625 Liberty Ave, Suite 1700 Pittsburgh PA 15222 www.eqt.com

Alex Bosiljevac Environmental Coordinator

April 27, 2016

CERTIFIED MAIL # 7015 1660 0000 9399 6062

Mr. William F. Durham, Director West Virginia Department of Environmental Protection Division of Air Quality 601 57th Street, SE Charleston, West Virginia, 25304

RE: G70B Permit Application

EQT Production Company

OXF-157 Natural Gas Production Site

Facility ID No. 017-00139

Dear Mr. Durham,

Enclosed are two electronic copies and one original hard copy of a proposed application for a G70-B General Air Permit for the OXF-157 Natural Gas Production Well Site. The site currently operates under a G70-A General Air Permit (G70-A112A). Please note that this application satisfies a requirement in Consent Order CO-R13-E-2016-04, in which EQT Production Company is required to submit an application with the equipment specified in the consent order. A legal advertisement will be published in the next few days and proof of publication will be forwarded as soon as it is received. Please contact me for payment of the application fee by credit card.

If you have any questions concerning this permit application, please contact me at (412) 395-3699 or by email at abosiljevac@eqt.com.

Sincerely,

Alex Bosilievac EQT Corporation

Enclosures

EQT Production Company

G70-B General Permit Registration Application

OXF 157 Natural Gas Production Site

Permit No. G70-A112A

West Union, West Virginia

Prepared By:

ENVIRONMENTAL RESOURCES MANAGEMENT, Inc. Hurricane, West Virginia

April 2016

INTRODUCTION

EQT Production Company (EQT) is submitting this G70-B General Permit Registration to the WVDEP's Department of Air Quality to receive the authority to operate new units at the OXF-157 facility, currently permitted under G70-A112A. The site is located in Doddridge County, West Virginia. This application addresses the operational activities associated with the production of natural gas and condensates at the OXF-157 pad.

FACILITY DESCRIPTION

The EQT OXF-157 natural gas production site operates in Doddridge County, WV and consists of seven (7) natural gas wells. Natural gas and liquids (including water and condensates) are extracted from underground deposits. The natural gas is transported from the wells to a gas line for compression and additional processing, as necessary. The produced liquids are stored in storage vessels.

The applicant is currently authorized to operate the following:

- Seven (7) natural gas wells;
- Ten (10) 400 barrel (bbl) tanks for storage of condensate and water;
- Two (2) thermoelectric generator (TEG) each rated at 0.013 MMBtu/hr heat input;
- Two (2) enclosed combustion devices each with a capacity of 11.66 MMBtu/hr heat input;
- Two (2) line heaters each rated at 4.50 MMBtu/hr heat input;
- One (1) line heater rated at 1.00 MMBtu/hr heat input; and
- One (1) 140 bbl sand trap blowdown tank for storage of condensate and water.

The applicant seeks to authorize the operation of:

- One (1) 110 HP stationary natural gas compressor engine;
- One (1) line heater rated at 1.15 MMBtu/hr heat input; and
- One (1) line heater rated at 1.54 MMBtu/hr heat input.

The applicant seeks to authorize the removal of:

• One (1) line heater rated at 1.00 MMBtu/hr heat input.

A process flow diagram is included in this application in Attachment D.

STATEMENT OF AGGREGATION

The OXF-157 pad is located in Doddridge County, WV and operated by EQT Production Company. Stationary sources of air pollutants may require aggregation of total emission levels if these sources share the same industrial grouping, are operating under common control, and are classified as contiguous or adjacent properties. EQT operates the OXF-157 with the same industrial grouping as nearby facilities, and some of these facilities are under common control. EQT, however, is not subject to the aggregation of stationary emission sources because these sites do not meet the definition of contiguous or adjacent facilities.

The OXF-157 pad operates under SIC code 1311 (Crude Petroleum and Natural Gas Extraction). There are surrounding wells and compressor stations operated by EQT that share the same two-digit major SIC code of 13 for Crude Petroleum and Natural Gas Extraction. Therefore, the OXF-157 pad does share the same SIC codes as the surrounding wells and compressor stations.

EQT Production Company is the sole operator of the OXF-157 pad. EQT is also the sole operator of other production sites and compressor stations in the area. Therefore, EQT does qualify as having nearby operations under common control.

There are no EQT owned or operated sites within a one (1) mile radius of the OXF-157 pad. EQT's WEU-51 Natural Gas Production site is 1.4 miles north of the OXF-157 pad. Nearby sites do not meet the definition of contiguous or adjacent properties since they are not in contact and do not share a common boundary. Operations conducted at the OXF-157 site do not rely on or interact with other sites. Furthermore, operations separated by this distance do not meet the common sense notion of a "plant."

On August 18, 2015 the EPA Administrator signed the *Source Determination for Certain Emission Units in the Oil and Natural Gas Sector*. This notice is to clarify how properties in the oil and natural gas sector are determined to be adjacent in order to assist permitting authorities and permit applicants in making consistent source determinations. The following proposed regulatory text defines "adjacent" for the oil and gas sector in terms of proximity.

Pollutant emitting activities shall be considered adjacent if they are located on the same surface site, or on surface sites that are located within 1/4 mile of one another.

The OXF-157 and WEU-51 pads are located on surface sites located greater than EPA's ¼ mile proposed ruling. Although the applicant notes the proposed status of this adjacency determination, it is the only guidance available on a

finite distance impacting the adjacency determination, and has been noted due to lack of finalized guidance. Based upon the proximity of nearby facilities, EQT does not believe aggregation based upon adjacency is required.

Based on the above reasoning, EQT is not subject to the aggregation of stationary emission sources since the stationary sources are not considered contiguous or adjacent facilities.

REGULATORY DISCUSSION

This section outlines the State air quality regulations that could be reasonably expected to apply to the OXF-157 pad and makes an applicability determination for each regulation based on activities conducted at the site and the emissions of regulated air pollutants. This review is presented to supplement and/or add clarification to the information provided in the WVDEP G70-B permit application forms.

The West Virginia State Regulations address federal regulations, including Prevention of Significant Deterioration permitting, Title V permitting, New Source Performance Standards, and National Emission Standards for Hazardous Air Pollutants. The regulatory requirements in reference to OXF-157 are described in detail in the below section.

WEST VIRGINIA STATE AIR REGULATIONS

45 CSR 02 – To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers

The line heaters are indirect heat exchangers that combust natural gas but are exempt since the heat input capacities are less than 10 MMBtu/hr.

45 CSR 04 – To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contributes to an Objectionable Odor

Operations conducted at the OXF-157 wellpad are subject to this requirement. Based on the nature of the process at the wellpad, the presence of objectionable odors is unlikely.

45 CSR 06 - Control of Air Pollution from the Combustion of Refuse

The enclosed combustion device located on the OXF-157 natural gas production site is subject to this regulation. Per 45 CSR 6-4.3, opacity of emissions from the enclosed combustion device shall not exceed 20 percent, except as provided by

4.4. Particulate matter emissions from this unit will not exceed the levels calculated in accordance with 6-4.1.

§45-6-4.1 Determination for Maximum Allowable Particulate Emissions

Emissions (lb/hr) = F x Incinerator Capacity (tons/hr)

Incinerator Capacity = 0.12 tons per hour or 245 lbs/hr

 $\rho NG = 0.042$ lb/scf – Density of NG from EPA AP42 – Sections 1.4 and 3.2 (NG combustion)

$$\frac{140,000\ scf}{day} * \frac{1\ day}{24\ hours} * \frac{0.042\ lb}{scf} = \frac{245\ lb}{hr} = \frac{1,073\ tons}{year}$$

If the Incinerator Capacity is less than $15,000 \, lbs/hr$, then F = 5.43

F = 5.43 * (0.12 tons per hour)

F = 0.67 lbs / hour

The enclosed combustion devices utilize AP-42 Section 1.4 PM emission factors to determine emissions from the combustion of refuse natural gas. Based upon the type of fuel combusted and the emission factors utilized, the PM emissions from the enclosed combustion devices will be well below the maximum allowable particulate emissions mandated by 45 CSR 06.

45 CSR 10 - To Prevent and Control Air Pollution from the Emission of Sulfur Oxides

The line heaters are indirect heat exchangers that combust natural gas but are exempt since the heat input capacities are less than 10 MMBtu/hr.

45 CSR 13 – Permits for Construction, Modification, Relocation, and Operation of Stationary Sources of Air Pollutants

This G70-B permit application is being submitted for the operational activities associated with EQT's production of natural gas.

45 CSR 14 – Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution for the Prevention of Significant Deterioration

Federal construction permitting programs regulate new and modified sources of attainment pollutants under Prevention of Significant Deterioration (PSD). The G70B-applicability criterion excludes facilities that meet the definition of a major source as defined in 45 CSR 19 for being eligible for the general permit.

Operation of equipment at the OXF-157 pad will not exceed emission thresholds established by this permitting program. EQT will monitor future construction and modification activities at the site closely and will compare future increase in emissions with the PSD thresholds to ensure these activities will not trigger this program.

45 CSR 16 - Standards of Performance for New Stationary Sources (NSPS)

45CSR 16 applies to registrants that are subject to NSPS requirements described in more detail in the Federal Regulations section. Applicable requirements of NSPS, Subpart JJJJ and OOOO are included in the G70-B general permit.

This facility is expected to contain gas well affected facilities under Subpart OOOO. This facility will contain a spark ignition internal combustion engine subject to Subpart JJJJ. No additional NSPS are applicable for this facility. Additional discussion is provided in the Federal Regulation Discussion of this permit application.

45 CS R19 – Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution which Cause or Contributed to Non-attainment

Federal construction permitting programs regulate new and modified sources of non-attainment pollutants under Non-Attainment New Source Review (NNSR). The G70-B applicability criterion excludes facilities that meet the definition of a major source as defined in 45 CSR 19 for being eligible for the general permit.

Operation of equipment at the OXF-157 pad will not exceed emission thresholds established by either of these permitting programs. EQT will monitor future construction and modification activities at the site closely and will compare future increase in emissions with the NSR thresholds to ensure these activities will not trigger this program.

45 CSR 25 – Control of Air Pollution from Hazardous Waste Treatment, Storage, and Disposal Facilities

No hazardous waste will be burnt at this well site; therefore, it is not subject to this hazardous waste rule.

45 CSR 30 – Requirements for Operating Permits

45 CSR 30 applies to the requirements of the federal Title V operating permit program (40 CFR 70). The major source thresholds with respect to the West Virginia Title V operating permit program regulations are 10 tons per year (tpy) of a single HAP, 25 tpy of any combination of HAP, and 100 tpy of other regulated pollutants.

The potential emissions of regulated pollutants are below the corresponding threshold(s) at this facility after the proposed project. Therefore, the wellpad is not a major source for Title V purposes.

45 CSR 34 – National Emission Standards for Hazardous Air Pollutants (NESHAP)

45 CSR 34 applies to registrants that are subject to NESHAP requirements. Excluded from G70-B general permit eligibility are sources that are subject to NESHAP Subpart HHH.

The following NESHAP included in the G70-B permit are not subject to the OXF-157 facility:

• 40CFR63 Subpart HH (National Emission Standards for Hazardous Air Pollutants from Oil and Natural Gas Production Facilities).

FEDERAL REGULATIONS

40 CFR 60 Subpart JJJJ (Standards of Performance for Stationary Spark Ignition Internal Combustion Engines).

Subpart JJJJ sets forth nitrogen oxides (NOx), carbon monoxide (CO), and volatile organic compound (VOC) emission limits, fuel requirements, installation requirements, and monitoring requirements based on the year of installation of the subject internal combustion engine.

The Ford CSG-637 is a 110 HP EPA Certified 4 stroke rich burn (4SRB) spark ignition (SI) engine manufactured in 2015. Per 40CFR60.4230(a)(4)(iii), an engine manufactured on or after July 1, 2008 with a maximum engine power less than 500 HP must comply with the provisions of 40 CFR 60 Subpart JJJJ.

Emission standards contained in the EPA Certificate of Conformity issued to this engine conform to 40 CFR 60 Subpart JJJJ Table 1 - NOx, CO, VOC Emissions Standards for Stationary Non-Emergency SI Engines greater than 100 HP. Therefore, per 40CFR60.4243(a)(1), EQT must operate and maintain the certified stationary SI internal combustion engine and control device according to the manufacturer's emission-related written instructions to ensure applicable emission standards outlined in Part 60 Subpart JJJJ Table 1 are maintained. Additionally, performance testing is not required.

40 CFR 60 Subpart OOOO (Standards of Performance for Crude oil and Natural Gas Production, Transmission and Distribution)

EPA published the NSPS for the oil and gas sector on August 16, 2012. EPA published final amendments to the subpart on September 23, 2013.

Subpart OOOO establishes emission standards and compliance schedules for the control of volatile organic compounds (VOC) and sulfur dioxide (SO₂) emissions from affected facilities that commence construction, modification or reconstruction after August 23, 2011. The applicable provisions and requirements of Subpart OOOO are included under the G70-B permit.

The only affected facilities expected to be subject to Subpart OOOO located at the OXF-157 production pad are listed below:

• Each gas well affected facility, which is a single natural gas well.

There are several equipment types that will be installed at OXF-157 that do not meet the affected facility definitions as specified by EPA. These include pneumatic controllers and storage vessels.

<u>Pneumatic Controllers:</u> Pneumatic controllers installed at this facility will be intermittent bleed rate devices. Therefore, there will not pneumatic controller affected facilities located at this site.

Storage vessels: Based on PTE calculations included within this permit, each storage vessel will be manifolded and routed to an enclosed combustion device such that emissions from each of these tanks are expected to be below 6 tons per year (tpy) of VOC. Therefore, these tanks will not be considered group 2 storage vessel affected facilities as specified in §60.5365(e).

No additional NSPS are expected to be applicable to this facility.

40CFR63 Subpart ZZZZ (National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines)

Subpart ZZZZ establishes national emission limitations and operating limitations for hazardous air pollutants (HAPs) emitted from stationary reciprocating internal combustion engines (RICE) located at major and area sources of HAP emissions. This Subpart also establishes requirements to demonstrate initial and continuous compliance with the emission limitations and operating limitations.

The Ford CSG-637 is a 110 HP EPA Certified 4 stroke rich burn (4SRB) spark ignition (SI) engine manufactured in 2015. The engine meets the requirements of 40 CFR 60 Subpart JJJJ. Per 40CFR63.6590(c)(1), no further requirements apply for a new stationary RICE located at an area source subject to regulation under 40 CFR 60 Subpart JJJJ.

No additional NESHAP are expected to be applicable to this facility.

General Permit G70-B will establish an emission cap on the following regulated and hazardous air pollutants:

Pollutant	Maximum Annual Emission Limit (tons/year)	OXF-157 Potential to Emit (PTE) (tons/year)
Nitrogen Oxides	50	14.51
Carbon Monoxide	80	13.46
Volatile Organic Compounds	80	4.08
Particulate Matter - 10/2.5	20	8.07
Sulfur Dioxide	20	0.08
Any Single Hazardous Air Pollutant	8	0.23 (as C ₆ H ₁₄)
Total Hazardous Air Pollutants	20	0.32

The fugitive emissions of a stationary source shall not be considered in determining whether it is a major stationary source for the purposes of 45CSR30-2.26.b or for eligibility of this General Permit.

west virginia department of environmental protection

Division of Air Quality 601 57th Street SE Charleston, WV 25304 Phone (304) 926-0475 Fax (304) 926-0479 www.dep.wv.gov

G70-B GENERAL PERMIT REGISTRATION APPLICATION

PREVENTION AND CONTROL OF AIR POLLUTION IN REGARD TO THE CONSTRUCTION, MODIFICATION, RELOCATION, ADMINISTRATIVE UPDATE AND OPERATION OF NATURAL GAS PRODUCTION FACILITIES LOCATED AT THE WELL SITE

□ CONSTRUCTION □ MODIFICATION	CLASS I ADMINISTRATIVE UPDATE CLASS II ADMINISTRATIVE UPDATE					
RELOCATION						
SE	CTION 1. GENER	RAL INFORMATIO	N			
Name of Applicant (as registered with the V	VV Secretary of St	ate's Office): EQT	Production Company			
Federal Employer ID No. (FEIN): 25-0724	685	and the state of t				
Applicant's Mailing Address: 625 Liberty	Avenue, Suite 1	700				
City: Pittsburgh	State: PA		ZIP Code: 15	222		
Facility Name: OXF-157						
Operating Site Physical Address: 2520 Ma If none available, list road, city or town and		d, West Union, W	V 26456			
City: West Union, WV	Zip Code: 26456	}	County: Dod	dridge		
Latitude & Longitude Coordinates (NAD83 Latitude: 39.23609 Longitude: -80.76635	, Decimal Degrees	to 5 digits):				
SIC Code: 1311 NAICS Code: 211111		DAQ Facility ID 1 017-00139	No. (For existing facilities)			
C	ERTIFICATION (OF INFORMATION				
This G70-B General Permit Registration Application shall be signed below by a Responsible Official. A Responsible Official is a President, Vice President, Secretary, Treasurer, General Partner, General Manager, a member of the Board of Directors, or Owner, depending on business structure. A business may certify an Authorized Representative who shall have authority to bind the Corporation, Partnership, Limited Liability Company, Association, Joint Venture or Sole Proprietorship. Required records of daily throughput, hours of operation and maintenance, general correspondence, compliance certifications and all required notifications must be signed by a Responsible Official or an Authorized Representative. If a business wishes to certify an Authorized Representative, the official agreement below shall be checked off and the appropriate names and signatures entered. Any administratively incomplete or improperly signed or unsigned G70-B Registration Application will be returned to the applicant. Furthermore, if the G70-B forms are not utilized, the application will be returned to the applicant. No substitution of forms is allowed.						
I hereby certify that is an Authorized (e.g., Corporation, Partnership, Limited Lie obligate and legally bind the business. If the notify the Director of the Division of Air Q	ibility Company, A e business change:	Association Joint Ve s its Authorized Rep) and may		
I hereby certify that all information contained in this G70-B General Permit Registration Application and any supporting documents appended hereto is, to the best of my knowledge, true, accurate and complete, and that all reasonable efforts have been made to provide the most comprehensive information possible.						
Responsible Official Signature: Name and Title: Kenneth Kirk - Executive Vice President Phone: (412)553-5700 Email: kkirk@eqt.com Date: 7-7-2010						
If applicable: Authorized Representative Signature: Name and Title: Email:	Phone: Date:		Fax:			
If applicable: Environmental Contact_Alex Bosilievac Name and Title: Environmental Coordin Email: abosilievac@eqt.com	nator Phone: (41 Date:	12) 395-3699	Fax:			

OPERATING SITE INFORMATION

Briefly describe the proposed new operation and/or any change(s) to the facility: EQT proposes the addition of one (1) 1.15 mmBtu/hr line heater and one (1) low pressure separator to regulate flashing emissions from produced fluids originating from the phase separators. The low pressure separator will be installed between the phase separators and produced fluid tanks. A natural gas compressor engine will be installed to compress the natural gas realized at the low pressure separator and directed to the sales pipeline. EQT also proposes the replacement of a 1.00 mmBtu/hr with a 1.54 mmBtu/hr.

Directions to the facility: While traveling Route 50 West at the town of West Union turn left onto WV State Route 18. Travel for about 2 miles and turn left onto Maxwell Ridge (Route 13). Continue for over 2.5 miles, and make a sharp onto Oil Well Rd. Follow Oil Well Road for 0.6 miles and make a left at the fork. Then travel for 0.2 miles and make a sharp left (next left available). After a quarter of a mile make a left. Continue for 0.5 miles and the facility will appear on your right.

ATTACHMENTS AND SUPPORTING DOCUMENTS

ATTACHMENTS AND SUPPORTING DOCUMENTS					
I have enclosed the following required document	ts:				
Check payable to WVDEP - Division of Air Quality with the	appropriate application fee (per 45CSR13 and 45CSR22).				
 □ Check attached to front of application. □ I wish to pay by electronic transfer. Contact for payment (incl. name and email address): ☑ I wish to pay by credit card. Contact for payment (incl. name and email address): Alex Bosiljevac - abosiljevac@eqt.com 					
\times \$500 (Construction, Modification, and Relocation) \times \$1,000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ and/or Of	\square \$300 (Class II Administrative Update)				
□\$2,500 NESHAP fee for 40 CFR63, Subpart ZZZZ and/or H					
¹ Only one NSPS fee will apply. ² Only one NESHAP fee will apply. The Subpart ZZZZ NESF requirements by complying with NSPS, Subparts IIII and/or J. NSPS and NESHAP fees apply to new construction or if the so	JJJ.				
☐ Responsible Official or Authorized Representative Signatu	re (if applicable)				
⊠ Single Source Determination Form (must be completed in	its entirety) - Attachment A				
☐ Siting Criteria Waiver (if applicable) – Attachment B	☐ Current Business Certificate – Attachment C				
□ Process Flow Diagram – Attachment D	□ Process Description – Attachment E				
⊠ Plot Plan – Attachment F	⊠ Area Map – Attachment G				
⊠ G70-B Section Applicability Form – Attachment H	⊠ Emission Units/ERD Table – Attachment I				
□ Fugitive Emissions Summary Sheet – Attachment J					
☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	achment K				
 ⊠ Storage Vessel(s) Data Sheet (include gas sample data, US HYSYS, etc.), etc. where applicable) – Attachment L 	EPA Tanks, simulation software (e.g. ProMax, E&P Tanks,				
	Heater Treaters, In-Line Heaters if applicable) – Attachment				
\boxtimes Internal Combustion Engine Data Sheet(s) (include manufa N	acturer performance data sheet(s) if applicable) - Attachment				
□	nent O				
☐ Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalc TM input and output reports and information on reboiler if applicable) – Attachment P					
□ Pneumatic Controllers Data Sheet – Attachment Q					
☑ Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment R					
□ Facility-wide Emission Summary Sheet(s) – Attachment T					
□ Class I Legal Advertisement – Attachment U					
☑ One (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments					

All attachments must be identified by name, divided into sections, and submitted in order.

Table of Contents

ATTACHMENT A SINGLE SOURCE DETERMINATION FORM

ATTACHMENT B CITING CRITERIA WAIVER – (NOT APPLICABLE)

ATTACHMENT C BUSINESS CERTIFICATE

ATTACHMENT D PROCESS FLOW DIAGRAM

ATTACHMENT E PROCESS DESCRIPTION

ATTACHMENT F PLOT PLAN

ATTACHMENT G AREA MAP

ATTACHMENT H APPLICABILITY FORM

ATTACHMENT I EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

ATTACHMENT J FUGITIVE EMISSIONS SUMMARY SHEET

ATTACHMENT K GAS WELL AFFECTED FACILITY DATA SHEET

ATTACHMENT L STORAGE VESSEL DATA SHEET

ATTACHMENT M HEATER AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART Dc

ATTACHMENT N INTERNAL COMBUSTION ENGINE DATA SHEET

ATTACHMENT O TANKER TRUCK LOADING DATA SHEET

ATTACHMENT P GLYCOL DEHYDRATION UNIT DATA SHEET – (NOT APPLICABLE)

ATTACHMENT Q PNEUMATIC CONTROLLERS DATA SHEET

ATTACHMENT R AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION

DEVICE (ERD) SHEET

ATTACHMENT S EMISSION CALCULATIONS

ATTACHMENT T FACILITY-WIDE CONTROLLED EMISSIONS SUMMARY SHEET

ATTACHMENT U CLASS I LEGAL ADVERTISEMENT

Attachment A SINGLE SOURCE DETERMINATION FORM

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

Classifying multiple facilities as one "stationary source" under 45CSR13, 45CSR14, and 45CSR19 is based on the definition of Building, structure, facility, or installation as given in §45-14-2.13 and §45-19-2.12. The definition states:

"Ruilding Structure Facility or Installation" means all of the pollutant emitting activities which belong to the

same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the control of the same person (or persons under common control). Pollutant-emitting activities are a part of the same industrial grouping if they belong to the same "Major Group" (i.e., which have the same two (2)-digit code) as described in the Standard Industrial Classification Manual, 1987 (United States Government Printing Office stock number GPO 1987 0-185-718:QL 3).
Is there a facility owned by or associated with the natural gas industry located within one (1) mile of the proposed facility? Yes \square No X
If Yes, please complete the questionnaire on the following page (Attachment A).
Please provide a source aggregation analysis for the proposed facility below:
See Introduction for additional source aggregation analysis.

