

PROJECT REPORT

EQT Production OXF-121 Pad

R13 Permit Application

Where energy meets innovation.

TRINITY CONSULTANTS 4500 Brooktree Drive Suite 103 Wexford, PA 15090 (724) 935-2611

August 2017

Environmental solutions delivered uncommonly well

1. INTRODUCTION	3
1.1. FACILITY AND PROJECT DESCRIPTION	3
1.2. SOURCE STATUS	3
1.3. R-13 APPLICATION ORGANIZATION	4
2. SAMPLE EMISSION SOURCE CALCULATIONS	5
3. R-13 APPLICATION FORMS	6
ATTACHMENT A: CURRENT BUSINESS CERTIFICATE	
ATTACHMENT B: AREA MAP	
ATTACHMENT C: INSTALLATION AND START UP SCHEDULE	
ATTACHMENT D: REGULATORY DISCUSSION	
ATTACHMENT E: PLOT PLAN	
ATTACHMENT F: PROCESS FLOW DIAGRAM	
ATTACHMENT G: PROCESS DESCRIPTION ATTACHMENT I: EMISSION UNITS TABLE	
ATTACHMENT J: EMISSIONS POINT DATA	
ATTACHMENT K: FUGITIVE EMISSIONS DATA	
ATTACHMENT L: EMISSIONS UNIT DATA SHEETS	
ATTACHMENT M: AIR POLLUTION CONTROL DEVICES	
ATTACHMENT N: EMISSION CALCULATIONS	
ATTACHMENT O: MONITORING/RECORDKEEPING/REPORTING/TESTING PLANS	
ATTACHMENT P: CLASS I LEGAL NOTICE	

EQT Production Company (EQT) is submitting this modification permit application (R-13) to the West Virginia Department of Environmental Protection (WVDEP) for the construction and operation of new equipment at an existing natural gas production well pad, OXF-121, located in Doddridge County, West Virginia. The wellpad is currently permitted under R13-3047. This R13 application seeks to replace the fifteen (15) existing 210 barrel (bbl) storage tanks with six (6) new 400 bbl storage vessels, which will be controlled by the existing combustor.

1.1. FACILITY AND PROJECT DESCRIPTION

The OXF-121 wellpad is an existing natural gas production facility. Natural gas and liquids (including water and condensate) are extracted from deposits underneath the surface. Natural gas is transported from the wells to a gas line for additional processing and compression, as necessary. The liquids produced are stored in storage vessels.

The OXF 121 wellpad currently consists of the following equipment

- Fifteen (15) 210 barrel (bbl) storage tanks for condensate/water (produced fluids) controlled by one(1) combustor, rated at 11.66 MMbtu/hr;
- > One(1) line heater each rated at 1.15 MMBtu/hr;
- > Two (2) thermoelectric generators (TEGs), each rated at 0.013 MMbtu/hr heat input;
- > Produced fluid truck loading; and
- > Associated piping and components

As part of this application, EQT seeks to:

- Install six (6) 400 barrel (bbl) storage tanks for condensate/water(produced fluids), each controlled by the aforementioned combustor. The storage tanks will replace the existing fifteen (15) 210 barrel storage tanks at the site.
- > Increase the current liquid permit throughputs at the wellpad

A process flow diagram is included as Attachment F.

1.2. SOURCE STATUS

WVDEP must make stationary source determinations on a case-by-case basis using the guidance under the Clean Air Act (CAA) and EPA's and WVDEP's implementing regulations. The definition of stationary source in 40 CFR 51.166(b) includes the following:

"(6) Building, structure, facility, or installation means all of the pollutant emitting activities which belong to the same industrial grouping, are located on or more contiguous or adjacent properties, and are under control of the same person (or persons under common control)."

Other additional pollutant emitting facilities should be aggregated with the OXF-121 Pad for air permitting purposes if, and only if, all three elements of the "stationary source" definition above are fulfilled.

WVDEP determined that the OXF-121 pad is a separate stationary source when the current permit was issued. There are no Marcellus facilities within a quarter-mile radius of the OXF-121 Pad. Therefore, the OXF-121 pad should continue to be considered a separate stationary source with respect to permitting programs, including Title V and Prevention of Significant Deterioration (PSD). As discussed in this application, the facility is a minor source of air emissions with respect to New Source Review (NSR) and Title V Permitting.

1.3. R-13 APPLICATION ORGANIZATION

This West Virginia Code of State Regulations, Title 45 (CSR) Series 13 (45 CSR 13) R-13 permit application is organized as follows:

- > Section 2: Sample Emission Source Calculations;
- > Section 3: R-13 and Permission to Commence Construction Application Forms;
- > Attachment A: Business Certificate;
- > Attachment B: Area Map;
- > Attachment C: Installation and Start Up Schedule;
- > Attachment D: Regulatory Discussion;
- > Attachment E: Plot Plan;
- > Attachment F: Detailed Process Flow Diagram;
- > Attachment G: Process Description;
- > Attachment I: Emission Units Table;
- > Attachment J: Emission Points Data Summary Sheet;
- > Attachment K: Fugitive Emissions Data Summary Sheet;
- > Attachment L: Emissions Unit Data Sheets;
- > Attachment M: Air Pollution Control Device Sheets:
- > Attachment N: Supporting Emission Calculations;
- > Attachment 0: Monitoring/Recordkeeping/Reporting/Testing Plans; and
- > Attachment P: Legal Notice.

The characteristics of air emissions from the natural gas production operations, along with the methodology for calculating emissions, are briefly described in this section of the application. Detailed emission calculations are presented in Attachment S of this application.

Emissions from this project will result from the storage of organic liquids in storage tanks and loading of organic liquids into tank trucks. In addition, fugitive emissions will result from component leaks from the operation of the station. The methods by which emissions from each of these source types, as well as the existing source types, are calculated are summarized below.

- Line Heaters, Enclosed Combustors and TEGs: Potential emissions of criteria pollutants and hazardous air pollutants (HAPs) are calculated using U.S. EPA's AP-42 factors for natural gas external combustion.¹ These calculations assume a site-specific heat content of natural gas. Greenhouse gas emissions are calculated according to 40 CFR 98 Subpart C.²
- Fugitive Equipment Leaks: Emissions of VOC and HAPs from leaking equipment components have been estimated using facility estimated component counts and types along with emission factors from the *Protocol for Equipment Leak Emission Estimates, EPA 453/R-95-017, November 1995.* Emission factors used are based on average measured TOC from component types indicated. Greenhouse gas emissions from component leaks are calculated according to the procedures in 40 CFR 98 Subpart W.³ Pneumatic devices at the wellpad are intermittent bleed and are assumed to be in operation 1/3 of the year.
- Storage Tanks: Working, breathing and flashing emissions of VOC and HAPs from the storage tanks at the facility are calculated using Bryan Research & Engineering ProMax® Software. Controlled calculations assume an overall control efficiency (capture and destruction) of 98%. The throughput for the produced fluids tanks are based on the maximum annualized monthly condensate and produced water at the OXF-121 well pad (i.e., the maximum monthly throughput for the pad times 12), and includes a safety factor of 1.80. The composition for the analysis was from a sample taken at OXF-121. The produced fluids throughput is calculated as follows:

$$Throughput \left(\frac{bbl}{day}\right) = \left(Condensate Throughput \left(\frac{bbl}{month}\right) + \left(Produced Water Throughput \left(\frac{bbl}{month}\right)\right)\right) * \frac{12\left(\frac{months}{year}\right)}{365\left(\frac{days}{year}\right)} \times 1.80$$

- Tank Truck Loading: Uncontrolled emissions of VOC and HAPs from the loading of organic liquids from storage tanks to tank truck are calculated using Bryan Research Engineering ProMax® Software. Truck loading is controlled by the enclosed combustors. U.S. EPA's AP-42 Chapter 5 Section 2 factors were used for capture efficiency.⁴
- Haul Roads: Fugitive dust emitted from facility roadways has been estimated using projected vehicle miles traveled along with U.S. EPA's AP-42 factors for unpaved haul roads.⁵

¹U.S. EPA, AP 42, Fifth Edition, Volume I, Chapter 1.4, Natural Gas Combustion, Supplement D, July 1998.

² 40 CFR 98 Subpart C, Stationary Fuel combustion Sources, Tables C-1 and C-2.

³ 40 CFR 98 Subpart W, Petroleum and Natural Gas Systems, Section 98.233(r), Population Count and Emission Factors.

⁴ U.S. EPA, AP 42, Fifth Edition, Volume I, Chapter 5.2, Transportation And Marketing Of Petroleum Liquids, June 2008.

⁵ U.S. EPA, AP 42, Fifth Edition, Volume I, Section 13.2.2, Unpaved Roads, November 2006.

The WVDEP permit application forms contained in this application include all applicable R-13 application forms including the required attachments.

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALITY 601 57 th Street, SE Charleston, WV 25304 (304) 926-0475 WWW.dep.wv.gov/dag	APPLICATION FOR NSR PERMIT AND TITLE V PERMIT REVISION (OPTIONAL)
	ADMINISTRATIVE AMENDMENT MINOR MODIFICATION SIGNIFICANT MODIFICATION IF ANY BOX ABOVE IS CHECKED, INCLUDE TITLE V REVISION INFORMATION AS ATTACHMENT S TO THIS APPLICATION evision Guidance" in order to determine your Title V Revision options
	ility to operate with the changes requested in this Permit Application.
 Name of applicant (as registered with the WV Secretary EQT Production Company 	
 Name of facility (if different from above): OXF-121 Wellpad 	4. The applicant is the:
5A. Applicant's mailing address: 625 Liberty Avenue, Suite 1700 Pittsburgh, PA 15222	5B. Facility's present physical address: New Milton, Doddridge County, West Virginia
change amendments or other Business Registration Ce	on/Organization/Limited Partnership (one page) including any name rtificate as Attachment A. Ithority of L.L.C./Registration (one page) including any name change
7. If applicant is a subsidiary corporation, please provide the	e name of parent corporation: EQT Corporation
 8. Does the applicant own, lease, have an option to buy or one of the second second	otherwise have control of the <i>proposed site</i> ? XES DO
 Type of plant or facility (stationary source) to be constru- administratively updated or temporarily permitted (e crusher, etc.): Natural Gas Production Wellsite 	
11A. DAQ Plant ID No. (for existing facilities only): 111 017-00049	 List all current 45CSR13 and 45CSR30 (Title V) permit numbers associated with this process (for existing facilities only): R13-3047
All of the required forms and additional information can be fou	nd under the Permitting Section of DAQ's website, or requested by phone.

12A.									
 For Modifications, Administrative Updates or Te present location of the facility from the nearest state 		please provide directions to the							
 For Construction or Relocation permits, please p road. Include a MAP as Attachment B. 	rovide directions to the proposed new s	<i>ite location</i> from the nearest state							
From New Milton, WV Head northwest on Meathouse For Turn right onto Grove Summers Rd and continue for 5.9 r for 0.7 miles. Turn left onto Co Rd 22/3 for 0.4 miles. Con	niles. Turn left onto Sugar Run and continue	straight onto Summers Rd Brushy Fork							
12.B. New site address (if applicable):	12C. Nearest city or town:	12D. County:							
New Milton Doddridge									
12.E. UTM Northing (KM): 4,331.892	12F. UTM Easting (KM): 515.388	12G. UTM Zone: 17							
13. Briefly describe the proposed change(s) at the facilit EQT is proposing with this R13 application to replace the storage vessels.	fifteen (15) existing 210 barrel (bbl) sto	rage tanks with six (6) new 400 bbl							
 14A. Provide the date of anticipated installation or change If this is an After-The-Fact permit application, provident of the provide		14B. Date of anticipated Start-Up if a permit is granted: 2017							
14C. Provide a Schedule of the planned Installation of/ application as Attachment C (if more than one unit		units proposed in this permit							
15. Provide maximum projected Operating Schedule or Hours Per Day 24 Days Per Week 7	f activity/activities outlined in this applica Weeks Per Year 52	ation:							
16. Is demolition or physical renovation at an existing fac	cility involved? 🗌 YES 🛛 🕅 NO								
17. Risk Management Plans. If this facility is subject to	112(r) of the 1990 CAAA, or will becom	e subject due to proposed							
changes (for applicability help see www.epa.gov/cepp	oo), submit your Risk Management Pla	n (RMP) to U. S. EPA Region III.							
18. Regulatory Discussion. List all Federal and State a	air pollution control regulations that you	believe are applicable to the							
proposed process (if known). A list of possible application	ble requirements is also included in Atta	achment S of this application							
(Title V Permit Revision Information). Discuss applica	bility and proposed demonstration(s) of	compliance (if known). Provide this							
information as Attachment D.									
Section II. Additional atta	achments and supporting d	ocuments.							
 Include a check payable to WVDEP – Division of Air 45CSR13). 	Quality with the appropriate applicatior	fee (per 45CSR22 and							
20. Include a Table of Contents as the first page of you	r application package.								
 Provide a Plot Plan, e.g. scaled map(s) and/or skett source(s) is or is to be located as Attachment E (Ref 		rty on which the stationary							
 Indicate the location of the nearest occupied structure 	e (e.g. church, school, business, residen	ce).							
22. Provide a Detailed Process Flow Diagram(s) show device as Attachment F.	ving each proposed or modified emissio	ns unit, emission point and control							
23. Provide a Process Description as Attachment G.									
 Also describe and quantify to the extent possible a 	all changes made to the facility since the	e last permit review (if applicable).							
All of the required forms and additional information can be	found under the Permitting Section of DA	Q's website, or requested by phone.							
24. Provide Material Safety Data Sheets (MSDS) for a	I materials processed, used or produced	d as Attachment H.							
 For chemical processes, provide a MSDS for each co 	mound emitted to the air								

25. Fill out the Emission Units Table and	d provide it as Attachment I.	
26. Fill out the Emission Points Data Su	mmary Sheet (Table 1 and Tab	le 2) and provide it as Attachment J.
27. Fill out the Fugitive Emissions Data	Summary Sheet and provide it	as Attachment K.
28. Check all applicable Emissions Unit	Data Sheets listed below:	
Bulk Liquid Transfer Operations	Haul Road Emissions	Quarry
Chemical Processes	Hot Mix Asphalt Plant	Solid Materials Sizing, Handling and Storage
Concrete Batch Plant	Incinerator	Facilities
Grey Iron and Steel Foundry	Indirect Heat Exchanger	Storage Tanks
General Emission Unit, specify		
Fill out and provide the Emissions Unit D		
29. Check all applicable Air Pollution Co	ntrol Device Sheets listed below	W:
Absorption Systems	Baghouse	Flare
Adsorption Systems	Condenser	Mechanical Collector
Afterburner	Electrostatic Precipitat	or 🗌 Wet Collecting System
Other Collectors, specify Enclosed Con	nbustors	
Fill out and provide the Air Pollution Cont	trol Device Sheet(s) as Attachi	nent M.
 Provide all Supporting Emissions Ca Items 28 through 31. 	alculations as Attachment N, c	r attach the calculations directly to the forms listed in
	compliance with the proposed er	proposed monitoring, recordkeeping, reporting and nissions limits and operating parameters in this permit
	not be able to accept all measu	ner or not the applicant chooses to propose such res proposed by the applicant. If none of these plans de them in the permit.
32. Public Notice. At the time that the a	pplication is submitted, place a (Class I Legal Advertisement in a newspaper of general
circulation in the area where the source	e is or will be located (See 45CS	SR§13-8.3 through 45CSR§13-8.5 and <i>Example Legal</i>
Advertisement for details). Please su	ubmit the Affidavit of Publication	on as Attachment P immediately upon receipt.
33. Business Confidentiality Claims. D	oes this application include conf	idential information (per 45CSR31)?
	⊠ NO	
	ig the criteria under 45CSR§31-4	nitted as confidential and provide justification for each 4.1, and in accordance with the DAQ's <i>"Precautionary</i> <i>nstructions</i> as Attachment Q.
Se	ction III. Certification of	of Information
34. Authority/Delegation of Authority. Check applicable Authority Form bel		ner than the responsible official signs the application.
Authority of Corporation or Other Busin	ess Entity	Authority of Partnership
Authority of Governmental Agency		Authority of Limited Partnership
Submit completed and signed Authority F		
		ermitting Section of DAQ's website, or requested by
phone.	madon can be found under the P	enniting section of DAW's website, of requested by

35A. **Certification of Information.** To certify this permit application, a Responsible Official (per 45CSR§13-2.22 and 45CSR§30-2.28) or Authorized Representative shall check the appropriate box and sign below.

Certification of Truth, Accuracy, and Completeness

I, the undersigned Responsible Official / Authorized Representative, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.

Compliance Certification

Except for requirements identified in the Title V Application for which compliance is not achieved, I, the undersigned hereby certify that, based on information and belief formed after reasonable inquiry, all air contaminant sources identified in this application are in compliance with all applicable requirements.

SIGNATURE	use blue ink)	DATE: <u>/A/G//</u> (Please use blue ink)		
35B. Printed name of signee: Mike Gavin		35C. Title: Vice President		
35D. E-mail: gavinm@eqt.com	36E. Phone:	36F. FAX:		
36A. Printed name of contact person (if differe	ent from above): Alex Bosiljevac	36B. Title: Environmental Coordinator		
36C. E-mail: abosiljevac@eqt.com	36D. Phone: 412-395-3699	36E. FAX: 412-395-3699		

PLEASE CHECK ALL APPLICABLE ATTACHMENTS INCLUD	ED WITH THIS PERMIT APPLICATION:
Attachment A: Business Certificate	Attachment K: Fugitive Emissions Data Summary Sheet
Attachment B: Map(s)	Attachment L: Emissions Unit Data Sheet(s)
Attachment C: Installation and Start Up Schedule	Attachment M: Air Pollution Control Device Sheet(s)
Attachment D: Regulatory Discussion	Attachment N: Supporting Emissions Calculations
Attachment E: Plot Plan	Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans
Attachment F: Detailed Process Flow Diagram(s)	Attachment P: Public Notice
Attachment G: Process Description	Attachment Q: Business Confidential Claims
Attachment H: Material Safety Data Sheets (MSDS)	Attachment R: Authority Forms
Attachment I: Emission Units Table	Attachment S: Title V Permit Revision Information
Attachment J: Emission Points Data Summary Sheet	Application Fee
the address listed on the first page of the address listed on the first page of the	his application. Please DO NOT fax permit applications.
FOR AGENCY USE ONLY - IF THIS IS A TITLE V SOURCE:	
Forward 1 copy of the application to the Title V Permittin	ng Group and:
For Title V Administrative Amendments:	SU No
□ NSR permit writer should notify Title V permit wr	iter of draft normit
	ner ör uran pernin,
For Title V Minor Modifications:	
Title V permit writer should send appropriate not	ification to EPA and affected states within 5 days of receipt,
NSR permit writer should notify Title V permit writer	iter of draft permit.

□ For Title V Significant Modifications processed in parallel with NSR Permit revision:

- □ NSR permit writer should notify a Title V permit writer of draft permit.
 - □ Public notice should reference both 45CSR13 and Title V permits,
 - EPA has 45 day review period of a draft permit.

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

ATTACHMENT A

Current Business Certificate

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO: EQT PRODUCTION COMPANY 625 LIBERTY AVE 1700 PITTSBURGH, PA 15222-3114

BUSINESS REGISTRATION ACCOUNT NUMBER:

1022-8081

This certificate is issued on: 08/4/2010

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued. This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.3 L0553297664

ATTACHMENT B

Area Map

ATTACHMENT B

Figure 1 - Map of OXF-121 Location

Note – Ring represents 300 ft radius around wellpad equipment.

UTM Northing (KM)	4,331.892
UTM Easting (KM)	515.388
Elevation (m)	261

ATTACHMENT C

Installation and Start Up Schedule

ATTACHMENT C

Schedule of Planned Installation and Start-Up

Proposed Unit(s)	Date of Installation
Six (6) 400 barrel (bbl) storage tanks for condensate/water (produced fluids) - S020 – S025	2017

ATTACHMENT D

Regulatory Discussion

ATTACHMENT D - REGULATORY APPLICABILITY

This section documents the applicability determinations made for Federal and State air quality regulations. The monitoring, recordkeeping, reporting, and testing plan is presented in Attachment O. In this section, applicability or non-applicability of the following regulatory programs is addressed:

- > Prevention of Significant Deterioration (PSD) permitting;
- > Title V of the 1990 Clean Air Act Amendments;
- > New Source Performance Standards (NSPS);
- > National Emission Standards for Hazardous Air Pollutants (NESHAP); and
- > West Virginia State Implementation Plan (SIP) regulations.

In addition to providing a summary of applicable requirements, this section of the application also provides nonapplicability determinations for certain regulations, allowing the WVDEP to confirm that identified regulations are not applicable to the well pad. Note that explanations of non-applicability are limited to those regulations for which there may be some question of applicability specific to the operations at the well pad. Regulations that are categorically non-applicable are not discussed (e.g., NSPS Subpart J, Standards of Performance for Petroleum Refineries).

Prevention of Significant Deterioration (PSD) Source Classification

Federal construction permitting programs regulate new and modified sources of attainment pollutants under Prevention of Significant Deterioration (PSD) and new and modified sources of non-attainment pollutants under Non-Attainment New Source Review (NNSR). PSD and NNSR regulations apply when a major source makes a change, such as installing new equipment or modifying existing equipment, and a significant increase in emissions results from the change. The wellpad will remain a minor source with respect to the NSR program after the project since potential emissions are below all the NNSR/PSD thresholds. As such, NNSR/PSD permitting is not triggered by this construction activity. EQT will monitor future construction activities at the site closely and will compare any future increase in emissions with the NSR/PSD thresholds to ensure these activities will not trigger this program.

Title V Operating Permit Program

Title 40 of the Code of Federal Regulations Part 70 (40 CFR 70) establishes the federal Title V operating permit program. West Virginia has incorporated the provisions of this federal program in its Title V operating permit program in West Virginia Code of State Regulations (CSR) 45-30. The major source thresholds with respect to the West Virginia Title V operating permit program regulations are 10 tons per year (tpy) of a single HAP, 25 tpy of any combination of HAP, and 100 tpy of all other regulated pollutants.¹. The potential emissions of all regulated pollutants are below the corresponding threshold(s) at this facility after the proposed project. Therefore, the wellpad is not a major source for Title V purposes.

New Source Performance Standards

New Source Performance Standards (NSPS), located in 40 CFR 60, require new, modified, or reconstructed sources to control emissions to the level achievable by the best-demonstrated technology as specified in the applicable provisions. Moreover, any source subject to an NSPS is also subject to the general provisions of NSPS Subpart A, except where expressly noted. The following is a summary of applicability and non-applicability determinations for NSPS regulations of relevance to the well pad. The following NSPS could potentially apply to the well pad:

¹ On June 23, 2014, the U.S Supreme Court decision in the case of *Utility Air Regulatory Group v. EPA* effectively changed the permitting procedures for GHGs under the PSD and Title V programs.

- > 40 CFR Part 60 Subparts D/Da/Db/Dc Steam Generating Units
- > 40 CFR Part 60 Subpart K/Ka/Kb Storage Vessels for Petroleum Liquids/Volatile Organic Liquids
- > 40 CFR Part 60 Subpart 0000 Crude Oil and Natural Gas Production, Transmission, and Distribution
- > 40 CFR Part 60 Subpart 0000a Crude Oil and Natural Gas Facilities

NSPS Subparts D, Da, Db, and Dc - Steam Generating Units

These subparts apply to steam generating units of various sizes, all greater than 10 MMBtu/hr. The proposed project does not include any steam generating units with a heat input greater than 10 MMBtu/hr, therefore the requirements of these subparts do not apply.

NSPS Subpart K, Ka, and Kb - Storage Vessels for Petroleum Liquids/Volatile Organic Liquids

These subparts apply to storage tanks of certain sizes constructed, reconstructed, or modified during various time periods. Subpart K applies to storage tanks constructed, reconstructed, or modified prior to 1978, and Subpart Ka applies to those constructed, reconstructed, or modified prior to 1984. Both Subparts K and Ka apply to storage tanks with a capacity greater than 40,000 gallons. Subpart Kb applies to volatile organic liquid (VOL) storage tanks constructed, reconstructed, or modified after July 23, 1984 with a capacity equal to or greater than 75 m³ (~19,813 gallons). The proposed tanks at the wellpad will each have a capacity of 16,800 gallons. As such, Subparts K, Ka, and Kb do not apply to the storage tank at the wellpad.

