GOFF CONNECTOR LLC

G35-D GENERAL PERMIT REGISTRATION APPLICATION

Connector Compressor Station Harrison County, West Virginia

February, 2018

APPLICATION FOR G35-D GENERAL PERMIT

Goff Connector LLC Connector Compressor Station Harrison County, West Virginia

Table of Contents

I. Application Form

II. Attachments

- Attachment A Single Source Determination Form
- Attachment C Current Business Certificate
- Attachment D Process Flow Diagram
- Attachment E Project Description
- Attachment F Plot Plan
- Attachment G Area Map
- Attachment H G35-D Section Applicability Form
- Attachment I Emission Units/ERD Table
- Attachment J Fugitive Emissions Summary Sheet
- Attachment K Storage Vessel(s) Data Sheet
- Attachment L Natural Gas Fired Fuel Burning Unit(s) Data Sheet
- Attachment M Internal Combustion Engine Data Sheet(s)
- Attachment N Tanker Truck Loading Data Sheet
- Attachment O Glycol Dehydration Unit(s) Data Sheet
- Attachment P Pneumatic Controllers Data Sheet
- Attachment Q Centrifugal Compressor Data Sheet
- Attachment R Reciprocating Compressor Sheet
- Attachment S Blowdown and Pigging Operations Data Sheet
- Attachment U Emission Calculations
- Attachment V Facility-wide Emissions Summary Sheet(s)
- Attachment W Class I Legal Advertisement

SECTION I

Application Form

dep	west virginia d	Division of Air Quality 601 57 th Street SE Charleston, WV 25304 Phone (304) 926-0475 Fax (304) 926-0479 www.dep.wv.gov		
			EGISTRATION A	
TREVENTIONAN	RELOCATION, AI	OMINISTRATI	VE UPDATE AND OPERATIC ND/OR DEHYDRATION FACI	ON OF
⊠CONSTR □MODIFIC □RELOCA	CATION		□CLASS I ADMINISTRATI □CLASS II ADMINISTRAT	
Name of Applicant (a			RAL INFORMATION ate's Office): Goff Connector	LLC
Federal Employer ID	No. (FEIN): 82-3535826			
	Address: 17806 IH-10, S			
City: San Antonio		State: TX		ZIP Code: 78257
	ector Compressor Stat			ZIF Code. 78237
Operating Site Physic	al Address: Pigtail Run- road, city or town and z	Green Valley Ro	1.	Ţ.
City: Bridgeport	2	Zip Code: 26330)	County: Harrison
Latitude & Longitude Latitude: 39.23405N Longitude: 80.17733N	Coordinates (NAD83, D	ecimal Degrees	to 5 digits):	
SIC Code: 1311			DAQ Facility ID No. (For exi	sting facilities)
NAICS Code: 211130				
	CE	RTIFICATION	OF INFORMATION	
Official is a Presider Directors, or Owner, authority to bi Proprietorship. F compliance cert Representative. If a l off and the appre unsigned G35-D Reg utilized,	t, Vice President, Secret depending on business s and the Corporation, Parti- equired records of daily fications and all required business wishes to certify opriate names and signate istration Application will be	ary, Treasurer, structure. A busi nership, Limitec throughput, hou d notifications ry an Authorized ures entered. An vill be returned returned to the	be signed below by a Responsib General Partner, General Manag ness may certify an Authorized I Liability Company, Association urs of operation and maintenance nust be signed by a Responsible Representative, the official agre y administratively incomplete to the applicant. Furthermor e applicant. No substitution of	er, a member of the Board of Representative who shall have n, Joint Venture or Sole e, general correspondence, Official or an Authorized cement below shall be checked or improperly signed or e, if the G35-D forms are not forms is allowed.
business (e.g., Corpo may obligate and lega	ration, Partnership, Limi	ted Liability Co the business cha	ative and in that capacity shall r mpany, Association Joint Ventu inges its Authorized Representat diately.	re or Sole Proprietorship) and
documents appended l		ny knowledge, tr	General Permit Registration Appli- ue, accurate and complete, and possible.	
Responsible Official S Name and Title: Mike Email: mhopkins@full	Hopkins Chief Operating	g Officer Phone: Date: 2/8/2	918-284-1382 Fax: n/a 2018	
If applicable: Authorized Representa Name and Title:	ative Signature:	Phone:	Fax:	
Email: If applicable: Environmental Contac Name and Title: Chris Email: crumer@se-env	Rumer, Project Scientis	Date: t II Phone: 412 Date: 2/2/		

OPERATING SITE INFORMATION

Briefly describe the proposed new operation and/or any change(s) to the facility: Goff Connector LLC is proposing to install a natural gas compressor station. The compressor station will include: three (3) Caterpillar G3606 compressor engines, eight (8) Caterpillar G3608 compressor engines, two (2) auxiliary power sources, three (3) 175 MMscfd glycol dehydration units, five (5) 400-bbl produced water tanks, one (1) pig launcher, as well as various insignificant storage vessels such as: thirty (30) 500-gallon fresh oil tanks, ten (10) 1,000-gallon tanks, twenty (20) 500-gallon antifreeze/engine glycol tanks, three (3) 1,000 gallon triethylene glycol tanks, and two (2) 350-gallon methanol tanks.

Directions to the facility: From Bridgeport, WV, head east on Route 50 for 1.2 miles. Turn right onto WV-76E (0.7 mi). Continue straight onto Oral Lake Drive (3.4 mi.). Turn right onto Pigtail Run-Green Valley (0.7 mi). Turn left to stay on Pigtail Run-Green Valley (0.4 mi). Slight left onto Co Rte 77/7 (0.7 mi). Site is on the left at the fork.

ATTACHMENTS AND SUPPORTING DOCUMENTS

I have enclosed the following required documents:

Check payable to WVDEP - Division of Air Quality with the appropriate application fee (per 45CSR13 and 45CSR22).

 \Box Check attached to front of application.

 \Box I wish to pay by electronic transfer. Contact for payment (incl. name and email address):

 \Box I wish to pay by credit card. Contact for payment (incl. name and email address):

S500 (Construction, Modification, and Relocation)
 S300 (Class II Administrative Update)
 \$1,000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ and/or OOOO and/or OOOOa ¹
 \$2,500 NESHAP fee for 40 CFR63, Subpart ZZZZ and/or HH ²

¹ Only one NSPS fee will apply.

² Only one NESHAP fee will apply. The Subpart ZZZZ NESHAP fee will be waived for new engines that satisfy requirements by complying with NSPS, Subparts IIII and/or JJJJ.

NSPS and NESHAP fees apply to new construction or if the source is being modified.

Responsible Official or Authorized Representative Signature (if applicable)

Single Source Determination Form (must be completed in its entirety) – Attachment A

🗆 Siting Criteria Waiver (if applicable) – Attachment B	🛛 Current Business Certificate – Attachment C
🛛 Process Flow Diagram – Attachment D	Process Description – Attachment E
🛛 Plot Plan – Attachment F	🖾 Area Map – Attachment G
G35-D Section Applicability Form – Attachment H	Emission Units/ERD Table – Attachment I

☑ G35-D Section Applicability Form – Attachment H
 ☑ Fugitive Emissions Summary Sheet – Attachment J

Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable) – Attachment K

⊠ Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Heater Treaters, In-Line Heaters if applicable) – Attachment L

⊠ Internal Combustion Engine Data Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment M

Inter Truck Loading Data Sheet (if applicable) - Attachment N

 \boxtimes Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalcTM input and output reports and information on reboiler if applicable) – Attachment O

Pneumatic Controllers Data Sheet – Attachment P

⊠ Centrifugal Compressor Data Sheet – Attachment Q

Reciprocating Compressor Data Sheet – Attachment R

Blowdown and Pigging Operations Data Sheet – Attachment S

 \Box Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment T

🗵 Emission Calculations (please be specific and include all calculation methodologies used) – Attachment U

⊠ Facility-wide Emission Summary Sheet(s) – Attachment V

🖾 Class I Legal Advertisement – Attachment W

⊠ One (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments

All attachments must be identified by name, divided into sections, and submitted in order.

SECTION II

Attachments

ATTACHMENT A

Single Source Determination Form

ATTACHMENT A -	SINGLE SOUR	CE DETERMIN	JATION FORM
ATTACHMENTA -	SHIGLE SOOK	CE DETERMIN	

Classifying multiple facilities as one "stationary source" under 45CSR13, 45CSR14, and 45CSR19 is based on the definition of Building, structure, facility, or installation as given in §45-14-2.13 and §45-19-2.12. The definition states:

"Building, Structure, Facility, or Installation" means all of the pollutant-emitting activities which belong to the same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the control of the same person (or persons under common control). Pollutant-emitting activities are a part of the same industrial grouping if they belong to the same "Major Group" (i.e., which have the same two (2)-digit code) as described in the Standard Industrial Classification Manual, 1987 (United States Government Printing Office stock number GPO 1987 0-185-718:QL 3).

The Source Determination Rule for the oil and gas industry was published in the Federal Register on June 3, 2016 and will become effective on August 2, 2016. EPA defined the term "adjacent" and stated that equipment and activities in the oil and gas sector that are under common control will be considered part of the same source if they are located on the same site or on sites that share equipment and are within ¹/₄ mile of each other.

Is there equipment and activities in the same industrial grouping (defined by SIC code)?

Yes \Box No \boxtimes

Is there equipment and activities under the control of the same person/people?

Yes \Box No \boxtimes

Is there equipment and activities located on the same site or on sites that share equipment and are within ¹/₄ mile of each other?

Yes 🗌 No \boxtimes

Connector Compressor Station will be the only Goff Connector facility in West Virginia at the time of installation.

ATTACHMENT C

Current Business Certificate

ATTACHMENT C – CURRENT BUSINESS CERTIFICATE

If the applicant is a resident of West Virginia, the applicant should provide a copy of the current Business Registration Certificate issued to them from the West Virginia Secretary of State's Office. If the applicant is not a resident of the State of West Virginia, the registrant should provide a copy of the Certificate of Authority/Authority of LLC/Registration. This information is required for all sources to operate a business in West Virginia regardless of whether it is a construction, modification, or administrative update.

If you are a new business to West Virginia and have applied to the West Virginia Secretary of State's Office for a business license, please include a copy of your application.

Please note: Under the West Virginia Bureau of Employment Programs, 96CSR1, the DAQ may not grant, issue, or renew approval of any permit, general permit registration, or Certificate to Operate to any employing unit whose account is in default with the Bureau of Employment Programs Unemployment Compensation Division.

I, Mac Warner, Secretary of State, of the State of West Virginia, hereby certify that

GOFF CONNECTOR LLC

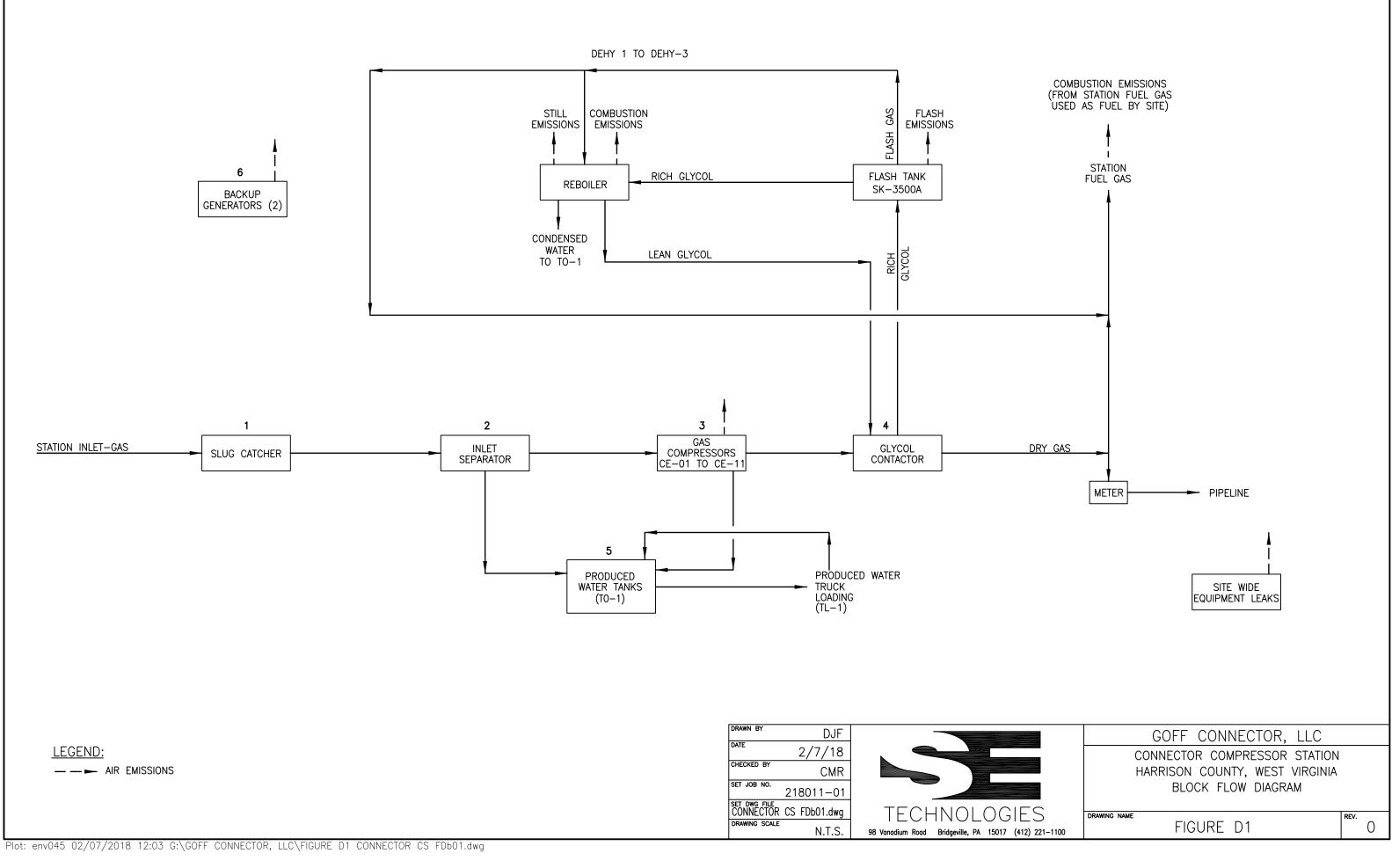
has filed the appropriate registration documents in my office according to the provisions of the West Virginia Code and hereby declare the organization listed above as duly registered with the Secretary of State's Office.

Given under my hand and the Great Seal of West Virginia on this day of December 08, 2017

Mac Warner

Secretary of State

ATTACHMENT D – PROCESS FLOW DIAGRAM


Provide a diagram or schematic that supplements the process description of the operation. The process flow diagram must show all sources, components or facets of the operation in an understandable line sequence of operation. The process flow diagram should include the emission unit ID numbers, the pollution control device ID numbers, and the emission point ID numbers consistent with references in other attachments of the application. For a proposed modification, clearly identify the process areas, emission units, emission points, and/or control devices that will be modified, and specify the nature and extent of the modification.

Use the following guidelines to ensure a complete process flow diagram:

- The process flow diagram shall logically follow the entire process from beginning to end.
- Identify each emission source and air pollution control device with proper and consistent emission unit identification numbers, emission point identification numbers, and control device identification numbers.
- The process flow lines may appear different for clarity. For example, dotted lines may be used for vapor flow and solid lines used for liquid flow and arrows for direction of flow.
- The process flow lines may be color coded. For example: new or modified equipment may be red; old or existing equipment may be blue; different stages of preparation such as raw material may be green; and, finished product or refuse, another color.

ATTACHMENT D

Process Flow Diagram

ATTACHMENT E – PROCESS DESCRIPTION

Provide a detailed written description of the operation for which the applicant is seeking a permit. The process description is used in conjunction with the process flow diagram to provide the reviewing engineer a complete understanding of the activity at the operation. Describe in detail and order the complete process operation.

Use the following guidelines to ensure a complete Process Description:

- The process flow diagram should be prepared first and used as a guide when preparing the process description. The written description shall follow the logical order of the process flow diagram.
- All emission sources, emission points, and air pollution control devices must be included in the process description.
- When modifications are proposed, describe the modifications and the effect the changes will have on the emission sources, emission points, control devices and the potential emissions.
- Proper emission source ID numbers must be used consistently in the process description, the process flow diagram, the emissions calculations, and the emissions summary information provided.
- Include any additional information that may facilitate the reviewers understanding of the process operation.

The process description is required for all sources regardless of whether it is a construction, modification, or administrative update.

ATTACHMENT E

Project Description

Process Description Connector Compressor Station

- 1. **Slug Catcher** Under normal operating conditions, inlet gas from the pipeline will flow directly to a slug catcher to remove any surges of free liquid (slugs) from the gas before compression. Liquids removed from the gas stream in this device are routed to the produced water tanks.
- 2. **Inlet Separator** Gas flows from the slug catcher to the inlet coalescing filter separator to remove any entrained liquids from the gas before compression. Liquids removed from the gas stream in this device are routed to the produced water tanks.
- 3. **Gas Compression** Gas compression will take place at Connector, each starter will be driven by natural gas from the fuel gas system. In order to perform routine maintenance on the compressors, they must be depressurized or blown down. The blowdowns for each unit are vented to the atmosphere. Each driver engine is equipped with a catalytic control unit to reduce CO and VOC emissions on the engine exhaust gases. As shown on the Process Flow Diagram, up to eleven compressors will be installed, three driven by CAT G3606 gas-fired driver engines and eight driven by CAT G3608 driver engines. Compressed gas flows through the discharge coalescing filter separator to remove any entrained liquids and/or compressor lube oil. The gas then flows to the three dehydration contactors
- 4. **Dehydration**. The purpose of gas dehydration is to remove water vapor from the natural gas by contacting it with tri-ethylene glycol in the contactor towers. Wet gas enters the free-water knockout at the bottom of the contactor towers. The gas ascends through a mist extractor where fine liquid particles are coalesced and removed. As the gas rises through the tower's packing, lean glycol, continually pumped to the top of the tower, is distributed and descends while absorbing the water from the gas stream. Dry gas exits the top of the absorber tower and passes through the glycol/gas heat exchanger. The gas then passes through a discharge separator where any entrained liquids are removed. Upon exiting the discharge filter, the vast majority of the gas passes through the station discharge meter and is injected into a pipeline exiting this facility. A portion of the gas is routed to the station fuel skid for use as fuel for the compressors as well as various other station equipment.

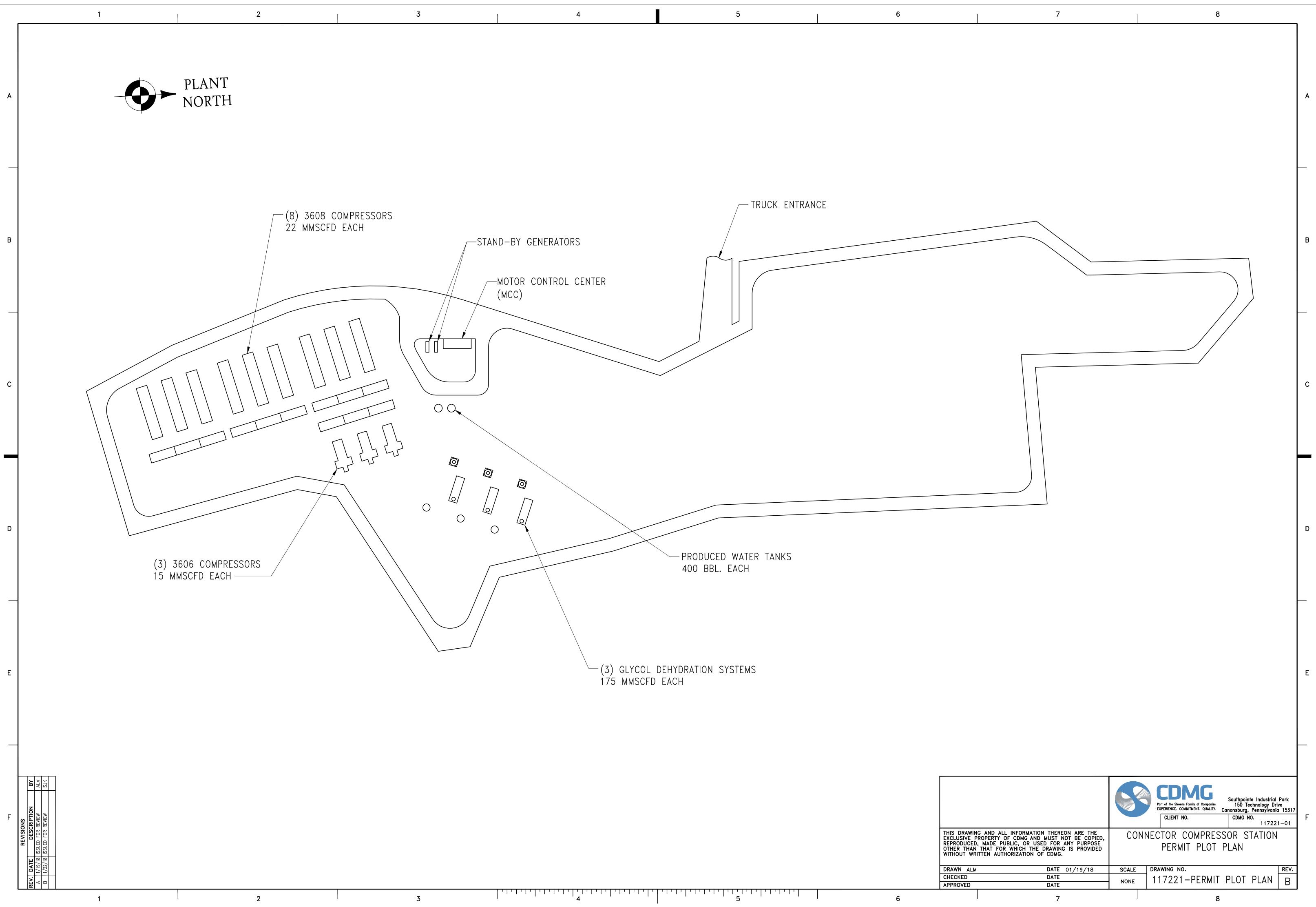
Rich glycol from the contactor tower passes through the flash tanks where much of the entrained organic content flashes out of the glycol during a drop in pressure. After the flash tanks, the rich glycol then enters the re-boiler or still where it is heated via a natural gas-fired heater to drive off the captured water and remaining organics. The glycol is then suitable for re-use in the contactor tower. Gases from the still vent are comprised mostly of water vapor with lesser amounts of various molecular weight organic compounds. Gas that comes off the flash tanks is considered high quality and is routed directly to the re-boilers for use as fuel.

- 5. **Storage Tanks** Liquids in the produced water accumulation tanks will primarily be water from the dehydration units. A portion, however, will come from the inlet separator and pigging operations. These wastewater streams have flash losses. These nominal vapors are vented to the atmosphere. A maximum of 1500 BBL/month of wastewater will be routed to these tanks (up to 5 400 BBL tanks) prior to off-site disposal.
- 6. Alternative Power Sources Two backup generators are present for supplying station electrical needs in the event of a failure of local utility service. These are USEPA certified units that ares not being permitted as emergency generators. They are conservatively estimated to operate for 8,760 hours/year.

ATTACHMENT F

Plot Plan

ATTACHMENT F – PLOT PLAN


Provide an accurately scaled and detailed Plot Plan showing the locations of all emission units, emission points, and air pollution control devices. Show all emission units, affected facilities, enclosures, buildings and plant entrances and exits from the nearest public road(s) as appropriate. Note height, width and length of proposed or existing buildings and structures.

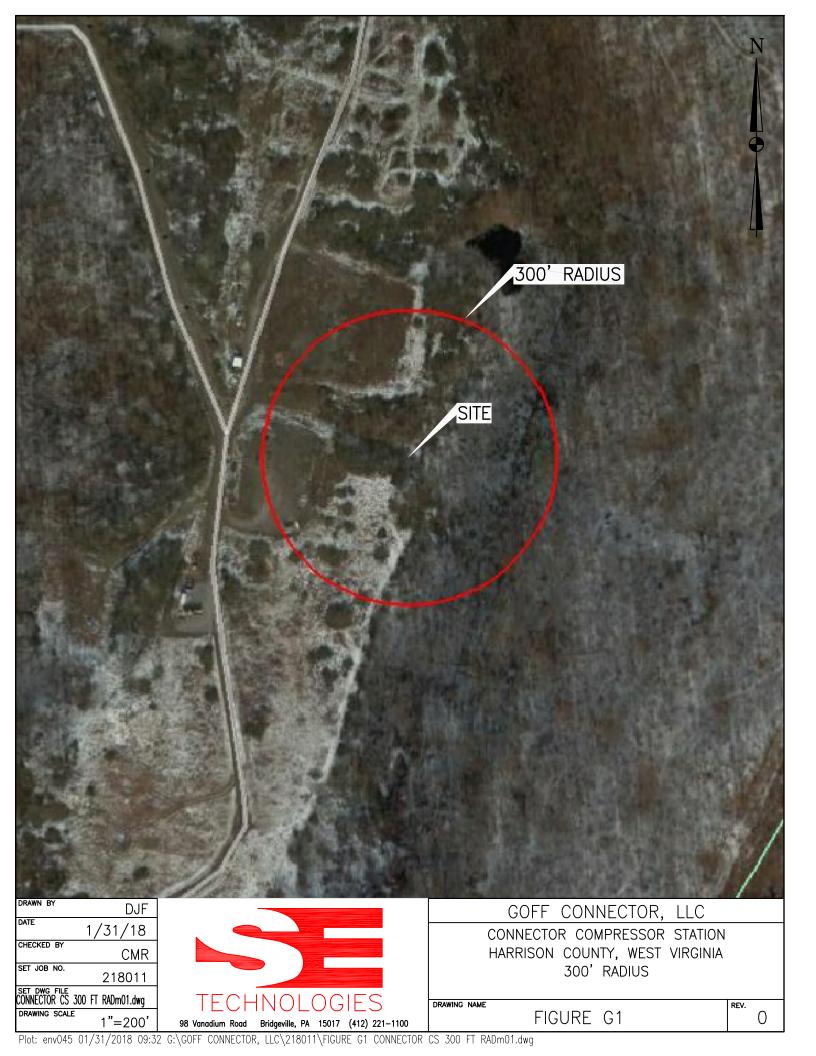
A scale between 1"=10' and 1"=200' should be used with the determining factor being the level of detail necessary to show operation or plant areas, affected facilities, emission unit sources, transfer points, etc. An overall small scale plot plan (e.g., 1"=300') should be submitted in addition to larger scale plot plans for process or activity areas (e.g., 1"=50') if the plant is too large to allow adequate detail on a single plot plan. Process or activity areas may be grouped for the enlargements as long as sufficient detail is shown.

Use the following guidelines to ensure a complete Plot Plan:

- Facility name
- Company name
- Company facility ID number (for existing facilities)
- Plot scale, north arrow, date drawn, and submittal date.
- Facility boundary lines
- Base elevation
- Lat/Long reference coordinates from the area map and corresponding reference point elevation
- Location of all point sources labeled with proper and consistent source identification numbers

This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

ATTACHMENT G


Area Map

ATTACHMENT G – AREA MAP

Provide an Area Map showing the current or proposed location of the operation. On this map, identify plant or operation property lines, access roads and any adjacent dwelling, business, public building, school, church, cemetery, community or institutional building or public park within a 300' boundary circle of the collective emission units.