Attachment B CITING CRITERIA WAIVER – (NOT APPLICABLE)

Attachment C BUSINESS CERTIFICATE

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO:
EQT PRODUCTION COMPANY
625 LIBERTY AVE 1700
PITTSBURGH, PA 15222-3114

BUSINESS REGISTRATION ACCOUNT NUMBER:

1022-8081

This certificate is issued on:

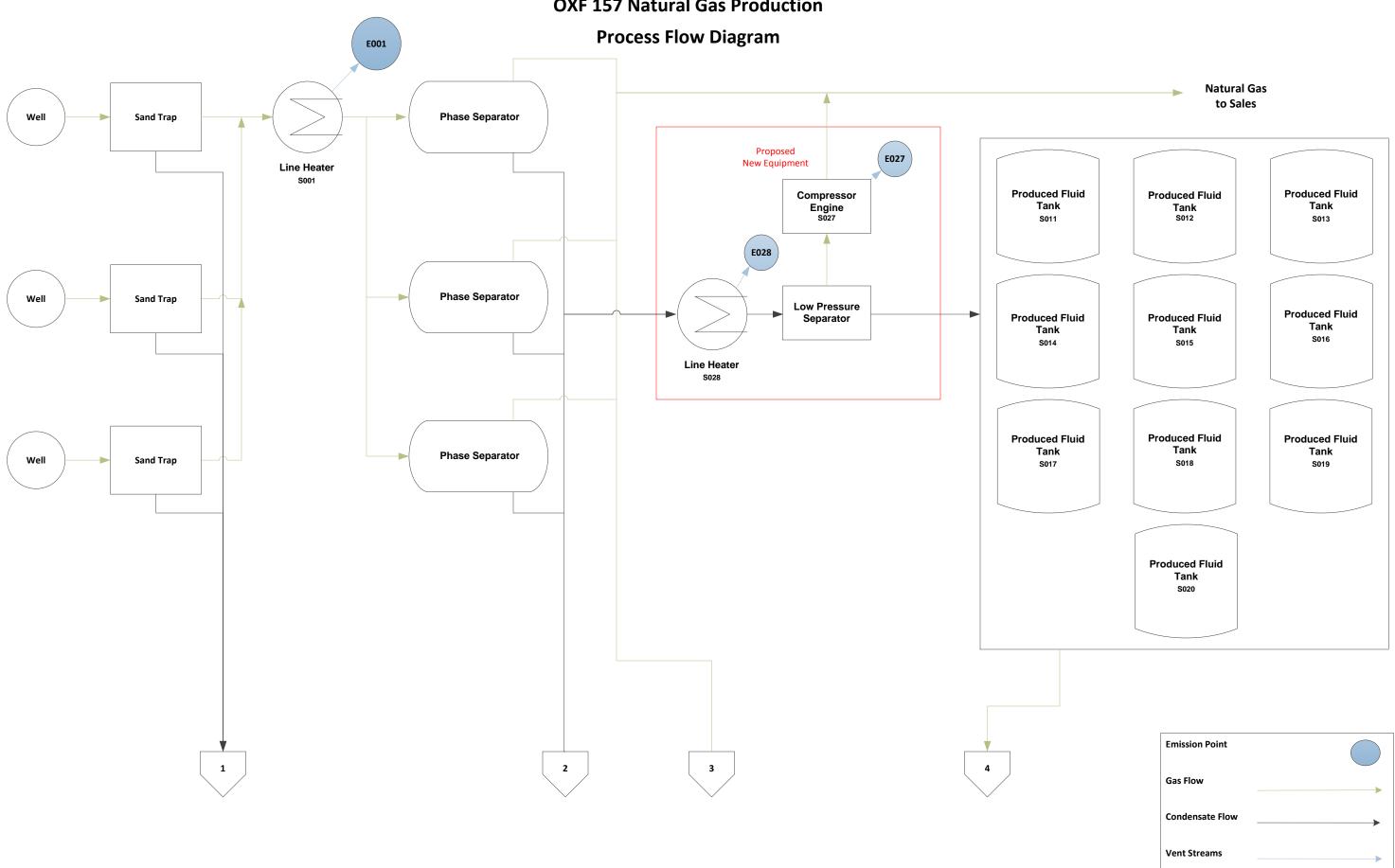
08/4/2010

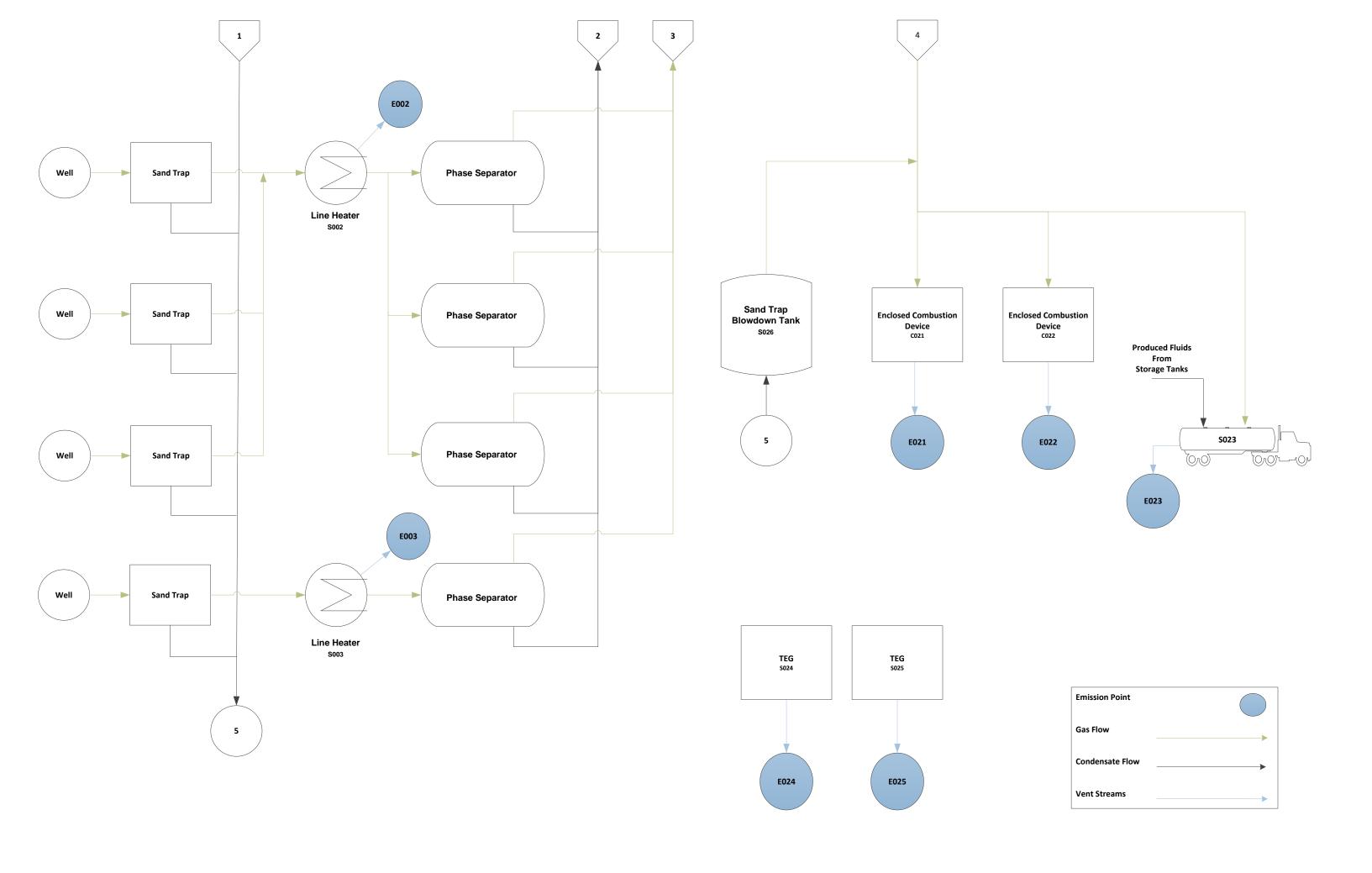
This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued. This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.


TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.


atL006 v.3 L0553297664

Attachment D PROCESS FLOW DIAGRAM

Attachment D

OXF 157 Natural Gas Production

Attachment E PROCESS DESCRIPTION

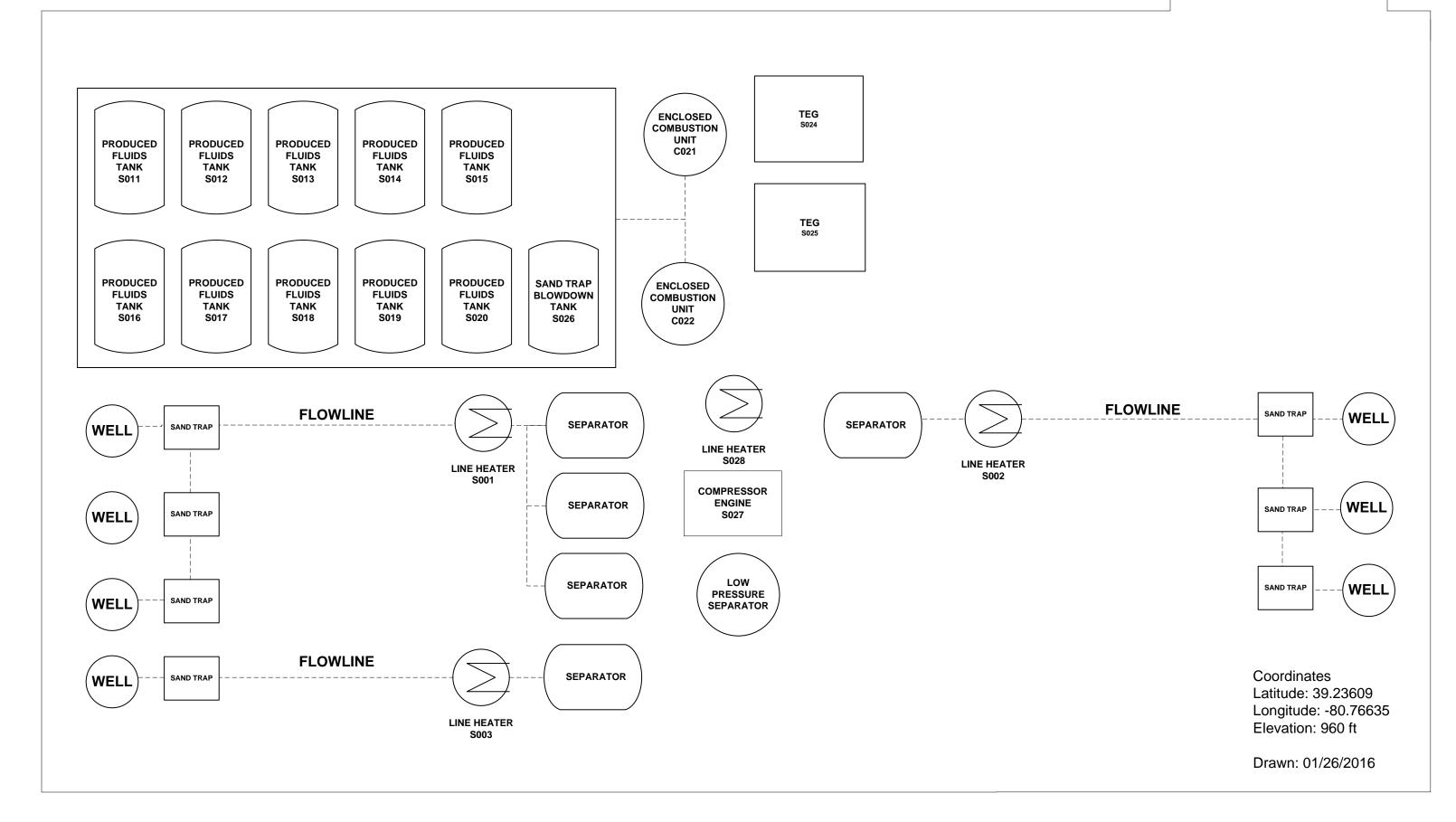
Attachment E Process Description

This permit modification application is being filed for EQT Production Company and addresses operational activities associated with the OXF-157 natural gas production site. Incoming raw natural gas from the seven (7) wells enters the site through a pipeline. The raw gas is first routed through the sand traps to remove sediment. Fluids from these sand traps are manually blown down to the sand trap blowdown tank (\$026), as needed. From the sand traps, raw gas is routed through line heaters (\$001-\$003) to assist with the phase separation process in the downstream phase separators. In the high pressure phase separators, produced fluids are removed from the raw gas before being dumped to a second stage of fluid separation. The produced fluids pass through a line heater (S028) to further assist in the separation process. At this low pressure separator, produced fluid pressure is reduced to 30 psig. Vapors realized at the low pressure separator are directed to a 110 bhp compressor engine (S027) and routed to the sales pipeline. Produced fluids from the low pressure separator are routed to the produced fluids storage tanks (S011-S020). Emissions from the produced fluids tanks and sand trap blowdown tank are directed to one of the two enclosed combustion devices (C021, C022) and combusted. Produced fluids are pumped into a tank truck (S023) on an as-needed basis and are disposed of off-site. Vapors during truck loading will be controlled by either of the two enclosed combustion devices.

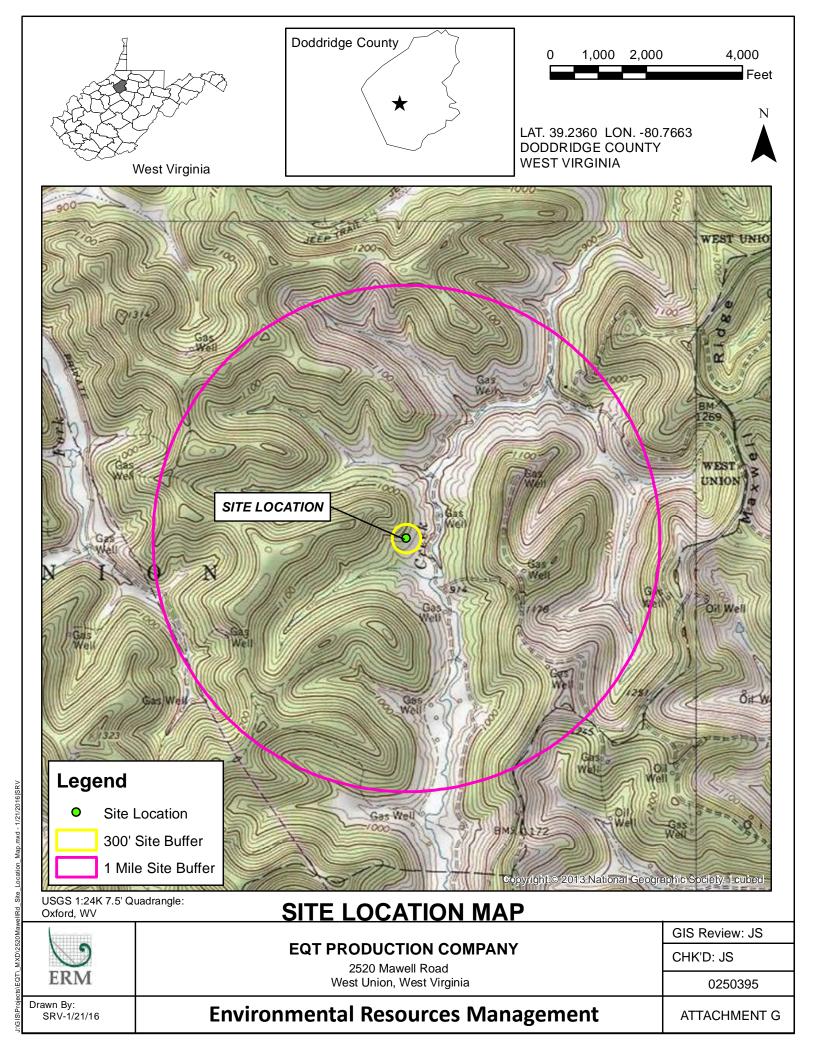
Two thermoelectric generation units (S024, S025) are operated and provide power to the OXF-157 natural gas production site.

A process flow diagram is included as Attachment D.

Attachment F PLOT PLAN


Plot Plan

z


EQT OXF 157 Natural Gas Production Site

Plant ID: 017-00139

TRUCK ENTRANCE

Attachment G AREA MAP

Attachment H APPLICABILITY FORM

ATTACHMENT H - G70-B SECTION APPLICABILITY FORM

General Permit G70-B Registration Section Applicability Form

General Permit G70-B was developed to allow qualified applicants to seek registration for a variety of sources. These sources include gas well affected facilities, storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, centrifugal compressors, reciprocating compressors, reciprocating internal combustion engines (RICEs), tank truck loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G70-B allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

GENERAL PERMIT G70-B APPLICABLE SECTIONS				
X Section 5.0	Gas Well Affected Facility (NSPS, Subpart OOOO)			
X Section 6.0	Storage Vessels Containing Condensate and/or Produced Water ¹			
□Section 7.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO)			
X Section 8.0	Control Devices and Emission Reduction Devices not subject to NSPS Subpart OOOO and/or NESHAP Subpart HH			
X Section 9.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc			
□Section 10.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO)			
□Section 11.0	Centrifugal Compressor Affected Facility (NSPS, Subpart OOOO) ²			
□Section 12.0	Reciprocating Compressor Affected Facility (NSPS, Subpart OOOO) ²			
X Section 13.0	Reciprocating Internal Combustion Engines, Generator Engines, Microturbines			
X Section 14.0	Tanker Truck Loading ³			
□Section 15.0	Glycol Dehydration Units ⁴			

- 1 Applicants that are subject to Section 6 may also be subject to Section 7 if the applicant is subject to the NSPS, Subpart OOOO control requirements or the applicable control device requirements of Section 8.
- 2 Applicants that are subject to Section 11 and 12 may also be subject to the applicable RICE requirements of Section 13.
- 3 Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 8.
- 4 Applicants that are subject to Section 15 may also be subject to the requirements of Section 9 (reboilers). Applicants that are subject to Section 15 may also be subject to control device and emission reduction device requirements of Section 8.

Attachment I

EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

ATTACHMENT I – EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment L table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type ⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
S001	E001	Line Heater	2015	2014	4.5 MMBtu/hr	Modification	NA	NA
S002	E002	Line Heater	2015	2014	4.5 MMBtu/hr	Modification	NA	NA
S003	E003	Line Heater	2015	2014	1.54 MMBtu/hr	Modification	NA	NA
S011	E021 E022	Produced Fluid Tank	2014	2014	400 bbl	Modification	C021 C022	NA
S012	E021 E022	Produced Fluid Tank	2014	2014	400 bbl	Modification	C021 C022	NA
S013	E021 E022	Produced Fluid Tank	2014	2014	400 bbl	Modification	C021 C022	NA
S014	E021 E022	Produced Fluid Tank	2014	2014	400 bbl	Modification	C021 C022	NA
S015	E021 E022	Produced Fluid Tank	2014	2014	400 bbl	Modification	C021 C022	NA
S016	E021 E022	Produced Fluid Tank	2014	2014	400 bbl	Modification	C021 C022	NA
S017	E021 E022	Produced Fluid Tank	2014	2014	400 bbl	Modification	C021 C022	NA
S018	E021 E022	Produced Fluid Tank	2014	2014	400 bbl	Modification	C021 C022	NA
S019	E021 E022	Produced Fluid Tank	2014	2014	400 bbl	Modification	C021 C022	NA
S020	E021 E022	Produced Fluid Tank	2014	2014	400 bbl	Modification	C021 C022	NA
C021	E021	Enclosed Combustion Device	2014	2014	11.66 MMBtu/hr	Modification	NA	NA
C022	E022	Enclosed Combustion Device	2014	2014	11.66 MMBtu/hr	Modification	NA	NA
S023	E021 E022 E023	Tank Truck Loading Rack	2014	2014	30,209 gal/day	Modification	NA	NA
S024	E024	Thermal Electric Generator	2014	2014	0.013 MMBtu/hr	Modification	NA	NA
S025	E025	Thermal Electric Generator	2014	2014	0.013 MMBtu/hr	Modification	NA	NA
S026	E021 E022	Sand Trap Blowdown Tank	2014	2014	140 bbl	Existing	C021 C022	NA

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type ⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
S027	E027	Natural Gas Compressor Engine	2016	2015	110 bhp	New	NA	Non-Selective Catalytic Reduction
S028	E028	Line Heater	2016	2015	1.15 MMBtu/hr	New	NA	NA

¹ For Emission Units (or Sources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation.
² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

*OXF-157 is currently permitted to operate under G70-A112A. To provide clarity to Attachment I, units are noted as "New" if they were not included in G70-A112A, "Existing" if there was no change from the permitted conditions, or "Modification" if there is a difference between the G70-A112A issued registration and the requested updates in this G70-B application. Updates are also included that utilize site specific data.

³ When required by rule

⁴ New, modification, removal, existing

⁵ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

⁶ For ERDs use the following numbering system: 1D, 2D, 3D,... or other appropriate designation.

Attachment J FUGITIVE EMISSIONS SUMMARY SHEET

	ATTACHMENT J – FUGITIVE EMISSIONS SUMMARY SHEET										
	Sources of fugitive emissions may include loading operations, equipment leaks, blowdown emissions, etc.										
	Use extra pages for each associated source or equipment if necessary.										
	Source/Equipment: Facility Wide Leak Detection										
	Leak Detection Method Used		☐ Audible, visual, and olfactory (AVO) inspections	☐ Infrared (FLIR) cameras	follow section			☐ None required			
Compone	Closed		Source of	Leak Factors	Stream type	Estimated Emissions (tpy)					
Type	Vent System	Count		er (specify))	(gas, liquid, etc.)	VOC	HAP	GHG (CO ₂ e)			
Pumps	☐ Yes ☐ No				☐ Gas ☐ Liquid ☐ Both						
Valves	☐ Yes ⊠ No	152	EPA, 40 CFR	R 98 Subpart W	⊠ Gas □ Liquid □ Both	0.12	0.02	14.58			
Safety Rel Valves	ief ☐ Yes ☐ No	4	EPA, 40 CFR	EPA, 40 CFR 98 Subpart W		<0.01	<0.01	0.57			
Open Ende Lines	ed ☐ Yes ⊠ No	10	EPA, 40 CFR	EPA, 40 CFR 98 Subpart W		0.02	<0.01	2.17			
Sampling Connection	□ Yes □ No				☐ Gas ☐ Liquid ☐ Both						
Connection (Not sampli		661	EPA, 40 CFR	R 98 Subpart W	⊠ Gas □ Liquid □ Both	0.06	0.01	7.04			
Compresso	□ Yes ⊠ No	1	component counts are to Compressor components (1	Table W-1B: Default average used for major equipment. 12 valves and 57 connections) and connection counts.	⊠ Gas □ Liquid □ Both						
Flanges	☐ Yes ☐ No				☐ Gas ☐ Liquid ☐ Both						
Other ¹	☐ Yes ☐ No				☐ Gas ☐ Liquid ☐ Both						
	• • •		compressor seals, relief valves, d								
Please provide an explanation of the sources of fugitive emissions (e.g. pigging operations, equipment blowdowns, pneumatic controllers, etc.): Fugitive emissions occur from sealed surfaces associated with production equipment, including equipment leaks.											

Please indicate if there are any closed vent bypasses (include component):

NA

Specify all equipment used in the closed vent system (e.g. VRU, ERD, thief hatches, tanker truck loading, etc.)

NA

Attachment K GAS WELL AFFECTED FACILITY DATA SHEET

ATTACHMENT K – GAS WELL AFFECTED FACILITY DATA SHEET

Complete this data sheet if you are the owner or operator of a gas well affected facility for which construction, modification or reconstruction commenced after August 23, 2011. This form must be completed for natural gas well affected facilities regardless of when flowback operations occur (or have occurred).

API Number	Date of Flowback	Date of Well Completion	Green Completion and/or Combustion Device
047-017-06458			Green Completion
047-017-06459			Green Completion
047-017-06460			Green Completion
047-017-06461			Green Completion
047-017-06462			Green Completion
047-017-06463			Green Completion
TBD			Green Completion

Note: If future wells are planned and no API number is available please list as PLANNED.

If there are existing wells that commenced construction prior to August 23, 2011, please acknowledge as existing.

This is the same API (American Petroleum Institute) well number(s) provided in the well completion notification and as provided to the WVDEP, Office of Oil and Gas for the well permit. The API number may be provided on the application without the state code (047).

Every oil and gas well permitted in West Virginia since 1929 has been issued an API number. This API is used by agencies to identify and track oil and gas wells.

The API number has the following format: 047-001-00001

Where,

047 = State code. The state code for WV is 047.

001 = County Code. County codes are odd numbers, beginning with 001

(Barbour) and continuing to 109 (Wyoming).

00001= Well number. Each well will have a unique well number.

Attachment L STORAGE VESSEL DATA SHEET

ATTACHMENT L – STORAGE VESSEL DATA SHEET

Delle Starrage Arra Name OVE 157 Starrage Touls Arrage	2. Tools Name Duraduced Fluid Tonks (CO11 CO20)					
1. Bulk Storage Area Name OXF-157 Storage Tank Area	2. Tank Name Produced Fluid Tanks (S011-S020)					
3. Emission Unit ID number S011-S020	4. Emission Point ID number E021 or E022					
5. Date Installed , Modified or Relocated (for existing tanks)	6. Type of change:					
04/2016 (anticipated)	☐ New construction ☐ New stored material ☒ Other					
Was the tank manufactured after August 23, 2011? ☐ Relocation						
⊠ Yes □ No						
7A. Description of Tank Modification (if applicable) Installation of low pressure separator.						
7B. Will more than one material be stored in this tank? If so, a	separate form must be completed for each material.					
☐ Yes						
7C. Was USEPA Tanks simulation software utilized?						
☐ Yes						
If Yes, please provide the appropriate documentation and items	s 8-42 below are not required.					
TANK INFORMATION						
8. Design Capacity (specify barrels or gallons). Use the internal	l cross-sectional area multiplied by internal height.					
16,800 gallons	OD T-ul-Internal II-i-le (fe)					
9A. Tank Internal Diameter (ft.) 12 10A. Maximum Liquid Height (ft.) 20	9B. Tank Internal Height (ft.) 20 10B. Average Liquid Height (ft.) 10					
	10B. Average Liquid Height (ft.) 10 11B. Average Vapor Space Height (ft.) 10					
11A. Maximum Vapor Space Height (ft.) 20 11B. Average Vapor Space Height (ft.) 10 12. Nominal Capacity (<i>specify barrels or gallons</i>). This is also known as "working volume". 16,800 gallons						
13A. Maximum annual throughput (gal/yr) 10,719,656	13B. Maximum daily throughput (gal/day) 29,369					
14. Number of tank turnovers per year 638	15. Maximum tank fill rate (gal/min) 20.40					
16. Tank fill method □ Submerged □ Splash						
17. Is the tank system a variable vapor space system? ☐ Yes	⊠ No					
If yes, (A) What is the volume expansion capacity of the system						
(B) What are the number of transfers into the system per y	-					
18. Type of tank (check all that apply):						
☐ Fixed Roof ☐ vertical ☐ horizontal ☐ flat roof	\square cone roof \square dome roof \square other (describe)					
☐ External Floating Roof ☐ pontoon roof ☐ double	deck roof					
☐ Domed External (or Covered) Floating Roof						
☐ Internal Floating Roof ☐ vertical column support	□ self-supporting					
☐ Variable Vapor Space ☐ lifter roof ☐ diaphragm	•					
☐ Pressurized ☐ spherical ☐ cylindrical						
☐ Other (describe)						
PRESSURE/VACUUM CONTROL DATA						
19. Check as many as apply:						
☐ Does Not Apply ☐ Rupt	ure Disc (psig)					
☐ Inert Gas Blanket of ☐ Carb	on Adsorption ¹					
□ Vent to Vapor Combustion Device¹ (vapor combustors, flare)	s, thermal oxidizers, enclosed combustors)					
☐ Conservation Vent (psig) ☐ Cond	lenser ¹					
-0.5 oz Vacuum Setting 14.0 oz Pressure Setting						
-0.5 oz Vacuum Setting 14.4 oz Pressure Setting						
☐ Thief Hatch Weighted ☐ Yes ☒ No - A lock down screw	hatch will be installed instead of Thief Hatch.					
¹ Complete appropriate Air Pollution Control Device Sheet						
20. Expected Emission Rate (submit Test Data or Calculations h	nere or elsewhere in the application).					

Material Name	Flashii	ng Loss	Breathi	ng Loss	Workin	g Loss	Total En	missions	Estimation Method ¹
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	Tpy	
Produced Fluid (Pre- Control)	25.37	111.13	0.01	0.05	0.04	0.19	25.43	111.37	O - ProMax

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.

