

December 14, 2017

Mr. William F. Durham
Director
WVDEP, Division of Air Quality
601 – 57th Street SE
Charleston, West Virginia 25304

Re: Tug Hill Operating, LLC, G70-D General Permit Application – Shields Well Pad

Dear Mr. Durham,

Tug Hill Operating, LLC (Tug Hill) and SLR International Corporation (SLR) have prepared the attached G70-D General Permit Application for the Shields well pad located in Marshall County, West Virginia. This application reflects the site as having (10) Marcellus wells, (4) 1.0 MMBtu/hr gas processing units, (2) 400 bbl produced water tanks, and (1) 840 HP 4SRB compressor engine (Waukesha F3524GSI). Emissions from the tanks will be controlled by a 2 MMBtu/hr enclosed combustor.

All site emissions have been evaluated and are attached for your review within this application.

The public notice was delivered to the *Moundsville Daily Echo* for publication. The legal advertisement has been scheduled to run in the December 18th edition of the paper and will be forwarded to your office as soon as SLR receives the original affidavit from the newspaper.

If any additional information is needed, please feel free to contact me by telephone at (304) 545-8563 or by e-mail at ihanshaw@slrconsulting.com

Sincerely,

SLR International Corporation

Jesse Hanshaw, P.E. Principal Engineer

Tug Hill Operating, LLC

Shields Well Pad

Proctor, West Virginia

G70-D General Permit Application

SLR Ref: 116.01631.00019

Shields Well Pad G70-D General Permit Application

Prepared for:

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

This document has been prepared by SLR International Corporation. The material and data in this Permit application were prepared under the supervision and direction of the undersigned.

Alex Asbury Staff Engineer

Jesse Hanshaw, P.E. Principal Engineer

global environmental and advisory solutions

CONTENTS

Section

Section 1. TECHNICAL SUPPORT DOCUMENT

- 1.1 INTRODUCTION
- **1.2 PERMITTING HISTORY**
- 1.3 DESCRIPTION OF FACILITY
- 1.4 FEDERAL AND STATE REQUIREMENTS

Section 2. APPLICATION FOR PERMIT

ATTACHMENTS

	SINGLE SOURCE DETERMINATION FORM
ATTACHMENT B.	SITING CRITERIA WAIVER (SEE NOTES)
ATTACHMENT C	BUSINESS ČERTIFICATÉ
ATTACHMENT D	PROCESS FLOW DIAGRAM
ATTACHMENT E	PROCESS DESCRIPTION
ATTACHMENT F	PLOT PLAN
ATTACHMENT G	AREA MAP
ATTACHMENT H	
ATTACHMENT I	EMISSION UNITS/ERD TABLE
ATTACHMENT J .	FUGITIVE EMISSIONS SUMMARY SHEET(S)
ATTACHMENT K .	GAS WELL AFFECTED FACILITY DATA SHEET(S)
ATTACHMENT L .	STORAGE VESSEL(S) DATA SHEET(S)
	NATURGAL GAS FIRED FUEL BURNING UNIT(S) DATA SHEET(S)
	INTERNAL COMBUSTION ENGINE DATA SHEET(S)
	TANKER TRUCK/RAIL CAR LOADING DATA SHEET(S)
	GLYCOL DEHYDRATION UNIT DATA SHEET(S) (SEE NOTES)
ATTACHMENT Q	PNEUMATIC CONTROLLERS DATA SHEET(S)
ATTACHMENT R	PNEUMATIC PUMP DATA SHEET(S)
ATTACHMENT S	APCD/ERD SHEET(S)
ATTACHMENT T	EMISSION CALCULATIONS
	FACILITY-WIDE EMISSION SUMMARY SHEET(S)
ATTACHMENT V	CLASS I LEGAL ADVERTISEMENT

Notes:

ATTACHMENT B – N/A – No dwellings or businesses located within 300' of the facility.

ATTACHMENT P - N/A - No glycol dehydration unit in use at the facility.

SECTION 1. TECHNICAL SUPPORT DOCUMENT

General G70-D Permit Application

Shields Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

1.1 INTRODUCTION

Tug Hill Operating, LLC has prepared this application to reflect the new construction of equipment at the Shields well pad, and is seeking coverage under the G70-D General Permit. This document contains all applicable permitting forms and fees in accordance with 45CSR13.

The site as evaluated has been classified as a minor NSR and Title V facility. The details of this evaluation are provided in section 2.0 with supporting documentation presented within the calculations section.

1.2 DESCRIPTION OF FACILITY

Tug Hill Operating, LLC is applying for a General Permit Registration under G70-D for the new construction and operation of equipment at the Shields well pad. The site consists of (10) Marcellus wells, (4) 1 MMBtu/hr gas processing units, and (2) 400 bbl produced water tanks. The proposed (1) 840 HP Waukesha 4SRB compressor engine (Unit 1807) would be used to boost pressure prior to the gas entering the sales pipeline. The predicted increase in production will make it necessary to also install a (2) MMBtu/hr flare to control tank VOC emissions.

DESCRIPTION OF PROCESS

Natural gas, condensate and produced water will be separated from 10 horizontal wells located onsite producing from the Marcellus formation. Each well stream will first pass through one of four (4) 1 MMBtu/hr gas processing units (GPU-1 through GPU-4).

The gas exiting the gas processing units will be sent to the compressor before being routed into a sales pipeline. The water will be sent into one of two (2) 400 bbl produced water tanks. The condensate is sent to a condensate pipeline and is removed from the site. There will be no dedicated condensate storage tanks located at the Shields site.

The emissions from the produced water storage tanks will be directed to a 2 MMBtu/hr enclosed vapor combustor (F-1) for VOC and methane destruction. The produced water is hauled offsite by 140 bbl pump trucks. The displaced emissions from truck loading were accounted for as a point source on an uncontrolled basis.

The site is proposing to install a sales gas compressor in order to increase production gas volumes. The equipment will consist of an F3524GSI Waukesha engine which is rated at 840 HP.

1.3 FEDERAL AND STATE REQUIREMENT

APPLICABLE REGULATIONS

This facility is subject to the following applicable rules and regulations:

Federal and State:

45 CSR 2 – Particulate Matter Standards from Combustion of Fuel in Indirect Heat Exchangers

The indirect heat exchanger consisting of the line heater is subject to the visible emission standard of §45-2-3 as follows:

3.1. No person shall cause, suffer, allow or permit emission of smoke and/or particulate matter into the open air from any fuel burning unit which is greater than ten (10) percent opacity based on a six minute block average.

However, in accordance with the exemptions defined with §45-2-11 these sources have limited requirements as follows:

11.1. Any fuel burning unit(s) having a heat input less than ten (10) million B.T.U.'s per hour will be exempt from sections 4, 5, 6, 8 and 9. However, failure to attain acceptable air quality in parts of some urban areas may require the mandatory control of these sources at a later date.

45 CSR 10 - Emission of Sulfur Oxides

The well pad facility evaluated within this determination application utilizes fuel burning units, but they are all less than the exemption threshold of 10 MMBtu/hr as stated in 45CSR§10-10.1 as follows:

- 10.1 Any fuel burning units having a design heat input less than ten (10) million BTU's per hour will be exempt from section 3 and sections 6 through 8. However, failure to attain acceptable air quality in parts of some urban areas may require the mandatory control of these sources at a later date.
- **40 CFR 61** This facility is subject to the asbestos inspection and notification requirements. However, no asbestos is affected by the proposed construction activities.
- **45 CSR 13 -** Permits for Construction, Modification, Relocation, and Operation of Stationary Source of Air Pollutants

The company is applying for a general well pad permit. The throughput to the site is expected to increase with the installation of on-site compression, and after evaluation of the resulting production increase using ProMax modeling software, it has been deemed necessary to control tank emissions by utilizing an enclosed combustor.

WV Code § 22-5-4 (a) (14)

The Secretary can request any pertinent information such as annual emission inventory reporting. This station is not required to submit an annual air emission inventory.

45 CSR 17 - Fugitive Particulate Emissions

The site shall minimize fugitive PM so that emissions do not travel offsite.

40 CFR 60, Subpart JJJJ – Standards of Performance for Stationary Spark Ignition Internal Combustion Engines

The compressor engine (CE-1) at the station was manufactured on 1-23-2007, which predates the January 1, 2008 applicability date for rich burn engines greater than 500 hp. Therefore, the compressor engine is not subject to emissions limits according to 40 CFR§60.4230-(a)(4)(i). Additionally, the compressor is proposed as a sales gas compressor at the Shields location and therefore was evaluated for applicability to §60.4236 related to requirements for installing previous model year engines. This engine was found to be exempt as a relocated unit according to §60.4236(e).

40 CFR 63, Subpart ZZZZ – National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines

The natural gas compressor engine (CE-1) is a 4SRB Waukesha F3524GSI engine manufactured on 1-23-2007; therefore, per 40CFR63.6590(c)(1) the requirements of this regulation are to comply with new SI engines standards in accordance with 40CFR60, Subpart JJJJ.

NON-APPLICABILITY DETERMINATIONS

The following requirements have been determined "not applicable" due to the following:

45 CSR 27 - To Prevent and Control the Emissions of Toxic Air Pollutants

This rule is not applicable because natural gas is included as a petroleum product and contains less than 5% benzene by weight. 45CSR § 27-2.4 exempts equipment "used in the production and distribution of petroleum products providing that such equipment does not produce or contact materials containing more than 5% benzene by weight."

45 CSR 30 – Requirements for Operating Permits – Title V of the Clean Air Act

This facility does not meet the emission thresholds to trigger a 45 CSR 30 Title V Operating Permit nor is it subject to any Federal Standards that require a Title V Permit.

40 CFR 60 Subpart K, Ka, Kb - Storage Vessel NSPS

The two 400 bbl [16,800 gal] produced liquid tanks T01-T02 are below the size capacity threshold of 75 meters cubed (m^3) [19,813 gallons] defined within the applicability section 60.110b(a) of this Federal standard.

40 CFR 60 Subpart KKK - Natural Gas Processing Plant NSPS

This subpart is not applicable because this site is not a processing plant engaged in extracting natural gas liquids by fractionation from natural gas.

Natural gas processing plant (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas, fractionation of mixed natural gas liquids to natural gas products, or both.

40 CFR 60 Subpart OOOO - Storage Vessel NSPS Requirements

The existing storage vessels (T01-T02) was constructed after August 23, 2011 but before, September 18, 2015 and has been demonstrated to have a PTE VOCs < 6 tpy with controls using ProMax Equation of State estimation techniques with representative inputs. Therefore, the existing storage vessel is not considered an affected source under this regulation.

40 CFR 60 Subpart OOOOa - Storage Vessel NSPS Requirements

The existing storage vessels predate the applicability date of this regulation, September 18, 2015

40 CFR 60 Subpart OOOOa - Fugitive Component Leak Monitoring

The site is classified as a well pad facility, which will not be subject to the monitoring requirement of this section since the existing well site predates the applicability date of September 18, 2015 as defined under this Federal regulation.

40 CFR 60 Subpart OOOOa – Compressor Packing Requirements

The site is classified as a well pad facility, which will not be subject to the monitoring requirement of this section since the compressor meets the exemption for units operated at well sites as defined under this federal regulation.

40 CFR 63 Subpart HH - National Emission Standards for Hazardous Air Pollutants from Oil and Natural Gas Production Facilities

There is no dehydration unit at this site.

40 CFR 63 Subpart JJJJJJ - Boilers Located at Area Sources of HAPs

This subpart is not applicable because the process heaters at this facility are not classified as boilers under this area source GACT standard.

40 CFR 82 Subpart F - Ozone Depleting Substances

The purpose of this subpart is to reduce emissions of class I and class II refrigerants and their substitutes. The facility does not utilize class I and class II refrigerants nor any substitutes.

Aggregation Discussion (Facility Determination)

The Shields well site is operated solely by Tug Hill Operating, LLC. This well pad facility has the ability to transfer its products via pipeline to midstream compression companies, of which are located on non-contiguous sites over a mile away. Additionally, these sources are not under common control nor is there any support and/or dependency relationship between the midstream companies and Tug Hill.

No other facilities operated by Tug Hill are within a quarter-mile radius and as a result this pad should be considered a single facility as defined within this determination application.

SECTION 2. APPLICATION FOR PERMIT

General G70-D Permit Application

Shields Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

west virginia department of environmental protection

Division of Air Quality
601 57th Street SE
Charleston, WV 25 4
Phone (304) 926-0475
Fax (304) 926-0479
www.dep.wv.gov

G70-D GENERAL PERMIT REGISTRATION APPLICATION

PREVENTION AND CONTROL OF AIR POLLUTION IN REGARD TO THE CONSTRUCTION, MODIFICATION, RELOCATION, ADMINISTRATIVE UPDATE AND OPERATION OF NATURAL GAS PRODUCTION FACILITIES LOCATED AT THE WELL SITE

NATURAL GAS PROL	OCTION FACIL	THE S LOCATED AT THE WE	LL SIIE		
⊠CONSTRUCTION □CLASS I ADMINISTRATIVE UPDATE □MODIFICATION □CLASS II ADMINISTRATIVE UPDATE □RELOCATION					
SE	CTION 1. GENE	RAL INFORMATION			
Name of Applicant (as registered with the V	VV Secretary of S	tate's Office): Tug Hill Operatin	g, LLC		
Federal Employer ID No. (FEIN): 26-2056	245				
Applicant's Mailing Address: 380 Southpointe Blvd., Suite 200					
City: Canonsburg	State: PA		ZIP Code: 15317		
Facility Name: Shields Well Pad					
Operating Site Physical Address: Burch Rid If none available, list road, city or town and		6155			
City: Proctor	Zip Code: 26155		County: Marshall		
Latitude & Longitude Coordinates (NAD83, Latitude: 39.76026 Longitude: -80.78795	, Decimal Degrees	to 5 digits):			
SIC Code: 1311		DAQ Facility ID No. (For exist	ting facilities)		
NAICS Code: 211111					
C	ERTIFICATION	OF INFORMATION			
This G70-D General Permit Registration Official is a President, Vice President, Sec Directors, or Owner, depending on business authority to bind the Corporation, Pa Proprietorship. Required records of dail compliance certifications and all required Representative. If a business wishes to certification and the appropriate names and signification G70-D Registration Application utilized, the application will be	retary, Treasurer, structure. A busi rtnership, Limited by throughput, hourd notifications notify an Authorized atures entered. An will be returned	General Partner, General Manageness may certify an Authorized R Liability Company, Association ars of operation and maintenance, nust be signed by a Responsible C Representative, the official agree by administratively incomplete of	er, a member of the Board of epresentative who shall have Joint Venture or Sole general correspondence, Official or an Authorized ement below shall be checked or improperly signed or , if the G70-D forms are not		
I hereby certify that is an Authorized (e.g., Corporation, Partnership, Limited Lia obligate and legally bind the business. If the notify the Director of the Division of Air Q I hereby certify that all information contain documents appended hereto is, to the best of have been made to provide the most compression.	bility Company, A e business change uality immediately ed in this G70-D f my knowledge, t	s its Authorized Representative, a y. General Permit Registration Appl true, accurate and complete, and t	Proprietorship) and may a Responsible Official shall ication and any supporting		
Responsible Official Signature: Name and Title: Sean Willis Vice President Email: swillis@tug-hillop.com	Phone: 81' Date: \2	7-632-5200 Fa	x:		
If applicable: Authorized Representative Signature: Name and Title: Email:	Phone: Date:	Fax:			
If applicable: Environmental Contact Name and Title: Amy Miller Environmental Email: amiller@tug-hillop.com	Coordinator Date:	Phone: (724) 338-2030	Fax:		

OPERATING SITE INFORMATION Briefly describe the proposed new operation and/or any change(s) to the facility: This site will encompass 10 existing Marcellus wells and associated separation and new gas compression equipment. The facility will also utilize liquid storage Directions to the facility: Traveling from Proctor get onto WV-2 S and travel 7.3 miles. Turn right onto Burch Ridge Rd and travel 3.7 miles. The access road to the well pad will be located on the left. The site will be straight ahead in approximately 0.4 miles. ATTACHMENTS AND SUPPORTING DOCUMENTS I have enclosed the following required documents: Check payable to WVDEP - Division of Air Quality with the appropriate application fee (per 45CSR13 and 45CSR22). ☑ Check attached to front of application. $\hfill \square$ I wish to pay by electronic transfer. Contact for payment (incl. name and email address): ☐ I wish to pay by credit card. Contact for payment (incl. name and email address): ⊠\$500 (Construction, Modification, and Relocation) □\$300 (Class II Administrative Update) □\$1,000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ, OOOO and/or OOOOa ¹ □\$2,500 NESHAP fee for 40 CFR63, Subpart ZZZZ and/or HH ² ¹ Only one NSPS fee will apply. ² Only one NESHAP fee will apply. The Subpart ZZZZ NESHAP fee will be waived for new engines that satisfy requirements by complying with NSPS, Subparts IIII and/or JJJJ. NSPS and NESHAP fees apply to new construction or if the source is being modified. ☐ Responsible Official or Authorized Representative Signature (if applicable) ⊠ Single Source Determination Form (must be completed) – Attachment A ⊠ Siting Criteria Waiver (if applicable) – Attachment B □ Current Business Certificate – Attachment C □ Process Flow Diagram – Attachment D □ Process Description – Attachment E □ Plot Plan – Attachment F ☐ G70-D Section Applicability Form – Attachment H ⊠ Emission Units/ERD Table – Attachment I □ Fugitive Emissions Summary Sheet – Attachment J ☐ Gas Well Affected Facility Data Sheet (if applicable) – Attachment K Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable) - Attachment L ⊠ Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Heater Treaters, In-Line Heaters if applicable) – Attachment ⊠ Internal Combustion Engine Data Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment ☐ Tanker Truck/Rail Car Loading Data Sheet (if applicable) – Attachment O \square Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalc TM input and output reports and information on reboiler if applicable) - Attachment P \boxtimes Pneumatic Controllers Data Sheet – Attachment Q ⊠ Pneumatic Pump Data Sheet - Attachment R ⊠ Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) - Attachment S

All attachments must be identified by name, divided into sections, and submitted in order.

🗵 Emission Calculations (please be specific and include all calculation methodologies used) - Attachment T

☑ One (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments

☐ Facility-wide Emission Summary Sheet(s) – Attachment U

□ Class I Legal Advertisement – Attachment V

ATTACHMENT A SINGLE SOURCE DETERMINATION FORM

General G70-D Permit Application

Shields Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

Classifying multiple facilities as one "stationary source" under 45CSR13, 45CSR14, and 45CSR19 is based on the definition of Building, structure, facility, or installation as given in §45-14-2.13 and §45-19-2.12. The definition states:

"Building, Structure, Facility, or Installation" means all of the pollutant-emitting activities which belong to the same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the control of the same person (or persons under common control). Pollutant-emitting activities are a part of the same industrial grouping if they belong to the same "Major Group" (i.e., which have the same two (2)-digit code) as described in the Standard Industrial Classification Manual, 1987 (United States Government Printing Office stock number GPO 1987 0-185-718:QL 3).

The Source Determination Rule for the oil and gas industry was published in the Federal Register on June 3, 2016 and will become effective on August 2, 2016. EPA defined the term "adjacent" and stated that equipment and activities in the oil and gas sector that are under common control will be considered part of the same source if they are located on the same site or on sites that share equipment and are within ½ mile of each other.

1 1	and activities in the same industrial grouping (defined
by SIC code)?	
Yes □ No ⊠	
Is there equipment person/people? Yes □ No ⊠	and activities under the control of the same
1 1	and activities located on the same site or on sites that and are within ¼ mile of each other?

ATTACHMENT B

SITING CRITERIA WAIVER

NOT APPLICABLE - No dwellings or businesses located within 300' of the facility

General G70-D Permit Application

Shields Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

ATTACHMENT C BUSINESS CERTIFICATE

General G70-D Permit Application

Shields Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

I, Natalie E. Tennant, Secretary of State of the State of West Virginia, hereby certify that

TH EXPLORATION II, LLC

Control Number: 9ADVD

a limited liability company, organized under the laws of the State of Texas has filed its "Application for Certificate of Authority" in my office according to the provisions of West Virginia Code §31B-10-1002. I hereby declare the organization to be registered as a foreign limited liability company from its effective date of March 30, 2016, until a certificate of cancellation is filed with our office.

