

November 30, 2017

Mr. William F. Durham Director WVDEP, Division of Air Quality 601 – 57th Street SE Charleston, West Virginia 25304

Re: Tug Hill Operating, LLC, Permit Determination Application – Burch Ridge Well Pad

Dear Mr. Durham,

Tug Hill Operating, LLC (Tug Hill) and SLR International Corporation (SLR) have prepared the attached Permit Determination Application for the Burch Ridge Well Pad located in Marshall County, West Virginia. The site was purchased as a non-permitted pad below permitting thresholds and as a result, no DAQ ownership transfer forms are necessary and this should be the first determination submitted for the site. This determination reflects the addition of a Caterpillar G3508LE 4SLB compressor engine. The compressor engine is being proposed to lower the well's operating pressure and boost pressure before entering the sales pipeline. Therefore, all site emissions have been evaluated and are attached for your review within this determination.

If any additional information is needed, please feel free to contact me by telephone at (304) 545-8563 or by e-mail at <u>ihanshaw@slrconsulting.com</u>

Sincerely, **SLR International Corporation**

Jesse Hanshaw

Jesse Hanshaw, P.E. Principal Engineer

Tug Hill Operating, LLC Burch Ridge Well Pad Proctor, West Virginia Permit Determination SLR Ref: 116.01631.00013 November 2017

Burch Ridge Well Pad Permit Determination

Prepared for:

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

This document has been prepared by SLR International Corporation. The material and data in this permit application were prepared under the supervision and direction of the undersigned.

Alex Asbury Staff Engineer

Jesse Hanshaw, P.E. Principal Engineer

CONTENTS

Section

Section 1. TECHNICAL SUPPORT DOCUMENT

- **1.1 INTRODUCTION**
- **1.2 DESCRIPTION OF FACILITY**
- **1.3 FEDERAL AND STATE REQUIREMENTS**

Section 2. APPLICATION FOR PERMIT DETERMINATION

ATTACHMENTS

ATTACHMENT A	AREA MAP
ATTACHMENT B	PROCESS FLOW DIAGRAM
ATTACHMENT C	PROCESS DESCRIPTION
ATTACHMENT D	
	EMISSION CALCULATIONS

SECTION 1. TECHNICAL SUPPORT DOCUMENT

Permit Determination

Burch Ridge Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

November 2017

1.1 INTRODUCTION

The Burch Ridge Site previously owned and operated by Gastar Exploration Inc. has been purchased by Tug Hill Operating, LLC. The site was purchased as a non-permitted pad below permitting thresholds based on the operations of the following equipment: (5) Marcellus wells, (5) 1.0 MMBtu/hr GPU heaters and (2) 400 bbl produced fluid tanks. As a result, no DAQ ownership transfer forms are necessary and this should be the first determination submitted for the site. Tug Hill has prepared this permit determination in order to evaluate the existing equipment at the site, as well as the installation of a Caterpillar G3508LE 4SLB compressor engine.

The details of this evaluation are provided in section 2.0 with supporting calculations and ProMax Simulations conducted for worst case operating scenarios.

1.2 SITE HISTORY

The following is a brief summary of the history related to this site:

- The wells onsite were put into production in Aug, 2012.
 - The turn in line (TIL) date for the well was recorded as Aug, 2012.
- The tanks were installed in 2012 based on the TIL date and have not been replaced since the pad started production.

1.3 DESCRIPTION OF FACILITY

Tug Hill Operating, LLC is submitting a permit determination to evaluate the PTE from (2) 400 bbl produced water tanks, as well as the installation of a Caterpillar G3508LE 4SLB compressor engine.

DESCRIPTION OF PROCESS

Natural gas, condensate and produced water are generated from (5) wells located onsite producing from the Marcellus formation. Each well stream passes through the Gas Processing Unit (GPU), which consists of a 1.0 MMBtu/hr line heater and 3-phase separator.

In the separator, the multiphase stream is divided into sales gas and its associated liquids (produced water and condensate). The gas and condensate leave the separator and go directly into separate pipelines. The proposed G3508LE compressor will be used to lower the well's operating pressure and boost pressure before entering the sales pipeline. The produced water will be routed to (2) 400 (bbl) tanks (T01-T02). The produced liquid is hauled from the site using 140 bbl tank trucks.

Description of Emission Calculations

The existing process water tanks (T01-T02) were evaluated and found to have a small amount of condensate present with the produced water. The historic water/brine throughput shows a maximum of 0.51 bbl/day condensate being carried over with 19.73 bbl/day of water. These tank emissions were estimated using ProMax.This estimate predicts approximately 9.05 tpy of VOCs originating from the tanks as flash gas emissions. Working, breathing and loading losses are all predicted by ProMax to be very small due to being 98% water. The produced water is hauled from the site using 140 bbl tank trucks.

The newly proposed compressor engine has been designed to utilize catalytic controls which are integral to the system. Therefore, in accordance with the PTE provisions of Rule 13 the emission estimates from this unit take into account control efficiencies.

1.4 FEDERAL AND STATE REQUIREMENT

APPLICABLE REGULATIONS

This facility is subject to the following applicable rules and regulations:

Federal and State:

45 CSR 2 – Particulate Matter Standards from Combustion of Fuel in Indirect Heat Exchangers

The indirect heat exchanger consisting of the line heater is subject to the visible emission standard of §45-2-3 as follows:

3.1. No person shall cause, suffer, allow or permit emission of smoke and/or particulate matter into the open air from any fuel burning unit which is greater than ten (10) percent opacity based on a six minute block average.

However, in accordance with the exemptions defined with §45-2-11 these sources have limited requirements as follows:

11.1. Any fuel burning unit(s) having a heat input less than ten (10) million B.T.U.'s per hour will be exempt from sections 4, 5, 6, 8 and 9. However, failure to attain acceptable air quality in parts of some urban areas may require the mandatory control of these sources at a later date.

45 CSR 10 - Emission of Sulfur Oxides

The well pad facility evaluated within this determination application utilizes fuel burning units, but they are all less than the exemption threshold of 10 MMBtu/hr as stated in 45CSR§10-10.1 as follows:

10.1 Any fuel burning units having a design heat input less than ten (10) million BTU's per hour will be exempt from section 3 and sections 6 through 8. However, failure to attain acceptable air

quality in parts of some urban areas may require the mandatory control of these sources at a later date.

40 CFR 61 - This facility is subject to the asbestos inspection and notification requirements. However, no asbestos is affected by the proposed construction activities.

45 CSR 13 - Permits for Construction, Modification, Relocation, and Operation of Stationary Source of Air Pollutants

The company is applying for a permit determination to assure all permitting thresholds are evaluated and the proper minor source permits are identified if applicable. The site was evaluated for aggregate emissions above 6 lb/hr of criteria pollutants and 2 lb/hr for aggregate HAPs. Additionally, the site was evaluated for Rule 27 pollutant thresholds such as 1000 lb/yr formaldehyde. All were found to be below permitting thresholds.

The site was also evaluated and found to be exempt from any federal regulations containing substantive requirements.

WV Code § 22-5-4 (a) (14)

The Secretary can request any pertinent information such as annual emission inventory reporting. This station is not required to submit an annual air emission inventory.

45 CSR 17 - Fugitive Particulate Emissions

The site shall minimize fugitive PM so that emissions do not travel offsite.

40 CFR 60, Subpart JJJJ – Standards of Performance for Stationary Spark Ignition Internal Combustion Engines

The compressor engine (CE-1) at the station was manufactured on 3-30-2006, which predates the January 1, 2008 applicability date for engines greater than 500 hp. Therefore, the compressor engine is not subject to emissions limits according to 40 CFR§60.4230-(a)(4)(i). Additionally, the compressor will be installed as a booster at the Burch Ridge location in 2017 and therefore evaluated for applicability to §60.4236 related to requirements for installing previous model year engines. This engine was found to be exempt as a relocated unit according to §60.4236(e).

40 CFR 63, Subpart ZZZZ – National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines

The natural gas compressor engine (CE-1) is a 4SLB Cat 3508LE engine manufactured on 3-30-2006; therefore this engine would be subject to the maintenance work practice standards of this Regulation. However, since these are not viewed as substantive requirements in accordance with 45CSR13 DAQ policy this requirement alone would not trigger the need for permitting.

NON-APPLICABILITY DETERMINATIONS

The following requirements have been determined "not applicable" due to the following:

45 CSR 27 - To Prevent and Control the Emissions of Toxic Air Pollutants

This rule is not applicable because natural gas is included as a petroleum product and contains less than 5% benzene by weight. 45CSR § 27-2.4 exempts equipment "used in the production and distribution of petroleum products providing that such equipment does not produce or contact materials containing more than 5% benzene by weight."

45 CSR 30 – Requirements for Operating Permits – Title V of the Clean Air Act

This facility does not meet the emission thresholds to trigger a 45 CSR 30 Title V Operating Permit nor is it subject to any Federal Standards that require a Title V Permit.

40 CFR 60 Subpart K, Ka, Kb - Storage Vessel NSPS

The two 400 bbl [16,800 gal] produced liquid tanks (T01-T02) are below the size capacity threshold of 75 meters cubed (m³) [19,813 gallons] defined within the applicability section 60.110b(a) of this Federal standard.

40 CFR 60 Subpart KKK - Natural Gas Processing Plant NSPS

This subpart is not applicable because this site is not a processing plant engaged in extracting natural gas liquids by fractionation from natural gas.

Natural gas processing plant (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas, fractionation of mixed natural gas liquids to natural gas products, or both.

40 CFR 60 Subpart OOOO - Storage Vessel NSPS Requirements

The existing storage vessels (T01-T02) was constructed after August 23, 2011 but before, September 18, 2015 and has been demonstrated to have a PTE VOCs < 6 tpy using ProMax Equation of State estimation techniques with representative inputs. Therefore, the existing storage vessel is not considered an affected source under this regulation.

40 CFR 60 Subpart OOOOa - Storage Vessel NSPS Requirements

The existing storage vessels predate the applicability date of this regulation, September 18, 2015

40 CFR 60 Subpart OOOOa – Fugitive Component Leak Monitoring

The site is classified as a well pad facility, which will not be subject to the monitoring requirement of this section since the existing site predates the applicability date of September 18, 2015 as defined under this Federal regulation.

40 CFR 60 Subpart OOOOa – Compressor Packing Requirements

The site is classified as a well pad facility, which will not be subject to the monitoring requirement of this section since the compressor meets the exemption for units operated at well sites as defined under this federal regulation.

40 CFR 63 Subpart HH - National Emission Standards for Hazardous Air Pollutants from Oil and Natural Gas Production Facilities

There is no dehydration unit at this site.

40 CFR 63 Subpart JJJJJJ - Boilers Located at Area Sources of HAPs

This subpart is not applicable because the process heater at this facility is not classified as boilers under this area source GACT standard.

40 CFR 82 Subpart F - Ozone Depleting Substances

The purpose of this subpart is to reduce emissions of class I and class II refrigerants and their substitutes. The facility does not utilize class I and class II refrigerants nor any substitutes.

Aggregation Discussion (Facility Determination)

The Burch Ridge well site is operated solely by Tug Hill Operating, LLC. This well pad facility has the ability to transfer its products via pipeline to midstream compression companies, of which are located on non-contiguous sites over a mile away. Additionally, these sources are not under common control nor is there any support and/or dependency relationship between the midstream companies and Tug Hill.

No other facilities operated by Tug Hill are within a quarter-mile radius and as a result this pad should be considered a single facility as defined within this determination application.

SECTION 2. APPLICATION FOR PERMIT

Permit Determination

Burch Ridge Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

November 2017

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALITY		PERMIT	T DETERMINATION FORM (PDF)		
601 57 th Stree Charleston, WV	et, SE / 25304	FOR AGENCY USE OF	NLY: PLANT I.D. #		
Phone: (304) 9 www.dep.wv.g	26-0475 ov/daq	PDF #	PERMIT WRITER:		
1. NAME OF APPLICANT (AS REGISTERE	D WITH THE WV SECR	ETARY OF STATE'S OF	FFICE):		
Tug Hill Operating, LLC					
2. NAME OF FACILITY (IF DIFFERENT FR	OM ABOVE):		3. NORTH AMERICAN INDUSTRY CLASSIFICATION SYSTEM (NAICS)		
Burch Ridge Well Pad			CODE:		
			211111		
4A. MAILING ADDRESS:		4B. PHYSICAL ADDR	RESS:		
380 Southpointe Blvd, Suite 200		68 Burch Ridge			
Canonsburg, PA 15317		Proctor, WV 26055			
5A. DIRECTIONS TO FACILITY (PLEASE PF	ROVIDE MAP AS ATTAC	CHMENT A):			
Scenic Byway/Pike St. and travel for merge onto WV-2 N and travel 6.1 m	42.2 miles. Take a slig iles. Turn right onto W urch Ridge and travel	ght right onto WV-7 ar /ells Hill Rd. and trave 0.6 miles. The access	ue straight to stay on OH-7 N/Ohio River nd travel 0.7 miles. Continue straight to el 2.4 miles. Turn right onto Waynes Ridge s road will be located on the left. Follow		
5B. NEAREST ROAD: Burch Ridge	5C. NEAREST CITY (Proctor	OR TOWN:	5D. COUNTY: Marshall		
5E. UTM NORTHING (KM): 4,400.521	5F. UTM EASTING (# 516.898	KM):	5G. UTM ZONE: 17		
6A. INDIVIDUAL TO CONTACT IF MORE IN Amy Miller	FORMATION IS REQUIF	RED:	6B. TITLE: Environmental Coordinator		
6C. TELEPHONE:	6D. FAX:		6E. E-MAIL:		
(724) 338-2030			amiller@tug-hillop.com		
7A. DAQ PLANT I.D. NO. (FOR AN EXISTIN	G FACILITY ONLY):	AND/OR TITLE V	L CURRENT 45CSR13, 45CSR14, 45CSR19 (45CSR30) PERMIT NUMBERS ASSOCIATED CESS (FOR AN EXISTING FACILITY ONLY): N/A		
7C. IS THIS PDF BEING SUBMITTED AS TH	E RESULT OF AN ENF	ORCEMENT ACTION?	IF YES, PLEASE LIST: No		
, , , , , , , , , , , , , , , , , , ,	BA. TYPE OF EMISSION SOURCE (CHECK ONE): ■ NEW SOURCE □ ADMINISTRATIVE UPDATE BADMINISTRATIVE UPDATE, DOES DAQ HAVE THE APPLICANT'S CONSENT TO UPDATE THE EXISTING PERMIT WITH THE INFORMATION CONTAINED HERE				
MODIFICATION OTHER (PLEASE EXPLAIN IN 11B)					
9. IS DEMOLITION OR PHYSICAL RENOV	ATION AT AN EXISTING	G FACILITY INVOLVED?	P 🗌 YES 🛛 NO		
10A. DATE OF ANTICIPATED INSTALLATION OR CHANGE:		10B. DATE OF ANTICIPATED START-UP:			
12/15/2017		<u>December /15/2017</u> .			
11A. PLEASE PROVIDE A DETAILED PROCESS FLOW DIAGRAM SHOWING EACH PROPOSED OR MODIFIED PROCESS EMISSION POINT AS ATTACHMENT B .					

11B. PLEASE PROVIDE A DETAILED PROCESS DESCRIPTION AS ATTACHMENT C.

12. PLEASE PROVIDE **MATERIAL SAFETY DATA SHEETS (MSDS)** FOR ALL MATERIALS PROCESSED, USED OR PRODUCED AS **ATTACHMENT D**. FOR CHEMICAL PROCESSE, PLEASE PROVIDE A MSDS FOR EACH COMPOUND EMITTED TO AIR.

13A. REGULATED AIR POLLUTANT EMISSIONS:

⇒ FOR A NEW FACILITY, PLEASE PROVIDE PLANT WIDE EMISSIONS BASED ON THE POTENTIAL TO EMIT (PTE) FOR THE FOLLOWING AIR POLLUTANTS INCLUDING ALL PROCESSES.

⇒ FOR AN EXISTING FACILITY, PLEASE PROVIDE THE PROPOSED CHANGE IN EMISSIONS BASED ON THE PTE OF ALL PROCESS CHANGES FOR THE FOLLOWING AIR POLLUTANTS.

PTE FOR A GIVEN POLLUTANT IS TYPICALLY <u>BEFORE AIR POLLUTION CONTROL DEVICES</u> AND IS COLLECTED BASED ON THE MAXIMUM DESIGN CAPACITY OF PROCESS EQUIPMENT.

POLLUTANT	HOURLY PTE (LB/HR)	YEARLY PTE (TON/YR) (HOURLY PTE MULTIPLIED BY 8760 HR/YR) DIVIDED BY 2000 LB/TON
РМ	0.27	1.17
PM ₁₀	0.27	1.17
VOCs	2.73	11.94
со	0.65	2.84
NO _x	3.45	15.09
SO ₂	0.01	0.02
Pb	< 0.01	<0.01
HAPs (AGGREGATE AMOUNT)	0.24	1.03
TAPs (INDIVIDUALLY)*		
Benzene	0.01	0.02
Formaldehyde	0.11	0.46
OTHER (INDIVIDUALLY)*		
* ATTACH ADDITIONAL PAGES AS I	NEEDED	
13B. PLEASE PROVIDE ALL SUPPORTIN		

CALCULATE AN HOURLY AND YEARLY PTE OF EACH PROCESS EMISSION POINT (SHOWN IN YOUR DETAILED PROCESS FLOW DIAGRAM) FOR ALL AIR POLLUTANTS LISTED ABOVE INCLUDING INDIVIDUAL HAP'S (LISTED IN SECTION 112[b] OF THE 1990 CAAA), TAP'S (LISTED IN 45CSR27), AND OTHER AIR POLLUTANTS (E.G. POLLUTANTS LISTED IN TABLE 45-13A OF 45CSR13, MINERAL ACIDS PER 45CSR7, ETC.).

14. CERTIFICATION OF DATA

RE

I, <u>SEAN WILLIS</u> (*TYPE NAME*) ATTEST THAT ALL THE REPRESENTATIONS CONTAINED IN THIS APPLICATION, OR APPENDED HERETO, ARE TRUE, ACCURATE, AND COMPLETE TO THE BEST OF MY KNOWLEDGE BASED ON INFORMATION AND BELIEF AFTER REASONABLE INQUIRY, AND THAT I AM A *Responsible Official*** (*President, Vice President, Secretary or Treasurer, General Partner or Sole Proprietor*) of the Applicant.

SIGNATURE OF RESPONSIBLE OFFICIAL:

 TITLE:
 VICE PRESIDENT - ENGINEERING & DEVELOPMENT MANAGER - APPALACHIA REGION
 DATE:

DATE: 11/30/2017

** THE DEFINITION OF THE PHRASE 'RESPONSIBLE OFFICIAL' CAN BE FOUND AT 45CSR13, SECTION 2.23.

NOTE	DIFASE	CHECK	ENCLOSED	ATTACHMENTS
NUTE.	FLEASE	CHECK	ENGLOSED	ATTACHMENTS

ATTACHMENT A	ATTACHMENT B	ATTACHMENT C	ATTACHMENT D	ATTACHMENT E
CORDS ON ALL CHANGES ARE RE	EQUIRED TO BE KEPT AND N	AINTAINED ON-SITE FOR T	WO (2) YEARS.	

THE PERMIT DETERMINATION FORM WITH THE INSTRUCTIONS CAN BE FOUND ON DAQ'S PERMITTING SECTION WEB SITE: www.dep.wv.gov/daq

ATTACHMENT A

AREA MAP

Permit Determination

Burch Ridge Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

November 2017

Attachment A - Area Map

Tug Hill Operating LLC - Burch Ridge Well Pad

GPS Coordinates of Site: Lat: 39.75444, Lon: -80.80274 Legend

3

Burch Ridge Well Pad

🍰 300' Barrier Burch Ridge Well Pad

29

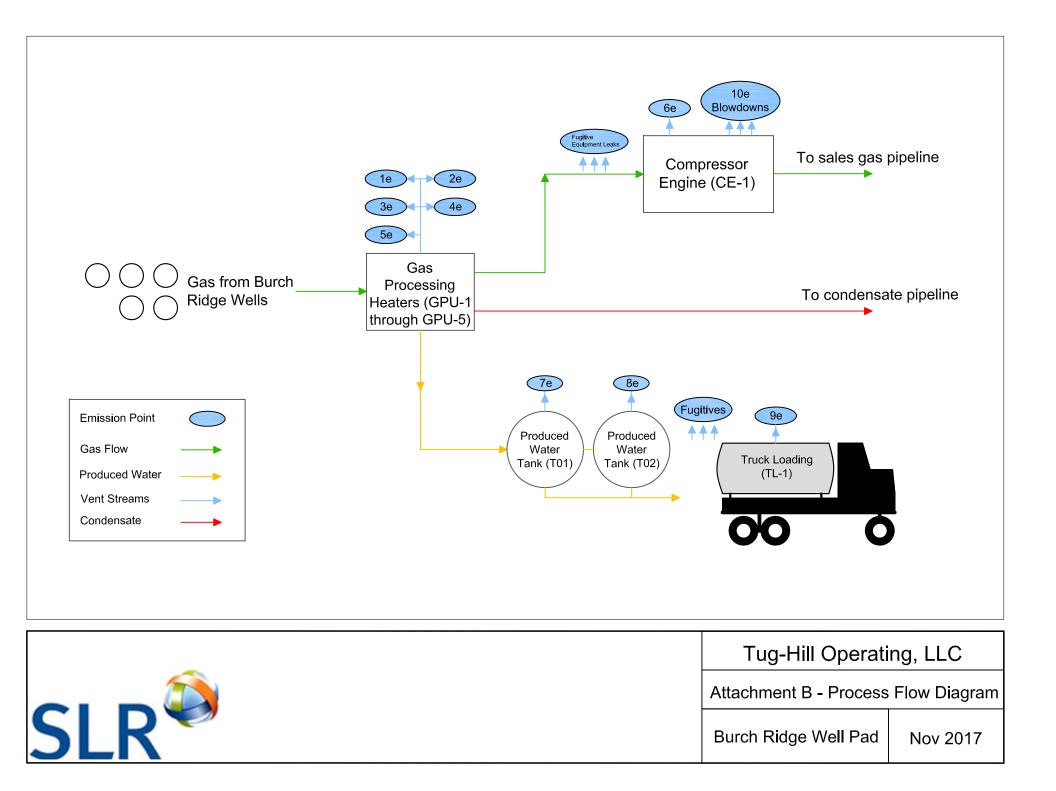
1000 ft

 \langle

N

© 2017 Google

ATTACHMENT B


PROCESS FLOW DIAGRAM

Permit Determination

Burch Ridge Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

November 2017

ATTACHMENT C

PROCESS DESCRIPTION

Permit Determination

Burch Ridge Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

November 2017

Natural gas, condensate and produced water are generated from (5) wells located onsite producing from the Marcellus formation. Each well stream passes through the Gas Processing Unit (GPU), which consists of a 1.0 MMBtu/hr line heater and 3-phase separator.

In the separator, the multiphase stream is divided into sales gas and its associated liquids (produced water and condensate). The gas and condensate leave the separator and go directly into separate pipelines. The proposed G3508LE compressor will be used to lower the well's operating pressure and boost pressure before entering the sales pipeline. The produced water will be routed to (2) 400 (bbl) tanks (T01-T02). The produced liquid is hauled from the site using 140 bbl tank trucks.

ATTACHMENT D

SAFETY DATA SHEETS

Permit Determination

Burch Ridge Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

November 2017

SAFETY DATA SHEET

Date Issued: SDS NO: Date Revised: Revision No:

Non-Sour Natural Gas Condensate (Atmospheric Liquid) (West Virginia)

IMPORTANT

This SDS has been prepared for Non-Sour Natural Gas Condensate at atmospheric pressure (i.e., atmospheric liquid). Refer to the following sections for important safety and response information. **Section 4-** First Aid Measures (for accidental exposure). **Section 5-** Fire Fighting Measures. **Section 6-** Accidental Release Measures.

1. PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME: Non-Sour Natural Gas Condensate (Atmospheric Liquid) **GENERAL USE:** Condensate extracted from natural gas well production. **Common Name and Synonyms:** Gas Liquid, Condensate Liquids, Drip Gas, Natural Gas Condensate

2. HAZARDS IDENTIFICATION

This product has not been tested to determine its specific health hazards. Therefore, the information provided in

this section includes health hazard information based on the product components.

GHS CLASSIFICATIONS

Health	Physical
H319 Eye damage/irritation Category 2	
H315 Skin corrosion/irritation Category 2	H224 – Extremely flammable liquid and vapor – Category 1
H304 Aspiration Hazard Category 1	
H331 Acute toxicity, Inhalation Category 3	
H336 Specific target organ toxicity (single exposure) Category 3	
H350 Carcinogenicity Category 1B	
H412 – Harmful to aquatic life, chronic toxicity Category 3	

GHS LABEL

WARNING	DANGER
H320: Causes eye irritation.	H350: May cause cancer.
H315: Causes skin irritation.	

Non-Sour Natural Gas Condensate (Atmospheric Liquid)

H224 Extremely flammable liquid and vapor

PRECAUTIONARY STATEMENT(S)

Prevention:

P201: Obtain special instructions before use.

P202: Do not handle until all safety precautions have been read and understood.

- P210: Keep away from heat/sparks/open flames/hot surfaces. No smoking.
- P233: Keep container tightly closed.
- P235: Keep cool.
- P240: Ground/bond container and receiving equipment.
- P241: Use with explosion-proof equipment.
- P242: Use only non-sparking tools.
- P243: Take precautionary measures against static discharge.
- P261: Avoid breathing dust/fume/gas/mist/vapours/spray.
- P264: Wash thoroughly after handling.
- P271: Use only outdoors or in a well-ventilated area.
- P273: Avoid release to the environment.
- P280: Wear protective gloves / protective clothing / eye protection / face protection.

Response:

IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing. (P304+P340) If experiencing respiratory symptoms: Immediately call a POISON CENTER or doctor/physician. (P342+310)

IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician. (P302+P310) Call a POISON CENTER or doctor/physician. (P311) Do NOT induce vomiting. (P331)

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. (P305+P351+338) : If eye irritation persists: Get medical advice/attention. (P337+P313)

IF ON SKIN: Remove/Take off immediately all contaminated clothing. (P302+P361) Wash with plenty of soap and water. (P352) If skin irritation or a rash occurs: Get medical advice/attention. (P333+P313)

IF ON CLOTHING: Take off contaminated clothing and wash before reuse. (P306+P362)

IF exposed or concerned: Call a POISON CENTER or doctor/physician if you feel unwell. (P308+P312)

In case of fire: Use dry chemical, carbon dioxide, or foam for extinction. (P370+P378) Collect spillage. (P391)*

Store in a well-ventilated place. Keep container tightly closed. Keep cool. (P403+P233+235)

Store locked up. (P405)

IF exposed or concerned: Call a POISON CENTER or doctor/physician if you feel unwell. (P308+3312)

Disposal:

Dispose of contents/container in accordance with local/regional/national regulations. (P501)

EMERGENCY OVERVIEW

PHYSICAL APPEARANCE: Clear liquid.

IMMEDIATE CONCERNS: HAZARD DESCRIPTION / WARNING INFORMATION SUMMARY – This product is a highly flammable liquid which may be harmful if ingested, inhaled, comes in contact with skin or eyes, or is released into the environment. Please read entire contents of Section 2 of this Safety Data Sheet (SDS) for details.

POTENTIAL HEALTH EFFECTS

EYES: Eye contact with vapors may cause eye irritation, watering of eyes and reddening. Eye contact with liquid may cause irritation and pain. Prolonged contact may result in tissue damage.

SKIN: Skin contact may cause skin irritation and redness. Repeated or prolonged skin contact may cause dermatitis.

INGESTION: Ingestion may cause irritation to the gastrointestinal tract with nausea and diarrhea. May be harmful if swallowed in large quantities.

INHALATION: Breathing the mist and vapors may be irritating to the respiratory tract.

SIGNS AND SYMPTOMS OF OVEREXPOSURE

CHRONIC EFFECTS: Skin, eye, and respiratory tract irritation. Gastrointestinal and vascular effects and death may occur at high concentrations. May cause nervous system effects, such as headache, nausea and drowsiness.

CARCINOGENICITY: Condensate contains Catergory 2 constituents (Benezene).

MUTAGENICITY: Not Established.

REPRODUCTIVE TOXICITY

REPRODUCTIVE EFFECTS: Not Established.

TERATOGENIC EFFECTS: Not Established.

MEDICAL CONDITIONS AGGRAVATED: Benzene – Pre-existing blood system disorders, respiratory conditions, central nervous, liver, kidney, and cardio-vascular conditions may be aggravated by severe or chronic overexposure to benzene. Skin disorders may also be aggravated by exposures to benzene.

ROUTES OF ENTRY: Inhalation, skin contact, eye contact, ingestion.

TARGET ORGAN STATEMENT: May cause damage to eyes, skin and respiratory system.

CANCER STATEMENT: This product may cause cancer. Refer to Section 11 of this SDS for details.

SENSITIZATION: Not Established.

COMMENTS: ADDITIONAL MEDICAL AND TOXICOLOGICAL INFORMATION: Natural gas condensate and some of its fractions have been shown to cause skin irritation, damage and even cancers when applied directly and repeatedly to skin. When laboratory animals inhale oil vapors at high concentration or ingest in repeated doses, various tumors have developed.

This product contains benzene, which can cause degeneration in blood forming bone marrow leading to anemia which may further degrade to leukemia, a type of cancer (see 29 CFR 1910.1028 of standard). Benzene is recognized as a human carcinogen by OSHA, NTP, ACGIH, and IARC.

3. COMPOSITION / INFORMATIO N ON INGREDIENTS

Compositions given are typical values, not specifications. Compositions provided may vary with geographic location, geologic formation, temperature and pressure and actual values could be higher or lower than the ranges provided.

	Non-Sour Atmospheric Condensate Liquid	
Chemical Name	WT % (All Vary)	CAS
Water	<1.0 - 5.0	7732-18-5
Nitrogen	0.0 – 0.015	7727-37-9
Carbon Dioxide	0.0 - 0.04	124-38-9
Benzene	<0.10 - 0.70	71-43-2
Ethyl benzene	<1.0 - 3.0	100-41-4
Toluene	<1.0 - 5.0	108-88-3
Xylenes	<1.0 - 5.0	1330-20-7
Methane	<1.0 - 5.0	74-82-8
Ethane	<1.0 - 8.0	74-84-0
Propane	1.0 – 10.0	74-98-6
Isobutane	1.0 - 3.0	75-28-5
n-Butane	2.0 - 9.0	106-97-8
2,2-Dimethylpropane	0.0 – 0.20	463-82-1
Isopentane	2.0 - 5.0	78-78-4
n-Pentane	2.0 - 7.0	109-66-0
2,2-Dimethylbutane	0.10 - 0.40	75-83-2
Cyclopentane	0.000	287-92-3
2,3-Dimethylbutane	0.30 – 0.70	79-29-8
2-Methylpentane	1.0 - 4.0	107-83-5
3-Methylpentane	1.0 - 3.0	96-14-0
n-Hexane	2.0 - 5.0	110-54-3
Heptanes Plus	45.0 - 80.0	Mixture
Hydrogen Sulfide	<1.0	7783-06-4

COMMENTS: Some components of this material such as benzene, toluene and xylene have been shown to produce fetal toxicity and/or reduce female or male reproductive capacity in laboratory animals.

4. FIRST AID MEASURES

EYES: Immediately flush with large amounts of water, holding eyelids open, for at least 20 minutes. Repeat if necessary. Remove contact lenses, if present and easy to do. If pain or redness persists, seek medical attention. If eye is exposed to hot liquid, cover eyes with cloth and seek medical attention immediately.

SKIN: In case of hot liquid exposure, do not remove clothing or treat, wash only unburned area and seek medical attention immediately.

INGESTION: Do not induce vomiting. If vomiting occurs spontaneously, keep head below hips to prevent aspiration of liquid into the lungs. Have exposed individual rinse mouth thoroughly with water. Never give anything by mouth to an unconscious person. Obtain medical assistance immediately and treat as directed by a medical professional.

INHALATION: Move victim to fresh air. Call 911, emergency medical service, or Emergency Phone Numbers(s) provided in Section 1 of this SDS. Give artificial respiration if victim is not breathing. Do not use mouth-to-mouth methods if victim ingested or inhaled the substance; give artificial respiration with the aid of a pocket mask equipped with a one-way valve or other proper respiratory medical device. Administer oxygen if breathing is difficult.

ANTIDOTES: Not Established.

NOTES TO PHYSICIAN: No specific treatment. Treat symptomatically. General supportive measures with continual monitoring of gas exchange, acid-base balance, electrolytes, and fluid intake are also required. Contact poison treatment specialist immediately if large quantities have been ingested or inhaled. **CLINICAL TESTING & MEDICAL MONITORING FOR DELAYED EFFECTS** – Not Established.

COMMENTS: CONTRAINDICATIONS - Not Established.

5. FIRE FIGHTING MEASURES

FLASH POINT: This material is capable of flashing at temperatures of 22°C (72°F) or lower.

*****IMPORTANT: This material is highly flammable. When separator condensate liquid under pressure encounters normal atmospheric pressures, each 42-gallon barrel equivalent of condensate is capable of flashing over 92 pounds of volatile vapors to the atmosphere in a relatively short amount of time*****

AUTOIGNITION TEMPERATURE: Not Established.

