

SWN Production Company, LLC P O Box 12359 Spring, Texas 77391-2359 www.swn.com

RUTH KELLER

G70-D REGISTRATION APPLICATION

I	CM	4/17/2017	G70-D REGISTRATION		
2	CM	8/14/2017	REM: Kubota Engine ADD: GM Vortec Engine	AL	8/14/2017
REV	BY	DATE	DESCRIPTION	FACILITIES	DATE
				REVIEWED	
					1

TABLE OF CONTENTS

TABLE OF CONTEN	TSi
INTRODUCTION	
Proposed Emissi	ons1
Regulatory Discu	ussion1
APPLICATION FOR	GENERAL PERMIT REGISTRATION
ATTACHMENT C:	BUSINESS REGISTRATION CERTIFICATE7
ATTACHMENT D:	PROCESS DESCRIPTION9
ATTACHMENT H:	G70-D SECTION APPLICABILITY FORM10
ATTACHMENT I:	EMISSIONS UNITS/ERD TABLE12
ATTACHMENT N:	INTERNAL COMBUSTION ENGINE DATA SHEETS14
ATTACHMENT T:	EMISSIONS CALCULATIONS
ATTACHMENT U:	FACILITY-WIDE EMISSION SUMMARY SHEETS
ATTACHMENT V:	LEGAL ADVERTISEMENT

INTRODUCTION

SWN Production Company, LLC (SWN), submits this G70-D General Permit modification application for the Ruth Keller Pad, a natural gas production facility in Marshall County currently operating under Permit No. G70-D259, issued on July 6, 2017. With this application, SWN requests authorization to replace the permitted certified Zenith ZPP-644 4.4 L compressor engine with an uncertified GM Vortec 5.7L NA compressor engine. All other emissions remain the same and are not addressed in this application.

Proposed Emissions

Emissions calculations for the facility are presented in Attachment T.

Emissions from the GM engine were calculated with manufacturer data when available and AP-42/EPA emissions factors for the remaining pollutants.

Greenhouse gas emissions were calculated with the latest EPA factors and manufacturer data when available. Documents used as references for the emissions calculations, including AP-42 and EPA emission factor references, gas and liquids analyses, and process simulation results are attached.

Regulatory Discussion

<u>STATE</u>

45 CSR 13 - PERMITS FOR CONSTRUCTION, MODIFICATION, RELOCATION AND OPERATION OF STATIONARY SOURCES OF AIR POLLUTANTS, NOTIFICATION REQUIREMENTS, ADMINISTRATIVE UPDATES, TEMPORARY PERMITS, GENERAL PERMITS, AND PROCEDURES FOR EVALUATION:

The facility requests to operate under the General Permit G70-D. Emissions of carbon monoxide and volatile organic compounds are less than 80 tons per year (TPY). Oxides of nitrogen emissions are less than 50 TPY and particulate matter 10/2.5 and sulfur dioxide emissions are each less than 20 TPY. Also, the facility will have less than 8 TPY for each hazardous air pollutant and less than 20 tons for total hazardous air pollutants. This project qualifies as a modification since it includes the replacement of a certified engine with an uncertified engine.

45 CSR 22 - AIR QUALITY MANAGEMENT FEE PROGRAM:

The facility will be required to maintain a valid Certificate to Operate on the premises.

45 CSR 30 - REQUIREMENTS FOR OPERATING PERMITS:

Emissions from the facility do not exceed major source thresholds; therefore, this rule does not apply.

FEDERAL

40 CFR PART 60 SUBPART IIII - STANDARDS OF PERFORMANCE FOR STATIONARY COMPRESSION IGNITION INTERNAL COMBUSTION ENGINES:

The facility does not contain the affected source (diesel-fired engine) and is therefore not subject to this Subpart.

40 CFR PART 60 SUBPART JJJJ - STANDARDS OF PERFORMANCE FOR STATIONARY SPARK IGNITION INTERNAL COMBUSTION ENGINES:

The proposed 92-hp, four-stroke, rich-burn natural gas-fired flash gas compressor engine is assumed to have been constructed after the June 12, 2006 effective date and manufactured after July 1, 2008; therefore, it will be subject to this Subpart. Although final selection of the engine has not yet been made, it is presumed that the engine was manufactured after January 1, 2011 and therefore subject to Stage 2 emission limitations under this Subpart. SWN will comply with all applicable requirements.

40 CFR PART 60 SUBPART OOOO - STANDARDS OF PERFORMANCE FOR CRUDE OIL AND NATURAL GAS PRODUCTION, TRANSMISSION, AND DISTRIBUTION:

The emission sources affected by this Subpart include well completions, pneumatic controllers, equipment leaks from natural gas processing plants, sweetening units at natural gas processing plants, reciprocating compressors, centrifugal compressors and storage vessels which are constructed, modified or reconstructed after August 23, 2011 and before September 18, 2015.

Reciprocating compressors at well sites are not subject to this Subpart.

40 CFR PART 60 SUBPART OOOOA - STANDARDS OF PERFORMANCE FOR CRUDE OIL AND NATURAL GAS FACILITIES FOR WHICH CONSTRUCTION, MODIFICATION, OR RECONSTRUCTION COMMENCED AFTER SEPTEMBER 18, 2015:

The emission sources affected by this Subpart include well completions, centrifugal compressors, reciprocating compressors, pneumatic controllers, storage vessels, fugitive sources at well sites, fugitive sources at compressor stations, pneumatic pumps, equipment leaks from natural gas

processing plants and sweetening units at natural gas processing plants which are constructed, modified or reconstructed after September 18, 2015.

Reciprocating compressors at well sites are not subject to this Subpart.

40 CFR PART 63 SUBPART ZZZZ - NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES FROM STATIONARY RECIPROCATING INTERNAL COMBUSTION ENGINES - AREA SOURCE:

The original rule, published on February 26, 2004, initially affected new (constructed or reconstructed after December 19, 2002) reciprocating internal combustion engines (RICE) with a site-rating greater than 500 brake horsepower (HP) located at a major source of HAP emissions. On January 18, 2008, EPA published an amendment that promulgated standards for RICE constructed or reconstructed after June 12, 2006 with a site rating less than or equal to 500 HP located at major sources, and for engines constructed and reconstructed after June 12, 2006 located at area sources. On August 10, 2010, EPA published another amendment that promulgated standards for existing (constructed or reconstructed before June 12, 2006) RICE at area sources and existing RICE (constructed or reconstructed before June 12, 2006) with a site rating of less than or equal to 500 HP at major sources.

Owners and operators of new or reconstructed engines at area sources must meet the requirements of Subpart ZZZZ by complying with either 40 CFR Part 60 Subpart IIII (for CI engines) or 40 CFR Part 60 Subpart JJJJ (for SI engines). Based on emission calculations, this facility is a minor source of HAP. The 92-hp, four-stroke, rich-burn natural gas-fired flash gas compressor engine is considered a new engine manufactured after January 1, 2011 and will meet the requirements of this Subpart by complying with requirements under NSPS Subpart JJJJ.