Therefore, I hereby issue this

CERTIFICATE OF AUTHORITY OF A FOREIGN LIMITED LIABILITY COMPANY

to the limited liability company authorizing it to transact business in West Virginia

Given under my hand and the Great Seal of the State of West Virginia on this day of March 30, 2016

Vatelil E Jemil

Secretary of State

Natalie E. Tennant West Virginia Secretary of State 1900 Kanawha Blvd. East Bldg. 1, Suite 157-K Charleston, WV 25305

FILED

MAR 3 0 2016

Business & Licensing Division
Tel: (304)558-8000
Fax: (304)558-8381
Website: www.wvsos.com
E-mail: business@wvsos.com

Penney Barker, Manager

Office Hours: Monday - Friday 8:30 a.m. - 5:00 p.m. EST

Control #

IN THE OFFICE OF SECRETARY OF STATE

FILE ONE ORIGINAL (Two if you want a filed stamped copy returned to you.) WEST VIRGINIA APPLICATION FOR CERTIFICATE OF AUTHORITY OF LIMITED LIABILITY COMPANY

FILING FEE: \$150

* Fee Waived for Veteran-owned organization

**	* The undersigned, having authority to comply with the requirements o	transac f West	t b Vi	usiness on behalf of a foreig rginia Code §31B-10-1002 to	n (out-of- o apply fo	state) regi or Certific	istered entity ate of Autho	, agrees to *** rity.
1.	The name of the limited liability comparregistered in its home state is:	ny as	11	TH Exploration II, LLC				
	and the State or Country of organization	on is:		Texas			V V V	
	X CHECK HERE to indicate you have on STANDING), dated during the current The certificate may be obtained by contained to contain the certificate may be obtained by contained to contain the certificate may be obtained by containing the certificate may be obtained by	tax year	, fr	om your home state of original	formation	as require	ed to process v	TENCE (GOOD our application.
2.	The business name to be used in West Virginia will be: [The name must contain one of the required terms such as "limited liability company" or abbreviations such as "LLC" or "PLLC." See instructions for complete list of acceptable terms and requirements for use of Trade Name.]	(DB (If no S in S A N See	State name as listed in Section ame is not available, check DBA Section 2. attached.) Name special instructions in Section 2. application. Click here to see a section 2.	Name box	the Letter	follow special	instructions
3.	The company will be a: [See instructions for limitations on professions which may form P.L.L.C. in WV. All members must have WV professional license. See (*) note at the right.]		roi In	tlar LLC fessional LLC* for the professionst cases, a Letter of Authorize the sensing Board is required to professions.	ation/App	proval from	the approprisee attached inst	ate State
4.	The address of the principal office of the company will be:	Stree	t: -	1320 South University I	Orive, Si	uite 500		
		City:	-	Fort Worth	State:	Texas	Zip Code:	76107
	Located in the County of (<u>required</u>):	Coun	ty:	Tarrant 🔻				
	The mailing address of the above location, if different, will be:	Stree	t: -		* 4			
		City:			State:		Zip Code:	
(ph	The address of the initial designated (physical) office of the company in West Virginia, if any, will be:	Stree	t: -					
	west vinginia, it any, will be.	City:			State:	_	Zip Code:	
	Located in the County of: RECEIVED	Coun	ty:	V				

MAR 3 0 2016

5. (Continued from previous page)						
The mailing address of the above location, if different, will be:	Street:					
	City: State: Zip Code:					
6. Agent of Process: may be sent, if any, will be:	Name: Corporation Service Company					
	Street: 209 West Washington Street					
	City: Charleston State: WV Zip Code: 25302					
7. E-mail address where business correspon	ndence may be received: eradler@tug-hillop.com					
8. Website address of the business, if any (a	ex: yourdomainname.com):					
9. Do you own or operate more than one business in West Virginia?	X Yes * Answer a. and b. below. Decline to answer					
If "Yes" a. How many businesses?	b. Located in how many West Virginia counties?					
(required)	ompany, conducting business for an indefinite period. any, conducting business for the term ofyears.					
11. The company is: MEMBER-MA	NAGED [List the names and addresses of <u>all</u> members below.] ANAGED [List the names and addresses of <u>all</u> managers below.]					
List the name(s) and address(es) of the Mame	Member(s)/Manager(s) of the company (required; attach additional pages if necessary): 10. & Street Address City State Zip Code					
Tug Hill, Inc. 1320 South	University Drive, Suite 500 Fort Worth TX 76107					
12. All or specified members of a limited liability company are liable in their capacity as members for all or specified debts, obligations or liabilities of the company (required):	X No - All debts, obligations and liabilities are those of the company. Yes - Those persons who are liable in their capacity as members for all debts, obligations or liability of the company have consented in writing to the adoption of the provision or to be bound by the provision.					
3. The purpose(s) for which this limited liability company is formed is as follows: [Describe the type(s) of business activity which will be conducted, for example, "real estate," "construction of residential and commercial buildings," "commercial painting," "professional practice of law" (see Section 2. for acceptable "professional" business activities). Purpose may conclude with words "including the transaction of any or all lawful business for which corporations may be incorporated in West Virginia."]						
Oil and gas extraction activities in	ncluding the transaction of any or all related lawful business for which					
limited liability companies may b						
14. Is the business a Scrap Metal Dealer ?						
Yes [If "Yes," you must complete the Sc	erap Metal Dealer Registration Form (Form SMD-1) and proceed to Section 15.]					
X No [Proceed to Section 15.]	Proceed to Section 13.1					

 Other provisions which may be set forth in the c [See instructions for further information; use extra pa 	operating agreement or ma ges if necessary.]	atters not inconsistent with law:	
N/A		7	,
16. The number of pages attached and included in the	hese Articles is:3		
7. The requested effective date is: [Requested date may not be earlier than filing nor	X the date and time (of filing in the Secretary of State's Office.	
later than 90 days after filing in our office.	the following date	and time	
8. Is the organization a "veteran-owned" organiza	tion?		
Effective JULY 1, 2015, to meet the requireme meet the following criteria per West Virginia Coc	nts for a " veteran-owned de <u>§59-1-2a</u> :	d" organization, the entity filing the registration n	nus
 A "veteran" must be honorably discharged or A "veteran-owned business" means a busines o Is at least fifty-one percent (51%) unconditi o In the case of a publicly owned business, at more veterans. 	ss that meets one of the fo onally owned by one or m	llowing criteria:	r
Yes (If "Yes," attach Form DD214)	CHECK BOX indicatin	ng you have attached Veteran Affairs Form DD214	
[X]No	You may obtain a copy of your Veterans Affairs Form DD214 by contacting:	National Personnel Records Center Military Personnel Records 1 Archives Drive St. Louis, MO 63138 Toll free: 1-86-NARA-NARA or 1-866-272-6272 Phone: 314-801-0800 www.archives.gov/veterans/military-service-reco	
Per WV Code 59-1-2(i) effective July 1, 2015, the reorganization. See attached instructions to determine if the four (4) consecutive years of Annual Report fees wait	he organization qualifies for ved AFTER the organization	this waiver. In addition, a "veteran-owned" entity will initial formation [see WV Code 59-1-2a(m)].	
9. Contact and Signature Information* (See below			
a. Contact person to reach in case there is a proble		y J. Roane Phone: 214-969-1312	
b. Print or type name of signer: Tug Hill, Inc., Mar. Michael Evan Radl		Title/Capacity of signer:	
c. Signature;	Date: N	March 24, 2016	
*Important Legal Notice Regarding Signature: Pe	hapter contains a false stater	31B-2-209. Liability for false statement in filed recoment, one who suffers loss by reliance on the statement	12201
If a record authorized or required to be filed under this c recover damages for the loss from a person who signed the false at the time the record was signed.	ne record or caused another t	to sign it on the person's behalf and knew the statement t	

Reset Form

Print Form

Office of the Secretary of State

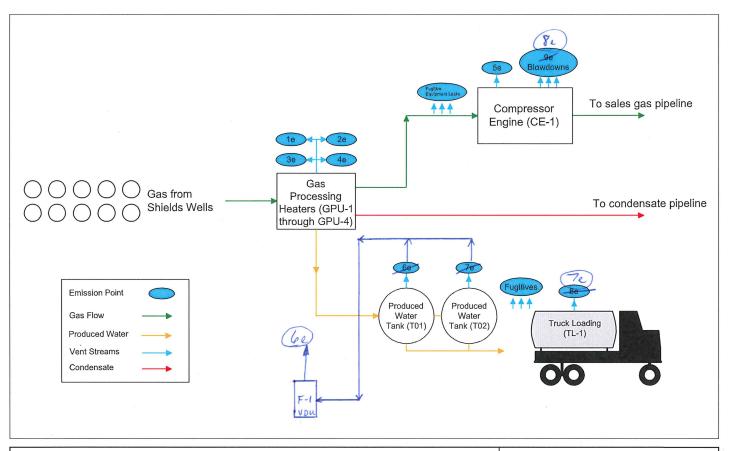
Certificate of Fact

The undersigned, as Secretary of State of Texas, does hereby certify that the document, Certificate of Formation for TH Exploration II, LLC (file number 802423622), a Domestic Limited Liability Company (LLC), was filed in this office on March 28, 2016.

It is further certified that the entity status in Texas is in existence.

In testimony whereof, I have hereunto signed my name officially and caused to be impressed hereon the Seal of State at my office in Austin, Texas on March 29, 2016.

Carlos H. Cascos Secretary of State


Dial: 7-1-1 for Relay Services Document: 663129140003

ATTACHMENT D PROCESS FLOW DIAGRAM

General G70-D Permit Application

Shields Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

ATTACHMENT E PROCESS DESCRIPTION

General G70-D Permit Application

Shields Well Pad Proctor, West Virginia

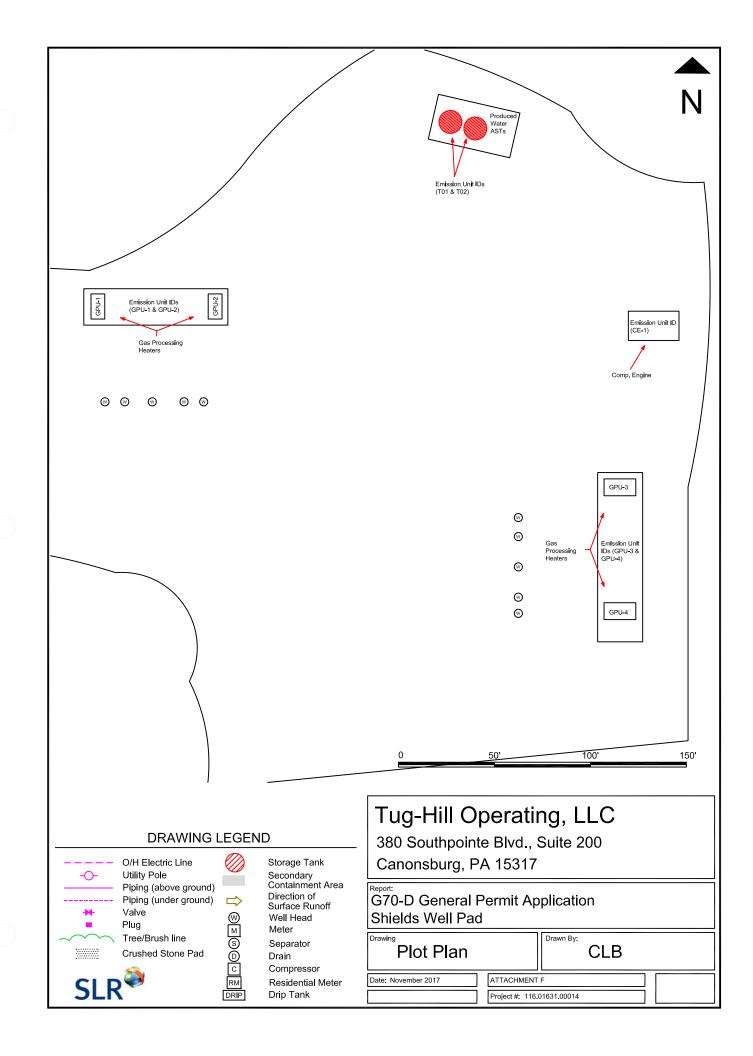
Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

Tug Hill Operating, LLC is applying for a General Permit Registration under G70-D for the new construction and operation of equipment at the Shields well pad. The site consists of (10) Marcellus wells, (4) 1 MMBtu/hr gas processing units, and (2) 400 bbl produced water tanks. The proposed (1) 840 HP Waukesha 4SRB compressor engine (Unit 1807) will be used to lower the wells operating pressure and boost pressure prior to the gas entering the sales pipeline. The predicted increase in production will make it necessary to also install a (2) MMBtu/hr flare to control tank VOC emissions.

DESCRIPTION OF PROCESS

Natural gas, condensate and produced water will be separated from 10 horizontal wells located onsite producing from the Marcellus formation. Each well stream will first pass through one of four (4) 1 MMBtu/hr gas processing units (GPU-1 through GPU-4).

The gas exiting the processing units will be sent to the compressor before being routed into a sales pipeline. The water will be sent into one of two (2) 400 bbl produced water tanks. The condensate is sent to a condensate pipeline and is removed from the site. There will be no dedicated condensate storage tanks located at the Shields site.

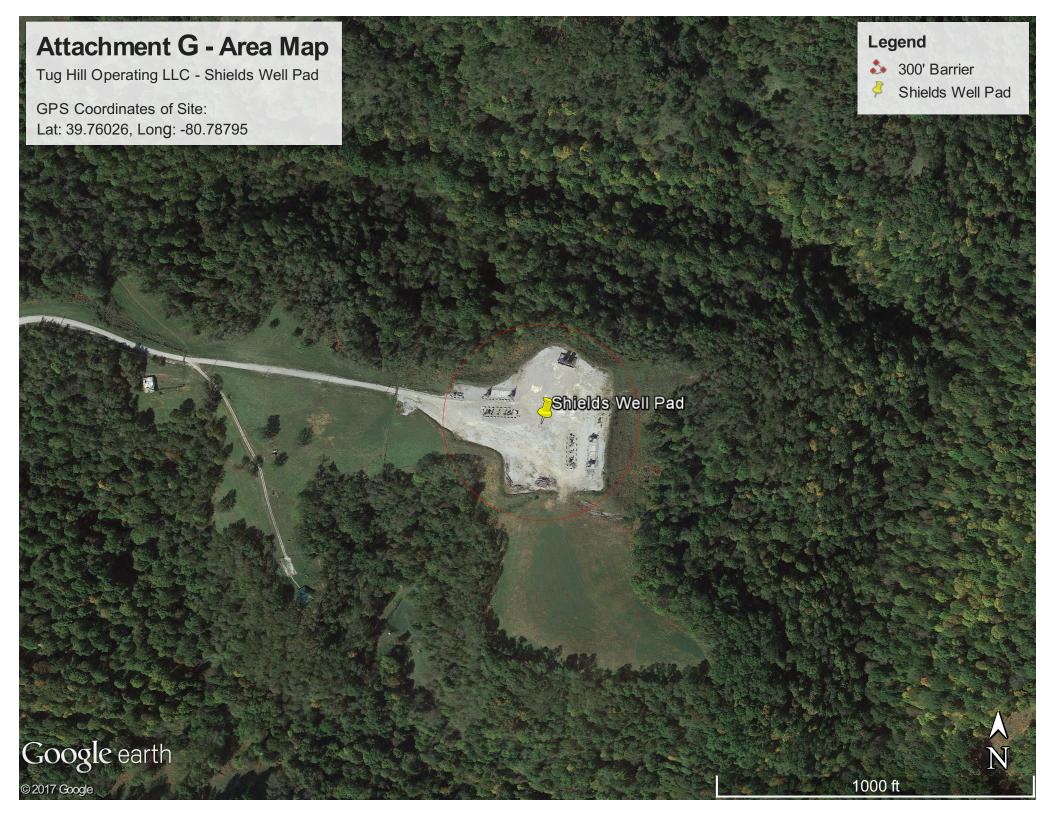

The emissions from the produced water storage tanks will be directed to a 2 MMBtu/hr enclosed vapor combustor (F-1) for VOC and methane destruction. The produced water is hauled offsite by 140 bbl pump trucks. The displaced emissions from truck loading were accounted for as point source emissions on an uncontrolled basis.

ATTACHMENT F PLOT PLAN

General G70-D Permit Application

Shields Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317



ATTACHMENT G AREA MAP

General G70-D Permit Application

Shields Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

ATTACHMENT H G70-D SECTION APPLICABILITY FORM

General G70-D Permit Application

Shields Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

ATTACHMENT H - G70-D SECTION APPLICABILITY FORM

General Permit G70-D Registration Section Applicability Form

General Permit G70-D was developed to allow qualified applicants to seek registration for a variety of sources. These sources include gas well affected facilities, storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, pneumatic pumps, reciprocating internal combustion engines (RICEs), tank truck/rail car loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G70-D allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

GENERAL PERMIT G70-D APPLICABLE SECTIONS					
⊠Section 5.0	Gas and Oil Well Affected Facility (NSPS, Subpart OOOO/OOOa)				
⊠Section 6.0	Storage Vessels Containing Condensate and/or Produced Water ¹				
□Section 7.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO/OOOa)				
⊠Section 8.0	Control Devices and Emission Reduction Devices not subject to NSPS Subpart OOOO/OOOoa and/or NESHAP Subpart HH				
⊠Section 9.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc				
□Section 10.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO/OOOa)				
□Section 11.0	Pneumatic Pump Affected Facility (NSPS, Subpart OOOOa)				
□Section 12.0	Fugitive Emissions GHG and VOC Standards (NSPS, Subpart OOOOa)				
⊠Section 13.0	Reciprocating Internal Combustion Engines, Generator Engines				
⊠Section 14.0	Tanker Truck/Rail Car Loading ²				
□Section 15.0	Glycol Dehydration Units ³				

- 1 Applicants that are subject to Section 6 may also be subject to Section 7 if the applicant is subject to the NSPS, Subparts OOOO or OOOOa control requirements or the applicable control device requirements of Section 8.
- 2 Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 8.
- Applicants that are subject to Section 15 may also be subject to the requirements of Section 9 (reboilers). Applicants that are subject to Section 15 may also be subject to control device and emission reduction device requirements of Section 8.

ATTACHMENT I EMISSION UNITS / ERD TABLE

General G70-D Permit Application

Shields Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

ATTACHMENT I – EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment L table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type ⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
GPU-1	1e	GPU Heater	2012		1 MMBtu/hr	New	None	None
GPU-2	2e	GPU Heater	2012		1 MMBtu/hr	New	None	None
GPU-3	3e	GPU Heater	2012		1 MMBtu/hr	New	None	None
GPU-4	4e	GPU Heater	2012		1 MMBtu/hr	New	None	None
CE-1	5e	Waukesha F3524GSI	2017	1-23-2007	840 Hp	New	NSCR	None
T01-T02	6e	Produced Water Tanks	2012		400 bbl each	New	VDU-1	None
F-1	6e	Vapor Destruction Unit	2017		2 MMBTU/hr	New	None	None
TL-1	7e	Truck Loading	2012		345,618 gal/yr	New	None	None
Blowdowns	8e	Compressor Blowdowns	2017		3.6 lb/Event	New	None	None

¹ For Emission Units (or Sources) use the following numbering system: 1S, 2S, 3S,... or other appropriate designation.

² For Emission Points use the following numbering system: 1E, 2E, 3E, ... or other appropriate designation.

³ When required by rule

⁴ New, modification, removal, existing

⁵ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

⁶ For ERDs use the following numbering system: 1D, 2D, 3D,... or other appropriate designation.

ATTACHMENT J FUGITIVE EMISSION SUMMARY SHEET(S)

General G70-D Permit Application

Shields Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

ATTACHMENT J – FUGITIVE EMISSIONS SUMMARY SHEET Sources of fugitive emissions may include loading operations, equipment leaks, blowdown emissions, etc. Use extra pages for each associated source or equipment if necessary. Source/Equipment: Fugitives ☐ Audible, visual, and Leak Detection ☑ Infrared (FLIR) cameras ☐ Other (please describe) ☐ None required Method Used olfactory (AVO) inspections Closed Stream type Estimated Emissions (tpy) Component Source of Leak Factors Vent Count (gas, liquid, Type (EPA, other (specify)) VOC HAP GHG (methane, CO₂e) System etc.) ☐ Yes ☐ Gas ----☐ Liquid Pumps \square No □ Both 1995 EPA Protocol for Equipment Leak Emission ⊠ Gas 0.01 ☐ Yes 157 0.60 11.19 ⊠ No Estimates - Table 2-4, Oil & Gas Production Operations ☐ Liquid Valves Average Emission Factors (kg/hr/source) □ Both (4.5E-03)1995 EPA Protocol for Equipment Leak Emission □ Yes 3 ⊠ Gas 0.02 < 0.01 0.42 Safety Relief ⊠ No Estimates - Table 2-4, Oil & Gas Production Operations ☐ Liquid Valves Average Emission Factors (kg/hr/source) □ Both (8.8E-03)☐ Yes 9 1995 EPA Protocol for Equipment Leak Emission ⊠ Gas 0.02 < 0.01 0.29 Open Ended ⊠ No Estimates - Table 2-4, Oil & Gas Production Operations ☐ Liquid Lines Average Emission Factors (kg/hr/source) □ Both (2.0E-03)☐ Yes ☐ Gas Sampling □ No ☐ Liquid Connections □ Both ⊠ Gas ☐ Yes 685 1995 EPA Protocol for Equipment Leak Emission 0.23 4.23 < 0.01 ⊠ No Estimates - Table 2-4, Oil & Gas Production Operations ☐ Liquid Connections (Not sampling) Average Emission Factors (kg/hr/source) □ Both (3.9E-03)□ Yes 1995 EPA Protocol for Equipment Leak Emission ⊠ Gas 1 0.01 < 0.01 0.14 ⊠ No Estimates - Table 2-4, Oil & Gas Production Operations ☐ Liquid Compressors Average Emission Factors (kg/hr/source) □ Both (8.8E-03) ☐ Yes See Notes See Notes Below (2) ☐ Gas Flanges ⊠ No Below (2) ☐ Liquid ☐ Both □ Yes □ Gas --Other1 \square No ☐ Liquid □ Both ¹ Other equipment types may include compressor seals, relief valves, diaphragms, drains, meters, etc. ² Assumption made that flange connections are included in connections (not sampling) count

Please provide an explanation of the sources of fugitive emissions (e.g. pigging operations, equipment blowdowns, pneumatic controllers, etc.):				
Please indicate if there are any closed vent bypasses (include component):				
Specify all equipment used in the closed vent system (e.g. VRU, ERD, thief hatches, tanker truck/rail car loading, etc.)				

ATTACHMENT K GAS WELL AFFECTED FACILITY DATA SHEET(S)

General G70-D Permit Application

Shields Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

ATTACHMENT K - GAS WELL AFFECTED FACILITY DATA SHEET

Complete this data sheet if you are the owner or operator of a gas well affected facility for which construction, modification or reconstruction commenced after August 23, 2011. This form must be completed for natural gas well affected facilities regardless of when flowback operations occur (or have occurred).

API Number	Date of Flowback	Date of Well Completion	Green Completion and/or Combustion Device	Subject to OOOO or OOOOa?
47-051-01533		2012	Green	0000
47-051-01534		2012	Green	0000
47-051-01535		2012	Green	0000
47-051-01536		2012	Green	0000
47-051-01537		2012	Green	0000
47-051-01538		2012	Green	0000
47-051-01539		2012	Green	0000
47-051-01540		2012	Green	0000
47-051-01541		2012	Green	0000
47-051-01542		2012	Green	0000

Note: If future wells are planned and no API number is available please list as PLANNED.

If there are existing wells that commenced construction prior to August 23, 2011, please acknowledge as existing.

This is the same API (American Petroleum Institute) well number(s) provided in the well completion notification and as provided to the WVDEP, Office of Oil and Gas for the well permit. The API number may be provided on the application without the state code (047).

Every oil and gas well permitted in West Virginia since 1929 has been issued an API number. This API is used by agencies to identify and track oil and gas wells.

The API number has the following format: 047-001-00001

Where.

047 = State code. The state code for WV is 047.

001 = County Code. County codes are odd numbers, beginning with 001

(Barbour) and continuing to 109 (Wyoming).

00001= Well number. Each well will have a unique well number.

ATTACHMENT L STORAGE VESSEL(S) DATA SHEET(S)

General G70-D Permit Application

Shields Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

ATTACHMENT L - STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water. (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.

The following information is REQUIRED:

- ☑ Composition of the representative sample used for the simulation
- ⊠ For each stream that contributes to flashing emissions:
 - \boxtimes Temperature and pressure (inlet and outlet from separator(s))
 - ⊠ Simulation-predicted composition
- ☑ Resulting flash emission factor or flashing emissions from simulation
- ⊠ Working/breathing loss emissions from tanks and/or loading emissions if simulation is used to quantify those emissions

Additional information may be requested if necessary.

