC	CO2e CH4 GWP = 25	
		bbl		bbl/yr	Losses)	(* ******* <b>5</b> ,	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
T01 (13E)	Produced Water	48	52	2,476	0.039 lb/bbl	0.074 lb/bbl	0.03	0.14	2E-04	1E-03	5E-04	2E-03	0.01	0.06
T02 (21E)	Produced Water	210	52	10,920	0.039 lb/bbl	0.074 lb/bbl	0.14	0.62	1E-03	4E-03	2E-03	0.01	0.06	0.24
	TOTAL:	258	52	13,396		TOTAL:	0.17	0.75	1E-03	0.01	3E-03	0.01	0.07	0.30

	Ben	zene	Ethylbo	enzene	n-Hexa	ne (C6)	6) Methanol		Toluer	ne (C7)	2,2,4	-TMP	Xylenes (C8)		Total HAP		
Unit ID	0.112%	VOC	0.174%	VOC	8.345%	VOC	(MeOH)		0.434%	VOC	0.277%	VOC	1.913%	VOC 11.255%		5% VOC	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
T01 (13E)	4E-05	2E-04	6E-05	2E-04	3E-03	0.01			1E-04	6E-04	9E-05	4E-04	6E-04	3E-03	4E-03	2E-02	
T02 (21E)	2E-04	7E-04	2E-04	1E-03	0.01	0.05			6E-04	3E-03	4E-04	2E-03	3E-03	0.01	2E-02	7E-02	
TOTAL:	2E-04	8E-04	3E-04	1E-03	0.01	0.06			7E-04	3E-03	5E-04	2E-03	3E-03	0.01	0.02	0.08	

Bold Red Font Indicates Proposed Permit Limitation

Notes: 1 - EPA-450/3-85-001a – "Volatile Organic Compound Emissions from Petroleum Refinery Wastewater Systems - Background Information for Proposed Standards" is a reasonable protocol for estimating potential produced water storage tank working and breathing emissions. EPA-450/3-85-001a, page 3-39, gives a VOC emission factor of 420 kg/MMgal wastewater produced in an oil-water separator. (0.420 g/gal * 0.0022 lb/g * 42 gal/bbl = 0.039 lb/bbl)

2 - These emission estimates are nearly 4X more conservative than emission factors required by the TCEQ on the Barnett Shale produced water tanks at gas-only sites. (http://www.tceq.texas.gov/assets/public/implementation/air/ie/pseiforms/producedwaterstoragetank.pdf):

Pollutant	Average Produc	ed Water Emission Factor (lb/bbl)
-	Gas Production Only Sites	Liquid Hydrocarbon and Gas Production Sites
VOC	0.01	0.0402
Benzene	0.0001	0.000054
Toluene	0.0003	0.000130
Ethylbenzene	0.000006	0.000003
Xylene(s)	0.00006	0.000049
n-Hexane	NA	0.000987

- 3 Produced water storage tank flashing losses are estimated using the ProMax process simulation software.
- 4 Produced water storage tanks are heated to approximately 60 degrees Fahrenheit to prevent freezing.
- 5 The results of a representative Condensate Analysis were used to determine the following worst-case components (See Appendix S1 - Condensate Summary):

	Min. Contingency:	20% VOC 50% HAP		
Pollutant	Raw Condensate	Worst Case	%Total	%VOC
CO2	1,642 lb/MMscf	1,642 lb/MMscf	0.670	0.704
Methane (CH4)	3,012 lb/MMscf	3,615 lb/MMscf	1.475	1.551
N2/Water/Ethane/Etc	6,679 lb/MMscf	6,679 lb/MMscf	2.725	2.865
VOC	194,277 lb/MMscf	233,133 lb/MMscf	95.130	100.000
TOTAL Gas	205,611 lb/MMscf	245,069 lb/MMscf	100.000	
Benzene	174.56 lb/MMscf	262 lb/MMscf	0.107	0.112
Ethylbenzene	270.89 lb/MMscf	406 lb/MMscf	0.166	0.174
n-Hexane	12,969 lb/MMscf	19,454 lb/MMscf	7.938	8.345
Toluene	674.81 lb/MMscf	1,012 lb/MMscf	0.413	0.434
2,2,4-TMP	429.75 lb/MMscf	645 lb/MMscf	0.263	0.277
Xylenes	2,973 lb/MMscf	4,459 lb/MMscf	1.820	1.913
Total HAP	17,492 lb/MMscf	26,238 lb/MMscf	10.706	11.255

# Williams Ohio Valley Midstream LLC (OVM) Conner Compressor Station (CCS)

Application for 45CSR13 NSR Permit Modification

#### Produced WaterTruck Load-Out (TLO-1) Emissions

		۰ ۲	Р	м	-	CE.		T Dut	VC	00	C	02	CI	H4	CO	2e				
Source	Description	3	Г	IVI	1	UE.	L	I-Pul	100.	100.00% lb/hr tpy		100.00%		100.00%		voc	1.55%	VOC	CH4 GV	VP = 25
		sat. fac.	psia	lb/lb-mol	°R	%	lb/Mgal	Mgal/yr	lb/hr			tpy	lb/hr	tpy	lb/hr	tpy				
TLO-1 (14E)	Produced Water	1.45	1.50	30.00	510		1.59	563		0.45		3E-03		0.01		0.18				
								TOTAL:		0.45		3E-03		0.01		0.18				

Source	Ben	zene	Ethylb	enzene	n-Hexa	ne (C6)	Meth	anol	Tolue	ne (C7)	2,2,4	-TMP	Xylene	es (C8)	Total	HAP
ID	0.112%	VOC	0.174%	VOC	8.345%	VOC	(MeOH)		0.434% VOC		0.277%	VOC	1.913% VOC		11.255% VOC	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
TLO-1 (14E)	-	5E-04		8E-04		0.04				2E-03		1E-03		9E-03		0.05
TOTAL:		5E-04		8E-04		0.04				2E-03		1E-03		9E-03		0.05

bbl =

bbl/vr =

80

Bold Red Font Indicates Proposed Permit Limitation

Notes: 1 - Emission factors and formulas are from AP-42 Section 5.2 "Transportation and Marketing of Petroleum Liquids":

L_L = 12.46 x S x P x M / T x (1 - CE)

- where:  $L_L$  = loading loss, lb/1000 gal of liquid loaded
  - S = saturation factor, use 1.45 for splash loading.
  - P = true vapor pressure of liquid loaded, psia.

2 - Produced water vapor pressure, molecular weight, and temperature are based on operator experience and sampling data at similar locations.

258

13.396

- 3 The total produced water storage tank capacity at the facility is:
- 4 The maxium produced water throughput at the facility is:

5 - It is assumed each tanker truck holds 7,000 gallons and can be loaded in one hour:

6 - The results of a representative Condensate Analysis were used to determine the following worst-case components (See Appendix S1 - Condensate Summary):

	Min. Contingency:	20% VOC 50% HAP		
Pollutant	Raw Condensate	Worst Case	%Total	%VOC
CO2	1,642 lb/MMscf	1,642 lb/MMscf	0.670	0.704
Methane (CH4)	3,012 lb/MMscf	3,615 lb/MMscf	1.475	1.551
N2/Water/Ethane/Etc	6,679 lb/MMscf	6,679 lb/MMscf	2.725	2.865
VOC	194,277 lb/MMscf	233,133 lb/MMscf	95.130	100.000
TOTAL Gas	205,611 lb/MMscf	245,069 lb/MMscf	100.000	
Benzene	174.56 lb/MMscf	262 lb/MMscf	0.107	0.112
Ethylbenzene	270.89 lb/MMscf	406 lb/MMscf	0.166	0.174
n-Hexane	12,969 lb/MMscf	19,454 lb/MMscf	7.938	8.345
Toluene	674.81 lb/MMscf	1,012 lb/MMscf	0.413	0.434
2,2,4-TMP	429.75 lb/MMscf	645 lb/MMscf	0.263	0.277
Xylenes	2,973 lb/MMscf	4,459 lb/MMscf	1.820	1.913
Total HAP	17,492 lb/MMscf	26,238 lb/MMscf	10.706	11.255

M = molecular weight of vapors, lb/lb-mol.

T = temperature of bulk liquid loaded,  $^{\circ}R = ^{\circ}F + 460$ 

- CE = overall emission reduction efficiency (collection efficiency x control efficiency).
- mpling data at similar locations. **10,820** gal. **562,640** gal/yr = **52.0** t-o/yr

hr/yr

# Williams Ohio Valley Midstream LLC (OVM) Conner Compressor Station (CCS)

Application for 45CSR13 NSR Permit Modification

#### CondensateTruck Load-Out (TLO-2) Emissions

		c	Р	м	-	CE.		T Dut	VC	00	CC	)2	CH	14	CO	2e
Source	Description	3	F	IVI	1	UE	L	I-Pul	100.00% Ib/hr tpy		0.70%	voc	1.55%	VOC	CH4 GV	/P = 25
		sat. fac.	psia	lb/lb-mol	°R	%	lb/Mgal	Mgal/yr			lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
TLO-2 (15E)	Condensate	1.45	10.00	55.70	510		19.73	250		2.47		0.02		0.04		0.97
								TOTAL:		2.47		0.02		0.04		0.97

Source	Ben	zene	Ethylb	enzene	n-Hexa	ne (C6)	Meth	anol	Toluer	ne (C7)	2,2,4	-TMP	Xylene	s (C8)	Total	HAP
ID	0.112%	VOC	0.174%	VOC	8.345%	voc	(MeOH)		0.434% VOC		0.277%	VOC	1.913% VOC		11.255%	VOC
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
TLO-2 (15E)		3E-03		4E-03		0.21				1E-02		7E-03		5E-02		0.28
TOTAL:		3E-03		4E-03		0.21				1E-02		7E-03		5E-02		0.28

bbl =

bbl/vr =

Bold Red Font Indicates Proposed Permit Limitation

Notes: 1 - Emission factors and formulas are from AP-42 Section 5.2 "Transportation and Marketing of Petroleum Liquids":

L_L = 12.46 x S x P x M / T x (1 - CE)

- where:  $L_L$  = loading loss, lb/1000 gal of liquid loaded
  - S = saturation factor, use 1.45 for splash loading.
  - P = true vapor pressure of liquid loaded, psia.

2 - Produced water vapor pressure, molecular weight, and temperature are based on operator experience and sampling data at similar locations.

0

5.952

3 - The total condensate tank capacity at the facility is:

4 - The maxium condensate throughput at the facility is:

5 - It is assumed each tanker truck holds 7,000 gallons and can be loaded in one hour:

6 - The results of a representative Condensate Analysis were used to determine the following worst-case components (See Appendix S1 - Condensate Summary):

	Min. Contingency:	20% VOC 50% HAP		
Pollutant	Raw Condensate	Worst Case	%Total	%VOC
CO2	1,642 lb/MMscf	1,642 lb/MMscf	0.670	0.704
Methane (CH4)	3,012 lb/MMscf	3,615 lb/MMscf	1.475	1.551
N2/Water/Ethane/Etc	6,679 lb/MMscf	6,679 lb/MMscf	2.725	2.865
VOC	194,277 lb/MMscf	233,133 lb/MMscf	95.130	100.000
TOTAL Gas	205,611 lb/MMscf	245,069 lb/MMscf	100.000	
Benzene	174.56 lb/MMscf	262 lb/MMscf	0.107	0.112
Ethylbenzene	270.89 lb/MMscf	406 lb/MMscf	0.166	0.174
n-Hexane	12,969 lb/MMscf	19,454 lb/MMscf	7.938	8.345
Toluene	674.81 lb/MMscf	1,012 lb/MMscf	0.413	0.434
2,2,4-TMP	429.75 lb/MMscf	645 lb/MMscf	0.263	0.277
Xylenes	2,973 lb/MMscf	4,459 lb/MMscf	1.820	1.913
Total HAP	17,492 lb/MMscf	26,238 lb/MMscf	10.706	11.255

7 - Density of condensate is 5.38 lb/gal and MW is 79.51 lb/lb-mol (based on 01/16/18 analysis).

8 - The stabilized condensate product will be pumped down a pipeline for transport off-site. In the event of a pipline stoppage, the stabilized condensate will be loaded into tanker trucks for transport off-site.

M = molecular weight of vapors, lb/lb-mol.

T = temperature of bulk liquid loaded,  $^{\circ}R = ^{\circ}F + 460$ 

CE = overall emission reduction efficiency (collection efficiency x control efficiency).

camping auto		
0	gal.	
250,000	gal/yr	

hr/yr

36

#### Application for 4505K15 NSK Fermit Modification

#### Start/Stop/Maintenance (SSM (CBD/ESD/PG/CFC)) Emissions

								V	00	C	02	C	H4	CO	2e
Source	Unit Description	Site Rating	Emission Factor	Blowdown Gas	Blowdown and ESD	Total Gas Vented	Control	14,841 233 133	Gas	156 1 642	Gas Cond	37,952 3 615	Gas	CH4 GV	VP = 25
ID		3					%	200,100 Ib/M	Mscf	Ib/M	Mscf	lb/MMscf		• • = 10	
		bhp	scf/bhp	scf/Event	Events/yr	Mscf/yr		lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
	Recip Compressor - 01 (Engine)	1,380	6.22	8,584	156	1,339			9.94		0.10		25.41		635
	Recip Compressor - 02 (Engine)	1,380	6.22	8,584	156	1,339			9.94	-	0.10		25.41		635
	Recip Compressor - 03 (Engine)	203	6.22	1,263	156	197			1.46		0.02		3.74		93.46
	Recip Compressor - 04 (Electric)	200	6.22	1,244	24	30			0.22		2E-03		0.57		14.17
SSM (6E)	Recip Compressor - 05 (Electric)	200	6.22	1,244	24	30	22		0.22		2E-03		0.57		14.17
33W (UL)	Emergency Shutdown (ESD) Testing	3,363	37.32	125,507	1	126	na		0.93		0.01		2.38		59.55
	Purge Gas (PG) - Continuous 35 scf/hr			35	8,760	307			2.28		0.02		5.82		145
	Condenser Fliter Change - F6004			3,609	12	43			5.05		3E-03		0.82		20.55
	Condenser Fliter Change - VF-060C01			1,951	122	238			27.74	-	0.02		4.52	-	113
	Condenser Fliter Change - VF-6008			3,121	12	37			4.37		3E-03		0.71		17.77
Assumes	1 hr/CBD			TOTAL:	9,423	3,686	TOTAL:		62.14		0.29		69.94		1,749

		Ben	zene	Ethylb	enzene	n-He	exane	Tol	uene	2,2,4	-TMP	Ху	lene	Total	HAP	
		4.94	Gas	0.42	Gas	352.55	Gas	6.92	Gas	5.42	Gas	0.42	Gas	371	371 Gas	
Source	Unit Description	262	Cond.	406 Cond.		19,454	19,454 Cond.	1,012 Cond.	645 Cond.	4,459 Cond.		26,238	26,238 Cond.			
		lb/M	Mscf	lb/M	Mscf	lb/M	IMscf	lb/N	Mscf	lb/N	Mscf	lb/M	Mscf	lb/M	Mscf	
		lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
	Recip Compressor - 01 (Engine)		3E-03		3E-04		0.24		0.00		4E-03		3E-04		0.25	
	Recip Compressor - 02 (Engine)		3E-03		3E-04		0.24		0.00		4E-03		3E-04		0.25	
	Recip Compressor - 03 (Engine)		5E-04		4E-05		0.03		7E-04		5E-04		4E-05		0.04	
	Recip Compressor - 04 (Electric)		7E-05		6E-06		0.01		1E-04		8E-05		6E-06		0.01	
SSM (6E)	Recip Compressor - 05 (Electric)		7E-05		6E-06		0.01		1E-04		8E-05		6E-06		0.01	
33M (UL)	Emergency Shutdown (ESD) Testing		3E-04		3E-05		0.02		4E-04		3E-04		3E-05		0.02	
	Purge Gas (PG) - Continuous 35 scf/hr		8E-04		6E-05		0.05		1E-03		8E-04		6E-05		0.06	
	Condenser Fliter Change - F6004		0.01		0.01		0.42		0.02		0.01		0.10		0.57	
	Condenser Fliter Change - VF-060C01		0.03		0.05		2.31		0.12		0.08		0.53		3.12	
	Condenser Fliter Change - VF-6008		0.00		0.01		0.36		0.02		0.01		0.08		0.49	
Assumes	1 hr/CBD TOTAL:		0.05		0.07		3.69		0.17		0.11		0.71		4.81	

Notes: 1 - The results of a representative **Wet Gas Analysis** were used to determine the following worst-case components (See Appendix S1 - Wet Gas Summary):

	Min. Contingency:	20% VOC 50% HAP		
Pollutant	Wet Gas	Worst Case	%Total	%VOC
CO2	156 lb/MMscf	156 lb/MMscf	0.238	1.050
Methane (CH4)	31,626 lb/MMscf	37,952 lb/MMscf	57.910	255.717
N2/Water/Ethane/Etc	12,587 lb/MMscf	12,587 lb/MMscf	19.206	84.811
VOC	12,368 lb/MMscf	14,841 lb/MMscf	22.646	100.000
TOTAL Gas	56,737 lb/MMscf	65,536 lb/MMscf	100.000	
Benzene	3.29 lb/MMscf	4.94 lb/MMscf	0.008	0.033
Ethylbenzene	0.28 lb/MMscf	0.42 lb/MMscf	0.001	0.003
n-Hexane	235 lb/MMscf	353 lb/MMscf	0.538	2.375
Toluene	4.61 lb/MMscf	6.92 lb/MMscf	0.011	0.047
2,2,4-TMP	3.61 lb/MMscf	5.42 lb/MMscf	0.008	0.037
Xylenes	lb/MMscf	0.42 lb/MMscf	0.001	0.003
Total HAP	247 lb/MMscf	371 lb/MMscf	0.566	2.498

2 - The results of a representative Raw Condensate Analysis were used to determine the following worst-case components (See Appendix S1 - Raw Condensate Summary):

	Min. Contingency:	20% VOC 50% HAP		
Pollutant	Raw Condensate	Worst Case	%Total	%VOC
CO2	1,642 lb/MMscf	1,642 lb/MMscf	0.670	0.704
Methane (CH4)	3,012 lb/MMscf	3,615 lb/MMscf	1.475	1.551
N2/Water/Ethane/Etc	6,679 lb/MMscf	6,679 lb/MMscf	2.725	2.865
VOC	194,277 lb/MMscf	233,133 lb/MMscf	95.130	100.000
TOTAL Gas	205,611 lb/MMscf	245,069 lb/MMscf	100.000	
Benzene	175 lb/MMscf	262 lb/MMscf	0.107	0.112
Ethylbenzene	271 lb/MMscf	406 lb/MMscf	0.166	0.174
n-Hexane	12,969 lb/MMscf	19,454 lb/MMscf	7.938	8.345
Toluene	675 lb/MMscf	1,012 lb/MMscf	0.413	0.434
2,2,4-TMP	430 lb/MMscf	645 lb/MMscf	0.263	0.277
Xylenes	2,973 lb/MMscf	4,459 lb/MMscf	1.820	1.913
Total HAP	17,492 lb/MMscf	26,238 lb/MMscf	10.706	11.255

