P & A Engineers and Consultants, Inc.

312 Justice Avenue Logan, WV 25601

Phone (304) 752-8320 Fax (304) 752-7488

February 15, 2018

Mr. William F. Durham, Director Division of Air Quality 601 57th Street SE Charleston, WV 25304

RE: Black Castle Mining

General Permit Modification

Facility ID: 005-00010

Dear Mr. Durham:

On behalf of Black Castle Mining, P & A Engineers and Consultants, Inc. submits the enclosed General Permit Modification Application for the above-referenced facility. Included is a check in the amount of \$1,500.00, which represents the submittal fee, and two additional permit copies for your review and approval.

The application addresses the deletion of two belts, adds three refuse belts, changes capacity of two stockpiles, increases rate of belt conveyor BC-21, adds chute to clean coal loadout and changes crusher CR-02 to secondary.

If additional information or clarification is needed, please contact me at the Logan address listed above or call 304-752-8320.

Sincerely,

Donna J. Toler

Air Quality Project Manager

TABLE OF CONTENTS

General Permit Application

Section A Current Business Certificate

Section B Process Description

Section C Description of Fugitive Emissions

Section D Process Flow Diagram

Section E Plot or Site Plan

Section F Area Map

Section G Affected Source Sheets

Section H Baghouse Information

Section I Emission Calculations

Section J Class I Legal Advertisement

Section K Electronic Submittal Diskette

Section L Certification

Section M Check List

Section O Emission Calculations 2016

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION

DIVISION OF AIR QUALITY
601 57TH Street SE
Charleston, WV 25304

Phone: (304) 926-0475 • www.wvdep.org

APPLICATION FOR GENERAL PERMIT REGISTRATION

CONSTRUCT, MODIFY, RELOCATE OR ADMINISTRATIVELY UPDATE A STATIONARY SOURCE OF AIR POLLUTANTS

FOR AGENCY USE ONLY: PLANT I.D. # 005-00010

PERMIT # _____ PERMIT WRITER: _____

☐ G20-B – Hot ! ☐ G30-B – Natu	ral Gas Compressor Stations metallic Minerals Processing	9. DAQ PLANT	I.D. NO. (FOR AN EXISTING FACILITY ONLY): 005-00010	
	SECTION I. GENER.	AL INFORMATIO	ON .	
1. NAME OF APPLICANT (AS REGISTERED WITH THE WV SECRETARY OF STATE'S OFFICE): BLACK CASTLE MINING COMPANY, INC. 2. FEDERAL EMPLOYER ID NO. (FEIN): 55-0734230				
	MAILING ADDRESS: NSON CREEK ROAD, MADISON, WV 25	130 (MAIN	OFFICE ADDRESS)	
l .	IS A SUBSIDIARY CORPORATION, PLEASE PROVIDE ATURAL RESOURCES	THE NAME OF F	PARENT CORPORATION:	
6. WV BUSINESS	REGISTRATION. IS THE APPLICANT A RESIDENT OF	THE STATE OF	WEST VIRGINIA? ¥YES □ NO	
ದ >	IF YES, PROVIDE A COPY OF THE CERTIFICATE OF PAGE) INCLUDING ANY NAME CHANGE AMENDME	INCORPORATION IN	ON / ORGANIZATION / LIMITED PARTNERSHIP (ONE R BUSINESS CERTIFICATE AS ATTACH⊮IENT A.	
\$	IF NO, PROVIDE A COPY OF THE CERTIFICATE OF A INCLUDING ANY NAME CHANGE AMENDMENTS OF	AUTHORITY / AU R OTHER <i>BUSIN</i>	THORITY OF L.L.C. / REGISTRATION (ONE PAGE) IESS CERTIFICATE AS ATTACHMENT A .	

SECTION II. FACILITY INFORMATION

7. TYPE OF PLANT OR FACILITY (STATIONARY CONSTRUCTED,	Y SOURCE) TO BE	8. STANDARD INDUSTRIAL CLASSIFICATION (SIC) CODE FOR THE FACILITY:		
MODIFIED, RELOCATED OR ADMINISTRATIVE COAL PREPARATION PLANT, PRIMARY CRUS	ELY UPDATED (E.G.,	1221		
Delete two belts, add three refu				
capacity of two stockpiles, incr	,			
BC-21, add chute to clean coal				
crusher CR-02 to secondary.	ioadout. Change			
9A. DAQ PLANT I.D. NO. (FOR AN EXISTING FACILITY:		45CSR13 AND 45CSR30 (TITLE V) PERMIT NUMBERS PROCESS (FOR EXISTING FACILITY ONLY):		
005-00010		G10-C078		
000-000				
	PRIMARY OPERATING SI	TE INFORMATION		
11A. NAME OF PRIMARY OPERATING SITE: 12A. MAILING ADDRESS OF PRIMARY OPERATING SITE:				
Advival Dyeans in a Blant	DO Dov 204 Ivili	1807 05500		
Admiral Processing Plant	PO Box 261, Juli	an, vvv 25529		
13A. DOES THE APPLICANT OWN, LEASE, HAV	VE AN OPTION TO BUY, OR	ROTHERWISE HAVE CONTROL OF THE PROPOSED SITE?		
⇒ IF YES, PLEASE EXPLAIN: OWNER A	ND OPERATOR			
☐ IF NO, YOU ARE NOT ELIGIBLE FOR A PROPERTY OF THE PROPERTY	ERMIT FOR THIS SOURCE.			
14A. □ FOR MODIFICATIONS or ADMINISTRA PRESENT LOCATION OF THE FACIL		ISTING FACILITY, PLEASE PROVIDE DIRECTIONS TO THE STATE ROAD;		
	CATION PERMITS, PLEASI	E PROVIDE DIRECTIONS TO THE PROPOSED NEW SITE		
LOCATION FROM THE NEAREST ST	ATE ROAD.			
From Charleston, proceed to M	larmet take Route 3	toward Madison, facility located on main road		
outside Peytona on left	anno, and Noute o	toward madison, facility located on main load		
INCLUDE A MAP AS ATTACHMENT F.				
15A. NEAREST CITY OR TOWN:	16A. COUNTY:			
Peytona		Boone		
		MOOIIG		

18A. UTM EASTING (KM):

439347.3 (38-07-08.7)

17A. UTM NORTHING (KM):

4219047.8(81-41-30.93)

17

19A. UTM ZONE:

1ST ALTERNATE OPERATING SITE INFORMATION

11B. NAME OF PRIMARY OPERATING SITE:	12B. MAILING ADDRESS OF PRIMARY OPER	RATING SITE:		
N/A				
13B. DOES THE APPLICANT OWN, LEASE, HA¹ □ YES □ NO	VE AN OPTION TO BUY, OR OTHERWISE HAVE	E CONTROL OF THE PROPOSED SITE?		
□ IF YES, PLEASE EXPLAIN: □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □				
☐⇒ IF NO, YOU ARE NOT ELIGIBLE FOR A P	ERMIT FOR THIS SOURCE.			
14B. → FOR MODIFICATIONS or ADMINISTRA PRESENT LOCATION OF THE FACIL	ATIVE UPDATES, AT AN EXISTING FACILITY, F LITY FROM THE NEAREST STATE ROAD;	PLEASE PROVIDE DIRECTIONS TO THE		
FOR CONSTRUCTION OR RELC LOCATION FROM THE NEAREST ST	DCATION PERMITS, PLEASE PROVIDE DIRECT TATE ROAD.	TIONS TO THE PROPOSED NEW SITE		
INCLUDE A MAP AS ATTACHMENT F.				
15B. NEAREST CITY OR TOWN: 16B. COUNTY:				
17B. UTM NORTHING (KM):	18B. UTM EASTING (KM):	19B. UTM ZONE:		

$\mathbf{2}^{\text{ND}} \text{ ALTERNATE OPERATING SITE INFORMATION}$

11C. NAME OF PRIMARY OPERATING SITE: N/A	12C. MAILING ADDRESS OF PRIMARY OPER	≀ATING SITE	:: 			
13C. DOES THE APPLICANT OWN, LEASE, HAN ☐ YES ☐ NO ☐ IF YES, PLEASE EXPLAIN: ☐ IF NO, YOU ARE NOT ELIGIBLE FOR A PE		E CONTROL	OF THE PROPOSED SITE?			
	ITY FROM THE NEAREST STATE ROAD; CATION PERMITS, PLEASE PROVIDE DIRECT					
15C. NEAREST CITY OR TOWN: 16C. COUNTY:						
17C. UTM NORTHING (KM):	18C. UTM EASTING (KM):	19C. UTM 2	ZONE:			
20. PROVIDE THE DATE OF ANTICIPATED INSTALLATION OR CHANGE: April 15, 2018 □ IF THIS IS AN AFTER-THE-FACT PERMIT APPLICATION, PROVIDE THE DATE UPON WHICH THE PROPOSED CHANGE DID HAPPEN:/						
PROVIDE MAXIMUM PROJECTED OPERATING SCHEDULE OF ACTIVITY/ ACTIVITIES OUTLINED IN THIS APPLICATION: HOURS PER DAY 24 DAYS PER WEEK 7 WEEKS PER YEAR 52 PERCENTAGE OF OPERATION 100%						

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO:
BLACK CASTLE MINING COMPANY LLC
ROUTE 3, PRENTER ROAD
SETH, WV 25181-0000

BUSINESS REGISTRATION ACCOUNT NUMBER:

1031-6384

This certificate is issued on:

08/19/2016

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued. This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atl_006 v.4 L2045787968

DETAILED PROCESS DESCRIPTION

The Admiral Processing Facility is located on Route 3 near Peytona in Boone County, WV.

This modification addresses the deletion of raw coal belts BC-03 and BC-20, the addition of three refuse belt conveyors BC-23, BC-24, BC-25, changes in the stockpile capacity of stockpiles OS-02 and OS-03, and addition of a chute to the clean coal loadout for truck loading. Transfer points have been changed since the last modification in 2016 to reflect current material flow. Since crushers CR-01 and CR-04 are primary, crusher CR-02 would become secondary if material is re-crushed prior to plant processing.

Direct Ship or Raw Clean Coal is delivered to truck dump bins BS-01(PW), BS-02(PW) and BS-03(PW) @ TP-01(UD-PW), TP-03(UD-PW), and TP-05(UD-PW); transferred to belt conveyor BC-01(FE) @ TP02(TC-FE), TP-04(TC-FE) and TP-06(TC-FE); for delivery to the scalping screen SS-01(FW) @ TP-07(TC-FE) and crusher CR-01(FW) @ TP-08(TC-FW). The crusher will transfer material to overland belt conveyor BC-02(PE) @ TP-09(TC-FW) which by-passes the prep plant and discharges to stockpile OS-01(SW-WS) @ TP-10(TC-PE). Stacking tube controls load-in to the stockpile. Direct ship or raw coal can also be diverted via flop gate to belt conveyor BC-21(PE) @ TP-11(TC-FE); onto belt conveyor BC-22(PE) @ TP-12(TC-FE); to raw coal belt conveyor BC-04(PE) @ TP-13(TC-FE).

Trucks will deliver raw coal to a three sided roofed truck dump bin BS-06(PW) @ TP-14(UD-PW). This material will reclaim underbin to

breaker CR-04 @ TP-15(TC-FW) and onto belt conveyor BC-04(PE) @ TP-16(TC-FW); to stockpile OS-02(SW-WS) @ TP-17(TC-PE). Belt BC-04 will also transfer to belt conveyor BC-05(PE) @ TP-18(TC-FE) for delivery to stockpile OS-03(SW-WS) @ TP-19(TC-PE). Stacking tubes control load-in to the stockpiles. Coal will reclaim under-pile to belt conveyer BC-06(PE) @ TP-20(LO-UC) and TP-21(LO-UC); transfer to belt conveyor BC-07(PE) @ TP-22(TC-FE); to crusher CR-02(FW) @ TP-23(TC-FE); to plant feed belt BC-08(PE) @ TP-24(TC-FW); and into the plant at TP-25(TC-FW).