GENERAL INFORMATION (REQUIRED)

 Bulk Storage Area Name: 	2. Tank Name					
Shields Well Pad	Produced Water Tanks					
2. Emission Unit ID number:	3.Emission Point ID number:					
T01-T02	6e					
5. Date Installed , Modified or Relocated (for existing tanks)	6. Type of change:					
	☐ New construction ☐ New stored material ☒ Other					
Was the tank manufactured after August 23, 2011 and on or	☐ Relocation					
before September 18, 2015?						
⊠ Yes □ No						
Was the tank manufactured after September 18, 2015?						
□ Yes ⊠ No						
7A. Description of Tank Modification (if applicable)						
7B. Will more than one material be stored in this tank? If so, a s	separate form must be completed for each material.					
□ Yes ⊠ No						
7C. Was USEPA Tanks simulation software utilized?						
☐ Yes ☐ No ProMax Model Simulation (See C	☐ Yes ☐ No ProMax Model Simulation (See Calculations)					
If Yes, please provide the appropriate documentation and items	8-42 below are not required.					

TANK INFORMATION

8. Design Capacity (spe 400 bbl	cify barrels	or gallon	is). Use the interna	al cross-sectional ar	rea multipl	lied by inte	ernal height.
9A. Tank Internal Diam	eter (ft.) 12	·		9B. Tank Intern	al Height	(ft.) 20	
10A. Maximum Liquid				10B. Average L	-)
11A. Maximum Vapor S)	11B. Average V	-	-	
12. Nominal Capacity (s				_		•	· · ·
13A. Maximum annual		_					al/day) 473.76 per tank
tank				<u> </u>			
14. Number of tank turn				15. Maximum ta		e (gal/min) 0.33 per tank
16. Tank fill method 🗵			□ Splash	☐ Bottom Loadii	ng		
17. Is the tank system a	-		•	⊠ No			
If yes, (A) What is the vo	_	_					
			nto the system per	year'!			
18. Type of tank (check ☐ Fixed Poof	all that app vertical	-		f ⊠ sons roof	□ dome i	af	-than (dasaniha)
☐ Fixed Roof ☐	verticai	☐ horize	ontal flat roof	f ⊠ cone roof	☐ dome 1	rooi 🗀	other (describe)
☐ External Floating Ro	of [¬ pontoo:	n roof □ double	deck roof			
☐ Domed External (or		•		ucck 1001			
☐ Internal Floating Roo		_	l column support	□ self_supporting			
☐ Variable Vapor Spac			of diaphragm	□ sen-supporting	,		
☐ Pressurized	_	☐ spherica	al ⊠ cylindrical				
☐ Other (describe)							
 ☑ Conservation Vent (property) ☑ Emergency Relief Various ☑ One of the conservation of	0.88 I alve (psig) 0.88 F ed □ Yes ② Air Pollution	n Control	Setting Device Sheet		n the appli	ication).	
Material Name		ng Loss	Working/ Breat		Total En		Estimation Method ¹
					Loss		
	lb/hr	tpy		tpy	lb/hr	tpy	
VOC (All tanks-	0.15	0.66	<0.01	< 0.01	0.15	0.66	O - ProMax
	0.15	0.66	< 0.01	< 0.01	0.15	0.66	O - ProMax
21A. Shell Color: Green	NAND OPEI n: te lined	RATION I Epoxy-c	TANKS Summary Sh	neets and other model Other (describe) We	ling summar	ry sheets if c	
PA = EPA Emission Factor member to attach emissions TANK CONSTRUCTION 21. Tank Shell Constructio Riveted Gunit 21A. Shell Color: Green 22. Shell Condition (if met	NAND OPEI n: te lined al and unline	RATION I Epoxy-c 2 ed):	INFORMATION coated rivets 🗵 O	neets and other model Other (describe) We	ling summar	ry sheets if c	applicable.
PA = EPA Emission Factor member to attach emissions TANK CONSTRUCTION 21. Tank Shell Constructio □ Riveted □ Gunit	NAND OPEI n: te lined al and unline	Epoxy-c 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	INFORMATION coated rivets 🗵 O	Other (describe) We een	ing summar	ry sheets if a	applicable.