NSPS Subpart OOOO-Crude Oil and Natural Gas Production, Transmission, and Distribution

Subpart OOOO, Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution, applies to affected facilities that commenced construction, reconstruction, or modification after August 23, 2011 (see clarification below regarding dates). This NSPS was published in the Federal Register on August 16, 2012, and subsequently amended. The proposed project does not include any source categories under NSPS Subpart 0000 or change any prior determinations related to NSPS Subpart 0000. Therefore, this subpart is not applicable to the proposed project.

NSPS Subpart OOOOa–Crude Oil and Natural Gas Production, Transmission, and Distribution

Subpart OOOOa, Standards of Standards of Performance for Crude Oil and Natural Gas Facilities, applies to affected facilities that commenced construction, reconstruction, or modification after September 18, 2015. The regulation was published final in the Federal Register on June 3, 2016. The rule includes provisions for the following facilities:

- > Hydraulically fractured wells;
- Centrifugal compressors located between the wellhead and the point of custody transfer to the natural gas distribution segment;
- Reciprocating compressors located between the wellhead and the point of custody transfer to the natural gas distribution segment;
- Continuous bleed natural gas-driven pneumatic controllers with a bleed rate of > 6 scfh located in the production, gathering, processing, or transmission and storage segments (excluding natural gas processing plants);
- > Continuous bleed natural gas-driven pneumatic controllers located at natural gas processing plants;
- > Pneumatic pumps located in the production and processing segments;
- > Storage vessels located in the production, gathering, processing, or transmission and storage segments;
- > The collection of fugitive emissions components at a well site;
- > The collection of fugitive emissions components at a compressor station; and
- > Sweetening units located onshore that process natural gas produced from either onshore or offshore wells.

Based on the rule, the following paragraphs describe the applicability of the facilities to be located at the proposed facility.

The proposed project will include six (6) produced fluid storage vessels at the well pad. These tanks will each have potential VOC emissions less than 6 tpy based on the permit application materials and enforceable limits to be included in the R-13 permit. As such, per §60.5365a(e), the tanks will not be storage vessel affected facilities under the rule.

Note that the proposed changes to the well pad do not meet the definition of modification under §60.5365a(i)(3)(i). Therefore, EQT will be not be subject to the leak detection and repair program under 0000a.

The new pneumatic controllers will potentially be subject to NSPS 0000a. Per §60.5365a(d)(1), a pneumatic controller affected facility is a single continuous bleed natural gas-driven pneumatic controller operating at a natural gas bleed rate greater than 6 scfh. No pneumatic controllers installed will meet the definition of a pneumatic controller affected facility. Therefore, these units are not subject to the requirements of Subpart 0000a.

Non-Applicability of All Other NSPS

NSPS are developed for particular industrial source categories. Other than NSPS developed for natural gas processing plants (Subpart 0000) and the applicability of a particular NSPS to the well pad can be readily ascertained based on the industrial source category covered. All other NSPS are categorically not applicable to the proposed project.

National Emission Standards for Hazardous Air Pollutants (NESHAP)

Part 63 NESHAP allowable emission limits are established on the basis of a maximum achievable control technology (MACT) determination for a particular major source. A HAP major source is defined as having potential emissions in excess of 25 tpy for total HAP and/or potential emissions in excess of 10 tpy for any individual HAP. The well pad is an Area (minor) source of HAP since its potential emissions of HAP are less than the 10/25 major source thresholds. NESHAP apply to sources in specifically regulated industrial source categories (Clean Air Act Section 112(d)) or on a case-by-case basis (Section 112(g)) for facilities not regulated as a specific industrial source type. Besides 40 CFR 63 Subpart A (NESHAP Subpart A), which is similar to 40 CFR 60 Subpart A (NSPS Subpart A), the following NESHAP could potentially apply to the well pad:

- > 40 CFR Part 63 Subpart HH Oil and Natural Gas Production Facilities
- > 40 CFR Part 63 Subpart JJJJJJ Industrial, Commercial, and Institutional Boilers

NESHAP Subpart HH – Oil and Natural Gas Production Facilities

This standard contains requirements for both major and area sources of HAP. At area sources, the only affected source is a triethylene glycol dehydration unit (§63.760(b)(2)). The well pad does not include a triethylene glycol dehydration unit; therefore the requirements of this subpart do not apply.

NESHAP Subpart JJJJJJ - Industrial, Commercial, and Institutional Boilers

This MACT standard applies to industrial, commercial, and institutional boilers of various sizes and fuel types at area sources. The line heater at the wellpad is a natural gas-fired and is specifically exempt from this subpart. Therefore, no sources at the well pad are subject to any requirements under 40 CFR 63 Subpart JJJJJJ.

West Virginia SIP Regulations

The well pad is potentially subject to regulations contained in the West Virginia Code of State Regulations, Chapter 45 (Code of State Regulations). The Code of State Regulations fall under two main categories, those regulations that are generally applicable (e.g., permitting requirements), and those that have specific applicability (e.g., PM standards for manufacturing equipment).

45 CSR 2: To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers

45 CSR 2 applies to fuel burning units, defined as equipment burning fuel "for the primary purpose of producing heat or power by indirect heat transfer". The TEGs and line heater are fuel burning units and therefore must comply with this regulation. Per 45 CSR 2-3, opacity of emissions from units shall not exceed 10 percent.

45 CSR 4: To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contributes to an Objectionable Odor

According to 45 CSR 4-3:

No person shall cause, suffer, allow or permit the discharge of air pollutants which cause or contribute to an objectionable odor at any location occupied by the public.

The well pad is generally subject to this requirement. However, due to the nature of the process at the well pad, production of objectionable odor from the well pad during normal operation is unlikely.

45 CSR 6: To Prevent and Control the Air Pollution from the Combustion of Refuse

45 CSR 6 applies to activities involving incineration of refuse, defined as "the destruction of combustible refuse by burning in a furnace designed for that purpose. For the purposes of this rule, the destruction of any combustible liquid or gaseous material by burning in a flare or flare stack, thermal oxidizer or thermal catalytic oxidizer stack shall be considered incineration." The enclosed combustor is an incinerator and therefore must comply with this regulation. Per 45 CSR 6-4.3, opacity of emissions from this unit shall not exceed 20 percent, except as provided by 4.4. PM emissions from this unit will not exceed the levels calculated in accordance with 6-4.1.

45 CSR 16: Standards of Performance for New Stationary Sources

45 CSR 16-1 incorporates the federal Clean Air Act (CAA) standards of performance for new stationary sources set forth in 40 CPR Part 60 by reference. As such, by complying with all applicable requirements of 40 CFR Part 60 at the well pad, EQT will be complying with 45 CSR 16.

45 CSR 17: To Prevent and Control Particulate Matter Air Pollution from Materials Handling, Preparation, Storage and Other Sources of Fugitive Particulate Matter

According to 45 CSR 17-3.1:

No person shall cause, suffer, allow or permit fugitive particulate matter to be discharged beyond the boundary lines of the property lines of the property on which the discharge originates or at any public or residential location, which causes or contributes to statutory air pollution.

Due to the nature of the activities at the well pad, it is unlikely that fugitive particulate matter emissions will be emitted under normal operating conditions. However, EQT will take measures to ensure any fugitive particulate matter emissions will not cross the property boundary should any such emissions occur.

45 CSR 21-28: Petroleum Liquid Storage in Fixed Roof Tanks

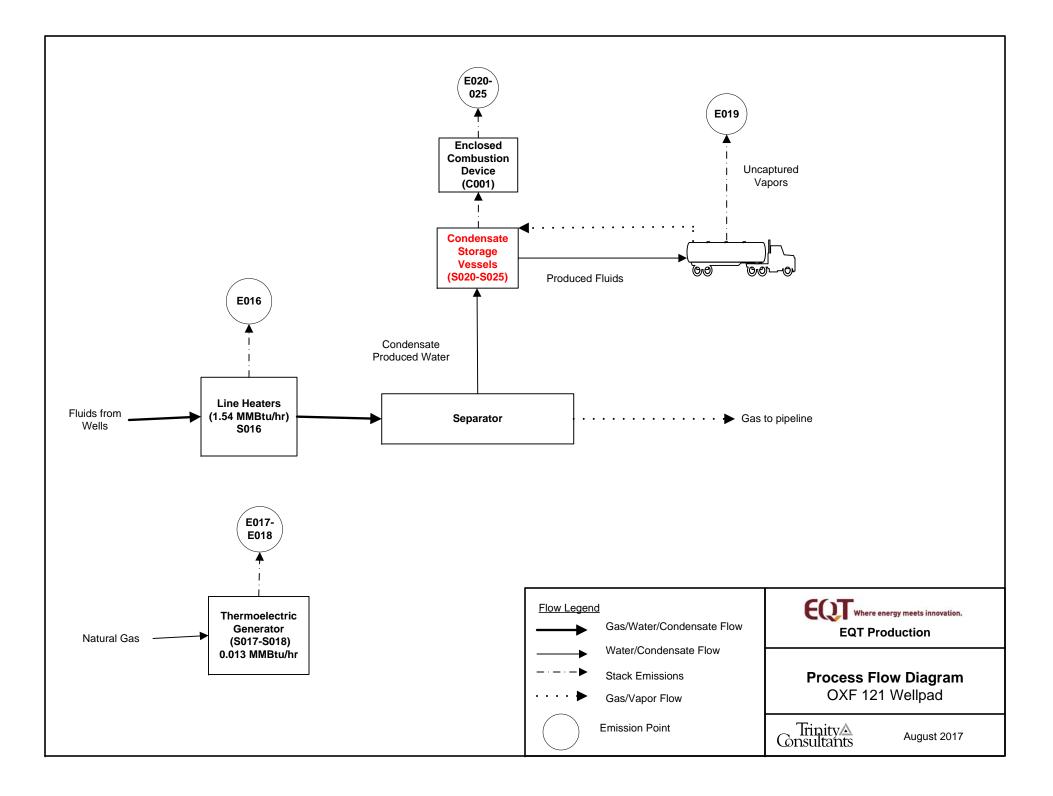
45 CSR 21-28 applies to any fixed roof petroleum liquid storage tank with a capacity greater than 40,000 gallons. The capacity of each storage tank proposed for the well pad is less than 40,000 gallons; therefore, 45 CSR 21-28 will not apply to the petroleum liquid storage tanks at this well pad.

45 CSR 34: Emissions Standards for Hazardous Air Pollutants

45 CSR 34-1 incorporates the federal Clean Air Act (CAA) national emissions standards for hazardous air pollutants (NESHAPs) as set forth in 40 CPR Parts 61 and 63 by reference. As such, by complying with all applicable requirements of 40 CFR Parts 61 and 63 at the well pad, EQT will be complying with 45 CSR 34. Note that there are no applicable requirements under 40 CFR Parts 61 and 63 for the well pad.

Non-Applicability of Other SIP Rules

A thorough examination of the West Virginia SIP rules with respect to applicability at the well pad reveals many SIP regulations that do not apply or impose additional requirements on operations. Such SIP rules include those specific to a particular type of industrial operation that is categorically not applicable to the well pad.


ATTACHMENT E

Plot Plan

ATTACHMENT F

Detailed Process Flow Diagram

ATTACHMENT G

Process Description

ATTACHMENT G: PROCESS DESCRIPTION

EQT is submitting this application to permit the installation of six (6) 400 bbl condensate tanks to replace the existing fifteen (15) 210 bbl storage tanks at the wellpad. The OXF 121 wellpad is currently authorized to operate under R13-3047.

The OXF-121 wellpad consists of five (5) wells, each with the basic operation. The incoming gas/liquid stream from the underground well will pass through a line heater (S016) to raise/maintain temperature of the stream and prevent hydrate formation. The stream will then pass through a high pressure separator, which will separate gas (natural gas from the separator is sent to the sales line) from liquids (condensate and produced water). The liquids are then transferred to the produced fluids tank (S001-S015)

Emissions from the storage vessels are controlled by a single enclosed combustor (C001). Once the tanks are filled, the contents are loaded into trucks for transport (S019). EQT utilizes vapor balancing in the truck loading operations, which means the vapors displaced by the filling of tanker trucks are routed back into the battery of tanks and ultimately to the combustor. Facility electricity is provided a pair of thermoelectric generators (S017-S018), respectively.

A process flow diagram is included as Attachment F.

ATTACHMENT I

Emission Units Table

Attachment I Emission Units Table (includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)										
Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴				
S001	C001	Condensate Storage Tank	2010	210 bbl	Existing – To be removed	C001				
S002	C001	Condensate Storage Tank	2010	210 bbl	Existing – To be removed	C001				
S003	C001	Condensate Storage Tank	2010	210 bbl	Existing – To be removed	C001				
S004	C001	Condensate Storage Tank	2010	210 bbl	Existing – To be removed	C001				
S005	C001	Condensate Storage Tank	2010	210 bbl	Existing – To be removed	C001				
S006	C001	Condensate Storage Tank	2010	210 bbl	Existing – To be removed	C001				
S007	C001	Condensate Storage Tank	2010	210 bbl	Existing – To be removed	C001				
S008	C001	Condensate Storage Tank	2010	210 bbl	Existing – To be removed	C001				
S009	C001	Condensate Storage Tank	2010	210 bbl	Existing – To be removed	C001				
S010	C001	Condensate Storage Tank	2010	210 bbl	Existing – To be removed	C001				
S011	C001	Condensate Storage Tank	2010	210 bbl	Existing – To be removed	C001				
S012	C001	Condensate Storage Tank	2010	210 bbl	Existing – To be removed	C001				
S013	C001	Condensate Storage Tank	2010	210 bbl	Existing – To be removed	C001				
S014	C001	Condensate Storage Tank	2010	210 bbl	Existing – To be removed	C001				
S015	C001	Condensate Storage Tank	2010	210 bbl	Existing – To be removed	C001				
S016	E016	Line Heater	2010	1.15 MMBtu/hr	Existing; No change	Existing; No change				
S017	E017	Thermoelectric Generator	2010	0.013 MMBtu/hr	Existing; No change	None				
S018	E018	Thermoelectric Generator	2010	0.013 MMBtu/hr	Existing; No change	None				

S019	E019 (Uncaptured) C001 (Controlled, Captured)	Uncaptured Liquid Loading	2010/ <mark>2017</mark>	2,111,540	Modified; Increased Throughput	C001
S020	C001	Produced fluid tank	TBD	400 bbl	New	C001
S021	C001	Produced fluid tank	TBD	400 bbl	New	C001
S022	C001	Produced fluid tank	TBD	400 bbl	New	C001
S023	C001	Produced fluid tank	TBD	400 bbl	New	C001
S024	C001	Produced fluid tank	TBD	400 bbl	New	C001
S025	C001	Produced fluid tank	TBD	400 bbl	New	C001
C001	C001	Combustor	2010	11.66 MMBtu/hr	Existing; No change	N/A

² For <u>E</u>mission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.
 ³ New, modification, removal
 ⁴ For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

Page _____ of _____

ATTACHMENT J

Emission Points Data Summary Sheet

Attachment J EMISSION POINTS DATA SUMMARY SHEET

						Т	able 1:	Emissions Da	ita						
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	b. Point Type ¹ Ventec h Through This (Must match E Units Table		ented This Point tch Emission able & Plot	Conti (Mu Emis Tab	Pollution rol Device ist match ssion Units ble & Plot Plan)	Emiss <i>(che</i>	ime for on Unit mical ses only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Maxii Pote Uncon Emiss	ntial trolled	Maxii Pote Contr Emiss	ntial olled	Emission Form or Phase (At exit conditions,	Est. Method Used ⁶	Emission Concentratio n ⁷ (ppmv or mg/m ⁴)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Solid, Liquid or Gas/Vapor)		
C001 E016	Upward Vert Stack Upward Vert Stack	S020- S025, S019	Produced water/ condensate tanks, liquid loading Line Heater	C001	Enclosed Combustor			$\begin{array}{c} NO_{X}\\ CO\\ VOC\\ SO_{2}\\ PM_{10}\\ PM_{2.5}\\ CO_{2}e\\ HAP\\ Toluene\\ n-hexane\\ \hline NO_{X}\\ CO\\ VOC\\ SO_{2}\\ \end{array}$	$\begin{array}{c} 1.15\\ 0.96\\ 77.52\\ 0.01\\ 0.09\\ 0.09\\ 1.375.24\\ 4.34\\ 0.18\\ 3.14\\ 0.11\\ 0.09\\ 0.01\\ < 0.01 \end{array}$	$\begin{array}{c} 5.03\\ 4.22\\ 339.56\\ 0.03\\ 0.38\\ 0.38\\ 6,023.5\\ 19.00\\ 0.78\\ 13.749\\ 0.48\\ 0.40\\ 0.03\\ < 0.01\\ \end{array}$	$\begin{array}{c} 1.15\\ 0.96\\ 1.77\\ 0.01\\ 0.09\\ 0.09\\ 1.375.24\\ 0.10\\ < 0.01\\ 0.07\\ 0.11\\ 0.09\\ 0.01\\ < 0.01\\ \end{array}$	$\begin{array}{c} 5.03\\ 4.22\\ 6.85\\ 0.03\\ 0.38\\ 0.38\\ 6.023.5\\ 0.38\\ 0.02\\ 0.28\\ 0.48\\ 0.40\\ 0.03\\ < 0.01\\ \end{array}$	Gas Gas	BRE ProMax	
E017-E018 (each)	Upward Vert Stack	S017- S018	TEG	N/A	N/A			PM ₁₀ PM _{2.5} CO ₂ e HAP NO _X CO ₂ e	0.01 0.01 135 <0.01 <0.01 1.52	0.04 0.04 592 0.01 <0.01 6.64	0.01 0.01 135 <0.01 <0.01 1.52	0.04 0.04 592 0.01 <0.01 6.64	Gas	AP-42	
E019	Fugitive	S019	Uncaptured liquid loading	N/A	N/A			VOC HAP n-Hexane	4.79 0.24 0.18	1.25 0.06 0.05	4.79 0.24 0.18	1.25 0.06 0.05	Gas	BRE ProMax	

*Note – Only pollutants with controlled emissions > 0.01 tpy are presented in this table.

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

² Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).

³ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. **LIST** Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. **DO NOT LIST** H₂, H₂O, N₂, O₂, and Noble Gases.

⁴ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁵ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20

minute batch).

⁶ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

⁷ Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m³) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO₂, use units of ppmv (See 45CSR10).

Attachment J **EMISSION POINTS DATA SUMMARY SHEET**

	Table 2: Release Parameter Data											
Emission Inner Point ID Diameter No. (ft.) (Must match Emission Units Table)			Exit Gas		Emission Point El	evation (ft)	UTM Coordinates (km)					
	Temp. (°F)	Volumetric Flow ¹ (acfm) at operating conditions	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ² (Release height of emissions above ground level)	Northing	Easting					
No change												

¹Give at operating conditions. Include inerts. ²Release height of emissions above ground level.

ATTACHMENT K

Fugitive Emissions Data Summary Sheet

Attachment K

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS					
1.)	Will there be haul road activities?					
	Yes No (no change to existing)					
	If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.					
2.)	Will there be Storage Piles?					
	□ Yes					
	☐ If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.					
3.)	Will there be Liquid Loading/Unloading Operations?					
	Yes No					
	If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.					
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?					
	□ Yes					
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.					
5.)	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?					
	Yes No					
	☐ If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.					
6.)	Will there be General Clean-up VOC Operations?					
	□ Yes					
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.					
7.)	Will there be any other activities that generate fugitive emissions?					
	□ Yes					
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.					
	If you answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions Summary."					

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants ⁻ Chemical Name/CAS ¹	Maximum Potential Uncontrolled Emissions ²		Maximum Potential Controlled Emissions ³		Est. Method
		lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
Haul Road/Road Dust Emissions Paved Haul Roads	NA					
Unpaved Haul Roads	PM PM ₁₀ PM _{2.5}		1.17 0.30 0.03		1.17 0.30 0.03	С
Storage Pile Emissions	NA					
Loading/Unloading Operations (Uncaptured Emissions)	VOC HAP Benzene Toluene Xylene n-hexane	4.79 0.24 <0.01 0.01 <0.01 0.18	1.25 0.06 <0.01 <0.01 <0.01 0.05	0.22 0.01 <0.01 <0.01 <0.01 0.01	0.06 <0.01 <0.01 <0.01 <0.01 <0.01	В
Wastewater Treatment Evaporation & Operations	NA					
Equipment Leaks	VOC HAP CO2e Benzene Toluene Xylene n-hexane	N/A	12.36 0.39 213.07 0.01 0.01 0.01 0.20	N/A	12.36 0.39 213.07 0.01 0.01 0.01 0.20	A
General Clean-up VOC Emissions	NA					
Other	NA					

A – Protocol for Equipment Leak Emission Estimates, EPA 453/R-95-017, Table 2-1, November 1995. 40 CFR 98 Subpart W.

B- Bryan Research Engineering ProMax Software

C – AP-42 Chapter 13

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

ATTACHMENT L

Emissions Unit Data Sheet

Attachment L EMISSIONS UNIT DATA SHEET BULK LIQUID TRANSFER OPERATIONS

Furnish the following information for each new or modified bulk liquid transfer area or loading rack, as shown on the *Equipment List Form* and other parts of this application. This form is to be used for bulk liquid transfer operations such as to and from drums, marine vessels, rail tank cars, and tank trucks.

Identification Number (as assigned on Equipment List Form): E019

1. Loading Area Name: S019 – Produced Liquids (Condensate and Produced Water)	
2 Type of cargo vessels accommodated at this rack or transfer point (check as many	

2. Type of carg	o vessels accommodated	at this rack or transfer poi	nt (check as many
as apply):			
Drums	Marine Vessels	🗌 Rail Tank Cars	🛛 Tank Trucks

3. Loading Rack or Transfer Point Data:

Number of pumps	One			
Number of liquids loaded	One			
Maximum number of marine vessels, tank trucks, tank cars, and/or drums loading at one time	One			
 4. Does ballasting of marine vessels occ □ Yes □ No 	cur at this loading area? ⊠ Does not apply			
5. Describe cleaning location, compounds and procedure for cargo vessels using this transfer point: N/A				
 6. Are cargo vessels pressure tested for leaks at this or any other location? □ Yes ⊠ No If YES, describe: 				
7. Projected Maximum Operating Schedule (for rack or transfer point as a whole):				

Maximum	Jan Mar.	Apr June	July - Sept.	Oct Dec.

page ___ of ___ WVDEP-OAQ Revision 03-

2007

hours/day	Varies	Varies	Varies	Varies
days/week	7	7	7	7
weeks/quarter	13	13	13	13

8. Bulk Liquid Data (add pages as necessary):			
Pump ID No.		· · · · · · · · · · · · · · · · · · ·	
		N/A	
Liquid Name		Produced Liquids (Condensate and Produced Water)	
Max. daily thr	oughput (1000 gal/day)	See Attached emission calculations for all values	
Max. annual t	hroughput (1000 gal/yr)	See Attached emission calculations for all values	
Loading Meth	od ¹	SP	
Max. Fill Rate	(gal/min)	Varies	
Average Fill T	ime (min/loading)	Varies	
Max. Bulk Liquid Temperature (°F)		See ProMax Results	
True Vapor P	ressure ²	See ProMax Results	
Cargo Vessel	Condition ³	Unknown	
Control Equip	ment or Method ⁴	VB, ECD (Captured Loading Losses)	
Minimum con	trol efficiency (%)	70% Capture/ 98% control efficiency	
Maximum	Loading (lb/hr)	See Attached Emissions Calculations for Breakdown	
Emission Rate	Annual (lb/yr)	See Attached Emissions Calculations for Breakdown	
Estimation Method ⁵		Bryan Research Engineering ProMax Software	
¹ BF = Bottom Fill SP = Splash Fill		SUB = Submerged Fill	
² At maximum bulk liquid temperature			

³ B = Ballasted Vessel, C = Cleaned, U = Uncleaned (dedicated service), O = other (describe)

⁴ List as many as apply (complete and submit appropriate *Air Pollution Control Device Sheets*):CA = Carbon Adsorption LOA = Lean Oil AdsorptionCO =

> page ___ of ___ WVDEP-OAQ Revision 03

CondensationSC = Scrubber (Absorption)CRA = Compressor-Refrigeration-AbsorptionTO = Thermal Oxidation or IncinerationCRC = Compression-Refrigeration-CondensationVB = Dedicated Vapor Balance (closed system)O = other (descibe)O = Other (descibe)

 ⁵ EPA = EPA Emission Factor as stated in AP-42 MB = Material Balance TM = Test Measurement based upon test data submittal O = other (describe)

9. Proposed Monitoring, Recordkeeping, Reporting, and Testing

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING	RECORDKEEPING
Throughput of loaded liquids at site	Throughput of loaded liquids at site
(gal/yr) on a monthly and rolling twelve	(gal/yr) on a monthly and rolling twelve
month total.	month total.
REPORTING	TESTING
None	None

MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS

RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.

REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE

RECORDKEEPING.

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS

page ___ of ___ WVDEP-OAQ Revision 03-

2007

EQUIPMENT/AIR POLLUTION CONTROL DEVICE.

10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty

page __ of __ WVDEP-OAQ Revision 03-

	Sources of fugitive emissions may include loading operations, equipment leaks, blowdown emissions, etc. Use extra pages for each associated source or equipment if necessary.								
	Source/Equipm	ent: Fugit	ive Emissions						
	Leak Detection Method Used		□ Audible, visual, and olfactory (AVO) inspections	□ Infrared (FLIR) cameras	□ Other (please	describe)		⊠ None require	
C	nt Closed Vent Count System		Samaa af	Leak Factors	Stream type	E	stimated Emissions	ions (tpy)	
Componen Type				er (specify))	(gas, liquid, etc.)	VOC	НАР	GHG (CO ₂ e)	
Pumps	□ Yes ⊠ No	9	Protocol for Equipment Leak	ality Planning and Standards. Emission Estimates. Table 2-1. 95-017, 1995).	□ Gas ⊠ Liquid □ Both	1.73	0.05	0.33	
Valves \square res 179 Protocol for Equipment L		Protocol for Equipment Leak	ality Planning and Standards. Emission Estimates. Table 2-1. 95-017, 1995).	⊠ Gas □ Liquid □ Both	1.71	0.05	17.64		
Safety Relie Valves	ef □ Yes ⊠ No	14	U.S. EPA. Office of Air Quality Planning and Standards. Protocol for Equipment Leak Emission Estimates. Table 2-1. (EPA-453/R-95-017, 1995).		⊠ Gas □ Liquid □ Both	2.25	0.07	1.98	
Open Ended Lines	* Protocol for Edilinment Leak Emission Estimates Table 7-1		☐ Gas ☐ Liquid ⊠ Both	0.02	6.4E-04	1.67			
Sampling Connections	G Yes		N/A		□ Gas □ Liquid □ Both				
Connections (Not samplin	765 Protocol for Eduloment Leak Emission Estimates Table 7-1		☐ Gas ☐ Liquid ⊠ Both	2.24	0.07	8.40			
Compressor	s 🗆 Yes □ No		N/A		Gas Liquid Both				
Flanges	□ Yes □ No (included in connections)		Gas Liquid Both						
Other ¹	□ Yes ⊠ No 25 40 CFR 98 Subpart W		☐ Gas ☐ Liquid ☐ Both	4.41	0.14	183.05			

Pneumatic Controller count is 'Other' category. An estimate of Miscellaneous Gas Venting emissions are included in the Emission Calculations and serve to include such sources as compressor venting, pigging, vessel blowdowns and other sources.

Please indicate if there are any closed vent bypasses (include component): N/A

Specify all equipment used in the closed vent system (e.g. VRU, ERD, thief hatches, tanker truck loading, etc.) N/A

Attachment L EMISSIONS UNIT DATA SHEET STORAGE TANKS

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

I. GENERAL INFORMATION (required)

2. Tank Name				
Produced Fluids Tank (water and condensate)				
4. Emission Point Identification No. (as assigned on Equipment List Form) C001				
tanks) N/A (new tanks)				
New Stored Material				
n? □Yes ⊠No hk?)				
ed by this application (Note: A separate form must be				
C. Provide any limitations on source operation affecting emissions, any work practice standards (e.g. production variation, etc.):				
IATION (required)				
e the internal cross-sectional area multiplied by internal				
bbl (each)				
9B. Tank Internal Height (or Length) (ft)				
20 10B. Average Liquid Height (ft)				
10 10				
11B. Average Vapor Space Height (ft)				
10				
12. Nominal Capacity (specify barrels or gallons). This is also known as "working volume" and considers designed liquid levels and overflow valve heights.				

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)					
See attached emission calculations for all throughput	See attached emission calculations for all throughput					
values	t/maximum tank liquid volume)					
14. Number of Turnovers per year (annual net throughput/maximum tank liquid volume) See attached emission calculations for all throughput values						
15. Maximum tank fill rate (gal/min) TBD						
	Splash 🗌 Bottom Loading					
17. Complete 17A and 17B for Variable Vapor Space Tar17A. Volume Expansion Capacity of System (gal)	nk Systems ITB. Number of transfers into system per year					
TA. Volume Expansion Capacity of System (gai)						
other (describe) External Floating Roof Domed External (or Covered) Floating Roof	 ☐ Fixed Roof _X_ vertical horizontal flat roof _X_ cone roof dome roof other (describe) ☐ External Floating Roof pontoon roof double deck roof 					
Internal Floating Roof						
Variable Vapor Space lifter roof Pressurized spherical cylindrical						
Underground						
Other (describe)						
III. TANK CONSTRUCTION & OPERATION INFORMATION (optional if providing TANKS Summary Sheets)						
19. Tank Shell Construction:						
Riveted Gunite lined Epoxy-coated						
20A. Shell Color Green 20B. Roof Color	r Green 20C. Year Last Painted					
21. Shell Condition (if metal and unlined): ⊠ No Rust □ Light Rust □ Dense Ru	ust 🗌 Not applicable					
22A. Is the tank heated?						
22B. If YES, provide the operating temperature (°F)						
22C. If YES, please describe how heat is provided to ta	ank.					
23. Operating Pressure Range (psig):						
24. Complete the following section for Vertical Fixed Ro	of Tanks Does Not Apply					
24A. For dome roof, provide roof radius (ft)						
24B. For cone roof, provide slope (ft/ft) 0.06						
25. Complete the following section for Floating Roof Tar	nks 🛛 Does Not Apply					
25A. Year Internal Floaters Installed:						
25B. Primary Seal Type: Metallic (Mechanical) (check one) Vapor Mounted Resili						
25C. Is the Floating Roof equipped with a Secondary S	Seal? YES NO					
25D. If YES, how is the secondary seal mounted? (che	eck one) Shoe Rim Other (describe):					
25E. Is the Floating Roof equipped with a weather shie	eld? YES NO					

25F. Describe deck fittings; indicat	e the number of eac	ch type of fitting:				
	ACCESS	S НАТСН				
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:			
		JGE FLOAT WELL				
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:			
		N WELL				
BUILT-UP COLUMN – SLIDING			PIPE COLUMN – FLEXIBLE			
COVER, GASKETED:	COVER, UNGASK		FABRIC SLEEVE SEAL:			
PIP COLUMN – SLIDING COVER, G	ASKETED:	PIPE COLUMN –	SLIDING COVER, UNGASKETED:			
	GAUGE-HATCH	/SAMPLE PORT				
SLIDING COVER, GASKETED:		SLIDING COVER,	UNGASKETED:			
,		,				
		HANGER WELL				
			SAMPLE WELL-SLIT FABRIC SEAL			
ACTUATION, GASKETED:	ACTUATION, UNC	JASKETED:	(10% OPEN AREA)			
	VACUUM	BREAKER	·			
WEIGHTED MECHANICAL ACTUAT	ION, GASKETED:	WEIGHTED MECHA	ANICAL ACTUATION, UNGASKETED:			
WEIGHTED MECHANICAL ACTUAT	ION GASKETED:	WEIGHTED MECHANICAL ACTUATION, UNGASKETED:				
	DECK DRAIN (3-I	NCH DIAMETER)				
OPEN:		90% CLOSED:				
	STUB	DRAIN				
1-INCH DIAMETER:						
	RIBE, ATTACH ADD					
OTHER (DESC	NDE, ATTAOTADI		NEOLOGARI)			

26. Complete the following section for Internal Floating	Roof Tanks 🛛 Does Not Apply
26A. Deck Type: Delted Welded	
26B. For Bolted decks, provide deck construction:	
 26C. Deck seam: Continuous sheet construction 5 feet wide Continuous sheet construction 6 feet wide Continuous sheet construction 7 feet wide Continuous sheet construction 5 × 7.5 feet wide Continuous sheet construction 5 × 12 feet wide Other (describe) 	
26D. Deck seam length (ft)	26E. Area of deck (ft ²)
For column supported tanks:	26G. Diameter of each column:
26F. Number of columns:	

IV. SITE INFORMANTION (optional if providing TANKS Summary Sheets) – Not Applicable: Tank calculations performed using ProMax software

27. Provide the city and state on which the data in this section are based.

28. Daily Average Ambient Temperature (°F)

29. Annual Average Maximum Temperature (°F)

30. Annual Average Minimum Temperature (°F)

31. Average Wind Speed (miles/hr)

32. Annual Average Solar Insulation Factor (BTU/(ft²·day))

33. Atmospheric Pressure (psia)

V. LIQUID INFORMATION (optional if providing TANKS Summary Sheets) Not Applicable: Tank calculations performed using ProMax software

34. Average daily temperature range of bulk liquid: Ambient							
34A.	Minimum (°F)			Maximum (°F)			
35. Average operating pressure range of tank:							
35A.	35A. Minimum (psig)			Maximum (psig)			
36A.	Minimum Liquid Surface Temperature (°F)			 Corresponding Vapor Pressure (psia) 			
37A.	Average Liquid Surface Temperature (°F)		37B.	37B. Corresponding Vapor Pressure (psia)			
38A.	Maximum Liquid Surface Temperature (°F)			Corresponding Vapor Pressure (psia)			
39. Pr	ovide the following for <u>each</u> liquid or gas	to be stor	ed in tan	ank. Add additional pages if necessary.			
39A.	Material Name or Composition						
39B.	CAS Number						
39C.	Liquid Density (lb/gal)						

39D.	Liquid Molecular Weight (lb/lb-mole)		
39E.	Vapor Molecular Weight (lb/lb-mole)		
Maxim 39F. 39G.	um Vapor Pressure True (psia) Reid (psia)		
	S Storage per Year From To		

VI. EMISSIONS AND CONTROL DEVICE DATA (required)

40. Emission Control	Devices (check as man	y as apply):	Does No	ot Apply				
Carbon Adsorp	otion ¹							
Condenser ¹								
Conservation Vent (psig)								
Vacuum Setting 0.5 oz Pressure Setting 12.5 oz								
Emergency Relief Valve (psig) 14.oz Pressure Setting								
Inert Gas Blanket of								
Insulation of Ta	ank with							
Liquid Absorpt	ion (scrubber) ¹							
Refrigeration o	f Tank							
Rupture Disc (psig)							
Vent to Inciner	ator ¹							
Other ¹ (describ	be):							
¹ Complete approp	priate Air Pollution Cont	rol Device S	Sheet.					
41. Expected Emissio	n Rate (submit Test Da	ta or Calcul	ations here	or elsewhere in the app	olication).			
Material Name &	Breathing Loss	Workir	ng Loss	Annual Loss	Estimation Method ¹			
CAS No.	(lb/hr)	Amount	Units	(lb/yr)	Estimation Method [*]			
	See attached	emission o	alculations	s for all values				

 1 EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

ATTACHMENT M

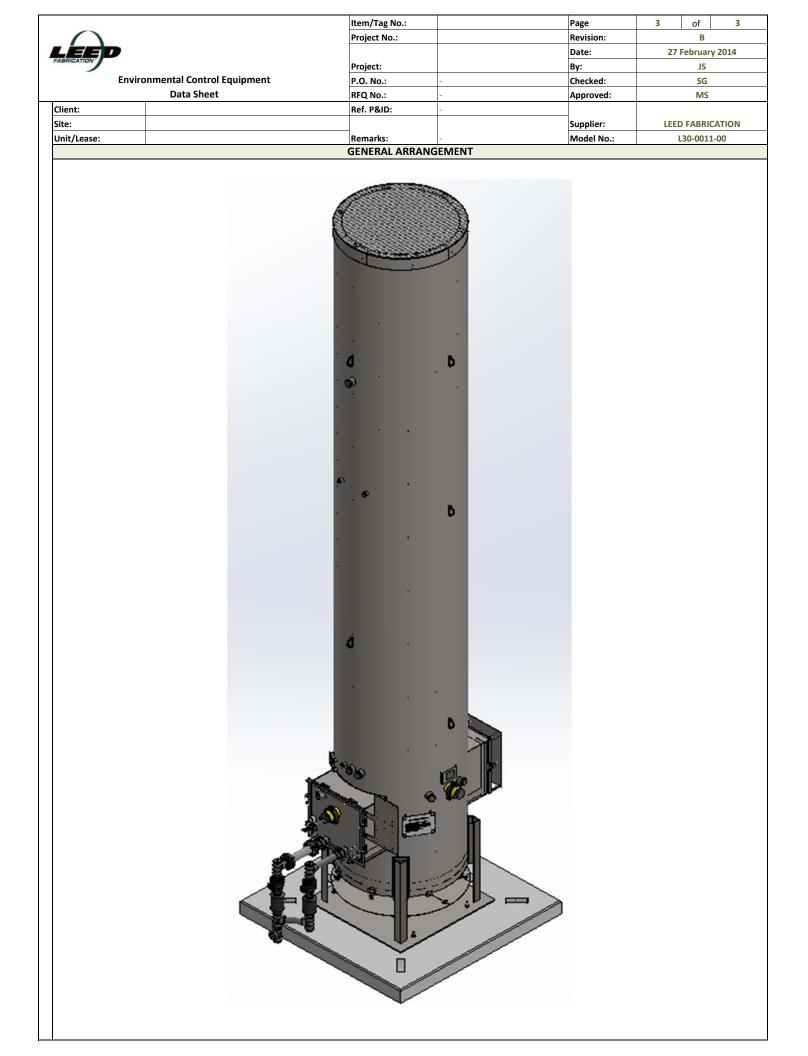
Air Pollution Control Devices

Attachment M Air Pollution Control Device Sheet (FLARE SYSTEM)

Control Device ID No. (must match Emission Units Table): C001

	Equipment	Information
1.	Manufacturer: LEED Fabrication Model No. Enclosed Combustor 48"	2. Method: Elevated flare Ground flare Other Describe Enclosed Combustion Device
3.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state	em with duct arrangement and size of duct, air volume, hood face velocity and hood collection efficiency.
4.	Method of system used:	Pressure-assisted Non-assisted
5.	Maximum capacity of flare: ~ 130 scf/min ~ 7,850 scf/hr	6. Dimensions of stack: Diameter 4 ft. Height 25 ft.
7.	Estimated combustion efficiency: (Waste gas destruction efficiency) Estimated: 98 % Minimum guaranteed: 98 %	 8. Fuel used in burners: Natural Gas Fuel Oil, Number Other, Specify:
9.	Number of burners: Rating: 11.66 MMBTU/hr	11. Describe method of controlling flame:
	Will preheat be used? Yes No	
	Flare height: 25 ft	14. Natural gas flow rate to flare pilot flame per pilot light: scf/min
13.	Flare tip inside diameter: 4 ft	~50 scf/hr
15.	Number of pilot lights: One (1) Total 0.05 MMBTU/hr	16. Will automatic re-ignition be used? □ Yes □ No
17.	If automatic re-ignition will be used, describe the met NA	hod:
	Other, Describe:	☐ No -Red lera with monitoring control room
19.	Hours of unit operation per year: 8760	

Steam Injection						
20. Will steam injection be used? Yes	🛛 No	21. Steam pressure Minimum Expected: Design Maximum:	PSIG			
22. Total Steam flow rate:	LB/hr	23. Temperature:	°F			
24. Velocity	ft/sec	25. Number of jet streams				
26. Diameter of steam jets:	in	27. Design basis for steam injected: LB steam/LB hydroc	arbon			
28. How will steam flow be controlled if steam i	injection is	s used?				


Characteristics of the Waste Gas Stream to be Burned

29.	Name	Quantity Grains of H ₂ S/100 ft ³	Quantity (LB/hr, ft ³ /hr, etc)	Source of Material				
			missions calculations					
30.	Estimate total combustible t	o flare: 405	LB/hr					
	(Maximum mass flow rate o	f waste gas) 130	scfm					
31.	Estimated total flow rate to	flare including materials to	be burned, carrier gases, aux	xiliary fuel, etc.:				
		VOC ~ 405						
32.	. Give composition of carrier gases:							
33.	Temperature of emission st	ream:	34. Identify and describe all a	auxiliary fuels to be burned.				
	>70	°F		BTU/scf				
	Heating value of emission s			BTU/scf				
		BTU/ft ³		BTU/scf				
	Mean molecular weight of e MW = Varies lb/lb-me			BTU/scf				
				BTU/scf				
35.	Temperature of flare gas:	°F	36. Flare gas flow rate:	scf/min				
37.	Flare gas heat content:	BTU/ft ³	38. Flare gas exit velocity:	scf/min				
39.	Maximum rate during emerg	gency for one major piece	of equipment or process unit:	scf/min				
			of equipment or process unit:					
41.	Describe any air pollution or reheating, gas humidification		outlet gas conditioning proces	ses (e.g., gas cooling, gas				
42.	Describe the collection mate	erial disposal system:						
43.	Have you included Flare Co	ontrol Device in the Emis	sions Points Data Summary S	sheet?				

Please propose mo		and Testing ing in order to demonstrate compliance with the proposed r to demonstrate compliance with the proposed emissions
MONITORING:		RECORDKEEPING:
Monitor the presence using a thermocouple	of pilot flame (temperature) or equivalent device	Maintain records of the times and duration of all periods where the pilot flame was absent Maintain records of visible emission opacity tests
REPORTING:		TESTING:
None		Conduct a Method 22 opacity test as required
MONITORING:		ocess parameters and ranges that are proposed to be e compliance with the operation of this process equipment
RECORDKEEPING: REPORTING:	Please describe the proposed rep Please describe any proposed en	cordkeeping that will accompany the monitoring. nissions testing for this process equipment on air pollution
TESTING:	control device. Please describe any proposed en control device.	nissions testing for this process equipment on air pollution
45. Manufacturer's Gua VOC – 100% HAP – 100%	aranteed Capture Efficiency for ea	ch air pollutant.
46. Manufacturer's Gua VOC – 98% HAP – 98%	aranteed Control Efficiency for eac	h air pollutant.
47. Describe all operati	ing ranges and maintenance proce	edures required by Manufacturer to maintain warranty.

												1	
				Item/Tag No	.:				Page		1	of	2
1	\cap			Project No.:		<u></u>			Revision:			В	
				FIOJECT NO.									
1	LEED								Date:		27	February	y 2014
1	FABRICATION			Project:					By:			JS	-
	Envire	omental Control Equipment		P.O. No.:		-			Checked:			SG	
		Data Sheet		RFQ No.:		_			Approved	٩٠		MS	
-		2414 0							Approved	u.		1415	
	Client:			Ref. P&ID:		-							
	Site:								Supplier:		LEEL	D FABRIC	ΔΤΙΟΝ
	Unit/Lease:			Remarks:		-			Model No	0.:		L30-0011	00
				GE	NERAL								
	Design Code:						NDE:				ED Fabrica	tion Sto	ndordo
1	-						NDE:			LC	ED Fabrica	ation Sta	nuarus
2	Service:						Custom	er Specs:			Yes		
3	Description:	Standard Dual	Stage //8 High	Efficiency Combus	stor						✓ No		
5	Description.	Standard Duar	Stage 40 mgm				I						
				PROC	ESS DAT	ГА							
					Process	Conditions:							
	Gas Composition:			mol %									
						Variable		Valu	e	Units			
4	Methane					Flow Rate		Up to	140	Mscfo	1		
5	Ethono					Pressure		Up to	12	oz/in2			
	Ethane					Flessule		0010	12				
6	Propane				-	Temperature	e			°F			
7	I-Butane				M	olecular Wei	ght		1				
							-						
8	n-Butane					ess/Waste St		✓ Gas			Liquid		
9	I-Pentane				Detailed	d Process De	scriptio	n / Process N	otes:				
10	n-Pentane							an expected		neratio	rate india	ated ab	ove
										perating	, rate mult	area abi	
11	n-Hexane						-	esign conditi					
12	CO2				3. Burne	er Pressure [Drop: Mi	n. 0.10 oz/in	2				
					-								
13	N2				_								
14	Helium												
15	H ₂ O				_								
16	C7												
17	C8												
					_								
18	C9												
19	C10												
					-								
20	C11+												
21		TOTAL											
	Other Components:			PPMV	Availab	le Utilities:							
				111010									
22	H2S				F	uel / Pilot G	as		Min.	30psig I	Vatural Ga	s /Propa	ne 40-50 SCFH
23	Benzene				li li	nstrument A	ir		NA				
						Darrea							
24	Toluene					Power			120 \	V / 60 Hz	or Solar P	ower	
25	E-Benzene					Steam			NA				
26	Xylene					Purge Gas							
	Apienie			DECK	GN DAT	-							
			•	DESIG		A							
27	Ambient Temperatures	5:			Noise P	erformance	Require	ments:			Unde	r 85 dBA	1
28		Low, °F		-20	Structur	ral Design Co	nde:						
					-	•	Juc.						
29	L	High, °F	-	120	Wind D	esign Code:					ASCE		
30	Design Conditions:	Pressure/Temperature							Г				
31			1	90	1		Process	e/Speed			100 mp	h	
		,,,,,									700 mb		
32	Elevation (ASL), ft				Category								
33	Area Classification:		Clas	s I Div 2	Seismic	Design Code	e:						
				NEC	1	0		n					
54	Electrical Design Code:				1		Locatio			_			
1				EQUIPMENT	SPECIF	ICATION							
35	Type:	Elevated 🗸 E	Inclosed		Equinm	ent Design:							
	-					-	· · · ·		1			10.11	
36	-	Above Ground				C	ompone	Int		IVIat	erial / Size	e / Katin	g / Other
37		✓ Stack	/lultiple Stack		Burner								
38		Portable / Trailer				Burner Tir	Assist	Gas Burner			21	04 SS	
					1								
39	-					В	urner Bo	dy			Carb	on Steel	
40	Smokeless By:	Steam A	Assist Air		Pilot								
41			Staging		1		Pilot Tip				24	04 SS	
	-		aging		+								
42						P	ilot Line	(s)			Carb	on Steel	
43	Stack:	✓ Self Supporting			Firebox	/ Stack			1				
			mokeless		1		CL - 11				A 1	on Charl	
44			-	Gas Assist			Shell					on Steel	
45	Pilot:	✓ Intermittent	Continuous				Piping				Carb	on Steel	
46	Pilot Air Inspirator:	✓ Local	Remote				Nozzles				Carb	on Steel	
			-		+								
47	Pilot Flame Control:	No	Yes (Thermo	coupie)	1		Flanges				Carb	on Steel	
48							Insulatio	n			Bla	anket	
49	-	Flamefront Generator	Inspirating Ig	nitor	1		sulation					04 SS	
				_	+								
50	L	Electronic 🗸	Automatic	Manual			Refracto	ry				NA	
51		With Pilot Flame Control				Refra	actory Ar	nchors	Г			NA	
52	-	With Auto Pilot Re-Ignition			1								
					+		rs and Pl					NA	
53						Stack Sa	mple Co	nnections			Per EPA r	equirem	ents
54	Pilot Ignition Backup:	Manual Specify: i.e F	iezo-Flectric				Sight Gla					2	
			ICLO-LICULIIL		+		-	JJ				4	
55	1	Battery Pack			1		Other						

		Item/Tag No.:	Page	2 of 3
\cap		Project No.:	Revision:	В
LEED			Date:	27 February 2014
FABRICATION		Project:	By:	JS
Enviro	nmental Control Equipment	P.O. No.:	Checked:	
	Data Sheet	RFQ No.:	Approved	
Client:	Butu bheet	Ref. P&ID: -	Approved	
Site:				
			Supplier:	LEED FABRICATION
Unit/Lease:		Remarks:	Model No	D.: L30-0011-00
Flame Detection:		EQUIPMENT SPECIFICATIO		
	Thermocouple / Ionizati	on Rod Auxiliary Equip		
	UV Scanner		Valves	NA
General Configuration:			Blowers	NA
			Dampers	NA
		lr	nlet KO / Liquid Seal	NA
		Flam	e / Detonation Arrestor	Yes
		Instrumentatio	n & Controls	
		Sole	noids / Shut-Off Valves	Check with Sales for available co
			Flow Meters	NA
	•		Calorimeter	NA
		Pressu	re Switches/Transmitters	NA
			Thermocouples	Check with Sales for available co
	4	Tempera	ture Switches/Transmitters	NA
			BMS	Check with Sales for available co
	The second se		CEMS	NA
			Other	NA
			otici	110
	AL .			
5	ŭ			
	*	FABRICATION AND INSPECT	ION	
Special requirements	Skid Mounted 🗸 Concrete P			
special requirements	Other		Equipment Ir	
			Component	Weight / Dimensions
		Burner		
Inspection	Vendor Standard		Burner Assembly	
	Other. Specify:	Stack		
Material Certification	Vendor Standard		Stack Assembly	48 " OD x 25 ' H
			Pilot Tip	
	Certificate of Compliance		Pilot Line(s)	
	Other (Specify):		Stack Assembly	
NDE	✓ Vendor Standard	Auxiliary Equip	ment	
	Radiography. Specify:		Blowers	
	Ultrasonic. Specify:	Ir	nlet KO / Liquid Seal	
		Flam	e / Detonation Arrestor	
	Liquid Penetrant.		Cl.:d	
	Liquid Penetrant. Magnetic Particles.		Skid	
		Instrumentatio		
	Magnetic Particles.			
	Magnetic Particles. PMI. Specify:		n & Controls	
Surface Preparation	Magnetic Particles. PMI. Specify: Other. Specify:		n & Controls BMS	
Surface Preparation	Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard		n & Controls BMS	
Surface Preparation Paint System	Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Vendor Standard		n & Controls BMS	
Surface Preparation	Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify:		n & Controls BMS	
3 2 2 Surface Preparation 3 4 Paint System 5	Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard		n & Controls BMS	
Surface Preparation Paint System	Magnetic Particles. MI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify:		n & Controls BMS	
Surface Preparation Paint System Finished Color	Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard		n & Controls BMS	