Clean coal is transferred inside the plant by crusher CR-03(FW) @ TP-26(TC-FW) leave the plant on belt conveyor BC-09(PE) @ TP-27(TC-FW). Belt conveyor BC-09 transfers clean met coal to belt conveyor BC-10(PE) @ TP-28(TC-FE) for delivery to stockpile OS-04(SW-WS) @ TP-29(TC-PE). Stacking tube controls load-in to the stockpile. Belt conveyor BC-09 also transfers plant clean coal to belt conveyor BC-11(PE) @ TP-30(TC-FE) for delivery via stacking tube to stockpile OS-06(SW-WS) @ TP-31(TC-PE). Belt conveyor BC-11 also transfers coal to reversing belt BC-12(PE) @ TP-32(TC-FE) for delivery to open stockpile OS-05(SW-WS) @ TP-33(TC-MDH) and to open stockpile OS-07(SW-WS) @ TP-34(TC-MDH).

Clean coal stockpiles OS-01, OS-04, OS-05, OS-06 and OS-07 will reclaim to loadout belt conveyor BC-13(PE) @ TP-35(LO-UC) TP-36(LO-UC), TP-37(LO-UC), TP-38(LO-UC), and TP-39(LO-UC) for delivery to the loadout surge bin BS-04(FE) @ TP-40(TC-FE); to loadout weigh bin BS-05(FE) @ TP-41(TC-FE); and to railcar via telescopic chute @ TP-42(LR-TC). Trucks would loadout via fixed chute @ TP-43(LO-MDH).

ATTACHMENT B

Refuse is transferred to the disposal area by a series of belt conveyors designated BC-14(PE) thru BC-25(NC) @ TP-44(TC-FE) thru TP-53(TC-MDH). Refuse belts BC-23, BC-24, and BC-25 are proposed.

DESCRIPTION OF FUGITIVE EMISSIONS

Potential sources of fugitive particulate emissions for this facility include emissions, which are not captured by pollution control equipment and emissions from open stockpiles and vehicular traffic on paved haulroads and work areas. The haulroads and work areas will be controlled by water truck in accordance with section E.6.c.i. of the General Permit.

The water truck is equipped with pumps sufficient to maintain haulroads and work areas. The water truck will be operated three times daily, and more as needed in dry periods.

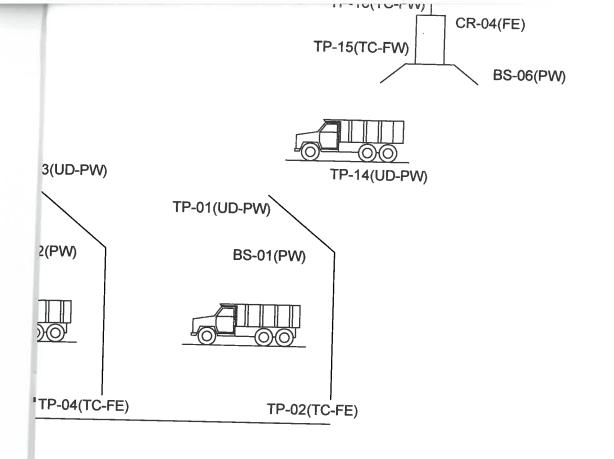
An additive to prevent freezing will be utilized in the winter months when freezing conditions are present.

This document was too large to scan. If interested in viewing please contact: depfoia@wv.gov or

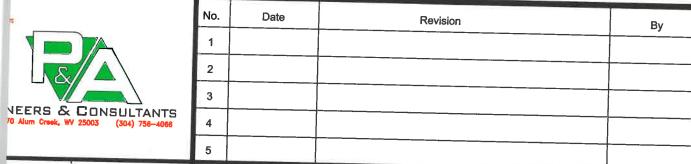
West Virginia Department of Environmental Protection Public Information Office

FOIA Request

601 57th St. S.E.


Charleston, WV 25304.

The fax number is 304-926-0447.


Thank you.

west virginia department of environmental protection

YSTEM

9;	Drawn By:
)9/18	G. Caudill
N .:	Topo Contour Interval:
021	na
	Sheet No.:
na	1 of 1

Submittal Date: February 2018

Black Castle Mining Company, LLC.

696 Robinson Creek Road Madison, WV 25130

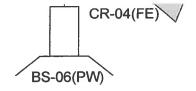
Admiral Processing Plant

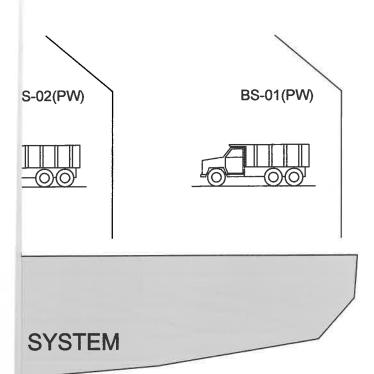
Facility ID Number 005-00010 Air Quality Material Flow Diagram This document was too large to scan. If interested in viewing please contact: depfoia@wv.gov or

West Virginia Department of Environmental Protection Public Information Office

FOIA Request

601 57th St. S.E.


Charleston, WV 25304.

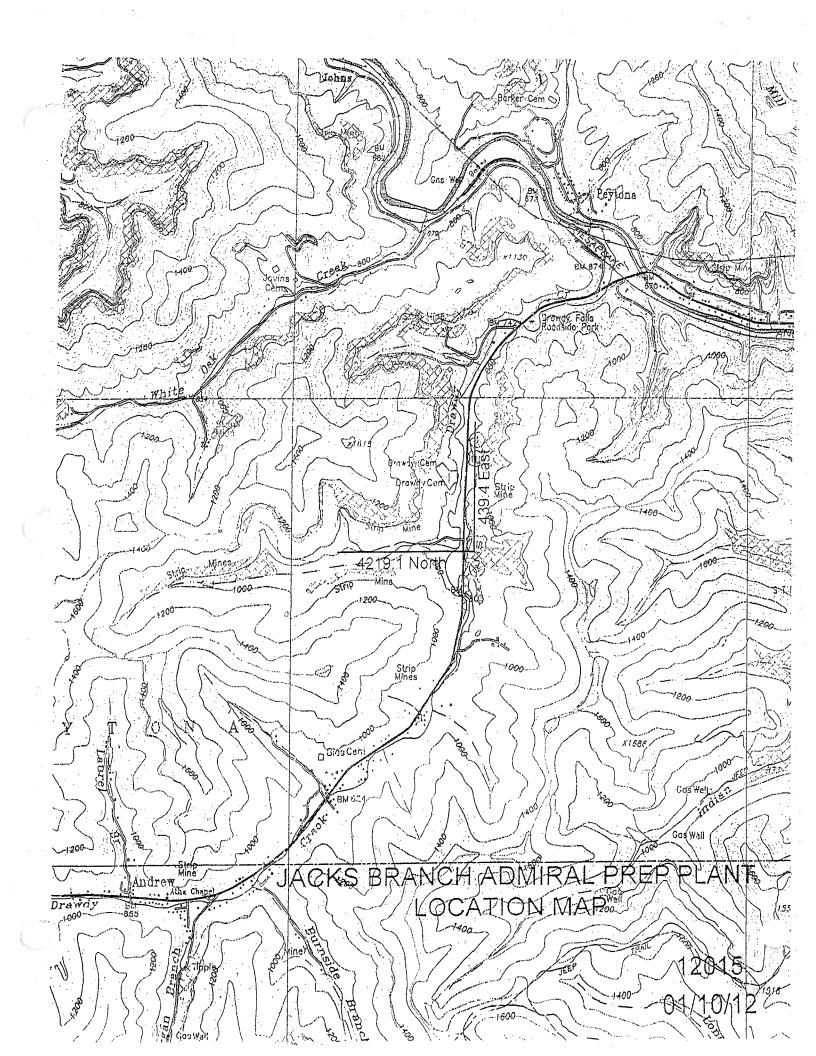

The fax number is 304-926-0447.

Thank you.

west virginia department of environmental protection

Prepared by:		No.	Date	Revision	Ву
		1			
L&					
ENGINEERS & CONSULTANTS PO Box 470 Alum Creek, WV 25003 (304) 756-4066		4			
		5	li e		
Drawing Date:	Drawn By:				

Drawing Date.	Drawir by.		
02/09/18	G. Caudill		
Computer No.:	Topo Contour Interval:		
18022	na		
Scale:	Sheet No.:		
na	1 of 1		


Submittal Date: February 2018

Black Castle Mining Company, LLC.

696 Robinson Creek Road Madison, WV 25130

Admiral Processing Plant

Facility ID Number 005-00010 Air Quality Site Map

CRUSHING AND SCREENING AFFECTED SOURCE SHEET

	ntification Number ¹	Direct Ship CR-01	Raw Coal CR-02	Plant CR-03	CR-04
Type of Cr	usher or Screen ²	DR	DR	DR	Breaker
Date of	Manufacture ³	2008	2008	2008	2014
Maximum	tons/hour	1000	1000	750	500
Throughput ⁴	tons/year	8,760,000	8,760,000	6,570,000	4,380,000
Material	sized from/to:5	6x2	4x0	2x0	4x0
Average Moi	sture Content (%) ⁶	5	5.5	7	6
Control De	vice ID Number ⁷	FW	FW	FW	FW
	height (ft)	N/A			
	diameter (ft)				
	volume (ACFM)				
Baghouse Stack	exit temp (°F)				
Parameters ⁸	UTM Coordinates				
	hours/day	24	24	24	24
Maximum Operating	days/year	365	365	365	365
Schedule ⁹	hours/year	8760	8760	8760	8760
	January-March	25	25	25	25
	April-June	25	25	25	25
Percentage of	July-September	25	25	25	25
Operation ¹⁰	Oct-December	25	25	25	25

^{1.} Enter the appropriate Source Identification Number for each crusher and screen. For example, in the case of an operation which incorporates multiple crushers, the crushers should be designated CR-1, CR-2, CR-3 etc. beginning with the breaker or primary crusher. Multiple screens should be designated S-1, S-2, S-3 etc.

2. Describe types of crushers and screens using the following codes:

HM Hammermill SS Stationary Screen DR Double Roll Crusher SD Single Deck Screen ВМ **Ball Mill** DD Double-Deck Screen RB Rotary Breaker Triple Deck Screen TD JC Jaw Crusher OT Other

GC Gyratory Crusher

OT Other - Quadroll

- 3. Enter the date that each crusher and screen was manufactured.
- 4. Enter the maximum throughput for each crusher and screen in tons per hour and tons per year.

5. Describe the nominal material size reduction (e.g. +2"/ -_").

- 6. Enter the average percent moisture content of the material processed.
- 7. Enter the appropriate Control Device Identification Number for each crusher and screen. Refer to Table A Control Device Listing and Control Device Identification Number Instructions in the Reference Document for Control Device ID prefixes and numbering.
- 8. Enter the appropriate stack parameters if a baghouse control device is used.
- 9. Enter the maximum operating schedule for each crusher and screen in hours per day, days per year and hours per year.
- 10. Enter the estimated percentage of operation throughout the year for each crusher and screen.

