

global environmental solutions

CONE Midstream Partners LP Cain Run (Laverne) Station New Milton, West Virginia 45CSR13 Construction Permit Application SLR Ref: 116.00894.00061

February 3, 2017

Mr. William F. Durham Director WVDEP, Division of Air Quality 601 – 57th Street SE Charleston, West Virginia 25304

Re: CONE Midstream Partners LP, 45CSR13 Construction Permit Application – Cain Run (Laverne) Station

Dear Mr. Durham,

CONE Midstream Partners LP (CONE) and SLR International Corporation (SLR) have prepared the attached 45CSR13 Construction Permit Application for the Cain Run (Laverne) Station located in Doddridge County, West Virginia. The facility will consist of a Caterpillar G3516 compressor, 20 mmscf/d TEG dehydration unit with ground flare, desiccant dehydrator vessels, a 400 bbl storage vessel, capstone microrturbine generator, and a PIG launcher.

The public notice was delivered to *The Doddridge Independent* for publication. The legal advertisement will be forwarded to your office as soon as SLR receives the original affidavit from the newspaper.

If any additional information is needed, please feel free to contact me by telephone at (304) 545-8563 or by e-mail at <u>ihanshaw@slrconsulting.com</u>

Sincerely, **SLR International Corporation**

Jesse Hanshaw

Jesse Hanshaw, P.E. Principal Engineer

Cain Run (Laverne) Station 45CSR13 Construction Permit Application

Prepared for:

CONE Midstream Partners LP

1000 Consol Energy Drive Canonsburg, PA 15317

This document has been prepared by SLR International Corporation. The material and data in this permit application were prepared under the supervision and direction of the undersigned.

N L Lanlam

Nate Lanham WV Operations Manager

Gerse Hanshaw

Jesse Hanshaw, P.E. Principal Engineer

ATTACHMENTS

APPLICATION FOR PERMIT

ATTACHMENT A	BUSINESS CERTIFICATE
	MAP
ATTACHMENT E	
ATTACHMENT F	PROCESS FLOW DIAGRAM
ATTACHMENT G	PROCESS DESCRIPTION
	EMISSION UNITS TABLE
ATTACHMENT J	EMISSION POINTS DATA SUMMARY SHEET
ATTACHMENT K	FUGITIVE EMISSIONS DATA SHEET
ATTACHMENT L	EMISSION UNIT DATA SHEET
ATTACHMENT M	AIR POLLUTION CONTROL DEVICE
ATTACHMENT N	SUPPORTING EMISSIONS CALCULATIONS
ATTACHMENT O MC	NITORING/RECORDKEEPING/REPORTING/ TESTING PLANS
ATTACHMENT P	
ATTACHMENT Q	NOT APPLICABLE (SEE NOTE)
ATTACHMENT R	NOT APPLICABLE (SEE NOTE)
ATTACHMENT S	NOT APPLICABLE (SEE NOTE)
ATTACHMENT T	PERMIT APPLICATION FEE

Notes:

ATTACHMENT Q - No information contained within this application is claimed confidential ATTACHMENT R - No delegation of authority ATTACHMENT S - Not a Title V Permit Revision

APPLICATION FOR PERMIT

45CSR13 Construction Permit Application

Cain Run (Laverne) Compressor Station New Milton, West Virginia

> CONE Midstream Partners LP 1000 Consol Energy Drive Canonsburg, PA 15317

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALITY 601 57 th Street, SE Charleston, WV 25304 (304) 926-0475 WWW.dep.wv.gov/dag			TLE V PE	TFOR NSR PERMIT AND RMIT REVISION TIONAL)
PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KNOWN): CONSTRUCTION MODIFICATION RELOCATION CLASS I ADMINISTRATIVE UPDATE TEMPORARY CLASS II ADMINISTRATIVE UPDATE AFTER-THE-FACT			TIVE AMENDM MODIFICATIC	ED, INCLUDE TITLE V REVISION
FOR TITLE V FACILITIES ONLY: Please refer to "Title (Appendix A, "Title V Permit Revision Flowchart") and	d ability to	on Guidance" in or o operate with the	der to determi	
Se	ection l	l. General		
1. Name of applicant <i>(as registered with the WV Secret</i> CONE Midstream Partners LP	tary of St	ate's Office):	2. Federal	Employer ID No. <i>(FEIN):</i> 47-1054194
 Name of facility <i>(if different from above):</i> Cain Run (Laverne) Station 			4. The applic	cant is the: □OPERATOR ⊠ BOTH
5A. Applicant's mailing address: 5B. Facility's present physical address: 1000 Consol Energy Drive Access road off S. Fork of Hughes River (See Coordinates) Canonsburg, PA 15317 Access road off S. Fork of Hughes River (See Coordinates)				
 6. West Virginia Business Registration. Is the applicant a resident of the State of West Virginia? YES NO If YES, provide a copy of the Certificate of Incorporation/Organization/Limited Partnership (one page) including any name change amendments or other Business Registration Certificate as Attachment A. If NO, provide a copy of the Certificate of Authority/Authority of L.L.C./Registration (one page) including any name change amendments or other Business Certificate as Attachment A. 				
7. If applicant is a subsidiary corporation, please provide the name of parent corporation:				
 8. Does the applicant own, lease, have an option to buy or otherwise have control of the <i>proposed site</i>? XES NO If YES, please explain: CONE occupies part of the Oxford 11 well site to efficiently and cost effectively move gas from well fields (Oxford Production Field) to transmission pipelines. CONE owns and/or leases, independently operates, and controls all equipment identified in this application. If NO, you are not eligible for a permit for this source. 				
administratively updated or temporarily permitted (e.g., coal preparation plant, primary crusher, etc.): Natural Gas Compression and Dehydration Facility			 10. North American Industry Classification System (NAICS) code for the facility: 486210 	
11A. DAQ Plant ID No. (for existing facilities only): N/A				CSR30 (Title V) permit numbers existing facilities only):

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

12A.

- For **Modifications**, **Administrative Updates** or **Temporary permits** at an existing facility, please provide directions to the *present location* of the facility from the nearest state road;
- For Construction or Relocation permits, please provide directions to the proposed new site location from the nearest state road. Include a MAP as Attachment B.

From the intersection of WV-Hwy. 18 and Co. Rte. 25 near New Milton, WV, travel south on WV-Hwy. 18 for 3 miles. Turn right on Porto Rico Rd. for 0.7 miles, then continue straight onto Toms Fork Road for another 0.7 miles. Take slight right onto Co. Rte. 54/1 for 2.5 miles, then turns right and becomes Cain Run for 0.3 miles. Then take sharp left onto S. Fork of Hughes River for 1.0 mile. Take access road to left and to the top of the hill and stay to the left to arrive at site

12.B. New site address (if applicable):	12C. Nearest city or town:	12D. County:		
	New Milton	Doddridge		
12.E. UTM Northing (KM): 4,335.746	12F. UTM Easting (KM): 520.430	12G. UTM Zone: 17		
13. Briefly describe the proposed change(s) at the facilit CONE would like to construct a compression site consist unit with ground flare, desiccant dehydrator vessels, 400 Due to previous pipeline work the desiccant dehydrator v determined to be below permitting thresholds.	ing of a Caterpillar G3516 compressor, bbl storage vessel, PIG launcher, and a	a capstone microturbine generator.		
 14A. Provide the date of anticipated installation or change If this is an After-The-Fact permit application, provident of the provide	-	14B. Date of anticipated Start-Up if a permit is granted: 4 th Quarter 2017		
14C. Provide a Schedule of the planned Installation of/ Change to and Start-Up of each of the units proposed in this permit application as Attachment C (if more than one unit is involved). Installation and startup of the permitted units will follow shortly after permit issuance with the exception of the TEG Dehy, which will be dictated by utility demand.				
15. Provide maximum projected Operating Schedule or Hours Per Day 24 Days Per Week 7	f activity/activities outlined in this applica Weeks Per Year 52	ation:		
16. Is demolition or physical renovation at an existing fac	cility involved? YES NO			
17. Risk Management Plans. If this facility is subject to	112(r) of the 1990 CAAA, or will becom	e subject due to proposed		
changes (for applicability help see www.epa.gov/ceppo), submit your Risk Management Plan (RMP) to U. S. EPA Region III.				
18. Regulatory Discussion. List all Federal and State a	air pollution control regulations that you	believe are applicable to the		
proposed process (if known). A list of possible applicable requirements is also included in Attachment S of this application				
(Title V Permit Revision Information). Discuss applicability and proposed demonstration(s) of compliance (if known). Provide this				
information as Attachment D.				
Section II. Additional atta	achments and supporting d	ocuments.		
19. Include a check payable to WVDEP – Division of Air 45CSR13).\$4,500	Quality with the appropriate applicatior	1 fee (per 45CSR22 and		
20. Include a Table of Contents as the first page of you	ir application package.			
 Provide a Plot Plan, e.g. scaled map(s) and/or skete source(s) is or is to be located as Attachment E (Re 		rty on which the stationary		
 Indicate the location of the nearest occupied structure (e.g. church, school, business, residence). 				

22. Provide a **Detailed Process Flow Diagram(s)** showing each proposed or modified emissions unit, emission point and control device as **Attachment F.**

23. Provide a Process Description as Attachment G.				
 Also describe and quantify to the extent possible all changes made to the facility since the last permit review (if applicable). All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone. 				
 24. Provide Material Safety Data Sheets For chemical processes, provide a MSI 25. Fill out the Emission Units Table and 26. Fill out the Emission Points Data Su 	DS for each compound emitted provide it as Attachment I.	to the air.		
27. Fill out the Fugitive Emissions Data	Summary Sheet and provide	t as Attachment K.		
 28. Check all applicable Emissions Unit Bulk Liquid Transfer Operations Chemical Processes Concrete Batch Plant Grey Iron and Steel Foundry General Emission Unit, specify: TEG D Generator EUDS 	 Haul Road Emissions Hot Mix Asphalt Plant Incinerator Indirect Heat Exchanger 	 ☐ Quarry ☐ Solid Materials Sizing, Handling and Storage Facilities ☑ Storage Tanks Sheet (EUDS), RICE Engine EUDS, MicroTurbine 		
Fill out and provide the Emissions Unit D	ata Sheet(s) as Attachment L			
29. Check all applicable Air Pollution Co	ntrol Device Sheets listed bel			
Absorption Systems	Baghouse	⊠ Flare		
Adsorption Systems	Condenser	Mechanical Collector		
	Electrostatic Precipit			
 Other Collectors, specify : RICE Unit C Fill out and provide the Air Pollution Cont 30. Provide all Supporting Emissions C 	rol Device Sheet(s) as Attac			
testing plans in order to demonstrate of application. Provide this information a	compliance with the proposed on Attachment O.	n proposed monitoring, recordkeeping, reporting and emissions limits and operating parameters in this permit		
Please be aware that all permits must be practically enforceable whether or not the applicant chooses to propose such measures. Additionally, the DAQ may not be able to accept all measures proposed by the applicant. If none of these plans are proposed by the applicant, DAQ will develop such plans and include them in the permit.				
32. Public Notice. At the time that the a	pplication is submitted, place a	Class I Legal Advertisement in a newspaper of general		
circulation in the area where the source	circulation in the area where the source is or will be located (See 45CSR§13-8.3 through 45CSR§13-8.5 and Example Legal			
Advertisement for details). Please submit the Affidavit of Publication as Attachment P immediately upon receipt.				
 33. Business Confidentiality Claims. Does this application include confidential information (per 45CSR31)? YES NO If YES, identify each segment of information on each page that is submitted as confidential and provide justification for each segment claimed confidential, including the criteria under 45CSR§31-4.1, and in accordance with the DAQ's <i>"Precautionary Notice – Claims of Confidentiality"</i> guidance found in the <i>General Instructions</i> as Attachment Q. 				
	ction III. Certification			
34. Authority/Delegation of Authority. Check applicable Authority Form bel		ther than the responsible official signs the application.		
Authority of Corporation or Other Busin	ess Entity] Authority of Partnership		
Authority of Governmental Agency] Authority of Limited Partnership		

Submit completed and signed Authority Form as Attachment R.

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

35A. **Certification of Information.** To certify this permit application, a Responsible Official (per 45CSR§13-2.22 and 45CSR§30-2.28) or Authorized Representative shall check the appropriate box and sign below.

Certification of Truth, Accuracy, and Completeness

I, the undersigned Responsible Official / Authorized Representative, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.

Compliance Certification

Except for requirements identified in the Title V Application for which compliance is not achieved, I, the undersigned hereby certify that, based on information and belief formed after reasonable inquiry, all air contaminant sources identified in this application are in compliance with all applicable requirements.

SIGNATURE	DATE: (Please use blue ink) 35C. Title: Chief Operating Officer	
35D. E-mail: joefink@consolenergy.com	36E. Phone: 724-485-3524	36F. FAX:
36A. Printed name of contact person (if differe	nt from above): Patrick Flynn	36B. Title: Air Quality Engineer
36C. E-mail: PatrickFlynn@consolenergy.com	36D. Phone: 724-485-3156	36E. FAX:

WITH THIS PERMIT APPLICATION:
 Attachment K: Fugitive Emissions Data Summary Sheet Attachment L: Emissions Unit Data Sheet(s) Attachment M: Air Pollution Control Device Sheet(s) Attachment N: Supporting Emissions Calculations Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans Attachment P: Public Notice Attachment Q: Business Confidential Claims Attachment R: Authority Forms Attachment S: Title V Permit Revision Information Application Fee
ermit application with the signature(s) to the DAQ, Permitting Section, at the application. Please DO NOT fax permit applications.

 FOR AGENCY USE ONLY – IF THIS IS A TITLE V SOURCE:

 Forward 1 copy of the application to the Title V Permitting Group and:

 For Title V Administrative Amendments:

 NSR permit writer should notify Title V permit writer of draft permit,

 For Title V Minor Modifications:

 Title V permit writer should send appropriate notification to EPA and affected states within 5 days of receipt,

 NSR permit writer should notify Title V permit writer of draft permit.

 For Title V Significant Modifications processed in parallel with NSR Permit revision:

 NSR permit writer should notify a Title V permit writer of draft permit,

 For Title V Significant Modifications processed in parallel with NSR Permit revision:

 NSR permit writer should notify a Title V permit writer of draft permit,

 Public notice should reference both 45CSR13 and Title V permits,

 EPA has 45 day review period of a draft permit.

 All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

ATTACHMENT A

BUSINESS CERTIFICATE

45CSR13 Construction Permit Application

Cain Run (Laverne) Compressor Station New Milton, West Virginia

> CONE Midstream Partners LP 1000 Consol Energy Drive Canonsburg, PA 15317

I, Natalie E. Tennant, Secretary of State of the State of West Virginia, hereby certify that

CONE MIDSTREAM DEVCO III LP

Control Number: 9A6SN

has filed its application for "Certificate of Registration" in my office according to the provisions of the West Virginia Code. I hereby declare the organization to be registered as a foreign limited partnership from its effective date of August 12, 2014 until a certificate of cancellation has been filed with Secretary of State.

Therefore, I hereby issue this

CERTIFICATE OF REGISTRATION

Given under my hand and the Great Seal of the State of West Virginia on this day of August 12, 2014

tatil E Yum

Secretary of State

ATTACHMENT B

MAP

45CSR13 Construction Permit Application

Cain Run (Laverne) Compressor Station New Milton, West Virginia

> CONE Midstream Partners LP 1000 Consol Energy Drive Canonsburg, PA 15317

CONE Midstream Partners LP Cain Run (Laverne) Station UTM Coordinates of Site: Northing: 4,335.746 km, Easting: 520.430, Zone: 17

Legend 4 CONE - Cain Run (Laverne) Station

54

54/1

CONE - Cain Run (Laverne) Station

40

18

Z

1 mi

ATTACHMENT D

REGULATORY DISCUSSION

45CSR13 Construction Permit Application

Cain Run (Laverne) Compressor Station New Milton, West Virginia

> CONE Midstream Partners LP 1000 Consol Energy Drive Canonsburg, PA 15317

APPLICABLE REGULATIONS

This facility is subject to the following applicable rules and regulations:

Federal and State:

45 CSR 2 – Particulate Matter Standards from Combustion of Fuel in Indirect Heat Exchangers

The indirect heat exchanger utilized as the TEG reboiler will be subject to the visible emission standard of §45-2-3 as follows:

3.1. No person shall cause, suffer, allow or permit emission of smoke and/or particulate matter into the open air from any fuel burning unit which is greater than ten (10) percent opacity based on a six minute block average.

However, in accordance with the exemptions defined with §45-2-11 this source has limited requirements as follows:

11.1. Any fuel burning unit(s) having a heat input under ten (10) million B.T.U.'s per hour will be exempt from sections 4, 5, 6, 8 and 9. However, failure to attain acceptable air quality in parts of some urban areas may require the mandatory control of these sources at a later date.

Therefore, the reboiler burner utilized on the dehydration system at this site is exempt from the weight emission standards of section 4 and the control of fugitive particulate matter standards of section 5. The additionally exempt sections of this rule, section 6, 8, and 9 pertain to registration, testing, monitoring, recordkeeping and reporting as well as startup, shutdown and malfunctions.

45 CSR 6 - Open Burning Prohibited

This state rule is geared towards reducing particulate matter emissions from the combustion of refuse and is specific to burning solid waste, but also includes combustion of waste gas in flares. The rule sets PM limits and establishes a 20% visible emission limit, both of which shouldn't be any problem for the natural gas fired ground flare to meet.

The weight rate of waste gas going to the ground flare is estimated based on manufacturers design rates to be 96.55 lb/hr or 0.048 tph. Therefore, the corresponding Rule 6 PM limit would be 0.262 lb/hr. [E(lb/hr) = 5.43 * 0.048]

When using emission factors for flare combustion presented in AP-42 Chapter 13 EPA's guidance specifies that combustion sources using natural gas should not have PM emissions and therefore no PM/soot factor is given.

45 CSR 10 - Emission of Sulfur Oxides

The compressor facility evaluated within this application utilizes a fuel burning unit for the TEG dehy reboiler less than the exemption threshold of 10 MMBtu/hr as stated in 45CSR§10-10.1:

Any fuel burning units having a design heat input under ten (10) million BTU's per hour will be exempt from section 3 and sections 6 through 8. However, failure to attain acceptable air quality in parts of some urban areas may require the mandatory control of these sources at a later date.

40 CFR 60 Subpart OOOOa – Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015

Fugitive Components at Compressor Stations and Reciprocating Compressor Packing

Since the compressor at this station will commence construction after September 18, 2015, the fugitive components will become subject to the equipment leak standards of §60.5397a. As a result, the source will be required to develop and implement a fugitive monitoring plan and conduct quarterly OGI surveys. The initial survey will be required within 60 days of startup or by June 3, 2017, whichever is later in accordance with §60.5397a(f)(2).

The reciprocating compressor itself will also be subject to the rod packing standards of §60.5385a that require them to be replaced/rebuilt every 26,000 hrs or 3 years. Records shall be maintained based on months or hours of operations since initial startup and each subsequent rebuild or replacement of the compressor's rod packing.

Additional potentially affected sources such as storage vessels and continuous bleed pneumatic controllers greater than 6 (scf/hr) were evaluated and found to be below the applicability thresholds for each source.

40 CFR 60 Subpart JJJJ – Standards of Performance for Stationary Spark Ignition Internal Combustion Engines

The natural gas fueled compressor engine (CE-1) is a 1380 Hp 4SLB G3516BLE Caterpillar unit and is considered a new unit as a result of it being manufactured 04-16-2012. Therefore the engine is subject to the Table 1 emission limits for SI Engines greater than 500 Hp. Since the engine's mfg. date is after 7-1-2010 the corresponding emission limits for this unit are represented as follows:

g/Hp hr		1012 10001	ppmvd at 15%		
NOx	CO	VOC	NOx	CO	VOC
1	2	0.7	82	270	60

Table 1 Emission Limits – SI 4SLB > 1350 Hp installed after 7-1-20
--

40 CFR 63 Subpart HH - National Emission Standards for Hazardous Air Pollutants from Oil and Natural Gas Production Facilities

CONE has plans to install a 20 MMscf/d TEG Dehydration Column and Reboiler to work in a parallel configuration with the existing desiccant dehydrator vessels (gas will flow either to the TEG or the desiccant dehydration system). This TEG unit will be subject to the area source requirements of Subpart HH and shall comply by utilizing a ground flare for control to maintain actual emissions below the 1 tpy benzene exemption threshold. Additionally, this facility was evaluated and found not to be located within the geographical applicability criteria associated with the 2 mile offset from the 2000 Census Urban Areas. The closest Urban Area was identified to be around the town of Weston, which is much greater than 2 miles from the proposed site.

40 CFR 61 - This facility is subject to the asbestos inspection and notification requirements related to construction activities containing asbestos.

40 CFR 63 Subpart ZZZZ – NESHAP for Stationary Reciprocating Internal Combustion Engines

The Sales Gas Compressor Engine (CE-1) is a 4SLB 1380 Hp Cat G3516BLE unit which was manufactured on 04/16/2012; therefore, the requirements of this regulation are to comply with new SI engines standards in accordance with 40CFR60, Subpart JJJJ.

45 CSR 4 - No Objectionable Odors

45 CSR 11 - Standby Plans for Emergency Episodes.

45 CSR 13 - Permits for Construction, Modification, Relocation, and Operation of Stationary Source of Air Pollutants

The company has applied for a Rule 13 construction permit to cover the Compression and Dehydration operations planned for CONE's proposed Cain Run (Laverne) Station. In accordance with WV DAQ guidance the station included compressor blowdown and pigging emissions as process venting within their Potential to Emit (PTE).

Additionally, all other sources within ¼ mile were evaluated with respect to the proposed new facility. It is noted that CONE's planned compressor station shares a graded pad with CNX Gas Company's Oxford 11 Well Pad, however due to each source operating under different SIC codes, CONE feels strongly that they are a distinctly separate facility. CONE operates under SIC 4922 and the CNX well pad operates under SIC 1311.

In order to help alleviate any concerns related to the sites being adjacent, each site's emissions were evaluated to conservatively show the totals would remain below Title V thresholds, even if combined. As a result of the differences described above, CONE is requesting their new station be considered a unique facility.

WV Code § 22-5-4 (a) (14)

The Secretary can request any pertinent information such as annual emission inventory reporting. This station is required to submit an annual air emission inventory.

45 CSR 17 - Fugitive Particulate Emissions

No fugitive emissions shall leave the site boundaries. There should be no fugitive opacity generated at this location due to having small natural gas fired heaters.

NON-APPLICABILITY DETERMINATIONS

The following requirements have been determined "not applicable" due to the following:

Federal and State:

45 CSR 27 - To Prevent and Control the Emissions of Toxic Air Pollutants

This rule is not applicable because natural gas is included as a petroleum product and contains less than 5% benzene by weight. 45CSR § 27-2.4 exempts equipment "used in the production and distribution of petroleum products providing that such equipment does not produce or contact materials containing more than 5% benzene by weight."

45 CSR 30 – Requirements for Operating Permits – Title V of the Clean Air Act

This facility does not meet the emission threshold to trigger a 45 CSR 30 Title V Operating Permit nor is it subject to any Federal Standards that trigger the need for a Title V Permit.

40 CFR 60 Subpart OOOOa - Storage Vessel Requirements

The single storage vessel proposed at this site is planned to capture a portion of the water removed from the gas stream from the desiccant dehydrator vessels and/or the TEG dehydration unit. As a result the source's maximum potential to emit has been shown through ProMax modeling with site specific inputs that the PTE will be less than 6 tpy of VOCs. Therefore, the storage vessel at this site is not considered an affected source under this Regulation.

40 CFR 60 Subpart OOOOa – Pneumatic Control Valve Requirements

The site was evaluated and found to contain only intermittent venting pneumatic control valves, which as a result of their design are rated at less than 6 scf/hr. Therefore the

site is not proposing to install or operate any affected continuous bleed pneumatic devices defined by this NSPS.

40 CFR 63 HHH - National Emission Standards for Hazardous Air Pollutants from Natural Gas Transmission and Storage Facilities

This subpart is related to Natural Gas Transmission Facilities, which are major sources of HAPs. This Federal Regulation is not applicable since the facility is not a major source of HAPs.

40 CFR 60 Subpart KKK - Natural Gas Processing Plant NSPS

This subpart is not applicable because this station is not a processing site engaged in extracting natural gas liquids by fractionation from natural gas.

Natural gas processing plant (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas, fractionation of mixed natural gas liquids to natural gas products, or both.

40 CFR 60 Subpart K, Ka, Kb - Storage Vessel NSPS

The one produced water storage tank proposed for this site is exempt under 60.110b(d) (4) in accordance with the following: Vessels with a design capacity less than or equal to 1,589.874 m³ (approx 420,000 gallons) used for petroleum or condensate stored, processed, or treated prior to custody transfer.

40 CFR 63 Subpart DDDDD - Boilers & Process Heaters Located at Major Sources of HAPs

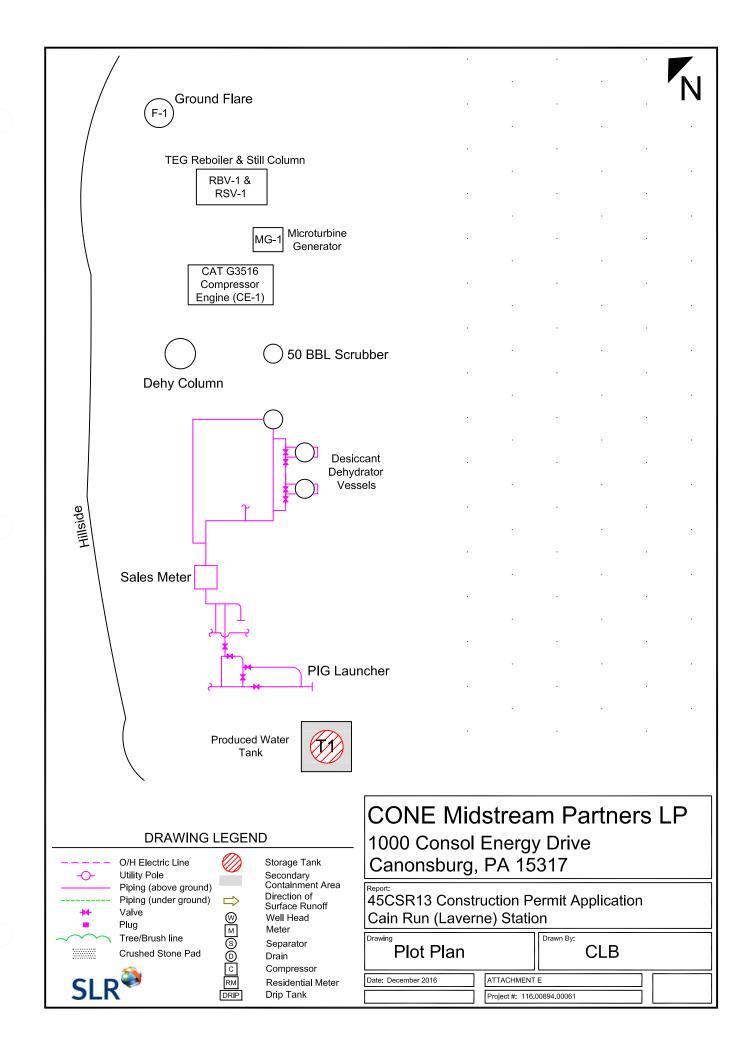
This subpart is not applicable because the facility is not a major source of HAPs.

40 CFR 63 Subpart JJJJJJ - Boilers & Process Heaters Located at Area Sources of HAPs

This subpart is not applicable because the process heater at this facility utilizes natural gas fuel, which is exempt from regulation under this area source GACT standard.

40 CFR 82 Subpart F - Ozone Depleting Substances

The purpose of this subpart is to reduce emissions of class I and class II refrigerants and their substitutes. The facility does not utilize class I and class II refrigerants or their substitutes.

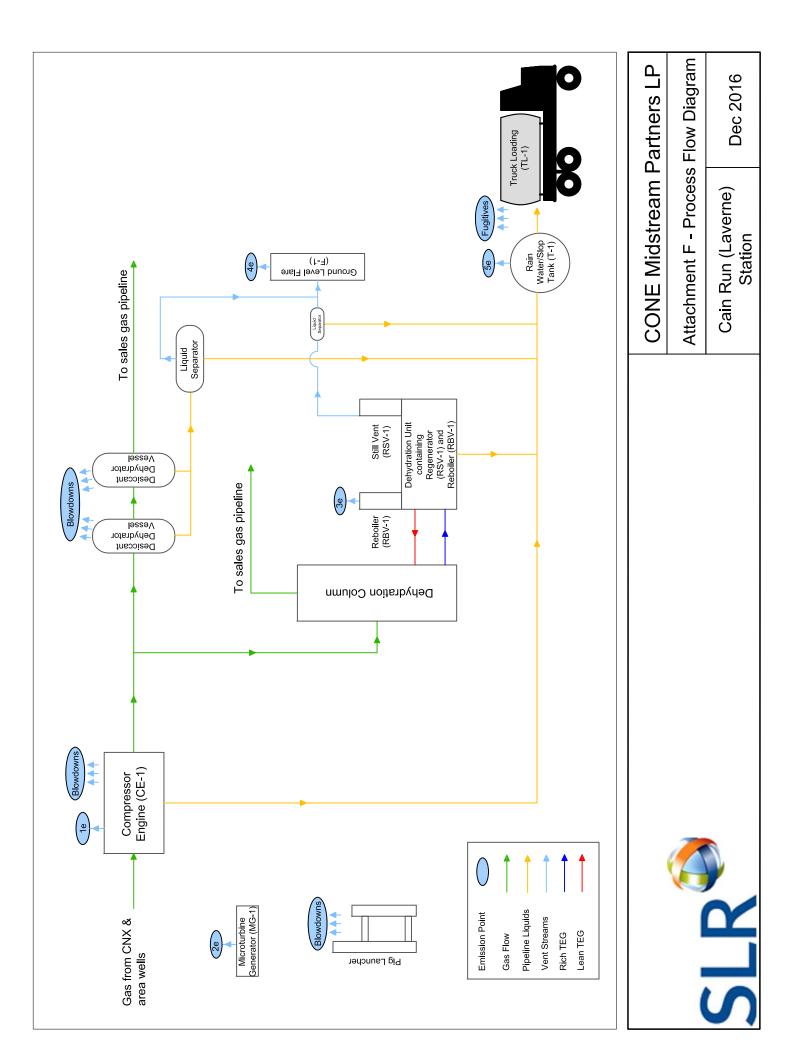

ATTACHMENT E

PLOT PLAN

45CSR13 Construction Permit Application

Cain Run (Laverne) Compressor Station New Milton, West Virginia

> CONE Midstream Partners LP 1000 Consol Energy Drive Canonsburg, PA 15317


ATTACHMENT F

PROCESS FLOW DIAGRAM

45CSR13 Construction Permit Application

Cain Run (Laverne) Compressor Station New Milton, West Virginia

> CONE Midstream Partners LP 1000 Consol Energy Drive Canonsburg, PA 15317

ATTACHMENT G

PROCESS DESCRIPTION

45CSR13 Construction Permit Application

Cain Run (Laverne) Compressor Station New Milton, West Virginia

> CONE Midstream Partners LP 1000 Consol Energy Drive Canonsburg, PA 15317

CONE Midstream Partners LP is applying for a construction permit in accordance with 45CSR13, for the operation of the Cain Run (Laverne) compression and dehydration station. The site will consist of a single Compressor, TEG dehydration unit with ground flare, 400 bbl process water tank, desiccant dehydrator vessels, PIG launcher, and a capstone microturbine generator.