#### **Compressor Rod Packing (CRP) Emissions**

Source	Unit Description	No of	scfh per	Contin-	Total I Lea	Fugitive k Rate	Control	V( 14,	DC 841	C( 1!	02 66	CH 37,9	14 952	CC CH4 G\	02e NP = 25
10	(compressor rou'r acking)	Cymiders	Cymder	gency	scfh	MMscfv	Linclency	lb/hr	tov	lb/hr	tov	lb/hr	tov	lb/hr	tpv
	Recip Compressor - 01 (CRP)	4	12.0	15%	55.20	0.48		0.82	3.59	0.01	0.04	2.09	9.18	52	229
	Recip Compressor - 02 (CRP)	4	12.0	15%	55.20	0.48		0.82	3.59	0.01	0.04	2.09	9.18	52	229
CRP (18E)	Recip Compressor - 03 (CRP)	4	12.0	15%	55.20	0.48	na	0.82	3.59	0.01	0.04	2.09	9.18	52	229
(10)	Recip Compressor - Electric	4	12.0	15%	55.20	0.48		0.82	3.59	0.01	0.04	2.09	9.18	52	229
	Recip Compressor - Electric	4	12.0	15%	55.20	0.48		0.82	3.59	0.01	0.04	2.09	9.18	52	229
							TOTAL:	4.10	17.94	0.04	0.19	10.47	45.88	262	1,147

		Benz	zene	E-Bei	nzene	n-He	n-Hexane		Toluene		TMP	Xyl	ene	Tot HAP	
Source ID	Unit Description (Compressor Rod Packing)	4.9 Ib/Mi	94 Viscf	0. Ib/M	42 Mscf	35 Ib/M	53 Mscf	6. Ib/M	92 Mscf	5.4 Ib/Mi	42 Viscf	۰.0 Ib/Mi	42 Viscf	37 Ib/Mi	'1 Viscf
		lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
	Recip Compressor - 01 (CRP)	3E-04	1E-03	2E-05	1E-04	0.02	0.09	4E-04	2E-03	3E-04	1E-03	2E-05	1E-04	0.02	0.09
000	Recip Compressor - 02 (CRP)	3E-04	1E-03	2E-05	1E-04	0.02	0.09	4E-04	2E-03	3E-04	1E-03	2E-05	1E-04	0.02	0.09
(18F)	Recip Compressor - 03 (CRP)	3E-04	1E-03	2E-05	1E-04	0.02	0.09	4E-04	2E-03	3E-04	1E-03	2E-05	1E-04	0.02	0.09
(102)	Recip Compressor - Electric	3E-04	1E-03	2E-05	1E-04	0.02	0.09	4E-04	2E-03	3E-04	1E-03	2E-05	1E-04	0.02	0.09
	Recip Compressor - Electric	3E-04	1E-03	2E-05	1E-04	0.02	0.09	4E-04	2E-03	3E-04	1E-03	2E-05	1E-04	0.02	0.09
	TOTAL:	1E-03	6E-03	1E-04	5E-04	0.10	0.43	2E-03	8E-03	1E-03	7E-03	1E-04	5E-04	0.10	0.45

 
 Notes:
 1 - As per the manufacturer (Ariel): "Packing in new and broken-in condition will leak 5-10 scfh through the vent. This leakage rate will increase over time due to wear of the non-metallic sealing rings." The Williams' engineering department provides a conservative leak rate estimate of 12 scfh/cylinder (equal to 48 scfh/compressor). In this instance, an additional 15% contingency was added to yield 55.20 scfh/compressor.

^{2 -} The results of a representative **Wet Gas Analysis** were used to determine the following worst-case components (See Appendix S1 - Wet Gas Summary):

	Min. Contingency:	20% VOC 50% HAP		
Pollutant	Wet Gas	Worst Case	%Total	%VOC
CO2	156 lb/MMscf	156 lb/MMscf	0.238	1.050
Methane (CH4)	31,626 lb/MMscf	37,952 lb/MMscf	57.910	255.717
N2/Water/Ethane/Etc	12,587 lb/MMscf	12,587 lb/MMscf	19.206	84.811
VOC	12,368 lb/MMscf	14,841 lb/MMscf	22.646	100.000
TOTAL Gas	56,737 lb/MMscf	65,536 lb/MMscf	100.000	
Benzene	3.29 lb/MMscf	4.94 lb/MMscf	0.008	0.033
Ethylbenzene	0.28 lb/MMscf	0.42 lb/MMscf	0.001	0.003
n-Hexane	235 lb/MMscf	353 lb/MMscf	0.538	2.375
Toluene	4.61 lb/MMscf	6.92 lb/MMscf	0.011	0.047
2,2,4-TMP	3.61 lb/MMscf	5.42 lb/MMscf	0.008	0.037
Xylenes	lb/MMscf	0.42 lb/MMscf	0.001	0.003
Total HAP	247 lb/MMscf	371 lb/MMscf	0.566	2.498

#### Station Recycle Line Heater (HTR-03) Emissions

Source	Description	Reference	Pollutant	Emis Fac	ssion ctor	Emissions		
				lb/MMscf	lb/MMBtu	lb/hr	tpy	
		EPA AP-42 Table 1.4-1	NOX	100	9.80E-02	0.16	0.71	
		EPA AP-42 Table 1.4-1	CO	84	8.24E-02	0.14	0.60	
	Station Recycle Line Heater	EPA AP-42 Table 1.4-2	NMNEHC	5.5	5.39E-03	0.01	0.04	
		EPA AP-42 Table 1.4-2	VOC	5.5	5.39E-03	0.01	0.04	
		EPA AP-42 Table 1.4-2	PM10/2.5	7.6	7.45E-03	0.01	0.05	
		EPA AP-42 Table 1.4-2	SO2	0.6	5.88E-04	1E-03	4E-03	
		EPA AP-42 Table 1.4-3	Acetaldehyde					
		EPA AP-42 Table 1.4-3	Acrolein					
	1.66 MMBtu/hr (HHV)	EPA AP-42 Table 1.4-3	Benzene	2.10E-03	2.06E-06	3E-06	1E-05	
		EPA AP-42 Table 1.4-4	Butadiene, 1,3-					
		EPA AP-42 Table 1.4-3	Ethylbenzene					
		EPA AP-42 Table 1.4-3	Formaldehyde	7.50E-02	7.35E-05	1E-04	5E-04	
HIK-03 (19E)		EPA AP-42 Table 1.4-3	n-Hexane	1.80	1.76E-03	3E-03	0.01	
		EPA AP-42 Table 1.4-3	Methanol					
	1,020 Btu/scf (HHV)	EPA AP-42 Table 1.4-3	POM/PAH	6.98E-04	6.85E-07	1E-06	5E-06	
		EPA AP-42 Table 1.4-3	Toluene	3.40E-03	3.33E-06	6E-06	2E-05	
		EPA AP-42 Table 1.4-3	TMP, 2,2,4-					
	8,760 hr/yr	EPA AP-42 Table 1.4-3	Xylenes					
		EPA AP-42 Table 1.4-3	Other/Trace HAP	1.20E-03	1.18E-06	2E-06	9E-06	
		SUM	Total HAP	1.88	1.85E-03	3E-03	0.01	
	1,627 scf/hr	40CFR98 - Table C-1	CO2 (GWP=1)	119,317	117	194	851	
	14.26 MMscf/yr	40CFR98 - Table C-2	CH4 (GWP=25)	2.25	2.20E-03	4E-03	0.02	
		40CFR98 - Table C-2	N2O (GWP=298)	0.22	2.20E-04	4E-04	0.00	
		40CFR98 - Table A-1	CO2e	119,440	117	194	851	

Bold Red Font Indicates Proposed Permit Limitation

Notes: 1 - The emissions shown are based on operation at 100% of rated load for 8,760 hr/yr. Actual load and operating hours will be less.

2 - The fuel heating value will vary, 1,020 Btu/scf (HHV) is at the low end of the range and results in a high (conservative) fuel consumption estimate.

3 - PM10/2.5 is filterable and condensable particulate matter; including PM10 and PM2.5

4 - "Other/Trace HAPs" includes: CarbonTetrachloride, Chlorobenzene, Chloroform, Dichloropropene, 1,3-Dichloropropene, Ethylene Dibromide, Methylene Chloride, Phenol, Propylene Oxide, Styrene, 1,1,2,2-Tetrachloroethane, 1,1,2-Trichloroethane, and Vinyl Chloride (as per AP-42).

#### **Condensate Stabilizer Heater (HTR-04) Emissions**

Source	Description	Reference	Pollutant	Emis Fac	ssion ctor	Emissions		
U				lb/MMscf	lb/MMBtu	lb/hr	tpy	
		EPA AP-42 Table 1.4-1	NOX	100	9.80E-02	0.95	4.17	
		EPA AP-42 Table 1.4-1	CO	84	8.24E-02	0.80	3.50	
	Condensate Stabilizer Heater	EPA AP-42 Table 1.4-2	NMNEHC	5.5	5.39E-03	0.05	0.23	
		EPA AP-42 Table 1.4-2	VOC	5.5	5.39E-03	0.05	0.23	
		EPA AP-42 Table 1.4-2	PM10/2.5	7.6	7.45E-03	0.07	0.32	
		EPA AP-42 Table 1.4-2	SO2	0.6	5.88E-04	6E-03	2E-02	
		EPA AP-42 Table 1.4-3	Acetaldehyde					
		EPA AP-42 Table 1.4-3	Acrolein					
	9.70 MMBtu/hr (HHV)	EPA AP-42 Table 1.4-3	Benzene	2.10E-03	2.06E-06	2E-05	9E-05	
		EPA AP-42 Table 1.4-4	Butadiene, 1,3-					
		EPA AP-42 Table 1.4-3	Ethylbenzene					
		EPA AP-42 Table 1.4-3	Formaldehyde	7.50E-02	7.35E-05	7E-04	3E-03	
111K-04 (20E)		EPA AP-42 Table 1.4-3	n-Hexane	1.80	1.76E-03	2E-02	0.07	
		EPA AP-42 Table 1.4-3	Methanol					
	1,020 Btu/scf (HHV)	EPA AP-42 Table 1.4-3	POM/PAH	6.98E-04	6.85E-07	7E-06	3E-05	
		EPA AP-42 Table 1.4-3	Toluene	3.40E-03	3.33E-06	3E-05	1E-04	
		EPA AP-42 Table 1.4-3	TMP, 2,2,4-					
	8,760 hr/yr	EPA AP-42 Table 1.4-3	Xylenes					
		EPA AP-42 Table 1.4-3	Other/Trace HAP	1.20E-03	1.18E-06	1E-05	5E-05	
		SUM	Total HAP	1.88	1.85E-03	2E-02	0.08	
	9,510 scf/hr	40CFR98 - Table C-1	CO2 (GWP=1)	119,317	117	1,135	4,970	
	83.31 MMscf/yr	40CFR98 - Table C-2	CH4 (GWP=25)	2.25	2.20E-03	2E-02	0.09	
		40CFR98 - Table C-2	N2O (GWP=298)	0.22	2.20E-04	2E-03	0.01	
		40CFR98 - Table A-1	CO2e	119,440	117	1,136	4,975	

Bold Red Font Indicates Proposed Permit Limitation

Notes: 1 - The emissions shown are based on operation at 100% of rated load for 8,760 hr/yr. Actual load and operating hours will be less.

2 - The fuel heating value will vary, 1,020 Btu/scf (HHV) is at the low end of the range and results in a high (conservative) fuel consumption estimate.

3 - PM10/2.5 is filterable and condensable particulate matter; including PM10 and PM2.5

4 - "Other/Trace HAPs" includes: CarbonTetrachloride, Chlorobenzene, Chloroform, Dichloropropene, 1,3-Dichloropropene, Ethylene Dibromide, Methylene Chloride, Phenol, Propylene Oxide, Styrene, 1,1,2,2-Tetrachloroethane, 1,1,2-Trichloroethane, and Vinyl Chloride (as per AP-42).

#### Williams Ohio Valley Midstream LLC (OVM) Conner Compressor Station (CCS)

Application for 45CSR13 NSR Permit Modification

#### Process Piping and Equipment Leak (FUG-G) Emissions – Gas

Source	Description	Component (Unit) Type	Unit	Cons'tive Multiplier	Leak Factor	LDAR Control	Controlled Leaks	
U		(Gas)	Count	<b>120%</b>	lb/hr/Unit	Credit	lb/hr	tpy
	Valves	999	1,199	9.92E-03		11.89	52.09	
		Pump Seals			5.29E-03			
FUG-G	Process Piping and Equipment Leaks (Gas)	Other	34	41	1.94E-02		0.79	3.47
(17E)		Connectors	3,169	3,803	4.41E-04		1.68	7.34
	· · ·	Flanges	843	1,012	8.60E-04		0.87	3.81
		Open-ended Lines	5	6	4.41E-03		0.03	0.12
		TOTAL:	5,050	6,060				

	V		
	25.00		
	lb/hr	tpy	
	2.97	13.02	
	0.20	0.87	
	0.42	1.84	
	0.22	0.95	
	0.01	0.03	
:	3.81	16.71	TOTAL:

C	02	C	H4	CO	)2e	
1.05% VOC		256%	voc	CH4 GWP = 25		
lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
0.03	0.14	7.60	33.30	190.11	833	
0.00	0.01	0.51	2.22	12.65	55.42	
0.00	0.02	1.07	4.70	26.80	117	
0.00	0.01	0.56	2.44	13.90	60.90	
0.00	0.00	0.02	0.07	0.42	1.85	
0.04	0.18	9.75	42.72	244	1,068	

 TOTAL:
 3.81
 16.71

 Worst-Case VOC wgt% is:
 22.65%

				· · ·
Assumed	25%	to	be	Conservative

Source		Component	Ben	zene	Ethylbo	enzene	n-Hexa	ne (C6)	Meth	anol	Toluer	ne (C7)	2,2,4	-ТМР	Xylene	es (C8)	Total	HAP
ID	Description	on (Unit) Type		0.033% VOC 0.003% VOC		VOC	2.38% VOC		(MeOH)		0.047% VOC		0.037% VOC		0.003% VOC		2.498% VOC	
		(Gas)	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
		Valves	4E-03	4E-03	4E-04	4E-04	0.31	0.31			6E-03	6E-03	5E-03	5E-03	4E-04	4E-04	0.33	0.33
		Pump Seals																
FUG-G	Process Piping and	Other	3E-04	3E-04	2E-05	2E-05	2E-02	0.02			4E-04	4E-04	3E-04	3E-04	2E-05	2E-05	2E-02	0.02
(17E)	(Gas)	Connectors	6E-04	6E-04	5E-05	5E-05	4E-02	0.04			9E-04	9E-04	7E-04	7E-04	5E-05	5E-05	5E-02	0.05
	<b>、</b>	Flanges	3E-04	3E-04	3E-05	3E-05	0.02	0.02			4E-04	4E-04	3E-04	3E-04	3E-05	3E-05	0.02	0.02
		Open-ended Lines	1E-05	1E-05	8E-07	8E-07	7E-04	7E-04			1E-05	1E-05	1E-05	1E-05	8E-07	8E-07	7E-04	7E-04
	TOTAL:			6E-03	5E-04	5E-04	0.40	0.40			8E-03	0.01	6E-03	6E-03	5E-04	5E-04	0.42	0.42

Notes: 1 - Assumed 8,760 hours per year of fugitive emissions.

2 - Gas/Vapor emissions calculated using EPA Protocol for Equipment Leak Emission Estimates, EPA-453/R-95-017, Nov 1995; Table 2-4, Oil and Gas Production Operations:

	G	as	Ligi	nt Oil	Water/Oil		
Equipment Type	kg/hr	lb/hr/unit	kg/hr	lb/hr/unit	kg/hr	lb/hr/unit	
Valves	4.5E-03	9.92E-03	2.5E-03	5.51E-03	9.8E-05	2.16E-04	
Pump Seals	2.4E-03	5.29E-03	1.3E-02	2.87E-02	2.4E-05	5.29E-05	
Others	8.8E-03	1.94E-02	7.5E-03	1.65E-02	1.4E-02	3.09E-02	
Connectors	2.0E-04	4.41E-04	2.1E-04	4.63E-04	1.1E-04	2.43E-04	
Flanges	3.9E-04	8.60E-04	1.1E-04	2.43E-04	2.9E-06	6.39E-06	
Open-Ended Lines	2.0E-03	4.41E-03	1.4E-03	3.09E-03	2.5E-04	5.51E-04	

3 - "Other" components include pressure relief devices (PRD), compressors, diaphragms, drains, meters, etc.

#### 4 - The results of a representative Wet Gas Analysis were used to determine the following worst-case components (See Appendix S1 - Wet Gas Summary):

	Min. Contingency:	20% VOC 50% HAP	ĺ	
Pollutant	Wet Gas	Worst Case	%Total	%VOC
CO2	156 lb/MMscf	156 lb/MMscf	0.238	1.050
Methane (CH4)	31,626 lb/MMscf	37,952 lb/MMscf	57.910	255.717
N2/Water/Ethane/Etc	12,587 lb/MMscf	12,587 lb/MMscf	19.206	84.811
VOC	12,368 lb/MMscf	14,841 lb/MMscf	22.646	100.000
TOTAL Gas	56,737 lb/MMscf	65,536 lb/MMscf	100.000	
Benzene	3.29 lb/MMscf	4.94 lb/MMscf	0.008	0.033
Ethylbenzene	0.28 lb/MMscf	0.42 lb/MMscf	0.001	0.003
n-Hexane	235 lb/MMscf	353 lb/MMscf	0.538	2.375
Toluene	4.61 lb/MMscf	6.92 lb/MMscf	0.011	0.047
2,2,4-TMP	3.61 lb/MMscf	5.42 lb/MMscf	0.008	0.037
Xylenes	lb/MMscf	0.42 lb/MMscf	0.001	0.003
Total HAP	247 lb/MMscf	371 lb/MMscf	0.566	2.498

#### Williams Ohio Valley Midstream LLC (OVM) Conner Compressor Station (CCS)

Application for 45CSR13 NSR Permit Modification

#### Process Piping and Equipment Leak (FUG-L) Emissions – Light Oil

Source	Description	Component (Unit) Type	Unit	Unit Count Count		LDAR Control	Controlled Leaks	
		(Light Oil)	ooun	120%	lb/hr/Unit	Credit	lb/hr	tpy
		Valves	1,227	1,472	5.51E-03		8.12	35.54
		Pump Seals	23	28	2.87E-02		0.79	3.46
FUG-L	Process Piping and	Other	31	37	1.65E-02		0.62	2.69
(17E)	(Light Liquid)	Connectors	2,374	2,849	4.63E-04		1.32	5.78
		Flanges	895	1,074	2.43E-04		0.26	1.14
		Open-ended Lines	6	7	3.09E-03		0.02	0.10
		TOTAL:	4,556	5,467				

	V	<b>0C</b>	1			
	100.00					
	lb/hr	lb/hr tpy				
	8.12	35.54				
	0.79	3.46				
	0.62	2.69				
	1.32	5.78				
	0.26					
	0.02					
TOTAL:	11.12	48.72	TOTAL:			

CC	02	Cł	14	CO2e			
0.70%	voc	1.55%	VOC	CH4 GWP = 25			
lb/hr	tpy	lb/hr	tpy	lb/hr	tpy		
0.06	0.25	0.13	0.55	3.20	14.03		
0.01	0.02	0.01	0.05	0.31	1.37		
4E-03	0.02	0.01	0.04	0.24	1.06		
0.01	0.04	0.02	0.09	0.52	2.28		
2E-03	0.01	4E-03	0.02	0.10	0.45		
2E-04	7E-04	3E-04	2E-03	0.01	0.04		
0.08	0.34	0.17	0.76	4.39	19.23		

Worst-Case VOC wgt% is: 95.13%

Assumed 100% to be Conservative

Source ID	Description	Component Description (Unit) Type		Component (Unit) Type         Benzene 0.112% VOC		Ethylbenzene 0.174% VOC		n-Hexane (C6) 8.34% VOC		Methanol (MeOH)		Toluene (C7) 0.434% VOC		2,2,4-TMP 0.277% VOC		Xylenes (C8) 1.913% VOC		Total HAP 11.255% VOC	
10		(Light Oil)	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
	Process Piping and	Valves	0.04	0.04	0.06	0.06	2.97	2.97			0.15	0.15	0.10	0.10	0.68	0.68	4.00	4.00	
		Pump Seals	4E-03	4E-03	0.01	0.01	0.29	0.29			0.02	0.02	0.01	0.01	0.07	0.07	0.39	0.39	
FUG-L		Other	3E-03	3E-03	5E-03	5E-03	0.22	0.22			0.01	0.01	0.01	0.01	0.05	0.05	0.30	0.30	
(17E)	(Light Liquid)	Connectors	0.01	0.01	0.01	0.01	0.48	0.48			0.03	0.03	0.02	0.02	0.11	0.11	0.65	0.65	
		Flanges	1E-03	1E-03	2E-03	2E-03	0.10	0.10			5E-03	5E-03	3E-03	3E-03	0.02	0.02	0.13	0.13	
		Open-ended Lines	1E-04	1E-04	2E-04	2E-04	0.01	0.01			4E-04	4E-04	3E-04	3E-04	2E-03	2E-03	0.01	0.01	
	TOTAL:			0.05	0.08	0.08	4.07	4.07			0.21	0.21	0.13	0.13	0.93	0.93	5.48	5.48	

Notes: 1 - Assumed 8,760 hours per year of fugitive emissions.