CRUSHING AND SCREENING AFFECTED SOURCE SHEET

Source Ide	ntification Number ¹	SS-01			
Type of C	rusher or Screen ²	Scalping			
Date of	f Manufacture ³	2008			
Maximum	tons/hour	1000			
Throughput⁴	tons/year	8,760,000			
Material	sized from/to:5	6x4			
Average Mo	isture Content (%) ⁶	5			
Control De	evice ID Number ⁷	FW			
	height (ft)	N/A			
	diameter (ft)				
	volume (ACFM)				
Baghouse Stack	exit temp (°F)				
Parameters ⁸	UTM Coordinates				
	hours/day	24			
Maximum Operating	days/year	365			
Operating Schedule ⁹	hours/year	8760			
	January-March	25			
	April-June	25			
Percentage of	July-September	25			
Operation ¹⁰	Oct-December	25			

- 1. Enter the appropriate Source Identification Number for each crusher and screen. For example, in the case of an operation which incorporates multiple crushers, the crushers should be designated CR-1, CR-2, CR-3 etc. beginning with the breaker or primary crusher. Multiple screens should be designated S-1, S-2, S-3 etc.
- Describe types of crushers and screens using the following codes:

HM	Hammermill
DD	Davids Dall O

DR Double Roll Crusher

BM Ball Mill

RB Rotary Breaker

JC Jaw Crusher

GC Gyratory Crusher

OT Other

SS Stationary Screen

SD Single Deck Screen

DD Double-Deck Screen

TD Triple Deck Screen

OT Other

- 3. Enter the date that each crusher and screen was manufactured.
- 4. Enter the maximum throughput for each crusher and screen in tons per hour and tons per year.
- 5. Describe the nominal material size reduction (e.g. +2"/ -_").
- 6. Enter the average percent moisture content of the material processed.
- 7. Device Identification Number Instructions in the Reference Document for Control Device ID prefixes and numbering. Enter the appropriate Control Device Identification Number for each crusher and screen. Refer to Table A Control Device Listing and Control
- 8. Enter the appropriate stack parameters if a baghouse control device is used.
- 9. Enter the maximum operating schedule for each crusher and screen in hours per day, days per year and hours per year.
- 10. Enter the estimated percentage of operation throughout the year for each crusher and screen.

Page	of

CONVEYING AFFECTED SOURCE SHEET

			ECTED 300	TOP OTIE	<u> </u>	1 .	
		Time of		Maximum Material Transfer Rate ⁵		Average	
Source Identification	Date of	Type of Material	Size of Material	ITalis	Tel Rate	Moisture Content	Control
Number ¹	Manufacture ²	Handled ³	Handled ⁴	tons/hour	tons/year	(%) ⁶	Device ⁷
BC-01	2008	RC	6x4	1000	8,760,000	5	PE
BC-02	2008	RC	2x0	1000	8,760,000	5	PE
BC-03	Delete						
BC-04	2008	RC	4x0	1000	8,760,000	6	PE
BC-05	2008	RC	4x0	1000	4,380,000	6	PE
BC-06	2008	RC	4x0	1000	8,760,000	6	PE
BC-07	2008	RC	4x0	1000	8,760,000	6	PE
BC-08	2008	RC	2x0	1000	8,760,000	6	PE
BC-09	2008	СС	2x0	750	6,570,000	7	PE
BC-10	2008	СС	2x0	750	1,642,500	7	PE
BC-11	2008	СС	2x0	750	4,927500	7	PE
BC-12	2008	СС	2x0	750	3,285,000	7	PE
BC-13	2008	СС	2x0	4500	15,330,000	7	PE
BC-14	2008	Refuse	-1 3/8	500	4,380,000	10	PE
BC-15	2008	Refuse	-1 3/8	500	4,380,000	10	PE
BC-16	2008	Refuse	-1 3/8	500	4,380,000	10	PE
BC-17	2008	Refuse	-1 3/8	500	4,380,000	10	PE
BC-18	2011	Refuse	-1 3/8	500	4,380,000	10	NC
BC-19	2011	Refuse	-1 3/8	500	4,380,000	10	NC
BC-20	Delete						
BC-21	2013	RC	2x0	1000	8,760,000	5	PE

**BC-22	2016	RC	2x0	1000	8,760,000	5	PE
Proposed							
BC-23	2018	Refuse	-1 3/8	500	2,628,000	5	NC
Proposed							
BC-24	2018	Refuse	-1 3/8	500	2,628,000	5	NC
Proposed							
BC-25	2018	Refuse	-1 3/8	500	2,628,000	5	NC

^{**}Belt BC-22 under construction February 2018

STORAGE ACTIVITY AFFECTED SOURCE SHEET

Source Identification Number ¹	BS-01	Direct Ship BS-02	Direct Ship BS-03	Surge BS-04	Weigh BS-05
Type of Material Stored ²	RC/CC	СС	СС	СС	CC
Average Moisture Content (%) ³	5	5	5	7	7
Maximum Yearly Storage Throughput (tons) ⁴	8,760,000	2,920,000	2,920,000	15,330,000	15,330,000
Maximum Storage Capacity (tons) ⁵	150	150	150	400	240
Maximum Base Area (ft²) ⁶					
Maximum Pile Height (ft) ⁷					
Method of Material Load-in ⁸	TD	TD	TD	SS	SS
Load-in Control Device Identification Number ⁹	UD-PW	UD-PW	UD-PW	TC-FE	TC-FE
Storage Control Device Identification Number ⁹	PW	PW	PW	FE	FE
Method of Material Load-out ⁸	SS	SS	SS	Chute	тс
Load-out Control Device Identification Number ⁹	TC-FE	TC-FE	TC-FE	TC-FE	LR-TC

Enter the appropriate Source Identification Number for each storage activity using the following codes. For example, if the facility utilizes three storage bins, four open stockpiles and one storage building (full enclosure), the Source Identification Numbers should be BS-1, BS-2, and BS-3; OS-1, OS-2, OS-3, and OS-4; and SB-1, respectively.

Bin or Storage Silo (full enclosure) BS

Enclosure (three sided enclosure) E3 Storage Building (full enclosure) SB

os Open Stockpile Stockpiles with wind fences

- Describe the type of material stored or stockpiled (e.g. clean coal, raw coal, refuse, etc).
- 3. Enter the average percent moisture content of the stored material.
- 4. Enter the maximum yearly storage throughput for each storage activity.
- 5. Enter the maximum storage capacity for each storage activity in tons (e.g. silo capacity, maximum stockpile size, etc.)
- For stockpiles, enter the maximum stockpile base area.
- For stockpiles, enter the maximum stockpile height. 7.
- Enter the method of load-in or load-out to/from stockpiles or bins using the following codes:

Clamshell FC Fixed Height Chute from Bins

Stationary Conveyor/Stacker ST

FE Front Endloader Stacking Tube

MC Mobile Conveyor/Stacker

Telescoping Chute from Bins TC

UC Under-pile or Under-Bin Reclaim Conveyor TD Truck Dump

PC Pneumatic Conveyor/Stacker

Rake or Bucket Reclaim Conveyor

Other

STORAGE ACTIVITY AFFECTED SOURCE SHEET

Source Identification					
Number ¹	OS-01	OS-02	OS-03	OS-04	OS-05
Type of Material Stored ²	СС	RC	RC	СС	СС
Average Moisture Content (%) ³	5	6	6	7	7
Maximum Yearly Storage Throughput (tons) ⁴	8,760,000	4,380,000	4,380,000	1,642,500	1,642,500
Maximum Storage Capacity (tons) ⁵	75,000	80,000	30,000	50,000	50,000
Maximum Base Area (ft²) ⁶	108,869	108,869	88,869	88,869	88,869
Maximum Pile Height (ft) ⁷	75'	75'	75'	75'	75'
Method of Material Load-in ⁸	SS	SS	SS	SS	SS
Load-in Control Device Identification Number ⁹	TC-PE/ST	TC-PE/ST	TC-PE/ST	TC-PE/ST	TC-MDH
Storage Control Device Identification Number ⁹	SW-WS	sw-ws	sw-ws	SW-WS	sw-ws
Method of Material Load-out ⁸	uc	UC	uc	UC	UC
Load-out Control Device Identification Number ⁹	LO-UC	LO-UC	LO-UC	LO-UC	LO-UC

Enter the appropriate Source Identification Number for each storage activity using the following codes. For example, if the facility utilizes three
storage bins, four open stockpiles and one storage building (full enclosure), the Source Identification Numbers should be BS-1, BS-2, and BS3; OS-1, OS-2, OS-3, and OS-4; and SB-1, respectively.

BS Bin or Storage Silo (full enclosure)

E3 Enclosure (three sided enclosure)

OS Open Stockpile

SB Storage Building (full enclosure)

SF Stockpiles with wind fences

OT Other

- 2. Describe the type of material stored or stockpiled (e.g. clean coal, raw coal, refuse, etc).
- 3. Enter the average percent moisture content of the stored material.
- 4. Enter the maximum yearly storage throughput for each storage activity.
- 5. Enter the maximum storage capacity for each storage activity in tons (e.g. silo capacity, maximum stockpile size, etc.)
- 6. For stockpiles, enter the maximum stockpile base area.
- 7. For stockpiles, enter the maximum stockpile height.
- 8. Enter the method of load-in or load-out to/from stockpiles or bins using the following codes:

CS Clamshell

SS Stationary Conveyor/Stacker

FC Fixed Height Chute from Bins FE Front Endloader

T Stacking Tube

MC Mobile Conveyor/Stacker

TC Telescoping Chute from Bins

UC Under-pile or Under-Bin Reclaim Conveyor

TD Truck Dump
PC Pneumatic C

RC Rake or Bucket Reclaim Conveyor

PC Pneumatic Conveyor/Stacker

OT Other

STORAGE ACTIVITY AFFECTED SOURCE SHEET

Source Identification Number ¹	OS-06	OS-07		
Type of Material Stored ²	СС	СС		
Average Moisture Content (%) ³	7	7		
Maximum Yearly Storage Throughput (tons) ⁴	1,642,500	1,642,500		
Maximum Storage Capacity (tons) ⁵	50,000	50,000		
Maximum Base Area (ft²) ⁶	88,869	88,869		
Maximum Pile Height (ft) ⁷	75'	75'		
Method of Material Load-in ⁸	SS/ST	SS		
Load-in Control Device Identification Number ⁹	TC-PE	TC-MDH		
Storage Control Device Identification Number ⁹	sw-ws	SW-WS		
Method of Material Load-out ⁸	UC	uc		
Load-out Control Device Identification Number ⁹	LO-UC	LO-UC		

1.	Enter the appropriate Source Identification Number for each storage activity using the following codes. For example, if the facility utilizes three
	storage bins, four open stockpiles and one storage building (full enclosure), the Source Identification Numbers should be BS-1, BS-2, and BS-
	3: OS-1 OS-2 OS-3 and OS-4: and SR-1 respectively

BS Bin or Storage Silo (full enclosure) Enclosure (three sided enclosure)

os Open Stockpile

Storage Building (full enclosure) SB

SF Stockpiles with wind fences Other

- 2. Describe the type of material stored or stockpiled (e.g. clean coal, raw coal, refuse, etc).
- 3. Enter the average percent moisture content of the stored material.
- 4. Enter the maximum yearly storage throughput for each storage activity.
- 5. Enter the maximum storage capacity for each storage activity in tons (e.g. silo capacity, maximum stockpile size, etc.)
- 6. For stockpiles, enter the maximum stockpile base area.
- 7. For stockpiles, enter the maximum stockpile height.
- 8. Enter the method of load-in or load-out to/from stockpiles or bins using the following codes:

Clamshell

SS Stationary Conveyor/Stacker

FC Fixed Height Chute from Bins Stacking Tube

FΕ Front Endloader TC Telescoping Chute from Bins

MC Mobile Conveyor/Stacker TD Truck Dump

Under-pile or Under-Bin Reclaim Conveyor

PC Pneumatic Conveyor/Stacker

RC Rake or Bucket Reclaim Conveyor OT Other

ATTACHMENT H

BAGHOUSE AIR POLLUTION CONTROL DEVICE SHEET Not applicable for this facility

Complete a Baghouse Air Pollution Control Device Sheet for each baghouse control device.