23. Operating Pressure Range (page) 0.88 Must be listed for tanks using VRUs with closed vent system. 24A. If yes, for dome roof provide radius (ft):								
34. It be tank a Vertical Fixed Roof Tank? Yes	23. Operating Pressure Range (psig	(): 0.88						
Section Sec	Must be listed for tanks using	VRUs wi	th closed vent system	1.				
25. Complete item 25 for Floating Roof Tanks Does not apply 25. Year Internal Floating Roof Lanks Wetallic (mechanical) shoe seal Liquid mounted resilient seal Wapor mounted seal seal wapor ressure (psia): 0.28 Wapor mounted resilient seal seal Wapor mounted search fall of wapor ressure (psia):	24. Is the tank a Vertical Fixed Ro	of Tank?	24A. If yes, for dome	roof prov	ride radius (ft):	24B. If ye	s, for cone roof, provide slop	(ft/ft):
25A. Year Internal Floaters Installed: 25B. Primary Seal Type (check one): Metallic (mechanical) shoe seal Other (describe): 25C. Is the Floating Roof equipped with a secondary seal? Yes No 25D. It yes, how is the secondary seal mounted? (check one) Shoe Rim Other (describe): 25E. Is the floating roof equipped with a weather shield? Yes No 25E. Is the floating roof equipped with a weather shield? Yes No 25F. Describe deck fittings: 25F. Describe deck fittings: 26C. Complete the following section for Internal Floating Roof Tanks Does not apply 26A. Deck Type: Bolted Welded 26B. For bolted decks, provide deck construction: 26C. Deck seam. Continuous sheet construction: 26D. Deck seam length (ft.): 26E. Area of deck (ft?): 26F. For column supported tanks, 0 of columns: 26D. Deck seam length (ft.): 26E. Area of deck (ft?): 26F. For column supported tanks, 0 of columns: 27D. Closed Vent System with VRU? Yes No 28. Closed Vent System with VRU? Yes No 29. Provide the city and state on which the data in this section are based: Elkins, WY 30. Daily Avg. Ambient Temperature (°F): 49.06 31. Annual Avg. Maximum Temperature (°F): 61.15 32. Annual Avg. Maximum Temperature (°F): 61.15 33. Avg. Wind Speed (naph): 6.17 34. Annual Avg. Solar Insulation Factor (BTU/ft²-day): 1193.89 35. Atmospheric Pressure (psin): 13.73 LiQUID INFORNALTION 36A. Minimum (°F): 61.15 61.	⊠ Yes □ No					0.17		
25B. Primary Seal Type (check one): Metallic (mechanical) shoe seal Liquid mounted resilient seal Other (describe):	25. Complete item 25 for Floating	Roof Tanks	S ☐ Does not apply	\boxtimes				
□ Vapor mounted resilient seal □ Other (describe): 25C. Is the Floating Roof equipped with a secondary seal? □ Yes □ No 25E. It yes, how is the secondary seal mounted? (check one) □ Sho □ Rim □ Other (describe): 25E. Is the floating roof equipped with a weather shield? □ Yes □ No 25F. Describe deck fittings: 26. Complete the following section for Internal Floating Roof Tanks 26A. Deck Type: □ Bolted □ Welded □ 26B. For bolted decks, provide deck construction: □ 5 ft. wide □ 6 ft. wide □ 7 ft. wide □ 5 x 7.5 ft. wide □ 5 x 7.5 ft. wide □ other (describe) 26D. Deck seam. Continuous sheet construction: □ 5 ft. wide □ 6 ft. wide □ 7 ft. wide □ 5 x 7.5 ft. wide □ 5 x 7.5 ft. wide □ other (describe) 26D. Deck seam length (ft.): □ 26E. Area of deck (ft²): □ 26F. For column supported tanks, diameter of columns: 27. Closed Vent System with VRU? □ Yes ⋈ No 28. Closed Vent System with Enclosed Combustor? ⋈ Yes □ No SITE INFORNATION 30. Daily Avg. Ambient Temperature (°F): 49.06 □ 31. Annual Avg. Maximum Temperature (°F): 61.15 □ 32. Annual Avg. Minimum Temperature (°F): 36.97 □ 33. Ayg. Wind Speed (mph): 6.17 □ 34. Annual Avg. Solar Insulation Factor (BTU/ft²-day): 1193.89 □ 35. Atmospheric Pressure (psia): 13.73 LIQUID INFORNATION 36. Avg. daily temperature range of bulk □ 36A. Minimum (°F): □ 36B. Maximum (°F): □ 37B. Maximum (psig): □ 6.15 □ 6.	25A. Year Internal Floaters Installe	d:						
25C. Is the Floating Roof equipped with a secondary seal?	25B. Primary Seal Type (check one):	allic (mechanical) sho	e seal	☐ Liquid mo	unted resili	ent seal	
25E. Is the floating roof equipped with a weather shield?		□ Vap	or mounted resilient s	eal	☐ Other (des	scribe):		
25E. Is the floating roof equipped with a weather shield?	25C. Is the Floating Roof equipped	with a seco	ndary seal? Yes	□ No				
25F. Describe deck fittings: 26. Complete the following section for Internal Floating Roof Tanks 26A. Deck Type: Bolted Welded 26B. For bolted decks, provide deck construction: 26C. Deck seam. Continuous sheet construction: 36F. New de 6 ft. wide 7 ft. wide 5 x 7.5 ft. wide 26F. For column supported tanks, diameter of columns: 26D. Deck seam length (ft.): 26E. Area of deck (ft²): 26F. For column supported tanks, diameter of columns: 27. Closed Vent System with VRU? Yes No 28. Closed Vent System with Enclosed Combustor? Yes No 29. Provide the city and state on which the data in this section are based: Elkins, WV 30. Daily Avg. Ambient Temperature (°F): 36.97 31. Annual Avg. Maximum Temperature (°F): 61.15 32. Annual Avg. Minimum Temperature (°F): 36.97 33. Avg. Wind Speed (mph): 6.17 34. Annual Avg. Solar Insulation Factor (BTU/ft²-day): 1193.89 35. Atmospheric Pressure (psia): 13.73 LIQUID INFORMATION 36. Avg. daily temperature range of balk 36A. Minimum (°F): 36B. Maximum (°F): 61.15 37. Avg. operating pressure range of tank 37A. Minimum (rsi): 0.88 38A. Minimum liquid surface temperature (°F): 47.17 38B. Corresponding vapor pressure (psia): 0.28 39A. Avg. liquid surface temperature (°F): 67.23 40B. Corresponding vapor pressure (psia): 0.37 40A. Maximum liquid surface temperature (°F): 67.23 40B. Corresponding vapor pressure (psia): 0.49 41. Provide the following for each liquid or gas to be stored in the tank. Add additional pages if necessary. SEE PROMAX MODEL IN CALCULATIONS. 41B. CAS number: 41C. Liquid density (lb/gal): 41B. Liquid molecular weight (lb/lb-mole): 41F. Maximum true vapor pressure (psia): 41B. Liquid molecular weight (lb/lb-mole): 41F. Maximum true vapor pressure (psia): 41B. Liquid molecular weight (lb/lb-mole): 41F. Maximum true vapor pressure (psia): 42F. Final maximum gauge pressure and temperature prior to transfer into tank used as	25D. If yes, how is the secondary se	eal mounted	? (check one) \square Sho	е 🗆	Rim Otl	ner (describ	e):	
26. Complete the following section for Internal Floating Roof Tanks □ Does not apply 26A. Deck Type: □ Bolted □ Welded □ Sch. For bolted decks, provide deck construction: □ 5 ft. wide □ 6 ft. wide □ 7 ft. wide □ 5 x 7.5 ft. wide □ 5 x 12 ft. wide □ other (describe) 26D. Deck seam length (ft.): □ 26E. Area of deck (ft.): □ 26F. For column supported tanks, # of columns: 27. Closed Vent System with VRU? □ Yes □ No 28. Closed Vent System with Enclosed Combustor? ☑ Yes □ No SITE INFORMATION 29. Provide the city and state on which the data in this section are based: Elkins, WV 30. Daily Avg. Ambient Temperature (°F): 36.97 □ 31. Annual Avg. Maximum Temperature (°F): 61.15 32. Annual Avg. Minimum Temperature (°F): 36.97 □ 33. Avg. Wind Speed (mph): 6.17 34. Annual Avg. Solar Insulation Factor (BTU/ft²-day): 1193.89 □ 35. Atmospheric Pressure (psia): 13.73 LIQUID INFORMATION 36. Avg. daily temperature range of bulk □ 36A. Minimum (°F): □ 36B. Maximum (°F): □ 61.15 36.79. O.3 37. Avg. operating pressure range of tank □ 37A. Minimum (psig): □ 37B. Maximum (psig): □ 37B. Maximum (psig): □ 38B. Corresponding vapor pressure (psia): 0.28 39A. Avg. liquid surface temperature (°F): 57.20 □ 39B. Corresponding vapor pressure (psia): 0.37 40A. Maximum liquid surface temperature (°F): 57.20 □ 39B. Corresponding vapor pressure (psia): 0.37 41A. Material name and composition: □ 41B. CAS number: □ 41C. Liquid density (lbg/al): □ 41B. CAS number: □ 41C. Liquid density (lbg/al): □ 41B. CAS number: □ 41C. Liquid density (lbg/al): □ 41B. CAS number: □ 41C. Liquid density (lbg/al): □ 41C. Liquid molecular weight (lbf/b-mole): □ 41F. Maximum tree vapor pressure (psia): □ 41F. H. Months Storage per year. From: □ 70: □ 42. Final maximum gauge pressure and temperature pr	25E. Is the floating roof equipped w	vith a weath	er shield? Yes	\square N	o			
26A. Deck Type: □ Bolted □ Welded 26B. For bolted decks, provide deck construction: 26C. Deck seam. Continuous sheet construction: □ 5 ft. wide □ 6 ft. wide □ 7 ft. wide □ 5 x 7.5 ft. wide □ 0 ther (describe) 26D. Deck seam length (ft.): 26E. Area of deck (ft²): 26F. For column supported tanks, # of columns: 27. Closed Vent System with VRU? □ Yes ⊠ No 28. Closed Vent System with Enclosed Combustor? ⊠ Yes □ No SITE INFORMATION 29. Provide the city and state on which the data in this section are based: Elkins, WV 30. Daily Avg. Ambient Temperature (°F): 49.06 31. Annual Avg. Maximum Temperature (°F): 61.15 32. Annual Avg. Solar Insulation Factor (BTU/ft²-day): 1193.89 35. Atmospheric Pressure (psia): 13.73 LQUID INFORMATION 36. Avg. daily temperature range of bulk liquid (°F): 52.14 36.97 36.97 36.15 36.97 36.15 36.97 37. Avg. operating pressure range of tank (psig): -0.03 0.88 0.88 0.88 38A. Minimum liquid surface temperature (°F): 57.20 39B. Corresponding vapor pressure (psia): 0.28 39A. Avg. liquid surface temperature (°F): 67.23 40B. Corresponding vapor pressure (psia): 0.49 41. Provide the following for each liquid or gas to be stored in the tank. Add additional pages if necessary. SEE PROMAX MODEL IN CALCULATIONS. 41B. CAS number: 41C. Liquid density (blyda): 41B. Maximum reid vapor pressure (psia): 0.49 41B. Maximum reid vapor pressure (psia): 0.49 41B. Liquid molecular weight (lbflb-mole): 41B. Maximum reid vapor pressure (psia): 0.49 41G. Maximum reid vapor pressure (psia): 0.40 42 Final maximum gauge pressur	25F. Describe deck fittings:							
26C. Deck seam. Continuous sheet construction: 5 ft. wide	26. Complete the following section	for Interna	l Floating Roof Tanks	\boxtimes	Does not apply	y		
□ 5 ft. wide □ 6 ft. wide □ 7 ft. wide □ 5 x 7.5 ft, wide □ 5 x 12 ft. wide □ other (describe) 26D. Deck seam length (ft.): 26E. Area of deck (ft²): 26F. For column supported tanks, # of columns: 27. Closed Vent System with VRU? □ Yes ☒ No 28. Closed Vent System with Enclosed Combustor? ☒ Yes □ No SITE INFORMATION 29. Provide the city and state on which the data in this section are based: Elkins, WV 30. Daily Avg. Ambient Temperature (°F): 49.06 31. Annual Avg. Maximum Temperature (°F): 61.15 32. Annual Avg. Minimum Temperature (°F): 36.97 33. Avg. Wind Speed (mph): 6.17 34. Annual Avg. Solar Insulation Factor (BTU/ft²-day): 1193.89 35. Atmospheric Pressure (psia): 13.73 LIQUID INFORMATION 36. Avg. daily temperature range of bulk liquid (°F): 52.14 37. Avg. operating pressure range of tank (psig): 0.03 38. Minimum liquid surface temperature (°F): 47.17 38B. Corresponding vapor pressure (psia): 0.28 39A. Avg. liquid surface temperature (°F): 67.23 40B. Corresponding vapor pressure (psia): 0.49 41P. Diquid molecular weight (lb/lb-mole): 41E. Vapor molecular weight (lb/lb-mole): 41E. Vapor molecular weight (lb/lb-mole): 41E. Maximum true vapor pressure (psia): 0.49 41. Months Storage per year. From: To: 42. Final maximum gauge pressure and temperature prior to transfer into tank used as	26A. Deck Type: Bolted	\Box W	Velded	26B. I	For bolted decks,	provide dec	k construction:	
□ 5 ft. wide □ 6 ft. wide □ 7 ft. wide □ 5 x 7.5 ft, wide □ 5 x 12 ft. wide □ other (describe) 26D. Deck seam length (ft.): 26E. Area of deck (ft^2): 26F. For column supported tanks, # of columns: 27. Closed Vent System with VRU? □ Yes ⋈ No 28. Closed Vent System with Enclosed Combustor? ⋈ Yes □ No SITE INFORMATION 29. Provide the city and state on which the data in this section are based: Elkins, WV 30. Daily Avg. Ambient Temperature (°F): 49.06 31. Annual Avg. Maximum Temperature (°F): 61.15 32. Annual Avg. Minimum Temperature (°F): 36.97 33. Avg. Wind Speed (mph): 6.17 34. Annual Avg. Solar Insulation Factor (BTU/ft²-day): 1193.89 35. Atmospheric Pressure (psia): 13.73 LIQUID INFORMATION 36. Avg. daily temperature range of bulk liquid (°F): 52.14 36.97 61.15 37. Avg. operating pressure range of tank (psis): 378. Minimum (psis): 0.033 0.88 38A. Minimum liquid surface temperature (°F): 47.17 38B. Corresponding vapor pressure (psia): 0.28 39A. Avg. liquid surface temperature (°F): 67.23 40B. Corresponding vapor pressure (psia): 0.49 41. Provide the following for each liquid or gas to be stored in the tank. Add additional pages if necessary. SEE PROMAX MODEL IN CALCULATIONS. 41B. CAS number: □ 10. Add additional pages if necessary. SEE PROMAX MODEL IN CALCULATIONS. 41C. Liquid molecular weight (lb/lb-mole): □ 11. Additional page pressure (psia): 0.49 41C. Liquid molecular weight (lb/lb-mole): □ 14. Maximum true vapor pressure (psia): □ 14. Maximum true vapor pressure (psia): □ 14. Maximum true vapor pressure (psia): □ 14. Minimum Reid vapor pressure (psia): □ 14. Minimum gauge pressure and temperature prior to transfer into tank used as	26C. Deck seam. Continuous sheet	constructio	m:					
26D. Deck seam length (ft.): 26E. Area of deck (ft²): 26F. For column supported tanks, # of columns: 26F. For column supported tanks, diameter of column: 27. Closed Vent System with VRU? □ Yes ⋈ No 28. Closed Vent System with Enclosed Combustor? ⋈ Yes □ No STFE INFORMATION 29. Provide the city and state on which the data in this section are based: Elkins, WV 30. Daily Avg. Ambient Temperature (°F): 49.06 31. Annual Avg. Maximum Temperature (°F): 61.15 32. Annual Avg. Minimum Temperature (°F): 36.97 33. Avg. Wind Speed (mph): 6.17 34. Annual Avg. Solar Insulation Factor (BTU/ft²-day): 1193.89 35. Atmospheric Pressure (psia): 13.73 LIQUID INFORMATION 36. Avg. daily temperature range of bulk liquid (°F): 52.14 37. Avg. operating pressure range of tank (37A. Minimum (°F): 37B. Maximum (°F): 61.15 37A. Wg. operating pressure range of tank (37A. Minimum (°F): 37B. Maximum (psig): 0.88 38A. Minimum liquid surface temperature (°F): 47.17 38B. Corresponding vapor pressure (psia): 0.28 39A. Avg. liquid surface temperature (°F): 67.23 40B. Corresponding vapor pressure (psia): 0.37 40A. Maximum liquid surface temperature (°F): 67.23 40B. Corresponding vapor pressure (psia): 0.49 41. Provide the following for each liquid or gas to be stored in the tank. Add additional pages if necessary. SEE PROMAX MODEL IN CALCULATIONS. 41A. Material name and composition: 41B. CAS number: 41C. Liquid density (lb/ga): 41F. Maximum tree vapor pressure (psia): 41G. Maximum tree vapor pressure (psia): 41G. Maximum Reid vapor pressure (psia): 41F. Maximum tree prior to transfer into tank used as								
tanks, # of columns: tanks, diameter of column: 27. Closed Vent System with VRU? Yes No 28. Closed Vent System with Enclosed Combustor? Yes No SITE INFORMATION 29. Provide the city and state on which the data in this section are based: Elkins, WV 30. Daily Avg. Ambient Temperature (°F): 49.06 31. Annual Avg. Maximum Temperature (°F): 61.15 32. Annual Avg. Minimum Temperature (°F): 36.97 33. Avg. Wind Speed (mph): 6.17 34. Annual Avg. Solar Insulation Factor (BTU/ft²-day): 1193.89 35. Atmospheric Pressure (psia): 13.73 LIQUID INFORMATION 36. Avg. daily temperature range of bulk liquid (°F): 52.14 36.97 61.15 37. Avg. operating pressure range of tank 37A. Minimum (psig): 37B. Maximum (psig): 0.88 38A. Minimum liquid surface temperature (°F): 47.17 38B. Corresponding vapor pressure (psia): 0.28 39A. Avg. liquid surface temperature (°F): 67.23 40B. Corresponding vapor pressure (psia): 0.37 40A. Maximum liquid surface temperature (°F): 67.23 40B. Corresponding vapor pressure (psia): 0.49 41. Provide the following for each liquid or gas to be stored in the tank. Add additional pages if necessary. SEE PROMAX MODEL IN CALCULATIONS. 41A. Material name and composition: 41B. CAS number: 41C. Liquid molecular weight (lb/lb-mole): 41E. Vapor molecular weight (lb/lb-mole): 41E. Maximum Reid vapor pressure (psia): 41B. Maximum Reid vapor pressure (psia): 41B. Maximum Reid vapor pressure (psia): 41C. Maximum Reid vapor pr								d
28. Closed Vent System with Enclosed Combustor? ☑ Yes ☐ No SITE INFORMATION 29. Provide the city and state on which the data in this section are based: Elkins, WV 30. Daily Avg. Ambient Temperature (°F): 49.06							tanks, diameter of column:	
28. Closed Vent System with Enclosed Combustor? ☑ Yes ☐ No SITE INFORMATION 29. Provide the city and state on which the data in this section are based: Elkins, WV 30. Daily Avg. Ambient Temperature (°F): 49.06	27. Closed Vent System with VRU	? □ Yes	⊠ No					
SITE INFORMATION 29. Provide the city and state on which the data in this section are based: Elkins, WV 30. Daily Avg. Ambient Temperature (°F): 49.06 31. Annual Avg. Maximum Temperature (°F): 61.15 32. Annual Avg. Minimum Temperature (°F): 36.97 33. Avg. Wind Speed (mph): 6.17 34. Annual Avg. Solar Insulation Factor (BTU/ft²-day): 1193.89 35. Atmospheric Pressure (psia): 13.73 LIQUID INFORMATION 36. Avg. daily temperature range of bulk liquid (°F): 52.14 36.97 37. Avg. operating pressure range of tank (psig): -0.03 378. Minimum (psig): -0.08 388. Minimum liquid surface temperature (°F): 47.17 38B. Corresponding vapor pressure (psia): 0.28 39A. Avg. liquid surface temperature (°F): 67.23 40B. Corresponding vapor pressure (psia): 0.49 41. Provide the following for each liquid or gas to be stored in the tank. Add additional pages if necessary. SEE PROMAX MODEL IN CALCULATIONS. 41A. Material name and composition: 41B. CAS number: 41C. Liquid density (lb/gal): 41E. Vapor molecular weight (lb/lb-mole): 41F. Maximum true vapor pressure (psia): 41G. Maximum Reid vapor pressure (psia): 41G. Maximum Reid vapor pressure (psia): 41F. Maximum true vapor pressure (psia): 41F. Maximum Reid vapor pressure (psia):								
29. Provide the city and state on which the data in this section are based: Elkins, WV 30. Daily Avg. Ambient Temperature (°F): 49.06 31. Annual Avg. Maximum Temperature (°F): 61.15 32. Annual Avg. Minimum Temperature (°F): 36.97 33. Avg. Wind Speed (mph): 6.17 34. Annual Avg. Solar Insulation Factor (BTU/ft²-day): 1193.89 35. Atmospheric Pressure (psia): 13.73 LIQUID INFORMATION 36. Avg. daily temperature range of bulk liquid (°F): 52.14 37. Avg. operating pressure range of tank (37A. Minimum (psig): 40.03 38. Avg. liquid surface temperature (°F): 47.17 38B. Corresponding vapor pressure (psia): 0.28 39A. Avg. liquid surface temperature (°F): 67.23 40B. Corresponding vapor pressure (psia): 0.49 41. Provide the following for each liquid or gas to be stored in the tank. Add additional pages if necessary. SEE PROMAX MODEL IN CALCULATIONS. 41A. Material name and composition: 41B. CAS number: 41C. Liquid density (lb/gal): 41D. Liquid molecular weight (lb/lb-mole): 41E. Vapor molecular weight (lb/lb-mole): 41F. Maximum true vapor pressure (psia): 41G. Maximum Reid vapor pressure (psia): 41H. Months Storage per year. From: 70. 42. Final maximum gauge pressure and temperature prior to transfer into tank used as								
30. Daily Avg. Ambient Temperature (°F): 49.06 31. Annual Avg. Maximum Temperature (°F): 61.15 32. Annual Avg. Minimum Temperature (°F): 36.97 33. Avg. Wind Speed (mph): 6.17 34. Annual Avg. Solar Insulation Factor (BTU/ft²-day): 1193.89 35. Atmospheric Pressure (psia): 13.73 LIQUID INFORMATION 36. Avg. daily temperature range of bulk liquid (°F): 52.14 36.97 37. Avg. operating pressure range of tank (psig): -0.03 38. Minimum liquid surface temperature (°F): 47.17 38. Corresponding vapor pressure (psia): 0.28 39. Avg. liquid surface temperature (°F): 57.20 39. Avg. liquid surface temperature (°F): 67.23 40. Maximum liquid surface temperature (°F): 67.23 40. Maximum liquid surface temperature (°F): 67.23 40. Corresponding vapor pressure (psia): 0.49 41. Provide the following for each liquid or gas to be stored in the tank. Add additional pages if necessary. SEE PROMAX MODEL IN CALCULATIONS. 41. Material name and composition: 41. Calquid density (lb/gal): 41. Liquid molecular weight (lb/lb-mole): 41. Vapor molecular weight (lb/lb-mole): 41. Maximum reid vapor pressure (psia): 41. Months Storage per year. From: To: 42. Final maximum gauge pressure and temperature prior to transfer into tank used as		nich the data	in this section are based:	: Elkins.	WV			
32. Annual Avg. Minimum Temperature (°F): 36.97 33. Avg. Wind Speed (mph): 6.17 34. Annual Avg. Solar Insulation Factor (BTU/ft²-day): 1193.89 35. Atmospheric Pressure (psia): 13.73 LIQUID INFORMATION 36. Avg. daily temperature range of bulk liquid (°F): 52.14 36.97 37. Avg. operating pressure range of tank (psig): -0.03 388. Minimum (psig): -0.03 388. Minimum liquid surface temperature (°F): 47.17 388. Corresponding vapor pressure (psia): 0.28 394. Avg. liquid surface temperature (°F): 57.20 395. Corresponding vapor pressure (psia): 0.49 41. Provide the following for each liquid or gas to be stored in the tank. Add additional pages if necessary. SEE PROMAX MODEL IN CALCULATIONS. 418. CAS number: 419. Cas number: 410. Liquid density (lb/gal): 4110. Liquid molecular weight (lb/lb-mole): 4111. Maximum Reid vapor pressure (psia): 4112. Maximum Reid vapor pressure (psia): 4133. Avg. Wind Speed (mph): 6.17 355. Atmospheric Pressure (psia): 13.73 369. Maximum (°F): 361.15 378. Maximum (psig): 378. Maximum (psig): 378. Maximum (psig): 379. Avg. liquid surface temperature (°F): 67.23 408. Corresponding vapor pressure (psia): 0.49 419. Corresponding vapor pressure (psia): 0.49 410. Liquid mensity (lb/gal): 4110. Liquid molecular weight (lb/lb-mole): 4121. Vapor molecular weight (lb/lb-mole): 4134. Maximum Reid vapor pressure (psia): 4144. Months Storage per year. From: 70: 425. Final maximum gauge pressure and temperature prior to transfer into tank used as	-					mum Tempe	rature (°F): 61.15	
34. Annual Avg. Solar Insulation Factor (BTU/ft²-day): 1193.89 35. Atmospheric Pressure (psia): 13.73 LIQUID INFORMATION 36. Avg. daily temperature range of bulk liquid (°F): 52.14 36.97 37. Avg. operating pressure range of tank (psig): -0.03 38. Minimum (psig): -0.03 38. Minimum liquid surface temperature (°F): 47.17 38. Corresponding vapor pressure (psia): 0.28 39. Avg. liquid surface temperature (°F): 57.20 39. Avg. liquid surface temperature (°F): 67.23 40. Maximum liquid surface temperature (°F): 67.23 40. Maximum liquid surface temperature (°F): 67.23 40. Maximum liquid surface temperature (°F): 67.23 41. Provide the following for each liquid or gas to be stored in the tank. Add additional pages if necessary. SEE PROMAX MODEL IN CALCULATIONS. 41A. Material name and composition: 41B. CAS number: 41C. Liquid density (lb/gal): 41D. Liquid molecular weight (lb/lb-mole): 41F. Maximum rue vapor pressure (psia): 41G. Maximum Reid vapor pressure (psia): 41H. Months Storage per year. From: To: 42. Final maximum gauge pressure and temperature prior to transfer into tank used as								
LIQUID INFORMATION 36. Avg. daily temperature range of bulk 36A. Minimum (°F): 36B. Maximum (°F): 61.15 37. Avg. operating pressure range of tank (psig): -0.03 -0.03 -0.08 -0.08 38A. Minimum liquid surface temperature (°F): 47.17 38B. Corresponding vapor pressure (psia): 0.28 39A. Avg. liquid surface temperature (°F): 57.20 39B. Corresponding vapor pressure (psia): 0.37 40A. Maximum liquid surface temperature (°F): 67.23 40B. Corresponding vapor pressure (psia): 0.49 41. Provide the following for each liquid or gas to be stored in the tank. Add additional pages if necessary. SEE PROMAX MODEL IN CALCULATIONS. 41A. Material name and composition: 41B. CAS number: 41C. Liquid density (lb/gal): 41D. Liquid molecular weight (lb/lb-mole): 41E. Vapor molecular weight (lb/lb-mole): 41F. Maximum true vapor pressure (psia): 41F. Maximum Reid vapor pressure (psia): 41F. Months Storage per year. 41F. To: 42. Final maximum gauge pressure and temperature prior to transfer into tank used as							3 73	
36. Avg. daily temperature range of bulk liquid (°F): 36.97 36.97 61.15 37. Avg. operating pressure range of tank (psig): -0.03 37B. Maximum (psig): -0.03 0.88 38A. Minimum liquid surface temperature (°F): 47.17 38B. Corresponding vapor pressure (psia): 0.28 39A. Avg. liquid surface temperature (°F): 57.20 39B. Corresponding vapor pressure (psia): 0.37 40A. Maximum liquid surface temperature (°F): 67.23 40B. Corresponding vapor pressure (psia): 0.49 41. Provide the following for each liquid or gas to be stored in the tank. Add additional pages if necessary. SEE PROMAX MODEL IN CALCULATIONS. 41A. Material name and composition: 41B. CAS number: 41C. Liquid density (lb/gal): 41D. Liquid molecular weight (lb/lb-mole): 41F. Maximum true vapor pressure (psia): 41G. Maximum Reid vapor pressure (psia): 41G. Final maximum gauge pressure and temperature prior to transfer into tank used as		actor (BTC)	11 (11)	55. 11	inospiiorie i ress	иге (раш). 1		
liquid (°F): 52.14 37. Avg. operating pressure range of tank (psig): (psig): 0.88 37A. Minimum (psig): 0.88 38A. Minimum liquid surface temperature (°F): 47.17 38B. Corresponding vapor pressure (psia): 0.28 39A. Avg. liquid surface temperature (°F): 57.20 39B. Corresponding vapor pressure (psia): 0.37 40A. Maximum liquid surface temperature (°F): 67.23 40B. Corresponding vapor pressure (psia): 0.49 41. Provide the following for each liquid or gas to be stored in the tank. Add additional pages if necessary. SEE PROMAX MODEL IN CALCULATIONS. 41A. Material name and composition: 41B. CAS number: 41C. Liquid density (lb/gal): 41D. Liquid molecular weight (lb/lb-mole): 41E. Vapor molecular weight (lb/lb-mole): 41F. Maximum true vapor pressure (psia): 41G. Maximum Reid vapor pressure (psia): 41H. Months Storage per year. From: To: 42. Final maximum gauge pressure and temperature prior to transfer into tank used as	_	f bulk	36A. Minimum (°F):			36B. Max	imum (°F):	
37. Avg. operating pressure range of tank (psig): -0.03 -0.03 -0.03 -0.08 38A. Minimum liquid surface temperature (°F): 47.17 -0.08 38B. Corresponding vapor pressure (psia): 0.28 39A. Avg. liquid surface temperature (°F): 57.20 -0.09 -0.09 -0.09 -0.09 -0.00								
(psig): 0.88 38A. Minimum liquid surface temperature (°F): 47.17 38B. Corresponding vapor pressure (psia): 0.28 39A. Avg. liquid surface temperature (°F): 57.20 39B. Corresponding vapor pressure (psia): 0.37 40A. Maximum liquid surface temperature (°F): 67.23 40B. Corresponding vapor pressure (psia): 0.49 41. Provide the following for each liquid or gas to be stored in the tank. Add additional pages if necessary. SEE PROMAX MODEL IN CALCULATIONS. 41A. Material name and composition: 41B. CAS number: 41C. Liquid density (lb/gal): 41D. Liquid molecular weight (lb/lb-mole): 41E. Vapor molecular weight (lb/lb-mole): 41F. Maximum true vapor pressure (psia): 41G. Maximum Reid vapor pressure (psia): 41H. Months Storage per year. From: To: 42. Final maximum gauge pressure and temperature prior to transfer into tank used as		of tank	37A. Minimum (psig):	:		37B. Maximum (psig):		
38A. Minimum liquid surface temperature (°F): 47.17 38B. Corresponding vapor pressure (psia): 0.28 39A. Avg. liquid surface temperature (°F): 57.20 39B. Corresponding vapor pressure (psia): 0.37 40A. Maximum liquid surface temperature (°F): 67.23 40B. Corresponding vapor pressure (psia): 0.49 41. Provide the following for each liquid or gas to be stored in the tank. Add additional pages if necessary. SEE PROMAX MODEL IN CALCULATIONS. 41A. Material name and composition: 41B. CAS number: 41C. Liquid density (lb/gal): 41D. Liquid molecular weight (lb/lb-mole): 41E. Vapor molecular weight (lb/lb-mole): 41F. Maximum true vapor pressure (psia): 41G. Maximum Reid vapor pressure (psia): 41H. Months Storage per year. From: To: 42. Final maximum gauge pressure and temperature prior to transfer into tank used as	(psig):		-0.03	0.88		0.88	.88	
39A. Avg. liquid surface temperature (°F): 57.20 39B. Corresponding vapor pressure (psia): 0.37 40A. Maximum liquid surface temperature (°F): 67.23 40B. Corresponding vapor pressure (psia): 0.49 41. Provide the following for each liquid or gas to be stored in the tank. Add additional pages if necessary. SEE PROMAX MODEL IN CALCULATIONS. 41A. Material name and composition: 41B. CAS number: 41C. Liquid density (lb/gal): 41D. Liquid molecular weight (lb/lb-mole): 41E. Vapor molecular weight (lb/lb-mole): 41F. Maximum true vapor pressure (psia): 41G. Maximum Reid vapor pressure (psia): 41H. Months Storage per year. From: To: 42. Final maximum gauge pressure and temperature prior to transfer into tank used as								
40A. Maximum liquid surface temperature (°F): 67.23 40B. Corresponding vapor pressure (psia): 0.49 41. Provide the following for each liquid or gas to be stored in the tank. Add additional pages if necessary. SEE PROMAX MODEL IN CALCULATIONS. 41A. Material name and composition: 41B. CAS number: 41C. Liquid density (lb/gal): 41D. Liquid molecular weight (lb/lb-mole): 41E. Vapor molecular weight (lb/lb-mole): 41F. Maximum true vapor pressure (psia): 41G. Maximum Reid vapor pressure (psia): 41H. Months Storage per year. From: To: 42. Final maximum gauge pressure and temperature prior to transfer into tank used as								
41. Provide the following for each liquid or gas to be stored in the tank. Add additional pages if necessary. SEE PROMAX MODEL IN CALCULATIONS. 41A. Material name and composition: 41B. CAS number: 41C. Liquid density (lb/gal): 41D. Liquid molecular weight (lb/lb-mole): 41E. Vapor molecular weight (lb/lb-mole): 41F. Maximum true vapor pressure (psia): 41G. Maximum Reid vapor pressure (psia): 41H. Months Storage per year. From: To: 42. Final maximum gauge pressure and temperature prior to transfer into tank used as				39B. (Corresponding va	apor pressure	e (psia): 0.37	
CALCULATIONS. 41A. Material name and composition: 41B. CAS number: 41C. Liquid density (lb/gal): 41D. Liquid molecular weight (lb/lb-mole): 41E. Vapor molecular weight (lb/lb-mole): 41F. Maximum true vapor pressure (psia): 41G. Maximum Reid vapor pressure (psia): 41H. Months Storage per year. From: To: 42. Final maximum gauge pressure and temperature prior to transfer into tank used as								
41A. Material name and composition: 41B. CAS number: 41C. Liquid density (lb/gal): 41D. Liquid molecular weight (lb/lb-mole): 41E. Vapor molecular weight (lb/lb-mole): 41F. Maximum true vapor pressure (psia): 41G. Maximum Reid vapor pressure (psia): 41H. Months Storage per year. From: To: 42. Final maximum gauge pressure and temperature prior to transfer into tank used as		liquid or gas	to be stored in the tank.	Add add	litional pages if i	necessary. Sl	EE PROMAX MODEL IN	
41B. CAS number: 41C. Liquid density (lb/gal): 41D. Liquid molecular weight (lb/lb-mole): 41E. Vapor molecular weight (lb/lb-mole): 41F. Maximum true vapor pressure (psia): 41G. Maximum Reid vapor pressure (psia): 41H. Months Storage per year. From: To: 42. Final maximum gauge pressure and temperature prior to transfer into tank used as			T				T	
41C. Liquid density (lb/gal): 41D. Liquid molecular weight (lb/lb-mole): 41E. Vapor molecular weight (lb/lb-mole): 41F. Maximum true vapor pressure (psia): 41G. Maximum Reid vapor pressure (psia): 41H. Months Storage per year. From: To: 42. Final maximum gauge pressure and temperature prior to transfer into tank used as		on:						
41D. Liquid molecular weight (lb/lb-mole): 41E. Vapor molecular weight (lb/lb-mole): 41F. Maximum true vapor pressure (psia): 41G. Maximum Reid vapor pressure (psia): 41H. Months Storage per year. From: To: 42. Final maximum gauge pressure and temperature prior to transfer into tank used as								
41E. Vapor molecular weight (lb/lb-mole): 41F. Maximum true vapor pressure (psia): 41G. Maximum Reid vapor pressure (psia): 41H. Months Storage per year. From: To: 42. Final maximum gauge pressure and temperature prior to transfer into tank used as		1 1)						
41F. Maximum true vapor pressure (psia): 41G. Maximum Reid vapor pressure (psia): 41H. Months Storage per year. From: To: 42. Final maximum gauge pressure and temperature prior to transfer into tank used as								
41G. Maximum Reid vapor pressure (psia): 41H. Months Storage per year. From: To: 42. Final maximum gauge pressure and temperature prior to transfer into tank used as								
41H. Months Storage per year. From: To: 42. Final maximum gauge pressure and temperature prior to transfer into tank used as								
From: To: 42. Final maximum gauge pressure and temperature prior to transfer into tank used as		ie (psia).						
42. Final maximum gauge pressure and temperature prior to transfer into tank used as								
temperature prior to transfer into tank used as		and						

ATTACHMENT M

NATURAL GAS FIRED FUEL BURNING UNIT(S) DATA SHEET(S)

General G70-D Permit Application

Shields Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

SMALL HEATERS AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART DC DATA SHEET

Complete this data sheet for each small heater and reboiler not subject to 40CFR60 Subpart Dc at the facility. The Maximum Design Heat Input (MDHI) must be less than 10 MMBTU/hr.

Emission Unit ID# ¹	Emission Point ID# ²	Emission Unit Description (manufacturer, model #)	Year Installed/ Modified	Type ³ and Date of Change	Maximum Design Heat Input (MMBTU/hr)4	Fuel Heating Value (BTU/scf) ⁵
GPU-1	1e	GPU Heater	2012	New	1 MMBtu/hr	1,293
GPU-2	2e	GPU Heater	2012	New	1 MMBtu/hr	1,293
GPU-3	3e	GPU Heater	2012	New	1 MMBtu/hr	1,293
GPU-4	4e	GPU Heater	2012	New	1 MMBtu/hr	1,293

Enter the appropriate Emission Unit (or Source) identification number for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.

⁴ Enter design heat input capacity in MMBtu/hr.

Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.

New, modification, removal

Enter the fuel heating value in BTU/standard cubic foot.

ATTACHMENT N INTERNAL COMBUSTION ENGINE DATA SHEET(S)

General G70-D Permit Application

Shields Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. *Generator(s) and microturbine generator(s) shall also use this form.*

Emission Unit I	D# ¹	CE	-1				
Engine Manufac	turer/Model	Waukesha/ F3524GSI					
Manufacturers F	Rated bhp/rpm	840/ 1200					
Source Status ²		R	RS				
Date Installed/ Modified/Remov	ved/Relocated ³	20	117				
Engine Manufac		1/23	/2007				
Check all applic Rules for the en EPA Certificate if applicable) ⁵	gine (include	□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ ⋈ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources		□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources		□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources	
Engine Type ⁶		48	RB				
APCD Type ⁷		NS	CR				
Fuel Type ⁸		R	G				
H ₂ S (gr/100 scf)	1	0.	25				
Operating bhp/r	pm	840/	1200				
BSFC (BTU/bh	o-hr)	9,5	504				
Hourly Fuel Thi	oughput	6,184	ft ³ /hr				/hr l/hr
Annual Fuel The (Must use 8,760 emergency gene	hrs/yr unless	54.17	MMft ³ /yr				⁄lft³/yr l/yr
Fuel Usage or H Operation Meter		Yes □	No 🗵	Yes 🗆	No 🗆	Yes □	No 🗆
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) 11	Annual PTE (tons/year)	Hourly PTE (lb/hr) 11	Annual PTE (tons/year)
MD	NO _x	3.52	15.41				
MD	СО	3.24	14.19				
MD	VOC	0.07	0.32				
AP	SO ₂	<0.01	0.02				
AP	PM ₁₀	0.15	0.68				
MD	Formaldehyde	0.02	0.09				
MD	Total HAPs	0.12	0.50				
MD	GHG (CO ₂ e)	217.09	864.61				

- 1 Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion engine/generator engine located at the well site. Multiple engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-3, etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.
- 2 Enter the Source Status using the following codes:

NS Construction of New Source (installation) ES Existing Source
MS Modification of Existing Source RS Relocated Source

REM Removal of Source

- 3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.
- 4 Enter the date that the engine was manufactured, modified or reconstructed.
- Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6 Enter the Engine Type designation(s) using the following codes:

2SLB Two Stroke Lean Burn 4SRB Four Stroke Rich Burn

4SLB Four Stroke Lean Burn

7 Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:

A/F Air/Fuel Ratio IR Ignition Retard

 HEIS
 High Energy Ignition System
 SIPC
 Screw-in Precombustion Chambers

 PSC
 Prestratified Charge
 LEC
 Low Emission Combustion

NSCR Rich Burn & Non-Selective Catalytic Reduction

OxCat Oxidation Catalyst

SCR Lean Burn & Selective Catalytic Reduction

8 Enter the Fuel Type using the following codes:

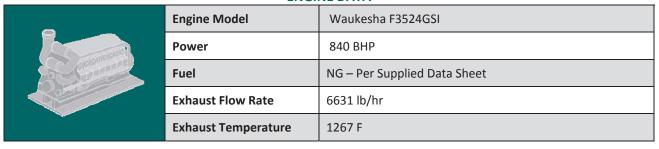
PQ Pipeline Quality Natural Gas RG Raw Natural Gas / Production Gas D Diesel

9 Enter the Potential Emissions Data Reference designation using the following codes. Attach all reference data used.

MD Manufacturer's Data AP AP-42

GR GRI-HAPCalcTM OT Other (please list)

- Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.
- 11 PTE for engines shall be calculated from manufacturer's data unless unavailable.