EXTINGUISHING MEDIA:

SMALL FIRE – Class B fire extinguisher, carbon dioxide, multipurpose dry chemical, water fog or alcoholresistant foam.

LARGE FIRE – Water fog or alcohol-resistant foam.

COMMENTS:

SPECIFIC HAZARDS THAT MAY ARISE FROM THE PRODUCT - Vapors are flammable and some constituents may be heavier than air. Vapors may travel through the air as well as across the ground and reach remote ignition sources causing a flashback fire danger. Sudden reaction and fire may result if product is mixed with an oxidizing agent.

FIRE EXPLOSION: This product is extremely flammable. Hydrocarbon vapors that are released are a potential fire hazard. The condensate as well as its related vapors can easily be ignited by heat, sparks or flames. Vapors may form explosive mixtures with air. Vapors may travel to source of ignition and flash back. Some vapors are heavier than air. They will spread along ground and collect in low or confined areas (sewers, basements, tanks). Vapor explosion hazard indoors, outdoors or in sewers. Many liquids are lighter than water. Runoff to sewer may create fire or explosion hazard. Containers may explode when heated.

SENSITIVE TO STATIC DISCHARGE: Not Established.

SENSITIVITY TO IMPACT: Not Established.

6. ACCIDENTAL RELEASE MEASURES

SMALL SPILL: For emergency information and procedures to follow in the case of an accidental release, call the Emergency Telephone Number(s) listed in Section 1 of this SDS. Eliminate all ignition sources (no smoking, flares, sparks or flames in immediate area). As an immediate precautionary measure, isolate spill or leak area 50 meters (160 feet) in all directions. Evacuate building and all affected areas. Keep unauthorized personnel away. Do not touch or walk through spilled material. Stay upwind. Keep out of low areas. Stop leak if you can do it without risk. Prevent entry into waterways, sewers, basements or confined areas. Dike far ahead of liquid for later disposal. Absorb or cover with dry earth, sand or other non-combustible material and transfer to containers. Use clean non-sparking tools to collect absorbed material. Water spray may reduce vapor; but may not prevent ignition in closed spaces. A vapor suppressing foam may be used to reduce vapors. Provide sufficient ventilation in the affected area(s) and wear appropriate personal protective equipment as indicated in Section 8 when handling spill material. This material has been reported to behave when spilled in water in a manner that it partitions and the lighter ends volatize off and the heaver ends can sink.

LARGE SPILL: Use similar response procedures as indicated under Small Spill. Consider initial downwind evacuation for at least 100 meters (330 feet). Large releases may require the notification of local emergency response agencies. Wear self-contained breathing apparatus if conditions or air monitoring warrants.

7. HANDLING AND STORAGE

GENERAL PROCEDURES: Handle in accordance with good industrial hygiene and safety practices. These practices include but are not limited to avoiding unnecessary exposure and prompt removal of material from eyes, skin and clothing. Wash exposed skin and clothing frequently. If needed, take first aid actions as indicated in Section 4 of this SDS.

HANDLING: Wear appropriate personal protective equipment and use exposure controls as indicated in Section 8. Vent slowly to the atmosphere when opening. Avoid all contact with skin and eyes. Avoid breathing product dust or vapors. Use explosion-proof electrical (ventilating, lighting and material handling) equipment. Remove contaminated clothing immediately. Wash with soap and water after working with this product.

STORAGE: Keep in airtight container away from all heat sources. Store the container in a segregated and approved area. Store in a cool, dry location, away from direct sunlight, sources of intense heat, or where freezing is possible. Keep container in a well-ventilated area. Ground all containers during transfer. Store containers away from incompatible materials. Store in the original container or an approved alternative made from compatible material. Do not store in unlabeled containers. Treat empty containers in a similar fashion as residual product may exist. Use appropriate containment to avoid environmental containing.

STORAGE TEMPERATURE: Store containers of product in a cool (between 50°F or below), well ventilated location.

STORAGE PRESSURE: Store in a room with ambient atmospheric pressure.

ELECTROSTATIC ACCUMULATION HAZARD: Not Established.

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

		EXPOSURE LIMITS	
		OSHA PEL	ACGIH TLV
Chemical Name		ppm	ppm
Benzene	TWA	1	0.5
	STEL	5	2.5
	TWA	200	20
Toluene	STEL	300	N/E

Non-Sour Natural Gas Condensate (Atmospheric Liquid)

	STEL	125	N/E
	TWA	100	100
m-p Xylene	STEL	150	150
	TWA	100	100
o- Xylene	STEL	150	150
Hexane	TWA	50	50
nexalle	STEL	N/E	N/E
Hydrogen Sulfide	TWA	N/E	1
Hydrogen Sunde	STEL	20	5
Propane	TWA	1000	N/E
i iopane	STEL	N/E	N/E
n-Pentane	TWA	1000	1000
	STEL	N/E	N/E

Note: OSHA has also assigned H_2S a STEL value of 50 ppm for a 10-minute peak that may be reached only once per 8-hour shift. In the event no Federal OSHA PEL exists for a constituent, California/OSHA PELs have been substituted, as appropriate.

EXPOSURE GUIDELINES

ENGINEERING CONTROLS: Provide adequate general and local ventilation to maintain airborne chemical concentrations below applicable exposure limits, to prevent accumulation of flammable vapors and formation of explosive atmospheres, and to prevent formation of oxygen deficient atmospheres, especially in confined spaces. This product may release gases or vapors that can displace oxygen in enclosed areas.

PERSONAL PROTECTIVE EQUIPMENT

EYES AND FACE: Employees should be provided with and required to use splash-proof safety goggles and full face splash shields where there is any possibility of product coming in contact with eyes. Contact lenses are not eye protective devices. Appropriate eye protection must be worn instead of contact lenses. Ensure that eye wash station is operable and nearby.

SKIN: Consider wearing long-sleeve, FRC, otherwise normal working clothes should be worn. Wash contaminated clothing prior to reuse. If gloves are required for job operations involving this product, wear nitrile rubber or polyvinylalcohol (PVAL) gloves.

RESPIRATORY: Respiratory protection is normally not required except in emergencies or when conditions cause excessive airborne levels of mists or vapors. Select NIOSH-approved organic vapor air-purifying respirator, SCBA or air-supplied respirator where there may be potential for overexposure.

PROTECTIVE CLOTHING: Long sleeve shirt and long pants or coveralls; Consider wearing long-sleeve, FRC, . Consider wearing butyl rubber apron or outerwear where splashing may occur. Fully encapsulating, vapor protective clothing should be worn for spills and leaks with no fire.

WORK HYGIENIC PRACTICES: Use good personal hygiene practices. Avoid repeated and/or prolonged skin exposure. Wash hands before eating, drinking, smoking, or using toilet facilities. Promptly remove contaminated clothing and launder before reuse. Shower after work using plenty of soap and water.

OTHER USE PRECAUTIONS: FIREFIGHTING AND OTHER IMMEDIATELY DANGEROUS TO LIFE OR DEATH CONDITIONS - A self-contained breathing apparatus with full face piece operated in a pressure-demand or other positive pressure mode is recommended for firefighting or other immediately dangerous to life and death conditions. Supplied-air respirator with full face piece and operated in pressure-demand or other positive pressure mode in combination with an auxiliary self-contained breathing apparatus operated in pressure-demand or other positive pressure mode may also be used.

COMMENTS: EXPOSURE LIMITS & SOURCES - Refer to Section 16 Table 1 for additional exposure limits and sources for this product or its components, whichever applies.

9. PHYSICAL AND CHEMICAL PROPERTIES

ODOR: Hydrocarbon. APPEARANCE: Clear Liquid pH: 5.5 to 8.0 VAPOR PRESSURE: Not Established. VAPOR DENSITY: > 1.0 (Air = 1) BOILING POINT: Varies widely depending on hydrocarbon content. FREEZING POINT: <0℃ (32年) POUR POINT: Not Established. FLASH POINT: 22°C (72°F) May flash at lower temperatures.. SOLUBILITY IN WATER: Not Established. EVAPORATION RATE: Not Established. SPECIFIC GRAVITY: < 1.0 at 0℃ (32°F) VISCOSITY: Not Established. COEFF. OIL/WATER: Not Established.

ODOR THRESHOLD: Not Established.

RELATIVE DENSITY: Not Established.

DECOMPOSTION TEMP: Not Established.

AUTO-IGNITION TEMP: Not Established.

10. STABILITY AND REACTIVITY

STABLE: Yes

HAZARDOUS POLYMERIZATIO N: No

STABILITY: CHEMICAL STABILITY - This product is anticipated to be stable under normal ambient storage and handling conditions of temperature and pressure.

POLYMERIZATION: This product is not anticipated to cause hazardous reactions or polymerizations under normal ambient storage and handling conditions of temperature and pressure.

CONDITIONS TO AVOID: Avoid contact with incompatible materials such as heat, open flame, other sources of ignition, and oxidizing materials such as chlorine and concentrated nitric acid.

HAZARDOUS DECOMPOSITION PRODUCTS: This product may produce carbon monoxide and carbon dioxide during decomposition.

11. TOXICOLOGICAL

INFORMATION ACUTE

Chemical Name	ORAL LD ₅₀ (rat)	DERMAL LD ₅₀ (rabbit)	INHALATIO N LC₅₀ (rat)
Xylene	5000 mg/kg	12400 mg/kg	4550 ppm (4 hours)
Hexane	25 g/kg	Not Established.	48000 ppm (4 hours)
Crude Oil	< 5000 mg/kg	> 2000 mg/kg	Not Established
Toluene	636 mg/kg	14100 ug/kg	49 g/m ³ (4 hours)

Non-Sour Natural Gas Condensate (Atmospheric Liquid)

Benzene	930 mg/kg	< 9400 ug/kg	10000 ppm (7 hours)
Ethyl benzene	<= 3500 mg/kg	<= 3500 mg/kg	<= 55000 mg/m ³
Hydrogen Sulfide	Not Established	Not Established.	700 mg/m3 (4 hours)

EYE EFFECTS: May cause moderate to severe eye irritation.

SKIN EFFECTS: May cause mild skin irritation. Prolonged or repeated contact may result in mild irritation. May be absorbed through skin with toxic effects.

CHRONIC: This product contains benzene, which can cause degeneration in blood forming bone marrow leading to anemia, which may further degrade to leukemia, a type of cancer. Chronic exposure affects the hematopoietic system causing blood disorders including anemia and pancytopenia.

CARCINOGENICITY

Chemical Name	NTP Status	IAR C Status	OSHA Status
Crude Oil		3	
Benzene	1	1	Carcinogen.

SENSITIZATION: This product is not expected to be a skin sensitizer.

NEUROTOXICITY: Not Established.

GENETIC EFFECTS: Not Established.

REPRODUCTIVE EFFECTS: Not Established.

TERATOG ENIC EFFECTS: Not Established.

MUTAGENICITY: Not Established.

12. ECOLOGICAL INFORMATION

ENVIRONMENTAL DATA: MOBILITY IN SOIL POTENTIAL - Not Established.

BIOACCUMULATION/ACCUMULATION: Not Established.

DISTRIBUTION: Do not discharge into or allow runoff to flow into sewers and natural waterways. Contain spill material and dike for proper disposal.

AQUATIC TOXICITY (ACUTE): This product is not expected to be acutely harmful to aquatic life.

CHEMICAL FATE INFORMATION: PERSISTENCE & DEGRADABILITY - Not Established.

GENERAL COMMENTS: Any other adverse environmental effects, such as environmental fate (exposure), ozone depletion potential, photochemical ozone creation potential, endocrine disrupting potential, and global warming potential are indicated in this section if data exists. Otherwise, this data has not been established.

13. DISPOSAL CONSIDERATIONS

DISPOSAL METHOD: Properly characterize the material and to manage it in accordance with applicable Federal, state and local regulations.

14. TRANSPORT INFORMATION

DOT (DEPARTMENT OF TRANSPORTATIO N) PROPER SHIPPING NAME: Flammable liquid, n.o.s. PRIMARY HAZARD CLASS/DIVISION: 3 UN/NA NUMBER: 1993 PACKING GROUP: II NAERG: 128

15. REGULATORY

INFORMATION UNITED

STATES

SARA TITLE III (SUPERFUND AMENDMENTS AND REAUTHORIZATION ACT)

311/312 HAZARD CATEGORIES: Fire hazard. Immediate (acute) health hazard. Delayed (chronic) health hazard.

FIRE: Yes PRESSURE GENERATING: No REACTIVITY: No ACUTE: Yes CHRONIC: Yes

EPCRA SECTION 313 SUPPLIER NOTIFICATION

Chemical Name	Vol. %	CAS
Benzene	<0-1.0	71-43-2

CERCLA (COMPREHENSIVE RESPONSE, COMPENSATION, AND LIABILITY ACT)

Chemical Name	Vol. %	CERCLA RQ
Benzene	<0-1.0	10
Hydrogen Sulfide	<0-1.0	100

TSCA (TOXIC SUBSTANCE CONTROL ACT)

Chemical Name	CAS
Crude Oil	8002-05-9
Benzene	71-43-2
Hydrogen Sulfide	7783-06-4

CLEAN AIR ACT

Chemical Name	Vol. %	CAS
Hydrogen Sulfide	<0-1.0	7783-06-4

16. OTHER INFORMATIO N

RELEVANT R-PHRASES:

R36/37/38: Irritating to eyes, respiratory system and skin.

R45: May cause cancer.

R46: May cause heritable genetic damage.

R11: Highly flammable.

R36/38: Irritating to eyes and skin.

R65: Harmful: may cause lung damage if swallowed.

R12: Extremely flammable.

R26: Very toxic by inhalation.

R50: Very toxic to aquatic organisms.

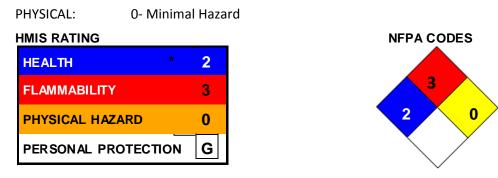
PREPARED BY:

REVISION SUMMARY:

NATIONAL FIRE PROTECTION ASSOCIATION®HAZARD RATING

HEALTH: 2-Hazardous

FIRE: 3-Below 100°F (flashpoint)


REACTIVITY: 0- Stable

HAZARDOUS MATERIAL IDENTIFICATION SYSTEM®HAZARD RATING

HEALTH: 2*- Moderate Hazard (*Chronic)

FIRE: 3- Serious Hazard

Non-Sour Natural Gas Condensate (Atmospheric Liquid)

DATA SOURCES: REFERENCES

ACGIH. 2012 Guide to Occupational Exposure Values. Cincinnati, OH. Signature Publications, 2012.

Forsberg, K.; Mansdorf, S.Z. Quick Selection Guide to Chemical Protective Clothing. Fifth Edition. Hoboken, NJ. John Wiley & Sons, 2007.

Lide, D.R. CRC Handbook of Chemistry and Physics. 88th Edition. Boca Raton, FL. CRC Press, 2008.

UNECE. Globally Harmonized System of Classification and labeling of Chemicals (GHS). Third Revised Edition. New York and Geneva. United Nations, 2009.

US DOT; Pipeline and Hazardous Materials Safety Administration. 2008 Emergency Response Guidebook. Neenah, WI. J.J. Keller & Associates, Inc. 2008.

US EPA. Consolidated List of Chemicals Subject to the Emergency Planning and Community Right-To-Know Act (EPCRA) and Section 112(r) of the Clean Air Act. [Available] Online: <u>http://www.epa.go v/ceppo/pubs/title3.pdf</u>. Retrieved 02/02/2011.

ADDITIONAL MSDS

INFORMATION: <u>KEY / LEGEND</u>

ACGIH - American Conference of Governmental Industrial Hygienists

- ADR Agreement on Dangerous Goods by Road
- CAA Clean Air Act

CAS - Chemical Abstracts Service Registry Number

CDG - Carriage of Dangerous Goods By Road and Rail Manual

CERCLA - Comprehensive Environmental Response, Compensation, and Liability Act

CFR - Code of Federal Regulations

EINECS - European Inventory of Existing Chemical Substances Registry Number

ERG - Emergency Response Guidebook

EPCRA - Emergency Planning and Community Right-to-Know Act

GHS - Globally Harmonized System of Classification and Labeling of Chemicals

IARC - International Agency for Research on Cancer

IATA - International Air Transport Association

ICAO - International Civil Aviation Organization

IMDG - International Maritime Dangerous Goods Code

IMO - International Maritime Organization

N/E - Not Established

NTP - National Toxicology Program

OSHA - Occupational Safety and Health Administration

PEL - Permissible Exposure Limit

PPE - Personal Protective Equipment

RCRA - Resource Conversation and Recovery Act

RID - Regulations Concerning the International Transport of Dangerous Goods by Rail

RQ - Reportable Quantities

SARA - Superfund Amendments and Reauthorization Act of 1986

SDS - Safety Data Sheet

TCC - Tag Closed Cup

TDG - Transportation of Dangerous Goods

TLV - Threshold Limit Value

TSCA - Toxic Substance Control Act

UN/NA - United Nations / North American Number

UNECE - United Nations Economic Commission for Europe

Sweet Produced Water

US DOT - United States Department of Transportation US EPA - United States Environmental Protection Agency Vol. - Volume WHMIS - Workplace Hazardous Materials Information System

GENERAL STATEMENTS: Other information not included anywhere else in this SDS is included in this section if, in fact, such data exists.

MANUFACTURER DISCLAIMER: This information relates to the specific material designated and may not be valid for such material used in combination with any other materials or in any process. Such information is to the best of our knowledge and belief, accurate and reliable as of the date compiled. However, no representation, warranty or guarantee is made as to its accuracy, reliability or completeness. NO WARRANTY OF MERCANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY OTHER WARRANTY, EXPRESSED OR IMPLIED, IS MADE CONCERNING THE INFORMATION HEREIN PROVIDED. It is the user's responsibility to satisfy himself as to the suitability and completeness of such information for his own particular use. We do not accept liability for any loss or damage that may occur from the use of this information nor do we offer warranty against patent infringement.

SAFETY DATA SHEET

Date Issued : SDS No : Date Revised : Revision No :

Crude Oil (West Virginia)

IMPORTANT

This SDS has been prepared for Non-Sour Natural Gas Condensate at atmospheric pressure (i.e., atmospheric liquid). Refer to the following sections for important safety and response information. **Section 4**- First Aid Measures (for accidental exposure). **Section 5**- Fire Fighting Measures. **Section 6**- Accidental Release Measures.

1. PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME: Crude Oil (West Virginia) **GENERAL USE:** Refinery Feedstock.

2. HAZARDS IDENTIFICATION

This product has not been tested to determine its specific health hazards. Therefore, the information provided in this section includes health hazard information based on the product components.

GHS CLASSIFICATIONS

Health	Physical
H304- Aspiration Hazard, Category 1 Carcinogenicity, Category 2 H320- Eye Irritation, Category 2B H315- Skin Irritant, Category 2	H224- Extremely Flammable Liquids, Category 1

GHS LABEL

WARNING	WARNING
H320: Causes eye irritation. H315: Causes skin irritation.	H411: Toxic to aquatic life with long lasting effects.
DANGER H304: May be fatal if swallowed and enters airways. H351: Suspected of causing cancer.	DANGER H224: Extremely flammable liquid and vapor.

Crude Oil

PRECAUTIONARY

STATEMENT(S)

Prevention:

P210: Keep away from heat/sparks/open flames/hot surfaces – no smoking. P233: Keep container tightly closed.
P240: Ground/bond container and receiving equipment.
P241: Use explosion-proof electrical / ventilating / lighting / transportation devices / other equipment associated with this product.
P242: Use only non-sparking tools.
P261:

P280: Wear protective gloves/protective clothing/eye protection/face

protection. P201: Obtain special instructions before use.

P202: Do not handle until all safety precautions have been read and

Response:

P331: Do NOT induce vomiting.

P305+P351+P338: IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.

P337+P313: If eye irritation persists: Get medical advice/attention.

P303+P361+P353: IF ON SKIN (or hair): Remove/take off immediately all contaminated clothing. Rinse skin with water/shower.

P308+P313: IF exposed or concerned: Get medical

advice/attention. P302+P352: IF ON SKIN: Wash with plenty

of soap and water. P332+P313: If skin irritation occurs: Get

medical advice/attention. P362: Take off contaminated

clothing and wash before reuse.

P391: Collect spillage.

Storage:

P403+P235: Store in a well-ventilated place. Keep cool.

Disposal:

P501: Dispose of contents/container in accordance with local/regional/national/international regulations.

EMERGENCY OVERVIEW

PHYSICAL APPEARANCE: Dark Green to Black liquid.

IMMEDIATE CONCERNS: This product is a flammable liquid which may be harmful if ingested, inhaled, comes in contact with skin or eyes or is released into the environment. Please read the entire contents of Section 2 of this Safety Data Sheet (SDS) for details.

POTENTIAL HEALTH EFFECTS

- **EYES:** Eye contact with vapors may cause eye irritation, watering of eyes and reddening. Eye contact with liquid may cause irritation and pain. Prolonged contact may result in tissue damage.
- **SKIN:** Skin contact may cause irritation and redness. Repeated or prolonged skin contact may cause dermatitis. Crude oil is a defatting agent and skin contact may cause dryness, itching, and cracked skin.
- **INGESTION:** Ingestion of crude oil may cause a burning sensation in the mouth and stomach, nausea, vomiting, excess salivation and vomiting of blood. Ingestion of crude oil may cause tachycardia, staggering gait, dizziness, loss of consciousness and delirium, followed by chemical pneumonitis and collapse. May also cause abrupt CNS depression. Crude oil may present a potential aspiration hazard if ingested. Aspiration of even small amounts of crude oil into the lungs can result in immediate pulmonary edema (a potentially fatal accumulation of fluid in the lungs), chemical pneumonitis and hemorrhage of pulmonary tissue.
- **INHALATION:** Vapors or mist from this material, at concentrations greater than the recommended exposure limits in Section 2, can cause irritation of the nose, throat, and lungs, headache, dizziness, drowsiness, loss of coordination, fatigue, nausea and labored breathing. Airborne concentrations above the recommended exposure limits are not anticipated during normal workplace activities due to the slow evaporation of this material at ambient temperatures.

Warning: Irritating and toxic hydrogen sulfide gas may be found in the confined vapor spaces. Greater than 15-20 ppm continuous exposure can cause mucous membrane and respiratory tract irritation. 50-500 ppm can cause headache,

Crude Oil

nausea, and dizziness, loss of reasoning and balance, difficulty in breathing, fluid in lungs, and possible loss of consciousness. Greater than 500 ppm can cause rapid or immediate unconsciousness due to respiratory paralysis and death by suffocation unless the victim is removed from exposure and successfully resuscitated. The "rotten egg" odor of hydrogen sulfide is not a reliable indicator for warning of exposure, since olfactory fatigue (loss of smell) readily occurs, especially at concentrations above 50 ppm. At high concentrations, the victim may not even recognize the odor before becoming unconscious.

Warning: The burning of any hydrocarbon as a fuel in an area without adequate ventilation may result in hazardous levels of combustion products and inadequate oxygen levels, which may lead to suffocation, unconsciousness and death.

SIGNS AND SYMPTOMS OF OVER EXPOSURE

ACUTE TOXICITY: May cause adverse health effects if ingested. May cause irritation if inhaled or absorbed through skin. Prolonged or repeated contact may defat the skin and/or cause irritation to skin and eyes. Fire will produce irritating, toxic gases. Vapors may cause dizziness or suffocation.

CHRONIC EFFECTS: Chronic exposure to benzene (a component of crude oil) may cause serious damage to health by all routes of exposure. Chronic oral and inhalation exposure may cause severe effects on the blood system, including damage to the bone marrow, leading to a decrease in production or changes to the cells of hemoglobin, hematocrit, red and white blood cells. Effects may occur with an exposure level as low as 10 ppm for 24 weeks. Benzene may also cause harmful changes to the immune system. Benzene is a confirmed human carcinogen. See Section 11 of this SDS for further information.

CARCINOGENICITY: The NTP and IARC list benzene as a "human carcinogen." IARC lists ethyl benzene as a Group 2B carcinogen. OSHA reports an 8-hour TWA of 1ppm. See Section 11 of this SDS for more details.

MUTAGENICITY: May cause genetic defects. Some crude oils and crude oil fractions have been positive in mutagenicity studies.

REPRODUCTIVE TOXICITY

REPRODUCTIVE EFFECTS: Not Established.

MEDICAL CONDITIONS AGGRAVATED:

Benzene: Pre-existing blood system disorders, respiratory conditions, central nervous, liver, kidney, and cardiovascular conditions may be aggravated by severe or chronic overexposure to benzene. Skin disorders may also be aggravated by exposures to benzene.

Ethyl Benzene: Pre-existing respiratory conditions, central nervous system, liver, kidney, and cardio-vascular conditions may be aggravated by severe or chronic overexposure to this product. Skin disorders may also be aggravated by exposures to this product.

ROUTES OF ENTRY: Inhalation, skin contact, eye contact, ingestion.

TARGET ORGAN STATEMENT: May cause damage to blood forming organs, eyes, skin, lungs, central nervous system, and respiratory system.

SENSITIZATION: Scientific evidence suggests that propane and butane may cause cardiac sensitization.

INGREDIENTS		
Chemical Name	Vol. %	CAS
Chloride	<0-0.1	7782-50-5
n- Hexane		
	1-2	110-54-3
Naphthalene	<0- 0.1	91-20-3
m-p xylene	<0- 0.1	179601-23-1
o- xylene	<0-0.1	95-47-6
Crude Oil	85-90	8002-05-9
1,2,4 Trimethylbenzene	<0- 0.1	95-63-6

3. COMPOSITION / INFORMATIO N ON INGREDIENTS

Crude Oil

Toluene	<0- 0.1	108-88-3
Benze ne	<0- 0.1	71-43-2
Ethyl Benzene	<0- 0.1	100-41-4
Total Sulfur Compounds	<0- 0.1	
Hydrogen Sulfide	<001	7783-06-4

COMMENTS: Crude oil is a mixture of hundreds of hydrocarbon compounds and may also include components not listed. Components with percent volume prefaced with "~" are typical ranges found for crude oil.

4. FIRST AID MEASURES

EYES: Immediately flush with large amounts of water, holding eyelids open, for at least 20 minutes. Repeat if necessary. Remove contact lenses, if present and easy to do. Seek medical assistance if irritation persists.

SKIN: Immediately remove contaminated clothing or shoes, wipe excess from skin and flush with plenty of water for at least 15 minutes. Do not reuse clothing until thoroughly cleaned. Get medical attention.

INGESTION: Do not induce vomiting. If vomiting occurs spontaneously, keep head below hips to prevent aspiration of liquid into the lungs. Slowly give 1-2 glasses of water or milk and seek medical attention. Never give anything by mouth to an unconscious person.

INHALATION: Move victim to fresh air. Give artificial respiration if victim is not breathing. Do not use mouth-to-mouth method if victim ingested or inhaled the substance; give artificial respiration with the aid of a pocket mask equipped with a one-way valve or other proper respiratory medical device. Administer oxygen if breathing is difficult. Get medical attention.

ANTIDOTES: Not Established.

ADDITIONAL INFORMATIO N: Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves. First Aid Responders are advised to wear personal protective equipment as found in Section 8 of this SDS.

COMMENTS: CONTRAINDICATIONS - Not Established.

5. FIRE FIGHTING MEASURES

 FLASH POINT: <</td>

 40°C (105°F)

 AUTOIGNITION TEMPERATURE: 232°C (450°F)

 FLAMMABLE CLASS: Class B.

 GENERAL HAZARD: DECOMPOSITION TEMPERATURE - Not Established.

 EXTINGUISHING MEDIA:

 SMALL FIRE - Class B fire extinguisher, carbon dioxide, multipurpose dry chemical, water fog or alcohol-resistant foam.

 LARGE FIRE - Water fog or alcohol-resistant foam.

 HAZARDOUS COMBUSTION PRODUCTS: Any combustion, including incomplete combustion, may form carbon monoxide and carbon dioxide. Burning produces noxious and toxic fumes. Downwind personnel must be evacuated.

 OTHER CONSIDERATIONS: INAPPROPRIATE EXTINGUISHING MEDIA - Do not use water jet.

FIRE FIGHTING PROCEDURES: PROTECTIVE ACTIONS TO TAKE DURING FIRE FIGHTING - Move containers from fire area if you can do it without risk. Dike fire-control water for later disposal; do not scatter the material. Evacuate 800 meters (1/2 mile) in all directions. Persons involved in fire fighting response involving this product and its containers/packaging should refer to Section 8 of this SDS for the proper selection of exposure controls and personal protective equipment.

FIRE FIGHTING EQUIPMENT: PRECAUTIO NS FOR FIRE INVOLVING TANKS OR CAR/TRAILER LOADS -Isolate and evacuate area for 800 meters (1/2 mile) in all directions. Fight fire from maximum distance or use unmanned hose holders or monitor nozzles. Do not get water inside containers. Cool containers with flooding quantities of water until well after fire is out. Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank. ALWAYS stay away from tanks engulfed in fire.

COMMENTS:

SPECIFIC HAZARDS THAT MAY ARISE FROM THE PRODUCT - Vapors are flammable and heavier than air. Vapors may travel across the ground and reach remote ignition sources causing a flashback fire danger. Sudden reaction and fire may result if product is mixed with an oxidizing agent.

ADDITIONAL INFORMATION: Reference current Emergency Response Guidebook.

6. ACCIDENTAL RELEASE MEASURES

SMALL SPILL: For emergency information and procedures to follow in the case of an accidental release, call the Emergency Telephone Number(s) listed in Section 1 of this SDS. In case of spillage, absorb with inert material and dispose of in accordance with applicable regulations. Dike far ahead of liquid spill for later disposal. Never discharge releases directly into sewers or surface waters. Remove any ignition sources and protect from ignition. Water spray may reduce vapor; but may not prevent ignition in closed spaces. A vapor suppressing foam may be used to reduce vapors. Provide sufficient ventilation in the affected area(s) and wear appropriate personal protective equipment as indicated in Section 8 of this SDS when handling spill material.

LARGE SPILL: Use similar response procedures as indicated under Small Spill.

GENERAL PROCEDURES: MATERIALS & METHODS (EQUIPMENT & TECHNIQUES) FOR CONTAINMENT & CLEANUP - Call Emergency Telephone Number(s) provided in Section 1 of this SDS. As an immediate precautionary measure, isolate spill or leak area for at least 50 meters (150 feet) in all directions. Keep unauthorized personnel away. Stay upwind. Keep out of low areas. Ventilate closed spaces before entering.

RELEASE NOTES: ENVIRONMENTAL PRECAUTIONS - Avoid contact of spilled material with soil and prevent runoff entering surface waterways. Inform the relevant authorities if the product has caused environmental pollution (sewers, waterways, soil or air). Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

SPECIAL PROTECTIVE EQUIPMENT: EMERGENCY & NON-EMERGENCY RESPONDERS - Refer to Section 8 of this SDS for appropriate exposure controls and personal protective equipment (PPE).

COMMENTS: INAPPROPRIATE CONTAINMENT & CLEANUP TECHNIQUES - Not Established.

7. HANDLING AND STORAGE

- **GENERAL PROCEDURES:** Handle in accordance with good industrial hygiene and safety practices. These practices include but are not limited to avoiding unnecessary exposure and prompt removal of material from eyes, skin and clothing. If needed, take first aid actions as indicated in Section 4 of this SDS.
- **HANDLING**: Use only with adequate ventilation. Wear appropriate personal protective equipment and use exposure controls as indicated in Section 8 of this SDS. Vent slowly to the atmosphere when opening. Avoid all contact with skin and eyes. Avoid breathing product dust or vapors. Use explosion-proof electrical (ventilating, lighting and material handling) equipment. Do not reuse container. Remove contaminated clothing immediately. Wash with soap and water after working with this product.
- **STORAGE:** Keep in airtight container away from all heat sources. Store in a segregated and approved area. Store in a cool, dry location, away from direct sunlight, sources of intense heat, or where freezing is possible. Keep container in a well-ventilated area. Store away from incompatible materials. Store in the original container or an approved alternative made from compatible material. Do not store in unlabeled containers. Treat empty containers in a similar fashion as residual product may exist. Use appropriate containment to avoid environmental contamination.

STORAGE TEMPERATURE: Store in a room with ambient temperature.

STORAGE PRESSURE: Containers should be stored in room with ambient pressure.

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE GUIDELINES			
OSHA HAZARDOUS COMPONENTS (29 CFR 1910.	1200)		
		Exposur	e Limits
		OSHA PEL	ACGIH TLV
Chemical Name		ppm	ppm
Naphthalene	TWA	10	10
Traphulaiene	STEL	N/E	15
m-p Xylene	TWA	100	100
	STEL	N/E	150
o vulono	TWA	100	100
o-xylene	STEL	N/E	150
	TWA	N/E	25
1,2,4 Trimethylbenzene	STEL	N/E	N/E
Hudrogen Sulfide	TWA	N/E	1
Hydrogen Sulfide	STEL	20	5
Toluene	TWA	200	20
louene	STEL	300	N/E
Banzana	TWA	0.1	0.5
Benzene	STEL	1	2.5
	TWA	100	N/E
Ethyl Benzene	STEL	N/E	N/E
	TWA	500	50
n-Hexane	STEL	N/E	N/E

ENGINEERING CONTROLS: Provide sufficient ventilation to control exposure levels below airborne exposure limits. Use local mechanical exhaust ventilation at sources of air contamination such as open process equipment. Consult current NFPA Standard 91 and ACGIH manual on Industrial Ventilation for design of exhaust system. Have eve baths available at locations where there is potential for eye contact. Provide a safety shower at locations where skin contact can occur.