1.	Baghouse Control Device Identification Number:
2.	Manufacturer's name and model identification:
3.	Number of compartments in baghouse:
4.	Number of compartments online during normal operation and conditions:
5.	Gas flow rate into baghouse: ACFM @ °F and PSIA
6.	Total cloth area: ft ²
7.	Operating air to cloth ratio: ft/min
8.	Filter media type:
9.	Stabilized static pressure drop across baghouse: inches H ₂ O
10.	Baghouse operation is:
	□ Continuous □ Automatic □ Intermittent
11.	Method used to clean bags:
	☐ Shaker ☐ Pulse jet ☐ Reverse jet ☐ Other
12.	Emission rate of particulate matter entering and exiting baghouse at maximum design operating conditions:
	Entering baghouse: lb/hr and grains/ACF
	Exiting baghouse: lb/hr and grains/ACF
13.	Guaranteed minimum baghouse collection efficiency: %
14.	Provide a written description of the capture system (e.g. hooding and ductwork arrangement), size of ductwork and hoods and air volume, capacity and operating horsepower of fan:

15. Describe the method of disposal for the collected material:

INPUTS			Page 1
Include all information for each emission source and	Name of applicant:	Black Castle	
transfer point as listed in the permit application.	Name of plant:	Admiral Processing	
		Feb-18	

1. CRUSHING AND SCREENING (including all primary and secondary crushers and screens)

1a. PRIMARY CRUSHING

Primary Crusher ID Number	Description			Control Device	Control Efficiency
ID Number	TP		TPY	ID Number	%
CR-01	Direct ship Crusher	1,000	8,760,000	FW	90
CR-03 CR-04	In Plant Clean Coal Crusher Pick Breaker	750 1.000	6,570,000 8,760,000	FW	90

10. SECONDARY AND LERITARY CRUSHING

Secondary & Tertiary Crusher ID	Description		m Material ng Capacity TPY	Control Device ID Number	Control Efficiency %
CR-02	Raw Coal Crusher	1,000	8,760,000	FW	90

1c. SCREENING

	Description		Maximum Material Processing Capacity		Control Efficienc
Screen ID	<u> </u>	TPH	TPY	ID Number	%
CC 04		4.000	0.700.000	FIM	
SS-01	Scalping Screen	1,000	8,760,000	FW	90
			 		
				\vdash	
	•		-		
		 			
				-	-
	***************************************	1			,
		1			

2. TRANSFER POINTS (including all conveyor transfer points, equipment transfer points etc.)

			PM	PM-10
ı	_ k =	Particle Size Multiplier (dimensionless)	0.74	0.35
ı	U =	Mean Wind Speed (mph)	7	

Transfer Point	Transfer Point Description Include ID Numbers of all conveyors,	Material Moisture		Maximum ransfer Rate	Control Device	Contro
ID No.	crushers, screens, stockpiles, etc. involved	Content %	TPH	TPY	ID Number	
		·				
TP01	Truck to BS-01	5	333	2,920,000	UD-PW	80
TP02	BS-01 to BC-01	5	333	2,920,000	TC-FE	80
TP03	Truck to BS-02	5	333	2,920,000	UD-PW	80
TP04	BS-02 to BC-01	5	333	2,920,000	TC-FE	80
TP05	Truck to BS-03	5	333	2,920,000	UD-PW	80
TP06	BS-03 to BC-01	5	333	2,920,000	TC-FE	80
TP07	BC-01 to SS-01	5	1,000	8,760,000	TC-FE	80
TP08	SS-01 to CR-01	5	1,000	8,760,000	TC-FW	90
TP09	CR-01 to BC-02	5	1,000	8,760,000	TC-FW	90
TP10	BC-02 to OS-01	5	1,000	8,760,000	TC-PE	50
TP11	BC-02 to BC-21	5	1,000	8,760,000	TC-FE	80
TP12	BC-21 to BC-22	5	1,000	8,760,000	TC-FE	80
TP13	BC-22 to BC-04	5	1,000	8,760,000	TC-FE	80
ΓΡ14	Truck to BS-06	6	500	4,380,000	TC:PW	80
TP15	BS-06 to CR-04	6	500	4,380,000	TC-FW	90
TP16	CR-04 to BC-04	6	500	4,380,000	TC-FW	90
ΓΡ17	BC-04 to OS-02	5.5	1,000	8,760,000	TC-PE	50
ΓΡ18	BC-04 to BC-05	5.5	1,000	8,760,000	TC-FE	80
ГР19	BC-05 to OS-03	5.5	1,000	8,760,000	TC-PE	50
FP20	OS-02 to BC-06	5.5	1,000	4,380,000	LO-UC	80
TP21	OS-03 to BC-06	5.5	1,000	4,380,000	LO-UC	80
TP22	BC-06 to BC-07	5.5	1,000	8,760,000	TC-FE	80
ГР23	BC-07 to CR-02	5.5	1,000	8,760,000	TC-FE	80
TP24	CR-02 to BC-08	5.5	1,000	8,760,000	TC-FW	90
TP25	BC-08 to Plant	5.5	1,000	8,760,000	TC-FW	90
TP26	Plant to CR-03	<u> </u>	750	6,570,000	TC-FW	90
TP27	CR-03 to BC-09	7	750	6,570,000	TC-FW	90
F28	BC-09 to BC-10	7	750	1,642,500	TC-FE	80
P29	BC-10 to OS-04	7	750	1,642,500	TC-PE	50
P30 P31	BC-09 to BC-11 BC-11 to OS-06	7 7	750	4,927,500	TC-FE	80 50
P32	BC-11 to BC-12	7	750 750	1,642,500 3,285,000	TC-PE	80
P33	BC-12 to OS-05	7	750	1,642,500	TC-FE TC-MDH	00
P34	BC-12 to OS-05	7	750 750			
P35		7	4.500	1,642,500 8,760,000	TC-MDH	0 80
P36	OS-01 to BC-13	7	4,500	1,642,500	LO-UC	80
P37	OS-04 to BC-13 OS-05 to BC-13		4,500	1,642,500	LO-UC	80
P38	OS-03 to BC-13	7	4,500		ro-nc	80
P39	OS-06 to BC-13	7	4,500	1,642,500 1,642,500	LO-UC	80
	BC-13 to BS-04	7	4,500	15,330,000	TC-FE	80
	BS-04 to BS-05	7	4,500	15,330,000	TC-FE	80
	BS-05 to Railcar	7	4,500	15,330,000	LR-TC	75
	BS-04 to Truck	7	500	4,380,000	TC-MDH	0
	Plant to BC-14	10	500	4,380,000	TC-FE	80
	BC-14 to BC-15	10	500	4,380,000	TC-PE	50
	BC-15 to BC-16	10	500	4,380,000	TC-PE	50
	BC-16 to BC-17	10	500	4,380,000	TC-PE	50
	BC-17 to BC-18	10	500	4,380,000	TC-PE	50
	BC-18 to BC-19	10	500	4,380,000	TC-PE	50
	BC-19 to BC-23	10	500	4,380,000	TC-PE	50
	BC-23 to BC-24	10	500	4,380,000	TC-PE	50
	BC-24 to BC-25	10	500	4,380,000	TC-PE	50
	BC-25 to Disposal Area.	10	500	4,380,000	TC-MDH	0
. 33	20 20 to Diopostar 1100.	1.0		1,000,000	.01.1011	

3. WIND EROSION OF STOCKPILES (including all stockpiles of raw coal, clean coal, coal refuse, etc.)

_		()	
I	p =	number of days per year with precipitation >0.01 inch	157
	f =	percentage of time that the unobstructed wind speed	20
ſ		exceeds 12 mph at the mean pile height	

Source	Stockpile	Silt	Stockpile	Control	Control
ID No.	Description	Content of	base area	Device	Efficiency
		Material %	Max. sqft	ID Number	%
OS-01	Direct Ship Stockpile	5	108,869	SW-WS	75
OS-02	Raw Coal Stockpile	5	108,869	SW-WS	75
OS-03	Raw Coal Stockpile	5	88,869	SW-WS	75
OS-04	Met Clean Coal	3	88,869	SW-WS	75
OS-05	Clean Coal Stockpile	3	88,869	SW-WS	75
OS-06	Clean Coal Stockpile	3	88,869	SW-WS	75
OS-07	Clean Coal Stockpile	3	88 ,869	SW-WS	75

4. UNPAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

s =	silt content of road surface material (%)			
p =	number of days per year with precipitation >0.01 inch	157		
M _{dry} =	surface material moisture content (%) - dry conditions	0.2		

ltem Number	Description	Number of wheels	Mean Vehicle Weight(tons)	Mean Vehicle Speed (mph)	Miles per Trip	Maximum Trips Per Hour	Maximum Trips Per Year	Control Device ID Number	Control Efficiency %
1	CC out 4,386	,000 18	45	15	0.5	11	97,333	HR-WS	70
2									
3									
4	Dozers 8,760	.000 4	20	5	0.01	50	438,000	HR-WS	70
5				<u> </u>					
6									
7									
8									

5. INDUSTRIAL PAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

sL=	road surface silt loading, (g/ft^2)	1
P =	number of days per year with precipitation >0.01 inch	157

		Mean	Miles	Maximum	Maximum	Control	Control
Item	Description	Vehicle	per	Trips Per	Trips Per	Device	Efficiency
Number	The state of the s	Weight (tons)	Trip	Hour	Year	ID Number	%
1	Raw coal in to DS 8,760,00	0 45	1.2	22	194,666	HR-WS	70
2	Raw coal in BS-06 4,380,00	0 45	1.2	11	97,333	HR-WS	70
3	CC out 4,380,00	0 45	0.5	11	97,333	HR-WS	70
4							
5							
6							
7							
8							

EMISSIONS SUMMARY

Name of applicant:

Black Castle

Name of plant:

Admiral Processing

Particulate Matter or PM (for 45CSR14 Major Source Determination)

Uncontrolled PM	Controlled PM		
lb/hr TPY	lb/hr	TPY	

FUGITIVE EMISSIONS					
Stockpile Emissions	3.33	14.57	0.83	3.64	
Unpaved Haulroad Emissions	79.24	350.35	23.77	105.11	
Paved Haulroad Emissions	122.00	539.78	36.60	161.93	
Fugitive Emissions Total	204.57	904.69	61.20	270.68	

POINT SOURCE EMISSIONS					
Equipment Emissions	215.00	941.70	21.50	94.17	
Transfer Point Emissions	47.72	115.11	11.89	29.47	
Point Source Emissions Total*	262.72	1,056.81	33.39	123.64	

			I	
Facility Emissions Total	467.29	1,961.50	94.59	394.32

*Facility Potential to Emit (F	PTE) (Baseline Emissions)	=	123.64
(Based on Point Source Total controlled PM T	ENTER ON LINE 26 O	F APPLICATION	

Particulate Matter under 10 microns, or PM-10 (for 45CSR30 Major Source Determination)

Uncontrolled PM-10		Controlled PM-10		
lb/hr	TPY	lb/hr	TPY	

FUGITIVE EMISSIONS								
Stockpile Emissions	1.56	6.85	0.39	1.71				
Unpaved Haulroad Emissions	22.90	101.25	6.87	30.38				
Paved Haulroad Emissions	23.65	104.65	7.10	31.39				

442.60	10.11	14.00
, , , , , , ,	10.11	44.26
54.44	5.62	13.94
497.04	15.73	58.20
	497.04	

				
H		· · · · · · · · · · · · · · · · · · ·		
11			,	
11	4-4-4	200 TO	00.00	424.60
Facility Emissions Total	17174	709.79	.30.08	17168
II I acility Ellissions Total	1 1/1/7	100.10	.00.00	121.00