APPLICATION FOR GENERAL PERMIT REGISTRATION

dep	west virginia de	partment of environment	al protection	Division of Air Quality 601 57 th Street SE Charleston, WV 25 4 Phone (304) 926-0475 Fax (304) 926-0479 www.dep.wv.gov
G70-D GE	NERAL PER	MIT REGISTRA	ATION AI	and the second
PREVENTION AND	CONTROL OF AIR PC RELOCATION, ADM	DLLUTION IN REGARD TO IINISTRATIVE UPDATE AN TION FACILITIES LOCAT	THE CONSTRUND OPERATION	CTION, MODIFICATION, OF
□CONSTRU ⊠MODIFIC/ □RELOCAT	ATION		DMINISTRATIV ADMINISTRATIV	
	SECTI	ON 1. GENERAL INFORMA	TION	
Name of Applicant (as	registered with the WV	Secretary of State's Office):	SWN Production	Company, LLC
Federal Employer ID N	Io. (FEIN): 26-4388727	·		
Applicant's Mailing Ac	ddress: 10000 Energy	Drive		
City: Spring	St	ate: TX		ZIP Code: 77389
Facility Name: Ruth K	Celler Pad			
	l Address: 4025 Glen Da oad, city or town and zip			
City: Glen Dale	Zi	p Code: 26038		County: Marshall
Latitude & Longitude (Latitude: 39.98601 Longitude: -80.69714	Coordinates (NAD83, De	cimal Degrees to 5 digits):		
SIC Code: 1311 NAICS Code: 211111		DAQ Facility 051-00246	ID No. (For existi	ng facilities)
	CERT	TIFICATION OF INFORMAT	ION	
Official is a President, Directors, or Owner, da authority to bind Proprietorship. Rec compliance certifi Representative. If a bus off and the approp unsigned G70-D Regis utilized , th I hereby certify that <u>Ca</u> the business (e.g., Corp and may obligate and lo	Vice President, Secreta epending on business stru- the Corporation, Partne quired records of daily th cations and all required r siness wishes to certify a riate names and signatur- tration Application will application will be re- trial Suszkowski is an A poration, Partnership, Lin- egally bind the business.	plication shall be signed below ry, Treasurer, General Partner, acture. A business may certify rship, Limited Liability Comp roughput, hours of operation a botifications must be signed by n Authorized Representative, es entered. Any administrative I be returned to the applicant turned to the applicant. No authorized Representative and nited Liability Company, Asso If the business changes its Aut of Air Quality immediately.	, General Manager an Authorized Re any, Association, and maintenance, y a Responsible Oi the official agreer rely incomplete of t. Furthermore, substitution of for in that capacity sl pociation Joint Ven	r, a member of the Board of presentative who shall have Joint Venture or Sole general correspondence, fficial or an Authorized nent below shall be checked improperly signed or if the G70-D forms are not rms is allowed. null represent the interest of ture or Sole Proprietorship)
documents appended he	ereto is, to the best of my ride the most comprehens gnature: <u>Calla</u> Suszkowski	h this G70-D General Permit F knowledge, true, accurate and sive information possible. Phone: 832-796-1000 Date: 0-14-17	d complete, and th	
If applicable: Authorized Representat Name and Title: Email:	ive Signature:	Phone: Date:	Fax:	
If applicable: Environmental Contact Name and Title: Clay I Email: Clay Murral@		Phone: 304-884-1 Date:		Fax:

OPERATING SITE INFORMATION				
Briefly describe the proposed new operation and/or any chang replacement of one (1) certified Zenith ZPP-644 4.4 L e Vortec 5.7L NA engine. All other emissions remain the	engine (EU-ENG3) with one (1) non-certified GM			
Directions to the facility: From I-470 east take exit 2 and turn right, (or 470 west, turn left), on CR-91/1 south, (Spruce St), for 0.46 miles to intersection of CR-91/1 and SR-88 (Ridgecrest Road). Turn right on SR-88 south and travel 4.15 miles to junction of SR-88 and SR-86, (Grandview Road), and turn right on SR-86. Travel SR-86 for 1.2 miles with access road on left.				
ATTACHMENTS AND SU	PPORTING DOCUMENTS			
I have enclosed the following required document	ts:			
Check payable to WVDEP – Division of Air Quality with the	appropriate application fee (per 45CSR13 and 45CSR22).			
 Check attached to front of application. I wish to pay by electronic transfer. Contact for payment (incl. na I wish to pay by credit card. Contact for payment (incl. na 				
 S500 (Construction, Modification, and Relocation) \$1,000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ, OOOO a \$2,500 NESHAP fee for 40 CFR63, Subpart ZZZZ and/or H 				
¹ Only one NSPS fee will apply. ² Only one NESHAP fee will apply. The Subpart ZZZZ NESH requirements by complying with NSPS, Subparts IIII and/or J <i>NSPS and NESHAP fees apply to new construction or if the set</i>	JJJ.			
Responsible Official or Authorized Representative Signatu	re (if applicable)			
□ Single Source Determination Form (must be completed) –	Attachment A			
□ Siting Criteria Waiver (if applicable) – Attachment B	🖾 Current Business Certificate – Attachment C			
Process Flow Diagram – Attachment D	⊠ Process Description – Attachment E			
🗆 Plot Plan – Attachment F	🗆 Area Map – Attachment G			
G70-D Section Applicability Form – Attachment H	🖾 Emission Units/ERD Table – Attachment I			
□ Fugitive Emissions Summary Sheet – Attachment J				
□ Gas Well Affected Facility Data Sheet (if applicable) – Att	tachment K			
□ Storage Vessel(s) Data Sheet (include gas sample data, US HYSYS, etc.), etc. where applicable) – Attachment L	EPA Tanks, simulation software (e.g. ProMax, E&P Tanks,			
M	Heater Treaters, In-Line Heaters if applicable) – Attachment			
⊠ Internal Combustion Engine Data Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment N				
□ Tanker Truck/Rail Car Loading Data Sheet (if applicable)	– Attachment O			
\Box Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalc TM input and output reports and information on reboiler if applicable) – Attachment P				
Pneumatic Controllers Data Sheet – Attachment Q				
Pneumatic Pump Data Sheet – Attachment R				
□ Air Pollution Control Device/Emission Reduction Device(s applicable) – Attachment S	s) Sheet(s) (include manufacturer performance data sheet(s) if			
Emission Calculations (please be specific and include all c	alculation methodologies used) – Attachment T			
Section Summary Sheet(s) – Attachment U				
🖾 Class I Legal Advertisement – Attachment V				
One (1) paper copy and two (2) copies of CD or DVD with	pdf copy of application and attachments			

All attachments must be identified by name, divided into sections, and submitted in order.

ATTACHMENT C: BUSINESS REGISTRATION CERTIFICATE

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION SSUED TO SWN[®]PRODUCTION COMPANY, LLC 5400D BIG TYLER RD CHARLESTON, WV 25313-1103 RÉGISTRATION ACCOUNT NUMBE 2307-3731 is certificate is issued on: 12/8/2014 UNE This certificate, is issued by accordance:With Chapter: 11, Article 12, of the West Virginia Code in 51 -)|| 7451 The person of organization identified on this certificate is registered to conduct business in the State of West-Virginia at the location above. This certificate is not transferrable and must be displayed at the location for which issued This certificate shall be permanent until cessation of the business for, which the certificate of registratio was granted or until it is suspended, revoked or carrcelled by the Tax Commissioner. Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required. TRAVELING/STREET-VENDORS: Must carry a copy of this certificate in every Vehicle, operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia? atL006 v.4 L1180094016

ATTACHMENT D: PROCESS DESCRIPTION

The facility is an oil and natural gas exploration and production facility, responsible for the production of condensate and natural gas. Storage of condensate and produced water also occurs on-site. A description of the facility process is as follows: Condensate, gas and water come from the wellhead to the production unit, where the first stage of separation occurs. Produced water is sent from the production unit to the produced water tanks. Condensate and residual water are sent to the heater treater. The flash from the heater treater is captured via a natural gas-fired engine-driven flash gas compressors. Condensate flows into the low-pressure tower. Flash gases from the low-pressure tower are routed via hard-piping (with 100% capture efficiency) to the inlet of the flash gas compressors to be compressed.

Working, breathing and flashing vapors from the condensate and produced water storage tanks are routed to the vapor combustor with 100% capture efficiency to be burned with at least 98% combustion efficiency. The vapor combustor has one (1) natural gas-fired pilot to ensure a constant flame for combustion.

The natural gas stream from the gas production unit and flash gas compressors is routed to the dehydration unit before exiting the facility. In the dehydration process, gas passes through a contactor vessel where water is absorbed by the glycol. The "rich" glycol-containing water goes to the glycol dehydrator reboiler where heat is used to boil off the water. Still vent vapors from the dehydration unit are controlled by an air-cooled condenser. Non-condensables from the still column overheads are routed to the reboiler for combustion. It was conservatively assumed that the reboiler provides 50% destruction efficiency since the burner on the reboiler is necessary to maintain the temperature and is inherent in the process; therefore, it is appropriate to use 50% efficiency with no monitoring required. The manufacturer guarantees a higher control efficiency. Flash tank off-gases are routed to the heater treater and then recompressed. Flash tank off-gases can also be used as supplemental fuel for the reboiler; therefore, a destruction efficiency of 98% was used in GLYCalc as a conservative measure.

ATTACHMENT H: G70-D SECTION APPLICABILITY FORM

ATTACHMENT H – G70-D SECTION APPLICABILITY FORM

General Permit G70-D Registration Section Applicability Form

General Permit G70-D was developed to allow qualified applicants to seek registration for a variety of sources. These sources include gas well affected facilities, storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, pneumatic pumps, reciprocating internal combustion engines (RICEs), tank truck/rail car loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G70-D allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

GENERAL PERMIT G70-D APPLICABLE SECTIONS					
⊠Section 5.0	Gas and Oil Well Affected Facility (NSPS, Subpart OOOO/OOOOa)				
⊠Section 6.0	Storage Vessels Containing Condensate and/or Produced Water ¹				
□Section 7.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO/OOOOa)				
⊠Section 8.0	Control Devices and Emission Reduction Devices not subject to NSPS Subpart OOOO/OOOOa and/or NESHAP Subpart HH				
⊠Section 9.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc				
□Section 10.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO/OOOOa)				
□Section 11.0	Pneumatic Pump Affected Facility (NSPS, Subpart OOOOa)				
□Section 12.0	Fugitive Emissions GHG and VOC Standards (NSPS, Subpart OOOOa)				
Section 13.0	Reciprocating Internal Combustion Engines, Generator Engines				
⊠Section 14.0	Tanker Truck/Rail Car Loading ²				
⊠Section 15.0	Glycol Dehydration Units ³				

1 Applicants that are subject to Section 6 may also be subject to Section 7 if the applicant is subject to the NSPS, Subparts OOOO or OOOOa control requirements or the applicable control device requirements of Section 8.