TANK CONSTRUCTION AND OPERATION INFORMATION					
21. Tank Shell Construction:					
\square Riveted \square Gunite lined \square Epoxy			i		
21A. Shell Color: Green	21B. Roof Color: Gre	en	21C. Year	Last Painted: NA	
22. Shell Condition (if metal and unlined):					
\boxtimes No Rust \square Light Rust \square Dense	Rust Not application	able			
22A. Is the tank heated? \square Yes \boxtimes No	22B. If yes, operating t	emperature:	22C. If ye	s, how is heat provided to tank?	
23. Operating Pressure Range (psig):	1				
Must be listed for tanks using VRUs with					
24. Is the tank a Vertical Fixed Roof Tank ?		roof provide radius (ft):	24B. If ye	s, for cone roof, provide slop (ft/ft):	
⊠ Yes □ No	5 ft				
25. Complete item 25 for Floating Roof Tanks	\Box Does not apply	\boxtimes			
25A. Year Internal Floaters Installed:					
25B. Primary Seal Type (check one):	allic (mechanical) sho	e seal 🔲 Liquid mo	unted resili	ent seal	
□ Vap	or mounted resilient s	eal	scribe):		
25C. Is the Floating Roof equipped with a second	ndary seal?	□ No			
25D. If yes, how is the secondary seal mounted	? (check one)	e 🗆 Rim 🗆 Otl	her (describ	e):	
25E. Is the floating roof equipped with a weather	er shield?	□ No			
25F. Describe deck fittings:					
26. Complete the following section for Interna	l Floating Roof Tanks	□ Does not apply	y		
26A. Deck Type:	Velded	26B. For bolted decks, provide deck construction:			
26C. Deck seam. Continuous sheet constructio	n:				
\square 5 ft. wide \square 6 ft. wide \square 7 ft. wide	e □ 5 x 7.5 ft. wide	\square 5 x 12 ft. wide \square	other (de	escribe)	
26D. Deck seam length (ft.): 26E. Area	of deck (ft ²):	26F. For column supported 26G.		26G. For column supported	
		tanks, # of columns:		tanks, diameter of column:	
27. Closed Vent System with VRU? ☐ Yes [⊠ No				
28. Closed Vent System with Enclosed Combus	stor? ⊠ Yes □ No				
SITE INFORMATION					
29. Provide the city and state on which the data	in this section are based:	Charleston, WV			
30. Daily Avg. Ambient Temperature (°F): 70.	0	31. Annual Avg. Maximum Temperature (°F): 65.5			
32. Annual Avg. Minimum Temperature (°F): 4	14.0	33. Avg. Wind Speed (mph): 18 mph			
34. Annual Avg. Solar Insulation Factor (BTU/	ft²-day): 1,123	35. Atmospheric Pressure (psia): 14.7			
LIQUID INFORMATION					
36. Avg. daily temperature range of bulk	36A. Minimum (°F): 1	110	36B. Max	imum (°F): 110	
liquid (°F): 110			(- /		
37. Avg. operating pressure range of tank	37A. Minimum (psig):	0	37B. Maximum (psig): 0		
(psig): 0					
38A. Minimum liquid surface temperature (°F):	110	38B. Corresponding vapor pressure (psia): 0.1			
39A. Avg. liquid surface temperature (°F): 110)	39B. Corresponding va	apor pressure	e (psia): 0.1	
40A. Maximum liquid surface temperature (°F): 110		40B. Corresponding vapor pressure (psia): 0.1			

41. Provide the following for each liquid or gas to be stored in the tank. Add additional pages if necessary.				
41A. Material name and composition:	Produced Fluid			
41B. CAS number:				
41C. Liquid density (lb/gal):	7.97			
41D. Liquid molecular weight (lb/lb-mole):	19.311			
41E. Vapor molecular weight (lb/lb-mole):				
41F. Maximum true vapor pressure (psia):				
41G. Maximum Reid vapor pressure (psia):				
41H. Months Storage per year.	From: January To: December			
42. Final maximum gauge pressure and temperature prior to transfer into tank used as inputs into flashing emission calculations.	30 psig 110 F			

STORAGE TANK DATA TABLE

List all deminimis storage tanks (i.e. lube oil, glycol, diesel etc.)

Source ID # ¹	Status ²	Content ³	Volume ⁴
NA	NA	NA	NA

- 1. Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the compressor station. Tanks should be designated T01, T02, T03, etc.
- 2. Enter storage tank Status using the following:

EXIST Existing Equipment

NEW Installation of New Equipment

REM Equipment Removed

- 3. Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, diesel, mercaptan etc.
- 4. Enter the maximum design storage tank volume in gallons.

ATTACHMENT L – STORAGE VESSEL DATA SHEET

GENERAL INFORMATION (REQUIRED)

1 D II C. A N. OVE 157 Changes Touls	2 T 1 N Cond Two Dlondown Touls				
1. Bulk Storage Area Name OXF-157 Storage Tank	2. Tank Name Sand Trap Blowdown Tank				
Area 3. Emission Unit ID number S026	4. Emission Point ID number E021 or E022				
3. Emission Unit ID number 3020	4. Emission Point ID number E021 of E022				
5. Date Installed, Modified or Relocated (for existing tanks)	6. Type of change:				
Anticipated 04/2016	☐ New construction ☐ New stored material ☒ Other				
Was the tank manufactured after August 23, 2011?	☐ Relocation				
⊠ Yes □ No					
7A. Description of Tank Modification (if applicable) Install	ation of low pressure separator.				
7B. Will more than one material be stored in this tank? If so, a	separate form must be completed for each material.				
□ Yes ⊠ No					
7C. Was USEPA Tanks simulation software utilized?					
☐ Yes					
If Yes, please provide the appropriate documentation and items	8-42 below are not required.				
TANK INFORMATION					
8. Design Capacity (specify barrels or gallons). Use the interna 5,880 gallons	cross-sectional area multiplied by internal height.				
9A. Tank Internal Diameter (ft.) 10	9B. Tank Internal Height (ft.) 10				
10A. Maximum Liquid Height (ft.) 8	10B. Average Liquid Height (ft.) 5				
11A. Maximum Vapor Space Height (ft.) 8	11B. Average Vapor Space Height (ft.) 5				
12. Nominal Capacity (specify barrels or gallons). This is also known as "working volume". 5,880 gallons					
13A. Maximum annual throughput (gal/yr) 306,600	13B. Maximum daily throughput (gal/day) 840				
14. Number of tank turnovers per year 52	15. Maximum tank fill rate (gal/min) 4.1				
16. Tank fill method □ Submerged □ Splash	☑ Bottom Loading				
17. Is the tank system a variable vapor space system? ☐ Yes	⊠ No				
If yes, (A) What is the volume expansion capacity of the system					
(B) What are the number of transfers into the system per y	-				
18. Type of tank (check all that apply):					
☐ Fixed Roof ☐ vertical ☐ horizontal ☐ flat roof	\square cone roof \square dome roof \square other (describe)				
\square External Floating Roof \square pontoon roof \square double	deck roof				
☐ Domed External (or Covered) Floating Roof					
☐ Internal Floating Roof ☐ vertical column support	□ self-supporting				
☐ Variable Vapor Space ☐ lifter roof ☐ diaphragm					
☐ Pressurized ☐ spherical ☐ cylindrical					
☐ Other (describe)					
DDEGGLIDEALA CANAN CONTROL DATA					
PRESSURE/VACUUM CONTROL DATA					
19. Check as many as apply:□ Does Not Apply□ Rupt	ure Disc (psig)				
	on Adsorption ¹				
✓ Vent to Vapor Combustion Device¹ (vapor combustors, flare	-				
☐ Conservation Vent (psig) ☐ Cond					
Vacuum Setting Pressure Setting	Clisci				
Vacuum Setting Pressure Setting ⊠ Emergency Relief Valve (psig)					
-0.5 oz Vacuum Setting 14.4 oz Pressure Setting					
☐ Thief Hatch Weighted ☐ Yes ☐ No - Two 16 oz. weighted	d emergency hatches.				
¹ Complete appropriate Air Pollution Control Device Sheet	•				

20. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application).									
Material Name	Flashing Loss Breathing Loss		Working Loss Total		Total		Estimation Method ¹		
							Emissio	ns Loss	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
Produced Fluid (pre-control)	9.02	1.65	<0.01	<0.01	<0.01	0.01	9.02	1.65	O - ProMax

Assumed that all daily blowdowns occur in 1 hour, so the lb/hr emission rate is equivalent to the lb/day emission rate for this tank. Therefore, tpy emission rate is based on 1 blowdown per day x 365 days / 2,000 lbs/ton.

TANK CONSTRUCTION AND OPERATIO	N INCODMATION					
21. Tank Shell Construction:						
☐ Riveted ☐ Gunite lined ☐ Epox	v contad rivets 🖂 🔾	ther (describe) WFI	DED			
21A. Shell Color: Green	21B. Roof Color: Gr			Last Painted: NA		
22. Shell Condition (if metal and unlined):	21B. Roof Colof. G1		ZIC. Teal	Last I ainted. IVA		
, , , , , , , , , , , , , , , , , , ,	 ✓ No Rust ☐ Light Rust ☐ Dense Rust ☐ Not applicable 					
22A. Is the tank heated? ☐ Yes ☒ No		22B. If yes, operating temperature: 22C. If yes, how is heat provided to the second se				
2211. Is the tank neated. \square 103 \square 100	, , , , , ,	1		, <u>1</u>		
23. Operating Pressure Range (psig):						
Must be listed for tanks using VRUs with closed vent system.						
24. Is the tank a Vertical Fixed Roof Tank ?		roof provide radius (ft):	_	s, for cone roof, provide slop (ft/ft):		
☐ Yes	NA		NA			
25. Complete item 25 for Floating Roof Tanks	s ☐ Does not apply	\boxtimes				
25A. Year Internal Floaters Installed:						
25B. Primary Seal Type (check one):		-	unted resili	ent seal		
□ Vap	oor mounted resilient s	eal	scribe):			
25C. Is the Floating Roof equipped with a seco	ndary seal? Yes	□ No				
25D. If yes, how is the secondary seal mounted	l? (check one) 🗆 Sho	e \square Rim \square Otl	her (describ	e):		
25E. Is the floating roof equipped with a weath	er shield?	□ No				
25F. Describe deck fittings:						
26. Complete the following section for Interna	l Floating Roof Tanks	□ Does not apply				
26A. Deck Type: Bolted W	Velded	26B. For bolted decks.	, provide dec	k construction:		
26C. Deck seam. Continuous sheet construction	n:					
\square 5 ft. wide \square 6 ft. wide \square 7 ft. wide	e □ 5 x 7.5 ft. wide	☐ 5 x 12 ft. wide ☐	other (de	escribe)		
26D. Deck seam length (ft.): 26E. Area	of deck (ft ²):	26F. For column supp	orted	26G. For column supported		
		tanks, # of columns:		tanks, diameter of column:		
27. Class I Want Sports on social VDI 19. Vog	✓ No					
27. Closed Vent System with VRU? ☐ Yes28. Closed Vent System with Enclosed Combustions						
SITE INFORMATION	stor: 🖾 ies 🗆 ivo					
29. Provide the city and state on which the data	in this section are based:	Charleston, WV				
30. Daily Avg. Ambient Temperature (°F): 70		31. Annual Avg. Maxi		erature (°F): 65.5 °F		
32. Annual Avg. Minimum Temperature (°F): 4		33. Avg. Wind Speed				
34. Annual Avg. Solar Insulation Factor (BTU/				<u></u>		
LIQUID INFORMATION						
36. Avg. daily temperature range of bulk	36A. Minimum (°F): 8	33.2	36B Max	imum (°F): 83.2		
liquid (°F): 83.2	50/1. Minimum (1). C		JOD. WIAX			
37. Avg. operating pressure range of tank	37A. Minimum (psig):	0 psig	37B. Max	imum (psig): 0 psig		
(psig): 0 psig	, 5/	<u>.</u> .		0		
			1			

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

38A. Minimum liquid surface temperature (°F): 83.2		38B. Corresponding vapor pressure (psia): 0.1		
39A. Avg. liquid surface temperature (°F): 83.2		39B. Corresponding vapor pressure (psia): 0.1		
40A. Maximum liquid surface temperature (°F): 83.2			Corresponding vapor pressure (psia): 0.1	
41. Provide the following for each liquid or gas	to be stored in the tank.	Add add	litional pages if necessary.	
41A. Material name and composition:	Produced Flu	id		
41B. CAS number:				
41C. Liquid density (lb/gal):	8.04			
41D. Liquid molecular weight (lb/lb-mole):	19.305			
41E. Vapor molecular weight (lb/lb-mole):				
41F. Maximum true vapor pressure (psia):				
41G. Maximum Reid vapor pressure (psia):				
41H. Months Storage per year.	From: January To: December			
42. Final maximum gauge pressure and	307 psig			
temperature prior to transfer into tank used as	85 F			
inputs into flashing emission calculations.				

Gas Analytical

Report Date: Sep 14, 2015 9:23a

Client: Equitable Production Date Sampled: Sep 8, 2015 11:00a

Site: 514394 Analysis Date: Sep 11, 2015 2:17p

Field No: 9998 Collected By: J. Brown

Meter: 514394 Date Effective: Sep 8, 2015 12:00a

Source Laboratory Clarksburg (Bridgeport), WV Sample Pressure (PSI): 70.0

Lab File No: X_CH1-6024.CHR Sample Temp (°F):

Sample Type: Spot Field H2O: No Test Reviewed By: Field H2S: No Test

Component	Mol %	Gal/MSCF
Methane	78.1311	
Ethane	14.2559	3.79
Propane	4.0036	1.10
I-Butane	0.5947	0.19
N-Butane	1.1890	0.37
I-Pentane	0.3163	0.12
N-Pentane	0.3248	0.12
Nitrogen	0.4544	
Oxygen	<mdl< td=""><td></td></mdl<>	
Carbon Dioxide	0.1535	
Hexanes+	0.5767	0.24
TOTAL	100.0000	5.93

Analytical Results at Base Conditions (Real)				
BTU/SCF (Dry):	1,262.4954 BTU/ft³			
BTU/SCF (Saturated):	1,241.4002 BTU/ft ³			
PSIA:	14.730 PSI			
Temperature (°F):	60.00 °F			
Z Factor (Dry):	0.99644			
Z Factor (Saturated):	0.99604			

Analytical Results at Cor	Analytical Results at Contract Conditions (Real)									
BTU/SCF (Dry): 1,262.4954 BTU/ft ³										
BTU/SCF (Saturated):	1,241.4002 BTU/ft ³									
PSIA:	14.730 PSI									
Temperature (°F):	60.00 °F									
Z Factor (Dry):	0.99644									
Z Factor (Saturated):	0.99604									

Calculated Specific Gravities

Ideal Gravity: 0.7188 Real Gravity: 0.7211

Molecular Wt: 20.8177 lb/lbmol

Gross Heating Values are Based on: GPA 2145-09, 2186 Compressibility is Calculated using AGA-8.

Source Date	Notes
-------------	-------

Gas Analytical Sep 11, 2015 results to Bob Gum

Certificate of Analysis Number: 2030-15070269-001A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Gary Vermillion Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Aug. 04, 2015

Field:

EQT

Station Name: 513149-OXF 157 Pad

Station Number:

Sample Point: Submeter

Analyzed:

08/03/2015 15:53:03 by GR

Sampled By:

RM-GAS

Sample Of: Sample Date: Condensate

Spot

07/13/2015

Sample Conditions: 1052 psig

Method: Cylinder No: GPA-2186M/GPA-2103

0065

Analytical Data

Components	Mol. %	MW	Wt. %	Sp. Gravity	L.V. %	
Nitrogen	NIL	28.013	NIL	0.807	NIL	
Methane	26.433	16.043	6.890	0.300	13.674	
Carbon Dioxide	0.185	44.010	0.132	0.817	0.096	
Ethane	16.284	30.069	7.955	0.356	13.295	
Propane	11.163	44.096	7.997	0.507	9.388	
Iso-Butane	2.473	58,122	2.335	0.563	2.470	
n-Butane	6.130	58.122	5.788	0.584	5.899	
lso-Pentane	2.814	72,149	3.299	0.625	3.142	
n-Pentane	3.189	72.149	3.738	0.631	3.529	
i-Hexanes	2.494	85.322	3.455	0.666	3.088	
n-Hexane	2.130	86.175	2.982	0.664	2.674	
2,2,4-Trimethylpentane	0.009	114.231	0.016	0.697	0.014	
Benzene	0.058	78.114	0.073	0.885	0.049	
Heptanes	6.585	97.989	10.481	0.702	8.895	
Toluene	0.418	92.141	0.626	0.872	0.427	
Octanes	6.744	109.766	12.031	0.733	9.771	
Ethylbenzene	0.064	106.167	0.111	0.872	0.076	
Xylenes	0.108	106.167	0.185	0.885	0.125	
Nonanes	4.256	124.837	8.632	0.744	6.910	
Decanes Plus	8.463	169.272	23.274	0.841	16.478	
	100.000		100.000		100.000	
Physical Properties		1	otal	C10+		
Specific Gravity at 60°F		0.5	5954	0.8410		
API Gravity at 60°F		106	.151	36.752		
Molecular Weight		61	.552	169.272		
Pounds per Gallon (in Vacuu	ım)	4	.964	7.011		
Pounds per Gallon (in Air)		4	.959	7.004		
Cu. Ft. Vapor per Gallon @	14.73 psia	30	.534	15.683		

Hydrocarbon Laboratory Manager

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Attachment M

HEATER AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART Dc

ATTACHMENT M – SMALL HEATERS AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART DC DATA SHEET

Complete this data sheet for each small heater and reboiler not subject to 40CFR60 Subpart Dc at the facility. The Maximum Design Heat Input (MDHI) must be less than 10 MMBTU/hr.

Emission Unit ID# ¹	Emission Point ID# ²	Emission Unit Description (manufacturer, model #)	Year Installed/ Modified	Type ³ and Date of Change	Maximum Design Heat Input (MMBTU/hr) ⁴	Fuel Heating Value (BTU/scf) ⁵
S001	E001	Line Heater	2015	Modification	4.50	1,262
S002	E002	Line Heater	2015	Modification	4.50	1,262
S003	E003	Line Heater	2015	Modification	1.54	1,262
S024	E024	TEG	2015	Modification	0.013	1,262
S025	E025	TEG	2015	Modification	0.013	1,262
S028	E028	Line Heater	2016	New	1.15	1,262

*OXF-157 is currently permitted to operate under G70-A146. To provide clarity to Attachment M, units are noted as "New" if they were not included in G70-A146, "Existing" if there was no change from the permitted conditions, or "Modification" if there is a difference between the G70-A146 issued registration and the requested updates in this G70-B application. Updates are also included that utilize site specific data.

- Enter the appropriate Emission Unit (or Source) identification number for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.
- Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.
- New, modification, removal
- ⁴ Enter design heat input capacity in MMBtu/hr.
- ⁵ Enter the fuel heating value in BTU/standard cubic foot.

Attachment N INTERNAL COMBUSTION ENGINE DATA SHEET

ATTAC	CHMENT N	– INTER	NAL COM	IBUSTIO	N ENGINE	DATA S	HEET	
Emission Unit I	D#1	SO	27					
Engine Manufac	cturer/Model	Ford / (CSG-637					
Manufacturers I	Rated bhp/rpm	110 /	3200					
Source Status ²		N	IS					
Date Installed/ Modified/Remo	ved/Relocated ³	06/01	/2016					
Engine Manufaction		20	015					
Check all applicable Federal Rules for the engine (include EPA Certificate of Conformity if applicable) ⁵				□ NESHAP JJJJ Window	ied? Subpart IIII ed? Subpart ZZZZ ZZZZ/ NSPS	□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources		
Engine Type ⁶		4S	RB					
APCD Type ⁷		NS	CR					
Fuel Type ⁸		PQ						
H ₂ S (gr/100 scf))	0.25						
Operating bhp/r	pm	110 / 3,200						
BSFC (BTU/bh	o-hr)	6,552.9						
Hourly Fuel Thi	coughput	686.5 ft ³ /hr gal/hr			/hr l/hr	ft³/hr gal/hr		
Annual Fuel The (Must use 8,760 emergency gene	hrs/yr unless	6.01 MMft ³ /yr gal/yr		MMft³/yr gal/yr		MMft³/yr gal/yr		
Fuel Usage or H Operation Meter		Yes ⊠	No 🗆	Yes 🗆	Yes □ No □		No 🗆	
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) 11	Annual PTE (tons/year)	Hourly PTE (lb/hr) 11	Annual PTE (tons/year)	
COC	NO _x	0.24	1.03					
COC	СО	0.49	2.14					
COC	VOC	0.16	0.71					
AP	SO ₂	<0.01	<0.01					
AP PM (Filterable)		<0.01						
AP	PM (Condensable)	<0.01	0.03					
AP	Formaldehyde	0.01	0.06					
AP	Total HAPs	0.02	0.07					
AP	GHG (CO ₂ e)	82.58	361.69					

¹ Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.

2 Enter the Source Status using the following codes:

 NS
 Construction of New Source (installation)
 ES
 Existing Source

 MS
 Modification of Existing Source
 RS
 Relocated Source

 REM
 Removal of Source

4 Enter the date that the engine was manufactured, modified or reconstructed.

³ Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.

5 Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6 Enter the Engine Type designation(s) using the following codes:

2SLB Two Stroke Lean Burn 4SRB Four Stroke Rich Burn

4SLB Four Stroke Lean Burn

7 Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:

A/F Air/Fuel Ratio IR Ignition Retard

HEIS High Energy Ignition System SIPC Screw-in Precombustion Chambers PSC Prestratified Charge LEC Low Emission Combustion

NSCR Rich Burn & Non-Selective Catalytic Reduction

OxCat Oxidation Catalyst

SCR Lean Burn & Selective Catalytic Reduction

8 Enter the Fuel Type using the following codes:

PQ Pipeline Quality Natural Gas RG Raw Natural Gas /Production Gas D Diesel

9 Enter the Potential Emissions Data Reference designation using the following codes. Attach all reference data used.

MD Manufacturer's Data AP AP-42

GR GRI-HAPCalcTM OT Other (please list)

- 10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.
- 11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

Engine Air Pollution Control Device (Emission Unit ID# E027, use extra pages as necessary)

(Emission Unit ID# E027, use extra pages as necessary) Air Pollution Control Device Manufacturer's Data Sheet included? Yes 🗵 ⊠ NSCR \square SCR ☐ Oxidation Catalyst Provide details of process control used for proper mixing/control of reducing agent with gas stream: Manufacturer: Ford Model #: CSG-637 Design Operating Temperature: 1,600 °F Design gas volume: scfm Service life of catalyst: 5000 hrs Provide manufacturer data? ⊠Yes Operating temperature range for NSCR/Ox Cat: Volume of gas handled: 444.9 cfm at 1,600 °F Reducing agent used, if any: Ammonia slip (ppm): Pressure drop against catalyst bed (delta P): 6" inches of H₂O Provide description of warning/alarm system that protects unit when operation is not meeting design conditions: Is temperature and pressure drop of catalyst required to be monitored per 40CFR63 Subpart ZZZZ? ☐ Yes ⊠ No How often is catalyst recommended or required to be replaced (hours of operation)? 5000 hrs How often is performance test required? Initial Annual
Every 8,760 hours of operation
Field Testing Required 🛮 No performance test required. If so, why (please list any maintenance required and the applicable sections in NSPS/GACT, 40CFR60.4243(a)(1) - EQT must operate and maintain the certified stationary SI internal combustion engine and control device according to the manufacturer's emission-related written instructions, keep records of conducted maintenance to demonstrate compliance, but no performance testing is required.

EDI Ford Industrial LSI Fuel and Power Figures

CSG637

		Coo	alina		LPG				NG				
		Gas	soline			L	PG						
RPM	Power Cont. [HP]	Power Int. [HP]	BSFC [lb/hp-hr]	Fuel Consumption [gal/hr]	Power Cont. [HP]	Power Int. [HP]	BSFC [lb/hp-hr]	Fuel Consumption [gal/hr]	Power Cont. [HP]	Power Int. [HP]	BSFC [ft^3/hp- hr]	Fuel Consumption [ft^3/hr]	Fuel Consumption [btu/hr]
1500	42.3	47.0	0.48	3.7	52.1	57.9	0.34	4.1	47.8	53.1	6.81	361.8	379,914
1600	47.7	53.0	0.45	3.9	56.8	63.2	0.33	4.3	52.4	58.2	6.54	380.9	399,966
1700	52.2	58.0	0.43	4.1	60.0	66.7	0.33	4.6	54.7	60.8	6.58	400.0	420,019
1800	55.0	61.1	0.43	4.2	63.1	70.2	0.33	4.8	57.0	63.3	6.62	419.1	440,071
1900	58.5	65.0	0.42	4.4	66.3	73.7	0.33	5.0	60.1	66.7	6.57	438.2	460,124
2000	61.2	68.0	0.41	4.6	69.5	77.2	0.33	5.2	63.1	70.2	6.52	457.3	480,176
2100	65.7	73.0	0.40	4.7	73.1	81.2	0.33	5.5	66.0	73.4	6.49	476.4	500,229
2200	70.2	78.0	0.39	4.9	76.7	85.2	0.33	5.7	68.9	76.6	6.47	495.5	520,281
2300	74.7	83.0	0.37	5.0	81.1	90.1	0.32	5.9	73.0	81.1	6.34	514.6	540,334
2400	79.2	88.0	0.36	5.2	85.4	94.9	0.32	6.2	77.1	85.6	6.23	533.7	560,386
2500	82.8	92.0	0.35	5.3	89.4	99.3	0.31	6.4	80.7	89.6	6.17	552.8	580,439
2600	85.5	95.0	0.35	5.4	93.3	103.7	0.31	6.6	84.3	93.6	6.11	571.9	600,491
2700	87.3	97.0	0.35	5.5	95.9	106.6	0.31	6.9	87.0	96.6	6.12	591.0	620,544
2800	88.2	98.0	0.35	5.7	98.6	109.5	0.31	7.1	89.7	99.6	6.12	610.1	640,596
2900	89.1	99.0	0.36	5.8	101.0	112.3	0.32	7.3	92.6	102.9	6.11	629.2	660,649
3000	90.9	101.0	0.36	5.9	103.5	115.0	0.32	7.5	95.5	106.1	6.11	648.3	680,701
3100	93.6	104.0	0.35	6.0	104.8	116.5	0.32	7.8	97.3	108.1	6.17	667.4	700,754
3200	96.3	107.0	0.35	6.1	106.1	117.9	0.33	8.0	99.0	110.0	6.24	686.5	720,806

^{*}Fuel Consumption and BSFC listed is 100% Intermittent Load

^{*}Figures are Gross; Fan losses not accounted for.