The station collects gas from unconventional wells and provides compression and dehydration services. The compressor is proposed to be driven by a Caterpillar G3516BLE 4SLB engine rated for 1380 Hp and manufactured on 4-16-2012. As a result, the unit will be controlled by an oxidation catalyst to meet NSPS requirements under subpart JJJJ. The dehydration capabilities at Cain Run will consist of two options, a desiccant dehydration system which can be operated in parallel with a TEG Dehydration Column. The dehydrator vessels produce brine liquids but no direct emissions to the atmosphere with the exception of blowdown venting with respect to recharging the vessels with salt. This is assumed to be at a maximum 1 time per week. The liquids removed from the process by the desiccant dehydrator vessels and TEG Dehydrator will be stored in a single 400 barrel (bbl) storage vessel. The tank's resulting emissions will be uncontrolled as a result of containing mostly water.

The source's potential to emit was modeled using ProMax equation of state (EOS) software based on site specific gas sampling taken from the pipeline feeding the desiccant dehydrator vessels on 6-10-16. The desiccant dehydrator vessels and the pig launcher piping are currently installed at the site due to having emission below permitting thresholds.

In accordance with DAQ guidance emission potentials were evaluated and reported for truck loading, fugitive equipment leaks, pig launcher blowdown venting, compressor blowdowns and desiccant dehydrator blowdowns. The emission calculations summarized within this application show the facility's potential to emit to be no more than 14.17 tpy NOx, 29.75 tpy CO, and 14.88 tpy VOC, with HAP totals of Formaldehyde to be no more than 5.2 tpy from the engine and facility wide HAPs not exceeding 6.15 tpy.

ATTACHMENT H

SAFETY DATA SHEETS (SDS)

45CSR13 Construction Permit Application

Cain Run (Laverne) Compressor Station New Milton, West Virginia

> CONE Midstream Partners LP 1000 Consol Energy Drive Canonsburg, PA 15317

Safety Data Sheet (SDS)

Section 1 – Identification

1(a) Product Identifier used on Label: Condensate

1(b) Other Means of Identification: Natural Gas Condensate, Produced Hydrocarbons, Drip Gas, Natural Gasoline, Petroleum Crude Oil Condensates

1(c) Recommended Use of the Chemical and Restrictions on Use: Used as a petrochemical feedstock, home heating fuel and refinery blending.

1(d) Name, Address, and Telephone Number:

CONSOL Energy Inc. 1000 CONSOL Energy Drive Canonsburg, PA 15317 General information: (724) 485-4000

1(e) Emergency Phone Number: Chemtrec (800) 424-9300

Section 2 – Hazard(s) Identification

2(a) Classification of the Chemical: Condensate is considered a hazardous material according to the criteria specified in REACH [REGULATION (EC) No 1907/2006] and CLP [REGULATION (EC) No 1272/2008] and OSHA 29 CFR 1910.1200 Hazard Communication Standard. The categories of Health Hazards as defined in <u>"GLOBALLY HARMONIZED SYSTEM OF CLASSIFICATION AND LABELLING OF CHEMICALS (GHS), Third revised edition ST/SG/AC.10/30/Rev. 3" United Nations, New York and Geneva, 2009 have been evaluated. Refer to Section 3, 8 and 11 for additional information.</u>

2(b) Signal Word, Hazard Statement(s), Symbol(s) and Precautionary Statement(s):

Hazard Symbol	Hazard Classification	Signal Word	Hazard Statement(s)
	Flammable Liquid - 2		
	Germ Cell Mutagenicity - 1B Carcinogenicity - 1A Toxic Reproduction - 1B Specific Target Organ Toxicity (STOT) Following Single Exposure - 2 STOT following Repeated Exposure - 1 Aspiration - 1	Danger	Highly Flammable liquid and vapor Toxic if inhaled Causes skin irritation and serious eye irritation May cause genetic defects, cancer and damage fertility or the unborn child May cause damage to central and peripheral nervous system, lungs, liver and red blood cells
	Acute Toxicity Hazard - 3	exposures	Causes damage to the blood, spleen, and liver through prolonged or repeat exposures May be fatal if swallowed and enters airways
	Skin Corrosion/Irritation - 2 Eye Damage/ Irritation - 2A		
Precautionary	Statement(s)		
Keep away from heat/sparks/open flames/hot surfaces. No smoking. Keep container tightly closed. Ground/Bond container and receiving equipment.		0	If on skin: Wash with plenty of water If skin irritation occurs: Get medical advice/attention. Take off contaminated clothing and wash it before reuse.
	Use explosion-proof electrical/ventilating/lighting/equipment. Use only non-sparking tools.		If swallowed: Immediately call a poison center/doctor/ Do NOT induce vomiting.
Take p	precautionary measures against static disc	charge.	Obtain special instructions before use.
Wear protective gloves/protective clothing/eye protection/face protection.		ection/face	Do not handle until all safety precautions have been read and understood. Wash thoroughly after handling.
	Do not breathe dust/fume/gas/mist/ vapors/spray.		Do not eat, drink or smoke when using this product.
· ·	If exposed, concerned or feel unwell: Get medical advice/attention.		If exposed or concerned: Call a poison center or doctor. Get medical attention if you feel unwell.
If inhaled: Remove person to fresh air and keep comfortable for breathing. Call a poison center/doctor.		nortable for	Store in well-ventilated place. Keep cool. Use only outdoors or in a well-
	nse cautiously with water for several min		ventilated area. Store locked up.
	contact lenses, if present and easy to do. Continue rinsing. If eye irritation persists: Get medical advice/attention.		Dispose of contents in accordance with federal, state and local regulations.
			1.68

Section 2 – Hazard(s) Identification (continued)

2(c) Hazards not Otherwise Classified: None Known or Found

2(d) Unknown Acute Toxicity Statement (mixture): None Known or Found

Section 3 – Composition/Information on Ingredients

3(a-c) Chemical Name, Common Name (synonyms), CAS Number and Other Identifiers, and Concentration:

S(a-c) Chemical Name, Common Name (synonyms), CAS Number and Other Identifiers, and Concentration:				
Chemical Name	CAS Number	EC Number	% weight	
Natural Gas Condensate	64741-47-5	265-047-3	100	
Natural Gas Condensate is a petroleum substance comprise listed below:	ed of a complex mixture of hydrocarb	oons. Major classes of hydrocarbons con	tained in the substance are	
Hydrocarbons Aromatic	Mixture	Mixture	~ 5	
Hydrocarbons Naphthalenes	Mixture	Mixture	~ 8	
Hydrocarbons (total Paraffin and isoparaffin)	Mixture	Mixture	~ 65	
Benzene	71-43-2	200-753-7	~ 0.1	

EC - European Community

CAS - Chemical Abstract Service

Section 4 – First-aid Measures

4(a) Description of Necessary Measures: If exposed, concerned or feel unwell: Get medical advice/attention.

- Inhalation: If inhaled: Remove person to fresh air and keep comfortable for breathing. Call a poison center/doctor.
- Eye Contact: If in eyes: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. If eye irritation persists: Get medical advice/attention.
- Skin Contact: If on skin: Wash with plenty of water. If skin irritation occurs: Get medical advice/attention. Take off contaminated clothing and wash it before reuse.
- Ingestion: If swallowed: Immediately call a poison center/doctor/ DO NOT induce vomiting.

4(b) Most Important Symptoms/Effects, Acute and Delayed (chronic):

Acute Effects:

- Inhalation: Aspiration hazard, May be fatal if enters airways. May cause CNS and peripheral depression and damage to liver lungs and red blood cells.
- Eye: Causes irritation to eyes and mucous membranes.
- Skin: Causes irritation to skin.
- Ingestion: Aspiration hazard. May be fatal if swallowed.

Delayed (chronic) Effects:

• May cause genetic defects or cancer. May damage fertility or cause damage to the unborn child. Causes damage to the hematopoietic (blood) system, spleen, and liver through prolonged or repeat exposures.

4(c) Immediate Medical Attention and Special Treatment: If exposed, concerned or feel unwell: Get medical advice/attention.

Additional Information:

Primary Entry Routes: Inhalation, Ingestion, skin and eye contact.

Target Organs: Central nervous system, blood, eyes, skin lungs, and liver. Causes damage to the hematopoietic (blood) system, spleen, and liver. **Carcinogenicity:** IARC, NTP, ACGIH and OSHA list benzene as a carcinogen.

Section 5 – Fire-fighting Measures

5(a) Suitable (and unsuitable) Extinguishing Media: In case of fire: Use foam, dry powder or carbon dioxide for extinction. Do not use a solid stream of water as it may scatter and spread the fire.

5(b) Specific Hazards Arising from the Chemical: Vapors are heavier than air and may accumulate in low areas. Fire will produce irritating, corrosive and toxic gasses.

5(c) Special Protective Equipment and Precautions for Fire-Fighters: Self-contained NIOSH approved respiratory protection and full protective clothing should be worn when fumes and/or smoke from fire are present. Heat and flames cause formation of acrid smoke and fumes. Do not release runoff from fire control methods to sewers or waterways. Firefighters should wear full face-piece self-contained breathing apparatus and chemical protective clothing with thermal protection. Direct water stream will scatter and spread flames and, therefore, should not be used. Evacuate area. Remove pressurized gas cylinders from the immediate vicinity. Cool containers exposed to flames with water until well after the fire is out. Close the valve if no risk is involved. Fight fire from a protected location. Prevent buildup of vapors or gases to explosive concentrations.

Section 6 - Accidental Release Measures

6(a) Personal Precautions, Protective Equipment and Emergency Procedures: Spills of condensate will create a fire hazard and may form an explosive atmosphere. Stay up wind and away from the spill. Clean-up personnel should be protected against contact with eyes and skin. Collect material in appropriate, labeled containers for recovery or disposal in accordance with federal, state, and local regulations.

6(b) Methods and Materials for Containment and Clean Up: Collect with sand or oil absorbing materials. Collect material in appropriate, labeled containers for recovery or disposal in accordance with federal, state, and local regulations. Follow applicable OSHA regulations (29 CFR 1910.120) and all other pertinent state and federal requirements.

Section 7 - Handling and Storage

7(a) Precautions for Safe Handling: Keep away from heat/sparks/open flames/hot surfaces. No smoking. Ground/Bond container and receiving equipment. Use explosion-proof electrical/ventilating/lighting/equipment. Use only non-sparking tools. Take precautionary measures against static discharge.

7(b) Conditions for Safe Storage, Including Any Incompatibilities: Store in well-ventilated place. Keep cool. Take precautions to avoid static discharges around stored condensate. Ground storage tanks and transfer piping. Use only outdoors or in a well-ventilated area. If feasible, store locked up.

Section 8 - Exposure Controls / Personal Protection

8(a) Occupational Exposure Limits (OELs): The following exposure limits are offered as reference, for an experience industrial hygienist to review.

Ingredients	OSHA PEL ¹	ACGIH TLV ²	NIOSH REL ³	IDLH ⁴
Benzene	1.0 ppm	0.5 ppm (1.6 mg/m ³), skin	0.1 ppm (0.32 mg/m ³)	500 ppm
	"STEL" 5.0 ppm	"STEL" 2.5 ppm (8 mg/m ³)	"STEL" 1.0 ppm (3.2 mg/m ³)	

1. OSHA PEL are 8-hour TWA concentrations unless otherwise noted. A Short Term Exposure Limit (STEL) is defined in the benzene standard as: The employer shall assure that no employee is exposed to an airborne concentration of benzene in excess of five (5) ppm as averaged over any 15 minute period.

2. TLVs established by the ACGIH are 8-hour TWA concentrations unless otherwise noted. ACGIH TLVs are for guideline purposes only and as such are not legal, regulatory limits for compliance purposes. A Short Term Exposure Limit (STEL) is defined as the maximum concentration to which workers can be exposed for a short period of time (15 minutes) for only four times throughout the day with at least one hour between exposures.

- 3. The NIOSH-REL- Compendium of Policy and Statements. NIOSH, Cincinnati, OH (1992). NIOSH is the federal agency designated to conduct research relative to occupational safety and health. As is the case with ACGIH TLVs, NIOSH RELs are for guideline purposes only and as such are not legal, regulatory limits for compliance purposes.
- 4. The IDLHs are used by NIOSH as part of the respirator selection criteria and were first developed in the mid 1970's by NIOSH. The Documentation for IDLHs is a compilation of the rationale and sources of information used by NIOSH during the original determination of 387 IDLHs and their subsequent review and revision in 1994.

8(b) Appropriate Engineering Controls: Local exhaust ventilation should be used to control the emission of air contaminants. General dilution ventilation may assist with the reduction of air contaminant concentrations. Emergency eye wash stations and deluge safety showers should be available in the work area.

8(c) Individual Protection Measures:

• **Respiratory Protection:** Seek professional advice prior to respirator selection and use. Follow OSHA respirator regulations (29 CFR 1910.134) and, if necessary, use only a NIOSH-approved respirator. Select respirator based on its suitability to provide adequate worker protection for given working conditions, level of airborne contamination, and presence of sufficient oxygen. Concentration in air of the various contaminants determines the extent of respiratory protection needed. Half-mask negative-pressure, air-purifying respirator equipped with organic vapor cartridge is acceptable for concentrations up to 10 times the exposure limit. Full-face negative-pressure air purifying respirator equipped with organic vapor cartridges is acceptable for concentrations up to 50 times the exposure limit. Protection by air purifying both negative-pressure and powered air respirators is limited. Use a positive-pressure-demand, full-face, supplied air respirator or self contained breathing apparatus (SCBA) for concentrations above 50 times the exposure limit. If exposure is above the IDLH (Immediately dangerous to life or health) for any of the constituents, or there is a possibility of an uncontrolled release or exposure levels are unknown, then use a positive-demand, full-face, supplied air respirator with escape bottle or SCBA.

Warning! Air-purifying respirators both negative-pressure, and powered-air do not protect workers in oxygen-deficient atmospheres.

- Eyes: Employees should be required to wear chemical safety glasses to prevent eye contact. A face shield should be used when appropriate to prevent contact with splashed materials. Chemical goggles, face shields or glasses should be worn to prevent eye contact. Contact lenses should not be worn where industrial exposure to this material is likely.
- Skin: Persons handling this product should wear appropriate clothing to prevent skin contact. Contaminated work clothing should not be allowed out of the workplace. Wash contaminated clothing before reuse. Wear protective gloves. Chemical goggles, face shields or glasses should be worn to prevent eye contact. Contact lenses should not be worn where industrial exposure to this material is likely. Wash skin that has been exposed with soap and water.
- Other Protective Equipment: An eyewash fountain and deluge shower should be readily available in the work area.

Section 9 - Physical and Chemical Properties

9(a) Appearance (physical state, color, etc.): Colorless to amber	9(j) Upper/lower Flammability or Explosive Limits: 10% / 1%
liquid	
9(b) Odor: gasoline - like	9(k) Vapor Pressure: 200-500 mmHg@68°F

Section 9 - Physical and Chemical Properties (continued)

9(c) Odor Threshold: NA	9(1) Vapor Density (Air = 1): ND
9(d) pH: NA	9(m) Relative Density: 6.25 lbs/gal (Bulk Density)
9(e) Melting Point/Freezing Point: NA	9(n) Solubility(ies): ND
9(f) Initial Boiling Point and Boiling Range: 96.8 - 258 °F (36-125.6 °C)	9(o) Partition Coefficient n-octanol/water: ND
9(g) Flash Point: <-50°F (<-45.6 °C)	9(p) Auto-ignition Temperature: ND
9(h) Evaporation Rate: NA	9(q) Decomposition Temperature: ND
9(i) Flammability (liquid): Highly Flammable	9(r) Viscosity: ND
NA - Not Applicable	
ND - Not Determined for product as a whole	

Section 10 - Stability and Reactivity

10(a) Reactivity: Not Determined (ND) for product as a whole.

10(b) Chemical Stability: Stable under normal storage and handling conditions.

10(c) Possibility of Hazardous Reaction: No Data Found

10(d) Conditions to Avoid: Storage with incompatible materials. Avoid heat, flame, or ignition sources.

10(e) Incompatible Materials: Strong acids and oxidizing agents.

10(f) Hazardous Decomposition Products: Can produce carbon dioxide and carbon monoxide.

Section 11 - Toxicological Information

11(a-e) Information on Toxicological Effects: The following toxicity data have been determined using the information available for its components applied to the guidance on the preparation of an SDS under the GHS requirements of OSHA and the EU CPL:

Hazard Classification	Hazard Category		Hazard	Circul Ward	IId Statement
Hazaru Classification	EU*	OSHA	Symbols	Signal Word	Hazard Statement
Acute Toxicity Hazard (covers Categories 1-5)	NA**	3ª		Danger	Toxic if inhaled
Skin Corrosion/Irritation (covers Categories 1A, 1B, 1C and 2)	2	2 ^b	(!)	Warning	Causes skin irritation
Eye Damage/ Irritation (covers Categories 1, 2A and 2B)	NA**	2A ^c		Warning	Causes serious eye irritation
Skin/Dermal Sensitization (covers Category 1)	NA**	NA**	NA**	NA**	NA**
Germ Cell Mutagenicity (covers Categories 1A, 1B and 2)	1B	$1B^d$		Danger	May cause genetic defects
Carcinogenicity (covers Categories 1A, 1B and 2)	1B	1A ^e		Danger	May cause cancer
Toxic Reproduction (covers Categories 1A, 1B and 2)	NA**	$1B^{\rm f}$		Danger	May damage fertility or the unborn child
Specific Target Organ Toxicity (STOT) Following Single Exposure (covers Categories 1-3)	NA**	2 ^g		Warning	May cause CNS and Peripheral depression, and damage lung liver (vacuoled hepatocytes) and red blood cells
STOT following Repeated Exposure (covers Categories 1 and 2)	NA**	1 ^h		Warning	May cause damage to the Hematopoietic system, spleen, liver through prolonged or repeat exposures
Aspiration (covers category 1)	1	1		Danger	May be fatal if swallowed and enters the airway

*Natural Gas Condensate has been harmonized as - Base classification: High Benzene Naphtha, flashpoint $< 23^{\circ}$ C and initial boiling point $\ge 35^{\circ}$ C, benzene or 1,3-butadiene $\ge 0.1\%$, naphthalene < 25%.

** Not Applicable - Many categories have conclusive but not sufficient for classification information.

Section 11 - Toxicological Information (continued)	
11(a-e) Information on toxicological effects (continued):	
a. The following LC_{50} or LD_{50} has been established for Condensate as a mixture:	
• Rat (4 hr) $LC_{50} > 5.2 \text{ mg/L}$	
• Rat (4 hr) $LC_{50} > 5.81 \text{ mg/L}$	
• Rat (4 hr) LC ₅₀ >5.2 mg/L	
b. The following Skin Corrosion/Irritation information was found for Condensate as a mixture:	
• Rabbit – Slightly irritating.	
Rabbit - Irritating but not corrosive.	
 c. The following Eye Damage/Irritation information was found for Condensate as a mixture: Rabbit – Slightly irritating. 	
d. No Germ Cell Mutagenicity data available for Condensate as a mixture. The following Germ Cell Mutagenicity information was found for the components:	
Benzene - Positive with activation. Positive In vitro Clastogenicity.	
e. No Carcinogenicity data available for Condensate as a mixture. The following Carcinogenicity information was found for the components:	
Benzene - Listed as class 1 carcinogen by the NTP, IARC, EPA and ACGIH.	
f. No Reproductive Toxicity data available for Condensate as a mixture. The following Reproductive Toxicity information was found for the components:	
• Benzene - NOAEC for both adult and offspring toxicity and female fertility. 300ppm (960 mg/m ³). NOAEC for maternal toxicity as teratogenicity was 100 ppm (320 mg/m ³). The NOAEC for slight fetotoxicity was 40 ppm (128 mg/m ³).	
g. No Specific Target Organ Toxicity (STOT) following Single Exposure data available for Condensate as a mixture. The following STC following Single Exposure information was found for the components:	
• Benzene - CNS and peripheral Depression, lung liver (vacuoled hepatocytes) and red blood cells may be effected.	
h. No Specific Target Organ Toxicity (STOT) following Repeated Exposure data available for Condensate as a mixture. The following STOT following Repeated Exposure data is available for the components:	
 Benzene - Spleen hematopoiesis, Liver, lung kidney effects are specific to male Rat. Early signs and symptoms of chronic overexposure inclue effects on CNS & the GI tract (headache, loss of appetite, drowsiness, nervousness, & pallor) but the major manifestation of toxicity is aplass anemia. Bone marrow depression may occur resulting in leucopoenia, anemia, or thrombocytopenia (leukemogenic action). With continue exposure the disease states may progress to pancytopenia resulting from bone marrow aplasia. Evidence has linked benzene in the etiology leukemia. 	
The above toxicity information was determined from available scientific sources to illustrate the prevailing posture of the scientific community. The scientific resources includes: T American Conference of Governmental Industrial Hygienist (ACGIH) Documentation of the Threshold Limit Values (TLVs) and Biological Exposure indices (BEIs) with Other Worldwi Occupational Exposure Values 2009, The International Agency for Research on Cancer (IARC), The National Toxicology Program (NTP) updated documentation, the World Hea Organization (WHO) and other available resources, the International Uniform Chemical Information Database (IUCLID), European Union Risk Assessment Report (EU-RAR), Conc International Chemical Assessment Documents (CICAD), European Union Scientific Committee for Occupational Exposure Limits (EU-SCOEL), Agency for Toxic Substances a Disease Registry (ATSDR), Hazardous Substance Data Bank (HSDB), and International Programme on Chemical Safety (IPCS).	
Section 12 - Ecological Information	
12(a) Ecotoxicity (aquatic & terrestrial): No Data Found	
12(b) Persistence & Degradability: Loss due to volatility. Not readily biodegradable but is inherently biodegradable by microorganisms.	
12(c) Bioaccumulative Potential: No Data Found	
12(d) Mobility (in soil): Will float on water and will volatilize in air.	
12(e) Other adverse effects: No Data Found	
Additional Information:	
Hazard Category: Not Reported Signal Word: No Signal Word	
Hazard Symbol:	
Hazard Statement: No Statement	
Section 13 - Disposal Considerations	
Disposal: Waste code D001: Waste Flammable material with a flash point <140°F. This material and its container must be disposed of a	
hazardous waste. Under RCRA, it is the responsibility of the user of the product to determine, at the time of disposal, whether the product mee RCRA criteria for hazardous waste. European Waste Catalogue (EWC): 05-01-99 (waste from petroleum refining).	

Container Cleaning and Disposal: Containers should be completely empty prior to discarding. Dispose of contents in accordance with federal, state and local regulations. Observe safe handling precautions.

Please note this information is for Condensate in its original form. Any alterations can void this information.

Section 14 - Transportation Information

14(a-g) Transportation Information:

US DOT under 49 CFR 172.101 regulates Condensate as a hazardous material. All federal, state, and local laws and regulations that apply to the transport of this type of material must be adhered to. Shipping Name: RQ, UN3295, Hydrocarbon, Liquid, N.O.S. **Packaging Authorizations Ouantity Limitations** a) Exceptions: 150 PGIII (Benzene) a) Passenger, Aircraft, or Railcar: 60L Shipping Symbols: Flammable Liquid b) Non-Bulk: 203 b) Cargo Aircraft Only: 220L Hazard Class: 3 c) Bulk: 242 **Vessel Stowage Requirements** UN No.: UN3295 a) Vessel Stowage: A Packing Group: III b) Other: NA DOT/ IMO Label: 3 DOT Reportable Quantities: 10 lbs. Special Provisions (172.102): 144, B1, IB3, T4, TP1, TP29 IMDG and RID classification, packaging and shipping requirements follow the US DOT Hazardous Materials Regulation. ADR regulates Condensate as a hazardous material. Shipping Name: Hydrocarbons, Liquid, N.O.S. Portable Tanks & Bulk Containers Packaging **Classification Code: 3** a) Packing Instructions: P001, LP01 a) Instructions: T4 UN No.: 3295 b) Special Packing Provisions: NA b) Special Provisions: TP1, TP29 Packing Group: III c) Mixed Packing Provisions: NA ADR Label: Flammable Liquid Special Provisions: 223 Limited Quantities: 5L Excepted Quantities (EQ): E1 IATA regulates Condensate as a hazardous material. Shipping Name: Hydrocarbons, Liquid, N.O.S. Cargo Aircraft Only **Special Provisions:** Passenger & Cargo Aircraft A3 Class/Division: 3 Limited Quantity (EQ) Pkg Inst: 303 ERG Code: 3H Hazard Label (s): Flammable Liquid Pkg Inst: Pkg Inst: 302 Max Net Qty/Pkg: 30 Forbidden Max Net Qty/Pkg: L UN No.: 3295 Max Net Otv/Pkg: 1L Packing Group: 1 Forbidden Excepted Quantities (EQ): E3 Pkg Inst - Packing Instructions Max Net Qty/Pkg - Maximum Net Quantity per Package ERG - Emergency Response Drill Code TDG Classification: Condensate does have a TDG classification. **Section 15 - Regulatory Information** Regulatory Information: The following listing of regulations relating to a CONSOL Energy Inc. product may not be complete and should not be solely relied upon for all regulatory compliance responsibilities. This product and/or its constituents are subject to the following regulations: OSHA Regulations: Air Contaminant (29 CFR 1910.1000, Table Z-1, Z-2, Z-3): The product, Condensate as a whole is not listed. However, individual components of the product are listed: Refer to Section 8, Exposure Controls and Personal Protection EPA Regulations: Condensate is not listed as a whole. However, individual components of the product are listed: Components Regulations SARA 313, CERCLA, RCRA, SDWA, CWA, CAA Benzene SARA Potential Hazard Categories: Immediate Acute Health Hazard, Delayed Chronic Health Hazard, Fire Hazard **Regulations Key:** CAA Clean Air Act (42 USC Sec. 7412; 40 CFR Part 61 [As of: 8/18/06]) CERCLA Comprehensive Environmental Response, Compensation and Liability Act (42 USC Secs. 9601(14), 9603(a); 40 CFR Sec. 302.4, Table 302.4, Table 302.4 and App. A) CWA Clean Water Act (33 USC Secs. 1311; 1314(b), (c), (e), (g); 136(b), (c); 137(b), (c) [as of 8/2/06]) RCRA Resource Conservation Recovery Act (42 USC Sec. 6921; 40 CFR Part 261 App VIII) SARA Superfund Amendments and Reauthorization Act of 1986 Title III Section 302 Extremely Hazardous Substances (42 USC Secs. 11023, 13106; 40 CFR Sec. 372.65) and Section 313 Toxic Chemicals (42 USC Secs. 11023, 13106; 40 CFR Sec. 372.65 [as of 6/30/05]) TSCA Toxic Substance Control Act (15 U.S.C. s/s 2601 et seq. [1976]) SDWA Safe Drinking Water Act (42 U.S.C. s/s 300f et seq. [1974])

Section 313 Supplier Notification: This product, Condensate contains the following toxic chemicals subject to the reporting requirements of section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 and 40 CFR part 372:

CAS #	Chemical Name	Percent by Weight
71-43-2	Benzene	0.1

	Section 15 - Regulatory Information (continued)				
Regulato	Regulatory Information (continued):				
State Regulations: The product, Condensate as a whole is not listed in any state regulations. However, individual components of the product are listed in various state regulations:					
	Pennsylvania Right to Know: Contains regulated material in the following categories:				
-	Environmental Hazards: Benzene				
• Spe	cial Hazardous Substance: Benzene				
California	a Prop. 65: This product contains materials known to the Sta	te of Californ	ia to cause cancer. Benzene		
New Jerse	ey: Contains regulated material in the following categories:	Hazardous Su	ibstance: Benzene		
Minnesot	a: Benzene				
Massachu	isetts: Benzene				
	Other Regulations: WHMIS Classification (Canadian): Condensate is not listed as a whole. However individual components are listed.				
	redients WHMIS Classification				
	nzene D-2A, D-2B, B-2				
		Products Regulat	ions and the SDS contains all the information required by the Controlled Products		
Regulations.		_			
	Section 16 -	Other Info	ormation		
Prepared	By: CONSOL Energy Inc.	Issue	Date: 8/12/2013		
	al Information:				
HMIS CI	assification	NFP	A		
Health H	Hazard 2		3		
Fire Haz	zard 3	2	1		
Physica	l Hazard 1				
		UEAL	\sim		
	 Temporary or minor injury may occur. Materials capable of ignition under almost all normal temperature cond 		TH = 2 , Intense or continued exposure could cause temporary incapacitation or le residual injury unless prompt medical attention is given.		
Includes flan	mmable liquids with flash points below 73 °F and boiling points above 100		= 3, Liquids and solids that can be ignited under almost all ambient conditions.		
-	ds with flash points between 73 °F and 100 °F. (Classes IB & IC). HAZARD = 1 , Materials that are normally stable but can become unstable		ABILITY = 1, Normally stable, but can become unstable at elevated temperatures essures or may react with water with some release of energy, but not violently.		
	the temperatures and pressures. Materials may react non-violently with we		essures of may react with water with some release of energy, but not violently.		
undergo haz	ardous polymerization in the absence of inhibitors.				
ABBREV	/IATIONS/ACRONYMS:				
ACGIH	American Conference of Governmental Industrial Hygienists	mg/m ³	milligram per cubic meter of air		
ADR	Regulations Concerning the International Carriage of Dangerous Goods by Road	NFPA	National Fire Protection Association		
CAS	Chemical Abstracts Service	NIOSH	National Institute for Occupational Safety and Health		
CERCLA	Comprehensive Environmental Response, Compensation, and	NOAEC	No Observed Adverse Effect Concentration		
	Liability Act				
CFR	Code of Federal Regulations	NTP	National Toxicology Program		
CNS	Central Nervous System	OSHA	Occupational Safety and Health Administration		
CPL DOT	Classification, Labeling and Packaging	PEL	Permissible Exposure Limit		
EC	Department of Transportation	ppm RCRA	parts per million Pacoura Concernation and Pacoura Act		
EU	European Community European Union	REACH	Resource Conservation and Recovery Act Registration, Evaluation, Authorization and Restriction of Chemical		
Le		REATON	substances.		
EWC	European Waste Catalogue	RID	Regulations Concerning the International Carriage of Dangerous		
CLOT	Castro Intestinal Castro Intestinal Tract	DEI	Goods by Rail		
GI, GIT GHS	Gastro-Intestinal, Gastro-Intestinal Tract Globally Harmonized System	REL SDS	Recommended Exposure Limits Safety Data Sheet		
HMIS			Superfund Amendment and Reauthorization Act		
IARC	· ·		Self-contained Breathing Apparatus		
IATA	International Air Transport Association	SCBA STEL	Short Term Exposure Limit		
IDLH	Immediately Dangerous to Life or Health	TDG	Transport Dangerous Goods		
IMDG			Threshold Limit Value		
LC50			Time-weighted Average		
	1	TWA			

Section 16 - Other Information (continued)

ABBREVIATIONS/ACRONYMS (continued):

MSHA	Mine Safety and Health Administration
mg/L	milligram per liter
-	

WHMIS Workplace Hazardous Materials Information System

Disclaimer: This information is taken from sources or based upon data believed to be reliable. Our objective in sending this information is to help you protect the health and safety of your personnel and to comply with the OSHA Hazard Communication Standard and Title III of the Superfund Amendment and Reauthorization Act of 1986. CONSOL Energy Inc. makes no warranty as to the absolute correctness, completeness, or sufficiency of any of the foregoing, or any additional, or other measures that may be required under particular conditions. CONSOL Energy Inc. MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING THE IMPLIED WARRANTY OF MERCHANTABILITY, OR ANY IMPLIED WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE, AND ANY IMPLIED WARRANTIES OTHERWISE ARISING FROM COURSE OF DEALING OR TRADE.

Product Name:Processed Natural GasProduct Code:NonePage 1 of 8

1. CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

Product Name: Processed Natural Gas Product Code: None Synonyms: Dry Gas Generic Name: Natural Gas Chemical Family: Paraffin hydrocarbon

Responsible Party: Unocal Corporation Union Oil Company of California 14141 Southwest Freeway Sugar Land, Texas 77478

For further information contact MSDS Coordinator 8am - 4pm Central Time, Mon - Fri: 281-287-5310

EMERGENCY OVERVIEW

24 Hour Emergency Telephone Numbers:

For Chemical Emergencies: Spill, Leak, Fire or Accident Call CHEMTREC North America: (800)424-9300 Others: (703)527-3887(collect)

For Health Emergencies: California Poison Control System (800)356-3129

Health Hazards: Use with adequate ventilation.