Please provide a 300' boundary circle on the map surrounding the proposed emission units collectively.

This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

ATTACHMENT H

G35-D Section Applicability Form

ATTACHMENT H – G35-D SECTION APPLICABILITY FORM

General Permit G35-D Registration Section Applicability Form

General Permit G35-D was developed to allow qualified applicants to seek registration for a variety of sources. These sources include storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, centrifugal compressors, reciprocating compressors, reciprocating internal combustion engines (RICEs), tank truck loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G35-D allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

0	GENERAL PERMIT G35-D APPLICABLE SECTIONS
X Section 5.0	Storage Vessels Containing Condensate and/or Produced Water ¹
\Box Section 6.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO/OOOOa)
X Section 7.0	Control Devices and Emission Reduction Devices not subject to NSPS Subpart OOOO/OOOOa and/or NESHAP Subpart HH
X Section 8.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc
\Box Section 9.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO/OOOOa)
□Section 10.0	Centrifugal Compressor Affected Facility (NSPS, Subpart OOOO/OOOOa) ²
X Section 11.0	Reciprocating Compressor Affected Facility (NSPS, Subpart OOOO/OOOOa) ²
X Section 12.0	Reciprocating Internal Combustion Engines, Generator Engines. Microturbine Generators
X Section 13.0	Tanker Truck Loading ³
X Section 14.0	Glycol Dehydration Units ⁴
X Section 15.0	Blowdown and Pigging Operations
X Section 16.0	Fugitive Emission Components (NSPS, Subpart OOOOa)

1 Applicants that are subject to Section 5 may also be subject to Section 6 if the applicant is subject to the NSPS, Subpart OOOO/OOOOa control requirements or the applicable control device requirements of Section 7.

2 Applicants that are subject to Section 10 and 11 may also be subject to the applicable RICE requirements of Section 12.

- 3 Applicants that are subject to Section 13 may also be subject to control device and emission reduction device requirements of Section 7.
- 4 Applicants that are subject to Section 14 may also be subject to the requirements of Section 8 (reboilers). Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 7.

ATTACHMENT I

Emission Units / Emission Reduction Devices (ERD)

ATTACHMENT I – EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment K table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type ⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
CE-01	S01	Caterpillar G3606 Compressor Engine	NEW	2006	1,775 hp	NEW	1C	N/A
CE-02	S02	Caterpillar G3606 Compressor Engine	NEW	2002	1,775 hp	NEW	2C	N/A
CE-03	S03	Caterpillar G3606 Compressor Engine	NEW	1998	1,775 hp	NEW	3C	N/A
CE-04	S04	Caterpillar G3608 Compressor Engine	NEW	After 2011	2,500 hp	NEW	4C	N/A
CE-05	S05	Caterpillar G3608 Compressor Engine	NEW	After 2011	2,500 hp	NEW	5C	N/A
CE-06	S06	Caterpillar G3608 Compressor Engine	NEW	After 2011	2,500 hp	NEW	6C	N/A
CE-07	S07	Caterpillar G3608 Compressor Engine	NEW	After 2011	2,500 hp	NEW	7C	N/A
CE-08	S08	Caterpillar G3608 Compressor Engine	NEW	After 2011	2,500 hp	NEW	8C	N/A
CE-09	S09	Caterpillar G3608 Compressor Engine	NEW	After 2011	2,500 hp	NEW	9C	N/A
CE-10	S10	Caterpillar G3608 Compressor Engine	NEW	After 2011	2,500 hp	NEW	10C	N/A
CE-11	S11	Caterpillar G3608 Compressor Engine	NEW	After 2011	2,500 hp	NEW	11C	N/A
GE-01	S12	Generac MG300 Generator (EPA Certified)	NEW	TBD	460 hp	NEW	N/A	N/A
GE-02	\$13	Generac MG300 Generator (EPA Certified)	NEW	TBD	460 hp	NEW	N/A	N/A
DEHY-1	S14	175 MMscfd Glycol Dehydration Unit	NEW	TBD	175 MMscfd	NEW	N/A	N/A
DEHY-2	S15	175 MMscfd Glycol Dehydration Unit	NEW	TBD	175 MMscfd	NEW	N/A	N/A
DEHY-3	S16	175 MMscfd Glycol Dehydration Unit	NEW	TBD	175 MMscfd	NEW	N/A	N/A
REB1	S17	Reboiler	NEW	TBD	2 MMBtu/hr	NEW	N/A	N/A
REB2	S18	Reboiler	NEW	TBD	2 MMBtu/hr	NEW	N/A	N/A
REB3	S19	Reboiler	NEW	TBD	2 MMBtu/hr	NEW	N/A	N/A
TO-1	S20	Five (5) 400-bbl Produced Water Tanks	NEW	TBD	400 bbls	NEW	N/A	N/A

¹ For Emission Units (or Sources) use the following numbering system: 1S, 2S, 3S,... or other appropriate designation.

² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

³ When required by rule

⁴ New, modification, removal, existing

⁵ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

⁶ For ERDs use the following numbering system: 1D, 2D, 3D,... or other appropriate designation.

ATTACHMENT J

Fugitive Emissions Summary Sheet

ATTACHMENT J – FUGITIVE EMISSIONS SUMMARY SHEET

Sources of fugitive emissions may include loading operations, equipment leaks, blowdown emissions, etc. Use extra pages for each associated source or equipment if necessary.

Source/Equipm	ent: Equip	ment Lea	ks						
Leak Detection Method Used D Audible, visual, and olfactory (AVO) inspections D Infrared (FLIR) cameras							se describe)	□ None required	
Is the facility s	ubject to qu	arterly L	DAR n	onitoring under 40CFR60 S	Subpart OOOOa? 🛛 🖾 Yes 🗆	No. If no, why?			
Component	Closed			Source	of Leak Factors	Stream type		Estimated Em	issions (tpy)
Туре	Vent System	Cou	int		other (specify))	(gas, liquid, etc.)	VOC	HAP	GHG (CO ₂ e)
Pumps	□ Yes ⊠ No	6		EPA, "Protocol for Equip Estimates (EPA-453/R-9	⊠ Gas □ Liquid □ Both	<0.01	<0.01	3.18	
Valves	⊠ Yes □ No	400		EPA, "Protocol for Equip Estimates (EPA-453/R-9	⊠ Gas □ Liquid □ Both	0.14	<0.01	405.23	
Safety Relief Valves	⊠ Yes □ No	180		EPA, "Protocol for Equip Estimates (EPA-453/R-9	⊠ Gas □ Liquid □ Both	0.12	<0.01	350.47	
Open Ended Lines	⊠ Yes □ No	8		EPA, "Protocol for Equip Estimates (EPA-453/R-9		⊠ Gas □ Liquid □ Both	<0.01	<0.01	3.51
Sampling Connections	□ Yes ⊠ No					□ Gas □ Liquid □ Both			
Connections (Not sampling)	⊠ Yes □ No	1,400			EPA, "Protocol for Equipment Leak Emission Estimates (EPA-453/R-95-017), 11/95			<0.01	62.46
Compressors	⊠ Yes □ No	11		EPA, "Protocol for Equip	EPA, "Subpart W – Table W-1B" EPA, "Protocol for Equipment Leak Emission Estimates (EPA-453/R-95-017), 11/95			<0.01	21.9
Flanges	⊠ Yes □ No	3,000			EPA, "Protocol for Equipment Leak Emission Estimates (EPA-453/R-95-017), 11/95			<0.01	262.85
Other ¹	□ Yes ⊠ No					□ Gas □ Liquid □ Both			

¹ Other equipment types may include compressor seals, relief valves, diaphragms, drains, meters, etc.

Please indicate if there are any closed vent bypasses (include component):

Specify all equipment used in the closed vent system (e.g. VRU, ERD, thief hatches, tanker truck loading, etc.)

ATTACHMENT K

Storage Vessel(s) Data Sheet(s)

ATTACHMENT K – STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water. (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). **Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.**

The following information is **REQUIRED**:

- □ Composition of the representative sample used for the simulation
- □ For each stream that contributes to flashing emissions:
 - \Box Temperature and pressure (inlet and outlet from separator(s))
 - □ Simulation-predicted composition
 - □ Molecular weight
 - \Box Flow rate
- □ Resulting flash emission factor or flashing emissions from simulation
- □ Working/breathing loss emissions from tanks and/or loading emissions if simulation is used to quantify those emissions

simulation is used to quantify those emissions

Additional information may be requested if necessary.

GENERAL INFORMATION

1. Bulk Storage Area Name TO-1	2. Tank Name PW-1; PW-2; PW-3; PW-4; PW-5
3. Emission Unit ID number TO-1	4. Emission Point ID number 1T
5. Date Installed , Modified or Relocated (for existing tanks)	6. Type of change:
Was the tank manufactured after August 23, 2011?	\boxtimes New construction \square New stored material \square Other
\Box Yes \Box No	Relocation
7A. Description of Tank Modification (<i>if applicable</i>) N/A	-
7B. Will more than one material be stored in this tank? If so, a	separate form must be completed for each material.
\Box Yes \boxtimes No	
7C. Was USEPA Tanks simulation software utilized?	
\boxtimes Yes \Box No	
If Yes, please provide the appropriate documentation and items	8-42 below are not required.

TANK INFORMATION

8. Design Capacity (<i>specify barrels or gallons</i>). Use the interr	al cross-sectional area multiplied by internal height.
9A. Tank Internal Diameter (ft.)	9B. Tank Internal Height (ft.)
10A. Maximum Liquid Height (ft.)	10B. Average Liquid Height (ft.)
11A. Maximum Vapor Space Height (ft.)	11B. Average Vapor Space Height (ft.)
12. Nominal Capacity (specify barrels or gallons). This is also	o known as "working volume".
13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)
14. Number of tank turnovers per year	15. Maximum tank fill rate (gal/min)
16. Tank fill method Submerged Splash	□ Bottom Loading
17. Is the tank system a variable vapor space system? \Box Yes	s 🗆 No
If yes, (A) What is the volume expansion capacity of the system	n (gal)?
(B) What are the number of transfers into the system per	year?
18. Type of tank (check all that apply):	
\Box Fixed Roof \Box vertical \Box horizontal \Box flat root	of \Box cone roof \Box dome roof \Box other (describe)
\Box External Floating Roof \Box pontoon roof \Box doubl	e deck roof
Domed External (or Covered) Floating Roof	
\Box Internal Floating Roof \Box vertical column support	□ self-supporting
□ Variable Vapor Space □ lifter roof □ diaphragn	1
□ Pressurized □ spherical □ cylindrica	1
□ Other (describe)	

PRESSURE/VACUUM CONTROL DATA

19. Check as many as appl	y:								
□ Does Not Apply □ Rupture Disc (psig)									
□ Inert Gas Blanket of □ Carbon Adsorption ¹									
□ Vent to Vapor Combus	tion Devi	ice ¹ (vapo	r combust	ors, flares	, thermal o	oxidizers,	enclosed c	ombustors	5)
□ Conservation Vent (psi	g)			□ Conde	enser ¹				
Vacuum Setting		Pressure	Setting						
□ Emergency Relief Valv	e (psig)								
Vacuum Setting		Pressure	Setting						
□ Thief Hatch Weighted	□ Yes □	□ No							
¹ Complete appropriate Air	Pollution	n Control	Device Sh	leet					
20. Expected Emission Ra	te (submi	it Test Da	ta or Calcu	ulations he	ere or elsev	where in t	he applicat	tion).	•
Material Name Flashing Loss Breathing Loss Working Loss Total Estimation Method ¹									
Water fai Walle	r iasiii	ing Loss	Dicatili	ng Loss	WORKIN	Ig Loss			Estimation Method ²
	Flashin		Dieatin		workin		Emissio	ns Loss	Estimation Method
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy		ns Loss tpy	Estimation Method-
		-					Emissio		
		-					Emissio		
		-					Emissio		Estimation Method [*]
		-					Emissio		
		-					Emissio		
		-					Emissio		

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

TANK CONSTRUCTION AND OPERATIO	ON INFORMATION							
21. Tank Shell Construction:								
\Box Riveted \Box Gunite lined \Box Epox	y-coated rivets \Box O	ther (de	scribe)					
21A. Shell Color:	,	21C. Year	Last Painted:					
21A. Shell Color: 21B. Roof Color: 21C. Year Last Painted: 22. Shell Condition (if metal and unlined): 21C. Year Last Painted:								
□ No Rust □ Light Rust □ Dense	e Rust 🛛 Not application	able						
22A. Is the tank heated? \Box Yes \Box No								
23. Operating Pressure Range (psig):								
Must be listed for tanks using VRUs wi	th closed vent system	ı .						
24. Is the tank a Vertical Fixed Roof Tank ? □ Yes □ No	24A. If yes, for dome	roof prov	vide radius (ft):	24B. If yes	s, for cone roof, provide slop (ft/ft):			
25. Complete item 25 for Floating Roof Tank	$s \square$ Does not apply							
25A. Year Internal Floaters Installed:								
		1	□ I · · · I	· 1 · ·1·	· 1			
25B. Primary Seal Type (check one): □ Met			\Box Liquid mo		ent seal			
	por mounted resilient s		Other (des	scribe):				
25C. Is the Floating Roof equipped with a seco			D: 0.1	(1 1	\ \			
25D. If yes, how is the secondary seal mounted			Rim 🗆 Oth	her (describe	e):			
25E. Is the floating roof equipped with a weath	er shield?	□ N	0					
25F. Describe deck fittings:								
26. Complete the following section for Interna	l Floating Roof Tanks		Does not apply	y				
26A. Deck Type: Bolted W								
26C. Deck seam. Continuous sheet construction	on:							
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide	e \Box 5 x 7.5 ft. wide	□ 5 x	12 ft. wide \Box	other (des	scribe)			
26D. Deck seam length (ft.): 26E. Area	a of deck (ft ²):		For column suppo # of columns:	orted	26G. For column supported tanks, diameter of column:			
27. Closed Vent System with VRU? \Box Yes	🗆 No							
28. Closed Vent System with Enclosed Combu	stor? 🗆 Yes 🗆 No							
SITE INFORMATION								
29. Provide the city and state on which the data	in this section are based:							
30. Daily Avg. Ambient Temperature (°F):			nnual Avg. Maxi	mum Temper	rature (°F):			
32. Annual Avg. Minimum Temperature (°F):		33. Avg. Wind Speed (mph):						
34. Annual Avg. Solar Insulation Factor (BTU/	/ft ² -day):	35. At	mospheric Press	ure (psia):				
LIQUID INFORMATION								
36. Avg. daily temperature range of bulk liquid (°F):	36A. Minimum (°F):			36B. Maxi	mum (°F):			
37. Avg. operating pressure range of tank	37A. Minimum (psig):			37B. Maxi	mum (psig):			
(psig):								
38A. Minimum liquid surface temperature (°F)	:	38B. (Corresponding va	apor pressure	(psia):			
39A. Avg. liquid surface temperature (°F):		39B. (Corresponding va	apor pressure	(psia):			
40A. Maximum liquid surface temperature (°F):	40B. 0	Corresponding va	apor pressure	(psia):			
41. Provide the following for each liquid or gas	s to be stored in the tank.	Add add	litional pages if 1	necessary.				
41A. Material name and composition:								
41B. CAS number:								
41C. Liquid density (lb/gal):								
41D. Liquid molecular weight (lb/lb-mole):								
41E. Vapor molecular weight (lb/lb-mole):								
41F. Maximum true vapor pressure (psia):								
41G. Maximum Reid vapor pressure (psia):								

41H. Months Storage per year.		
From: To:		
42. Final maximum gauge pressure and		
temperature prior to transfer into tank used as		
inputs into flashing emission calculations.		

STORAGE TANK DATA TABLE List all deminimis storage tanks (i.e. lube oil, glycol, diesel etc.)

Source			
ID # ¹	Status ²	Content ³	Volume ⁴
DST-1	NEW	Fresh Oil	500 gallons
DST-2	NEW	Fresh Oil	500 gallons
DST-3	NEW	Fresh Oil	500 gallons
DST-4	NEW	Fresh Oil	500 gallons
DST-5	NEW	Fresh Oil	500 gallons
DST-6	NEW	Fresh Oil	500 gallons
DST-7	NEW	Fresh Oil	500 gallons
DST-8	NEW	Fresh Oil	500 gallons
DST-9	NEW	Fresh Oil	500 gallons
DST-10	NEW	Fresh Oil	500 gallons
DST-11	NEW	Fresh Oil	500 gallons
DST-12	NEW	Fresh Oil	500 gallons
DST-12	NEW	Fresh Oil	500 gallons
DST-14	NEW	Fresh Oil	500 gallons
DST-16	NEW	Fresh Oil	500 gallons
DST-17	NEW	Fresh Oil	500 gallons
DST-18	NEW	Fresh Oil	500 gallons
DST-19	NEW	Fresh Oil	500 gallons
DST-20	NEW	Fresh Oil	500 gallons
DST-20	NEW	Fresh Oil	500 gallons
DST-22	NEW	Fresh Oil	500 gallons
DST-22 DST-23	NEW	Fresh Oil	500 gallons
DST-23	NEW	Fresh Oil	500 gallons
DST-25	NEW	Fresh Oil	500 gallons
DST-26	NEW	Fresh Oil	500 gallons
DST-27	NEW	Fresh Oil	500 gallons
DST-28	NEW	Fresh Oil	500 gallons
DST-29	NEW	Fresh Oil	500 gallons
DST-30	NEW	Fresh Oil	500 gallons
DST-30	NEW	Fresh Oil	1000 gallons
DST-32	NEW	Fresh Oil	1000 gallons
DST-32	NEW	Fresh Oil	1000 gallons
DST-34	NEW	Fresh Oil	1000 gallons
DST-35	NEW	Fresh Oil	1000 gallons
DST-36	NEW	Fresh Oil	1000 gallons
DST-37	NEW	Fresh Oil	1000 gallons
DST-38	NEW	Fresh Oil	1000 gallons
DST-39	NEW	Fresh Oil	1000 gallons
DST-39	NEW	Fresh Oil	1000 gallons
DST-40	NEW	Antifreeze Tanks, Engine Glycol	500 gallons
DST-41 DST-42	NEW	Antifreeze Tanks, Engine Glycol	500 gallons
DST-42 DST-43	NEW	Antifreeze Tanks, Engine Glycol	500 gallons
DST-43	NEW	Antifreeze Tanks, Engine Glycol	500 gallons
DST-44 DST-45	NEW	Antifreeze Tanks, Engine Glycol	500 gallons
DST-45 DST-46	NEW	Antifreeze Tanks, Engine Glycol	500 gallons
DST-46 DST-47	NEW	Antifreeze Tanks, Engine Glycol	500 gallons
DST-47 DST-48	NEW	Antifreeze Tanks, Engine Glycol	500 gallons
DST-48 DST-49	NEW	Antifreeze Tanks, Engine Glycol	500 gallons
	NEW		500 gallons
DST-50	IN E VV	Antifreeze Tanks, Engine Glycol	SUU galions

DST-51	NEW	Antifreeze Tanks, Engine Glycol	500 gallons
DST-52	NEW	Antifreeze Tanks, Engine Glycol	500 gallons
DST-53	NEW	Antifreeze Tanks, Engine Glycol	500 gallons
DST-54	NEW	Antifreeze Tanks, Engine Glycol	500 gallons
DST-55	NEW	Antifreeze Tanks, Engine Glycol	500 gallons
DST-56	NEW	Antifreeze Tanks, Engine Glycol	500 gallons
DST-57	NEW	Antifreeze Tanks, Engine Glycol	500 gallons
DST-58	NEW	Antifreeze Tanks, Engine Glycol	500 gallons
DST-59	NEW	Antifreeze Tanks, Engine Glycol	500 gallons
DST-60	NEW	Antifreeze Tanks, Engine Glycol	500 gallons
DST-61	NEW	Triethylene Glycol Makeup Tanks	1000 gallons
DST-62	NEW	Triethylene Glycol Makeup Tanks	1000 gallons
DST-63	NEW	Triethylene Glycol Makeup Tanks	1000 gallons
DST-64	NEW	Methanol	350 gallons
DST-65	NEW	Methanol	350 gallons
DST-66	NEW	Methanol	350 gallons

Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the compressor station. Tanks should be designated T01, T02, T03, etc. 1. 2.

Enter storage tank Status using the following:

EXIST Existing Equipment NEW Installation of New Equipment

REM Equipment Removed

Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, diesel, mercaptan etc. 3.

4. Enter the maximum design storage tank volume in gallons.

FESCO, Ltd. 1100 Fesco Avenue - Alice, Texas 78332

For: SE Technologies, LLC Building D, Second Floor 98 Vanadium Road Date Sampled: 05/29/14

Date Analyzed: 06/04/14

Sample: W 73 2H

FLASH LIBERATION OF SEPARATOR WATER				
	Separator	Stock Tank		
Pressure, psig	520	0		
Temperature, °F	80	70		
Gas Water Ratio (1)		3.88		
Gas Specific Gravity (2)		0.598		
Separator Volume Factor (3)	1.000	1.000		

Scf of water saturated vapor per barrel of stock tank water
 Air = 1 000
 Separator volume / Stock tank volume
 Analyst. E J.

Piston No. : WF-130*

Base Conditions: 14.65 PSI & 60 °F

Certified: FESCO, Ltd. Alice, Texas rout and

David Dannhaus 361-661-7015

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 76332

For: SE Technologies, LLC Building D, Second Floor 98 Vanadium Road Bridgeville, Pennsylvania 15017-3061

Sample

W 73 2H Gas Liberated from Separator Water From 520 psig & 80 °F to 0 psig & 70 °F

Date Sampled: 05/29/14

CHROMATOGRAPH EXTENDED ANALYSIS - SUMMATION REPORT - GPA 2286

COMPONENT	MOL%	GPM
Hydrogen Sulfide*	< 0.001	
Nitrogen	0.000	
Carbon Dioxide	1.508	
Methane	93.092	
Ethane	5.060	1.346
Propane	0.298	0.082
isobutane	0.009	0.003
n-Bulane	0.023	0.007
2-2 Dimethylpropene	0.000	0.000
Isopentane	0.000	0.000
n-Pentane	0.000	0.000
Hexanes	0.000	0.000
Heptanes Plus	<u>0.010</u>	0.003
Totals .	100.000	1,441

Computed Real Characteristics C	Of Heptanes Plus:	
---------------------------------	-------------------	--

Specific Gravity	3.057	(Air=1)
Molecular Weight	88.34	• •
Gross Heating Value	4247	BTU/CF

Computed Real Characteristics Of Total Sample:

Specific Gravity	0.598	(Alr=1)
Compressibility (Z)	0.9977	
Molecular Weight	17.28	
Gross Heating Value		
Dry Basis	1038	BTU/CF
Saturated Basis	1021	BTU/CF
*Hydrogen Sulfide tested in laboratory by: S	itained Tu	be Method (GPA 2377)

Results: <0.013 Gr/100 CF, <0.2 PPMV or <0.001 Mol %

Base Conditions: 14.650 PSI & 60 Deg F

Certified: FESCO, Ltd. Alice, Texas

Analyst: MR Processor: AL Cylinder ID: WF# 5 S

David Dannhaus 361-661-7015

CHROMATOGRAPH EXTENDED ANALYSIS TOTAL REPORT - GPA 2286

COMPONENT	MOL %	GPM	WT %
Hydrogen Sulfide*	< 0.001		< 0.001
Nitrogen	0.000		0.000
Carbon Dloxide	1.508		3.841
Methane	93.092		86.433
Ethane	5.060	1.348	8.806
Propane	0.298	0.082	0.761
Isobutane	0.009	0.003	0.030
n-Butane	0.023	0.007	0.077
2,2 Dimethylpropane	0.000	0.000	0.000
isopentane	0.000	0.000	0.000
n-Pentane	0.000	0.000	0.000
2,2 Dimethylbutane	0.000	0.000	0.000
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.000	0.000	0.000
2 Methylpentene	0.000	0.000	0.000
3 Methylpentane	0.000	0.000	0.000
n-Hexane	0.000	0.000	0.000
Methylcyclopentane	0.000	0.000	0.000
Benzene	0.003	0.001	0.014
Cyclohexane	0.002	0.001	0.010
2-Methylhexane	0.000	0.000	0.000
3-Methylhexane	0.000	0.000	0.000
2,2,4 Trimethylpentane	0.000	0.000	0.000
Other C7's	0.000	0.000	0.000
n-Heptane	0.000	0.000	0.000
Methylcyclohexane	0.001	0.000	0.008
Toluene	0.003	0.001	0.016
Other C8's	0.000	0.000	0.000
n-Octane	0.000	0.000	0.000
Ethylbenzene	0.000	0.000	0.000
M & P Xylenes	0.001	0.000	0.006
O-Xylene	0.000	0.000	0.000
Other C9's	0.000	0.000	0.000
n-Nonane	0.000	0.000	0.000
Other C10's	0.000	0.000	0.000
n-Decane	0.000	0.000	0.000
Undecanes (11)	<u>0.000</u>	<u>0.000</u>	<u>0.000</u>
Totals	100.000	1.441	100.000

Computed Real Characteristics Of Total Sample:

Specific Gravity	0.598	(Air=1)
Compressibility (Z)	0.9977	
Molecular Weight	17.28	
Gross Heating Value		
Dry Basis	1038	B TU/CF
Saturated Basis	1021	BTU/CF

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

Identification	
User Identification:	Goff Connector - Connector CS
City:	Fairmont
State:	West Virginia
Company:	Goff Connector LLC
Type of Tank:	Vertical Fixed Roof Tank
Description:	Five (5) 400-bbl Produced Water Tanks
Tank Dimensions	
Shell Height (ft):	20.00
Diameter (ft):	12.00
Liquid Height (ft) :	19.00
Avg. Liquid Height (ft):	10.00
Volume (gallons):	16,074.56
Turnovers:	47.03
Net Throughput(gal/yr):	756,000.00
Is Tank Heated (y/n):	Ν
Paint Characteristics	
Shell Color/Shade:	Gray/Medium
Shell Condition	Good
Roof Color/Shade:	Gray/Medium
Roof Condition:	Good
Roof Characteristics	
Туре:	Dome
Height (ft)	1.00
Radius (ft) (Dome Roof)	6.00
Breather Vent Settings	
Vacuum Settings (psig):	-0.03
Pressure Settings (psig)	0.03
0 · (F · 0)	

Meterological Data used in Emissions Calculations: Pittsburgh, Pennsylvania (Avg Atmospheric Pressure = 14.11 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Goff Connector - Connector CS - Vertical Fixed Roof Tank Fairmont, West Virginia

			ily Liquid Si perature (de		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Produced Water	All	58.50	49.32	67.67	53.39	0.3000	0.2000	0.4000	18.0800			0.00	

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Goff Connector - Connector CS - Vertical Fixed Roof Tank Fairmont, West Virginia

Annual Emission Calcaulations	
Standing Losses (Ib):	29.3412
Vapor Space Volume (cu ft):	1,188.0456
Vapor Density (lb/cu ft):	0.0010
Vapor Space Expansion Factor:	0.0810
Vented Vapor Saturation Factor:	0.8569
Vented Vapor Catalation Factor.	0.0000
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	1,188.0456
Tank Diameter (ft):	12.0000
Vapor Space Outage (ft):	10.5046
Tank Shell Height (ft):	20.0000
Average Liquid Height (ft):	10.0000
Roof Outage (ft):	0.5046
Roof Outage (Dome Roof)	
Roof Outage (ft):	0.5046
Dome Radius (ft):	6.0000
Shell Radius (ft):	6.0000
Vapor Density Vapor Density (lb/cu ft):	0.0010
Vapor Density (ib/cd it). Vapor Molecular Weight (lb/lb-mole):	18.0800
Vapor Pressure at Daily Average Liquid	18.0800
Surface Temperature (psia):	0.3000
Daily Avg. Liquid Surface Temp. (deg. R):	518.1654
Daily Average Ambient Temp. (deg. F):	50.3083
Ideal Gas Constant R	50.5005
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	513.0583
Tank Paint Solar Absorptance (Shell):	0.6800
Tank Paint Solar Absorptance (Sheir).	0.6800
Daily Total Solar Insulation	0.0000
Factor (Btu/sqft day):	1,202,9556
	1,202.0000
Vapor Space Expansion Factor	0.0040
Vapor Space Expansion Factor:	0.0810
Daily Vapor Temperature Range (deg. R):	36.6923
Daily Vapor Pressure Range (psia):	0.2000
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	0 0000
Surface Temperature (psia):	0.3000
Vapor Pressure at Daily Minimum Liquid	0 0000
Surface Temperature (psia):	0.2000
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	0.4000
Daily Avg. Liquid Surface Temp. (deg R):	518.1654
Daily Min. Liquid Surface Temp. (deg R):	508.9923
Daily Max. Liquid Surface Temp. (deg R):	527.3385
Daily Ambient Temp. Range (deg. R):	19.1500
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.8569
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	0.3000
Vapor Space Outage (ft):	10.5046
Working Losses (Ib):	78.5494

Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liguid	18.0800
Surface Temperature (psia):	0.3000
Annual Net Throughput (gal/yr.):	756,000.0000
Annual Turnovers:	47.0308
Turnover Factor:	0.8045
Maximum Liquid Volume (gal):	16,074.5628
Maximum Liquid Height (ft):	19.0000
Tank Diameter (ft):	12.0000
Working Loss Product Factor:	1.0000
Total Losses (Ib):	107.8906

TANKS 4.0 Report

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Goff Connector - Connector CS - Vertical Fixed Roof Tank Fairmont, West Virginia

	Losses(lbs)				
Components	Working Loss	Breathing Loss	Total Emissions		
Produced Water	78.55	29.34	107.89		

TANKS 4.0 Report

ATTACHMENT L

Natural Gas Fired Fuel Burning Unit(s) Data Sheet

ATTACHMENT L – SMALL HEATERS AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART DC DATA SHEET

Complete this data sheet for each small heater and reboiler not subject to 40CFR60 Subpart Dc at the facility. *The Maximum Design Heat Input (MDHI) must be less than 10 MMBTU/hr.*

Emission Unit ID# ¹	Emission Point ID# ²	Emission Unit Description (manufacturer, model #)	Year Installed/ Modified	Type ³ and Date of Change	Maximum Design Heat Input (MMBTU/hr) ⁴	Fuel Heating Value (BTU/scf) ⁵	
REB1	S17	Glycol Dehydrator Unit Reboiler	NEW	NEW	2.0	1,038	
REB2	S18	Glycol Dehydrator Unit Reboiler	NEW	NEW	2.0	1,038	
REB3	S19	Glycol Dehydrator Unit Reboiler	NEW	NEW	2.0	1,038	

- ¹ Enter the appropriate Emission Unit (or Source) identification number for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.
- ² Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.
- ³ New, modification, removal
- ⁴ Enter design heat input capacity in MMBtu/hr.
- ⁵ Enter the fuel heating value in BTU/standard cubic foot.