Attachment O TANKER TRUCK LOADING DATA SHEET

ATTACHMENT O – TANKER TRUCK LOADING DATA SHEET										
Emission Unit	ID#: S02	23		Emissi E023	on Point ID#	: E021, E022	2,	Year Inst	alled/Modi	fied: 2014/2016
Emission Unit Description: Tank Truck Loading Rack										
Loading Area Data										
Number of Pur	Number of Pumps: 1 Number of Liquids Loaded: 1 Max number of trucks loading at one (1) time: 1									
	Are tanker trucks pressure tested for leaks at this or any other location? \square Yes \square No \square Not Required If Yes, Please describe:									
Provide description of closed vent system and any bypasses. Emissions collected and controlled by enclosed combustion device. Bypass is not available.										
Are any of the following truck loadout systems utilized? Closed System to tanker truck passing a MACT level annual leak test? Closed System to tanker truck passing a NSPS level annual leak test? Closed System to tanker truck not passing an annual leak test and has vapor return?										
	Pro	jected	Maximum	Operat	ing Schedul	e (for rack o	r transf	er point as	a whole)	
Time			Jan – Mai	ŗ	Apr	- Jun	J	ul – Sept		Oct - Dec
Hours/day			As neede	d	As ne	eeded	A	s needed		As needed
Days/week			As neede	d	As ne	eeded	A	s needed		As needed
			Bulk	Liquid	Data (use e	xtra pages as	necess	ary)		
Liquid Name			Proc	duced F	luids					
Max. Daily Th (1000 gal/day)				30.21						
Max. Annual 7 (1000 gal/yr)	Throughpu	ıt	11,026.56							
Loading Method ¹ BF										
Max. Fill Rate	<u></u>)		42						
Average Fill T (min/loading)			100 min							
Max. Bulk Liq Temperature (°F)		70 °F							
True Vapor Pro Cargo Vessel (3		NA U						
Control Equip					-					
Max. Collection	n Efficie	ncy		70 %						
Max. Control I	Efficiency	7		98 %						
Max.VOC	Loading (lb/hr)	;		0.15						
Emission Rate	Annual (ton/yr)			0.66						
Max.HAP Emission	Loading (lb/hr)	;		<0.01						
Rate	Annual (ton/yr)			0.02						
Estimation Me	thod ⁵		EPA A	AP-42, I	ProMax					
1 BF 2 At max 3 B	Ballast			SI C	P Splas	sh Fill ned		SUB U	Submerge	d Fill d (dedicated service)
CA ECD TO 5 EPA	many as Carbo Enclos Therm EPA I	apply n Adso sed Co nal Ox Emissi	(complete orption Indicate of the compustion Indication or the computer of the computer in the complete of the	Device Inciner n AP-42	VB F	Flare	ed Vapor	r Balance (d Materia	closed systematics of the system	em)
TM	Test N	/leasur	ement base	d upon 1	test data sub	mıttal	O	Other (de	escribe)	

Attachment P GLYCOL DEHYDRATION UNIT DATA SHEET (NOT APPLICABLE)

Attachment Q PNEUMATIC CONTROLLERS DATA SHEET

ATTACHMENT Q – PNEUMATIC CONTROLLERS DATA SHEET							
Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after August 23, 2011?							
☐ Yes No							
Please list approximate number.							
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after August 23, 2011?							
☐ Yes No							
Please list approximate number.							

Attachment R

AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION DEVICE (ERD) SHEET

ATTACHMENT R – AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION DEVICE SHEETS

VAPOR COMBUSTION

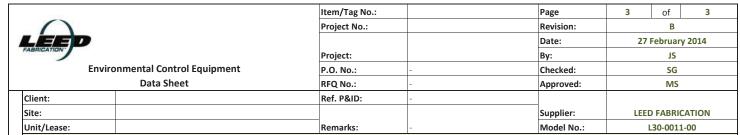
(Including Enclosed Combustors) **General Information** Installation Date: 2014 Control Device ID#: C021 Modified Modified ☐ Relocated New Maximum Design Heat Input (from Maximum Rated Total Flow Capacity Design Heat Content mfg. spec sheet) 188,000 scfd ~7,800 scfh **1,262** BTU/scf 11.66 MMBTU/hr **Control Device Information** Type of Vapor Combustion Control? ⊠ Enclosed Combustion Device ☐ Elevated Flare ☐ Ground Flare ☐ Thermal Oxidizer Manufacturer: LEED Fabrication Hours of operation per year? 8,760 Model: Enclosed Combustor 48" List the emission units whose emissions are controlled by this vapor control device (Emission Point ID# S011-S020, S023, S026)) Emission Emission **Emission Source Description Emission Source Description** Unit ID# Unit ID# S011-**Produced Fluid Tanks** S020 S023 **Tank Truck Loading Rack** S026 Sand Trap Blowdown Tank If this vapor combustor controls emissions from more than six (6) emission units, please attach additional pages. Assist Type (Flares only) Flare Height Tip Diameter Was the design per §60.18? ~25 feet Steam Air 4 feet ☐ Yes □ No Pressure Non Provide determination. Waste Gas Information Maximum Waste Gas Flow Rate Heat Value of Waste Gas Stream Exit Velocity of the Emissions Stream 102.93 (lb/hr) Variable BTU/ft3 Provide an attachment with the characteristics of the waste gas stream to be burned. **Pilot Gas Information** Number of Pilot Lights Fuel Flow Rate to Pilot Heat Input per Pilot Will automatic re-ignition **0.03** BTU/hr Flame per Pilot 1 be used? ~30 scfh ☐ Yes ⊠ No If automatic re-ignition is used, please describe the method. Is pilot flame equipped with a monitor to detect the If Yes, what type? ⊠ Thermocouple ☐ Infrared ⊠ Yes \square No presence of the flame? ☐ Ultraviolet ☐ Camera ☐ Other: Describe all operating ranges and maintenance procedures required by the manufacturer to maintain the warranty. (If unavailable, please indicate). See attached manufacture specification sheet. Additional information attached? Yes □ No Please attach copies of manufacturer's data sheets, drawings, flame demonstration per §60.18 or §63.11(b) and

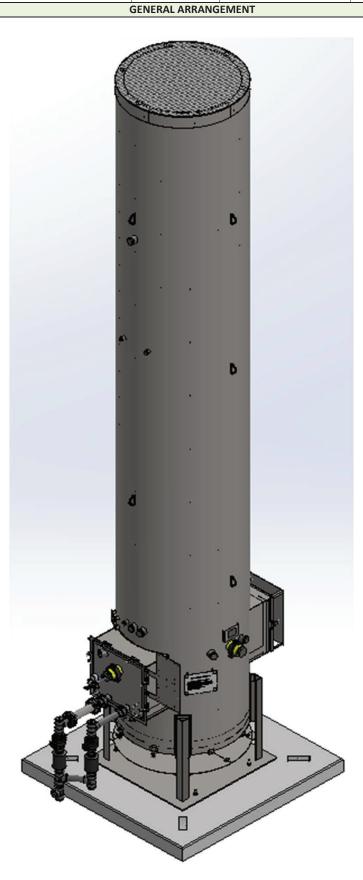
performance testing.

	VAPOR COMBUSTION								
(Including Enclosed Combustors)									
General Information									
Control De	vice ID#: C022			Installation New		014 Aodified	Relocated		
Maximum 1 ~7,800 scf	Rated Total Flow C h 188,000			Maximum Heat Input mfg. spec 11.66 MMBTU/h	(from sheet)	Design Heat Content 1,262 BTU/scf			
			Control Devic	e Informati	on				
⊠ Enclose	ed Combustion Devi l Oxidizer	ce	Type of Vapor Co		ontrol?		Ground Flare		
	rer: LEED Fabrica closed Combusto			Hours of o	peration	per year? 8	,760		
List the em S023 , S02		emissions	s are controlled by this	vapor conti	ol device	e (Emission	Point ID# \$011-\$020 ,		
Emission Unit ID#	Emission Source I	Descriptio	on	Emission Unit ID#	Emissio	ion Source Description			
S011- S020	Produced Fillid Lanks								
S023	Tank Tr	uck Loa	ding Rack						
S026	Sand Tra	p Blow	down Tank						
If this	vapor combustor c	ontrols e	missions from more the	an six (6) en	nission un	iits, please	attach additional pages.		
Assist Type	e (Flares only)		Flare Height	Tip Diameter			Was the design per §60.18?		
Steam Pressur	e Air		~25 feet	4 feet			☐ Yes ☐ No Provide determination.		
			Waste Gas l	Information	ı				
Maxim	ım Waste Gas Flow 102.93 (lb/hr)	Rate	Heat Value of W Variable		eam	Exit Vel	ocity of the Emissions Stream (ft/s)		
	Provide an	attachme	ent with the characteri	stics of the v	vaste gas	stream to	be burned.		
			Pilot Gas I	nformation					
Number	Flow Rate to Pilot Flame per Pilot ~30 scfh	Heat Input per Pilot 0.03 BTU/hr			Will automatic re-ignition be used? □ Yes ⊠ No				
If automati	c re-ignition is used	l, please	describe the method.						
	Is pilot flame equipped with a monitor to detect the presence of the flame? ✓ Yes ✓ No If Yes, what type? ✓ Thermocouple ✓ Infrared ✓ Ultraviolet ✓ Camera ✓ Other:								
			tenance procedures requested manufacture s				intain the warranty. (If		
	•		es	flame demo	nstration	per §60.18	or §63.11(b) and		

Battery Pack

Project:	
P O No ·	_


Item/Tag No.: Project No.:


Page	1	of	2
Revision:		В	
Date:	27 1	ebruar	y 2014
Ву:		JS	

	FABRICATION"						Date	e:	27 February 2014		
,				Project:			Ву:		JS		
	Environ	nental Control Equipment		P.O. No.:	-	-		cked:	SG		
		Data Sheet		RFQ No.:	-		Арр	roved:	MS		
	Client:			Ref. P&ID:	-						
	Site:							plier:	LEED FABRICATION		
	Unit/Lease:			Remarks:	-		Mod	del No.:	L30-0011-00		
				GEN	NERAL						
	Design Code:					NDE:		L	EED Fabrication Standards		
	Service:	0. 1.15				Custome	er Specs:		Yes		
3	Description:	Standard Dua	Stage 48 High Eff						✓ No		
					ESS DATA						
	Gas Composition:			mol %	Process Conditions:		Malue	1	_		
					Variable		Value	Unit			
4	Methane				Flow Rate		Up to 140	Msci			
5	Ethane				Pressure		Up to 12	oz/ir	12		
6	Propane				Temperature			°F			
7	I-Butane				Molecular Wei	-					
8	n-Butane				Process/Waste St		✓ Gas		Liquid		
9	I-Pentane				Detailed Process De				ng rate indicated above.		
10	n-Pentane				2. DRE: 98 % operation			mai operatii	ig rate muicated above.		
11	n-Hexane				3. Burner Pressure I	_	-				
12	CO2						,				
13	N2										
14	Helium										
15	H ₂ O										
16	C7										
17	C8										
18	C9										
19	C10										
20	C11+										
21	Out C	TOTAL	-	DDM/I/	A ilabla Hailiaiaa.						
22	Other Components:			PPMV	Available Utilities: Fuel / Pilot G	20		Min 20nois	Natural Gas /Propane 40-50 SCF		
22					Instrument A				Natural Gas / Propane 40-50 SCF		
23	Benzene				Power	VII.		NA	L. Color Branco		
24	Toluene								Iz or Solar Power		
25 26	E-Benzene										
20	Xylene			DESIG	Purge Gas						
27	Ambient Temperatures:					Doguiros			Under 85 dBA		
28	Ambient remperatures.	Low, °F	-20		Noise Performance Requirements: Structural Design Code:				Olidel 83 dBA		
29		High, °F	120		•				ASCE		
	Design Conditions:	Pressure/Temperature	12	0	Wind Design Code:				ASCE		
	Max. Relative Humidity,		90	1		Pressure	/Speed		100 mph		
	Elevation (ASL), ft	70	30	,		Category			100 111011		
	Area Classification:		Class I	Div 2	Seismic Design Code		<u> </u>				
	Electrical Design Code:		NE NE		Seisiffic Design Code	Location					
34	Electrical Design Code.		1		SPECIFICATION	Location					
35	Type:	Elevated 🗸	Enclosed		Equipment Design:						
36	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Above Ground	LIICIOSCO			`omnonor	**	M	atorial / Sizo / Bating / Other		
37		_=	Multiple Stack			Componer	11.	IVIC	aterial / Size / Rating / Other		
38		Portable / Trailer	pio otton		Burner Tir	/ Acciet /	Gas Burner		304 SS		
39		Tortable / Trailer							Carbon Steel		
	Smokeless By:	Steam	Assist Air		Pilot	urner Boo	ч		Carpoli Steel		
41			Staging			Pilot Tip			304 SS		
42			gii ig		n	Pilot Line(s	s)		Carbon Steel		
	Stack:	✓ Self Supporting			Firebox / Stack	not tille(-1		Carboll Steel		
	Flare Burner:	_=	Smokeless	Gas Assist	. HEDOX / SIGUR	Shell			Carbon Steel		
	Pilot:	✓ Intermittent	Continuous	_ Gas Haalat		Piping			Carbon Steel		
	Pilot Air Inspirator:	✓ Local	Remote			Nozzles			Carbon Steel		
47	Pilot Flame Control:	□ No □		uple)		Flanges			Carbon Steel		
48	ot Hame control.		_ : == (::::::::::::::::::::::::::::::	/		Insulation	1		Blanket		
	Pilot Ignition:	Flamefront Generator	/ Inspirating Ignit	tor		sulation P			304 SS		
50	i not ignition.	Electronic		Manual		Refractor			NA		
51		With Pilot Flame Control	acomade	i iuriuui		actory An			NA NA		
52		With Auto Pilot Re-Ignition	1			rs and Pla			NA NA		
53						mple Con			Per EPA requirements		
	Pilot Ignition Backup:	Manual Specify: i.e	Piezo-Electric			Sight Glas			2		
	ot .ption backup.	Specify. I.e.			,		-		-		

Other

Inmental Control Equipment Data Sheet Thermocouple UV Scanner	Project No.: Project: P.O. No.: RFQ No.: Ref. P&ID: Remarks: EQUIPMEN Ionization Rod	T SPECIFICATION Auxiliary Equipment Vi Blo Dai Inlet KO Flame / Deto Instrumentation & Con Solenoids / S Flow Calo Pressure Switc Therm Temperature Sw	Shut-Off Valves Meters rimeter :hes/Transmitters	27 February 2014 JS d: SG ed: MS r: LEED FABRICATION		
Data Sheet Thermocouple UV Scanner	Project: P.O. No.: RFQ No.: Ref. P&ID: Remarks:	T SPECIFICATION Auxiliary Equipment Vi Blo Dai Inlet KO Flame / Deto Instrumentation & Con Solenoids / S Flow Calo Pressure Switc Therm Temperature Sw	Date: By: Checke Approv Supplie Model alves owers mpers / Liquid Seal onation Arrestor atrols Shut-Off Valves rimeter ches/Transmitters	27 February 2014 JS d: SG ed: MS PT: LEED FABRICATION No.: L30-0011-00 NA NA NA NA NA Yes Check with Sales for available config.		
Data Sheet Thermocouple UV Scanner	P.O. No.: RFQ No.: Ref. P&ID: Remarks: EQUIPMEN	Auxiliary Equipment V: Blo Dai Inlet KO, Flame / Deto Instrumentation & Con Solenoids / S Flow Calo Pressure Switc Therm Temperature Sw	By: Checke Approv Supplie Model Supplie Model Liquid Seal Checke Approv Supplie Model Model Supplie Model Model Supplie Model Model Supplie Model Supplie Model Model Supplie Model	JS d: SG ed: MS rr: LEED FABRICATION No.: L30-0011-00 NA NA NA NA NA Yes Check with Sales for available config.		
Data Sheet Thermocouple UV Scanner	P.O. No.: RFQ No.: Ref. P&ID: Remarks: EQUIPMEN	Auxiliary Equipment V: Blo Dai Inlet KO, Flame / Deto Instrumentation & Con Solenoids / S Flow Calo Pressure Switc Therm Temperature Sw	Checke Approv Supplie Model alves Description Approv Supplie Model Approv Supplie Model Approv Approv Supplie Model Approv Approv Supplie Approv Approv Approv Supplie Approv Ap	d: SG ed: MS r: LEED FABRICATION No.: L30-0011-00 NA NA NA NA Yes Check with Sales for available config.		
Data Sheet Thermocouple UV Scanner	RFQ No.: Ref. P&ID: Remarks: EQUIPMEN	Auxiliary Equipment V: Blo Dai Inlet KO, Flame / Deto Instrumentation & Con Solenoids / S Flow Calo Pressure Switc Therm Temperature Sw	Approv Supplie Model Model alves Description Approv Supplie Model Approv Model Approv	red: MS r: LEED FABRICATION No.: L30-0011-00 NA NA NA NA Yes Check with Sales for available config.		
☐ Thermocouple ☑ UV Scanner	Ref. P&ID: Remarks: EQUIPMEN	Auxiliary Equipment V: Blo Dai Inlet KO, Flame / Deto Instrumentation & Con Solenoids / S Flow Calo Pressure Switc Therm Temperature Sw	Supplie Model Model alves Description Alves Description Alves Description Alves Alves Description Alves Alves	No.: LEED FABRICATION No.: L30-0011-00 NA NA NA NA NA Yes Check with Sales for available config.		
UV Scanner	Remarks: EQUIPMEN	Auxiliary Equipment V: Blo Dai Inlet KO, Flame / Deto Instrumentation & Con Solenoids / S Flow Calo Pressure Switc Therm Temperature Sw	alves bowers mpers / Liquid Seal bonation Arrestor strols Shut-Off Valves rimeter ches/Transmitters	No.: L30-0011-00 NA NA NA NA Yes Check with Sales for available config.		
UV Scanner	EQUIPMEN	Auxiliary Equipment V: Blo Dai Inlet KO, Flame / Deto Instrumentation & Con Solenoids / S Flow Calo Pressure Switc Therm Temperature Sw	alves bowers mpers / Liquid Seal bonation Arrestor strols Shut-Off Valves rimeter ches/Transmitters	No.: L30-0011-00 NA NA NA NA Yes Check with Sales for available config.		
UV Scanner	EQUIPMEN	Auxiliary Equipment V: Blo Dai Inlet KO, Flame / Deto Instrumentation & Con Solenoids / S Flow Calo Pressure Switc Therm Temperature Sw	alves bowers mpers / Liquid Seal bonation Arrestor strols Shut-Off Valves rimeter ches/Transmitters	No.: L30-0011-00 NA NA NA NA Yes Check with Sales for available config.		
UV Scanner	EQUIPMEN	Auxiliary Equipment V: Blo Dai Inlet KO, Flame / Deto Instrumentation & Con Solenoids / S Flow Calo Pressure Switc Therm Temperature Sw	alves bowers mpers / Liquid Seal bonation Arrestor strols Shut-Off Valves Meters rimeter ches/Transmitters	NA NA NA NA Yes Check with Sales for available config.		
UV Scanner		Auxiliary Equipment V: Blo Dai Inlet KO, Flame / Deto Instrumentation & Con Solenoids / S Flow Calo Pressure Switc Therm Temperature Sw	owers mpers / Liquid Seal onation Arrestor trols Shut-Off Valves Meters rimeter ches/Transmitters	NA NA NA Yes Check with Sales for available config.		
UV Scanner		Vi Black Bla	owers mpers / Liquid Seal onation Arrestor trols Shut-Off Valves Meters rimeter ches/Transmitters	NA NA NA Yes Check with Sales for available config.		
		Blow Dail Inlet KO , Flame / Deto Instrumentation & Con Solenoids / Solenoids	owers mpers / Liquid Seal onation Arrestor trols Shut-Off Valves Meters rimeter ches/Transmitters	NA NA NA Yes Check with Sales for available config.		
		Inlet KO , Flame / Deto Instrumentation & Con Solenoids / S Flow Calo Pressure Switc Therm Temperature Sw	mpers / Liquid Seal conation Arrestor strols Shut-Off Valves Meters rimeter ches/Transmitters	NA NA Yes Check with Sales for available config.		
		Inlet KO / Flame / Deto Instrumentation & Con Solenoids / S Flow Calo Pressure Switc Therm Temperature Sw	/ Liquid Seal conation Arrestor ctrols Shut-Off Valves Meters rimeter ches/Transmitters	NA Yes Check with Sales for available config.		
		Flame / Deto Instrumentation & Con Solenoids / S Flow Calo Pressure Switc Therm Temperature Sw	onation Arrestor Introls Shut-Off Valves Meters rimeter Ches/Transmitters	Yes Check with Sales for available config.		
		Flame / Deto Instrumentation & Con Solenoids / S Flow Calo Pressure Switc Therm Temperature Sw	onation Arrestor Introls Shut-Off Valves Meters rimeter Ches/Transmitters	Yes Check with Sales for available config.		
		Instrumentation & Con Solenoids / S Flow Calo Pressure Switc Therm Temperature Sw	itrols Shut-Off Valves Meters rimeter ches/Transmitters	Check with Sales for available config.		
		Solenoids / S Flow Calo Pressure Switc Therm Temperature Sw	Shut-Off Valves Meters rimeter :hes/Transmitters			
		Flow Calo Pressure Switc Therm Temperature Sw	Meters rimeter ches/Transmitters			
		Calo Pressure Switc Therm Temperature Sw	rimeter ches/Transmitters	NA		
		Pressure Switch Therm Temperature Sw	ches/Transmitters			
		Therm Temperature Sw		NA		
		Therm Temperature Sw		NA		
		Temperature Sw		Check with Sales for available config.		
		E				
	-			NA Charle with Calca far available config		
		C	BMS	Check with Sales for available config.		
			EMS	NA		
		0	ther	NA		
	-					
u						
	FABRICATION	N AND INSPECTION		•		
Skid Mounted 🗸 C	oncrete Pad	T	Equipment	Info		
Other	5.10.000.00	Com				
Outlet		İ	ponent	Weight / Dimensions		
C Vandau Chandaud		Burner				
✓ Vendor Standard			Assembly			
Other. Specify:		Stack				
✓ Vendor Standard		Stack /	Assembly	48 " OD x 25 ' H		
MTR		Pilo	ot Tip			
Certificate of Complian	ce	Pilot	t Line(s)			
Other (Specify):		Stack	Assembly			
✓ Vendor Standard		Auxiliary Equipment	,			
Radiography. Specify:		Blo				
Ultrasonic. Specify:			/ Liquid Seal			
Liquid Penetrant.		İ	onation Arrestor	+		
Magnetic Particles.			Skid	+		
PMI. Specify:		Instrumentation & Con		1		
Other. Specify:		E	BMS			
✓ Vendor Standard		Contr	rol Panel			
Other. Specify:						
✓ Vendor Standard						
Other. Specify:						
✓ Vendor Standard						
Other, Specify:						
				†		
				<u> </u>		
	Vendor Standard Other. Specify:					

§ MMBTU/hr values are calculated based on 1500 BTU/scf gas

Flare Size	# of Orifices (N)	Pressure (OZ/in²)	m³/s	mSCFD	MMBTU/hr
18	# 01 Offfices (N)	, ,	0.0021	6.34	0.39
-		2	0.0021		
18 18	2	3	0.0029	8.97 10.99	0.56 0.68
18	2	4	0.0036	12.69	0.78
18	2	5	0.0042	14.18	0.78
18	2	6	0.0040	15.54	0.88
18	2	7	0.0055	16.78	1.04
18	2	8	0.0059	17.94	1.11
18	2	9	0.0062	19.03	1.18
18	2	10	0.0066	20.06	1.24
18	2	11	0.0069	21.04	1.30
18	2	12	0.0072	21.97	1.36
18	2	13	0.0072	22.87	1.42
18	2	14	0.0078	23.73	1.47
18	2	15	0.0081	24.57	1.52
18	2	16	0.0083	25.37	1.57
18	2	17	0.0086	26.15	1.62
18	2	18	0.0088	26.91	1.67
24	4	1	0.0042	12.69	0.78
24	4	2	0.0059	17.94	1.11
24	4	3	0.0072	21.97	1.36
24	4	4	0.0083	25.37	1.57
24	4	5	0.0093	28.37	1.76
24	4	6	0.0102	31.08	1.92
24	4	7	0.0110	33.56	2.08
24	4	8	0.0118	35.88	2.22
24	4	9	0.0125	38.06	2.35
24	4	10	0.0131	40.12	2.48
24	4	11	0.0138	42.08	2.60
24	4	12	0.0144	43.95	2.72
24	4	13	0.0150	45.74	2.83
24	4	14	0.0156	47.47	2.94
24	4	15	0.0161	49.13	3.04
24	4	16	0.0166	50.75	3.14
24	4	17	0.0171	52.31	3.24
24	4	18	0.0176	53.82	3.33
36	10	1	0.0104	31.72	1.96
36	10	2	0.0147	44.85	2.78
36	10	3	0.0180	54.93	3.40

36	10	4	0.0208	63.43	3.92
36	10	5	0.0232	70.92	4.39
36	10	6	0.0255	77.69	4.81
36	10	7	0.0275	83.91	5.19
36	10	8	0.0294	89.71	5.55
36	10	9	0.0312	95.15	5.89
36	10	10	0.0329	100.29	6.21
36	10	11	0.0345	105.19	6.51
36	10	12	0.0360	109.87	6.80
36	10	13	0.0375	114.35	7.08
36	10	14	0.0389	118.67	7.34
36	10	15	0.0403	122.83	7.60
36	10	16	0.0416	126.86	7.85
36	10	17	0.0429	130.77	8.09
36	10	18	0.0441	134.56	8.33
48	14	1	0.0146	44.40	2.75
48	14	2	0.0206	62.79	3.89
48	14	3	0.0252	76.91	4.76
48	14	4	0.0291	88.80	5.49
48	14	5	0.0325	99.29	6.14
48	14	6	0.0356	108.76	6.73
48	14	7	0.0385	117.48	7.27
48	14	8	0.0412	125.59	7.77
48	14	9	0.0437	133.21	8.24
48	14	10	0.0460	140.41	8.69
48	14	11	0.0483	147.27	9.11
48	14	12	0.0504	153.81	9.52
48	14	13	0.0525	160.09	9.91
48	14	14	0.0545	166.14	10.28
48	14	15	0.0564	171.97	10.64
48	14	16	0.0582	177.61	10.99
48	14	17	0.0600	183.07	11.33
48	14	18	0.0617	188.38	11.66

Attachment S EMISSION CALCULATIONS

Line Heaters S001 - S002

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Boiler Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions. (lb/hr)	Max. Annual Emissions. (tpy)
VOC's	5.5	lb/10 ⁶ scf	AP-42 Chapter 1.4	4.50	1,262	8,760	0.020	0.09
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	4.50	1,262	8,760	<0.01	0.03
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	4.50	1,262	8,760	<0.01	<0.01
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	4.50	1,262	8,760	<0.01	<0.01
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	4.50	1,262	8,760	<0.01	<0.01
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	4.50	1,262	8,760	<0.01	<0.01
со	84	lb/10 ⁶ scf	AP-42 Chapter 1.4	4.50	1,262	8,760	0.30	1.31
NO _x	100	lb/10 ⁶ scf	AP-42 Chapter 1.4	4.50	1,262	8,760	0.36	1.56
PM _{Filterable}	1.9	lb/10 ⁶ scf	AP-42 Chapter 1.4	4.50	1,262	8,760	<0.01	0.03
PM _{Condensable}	5.7	lb/10 ⁶ scf	AP-42 Chapter 1.4	4.50	1,262	8,760	0.02	0.09
PM _{Total}	7.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	4.50	1,262	8,760	0.03	0.12
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	4.50	1,262	8,760	<0.01	<0.01
CO ₂	53.06	kg CO ₂ / MMBtu	40CFR98 Subpart C	4.50	1,262	8,760	526.40	2305.62
CH₄	0.001	kg CH ₄ / MMBtu	40CFR98 Subpart C	4.50	1,262	8,760	<0.01	0.043
N ₂ O	0.0001	kg N ₂ O / MMBtu	40CFR98 Subpart C	4.50	1,262	8,760	<0.01	<0.01
Total HAPs							<0.01	0.03
Total CO₂e							526.94	2308.00

Notes

- Emission rates displayed above represent the max. hourly and max. annual emissions for one line heater. Cumulative emission rates for both line heaters are diplayed in the Total Site Emissions Table.
- Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.
- AP-42, Chapter 1.4 references are from the July 1998 revision.
- Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.
- CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

Example Equations:

Line Heaters S003

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Boiler Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions. (lb/hr)	Max. Annual Emissions. (tpy)
VOC's	5.5	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	<0.01	0.03
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	<0.01	<0.01
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	<0.01	<0.01
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	<0.01	<0.01
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	<0.01	<0.01
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	<0.01	<0.01
со	84	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	0.10	0.45
NO _x	100	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	0.12	0.53
PM _{Filterable}	1.9	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	<0.01	0.01
PM _{Condensable}	5.7	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	<0.01	0.03
PM _{Total}	7.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	<0.01	0.04
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	<0.01	<0.01
CO ₂	53.06	kg CO ₂ / MMBtu	40CFR98 Subpart C	1.54	1,262	8,760	180.14	789.03
CH₄	0.001	kg CH ₄ / MMBtu	40CFR98 Subpart C	1.54	1,262	8,760	<0.01	0.015
N ₂ O	0.0001	kg N ₂ O / MMBtu	40CFR98 Subpart C	1.54	1,262	8,760	<0.01	<0.01
Total HAPs		-		-	-	-	<0.01	0.01
Total CO₂e							180.33	789.85

Notes

Example Equations:

⁻ Emission rates displayed above represent the max. hourly and max. annual emissions for one line heater. Cumulative emission rates for this line heater is diplayed in the Total Site Emissions Table.