2 - Light oil emissions calculated using EPA Protocol for Equipment Leak Emission Estimates, EPA-453/R-95-017, Nov 1995; Table 2-4, Oil and Gas Production Operations:

	G	as	Ligi	ht Oil	Water/Oil		
Equipment Type	kg/hr	lb/hr/unit	kg/hr	lb/hr/unit	kg/hr	lb/hr/unit	
Valves	4.5E-03	9.92E-03	2.5E-03	5.51E-03	9.8E-05	2.16E-04	
Pump Seals	2.4E-03	5.29E-03	1.3E-02	2.87E-02	2.4E-05	5.29E-05	
Others	8.8E-03	1.94E-02	7.5E-03	1.65E-02	1.4E-02	3.09E-02	
Connectors	2.0E-04	4.41E-04	2.1E-04	4.63E-04	1.1E-04	2.43E-04	
Flanges	3.9E-04	8.60E-04	1.1E-04	2.43E-04	2.9E-06	6.39E-06	
Open-Ended Lines	2.0E-03	4.41E-03	1.4E-03	3.09E-03	2.5E-04	5.51E-04	

3 - "Other" components include pressure relief devices (PRD), diaphragms, drains, meters, etc.

4 - The results of a representative Raw Condensate Analysis were used to determine the following worst-case components (See Appendix S1 - Raw Condensate Summary):

	Min. Contingency:	20% VOC 50% HAP		
Pollutant	Raw Condensate	Worst Case	%Total	%VOC
CO2	1,642 lb/MMscf	1,642 lb/MMscf	0.670	0.704
Methane (CH4)	3,012 lb/MMscf	3,615 lb/MMscf	1.475	1.551
N2/Water/Ethane/Etc	6,679 lb/MMscf	6,679 lb/MMscf	2.725	2.865
VOC	194,277 lb/MMscf	233,133 lb/MMscf	95.130	100.000
TOTAL Raw Cond.	205,611 lb/MMscf	245,069 lb/MMscf	100.000	
Benzene	174.56 lb/MMscf	261.85 lb/MMscf	0.107	0.112
Ethylbenzene	270.89 lb/MMscf	406.33 lb/MMscf	0.166	0.174
n-Hexane	12,969 lb/MMscf	19,454 lb/MMscf	7.938	8.345
Toluene	674.81 lb/MMscf	1,012.21 lb/MMscf	0.413	0.434
2,2,4-TMP	429.75 lb/MMscf	644.63 lb/MMscf	0.263	0.277
Xylenes	2,973 lb/MMscf	4,459.15 lb/MMscf	1.820	1.913
Total HAP	17,492 lb/MMscf	26,238 lb/MMscf	10.706	11.255

#### Conner Compressor Station (CCS)

Application for 45CSR13 NSR Permit Modification

#### Engine Crankcase (ECC) Emissions

				CAT G3516B Emission		N( 1.	Dx 52	C 9.	0 37	VC 4.5	0C 50	Pi 0.1	M 11	SC 0.0	02 01		C( 1,5	D2 570	CH 5.9	14 )9	N2 2.49	20 E-03	CC 1,7	)2e 720
Unit	Source	Site Rating	Operations	Rates		lb	/hr	lb/	/hr	lb/	hr	lb/	′hr	lb/	/hr		lb/	/hr	lb/	hr	lb/	hr	lb	/hr
ID	ID	ene numg	operatione	0.36		7.	65 Maaf	47.	.13	22.	63	0.4	57 Marí	0.	03 Maaf		7,8	95 Maaf	30.	14	1.25	E-02	8,6	552 Maaf
				sci/bnp-nr		ID/IVI	WISCT	ID/IVI	MSCT	ID/IVI	VISCT	ID/IVI	VISCI	ID/IVI	WISCT		ID/IVI	VISCI	ID/IVI	VISCT	ID/IVI	VISCT	ID/IVI	WISCT
				MMscf/yr		lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy		lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
500	CE-01	1,380 bhp	8,760 hr/yr	4.32		4E-03	0.02	0.02	0.10	0.01	0.05	3E-04	1E-03	2E-05	7E-05		3.90	17.06	0.01	0.07	6E-06	3E-05	4.27	18.70
(37E)	CE-02	1,380 bhp	8,760 hr/yr	4.32		4E-03	0.02	0.02	0.10	0.01	0.05	3E-04	1E-03	2E-05	7E-05		3.90	17.06	0.01	0.07	6E-06	3E-05	4.27	18.70
(0.2)	CE-03	203 bhp	8,760 hr/yr	0.64		6E-04	2E-03	0.00	0.01	2E-03	0.01	4E-05	2E-04	2E-06	1E-05		0.57	2.51	0.00	0.01	9E-07	4E-06	0.63	2.75
	TOT:	2,963 bhp	26,280 hr/yr	9.28	TOT:	0.01	0.04	0.05	0.22	0.02	0.11	6E-04	3E-03	4E-05	2E-04	TOT:	8.36	36.64	0.03	0.14	1E-05	6E-05	9.17	40.15

	Acetalo	dehyde	Acro	olein	Benz	zene	Butac	diene	Ethylb	enzene	HC	Ю	n-He	xane	Meth	anol	POM	/PAH	Tolu	iene	TMP,	2,2,4-	Xyle	enes	Other	Trace	Total	HAPs
	9.43	E-02	5.80	E-02	4.96	E-03	3.01	E-03	4.48	E-04	1.10	E+00	1.25	E-02	2.82	E-02	3.91	E-03	4.60	E-03	3.01	E-03	2.07	E-03	3.62	E-03	1.	31
Source	lb/	/hr	lb/	/hr	lb/	/hr	lb/	'hr	lb/	/hr	lb	/hr	lb	/hr	lb/	'hr	lb	/hr	lb/	'hr	lb	/hr	lb/	/hr	lb/	'hr	lb	/hr
ID	4.74	E-01	2.91	E-01	2.50	E-02	1.51	E-02	2.25	E-03	5.51	E+00	6.29	E-02	1.42	E-01	1.97	E-02	2.31	E-02	1.51	E-02	1.04	E-02	1.82	E-02	6.	61
	lb/M	Mscf	lb/M	Mscf	lb/M	Mscf	lb/M	Mscf	lb/M	Mscf	lb/M	Mscf	Ib/M	Mscf	lb/M	Mscf	Ib/M	Mscf	lb/M	Mscf	lb/M	Mscf	lb/M	Mscf	lb/M	Mscf	lb/M	Mscf
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
CE-01	2E-04	1E-03	1E-04	6E-04	1E-05	5E-05	7E-06	3E-05	1E-06	5E-06	3E-03	0.01	3E-05	1E-04	7E-05	3E-04	1E-05	4E-05	1E-05	5E-05	7E-06	3E-05	5E-06	2E-05	9E-06	4E-05	3E-03	0.01
CE-02	2E-04	1E-03	1E-04	6E-04	1E-05	5E-05	7E-06	3E-05	1E-06	5E-06	3E-03	0.01	3E-05	1E-04	7E-05	3E-04	1E-05	4E-05	1E-05	5E-05	7E-06	3E-05	5E-06	2E-05	9E-06	4E-05	3E-03	0.01
CE-03	3E-05	2E-04	2E-05	9E-05	2E-06	8E-06	1E-06	5E-06	2E-07	7E-07	4E-04	2E-03	5E-06	2E-05	1E-05	5E-05	1E-06	6E-06	2E-06	7E-06	1E-06	5E-06	8E-07	3E-06	1E-06	6E-06	5E-04	2E-03
TOTAL:	5E-04	2E-03	3E-04	1E-03	3E-05	1E-04	2E-05	7E-05	2E-06	1E-05	0.01	0.03	7E-05	3E-04	2E-04	7E-04	2E-05	9E-05	2E-05	1E-04	2E-05	7E-05	1E-05	5E-05	2E-05	8E-05	0.01	0.03

Notes: 1 - As per Caterpillar's <u>Application & Installation Guide - Crankcase Ventilation Systems</u>: "[B]low-by on a new engine is approx. 0.5 ft3 /bhp-hr and design for a worn engine should be 1.0 ft3 /bhp-hr." http://s7d2.scene7.com/is/content/Caterpillar/CM20160713-53120-62603 2 - Blowby emission rates converted from "actual" cubic feet to "standard" cubic feet:

scf = acf * [(P+14.6959)/14.6959] * [527.67/(T+459.67)]

Actual to Standard Conversions	10.001 -	0.26 ant
(@ 1,016 oF vs. 68 oF (Ignore ∆ psi):	1.0 acr =	0.30 501

3 - Engine Exhaust Flow Rates converted from "actual" cubic feet per minute to "standard" cubic feet per minute: scf = acf * [(P+14.6959)/14.6959] * [527.67/(T+459.67)]

Actual to Standard Conversions	0.000 /	0.044 antim
(@ 1,016 oF vs. 68 oF (Ignore ∆ psi):	9,268 actm =	3,314 SCIM

# Attachment O

# Monitoring/Recordkeeping/Reporting/Testing Plans

"31. **Monitoring, Recordkeeping, Reporting and Testing Plans**. Attach proposed monitoring, recordkeeping, reporting and testing plans to demonstrate compliance with the proposed emissions limits and operating parameters in this permit application. Provide this information as Attachment O."

NOTE: Williams OVM is not submitting any special recommendations for monitoring, recordkeeping, reporting, or testing plans other than those typically established for the emissions units in this application.
# Attachment P Public Notice

"32. **Public Notice**. At the time that the application is submitted, place a **Class I Legal Advertisement** in a newspaper of general circulation in the area where the source is or will be located (See 45CSR§13-8.3 through 45CSR§13-8.5 and Example Legal Advertisement for details). Please submit the **Affidavit of Publication** as Attachment P immediately upon receipt."

The applicant shall cause such legal advertisement to appear a minimum of one (1) day in the newspaper most commonly read in the area where the facility exists or will be constructed. The notice must be published no earlier than five (5) working days of receipt by this office of your application. The original affidavit of publication must be received by this office no later than the last day of the public comment period.

The advertisement shall contain, at a minimum, the name of the applicant, the type and location of the source, the type and amount of air pollutants that will be discharged, the nature of the permit being sought, the proposed start-up date for the source and a contact telephone number for more information.

The location of the source should be as specific as possible starting with:

- 1) the street address of the source;
- 2) the nearest street or road;
- 3) the nearest town or unincorporated area;
- 4) the county; and
- 5) latitude and longitude coordinates.

Types and amounts of pollutants discharged must include all regulated pollutants (PM, PM10, VOC, SO2, Xylene, etc.) and their potential to emit or the permit level being sought in units of tons per year (including fugitive emissions).

- Legal Advertisement (as shown) will be placed in a newspaper of general circulation in the area where the source is located (See 45CSR§13-8.3 thru 45CSR§13-8.5).
- An Affidavit of Publication shall be submitted immediately upon receipt.

# ATTACHMENT P Public Notice

# AIR QUALITY PUBLIC NOTICE Notice of Application

Notice is given that Williams Ohio Valley Midstream, LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a 45CSR13 NSR Permit Modification for the existing Conner Compressor Station, ~800 ft South of Kull Ln (Airport Access), ~0.4 mi East of CR-21/Roberts Ridge Rd, Moundsville, in Marshal County, WV 86041.

The latitude and longitude coordinates are 39°52'47.5" North and -80°44'48.0" West.

The applicant estimates the increase/(decrease) in the potential to discharge the following regulated air pollutants will be:

- 0.12 tons of nitrogen oxides per year
- 0.24 tons of carbon monoxide per year
- 31.82 tons of volatile organic compounds per year
- (0.91) tons of particulate matter per year
- (0.40) tons of sulfur dioxide per year
- 2.93 tons of total hazardous air pollutants per year
- (15,899) tons of carbon dioxide equivalent per year

Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the _____ day of _____ 2018.

By: Williams Ohio Valley Midstream LLC Mr. Paul V. Hunter Vice President Park Place Corporate Center 2 2000 Commerce Drive Pittsburgh, PA 15275

# Attachment Q Business Confidential Claims (Not Applicable)

also

Attachment R Authority Forms (Not Applicable)

also

# Attachment S Title V Permit Revision Information (Not Applicable)

# **Supplement S1**

# Lab Analysis (Inlet Gas)

- Wet Gas Summary Conner Compressor Station (CCS)
- Wet Gas Lab Analysis Conner Compressor Station (CCS)
- Raw Condensate Summary Conner Compressor Station (CCS)
- Raw Condensate Lab Analysis Conner Compressor Station (CCS)

#### Williams Ohio Valley Midstream LLC (OVM) Conner Compressor Station (CCS) Application for 45CSR13 NSR Permit Modification

#### Wet Gas - Summary

Sampled:	10/13/17									GPSA-Sec 23	
Component	CAS	Formula	Molecular Weight (MW)	Mole % (M% = V%)	Mole Fraction (MF)	lb/MMscf (WS/UGC#)	Weight % Total	Weight % THC	Weight % VOC	Component Btu/scf (HHV)	Btu/scf (HHV)
Water	109-86-4	H2O	18.015								
Carbon Dioxide	124-38-9	CO2	44.010	0.1344	0.059	155.87	0.2747				
Hydrogen Sulfide	2148-87-8	H2S	34.086							638	
Nitrogen	7727-37-9	N2	28.013	0.5769	0.162	425.87	0.7506				
Methane*	75-82-8	CH4	16.042	74.8125	12.002	31,626.48	55.7422	56.3196		1,010	755.606
Ethane*	74-84-0	C2H6	30.069	15.3479	4.615	12,161.14	21.4342	21.6562		1,770	271.612
Propane**	74-98-6	C3H8	44.096	5.8898	2.597	6,843.87	12.0624	12.1874	55.3364	2,516	148.199
iso-Butane**	75-28-5	i-C4H10	58.122	0.5636	0.328	863.21	1.5214	1.5372	6.9796	3,252	18.328
n-Butane**	106-97-8	n-C4H10	58.122	1.6326	0.949	2,500.50	4.4072	4.4528	20.2179	3,262	53.262
iso-Pentane**	78-78-4	i-C5H12	72.149	0.2868	0.207	545.27	0.9611	0.9710	4.4088	4,001	11.475
n-Pentane**		n-C5H12	72.149	0.4155	0.300	789.96	1.3923	1.4067	6.3873	4,009	16.657
Cyclopentane**	287-92-3	C5H10	70.100							3,764	
Cyclohexane**		C6H12	84.162	0.0222	0.019	49.24	0.0868	0.0877	0.3981	4,482	0.995
Other Hexanes**		C6H14	86.175	0.1200	0.103	272.50	0.4803	0.4853	2.2033	4,750	5.700
Heptanes**	142-82-5	C7H16	100.205	0.0572	0.057	151.04	0.2662	0.2690	1.2212	5,503	3.147
Methylcyclohexane**	108-87-2	C7H14	98.186	0.0140	0.014	36.22	0.0638	0.0645	0.2929	5,216	0.730
C8+ Heavies**	Various	C8+	138.00 est.	0.0190	0.026	69.09	0.1218	0.1230	0.5587	7,000	1.330
Benzene***	71-43-2	C6H6	78.112	0.0016	0.001	3.29	0.0058	0.0059	0.0266	3,742	0.060
Ethylbenzene***	100-41-4	C8H10	106.165	0.0001	0.000	0.28	0.0005	0.0005	0.0023	5,222	0.005
n-Hexane***	110-54-3	C6H14	86.175	0.1035	0.089	235.03	0.4142	0.4185	1.9004	4,756	4.922
Toluene***	108-88-3	C7H8	92.138	0.0019	0.002	4.61	0.0081	0.0082	0.0373	4,475	0.085
2,2,4-Trimethylpentane***	540-84-1	C8H18	114.229	0.0012	0.001	3.61	0.0064	0.0064	0.0292	6,214	0.075
Xylenes***	1330-20-7	C8H10	106.165							5,209	
#1100 (115):0000	Con Constant'									Calculated	
= 379.482 scf/lb-mol @ 6	0 oF and 14.6959	psia.	Totals:	100.0007	21.53	56,737	100.00			Btu/scf	1,292
			THC:	99.2894	21.31	56,155	98.97	100.00		(HHV):	
lb "X"/s	scf =		Total VOC:	9.1290	4.69	12,368	21.80	22.02	100.00	Worst-Case	
(M% of "X") x (MW of "X") / #UGC			Total HAP:	0.1083	0.09	247	0.44	0.44	2.00	Btu/scf	1,020

Component	Representative Wet Gas Analysis					
	Mole %	Wgt %	lb/MMscf			
CO2	0.134	0.2747	155.87			
Methane*	74.813	55.7422	31,626.48			
Other (N2, C2, O2, CO, H2O)	15.925	22.1848	12,587.01			
VOC**	9.129	21.7983	12,367.75			
TOTAL GAS	100.001	100.0000	56,737.10			
Benzene***	0.002	0.0058	3.29			
Ethylbenzene***	1E-04	0.0005	0.28			
n-Hexane***	0.104	0.4142	235.03			
Toluene***	0.002	0.0081	4.61			
2,2,4-Trimethylpentane***	0.001	0.0064	3.61			
Xylenes***						
Total HAP***	0.108	0.4350	246.83			