Enclosed (Passive Swirl) Flare Flow Rates

 $Q = \begin{bmatrix} C_d \mathbf{A} \cdot \sqrt{\frac{2\left(\frac{P}{16}\right)R}{\rho}} \end{bmatrix} \mathbf{N}$

Convert to mSCFD $(Q \cdot M \cdot 24) / 1000$

	3/8" Orifice: Dia =		0.00635 m			
	Area =		3.16692E-05 m ²		6894.757 (Conversion from PSI to Pa (R)
	Cd =		1			m^3/s to ft ³ /hr (M)
	Density =		0.8 kg/m ³			,
	,					
Flare Size	# of Orifices (N)	P	ressure (OZ/in ²)	m³/s	mSCFD	99% Combustion Efficiency
	18	2	1	0.00207892	6.34316015	6.28
	18	2	2	0.00294003	8.97058312	8.88
	18	2	3	0.00360079	10.98667566	10.88
	18	2	4	0.00415783	12.68632031	12.56
	18	2	5	0.00464860	14.18373729	14.04
	18	2	6	0.00509228	15.53750573	15.38
	18	2	7	0.00550029	16.78242429	16.61
	18	2	8	0.00588006	17.94116623	17.76
	18	2	9	0.00623675	19.02948046	18.84
	18	2	10	0.00657411	20.05883365	19.86
	18	2	11	0.00689498	21.03788221	20.83
	18	2	12	0.00720157	21.97335133	21.75
	18	2	13	0.00749564	22.87058918	22.64
	18	2	14	0.00777859	23.73393204	23.50
	18	2	15	0.00805160	24.56695363	24.32
	18	2	16	0.00831566	25.37264061	25.12
	18	2	17	0.00857159	26.15351931	25.89
	18	2	18	0.00882009	26.91174935	26.64
:	24	4	1	0.00415783	12.68632031	12.56
:	24	4	2	0.00588006	17.94116623	17.76
:	24	4	3	0.00720157	21.97335133	21.75
:	24	4	4	0.00831566	25.37264061	25.12
:	24	4	5	0.00929719	28.36747459	28.08
:	24	4	6	0.01018456	31.07501146	30.76
:	24	4	7	0.01100059	33.56484858	33.23
:	24	4	8	0.01176012	35.88233246	35.52
:	24	4	9	0.01247349	38.05896092	37.68
:	24	4	10	0.01314822	40.11766729	39.72
:	24	4	11	0.01378996	42.07576442	41.66
:	24	4	12	0.01440315	43.94670266	43.51
:	24	4	13	0.01499127	45.74117836	45.28
:	24	4	14	0.01555718	47.46786408	46.99
	24	4	15	0.01610321	49.13390727	48.64
	24	4	16	0.01663132	50.74528122	50.24
	24	4	17	0.01714318	52.30703862	51.78
	24	4	18	0.01764018	53.82349870	53.29
		10	1	0.01039458	31.71580076	31.40
		10	2	0.01470015	44.85291558	44.40
		10	3	0.01800394	54.93337832	54.38
		10	4	0.02078915	63.43160153	62.80
		10	5	0.02324298	70.91868647	70.21
		10	6 7	0.02546141	77.68752865	76.91
	36	10		0.02750147	83.91212145	83.07

36	10	8	0.02940030	89.70583116	88.81
36	10	9	0.03118373	95.14740229	94.20
36	10	10	0.03287054	100.29416823	99.29
36	10	11	0.03447491	105.18941106	104.14
36	10	12	0.03600787	109.86675665	108.77
36	10	13	0.03747818	114.35294589	113.21
36	10	14	0.03889295	118.66966020	117.48
36	10	15	0.04025802	122.83476817	121.61
36	10	16	0.04157831	126.86320305	125.59
36	10	17	0.04285794	130.76759655	129.46
36	10	18	0.04410046	134.55874674	133.21
48	14	1	0.01455241	44.40212107	43.96
48	14	2	0.02058021	62.79408181	62.17
48	14	3	0.02520551	76.90672965	76.14
48	14	4	0.02910482	88.80424214	87.92
48	14	5	0.03254017	99.28616105	98.29
48	14	6	0.03564597	108.76254012	107.67
48	14	7	0.03850205	117.47697003	116.30
48	14	8	0.04116043	125.58816363	124.33
48	14	9	0.04365722	133.20636321	131.87
48	14	10	0.04601875	140.41183552	139.01
48	14	11	0.04826488	147.26517548	145.79
48	14	12	0.05041102	153.81345931	152.28
48	14	13	0.05246945	160.09412425	158.49
48	14	14	0.05445012	166.13752428	164.48
48	14	15	0.05636123	171.96867543	170.25
48	14	16	0.05820963	177.60848427	175.83
48	14	17	0.06000112	183.07463517	181.24
48	14	18	0.06174064	188.38224544	186.50

ATTACHMENT N

Supporting Emission Calculations

EQT Production, LLC **Company Name:** OXF 121 Pad R13 Application Facility Name: **Project Description:**

Facility-Wide Emission Summary - Controlled

Wells	5	per pad	C	arbon equi	valent emis	sions (CO2e) are based on the following Global Warming Potentials (GWP) from 40 CFR Part 98, Table A-1:
Storage Tanks	6	per pad	С	02	1	
Sand Separator Tank	0	per pad	С	H ₄	25	
Line Heaters	1	per pad	N	20	298	
TEGs	2	per pad				
Dehy Reboiler	0	per pad				
Glycol Dehy	0	per pad				
Dehy Drip Tank	0	per pad				
Dehy Combustor	0	per pad				
Compressor	0	per pad				
High Pressure Separator	5	per pad				
Low Pressure Separator	0	per pad				
Vapor Recovery Unit	0	per pad				
Tank Combustor	1	per pad				
Length of lease road 2,4	05	feet				

Emission	Emission	Emission	N	0 _x	C	0	v	DC	S	02	PN	A ₁₀	PM	1 _{2.5}	C	H_4	CC	0 ₂ e
Point ID #	Source ID#s	Source Description	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
C001	S020-S025	Storage Vessels					1.55	6.79							0.165	0.724	4.13	18.10
C001	S019	Captured Liquid Loading					0.22	0.06										
C001	C001	Tank Combustor	1.15	5.03	0.96	4.22	2.8E-04	1.2E-03	0.01	0.03	0.09	0.38	0.09	0.38	1.2E-04	5.1E-04	1,371.10	6,005.43
C001	S020-S025		1.15	5.03	0.96	4.22	1.77	6.85	0.01	0.03	0.09	0.38	0.09	0.38	0.17	0.72	1,375.24	6,023.53
E016	S016	Line Heater	0.11	0.48	0.09	0.40	0.01	0.03	6.6E-04	2.9E-03	0.01	0.04	0.01	0.04	2.5E-03	0.01	135.14	591.90
E017	S017	TEG	1.2E-03	5.4E-03	1.0E-03	4.5E-03	6.8E-05	3.0E-04	7.4E-06	3.2E-05	9.4E-05	4.1E-04	9.4E-05	4.1E-04	2.9E-05	1.3E-04	1.52	6.64
E018	S018	TEG	1.2E-03	5.4E-03	1.0E-03	4.5E-03	6.8E-05	3.0E-04	7.4E-06	3.2E-05	9.4E-05	4.1E-04	9.4E-05	4.1E-04	2.9E-05	1.3E-04	1.52	6.64
E019	S019	Uncaptured Liquid Loading					4.79	1.25										
		Fugitives						12.36								8.52		213.07
		Haul Roads										0.30		0.03				
Facility Total			1.26	5.52	1.06	4.64	6.57	20.48	0.01	0.03	0.10	0.72	0.10	0.45	0.17	9.26	1,513.41	6,841.79
Facility Total (excludin	ng fugitive emissions)		1.26	5.52	1.06	4.64	6.57	8.12	0.01	0.03	0.10	0.42	0.10	0.42	0.17	0.74	1,513.41	6,628.72

1. Emissions routed to combustors are divided evenly by the total number of combustors (i.e., Combustor Point Emissions = [storage tanks emissions + captured loading emissions] / [number of combustors] + combustor emissions). However, emissions can be routed to either combustor.

Company Name: EQT Production, LLC Facility Name: OXF 121 Pad Project Description: R13 Application

				Facili	ty-Wide	Emissio	n Summa	ry - Cont	rolled									
Emission	Emission	Emission	Formal	dehyde		zene		uene		enzene	Xyl	enes	n-He	exane		EX		al HAP
Point ID #	Source ID#s	Source Description	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
C001	S020-S025	Storage Vessels			1.6E-03	7.1E-03	3.5E-03	1.6E-02	9.7E-05	4.3E-04	1.5E-03	6.6E-03	0.06	0.27	0.01	0.03	0.09	0.38
C001	S019	Captured Liquid Loading			1.3E-04	3.5E-05	2.8E-04	7.2E-05	8.5E-06	2.2E-06	1.7E-04	4.4E-05	0.01	2.2E-03	5.9E-04	1.5E-04	0.01	2.9E-03
C001	C001	Tank Combustor																
C001	S020-S025				1.8E-03	7.2E-03	3.8E-03	1.6E-02	1.1E-04	4.3E-04	1.7E-03	6.6E-03	0.07	0.28	0.01	0.03	0.10	0.38
E016	S016	Line Heater	8.2E-05	3.6E-04	2.3E-06	1.0E-05	3.7E-06	1.6E-05					2.0E-03	0.01	6.0E-06	2.6E-05	2.1E-03	0.01
E017	S017	TEG	9.3E-07	4.1E-06	2.6E-08	1.1E-07	4.2E-08	1.8E-07					2.2E-05	9.7E-05	6.8E-08	3.0E-07	2.3E-05	1.0E-04
E018	S018	TEG	9.3E-07	4.1E-06	2.6E-08	1.1E-07	4.2E-08	1.8E-07					2.2E-05	9.7E-05	6.8E-08	3.0E-07	2.3E-05	1.0E-04
E019	S019	Uncaptured Liquid Loading			2.9E-03	7.4E-04	0.01	1.5E-03	1.8E-04	4.8E-05	3.6E-03	9.5E-04	0.18	0.05	0.01	3.3E-03	0.24	0.06
		Fugitives				0.01		0.01		< 0.01		0.01		0.20	< 0.01	0.02		0.39
		Haul Roads													< 0.01	< 0.01		
Facility Total			8.4E-05	3.7E-04	4.6E-03	0.01	0.01	0.03	2.9E-04	4.7E-04	0.01	0.01	0.25	0.53	0.02	0.06	0.34	0.84
Facility Total (excludin	ng fugitive emissions)		8.4E-05	3.7E-04	4.6E-03	0.01	9.7E-03	1.7E-02	2.9E-04	4.7E-04	5.3E-03	7.6E-03	0.25	0.33	0.02	0.03	0.34	0.45

1. Emissions routed to combustors are divided evenly by the total number of combustors (i.e., Combustor Point Emissions = [storage tanks emissions + captured loading emissions] / [number of combustors] + combustor emissions). However, emissions can be routed to either combustor.

 Company Name:
 EOT Production, LLC

 Facility Name:
 OXF 121 Pad

 Project Description:
 R13 Application

Produced Fluids Storage Vessels

98%

<u>Potential Throughput</u> Operational Hours	8,760 hrs/yr
Maximum Condensate Throughput ¹	40 bbl/day
Maximum Produced Water Throughput ¹	98 bbl/day

¹ Based on the highest monthly throughput recorded at the site (August 2013). Includes a 80 percent compliance margin

Overall Control Efficiency of Combustor

Storage Tanks - Uncontrolled

	Brea	thing	Wor	king	Flas	hing	Total Emissions		
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
Methane	< 0.001	< 0.001	< 0.001	< 0.001	8.265	36.201	8.265	36.201	
Ethane	< 0.001	< 0.001	< 0.001	< 0.001	12.558	55.006	12.558	55.006	
Propane	0.336	1.472	0.594	2.603	23.082	101.100	24.013	105.175	
Isobutane	0.090	0.393	0.159	0.694	6.788	29.730	7.036	30.817	
n-Butane	0.219	0.959	0.387	1.696	16.703	73.160	17.309	75.815	
Isopentane	0.090	0.395	0.159	0.698	7.253	31.770	7.503	32.863	
n-Pentane	0.088	0.386	0.156	0.683	7.454	32.650	7.699	33.720	
n-Hexane	0.036	0.159	0.064	0.281	3.039	13.310	3.139	13.749	
Cyclohexane	0.003	0.013	0.005	0.022	0.324	1.420	0.332	1.455	
Methylcyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
n-Heptane	0.037	0.161	0.065	0.284	3.368	14.750	3.469	15.195	
n-Octane	0.008	0.034	0.014	0.060	0.742	3.249	0.763	3.342	
n-Nonane	0.002	0.007	0.003	0.013	0.167	0.734	0.172	0.754	
n-Decane	0.002	0.007	0.003	0.012	0.163	0.713	0.167	0.732	
n-Undecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Dodecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Triethylene Glycol	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Cyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Isohexane	0.053	0.234	0.094	0.414	4.575	20.040	4.723	20.688	
3-Methylpentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Neohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
2,3-Dimethylbutane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Methylcyclohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Decane, 2-Methyl-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Benzene	0.001	0.003	0.001	0.004	0.080	0.349	0.081	0.356	
Toluene	0.001	0.005	0.002	0.009	0.174	0.762	0.177	0.776	
Ethylbenzene	3.7E-05	1.6E-04	6.6E-05	2.9E-04	0.005	0.021	0.005	0.021	
m-Xylene	0.001	0.003	0.001	0.006	0.073	0.320	0.075	0.329	
Isooctane	0.009	0.041	0.016	0.072	0.835	3.657	0.861	3.770	
Total VOC Emissions:	0.97	4.27	1.72	7.55	74.83	327.73	77.52	339.56	
Total HAP Emissions:	4.8E-02	0.21	0.08	0.37	4.21	18.42	4.34	19.00	

¹ Uncontrolled emissions calculation using Promax (sum of produced water and condensate). Non-methane emissions are taken from the tank emissions stencil. Methane emissions are taken from the flash stream composition.

² Emission calculations based on OXF -121 condensate sample

Company Name: Facility Name: Project Description:

EOT Production, LLC OXF 121 Pad R13 Application

Storage Tanks - Controlled

	Brea	thing	Wor	king	Flas	hing	Total Er	nissions
	lb/hr	tpy			lb/hr	tpy	lb/hr	tpy
lethane	<0.001	< 0.001	< 0.001	< 0.001	0.165	0.724	0.165	0.724
Ethane	< 0.001	< 0.001	< 0.001	< 0.001	0.251	1.100	0.251	1.100
Propane	0.007	0.029	0.012	0.052	0.462	2.022	0.480	2.104
sobutane	0.002	0.008	0.003	0.014	0.136	0.595	0.141	0.616
n-Butane	0.004	0.019	0.008	0.034	0.334	1.463	0.346	1.516
sopentane	0.002	0.008	0.003	0.014	0.145	0.635	0.150	0.657
n-Pentane	0.002	0.008	0.003	0.014	0.149	0.653	0.154	0.674
n-Hexane	0.001	0.003	0.001	0.006	0.061	0.266	0.063	0.275
Cyclohexane	5.7E-05	2.5E-04	1.0E-04	4.4E-04	0.006	0.028	0.007	0.029
Methylcyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
n-Heptane	0.001	0.003	0.001	0.006	0.067	0.295	0.069	0.304
n-Octane	1.5E-04	0.001	2.7E-04	0.001	0.015	0.065	0.015	0.067
n-Nonane	3.3E-05	1.5E-04	5.9E-05	2.6E-04	0.003	0.015	0.003	0.015
n-Decane	3.0E-05	1.3E-04	5.3E-05	2.3E-04	0.003	0.014	0.003	0.015
n-Undecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Dodecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Friethylene Glycol	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Cyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
sohexane	0.001	0.005	0.002	0.008	0.092	0.401	0.094	0.414
8-Methylpentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Veohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
2,3-Dimethylbutane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Aethylcyclohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Decane, 2-Methyl-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Benzene	1.2E-05	5.1E-05	2.1E-05	9.0E-05	0.002	0.007	0.002	0.007
oluene	2.4E-05	1.1E-04	4.3E-05	1.9E-04	0.003	0.015	0.004	0.016
Ethylbenzene	7.4E-07	3.3E-06	1.3E-06	5.8E-06	9.5E-05	4.2E-04	9.7E-05	4.3E-04
n-Xylene	1.5E-05	6.5E-05	2.6E-05	1.1E-04	0.001	0.006	0.002	0.007
sooctane	1.9E-04	0.001	3.3E-04	0.001	0.017	0.073	0.017	0.075
Total VOC Emissions:	1.9E-02	0.09	0.03	0.15	1.50	6.55	1.55	6.79
otal HAP Emissions:	9.6E-04	4.2E-03	1.7E-03	7.4E-03	8.4E-02	0.37	0.09	0.38

Produced Fluids Storage Vessels

Company Name:	EQT Production, LLC
Facility Name:	OXF 121 Pad
Project Description:	R13 Application

Tank Combustor

Source Designation:	C001
Pilot Fuel Used:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,050
Pilot Rating (MMBtu/hr)	0.05
Combustor Rating (MMBtu/hr) ¹	11.66
Combustor Rating (Mscfd) ¹	188.38
Combustor Rating (scf/hr)	7849.17
Pilot Fuel Consumption (scf/hr):	50.00
Potential Annual Hours of Operation (hr/yr):	8,760

¹ Maximum heat input for 48" model from Leed Enclosed Combustor Operations Manual

Enclosed Combustor Emissions

	Emission Factors ²	Comb	oustor	Pi	lot	To	otal
Pollutant	(lb/MMBtu)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
NO _x	0.10	1.14	5.01	5.1E-03	0.02	1.15	5.03
CO	0.08	0.96	4.21	4.3E-03	0.02	0.96	4.22
VOC	5.4E-03			2.8E-04	1.2E-03	0.00	0.00
SO ₂	5.9E-04	0.01	0.03	3.1E-05	1.4E-04	0.01	0.03
PM/PM ₁₀	0.01	0.09	0.38	3.9E-04	1.7E-03	0.09	0.38
CO ₂	117.00	1364.189	5975.146	6.14	26.90	1370.33	6002.05
CH ₄	2.2E-03			1.2E-04	5.1E-04	0.00	0.00
N ₂ O	2.2E-04	2.6E-03	0.01	1.2E-05	5.1E-05	2.6E-03	0.01

² Emission factors from AP-42 Ch. 1.4 for natural gas combustion were used as they were determined to be most representative of the process. Ch. 5.3 (Natural Gas Processing) was consulted, however, factors contained there are appropriate for amine gas sweetening processes, which is not the case at the wellpad. Also, Ch. 13.5 (Industrial Flares) was consulted, but since the control device in this case is an enclosed combustor vs. an elevated flare, these factors were also determined to be inappropriate.

Combustor Maximum Loading:

7849.17 scf	lb-mol	20.44 lb	=	422.66 lb/hr
hr	379.5 scf	lb-mol	-	

Company Name: Facility Name: Project Description:	EQT Production, LLC OXF 121 Pad R13 Application	
	Line Heaters	
Source Designation: Fuel Used:	S016 Natural Gas	

Natural Gas
1,050
1.15
1.10E-03
8,760

Criteria and Manufacturer Specific Pollutant Emission Rates:

	Emission Factor	Potential Emissions		
Pollutant	(lb/MMscf) ^{1,4}	(lb/hr) ²	(tons/yr) ³	
NO _x	100	0.11	0.48	
со	84	0.09	0.40	
VOC	5.5	0.01	0.03	
SO ₂	0.6	6.6E-04	2.9E-03	
PM Total	7.6	0.01	0.04	
PM Condensable	5.7	0.01	0.03	
PM ₁₀ (Filterable)	1.9	2.1E-03	0.01	
PM _{2.5} (Filterable)	1.9	2.1E-03	0.01	
Lead	5.00E-04	5.5E-07	2.4E-06	
CO ₂	117.0	135.00	591.29	
CH ₄	2.21E-03	2.5E-03	1.1E-02	
N ₂ O	2.21E-04	2.5E-04	1.1E-03	

Company Name: Facility Name: **Project Description:** EQT Production, LLC OXF 121 Pad **R13** Application

Line Heaters

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential F	Emissions
Pollutant	(lb/MMscf) ¹	(lb/hr) ²	(tons/yr) ³
HAPs:			
2-Methylnaphthalene	2.4E-05	2.6E-08	1.2E-07
3-Methylchloranthrene	1.8E-06	2.0E-09	8.7E-09
7,12-Dimethylbenz(a)anthracene	1.6E-05	1.8E-08	7.7E-08
Acenaphthene	1.8E-06	2.0E-09	8.7E-09
Acenaphthylene	1.8E-06	2.0E-09	8.7E-09
Anthracene	2.4E-06	2.6E-09	1.2E-08
Benz(a)anthracene	1.8E-06	2.0E-09	8.7E-09
Benzene	2.1E-03	2.3E-06	1.0E-05
Benzo(a)pyrene	1.2E-06	1.3E-09	5.8E-09
Benzo(b)fluoranthene	1.8E-06	2.0E-09	8.7E-09
Benzo(g,h,i)perylene	1.2E-06	1.3E-09	5.8E-09
Benzo(k)fluoranthene	1.8E-06	2.0E-09	8.7E-09
Chrysene	1.8E-06	2.0E-09	8.7E-09
Dibenzo(a,h) anthracene	1.2E-06	1.3E-09	5.8E-09
Dichlorobenzene	1.2E-03	1.3E-06	5.8E-06
Fluoranthene	3.0E-06	3.3E-09	1.4E-08
Fluorene	2.8E-06	3.1E-09	1.3E-08
Formaldehyde	7.5E-02	8.2E-05	3.6E-04
Hexane	1.8E+00	2.0E-03	8.7E-03
Indo(1,2,3-cd)pyrene	1.8E-06	2.0E-09	8.7E-09
Naphthalene	6.1E-04	6.7E-07	2.9E-06
Phenanthrene	1.7E-05	1.9E-08	8.2E-08
Pyrene	5.0E-06	5.5E-09	2.4E-08
Toluene	3.4E-03	3.7E-06	1.6E-05
Arsenic	2.0E-04	2.2E-07	9.6E-07
Beryllium	1.2E-05	1.3E-08	5.8E-08
Cadmium	1.1E-03	1.2E-06	5.3E-06
Chromium	1.4E-03	1.5E-06	6.7E-06
Cobalt	8.4E-05	9.2E-08	4.0E-07
Manganese	3.8E-04	4.2E-07	1.8E-06
Mercury	2.6E-04	2.9E-07	1.3E-06
Nickel	2.1E-03	2.3E-06	1.0E-05
Selenium	2.4E-05	2.6E-08	1.2E-07
Total HAP		2.1E-03	9.1E-03

¹ Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, & 1.4-3

² Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) × Emission Factor (lb/MMscf).

³ Annual Emission factor sprong (bh/rr)_{Potential} = (lb/hr)_{Emission} × (Maximum Allowable Operating Hours, 8760 hr/yr) × (1 ton/2000 lb).
 ⁴ GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

Company Name:	EQT Production, LLC
Facility Name:	OXF 121 Pad
Project Description:	R13 Application

 Thermoelectric Generators	

Source Designation:	S017-S018
Fuel Used:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,050
Heat Input (MMBtu/hr) ¹	0.013
Fuel Consumption (MMscf/hr):	1.23E-05
Potential Annual Hours of Operation (hr/yr):	8,760

F

¹ Global Themorelectric specification sheet states 311 ft³/day at 1000 BTU/ft³.