⁻ Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

⁻ AP-42, Chapter 1.4 references are from the July 1998 revision.

Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

⁻ CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

Line Heaters S028

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Boiler Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions. (lb/hr)	Max. Annual Emissions. (tpy)
VOC's	5.5	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.15	1,262	8,760	<0.01	0.02
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.15	1,262	8,760	<0.01	<0.01
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.15	1,262	8,760	<0.01	<0.01
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.15	1,262	8,760	<0.01	<0.01
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.15	1,262	8,760	<0.01	<0.01
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.15	1,262	8,760	<0.01	<0.01
со	84	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.15	1,262	8,760	0.08	0.34
NO _x	100	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.15	1,262	8,760	0.09	0.40
PM _{Filterable}	1.9	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.15	1,262	8,760	<0.01	<0.01
PM _{Condensable}	5.7	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.15	1,262	8,760	<0.01	0.02
PM _{Total}	7.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.15	1,262	8,760	<0.01	0.03
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.15	1,262	8,760	<0.01	<0.01
CO ₂	53.06	kg CO ₂ / MMBtu	40CFR98 Subpart C	1.15	1,262	8,760	134.52	589.21
CH₄	0.001	kg CH ₄ / MMBtu	40CFR98 Subpart C	1.15	1,262	8,760	<0.01	0.011
N ₂ O	0.0001	kg N ₂ O / MMBtu	40CFR98 Subpart C	1.15	1,262	8,760	<0.01	<0.01
Total HAPs							<0.01	<0.01
Total CO₂e							134.66	589.82

Notes:

Example Equations:

⁻ Emission rates displayed above represent the max. hourly and max. annual emissions for one line heater. Cumulative emission rates for this line heater is diplayed in the Total Site Emissions Table.

⁻ Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

⁻ AP-42, Chapter 1.4 references are from the July 1998 revision.

Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

⁻ CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

Thermoelectric Generators S024 & S025

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Boiler Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions. (lb/hr)	Max. Annual Emissions. (tpy)
VOC's	5.5	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
CO	84	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
NO _x	100	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
PM _{Filterable}	1.9	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
PM _{Condensable}	5.7	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
PM _{Total}	7.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
CO ₂	53.06	kg CO ₂ / MMBtu	40CFR98 Subpart C	0.013	1,262	8,760	1.52	6.66
CH₄	0.001	kg CH ₄ / MMBtu	40CFR98 Subpart C	0.013	1,262	8,760	<0.01	<0.01
N ₂ O	0.0001	kg N ₂ O / MMBtu	40CFR98 Subpart C	0.013	1,262	8,760	<0.01	<0.01
Total HAPs					ı		<0.01	<0.01
Total CO ₂ e							1.52	6.67

Notes:

- Emission rates displayed above represent the max. hourly and max. annual emissions for one TEG. Cumulative emission rates for both TEGs are diplayed in the Total Site Emissions Table.
- Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.
- AP-42, Chapter 1.4 references are from the July 1998 revision.
- Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.
- CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

Example Equations:

Natural Gas Compressor Engine S027

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Engine Rating (bhp)	Engine Rating (kW)	Fuel Consumption (Btu/bhp-hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Hourly Emissions (lb/hr)	Annual Emissions (tpy)
VOC's	0.90	g/kW-hr	Vendor Guarantee	110.0	82.0	6,553	1,262	8,760	0.16	0.71
Formaldehyde	2.05E-02	lb/MMBtu	AP-42 Chapter 3.2	110.0	82.0	6,553	1,262	8,760	0.01	0.06
Benzene	1.58E-03	lb/MMBtu	AP-42 Chapter 3.2	110.0	82.0	6,553	1,262	8,760	<0.01	<0.01
Toluene	5.58E-04	lb/MMBtu	AP-42 Chapter 3.2	110.0	82.0	6,553	1,262	8,760	<0.01	<0.01
Ethylbenzene	2.48E-05	lb/MMBtu	AP-42 Chapter 3.2	110.0	82.0	6,553	1,262	8,760	<0.01	<0.01
Xylene	1.95E-04	lb/MMBtu	AP-42 Chapter 3.2	110.0	82.0	6,553	1,262	8,760	<0.01	<0.01
СО	2.70	g/kW-hr	Vendor Guarantee	110.0	82.0	6,553	1,262	8,760	0.49	2.14
NO _x	1.30	g/kW-hr	Vendor Guarantee	110.0	82.0	6,553	1,262	8,760	0.24	1.03
PM _{Filterable}	9.50E-03	lb/MMBtu	AP-42 Chapter 3.2	110.0	82.0	6,553	1,262	8,760	<0.01	0.03
PM _{Condensable}	9.91E-03	lb/MMBtu	AP-42 Chapter 3.2	110.0	82.0	6,553	1,262	8,760	<0.01	0.03
PM _{Total}	1.94E-02	lb/MMBtu	AP-42 Chapter 3.2	110.0	82.0	6,553	1,262	8,760	0.01	0.06
SO ₂	5.88E-04	lb/MMBtu	AP-42 Chapter 3.2	110.0	82.0	6,553	1,262	8,760	<0.01	<0.01
CO ₂	53.06	kg CO ₂ / MMBtu	40 CFR Subpart C	110.0	82.0	6,553	1,262	8,760	82.49	361.32
CH₄	0.001	kg CH ₄ / MMBtu	40 CFR Subpart C	110.0	82.0	6,553	1,262	8,760	<0.01	<0.01
N ₂ O	0.0001	kg N ₂ O / MMBtu	40 CFR Subpart C	110.0	82.0	6,553	1,262	8,760	<0.01	<0.01
Total HAPs							•	•	0.02	0.07
Total CO₂e									82.58	361.69

Notes:

- Emission rates displayed above represent the max. hourly and max. annual emissions for one NG compressor.
- Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.
- AP-42, Chapter 3.2, Table 3.2-3 Uncontrolled Emission Factors for 4-Stroke Rich Burn Engines
- Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.
- CO₂ equivalency solved for using Global Warming Potentials found in 40 CFR 98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298
- Vendor Guarantee Emissions are listed in Attachment S
- Vendor Guarantee Emissions are converted from g/kW-hr to g/bhp-hr. 1 kW = 1.34 bhp

Example Equations:

Max. Hourly Emission Rate (Ib/hr) = Emission Factor (Ib/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr)

Produced Fluids Tanks S011 - S020

Pollutant	Max. Hourly Emissions using ProMax (lb/hr)	Max. Yearly Emissions using ProMax (tons/yr)		
VOCs	25.43	111.37		
HAPs	1.21	5.28		
Hexane	1.08	4.74		
Benzene	0.03	0.11		
Toluene	0.08	0.37		
Ethylbenzene	<0.01	0.02		
Xylene	<0.01	0.03		
CO ₂	0.07	0.30		
CH ₄	0.85	3.73		
Total CO₂e	21.38	93.64		

Notes:

- Emission rates for Produced Fluid Tanks S011 S020 were calculated using ProMax software. ProMax output sheets for the OXF 157 Pad are attached.
- The emission rates displayed above are pre-control device emissions.
- CO_2 equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO_2 =1, GWP CH_4 =25, GWP N_2O =298
- For emission calculation purposes, the total throughput for tanks S011 S020 is modeled as being received through a single tank. The throughput value represents the total throughput for all ten (10) 400-barrel tanks. Therefore, emission rates represent a total from all produced fluids tanks located on the well pad. Actual throughput for each tank will vary based on operations.

Sand Trap Blow Tank S026

Pollutant	Max. Hourly Emissions using ProMax (lb/hr)	Max. Yearly Emissions using ProMax (tons/yr)		
VOCs	9.02	1.65		
HAPs	0.40	0.07		
Hexane	0.36	0.07		
Benzene	<0.01	<0.01		
Toluene	0.03	<0.01		
Ethylbenzene	<0.01	<0.01		
Xylene	<0.01	<0.01		
CO ₂	0.05	<0.01		
CH ₄	2.63	0.48		
Total CO₂e	65.74	12.00		

Notes:

- Blowdown operations are conducted on the OXF 157 pad daily to allow for the removal of fluids from the sand traps. Based on available operational information, blowdowns are assummed to occur for one hour per day.
- Emissions from the Sand Trap Blowdown Tank are routed to an enclosed combustion device. The values displayed above a pre-control emission rates.
- Emission rates for the Sand Trap Blowdown Tank were calculated using ProMax software. ProMax output sheets for the OXF 157 Pad are attached.
- CO_2 equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1. GWP CO_2 =1, GWP CH_4 =25, GWP N_2O =298

Tank Unloading Operations S023

Total Emissions from Tank Unloading Operations

Pollutant	Max. Hourly Emissions (lb/hr)	Max. Yearly Emissions (tons/yr)	Loading Rack Collection Efficiency	Enclosed Combustion Device Combusion Efficiency	Post-Control Max. Yearly Emissions (lb/hr)	Post-Control Max. Yearly Emissions (tons/yr)	Max. Hourly Emissions Not Collected by Loading Rack (lb/hr)	Max. Hourly Emissions Not Collected by Loading Rack (tons/yr)
VOCs	0.50	2.19	70%	98%	<0.01	0.03	0.15	0.66
HAPs	0.02	0.07	70%	98%	<0.01	<0.01	<0.01	0.02
CO ₂	<0.01	0.02	70%	98%	2.29	10.05	<0.01	<0.01
CH₄	0.01	0.05	70%	98%	<0.01	<0.01	<0.01	0.01
Total CO ₂ e	0.29	1.26			2.30	10.07	0.09	0.38

Notes:

- Emission rates for liquid unloading operations were calculated using ProMax software. ProMax summary sheets are attached.
- Vapors from tank unloading operations are vapor-balanced to the produced fluid tanks and realized at one of the two enclosed combustion devices. AP-42 calculation methods were used to estimate the collection efficiency from tank unloading operations. Emissions that are not collected during the unloading events are realized at the Loading Rack Emission Point, E020.

Enclosed Ground Flares C021 - C022

Emissions from Tanks Gas Composition of Vent Gas

Emissions from Tanks						Gas Composition of Vent Gas			
Input to Enclosed Combustion Device	Pollutant	Amount of Gas Sent to Enclosed Combustion Device (lbs/hr)	Amount of Gas Sent to Enclosed Combustion Device (tons/year)	Enclosed Combustion Device Combustion Efficiency	Max. Hourly Emissions (lb/hr)	Max. Yearly Emissions (tons/yr)	Gas Stream	Mole Fraction	
	VOCs	12.71	55.68	98%	0.25	1.11	Methane	0.12	1
	HAPs	0.60	2.64	98%	0.01	0.05	Ethane	0.25	1
	Hexane	0.54	2.37	98%	0.01	0.05	Propane	0.25	1
	Benzene	0.01	0.06	98%	<0.01	<0.01	Butane	0.16	1
Produced Fluids Tanks S008 - S015	Toluene	0.04	0.18	98%	<0.01	<0.01	Pentanes	0.06	1
	Ethylbenzene	<0.01	0.01	98%	<0.01	<0.01	Carbon Dioxide	0.007	1
	Xylene	<0.01	0.02	98%	<0.01	<0.01			
	CO ₂	0.03	0.15	98%	262.98	1,151.87	Vent	Gas Properties	
	CH ₄	0.43	1.87	98%	<0.01	0.04			
	VOCs	4.51	0.82	98%	0.09	0.02	Vent Gas Properties	Mass Flow Rate (lb/hr)	Density (lb/f
	HAPs	0.20	0.04	98%	<0.01	<0.01		(15/111)	
	Hexane	0.18	0.03	98%	<0.01	<0.01	Produced Fluids Tank	101.30	0.10
Sand Trap Blowdown Tank - S016	Benzene	<0.01	<0.01	98%	<0.01	<0.01	Blowdown Tank	1.63	0.08
	Toluene	0.01	<0.01	98%	<0.01	<0.01			
	Ethylbenzene	<0.01	<0.01	98%	<0.01	<0.01			
	Xylene	<0.01	<0.01	98%	<0.01	<0.01			
	CO ₂	0.02	<0.01	98%	5.21	22.83			
	CH₄	1.31	0.24	98%	0.03	<0.01			
	VOCs	0.25	1.09	98%	<0.01	0.02			
Trusk Loading CO17	HAPs	<0.01	0.03	98%	<0.01	<0.01			
Truck Loading - S017	CO ₂	<0.01	0.01	98%	1.15	5.02			
	CH ₄	<0.01	0.02	98%	<0.01	<0.01			
	VOCs	17.47	57.60		0.35	1.15	1		
	HAPs	0.81	2.71		0.02	0.05	1		
	Hexane	0.72	2.40		0.01	0.05			
	Benzene	0.02	0.06		<0.01	<0.01			
Totale	Toluene	0.06	0.19		<0.01	<0.01			
Totals	Ethylbenzene	<0.01	0.01		<0.01	<0.01			
	Xylene	<0.01	0.02		<0.01	<0.01			
	CO ₂	0.06	0.17		269.34	1,179.72			
	CH ₄	1.75	2.13		0.03	0.04			
	CO2e	43.70	53.45		270.21	1,180.78	1		

Emissions from Pilot Operations

Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factors (kg XX/MMBtu)	Heat Value of Natural Gas (Btu/scf)	Enclosed Ground Flare Pilot Rating (Btu/hr)	Enclosed Ground Flare Burner Rating (Btu/hr)	Pilot Max. Hourly Emissions (lb/yr)	Pilot Max. Hourly Emissions (tons/yr)	Burner Max.Hourly Emissions (lb/hr)	Burner Max.Hourly Emissions (tons/hr)	Max. Hourly Emissions (lb/hr)	Max. Yearly Emissions (tons/yr)
VOCs	5.50	-	1,262	30,000	11,660,000	<0.01	<0.01			<0.01	<0.01
Hexane	1.80		1,262	30,000	11,660,000	<0.01	<0.01			<0.01	<0.01
Formaldehyde	0.075		1,262	30,000	11,660,000	<0.01	<0.01			<0.01	<0.01
CO	84		1,262	30,000	11,660,000	<0.01	0.01	0.90	3.94	0.90	3.95
NO _x	100		1,262	30,000	11,660,000	<0.01	0.01	1.07	4.69	1.07	4.71
PM _{Condensable}	5.70		1,262	30,000	11,660,000	<0.01	<0.01	0.06	0.27	0.06	0.27
PM _{Filterable}	1.90		1,262	30,000	11,660,000	<0.01	<0.01	0.02	0.09	0.02	0.09
PM _{Total}	7.60		1,262	30,000	11,660,000	<0.01	<0.01	0.08	0.36	0.08	0.36
SO ₂	0.60		1,262	30,000	11,660,000	<0.01	<0.01	<0.01	0.03	<0.01	0.03
CO ₂	120,000	53.06	1,262	30,000	11,660,000	3.51	15.37	1,363.95	5,974.12	1,367.46	5,989.49
CH ₄	2.3	0.001	1,262	30,000	11,660,000	<0.01	<0.01	0.03	0.11	0.03	0.11
N ₂ O	2.2	<0.001	1,262	30,000	11,660,000	<0.01	<0.01	<0.01	0.01	<0.01	0.01
Total HAPs		·							•	<0.01	<0.01
CO ₂ e										1,368.88	5,995.67

Total Enclosed Combustion Device Emissions

Pollutant	Max. Hourly Emissions (lb/hr)	Max. Yearly Emissions (tons/yr)
VOCs	0.35	1.15
HAPs	0.02	0.05
CO	0.90	3.95
NO _x	1.07	4.71
PM _{Condensable}	0.06	0.27
PM _{Filterable}	0.02	0.09
PM _{Total}	0.08	0.36
SO ₂	<0.01	0.03
CO ₂	1,636.81	7,169.21
CH ₄	0.06	0.16
N ₂ O	<0.01	0.01
CO ₂ e	1,639.09	7,176.46

Notes:

- Emissions from Enclosed Combustion Device Operations from AP-42, Chapter 1.4 references are from the July 1998 revision.
- Greenhouse Gas Emissions from the Enclosed Combustion Device Pilot and Burner calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.
- Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.
- CO2 equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO2=1, GWP CH4=25, GWP N2O=298

Example Calculations:

- Emissions from Tanks VOCs (lb/hr) = Amount of Gas sent to Enclosed Combustion Device (lb/hr) x 0.02 = Max, Hourly Emissions (lb/hr)
- Emissions from Enclosed Combustion Device Operations (lb/hr) = Emission factor (lb/106 Btu) x Heat Value of Natural Gas (Btu/scf) ÷ 1,000,000 x Enclosed Combustion Device Pilot Gas Usage (mcfd) x 1,000 ÷ 24
- Emissions from Enclosed Combustion Device Vapor Destruction CO2 Methodologies shown below sample equation
- Emissions from Enclosed Combustion Device Operations CO2 (tons/yr) = ((Enclosed Combustion Device Pilot Gas Usage (mcfd) x 1,000 x 365 x Fraction of Gas Combusted by Enclosed Combustion Device x Mole Fraction of Methane x Number of Carbon Atoms in Methane) + ... + (Enclosed Combustion Device Pilot Gas Usage (mcfd) x 1,000 x 365 x Fraction of Gas Combusted by Enclosed Combustion Device x Mole Fraction of Pentanes-plus x Number of Carbon Atoms in Pentanes-plus)) x .0526 (kg/ft3) CO2 x .001 x 1.102 tons/tonnes

$$E_{a,CH,4}(un-combusted) = V_a * (1-\eta) * X_{CH,4}$$
 (Eq. W-19)

$$\begin{split} E_{a,CO2}\left(un-combusted\right) &= V_a * X_{CO2} \\ \\ E_{a,CO2}\left(combusted\right) &= \sum_{j=1}^{4} \left(\eta * V_a * Y_j * R_j\right) \end{split} \tag{Eq. W-21}$$

$$E_{a,CO2} (combusted) = \sum_{j=1}^{3} (\eta * V_a * Y_j * R_j)$$
 (Eq. W-23)

Where:

Ea, CH₄(un-combusted) = Contribution of annual un-combusted CH4 emissions from Enclosed Combustion Device stack in cubic feet, under actual conditions.

Ea,CO₂(un-combusted) = Contribution of annual un-combusted CO2 emissions from Enclosed Combustion Device stack in cubic feet, under actual conditions.

Ea,CO₂(combusted) = Contribution of annual combusted CO2 emissions from Enclosed Combustion Device stack in cubic feet, under actual conditions.

Va = Volume of gas sent to Enclosed Combustion Device in cubic feet, during the year.

η = Fraction of gas combusted by a burning Enclosed Combustion Device (default is 0.98). For gas sent to an unlit Enclosed Combustion Device, η is zero.

XCH4 = Mole fraction of CH4 in gas to the Enclosed Combustion Device.

XCO2 = Mole fraction of CO2 in gas to the Enclosed Combustion Device.

Y_j = Mole fraction of gas hydrocarbon constituents j (such as methane, ethane, propane, butane, and pentanes-plus).

R_i = Number of carbon atoms in the gas hydrocarbon constituent j: 1 for methane, 2 for ethane, 3 for propane, 4 for butane, and 5 for pentanes plus).

Fugitive Emissions from Unpaved Haul Roads

Constant	Industrial Roads						
Constant	PM	PM-10	PM-2.5				
k (lb/VMT)	4.9	1.5	0.15				
а	0.7	0.9	0.9				
b	0.45	0.45	0.45				

Particle size multiplier 1

4.8 Silt content of road surface material (%) ² 150

Number of days per year with precipitation >0.01 in. ³

Item Number	Description	Number of Wheels	W Mean Vehicle Weight (tons)	Mean Vehicle Speed (mph)	Miles per Trip	Maximum Trips per Hour	Maximum Trips per Year	Control Device ID Number	Control Efficiency (%)		PM Emissions (tons/yr)	PM-10 Emissions (lbs/hr)	PM-10 Emissions (tons/yr)	PM-2.5 Emissions (lbs/hr)	PM-2.5 Emissions (tons/yr)
1	Liquids Hauling	14	30	10	1.72	1	1,826	NA	NA	7.37	6.73	1.88	1.71	0.19	0.171
2	Employee Vehicles	4	3	10	1.72	1	200	NA	NA	2.61	0.26	0.67	0.07	0.07	<0.01
									Totals:	9.98	6.99	2.54	1.78	0.25	0.178

Notes:

1 - Particle Size Multiplier used from AP-42 13.2.2 - Final Version 11/2006

² - Silt Content of Road Surface uses Sand and Gravel Processing Plant Road from AP-42 13.2.2 - Final Version 11/2006

³ - Number of days per year with precipitation >0.01 in³ found using AP-42 13.2.2 Figure 13.2.2-1 - Final Version 11/2006

Example Calculations: Emissions (lb/Vehicle Mile Traveled) - E = $k \times (s/12)^a \times (W/3)^b$

Equation 1a from AP-42 13.2.2 - Final Version 11/2006

Size Specific Emissions (lb/VMT) - $E_{ext} = E[(365-p)/365]$

Equation 2 from AP-42 13.2.2 - Final Version 11/2006

Fugitive Leaks

Default Average Component Counts for Major Onshore Natural Gas Production Equipment ¹								
Facility Equipment Type	Valves	Connectors	Open-ended Lines	Pressure Relief Valves				
Wellheads	8	38	0.5	0				
Separators	1	6	0	0				
Meters/Piping	12	45	0	0				
Compressors	12	57	0	0				
In-line Heaters	14	65	2	1				
Dehydrators	24	90	2	2				

1- Table	W-1B to	40CFR98	Subpart	W
----------	---------	---------	---------	---

Well Specific Equ	Well Specific Equipment Counts							
Facility Equipment								
Туре	Count on Site							
Wellheads	7							
Separators	3							
Meters/Piping	4							
Compressors	1							
In-line Heaters	3							
Dehydrators	0							

Gas Composition											
Emissions from Flaring Operations Propane Butane Pentanes Hexanes + CO ₂ CH ₄											
Mole %	4.0036	0.5947	0.6411	0.5767	0.15	78.13					
MW	44	58	72	86.00	44.00	16.00					

	Fugitive Emissions														
Facility Equipment Type	Total Count	Emission Rate (scf/hr/component) ²	Hours of Operation	VOCs (lbs/hr)	VOCs (tons/yr)	Hexane (lbs/hr)	Hexane (tons/yr)	HAPs (lbs/hr)	HAPs (tons/yr)	CO ₂ (lbs/hr)	CO ₂ (tons/yr)	CH ₄ (lbs/hr)	CH ₄ (tons/yr)	Total CO ₂ e (lbs/hr)	Total CO ₂ e (tons/yr)
Valves	152	0.027	8760	0.03	0.12	< 0.01	0.02	< 0.01	0.02	< 0.01	< 0.01	0.13	0.58	3.33	14.58
Connectors	661	0.003	8760	0.01	0.06	< 0.01	0.01	< 0.01	0.01	< 0.01	< 0.01	0.06	0.28	1.61	7.04
Open-ended Lines	10	0.061	8760	<0.01	0.02	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	0.02	0.09	0.49	2.17
Pressure Relief Valves	4	0.040	8760	<0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01	<0.01	< 0.01	0.02	0.13	0.57
			Total Emissions:	0.05	0.20	< 0.01	0.04	<0.01	0.04	<0.01	<0.01	0.22	0.97	5.56	24.35

²- Table W-1A to 40CFR98 Subpart W

-A gas sample from the OXF-157 Site is included with this submittal

Example Equations:
Fugitive Emissions (lb/hr) = Count x Emission Rate x Hours of Operation ÷ 385.5 scf/lbmol x mol VOC's

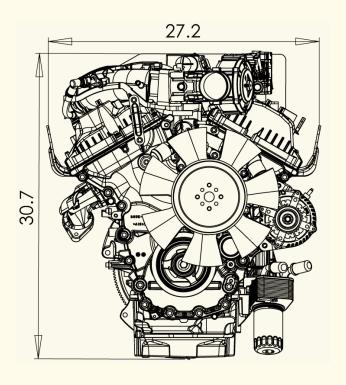
Total OXF 157 Site Emission Levels

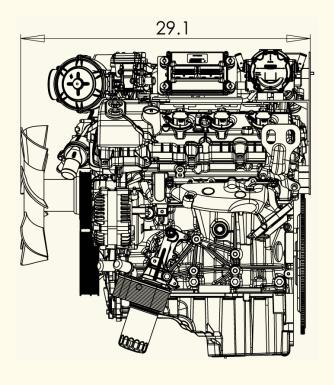
	VC	OCs	H.	APs	(:0	N	IO _x	PN	1 _{Total}	PM	Filterable	PM _{Cor}	ndensable	S	02	(CO ₂	C	H ₄	N	20	C	CO₂e
Emission Sources	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Line Heater (E001)	0.02	0.09	< 0.01	0.03	0.30	1.31	0.36	1.56	0.03	0.12	< 0.01	0.03	0.02	0.09	< 0.01	< 0.01	526.40	2,305.62	< 0.01	0.04	< 0.01	< 0.01	526.94	2,308.00
Line Heater (E002)	0.02	0.09	< 0.01	0.03	0.30	1.31	0.36	1.56	0.03	0.12	<0.01	0.03	0.02	0.09	< 0.01	< 0.01	526.40	2,305.62	< 0.01	0.04	<0.01	< 0.01	526.94	2,308.00
Line Heater (E003)	< 0.01	0.03	< 0.01	0.01	0.10	0.45	0.12	0.53	< 0.01	0.04	< 0.01	0.01	< 0.01	0.03	< 0.01	<0.01	180.14	789.03	< 0.01	0.01	< 0.01	< 0.01	180.33	789.85
Enclosed Combustion Unit (E021)	0.35	1.15	0.02	0.05	0.90	3.95	1.07	4.71	0.08	0.36	0.02	0.09	0.06	0.27	< 0.01	0.03	1,636.81	7,169.21	0.06	0.16	< 0.01	0.01	1,639.09	7,176.46
Enclosed Combustion Unit (E022)	0.35	1.15	0.02	0.05	0.90	3.95	1.07	4.71	0.08	0.36	0.02	0.09	0.06	0.27	< 0.01	0.03	1,636.81	7,169.21	0.06	0.16	< 0.01	0.01	1,639.09	7,176.46
*Tank Truck Loading Operations (E023)	0.15	0.66	< 0.01	0.02	< 0.01	< 0.01	< 0.01	<0.01		-					< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01	0.09	0.38
TEG (E024)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	1.52	6.66	< 0.01	<0.01	< 0.01	< 0.01	1.52	6.67
TEG (E025)	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.52	6.66	< 0.01	< 0.01	<0.01	< 0.01	1.52	6.67
Compressor Engine (E027)	0.14	0.63	0.02	0.07	3.72	16.31	0.14	0.63	0.014	0.06	< 0.01	0.03	< 0.01	0.03	< 0.01	<0.01	82.49	361.32	< 0.01	<0.01	< 0.01	< 0.01	82.58	361.69
Line Heater (S028)	< 0.01	0.02	< 0.01	< 0.01	0.08	0.34	0.09	0.40	< 0.01	0.03	< 0.01	< 0.01	< 0.01	0.02	< 0.01	< 0.01	134.52	589.21	< 0.01	0.011	< 0.01	< 0.01	134.66	589.82
Haul Roads						-		-	9.98	6.99	9.98	6.99	< 0.01	< 0.01		-				-				
Fugitives Leaks	0.05	0.20	< 0.01	0.04													<0.01	<0.01	0.22	0.97		-	5.56	24.35
Totals	1.09	4.01	0.08	0.32	6.31	27.63	3.22	14.11	10.23	8.07	10.05	7.27	0.18	0.80	0.02	0.08	4,726.61	20,702.56	0.37	1.42	0.01	0.03	4,738.32	20,748.35

⁻Two enclosed combustion devices are being included in this application. Emissions from the produced fluids tanks, and truck loading are routed to either C021 or C022. For the permitting of these sources, it is assumed that vapors are being evenly distributed between the two enclosed combustion devices. For this reason, the emissions from the combustion of vent gases between C021 and C022 are additive.