PERSONAL PROTECTIVE EQUIPMENT

EYES AND FACE: Employees should be provided with and required to use splash-proof safety goggles and full face splash shields where there is any possibility of product coming in contact with eyes. Contact lenses are not eye protective devices. Appropriate eye protection must be worn instead of contact lenses. Ensure that eye wash station is operable and nearby.

SKIN: GLOVES AND BOOTS - Any appropriate fire retardant and impervious gloves and boots including nitrile rubber or neoprene rubber.

RESPIRATORY: Avoid breathing mist, and/or vapor. Use NIOSH/MSHA approved equipment when airborne exposure limits are exceeded. Consult respirator manufacturer to determine appropriate type of equipment for given application. The respirator use limitations specified by NIOSH/MSHA and the manufacturer must be observed. High airborne concentrations may require use of self-contained breathing apparatus or supplied air respirator. Respiratory protection programs must be in compliance with 29 CFR 1910.134.

WORK HYGIENIC PRACTICES: Consider the potential hazards of this material, applicable exposure limits, job activities, environmental working conditions, and other substances in the workplace when designing engineering controls and selecting personal protective equipment (PPE). The user should read and understand all manufacturer instructions and limitations supplied with the personal protection equipment before use.

9. PHYSICAL AND CHEMICAL PROPERTIES

ODOR: Hydrocarbon. APPEARANCE: Dark Green to Black liquid pH: Not Established. BOILING POINT: (20°F) to (40°F) 760 mmHg FREEZING POINT: Not Established. MELTING POINT: Not Established. FLASH POINT: < 38℃ (100°F) SOLUBILITY IN WATER: Not Established. SPECIFIC GRAVITY: 0.80 **Notes:** H₂O = 1 at 60°F MOLECULAR WEIGHT: 152 COEFF. OIL/WATER: Not Established. **ODOR THRESHOLD:** Not Established. EVAPORATION RATE: Not Established. %VOLITALES BY VOLUME: 20-100% VAPOR DENSITY (Air=1): 1.0-3.0 VAPOR PRESSURE: Not Established. COMMENTS: FLAMMABILITY - Refer to Section 2 and Section 5 of this SDS for classification and flammability characteristics.

10. STABILITY AND REACTIVITY

STABLE: Yes

HAZARDOUS POLYMERIZATIO N: No

STABILITY: This product is anticipated to be stable under normal ambient storage and handling conditions of temperature and pressure.

POLYMERIZATION: This product is not anticipated to cause hazardous reactions or polymerizations under normal ambient storage and handling conditions of temperature and pressure.

CONDITIONS TO AVOID: Avoid contact with high temperatures, open flames, sparks, welding, smoking and other ignition sources.

HAZARDOUS DECOMPOSITION PRODUCTS: This product may produce carbon monoxide, carbon dioxide, aromatics, and other hydrocarbons during decomposition.

INCOMPATIBLE MATERIALS: Strong oxidizing agents.

11. TOXICOLOGICAL INFORMATION

AC	UTE			
	Chemical Name	ORAL LD ₅₀ (rat)	DERMAL LD ₅₀ (rabbit)	INHALATION LC ₅₀ (rat)
	Naphthalene	490 mg/kg	2001 mg/kg	170 ppm (4 hours)
	m-p xylene	5000 mg/kg	12400 mg/kg	4550 ppm (4 hours)
	o xylene	Not Established.	Not Established.	Not Established.
	1,2,3 Trimethylbenzene	5000 mg/kg	Not Established.	18000mg/m ³ (4 hours)
	n-Hexane	25 g/kg	Not Established.	48000 ppm (4 hours)
	Hydrogen Sulfide	Not Established.	Not Established.	⁷⁰⁰ mg/m ³ (4 hours)
	Toluene	636 mg/kg	14100 ug/kg	49 g/m ³ (4 hours)
	Benzene	930 mg/kg	< 9400 ug/kg	10000 ppm (7 hours)
	Ethyl Benzene	<= 3500 mg/kg	<= 3500 mg/kg	<= 55000 mg/m ³

NOTES: TOXICITY & HEALTH EFFECTS - Refer to Section 2 of this SDS for additional hazards identification.

EYE EFFECTS: May cause moderate to severe eye irritation.

SKIN EFFECTS: Prolonged or repeated contact may result in mild irritation. May be absorbed through skin with toxic effects.

CHRONIC: TOXICITY & HEALTH EFFECTS - Studies have shown that similar products produce skin tumors in laboratory animals following repeated applications without washing or removal. The significance of this finding to human exposure has not been determined. Other studies with active skin carcinogens have shown that washing the animal's skin with soap and water between applications reduced tumor formation. This product contains benzene. Human health studies indicate that prolonged and/or repeated overexposure to benzene may cause damage to the blood-forming system (particularly bone marrow), and serious blood disorders such as aplastic anemia and leukemia.

CARCINOGENICITY

Chemical Name	NTP Status	IARC Status	OSHA Status
Toluene		3	
Benzene	1	1	Carcinogen.
Ethyl Benzene		2B	

Notes: Benzene - Caused cancer (leukemia), damage to the blood-producing system and serious blood disorders from prolonged, high exposure based on human epidemiology studies. Caused genetic effects and effects on the immune system in laboratory animal and some human studies. Caused toxicity to the fetus in laboratory animal studies.

Ethylbenzene - Caused cancer in laboratory animal studies. The relevance of these findings to humans is uncertain. **n-Hexane** - Prolonged and/or repeated exposures to n-Hexane can cause progressive and potentially irreversible damage to the peripheral nervous system. Simultaneous exposure to methyl ethyl ketone (MEK) or methyl isobutyl ketone (MIBK) and n-Hexane can potentiate the risk of adverse effects from n-Hexane on the peripheral nervous system. n-Hexane has been shown to cause testicular damage at high doses in male rats. The relevance of this effect for humans is unknown.

REPEATED DOSE EFFECTS: TARGET ORGANS - Repeated exposure may cause damage to organs such as liver, kidneys, blood and nervous system and skin, depending on routes of exposure.

SENSITIZATION: Scientific evidence suggests that propane and butane may cause cardiac sensitization.

NEUROTOXICITY: Not Established.

GENETIC EFFECTS: Not Established.

REPRODUCTIVE EFFECTS: Not Established.

TERATOG ENIC EFFECTS: Not Established.

MUTAGENICITY: May cause genetic defects. Some crude oils and crude oil fractions have been positive in mutagenicity studies. **GENERAL COMMENTS:**

INTERACTIVE EFFECTS - Not Established.

12. ECOLOGICAL INFORMATION

ENVIRONMENTAL DATA:

MOBILITY IN SOIL POTENTIAL - Not established for this mixture, however this mixture contains volatile constituents. Partly evaporates from water or soil surfaces, but significant proportion will remain after one day. If the product enters the soil, one or more constituents will or may be mobile and may contaminate groundwater.

ECOTOXICOLO GICAL INFORMATION: This product has no known ecotoxicological effects.

TERRESTRIAL/MICROO RGANISM TOXICITY –

ACUTE: Ecological data does not exist for this mixture.

CHRONIC: Ecological data does not exist for this mixture.

BIOACCUMULATION/ACCUMULATION: Has the potential to bioaccumulate.

AQUATIC TOXICITY (ACUTE): This product is expected to be harmful to aquatic life.

Notes: (CHRONIC) - May cause long lasting harmful effects to aquatic life.

CHEMICAL FATE INFORMATION:

PERSISTENCE & DEGRADABILITY - Major constituents are inherently biodegradable, but contains components that may persist in the environment. The volatile constituents will oxidize rapidly by photochemical reactions in air.

GENERAL COMMENTS: Any other adverse environmental effects, such as environmental fate (exposure), ozone depletion potential, photochemical ozone creation potential, endocrine disrupting potential, and global warming potential are indicated in this section if data exists. Otherwise, this data has not been established.

COMMENTS: Data from laboratory studies and from scientific literature is noted in this section if available. Otherwise, data has not been established.

13. DISPOSAL CONSIDERATIONS

DISPOSAL METHOD: The generator of a waste is responsible to determine if the material disposed of meets federal, state, or local criteria to be defined as a hazardous waste and dispose of accordance with applicable Federal, state and local regulations.

14. TRANSPORT INFORMATION

DOT (DEPARTMENT OF TRANSPORTATIO N)

PROPER SHIPPING NAME: Petroleum crude oil. PRIMARY HAZARD CLASS/DIVISION: 3 UN/NA NUMBER: 1267 PACKING GROUP: II NAERG: 128 VESSEL (IMO/IMDG) SHIPPING NAME: Petroleum crude oil. UN/NA NUMBER: 1267 PRIMARY HAZARD CLASS/DIVISION: 3

PACKING GROUP: II

15. REGULATORY INFORMATION

SARA TITLE III (SUPERFUND AMENDMENTS AND REAUTHORIZATION ACT)

311/312 HAZARD CATEGORIES: Fire hazard. Immediate (acute) health hazard. Delayed (chronic) health hazard. FIRE: Yes PRESSURE GENERATING: No REACTIVITY: No ACUTE: Yes CHRONIC: Yes EPCRA SECTION 313 SUPPLIER NOTIFICATION

Chemical Name	Wt.%	CAS
n-Hexane	1-2	110-54-3
Benzene	<0- 0.1	71-43-2

CERCLA (COMPREHENSIVE RESPONSE, COMPENSATION, AND LIABILITY ACT)

Chemical Name	Wt.%	CERCLA RQ
n-Hexane	1-2	5,000
Toluene	<0- 0.1	1,000
Benzene	<0- 0.1	10
Ethyl Benzene	<0- 0.1	1,000

TSCA (TOXIC SUBSTANCE CONTROL ACT)

Naphthalene	91-20-3
m-p- Xylene	179601-23-1
n-Hexane	110-54-3
1,2,4- Trimethylbenzene	95-63-6
Propane	74-98-6
2-methylpentane	107-83-5
Toluene	108-88-3
Benzene	71-43-2
Ethyl Benzene	100-41-4

OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION (OSHA)

29 CFR1910.119---PROCESS SAFETY MANAGEMENT OF HIGHLY HAZARDOUS CHEMICALS: Benzene is subject to the requirements of CFR 29 1910.1028, the OSHA Benzene Standard. The Action Level for Benzene is 0.5 ppm as an 8-hour, time-weighted average under this regulation. Benzene is not listed in Appendix A as a highly hazardous chemical, per 29 CFR 1910.119: Process Safety Management of Highly Hazardous Chemicals. Under this regulation, however, any process that involves a flammable liquid on-site, in one location, in quantities of 10,000 lbs (4,553 kg) or greater is covered under this regulation unless it is used as a fuel.

U.S. FEDERAL, STATE, and LOCAL REGULATORY INFORMATION

This product contains constituent listed on the EPA TSCA Inventory. Any spill or uncontrolled release of this product, including any substantial threat of release, may be subject to federal, state and/or local reporting requirements. This product and/or its constituents may also be subject to other regulations at the state and/or local level. Consult those regulations applicable to your facility/operation.

RCRA INFORMATION

This product may be recycled. If disposed, this product is considered ignitable hazardous waste. Consult federal, state, and local waste regulations to determine appropriate disposal options.

CLEAN WATER ACT (OIL SPILLS)

Any spill or release of this product to "navigable waters" (essentially any surface water, including certain wetlands) or adjoining shorelines sufficient to cause a visible sheen or deposit of sludge or emulsion must be reported immediately to the National Response Center (1-800-424-8802) or, if not practical, the U.S. Coast Guard with follow-up to the National Response Center, as required by U.S. Federal Law. Also contact appropriate state and local regulatory agencies as required.

CERCLA SECTION 103 and SARA Section 304 (RELEASE TO THE ENVIRONMENT)

The CERCLA definition of hazardous substance contains a "petroleum exclusion" clause that exempts crude oil, refined oil, and unrefined petroleum products, and any indigenous components of such. However, other federal reporting requirements (e.g., SARA Section 304 as well as the Clean Water Act if the spill occurs on navigable waters) may still apply.

SARA SECTION 302 EXTREMELY HAZARDOUS SUBSTANCES

This material does not contain chemicals subject to the reporting requirements of SARA 302 and 40 CFR 372.

SARA SECTION 311/312- HAZARD CATERGORIES

Acute Health	Chronic Health	Fire	Sudden Release of Pressure	Reactive
Immediate	Delayed	Х		

This material is subject to the reporting requirements of Section 311-312 of the Emergency Planning and Community Right to Know Act (EPCRA) if stored at quantities in excess of 10,000 pounds at any one time.

SARA SECTION 313- SUPPLIER NOTIFICATION

This product contains the following toxic substances subject to the reporting requirements of section 313 of the Emergency Planning and Community Right-To-Know Act (EPCRA) of 1986 and of 40 CFR 372. See Section 2 for composition, CAS numbers, and exposure limit information for these substances:

- Benzene
- Ethylbenzene
- N-Hexane
- Toluene
- 1,2,4- Trimethylbenzene
- Xylene (mixed isomers)

You may be required to report releases of chemicals listed in 40 CFR 372.28. However, Polycyclic Aromatic Compounds (PACs) are coincidentally manufactured from the combustion of various fuel oils and other petroleum products. Under SARA Section 313, the de minimis exemption has been eliminated for PACs and other listed persistent bio-accumulative and toxic chemicals (PBTs). Refer to EPA guidance for additional reporting information.

EPA NOTIFICATION (OIL SPILLS)

If there is a discharge of more than 1,000-gallons of oil into or upon navigable waters of the United States, or if it is the second spill event of 42 gallons or more of oil into the water within a twelve (12) month period, a written report must be submitted to the Regional Administrator of the SPA within sixty days of the event.

CANADIAN REGULATORY INFORMATION (WHMIS)

Class B (Flammable and combustible Material, Division 2 (Flammable Liquid)

OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION (OSHA)

29 CFR1910.119---PROCESS SAFETY MANAGEMENT OF HIGHLY HAZARDOUS CHEMICALS: Benzene is subject to the requirements of CFR 29 1910.1028, the OSHA Benzene Standard. The Action Level for Benzene is 0.5 ppm as an 8-hour, time-weighted average under this regulation. Benzene is not listed in Appendix A as a highly hazardous chemical, per 29 CFR 1910.119: Process Safety Management of Highly Hazardous Chemicals. Under this regulation, however, any process that involves a flammable liquid on-site, in one location, in quantities of 10,000 lbs (4,553 kg) or greater is covered under this regulation unless it is used as a fuel.

16. OTHER INFORMATIO N

PREPARED BY:

REVISION SUMMARY:

NATIONAL FIRE PROTECTION ASSOCIATION® HAZARD RATING

- HEALTH: 2-Hazardous
- FIRE: 3-Below 100°F (flashpoint)

REACTIVITY: 0- Stable

HAZARDOUS MATERIAL IDENTIFICATION SYSTEM® HAZARD RATING

- HEALTH: 2*- Moderate Hazard (*Chronic)
- FIRE: 3- Serious Hazard
- PHYSICAL: 0- Minimal Hazard

HMIS RATING

HEALTH *	2
FLAMMABILITY	3
PHYSICAL HAZARD	0
PERSONAL PROTECTION	Η

HMIS RATINGS NOTES: Please refer to Section 8 of this SDS for recommended personal protective equipment.

ADDITIONAL MSDS INFORMATION:

KEY / LEGEND

ACGIH - American Conference of Governmental Industrial Hygienists ADR - Agreement on Dangerous Goods by Road CAA - Clean Air Act CAS - Chemical Abstracts Service Registry Number CDG - Carriage of Dangerous Goods By Road and Rail Manual CERCLA - Comprehensive Environmental Response, Compensation, and Liability Act CFR - Code of Federal Regulations EINECS - European Inventory of Existing Chemical Substances Registry Number ERG - Emergency Response Guidebook EPCRA - Emergency Planning and Community Right-to-Know Act GHS - Globally Harmonized System of Classification and Labeling of Chemicals IARC - International Agency for Research on Cancer IATA - International Air Transport Association ICAO - International Civil Aviation Organization IMDG - International Maritime Dangerous Goods Code IMO - International Maritime Organization N/E - Not Established NTP - National Toxicology Program OSHA - Occupational Safety and Health Administration PEL - Permissible Exposure Limit PPE - Personal Protective Equipment RCRA - Resource Conversation and Recovery Act RID - Regulations Concerning the International Transport of Dangerous Goods by Rail **RQ** - Reportable Quantities SARA - Superfund Amendments and Reauthorization Act of 1986 SDS - Safety Data Sheet TCC - Tag Closed Cup TDG - Transportation of Dangerous Goods TLV - Threshold Limit Value TSCA - Toxic Substance Control Act UN/NA - United Nations / North American Number UNECE - United Nations Economic Commission for Europe US DOT - United States Department of Transportation US EPA - United States Environmental Protection Agency Vol. - Volume WHMIS - Workplace Hazardous Materials Information System

GENERAL STATEMENTS: Other information not included anywhere else in this SDS is included in this section if, in fact, such data exists.

MANUFACTURER DISCLAIMER: This information relates to the specific material designated and may not be valid for such material used in combination with any other materials or in any process. Such information is to the best of our knowledge and belief, accurate and reliable as of the date compiled. However, no representation, warranty or guarantee is made as to its accuracy, reliability or completeness. NO WARRANTY OF MERCANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY OTHER WARRANTY, EXPRESSED OR IMPLIED, IS MADE CONCERNING THE INFORMATION HEREIN PROVIDED. It is the user's responsibility to satisfy himself as to the suitability and completeness of such information for his own particular use. We do not accept liability for any loss or damage that may occur from the use of this information nor do we offer warranty against patent infringement

SAFETY DATA SHEET

Date Issued : SDS No : Date Revised : Revision No : 1

Non-Sour Natural Gas

(West Virginia)

IMPORTANT

This SDS has been prepared for Non-Sour Natural Gas. Refer to the following sections for important safety and response information. **Section 4-** First Aid Measures (for accidental exposure).

Section 5- Fire Fighting Measures.

Section 6- Accidental Release Measures.

1. PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME: Non-Sour Natural Gas GENERAL USE: Refinery Feedstock. Common Name and Synonyms:

2. HAZARDS IDENTIFICATION

This product has not been tested to determine its specific health hazards. Therefore, the information provided in

this section includes health hazard information based on the product components.

GHS CLASSIFICATIONS

Health	Physical
Carcinogenicity, Category 1	Gases Under Pressure, Liquefied gas
Hazard Not Otherwise Classified, Simple Asphyxiant	Flammable Gases, Category 1
GHS LABEL	
WARNING	DANGER
H000: May displace oxygen and cause rapid suffocation.	H220: Extremely flammable gas.
WARNING	DANGER
H280: Contains gas under pressure; may explode if heated.	H350: May cause cancer.

PRECAUTIONARY

STATEMENT(S) Prevention:

P210: Keep away from heat/sparks/open flames/hot surfaces - no smoking.

Sweet Natural Gas

P201: Obtain special instructions before use. P202: Do not handle until all safety precautions have been read and understood. P281: Use personal protective equipment as required.

Response:

P377: Leaking gas fire: Do not extinguish unless leak can be stopped safely. P381: Eliminate all ignition sources if safe to do so. P308+P313: IF exposed or concerned: Get medical advice/attention.

Storage:

P403: Store in a well-ventilated place.

P410+P403: Protect from sunlight. Store in a well-ventilated place

Disposal:

P501: Dispose of contents/container in accordance with local/regional/national regulations.

EMERGENCY OVERVIEW

PHYSICAL APPERANCE:

IMMEDIATE CONCERNS: HAZARD DESCRIPTION / WARNING INFORMATION SUMMARY - This material is a flammable gas. This product is toxic; inhalation of this material may cause severe injury or death. Please read entire contents of Section

2 of this Safety Data Sheet (SDS) for details.

POTENTIAL HEALTH EFFECTS

EYES: This product is unlikely to cause eye irritation.

SKIN: This product is unlikely to cause skin irritation or injury.

INGESTION: This product is a compressed gas; hence oral exposure and resulting acute toxicity are unlikely.

INHALATION: This product is a simple asphyxiant. Excessive exposure may cause central nervous system effects such as dizziness, loss of balance and coordination, unconsciousness, coma, respiratory failure and death.

SIGNS AND SYMPTOMS OF OVER EXPOSURE

CARCINOGENICITY: No component of this product present at levels greater than or equal to 0.1% is identified as a probable, possible, or confirmed carcinogen by IARC, NTP, OSHA or ACGIH.

MUTAGENICITY: Not Established.

REPRODUCTIVE TOXICITY

REPRODUCTIVE EFFECTS: Not Established.

TERATOGENIC EFFECTS: Not Established.

MEDICAL CONDITIONS AGGRAVATED: Persons with pre-existing central nervous system disorders should refrain from contact with this material.

ROUTES OF ENTRY: Inhalation, skin contact, eye contact.

TARGET ORGAN STATEMENT: May cause damage to lungs and central nervous system.

SENSITIZATION: Not Established.

COMMENTS: OTHER HAZARDS - Not Established.

3. COMPOSITION / INFORMATIO N ON INGREDIENTS

Chemical Name	Vol. %	CAS
Methane	70 - 94	74-82-8
Ethane	5 - 10	74-84-0
Propane	1 - 4	74-98-6
i-Butane	0.5 - 3	75-28-5
n-Butane	0.5 - 2	106-97-8
Carbon Dioxide	0.5 - 10	124-38-9
Nitrogen	0.5 - 10	7727-37-9

Sweet Natural Gas

Benzene	may contain	71-43-2
Hydrogen Sulfide	may contain	7783-06-4

COMMENTS: This may not be a complete list of components. Compositions given are typical values, not

specifications.

4. FIRST AID MEASURES

EYES: Immediately flush eyes with plenty of water. Get medical attention, if irritation persists.

SKIN: Wash with soap and water. Get medical attention if irritation develops or

persists. **INGESTION:** This is not considered a major potential route of exposure.

INHALATION: Move victim to fresh air. Call 911, emergency medical service, or Emergency Phone Numbers(s) provided in Section 1 of this SDS. Give artificial respiration if victim is not breathing. Do not use mouth-to-mouth method if victim ingested or inhaled the substance; give artificial respiration with the aid of a pocket mask equipped with a one-way valve or other proper respiratory medical device. Administer oxygen if breathing is difficult.

ANTIDOTES: Not Established.

NOTES TO PHYSICIAN: CLINICAL TESTING & MEDICAL MONITORING FOR DELAYED EFFECTS - Effects of exposure (inhalation, ingestion or skin contact) to substance may be delayed. Provide general supportive measures and treat symptomatically.

5. FIRE FIGHTING MEASURES

FLASH POINT: -188 °C (-306.4 °F) Notes: Based on methane. .

AUTOIGNITION TEMPERATURE: 482℃ (900 °F) to 649℃ (1200 °F)

GENERAL HAZARD: DECOMPOSITION TEMPERATURE - Not Established.

EXTINGUISHING MEDIA:

SMALL FIRE - Class B fire extinguisher, carbon dioxide, multipurpose dry chemical, water fog or alcohol-resistant foam. **LARGE FIRE -** Water fog or alcohol-resistant foam.

HAZARDOUS COMBUSTION PRODUCTS: Any combustion, including incomplete combustion, may form carbon monoxide and carbon dioxide. Burning produces noxious and toxic fumes. Downwind personnel must be evacuated.

OTHER CONSIDERATIONS: INAPPROPRIATE EXTINGUISHING MEDIA - Do not use water jet.

FIRE EXPLOSION: HIGHLY FLAMMABLE. Will be easily ignited by heat, sparks or flames. Vapors may form explosive mixtures with air. Vapors may travel to source of ignition and flash back. Most vapors are heavier than air. They will spread along ground and collect in low or confined areas (sewers, basements, tanks). Vapor explosion hazard indoors, outdoors or in sewers. Runoff to sewer may create fire or explosion hazard. Containers may explode when heated.

COMMENTS:

SPECIFIC HAZARDS THAT MAY ARISE FROM THE PRODUCT - Vapors are flammable and heavier than air. Vapors may travel across the ground and reach remote ignition sources causing a flashback fire danger.

6. ACCIDENTAL RELEASE MEASURES

SMALL SPILL: For emergency information and procedures to follow in the case of an accidental release, call the Emergency Telephone Number(s) listed in Section 1 of this SDS. Remove any ignition sources and protect from ignition. Water spray may reduce vapor but may not prevent ignition in closed spaces. A vapor suppressing foam may be used to reduce vapors. Provide sufficient ventilation in the affected area(s) and wear appropriate personal protective equipment as indicated in Section 8 of this SDS when handling spill material. Isolate the area until gas has dispersed. Never discharge releases directly into sewers or surface waters.

LARGE SPILL: Use similar response procedures as indicated under Small Spill.

7. HANDLING AND STORAGE

GENERAL PROCEDURES: Handle in accordance with good industrial hygiene and safety practices. These practices include but are not limited to avoiding unnecessary exposure and prompt removal of material from eyes, skin and clothing. If needed, take first aid actions as indicated in Section 4 of this SDS.

- **HANDLING**: Use only with adequate ventilation. Wear appropriate personal protective equipment and use exposure controls as indicated in Section 8 of this SDS. Vent slowly to the atmosphere when opening. Avoid all contact with skin and eyes. Avoid breathing product dust or vapors. Use explosion-proof electrical (ventilating, lighting and material handling) equipment. Do not reuse container. Remove contaminated clothing immediately. Wash with soap and water after working with this product.
- **STORAGE:** Keep in airtight container away from all heat sources. Store in a segregated and approved area. Store in a cool, dry location, away from direct sunlight, sources of intense heat, or where freezing is possible. Keep container in a well-ventilated area. Ground all containers during transfer. Store away from incompatible materials. Cylinders should be separated from oxygen cylinders or other oxidizers by a minimum distance of 20 feet, or by a barrier of non-combustible material at least 5 feet high having a fire resistance rating of at least 1/2 hour. Store in the original container or an approved alternative made from compatible material. Do not store in unlabeled containers. Treat empty containers in a similar fashion as residual product may exist. Use appropriate containment to avoid environmental contamination.

STORAGE TEMPERATURE: Store containers in a room with ambient temperature.

STORAGE PRESSURE: Containers should be stored in room with ambient pressure.

SHELF LIFE:

HOW TO MAINTAIN THE INTEGRITY OF THE SUBSTANCE BY USE OF STABILIZERS OR ANTIOXIDANTS - Not Established.

ELECTROSTATIC ACCUMULATION HAZARD: To minimize the hazard of static electricity during transfer operations, bonding and grounding may be necessary, but may not by themselves be sufficient. For more information, refer to OSHA Standard 29 CFR 1910.106; National Fire Protection Standard (NFPA) 77 - "Recommended Practice on Static Electricity"; and/or the American Petroleum Institute (API) Recommended Practice 2003 - "Protection Against Ignitions Arising Out of Static, Lighting and Stray Currents."

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE GUIDELINES

OSHA HAZARDOUS CO	MPONENTS (29 CFR19	10.1200)			
		EXPOSURE LIMITS			
		OSHA PEL ACGIH TLV			H TLV
Chemical Name		ppm	om mg/m³ ppm		
Eth and	TWA	N/E	N/E	1000	N/E
Ethane	STEL	N/E	N/E	N/E	N/E
Deserve	TWA	1000	1800	1000	N/E
Propane	STEL	N/E	N/E	N/E	N/E
· D. dava	TWA	N/E	N/E	1000	N/E
Butane	STEL	N/E	N/E	N/E	N/E
	TWA	N/E	N/E	1000	N/E Page 4 of 11

Sweet Natural Gas

Ŭ	n-Butane	STEL	N/E	N/E	N/E	N/E
	Carbon Diavida	TWA	5000	9000	5000	9000
	Carbon Dioxide	STEL	N/E	N/E	30000	54000

ENGINEERING CONTROLS: Use only with adequate ventilation. Use process enclosures, local exhaust ventilation or other engineering controls to keep worker exposure to airborne contaminants below any recommended or statutory limits. The engineering controls also need to keep gas, vapor concentrations below any lower explosive limits. Use explosion-proof ventilation equipment.

PERSONAL PROTECTIVE EQUIPMENT

EYES AND FACE: Employees should be provided with and required to use splash-proof safety goggles and splash shields where there is any possibility of product coming in contact with eyes. Ensure that eye wash station is operable and nearby.

SKIN: GLOVES AND BOOTS - Any impervious gloves and boots including butyl rubber, nitrile rubber or neoprene rubber.

RESPIRATORY: Depending on airborne concentration a full-face supplied air respirator is recommended, because air purifying respirators cannot provide adequate protection.

PROTECTIVE CLOTHING: Depending on the conditions of use, protective gloves, apron, boots, head and face protection should be worn. Cotton clothing is recommended.

WORK HYGIENIC PRACTICES: Consider the potential hazards of this material, applicable exposure limits, job activities, environmental working conditions, and other substances in the workplace when designing engineering controls and selecting personal protective equipment (PPE). The user should read and understand all manufacturer instructions and limitations supplied with the personal protection equipment before use.

9. PHYSICAL AND CHEMICAL PROPERTIES

ODOR: Generally odorless (if no H_2S is present and no mercaptan added for odor). APPEARANCE: Colorless gas. pH: Not Applicable. PERCENT VOLATILE: 100 VAPOR PRESSURE: Not Established. **VAPOR DENSITY:** 0.6 to 0.8 (Air = 1) **BOILING POINT:** -161 ℃ (-258 °F) Notes: Based on methane. FREEZING POINT: Not Applicable. MELTING POINT: Not Applicable. FLASH POINT: -188 ℃ (-306.4 °F) Notes: Based on methane. AUTO IGNITION TEMP: Not Established. **DECOMPOSITION TEMP:** Not Established. EVAPORATION RATE: Not Established. **DENSITY:** Not Established. SPECIFIC GRAVITY: Not Established. VISCOSITY: Not Applicable. SOLUBILITY: Not Established. COEFF. OIL/WATER: Not Established. **ODOR THRESHOLD:** Not Established. COMMENTS: FLAMMABILITY - Refer to Section 2 and Section 5 of this SDS for classification and flammability characteristics.

10. STABILITY AND REACTIVITY

STABLE: Yes

HAZARDOUS POLYMERIZATIO N: No

STABILITY: This product is anticipated to be stable under normal ambient storage and handling conditions of temperature and pressure.

POLYMERIZATION: This product is not anticipated to cause hazardous reactions or polymerizations under normal ambient storage and handling conditions of temperature and pressure.

CONDITIONS TO AVOID: Avoid contact with incompatible materials. Avoid exposure to excess heat, sparks, open flame, or other potential ignition sources. Prevent vapor accumulation.

HAZARDOUS DECOMPOSITION PRODUCTS: Products of thermal decomposition include carbon oxides and nitrogen oxides. **INCOMPATIBLE MATERIALS:** Strong oxidizing agents, liquid oxygen, mineral acids and metal catalysts.

11. TOXICOLOGICAL INFORMATION

ACUTE			
Chemical Name	ORAL LD ₅₀	DERMAL LD ₅₀	INHALATION
	(rat)	(rabbit)	LC ₅₀ (rat)
Ethane	Not	Not	> 800000 ppm
	Established.	Established.	(15 min)
Propane	Not	Not	658 mg/L (4
	Established.	Established.	hours)
i-Butane	Not	Not	658 mg/L (4
	Established.	Established.	hours)
n-Butane	Not Established.	Not Established.	658 g/m ³
Carbon Dioxide	Not	Not	30000 to 50000
	Established.	Established.	ppm (30 min)
Benzene	930 mg/kg	> 9400 ug/kg	10000 ppm (7 hours)
Hydrogen Sulfide	Not Established.	Not Established.	444 ppm

NOTES: ACUTE TOXICITY & HEALTH EFFECTS - This product is a simple asphyxiant; higher concentrations may cause dizziness. Refer to Section 2 of this SDS for additional hazards identification.

EYE EFFECTS: Not expected to cause prolonged or significant eye irritation.

SKIN EFFECTS: Not expected to cause prolonged or significant skin irritation.

CHRONIC: TOXICITY & HEALTH EFFECTS - This product is not expected to be toxic. Refer to Section 2 of this SDS for additional hazards identification.

CARCINOGENICITY

Chemical Name	NTP	IAR C	OSHA
	Status	Status	Status
Benzene	1	1	Carcinogen.

Notes: No component of this product at levels greater than 0.1% is identified as a carcinogen by ACGIH, the International Agency for Research on Cancer (ARC), the U.S. National Toxicology Program (NTP) or the U.S. Occupational Safety and Health Act (OSHA).

SENSITIZATION: Not Established.

NEUROTOXICITY: Not Established.

GENETIC EFFECTS: Not Established.

REPRODUCTIVE EFFECTS: Not Established.

Sweet Natural Gas

TARGET ORGANS: Contact may cause damage to the lungs and central nervous system. TERATOG ENIC EFFECTS: Not Established. MUTAGENICITY: Not Established. SYNERGISTIC MATERIALS: Not Established.