	Assumed "Worst-Case"				
Margin for Changes	150% HAP	120% VOC			
in rutare das composition	lb/MMscf	Wgt %			
0% Margin	155.87	0.2378			
20% Margin	37,951.78	57.9099			
0% Margin	12,587.01	19.2063			
20% Margin	14,841.30	22.6460			
	65,535.95	100.0000			
50% Margin	4.94	0.0116			
50% Margin	0.42	0.0006			
50% Margin	352.55	0.5379			
50% Margin	6.92	0.0106			
50% Margin	5.42	0.0083			
Margin	0.42	0.0006			
	370.67	0.5656			

* = Hydrocarbon (HC)

** = also Volatile Organic Compound (VOC)

*** = also Hazardous Air Pollutant (HAP)

(HHV):

Williams Ohio Valley Midstream LLC (OVM)

**Conner Compressor Station (CCS)** 

Application for 45CSR13 NSR Permit Modification

### Wet Gas - Lab Analysis

# Williams Quality Control Facility Extended Analysis by GPA 2286

### Sample Information

	Sample Information
Sample Name	CONNER DEHY INLET
Sample Number	N/A
Meter Number	N/A
Cylinder #	7072
Sampled By	H. Fox
Sample Date & Time	10/13/17 1650
Temperature, deg F.	95.0
Pressure, psig	870.0
Eagle WO#	N/A
Analyzed By	AS
Reported By	AS
Method Name	GPA 2286 Ext Gas Analysis - LOW C1
Injection Date	2017-10-13 21:32:00
Report Date	2017-10-13 22:15:34
EZReporter Configuration File	ORSH Gas Extended Analysis - May 2016.1.cfgx

### **Component Results**

Component Name	Ret. Time	Peak Area	Norm Mole%
Nitrogen	3.58	5.700	0.5769
Methane	3.46	407.246	74.8125
Carbon Dioxide	4.44	1.500	0.1344
Ethane	3.60	165.583	15.3479
Propane	3.91	94.983	5.8898
iso-Butane	4.39	12.078	0.5636
n-Butane	4.78	35.187	1.6326
Neopentane	4.99	0.170	0.0062
iso-Pentane	6.15	7.783	0.2868
n-Pentane	6.79	11.151	0.4093
Hexanes Plus	0.00	0.000	0.3400
Total:			100.0000

### **Results Summary**

Result	Dry
Pressure Base (psia)	14.73
Temperature Base	60.0
Gross Heating Value (BTU / Ideal cu.ft.)	1294.3
Gross Heating Value (BTU / Real cu.ft.)	1299.2
Specific Gravity, Ideal	0.7429
Specific Gravity, Real	0.7454
BTEX, mol%	0.0036

*All results calculated at 14.696 psia and 60F

### Williams Ohio Valley Midstream LLC (OVM)

**Conner Compressor Station (CCS)** 

Application for 45CSR13 NSR Permit Modification

## Wet Gas - Lab Analysis - Continued Total Component Results

Component	Weight%	Mole%	Volume%	
Nitrogen	0.7509	0.5769	0.3239	
Methane	55.7657	74.8125	64.7330	
Carbon Dioxide	0.2748	0.1344	0.1171	
Ethane	21.4434	15.3479	20.9552	
Propane	12.0676	5.8898	8.2853	
iso-Butane	1.5221	0.5636	0.9413	
n-Butane	4.4090	1.6326	2.6278	
Neopentane	0.0208	0.0062	0.0121	
iso-Pentane	0.9614	0.2868	0.5359	
n-Pentane	1.3721	0.4093	0.7568	
2.2-Dimethylbutane	0.0232	0.0058	0.0123	
2.3-Dimethylbutane/Cyclopentane	0.0483	0.0133	0.0238	
2-Methylpentane	0.2350	0.0647	0.1158	
3-Methylpentane	0.1449	0.0362	0.0753	
n-Hexane	0.4144	0.1035	0.2172	
2.2-Dimethylpentane	0.0056	0.0012	0.0029	
Methylcyclopentane/2.4-Dimethylpentane	0.0465	0.0119	0.0215	
Benzene	0.0058	0 0016	0.0023	
3 3-Dimethylpentane	0.0033	0 0007	0.0016	
Cyclohexane	0.0403	0 0103	0.0179	
2-Methylhexane	0.0596	0.0128	0.0303	
2 3-Dimethylpentane	0.0140	0.0030	0.0070	
3-Methylbexane	0.0656	0.0141	0.0330	
cis-1 3-Dimethylcyclopentane	0.0084	0.0018	0.0042	
2 2 4-Trimethylpentane	0.0064	0.0012	0.0032	
3-Ethylpentane	0.0116	0.0025	0.0057	
n-Heptane	0.1066	0.0229	0.0539	
cis-1.2-Dimethylcyclopentane	0.0541	0.0102	0.0267	
2.5-Dimethylhexane	0.0027	0.0005	0.0013	
2,4-Dimethylhexane/Ethylcyclopentane/2,2,3-Trimethylpentane	0.0074	0.0014	0.0037	
3,3-Dimethylhexane	0.0032	0.0006	0.0016	
trans-1,2-cis-3-Trimethylcyclopentane	0.0011	0.0002	0.0005	
Toluene	0.0081	0.0019	0.0032	
1,1,2-Trimethylcyclopentane	0.0027	0.0005	0.0013	
2-Methylheptane/4-Methylheptane	0.0265	0.0050	0.0131	
3-Ethylhexane	0.0186	0.0035	0.0092	
trans-1,2-Dimethylcyclohexane	0.0027	0.0005	0.0013	
1,1-Dimethylcyclohexane	0.0021	0.0004	0.0010	
2,2,4-Trimethylhexane	0.0011	0.0002	0.0005	
n-Octane	0.0234	0.0044	0.0115	
trans-1,3-Dimethylcyclohexane	0.0021	0.0004	0.0009	
2,4-Dimethylheptane	0.0012	0.0002	0.0006	
cis-1,2-Dimethylcyclohexane	0.0016	0.0003	0.0007	
3,3-Dimethylheptane	0.0006	0.0001	0.0003	
1,1,4-Trimethylcyclohexane	0.0006	0.0001	0.0003	
Ethylbenzene	0.0005	0.0001	0.0002	
3-Methyloctane	0.0018	0.0003	0.0009	
1,1,2-Trimethylcyclohexane	0.0060	0.0010	0.0029	
iso-Propylcyclohexane	0.0006	0.0001	0.0003	
m-Ethyltoluene	0.0007	0.0001	0.0003	
p-Ethyltoluene	0.0007	0.0001	0.0003	
2-Methylnonane	0.0007	0.0001	0.0003	
1,2,4-Trimethylbenzene/tert-Butylbenzene/Methylcyclooctane	0.0006	0.0001	0.0002	
n-Decane	0.0013	0.0002	0.0006	
Total:	100.0000	100.0000	100.0000	

#### Williams Ohio Valley Midstream LLC (OVM) **Conner Compressor Station (CCS)**

Application for 45CSR13 NSR Permit Modification

**Raw Condensate - Summary** 

Sampled:	01/16/18									GPSA-Sec 23	
Component	CAS	Formula	Molecular Weight (MW)	Mole % (M% = V%)	Mole Fraction (MF)	lb/MMscf (WS/UGC#)	Weight % Total	Weight % THC	Weight % VOC	Component Btu/scf (HHV)	Btu/scf (HHV)
Water	109-86-4	H2O	18.015								
Carbon Dioxide	124-38-9	CO2	44.010	1.4160	0.623	1,642.17	0.7987				
Nitrogen	7727-37-9	N2	28.013	0.0309	0.009	22.81	0.0111				
Methane*	75-82-8	CH4	16.042	7.1258	1.143	3,012.40	1.4651	1.4771		1,010	71.971
Ethane*	74-84-0	C2H6	30.069	8.3998	2.526	6,655.75	3.2371	3.2635		1,770	148.651
Propane**	74-98-6	C3H8	44.096	11.9412	5.266	13,875.61	6.7485	6.8036	7.1422	2,516	300.464
iso-Butane**	75-28-5	i-C4H10	58.122	2.5778	1.498	3,948.21	1.9202	1.9359	2.0323	3,252	83.830
n-Butane**	106-97-8	n-C4H10	58.122	11.3331	6.587	17,357.99	8.4422	8.5111	8.9346	3,262	369.731
iso-Pentane**	78-78-4	i-C5H12	72.149	4.2437	3.062	8,068.30	3.9241	3.9561	4.1530	4,001	169.786
n-Pentane**		n-C5H12	72.149	8.4136	6.070	15,996.30	7.7799	7.8434	8.2337	4,009	337.293
Cyclopentane**	287-92-3	C5H10	70.100							3,764	
Cyclohexane**		C6H12	84.162	0.8248	0.694	1,829.22	0.8897	0.8969	0.9416	4,482	36.964
Other Hexanes**		C6H14	86.175	4.4300	3.818	10,060.03	4.8928	4.9327	5.1782	4,750	210.440
Heptanes**	142-82-5	C7H16	100.205	8.4252	8.442	22,247.42	10.8202	10.9085	11.4514	5,503	463.598
Methylcyclohexane**	108-87-2	C7H14	98.186	1.8282	1.795	4,730.18	2.3006	2.3193	2.4348	5,216	95.356
C8+ Heavies**	Various	C8+	138.00 est.	21.6338	29.855	78,672.04	38.2626	38.5750	40.4947	7,000	1514.366
Benzene***	71-43-2	C6H6	78.112	0.0848	0.066	174.56	0.0849	0.0856	0.0899	3,742	3.173
Ethylbenzene***	100-41-4	C8H10	106.165	0.0968	0.103	270.89	0.1317	0.1328	0.1394	5,222	5.056
n-Hexane***	110-54-3	C6H14	86.175	5.7112	4.922	12,969.34	6.3077	6.3592	6.6757	4,756	271.624
Toluene***	108-88-3	C7H8	92.138	0.2779	0.256	674.81	0.3282	0.3309	0.3473	4,475	12.437
2,2,4-Trimethylpentane***	540-84-1	C8H18	114.229	0.1428	0.163	429.75	0.2090	0.2107	0.2212	6,214	8.871
Xylenes***	1330-20-7	C8H10	106.165	1.0626	1.128	2,972.77	1.4458	1.4576	1.5302	5,209	55.347
#UCC (Universal							Calculated				
$= 270.492 \text{ or } f(b) \text{ mol} \otimes 60 \text{ or } and 14.6050 \text{ prize}$				100.0000	78.03	205,610.55	100.0000			Btu/scf	4,159

= 379.482 scf/lb-mol @ 60 oF and 14.6959 psia.

lb "X"/scf = (M% of "X") x (MW of "X") / #UGC

Totals:	100.0000	78.03	205,610.55	
THC:	98.5531	77.39	203,945.57	
Total VOC:	83.0275	73.72	194,277.41	
Total HAP:	7.3761	6.64	17,492.11	

100.0000		
99.1902	100.0000	
94.4881	95.2594	100.0000
8.5074	8.5769	9.0037

(HHV):

Representative Raw Condensate Analysis Component Mole % Wgt % lb/MMscf CO2 1.416 0.7987 1,642.17 Methane* 7.126 1.4651 3,012.40 Other (N2, C2, O2, CO, H2O) 8.431 3.2482 6,678.56 VOC** 83.028 94.4881 194,277.41 TOTAL RAW CONDENSATE 100.000 100.0000 205,610.55 Benzene*** 0.085 0.0849 174.56 0.097 270.89 Ethylbenzene*** 0.1317 n-Hexane*** 5.711 6.3077 12,969.34 Toluene*** 0.278 0.3282 674.81 2,2,4-Trimethylpentane*** 0.143 0.2090 429.75 Xylenes*** 1.063 1.4458 2,972.77 Total HAP*** 7.376 8.5074 17,492.11

Assumed "W	Vorst-Case"	Margin for Changes
120% VOC	150% HAP	in Future Condensate
Wgt %	lb/MMscf	Composition
0.6701	1,642.17	0% Margin
1.4751	3,614.88	20% Margin
2.7252	6,678.56	0% Margin
95.1297	233,132.89	20% Margin
100.0000	245,068.51	
0.1698	261.85	50% Margin
0.1658	406.33	50% Margin
7.9382	19,454.01	50% Margin
0.4130	1,012.21	50% Margin
0.2630	644.63	50% Margin
1.8196	4,459.15	50% Margin
10.7065	26,238.17	

* = Hydrocarbon (HC)

** = also Volatile Organic Compound (VOC)

*** = also Hazardous Air Pollutant (HAP)

Williams Ohio Valley Midstream LLC (OVM) Conner Compressor Station (CCS) Application for 45CSR13 NSR Permit Modification

### **Raw Condensate - Lab Analysis**

# Williams Quality Control Facility C24+ Analysis by ASTM D8003

# Sample Information

	Sample Information
Sample Name	CONNER BERGER CONDENSATE INLET 011618
Analyzed By	R Dibble
Reported By	R Dibble
Station No.	52255-55
County	Marshall
State	WV
Sample Date & Time	01/16/18 1400
Sampled By	H Fox
Sample Type	Composite (01/02/18-01/16/18)
Pressure (psig)	625.0
Temperature (deg F.)	50.0
Cylinder No.	96065
Vapor Pressure (psig), ASTM 6897	N/A
Water Content (ppmw), ASTM 6304	N/A
Calibration Name	7890 HPLIS
Injection Date	2018-01-16 18:35:00
Report Date	2018-01-16 19:15:57
EZReporter Configuration File	Williams ORSH Liquid Custody Samples - May 2017.cfgx

# **Component Results**

Component Name	Peak Area	Norm Mole%	Norm Weight%	Norm Volume%	
Nitrogen	0.400	0.0309	0.0109	0.0087	
Methane	16.200	7.1258	1.4378	3.0930	
Carbon Dioxide	62.800	1.4160	0.7837	0.6186	
Ethane	37.000	8.3998	3.1767	5.7531	
Propane	79.800	11.9412	6.6225	8.4262	
iso-Butane	23.400	2.5778	1.8844	2.1596	
n-Butane	100.700	11.3331	8.2845	9.1504	
Neopentane	0.900	0.0972	0.0711	0.0785	
iso-Pentane	46.600	4.2437	3.8508	3.9782	
n-Pentane	89.800	8.3164	7.5464	7.7136	
Hexanes Plus	0.000	44.5181	66.3312	59.0201	
Total:		100.0000	100.0000	100.0000	

Williams Ohio Valley Midstream LLC (OVM)

**Conner Compressor Station (CCS)** 

Application for 45CSR13 NSR Permit Modification

### **Raw Condensate - Lab Analysis**

#	Component	C6+ Wt%	C6+ Mol%	C6+ Vol%	
14	C6 Unknown 2	0.0246	0.0338	0.0269	
16	2-2-Dimethylbutane	0.2067	0.2841	0.2291	
17	2-3-Dimethylbutane/2-Methylpentane	4.4104	6.0633	4.7757	
18	3-Methylpentane	2.5967	3.5699	2.8590	
19	n-Hexane	9.3315	12.8289	10.1874	
22	2-2-Dimethylpentane/Methylcyclopentane/2-4-Dimethylpentane	0.1258	0.1005	0.1020	
25	3-3-Dimethylpentane	0.1230	0.1800	0.1029	
26	Cvclohexane	1.3161	1.8527	1,2170	
27	2-Methylhexane	2.6489	3.1318	2.8086	
28	2-3-Dimethylpentane	0.5223	0.6175	0.5410	
29	3-Methylhexane	3.2845	3.8833	3.4401	
30	3-Ethylpentane/cis-1-3-Dimethylcyclopentane	0.3057	0.3614	0.3151	
31	C/ Unknown 4	0.5075	0.6001	0.5346	
32	2-2-4- I nmetnyipentane/trans-1-3-Dimetnyicyclopentane	7 1003	8.5121	7.5838	
34	C8 Unknown 1	0.0275	0.0285	0.0282	
35	Methylcyclohexane/1-1-3-Trimethylcyclopentane/2-2-Dimethylhexane	3.4035	4.1066	3.1862	
36	2-5-Dimethylhexane	0.4202	0.4358	0.4361	
37	2-4-Dimethylhexane/Ethylcyclopentane	0.4453	0.4618	0.4578	
38	C8 Unknown 2	0.2581	0.2677	0.2648	
39	C8 Unknown 3	0.1012	0.1050	0.1038	
40	C8 Linkneum 4	0.4800	0.0243	0.4030	
42	2-methylheptane/4-Methylheptane/3-Methylheptane	4 8968	5.0787	5 0519	
43	C8 Unknown 5	0.1861	0.1930	0.1909	
44	trans-1-2-Dimethylcyclohexane	0.5015	0.5201	0.5146	
45	cis-1-2-Dimethylcyclohexane	1.4104	1.4891	1.3264	
47	C8 Unknown 7	0.1974	0.2047	0.2025	
48	C8 Unknown 8	0.0733	0.0760	0.0752	
49	n-Octane CR Linkneum 1	4.9201	5.1029	5.0483	
51	trans_1_2_Dimethylovelohevane	0.0001	0.3853	0.0003	
52	C9 Unknown 2	0.0377	0.0348	0.0378	
53	C9 Unknown 3	0.1298	0.1199	0.1303	
54	C9 Unknown 4	0.8315	0.7681	0.8346	
55	C9 Unknown 5	1.6380	1.5131	1.6442	
56	cis-1-3-Dimethylcyclohexane	0.5442	0.5746	0.4997	
57	C9 Unknown 6	0.0710	0.0656	0.0713	
- 59 - 60	C9 Unknown 8	0.4628	0.4275	0.4045	
62	Ethyloxclohexane	0.6671	0.7043	0.6100	
63	Ethylbenzene	0.1949	0.2175	0.1620	
64	m-Xylene/p-Xylene	1.9484	2.1742	1.6249	
65	C9 Unknown 11	0.0468	0.0432	0.0470	
66	C9 Unknown 12	0.3357	0.3101	0.3370	
68	o-Xylene	0.1906	0.2127	0.1561	
70	C9 Unknown 14 C9 Linknown 15	1.5708	1 4501	1.5956	
72	n-Nonane	3.1533	2,9128	3.1652	
73	C10 Unknown 1	0.2433	0.2026	0.2401	
74	C10 Unknown 2	0.2433	0.2026	0.2401	
75	Isopropylbenzene	0.2596	0.2559	0.2171	
76	Cyclooctane	0.3447	0.3639	0.2972	
70	o Tu Unknown 3	0.3/61	0.3132	0.3/12	
70	C10 Unknown 4	0.0421	0.3856	0.4924	
80	C10 Unknown 5	0.1703	0.1418	0,1681	
81	n-propylbenzene	0.1549	0.1527	0.1295	
82	C10 Unknown 6	0.7334	0.6107	0.7238	
83	C10 Unknown 7	0.1040	0.0866	0.1026	
84	1-3-5-Trimethylbenzene	1.1397	1.1234	0.9495	
88	C10 Unknown 9	0.7091	0.0404	0.7590	
87	C10 Unknown 10	0.1573	0.1310	0.1552	
88	C10 Unknown 11	0.7889	0.6569	0.7786	
89	1-2-4-Trimethylbenzene/Tert-Butylbenzene	0.4009	0.3952	0.3300	
90	C10 Unknown 12	0.2458	0.2047	0.2426	
91	tert-Butylcyclohexane	0.0693	0.0585	0.0614	
92	n-decane	2.5138	2.0932	2.4809	
04	C12c	5,1004	3.8113	5.1285	
95	C135	4.0445	2.5991	3.8491	
96	C14s	2.4931	1.4888	2.3678	
97	C15s	2.8051	1.5645	2.6335	
98	C16s	1.8809	0.9841	1.7544	
99	C17s	1.4854	0.7318	1.3812	
100	C18s	1.0300	0.4795	0.9550	
101	C185	0.7434	0.3280	0.6848	
102	C21s	0.4212	0.1/08	0.3859	
104	C225	0.0661	0.0252	0.0600	
106	C24+	0.0720	0.0252	0.0650	
	Total:	100.0000	100.0000	100.0000	