2 Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 8.

3 Applicants that are subject to Section 15 may also be subject to the requirements of Section 9 (reboilers). Applicants that are subject to Section 15 may also be subject to control device and emission reduction device requirements of Section 8.

ATTACHMENT I: EMISSIONS UNITS/ERD TABLE

ATTACHMENT I - EMISSION UNITS/EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment L table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type ⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
				after				
EU-ENG1	EP-ENG1 145-hp Caterpillar G3306 NA Engine		2017	1/1/2011	145-hp	Existing	NSCR	NSCR
EU-ENG2	EP-ENG2	145-hp Caterpillar G3306 NA Engine	2017	after 1/1/2011	145-hp	Existing	NSCR	NSCR
EU-ENG3	EP-ENG3	92-hp GM Vortec 5.7L NA Engine	TBD	after 1/1/2011	92-hp	New	NSCR	NSCR
EU-GPU1	EP-GPU1	1.0-mmBtu/hr GPU Burner	2017	N/A	1.0-mmBtu/hr	Existing	N/A	N/A
EU-HT1	EP-HT1	0.5-mmBtu/hr Heater Treater	2017	N/A	0.5-mmBtu/hr	Existing	N/A	N/A
EU-DEHY1	EP-RB1	24.0-MMSCFD TEG Dehydration Unit	2017	N/A	24.0 MMSCFD	Existing	Condenser and EU-RB1	Condenser and EU-RB1
EU-RB1	EP-RB1	0.75-mmBtu/hr TEG Reboiler	2017	N/A	0.75- mmBtu/hr	Existing	N/A	N/A
EU-TANKS- COND	APC-COMB	Two (2) 400-bbl Condensate Tanks Routed to Vapor Combustor	2017	N/A	400-bbl	Existing	APC-COMB	APC-COMB
EU-TANKS- PW	APC-COMB	Two (2) 400-bbl Produced Water Tanks Routed to Vapor Combustor	2017	N/A	400-bbl		APC-COMB	APC-COMB
EU-LOAD- COND	APC-COMB	Condensate Truck Loading w/ Vapor Return Routed to Combustor	2017	N/A	6,132,000 gal/yr		Vapor Return and APC- COMB	Vapor Return and APC- COMB
EU-LOAD- PW	APC-COMB	Produced Water Truck Loading w/ Vapor Return Routed to Combustor	2017	N/A	5,365,500 gal/yr		Vapor Return and APC- COMB	Vapor Return and APC- COMB
APC-COMB	APC-COMB	15.0-mmBtu/hr Vapor Combustor	2017	N/A	15.0- mmBtu/hr	Existing	N/A	N/A
EU-PILOT	APC-COMB	Vapor Combustor Pilot	2017	N/A	50-scfh	Existing	N/A	N/A
EU-FUG	EP-FUG	Fugitive Emissions	2017	N/A	N/A	Existing	N/A	N/A
EU-HR	EP-HR	Fugitive Haul Road Emissions	2017	N/A	N/A	Existing	N/A	N/A

¹ For Emission Units (or Sources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation.

² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

³ When required by rule

⁴ New, modification, removal, existing

⁵ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

⁶ For ERDs use the following numbering system: 1D, 2D, 3D,... or other appropriate designation.

ATTACHMENT N: INTERNAL COMBUSTION ENGINE DATA SHEETS

ENGINE SPECIFICATION SHEETS AP-42 AND EPA EMISSION FACTORS

ATTACHMENT N – INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. *Generator(s) and microturbine generator(s) shall also use this form.*

Emission Unit ID#1		EU-ENG1		EU-ENG2		EU-ENG3	
Engine Manufac	cturer/Model	Caterpillar	G3306 NA	Caterpillar G3306 NA		GM Vortec 5.7L NA	
Manufacturers H	Rated bhp/rpm	145-hp/1,800-rpm		145-hp/1,800-rpm		92-hp/2	,200-rpm
Source Status ²		E	S		ES		NS I
Date Installed/ Modified/Remo	ved/Relocated ³	20	17	2	2017	T	BD
Engine Manufac /Reconstruction		After 1	/1/2011	After	1/1/2011	After 1	/1/2011
Check all applicable Federal Rules for the engine (include EPA Certificate of Conformity if applicable) ⁵		 ☑ 40CFR60 Subpart JJJJ □ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? ☑ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 		 ⋈ 40CFR60 Subpart JJJJ □ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? ⋈ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 		 ⋈ 40CFR60 Subpart JJJJ □ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? ⋈ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 	
Engine Type ⁶		4SRB		4SRB		4SRB	
APCD Type ⁷		NSCR		NSCR		NSCR	
Fuel Type ⁸		PQ		PQ		PQ	
H ₂ S (gr/100 scf))	Negligible		Negligible		Negligible	
Operating bhp/r	pm	145-hp/1,800-rpm		145-hp/1,800-rpm		92-hp/2	,200-rpm
BSFC (BTU/bhg	p-hr)	8,625		8,625		8,:	500
Hourly Fuel Th	coughput	1,382 ft ³ /hr gal/hr		1,382 ft ³ /hr gal/hr		864 ft ³ /hr gal/hr	
Annual Fuel The (Must use 8,760) emergency gene	hrs/yr unless	12.11 MMft ³ /yr gal/yr			Mft³/yr al/yr	7.57 MMf ga	t ³ /yr l/yr
Fuel Usage or H Operation Meter		Yes 🗆	No 🛛	Yes 🗆	No 🖂	Yes 🗆	No 🖂
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)
MD	NO _x	0.32	1.40	0.32	1.40	0.20	0.89
MD	СО	0.64	2.80	0.64	2.80	0.41	1.78
MD	VOC	0.31	1.36	0.31	1.36	0.10	0.43
AP	SO ₂	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
AP	PM10	0.01	0.05	0.01	0.05	0.01	0.03
MD	Formaldehyde	0.09	0.38	0.09	0.38	0.02	0.07
AP	Total HAPs	0.10	0.44	0.10	0.44	0.02	0.11
MD and EPA	GHG (CO ₂ e)	155.19	679.73	155.19	679.73	91.57	401.08

1 Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion engine/generator engine located at the well site. Multiple engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.

2 Enter the Source Status using the following codes:

NS	Construction of New Source (installation)	ES	Existing Source
MS	Modification of Existing Source	RS	Relocated Source
REM	Removal of Source		

- 3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.
- 4 Enter the date that the engine was manufactured, modified or reconstructed.
- 5 Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6 Enter the Engine Type designation(s) using the following codes:

2SLB	Two Stroke Lean Burn	4SRB	Four St	roke Rich Burn				
4SLB	Four Stroke Lean Burn							
Enter th	e Air Pollution Control Device (APCD) type designa	tion(s) ı	using the fo	ollowing codes:				
A/F	Air/Fuel Ratio		IR	Ignition Retard				
HEIS	High Energy Ignition System		SIPC	Screw-in Preco	mbustion Cha	mber	s	
PSC	Prestratified Charge		LEC	Low Emission	Combustion			
NSCR	Rich Burn & Non-Selective Catalytic Reduction		OxCat	Oxidation Cata	lyst			
SCR	Lean Burn & Selective Catalytic Reduction							
Enter th	e Fuel Type using the following codes:							
PQ	Pipeline Quality Natural Gas RO	G R	aw Natura	l Gas /Productio	n Gas	D	Diesel	
Entont	he Detential Emissions Date Deference design	otion 1	ing the f		Attach all	fai	anaa data u	and
Entert	ne Potential Emissions Data Reference design	ation u	sing the f	onowing codes	s. Attach all	refei	ence data u	seu.
MD	Manufacturer's Data	A	AP AP	-42				
GR	GRI-HAPCalc TM	C	DT Oth	ner	(please list)			
	4SLB Enter th A/F HEIS PSC NSCR SCR Enter th PQ Enter t MD	4SLB Four Stroke Lean Burn Enter the Air Pollution Control Device (APCD) type designal A/F Air/Fuel Ratio HEIS High Energy Ignition System PSC Prestratified Charge NSCR Rich Burn & Non-Selective Catalytic Reduction SCR Lean Burn & Selective Catalytic Reduction Enter the Fuel Type using the following codes: PQ Pipeline Quality Natural Gas RO Enter the Potential Emissions Data Reference design MD MD Manufacturer's Data	4SLB Four Stroke Lean Burn Enter the Air Pollution Control Device (APCD) type designation(s) to A/F Air/Fuel Ratio HEIS High Energy Ignition System PSC Prestratified Charge NSCR Rich Burn & Non-Selective Catalytic Reduction SCR Lean Burn & Selective Catalytic Reduction Enter the Fuel Type using the following codes: PQ PQ Pipeline Quality Natural Gas RG Enter the Potential Emissions Data Reference designation using MD Manufacturer's Data	4SLB Four Stroke Lean Burn Enter the Air Pollution Control Device (APCD) type designation(s) using the for A/F Air/Fuel Ratio HEIS High Energy Ignition System SIPC PSC Prestratified Charge NSCR Rich Burn & Non-Selective Catalytic Reduction SCR Lean Burn & Selective Catalytic Reduction Enter the Fuel Type using the following codes: PQ Pipeline Quality Natural Gas RG Raw Natura Enter the Potential Emissions Data Reference designation using the following the following codes: PQ Manufacturer's Data	4SLB Four Stroke Lean Burn Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes: A/F Air/Fuel Ratio IR Ignition Retard HEIS High Energy Ignition System SIPC Screw-in Preco PSC Prestratified Charge LEC Low Emission NSCR Rich Burn & Non-Selective Catalytic Reduction OxCat Oxidation Cata SCR Lean Burn & Selective Catalytic Reduction OxCat Oxidation Cata PQ Pipeline Quality Natural Gas RG Raw Natural Gas /Productio Enter the Potential Emissions Data Reference designation using the following codes: MD Manufacturer's Data AP AP-42	4SLB Four Stroke Lean Burn Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes: A/F Air/Fuel Ratio HEIS High Energy Ignition System PSC Prestratified Charge NSCR Rich Burn & Non-Selective Catalytic Reduction SCR Lean Burn & Selective Catalytic Reduction Enter the Fuel Type using the following codes: PQ Pipeline Quality Natural Gas Enter the Potential Emissions Data Reference designation using the following codes. Attach all MD Manufacturer's Data	4SLB Four Stroke Lean Burn Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes: A/F Air/Fuel Ratio HEIS High Energy Ignition System PSC Prestratified Charge SCR Rich Burn & Non-Selective Catalytic Reduction NSCR Rich Burn & Selective Catalytic Reduction SCR Lean Burn & Selective Catalytic Reduction Enter the Fuel Type using the following codes: PQ PQ Pipeline Quality Natural Gas Reference designation using the following codes. Attach all reference MD Manufacturer's Data AP AP-42	4SLB Four Stroke Lean Burn Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes: A/F Air/Fuel Ratio HEIS High Energy Ignition System PSC Prestratified Charge SCR Rich Burn & Non-Selective Catalytic Reduction NSCR Rich Burn & Selective Catalytic Reduction SCR Lean Burn & Selective Catalytic Reduction Enter the Fuel Type using the following codes: PQ Pipeline Quality Natural Gas Reference designation using the following codes. Attach all reference data u MD Manufacturer's Data

10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

Engine Air Pollution Control Device (Emission Unit ID# APC-NSCR-ENG-3 use extra pages as necessary)

Air Pollution Control Device Manufacturer's Data Sheet included? Yes \boxtimes No \square

\boxtimes NSCR \square S	CR 🗆 Oxidation Catalyst
Provide details of process control used for proper mixing	/control of reducing agent with gas stream:
Manufacturer: Miratech	Model #: VXCI-1005-3.5-XC1
Design Operating Temperature: 1,200 °F	Design gas volume: 650 scfm
Service life of catalyst:	Provide manufacturer data? 🛛 Yes 🛛 No
Volume of gas handled: acfm at °F	Operating temperature range for NSCR/Ox Cat: From 750 °F to 1,250 °F
Reducing agent used, if any:	Ammonia slip (ppm):
Pressure drop against catalyst bed (delta P): 4.0 inches of	of H ₂ O
Is temperature and pressure drop of catalyst required to b □ Yes ⊠ No	be monitored per 40CFR63 Subpart ZZZZ?

MIRATECH Emissions Control Equipment Specification Summary

			Proposal Number:	TJ-12-2475
Engine Data				
Number of Engines:	1			
Application:		ompression		
Engine Manufacturer:		al Motors		
Model Number:	Vortec	5.7L NA		
Power Output:	92 bhp)		
Lubrication Oil:	0.6 wt ^r	% sulfated ash or less		
Type of Fuel:	Natura	ll Gas		
Exhaust Flow Rate:	650 ac	cfm (cfm)		
Exhaust Temperature:	1,200°	F		
System Details				
Housing Model Number:	VXCI-	1005-3.5-HSG		
Element Model Number:	VX-RE	-05XC		
Number of Catalyst Layers:	1			
Number of Spare Catalyst La	yers: 1			
System Pressure Loss:	4.0 inc	hes of WC (Fresh)		
Sound Attenuation:	28-32	dBA insertion loss		
Exhaust Temperature Limits:	750 –	1250°F (catalyst inlet); 1350°	'F (catalyst outlet)	
NSCR Housing & Cataly	yst Details			
Model Number:	VXCI-	1005-3.5-XC1		
Material:	Carbo	n Steel		
Inlet Pipe Size & Connection:	3.5 inc	h FF Flange, 150# ANSI star	idard bolt pattern	
Outlet Pipe Size & Connection	n: 3.5 inc	h FF Flange, 150# ANSI star	idard bolt pattern	
Overall Length:	43 incl	hes		
Weight Without Catalyst:	98 lbs			
Weight Including Catalyst:	104 lb:	S		
Instrumentation Ports:	1 inlet/	1 outlet (1/2" NPT)		
Emission Requirements	S			
			Warranted	
	Engine Outputs		Converter Outputs	Requested
Exhaust Gases	(g/ bhp-hr)	Reduction (%)	(g/ bhp-hr)	Emissions Targets
NOx	14.00	93%	1.00	1 g/bhp-hr
<u></u>	44.00	000/	0.00	0 // / /

MIRATECH warrants the performance of the converter, as stated above, per the MIRATECH General Terms and Conditions of Sale.

82%

0%

2.00

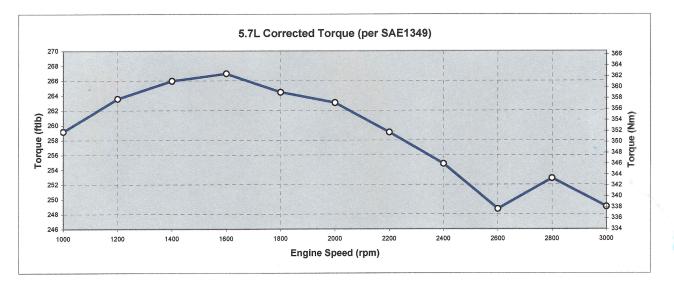
0.70

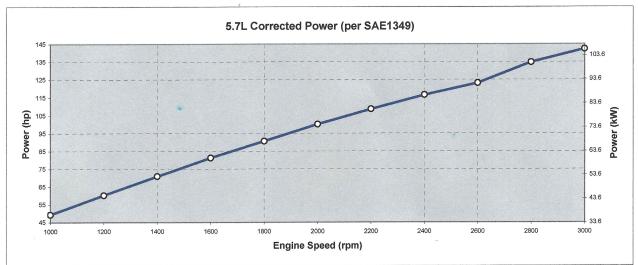
11.00

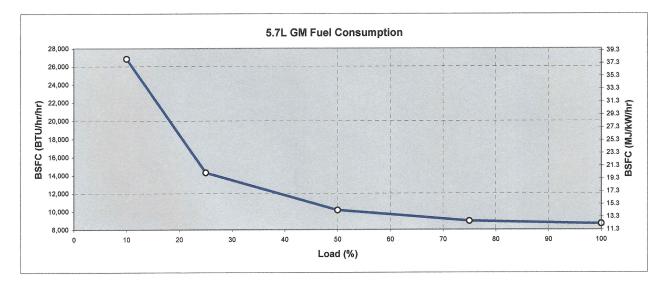
0.40

0.5%

CO


NMNEHC


Oxygen


2 g/bhp-hr

.7 g/bhp-hr

Table 3.2-3. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE RICH-BURN ENGINES^a (SCC 2-02-002-53)

