CONSOLIDATED REGULATION 13 APPLICATION FOR DUNBAR HMA PLANT #30, FRAP SYSTEM, AND PORTABLE CRUSHING AND SCREENING SYSTEM

Prepared for:

West Virginia Paving, Inc.

2950 Charles Avenue Dunbar, West Virginia 25064

Prepared by:

Potesta & Associates, Inc.

7012 MacCorkle Avenue, SE Charleston, West Virginia 25304 Phone: (304) 342-1400 Fax: (304) 343-9031 Email: potesta@potesta.com

Project No. 0101-16-0318-030

March 2018

TABLE OF CONTENTS

General Applicant Information	SECTION I - III
Business Certificate	ATTACHMENT A
Area Map	ATTACHMENT B
Installation and Start Up Schedule	ATTACHMENT C
Regulatory Discussion	ATTACHMENT D
Plot Plan	ATTACHMENT E
Detailed Process Flow Diagram	ATTACHMENT F
Process Description	ATTACHMENT G
Emission Units Table	ATTACHMENT I
Emission Points Data Summary Sheet	ATTACHMENT J
Fugitive Emissions Data Summary Sheet	ATTACHMENT K
Emissions Unit Data Sheets	ATTACHMENT L
Supporting Emissions Calculations	ATTACHMENT N
Monitoring/Recordkeeping/Reporting/Testing Plans	ATTACHMENT O
Public Notice	ATTACHMENT P
Engine Stack Test	APPENDIX

Attachments Not Applicable to this Application: Attachments H, M*, Q, R and S. * Information on the cyclone and baghouse included in Attachment L.

SECTION I - III GENERAL APPLICANT INFORMATION

WEST VIRGINIA DEPARTMENT OF

APPLICATION FOR NSR PERMIT AND

ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALI 601 57th Street, SE Charleston, WV 25304 (304) 926-0475 www.dep.wv.gov/dag	APPLICATION FOR NSR PERMIT AND TITLE V PERMIT REVISION (OPTIONAL)			
PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KI CONSTRUCTION MODIFICATION RELOCATION CLASS I ADMINISTRATIVE UPDATE AFTER-THE-I	PLEASE CHECK TYPE OF 45CSR30 (TITLE V) REVISION (IF ANY): ADMINISTRATIVE AMENDMENT MINOR MODIFICATION SIGNIFICANT MODIFICATION IF ANY BOX ABOVE IS CHECKED, INCLUDE TITLE V REVISION INFORMATION AS ATTACHMENT S TO THIS APPLICATION			
FOR TITLE V FACILITIES ONLY: Please refer to "Title V (Appendix A, "Title V Permit Revision Flowchart") and				
Sec	ction I. G	eneral		
 Name of applicant (as registered with the WV Secretary of State's Office): West Virginia Paving, Inc. Federal Employer ID No. (FEIN): 55-0714092 				
3. Name of facility (if different from above): Dunbar HMA Plant #30		4. The applicant is the: ☐ OWNER ☐ OPERATOR ☒ BOTH		
5A. Applicant's mailing address: 2950 Charles Avenue Dunbar, West Virginia 25064	5B. Facility's present physical address: 2950 Charles Avenue Dunbar, West Virginia 25064			
6. West Virginia Business Registration. Is the applican If YES, provide a copy of the Certificate of Incorpor change amendments or other Business Registration If NO, provide a copy of the Certificate of Authority amendments or other Business Certificate as Attach	ration/Organ Certificate as //Authority of	ization/Limited Par Attachment A.	rtnersh	ip (one page) including any name
7. If applicant is a subsidiary corporation, please provide	the name of	parent corporation:	NA	
8. Does the applicant own, lease, have an option to buy of the street of the street of the street owns site. If YES , please explain: Applicant owns site.		nave control of the μ	propose	ed site? ⊠ YES □ NO
9. Type of plant or facility (stationary source) to be con- administratively updated or temporarily permitted crusher, etc.): Hot Mix Asphalt Plant, FRAP System Screening System.	d (e.g., coal p	reparation plant, pri	imary	10. North American Industry Classification System (NAICS) code for the facility: 324121
11A. DAQ Plant ID No. (for existing facilities only): 039-00020		ated with this proces		SR30 (Title V) permit numbers existing facilities only):
All of the required forms and additional information on be f		a Daymitting Castion	of DAC	No wahaita ay yanyaatad bu whana