Engine Air Pollution Control Device (Emission Unit ID# <u>CE-1</u>, use extra pages as necessary) Air Pollution Control Device Manufacturer's Data Sheet included? Yes 🗵 No □ ⊠ NSCR \square SCR ☐ Oxidation Catalyst Provide details of process control used for proper mixing/control of reducing agent with gas stream: NA Manufacturer: DCL Model #: DCX7 Design Operating Temperature: Design gas volume: Service life of catalyst: Provide manufacturer data? ⊠Yes Volume of gas handled: Operating temperature range for NSCR/Ox Cat: From 931 °F to Reducing agent used, if any: NA Ammonia slip (ppm): NA Pressure drop against catalyst bed (delta P): inches of H2O Provide description of warning/alarm system that protects unit when operation is not meeting design conditions: Is temperature and pressure drop of catalyst required to be monitored per 40CFR63 Subpart ZZZZ? ☐ Yes ⊠ No How often is catalyst recommended or required to be replaced (hours of operation)? How often is performance test required? Initial Annual Every 8,760 hours of operation ☐ Field Testing Required No performance test required. If so, why (please list any maintenance required and the applicable sections in

NSPS/GACT, EPA Certified Engine - See regulatory discussion in introduction

EMISSION GUARANTEE- UNIT 1807

ENGINE DATA

CATALYST SPECIFICATIONS

	Catalyst Housing	GT 201V0-3-0-6112-1
-	Catalyst Part #	DCX7
	Formulation	NSCR, 3-Way
	# of Elements	2
	# of Blanks	4
	Cell Density	300 cpsi
	Approx. Dimensions	24.75" x 15.50" 3.5" thick

EMISSION REQUIREMENTS

Exhaust Component	Engine Output (g/bhp-hr)	Converter Output (g/bhp-hr)
NOx	15.7	1.90
СО	12.5	1.75
VOC (NMNEHC)	.08	.04
нсно	.05	.01

The catalyst model selection is based upon the reduction requirements above. Any variance in these requirements may affect the price and model required.

DCL America Inc. 27603 Commerce Oaks Drive, Oak Ridge North, TX 77385

Toll free: 1-877-965-8989 Fax: 281-605-5858 Email: info@dcl-inc.com www.dcl-inc.com

		ssion Unit 1807 Wa		_		
Date of Manufacture	January 23, 2007	Engine Serial Number	C17081/1	Date Modified/	Reconstructed	N,
Driver Rated HP	840	Rated Speed in RPM	1200	Combustion Ty	pe	Spark Ignited 4 Strol
Number of Cylinders	6	Compression Ratio	8:1	Combustion Se	tting _	Rich Bu
Total Displacement (in ³)	3520	Fuel Delivery Method	Carburetor	Combustion Air	Treatment	T.C./Intercoole
Raw Engine Emissions with Custon	ner Supplied Fuel Gas Analysi	s				
Fuel Consumption	8591 LHV BTU/bhp-hr	or 9504 HHV	BTU/bhp-hr			
Altitude	1200 ft					
Maximum Air Inlet Temp	100 F					
		g/bhp-hr ¹	lb/MMBTU ²	lb/hr	ТРҮ	
Nitrogen Oxides (NOx)		15.6		28.89	126.53	
Carbon Monoxide (CO)		12.5		23.15	101.39	
Volatile Organic Compounds (VOC	or NMNEHC excluding CH2O)	0.08		0.15	0.65	
Formaldehyde (CH2O)	bla	0.05		0.09	0.41	
Particulate Matter (PM) Filterable+Cond	ensable		1.94E-02	1.55E-01	6.79E-01	
Sulfur Dioxide (SO2)			5.88E-04	4.69E-03	2.06E-02	
		g/bhp-hr ¹		lb/hr	Metric Tonne/yr	
Carbon Dioxide (CO2)		550		1019	4046	
Methane (CH4)		0.23		0.43	1.69	
¹ g/bhp-hr are based on Waukesha				•		
Note that g/bhp-hr values are based Formaldehyde to account for variat	· · · · · · · · · · · · · · · · · · ·	_	ended to add a safety mar	gin to CO, VOC, and		
² Emission Factor obtained from EP	A's AP-42, Fifth Edition, Volum	ne I, Chapter 3: Stationary Inte	ernal Combution Sources (Section 3.2 Natural		
Gas-Fired Reciprocating Engines, Ta	able 3.2-3).					
Catalytic Converter Emissions						
Catalytic Converter Make and Mode	el: GT 201					
Element Type:	V0-3-0-					
Number of Elements in Housing:	Øxidati					
Air/Fuel Ratio Control	Compli	ance Controls AFR9, Oxygen F	eedback			
		% Reduction	g/bhp-hr	lb/hr	ТРҮ	
Nitrogen Oxides (NOx)		88	1.9	3.47	15.18	
Carbon Monoxide (CO)		86	1.75	3.24	14.19	
Volatile Organic Compounds (VOC	or NMNEHC excluding CH2O)	50	0.04	0.07	0.32	
Formaldehyde (CH2O)		76	0.01	0.02	0.10	
Particulate Matter (PM)		0		1.55E-01	6.79E-01	
Sulfur Dioxide (SO2)		0		4.69E-03	2.06E-02	
		% Reduction		lb/hr	Metric Tonne/yr	

0

1019

0.43

4046

1.69

Carbon Dioxide (CO2)

Methane (CH4)

Gas Compression

TUG HILL "SHIELDS" U1807 - WETZEL WV

VHP - F3524GSI

USAC	CSM	CMAGEE@USACOMPRESSION.COM

4000		
1200		
3520	COOLING SYSTEM:	JW, IC + OC

ENGINE SPEED (rpm): DISPLACEMENT (in3): COMPRESSION RATIO: 8:1 INTERCOOLER WATER INLET (°F): 130 IGNITION SYSTEM: JACKET WATER OUTLET (°F): ESM 180 EXHAUST MANIFOLD: Water Cooled JACKET WATER CAPACITY (gal): 49 Rich Burn, Turbocharged AUXILIARY WATER CAPACITY (gal): COMBUSTION: 8 LUBE OIL CAPACITY (gal): ENGINE DRY WEIGHT (lbs): 16000 72 AIR/FUEL RATIO SETTING: 0.38% CO MAX. EXHAUST BACKPRESSURE (in. H2O): 18 ENGINE SOUND LEVEL (dBA) MAX. AIR INLET RESTRICTION (in. H2O): 101 15 EXHAUST SOUND LEVEL (dBA) 110

SITE CONDITIONS:

TUG HILL "SHIELDS" ALTITUDE (ft): 1200 FUEL PRESSURE RANGE (psig): 30 - 60 MAXIMUM INLET AIR TEMPERATURE (°F): 90 FUEL HHV (BTU/ft3): 1,291.8 FUEL WKI: 59.1 FUEL LHV (BTU/ft3): 1,167.8

SITE SPECIFIC TECHNICAL DATA			MAX RATING AT 100 °F	SITE RATING AT MAXIMUM INLET AIR TEMPERATURE OF 90 °F		
POWER RATING	UNITS	SITE DATA (See note 18)	AIR TEMP	100%	75%	55%
CONTINUOUS ENGINE POWER	BHP	924	840	840	630	464
OVERLOAD	% 2/24 hr	Note 18	10	10	-	-
MECHANICAL EFFICIENCY (LHV)	%	29.9	29.6	29.6	28.8	27.8
CONTINUOUS POWER AT FLYWHEEL	BHP	924	840	840	630	464
based on no auxiliary engine driven equipment						
FUEL CONSUMPTION						

FUEL CONSUMPTION							
FUEL CONSUMPTION (LHV)		BTU/BHP-hr	8516	8591	8591	8836	9171
FUEL CONSUMPTION (HHV)		BTU/BHP-hr	9420	9504	9504	9775	10145
FUEL FLOW	based on fuel analysis LHV	SCFM	112	103	103	79	61

HEAT REJECTION						
JACKET WATER (JW)	BTU/hr x 1000	2467	2306	2287	1810	1409
LUBE OIL (OC)	BTU/hr x 1000	357	357	349	325	298
INTERCOOLER (IC)	BTU/hr x 1000	146	143	131	86	40
EXHAUST	BTU/hr x 1000	2299	2045	2066	1503	1092
RADIATION	BTU/hr x 1000	401	368	386	347	317

EMISSIONS (ENGINE OUT):						
NOx (NO + NO2)	g/bhp-hr	15.7	15.6	15.7	16.1	16.8
CO	g/bhp-hr	12.5	12.5	12.5	12.4	12.5
THC	g/bhp-hr	0.4	0.4	0.4	0.4	0.4
NMHC	g/bhp-hr	0.16	0.17	0.17	0.22	0.30
NM,NEHC (VOC)	g/bhp-hr	0.08	0.08	0.08	0.11	0.15
CO2	g/bhp-hr	545	550	550	565	587
CO2e	g/bhp-hr	550	555	555	572	597
CH2O	g/bhp-hr	0.05	0.05	0.05	0.05	0.05
CH4	g/bhp-hr	0.21	0.23	0.23	0.29	0.41

AIR INTAKE / EXHAUST GAS						
INDUCTION AIR FLOW	SCFM	1424	1306	1306	1008	770
EXHAUST GAS MASS FLOW	lb/hr	6631	6082	6082	4691	3586
EXHAUST GAS FLOW at exhaust temp, 14.5 psia	ACFM	5090	4601	4606	3419	2525
EXHAUST TEMPERATURE	°F	1267	1242	1244	1180	1124

HEAT EXCHANGER SIZING ¹²			
TOTAL JACKET WATER CIRCUIT (JW)	BTU/hr x 1000	2797	2615
TOTAL AUXILIARY WATER CIRCUIT (IC + OC)	BTU/hr x 1000	570	568

COOLING SYSTEM WITH ENGINE MOUNTED WATER PUMPS		
JACKET WATER PUMP MIN. DESIGN FLOW	GPM	225
JACKET WATER PUMP MAX. EXTERNAL RESTRICTION	psig	15
AUX WATER PUMP MIN. DESIGN FLOW	GPM	48
AUX WATER PUMP MAX. EXTERNAL RESTRICTION	psig	22

(H)

TUG HILL "SHIELDS" U1807 - WETZEL WV

USAC CSM CMAGEE@USACOMPRESSION.COM

VHP - F3524GSI
Gas Compression

FUEL COMPOSITION

HYDROCARBONS: Methane Ethane	Mole or V CH4 C2H6	olume <u>%</u> 75.326 15.432		FUEL: TU FUEL PRESSURE RANGE (psig) FUEL WKI:	JG HILL "SHIELDS"): 30 - 60 59.1
Propane Iso-Butane Normal Butane Iso-Pentane	C3H8 I-C4H10 N-C4H10	5.511 0.536 1.48		FUEL SLHV (BTU/ft3): FUEL SLHV (MJ/Nm3):	1147.49 45.12
Normal Pentane Hexane Heptane	I-C5H12 N-C5H12 C6H14 C7H16	0.268 0.373 0.378 0		FUEL LHV (BTU/ft3): FUEL LHV (MJ/Nm3):	1167.81 45.92
Ethene Propene	C2H4 C3H6	0		FUEL HHV (BTU/ft3): FUEL HHV (MJ/Nm3):	1291.83 50.80
NON LIVEROCAPRONO.	SUM HYDROCARBONS	99.304		FUEL DENSITY (SG):	0.74
NON-HYDROCARBONS: Nitrogen Oxygen Helium Carbon Dioxide Carbon Monoxide Hydrogen Water Vapor	N2 O2 He CO2 CO H2 H2O TOTAL FUEL	0.499 0 0 0.197 0 0 100		Standard Conditions per ASTM D3588-91 [6 ISO 6976:1996-02-01[25, V(0;101.325]]. Based on the fuel composition, supply press liquid hydrocarbons may be present in the fit hydrocarbons are allowed in the fuel. The fuliquid water. Waukesha recommends both of 1) Dew point of the fuel gas to be at least 2C measured temperature of the gas at the inle regulator. 2) A fuel filter separator to be used on all fur quality natural gas. Refer to the 'Fuel and Lubrication' section of contact the Waukesha Application Engineer additional information on fuels, or LHV and * Trademark of General Electric Company	sure and temperature, uel. No liquid lel must not contain any of the following: 0°F (11°C) below the et of the engine fuel lels except commercial f 'Technical Data' or ing Department for
FUEL CONTAMINANTS Total Sulfur Compounds Total Halogen as Cloride Total Ammonia		0 0 0	% volume % volume % volume	Total Sulfur Compounds Total Halogen as Clorida Total Ammonia	0 µg/BTU 0 µg/BTU 0 µg/BTU
Siloxanes Tetramethyl silane Trimethyl silanol Hexamethyldisiloxane (L2) Hexamethylcyclotrisiloxane (D3) Octamethyltrisiloxane (L3) Octamethylcyclotetrasiloxane (D4) Decamethyltetrasiloxane (L4) Decamethylcyclopentasiloxane (D Dodecamethylpentasiloxane (L5) Dodecamethylcyclohexasiloxane (Others	5)	0 0 0 0 0 0 0 0	% volume	Total Siloxanes (as Si) Calculated fuel contaminant analy the entered fuel composition and model.	

No water or hydrocarbon condensates are allowed in the engine. Requires liquids removal.

TUG HILL "SHIELDS" U1807 - WETZEL WV

USAC CSM CMAGEE@USACOMPRESSION.COM

NOTES

- 1. All data is based on engines with standard configurations unless noted otherwise.
- 2. Power rating is adjusted for fuel, site altitude, and site air inlet temperature, in accordance with ISO 3046/1 with tolerance of ± 3%
- 3. Fuel consumption is presented in accordance with ISO 3046/1 with a tolerance of -0 / +5% at maximum rating. Fuel flow calculation based on fuel LHV and fuel consumption with a tolerance of -0/+5%. For sizing piping and fuel equipment, it is recommended to include the 5% tolerance.
- 4. Heat rejection tolerances are ± 30% for radiation, and ± 8% for jacket water, lube oil, intercooler, and exhaust energy.
- 5. Emission levels for engines with GE supplied 3-way catalyst are given at catalyst outlet flange. For all other engine models, emission levels are given at engine exhaust outlet flange prior to any after treatment. Values are based on a new engine operating at indicated site conditions, and adjusted to the specified timing and air/fuel ratio at rated load. Catalyst out emission levels represent emission levels the catalyst is sized to achieve. Manual adjustment may be necessary to achieve compliance as catalyst/engine age. Catalyst-out emission levels are valid for the duration of the engine warranty. Emissions are at an absolute humidity of 75 grains H2O/lb (10.71 g H2O/kg) of dry air. Emission levels may vary subject to instrumentation, measurement, ambient conditions, fuel quality, and engine variation. Engine may require adjustment on-site to meet emission values, which may affect engine performance and heat output. NOx, CO, THC, and NMHC emission levels are listed as a not to exceed limit, all other emission levels are estimated. CO2 emissions based on EPA Federal Register/Vol. 74, No. 209/Friday, October 30, 2009 Rules and Regulations 56398, 56399 (3) Tier 3 Calculation Methodology, Equation C-5.
- 6. Air flow is based on undried air with a tolerance of \pm 7%.
- 7. Exhaust temperature given at engine exhaust outlet flange with a tolerance of ± 50°F (28°C).
- 8. Exhaust gas mass flow value is based on a "wet basis" with a tolerance of ± 7%
- 9. Inlet air restrictions based on full rated engine load. Exhaust backpressure based on 158 PSI BMEP and 1200 RPM. Refer to the engine specification section of Waukesha's standard technical data for more information.
- 10. Cooling circuit capacity, lube oil capacity, and engine dry weight values are typical.
- 11. Fuel must conform to Waukesha's "Gaseous Fuel Specification" S7884-7 or most current version. Fuel may require treatment to meet current fuel specification.
- 12. Heat exchanger sizing values given as the maximum heat rejection of the circuit, with applied tolerances and an additional 5% reserve factor.
- 13. Fuel volume flow calculation in english units is based on 100% relative humidity of the fuel gas at standard conditions of 60°F and 14.696 psia (29.92 inches of mercury; 101.325 kPa).
- 14. Fuel volume flow calculation in metric units is based on 100% relative humidity of the fuel gas at a combustion temperature of 25°C and metering conditions of 0°C and 101.325 kPa (14.696 psia; 29.92 inches of mercury). This is expressed as [25, V(0;101.325)].
- 15. Engine sound data taken with the microphone at 1 m (3.3 ft) from the side of the engine at the approximate front-to-back centerline. Microphone height was at intake manifold level. Engine sound pressure data may be different at front, back and opposite side locations. Exhaust sound data taken with microphone 1 meter (3.3 ft) away and 1 meter (3.3 ft) to the side of the exhaust outlet.
- 16. Due to variation between test conditions and final site conditions, such as exhaust configuration and background sound level, sound pressure levels under site conditions may be different than those tabulated above.
- 17. Cooling system design flow is based on minimum allowable cooling system flow. Cooling system maximum external restriction is defined as the allowable restriction at the minimum cooling system flow.
- 18. Continuous Power Rating: The highest load and speed that can be applied 24 hours per day, seven days per week, 365 days per year except for normal maintenance at indicated ambient reference conditions and fuel. It is permissible to operate the engine at the indicated overload power, for two hours in every 24 hour period.
- 19. emPact emission compliance available for entire range of operable fuels; however, fuel system and/or O2 set point may need to be adjusted in order to maintain compliance.
- 20. In cold ambient temperatures, heating of the engine jacket water, lube oil and combustion air may be required. See Waukesha Technical Data.

SPECIAL REQUIREMENTS

FESCO, Ltd. 104 Fesco Run Rd Bridgeport, WV 26330

For: Tug Hill Operating, LLC

1320 S. University Drive, Suite 500

Fort Worth, Texas 76107

Sample: Shields Check Meter

Meter Run Gas @ 383 psig & 71 °F

Station: GSC-063

Date Sampled: 7/30/2017 at 13:00 hours

CHROMATOGRAPH ANALYSIS - GPA 2261

COMPONENT	MOL%	GPM
Nitrogen	0.499	
Carbon Dioxide	0.197	
Methane	75.326	
Ethane	15.432	4.142
Propane	5.511	1.524
Isobutane	0.536	0.176
n-Butane	1.480	0.468
Isopentane	0.268	0.098
n-Pentane	0.373	0.136
Hexanes Plus	0.378	0.166
Totals:	100.000	6.710

Computed Real Properties:

Specific Gravity

0.740 (Air=1.000)

Compressibility(Z)

0.9962 Gross Heating Value at 14.730 psia and 60 °F

Dry Basis

1291 BTU/CF

Saturated Basis

1269 BTU/CF

Base Conditions: 14.730 psia and 60 °F

Certified: FESCO, Ltd.

Bridgeport, WV

Field:

Marshall West

Job Number:

01966.046

Analyst ID:

AC

Cyl Number: T-1779

ATTACHMENT O

TANKER TRUCK/ RAIL CAR LOADING DATA SHEET(S)

General G70-D Permit Application

Shields Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

ATTACHMENT O – TANKER TRUCK/RAIL CAR LOADING DATA SHEET

Complete this data sheet for each new or modified bulk liquid transfer area or loading rack at the facility. This is to be used for bulk liquid transfer operations to tanker trucks/rail cars. Use extra pages if necessary.

Truck/Rail Car Loadout Collection Efficiencies

The following applicable capture efficiencies of a truck/rail car loadout are allowed:

- For tanker trucks/rail cars passing the MACT level annual leak test 99.2%
- For tanker trucks/rail cars passing the NSPS level annual leak test 98.7%
- For tanker trucks/rail cars not passing one of the annual leak tests listed above 70%

Compliance with this requirement shall be demonstrated by keeping records of the applicable MACT or NSPS Annual Leak Test certification for *every* truck and railcar loaded/unloaded. This requirement can be satisfied if the trucking/rail car company provided certification that its entire fleet was compliant. This certification must be submitted in writing to the Director of the DAQ. These additional requirements must be noted in the Registration Application.