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating
Criteria Pollutants and Greenhous	se Gases	
NO _x ^c 90 - 105% Load	2.21 E+00	А
NO _x ^c <90% Load	2.27 E+00	С
CO ^c 90 - 105% Load	3.72 E+00	А
CO ^c <90% Load	3.51 E+00	С
CO ₂ ^d	1.10 E+02	А
SO ₂ ^e	5.88 E-04	А
TOC ^f	3.58 E-01	С
Methane ^g	2.30 E-01	С
VOC ^h	2.96 E-02	С
PM10 (filterable) ^{i,j}	9.50 E-03	Е
PM2.5 (filterable) ^j	9.50 E-03	Е
PM Condensable ^k	9.91 E-03	Е
Trace Organic Compounds		
1,1,2,2-Tetrachloroethane ¹	2.53 E-05	С
1,1,2-Trichloroethane ¹	<1.53 E-05	Е
1,1-Dichloroethane	<1.13 E-05	Е
1,2-Dichloroethane	<1.13 E-05	Е
1,2-Dichloropropane	<1.30 E-05	Е
1,3-Butadiene ¹	6.63 E-04	D
1,3-Dichloropropene ¹	<1.27 E-05	Е
Acetaldehyde ^{l,m}	2.79 E-03	С
Acrolein ^{l,m}	2.63 E-03	С
Benzene ¹	1.58 E-03	В
Butyr/isobutyraldehyde	4.86 E-05	D
Carbon Tetrachloride ¹	<1.77 E-05	Е

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating
Chlorobenzene ^l	<1.29 E-05	Е
Chloroform ¹	<1.37 E-05	Е
Ethane ⁿ	7.04 E-02	С
Ethylbenzene ¹	<2.48 E-05	Е
Ethylene Dibromide ¹	<2.13 E-05	Е
Formaldehyde ^{l,m}	2.05 E-02	А
Methanol ¹	3.06 E-03	D
Methylene Chloride ¹	4.12 E-05	С
Naphthalene ^l	<9.71 E-05	Е
PAH ¹	1.41 E-04	D
Styrene ¹	<1.19 E-05	Е
Toluene ^l	5.58 E-04	А
Vinyl Chloride ¹	<7.18 E-06	Е
Xylene ^l	1.95 E-04	А

Table 3.2-3. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE RICH-BURN ENGINES (Concluded)

^a Reference 7. Factors represent uncontrolled levels. For NO_x, CO, and PM-10, "uncontrolled" means no combustion or add-on controls; however, the factor may include turbocharged units. For all other pollutants, "uncontrolled" means no oxidation control; the data set may include units with control techniques used for NOx control, such as PCC and SCR for lean burn engines, and PSC for rich burn engines. Factors are based on large population of engines. Factors are for engines at all loads, except as indicated. SCC = Source Classification Code. TOC = Total Organic Compounds. PM10 = Particulate Matter \leq 10 microns (μ m) aerodynamic diameter. A "<" sign in front of a factor means that the corresponding emission factor is based on one-half of the method detection limit.

^b Emission factors were calculated in units of (lb/MMBtu) based on procedures in EPA Method 19. To convert from (lb/MMBtu) to (lb/ 10^6 scf), multiply by the heat content of the fuel. If the heat content is not available, use 1020 Btu/scf. To convert from (lb/MMBtu) to (lb/hp-hr) use the following equation:

lb/hp-hr = db/MMBtu, heat input, MMBtu/hr, d/operating HP, 1/hp

^c Emission tests with unreported load conditions were not included in the data set. ^d Based on 99.5% conversion of the fuel carbon to CO_2 . CO_2 [lb/MMBtu] =

(3.67)(% CON)(C)(D)(1/h), where $\% \text{CON} = \text{percent conversion of fuel carbon to CO}_2$,

C = carbon content of fuel by weight (0.75), D = density of fuel, 4.1 E+04 $lb/10^6$ scf, and h = heating value of natural gas (assume 1020 Btu/scf at 60°F).

- ^e Based on 100% conversion of fuel sulfur to SO₂. Assumes sulfur content in natural gas of 2,000 gr/10^6 scf.
- ^f Emission factor for TOC is based on measured emission levels from 6 source tests.
- ^g Emission factor for methane is determined by subtracting the VOC and ethane emission factors from the TOC emission factor.
- ^h VOC emission factor is based on the sum of the emission factors for all speciated organic compounds. Methane and ethane emissions were not measured for this engine category.
- ⁱ No data were available for uncontrolled engines. PM10 emissions are for engines equipped with a PCC.
- ^j Considered $\leq 1 \ \mu$ m in aerodynamic diameter. Therefore, for filterable PM emissions, PM10(filterable) = PM2.5(filterable).
- ^k No data were available for condensable emissions. The presented emission factor reflects emissions from 4SLB engines.
- ¹ Hazardous Air Pollutant as defined by Section 112(b) of the Clean Air Act.
- ^m For rich-burn engines, no interference is suspected in quantifying aldehyde emissions. The presented emission factors are based on FTIR and CARB 430 emissions data measurements.
- $^{\rm n}\,$ Ethane emission factor is determined by subtracting the VOC emission factor from the NMHC emission factor.

ATTACHMENT T: EMISSIONS CALCULATIONS

SWN Production Company, LLC Ruth Keller Pad Summary of Criteria Air Pollutant Emissions

Equipment	Unit ID	Emission Point	NOx		CO		Total	VOC ¹	SO ₂		PM Total	
Equipment		ID	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
145-hp Caterpillar G3306 NA Engine	EU-ENG1	EP-ENG1	0.32	1.40	0.64	2.80	0.31	1.36	<0.01	<0.01	0.02	0.11
145-hp Caterpillar G3306 NA Engine	EU-ENG2	EP-ENG2	0.32	1.40	0.64	2.80	0.31	1.36	<0.01	<0.01	0.02	0.11
92-hp GM Vortec 5.7L NA Engine	EU-ENG3	EP-ENG3	0.20	0.89	0.41	1.78	0.10	0.43	<0.01	<0.01	0.02	0.07
1.0-mmBtu/hr GPU Burner	EU-GPU1	EP-GPU1	0.11	0.48	0.09	0.41	0.01	0.03	<0.01	<0.01	0.01	0.04
0.5-mmBtu/hr Heater Treater	EU-HT1	EP-HT1	0.06	0.24	0.05	0.20	<0.01	0.01	<0.01	<0.01	<0.01	0.02
24.0-MMSCFD TEG Dehydration Unit	EU-DEHY1	EP-RB1	-	-	-	-	2.99	13.09	-	-	-	-
0.75-mmBtu/hr TEG Reboiler	EU-RB1	EP-RB1	0.08	0.36	0.07	0.30	<0.01	0.02	<0.01	<0.01	0.01	0.03
Two (2) 400-bbl Condensate Tanks Routed to Vapor Combustor	EU-TANKS- COND	APC-COMB	-	-	-	-	-	-	-	-	-	-
Two (2) 400-bbl Produced Water Tanks Routed to Vapor Combustor	EU-TANKS-PW	APC-COMB	-	-	-	-	-	-	-	-	-	-
Condensate Truck Loading w/ Vapor Return Routed to Combustor	EU-LOAD- COND	APC-COMB	-	-	-	-	1.52	6.65	-	-	-	-
Produced Water Truck Loading w/ Vapor Return Routed to Combustor	EU-LOAD-PW	APC-COMB	-	-	-	-	0.01	0.02	-	-	-	-
15.0-mmBtu/hr Vapor Combustor	APC-COMB	APC-COMB	2.07	9.07	4.13	18.10	0.98	4.27	-	-	0.05	0.20
Vapor Combustor Pilot	EU-PILOT	APC-COMB	<0.01	0.02	<0.01	0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fugitive Emissions	EU-FUG	EP-FUG	-	-	-	-	0.68	2.98	-	-	-	-
Fugitive Haul Road Emissions	EU-HR	EP-HR	-	-	-	-	-	-	-	-	0.26	0.86
		Total =	3.17	13.87	6.03	26.41	6.90	30.22	<0.01	0.02	0.39	1.42

Notes:

¹ Total VOC includes all constituents heavier than Propane (C3+), including hazardous air pollutants (HAP). Speciated HAP presented in following table.