12A.		
For Modifications, Administrative Updates or Te present location of the facility from the nearest state		please provide directions to the
For Construction or Relocation permits, please proad. Include a MAP as Attachment B.	•	site location from the nearest state
From I-64 West, take exit 53 and take ramp right towa mile and turn right onto WV-25 (Fairlawn Avenue). G 0.5 miles toward the river and turn left onto Charles Ave.	o 1.5 miles and turn left at stoplight or	
12.B. New site address (if applicable):	12C. Nearest city or town:	12D. County:
Same	Dunbar	Kanawha
12.E. UTM Northing (KM): 4,247.035	12F. UTM Easting (KM): 433.551	12G. UTM Zone: 17
13. Briefly describe the proposed change(s) at the facilit West Virginia Paving, Inc. proposes to move from generone permit and permit the portable RAP System.14A. Provide the date of anticipated installation or change.	ral permit registration to Regulation 13 ge: 05/01/2018	14B. Date of anticipated Start-Up
If this is an After-The-Fact permit application, prov change did happen:	ide the date upon which the proposed	if a permit is granted: 05/01/2018
14C. Provide a Schedule of the planned Installation of/application as Attachment C (if more than one uni		units proposed in this permit
15. Provide maximum projected Operating Schedule of HMA: Hours Per Day 12; Days Per Week 6; Weeks Per FRAP: Hours Per Day 12; Days Per Week 6; Weeks Per Portable Crushing and Screening: Hours Per Day 24; D	er Year 40 r Year 9	ation:
16. Is demolition or physical renovation at an existing fa	cility involved?	
17. Risk Management Plans. If this facility is subject to changes (for applicability help see www.epa.gov/cepp	,	, , ,
18. Regulatory Discussion. List all Federal and State a proposed process (<i>if known</i>). A list of possible applica (Title V Permit Revision Information). Discuss applica information as Attachment D.	able requirements is also included in Att	achment S of this application
Section II. Additional att	achments and supporting d	ocuments.
19. Include a check payable to WVDEP – Division of Air 45CSR13).	,, <u> </u>	
20. Include a Table of Contents as the first page of you	ur application package.	
21. Provide a Plot Plan , e.g. scaled map(s) and/or sket source(s) is or is to be located as Attachment E (Re		erty on which the stationary
□ Indicate the location of the nearest occupied structure	e (e.g. church, school, business, reside	nce).
1		

- 22. Provide a **Detailed Process Flow Diagram(s)** showing each proposed or modified emissions unit, emission point and control device as **Attachment F.**
- 23. Provide a Process Description as Attachment G.
 - Also describe and quantify to the extent possible all changes made to the facility since the last permit review (if applicable).

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

- 24. Provide Material Safety Data Sheets (MSDS) for all materials processed, used or produced as Attachment H.
- For chemical processes, provide a MSDS for each compound emitted to the air.

25.	Fill out the Emission Units Table a	nd provide it as Attachment	I.	
26.	Fill out the Emission Points Data S	Summary Sheet (Table 1 and	d Table 2) and provid	e it as Attachment J.
27.	Fill out the Fugitive Emissions Dat	a Summary Sheet and provi	de it as Attachment	K.
28.	Check all applicable Emissions Un	it Data Sheets listed below:		
	Bulk Liquid Transfer Operations	☐ Haul Road Emissions	☐ Quarry	
	Chemical Processes			rials Sizing, Handling and Storage
	Concrete Batch Plant	☐ Incinerator	Facilities	
	Grey Iron and Steel Foundry	☐ Indirect Heat Exchang	ger 🗌 Storage Ta	anks
	General Emission Unit, specify			
		Fill out and provide the Em	issions Unit Data Sh	neet(s) as Attachment L.
29.	Check all applicable Air Pollution C	Control Device Sheets listed	below:	
	Absorption Systems	□ Baghouse Include	d in HMA EUDS	☐ Flare
	Adsorption Systems	☐ Condenser		
	Afterburner	☐ Electrostatic Pred	cipitator	☐ Wet Collecting System
	Other Collectors, specify			
Fill	out and provide the Air Pollution Co	ntrol Device Sheet(s) as At	tachment M.	
30.	Provide all Supporting Emissions Items 28 through 31.	Calculations as Attachmen	t N, or attach the calc	ulations directly to the forms listed in
31.	Monitoring, Recordkeeping, Reportesting plans in order to demonstrate application. Provide this information	e compliance with the propos		oring, recordkeeping, reporting and nd operating parameters in this permit
>	Please be aware that all permits mu measures. Additionally, the DAQ m are proposed by the applicant, DAQ	ay not be able to accept all m	neasures proposed by	the applicant. If none of these plans
32.	Public Notice. At the time that the	application is submitted, place	ce a Class I Legal A d	Ivertisement in a newspaper of general
	circulation in the area where the sou	irce is or will be located (See	45CSR§13-8.3 throu	gh 45CSR§13-8.5 and <i>Example Legal</i>
	Advertisement for details). Please	submit the Affidavit of Publ	ication as Attachme	nt P immediately upon receipt.
33.	Business Confidentiality Claims.	Does this application include	confidential informati	on (per 45CSR31)?
	☐ YES	⊠ NO		
>		ding the criteria under 45CSR	§31-4.1, and in accor	ential and provide justification for each dance with the DAQ's " <i>Precautionary</i> Attachment Q.
	S	ection III. Certification	on of Informatio	on
34.	Authority/Delegation of Authority Check applicable Authority Form b		ne other than the resp	consible official signs the application.
	Authority of Corporation or Other Bus	iness Entity	☐ Authority of Part	nership
	Authority of Governmental Agency		☐ Authority of Limi	ited Partnership
Sub	omit completed and signed Authority	Form as Attachment R.		
AII	of the required forms and additional in	formation can be found under	the Permitting Section	of DAQ's website, or requested by phone.