Emission Unit ID#: TL-	Emission Unit ID#: TL-1 Emission Point ID#: 7e Year Installed/Modified:2017									
Emission Unit Description: Tank Truck Loading (Water & Condensate)										
Loading Area Data										
Number of Pumps: 1		Number	of Liquids	Loaded: 1		Max number of trucks/rail cars loadin at one (1) time: 1				
Are tanker trucks/rail cars pressure tested for leaks at this or any other location? Yes No Not Required If Yes, Please describe:										
Provide description of closed vent system and any bypasses.										
Are any of the following truck/rail car loadout systems utilized? Closed System to tanker truck/rail car passing a MACT level annual leak test? Closed System to tanker truck/rail car passing a NSPS level annual leak test? Closed System to tanker truck/rail car not passing an annual leak test and has vapor return?										
	jected Maximum			`			as a wno			
Time	Jan – Ma	r	Apr		J	Jul – Sept		Oct - Dec		
Hours/day	24		2	4	2			24		
Days/week	7			7		7 7				
Bulk Liquid Data (use extra pages as necessary)										
Liquid Name	Produced	Water								
Max. Daily Throughput (1000 gal/day)	0.95									
Max. Annual Throughpu (1000 gal/yr)	345.70									
Loading Method ¹	SUB									
Max. Fill Rate (gal/min)	0.66									
Average Fill Time (min/loading)	60									
Max. Bulk Liquid Temperature (°F)	52.14	52.14								
True Vapor Pressure ²	0.37	0.37								
Cargo Vessel Condition	3 C	С								
Control Equipment or Method ⁴	None									
Max. Collection Efficient (%)	ncy 0									

Max. Control Efficiency (%)		0	
Max.VOC Emission	Loading (lb/hr)	<0.01	
Rate	Annual (ton/yr)	<0.01	
Max.HAP Emission	Loading (lb/hr)	0	
Rate	Annual (ton/yr)	0	
Estimation Method ⁵		O – ProMax Tank Stencil based on EPA AP-42	

1	BF	Bottom Fill	SP	Splash Fi	11		SUB	Submerged Fill
2	At maxim	num bulk liquid temperature						
3	В	Ballasted Vessel	C	Cleaned			U	Uncleaned (dedicated service)
	O	Other (describe)						
4	List as n	nany as apply (complete and s	submit app	ropriate A	Air Polluti	on Contro	ol Device	Sheets)
	CA	Carbon Adsorption		VB	Dedicate	d Vapor	Balance (c	closed system)
	ECD	Enclosed Combustion Devic	e	F	Flare			
	TO	Thermal Oxidization or Inci	neration					
5	EPA	EPA Emission Factor in AP-	-42			MB	Material	Balance
	TM	Test Measurement based up	on test dat	a submitt	al	O	Other (de	scribe)

ATTACHMENT P

GLYCOL DEHYDRATION UNIT DATA SHEET(S)

NOT APPLICABLE- No glycol dehydration unit in use at the facility.

General G70-D Permit Application

Shields Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

ATTACHMENT Q PNEUMATIC CONTROLLERS DATA SHEET(S)

General G70-D Permit Application

Shields Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

ATTACHMENT Q – PNEUMATIC CONTROLLERS DATA SHEET

Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?
☐ Yes No
Please list approximate number.
Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after September 18, 2015?
☐ Yes No
Please list approximate number.
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?
☐ Yes No
Please list approximate number.
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after September 18, 2015?
☐ Yes No
Please list approximate number.

ATTACHMENT R PNEUMATIC PUMP DATA SHEET(S)

General G70-D Permit Application

Shields Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

ATTACHMENT R – PNEUMATIC PUMP DATA SHEET

Are there any natural gas-driven diaphragm pumps located at a well site that commenced construction, modification or reconstruction after September 18, 2015?

☐ Yes ⊠ No

Please list.

Source ID#	Date	Pump Make/Model	Pump Size

ATTACHMENT S

AIR POLLUTION CONTROL DEVICE/ EMISSION REDUCTION DEVICE SHEET(S)

General G70-D Permit Application

Shields Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

ATTACHMENT S – AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION DEVICE SHEETS

Complete the applicable air pollution control device sheets for each flare, vapor combustor, thermal oxidizer, condenser, adsorption system, vapor recovery unit, BTEX Eliminator, Reboiler with and without Glow Plug, etc. at the facility. Use extra pages if necessary.

Emissions calculations must be performed using the most conservative control device efficiency.

The following five (5) rows are only to be completed if registering an alternative air pollution control device.					
Emission Unit ID: T01-T02	Make/Model:				
Primary Control Device ID: F-1	Make/Model: The Frederick Logan Company, Inc				
Control Efficiency (%): 98	APCD/ERD Data Sheet Completed: ×Yes □ No				
Secondary Control Device ID:	Make/Model:				
Control Efficiency (%):	APCD/ERD Data Sheet Completed: ☐ Yes ☐ No				

		(In	VAPOR CO			wa)		
		(11)	General In		ibusto	18)		
			General II	Installation	n Date: 20	017		
Control De	vice ID#: F-1			⊠ New		lodified	Relocated	
Maximum Rated Total Flow Capacity 2,000 scfh 48,000 scfd				Maximum Heat Input mfg. spec 2 MMBTU	(from sheet)	Design Heat Content 1,000 BTU/scf		
			Control Devic	e Informati	on			
⊠ Enclos	ed Combustion Devi l Oxidizer	ce	Type of Vapor Con		ontrol?		Ground Flare	
Manufactu Model:	rer: The Frederick L	npany, Inc	Hours of operation per year? 8760					
List the en	ission units whose	emissions	are controlled by this	vapor contr	ol device	(Emission	Point ID# 6e)	
Emission Unit ID#	Emission Source I	n	Emission Unit ID#	Emissio	n Source Description			
T01-T02	Produced Water T	anks						
If this	vapor combustor c	ontrols en	nissions from more the	an six (6) em	ission un	its, please	attach additional pages.	
Assist Typ	e (Flares only)		Flare Height	Tip Diameter			Was the design per §60.18?	
Steam Pressu	☐ Steam ☐ Air 20 feet ☐ Pressure ☒ Non			TBD				
		· ·	Waste Gas l	Information	Į.			
Maximum	Waste Gas Flow Ra (scfm)	te 19.85		Vaste Gas Stream Exit Vel t ³ or greater			locity of the Emissions Stream < 60 (ft/s)	
Prov	de an attachment w	ith the cho	aracteristics of the wa	iste gas stre	am to be	burned. (S	ee ProMax Calculations)	
			Pilot Gas I	nformation				
Number	of Pilot Lights 1		Flow Rate to Pilot ame per Pilot 5 scfh	Heat Input per Pilot 5,000 BTU/hr			Will automatic re-ignition be used? ⊠ Yes □ No	
	c re-ignition is used lot flame through fl			lectronic re-	ignition	will be ins	talled and monitored for	
	me equipped with a f the flame?		o detect the No	☐ Ultravio	olet sends a s	☐ Camera ignal to co	couple □ Infrared ☑ Other: Ionization ntroller as long as it is in	
	ll operating ranges a e, please indicate).			uired by the	manufac	turer to ma	intain the warranty. (If	
			s	flame demoi	nstration	per §60.18	or §63.11(b) and	

Equipment Description

ITEM QTY DESCRIPTION

1 DVC-36 Skid Mounted, Valve Train Enclosed Flare complete with:

- > 36" Dia. Combustion Chamber
- > 36" x 20' Tall Exhaust Stack
- > (3) 24" Adjustable Flame Cell Air Inlets (one Hinged)
- ➤ (2) Dual Type K thermocouples with Thermowell
- > (2) 4" Flanged Sample Ports
- Stack Lined with 4" 2300 deg. Folded Blanket Flue Liners
- ➤ Lower stack lined with 4" Castable Refractory
- > (1) Sight Glass
- Stack Material –A-36
- Surface prep and paint:
 - Standard 2 coat paint
 - Color to be determined
- 4" Dehy Overhead Still Column Vapor Inlet. To be mounted on top of the Heated Enclosure. Block & Vent valves to be installed. Vent line to extend 6' above roof. (vent line to be removed for shipping)
- ➤ Install low point drains on bottom of vent line, run SS tubing with hand valve to + 1' above grade.
- ➤ Install low point drain upstream of the 3" Flame arrestor. Install SS tubing and hand valve.
- ➤ (1) 1" NPT for Flash Gas and Vessel Relief Vapors Inlet.
- (2) Lifting lug mounted on top stack section.
- Valve Train C/W: Pneumatic Shutoff Valve, Pilot Solenoid, Manual Block Valve, Strain, and Regulator.

2 1 2 MMBTU/HR Burner

Natural Draft Gas induced Burner

3 1 MR-1000 Pilot

- Self-inspirited pilot.
- Direct Spark Ignition
- > Flame Ionization Detection Rod.

4 1 Burner Control Panel

- 24 VDC Solar power Option
 - Solar Panel and mounting bracket
 - Solar Charging Module

- o (2) 12 VDC deep cycle batteries
- o (1) Battery enclosure
- Mounting pole
- ProFire 2100 Ignition System with Modbus Communications card.
- NEMA 4 Main Enclosure
- Assist heat burner is on when temperature drops below 1450 deg F.
- > Continuous pilot operation.
- > System shut down for the following events:
 - Loss of Flame
 - High Stack Temp
 - Customer contacts for the following signals
 - > Fault
 - > At Temp

5 1 Process Valve Train

- ➤ 4" Pneumatic Block Valve for Dehy Stream Vapors.
- ➤ 1/2" ASCO Solenoid Low draw Valve for burner gas
- ➤ 1" Pneumatic block Valve for flash Gas inlet.
- ½" ASCO Next Generation low draw solenoid valve for pilot gas
- ¾" 3-way Solenoid valve for Pneumatic valve operation.
- Manual block valve for pilot gas
- fuel gas regulator
- Instrument gas regulator for pneumatic controls
- Fuel Gas Strainer

6 2 Flame Arrestor

- 3" 150#, CS/AL construction, for Low Pressure Overhead Dehy Inlet.
- 1" NPT Threaded, CS/AL construction, for High Pressure Flash Gas Vapors.

7 3 Documentation

Operation and Maintenance Manual

8 1 FAT – Factory Acceptance Test

Complete test of system at Fort Worth, TX location

9 1 Heated Enclosure for Vessels and Skid mounted Valve train

- > 1" thick lined insulation on roof and walls
- ➤ 6,000 BTU/HR Catco Heater
- Access door
- Louvered Vent ports

10 1 24" Dia. Knockout/Blow Pot Vessel with complete instrumentation

- ASME Pressure Vessel
- > 150 PSIG @250 deg F
- ➤ 4" NPT inlet
- ➤ 4" NPT Outlet
- ➤ 1" NPT Liquid Drain
- > 2" NPT Level Controller Connection
- ➤ 1" NPT Level Gauge Connections
- Kimray Gen II Level controller
- > Kimray dump valve
- ➤ 1" Check valve
- > 3-way pneumatic valve

Technical Summary

Process inlet stream:

Overhead Still Inlet

Inlet Temperature: 212 °F Inlet Pressure: ≥ 2" WC

Flash Gas Inlet

Inlet Temperature:100 °FInlet Pressure:20-50 PSIGCombustion Chamber Temp:1450 – 1600 deg F

Destruction Efficiency: ≥98.0%

Site Conditions:

Wind Speed 90 MPH

Seismic Zone 1

Elevation 1,000 ft. Humidity High

Utilities:

Gas Service Required for Burner 400 SCFH – Natural Gas Intermittent use,

Only on when temp <1450 deg F

Electrical Service Required Solar Powered 24 VDC, 5 amps

Gas Consumption at Start-up 400,000 Btu/hr

Gas Consumption under load ≤ 400 SCFH, Dependent on BTU value of

waste stream

ATTACHMENT T EMISSION CALULATIONS

General G70-D Permit Application

Shields Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

Table 1. Annual Potential To Emit (PTE) Summary Tug Hill Operating, LLC - Shields Well Pad

Criteria Pollutants

Proposed Facility Wide PTE - Criteria Pollutants

Source	PM	PM10	PM2.5	SO2	NOx	со	VOC *	CO2e
Engines (ton/yr)	0.679	0.679	0.679	0.021	15.411	14.194	0.324	864.613
Line Heaters (ton/yr)	0.131	0.131	0.131	0.010	1.718	1.443	0.094	2050.014
Combustor (ton/yr)				0.151	0.598	2.724	1.230	1023.839
Tanks (ton/yr)	-	-	-	-	-	-	0.657	-
Truck Loading (ton/yr)	-	-	-	-	-	-	0.041	-
Compressor Blowdowns (ton/yr)	-	-	-	-	-	-	0.108	-
Fugitives (ton/yr)	-	-	-	-	-	-	0.867	16.261
Total Emissions (ton/yr)	0.809	0.809	0.809	0.182	17.726	18.361	2.665	3954.727
Total Emissions (lb/hr)	0.185	0.185	0.185	0.042	4.047	4.192	0.608	902.906

^{*}Tank VOCs accounted for within combustor.

Hazardous Air Pollutants (HAPs)

Proposed Facility Wide PTE - HAPs

Toposcu I dollky Wide I TE 11/4 5								
Source	Acetaldehyde	Benzene	Toluene	Ethylbenzene	Xylene	n-Hexane	Formaldehyde	Total HAPs
Engines (ton/yr)	0.0976	0.0552	0.0195	0.0009	0.0068		0.081	0.498
Line Heaters (ton/yr)		0.0000	0.0001			0.0309	0.001	0.032
Tanks (ton/yr)	-	-	-	-	-	-	-	-
Truck Loading (ton/yr)	-	-	-	-	-	-	-	-
Compressor Blowdowns (ton/yr)	-	-	-	-	-	-	-	-
Fugitives (ton/yr)	-	0.0002	0.0002	0.0000	0.0000	0.0144	-	0.015
Total Emissions (ton/yr)	0.098	0.055	0.020	0.001	0.007	0.045	0.082	0.545
Total Emissions (lb/hr)	0.022	0.013	0.005	0.000	0.002	0.010	0.019	0.124

Table 1 Compressor Engine Emissions (CE-1) Waukesha F3524GSI

Tug Hill Operating, LLC - Shields Well Pad

Pollutant	Emission Factor	PT (lb/i	_	PTE (tons/yr)		
Orlinata Ballatanta						
Criteria Pollutants PM/PM10/PM2.5**	1.94E-02 lb/MMBtu	(1)	0.15	(a)	0.68	(c)
	5.88E-04 lb/MMBtu	(1)	0.13	(a)	0.00	(c)
SO ₂		. ,		. ,		. ,
NOx	1.90E+00 g/hp-hr	(2)	3.52	(b)	15.41	(d)
CO VOC*	1.75E+00 g/hp-hr	(2)	3.24	(b)	14.19	(d)
*VO'C's does not include formaldehyde	4.00E-02 g/hp-hr	(2)	0.07	(b)	0.32	(d)
Hazardous Air Pollutants						
1.1.2.2-Tetrachloroethane	2.53E-05 lb/MMBtu	(1)	0.000	(a)	0.001	(c)
1,1,2-Trichloroethane	1.53E-05 lb/MMBtu	(1)	0.000	(a) (a)	0.001	(c)
1.3-Butadiene	6.63E-04 lb/MMBtu	(1)	0.005	(a)	0.001	(c)
1,3-Butadiene 1,3-Dichloropropene	1.27E-05 lb/MMBtu	(1)	0.003	(a)	0.023	(c)
Acetaldehyde	2.79E-03 lb/MMBtu	(1)	0.000	(a)	0.000	(c)
Acrolein	2.63E-03 lb/MMBtu	(1)	0.022	(a)	0.092	(c)
Benzene	1.58E-03 lb/MMBtu	(1)	0.013	(a)	0.055	(c)
Carbon Tetrachloride	1.77E-05 lb/MMBtu	(1)	0.000	(a)	0.001	(c)
Chlorobenzene	1.29E-05 lb/MMBtu	(1)	0.000	(a)	0.000	(c)
Chloroform	1.37E-05 lb/MMBtu	(1)	0.000	(a)	0.000	(c)
Ethylbenzene	2.48E-05 lb/MMBtu	(1)	0.000	(a)	0.001	(c)
Ethylene Dibromide	2.13E-05 lb/MMBtu	(1)	0.000	(a)	0.001	(c)
Formaldehyde	1.00E-02 g/hp-hr	(2)	0.019	(b)	0.081	(d)
Methanol	3.06E-03 lb/MMBtu	(1)	0.024	(a)	0.107	(c)
Methylene Chloride	4.12E-05 lb/MMBtu	(1)	0.000	(a)	0.001	(c)
Naphthalene	9.71E-05 lb/MMBtu	(1)	0.001	(a)	0.003	(c)
PAH (POM)	1.41E-04 lb/MMBtu	(1)	0.001	(a)	0.005	(c)
Styrene	1.19E-05 lb/MMBtu	(1)	0.000	(a)	0.000	(c)
Toluene	5.58E-04 lb/MMBtu	(1)	0.004	(a)	0.020	(c)
Vinyl Chloride	7.16E-06 lb/MMBtu	(1)	0.000	(a)	0.000	(c)
Xylenes	1.95E-04 lb/MMBtu	(1)	0.002	(a)	0.007	(c)
Total HAP			0.114		0.498	
Greenhouse Gas Emissions					Metric Ton	ne/yr
CO ₂	116.89 g/hp-hr	(2)	216.46	(b)	861.91	(d)
CH ₄	2.2E-03 g/hp-hr	(2)	0.00	(b)	0.02	(d)
N ₂ O	2.2E-04 lb/MMBtu	(3)	0.00	(a)	0.01	(c)
CO ₂ e ^(e)			217.09		864.61	

** includes condensible PM

Calculations:

Hourly Emissions - If emission factor note 1 is used, use calculation (a). If emission factor note 2 is used, use calculation (b).

(a) Hourly Emissions (lb/hr) = Emission factor (lb/MMBtu) * (1MMBtu/1000000 Btu) * Engine Power Output (hp) * BSFC (Btu/hp-hr)

(b) Hourly Emissions (lb/hr) = Emission factor (g/hp-hr) * Engine Power Output (hp) * (lb/453.6g)

Annual Emissions - If emission factor note 1 is used, use calculation (c). If emission factor note 2 is used, use calculation (d).

(c) Annual emissions (tons/yr) = Emission factor (lb/MMBtu) * (1MMBtu/1000000Btu) * Engine Power Output (hp) * BSFC (Btu/hp-hr) * Annual Hours of operation (hr/yr) * (1ton/2000lbs)

(d) Annual emissions (tons/yr) = Emission factor (g/hp-hr) * Engine Power Output (hp) * Annual Hours of operation (hr/yr) * (1ton/2000lbs) * (lb/453.6g)

MAXIMUM HOURLY EMISSION INPUTS

Engine Power Output (kW) = 626

Engine Power Output (hp) = 840

Number of Engines = 1

BSFC (BTU/HP-hr) = 9,504 (4)

Heat Content Natural Gas(Btu/scf) = 1,291.0 (5)

Fuel Throughput (ft3/hr) = 6,183.9 (6)

PTE Hours of Operation = 8,760

(e) CO_2 equivalent = [(CO_2 emissions)*(GWP_{CO2})]+[(CH_4 emissions)*(GWP_{CH4})]+[(N_2O emissions)*(GWP_{N2O})] Global Warming Potential (GWP)

CO₂ 1 (7) CH₄ 25 (7) N₂O 298 (7)

Notes:

- (1) AP-42, Chapter 3.2, Table 3.2-3. Natural Gas-fired Reciprocating Engines (7/00). Uncontrolled Emission Factors for 4-Stroke Rich-Burn Engines.
- (2) Emission factors supplied from manufacturer's specification sheet
- (3) Emission factors supplied from 40 CFR 98, Subpart C, Table C-1 and C-2.
- (4) Fuel consumption from manufacturer's specification sheet.
- (5) Value obtained from AP-42, Chapter 3.2, Table 3.2-1, footnote b
- (6) Fuel throughput = BSFC (BTU/HP-hr) x Power (HP) / Heat Content (BTU/scf)
- (7) Global Warming Potentials obtained from 40 CFR 98, Subpart A, Table A-1

Table 3. Tank Emissions Tug Hill Operating, LLC - Shields Well Pad

Emission Unit ID	Tank Capacity (gal)	Tank Contents	Control Devices	Tank Throughput (bbls/day)	VOC Emis Factor (lbs/		VOC Emissions (lbs/yr) ^(a)	VOC Emissions (lb/hr) ^(b)	VOC Emissions (tons/yr) ^(c)
T-1	16800	Produced Water	None	11.28	7.98E+00	(1)	32859.77	3.751	16.430
T-2	16800	Produced Water	None	11.28	7.98E+00	(1)	32859.77	3.751	16.430
Totals							65719.55	7.50	32.86
	•						Controlled	0.15	0.66

Calculations:

- (a) VOC Emissions (lb/yr) = Tank Throughput (bbls/day) * VOC Emission Factor (lbs/bbls) * (365 days/yr)
- (b) VOC Emissions (lb/hr) = VOC Emissions (lbs/yr) * (yr/8760hr)
- (c) VOC Emissions (ton/yr) = VOC Emissions (lbs/yr) * (1ton/2000lbs)

Notes:

(1) VOC emission factor includes Flashing/Working/Breathing losses as calculated from the Promax Model Simulation report

Table 4 GPU Heater (GPU-1 through GPU-4) Rates and Emissions Tug Hill Operating, LLC - Shields Well Pad

Pollutant	Emission Factor		1.50 MBtu/hr GPU Emissions (lb/hr)	1.00 MMBtu/hr GPU Emissions (ton/yr)	1.00 MBtu/hr GPU Emissions (lb/hr) x4	1.00 MMBtu/hr GPU Emissions (ton/yr) x4
Criteria Pollutants						
PM/PM10/PM2.5	7.6 lb/MMcf	(1)	0.007	0.033	0.119	0.131
SO ₂	0.6 lb/MMcf	(1)	0.001	0.003	0.009	0.010
NOx	100 lb/MMcf	(2)	0.001	0.429	1.569	1.718
CO	84 lb/MMcf	(2)	0.082	0.361	1.318	1.718
VOC	5.5 lb/MMcf	(1)	0.005	0.024	0.086	0.094
Hazardous Air Pollutants	2.0E-04 lb/MMcf	(0)	0.000	0.000	0.000	0.000
Arsenic		(3)	0.000		0.000	
Benzene	2.1E-03 lb/MMcf	(4)	0.000	0.000	0.000	0.000
Beryllium Cadmium	1.2E-05 lb/MMcf 1.1E-03 lb/MMcf	(3)	0.000	0.000	0.000 0.000	0.000
Cadmium	1.1E-03 lb/MMcf	(3)	0.000 0.000	0.000 0.000	0.000	0.000 0.000
Cobalt	8.4E-05 lb/MMcf	(3)	0.000	0.000	0.000	0.000
	1.2E-03 lb/MMcf	(3) (4)	0.000	0.000	0.000	0.000
Dichlorobenzene Formaldehyde	7.5E-02 lb/MMcf	(4)	0.000	0.000	0.000	0.000
Hexane	1.8E+00 lb/MMcf	(4)	0.000	0.000	0.001	0.001
Lead	5.0E-04 lb/MMcf	(3)	0.002	0.008	0.028	0.000
Manganese	3.8E-04 lb/MMcf	(3)	0.000	0.000	0.000	0.000
Mercury	2.6E-04 lb/MMcf	(3)	0.000	0.000	0.000	0.000
Naphthalene	6.1E-04 lb/MMcf	(4)	0.000	0.000	0.000	0.000
Nickel	2.1E-03 lb/MMcf	(3)	0.000	0.000	0.000	0.000
PAH/POM	1.3E-03 lb/MMcf	(4)	0.000	0.000	0.000	0.000
Selenium	2.4E-05 lb/MMcf	(3)	0.000	0.000	0.000	0.000
Toluene	3.4E-03 lb/MMcf	(4)	0.000	0.000	0.000	0.000
Total HAP	1.9E+00 lb/MMCF		0.002	0.008	0.030	0.032
Greenhouse Gas Emissions						
CO ₂	116.89 lb/MMBtu	(5)	116.889	511.974	467.556	2047.897
CH ₄	2.2E-03 lb/MMBtu	(5)	0.002	0.010	0.009	0.039
N ₂ O	0.0 lb/MMBtu	(5)	0.000	0.001	0.001	0.004
CO ₂ e ^(b)			117.010	512.503	468.040	2050.014