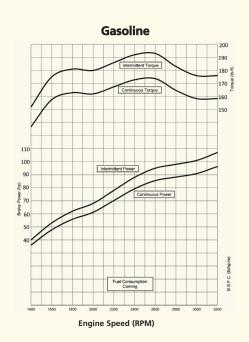
^{*}Emissions from Tank Truck Loading Operations are routed to the enclosed combustion devices. The collection efficiency of the vapors has been calculated using AP-42 methodologies. Emissions that are not collected and routed the enclosed combustion devices are realized at the Tank Truck Loading Operations Emission

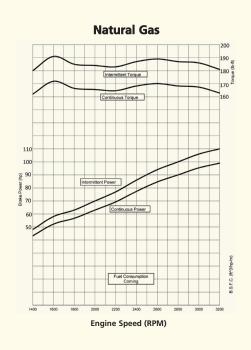
Total OXF 157 Site Emission Levels - HAP Speciation

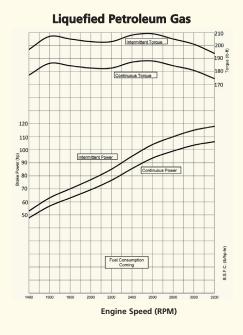

	Total	HAPs	Formal	Formaldehyde		Hexane		Benzene		iene	Ethylbenzene		Xyl	ene
Emission Sources	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Line Heater (E001)	<0.01	0.03	<0.01	<0.01	<0.01	0.03	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (E002)	<0.01	0.03	<0.01	<0.01	<0.01	0.03	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (E003)	<0.01	0.01	<0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01
Enclosed Combustion Unit (E021)	0.02	0.05	<0.01	<0.01	0.01	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Enclosed Combustion Unit (E022)	0.02	0.05	<0.01	<0.01	0.01	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Tank Truck Loading Activities (E023)	<0.01	0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
TEG (E024)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
TEG (E025)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Compressor Engine (E027)	0.02	0.07	0.01	0.06	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (E028)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Haul Roads														
Fugitives Leaks	<0.01	0.04	<0.01	<0.01	0.01	0.04	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Totals	0.08	0.32	0.02	0.07	0.06	0.23	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01


⁻Two enclosed combustion devices are being included in this application. Emissions from the produced fluids tanks, sand trap blowdown tanks, and truck loading are routed to either C021 or C022. For the permitting of these sources, it is assumed that vapors are being evenly distributed between the two enclosed combustion devices. For this reason, the emissions from the combustion of vent gases between C021 and C022 are additive.

Installation Drawings


Front End View


Left Side View



Power Curves (corrected per SAE J1349)

& Components

Provided By Ford **Component Sales** For additional information Contact:

Powertrain Assemblies

400 University Ct • Blackwood NJ 08012 856/228-7298 • Fax:856/228-5531 www.edi-dist.com

CSG-637 EFI

3.7 Liter 6-Cylinder

Options

Engine Cooling Fans

- 14" (355mm) diameter suction
- 14" (355mm) diameter pusher

Flywheels

- 11.5" (292mm) SAE over-center clutch
- flat face flywheel

Flywheel Housings

• SAE #3

Exhaust Manifold

• rear dump down

Power Steering Pump
Air Conditioning
Wiring Harnesses
Discrete Speed Switch
Variable Speed Hand Throttle
Variable Speed Foot Pedal
Engine Mounts

- Automotive with insulators
- Open power unit

Electronic Instrument Panel, Gauges Three Way Catalyst / Muffler Standard

Transmissions

6R80 electronic shift

Emissions Information

California Air Resources Board (CARB) Environmental Protection Agency (EPA) Emission Certified Packages

Warranty

Contact Engine Distributors, Inc for warranty details.

Power Products

Powertrain Assemblies & Components Provided By Ford Component Sales

Specifications

Engine Type	V-6	
Bore and Stroke	3.7" x 3.4" (94mm x 86mm)	
Displacement	3.7L Liter (225.7 CID)	
Compression Ratio		
	6 qts. including filter	
	355 Lbs. with accessories (161 Kgs.)	
	L 25.4" x W 29.5" x H 29.4"	
	(646 mm x 751 mm x 748 mm)	

Gasoline (corrected per SAE J1349)

Unleaded 87 or 89 octane		
Intermittent Power	107 [HP] @ 3200rpm	(80 [kW] @ 3200rpm)
Continuous Power	96 [HP] @ 3200rpm	(72 [kW] @ 3200rpm)
Intermittent Torque	193 [ft-lbs] @ 2600rpm	(261 [N-m] @ 2600rpm)
Continuous Torque	173 [ft-lbs] @ 2600rpm	(235 [N-m] @ 3200rpm)

Natural Gas (corrected per SAE J1349)

Fuel Specification	1050 BTU/FT3	
Intermittent Power	110 [HP] @ 3200rpm	(82 [kW] @ 3200rpm)
Continuous Power	99 [HP] @ 3200rpm	(74 [kW] @ 3200rpm)
Intermittent Torque	191 [ft-lbs] @1600rpm	(259 [N-m] @ 1600rpm)
Continuous Torque	172 [ft-lbs] @1600rpm	(233 [N-m] @ 1600rpm)

Liquefied Petroleum Gas (corrected per SAE J1349)

Fuel Specification	HD-5	
Intermittent Power	118 [HP] @ 3200rpm	(88 [kW] @ 3200rpm)
Continuous Power	106 [HP] @ 3200rpm	(79 [kW] @ 3200rpm)
Intermittent Torque	209 [ft-lbs] @ 2600rpm	(284 [N-m] @ 2600rpm)
Continuous Torque	188 [ft-lbs] @ 2600rpm	(255 [N-m] @ 2600rpm)

Standard Features / Benefits

Set-for-life valvetrain

Deep skirted, ribbed cylinder block casting for rigidity

150 AMP Alternator

Aluminum cylinder block and heads.

Chain driven dual camshafts with automatic tensioning system

Structural front cover and deep sump oil pan

Alternate fuel ready valvetrain components

Individual coil on plug electronic ignition

Four main bolts with side bolts through block for strength and durability

Gasoline Sequential Port Fuel Injection

Closed loop fuel control for all fuels

Electronic engine management system with built-in engine protection against detonation, high coolant temperature, low oil pressure, over speed shutdown and starter lockout

Next generation governing – discrete speeds, variable speeds, drive by wire – using the highest quality components.

Variable CAM Timing for intake camshafts - advances or retards timing to maximize engine power and fuel efficiency

Forged steel crankshaft

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY 2015 MODEL YEAR CERTIFICATE OF CONFORMITY WITH THE CLEAN AIR ACT

OFFICE OF TRANSPORTATION AND AIR QUALITY ANN ARBOR, MICHIGAN 48105

Certificate Issued To: Engine Distributors, Inc.

(U.S. Manufacturer or Importer)

Certificate Number: FEDIB03.7CSG-006

Effective Date: 06/08/2015

Expiration Date: 12/31/2015

Issue Date: 06/08/2015

Revision Date: N/A

Manufacturer: Engine Distributors, Inc.

Engine Family: FEDIB03.7CSG

Mobile/Stationary Certification Type: Mobile and Stationary

Fuel: LPG/Propane

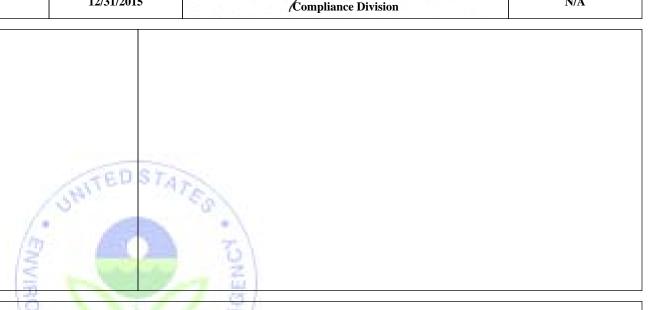
Gasoline (up to and including 10% Ethanol)

Natural Gas (CNG/LNG)

Emission Standards:

Mobile Part 1048

HC + NOx (g/kW-hr) : 0.8NMHC + NOx (g/kW-hr) : 0.8

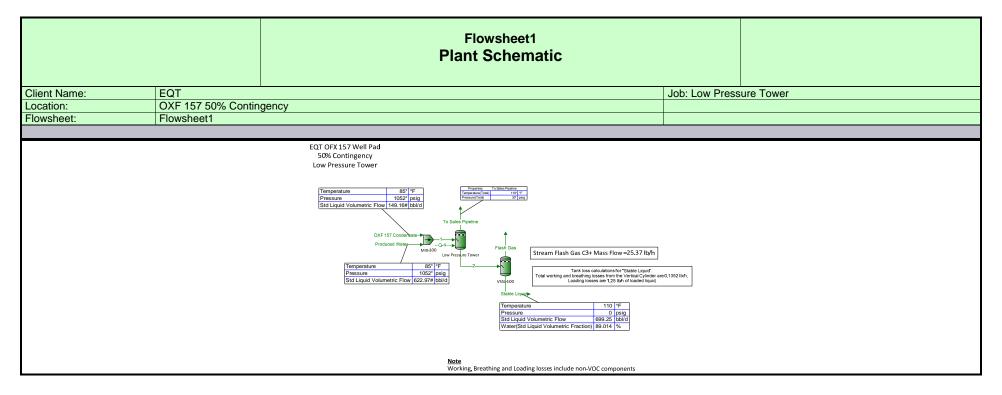

CO (g/kW-hr) : 20.6 Part 60 Subpart JJJJ Table 1

NOx (g/kW-hr) : 1.3

HC + NOx (g/kW-hr) : 0.8

CO (g/kW-hr) : 2.7 CO (g/kW-hr) : 20.6 VOC (g/kW-hr) : 0.9

Emergency Use Only: N


Byron J. Bunker, Division Director

Pursuant to Section 213 of the Clean Air Act (42 U.S.C. section 7547) and 40 CFR Part 60, 40 CFR Part 1048, 1065, 1068, and 60 (stationary only and combined stationary and mobile) and subject to the terms and conditions prescribed in those provisions, this certificate of conformity is hereby issued with respect to the test engines which have been found to conform to applicable requirements and which represent the following nonroad engines, by engine family, more fully described in the documentation required by 40 CFR Part 60, 40 CFR Part 1048 and produced in the stated model year.

This certificate of conformity covers only those new nonroad spark-ignition engines which conform in all material respects to the design specifications that applied to those engines described in the documentation required by 40 CFR Part 60, 40 CFR Part 1048 and which are produced during the model year stated on this certificate of the said manufacturer, as defined in 40 CFR Part 60, 40 CFR Part 1048. This certificate of conformity does not cover nonroad engines imported prior to the effective date of the certificate.

It is a term of this certificate that the manufacturer shall consent to all inspections described in 40 CFR 1068.20 and authorized in a warrant or court order. Failure to comply with the requirements of such a warrant or court order may lead to revocation or suspension of this certificate for reasons specified in 40 CFR Part 60, 40 CFR Part 1048. It is also a term of this certificate that this certificate may be revoked or suspended or rendered void *ab initio* for other reasons specified in 40 CFR Part 1048.

This certificate does not cover large nonroad engines sold, offered for sale, or introduced, or delivered for introduction, into commerce in the U.S. prior to the effective date of the certificate.

Process Streams Report All Streams

Tabulated by Total Phase

Client Name: EQT Job: Low Pressure Tower OXF 157 50% Contingency Flowsheet1 Location: Flowsheet:

Connections

	Flash Gas	OXF 157 Condensate	Produced Water	Stable Liquid	To Sales Pipeline						
From Block	VSSL-100			VSSL-100	Low Pressure Tower						
To Block		MIX-100	MIX-100								

Stream Composition										
	Flash Gas	OXF 157 Condensate	Produced Water	Stable Liquid	To Sales Pipeline					
Mole Fraction	%	%	%	%	%					
Nitrogen	0	0 *	0 *	0	0					
Methane	8.32097	26.433 *	0 *	0.000707399	40.5321					
Carbon Dioxide	0.240258	0.185 *	0 *	0.000121767	0.270608					
Ethane	17.5442	16.284 *	0 *	0.00641273	24.1538					
Propane	22.9327	11.163 *	0 *	0.0259113	15.2231					
i-Butane	6.20486	2.473 *	0 *	0.0161198	2.92461					
n-Butane	15.4698	6.13 *	0 *	0.0552111	6.6654					
i-Pentane	5.84189	2.814 *	0 *	0.0504969	2.16345					
n-Pentane	5.91275	3.189 *	0 *	0.0664904	2.13318					
Isohexane	2.85278	2.494 *	0 *	0.072354	0.978584					
n-Hexane	1.96482	2.13 *	0 *	0.066791	0.668178					
2,2,4-Trimethylpentane	0.00369484	0.009 *	0 *	0.000329426	0.00124721					
Benzene	0.0506547	0.058 *	0 *	0.00184704	0.0172533					
Heptane	2.58139	6.585 *	0 *	0.242254	0.871805					
Toluene	0.141744	0.418 *	0 *	0.015607	0.0476736					
Octane	0.990468	6.744 *	0 *	0.264811	0.336183					
Ethylbenzene	0.00802174	0.064 *	0 *	0.00252717	0.00271836					
o-Xylene	0.0105591	0.108 *	0 *	0.00429471	0.0035838					
Nonane	0.230475	4.256 *	0 *	0.171123	0.078586					
Decane	0.166734	8.463 *	0 *	0.343228	0.0578905					
Water	8.53125	0 *	100 *	98.5934	2.87004					

Molar Flow	Flash Gas	OXF 157 Condensate Ibmol/h	Produced Water Ibmol/h	Stable Liquid	To Sales Pipeline Ibmol/h
	0	0 *	0 *	0	0
Nitrogen					v
Methane	0.0530635	5.50868 *	0 *	0.00361679	5.452
Carbon Dioxide	0.00153214	0.0385543 *	0 *	0.00062257	0.0363996
Ethane	0.111881	3.39361 *	0 *	0.032787	3.24895
Propane	0.146243	2.32639 *	0 *	0.132479	2.04767
i-Butane	0.0395689	0.515378 *	0 *	0.0824175	0.393391
n-Butane	0.0986519	1.2775 *	0 *	0.282283	0.896568
i-Pentane	0.0372542	0.586443 *	0 *	0.258181	0.291008
n-Pentane	0.037706	0.664593 *	0 *	0.339952	0.286935
Isohexane	0.0181924	0.519754 *	0 *	0.369932	0.13163
n-Hexane	0.0125298	0.443896 *	0 *	0.341489	0.0898771
2,2,4-Trimethylpentane	2.35623E-05	0.00187562 *	0 *	0.00168429	0.000167763
Benzene	0.000323029	0.0120873 *	0 *	0.00944352	0.00232075
Heptane	0.0164617	1.37233 *	0 *	1.2386	0.117267
Toluene	0.000903913	0.087112 *	0 *	0.0797954	0.00641261
Octane	0.00631629	1.40546 *	0 *	1.35393	0.0452202
Ethylbenzene	5.11553E-05	0.0133377 *	0 *	0.0129209	0.000365649
o-Xylene	6.73363E-05	0.0225074 *	0 *	0.021958	0.00048206
Nonane	0.00146976	0.886958 *	0 *	0.874918	0.0105707
Decane	0.00106327	1.7637 *	0 *	1.75485	0.00778689
Water	0.0544044	0 *	504.529 *	504.088	0.386052

	Flash Gas	OXF 157 Condensate	Produced Water	Stable Liquid	To Sales Pipeline
Mass Fraction	%	%	%	%	%
Nitrogen	0	0 *	0 *	0	0

Process Streams Report All Streams Tabulated by Total Phase

Job: Low Pressure Tower Client Name: EQT OXF 157 50% Contingency

Location: Flowsheet: Flowsheet1

	Flash Gas	OXF 157	Produced	Stable Liquid	To Sales
Mass Frantism	0/	Condensate	Water	0/	Pipeline
Mass Fraction	%	%	%	%	%
Methane	2.77868	7.08145 *	0 *	0.000588072	19.8768
Carbon Dioxide	0.220099	0.135964 *	0 *	0.000277697	0.364051
Ethane	10.9811	8.17683 *	0 *	0.00999212	22.2015
Propane	21.0496	8.22017 *	0 *	0.0592079	20.5198
i-Butane	7.50702	2.40033 *	0 *	0.048551	5.1962
n-Butane	18.7163	5.94986 *	0 *	0.166289	11.8425
i-Pentane	8.77356	3.39045 *	0 *	0.188795	4.77147
n-Pentane	8.87998	3.84227 *	0 *	0.24859	4.7047
Isohexane	5.11735	3.58909 *	0 *	0.323103	2.57785
n-Hexane	3.52452	3.06526 *	0 *	0.298261	1.76016
2,2,4-Trimethylpentane	0.00878544	0.0171681 *	0 *	0.00194997	0.00435502
Benzene	0.0823626	0.0756571 *	0 *	0.00747631	0.0411969
Heptane	5.38423	11.0189 *	0 *	1.25789	2.67037
Toluene	0.271856	0.643164 *	0 *	0.074517	0.134275
Octane	2.3551	12.8646 *	0 *	1.56749	1.17389
Ethylbenzene	0.0177273	0.113466 *	0 *	0.0139031	0.00882196
o-Xylene	0.0233347	0.191474 *	0 *	0.0236271	0.0116306
Nonane	0.615308	9.11551 *	0 *	1.13731	0.308103
Decane	0.493818	20.1084 *	0 *	2.53062	0.251786
Water	3.19924	0 *	100 *	92.0416	1.58054

Mass Flow	Flash Gas	OXF 157 Condensate lb/h	Produced Water Ib/h	Stable Liquid	To Sales Pipeline Ib/h
	10/11	0 *	0 *		0
Nitrogen		·	U	<u> </u>	v
Methane	0.851268	88.3729 *	0 *	0.0580222	87.4636
Carbon Dioxide	0.0674288	1.69676 *	0 *	0.027399	1.60193
Ethane	3.36415	102.043 *	0 *	0.985873	97.6927
Propane	6.4487	102.584 *	0 *	5.84176	90.2931
i-Butane	2.29983	29.9549 *	0 *	4.79029	22.8648
n-Butane	5.73387	74.2513 *	0 *	16.4069	52.1105
i-Pentane	2.68784	42.3111 *	0 *	18.6274	20.9959
n-Pentane	2.72044	47.9496 *	0 *	24.5271	20.702
Isohexane	1.56773	44.79 *	0 *	31.879	11.3433
n-Hexane	1.07976	38.2529 *	0 *	29.4279	7.74519
2,2,4-Trimethylpentane	0.00269148	0.214249 *	0 *	0.192394	0.0191633
Benzene	0.0252324	0.944162 *	0 *	0.737651	0.181278
Heptane	1.6495	137.51 *	0 *	124.11	11.7504
Toluene	0.0832851	8.02636 *	0 *	7.35223	0.590847
Octane	0.7215	160.544 *	0 *	154.657	5.16544
Ethylbenzene	0.0054309	1.416 *	0 *	1.37175	0.0388191
o-Xylene	0.00714876	2.3895 *	0 *	2.33117	0.0511779
Nonane	0.188504	113.757 *	0 *	112.213	1.35574
Decane	0.151285	250.943 *	0 *	249.684	1.10793
Water	0.980111	0 *	9089.23 *	9081.29	6.95483

Stream Properties						
Property	Units	Flash Gas	OXF 157 Condensate	Produced Water	Stable Liquid	To Sales Pipeline
Temperature	°F	109.505	85 *	85 *	109.505	110 *
Pressure	psia	14.6959 *	1066.7 *	1066.7 *	14.6959	44.6959 *
Mole Fraction Vapor	%	100	0	0	0	100
Mole Fraction Light Liquid	%	0	100	100	1.40621	0
Mole Fraction Heavy Liquid	%	0	0	0	98.5938	0
Molecular Weight	lb/lbmol	48.0404	59.8819	18.0153	19.2977	32.7133
Mass Density	lb/ft^3	0.117487	36.5724	62.1827	59.6665	0.244859
Molar Flow	lbmol/h	0.637707	20.8402	504.529	511.28	13.4511
Mass Flow	lb/h	30.6357	1247.95	9089.23	9866.51	440.029
Vapor Volumetric Flow	ft^3/h	260.757	34.1227	146.17	165.361	1797.07

^{*} User Specified Values ? Extrapolated or Approximate Values

Process Streams Report All Streams Tabulated by Total Phase

Job: Low Pressure Tower Client Name: EQT OXF 157 50% Contingency

Location: Flowsheet: Flowsheet1

Stream Properties						
Property	Units	Flash Gas	OXF 157 Condensate	Produced Water	Stable Liquid	To Sales Pipeline
Liquid Volumetric Flow	gpm	32.51	4.25426	18.2238	20.6164	224.05
Std Vapor Volumetric Flow	MMSCFD	0.005808	0.189805	4.59506	4.65655	0.122507
Std Liquid Volumetric Flow	sgpm	0.113164	4.35041 *	18.17 *	20.3947	2.01255
Compressibility		0.983791	0.298803	0.0528707	0.000778148	0.976761
Specific Gravity		1.6587	0.586387	0.997012	0.956668	1.1295
API Gravity			103.133	9.88462	14.8213	
Enthalpy	Btu/h	-34706	-1.35147E+06	-6.19047E+07	-6.2377E+07	-565355
Mass Enthalpy	Btu/lb	-1132.86	-1082.95	-6810.78	-6322.1	-1284.81
Mass Cp	Btu/(lb*°F)	0.425934	0.568968	0.980315	0.945576	0.452621
Ideal Gas CpCv Ratio		1.10826	1.08825	1.32512	1.29881	1.15747
Dynamic Viscosity	cP	0.00872559	0.176	0.840918	0.606498	0.00995828
Kinematic Viscosity	cSt	4.63642	0.300426	0.844235	0.632397	2.53891
Thermal Conductivity	Btu/(h*ft*°F)	0.0113867	0.0642775	0.353848	0.330872	0.014946
Surface Tension	lbf/ft		0.000441128 ?	0.00492858	0.00435669 ?	
Net Ideal Gas Heating Value	Btu/ft^3	2414.76	3087.49	0	77.8937	1708.29
Net Liquid Heating Value	Btu/lb	18892.4	19419.4	-1059.76	543.734	19677.1
Gross Ideal Gas Heating Value	Btu/ft^3	2624.31	3343.77	50.31	133.568	1866.3
Gross Liquid Heating Value	Btu/lb	20547.7	21043.5	0	1638.55	21510