Criteria and Manufacturer Specific Pollutant Emission Rates:

	Emission Factor	Potential	Emissions
Pollutant	(lb/MMscf) ^{2, 5}	(lb/hr) ³	(tons/yr) ⁴
NO _x	100	1.2E-03	0.01
со	84	1.0E-03	4.5E-03
VOC	5.5	6.8E-05	3.0E-04
SO ₂	0.6	7.4E-06	3.2E-05
PM Total	7.6	9.4E-05	4.1E-04
PM Condensable	5.7	7.0E-05	3.1E-04
PM ₁₀ (Filterable)	1.9	2.3E-05	1.0E-04
PM _{2.5} (Filterable)	1.9	2.3E-05	1.0E-04
Lead	5.00E-04	6.2E-09	2.7E-08
CO ₂	116.9	1.51	6.64
CH ₄	2.21E-03	2.9E-05	1.3E-04
N ₂ O	2.21E-04	2.9E-06	1.3E-05

Company Name: Facility Name: **Project Description:**

EQT Production, LLC OXF 121 Pad **R13** Application

Thermoelectric Generators

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential I	Emissions
Pollutant	(lb/MMscf) ²	(lb/hr) ³	(tons/yr) ⁴
HAPs:			
2-Methylnaphthalene	2.4E-05	3.0E-10	1.3E-09
3-Methylchloranthrene	1.8E-06	2.2E-11	9.7E-11
7,12-Dimethylbenz(a)anthracene	1.6E-05	2.0E-10	8.6E-10
Acenaphthene	1.8E-06	2.2E-11	9.7E-11
Acenaphthylene	1.8E-06	2.2E-11	9.7E-11
Anthracene	2.4E-06	3.0E-11	1.3E-10
Benz(a)anthracene	1.8E-06	2.2E-11	9.7E-11
Benzene	2.1E-03	2.6E-08	1.1E-07
Benzo(a)pyrene	1.2E-06	1.5E-11	6.5E-11
Benzo(b)fluoranthene	1.8E-06	2.2E-11	9.7E-11
Benzo(g,h,i)perylene	1.2E-06	1.5E-11	6.5E-11
Benzo(k)fluoranthene	1.8E-06	2.2E-11	9.7E-11
Chrysene	1.8E-06	2.2E-11	9.7E-11
Dibenzo(a,h) anthracene	1.2E-06	1.5E-11	6.5E-11
Dichlorobenzene	1.2E-03	1.5E-08	6.5E-08
Fluoranthene	3.0E-06	3.7E-11	1.6E-10
Fluorene	2.8E-06	3.5E-11	1.5E-10
Formaldehyde	7.5E-02	9.3E-07	4.1E-06
Hexane	1.8E+00	2.2E-05	9.7E-05
Indo(1,2,3-cd)pyrene	1.8E-06	2.2E-11	9.7E-11
Naphthalene	6.1E-04	7.5E-09	3.3E-08
Phenanthrene	1.7E-05	2.1E-10	9.2E-10
Pyrene	5.0E-06	6.2E-11	2.7E-10
Toluene	3.4E-03	4.2E-08	1.8E-07
Arsenic	2.0E-04	2.5E-09	1.1E-08
Beryllium	1.2E-05	1.5E-10	6.5E-10
Cadmium	1.1E-03	1.4E-08	5.9E-08
Chromium	1.4E-03	1.7E-08	7.6E-08
Cobalt	8.4E-05	1.0E-09	4.5E-09
Manganese	3.8E-04	4.7E-09	2.1E-08
Mercury	2.6E-04	3.2E-09	1.4E-08
Nickel	2.1E-03	2.6E-08	1.1E-07
Selenium	2.4E-05	3.0E-10	1.3E-09
Total HAP		2.3E-05	1.0E-04

² Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, & 1.4-3

³ Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) × Emission Factor (lb/MMscf).

⁴ Annual Emissions (tons/yr)_{Potential} = (lb/hr)_{Emissions} × (Maximum Allowable Operating Hours, 8760 hr/yr) × (1 ton/2000 lb).
⁵ GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

Company Name: Facility Name: **Project Description:** EQT Production, LLC OXF 121 Pad **R13 Application**

Liquid Loading

Throughput Capture Efficiency Control Efficiency

2,115,540 gal/yr 70% non-tested tanker trucks 98% Combustor destruction efficiency

Liquid Loading Emissions

	Uncontrolle	ed Emissions	Uncapture	d Emissions	Controlled Emissions		
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
Propane	5.508	1.432	1.652	0.430	0.077	0.020	
Isobutane	1.469	0.382	0.441	0.115	0.021	0.005	
n-Butane	3.588	0.933	1.076	0.280	0.050	0.013	
Isopentane	1.477	0.384	0.443	0.115	0.021	0.005	
n-Pentane	1.445	0.376	0.434	0.113	0.020	0.005	
n-Hexane	0.593	0.154	0.178	0.046	0.008	0.002	
Cyclohexane	0.047	0.012	0.014	0.004	0.001	1.7E-04	
Methylcyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
n-Heptane	0.601	0.156	0.180	0.047	0.008	0.002	
n-Octane	0.126	0.033	0.038	0.010	0.002	4.6E-04	
n-Nonane	0.027	0.007	0.008	0.002	3.8E-04	9.9E-05	
n-Decane	0.025	0.006	0.007	0.002	3.4E-04	9.0E-05	
n-Undecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Dodecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Triethylene Glycol	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Cyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Isohexane	0.875	0.228	0.263	0.068	0.012	0.003	
3-Methylpentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Neohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
2,3-Dimethylbutane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Methylcyclohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Decane, 2-Methyl-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Benzene	0.010	0.002	0.003	0.001	1.3E-04	3.5E-05	
Toluene	0.020	0.005	0.006	0.002	2.8E-04	7.2E-05	
Ethylbenzene	0.001	1.6E-04	1.8E-04	4.8E-05	8.5E-06	2.2E-06	
m-Xylene	0.012	0.003	0.004	0.001	1.7E-04	4.4E-05	
Isooctane	0.152	0.040	0.046	0.012	0.002	0.001	
Total VOC Emissions:	15.975	4.153	4.792	1.246	0.224	0.058	
Total HAP Emissions:	0.787	0.205	0.236	0.061	0.011	0.003	

¹ Uncontrolled emissions calculation using Promax (sum of produced water and condensate).
² Hourly emissions assume two hours of loading per day, five days per week.

Fugitive Emissions

Fugitive Emissions from Component Leaks

Facility Equipment Type ¹	Valves	Connectors Connectors		Pressure Relief Devices
Wellhead	8	38	0.5	0
Separators	1	6	0	0
Meters/Piping	12	45	0	0
Compressors	12	57	0	0
In-line heaters	14	65	2	1
Dehydrators	24	90	2	2

¹ Table W-1B to Subpart W of Part 98 —Default Average Component Counts for Major Onshore Natural Gas Production

Fugitive VOC/Total Emissions from Component Leaks

Equipment Type	Service	Emission Factors ¹ (kg/hr/source)	Facility Equipment Count ² (units)	TOC Annual Fugitive Emissions (tpy)	Weight Fraction VOC	Weight Fraction HAP	VOC Emissions ³ (tpy)	HAP Emissions ³ (tpy)
Pumps	Light Liquid	0.01990	9	1.73	1.00	0.03	1.73	0.05
Compressor	Gas	0.22800	0		0.17	0.01		
Valves	Gas	0.00597	179	10.29	0.17	0.01	1.71	0.05
Pressure Relief Valves	Gas	0.10400	14	13.56	0.17	0.01	2.25	0.07
Open-Ended Lines	All	0.00170	8	0.12	0.17	0.01	0.02	6.4E-04
Connectors	All	0.00183	765	13.52	0.17	0.01	2.24	0.07
Intermittent Pneumatic Devices ⁴	Gas	13.5	25				4.41	0.14
			Emission Totals:	39.22			12.36	0.39

¹ U.S. EPA. Office of Air Quality Planning and Standards. *Protocol for Equipment Leak Emission Estimates*. Table 2-1. (Research Triangle Park, NC: U.S. EPA EPA-453/R-95-017, 1995). SOCMI factors were used as it was representative of natural gas liquids extraction. The pneumatic controller value is from 40 CFR 98 Subpart W, Table W-1A. Pneumatic assumes operation 1/3 of the year.

² Assumes one pump for each tank and one meter per wellhead. Pressure relief valves count includes one Emergency Pressure Relief valve and one lock-down hatch for each storage tank. Pneumatic devices assume 5 per well. A 50% compliance margin is added to the component counts based on Subpart W counts.

³ Potential emissions VOC/HAP (tpy) = Emission factor (kg/hr/source) * Number of Sources * Weight % VOC/HAP x 2.2046 (lb/kg) x 8,760 (hr/yr) ÷ 2,000 (lb/ton)

⁴ Potential emissions VOC/HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % VOC/HAP ÷ 100 ÷ 379 (scf/lb-mol) ÷ 2,000 (lb/ton)

Fugitive Emissions

Fugitive Specific HAP Emissions from Component Leaks

Equipment Type	Service	Emission Factors ¹ (kg/hr/source)	Facility Equipment Count ² (units)	TOC Annual Fugitive Emissions (tpy)	Benzene Emissions ³ (tpy)	Toluene Emissions ³ (tpy)	Ethylbenzene Emissions ³ (tpy)	Xylene Emissions ³ (tpy)	n-Hexane Emissions ⁴ (tpy)
Pumps	Light Liquid	0.01990	9	1.73	1.3E-04	3.1E-04	<0.01	1.8E-04	0.01
Compressor	Gas	0.22800	0				< 0.01		
Valves	Gas	0.00597	179	10.29	7.9E-04	1.9E-03	< 0.01	1.1E-03	0.03
Pressure Relief Valves	Gas	0.10400	14	13.56	1.0E-03	2.4E-03	< 0.01	1.4E-03	0.04
Open-Ended Lines	All	0.00170	8	0.12	9.4E-06	2.2E-05	< 0.01	1.3E-05	3.8E-04
Connectors	All	0.00183	765	13.52	1.0E-03	2.4E-03	< 0.01	1.4E-03	0.04
Intermittent Pneumatic Devices ⁴	Gas	13.5	25		2.0E-03	4.8E-03	<0.01	2.8E-03	0.08
			Emission Totals:	39.22	0.01	0.01	<0.01	0.01	0.20

¹ U.S. EPA. Office of Air Quality Planning and Standards. *Protocol for Equipment Leak Emission Estimates*. Table 2-1. (Research Triangle Park, NC: U.S. EPA EPA-453/R-95-017, 1995). SOCMI factors were used as it was representative of natural gas liquids extraction. The pneumatic controller value is from 40 CFR 98 Subpart W, Table W-1A. Pneumatic assumes operation 1/3 of the year.

² Assumes one pump for each tank and one meter per wellhead. Pressure relief valves count includes one Emergency Pressure Relief valve and one lock-down hatch for each storage tank. Pneumatic devices assume 5 per well. A 50% compliance margin is added to the component counts based on Subpart W counts.

³ Potential emissions HAP (tpy) = Emission factor (kg/hr/source) * Number of Sources * Weight % HAP x 2.2046 (lb/kg) x 8,760 (hr/yr) ÷ 2,000 (lb/ton)

⁴ Potential emissions HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % HAP + 100 + 379 (scf/lb-mol) + 2,000 (lb/ton)

GHG Fugitive Emissions from Component Leaks

		GHG Emission			
	Component	Factor ¹	CH ₄ Emissions ^{2,3}	CO ₂ Emissions ^{2,3}	CO ₂ e Emissions ⁴
Component	Count	scf/hr/component	(tpy)	(tpy)	(tpy)
Pumps	9	0.01	0.01	8.9E-05	0.33
Compressor	0	4.17			
Valves	179	0.027	0.71	4.8E-03	17.64
Pressure Relief Devices	14	0.04	0.08	5.3E-04	1.98
Open-Ended Lines	8	0.061	0.07	4.5E-04	1.67
Connectors	765	0.003	0.34	2.3E-03	8.40
Intermittent Pneumatic Devices	25	6	7.32	0.05	183.05
Total			8.52	0.06	213.07

¹ Population emission factors for gas service in the Eastern U.S. from *Table W-1A of Subpart W - Default Whole Gas Emission Factors for Onshore Production*, 40 CFR 98, Subpart W (Table W-6 for compressor). Pneumatic assumes operation 1/3 of the year. ² Calculated in accordance with Equations W-32a, W-35 and W-36 in Subpart W of 40 CFR 98. See footnote 4 above for sample calculation.

0.20%

³ Potential emissions VOC/HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % VOC/HAP ÷ 100 ÷ 379 (scf/lb-mol) ÷ 2,000 (lb/ton) Mole fractions of CH₄ and CO₂ based on gas analysis:

⁴ Carbon equivalent emissions (CO₂e) are based on the following Global Warming Potentials (GWP) from 40 CFR Part 98, Table A-1:

$$CH_{4:}$$
 79%
O₂e) are based on the following Glob
Carbon Dioxide (CO₂): 1
Methane (CH₄): 25

lane (CH₄):

 Company Name:
 EQT Production, LLC

 Facility Name:
 OXF 121 Pad

 Project Description:
 R13 Application

Haul Roads

Estimated Potential Road Fugitive Emissions

Unpaved Road Emissions

Unpaved Road	s: E (lb/VMT) :	= k(s/12) ^a (W/3) ^b	[°])*[(365-p)/3	65]
	PM	PM ₁₀	PM _{2.5}	
k Factor (lb/VMT)	4.9	1.5	0.15	AP-42 Table 13.2.2-2 (Final, 11/06)
Silt content, s	4.8	%		AP-42 Table 13.2.2-1 (11/06), for Sand and Gravel Processing
Number of Rain Days, p	150			AP-42 Figure 13.2.1-2
а	0.7	0.9	0.9	AP-42 Table 13.2.2-2 (Final, 11/06)
b	0.45	0.45	0.45	AP-42 Table 13.2.2-2 (Final, 11/06)

Description	Weight of Empty Truck (tons)	Weight of Truck w/ Max Load (tons)	Mean Vehicle Weight (tons)	Length of Unpaved Road Traveled (mile)	Trips Per Year	Mileage Per Year	Control (%)	I PM	Emissions (tpy PM ₁₀) PM _{2.5}
Liquids Hauling Employee Vehicles	20 3	40 3	30 3	0.46 0.46	529 200	482 182	0 0	1.03 0.14	0.26 0.04	0.03 0.00
Total Potential Emissions								1.17	0.30	0.03

EQT Production, LLC Company Name: OXF 121 Pad **Project Description: R13 Application**

Gas Analysis	

Sample Location:	
Sample Date:	
HHV (Btu/scf):	

OXF 121 Gas Analysis 5/29/2013 1,240 Note: A conservatively low BTU content of 1,050 was used for calculations.

Constituent	Natural Gas Stream Speciation (Mole %)	Molecular Weight	Molar Weight	Average Weight Fraction	Natural Gas Stream Speciation (Wt. %)
Carbon Dioxide	0.195	44.01	0.09	0.00	0.420
Nitrogen	0.532	28.01	0.15	0.01	0.729
Methane	78.965	16.04	12.67	0.62	61.981
Ethane	13.780	30.07	4.14	0.20	20.277
Propane	4.195	44.10	1.85	0.09	9.053
Isobutane	0.507	58.12	0.29	0.01	1.442
n-Butane	1.013	58.12	0.59	0.03	2.881
Isopentane	0.249	72.15	0.18	0.01	0.879
n-Pentane	0.240	72.15	0.17	0.01	0.847
Cyclopentane	< 0.001	70.1	0.0	0.0	0.000
n-Hexane	0.073	86.18	0.06	0.00	0.308
Cyclohexane	0.011	84.16	0.01	0.00	0.045
Other Hexanes	0.113	86.18	0.10	0.00	0.477
Heptanes	0.079	100.21	0.08	0.00	0.387
Methylcyclohexane	< 0.001	98.19	0.00	0.00	0.000
2,2,4-Trimethylpentane	0.031	114.23	0.04	0.00	0.173
Benzene*	0.002	78.11	0.00	0.00	0.008
Toluene*	0.004	92.14	0.00	0.00	0.018
Ethylbenzene*	< 0.001	106.17	0.00	0.00	0.000
Xylenes*	0.002	106.16	0.00	0.00	0.010
C8 + Heavies	0.010	130.80	0.01	0.00	0.064
Totals	100.00		20.44	1.00	100

TOC (Total)	99.27	98.85
VOC (Total)	6.53	16.59
HAP (Total)	0.11	0.52

Facility Name:

		OXF-121 Plant Schematic		
Client Name:	EQT Production		Job: V1.0	
Location:	OXF 121 Wellpad			
Flowsheet:	OXF-121			

Page 1 of 6

			All St	reams Report reams y Total Phase			
Client Name: Location:	EQT Production OXF 121 Wellpa				Job: V1.0		
Flowsheet:	OXF-121 Wellpa	lu					
	1						
			Conn	ections			
			Combined	Combined	Combined PW	Gas to Sales	Reservoir Gas
			Flash Vapor	Flowstream	& Cond	Line	
From Block			MIX-100	MIX-102	MIX-101	High Pressure	
T D					.	Tower	
To Block			MIX-105	Preheat	Produced Fluid Tanks		MIX-102
					TAIKS		
			Stroom C	omposition			
			Combined	Combined	Combined PW	Gas to Sales	Reservoir Gas
			Flash Vapor	Flowstream	& Cond	Line	Reservoir Gas
Mass Flow			lb/h	lb/h	lb/h	lb/h	lb/h
Nitrogen			0.0503402	163.634	0.0504575	163.583	163.634 *
Methane			12.1835	13921.8	12.2718	13909.6	13909.2 *
CO2			0.260237	94.4766	0.267879	94.2087	94.2272 *
Ethane Propane			18.4773 23.5824	4569.37 2057.83	19.2096 26.9038	4550.16 2030.93	4549.5 * 2031.06 *
Isobutane			7.14688	332.811	9.62373	323.188	323.553 *
n-Butane			17.9139	672.945	26.8261	646.119	646.468 *
Isopentane			8.25025	215.991	18.6482	197.343	197.253 *
n-Pentane			8.6423	212.909	22.5942	190.315	189.331 *
n-Hexane	_		3.82349	93.2657	25.0099	68.2558	69.0719 *
Methylcyclopentan Benzene	e		0.0995755	0 2.40714	0.651463	0 1.75568	0 *
Cyclohexane			0.408377	10.1646	3.05469	7.10993	10.1646 *
n-Heptane			4.46426	163.206	80.8312	82.3752	86.9158 *
n-Octane			1.02394	76.2265	55.8151	20.4115	3.76263 *
n-Nonane			0.240104	45.4661	40.319	5.1471	5.63287 *
n-Decane			0.240545	127.582	121.617	5.96441	4.68668 *
n-Undecane Dodecane			0	0	0	0	0 *
Water			2.11307	1459.01	1432.93	26.0764	0 *
Triethylene Glycol			0	0	0	0	0 *
Oxygen			0	0	0	0	0 *
Argon			0	0	0	0	0 *
Carbon Monoxide Cyclopentane			0	0	0	0	0 *
Isohexane			5.6128	130.844	27.5065	103.337	106.919 *
3-Methylpentane			0.0120	0	0	0	0 *
Neohexane			0	0	0	0	0 *
2,3-Dimethylbutane			0	0	0	0	0 *
Methylcyclohexane Isooctane	•		0 1.09689	0 39.0665	0 18.6966	0 20.3699	0 * 38.8805 *
Decane, 2-Methyl-			1.09689	39.0665	0	20.3699	38.8805
Toluene			0.229521	8.34898	4.29615	4.05283	4.04665 *
m-Xylene			0.100515	8.40178	6.45257	1.94921	2.33135 *
Ethylbenzene			0.0065356	0.511631	0.385681	0.12595	0 *
Volumetric Flow			Combined Flash Vapor ft^3/h	Combined Flowstream ft^3/h	Combined PW & Cond gpm	Gas to Sales Line ft^3/h	Reservoir Gas ft^3/h
Nitrogen			0.720426	78.2438	0.000195114	84.7382	78.3241
Methane			302.964	10575.1	0.0833275	11604.5	10578.6
CO2			2.34988	23.8905	0.000428801	26.6101	23.9166
Ethane			242.776	1487.63	0.0858216	1692.66	1487.75
Propane Isobutane			209.575 47.8612	366.742 36.3425	0.1035	435.726 45.291	367.258 36.441
n-Butane			119.763	66.7099	0.0925141	85.1096	66.938
Isopentane			44.1375	12.593	0.0600365	17.2129	12.4154
n-Pentane			46.1667	11.3992	0.0721615	15.8561	11.1004
n-Hexane Methylcyclopentan			16.9469	2.48552	0.075494	3.38477	1.91374
			0	0	0	0	0