12. ECOLOGICAL INFORMATION

ENVIRONMENTAL DATA: MOBILITY IN SOIL POTENTIAL - Not Established.

ECOTOXICOLOGICAL INFORMATION: TERRESTRIAL/MICROORGANISM TOXICITY -

ACUTE: Ecological data does not exist for this mixture.

CHRONIC: Ecological data does not exist for this mixture.

BIOACCUMULATION/ACCUMULATION: Ecological data does not exist for this mixture.

AQUATIC TOXICITY (ACUTE): Ecological data does not exist for this mixture.

Notes: (CHRONIC) - Ecological data does not exist for this mixture.

CHEMICAL FATE INFORMATION: PERSISTENCE & DEGRADABILITY - Not Established.

GENERAL COMMENTS: Any other adverse environmental effects, such as environmental fate (exposure), ozone depletion potential, photochemical ozone creation potential, endocrine disrupting potential, and global warming potential are indicated in this section if data exists. Otherwise, this data has not been established.

COMMENTS: Data from laboratory studies and from scientific literature is noted in this section if available. Otherwise, data has not been established.

13. DISPOSAL CONSIDERATIONS

DISPOSAL METHOD: It is recommended that this product, in any form, be incinerated in a suitable combustion chamber for disposal. Empty containers should be disposed of in a similar fashion due to presence of product residue. Follow applicable Federal, state, and local regulations.

PRODUCT DISPOSAL: Persons conducting disposal of this product and its containers/packaging should refer to Section 8 of this SDS for the proper selection of exposure controls and personal protective equipment.

EMPTY CONTAINER: Do not pressurize, cut, weld, braze, solder, drill, grind, or expose such containers to heat, flame, sparks, static electricity, or other sources of ignition. They may explode and cause injury or death.

GENERAL COMMENTS: PHYSICAL & CHEMICAL PROPERTIES THAT MAY AFFECT DISPOSAL OPTIONS - Not Established. **COMMENTS:** Dispose of material in accordance with national, state, regional, and local regulations. Never discharge directly into sewers or surface waters. Consult with environmental regulatory agencies for guidance on acceptable disposal practices for the product, in any form, and its containers/packaging.

14. TRANSPORT INFORMATION

DOT (DEPARTMENT OF TRANSPORTATIO N) PROPER SHIPPING NAME: Compressed gas, flammable, n.o.s. PRIMARY HAZARD CLASS/DIVISION: 2.1 UN/NA NUMBER: 1954 NAERG: 115 LABEL: 2.1: Flammable Gas MARINE POLLUTANT #1: Not Listed.

15. REGULATORY INFORMATION

UNITED STATES

SARA TITLE III (SUPERFUND AMENDMENTS AND REAUTHORIZATION ACT)

311/312 HAZARD CATEGORIES: Fire Hazard. Immediate (Acute) Health Hazard.

FIRE: Yes PRESSURE GENERATING: No REACTIVITY: No ACUTE: Yes CHRONIC: Yes

CERCLA (COMPREHENSIVE RESPONSE, COMPENSATION, AND LIABILITY ACT)

Chemical Name	Wt.%	CERCLA RQ
Benzene	may contain	10
Hydrogen Sulfide	may contain	100

TSCA (TOXIC SUBSTANCE CONTROL ACT)

Chemical Name	CAS
Methane	74-82-8
Ethane	74-84-0
Propane	74-98-6
i-Butane	75-28-5
n-Butane	106-97-8
Carbon Dioxide	124-38-9
Nitrogen	7727-37-9

CLEAN AIR ACT

Chemical Name	Vol. %	CAS
Ethane	5 - 10	74-84-0
Propane	1 - 4	74-98-6
i-Butane	0.5 - 3	75-28-5
n-Butane	0.5 - 2	106-97-8

16. OTHER INFORMATIO N

RELEVANT R-PHRASES:R61: May cause harm to the unborn child.

R26: Very toxic by inhalation.

R48/23: Toxic : danger of serious damage to health by prolonged exposure through inhalation.

R50/53: Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

R12: Extremely flammable.

R45: May cause cancer.

R46: May cause heritable genetic damage.

R11: Highly flammable.

R36/38: Irritating to eyes and skin.

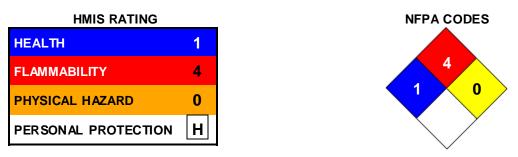
R65: Harmful: may cause lung damage if swallowed.

PREPARED BY:

REVISION SUMMARY:

NATIONAL FIRE PROTECTION ASSOCIATION®HAZARD RATING

HEALTH:	1-Hazard No greater than Ordinar	v Material
IILALIII.	I-hazaru No greater than Oruman	y ivialeriar


FIRE:	4-Will Not Burn

REACTIVITY: 0- Stable

HAZARDOUS MATERIAL IDENTIFICATION SYSTEM® HAZARD RATING

HEALTH: 0- Minimal Hazard	
---------------------------	--

FIRE:	0- Minimal Hazard
PHYSICAL:	0- Minimal Hazard

HMIS RATINGS NOTES: Please refer to Section 8 of this SDS for recommended personal protective equipment. **DATA SOURCES:**

REFERENCES

ACGIH. 2012 Guide to Occupational Exposure Values. Cincinnati, OH. Signature Publications, 2012.

Forsberg, K.; Mansdorf, S.Z. Quick Selection Guide to Chemical Protective Clothing. Fifth Edition. Hoboken, NJ. John Wiley & Sons, 2007.

Lide, D.R. CRC Handbook of Chemistry and Physics. 88th Edition. Boca Raton, FL. CRC Press, 2008.

UNECE. Globally Harmonized System of Classification and labelling of Chemicals (GHS). Third Revised Edition. New York and Geneva. United Nations, 2009.

US DOT; Pipeline and Hazardous Materials Safety Administration. 2008 Emergency Response Guidebook. Neenah, WI. J.J. Keller & Associates, Inc. 2008.

US EPA. Consolidated List of Chemicals Subject to the Emergency Planning and Community Right-To-Know Act (EPCRA) and Section 112(r) of the Clean Air Act. [Available] Online: <u>http://www.epa.go v/ceppo/pubs/title3.pdf</u>. Retrieved 02/02/2011.

ADDITIONAL MSDS INFORMATION:

KEY / LEGEND

ACGIH - American Conference of Governmental Industrial Hygienists

- ADR Agreement on Dangerous Goods by Road
- CAA Clean Air Act
- CAS Chemical Abstracts Service Registry Number

CDG - Carriage of Dangerous Goods By Road and Rail Manual

CERCLA - Comprehensive Environmental Response, Conmensation, and Liability Act

CFR - Code of Federal Regulations

Sweet Natural Gas

EINECS - European Inventory of Existing Chemical Substances Registry Number ERG - Emergency Response Guidebook EPCRA - Emergency Planning and Community Right-to-Know Act GHS - Globally Harmonized System of Classification and Labelling of Chemicals IARC - International Agency for Research on Cancer IATA - International Air Transport Association ICAO - International Civil Aviation Organization IMDG - International Maritime Dangerous Goods Code IMO - International Maritime Organization N/E - Not Established NTP - National Toxicology Program OSHA - Occupational Safety and Health Administration PEL - Permissible Exposure Limit PPE - Personal Protective Equipment RCRA - Resource Conversation and Recovery Act RID - Regulations Concerning the International Transport of Dangerous Goods by Rail **RQ** - Reportable Quantities SARA - Superfund Amendments and Reauthorization Act of 1986 SDS - Safety Data Sheet TCC - Tag Closed Cup TDG - Transportation of Dangerous Goods TLV - Threshold Limit Value TSCA - Toxic Substance Control Act UN/NA - United Nations / North American Number UNECE - United Nations Economic Commission for Europe US DOT - United States Department of Transportation US EPA - United States Environmental Protection Agency Vol. - Volume WHMIS - Workplace Hazardous Materials Information System

GENERAL STATEMENTS: Other information not included anywhere else in this SDS is included in this section if, in fact, such data exists.

MANUFACTURER DISCLAIMER: This information relates to the specific material designated and may not be valid for such material used in combination with any other materials or in any process. Such information is to the best of our knowledge and belief, accurate and reliable as of the date compiled. However, no representation, warranty or guarantee is made as to its accuracy, reliability or completeness. NO WARRANTY OF MERCANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY OTHER WARRANTY, EXPRESSED OR IMPLIED, IS MADE CONCERNING THE INFORMATION HEREIN PROVIDED. It is the user's responsibility to satisfy himself as to the suitabliity and completeness of such information for his own particular use. We do not accept liability for any loss or damage that may occur from the use of this information nor do we offer warranty against patent infringemen

Sweet Natural Gas

SAFETY DATA SHEET

Date Issued : SDS No : Date Revised : Revision No :

Non-Sour Produced Water (West Virginia)

IMPORTANT

This SDS has been prepared for Non-Sour Produced Water. Refer to the following sections for important safety and response information. **Section 4-** First Aid Measures (for accidental exposure).

Section 4- First Alu Measures (101 accidental expo

Section 5- Fire Fighting Measures.

Section 6- Accidental Release Measures.

1. PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME: Non-Sour Produced Water (West Virginia) **GENERAL USE:** Water extracted from natural gas well production.

2. HAZARDS IDENTIFICATION

This material is not considered hazardous according to OSHA criteria.

3. COMPOSITION / INFORMATIO N ON INGREDIENTS

Chemical Name	Vol. %	CAS
Water	>90	7732-18-5
Sodium Chloride	<10	7647-14-5

COMMENTS: Compositions given are typical values, not specifications. Composition may vary with geographic location, geologic formation, temperature and pressure.

4. FIRST AID MEASURES

EYES: Immediately flush with large amounts of water, holding eyelids open, for at least 20 minutes. Repeat if necessary. Remove contact lenses, if present and easy to do. If pain or redness persists, seek medical attention. If eye is exposed to hot liquid, cover eyes with cloth and seek medical attention immediately.

SKIN: In case of hot liquid exposure, do not remove clothing or treat, wash only unburned area and seek medical attention immediately.

INGESTION: Do not induce vomiting. If vomiting occurs spontaneously, keep head below hips to prevent aspiration of liquid into the lungs. Have exposed individual rinse mouth thoroughly with water. Never give anything by mouth to an unconscious person. Obtain medical assistance immediately and treat as directed by a medical professional.

INHALATION: Move victim to fresh air. Call 911, emergency medical service,

NOTES: Contact poison treatment center immediately if large quantities have been ingested or inhaled.

5. FIRE FIGHTING MEASURES

FLASH POINT: N/A

EXTINGUISHING MEDIA: Material is not flammable.

FIRE FIGHTING PROCEDURES: PROTECTIVE ACTIONS TO TAKE DURING FIRE FIGHTING - Move containers from fire area if you can do it without risk. Dike fire-control water for later disposal; do not scatter the material. Do not get water inside containers.

FIRE FIGHTING EQUIPMENT: PRECAUTIO NS FOR FIRE INVOLVING TANKS OR CAR/TRAILER LOADS - Fight fire from maximum distance or use unmanned hose holders or monitor nozzles.

6. ACCIDENTAL RELEASE MEASURES

SMALL SPILL: For emergency information and procedures to follow in the case of an accidental release, call the Emergency Telephone Number(s) listed in Section 1 of this SDS. As an immediate precautionary measure, isolate spill or leak area 50 meters (160 feet) in all directions. Keep unauthorized personnel away. Do not touch or walk through spilled material. 7Stop leak if you can do it without risk. Prevent entry into waterways, sewers. Dike far ahead of liquid for later disposal. Absorb or cover with dry earth, sand or other non-combustible material and transfer to containers.

LARGE SPILL: Use similar response procedures as indicated under Small Spill. Large releases may require the notification of local emergency response agencies.

COMMENT: CAUTION This material is capable of off gassing volatiles.

7. HANDLING AND STORAGE

GENERAL PROCEDURES: Handle in accordance with good industrial hygiene and safety practices. These practices include but are not limited to avoiding unnecessary exposure and prompt removal of material from eyes, skin and clothing. Wash exposed skin and clothing frequently. If needed, take first aid actions as indicated in Section 4 of this SDS.

HANDLING: Wear appropriate personal protective equipment and use exposure controls as indicated in Section 8. Avoid all contact with skin and eyes. Avoid breathing product dust or vapors. Wash with soap and water after working with this product.

STORAGE: Keep in airtight container away from all heat sources. Store in a segregated and approved area. Store in a cool, dry location, away from direct sunlight, sources of intense heat, or where freezing is possible. Keep container in a well-ventilated area. Ground all containers during transfer. Store in the original container or an approved alternative made from compatible material. Do not store in unlabeled containers. Treat empty containers in a similar fashion as residual product may exist. Use appropriate containment to avoid environmental contamination.

STORAGE TEMPERATURE: Store containers of product in cool well ventilated location.

STORAGE PRESSURE: Store in a room with ambient pressure.

ELECTROSTATIC ACCUMULATION HAZARD: Not Established.

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE GUIDELINES

OSHA HAZARDOUS COMPONENTS (29 CFR1910.1200)			
	EXPOSURE LIMITS		
OSHA PEL ACGIH		ACGIH TLV	
Chemical Name	_	ppm ppm	
		N/E	N/E
Sodium Chloride	STEL	N/E	N/E

ENGINEERING CONTROLS: Provide adequate general and local ventilation to maintain airborne chemical concentrations below applicable exposure limits.

PERSONAL PROTECTIVE EQUIPMENT

Produced Water

EYES AND FACE: Employees should be provided with and required to use splash-proof safety goggles and full face splash shields where there is any possibility of product coming in contact with eyes. Contact lenses are not eye protective devices. Appropriate eye protection must be worn instead of contact lenses. Ensure that eye wash station is operable and nearby.

SKIN: Consider wearing long-sleeve, FRC, otherwise normal working clothes should be worn. Wash contaminated clothing prior to reuse. If gloves are required for job operations involving this product, wear nitrile rubber or butyl rubber gloves.

RESPIRATORY: Respiratory protection is normally not required except in emergencies or when conditions cause excessive airborne levels of mists or vapors. Select NIOSH-approved organic vapor air-purifying respirator, SCBA or air-supplied respirator where there may be potential for overexposure.

PROTECTIVE CLOTHING: Long sleeve shirt and long pants or coveralls. Consider wearing butyl rubber apron or outerwear where splashing may occur. Fully encapsulating, vapor protective clothing should be worn for spills and leaks with no fire.

WORK HYGIENIC PRACTICES: Use good personal hygiene practices. Avoid repeated and/or prolonged skin exposure. Wash hands before eating, drinking, smoking, or using toilet facilities. Promptly remove contaminated clothing and launder before reuse. Shower after work using plenty of soap and water.

COMMENTS: EXPOSURE LIMITS & SOURCES - Refer to Section 16 Table 1 for additional exposure limits and sources for this product or its components, whichever applies.

9. PHYSICAL AND CHEMICAL PROPERTIES

ODOR: Salty. APPEARANCE: Clear or opaque liquid. **pH:** 6-8 PERCENT VOLATILE: Negligible. VAPOR PRESSURE: Not Established. VAPOR **DENSITY:** >1.0 (Air = 1) BOILING POINT: 212° F / 100° C **FREEZING POINT:** < 0℃ (<32°F) POUR POINT: Not Established. FLASH POINT: Not Applicable LOWER EXPLOSIVE LIMITS: Not Applicable SOLUBILITY IN WATER: Not Established. EVAPORATION RATE: Not Established. SPECIFIC **GRAVITY:** > 1.000 at 0°C (32°F) VISCOSITY: Not Established. COEFF. OIL/WATER: Not Established. **ODOR THRESHOLD:** Not Established.

10. STABILITY AND REACTIVITY

STABLE: Yes

HAZARDOUS POLYMERIZATIO N: No

STABILITY: CHEMICAL STABILITY - This product is anticipated to be stable under normal ambient storage and handling conditions of temperature and pressure.

POLYMERIZATION: This product is not anticipated to cause hazardous reactions or polymerizations under normal ambient storage and handling conditions of temperature and pressure.

CONDITIONS TO AVOID: Avoid contact with incompatible materials such as heat.

11. TOXICOLOGICAL INFORMATION ACUTE

Produced Water

Chemical Name	ORAL L	D ₅₀ DERMAL LD ₅₀	INHALATION
	(rat)	(rabbit)	LC₅₀ (rat)
Sodium Chloride	3000 m	g/kg N/E	N/E

EYE EFFECTS: May cause moderate to severe eye irritation.

SKIN EFFECTS: May cause mild skin irritation. Prolonged or repeated contact may result in mild irritation. **CHRONIC:** Not Established.

CARCINOGENICITY: Not expected to cause cancer. This substance is not listed as a carcinogen by IARC, NTP, or OSHA. **SENSITIZATION:** This product is not expected to be a skin sensitizer.

NEUROTOXICITY: Not Established.

GENETIC EFFECTS: Not Established.

REPRODUCTIVE EFFECTS: Not Established.

TERATOG ENIC EFFECTS: Not Established.

MUTAGENICITY: Not Established.

12. ECOLOGICAL INFORMATION

ENVIRONMENTAL DATA: MOBILITY IN SOIL POTENTIAL - Not Established.

BIOACCUMULATION/ACCUMULATION: Not Established.

DISTRIBUTIO N: Do not discharge into or allow runoff to flow into sewers and natural waterways. Contain spill material and dike for proper disposal.

AQUATIC TOXICITY (ACUTE): This product is not expected to be harmful to aquatic life.

96-HOUR LC₅₀: 3930 - 5360 mg/L Pimephales promelas for calcium chloride.

48-HOUR EC₅₀: 52 mg/L for Daphnia magna for calcium chloride.

CHEMICAL FATE INFORMATION: PERSISTENCE & DEGRADABILITY - Not Established.

13. DISPOSAL CONSIDERATIONS

DISPOSAL METHOD: The generator of a waste is responsible to determine if the material disposed of meets federal, state, or local criteria to be defined as a hazardous waste and dispose of accordance with applicable Federal, state and local regulations.

14. TRANSPORT INFORMATION

DOT (DEPARTMENT OF TRANSPORTATIO N)

Not Regulated

15. REGULATORY INFORMATION UNITED STATES

SARA TITLE III (SUPERFUND AMENDMENTS AND REAUTHORIZATION ACT)

311/312 HAZARD CATEGORIES: Fire hazard. Immediate (acute) health hazard. Delayed (chronic) health hazard. FIRE: No PRESSURE GENERATING: No REACTIVITY: No ACUTE: No CHRONIC: No

EPCRA SECTION 313 SUPPLIER NOTIFICATION

This material does not contain any chemicals subject to the reporting requirements of SARA 313 and 40 CFR 372.

CERCLA (COMPREHENSIVE RESPONSE, COMPENSATION, AND LIABILITY ACT)

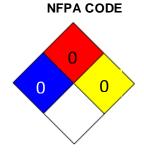
This material does not contain any chemicals with CERCLA Reportable Quantities.

TSCA (TOXIC SUBSTANCE CONTROL ACT)

All components are either listed on the TSCA Inventory, or are not regulated under TSCA.

16. OTHER INFORMATIO N

RELEVANT R-PHRASES: R36/37/38: Irritating to eyes, respiratory system and skin. R36/38: Irritating to eyes and skin. R65: Harmful: may cause lung damage if swallowed. PREPARED BY:


REVISION SUMMARY:NATIONAL FIRE PROTECTION ASSOCIATION®HAZARD RATINGHEALTH:0-Hazard No greater than Ordinary MaterialFIRE:0-Will Not BurnREACTIVITY:0- Stable

HAZARDOUS MATERIAL IDENTIFICATION SYSTEM® HAZARD RATING

HEALTH:	0- Minimal Hazard
FIRE:	0- Minimal Hazard
PHYSICAL:	0- Minimal Hazard

HMIS RATING

HEALTH	0
FLAMMABILITY	0
PHYSICAL HAZARD	0
PERSONAL PROTECTION	В

Sweet Produced Water

ADDITIONAL MSDS INFORMATION: KEY / LEGEND

ACGIH - American Conference of Governmental Industrial Hygienists ADR - Agreement on Dangerous Goods by Road CAA - Clean Air Act CAS - Chemical Abstracts Service Registry Number CDG - Carriage of Dangerous Goods by Road and Rail Manual CERCLA - Comprehensive Environmental Response, Compensation, and Liability Act CFR - Code of Federal Regulations EINECS - European Inventory of Existing Chemical Substances Registry Number NAERG - Emergency Response Guidebook EPCRA - Emergency Planning and Community Right-to-Know Act GHS - Globally Harmonized System of Classification and Labeling of Chemicals IARC - International Agency for Research on Cancer IATA - International Air Transport Association ICAO - International Civil Aviation Organization IMDG - International Maritime Dangerous Goods Code IMO - International Maritime Organization MSDS - Material Safety Data Sheet N/E - Not Established NOV - National Oil well Varco NTP - National Toxicology Program OSHA - Occupational Safety and Health Administration PEL - Permissible Exposure Limit PPE - Personal Protective Equipment RCRA - Resource Conversation and Recovery Act RID - Regulations Concerning the International Transport of Dangerous Goods by Rail **RQ** - Reportable Quantities SARA - Superfund Amendments and Reauthorization Act of 1986 SDS - Safety Data Sheet TCC - Tag Closed Cup

TDG - Transportation of Dangerous Goods

TLV - Threshold Limit Value

TSCA - Toxic Substance Control Act

UN/NA - United Nations / North American Number

- UNECE United Nations Economic Commission for Europe
- US DOT United States Department of Transportation

US EPA - United States Environmental Protection Agency

Vol. - Volume

WHMIS - Workplace Hazardous Materials Information System

GENERAL STATEMENTS: Other information not included anywhere else in this SDS is included in this section if, in fact, such data exists.

MANUFACTURER DISCLAIMER: This information relates to the specific material designated and may not be valid for such material used in combination with any other materials or in any process. Such information is to the best of our knowledge and belief, accurate and reliable as of the date compiled. However, no representation, warranty or guarantee is made as to its accuracy, reliability or completeness. NO WARRANTY OF MERCANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY OTHER WARRANTY, EXPRESSED OR IMPLIED, IS MADE CONCERNING THE INFORMATION HEREIN PROVIDED. It is the user's responsibility to satisfy himself as to the suitability and completeness of such information for his own particular use. We do not accept liability for any loss or damage that may occur from the use of this information nor do we offer warranty against patent infringement.

ATTACHMENT E

EMISSION CALCULATIONS

Permit Determination

Burch Ridge Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

November 2017

Table 1. Annual Potential To Emit (PTE) Summary Tug Hill Operating, LLC Burch Ridge Well Pad

Criteria Pollutants

Hazardous Air Pollutants (HAPs)

Proposed Facility Wide PTE - Criteria Pollutants								
Source	РМ	PM10	PM2.5	SO2	NOx	со	VOC	CO2e
Engines (ton/yr)	1.006	1.006	1.006	0.000	12.939	1.035	1.585	4375.968
Line Heaters (ton/yr)	0.163	0.163	0.163	0.013	2.147	1.804	0.118	2562.517
Tanks (ton/yr)	-	-	-	-	-	-	9.051	-
Truck Loading (ton/yr)	-	-	-	-	-	-	0.002	-
Compressor Blowdowns (ton/yr)	-	-	-	-	-	-	0.108	-
Fugitives (ton/yr)	-	-	-	-	-	-	1.071	24.895
Total Emissions (ton/yr)	1.169	1.169	1.169	0.013	15.086	2.839	11.935	6963.380
Total Emissions (lb/hr)	0.267	0.267	0.267	0.003	3.444	0.648	2.725	1589.813

Proposed Facility Wide PTE - HAPs

Acetaldehyde Benzene Ethylbenzene Formaldehyde Total HAPs Source Toluene Xylene n-Hexane Engines (ton/yr) 0.2103 0.0111 0.0103 0.0010 0.0046 0.0279 0.453 0.982 Line Heaters (ton/yr) 0.0000 0.0001 0.0386 0.002 0.041 Tanks (ton/yr) ---Truck Loading (ton/yr) --------Compressor Blowdowns (ton/yr) --------Fugitives (ton/yr) Total Emissions (ton/yr) Total Emissions (loh/hr) 0.210 0.011 0.010 0.001 0.067 0.454 1.022 0.005 0.048 0.003 0.002 0.000 0.001 0.015 0.104 0.233

Table 1 Compressor Engine Emissions (CE-1) Caterpillar G3508LE

	Tug Hill Ope	erating, LLC	S Yoder Pa	d		T	
Pollutant	Emiss	ion Factor		PTI (Ib/h		PT (tons	
Criteria Pollutants			(2)	0.00	(-)	1.01	(-)
PM/PM10/PM2.5**	4.00E-02 lb/		(2)	0.23	(a)	1.01	(c)
SO ₂	0.00E+00 lb/		(2)	0.00	(a)	0.00	(c)
NOx CO	2.00E+00 g/l 1.60E-01 g/l	•	(2)	2.95 0.24	(b) (b)	12.94 1.04	(d) (d)
VOC*	2.45E-01 g/l		(2)	0.24	(b)	1.59	(d)
VOIC's does not include formaldehude	2.102 01 9.			0.00	()		(1)
Hazardous Air Pollutants							
1,1,2,2-Tetrachloroethane	4.00E-05 lb/	MMBtu	(1)	0.000	(a)	0.001	(c)
1,1,2-Trichloroethane	3.18E-05 lb/		(1)	0.000	(a)	0.001	(c)
1,3-Butadiene	2.67E-04 lb/		(1)	0.002	(a)	0.007	(c)
1,3-Dichloropropene	2.64E-05 lb/		(1)	0.000	(a)	0.001	(c)
2-Methylnapthalene 2,2,4-Trimethylpentane	3.32E-05 lb/ 2.50E-05 lb/		(1) (1)	0.000 0.000	(a) (a)	0.001 0.001	(c) (c)
Acetaldehyde	8.36E-03 lb/		(1)	0.048	(a)	0.210	(c) (c)
Acrolein	5.14E-03 lb/		(1)	0.030	(a)	0.129	(c)
Benzene	4.40E-04 lb/		(1)	0.003	(a)	0.011	(c)
Biphenyl	2.12E-03 lb/	MMBtu	(1)	0.012	(a)	0.053	(c)
Carbon Tetrachloride	3.67E-05 lb/	'MMBtu	(1)	0.000	(a)	0.001	(c)
Chlorobenzene	3.04E-05 lb/	MMBtu	(1)	0.000	(a)	0.001	(c)
Chloroform	2.85E-05 lb/		(1)	0.000	(a)	0.001	(c)
Ethylbenzene	3.97E-05 lb/		(1)	0.000	(a)	0.001	(c)
Ethylene Dibromide	4.43E-05 lb/		(1)	0.000	(a)	0.001	(c)
Formaldehyde	7.00E-02 g/l		(2)	0.103	(b)	0.453	(d)
Methanol Mathadaga Oklasida	2.50E-03 lb/		(1)	0.014	(a)	0.063	(c)
Methylene Chloride	2.00E-05 lb/		(1)	0.000	(a)	0.001	(c)
n-Hexane	1.11E-03 lb/		(1)	0.006	(a)	0.028	(c)
Naphthalene PAH (POM)	7.44E-05 lb/ 2.69E-05 lb/		(1) (1)	0.000 0.000	(a) (a)	0.002 0.001	(c) (c)
Phenol	1.04E-05 lb/		(1)	0.000	(a)	0.000	(c) (c)
Styrene	2.36E-05 lb/		(1)	0.000	(a)	0.000	(c)
Toluene	4.08E-04 lb/		(1)	0.002	(a)	0.010	(c)
Vinyl Chloride	1.49E-05 lb/		(1)	0.000	(a)	0.000	(c)
Xylenes	1.84E-04 lb/	MMBtu	(1)	0.001	(a)	0.005	(c)
Total HAP				0.224		0.982	
Greenhouse Gas Emissions						Metric Ton	no/vr
CO ₂	6.88E+02 g/l	hn-hr	(2)	1016.23	(b)	4046.43	(d)
=	-						
CH ₄	2.23E+00 g/l	•	(2)	3.29	(b)	13.12	(d)
N ₂ O	2.2E-04 lb/	MMBtu	(3)	0.00	(a)	0.01	(c)
CO ₂ e ^(e)	-	-		1098.95		4375.97	
** includes condensible PM							
Calculations:							
Hourly Emissions - If emission factor note	1 is used, use calcu	ulation (a). If e	emission fact	or note 2 is u	sed, use c	alculation (b).	
(a) Hourly Emissions (lb/hr) = Emission factor	(Ib/MMBtu) * (1MMB	tu/1000000 Bt	u) * Engine P	ower Output (h	p) * BSFC	(Btu/hp-hr)	
(b) Hourly Emissions (lb/hr) = Emission factor	(g/hp-hr) * Engine Po	ower Output (h	p) * (lb/453.6	g)			
Annual Emissions - If emission factor note	1 is used, use calc	ulation (c). If e	emission fact	or note 2 is u	ised, use c	calculation (d).	
(c) Annual emissions (tons/yr) = Emission fac Hours of operation (hr/yr) * (1ton/2000lbs)	tor (lb/MMBtu) * (1MI	MBtu/1000000	Btu) * Engine	Power Output	(hp) * BSF	C (Btu/hp-hr) *	Annual
 (d) Annual emissions (tons/yr) = Emission fac 	tor (a/hp-hr) * Engine	Power Outpu	t (hp) * Annua	I Hours of oper	ration (hr/v	r) * (1ton/2000)	os) *
(lb/453.6g)						, (,
MAXIMUM HOURLY EMISSION IN	IPUTS						
Engine Power Output (kW) =	500						
Engine Power Output (hp) =	670						
Number of Engines =	1						
BSFC (BTU/HP-hr) =	8,570	(4)					
Heat Content Natural Gas(Btu/scf) =	1,289.0	(5)					
Fuel Throughput (ft3/hr) =	4,454.5	(6)					
PTE Hours of Operation =	8,760						
(e) CO ₂ equivalent = [(CO ₂ emissions)*(GWP) Global Warming Potential (GWP)	CO2)]+[(CH ₄ emission	s)*(GWP _{CH4})]-	+[(N ₂ O emissi	ons)*(GWP _{N2O}))]		
Giobal warning Fotential (GWP)	CO ₂	1	(7)				
	CH ₄	25	(7)				
	N₂O	298	(7)				

otes

AP-42, Chapter 3.2, Table 3.2-2. Natural Gas-fired Reciprocating Engines (7/00). Uncontrolled Emission Factors for 4-Stroke Lean-Burn Engines.

298

(7)

 N_2O

 (2) Emission limits supplied from manufacturer's specification sheet (3) Emission limits supplied from 40 CFR 98, Subpart C, Table C-1 and C-2.