Physical Hazards: Flammable gas. Can cause flash fire. Gas displaces oxygen available for breathing. Keep away from heat, sparks, flames, or other sources of ignition (e.g., static electricity, pilot lights, mechanical/electrical equipment). Do not enter storage areas or confined space unless adequately ventilated.

- < Physical Form: Gas
- < Appearance: Colorless
- < Odor: Odorless in the absence of H2S or mercaptans

NFPA HAZARD CLASS: Health: 1 (Slight) Flammability: 4 (Extreme) Reactivity: 0 (Least)

Issue Date: 03/18/03 Revised Sections: 1, 3

Status: Final Revised

UNOCAL	
Processed Natural Gas	
None	Page 2 of 8
	Processed Natural Gas

2. COMPOSITION/INFORMATION ON INGREDIENTS

HAZARDOUS COMPONENTS	% Weight	EXPO	SURE GUIDE	LINE
		Limits	Agency	Туре
Methane CAS# 74-82-8	98	1000 ppm	MSHA	TWA
Carbon Dioxide CAS# 124-38-9	0-5		ACGIH OSHA	
Nitrogen CAS# 7727-37-9	0-5	1000 ppm	MSHA	TWA
Ethane CAS# 74-84-0	1	1000 ppm	MSHA	TWA

Note: State, local or other agencies or advisory groups may have established more stringent limits. Consult an industrial hygienist or similar professional, or your local agencies, for further information.

3. HAZARDS IDENTIFICATION

POTENTIAL HEALTH EFFECTS:

Eye: Not expected to be an eye irritant.

Skin: Skin contact is unlikely. Skin absorption is unlikely.

- Inhalation (Breathing): Asphyxiant. High concentrations in confined spaces may limit oxygen available for breathing.
- Signs and Symptoms: Light hydrocarbon gases are simple asphyxiants which, at high enough concentrations, can reduce the amount of oxygen available for breathing. Symptoms of overexposure can include shortness of breath, drowsiness, headaches, confusion,

Issue Date: 03/18/03	Status: Final Revised
Revised Sections: 1, 3	

Page 3 of 8

decreased coordination, visual disturbances and vomiting, and are reversible if exposure is stopped. Continued exposure can lead to hypoxia (inadequate oxygen), cyanosis (bluish discoloration of the skin), numbness of the extremities, unconsciousness and death. High concentrations of carbon dioxide can increase heart rate and blood pressure.

Cancer: No data available.

Target Organs: No data available.

Developmental: Limited data - See Other Comments, below.

Other Comments: High concentrations may reduce the amount of oxygen available for breathing, especially in confined spaces. Hypoxia (inadequate oxygen) and respiratory acidosis (increased carbon dioxide in blood), during pregnancy may have adverse effects on the developing fetus. Exposure during pregnancy to high concentrations of carbon monoxide, which is produced during the combustion of hydrocarbon gases, can also cause harm to the developing fetus.

Pre-Existing Medical Conditions: None known.

4. FIRST AID MEASURES

Eye: If irritation or redness develops, move victim away from exposure and into fresh air. Flush eyes with clean water. If symptoms persist, seek medical attention.

Skin: First aid is not normally required. However, it is good practice to wash any chemical from the skin.

Inhalation (Breathing): If respiratory symptoms develop, move victim away from source of exposure and into fresh air. If symptoms persist, seek medical attention. If victim is not breathing, immediately begin artificial respiration. If breathing difficulties develop, oxygen should be administered by qualified personnel. Seek immediate medical attention.

Issue Date: 03/18/03	Status: Final Revi	sed
Revised Sections: 1, 3		

UNOCAL	
ONOCAL	

Product Nam	ne: Process	sed Natural G	as
Product Cod	le: None		

Page 4 of 8

5. FIRE FIGHTING MEASURES

Flammable Properties: Flash Point: Not applicable (gas) OSHA Flammability Class: Flammable gas LEL / UEL: No data Autoignition Temperature: 800-1000°F

- Unusual Fire & Explosion Hazards: This material is flammable and may be ignited by heat, sparks, flames, or other sources of ignition (e.g., static electricity, pilot lights, or mechanical/electrical equipment). Vapors may travel considerable distances to a source of ignition where they can ignite, flashback, or explode. May create vapor/air explosion hazard indoors, outdoors, or in sewers. If container is not properly cooled, it can rupture in the heat of a fire. Closed containers exposed t extreme heat can rupture due to pressure buildup.
- **Extinguishing Media:** Dry chemical or carbon dioxide is recommended. Carbon dioxide can displace oxygen. Use caution when applying carbon dioxide in confined spaces.
- Fire Fighting Instructions: For fires beyond the incipient stage, emergency responders in the immediate hazard area should wear When the potential chemical hazard is unknown, in bunker gear. enclosed or confined spaces, or when explicitly required by DOT, a self-contained breathing apparatus should be worn. In addition, wear other appropriate protective equipment as conditions warrant (see Section 8). Isolate immediate hazard area, keep unauthorized personnel out. Stop spill/release if it can be done with minimal risk. If this cannot be done, allow fire to burn. Move undamaged containers from immediate hazard area if it can be done with minimal risk. Stay away from ends of container. Water spray may be useful in minimizing or dispersing vapors. Cool equipment exposed to fire with water, if it can be done with minimal risk.

6. ACCIDENTAL RELEASE MEASURES

Flammable. Keep all sources of ignition and hot metal surfaces away from spill/release. The use of explosion-proof equipment is recommended. Stay upwind and away from spill/release. Notify persons down wind of spill/release, isolate immediate hazard area and keep unauthorized personnel out. Stop spill/release if it can be done with

Issue Date: 03/18/03 Revised Sections: 1, 3 Status: Final Revised

UNOCAL				
rocessed Natural Gas			-	
one	Page	5	of	8
	rocessed Natural Gas	rocessed Natural Gas	rocessed Natural Gas	rocessed Natural Gas

minimal risk. Wear appropriate protective equipment including respiratory protection as conditions warrant (see Section 8). Notify fire authorities and appropriate federal, state, and local agencies. Water spray may be useful in minimizing or dispersing vapors (see Section 5).

7. HANDLING AND STORAGE

- Handling: The use of explosion-proof equipment is recommended and may be required (see appropriate fire codes). Do not enter confined spaces such as tanks or pits without following proper entry procedures such as ASTM D-4276 and 29CFR 1910.146. The use of appropriate respiratory protection is advised when concentrations exceed any established exposure limits (see Section 2 and 8). Use good personal hygiene practice.
- Storage: Keep container(s) tightly closed. Use and store this
 material in cool, dry, well-ventilated areas away from heat,
 direct sunlight, hot metal surfaces, and all sources of ignition.
 Post area "No Smoking or Open Flame." Store only in approved
 containers. Keep away from any incompatible material (see
 Section 10). Protect container(s) against physical damage.
 Outdoor or detached storage is preferred.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Engineering controls: If current ventilation practices are not adequate to maintain airborne concentrations below the established exposure limits (see Section 2), additional ventilation or exhaust systems may be required. Where explosive mixtures may be present, electrical systems safe for such locations must be used (see appropriate electrical codes).

Personal Protective Equipment (PPE):

- Respiratory: Wear a positive pressure air supplied respirator in oxygen deficient environments (oxygen content <19.5%). A respiratory protection program that meets OSHA's 29 CFR 1910.134 and ANSI Z88.2 requirements must be followed whenever workplace conditions warrant a respirator's use.
- Skin: Not required based on the hazards of the material. However, it is considered good practice to wear gloves when handling chemicals.

Issue Date: 03/18/03	Status: Final Revised
Revised Sections: 1, 3	

	UNOCAL	
Product Name:	Processed Natural Gas	
Product Code:	None	Page 6 of 8

Eye/Face: While contact with this material is not expected to cause irritation, the use of approved eye protection to safeguard against potential eye contact is considered good practice.

Other Protective Equipment: A source of clean water should be available in the work area for flushing eyes and skin. Impervious clothing should be worn as needed. Self-contained respirators should be available for non-routine and emergency situations.

9. PHYSICAL AND CHEMICAL PROPERTIES

Note: Unless otherwise stated, values are determined at 20°C (68°F) and 760 mm Hg (1 atm).

Flash Point: Not applicable (gas)
Flammable/Explosive Limits (%): No data
Autoignition Temperature: 800-1000°F
Appearance: Colorless
Physical State: Gas
Odor: Odorless in the absence of H2S or mercaptans
Vapor Pressure (mm Hg): No data
Vapor Density (air=1): <1
Boiling Point: -259°F
Freezing/Melting Point: No data
Solubility in Water: Slight
Specific Gravity: 0.30+ (Air=1)
Percent Volatile: 100 vol.%
Evaporation Rate (nBuAc=1): N/A (Gas)</pre>

10. STABILITY AND REACTIVITY

Chemical Stability: Stable under normal conditions of storage and
handling.
Conditions To Avoid: Avoid all possible sources of ignition (see
Sections 5 & 7).
Incompatible Materials, Anoid contest with
Incompatible Materials: Avoid contact with strong oxidizing agents.
Hazardous Decomposition Products: Combustion can yield carbon dioxide
i i i i i i i i i i i i i i i i i i i
and carbon monoxide.
Issue Date: 03/18/03 Status: Final Revised
Revised Sections: 1, 3

UNOCAL

Product 1	Name:	Processed	Natural	Gas
Product (Code:	None		

Page 7 of 8

Hazardous Polymerization: Will not occur.

11. TOXICOLOGICAL INFORMATION

No definitive information available on carcinogenicity, mutagenicity, target organs or developmental toxicity.

12. DISPOSAL CONSIDERATIONS

This material, if discarded as produced, would be a RCRA "characteristic" hazardous waste due to the characteristic(s) of ignitability (D001). If the material is spilled to soil or water, characteristic testing of the contaminated materials is recommended. Further, this material is subject to the land disposal restriction in 40 CFR 268.40 and may require treatment prior to disposal to meet specific standards. Consult state and local regulations to determine whether they are more stringent than the federal requirements.

Container contents should be completely used and containers should be emptied prior to discard. Container rinsate could be considered a RCRA hazardous waste and must be disposed of with care and in full compliance with federal, state and local regulations. Larger empty containers, such as drums, should be returned to the distributor or to a drum reconditioner. To assure proper disposal of smaller empty containers, consult with state and local regulations and disposal authorities.

13. TRANSPORT INFORMATION

DOT Proper Shipping Name / Technical Name: Hydrocarbon Gas, Liquified N.O.S. (Methane) Hazard Class or Division: 2.1 ID #: UN1965

14. REGULATORY INFORMATION

This material contains the following chemicals subject to the reporting requirements of **SARA 313** and 40 CFR 372:

--None--Warning: This material contains the following chemicals which are known to the State of California to cause cancer, birth defects or

Issue Da		03/18	3/03		
Revised	Sect:	ions:	1,	3	

Status: Final Revised

UNOCAL

Product Name:	Processed Natural Gas	
Product Code:	None	Page 8 of 8

other reproductive harm, and are subject to the requirements of **California Proposition 65** (CA Health & Safety Code Section 25249.5):

--None Known--

This material has not been identified as a carcinogen by NTP, IARC, or OSHA.

EPA (CERCLA) Reportable Quantity: -- None--

15. DOCUMENTARY INFORMATION

Issue Date: 03/18/03 Previous Issue Date: 11/29/99 Product Code: None Previous Product Code: None

16. DISCLAIMER OF EXPRESSED AND IMPLIED WARRANTIES

The information in this document is believed to be correct as of the date issued. HOWEVER, NO WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY OTHER WARRANTY IS EXPRESSED OR IS TO BE IMPLIED REGARDING THE ACCURACY OR COMPLETENESS OF THIS INFORMATION, THE RESULTS TO BE OBTAINED FROM THE USE OF THIS INFORMATION OR THE PRODUCT, THE SAFETY OF THIS PRODUCT, OR THE HAZARDS RELATED TO ITS USE. This information and product are furnished on the condition that the person receiving them shall make his own determination as to the suitability of the product for his particular purpose and on the condition that he assume the risk of his use thereof.

Issue Date: 03/18/03 Revised Sections: 1, 3

Status: Final Revised

ATTACHMENT I

EMISSION UNITS TABLE

45CSR13 Construction Permit Application

Cain Run (Laverne) Compressor Station New Milton, West Virginia

> CONE Midstream Partners LP 1000 Consol Energy Drive Canonsburg, PA 15317

> > February 2017

Attachment I

Emission Units Table

(includes all emission units and air pollution control devices

that will be part of this permit application review, regardless of permitting status)

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
CE-1	1e	Cat G3516 Compressor Engine	2017	1380 Hp	New	C1
MG-1	2e	30 kW MicroTurbine Generator 2017 30		30 kW	New	None
RBV-1	3e	TEG Reboiler	2017	0.375 MMBtu/hr	New	None
RSV-1	4e	TEG Dehy Still Vent	2017	20 MMscf/d	New	F-1
F-1	4e	Ground Flare	2017	2 MMBtu/hr	New	APCD
T1	5e	Produced Water Tank	2017	400 BBL	New	None
TL-1	Fugitives	Truck Loading	2017	16,800 gal/yr	New	None
CE-1	Blowdowns	Compressor Blowdown	2017	6,163 scf/event	New	None
PIG Launcher	Blowdowns	Piping Blowdown for PIG	2017	4,133 scf/event	New	None
Desiccant Dehy	Blowdowns	Blowdowns for Desiccant Dehydrator Vessels	2017	13,650 scf/event	New	None

¹ For Emission Units (or <u>Sources</u>) use the following numbering system:1S, 2S, 3S,... or other appropriate designation. ² For <u>E</u>mission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

³New, modification, removal

⁴ For <u>Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.</u>

ATTACHMENT J

EMISSION POINTS DATA SUMMARY SHEET

45CSR13 Construction Permit Application

Cain Run (Laverne) Compressor Station New Milton, West Virginia

> CONE Midstream Partners LP 1000 Consol Energy Drive Canonsburg, PA 15317

> > February 2017

Attachment J EMISSION POINTS DATA SUMMARY SHEET

	Emission 7 Concentration 7 (ppmv or mg/m ⁴)		Can Supply Upon Request	Can Supply Upon Request	Can Supply Upon Request	Can Supply Upon Request	Can Supply Upon Request
	Est. Method Used ⁶		EE	EE	EE	EE	EE
	Emission Form or Phase (At exit conditions,	Solid, Liquid or Gas/Vapor)	Gas/ Vapor	Gas/ Vapor	Gas/ Vapor	Gas/ Vapor	Gas/ Vapor
	Maximum Potential Controlled Emissions ⁵	ton/yr	- 26.65 9.33 - - -	ı	ı	- - 1.23 - 0.05 0.06 0.02 0.02 0.18 0.18	
	Maxi Pote Contr Emiss	lb/hr	- 6.08 2.13 - - -	ı	r	- - 0.29 - - 0.01 0.00 0.00 0.00 0.03 234	·
	Maximum Potential Uncontrolled Emissions ⁴	ton/yr	13.33 39.98 13.06 0.03 0.45 5.20 6.14 6.14	0.08 0.24 0.03 222	0.16 0.14 0.01 0.00 0.01 192	0.60 2.73 30.6 0.04 0.00 0.90 0.90 3.10 0.90 3.10 2.90 2.90 1.10 8.8	0.00
Data	Maxi Pote Uncon Emiss	lb/hr	3.04 9.13 2.98 0.01 0.10 1.19 1.40 1.745	0.02 0.05 0.01 51	0.04 0.03 0.00 0.00 44	0.14 7.00 7.00 0.09 0.20 0.20 0.20 0.20 2.00 2.00	0.00
Table 1: Emissions Data	All Regulated Pollutants - Chemical Name/CAS ³	& HAPS)	NO _X CO VOC SO ₂ PM ₁₀ CH2O HAPs CO2e	NO _X CO COCC	NO _X CO VOC SO ₂ PM ₁₀ CO2e	NO _X CO VOC SO ₂ PM ₁₀ Benzene Toluene Ethylbenzene Xylene n-Hexane HAPs CO2e	VOC
able 1:	Vent Time for Emission Unit <i>(chemical</i> <i>processes</i> <i>only)</i>	Max (hr/yr)	8760	8760	8760	8760	8760
Τâ	Vent T Emissi (<i>che</i> proce	Short Term ²	C	U	C	C	U
	Air Pollution Control Device (Must match Emission Units Table & Plot Plan)	Device Type	oC	NA	NA	Flare	NA
	Air Pc Control <i>(Must Emissii</i> <i>Table</i>	ID No.	CI	NA	ΝA	Г-Я	NA
	Emission Unit Vented Through This Point (<i>Must match Emission</i> Units Table & Plot Plan)	Source	4SLB RICE CAT G3516BLE	MicroTurbine Generator	TEG Reboiler	TEG Still Vent	Produced Water Tank
	Emissic Throu <i>(Must r</i> Units Tā	ID No.	CE-1	MG-1	RBV- 1	RSV- 1	T1
	Emission Point Type ¹		Vertical Stack	Vertical Stack	Vertical Stack	Vertical Stack	Vertical Stack
	Emission Point ID No. <i>(Must match Emission Units Table-&</i> <i>Plot Plan)</i>		1e	2e	Зе	4e	Se

page _1_ of _2_

ıpply equest	ıpply equest	ıpply equest	d to for
Can Supply Upon Request	Can Supply Upon Request	Can Supply Upon Request	considered sions from RY SHEET needed to OCs, H ₂ S, b VOC/20 lb VOC/20 lb VOC/20
Э Ц	EE	EE	ons are not typically note that total emis NNS DATA SUMMAI te as many rates as acids, CO, CS ₂ , V and Noble Gases. in minutes (e.g. 5 h in minutes (e.g. 5
Gas/ Vapor	Gas/ Vapor	Gas/ Vapor	ad process emission unit emissions are not typica TA SUMMARY SHEET. Please note that total en omplete the FUGITIVE EMISSIONS DATA SUMM it venting (ie., 15 min/hr). Indicate as many rates Service (CAS) number. LIST Acids, CO, CS ₂ , DO NOT LIST H ₂ , H ₂ O, N ₂ , O ₂ , and Noble Gases hen record emissions per batch in minutes (e.g. then record emissions per batch in minutes (e.g. then record emissions per batch in minutes (e.g. then record emissions per batch in minutes (e.g. it a mineral acid (suffuric, nitric, hydrochloric of e pollutant is SO ₂ , use units of ppmv (See 45CSR
			ssion unit e SHEET. F GITIVE EM number. L H ₂ , H ₂ O, N ₂ H ₂ , H ₂ O, N ₂ ssions per nissions per riing estime acid (sulfuri
	ı		rocess emis SUMMARY Slete the FU nice (CAS) NOT LIST I record emis n record emis E = enginee a mineral a
1.19 159	0.80 107	2.29 305.25	TS DATA (TS DATA (Base comp ap, etc. rmittent ve tracts Ser etc. DO 1 hr, then 1 hr, then n 1 hr, the n f test); El mission is
39.68 36.30	26.61 24.26	88.08 69.69	te that unc te that unc sions). Ple ent, rain ca tits, for inte its, for inte its, for inte methane) less than or less tha or less tha d. If the e d. If the e
VOC CO2e	VOC CO2e	VOC CO2e	The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities. Indicate an supward vertical stack, downward vertical stack, norizontal stack, relief vent, rain cap, etc. ² Indicate by °C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 minday, 2 days/wk). ³ List all regulated ar pollutants. Speciate VOCs, including all HAPs. Follow chemical harme with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS ₂ , VOCs, H ₂ S, Inorganics, Lead, Organics, O ₃ , NO, NO ₂ , SO ₃ , all applicable Greenhouse Gases (including CO ₂ and methane), etc. DO NOT LIST H ₂ , H ₂ O, M ₂ , O ₂ , and Noble Gases. ⁴ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch). ⁵ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch). ⁶ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of fest); EE = engineering estimate: O = other (specify): ⁷ Provide for all pollutant emissions. Typically, the units of parts per million by volume (pmw) are used. If the emission is a mineral acid (suffuric, mitric, hydrochoric or phosohoric) ⁷ Provide for all pollutant emissions. Typically
60	60	52	ssions by v SHEET sions (e.c. ack, horiz ack, horiz ow chemi e Gases ng. If en ng. If en rating. I erating. I erating. I erating. I erating. I erating. I 29 volur
1 hr/ event	1 hr/ event	1 hr/ event	on of emis NIT DATA Ither emis /ertical sta reage shu reenhous ir operati pment ope pment ope itions (68 [°]
NA	NA	NA	i summati i summati i siloNS U ownward v cify the av cify the av cify the av ding all H/ plicable G l equipme untrol equi untrol equi ard condi
NA	NA	NA	provides a riate EMIS emissions, al stack, de rwise, spe rwise, spe ays/wk). OCs, incluc SO ₃ , all ap no control no control no control no control no control i ³) at stanc
Compressor Blowdowns	PIG Launcher Blowdowns	Desiccant Dehy Blowdowns	The EMISSION POINTS DATA SUMMARY SHEET provides a summation be fugitive and must be accounted for on the appropriate EMISSIONS UN source are equal to all vented emissions, all fugitive emissions, plus all off fugitive emission activities. ¹ Please add descriptors such as upward vertical stack, downward ve clarify frequency of venting is continuous. Otherwise, specify the ave clarify frequency of venting (e.g., 5 min/day, 2 days/wk). ³ List all regulated air pollutants. Speciate VOCs, including all HAI Inorganics, Lead, Organics, O ₃ , NO, NO ₂ , SO ₂ , SO ₃ , all applicable Gr dive maximum potential emission rate with no control equipmen minute batch). ⁵ Give maximum potential emission rate with proposed control equip minute batch). ⁶ Indicate method used to determine emission rate as follows: MB minute batch). ⁷ Provide for all pollutant emissions. Typically, the units of parts p use units of milligram per dry cubic meter (mg/m ³) at standard conditi
CE-1	PIG	Desic cant Dehy	DATA SU Scounted 1 the emiss there emiss enting is (e.t air pollutat anics, O bitential en stential en utant emil utant emil utant emil
Vertical Stack	Vertical Stack	Vertical Stack	NN POINTS I d must be ac lual to all ver ion activities add descrip tte by "C" if v squency of v squency of v squency of v aten. Il regulated a ss, Lead, Org maximum pot atch). ate method u ate method u de for all poll
Compressor Blowdowns	Pigging Blowdowns	Desiccant Dehy Blowdowns	The EMISSION POINTS I be fugitive and must be ac source are equal to all ven fugitive emission activities. Please add descrip 2 Indicate by "C" if v clarify frequency of ve all stall regulated a horganics, Lead, Org Give maximum pot minute batch). 6 Indicate method u Provide for all poll use units of milligram

ATTACHMENT K

FUGITIVE EMISSIONS DATA SHEET

45CSR13 Construction Permit Application

Cain Run (Laverne) Compressor Station New Milton, West Virginia

> CONE Midstream Partners LP 1000 Consol Energy Drive Canonsburg, PA 15317

> > February 2017

Attachment K

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS
1.)	Will there be haul road activities?
	□ Yes
	If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.
2.)	Will there be Storage Piles?
	□ Yes
	☐ If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.
3.)	Will there be Liquid Loading/Unloading Operations?
	Yes No
	If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
5.)	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?
	Yes No
	☑ If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET. Note: Component count and emission totals are included within site calculations. No monitoring or LDAR required at this site.
6.)	Will there be General Clean-up VOC Operations?
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
7.)	Will there be any other activities that generate fugitive emissions?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.
-	ou answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions mmary."

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants	Maximum Potential Uncontrolled Emissions ²	Potential Emissions ²	Maximum Potential Controlled Emissions ³	otential issions ³	Est. Method
	Chemical Name/CAS	lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
Haul Road/Road Dust Emissions Paved Haul Roads			I	ı	ı	Ш
Unpaved Haul Roads			I	ı	ı	EE
Storage Pile Emissions			I	ı	ı	EE
Loading/Unloading Operations	VOC	0.00	0.00	ı	ı	Ш
Wastewater Treatment Evaporation & Operations		ı	I	ı	ı	Ш
Equipment Leaks	VOC	0.40	1.74	ı	ı	EE
General Clean-up VOC Emissions		·	I	ı	ı	Ш
Other			ı	ı		EE
¹ List all requilated air pollitants. Speciate VOCs including al	ing all HAPs - Enllow chemical pame with Chemical Abstracts Service (CAS) primber -1 IST Acids - CO - CS-	me with Chemical	Abstracts Service	e (CAS) numher	IST Aride C	

List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O_2 , and Noble Gases.

³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute ² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch). batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

ATTACHMENT L

EMISSION UNIT DATA SHEET

45CSR13 Construction Permit Application

Cain Run (Laverne) Compressor Station New Milton, West Virginia

> CONE Midstream Partners LP 1000 Consol Energy Drive Canonsburg, PA 15317

> > February 2017

INTERNAL COMBUSTION ENGINE DATA SHEET Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. Generator(s) and microturbine generator(s) shall also use this form. Emission Unit ID#1 CE-1 Engine Manufacturer/Model Caterpillar/G3516BLE 1380/1400 Manufacturers Rated bhp/rpm NS Source Status² Date Installed/ 2017 Modified/Removed/Relocated³ Engine Manufactured 4/16/2012 /Reconstruction Date⁴ ⊠40CFR60 Subpart JJJJ □40CFR60 Subpart JJJJ □40CFR60 Subpart JJJJ □JJJJ Certified? □JJJJ Certified? □JJJJ Certified? □40CFR60 Subpart IIII □40CFR60 Subpart IIII □40CFR60 Subpart IIII Check all applicable Federal □IIII Certified? □IIII Certified? □IIII Certified? Rules for the engine (include ⊠40CFR63 Subpart ZZZZ □40CFR63 Subpart ZZZZ □40CFR63 Subpart ZZZZ EPA Certificate of Conformity □ NESHAP ZZZZ/ NSPS □ NESHAP ZZZZ/ NSPS □ NESHAP ZZZZ/ NSPS if applicable)5 JJJJ Window JJJJ Window JJJJ Window □ NESHAP ZZZZ Remote □ NESHAP ZZZZ Remote □ NESHAP ZZZZ Remote Sources Sources Sources 4SLB Engine Type⁶ APCD Type⁷ OxCat - A/F RG Fuel Type⁸ 0.25 H₂S (gr/100 scf) Operating bhp/rpm 1380/1400 8.174 HHV BSFC (BTU/bhp-hr) 8,741 ft³/hr Hourly Fuel Throughput Annual Fuel Throughput 76.58 MMft³/vr (Must use 8,760 hrs/yr unless Based on LHV emergency generator) Fuel Usage or Hours of No 🗆 Yes 🗵 Yes 🗆 No 🗆 Yes 🗆 No 🗆 Operation Metered Hourly Hourly Annual Hourly Annual Annual Calculation PTE РТЕ PTE РТЕ PTE РТЕ Pollutant¹⁰ (lb/hr)¹¹ (lb/hr)¹¹ (lb/hr)¹¹ Methodology⁹ (tons/year) (tons/year) (tons/year) MD 3.04 13.33 NOx MD 6.08 26.65 СО MD VOC 2.13 9.33 AP SO_2 0.01 0.03 AP 0.10 0.45 PM_{10} 1.19 5.20 MD Formaldehyde AP 1.41 6.14 Total HAPs 1744.7 6947.3 AP GHG (CO₂e)

1 Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.

2 Enter the Source Status using the following codes:

NS	Construction of New Source (installation)	ES	Existing Source
MS	Modification of Existing Source	RS	Relocated Source
REM	Removal of Source		

- 3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.
- 4 Enter the date that the engine was manufactured, modified or reconstructed.

5 Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintained to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6	Enter th	e Engine Type designation(s) using the following co	des:					
	2SLB 4SLB	Two Stroke Lean Burn Four Stroke Lean Burn	4SRI	B Four S	Stroke Rich Burn			
7	Enter th	e Air Pollution Control Device (APCD) type designation	ation(s)	using the	following codes:			
	A/F	Air/Fuel Ratio		IR	Ignition Retard	1		
	HEIS	High Energy Ignition System		SIPC	Screw-in Prece	ombustion Cha	mbers	8
	PSC	Prestratified Charge		LEC	Low Emission	Combustion		
	NSCR	Rich Burn & Non-Selective Catalytic Reduction		OxCa	t Oxidation Cata	alyst		
	SCR	Lean Burn & Selective Catalytic Reduction						
8	Enter th	e Fuel Type using the following codes:						
	PQ	Pipeline Quality Natural Gas Re	G 1	Raw Natu	al Gas /Production	on Gas	D	Diesel
	_							
9	Enter t	he Potential Emissions Data Reference design	ation i	ising the	following code	s. Attach all	refer	ence data used.
	MD	Manufacturer's Data		AP A	P-42			
	GR	GRI-HAPCalc TM		OT C	ther	(please list)		

10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water . (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.

The following information is REQUIRED:

- ⊠ Composition of the representative sample used for the simulation
- ☑ For each stream that contributes to flashing emissions:
 - \boxtimes Temperature and pressure (inlet and outlet from separator(s))
 - ⊠ Simulation-predicted composition
 - ⊠ Molecular weight
 - \boxtimes Flow rate
- ☑ Resulting flash emission factor or flashing emissions from simulation
- \boxtimes Working/breathing loss emissions from tanks and/or loading emissions if

simulation is used to quantify those emissions

Additional information may be requested if necessary.

GENERAL INFORMATION

1. Bulk Storage Area Name	2. Tank Name			
Cain Run (Laverne) Station	Produced Water Tank			
3. Emission Unit ID number	4. Emission Point ID number			
T1	5e			
5. Date Installed, Modified or Relocated (for existing tanks)	6. Type of change:			
2017	\boxtimes New construction \square New stored material \square Other			
Was the tank manufactured after August 23, 2011?				
\boxtimes Yes \Box No				
7A. Description of Tank Modification (if applicable) New Insta	llation			
7B. Will more than one material be stored in this tank? If so, a	separate form must be completed for each material.			
\Box Yes \boxtimes No				
7C. Was USEPA Tanks simulation software utilized?				
□ Yes	ran (See calculations)			
If Yes, please provide the appropriate documentation and items	s 8-42 below are not required.			