* User Specified Values ? Extrapolated or Approximate Values

Г

			All St	reams Report reams y Total Phase			
Client Name:	EQT Production				Job: V1.0	*	
Location:	OXF 121 Wellpa	d					
Flowsheet:	OXF-121						
Volumetric Flow			Combined Flash Vapor ft^3/h	Combined Flowstream ft^3/h	Combined PW & Cond gpm	Gas to Sales Line ft^3/h	Reservoir Gas ft^3/h
Benzene			0.490262	0.0848824	0.00144108	0.122642	0.078427
Cyclohexane			1.85991	0.288926	0.00772492	0.401256	0.344784
n-Heptane n-Octane			16.8772 3.36669	2.8584 1.341	0.234912 0.15624	2.1105 0.188272	0.739678 0.00664644
n-Nonane			0.696274	0.86626	0.109675	-0.0303132	0.0244008
n-Decane			0.623464	2.53567	0.324565	-0.103238	0.0489429
n-Undecane			0	0	0	0	0
Dodecane Water			0 46.6917	0 33.2229	0 2.87143	0 18.7088	0
Triethylene Glycol			40.0317	0	0	0	0
Oxygen			0	0	0	0	0
Argon			0	0	0	0	0
Carbon Monoxide Cyclopentane			0	0	0	0	0
Isohexane			24.9276	4.03026	0.0839521	5.66109	3.54749
3-Methylpentane			0	4.03020	0.00000021	0	0
Neohexane			0	0	0	0	0
2,3-Dimethylbutane			0	0	0	0	0
Methylcyclohexane Isooctane			0 3.6322	0.646374	0.0530749	0.453872	0.292204
Decane, 2-Methyl-			0	0.040374	0.0550749	0.433072	0.292204
Toluene			0.949529	0.15194	0.00956599	0.159275	0.0757382
m-Xylene			0.357723	0.130775	0.0143715	0.0390928	0.0176282
Ethylbenzene			0.0232794	0.00796894	0.000856286	0.00270534	0
			Combined	Combined	Combined PW	Gas to Sales	Reservoir Gas
Mole Fraction			Combined Flash Vapor	Combined Flowstream	Combined PW & Cond	Gas to Sales Line	Reservoir Gas
Nitrogen			Flash Vapor 0.000622907	Flowstream 0.00492733	& Cond 2.09067E-05	Line 0.00531185	0.00532 *
Nitrogen Methane			Flash Vapor 0.000622907 0.263254	Flowstream 0.00492733 0.732033	& Cond 2.09067E-05 0.008879	Line 0.00531185 0.788706	0.00532 * 0.78965 *
Nitrogen Methane CO2			Flash Vapor 0.000622907 0.263254 0.00204973	Flowstream 0.00492733 0.732033 0.00181085	& Cond 2.09067E-05 0.008879 7.0651E-05	Line 0.00531185	0.00532 * 0.78965 * 0.00195 *
Nitrogen Methane			Flash Vapor 0.000622907 0.263254	Flowstream 0.00492733 0.732033	& Cond 2.09067E-05 0.008879	Line 0.00531185 0.788706 0.00194723	0.00532 * 0.78965 *
Nitrogen Methane CO2 Ethane Propane Isobutane			Flash Vapor 0.000622907 0.263254 0.00204973 0.213006 0.185381 0.0426234	Flowstream 0.00492733 0.732033 0.00181085 0.128186 0.0393658 0.00483016	& Cond 2.09067E-05 0.008879 7.0651E-05 0.00741522 0.0070818 0.00192189	Line 0.00531185 0.788706 0.00194723 0.137651 0.0418959 0.00505808	0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.00507 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane			Flash Vapor 0.000622907 0.263254 0.00204973 0.213006 0.185381 0.0426234 0.106837	Flowstream 0.00492733 0.732033 0.00181085 0.128186 0.0393658 0.00483016 0.00976658	& Cond 2.09067E-05 0.008879 7.0651E-05 0.00741522 0.0070818 0.00192189 0.00535724	Line 0.00531185 0.788706 0.00194723 0.137651 0.0418959 0.00505808 0.0101121	0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.00507 * 0.01013 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane			Flash Vapor 0.000622907 0.263254 0.00204973 0.213006 0.185381 0.0426234 0.106837 0.039638	Flowstream 0.00492733 0.732033 0.00181085 0.128186 0.0393658 0.00483016 0.00976658 0.00252529	& Cond 2.09067E-05 0.008879 7.0651E-05 0.00741522 0.0070818 0.00192189 0.00535724 0.00300009	Line 0.00531185 0.788706 0.00194723 0.137651 0.0418959 0.00505808 0.0101121 0.00248809	0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.00507 * 0.01013 * 0.00249 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane			Flash Vapor 0.000622907 0.263254 0.00204973 0.213006 0.185381 0.0426234 0.106837 0.039638 0.0415216	Flowstream 0.00492733 0.732033 0.00181085 0.128186 0.0393658 0.00483016 0.00976658	& Cond 2.09067E-05 0.008879 7.0651E-05 0.00741522 0.0070818 0.00192189 0.00535724 0.0030009 0.00363491	Line 0.00531185 0.788706 0.00194723 0.137651 0.0418959 0.00505808 0.0101121 0.00248809 0.00239947	0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.00507 * 0.01013 * 0.00249 * 0.00239 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane			Flash Vapor 0.000622907 0.263254 0.00204973 0.213006 0.185381 0.0426234 0.106837 0.039638 0.0415216 0.0153798 0	Flowstream 0.00492733 0.732033 0.00181085 0.128186 0.0393658 0.00483016 0.00976658 0.00252529 0.00248926 0.00248926 0.000912944 0 0	& Cond 2.09067E-05 0.008879 7.0651E-05 0.00741522 0.0070818 0.00192189 0.00535724 0.00330009 0.00363491 0.00336864 0	Line 0.00531185 0.788706 0.00194723 0.137651 0.0418959 0.00505808 0.0101121 0.00248809 0.00239947 0.000720492 0	0.00532 * 0.78965 * 0.0195 * 0.04195 * 0.04195 * 0.00507 * 0.01013 * 0.00249 * 0.00239 * 0.00073 * 0.00073 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene			Flash Vapor 0.000622907 0.263254 0.00204973 0.213006 0.185381 0.0426234 0.106837 0.039638 0.0415216 0.0153798 0 0.000441885	Flowstream 0.00492733 0.732033 0.00181085 0.128186 0.0393658 0.00483016 0.00976658 0.00252529 0.00248926 0.00248926 0.000912944 0 0 2.5995E-05	& Cond 2.09067E-05 0.008879 7.0651E-05 0.00741522 0.0070818 0.00192189 0.00535724 0.0030009 0.00363491 0.00336864 0 9.68053E-05	Line 0.00531185 0.788706 0.00194723 0.137651 0.0418959 0.00505808 0.0101121 0.00248809 0.00239947 0.000720492 0 2.04456E-05	0.00532 * 0.78965 * 0.00195 * 0.04195 * 0.00507 * 0.01013 * 0.00249 * 0.00239 * 0.00073 * 0.00073 * 0.00073 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane n-Pentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane			Flash Vapor 0.000622907 0.263254 0.00204973 0.213006 0.185381 0.0426234 0.106837 0.039638 0.0415216 0.0153798 0 0.000441885 0.00168202	Flowstream 0.00492733 0.732033 0.00181085 0.128186 0.0393658 0.00483016 0.00976658 0.00252529 0.00248926 0.00248926 0.000912944 0 0 2.5995E-05 0.000101881	& Cond 2.09067E-05 0.008879 7.0651E-05 0.0070818 0.00192189 0.00535724 0.0030009 0.00363491 0.00336864 0 9.68053E-05 0.000421299	Line 0.00531185 0.788706 0.00194723 0.137651 0.0418959 0.00505808 0.0101121 0.00248809 0.00239947 0.000720492 0 2.04456E-05 7.68484E-05	0.00532 * 0.78965 * 0.0195 * 0.1378 * 0.04195 * 0.00507 * 0.01013 * 0.00249 * 0.00239 * 0.00073 * 0.00073 * 0.00073 * 0.00073 * 0.00073 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane n-Pentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane			Flash Vapor 0.000622907 0.263254 0.00204973 0.213006 0.185381 0.0426234 0.106837 0.039638 0.0415216 0.0153798 0 0.000441885 0.00168202 0.0154435	Flowstream 0.00492733 0.732033 0.00181085 0.128186 0.0393658 0.00483016 0.00976658 0.00252529 0.00248926 0.00248926 0.000912944 0 0 2.5995E-05 0.000101881 0.00137393	& Cond 2.09067E-05 0.008879 7.0651E-05 0.0070818 0.00192189 0.00535724 0.0030009 0.00363491 0.00336864 0 9.68053E-05 0.000421299 0.0093633	Line 0.00531185 0.788706 0.00194723 0.137651 0.0418959 0.00505808 0.0101121 0.00248809 0.00239947 0.000720492 0 2.04456E-05 7.68484E-05 0.000747813	0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.00507 * 0.01013 * 0.00249 * 0.00239 * 0.00073 * 0.00073 * 0.00073 * 0.00071 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane n-Pentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane			Flash Vapor 0.000622907 0.263254 0.00204973 0.213006 0.185381 0.0426234 0.106837 0.039638 0.0415216 0.0153798 0 0.000441885 0.00168202	Flowstream 0.00492733 0.732033 0.00181085 0.128186 0.0393658 0.00483016 0.00976658 0.00252529 0.00248926 0.00248926 0.000912944 0 0 2.5995E-05 0.000101881	& Cond 2.09067E-05 0.008879 7.0651E-05 0.0070818 0.00192189 0.00535724 0.0030009 0.00363491 0.00336864 0 9.68053E-05 0.000421299	Line 0.00531185 0.788706 0.00194723 0.137651 0.0418959 0.00505808 0.0101121 0.00248809 0.00239947 0.000720492 0 2.04456E-05 7.68484E-05	0.00532 * 0.78965 * 0.0195 * 0.1378 * 0.04195 * 0.00507 * 0.01013 * 0.00249 * 0.00239 * 0.00073 * 0.00073 * 0.00073 * 0.00073 * 0.00073 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Nonane n-Decane			Flash Vapor 0.000622907 0.263254 0.00204973 0.213006 0.185381 0.0426234 0.106837 0.039638 0.0415216 0.0153798 0 0.000441885 0.00168202 0.0154435 0.00310723	Flowstream 0.00492733 0.732033 0.00181085 0.128186 0.0393658 0.00483016 0.00976658 0.00252529 0.00248926 0.000912944 0 0 2.5995E-05 0.000101881 0.00137393 0.000562907	& Cond 2.09067E-05 0.008879 7.0651E-05 0.00741522 0.0070818 0.00192189 0.00535724 0.00300009 0.00363491 0.0036864 0 9.68053E-05 0.000421299 0.0093633 0.00567157	Line 0.00531185 0.788706 0.00194723 0.137651 0.0418959 0.00505808 0.0101121 0.00248809 0.00239947 0.000720492 0 2.04456E-05 7.68484E-05 0.000747813 0.000162544	0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.001013 * 0.00249 * 0.00239 * 0.00073 * 0.00073 * 0.00073 * 0.00071 * 0.00011 * 0.00079 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Heptane n-Nonane n-Decane n-Undecane			Flash Vapor 0.000622907 0.263254 0.00204973 0.213006 0.185381 0.0426234 0.106837 0.039638 0.0415216 0.0153798 0 0.000441885 0.00168202 0.00154435 0.00154435 0.0001648932 0.000586031 0	Flowstream 0.00492733 0.732033 0.00181085 0.128186 0.0393658 0.00483016 0.00976658 0.00252529 0.00248926 0.000912944 0 0 2.5995E-05 0.000101881 0.00137393 0.000562907 0.000299032 0.000756388 0 0	& Cond 2.09067E-05 0.008879 7.0651E-05 0.00741522 0.0070818 0.00192189 0.00355724 0.0030009 0.00363491 0.0036864 0 9.68053E-05 0.000421299 0.0093633 0.00567157 0.0036489 0.00992139 0	Line 0.00531185 0.788706 0.00194723 0.137651 0.0418959 0.00505808 0.0101121 0.00248809 0.00239947 0.000720492 0 2.04456E-05 7.68484E-05 0.000747813 0.000162544 3.65057E-05 3.81321E-05 0	0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.00507 * 0.000249 * 0.00239 * 0.000239 * 0.00073 * 0.00073 * 0.00071 * 0.00011 * 0.00010 * 0.000000 * 0.00000 * 0.000000000 * 0.0000000* 00000000* 0000000000
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Decane n-Decane n-Undecane Dodecane			Flash Vapor 0.000622907 0.263254 0.00204973 0.213006 0.185381 0.0426234 0.106837 0.039638 0.0415216 0.0153798 0 0.000441885 0.00168202 0.0154435 0.00310723 0.000648932 0.000586031 0 0 0 0 0 0 0 0 0 0 0 0 0	Flowstream 0.00492733 0.732033 0.00181085 0.128186 0.0393658 0.00483016 0.00976658 0.00252529 0.00248926 0.00248926 0.000912944 0 0 2.5995E-05 0.000101881 0.00137393 0.000562907 0.000299032 0.000756388 0 0 0	& Cond 2.09067E-05 0.008879 7.0651E-05 0.00741522 0.0070818 0.00192189 0.00535724 0.0030009 0.00363491 0.0036864 0 9.68053E-05 0.000421299 0.0093633 0.00567157 0.0036489 0.00992139 0 0 0 0 0 0 0 0 0 0 0 0 0	Line 0.00531185 0.788706 0.00194723 0.137651 0.0418959 0.00505808 0.0101121 0.00248809 0.00239947 0.000720492 0 2.04456E-05 7.68484E-05 0.000747813 0.000162544 3.65057E-05 3.81321E-05 0 0 0 0	0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.00507 * 0.00249 * 0.00239 * 0.000239 * 0.00073 * 0.00073 * 0.00071 * 0.00071 * 0.00079 * 3E-05 * 3E-05 * 3E-05 * 0.00 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Nonane n-Decane n-Undecane Dodecane Water			Flash Vapor 0.000622907 0.263254 0.00204973 0.213006 0.185381 0.0426234 0.106837 0.039638 0.0415216 0.0153798 0 0.000441885 0.00168202 0.00154435 0.00154435 0.0001648932 0.000586031 0	Flowstream 0.00492733 0.732033 0.00181085 0.128186 0.0393658 0.00483016 0.00976658 0.00252529 0.00248926 0.000912944 0 0 2.5995E-05 0.000101881 0.00137393 0.000562907 0.000299032 0.000756388 0 0	& Cond 2.09067E-05 0.008879 7.0651E-05 0.00741522 0.0070818 0.00192189 0.00355724 0.0030009 0.00363491 0.0036864 0 9.68053E-05 0.000421299 0.0093633 0.00567157 0.0036489 0.00992139 0	Line 0.00531185 0.788706 0.00194723 0.137651 0.0418959 0.00505808 0.0101121 0.00248809 0.00239947 0.000720492 0 2.04456E-05 7.68484E-05 0.000747813 0.000162544 3.65057E-05 3.81321E-05 0	0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.00507 * 0.000249 * 0.00239 * 0.000239 * 0.00073 * 0.00073 * 0.00071 * 0.00011 * 0.00010 * 0.000000 * 0.00000 * 0.000000000 * 0.0000000* 00000000* 0000000000
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Decane n-Decane n-Undecane Dodecane			Flash Vapor 0.000622907 0.263254 0.00204973 0.213006 0.185381 0.0426234 0.106837 0.039638 0.0415216 0.0153798 0 0.00168202 0.0154435 0.00168202 0.00154435 0.001684932 0.000648932 0.000586031 0 0 0 0 0 0 0 0 0	Flowstream 0.00492733 0.732033 0.00181085 0.128186 0.0393658 0.00483016 0.00976658 0.00252529 0.00248926 0.000912944 0 0 2.5995E-05 0.000101881 0.00137393 0.000562907 0.000299032 0.000756388 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	& Cond 2.09067E-05 0.008879 7.0651E-05 0.00741522 0.0070818 0.00192189 0.00535724 0.00300099 0.00363491 0.00336864 0 9.68053E-05 0.000421299 0.003633 0.00567157 0.0036489 0.00992139 0 0 0 0 0 0 0 0 0 0 0 0 0	Line 0.00531185 0.788706 0.00194723 0.137651 0.0418959 0.00505808 0.0101121 0.00248809 0.00239947 0.000720492 0 2.04456E-05 7.68484E-05 0.000747813 0.000162544 3.65057E-05 3.81321E-05 3.81321E-05 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00532 * 0.78965 * 0.0195 * 0.0195 * 0.04195 * 0.00507 * 0.01013 * 0.00249 * 0.00239 * 0.00073 * 0.00073 * 0.00073 * 0.00071 * 0.00079 * 3E-05 * 3E-05 * 3E-05 * 0.0079 * 3E-05 * 0.0079 * 0.0079 * 0.00079 * 0.00000 * 0.00000 * 0.00000000000
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Heptane n-Octane n-Decane Dodecane Dodecane Water Triethylene Glycol Oxygen Argon			Flash Vapor 0.000622907 0.263254 0.00204973 0.213006 0.185381 0.0426234 0.106837 0.039638 0.0415216 0.0153798 0.00153798 0.00168202 0.00164435 0.00164435 0.00164435 0.000648932 0.000586031 0 0 0 0 0 0 0 0 0	Flowstream 0.00492733 0.732033 0.00181085 0.128186 0.0393658 0.00483016 0.00976658 0.00252529 0.00248926 0.000912944 0 0 2.5995E-05 0.000101881 0.00137393 0.000562907 0.000299032 0.000756388 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	& Cond 2.09067E-05 0.008879 7.0651E-05 0.00741522 0.0070818 0.00192189 0.00535724 0.00300099 0.00363491 0.00363491 0.00336864 0 9.68053E-05 0.000421299 0.0093633 0.00567157 0.0036489 0.00992139 0 0 0 0 0 0 0 0 0 0 0 0 0	Line 0.00531185 0.788706 0.00194723 0.137651 0.0418959 0.00505808 0.0101121 0.00248809 0.00239947 0.000720492 0 2.04456E-05 7.68484E-05 0.000747813 0.000162544 3.65057E-05 3.81321E-05 3.81321E-05 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00532 * 0.78965 * 0.0195 * 0.0195 * 0.04195 * 0.00507 * 0.01013 * 0.00249 * 0.00239 * 0.00073 * 0.00073 * 0.00073 * 0.00071 * 0.00079 * 3E-05 * 4E-05 * 3E-05 * 0.0079 * 3E-05 * 0.0079 * 3E-05 * 0.0079 * 0.0079 * 0.00079 * 0.000079 * 0.00079 * 0.00079 * 0.00079 * 0.00079 * 0.00
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Heptane n-Decane n-Doctane n-Doctane n-Doctane n-Doctane n-Doctane n-Doctane Triethylene Glycol Oxygen Argon Carbon Monoxide			Flash Vapor 0.000622907 0.263254 0.00204973 0.213006 0.185381 0.0426234 0.106837 0.039638 0.0415216 0.0153798 0 0.000441885 0.00168202 0.0154435 0.00168202 0.0154435 0.000648932 0.000586031 0 0 0 0 0 0 0 0 0	Flowstream 0.00492733 0.732033 0.00181085 0.128186 0.0393658 0.00483016 0.00976658 0.00252529 0.00248926 0.000912944 0 0 2.5995E-05 0.000101881 0.00137393 0.000562907 0.000299032 0.000756388 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	& Cond 2.09067E-05 0.008879 7.0651E-05 0.00741522 0.0070818 0.00192189 0.00535724 0.0030009 0.00363491 0.00336864 0 9.68053E-05 0.000421299 0.0093633 0.00567157 0.0036489 0.00936489 0.00992139 0 0 0 0 0 0 0 0 0 0 0 0 0	Line 0.00531185 0.788706 0.00194723 0.137651 0.0418959 0.00505808 0.0101121 0.00248809 0.00239947 0.000720492 0 2.04456E-05 7.68484E-05 0.000747813 0.000162544 3.65057E-05 3.81321E-05 3.81321E-05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00532 * 0.78965 * 0.0195 * 0.01378 * 0.04195 * 0.00507 * 0.01013 * 0.00249 * 0.00239 * 0.00073 * 0.00073 * 0.00073 * 0.00079 * 3E-05 * 3E-05 * 3E-05 * 0.00079 * 3E-05 * 0.00079 * 3E-05 * 0.00079 * 3E-05 * 0.00079 * 0.000079 * 0.00079 * 0.000079 * 0.000079 * 0.00079 * 0.000079 * 0.00000000 * 0.0000000 * 0.0000000 * 0.0000000 * 0.0000000000
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Heptane n-Octane n-Decane Dodecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane			Flash Vapor 0.000622907 0.263254 0.00204973 0.213006 0.185381 0.0426234 0.106837 0.039638 0.0415216 0.0153798 0.00168202 0.00168202 0.00168202 0.001684932 0.000648932 0.000586031 0 0 0 0 0 0 0 0 0	Flowstream 0.00492733 0.732033 0.00181085 0.128186 0.0393658 0.00483016 0.00976658 0.00252529 0.00248926 0.000912944 0 0 2.5995E-05 0.000101881 0.00137393 0.000562907 0.000299032 0.000756388 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	& Cond 2.09067E-05 0.008879 7.0651E-05 0.00741522 0.0070818 0.00192189 0.00535724 0.0030009 0.00363491 0.0036864 0 9.68053E-05 0.000421299 0.0093633 0.00567157 0.0036489 0.00936489 0.00932139 0 0 0 0 0 0 0 0 0 0 0 0 0	Line 0.00531185 0.788706 0.00194723 0.137651 0.0418959 0.00505808 0.0101121 0.00248809 0.00239947 0.000720492 0 2.04456E-05 7.68484E-05 0.000747813 0.000162544 3.65057E-05 3.81321E-05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.00507 * 0.01013 * 0.00249 * 0.00239 * 0.00073 * 0.00073 * 0.00073 * 0.00079 * 3E-05 * 0.00079 * 3E-05 * 0.00079 * 3E-05 * 0.00079 * 3E-05 * 0.00079 * 0.000079 * 0.000079 * 0.0000
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Heptane n-Octane n-Decane n-Undecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane Isohexane			Flash Vapor 0.000622907 0.263254 0.00204973 0.213006 0.185381 0.0426234 0.106837 0.039638 0.0415216 0.0153798 0 0.000441885 0.00168202 0.0154435 0.00168202 0.0154435 0.000648932 0.000586031 0 0 0 0 0 0 0 0 0	Flowstream 0.00492733 0.732033 0.00181085 0.128186 0.0393658 0.00483016 0.00976658 0.00252529 0.00248926 0.000912944 0 0 2.5995E-05 0.000101881 0.00137393 0.000562907 0.000299032 0.000756388 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	& Cond 2.09067E-05 0.008879 7.0651E-05 0.00741522 0.0070818 0.00192189 0.00535724 0.0030009 0.00363491 0.00336864 0 9.68053E-05 0.000421299 0.0093633 0.00567157 0.0036489 0.00936489 0.00992139 0 0 0 0 0 0 0 0 0 0 0 0 0	Line 0.00531185 0.788706 0.00194723 0.137651 0.0418959 0.00505808 0.0101121 0.00248809 0.00239947 0.000720492 0 2.04456E-05 7.68484E-05 0.000747813 0.000162544 3.65057E-05 3.81321E-05 3.81321E-05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00532 * 0.78965 * 0.0195 * 0.01378 * 0.04195 * 0.00507 * 0.01013 * 0.00249 * 0.00239 * 0.00073 * 0.00073 * 0.00073 * 0.00079 * 3E-05 * 3E-05 * 3E-05 * 0.00079 * 3E-05 * 0.00079 * 3E-05 * 0.00079 * 3E-05 * 0.00079 * 0.000079 * 0.00079 * 0.000079 * 0.000079 * 0.00079 * 0.000079 * 0.00000000 * 0.0000000 * 0.0000000 * 0.0000000 * 0.0000000000
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Pentane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Octane n-Decane n-Dodecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane			Flash Vapor 0.000622907 0.263254 0.00204973 0.213006 0.185381 0.0426234 0.106837 0.039638 0.0415216 0.0153798 0 0.000441885 0.00168202 0.0154435 0.00168202 0.0154435 0.00168202 0.0154435 0.000586031 0 0 0 0 0 0 0 0 0 0 0 0 0	Flowstream 0.00492733 0.732033 0.00181085 0.128186 0.0393658 0.00483016 0.00976658 0.00252529 0.00248926 0.000912944 0 0 2.5995E-05 0.000101881 0.00137393 0.000562907 0.000299032 0.000756388 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	& Cond 2.09067E-05 0.008879 7.0651E-05 0.00741522 0.0070818 0.00192189 0.00535724 0.00300009 0.00363491 0.0036864 0 9.68053E-05 0.000421299 0.0093633 0.00567157 0.0036489 0.00936489 0.00932139 0 0 0 0 0 0 0 0 0 0 0 0 0	Line 0.00531185 0.788706 0.00194723 0.137651 0.0418959 0.00505808 0.0101121 0.00248809 0.00239947 0.000720492 0 2.04456E-05 7.68484E-05 0.000747813 0.000162544 3.65057E-05 3.81321E-05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.00507 * 0.01013 * 0.00249 * 0.00239 * 0.00073 * 0.00011 * 0.000 * 0.000113 * 0.000113 * 0.000113 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Octane n-Decane n-Undecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane			Flash Vapor 0.000622907 0.263254 0.00204973 0.213006 0.185381 0.0426234 0.106837 0.039638 0.0415216 0.0153798 0 0 0.000441885 0.00168202 0.0154435 0.00168202 0.0154435 0.00168202 0.0154435 0.000586031 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Flowstream 0.00492733 0.732033 0.00181085 0.128186 0.0393658 0.00483016 0.00976658 0.00252529 0.00248926 0.000912944 0 0 2.5995E-05 0.000101881 0.00137393 0.000562907 0.000299032 0.000756388 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	& Cond 2.09067E-05 0.008879 7.0651E-05 0.00741522 0.0070818 0.00192189 0.00535724 0.00300009 0.00363491 0.0036864 0 9.68053E-05 0.000421299 0.0093633 0.00567157 0.0036489 0.00936489 0.00932139 0 0 0 0 0 0 0 0 0 0 0 0 0	Line 0.00531185 0.788706 0.00194723 0.137651 0.0418959 0.00505808 0.0101121 0.00248809 0.00239947 0.000720492 0 2.04456E-05 7.68484E-05 0.000747813 0.000162544 3.65057E-05 3.81321E-05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.00507 * 0.01013 * 0.00249 * 0.00239 * 0.00239 * 0.00239 * 0.00239 * 0.00239 * 0.00073 * 0.00073 * 0.00011 * 0.00011 * 0.00079 * 3E-05 * 3E-05 * 3E-05 * 0.3E-05 * 0.000113 * 0.000113 * 0.000113 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Octane n-Decane n-Undecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane			Flash Vapor 0.000622907 0.263254 0.00204973 0.213006 0.185381 0.0426234 0.106837 0.039638 0.0415216 0.0153798 0 0.000441885 0.00168202 0.00168202 0.00168202 0.00154435 0.00168202 0.001684932 0.000586031 0 0 0 0 0 0 0 0 0	Flowstream 0.00492733 0.732033 0.00181085 0.128186 0.0393658 0.00483016 0.00976658 0.00252529 0.00248926 0.000912944 0 0 2.5995E-05 0.000101881 0.00137393 0.000562907 0.000299032 0.000756388 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	& Cond 2.09067E-05 0.008879 7.0651E-05 0.00741522 0.0070818 0.00192189 0.00355724 0.0030009 0.00363491 0.0036864 0 9.68053E-05 0.000421299 0.0093633 0.00567157 0.0036489 0.00936489 0.00932139 0 0 0 0 0 0 0 0 0 0 0 0 0	Line 0.00531185 0.788706 0.00194723 0.137651 0.0418959 0.00505808 0.0101121 0.00248809 0.00239947 0.000720492 0 0 2.04456E-05 7.68484E-05 0.000747813 0.000162544 3.65057E-05 3.81321E-05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.00249 * 0.00239 * 0.00239 * 0.00073 * 0.00073 * 0.00071 * 0.00071 * 0.00079 * 3E-05 * 4E-05 * 3E-05 * 0.00011 * 0.00079 * 3E-05 * 0.00011 * 0.00079 * 0.00011 * 0.00079 * 0.0000 * 0.0000 * 0.0000 * 0.0000 * 0.0000 * 0.0
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Octane n-Decane n-Undecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane			Flash Vapor 0.000622907 0.263254 0.00204973 0.213006 0.185381 0.0426234 0.106837 0.039638 0.0415216 0.0153798 0 0 0.000441885 0.00168202 0.0154435 0.00168202 0.0154435 0.00168202 0.0154435 0.000586031 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Flowstream 0.00492733 0.732033 0.00181085 0.128186 0.0393658 0.00483016 0.00976658 0.00252529 0.00248926 0.000912944 0 0 2.5995E-05 0.000101881 0.00137393 0.000562907 0.000299032 0.000756388 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	& Cond 2.09067E-05 0.008879 7.0651E-05 0.00741522 0.0070818 0.00192189 0.00535724 0.00300009 0.00363491 0.0036864 0 9.68053E-05 0.000421299 0.0093633 0.00567157 0.0036489 0.00936489 0.00992139 0 0 0 0 0 0 0 0 0 0 0 0 0	Line 0.00531185 0.788706 0.00194723 0.137651 0.0418959 0.00505808 0.0101121 0.00248809 0.00239947 0.000720492 0 2.04456E-05 7.68484E-05 0.000747813 0.000162544 3.65057E-05 3.81321E-05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.00507 * 0.01013 * 0.00249 * 0.00239 * 0.00239 * 0.00239 * 0.00239 * 0.00239 * 0.00073 * 0.00073 * 0.00011 * 0.00011 * 0.00079 * 3E-05 * 3E-05 * 3E-05 * 0.3E-05 * 0.000113 * 0.000113 * 0.000113 *

* User Specified Values ? Extrapolated or Approximate Values ProMax 4.0.16071.0 Copyright © 2002-2016 BRE Group, Ltd.