1a. Primary Crushing

Primary		Р	M		PM-10			
Crusher	Uncontrolled		Con	Controlled		Uncontrolled		rolled
ID Number	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
CR-01	20.000	87.600	2.000	8.760	9.400	41.172	0.940	4.117
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
CR-03	15.000	65.700	1.500	6.570	7.050	30.879	0.705	3.088
CR-04	20.000	87.600	2.000	8.760	9.400	41.172	0.940	4.117
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TOTAL	55.000	240.900	5.500	24.090	25.850	113.223	2.585	11.322

1b. Secondary and Tertiary Crushing

TO. Secondary an	d rordary o										
Secondary		P	M		<u> </u>	PN	1-10				
& Tertiary	Unco	ntrolled	Con	trolled	Unco	Uncontrolled		rolled			
Crusher ID	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY			
CR-02	60.000	262.800	6.000	26.280	28.200	123.516	2.820	12.352			
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
0	0.000	0.000	0.000	0.000	0.000	.0.000	0.000	0.000			
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
TOTAL	60.000	262.800	6.000	26.280	28.200	123.516	2.820	12,352			

1c. Screening

		Р	M	PM-10				
Screen	Uncor	ntrolled	Cont	Controlled		ntrolled	Controlled	
ID Number	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
SS-01	100.000	438.000	10.000	43.800	47.000	205.860	4.700	20.586
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TOTAL	100.000	438.000	10.000	43.800	47.000	205.860	4.700	20.586

Crushing		Р	М		PM-10				
. and	Uncontrolled		Controlled		Uncontrolled		Controlled		
Screening	lb/hr	TPY	lb/hr TPY		łb/hr	TPY	lb/hr	TPY	
TOTAL	215.000	941.700	21.500	94.170	101.050	442.599	10.105	44.260	

EMISSION FACTORS

source: Air Pollution Engineering Manual and References (lb/ton of material throughput)

PM	
Primary Crushing	0.02
Tertiary Crushing	0.06
Screening	0.1

PM-10	
Primary Crushing	0.0094
Tertiary Crushing	0.0282
Screening	0.047

2. Emissions From TRANSFER POINTS

Transfer		P	M			PM	-10	
Point	Uncoi	ntrolled	Controlled	1	Uncor	ntrolled	Cont	rolled
ID No.	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
TD04	0.000	4.405	0.000	0.007	0.460	0.702	0.022	0.140
TP01	0.339	1.485	0.068	0.297	0.160	0.702	0.032	0.140
TP02	0.339	1.485	0.068	0.297	0.160	0.702	0.032	0.140
TP03	0.339	1.485	0.068	0.297	0.160	0.702	0.032	0.140
TP04	0.339	1.485	0.068	0.297	0.160	0.702	0.032	0.140
TP05	0.339	1.485	0.068	0.297	0.160	0.702	0.032	0.140
TP06	0.339	1.485	0.068	0.297	0.160	0.702	0.032	0.140
TP07	1.017	4.454	0.203	0.891	0.481	2.106	0.096	0.421
TP08	1.017	4.454	0.102	0.445	0.481	2.106	0.048	0.211
TP09	1.017	4.454	0.102	0.445	0.481	2.106	0.048	0.211
TP10	1.017	4.454	0.508	2.227	0.481	2.106	0.240	1.053
TP11	1.017	4.454	0.203	0.891	0.481	2.106	0.096	0.421
TP12	1.017	4.454	0.203	0.891	0.481	2.106	0.096	0.421
TP13	1.017	4.454	0.203	0.891	0.481	2.106	0.096	0.421
TP14	0.394	1.725	0.079	0.345	0.186	0.816	0.037	0.163
TP15	0.394	1.725	0.039	0.173	0.186	0.816	0.019	0.082
TP16	0.394	1.725	0.039	0.173	0.186	0.816	0.019	0.082
TP17	0.890	3.897	0.445	1.949	0.421	1.843	0.210	0.922
TP18	0.890	3.897	0.178	0.779	0.421	1.843	0.084	0.369
TP19	0.890	3.897	0.445	1.949	0.421	1.843	0.210	0.922
TP20	0.890	1.949	0.178	0.390	0.421	0.922	0.084	0.184
TP21	0.890	1.949	0.178	0.390	0.421	0.922	0.084	0.184
TP22	0.890	3.897	0.178	0.779	0.421	1.843	0.084	0.369
TP23	0.890	3.897	0.178	0.779	0.421	1.843	0.084	0.369
TP24	0.890	3.897	0.089	0.390	0.421	1.843	0.042	0.184
TP25	0.890	3.897	0.089	0.390	0.421	1.843	0.042	0.184
TP26	0.476	2.085	0.048	0.209	0.225	0.986	0.023	0.099
TP27	0.476	2.085	0.048	0.209	0.225	0.986	0.023	0.099
TP28	0.476	0.521	0.095	0.104	0.225	0.247	0.045	0.049
TP29	0.476	0.521	0.238	0.261	0.225	0.247	0.113	0.123
TP30	0.476	1.564	0.095	0.313	0.225	0.740	0.045	0.148
TP31	0.476	0.521	0.238	0.261	0.225	0.247	0.113	0.123
TP32	0.476	1.043	0.095	0.209	0.225	0.493	0.045	0.099
TP33	0.476	0.521	0.476	0.521	0.225	0.247	0.225	0.247
TP34	0.476	0.521	0.476	0.521	0.225	0.247	0.225	0.247
TP35	2.857	2.781	0.571	0.556	1.351	1.315	0.270	0.263
TP36	2.857	0.521	0.571	0.104	1.351	0.247	0.270	0.049
TP37	2.857	0.521	0.571	0.104	1.351	0.247	0.270	0.049
TP38	2.857	0.521	0.571	0.104	1.351	0.247	0.270	0.049
TP39	2.857	0.521	0.571	0.104	1.351	0.247	0.270	0.049
TP40	2.857	4.866	0.571	0.973	1.351	2.301	0.270	0.460
TP41	2.857	4.866	0.571	0.973	1.351	2.301	0.270	0.460
TP42	2.857	4.866	0.714	1.216	1.351	2.301	0.338	0.575
TP43	0.317	1.390	0.317	1.390	0.150	0.658	0.150	0.658
TP44	0.193	0.844	0.039	0.169	0.091	0.399	0.018	0.080
TP45	0.193	0.844	0.096	0.422	0.091	0.399	0.046	0.200
TP46	0.193	0.844	0.096	0.422	0.091	0.399	0.046	0.200
TP47	0.193	0.844	0.096	0.422	0.091	0.399	0.046	0.200
TP48	0.193	0.844	0.096	0.422	0.091	0.399	0.046	0.200
TP49			0.096	0.422	0.091	0.399	0.046	0.200
	0.193	0.844				0.399	0.046	0.200
TP50	0.193	0.844	0.096	0.422	0.091			0.200
TP51	0.193	0.844	0.096	0.422	0.091	0.399	0.046	0.200
TP52	0.193	0.844	0.096	0.422	0.091	0.399	0.046	0.200

2. Emissions From TRANSFER POINTS (continued)

Transfer		P	M			PN	1-10	
Point	Unco	ntrolled	Controlle	d	Uncor	ntrolled	Con	trolled
ID No.	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
	·			•			•	•
TP53	0.193	0.844	0.193	0.844	0.091	0.399	0.091	0.399
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	L	0.000	0.000	0.000
0	0.000	0.000			0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000		0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000					0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000			0.000
l 에	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TOTALS	47.721	115.111	11.889	29.467	22.571	54.445	5.623	13.937

Source:

AP42, Fifth Edition, Revised 11/2006

13.2.4 Aggregate Handling and Storage Piles

Emissions From Batch Drop

 $E = k*(0.0032) * [(U/5)^1.3]/[(M/2)^1.4] = pounds/ton$

Where:		PM	PM-10
k =	Particle Size Multiplier (dimensionless)	0.74	0.35
U =	Mean Wind Speed (mph)		
M =	Material Moisture Content (%)		

Assumptions:

k - Particle size multiplier

For PM (< or equal to 30um) k = 0.74For PM-10 (< or equal to 10um) k = 0.35

Emission Factor

For PM E=

\$1\$88*(0.0032)*((((Inputs!\$1\$72)/5)^1.3)/(((Inputs!G78+0.000000001)/2)^1.4)

=lb/ton

For PM-10 =lb/ton

E=

\$J\$88*(0.0032)*((((Inputs!\$I\$72)/5)^1.3)/(((Inputs!G78+0.000000001)/2)^1.4

For lb/hr

[lb/ton]*[ton/hr] = [lb/hr]

For Tons/year

[lb/ton]*[ton/yr]*[ton/2000lb] = [ton/yr]

3. Emissions From WIND EROSION OF STOCKPILES

Stockpile	PM				PM-10				
ID No.	Unco	ntrolled	Cont	rolled	Uncontrolled		Controlled		
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	
OS-01	0.696	3.050	0.174	0.763	0.327	1.434	0.082	0.358	
OS-02	0.696	3.050	0.174	0.763	0.327	1.434	0.082	0.358	
OS-03	0.568	2.490	0.142	0.622	0.267	1.170	0.067	0.293	
OS-04	0.341	1.494	0.085	0.373	0.160	0.702	0.040	0.176	
OS-05	0.341	1.494	0.085	0.373	0.160	0.702	0.040	0.176	
OS-06	0.341	1.494	0.085	0.373	0.160	0.702	0.040	0.176	
OS-07	0.341	1.494	0.085	0.373	0.160	0.702	0.040	0.176	
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
TOTALS	3.326	14.566	0.831	3.642	1.563	6.846	0.391	1.712	

Source:

Air Pollution Engineering Manual

Storage Pile Wind Erosion (Active Storage)

E = 1.7*[s/1.5]*[(365-p)/235]*[f/15] = (lb/day/acre)

Where:

s =	silt content of material
p =	number of days with >0.01 inch of precipitation per year
f =	percentage of time that the unobstructed wind speed
	exceeds 12 mph at the mean pile height

Emission Factors

For PM

E=(1.7)*((Inputs!F147)/1.5)*((365-Inputs!I139)/235)*((Inputs!I140)/15)

For PM-10

E=0.47*(1.7)*((Inputs!F147)/1.5)*((365-Inputs!I139)/235)*((Inputs!I140)/15)

For lb/hr

[lb/day/acre]*[day/24hr]*[base area of pile (acres)] = lb/hr

For Ton/yr

[lb/day/acre]*[365day/yr]*[Ton/2000lb]*[base area of pile (acres)] = Ton/yr

4. Emissions From UNPAVED HAULROADS

Item		F	PM		PM-10				
No.	Uncor	itrolled	Contr	olled	Uncontrolled		Controlled		
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	
1	74.53	329.75	22.36	98.92	21.54	95.30	6.46	28.59	
2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
4	4.70	20.60	1.41	6.18	1.36	5.95	0.41	1.79	
5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
TOTALS	79.24	350.35	23.77	105.11	22.90	101.25	6.87	30.38	

Source:

AP42, Fifth Edition, Revised 11/2006 13.2.2 Unpaved Roads

Emission Estimate For Unpaved Haulroads at Industrial Sites (equation 1)

 $E= k*((s/12)^a)*((W/3)^b) = lb/vmt$

Where:

		PM	PM-10
k =	particle size multiplier	4.90	1.50
a =	empirical constant	0.7	0.9
b =	empirical constant	0.45	0.45

Emission Factors

For PM E

E= ((\$|\$35)*(((Inputs!\$|\$163)/12)^(\$|\$36))*(((Inputs!H171)/3)^\$|\$37))

For PM-10

E=

((\$J\$35)*(((Inputs!\$I\$163)/12)^(\$J\$36))*(((Inputs!H171)/3)^\$J\$37))

For lb/hr

(lb/vmt)*(miles per trip)*(Max trips per hour)