TANK INFORMATION

8. Design Capacity (<i>specify barrels or gallons</i>). Use the internal cross-sectional area multiplied by internal height. 400 bbl / 16,800 gal					
9A. Tank Internal Diameter (ft.)129B. Tank Internal Height (ft.)20					
10A. Maximum Liquid Height (ft.) 18	10B. Average Liquid Height (ft.) 10				
11A. Maximum Vapor Space Height (ft.) 18	11B. Average Vapor Space Height (ft.) 10				
12. Nominal Capacity (specify barrels or gallons). This is also	o known as "working volume". 400 bbl /16,800 gal				
13A. Maximum annual throughput (gal/yr) 50,400	13B. Maximum daily throughput (gal/day) 138				
14. Number of tank turnovers per year 3	15. Maximum tank fill rate (gal/min) 0.10				
16. Tank fill method 🗆 Submerged 🛛 Splash 🔅 Bottom Loading					

17. Is the tank system a variable vapor space system? \Box Yes \boxtimes No						
If yes, (A) What is the volume expansion capacity of the system (gal)?						
(B) What are the number of transfers into the system per year?						
18. Type of tank (check all that apply):						
\boxtimes Fixed Roof \boxtimes vertical \square horizontal \square flat roof \boxtimes cone roof \square dome roof \square other (describe)						
□ External Floating Roof □ pontoon roof □ double deck roof						
Domed External (or Covered) Floating Roof						
\Box Internal Floating Roof \Box vertical column support \boxtimes self-supporting						
□ Variable Vapor Space □ lifter roof □ diaphragm						
\Box Pressurized \Box spherical \boxtimes cylindrical						
□ Other (describe)						

PRESSURE/VACUUM CONTROL DATA

VOCs	0.000	0.000	0.000	0.000	0.000	0.000	Promax			
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy				
					Em		Emissio	ons Loss		
Material Name	Flashin	g Loss	Worki	ng/Breathing Loss	Total		Estimation Method ¹			
20. Expected Emission Ra	te (submit	Test Data	or Calculatio	ns here or elsewhere in	the applica	tion).				
¹ Complete appropriate Air	Pollution	Control I	Device Sheet							
□ Thief Hatch Weighted	🗆 Yes 🗆] No								
Vacuum Setting		Pressure S	letting							
Emergency Relief Valv	Emergency Relief Valve (psig)									
-0.03 Vacuum Setting	0.03 Pr	essure Set	ting							
□ Conservation Vent (psi	g)			ondenser ¹						
\Box Vent to Vapor Combustion Device ¹ (vapor combustors, flares, thermal oxidizers, enclosed combustors)										
\Box Inert Gas Blanket of				Carbon Adsorption ¹						
\Box Does Not Apply			\Box R	□ Rupture Disc (psig)						
19. Check as many as appl	y:									

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

TANK CONSTRUCTION AND OPERATION INFORMATION								
21. Tank Shell Construction:								
\Box Riveted \Box Gunite lined \Box Epox	□ Riveted □ Gunite lined □ Epoxy-coated rivets ⊠ Other (describe) Welded Seams							
21A. Shell Color: Green	21B. Roof Color: Green	21C. Year Last Painted: 2017						
22. Shell Condition (if metal and unlined):								
\boxtimes No Rust \square Light Rust \square Dense	Rust 🛛 Not applicable							
22A. Is the tank heated? □ Yes ⊠ No 22B. If yes, operating temperature: 22C. If yes, how is heat provided to ta								
23. Operating Pressure Range (psig):								
Must be listed for tanks using VRUs with	th closed vent system.							
24. Is the tank a Vertical Fixed Roof Tank ?	24A. If yes, for dome roof provide radius (ft):	24B. If yes, for cone roof, provide slop (ft/ft):						
\boxtimes Yes \square No	6 ft	1/12 (ft/ft) slope						
25. Complete item 25 for Floating Roof Tanks	\square Does not apply \square							
25A. Year Internal Floaters Installed:								
25B. Primary Seal Type (check one):	allic (mechanical) shoe seal \Box Liquid mo	ounted resilient seal						
\Box Vapor mounted resilient seal \Box Other (describe):								
25C. Is the Floating Roof equipped with a secondary seal? Yes No								
25D. If yes, how is the secondary seal mounted	? (check one) \Box Shoe \Box Rim \Box Ot	her (describe):						

25E. Is the floating roof equipped w	vith a weath	er shield?	□ Yes	🗆 N	0			
25F. Describe deck fittings:								
26. Complete the following section			oof Tanks		Does not apply			
26A. Deck Type: 🗌 Bolted	□ W	/elded		26B. 1	For bolted decks	, provide dec	k construe	etion:
26C. Deck seam. Continuous sheet	constructio	n:						
\Box 5 ft. wide \Box 6 ft. wide \Box] 7 ft. wid	e 🗆 5 x 7	.5 ft. wide	□ 5 x	12 ft. wide \Box	☐ other (de	scribe)	
26D. Deck seam length (ft.):	26E. Area	ı of deck (ft ²)	:	26F. I	For column supp	orted		or column supported
				tanks,	# of columns:		tanks, d	iameter of column:
27. Closed Vent System with VRUS			_					
28. Closed Vent System with Enclo	sed Combu	stor? 🗆 Ye	s 🛛 No					
SITE INFORMATION								
29. Provide the city and state on wh			on are based:					
30. Daily Avg. Ambient Temperatu					nnual Avg. Maxi): 61.15
32. Annual Avg. Minimum Temper				33. Avg. Wind Speed (mph): 6.17				
34. Annual Avg. Solar Insulation Fa	actor (BTU/	'ft ² -day): 1,1	93.7	35. Atmospheric Pressure (psia): 13.73				
LIQUID INFORMATION								
36. Avg. daily temperature range of	f bulk	36A. Mini	mum (°F):	36.97 36B. Maximum (°F): 61.15): 61.15	
liquid (°F): 49.07								
37. Avg. operating pressure range o	of tank	37A. Minimum (psig): -0.03		37B. Maximum (psig): 0.03				
(psig): 0.0								
38A. Minimum liquid surface temp				38B. Corresponding vapor pressure (psia): 6.37				
39A. Avg. liquid surface temperatur				39B. Corresponding vapor pressure (psia): 6.77				
40A. Maximum liquid surface temp					Corresponding v		· ·	
41. Provide the following for each l	iquid or gas	s to be stored	in the tank.	Add add	litional pages if	necessary. S	EE PRON	1AX MODEL IN
CALCULATIONS					r			
41A. Material name and composition	on:							
41B. CAS number:								
41C. Liquid density (lb/gal):								
41D. Liquid molecular weight (lb/lt								
41E. Vapor molecular weight (lb/lb								
41F. Maximum true vapor pressure	· ·							
41G. Maximum Reid vapor pressur	re (psia):							
41H. Months Storage per year.								
From: To:								
42. Final maximum gauge pressure a								
temperature prior to transfer into tan								
inputs into flashing emission calcula	ations.							

GLYCOL DEHYDRATION UNIT DATA SHEET									
and/or Regene	erator at the fa		ehydration Uni gas sample ana s if necessary.						
Manufacturer: Frederick Logan Company, Inc Model: NA									
Max. Dry Gas Flow Rate: 20 mmscf/day Reboiler Design Heat Input: 0.375 MMBTU/hr									
Design Type: 🛛 TE	G DEG	🗆 EG	Source Status ¹ : NS						
Date Installed/Modi	ified/Removed ² : 2017	1	Regenerator Still V	ent APCD/ERD ³ : FL	(Flare)				
Control Device/ERI	D ID# ³ : F-1		Fuel HV (BTU/scf):	: 1,171					
H ₂ S Content (gr/100	0 scf): 0.25		Operation (hours/ye	ear): 8760					
Pump Rate (scfm):	1.5 GPM TEG								
Water Content (wt	%) in: Wet Gas: 60.	5 lb H20/MMscf	Dry Gas: 4.67 lbs H2	2O/MMSCF					
		om 40CFR63 Section	•	□ No: If Yes, answ	ver the following:				
			l dehydration unit is §63.772(b)(1) of this		d standard cubic ⊠ No				
			dration unit process cedures specified in §						
Is the glycol dehydi	ration unit located wi	thin an Urbanized Ar	ea (UA) or Urban Clu	ister (UC)?	🛛 No				
Is a lean glycol pun	np optimization plan	being utilized? 🔲 Y	es 🛛 No						
□ Yes ⊠ No Recycling the glyco	-	ck to the flame zone	of the reboiler. of the reboiler and m	ixed with fuel.					
🗌 Still vent emissi	ons to the atmosphere ons stopped with value		ne reboiler?						
🛛 Flash Tank	e following equipme ent system that conti	-	nser or flash tank vap	ors					
		Control Device	Technical Data						
	Pollutants Controlled		Manufacturer's	Guaranteed Control	Efficiency (%)				
VOCs and HAPs				98.0					
		Emissic	ons Data						
				Controlled					
Emission Unit ID / Emission Point ID ⁴	Description	Calculation Methodology ⁵	PTE ⁶	Maximum Hourly Emissions (lb/hr)	Controlled Maximum Annual Emissions (tpy)				
		AP	NO _x	0.04	0.16				
		AP	СО	0.03	0.14				
		AP	VOC	0.002	0.01				
RBV-1 / 3e	Reboiler Vent	AP	SO ₂	0.000	0.001				
		AP	PM ₁₀	0.003	0.012				
		AP	GHG (CO ₂ e)	43.88	192.19				

		ОТ	VOC	0.12	0.52
		ОТ	Benzene	0.00	0.02
	Glycol Reboiler Still Vent Controlled by Flare	ОТ	Toluene	0.01	0.05
RSV-1 / 4e		ОТ	Ethylbenzene	0.00	0.01
	Thate	ОТ	Xylenes	0.01	0.04
		ОТ	n-Hexane	0.00	0.02

1 Enter the Source Status using the following codes: Construction of New Source \mathbf{ES}

NS

Existing Source

MS Modification of Existing Source

Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source), 2 modification or removal.

Enter the Air Pollution Control Device (APCD)/Emission Reduction Device (ERD) type designation using 3 the following codes and the device ID number:

NA None CD Condenser FL Flare CC Condenser/Combustion Combination TO Thermal Oxidizer O Other (please list)

Enter the appropriate Emission Unit ID Numbers and Emission Point ID Numbers for the glycol 4 dehydration unit reboiler vent and glycol regenerator still vent. The glycol dehydration unit reboiler vent and glycol regenerator still vent should be designated RBV-1 and RSV-1, respectively. If the compressor station incorporates multiple glycol dehydration units, a Glycol Dehydration Emission Unit Data Sheet shall be completed for each, using Source Identification RBV-2 and RSV-2, RBV-3 and RSV-3, etc.

5 Enter the Potential Emissions Data Reference designation using the following codes: Manufacturer's Data GRI-GLYCalcTM MD AP-42 AP OT Other ProMax EOS Simulator (please list) GR

6 Enter the Reboiler Vent and Glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs per hour and tons per year. The Glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalcTM (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalcTM Aggregate Calculations Report (shall include emissions reports, equipment reports, and stream reports) to this Glycol Dehydration Emission Unit Data Sheet(s). Backup pumps do not have to be considered as operating for purposes of PTE. This PTE data shall be incorporated in the Emissions Summary Sheet.

TANKER TRUCK LOADING DATA SHEET

Complete this data sheet for each new or modified bulk liquid transfer area or loading rack at the facility. This is to be used for bulk liquid transfer operations to tanker trucks. Use extra pages if necessary.

Truck Loadout Collection Efficiencies

The following applicable capture efficiencies of a truck loadout are allowed:

- For tanker trucks passing the MACT level annual leak test 99.2%
- For tanker trucks passing the NSPS level annual leak test 98.7%
- For tanker trucks not passing one of the annual leak tests listed above -70%

Compliance with this requirement shall be demonstrated by keeping records of the applicable MACT or NSPS Annual Leak Test certification for *every* truck and railcar loaded/unloaded. This requirement can be satisfied if the trucking company provided certification that its entire fleet was compliant. This certification must be submitted in writing to the Director of the DAQ. These additional requirements must be noted in the Registration Application and will be noted on the issued G35-C Registration.

Emission Unit ID#: TL-1 E		Emissi	Emission Point ID#: Fugitive		Year Installed/Modified: 2017				
Emission Unit Description: Emissions from Truck Loading are vented to Atmosphere from Trucks Vacuum Pump									
Loading Area Data									
Number of Pumps: 1 / On TruckNumber of Liquids Loaded: 1Max number of trucks loading at one (1) time: 1									
Are tanker trucks pressure tested for leaks at this or any other location? \Box Yes \Box No \boxtimes Not Required If Yes, Please describe:									
Provide description of c	Provide description of closed vent system and any bypasses. NA								
 Are any of the following truck loadout systems utilized? Closed System to tanker truck passing a MACT level annual leak test? Closed System to tanker truck passing a NSPS level annual leak test? Closed System to tanker truck not passing an annual leak test and has vapor return? 									
Projected Maximum Operating Schedule (for rack or transfer point as a whole)									
Time	Jan – M	ar	Apr - Jun		Jul – Sept		Oct - Dec		
Hours/day	24		2	24		24	24		
Days/week	7		,	7		7	7		
	Bu	lk Liquid	Data (use e	xtra pages a	s necess	ary)			
Liquid Name	Pi	peline Li	quids						
Max. Daily Throughput (1000 gal/day)		0.14							
Max. Annual Throughpu (1000 gal/yr)	Max. Annual Throughput (1000 gal/yr) 50.4								
Loading Method ¹		SUB							
Max. Fill Rate (gal/min)		75							
Average Fill Time (min/loading)		56							
Max. Bulk Liquid Temperature (°F)		49.1							

True Vapor Pressure ²		0.00	
Cargo Vesse	1 Condition ³	С	
Control Equi Method ⁴	ipment or	None	
Max. Collection Efficiency (%)		0	
Max. Control Efficiency (%)		0	
Max.VOC	Loading (lb/hr)	0.00	
Emission Rate	Annual (ton/yr)	0.00	
Max.HAP	Loading (lb/hr)	0.00	
Emission Rate	Annual (ton/yr)	0.00	
Estimation Method ⁵		0	

1	BF	Bottom Fill	SP	Splash Fi	11		SUB	Submerg	ed Fill
2	At maxi	mum bulk liquid temperature		-				-	
3	В	Ballasted Vessel	С	Cleaned		U	Uncleane	ed (dedicate	d service)
	0	Other (describe)							
4	List as	many as apply (complete and s	ubmit app	propriate 4	Air Pollut	ion Contr	ol Device	Sheets)	
	CA	Carbon Adsorption		VB	Dedicat	ed Vapor	Balance (closed sys	tem)
	ECD	Enclosed Combustion Devic	e	F	Flare				
	TO	Thermal Oxidization or Inci	neration						
5	EPA	EPA Emission Factor in AP-	-42			MB	Materia	l Balance	
	ТМ	Test Measurement based upo	on test da	ta submitt	al	Ο	Other (de	escribe)	ProMax

ATTACHMENT M

AIR POLLUTION CONTROL DEVICE

45CSR13 Construction Permit Application

Cain Run (Laverne) Compressor Station New Milton, West Virginia

> CONE Midstream Partners LP 1000 Consol Energy Drive Canonsburg, PA 15317

> > February 2017

Attachment M Air Pollution Control Device Sheet

(Oxidation Catalyst)

Control Device ID No. (C1):

Equipment Information

1.	. Manufacturer: Emit . 2. Control Device Name: Engine Catalytic Convert Model No. ELZ-4200Z-1616F 7. Type: Oxidation Catalyst							
	 Provide diagram(s) of unit describing capture system with duct arrangement and size of duct, air volume, capacity, horsepower of movers. If applicable, state hood face velocity and hood collection efficiency. See attached information for arrangement, size, flows, temperatures, catalyst type, and dimensions 							
4.	On a separate sheet(s) supply all data and on This device was designed to meet the 2,1,0.7	alculations used in selectin g/hp hr requirements for No	g or designing this collection device. Dx, CO, VOCs. See Cat Spec Sheet					
5.	Provide a scale diagram of the control device	showing internal construction	on. See Converter Drawing Attached					
6.	Submit a schematic and diagram with dimen exhaust temp of 1004F and Catalyst Dimension							
7.	Guaranteed minimum collection efficiency for each pollutant collected: The catalyst manufacturer list 33% reduction efficiency for CO and 29% reduction efficiency for VOCs							
8.	Attached efficiency curve and/or other efficien	cy information. NA						
9.	Design inlet volume: 3316 SCFM	10. Capacity: NA						
11.	Indicate the liquid flow rate and describe equi	oment provided to measure	pressure drop and flow rate, if any.					
	No liquid flow associated with this catalytic converter and although pressure drop may be measured periodically, the inlet and outlet temperature will be measured continuously by this unit in order to assess performance with manufacturer's operating requirements.							
12.	Attach any additional data including auxilian control equipment. NA	y equipment and operation	n details to thoroughly evaluate the					
13.	Description of method of handling the collected	d material(s) for reuse of di	sposal. NA					
	Gas St	ream Characteristics						
14.	Are halogenated organics present? Are particulates present? Are metals present?	 ☐ Yes ☐ Yes ☐ Yes ☐ No ☐ Yes ☐ No 						
15.	Inlet Emission stream parameters:	Maximum	Typical					
	Pressure (mmHg):	NA						
	Heat Content (BTU/scf):	NA						
	Oxygen Content (%):	8.4-9.1 %						
	Moisture Content (%):	NA						
	Relative Humidity (%):	NA						

16.	Type of pollutant(s) c		☐ SO _x	☐ Odor ⊠ Other CO,	VOC				
17.	Inlet gas velocity:	41.3 1	t/sec	18. Pollutant	specific gravity:				
19.	Gas flow into the coll 9193 cfm ACF	ector: F @ 1004°F		20. Gas strea	m temperature: Inlet: Outlet:	750-13 1004-1			
21.	21. Gas flow rate: 22. Particulate Grain Loading in grains/scf: Design Maximum: 9193 ACFM Average Expected: ACFM								
23.	23. Emission rate of each pollutant (specify) into and out of collector:								
	Pollutant	IN Pol	lutant	Emission OUT Pollutant Co			Control		
		lb/hr	grains/acf	Capture Efficiency %	lb/hr	grains/acf	Efficiency %		
	A CO	9.13		100	6.09		33		
	B VOC	2.98		100	2.12		29		
	С								
	D								
	E								
24.	Dimensions of stack:	Heig	ht 12	ft.	Diameter	0.83	ft.		
25.	5. Supply a curve showing proposed collection efficiency versus gas volume from 25 to 130 percent of design rating of collector. NA								

Particulate Distribution

26. Complete the table:	Particle Size Distribution at Inlet to Collector	Fraction Efficiency of Collector
Particulate Size Range (microns)	Weight % for Size Range	Weight % for Size Range
0-2		
2-4		
4 - 6		
6 - 8		
8 – 10		
10 – 12		
12 – 16		
16 – 20		
20 - 30		
30 - 40		
40 - 50		
50 - 60		
60 - 70		
70 - 80		
80 - 90		
90 - 100		
>100		

27. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification): NA

28. Describe the collection material disposal system: NA

29. Have you included Other Collectores Control Device in the Emissions Points Data Summary Sheet? Yes

30. **Proposed Monitoring, Recordkeeping, Reporting, and Testing** Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING:		RECORDKEEPING:				
	catalyst temperatures will be oper operation in accordance with ations	All maintenance records will be maintained and made available upon request.				
REPORTING: Any malfunctions of control equipment that cause an emission exceedance will be reported to the Director of the WV DAQ. Additionally, the stack testing compliance demonstration results will be reported in accordance with 40CFR60, subpart JJJJ		NOx, CO, and VOCs. This shall consist of an initial test				
MONITORING:	•	ocess parameters and ranges that are proposed to be trate compliance with the operation of this process				
RECORDKEEPING: REPORTING:	Please describe the proposed rec	cordkeeping that will accompany the monitoring. emissions testing for this process equipment on air				
TESTING:	Please describe any proposed pollution control device.	emissions testing for this process equipment on air				

31. Manufacturer's Guaranteed Control Efficiency for each air pollutant. 33% reduction efficiency for CO, 29% reduction efficiency for VOCs

32. Manufacturer's Guaranteed Control Efficiency for each air pollutant. Same as #31

33. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.

NA

AIR POLLUTION CONTROL DEVICE Vapor Combustion Control Device Sheet

Complete this vapor combustion control device sheet for each enclosed combustion device, flare, thermal oxidizer, or completion combustion device that is located at the natural gas production pad for the purpose of thermally destructing waste gas to control emissions of regulated pollutants to the atmosphere.

IMPORTANT: READ THE INSTRUCTIONS ACCOMPANYING THIS FORM BEFORE COMPLETING.							
		General Iı	nformation				
1. Control Device ID#: F-1			2. Installation Dat	te: 2017		🛛 New	
3. Maximum Rated Total Flow 2,000 scfh 48,000 scf		 4. Maximum D 2 MMBtu/hr 	Design Heat Input:	5. Design Heat Content: 1,000 BTU/scf			
		Control Devi	ice Information				
6. Select the type	e of vapor com	bustion control de] Enclosed C	ombusti	on Device	
Elevated Flar	re 🛛 Ground F	Flare 🗌 Thern	nal Oxidizer 🔲 (Completion C	ombusti	on Device	
7. Manufacturer: The Frederic			8. Hours of opera				
9. List the emiss	sion units whos		ontrolled by this vap Point ID#: 4e)	por combustic	n contro	ol device:	
10. Emission Unit ID#		ource Description:	Emission Unit ID# Emission Source Desc			ion Source Description:	
RSV-1		ler Still Vent and Flash Separator					
			<u> </u>		 		
<i>If this vapor combusto</i>	or controls em	issions from more	than six emission u	nits, please at	tach ada	litional pages.	
11. Ass	ist Type		12. Flare Height	13. Tip Dia	13. Tip Diameter14. Was the per §60.		
Steam - Air - H	Pressure - 🛛] Non -	20 ft	To Be ⊠Yes □No		⊠Yes □No	
Waste Gas Information							
15. Maximum waste gas flow rate (scfm):		lue of waste gas (BTU/ft3)			Exit Velocity of the ssions stream (ft/s)		
33.33	200 o	or greater	1450 14.7		14.7		
19. Provide an attachment with	h the character	istics of the waste	gas stream to be bu	ırned.	<u>.</u>		

Pilot Information								
20. Type/Grade of pilot fuel:	21. Number of pilot lights:	22. Fuel flow rate to pilot flame per pilot (scf/hr):	23. Heat input per pilot (BTU/hr):	24. Will automatic re- ignition be used?				
Fuel Gas	1	5	5000	Yes No				
	gnition will be used, describ hrough flame ionization, au	be the method: Electronic reuto relight.	-ignition will be installed	and monitored for				
26. Describe the method of controlling flame: Temperature monitoring of combustion chamber to keep between 1450F and 1600F								
1	quipped with a monitor sence of the flame?		ng control room 🛛 Othe					

29. Pollutant(s) Controlled	30. % Capture Efficiency	31. Manufacturer's Guaranteed Control Efficiency (%)
VOC	100	98
32. Has the control device been tested by the manufa	cturer and certified? No	
33. Describe all operating ranges and maintenance pr Upon request	ocedures required by the manufac	turer to maintain warranty: Available
34. Additional Information Attached? XES		
Please attach a copy of manufacturer's data sheet. Please attach a copy of manufacturer's drawing. Please attach a copy of the manufacturer's performan	nce testing.	

If any of the requested information is not available, please contact the manufacturer.

<u>INSTRUCTIONS:</u> Vapor Combustion Control Device

This form assumes one vapor combustion control device emissions are being released from the emission point identification number (including the waste gas emissions and pilot emissions). If multiple vapor combustion control devices are being used at the oil and natural gas production facility, a vapor control device sheet must be completed for each device. The same form is being used for all types of vapor combustion control devices.

General Information

- 1. Enter the control device ID#(s) that has been assigned to this control device. A unique control device identification number should identify each control device located at the affected facility.
- 2. Enter the date that the control device was installed at the affected facility. Include the month, day, and year. If this is a new control device that has yet to be installed, check the "NEW" box.
- 3. Enter the maximum rated total flow rate of the vapor combustion device. This includes the flow rate of all materials to be burned including the pilot fuel and the waste gas.
- 4. Enter the maximum rated design heat input capacity of the vapor combustion device in terms of million British thermal units per hour (MMBtu/hr).
- 5. Enter the total design heat content of the pilot in terms of million British thermal units per hour (MMBtu/hr).

Control Device Information

- 6. Indicate the type of vapor combustion device that applies.
- 7. Enter the manufacturer and model number of the control device.
- 8. Enter the hours of operation that the control device is planned to be used. This should be the same basis as the emissions calculations.
- 9. Enter the emission point identification number.
- 10. Enter ALL of the emission units whose emissions will be controlled and then emitted from the control device.
- 11. Select whether the flare is steam-assisted, air-assisted, pressure-assisted, or non-assisted.
- 12. Enter the height of the stack in terms of feet.
- 13. Enter the tip diameter (in feet) of the top of the stack where the emissions are discharged.
- 14. Is the applicant having the combustion device designed per §60.18? Only flares required by an NSPS standard are required to be designed and operated in accordance with §60.18.

Waste Gas Information

The waste gas is the vapor emissions that are being controlled.

- 15. Enter the waste gas flow rate in cubic feet per minute that is being consumed.
- 16. Enter the heat content of the waste gas being combusted in units of BTU per cubic feet.
- 17. Enter the minimum temperature of the emissions stream (°F).
- 18. Enter the velocity in feet per second of the gas as it discharges from the top of the stack.
- 19. Provide the characterization of the waste gas stream that is being controlled. This could be a certificate of analysis of the natural gas from this facility or from a similar facility. This is the basis of the emissions calculations.

Pilot Information

- 20. Enter the type/grade(s) of fuel that will combusted in the combustion flare's pilot (examples: natural gas pipeline quality, propane, etc.).
- 21. How many pilot lights does the device have?
- 22. What is the fuel capacity for each pilot?
- 23. What is the heat input for each pilot?
- 24. Is the system designed with automatic re-ignition?
- 25. Describe the re-ignition method and system.
- 26. Describe the method of controlling the pilot flame.
- 27. Is the pilot flame equipped with a monitoring device?
- 28. What is the monitoring device for the pilot flame?

*continued next page

Control Information

- 29. Enter the types of pollutants that the control equipment controls (i.e., reduces). If numerous pollutants are controlled, indicate the different pollutants controlled in line with their respective control efficiencies.
- 30. What is the % capture efficiency of the collection system to the control device? In other words, what is the percentage of the waste gas stream will be controlled?
- 31. Enter the control efficiency of the control equipment for each pollutant being controlled. The manufacturer typically provides a manufacturer's minimum guarantee control efficiency. Provide the manufacturer's data sheet that documents the minimum guarantee.
- 32. Please answer if the control device had a performance test conducted by the manufacturer and if it is certified.
- 33. Describe the manufacturer's operating and maintenance requirements that the guaranteed control efficiency is based upon.
- 34. Please include any additional information associated with the control device you feel should be submitted with this application. Please attach a copy of the manufacturer's data sheet. Please include the manufacturer's performance testing.

ATTACHMENT N

SUPPORTING EMISSIONS CALCULATIONS

45CSR13 Construction Permit Application

Cain Run (Laverne) Compressor Station New Milton, West Virginia

> CONE Midstream Partners LP 1000 Consol Energy Drive Canonsburg, PA 15317

> > February 2017

Table 1. Annual Potential To Emit (PTE)CONE Midstream Partners LP

Total Point Source Emissions for Cain Run (Laverne) Station VOC CO2e ΡM PM10 PM2.5 SO2 СО Source NOx Slop/Brine Tank (tons/yr) 0.00 --------------Dehy Reboiler Burner (tons/yr) 0.01 0.01 0.01 0.00 0.16 0.14 192 0.01 Dehydration/Ground Flare (ton/yr) 0.60 2.72 1,024 0.04 1.23 -------MicroTurbine (ton/yr) 0.08 0.24 0.03 222 ---------Compressor Engine (tons/yr) 0.45 0.45 0.45 0.03 13.33 26.65 9.33 6,947 Compressor Blowdowns (tons/yr) 158 ------------1.19 Pigging Blowdown Emissions (tons/yr) --106 --------0.80 --Desiccant Dehy Blowdown Emissions (tons/yr) 305 2.29 ---------------Total Point Source Emissions (ton/yr) 0.46 0.46 0.46 0.06 14.17 29.75 14.88 8,955 (lb/hr) 3.23 6.79 2,045 0.10 0.10 0.10 0.01 3.40 **Fugitive Emissions** Source ΡM PM10 PM2.5 SO2 NOx СО VOC CO2e Truck Loading (ton/yr) 0.00 ------------Piping Fugitives (ton/yr) 1.74 29 -------------**Total Emissions** 0.000 0.000 0.000 0.000 0.000 0.000 1.740 29

External emission sources within 1/4 mile radius of Cain Run (Laverne) Station (CNX - Oxford 11 Well Pad)

Source	РМ	PM10	PM2.5	SO2	NOx	со	voc	CO2e
Tanks with VDU 98% DRE (ton/yr)							1.450	
Gas Processing Units (ton/yr)	0.196	0.196	0.196	0.015	2.576	2.164	0.142	3075.020
Line heaters (ton/yr)	0.082	0.082	0.082	0.006	1.074	0.902	0.059	1281.258
Low Pressure Separator (ton/yr)	0.016	0.016	0.016	0.001	0.215	0.180	0.012	256.252
Vapor Destruction Unit (VDU) (tons/yr)				0.181	5.378	24.519	11.073	9215.319
Process Flare (ton/yr)				0.011	0.188	0.855	1.077	314.101
Thermoelectic Burner (ton/yr)					0.005	0.002		
Truck Loading (ton/yr)							1.763	
Piping Fugitives (ton/yr)							21.865	238.979
Total Point Source Emissions (ton/yr)	0.29	0.29	0.29	0.22	9.44	28.62	14.13	14380.93
Total Point Source Emissions (lb/hr)	0.07	0.07	0.07	0.05	2.15	6.53	3.23	3283.32

Table C-1. Tank EmissionsCONE Midstream Partners LP

Emission Unit	Tank Contents	Control Devices	Tank Throughput (bbls/day)	Flashing and W&B Emissions (lb/hr) <i>(a)</i>	Uncontrolled VOC Emissions (ton/yr)
T-1	Brine Tank	None	3.29	0.000	0.000
Total				0.000	0.000

(a) Emissions are taken from ProMax 4.0. combination of the flashing and working/ breathing losses determinted from representative site sampling at Cain Run Station

Notes:

Promax Results Summary (Complete results located in Attachment I)

Water Tank Vented Emissions

Pollutant	<u>lb/hr</u>	Produced Wate	r based on	
Propane	0.00		50,400	gal/yr
i-Butane	0.00		1200.00	bbl/yr
n-Butane	0.00		3.29	bbl/day
i-Pentane	0.00		0.14	bbl/hr
n-Pentane	0.00			
Hexane	0.00	GWR	0.00	VOC/bbl
Isohexane	0.00			Water
Neohexane	0.00			
2,2,4-Trimethylpentane	0.00			
Benzene	0.00			
Heptane	0.00			
Toluene	0.00			
Octane	0.00			
Ethylbenzene	0.00			
o-Xylene	0.00			
Nonane	0.00			
Decane	0.00			
VOCs	0.00			

Table C-2 Reboiler Burner (RBV-1) Rates and Emissions
CONE Midstream Partners LP

Pollutant	Emission	Emissions	Emissions
	Factor	(lbs/hr)	(tons/yr)
Criteria Pollutants			
PM/PM10/PM2.5	7.6 lb/MMcf (1)	0.003	0.012
SO ₂	0.6 lb/MMcf (1)	0.000	0.001
NOx	100 lb/MMcf (2)	0.04	0.16
СО	84 lb/MMcf (2)	0.03	0.14
VOC	5.5 lb/MMcf (1)	0.002	0.009
Hazardous Air Pollutants			
Arsenic	2.0E-04 lb/MMcf (3)	7.35E-8	3.22E-7
Benzene	2.1E-03 lb/MMcf (4)	7.72E-7	3.38E-6
Beryllium	1.2E-05 lb/MMcf (3)	4.41E-9	1.93E-8
Cadmium	1.1E-03 lb/MMcf (3)	4.04E-7	1.77E-6
Chromium	1.4E-03 lb/MMcf (3)	5.15E-7	2.25E-6
Cobalt	8.4E-05 lb/MMcf (3)	3.09E-8	1.35E-7
Dichlorobenzene	1.2E-03 lb/MMcf (4)	4.41E-7	1.93E-6
Formaldehyde	7.5E-02 lb/MMcf (4)	2.76E-5	1.21E-4
Hexane	1.8E+00 lb/MMcf (4)	6.62E-4	2.90E-3
Lead	5.0E-04 lb/MMcf (3)	1.84E-7	8.05E-7
Manganese	3.8E-04 lb/MMcf (3)	1.40E-7	6.12E-7
Mercury	2.6E-04 lb/MMcf (3)	9.56E-8	4.19E-7
Naphthalene	6.1E-04 lb/MMcf (4)	2.24E-7	9.82E-7
Nickel	2.1E-03 lb/MMcf (3)	7.72E-7	3.38E-6
PAH/POM	1.3E-03 lb/MMcf (4)	4.74E-7	2.07E-6
Selenium	2.4E-05 lb/MMcf (3)	8.82E-9	3.86E-8
Toluene	3.4E-03 lb/MMcf (4)	1.25E-6	5.48E-6
Total HAP	1.9E+00 lb/MMCF	6.95E-4	3.04E-3
Greenhouse Gas Emissions			
CO ₂	116.89 lb/MMBtu (5)	4.38E+1	1.92E+2
CH ₄	2.2E-03 lb/MMBtu (5)	8.27E-4	3.62E-3
N ₂ O	0.0 lb/MMBtu (5)	8.27E-5	3.62E-4
CO ₂ e ^(b)		43.8787	192.1888

Calculations:

(a) Annual emissions (tons/yr) = [Annual Usage (MMBtu/yr or MMCF/yr)]x [Number of Identical Heaters]
 x [Emission Factor (lb/MMBtu or lb/MMCF)] / [2,000 lb/ton]

Number of Line Heaters= 1 Fuel Use (MMBtu/hr) = 0.375 Hours of Operation (hr/yr)= 8760 PTE Fuel Use (MMcf/yr) = 3.2

(7)

(b) CO_2 equivalent = [(CO_2 emissions)*(GWP_{CO2})]+[(CH_4 emissions)*(GWP_{CH4})]+[(N_2O emissions)*(GWP_{N2O})] Global Warming Potential (GWP)

Notes:

(1) AP-42, Chapter 1.4, Table 1.4-2. Emission Factors For Criteria Pollutants and Greenhouse Gases From Natural Gas Combustion, July 1998.