		All S	reams Report treams by Total Phase			
Client Name: EQT Prod				Job: V1.0	•	
Location: OXF 121	Nellpad					
Flowsheet: OXF-121						
		Combined	Combined	Combined PW	Gas to Sales	Reservoir Gas
		Flash Vapor	Flowstream	& Cond	Line	
Mole Fraction						
Toluene		0.000863488	7.6436E-05	0.000541209	4.0012E-05	4E-05
m-Xylene		0.000328189	6.67567E-05	0.000705468	1.67013E-05	2E-05
Ethylbenzene		2.13392E-05	4.06519E-06	4.2167E-05	1.07917E-06	0
		Stream	Properties			
Property	Units	Combined	Combined	Combined PW	Gas to Sales	Reservoir Gas
		Flash Vapor	Flowstream	& Cond	Line	
Temperature	°F	85	65.1402	79.172	79.172	65
Pressure	psig	0	425	400	400	425
Mole Fraction Vapor		1	0.923976	0	1	0.999145
Mole Fraction Light Liquid		0	0.00838238	0.0762105	0	0.000855191
Mole Fraction Heavy Liquid		0	0.0676411	0.92379	0	0
Molecular Weight	lb/lbmol	40.1982	20.5877	22.68	20.4237	20.436
Mass Density	lb/ft^3	0.102285	1.92065	54.4317	1.59931	1.771
Molar Flow	lbmol/h	2.88487	1185.48	86.1537	1099.33	1097.98
Mass Flow	lb/h	115.967	24406.3	1953.97	22452.3	22438.3
Vapor Volumetric Flow	ft^3/h	1133.76	12707.3	35.8975	14038.8	12669.9
Liquid Volumetric Flow	gpm	141.351	1584.29	4.47554	1750.29	1579.62
Std Vapor Volumetric Flow	MMSCFD	0.0262743	10.7969	0.784655	10.0123	10
	sgpm	0.474227	136.989	4.50084	132.489	132.469
			1	0.872737	0.705174	
,		1.38794			011 0011 1	
Specific Gravity API Gravity				29.5835		
Std Liquid Volumetric Flow Specific Gravity API Gravity Net Ideal Gas Heating Value Net Liquid Heating Value	Btu/ft^3 Btu/lb	1.38794 2068.96 19374.5	1057.01 19364.2		1115.64 20671	1117.56 20695.2

		All St	eams Report reams y Total Phase		
Client Nome:	EOT Droduction			John V/4 O	
Client Name:	EQT Production			Job: V1.0	
Location:	OXF 121 Wellpac				
Flowsheet:	OXF-121				
		Conne	ections		
		Reservoir Oil	Reservoir Water	Water and Condensate	
From Block				Produced Fluid	
To Block		MIX-102	MIX-102	Tanks	
TO BIOCK		WIX-102	WIX-102		
		Stream Co	omposition		
		Reservoir Oil	Reservoir	Water and	
Mass Flow		lb/h	Water lb/h	Condensate lb/h	
Nitrogen		0 *	0 *	0.000117358	· · · · · · · · · · · · · · · · · · ·
Methane		12.6739 *	0 *	0.0883403	
CO2		0.24935 *	0 *	0.0076422	
Ethane		19.8662 *	0 *	0.732294	
Propane		26.77 *	0 *	3.32137	
Isobutane		9.25853 *	0 *	2.47685	
n-Butane		26.4773 *	0 *	8.9122	
Isopentane		18.7382 *	0 *	10.398	
n-Pentane		23.5778 *	0 *	13.9519	
n-Hexane		23.3778	0 *	21.1864	
Methylcyclopentane		0 *	0 *	0	
Benzene		0.69183 *	0 *	0.551888	
Cyclohexane		0.69183	0 *	2.64631	
n-Heptane		76.2907 *	0 *	76.367	
n-Heptane n-Octane		72.4639 *	0 *	54.7911	
n-Octane n-Nonane		39.8332 *	0 *	40.0789	
n-Nonane n-Decane			0 *	40.0789	
n-Decane n-Undecane			0 *	121.377	
Dodecane		0 *	0 *	0	
Water		0 *	1459.01 *	1430.82	
		0 *	1459.01 *		
Triethylene Glycol		0 *	0 *	0	
Oxygen		0 *	0 *	0	
Argon Carbon Monoxide		0 *	0 *	0	
Cyclopentane		0 *	0 *	0	
				-	
Isohexane 3-Methylpentane		23.9245 *	0 *	21.8937 0	
Neohexane		0 *	0 *	0	+ + + + + + + + + + + + + + + + + + + +
2,3-Dimethylbutane		0 *	0 *	0	
2,3-Dimethylbutane		0 *	0 *	0	
Isooctane		0.185977 *	0 *	17.5997	+ + + + + + + + + + + + + + + + + + + +
Decane, 2-Methyl-		0.185977	0 *	0	
Toluene		4.30233 *	0 *	4.06663	
			0 *	6.35205	
m-Xylene		6.07043 *	0 *		
Ethylbenzene		0.511631 *	0 "	0.379145	
		Reservoir Oil	Reservoir	Water and	
			Water	Condensate	
Volumetric Flow		gpm	gpm	gpm	
Nitrogen		0	0	3.73675E-07	
Methane		0.0848204	0	0.00051348	
CO2		0.000391807	0	1.03412E-05	
Ethane		0.0871941	0	0.00300209	
Propane		0.1013	0	0.0122587	
Isobutane		0.0324539	0	0.00867974	
n-Butane		0.0900095	0	0.0302911	
Isopentane		0.0595405	0	0.0335393	
			0	0.0446317	
n-Pentane		0 074348			
		0.074348			
n-Hexane		0.0721912	0	0.0647014	
n-Pentane n-Hexane Methylcyclopentane Benzene					

* User Specified Values ? Extrapolated or Approximate Values ProMax 4.0.16071.0 Copyright © 2002-2016 BRE Group, Ltd.

				eams Report reams		
				y Total Phase		
Oliverth					[
Client Name:	EQT Production				Job: V1.0	
Location:	OXF 121 Wellpa	ad				
Flowsheet:	OXF-121					
			1			
			Reservoir Oil	Reservoir Water	Water and Condensate	
Volumetric Flow			gpm	gpm	gpm	
Cyclohexane			0	0	0.00683422	
n-Heptane			0.219364	0	0.226152	
n-Octane			0.200827	0	0.157018	
n-Nonane			0.107333	0	0.11199	
n-Decane			0.325007	0	0.333583	
n-Undecane			0	0	0	
Dodecane			0	0	0	
Water			0	2.91744	2.8711	
Triethylene Glycol			0	0	0	
Oxygen			0	0	0	
Argon			0	0	0	
Carbon Monoxide			0	0	0	
Cyclopentane			0	0	0	
Isohexane			0.0721533	0	0.0676121	
3-Methylpentane			0	0	0	
Neohexane			0	0	0	
2,3-Dimethylbutane			0	0	0	
Methylcyclohexane			0	0	0	
Isooctane			0.000522242	0	0.0512414	
Decane, 2-Methyl-			0.0000222.12	0	0	
Toluene			0.00951281	0	0.00927189	
m-Xylene			0.0134273	0	0.014579	
Ethylbenzene			0.00112815	0	0.000868941	
Earlyison20110			0.00112010	v	0.000000011	
Mole Fraction			Reservoir Oil	Reservoir Water	Water and Condensate	
Mole Fraction				Water	Condensate	
Nitrogen			0 *	Water 0 *	Condensate 5.03112E-08	
Nitrogen Methane			0 * 0.12131 *	Water 0 * 0 *	Condensate 5.03112E-08 6.61311E-05	
Nitrogen Methane CO2			0 * 0.12131 * 0.00087 *	Water 0 * 0 * 0 * 0 *	Condensate 5.03112E-08 6.61311E-05 2.0854E-06	
Nitrogen Methane CO2 Ethane			0 * 0.12131 * 0.00087 * 0.10145 *	Water 0 * 0 * 0 * 0 * 0 * 0 *	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472	
Nitrogen Methane CO2 Ethane Propane			0 * 0.12131 * 0.00087 * 0.10145 * 0.09322 *	Water 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564	
Nitrogen Methane CO2 Ethane Propane Isobutane			0 * 0.12131 * 0.00087 * 0.10145 * 0.09322 * 0.02446 *	Water 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane			0 * 0.12131 * 0.00087 * 0.10145 * 0.09322 * 0.02446 * 0.06995 *	Water 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane			0 * 0.12131 * 0.00087 * 0.10145 * 0.09322 * 0.02446 * 0.06995 * 0.03988 *	Water 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane			0 * 0.12131 * 0.00087 * 0.10145 * 0.09322 * 0.02446 * 0.06995 * 0.03988 * 0.05018 *	Water 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane			0 * 0.12131 * 0.00087 * 0.10145 * 0.09322 * 0.02446 * 0.06995 * 0.03988 * 0.05018 * 0.04311 *	Water 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232 0.00295251	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane			0 * 0.12131 * 0.0087 * 0.10145 * 0.09322 * 0.02446 * 0.06995 * 0.03988 * 0.03988 * 0.05018 * 0.04311 * 0 *	Water 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00173076 0.00232232 0.00295251 0	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene			0 * 0.12131 * 0.00087 * 0.10145 * 0.09322 * 0.02446 * 0.06995 * 0.03988 * 0.05018 * 0.04311 *	Water 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232 0.00295251 0 8.48499E-05	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane			0 * 0.12131 * 0.00087 * 0.10145 * 0.09322 * 0.02446 * 0.06995 * 0.03988 * 0.05018 * 0.05018 * 0.04311 * 0 * 0.00136 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0	Water 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232 0.00295251 0 8.48499E-05 0.000377621	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane n-Pentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane			0 * 0.12131 * 0.00087 * 0.10145 * 0.09322 * 0.02446 * 0.06995 * 0.03988 * 0.05018 * 0.05018 * 0.04311 * 0 * 0.00136 * 0 * 0.11691 *	Water 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232 0.00295251 0 8.48499E-05 0.000377621 0.00915265	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane			0 * 0.12131 * 0.00087 * 0.10145 * 0.09322 * 0.02446 * 0.06995 * 0.03988 * 0.05018 * 0.05018 * 0.04311 * 0 * 0.00136 * 0 * 0.11691 * 0.09741 *	Water 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232 0.00295251 0 8.48499E-05 0.000377621 0.00915265 0.00576041	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Nonane			0 * 0.12131 * 0.00087 * 0.10145 * 0.09322 * 0.02446 * 0.03988 * 0.03988 * 0.05018 * 0.04311 * 0 * 0.00136 * 0 * 0.011691 * 0.09741 * 0.04769 *	Water 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232 0.00295251 0 8.48499E-05 0.000377621 0.00915265 0.00576041 0.00375283	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Nonane n-Decane			0 * 0.12131 * 0.00087 * 0.10145 * 0.09322 * 0.02446 * 0.03988 * 0.03988 * 0.05018 * 0.04311 * 0.04311 * 0.04311 * 0.0411691 * 0.09741 * 0.04769 * 0.13263 *	Water 0	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232 0.00295251 0 8.48499E-05 0.000377621 0.00915265 0.00576041 0.00375283 0.0102448	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Heptane n-Octane n-Nonane n-Decane n-Undecane			0 * 0.12131 * 0.00087 * 0.10145 * 0.09322 * 0.02446 * 0.03988 * 0.03988 * 0.03988 * 0.04311 * 0.04311 * 0.04311 * 0.0411691 * 0.09741 * 0.04769 * 0.13263 * 0 *	Water 0	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232 0.00295251 0 8.48499E-05 0.000377621 0.00915265 0.000576041 0.00375283 0.0102448 0	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Octane n-Decane n-Undecane Dodecane			0 * 0.12131 * 0.00087 * 0.10145 * 0.09322 * 0.02446 * 0.03988 * 0.03988 * 0.03988 * 0.03988 * 0.03018 * 0.04311 * 0 * 0.00136 * 0.00136 * 0.011691 * 0.09741 * 0.04769 * 0.13263 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0	Water 0	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232 0.00295251 0 0 8.48499E-05 0.000377621 0.00915265 0.000375283 0.0102448 0 0 0 0	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Octane n-Doctane n-Docane n-Undecane Dodecane Water			0 * 0.12131 * 0.00087 * 0.10145 * 0.09322 * 0.02446 * 0.03988 * 0.03988 * 0.03988 * 0.03018 * 0.04311 * 0.04311 * 0.04311 * 0.04316 * 0.04769 * 0.13263 * 0 * 0 * 0 * 0 * 0 * 0 * 0.04769 * 0.13263 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0	Water 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232 0.00295251 0 0 8.48499E-05 0.000377621 0.00915265 0.000376041 0.00375283 0.0102448 0 0 0 0 0.95381	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Octane n-Decane n-Undecane Dodecane Water Triethylene Glycol			0 * 0.12131 * 0.0087 * 0.10145 * 0.09322 * 0.02446 * 0.06995 * 0.03988 * 0.03988 * 0.05018 * 0.04311 * 0.04311 * 0.04311 * 0.00136 * 0 * 0.11691 * 0.09741 * 0.04769 * 0.13263 * 0 * 0.13263 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0	Water 0	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232 0.00295251 0 8.48499E-05 0.000377621 0.00915265 0.00576041 0.00375283 0.0102448 0 0 0 0 0 0 0 0 0 0 0 0 0	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Octane n-Decane n-Undecane Dodecane Water Triethylene Glycol Oxygen			0 * 0.12131 * 0.0087 * 0.10145 * 0.09322 * 0.02446 * 0.06995 * 0.03988 * 0.03988 * 0.05018 * 0.04311	Water 0	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232 0.00295251 0 0 8.48499E-05 0.000377621 0.00915265 0.000376041 0.00375283 0.0102448 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane n-Pentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Heptane n-Octane n-Decane n-Decane Dodecane Dodecane Water Triethylene Glycol Oxygen Argon			0 * 0.12131 * 0.0087 * 0.10145 * 0.09322 * 0.02446 * 0.06995 * 0.03988 * 0.03988 * 0.03988 * 0.039741 * 0.011691 * 0.011691 * 0.011691 * 0.011691 * 0.01363 * 0.13263 * 0.	Water 0	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232 0.00295251 0 8.48499E-05 0.000377621 0.00915265 0.000377621 0.00915265 0.00576041 0.00375283 0.0102448 0 0 0 0 0 0 0 0 0 0 0 0 0	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane n-Pentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Heptane n-Octane n-Decane n-Decane Dodecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide			0 * 0.12131 * 0.00087 * 0.10145 * 0.09322 * 0.02446 * 0.03988 * 0.03988 * 0.03988 * 0.03018 * 0.04311 * 0 * 0.00136 * 0.00136 * 0.011691 * 0.09741 * 0.09741 * 0.04769 * 0.13263 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0	Water 0	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232 0.00295251 0 0 8.48499E-05 0.000377621 0.00915265 0.000377621 0.00915265 0.00576041 0.00375283 0.0102448 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Heptane n-Octane n-Heptane n-Decane n-Decane Dodecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane			0 * 0.12131 * 0.00087 * 0.10145 * 0.09322 * 0.02446 * 0.03988 * 0.03988 * 0.03988 * 0.03018 * 0.04311 * 0 * 0.00136 * 0.00136 * 0.00136 * 0.00741 * 0.09741 * 0.09741 * 0.04769 * 0.13263 * 0 * 0.13263 * 0 * 0.13263 * 0 * 0.13263 * 0 * 0.04769 * 0.13263 * 0 * 0.04769 * 0.13263 * 0 * 0.04769 * 0.13263 * 0 * 0.04769 * 0.13263 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0	Water 0	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232 0.00295251 0 0 8.48499E-05 0.000377621 0.00915265 0.000376041 0.00375283 0.0102448 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Decane n-Undecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane Isohexane			0 * 0.12131 * 0.00087 * 0.10145 * 0.09322 * 0.02446 * 0.03988 * 0.03988 * 0.03988 * 0.05018 * 0.04311 * 0.04311 * 0.04311 * 0.04311 * 0.04769 * 0.09741 * 0.09741 * 0.09741 * 0.04769 * 0.13263 * 0 * 0 0 0 * 0 0 0 * 0 0 0 * 0 0 * 0 0 * 0 0 0 * 0 0 0 * 0 0 * 0 0 0 * 0 0 0 * 0 0 *	Water 0	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232 0.00295251 0 0 8.48499E-05 0.000377621 0.00915265 0.00037621 0.00975283 0.0102448 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Octane n-Decane n-Undecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane			0 * 0.12131 * 0.00087 * 0.10145 * 0.09322 * 0.02446 * 0.02446 * 0.03988 * 0.03988 * 0.03988 * 0.03018 * 0.04311 * 0.04311 * 0.04311 * 0.04363 * 0.04769 * 0.13263 * 0.1326	Water 0	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232 0.00295251 0 0 8.48499E-05 0.000377621 0.00915265 0.000576041 0.00375283 0.0102448 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Octane n-Decane n-Undecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane			0 * 0.12131 * 0.00087 * 0.10145 * 0.09322 * 0.02446 * 0.03988 * 0.03988 * 0.05018 * 0.04311 * 0.04311 * 0.04311 * 0.04313 * 0.04363 * 0.04769 * 0.13263 * 0.04769 * 0.13263 * 0.04769 * 0.13263 * 0.04769 * 0.00	Water 0	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232 0.00295251 0 0 8.48499E-05 0.000377621 0.00915265 0.00037621 0.00915265 0.00576041 0.00375283 0.0102448 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Octane n-Decane n-Undecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane			0 * 0.12131 * 0.00087 * 0.10145 * 0.09322 * 0.02446 * 0.03988 * 0.03988 * 0.05018 * 0.04311 * 0.04311 * 0.04311 * 0.04313 * 0.04316 * 0.04363 * 0.04769 * 0.13263 * 0.04769 * 0.13263 * 0.13263 * 0.04769 * 0.13263 * 0.04769 * 0.13263 * 0.04769 * 0.04769 * 0.04769 * 0.04769 * 0.13263 * 0.0 * 0.0 * 0.0 * 0.0 * 0.0 * 0.0 * 0.0 * 0.0 * 0.04263 * 0.00 * 0.04263 * 0.000 * 0.04263 * 0.000 * 0.0000 * 0.00000 * 0.00000 * 0.00000 * 0.00000 * 0.000000 * 0.000000 * 0.00000000000000000000000000000000000	Water 0	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232 0.00295251 0 0 8.48499E-05 0.000377621 0.00915265 0.000377621 0.00975283 0.0102448 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Octane n-Decane n-Undecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane			0 * 0.12131 * 0.0087 * 0.10145 * 0.09322 * 0.02446 * 0.06995 * 0.03988 * 0.03988 * 0.03988 * 0.03988 * 0.03988 * 0.03988 * 0.03988 * 0.04311 * 0.04311 * 0.04311 * 0.04769 * 0.11691 * 0.04769 * 0.13263 * 0 * 0.04769 * 0.13263 * 0 * 0.04769 * 0.04769 * 0.04769 * 0.04769 * 0.04769 * 0.04769 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0	Water 0	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232 0.00295251 0 0 8.48499E-05 0.000377621 0.00915265 0.000576041 0.00375283 0.0102448 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Octane n-Decane n-Decane n-Undecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane Methylcyclohexane Isooctane			0 * 0.12131 * 0.00087 * 0.10145 * 0.09322 * 0.02446 * 0.06995 * 0.03988 * 0.03988 * 0.03988 * 0.03988 * 0.03988 * 0.03988 * 0.03988 * 0.04311 * 0.04311 * 0.04311 * 0.04311 * 0.04769 * 0.11691 * 0.04769 * 0.13263 * 0 * 0.04769 * 0.13263 * 0 * 0.04769 * 0.04263 * 0 * 0 0 0 * 0 0 * 0 0 0 * 0 0 * 0 0 0 * 0 0 0 * 0 0 * 0 0 0 0 * 0 0 0 * 0 0 0 0 * 0 0 0 * 0 0 0 * 0 0 0 0 0 0 * 0 0 0 0 0 0 * 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Water 0 * <tr< td=""><td>Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232 0.00295251 0 0 8.48499E-05 0.000377621 0.00915265 0.000377621 0.00915265 0.00576041 0.00375283 0.0102448 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td></td></tr<>	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232 0.00295251 0 0 8.48499E-05 0.000377621 0.00915265 0.000377621 0.00915265 0.00576041 0.00375283 0.0102448 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Octane n-Decane n-Undecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane			0 * 0.12131 * 0.0087 * 0.10145 * 0.09322 * 0.02446 * 0.06995 * 0.03988 * 0.03988 * 0.03988 * 0.03988 * 0.03988 * 0.03988 * 0.03988 * 0.04311 * 0.04311 * 0.04311 * 0.04769 * 0.11691 * 0.04769 * 0.13263 * 0 * 0.04769 * 0.13263 * 0 * 0.04769 * 0.04769 * 0.04769 * 0.04769 * 0.04769 * 0.04769 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0	Water 0	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232 0.00295251 0 0 8.48499E-05 0.000377621 0.00915265 0.000576041 0.00375283 0.0102448 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

* User Specified Values ? Extrapolated or Approximate Values

		All St	eams Report reams y Total Phase		
Client Name: EQT Produ	uction			Job: V1.0	-
Location: OXF 121 V	Vellpad				
Flowsheet: OXF-121	t				
Mole Fraction		Reservoir Oil	Reservoir Water	Water and Condensate	
m-Xvlene		0.00878 *	0 *	0.000718539	
Ethylbenzene		0.00074 *	0 *	4.28886E-05	
			-		
		Stream F	Properties		
Property	Units	Reservoir Oil	Reservoir	Water and	
_			Water	Condensate	
Temperature	°F	65 *	65 *	85 *	
Pressure	psig	425 *	425 *	0	
Mole Fraction Vapor		0	0	0	
Mole Fraction Light Liquid		1	1	0.0461951	
Mole Fraction Heavy Liquid		0	0	0.953805	
Molecular Weight	lb/lbmol	78.1542	18.0153	22.0731	
Mass Density	lb/ft^3	40.8595	62.35	56.5934	
Molar Flow	lbmol/h	6.51244	80.9874	83.2688	
Mass Flow	lb/h	508.975	1459.01	1838	
Vapor Volumetric Flow	ft^3/h	12.4567	23.4003	32.4773	
Liquid Volumetric Flow	gpm	1.55304	2.91744	4.04912	
Std Vapor Volumetric Flow	MMSCFD	0.0593128	0.737602	0.75838	
Std Liquid Volumetric Flow	sgpm	1.60417 *	2.91667 *	4.02661	
Specific Gravity		0.655124	0.999695	0.907395	
		83.5662	9.94738	23.3801	
			0	247.84	
API Gravity Net Ideal Gas Heating Value Net Liguid Heating Value	Btu/ft^3 Btu/lb	<u> </u>	-1059.76	3400.98	