Supplement S1 - Raw Condensate Analysis

Raw Condensate - Lab Analysis

#### Potentially Applicable AP-42 and GHG EMISSION FACTORS (Preferentially use test data or vendor data where available)

			GAS-FIRED ENGINES		GAS-FIRED TURBINES			
	Pollutant	<u>AP-42</u>	Table 3.2-1; 3.2-2; 3.2-3	07/00	AP-42 Table 3.1-1; 3.1-2a; 3.1-3 04/00			
	Foliutant	2SLB 4SLB 4SRB		Uncontrolled	Water Injection	Lean Pre-Mix#		
		lb/MMBtu	lb/MMBtu	lb/MMBtu	lb/MMBtu	lb/MMBtu	lb/MMBtu	
	NOX (≥ 90% Load)	3.17E+00	4.08E+00	2.21E+00	3.23E-01	1.28E-01	9.91E-02	
RIA	CO (≥ 90% Load)	3.86E-01	3.17E-01	3.72E+00	8.23E-02	2.95E-02	1.51E-02	
ITE	VOC	1.20E-01	1.18E-01	2.96E-02	2.10E-03	2.10E-03	2.10E-03	
CR	PM10/2.5 (Total)	4.83E-02	9.99E-03	1.94E-02	6.63E-03	6.63E-03	6.63E-03	
	SO2	5.88E-04	5.88E-04	5.88E-04	3.40E-03	3.40E-03	3.40E-03	
	Acetaldehyde	7.76E-03	8.36E-03	2.79E-03	4.00E-05	4.00E-05	4.00E-05	
	Acrolein	7.78E-03	5.14E-03	2.63E-03	6.40E-06	6.40E-06	6.40E-06	
	Benzene	1.94E-03	4.40E-04	1.58E-03	1.20E-05	1.20E-05	9.10E-07	
	Butadiene, 1,3-	8.20E-04	2.67E-04	6.63E-04	4.30E-07	4.30E-07	4.30E-07	
	Ethylbenzene	1.08E-04	3.97E-05	2.48E-05	3.20E-05	3.20E-05	3.20E-05	
	Formaldehyde (HCHO)	5.52E-02	5.28E-02	2.05E-02	7.10E-04	7.10E-04	2.00E-05	
Ps	n-Hexane	4.45E-04	1.11E-03					
ΗA	Methanol (MeOH)	2.48E-03	2.50E-03	3.06E-03				
	Polycyclic Organic Matter (POM/PAH)	1.34E-04	3.47E-04	9.71E-05	3.25E-05	3.25E-05	3.25E-05	
	Toluene	9.63E-04	4.08E-04	5.58E-04	1.30E-04	1.30E-04	1.30E-04	
	Trimethylpentane, 2,2,4- (i-Octane)	8.46E-04	2.50E-04					
	Xylenes	2.68E-04	1.84E-04	1.95E-04	6.40E-05	6.40E-05	6.40E-05	
	Other/Trace HAP*	6.57E-04	3.21E-04	1.79E-04	2.90E-05	2.90E-05	2.90E-05	
	TOTAL HAP	7.94E-02	7.22E-02	3.23E-02	1.06E-03	1.06E-03	3.55E-04	
	CO2 (GWP=1)	1.10E+02	1.10E+02	1.10E+02	1.10E+02	1.10E+02	1.10E+02	
φ	CH4 (GWP=25)	1.45E+00	1.25E+00	2.30E-01	8.64E-03	8.64E-03	8.64E-03	
ц С	N2O (GWP=298) (40CFR98)	2.20E-04	2.20E-04	2.20E-04	3.00E-03	3.00E-03	3.00E-03	
	CO2e (40CFR98)	1.46E+02	1.41E+02	1.16E+02	1.11E+02	1.11E+02	1.11E+02	

	(#Lean Pre-Mix - aka: Dry Low Emissions (DLE or DLN) or SoLoNOx)						
		GAS-FIF	RED EXTERNAL COMB	USTION	FLARE	DIESEL ENGINES	DIESEL ENGINES
	Pollutant	AP-42 Table 1.4-1; 1.4-2; 1.4-3 (<100 MMBtu/hr) 07/98			<u>13.5-1 06/17</u>	<u>3.3-1; 3.3-2 10/96</u>	<u> Tier 4 ≥ 751 bhp</u>
	ronutant	Uncontrolled	LoNOx Burners	Flue Gas Recirc	Combustion	Uncontrolled	Controlled
		lb/MMBtu	lb/MMBtu	lb/MMBtu	lb/MMBtu	lb/MMBtu	lb/MMBtu
	NOX (≥ 90% Load)	9.80E-02	4.90E-02	3.14E-02	External Comb.	4.41E+00	4.18E+00
۶IA	CO (≥ 90% Load)	8.24E-02	8.24E-02	8.24E-02	3.10E-01	9.50E-01	2.35E+00
ΞL	VOC	5.39E-03	5.39E-03	5.39E-03	98% Control	3.53E-01	1.28E-01
CR	PM10/2.5 (Total)	7.45E-03	7.45E-03	7.45E-03	External Comb.	3.10E-01	1.35E-01
	SO2	5.88E-04	5.88E-04	5.88E-04	External Comb.	2.90E-01	2.90E-01
	Acetaldehyde					7.67E-04	2.77E-04
	Acrolein					9.25E-05	3.35E-05
	Benzene	2.06E-06	2.06E-06	2.06E-06		9.33E-04	3.38E-04
	Butadiene, 1,3-					3.91E-05	1.41E-05
	Ethylbenzene						
	Formaldehyde (HCHO)	7.35E-05	7.35E-05	7.35E-05		1.18E-03	4.27E-04
R	n-Hexane	1.76E-03	1.76E-03	1.76E-03			
ΗA	Methanol (MeOH)				Use		
	Polycyclic Organic Matter (POM/PAH)	6.85E-07	6.85E-07	6.85E-07	External	1.68E-04	6.08E-05
	Toluene	3.33E-06	3.33E-06	3.33E-06	or 98% Control.	4.09E-04	1.48E-04
	Trimethylpentane, 2,2,4- (i-Octane)				As Appropriate		
	Xylenes					2.85E-04	1.03E-04
	Other/Trace HAP*	1.18E-06	1.18E-06	1.18E-06			
	TOTAL HAP	1.85E-03	1.85E-03	1.85E-03		3.87E-03	1.40E-03
	CO2 (GWP=1)	1.18E+02	1.18E+02	1.18E+02		1.64E+02	1.64E+02
φ	CH4 (GWP=25)	2.25E-03	2.25E-03	2.25E-03		6.61E-03	6.61E-03
ų D	N2O (GWP=298) (40CFR98)	2.16E-03	6.27E-04	6.27E-04		1.32E-03	1.32E-03
	CO2e (40CFR98)	1.18E+02	1.18E+02	1.18E+02		1.65E+02	1.65E+02

40 CFR 98 - DEFAULT EMISSION FACTORS								
	Table C-1 to Sub	opart C of Part 98	Table C-2 to Sub	Weighted Sum				
Fuel Type		Carbon Dioxide	Methane	Nitrous Oxide	CO2e			
	Delault HHV	lb CO2/MMBtu	lb CH4/MMBtu	lb N2O/MMBtu	lb CO2e/MMBtu			
Fuel Oil No. 2 (Diesel)	138,000 Btu/gal	1.63E+02	6.61E-03	1.32E-03	1.64E+02			
Propane	91,000 Btu/gal	1.39E+02	6.61E-03	1.32E-03	1.39E+02			
Natural Gas	1,026 Btu/scf	1.17E+02	2.20E-03	2.20E-04	1.17E+02			

*Other/Trace HAPs include: CarbonTetrachloride, Chlorobenzene, Chloroform, Dichloropropene, 1,3-Dichloropropene, Ethylene Dibromide, Methylene Chloride, Phenol, Propylene Oxide, Styrene, 1,1,2,2-Tetrachloroethane, 1,1,2-Trichloroethane, and Vinyl Chloride (as per AP-42).

Global Warming Potential (100 Yr) (GWP)						
Table A-1 to Subpart A of Part 98						
CO2	CH4	N2O				
1	25	298				

Reviewed and Revised: 02/28/18 - CAR

 United States
 Office of Air Quality

 Environmental Protection
 Planning and Standards

 Agency
 Research Triangle Park NC 27711

Air

# EPA Protocol for Equipment Leak Emission Estimates

TABLE 2-4. OIL AND GAS PRODUCTION OPERATIONS AVERAGE EMISSION FACTORS (kg/hr/source)

Equipment Type	Service ^a	Emission Factor (kg/hr/source) ^b
Valves	Gas Heavy Oil Light Oil Water/Oil	4.5E-03 8.4E-06 2.5E-03 9.8E-05
Pump seals	Gas Heavy Oil Light Oil Water/Oil	2.4E-03 NA 1.3E-02 2.4E-05
Others ^C	Gas Heavy Oil Light Oil Water/Oil	8.8E-03 3.2E-05 7.5E-03 1.4E-02
Connectors	Gas Heavy Oil Light Oil Water/Oil	2.0E-04 7.5E-06 2.1E-04 1.1E-04
Flanges	Gas Heavy Oil Light Oil Water/Oil	3.9E-04 3.9E-07 1.1E-04 2.9E-06
Open-ended lines	Gas Heavy Oil Light Oil Water/Oil	2.0E-03 1.4E-04 1.4E-03 2.5E-04

^aWater/Oil emission factors apply to water streams in oil service with a water content greater than 50%, from the point of origin to the point where the water content reaches 99%. For water streams with a water content greater than 99%, the emission rate is considered negligible.

^bThese factors are for total organic compound emission rates (including non-VOC's such as methane and ethane) and apply to light crude, heavy crude, gas plant, gas production, and off shore facilities. "NA" indicates that not enough data were available to develop the indicated emission factor. ^CThe "other" equipment type was derived from compressors,

diaphrams, drains, dump arms, hatches, instruments, meters, pressure relief valves, polished rods, relief valves, and vents. This "other" equipment type should be applied for any equipment type other than connectors, flanges, open-ended lines, pumps, or valves.

# Supplement S2

# **Vendor Data**

- 1380 bhp CAT G3516B w/ Emit OxCat (CE-01/1E-OxCAT and CE-02/2E)
- 203 bhp CAT G3306B TA w/ Miratech NSCR (GE-03/3E)
- 6.41 MMBtu/hr Frederick Logan Thermal Oxidizer (COMB-1/10E)

# G3516B

ENGINE SPEED (rpm):

ASPIRATION:

COMBUSTION:

COOLING SYSTEM:

SET POINT TIMING

IGNITION SYSTEM: EXHAUST MANIFOLD:

COMPRESSION RATIO:

GAS COMPRESSION APPLICATION

JACKET WATER OUTLET (°F):

AFTERCOOLER - STAGE 2 INLET (°F): AFTERCOOLER - STAGE 1 INLET (°F):

NOx EMISSION LEVEL (g/bhp-hr NOx):

### GAS ENGINE SITE SPECIFIC TECHNICAL DATA



FUEL SYSTEM:

1400 8:1 130 201 210 TA JW+OC+1AC, 2AC ADEM3 DRY Ultra Lean Burn 0.5

28

SITE CONDITIONS: FUEL: FUEL PRESSURE RANGE(psig): FUEL METHANE NUMBER: FUEL LHV (Btu/scf): ALTITUDE(ft): MAXIMUM INLET AIR TEMPERATURE(°F): STANDARD RATED POWER: CAT WIDE RANGE WITH AIR FUEL RATIO CONTROL

> Gas Analysis 7.0-50.0 50.5 1170 1311 100 1380 bhp@1400rpm

				SHERA	TINGATIN	
			RATING	INLET A	IR TEMPE	RATURE
RATING	NOTES	LOAD	100%	100%	75%	50%
ENGINE POWER (WITHOUT FAN	) (1)	bhp	1380	1380	1035	690
INLET AIR TEMPERATURE		°F	100	100	100	100
ENGINE DATA						
FUEL CONSUMPTION (LHV)	(2)	Btu/bhp-hr	7415	7415	7942	8530
FUEL CONSUMPTION (HHV)	(2)	Btu/bhp-hr	8171	8171	8751	9400
AIR FLOW (77°F, 14.7 psia) (WET	(3)(4)	scfm	3147	3147	2469	1726
AIR FLOW (WET	(3)(4)	lb/hr	13954	13954	10946	7653
INLET MANIFOLD PRESSURE	(5)	in Hg(abs)	92.8	92.8	75.4	53.0
EXHAUST TEMPERATURE - ENGINE OUTLET	(6)	°F	1016	1016	1009	1029
EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (WET	(7)(4)	ft3/min	9268	9268	7248	5142
EXHAUST GAS MASS FLOW (WET	(7)(4)	lb/hr	14445	14445	11341	7935
EMISSIONS DATA - ENGINE OUT	1					
NOx (as NO2)	(8)(9)	g/bhp-hr	0.50	0.50	0.50	0.50
co	(8)(9)	g/bhp-hr	3.02	3.02	3.24	3.18
THC (mol. wt. of 15.84)	(8)(9)	g/bhp-hr	4.29	4.29	4.59	4.66
NMHC (mol. wt. of 15.84)	(8)(9)	g/bhp-hr	1.95	1.95	2.09	2.12
NMNEHC (VOCs) (mol. wt. of 15.84)	(8)(9)(10)	g/bhp-hr	0.94	0.94	1.01	1.03
HCHO (Formaldehyde)	(8)(9)	g/bhp-hr	0.38	0.38	0.37	0.37
CO2	(8)(9)	g/bhp-hr	516	516	550	598
EXHAUST OXYGEN	(8)(11)	% DRY	9.1	9.1	8.8	8.4
HEAT REJECTION						
HEAT REJ. TO JACKET WATER (JW)	(12)	Btu/min	21892	21892	20445	19118
HEAT REJ. TO ATMOSPHERE	(12)	Btu/min	6110	6110	5092	4074
HEAT REJ. TO LUBE OIL (OC)	(12)	Btu/min	4475	4475	3978	3363
HEAT REJ. TO A/C - STAGE 1 (1AC)	(12)(13)	Btu/min	12060	12060	9999	3481
HEAT REJ. TO A/C - STAGE 2 (2AC)	(12)(13)	Btu/min	5601	5601	5265	3419
COOLING SYSTEM SIZING CRITERIA	1					
TOTAL JACKET WATER CIRCUIT (JW+OC+1AC)	(13)(14)	Btu/min	42114			
TOTAL AFTERCOOLER CIRCUIT (2AC)	(13)(14)	Btu/min	5881			

A cooling system safety factor of 0% has been added to the cooling system sizing criteria.

#### CONDITIONS AND DEFINITIONS

Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Max. rating is the maximum capability for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

For notes information consult page three.



# Engine Power vs. Inlet Air Temperature

Data represents temperature sweep at 1311 ft and 1400 rpm



# **Engine Power vs. Engine Speed**

Data represents speed sweep at 1311 ft and 100 °F



# Engine Torque vs. Engine Speed

Data represents speed sweep at 1311 ft and 100 °F



Note: At site conditions of 1311 ft and 100°F inlet air temp., constant torque can be maintained down to 1050 rpm. The minimum speed for loading at these conditions is 1050 rpm.

# G3516B

GAS COMPRESSION APPLICATION

### GAS ENGINE SITE SPECIFIC TECHNICAL DATA

# **CATERPILLAR®**

#### NOTES

1. Engine rating is with two engine driven water pumps. Tolerance is ± 3% of full load.

2. Fuel consumption tolerance is  $\pm$  3.0% of full load data.

3. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of  $\pm$  5 %.

4. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.

5. Inlet manifold pressure is a nominal value with a tolerance of  $\pm$  5 %.

6. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.

7. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of  $\pm$  6 %.

8. Emissions data is at engine exhaust flange prior to any after treatment.

9. Emission values are based on engine operating at steady state conditions. Fuel methane number cannot vary more than ± 3. Values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate "Not to Exceed" values. THC, NMHC, and NMNEHC do not include aldehydes. An oxidation catalyst may be required to meet Federal, State or local CO or HC requirements.

10. VOCs - Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ

11. Exhaust Oxygen level is the result of adjusting the engine to operate at the specified NOx level. Tolerance is  $\pm$  0.5.

12. Heat rejection values are nominal. Tolerances, based on treated water, are ± 10% for jacket water circuit, ± 50% for radiation, ± 20% for lube oil circuit, and ± 5% for aftercooler circuit.

13. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.

14. Cooling system sizing criteria are maximum circuit heat rejection for the site, with applied tolerances.

Constituent	Abbrev	Mole %	Norm		
Water Vapor	H2O	0.0000	0.0000		
Methane	CH4	71.4260	71.4260	Fuel Makeup:	OVM Gas
Ethane	C2H6	17.0270	17.0270	Unit of Measure:	English
Propane	C3H8	6.8190	6.8190		
Isobutane	iso-C4H1O	0.7220	0.7220	Calculated Fuel Properties	
Norbutane	nor-C4H1O	1.9740	1.9740	Caternillar Methane Number:	38.7
Isopentane	iso-C5H12	0.3660	0.3660	Caterplilar Methane Number.	56.7
Norpentane	nor-C5H12	0.5030	0.5030		
Hexane	C6H14	0.2150	0.2150	Lower Heating Value (Btu/scf):	1227
Heptane	C7H16	0.1360	0.1360	Higher Heating Value (Btu/scf):	1351
Nitrogen	N2	0.4650	0.4650	WOBBE Index (Btu/scf):	1392
Carbon Dioxide	CO2	0.1880	0.1880		
Hydrogen Sulfide	H2S	0.0000	0.0000	THC: Free Inert Batio:	152 14
Carbon Monoxide	CO	0.0000	0.0000		0.65%
Hydrogen	H2	0.0000	0.0000		0.03%
Oxygen	O2	0.0000	0.0000	RPC (%) (10 905 Btu/scf Fuel):	100%
Helium	HE	0.0000	0.0000		
Neopentane	neo-C5H12	0.0000	0.0000	Compressibility Factor:	0.996
Octane	C8H18	0.1040	0.1040	Stoich A/F Ratio (Vol/Vol):	12.70
Nonane	C9H20	0.0550	0.0550	Stoich A/F Ratio (Mass/Mass)	16 35
Ethylene	C2H4	0.0000	0.0000	Specific Gravity (Relative to Air):	0 777
Propylene	C3H6	0.0000	0.0000	Specific Light Constant ///):	0.777
TOTAL (Volume %)		100.0000	100.0000	Specific real Constant (K):	1.271

CONDITIONS AND DEFINITIONS Caterpillar Methane Number represents the knock resistance of a gaseous fuel. It should be used with the Caterpillar Fuel Usage Guide for the engine and rating to determine the rating for the fuel specified. A Fuel Usage Guide for each rating is included on page 2 of its standard technical data sheet.

RPC always applies to naturally aspirated (NA) engines, and turbocharged (TA or LE) engines only when they are derated for altitude and ambient site conditions.