(2) AP-42, Chapter 1.4, Table 1.4-1. Emission Factors For Nitrogen Oxides (Nox) and Carbon Monoxide(CO)

From Natural Gas Combustion, July 1998.

(3) AP-42, Chapter 1.4, Table 1.4-4. Emission Factors For Metals From Natural Gas Combustion, July 1998.

(4) AP-42, Chapter 1.4, Table 1.4-3. Emission Factors for Speciated Organic Compounds from Natural Gas

Combustion, July 1998.

(5) Emission factors are from 40 CFR 98, Subpart C, Table C-1 and C-2.

(6) Global Warming Potentials obtained from 40 CFR 98, Subpart A, Table A-1

(7) MMBtu to MMcf conversion factor is 1020. AP-42, Chapter 1.4

Stream	Uncon	Uncontrolled Emission Rates			ed Rates
Components	lb/hr	lb/d	tpy	lb/hr	tpy
Methane	3.3	79.5	14.5	0.07	0.29
Ethane	2.4	57.7	10.5	0.05	0.21
Propane	1.4	33.5	6.1	0.03	0.12
n-Hexane	0.2	5.8	1.1	0.00	0.02
Benzene	0.2	5.0	0.9	0.00	0.02
Toluene	0.7	17.2	3.1	0.01	0.06
Ethylbenzene	0.2	4.2	0.8	0.00	0.02
Xylene	0.7	16.1	2.9	0.01	0.06
VOC	7.0	167.6	30.6	0.14	0.61
Total HAPs	2.0	48.4	8.8	0.04	0.18
CO2e				1.7	7.3

Table C-2a.TEG Dehydration Units with Ground Flare Control SystemCONE Midstream Partners LP

Emission estimates were calculated using ProMax Software. The ProMax Simulation Report is provided within supporting attachments.

Specs 20 MMscf/d dehy 1.5 gpm TEG max pump rate (Kimray 9015) Column Pressure 955 psig Column Temperature 112 F Wet gas water content - 74.96 lb Water/MMscf Gas Dry gas water content - 4.93 lb H20/ MMscf Flash Tank Temperature 149 F Flash Tank Pressure 60 psia

Table C-3 Ground Flare EmissionsCONE Midstream Partners LP

Pollutant	Emission Factor (Ib/MMBtu)	Volume (scf/hr)	Gas Heat Value (Btu/scf)	(MMBtu/ 1000000Btu)	Emissions (lbs/hr)	Emissions (ton/yr)
CO	0.31	2,000	1,000	(1/1,000,000)	0.62	2.72
NOx	0.068	2,000	1,000	(1/1,000,000)	0.14	0.60
VOC ^a	0.14	2,000	1,000	(1/1,000,000)	0.28	1.23
CO2e	116.89	2,000	1,000	(1/1,000,000)	233.78	1023.96

^a - Measured as methane equivalent, assumed worst case

Example Formula:

 $emissions\left(\frac{ton}{yr}\right) = emission factor\left(\frac{lb}{MMBtu}\right) \times Volume\left(\frac{scf}{hr}\right) \times gas heat value\left(\frac{Btu}{scf}\right) \times \frac{MMBtu}{1,000,000 Btu} \times \frac{8760 hrs}{1 yr} \times \frac{1 ton}{2,000 lbs}$

Emission Factor = AP-42 Tables 13.5-1 and 2 emission factor for specific pollutant Volume = 2000 scf/hr set to equate to 2 MMBtu/hr Ground Flare rating Hours of operation calculated at 8760 Gas Heat Value = 1866 Btu/scf taken from tank header sample taken 6-10-16

Pollutant	Volume (scf/hr)	grain H2S/ 100 scf	Mol Fraction	Mol weight (g/mol)	(lb-mol /scf)	Emissions (lbs/hr)	Emissions (ton/yr)
SO2	2,000	15.26	0.0002423	64.00	1/379.4	0.0818	0.0358

Example Formula:

$$emissions\left(\frac{ton}{yr}\right) = Volume\left(\frac{scf}{hr}\right) \times mol \ fraction\left(\frac{H2S}{100 \ scf} \times 0.00001588\right) \times molecular \ weight \ \times \frac{lb \cdot mol}{scf} \times \frac{876 \ hrs}{1 \ yr} \times \frac{1 \ ton}{2,000 \ lbs}$$

 $\frac{1 \text{ grain H2S}}{100 \text{ scf}} = 15.26 \text{ ppm of H2S}$

H2S conversion taken from supporting Sulfur Measurement Handbook grain H2S/100 scf = 15.26 Volume = 8333 scf/hr Hours of operation calculated at 8760 1 lb mol = 379.4 cubic feet

For Pilot Light

Pollutant	Emission Factor (Ib/MMBtu)	Volume (scf/hr)	Gas Heat Value (Btu/scf)	(MMBtu/ 1000000Btu)	Emissions (lbs/hr)	Emissions (ton/yr)
CO	0.31	5	1,197	(1/1,000,000)	0.0019	0.0081
NOx	0.068	5	1,197	(1/1,000,000)	0.0004	0.0018
VOC ^a	0.14	5	1,197	(1/1,000,000)	0.0008	0.0037

^a - Measured as methane equivalent, assumed worst case

Example Formula:

 $emissions\left(\frac{ton}{yr}\right) = emission factor\left(\frac{lb}{MMBtu}\right) \times Volume\left(\frac{scf}{hr}\right) \times gas heat value\left(\frac{Btu}{scf}\right) \times \frac{MMBtu}{1,000,000 Btu} \times \frac{8760 hrs}{1 yr} \times \frac{1 ton}{2,000 lbs}$ Emission Factor = AP-42 Tables 13.5-1 and 2 emission factor for specific pollutant Gas Heat Value = 1197 Btu/scf average of two sales gas samples taken 6-10-16

Pollutant	Volume (scf/hr)	grain H2S/ 100 scf	Mol Fraction	Mol weight (g/mol)	(lb-mol /scf)	Emissions (lbs/hr)	Emissions (ton/yr)
SO2	5.00	15.26	0.0002423	64.00	1/379.4	0.0002	0.0009

Example Formula:

 $emissions\left(\frac{ton}{yr}\right) = Volume\left(\frac{sef}{hr}\right) \times mol \, fraction\left(\frac{H2S}{100 \, sef} \times 0.00001588\right) \times molecular \, weight \, \times \, \frac{lb \cdot mol}{sef} \times \frac{8760 \, hrs}{1 \, yr} \, \times \frac{1 \, ton}{2,000 \, lbs}$ $\frac{1 \, grain \, H2S}{100 \, sef} = 15.26 \, ppm \, of \, H2S$ H2S conversion taken from supporting Sulfur Measurement Handbook
grain H2S/100 sef = 15.26
1 lb mol = 379.4 cubic feet

Ground Flare and Pilot Combined									
Pollutant lb/hr ton/yr									
CO	0.622	2.724							
Nox	0.136	0.597							
VOC	0.281	1.230							
SO2	0.082	0.037							

Table C-4 MicroTurbine (MT-1) EmissionsCONE Midstream Partners LP

Pollutant	Emission Factor (Ib/MWhe)	Power Rating (kW)	Conversion (MW/kW)	Emissions (lbs/hr)	Emissions (ton/yr)
NOx	0.64	30	(1/1,000)	0.02	0.08
СО	1.80	30	(1/1,000)	0.05	0.24
VOC	0.23	30	(1/1,000)	0.01	0.03
CO2	1690.00	30.00	(1/1,000)	50.70	222.07

Example Formula:

NOx (lb/hr) = Emiss Factor (lb/MWhe) * Power (kW) * Conv Factor (MW/kW)

MWhe = Mega Watt Hour electrical power

Emission factor comes from Capstone Technical Reference for MicroTurbine System at Maximum Exhaust Emissions, Table 1.

Table C-5 Compressor Engine Emissions (CE-1)Caterpillar G3516BLE; 4SLBCONE Midstream Partners LP

Pollutant	Emission Factor		PTE (lb/hr)		PTE (tons/yr)	
Criteria Pollutants						
PM/PM10/PM2.5**	9.98E-03 lb/MMBtu	(1)	0.10	(a)	0.45	(c)
SO ₂	5.88E-04 lb/MMBtu	(1)	0.01	(a)	0.03	(c)
NOx	1.00E+00 g/hp-hr	(2)	3.04	(b)	13.33	(d)
CO	2.00E+00 g/hp-hr	(2)	6.08	(b)	26.65	(d)
VOC	7.00E-01 g/hp-hr	(2)	2.13	(b)	9.33	(d)
Hazardous Air Pollutants						
1,1,2,2-Tetrachloroethane	4.00E-05 lb/MMBtu	(1)	0.000	(a)	0.002	(c)
1,1,2-Trichloroethane	3.18E-05 lb/MMBtu	(1)	0.000	(a)	0.001	(c)
1,3-Butadiene	2.67E-04 lb/MMBtu	(1)	0.003	(a)	0.012	(c)
1,3-Dichloropropene	2.64E-05 lb/MMBtu	(1)	0.000	(a)	0.001	(c)
2-Methylnapthalene	3.32E-05 lb/MMBtu	(1)	0.000	(a)	0.001	(c)
2,2,4-Trimethylpentane	2.50E-05 lb/MMBtu	(1)	0.000	(a)	0.001	(c)
Acetaldehyde	8.36E-03 lb/MMBtu	(1)	0.086	(a)	0.375	(c)
Acrolein	5.14E-03 lb/MMBtu	(1)	0.053	(a)	0.230	(c)
Benzene	4.40E-04 lb/MMBtu	(1)	0.005	(a)	0.020	(c)
Biphenyl	2.12E-03 lb/MMBtu	(1)	0.022	(a)	0.095	(c)
Carbon Tetrachloride	3.67E-05 lb/MMBtu	(1)	0.000	(a)	0.002	(c)
Chlorobenzene	3.04E-05 lb/MMBtu	(1)	0.000	(a)	0.001	(c)
Chloroform	2.85E-05 lb/MMBtu	(1)	0.000	(a)	0.001	(c)
Ethylbenzene	3.97E-05 lb/MMBtu	(1)	0.000	(a)	0.002	(c)
Ethylene Dibromide	4.43E-05 lb/MMBtu	(1)	0.000	(a)	0.002	(c)
Formaldehyde	3.90E-01 g/hp-hr	(2)	1.187	(b)	5.197	(d)
Methanol	2.50E-03 lb/MMBtu	(1)	0.026	(a)	0.112	(c)
Methylene Chloride	2.00E-05 lb/MMBtu	(1)	0.000	(a)	0.001	(c)
n-Hexane	1.11E-03 lb/MMBtu	(1)	0.011	(a)	0.050	(c)
Naphthalene	7.44E-05 lb/MMBtu	(1)	0.001	(a)	0.003	(c)
PAH (POM)	2.69E-05 lb/MMBtu	(1)	0.000	(a)	0.001	(c)
Phenol	1.04E-05 lb/MMBtu	(1)	0.000	(a)	0.000	(c)
Styrene	2.36E-05 lb/MMBtu	(1)	0.000	(a)	0.001	(c)
Toluene	4.08E-04 lb/MMBtu	(1)	0.004	(a)	0.018	(c)
Vinyl Chloride	1.49E-05 lb/MMBtu	(1)	0.000	(a)	0.001	(c)
Xylenes	1.84E-04 lb/MMBtu	(1)	0.002	(a)	0.008	(c)
Total HAP			1.402		6.140	
Greenhouse Gas Emissions					Metric Tonne	e/yr
CO ₂	5.13E+02 g/hp-hr	(2)	1560.71	(b)	6214.48	(d)
CH ₄	2.41E+00 g/hp-hr	(2)	7.33	(b)	29.19	(d)
N ₂ O	2.2E-04 lb/MMBtu	(3)	0.00	(a)	0.01	(c)
CO ₂ e ^(e)			1744.69		6947.29	
** includes condensible PM Calculations:						

Hourly Emissions - If emission factor note 1 is used, use calculation (a). If emission factor note 2 is used, use calculation (b).

(b).				
(a) Hourly Emissions (lb/hr) = Emission factor (l	lb/MMBtu) * (1M	MBtu/1000	000 Btu) * Engine Pow	er Output (hp) * BSFC (Btu/hp-hr)
(b) Hourly Emissions (lb/hr) = Emission factor (g/hp-hr) * Engine	e Power O	tput (hp) * (lb/453.6g)	
Annual Emissions - If emission factor note 1 (d).	l is used, use c	alculation	(c). If emission factor	note 2 is used, use calculation
(c) Annual emissions (tons/yr) = Emission facto hr) * Annual Hours of operation (hr/yr) * (1ton/2)		1MMBtu/1	000000Btu) * Engine Po	ower Output (hp) * BSFC (Btu/hp-
(d) Annual emissions (tons/yr) = Emission factor (1ton/2000lbs) * (lb/453.6g)	or (g/hp-hr) * En	gine Powe	Output (hp) * Annual H	Hours of operation (hr/yr) *
MAXIMUM HOURLY EMISSION INPL	UTS			
Engine Power Output (kW) =	1029			
Engine Power Output (hp) =	1,380			
Number of Engines =	1			
BSFC (BTU/HP-hr) =	7,417	(4)		
Heat Content Natural Gas(Btu/scf) =	1,171.0	(5)		
Fuel Throughput (ft3/hr) =	8,740.8	(6)		
PTE Hours of Operation =	8,760			
(e) CO ₂ equivalent = [(CO ₂ emissions)*(GWP _{CO} Global Warming Potential (GWP)	₂₂)]+[(CH ₄ emissi	ons)*(GWF	_{CH4})]+[(N ₂ O emissions)	*(GWP _{N2O})]
	CO ₂	1	(7)	
	CH ₄	25	(7)	
	N ₂ O	298	(7)	
Notes:				
(1) AP-42, Chapter 3.2, Table 3.2-2. Natural G Lean-Burn Engines.	as-fired Recipro	cating Eng	nes (7/00). Uncontrolle	ed Emission Factors for 4-Stroke
(2) Emission factors supplied from manufactur	er's specification	n sheet		
(3) Emission factors supplied from 40 CFR 98,	Subpart C, Tab	le C-1 and	C-2.	
(4) Fuel consumption from manufacturer's spe	cification sheet.			
(5) Value obtained from AP-42, Chapter 3.2, T	able 3.2-1, footr	note b		
(6) Fuel throughput = BSFC (BTU/HP-hr) x Pov	wer (HP) / Heat	Content (B	ſU/scf)	
(7) Global Warming Potentials obtained from 4	10 CFR 98, Subp	oart A, Tab	e A-1	

Table C-6 Compressor Blowdown Venting Emissions Caterpillar G3516BLE; 4SLB CONE Midstream Partners LP

Pollutant	Volume (scf/event)	Moles (Ibmol)	Molecular Weight of Gas	lbs VOC/event	Events per Year	Emissions (lbs/hr)	Emissions (ton/yr)
VOC ^a	6,163	16.01	19.61	40	60	39.68	1.19
CO2e						36.30	158.42

Measured VOC content of GPU Gas 12.64 % wt. and methane = 67.29 % wt. from 6-10-16 FESCO sampling.

ENTER the following Values:	Suction Pressure, psig	330	Suction Temperature, F	70					
	InterstageP	492		145 242	1st Stage disch temp 2nd Stage disch temp	ch temp ch temp			
)				section
	Discharge Pressure, psig	920	Discharge Temperature, F	130					volumes
Cylinders	Bore, in	Stroke, in	Rod Diameter, in	Pocket Clearance,	Total	Temperature, R	Pressure, psig	Calculated Moles	FT3 @ STP
1st Stage Cylinder	14.13	4.50	2.00	0.00	691	604	492	0.03	12
1st Stage Cylinder (blank case)	14.13	4.50	2.00	0.00	691	604	330	0.02	ω
2nd Stage Cylinder	9.63	4.50	2.00	0.00	313	701	920	0.02	6
2nd Stage Cylinder	6.25	4.50	2.00	0.00	124	701	920	0.01	3
Scrubbers/Suction & Discharge Drums	OD, in	Height/Length, in	Total Volume, in ³			Temperature, R	Pressure, psig	Calculated Moles	
1st Stage Scrubber	36.00	70.00	71251			529	330	2.50	967
1st Stage Suction Drum	24.00	72.00	32572			529	330	1.14	442
1st Stage Discharge Drum	20.00	123.00	38642			604	492	1.75	675
2nd Stage Scrubber	30.00	68.00	48066			589	492	2.23	861
2nd Stage Suction Drum	16.00	30.00	6032			589	492	0.28	108
2nd Stage Discharge Drum	20.00	58.00	18221			701	920	1.31	506
2nd Stage Scrubber2	20.00	63.00	19792			589	492	0.92	355
2nd Stage Suction Drum2	12.75	30.00	3830			589	492	0.18	69
2nd Stage Discharge Drum2	20.00	51.00	16022			701	920	1.15	445
				Total Tube					
Cooler Section	No. of Tubes	OD, in	Length, in	Volume, in ³		Temperature, R	Pressure, psig	Calculated Moles	
1st Stage Cooler Section	62	0.75	288	7889		604	492	0.36	138
2nd Stage Cooler Section1	78	1.00	288	17643		701	920	1.27	490
2nd Stage Cooler Section2	70	0.63	288	6185		701	920	0.44	172
Piping	OD. in	Lenath. in	Total Piping Volume. in ³			Temperature. R	Pressure, psig	Calculated Moles	
1st Stage Piping	10.00	118	9268			529	330	0.33	126
2nd Stage Piping	6.00	255	7210			604	492	0.33	126
piping after Cooler	4.00	72	905			589	920	0.08	30
Bypass	3.00	265	1873			589	920	0.16	62
				Total Estimated Mc	oles of Gas Disc	Total Estimated Moles of Gas Discharged to Atmosphere pe	ere per Blowdown =	14.51	
			Total I	Estimated Volume	le of Blowdown Gas,	ft ³ @ STP	(68F, 14.7 psia) =	5603	5603
								+10%	6163
									1

Il gas behavior and used OD for volume calc) Suction Pressure, psig

Table C-6a. Compressor Blowdown VentingCONE Midstream Partners LP3516B, 1-Stage (Note: assumed ideaENTER the following Values:

Table C-7 PIG Laincher Blowdown Venting EmissionsCONE Midstream Partners LP

Pollutant	Volume (scf/event)	Moles (lbmol)	Molecular Weight of Gas	lbs VOC/event	Events per Year	Emissions (lbs/hr)	Emissions (ton/yr)
VOC ^a	4,133	10.74	19.61	27	60	26.61	0.80
CO2e						24.26	106.24

Measured VOC content of GPU Gas 12.64 % wt. and methane = 67.29 % wt. from 6-10-16 FESCO sampling.

			C.T.						
SPOOLS	LOCATION	LENGTH	FT	PIPE OD	PIPE WT	PIPE ID	AREA, FT ²	VOL, FT ³	
	INLET DOOR FLG	0'-8.375"		24	0.562	22.876	2.854		
10A	INLET w (1) FLANGE			24	0.562	22.876			
15	24X24 TEE	2'-10"		24	0.562	22.876			
	PAST TEE			24	0.562	22.876			
	SU	M 10'-2.625"	10.219					29.167	
18	24X20 REDUCER			24	0.562	22.876			
		20"	20	20	0.500	19		3.997	
9A	NARROW BARREL	4'-24"	6	20	0.500	19	1.969	11.814	
	24X24 TEE SIDE	0'-5"	0.417	24	0.562	22.876	2.854	1.189	
17	24X12 REDUCER			24	0.562	22.876			
		1'-3.625"	15.625	12.75	0.375	12		2.230	
	(1) 12" WNRF FLG	0'-6.25"	0.521			12	0.785	0.409	
7A	12" SIDE off tee	7'-7.25"	7.604	12.75	0.375	12	0.785	5.972	
2	12" LR 90 ELL		0.500	12.750	0.375	12	0.785	1.851	
7B	12" to Cradle	1'-5"	1.417	12.75	0.375	12	0.785	1.113	
7B	12" Cradle to Valve	11'-3.375"	11.281	12.75	0.375	12	0.785	8.860	
						LAUNCH	ER VOLUME =	66.600	ft ³
	Pressure, psig	950	זמ	V = nRT		BLOWDOW	VN VOLUME =	4,133	ft ³
	Temperature, °F	90	PV	$-n\pi$					

GAS LOSS DESSICANT (GLD)

 $GLD = \frac{H * ID^2 * \pi * P_2 * \% G * 365 \, days/yr}{4 * P_1 * T * 1,000 \, cf/Mcf}$

	2.00	Number of Dessi	cant beds				
ID	55. 00	inches	4.58	ID	Inside Dian	neter (feet)
Н	120.00	inches	10.00	Н	Vessel heig	ht by venc	lor specification (feet)
%G	55%			%G	Percentage	e of gas vol	ume in the vessel
P ₁	14	psia		P 1	Atmospher	ic pressure	e (psia)
P ₂	1050	psig		P_2	Gas pressu	re (psig)	
Т	7	days		Т	Time betwo	een refillin	g (days)
GLD/Bed	354.9	MCF/yr		GLD	Desiccant o	lehydrator	gas loss (Mcf/year)
Total GLD	709.7	MCF/yr		1870.207	lb-mol/yr	18.15	TPY
Total GLD	13649	scf/event			VDU		
VDU (Y/N)	n		Burn	Efficiency	98 %		
<i>TOTAL GAS LOSS E</i> VOC (NMNEHC) LOSS E CO2e LOSS E	MISSIONS		TPY TPY TPY				

Each vessel holds 20 drums

(a)Promax Inlet Gas Composition used for wt % VOC at 12.64%

(b) Methane wt % taken as 67.29% from Promax gas inlet composition. CO2e factor of 25 applied for methane conversion

Table C-9. Truck Loading (TL) VOC Emissions CONE Midstream Partners LP

Contents	Volume Transferred	Loading Loss ^(a) (lb VOC/1000gal)	PTE VOC Emissions (lb/hr)	PTE VOC Emissions (ton/yr) ^(b)
Salt Brine	50,400 gal/yr	0.000	0.000	0.000
Total			0.000	0.000

Calculations:

(a) Loading Loss (lbs/1000 gal) = 12.46x[Saturation Factor] x [True Vapor Pressure of Liquid Loaded (psia)] x[Molecular Weight of Vapors(lbs/lb-mole)]/ [Temperature of Bulk Liquid Loaded(°R)]

(b) Annual Emissions(tons/yr) = [Loading Loss (lb VOC/ 1000 gal)]*[Volume Transferred(gal/yr)]/1000/2000

	Water	
Saturation factor	0.60	Note (1)
Pvap (psia)	0.00	Note (2)
Molecular Weight (lb/lb-mol)	18.00	Note (2)
Bulk Liquid Tempurature (F)	60.00	Note (2)

Notes:

- (1) AP-42 Section 5.2
- (2) ProMax Oxford 11 1.096 BBLs of brine per day

Table C-10. Fugitive Leak EmissionsCONE Midstream Partners LP

Fugitive emissions from valves and fittings are calculated using the major equipment default component count approach from 40 CFR Part 98 because site-specific component counts have not been collected.

Pollutant	Emission Factor		PTE ^{(a) Gas Service} (tons/yr)
Valves Low Bleed Pneumatic Valves Flanges Connectors Other Points in Gas Service Total Gas Released	9.9E-03 lb/hr/source 9.9E-03 lb/hr/source 8.6E-04 lb/hr/source 4.4E-04 lb/hr/source 1.9E-02 lb/hr/source	 (1) (1) (1) (1) (1) 	7.39 1.09 2.51 1.29 1.50 13.77
Total VOC Released (gas service)		(b)	1.74
Calculations:	Total CO2e	(c) (4)	29.27

(a) Annual emissions (tons/yr) = [Emission Factor (lb/hr/source)] x [Number of Sources] x [Hours of Operation per Year] x [0.0005 tons/ lb]

(b)Promax Inlet Gas Composition used for wt % VOC at 12.64%

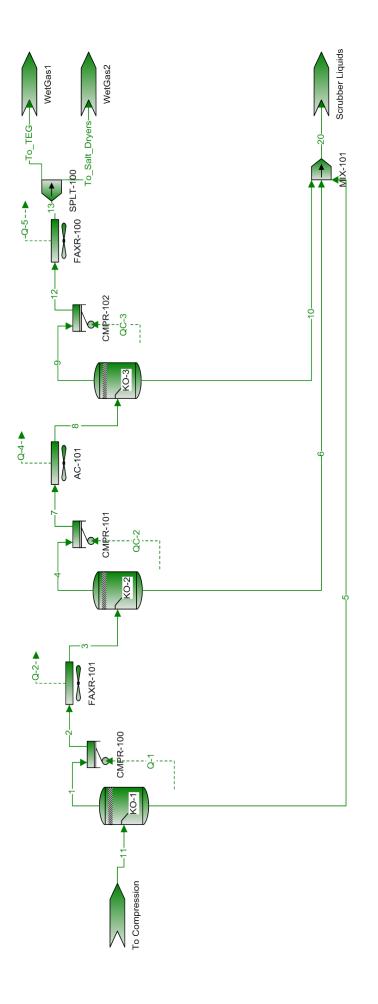
(c) Methane wt % taken as 67.29% from Promax gas inlet composition. CO2e factor of 25 applied for methane conversion

Number of Components in Gas Service

Valves=	170	(2)
Low Bleed Pneumatic Valves=	25	(2)
Connectors=	666	(2)
Other Points in Gas Service =	8	(2)

Maximum Hour of Operation = 8,760

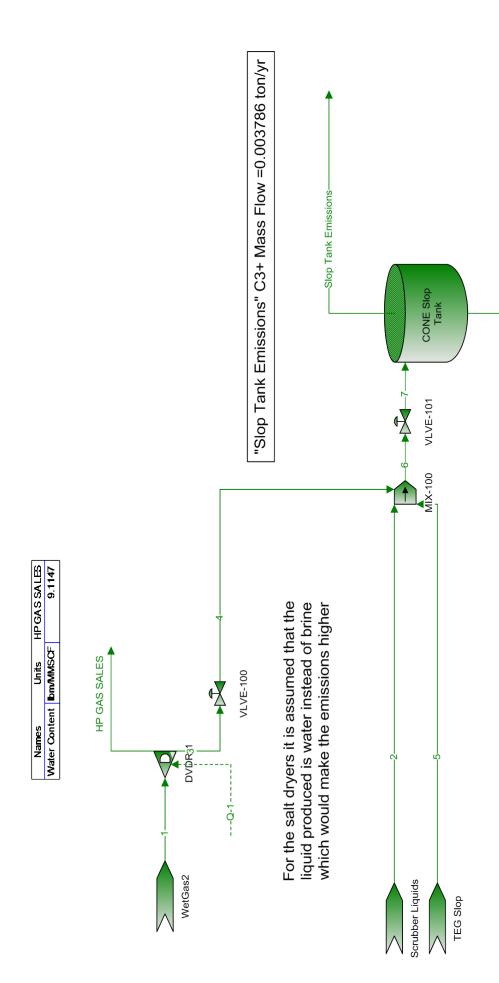
Notes:


(1) Emission factors from Table 2-4. Oil and Gas Production Operations Average Emission Factors, EPA's 1995 Protocol for

Equipment Leaks Emission Estimates

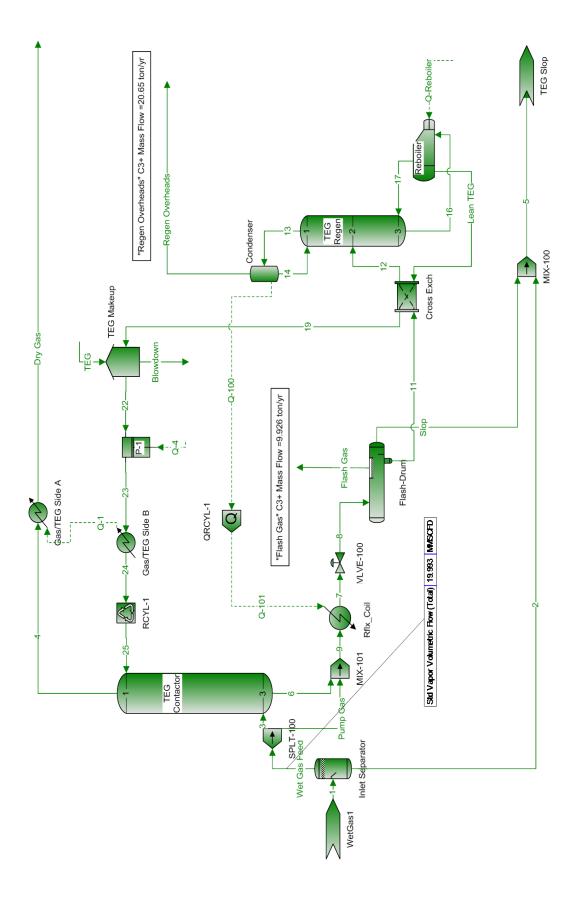
(2) Default Average Component Counts for Major Onshore Natural Gas Production Equipment from 40 CFR 98, Subpart W, Table W-