For Ton/yr

(lb/vmt)*(miles per trip)*(Max trips per year)*(1/2000)

5. Emissions From INDUSTRIAL PAVED HAULROADS

Item		P	М		PM-10				
No.	Uncon	trolled	Cont	rolled	Uncontrolled		Controlled		
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	
1	71.42	315.97	21.43	94.79	13.85	61.26	4.15	18.38	
2	35.71	157.98	10.71	47.40	6.92	30.63	2.08	9.19	
3	14.88	65.83	4.46	19.75	2.88	12.76	0.87	3.83	
4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
TOTALS	122.00	539.78	36.60	161.93	23.65	104.65	7.10	31.39	

Source:

AP42, Fifth Edition, Revised 11/2006 13.2.1 PAVED ROADS

Emission Estimate For Paved Haulroads

 $E = [k * (sL/2)^0.65 * (W/3)^1.5 - C] * (1 - (P/4*N) = lb / Vehicle Mile Traveled (VMT)$

Where:

		PM	PM-10
k =	particle size multiplier	0.082	0.016
sL=	road surface silt loading, (g/ft^2)	1	
P =	number of days per year with precipitation >0.01 inch	157	
N =	number of days in averaging period	365	
C=	factor for exhaust, brake wear and tire wear	0.0047	0.0047

Emission Factors

For PM E=

(\$I\$34*(((\$I\$35)/2)^0.65)*(((Inputs!G190)/3)^1.5)-(\$I\$38))*(1-((Inputs!\$I\$

For PM-10 E=

(\$J\$34)*(((\$I\$35)/2)^0.65)*(((Inputs!G190)/3)^1.5))-(\$I\$38))*(1-((Inputs!\$

For lb/hr

(lb/vmt)*(miles per trip)*(Max trips per hour)

For Ton/yr

(lb/vmt)*(miles per trip)*(Max trips per year)*(1/2000)

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Black Castle Mining Company has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a General Permit Modification for a preparation plant and railcar loadout facility located on Route 3 near Peytona in Boone County, West Virginia. The location coordinates for the facility are: latitude 38.1190833 and longitude –81.691925.

The applicant estimates the increase in the potential to discharge the following Regulated Air Pollutants will be: particulate matter baseline emissions of 23 ton per year, point source emissions particulate matter less than 10 microns total of 11 ton per year, and a decrease in the controlled facility emission total of 614 ton per year. The applicant estimates the potential to discharge the following pollutants of particulate matter less than 10 microns will be: point source emissions particulate matter less than 10 microns total of 11 ton per year, and a controlled facility PM10 emission total of 311 ton per year.

Startup of operation is planned to begin April 15, 2018. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1227, during normal business hours.

Dated this the 21th day of February 2018

By: Black Castle Mining Company

Kenneth R. Marcum Authorized Representative 696 Robinson Creek Road Madison, WV 25130

ELECTRONIC SUBMITTAL DISK

SECTION IV. CERTIFICATION OF INFORMATION

This General Permit Registration Application shall be signed below by a Responsible Official. A Responsible Official is a President, Vice President, Secretary, Treasurer, General Partner, General Manager, a member of a Board of Directors, or Owner, depending on business structure. A business may certify an Authorized Representative who shall have authority to bind the Corporation, Partnership, Limited Liability Company, Association, Joint Venture or Sole Proprietorship. Required records of daily throughput, hours of operation and maintenance, general correspondence, Emission Inventory, Certified Emission Statement, compliance certifications and all required notifications must be signed by a Responsible Official or an Authorized Representative. If a business wishes to certify an Authorized Representative, the official agreement below shall be checked off and the appropriate names and signatures entered. Any administratively incomplete or improperly signed or unsigned Registration Application will be returned to the applicant.

FOR A CORPORATION (domestic or foreign)

G I certify that I am a President, Vice President, Secretary, Treasurer or in charge of a principal business function of the corporation

FOR A PARTNERSHIP

G I certify that I am a General Partner

FOR A LIMITED LIABILITY COMPANY

I certify that I am a General Partner or General Manager

FOR AN ASSOCIATION

I certify that I am the President or a member of the Board of Directors

FOR A JOINT VENTURE

G I certify that I am the President, General Partner or General Manager

FOR A SOLE PROPRIETORSHIP

G I certify that I am the Owner and Proprietor

is an Authorized Representative and in that capacity shall represent the interest of the business (e.g., Corporation, Partnership, Limited Liability Company, Association Joint Venture or Sole Proprietorship) and may obligate and legally bind the business. If the business changes its Authorized Representative, a Responsible Official shall notify the Chief of the Office of Air Quality immediately, and/or,


I hereby certify that all information contained in this General Permit Registration Application and any supporting documents appended hereto is, to the best of my knowledge, true, accurate and complete, and that all reasonable efforts have been made to provide the most comprehensive information possible

Responsible Official	Date
KENNETH R. MARCUM, AUTHORIZED AGENT	
Remeth R. Am	2-8-18
Authorized Representative (if applicable)	Date
	KENNETH R. MARCUM, AUTHORIZED AGENT Remeth R. Mun.

Applicant's Name: BLACK CASTLE MINING COMPANY, LLC

Phone: 304-836-8180

Email: kmarcum@alphanr.com

BLACK CASTLE MINING COMPANY, LLC

TO

KENNETH R. MARCUM, II

APPOINTMENT OF AUTHORIZED AGENT

KNOW ALL MEN BY THESE PRESENTS, that Black Castle Mining Company, LLC, a limited liability company duly organized and existing under the laws of the State of West Virginia ("Company"), has made, constituted and appointed, and by these presents hereby makes, constitutes and appoints Kenneth R. Marcum, II ("Appointee") of the Town of Alum Creek, Kanawha County, in the State of West Virginia, to be its true and lawful Authorized Agent, who may act for it and in its name, and as and for its act and deed, (i) to sign, acknowledge for record, execute and deliver, in the ordinary and regular course of the Company's business, applications, revisions, amendments, reports, information and data certifications, performance bonds (including, but not limited to, reclamation bonds), notices, stipulations and other documents and instruments with respect to the acquisition, maintenance and administration of coal mining permits, licenses, authorizations and certifications, environmental permits, licenses, authorizations and certifications, and other permits, licenses, authorizations and certifications, issued or to be issued by state and federal regulatory agencies, including, but not limited to, the United States Army Corps of Engineers, the United States Environmental Protection Agency, the Mine Safety and Health Administration of the United States Department of Labor, the Office of Surface Mining Reclamation and Enforcement of the United States Department of the Interior, the West Virginia Department of Environmental Protection, and the West Virginia Office of Miners' Health, Safety & Training; and (ii) to do and perform any and all other proper acts and

things necessary to carry out the purposes relative thereto, including to sign, execute and deliver other similar instruments relating to or required in connection with the Company's lands, operations and permits, including reporting requirements regarding greenhouse gas (GHG) emissions associated with facilities and mines. This authority shall become effective on the 11th day of October, 2016, and shall expire on the 30th day of September, 2019, unless sooner revoked and shall automatically terminate if Appointee at any time during the term hereof becomes no longer employed by the Company or one of its affiliates. As of the Effective Date, any prior authorized agent or power of attorney appointment by Company to Appointee hereupon shall be null, void and of no further force and effect with respect to actions taken on or after the Effective Date, but authorized actions taken by Appointee before the Effective Date pursuant to any such prior authorized agent or power of attorney appointment shall not be affected.

IN TESTIMONY WHEREOF, Black Castle Mining Company, LLC, has caused these presents to be signed and acknowledged by its respective officer thereunto duly authorized, all as of the 11th day of October, 2016.

BLACK CASTLE MINING COMPANY, LLC

By Andrew B. McCallister, Vice President and Secretary

STATE OF WEST VIRGINIA

COUNTY OF BOONE, to-wit:

I, Annette L. Moore, a Notary Public in and for the State and County aforesaid, do hereby certify that Andrew B. McCallister, Vice President and Secretary of **BLACK CASTLE MINING COMPANY**, LLC, whose name as such is signed to the foregoing writing bearing date the 11th day of October, 2016, has this day, before me, in my said County, acknowledged the said writing.

Given under my hand and notarial seal this the 11th day of October, 2016.

My commission expires March 23, 2017

NOTARY PUBLIC

OFFICIAL SEAL MOTARY PUBLIC ANNETTEL MOORE ALPHA INSTURBAL RESQUECES 2014 My Gogmission explan Much 23, 2017

SECTION III. ATTACHMENTS AND SUPPORTING DOCUMENTS

PLEASE CHECK ALL ATTACHMENTS INCLUDED WITH THIS PERMIT APPLICATION:

Please See the appropriate reference document for an explanation of the attachments listed below.

ATTACHMENT A : CURRENT BUSINESS CERTIFICATE

ATTACHMENT B: PROCESS DESCRIPTION

ATTACHMENT C: DESCRIPTION OF FUGITIVE EMISSIONS

ATTACHMENT D: PROCESS FLOW DIAGRAM

ATTACHMENT E: PLOT PLAN

ATTACHMENT F: AREA MAP

ATTACHMENT G: AFFECTED SOURCE SHEETS

ATTACHMENT H: BAGHOUSE AIR POLLUTION CONTROL DEVICE SHEET

ATTACHMENT I: EMISSIONS CALCULATIONS

ATTACHMENT J: CLASS I LEGAL ADVERTISEMENT

ATTACHMENT K: ELECTRONIC SUBMITTAL DISKETTE

CERTIFICATION OF INFORMATION

APPLICATION FEE

PLEASE MAIL AN ORIGINAL AND TWO COPIES OF THE COMPLETE GENERAL PERMIT REGISTRATION APPLICATION WITH THE SIGNATURE(S) TO THE DAQ PERMITTING SECTION AT THE ADDRESS SHOWN ON THE FRONT PAGE. PLEASE DO NOT FAX PERMIT APPLICATIONS. FOR QUESTIONS REGARDING APPLICATIONS OR WEST VIRGINIA AIR POLLUTION RULES AND REGULATIONS PLEASE CALL (304) 926-3727.

INPUTS			Page 1
Include all information for each emission source and	Name of applicant:	Black Castle	•
transfer point as listed in the permit application.	Name of plant:	Admiral Processing	_
		Apr-16	_

1a. PRIMARY CRUSHING

Primary Crusher ID Number	Description	Maximum Material Processing Capacity IPH IPY			Control Efficiency %
CR-01	Direct ship Crusher	1,000	8,760,000	FW	90
CR-02	Raw Coal Crusher	1,000	8,760,000	FW	90
CR-03	In Plant Clean Coal Crusher	750	6,570,000	FW	90
CR-04	Pick Breaker	300	2,628,000	FE	80

1b. SECONDARY AND LERITARY CRUSHING

Cocondon					
Secondary		Maximu	m Material	Control	Control
& Tertiary	Description		ng Capacity	Device	Efficiency
Crusher ID		IPH	TPY	1D Number	%
				IID Number	70
				-	
					i
			L		

1c. SCREENING

Screen ID	Description	Maximum Material Processing Capacity IPH IPY		Control Device ID Number	Control Efficiency %
SS-01	Scalping Screen	1,000	8,760,000	FW	90