SWN Production Company, LLC Ruth Keller Pad Summary of Hazardous Air Pollutants

		Estimated Emissions (lb/hr)										
Equipment	Unit ID	Acetalde- hyde	Acrolein	Benzene	Ethyl- benzene	Formalde- hyde	Methanol	n-Hexane	Toluene	Xylenes	Total HAP	
145-hp Caterpillar G3306 NA Engine	EU-ENG1	<0.01	<0.01	<0.01	<0.01	0.09	<0.01	-	<0.01	<0.01	0.10	
145-hp Caterpillar G3306 NA Engine	EU-ENG2	<0.01	<0.01	<0.01	<0.01	0.09	<0.01	-	<0.01	<0.01	0.10	
92-hp GM Vortec 5.7L NA Engine	EU-ENG3	<0.01	<0.01	<0.01	<0.01	0.02	<0.01	-	<0.01	<0.01	0.02	
1.0-mmBtu/hr GPU Burner	EU-GPU1	-	-	<0.01	-	<0.01	-	<0.01	<0.01	-	<0.01	
0.5-mmBtu/hr Heater Treater	EU-HT1	-	-	<0.01	-	<0.01	-	<0.01	<0.01	-	<0.01	
24.0-MMSCFD TEG Dehydration Unit	EU-DEHY1	-	-	0.11	0.00	-	-	0.12	0.18	0.05	0.46	
0.75-mmBtu/hr TEG Reboiler	EU-RB1	-	-	<0.01	-	<0.01	-	<0.01	<0.01	-	<0.01	
Two (2) 400-bbl Condensate Tanks Routed to Vapor Combustor	EU-TANKS- COND	-	-	-	-	-	-	-	-	-	-	
Two (2) 400-bbl Produced Water Tanks Routed to Vapor Combustor	EU-TANKS-PW	-	-	-	-	-	-	-	-	-	-	
Condensate Truck Loading w/ Vapor Return Routed to Combustor	EU-LOAD- COND	-	-	<0.01	0.01	-	-	0.09	0.01	0.02	0.12	
Produced Water Truck Loading w/ Vapor Return Routed to Combustor	EU-LOAD-PW	-	-	<0.01	<0.01	-	-	<0.01	<0.01	<0.01	<0.01	
15.0-mmBtu/hr Vapor Combustor	APC-COMB	-	-	<0.01	<0.01	-	-	0.06	<0.01	0.01	0.08	
Vapor Combustor Pilot	EU-PILOT	-	-	<0.01	-	<0.01	-	<0.01	<0.01	-	<0.01	
Fugitive Emissions	EU-FUG	-	-	<0.01	<0.01	-	-	0.03	<0.01	0.01	0.04	
Fugitive Haul Road Emissions	EU-HR	-	-	-	-	-	-	-	-	-	-	
	Total =	0.01	0.01	0.12	0.01	0.19	0.01	0.29	0.19	0.10	0.93	

Continued on Next Page

SWN Production Company, LLC Ruth Keller Pad Summary of Hazardous Air Pollutants (Continued)

		Estimated Emissions (TPY)										
Equipment	Unit ID	Acetalde- hyde	Acrolein	Benzene	Ethyl- benzene	Formalde- hyde	Methanol	n-Hexane	Toluene	Xylenes	Total HAP	
145-hp Caterpillar G3306 NA Engine	EU-ENG1	0.02	0.01	0.01	<0.01	0.38	0.02	-	<0.01	<0.01	0.44	
145-hp Caterpillar G3306 NA Engine	EU-ENG2	0.02	0.01	0.01	<0.01	0.38	0.02	-	<0.01	<0.01	0.44	
92-hp GM Vortec 5.7L NA Engine	EU-ENG3	0.01	0.01	0.01	<0.01	0.07	0.01	-	<0.01	<0.01	0.11	
1.0-mmBtu/hr GPU Burner	EU-GPU1	-	-	<0.01	-	<0.01	-	0.01	<0.01	-	0.01	
0.5-mmBtu/hr Heater Treater	EU-HT1	-	-	<0.01	-	<0.01	-	<0.01	<0.01	-	<0.01	
24.0-MMSCFD TEG Dehydration Unit	EU-DEHY1	-	-	0.49	0.00	-	-	0.51	0.77	0.24	2.02	
0.75-mmBtu/hr TEG Reboiler	EU-RB1	-	-	<0.01	-	<0.01	-	0.01	<0.01	-	0.01	
Two (2) 400-bbl Condensate Tanks Routed to Vapor Combustor	EU-TANKS- COND	-	-	-	-	-	-	-	-	-	-	
Two (2) 400-bbl Produced Water Tanks Routed to Vapor Combustor	EU-TANKS-PW	-	-	-	-	-	-	-	-	-	-	
Condensate Truck Loading w/ Vapor Return Routed to Combustor	EU-LOAD- COND	-	-	<0.01	0.03	-	-	0.38	0.03	0.10	0.54	
Produced Water Truck Loading w/ Vapor Return Routed to Combustor	EU-LOAD-PW	-	-	<0.01	<0.01	-	-	<0.01	<0.01	<0.01	<0.01	
15.0-mmBtu/hr Vapor Combustor	APC-COMB	-	-	<0.01	0.02	-	-	0.25	0.02	0.06	0.35	
Vapor Combustor Pilot	EU-PILOT	-	-	<0.01	-	<0.01	-	<0.01	<0.01	-	<0.01	
Fugitive Emissions	EU-FUG	-	-	<0.01	0.01	-	-	0.12	0.01	0.02	0.16	
Fugitive Haul Road Emissions	EU-HR	-	-	-	-	-	-	-	-	-	-	
	Total =	0.04	0.04	0.53	0.05	0.83	0.04	1.29	0.83	0.42	4.07	

SWN Production Company, LLC Ruth Keller Pad Summary of Greenhouse Gas Emissions - Metric Tons per Year (Tonnes)

Equipment	Unit ID	Carbon Dioxide (CO ₂)		Metha	Methane (CH ₄)		Methane (CH ₄) as CO _{2 Eq.}		Dxide (N ₂ O)	Nitrous Oxide (N ₂ O) as CO _{2 Eq.}		Total CO ₂ + CO _{2 Eq.} ¹	
Equipment	Unit ID	lb/hr	tonnes/yr	lb/hr	tonnes/yr	lb/hr	tonnes/yr	lb/hr	tonnes/yr	lb/hr	tonnes/yr	lb/hr	tonnes/yr
145-hp Caterpillar G3306 NA Engine	EU-ENG1	155.04	616.04	<0.01	0.01	0.07	0.27	<0.01	<0.01	0.08	0.33	155.19	616.64
145-hp Caterpillar G3306 NA Engine	EU-ENG2	155.04	616.04	<0.01	0.01	0.07	0.27	<0.01	<0.01	0.08	0.33	155.19	616.64
92-hp GM Vortec 5.7L NA Engine	EU-ENG3	91.48	363.48	<0.01	0.01	0.04	0.17	<0.01	<0.01	0.05	0.20	91.57	363.85
1.0-mmBtu/hr GPU Burner	EU-GPU1	116.98	464.80	<0.01	0.01	0.06	0.22	<0.01	<0.01	0.07	0.26	117.10	465.28
1.5-mmBtu/hr Line Heater	EU-LH1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
24.0-MMSCFD TEG Dehydration Unit	EU-DEHY1	<0.01	<0.01	0.41	1.62	10.18	40.45	-	-	-	-	10.18	40.45
0.75-mmBtu/hr TEG Reboiler	EU-RB1	87.73	348.60	<0.01	0.01	0.04	0.16	<0.01	<0.01	0.05	0.20	87.82	348.96
Two (2) 400-bbl Condensate Tanks Routed to Vapor Combustor	EU-TANKS- COND	-	-	-	-	-	-	-	-	-	-	-	-
Two (2) 400-bbl Produced Water Tanks Routed to Vapor Combustor	EU-TANKS-PW	-	-	-	-	-	-	-	-	-	-	-	-
Condensate Truck Loading w/ Vapor Return Routed to Combustor	EU-LOAD-COND	<0.01	<0.01	0.22	0.86	5.42	21.54	-	-	-	-	5.42	21.55
Produced Water Truck Loading w/ Vapor Return Routed to Combustor	EU-LOAD-PW	<0.01	<0.01	0.19	0.75	4.74	18.85	-	-	-	-	4.75	18.86
15.0-mmBtu/hr Vapor Combustor	APC-COMB	1,754.66	6,972.07	0.03	0.13	0.83	3.28	<0.01	0.01	0.99	3.92	1,756.47	6,979.27
Vapor Combustor Pilot	EU-PILOT	5.29	21.03	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	0.01	5.30	21.05
Fugitive Emissions	EU-FUG	<0.01	0.02	0.68	2.72	17.10	67.95	-	-	-	-	17.11	67.97
Fugitive Haul Road Emissions	EU-HR	-	-	-	-	-	-	-	-	-	-	-	-
	Total =	2,424.71	9,634.49	1.54	6.13	38.58	153.30	<0.01	0.02	1.35	5.37	2,464.64	9,793.16

Notes:

¹CO₂ Equivalent = Pollutant times GWP multiplier. 40 CFR 98 Table A-1, Global Warming Potential (GWP) multiplier (100-Year Time Horizon): CO₂ = 1, CH₄ = 25, N₂O = 298

² Per API Compendium (2009) Chapter 5: Because most of the CH₄ and CO₂ emissions from storage tanks occur as a result of flashing (which is controlled by the vapor combustor in this case), working and breathing loss emissions of these gases are very small in production and virtually nonexistent in the downstream segments. Vapors from the tanks are routed to the vapor combustor at this site. Therefore, GHG emissions from the condensate and produced water tanks are assumed to be negligible.