1B - Plus varibility factor of 2


(4) Global Warming Potentials obtained from 40 CFR 98, Subpart A, Table A-1

Process Streams		To Salt Dryers	To TEG	1	2	3	4	5	6	7	8	9	10	11	12	13	20
Composition	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block:	SPLT-100	SPLT-100	KO-1	CMPR-100	FAXR-101	KO-2	KO-1	KO-2	CMPR-101	AC-101	KO-3	KO-3	To Compression	CMPR-102	FAXR-100	MIX-101
	To Block:	WetGas2	WetGas1	CMPR-100	FAXR-101	KO-2	CMPR-101	MIX-101		AC-101	KO-3	CMPR-102	MIX-101	KO-1	FAXR-100	SPLT-100	Scrubber Liquids
Mole Fraction		%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Nitrogen Oxygen		0.484975	0.484975		0.484975	0.484975	0.484975 0			0.484975	0.484975	0.484975		0.484975	0.484975	0.484975	
CO2		0.177382	0.177382			0.177382	0.177382			0.177382	0.177382	0.177382		0.177382	0.177382		
Methane		81.7323	81.7323		81.7323	81.7323	81.7323			81.7323	81.7323	81.7323		81.7323	81.7323	81.7323	
Ethane Propane		12.2830 3.13544	12.2830 3.13544		12.2830 3.13544	12.2830 3.13544	12.2830 3.13544			12.2830 3.13544	12.2830 3.13544	12.2830 3.13544		12.2830 3.13544	12.2830 3.13544	12.2830 3.13544	
i-Butane		0.432431	0.432431		0.432431	0.432431	0.432431			0.432431	0.432431	0.432431		0.432431	0.432431	0.432431	
n-Butane		0.729290	0.729290		0.729290	0.729290	0.729290			0.729290	0.729290	0.729290		0.729290	0.729290	0.729290	
2,2-Dimethylpropane i-Pentane		0.0127058 0.219972	0.0127058 0.219972		0.0127058 0.219972	0.0127058 0.219972	0.0127058 0.219972			0.0127058 0.219972	0.0127058 0.219972	0.0127058 0.219972		0.0127058 0.219972	0.0127058 0.219972	0.0127058 0.219972	
n-Pentane		0.184034	0.184034		0.184034	0.184034	0.184034			0.184034	0.184034	0.184034		0.184034	0.184034	0.184034	
Neohexane		0.0107189	0.0107189			0.0107189	0.0107189			0.0107189	0.0107189	0.0107189		0.0107189	0.0107189	0.0107189	
Cyclopentane 2,3-Dimethylbutane		0 0.0153270	0 0.0153270	0 0.0153270	0 0.0153270	0 0.0153270	0 0.0153270			0 0.0153270	0 0.0153270	0		0 0.0153270	0 0.0153270	0 0.0153270	
Isohexane		0.0727757	0.0727757		0.0727757	0.0727757	0.0727757			0.0727757	0.0727757	0.0727757		0.0727757	0.0727757	0.0727757	
3-Methylpentane		0.0434427	0.0434427		0.0434427	0.0434427	0.0434427			0.0434427	0.0434427	0.0434427		0.0434427	0.0434427	0.0434427	
Hexane Methylcyclopentane		0.0795505 0.0110518	0.0795505 0.0110518		0.0795505 0.0110518	0.0795505 0.0110518	0.0795505 0.0110518			0.0795505 0.0110518	0.0795505 0.0110518	0.0795505 0.0110518		0.0795505 0.0110518	0.0795505 0.0110518	0.0795505 0.0110518	
Benzene		0.00291017	0.00291017			0.00291017				0.00291017	0.00291017	0.00291017		0.00291017	0.00291017	0.00291017	
Cyclohexane		0.0119870	0.0119870		0.0119870	0.0119870	0.0119870			0.0119870	0.0119870	0.0119870		0.0119870	0.0119870	0.0119870	
2-Methylhexane		0.0250245	0.0250245			0.0250245 0.0210966	0.0250245			0.0250245	0.0250245	0.0250245		0.0250245	0.0250245	0.0250245	
3-Methylhexane 2,2,4-Trimethylpentane		0.0210966	0.0210966	0.0210966	0.0210966	0.0210966	0.0210966			0.0210966	0.0210966	0.0210966		0.0210966	0.0210966	0.0210966	
2,3-Dimethylpentane		0.00955593	0.00955593							0.00955593	0.00955593			0.00955593			
n-Heptane		0.0272676	0.0272676			0.0272676	0.0272676			0.0272676	0.0272676	0.0272676		0.0272676	0.0272676	0.0272676	
Methylcyclohexane Toluene		0.0227152 0.00567794	0.0227152 0.00567794			0.0227152 0.00567794	0.0227152 0.00567794			0.0227152 0.00567794	0.0227152 0.00567794	0.0227152 0.00567794		0.0227152 0.00567794	0.0227152 0.00567794	0.0227152 0.00567794	
2-Methylheptane		0.00748954	0.00748954		0.00748954					0.00748954	0.00748954	0.00748954		0.00748954	0.00748954	0.00748954	
n-Octane		0.00763527	0.00763527		0.00763527					0.00763527	0.00763527	0.00763527		0.00763527	0.00763527	0.00763527	
Ethylbenzene m-Xylene		0.00104702 0.00225967	0.00104702		0.00104702 0.00225967	0.00104702 0.00225967	0.00104702			0.00104702 0.00225967	0.00104702 0.00225967	0.00104702 0.00225967		0.00104702 0.00225967	0.00104702 0.00225967	0.00104702 0.00225967	
o-Xylene		0.00127816	0.00127816								0.00127816				0.00127816		
2,2-Dimethylheptane		0.00133740	0.00133740								0.00133740			0.00133740			
n-Nonane 2-Methylnonane		0.00163162		0.00163162 0.000101507						0.00163162	0.00163162				0.00163162 0.000101507		
n-Decane				0.000376491						0.000376491					0.000376491		
Undecane		0	0			0	0			0	0	0		0	0	0	
Water TEG		0.191630	0.191630			0.191630	0.191630			0.191630	0.191630	0.191630		0.191630	0.191630	0.191630	
Argon		0	0	0	0	0	0			0	0	0		0	0	0	
co		0	0			0	0			0	0	0		0	0	0	
C07s Others C08s Others		0.00983657 0.0189306	0.00983657 0.0189306		0.00983657 0.0189306	0.00983657 0.0189306	0.00983657 0.0189306			0.00983657 0.0189306	0.00983657 0.0189306	0.00983657 0.0189306		0.00983657 0.0189306	0.00983657 0.0189306	0.00983657 0.0189306	
C09s Others		0.00408620	0.00408620								0.00408620			0.00408620			
C10s Others		0.00131827	0.00131827	0.00131827	0.00131827	0.00131827	0.00131827			0.00131827	0.00131827	0.00131827		0.00131827	0.00131827	0.00131827	
C11s C12s				0.000380903 7.90292E-05						0.000380903 7.90292E-05					0.000380903 7.90292E-05		
C128 C13s				1.91003E-05						1.91003E-05					1.91003E-05		
C14s		4.00838E-06	4.00838E-06	4.00838E-06	4.00838E-06	4.00838E-06	4.00838E-06			4.00838E-06	4.00838E-06	4.00838E-06		4.00838E-06	4.00838E-06	4.00838E-06	
C15s				9.03753E-07						9.03753E-07					9.03753E-07		
C16s C17s				2.03248E-07 5.12027E-08						2.03248E-07 5.12027E-08					2.03248E-07 5.12027E-08		
C18s				1.46306E-08						1.46306E-08					1.46306E-08		
C19s				4.04461E-09						4.04461E-09					4.04461E-09		
C20s C21s				1.05967E-09 2.86104E-10						1.05967E-09 2.86104E-10					1.05967E-09 2.86104E-10		
C22s		9.74110E-11	9.74110E-11	9.74110E-11	9.74110E-11	9.74110E-11	9.74110E-11			9.74110E-11	9.74110E-11	9.74110E-11		9.74110E-11	9.74110E-11	9.74110E-11	
C23s				3.13423E-11						3.13423E-11					3.13423E-11		
C24s C25s				1.08056E-11 2.94773E-12						1.08056E-11 2.94773E-12					1.08056E-11 2.94773E-12		
C26s				1.28318E-12						1.28318E-12					1.28318E-12		
C27s				5.91126E-13						5.91126E-13					5.91126E-13		
C28s C29s				1.54488E-13 7.63490E-14						1.54488E-13 7.63490E-14					1.54488E-13 7.63490E-14		
C30s		7.03490E-14	7.03490E-14 0		7.03490E-14	7.03490E-14	7.03490E-14 0			7.63490E-14 0	7.03490E-14	7.03490E-14 0		2.92806E-14	7.03490E-14	7.63490E-14 0	
C31s		2.59309E-13	2.59309E-13	2.59309E-13	2.59309E-13	2.59309E-13	2.59309E-13			2.59309E-13	2.59309E-13	2.59309E-13			2.59309E-13	2.59309E-13	

Process Streams		To_Salt_Dryers	To_TEG	1	2	3	4	5	6	7	8	9	10	11	12	13	20
Properties	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block: To Block:	SPLT-100 WetGas2	SPLT-100 WetGas1	KO-1 CMPR-100	CMPR-100 FAXR-101	FAXR-101 KO-2	KO-2 CMPR-101	KO-1 MIX-101	KO-2	CMPR-101 AC-101	AC-101 KO-3	KO-3 CMPR-102		To Compression KO-1	CMPR-102 FAXR-100	FAXR-100 SPLT-100	MIX-101 Scrubbor Liquide
Property	Units	WelGasz	WelGasi	CIVIPR-100	FAAR-IUI	KU-2	CMPR-101			AC-IUI	KU-3	GWIPR-102		K0-1	FAAR-100	3FL1-100	Scrubber Liquids
Temperature	°F	110	110	71.9594	179.193	110*	109.966			201.512	110*	109.968		72	179.482	110*	
Pressure	psig	1005.91	1005.91	199.5	392.276	389.276	388.776		388.776	671.207	668.207		667.707	200	1008.91	1005.91	667.707
Mole Fraction Vapor Mole Fraction Light Liqui	% c %	99.9659 0.0340992	99.9659 0.0340992	100 0	100 0	100 0	100 0	0	0	100 0	100 0	100 0	0	100 0	100 0	99.9659 0.0340992	
Mole Fraction Heavy Liqu		0.0040332	0.0040332	0	0	0	0			0	0	0		0	ő	0.0040332	
Molecular Weight	lb/lbmol	19.8016	19.8016	19.8016	19.8016	19.8016	19.8016			19.8016	19.8016	19.8016		19.8016		19.8016	
Mass Density Mass Flow	lb/ft^3 lb/h	3.94970 439.227	3.94970 43483.5	0.781780 43922.7	1.23200 43922.7	1.40875 43922.7	1.40698 43922.7	0	0	2.04300 43922.7	2.50168 43922.7	2.49985 43922.7	0	0.783628 43922.7	3.28563 43922.7	3.94970 43922.7	0
Std Vapor Volumetric Flo		0.202019	43463.5	20.2019	20.2019	20.2019	20.2019	0	0	20.2019	20.2019	20.2019	0	20.2019	20.2019	20.2019	0
Std Liquid Volumetric Flo	o sgpm	2.63084	260.453	263.084	263.084	263.084	263.084	0	Ō	263.084	263.084	263.084	0	263.084	263.084	263.084	0
Net Ideal Gas Heating Va Gross Ideal Gas Heating	a Btu/ft^3	1084.79 1197.62	1084.79 1197.62	1084.79 1197.62	1084.79 1197.62	1084.79 1197.62	1084.79 1197.62			1084.79 1197.62	1084.79 1197.62	1084.79 1197.62		1084.79 1197.62	1084.79 1197.62	1084.79 1197.62	
Mass Flow	Btu/ft/3	1197.62 lb/h	1197.62 lb/h	1197.62 lb/h	1197.62 lb/h	1197.62 lb/h	1197.62 lb/h	lb/h	lb/h	1197.62 lb/h	1197.62 lb/h	1197.62 lb/h	lb/h	1197.62	1197.62 lb/h	1197.62 lb/h	lb/h
Nitrogen		3.01352	298.338	301.352	301.352	301.352	301.352	0	0	301.352	301.352	301.352	0	301.352	301.352	301.352	0
Oxygen		0.01002	0	0	0	0	0	Ő	0	0	0	0	Ő	0	0	0	0
CO2		1.73159	171.427	173.159	173.159	173.159	173.159	0	0	173.159	173.159	173.159	0	173.159	173.159	173.159	0
Methane Ethane		290.839 81.9240	28793.1 8110.48	29083.9 8192.40	29083.9 8192.40	29083.9 8192.40	29083.9 8192.40	0	0	29083.9 8192.40	29083.9 8192.40	29083.9 8192.40	0	29083.9 8192.40	29083.9 8192.40	29083.9 8192.40	0
Propane		30.6678	3036.11	3066.78	3066.78	3066.78	3066.78	0	0	3066.78	3066.78	3066.78	0	3066.78	3066.78	3066.78	0
i-Butane		5.57503	551.928	557.503	557.503	557.503	557.503	0	0	557.503	557.503	557.503	0	557.503	557.503	557.503	0
n-Butane		9.40223	930.821	940.223	940.223	940.223	940.223	0	0	940.223	940.223	940.223	0	940.223	940.223	940.223	0
2,2-Dimethylpropane i-Pentane		0.203338 3.52034	20.1305 348.513	20.3338 352.034	20.3338 352.034	20.3338 352.034	20.3338 352.034	0	0	20.3338 352.034	20.3338 352.034	20.3338 352.034	0	20.3338 352.034	20.3338 352.034	20.3338 352.034	0
n-Pentane		2.94521	348.513 291.576	352.034 294.521	352.034 294.521	352.034 294.521	352.034 294.521	0	0	352.034 294.521	352.034 294.521	352.034 294.521	0	352.034 294.521	352.034 294.521	352.034 294.521	0
Neohexane		0.204891	20.2842	20.4891	20.4891	20.4891	20.4891	0	0	20.4891	20.4891	20.4891	0	20.4891	20.4891	20.4891	0
Cyclopentane		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2,3-Dimethylbutane Isohexane		0.292974	29.0044 137.719	29.2974 139.110	29.2974 139.110	29.2974 139.110	29.2974 139.110	0	0	29.2974 139.110	29.2974 139.110	29.2974 139.110	0	29.2974 139.110	29.2974 139.110	29.2974 139.110	0
3-Methylpentane		0.830402	82.2098	83.0402	83.0402	83.0402	83.0402	0	0	83.0402	83.0402	83.0402	0	83.0402	83.0402	83.0402	0
Hexane		1.52060	150.539	152.060	152.060	152.060	152.060	0	0	152.060	152.060	152.060	0	152.060	152.060	152.060	0
Methylcyclopentane		0.206312	20.4249	20.6312	20.6312	20.6312	20.6312	0	0	20.6312	20.6312	20.6312	0	20.6312	20.6312	20.6312	0
Benzene Cvclohexane		0.0504224	4.99181 22.1532	5.04224 22.3769	5.04224 22.3769	5.04224 22.3769	5.04224 22.3769	0	0	5.04224 22.3769	5.04224 22.3769	5.04224 22.3769	0	5.04224 22.3769	5.04224 22.3769	5.04224 22.3769	0
2-Methylhexane		0.556200	55.0638	55.6200	55.6200	55.6200	55.6200	0	0	55.6200	55.6200	55.6200	0	55.6200	55.6200	55.6200	0
3-Methylhexane		0.468898	46.4209	46.8898	46.8898	46.8898	46.8898	0	0	46.8898	46.8898	46.8898	0	46.8898	46.8898	46.8898	0
2,2,4-Trimethylpentane		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2,3-Dimethylpentane n-Heptane		0.212392	21.0268 59.9993	21.2392 60.6053	21.2392 60.6053	21.2392 60.6053	21.2392 60.6053	0	0	21.2392 60.6053	21.2392 60.6053	21.2392 60.6053	0	21.2392 60.6053	21.2392 60.6053	21.2392 60.6053	0
Methylcyclohexane		0.494715	48.9768	49.4715	49.4715	49.4715	49.4715	0	0	49.4715	49.4715	49.4715	0	49.4715	49.4715	49.4715	0
Toluene		0.116043	11.4883	11.6043	11.6043	11.6043	11.6043	0	0	11.6043	11.6043	11.6043	0	11.6043	11.6043	11.6043	0
2-Methylheptane		0.189766	18.7868	18.9766	18.9766	18.9766	18.9766	0		18.9766	18.9766	18.9766	0	18.9766	18.9766	18.9766	0
n-Octane Ethylbenzene		0.193458 0.0246561	19.1524 2.44095	19.3458 2.46561	19.3458 2.46561	19.3458 2.46561	19.3458 2.46561	0	0	19.3458 2.46561	19.3458 2.46561	19.3458 2.46561	0	19.3458 2.46561	19.3458 2.46561	19.3458 2.46561	0
m-Xylene		0.0532126	5.26805	5.32126	5.32126	5.32126	5.32126	0	0	5.32126	5.32126	5.32126	0	5.32126	5.32126	5.32126	0
o-Xylene		0.0300993	2.97983	3.00993	3.00993	3.00993	3.00993	0	0	3.00993	3.00993	3.00993	0	3.00993	3.00993	3.00993	0
2,2-Dimethylheptane		0.0380475	3.76670	3.80475	3.80475	3.80475	3.80475	0	0	3.80475	3.80475	3.80475	0	3.80475	3.80475	3.80475	0
n-Nonane 2-Methylnonane		0.0464175 0.00320356	4.59533 0.317153	4.64175 0.320356	4.64175 0.320356	4.64175 0.320356	4.64175 0.320356	0	0	4.64175 0.320356	4.64175 0.320356	4.64175 0.320356	0	4.64175 0.320356	4.64175 0.320356	4.64175 0.320356	0
n-Decane		0.0118821	1.17632	1.18821	1.18821	1.18821	1.18821	0	0	1.18821	1.18821	1.18821	0	1.18821	1.18821	1.18821	0
Undecane		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Water		0.765762	75.8104	76.5762	76.5762	76.5762	76.5762	0	0	76.5762	76.5762	76.5762	0	76.5762		76.5762	0
TEG Argon		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CO		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C07s Others		0.218629	21.6443	21.8629	21.8629	21.8629	21.8629	0	0	21.8629	21.8629	21.8629	0	21.8629	21.8629	21.8629	0
C08s Others C09s Others		0.479655 0.116247	47.4858 11.5085	47.9655 11.6247	47.9655 11.6247	47.9655 11.6247	47.9655 11.6247	0	0	47.9655 11.6247	47.9655 11.6247	47.9655 11.6247	0	47.9655 11.6247	47.9655 11.6247	47.9655 11.6247	0
C09s Others C10s Others		0.116247	4.11888	11.6247 4.16048	11.6247 4.16048	11.6247 4.16048	11.6247 4.16048	0	0	11.6247 4.16048	4.16048	11.6247 4.16048	0	11.6247 4.16048	11.6247 4.16048	11.6247 4.16048	0
C11s		0.0132065	1.30744	1.32065	1.32065	1.32065	1.32065	0	0	1.32065	1.32065	1.32065	0	1.32065	1.32065	1.32065	0
C12s		0.00298591	0.295606	0.298591	0.298591	0.298591	0.298591	0	0	0.298591	0.298591	0.298591	0	0.298591	0.298591	0.298591	0
C13s C14s		0.000781082	0.0773272	0.0781082	0.0781082	0.0781082	0.0781082	0	0	0.0781082	0.0781082	0.0781082	0	0.0781082	0.0781082	0.0781082	0
C145 C15s		4.25817E-05	0.0174626	0.00425817	0.00176389	0.00425817	0.00425817	0	0	0.00425817	0.00176389	0.0176389	0	0.0176389	0.00176389	0.00425817	0
C16s		1.02087E-05	0.00101066	0.00102087	0.00102087	0.00102087	0.00102087	0	0	0.00102087	0.00102087	0.00102087	0	0.00102087	0.00102087	0.00102087	0
C17s					0.000273111		0.000273111	0		0.000273111			0		0.000273111		0
C18s C19s					8.25905E-05 2.40904E-05			0		8.25905E-05 2.40904E-05			0		8.25905E-05 2.40904E-05		0
C195 C20s					2.40904E-05 6.64124E-06			0		2.40904E-05 6.64124E-06			0		2.40904E-05 6.64124E-06		0
C21s					1.88212E-06			0		1.88212E-06			0		1.88212E-06		0
C22s					6.71117E-07			0		6.71117E-07			0		6.71117E-07		0
C23s C24s					2.25686E-07 8.11700E-08			0		2.25686E-07 8.11700E-08			0		2.25686E-07 8.11700E-08		0
C24s C25s					2.30600E-08			0		2.30600E-08			0		8.11700E-08 2.30600E-08		0
C26s					1.04374E-08			0		1.04374E-08			0		1.04374E-08		0
C27s		4.99218E-11	4.94226E-09	4.99218E-09	4.99218E-09	4.99218E-09	4.99218E-09	0	0	4.99218E-09	4.99218E-09	4.99218E-09	0	4.99212E-09	4.99218E-09	4.99218E-09	0
C28s					1.35275E-09			0		1.35275E-09			0		1.35275E-09		0
C29s C30s		6.92290E-12	6.85367E-10	6.92290E-10 0	6.92290E-10 0	0.92290E-10	0.92290E-10	0	0	6.92290E-10	0.92290E-10	6.92290E-10	0	6.92254E-10 2.74610E-10	6.92290E-10 0	ь.92290E-10 л	0
C30s C31s		2.51263E-11			2.51263E-09	2.51263E-09	2.51263E-09	0		2.51263E-09	2.51263E-09	2.51263E-09	0		2.51263E-09	2.51263E-09	0


THESE EMISSIONS WILL BE CALCULATED USING EPAS CORRELATION

-Tank Slop-

Process Streams		HP GAS SALES	Slop Tank Emissions	Tank Slop	1	2	3	4	5	6	7
Composition	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block:	DVDR-1	CONE Slop Tank	CONE Slop Tank	WetGas2	Scrubber Liquids	DVDR-1	VLVE-100	TEG Slop	MIX-100	VLVE-101
	To Block:			-	DVDR-1	MIX-100	VLVE-100	MIX-100	MIX-100		CONE Slop Tank
Mole Fraction		%	%	%	%	%	%	%	%	%	%
Nitrogen		0.485813	0.273103	2.65613E-06	0.484975		0			0.000323910	0.000323910
Oxygen		0	0	0	0		0	0	0	0 0.00295314	0 00205214
CO2 Methane		0.177688 81.8735	1.95107 76.1911	0.000658833 0.00150904	0.177382 81.7323		0	0	0.00310402 0.0957884	0.00295314	0.00295314 0.0911325
Ethane		12.3042	10.3483	0.000263476	12.2830		0	0	0.0130715		0.0124361
Propane		3.14086	1.38968	2.45103E-05	3.13544		0	0		0.00165919	0.00165919
i-Butane		0.433178	0.0871982	8.82898E-07	0.432431		0		0.000108740		0.000103455
n-Butane		0.730550	0.223276	3.65827E-06	0.729290		0		0.000279903		0.000266299
2,2-Dimethylpropane		0.0127277	0.00135341	8.77714E-09	0.0127058		0		1.68259E-06		1.60081E-06
i-Pentane n-Pentane		0.220352 0.184352	0.0304957 0.0137642	3.06878E-07 7.45661E-08	0.219972 0.184034		0		3.80277E-05 1.70966E-05		3.61793E-05 1.62656E-05
Neohexane		0.0107375	0.000497209	1.81509E-09	0.0107189		0		6.16664E-07		5.86691E-07
Cyclopentane		0	0.000101200	0 100002	0.0101100		0 0	0	0.100012 01	0.000012 01	0.000012 01
2,3-Dimethylbutane		0.0153535	0.00136186	9.96901E-09	0.0153270		0	0	1.69430E-06	1.61195E-06	1.61195E-06
Isohexane		0.0729014	0.00536523	3.41502E-08	0.0727757		0	0	6.66953E-06	6.34535E-06	6.34535E-06
3-Methylpentane		0.0435178	0.00731819	1.07386E-07	0.0434427		0		9.16109E-06		8.71580E-06
Hexane		0.0796880	0.00288047	9.84425E-09	0.0795505		0		3.57180E-06		3.39819E-06
Methylcyclopentane		0.0110709	0.00312312	7.22205E-08	0.0110518		0		3.93731E-06		3.74593E-06
Benzene Cvclohexane		0.00291519 0.0120077	0.0274103 0.00664516	4.50137E-05 3.27045E-07	0.00291017 0.0119870		0		8.11484E-05 8.55955E-06		7.72041E-05 8.14350E-06
2-Methylhexane		0.0120077	0.000699716	2.21328E-09	0.0250245		0		8.67465E-07		8.25301E-07
3-Methylhexane		0.0211331	0.000664296	2.35477E-09	0.0210966		ő		8.23820E-07		7.83778E-07
2,2,4-Trimethylpentane		0	0	0	0		0	0	0	0	0
2,3-Dimethylpentane		0.00957244	0.000499189	2.83599E-09	0.00955593		0	0	6.20184E-07	5.90040E-07	5.90040E-07
n-Heptane		0.0273147	0.000480709	1.06628E-09	0.0272676		0	0	5.95477E-07	5.66534E-07	5.66534E-07
Methylcyclohexane		0.0227545	0.00445750	9.46660E-08	0.0227152		0		5.61072E-06		5.33801E-06
Toluene		0.00568775	0.0360266	4.56604E-05			0		9.24806E-05		8.79855E-05
2-Methylheptane n-Octane		0.00750248 0.00764846	9.00543E-05 4.97688E-05	1.61550E-10 5.36593E-11			0		1.11514E-07 6.15914E-08		1.06094E-07 5.85977E-08
Ethylbenzene		0.00704883	0.00424051	4.25091E-06			0		9.70588E-06		9.23412E-06
m-Xylene		0.00226357	0.00745792	5.61125E-06			ő		1.51121E-05		1.43776E-05
o-Xylene		0.00128037	0.00617290	9.39822E-06			0		1.74990E-05		1.66485E-05
2,2-Dimethylheptane		0.00133971	3.31215E-06	1.53617E-12	0.00133740		0	0	4.09682E-09	3.89769E-09	3.89769E-09
n-Nonane		0.00163444	5.13709E-06	3.60564E-12			0		6.35538E-09		6.04647E-09
2-Methylnonane		0.000101682	7.88625E-08	1.87121E-14			0		9.75267E-11		9.27863E-11
n-Decane		0.000377141	2.69503E-07	6.28547E-14	0.000376491		0	0	3.33284E-10	3.17085E-10	3.17085E-10
Undecane Water		0.0191961	9.37184	99.9974	0.191630		100	100	99.8852	99.8908	99.8908
TEG		0.0131301	3.57104	0	0.131030		100	100	33.0032	33.0300	33.0300
Argon		0	0	0	0		0	0	0	0	0
cŏ		0	0	0	0		0	0	0	0	0
C07s Others		0.00985356	0.000853441	8.70998E-09	0.00983657		0	0	1.06435E-06	1.01262E-06	1.01262E-06
C08s Others		0.0189633	0.00192823	2.98324E-08			0		2.41541E-06		2.29801E-06
C09s Others		0.00409326	0.000413758	8.27540E-09			0		5.20266E-07		4.94978E-07
C10s Others C11s		0.00132055 0.000381561	0.000104664 1.97514E-05	2.14806E-09 3.49399E-10			0		1.31663E-07 2.47878E-08		1.25263E-07 2.35830E-08
C11s C12s		7.91657E-05	2.62477E-06	3.94207E-11			0		3.28671E-09		3.12695E-09
C13s		1.91333E-05	4.04240E-07	5.13566E-12			ő		5.05201E-10		4.80646E-10
C14s		4.01530E-06	5.44787E-08	5.90580E-13			0		6.79785E-11		6.46744E-11
C15s		9.05314E-07	7.29570E-09	6.25998E-14	9.03753E-07		0	0	9.08627E-12	8.64462E-12	8.64462E-12
C16s		2.03599E-07	7.15801E-10	3.62060E-15			0		8.88831E-13		8.45629E-13
C17s		5.12912E-08	8.65258E-11	2.82231E-16			0		1.07278E-13		1.02064E-13
C18s		1.46559E-08	0		1.46306E-08		0	0	0	0	0
C19s C20s		4.05160E-09 1.06150E-09	0		4.04461E-09 1.05967E-09		0	0	0	0	0
C203 C21s		2.86599E-10	0		2.86104E-10		0	0	0	0	0
C22s		9.75793E-11	0		9.74110E-11		Ő	0	0	0	Ő
C23s		3.13964E-11	0		3.13423E-11		0	0	0	0	0
C24s		1.08243E-11	0		1.08056E-11		0	0	0	0	0
C25s		2.95283E-12	0		2.94773E-12		0	0	0	0	0
C26s		1.28539E-12	0		1.28318E-12		0	0	0	0	0
C27s C28s		5.92147E-13 1.54755E-13	0		5.91126E-13 1.54488E-13		0	0	0	0	0
C28s C29s		1.54755E-13 7.64809E-14	0		1.54488E-13 7.63490E-14		0	0	0	0	0
C295 C30s		7.04009E-14	0	0	7.03490E-14		0	0	0	0	0
C31s		2.59757E-13	0	0	2.59309E-13		0	0	0	0	0
•			0	Ŭ				Ū	0	0	0