ATTACHMENT M

Internal Combustion Engine Data Sheet

Emission Unit I	Emission Unit ID# ¹		-01	C	E-02	CE	2-03
Engine Manufac	turer/Model	Caterpill	ar G3606	Caterp	illar 3606	Caterpi	llar 3606
Manufacturers F	Rated bhp/rpm	1,775	/1,000	1,77	5/1,000	1,775	/1,000
Source Status ²		N	S		NS	Ν	IS
Date Installed/ Modified/Remov	ved/Relocated ³	TBD		TBD		T	BD
Engine Manufac /Reconstruction		9/15/1998		10/02/2002		10/27/2006	
Check all applicable Federal Rules for the engine (include EPA Certificate of Conformity if applicable) ⁵		□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources		□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources		 □ 40CFR60 Subpart JJJJ □ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? □ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 	
Engine Type ⁶		48	LB	4	SLB	48	LB
APCD Type ⁷	APCD Type ⁷		Cat	OxCat		OxCat	
Fuel Type ⁸		PQ		PQ		PQ	
H ₂ S (gr/100 scf)		0		0		0	
Operating bhp/rpm		1,775/1,000		1,775/1,000		1,775/1,000	
BSFC (BTU/bhp-hr)		7,609		7,609		7,	609
Hourly Fuel Th	oughput	13,062 ft ³ /hr gal/hr		13,062 ft ³ /hr gal/hr		13,062 ft ³ /hr gal/hr	
Annual Fuel The (Must use 8,760) emergency gene	hrs/yr unless	114.42 MMft ³ /yr gal/yr		114.42 MMft ³ /yr gal/yr		114.42 MMft ³ /yr gal/yr	
Fuel Usage or H Operation Meter		Yes 🛛	No 🗆	Yes 🛛 No 🗆		Yes 🛛 No 🗆	
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year) 11	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)
MD	NO _x	1.96	8.57	1.96	8.57	1.96	8.57
MD	СО	0.74	3.24	0.74	3.24	0.74	3.24
MD	VOC	1.18	5.15	1.18	5.15	1.18	5.15
AP	SO ₂	0.01	0.04	0.01	0.04	0.01	0.04
AP	PM10	0.01	0.01	0.01	0.01	0.01	0.01
MD	Formaldehyde	0.16	0.67	0.16	0.67	0.16	0.67
AP/MD	Total HAPs	0.08	0.32	0.08	0.32	0.08	0.32
AP/EPA	GHG (CO ₂ e)	2251	9859	2251	9859	2251	9859

Emission Unit I	nission Unit ID# ¹ CE-04		-04		CE-05	CE	-06
Engine Manufac	turer/Model	Caterpill	ar G3608	Caterr	oillar G3608	Caterpil	ar G3608
Manufacturers H	Rated bhp/rpm	2,500	/1,000	2,5	00/1,000	2,500	/1,000
Source Status ²		NS			NS	N	IS
Date Installed/ TBD Modified/Removed/Relocated ³		3D	TBD		TBD		
Engine Manufac /Reconstruction		NEW		NEW		NEW	
Check all applicable Federal Rules for the engine (include EPA Certificate of Conformity if applicable) ⁵		 ☑ 40CFR60 Subpart JJJJ □ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? ☑ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 		 ▲40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? △40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 		 ⋈ 40CFR60 Subpart JJJJ □ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? ⋈ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 	
Engine Type ⁶		48	LB		4SLB	4SLB	
APCD Type ⁷		Ox	Cat	OxCat		OxCat	
Fuel Type ⁸		PQ		PQ		PQ	
H ₂ S (gr/100 scf)		0		0		0	
Operating bhp/r	pm	2,500/1,000		2,500/1,000		2,500/1,000	
BSFC (BTU/bhj	p-hr)	7,5	595	7,595		7,595	
Hourly Fuel Th	oughput	18,358 ft ³ /hr gal/hr		18,358 ft ³ /hr gal/hr		18,358 ft ³ /hr gal/hr	
Annual Fuel The (Must use 8,760) emergency gene	hrs/yr unless	160.82 MMft ³ /yr gal/yr		160.82 MMft ³ /yr gal/yr		160.82 MMft ³ /yr gal/yr	
Fuel Usage or H Operation Meter		Yes 🖂	No 🗆	Yes 🛛 No 🗆		Yes 🛛 No 🗆	
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year) ¹¹	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)
MD	NO _x	1.66	7.25	1.66	7.25	1.66	7.25
MD	СО	0.94	4.09	0.94	4.09	0.94	4.09
MD	VOC	1.11	4.83	1.11	4.83	1.11	4.83
AP	SO ₂	0.01	0.05	0.01	0.05	0.01	0.05
AP	PM10	0.01	0.01	0.01	0.01	0.01	0.01
MD	Formaldehyde	0.14	0.58	0.14	0.58	0.14	0.58
AP/MD	Total HAPs	0.08	0.35	0.08	0.35	0.08	0.35
AP/EPA	GHG (CO ₂ e)	2895	12679	2895	12679	2895	12679

Emission Unit I	D#1	CE	-07	C	CE-08	CE-09		
Engine Manufac	turer/Model	Caterpill	ar G3608	Caterp	illar G3608	Caterpil	ar G3608	
Manufacturers H	Rated bhp/rpm	2,500	/1,000	2,50	00/1,000	2,500	/1,000	
Source Status ²		NS			NS	N	IS	
Date Installed/ Modified/Remo	ved/Relocated ³	TBD		TBD		T	BD	
Engine Manufac /Reconstruction		NEW		NEW		NEW		
Check all applicable Federal Rules for the engine (include EPA Certificate of Conformity if applicable) ⁵		 ☑ 40CFR60 Subpart JJJJ □ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? ☑ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 		 △40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? ○40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 		 ⋈ 40CFR60 Subpart JJJJ □ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? ⋈ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 		
Engine Type ⁶		48	LB	4	ISLB	4SLB		
APCD Type ⁷	APCD Type ⁷		Cat	OxCat		OxCat		
Fuel Type ⁸		PQ		PQ		PQ		
H ₂ S (gr/100 scf)		0		0		0		
Operating bhp/rpm		2,500/1,000		2,500/1,000		2,500/1,000		
BSFC (BTU/bhj	BSFC (BTU/bhp-hr)		7,595		7,595		595	
Hourly Fuel Th	oughput	18,358 ft ³ /hr gal/hr		18,358 ft ³ /hr gal/hr		18,358 ft ³ /hr gal/hr		
Annual Fuel The (Must use 8,760) emergency gene	hrs/yr unless	160.82 MMft ³ /yr gal/yr		160.82 MMft ³ /yr gal/yr		160.82 MMft ³ /yr gal/yr		
Fuel Usage or H Operation Meter		Yes 🛛	No 🗆	Yes 🛛 No 🗆		Yes 🛛 No 🗆		
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	
MD	NO _x	1.66	7.25	1.66	7.25	1.66	7.25	
MD	СО	0.94	4.09	0.94	4.09	0.94	4.09	
MD	VOC	1.11	4.83	1.11	4.83	1.11	4.83	
AP	SO ₂	0.01	0.05	0.01	0.05	0.01	0.05	
AP	PM10	0.01	0.01	0.01	0.01	0.01	0.01	
MD	Formaldehyde	0.14	0.58	0.14	0.58	0.14	0.58	
AP/MD	Total HAPs	0.08	0.35	0.08	0.35	0.08	0.35	
AP/EPA	GHG (CO ₂ e)	2895	12679	2895	12679	2895	12679	

Emission Unit I	D#1	CE-10			CE-11	GE-01		
Engine Manufac	cturer/Model	Caterpill	ar G3608	Cater	pillar G3608	Generac M	AG300	
Manufacturers H	Rated bhp/rpm	2,500	/1,000	2,5	500/1,000	460 /	1,800	
Source Status ²		NS			NS	N	IS	
Date Installed/ Modified/Removed/Relocated ³		TE	TBD		TBD		BD	
Engine Manufac /Reconstruction		NEW		NEW		NI	NEW	
Check all applicable Federal Rules for the engine (include EPA Certificate of Conformity if applicable) ⁵		 ☑ 40CFR60 Subpart JJJJ □ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? ☑ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 		 ⋈ 40CFR60 Subpart JJJJ □ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? ⋈ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 		 ⋈ 40CFR60 Subpart JJJJ ⋈ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? ⋈ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 		
Engine Type ⁶		45	LB	4SLB		4SLB		
APCD Type ⁷	APCD Type ⁷ OxCat		Cat	OxCat		NSCR		
Fuel Type ⁸		PQ		PQ		PQ		
H ₂ S (gr/100 scf)		()	0		0		
Operating bhp/rpm		2,500/1,000		2,500/1,000		460		
BSFC (BTU/bhj	BSFC (BTU/bhp-hr)		7,595		7,595		000	
Hourly Fuel Th	roughput	18,358 ft ³ /hr gal/hr		18,358 ft ³ /hr gal/hr		3,114 ft ³ /hr gal/hr		
Annual Fuel The (Must use 8,760) emergency gene	hrs/yr unless	160.82 MMft ³ /yr gal/yr		160.82 MMft ³ /yr gal/yr		27.28 MMft ³ /yr gal/yr		
Fuel Usage or H Operation Meter		Yes 🖂	No 🗆	Yes 🛛 No 🗆		Yes 🛛 No 🗆		
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	
MD	NO _x	1.66	7.25	1.66	7.25	0.03	0.14	
MD	СО	0.94	4.09	0.94	4.09	0.18	0.76	
AP	VOC	1.11	4.83	1.11	4.83	0.38	1.67	
AP	SO ₂	0.01	0.05	0.01	0.05	< 0.01	< 0.01	
AP	PM10	0.01	0.01	0.01	0.01	< 0.01	< 0.01	
AP/MD	Formaldehyde	0.14	0.58	0.14	0.58	0.17	0.75	
AP/MD	Total HAPs	0.08	0.35	0.08	0.35	0.23	1.0	
AP/EPA	GHG (CO ₂ e)	2895	12679	2895	12679	455	2015	

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. *Generator(s) and microturbine generator(s) shall also use this form.*

Emission Unit I	D#1	GE-02						
Engine Manufac	cturer/Model	Generac MG3	00					
Manufacturers F	Rated bhp/rpm	460 / 1,80	0					
Source Status ²		NS						
Date Installed/ Modified/Remov	ved/Relocated ³	TBD						
Engine Manufac /Reconstruction		NEW						
Check all applicable Federal Rules for the engine (include EPA Certificate of Conformity if applicable) ⁵		 ⋈ 40CFR60 Subpart JJ ⋈ JJJJ Certified? □ 40CFR60 Subpart III □ IIII Certified? ⋈ 40CFR63 Subpart ZZ □ NESHAP ZZZZ/ NS Window □ NESHAP ZZZZ Rer 	□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources		□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources			
Engine Type ⁶		4SLB						
APCD Type ⁷		NSCR						
Fuel Type ⁸		PQ						
H ₂ S (gr/100 scf))	0						
Operating bhp/r	pm	460						
BSFC (BTU/bhg	p-hr)	7,000						
Hourly Fuel Th	roughput	3,114 ft ³ /hr gal/hr	ft ³ /hr gal/hr		ft³/hr gal/hr			
Annual Fuel The (Must use 8,760) emergency gene	hrs/yr unless	27.28 MMft ³ /yr gal/yr	MMft ³ /yr gal/yr		MMft ³ /yr gal/yr			
Fuel Usage or H Operation Meter		Yes 🛛 N	Io 🗆	Yes 🗆	Yes 🗆 No 🗆		Yes 🗆 No 🗆	
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year	
MD	NO _x	0.03	0.14					
MD	со	0.18	0.76					
MD	VOC	0.03	0.14					
AP	SO ₂	<0.01	< 0.01					
AP	PM ₁₀	< 0.01	< 0.01					
AP	Formaldehyde	0.03	0.14					
AP	Total HAPs	0.08	0.35					
AP/EPA	GHG (CO ₂ e)	455	2015					

*Note – Formaldehyde emissions are based of AP-42 for units GE-01 and GE-02. However, per the manufacturer's data sheet, the emission factor for these USEPA-certified generators for total hydrocarbons (THC) is 0.03 g/bhp-hr. Because methane and formaldehyde are not speciated, emission factors from AP-42 were utilized; thus, providing a significant overestimate to formaldehyde emissions.

- 1 Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.
- 2 Enter the Source Status using the following codes:

NS	Construction of New Source (installation)	ES	Existing Source
MS	Modification of Existing Source	RS	Relocated Source
REM	Removal of Source		

- 3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.
- 4 Enter the date that the engine was manufactured, modified or reconstructed.
- 5 Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6 Enter the Engine Type designation(s) using the following codes:

	2SLB 4SLB	Two Stroke Lean Burn Four Stroke Lean Burn	4SR	B Fou	ur Sti	roke Rich Burn				
7	Enter th	e Air Pollution Control Device (APCD) type design	ation(s)	using t	he fo	ollowing codes:				
	A/F HEIS PSC NSCR SCR	Air/Fuel Ratio High Energy Ignition System Prestratified Charge Rich Burn & Non-Selective Catalytic Reduction Lean Burn & Selective Catalytic Reduction		IR SIF LE Ox	PC	Ignition Retard Screw-in Preco Low Emission Oxidation Cata	ombustion Cha Combustion	mber	S	
8	Enter th	e Fuel Type using the following codes:								
	PQ	Pipeline Quality Natural Gas R	G	Raw Na	atura	l Gas /Productio	n Gas	D	Diesel	
9	Enter t	he Potential Emissions Data Reference design	nation	using t	he f	ollowing code	s. Attach all	refei	ence data used	١.
	MD GR	Manufacturer's Data GRI-HAPCalc [™]		AP OT	AP Oth	-42 her	(please list)			

- 10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.
- 11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

Engine Air Pollution Control Device (Emission Unit ID# 18-28, use extra pages as necessary)

Air Pollution Control Device Manufacturer's Data Sheet included? Yes \boxtimes No \square

\Box NSCR	\Box SCR	🛛 Oxidation Catalyst
Provide details of process control used for proper	mixing/control of redu	cing agent with gas stream:
Manufacturer: EmeraChem	Model #:	EC-OX-PX-SQ-1500-3600-3500
Design Operating Temperature: 1,250 °F	Design ga	s volume: 4,715 scfm
Service life of catalyst: 3	Provide n	nanufacturer data? 🛛 Yes 🛛 No
Volume of gas handled: 11,850 acfm at 797 °F		temperature range for NSCR/Ox Cat: °F to 1,250 °F
Reducing agent used, if any:	Ammonia	slip (ppm):
Pressure drop against catalyst bed (delta P): 12.0	(maximum) inches of l	H ₂ O
Provide description of warning/alarm system that j		
catalyst inlet temperature sensor. If the temperatu down.		
	re exceeds a level set l	by the manufacturer (1,250°F), the engine shuts
down. Is temperature and pressure drop of catalyst requir	red to be monitored per	by the manufacturer (1,250°F), the engine shuts 40CFR63 Subpart ZZZZ?

No performance test required. If so, why (please list any maintenance required and the applicable sections in NSPS/GACT,

Engine Air Pollution Control Device (Emission Unit ID# 3s, use extra pages as necessary)

Air Pollution Control Device Manufacturer's Data Sheet included? Yes 🖂 No 🗆

\Box NSCR	\Box SCR	☑ Oxidation Catalyst
Provide details of process control used for proper	mixing/control of reduci	ng agent with gas stream:
Manufacturer: EmeraChem	Model #: E	C-OX-PX-SQ-1500-3600-3500
Design Operating Temperature: 1,250 °F	Design gas	volume: 4,715 scfm
Service life of catalyst: 3	Provide ma	nufacturer data? 🛛 Yes 🛛 No
Volume of gas handled: 11,850 acfm at 797 °F		emperature range for NSCR/Ox Cat: PF to 1,250 °F
Reducing agent used, if any:	Ammonia s	lip (ppm):
Pressure drop against catalyst bed (delta P): 12.0	(maximum) inches of H	0
Provide description of warning/alarm system that j catalyst inlet temperature sensor. If the temperatu down.		
Is temperature and pressure drop of catalyst requir □ Yes ⊠ No	red to be monitored per 4	0CFR63 Subpart ZZZ2?
	-	-

Field Testing Required
 No performance test required. If so, why (please list any maintenance required and the applicable sections in NSPS/GACT, This engine was manufactured on October 27, 2006 and falls in the NSPS/NESHAP window.

Engine Air Pollution Control Device (Emission Unit ID# 48-118, use extra pages as necessary)

Air Pollution Control Device Manufacturer's Data Sheet included? Yes \boxtimes No \square

\Box NSCR	\Box SCR	☑ Oxidation Catalyst
Provide details of process control used for proper	mixing/control of redu	icing agent with gas stream:
Manufacturer: EmeraChem	Model #:	EC-OX-PX-SQ-1500-3600-3500
Design Operating Temperature: 1,250 °F	Design g	as volume: 6,255 scfm
Service life of catalyst: 3	Provide	nanufacturer data? 🛛 Yes 🛛 No
Volume of gas handled: 15,554 acfm at 783 °F		g temperature range for NSCR/Ox Cat:) °F to 1,250 °F
Reducing agent used, if any:	Ammoni	a slip (ppm):
Pressure drop against catalyst bed (delta P): 12.0	(maximum) inches of	H ₂ O
Provide description of warning/alarm system that		ration is not meeting design conditions. There is
down.	ure exceeds a level set	by the manufacturer $(1,250^{\circ}\text{F})$, the engine shuts
down. Is temperature and pressure drop of catalyst requi	red to be monitored pe	r 40CFR63 Subpart ZZZZ?

No performance test required. If so, why (please list any maintenance required and the applicable sections in NSPS/GACT,

Re: Engine Pedigree

Date: 01/09/2018 Unit # 0030

In order to better assist your company with any of its state and federal permitting needs, CDM Resource Management LLC submits the following information in regards to the engine of the above referenced compressor package. This letter should provide the information necessary to answer any questions pertaining to, but not limited to, the NSPS for SI-RICE, Subpart JJJJ. This information is current as of above date.

Engine Make:	Caterpillar
Engine Model:	3606
Engine Serial Number:	3XF00189
Engine Type:	4SLB
Engine Category:	Existing
Engine Subcategory:	Non Certified
Engine NSPS Status:	Exempt
Engine Speed:	1000
Rated HP:	1775
Engine Manufacture Date:	9/15/1998

Re: Engine Pedigree

Date: 01/09/2018 Unit # 0153

In order to better assist your company with any of its state and federal permitting needs, CDM Resource Management LLC submits the following information in regards to the engine of the above referenced compressor package. This letter should provide the information necessary to answer any questions pertaining to, but not limited to, the NSPS for SI-RICE, Subpart JJJJ. This information is current as of above date.

Engine Make:	Caterpillar
Engine Model:	3606
Engine Serial Number:	4ZS00305
Engine Type:	4SLB
Engine Category:	Existing
Engine Subcategory:	Non Certified
Engine NSPS Status:	Exempt
Engine Speed:	1000
Rated HP:	1775
Engine Menufacture Date:	10/02/2002
Engine Manufacture Date:	10/02/2002

Re: Engine Pedigree

Date: 01/09/2018 Unit # 0586

In order to better assist your company with any of its state and federal permitting needs, CDM Resource Management LLC submits the following information in regards to the engine of the above referenced compressor package. This letter should provide the information necessary to answer any questions pertaining to, but not limited to, the NSPS for SI-RICE, Subpart JJJJ. This information is current as of above date.

Engine Make:	Caterpillar
Engine Model:	3606
Engine Serial Number:	4ZS00703
Engine Type:	4SLB
Engine Category:	New
Engine Subcategory:	Non Certified
Engine NSPS Status:	Exempt
Engine Speed:	1000
Rated HP:	1775
En eine Manuele dans Deda.	10/07/2006
Engine Manufacture Date:	10/27/2006

G3606 NON-CURRENT GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA

CATERPILLAR®

ENGINE SPEED (rpm): COMPRESSION RATIO: AFTERCOOLER TYPE: AFTERCOOLER WATER INLET (°F): JACKET WATER OUTLET (°F): ASPIRATION:

COOLING SYSTEM: CONTROL SYSTEM: EXHAUST MANIFOLD: COMBUSTION: NOX EMISSION LEVEL (g/bhp-hr NOX): 1000 9.2 SCAC 130 190 TA

JW, OC+AC CIS/ADEM3 DRY LOW EMISSION 0.5 RATING STRATEGY: RATING LEVEL: FUEL SYSTEM:

SITE CONDITIONS: FUEL:

FUEL PRESSURE RANGE(psig): FUEL METHANE NUMBER: FUEL LHV (Btu/scf): ALTITUDE(ft): MAXIMUM INLET AIR TEMPERATURE(°F): STANDARD RATED POWER: STANDARD CONTINUOUS GAV WITH AIR FUEL RATIO CONTROL

> Fullstream Energy Harrison Co WV 42.8-47.0 89.3 936 1500 100 1775 bhp@1000rpm

			MAXIMUM RATING	SITE RATING AT MAXIMU INLET AIR TEMPERATUR		
RATING	NOTES	LOAD	100%	100%	75%	50%
ENGINE POWER (WITHOUT FA	N) (1)	bhp	1775	1775	1331	888
INLET AIR TEMPERATURE		°F	100	100	100	100
ENGINE DATA	1					
FUEL CONSUMPTION (LHV)	(2)	Btu/bhp-hr	6860	6860	7102	7619
FUEL CONSUMPTION (HHV)	(2)	Btu/bhp-hr	7609	7609	7877	8451
AIR FLOW (@inlet air temp, 14.7 psia) (WE	T) (3)(4)	ft3/min	4921	4921	3806	2564
AIR FLOW (WE	T) (3)(4)	lb/hr	20924	20924	16181	10900
FUEL FLOW (60°F, 14.7 psia)		scfm	217	217	168	120
INLET MANIFOLD PRESSURE	(5)	in Hg(abs)	74.3	74.3	57.9	41.2
EXHAUST TEMPERATURE - ENGINE OUTLET	(6)	°F	847	847	870	937
EXHAUST GAS FLOW (@engine outlet temp, 14.5 (WE	T) (7)(4)	ft3/min	12211	12211	9611	6820
psia)						
EXHAUST GAS MASS FLOW (WE	T) (7)(4)	lb/hr	21495	21495	16624	11217
EMISSIONS DATA - ENGINE OUT						
NOx (as NO2)	(8)(9)	g/bhp-hr	0.50	0.50	0.50	0.50
со	(8)(9)	g/bhp-hr	2.74	2.74	2.74	2.74
THC (mol. wt. of 15.84)	(8)(9)	g/bhp-hr	6.30	6.30	6.51	6.77
NMHC (mol. wt. of 15.84)	(8)(9)	g/bhp-hr	0.94	0.94	0.98	1.02
NMNEHC (VOCs) (mol. wt. of 15.84)	(8)(9)(10)	g/bhp-hr	0.63	0.63	0.65	0.68
HCHO (Formaldehyde)	(8)(9)	g/bhp-hr	0.26	0.26	0.28	0.31
CO2	(8)(9)	g/bhp-hr	441	441	460	494
EXHAUST OXYGEN	(8)(11)	% DRY	12.8	12.8	12.1	11.1
HEAT REJECTION						
HEAT REJ. TO JACKET WATER (JW)	(12)	Btu/min	18753	18753	15596	13026
HEAT REJ. TO ATMOSPHERE	(12)	Btu/min	7103	7103	6619	6199
HEAT REJ. TO LUBE OIL (OC)	(12)	Btu/min	9132	9132	8667	8453
HEAT REJ. TO AFTERCOOLER (AC)	(12)(13)	Btu/min	17646	17646	9609	1869
COOLING SYSTEM SIZING CRITERIA						
TOTAL JACKET WATER CIRCUIT (JW)	(13)	Btu/min	20628			

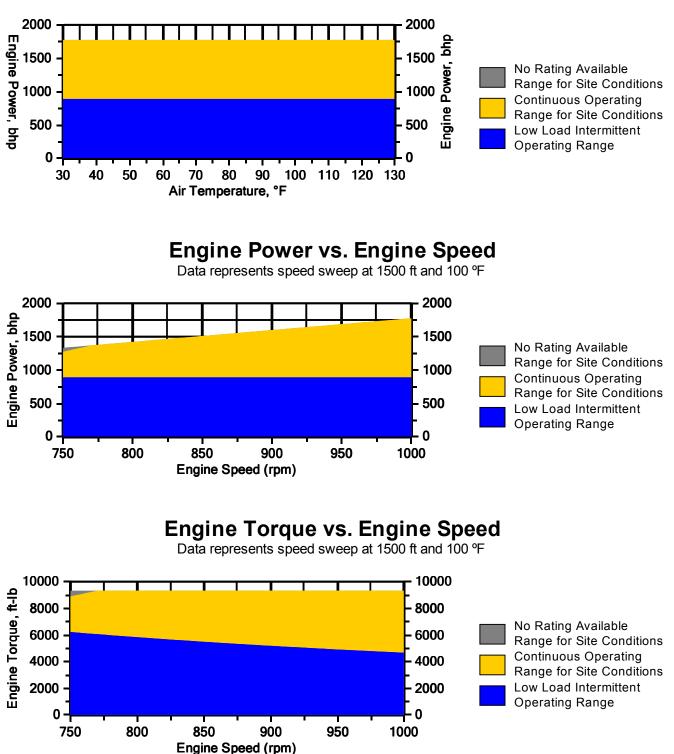
CONDITIONS AND DEFINITIONS

TOTAL AFTERCOOLER CIRCUIT (OC+AC)

A cooling system safety factor of 0% has been added to the cooling system sizing criteria.

Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

(13)(14)


Btu/min

29487

For notes information consult page three.

Engine Power vs. Inlet Air Temperature

Data represents temperature sweep at 1500 ft and 1000 rpm

Note: At site conditions of 1500 ft and 100°F inlet air temp., constant torque can be maintained down to 770 rpm. The minimum speed for loading at these conditions is 750 rpm.

G3606 NON-CURRENT

GAS ENGINE SITE SPECIFIC TECHNICAL DATA

GAS COMPRESSION APPLICATION

NOTES

1. Engine rating is with two engine driven water pumps. Tolerance is \pm 3% of full load.

2. Fuel consumption tolerance is ± 2.5% of full load data.

3. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of \pm 5 %.

4. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.

5. Inlet manifold pressure is a nominal value with a tolerance of \pm 5 %.

6. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.

7. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of \pm 6 %.

8. Emissions data is at engine exhaust flange prior to any after treatment.

9. Emission values are based on engine operating at steady state conditions. Fuel methane number cannot vary more than ± 3. Values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate "Not to Exceed" values. THC, NMHC, and NMNEHC do not include aldehydes. An oxidation catalyst may be required to meet Federal, State or local CO or HC requirements.

10. VOCs - Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ

11. Exhaust Oxygen level is the result of adjusting the engine to operate at the specified NOx level. Tolerance is ± 0.5.

12. Heat rejection values are nominal. Tolerances, based on treated water, are ± 10% for jacket water circuit, ± 50% for radiation, ± 20% for lube oil circuit, and ± 5% for aftercooler circuit.

13. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.

14. Cooling system sizing criteria are maximum circuit heat rejection for the site, with applied tolerances.

Constituent	Abbrev	Mole %	Norm		
Water Vapor	H2O	0.0000	0.0000		
Methane	CH4	95.8791	95.8791	Fuel Makeup:	Fullstream Energy
Ethane	C2H6	3.4142	3.4142	Unit of Measure:	English
Propane	C3H8	0.2210	0.2210		
Isobutane	iso-C4H1O	0.0133	0.0133	Calculated Fuel Properties	
Norbutane	nor-C4H1O	0.0198	0.0198	Caterpillar Methane Number:	89.3
Isopentane	iso-C5H12	0.0038	0.0038	Caterpilar Methane Number.	65.5
Norpentane	nor-C5H12	0.0022	0.0022		
Hexane	C6H14	0.0026	0.0026	Lower Heating Value (Btu/scf):	936
Heptane	C7H16	0.0016	0.0016	Higher Heating Value (Btu/scf):	1038
Nitrogen	N2	0.2624	0.2624	WOBBE Index (Btu/scf):	1233
Carbon Dioxide	CO2	0.1770	0.1770		
Hydrogen Sulfide	H2S	0.0000	0.0000	THC: Free Inert Ratio:	230.53
Carbon Monoxide	CO	0.0000	0.0000	Total % Inerts (% N2, CO2, He):	0.44%
Hydrogen	H2	0.0000	0.0000		
Oxygen	O2	0.0020	0.0020	RPC (%) (To 905 Btu/scf Fuel):	100%
Helium	HE	0.0000	0.0000		
Neopentane	neo-C5H12	0.0006	0.0006	Compressibility Factor:	0.998
Octane	C8H18	0.0004	0.0004	Stoich A/F Ratio (Vol/Vol):	9.77
Nonane	C9H20	0.0000	0.0000	Stoich A/F Ratio (Mass/Mass):	16.96
Ethylene	C2H4	0.0000	0.0000	Specific Gravity (Relative to Air):	0.576
Propylene	C3H6	0.0000	0.0000	Fuel Specific Heat Ratio (K):	1.310
TOTAL (Volume %)		100.0000	100.0000		1.510

CONDITIONS AND DEFINITIONS

Caterpillar Methane Number represents the knock resistance of a gaseous fuel. It should be used with the Caterpillar Fuel Usage Guide for the engine and rating to determine the rating for the fuel specified. A Fuel Usage Guide for each rating is included on page 2 of its standard technical data sheet.

RPC always applies to naturally aspirated (NA) engines, and turbocharged (TA or LE) engines only when they are derated for altitude and ambient site conditions.

Project specific technical data sheets generated by the Caterpillar Gas Engine Rating Pro program take the Caterpillar Methane Number and RPC into account when generating a site rating.

Fuel properties for Btu/scf calculations are at 60F and 14.696 psia.

Caterpillar shall have no liability in law or equity, for damages, consequently or otherwise, arising from use of program and related material or any part thereof.

FUEL LIQUIDS Field gases, well head gases, and associated gases typically contain liquid water and heavy hydrocarbons entrained in the gas. To prevent detonation and severe damage to the engine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid separator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground in accordance with local codes and standards.

To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel operating temperature.

EmeraChem IC Engine Catalyst Sizing

Date:		Customer	<u>& Project Inform</u> 1/10/2				
Customer Name:							
Project Name:			CDI Unit 0				
Application Engineer:			Kevan Riebs				
	Engine Ope	erating Data		-		Engine Exhaust Flow Rate	
Engine Make	Caterpillar Engine Exhaust Temperature				847	F	
Engine Model	G3	606		Catal	yst Operating Temperature	797	F
Fuel Type	N	G			Exhaust Gas Flow Rate	282,868	scfl
Engine Horsepower	17		bhp		Exhaust Gas Flow Rate	11,850	acfr
Engine Speed	1,0		rpm		Exhaust Gas Flow Rate	21,495	lb/h
Operating Hours	87		hr/year		Gas Oxygen Concentration	12.8%	
Combustion Cycle - 2 vs 4 cycle Lean Burn / Rich Burn	le	1		Exhaus	t Gas Water Concentration	12.0%	
Lean Burn / Rich Burn			lled Emission				
	NOx	CO	olled Emission NMNEHC	CH2O	Engine NMNEHC measured as Met	thane	
g/bhp-hr		2.74	0.89	0.26			
g/MW-hr		3,674			Note:		
g/hr		4,864	1,580	462		nced here include formaldehyde.	If the
lb/hr		10.72	3.48	1.02		eet used as a source for this quote	
tons/year		46.96	15.25	4.46		NEHC calculation, the two values n	
MW		28.00	15.84	30.00		nto the performance requirements	s definiti
scfh		145	83	13	in this tool.		
mg/m3		607	197	58	2) The propane concentra	ation is assumed to be less than 15	5% of the
ppmv (wet; actual O2)		513	295	45	7 1 1	(including aldehydes) in the exha	
ppmv (dry; actual O2) ppmv (dry; 15% O2)		583 425	335 244	52 38		oane is expected to be higher than	
ppinv (dry; 15% 02)		Emissions F		30	J		
-	NOx	со	NMNEHC	CH2O	,		
g/bhp-hr		0.19	0.3	0.039	Stack NMNEHC measured as Meth	nane.	
g/MW-hr					ł		
g/hr		337	533	69			
lb/hr		0.74	1.17	0.15			
tons/year MW		3.26 28.00	5.14 15.84	30.00	4		
scfh		10	28	2			
mg/m3		42	66	9	{		
ppmv (wet; actual O2)		36	99	7	1		
ppmv (dry; actual O2)		40	113	8			
ppmv (dry; 15% O2)		29	82	6	1		
			DRE (%)				
DDE Demuired to Meet Emissions Limit	NOx	CO 93.1	NMNEHC	CH2O 85.0	1		
DRE Required to Meet Emissions Limit DRE Guarantee		93.1	66.3 66.3	85.0	96,381		
DRE Expected - Uncontaminated, Optimal Tuning		99.5	89.7	95.4	30,001		
g/bhp-hr Expected - Uncontaminated, Optimal Tuning		0.01	0.09	0.01			
	CUSTON	IER ALERT		erformance	is contingent upon		
					Illetin: EC-EN-108a -		
	Achieving	Ultra-High E	mission Perf	formance or	n Internal Combustion		
	Catalyst Ir	formation			ŀ	lousing and Silencer Informa	tion
Catalyst Part Number:	EC-OX-	PX-SQ-1500-36	600-3500		Housing Supplier:	Other	
Catalyst Type:	Performax	Oxidation			Silencer Part Number		
Warranty (years)		3			Silencer Attenuation		
Catalyst Formulation	Perfo				Inlet Flange Size		
New Install or Replacement		ement			Outlet Flange Size		
Catalyst Shape	Recta		4		Material		
Number of Catalyst Elements		3			Housing Orientation		
Modifications		Bonnet	4		Inlet/Outlet Orientation	0.0	
CPSI	30		4		ide Inlet Clocking Position		
Foil Depth		.5	inches		Catalyst Clocking Position		
Width	15.		inches		e Outlet Clocking Position	10.0	_
Length	36.		inches		um System Pressure Drop	12.0	
Catalyst Volume	3.:		ft3 (total)	То	otal System Pressure Drop	0.0	
Space Velocity	96,		1/hr		Housing Modifications		
Catalyst Weight Maximum Catalyst Pressure Drop	22		lb in H2O				
Maximum Catalyst Pressure Drop Catalyst Design Pressure Drop	12	.0 .4	in. H2O in. H2O				
nents:	2	-	1.11.1120				
	Ask us h	ow EmeraChem	can save you 30%	6 in oil change c	osts.		

G3608

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA

CATERPILLAR®

8471

5377

2739

GAS COMPRESSION APPLICATION										
ENGINE SPEED (rpm): COMPRESSION RATIO: AFTERCOOLER TYPE: AFTERCOOLER - STAGE 2 INLET (°F): AFTERCOOLER - STAGE 1 INLET (°F): JACKET WATER OUTLET (°F):	1000 7.6 SCAC 130 174 190	g strategy g level: system: conditions:			STANDARD CONTINUOUS GAV WITH AIR FUEL RATIO CONTROL Fullstream Energy Harrison					
ASPIRATION: COOLING SYSTEM: CONTROL SYSTEM: EXHAUST MANIFOLD: COMBUSTION: NOX EMISSION LEVEL (g/bhp-hr NOx): SET POINT TIMING:	TA JW+1AC, OC+2AC ADEM4 DRY LOW EMISSION 0.3 18	FUEL FUEL ALTITI MAXIN	PRESSURE R METHANE NU LHV (Btu/scf): JDE(ft): 1UM INLET AIF DARD RATED	Co W 58.0-70 89 93 156 157 2500 bhp@1000rp						
					MAXIMUM RATING	SITE RATING AT MAXIMUM INLET AIR TEMPERATURE				
RATIN	IG		NOTES	LOAD	100%	100%	75%	50%		
ENGINE POWER INLET AIR TEMPERATURE		(WITHOUT FAN)	(2)	bhp °F	2500 100	2500 100	1875 100	1250 100		
ENGINE	DATA									
FUEL CONSUMPTION (LHV) FUEL CONSUMPTION (HHV) AIR FLOW (@inlet air temp, 14.7 psia) AIR FLOW FUEL FLOW (60°F, 14.7 psia) INLET MANIFOLD PRESSURE EXHAUST TEMPERATURE - ENGINE OUTL	(3) (3) (4)(5) (4)(5) (6) (7)	Btu/bhp-hr Btu/bhp-hr ft3/min lb/hr scfm in Hg(abs) °F	6848 7595 6520 27720 305 104.4 833	6848 7595 6520 27720 305 104.4 833	7075 7847 4941 21007 236 78.9 876	7573 8400 3359 14282 169 55.1 941				
EXHAUST GAS FLOW (@engine outlet temp psia) EXHAUST GAS MASS FLOW	14.5	(WET) (WET)	(8)(5) (8)(5)	ft3/min Ib/hr	16057 28520	16057 28520	12591 21626	8998 14724		
EMISSIONS DATA	- ENGINE OUT									
NOx (as NO2) CO THC (mol. wt. of 15.84) NMHC (mol. wt. of 15.84) NMNEHC (VOCs) (mol. wt. of 15.84) HCHO (Formaldehyde) CO2 EXHAUST OXYGEN	(9)(10) (9)(10) (9)(10) (9)(10) (9)(10)(11) (9)(10) (9)(10) (9)(12)	g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr % DRY	0.30 2.49 4.41 0.41 0.27 0.16 425 11.3	0.30 2.49 4.41 0.41 0.27 0.16 425 11.3	0.30 2.49 4.68 0.43 0.29 0.17 441 11.1	0.30 2.50 4.75 0.44 0.30 0.20 469 10.7				
HEAT REJ	ECTION									
HEAT REJ. TO JACKET WATER (JW) HEAT REJ. TO ATMOSPHERE HEAT REJ. TO LUBE OIL (OC) HEAT REJ. TO A/C - STAGE 1 (1AC)			(13) (13) (13) (13)(14)	Btu/min Btu/min Btu/min Btu/min	27700 11217 12553 24029	27700 11217 12553 24029	23042 11144 11937 11985	18866 10451 10885 3189		

 HEAT REJ. TO A/C - STAGE 1 (1AC)
 (13)(14)
 Btu/min
 24029

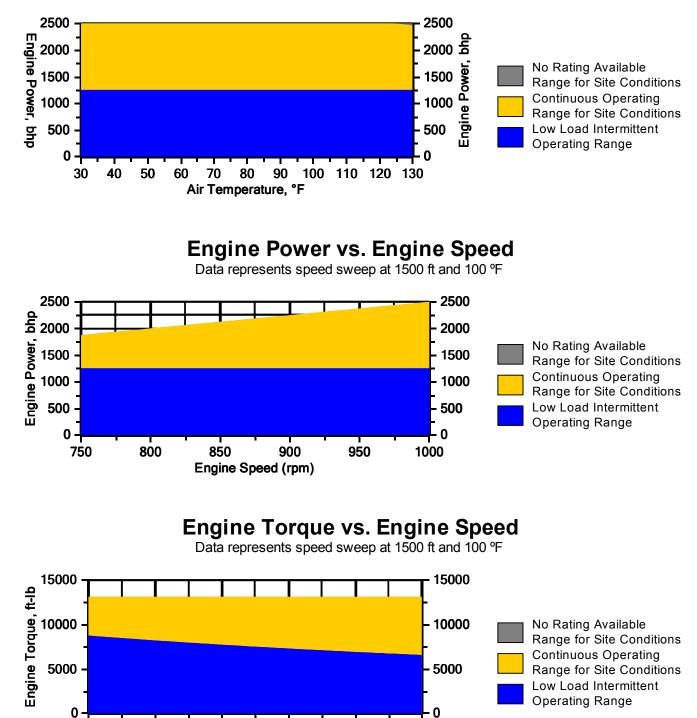
 HEAT REJ. TO A/C - STAGE 2 (2AC)
 (13)(14)
 Btu/min
 8471

 COOLING SYSTEM SIZING CRITERIA

 TOTAL JACKET WATER CIRCUIT (JW+1AC)
 (14)(15)
 Btu/min
 55700

 TOTAL STAGE 2 AFTERCOOLER CIRCUIT (OC+2AC)
 (14)(15)
 Btu/min
 23958

 A cooling system safety factor of 0% has been added to the cooling system sizing criteria.
 55700


CONDITIONS AND DEFINITIONS

Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

For notes information consult page three.

Engine Power vs. Inlet Air Temperature

Data represents temperature sweep at 1500 ft and 1000 rpm

Note: At site conditions of 1500 ft and 100°F inlet air temp., constant torque can be maintained down to 750 rpm. The minimum speed for loading at these conditions is 750 rpm.

950

900

- 0

1000

800

850

Engine Speed (rpm)

750

G3608

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA

NOTES

1. Fuel pressure range specified is to the engine gas shutoff valve (GSOV). Additional fuel train components should be considered in pressure and flow calculations.

2. Engine rating is with two engine driven water pumps. Tolerance is \pm 3% of full load.

- 3. Fuel consumption tolerance is $\pm 2.5\%$ of full load data.
- 4. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of \pm 5 %.
- 5. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.
- 6. Inlet manifold pressure is a nominal value with a tolerance of \pm 5 %.
- 7. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.
- 8. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of \pm 6 %.
- 9. Emissions data is at engine exhaust flange prior to any after treatment.

10. Values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate the maximum values expected under steady state conditions. Fuel methane number cannot vary more than ± 3. THC, NMHC, and NMNEHC do not include aldehydes. An oxidation catalyst may be required to meet Federal, State or local CO or HC requirements.

11. VOCs - Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ

12. Exhaust Oxygen level is the result of adjusting the engine to operate at the specified NOx level. Tolerance is ± 0.5.

13. Heat rejection values are nominal. Tolerances, based on treated water, are ± 10% for jacket water circuit, ± 50% for radiation, ± 20% for lube oil circuit, and ± 5% for aftercooler circuit.

14. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.

15. Cooling system sizing criteria are maximum circuit heat rejection for the site, with applied tolerances.

Constituent	Abbrev	Mole %	Norm		
Water Vapor	H2O	0.0000	0.0000		
Methane	CH4	95.8791	95.8791	Fuel Makeup:	Fullstream Energy
Ethane	C2H6	3.4142	3.4142	Unit of Measure:	English
Propane	C3H8	0.2210	0.2210		
Isobutane	iso-C4H1O	0.0133	0.0133	Calculated Fuel Properties	
Norbutane	nor-C4H1O	0.0198	0.0198	Caterpillar Methane Number:	89.3
Isopentane	iso-C5H12	0.0038	0.0038	Caterpilar Methane Number.	65.5
Norpentane	nor-C5H12	0.0022	0.0022		
Hexane	C6H14	0.0026	0.0026	Lower Heating Value (Btu/scf):	936
Heptane	C7H16	0.0016	0.0016	Higher Heating Value (Btu/scf):	1038
Nitrogen	N2	0.2624	0.2624	WOBBE Index (Btu/scf):	1233
Carbon Dioxide	CO2	0.1770	0.1770		
Hydrogen Sulfide	H2S	0.0000	0.0000	THC: Free Inert Ratio:	230.53
Carbon Monoxide	CO	0.0000	0.0000	Total % Inerts (% N2, CO2, He):	0.44%
Hydrogen	H2	0.0000	0.0000		
Oxygen	O2	0.0020	0.0020	RPC (%) (To 905 Btu/scf Fuel):	100%
Helium	HE	0.0000	0.0000		
Neopentane	neo-C5H12	0.0006	0.0006	Compressibility Factor:	0.998
Octane	C8H18	0.0004	0.0004	Stoich A/F Ratio (Vol/Vol):	9.77
Nonane	C9H20	0.0000	0.0000	Stoich A/F Ratio (Mass/Mass):	16.96
Ethylene	C2H4	0.0000	0.0000	Specific Gravity (Relative to Air):	0.576
Propylene	C3H6	0.0000	0.0000	Fuel Specific Heat Ratio (K):	1.310
TOTAL (Volume %)		100.0000	100.0000		1.510

CONDITIONS AND DEFINITIONS

Caterpillar Methane Number represents the knock resistance of a gaseous fuel. It should be used with the Caterpillar Fuel Usage Guide for the engine and rating to determine the rating for the fuel specified. A Fuel Usage Guide for each rating is included on page 2 of its standard technical data sheet.

RPC always applies to naturally aspirated (NA) engines, and turbocharged (TA or LE) engines only when they are derated for altitude and ambient site conditions.

Project specific technical data sheets generated by the Caterpillar Gas Engine Rating Pro program take the Caterpillar Methane Number and RPC into account when generating a site rating.

Fuel properties for Btu/scf calculations are at 60F and 14.696 psia.

Caterpillar shall have no liability in law or equity, for damages, consequently or otherwise, arising from use of program and related material or any part thereof.

FUEL LIQUIDS Field gases, well head gases, and associated gases typically contain liquid water and heavy hydrocarbons entrained in the gas. To prevent detonation and severe damage to the engine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid separator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground in accordance with local codes and standards.

To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel operating temperature.

EmeraChem IC Engine Catalyst Sizing

Date:		Gastomer	<u>& Project Infor</u> 1/25/2				
Customer Name:							
Project Name:							
Application Engineer:			3608 Kevan Rieb				
	Engine Ope	erating Data	-			Engine Exhaust Flow Rate	
Engine Make		pillar			gine Exhaust Temperature	833	F
Engine Model	G36		•	Catal	yst Operating Temperature	783	F
Fuel Type	N		1		Exhaust Gas Flow Rate	375,315	scfl
Engine Horsepower	<u>25</u> 1,0		bhp		Exhaust Gas Flow Rate	15,554	acfi
Engine Speed	rpm	E.t.	Exhaust Gas Flow Rate	28,520	lb/h		
Operating Hours	87		hr/year		Gas Oxygen Concentration	11.3%	_
Combustion Cycle - 2 vs 4 cycle Lean Burn / Rich Burn	le	1		Exnaus	t Gas Water Concentration	12.0%	
			alled Emission	-			
	NOx	CO	olled Emission NMNEHC	CH2O	Engine NMNEHC measured as Me	thane	
g/bhp-hr		2.49	0.43	0.16			
g/MW-hr		3,339			Note:		
g/hr		6,225	1,075	400		nced here include formaldehyde.	If the
lb/hr		13.72	2.37	0.88		eet used as a source for this quote	
tons/year		60.11	10.38	3.86	formaldehyde in the NM	NEHC calculation, the two values m	nust be
MW		28.00	15.84	30.00		nto the performance requirements	definit
scfh		186	57	11	in this tool.		
mg/m3		586	101	38	2) The propage conceptra	ation is assumed to be less than 15	% of the
ppmv (wet; actual O2)		495	151	30		(including aldehydes) in the exhau	
ppmv (dry; actual O2)		562	172	34 21	the concentration of prop	bane is expected to be higher than	this valu
ppmv (dry; 15% O2)		346 Emissions F	106 Requirement	21	J		
-	NOx	со	NMNEHC	CH2O	-		
g/bhp-hr		0.17	0.2	0.024	Stack NMNEHC measured as Meth	nane.	
g/MW-hr					Į		
g/hr		425	500	60	ł		
lb/hr		0.94	1.10	0.13	{		
tons/year MW		4.10	4.83	0.58	{		
MW scfh		28.00 13	15.84 26	30.00 2	4		
mg/m3		40	47	6	{		
ppmv (wet; actual O2)		34	70	4	1		
ppmv (wet, actual O2) ppmv (dry; actual O2)		38	80	5	1		
ppmv (dry; 15% O2)		24	49	3	j		
		Catalyst	DRE (%)		-		
	NOx	<u> </u>	NMNEHC	CH2O	1		
DRE Required to Meet Emissions Limit		93.2	53.5	85.0	05.040		
DRE Guarantee		93.2 99.5	53.5 89.4	85.0 95.2	95,910		
DRE Expected - Uncontaminated, Optimal Tuning g/bhp-hr Expected - Uncontaminated, Optimal Tuning		99.5 0.012	89.4 0.045	95.2	4		
Source in Expected Cheentaminated, Optimal running	CUSTON				is contingent upon		
			-		Illetin: EC-EN-108a -		
					1 Internal Combustion		
	Catalyst Ir	•		ermanoe of		lousing and Silencer Informat	tion
Catalyst Part Number:		PX-SQ-1500-36	600-3500		Housing Supplier:	Other	
Catalyst Type:		Oxidation	-		Silencer Part Number		
Warranty (years)		3	1		Silencer Attenuation		
Catalyst Formulation	Perfo		1		Inlet Flange Size		
New Install or Replacement	Replac	ement	1		Outlet Flange Size		
Catalyst Shape	Recta	angle			Material		
Number of Catalyst Elements	4	1			Housing Orientation		
Modifications	Without	Bonnet			Inlet/Outlet Orientation	0.0	
CPSI		00		S	ide Inlet Clocking Position		
Foil Depth		.5	inches		Catalyst Clocking Position		
Width	15.		inches		e Outlet Clocking Position		
Length	36.		inches		um System Pressure Drop	12.0	
Catalyst Volume	4.		ft3 (total)	Т	otal System Pressure Drop	0.0	
Space Velocity	95,		1/hr		Housing Modifications		
Catalyst Weight	27		lb				
Maximum Catalyst Pressure Drop	12		in. H2O				
Catalyst Design Pressure Drop	2	.3	in. H2O				
nents:							
	Ask us h	ow EmeraChem	can save you 30%	in oil change c	osts.		