SWN Production Company, LLC **Ruth Keller Pad** Summary of Greenhouse Gas Emissions - Short Tons per Year (Tons)

Equipment	Unit ID	Carbon Die	oxide (CO ₂)	Methai	ne (CH ₄)	Methane (C	H ₄) as CO _{2 Eq.}	Nitrous O	xide (N ₂ O)	Nitrous Oxide	(N ₂ O) as CO _{2 Eq.}	Total CO	2 + CO _{2 Eq.} 1
Equipment	Unit ID	lb/hr	tons/yr ²	lb/hr	tons/yr ²	lb/hr	tons/yr	lb/hr	tons/yr ²	lb/hr	tons/yr	lb/hr	tons/yr
145-hp Caterpillar G3306 NA Engine	EU-ENG1	155.04	679.06	<0.01	0.01	0.07	0.30	<0.01	<0.01	0.08	0.36	155.19	679.73
145-hp Caterpillar G3306 NA Engine	EU-ENG2	155.04	679.06	<0.01	0.01	0.07	0.30	<0.01	<0.01	0.08	0.36	155.19	679.73
92-hp GM Vortec 5.7L NA Engine	EU-ENG3	91.48	400.67	<0.01	0.01	0.04	0.19	<0.01	<0.01	0.05	0.23	91.57	401.08
1.0-mmBtu/hr GPU Burner	EU-GPU1	116.98	512.36	<0.01	0.01	0.06	0.24	<0.01	<0.01	0.07	0.29	117.10	512.89
0.5-mmBtu/hr Heater Treater	EU-HT1	58.49	256.18	<0.01	<0.01	0.03	0.12	<0.01	<0.01	0.03	0.14	58.55	256.44
24.0-MMSCFD TEG Dehydration Unit	EU-DEHY1	<0.01	0.01	0.41	1.78	10.18	44.58	-	-	-	-	10.18	44.59
0.75-mmBtu/hr TEG Reboiler	EU-RB1	87.73	384.27	<0.01	0.01	0.04	0.18	<0.01	<0.01	0.05	0.22	87.82	384.67
Two (2) 400-bbl Condensate Tanks Routed to Vapor Combustor	EU-TANKS- COND	-	-	-	-	-	-	-	-	-	-	-	-
Two (2) 400-bbl Produced Water Tanks Routed to Vapor Combustor	EU-TANKS-PW	-	-	-	-	-	-	-	-	-	-	-	-
Condensate Truck Loading w/ Vapor Return Routed to Combustor	EU-LOAD-COND	<0.01	0.01	0.22	0.95	5.42	23.75	-	-	-	-	5.42	23.75
Produced Water Truck Loading w/ Vapor Return Routed to Combustor	EU-LOAD-PW	<0.01	<0.01	0.19	0.83	4.74	20.78	-	-	-	-	4.75	20.78
15.0-mmBtu/hr Vapor Combustor	APC-COMB	1,754.66	7,685.39	0.03	0.14	0.83	3.62	<0.01	0.01	0.99	4.32	1,756.47	7,693.33
Vapor Combustor Pilot	EU-PILOT	5.29	23.18	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	0.01	5.30	23.21
Fugitive Emissions	EU-FUG	<0.01	0.02	0.68	3.00	17.10	74.91	-	-	-	-	17.11	74.92
Fugitive Haul Road Emissions	EU-HR	-	-	-	-	-	-	-	-	-	-	-	-
	Total =	2,424.71	10,620.21	1.54	6.76	38.58	168.99	<0.01	0.02	1.35	5.92	2,464.64	10,795.11

Notes:

¹CO₂ Equivalent = Pollutant times GWP multiplier. 40 CFR 98 Table A-1, Global Warming Potential (GWP) multiplier (100-Year Time Horizon): $CO_2 = 1$, $CH_4 = 25$, $N_2O = 298$

² EPA and API GHG calculation methodologies calculate emissions in metric tons (tonnes). These values have been converted to short tons for consistency with permitting threshold units. ³ Per API Compendium (2009) Chapter 5: Because most of the CH₄ and CO₂ emissions from storage tanks occur as a result of flashing (which is controlled by the vapor combustor in this case), working and breathing loss emissions of these gases are very small in production and virtually nonexistent in the downstream segments. Vapors from the tanks are routed to the vapor combustor at this site. Therefore, GHG emissions from the condensate and produced water tanks are assumed to be negligible.

SWN Production Company, LLC Ruth Keller Pad Engine Emissions Calculations - Criteria Air Pollutants

Equipment Information

Unit ID:	EU-ENG3
Emission Point ID:	EP-ENG3
Make:	GM
Model:	Vortec 5.7L NA
Design Class:	4S-RB
Controls:	NSCR
Horsepower (hp):	92.0
Fuel Use (Btu/hp-hr):	8,500
Fuel Use (scfh):	864
Annual Fuel Use (mmscf):	7.57
Fuel Use (mmBtu/hr):	0.78
Exhaust Flow (acfm):	650
Exhaust Temp (°F):	1,200
Manufacture Date:	after 1/1/2011
Operating Hours:	8,760
Fuel Heating Value (Btu/scf):	905
Uncontrolled Manufacturer Emission Factors	<u>S</u>

NOx (g/hp-hr):	14.00
CO (g/hp-hr):	11.00
NMNEHC/VOC (g/hp-hr):	0.40

Post-Catalyst Emission Factors							
93.00%							
82.00%							
1.00							
2.00							
0.40							

Uncontrolled Criteria Air Pollutant Emissions

Unit ID:

EU-ENG3

Pollutant	lb/hr	TPY
NOx	2.84	12.44
CO	2.23	9.77
NMNEHC/VOC (does not include HCHO)	0.08	0.36
Total VOC (includes HCHO)	0.10	0.43
SO ₂	<0.01	<0.01
PM _{10/2.5}	0.01	0.03
PM _{COND}	0.01	0.03
PM _{TOT}	0.02	0.07

SWN Production Company, LLC Ruth Keller Pad Engine Emissions Calculations - Criteria Air Pollutants (Continued)

Proposed Criteria Air Pollutant Emissions¹

Pollutant	lb/hr	TPY
NOx	0.20	0.89
CO	0.41	1.78
NMNEHC/VOC (does not include HCHO)	0.08	0.36
Total VOC (includes HCHO)	0.10	0.43
SO ₂	<0.01	<0.01
PM _{10/2.5}	0.01	0.03
PM _{COND}	0.01	0.03
PM _{TOT}	0.02	0.07

AP-42 Emission Factors (lb/mmBtu)²

<u>4S-RB</u>

Pollutant	3.2-3 (7/00)
SO ₂	5.88E-04
PM _{10/2.5}	9.50E-03
PM _{COND}	9.91E-03
PM _{TOT}	1.94E-02

Notes:

¹ Post-catalyst emission factors for the GM engine are based on catalyst manufacturer data. Per NSPS Subpart JJJJ, VOC limit does not include HCHO; therefore, HCHO emissions have been added to the NSPS JJJJ VOC emission rates for demonstration purposes only.

 2 Per AP-42, all particulate matter (PM) from combustion of natural gas (total, condensable and filterable PM) is presumed <1 micrometer in diameter.