Process Streams		HP GAS SALES	Slop Tank Emissions	Tank Slop	1	2	3	4	5	6	7
Properties Phase: Total	Status: From Block:	Solved DVDR-1	Solved	Solved	Solved WetGas2	Solved Scrubber Liquids	Solved DVDR-1	Solved VLVE-100	Solved TEG Slop	Solved MIX-100	Solved VLVE-101
Phase: I Otal	To Block:	UVDR-1 	CONE Slop Tank 	CONE Slop Tank 	DVDR-1	MIX-100	VLVE-100	MIX-100	MIX-100		CONE Slop Tank
Property	Units										
Temperature	°F	110	112.517	112.517	110		110	112.764	110		112.517
Pressure Mole Fraction Vapor	psig %	1002.91 100	0 100	0	1005.91 99.9659	667.707	1002.91	20* 0	1005.91 0	20 0.107554	0* 0.117632
Mole Fraction Light Liquid	%	0	0	100	0.0340992		100	100	100	99.8924	99.8824
Mole Fraction Heavy Liquid	%	0	0	0	0		0	0	0	0	0
Molecular Weight	lb/lbmol	19.8047	18.8917	18.0155	19.8016		18.0153	18.0153	18.0166		18.0166
Mass Density	lb/ft^3	3.93557	0.0453244	61.7814	3.94970		61.8776	61.7803	61.7889	37.4874	23.0520
Mass Flow Std Vapor Volumetric Flow	lb/h MMSCFD	438.538 0.201671	0.0174906 8.43214E-06	14.1626 0.00715979	439.227 0.202019	0	0.689185	0.689185 0.000348417	13.4909 0.00681981	14.1801 0.00716822	14.1801 0.00716822
Std Liquid Volumetric Flow	sgpm	2.62946	0.000100007	0.0283133	2.63084	0			0.0270356	0.0284133	0.0284133
Net Ideal Gas Heating Value	Btu/ft^3	1086.66	908.741	0.0232623	1084.79	0	0	0.00101110	1.14801	1.09221	1.09221
Gross Ideal Gas Heating Value	Btu/ft^3	1199.60	1009.70	50.3342	1197.62		50.3101	50.3101	51.5216	51.4628	51.4628
Mass Flow		lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h
Nitrogen		3.01352	7.08313E-05	5.84938E-07	3.01352	0	0		7.14163E-05		7.14163E-05
Oxygen CO2		0 1.73159	0 0.000794973	0 0.000227939	0 1.73159	0	0	0	0 0.00102291	0 0.00102291	0 0.00102291
Methane		290.839	0.0113164	0.000190312	290.839	0	0	-	0.00102291	0.0115067	0.0115067
Ethane		81.9240	0.00288086	6.22812E-05	81.9240	0	0			0.00294315	0.00294315
Propane		30.6678	0.000567340	8.49648E-06	30.6678	0	0		0.000575837		0.000575837
i-Butane		5.57503	4.69227E-05	4.03411E-07	5.57503	0	0				4.73261E-05
n-Butane 2,2-Dimethylpropane		9.40223 0.203338	0.000120148 9.04045E-07	1.67153E-06 4.97826E-09	9.40223 0.203338	0	0		0.000121820 9.09023E-07		0.000121820 9.09023E-07
i-Pentane		3.52034	2.03705E-05	4.97826E-09 1.74057E-07	3.52034	0	0		2.05445E-05		2.05445E-05
n-Pentane		2.94521	9.19420E-06	4.22927E-08	2.94521	0	0		9.23649E-06		9.23649E-06
Neohexane		0.204891	3.96693E-07	1.22964E-09	0.204891	0	0		3.97923E-07	3.97923E-07	3.97923E-07
Cyclopentane		0	0	0	0	0	0		0	0	0
2,3-Dimethylbutane Isohexane		0.292974 1.39110	1.08655E-06 4.28060E-06	6.75353E-09 2.31351E-08	0.292974 1.39110	0	0		1.09330E-06 4.30374E-06		1.09330E-06 4.30374E-06
3-Methylpentane		0.830402	5.83875E-06	7.27487E-08	0.830402	0	0		4.30374E-00 5.91150E-06		4.30374E-06 5.91150E-06
Hexane		1.52060	2.29816E-06	6.66901E-09	1.52060	0	0		2.30483E-06		2.30483E-06
Methylcyclopentane		0.206312	2.43347E-06	4.77814E-08	0.206312	0	0	0	2.48125E-06	2.48125E-06	2.48125E-06
Benzene		0.0504224	1.98228E-05	2.76412E-05	0.0504224	0	0		4.74640E-05		4.74640E-05
Cyclohexane		0.223769 0.556200	5.17775E-06	2.16375E-07 1.74345E-09	0.223769	0	0		5.39413E-06		5.39413E-06 6.50872E-07
2-Methylhexane 3-Methylhexane		0.556200	6.49129E-07 6.16270E-07	1.85490E-09	0.556200 0.468898	0	0				6.18125E-07
2,2,4-Trimethylpentane		0	0	0	0	0	0		0.101202 01	0	0.101202 01
2,3-Dimethylpentane		0.212392	4.63100E-07	2.23397E-09	0.212392	0	0		4.65334E-07		4.65334E-07
n-Heptane		0.606053	4.45956E-07	8.39928E-10	0.606053	0	0		4.46796E-07		4.46796E-07
Methylcyclohexane Toluene		0.494715 0.116043	4.05205E-06 3.07324E-05	7.30700E-08 3.30732E-05	0.494715 0.116043	0	0		4.12512E-06 6.38056E-05		4.12512E-06 6.38056E-05
2-Methylheptane		0.1189766	9.52383E-08	1.45070E-10	0.189766	0	0		9.53834E-08		9.53834E-08
n-Octane		0.193458	5.26338E-08	4.81854E-11	0.193458	0	0		5.26820E-08		5.26820E-08
Ethylbenzene		0.0246561	4.16805E-06	3.54780E-06	0.0246561	0	0		7.71585E-06		7.71585E-06
m-Xylene		0.0532126	7.33047E-06	4.68314E-06	0.0532126	0	0		1.20136E-05		1.20136E-05
o-Xylene		0.0300993	6.06741E-06 3.93294E-09	7.84373E-06 1.54885E-12	0.0300993 0.0380475	0	0		1.39111E-05 3.93449E-09		1.39111E-05 3.93449E-09
2,2-Dimethylheptane n-Nonane		0.0380475 0.0464175	6.09993E-09	3.63540E-12	0.0360475	0	0		6.10357E-09		6.10357E-09
2-Methylnonane		0.00320356	1.03885E-10	2.09299E-14	0.00320356	0	0				1.03906E-10
n-Decane		0.0118821	3.55014E-10	7.03044E-14	0.0118821	0	0	0	3.55084E-10	3.55084E-10	3.55084E-10
Undecane		0	0	0	0	0	0	0	0	0	0
Water TEG		0.0765762	0.00156314	14.1620 0	0.765762 0	0	0.689185 0	0.689185	13.4744 0	14.1636 0	14.1636
Argon		0	0	0	Ő	0	0	0	0	0	0
co		0	0	0	0	0	0	0	0	0	0
C07s Others		0.218629	7.91741E-07	6.86103E-09	0.218629	0	0		7.98602E-07		7.98602E-07
C08s Others		0.479655	2.03924E-06	2.67892E-08	0.479655	0	0				2.06602E-06
C09s Others C10s Others		0.116247 0.0416048	4.91308E-07 1.37873E-07	8.34371E-09 2.40266E-09	0.116247 0.0416048	0	0		4.99651E-07 1.40275E-07		4.99651E-07 1.40275E-07
C11s		0.0132065	2.85835E-08	4.29340E-10	0.0132065	0	0				2.90128E-08
C12s		0.00298591	4.13929E-09	5.27864E-11	0.00298591	0	0	0	4.19208E-09		4.19208E-09
C13s		0.000781082	6.89987E-10	7.44323E-12		0	0		6.97431E-10		6.97431E-10
C14s		0.000176389	1.00063E-10	9.21064E-13		0	0		1.00984E-10 1.44523E-11		1.00984E-10 1.44523E-11
C15s C16s		4.25817E-05 1.02087E-05	1.43478E-11 1.50065E-12	1.04533E-13 6.44512E-15		0	0		1.50710E-12		1.50710E-12
C17s		2.73111E-06	1.92635E-13	5.33529E-16		0	0		1.93169E-13		1.93169E-13
C18s		8.25905E-07	0		8.25905E-07	0	0	0	0	0	0
C19s		2.40904E-07	0		2.40904E-07	0	0	0	0		0
C20s		6.64124E-08	0		6.64124E-08	0	0	0	0	0	0
C21s C22s		1.88212E-08 6.71117E-09	0		1.88212E-08 6.71117E-09	0	0	0	0	0	0
C22s C23s		2.25686E-09	0		2.25686E-09	0	0	0	0	0	0
C24s		8.11700E-10	0		8.11700E-10	0	0	0	0	0	0
C25s		2.30600E-10	0		2.30600E-10	0	0	0	0	0	0
C26s		1.04374E-10	0		1.04374E-10	0	0	0	0	0	0
C27s C28s		4.99218E-11 1.35275E-11	0		4.99218E-11 1.35275E-11	0	0	0	0	0	0
0203		1.302700-11	0			-	-	0	-	-	0
C29s		6.92290E-12	0	0	6.92290E-12	0	0	0	0	0	0
C29s C30s		6.92290E-12 0 2.51263E-11	0	0	6.92290E-12 0 2.51263E-11	0	0	0	0	0	0

Process Streams		Dry Gas			Regen Overheads		1	4	5	13	14	16	17
Composition	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Total		Gas/TEG Side A	Flash-Drum	Reboiler	Condenser	Inlet Separator	WetGas1	TEG Contactor	MIX-100	TEG Regen		TEG Regen	Reboiler
Mole Fraction	To Block:	~	~	Cross Exch %	~ ~	SPLT-100 %	Inlet Separator %	Gas/TEG Side A %	TEG Slop %	Condenser %	TEG Regen	Reboiler %	TEG Regen %
Nitrogen		0.485923	0.132460	1.41818E-14	0.000213820	0.485140	0.484975		0.000340458	0.000159267	1.85125E-09	1.49090E-11	4.45832E-11
Oxygen		0	0	0	0	0	0	0	0	0	0	0	0
CO2		0.177551		2.93563E-09	0.0428699	0.177441	0.177382		0.00310402			4.75952E-07	
Methane		81.8857		3.86192E-10	0.374210	81.7601	81.7323	81.8857	0.0957884			1.88453E-07	
Ethane Propane		12.3038 3.14025		5.42824E-09 1.32243E-08	0.415348 0.265427	12.2871 3.13651	12.2830 3.13544	12.3038 3.14025	0.0130715 0.00174396			1.27110E-06 2.11814E-06	
i-Butane		0.433094		3.41796E-09	0.0414469	0.432578	0.432431		0.000108740			4.55944E-07	
n-Butane		0.730266		2.24422E-08	0.127295	0.729539	0.729290		0.000279903	0.0948180		2.50527E-06	
2,2-Dimethylpropane		0.0127242		3.17161E-10	0.00177139	0.0127101	0.0127058		1.68259E-06			3.34936E-08	
i-Pentane n-Pentane		0.220212 0.184205		4.04047E-08 6.03241E-08	0.0700064 0.0742524	0.220047 0.184097	0.219972 0.184034		3.80277E-05 1.70966E-05			3.13230E-06 4.30532E-06	
Neohexane		0.0107280		5.55247E-08	0.00493099	0.0107226	0.0107189		6.16664E-07			4.30532E-06 3.48780E-07	
Cyclopentane		0.0101200	0.0011010	0.002 11 2 00	0.00100000	0.0101220	0.0101100	0.0101200	0.100012.01	0.00007202	0	0.107002 07	0
2,3-Dimethylbutane		0.0153344		1.92389E-08	0.0102708	0.0153322	0.0153270		1.69430E-06			1.06580E-06	
Isohexane		0.0728174		7.82603E-08	0.0453664	0.0728005	0.0727757		6.66953E-06			4.59802E-06	
3-Methylpentane		0.0434511		1.00559E-07 1.40052E-07	0.0368375	0.0434575	0.0434427		9.16109E-06			5.27716E-06 7.51507E-06	
Hexane Methylcyclopentane		0.0795802 0.0110068		1.40052E-07 9.28190E-07	0.0597200 0.0389043	0.0795777 0.0110556	0.0795505 0.0110518		3.57180E-06 3.93731E-06			2.59306E-05	
Benzene		0.00279403		4.36406E-05	0.0788120	0.00291113	0.00291017		8.11484E-05			0.000569756	
Cyclohexane		0.0119450		1.36463E-06	0.0382656	0.0119910	0.0119870	0.0119450	8.55955E-06			3.21658E-05	
2-Methylhexane		0.0250219		1.26703E-07	0.0268463	0.0250331	0.0250245		8.67465E-07			5.49433E-06	
3-Methylhexane		0.0210848		1.83302E-07	0.0285840	0.0211038	0.0210966		8.23820E-07	0.0212912	4.04870E-08	7.25306E-06	
2,2,4-Trimethylpentane 2,3-Dimethylpentane		0.00954830	0 0356267	0 1.16970E-07	0 0.0143333	0.00955919	0 0.00955593	0 00954830	0 6.20184E-07	-	-	0 4.32804E-06	0 1.27176E-05
n-Heptane		0.0272524		3.00521E-07	0.0374204	0.0272769	0.0272676		5.95477E-07			1.14748E-05	
Methylcyclohexane		0.0226240	0.0969997	4.24910E-06	0.0812880	0.0227230	0.0227152	0.0226240	5.61072E-06	0.0605487	8.69760E-07	9.09622E-05	0.000263717
Toluene		0.00533547		0.000366538	0.231998	0.00567985	0.00567794		9.24806E-05		0.000101133		0.0103799
2-Methylheptane		0.00748280		1.68753E-07	0.0121592	0.00749209	0.00748954		1.11514E-07	0.00905696			
n-Octane Ethylbenzene		0.00762475 0.000973825		3.28362E-07 0.000154558	0.0148868 0.0490280	0.00763788 0.00104737	0.00763527 0.00104702		6.15914E-08 9.70588E-06	0.0110886		9.56657E-06 0.00130582	
m-Xylene		0.00210520		0.000374758	0.105629	0.00226043	0.00225967		1.51121E-05		3.01545E-05		
o-Xylene		0.00115137		0.000534886	0.0840318	0.00127859	0.00127816		1.74990E-05		3.72652E-05		0.0102048
2,2-Dimethylheptane		0.00133593		5.12302E-08	0.00239613	0.00133786	0.00133740		4.09682E-09			1.43459E-06	
n-Nonane		0.00162710	0.00435234 0.000228507	2.65736E-07	0.00473429 0.000349649	0.00163217 0.000101542	0.00163162 0.000101507		6.35538E-09			5.84094E-06 6.60975E-07	
2-Methylnonane n-Decane			0.000228507		0.00143425	0.000376619	0.000376491		9.75267E-11 3.33284E-10			3.93972E-06	
Undecane		0.000011001	0	0	0.00110120	0.000010010	0.000010101	0	0.002012 10	0.00100002	0		
Water		0.0103927	1.56977	7.08801	97.4585	0.157624	0.191630		99.8852		99.9946		
TEG			0.000633196	92.9105	9.69445E-06	0	0	5.89572E-05	0	0.00131666			7.93709
Argon CO		0	0	0	0	0	0	0	0	0	0	0	0
C07s Others		0.00982373		0 2.17441E-07	0.0180847	0.00983993	0.00983657	-	1.06435E-06			7.63808E-06	
C08s Others		0.0188652		2.74681E-06	0.0621268	0.0189370	0.0189306		2.41541E-06			6.87022E-05	
C09s Others		0.00405866		3.49327E-06	0.0224432	0.00408760	0.00408620		5.20266E-07			6.29197E-05	
C10s Others		0.00130371		5.36115E-06	0.0110360	0.00131872	0.00131827		1.31663E-07			7.17878E-05	
C11s C12s			0.000868643 0.000152368		0.00457987 0.00139483	0.000381033 7.90561E-05	0.000380903 7.90292E-05		2.47878E-08 3.28671E-09			6.53301E-05 4.52547E-05	
C12s C13s			3.11382E-05		0.000139483	1.91068E-05	1.91003E-05			0.00103896			
C14s			5.54245E-06		0.000158664	4.00974E-06	4.00838E-06			0.000118183			
C15s			1.05943E-06		4.90737E-05	9.04061E-07	9.03753E-07			3.65532E-05			
C16s			1.98580E-07		1.24215E-05	2.03318E-07	2.03248E-07			9.25230E-06			
C17s C18s			4.23801E-08 9.97124E-09		3.24582E-06 8.39969E-07	5.12202E-08 1.46356E-08	5.12027E-08 1.46306E-08	4.01435E-08 1.04457E-08		2.41769E-06 6.25662E-07			
C10s C19s			2.26534E-09		2.06203E-07	4.04599E-09	4.04461E-09	2.50738E-09		1.53593E-07			
C20s			4.80864E-10		4.73081E-08	1.06003E-09	1.05967E-09	5.33896E-10		3.52381E-08			
C21s			1.02009E-10		1.09413E-08	2.86202E-10	2.86104E-10			8.14978E-09			
C22s			2.63118E-11		3.05630E-09	9.74442E-11	9.74110E-11	2.41472E-11		2.27652E-09			
C23s			6.18124E-12 1.57252E-12		7.75176E-10	3.13530E-11	3.13423E-11	4.84781E-12 1.14523E-12		5.77400E-10 1.55369E-10			
C24s C25s			1.57252E-12 3.16372E-13		2.08587E-10 4.41222E-11	1.08093E-11 2.94874E-12	1.08056E-11 2.94773E-12					2.85806E-09 7.77957E-10	
C26s			1.01927E-13		1.48649E-11	1.28361E-12	1.28318E-12			1.10723E-11			
C27s		0	3.49313E-14	2.05886E-10	5.30349E-12	5.91327E-13	5.91126E-13	0	0	3.95038E-12	1.28699E-22	1.53494E-10	4.91154E-11
C28s			7.39858E-15		1.13282E-12	1.54540E-13	1.54488E-13		0			3.95295E-11	
C29s C30s		0	3.01886E-15 0	2.68490E-11 0	4.62990E-13	7.63750E-14	7.63490E-14 0	0	0	3.44865E-13 0			4.23245E-12
C30s C31s		0		0 9.46367E-11	1.69203E-13	2.59397E-13	0 2.59309E-13		0				0 3.36591E-12
		ı		2.100012 III	1.002002 10	2.00007.2.10	2.000002 10	0	0		2.57 0002 21		2.300012 12

Process Streams		Dry Gas			egen Overheads		1	4	5	13	14	16	17
Properties Phase: Total	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved Reboiler
Phase: Total	To Block:	Gas/TEG Side A	Flash-Drum	Reboiler Cross Exch	Condenser 	Inlet Separator SPLT-100	WetGas1 Inlet Separator	TEG Contactor Gas/TEG Side A	MIX-100 TEG Slop	TEG Regen Condenser	Condenser TEG Regen	TEG Regen Reboiler	TEG Regen
Property	Units												
Temperature	°F	111.628	149.037	400.000	210.720	110	110	109.633	110	211.463	210.720	278.004	400.000
Pressure Mole Fraction Vapor	psig %	955 100	60 100	0.504051 0	0.00405122 100	1005.91 100	1005.91 99.9659	960 100	1005.91 0	0.00405122 100	0.00405122	0.504051	0.504051 100
Mole Fraction Light Liquid	%	0	0	100	0	0	0.0340992	0	100	0	100	100	0
Mole Fraction Heavy Liquid	%	0	0	0	0	0	0	0	0	0	0	0	0
Molecular Weight Mass Density	lb/lbmol lb/ft^3	19.8026 3.70409	24.5519 0.285660	140.805 58.0719	19.1851 0.0395390	19.8022 3.94855	19.8016 3.94970	19.8026 3.74883	18.0166 61.7889	18.8884 0.0388846	18.0222 59.8881	103.285 63.0892	28.5352 0.0473433
Mass Elensity Mass Flow	lb/h	43399.1	7.58124	846.391	63.5348	43470.0	43483.5	43399.1	13.4909	83.9782	20.4434	932.489	86.0972
Std Vapor Volumetric Flow	MMSCFD	19.9601	0.00281229	0.0547467	0.0301614	19.9931	19.9999	19.9601	0.00681981	0.0404925	0.0103311	0.0822265	
Std Liquid Volumetric Flow	sgpm	260.253	0.0403829	1.49965	0.133116	260.426	260.453	260.253	0.0270356	0.173982	0.0408658	1.66355	0.163901
Net Ideal Gas Heating Value Gross Ideal Gas Heating Value	Btu/ft^3 Btu/ft^3	1086.65 1199.59	1298.33 1426.34	3503.75 3834.19	80.3035 135.114	1085.16 1198.01	1084.79 1197.62	1086.65 1199.59	1.14801 51.5216	59.8672 113.534	0.203887 50.5298	2433.41 2678.26	301.039 375.349
Mass Flow	Diant 5	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h
Nitrogen		298.327		2.38808E-14	0.000198363	298.338	298.338					3.77069E-11	
Oxygen		0	0	0	0	0	0	0	0	0	0	0	0
CO2		171.249		7.76606E-09	0.0624807	171.426	171.427	171.249	0.00102291 0.0115067			1.89111E-06 2.72949E-07	
Methane Ethane		28789.8 8108.07		3.72415E-10 9.81143E-09	0.198808 0.413598	28793.1 8110.47	28793.1 8110.48	28789.8 8108.07	0.00294315			2.72949E-07 3.45069E-06	
Propane		3034.72		3.50528E-08	0.387603	3036.11	3036.11		0.000575837			8.43251E-06	
i-Butane		551.676		1.19416E-08	0.0797776	551.928	551.928		4.73261E-05			2.39255E-06	
n-Butane		930.212		7.84080E-08	0.245020 0.00423244	930.821 20.1305	930.821		0.000121820 9.09023E-07			1.31463E-05 2.18172E-07	
2,2-Dimethylpropane i-Pentane		20.1196 348.201		1.37551E-09 1.75232E-07	0.00423244	20.1305 348.513	20.1305 348.513		9.09023E-07 2.05445E-05	0.00423244 0.167269		2.04033E-05	
n-Pentane		291.265	0.132935	2.61621E-07	0.177414	291.576	291.576	291.265	9.23649E-06	0.177414	3.26025E-07	2.80441E-05	2.77825E-05
Neohexane		20.2610		2.87623E-08	0.0140723	20.2842	20.2842		3.97923E-07			2.71358E-06	2.68482E-06
Cyclopentane 2,3-Dimethylbutane		0 28.9607	0 0144098	0 9.96590E-08	0 0.0293113	0 29.0044	0 29.0044	28 9607	0 1.09330E-06	0 0293114	0	0 8.29212E-06	0 8 19246E-06
Isohexane		137.524		4.05395E-07	0.129468	137.719	137.719		4.30374E-06			3.57735E-05	
3-Methylpentane		82.0622	0.0424619	5.20901E-07	0.105128	82.2098	82.2098		5.91150E-06	0.105129	3.32326E-07	4.10573E-05	4.05364E-05
Hexane		150.296		7.25482E-07	0.170432	150.539	150.539		2.30483E-06			5.84687E-05	
Methylcyclopentane Benzene		20.3012 4.78307		4.69562E-06 0.000204909	0.108430 0.203871	20.4249 4.99177	20.4249 4.99181		2.48125E-06 4.74640E-05		4.68692E-07 3.62829E-05	0.000197025 0.00401802	
Cyclohexane		22.0317		6.90353E-06	0.106649	22.1532	22.1532		5.39413E-06			0.000244402	
2-Methylhexane		54.9485	0.0262043	7.63160E-07	0.0890854	55.0638	55.0638		6.50872E-07			4.97047E-05	
3-Methylhexane		46.3024		1.10407E-06	0.0948520	46.4209	46.4209		6.18125E-07	0.0948521		6.56152E-05	
2,2,4-Trimethylpentane 2,3-Dimethylpentane		0 20.9682	0.0110232	0 7.04535E-07	0 0.0475631	0 21.0268	0 21.0268	0 20.9682	0 4.65334E-07	0.0475631	0 3.98507E-08	0 3.91538E-05	0 3.84493E-05
n-Heptane		59.8467		1.81011E-06	0.124174	59.9993	59.9993		4.46796E-07			0.000103807	
Methylcyclohexane		48.6832		2.50784E-05	0.264316	48.9768	48.9768		4.12512E-06			0.000806340	
Toluene 2-Methylheptane		10.7739 18.7326		0.00203008 1.15872E-06	0.707899 0.0459968	11.4882 18.7868	11.4883 18.7868		6.38056E-05 9.53834E-08		0.000105701	0.0308865 5.73263E-05	0.0288564
n-Octane		19.0879		2.25466E-06	0.0563149	19.1524	19.1524		9.53834E-08 5.26820E-08			9.86593E-05	
Ethylbenzene		2.26580		0.000986339	0.172374	2.44094	2.44095		7.71585E-06	0.172391	1.70365E-05	0.0125162	
m-Xylene		4.89817	0.00372151	0.00239158	0.371375	5.26804	5.26805		1.20136E-05		3.63142E-05		0.0272156
o-Xylene 2,2-Dimethylheptane		2.67888 3.75506	0.00218944	0.00341347 3.94961E-07	0.295442 0.0101773	2.97982 3.76670	2.97983 3.76670		1.39111E-05 3.93449E-09		4.48774E-05	0.0361019 1.66115E-05	
n-Nonane		4.57350		2.04870E-06	0.0201083	4.59533	4.59533	4.57350				6.76339E-05	
2-Methylnonane		0.315405	0.000100393	3.00202E-07	0.00164751	0.317153	0.317153	0.315405	1.03906E-10	0.00164751	7.27962E-11	8.49065E-06	8.19045E-06
n-Decane			0.000349155		0.00675806	1.17632	1.17632	1.16921	3.55084E-10		3.44034E-10		
Undecane Water		0 4.10325	0 0.0873240	0 7.67572	0 58.1444	0 62.3360	0 75.8104	0 4.10325	0 13.4744	0 78.5788	0 20.4344	0 57.6980	0 50.0223
TEG			0.000293620	838.706	4.82127E-05	0	0	0.194038	0	0.00879094	0.00874273	874.669	
Argon		0	0	0	0	0	0	0	0	0	0		0
CO C07s Others		0 21.5731	0 0112424	0 1.30970E-06	0 0.0600116	0 21.6443	0 21.6443	0 21 5731	0 7.98602E-07	0 0600118	0 1 17468E-07	0 6.90983E-05	0 6 77886E-05
C08s Others		47.2278		1.88607E-05	0.235019	47.4858	47.4858		2.06602E-06			0.000708524	
C09s Others		11.4082	0.00501200	2.69315E-05	0.0953250	11.5085	11.5085	11.4082	4.99651E-07	0.0953253	2.71128E-07	0.000728564	0.000701633
C10s Others		4.06527		4.58523E-05	0.0520006	4.11888	4.11888		1.40275E-07			0.000922162 0.000921943	
C11s C12s			0.000419258 8.01403E-05		0.0237074 0.00786811	1.30744 0.295606	1.30744 0.295606		2.90128E-08 4.19208E-09			0.000921943	
C13s			1.77263E-05		0.00308288	0.0773272	0.0773272		6.97431E-10			0.000639510	
C14s			3.39526E-06		0.00104242	0.0174626	0.0174626		1.00984E-10			0.000514111	
C15s C16s			6.94883E-07 1.38850E-07		0.000345208 9.31483E-05	0.00421559 0.00101066	0.00421559 0.00101066					0.000380567 0.000193055	
C105 C17s			3.14684E-08		2.58481E-05	0.000270380	0.000270380					9.75204E-05	
C18s			3.14684E-08 7.83582E-09		2.58481E-05 7.07928E-06	8.17646E-05	8.17646E-05	5.82606E-05				9.75204E-05 4.05794E-05	
C19s		1.47556E-05	1.87832E-09	7.25834E-06	1.83366E-06	2.38495E-05	2.38495E-05	1.47556E-05	0	1.83366E-06	1.12331E-13	1.52212E-05	7.96289E-06
C20s			4.19536E-10		4.42663E-07	6.57483E-06	6.57483E-06	3.30603E-06				5.13061E-06	
C21s			9.34170E-11		1.07461E-07	1.86329E-06	1.86329E-06	6.83019E-07				1.71857E-06	
C22s C23s			2.52353E-11 6.19607E-12		3.14372E-08 8.33359E-09	6.64406E-07 2.23429E-07	6.64406E-07 2.23429E-07	1.64372E-07 3.44897E-08				6.78370E-07 2.40995E-07	
C24s			1.64440E-12		2.33932E-09	8.03583E-08	8.03583E-08	8.49980E-09				8.73847E-08	
C25s		1.64382E-09	3.44537E-13	2.06699E-08	5.15331E-10	2.28294E-08	2.28294E-08	1.64382E-09	0	5.15331E-10	6.03149E-20	2.47711E-08	4.10120E-09
C26s C27s			1.15415E-13 4.10670E-14		1.80521E-10 6.68699E-11	1.03331E-08 4.94226E-09	1.03331E-08	5.05098E-10				1.11314E-08 5.27618E-09	
C27s C28s			4.10670E-14 9.01860E-15		6.68699E-11 1.48096E-11	4.94226E-09 1.33922E-09	4.94226E-09 1.33922E-09	0				5.27618E-09 1.40884E-09	
C29s		0	3.81062E-15	6.59747E-10	6.26780E-12	6.85367E-10	6.85367E-10	0	0	6.26780E-12	1.78553E-24	7.11950E-10	5.22031E-11
a		0	0	0	0	0	0	0	0	0	0	0	0
C30s C31s			5.88991E-16		2.44781E-12	2.48750E-09	2.48750E-09	Ó		0 447045 10	4 007005 00	2.52941E-09	4 400 405 11

For: CONSOL Energy Inc. CNX Center 1000 CONSOL Energy Drive Canonsburg, Pennsylvania 15317

Sample: Oxford Pad 11-K GPU Outlet Gas Sampled @ 986 psig & 72 °F

Date Sampled: 06/10/16

Job Number: 62455.001

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286

COMPONENT	MOL%	GPM
Nitrogen	0.448	
Carbon Dioxide	0.177	
Methane	81.912	
Ethane	12.141	3.239
Propane	3.164	0.870
Isobutane	0.450	0.147
n-Butane	0.738	0.232
2-2 Dimethylpropane	0.010	0.004
Isopentane	0.231	0.084
n-Pentane	0.184	0.067
Hexanes	0.275	0.113
Heptanes Plus	<u>0.270</u>	<u>0.120</u>
Totals	100.000	4.875

Computed Real Characteristics Of Heptanes Plus:

Specific Gravity	3.563	(Air=1)
Molecular Weight	102.86	
Gross Heating Value	5421	BTU/CF

Computed Real Characteristics Of Total Sample:

Specific Gravity	0.689	(Air=1)
Compressibility (Z)	0.9968	
Molecular Weight	19.90	
Gross Heating Value		
Dry Basis	1205	BTU/CF
Saturated Basis	1185	BTU/CF

Base Conditions: 14.650 PSI & 60 Deg F

Sampled By: (16) Campos Analyst: RG Processor: OA Cylinder ID: T-2382 Certified: FESCO, Ltd. - Alice, Texas

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286 TOTAL REPORT

COMPONENT	MOL %	GPM		WT %
Nitrogen	0.448			0.631
Carbon Dioxide	0.177			0.391
Methane	81.912			66.028
Ethane	12.141	3.239		18.344
Propane	3.164	0.870		7.010
Isobutane	0.450	0.147		1.314
n-Butane	0.738	0.232		2.155
2,2 Dimethylpropane	0.010	0.004		0.036
Isopentane	0.231	0.084		0.837
n-Pentane	0.184	0.067		0.667
2,2 Dimethylbutane	0.014	0.006		0.061
Cyclopentane	0.000	0.000		0.000
2,3 Dimethylbutane	0.019	0.008		0.082
2 Methylpentane	0.090	0.037		0.390
3 Methylpentane	0.054	0.022		0.234
n-Hexane	0.098	0.040		0.424
Methylcyclopentane	0.010	0.003		0.042
Benzene	0.003	0.001		0.012
Cyclohexane	0.013	0.004		0.055
2-Methylhexane	0.031	0.014		0.156
3-Methylhexane	0.028	0.013		0.141
2,2,4 Trimethylpentane	0.000	0.000		0.000
Other C7's	0.030	0.013		0.150
n-Heptane	0.036	0.017		0.181
Methylcyclohexane	0.029	0.012		0.143
Toluene	0.008	0.003		0.037
Other C8's	0.042	0.019		0.233
n-Octane	0.013	0.007		0.075
Ethylbenzene	0.000	0.000		0.000
M & P Xylenes	0.005	0.002		0.027
O-Xylene	0.000	0.000		0.000
Other C9's	0.012	0.006		0.076
n-Nonane	0.004	0.002		0.026
Other C10's	0.004	0.002		0.028
n-Decane	0.002	0.001		0.014
Undecanes (11)	<u>0.000</u>	<u>0.000</u>		<u>0.000</u>
Totals	100.000	4.875	1	00.000
Computed Real Charac				
Specific Gravity		0.689	(Air=1)	
Compressibility (Z) -		0.9968		

Specific Gravity	0.689	(Air=1)
Compressibility (Z)	0.9968	
Molecular Weight	19.90	
Gross Heating Value		
Dry Basis	1205	BTU/CF
Saturated Basis	1185	BTU/CF

Sample: Oxford Pad 11-K GPU Outlet Gas Sampled @ 986 psig & 72 °F

Date Sampled: 06/10/16

Job Number: 62455.001

GLYCALC FORMAT

COMPONENT	MOL%	GPM	Wt %
Carbon Dioxide	0.177		0.391
Hydrogen Sulfide			
Nitrogen	0.448		0.631
Methane	81.912		66.028
Ethane	12.141	3.239	18.344
Propane	3.164	0.870	7.010
Isobutane	0.450	0.147	1.314
n-Butane	0.748	0.236	2.191
Isopentane	0.231	0.084	0.837
n-Pentane	0.184	0.067	0.667
Cyclopentane	0.000	0.000	0.000
n-Hexane	0.098	0.040	0.424
Cyclohexane	0.013	0.004	0.055
Other C6's	0.177	0.073	0.767
Heptanes	0.135	0.060	0.670
Methylcyclohexane	0.029	0.012	0.143
2,2,4 Trimethylpentane	0.000	0.000	0.000
Benzene	0.003	0.001	0.012
Toluene	0.008	0.003	0.037
Ethylbenzene	0.000	0.000	0.000
Xylenes	0.005	0.002	0.027
Octanes Plus	<u>0.077</u>	<u>0.038</u>	<u>0.452</u>
Totals	100.000	4.875	100.000

Real Characteristics Of Octanes Plus:

Specific Gravity	4.045	(Air=1)
Molecular Weight	116.78	
Gross Heating Value	5995	BTU/CF

Real Characteristics Of Total Sample:

Specific Gravity	0.689	(Air=1)
Compressibility (Z)	0.9968	
Molecular Weight	19,90	
Gross Heating Value		
Dry Basis	1205	BTU/CF
Saturated Basis	1185	BTU/CF

FESCO, Ltd. 1100 FESCO Avenue - Alice, Texas 78332

For: CONSOL Energy Inc. CNX Center 1000 CONSOL Energy Drive Canonsburg, Pennsylvania 15317

Sample: Oxford Pad 11-K GPU Outlet Hydrocarbon Liquid Sampled @ 986 psig & 72 °F

Date Sampled: 06/10/16

Job Number: 62455.002

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2186-M

COMPONENT	MOL %	LIQ VOL %	WT %
Nitrogen	0.041	0.014	0.019
Carbon Dioxide	0.095	0.050	0.070
Methane	24.624	12.819	6.597
Ethane	15.338	12.602	7.702
Propane	11.166	9.451	8.223
Isobutane	2.945	2.961	2.859
n-Butane	6.316	6.117	6.130
2,2 Dimethylpropane	0.078	0.092	0.094
Isopentane	3.817	4.289	4.600
n-Pentane	3.656	4.071	4.405
2,2 Dimethylbutane	0.197	0.252	0.283
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.295	0.372	0.425
2 Methylpentane	1.804	2.300	2.596
3 Methylpentane	1.164	1.460	1.675
n-Hexane	2.468	3.118	3.552
Heptanes Plus	<u>25.995</u>	<u>40.033</u>	<u>50.769</u>
Totals:	100.000	100.000	100.000

Characteristics of Heptanes Plus:

7392	(Water=1)
i9.92	@ 60°F
16.9	
20.06	CF/Gal
6.16	Lbs/Gal
	59.92 16.9 20.06

Characteristics of Total Sample:

Specific Gravity	0.5829	(Water=1)
°API Gravity	111.25	@ 60°F
Molecular Weight	59.9	
Vapor Volume	30.90	CF/Gal
Weight	4.86	Lbs/Gal

Base Conditions: 14.650 PSI & 60 °F

Certified: FES

FESCO, Ltd. - Alice, Texas

Sampled By: (20) Cucinotta Analyst: XG Processor: XGdjv Cylinder ID: W-1417

David Dannhaus 361-661-7015

TANKS DATA INPUT REPORT - GPA 2186-M

COMPONENT	Mol %	LiqVol %	Wt %
Carbon Dioxide	0.095	0.050	0.070
Nitrogen	0.041	0.014	0.019
Methane	24.624	12.819	6.597
Ethane	15.338	12.602	7.702
Propane	11.166	9.451	8.223
Isobutane	2.945	2.961	2.859
n-Butane	6.394	6.209	6.225
Isopentane	3.817	4.289	4.600
n-Pentane	3.656	4.071	4.405
Other C-6's	3.460	4,384	4.979
Heptanes	7.008	9,566	11.445
Octanes	7.806	11,338	14.131
Nonanes	3.292	5.545	6.972
Decanes Plus	5.747	11:153	14.572
Benzene	0.072	0.062	0.093
Toluene	0.494	0.508	0.760
E-Benzene	0.428	0.508	0.759
Xylenes	1,148	1.354	2.035
n-Hexane	2.468	3.118	3.552
2,2,4 Trimethylpentane	0.000	<u>0.000</u>	<u>0.000</u>
Totals:	100.000	100.000	100.000

Characteristics of Total Sample:

Specific Gravity	0.5829	(Water=1)
*API Gravity	111.25	@ 60°F
Molecular Weight	59.9	
Vapor Volume	30.90	CF/Gal
Weight	4.86	Lbs/Gal

Characteristics of Decanes (C10) Plus:Specific Gravity ------Molecular Weight-----151.8

Characteristics of Atmospheric Sample:

°API Gravity	69.96	@ 60°F
Reid Vapor Pressure Equivalent (D-5191)	12.25	psi

	QUA	LITY CONTROL	LCHECK		
	Sampling Conditions Test Samples				
E	Cylinder Number		W1417*	W1013	
E	Pressure, PSIG		968	964	
Ľ	Temperature, °F	72	72	72	

* Sample used for analysis

FESCO, Ltd.