					_
		All S	reams Report treams by Total Phase		
Client Name:	EQT			Job: Low Pr	ressure Tower
Location:	OXF 157 50% C	ontingency			
Flowsheet:	Flowsheet1				
	+			-	
		0			
		Conn	ections		
		1	2		
From Block		MIX-100	Low Pressure		
			Tower		
To Block		Low Pressure	VSSL-100		
		Tower			
		04::			
			omposition		
		1	2		
Mole Fraction		%	%		
Nitrogen		0	0		
Methane		1.04854	0.0110721		
Carbon Dioxide		0.00733853	0.00042091		
Ethane		0.645949	0.0282599		
Propane		0.442811	0.0544468		
i-Butane		0.0980983	0.0344408		
n-Butane		0.0980983	0.0238293		
i-Pentane			0.0744133		
		0.111625			
n-Pentane		0.1265	0.0737732		
Isohexane		0.0989313	0.0758176		
n-Hexane		0.0844922	0.0691554		
2,2,4-Trimethylpenta	ane	0.000357009	0.000333619		
Benzene		0.00230073	0.00190784		
Heptane		0.261212	0.245168		
Toluene		0.0165811	0.0157641		
Octane		0.267519	0.265715		
Ethylbenzene		0.00253873	0.00253401		
o-Xylene		0.00428411	0.00430251		
Nonane		0.168826	0.171197		
Decane		0.335708	0.343008		
Water		96.0332	98.4812		
vvalci		90.0332	30.4012		
		-			
		1	2		
Molar Flow		lbmol/h	lbmol/h		
Nitrogen		0	0		
Methane		5.50868	0.0566803		
Carbon Dioxide		0.0385543	0.00215471		
Ethane		3.39361	0.144668		
Propane		2.32639	0.278723		
i-Butane		0.515378	0.121986		
n-Butane		1.2775	0.380935		
i-Pentane		0.586443	0.295435		
n-Pentane		0.664593	0.293433		
Isohexane		0.664393	0.377636		
n-Hexane		0.519754	0.388124		
2,2,4-Trimethylpenta	ane	0.00187562	0.00170785		
Benzene		0.0120873	0.00976655		
Heptane		1.37233	1.25506		
Toluene		0.087112	0.0806993		
Octane		1.40546	1.36024		
Ethylbenzene		0.0133377	0.0129721		
o-Xylene		0.0225074	0.0220253		
Nonane		0.886958	0.876387		
Decane		1.7637	1.75592		
Water	·	504.529	504.143		
		1	2		
Mass Fraction		%	%		
Nitrogen		0	0		
Methane		0.854903	0.0091874		
Carbon Dioxide		0.0164141	0.000958133		
Carbon Dioxide		0.0104141	0.000300133		

			Process Stre All Sti Tabulated by	reams		
Client Name:	EQT	•			Job: Low P	ressure Tower
Location:	OXF 157 50% C	Contingency				
Flowsheet:	Flowsheet1					
			1	2		
Mass Fraction			%	% 0.0439523		
Ethane Propane			0.987143 0.992375	0.0439523		
i-Butane			0.992373	0.071638		
n-Butane			0.718294	0.223709		
i-Pentane			0.40931	0.215368		
n-Pentane			0.463856	0.275307		
Isohexane			0.433291	0.337943		
n-Hexane			0.370052	0.308247		
2,2,4-Trimethylpent	ane		0.00207261	0.00197113		
Benzene			0.00913365	0.00770811		
Heptane			1.33024	1.27066		
Toluene Octane			0.0776456 1.55307	0.0751278 1.56993		
Ethylbenzene			0.0136981	0.0139149		
o-Xylene			0.0130961	0.0139149		
Nonane			1.10046	1.13569		
Decane			2.42758	2.52431		
Water			87.9276	91.7666		
			1	2	·	
Mass Flow			lb/h	lb/h	_	
Nitrogen			0	0		
Methane			88.3729	0.909291		
Carbon Dioxide			1.69676	0.0948278		
Ethane Propane			102.043 102.584	4.35002 12.2905		
i-Butane			29.9549	7.09012		
n-Butane			74.2513	22.1408		
i-Pentane			42.3111	21.3153		
n-Pentane			47.9496	27.2476		
Isohexane			44.79	33.4467		
n-Hexane			38.2529	30.5077		
2,2,4-Trimethylpent	ane		0.214249	0.195086		
Benzene			0.944162	0.762883		
Heptane Toluene			137.51 8.02636	125.759 7.43551		
Octane			160.544	155.378		
Ethylbenzene			1.416	1.37718		
o-Xylene			2.3895	2.33832		
Nonane			113.757	112.401		
Decane			250.943	249.835		
Water			9089.23	9082.27		
			Stream P	roperties		
Property		Units	1	2		
Temperature		°F	85.0825	110	•	
Pressure		psia	1066.7	44.6959		
Mole Fraction Vapo		%	0	0		
Mole Fraction Light		%	3.8523	1.51441		
Mole Fraction Heav Molecular Weight	y Liquia	% lb/lbmol	96.1477 19.676	98.4856 19.3335		
Mass Density		lb/ft^3	57.4083	59.534		
Molar Flow		lbmol/h	525.369	511.918		
Mass Flow		lb/h	10337.2	9897.15		
Vapor Volumetric F	low	ft^3/h	180.064	166.244		
Liquid Volumetric F	low	gpm	22.4496	20.7265		
Std Vapor Volumetr		MMSCFD	4.78486	4.66236		
Std Liquid Volumetr	ric Flow	sgpm	22.5204	20.5079		
Compressibility			0.0625375	0.00237424		
Specific Gravity			0.920462	0.954544		

			Process Streams Report All Streams Tabulated by Total Phase						
Client Name:	EQT					Job: Low P	ressure Tow	er	
Location:	OXF 157 50% C	Contingency							
Flowsheet:	Flowsheet1								
			Stream I	Properties					
Property		Units	1	2		•			
API Gravity		·	21.2003	15.1057		•			·
Enthalpy		Btu/h	-6.32562E+07	-6.24117E+07					
Mass Enthalpy		Btu/lb	-6119.29	-6306.03					
Mass Cp		Btu/(lb*°F)	0.931469	0.944547					
Ideal Gas CpCv Rat	io		1.29383	1.29811					
Dynamic Viscosity		cP	0.711141	0.59957					
Kinematic Viscosity		cSt	0.73824	0.625357					
Thermal Conductivit	у	Btu/(h*ft*°F)	0.298587	0.32957					
Surface Tension		lbf/ft	0.00408697 ?	0.0043327	?				
Net Ideal Gas Heatir		Btu/ft^3	122.474	80.8048					
Net Liquid Heating V		Btu/lb	1412.57	600.53					
Gross Ideal Gas Hea	ating Value	Btu/ft^3 180.954 136.67							
Gross Liquid Heating	g Value	Btu/lb 2540.47 1697.08							
Remarks	Remarks								

Energy Stream Report

Client Name: EQT Job: Low Pressure Tower Location: Flowsheet: OXF 157 50% Contingency Flowsheet1

		Energy Streams		
Energy Stream	Energy Rate	Power	From Block	To Block
Q-1	279086 Btu/h	109.685 hp		Low Pressure Tower

Blocks Low Pressure Tower

Separator Report

Client Name:	EQT	Job: Low Pressure Tower
Location:	OXF 157 50% Contingency	Modified: 10:53 AM, 1/21/2016
Flowsheet:	Flowsheet1	Status: Solved 9:11 AM, 2/4/2016

С	O	n	n	e	ct	ic	or	ıs	
_	_			_		-	-	_	

Stream	Connection Type	Other Block	Stream	Connection Type	Other Block
1	Inlet	MIX-100	To Sales Pipeline	Vapor Outlet	
2	Light Liquid Outlet	VSSL-100	Q-1	Energy	

Block Parameters

Diock i didilictors						
Pressure Drop	1022 psi	Main Liquid Phase	Light Liquid			
Mole Fraction Vapor	2.56031 %	Heat Duty	279086 Btu/h			
Mole Fraction Light Liquid	1.47563 %	Heat Release Curve Type	Plug Flow			
Mole Fraction Heavy Liquid	95.9641 %	Heat Release Curve Increments	5			

Blocks MIX-100

Mixer/Splitter Report

ı	Client Name:	EQT	Job: Low Pressure Tower
ı	Location:	OXF 157 50% Contingency	Modified: 8:44 AM, 1/18/2016
ı	Flowsheet:	Flowsheet1	Status: Solved 9:11 AM, 2/4/2016
ı			, , , , , ,

Connections

Stream	Connection Type	Other Block	Stream	Connection Type	Other Block				
Produced Water	Inlet	•	OXF 157 Condensate	Inlet	•				
1	Outlet	Low Pressure Tower							

Block Parameters

Pressure Drop 0 psi	Fraction to PStream 1	100 %
---------------------	-----------------------	-------

Stream

Connection Type

Inlet

Other Block

Blocks VSSL-100

Separator Report

Client Name:	EQT	Job: Low Pressure Tower
Location:	OXF 157 50% Contingency	Modified: 8:45 AM, 1/18/2016
Flowsheet:	Flowsheet1	Status: Solved 9:11 AM, 2/4/2016

Connections

Stream

Flash Gas

Increments

Other Block

Low Pressure Tower

Connection Type

Vapor Outlet

Stable Liquid	Light Liquid Outlet					
Block Parameters						
Pressure Drop	30	psi	Main Liquid Phase	Light Liquid		
Mole Fraction Vapor	0.124572	%	Heat Duty	0	Btu/h	
Mole Fraction Light Liquid	d 1.40446	%	Heat Release Curve Type	Plug Flow		
Mole Fraction Heavy Liqu	uid 98.471	%	Heat Release Curve	5		

Flowsheet Environment Environment1

Client Name: EQT Job: Low Pressure Tower
Location: OXF 157 50% Contingency
Flowsheet: Flowsheet1

Environment Settings

Number of Poynting Intervals

0
Freeze Out Temperature
Threshold Difference

Gibbs Excess Model
Evaluation Temperature

77 °F
Phase Tolerance

10 °F
Phase Tolerance

1 %

	Components								
Component Name	Henry`s Law Component	Phase Initiator	Component Name	Henry`s Law Component	Phase Initiator				
Nitrogen	False	False	2,2,4-Trimethylpentane	False	False				
Methane	False	False	Benzene	False	False				
Carbon Dioxide	False	False	Heptane	False	False				
Ethane	False	False	Toluene	False	False				
Propane	False	False	Octane	False	False				
i-Butane	False	False	Ethylbenzene	False	False				
n-Butane	False	False	o-Xylene	False	False				
i-Pentane	False	False	Nonane	False	False				
n-Pentane	False	False	Decane	False	False				

Physical Property Method SetsLiquid Molar VolumeCOSTALDOverall PackagePeng-RobinsonStability CalculationPeng-RobinsonVapor PackagePeng-RobinsonLight Liquid PackagePeng-RobinsonHeavy Liquid PackagePeng-Robinson

Water

False

False

False

False

Remarks

Isohexane

n-Hexane

False

True

Cal	cu	ator	Re	port
-		u.		70. 6

Client Name: EQT Job: Low Pressure Tower
Location: OXF 157 50% Contingency

Simple Solver 1

Source Code

Residual Error (for CV1) = TP / 255225 - 1

Calculated Variable [CV1]

SourceMoniker ProMax:Project!Flowsheets!Flowsheet1!PStreams!OXF 157 Condensate!Phases!Total!Properties!Std Liquid Volumetric Flow

Value 149.157
Unit bbl/d

Measured Variable [TP]

SourceMoniker ProMax:Project!Flowsheets!Flowsheet1!PStreams!Stable Liquid!Phases!Total!Properties!Std Liquid Volumetric Flow Value 255225
Unit bbl/yr

	Status: Solved			
Error	9.3486E-07	Iterations	5	
Calculated Value	4.35041 sgpm	Max Iterations	20	
Lower Bound	sgpm	Weighting	1	
Upper Bound	sgpm	Priority	0	
Step Size	sgpm	Solver Active	Active	
Is Minimizer	False	Group		
Algorithm	Default	Skip Dependency Check	False	

Remarks

Simple Solver 2 Source Code

Residual Error (for CV1) = LF / 89 - 1

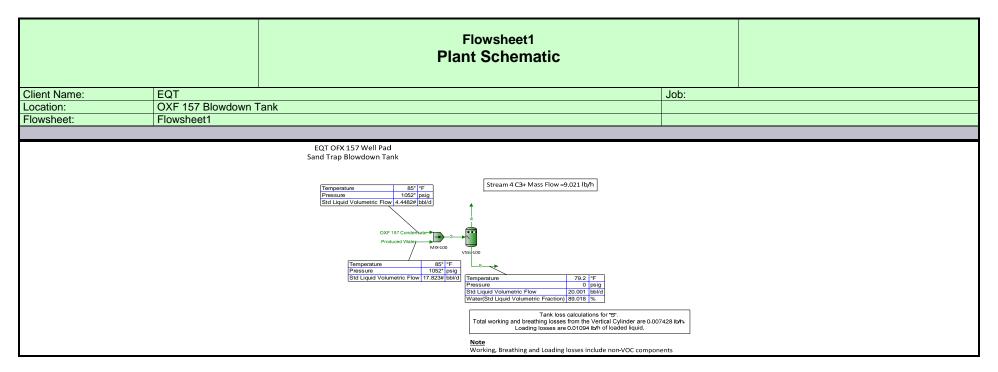
Calculated Variable [CV1]

SourceMoniker ProMax:Project!Flowsheets!Flowsheet1!PStreams!Produced Water!Phases!Total!Properties!Std Liquid Volumetric Flow Value 622.972
Unit bbl/d

Measured Variable [LF]

SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!Stable Liquid!Phases!Total!Composition!Std. Liquid Volumetric Fraction!Water

Value 89.014


Unit %

	Solv	er Properties	Status: Solved
Error	0.000157812	Iterations	5
Calculated Value	18.17 sgpm	Max Iterations	20
Lower Bound	sgpm	Weighting	1
Upper Bound	sgpm	Priority	0
Step Size	sgpm	Solver Active	Active
Is Minimizer	False	Group	
Algorithm	Default	Skip Dependency Check	False

^{*} User Specified Values

Simulation Initiated on 2	/4/2016 9:12:04 AM	OXF157_50% C	ontingency_LPTower_2.4.16.pmx		Page 1 of 2
		User Va	lue Sets Report		
Client Name:	EQT			Joh: Low F	Pressure Tower
Location:	OXF 157 50% C	ontingency		JOD. LOW I	TOSSUIC TOWER
			+ Flow/Frac.		
			lue [CnPlusSum]		
* Parameter		25.3727 lb/h	Upper Bound		Pales
Lower Bound		lb/h	* Enforce Bounds		False
Remarks This User Value S	et was programmati	ically generated. GUID={E8670	C485-3D3C-49CB-BC24-EA10	6096DB2B1}	
			nk Losses.12		
		User Va	lue [ShellLength]		
* Parameter		20 ft	Upper Bound		
* Lower Bound		0 ft	* Enforce Bounds		False
		HaanV	alua (OhallDiam)		
* Parameter		12 ft	alue [ShellDiam] Upper Bound		
* Lower Bound		0 ft	* Enforce Bounds		False
		- 1			
		User Va	lue [BreatherVP]		
* Parameter		0.03 psig	Upper Bound		
Lower Bound			* Enforce Bounds		False
* Parameter		-0.03 psig	ue [BreatherVacP] Upper Bound		
Lower Bound		-0.03 psig	* Enforce Bounds		False
201101 200110			2		. 4.60
		User Val	lue [DomeRadius]		
Parameter		ft	Upper Bound		ft
Lower Bound		ft	* Enforce Bounds		False
			 		
* 5		User V	/alue [OpPress]		
* Parameter Lower Bound		0 psig	* Enforce Bounds		False
Lower Boaria			Efficied Bourius		i disc
		User Valu	ue [AvgPercentLiq]		
* Parameter		50 %	Upper Bound		
Lower Bound		%	* Enforce Bounds		False
			ue [MaxPercentLiq]		
* Parameter Lower Bound		90 %	Upper Bound * Enforce Bounds		False
Lower Boaria		76	Efficice Bourius		i dise
		llser V	alue [AnnNetTP]		
* Parameter		698.457 bbl/day	Upper Bound		
* Lower Bound		0 bbl/day	* Enforce Bounds		False
			Value [OREff]		
* Parameter		0 %	Upper Bound		F-1
Lower Bound		%	* Enforce Bounds		False
		Haar Val	uo [AtmDrocoure]		
* Parameter		97274.7 Pa	ue [AtmPressure] Upper Bound		
Lower Bound		J1214.1 Fd	* Enforce Bounds		False

		User Va	lue Sets Report			
lient Name:	EQT			Job: Low F	Pressure Tower	
ocation:	OXF 157 50% C	ontingency				
		User Valu	e [MaxLiqSurfaceT]			
Parameter		66.3119 °F	Upper Bound			
Lower Bound			* Enforce Bounds		False	_
		Hear Va	lue [TotalLosses]			
Parameter		0.135232 lb/h	Upper Bound			
Lower Bound		Ib/h	* Enforce Bounds		False	
			e [WorkingLosses]			
Parameter		0.0178363 lb/h	Upper Bound			
Lower Bound		lb/h	* Enforce Bounds		False	
		Hear Valu	e [StandingLosses]			
Parameter		0.00470245 lb/h	Upper Bound			
Lower Bound		lb/h	* Enforce Bounds		False	
		User Valu	e [RimSealLosses]			
Parameter		0 lb/h	Upper Bound			
Lower Bound		lb/h	* Enforce Bounds		False	
		Hser Valu	e [WithdrawalLoss]			
Parameter		0 lb/h	Upper Bound			
Lower Bound		lb/h	* Enforce Bounds		False	_
			<u> </u>			
Davasatas			e [LoadingLosses]			
Parameter Lower Bound		1.24999 lb/h lb/h	Upper Bound * Enforce Bounds		False	
Lower Bound		10/11	Lilloice Boarias		i aise	
		User Value	[DeckFittingLosses]			
Parameter		0 lb/h	Upper Bound			
Lower Bound		lb/h	* Enforce Bounds		False	
		User Value	[DeckSeamLosses]			
Parameter		0 lb/h	Upper Bound			
Lower Bound		lb/h	* Enforce Bounds		False	
		Hear Valu	e [FlashingLosses]			
Parameter		0 lb/h	Upper Bound			
Lower Bound		lb/h	* Enforce Bounds		False	
			e [GasMoleWeight]			
Parameter		0.0263203 kg/mol	Upper Bound			
Lower Bound			* Enforce Bounds		False	_
emarks		Saultana and Allin (7074)	59D1-E12F-494E-9828-D6559	CC40740)		

Page 1 of 3

Process Streams Report All Streams

Tabulated by Total Phase

Client Name: EQT Job: OXF 157 Blowdown Tank Flowsheet1 Location: Flowsheet:

Connections						
	OXF 157 Condensate	Produced Water	3	4	5	
From Block			MIX-100	VSSL-100	VSSL-100	
To Block	MIX-100	MIX-100	VSSL-100			

Stream Composition							
Mala Facedon	OXF 157 Condensate	Produced Water	3	4	5		
Mole Fraction	%	%	%	%	%		
Nitrogen	U	0 *	0	0	0		
Methane	26.433 *	0 *	1.09117	37.832	0.00354491		
Carbon Dioxide	0.185 *	0 *	0.00763689	0.259872	0.000170097		
Ethane	16.284 *	0 *	0.672212	23.0256	0.0104959		
Propane	11.163 *	0 *	0.460814	15.2174	0.0239815		
i-Butane	2.473 *	0 *	0.102087	3.13756	0.012229		
n-Butane	6.13 *	0 *	0.253049	7.41968	0.0408991		
i-Pentane	2.814 *	0 *	0.116163	2.71278	0.0392969		
n-Pentane	3.189 *	0 *	0.131644	2.76432	0.0537096		
Isohexane	2.494 *	0 *	0.102954	1.38207	0.0650886		
n-Hexane	2.13 *	0 *	0.0879275	0.954826	0.0622651		
2,2,4-Trimethylpentane	0.009 *	0 *	0.000371524	0.00179851	0.000329282		
Benzene	0.058 *	0 *	0.00239427	0.0249651	0.00172612		
Heptane	6.585 *	0 *	0.271832	1.22751	0.243542		
Toluene	0.418 *	0 *	0.0172552	0.0682089	0.0157469		
Octane	6.744 *	0 *	0.278396	0.437628	0.273682		
Ethylbenzene	0.064 *	0 *	0.00264195	0.00355774	0.00261484		
o-Xylene	0.108 *	0 *	0.00445829	0.00457818	0.00445475		
Nonane	4.256 *	0 *	0.17569	0.0930973	0.178135		
Decane	8.463 *	0 *	0.349357	0.0610687	0.357891		
Water	0 *	100 *	95.872	3.37145	98.6102		

	Condensate	Water		4	5
Molar Flow	lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h
Nitrogen	0 *	0 *	0	0	0
Methane	0.16428 *	0 *	0.16428	0.163762	0.000518358
Carbon Dioxide	0.00114977 *	0 *	0.00114977	0.0011249	2.48727E-05
Ethane	0.101205 *	0 *	0.101205	0.0996699	0.00153478
Propane	0.0693778 *	0 *	0.0693778	0.0658711	0.00350672
i-Butane	0.0153696 *	0 *	0.0153696	0.0135814	0.0017882
n-Butane	0.0380978 *	0 *	0.0380978	0.0321173	0.00598052
i-Pentane	0.0174889 *	0 *	0.0174889	0.0117427	0.00574624
n-Pentane	0.0198196 *	0 *	0.0198196	0.0119658	0.00785375
Isohexane	0.0155002 *	0 *	0.0155002	0.00598249	0.00951766
n-Hexane	0.0132379 *	0 *	0.0132379	0.00413312	0.00910478
2,2,4-Trimethylpentane	5.59348E-05 *	0 *	5.59348E-05	7.78515E-06	4.81496E-05
Benzene	0.000360469 *	0 *	0.000360469	0.000108065	0.000252403
Heptane	0.0409256 *	0 *	0.0409256	0.00531347	0.0356121
Toluene	0.00259786 *	0 *	0.00259786	0.000295253	0.00230261
Octane	0.0419138 *	0 *	0.0419138	0.00189435	0.0400195
Ethylbenzene	0.000397759 *	0 *	0.000397759	1.54003E-05	0.000382358
o-Xylene	0.000671217 *	0 *	0.000671217	1.98174E-05	0.0006514
Nonane	0.0264509 *	0 *	0.0264509	0.000402987	0.026048
Decane	0.0525973 *	0 *	0.0525973	0.000264346	0.052333
Water	0 *	14.434 *	14.434	0.0145939	14.4194

	OXF 157 Produced Condensate Water		3	4	5
Mass Fraction	%	%	%	%	%
Nitrogen	0 *	0 *	0	0	0
Methane	7.08145 *	0 *	0.886619	17.5636	0.00294581

Process Streams Report All Streams Tabulated by Total Phase Job: Client Name: EQT Location: Flowsheet: OXF 157 Blowdown Tank Flowsheet1

	OXF 157	Produced	3	4	5
	Condensate	Water			
Mass Fraction	%	%	%	%	%
Carbon Dioxide	0.135964 *	0 *	0.0170231	0.33097	0.000387768
Ethane	8.17683 *	0 *	1.02376	20.0361	0.0163481
Propane	8.22017 *	0 *	1.02919	19.4186	0.0547773
i-Butane	2.40033 *	0 *	0.300529	5.27736	0.036818
n-Butane	5.94986 *	0 *	0.744941	12.4799	0.123136
i-Pentane	3.39045 *	0 *	0.424495	5.66404	0.146864
n-Pentane	3.84227 *	0 *	0.481064	5.77165	0.200729
Isohexane	3.58909 *	0 *	0.449365	3.44663	0.290547
n-Hexane	3.06526 *	0 *	0.38378	2.38117	0.277943
2,2,4-Trimethylpentane	0.0171681 *	0 *	0.0021495	0.00594526	0.00194837
Benzene	0.0756571 *	0 *	0.0094725	0.0564329	0.00698417
Heptane	11.0189 *	0 *	1.37959	3.55945	1.26409
Toluene	0.643164 *	0 *	0.0805261	0.181871	0.0751561
Octane	12.8646 *	0 *	1.61069	1.44665	1.61938
Ethylbenzene	0.113466 *	0 *	0.0142063	0.0109305	0.0143799
o-Xylene	0.191474 *	0 *	0.0239731	0.0140656	0.0244981
Nonane	9.11551 *	0 *	1.14129	0.345537	1.18345
Decane	20.1084 *	0 *	2.51764	0.251449	2.63772
Water	0 *	100 *	87.4797	1.75768	92.0219

	OXF 157 Condensate	Produced Water	3	4	5
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
Nitrogen	0 *	0 *	0	0	0
Methane	2.63546 *	0 *	2.63546	2.62715	0.00831574
Carbon Dioxide	0.0506008 *	0 *	0.0506008	0.0495062	0.00109463
Ethane	3.04313 *	0 *	3.04313	2.99698	0.0461492
Propane	3.05926 *	0 *	3.05926	2.90463	0.154631
i-Butane	0.893317 *	0 *	0.893317	0.789383	0.103934
n-Butane	2.21433 *	0 *	2.21433	1.86673	0.347601
i-Pentane	1.26181 *	0 *	1.26181	0.847222	0.414584
n-Pentane	1.42996 *	0 *	1.42996	0.863319	0.566638
Isohexane	1.33573 *	0 *	1.33573	0.515543	0.820188
n-Hexane	1.14078 *	0 *	1.14078	0.356173	0.784608
2,2,4-Trimethylpentane	0.00638935 *	0 *	0.00638935	0.000889287	0.00550006
Benzene	0.0281569 *	0 *	0.0281569	0.00844119	0.0197157
Heptane	4.10083 *	0 *	4.10083	0.53242	3.56841
Toluene	0.239363 *	0 *	0.239363	0.0272042	0.212159
Octane	4.78775 *	0 *	4.78775	0.216388	4.57136
Ethylbenzene	0.042228 *	0 *	0.042228	0.00163497	0.0405931
o-Xylene	0.0712598 *	0 *	0.0712598	0.00210391	0.0691559
Nonane	3.39247 *	0 *	3.39247	0.0516851	3.34078
Decane	7.48364 *	0 *	7.48364	0.0376115	7.44603
Water	0 *	260.032 *	260.032	0.262913	259.769

	Stream Properties							
Property	Units	OXF 157 Condensate	Produced Water	3	4	5		
Temperature	°F	85 *	85 *	85.0818	79.2466	79.2466		
Pressure	psia	1066.7 *	1066.7 *	1066.7	14.6959 *	14.6959		
Mole Fraction Vapor	%	0	0	0	100	0		
Mole Fraction Light Liquid	%	100	100	4.01359	0	1.38784		
Mole Fraction Heavy Liquid	%	0	0	95.9864	0	98.6122		
Molecular Weight	lb/lbmol	59.8819	18.0153	19.7436	34.5555	19.3051		
Mass Density	lb/ft^3	36.5724	62.1827	57.2424	0.088686	60.1363		
Molar Flow	lbmol/h	0.621498	14.434	15.0555	0.432866	14.6226		
Mass Flow	lb/h	37.2165	260.032	297.249	14.9579	282.291		
Vapor Volumetric Flow	ft^3/h	1.01761	4.18175	5.19281	168.661	4.69418		
Liquid Volumetric Flow	gpm	0.126871	0.521361	0.647415	21.0279	0.585249		

		Process Streams Report All Streams Tabulated by Total Phase		
Client Name:	EQT		Job:	<u> </u>
Location:	OXF 157 Blowd	own Tank		
Flowsheet:	Flowsheet1			
	•		•	