Calculations:

(a) Annual emissions (tons/yr) = [Annual Usage (MMBtu/yr or MMCF/yr)]x [Number of Identical Heaters]x [Emission Factor (lb/MMBtu or lb/MMCF)] / [2,000 lb/ton]

Number of Heaters= 4
Fuel Use (MMBtu/hr) = 1
Hours of Operation (hr/yr)= 8760
PTE Fuel Use (MMcf/yr) = 8.6

(b) CO₂ equivalent = $[(CO_2 \text{ emissions})^*(GWP_{CO2})]+[(CH_4 \text{ emissions})^*(GWF \setminus Global Warming Potential (GWP)$

CO₂ 1 (6) CH₄ 25 (6) N₂O 298 (6)

Notes:

- (1) AP-42, Chapter 1.4, Table 1.4-2. Emission Factors For Criteria Pollutants and Greenhouse Gases From Natural Gas Combustion, July 1998.
- (2) AP-42, Chapter 1.4, Table 1.4-1. Emission Factors For Nitrogen Oxides (Nox) and Carbon Monoxide(CO) From Natural Gas Combustion, July 1998.
- (3) AP-42, Chapter 1.4, Table 1.4-4. Emission Factors For Metals From Natural Gas Combustion, July 1998.
- (4) AP-42, Chapter 1.4, Table 1.4-3. Emission Factors for Speciated Organic Compounds from Natural Gas Combustion, July 1998.
- (5) Emission factors are from 40 CFR 98, Subpart C, Table C-1 and C-2.
- (6) Global Warming Potentials obtained from 40 CFR 98, Subpart A, Table A-1
- (7) MMBtu to MMcf conversion factor is 1020. AP-42, Chapter 1.4

Table 5. Truck Loading (TL-1) VOC Emissions Tug Hill Operating, LLC - Shields Well Pad

Contents	Volume Transferred	PTE VOC Emissions (lb/hr)	PTE VOC Emissions (ton/yr) (a)
Pipeline Liquids	345,618 gal/yr	9.33E-03	4.09E-02
Total		9.33E-03	4.09E-02

Calculations:

(a) PTE VOC Emissions (ton/yr) given as calculated in the Promax Model simulation report

	Pipeline liquids	
Note (1)	0.60	Saturation factor
Note (2)	0.37	Pvap (psia)
Note (2)	19.05	Molecular Weight Vap (lb/lbmol)
Note (2)	52 14	Bulk Liquid Tempurature (F)

Notes:

- (1) AP-42 Section 5.2, Table 5.2-1 Saturation Factors for Calculating Petroleum Liquid Loading Losses, Submerged loading dedicated normal service
- (2) Input parameters as defined by the Promax Model simulation report

Table 6. Fugitive Leak Emissions Tug Hill Operating, LLC - Shields Well Pad

Pollutant	Emission Factor	PTE ^{(a) Gas Service} (tons/yr)	PTE VOC emissions (ton/yr)	PTE CO ₂ e emissions (ton/yr)	PTE Total HAPs emissions (ton/yr)
Valves	9.9E-03 lb/hr/source	6.82	0.60	11.19	0.01
Pressure Relief Valves	1.9E-02 lb/hr/source	0.25	0.00	0.42	0.00
Connectors (2)	8.6E-04 lb/hr/source	2.58	0.02	4.23	0.00
Compressors	1.9E-02 lb/hr/source	0.08	0.01	0.14	0.00
Open Ended Lines	4.4E-03 lb/hr/source	0.17	0.02	0.29	0.00
Total		9.91	0.87	16.26	0.01

Pollutant	PTE Benzene emissions (ton/yr)	PTE Toluene emissions (ton/yr)	PTE Ethylbenzene emissions (ton/yr)	PTE Xylenes emissions (ton/yr)	PTE n-Hexane emissions (ton/yr)
Valves	1.36E-04	1.36E-04	0.00E+00	0.00E+00	9.88E-03
Pressure Relief Valves	5.09E-06	5.09E-06	0.00E+00	0.00E+00	3.69E-04
Connectors (2)	5.15E-05	5.15E-05	0.00E+00	0.00E+00	3.74E-03
Compressors	1.70E-06	1.70E-06	0.00E+00	0.00E+00	1.23E-04
Open Ended Lines	3.47E-06	3.47E-06	0.00E+00	0.00E+00	2.52E-04
Total	0.00	0.00	0.00	0.00	0.01

Calculations:

(a) Annual emissions (tons/yr) = [Emission Factor (lb/hr/source)] x [Number of Sources] x [Hours of Operation per Year] x [ton/2000lb]

WET GAS INPUT	S TABLE
Gas Stream Components	Wt Percent
Methane	75.00%
Ethane	15.38%
VOC	8.75%
Benzene	0.00%
Toluene	0.00%
Ethylbenzene	0.00%
Xylenes	0.00%
n-Hexane	0.15%

Number of Components in Gas Service

 Valves =
 157

 Pressure Relief Valves =
 3

 Connectors =
 685

 Open Ended Lines =
 9

 Compressors =
 1.000

Maximum Hour of Operation = 8,760

Global Warming Potential

(GWP)

CO₂ 1 CH₄ 25 N₂O 298

- (1) Emission factors from 1995 EPA Protocol for Equipment Leak Emission Estimates, Table 2-4 Oil and Gas Production
- (2) Connectors is assumed to include flange connections in the total count
- (3) Worst case VOC wt % assumption for station based on gas sample analysis from facility
- (4) Default Average Component Counts for Major Onshore Natural Gas Production Equipment from 40 CFR 98, Subpart W, Table W-1B
- (5) Global Warming Potentials obtained from 40 CFR 98, Subpart A, Table A-1

Table 6. Reciprocating Engine / Integral Compressor Emissions (E01) Blowdown Venting Waukesha F3524GSI Tug Hill Operating, LLC - Shields Well Pad

	Maximum Hour	issions		Annual Emis	S			
Pollutant	Emission Factor E		PTE per Engine Event (lb/hr)		Emission Factor		Annual (tons/	
Criteria Pollutants								
VOC	3.60E+00 lb/Event	(1)	3.60	(a)	3.60E+00 lb/Event	(1)	0.11	(a)

^{(1) - 7.7} lbs VOC/ Engine blowdown event; based on 717 scf/event of 21.48 MW gas with 9 wt % VOC

⁽a) - Worst case blowdowns per year equal normal rate 6 times 10 = 60 Events/yr

Table 8. Combustor (VDU-1) Emissions Tug Hill Operating, LLC - Shields Well Pad

Pollutant	Emission Factor (Ib/MMBtu)	Volume (scf/hr)	Gas Heat Value (Btu/scf)	(MMBtu/ 1000000Btu)	Emissions (lbs/hr)	Emissions (ton/yr)
CO	0.31	840	2,380	(1/1,000,000)	0.62	2.72
NOx	0.068	840	2,380	(1/1,000,000)	0.14	0.60
VOC ^a	0.14	840	2,380	(1/1,000,000)	0.28	1.23
CO2	116.89	840	2,380	(1/1,000,000)	233.75	1023.84

Example Formula:

$$|laicolumn{2}{c}{laicolumn{2$$

Emission Factor = AP-42 Tables 13.5-1 and 2 emission factor for specific pollutant

^a - 98% DRE for VOCs from ProMax simulated unconrolled emissions was found to be less than AP-42 Factor.

Hours of operation calculated at 8760 hrs/yr for worst case

Volume from manufacturer spec. sheet.

Gas Heat Value = 2380 Btu/scf from flash gas ProMax Estimate

Pollutant	Volume (scf/hr)	grain H2S/ 100 scf	Mol Fraction	Mol weight (g/mol)	(lb-mol /scf)	Emissions (lbs/hr)	Emissions (ton/yr)
SO2	840	15.26	0.0002423	64 00	1/379.4	0.0343	0.1505

Example Formula:

emissions
$$\left(\frac{ton}{yr}\right) = Volume \left(\frac{sef}{hr}\right) \times mol \ fraction \left(\frac{H2S}{100 \ sef} \times 0.00001588\right) \times molecular \ weight \times \frac{lb \cdot mol}{sef} \times \frac{659 \ hrs}{1 \ yr} \times \frac{1 \ ton}{2,000 \ lbs}$$

$$\frac{1 \text{ grain H2S}}{100 \text{ sef}} = 15.26 \text{ ppm of H2S}$$

Volume from manufacturer spec. sheet.

H2S conversion taken from supporting Sulfur Measurement Handbook

grain H2S/100 scf = 15.26

1 lb mol = 379.4 cubic feet

For Pilot Light

1 Of 1 HOULIGHT						
Pollutant	Emission Factor (Ib/MMBtu)	Volume (scf/hr)	Gas Heat Value (Btu/scf)	(MMBtu/ 1000000Btu)	Emissions (lbs/hr)	Emissions (ton/yr)
СО	0.31	5.0	1,291	(1/1,000,000)	0.0020	0.0088
NOx	0.068	5.0	1,291	(1/1,000,000)	0.0004	0.0019
VOCa	0.14	5.0	1,291	(1/1,000,000)	0.0009	0.0040

^a - Measured as methane equivalent, assumed worst case

Example Formula:

enormula:
$$\frac{(ton)}{yr} = emission factor \left(\frac{lb}{MMBtu}\right) \times Volume \left(\frac{sef}{hr}\right) \times gas heat value \left(\frac{Btu}{sef}\right) \times \frac{MMBtu}{1,000,000 Btu} \times \frac{8760 \, hrs}{1 \, yr} \times \frac{1 \, ton}{2,000 \, lbs}$$

Volume from manufacturer spec. sheet.

Emission Factor = AP-42 Tables 13.5-1 and 2 emission factor for specific pollutant

Gas Heat Value = 2380 Btu/scf from flash gas ProMax Estimate

Pollutant	Volume (scf/hr)	grain H2S/ 100 scf	Mol Fraction	Mol weight (g/mol)	(lb-mol /scf)	Emissions (lbs/hr)	Emissions (ton/yr)
SO2	5.0	15.26	0.0002423	64.00	1/379.4	0.0002	0.0009

Example Formula:

$$smissions\left(\frac{ton}{yr}\right) = Volums\left(\frac{scf}{hr}\right) \times mol \ fraction\left(\frac{H2S}{100\ scf} \times 0.00001588\right) \times molecular \ weight \times \\ \frac{lb \cdot mol}{scf} \times \frac{8760\ hrs}{1\ yr} \times \frac{1\ ton}{2,000\ lbs} \times \frac{100\ hrs}{hr} \times \frac{100\ hrs}{100\ scf} \times \frac{100\ hrs}{100\ scf} \times \frac{100\ hrs}{100\ scf} \times \frac{100\ hrs}{100\ scf} \times \frac{100\ hrs}{100\ hrs} \times \frac{100\ hrs}{100\ scf} \times \frac{100\ hrs}{100$$

$$\frac{1 \text{ grain H2S}}{100 \text{ scf}} = 15.26 \text{ ppm of H2S}$$

Volume from manufacturer spec. sheet.

H2S conversion taken from supporting Sulfur Measurement Handbook

grain H2S/100 scf = 15.26

1 lb mol = 379.4 cubic feet

Note: Controlled emissions from 2% of captured emissions predicted by ProMax = 0.66 tpy VOCs. Therefore, VOC emissions were taken from higher estimates of VOCs using AP-42's THC emission factor.

Flare and Pilo	Flare and Pilot Combined								
Pollutant	lb/hr	ton/yr							
СО	0.62	2.72							
Nox	0.14	0.60							
voc	0.28	1.23							
SO2	0.03	0.15							

Simulation Report

Project: TugHill_Shields_WellPad.pmx

Licensed to SLR International Corporation and Affiliates

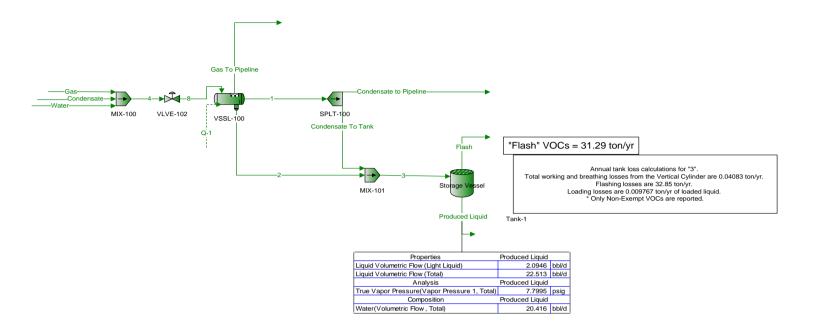
Client Name: Tug Hill Location: Shields Job: G70-D Permit

ProMax Filename: N:\West Virginia\Tug Hill\Projects\Determination\Shields\ProMax\TugHill_Shields_WellPad.pmx

ProMax Version: 4.0.16071.0

Simulation Initiated: 11/1/2017 11:49:59 AM

Bryan Research & Engineering, Inc.


Chemical Engineering Consultants P.O. Box 4747 Bryan, Texas 77805 Office: (979) 776-5220 FAX: (979) 776-4818 mailto:sales@bre.com http://www.bre.com/

Report Navigator can be activated via the ProMax Navigator Toolbar.

An asterisk (*), throughout the report, denotes a user specified value.

A question mark (?) after a value, throughout the report, denotes an extrapolated or approximate value.

Shields Well Pad

Process Streams		Condensate	Condensate to Pipeline	Condensate To Tank	Flash	Gas	Gas To Pipeline	Produced Liquid	Water
Composition	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block:	-	SPLT-100	SPLT-100	Storage Vessel		VSSL-100	Storage Vessel	-
	To Block:	MIX-100		MIX-101		MIX-100			MIX-100
Mass Flow		lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h
C1		36.4621*	44.0938	0.683963 1.40253	0.797361	13210.9*	13202.5	0.00552072 0.0522023	0* 0*
C2 C3		83.5793* 144.957*	90.4186 149.891	2.32504	1.40942 2.07778	5076.10* 2684.68*	5067.80 2677.40	0.0522023	0*
iC4		42.0875*	44.6298	0.692277	0.521905	352.271*	349.034	0.171982	0*
nC4		159.384*	174.215	2.70234	1.81316	968.744*	951.205	0.894657	0*
iC5		85.9810*	87.1653	1.35207	0.601616	217.850*	215.313	0.751226	0*
nC5		151.123*	157.324	2.44034	0.908262	306.574*	297.931	1.53249	0*
N2		0.141458*	0.237235	0.00367988	0.00467249	209.771*	209.671	1.13977E-05	0*
CO2		0.611140*	0.769374	0.0119342	0.0262629	90.8447*	90.6588	0.00143893	0*
Benzene		1.61719*	2.06471	0.0320268	0.00439755	1.71531*	1.23487	0.0285258	0*
Ethylbenzene		7.02286*	6.44133	0.0999149	0.00145778	0*	0.481443	0.0986361	0*
Toluene		6.97901*	7.39855	0.114763	0.00503702	2.02333*	1.48831	0.110435	0*
o-Xylene		12.8395*	11.9464	0.185307	0.00208772	0*	0.707432	0.183604	0*
C6		131.308*	166.982	2.59015	0.357661	137.198*	98.9336	2.23257	0*
C7		90.8243*	98.5446	1.52858	0.0713046	30.8056*	21.5567	1.45729	0*
C8 C9		50.6443*	53.2193	0.825514	0.0119551	7.52525*	4.12470	0.813560 0.471906	0* 0*
C9 C10		30.4069* 17.1356*	30.5553 16.7094	0.473960 0.259188	0.00205391 0.000359182	1.40822* 0*	0.785840 0.167005	0.471906	0*
C10 C11		57.8953*	56.8157	0.881299	0.000359162	0*	0.198348	0.880936	0*
C12		38.6629*	38.0235	0.589803	7.95123E-05	0*	0.0496201	0.589724	0*
C13		27.5564*	27.1216	0.420698	1.84472E-05	0*	0.0141123	0.420680	0*
2,2-Dimethylpropane		2.51385*	2.65256	0.0411454	0.0250826	11.8827*	11.7028	0.0160932	0*
2,2-Dimethylbutane		3.74234*	5.52414	0.0856879	0.0226641	8.51571*	6.64821	0.0630321	0*
Cyclopentane		0*	0		0	0*	0	0	0*
2,3-Dimethylbutane		8.76839*	13.3943		0.0431862	17.0314*	12.1977	0.164614	0*
2-Methylpentane		66.1437*	84.1367	1.30509	0.247745	88.9419*	69.6436	1.05747	0*
3-Methylpentane		41.2745*	51.8096	0.803647	0.139506	50.1481*	38.8092	0.664312	0*
Methylcyclopentane		17.4665*	17.6354	0.273552	0.0397771	11.0887*	10.6461	0.233857	0*
Cyclohexane		18.5715*	21.0584	0.326648	0.0363744	12.9368*	10.1230	0.290453	0*
2-Methylhexane		50.6997*	52.5946	0.815824	0.0551009	18.7034*	15.9926	0.760740	0*
3-Methylhexane		44.9568*	49.3138	0.764933	0.0466505	18.7034*	13.5814	0.718301	0*
2,2,4-Trimethylpentane		0*	0		0	0*	0	0	0*
Methylcyclohexane		46.5313*	50.2430		0.0366645	15.0929*	10.6019	0.742753	0*
m-Xylene		7.04967*	6.50275	0.100868	0.00133824	0*	0.445943	0.0996326	0*
p-Xylene Water		0* 0*	0 0.219308	0 0.00340181	0.0900210	0* 0*	0 21.5708	0 297.598	0* 319.478*
Tetradecane		19.8355*	19.5284	0.302916	4.51774E-06	0*	0.00409426	0.302912	319.476
Pentadecane		13.4077*	13.2019	0.204781	1.04774E-06	0*	0.00409420	0.204780	0*
Hexadecane		7.60394*	7.48752	0.116143	2.15428E-07	0*	0.000269903	0.116143	0*
Heptadecane		4.61426*	4.54370	0.0704798	5.18472E-08	0*	7.68013E-05	0.0704798	0*
Octadecane		4.11235*	4.04950	0.0628140	1.81153E-08	0*	3.11799E-05	0.0628140	0*
Nonadecane		2.64408*	2.60368	0.0403871	4.11269E-09	0*	8.43007E-06	0.0403871	0*
Eicosane		1.28409*	1.26447	0.0196140	4.90660E-10	0*	1.25156E-06	0.0196140	0*
Heneicosane		0.748798*	0.737360	0.0114376	1.25842E-10	0*	3.73602E-07	0.0114376	0*
Docosane		0.470528*	0.463340	0.00718712	3.49135E-11	0*	1.20061E-07	0.00718712	0*
Tricosane		0.245888*	0.242132	0.00375585	5.15333E-12	0*	2.16662E-08	0.00375585	0*
Tetracosane		0.171008*	0.168396	0.00261209	1.21993E-12	0*	6.14315E-09	0.00261209	0*
Pentacosane		0.0890457*	0.0876855	0.00136014	2.47394E-13	0*	1.45959E-09	0.00136014	0*
Hexacosane		0.277761*	0.273519	0.00424270	2.49827E-13	0*	1.78553E-09	0.00424270	0*
Heptacosane		0.0961286*	0.0946603	0.00146833	2.17359E-14	0*	1.91984E-10	0.00146833	0*
Octacosane		0.0996701*	0.0981477	0.00152242	1.17314E-14	0*	1.18256E-10	0.00152242	0*
Nonacosane		0*	0		0	0*	0	0	0*
Triacontane		0* 0*	0		0	0* 0*	0	0	0* 0*
Hentriacontane Other C10s		66.2663*	0 64.4263	0.999352	0.00190485	0*	0.840595	0.997451	0*
Other C70s		21.9056*	31.1074	0.482523	0.00190485	17.5800*	7.89568	0.997451	0*
		21.5030	31.1074	0.402323	0.0213925		1.09300		
Other C8s		120.196*	123.088	1.90929	0.0354029	16.2835*	11.4817	1.87394	0*

Process Streams		Candanasta	Candanasta ta Dinalina	Candanasta Ta Tank	Flash	Coo	Coo To Dinalina	Draduand Limit	Water
		Condensate	Condensate to Pipeline	Condensate to rank	riasn	Gas	Gas To Pipeline	Produced Liquid	water
Properties	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block:	-	SPLT-100	SPLT-100	Storage Vessel		VSSL-100	Storage Vessel	-
	To Block:	MIX-100	-	MIX-101	_	MIX-100		-	MIX-100
Property	Units								
Temperature	°F	100*	71.0000	71.0000	66.9992	100*	71.0000	66.9992	100*
Pressure	psig	1000*	364	364	-1.35077E-13	1000*	364	-1.35077E-13	1000*
Molecular Weight	lb/lbmol	71.9790	71.0021	71.0021	42.2395	21.4819	21.3751	19.0482	18.0153
Mass Density	lb/ft^3	39.2290	39.6459	39.6459	0.111566	4.60899	1.58334	60.5387	62.0089
Molar Flow	lbmol/h	25.2478	27.5978	0.428085	0.224248	1097.98	1096.40	16.7382	17.7337
Mass Flow	lb/h	1817.31	1959.50	30.3949	9.47214	23586.8	23435.7	318.833	319.478
Std Vapor Volumetric Flow	MMSCFD	0.229947	0.251350	0.00389883	0.00204237	10*	9.98562	0.152445	0.161512
Std Liquid Volumetric Flow	sgpm	5.83333*	6.31636	0.0979765	0.0381212	135.493	134.954	0.656227	0.638660*
Gross Ideal Gas Heating Value	Btu/ft^3	3971.83	3920.32	3920.32	2379.83	1286.51	1279.66	118.804	50.3101
Gross Liquid Heating Value	Btu/lb	20763.4	20776.8	20776.8	21223.1	22659.4	22651.2	1365.23	. 0