COMPONENT	Mol %	LiqVol %	Wt %
Nitrogen	0.041	0.014	0.019
Carbon Dioxide	0.095	0.050	0.070
Methane	24.624	12.819	6.597
Ethane	15.338	12.602	7.702
Propane	11.166	9.451	8.223
Isobutane	2.945	2.961	2.859
n-Butane	6.316	6.117	6.130
2,2 Dimethylpropane	0.078	0.092	0.094
Isopentane	3.817	4.289	4.600
n-Pentane	3.656	4.071	4.405
2,2 Dimethylbutane	0.197	0.252	0.283
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.295	0.372	0.425
2 Methylpentane	1.804	2.300	2.596
3 Methylpentane	1.164	1.460	1.675
n-Hexane	2.468	3.118	3.552
Methylcyclopentane	0.540	0.587	0.759
Benzene	0.072	0.062	0.093
Cyclohexane	0.467	0.488	0.656
2-Methylhexane	1.735	2.478	2.904
3-Methylhexane	1.401	1.975	2.344
2,2,4 Trimethylpentane	0.000	0.000	0.000
Other C-7's	0.761	1.054	1.260
n-Heptane	2.105	2.983	3.522
Methylcyclohexane	1.692	2.089	2.774
Toluene	0.494	0.508	0.760
Other C-8's	4.594	6.855	8.456
n-Octane	1.521	2.394	2.902
E-Benzene	0.428	0.508	0.759
M & P Xylenes	0.542	0.646	0.961
O-Xylene	0.606	0.708	1.075
Other C-9's	2.360	3.934	4.977
n-Nonane	0.932	1.611	1.996
Other C-10's	2.221	4.069	5.241
n-decane	0.518	0.976	1.230
Undecanes(11)	1.447	2.719	3.552
Dodecanes(12)	0.777	1.577	2.089
Tridecanes(13)	0.434	0.946	1.270
Tetradecanes(14)	0.192	0.448	0.610
Pentadecanes(15)	0.091	0.227	0.312
Hexadecanes(16)	0.033	0.088	0.123
Heptadecanes(17) Octadecanes(18)	0.017	0.047	0.066
Nonadecanes(19)	0.008	0.025	0.035
Eicosanes(20)	0.004 0.001	0.012 0.004	0.017 0.006
Heneicosanes(21)	0.001	0.003	0.004
Docosanes(22)	0.001	0.003	0.004
Tricosanes(23)	0.000	0.002	0.003
Tetracosanes(24)	0.000	0.001	0.002
Pentacosanes(25)	0.000	0.001	0.002
Hexacosanes(26)	0.000	0.001	0.001
Heptacosanes(27)	0.000	0.001	0.001
Octacosanes(28)	0.000	0.001	0.001
Nonacosanes(29)	0.000	0.000	0.001
Triacontanes(30)	0.000	0.000	0.001
Hentriacontanes Plus(31+)	0.001	0.003	0.004
Total	100.000	100.000	100.000
			100.000

For: CONSOL Energy Inc. CNX Center 1000 CONSOL Energy Drive Canonsburg, Pennsylvania 15317

Sample: Oxford Pad II-B GPU Outlet Gas Gas Sampled @ 988 psig & 74 °F

Date Sampled: 06/10/2016

Job Number: 62454.001

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286

COMPONENT	MOL%	GPM
Nitrogen	0.528	
Carbon Dioxide	0.179	
Methane	82.263	
Ethane	12.342	3.292
Propane	2.981	0.819
Isobutane	0.382	0.125
n-Butane	0.650	0.204
2-2 Dimethylpropane	0.015	0.006
Isopentane	0.171	0.062
n-Pentane	0.150	0.054
Hexanes	0.162	0.067
Heptanes Plus	<u>0.177</u>	<u>0.078</u>
Totals	100.000	4.707

Computed Real Characteristics Of Heptanes Plus:

Specific Gravity	3.563	(Air=1)
Molecular Weight	102.89	
Gross Heating Value	5414	BTU/CF

Computed Real Characteristics Of Total Sample:

Specific Gravity	0.679	(Air=1)
Compressibility (Z)	0.9969	
Molecular Weight	19.61	
Gross Heating Value		
Dry Basis	1189	BTU/CF
Saturated Basis	1169	BTU/CF

Base Conditions: 14.650 PSI & 60 Deg F

Sampled By: (20) Cucinotta Analyst: MR Processor: NG Cylinder ID: T-3252 Certified: FESCO, Ltd. - Alice, Texas

David Dannhaus 361-661-7015

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286 TOTAL REPORT

COMPONENT	MOL %	GPM	WT %	
Nitrogen	0.528		0.754	
Carbon Dioxide	0.179		0.402	
Methane	82.263		67.287	
Ethane	12.342	3.292	18.921	
Propane	2.981	0.819	6.702	
Isobutane	0.382	0.125	1.132	
n-Butane	0.650	0.204	1.926	
2,2 Dimethylpropane	0.015	0.006	0.055	
Isopentane	0.171	0.062	0.629	
n-Pentane	0.150	0.054	0.552	
2,2 Dimethylbutane	0.007	0.003	0.031	
Cyclopentane	0.000	0.000	0.000	
2,3 Dimethylbutane	0.012	0.005	0.053	
2 Methylpentane	0.052	0.022	0.228	
3 Methylpentane	0.031	0.013	0.136	
n-Hexane	0.060	0.025	0.264	
Methylcyclopentane	0.008	0.003	0.034	
Benzene	0.003	0.001	0.012	
Cyclohexane	0.010	0.003	0.043	
2-Methylhexane	0.017	0.008	0.087	
3-Methylhexane	0.016	0.007	0.082	
2,2,4 Trimethylpentane	0.000	0.000	0.000	
Other C7's	0.019	0.008	0.096	
n-Heptane	0.023	0.011	0.118	
Methylcyclohexane	0.020	0.008	0.100	
Toluene	0.005	0.002	0.023	
Other C8's	0.027	0.013	0.152	
n-Octane	0.009	0.005	0.052	
Ethylbenzene	0.000	0.000	0.000	
M & P Xylenes	0.003	0.001	0.016	
O-Xylene	0.000	0.000	0.000	
Other C9's	0.010	0.005	0.064	
n-Nonane	0.003	0.002	0.020	
Other C10's	0.001	0.001	0.007	
n-Decane	0.002	0.001	0.015	
Undecanes (11)	<u>0.001</u>	<u>0.001</u>	<u>0.007</u>	
Totals	100.000	4.707	100.000	
Computed Real Characteristics of Total Sample				

•			
Specific Gravity	0.679	(Air=1)	
Compressibility (Z)	0.9969		
Molecular Weight	19.61		
Gross Heating Value			
Dry Basis	1189	BTU/CF	
Saturated Basis	1169	BTU/CF	

Sample: Oxford Pad II-B GPU Outlet Gas Gas Sampled @ 988 psig & 74 °F

Date Sampled: 06/10/2016

Job Number: 62454.001

GLYCALC FORMAT

COMPONENT	MOL%	GPM	Wt %
Carbon Dioxide	0.179		0.402
Hydrogen Sulfide			
Nitrogen	0.528		0.754
Methane	82.263		67.287
Ethane	12.342	3.292	18.921
Propane	2.981	0.819	6.702
Isobutane	0.382	0.125	1.132
n-Butane	0.665	0.210	1.981
Isopentane	0.171	0.062	0.629
n-Pentane	0.150	0.054	0.552
Cyclopentane	0.000	0.000	0.000
n-Hexane	0.060	0.025	0.264
Cyclohexane	0.010	0.003	0.043
Other C6's	0.102	0.042	0.448
Heptanes	0.083	0.037	0.417
Methylcyclohexane	0.020	0.008	0.100
2,2,4 Trimethylpentane	0.000	0.000	0.000
Benzene	0.003	0.001	0.012
Toluene	0.005	0.002	0.023
Ethylbenzene	0.000	0.000	0.000
Xylenes	0.003	0.001	0.016
Octanes Plus	<u>0.053</u>	0.026	<u>0.317</u>
Totals	100.000	4.707	100.000

Real Characteristics Of Octanes Plus:

Specific Gravity	4.067	(Air=1)
Molecular Weight	117.43	
Gross Heating Value	6056	BTU/CF

Real Characteristics Of Total Sample:

Specific Gravity	0.679	(Air=1)
Compressibility (Z)	0.9969	
Molecular Weight	19.61	
Gross Heating Value		
Dry Basis	1189	BTU/CF
Saturated Basis	1169	BTU/CF

FESCO, Ltd. 1100 FESCO Avenue - Alice, Texas 78332

For: CONSOL Energy Inc. CNX Center 1000 CONSOL Energy Drive Canonsburg, Pennsylvania 15317

Sample: Oxford Pad 11-B GPU Outlet Hydrocarbon Liquid Sampled @ 988 psig & 74 °F

Date Sampled: 06/10/16

Job Number: 62454.002

COMPONENT	MOL %	LIQ VOL %	WT %
Nitrogen	0.045	0.014	0.018
Carbon Dioxide	0.098	0.047	0.062
Methane	24.583	11.707	5.698
Ethane	15.024	11.292	6.527
Propane	10.106	7.825	6.439
Isobutane	2.373	2.182	1.992
n-Butane	5.265	4.665	4.421
2,2 Dimethylpropane	0.062	0.067	0.065
Isopentane	2.852	2.931	2.973
n-Pentane	2.893	2.947	3.016
2,2 Dimethylbutane	0.134	0.157	0.167
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.219	0.252	0.272
2 Methylpentane	1.420	1.656	1.768
3 Methylpentane	0.923	1.059	1.149
n-Hexane	2.082	2.406	2.592
Heptanes Plus	<u>31.922</u>	<u>50.791</u>	<u>62.840</u>
Totals:	100.000	100.000	100.000

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2186-M

Characteristics of Heptanes Plus:

Specific Gravity	0.7626	(Water=1)
°API Gravity	54.04	@ 60°F
Molecular Weight	136.2	-
Vapor Volume	17.77	CF/Gal
Weight	6.35	Lbs/Gal

Characteristics of Total Sample:

Specific Gravity	0.6164	(Water=1)
°API Gravity	98.06	@ 60°F
Molecular Weight	69.2	
Vapor Volume	28.27	CF/Gal
Weight	5.14	Lbs/Gal

Base Conditions: 14.650 PSI & 60 °F

```
FESCO, Ltd. - Alice, Texas
```

Sampled By: (20) Cucinotta Analyst: XG Processor: XGdjv Cylinder ID: W-1015

David Dannhaus 361-661-7015

TANKS DATA INPUT REPORT - GPA 2186-M

COMPONENT	Mol %	LiqVol %	Wt %
Carbon Dioxide	0.098	0.047	0.062
Nitrogen	0.045	0.014	0.018
Methane	24,583	11.707	5.698
Ethane	15.024	11.292	6.527
Propane	10.106	7.825	6.439
Isobutane	2,373	2.182	1.992
n-Butane	5.327	4.732	4.486
Isopentane	2.852	2.931	2.973
n-Pentane	2.893	2.947	3.016
Other C-6's	2.695	3.124	3.356
Heptanes	6.012	7.457	8.464
Octanes	7.689	10.164	12.032
Nonanes	3.674	5.650	6.739
Decanes Plus	12.541	25.446	32.661
Benzene	0.091	0.072	0.103
Toluene	0.474	0.446	0.631
E-Benzene	0.369	0,400	0.566
Xylenes	1.072	1.157	1.645
n-Hexane	2.082	2,406	2.592
2,2,4 Trimethylpentane	<u>0.000</u>	0.000	<u>0.000</u>
Totals:	100.000	100.000	100.000

Characteristics of Total Sample:

Specific Gravity	0.6164	(Water=1)
*API Gravity	98.06	@ 60°F
Molecular Weight	69.2	
Vapor Volume	28.27	CF/Gal
Weight	5.14	Lbs/Gal

Characteristics of Decanes (C10) Plus:		
Specific Gravity	0.7912	(Water=1)
Molecular Weight	180.3	

Characteristics of Atmospheric Sample:

API Gravity	62.33	@ 60°F
Reid Vapor Pressure Equivalent (D-5191)	9.58	psi

QUALITY CONTROL CHECK			
Sampling Conditions Test Samples			
Cylinder Number		W-1015* W-1005	
Pressure, PSIG	988	972	958
Temperature, °F	74	74	74

* Sample used for analysis

FESCO, Ltd.

TOTAL EXTENDED REPORT - GPA 2186-M

COMPONENT	Mol %	LiqVol %	Wt %
Nitrogen	0.045	0.014	0.018
Carbon Dioxide	0.098	0.047	0.062
Methane	24.583	11.707	5.698
Ethane	15.024	11.292	6.527
Propane	10.106	7.825	6.439
Isobutane	2.373	2.182	1.992
n-Butane	5.265	4.665	4.421
2,2 Dimethylpropane	0.062	0.067	0.065
Isopentane	2.852	2.931	2.973
n-Pentane	2.893	2.947	3.016
2,2 Dimethylbutane	0.134	0.157	0.167
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.219	0.252	0.272
2 Methylpentane	1.420	1.656	1.768
3 Methylpentane	0.923	1.059	1.149
n-Hexane	2.082	2.406	2.592
Methylcyclopentane	0.474	0.472	0.577
Benzene	0.091	0.072	0.103
Cyclohexane	0.521	0.498	0.633
2-Methylhexane	1.317	1.721	1.907
3-Methylhexane	1.089	1.405	1.576
2,2,4 Trimethylpentane	0.000	0.000	0.000
Other C-7's	0.666	0.838	0.954
n-Heptane	1.946	2.523	2.817
Methylcyclohexane	1.788	2.020	2.537
Toluene	0.474	0.446	0.631
Other C-8's	4.201	5.697	6.691
n-Octane	1.699	2.447	2.805
E-Benzene	0.369	0.400	0.566
M & P Xylenes	0.505	0.551	0.775
O-Xylene	0.567	0.606	0.870
Other C-9's	2.393	3.624	4.365
n-Nonane	1.281	2.026	2.374
Other C-10's	2.581	4.296	5.269
n-decane	0.890	1.535	1.829
Undecanes(11)	2.454	4.190	5.212
Dodecanes(12)	1.627	3.001	3.785
Tridecanes(13)	1.266	2.503	3.200
Tetradecanes(14)	0.870	1.843	2.389
Pentadecanes(15)	0.623	1.414	1.855
Hexadecanes(16) Heptadecanes(17)	0.436 0.331	1.057	1.398
Octadecanes(18)	0.284	0.850	1.134
Nonadecanes(19)	0.225	0.767 0.632	1.030
Eicosanes(20)	0.225	0.501	0.854 0.680
Heneicosanes(21)	0.131	0.403	0.551
Docosanes(22)	0.114	0.365	0.502
Tricosanes(23)	0.094	0.314	0.434
Tetracosanes(24)	0.080	0.274	0.381
Pentacosanes(25)	0.052	0.184	0.257
Hexacosanes(26)	0.052	0.194	0.272
Heptacosanes(27)	0.053	0.202	0.284
Octacosanes(28)	0.030	0.119	0.169
Nonacosanes(29)	0.031	0.127	0.180
Triacontanes(30)	0.024	0.102	0.145
Hentriacontanes Plus(31+)	0.121	0.570	0.848
Total	100.000	100.000	100.000

For: CONSOL Energy Inc. CNX Center 1000 CONSOL Energy Drive Canonsburg, Pennsylvania 15317

Sample: Oxford Pad II

Low Pressure Separator Gas Sampled @ 45 psig & 107 °F

Date Sampled: 06/10/2016

Job Number: 62456.001

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286

COMPONENT	MOL%	GPM
Nitrogen	0.670	
Carbon Dioxide	0.199	
Methane	44.353	
Ethane	24.701	6.628
Propane	15.021	4.152
Isobutane	3.068	1.007
n-Butane	5.893	1.864
2-2 Dimethylpropane	0.060	0.023
Isopentane	1.920	0.705
n-Pentane	1.570	0.571
Hexanes	1.438	0.595
Heptanes Plus	<u>1.107</u>	<u>0.489</u>
Totals	100.000	16.034

Computed Real Characteristics Of Heptanes Plus:

Specific Gravity	3.563	(Air=1)
Molecular Weight	102.28	
Gross Heating Value	5387	BTU/CF

Computed Real Characteristics Of Total Sample:

Specific Gravity	1.100	(Air=1)
Compressibility (Z)	0.9910	
Molecular Weight	31.58	
Gross Heating Value		
Dry Basis	1836	BTU/CF
Saturated Basis	1805	BTU/CF

Base Conditions: 14.650 PSI & 60 Deg F

Sampled By: (20) Cucinotta Analyst: MR Processor: NG Cylinder ID: T-3207 Certified: FESCO, Ltd. - Alice, Texas

David Dannhaus 361-661-7015

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286 TOTAL REPORT

COMPONENT	MOL %	GPM	WT %
Nitrogen	0.670		0.594
Carbon Dioxide	0.199		0.277
Methane	44.353		22.531
Ethane	24.701	6.628	23.517
Propane	15.021	4.152	20.972
Isobutane	3.068	1.007	5.646
n-Butane	5.893	1.864	10.845
2,2 Dimethylpropane	0.060	0.023	0.137
Isopentane	1.920	0.705	4.386
n-Pentane	1.570	0.571	3.587
2,2 Dimethylbutane	0.074	0.031	0.202
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.106	0.044	0.289
2 Methylpentane	0.477	0.199	1.302
3 Methylpentane	0.282	0.116	0.769
n-Hexane	0.499	0.206	1.362
Methylcyclopentane	0.056	0.019	0.149
Benzene	0.016	0.004	0.040
Cyclohexane	0.070	0.024	0.186
2-Methylhexane	0.120	0.056	0.381
3-Methylhexane	0.115	0.053	0.365
2,2,4 Trimethylpentane	0.000	0.000	0.000
Other C7's	0.130	0.057	0.408
n-Heptane	0.141	0.065	0.447
Methylcyclohexane	0.123	0.050	0.382
Toluene	0.030	0.010	0.088
Other C8's	0.152	0.071	0.530
n-Octane	0.042	0.022	0.152
Ethylbenzene	0.001	0.000	0.003
M & P Xylenes	0.014	0.005	0.047
O-Xylene	0.002	0.001	0.007
Other C9's	0.050	0.025	0.200
n-Nonane	0.012	0.007	0.049
Other C10's	0.021	0.012	0.094
n-Decane	0.004	0.002	0.018
Undecanes (11)	<u>0.008</u>	<u>0.005</u>	<u>0.038</u>
Totals	100.000	16.034	100.000
Computed Real Charac			
Specific Gravity			(Air=1)
Compressibility (7) -			

Specific Gravity	1.100	(Air=1)
Compressibility (Z)	0.9910	
Molecular Weight	31.58	
Gross Heating Value		
Dry Basis	1836	BTU/CF
Saturated Basis	1805	BTU/CF

Sample: Oxford Pad II

Low Pressure Separator Gas Sampled @ 45 psig & 107 °F

Date Sampled: 06/10/2016

Job Number: 62456.001

GLYCALC FORMAT

COMPONENT	MOL%	GPM	Wt %
Carbon Dioxide	0.199		0.277
Hydrogen Sulfide			
Nitrogen	0.670		0.594
Methane	44.353		22.531
Ethane	24.701	6.628	23.517
Propane	15.021	4.152	20.972
Isobutane	3.068	1.007	5.646
n-Butane	5.953	1.887	10.982
Isopentane	1.920	0.705	4.386
n-Pentane	1.570	0.571	3.587
Cyclopentane	0.000	0.000	0.000
n-Hexane	0.499	0.206	1.362
Cyclohexane	0.070	0.024	0.186
Other C6's	0.939	0.389	2.562
Heptanes	0.562	0.250	1.750
Methylcyclohexane	0.123	0.050	0.382
2,2,4 Trimethylpentane	0.000	0.000	0.000
Benzene	0.016	0.004	0.040
Toluene	0.030	0.010	0.088
Ethylbenzene	0.001	0.000	0.003
Xylenes	0.016	0.006	0.054
Octanes Plus	<u>0.289</u>	<u>0.144</u>	<u>1.081</u>
Totals	100.000	16.034	100.000

Real Characteristics Of Octanes Plus:

Specific Gravity	4.118	(Air=1)
Molecular Weight	118.19	
Gross Heating Value	6075	BTU/CF

Real Characteristics Of Total Sample:

Specific Gravity	1.100	(Air=1)
Compressibility (Z)	0.9910	
Molecular Weight	31,58	
Gross Heating Value		
Dry Basis	1836	BTU/CF
Saturated Basis	1805	BTU/CF

For: CONSOL Energy Inc. CNX Center 1000 CONSOL Energy Drive Canonsburg, Pennsylvania 15317

Sample: Oxford Pad II

Tank Vent Gas Header Gas Sampled @ <1 psig & 90 °F

Date Sampled: 06/10/2016

Job Number: 62456.011

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286

COMPONENT	MOL%	GPM
Nitrogen	0.603	
Carbon Dioxide	0.652	
Methane	50.135	
Ethane	14.984	4.023
Propane	14.708	4.068
Isobutane	3.739	1.228
n-Butane	7.450	2.358
2-2 Dimethylpropane	0.089	0.034
Isopentane	2.320	0.852
n-Pentane	1.819	0.662
Hexanes	1.738	0.719
Heptanes Plus	<u>1.763</u>	<u>0.786</u>
Totals	100.000	14.730

Computed Real Characteristics Of Heptanes Plus:

Specific Gravity	3.600	(Air=1)
Molecular Weight	103.27	
Gross Heating Value	5435	BTU/CF

Computed Real Characteristics Of Total Sample:

Specific Gravity	1.128	(Air=1)
Compressibility (Z)	0.9905	
Molecular Weight	32.36	
Gross Heating Value		
Dry Basis	1866	BTU/CF
Saturated Basis	1834	BTU/CF

Base Conditions: 14.650 PSI & 60 Deg F

Sampled By: (20) Cucinotta Analyst: MR Processor: NG Cylinder ID: T-1434 Certified: FESCO, Ltd. - Alice, Texas

David Dannhaus 361-661-7015

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286 TOTAL REPORT

COMPONENT	MOL %	GPM	WT %
Nitrogen	0.603		0.522
Carbon Dioxide	0.652		0.887
Methane	50,135		24.853
Ethane	14.984	4.023	13.922
Propane	14.708	4.068	20.041
Isobutane	3.739	1.228	6.715
n-Butane	7.450	2.358	13.380
2,2 Dimethylpropane	0.089	0.034	0.198
Isopentane	2.320	0.852	5.172
n-Pentane	1.819	0.662	4.055
2,2 Dimethylbutane	0.086	0.036	0.229
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.124	0.051	0.330
2 Methylpentane	0.565	0.235	1.505
3 Methylpentane	0.339	0.139	0.903
n-Hexane	0.624	0.258	1.662
Methylcyclopentane	0.069	0.024	0.179
Benzene	0.022	0.006	0.053
Cyclohexane	0.095	0.032	0.247
2-Methylhexane	0.181	0.084	0.560
3-Methylhexane	0.176	0.080	0.545
2,2,4 Trimethylpentane	0.000	0.000	0.000
Other C7's	0.186	0.081	0.570
n-Heptane	0.231	0.107	0.715
Methylcyclohexane	0.196	0.079	0.595
Toluene	0.048	0.016	0.137
Other C8's	0.278	0.130	0.947
n-Octane	0.077	0.040	0.272
Ethylbenzene	0.003	0.001	0.010
M & P Xylenes	0.026	0.010	0.085
O-Xylene	0.004	0.002	0.013
Other C9's	0.096	0.049	0.374
n-Nonane	0.021	0.012	0.083
Other C10's	0.032	0.019	0.140
n-Decane	0.007	0.004	0.031
Undecanes (11)	<u>0.015</u>	<u>0.009</u>	<u>0.070</u>
Totals	100.000	14.730	100.000
Computed Real Charac Specific Gravity		*	(Air=1)

Computed Real Characteristics of Total Sample		
Specific Gravity	1.128	(Air=1)
Compressibility (Z)	0.9905	
Molecular Weight	32.36	
Gross Heating Value		
Dry Basis	1866	BTU/CF
Saturated Basis	1834	BTU/CF

Sample: Oxford Pad II

Tank Vent Gas Header Gas Sampled @ <1 psig & 90 °F

Date Sampled: 06/10/2016

Job Number: 62456.011

GLYCALC FORMAT

COMPONENT	MOL%	GPM	Wt %
Carbon Dioxide	0.652		0.887
Hydrogen Sulfide			
Nitrogen	0.603		0.522
Methane	50.135		24.853
Ethane	14.984	4.023	13.922
Propane	14.708	4.068	20.041
Isobutane	3.739	1.228	6.715
n-Butane	7.539	2.392	13.578
Isopentane	2.320	0.852	5.172
n-Pentane	1.819	0.662	4.055
Cyclopentane	0.000	0.000	0.000
n-Hexane	0.624	0.258	1.662
Cyclohexane	0.095	0.032	0.247
Other C6's	1.114	0.461	2.967
Heptanes	0.843	0.377	2.569
Methylcyclohexane	0.196	0.079	0.595
2,2,4 Trimethylpentane	0.000	0.000	0.000
Benzene	0.022	0.006	0.053
Toluene	0.048	0.016	0.137
Ethylbenzene	0.003	0.001	0.010
Xylenes	0.030	0.012	0.098
Octanes Plus	0.526	0.262	<u>1.917</u>
Totals	100.000	14.730	100.000

Real Characteristics Of Octanes Plus:

Specific Gravity	4.110	(Air=1)
Molecular Weight	117.89	
Gross Heating Value	6062	BTU/CF

Real Characteristics Of Total Sample:

Specific Gravity	1.128	(Air=1)
Compressibility (Z)	0.9905	
Molecular Weight	32.36	
Gross Heating Value		
Dry Basis	1866	BTU/CF
Saturated Basis	1834	BTU/CF

ATTACHMENT O

MONITORING/RECORDKEEPING/REPORTING/ TESTING PLANS

45CSR13 Construction Permit Application

Cain Run (Laverne) Compressor Station New Milton, West Virginia

> CONE Midstream Partners LP 1000 Consol Energy Drive Canonsburg, PA 15317

> > February 2017

Monitoring

Since the compressor at this station will commence construction after September 18, 2015, the fugitive components will become subject to the equipment leak standards of §60.5397a. As a result, the source will be required to develop and implement a fugitive monitoring plan and conduct quarterly OGI surveys. The initial survey will be required within 60 days of startup or by June 3, 2017, whichever is later in accordance with §60.5397a(f)(2).

In addition to that mentioned above, CONE will at a minimum monitor hours of operation, site production throughputs, malfunctions of equipment, as well as planned and unplanned maintenance of permitted equipment comprising the facility.

Recordkeeping

CONE will retain records of the following for five (5) years, two (2) years on site, certified by a company official at such time that the DAQ may request said records

Records of maintenance conducted on the engine shall be kept in accordance with §60.4243(b)(2)(ii)).

The reciprocating compressor itself will also be subject to the rod packing standards of §60.5385a that require them to be replaced/rebuilt every 26,000 hrs or 3 years. Records shall be maintained based on months or hours of operations since initial startup and each subsequent rebuild or replacement of the compressor's rod packing.

In addition to those mentioned above, the company will keep records of the items monitored, such as station throughput, hours of operation, planned maintenance activities, unplanned maintenance activities, and complaints regarding the facility.

Reporting

CONE, at a minimum, will submit results of initial performance test and subsequent performance testing to the EPA Regional Office within sixty (60) days of completion of such tests. In addition, the company will report any control equipment malfunctions or emission limit deviations.

Testing

CONE will demonstrate initial compliance by conducting a performance test as specified in §60.4244 showing the emission limitations in Table 1 to Subpart JJJJ of Part 60 are being met. Subsequent performance testing shall be conducted every 8,760 hours or 3 years, whichever comes first, thereafter to demonstrate compliance.

ATTACHMENT P

PUBLIC NOTICE

45CSR13 Construction Permit Application

Cain Run (Laverne) Compressor Station New Milton, West Virginia

> CONE Midstream Partners LP 1000 Consol Energy Drive Canonsburg, PA 15317

> > February 2017

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that CONE Midstream Partners LP has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a Construction Permit, for a natural gas compressor and dehydration station located off S. Fork of Hughes River. near New Milton, in Doddridge County, West Virginia. The latitude and longitude coordinates are 39.17070 and -80.76350.

The applicant estimates the potential to discharge of the following Regulated Air Pollutants will be:

Pollutant	Tons/yr
PM/PM10/PM2.5	0.46
SO ₂	0.06
NO _x	14.17
CO	29.75
VOCs	14.88
Formaldehyde	5.20
Total HAPs	6.15

Startup of operation is planned to begin in the 4th quarter of 2017. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the xx day of February, 2017.

By: CONE Midstream Partners LP Joseph Fink Chief Operating Officer 1000 Consol Energy Drive Canonsburg, PA 15317