	Stream Properties							
Property	Units	OXF 157 Condensate	Produced Water	3	4	5		
Std Vapor Volumetric Flow	MMSCFD	0.00566037	0.131459	0.13712	0.00394238	0.133177		
Std Liquid Volumetric Flow	sgpm	0.129738 *	0.519823 *	0.649561	0.0661977	0.583364		
Compressibility		0.298803	0.0528707	0.062934	0.990089	0.000815731		
Specific Gravity		0.586387	0.997012	0.917802	1.19311	0.964201		
API Gravity		103.133	9.88462	21.6261		14.7165		
Enthalpy	Btu/h	-40303.7	-1.77102E+06	-1.81133E+06	-18976.2	-1.79235E+06		
Mass Enthalpy	Btu/lb	-1082.95	-6810.78	-6093.64	-1268.64	-6349.3		
Mass Cp	Btu/(lb*°F)	0.568968	0.980315	0.929624	0.4289	0.944341		
Ideal Gas CpCv Ratio		1.08825	1.32512	1.29268	1.15573	1.30113		
Dynamic Viscosity	cP	0.176	0.840918	0.706872	0.00925778	0.843531		
Kinematic Viscosity	cSt	0.300426	0.844235	0.734747	6.51674	0.869676		
Thermal Conductivity	Btu/(h*ft*°F)	0.0642775	0.353848	0.296717	0.013293	0.320594		
Surface Tension	lbf/ft	0.000441128 ?	0.00492858	0.00405793 ?		0.00457848		
Net Ideal Gas Heating Value	Btu/ft^3	3087.49	0	127.453	1794.98	78.0899		
Net Liquid Heating Value	Btu/lb	19419.4	-1059.76	1504.29	19567.2	547.183		
Gross Ideal Gas Heating Value	Btu/ft^3	3343.77	50.31	186.266	1959.28	133.78		
Gross Liquid Heating Value	Btu/lb	21043.5	0	2634.71	21371.5	1641.9		

OXF157_Blowdown Tank_2.4.16.pmx Simulation Initiated on 2/4/2016 9:25:15 AM Page 1 of 1

Blocks MIX-100

Mixer/Splitter Report

Client Name: EQT Job:

OXF 157 Blowdown Tank Flowsheet1 Modified: 2:14 PM, 7/24/2014 Status: Solved 9:23 AM, 2/4/2016 Location: Flowsheet:

Connections

O TITLO CHOICE							
Stream	Connection Type	Other Block	Stream	Connection Type	Other Block		
Produced Water	Inlet		OXF 157 Condensate	Inlet	•		
3	Outlet	VSSL-100					

Block Parameters

Pressure Drop 0 psi Fraction to PStream 3 100 %

Blocks VSSL-100

Separator Report

Client Name:	EQT	Job:
Location:	OXF 157 Blowdown Tank	Modified: 1:11 PM, 7/17/2014
Flowsheet:	Flowsheet1	Status: Solved 9:23 AM, 2/4/2016

	Connections						
Stream	Connection Type	Other Block	Stream	Connection Type	Other Block		
3	Inlet	MIX-100	4	Vapor Outlet			
5	Light Liquid Outlet						

Block Parameters							
Pressure Drop	1052 psi	Main Liquid Phase	Light Liquid				
Mole Fraction Vapor	2.87514 %	Heat Duty	0 Btu/h				
Mole Fraction Light Liquid	1.34793 %	Heat Release Curve Type	Plug Flow				
Mole Fraction Heavy Liquid	95.7769 %	Heat Release Curve Increments	5				

Simulation Initiated on 2/4/2016 9:25:15 AM		OXF157_Blowdo	wn Tank_2.4.16.pmx		Page 1				
	Flowsheet Environment Environment1								
Client Name: EQT			Job:						
ocation: OXF 157 Blowd	down Tank								
Flowsheet: Flowsheet1									
		Environme	ent Settings						
Number of Poynting Intervals	0		Freeze Out Temperature Threshold Difference	10	0 °F				
Gibbs Excess Model	77 °F		Phase Tolerance		1 %				
Evaluation Temperature									
		Comr	onents						
Component Name	Henry's Law	Phase	Component Name	Henry`s	Law Phase				
Somponent Name			Component Name						
•	Component False	Initiator False	2,2,4-Trimethylpentane	Compon False	ent Initiato				
- Nitrogen	Component	Initiator	-	Compon	ent Initiato False				
√litrogen √lethane	Component False	Initiator False	2,2,4-Trimethylpentane	Compon False	rent Initiato False False				
Vitrogen Methane Carbon Dioxide	Component False False	Initiator False False	2,2,4-Trimethylpentane Benzene	Compon False False	ent Initiato False False False				
Nitrogen Methane Carbon Dioxide Ethane	Component False False False False	Initiator False False False	2,2,4-Trimethylpentane Benzene Heptane	Compon False False False False False False	ent Initiato False False False False False False False False				
Vitrogen Methane Carbon Dioxide Ethane Propane	Component False False False False False	Initiator False False False False	2,2,4-Trimethylpentane Benzene Heptane Toluene	Compon False False False False	ent Initiato False False False False False False False False				
Vitrogen Methane Carbon Dioxide Ethane Propane Butane	Component False False False False False False	Initiator False False False False False False	2,2,4-Trimethylpentane Benzene Heptane Toluene Octane	Compon False False False False False False	ent Initiato False False False False False False False False False False				
Vitrogen Methane Carbon Dioxide Ethane Propane Butane I-Butane	Component False False False False False False False False	Initiator False False False False False False False False	2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene	Compon False False False False False False False	ent Initiato False False False False False False False False False False False				
Nitrogen Methane Carbon Dioxide Ethane Propane -Butane n-Butane -Pentane	False False False False False False False False False False False False False False	False False False False False False False False False False False False False False	2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane	Compon False False False False False False False False False False False False False False	ent Initiato False False False False False False False False False False False False False False False False				
Nitrogen Methane Carbon Dioxide Ethane Propane -Butane -Pentane -Pentane -Pentane -Pentane -Pentane	False False False False False False False False False False False False False False False False	False False False False False False False False False False False False False False False False	2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane	Compon False False False False False False False False False False	ent Initiato False False False False False False False False False False False False False False False False				
Nitrogen Methane Carbon Dioxide Ethane Propane -Butane -Pentane -Pentane -Pentane -Pentane -Pentane	False False False False False False False False False False False False False False	False False False False False False False False False False False False False False	2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane	Compon False False False False False False False False False False False False False False	ent Initiato False False False False False False False False False False False False False False False False				
Nitrogen Methane Carbon Dioxide Ethane Propane -Butane -Pentane -Pentane -Pentane sohexane	False False False False False False False False False False False False False False False False	False False False False False False False False False False False False False False False False	2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane	Compon False False False False False False False False False False False False False False	ent Initiato False False False False False False False False False False False False False False False False				
Nitrogen Methane Carbon Dioxide Ethane Propane -Butane -Pentane -Pentane -Pentane sohexane	Component False False False False False False False False False False False False False False False False False False	Initiator False False False False False False False False False False False False False False False	2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water	Compon False False False False False False False False False False False False False False	ent Initiato False False False False False False False False False False False False False False False False				
Nitrogen Methane Carbon Dioxide Ethane Propane -Butane -Butane -Pentane -Pentane -Pentane sohexane	Component False False False False False False False False False False False False False False False False False False	Initiator False False False False False False False False False False False False False False False False False False	2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane	Compon False False False False False False False False False False False False	ent Initiato False False False False False False False False False False False False True				
Nitrogen Methane Carbon Dioxide Ethane Propane -Butane n-Butane n-Pentane n-Pentane lsohexane n-Hexane Liquid Molar Volume Stability Calculation	Component False	Initiator False False False False False False False False False False False False False False False False False	2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water	Compon False False False False False False False False False False False False False False	ent Initiato False False False False False False False False False False False False False False False False				

	2016 9:25:15 AM		OXF157_Blowdown Tank_2.4.16.pmx						
			Calcul	ator Report					
Client Name:	EQT			Job:					
ocation:	OXF 157 Blowd	own Tank		300.					
ocation.	OXI 107 DIOWG	OWITTAIIK							
			Simp	le Solver 1					
				rce Code					
Residual Error (for C	V1) = TP / 20 - 1								
,	,								
			Calculated	d Variable [CV1]					
SourceMoniker	Flow	ax!Project!Flowshee	ts!Flowsheet1!	PStreams!OXF 157 Condensate!Pha	ases!Total!Properties!Std Liquid Volumet				
/alue	4.44817								
<u>Jnit</u>	bbl/d								
			Measure	d Variable [TP]					
SourceMoniker		ax!Project!Flowshee	ts!Flowsheet1!	PStreams!5!Phases!Total!Properties	!Std Liquid Volumetric Flow				
/alue	20.001 bbl/d								
<u>Jnit</u>	מאועמ								
			Solver	r Properties	Status: Solved				
		5.20455E-05	Solve	Iterations	5				
C		J.ZU4JJ⊑-UJ			20				
Error			canm	May Itarations	20				
Calculated Value		0.129738		Max Iterations Weighting					
Calculated Value Lower Bound			sgpm	Weighting	1				
Calculated Value Lower Bound Upper Bound			sgpm sgpm	Weighting Priority	1 0				
Calculated Value Lower Bound Upper Bound Step Size		0.129738	sgpm	Weighting Priority Solver Active	1				
Calculated Value Lower Bound Upper Bound			sgpm sgpm	Weighting Priority	1 0				
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm		0.129738 False	sgpm sgpm sgpm	Weighting Priority Solver Active Group Skip Dependency Check	1 0 Active				
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm		0.129738 False	sgpm sgpm sgpm	Weighting Priority Solver Active Group Skip Dependency Check	1 0 Active				
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks		0.129738 False Default	sgpm sgpm sgpm	Weighting Priority Solver Active Group Skip Dependency Check	1 0 Active				
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks	:V1) = LF / 89 -	0.129738 False Default	sgpm sgpm sgpm	Weighting Priority Solver Active Group Skip Dependency Check	1 0 Active				
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks	CV1) = LF / 89 -	0.129738 False Default	sgpm sgpm sgpm	Weighting Priority Solver Active Group Skip Dependency Check le Solver 2 Irce Code	1 0 Active				
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks		0.129738 False Default	sgpm sgpm sgpm	Weighting Priority Solver Active Group Skip Dependency Check le Solver 2 Irce Code	1 0 Active False				
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for Calculated Algorites)	ProMax:ProMa	0.129738 False Default	sgpm sgpm sgpm	Weighting Priority Solver Active Group Skip Dependency Check le Solver 2 Irce Code	1 0 Active False				
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for Co	ProMax:ProMa 17.8225	0.129738 False Default	sgpm sgpm sgpm	Weighting Priority Solver Active Group Skip Dependency Check le Solver 2 Irce Code	1 0 Active False				
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for Co	ProMax:ProMa	0.129738 False Default	sgpm sgpm sgpm	Weighting Priority Solver Active Group Skip Dependency Check le Solver 2 Irce Code	1 0 Active False				
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for Co	ProMax:ProMa 17.8225	0.129738 False Default	Simp Sou Calculated sts!Flowsheet1!	Weighting Priority Solver Active Group Skip Dependency Check le Solver 2 Irce Code d Variable [CV1] PStreams!Produced Water!Phases!T	1 0 Active False				
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for Community of Commu	ProMax:ProMa 17.8225 bbl/d	0.129738 False Default	sgpm sgpm sgpm Simp Sou Calculated ets!Flowsheet1!	Weighting Priority Solver Active Group Skip Dependency Check le Solver 2 Irce Code d Variable [CV1] PStreams!Produced Water!Phases!T	1 0 Active False				
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for Concemoniker /alue Jnit SourceMoniker	ProMax:ProMa 17.8225 bbl/d ProMax:ProMa	0.129738 False Default	sgpm sgpm sgpm Simp Sou Calculated ets!Flowsheet1!	Weighting Priority Solver Active Group Skip Dependency Check le Solver 2 Irce Code d Variable [CV1] PStreams!Produced Water!Phases!T	1 0 Active False				
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for Community of CourceMoniker Value Juit SourceMoniker Value	ProMax:ProMa 17.8225 bbl/d ProMax:ProMa 89.0178	0.129738 False Default	sgpm sgpm sgpm Simp Sou Calculated ets!Flowsheet1!	Weighting Priority Solver Active Group Skip Dependency Check le Solver 2 Irce Code d Variable [CV1] PStreams!Produced Water!Phases!T	1 0 Active				
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for Community of CourceMoniker Value Juit SourceMoniker Value	ProMax:ProMa 17.8225 bbl/d ProMax:ProMa	0.129738 False Default	sgpm sgpm sgpm Simp Sou Calculated ets!Flowsheet1!	Weighting Priority Solver Active Group Skip Dependency Check le Solver 2 Irce Code d Variable [CV1] PStreams!Produced Water!Phases!T	1 0 Active False				
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for Community of CourceMoniker Value Juit SourceMoniker Value	ProMax:ProMa 17.8225 bbl/d ProMax:ProMa 89.0178	0.129738 False Default	Simp Sou Calculated ets!Flowsheet1! Measured ets!Flowsheet1!	Weighting Priority Solver Active Group Skip Dependency Check le Solver 2 cree Code Variable [CV1] PStreams!Produced Water!Phases!T	1 0 Active False Fotal!Properties!Std Liquid Volumetric Floon!Std. Liquid Volumetric Fraction!Water				
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for Community of CourceMoniker //alue Jnit SourceMoniker //alue Jnit	ProMax:ProMa 17.8225 bbl/d ProMax:ProMa 89.0178	0.129738 False Default	Simp Sou Calculated ets!Flowsheet1! Measured ets!Flowsheet1!	Weighting Priority Solver Active Group Skip Dependency Check le Solver 2 Irce Code Variable [CV1] PStreams!Produced Water!Phases!T	Total!Properties!Std Liquid Volumetric Flo				
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for Co SourceMoniker Value Unit Error	ProMax:ProMa 17.8225 bbl/d ProMax:ProMa 89.0178	0.129738 False Default 1 ax!Project!Flowshee	Simp Sou Calculated ets!Flowsheet1! Measured ets!Flowsheet1!	Weighting Priority Solver Active Group Skip Dependency Check le Solver 2 cree Code Variable [CV1] PStreams!Produced Water!Phases!T d Variable [LF] PStreams!5!Phases!Total!Composition	Active False Fotal!Properties!Std Liquid Volumetric Flooristd. Liquid Volumetric Fraction!Water Status: Solved 5				
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for Company of the Company	ProMax:ProMa 17.8225 bbl/d ProMax:ProMa 89.0178	0.129738 False Default	Simp Sou Calculated ets!Flowsheet1! Measured ets!Flowsheet1! Solve	Weighting Priority Solver Active Group Skip Dependency Check le Solver 2 Irce Code Variable [CV1] PStreams!Produced Water!Phases!T d Variable [LF] PStreams!5!Phases!Total!Composition r Properties Iterations Max Iterations	Active False Fotal!Properties!Std Liquid Volumetric Floor!Std. Liquid Volumetric Fraction!Water Status: Solved 5 20				
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for CoourceMoniker Value Juit Error Calculated Value Lower Bound	ProMax:ProMa 17.8225 bbl/d ProMax:ProMa 89.0178	0.129738 False Default 1 ax!Project!Flowshee	Simp Source Calculated ets!Flowsheet1! Measure ets!Flowsheet1! Solve	Weighting Priority Solver Active Group Skip Dependency Check le Solver 2 lrce Code Variable [CV1] PStreams!Produced Water!Phases!T d Variable [LF] PStreams!5!Phases!Total!Composition r Properties Iterations Max Iterations Weighting	Total!Properties!Std Liquid Volumetric Floron!Std. Liquid Volumetric Fraction!Water Status: Solved 5 20 1				
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for Co SourceMoniker /alue Jnit Error Calculated Value Lower Bound Upper Bound	ProMax:ProMa 17.8225 bbl/d ProMax:ProMa 89.0178	0.129738 False Default 1 ax!Project!Flowshee	Simp Source Simp Source Calculated ets!Flowsheet1! Measure ets!Flowsheet1! Solve sgpm sgpm sgpm sgpm sgpm sgpm	Weighting Priority Solver Active Group Skip Dependency Check Ile Solver 2 Irce Code Id Variable [CV1] PStreams!Produced Water!Phases!T Id Variable [LF] PStreams!5!Phases!Total!Composition r Properties Iterations Max Iterations Weighting Priority	Total!Properties!Std Liquid Volumetric Floron!Std. Liquid Volumetric Fraction!Water Status: Solved 5 20 1 0				
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for Control SourceMoniker /alue Jnit Error Calculated Value Lower Bound Upper Bound Step Size	ProMax:ProMa 17.8225 bbl/d ProMax:ProMa 89.0178	Talse Default 1 ax!Project!Flowshee 0.000200191 0.519823	Simp Source Calculated ets!Flowsheet1! Measure ets!Flowsheet1! Solve	Weighting Priority Solver Active Group Skip Dependency Check Ile Solver 2 Irce Code Id Variable [CV1] PStreams!Produced Water!Phases!T Id Variable [LF] PStreams!S!Phases!Total!Composition r Properties Iterations Max Iterations Weighting Priority Solver Active	Total!Properties!Std Liquid Volumetric Floor!Std. Liquid Volumetric Fraction!Water Status: Solved 5 20 1				
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for Calculated Value Juit Error Calculated Value Lower Bound Upper Bound	ProMax:ProMa 17.8225 bbl/d ProMax:ProMa 89.0178	0.129738 False Default 1 ax!Project!Flowshee	Simp Source Simp Source Calculated ets!Flowsheet1! Measure ets!Flowsheet1! Solve sgpm sgpm sgpm sgpm sgpm sgpm	Weighting Priority Solver Active Group Skip Dependency Check Ile Solver 2 Irce Code Id Variable [CV1] PStreams!Produced Water!Phases!T Id Variable [LF] PStreams!5!Phases!Total!Composition r Properties Iterations Max Iterations Weighting Priority	Total!Properties!Std Liquid Volumetric Floron!Std. Liquid Volumetric Fraction!Water Status: Solved 5 20 1 0				

		User Val	ue Sets Report		
Client Name:	EQT			Job:	
_ocation:	OXF 157 Blowde	own Tank			
		Cn+	- Flow/Frac.		
			ue [CnPlusSum]		
* Parameter			Upper Bound		
Lower Bound		lb/h	* Enforce Bounds		False
Remarks This User Value Se	t was programmat	ically generated. GUID={E867C	485-3D3C-49CB-BC24-EA160)96DB2B1}	
		т.	what access		
			nk Losses		
t Danamatan			ue [ShellLength]		
* Parameter * Lower Bound			Upper Bound * Enforce Bounds		False
Lower Bound			Efficied Bourius		i disc
		User Va	lue [ShellDiam]		
* Parameter		10 ft	Upper Bound		
* Lower Bound		0 ft	* Enforce Bounds		False
			ue [BreatherVP]		
* Parameter		0.03 psig	Upper Bound		
Lower Bound	Use Set was programmatically generated. GUIDs and Set was programmat		* Enforce Bounds		False
		Hear Valu	e [BreatherVacP]		
* Parameter			Upper Bound		
Lower Bound			* Enforce Bounds		False
		User Valu	ue [DomeRadius]		
Parameter			Upper Bound		ft
Lower Bound		ft	* Enforce Bounds		False
			alue [OpPress]		
* Parameter Lower Bound		U psig	Upper Bound * Enforce Bounds		False
Lower Bound			Efficice Bourius		i dise
		User Value	e [AvgPercentLiq]		
* Parameter			Upper Bound		
Lower Bound			* Enforce Bounds		False
		User Value	e [MaxPercentLiq]		
* Parameter		90 %	Upper Bound		
Lower Bound		<u></u>	* Enforce Bounds		False
			lue [AnnNetTP]		
Parameter Lower Bound			Upper Bound * Enforce Bounds		False
Lower Bound		0 bbl/day	Efficice Bourius		i dise
		lleor '	Value [OREff]		
* Parameter		0 %	Upper Bound		
Lower Bound		%	* Enforce Bounds		False
		User Valu	ue [AtmPressure]		
* Parameter		14.1085 psia	Upper Bound		
Lower Bound		•	* Enforce Bounds		False

		User Va	lue Sets Report		
Client Name:	EQT			Job:	
Location:	OXF 157 Blowd	own Tank			
		Hea	r Value [TVP]		
* Parameter		0.359146 psia	Upper Bound		
Lower Bound		0.000140 psid	* Enforce Bounds		False
		User Value	e [AvgLiqSurfaceT]		
* Parameter		57.7675 °F	Upper Bound		
Lower Bound			* Enforce Bounds		False
			e [MaxLiqSurfaceT]		
* Parameter		66.3119 °F	Upper Bound		
Lower Bound			* Enforce Bounds		False
			lue [TotalLosses]		
* Parameter Lower Bound		0.00742768 lb/h	Upper Bound * Enforce Bounds		Foloo
Lower Bound		lb/h	Enforce Bounds		False
		Heer Velv	a DM antringul accord		
* Parameter		0.0223799 ton/yr	e [WorkingLosses] Upper Bound		
Lower Bound		0.0223799 ton/yr	* Enforce Bounds		False
Lower Bound		tonyi	Efficice Bourius		i dise
			e [StandingLosses]		
* Parameter		0.0101534 ton/yr	Upper Bound * Enforce Bounds		Falsa
Lower Bound		ton/yr	* Enforce Bounds		False
		Heer Velv	a [DimCooll acces]		
* Parameter		0 ton/yr	e [RimSealLosses] Upper Bound		
Lower Bound		0 1011/y1	* Enforce Bounds		False
Lower Bound			Elifered Bearing		raice
		User Value	e [WithdrawalLoss]		
* Parameter		0 ton/yr	Upper Bound		
Lower Bound			* Enforce Bounds		False
		User Valu	e [LoadingLosses]		
* Parameter		0.0109435 lb/h	Upper Bound		
Lower Bound		lb/h	* Enforce Bounds		False
			[DeckFittingLosses]		
* Parameter		0 ton/yr	Upper Bound		
Lower Bound			* Enforce Bounds		False
			[DeckSeamLosses]		
* Parameter		0 ton/yr	Upper Bound * Enforce Bounds		Falsa
Lower Bound			Enforce Bounds		False
		Ha an Mala	. Principles of the second		
* Doromotor			e [FlashingLosses]		
* Parameter Lower Bound		0 ton/yr	Upper Bound * Enforce Bounds		False
Lower Bound			Efficice Bourius		i dise
		Hear Valu	o [CocMoloWeight]		
* Parameter		0.0249629 kg/mol	e [GasMoleWeight] Upper Bound		
Lower Bound		0.0249629 kg/III0I	* Enforce Bounds		False
Lower Bound			Emore Bearies		1 4150
Remarks					
	t was programma	tically generated. GUID={B57AI	FC7E-AAE8-4873-921B-7B403	31991004}	

Attachment T FACILITY-WIDE CONTROLLED EMISSIONS SUMMARY SHEET

ATTACHMENT T – FACILITY-WIDE CONTROLLED EMISSIONS SUMMARY SHEET

List all sources of emissions in this table. Use extra pages if necessary.

	NO _x		СО		VOC		SO_2		PM ₁₀		PM _{2.5}		GHG (CO ₂ e)	
Emission Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Line Heater (S001)	0.36	1.56	0.30	1.31	0.02	0.09	<0.01	<0.01	<0.01	0.03	<0.01	0.03	526.94	2,308.00
Line Heater (S002)	0.36	1.56	0.30	1.31	0.02	0.09	<0.01	<0.01	<0.01	0.03	<0.01	0.03	526.94	2,308.00
Line Heater (S003)	0.12	0.53	0.10	0.45	<0.01	0.03	<0.01	<0.01	<0.01	0.01	<0.01	0.01	180.33	789.85
Enclosed Combustion Unit (C021)	1.07	4.71	0.90	3.95	0.35	1.15	<0.01	0.03	0.02	0.09	0.02	0.09	1,639.09	7,176.46
Enclosed Combustion Unit (C022)	1.07	4.71	0.90	3.95	0.35	1.15	<0.01	0.03	0.02	0.09	0.02	0.09	1,639.09	7,176.46
Tank Truck Loading Activities (S023)			<0.01	<0.01	0.15	0.66	<0.01	<0.01					0.09	0.38
TEG (S024)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.52	6.67
TEG (S025)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.52	6.67
Compressor Engine (S027)	0.24	1.03	0.49	2.14	0.16	0.71	<0.01	<0.01	<0.01	0.03	<0.01	0.03	82.58	361.69
Line Heater (S028)	0.09	0.40	0.08	0.34	<0.01	0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	134.66	589.82
TOTAL	3.31	14.51	3.07	13.46	1.06	3.88	0.02	0.08	0.07	0.29	0.07	0.29	4,732.76	20,723.99

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators.

According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT T – FACILITY-WIDE HAP CONTROLLED EMISSIONS SUMMARY SHEET

List all sources of emissions in this table. Use extra pages if necessary.

- · · · · · · · · · · · · · · · · · · ·	Formaldehyde		Benzene		Toluene		Ethylbenzene		Xylenes		Hexane		Total HAPs	
Emission Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Line Heater (S001)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.03	<0.01	0.03
Line Heater (S002)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.03	<0.01	0.03
Line Heater (S003)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Enclosed Combustion Unit (C021)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	0.05	0.02	0.05
Enclosed Combustion Unit (C022)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	0.05	0.02	0.05
Tank Truck Loading Activities (S023)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.02
TEG (S024)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
TEG (S025)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Compressor Engine (S027)	0.01	0.06	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.02	0.07
Line Heater (S028)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
TOTAL I	0.00	0.07	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.05	0.40	0.00	
TOTAL	0.02	0.07	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.05	0.19	0.08	0.28

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators.

According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

Attachment U CLASS I LEGAL ADVERTISEMENT

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that EQT Production Company has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a G70-B General Permit for the OXF-157 natural gas production facility located in West Union, Doddridge County, West Virginia. The latitude and longitude coordinates are: 39.23609 and -80.76635.

The applicant estimates the potential to discharge the following regulated air pollutants on a facility-wide basis will be:

Carbon Monoxide (CO) = 27.63 tpy Nitrogen Oxides (NO_x) = 14.11 tpy Particulate Matter (Total) = 8.07 tpy Sulfur Dioxide (SO₂) = 0.08 tpy Volatile Organic Compounds (VOC) = 4.01 tpy Formaldehyde = 0.07 tpy Hexane = 0.23 tpy Hazardous Air Pollutants (HAPs) = 0.32 tpy Carbon Dioxide Equivalents (CO₂e) = 20,748.35 tpy

Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the XXth day of April, 2016.

By: EQT Production Company Kenneth Kirk Executive Vice President 625 Liberty Avenue, Suite 1700 Pittsburgh, PA 15222