STATEMENT OF EXHAUST EMISSIONS 2018 SPARK-IGNITED GENERATORS INDUSTRIAL SERIES - SCAQMD CERTIFIED STATIONARY EMERGENCY

	Model	Engine	EPA Engine	Fuel	CAT	SCAQMD	EPA Grams/bhp-hr.			-hr.	Rated	BHP	Fuel Flow
		Ĵ	Family		Req'd *	CEP #	Cert #	THC	NOx	CO	RPM		(lb/hr)
	QTA25	2.4	JGNXB02.42NN	NG	No	NR	JGNXB02.42NN-006	2.14	2.37	93.95	1800	38.39	16.52
	QTA25	2.4	JGNXB02.42NL	LPG	No	NR	JGNXB02.42NL-066	1.43	4.38	86.18	1800	43.29	17.59
	SG035	5.4	JGNXB05.42L1	NG	Yes	530212	JGNXB05.42L1-015	0.38	0.22	0.64	1800	81.95	24.91
E)	SG035	5.4	JGNXB05.42L2	LPG	Yes	530215	JGNXB05.42L2-016	0.04	0.10	0.70	1800	81.70	29.13
Small Spark Ignited Engines - SSIE (SORE)	SG040	5.4	JGNXB05.42L1	NG	Yes	530212	JGNXB05.42L1-015	0.38	0.22	0.64	1800	81.95	24.91
) Щ	SG040	5.4	JGNXB05.42L2	LPG	Yes	530215	JGNXB05.42L2-016	0.04	0.10	0.70	1800	81.70	29.13
SS-	SG045	5.4	JGNXB05.42L1	NG	Yes	530212	JGNXB05.42L1-015	0.38	0.22	0.64	1800	81.95	24.91
es .	SG045	5.4	JGNXB05.42L2	LPG	Yes	530215	JGNXB05.42L2-016	0.04	0.10	0.70	1800	81.70	29.13
igr	SG050	5.4	JGNXB05.42L1	NG	Yes	530212	JGNXB05.42L1-015	0.38	0.22	0.64	1800	81.95	24.91
dĒr	SG050	5.4	JGNXB05.42L2	LPG	Yes	530215	JGNXB05.42L2-016	0.04	0.10	0.70	1800	81.70	29.13
nite	SG050	6.8	JGNXB06.82L5	NG	Yes	470347	JGNXB06.82L5-032	0.21	0.02	0.19	1800	85.65	33.10
	SG050	6.8	JGNXB06.82L6	LPG	Yes	470347	JGNXB06.82L6-017	0.01	0.05	0.50	1800	85.92	34.14
Spar	SG060	6.8	JGNXB06.82L5	NG	Yes	468721	JGNXB06.82L5-032	0.22	0.02	0.35	1800	99.58	37.58
all c	SG060	6.8	JGNXB06.82L6	LPG	Yes	468721	JGNXB06.82L6-017	0.01	0.01	0.76	1800	99.15	38.69
Sm	SG070	6.8	JGNXB06.82L3	NG	Yes	470208	JGNXB06.82L3-030	0.20	0.04	0.49	1800	110.64	41.00
	SG070	6.8	JGNXB06.82L4	LPG	Yes	470208	JGNXB06.82L4-031	0.08	0.07	0.91	1800	112.42	42.35
	SG080	8.0	JGNXB08.02L1	NG	Yes	575822	JGNXB08.02L1-033	0.42	0.51	0.07	1800	125.69	39.76
	SG080	8.0	JGNXB08.02L2	LPG	Yes	575823	JGNXB08.02L2-034	0.04	0.13	0.30	1800	127.89	44.69
	SG100	9.0	JGNXB08.9201	NG	Yes	598551	JGNXB08.9201-040	0.00	0.12	0.03	1800	153.00	53.24
	SG100	9.0	JGNXB08.9202	LPV	Yes	598559	JGNXB08.9202-001	0.01	0.20	0.22	1800	142.30	54.35
	SG130,150	9.0	JGNXB08.92C3	NG	Yes	573276	JGNXB08.92C3-039	0.10	0.03	0.02	1800	230.30	71.97
	SG130,150 (DF)	9.0	JGNXB08.92C3	NG/LPV	Yes	573273	JGNXB08.92C3-039	0.10	0.03	0.02	1800	230.30	71.97
	SG130,150 (DF)	9.0	JGNXB08.92C3	NG/LPL	Yes	573271	JGNXB08.92C3-039	0.10	0.03	0.02	1800	230.30	71.97
	SG130, 150	9.0	JGNXB08.92C4	LPV	Yes	573267	JGNXB08.92C4-022	0.02	0.57	1.30	1800	230.30	75.43
	SG130, 150	9.0	JGNXB08.92C4	LPL	Yes	573269	JGNXB08.92C4-022	0.02	0.57	1.30	1800	230.30	75.43
Large Spark Ignited Engines (LSIE)	SG150,175,200	14.2L	JGNXB14.22C1	NG	Yes	575824	JGNXB14.22C1-043	0.06	0.05	0.39	1800	304.00	98.54
s (L	SG230, 250	14.2L	JGNXB14.22C1	NG	Yes	575826	JGNXB14.22C1-043	0.04	0.02	0.23	1800	374.00	120.84
gine	SG275, 300	14.2L	JGNXB14.22C1	NG	Yes	575828	JGNXB14.22C1-043	0.03	0.03	0.17	1800	460.00	142.87
Ē	MG150, 200	14.2L	JGNXB14.22C1	NG	Yes	575825	JGNXB14.22C1-043	0.06	0.05	0.39	1800	304.00	98.54
ited	MG250	14.2L	JGNXB14.22C1	NG	Yes	575827	JGNXB14.22C1-043	0.04	0.02	0.23	1800	374.00	120.84
lgn	MG300	14.2L	JGNXB14.22C1	NG	Yes	575829	JGNXB14.22C1-043	0.03	0.03	0.17	1800	460.00	142.87
ark	SG350, 400	21.9	JGNXB21.92C1	NG	Yes	558477	JGNXB21.92C1-044	0.18	0.14	0.82	1800	636.00	201.17
ss	MG350, 400	21.9	JGNXB21.92C1	NG	Yes	558478	JGNXB21.92C1-044	0.18	0.14	0.82	1800	636.00	201.17
arge	SG350,400 (LPF)	21.9	JGNXB21.92C1	NG	Yes	573266	JGNXB21.92C1-044	0.18	0.14	0.82	1800	636.00	201.17
	MG350,400 (LPF)	21.9	JGNXB21.92C1	NG	Yes	573265	JGNXB21.92C1-044	0.18	0.14	0.82	1800	636.00	201.17
	SG450	21.9	JGNXB21.92C3	NG	Yes	593191	JGNXB21.92C3-045	0.14	0.08	0.39	1800	673.10	211.85
	MG450	21.9	JGNXB21.92C3	NG	Yes	NA	JGNXB21.92C3-045	0.14	0.08	0.39	1800	673.10	211.85
	SG450 (LPF)	21.9	JGNXB21.92C3	NG	Yes	593192	JGNXB21.92C3-045	0.10	0.08	0.13	1800	674.14	208.84
	MG450 (LPF)	21.9	JGNXB21.92C3	NG	Yes	NA	JGNXB21.92C3-045	0.10	0.08	0.13	1800	674.14	208.84
	SG500	25.8	JGNXB25.82C1	NG	Yes	583438	JGNXB25.82C1-023	0.07	0.07	0.05	1800	777.00	244.49
	MG500	25.8	JGNXB25.82C1	NG	Yes	583438	JGNXB25.82C1-023	0.07	0.07	0.05	1800	777.00	244.49

* Three-Way Catalyst (TWC)

NR: Not Required

DF: Dual Fuel

LPF: Units with optional Low Pressure Fuel system

NA: Not Available

Refer to page 2 for definitions and advisory notes.

STATEMENT OF EXHAUST EMISSIONS 2018 SPARK-IGNITED GENERATORS INDUSTRIAL SERIES - SCAQMD CERTIFIED STATIONARY EMERGENCY

2018 EPA SPARK-IGNITED EXHAUST EMISSIONS DATA

Effective since 2009, the EPA has implemented exhaust emissions regulations on stationary spark-ignited (gaseous) engine generators for emergency applications. All Generac spark-ignited gensets, including SG, MG, QTA, QT and RG series gensets that are built with engines manufactured in 2009 and later meet the requirements of 40CFR part 60 subpart JJJJ and are EPA certified. These generator sets are labeled as EPA Certified with decals affixed to the engines' valve covers.

The attached documents summarize the general information relevant to EPA certification on these generator sets. This information can be used for submittal data and for permitting purposes, if required. These documents include the following information:

EPA Engine Family

The EPA Engine Family is assigned by the Manufacturer under EPA guidelines for certification purposes and appears on the EPA certificate.

Catalyst Required

Indicates whether a three-way catalyst (TWC) and Air/Fuel Ratio control system are required on the generator set to meet EPA certification requirements. Generally, units rated 80kW and smaller do not require a TWC to meet EPA certification requirements. Please note that some units that do not require a TWC to meet EPA requirements do need one if the California SCAQMD option is selected. Please see "California SCAQMD" below for additional information on this option.

Combination Catalyst or Separate Catalyst

SG and MG series generator sets typically utilize a single combination catalyst/silencer as part of meeting EPA certification requirements. Many QT and RG series generator sets use the same engines as SG series units, but have different exhaust configurations that require the use of conventional silencers with additional separate catalysts installed.

EPA Certificate Number

Upon certification by the EPA, a Certificate Number is assigned by the EPA.

Emissions Actuals - Grams/bhp-hr

Actual exhaust emission data for Total Hydrocarbons (THC), Nitrogen Oxides (NOx) and Carbon Monoxide (CO) that were submitted to EPA and are official data of record for certification. This data can be used for permitting if necessary. Values are expressed in grams per brake horsepower-hour; to convert to grams/kW-hr, multiply by 1.341. Please see advisory notes below for further information.

California Units, SCAQMD CEP Number

A separate low-emissions option is available on many Generac gaseous-fueled generator sets to comply with the more stringent South Coast Air Quality Management District requirements that are recognized in certain areas in California. Gensets that include this option are also EPA Certified.

General Advisory Note to Dealers

The information provided here is proprietary to Generac and its' authorized dealers. This information may only be disseminated upon request, to regulatory governmental bodies for emissions permitting purposes or to specifying organizations as submittal data when expressly required by project specifications, and shall remain confidential and not open to public viewing. This information is not intended for compilation or sales purposes and may not be used as such, nor may it be reproduced without the expressed written permission of Generac Power Systems, Inc.

Advisory Notes on Emissions Actuals

- The stated values are actual exhaust emission test measurements obtained from units representative of the generator types and engines described.
- Values are official data of record as submitted to the EPA and SCAQMD for certification purposes. Testing was conducted in accordance with prevailing EPA protocols, which are typically accepted by SCAQMD and other regional authorities.
- No emission values provided are to be construed as guarantees of emissions levels for any given Generac generator unit.
- · Generac Power Systems reserves the right to revise this information without prior notice.
- · Consult state and local regulatory agencies for specific permitting requirements.
- The emissions performance data supplied by the equipment manufacturer is only one element required toward completion of the permitting and
 installation process. State and local regulations may vary on a case-by-case basis and must be consulted by the permit applicant/equipment owner prior
 to equipment purchase or installation. The data supplied herein by Generac Power Systems cannot be construed as a guarantee of installability of the
 generator set.
- The emission values provided are the result of multi-mode, weighted scale testing in accordance with EPA testing regulations, and may not be
 representative of any specific load point.
- The emission values provided are not to be construed as emission limits.

ATTACHMENT N

Tanker Truck Loading Data Sheet

ATTACHMENT N – TANKER TRUCK LOADING DATA SHEET

Complete this data sheet for each new or modified bulk liquid transfer area or loading rack at the facility. This is to be used for bulk liquid transfer operations to tanker trucks. Use extra pages if necessary.

Truck Loadout Collection Efficiencies

The following applicable capture efficiencies of a truck loadout are allowed:

- For tanker trucks passing the MACT level annual leak test 99.2%
- For tanker trucks passing the NSPS level annual leak test 98.7%
- For tanker trucks not passing one of the annual leak tests listed above 70%

Compliance with this requirement shall be demonstrated by keeping records of the applicable MACT or NSPS Annual Leak Test certification for *every* truck and railcar loaded/unloaded. This requirement can be satisfied if the trucking company provided certification that its entire fleet was compliant. This certification must be submitted in writing to the Director of the DAQ. These additional requirements must be noted in the Registration Application and will be noted on the issued G35-D Registration.

Emission Unit ID#: TL-1Emission Point ID#: TL-1Year Installed/Modified: 2018								
Emission Unit Descripti	Emission Unit Description: Truck Loading							
		Lo	oading Area Dat	a				
Number of Pumps: 5		Number of	Liquids Loaded:	1	Max number of (1) time: 1	f trucks loading at one		
Are tanker trucks pressu If Yes, Please describe:	Are tanker trucks pressure tested for leaks at this or any other location? \Box Yes \Box No \boxtimes Not Required If Yes, Please describe:							
Provide description of c	losed vent syste	m and any byp	basses. N/A					
Are any of the following truck loadout systems utilized? □ Closed System to tanker truck passing a MACT level annual leak test? □ Closed System to tanker truck passing a NSPS level annual leak test? ⊠ Closed System to tanker truck not passing an annual leak test and has vapor return? Projected Maximum Operating Schedule (for rack or transfer point as a whole)								
Time	Jan – Ma	ır	Apr - Jun		Jul – Sept	Oct - Dec		
Hours/day	24		24		24	24		
Days/week	7		7		7	7		
	Bul	k Liquid Dat	a (use extra pag	es as necess	sary)			
Liquid Name	Produce	d Water						
Max. Daily Throughput (1000 gal/day)	2.08							
Max. Annual Throughpu (1000 gal/yr)	^{1t} 756							
Loading Method ¹	BF							
Max. Fill Rate (gal/min)) 43.75							
Average Fill Time (min/loading)	120							
Max. Bulk Liquid Temperature (°F)	75							
True Vapor Pressure ² NA								
Cargo Vessel Condition ³ None								
Control Equipment or Method ⁴	NA							
Max. Collection Efficient	ncy NA							

Max. Control (%)	Efficiency	NA	
Max.VOC Emission	Loading (lb/hr)	0.014	
Rate	Annual (ton/yr)	0.001	
Max.HAP	Loading (lb/hr)	0.000	
Emission Rate	Annual (ton/yr)	0.000	
Estimation M	ethod ⁵	MB	

1	BF	Bottom Fill	SP	Splash Fill	SUB	Submerged Fill
2	At maxir	num bulk liquid temperature				
3	В	Ballasted Vessel	С	Cleaned	U	Uncleaned (dedicated service)

MB

õ

O Other (describe) List as many as apply (complete and submit appropriate Air Pollution Control Device Sheets) 4

Carbon Adsorption Enclosed Combustion Device CA VΒ Dedicated Vapor Balance (closed system)

F ECD Flare

Thermal Oxidization or Incineration EPA Emission Factor in AP-42 ТО

EPA

5

Material Balance ΤМ Test Measurement based upon test data submittal 0 Other (describe)

ATTACHMENT O

Glycol Dehydration Unit(s) Data Sheet

ATTACHMENT O – GLYCOL DEHYDRATION UNIT DATA SHEET

Complete this data sheet for each Glycol Dehydration Unit, Reboiler, Flash Tank and/or Regenerator at the facility. Include gas sample analysis and GRI-GLYCalc[™] input and aggregate report. Use extra pages if necessary.

Manufacturer: TBD			Model: TBD				
Max. Dry Gas Flow	Rate: 175 mmscf/da	ıy	Reboiler Design He	at Input: 2.0 MMBT	U/hr		
Design Type: 🛛 TE	EG 🗆 DEG	🗆 EG	Source Status ¹ : NS				
Date Installed/Modi	ified/Removed ² : TBD)	Regenerator Still V	ent APCD/ERD ³ : NA			
Control Device/ERI	D ID# ³ : NA		Fuel HV (BTU/scf)	: 1034			
H ₂ S Content (gr/100	0 scf): 0		Operation (hours/ye	ear): 8,760			
Pump Rate (scfm): 0 (Electric-Driven Pneumatic)							
Water Content (wt %) in:Wet Gas: SaturatedDry Gas: 5.5 lb H2O/MMscf							
Is the glycol dehydration unit exempt from 40CFR63 Section 764(d)? X Yes 🛛 No: If Yes, answer the following:					er the following:		
The actual annual average flowrate of natural gas to the glycol dehydration unit is less than 85 thousand standard cubic meters per day, as determined by the procedures specified in $63.772(b)(1)$ of this subpart. \Box Yes X No The actual average emissions of benzene from the glycol dehydration unit process vent to the atmosphere are less than 0.90 megagram per year (1 ton per year), as determined by the procedures specified in $63.772(b)(2)$ of this subpart. X Yes							
		7 1	1 0		1		
Is the glycol dehydration unit located within an Urbanized Area (UA) or Urban Cluster (UC)? Yes X No							
Is a lean glycol pun	np optimization plan	being utilized? 🗆 Ye	s X No				
🗆 Yes 🛛 No	ol dehydration unit ba	ick to the flame zone	of the reboiler.				
Is the reboiler confi	If yes: Is the reboiler configured to accept flash drum vapors (straight from the glycol dehydrator)? ⊠ Yes □ No Is the reboiler configured to accept still vent vapors (after a condenser)? □ Yes ⊠ No						
Is the reboiler confi	igured to accept both	in the same operation	$n? \square Yes \qquad \boxtimes Ne$	D			
Recycling the glyco ⊠ Yes □ No	ol dehydration unit ba	ick to the flame zone	of the reboiler and m	ixed with fuel.			
🛛 Still vent emissi	temperature controll ons to the atmosphere ons stopped with valv ons to glow plug.	е.	ne reboiler?				
🛛 Flash Tank	ne following equipment system that conti	-	nser or flash tank vap	ors			
			Technical Data				
	Pollutants Controlled		Manufacturer's	Guaranteed Control	Efficiency (%)		
VOC (Flash)							
BTEX (Flash)							
Total HAPs (Flash)	1						
		Emissio	ons Data	Controlled			
Emission Unit ID / Emission Point ID ⁴	Description	Calculation Methodology ⁵	1 PTE ⁶ Hourly Controlled Maximum				
REB1/S17		AP-42	NO _x	0.20	0.86		
REB2/S18 REB3/S19	Pahoilar V+	AP-42	СО	0.17	0.73		
	Reboiler Vent	AP-42	VOC	0.01	0.05		
		AP-42	SO ₂	<0.01	<0.01		

		AP-42	PM ₁₀	0.02	0.07
		Subpart W	GHG (CO ₂ e)	236.69	1,037
DEHY-1/S14		GRI-GlyCalc [™]	VOC	0.92	4.01
DEHY-2/S15 DEHY-3/S16		GRI-GlyCalc TM	Benzene	0.08	0.34
	Glycol	GRI-GlyCalc TM	Toluene	0.13	0.57
	Regenerator Still Vent	GRI-GlyCalc TM	Ethylbenzene	0.18	0.76
		GRI-GlyCalc TM	Xylenes	0.25	1.07
		GRI-GlyCalc TM	n-Hexane	0.02	0.50
DEHY-1/S14		GRI-GlyCalc [™]	VOC	0.71	3.08
DEHY-2/S15 DEHY-3/S16		GRI-GlyCalc TM	Benzene	0.03	0.011
	Glycol Flash	GRI-GlyCalc TM	Toluene	0.004	0.015
	Tank	GRI-GlyCalc TM	Ethylbenzene	0.003	0.014
		GRI-GlyCalc TM	Xylenes	0.004	0.014
		GRI-GlyCalc TM	n-Hexane	0.008	0.032

1 Enter the Source Status using the following codes:

Construction of New Source **Existing Source** NS ES

MS Modification of Existing Source 2

Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source), modification or removal.

- Enter the Air Pollution Control Device (APCD)/Emission Reduction Device (ERD) type designation using the following codes 3 and the device ID number: FL CD Condenser Flare
 - NA None
- CC Condenser/Combustion Combination TO Thermal Oxidizer Other 0 (please list) Enter the appropriate Emission Unit ID Numbers and Emission Point ID Numbers for the glycol dehydration unit reboiler vent 4 and glycol regenerator still vent. The glycol dehydration unit reboiler vent and glycol regenerator still vent should be designated RBV-1 and RSV-1, respectively. If the compressor station incorporates multiple glycol dehydration units, a Glycol Dehydration Emission Unit Data Sheet shall be completed for each, using Source Identification RBV-2 and RSV-2, RBV-3 and RSV-3, etc.

5 Enter the Potential Emissions Data Reference designation using the following codes:

MD Manufacturer's Data AP AP-42

GRI-GLYCalc[™] GR OT Other (please list)

Enter the Reboiler Vent and Glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs 6 per hour and tons per year. The Glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalcTM (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalcTM Aggregate Calculations Report (shall include emissions reports, equipment reports, and stream reports) to this Glycol Dehydration Emission Unit Data Sheet(s). Backup pumps do not have to be considered as operating for purposes of PTE. This PTE data shall be incorporated in the Emissions Summary Sheet.

		Gas Analytical Services			0000
		CHARLESTON, WV		LELAP Cer	theater #
		304-677-9926			04048
Customer	0034 - MK MIDSTREAM	Di	ate Sampled	12/13/2016	
Station ID	: 2601	D	ate Analyzed	12/19/2016	
Cylinder ID	: 0280	Ef	fective Date	01/01/2017	
Producer	±	C	yl Pressure	:625	
Lease	GOFF WEST	Te	emp	60	
Area	190 - UNKNOWN	0	vlinder Type	Spot	
State	W	5	ample By	HT	
	COMPONENT	MOL%	GPM@14.73	(PSIA)	
	Methane	95.8791	all second differences of	0.000	
	Ethane	3.4142		0.915	
	Propane	0.2210		0.061	
	Iso-Butane	0.0133		0.004	
	Normal-Butane	0.0198		0.006	
	Neo-Pentane	0.0005		0.000	
	Iso-Pentane	0.0038		0.001	
	Normal-Pentane	0.0022		0.001	
	Nitrogen	0.2824		0.000	
	Carbon-Dioxide	0.1770		0.000	
	Oxygen.	0.0020		0.000	
	BENZENE	0.0000		0.000	
	ETHYLBENZENE	0.0000		0.000	
	TOLUENE	0.0000		0.000	
	M-XYLENE/P-XYLENE	0.000		0.000	
	CO's	0.0026		0.001	
	CB's	0.0004		0.000	
	CP's	0.0000		0.000	
	C75	0.0016		0.001	
	C10's	0.0000		0.000	
	Cit's	0.0000		0.000	
	C12's	0.0000		0.000	
	TOTAL	100.0000		0.990	

Compressibility Factor (Z) @ 14.73 @ 60 Deg. F = 0.9979 Bard General Carrie

C5+ GPM : 0.00200

CS+ Male N 0.0106

Ideal Gravity: 0.5701	Real Gravity: 0.577	1	C5+ Mole % :0.01	00
8TU @ (PSIA)	@14.65	@14.696	@14.73	@15.025
Ideal GPM	0.963	0.968	0.969	1.008
Ideal BTU Dry	1,032,09	1,035.94	1,038.33	1,059.13
Ideal BTU Sat	1,014.62	1,017.88	1,020.26	1,041.05
Real GPM	0.985	0.989	0.991	1.011
Real BTU Dry	1,034.91	1,038.16	1,040.57	1,061.46
Real BTU Sat	1,017.14	1,020.40	1,022.81	1,043.70
Comments:				
Gas Analysis performed in accord	rdance with GPA 2286		Sample Count : 220	000003
Analytical Calculations performed in accordance with GPA 2172			COC	
Measurement Analyst			AsN	ey Free

GRI-GLYCalc VERSION 4.0 - SUMMARY OF INPUT VALUES Case Name: Goff Compressor Station File Name: C:\Rogers_Files\Fullstream\175MMCFD RAD 1-22-18.ddf Date: February 02, 2018 DESCRIPTION: _____ Description: Preliminary Run 175 MMSCFD Inlet Gas at 1220 psi 60% Flash Gas Control Via Fuel for Re-Boiler Glycol Recirc. Rate of 2.85 Annual Hours of Operation: 8760.0 hours/yr WET GAS: Temperature: 100.00 deg. F Pressure: 1220.00 psig Pressure: Wet Gas Water Content: Saturated Component Conc. (vol %) ____ ___ ______ Carbon Dioxide 0.1770 Nitrogen 0.2624 Methane 95.8791 Ethane 3.4142 Propane 0.2210
 Isobutane
 0.0133

 n-Butane
 0.0198

 Isopentane
 0.0044

 n-Pentane
 0.0022

 n-Hexane
 0.0013
 Other Hexanes0.0013Heptanes0.0016Benzene0.0001Toluene0.0001Ethylbenzene0.0001 Xylenes 0.0001 C8+ Heavies 0.0040 DRY GAS: ______ Flow Rate: 175.0 MMSCF/day Water Content: 5.5 lbs. H2O/MMSCF LEAN GLYCOL: ______ Glycol Type: TEG Water Content: 1.5 wt% H2O Recirculation Ratio: 2.9 gal/lb H2O PUMP : _____

Page: 1

FLASH TANK:

Flash Control: Combustion device Flash Control Efficiency: 60.00 % Temperature: 210.0 deg. F Pressure: 35.0 psig

-

Page: 1

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: Goff Compressor Station File Name: C:\Rogers_Files\Fullstream\175MMCFD RAD 1-22-18.ddf Date: January 22, 2018

DESCRIPTION:

Description: Preliminary Run 175 MMSCFD Inlet Gas at 1220 psi 60% Flash Gas Control Via Fuel for Re-Boiler Glycol Recirc. Rate of 2.85

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	1.2696	30.471	5.5610
Ethane	0,6190	14.857	2.7114
Propane	0.1593	3.822	0.6975
Isobutane	0.0196	0.472	0.0861
n-Butane	0.0435	1.044	0,1906
Isopentane	0.0109	0.262	0.0479
n-Pentane	0.0080	0.192	0.0350
n-Hexane	0.0112	0,269	0.0491
Other Hexanes	0.0075	0.181	0.0330
Heptanes	0.0353	0.847	0.1546
Benzene	0.0770	1.848	0.3372
Toluene	0.1287	3.088	0,5635
Ethylbenzene	0.1717	4.121	0.7520
Xylenes	0.2430	5.831	1.0642
Total Emissions	2.8044	67.305	12.2832
Total Hydrocarbon Emissions	2,8044	67.305	12.2832
Total VOC Emissions	0.9157	21.977	4.0108
Total HAP Emissions	0.6315	15.157	2.7661
Total BTEX Emissions	0,6203	14.888	2.7170

FLASH GAS EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	$\begin{array}{c} 12.2344\\ 2.2134\\ 0.2745\\ 0.0268\\ 0.0490\end{array}$	293.625	53.5866
Ethane		53.121	9.6946
Propane		6.589	1.2025
Isobutane		0.643	0.1173
n-Butane		1.177	0.2148
Isopentane	0.0124	$0.297 \\ 0.184 \\ 0.172 \\ 0.145 \\ 0.324$	0.0542
n-Pentane	0.0077		0.0335
n-Hexane	0.0072		0.0314
Other Hexanes	0.0060		0.0265
Heptanes	0.0135		0.0591
Benzene	0.0025	0.061	0.0111

			Page: 2
Toluene	0.0033	0.079	0.0144
Ethylbenzene	0.0030	0.073	0.0132
Xylenes	0.0031	0.074	0.0136
C8+ Heavies	0.2938	7.052	1,2870
Cor Heavies	0.2000		
Total Emissions	15.1507	363.616	66.3599
Total Hydrocarbon Emissions	15.1507	363.616	66.3599
Total VOC Emissions	0.7029	16.870	3.0787
Total HAP Emissions	0.0191	0.459	0.0838
Total BTEX Emissions	0.0120	0.287	0.0524

FLASH TANK OFF GAS

Component	lbs/hr	lbs/day	tons/yr
Methane	30.5860	734.063	133.9665
Ethane	5.5335	132.803	24.2366
Propane	0.6864	16.472	3.0062
Isobutane	0.0669	1.606	0.2932
n-Butane	0.1226	2.943	0.5371
Isopentane	0.0309	0.742	0.1355
n-Pentane	0.0191	0.460	0.0839
n-Hexane	0.0179	0.430	0.078
Other Hexanes	0.0151	0.363	0.066
Heptanes	0.0338	0.810	0.147
Benzene	0.0063	0,152	0.027
Toluene	0.0082	0.198	0.036
Ethylbenzene	0.0076	0.181	0.033
Xylenes	0.0078	0.186	0.034
C8+ Heavies	0.7346	17.630	3.217
Total Emissions	37.8767	909.040	165.899
Total Hydrocarbon Emissions	37.8767	909.040	165.899
Total VOC Emissions	1.7573	42.174	7.696
Total HAP Emissions	0.0478	1.148	0.209
Total BTEX Emissions	0.0299	0.718	0.131