35A. Certification of Information. To certify 2.28) or Authorized Representative shall check	this permit ap	plication, a Responsible Officate box and sign below.	cial (per 45CSR§13-2.22 and 45CSR§30-				
Certification of Truth, Accuracy, and Comp							
I, the undersigned Responsible Official / Authorized Representative, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.							
Compliance Certification Except for requirements identified in the Title I that, based on information and belief formed a compliance with all applicable requirements.	✓ Application fo	or which compliance is not ac a inquiry, all air contaminant s	chieved, I, the undersigned hereby certify sources identified in this application are in				
SIGNATURE KNOW DESCRIPTION		Г	DATE: 3-2-18				
(Please	use blue ink)		(Please use blue ink)				
35B. Printed name of signee: Robert Brookov	/ег		35C. Title: Vice President				
35D. E-mail: bbrookover@wvpaving.com	36E. Phone:	304-768-9733	36F. FAX: 304-720-6492				
36A. Printed name of contact person (if differe	nt from above)	: Trey Mattox	36B. Title: Environmental Manager				
36C. E-mail: tmattox@wvpaving.com	36D, Phone:	304-720-2422	36E. FAX: 304-720-6492				
PLEASE CHECK ALL APPLICABLE ATTACHMEN	TS INCLUDED V	VITH THIS PERMIT APPLICATI	ON:				
Attachment A: Business Certificate Attachment B: Map(s) Attachment C: Installation and Start Up Schell Attachment D: Regulatory Discussion Attachment E: Plot Plan Attachment F: Detailed Process Flow Diagran Attachment G: Process Description Attachment H: Material Safety Data Sheets (M Attachment I: Emission Units Table Attachment J: Emission Points Data Summary	n(s) SDS)	✓ Attachment L: Emissions ☐ Attachment M: Air Polluti ✓ Attachment N: Supporting	on Control Device Sheet(s) g Emissions Calculations g/Recordkeeping/Reporting/Testing Plans ic Confidential Claims Forms				
Please mail an original and three (3) copies of the	complete pern	nit application with the signatu	rre(s) to the DAQ, Permitting Section, at the				
addiess nated on the linst	hañe ot mis sb	plication. Please DO NOT fax	репли applications.				
FOR AGENCY USE ONLY – IF THIS IS A TITLE V Forward 1 copy of the application to the Title For Title V Administrative Amendments: NSR permit writer should notify Title V For Title V Minor Modifications: Title V permit writer should send appro NSR permit writer should notify Title V For Title V Significant Modifications processes NSR permit writer should notify a Title Public notice should reference both 45 EPA has 45 day review period of a draft	V Permitting Gr permit writer of priate notificate permit writer of in parallel with V permit writer icsR13 and Title	f draft permit, ion to EPA and affected states f draft permit. h NSR Permit revision: of draft permit,	within 5 days of receipt,				
All of the required forms and additional Information	on can be found	d under the Permitting Section	of DAQ's website, or requested by phone.				