Emission minis subplied from 40 CFR 56, Subplied C, Table C-2.
 Fuel consumption from manufacturer's specification sheet.
 Value obtained from site fuel gas analysis
 Fuel throughput = BSFC (BTU/HP-hr) x Power (HP) / Heat Content (BTU/scf)
 Global Warming Potentials obtained from 40 CFR 98, Subpart A, Table A-1

Table 3. Tank Emissions Tug Hill Operating, LLC Burch Ridge Well Pad

Emission Unit ID	Tank Capacity (gal)	Tank Contents	Control Devices	Tank Throughput (bbls/day)	VOC Emis Factor (lbs/		VOC Emissions (Ibs/yr) ^(a)	VOC Emissions (lb/hr) ^(b)	VOC Emissions (tons/yr) ^(c)
T-1	16800	Produced Water	None	10.11	2.45E+00	(1)	9051.00	1.033	4.526
T-2	16800	Produced Water	None	10.11	2.45E+00	(1)	9051.00	1.033	4.526
Totals							18102.00	2.07	9.05

Calculations:

(a) VOC Emissions (lb/yr) = Tank Throughput (bbls/day) * VOC Emission Factor (lbs/bbls) * (365days/yr)

(b) VOC Emissions (lb/hr) = VOC Emissions (lbs/yr) * (yr/8760hr)

(c) VOC Emissions (ton/yr) = VOC Emissions (lbs/yr) * (1ton/2000lbs)

Notes:

(1) VOC emission factor includes Flashing/Working/Breathing losses as calculated from the Promax Model Simulation report

Pollutant	Emission Factor	1.00 MBtu/hr GPU Emissions (Ib/hr)	1.00 MMBtu/hr GPU Emissions (ton/yr)	1.00 MBtu/hr GPU Emissions (lb/hr) x5	1.00 MMBtu/hr GPU Emissions (ton/yr) x5
Criteria Pollutants					
PM/PM10/PM2.5	7.6 lb/MMcf (1)	0.007	0.033	0.186	0.163
SO ₂	0.6 lb/MMcf (1)	0.001	0.003	0.015	0.013
NOx	100 lb/MMcf (2)	0.098	0.429	2.451	2.147
CO	84 lb/MMcf (2)	0.082	0.361	2.059	1.804
VOC	5.5 lb/MMcf (1)	0.005	0.024	0.135	0.118
Hazardous Air Pollutants					
Arsenic	2.0E-04 lb/MMcf (3)	0.000	0.000	0.000	0.000
Benzene	2.1E-03 lb/MMcf (4)	0.000	0.000	0.000	0.000
Beryllium	1.2E-05 lb/MMcf (3)	0.000	0.000	0.000	0.000
Cadmium	1.1E-03 lb/MMcf (3)	0.000	0.000	0.000	0.000
Chromium	1.4E-03 lb/MMcf (3)	0.000	0.000	0.000	0.000
Cobalt	8.4E-05 lb/MMcf (3)	0.000	0.000	0.000	0.000
Dichlorobenzene	1.2E-03 lb/MMcf (4)	0.000	0.000	0.000	0.000
Formaldehyde	7.5E-02 lb/MMcf (4)	0.000	0.000	0.002	0.002
Hexane	1.8E+00 lb/MMcf (4)	0.002	0.008	0.044	0.039
Lead	5.0E-04 lb/MMcf (3)	0.000	0.000	0.000	0.000
Manganese	3.8E-04 lb/MMcf (3)	0.000	0.000	0.000	0.000
Mercury	2.6E-04 lb/MMcf (3)	0.000	0.000	0.000	0.000
Naphthalene	6.1E-04 lb/MMcf (4)	0.000	0.000	0.000	0.000
Nickel	2.1E-03 lb/MMcf (3)	0.000	0.000	0.000	0.000
PAH/POM	1.3E-03 lb/MMcf (4)	0.000	0.000	0.000	0.000
Selenium	2.4E-05 lb/MMcf (3)	0.000	0.000	0.000	0.000
Toluene	3.4E-03 lb/MMcf (4)	0.000	0.000	0.000	0.000
Total HAP	1.9E+00 lb/MMCF	0.002	0.008	0.046	0.041
Greenhouse Gas Emissions					
CO ₂	116.89 lb/MMBtu (5)	116.889	511.974	584.445	2559.871
CH ₄	2.2E-03 lb/MMBtu (5)	0.002	0.010	0.011	0.048
N ₂ O	0.0 lb/MMBtu (5)	0.000	0.001	0.001	0.005
CO ₂ e ^(b)		117.010	512.503	585.050	2562.517

Table 4 GPU Heater (GPU-1 through GPU-5) Rates and Emissions Tug Hill Operating, LLC Burch Ridge Well Pad

Calculations:

(a) Annual emissions (tons/yr) = [Annual Usage (MMBtu/yr or MMCF/yr)]x [Number of Identical Heaters]x [Emission Factor (Ib/MMBtu or Ib/MMCF)] / [2,000 Ib/ton]

Number of Heaters=	5
Fuel Use (MMBtu/hr) =	1
Hours of Operation (hr/yr)=	8760
PTE Fuel Use (MMcf/yr) =	8.6

(b) CO₂ equivalent = [(CO₂ emissions)*(GWP_{CO2})]+[(CH₄ emissions)*(GWP \ Global Warming Potential (GWP)

CO_2	1	(6)
CH_4	25	(6)
N_2O	298	(6)

Notes:

(1) AP-42, Chapter 1.4, Table 1.4-2. Emission Factors For Criteria Pollutants and Greenhouse Gases From Natural Gas Combustion, July 1998.

(2) AP-42, Chapter 1.4, Table 1.4-1. Emission Factors For Nitrogen Oxides (Nox) and Carbon Monoxide(CO) From Natural Gas Combustion, July 1998.

(3) AP-42, Chapter 1.4, Table 1.4-4. Emission Factors For Metals From Natural Gas Combustion, July 1998.

(4) AP-42, Chapter 1.4, Table 1.4-3. Emission Factors for Speciated Organic Compounds from Natural Gas Combustion, July 1998.

(5) Emission factors are from 40 CFR 98, Subpart C, Table C-1 and C-2.

(6) Global Warming Potentials obtained from 40 CFR 98, Subpart A, Table A-1

(7) MMBtu to MMcf conversion factor is 1020. AP-42, Chapter 1.4

	3	PTE VOC Emissions (lb/hr)	PTE VOC Emissions (ton/yr) (a)
Pipeline Liquids	309,918 gal/yr	4.89E-04	2.14E-03
Total		4.89E-04	2.14E-03
	Saturation factor	0.60	Note (1)
	Pvap (psia)	0.27	Note (2)
Molect	Pvap (psia) ular Weight Vap (lb/lbmol)	0.27 18.28	Note ⁽²⁾ Note ⁽²⁾
	1 (1)	• -= -	
Molec	1 (1)	• -= -	

Table 6. Fugitive Leak Emissions Tug Hill Operating, LLC Burch Ridge Well Pad

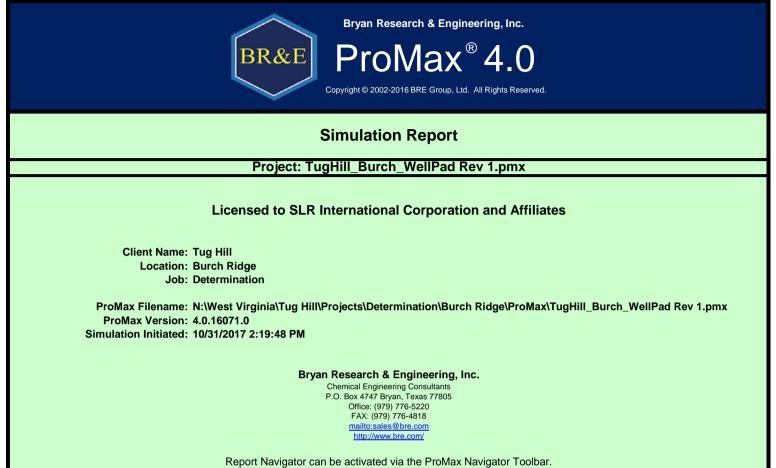
Pollutant	Emission Factor			PTE ^{(a) Gas} Service (tons/yr)
Valves	9 9F-03	lb/hr/source	(1)	8.13
Connectors		lb/hr/source	(1)	3.12
Open-Ended Lines	4.4E-03	lb/hr/source	(1)	0.24
Pressure Relief Valves	1.9E-02	lb/hr/source	(1)	0.42
Compressors	1.9E-02	lb/hr/source	(1)	0.08
Total Gas Released	-	-		11.90
Total VOC Released (gas service)			(b)	1.07
Calculations:			CO2e	24.89

(a) Annual emissions (tons/yr) = [Emission Factor (lb/hr/source)] x [Number of Sources] x [Hours of Operation per Year] x [0.0005 tons/ lb]

(b) Gas sample from station's gas analysis assumed to be worst case at 9 wt % VOC from 2012 fractional gas analysis measurements

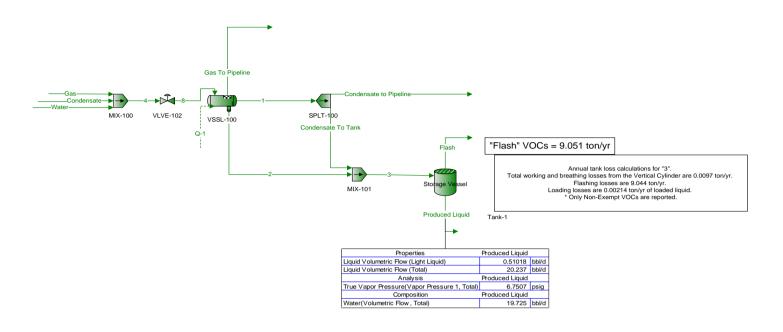
Number of Components in Gas Service

	Valves=	187	(2)
	Pressure Relief Valves=	5	(2)
	Connectors=	827	(2)
	Open-Ended Lines=	13	(2)
	Compressors=	1.000	(2)
	Maximum Hour of Operation =	8,760	
Global Warming Potential (GWP)			
	CO ₂	1	(3)
	CH_4	25	(3)
	N ₂ O	298	(3)


(1) Emission factors from 1995 EPA Protocol for Equipment Leak Emission Estimates, Table 2-4 Oil and Gas Production

(2) Default Average Component Counts for Major Onshore Natural Gas Production Equipment from 40 CFR 98, Subpart W, Table W-1B

(3) Global Warming Potentials obtained from 40 CFR 98, Subpart A, Table A-1


Table 6. Reciprocating Engine / Integral Compressor Emissions (E01) Blowdown Venting Caterpillar G3508LE Tug Hill Operating, LLC Burch Ridge Well Pad

Pollutant	Maximum Hourly Emissions		Annual Emissions		
	Emission Factor	PTE per Engine Event (lb/hr)	Emission Factor	Annua (tons	
Criteria Pollutants					
VOC	3.60E+00 lb/Event (1)	3.60 (a)	3.60E+00 lb/Event	(1) 0.11	(a)

A question mark (?) after a value, throughout the report, denotes an extrapolated or approximate value.

Burch Ridge Well Pad

Process Streams		Condensate	Condensate to Pipeline	Condensate To Tank	Flash	Gas	Gas To Pipeline	Produced Liquid	Water
Composition	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block:		SPLT-100	SPLT-100	Storage Vessel		VSSL-100	Storage Vessel	Joiveu
	To Block:	MIX-100		MIX-101		MIX-100			MIX-100
Mass Fraction	TO BIOCK:	WIX-100 %	%	<u>wix-101</u> %	 %	WIX-100 %	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	%	WIIX-100 %
C1		2.00638*	2.25025	2.25025	10.2220	56.0100*	56.3349	0.000960475	0*
C2		4.59908*	4.61436	4.61436	14.2986	21.5210*	21.6242	0.00480825	0*
C3		7.97645*	7.64944	7.64944	19.8081	11.3821*	11.4244	0.0193375	0*
iC4		2.31592*	2.27761	2.27761	5.08209	1.49351*	1.48933	0.0121994	0*
nC4		8.77031*	8.89076	8.89076	18.0575	4.10715*	4.05878	0.0644094	0*
iC5		4.73123*	4.44833	4.44833	6.39629	0.923611*	0.918737	0.0568468	0*
nC5		8.31574*	8.02879	8.02879	9.89165	1.29977*	1.27127	0.118108	0*
N2		0.00778393*	0.0121069	0.0121069	0.0678088	0.889360*	0.894662	2.64301E-06	0*
CO2		0.0336289*	0.0392640	0.0392640	0.575219	0.385151*	0.386842	0.000734488	0*
Benzene		0.0889885*	0.105370	0.105370	0.0503969	0.00727234*	0.00526924	0.00260479	0*
Ethylbenzene		0.386443*	0.328723	0.328723	0.0183709	0*	0.00205431	0.00859196	0*
Toluene		0.384030*	0.377574	0.377574		0.00857824*	0.00635062	0.00964790	0*
o-Xylene		0.706513*	0.609664	0.609664	0.0263714	0*	0.00301861	0.0160264	0*
C6		7.22543*	8.52165	8.52165	4.24864	0.581672*	0.422148	0.185101	0*
C7		4.99774*	5.02906	5.02906	0.884895	0.130605*	0.0919822	0.124764	0*
C8		2.78678*	2.71596	2.71596	0.151924	0.0319046*	0.0176001	0.0704993	0*
C9		1.67318*	1.55934	1.55934	0.0266178		0.00335317	0.0410567	0*
C10		0.942911*	0.852736	0.852736	0.00469837	0*	0.000712609	0.0225466	0*
C11		3.18578*	2.89949	2.89949	0.00481720	0*	0.000846349	0.0767702	0*
C12		2.12748*	1.94047	1.94047	0.00106726	0*	0.000211729	0.0513986	0*
C13		1.51633*	1.38411	1.38411	0.000250330	0*	6.02171E-05	0.0366668	0*
2,2-Dimethylpropane		0.138328*	0.135369	0.135369	0.253554	0.0503788*	0.0499358	0.00116805	0*
2,2-Dimethylbutane		0.205928*	0.281915	0.281915	0.255566	0.0361038*	0.0283679	0.00502389	0*
Cyclopentane		0*	0	0	0	0*	0	0	0* 0*
2,3-Dimethylbutane		0.482493* 3.63965*	0.683557 4.29378	0.683557 4.29378	0.497298 2.87634	0.0722076* 0.377084*	0.0520474 0.297168	0.0133579 0.0862485	0*
2-Methylpentane 3-Methylpentane		2.27119*	2.64402	2.64402	1.62886	0.212611*	0.165598	0.0662465	0*
Methylcyclopentane		0.961121*	0.899994	0.899994	0.470451	0.212011	0.0454270	0.0545046	0*
Cyclohexane		1.02192*	1.07468	1.07468	0.435250		0.0431949	0.0243621	0*
2-Methylhexane		2.78983*	2.68408	2.68408	0.675407	0.0792962*	0.0682404	0.0646467	0*
3-Methylhexane		2.47381*	2.51665	2.51665	0.574204	0.0792962*	0.0579518	0.0611803	0*
2,2,4-Trimethylpentane		0*	2.01000	2.01000	0.074204	0.0702002	0.0070010	0.0011000	0*
Methylcyclohexane		2.56046*	2.56407	2.56407	0.454531	0.0639890*	0.0452381	0.0636004	0*
m-Xylene		0.387918*	0.331857	0.331857	0.0169110	0*	0.00190284	0.00866397	0*
p-Xylene		0*	0	0	0	0*	0	0	0*
Water		0*	0.0111920	0.0111920	1.09419	0*	0.0920424	98.2238	100*
Tetradecane		1.09147*	0.996602	0.996602	6.19262E-05	0*	1.74701E-05	0.0264024	0*
Pentadecane		0.737781*	0.673735	0.673735	1.44557E-05	0*	4.73479E-06	0.0178491	0*
Hexadecane		0.418418*	0.382113	0.382113	2.99747E-06	0*	1.15167E-06	0.0101233	0*
Heptadecane		0.253906*	0.231880	0.231880	7.26093E-07	0*	3.27710E-07	0.00614320	0*
Octadecane		0.226288*	0.206660	0.206660	2.55811E-07	0*	1.33044E-07	0.00547503	0*
Nonadecane		0.145494*	0.132875	0.132875	5.85632E-08	0*	3.59710E-08	0.00352025	0*
Eicosane		0.0706589*	0.0645304	0.0645304	7.08698E-09	0*	5.34038E-09	0.00170960	0*
Heneicosane		0.0412037*	0.0376299	0.0376299	1.82427E-09	0*	1.59416E-09	0.000996931	0*
Docosane		0.0258915*	0.0236458	0.0236458	5.09025E-10	0*	5.12301E-10	0.000626449	0*
Tricosane		0.0135304*	0.0123568	0.0123568	7.59739E-11	0*	9.24493E-11	0.000327370	0*
Tetracosane		0.00940999*	0.00859383	0.00859383	1.81413E-11	0*	2.62128E-11	0.000227676	0*
Pentacosane		0.00489987*	0.00447489	0.00447489	3.70436E-12	0*	6.22804E-12	0.000118553	0*
Hexacosane		0.0152842*	0.0139586	0.0139586	3.77497E-12	0*	7.61882E-12	0.000369805	0*
Heptacosane		0.00528962*	0.00483083	0.00483083	3.32587E-13	0*	8.19195E-13	0.000127983	0*
Octacosane		0.00548449*	0.00500880	0.00500880	1.80054E-13	0*	5.04599E-13	0.000132698	0*
Nonacosane		0*	0	0	0	0*	0	0	0*
Triacontane		0*	0	0	0	0*	0	0	0*
Hentriacontane		0*	0	0	0	0*	0	0	0*
Other C10s		3.64640*	3.28789	3.28789	0.0247484	0*	0.00358681	0.0868706	0*
Other C7s Other C8s		1.20539*	1.58751	1.58751	0.337727		0.0336908	0.0388312	0* 0*
Omer Gös		6.61395*	6.28161	6.28161	0.447678		0.0489921	0.162148	
Other C9s		3.75848*	3.38789	3.38789		0.00596269*	0.00978811	0.0890084	0*

C2 83.5793* 91.4635 0.357679 0.400666 5076.10* 5067.80 0.00 C3 144.957* 151.623 0.592940 0.555048 2684.68* 2677.40 0.00 iC4 42.0875* 45.1455 0.176547 0.142407 352.271* 349.034 0.00 nC4 159.384* 176.228 0.689160 0.50594 968.744* 951.205 0.0 nC5 151.123* 159.142 0.622345 0.277177 306.574* 297.931 0.0 N2 0.141458* 0.239977 0.000938456 0.00190009 209.771* 209.671 7.733 CO2 0.611140* 0.778269 0.00304351 0.0161184 90.8447* 90.6593 0.00 Benzene 1.61719* 2.08858 0.00816765 0.0011219 1.7531* 1.23489 0.00 Ethylbenzene 7.02286* 6.51577 0.0254807 0.000514777 0* 0.481444 0.00 Toluene 6.97901* 7.48407	281019 0* 140681 0* 565784 0* 356935 0* 188451 0* 166324 0* 345565 0* 00E-06 0* 214899 0* 762117 0* 250307 0*
C3 144.957* 151.623 0.592940 0.555048 2684.68* 2677.40 0.00 iC4 42.0875* 45.1455 0.176547 0.142407 352.271* 349.034 0.0 nC4 159.384* 176.228 0.689160 0.505994 968.744* 951.205 0.0 nC5 85.9810* 88.1725 0.344809 0.179233 217.850* 215.313 0.0 nC5 151.123* 159.142 0.622345 0.277177 306.574* 297.931 0.0 N2 0.141458* 0.239977 0.000938456 0.0019009 209.771* 209.671 7.733 CO2 0.611140* 0.778269 0.00314351 0.0161184 90.8447* 90.6593 0.00 Benzene 1.61719* 2.08858 0.00816765 0.00141219 1.71531* 1.23489 0.00 Toluene 6.97901* 7.48407 0.0292673 0.00172413 2.02333* 1.48831 0.00	565784 0* 356935 0* 188451 0* 166324 0* 345565 0* 00E-06 0* 214899 0* 762117 0* 251387 0*
iC4 42.0875* 45.1455 0.176547 0.142407 352.271* 349.034 0.0 nC4 159.384* 176.228 0.689160 0.505994 968.744* 951.205 0.0 iC5 85.9810* 88.1725 0.344809 0.179233 217.850* 215.313 0.0 nC5 151.123* 159.142 0.622345 0.277177 306.574* 297.931 0.0 N2 0.141458* 0.239977 0.000938456 0.0019009 209.771* 209.671 7.733 CO2 0.611140* 0.778269 0.00304351 0.0161184 90.8447* 90.6593 0.00 Benzene 1.61719* 2.08858 0.00816765 0.00141219 1.71531* 1.23489 0.00 Toluene 6.97901* 7.48407 0.0292673 0.00172413 2.0233* 1.48831 0.00	356935 0* 188451 0* 166324 0* 345565 0* 00E-06 0* 214899 0* 762117 0* 251387 0*
nC4 159.384* 176.228 0.689160 0.505994 968.744* 951.205 0. iC5 85.9810* 88.1725 0.344809 0.179233 217.850* 215.313 0. nC5 151.123* 159.142 0.622345 0.277177 306.574* 297.931 0. N2 0.141458* 0.239977 0.00938456 0.0019009 209.771* 209.671 7.733 CO2 0.611140* 0.778269 0.0304351 0.0161184 90.8447* 90.6593 0.00 Benzene 1.61719* 2.08858 0.00816765 0.00141219 1.71531* 1.23499 0.00 Toluene 6.51577 0.022467 0.000514777 0* 0.481444 0.0	188451 0* 166324 0* 345565 0* 00E-06 0* 214899 0* 762117 0* 251387 0*
iC585.9810*88.17250.3448090.179233217.850*215.3130.nC5151.123*159.1420.6223450.277177306.574*297.9310.N20.141458*0.2399770.0009384560.00190009209.771*209.6717.733CO20.611140*0.7782690.003043510.016118490.8447*90.65930.00Benzene1.61719*2.088580.008167650.001412191.71531*1.234890.00Ethylbenzene7.02286*6.515770.02926730.001724132.02333*1.488310.0	166324 0* 345565 0* 00E-06 0* 214899 0* 762117 0* 251387 0*
nC5 151.123* 159.142 0.622345 0.277177 306.574* 297.931 0. N2 0.141458* 0.239977 0.000938456 0.00190009 209.771* 209.671 7.733 CO2 0.611140* 0.778269 0.00304351 0.0161184 90.8447* 90.6593 0.00 Benzene 1.61719* 2.08858 0.00816765 0.00141219 1.71531* 1.23489 0.00 Toluene 6.97901* 7.48407 0.0292673 0.00172413 2.0233* 1.48831 0.00	345565 0* 00E-06 0* 214899 0* 762117 0* 251387 0*
N2 0.141458* 0.239977 0.000938456 0.0019009 209.771* 209.671 7.733 CO2 0.611140* 0.778269 0.00304351 0.0161184 90.8447* 90.6593 0.00 Benzene 1.61719* 2.08858 0.00816765 0.00141219 1.71531* 1.23489 0.00 Ethylbenzene 7.02286* 6.51577 0.0254807 0.000514777 0* 0.481444 0.0 Toluene 6.97901* 7.48407 0.0292673 0.00172413 2.0233* 1.48831 0.00	00E-06 0* 214899 0* 762117 0* 251387 0*
CO2 0.611140* 0.778269 0.00304351 0.0161184 90.8447* 90.6593 0.00 Benzene 1.61719* 2.08858 0.00816765 0.00141219 1.71531* 1.23489 0.00 Ethylbenzene 7.02286* 6.51577 0.0254807 0.000514777 0* 0.481444 0.0 Toluene 6.97901* 7.48407 0.0292673 0.00172413 2.02333* 1.48831 0.0	214899 0* 762117 0* 251387 0*
Benzene 1.61719* 2.08858 0.00816765 0.00141219 1.71531* 1.23489 0.00 Ethylbenzene 7.02286* 6.51577 0.0254807 0.000514777 0* 0.481444 0.0 Toluene 6.97901* 7.48407 0.0292673 0.00172413 2.02333* 1.48831 0.0	762117 0* 251387 0*
Ethylbenzene 7.02286* 6.51577 0.0254807 0.000514777 0* 0.481444 0.0 Toluene 6.97901* 7.48407 0.0292673 0.00172413 2.02333* 1.48831 0.0	251387 0*
Toluene 6.97901* 7.48407 0.0292673 0.00172413 2.02333* 1.48831 0.0	
	000004 0*
o-Xylene 12 8395* 12 0844 0 0472576 0 000738960 0* 0 707433 0 0	282281 0*
	468907 0*
	541576 0*
	365039 0*
	206269 0*
	120125 0*
	659675 0*
C11 57.8953* 57.4722 0.224752 0.000134984 0* 0.198348 0.	224617 0*
C12 38.6629* 38.4629 0.150414 2.99060E-05 0* 0.0496201 0.	150384 0*
	107281 0*
	341753 0*
	146991 0*
Cyclopentane 0* 0 0 0 0* 0	0 0*
	390831 0*
2-Methylpentane 66.1437* 85.1090 0.332829 0.0805987 88.9419* 69.6436 0.	252349 0*
	159471 0*
	566584 0*
	712796 0*
	189145 0*
	179003 0*
2,2,4-Trimethylpentane 0* 0 0 0 0* 0	0 0*
	186084 0*
	253493 0*
p-Xylene 0* 0 0 0 0* 0	0 0*
	87.386 309.210*
	772490 0*
	522236 0*
	296191 0*
	179740 0*
	160190 0*
	102997 0*
	500202 0*
	291685 0*
	183288 0*
	957829 0*
	666143 0*
	346867 0*
	108199 0*
	374458 0*
	388253 0*
Nonacosane 0* 0 0 0* 0	0 0*
Triacontane 0* 0 0 0* 0 Unaddentation 0* 0 0 0* 0<	0 0*
Hentriacontane 0* 0 0 0* 0 0* 0 0 0* 0	0 0*
	254169 0*
	113614 0*
	474418 0*
Other C9s 68.3031* 67.1530 0.262610 0.00219827 1.40641* 2.29391 0.	260424 0*

Process Streams		Condensate	Condensate to Pipeline	Condensate To Tank	Flash	Gas	Gas To Pipeline	Produced Liquid	Water
Properties	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block:		SPLT-100	SPLT-100	Storage Vessel		VSSL-100	Storage Vessel	
	To Block:	MIX-100		MIX-101		MIX-100			MIX-100
Property	Units								
Temperature	°F	100*	71.0000	71.0000	70.4014	100*	71.0000	70.4014	100*
Pressure	psig	1000*	364	364	-1.35077E-13	1000*	364	-1.35077E-13	1000*
Molecular Weight	lb/lbmol	71.9790	71.0021	71.0021	41.2519	21.4819	21.3751	18.2804	18.0153
Mass Density	lb/ft^3	39.2290	39.6459	39.6459	0.108142	4.60899	1.58334	61.8000	62.0089
Molar Flow	lbmol/h	25.2478	27.9167	0.109172	0.0679274	1097.98	1096.40	16.0053	17.1637
Mass Flow	lb/h	1817.31	1982.15	7.75142	2.80213	23586.8	23435.7	292.583	309.210
Std Vapor Volumetric Flow	MMSCFD	0.229947	0.254255	0.000994293	0.000618656	10*	9.98562	0.145770	0.156321
Std Liquid Volumetric Flow	sgpm	5.83333*	6.38935	0.0249863	0.0113332	135.493	134.954	0.589453	0.618133*
Net Ideal Gas Heating Value	Btu/ft^3	3678.65	3630.17	3630.17	2128.55	1167.83	1161.42	16.4224	0
Net Liquid Heating Value	Btu/lb	19219.3	19227.6	19227.6	19425.0	20563.0	20552.1	-703.310	-1059.76

			Environments	Report	
Client Name:	Determination			Job:	N:\West Virginia\Tug Hill\Projects\Determination\Burch Ridge\ProMa
Location:	0			J00.	In west virginia i ug hinter opects betennination buich kidgete towa
Flowsheet:	Flowsheet1				
	r lonoitoott				
			Project-Wide Cor	nstants	
Atmospheric Pressure	14.6959	psia	Ideal Gas Reference Volum		4 ft^3/lbmol
deal Gas Reference Pressure	14.6959		Liquid Reference Temperat		0 °F
deal Gas Reference Temperature	60		Elquid Holoronoo Hompolat		
			Environmen	t1	
			Environment Se	ttings	
umber of Poynting Intervals	0		Phase Tolerance		1 %
Gibbs Excess Model Evaluation Temperature	77		Emulsion Enabled	FALS	E
Freeze Out Temperature Threshold Difference	10	°F			
			Component		
Component	Henry's Law Comp.	Phase Initiator		Henry's Law Comp	
	FALSE	FALSE	C2	FALSE	FALSE
23	FALSE	FALSE	iC4	FALSE	FALSE
IC4 IC5	FALSE	FALSE	iC5 N2	FALSE	FALSE
	FALSE	FALSE		FALSE	FALSE
02	FALSE	FALSE	Benzene	FALSE	FALSE
thylbenzene	FALSE	FALSE	Toluene	FALSE	FALSE
-Xylene	FALSE FALSE	FALSE	C6 C8	FALSE FALSE	FALSE FALSE
27		FALSE			
29	FALSE FALSE	FALSE	C10 C12	FALSE	FALSE FALSE
211		FALSE		FALSE	
C13 2.2-Dimethylbutane	FALSE FALSE	FALSE FALSE	2,2-Dimethylpropane	FALSE FALSE	FALSE FALSE
2,2-Dimethylbutane	FALSE	FALSE	Cyclopentane 2-Methylpentane	FALSE	FALSE
	FALSE	FALSE	Methylcyclopentane	FALSE	FALSE
3-Methylpentane Cyclohexane	FALSE	FALSE	2-Methylhexane	FALSE	FALSE
	FALSE	FALSE		FALSE	FALSE
3-Methylhexane Methylcyclohexane	FALSE	FALSE	2,2,4-Trimethylpentane m-Xylene	FALSE	FALSE
-Xylene	FALSE	FALSE	Water	FALSE	TRUE
eradecane	FALSE	FALSE	Pentadecane	FALSE	FALSE
lexadecane	FALSE	FALSE	Heptadecane	FALSE	FALSE
Octadecane	FALSE	FALSE	Nonadecane	FALSE	FALSE
icosane	FALSE	FALSE	Heneicosane	FALSE	FALSE
Docosane	FALSE	FALSE	Tricosane	FALSE	FALSE
etracosane	FALSE	FALSE	Pentacosane	FALSE	FALSE
lexacosane	FALSE	FALSE	Heptacosane	FALSE	FALSE
Octacosane	FALSE	FALSE	Nonacosane	FALSE	FALSE
riacontane	FALSE	FALSE	Hentriacontane	FALSE	FALSE
Other C10s	FALSE	FALSE	Other C7s	FALSE	FALSE
Other C8s	FALSE	FALSE	Other C9s	FALSE	FALSE
			Physical Property M	ethod Sets	
iquid Molar Volume	COSTALD		Vapor Package	Peng-Robinson	
Overall Package	Peng-Robinson		Light Liquid Package	Peng-Robinson	
Stability Calculation	Peng-Robinson		Heavy Liquid Package	Peng-Robinson	

			Ōth	er C7s
Client Name:	Determination		Job:	N:\West Virginia\Tug Hill\Projects\Determination\Burch Ridge\ProMax\TugHill_Burch_WellPad Rev 1.pmx
Location:	0			
Flowsheet:	Flowsheet1			
			Pro	perties
Volume Average Boiling Point	203.724 °F	Low Temperature Viscosity	0.346990	cP
Molecular Weight	100.07* lb/lbmol	Temperature of High T Viscosity	210	°F
Specific Gravity	0.7016*	High Temperature Viscosity	0.210907	cP
API Gravity	70.1819	Watson K	12.4309	
Critical Temperature	512.577 °F	ASTM D86 10-90% Slope	0	°F/%
Critical Pressure	396.762 psig	ASTM D93 Flash Point	22.3697	°F
Critical Volume	6.60925 ft^3/lbmol	Pour Point	-5.74868?	°F
Acentric Factor	0.327670	Paraffinic Fraction	72.7939	%
Carbon to Hydrogen Ratio	5.34782	Naphthenic Fraction	21.4640	%
Refractive Index	1.39188	Aromatic Fraction	5.74203	%
Temperature of Low T Viscosity	100 °F	Ideal Gas Heat Capacity	37.1038	Btu/(lbmol*°F)

				Dil Report Pr C8s
Client Name:	Determination		Job:	:\West Virginia\Tug Hill\Projects\Determination\Burch Ridge\ProMax\TugHill_Burch_WellPad Rev 1.pmx
Location:	0			
Flowsheet:	Flowsheet1			
			Prop	erties
Volume Average Boiling Point	251.782 °F	Low Temperature Viscosity	0.447017 c	P
Molecular Weight	114.08* lb/lbmol	Temperature of High T Viscosity	210 °	F
Specific Gravity	0.724*	High Temperature Viscosity	0.258671 c	P
API Gravity	63.9420	Watson K	12.3304	
Critical Temperature	565.249 °F	ASTM D86 10-90% Slope	0 °	F/%
Critical Pressure	367.106 psig	ASTM D93 Flash Point	55.5298°	=
Critical Volume	7.44256 ft^3/lbmol	Pour Point	-9.53663? °	-
Acentric Factor	0.374355	Paraffinic Fraction	66.6400 %	
Carbon to Hydrogen Ratio	5.49489	Naphthenic Fraction	23.6733 %	
Refractive Index	1.40407	Aromatic Fraction	9.68675 %	
Temperature of Low T Viscosity	100 °F	Ideal Gas Heat Capacity	41.8448 E	tu/(lbmol*°F)

Notes:

			•	Dil Report Pr C9s
Client Name:	Determination		Job: N	l:\West Virginia\Tug Hill\Projects\Determination\Burch Ridge\ProMax\TugHill_Burch_WellPad Rev 1.pm
Location:	0			
Flowsheet:	Flowsheet1			
			Prop	erties
Volume Average Boiling Point	296.856 °F	Low Temperature Viscosity	0.570492 c	P
Volecular Weight	128.09* lb/lbmol	Temperature of High T Viscosity	210 °	F
Specific Gravity	0.7424*	High Temperature Viscosity	0.314212 c	P
API Gravity	59.0981	Watson K	12.2735	
Critical Temperature	612.701 °F	ASTM D86 10-90% Slope	0 °	F/%
Critical Pressure	339.690 psig	ASTM D93 Flash Point	86.6305 °	F
Critical Volume	8.29059 ft^3/lbmol	Pour Point	-10.9710? °	F
Acentric Factor	0.420726	Paraffinic Fraction	62.4329 %	0
Carbon to Hydrogen Ratio	5.61990	Naphthenic Fraction	24.7431 %	0
Refractive Index	1.41425	Aromatic Fraction	12.8241 %	0
Temperature of Low T Viscosity	100 °F	Ideal Gas Heat Capacity	46.6869 E	tu/(lbmol*°F)

Client Name: Determination Location: 0 Flowsheet: Flowsheet1	Job:	N:\West Virginia\Tug Hill\Projects\Determination\Burch Ridge\ProMax\TugHill_Burch_WellPad Rev 1.pmx
Flowsheet: Flowsheet1		
	Р	roperties
Volume Average Boiling Point 338.806 °F Low Te	emperature Viscosity 0.71595	0 cP
Molecular Weight 142.1* lb/lbmol Tempe	erature of High T Viscosity 21	0 °F
Specific Gravity 0.756* High T	Temperature Viscosity 0.37605	6 cP
API Gravity 55.6693 Watso	on K 12.271	5
Critical Temperature 654.485 °F ASTM	D86 10-90% Slope	0 °F/%
Critical Pressure 313.037 psig ASTM	D93 Flash Point 115.57	6 °F
Critical Volume 9.16628 ft^3/lbmol Pour P	Point -9.65966	?° °F
Acentric Factor 0.467467 Paraffi	inic Fraction 60.242	5 %
Carbon to Hydrogen Ratio 5.70210 Naphth	henic Fraction 24.851	1 %
Refractive Index 1.42187 Aroma	atic Fraction 14.906	5 %
Temperature of Low T Viscosity 100 °F Ideal G	Gas Heat Capacity 51.771	7 Btu/(lbmol*°F)

	Calc	ulators Report	
Client Name:	Determination	Job:	N:\W
Location:	0		
Flowsheet:	Flowsheet1		
		mple Solver 1	
		Source Code	
Residual Error (fo	r CV1) = ProducedWater-19.7		
		ated Variable [CV1]	
SourceMoniker		treams!Water!Phases!Total!Properties!Std Liquid Volumetric Flow	
Value	21.1931		
Units	bbl/d		
	Macourad	Variable [ProducedWater]	
SourceMoniker		treams!Produced Liquid!Phases!Heavy Liquid!Properties!Std Liquid Vo	lumotrio Elow
Value	19.7000	treams: Produced Liquid: Phases: Heavy Liquid: Properties: Std Liquid Vo	iumetric Flow
Units	bbl/d		
	55/14		
	S	olver Properties	
Status: Solved			
Error	-2.14354E-08	terations	3
Calculated Value	51	Max Iterations	20
Lower Bound		Weighting	1
Upper Bound		Priority	0
Step Size	01	Solver Active	Active
Is Minimizer		Group	
Algorithm	Default	Skip Dependency Check	FALSE
Notes:			
	Si	mple Solver 2	
		Source Code	
Residual Error (fo	r CV1) = ProducedCondensate51		
	Calcula	ated Variable [CV1]	
SourceMoniker		cks!SPLT-100!Properties!Fraction to PStream Condensate To Tank	
Value	0.389538		
Units	%		
		iable [ProducedCondensate]	
SourceMoniker		treams!Produced Liquid!Phases!Light Liquid!Properties!Std Liquid Volu	metric Flow
Value	0.509806		
Units	bbl/d		
Status: Solved	5	olver Properties	
Error	-0.000194034	Algorithm	Default
Error Calculated Value		Algorithm	Default 1
Lower Bound		Max Iterations	20
Upper Bound		Weighting	1
Step Size		Solver Active	Active
Is Minimizer		Skip Dependency Check	TRUE
Notes:			

		Simple Solver 3	
		Source Code	
Residual Error (f	or CV1) = GPUTemp-71		
	Ca	Iculated Variable [CV1]	
SourceMoniker	ProMax:ProMax!Project!Flowsheets!Flowshee	t1!QStreams!Q-1!Energy Rate	
Value	0.244521		
Units	MMBtu/h		
		asured Variable [GPUTemp]	
SourceMoniker	-	t1!PStreams!Gas To Pipeline!Phases!Total!Propertie	es!Temperature
Value	71.0000		
Units	°F		
		Solver Properties	
Status: Solved			
Error	1.53744E-08	Iterations	3
Calculated Value		Max Iterations	20
_ower Bound	Btu/h	Weighting	1
Jpper Bound	Btu/h	Priority Debug Action	0
Step Size	Btu/h	Solver Active	Active
Is Minimizer	FALSE Default	Group	
Algorithm	Default	Skip Dependency Check	FALSE
Notes:			
NULES.			