COMBINED REGENERATOR VENT/FLASH GAS EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	13.5040	324.096	59.1476
Ethane	2.8324	67.978	12.4060
Propane	0.4338	10.411	1,9000
Isobutane	0.0464	1.114	0.2033
n-Butane	0.0926	2.221	0.4054
Isopentane	0.0233	0.559	0.1021
n-Pentane	0.0157	0.376	0.0685
n-Hexane	0.0184	0.441	0.0805
Other Hexanes	0.0136	0.326	0.0595
Heptanes	0.0488	1.171	0.2137
Benzene	0.0795	1.909	0.3484
Toluene	0.1320	3.167	0.5780
Ethylbenzene	0.1747	4.193	0.7653
Xylenes	0.2461	5.906	1.0778
C8+ Heavies	0.2938	7.052	1.2870
Total Emissions	17.9550	430.921	78.6431
Total Hydrocarbon Emissions	17.9550	430.921	78.6431
Total VOC Emissions	1.6186	38.847	7.0895

			Page: 3
Total HAP Emissions	0,6507	15.616	$\bar{2}.8499$
Total BTEX Emissions	0.6323	15.175	2.7694

COMBINED REGENERATOR VENT/FLASH GAS EMISSION CONTROL REPORT:

Component	Uncontrolled tons/yr	Controlled tons/yr	% Reduction
Methane Ethane Propane Isobutane n-Butane	139.5275 26.9479 3.7038 0.3792 0.7276	59.1476 12.4060 1.9000 0.2033 0.4054	57.61 53.96 48.70 46.38 44.29
Isopentane n-Pentane n-Hexane Other Hexanes Heptanes		0.1021 0.0685 0.0805 0.0595 0.2137	44.33 42.33 36.90 40.02 29.33
Benzene Toluene Ethylbenzene Xylenes C8+ Heavies	0,5996 0,7851 1,0982	0.3484 0.5780 0.7653 1.0778 1.2870	4.56 3.61 2.53 1.86 60.00
Total Emissions Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions	178.1830 11.7076 2.9756	78.6431 78.6431 7.0895 2.8499 2.7694	55.86 55.86 39.45 4.22 2.76

EQUIPMENT REPORTS:

ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages: Calculated Dry Gas Dew Point:	1.25 3.94	lbs. H2O/MMSCF
Temperature: Pressure:	1220.0	
Dry Gas Flow Rate:		
Glycol Losses with Dry Gas:	3.7018	lb/hr
Wet Gas Water Content:		
Calculated Wet Gas Water Content:		lbs. H2O/MMSCF
Specified Lean Glycol Recirc. Ratio:	2.85	gal∕lb H2O

Component	Remaining in Dry Gas	Absorbed in Glycol
Water	7.79%	92.21%
Carbon Dioxide	99.86%	0.14%
Nitrogen	99.99%	0.01%
Methane	99.99%	0.01%

Ethane	99.97%	Page: 0.03%
Propane	99.95%	0.05%
Isobutane	99.94%	0.06%
n-Butane	99.92%	0.08%
Isopentane	99.93%	0.07%
n-Pentane	99.91%	0.09%
n-Hexane	99.86%	0.14%
Other Hexanes	99.89%	0.11%
Heptanes	99.78%	0.22%
Benzene	94.45%	5.55%
Toluene	92.27%	7.73%
Ethylbenzene	91.21%	8.79%
Xylenes	87.71%	12.29%
C8+ Heavies	99.44%	0.56%

4

FLASH TANK

Flash Con Flash Control Effic Flash Temper Flash Pres	ature: 210.0 deg. F
Component	Left in Removed in Glycol Flash Gas
Wate Carbon Dioxid Nitroge Methan Ethan	e 23.01% 76.99% n 3.83% 96.17% e 3.99% 96.01%
Propan Isobutan n-Butan Isopentan n-Pentan	e 22.69% 77.31% e 26.19% 73.81% e 26.49% 73.51%
n-Hexan Other Hexane Heptane Benzen Toluen	s 33.97% 66.03% s 51.36% 48.64% e 92.77% 7.23%
Ethylbenzen Xylene C8+ Heavie	s 97.31% 2.69%

REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	Distilled Overhead
Water	28.01%	71.99%
Carbon Dioxide	0.00%	100.00%
Nitrogen	0.00%	100.00%
Methane	0.00%	100.00%
Ethane	0.00%	100.00%
Propane	0.00%	100.00%
Isobutane	0.00%	100.00%

n-Butane Isopentane n-Pentane	0.00% 1.89% 1.68%	Page: 100.00% 98.11% 98.32%	5
n-Hexane	1.29%	98.71%	
Other Hexanes	2.94%	97.06%	
Heptanes	0.97%	99.03%	
Benzene	5.39%	94.61%	
Toluene	8.37%	91.63%	
Ethylbenzene	10.82%	89.18%	
Xylenes	13.29%	86.71%	
C8+ Heavies	103.51%	-3.51%	

-

STREAM REPORTS:

WET GAS STREAM

Temperature: Pressure: Flow Rate:	100.00 deg. F 1234.70 psia 7.30e+006 scfh		
	Component	Conc. (vol%)	Loading (lb/hr)
	Carbon Dioxide Nitrogen Methane	1.06e-001 1.77e-001 2.62e-001 9.58e+001 3.41e+000	1.50e+003 1.41e+003 2.96e+005
	Isobutane n-Butane Isopentane	2.21e-001 1.33e-002 1.98e-002 4.40e-003 2.20e-003	1.49e+002 2.21e+002 6.10e+001
	Other Hexanes Heptanes Benzene	1.30e-003 1.30e-003 1.60e-003 9.99e-005 9.99e-005	2.15e+001 3.08e+001 1.50e+000
	Ethylbenzene Xylenes C8+ Heavies	9,99e-005	2.04e+000
	Total Components	100.00	3.21e+005

DRY GAS STREAM

Temperature: Pressure: Flow Rate:	100.00 deg. F 1234.70 psia 7.29e+006 scfh		
	Component		Loading (lb/hr)
	Carbon Dioxide Nitrogen Methane	8.31e-003 1.77e-001 2.62e-001 9.59e+001 3.41e+000	1.490+003 1.410+003 2.960+005

Isobutane n-Butane Isopentane	2.21e-001 1.33e-002 1.98e-002 4.40e-003 2.20e-003	1.48e+002 2.21e+002 6.10e+001
Other Hexanes Heptanes Benzene	1.30e-003 1.30e-003 1.60e-003 9.45e-005 9.23e-005	2.15e+001 3.07e+001 1.42e+000
Ethylbenzene Xylenes C8+ Heavies	8.77e-005	1.79e+000
Total Components	100.00	3.21e+005

LEAN GLYCOL STREAM

Temperature: 100.00 deg. F Flow Rate: 1.56e+001 gpm		
Component		Loading (lb/hr)
Water Carbon Dioxide Nitrogen	9.85e+001 1.50e+000 2.43e-012 2.01e-013 1.22e-017	1.32e+002 2.14e-010 1.76e-011
Propane Isobutane	3.31e-008 3.92e-010 2.96e-011 4.69e-011 2.39e-006	3.44e-008 2.60e-009 4.12e-009
n-Hexane Other Hexanes Heptanes	1.55e-006 1.67e-006 2.61e-006 3.95e-006 4.99e-005	1.46e-004 2.29e-004 3.47e-004
Ethylbenzene	4.240-004	2.08e-002 3.73e-002
Total Components	100.00	8.78e+003

RICH GLYCOL STREAM

-

n-Butane Isopentane	9.45e-004 1.81e-003 4.59e-004 2.98e-004	1.66e-001 4.21e-002
Other Hexanes Heptanes	3.20e-004 2.50e-004 7.57e-004 9.57e-004	2.29e-002 6.94e-002
Ethylbenzene	3.14e-003	2.00e-001 2.88e-001
Total Components	100.00	9.16e+003

FLASH TANK OFF GAS STREAM

Pressure:	210.00 deg. F 49.70 psia 8.53e+002 scfh		
	Component		Loading (lb∕hr)
	Carbon Dioxide Nitrogen Methane	3.91e+000 1.66e+000 2.69e-001 8.49e+001 8.19e+000	1.64e+000 1.69e-001 3.06e+001
	Isobutane n-Butane Isopentane	6.930-001 5.120-002 9.390-002 1.910-002 1.180-002	6.69e-002 1.23e-001 3.09e-002
	Other Hexanes Heptanes Benzene	9.25e-003 7.81e-003 1.50e-002 3.61e-003 3.98e-003	1.51e-002 3.38e-002 6.34e-003
	Ethylbenzene Xylenes C8+ Heavies	3.25e-003	7.76e-003
	Total Components	100.00	4.13e+001

FLASH TANK GLYCOL STREAM

FLASH TANK GETCOL STREAM		
Temperature: 210.00 deg. F Flow Rate: 1.63e+001 gpm		
Component	Conc. (wt%)	Loading (lb/hr)
Water Carbon Dioxide Nitrogen	9.48e+001 5.16e+000 5.39e-003 7.40e-005 1.39e-002	4.700+002 4.910-001 6.750-003

Ethane 6.79e-003 6.19e-001 Propane 1.75e-003 1.59e-001 Isobutane 2.15e-004 1.96e-002 n-Butane 4.77e-004 4.35e-002 Isopentane 1.22e-004 1.11e-002 n-Pentane 8.91e-005 8.13e-003 n-Hexane 1.25e-004 1.14e-002 Other Hexanes 8.52e-005 7.77e-003 Heptanes 3.91e-004 3.56e-002 Benzene 8.92e-004 8.14e-002 Toluene 1.54e-003 1.40e-001 Ethylbenzene 2.11e-003 1.93e-001 Xylenes 3.07e-003 2.80e-001 C8+ Heavies 1.06e-003 9.65e-002 Total Components 100.00 9.12e+003 Page: 8

FLASH GAS EMISSIONS

____ Flow Rate: 1.94e+003 scfh Control Method: Combustion Device Control Efficiency: 60,00 Component Conc. Loading (vol%) (lb/hr) Water 5.46e+001 5.03e+001 Carbon Dioxide 2.88e+001 6.49e+001 Nitrogen 1.18e-001 1.69e-001 Methane 1.49e+001 1.22e+001 Ethane 1.44e+000 2.21e+000 Propane 1.22e-001 2.75e-001 Isobutane 8.99e-003 2.68e-002 n-Butane 1.65e-002 4.90e-002 Isopentane 3.35e-003 1.24e-002 n-Pentane 2.07e-003 7.66e-003 n-Hexane 1.62e-003 7.17e-003 Other Hexanes 1.37e-003 6.05e-003 Heptanes 2.63e-003 1.35e-002 Benzene 6.34e-004 2.54e-003 Toluene 6.99e-004 3.30e-003 Ethylbenzene 5.56e-004 3.02e-003 Xylenes 5.71e-004 3.10e-003 C8+ Heavies 3.37e-002 2.94e-001 ----- ----- ------Total Components 100.00 1.31e+002

REGENERATOR OVERHEADS STREAM

Temperature: Pressure: Flow Rate:	212.00 deg. F 14.70 psia 7.18e+003 scfh		
	Component		Loading (lb/hr)
	Carbon Dioxide Nitrogen Methane	9.94e+001 5.90e-002 1.27e-003 4.18e-001 1.09e-001	4.91e-001 6.75e-003 1.27e+000

 Propane
 1.91e-002
 1.59e-001

 Isobutane
 1.79e-003
 1.96e-002

 n-Butane
 3.96e-003
 4.35e-002

 Isopentane
 8.01e-004
 1.09e-002

 n-Pentane
 5.85e-004
 7.99e-003

 n-Hexane
 6.88e-004
 1.12e-002

 Other
 Hexanes
 4.63e-004
 7.54e-003

 Heptanes
 1.86e-003
 3.53e-002

 Benzene
 5.21e-003
 7.70e-002

 Toluene
 7.38e-003
 1.29e-001

 Ethylbenzene
 8.54e-003
 1.72e-001

 Xylenes
 1.21e-002
 2.43e-001

 Total Components
 100.00
 3.42e+002

Page: 9

ANNUAL AIR-COOLED CONDENSER PERFORMANCE:

ANNUAL AIR-COOLED CONDENSER PERFORMANCE

Nearest Site for Air Temperature Data: Charleston, WV

Ambient Air Dry Bulb			
Temperature		Condenser Out	let
(deq.F)	Frequency	(%) Temperature (de	g. F)
<=50	39.66	< = 7 0	
51-55	8.12	71-75	
56-60	8.65	76-80	
61-65	9,55	81-85	
66-70	11.00	86-90	
71-75	9.30	91-95	
76-80	6.39	96-100	
81-85	4.50	101-105	
86-90	2.27	106-110	
91-95	0.49	111-115	
96-100	0.06	116-120	
>100	0.01	>120	

Condenser outlet temperature approach to ambient: 20.00 deg. F

Annual air-cooled condenser emissions and control efficiency:

	Uncontrolled emissions tons⁄year	Controlled emissions tons/year	% Control
Benzene	0,342	0.342	0.00
BTEX	2.739	2.739	0.00
Total HAP	2.794	2.794	0.00
VOC	4.288	4.288	0.00

ATTACHMENT P

Pneumatic Controllers Data Sheet

ATTACHMENT P – PNEUMATIC CONTROLLERS DATA SHEET				
Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?				
🖂 Yes 🗌 No				
Please list approximate number. 20				
Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after September 18, 2015?				
Yes No				
Please list approximate number. 20				
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?				
🗌 Yes 🛛 No				
Please list approximate number.				
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after September 18, 2015?				
\Box Yes \boxtimes No				
Please list approximate number.				

ATTACHMENT Q

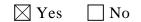
Centrifugal Compressor Data Sheet

ATTACHMENT Q – CENTRIFUGAL COMPRESSOR DATA SHEET

	re any centrifugal compressors at this facility that commenced n, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?
	\Box Yes \boxtimes No
	Please list:
Emission Unit ID#	Compressor Description
	e any centrifugal compressors at this facility that commenced tion, modification or reconstruction after September 18, 2015?
	\Box Yes \boxtimes No
	Please list:
Emission Unit ID#	Compressor Description

ATTACHMENT R

Reciprocating Compressor Data Sheet


ATTACHMENT R – RECIPROCATING COMPRESSOR DATA SHEET				
Are there any reciprocating compressors at this facility that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?				
	🗌 Yes 🛛 No			
	Please list:			
Emission Unit ID#	Compressor Description			
Are there any reciprocating compressors at this facility that commenced construction, modification or reconstruction after September 18, 2015?				
construc	tion, modification or reconstruction after September 18, 2015?			
construc	tion, modification or reconstruction after September 18, 2015?			
construc				
construct Emission Unit ID#	Yes No			
Emission	Yes No Please list:			
Emission Unit ID#	Yes No Please list: Compressor Description			
Emission Unit ID# CE-01	Yes No Please list: Compressor Description Natural gas compressor driven by G3606 Cat engine			
Emission Unit ID# CE-01 CE-02	Yes No Please list: Compressor Description Natural gas compressor driven by G3606 Cat engine Natural gas compressor driven by G3606 Cat engine			
Emission Unit ID# CE-01 CE-02 CE-03	Yes No Please list: Compressor Description Natural gas compressor driven by G3606 Cat engine Natural gas compressor driven by G3606 Cat engine Natural gas compressor driven by G3606 Cat engine Natural gas compressor driven by G3606 Cat engine			
Emission Unit ID# CE-01 CE-02 CE-03 CE-04	Yes No Please list: Please list: Compressor Description Natural gas compressor driven by G3606 Cat engine Natural gas compressor driven by G3606 Cat engine Natural gas compressor driven by G3606 Cat engine Natural gas compressor driven by G3608 Cat engine Natural gas compressor driven by G3608 Cat engine			
Emission Unit ID# CE-01 CE-02 CE-03 CE-04 CE-05	Yes No Please list: Compressor Description Natural gas compressor driven by G3606 Cat engine Natural gas compressor driven by G3606 Cat engine Natural gas compressor driven by G3606 Cat engine Natural gas compressor driven by G3608 Cat engine Natural gas compressor driven by G3608 Cat engine Natural gas compressor driven by G3608 Cat engine Natural gas compressor driven by G3608 Cat engine Natural gas compressor driven by G3608 Cat engine			
Emission Unit ID# CE-01 CE-02 CE-03 CE-04 CE-05 CE-06	Yes No Please list: Please list: Compressor Description Natural gas compressor driven by G3606 Cat engine Natural gas compressor driven by G3606 Cat engine Natural gas compressor driven by G3606 Cat engine Natural gas compressor driven by G3608 Cat engine			
Emission Unit ID# CE-01 CE-02 CE-03 CE-04 CE-05 CE-06 CE-06 CE-07	Yes No Please list: Please list: Compressor Description Natural gas compressor driven by G3606 Cat engine Natural gas compressor driven by G3606 Cat engine Natural gas compressor driven by G3606 Cat engine Natural gas compressor driven by G3608 Cat engine			
Emission Unit ID# CE-01 CE-02 CE-03 CE-04 CE-04 CE-05 CE-06 CE-07 CE-08	Yes No Please list: Please list: Compressor Description Natural gas compressor driven by G3606 Cat engine Natural gas compressor driven by G3606 Cat engine Natural gas compressor driven by G3606 Cat engine Natural gas compressor driven by G3608 Cat engine			

ATTACHMENT S

Blowdown and Pigging Operations Data Sheet

ATTACHMENT S – BLOWDOWN AND PIGGING OPERATIONS DATA SHEET

Will there be any blowdown and pigging operations that occur at this facility?

Please list:

Type of Event	# of Events (event/yr)	Amount Vented per event (scf/event)	MW of vented gas (lb/lb-mol)	Total Emissions (ton/yr)	VOC weight fraction	VOC emissions (ton/yr)
Compressor Blowdown	440	4,500	0.991	42.02	0.753	0.88
Compressor Startup	440	4,500	0.991	42.02	0.753	0.88
Plant Shutdown	4	900,000	0.991	764	0.753	16.28
Low Pressure Pig Venting	0	N/A	N/A	N/A	N/A	N/A
High Pressure Pig Venting	2	8,916	0.991	0.38	0.753	0.01

Type of Event	# of Events (event/yr)	Amount Vented per event (scf/event)	MW of vented gas (lb/lb-mol)	Total Emissions (ton/yr)	HAP weight fraction	HAP emissions (ton/yr)
Compressor Blowdown	440	4,500	0.991	42.02	0.013	0.033
Compressor Startup	440	4,500	0.991	42.02	0.013	0.033
Plant Shutdown	4	900,000	0.991	764	0.013	0.55
Low Pressure Pig Venting	0	N/A	N/A	N/A	N/A	N/A
High Pressure Pig Venting	2	8,916	0.991	0.38	0.013	0.000

ATTACHMENT U

Emissions Calculations

ATTACHMENT T – AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION DEVICE SHEETS

Complete the applicable air pollution control device sheets for each flare, vapor combustor, thermal oxidizer, condenser, adsorption system, vapor recovery unit, BTEX Eliminator, Reboiler with and without Glow Plug, etc. at the facility. Use extra pages if necessary.

Emissions calculations must be performed using the most conservative control device efficiency.

The following five (5) rows are only to be completed if registering an alternative air pollution control device.				
Emission Unit ID:	Make/Model:			
Primary Control Device ID:	Make/Model:			
Control Efficiency (%):	APCD/ERD Data Sheet Completed: Yes No			
Secondary Control Device ID:	Make/Model: N/A			
Control Efficiency (%): APCD/ERD Data Sheet Completed: Yes No				

	VAPOR C (Including End			rs)							
	Genera	l Information									
Control Device ID#:		Installatio		Aodified	Relocated						
Maximum Rated Total Flow C scfh sc		Maximum Heat Input mfg. spec MMBTU/h	(from sheet)		leat Content ſU/scf						
	Control De	vice Informati	on								
Enclosed Combustion Dev	Type of Vapor ice	Combustion Co vated Flare	ontrol?		Ground Flare						
Manufacturer: Model:		Hours of c	operation	per year?							
List the emission units whose	emissions are controlled by	this vapor contr	rol device	e (Emission	n Point ID#)						
Emission Unit ID# Emission Source I	Description	Emission Unit ID#	Emissie	Description							
If this vapor combustor c	controls emissions from more	than six (6) en	nission ur	iits, please	attach additional pages.						
Assist Type (Flares only)	Flare Height	Tij	p Diamete	er	Was the design per §60.18?						
Steam Air Pressure Non	feet		feet		☐ Yes ☐ No Provide determination.						
	Waste G	as Informatior	1								
Maximum Waste Gas Flow Ra (scfm)	te Heat Value o	f Waste Gas Str BTU/ft ³	ream	Exit Vel	elocity of the Emissions Stream (ft/s)						
Provide an	attachment with the charact	eristics of the	waste gas	stream to	be burned.						
	Pilot Ga	s Information									
Number of Pilot Lights	Fuel Flow Rate to Pilot Flame per Pilot scfh	Heat I	input per BTU/		Will automatic re-ignition be used? Yes INO						
If automatic re-ignition is used	d, please describe the method	1.									
Is pilot flame equipped with a presence of the flame?	monitor to detect the Yes	If Yes, wh		□ Thermoo □ Camera	couple						
Describe all operating ranges unavailable, please indicate).	and maintenance procedures	required by the	e manufac	turer to ma	aintain the warranty. (If						
Additional information attacher Please attach copies of manufa performance testing.		gs, flame demo	nstration	per §60.18	or §63.11(b) and						

COND	ENSER	
General I	nformation	
Control Device ID#:	Installation Date:	Modified 🗌 Relocated
Manufacturer:	Model:	Control Device Name:
Control Efficiency (%):		
Manufacturer's required temperature range for control efficie	ncy. °F	
Describe the warning and/or alarm system that protects against	st operation when uni	t is not meeting the design requirements:
Describe all operating ranges and maintenance procedures rec	uired by the manufac	cturer to maintain the warranty.
Additional information attached? Yes No Please attach copies of manufacturer's data sheets.		
Is condenser routed to a secondary APCD or ERD?		

ADSORPTI	ON SYSTEM									
General In	nformation									
Control Device ID#:	Installation Date:									
Manufacturer:	Model: Control Device Name:									
Design Inlet Volume: scfm	Adsorbent charge per adsorber vessel and number of adsorber vessels:									
Length of Mass Transfer Zone supplied by the manufacturer:	Adsorber diameter: ft Adsorber area: ft ²									
Adsorbent type and physical properties:	Overall Control Efficiency (%):									
Working Capacity of Adsorbent (%):										
Operating	Parameters									
Inlet volume: scfm @ °F										
Adsorption time per adsorption bed (life expectancy):	Breakthrough Capacity (lbs of VOC/100 lbs of adsorbent):									
Temperature range of carbon bed adsorber. °F - °F										
Control Device	Technical Data									
Pollutants Controlled	Manufacturer's Guaranteed Control Efficiency (%)									
Describe the warning and/or alarm system that protects again	st operation when unit is not meeting the design requirements:									
Has the control device been tested by the manufacturer and co	ertified?									
Describe all operating ranges and maintenance procedures rec	uired by the manufacturer to maintain the warranty.									
Additional information attached? Yes No Please attach copies of manufacturer's data sheets, drawings,	and performance testing.									

	VAPOR RECOVERY UNIT General Information											
Emission U	Unit ID#:	Installation Date:										
	Device In	formation										
Manufactu Model:	rer:											
List the en	nission units whose emissions are controlled by this	s vapor reco	very unit (Emission Point ID#)									
Emission Unit ID#	Emission Source Description	Emission Unit ID#	Emission Source Description									
If this	vapor recovery unit controls emissions from more a	than six (6) e	emission units, please attach additional pages.									
	information attached? Ves No ch copies of manufacturer's data sheets, drawings,	and perform	ance testing.									

The registrant may claim a capture and control efficiency of 95 % (which accounts for 5% downtime) for the vapor recovery unit.

The registrant may claim a capture and control efficiency of 98% if the VRU has a backup flare that meet the requirements of Section 8.1.2 of this general permit.

The registrant may claim a capture and control efficiency of 98% if the VRU has a backup VRU.

ATTACHMENT U

Emissions Calculations

ATTACHMENT U – EMISSIONS CALCULATIONS

Provide detailed potential to emit (PTE) emission calculations for criteria and hazardous air pollutants (HAPs) for each emission point identified in the application. For hazardous air pollutants and volatile organic compounds (VOCs), the speciated emission calculations must be included.

Use the following guidelines to ensure complete emission calculations:

- All emission sources and fugitive emissions are included in the emission calculations, as well as all methods used to calculate the emissions.
- Proper emission point identification numbers and APCD and ERD identification numbers are used consistently in the emission calculations that are used throughout the application.
- A printout of the emission summary sheets is attached to the registration application.
- Printouts of any modeling must be included with the emission calculations. The modeling printout must show all inputs/outputs or assumptions that the modeled emissions are based upon.
- If emissions are provided from the manufacturer, the manufacturer's documentation and/or certified emissions must also be included.
- The emission calculations results must match the emissions provided on the emissions summary sheet.
- If calculations are based on a compositional analysis of the gas, attach the laboratory analysis. Include the following information: the location that the sample was taken as representative; the date the sample was taken; and, if the sample is considered representative, the reasons that it is considered representative (same gas field, same formation and depth, distance from actual site, etc.).
- Potential to emit (PTE) from the main or backup control device may be calculated based on the highest emission from a control device that could handle the stream, plus any intrinsic emission such as those from pilot flames.
- Provide any additional clarification as necessary. Additional clarification or information is especially helpful when reviewing modeling calculations to assist the engineer in understanding the basis of assumptions and/or inputs.

Please follow specific guidance provided on the emissions summary sheet when providing the calculations.