SWN Production Company, LLC Ruth Keller Pad Engine Emissions Calculations - Hazardous Air Pollutants

Equipment Information

Unit ID:	EU-ENG3
Emission Point ID:	EP-ENG3
Make:	GM
Model:	Vortec 5.7L NA
Design Class:	4S-RB
Controls:	NSCR
Horsepower (hp):	92
Fuel Use (Btu/hp-hr):	8,500
Fuel Use (scfh):	864
Annual Fuel Use (mmscf):	7.57
Fuel Use (mmBtu/hr):	0.78
Exhaust Flow (acfm):	650
Exhaust Temp (°F):	1,200
Operating Hours:	8,760

Unit ID:

EU-ENG3

Pollutant	lb/hr	TPY		
Acetaldehyde	<0.01	0.01		
Acrolein	<0.01	0.01		
Benzene	<0.01	0.01		
Ethylbenzene	<0.01	<0.01		
Formaldehyde	0.02	0.07		
Methanol	<0.01	0.01		
Toluene	<0.01	<0.01		
Xylenes	<0.01	<0.01		
Total HAP =	0.02	0.11		

SWN Production Company, LLC Ruth Keller Pad Engine Emissions Calculations - Hazardous Air Pollutants

AP-42 Emission Factors (lb/mmBtu)

4S-RB

Pollutant	3.2-3 (7/00)
Acetaldehyde	2.79E-03
Acrolein	2.63E-03
Benzene	1.58E-03
Ethylbenzene	2.18E-05
Formaldehyde	2.05E-02
Methanol	3.06E-03
Toluene	5.58E-04
Xylenes	1.95E-04

SWN Production Company, LLC Ruth Keller Pad Engine Emissions Calculations - Greenhouse Gases

Equipment Information

Unit ID:	EU-ENG3
Emission Point ID:	EP-ENG3
Make:	GM
Model:	Vortec 5.7L NA
Design Class:	4S-RB
Horsepower (hp):	92
Fuel Use (Btu/hp-hr):	8,500
Fuel Use (scfh):	864
Fuel Use (mmBtu/hr):	0.78
Exhaust Flow (acfm):	650
Exhaust Temp (°F):	1,200
Operating Hours:	8,760

Greenhouse Gas (GHG) Emissions¹

Pollutant	lb/hr	tonnes/yr
CO ₂	91.48	363.48
CH ₄	<0.01	0.01
N ₂ O	<0.01	<0.01
CH ₄ as CO ₂ e	0.04	0.17
N ₂ O as CO ₂ e	0.05	0.20
Total CO ₂ + CO ₂ e =	91.57	363.85

40 CFR 98 Tables Engine Emission Factors (kg/mmBtu)²

Carbon Dioxide (CO ₂)	53.06
Methane (CH ₄)	1.00E-03
Nitrous Oxide (N ₂ O)	1.00E-04

Notes:

¹ Emissions estimated using EPA data. Conversion to short tons (tons) found in site-wide Summary of Greenhouse Gases - Short Tons per Year (tons) table.

 2 CO₂e = CO₂ equivalent (Pollutant times GWP multiplier):

40 CFR 98 Table A-1, Global Warming Potential (GWP) multiplier: $CO_2 = 1$, $CH_4 = 25$, $N_2O = 298$

ATTACHMENT U: FACILITY-WIDE EMISSION SUMMARY SHEETS

List all sources of en	missions	in this ta	able. Use	e extra pa	ages if ne	ecessary.										
Emission Point ID #	Emission Boint ID # NO _X		C	0	VOC		SO ₂		PM ₁₀		PM _{2.5}		CH4		GHG (CO ₂ e)	
Emission I onit ID #	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
EP-ENG1	0.32	1.40	0.64	2.80	0.31	1.36	< 0.01	< 0.01	0.02	0.11	0.02	0.11	< 0.01	0.01	155.19	679.73
EP-ENG2	0.32	1.40	0.64	2.80	0.31	1.36	< 0.01	< 0.01	0.02	0.11	0.02	0.11	< 0.01	0.01	155.19	679.73
EP-ENG3	0.20	0.89	0.41	1.78	0.10	0.43	< 0.01	< 0.01	0.02	0.07	0.02	0.07	< 0.01	0.01	91.57	401.08
EP-GPU1	0.11	0.48	0.09	0.41	0.01	0.03	< 0.01	< 0.01	0.01	0.04	0.01	0.04	< 0.01	0.01	117.10	512.89
EP-HT1	0.06	0.24	0.05	0.20	< 0.01	0.01	< 0.01	< 0.01	< 0.01	0.02	< 0.01	0.02	< 0.01	< 0.01	58.55	256.44
EP-RB1	0.08	0.36	0.07	0.30	2.99	13.11	< 0.01	< 0.01	0.01	0.03	0.01	0.03	0.41	1.79	98.00	429.26
EP-LOAD-COND	-	-	-	-	1.52	6.65	-	-	-	-	-	-	0.22	0.95	5.42	23.75
EP-LOAD-PW	-	-	-	-	0.01	0.02	-	-	-	-	-	-	0.19	0.83	4.75	20.78
APC-COMB	2.08	9.09	4.14	18.12	0.98	4.27	< 0.01	< 0.01	0.05	0.21	0.05	0.21	0.03	0.15	1,761.77	7,716.54
TOTAL	3.17	13.87	6.03	26.41	6.22	27.24	0.00	0.02	0.13	0.57	0.13	0.57	0.86	3.76	2,447.54	10,720.20

ATTACHMENT U - FACILITY-WIDE CONTROLLED EMISSIONS SUMMARY SHEET

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators.

According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

Note that the emissions from the APC-COMB includes uncombusted emissions from the uncombusted emissions from the tanks and loading operations, as well as combustor pilot emissions. EP-RB1 includes emissions from the dehydration unit and TEG reboiler.

ATTACHMENT U – FACILITY-WIDE HAP CONTROLLED EMISSIONS SUMMARY SHEET														
List all sources of emissions in this table. Use extra pages if necessary.														
Emission Point ID #	Formaldehyde Benzene		Toluene		Ethylbenzene		Xylenes		Hexane		Total HAPs			
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
EP-ENG1	0.09	0.38	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	-	-	0.10	0.44
EP-ENG2	0.09	0.38	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	-	-	0.10	0.44
EP-ENG3	0.02	0.07	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	-	-	0.02	0.11
EP-GPU1	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	-	-	-	-	< 0.01	0.01	<0.01	0.01
EP-HT1	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	-	-	-	-	< 0.01	< 0.01	<0.01	< 0.01
EP-RB1	< 0.01	< 0.01	0.11	0.49	0.18	0.77	0.00	0.00	0.05	0.24	0.12	0.51	0.46	2.02
EP-LOAD-COND	-	-	< 0.01	< 0.01	0.01	0.03	0.01	0.03	0.02	0.10	0.09	0.38	0.12	0.54
EP-LOAD-PW	-	-	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
APC-COMB	<0.01	< 0.01	< 0.01	0.01	0.01	0.04	0.01	0.05	0.04	0.16	0.14	0.63	0.20	0.89
TOTAL	0.19	0.83	0.12	0.52	0.19	0.83	0.01	0.05	0.09	0.40	0.27	1.17	0.89	3.91

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators.

According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

Note that the emissions from the APC-COMB includes uncombusted emissions from the uncombusted emissions from the tanks and loading operations, as well as combustor pilot emissions. EP-RB1 includes emissions from the dehydration unit and TEG reboiler.

ATTACHMENT V: LEGAL ADVERTISEMENT

Note: Affidavit of Publication will be submitted upon receipt by SWN from the publisher.

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that SWN Production Company, LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a G70-D General Permit Modification Registration for a natural gas production facility (Ruth Keller Pad) located in Marshall County, West Virginia. From I-470 east take exit 2 and turn right, (or 470 west, turn left), on CR-91/1 south, (Spruce St), for 0.46 miles to intersection of CR-91/1 and SR-88 (Ridgecrest Road). Turn right on SR-88 south and travel 4.15 miles to junction of SR-88 and SR-86, (Grandview Road), and turn right on SR-86. Travel SR-86 for 1.2 miles with access road on left. Latitude/longitude coordinates are: 39.98601, -80.69714.

The applicant estimates the potential to discharge the following Regulated Air Pollutants will be:

Nitrogen Oxides (NOx)	13.87 tons/yr
Carbon Monoxide (CO)	26.41 tons/yr
Volatile Organic Compounds (VOC)	30.22 tons/yr
Sulfur Dioxide (SO ₂)	0.02 tons/yr
Particulate Matter (PM)	1.42 tons/yr
Acetaldehyde	0.04 tons/yr
Acrolein	0.04 tons/yr
Benzene	0.53 tons/yr
Ethylbenzene	0.05 tons/yr
Formaldehyde	0.83 tons/yr
Methanol	0.04 tons/yr
n-Hexane	1.29 tons/yr
Toluene	0.83 tons/yr
Xylenes	0.42 tons/yr
Carbon Dioxide	10,620.21 tons/yr
Methane	6.76 tons/yr
Nitrous Oxide	0.02 tons/yr
CO ₂ Equivalent	10,795.11 tons/yr

Operations is planned to begin on or about October 15, 2017. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice. Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the XXth of August 2017

By: SWN Production Company, LLC Carla Suszkowski, P.E. Regulatory Manager – West Virginia Division 10000 Energy Drive Spring, TX 77389