			Environm	ents Report	
lient Name:	G70-D Permit			Job: N:\W	est Virginia\Tug Hill\Projects\Determination\Shields\ProMax\TugHill_Shields_WellPad.p
ocation:	0				
lowsheet:	Flowsheet1				
			Project-Wi	de Constants	
mospheric Pressure	14.6959) psia	Ideal Gas Reference Volume	379.484 ft^3/lb	bmol
eal Gas Reference Pressure	14.6959) psia	Liquid Reference Temperatu	re 60 °F	
eal Gas Reference Temperature) °F	1 .		
			Envir	onment1	
			Environm	ent Settings	
umber of Poynting Intervals	(Phase Tolerance	1 %	
ibbs Excess Model Evaluation Temperature		7 °F	Emulsion Enabled	FALSE	
reeze Out Temperature Threshold Difference	10) °F			
				ponents	
omponent	Henry's Law Comp.	Phase Initiato		Henry's Law Comp.	Phase Initiator
1	FALSE	FALSE	C2	FALSE	FALSE
3	FALSE	FALSE	iC4	FALSE	FALSE
C4 C5	FALSE	FALSE	iC5	FALSE	FALSE
25	FALSE	FALSE	N2	FALSE	FALSE
02	FALSE	FALSE	Benzene	FALSE	FALSE
thylbenzene	FALSE	FALSE	Toluene	FALSE	FALSE
Xylene	FALSE	FALSE	C6	FALSE	FALSE
7	FALSE	FALSE	C8	FALSE	FALSE
9	FALSE	FALSE	C10	FALSE	FALSE
11	FALSE	FALSE	C12	FALSE	FALSE
13	FALSE	FALSE	2,2-Dimethylpropane	FALSE	FALSE
2-Dimethylbutane	FALSE	FALSE	Cyclopentane	FALSE	FALSE
3-Dimethylbutane	FALSE	FALSE	2-Methylpentane	FALSE	FALSE
Methylpentane	FALSE	FALSE		FALSE	FALSE
			Methylcyclopentane		
yclohexane	FALSE	FALSE	2-Methylhexane	FALSE	FALSE
Methylhexane	FALSE	FALSE	2,2,4-Trimethylpentane	FALSE	FALSE
ethylcyclohexane	FALSE	FALSE	m-Xylene	FALSE	FALSE
Xylene	FALSE	FALSE	Water	FALSE	TRUE
etradecane	FALSE	FALSE	Pentadecane	FALSE	FALSE
exadecane	FALSE	FALSE	Heptadecane	FALSE	FALSE
ctadecane	FALSE	FALSE	Nonadecane	FALSE	FALSE
cosane	FALSE	FALSE	Heneicosane	FALSE	FALSE
ocosane	FALSE	FALSE	Tricosane	FALSE	FALSE
etracosane	FALSE	FALSE	Pentacosane	FALSE	FALSE
exacosane	FALSE	FALSE	Heptacosane	FALSE	FALSE
ctacosane	FALSE	FALSE	Nonacosane	FALSE	FALSE
iacontane	FALSE	FALSE	Hentriacontane	FALSE	FALSE
ther C10s	FALSE	FALSE	Other C7s	FALSE	FALSE
ther C8s	FALSE	FALSE	Other C9s	FALSE	FALSE
			*		
			Physical Prop	erty Method Sets	
quid Molar Volume	COSTALD		Vapor Package	Peng-Robinson	
verall Package	Peng-Robinson		Light Liquid Package	Peng-Robinson	
	Peng-Robinson		Heavy Liquid Package	Peng-Robinson	

		Simple Solver 3	
		Source Code	
Residual Error (fo	or CV1) = GPUTemp-71	<u> </u>	
		Iculated Variable [CV1]	
SourceMoniker Value Units	ProMax:ProMax!Project!Flowsheets!Flowsheet 0.244210 MMBtu/h	:1!QStreams!Q-1!Energy Rate	
	Mea	asured Variable [GPUTemp]	
SourceMoniker Value Units	ProMax:ProMax!Project!Flowsheets!Flowsheet 71.0000 °F	t1!PStreams!Gas To Pipeline!Phases!Total!Properties!Temperature	;
	_	Solver Properties	
Status: Solved			
Error Calculated Value Lower Bound Upper Bound	1.30041E-08 e 244210 Btu/h Btu/h Btu/h	Iterations Max Iterations Weighting Priority	3 20 1 0
Step Size Is Minimizer Algorithm	Btu/h FALSE Default	Solver Active Group Skip Dependency Check	Active FALSE
	Delauli	Takip Dependency Check	FALSE

User Value Sets Report

Client Name:	G70-D Permit	Job:	N:\West Virginia
Location:	0	JOB.	14./vvest viigiilla
Flowsheet:	Flowsheet1		
	Ta	ank-1	
	User Value	[BlockReady]	
Parameter	1*	Upper Boun	
ower Bound	·	Enforce Box	FALSE
	User Value	[ShellLength]	
Parameter	20* ft	Upper Boun	ft
ower Bound	0* ft	Enforce Bot	FALSE
	User Value	e [ShellDiam]	
Parameter	12* ft	Upper Boun	ft
ower Bound	0* ft	Enforce Bou	FALSE
		[BreatherVP]	
Parameter	0.0300000* psig	Upper Boun	psig
ower Bound	psig	Enforce Bol	FALSE
		[BreatherVacP]	
Parameter	-0.0300000* psig	Upper Bour	psig
ower Bound	psig	Enforce Bol	FALSE
		[DomeRadius]	
Parameter	0.17* ft	Upper Bour	ft
ower Bound	ft	Enforce Bou	FALSE
		ue [OpPress]	
Parameter	0* psig	Upper Boun	psig
ower Bound	psig	Enforce Bol	FALSE
	Hear Volve I	AverDoroomti ini	
		AvgPercentLiq]	
Parameter	50* %	Upper Boun	%
ower Bound	%	Enforce Bou	FALSE
	Hear Value I	MaxPercentLiq]	
Parameter	90* %	Upper Bour	0/
ower Bound	90 % %	Enforce Bou	% FALSE
OWEL DOUILO	70	Izmorce Bot	IALUL
	User Value	e [AnnNetTP]	
Parameter	22.4310* bbl/day	Upper Boun	bbl/day
ower Bound	0* bbl/day	Enforce Bot	FALSE
	2 2000		
	User Va	lue [OREff]	
Parameter	0* %	Upper Boun	%
ower Bound	%	Enforce Box	FALSE
	User Valu	e [MaxAvgT]	
Parameter	61.15* °F	Upper Boun	°F
ower Bound	°F	Enforce Bot	FALSE .
	User Valu	ıe [MinAvgT]	
Parameter	36.9667* °F	Upper Boun	°F
			EALCE
_ower Bound	°F	Enforce Bot	FALSE

Parameter	User Value	e [BulkLiqT]	
	52.1383* °F	Upper Boun	°F
Lower Bound	°F	Enforce Bou	FALSE
	User Val	lue [AvgP]	
Parameter	13.7315* psia	Upper Boun	psia
Lower Bound	psia	Enforce Bou	FALSE
201101 200110	Pola	2	. 7.232
	User Valu	ue [Therml]	
Parameter	1193.89* Btu/ft^2/day	Upper Boun	Btu/ft^2/day
Lower Bound	Btu/ft^2/day	Enforce Bou	FALSE
Lower Bound	Blu/It 2/day	Efficice Bot	FALSE
	User Value [A	\vgWindSpeed]	
Parameter	6.16667* mi/h	Upper Boun	mi/h
Lower Bound	6.16667 111/11 mi/h	Enforce Bou	FALSE
Lower Bound	1111/11	Efficice Bot	FALSE
	Usar Valua [Mayl	lourlyLoadingRate]	
Dense			L L I / L
Parameter	0.934625* bbl/hr	Upper Boun	bbl/hr
Lower Bound	0* bbl/hr	Enforce Bol	FALSE
	Hoor Volue III	ntrainedOilEras1	
	-	ntrainedOilFrac]	
Parameter	1* %	Upper Boun	%
Lower Bound	%	Enforce Bou	FALSE
	User Value [TurnoverRate]	
Parameter	11.2891*	Upper Boun	
Lower Bound		Enforce Bol	FALSE
	User Value [L	LossSatFactor]	
Parameter	0.5*	Upper Boun	
Lower Bound		Enforce Bou	FALSE
	User Value [AtmPressure]	
Parameter	13.7315* psia	Upper Boun	psia
Lower Bound	psia	Enforce Bou	FALSE
	·		
	User Va	lue [TVP]	
Parameter	0.368396* psia	Upper Boun	psia
Lower Bound	psia	Enforce Box	•
LOWER Double	pola		FALSE
		Elliotoc Box	FALSE
	User Valu		FALSE
Parameter		ue [MaxVP]	
Parameter Lower Bound	0.488083* psia	ue [MaxVP] Upper Boun	psia
Parameter Lower Bound		ue [MaxVP]	
	0.488083* psia psia	Upper Bour Enforce Bou	psia
Lower Bound	0.488083* psia psia User Val u	Upper Bour Enforce Bou	psia FALSE
Lower Bound Parameter	0.488083* psia psia User Valu 0.278019* psia	Upper Boun Enforce Bou	psia FALSE psia
Lower Bound	0.488083* psia psia User Val u	Upper Bour Enforce Bou	psia FALSE
Lower Bound Parameter	0.488083* psia psia User Valu 0.278019* psia psia	Upper Boun Enforce Bou Upper Boun Upper Boun Enforce Bou	psia FALSE psia
Lower Bound Parameter Lower Bound	0.488083* psia psia User Valu 0.278019* psia psia User Value [A	Upper Boun Enforce Bou Upper Boun Enforce Boun Upper Boun Enforce Boun Enforce Boun Enforce Boun	psia FALSE psia FALSE
Parameter Lower Bound Parameter	0.488083* psia psia User Valu 0.278019* psia psia User Value [A	Upper Boun Enforce Bou Upper Boun Enforce Boun Enforce Boun Enforce Boun Enforce Boun Enforce Boun Upper Boun Enforce Boun Upper Boun	psia FALSE psia FALSE °F
Lower Bound Parameter Lower Bound	0.488083* psia psia User Valu 0.278019* psia psia User Value [A	Upper Boun Enforce Bou Upper Boun Enforce Boun Upper Boun Enforce Boun Enforce Boun Enforce Boun	psia FALSE psia FALSE
Parameter Lower Bound Parameter	0.488083* psia psia User Valu 0.278019* psia psia User Value [A	Upper Boun Enforce Bot	psia FALSE psia FALSE °F
Parameter Lower Bound Parameter Lower Bound Parameter Lower Bound	0.488083* psia psia User Valu 0.278019* psia psia User Value [A' 57.1967* °F °F User Value [M	Upper Boun Enforce Bou	psia FALSE psia FALSE °F FALSE
Parameter Lower Bound Parameter Lower Bound Parameter Lower Bound	0.488083* psia psia User Valu 0.278019* psia psia User Value [A' 57.1967* °F °F User Value [M 67.2326* °F	Upper Boun Enforce Bou Upper Boun Enforce Bou Enforce Bou Upper Boun Enforce Bou	psia FALSE psia FALSE °F FALSE °F
Parameter Lower Bound Parameter Lower Bound Parameter Lower Bound	0.488083* psia psia User Valu 0.278019* psia psia User Value [A' 57.1967* °F °F User Value [M	Upper Boun Enforce Bou	psia FALSE psia FALSE °F FALSE
Parameter Lower Bound Parameter Lower Bound Parameter Lower Bound	0.488083* psia psia User Valu 0.278019* psia psia User Value [A' 57.1967* °F °F User Value [M 67.2326* °F °F	Upper Boun Enforce Bou Upper Boun Enforce Bou Upper Boun Enforce Bou Upper Boun Enforce Bou Upper Boun Enforce Bou Enforce Bou Enforce Bou Enforce Boun	psia FALSE psia FALSE °F FALSE °F
Parameter Lower Bound Parameter Lower Bound Parameter Lower Bound	0.488083* psia psia User Valu 0.278019* psia psia User Value [A' 57.1967* °F °F User Value [M 67.2326* °F °F	Upper Boun Enforce Bou Upper Boun Enforce Bou Enforce Bou Upper Boun Enforce Bou	psia FALSE psia FALSE °F FALSE °F
Parameter Lower Bound Parameter Lower Bound Parameter Lower Bound	0.488083* psia psia User Valu 0.278019* psia psia User Value [A' 57.1967* °F °F User Value [M 67.2326* °F °F	Upper Boun Enforce Bou Upper Boun Enforce Bou Upper Boun Enforce Bou Upper Boun Enforce Bou Upper Boun Enforce Bou Enforce Bou Enforce Bou Enforce Boun	psia FALSE psia FALSE °F FALSE °F
Parameter Lower Bound Parameter Lower Bound Parameter Lower Bound	0.488083* psia psia User Valu 0.278019* psia psia User Value [A' 57.1967* °F °F User Value [M 67.2326* °F °F	Upper Boun Enforce Bou Inforce Bou Inforce Boun Enforce Boun En	psia FALSE psia psia FALSE °F FALSE °F FALSE
Parameter Lower Bound Parameter Lower Bound Parameter Lower Bound Parameter Lower Bound	0.488083* psia psia User Valu 0.278019* psia psia User Value [A' 57.1967* °F °F User Value [M 67.2326* °F °F User Value [M 0.0408273* ton/yr	Upper Boun Enforce Bou Inforce Bou Inforce Boun Enforce Boun	psia FALSE psia psia FALSE °F FALSE °F FALSE ton/yr
Parameter Lower Bound Parameter Lower Bound Parameter Lower Bound Parameter Lower Bound	0.488083* psia psia User Valu 0.278019* psia psia User Value [A' 57.1967* °F °F User Value [M 67.2326* °F °F User Value [M 0.0408273* ton/yr ton/yr	Upper Boun Enforce Bou Ue [MinVP] Upper Boun Enforce Bou Upper Boun Enforce Bou Upper Boun Enforce Bou Inforce Bou Inforce Bou Inforce Boun Enforce Boun	psia FALSE psia psia FALSE °F FALSE °F FALSE ton/yr
Parameter Lower Bound Parameter Lower Bound Parameter Lower Bound Parameter Lower Bound	0.488083* psia psia User Valu 0.278019* psia psia User Value [A' 57.1967* °F °F User Value [M 67.2326* °F °F User Value [M 0.0408273* ton/yr ton/yr	Upper Boun Enforce Bou Inforce Bou Inforce Boun Enforce Boun	psia FALSE psia psia FALSE °F FALSE °F FALSE ton/yr

Lower Bound	ton/yr	Enforce Boı	FALSE
	User Value [S	tandingLosses]	
Parameter Lower Bound	0.0131786* ton/yr ton/yr	Upper Boun Enforce Bou	ton/yr FALSE
Lower Bouria	ton/yi	Enlorce Bot	FALSE
		imSealLosses]	
Parameter Lower Bound	0* ton/yr ton/yr	Upper Boun Enforce Bou	ton/yr FALSE
Lower Bound	tonyy	Emoice Bot	TALGE
		/ithdrawalLoss]	
Parameter Lower Bound	0* ton/yr ton/yr	Upper Boun Enforce Bou	ton/yr FALSE
	·		
		oadingLosses]	
Parameter Lower Bound	0.00976711* ton/yr ton/yr	Upper Boun Enforce Bou	ton/yr FALSE
Lower Bouria	,		TALOE
		ourlyLoadingLoss]	
Parameter Lower Bound	0.00222993* lb/hr lb/hr	Upper Boun Enforce Bou	lb/hr FALSE
Lower Bouria			TALOL
	User Val	ue [PStar]	
Parameter Lower Bound		Upper Boun Enforce Bou	FALSE
		ICTotalLosses]	
Parameter Lower Bound	0.0902764* ton/yr ton/yr	Upper Boun Enforce Bou	ton/yr FALSE
Lower Bouria	·		171202
		CLoadingLosses]	
Parameter Lower Bound	0.0215968* ton/yr ton/yr	Upper Boun Enforce Bou	ton/yr FALSE
	·		
	-	MaxHLoadingLoss]	U //
Parameter Lower Bound	0.00493078* lb/hr lb/hr	Upper Boun Enforce Bou	lb/hr FALSE
		FlashingLosses]	
Parameter Lower Bound	43.1178* ton/yr ton/yr	Upper Boun Enforce Bou	ton/yr FALSE
	·		
Danamatan		ckFittingLosses]	4 h
Parameter Lower Bound	0* ton/yr ton/yr	Upper Boun Enforce Bou	ton/yr FALSE
	,		
Daramatar		ckSeamLosses]	4 a . a l
Parameter Lower Bound	0* ton/yr ton/yr	Upper Boun Enforce Bou	ton/yr FALSE
	·		
Parameter		lashingLosses]	tonkr
Parameter Lower Bound	32.8521* ton/yr ton/yr	Upper Boun Enforce Bou	ton/yr FALSE
	,		
Parameter	User Value [1394.77* ton/yr	TotalResidual] Upper Boun	ton/yr
Parameter Lower Bound	ton/yr	Enforce Bou	false
	·	- MalaMatatata	
Parameter	User Value [G 0.0282882* kg/mol	upper Boun	kg/mol
Parameter Lower Bound	0.0282882" kg/mol	Enforce Bou	kg/moi FALSE
	Ŭ		

		pReportableFrac]									
Parameter	45.2247* %	Upper Boun	%								
_ower Bound	%	Enforce Bou	FALSE								
	User Value [Li	qReportableFrac]									
Parameter	6.53761* %	Upper Boun	%								
Lower Bound	%	Enforce Bou	FALSE								
User Value [FlashReportableFrac]											
Parameter	76.1915* %	Upper Boun	%								
_ower Bound	%	Enforce Box	FALSE								
	%	Enforce Bot	FALSE								
Notes:		<u> </u>									
Notes:	% was programmatically generated. Gl	<u> </u>									
Notes:		<u> </u>									
Notes:	vas programmatically generated. Gl	<u> </u>									
Notes:	vas programmatically generated. Gl	JID={1EDE36BA-2D5D-4876-									
Notes: This User Value Set w	vas programmatically generated. Gl	JID={1EDE36BA-2D5D-4876-									
Notes:	vas programmatically generated. Gl Sum Compo User Value	JID={1EDE36BA-2D5D-4876- nent Flow/Frac p [CompSum]	9370-5B5F79CCFF0E}								

ATTACHMENT U FACILITY-WIDE EMISSION SUMMARY SHEET(S)

General G70-D Permit Application

Shields Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

December 2017

		ATTAC	HMENT	U - FACI	LITY WI	DE CON	TROLLED	EMISSI	ONS SU	MMARY	SHEET			
List all sources of emiss	ions in this	table. Use	extra pages	if necessary	/									
Emission Point ID#	N	O _X	СО		V	C	SO ₂		PM ₁₀		PM _{2.5}		GHG (CO₂e)	
LITHISSION FOR TOTAL	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
1e	0.10	0.43	0.08	0.36	0.01	0.02	0.00	0.00	0.01	0.03	0.01	0.03	117.01	512.50
2e	0.10	0.43	0.08	0.36	0.01	0.02	0.00	0.00	0.01	0.03	0.01	0.03	117.01	512.50
3e	0.10	0.43	0.08	0.36	0.01	0.02	0.00	0.00	0.01	0.03	0.01	0.03	117.01	512.50
4e	0.10	0.43	0.08	0.36	0.01	0.02	0.00	0.00	0.01	0.03	0.01	0.03	117.01	512.50
5e	3.52	15.41	3.24	14.19	0.07	0.32	0.00	0.02	0.15	0.68	0.15	0.68	217.09	864.61
6e	0.14	0.60	0.62	2.72	0.28	1.23	0.03	0.15				-	233.75	1023.84
7e				-	0.01	0.04						-		
8e				-	0.02	0.11						-		
TOTAL	4.05	17.73	4.19	18.36	0.41	1.80	0.04	0.18	0.18	0.81	0.18	0.81	918.88	3938.47

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except for emergency generators.

According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source catergories in Table 1. Therefore fugitive emissions shall not be included in the PTE above.

			ATTAC	HMENT	U - FAC	ILITY WI	DE HAP CO	ONTROLLE	D EMISSIC	NS SUM	IMARY SHE	EET		
List all sources of emiss	sions in this	table. Use	extra pages if n	ecessary										
Emission Point ID#	Formal	dehyde	Benze	ene	Tolu	iene	Ethylb	enzene	Xyle	nes	Hexa	ne	Total H	HAPs
LITHSSIOTI FORTE ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
1e	0.00	0.00	0.00	0.00	0.00	0.00					0.00	0.01	0.00	0.01
2e	0.00	0.00	0.00	0.00	0.00	0.00					0.00	0.01	0.00	0.01
3e	0.00	0.00	0.00	0.00	0.00	0.00					0.00	0.01	0.00	0.01
4e	0.00	0.00	0.00	0.00	0.00	0.00					0.00	0.01	0.00	0.01
5e	0.02	0.08	0.01	0.06	0.00	0.02	0.00	0.00	0.00	0.01			0.11	0.50
6e														
7e														
8e														
TOTAL	0.02	0.08	0.01	0.06	0.00	0.02	0.00	0.00	0.00	0.01	0.01	0.03	0.12	0.53

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except for emergency generators.

According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source catergories in Table 1. Therefore fugitive emissions shall not be included in the PTE above.

ATTACHMENT V CLASS I LEGAL ADVERTISEMENT

General G70-D Permit Application

Shields Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

December 2017

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Tug Hill Operating, LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a G70-D General Permit Registration, for a natural gas well pad located off Burch Ridge, North of Proctor, in Marshall County, West Virginia. The latitude and longitude coordinates are 39.76026 and -80.78795.

The applicant estimates the potential to discharge of the following Regulated Air Pollutants will be:

Pollutant	Tons/yr
PM/PM ₁₀ /PM _{2.5}	0.81
SO2	0.19
NO _x	17.73
СО	18.37
VOCs	2.67
Benzene	0.06
Toluene	0.02
Xylenes	0.01
n-Hexane	0.05
Formaldehyde	0.09
Total HAPs	0.55

Startup of operation is planned to begin in the 1st quarter of 2018. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the 18 day of December, 2017.

By: Tug Hill Operating, LLC
Sean Willis
Vice President
380 Southpointe Blvd., Suite 200
Canonsburg, PA 15317