2. TRANSFER POINTS (including all conveyor transfer points, equipment transfer points etc.)

 k =
 Particle Size Multiplier (dimensionless)
 0.74
 0.35

 U =
 Mean Wind Speed (mph)
 7

Transfer	Transfer Point Description	Material	1	Maximum	Control	Control
Point	Include ID Numbers of all conveyors,	Moisture		ransfer Rate	Device	Efficienc
ID No.	crushers, screens, stockpiles, etc. involved	Content %	TPH	TPY	ID Number	%
TP01	Truck to BS-01	5	1,000	8,760,000	UD-FW	85
TP02	BS-01 to BC-01	5	500	2,920,000	TC-FE	80
TP03	Truck to BS-02	5	500	2,920,000	UD-PW	85
TP04	BS-02 to BC-01	5	500	2,920,000	TC-FE	80
TP05	Truck to BS-03	5	500	2,920,000	UD-PW	85
TP06	BS-03 to BC-01	5	500	2,920,000	TC-FE	80
TP07	BC-01 to SS-01	5	1,000	8,760,000	TC-FE	80
TP08	SS-01 to CR-01	5	1,000	8,760,000	TC-FW	90
TP09	CR-01 to BC-02	5	1,000	8,760,000	TC-FW	90
TP10 TP11	BC-02 to OS-01 ROM to BC-03 Raw Deep Mine	5 6	1,000	8,760,000 8,760,000	TC-PE	50 80
TP12	ROM to BC-03 Raw Deep Mine BC-03 to BC-04	6	1,000	8,760,000	TC-FE TC-PE	50
TP13	BC-04 to OS-02	6	1,000	4,380,000	TC-PE	50
TP14	BC-04 to BC-05	6	1,000	4.380,000	TC-FE	80
TP15	BC-05 to OS-03	6	1,000	4,380,000	TC-PE	50
TP16	OS-02 to BC-06	6	1,000	4,380,000	LO-UC	80
гР17	OS-03 to BC-06	6	1,000	4,380,000	TO-NC	80
ГР18	BC-06 to BC-07	6	1,000	8,760,000	TC-FE	80
TP19	BC-07 to CR-02	6	1,000	8,760,000	TC-FE	80
TP20	CR-02 to BC-08	6	1,000	8,760,000	TC-FW	90
ΓP21	BC-08 to Plant	6	1,000	8,760,000	TC-FW	90
TP22	Plant to CR-03 Clean Coal	7	750	6,570,000	TC-FW	90
ГР23	CR-03 to BC-09	7	750	6,570,000	TC-FW	90
FP24	BC-09 to BC-10	7	750	1,642,500	TC-FE	80
ΓP25	BC-10 to OS-04	7	750	1,642,500	TC-PE	50
TP26	BC-09 to BC-11	7	750	4,927,500	TC-FE	80
P27	BC-11 to OS-06	7	750	1,642,500	TC-PE	50
TP28	BC-11 to BC-12	7	750	3,285,000	TC-FE	80
TP29	BC-12 to OS-05	7 7	750 750	1,642,500	TC-MDH	0
P30	BC-12 to OS-07			1,642,500	TC-MDH	80
ГР31 ГР32	OS-01 to BC-13 OS-04 to BC-13	7 7	4,500 4,500	8,760,000 1,642,500	LO-UC	80
P33	OS-05 to BC-13	7	4,500	1,642,500	LO-UC	80
TP34	OS-06 to BC-13	7	4,500	1,642,500	LO-UC	80
P35	OS-07 to BC-13	7	4,500	1,642,500	LO-UC	80
P36	BC-13 to BS-04	7	4.500	15,330,000	TC-FE	80
ГР37	BS-04 to BS-05	7	4,500	15,330,000	TC-FE	80
P38	BS-05 to Railcar	7	4,500	15,330,000	LR-TC	75
P39	Plant to BC-14 Refuse	10	500	4,380,000	TC-FE	80
P40	BC-14 to BC-15	10	500	4,380,000	TC-PE	50
P41	BC-15 to BC-16	10	500	4,380,000	TC-PE	50
P42	BC-16 to BC-17	10	500	4,380,000	TC-PE	50
P43	BC-17 to BC-18	10	500	4,380,000	TC-PE	50
P44	BC-18 to BC-19	10	500	4,380,000	TC-MDH	0
P45	BC-19 to Disposal Area	10	500	4,380,000	TC-MDH	0
P46	Truck to RC Area	5	57	500,000	UL-MDH	0
P47	BS-05 to Truck	7	228	2,000,000	LO-FC	0
	Modification May 2013					
P-48	Truck to BS-06	5	300	2,628,000	TC-PW	80
P-49	BS-06 to CR-04	5	300	2,628,000	TC-FE	80
P-50	CR-04 to BC-20	5	300	2,628,000	TC-FE	80
	N. 15. A. O. I. 2010					
70.51	Modification October 2013		1.000	0.700,000	TOFF	00
P-51 P-52	BS-01 to BC-21 BC-21 to BC-07	<u>5</u>	1,000 1,000	8,760,000 8,760,000	TC-FE	80 80

Change 2-15

Change 2-15 Change 2-15

TP-53	BC-20 to BC-03	5	300	2,628,000	TC-FE	80	1
TP-54	CD_04 to BC-22	5	300	2 020 000	70.55	00	
TP-55	CR-04 to BC-22 BC-22 to BC-07	5	300	2,628,000	TC-FE	80 80	propose
IP-00	DC-22 (U DC-07	5	300	2,628,000	TC-FE	80	propose
							1
							ļ
							1
							1
							1
			1	 		 	1
		 	 	+			-
			-	-		-	-1
			-				4
							1
							
							1
			1				1
							1
			1				1
			1		-	 	1
	· · · · · · · · · · · · · · · · · · ·		1	-			
-		 		 			
			-				
			<u>.i</u>				
				-			
			 				
							
			-	 			
			-				
							}
					-		
			 				
			 				
		<u> </u>	 				
		·					ı
							
							

3. WIND EROSION OF STOCKPILES (including all stockpiles of raw coal, clean coal, coal refuse, etc.)

-		,
p =	number of days per year with precipitation >0.01 inch	157
f =	percentage of time that the unobstructed wind speed	20
	exceeds 12 mph at the mean pile height	

Source	Stockpile	Silt	Stockpile	Control	Control
ID No.	Description	Content of	base area	Device	Efficiency
		Material %	Max. sqft	ID Number	%
OS-01	Raw Coal Stockpile	5	108,869	SW-WS	75
OS-02	Raw Coal Stockpile	5	108,869	SW-WS	75
OS-03	Direct Ship Stockpile	5	88,869	SW-WS	75
OS-04	Met Clean Coal	3	88,869	SW-WS	75
OS-05	Clean Coal Stockpile	3	88,869	SW-WS	75
OS-06	Clean Coal Stockpile	3	88,869	SW-WS	75
OS-07	Clean Coal Stockpile	3	88,869	SW-WS	75
					-
					}

4. UNPAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

s =	silt content of road surface material (%)	9
p =	number of days per year with precipitation >0.01 inch	157
M _{dry} =	surface material moisture content (%) - dry conditions	0.2

			Number	Mean	Mean	Miles	Maximum	Maximum	Control	Control
Item	Description	- 1	of	Vehicle	Vehicle	per	Trips Per	Trips Per	Device	Efficiency
Number			wheels	Weight(tons)	Speed (mph)	Trip	Hour	Year	ID Number	%
1	Raw Trucks In - change	8,760,000	18	50	15	1	20	175,200	HR-WS	70
2	Dship In	8,760,000	18	50	15	1	20	175,200	HR-WS	70
3										
4	Dozers	4,380,000	4	30	5	0.01	16.66	146,000	HR-WS	70
5	RC In proposed	2,628,000	18	50	15	1	6	52,560	HR-WS	70
6										
7	CC Out from rail	2,000,000	18	50	15	0.5	4.56	40,000	HR-WS	70
8										

5. INDUSTRIAL PAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

sL=	road surface silt loading, (g/ft^2)	1
P =	number of days per year with precipitation >0.01 inch	157

		Mean	Miles	Maximum	Maximum	Control	Control
Item	Description	Vehicle	per	Trips Per	Trips Per	Device	Efficiency
Number		Weight (tons)	Trip	Hour	Year	ID Number	%
	· · · · · · · · · · · · · · · · · · ·						
1							
2							
3							
4							
5							
6							
7							
8							

EMISSIONS SUMMARY

Name of applicant: Black Castle

Name of plant:

Admiral Processing

Particulate Matter or PM (for 45CSR14 Major Source Determination)

Uncontrolled PM	Contr	Controlled PM			
lb/hr TPY	lb/hr	TPY			

FUGITIVE EMISSIONS								
Stockpile Emissions	3.33	14.57	0.83	3.64				
Unpaved Haulroad Emissions	687.90	3,013.21	206.37	903.96				
Paved Haulroad Emissions	0.00	0.00	0.00	0.00				

	POINT SO	URCE EMISSIONS		
Equipment Emissions	161.00	705.18	16.70	73.15
Transfer Point Emissions	48.84	111.58	12.12	27.82
Point Source Emissions Total*	209.84	816.76	28.82	100.96

Facility Emissions Total	901.07	3,844.54	236.02	1,008.57

*Facility Potential to Emit (PTE)	(Baseline Emissions)	=	100.96
(Based on Point Source Total controlled PM TPY emi	ssions from above)	ENTER ON LINE 26 O	F APPLICATION

Particulate Matter under 10 microns, or PM-10 (for 45CSR30 Major Source Determination)

Unco	ntrolled PM-10	Controlled PM-10			
lb/hr	TPY	lb/hr	TPY		

FUGITIVE EMISSIONS									
Stockpile Emissions	1.56	6.85	0.39	1.71					
Unpaved Haulroad Emissions	198.81	870.84	59.64	261.25					
Paved Haulroad Emissions	0.00	0.00	0.00	0.00					
Fugitive Emissions Total	200.37	877.68	60.03	262.96					

POINT SOURCE EMISSIONS									
Equipment Emissions	75.67	331.43	7.85	34.38					
Transfer Point Emissions	23.10	52.78	5.73	13.16					
Point Source Emissions Total*	98.77	384.21	13.58	47.54					
*Note: Point Source Total Controlled PM-10 TP	Y emissions is used f	or 45CSR30 Major Source	determination						

	·· · · · · · · · · · · · · · · · · · ·			
ll				
Facility Emissions Total	299 14	1 261 90	72 61	310.50
Tacility Litilissions Total	233.14	1,201.30	10.01	310.50

1a. Primary Crushing

Primary		PM				PM-10				
Crusher	Unco	Uncontrolled		Controlled		Uncontrolled		trolled		
ID Number	ib/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY		
CR-01	20.000	87.600	2.000	8.760	9.400	41.172	0.940	4.117		
CR-02	20.000	87.600	2.000	8.760	9.400	41.172	0.940	4.117		
CR-03	15.000	65.700	1.500	6.570	7.050	30.879	0.705	3.088		
CR-04	6.000	26.280	1.200	5.256	2.820	12.352	0.564	2.470		
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
						Цпшпп		- 11/4 65		
TOTAL	61.000	267.180	6.700	29.346	28.670	125.575	3.149	13.793		

1b. Secondary and Tertiary Crushing

Secondary		PM				PM-10				
& Tertiary	Unco	Uncontrolled		Controlled		Uncontrolled		rolled		
Crusher ID	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY		
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
								X III		
TOTAL	0.000	0,000	0.000	0.000	0.000	0.000	0.000	0.000		

1c. Screening

		P	M	PM-10				
Screen	Uncor	Uncontrolled		Controlled		Uncontrolled		trolled
ID Number	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
					HTM HO CHI TO STATE OF THE STAT			
SS-01	100.000	438.000	10.000	43.800	47.000	205.860	4.700	20.586
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0,000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
						1167/4		
TOTAL	100.000	438.000	10.000	43,800	47,000	205.860	4.700	20.586

Crushing		Р	M		PM-10				
and	Uncontrolled		Controlled		Uncontrolled		Controlled		
Screening	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	
								W <u>e</u> l-Hill	
TOTAL	161.000	705.180	16.700	73.146	75.670	331,435	7.849	34.379	

EMISSION FACTORS

source: Air Pollution Engineering Manual and References (lb/ton of material throughput)