Project specific technical data sheets generated by the Caterpillar Gas Engine Rating Pro program take the Caterpillar Methane Number and RPC into account when generating a site rating.

Fuel properties for Btu/scf calculations are at 60F and 14.696 psia.

Caterpillar shall have no liability in law or equity, for damages, consequently or otherwise, arising from use of program and related material or any part thereof.

**FUEL LIQUIDS** Field gases, well head gases, and associated gases typically contain liquid water and heavy hydrocarbons entrained in the gas. To prevent detonation and severe damage to the engine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid separator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground in accordance with local codes and standards.

To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel operating temperature.



10497 Town & Country Way, Ste. 940 Houston, TX 77024 Office: 307.673.0883 | Direct: 307.675.5073 cparisi@emittechnologies.com

### Prepared For: Jose Parilli

WILLIAMS FIELD SERVICES

**QUOTE:** QUO-10943-S3Z0 **Expires:** December 14, 2013

# INFORMATION PROVIDED BY CATERPILLAR

Engine:	G3516B
Horsepower:	1343
RPM:	1400
Compression Ratio:	8.0
Exhaust Flow Rate:	8996 CFM
Exhaust Temperature:	1026 °F
Reference:	DM8800-07-001
Fuel:	Natural Gas
Annual Operating Hours:	8760

### **Uncontrolled Emissions**

	<u>g/bhp-hr</u>	<u>Lb/Hr</u>	Tons/Year
NOx:	0.50	1.48	6.48
CO:	3.08	9.12	39.94
THC:	3.97	11.75	51.48
NMHC	2.00	5.92	25.94
NMNEHC:	1.06	3.14	13.75
HCHO:	0.36	1.07	4.67
O2:	9.10 %		

# POST CATALYST EMISSIONS

	<u>g/bhp-hr</u>	<u>Lb/Hr</u>	Tons/Year
NOx:	Unaffected	by Oxidation (	Catalyst
CO:	<0.17	<0.50	<2.20
VOC:	<0.10	<0.30	<1.30
HCHO:	<0.09	<0.27	<1.17

# CONTROL EQUIPMENT

### **Catalyst Element**

Model:	RE-3050-H
Catalyst Type:	Oxidation, Premium Precious Group Metals
Substrate Type:	BRAZED
Manufacturer:	EMIT Technologies, Inc
Element Quantity:	2
Element Size:	Round 30.5" x 3.25"
Estimated Lead Time:	In Stock

The information in this quotation, and any files transmitted with it, is confidential and may be legally privileged. It is intended only for the use of individual(s) within the company named above. If you are the intended recipient, be aware that your use of any confidential or personal information may be restricted by state and federal privacy laws



### GAS ENGINE SITE SPECIFIC TECHNICAL DATA



GAS COMPRESSION APPLICATION

ENGINE SPEED (rpm): COMPRESSION RATIO: AFTERCOOLER TYPE: AFTERCOOLER WATER INLET (°F): JACKET WATER OUTLET (°F): ASPIRATION: COOLING SYSTEM: CONTROL SYSTEM: EXHAUST MANIFOLD: COMBUSTION: EXHAUST OXYGEN (% O2): SET POINT TIMING:

1800 8:1 SCAC 130 210 TA JW+OC, AC ADEM4 WC CATALYST SETTING 0.3 22

RATING STRATEGY: RATING LEVEL: FUEL SYSTEM:

STANDARD CONTINUOUS HPG IMPCO WITH AIR FUEL RATIO CONTROL

SITE CONDITIONS: FUEL: FUEL PRESSURE RANGE(psig): FUEL METHANE NUMBER: FUEL LHV (Btu/scf): ALTITUDE(ft): MAXIMUM INLET AIR TEMPERATURE(°F): STANDARD RATED POWER:

OVM Gas 12.0-24.9 38.7 1227 1000 77

203 bhp@1800rpm

			MAXIMUM	SITE RA	TING AT M	AXIMUM
DATINO	NOTEO		RATING			
	NOTES	LOAD	100%	100%	/5%	50%
ENGINE POWER (WITHOUT FAN)	(1)	bhp	202	202	152	101
INLET AIR TEMPERATURE		F	11	11	11	11
ENGINE DATA						
FUEL CONSUMPTION (LHV)	(2)	Btu/bhp-hr	8240	8240	8618	9467
FUEL CONSUMPTION (HHV)	(2)	Btu/bhp-hr	9070	9070	9486	10420
AIR FLOW (@inlet air temp, 14.7 psia) (WET)	(3)(4)	ft3/min	295	295	239	177
AIR FLOW (WET)	(3)(4)	lb/hr	1307	1307	1058	783
FUEL FLOW (60°F, 14.7 psia)		scfm	23	23	18	13
INLET MANIFOLD PRESSURE	(5)	in Hg(abs)	38.2	38.2	31.1	23.7
EXHAUST TEMPERATURE - ENGINE OUTLET	(6)	°F	1160	1160	1118	1048
EXHAUST GAS FLOW (@engine outlet temp, 14.5 (WET)	(7)(4)	ft3/min	990	990	778	550
	(=) ( ()		1007	1007		
EXHAUST GAS MASS FLOW (WEI)	(7)(4)	lb/hr	1387	1387	1121	830
EMISSIONS DATA - ENGINE OUT						
NOx (as NO2)	(8)(9)	g/bhp-hr	15.26	15.26	15.75	13.98
CO	(8)(9)	g/bhp-hr	15.26	15.26	15.76	13.98
THC (mol. wt. of 15.84)	(8)(9)	g/bhp-hr	0.87	0.87	0.91	1.24
NMHC (mol. wt. of 15.84)	(8)(9)	g/bhp-hr	0.44	0.44	0.46	0.63
NMNEHC (VOCs) (mol. wt. of 15.84)	(8)(9)(10)	g/bhp-hr	0.24	0.24	0.25	0.34
HCHO (Formaldehyde)	(8)(9)	g/bhp-hr	0.20	0.20	0.20	0.21
CO2	(8)(9)	g/bhp-hr	568	568	608	672
EXHAUST OXYGEN	(8)(11)	% DRY	0.3	0.3	0.3	0.3
HEAT REJECTION						
HEAT REJ. TO JACKET WATER (JW)	(12)	Btu/min	9110	9110	7602	6263
HEAT REJ. TO ATMOSPHERE	(12)	Btu/min	1112	1112	872	640
HEAT REJ. TO LUBE OIL (OC)	(12)	Btu/min	1359	1359	1134	934
HEAT REJ. TO AFTERCOOLER (AC)	(12)(13)	Btu/min	539	539	270	71
COOLING SYSTEM SIZING CRITERIA						
	(13)	Btu/min	11652			
	(13)	Btu/min	566			
A cooling system safety factor of 0% has been added to the cooling system sizing criteria	(13)(14)		000			
A cooling system salety lactor of 0 /0 has been added to the cooling system sizing chiefla.						

CONDITIONS AND DEFINITIONS Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Max. rating is the maximum capability for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

For notes information consult page three



# Engine Power vs. Inlet Air Temperature

Data represents temperature sweep at 1000 ft and 1800 rpm



# **Engine Power vs. Engine Speed**



# Engine Torque vs. Engine Speed

Data represents speed sweep at 1000 ft and 77 °F



Note: At site conditions of 1000 ft and 77°F inlet air temp., constant torque can be maintained down to 1200 rpm. The minimum speed for loading at these conditions is 1200 rpm.

# G3306B

GAS COMPRESSION APPLICATION

### GAS ENGINE SITE SPECIFIC TECHNICAL DATA

#### NOTES

1. Engine rating is with two engine driven water pumps. Tolerance is ± 3% of full load.

- 2. Fuel consumption tolerance is  $\pm$  5.0% of full load data.
- 3. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of  $\pm$  5 %.
- 4. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.
- 5. Inlet manifold pressure is a nominal value with a tolerance of  $\pm$  5 %.
- 6. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.
- 7. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of  $\pm$  6 %.
- 8. Emissions data is at engine exhaust flange prior to any after treatment.

9. Emission values are based on engine operating at steady state conditions. Fuel methane number cannot vary more than ± 3. Values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate "Not to Exceed" values. THC, NMHC, and NMNEHC do not include aldehydes. An oxidation catalyst may be required to meet Federal, State or local CO or HC requirements.

10. VOCs - Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ

11. Exhaust Oxygen tolerance is ± 0.2.

12. Heat rejection values are nominal. Tolerances, based on treated water, are ± 10% for jacket water circuit, ± 50% for radiation, ± 20% for lube oil circuit, and ± 5% for aftercooler circuit.

13. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.

14. Cooling system sizing criteria are maximum circuit heat rejection for the site, with applied tolerances.

Constituent	Abbrev	Mole %	Norm		
Water Vapor	H2O	0.0000	0.0000		
Methane	CH4	71.4260	71.4260	Fuel Makeup:	OVM Gas
Ethane	C2H6	17.0270	17.0270	Unit of Measure:	English
Propane	C3H8	6.8190	6.8190		
Isobutane	iso-C4H1O	0.7220	0.7220	Calculated Fuel Properties	
Norbutane	nor-C4H1O	1.9740	1.9740	Caternillar Methane Number:	38.7
Isopentane	iso-C5H12	0.3660	0.3660	Caterplilar Methane Number.	56.7
Norpentane	nor-C5H12	0.5030	0.5030		
Hexane	C6H14	0.2150	0.2150	Lower Heating Value (Btu/scf):	1227
Heptane	C7H16	0.1360	0.1360	Higher Heating Value (Btu/scf):	1351
Nitrogen	N2	0.4650	0.4650	WOBBE Index (Btu/scf):	1392
Carbon Dioxide	CO2	0.1880	0.1880		
Hydrogen Sulfide	H2S	0.0000	0.0000	THC: Free Inert Batio:	152 14
Carbon Monoxide	CO	0.0000	0.0000		0.65%
Hydrogen	H2	0.0000	0.0000		0.03%
Oxygen	O2	0.0000	0.0000	RPC (%) (10 905 Btu/scf Fuel):	100%
Helium	HE	0.0000	0.0000		
Neopentane	neo-C5H12	0.0000	0.0000	Compressibility Factor:	0.996
Octane	C8H18	0.1040	0.1040	Stoich A/F Ratio (Vol/Vol):	12.70
Nonane	C9H20	0.0550	0.0550	Stoich A/F Ratio (Mass/Mass)	16 35
Ethylene	C2H4	0.0000	0.0000	Specific Gravity (Relative to Air):	0 777
Propylene	C3H6	0.0000	0.0000	Specific Light Constant ///):	0.777
TOTAL (Volume %)		100.0000	100.0000	Specific real Constant (K):	1.271

CONDITIONS AND DEFINITIONS Caterpillar Methane Number represents the knock resistance of a gaseous fuel. It should be used with the Caterpillar Fuel Usage Guide for the engine and rating to determine the rating for the fuel specified. A Fuel Usage Guide for each rating is included on page 2 of its standard technical data sheet.

RPC always applies to naturally aspirated (NA) engines, and turbocharged (TA or LE) engines only when they are derated for altitude and ambient site conditions.

Project specific technical data sheets generated by the Caterpillar Gas Engine Rating Pro program take the Caterpillar Methane Number and RPC into account when generating a site rating.

Fuel properties for Btu/scf calculations are at 60F and 14.696 psia.

Caterpillar shall have no liability in law or equity, for damages, consequently or otherwise, arising from use of program and related material or any part thereof.

**FUEL LIQUIDS** Field gases, well head gases, and associated gases typically contain liquid water and heavy hydrocarbons entrained in the gas. To prevent detonation and severe damage to the engine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid separator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground in accordance with local codes and standards.

To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel operating temperature.



# **MIRATECH Emissions Control Equipment Specification Summary**

	Ргоро	sal Number:	JC-13-2686 Rev(2)
Engine Data			
Number of Engines:	1		
Application:	Gas Compression		
Engine Manufacturer:	Caterpillar		
Model Number:	G 3306 TA HCR		
Power Output:	203 bhp		
Lubrication Oil:	0.6 wt% sulfated ash or less		
Type of Fuel:	Natural Gas		
Exhaust Flow Rate:	970 acfm (cfm)		
Exhaust Temperature:	1,064°F		
System Details			
Housing Model Number:	VXC-1610-05-HSG		
Element Model Number:	VX-RE-10XC		
Number of Catalyst Layers:	1		
Number of Spare Catalyst Layers:	1		
System Pressure Loss:	4.0 inches of WC (Fresh)		
Sound Attenuation:	28-32 dBA insertion loss		
Exhaust Temperature Limits:	750 – 1250°F (catalyst inlet); 1350°F (catalyst outlet)		
NSCR Housing & Catalyst Details			
Model Number:	VXC-1610-05-XC1		
Material:	Carbon Steel		
Approximate Diameter:	16 inches		
Inlet Pipe Size & Connection:	5 inch FF Flange, 150# ANSI standard bolt pattern		
Outlet Pipe Size & Connection:	5 inch FF Flange, 150# ANSI standard bolt pattern		
Overall Length:	65 inches		
Weight Without Catalyst:	191 lbs		
Weight Including Catalyst:	205 lbs		
Instrumentation Ports:	1 inlet/1 outlet (1/2" NPT)		
Emission Requirements			
	Warrante	he	

			Warranted	
	Engine Outputs		Converter Outputs	Requested
Exhaust Gases	(g/ bhp-hr)	Reduction (%)	(g/ bhp-hr)	Emissions Targets
NOx	15.26	97%	0.50	0.50 g/bhp-hr
CO	15.26	87%	2.00	2.00 g/bhp-hr
NMNEHC	0.12	0%	0.70	0.70 g/bhp-hr
Oxygen	0.5%			

MIRATECH warrants the performance of the converter, as stated above, per the MIRATECH General Terms and Conditions of Sale.



# Williams Thermal Oxidizer Proposal



# FREDERICK LOGAN COMPANY, INC



Typical Regenerator, Contactor, and Thermal Oxidizer, provided by Frederick Logan Company, Inc.

**FREDERICK LOGAN COMPANY, INC. -** 140 COMMONWEALTH DR. - WARRENDALE, PA. 15086 Phone: 724-776-9300 Fax: 724-776-0355 E-mail: Info@FrederickLoganCo.com



September 26, 2013

Williams Park Place Corporate Center 2 2000 Commerce Drive Pittsburgh PA 15275

Attention: Mr. Tom Kunkel

Reference: Thermal Oxidizer for (2) 60 MMSCFD Dehydration Units

File: 10-0345-2

Dear Mr. Kunkel,

In reference to your request and subsequent discussions/emails, we are pleased to propose the following equipment for your application:

# **120 MMSCFD FLOW RATE DEHYDRATOR VAPOR OXIDIZER**

# **120 MMSCFD DEHYDRATOR OPERATING PARAMETERS**

Process Fluid	Natural Gas
Process Flow	120 MMSCFD
Operating Temperature	120°F
Operating Pressure	1000 PSIG
Specific Gravity	0.72
Glycol Pump:	Electric
Flash Gas Separator	40 PSIG Operating, 120°F
Electrical Service Available at Site	Unknown

Based upon the design conditions stated on the previous page, we are pleased to offer as follows:

## Scope of Supply

- Engineering and design of equipment
- Procurement, Fabrication, and assembly of equipment
- Inspection and testing of package at the factory
- Surface prep and painting of equipment.
- Packaging for shipment
- Manuals and supporting documentation

# **Exclusions**

- Anchoring hardware
- Field process hook ups
- Field electrical hook ups
- Third party inspections
- Post weld heat treatment
- Hydro-testing
- Start up or Commissioning (Available for additional charge)
- Heat tracing and insulating.

# Equipment Description

# ITEMQTYDESCRIPTION11This unit is designed

This unit is designed to handle the flows from two TEG reboiler systems. There are four waste stream inlets to the combustion chamber. Two for Flash Gas the others for Off Gas.

# 36" Dia. Combustion Chamber

- 36" x 20' Tall Exhaust Stack
- (2) Type K thermocouples with Thermowells
- > (2) 4" Flanged Sample Ports @ 90^o Orientation
- Combustion Chamber and Exhaust Stack Lined with 4" 2300 deg. Folded Blank Refractory Modules
- ➢ (1) Sight Glass
- Stack Material A-36 Carbon Steel
- Surface prep and paint:
  - Surface Prep SSPC SP-6 Commercial Blast
  - o Sherwin Williams Primer
  - Sherwin Williams Enamel
- > 3" RFSO 150# BTEX Gas inlet.
- > 1" RFSO 150# Flash Gas Inlet.
- > (4) Lifting lugs on skid, (2) Lifting lug mounted on top



### PRICE

stack section.