ATTACHMENT A BUSINESS CERTIFICATE

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO:

WEST VIRGINIA PAVING INC 2950 CHARLES AVE DUNBAR, WV 25064-2103

BUSINESS REGISTRATION ACCOUNT NUMBER:

1036-6199

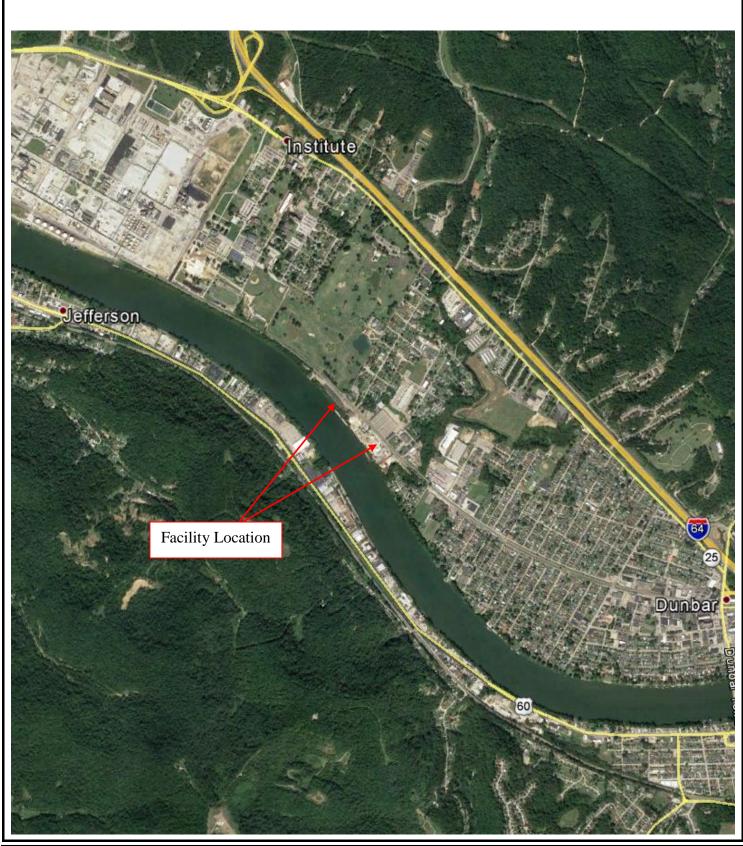
This certificate is issued on:

06/14/2010

This certificate is issued by the West Virginia State Tax Commissioner in accordance with W.Va. Code § 11-12.

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued.


This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.1 L1112742656

ATTACHMENT B AREA MAP

7012 MacCorkle Avenue, S.E Charleston, West Virginia 25304

Phone: (304) 342-1400 Fax: (304) 343-9031

Area Map

West Virginia Paving, Inc.
HMA, FRAP System, and Portable Crushing &
Screening System
Dunbar Location
Kanawha County, West Virginia

ATTACHMENT C INSTALLATION AND START UP SCHEDULE

ATTACHMENT C

SCHEDULE OF INSTALLATION

This permit application is being submitted to place the entire facility under a Regulation 13 Individual Permit. The application also includes permitting a portable crushing system which will be brought to the site as needed to size RAP. There is no construction activity related to this application. The facility will start operating under the individual permit upon issuance.