	User Value	Sets Report	
Client Name:	Determination	Job:	N:\West Virginia
Location:	0		· · · · · · · · · · · · · · · · · · ·
Flowsheet:	Flowsheet1		
	Tan	k-1	
	User Value [l		
Parameter	1*	Upper Bour	
Lower Bound		Enforce Boi	FALSE
	User Value [ShellLength1	
Parameter	20* ft	Upper Bour	ft
Lower Bound	0* ft	Enforce Boi	FALSE
	User Value	[ShallDiam]	
Parameter	12* ft	Upper Bour	ft
Lower Bound	0* ft	Enforce Boi	FALSE
	User Value [
Parameter Lower Bound	0.0300000* psig psig	Upper Bour Enforce Bou	psig FALSE
	User Value [B		
Parameter	-0.0300000* psig	Upper Bour Enforce Bou	psig FALSE
Lower Bound	psig	ENIOICE BOI	FALSE
	User Value [[DomeRadius]	
Parameter	0.17* ft	Upper Bour	ft
Lower Bound	ft	Enforce Boi	FALSE
	User Value	[OpPress]	
Parameter	0* psig	Upper Bour	psig
Lower Bound	psig	Enforce Boi	FALSE
	User Value [Av	vaPercentLia	
Parameter	50* %	Upper Bour	%
Lower Bound	%	Enforce Boi	FALSE
	User Value [M	avPercentLig1	
Parameter		Upper Bour	%
Lower Bound	%	Enforce Boi	FALSE
Parameter	User Value 20.1967* bbl/day	Upper Bour	bbl/day
Lower Bound	0* bbl/day	Enforce Boi	FALSE
Demonst	User Valu		0(
Parameter Lower Bound	0* % %	Upper Bour Enforce Bou	% FALSE
	User Value		
Parameter	61.15* °F °F	Upper Bour Enforce Bou	°F
Lower Bound	F		FALSE
	User Value	[MinAvgT]	
Parameter	36.9667* °F	Upper Bour	°F
Lower Bound	°F	Enforce Boi	FALSE

	User Value [
Parameter	52.1383* °F	Upper Bour	°F
ower Bound	°F	Enforce Boi	FALSE
	User Value		
Parameter	13.7315* psia	Upper Bour	psia
Lower Bound	psia	Enforce Boi	FALSE
	User Value		
Parameter	1193.89* Btu/ft^2/day	Upper Bour	Btu/ft^2/day
Lower Bound	Btu/ft^2/day	Enforce Boi	FALSE
		W/	
	User Value [Avg		
Parameter	6.16667* mi/h	Upper Bour	mi/h
ower Bound	mi/h	Enforce Boi	FALSE
		urbul a adima Datal	
	User Value [MaxHo		1.1.1/1
Parameter	0.841530* bbl/hr	Upper Bour Enforce Bou	bbl/hr FALSE
ower Bound	0* bbl/hr	Enforce Bol	FALSE
	User Value [Entr		
			<u>^/</u>
Parameter	1* %	Upper Bour	% EALSE
Lower Bound	%	Enforce Boi	FALSE
	User Value [Tu	rnovorPotol	
Parameter	10.1646*	Upper Bour Enforce Bou	FALSE
ower Bound		Eniorce Bol	FALSE
	User Value [LLc	ssSatFactor1	
Parameter	0.5*	Upper Bour	
Lower Bound	0.5	Enforce Boi	FALSE
		Enloice Boi	TALGE
	User Value [At	mPressurel	
Parameter	13.7315* psia	Upper Bour	psia
	•		•
Lower Bound	psia	Enforce Boi	FALSE
	psia	Enforce Bou	•
Lower Bound	psia User Valu	Enforce Boi	FALSE
Lower Bound	psia User Valu 0.273435* psia	Enforce Boi e [TVP] Upper Bour	FALSE psia
Lower Bound	psia User Valu	Enforce Boi	FALSE
	psia User Valu 0.273435* psia psia	Enforce Boi e [TVP] Upper Bour Enforce Boi	FALSE psia
Lower Bound Parameter Lower Bound	psia User Valu 0.273435* psia psia User Value	Enforce Boi e [TVP] Upper Bour Enforce Boi [MaxVP]	FALSE psia FALSE
Lower Bound Parameter Lower Bound Parameter Parameter	psia User Valu 0.273435* psia psia User Value 0.377770* psia	Enforce Boi e [TVP] Upper Bour Enforce Boi	FALSE psia
Lower Bound Parameter Lower Bound Parameter Parameter	psia User Valu 0.273435* psia psia User Value	Enforce Boi e [TVP] Upper Bour Enforce Boi [MaxVP] Upper Bour	FALSE psia FALSE psia
Lower Bound Parameter Lower Bound Parameter Parameter	psia User Valu 0.273435* psia psia User Value 0.377770* psia psia	Enforce Boi e [TVP] Upper Bour Enforce Boi [MaxVP] Upper Bour Enforce Boi	FALSE psia FALSE psia
Lower Bound Parameter Lower Bound Parameter Lower Bound Parameter Lower Bound	psia User Valu 0.273435* psia psia User Value 0.377770* psia psia User Value	Enforce Boi e [TVP] Upper Bour Enforce Boi [MaxVP] Upper Bour Enforce Boi [MinVP]	FALSE psia FALSE psia FALSE
Lower Bound Parameter Lower Bound Parameter Lower Bound Parameter Lower Bound Parameter Parameter Parameter	psia User Valu 0.273435* psia psia User Value 0.377770* psia psia User Value 0.196596* psia	Enforce Boi e [TVP] Upper Bour Enforce Boi [MaxVP] Upper Bour Enforce Boi [MinVP] Upper Bour	FALSE psia FALSE psia FALSE psia psia
Lower Bound Parameter Lower Bound Parameter Lower Bound Parameter Lower Bound Parameter Parameter Parameter	psia User Valu 0.273435* psia psia User Value 0.377770* psia psia User Value	Enforce Boi e [TVP] Upper Bour Enforce Boi [MaxVP] Upper Bour Enforce Boi [MinVP]	FALSE psia FALSE psia FALSE
Lower Bound Parameter Lower Bound Parameter Lower Bound Parameter Lower Bound Parameter Parameter Parameter	psia User Valu 0.273435* psia psia User Value 0.377770* psia psia User Value 0.196596* psia	Enforce Boi e [TVP] Upper Bour Enforce Boi [MaxVP] Upper Bour Enforce Boi [MinVP] Upper Bour Enforce Boi	FALSE psia FALSE psia FALSE psia psia
Lower Bound Parameter Lower Bound	psia User Valu 0.273435* psia psia User Value 0.377770* psia psia User Value 0.196596* psia psia	Enforce Boi e [TVP] Upper Bour Enforce Boi [MaxVP] Upper Bour Enforce Boi [MinVP] Upper Bour Enforce Boi [MinVP]	FALSE psia FALSE psia FALSE psia psia
Lower Bound Parameter Parameter	psia User Valu 0.273435* psia psia User Value 0.377770* psia psia User Value 0.196596* psia psia	Enforce Boi e [TVP] Upper Bour Enforce Boi [MaxVP] Upper Bour Enforce Boi [MinVP] Upper Bour Enforce Boi	FALSE psia FALSE psia FALSE psia FALSE
Lower Bound Parameter Parameter	psia User Valu 0.273435* psia psia User Value 0.377770* psia psia User Value 0.196596* psia psia User Value [Avg 57.1967* °F	Enforce Boi e [TVP] Upper Bour Enforce Boi [MaxVP] Upper Bour Enforce Boi [MinVP] Upper Bour Enforce Boi [LiqSurfaceT] Upper Bour	FALSE psia FALSE psia FALSE psia FALSE Psia FALSE
Lower Bound Parameter	psia User Valu 0.273435* psia psia User Value 0.377770* psia psia User Value 0.196596* psia psia User Value [Avg 57.1967* °F	Enforce Boi e [TVP] Upper Bour Enforce Boi [MaxVP] Upper Bour Enforce Boi [MinVP] Upper Bour Enforce Boi LiqSurfaceT] Upper Bour Enforce Boi	FALSE psia FALSE psia FALSE psia FALSE Psia FALSE
Lower Bound	psia User Value 0.273435* psia psia User Value 0.377770* psia psia User Value 0.196596* psia psia User Value [Avg 57.1967* °F °F	Enforce Boi e [TVP] Upper Bour Enforce Boi [MaxVP] Upper Bour Enforce Boi [MinVP] Upper Bour Enforce Boi LiqSurfaceT] Upper Bour Enforce Boi	FALSE psia FALSE psia FALSE psia FALSE Psia FALSE
Lower Bound	psia User Valu 0.273435* psia psia User Value 0.377770* psia psia User Value 0.196596* psia psia User Value [Avg 57.1967* °F °F	Enforce Boi e [TVP] Upper Bour Enforce Boi [MaxVP] Upper Bour Enforce Boi [MinVP] Upper Bour Enforce Boi [LiqSurfaceT] Upper Bour Enforce Boi	FALSE psia FALSE Psia FALSE Psia FALSE Psia FALSE
Lower Bound	psia User Value 0.273435* psia psia User Value 0.377770* psia psia User Value 0.196596* psia psia User Value [Avg 57.1967* °F °F ℃	Enforce Boi e [TVP] Upper Bour Enforce Boi [MaxVP] Upper Bour Enforce Boi [MinVP] Upper Bour Enforce Boi [LiqSurfaceT] Upper Bour Enforce Boi	FALSE Psia FALSE Psia FALSE Psia FALSE Psia FALSE Psia FALSE Psia FALSE
Lower Bound	psia User Value 0.273435* psia psia User Value 0.377770* psia psia User Value 0.196596* psia psia User Value [Avg 57.1967* °F °F ℃ User Value [Max 67.2326* °F	Enforce Boi e [TVP] Upper Bour Enforce Boi [MaxVP] Upper Bour Enforce Boi [MinVP] Upper Bour Enforce Boi LiqSurfaceT] Upper Bour Enforce Boi (LiqSurfaceT] Upper Bour Enforce Boi	FALSE Psia FALSE Psia FALSE Psia FALSE Psia FALSE Psia FALSE Psia FALSE
Lower Bound	psia User Value 0.273435* psia psia User Value 0.377770* psia psia User Value 0.196596* psia psia User Value [Avg 57.1967* °F °F ℃ User Value [Max 67.2326* °F °F	Enforce Boi e [TVP] Upper Bour Enforce Boi [MaxVP] Upper Bour Enforce Boi [MinVP] Upper Bour Enforce Boi LiqSurfaceT] Upper Bour Enforce Boi (LiqSurfaceT] Upper Bour Enforce Boi	FALSE Psia FALSE FALSE Psia FALSE Psia FALSE Psia FALSE Psia FALSE
Lower Bound	psia User Value 0.273435* psia psia User Value 0.377770* psia psia User Value 0.196596* psia psia User Value [Avg 57.1967* °F °F User Value [Max 67.2326* °F °F	Enforce Boi E [TVP] Upper Bour Enforce Boi [MaxVP] Upper Bour Enforce Boi [MinVP] Upper Bour Enforce Boi [LiqSurfaceT] Upper Bour Enforce Boi [LiqSurfaceT] Upper Bour Enforce Boi [Upper Bour En	FALSE Psia FALSE Psia FALSE Psia FALSE Psia FALSE Psia FALSE Psia FALSE
ower Bound Parameter ower Bound	psia User Value 0.273435* psia psia User Value 0.377770* psia psia User Value 0.196596* psia psia User Value [Avg 57.1967* °F °F User Value [Max 67.2326* °F °F User Value [Max 67.2326* °F °F	Enforce Boi e [TVP] Upper Bour Enforce Boi [MaxVP] Upper Bour Enforce Boi [MinVP] Upper Bour Enforce Boi [LiqSurfaceT] Upper Bour Enforce Boi [LiqSurfaceT] Upper Bour Enforce Boi [Upper Bour Enforce Boi	FALSE Psia FALSE FALSE Psia FALSE Psia FALSE Psia FALSE Psia FALSE Psia FALSE Psia FALSE
Lower Bound	psia User Value 0.273435* psia psia User Value 0.377770* psia psia User Value 0.196596* psia psia User Value [Avg 57.1967* °F °F User Value [Max 67.2326* °F °F User Value [Max 67.2326* °F °F	Enforce Boi E [TVP] Upper Bour Enforce Boi [MaxVP] Upper Bour Enforce Boi [MinVP] Upper Bour Enforce Boi [LiqSurfaceT] Upper Bour Enforce Boi [LiqSurfaceT] Upper Bour Enforce Boi [LiqSurfaceT] Upper Bour Enforce Boi [Upper Bour Enforce Boi [LiqSurfaceT] [Upper Bour Enforce Boi [U	FALSE Psia FALSE FALSE Psia FALSE Psia FALSE Psia FALSE Psia FALSE Psia FALSE Psia FALSE

Lower Bound	ton/yr	Enforce Bo	FALSE	
User Value [StandingLosses]				
Parameter Lower Bound	0.00326488* ton/yr ton/yr	Upper Bour Enforce Boi	ton/yr FALSE	
	User Value [Ri	mSealLosses]		
Parameter Lower Bound	0* ton/yr ton/yr	Upper Bour Enforce Boi	ton/yr FALSE	
	User Value [Wi	ithdrawalLoss]		
Parameter	0* ton/yr	Upper Bour	ton/yr	
Lower Bound	ton/yr	Enforce Boi	FALSE	
	User Value [Lo	padingLosses]		
Parameter	0.00213957* ton/yr	Upper Bour	ton/yr	
Lower Bound	ton/yr	Enforce Boi	FALSE	
	User Value [MaxHo	ourlyLoadingLoss]		
Parameter	0.000488486* lb/hr	Upper Bour	lb/hr	
Lower Bound	lb/hr	Enforce Boi	FALSE	
	User Valu	ie [PStar]		
Parameter		Upper Bour		
Lower Bound		Enforce Boi	FALSE	
	User Value [All	CTotalLosses]		
Parameter	0.0500878* ton/yr	Upper Bour	ton/yr	
Lower Bound	ton/yr	Enforce Boi	FALSE	
	User Value [AllC	LoadingLosses]		
Parameter	0.0110486* ton/yr	Upper Bour	ton/yr	
Lower Bound	ton/yr	Enforce Boi	FALSE	
	User Value [AllCM	axHLoadingLoss]		
Parameter	0.00252251* lb/hr	Upper Bour	lb/hr FALSE	
Lower Bound	lb/hr	Enforce Boi	FALSE	
	User Value [AIIC	FlashingLosses]		
Parameter	12.2648* ton/yr	Upper Bour	ton/yr	
Lower Bound	ton/yr	Enforce Bo	FALSE	
	User Value [Dec	kFittingLosses]		
Parameter Lower Bound	0* ton/yr	Upper Bour Enforce Bou	ton/yr FALSE	
	ton/yr		FALSE	
	User Value [Dec	ckSeamLosses]		
Parameter Lower Bound	0* ton/yr	Upper Bour Enforce Bou	ton/yr FALSE	
	ton/yr	Ellipice Boi	FALSE	
	User Value [Fla			
Parameter Lower Bound	9.04448* ton/yr	Upper Bour Enforce Bou	ton/yr FALSE	
	ton/yr			
	User Value [T			
Parameter Lower Bound	1281.47* ton/yr	Upper Bour Enforce Bou	ton/yr FALSE	
	ton/yr			
	User Value [Ga			
Parameter Lower Bound	0.0216546* kg/mol kg/mol	Upper Bour Enforce Bou	kg/mol FALSE	
	Kġ/IIIOI			

	User Value [Vap	ReportableFracj	
Parameter	19.3651* %	Upper Bour	%
ower Bound	%	Enforce Bou	FALSE
	User Value [Liq	ReportableFrac]	
Parameter	1.77017* %	Upper Bour	%
_ower Bound	%	Enforce Bou	FALSE
	User Value [Flas	hReportableFrac]	
Parameter	73.7435* %	Upper Bour	%
Lower Bound	%	Enforce Box	FALSE
Notes:	is programmatically generated. GUI	÷	
Notes:	is programmatically generated. GUI	D={1EDE36BA-2D5D-4876-{	
Notes:	is programmatically generated. GUI	D={1EDE36BA-2D5D-4876-{	
Notes: This User Value Set wa	is programmatically generated. GUI Sum Compor User Value	D={1EDE36BA-2D5D-4876-{ nent Flow/Frac [CompSum]	9370-5B5F79CCFF0E}
Notes: This User Value Set wa	is programmatically generated. GUI Sum Compor User Value 9.05063* ton/yr	D={1EDE36BA-2D5D-4876- thent Flow/Frac [CompSum] Upper Bour	
Notes: This User Value Set wa Parameter	is programmatically generated. GUI Sum Compor User Value	D={1EDE36BA-2D5D-4876-{ nent Flow/Frac [CompSum]	0370-5B5F79CCFF0E}
Notes: This User Value Set wa Parameter	is programmatically generated. GUI Sum Compor User Value 9.05063* ton/yr	D={1EDE36BA-2D5D-4876- thent Flow/Frac [CompSum] Upper Bour	0370-5B5F79CCFF0E}
Notes: This User Value Set wa Parameter Lower Bound Notes:	is programmatically generated. GUI Sum Compor User Value 9.05063* ton/yr ton/yr	D={1EDE36BA-2D5D-4876-{ nent Flow/Frac [CompSum] Upper Bour Enforce Boi	0370-5B5F79CCFF0E}
Notes: This User Value Set wa Parameter Lower Bound	is programmatically generated. GUI Sum Compor User Value 9.05063* ton/yr	D={1EDE36BA-2D5D-4876- thent Flow/Frac [CompSum] Upper Bour	0370-5B5F79CCFF0E}
Notes: This User Value Set wa Parameter Lower Bound Notes:	is programmatically generated. GUI Sum Compor User Value 9.05063* ton/yr	D={1EDE36BA-2D5D-4876-{ nent Flow/Frac [CompSum] Upper Bour Enforce Boi	0370-5B5F79CCFF0E} ton/yr FALSE

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: SLR International Corporation 8 Capitol Street, Suite 300 Charleston, West Virginia 25301

Sample: Tug Hill - Shields No. 9 & No. 10 GPU Sales Line Spot Gas Sample @ 366 psig & 71 °F

Date Sampled: 11/01/16

Job Number: 63606.021

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286

COMPONENT	MOL%		GPM	
Nitrogen	0.682			
Carbon Dioxide	0.188			
Methane	75.001			
Ethane	15.375		4.104	
Propane	5.545		1.525	
Isobutane	0.552		0.180	
n-Butane	1.518		0.478	
2-2 Dimethylpropane	0.015		0.006	
Isopentane	0.275		0.100	
n-Pentane	0.387		0.140	
Hexanes	0.319		0.131	
Heptanes Plus	0.143		0.061	
Totals	100.000		6.725	
Computed Real Charact	eristics Of Hept	anes Plus	5:	
Specific Gravity			(Air=1)	
Molecular Weight		98.43		
Gross Heating Value		5207	BTU/CF	
Computed Real Characteristics Of Total Sample:				
Specific Gravity		0.744	(Air=1)	
Compressibility (Z)				
Molecular Weight		21.48		

Compressibility (Z) 0.99	962	
Molecular Weight 21	.48	
Gross Heating Value		
Dry Basis 12	287	BTU/CF
Saturated Basis 12	266	BTU/CF

Base Conditions: 14.650 PSI & 60 Deg F

Sampled By: (SLR) N. Lanham Analyst: MR Processor: OA Cylinder ID: T-4675 Certified: FESCO, Ltd. - Alice, Texas

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286 TOTAL REPORT

COMPONENT	MOL %	GPM		WT %
Nitrogen	0.682			0.889
Carbon Dioxide	0.188			0.385
Methane	75.001			56.011
Ethane	15.375	4.104		21.522
Propane	5.545	1.525		11.382
Isobutane	0.552	0.180		1.494
n-Butane	1.518	0.478		4.107
2,2 Dimethylpropane	0.015	0.006		0.050
Isopentane	0.275	0.100		0.924
n-Pentane	0.387	0.140		1.300
2,2 Dimethylbutane	0.009	0.004		0.036
Cyclopentane	0.000	0.004		0.000
, ,		0.000		
2,3 Dimethylbutane	0.018			0.072
2 Methylpentane	0.094	0.039		0.377
3 Methylpentane	0.053	0.022		0.213
n-Hexane	0.145	0.060		0.582
Methylcyclopentane	0.012	0.004		0.047
Benzene	0.002	0.001		0.007
Cyclohexane	0.014	0.005		0.055
2-Methylhexane	0.017	0.008		0.079
3-Methylhexane	0.017	0.008		0.079
2,2,4 Trimethylpentane	0.000	0.000		0.000
Other C7's	0.016	0.007		0.074
n-Heptane	0.028	0.013		0.131
Methylcyclohexane	0.014	0.006		0.064
Toluene	0.002	0.001		0.009
Other C8's	0.013	0.006		0.067
n-Octane	0.006	0.003		0.032
Ethylbenzene	0.000	0.000		0.000
M & P Xylenes	0.000	0.000		0.000
O-Xylene	0.000	0.000		0.000
Other C9's	0.001	0.001		0.006
n-Nonane	0.001	0.001		0.006
Other C10's	0.000	0.000		0.000
n-Decane	0.000	0.000		0.000
Undecanes (11)	<u>0.000</u>	0.000		0.000
Totals	100.000	<u>6.725</u>		100.000
Totais	100.000	0.725		100.000
Computed Real Character	-			
		0.744	(Air=1)	
		0.9962		
Molecular Weight		21.48		
Gross Heating Value				
Dry Basis		1287	BTU/CF	
Saturated Basis		1266	BTU/CF	

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

Sample: Tug Hill - Shields No. 9 & No. 10 GPU Sales Line Spot Gas Sample @ 366 psig & 71 °F

Date Sampled: 11/01/16

Job Number: 63606.021

GLYCALC FORMAT

COMPONENT	MOL%	GPM	Wt %
Carbon Dioxide	0.188		0.385
Hydrogen Sulfide			
Nitrogen	0.682		0.889
Methane	75.001		56.011
Ethane	15.375	4.104	21.522
Propane	5.545	1.525	11.382
Isobutane	0.552	0.180	1.494
n-Butane	1.533	0.483	4.157
Isopentane	0.275	0.100	0.924
n-Pentane	0.387	0.140	1.300
Cyclopentane	0.000	0.000	0.000
n-Hexane	0.145	0.060	0.582
Cyclohexane	0.014	0.005	0.055
Other C6's	0.174	0.072	0.698
Heptanes	0.090	0.040	0.410
Methylcyclohexane	0.014	0.006	0.064
2,2,4 Trimethylpentane	0.000	0.000	0.000
Benzene	0.002	0.001	0.007
Toluene	0.002	0.001	0.009
Ethylbenzene	0.000	0.000	0.000
Xylenes	0.000	0.000	0.000
Octanes Plus	<u>0.021</u>	<u>0.010</u>	<u>0.111</u>
Totals	100.000	6.725	100.000

Real Characteristics Of Octanes Plus:

Specific Gravity	3.916	(Air=1)
Molecular Weight	112.99	
Gross Heating Value	5791	BTU/CF

Real Characteristics Of Total Sample:

Specific Gravity	0.744	(Air=1)
Compressibility (Z)	0.9962	
Molecular Weight	21.48	
Gross Heating Value		
Dry Basis	1287	BTU/CF
Saturated Basis	1266	BTU/CF

FESCO, Ltd. 1100 FESCO Avenue - Alice, Texas 78332

For: SLR International Corporation 8 Capitol Street, Suite 300 Charleston, West Virginia 25301

Sample: Tug Hill - Shields No. 9 & No. 10 Condensate Separator Hydrocarbon Liquid Sampled @ 366 psig & 71 °F

Date Sampled: 11/01/16

Job Number: 63606.002

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2186-M

COMPONENT	MOL %	LIQ VOL %	WT %
Nitrogen	0.020	0.006	0.008
Carbon Dioxide	0.055	0.026	0.034
Methane	9.002	4.177	2.022
Ethane	11.009	8.062	4.635
Propane	13.020	9.822	8.038
Isobutane	2.868	2.570	2.334
n-Butane	10.861	9.376	8.839
2,2 Dimethylpropane	0.138	0.145	0.140
Isopentane	4.720	4.727	4.768
n-Pentane	8.296	8.235	8.381
2,2 Dimethylbutane	0.172	0.197	0.208
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.403	0.452	0.486
2 Methylpentane	3.040	3.455	3.668
3 Methylpentane	1.897	2.121	2.289
n-Hexane	6.035	6.795	7.281
Heptanes Plus	28.464	<u>39.833</u>	46.869
Totals:	100.000	100.000	100.000

Characteristics	of Hepta	anes Plus:
-----------------	----------	------------

Specific Gravity	0.7292	(Water=1)
°API Gravity	62.54	@ 60°F
Molecular Weight	117.6	
Vapor Volume	19.68	CF/Gal
Weight	6.08	Lbs/Gal

Characteristics of Total Sample:

Specific Gravity	0.6197	(Water=1)
°API Gravity	96.82	@ 60°F
Molecular Weight	71.4	
Vapor Volume	27.54	CF/Gal
Weight	5.16	Lbs/Gal

Base Conditions: 14.850 PSI & 60 °F

Certified: FESCO, Ltd. - Alice, Texas

Sampled By: SLR Analyst: XG Processor: XGdjv Cylinder ID: PW-35024

FESCO, Ltd.