Goff Connector LLC - Connector CS

February 7, 2018

	. AIR EMISSIONS												Emission Point Em		Fugitive Emissions	Total Controlled	
		Process		No ation		ucy a			EF	EF Conversion	Uncontr Emissi		Point En Contr		Controlled	(Point + Fugitive)	Emission Factor Source / Notes
	ermit # Emission	Unit Light O	nnua nroug nroug	of single		aptu fficie oint	fficie oint ontro	ontro ontro ontro	Conversion	Factor							Emission Factor Source / Notes
or S	Status Unit Process Unit W Gas Compressor Engine (SCC = 20200254)	SCC SIF .	ZZĖ, Ė,J	₹ ヹ Ō Unit	s Pollutant		<u>ŭ čŏ</u>	<u>ជី០ីឃី ជី០ី EF EF Units</u>	Factor	Units	lb/hr	tpy	lb/hr	tpy	lb/hr tpy	lb/hr tpy	
INEN	Make = Caterpillar	20200254 1,775	bhp	8760 3	NOx	100%		0.5 g/bhp-hr	0.002204624	lb/g	1.957	8.57	1.957	8.570	0.000 0.000	1.957 8.570	Manufacturer
	Model = G3606	1,775	bhp	8760 3	CO	100% 93.10		2.74 g/bhp-hr	0.002204624	lb/g	10.722	46.96	0.740		0.000 0.000		Manufacturer
	Engine Type = NG Lean Burn Fuel Consumption (HHV) =	1,775	bhp	8760 3		100% 66.30	0% Catalyst	0.89 g/bhp-hr	0.002204624		3.483	15.25	1.174	5.141	0.000 0.000		Manufacturer
	7609 BTU/BHP-HR	1,775	bhp bhp	8760 3	Formaldehyde		1% Catalyst	441 g/bhp-hr 0.26 g/bhp-hr	0.002204624		1725.725 1.017	7558.67 4.46	0.153		0.000 0.000 0.000 0.000 0.000 0.000		Manufacturer Manufacturer
	Non-Certified Engine	1,775	bhp	8760 3		100%	576 Outdryst	6.3 g/bhp-hr	0.002204624		24.653	107.98	24.653		0.000 0.000		Manufacturer
	Construction date	1,775	bhp	8760 3		100%		5.36 g/bhp-hr	0.002204624		20.975	91.87	20.975		0.000 0.000		Manufacturer
	Unit #0586: 10/27/2006	13.506	MMBtu			100%		5.88E-04 lb/MMBtu			0.008	0.03	0.008		0.000 0.000		AP-42 (4-stroke lean burn)
	Unit #0153: 10/02/2002 Unit #0030: 09/15/1998	13.506	MMBtu MMBtu			100%		7.71E-05 lb/MMBtu 7.71E-05 lb/MMBtu			0.001	0.00	0.001		0.000 0.000		AP-42 (4-stroke lean burn) AP-42 (4-stroke lean burn)
		13.506	MMBtu		PM	100%		9.91E-03 lb/MMBtu			0.134	0.59	0.134		0.000 0.000		AP-42 (4-stroke lean burn)
		13.506	MMBtu		N2O	100%		0.0002205 lb/MMBtu			0.003	0.01	0.003		0.000 0.000		40 CFR 98, Table C-2
		13.506	MMBtu			100% 66.30		0.0052942 lb/MMBtu			0.072	0.31	0.024		0.000 0.000		AP-42 (4-stroke lean burn)
		13.506	MMBtu MMBtu		acetaldehyde	100% 66.30 100% 66.30		0.00836 lb/MMBtu 0.0002184 lb/MMBtu			0.113	0.49	0.038		0.000 0.000		AP-42 (4-stroke lean burn) AP-42 (4-stroke lean burn)
		13.506	MMBtu			100% 66.30		0.0004532 lb/MMBtu			0.006	0.03	0.002		0.000 0.000		AP-42 (4-stroke lean burn)
		13.506	MMBtu	0.00		100% 66.30		0.0004202 lb/MMBtu			0.006	0.02	0.002		0.000 0.000		AP-42 (4-stroke lean burn)
		13.506	MMBtu		Ethylbenzene	100% 66.30		4.09E-05 lb/MMBtu			0.001	0.00	0.000		0.000 0.000		AP-42 (4-stroke lean burn)
		13.506	MMBtu MMBtu		xylenes methanol	100% 66.30 100% 66.30		0.0001895 lb/MMBtu 0.002575 lb/MMBtu			0.003	0.01	0.001		0.000 0.000 0.000		AP-42 (4-stroke lean burn) AP-42 (4-stroke lean burn)
		13.506	MMBtu	0.00	n-hexane	100% 66.30		0.002373 ib/MMBtu			0.035	0.07	0.005		0.000 0.000		AP-42 (4-stroke lean burn)
		13.506	MMBtu	8760 3	HAPs		ĺ ĺ					5.562	0.238	1.041	0.000 0.000	0.238 1.041	AP-42 (4-stroke lean burn)
NE\		20200254 0.500		8760 8	NOv	100%			0.000004004	lb/a	4.050	7.04	4.050	7.040	0.000 0.000	1 652 7.040	Monifesturer
-+	Make = Caterpillar Model = G3608	20200254 2,500 2,500	bhp bhp	8760 8		100% 100% 93.20	0% Catalyst	0.3 g/bhp-hr 2.49 g/bhp-hr	0.002204624		1.653 13.724	7.24 60.11	1.653		0.000 0.000 0.000		Manufacturer Manufacturer
+	Engine Type = NG Lean Burn	2,500	bhp	8760 8		100% 53.50		0.43 g/bhp-hr	0.002204624		2.370	10.38	1.102		0.000 0.000		Manufacturer
	Fuel Consumption (HHV) =	2,500	bhp	8760 8	CO2	100%		425 g/bhp-hr	0.002204624	lb/g	2342.413	10259.77	2342.413	10259.771	0.000 0.000	2342.413 10259.771	Manufacturer
	7595 BTU/BHP-HR	2,500	bhp	8760 8		100%	0% Cotoluct	4 g/bhp-hr	0.002204624		22.046	96.56	22.046		0.000 0.000		Manufacturer
	Construction date = 2016 or 2017 Non-Certified Engine	2,500	bhp bhp	8760 8	Formaldehyde TOC	100% 85.00 100%	Catalyst	0.16 g/bhp-hr 4.738 g/bhp-hr	0.002204624		0.882	3.86 114.38	0.132 26.114		0.000 0.000 0.000	0.132 0.579 26.114 114.378	Manufacturer Manufacturer
		18.988	MMBtu			100%		5.88E-04 lb/MMBtu	0.002204024	io/y	0.011	0.05	0.011		0.000 0.000		AP-42 (4-stroke lean burn)
		18.988	MMBtu			100%		7.71E-05 lb/MMBtu			0.001	0.01	0.001		0.000 0.000		AP-42 (4-stroke lean burn)
		18.988	MMBtu MMBtu			100%	-	7.71E-05 lb/MMBtu 9.91E-03 lb/MMBtu			0.001	0.01	0.001		0.000 0.000		AP-42 (4-stroke lean burn) AP-42 (4-stroke lean burn)
		18.988	MMBtu			100%	-	0.0002205 lb/MMBtu	-		0.188	0.82	0.188		0.000 0.000 0.000		40 CFR 98. Table C-2
		18.988	MMBtu			100% 53.50	0% Catalyst	0.0052942 lb/MMBtu			0.101	0.44	0.047		0.000 0.000		AP-42 (4-stroke lean burn)
		18.988	MMBtu		acetaldehyde			0.00836 lb/MMBtu			0.159	0.70	0.074		0.000 0.000		AP-42 (4-stroke lean burn)
_		18.988	MMBtu			100% 53.50		0.0002184 lb/MMBtu			0.004	0.02	0.002		0.000 0.000		AP-42 (4-stroke lean burn)
		18.988	MMBtu MMBtu			100% 53.50 100% 53.50		0.0004532 lb/MMBtu 0.0004202 lb/MMBtu			0.009	0.04	0.004		0.000 0.000		AP-42 (4-stroke lean burn) AP-42 (4-stroke lean burn)
		18.988	MMBtu		Ethylbenzene	100% 53.50		4.09E-05 lb/MMBtu			0.000	0.00	0.004		0.000 0.000		AP-42 (4-stroke lean burn)
		18.988	MMBtu		Xylenes	100% 53.50	0% Catalyst	0.0001895 lb/MMBtu			0.004	0.02	0.002	0.007	0.000 0.000	0.002 0.007	AP-42 (4-stroke lean burn)
		18.988	MMBtu	0.00	methanol	100% 53.50		0.002575 lb/MMBtu			0.049	0.21	0.023		0.000 0.000		AP-42 (4-stroke lean burn)
		18.988	MMBtu MMBtu			100% 53.50	J% Catalyst	0.0011433 lb/MMBtu			0.022	0.10	0.010		0.000 0.000		AP-42 (4-stroke lean burn) AP-42 (4-stroke lean burn)
NEV	W Alternate Power Source	10.300	WINDIG	0/00 0	11/41/3						1.237	3.417	0.231	1.002	0.000 0.000	0.237 1.302	AF-42 (4-Stroke lean burn)
	Make = Generac	20200254 460	bhp	8760 2		100%		0.03 g/bhp-hr			0.030	0.13	0.030		0.000 0.000		Manufacturer
	Model = SG275, 300	460	bhp	8760 2		100%	-	0.17 g/bhp-hr	0.002204624	lb/g	0.172	0.76	0.172		0.000 0.000		Manufacturer
	Engine Type = NG Lean Burn 7000 BTU/BHP-HR	3.220	bhp MMBtu	8760 2 8760 2		100% 100%	-	0.118 lb/MMBtu 110 lb/MMBtu			0.380 354.200	1.66 1551.40	0.380 354.200		0.000 0.000 0.000 0.000 0.000 0.000		Manufacturer AP-42 (4-stroke lean burn)
	Certified Engines	3.220	MMBtu			100%		1.25 lb/MMBtu			4.025	17.63	4.025		0.000 0.000		AP-42 (4-stroke lean burn)
		3.220	bhp		Formaldehyde			0.0528 lb/MMBtu			0.170	0.74	0.170		0.000 0.000		Manufacturer
		3.220	bhp MMBtu	8760 2 8760 2		100%	-	1.47 lb/MMBtu 5.88E-04 lb/MMBtu			4.733	20.73	4.733		0.000 0.000		Manufacturer AP-42 (4-stroke lean burn)
		3.220	MMBtu			100%		7.71E-05 lb/MMBtu			0.002	0.01	0.002		0.000 0.000		AP-42 (4-stroke lean burn) AP-42 (4-stroke lean burn)
		3.220	MMBtu			100%		7.71E-05 lb/MMBtu			0.000	0.00	0.000		0.000 0.000		AP-42 (4-stroke lean burn)
		3.220	MMBtu			100%		9.91E-03 lb/MMBtu			0.032	0.14	0.032		0.000 0.000		AP-42 (4-stroke lean burn)
		3.220	MMBtu MMBtu			100%		0.0002205 lb/MMBtu 0.0052942 lb/MMBtu			0.001	0.00	0.001		0.000 0.000		40 CFR 98, Table C-2
		3.220	MMBtu		acetaldehyde	100%	-	0.0052942 ID/MINBtu	-	-	0.017	0.07	0.017		0.000 0.000 0.000		AP-42 (4-stroke lean burn) AP-42 (4-stroke lean burn)
		3.220	MMBtu		It for he was all	100%		0.0002184 lb/MMBtu			0.001	0.00	0.001		0.000 0.000	0.001 0.000	AP-42 (4-stroke lean burn)
		3.220	MMBtu			100%		0.0004532 lb/MMBtu			0.001	0.01	0.001				AP-42 (4-stroke lean burn)
		3.220	MMBtu MMBtu		toluene Ethylbenzene	100% 100%		0.0004202 lb/MMBtu 4.09E-05 lb/MMBtu			0.001	0.01	0.001		0.000 0.000 0.000 0.000		AP-42 (4-stroke lean burn) AP-42 (4-stroke lean burn)
-		3.220	MMBtu			100%	-	4.09E-05 ID/MIVIBLU			0.000	0.00	0.000		0.000 0.000		AP-42 (4-stroke lean burn) AP-42 (4-stroke lean burn)
		3.220	MMBtu	8760 2	methanol	100%		0.002575 lb/MMBtu			0.008	0.04	0.008	0.036	0.000 0.000	0.008 0.036	AP-42 (4-stroke lean burn)
		3.220	MMBtu	8760 2	n-hexane	100%		0.0011433 lb/MMBtu		<u> </u>	0.004	0.02	0.004	0.016	0.000 0.000		AP-42 (4-stroke lean burn)
NE	W 175 MMSCFD Dehydration Unit (each)	3.220	MMBtu	8760 2	HAPS						0.230	1.008	0.230	1.008	0.000 0.000	0.230 1.008	AP-42 (4-stroke lean burn)
TYE \	Reboiler 1	31000302 2.000	MMBtu	8760 3	NOx	100%		100 Lbs/MMCF	F 0.000980392	scf/BTU	0.1961	0.8588	0.1961	0.8588	0.0000 0.0000	0.1961 0.8588	AP-42, Table 1.4
	Reboiler 2	2.000	MMBtu	8760 3	CO	100%		84 Lbs/MMCF	F 0.000980392	scf/BTU	0.1647	0.7214	0.1647	0.7214	0.0000 0.0000	0.1647 0.7214	AP-42, Table 1.4
-	Reboiler 3	2.000	MMBtu			100%		120000 Lbs/MMCF						1030.5882	0.0000 0.0000		
+	SCC = 31000302	2.000	MMBtu MMBtu			100%		5.5 Lbs/MMCF	F 0.000980392 F 0.000980392	scf/BTU scf/BTU	0.0108		0.0108		0.0000 0.0000 0.0000	0.0108 0.0472	AP-42, Table 1.4 EPA Webfire for SCC 31000404
-		2.000	MMBtu			100%			F 0.000980392	scf/BTU	0.0149		0.0149		0.0000 0.0000		
		2.000	MMBtu	8760 3	PM10	100%		7.6 Lbs/MMCF	F 0.000980392	scf/BTU	0.0149	0.0653	0.0149	0.0653	0.0000 0.0000	0.0149 0.0653	AP-42, Table 1.4
-		2.000	MMBtu			100%			F 0.000980392		0.0149		0.0149		0.0000 0.0000		
		2.000	MMBtu MMBtu			100%			F 0.000980392 F 0.000980392		0.0012	0.0052	0.0012		0.0000 0.0000 0.0000	0.0012 0.0052 0.0045 0.0198	
		2.000	MMBtu			100%			F 0.000980392		0.0043		0.0043		0.0000 0.0000	0.0043 0.0198	
				0700	700	40000	Dub all					170 (000	17	70.010	0.0000	17.0550 70.010	
-	Still Vent + Flash Gas 175 MMscfd glycol dehydration unit.	31000303		8760 3 8760 3		100%	Reboiler Reboiler		-		40.6811 2.6730	178.1832 11.7077	17.9550		0.0000 0.0000 0.0000		GlyCalc - Flash gas routes to the reboiler (results i GlyCalc - Flash gas routes to the reboiler (results i
+	60% of flash gas will route to			8760 3		100%	Reboiler					139.5275	13.5040		0.0000 0.0000		GlyCalc - Flash gas routes to the reboiler (results) GlyCalc - Flash gas routes to the reboiler (results)
	reboiler			8760 3	HAPs	100%	Reboiler				0.6793	2.9753	0.6507	2.8499	0.0000 0.0000	0.6507 2.8499	GlyCalc - Flash gas routes to the reboiler (results i
					n-Hexane	100%	Reboiler			<u> </u>	0.0291		0.0184			0.0184 0.0805	GlyCalc - Flash gas routes to the reboiler (results i
_					Benzene	100%	Reboiler	+ + + +	+		0.0833		0.0795				GlyCalc - Flash gas routes to the reboiler (results i
_				8760 3 8760 3	Ethylbenzene	100%	Reboiler Reboiler		+		0.1367	0.5988 0.7853	0.1320		0.0000 0.0000		GlyCalc - Flash gas routes to the reboiler (results i GlyCalc - Flash gas routes to the reboiler (results i
-				8760 3		100%	Reboiler		1		0.2508		0.2461				GlyCalc - Flash gas routes to the reboiler (results in
					1				1	1							

NTIAL AIR	EMISSI	IONS																	ess noted otherwi			
			Process	mdų	m du	nduf		e	- AC	e _ C	o _		EF	EF Conversion	Uncontro Emissi		Point Emis Controll		Fugitive Emissions Controlled		ontrolled Fugitive)	
y Permit #	Emission		Unit	axim ourly roug	axim Inual Iroug	roug		icier	aint iicier aint ontro	gitiv	gitiv		Conversion	Factor						(, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Emission Factor Source / Notes
or Status	Unit	Process Unit	SCC	žųt t	S t t t	투 수 실 술	TO Units Pollutant	und 200	e S ∰ e S	un c n	го	EF	EF Units Factor	Units	lb/hr	tpy	lb/hr	tpy	lb/hr tpy	lb/h	n r i	py
		Total Dehy Potential Emissions					PM								0.0149	0.0653	0.0149	0.0653	0.0000 0.0000	0.014	9 0.06	53
		Reboiler + Still Vent					PM10								0.0149	0.0653	0.0149	0.0653	0.0000 0.0000	0.014	9 0.06	
		Total Emissions are Per Dehy					PM2.5 SO2								0.0149	0.0653	0.0149	0.0653	0.0000 0.0000	0.014		
							NOx								0.1961	0.8588	0.1961	0.8588	0.0000 0.0000	0.196		
							CO								0.1647	0.7214	0.1647	0.7214	0.0000 0.0000	0.164	7 0.72	
							TOC VOC								0.0216	0.0945	0.0216	0.0945	0.0000 0.0000 0.0000	0.021		
							Lead								0.0000	0.0000	0.0000	0.0000	0.0000 0.0000	0.010		
							CO2								235.2941	1030.5882		030.5882	0.0000 0.0000		1 1030.58	
							CH4 N2O	-							0.0045	0.0198	0.0045	0.0198	0.0000 0.0000 0.0000	0.004		
							HAPs								0.0000	0.0000	0.0000	0.0000	0.0000 0.0000	0.000		
							n-Hexane								0.0000	0.0000	0.0000	0.0000	0.0000 0.0000	0.000		
							Benzene Toluene	-							0.0000	0.0000	0.0000	0.0000	0.0000 0.0000 0.0000	0.000		
							Ethylbenzene								0.0000	0.0000	0.0000	0.0000	0.0000 0.0000	0.000	0.00	00
	EN/E (E) 40		0040 Index	and a December of	011-011-0		Xylenes	- Barada	Territo						0.0000	0.0000	0.0000	0.0000	0.0000 0.0000	0.000	0.00	00
NEW		00-bbl PRODUCED WATER TANKS (SCC = 3100 Flash Gas	31000213		es > Oil and G	as Produc	8760 1 TOC	100%							0.36924	1.6173	0.369	1.617	0.000 0.000	0.36	9 1.6	17 See Produced Water tab
							8760 1 VOC	100%							0.00353	0.0155	0.004	0.015	0.000 0.000	0.00	4 0.0	15 See Produced Water tab
					7		8760 1 CO2 8760 1 CH4	100%							0.01475	0.0646	0.015	0.065	0.000 0.000	0.01	-	60 See Produced Water tab
							8760 1 CH4 8760 1 HAPs	100%		+ +					0.33189	1.4537	0.332	1.454	0.000 0.000 0.000	0.33		00 See Produced Water tab 00 See Produced Water tab
							8760 1 n-Hexane	100%							0.00000	0.0000	0.000	0.000	0.000 0.000	0.00		00 See Produced Water tab
		Working and Breathing Losses	+		107.89	lbs	8760 1 TOC	100%				0.967	b/b		0.01191	0.0522	0.012	0.052	0.000 0.000	0.01	2 00	52 See Tanks 4.09d Output
		The range and breathing Losses			107.89		8760 1 10C	100%		+ +		0.967			0.001191	0.0522	0.012	0.052	0.000 0.000	0.01		02 See Tanks 4.09d Output
					107.89	lbs	8760 1 CO2	100%				0.032	b/lb		0.00039	0.0017	0.000	0.002	0.000 0.000	0.00	0.0	02 See Tanks 4.09d Output
					107.89 107.89		8760 1 CH4 8760 1 HAPs	100%				0.776			0.00956	0.0419	0.010	0.042	0.000 0.000 0.000	0.01		42 See Tanks 4.09d Output
					107.89		8760 1 HAPs 8760 1 n-Hexane	100%		+ +		0.000			0.00000	0.0000	0.000	0.000	0.000 0.000	0.00		00 See Tanks 4.09d Output 00 See Tanks 4.09d Output
		TOTAL EMISSIONS					TOC VOC								0.381	1.669 0.017	0.381	1.669 0.017	0.000 0.000	0.38		69 Flash + Working/Breathing 17 Flash + Working/Breathing
							CO2								0.004	0.066	0.004	0.066	0.000 0.000	0.00		66 Flash + Working/Breathing
							CH4								0.341	1.496	0.341	1.496	0.000 0.000	0.34		96 Flash + Working/Breathing
							HAPs n-Hexane	-							7.74E-05 5.72E-07	0.000	0.000	0.000	0.000 0.000 0.000			04 Flash + Working/Breathing 06 Flash + Working/Breathing
NEW	FUGITIVE I	EQUIPMENT LEAKS (SCC = 31000220)					THRADIE								<u>3.72L-07</u>	0.000	0.000	0.000	0.000	<u>J.72L-0</u>	7 2.JTL	
		Fugitive Equipment Leaks	31000220				8760 1 TOC								10.815	47.371	0.000	0.000		10.81		71 See Equipment Leaks tab
		(see Equipment Leaks tab)					8760 1 VOC 8760 1 CO2	-		+					0.082	0.360	0.000	0.000	0.082 0.360 0.051 0.223	0.08		60 See Equipment Leaks tab 23 See Equipment Leaks tab
							8760 1 CH4								10.061	44.069	0.000	0.000	10.061 44.069	10.06	1 44.0	69 See Equipment Leaks tab
			-				8760 1 HAPs			+					0.001	0.006	0.000	0.000	0.001 0.006	0.00	1 0.0	06 See Equipment Leaks tab
NEW	FUGITIVE -	- BLOWDOWNS (SCC = 30600402)					8760 1 n-Hexane								0.001	0.006	0.000	0.000	0.001 0.006	0.00	0.0	06 See Equipment Leaks tab
		G3608Compressor Blowdowns	30600402	4,500	180,000		8 TOC	100%				0.991			190.85	3.82	190.85	3.82	0.00 0.00	190.8		82 From inlet gas analysis
		4,500 scf per blowdown	+	4,500 4,500	180,000		8 VOC 8 CH4	100%		$+$ $\overline{-}$		0.008			4.07	0.08	4.07	0.08 3.51	0.00 0.00	4.0		08 From inlet gas analysis
		40 Blowdowns per year per unit	+	4,500	180,000		8 CH4 8 HAPs	100%		+ +		0.922			<u>175.47</u> 0.14	3.51 0.00	175.47 0.14	0.00	0.00 0.00	175.4 0.1		51 From inlet gas analysis 03 From inlet gas analysis
				4,500	180,000		8 n-Hexane	100%				0.000			0.14	0.00	0.14	0.00	0.00 0.00	0.1		03 From inlet gas analysis
		G3606 Compressor Blowdowns	30600402	4.500	180.000	SCE	3 TOC	100%				0.991	b/lb 0.0428	lb/scf	190.85	2 02	190.85	3.82	0.00 0.00	190.8	5 0	82 From inlet and analysis
		G3606 Compressor Blowdowns 4,500 scf per blowdown	30000402	4,500	180,000		3 10C	100%		+ +		0.991			4.07	3.82	4.07	0.08	0.00 0.00	190.8		82 From inlet gas analysis 08 From inlet gas analysis
		40 Blowdowns per year per unit		4,500	180,000	SCF	3 CH4	100%				0.922	b/lb 0.0423	lb/scf	175.47	3.51	175.47	3.51	0.00 0.00	175.4	7 3.	51 From inlet gas analysis
				4,500 4,500	180,000		3 HAPs 3 n-Hexane	100%		+		0.000			0.14	0.00	0.14	0.00	0.00 0.00	0.1		03 From inlet gas analysis 03 From inlet gas analysis
			1	4,500	100,000	JUI ⁻	3 II-riexarie	100%		+ +		0.000	0.2274	IU/SCI	0.14	0.00	0.14	0.00	0.00 0.00	0.1	. 0.0	
		Engine Startups	30600402				11 TOC	100%				0.991			190.85	3.82	190.85	3.82	0.00 0.00	190.8		17 From inlet gas analysis
		4,500 scf per blowdown 40 Startups per year per unit	+	4,500 4,500			11 VOC 11 CH4	100%		+		0.008			4.07	0.08	4.07 175.47	0.08 3.51	0.00 0.00	4.0		81 From inlet gas analysis 09 From inlet gas analysis
				4,500			11 HAPs	100%		+ +		0.922			0.14	0.00	0.14	0.00	0.00 0.00	0.1		03 From inlet gas analysis 03 From inlet gas analysis
				4,500			11 n-Hexane	100%				0.000			0.14	0.00	0.14	0.00	0.00 0.00	0.1		COME From inlet gas analysis
		Station Blowdown	30600402	9,000,000	3.60E+07	SCF	1 TOC	100%				0.991	b/lb 0.0428	lb/scf	381690.07	763.38	381690.07	763.38	0.00 0.00	381690.0	7 763 3	80 From inlet gas analysis
		9,000,000 scf per blowdown	0000402	9,000,000	3.60E+07	SCF	1 VOC	100%				0.008	b/lb 0.1200	lb/scf	8135.79	16.27	8135.79	16.27	0.00 0.00	8135.7	9 16.2	72 From inlet gas analysis
		4 station blowdowns per year		9,000,000	3.60E+07	SCF	1 CH4	100%		+		0.922	b/lb 0.0423	lb/scf	350940.03	701.88	350940.03	701.88	0.00 0.00	350940.0	3 701.8	80 From inlet gas analysis
			+	9,000,000 9,000,000			1 HAPs 1 n-Hexane	100%		+ +		0.000			274.82 274.82	0.55	274.82 274.82	0.55	0.00 0.00	274.8		50 From inlet gas analysis 50 From inlet gas analysis
		TOTAL BLOWDOWN EMISSIONS		9,013,500	39,960,000	SCF	TOC					0.991			385888.661	847.352 3		847.352		385888.66		52 Total from All Blowdowns
			-				VOC CH4	-		+ +		0.008			8225.287 354800.372	18.061 779.087 3	8225.287 354800.372	18.061 779.087	0.000 0.000			61 Total from All Blowdowns 87 Total from All Blowdowns
							HAPs					0.000	b/lb 0.2274	lb/scf	277.840	0.610	277.840	0.610	0.000 0.000	277.84	0 0.6	10 Total from All Blowdowns
NEW	FUCITIVE	- PIGGING OPERATIONS (SCC = 31000211)					n-Hexane					0.000	b/lb 0.2274	lb/scf	277.840	0.610	277.840	0.610	0.000 0.000	277.84	0 0.6	10 Total from All Blowdowns
		Pigging Operations	31000211	8,916	17,831	scf	1 TOC	100%				0.991	b/lb 0.0428	lb/scf	378.109	0.38	378.11	0.38	0.00 0.00	378.1	1 0.3	78 See Pigging Operations tab
		8,916 scf/event		8,916	17,831	scf	1 VOC	100%				0.008	b/lb 0.1200	lb/scf	8.059	0.01	8.06	0.01	0.00 0.00	8.0	6 0.0	08 See Pigging Operations tab
		2 events/year		8,916 8,916	17,831 17,831		1 CH4 1 HAPs	100%		+		0.922			347.647 0.272	0.35	347.65 0.27	0.35	0.00 0.00	347.6		48 See Pigging Operations tab 00 See Pigging Operations tab
				8,916			1 n-Hexane	100%				0.000			0.272	0.00	0.27	0.00	0.00 0.00	0.2		00 See Pigging Operations tab
NEW		TRUCK LOADING (PRODUCED WATER) (SCC =		ndustrial Proc	esses > Oil an	d Gas Pro	duction > Natural Gas Prod	uction > 0	ther Not Classified)													
		125 bbl/truck 1500 bbl loaded per month	31000299	5.25 5.25		Mgal Mgal	8760 1 TOC 8760 1 VOC	100%		+		0.075			0.391	0.028	0.391	0.028	0.000 0.000 0.000	0.39		28 See Truck Loading tab; Based on unloading one 01 See Truck Loading tab; Based on unloading one
		Max one truck loaded per hour	1	5.25		Mgal	8760 1 CO2	100%		+ +		0.003			0.014	0.001	0.014	0.001	0.000 0.000	0.01		01 See Truck Loading tab; Based on unloading one 01 See Truck Loading tab; Based on unloading one
				5.25	756	Mgal	8760 1 CH4	100%				0.058	b/Mgal		0.304	0.022	0.304	0.022	0.000 0.000	0.30	4 0.0	22 See Truck Loading tab; Based on unloading one
				5.25 5.25		Mgal Mgal	8760 1 HAPs 8760 1 n-Hexane	100%		+		0.000			0.000	0.000	0.000	0.000	0.000 0.000	0.00		00 See Truck Loading tab; Based on unloading one 00 See Truck Loading tab; Based on unloading one
		- PAVED AND UNPAVED ROADS		5.25	100	gui	S. GO I IFIEAdid	10078				5.000	ogui		0.000	0.000	0.000	0.000	0.000 0.000	0.00	0.0	see truck coading tab, based on unloading one
NEW	FUGITIVE -	- TAVED AND ON AVED ROADS																				
NEW		Unpaved Roads	S0100201	1.52 1.52		VMT VMT	8760 1 PM2.5 8760 1 PM10	0%					b/VMT b/VMT		0.151	0.01	0.000	0.000	0.15 0.01	0.15		13 See Unpaved Roads tab 30 See Unpaved Roads tab