Simulation Initiated on 8/1	6/2016 1:55:43	PM 201607	28_EQT_OXF 121 Wellpad Calculation	.pmx	Page 1 of 1
		En	ergy Stream Repo	rt	
Client Name:	EQT Proc	duction		Job: V1.0	
Location:	OXF 121	Wellpad			
Flowsheet:	OXF-121				
			Energy Streams		
Energy Stream		Energy Rate	Power	From Block	To Block
Pilot Heat Input		2.26501E+06 * Btu/h	890.184 * hp		REAC-100
Remarks					

			SRK Env	vironment			
Client Name:	EQT Production				Job: V1.0		
Location:	OXF 121 Wellpad						
Flowsheet:	OXF-121						
			Environm	ent Settings			
Number of Poynt	ing Intervals	0		Phase Tolerance		0.01	
Gibbs Excess Mo		77 °F		Emulsion Enabled		False	
Evaluation Temp	erature						
Freeze Out Temp	erature	10 °F		Emulsion Enabled		False	
Threshold Differe	nce						
			Comp	onents			
Component Name		Henry's Law	Phase	Component Name		Henry's Law	Phase
•		Component	Initiator	· ·		Component	Initiator
Nitrogen		False	False	Dodecane		False	False
Vethane		False	False	Water		False	True
CO2		False	False	Triethylene Glycol		False	True
Ethane		False	False	Oxygen		False	False
Propane		False	False	Argon		False	False
lsobutane		False	False	Carbon Monoxide		False	False
n-Butane		False	False	Cyclopentane		False	False
Isopentane		False	False	Isohexane		False	False
n-Pentane		False	False	3-Methylpentane		False	False
n-Hexane		False	False	Neohexane		False	False
Methylcyclopentane	;	False	False	2,3-Dimethylbutane		False	False
Benzene		False	False	Methylcyclohexane		False	False
Cyclohexane		False	False	Isooctane		False	False
n-Heptane		False	False	Decane, 2-Methyl-		False	False
n-Octane		False	False	Toluene		False	False
n-Nonane		False	False	m-Xylene		False	False
n-Decane		False	False	Ethylbenzene		False	False
n-Undecane		False	False				
				erty Method Sets			
Liquid Molar Volum		COSTALE)	Overall Package		SRK	
		SRK		Vapor Package		SRK	
Stability Calculation				Heavy Liquid Package		SRK	
Stability Calculatior Light Liquid Packag							

Client Name:	EQT Production	Er	vironm	ents Report	Job: V1.0		
Location:	OXF 121 Wellpad						
		Р	roject-Wie	de Constants			
Atmospheric Pressu		14.6959 p		Ideal Gas Reference Pre		14.6959	
Ideal Gas Reference		60 °		Ideal Gas Reference Vol	ume	379.484	ft^3/lbmol
Liquid Reference Te	mperature	60 °	Ϋ́F				
				RK Environment]			
Number of Deverting			<u>=nvironm</u>	ent Settings		0.01	
Number of Poyntir Gibbs Excess Mod		0 77 °F		Phase Tolerance Emulsion Enabled		0.01 False	
Evaluation Tempe		<i>11</i> F				raise	
Freeze Out Tempe		10 °F		Emulsion Enabled		False	
Threshold Differer						1 4100	
			Comp	onents			
Component Name		Henry's Law Component	Phase Initiator	Component Name		Henry's Law Component	Phase Initiator
Nitrogen		False	False	Dodecane		False	False
Methane		False	False	Water		False	True
CO2		False	False	Triethylene Glycol		False	True
Ethane		False	False	Oxygen		False	False
Propane		False	False	Argon		False	False
Isobutane		False	False	Carbon Monoxide		False	False
n-Butane		False	False	Cyclopentane		False	False
sopentane		False	False	Isohexane		False	False
n-Pentane		False	False	3-Methylpentane		False	False
n-Hexane		False	False	Neohexane		False	False
Methylcyclopentane		False	False	2,3-Dimethylbutane		False	False
Benzene		False	False	Methylcyclohexane		False	False
Cyclohexane		False	False	Isooctane		False	False
n-Heptane		False	False	Decane, 2-Methyl-		False	False
n-Octane		False	False	Toluene		False	False
n-Nonane		False	False	m-Xylene		False	False
n-Decane		False False	False	Ethylbenzene		False	False
n-Undecane		raise	False				
		Phys	ical Prope	erty Method Sets			
Liquid Molar Volume)	COSTALD		Overall Package		SRK	
Stability Calculation SRK		Vapor Package		SRK			
Light Liquid Package		SRK		Heavy Liquid Package		SRK	
Remarks							

	Calculator Report	
Client Name:	EQT Production Job: V1.0	
Location:	OXF 121 Wellpad	
	Simple Specifier 1	
	Source Code	
CV1 = O2Reqd * 3		
	Calculated Variable [CV1]	
Source Moniker	ProMax:ProMax!Project!Flowsheets!OXF-121!PStreams!Combustion Air!Phases!Total!Properties!Mola	r Flow
Value Unit	185.044	
	Measured Variable [O2Reqd]	
Source Moniker	ProMax:ProMax!Project!Flowsheets!OXF-121!PStreams!Combined Flash Vapor!Analyses!Combustion	Analysis
	1!Properties!Required Combustion Oxygen	-
Value Unit	12.9204	
Offic		
	Measured Variable [O2Frac]	
Source Moniker	ProMax:ProMax!Project!Flowsheets!OXF-121!PStreams!Combustion Air!Phases!Total!Composition!Mo	le Fraction!Oxygen
Value	0.20947	,,,
Unit		
Remarks		
Remarks		
	Simple Specifier 2	
	Source Code	
CV1 = FV*HV		
	Oplawlated Variable (OV/4)	
Source Moniker	Calculated Variable [CV1] ProMax:ProMax!Project!Flowsheets!OXF-121!QStreams!Pilot Heat Input!Energy Rate	
Value		
Unit		
	Measured Variable [FV]	
Source Moniker	ProMax:ProMax!Project!Flowsheets!OXF-121!PStreams!Flash Vapor!Phases!Total!Properties!Std Vap	or Volumetric Flow
Value Unit	1094.76	
	Measured Variable [HV]	
Source Moniker	ProMax:ProMax!Project!Flowsheets!OXF-121!PStreams!Flash Vapor!Phases!Total!Properties!Net Idea	I Gas Heating Value
Value	2068.96	
Unit		
Remarks		
i temarka		
	Simple Specifier 3	
0)//	Source Code	
CV1 = Pin		
Source Moniker	Calculated Variable [CV1] ProMax:ProMax!Project!Flowsheets!OXF-121!PStreams!Reservoir Gas!Phases!Total!Properties!Press	
Value	425	
Unit		

Vhit
 * User Specified Values
 ? Extrapolated or Approximate Values

ProMax 4.0.16071.0 Copyright © 2002-2016 BRE Group, Ltd.

			Calculate	or Report		
Client Name:	EQT Production	L			Job: V1.0	
Location:	OXF 121 Wellpa					
			Measured V	ariable [Pin]		
Source Moniker		ax!Project!User Va	alue Sets!Parameters	Line Pressure!Properties	Parameter	
Value Unit	425					
Remarks						
			Simple S			
			Source	e Code		
CV1 = Tin						
			Calculated V	ariable [CV1]		
Source Moniker	ProMax:ProMa	ax!Project!Flowshe	eets!OXF-121!PStrea	ams!Reservoir Gas!Phase	s!Total!Prope	erties!Temperature
Value	65				•	
Unit						
			Measured V	ariable [Tin]		
Source Moniker	ProMax:ProMa	ax!Project!User Va		SILine Temperature Proper	rties!Parame	ter
Value	65					
Unit					_	
Remarks						
			Simple S	pecifier 5		
			Source			
CV1 = Tin						
0	<u> </u>		Calculated V	ariable [CV1]		
Source Moniker Value	ProMax:ProMa 65	ax!Project!Flowshe	eets!OXF-121!PStrea	ams!Reservoir Oil!Phases!	! I otal!Proper	ties! I emperature
Unit	00					
			Measured V			
Source Moniker		ax!Project!User Va	alue Sets!Parameters	Line Temperature!Prope	rties!Parame	ter
Value Unit	65					
Remarks						
			Simple S	pecifier 6		
			Source			
CV1 = Pin						
			Calculated V	ariable [CV1]		
Source Moniker Value	ProMax:ProMa 425	ax!Project!Flowshe	eets!OXF-121!PStrea	ams!Reservoir Oil!Phases!	! I otal!Proper	ties!Pressure
Value	420					

	Calculator Report
Client Name: Location:	EQT Production Job: V1.0 OXF 121 Wellpad
Unit	
	Measured Variable [Pin]
Source Moniker Value Unit	ProMax:ProMax!Project!User Value Sets!Parameters!Line Pressure!Properties!Parameter 425
Remarks	
	Simple Specifier 7
	Simple Specifier 7 Source Code
CV1 = Tin	
	Calculated Variable [CV1]
Source Moniker Value	ProMax:ProMax!Project!Flowsheets!OXF-121!PStreams!Reservoir Water!Phases!Total!Properties!Temperature 65
Unit	65
	Measured Variable [Tin]
Source Moniker	ProMax:ProMax!Project!User Value Sets!Parameters!Line Temperature!Properties!Parameter
Value Unit	65
Remarks	
	Simple Specifier 8
	Source Code
CV1 = Pin	
	Calculated Variable [CV1]
Source Moniker Value	ProMax:ProMax!Project!Flowsheets!OXF-121!PStreams!Reservoir Water!Phases!Total!Properties!Pressure
Unit	425
	Measured Variable [Pin]
Source Moniker	ProMax:ProMax!Project!User Value Sets!Parameters!Line Pressure!Properties!Parameter
Value	425
Unit	
Remarks	

		U	lser Value	Sets Report		
Client Name:	EQT Production				Job: V1.0	
Location:	OXF 121 Wellpa	ad				
			Cn+ Flow	v/Frac.55		
			User Value [CnPlusSum]		
* Parameter		363.024 te		Upper Bound		ton/yr
Lower Bound		ti	on/yr	* Enforce Bounds		False
Remarks This User Value S	et was programma	tically generated. GL	JID={6F8309F1-C	C05A-4942-A867-311E15	32159F}	
			Tan	ık-1		
			User Value [
* Parameter		1		Upper Bound		-
Lower Bound				* Enforce Bounds		False
			User Value [Shalll angth1		
* Parameter		20 f		Upper Bound		ft
* Lower Bound		0 f		* Enforce Bounds		False
* Dama a stan		40.4	User Value			
 * Parameter * Lower Bound 		<u>12 f</u> 0 f		Upper Bound * Enforce Bounds		ft False
201101 200110						
			User Value [
* Parameter		0.875 p		Upper Bound		psig
Lower Bound		F	osig	* Enforce Bounds		False
			Jser Value (P	BreatherVacP]		
* Parameter		-0.03125 p	sig	Upper Bound		psig
Lower Bound		F	osig	* Enforce Bounds		False
Parameter			-	DomeRadius]		ft
Parameter Lower Bound			t	DomeRadius] Upper Bound * Enforce Bounds		ft False
		f	t t	Upper Bound * Enforce Bounds		
Lower Bound		f	t t User Value	Upper Bound * Enforce Bounds [OpPress]		False
Lower Bound * Parameter		f f 	t t User Value osig	Upper Bound * Enforce Bounds [OpPress] Upper Bound		False psig
Lower Bound		f f 	t t User Value	Upper Bound * Enforce Bounds [OpPress]		False
Lower Bound * Parameter		f f g g F	t t User Value ^{Dsig} Dsig	Upper Bound * Enforce Bounds [OpPress] Upper Bound * Enforce Bounds		False psig
Lower Bound * Parameter Lower Bound * Parameter		f f 0 p F U 50 %	t t User Value osig osig Iser Value [A %	Upper Bound * Enforce Bounds [OpPress] Upper Bound * Enforce Bounds vgPercentLiq] Upper Bound		False psig False %
Lower Bound * Parameter Lower Bound		f f 0 p F U 50 %	t t User Value osig osig Iser Value [At	Upper Bound * Enforce Bounds [OpPress] Upper Bound * Enforce Bounds vgPercentLiq]		False psig False
Lower Bound * Parameter Lower Bound * Parameter		f f 0 p p p U 50 9 9	t t User Value osig Jser Value [A %	Upper Bound * Enforce Bounds		False psig False %
Lower Bound * Parameter Lower Bound * Parameter		f f 0 p p p U 50 9 9	t User Value osig Jser Value [A % % Vser Value [M	Upper Bound * Enforce Bounds [OpPress] Upper Bound * Enforce Bounds vgPercentLiq] Upper Bound		False psig False %
Lower Bound * Parameter Lower Bound * Parameter Lower Bound		f f 0 p p p v v v v v v v v v v v v v v v v v	t User Value osig Jser Value [A % % Vser Value [M	Upper Bound * Enforce Bounds [OpPress] Upper Bound * Enforce Bounds vgPercentLiq] Upper Bound * Enforce Bounds axPercentLiq]		False psig False % False
Lower Bound * Parameter Lower Bound * Parameter Lower Bound * Parameter Lower Bound * Parameter		f f 0 p p p v v v v v v v v v v v v v v v v v	t User Value osig Jser Value [A % % Vser Value [M %	Upper Bound * Enforce Bounds [OpPress] Upper Bound * Enforce Bounds VgPercentLiq] Upper Bound * Enforce Bounds axPercentLiq] Upper Bound * Enforce Bounds		False psig False % False %
Lower Bound * Parameter Lower Bound * Parameter Lower Bound * Parameter Lower Bound * Parameter Lower Bound		f f f U 50 9 9 U 90 9 9 9	t User Value ssig Iser Value [A' % % Vser Value [M % % User Value	Upper Bound * Enforce Bounds [OpPress] Upper Bound * Enforce Bounds Upper Bound * Enforce Bounds axPercentLiq] Upper Bound * Enforce Bounds [AnnNetTP]		False psig False % False % False
Lower Bound * Parameter		f f 0 p p p 0 p 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	t User Value osig Jser Value [A' % % Vser Value [M % % User Value obl/day	Upper Bound * Enforce Bounds [OpPress] Upper Bound * Enforce Bounds VgPercentLiq] Upper Bound * Enforce Bounds axPercentLiq] Upper Bound * Enforce Bounds [AnnNetTP] Upper Bound		False psig False % False % False bbl/day
Lower Bound * Parameter Lower Bound * Parameter Lower Bound * Parameter Lower Bound * Parameter Lower Bound		f f 0 p p p 0 p 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	t User Value ssig Iser Value [A' % % Vser Value [M % % User Value	Upper Bound * Enforce Bounds [OpPress] Upper Bound * Enforce Bounds Upper Bound * Enforce Bounds axPercentLiq] Upper Bound * Enforce Bounds [AnnNetTP]		False psig False % False % False
Lower Bound * Parameter		f f 0 p p p 0 p 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	t User Value bsig Iser Value [A' % % Vser Value [M % % User Value [M % bbl/day bbl/day	Upper Bound * Enforce Bounds [OpPress] Upper Bound * Enforce Bounds vgPercentLiq] Upper Bound * Enforce Bounds axPercentLiq] Upper Bound * Enforce Bounds [AnnNetTP] Upper Bound * Enforce Bounds [AnnNetTP] Upper Bound * Enforce Bounds [Core Bound Bounds] [Core Bound Bound Bounds] [Core Bound Bou		False psig False % False % False % False bbl/day
Lower Bound		f f f U 50 9 90 9 90 9 90 9 90 9 90 9 90 9 90 9	t User Value Dsig Iser Value [A* % % Vser Value [M % % User Value Dbl/day Dbl/day Dbl/day User Value	Upper Bound * Enforce Bounds [OpPress] Upper Bound * Enforce Bounds vgPercentLiq] Upper Bound * Enforce Bounds axPercentLiq] Upper Bound * Enforce Bounds [AnnNetTP] Upper Bound * Enforce Bounds		False psig False % False % False % False bbl/day

		User Valu	e Sets Report		
Client Name:	EQT Production			Job: V1.0	<u> </u>
Location:	OXF 121 Wellpad				
* Parameter		65.5 °F	Upper Bound		°E
Lower Bound		°F	* Enforce Bounds		False
			lue [MinAvgT]		
* Parameter Lower Bound		<u>44 °F</u> °F	Upper Bound * Enforce Bounds		°F False
Lower Bound		<u> </u>	Eniorce Bourius		Faise
		User Va	lue [BulkLiqT]		
* Parameter		59.09 °F	Upper Bound		°F
Lower Bound		°F	* Enforce Bounds		False
* Parameter			Alue [AvgP]		
Lower Bound		14.2535 psia psia	* Enforce Bounds		psia False
201101 200110		poid	2		
		User V	alue [Therml]		
* Parameter		1123 Btu/ft^2/day	Upper Bound		Btu/ft^2/day
Lower Bound		Btu/ft^2/day	* Enforce Bounds		False
* Parameter		6.3 mi/h	[AvgWindSpeed] Upper Bound		mi/h
Lower Bound		mi/h	* Enforce Bounds		False
			xHourlyLoadingRate]		
 * Parameter * Lower Bound 		5.7867 bbl/hr 0 bbl/hr	Upper Bound * Enforce Bounds		bbl/hr False
Lower Bound		0 00//11	Enlorce Bounds		1 0130
		User Value I	EntrainedOilFrac]		
* Parameter		1 %	Upper Bound		%
Lower Bound		%	* Enforce Bounds		False
* Parameter		23.2987	E [TurnoverRate] Upper Bound		
Lower Bound		23.2307	* Enforce Bounds		False
			[LLossSatFactor]		
* Parameter Lower Bound		0.5	Upper Bound * Enforce Bounds		False
Lower Bouria			Eniorce Bourius		Faise
		User Value	e [AtmPressure]		
* Parameter		14.2535 psia	Upper Bound		psia
Lower Bound		psia	* Enforce Bounds		False
* Parameter			Value [TVP] Upper Bound		naia
Lower Bound		5.74452 psia psia	* Enforce Bounds		psia False
		User Value	[AvgLiqSurfaceT]		
* Parameter		65.0762 °F	Upper Bound		°F
Lower Bound		°F	* Enforce Bounds		False
			MaxLigSurfaceT1		
* Parameter		75.9425 °F	[MaxLiqSurfaceT] Upper Bound		°F
Lower Bound		°F	* Enforce Bounds		False

* User Specified Values ? Extrapolated or Approximate Values

		User Valu	ue Sets Report	
ient Name:	EQT Production		Job: \	V1.0
ocation:	OXF 121 Wellpad			
		User Valu	ue [TotalLosses]	
Parameter	11.8221		Upper Bound	ton/yr
Lower Bound		ton/yr	* Enforce Bounds	False
		Lleer Velue	[Working] occord	
Parameter	1.25867		[WorkingLosses] Upper Bound	ton/yr
Lower Bound		ton/yr	* Enforce Bounds	False
Deservedes	0.711687	Jser Value	[StandingLosses]	to a lor
Parameter Lower Bound	0.711687	ton/yr	Upper Bound * Enforce Bounds	ton/yr False
			[RimSealLosses]	
Parameter		ton/yr	Upper Bound	ton/yr
Lower Bound		ton/yr	* Enforce Bounds	False
		Iser Value	[WithdrawalLoss]	
Parameter		ton/yr	Upper Bound	ton/yr
Lower Bound		ton/yr	* Enforce Bounds	False
Descenter			[LoadingLosses]	to stra
Parameter Lower Bound	4.15299	ton/yr ton/yr	Upper Bound * Enforce Bounds	ton/yr False
201101 200110				
	User	Value [Ma	xHourlyLoadingLoss]	
Parameter	0.948171	lb/hr	Upper Bound	lb/hr
Lower Bound		lb/hr	* Enforce Bounds	False
		sor Valuo [DeckFittingLosses]	
Parameter		ton/yr	Upper Bound	ton/yr
Lower Bound		ton/yr	* Enforce Bounds	False
Doromotor			DeckSeamLosses]	kara har
Parameter Lower Bound	0	ton/yr ton/yr	* Enforce Bounds	ton/yr False
			[FlashingLosses]	
Parameter	327.739	ton/yr	Upper Bound	ton/yr
Lower Bound		ton/yr	* Enforce Bounds	False
		lser Value	[GasMoleWeight]	
Parameter	0.0572024		Upper Bound	kg/mol
Lower Bound		kg/mol	* Enforce Bounds	False
emarks nis User Value Se	et was programmatically generated. C	JUID={0511AF	F0C-026D-4690-8095-2CBDEB1C76	84}
		Pa	rameters	
			[Line Temperature]	
Parameter			Upper Bound	°F
		°F	* Enforce Bounds	False

			User Va	lue Sets Report		
Client Name:	EQT Production				Job: V1.0	
Location:	OXF 121 Wellpa	ad				
	•					
			User Valu	ue [Line Pressure]		
* Parameter		425	psig	Upper Bound		psig
Lower Bound			psig	* Enforce Bounds		False
Remarks						

Certificate of Analysis Number:

2011080059-001A

FOR: Gas Analytical Services Chuck Honaker PO Box 1028

REPORT: C10+ (GPA Method 2286)

TYPE: Gas

CYLINDER: GAS

PRESSURE: 340

TEMPERATURE: N.G.

Bridgeport, WV 26330

CUSTOMER:Gas Analytical ServicesFIELD :EQT ProductionLOCATION :512432SAMPLE POINT:WellheadREPORT DATE:8/13/2011SAMPLE DATE:07/30/2011SAMPLED BY:SA - GASMEMO:

COMPONENT	<u>MOL %</u>	WEIGHT %	<u>GPM's @ 14.73</u>
N2	0.500	0.678	
METHANE	78.009	60.646	
CO2	0.212	0.451	
ETHANE	14.476	21.095	3.870
PROPANE	4.405	9.411	1.213
I-BUTANE	0.525	1.478	0.172
N-BUTANE	1.069	3.009	0.337
I-PENTANE	0.225	0.785	0.082
N-PENTANE	0.240	0.838	0.087
I-HEXANES	0.099	0.413	0.040
N-HEXANE	0.083	0.291	0.029
BENZENE	0.002	0.009	0.001
CYCLOHEXANE	0.011	0.044	0.004
I-HEPTANES	0.049	0.241	0.022
N-HEPTANE	0.023	0.111	0.010
TOLUENE	0.005	0.022	0.002
I-OCTANES	0.033	0.192	0.017
N-OCTANE	0.006	0.036	0.003
*E-BENZENE	NIL	0.002	NIL
*m,o,&p-XYLENE	0.002	0.016	0.001
I-NONANES	0.004	0.049	0.004
N-NONANE	0.002	0.011	0.001
I-DECANES	NIL	0.015	0.001
N-DECANE	0.001	0.005	NIL
I-UNDECANES +	0.019	0.152	0.013
TOTALS	100.000	100.000	5.909

ATTACHMENT O

Monitoring/Recordkeeping/Reporting/Testing Plans

ATTACHMENT O: MONITORING, RECORDING, REPORTING, AND TESTING PLANS

Plan Type	Emission	Pollutant	Requirements	Frequency	Method of	Regulatory
	unit				Measurement	Reference
Monitoring,	All	PM,	Monthly inspection of the facility	Monthly	Method 22 and	Best Practice -
Recordkeeping		Opacity,	to ensure no visible emissions,		Olfactory Observation	No monitoring
		Odor	dust emissions, or objectionable			required under
			odors are observed			WV
Monitoring,	Produced	VOC, HAP	Monitoring throughput of tanks	Monthly		
Recordkeeping	Fluids					
	Storage					
	Tanks					
	(S020-S025)					

ATTACHMENT P

Class I Legal Notice

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that EQT Production Company has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a R13 permit modification for the natural gas production facility OXF-121 located off Straight Fork Road in Doddridge County, West Virginia. The latitude and longitude coordinates are: 39°8'8.34''N, -80°49'14.36''W. The project includes the installation of six (6) 400 bbl storage tanks which will replace the existing storage tanks at the site.

The applicant estimates the potential to discharge the following Regulated Air Pollutants will be:

Pollutant	Emissions in tpy (tons per year)	
NOx	5.52	
СО	4.64	
VOC	8.12	
SO ₂	0.03	
PM	0.42	
Formaldehyde	3.7E-04	
BTEX	0.06	
n-Hexane	0.53	
Total HAPs	0.84	
Carbon Dioxide Equivalents (CO ₂ e)	6,628.72	

Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours. Dated this the (Day) day of (Month) 2017

Dated this the (Day) day of (Month), 2017.

By: EQT Production Company Mike Gavin, Vice President 625 Liberty Ave Suite 1700 Pittsburgh, PA 15222