Nitrogen 0.020 0.006 0.008 Carbon Dioxide 0.055 0.026 0.034 Methane 9.002 4.177 2.022 Ethane 11.009 8.062 4.635 Propane 13.020 9.822 8.038 Isobutane 2.868 2.570 2.334 n-Butane 1.861 9.376 8.839 2.2 Dimethylpropane 0.133 0.145 0.140 Isopentane 4.720 4.727 4.768 2.2 Dimethylputane 0.172 0.197 0.208 Cyclopentane 0.000 0.000 0.000 2.3 Dimethylputane 1.897 2.121 2.898 2.4 Methylpentane 1.897 2.121 2.898 Benzene 0.862 0.663 0.990 Cyclohexane 0.874 0.815 1.030 2Methylhexane 1.777 2.234 2.494 2.2.4 Timethyloptane 0.867 1.093 1.204 n-Hexane	COMPONENT	Mol %	LiqVol %	Wt %
Carbon Dioxide 0.055 0.026 0.034 Methane 9.002 4.177 2.022 Ethane 11.009 8.062 4.635 Propane 13.020 9.822 8.038 Isobutane 2.868 2.570 2.334 n-Butane 10.361 9.376 8.839 2.2 Dimethylbutane 0.138 0.145 0.140 Isopentane 4.720 4.727 4.788 n-Pentane 8.296 8.235 8.381 2.2 Dimethylbutane 0.403 0.452 0.486 2 Methylpentane 3.640 3.455 3.668 3 Methylpentane 1.897 2.121 2.289 n-Hexane 6.035 6.795 7.281 Methylpentane 0.822 0.797 0.969 Benzene 0.082 0.663 0.090 Cyclohexane 3.867 1.093 1.204 n-Heptane 3.590 4.535 5.036 Methylprophenane	Nitrogen	0.020	0.006	0.008
Methane 9.002 4.177 2.022 Ethane 11.009 8.062 4.635 Propane 13.020 9.822 8.038 Isobutane 2.668 2.570 2.334 n-Butane 10.861 9.376 8.839 2.2 Dimethylpropane 0.138 0.145 0.140 Isopentare 4.720 4.727 4.768 n-Pentane 8.296 8.235 8.381 2.2 Dimethylbutane 0.000 0.000 0.000 Cyclopentane 0.001 0.000 0.000 2.3 Dimethylbutane 0.403 0.452 0.468 2 Methylpentane 1.897 2.121 2.289 n-Hexane 0.082 0.063 0.090 Cyclohexane 0.874 0.815 1.030 2-Methylhexane 1.777 2.234 2.494 2.4 Trimethylepontane 1.777 2.234 2.494 2.4 Trimethylepontane 1.877 2.066 2.581 2.04	•			
Propane 13.020 9.822 8.038 Isobutane 2.868 2.570 2.334 n-Butane 10.861 9.376 8.839 2.2 Dimethylpropane 0.138 0.145 0.140 Isopentane 4.720 4.727 4.768 n-Pentane 8.296 8.235 8.381 2.2 Dimethylbutane 0.403 0.452 0.486 2.4 Methylpentane 3.040 3.455 3.668 3 Methylpentane 0.822 0.797 0.969 Benzene 0.862 0.063 0.089 Cyclopentane 0.874 0.815 1.030 Cyclobexane 0.874 0.815 1.030 Cyclobexane 1.777 2.234 2.494 2.2.4 Trimethylpentane 0.000 0.000 0.000 Cyclobexane 1.877 2.066 2.581 Toluene 0.300 0.275 0.387 Other C-8's 4.173 5.664 6.440 n-Getane	Methane		4.177	
Isobutane 2.868 2.570 2.334 n-Butane 10.861 9.376 8.839 2.2 Dimethylpropane 0.133 0.145 0.144 Isopentane 4.720 4.727 4.768 n-Pentane 8.296 8.235 8.381 2.2 Dimethylbutane 0.000 0.000 0.000 2.3 Dimethylbutane 0.403 0.452 0.468 3 Methylpentane 1.897 2.121 2.289 n-Hexane 6.035 6.795 7.281 Methylcyclopentane 0.822 0.797 0.969 Benzene 0.082 0.063 0.090 Cyclokexane 2.004 2.551 2.812 3-Methylhexane 1.777 2.234 2.494 2.2,4 Timethylpentane 0.000 0.000 0.000 Ober C-7's 0.867 1.093 1.204 n-Heptane 3.590 4.535 5.036 Methylcyclohexane 1.877 2.066 2.581 <td< td=""><td>Ethane</td><td>11.009</td><td>8.062</td><td>4.635</td></td<>	Ethane	11.009	8.062	4.635
n-Butane 10.861 9.376 8.839 2,2 Dimethylpropane 0.138 0.145 0.140 Isopentane 4.720 4.727 4.788 n-Pentane 8.296 8.235 8.381 2.2 Dimethylbutane 0.403 0.452 0.486 2.3 Dimethylbutane 0.403 0.452 0.486 2 Mettylpentane 3.040 3.455 3.668 3 Methylpentane 1.897 2.121 2.289 n-Hexane 6.035 6.795 7.281 Methylcolopentane 0.874 0.815 1.030 2-Methylhexane 2.004 2.551 2.812 3-Methylhexane 1.777 2.234 2.494 2.2.4 Trimethylpentane 0.000 0.000 0.000 0.01br C-7s 0.867 1.093 1.204 n-Heptane 3.590 4.535 5.036 Methylcolohexane 1.877 2.666 2.581 Toluene 0.300 0.275 0.387	Propane	13.020	9.822	8.038
2.2 Dimethylpropane 0.138 0.145 0.140 Isopentane 4.720 4.727 4.768 n-Pentane 8.296 8.235 8.381 2.2 Dimethylbutane 0.000 0.000 0.000 Cyclopentane 0.403 0.452 0.486 2.3 Dimethylbutane 0.403 0.455 3.668 3 Methylpentane 1.897 2.121 2.289 n-Hexane 6.035 6.795 7.281 Methylcyclopentane 0.822 0.797 0.999 Benzene 0.822 0.797 0.999 Benzene 0.827 0.663 0.090 Cyclohexane 1.777 2.234 2.494 2.2,4 Trimethylpentane 0.590 4.535 5.036 Methylexane 1.877 2.066 2.581 Toluene 0.300 0.275 0.337 Other C-7's 0.3663 0.280 0.392 Other C-8's 4.173 5.664 6.440 n-Octa	Isobutane	2.868	2.570	2.334
Isopentane 4.720 4.727 4.768 n-Pentane 8.296 8.235 8.331 2.2 Dimethylbutane 0.172 0.197 0.208 Cyclopentane 0.000 0.000 0.000 2.3 Dimethylbutane 0.403 0.452 0.4466 2 Methylpentane 3.807 2.121 2.289 n-Hexane 6.035 6.795 7.281 Methylcyclopentane 0.822 0.797 0.969 Benzene 0.082 0.663 0.090 Cyclohexane 0.874 0.815 1.030 2-Methylhexane 1.777 2.334 2.494 2.2.4 Trimethylpentane 0.000 0.000 0.000 Other C-7's 0.867 1.093 1.204 n-Heptane 3.590 4.535 5.036 Methylcyclohexane 1.877 2.066 2.581 Toluene 0.300 0.275 0.387 Other C-8's 2.112 3.204 3.932 Oth		10.861	9.376	8.839
n-Pentane 8.296 8.235 8.381 2,2 Dimethylbutane 0.172 0.197 0.208 Cyclopentane 0.403 0.452 0.486 2 Methylpentane 3.040 3.455 3.668 3 Methylpentane 1.897 2.121 2.289 n-Hexane 6.035 6.795 7.281 Methylpentane 0.822 0.797 0.969 Benzene 0.082 0.063 0.990 Cyclopentane 2.004 2.551 2.812 3-Methylhexane 1.777 2.234 2.494 2.4 4.74 1.815 1.030 2-Methylhexane 1.877 2.066 2.581 Toluene 0.300 0.275 0.387 Toluene 0.300 0.275 0.381 Toluene 0.262 0.277 0.390 M & P Xylenes 0.262 0.277 0.390 M & P Xylenes 0.263 0.280 0.392 Other C-9's 2.112<				
2.2 Dimethylbutane 0.172 0.197 0.208 Cyclopentane 0.000 0.000 0.000 2.3 Dimethylbutane 0.403 0.452 0.486 2 Methylpentane 1.897 2.121 2.289 n-Hexane 6.035 6.795 7.281 Methylpentane 0.822 0.797 0.969 Benzene 0.082 0.063 0.090 Cyclohexane 0.874 0.815 1.030 2.Methylhexane 1.777 2.234 2.444 2.2,4 Trimethylpentane 0.000 0.000 0.000 Other C-7's 0.867 1.093 1.204 n-Heptane 3.590 4.535 5.036 Methylcyclohexane 1.877 2.066 2.581 Toluene 0.300 0.275 0.387 Other C-8's 4.173 5.664 4.400 n-Octane 1.576 2.463 2.808 E-Benzene 0.262 0.277 0.390 M & P Xylen	•			
Cyclopentane 0.000 0.000 0.000 2,3 Dimethylbutane 0.403 0.452 0.486 2 Methylpentane 3.040 3.455 3.668 3 Methylpentane 1.897 2.121 2.289 n-Hexane 6.035 6.795 7.281 Methylcyclopentane 0.822 0.797 0.969 Benzene 0.082 0.063 0.090 Cyclobexane 2.004 2.551 2.812 3-Methylhexane 1.777 2.234 2.494 2.4 7.497 0.867 1.093 1.204 n-Heptane 3.500 4.535 5.036 Methylcyclohexane 1.877 2.066 2.581 Toluene 0.300 0.275 0.387 Other C-8's 4.173 5.664 6.440 n-Octane 1.756 2.463 2.808 E-Benzene 0.262 0.277 0.390 Other C-9's 2.112 3.202 3.733 n-Non				
2,3 Dimethylbutane 0.403 0.452 0.486 2 Methylpentane 3.040 3.455 3.668 3 Methylpentane 1.897 2.121 2.289 n-Hexane 6.035 6.795 7.281 Methylpcyclopentane 0.822 0.797 0.969 Benzene 0.082 0.063 0.090 Cyclohexane 2.004 2.551 2.812 3-Methylhexane 2.004 2.551 2.842 2,2,4 Trimethylpentane 0.000 0.000 0.000 Other C-7's 0.867 1.093 1.204 n-Heptane 3.590 4.535 5.036 Methylcyclohexane 1.877 2.066 2.581 Toluene 0.300 0.275 0.387 Other C-8's 4.173 5.664 6.440 n-Octane 1.756 2.463 2.808 E-Benzene 0.262 0.277 0.390 Other C-9's 2.112 3.202 3.733 n-Nonane<	-			
2 Methylpentane 3.040 3.455 3.668 3 Methylpentane 1.897 2.121 2.289 n-Hexane 6.035 6.795 7.281 Methylcyclopentane 0.822 0.797 0.969 Benzene 0.082 0.063 0.090 Cyclobexane 0.874 0.815 1.030 2-Methylhexane 1.777 2.234 2.494 2,2,4 Trimethylpentane 0.000 0.000 0.000 Other C-7's 0.867 1.093 1.204 n-Heptane 3.590 4.535 5.036 Methylcyclohexane 1.877 2.066 2.581 Toluene 0.300 0.275 0.387 Other C-8's 4.173 5.664 6.440 n-Octane 1.756 2.463 2.808 E-Benzene 0.262 0.277 0.390 M & P Xylenes 0.263 0.280 0.392 Other C-9's 2.112 3.202 3.733 n-Nonane				
3 Methylpentane 1.897 2.121 2.289 n-Hexane 6.035 6.795 7.281 Methylcyclopentane 0.822 0.797 0.969 Benzene 0.082 0.063 0.090 Cyclohexane 2.004 2.551 2.812 3-Methylhexane 1.777 2.234 2.494 2.2,4 Trimethylpentane 0.000 0.000 0.000 Other C-7's 0.867 1.093 1.204 n-Heptane 3.590 4.535 5.036 Methylcyclohexane 1.877 2.066 2.581 Toluene 0.300 0.275 0.387 Other C-8's 4.173 5.664 6.440 n-Octane 1.756 2.463 2.808 E-Benzene 0.262 0.277 0.390 Oxtylene 0.479 0.499 0.712 Other C-9's 2.112 3.202 3.733 n-Norane 0.939 1.647 3.653 Ordecane 0	-			
n-Hexane 6.035 6.795 7.281 Methylcyclopentane 0.822 0.797 0.969 Benzene 0.082 0.063 0.090 Cyclohexane 0.874 0.815 1.030 2-Methylhexane 2.004 2.551 2.812 3-Methylhexane 1.777 2.234 2.494 2,2,4 Trimethylpentane 0.000 0.000 0.000 Other C-7's 0.867 1.093 1.204 n-Heptane 3.590 4.535 5.036 Methylcyclohexane 1.877 2.066 2.581 Toluene 0.300 0.275 0.387 Other C-8's 4.173 5.664 6.440 n-Octane 1.756 2.463 2.808 E-Benzene 0.262 0.277 0.390 M & P Xylenes 0.263 0.280 0.332 Other C-9's 2.112 3.202 3.733 n-Nonane 0.393 1.447 1.667 Other C-10's				
Methylcyclopentane 0.822 0.797 0.969 Benzene 0.082 0.063 0.090 Cyclohexane 0.874 0.815 1.030 2-Methylhexane 2.004 2.551 2.812 3-Methylhexane 1.777 2.234 2.494 2,4 Trimethylpentane 0.000 0.000 0.000 Other C-7's 0.867 1.093 1.204 n-Heptane 3.590 4.535 5.036 Methylcyclohexane 1.877 2.066 2.581 Toluene 0.300 0.275 0.387 Other C-8's 4.173 5.664 6.440 n-Octane 1.756 2.463 2.808 E-Benzene 0.262 0.277 0.390 O-Xylene 0.479 0.499 0.712 Other C-9's 1.847 3.066 2.027 n-Nonane 0.939 1.447 1.687 Other C-10's 1.847 3.051 0.250 Dodecanes(11)				
Benzene 0.082 0.063 0.090 Cyclohexane 0.874 0.815 1.030 2-Methylhexane 2.004 2.551 2.812 3-Methylhexane 1.777 2.234 2.494 2,2,4 Trimethylpentane 0.000 0.000 0.000 Other C-7's 0.867 1.093 1.204 n-Heptane 3.500 4.535 5.036 Methylcyclohexane 1.877 2.066 2.581 Toluene 0.300 0.275 0.387 Other C-8's 4.173 5.664 6.440 n-Octane 1.756 2.463 2.808 E-Benzene 0.262 0.277 0.390 M & P Xylenes 0.263 0.280 0.332 Orkylene 0.479 0.499 0.712 Other C-9's 2.112 3.202 3.733 n-Nonane 0.939 1.447 1.687 Other C-10's 1.847 3.076 3.653 n-decane 0.4				
Cyclohexane 0.874 0.815 1.030 2-Methylhexane 2.004 2.551 2.812 3-Methylhexane 1.777 2.234 2.494 2.2,4 Timethylpentane 0.000 0.000 0.000 Other C-7's 0.867 1.093 1.204 n-Heptane 3.590 4.535 5.036 Methylcyclohexane 1.877 2.066 2.581 Toluene 0.300 0.275 0.387 Other C-8's 4.173 5.664 6.440 n-Octane 1.756 2.463 2.808 E-Benzene 0.262 0.277 0.390 Other C-9's 2.112 3.202 3.733 n-Nonane 0.479 0.499 0.712 Other C-10's 1.847 3.076 3.653 n-decanes 0.477 0.802 0.950 Undecanes(11) 1.467 2.507 3.019 Dodecanes(12) 0.899 1.660 2.027 Tridecanes(13)				
2-Methylhexane 2.004 2.551 2.812 3-Methylhexane 1.777 2.234 2.494 2,2,4 Trimethylpentane 0.000 0.000 0.000 Other C-7's 0.867 1.093 1.204 n-Heptane 3.590 4.535 5.036 Methylcyclohexane 1.877 2.066 2.581 Toluene 0.300 0.275 0.387 Other C-8's 4.173 5.664 6.440 n-Octane 1.756 2.463 2.808 E-Benzene 0.262 0.277 0.390 M & P Xylenes 0.263 0.280 0.392 O-Xylene 0.479 0.499 0.712 Other C-9's 2.112 3.202 3.733 n-Nonane 0.939 1.447 1.667 Other C-10's 1.847 3.076 3.653 n-decane 0.477 0.802 0.950 Undecanes(11) 1.467 2.507 3.019 Dedecanes(12)				
3-Methylhexane 1.777 2.234 2.494 2,2,4 Trimethylpentane 0.000 0.000 0.000 Other C-7's 0.867 1.093 1.204 n-Heptane 3.590 4.535 5.036 Methylcyclohexane 1.877 2.066 2.581 Toluene 0.300 0.275 0.387 Other C-8's 4.173 5.664 6.440 n-Octane 1.756 2.463 2.808 E-Benzene 0.262 0.277 0.390 M & P Xylenes 0.263 0.280 0.392 Other C-9's 2.112 3.202 3.733 n-Nonane 0.439 0.449 0.499 Other C-10's 1.847 3.076 3.653 n-decane 0.477 0.802 0.950 Undecanes(11) 1.467 2.507 3.019 Dodecanes(12) 0.899 1.660 2.027 Tridecanes(14) 0.396 0.840 1.055 Pentadecanes(16)	•			
2,2,4 Trimethylpentane 0.000 0.000 0.000 Other C-7's 0.867 1.093 1.204 n-Heptane 3.590 4.535 5.036 Methylcyclohexane 1.877 2.066 2.581 Toluene 0.300 0.275 0.387 Other C-8's 4.173 5.664 6.440 n-Octane 1.756 2.463 2.808 E-Benzene 0.262 0.277 0.390 M & P Xylenes 0.263 0.280 0.392 O-Xylene 0.479 0.499 0.712 Other C-9's 2.112 3.202 3.733 n-Nonane 0.939 1.447 1.687 Other C-10's 1.847 3.076 3.653 n-decane 0.477 0.802 0.950 Undecanes(11) 1.467 2.507 3.019 Dodecanes(12) 0.899 1.660 2.027 Tridecanes(13) 0.525 0.567 0.720 Hexadecanes(15)	-			-
Other C-7's 0.867 1.093 1.204 n-Heptane 3.590 4.535 5.036 Methylcyclohexane 1.877 2.066 2.581 Toluene 0.300 0.275 0.387 Other C-8's 4.173 5.664 6.440 n-Octane 1.756 2.463 2.808 E-Benzene 0.262 0.277 0.390 M & P Xylenes 0.263 0.280 0.3392 O-Xylene 0.479 0.499 0.712 Other C-9's 2.112 3.202 3.733 n-Nonane 0.939 1.447 1.687 Other C-10's 1.847 3.076 3.653 n-decanes 0.477 0.802 0.950 Undecanes(11) 1.467 2.507 3.019 Dodecanes(12) 0.899 1.660 2.027 Tridecanes(13) 0.592 1.171 1.450 Tetradecanes(14) 0.396 0.840 1.055 Pentadecanes(15) <	-			
n-Heptane 3.590 4.535 5.036 Methylcyclohexane 1.877 2.066 2.581 Toluene 0.300 0.275 0.387 Other C-8's 4.173 5.664 6.440 n-Octane 1.756 2.463 2.808 E-Benzene 0.262 0.277 0.390 M & P Xylenes 0.263 0.280 0.392 O-Xylene 0.479 0.499 0.712 Other C-9's 2.112 3.202 3.733 n-Nonane 0.939 1.447 1.687 Other C-10's 1.847 3.076 3.653 n-decane 0.477 0.802 0.950 Undecanes(11) 1.467 2.507 3.019 Dodecanes(12) 0.899 1.660 2.027 Tridecanes(13) 0.592 1.171 1.450 Tetradecanes(14) 0.396 0.840 1.55 Pentadecanes(15) 0.250 0.567 0.720 Noradecanes(18)				1.204
Toluene 0.300 0.275 0.387 Other C-8's 4.173 5.664 6.440 n-Octane 1.756 2.463 2.808 E-Benzene 0.262 0.277 0.390 M & P Xylenes 0.263 0.280 0.392 O-Xylene 0.479 0.499 0.712 Other C-9's 2.112 3.202 3.733 n-Nonane 0.939 1.447 1.687 Other C-10's 1.847 3.076 3.653 n-decane 0.477 0.802 0.950 Undecanes(11) 1.467 2.507 3.019 Dodecanes(12) 0.899 1.660 2.027 Tridecanes(13) 0.592 1.171 1.450 Tetradecanes(14) 0.396 0.840 1.055 Pentadecanes(15) 0.250 0.567 0.220 Nonadecanes(16) 0.133 0.323 0.413 Octadecanes(19) 0.039 0.111 0.145 Eicosanes(20)			4.535	5.036
Other C-8's 4.173 5.664 6.440 n-Octane 1.756 2.463 2.808 E-Benzene 0.262 0.277 0.390 M & P Xylenes 0.263 0.280 0.392 O-Xylene 0.479 0.499 0.712 Other C-9's 2.112 3.202 3.733 n-Nonane 0.939 1.447 1.687 Other C-10's 1.847 3.076 3.653 n-decane 0.477 0.802 0.950 Undecanes(11) 1.467 2.507 3.019 Dodecanes(12) 0.899 1.660 2.027 Tridecanes(13) 0.592 1.171 1.450 Tetradecanes(14) 0.396 0.840 1.055 Pentadecanes(15) 0.250 0.567 0.720 Hexadecanes(16) 0.133 0.323 0.413 Heptadecanes(17) 0.076 0.196 0.253 Octadecanes(19) 0.039 0.111 0.445 Eicosanes(20) <	Methylcyclohexane	1.877	2.066	2.581
n-Octane 1.756 2.463 2.808 E-Benzene 0.262 0.277 0.390 M & P Xylenes 0.263 0.280 0.392 O-Xylene 0.479 0.499 0.712 Other C-9's 2.112 3.202 3.733 n-Nonane 0.939 1.447 1.687 Other C-10's 1.847 3.076 3.653 n-decane 0.477 0.802 0.950 Undecanes(11) 1.467 2.507 3.019 Dodecanes(12) 0.899 1.660 2.027 Tridecanes(13) 0.592 1.171 1.450 Tetradecanes(14) 0.396 0.840 1.055 Pentadecanes(15) 0.250 0.567 0.720 Hexadecanes(16) 0.133 0.323 0.413 Heptadecanes(17) 0.076 0.196 0.253 Octadecanes(18) 0.064 0.173 0.226 Nonadecanes(20) 0.018 0.054 0.071 Heneicosane	Toluene	0.300	0.275	0.387
E-Benzene 0.262 0.277 0.390 M & P Xylenes 0.263 0.280 0.392 O-Xylene 0.479 0.499 0.712 Other C-9's 2.112 3.202 3.733 n-Nonane 0.939 1.447 1.687 Other C-10's 1.847 3.076 3.653 n-decane 0.477 0.802 0.950 Undecanes(11) 1.467 2.507 3.019 Dodecanes(12) 0.899 1.660 2.027 Tridecanes(13) 0.592 1.171 1.450 Tetradecanes(14) 0.396 0.840 1.055 Pentadecanes(15) 0.250 0.567 0.720 Hexadecanes(16) 0.133 0.323 0.413 Heptadecanes(17) 0.076 0.196 0.253 Octadecanes(18) 0.064 0.173 0.226 Nonadecanes(19) 0.018 0.054 0.071 Heneicosanes(21) 0.006 0.019 0.025 Tri	Other C-8's	4.173	5.664	6.440
M & P Xylenes 0.263 0.280 0.392 O-Xylene 0.479 0.499 0.712 Other C-9's 2.112 3.202 3.733 n-Nonane 0.939 1.447 1.687 Other C-10's 1.847 3.076 3.653 n-decane 0.477 0.802 0.950 Undecanes(11) 1.467 2.507 3.019 Dodecanes(12) 0.899 1.660 2.027 Tridecanes(13) 0.592 1.171 1.450 Tetradecanes(14) 0.396 0.840 1.055 Pentadecanes(15) 0.250 0.567 0.720 Hexadecanes(16) 0.133 0.323 0.413 Heptadecanes(17) 0.076 0.196 0.253 Octadecanes(19) 0.039 0.111 0.145 Eicosanes(20) 0.018 0.054 0.071 Heneicosanes(21) 0.010 0.031 0.041 Docosanes(22) 0.006 0.019 0.025 T	n-Octane	1.756	2.463	2.808
O-Xylene 0.479 0.499 0.712 Other C-9's 2.112 3.202 3.733 n-Nonane 0.939 1.447 1.687 Other C-10's 1.847 3.076 3.653 n-decane 0.477 0.802 0.950 Undecanes(11) 1.467 2.507 3.019 Dodecanes(12) 0.899 1.660 2.027 Tridecanes(13) 0.592 1.171 1.450 Tetradecanes(14) 0.396 0.840 1.055 Pentadecanes(15) 0.250 0.567 0.720 Hexadecanes(16) 0.133 0.323 0.413 Heptadecanes(17) 0.076 0.196 0.253 Octadecanes(18) 0.064 0.173 0.226 Nonadecanes(19) 0.039 0.111 0.145 Eicosanes(20) 0.018 0.054 0.071 Heneicosanes(21) 0.010 0.031 0.041 Docosanes(22) 0.006 0.019 0.255 <td< td=""><td>E-Benzene</td><td>0.262</td><td>0.277</td><td>0.390</td></td<>	E-Benzene	0.262	0.277	0.390
Other C-9's 2.112 3.202 3.733 n-Nonane 0.939 1.447 1.687 Other C-10's 1.847 3.076 3.653 n-decane 0.477 0.802 0.950 Undecanes(11) 1.467 2.507 3.019 Dodecanes(12) 0.899 1.660 2.027 Tridecanes(13) 0.592 1.171 1.450 Tetradecanes(14) 0.396 0.840 1.055 Pentadecanes(15) 0.250 0.567 0.720 Hexadecanes(16) 0.133 0.323 0.413 Heptadecanes(17) 0.076 0.196 0.253 Octadecanes(18) 0.064 0.173 0.226 Nonadecanes(19) 0.039 0.111 0.145 Eicosanes(20) 0.018 0.054 0.071 Heneicosanes(21) 0.006 0.019 0.025 Tricosanes(23) 0.003 0.007 0.009 Pentacosanes(24) 0.002 0.007 0.009	M & P Xylenes	0.263	0.280	0.392
n-Nonane0.9391.4471.687Other C-10's1.8473.0763.653n-decane0.4770.8020.950Undecanes(11)1.4672.5073.019Dodecanes(12)0.8991.6602.027Tridecanes(13)0.5921.1711.450Tetradecanes(14)0.3960.8401.055Pentadecanes(15)0.2500.5670.720Hexadecanes(16)0.1330.3230.413Heptadecanes(17)0.0760.1960.253Octadecanes(18)0.0640.1730.226Nonadecanes(19)0.0390.1110.145Eicosanes(20)0.0180.0540.071Heneicosanes(21)0.0060.0190.025Tricosanes(23)0.0030.0070.009Pentacosanes(25)0.0010.0050.007Hexacosanes(26)0.0030.0130.017Heptacosanes(27)0.0010.0030.004Octacosanes(28)0.0010.0020.003Nonacosanes(29)0.0000.0010.002Triacontanes(30)0.0000.0010.001Hentriacontanes Plus(31+)0.0000.0020.003Hentriacontanes Plus(31+)0.0000.0020.003	-	0.479		
Other C-10's 1.847 3.076 3.653 n-decane 0.477 0.802 0.950 Undecanes(11) 1.467 2.507 3.019 Dodecanes(12) 0.899 1.660 2.027 Tridecanes(13) 0.592 1.171 1.450 Tetradecanes(14) 0.396 0.840 1.055 Pentadecanes(15) 0.250 0.567 0.720 Hexadecanes(16) 0.133 0.323 0.413 Heptadecanes(17) 0.076 0.196 0.253 Octadecanes(18) 0.064 0.173 0.226 Nonadecanes(19) 0.039 0.111 0.145 Eicosanes(20) 0.018 0.054 0.071 Heneicosanes(21) 0.010 0.031 0.041 Docosanes(22) 0.006 0.019 0.025 Tricosanes(23) 0.003 0.007 0.009 Pentacosanes(25) 0.001 0.007 0.009 Hexacosanes(26) 0.003 0.013 0.017		2.112		
n-decane0.4770.8020.950Undecanes(11)1.4672.5073.019Dodecanes(12)0.8991.6602.027Tridecanes(13)0.5921.1711.450Tetradecanes(14)0.3960.8401.055Pentadecanes(15)0.2500.5670.720Hexadecanes(16)0.1330.3230.413Heptadecanes(17)0.0760.1960.253Octadecanes(18)0.0640.1730.226Nonadecanes(19)0.0390.1110.145Eicosanes(20)0.0180.0540.071Heneicosanes(21)0.0100.0310.041Docosanes(22)0.0060.0190.025Tricosanes(23)0.0030.0070.009Pentacosanes(26)0.0010.0030.017Heptacosanes(26)0.0010.0030.007Hexacosanes(27)0.0010.0030.004Octacosanes(28)0.0010.0020.003Nonacosanes(29)0.0000.0010.002Triacontanes(30)0.0000.0010.001Hentriacontanes Plus(31+)0.0000.0020.003				
Undecanes(11)1.4672.5073.019Dodecanes(12)0.8991.6602.027Tridecanes(13)0.5921.1711.450Tetradecanes(14)0.3960.8401.055Pentadecanes(15)0.2500.5670.720Hexadecanes(16)0.1330.3230.413Heptadecanes(17)0.0760.1960.253Octadecanes(18)0.0640.1730.226Nonadecanes(19)0.0390.1110.145Eicosanes(20)0.0180.0540.071Heneicosanes(21)0.0100.0310.041Docosanes(22)0.0060.0190.025Tricosanes(23)0.0030.0090.013Tetracosanes(25)0.0010.0050.007Hexacosanes(26)0.0030.0130.017Heptacosanes(27)0.0010.0030.004Octacosanes(28)0.0010.0020.003Nonacosanes(29)0.0000.0010.002Triacontanes(30)0.0000.0010.001Hentriacontanes Plus(31+)0.0000.0020.003				
Dodecanes(12) 0.899 1.660 2.027 Tridecanes(13) 0.592 1.171 1.450 Tetradecanes(14) 0.396 0.840 1.055 Pentadecanes(15) 0.250 0.567 0.720 Hexadecanes(16) 0.133 0.323 0.413 Heptadecanes(17) 0.076 0.196 0.253 Octadecanes(18) 0.064 0.173 0.226 Nonadecanes(19) 0.039 0.111 0.145 Eicosanes(20) 0.018 0.054 0.071 Heneicosanes(21) 0.010 0.031 0.041 Docosanes(22) 0.006 0.019 0.025 Tricosanes(23) 0.003 0.009 0.013 Tetracosanes(24) 0.002 0.007 0.009 Pentacosanes(25) 0.001 0.003 0.017 Heptacosanes(26) 0.003 0.013 0.017 Heptacosanes(26) 0.001 0.003 0.004 Octacosanes(28) 0.001 0.002 0.003 <td></td> <td></td> <td></td> <td></td>				
Tridecanes(13)0.5921.1711.450Tetradecanes(14)0.3960.8401.055Pentadecanes(15)0.2500.5670.720Hexadecanes(16)0.1330.3230.413Heptadecanes(17)0.0760.1960.253Octadecanes(18)0.0640.1730.226Nonadecanes(19)0.0390.1110.145Eicosanes(20)0.0180.0540.071Heneicosanes(21)0.0060.0190.025Tricosanes(23)0.0030.0090.013Tetracosanes(24)0.0020.0070.009Pentacosanes(25)0.0010.0050.007Heptacosanes(26)0.0010.0030.004Octacosanes(28)0.0010.0020.003Nonacosanes(28)0.0010.0020.003Nonacosanes(28)0.0010.0020.003Nonacosanes(29)0.0000.0010.002Triacontanes(30)0.0000.0010.001Hentriacontanes Plus(31+)0.0000.0020.003	()			
Tetradecanes(14)0.3960.8401.055Pentadecanes(15)0.2500.5670.720Hexadecanes(16)0.1330.3230.413Heptadecanes(17)0.0760.1960.253Octadecanes(18)0.0640.1730.226Nonadecanes(19)0.0390.1110.145Eicosanes(20)0.0180.0540.071Heneicosanes(21)0.0100.0310.041Docosanes(22)0.0060.0190.025Tricosanes(23)0.0030.0090.013Tetracosanes(24)0.0020.0070.009Pentacosanes(26)0.0010.0030.017Heptacosanes(27)0.0010.0030.007Vexacosanes(26)0.0010.0020.003Nonacosanes(28)0.0010.0020.003Nonacosanes(28)0.0000.0010.002Triacontanes(30)0.0000.0010.001Hentriacontanes Plus(31+)0.0000.0020.003				
Pentadecanes(15) 0.250 0.567 0.720 Hexadecanes(16) 0.133 0.323 0.413 Heptadecanes(17) 0.076 0.196 0.253 Octadecanes(18) 0.064 0.173 0.226 Nonadecanes(19) 0.039 0.111 0.145 Eicosanes(20) 0.018 0.054 0.071 Heneicosanes(21) 0.010 0.031 0.041 Docosanes(22) 0.006 0.019 0.255 Tricosanes(23) 0.003 0.009 0.013 Tetracosanes(24) 0.002 0.007 0.009 Pentacosanes(25) 0.001 0.005 0.007 Hexacosanes(26) 0.003 0.013 0.017 Heptacosanes(26) 0.001 0.003 0.004 Octacosanes(28) 0.001 0.002 0.003 Nonacosanes(28) 0.001 0.002 0.003 Nonacosanes(29) 0.000 0.001 0.002 Triacontanes(30) 0.000 0.001 0.001<				
Hexadecanes(16)0.1330.3230.413Heptadecanes(17)0.0760.1960.253Octadecanes(18)0.0640.1730.226Nonadecanes(19)0.0390.1110.145Eicosanes(20)0.0180.0540.071Heneicosanes(21)0.0100.0310.041Docosanes(22)0.0060.0190.025Tricosanes(23)0.0030.0090.013Tetracosanes(24)0.0020.0070.009Pentacosanes(25)0.0010.0050.007Heptacosanes(26)0.0030.0130.017Heptacosanes(27)0.0010.0020.003Nonacosanes(28)0.0010.0020.003Nonacosanes(29)0.0000.0010.002Triacontanes(30)0.0000.0010.001Hentriacontanes Plus(31+)0.0000.0020.003				
Heptadecanes(17)0.0760.1960.253Octadecanes(18)0.0640.1730.226Nonadecanes(19)0.0390.1110.145Eicosanes(20)0.0180.0540.071Heneicosanes(21)0.0100.0310.041Docosanes(22)0.0060.0190.025Tricosanes(23)0.0030.0090.013Tetracosanes(24)0.0020.0070.009Pentacosanes(25)0.0010.0050.007Heptacosanes(26)0.0030.0130.017Heptacosanes(27)0.0010.0030.004Octacosanes(28)0.0010.0020.003Nonacosanes(29)0.0000.0010.002Triacontanes(30)0.0000.0010.001Hentriacontanes Plus(31+)0.0000.0020.003				
Octadecanes(18) 0.064 0.173 0.226 Nonadecanes(19) 0.039 0.111 0.145 Eicosanes(20) 0.018 0.054 0.071 Heneicosanes(21) 0.010 0.031 0.041 Docosanes(22) 0.006 0.019 0.025 Tricosanes(23) 0.003 0.009 0.013 Tetracosanes(24) 0.002 0.007 0.009 Pentacosanes(25) 0.001 0.005 0.007 Hexacosanes(26) 0.003 0.013 0.017 Heptacosanes(27) 0.001 0.003 0.004 Octacosanes(28) 0.001 0.002 0.003 Nonacosanes(29) 0.000 0.001 0.002 Triacontanes(30) 0.000 0.001 0.001 Hentriacontanes Plus(31+) 0.000 0.002 0.003				
Nonadecanes(19) 0.039 0.111 0.145 Eicosanes(20) 0.018 0.054 0.071 Heneicosanes(21) 0.010 0.031 0.041 Docosanes(22) 0.006 0.019 0.025 Tricosanes(23) 0.003 0.009 0.013 Tetracosanes(24) 0.002 0.007 0.009 Pentacosanes(25) 0.001 0.005 0.007 Hexacosanes(26) 0.003 0.013 0.017 Heptacosanes(27) 0.001 0.003 0.004 Octacosanes(28) 0.001 0.002 0.003 Nonacosanes(29) 0.000 0.001 0.002 Triacontanes(30) 0.000 0.001 0.001 Hentriacontanes Plus(31+) <u>0.000</u> <u>0.002</u> <u>0.003</u>				
Eicosanes(20) 0.018 0.054 0.071 Heneicosanes(21) 0.010 0.031 0.041 Docosanes(22) 0.006 0.019 0.025 Tricosanes(23) 0.003 0.009 0.013 Tetracosanes(24) 0.002 0.007 0.009 Pentacosanes(25) 0.001 0.005 0.007 Hexacosanes(26) 0.003 0.013 0.017 Heptacosanes(27) 0.001 0.003 0.004 Octacosanes(28) 0.001 0.002 0.003 Nonacosanes(29) 0.000 0.001 0.002 Triacontanes(30) 0.000 0.001 0.001 Hentriacontanes Plus(31+) <u>0.000</u> <u>0.002</u> <u>0.003</u>				
Heneicosanes(21)0.0100.0310.041Docosanes(22)0.0060.0190.025Tricosanes(23)0.0030.0090.013Tetracosanes(24)0.0020.0070.009Pentacosanes(25)0.0010.0050.007Hexacosanes(26)0.0030.0130.017Heptacosanes(27)0.0010.0030.004Octacosanes(28)0.0010.0020.003Nonacosanes(29)0.0000.0010.002Triacontanes(30)0.0000.0010.001Hentriacontanes Plus(31+)0.0000.0020.003	. ,			
Docosanes(22) 0.006 0.019 0.025 Tricosanes(23) 0.003 0.009 0.013 Tetracosanes(24) 0.002 0.007 0.009 Pentacosanes(25) 0.001 0.005 0.007 Hexacosanes(26) 0.001 0.003 0.017 Heptacosanes(27) 0.001 0.003 0.004 Octacosanes(28) 0.001 0.002 0.003 Nonacosanes(29) 0.000 0.001 0.002 Triacontanes(30) 0.000 0.001 0.001 Hentriacontanes Plus(31+) <u>0.000</u> <u>0.002</u> <u>0.003</u>				
Tricosanes(23) 0.003 0.009 0.013 Tetracosanes(24) 0.002 0.007 0.009 Pentacosanes(25) 0.001 0.005 0.007 Hexacosanes(26) 0.003 0.013 0.017 Heptacosanes(27) 0.001 0.003 0.004 Octacosanes(28) 0.001 0.002 0.003 Nonacosanes(29) 0.000 0.001 0.002 Triacontanes(30) 0.000 0.001 0.001 Hentriacontanes Plus(31+) <u>0.000</u> <u>0.002</u> <u>0.003</u>	. ,			
Pentacosanes(25) 0.001 0.005 0.007 Hexacosanes(26) 0.003 0.013 0.017 Heptacosanes(27) 0.001 0.003 0.004 Octacosanes(28) 0.001 0.002 0.003 Nonacosanes(29) 0.000 0.001 0.002 Triacontanes(30) 0.000 0.001 0.001 Hentriacontanes Plus(31+) 0.000 0.002 0.003		0.003	0.009	0.013
Hexacosanes(26) 0.003 0.013 0.017 Heptacosanes(27) 0.001 0.003 0.004 Octacosanes(28) 0.001 0.002 0.003 Nonacosanes(29) 0.000 0.001 0.002 Triacontanes(30) 0.000 0.001 0.001 Hentriacontanes Plus(31+) 0.000 0.002 0.003	Tetracosanes(24)	0.002	0.007	0.009
Heptacosanes(27) 0.001 0.003 0.004 Octacosanes(28) 0.001 0.002 0.003 Nonacosanes(29) 0.000 0.001 0.002 Triacontanes(30) 0.000 0.001 0.001 Hentriacontanes Plus(31+) 0.000 0.002 0.003	Pentacosanes(25)	0.001	0.005	0.007
Octacosanes(28) 0.001 0.002 0.003 Nonacosanes(29) 0.000 0.001 0.002 Triacontanes(30) 0.000 0.001 0.001 Hentriacontanes Plus(31+) 0.000 0.002 0.003	Hexacosanes(26)	0.003	0.013	0.017
Nonacosanes(29) 0.000 0.001 0.002 Triacontanes(30) 0.000 0.001 0.001 Hentriacontanes Plus(31+) 0.000 0.002 0.003	Heptacosanes(27)	0.001	0.003	0.004
Triacontanes(30) 0.000 0.001 0.001 Hentriacontanes Plus(31+) 0.000 0.002 0.003	Octacosanes(28)	0.001	0.002	0.003
Hentriacontanes Plus(31+) 0.000 0.002 0.003		0.000	0.001	0.002
		0.000	0.001	0.001
l otal 100.000 100.000 100.000				
	lotal	100.000	100.000	100.000

FESCO, Ltd. 1100 Fesco Avenue - Alice, Texas 78332

For: SLR International Corporation 8 Capitol Street, Suite 300 Charleston, West Virginia 25301 Date Sampled: 11/01/16

Date Analyzed: 11/11/16

Job Number: J63606

Sample: Tug Hill - Shields No. 9 & No. 10

FLASH LIBERATION OF SEPARATOR WATER				
	Separator	Stock Tank		
Pressure, psig	366	0		
Temperature, °F	71	70		
Gas Water Ratio (1)		1.45		
Gas Specific Gravity (2)		0.742		

(1) - Scf of water saturated vapor per barrel of stock tank water
(2) - Air = 1.000
(3) - Separator volume / Stock tank volume
Analyst: T.G.