ATTACHMENT D REGULATORY DISCUSSION

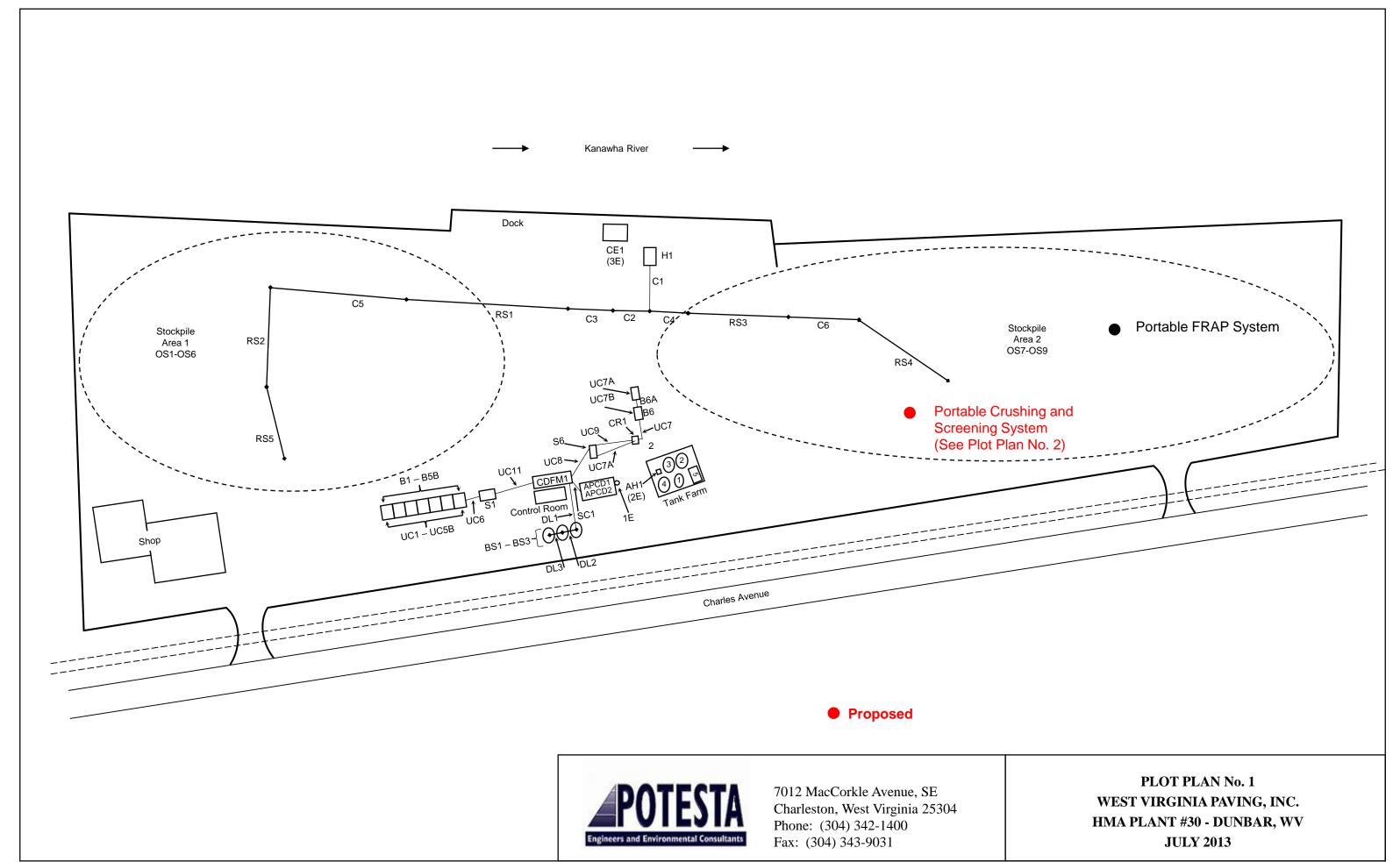
ATTACHMENT D

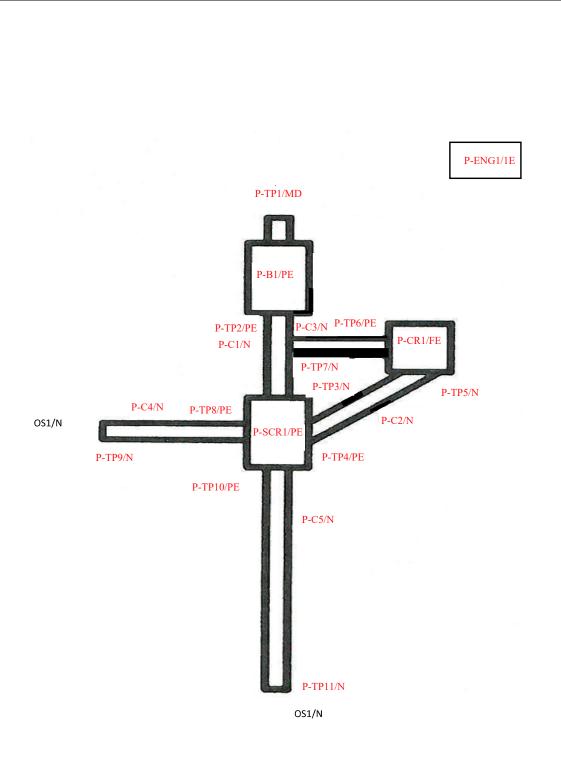
REGULATORY DISCUSSION

The facility is subject to the following regulations:

- A. 45CSR7 requires the facility to maintain fugitive dust control systems and obtain required permits.
- B. 45CSR3 "To Prevent and Control Particulate Air Pollution from the Operation of Hot Mix Asphalt Plants"
- C. 45CSR13 "Permits for Construction, Modification, Relocation and Operation of Stationary Sources of Air Pollutants, Notification Requirements, Temporary Permits, General Permits, and Procedures for Evaluation"
- D. 45CSR16 "Standards of Performance for Stationary Sources," which incorporates by reference 40CFR60 Subpart I, "Standards of Performance for Hot Mix Asphalt Facilities", and 40CFR60 Subpart OOO, "Standards of Performance for Non-Metallic Mineral Processing Plants".
- E. 45CSR22 "Air Quality Management Fee Program"
- F. 45CSR30 "Requirements for Operating Permits" (Deferred Source). The facility potential to emit (PTE) does not exceed 100 tons per year (tpy) of a regulated air pollutant or 10 tpy of a single HAP or 25 tpy of aggregated HAPs. The facility PTE does not exceed 100,000 metric tpy of CO2e and is therefore not subject to regulation under the rule.
- G. 40CFR63 Subpart ZZZZ "National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines" The clamshell engine (CE1) is subject to the provisions of this subpart, specifically requirements for existing non-emergency stationary engines with between 300 and 500 HP constructed at area sources before June 12, 2006. The engine has been retrofitted with a catalyst and has passed performance testing (Appendix).