PM	
Primary Crushing	0.02
Tertiary Crushing	0.06
Screening	0.1

PM-10	
Primary Crushing	0.0094
Tertiary Crushing	0.0282
Screening	0.047

4. Emissions From UNPAVED HAULROADS

Item		F	M			PM	-10	
No.	Uncon	trolled	Contr	Controlled		Uncontrolled		rolled
	lb/hr	TPY	lb/hr	lb/hr TPY		TPY	lb/hr	TPY
ļ								
1	284.18	1244.73	85.26	373.42	82.13	359.73	24.64	107.92
2	284.18	1244.73	85.26	373.42	82.13	359.73	24.64	107.92
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4	1.88	8.24	0.56	2.47	0.54	2.38	0.16	0.71
5	85.26	373.42	25.58	112.03	24.64	107.92	7.39	32.38
6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
7	32.40	142.09	9.72	42.63	9.36	41.07	2.81	12.32
8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTALS	687.90	3013.21	206.37	903.96	198.81	870.84	59.64	261.25

Source:

AP42, Fifth Edition, Revised 11/2006

13.2.2 Unpaved Roads

Emission Estimate For Unpaved Haulroads at Industrial Sites (equation 1)

E= $k*((s/12)^a)*((W/3)^b) = lb/vmt$

Where:

		PM	PM-10
k =	particle size multiplier	4.90	1.50
a =	empirical constant	0.7	0.9
b =	empirical constant	0.45	0.45

Emission Factors

For PM E=

((\$1\$35)*(((Inputs!\$1\$163)/12)^(\$1\$36))*(((Inputs!H171)/3)^\$1\$37))

For PM-10

E=

((\$J\$35)*(((Inputs!\$I\$163)/12)^(\$J\$36))*(((Inputs!H171)/3)^\$J\$37))

For lb/hr

(lb/vmt)*(miles per trip)*(Max trips per hour)

For Ton/yr

(lb/vmt)*(miles per trip)*(Max trips per year)*(1/2000)

5. Emissions From INDUSTRIAL PAVED HAULROADS

Item		Р	M			PM	l-10	
No.	No. Uncontrolled		Cont	Controlled		Uncontrolled		rolled
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTALS	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Source:

AP42, Fifth Edition, Revised 11/2006 13.2.1 PAVED ROADS

Emission Estimate For Paved Haulroads

 $E = [k * (sL/2)^0.65 * (W/3)^1.5 - C] * (1 - (P/4*N) = lb / Vehicle Mile Traveled (VMT)$

Where:

		PM	PM-10
k =	particle size multiplier	0.082	0.016
sL=	road surface silt loading, (g/ft^2)	1	
P =	number of days per year with precipitation >0.01 inch	157	
N =	number of days in averaging period	365	
C=	factor for exhaust, brake wear and tire wear	0.0047	0.0047

Emission Factors

For PM E≕ (\$1\$34*(((\$1\$35)/2)^0.65)*(((Inputs!G190)/3)^1.5)-(\$1\$38))*(1-((Inputs!\$1\$

For PM-10 E=

(\$J\$34)*(((\$!\$35)/2)^0.65)*(((Inputs!G190)/3)^1.5))-(\$I\$38))*(1-((Inputs!\$

For lb/hr

(lb/vmt)*(miles per trip)*(Max trips per hour)

For Ton/yr

(lb/vmt)*(miles per trip)*(Max trips per year)*(1/2000)

2. Emissions From TRANSFER POINTS

Transfer		F	PM .			PM	I-10	
Point	Unco	ntrolled	Controlle	d	Uncor	ntrolled	Cont	rolled
ID No.	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
TP01	1.017	4.454	0.153	0.668	0.481	2.106	0.072	0.316
TP02	0.508	1.485	0.102	0.008	0.461	0.702	0.072	0.310
TP03	0.508	1.485	0.102	0.237	0.240	0.702	0.046	0.140
TP04	0.508	1.485	0.102	0.223	0.240	0.702	0.030	0.140
TP05	0.508	1.485	0.102	0.223	0.240	0.702	0.036	0.105
TP06	0.508	1.485	0.102	0.297	0.240	0.702	0.038	0.140
TP07	1.017	4.454	0.203	0.891	0.481	2.106	0.096	0.421
TP08	1.017	4.454	0.102	0.445	0.481	2.106	0.048	0.211
TP09	1.017	4.454	0.102	0.445	0.481	2.106	0.048	0.211
TP10	1.017	4.454	0.508	2.227	0.481	2.106	0.240	1.053
TP11	0.788	3.450	0.158	0.690	0.373	1.632	0.075	0.326
TP12	0.788	3.450	0.394	1.725	0.373	1.632	0.186	0.816
TP13	0.788	1.725	0.394	0.863	0.373	0.816	0.186	0.408
TP14	0.788	1.725	0.158	0.345	0.373	0.816	0.075	0.163
TP15	0.788	1.725	0.394	0.863	0.373	0.816	0.186	0.408
TP16	0.788	1.725	0.158	0.345	0.373	0.816	0.075	0.163
TP17	0.788	1.725	0.158	0.345	0.373	0.816	0.075	0.163
TP18	0.788	3.450	0.158	0.690	0.373	1.632	0.075	0.326
TP19	0.788	3.450	0.158	0.690	0.373	1.632	0.075	0.326
TP20	0.788	3.450	0.079	0.345	0.373	1.632	0.037	0.163
TP21	0.788	3.450	0.079	0.345	0.373	1.632	0.037	0.163
TP22	0.476	2.085	0.048	0.209	0.225	0.986	0.023	0.099
TP23	0.476	2.085	0.048	0.209	0.225	0.986	0.023	0.099
TP24	0.476	0.521	0.095	0.104	0.225	0.247	0.045	0.049
TP25	0.476	0.521	0.238	0.261	0.225	0.247	0.113	0.123
TP26	0.476	1.564	0.095	0.313	0.225	0.740	0.045	0.148
TP27	0.476	0.521	0.238	0.261	0.225	0.247	0.113	0.123
TP28	0.476	1.043	0.095	0.209	0.225	0.493	0.045	0.099
TP29	0.476	0.521	0.476	0.521	0.225	0.247	0.225	0.247
TP30	0.476	0.521	0.476	0.521	0.225	0.247	0.225	0.247
TP31	2.857	2.781	0.571	0.556	1.351	1.315	0.270	0.263
TP32	2.857	0.521	0.571	0.104	1.351	0.247	0.270	0.049
TP33	2.857	0.521	0.571	0.104	1.351	0.247	0.270	0.049
TP34	2.857	0.521	0.571	0.104	1.351	0.247	0.270	0.049
TP35	2.857	0.521	0.571	0.104	1.351	0.247	0.270	0.049
TP36	2.857	4.866	0.571	0.973	1.351	2.301	0.270	0.460
TP37	2.857	4.866	0.571	0.973	1.351	2.301	0.270	0.460
TP38	2.857	4.866	0.714	1.216	1.351	2.301	0.338	0.575
TP39	0.193	0.844	0.039	0.169	0.091	0.399	0.018	0.080
TP40	0.193	0.844	0.096	0.422	0.091	0.399	0.046	0.200
TP41	0.193	0.844	0.096	0.422	0.091	0.399	0.046	0.200
TP42	0.193	0.844	0.096	0.422	0.091	0.399	0.046	0.200
TP43	0.193	0.844	0.096	0.422	0.091	0.399	0.046	0.200
TP44	0.193	0.844	0.193	0.844	0.091	0.399	0.091	0.399
TP45	0.193	0.844	0.193	0.844	0.091	0.399	0.091	0.399
TP46	0.058	0.254	0.058	0.254	0.027	0.120	0.027	0.120
TP47	0.145	0.635	0.145	0.635	0.068	0.300	0.068	0.300
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
O	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TP-48	0.305	1.336	0.061	0.267	0.144	0.632	0.029	0.126
TP-49	0.305	1,336	0.061	0.267	0.144	0.632	0.029	0.126

2. Emissions From TRANSFER POINTS (continued)

Transfer		F	PM			PN	<i>I</i> I-10	
Point	Unco	ntrolled	Controlle	d	Unco	ntrolled	Con	trolled
ID No.	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
TP-50	0.305	1.336	0.061	0.267	0.144	0.632	0.029	0.126
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TP-51	1.017	4.454	0.203	0.891	0.481	2.106	0.096	0.421
TP-52	1.017	4.454	0.203	0.891	0.481	2.106	0.096	0.421
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TP-53	0.305	1.336	0.061	0.267	0.144	0.632	0.029	0.126
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TP-54	0.305	1.336	0.061	0.267	0.144	0.632	0.029	0.126
TP-55	0.305	1.336	0.061	0.267	0.144	0.632	0.029	0.126
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
ō	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ō	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ŏ	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
o	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ö	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000							
0		0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TOTALS	48.845	111.585	12.117	27.818	23.102	52.776	5.731	13.157

Source:

AP42, Fifth Edition, Revised 11/2006 13.2.4 Aggregate Handling and Storage Piles

Emissions From Batch Drop

 $E = k*(0.0032) * [(U/5)^1.3]/[(M/2)^1.4] = pounds/ton$

Where:		PM	PM-10
k =	Particle Size Multiplier (dimensionless)	0.74	0.35
U =	Mean Wind Speed (mph)		
M =	Material Moisture Content (%)		

Assumptions:

k - Particle size multiplier

For PM (< or equal to 30um) k = 0.74For PM-10 (< or equal to 10um) k = 0.35

Emission Factor

For PM E= \$I\$88*(0.0032)*((((Inputs!\$I\$72)/5)^1.3)/(((Inputs!G78+0.000000001)/2)^1.4)

=lb/ton

For PM-10 E= \$J\$88*(0.0032)*((((Inputs!\$I\$72)/5)^1.3)/(((Inputs!G78+0.000000001)/2)^1.4 = Ib/ton

For ib/hr [lb/ton]*[ton/hr] = [lb/hr]

For Tons/year $[lb/ton]^*[ton/yr]^*[ton/2000lb] = [ton/yr]$

3. Emissions From WIND EROSION OF STOCKPILES

Stockpile	PM				PM-10			
ID No.	Uncontrolled		Controlled		Uncontrolled		Controlled	
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
00.04	0.000							
OS-01	0.696	3.050	0.174	0.763	0.327	1.434	0.082	0.358
OS-02	0.696	3.050	0.174	0.763	0.327	1.434	0.082	0.358
OS-03	0.568	2.490	0.142	0.622	0.267	1.170	0.067	0.293
OS-04	0.341	1.494	0.085	0.373	0.160	0.702	0.040	0.176
OS-05	0.341	1.494	0.085	0.373	0.160	0.702	0.040	0.176
OS-06	0.341	1.494	0.085	0.373	0.160	0.702	0.040	0.176
OS-07	0.341	1.494	0.085	0.373	0.160	0.702	0.040	0.176
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TOTALS	3.326	14.566	0.831	3.642	1.563	6.846	0.391	1.712

Source:

Air Pollution Engineering Manual

Storage Pile Wind Erosion (Active Storage)

E = 1.7*[s/1.5]*[(365-p)/235]*[f/15] = (lb/day/acre)

Where:

s =	silt content of material
p =	number of days with >0.01 inch of precipitation per year
f =	percentage of time that the unobstructed wind speed
	exceeds 12 mph at the mean pile height

Emission Factors

For PM E=(1.7)*((lnputs!F147)/1.5)*((365-lnputs!I139)/235)*((lnputs!I140)/15)

For PM-10 E=0.47*(1.7)*((Inputs!F147)/1.5)*((365-Inputs!I139)/235)*((Inputs!I140)/15)

For lb/hr [lb/day/acre]*[day/24hr]*[base area of pile (acres)] = lb/hr

For Ton/yr [lb/day/acre]*[365day/yr]*[Ton/2000lb]*[base area of pile (acres)] = Ton/yr