Piston No. : PW-31464

Base Conditions: 14.65 PSI & 60 °F

Certified: FESCO, Ltd. - Alice, Texas

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: SLR International Corporation 8 Capitol Street, Suite 300 Charleston, West Virginia 25301

Sample: Tug Hill - Shields No. 9 & No. 10 Gas Liberated From Separator Water From 366 psig & 71 °F to 0 psig & 70 °F

Date Sampled: 11/01/16

Job Number: 63606.011

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286

COMPONENT Hydrogen Sulfide* Nitrogen Carbon Dioxide Methane	MOL% < 0.001 0.874 2.675 75.496		GPM
Ethane	15.043		4.015
Propane	3.544		0.974
Isobutane	0.215		0.070
n-Butane	0.756		0.238
2-2 Dimethylpropane	0.000		0.000
Isopentane	0.190		0.069
n-Pentane	0.234		0.085
Hexanes	0.396		0.163
Heptanes Plus	<u>0.577</u>		<u>0.242</u>
Totals	100.000		5.856
Computed Real Characte	eristics Of Heptan	es Plus:	
Specific Gravity		3.447	(Air=1)
Molecular Weight		99.47	
Gross Heating Value		5174	BTU/CF
Computed Real Characte	eristics Of Total S	ample:	
Specific Gravity		0.742	(Air=1)
Compressibility (Z)		0.9964	
Molecular Weight		21.41	
Gross Heating Value			
Dry Basis		1216	
Saturated Basis		1196	BTU/CF

*Hydrogen Sulfide tested in laboratory by: Stain Tube Method (GPA 2377) Results: <0.013 Gr/100 CF, <0.2 PPMV or <0.001 Mol %

Base Conditions: 14.650 PSI & 60 Deg F

Sampled By: (16)T. Gonzalez Analyst: MR Processor: OA Cylinder ID: WF# 1S Certified: FESCO, Ltd. - Alice, Texas

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286
TOTAL REPORT

		0.014	
	MOL %	GPM	WT %
Hydrogen Sulfide*	< 0.001		< 0.001
Nitrogen	0.874		1.144
Carbon Dioxide	2.675		5.500
Methane	75.496	4.045	56.581
Ethane	15.043	4.015	21.132
Propane	3.544	0.974	7.301
Isobutane	0.215	0.070	0.584
n-Butane	0.756	0.238	2.053
2,2 Dimethylpropane	0.000	0.000	0.000
Isopentane	0.190	0.069	0.640
n-Pentane	0.234	0.085	0.789
2,2 Dimethylbutane	0.009	0.004	0.036
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.031	0.013	0.125
2 Methylpentane	0.104	0.043	0.419
3 Methylpentane	0.068	0.028	0.274
n-Hexane	0.184	0.076	0.741
Methylcyclopentane	0.032	0.011	0.126
Benzene	0.047	0.013	0.172
Cyclohexane	0.047	0.016	0.185
2-Methylhexane	0.038	0.018	0.178
3-Methylhexane	0.041	0.019	0.192
2,2,4 Trimethylpentane	0.000	0.000	0.000
Other C7's	0.043	0.019	0.199
n-Heptane	0.081	0.037	0.379
Methylcyclohexane	0.058	0.023	0.266
Toluene	0.041	0.014	0.176
Other C8's	0.062	0.029	0.319
n-Octane	0.034	0.017	0.181
Ethylbenzene	0.000	0.000	0.000
M & P Xylenes	0.011	0.004	0.055
O-Xylene	0.000	0.000	0.000
Other C9's	0.026	0.013	0.153
n-Nonane	0.010	0.006	0.060
Other C10's	0.000	0.000	0.000
n-Decane	0.006	0.004	0.040
Undecanes (11)	0.000	0.000	0.000
Totals	100.000	5.856	100.000
•			
Computed Real Charac			(A: A)
Specific Gravity			(Air=1)
Compressibility (Z)		0.9964	
Molecular Weight		21.41	

	21.41	
Gross Heating Value		
Dry Basis	1216	BTU/CF
Saturated Basis	1196	BTU/CF

		2246 Caterpillar G3	508LE Engine Emiss	ions		
Date of Manufacture 3	8/30/2006 En	gine Serial Number	9TG00502	Date Modified/	Reconstructed	Not A
Driver Rated HP	670 Ra	ted Speed in RPM	1400	Combustion Typ	pe	Spark Ignited 4 Stro
Number of Cylinders	8 Co	mpression Ratio	8:1	Combustion Set	tting	Lean Buri
Total Displacement (in ³)	2115 Fu	el Delivery Method	Carburetor	Combustion Air	Treatment	T.C./Aftercool
Raw Engine Emissions with Customer	Supplied Fuel Gas Ana	Ilysis				
Fuel Consumption 7870	LHV BTU/bhp-hr o	r 8672 HHV B1	U/bhp-hr			
Altitude 1200 Maximum Air Inlet Temp 90	,					
		a/bbp.br ¹	lb/MMBTU ²	lb/hr	ТРҮ	
litrogen Oxides (NOx)		g/bhp-hr ¹		2.95	12.94	
Carbon Monoxide (CO)		2.22		3.28	14.36	
Volatile Organic Compounds (VOC or N	NMNEHC excluding CH2			0.72	3.17	
Formaldehyde (CH2O)	-	0.29		0.43	1.88	
Particulate Matter (PM) Filterable+Condensa	ble		9.99E-03	5.80E-02	2.54E-01	
Sulfur Dioxide (SO2)			5.88E-04	3.42E-03	1.50E-02	
		g/bhp-hr ¹ 561		lb/hr	Metric Tonne/yr	
Carbon Dioxide (CO2)				829	3292	
Methane (CH4)		1.24		1.83	7.28	
g/hhn-hr are based on Caternillar Sno	ecifications (GERP) with	o customer supplied fuel gas 120	10 ft elevation, and 90 F Max	Air Inlet Temperature	a	
Formaldehyde to account for variation ² Emission Factor obtained from EPA's	n 100% Load Operation is in fuel gas composition AP-42, Fifth Edition, Ve	 For Air Permitting, it is recommon and load. 	nended to add a safety marg	gin to CO, VOC, and	3.	
Note that g/bhp-hr values are based o Formaldehyde to account for variation ² Emission Factor obtained from EPA's Gas-Fired Reciprocating Engines, Tabl	n 100% Load Operation is in fuel gas composition AP-42, Fifth Edition, Ve	 For Air Permitting, it is recommon and load. 	nended to add a safety marg	gin to CO, VOC, and	2.	
Note that g/bhp-hr values are based o Formaldehyde to account for variation Emission Factor obtained from EPA's Gas-Fired Reciprocating Engines, Table Catalytic Converter Emissions Catalytic Converter Make and Model:	n 100% Load Operation is in fuel gas compositi AP-42, Fifth Edition, Ve e 3.2-2).	 For Air Permitting, it is recommon and load. 	nended to add a safety marg	gin to CO, VOC, and	<u>.</u>	
Note that g/bhp-hr values are based o Formaldehyde to account for variation ² Emission Factor obtained from EPA's Gas-Fired Reciprocating Engines, Table Catalytic Converter Emissions Catalytic Converter Make and Model: Element Type:	n 100% Load Operation ns in fuel gas compositi AP-42, Fifth Edition, Ve e 3.2-2). EMIT ELX-30 EMIT ELX-30 EMIT RE-24.	 For Air Permitting, it is recomponent of the second on and load. Stationary Information (Second Second Second	nended to add a safety marg	gin to CO, VOC, and	<u>.</u>	
Note that g/bhp-hr values are based o Formaldehyde to account for variation Emission Factor obtained from EPA's Gas-Fired Reciprocating Engines, Table Catalytic Converter Emissions Catalytic Converter Make and Model: Element Type: Number of Elements in Housing:	n 100% Load Operation ns in fuel gas compositi AP-42, Fifth Edition, Ve e 3.2-2). EMIT ELX-30 EMIT ELX-30 EMIT RE-24 2	n. For Air Permitting, it is recommon and load. Solume I, Chapter 3: Stationary In 1502-1010F-31CEE-241	nended to add a safety marg	gin to CO, VOC, and	<u>.</u>	
Note that g/bhp-hr values are based o Formaldehyde to account for variation Emission Factor obtained from EPA's Gas-Fired Reciprocating Engines, Table Catalytic Converter Emissions Catalytic Converter Make and Model: Element Type: Jumber of Elements in Housing:	n 100% Load Operation ns in fuel gas compositi AP-42, Fifth Edition, Ve e 3.2-2). EMIT ELX-30 EMIT ELX-30 EMIT RE-24 2	 For Air Permitting, it is recomponent of the second on and load. Stationary Information (Second Second Second	nended to add a safety marg	gin to CO, VOC, and	2.	
Note that g/bhp-hr values are based o Formaldehyde to account for variation Emission Factor obtained from EPA's Gas-Fired Reciprocating Engines, Table Catalytic Converter Emissions Catalytic Converter Make and Model: Element Type: Number of Elements in Housing:	n 100% Load Operation ns in fuel gas compositi AP-42, Fifth Edition, Ve e 3.2-2). EMIT ELX-30 EMIT ELX-30 EMIT RE-24 2	n. For Air Permitting, it is recommon and load. Solume I, Chapter 3: Stationary In 1502-1010F-31CEE-241	nended to add a safety marg	gin to CO, VOC, and	<u>.</u> ТРҮ	
Note that g/bhp-hr values are based o Formaldehyde to account for variation Emission Factor obtained from EPA's Gas-Fired Reciprocating Engines, Table Catalytic Converter Emissions Catalytic Converter Make and Model: Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx)	n 100% Load Operation ns in fuel gas compositi AP-42, Fifth Edition, Ve e 3.2-2). EMIT ELX-30 EMIT ELX-30 EMIT RE-24 2	n. For Air Permitting, it is recommon on and load. Dolume I, Chapter 3: Stationary In 1502-1010F-31CEE-241 152 IS O2 Feedback <u>% Reduction</u> 0	nended to add a safety marg ternal Combution Sources (S 	in to CO, VOC, and ection 3.2 Natural 	<u>ТРҮ</u> 12.94	
Note that g/bhp-hr values are based o Formaldehyde to account for variation Emission Factor obtained from EPA's Gas-Fired Reciprocating Engines, Table Catalytic Converter Emissions Catalytic Converter Make and Model: Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx) Carbon Monoxide (CO)	n 100% Load Operation as in fuel gas compositi AP-42, Fifth Edition, Vi e 3.2-2). <i>EMIT ELX-30</i> <i>EMIT RE-24</i> . <i>2</i> <i>Caterpillar E</i>	n. For Air Permitting, it is recommon on and load. Dlume I, Chapter 3: Stationary In DSOZ-1010F-31CEE-241 ISO2 Feedback <u>% Reduction</u> 0 93	nended to add a safety marg ernal Combution Sources (S <u>g/bhp-hr</u> 2 0.16	in to CO, VOC, and ection 3.2 Natural <u>Ib/hr</u> 2.95 0.23	<u>ТРҮ</u> 12.94 1.01	
Note that g/bhp-hr values are based o Formaldehyde to account for variation Emission Factor obtained from EPA's Gas-Fired Reciprocating Engines, Table Catalytic Converter Emissions Catalytic Converter Make and Model: Element Type: Number of Elements in Housing: Nir/Fuel Ratio Control Nitrogen Oxides (NOx) Carbon Monoxide (CO) /olatile Organic Compounds (VOC or N	n 100% Load Operation as in fuel gas compositi AP-42, Fifth Edition, Vi e 3.2-2). <i>EMIT ELX-30</i> <i>EMIT RE-24</i> . <i>2</i> <i>Caterpillar E</i>	n. For Air Permitting, it is recommon on and load. Solume I, Chapter 3: Stationary In 1502-1010F-31CEE-241 152 IS O2 Feedback <u>% Reduction</u> 0 93 50	nended to add a safety marg ernal Combution Sources (S <u>g/bhp-hr</u> 2 0.16 0.245	to CO, VOC, and ection 3.2 Natural <u>Ib/hr</u> 2.95 0.23 0.36	<u>ТРҮ</u> 12.94 1.01 1.59	
Note that g/bhp-hr values are based o Formaldehyde to account for variation Emission Factor obtained from EPA's Gas-Fired Reciprocating Engines, Table Catalytic Converter Emissions Catalytic Converter Make and Model: Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC or N Formaldehyde (CH2O)	n 100% Load Operation as in fuel gas compositi AP-42, Fifth Edition, Vi e 3.2-2). <i>EMIT ELX-30</i> <i>EMIT RE-24</i> . <i>2</i> <i>Caterpillar E</i>	n. For Air Permitting, it is recommon on and load. Dume I, Chapter 3: Stationary In 1502-1010F-31CEE-241 152 IS O2 Feedback <u>% Reduction</u> 0 93 50 76	nended to add a safety marg ernal Combution Sources (S <u>g/bhp-hr</u> 2 0.16 0.245 0.07	b/hr 2.95 0.23 0.10	<u>ТРҮ</u> 12.94 1.01 1.59 0.45	
Note that g/bhp-hr values are based o Formaldehyde to account for variation Emission Factor obtained from EPA's Gas-Fired Reciprocating Engines, Table Catalytic Converter Emissions Catalytic Converter Make and Model: Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOX) Carbon Monoxide (CO) Volatile Organic Compounds (VOC or N Formaldehyde (CH2O) Particulate Matter (PM)	n 100% Load Operation as in fuel gas compositi AP-42, Fifth Edition, Vi e 3.2-2). <i>EMIT ELX-30</i> <i>EMIT RE-24</i> . <i>2</i> <i>Caterpillar E</i>	n. For Air Permitting, it is recommon on and load. Solume I, Chapter 3: Stationary In 1502-1010F-31CEE-241 152 IS O2 Feedback <u>% Reduction</u> 0 93 50	nended to add a safety marg ernal Combution Sources (S <u>g/bhp-hr</u> 2 0.16 0.245	to CO, VOC, and ection 3.2 Natural <u>Ib/hr</u> 2.95 0.23 0.36	<u>ТРҮ</u> 12.94 1.01 1.59	
Note that g/bhp-hr values are based o Formaldehyde to account for variation Emission Factor obtained from EPA's Gas-Fired Reciprocating Engines, Table Catalytic Converter Emissions Catalytic Converter Make and Model:	n 100% Load Operation as in fuel gas compositi AP-42, Fifth Edition, Vi e 3.2-2). <i>EMIT ELX-30</i> <i>EMIT RE-24</i> . <i>2</i> <i>Caterpillar E</i>	 For Air Permitting, it is recommon and load. Dlume I, Chapter 3: Stationary Interpretation D50Z-1010F-31CEE-241 D50Z Feedback <u>% Reduction</u> 0 93 50 76 0 0 <u>% Reduction</u> 	nended to add a safety marg ernal Combution Sources (S <u>g/bhp-hr</u> 2 0.16 0.245 0.07 0.04	b/hr 2.95 0.23 0.36 0.10 5.80E-02 3.42E-03 b/hr	TPY 12.94 1.01 1.59 0.45 2.54E-01 1.50E-02 Metric Tonne/yr	
Note that g/bhp-hr values are based o Formaldehyde to account for variation Emission Factor obtained from EPA's Gas-Fired Reciprocating Engines, Table Catalytic Converter Emissions Catalytic Converter Make and Model: Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOX) Carbon Monoxide (CO) /olatile Organic Compounds (VOC or N Formaldehyde (CH2O) Particulate Matter (PM)	n 100% Load Operation as in fuel gas compositi AP-42, Fifth Edition, Vi e 3.2-2). <i>EMIT ELX-30</i> <i>EMIT RE-24</i> . <i>2</i> <i>Caterpillar E</i>	n. For Air Permitting, it is recommon and load. Dolume I, Chapter 3: Stationary In: 2502-1010F-31CEE-241 252 2502 Feedback <u>% Reduction</u> 0 93 50 76 0 0	nended to add a safety marg ernal Combution Sources (S <u>g/bhp-hr</u> 2 0.16 0.245 0.07 0.04	b/hr 2.95 0.23 0.36 0.10 5.80E-02 3.42E-03	ТРҮ 12.94 1.01 1.59 0.45 2.54E-01 1.50E-02	

GAS ENGINE SITE SPECIFIC TECHNICAL DATA

TUG HILL BURCH RIDGE 9TG00502 G3508LE

ENGINE SPEED (rpm): COMPRESSION RATIO: AFTERCOOLER TYPE: AFTERCOOLER WATER INLET (°F): JACKET WATER OUTLET (°F): ASPIRATION: COOLING SYSTEM: CONTROL SYSTEM: EXHAUST MANIFOLD: COMBUSTION: NOx EMISSION LEVEL (g/bhp-hr NOx): SET POINT TIMING:

1400 8 SCAC 130 210 ΤA JW+OC, AC EIS ASWC LOW EMISSION 2.0 24

RATING STRATEGY: RATING LEVEL: FUEL SYSTEM:

SITE CONDITIONS: FUEL: FUEL PRESSURE RANGE(psig): (See note 1) FUEL METHANE NUMBER: FUEL LHV (Btu/scf): ALTITUDE(ft): MAXIMUM INLET AIR TEMPERATURE(°F): STANDARD RATED POWER:

HPG IMPCO WITH AIR FUEL RATIO CONTROL Tug Hill Burch Ridge 35.0-40.0 55.5 1165 1200

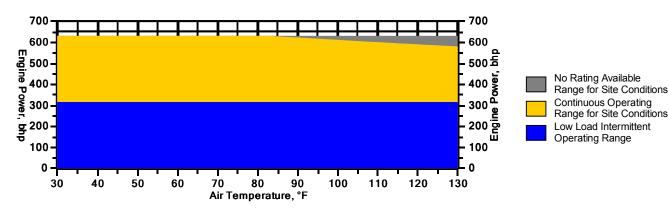
STANDARD

CONTINUOUS

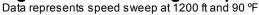
90 630 bhp@1400rpm

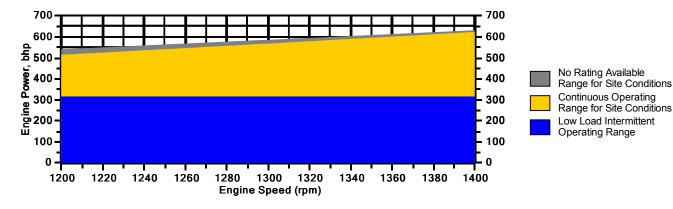
			MAXIMUM RATING		LING AT N	
RATING	NOTES	LOAD	100%	100%	75%	51%
ENGINE POWER (WITHOUT FAN)		bhp	630	623	467	315
INLET AIR TEMPERATURE	()	°F	83	90	90	90
ENGINE DATA						
FUEL CONSUMPTION (LHV)	(3)	Btu/bhp-hr	7870	7889	8313	9253
FUEL CONSUMPTION (HHV)	(3)	Btu/bhp-hr	8672	8693	9160	10197
AIR FLOW (@inlet air temp, 14.7 psia) (WET)	(4)(5)	ft3/min	1328	1331	1042	746
AIR FLOW (WET)		lb/hr	5820	5761	4510	3229
FUEL FLOW (60°F, 14.7 psia)		scfm	71	70	56	42
INLET MANIFOLD PRESSURE	(6)	in Hg(abs)	63.9	63.3	50.0	37.4
EXHAUST TEMPERATURE - ENGINE OUTLET	(7)	°F	872	871	865	851
EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (WET)	(8)(5)	ft3/min	3519	3483	2714	1929
EXHAUST GAS MASS FLOW (WET)	(8)(5)	lb/hr	6058	5997	4697	3369
EMISSIONS DATA - ENGINE OUT						
NOx (as NO2)	(9)(10)	g/bhp-hr	2.00	2.00	2.00	2.00
со	(9)(10)	g/bhp-hr	2.22	2.22	2.33	2.32
THC (mol. wt. of 15.84)	(9)(10)	g/bhp-hr	2.24	2.25	2.36	2.49
NMHC (mol. wt. of 15.84)	(9)(10)	g/bhp-hr	1.00	1.00	1.05	1.11
NMNEHC (VOCs) (mol. wt. of 15.84)	(9)(10)(11)	g/bhp-hr	0.49	0.49	0.52	0.55
HCHO (Formaldehyde)	(9)(10)	g/bhp-hr	0.29	0.29	0.29	0.32
CO2	(9)(10)	g/bhp-hr	561	562	591	656
EXHAUST OXYGEN	(9)(12)	% DRY	7.3	7.3	7.1	6.7
HEAT REJECTION						
HEAT REJ. TO JACKET WATER (JW)	(13)	Btu/min	22869	22778	19834	17459
HEAT REJ. TO ATMOSPHERE	(13)	Btu/min	3188	3163	2638	2126
HEAT REJ. TO LUBE OIL (OC)	(13)	Btu/min	3616	3602	3136	2761
HEAT REJ. TO AFTERCOOLER (AC)	(13)(14)	Btu/min	4591	4591	2503	896
COOLING SYSTEM SIZING CRITERIA						
TOTAL JACKET WATER CIRCUIT (JW+OC)	(14)	Btu/min	29496			
TOTAL AFTERCOOLER CIRCUIT (AC)	(14)(15)	Btu/min	4821			
A cooling system safety factor of 0% has been added to the cooling system sizing criteria.						

CONDITIONS AND DEFINITIONS

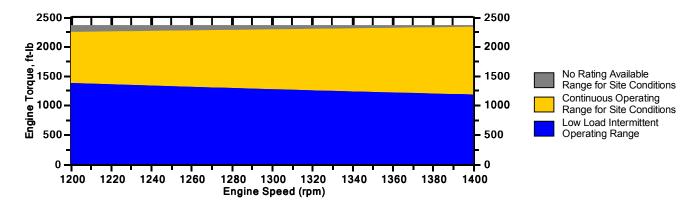

Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

For notes information consult page three. ***WARNINGS ISSUED FOR THIS RATING CONSULT PAGE 3***


TUG HILL BURCH RIDGE 9TG00502 G3508LE


Engine Power vs. Inlet Air Temperature

Data represents temperature sweep at 1200 ft and 1400 rpm


Engine Power vs. Engine Speed

Engine Torque vs. Engine Speed

Data represents speed sweep at 1200 ft and 90 °F

Note: At site conditions of 1200 ft and 90°F inlet air temp., constant torque can be maintained down to 1400 rpm. The minimum speed for loading at these conditions is 1200 rpm.

G3508

NON-CURRENT

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA

TUG HILL BURCH RIDGE 9TG00502 G3508LE

NOTES

1. Fuel pressure range specified is to the engine fuel pressure regulator. Additional fuel train components should be considered in pressure and flow calculations.

2. Engine rating is with two engine driven water pumps. Tolerance is \pm 3% of full load.

- 3. Fuel consumption tolerance is \pm 3.0% of full load data.
- 4. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of \pm 5 %.
- 5. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.
- 6. Inlet manifold pressure is a nominal value with a tolerance of \pm 5 %.
- 7. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.
- 8. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of \pm 6 %.
- 9. Emissions data is at engine exhaust flange prior to any after treatment.

10. NOx tolerance's are ± +111 %, -96% of specified value. All other emission values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-toengine variations. They indicate the maximum values expected under steady state conditions. Fuel methane number cannot vary more than ± 3. THC, NMHC, and NMNEHC do not include aldehydes, adjusted to the specified NOx level at 100% load.

11. VOCs - Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ

12. Exhaust Oxygen level is the result of adjusting the engine to operate at the specified NOx level. Tolerance is ± 0.5 .

13. Heat rejection values are nominal. Tolerances, based on treated water, are ± 10% for jacket water circuit, ± 50% for radiation, ± 20% for lube oil circuit, and ± 5% for aftercooler circuit.

14. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.

15. Cooling system sizing criteria are maximum circuit heat rejection for the site, with applied tolerances.

WARNING(S):

1. The lower heating value of the fuel is higher than or equal to 1050 Btu/scf and lower than 1400 Btu/scf. The lower heating value of the fuel is higher than the known capabilities of the air fuel ratio control system. To achieve part load NOx emissions, manual adjustment of the air fuel ratio control settings may be required. May require on-site adjustment or tuning of the fuel system and up to two 7E-1569 valve washers to lean out part load operating points.

RECOMMENDED ACTION

For additional information please contact your Caterpillar engine dealer.

Constituent	Abbrev	Mole %	Norm		
Water Vapor	H2O	0.0000	0.0000		
Methane	CH4	75.5770	75.5770	Fuel Makeup:	Tug Hill Burch Ridge
Ethane	C2H6	15.2880	15.2880	Unit of Measure:	English
Propane	C3H8	5.4100	5.4100		Ũ
Isobutane	iso-C4H1O	0.5320	0.5320	Calculated Fuel Properties	
Norbutane	nor-C4H1O	1.4480	1.4480		55.5
Isopentane	iso-C5H12	0.2720	0.2720	Caterpillar Methane Number:	55.5
Norpentane	nor-C5H12	0.3730	0.3730		
Hexane	C6H14	0.4000	0.4000	Lower Heating Value (Btu/scf):	1165
Heptane	C7H16	0.0000	0.0000	Higher Heating Value (Btu/scf):	1284
Nitrogen	N2	0.4970	0.4970	WOBBE Index (Btu/scf):	1359
Carbon Dioxide	CO2	0.2030	0.2030		
Hydrogen Sulfide	H2S	0.0000	0.0000	THC: Free Inert Ratio:	141.86
Carbon Monoxide	CO	0.0000	0.0000	Total % Inerts (% N2, CO2, He):	0.7%
Hydrogen	H2	0.0000	0.0000		
Oxygen	O2	0.0000	0.0000	RPC (%) (To 905 Btu/scf Fuel):	100%
Helium	HE	0.0000	0.0000		
Neopentane	neo-C5H12	0.0000	0.0000	Compressibility Factor:	0.996
Octane	C8H18	0.0000	0.0000	Stoich A/F Ratio (Vol/Vol):	12.08
Nonane	C9H20	0.0000	0.0000	Stoich A/F Ratio (Mass/Mass):	16.43
Ethylene	C2H4	0.0000	0.0000	Specific Gravity (Relative to Air):	0.735
Propylene	C3H6	0.0000	0.0000	Fuel Specific Heat Ratio (K):	1.278
TOTAL (Volume %)		100.0000	100.0000		1.270

CONDITIONS AND DEFINITIONS

Caterpillar Methane Number represents the knock resistance of a gaseous fuel. It should be used with the Caterpillar Fuel Usage Guide for the engine and rating to determine the rating for the fuel specified. A Fuel Usage Guide for each rating is included on page 2 of its standard technical data sheet.

RPC always applies to naturally aspirated (NA) engines, and turbocharged (TA or LE) engines only when they are derated for altitude and ambient site conditions.

Project specific technical data sheets generated by the Caterpillar Gas Engine Rating Pro program take the Caterpillar Methane Number and RPC into account when generating a site rating.

Fuel properties for Btu/scf calculations are at 60F and 14.696 psia.

Caterpillar shall have no liability in law or equity, for damages, consequently or otherwise, arising from use of program and related material or any part thereof.

Fuel LIQUIDS Field gases, well head gases, and associated gases typically contain liquid water and heavy hydrocarbons entrained in the gas. To prevent detonation and severe damage to the engine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid separator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground in accordance with local codes and standards.

To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel operating temperature.

WARNING(S)

1. The lower heating value of the fuel is higher than or equal to 1050 Btu/scf and lower than 1400 Btu/scf. The lower heating value of the fuel is higher than the known capabilities of the air fuel ratio control system. To achieve part load NOx emissions, manual adjustment of the air fuel ratio control settings may be required. May require on-site adjustment or tuning of the fuel system and up to two 7E-1569 valve washers to lean out part load operating points.

RECOMMENDED ACTION

For additional information please contact your Caterpillar engine dealer.

FESCO, Ltd. 104 Fesco Run Rd Bridgeport, WV 26330

- For: Tug Hill Operating, LLC 1320 S. University Drive, Suite 500 Fort Worth, Texas 76107
- Sample: Burch Pad Check Meter Meter Run Gas @ 363 psig & 70 °F

Field: Marshall West

Station: GSC-040 Date Sampled: 7/31/2017 at 10:00 hours

CHROMATOGRAPH ANALYSIS - GPA 2261

COMPONENT	MOL%	GPM
Nitrogen	0.497	
Carbon Dioxide	0.203	
Methane	75.577	
Ethane	15.288	4.104
Propane	5.410	1.496
Isobutane	0.532	0.175
n-Butane	1.448	0.458
Isopentane	0.272	0.099
n-Pentane	0.373	0.136
Hexanes Plus	0.400	0.176
Totals:	100.000	6.644

Computed	Real	Properties:
Onesia	- 0	

mpatoa noan noponaoo.	
Specific Gravity	0.739 (Air=1.000)
Compressibility(Z)	0.9962
Gross Heating Value at	14.730 psia and 60 °F
Dry Basis	1289 BTU/CF
Saturated Basis	1267 BTU/CF

Base Conditions: 14.730 psia and 60 °F

Certified: FESCO, Ltd. -Bridgeport, WV

Julantz

Jeff Fluharty

304-592-3366

Job Number: Analyst ID: AC

01966.026

Cyl Number: T-1282