Note on the Hot Oil Heater AH1: The DAQ "Policy on Regulations 2 and 10 Record Keeping and Reporting Requirements", exempts fuel burning units less than 10 million Btu's from the provisions of 45CSR2 and 45CSR10 as detailed in §45-2-11 and §45-10-9, and from the reporting and record keeping guidance found within the policy. As a result, AH-1 is not subject to any substantive requirement of 45CSR2 or 45CSR10.

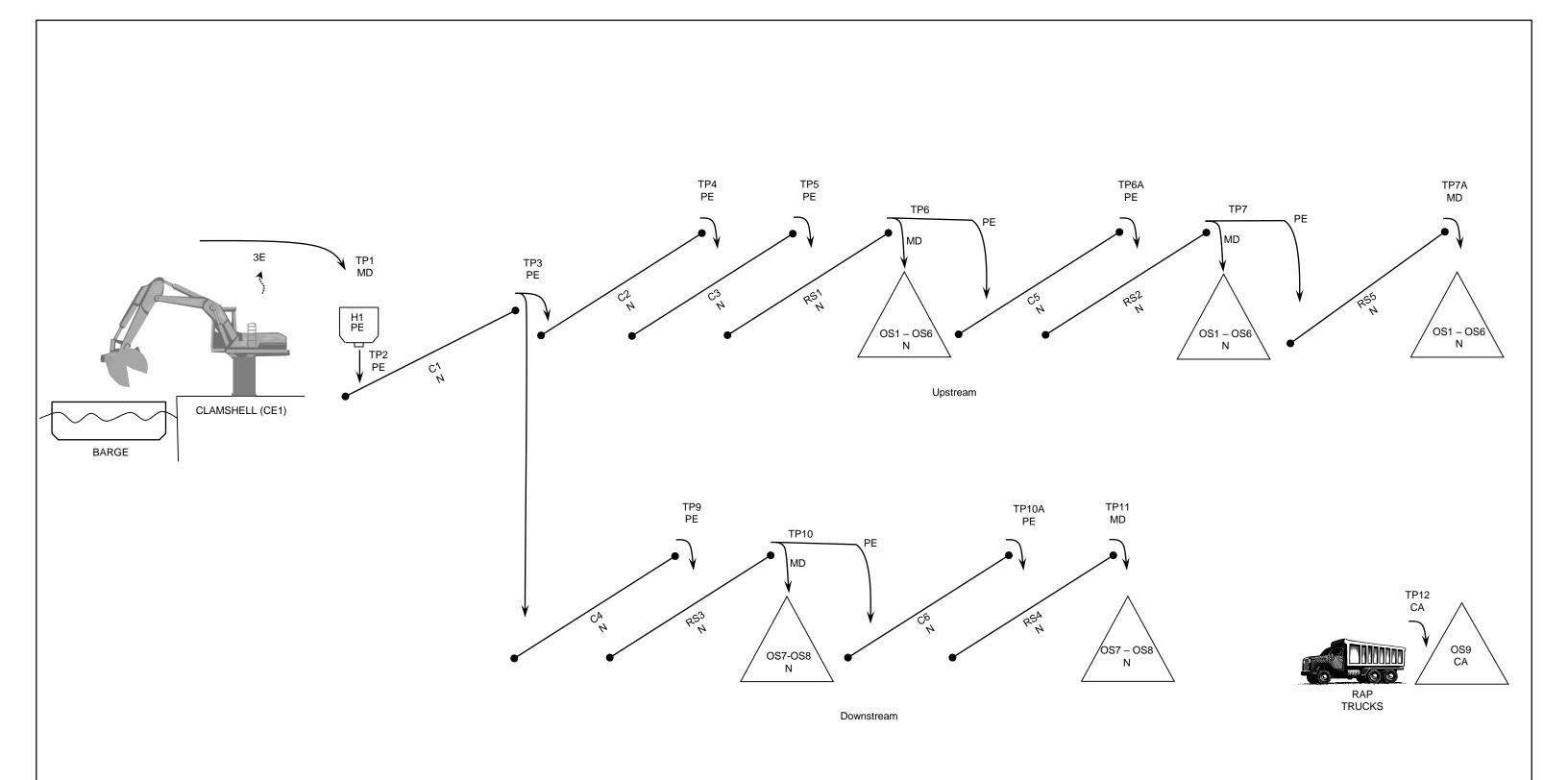

Non-Road Engines


There are two engines in this application which are not subject to permitting. These engines are portable/transportable and do not remain in one location within a facility for 12 months. The engine on the FRAP system (F-ENG1) and the engine on the portable crushing and screening system (P-ENG1) meet the definition of a non-road engine in 40 CFR Part 1068.30. Non-road engines are not subject to 40CFR60 Subpart IIII or Subpart JJJJ nor 40CFR63 Part ZZZZ. Furthermore, these engines are not subject to permitting under Regulation 13, 45CSR13, Section 1.1., Scope, which excludes non-road engines.

Engine F-ENG1 is an onboard engine on a track-mounted system. The engine both powers the equipment and provides the unit with mobility to move around the site as needed. This type of engine was the subject of a Request for Determination in which the United States Environmental Protection Agency (EPA), Region III, issued a determination on February 21, 2018 which stated this type of engine was a non-road engine.

Engine P-ENG1 is a generator which is mounted in a trailer. The trailer's purpose is to move the engine to the location which it is needed to power other facilities (portable crushing and screening). EPA issued a determination specifically on this engine to West Virginia Paving, Inc. stating this engine was a non-road engine. The letter from EPA was undated but included a reference code of 3AP20.