- Equipment is skid mounted. All conduit and wiring will be pre-installed on skid
- Area Electrical Classification Class 1, Div. 2

# 2 1 3.0 MMBTU/HR Burner

- Burner Tip Material Stainless Steel
- Direct Spark Ignition

## 3 1 Combustion Air Pressure Blower

- ▶ High Efficiency, 7.5 HP, Class 1 Div 2. Motor
- Inlet Guard
- > 1000 SCFM

### 4 1 Burner Control Panel

- NEMA 7/4X Main Enclosure.
- PLC AB MicroLogix
- Honeywell Flame Safety Controller
- Honeywell High Limit Controller
- ▶ NEMA 7/4X Enclosure for Ignition Transformer
- System shut down for the following events:
  - High Limit Temperature
  - Loss of Flame
  - Low/High Gas Pressure
  - Low Combustion Air Pressure
  - Logic to interface with re-boiler
  - > 7.5 HP VFD

### 5 4 Inlet/Vent Valves

- (2) 3" Butterfly Valves C/W:
  - Pneumatic Actuator, Spring Return N.O.
  - N.O. / N.C. Limit Switch
- ➤ (2) 3" Butterfly Valves C/W:
  - Pneumatic Actuator, Spring Return N.C.
  - $\circ$   $\,$  N.O. / N.C. Limit Switch
- > (2) 1" NPT Stainless Steel Ball valve C/W:
  - Pneumatic Actuator, Spring Return N.O.
  - N.O. / N.C. Limit Switch
- ➤ (2) 1" NPT Stainless Steel Ball valve C/W:
  - Pneumatic Actuator, Spring Return N.C.
  - N.O. / N.C. Limit Switch

# **Technical Summary**

# **Process inlet stream:**

	Inlet Temperature:	212.0°F
	Overhead Stream Flow:	10,480.0 SCFH
	Overhead Stream BTU	151 BTU/FT
	Flash Gas Stream Flow:	1,656 SCFH
	Flash Gas Stream BTU	1630 BTU/FT
	Combustion Chamber Temp:	1450 – 1600 deg F
	Residence Time:	≥0.75 Sec.
	Destruction Efficiency:	≥99.0%
	Max Design Loading:	4.78 MMBTU/HR
	Turn Down	10 : 1
	Combustion Chamber ID	28"
	Chamber Mass Flow	371,290 ACFH @ 1450°F
	Combustion Chamber Velocity	24.13 FT/SEC
	CO Emissions:	< 02  bs/MMBTU
	NOx Emissions	< 06  Lbs/MMBTU
Site Co	onditions:	
	Wind Spood	
	Soismic Zono	1
		1 1500 ft
		High
	Tomp	
	remp.	
Utilitie	s:	
	Gas Service Required for Pre-	1500 SCFH – Natural Gas @ Min. 20
	Heat	– 150 PSIG Max
	Gas Service Required at full load	500 SCFH – Natural Gas for Pilot
	Electrical Service Required	480 VAC, 3Ø, 60 Hz, 30 Amps
	Compressed Air if available or Clean dry fuel gas	80 – 120 PSIG Intermittent use to operate valves

# Supplement S3

# **Emission Program Data**

- GRI-GLYCalc Dehydrators (RSV-01 (5E, 6E) and RSV-02 (8E, 9E))
- ProMax Simulation Produced Water/Condensate Tanks (T01/13E and T02/21E)

GRI-GLYCalc VERSION 4.0 - SUMMARY OF I	NPUT VALUES	
Case Name: CCS-Class II-S3a-60.0 MMscf File Name: D:\Projects2\wfs\OVM\Conner Dehy-033018.ddf Date: April 04, 2018	d Dehy-033018 \\45CSR13#2\CCS-45CSR13-Mod-S3a-60.0 MMsc	fd
DESCRIPTION:		
Description: Wet Gas: 70 oF, 900 p Pump: Electric, 13.7 Flash Tank: 150.0 oF, Flash Tank/Still Vent	osig gpm 50 psig Controlled by 99% T-Ox	
Annual Hours of Operation: 8760	.0 hours/yr	
WET GAS:		
Temperature: 70.00 deg. F Pressure: 900.00 psig Wet Gas Water Conten	ut: Saturated	
Component	Conc. (vol %)	
Carbon Dioxide Nitrogen Methane Ethane Propane	0.1344 0.5769 74.8125 15.3479 5.8898	
Isobutane n-Butane Isopentane n-Pentane n-Hexane	0.5636 1.6326 0.2869 0.4155 0.1035	
Cyclohexane Other Hexanes Heptanes Methylcyclohexane 2,2,4-Trimethylpentane	0.0222 0.1200 0.0572 0.0140 0.0012	
Benzene Toluene Ethylbenzene C8+ Heavies	0.0016 0.0019 0.0001 0.0189	
DRY GAS:		
Flow Rate: Water Content:	60.0 MMSCF/day 7.0 lbs. H2O/MMSCF	
LEAN GLYCOL:		
Glycol Type: TE Water Content: Flow Rate:	G 1.5 wt% H2O 13.7 gpm	

Page: 1

Glycol Pump Type: Electric/Pneumatic

_____

Page: 2

FLASH TANK:

Flash Control: Combustion device Flash Control Efficiency: 99.00 % Temperature: 150.0 deg. F Pressure: 50.0 psig

REGENERATOR OVERHEADS CONTROL DEVICE:

Control Device: Combustion Device Destruction Efficiency: 99.0 % Excess Oxygen: 5.0 % Ambient Air Temperature: 50.0 deg. F GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: CCS-Class II-S3a-60.0 MMscfd Dehy-033018
File Name: D:\Projects2\wfs\OVM\Conner\45CSR13#2\CCS-45CSR13-Mod-S3a-60.0 MMscfd
Dehy-033018.ddf
Date: April 04, 2018

#### DESCRIPTION:

Description: Wet Gas: 70 oF, 900 psig Pump: Electric, 13.7 gpm Flash Tank: 150.0 oF, 50 psig Flash Tank/Still Vent Controlled by 99% T-Ox

Annual Hours of Operation: 8760.0 hours/yr

#### EMISSIONS REPORTS:

_____

#### CONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.0090	0.215	0.0393
Ethane	0.0314	0.753	0.1375
Propane	0.0456	1.094	0.1997
Isobutane	0.0101	0.242	0.0441
n-Butane	0.0456	1.096	0.1999
Isopentane	0.0101	0.243	0.0443
n-Pentane	0.0216	0.518	0.0945
n-Hexane	0.0129	0.309	0.0564
Cyclohexane	0.0189	0.453	0.0826
Other Hexanes	0.0101	0.244	0.0444
Heptanes	0.0184	0.441	0.0805
Methylcyclohexane	0.0147	0.353	0.0645
2,2,4-Trimethylpentane	0.0001	0.003	0.0006
Benzene	0.0139	0.335	0.0611
Toluene	0.0260	0.625	0.1141
Ethylbenzene	0.0019	0.046	0.0084
C8+ Heavies	0.0144	0.345	0.0630
Total Emissions	0.3048	7.315	1.3349
Total Hydrocarbon Emissions	0.3048	7.315	1.3349
Total VOC Emissions	0.2644	6.346	1.1582
Total HAP Emissions	0.0549	1.318	0.2406
Total BTEX Emissions	0.0419	1.006	0.1835

#### UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.8964	21.514	3.9264
Ethane	3.1394	75.345	13.7505
Propane	4.5591	109.418	19.9688
Isobutane	1.0077	24.184	4.4135
n-Butane	4.5646	109.551	19.9931
Isopentane	1.0108	24.258	4.4271
n-Pentane	2.1574	51.779	9.4496
n-Hexane	1.2882	30.918	5.6424

Page: 1

				Page: 2
	Cyclohexane	1.8856	45.255	8.2590
	Other Hexanes	1.0147	24.353	4.4443
	Heptanes	1.8390	44.137	8.0549
	Methylcyclohexane	1.4728	35.347	6.4508
	2,2,4-Trimethylpentane	0.0139	0.334	0.0610
	Benzene	1.3946	33.470	6.1084
	Toluene	2.6045	62.507	11.4076
	Ethylbenzene	0.1909	4.581	0.8360
	C8+ Heavies	1.4381	34.514	6.2989
	Total Emissions	30.4777	731.465	133.4923
Tota	l Hydrocarbon Emissions	30.4777	731.465	133.4923
	Total VOC Emissions	26.4419	634.605	115.8155
	Total HAP Emissions	5.4921	131.810	24.0554
	Total BTEX Emissions	4.1899	100.559	18.3519

#### FLASH GAS EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.1818	4.363	0.7962
Ethane	0 1895	4 547	0 8299
Propane	0 1396	3 350	0 6113
Tsobutane	0 0213	0 511	0 0932
n-Butane	0 0753	1 808	0 3300
ii Dacane	0.0755	1.000	0.0000
Isopentane	0.0150	0.361	0.0658
n-Pentane	0.0261	0.626	0.1143
n-Hexane	0.0090	0.216	0.0395
Cyclohexane	0.0032	0.078	0.0141
Other Hexanes	0.0092	0.221	0.0404
Heptanes	0.0065	0.157	0.0286
Methylcyclohexane	0.0020	0.049	0.0089
2,2,4-Trimethylpentane	0.0001	0.002	0.0004
Benzene	0.0004	0.009	0.0017
Toluene	0.0005	0.012	0.0021
Ethylbenzene	<0.0001	0.001	0.0001
C8+ Heavies	0.0007	0.018	0.0033
Total Emissions	0.6804	16.328	2.9799
Total Hydrocarbon Emissions	0.6804	16.328	2.9799
Total VOC Emissions	0.3091	7.418	1.3539
Total HAP Emissions	0.0100	0.240	0.0439
Total BTEX Emissions	0.0009	0.022	0.0039

#### FLASH TANK OFF GAS

lbs/hr	lbs/day	tons/yr
18.1787 18.9464 13.9564 2.1285 7.5346	436.288 454.713 334.953 51.083 180.830	79.6225 82.9850 61.1290 9.3226 33.0015
1.5033 2.6098 0.9020 0.3229 0.9214	36.080 62.634 21.648 7.750 22.115	6.5847 11.4307 3.9507 1.4144 4.0359
	lbs/hr 18.1787 18.9464 13.9564 2.1285 7.5346 1.5033 2.6098 0.9020 0.3229 0.9214	lbs/hr lbs/day 18.1787 436.288 18.9464 454.713 13.9564 334.953 2.1285 51.083 7.5346 180.830 1.5033 36.080 2.6098 62.634 0.9020 21.648 0.3229 7.750 0.9214 22 115

Page: 3

Heptanes         0.6534         15.           lethylcyclohexane         0.2038         4.           Trimethylpentane         0.0096         0.           Benzene         0.0389         0.           Toluene         0.0488         1.	6812.86178920.89272300.04199340.17041710.2137
Ethylbenzene 0.0021 0. C8+ Heavies 0.0747 1.	0520.00947930.3272
Total Emissions 68.0352 1632.	845 297.9942
carbon Emissions         68.0352         1632.           al VOC Emissions         30.9102         741.           al HAP Emissions         1.0014         24.           l BTEX Emissions         0.0898         2.	845297.9942844135.38660344.38611560.3935

#### COMBINED REGENERATOR VENT/FLASH GAS EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.1908	4.578	0.8355
Ethane	0.2209	5.301	0.9674
Propane	0.1852	4.444	0.8110
Isobutane	0.0314	0.753	0.1374
n-Butane	0.1210	2.904	0.5299
Isopentane	0.0251	0.603	0.1101
n-Pentane	0.0477	1.144	0.2088
n-Hexane	0.0219	0.526	0.0959
Cyclohexane	0.0221	0.530	0.0967
Other Hexanes	0.0194	0.465	0.0848
Heptanes	0.0249	0.598	0.1092
Methylcyclohexane	0.0168	0.402	0.0734
2,2,4-Trimethylpentane	0.0002	0.006	0.0010
Benzene	0.0143	0.344	0.0628
Toluene	0.0265	0.637	0.1162
Ethylbenzene	0.0019	0.046	0.0085
C8+ Heavies	0.0151	0.363	0.0663
Total Emissions	0.9851	23.643	4.3149
Total Hydrocarbon Emissions	0.9851	23.643	4.3149
Total VOC Emissions	0.5735	13.764	2.5120
Total HAP Emissions	0.0649	1.558	0.2844
Total BTEX Emissions	0.0428	1.027	0.1875

# COMBINED REGENERATOR VENT/FLASH GAS EMISSION CONTROL REPORT:

Component	Uncontrolled tons/yr	Controlled tons/yr	% Reduction
Methane	83.5489	0.8355	99.00
Ethane	96.7355	0.9674	99.00
Propane	81.0978	0.8110	99.00
Isobutane	13.7361	0.1374	99.00
n-Butane	52.9946	0.5299	99.00
Isopentane	11.0118	0.1101	99.00
n-Pentane	20.8803	0.2088	99.00
n-Hexane	9.5932	0.0959	99.00
Cyclohexane	9.6734	0.0967	99.00

				Page: 4
Othe	er Hexanes	8.4802	0.0848	99.00
	Heptanes	10.9167	0.1092	99.00
Methylcy	clohexane	7.3435	0.0734	99.00
2,2,4-Trimeth	ylpentane	0.1029	0.0010	99.00
	Benzene	6.2788	0.0628	99.00
	Toluene	11.6213	0.1162	99.00
Etl C8	nylbenzene 3+ Heavies	0.8454 6.6261	0.0085 0.0663	99.00 99.00
Total	Emissions	431.4865	4.3149	99.00
Total Hydrocarbon Total VOC Total HAP Total BTEX	Emissions Emissions Emissions Emissions	431.4865 251.2021 28.4415 18.7455	4.3149 2.5120 0.2844 0.1875	99.00 99.00 99.00 99.00

EQUIPMENT REPORTS:

______

COMBUSTION DEVICE _____ Ambient Temperature:50.00 deg. FExcess Oxygen:5.00 %Combustion Efficiency:99.00 % Supplemental Fuel Requirement: 1.53e-001 MM BTU/hr Emitted Destroyed Component 
 Methane
 1.00%

 Ethane
 1.00%

 Propane
 1.00%
 99.00% 99.00% 99.00% Isobutane 1.00% 99.00% n-Butane 1.00% 99.00% Isopentane 1.00% 99.00% 
 1.00%
 99.00%

 1.00%
 99.00%

 1.00%
 99.00%

 1.00%
 99.00%

 1.00%
 99.00%
 n-Pentane n-Hexane Cyclohexane Other Hexanes Heptanes1.00%99.00%Methylcyclohexane1.00%99.00%2,2,4-Trimethylpentane1.00%99.00%Benzene1.00%99.00% Toluene 1.00% 99.00% 99.00% Ethylbenzene 1.00% C8+ Heavies 1.00% 99.00%

#### ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages: 1.25 Calculated Dry Gas Dew Point: 0.92 lbs. H2O/MMSCF

Page: 5

Temperature: 70.0 deg. F Pressure: 900.0 psig Dry Gas Flow Rate: 60.0000 MMSCF/day Glycol Losses with Dry Gas: 0.4333 lb/hr Wet Gas Water Content: Saturated Calculated Wet Gas Water Content: 25.33 lbs. H2O/MMSCF Calculated Lean Glycol Recirc. Ratio: 13.46 gal/lb H2O

Component	Remaining in Dry Gas	Absorbed in Glycol
Water	3.62%	96.38%
Carbon Dioxide	99.63%	0.37%
Nitrogen	99.97%	0.03%
Methane	99.98%	0.02%
Ethane	99.93%	0.07%
Propane	99.89%	0.11%
Isobutane	99.85%	0.15%
n-Butane	99.81%	0.19%
Isopentane	99.82%	0.18%
n-Pentane	99.76%	0.24%
n-Hexane	99.63%	0.37%
Cyclohexane	98.21%	1.79%
Other Hexanes	99.72%	0.28%
Heptanes	99.34%	0.66%
Methylcyclohexane	98.15%	1.85%
2,2,4-Trimethylpentane	99.74%	0.26%
Benzene	82.60%	17.40%
Toluene	77.01%	22.99%
Ethylbenzene	72.42%	27.58%
C8+ Heavies	99.29%	0.71%

FLASH TANK

_____ Flash Control: Combustion device Flash Control Efficiency: 99.00 % Flash Temperature: 150.0 deg. F Flash Pressure: 50.0 psig Left in Removed in Component Glycol Flash Gas Water99.92%0.08%Carbon Dioxide33.02%66.98%Nitrogen4.61%95.39%Methane4.70%95.30%Ethane14.21%85.79% Propane24.62%75.38%Isobutane32.13%67.87%n-Butane37.73%62.27%Isopentane40.50%59.50%n-Pentane45.53%54.47% n-Hexane59.02%40.98%Cyclohexane85.85%14.15%Other Hexanes52.88%47.12%Heptanes73.92%26.08%Methylcyclohexane88.33%11.67% 2,2,4-Trimethylpentane 59.89% 40.11% Benzene 97.42% 2.58% Toluene 98.31% 1.69% Ethylbenzene 99.00% 1.00%
### REGENERATOR

_____

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	Distilled Overhead
Water	65.49%	34.51%
Carbon Dioxide	0.00%	100.00%
Nitrogen	0.00%	100.00%
Methane	0.00%	100.00%
Ethane	0.00%	100.00%
Propane	0.00%	100.00%
Isobutane	0.00%	100.00%
n-Butane	0.00%	100.00%
Isopentane	1.23%	98.77%
n-Pentane	1.10%	98.90%
n-Hexane	0.85%	99.15%
Cyclohexane	3.73%	96.27%
Other Hexanes	1.89%	98.11%
Heptanes	0.68%	99.32%
Methylcyclohexane	4.53%	95.47%
2,2,4-Trimethylpentane	2.50%	97.50%
Benzene	5.13%	94.87%
Toluene	8.04%	91.96%
Ethylbenzene	10.51%	89.49%
C8+ Heavies	12.56%	87.44%

STREAM REPORTS:

WET GAS STREAM

Temperature: Pressure: Flow Rate:	70.00 deg. F 914.70 psia 2.50e+006 scfh		
	Component	Conc. (vol%)	Loading (lb/hr)
	Water	5.34e-002	6.34e+001
	Carbon Dioxide	1.34e-001	3.90e+002
	Nitrogen	5.77e-001	1.07e+003
	Methane	7.48e+001	7.91e+004
	Ethane	1.53e+001	3.04e+004
	Propane	5.89e+000	1.71e+004
	Isobutane	5.63e-001	2.16e+003
	n-Butane	1.63e+000	6.25e+003
	Isopentane	2.87e-001	1.36e+003
	n-Pentane	4.15e-001	1.98e+003
	n-Hexane	1.03e-001	5.88e+002
	Cyclohexane	2.22e-002	1.23e+002
	Other Hexanes	1.20e-001	6.82e+002
	Heptanes	5.72e-002	3.78e+002
	Methylcyclohexane	1.40e-002	9.06e+001

-

2,2,4-Trimethylpentane 1.20e-003 9.04e+000 Benzene 1.60e-003 8.24e+000 Toluene 1.90e-003 1.15e+001 Ethylbenzene 9.99e-005 7.00e-001 C8+ Heavies 1.89e-002 2.12e+002 Total Components 100.00 1.42e+005

DRY GAS STREAM

Temperature: Pressure: 91 Flow Rate: 2.500	70.00 deg. F 14.70 psia e+006 scfh			
Comj	ponent	Conc. (vol%)	Loading (lb/hr)	
(	Water Carbon Dioxide Nitrogen Methane Ethane	1.93e-003 1.34e-001 5.77e-001 7.48e+001 1.53e+001	2.30e+000 3.88e+002 1.06e+003 7.91e+004 3.04e+004	
	Propane Isobutane n-Butane Isopentane n-Pentane	5.89e+000 5.63e-001 1.63e+000 2.86e-001 4.15e-001	1.71e+004 2.16e+003 6.24e+003 1.36e+003 1.97e+003	
Metl	n-Hexane Cyclohexane Other Hexanes Heptanes nylcyclohexane	1.03e-001 2.18e-002 1.20e-001 5.68e-002 1.37e-002	5.86e+002 1.21e+002 6.80e+002 3.75e+002 8.89e+001	
2,2,4-Tr:	imethylpentane Benzene Toluene Ethylbenzene C8+ Heavies	1.20e-003 1.32e-003 1.46e-003 7.24e-005 1.88e-002	9.01e+000 6.80e+000 8.89e+000 5.07e-001 2.11e+002	
Tot	tal Components	100.00	1.42e+005	

LEAN GLYCOL STREAM

Temperature: Flow Rate:	70.00 deg. F 1.37e+001 gpm		
	Component	Conc. (wt%)	Loading (lb/hr)
	TEG	9.85e+001	7.60e+003
	Water	1.50e+000	1.16e+002
	Carbon Dioxide	1.89e-012	1.46e-010
	Nitrogen	4.01e-013	3.09e-011
	Methane	8.31e-018	6.41e-016
	Ethane	1.35e-007	1.04e-005
	Propane	9.77e-009	7.53e-007
	Isobutane	1.22e-009	9.41e-008
	n-Butane	3.89e-009	3.00e-007
	Isopentane	1.64e-004	1.26e-002
	n-Pentane	3.11e-004	2.40e-002
	n-Hexane	1.43e-004	1.10e-002