POTENTIAL AIR EMISSIONS																Emissions are	for EACH	H Emissions	s Unit unl	ess noted ot	herwise	ł		
		Process	y ghpu	num al ighpu	ighpu sof	10	ancy	ol ancy	.	ve ol	ol			EF	EF Conversion	Uncontroll Emission		Point Emis Controll		Fugitive Emiss Controlled		Total Contr (Point + Fug		Emission Factor Source / Notes
CompanyPermit #EmissionIDor StatusUnit	Process Unit	Unit SCC	Maxir Hourl Throu	Maxir Annu Throu t	Throu t Units Annu Annu Opera	of hits Pollutant	Captu Effici	Point Contr Effici	Point Contr	Fugiti Contr Effici	Fugiti Contr	EF	EF Units	Conversion Factor	Factor Units	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
						TOTALS (Do	es not incl	ude Emissi	ions labeled as	FUGITIVE for m	ajor source dete	rmination)				Uncontroll	led	Point Cont	trolled	Fugitive Contr		tal Controlled Fugitive		
																lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
						NOx										19.75	86.49	19.75	86.49		0.00	19.75	86.49	
						CO										142.80	625.45	10.52	46.10		0.00	10.52	46.10	
						VOC										38.22	167.42	17.99	78.79		0.00	17.99	78.79	
						CO2											10948.82	25330.78 1				25330.78 1		
						Formaldehyd	e									10.45	45.76	1.86	8.13		0.00	1.86	8.13	
						TOC										425.64	1864.31		1518.32		7.37	357.46	1565.69	
						CH4 SO2										343.27	1503.51	288.21	1262.37 0.53		0.00	288.21 0.12	1262.37 0.53	
						PM10	_									0.12	0.53	0.12					0.53	
						PM10 PM2.5	-					-	-			0.06	0.26	0.06	0.26		0.00	0.06	0.26	
						PIVIZ.5	-					-	-			2.02	8.83	2.02	8.83		0.00	2.02	8.83	
						N2O										0.06	0.05	0.06	0.05		0.00	0.06	0.05	
						acrolein										1.05	4.61	0.48	2.10		0.00	0.48	2.10	
						acetaldehyde										1.66	7.28	0.76	3.32		0.00	0.76	3.32	
						biphenyl							-			0.04	0.19	0.02	0.09		0.00	0.02	0.09	
						benzene										0.34	1.49	0.28	1.23		0.00	0.28	1.23	
						toluene										0.49	2.16	0.43	1.90		0.00	0.43	1.90	
						Ethylbenzene										0.55	2.39	0.53	2.31	0.00	0.00	0.53	2.31	
						Xylenes										0.79	3.46	0.76	3.31	0.00	0.00	0.76	3.31	
						methanol										0.51	2.24	0.23	1.02	0.00	0.00	0.23	1.02	
						n-hexane										0.31	1.38	0.16	0.70		0.00	0.16	0.70	
						HAPs										12.39	70.97	5.50	24.11	0.00	0.00	5.50	24.11	

PIGGING EMISSIONS (One Pig Launcher)

PIG RECEIVER

Given:

Length =	30 feet			
Diameter =	2 feet			
Q _a =	94.25 Cubic feet	yields	2.66879553 Cubic Meters	Volume of Compressor
P _i =	83.36 Atm	yields	8446.45 kPa	Pressure of Pipeline
T _i =	25.00 Deg C	yields	298.15 Deg K	Temperature in Pipeline
P _f =	1.00 Atm	yields	101.33 kPa	Ambient Pressure (Usually 1 ATM)
T _f =	25.00 Deg C	yields	298.15 Deg K	Ambient Temperature (Usually 10-25 Deg. C or Standard Temp -15Deg. C)
z _i =	0.84311			
z _f =	1.00111			
Q _t =	252.460 Cubic Meter	s or	8915.56 Cubic Feet	

Based on EPA's Addendum 1 to the Oil and Gas Production Protocol, Version 1.1, Equation 22-23

$$\begin{split} \mathbf{Q}_t &= \mathbf{Q}_a \; \mathbf{x} \; (\mathsf{T}_s/\mathsf{P}_s) \; \mathbf{x} \; (\mathsf{Pi}/(z_i^*\mathsf{T}_i)) - (\mathsf{P}_f/(z_f^*\mathsf{T}_f)) \\ \mathbf{Q}_a &= \mathsf{pi} \; \mathbf{x} \; \mathsf{r}^2 \; \mathbf{x} \; \mathsf{h} \end{split}$$

Where :

- Q_t = Total volume of gas released in cubic meters at STP (15 Deg C and 1 Atm)
- \mathbf{Q}_{a} = Actual volume of gas at process conditions in cubic meters
- P_s = Standard Pressure in kPa (101.3)
- T_s = Standard Temperature in K (288.1)
- z = Compressibility factor for the gas
- i = initial pressure and temperature
- f = final temperature and pressure (generally STP)

COMPRESSIBILITY FACTOR (z_i)

yields

Given:

 Pressure =
 68.03 ATM.

 Temperature =
 25 °C

Compressibility Factor $(z_i) =$

0.843113

6893.1 kPa

or

1000 psi

Based on EPA's Addendum 1 to the Oil and Gas Production Protocol, Version 1.1, Equation 22.25

$z = a + bp + cT + dp^2 + eT^2 + fpT$

Where :

p=	Pressure in kPa
T=	Temperature in degrees celsius
a=	9.9187E-01
b=	-3.3501E-05
C=	6.9652E-04
d=	6.3134E-10
e=	-8.6023E-06
f=	2.3290E-07

COMPRESSIBILITY FACTOR (z_f)

Given:

Pressure =	1 ATM.	yields	101.33 kPa	or	14.7 psi
Temperature =	25 °C				

Compressibility Factor (z_f) = 1.001109

Based on EPA's Addendum 1 to the Oil and Gas Production Protocol, Version 1.1, Equation 22.25

$z = a + bp + cT + dp^2 + eT^2 + fpT$

Where :

p= Pressure in kPa T= Temperature in degrees celsius a= 9.9187E-01 b= -3.3501E-05 c= 6.9652E-04 d= 6.3134E-10 e= -8.6023E-06 f= 2.3290E-07

TRUCK LOADING EMISSIONS (Produced Water)

Truck Loading

Per AP-42, Chapter 5.2.2.1.1, the uncontrolled loading loss emission factor LL can be estimated as follows:

L_L=12.46*(SPM/T)

Where, Loading Loss Saturation Factor True Vapor Pressure Molecular Weight of Vapors Temperature

L_L= 0.07453 lbs/1000 gallons S= 0.6 P= 0.3 psia M= 17.28 lb/lb-mol T= 520 deg R

Goff Connector LLC - Connector CS

Flash Emission Calculations

Using Gas-Oil Ratio Method

Site specific data											
=	3.88 scf/bbl										
=	18,000 bbl/yr										
	17.28 g/mole										
Conversions											
=	453.6 g										
=	22.4 L										
1 scf = 28.32 L											
=	2000 lb										
Equations											
•											
$E_{TOT} = Q \frac{(bbl)}{(yr)} \times R \frac{(scf)}{(bbl)} \times \frac{28.32(L)}{1(scf)} \times \frac{1(mole)}{22.4(L)} \times MW \frac{(g)}{(mole)} \times \frac{1(lb)}{453.6(g)}) \times \frac{1(ton)}{2000(lb)}$											
_	Total stock tank flash emissions (TPY)										
	Measured gas-water ratio (scf/bbl) Throughput (bbl/yr)										
	Stock tank gas molecular weight (g/mole)										
ec =	$= E_{TOT} \times X_{spec}$										
=	Flash emission from constituent										
=	Weight fraction of constituent in stock tank gas										
as	sh Emissions										
	= $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$										

Constituent	ТРҮ
Total	1.6819
VOC	0.0155
Nitrogen	0.00E+00
Carbon Dioxide	6.46E-02
Methane	1.45E+00
Ethane	1.48E-01
Propane	1.28E-02
Isobutane	5.05E-04
n-Butane	1.30E-03
2,2 Dimethylpropane	0.00E+00
Isopentane	0.00E+00
n-Pentane	0.00E+00
2,2 Dimethylbutane	0.00E+00
Cyclopentane	0.00E+00
2,3 Dimethylbutane	0.00E+00
2 Methylpentane	0.00E+00
3 Methylpentane	0.00E+00
n-Hexane	0.00E+00
Methylcyclopentane	0.00E+00
Benzene	2.35E-04
Cyclohexane	1.68E-04
2-Methylhexane	0.00E+00
3-Methylhexane	0.00E+00
2,2,4 Trimethylpentane	0.00E+00
Other C7's	0.00E+00
n-Heptane	0.00E+00
Methylcyclohexane	1.01E-04
Toluene	2.69E-04
Other C8's	0.00E+00
n-Octane	0.00E+00
Ethylbenzene	0.00E+00
M & P Xylenes	1.01E-04
O-Xylene	0.00E+00
Other C9's	0.00E+00
n-Nonane	0.00E+00
Other C10's	0.00E+00
n-Decane	0.00E+00
Undecanes (11)	0.00E+00

E_{TOT}

Sum of C3+

Goff Connector LLC - Connector CS Equipment Leaks (Fugitive) Emissions

		%											
		Leaking											
		at any	Emission	VOC	VOC	CO2	CO2	CH4	CH4	TOC	TOC	n-Hexane	n-Hexane
Emission Source	Quantity	time	Factor(1)	%	lb/hr	%	lb/hr	%	lb/hr	%	lb/hr	%	lb/hr
ight Oil Fugitive Sources													
Gas Fugitive Sources													
Flanges (FL)	3,000	100%	8.58E-04	0.75%	1.9E-02	0.47%	1.2E-02	92.18%	2.4E+00	99.1%	2.6E+00	0.01%	3.5E-04
Valves (V)	400	100%	9.90E-03	0.75%	3.0E-02	0.47%	1.8E-02	92.18%	3.7E+00	99.1%	3.9E+00	0.01%	5.3E-04
Pump Seals (P)	6	100%	5.28E-03	0.75%	2.4E-04	0.47%	1.5E-04	92.18%	2.9E-02	99.1%	3.1E-02	0.01%	4.3E-06
Open Ended Lines (OEL)	8	100%	4.40E-03	0.75%	2.7E-04	0.47%	1.6E-04	92.18%	3.2E-02	99.1%	3.5E-02	0.01%	4.7E-06
Connectors (C)	1400	100%	4.40E-04	0.75%	4.6E-03	0.47%	2.9E-03	92.18%	5.7E-01	99.1%	6.1E-01	0.01%	8.3E-05
Pressure Relief Valves (PRV)	180	100%	1.94E-02	0.75%	2.6E-02	0.47%	1.6E-02	92.18%	3.2E+00	99.1%	3.5E+00	0.01%	4.7E-04
Others	11	100%	1.94E-02	0.75%	1.6E-03	0.47%	9.9E-04	92.18%	2.0E-01	99.1%	2.1E-01	0.01%	2.9E-05
TOTALS					0.0822		0.0510		10.061		10.815		0.0015

Notes

1 Emission Factor Units are in lb/hr/source

2 Gas Fugitive Sources % pollutant is from Fuel Gas Analysis
 3 Emission Factors Data Source
 4 Component count based on 40 CFR 98 Table W-1B

			Oil & Gas I	Production		
			Emission F	actors (1)		
	Light Oil	Heavy Oil	Gas	Light Oil	Heavy Oil	Gas
	kg / hr /	kg / hr /	kg / hr /	lb / hr /	lb / hr /	lb / hr /
Component:	source	source	source	source	source	source
Flanges (FL)	1.10E-04	3.90E-07	3.90E-04	2.42E-04	8.58E-07	8.58E-04
Valves (V)	2.50E-03	8.40E-06	4.50E-03	5.50E-03	1.85E-05	9.90E-03
Pump Seals (P)	1.30E-02	3.20E-05	2.40E-03	2.86E-02	7.04E-05	5.28E-03
Open Ended Lines (OEL)	1.40E-03	1.40E-04	2.00E-03	3.08E-03	3.08E-04	4.40E-03
Connectors (C)	2.10E-04	7.50E-06	2.00E-04	4.62E-04	1.65E-05	4.40E-04
Pressure Relief Valves (PRV)	7.50E-03	3.20E-05	8.80E-03	1.65E-02	7.04E-05	1.94E-02
Others	7.50E-03	3.20E-05	8.80E-03	1.65E-02	7.04E-05	1.94E-02

(1) Factors from: Table 2-4 of "Protocol for Equipment Leak Emission Estimates", (EPA-453/R-95-017), USEPA, 11/95

Unpaved Roads Fugitive Emissions Source: AP-42, 5th edition, Section 13.2.2 Unpaved Roads

ilt content of road surface material, %	S	3.1 %		From http://w
lean Vehicle Weight	W	53 to		
umber of days per year with precipitation > 0.01 in	. р	140 da	ays	
quation Constants and Emission Factor				
escription	variable	PM-2.5	PM-10	PM
article size multiplier, lb/VMT	k	0.15	1.5	4.9
onstant	а	0.9	0.9	0.7
onstant	b	0.45	0.45	0.45
mission Factor, lb/VMT	EF	0.10	1.00	4.26
F = (k * (s/12)^a * (W/3)^b) * ((365-p)/365)	US EPA AI	P-42, Section	13.2.2 (1 ⁻	1/06), Equatio
otal Trucks per hour	1			
otal Trucks per year	173			
ehicle travel data and control efficiency				
ength of facility road	4000	feet one way		Tanker trucks
ehicle miles traveled per trip	1.52	VMT		
laximum trips per hour	1.00			
ehicle miles traveled per hour	1 5 2	VMT		
	1.52			
laximum trips per year	173			
	173			
laximum trips per year ehicle miles traveled per year ontrol	173			

Note: If using Gravel + Watering, the control efficiency is 95%

Goff Connector LLC Fuel Gas Analysis Information

Connector Compressor Station Harrison County, WV

Inlet Gas Composition Information

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Z	TOC	% of VC
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor		
Nitrogen, N2	0.2624	0.074	0.003	0.441			-		0.0026		
Carbon Dioxide, CO2	0.1770	0.078	0.003	0.467			-		0.0018		
Hydrogen Sulfide, H2S		-	-	-			-		-		
Helium, He		-	-	-			-		-		
Oxygen, O2	0.0020	0.001	0.000	0.004			-		0.0000		
Methane, CH4	95.8791	15.382	0.531	92.183	871.9	968.4	9.137		0.9569	92.183	
Ethane, C2H6	3.4142	1.027	0.035	6.153	55.3	60.4	0.569		0.0339	6.153	
Propane	0.2210	0.097	0.003	0.584	5.1	5.6	0.053	0.584	0.0022	0.584	
Iso-Butane	0.0133	0.008	0.000	0.046	0.4	0.4	0.004	0.046	0.0001	0.046	
Normal Butane	0.0198	0.012	0.000	0.069	0.6	0.6	0.006	0.069	0.0002	0.069	
Iso Pentane	0.0038	0.003	0.000	0.016	0.1	0.2	0.001	0.016	0.0000	0.016	
Normal Pentane	0.0028	0.002	0.000	0.012	0.1	0.1	0.001	0.012	0.0000	0.012	
Hexanes	0.0026	0.002	0.000	0.013	0.1	0.1	0.001	0.013	0.0000	0.013	1.782
Heptane +	0.0020	0.002	0.000	0.012	0.1	0.1	0.001	0.012	0.0000	0.012	1
	100.0	16.686	0.576	100.000	933.8	1,035.9	9.774	0.753	0.9977	99.089	

ldeal Gross (HHV)	1,035.9
Ideal Gross (sat'd)	1,018.7
Real Gross (HHV)	1,038.3
Real Net (LHV)	935.9

Goff Connector LLC Flash Gas Analysis Information

Connector Compressor Station Harrison County, WV

Dehy Flash Gas Composition Information

From GRI-GLYCALC Output

	Flash Gas	Flash M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Z	TOC
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	L
Nitrogen, N2		-	-	-			-		-	
Carbon Dioxide, CO2	1.2300	0.541	0.019	3.201			-		0.0123	
Hydrogen Sulfide, H2S		-	-	-			-		-	
Water	0.3810	0.015	0.001	0.090			-		0.0038	
Oxygen, O2		-	-	-			-		-	
Methane, CH4	81.8000	13.123	0.453	77.595	743.9	826.2	7.796		0.8164	77.595
Ethane, C2H6	8.6900	2.613	0.090	15.451	140.7	153.8	1.449		0.0862	15.451
Propane	1.0200	0.450	0.016	2.660	23.6	25.7	0.243	2.660	0.0100	2.660
Iso-Butane	0.1160	0.067	0.002	0.399	3.5	3.8	0.036	0.399	0.0011	0.399
Normal Butane	0.1340	0.078	0.003	0.461	4.0	4.4	0.041	0.461	0.0013	0.461
Iso Pentane	0.0221	0.016	0.001	0.094	0.8	0.9	0.008	0.094	0.0002	0.094
Normal Pentane	0.0099	0.007	0.000	0.042	0.4	0.4	0.004	0.042	0.0001	0.042
n-Hexane	0.0009	0.001	0.000	0.005	0.0	0.0	0.000	0.005	0.0000	0.005
Heptane +	0.0005	0.000	0.000	0.003	0.0	0.0	0.000	0.003	0.0000	0.003
	93.4	16.912	0.584		916.9	1,015.1	9.578	3.663	0.9314	96.709

Ideal Gross (HHV)	1,015.1
Ideal Gross (sat'd)	998.2
	-
Real Gross (HHV)	1,089.9
Real Net (LHV)	984.5
()	,

ATTACHMENT V – FACILITY-WIDE CONTROLLED EMISSIONS SUMMARY SHEET														
List all sources o	f emissio	ns in th	is table	. Use ex	xtra pa	ges if n	ecessary	<i>.</i>						
	NC	x	СО		VOC		SO ₂		PM ₁₀		PM _{2.5}		GHG (CO ₂ e)	
Emission Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
CE-01	1.96	8.57	0.74	3.24	1.18	5.15	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	2,251	9,860
CE-02	1.96	8.57	0.74	3.24	1.18	1.58	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	2,251	9,860
CE-03	1.96	8.57	0.74	3.24	1.18	1.58	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	2,251	9,860
CE-04	1.66	7.25	0.94	4.09	1.11	4.83	0.01	0.05	< 0.01	< 0.01	< 0.01	< 0.01	2,895	12,679
CE-05	1.66	7.25	0.94	4.09	1.11	1.10	0.01	0.05	< 0.01	< 0.01	< 0.01	< 0.01	2,895	12,679
CE-06	1.66	7.25	0.94	4.09	1.11	1.10	0.01	0.05	< 0.01	< 0.01	< 0.01	< 0.01	2,895	12,679
CE-07	1.66	7.25	0.94	4.09	1.11	1.10	0.01	0.05	< 0.01	< 0.01	< 0.01	< 0.01	2,895	12,679
CE-08	1.66	7.25	0.94	4.09	1.11	1.10	0.01	0.05	< 0.01	< 0.01	< 0.01	< 0.01	2,895	12,679
CE-09	1.66	7.25	0.94	4.09	1.11	1.10	0.01	0.05	< 0.01	< 0.01	< 0.01	< 0.01	2,895	12,679
CE-10	1.66	7.25	0.94	4.09	1.11	1.10	0.01	0.05	< 0.01	< 0.01	< 0.01	< 0.01	2,895	12,679
CE-11	1.66	7.25	0.94	4.09	1.11	1.10	0.01	0.05	< 0.01	< 0.01	< 0.01	< 0.01	2,895	12,679
GE-01	0.03	0.14	0.18	0.76	0.38	1.67	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	455	2,015
GE-02	0.03	0.14	0.18	0.76	0.38	1.67	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	455	2,015
DEHY-1					1.62	7.09							338	1,479
DEHY-2					1.62	7.09							338	1,479
DEHY-3					1.62	7.09							338	1,479
REB-1	0.20	0.86	0.17	0.73	0.01	0.05	<0.01	< 0.01	0.02	0.07	0.02	0.07	237	1,037
REB-2	0.20	0.86	0.17	0.73	0.01	0.05	<0.01	< 0.01	0.02	0.07	0.02	0.07	237	1,037
REB-3	0.20	0.86	0.17	0.73	0.01	0.05	<0.01	< 0.01	0.02	0.07	0.02	0.07	237	1,037
TO-1					<0.01	0.02							9	38
TOTAL	19.75	86.49	10.52	46.10	17.99	78.79	0.12	0.53	0.06	0.26	0.06	0.26	32,554	142,582

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators.

According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT V

Facility-Wide Controlled Emissions Summary Sheet

ATTACHMENT V – FACILITY-WIDE HAP CONTROLLED EMISSIONS SUMMARY SHEET														
List all sources of	emissions	s in this	s table.	Use ext	ra page	es if ne	cessary.							
Emission Point ID#	Formald	Formaldehyde Ben			zene Toluene		Ethylbenzene		Xylenes		Hexane		Total HAPs	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
CE-01	0.16	0.67	0.001	0.003	0.001	0.003	0.000	0.000	0.000	0.001	0.002	0.007	0.073	0.319
CE-02	0.16	0.67	0.001	0.003	0.001	0.003	0.000	0.000	0.000	0.001	0.002	0.007	0.073	0.319
CE-03	0.16	0.67	0.001	0.003	0.001	0.003	0.000	0.000	0.000	0.001	0.002	0.007	0.073	0.319
CE-04	0.14	0.58	0.001	0.004	0.001	0.004	0.000	0.000	0.000	0.002	0.002	0.010	0.080	0.350
CE-05	0.14	0.58	0.001	0.004	0.001	0.004	0.000	0.000	0.000	0.002	0.002	0.010	0.080	0.350
CE-06	0.14	0.58	0.001	0.004	0.001	0.004	0.000	0.000	0.000	0.002	0.002	0.010	0.080	0.350
CE-07	0.14	0.58	0.001	0.004	0.001	0.004	0.000	0.000	0.000	0.002	0.002	0.010	0.080	0.350
CE-08	0.14	0.58	0.001	0.004	0.001	0.004	0.000	0.000	0.000	0.002	0.002	0.010	0.080	0.350
CE-09	0.14	0.58	0.001	0.004	0.001	0.004	0.000	0.000	0.000	0.002	0.002	0.010	0.080	0.350
CE-10	0.14	0.58	0.001	0.004	0.001	0.004	0.000	0.000	0.000	0.002	0.002	0.010	0.080	0.350
CE-11	0.14	0.58	0.001	0.004	0.001	0.004	0.000	0.000	0.000	0.002	0.002	0.010	0.080	0.350
GE-01	0.170	0.745	0.001	0.006	0.001	0.006	0.000	0.001	0.001	0.003	0.004	0.016	0.230	1.008
GE-02	0.170	0.745	0.001	0.006	0.001	0.006	0.000	0.001	0.001	0.003	0.004	0.016	0.230	1.008
DEHY-1			0.080	0.349	0.132	0.578	0.175	0.766	0.247	1.078	0.019	0.081	0.651	2.850
DEHY-2			0.080	0.349	0.132	0.578	0.175	0.766	0.247	1.078	0.019	0.081	0.651	2.850
DEHY-3			0.080	0.349	0.132	0.578	0.175	0.766	0.247	1.078	0.019	0.081	0.651	2.850
T0-1											0.001	0.006	0.001	0.006
TOTAL	1.86	8.13	0.25	1.10	0.41	1.78	0.53	2.30	0.74	3.26	0.09	0.38	5.50	24.11

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT W

Class I Legal Advertisement

ATTACHMENT W – CLASS I LEGAL ADVERTISEMENT

Publication of a proper Class I legal advertisement is a requirement of the G35-D registration process. In the event the applicant's legal advertisement fails to follow the requirements of 45CSR13, Section 8 or the requirements of Chapter 59, Article 3, of the West Virginia Code, the application will be considered incomplete and no further review of the application will occur until this is corrected.

The applicant, utilizing the format for the Class I legal advertisement example provided on the following page, shall have the legal advertisement appear a minimum of one (1) day in the newspaper most commonly read in the area where the facility exists or will be constructed. The notice must be published no earlier than five (5) working days of receipt by this office of your application. The original affidavit of publication must be received by this office no later than the last day of the public comment period.

The advertisement shall contain, at a minimum, the name of the applicant, the type and location of the source, the type and amount of air pollutants that will be discharged (include fugitive emissions separately), the nature of the permit being sought, the proposed start-up date for the source, and a contact telephone number for more information.

The location of the source should be as specific as possible starting with: 1.) the street address of the source; 2.) the nearest street or road; 3.) the nearest town or unincorporated area, 4.) the county, and 5.) latitude and longitude coordinates in decimal format.

Types and amounts of pollutants discharged must include all regulated pollutants (Nitrogen Oxides, Carbon Monoxide, Particulate Matter-2.5, Particulate Matter-10, Volatile Organic Compounds, Sulfur Dioxide, Formaldehyde, Benzene, Toluene, Ethylbenzene, Xylenes, Hexane, Total Hazardous Air Pollutants) and their potential to emit or the permit level being sought in units of tons per year.

In the event the 30th day is a Saturday, Sunday, or legal holiday, the comment period will be extended until 5:00 p.m. on the following regularly scheduled business day.

A list of qualified newspapers that are eligible to publish legal ads may be found:

http://www.sos.wv.gov/elections/resource/Documents/Qualified%20Newspapers.pdf

Affidavit Notice Will Be Submitted Upon Receipt

RECOMMENDED PUBLIC NOTICE TEMPLATE

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Goff Connector LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a G35-D General Permit Registration for a natural gas compressor and/or dehydration_facility located on along Pigtail Run-Green Valley Road near Bridgeport, WV, in Harrison County, West Virginia. The latitude and longitude coordinates are: (39.23405N, 80.17733W).

The applicant estimates the potential to discharge the following Regulated Air Pollutants will be:

86.49 tons of Oxides of Nitrogen per year
78.79 tons of Volatile Organic Compounds per year
46.10 tons of Carbon Monoxide per year
0.26 tons of Particulate Matter per year
0.26 tons of Sulfur Dioxide per year
0.53 tons of Sulfur Dioxide per year
0.41 tons of Benzene per year
0.53 tons of Toluene per year
0.74 tons of Ethylbenzene per year
0.09 tons of Xylenes per year
24.11 tons of Total Hazardous Air Pollutants
142,582 tons of Greenhouse Gases per year

Startup of operation is planned to begin on or about the 1st day of October, 2018. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours. Dated this the (Day) day of (Month), (Year).

By: Mr. Mike Hopkins Chief Operating Officer Goff Connector LLC