Page: 8 Cyclohexane 9.46e-004 7.30e-002 Other Hexanes 2.54e-004 1.96e-002 Heptanes 1.62e-004 1.25e-002 Methylcyclohexane 9.06e-004 6.98e-002 2,2,4-Trimethylpentane 4.64e-006 3.58e-004 Benzene 9.78e-004 7.54e-002 Toluene 2.95e-003 2.28e-001 Ethylbenzene 2.91e-004 2.24e-002 C8+ Heavies 2.68e-003 2.07e-001 ----- ----- ------Total Components 100.00 7.71e+003 RICH GLYCOL STREAM Temperature: 70.00 deg. F Pressure: 914.70 psia Flow Rate: 1.40e+001 gpm NOTE: Stream has more than one phase. Conc. Loading (wt%) (lb/hr) Component (lb/hr) _____ TEG 9.65e+001 7.60e+003 Water 2.25e+000 1.77e+002 Carbon Dioxide 1.85e-002 1.46e+000 Nitrogen 3.94e-003 3.10e-001 Methane 2.42e-001 1.91e+001 Ethane 2.81e-001 2.21e+001 Propane 2.35e-001 1.85e+001 Isobutane 3.98e-002 3.14e+000 n-Butane 1.54e-001 1.21e+001 Isopentane 3.21e-002 2.53e+000 n-Pentane 6.09e-002 4.79e+000 n-Hexane 2.80e-002 2.20e+000 Cyclohexane 2.90e-002 2.28e+000 Other Hexanes 2.48e-002 1.96e+000 Heptanes 3.18e-002 2.50e+000 Methylcyclohexane 2.22e-002 1.75e+000 2,2,4-Trimethylpentane 3.03e-004 2.39e-002 Benzene 1.92e-002 1.51e+000 Toluene 3.66e-002 2.88e+000 Ethylbenzene 2.74e-003 2.15e-001 C8+ Heavies 2.18e-002 1.72e+000 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ----- ----- ------Total Components 100.00 7.87e+003 FLASH TANK OFF GAS STREAM Temperature: 150.00 deg. F Pressure: 64.70 psia

Flow Rate: 9.03e+002 scfh Component Conc. Loading (vol%) (lb/hr) Water 3.19e-001 1.37e-001 Carbon Dioxide 9.32e-001 9.75e-001 Nitrogen 4.44e-001 2.96e-001 Methane 4.76e+001 1.82e+001 Ethane 2.65e+001 1.89e+001 Propane 1.33e+001 1.40e+001 Isobutane 1.54e+000 2.13e+000 n-Butane 5.45e+000 7.53e+000 Isopentane 8.76e-001 1.50e+000 n-Pentane 1.52e+000 2.61e+000 n-Pentane 4.40e-001 9.02e-001 Cyclohexane 1.61e-001 3.23e-001 Other Hexanes 4.50e-001 9.21e-001 Heptanes 2.74e-001 6.53e-001 Methylcyclohexane 8.73e-002 2.04e-001 2,2,4-Trimethylpentane 3.52e-003 9.57e-003 Benzene 2.09e-002 3.89e-002 Toluene 2.23e-002 4.88e-002 Ethylbenzene 8.51e-004 2.15e-003 C8+ Heavies 1.84e-002 7.47e-002 Total Components 100.00 6.94e+001

FLASH TANK GLYCOL STREAM

Temperature: 150.00 deg. F Flow Rate: 1.39e+001 gpm		
Component	Conc. (wt%)	Loading (lb/hr)
TEG Water Carbon Dioxide Nitrogen Methane	9.73e+001 2.26e+000 6.16e-003 1.83e-004 1.15e-002	7.60e+003 1.77e+002 4.81e-001 1.43e-002 8.96e-001
Ethane Propane Isobutane n-Butane Isopentane	4.02e-002 5.84e-002 1.29e-002 5.85e-002 1.31e-002	3.14e+000 4.56e+000 1.01e+000 4.56e+000 1.02e+000
n-Pentane n-Hexane Cyclohexane Other Hexanes Heptanes	2.80e-002 1.66e-002 2.51e-002 1.33e-002 2.37e-002	2.18e+000 1.30e+000 1.96e+000 1.03e+000 1.85e+000
Methylcyclohexane 2,2,4-Trimethylpentane Benzene Toluene Ethylbenzene	1.98e-002 1.83e-004 1.88e-002 3.63e-002 2.73e-003	1.54e+000 1.43e-002 1.47e+000 2.83e+000 2.13e-001
C8+ Heavies	2.11e-002	1.64e+000
Total Components	100.00	7.80e+003
FLASH GAS EMISSIONS		
Flow Rate: 4.29e+003 scfh Control Method: Combustion Dev Control Efficiency: 99.00	vice	
Component	Conc. (vol%)	Loading (lb/hr)

```
Page: 10
```

Water 6.00e+001 1.22e+002 Carbon Dioxide 3.97e+001 1.98e+002 Nitrogen 9.34e-002 2.96e-001 Methane 1.00e-001 1.82e-001 Ethane 5.57e-002 1.89e-001 Propane 2.80e-002 1.40e-001 Isobutane 3.24e-003 2.13e-002 n-Butane 1.15e-002 7.53e-002 Isopentane 1.84e-003 1.50e-002 n-Pentane 3.20e-003 2.61e-002 n-Hexane 9.25e-004 9.02e-003 Cyclohexane 3.39e-004 3.23e-003 Other Hexanes 9.45e-004 9.21e-003 Heptanes 5.76e-004 6.53e-003 Methylcyclohexane 1.84e-004 2.04e-003 2,2,4-Trimethylpentane 7.41e-006 9.57e-005 Benzene 4.40e-005 3.89e-004 Toluene 4.68e-005 4.88e-004 Ethylbenzene 1.79e-006 2.15e-005 C8+ Heavies 3.88e-005 7.47e-004 ----- -----Total Components 100.00 3.21e+002

REGENERATOR OVERHEADS STREAM

_____ Temperature: 212.00 deg. F Pressure: 14.70 psia Flow Rate: 1.49e+003 scfh Conc. Loading Component (vol%) (lb/hr) Water 8.59e+001 6.10e+001 Carbon Dioxide 2.77e-001 4.81e-001 Nitrogen 1.30e-002 1.43e-002 Methane 1.42e+000 8.96e-001 Ethane 2.65e+000 3.14e+000 Propane 2.62e+000 4.56e+000 Isobutane 4.40e-001 1.01e+000 n-Butane 1.99e+000 4.56e+000 Isopentane 3.56e-001 1.01e+000 n-Pentane 7.59e-001 2.16e+000 n-Hexane 3.79e-001 1.29e+000 Cvclohexane 5.69e-001 1.89e+000 Other Hexanes 2.99e-001 1.01e+000 Heptanes 4.66e-001 1.84e+000 Methylcyclohexane 3.81e-001 1.47e+000 2,2,4-Trimethylpentane 3.10e-003 1.39e-002 Benzene 4.53e-001 1.39e+000 Toluene 7.18e-001 2.60e+000 Ethylbenzene 4.56e-002 1.91e-001 C8+ Heavies 2.14e-001 1.44e+000 _____ ____ Total Components 100.00 9.19e+001

### COMBUSTION DEVICE OFF GAS STREAM

Temperature: 1000.00 deg. F Pressure: 14.70 psia Flow Rate: 2.06e+000 scfh

Component	Conc. (vol%)	Loading (lb/hr)
Methane	1.03e+001	8.96e-003
Ethane	1.92e+001	3.14e-002
Propane	1.91e+001	4.56e-002
Isobutane	3.20e+000	1.01e-002
n-Butane	1.45e+001	4.56e-002
Isopentane	2.58e+000	1.01e-002
n-Pentane	5.51e+000	2.16e-002
n-Hexane	2.76e+000	1.29e-002
Cyclohexane	4.13e+000	1.89e-002
Other Hexanes	2.17e+000	1.01e-002
Heptanes	3.38e+000	1.84e-002
Methylcyclohexane	2.77e+000	1.47e-002
2,2,4-Trimethylpentane	2.25e-002	1.39e-004
Benzene	3.29e+000	1.39e-002
Toluene	5.21e+000	2.60e-002
Ethylbenzene C8+ Heavies Total Components	3.31e-001 1.56e+000 	1.91e-003 1.44e-002  3.05e-001
±		

Conner Produced Water Tank ProMax Summary

Produced Liquids					
Temperature	°F	111.92			
Pressure	psig	0.60			
Std Liquid Volumetric Flow	bbl/d	2.81			

Emissions to Atmosphere			
Component	tons/year		
Nitrogen	0.0001		
Carbon Dioxide	0.0009		
Methane	0.0105		
Ethane	0.0230		
Propane	0.0262		
Isobutane	0.0017		
n-Butane	0.0080		
Propane, 2,2-Dimethyl-	0.0000		
Isopentane	0.0008		
n-Pentane	0.0008		
2-2-Dimethylbutane	0.0000		
2-3-Dimethylbutane	0.0000		
2-Methylpentane	0.0000		
3-Methylpentane	0.0001		
n-Hexane	0.0000		
Methylcyclopentane	0.0000		
Benzene	0.0000		
Cyclohexane	0.0000		
2-Methylhexane	0.0000		
3-Methylhexane	0.0000		
n-Heptane	0.0000		
Methylcyclohexane	0.0000		
Toluene	0.0000		
n-Octane	0.0000		
Ethylbenzene	0.0000		
o-Xylene	0.0000		
n-Nonane	0.0000		
n-Decane	0.0000		
Undecane	0.0000		
Water	0.003898961		

# Supplement S4 AP-42 / EPA Emission Factors

- AP-42 Combustion Emission Factor Summary
- EPA Protocol for Equipment Leak Emission Estimates

#### Potentially Applicable AP-42 and GHG EMISSION FACTORS (Preferentially use test data or vendor data where available)

			GAS-FIRED ENGINES		GAS-FIRED TURBINES		;	
Bollutant		<u>AP-42</u>	Table 3.2-1; 3.2-2; 3.2-3	- <u>2; 3.2-3 07/00</u>		AP-42 Table 3.1-1; 3.1-2a; 3.1-3 04/00		
	Foliutant	2SLB	4SLB	4SRB	Uncontrolled	Water Injection	Lean Pre-Mix#	
		lb/MMBtu	lb/MMBtu	lb/MMBtu	lb/MMBtu	lb/MMBtu	lb/MMBtu	
	NOX (≥ 90% Load)	3.17E+00	4.08E+00	2.21E+00	3.23E-01	1.28E-01	9.91E-02	
RIA	CO (≥ 90% Load)	3.86E-01	3.17E-01	3.72E+00	8.23E-02	2.95E-02	1.51E-02	
ITE	VOC	1.20E-01	1.18E-01	2.96E-02	2.10E-03	2.10E-03	2.10E-03	
CR	PM10/2.5 (Total)	4.83E-02	9.99E-03	1.94E-02	6.63E-03	6.63E-03	6.63E-03	
	SO2	5.88E-04	5.88E-04	5.88E-04	3.40E-03	3.40E-03	3.40E-03	
	Acetaldehyde	7.76E-03	8.36E-03	2.79E-03	4.00E-05	4.00E-05	4.00E-05	
	Acrolein	7.78E-03	5.14E-03	2.63E-03	6.40E-06	6.40E-06	6.40E-06	
	Benzene	1.94E-03	4.40E-04	1.58E-03	1.20E-05	1.20E-05	9.10E-07	
	Butadiene, 1,3-	8.20E-04	2.67E-04	6.63E-04	4.30E-07	4.30E-07	4.30E-07	
	Ethylbenzene	1.08E-04	3.97E-05	2.48E-05	3.20E-05	3.20E-05	3.20E-05	
	Formaldehyde (HCHO)	5.52E-02	5.28E-02	2.05E-02	7.10E-04	7.10E-04	2.00E-05	
Ps	n-Hexane	4.45E-04	1.11E-03					
ΗA	Methanol (MeOH)	2.48E-03	2.50E-03	3.06E-03				
	Polycyclic Organic Matter (POM/PAH)	1.34E-04	3.47E-04	9.71E-05	3.25E-05	3.25E-05	3.25E-05	
	Toluene	9.63E-04	4.08E-04	5.58E-04	1.30E-04	1.30E-04	1.30E-04	
	Trimethylpentane, 2,2,4- (i-Octane)	8.46E-04	2.50E-04					
	Xylenes	2.68E-04	1.84E-04	1.95E-04	6.40E-05	6.40E-05	6.40E-05	
	Other/Trace HAP*	6.57E-04	3.21E-04	1.79E-04	2.90E-05	2.90E-05	2.90E-05	
	TOTAL HAP	7.94E-02	7.22E-02	3.23E-02	1.06E-03	1.06E-03	3.55E-04	
	CO2 (GWP=1)	1.10E+02	1.10E+02	1.10E+02	1.10E+02	1.10E+02	1.10E+02	
φ	CH4 (GWP=25)	1.45E+00	1.25E+00	2.30E-01	8.64E-03	8.64E-03	8.64E-03	
ц С	N2O (GWP=298) (40CFR98)	2.20E-04	2.20E-04	2.20E-04	3.00E-03	3.00E-03	3.00E-03	
	CO2e (40CFR98)	1.46E+02	1.41E+02	1.16E+02	1.11E+02	1.11E+02	1.11E+02	

	(#Lean Pre-Mix - aka: Dry Low Emissions (DLE or DLN) or SoLoNOx)						
GAS-FIRED EXTERNAL COMBUSTION					FLARE	DIESEL ENGINES	DIESEL ENGINES
	Pollutant	AP-42 Table 1.4-1; 1.4-2; 1.4-3 (<100 MMBtu/hr) 07/98		<u>13.5-1 06/17</u>	<u>3.3-1; 3.3-2 10/96</u>	<u> Tier 4 ≥ 751 bhp</u>	
	ronutant	Uncontrolled	LoNOx Burners	Flue Gas Recirc	Combustion	Uncontrolled	Controlled
		lb/MMBtu	lb/MMBtu	lb/MMBtu	lb/MMBtu	lb/MMBtu	lb/MMBtu
	NOX (≥ 90% Load)	9.80E-02	4.90E-02	3.14E-02	External Comb.	4.41E+00	4.18E+00
۶IA	CO (≥ 90% Load)	8.24E-02	8.24E-02	8.24E-02	3.10E-01	9.50E-01	2.35E+00
ΞL	VOC	5.39E-03	5.39E-03	5.39E-03	98% Control	3.53E-01	1.28E-01
CR	PM10/2.5 (Total)	7.45E-03	7.45E-03	7.45E-03	External Comb.	3.10E-01	1.35E-01
	SO2	5.88E-04	5.88E-04	5.88E-04	External Comb.	2.90E-01	2.90E-01
	Acetaldehyde					7.67E-04	2.77E-04
	Acrolein					9.25E-05	3.35E-05
	Benzene	2.06E-06	2.06E-06	2.06E-06		9.33E-04	3.38E-04
	Butadiene, 1,3-			3.91E-05	1.41E-05		
	Ethylbenzene						
	Formaldehyde (HCHO)	7.35E-05	7.35E-05	7.35E-05		1.18E-03	4.27E-04
R	n-Hexane	1.76E-03	1.76E-03	1.76E-03			
ΗA	Methanol (MeOH)				Use		
	Polycyclic Organic Matter (POM/PAH)	6.85E-07	6.85E-07	6.85E-07	External	1.68E-04	6.08E-05
	Toluene	3.33E-06	3.33E-06	3.33E-06	or 98% Control.	4.09E-04	1.48E-04
	Trimethylpentane, 2,2,4- (i-Octane)				As Appropriate		
	Xylenes					2.85E-04	1.03E-04
	Other/Trace HAP*	1.18E-06	1.18E-06	1.18E-06			
	TOTAL HAP	1.85E-03	1.85E-03	1.85E-03		3.87E-03	1.40E-03
	CO2 (GWP=1)	1.18E+02	1.18E+02	1.18E+02		1.64E+02	1.64E+02
φ	CH4 (GWP=25)	2.25E-03	2.25E-03	2.25E-03		6.61E-03	6.61E-03
ų G	N2O (GWP=298) (40CFR98)	2.16E-03	6.27E-04	6.27E-04		1.32E-03	1.32E-03
	CO2e (40CFR98)	1.18E+02	1.18E+02	1.18E+02		1.65E+02	1.65E+02

40 CFR 98 - DEFAULT EMISSION FACTORS						
	Table C-1 to Subpart C of Part 98		Table C-2 to Sub	Weighted Sum		
Fuel Type		Carbon Dioxide	Methane	Nitrous Oxide	CO2e	
		lb CO2/MMBtu	lb CH4/MMBtu	lb N2O/MMBtu	lb CO2e/MMBtu	
Fuel Oil No. 2 (Diesel)	138,000 Btu/gal	1.63E+02	6.61E-03	1.32E-03	1.64E+02	
Propane	91,000 Btu/gal	1.39E+02	6.61E-03	1.32E-03	1.39E+02	
Natural Gas	1,026 Btu/scf	1.17E+02	2.20E-03	2.20E-04	1.17E+02	

*Other/Trace HAPs include: CarbonTetrachloride, Chlorobenzene, Chloroform, Dichloropropene, 1,3-Dichloropropene, Ethylene Dibromide, Methylene Chloride, Phenol, Propylene Oxide, Styrene, 1,1,2,2-Tetrachloroethane, 1,1,2-Trichloroethane, and Vinyl Chloride (as per AP-42).

Global Warming Potential (100 Yr) (GWP)					
Table A-1 to Subpart A of Part 98					
CO2	N2O				
1	25	298			

Reviewed and Revised: 02/28/18 - CAR

 United States
 Office of Air Quality

 Environmental Protection
 Planning and Standards

 Agency
 Research Triangle Park NC 27711

Air

## EPA Protocol for Equipment Leak Emission Estimates

TABLE 2-4. OIL AND GAS PRODUCTION OPERATIONS AVERAGE EMISSION FACTORS (kg/hr/source)

Equipment Type	Service ^a	Emission Factor (kg/hr/source) ^b
Valves	Gas Heavy Oil Light Oil Water/Oil	4.5E-03 8.4E-06 2.5E-03 9.8E-05
Pump seals	Gas Heavy Oil Light Oil Water/Oil	2.4E-03 NA 1.3E-02 2.4E-05
Others ^C	Gas Heavy Oil Light Oil Water/Oil	8.8E-03 3.2E-05 7.5E-03 1.4E-02
Connectors	Gas Heavy Oil Light Oil Water/Oil	2.0E-04 7.5E-06 2.1E-04 1.1E-04
Flanges	Gas Heavy Oil Light Oil Water/Oil	3.9E-04 3.9E-07 1.1E-04 2.9E-06
Open-ended lines	Gas Heavy Oil Light Oil Water/Oil	2.0E-03 1.4E-04 1.4E-03 2.5E-04

^aWater/Oil emission factors apply to water streams in oil service with a water content greater than 50%, from the point of origin to the point where the water content reaches 99%. For water streams with a water content greater than 99%, the emission rate is considered negligible.

^bThese factors are for total organic compound emission rates (including non-VOC's such as methane and ethane) and apply to light crude, heavy crude, gas plant, gas production, and off shore facilities. "NA" indicates that not enough data were available to develop the indicated emission factor. ^CThe "other" equipment type was derived from compressors,

diaphrams, drains, dump arms, hatches, instruments, meters, pressure relief valves, polished rods, relief valves, and vents. This "other" equipment type should be applied for any equipment type other than connectors, flanges, open-ended lines, pumps, or valves. Include a check payable to WVDEP – Division of Air Quality.

- As per WV Rule 22 (45CSR22), a **Minimum fee of \$1,000** must be submitted for each 45CSR13 permit application filed with the WVDEP-DAQ.
- Additional Charges may apply, depending on the nature of the application as outlined in Section 3.4.b. of Regulation 22, and shown below:
  - NSPS Requirements: \$1,000 <u>Not Applicable</u>
  - NESHAP Requirements: \$2,500 <u>Not Applicable</u>
  - New Major Source: \$10,000 <u>Not Applicable</u>
  - Major Modifications: \$5,000 <u>Not Applicable</u>.
- Total application fee is \$1,000.
   [= \$1,000 Minimum Fee + \$0 Add'l Charges]

** End of Application for 45CSR13 NSR Permit Modification **