ATTACHMENT E PLOT PLAN

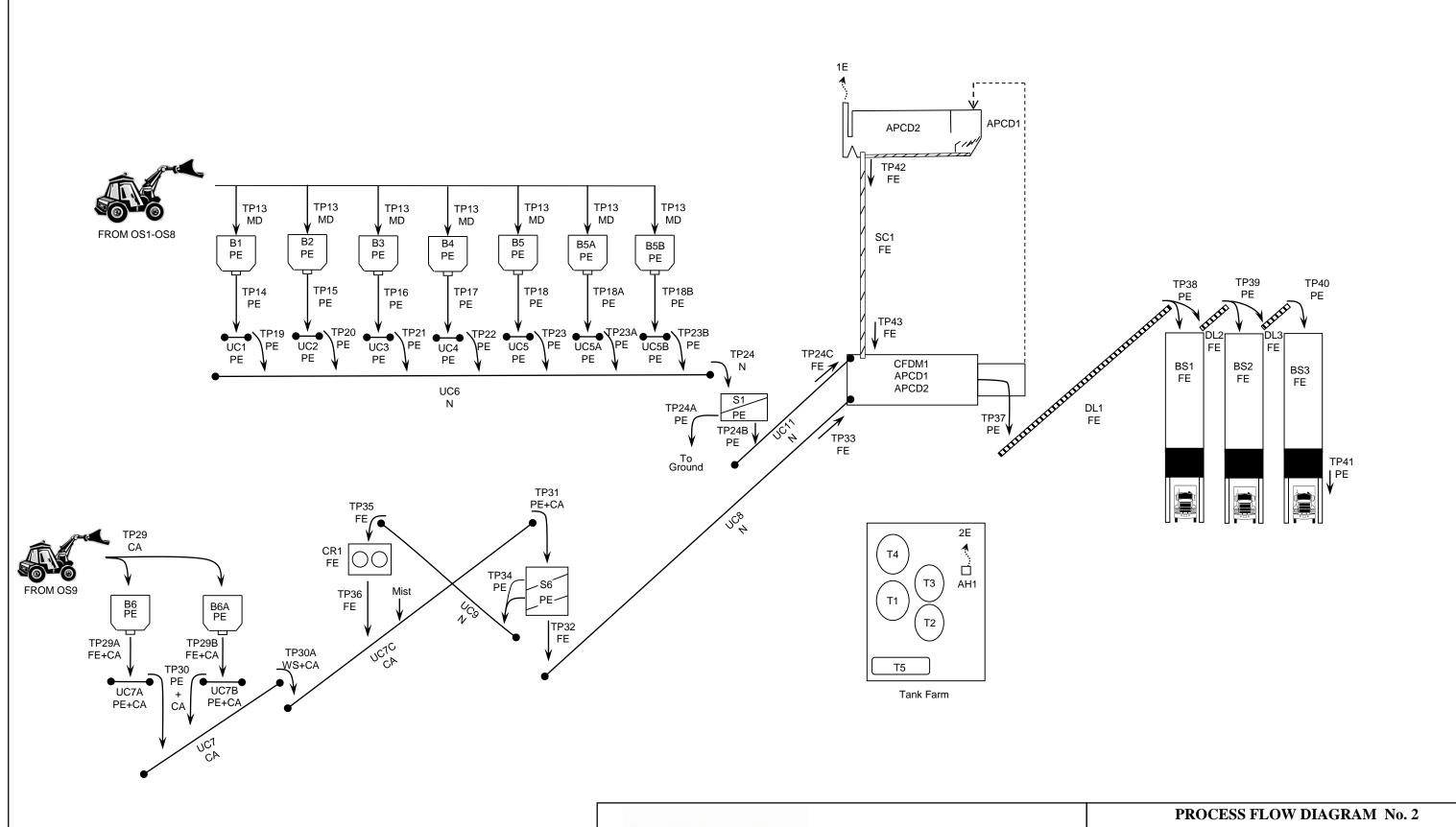

7012 MacCorkle Avenue, S.E Charleston, West Virginia 25304

Phone: (304) 342-1400 Fax: (304) 343-9031

PLOT PLAN No. 2

Portable Crushing and Screening Facility West Virginia Paving, Inc. Project No. 0101-16-0318-030

ATTACHMENT F DETAILED PROCESS FLOW DIAGRAM



7012 MacCorkle Avenue, SE Charleston, West Virginia 25304 Phone: (304) 342-1400

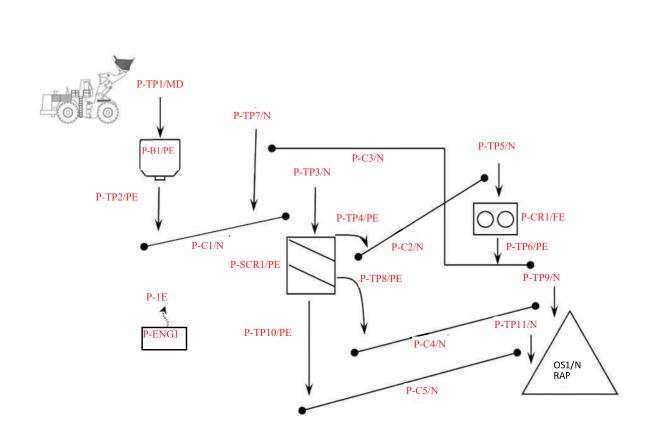
Fax: (304) 343-9031

PROCESS FLOW DIAGRAM No. 1 WEST VIRGINIA PAVING, INC. HMA PLANT #30 - DUNBAR, WV JULY 2013

7012 MacCorkle Avenue, SE Charleston, West Virginia 25304 Phone: (304) 342-1400

Fax: (304) 343-9031

PROCESS FLOW DIAGRAM No. 2 WEST VIRGINIA PAVING, INC. HMA PLANT #30 - DUNBAR, WV JULY 2013


Notes: F-RS1 will be fed by F-BC3 or F-BC4 at any given time, not both at the same time. OS9A and OS9B will be considered part of existing RAP stockpile OS9.

7012 MacCorkle Avenue, SE Charleston, West Virginia 25304

Phone: (304) 342-1400 Fax: (304) 343-9031

PROCESS FLOW DIAGRAM No. 3
PORTABLE FRAP PROCESSING SYSTEM
WEST VIRGINIA PAVING, INC.
August 2014

7012 MacCorkle Avenue, S.E Charleston, West Virginia 25304 Phone: (304) 342-1400

Fax: (304) 343-9031

PROCESS FLOW DIAGRAM No. 4

Portable Crushing and Screening Facility
West Virginia Paving, Inc.
Project No. 0101-16-0318-030

ATTACHMENT G PROCESS DESCRIPTION

ATTACHMENT G

PROCESS DESCRIPTION

The hot mix asphalt plant (HMA) and the portable fractionated reclaimed asphalt pavement (FRAP) system are currently permitted under General Permit G20-B187B. This application is being submitted to move that equipment from the G20-B187B permit to a Regulation 13 Individual Permit and to permit the portable crushing and screening system which will be brought to the site as needed.

The facility description below is provided to the three main operations: HMA plant, FRAP system, and the portable crushing and screening system.

HMA

Aggregates (sand, limestone, and slag) delivered to the site by barge and are unloaded by a stationary clamshell powered by a compression engine CE1/N (3E) which deposits material into a hopper H1/PE (TP1/MD). Material drops from the hopper onto a stationary conveyor belt, C1/N (TP2/PE). C1/N transfers material to one of two additional conveyor belts, C2/N or C4/N (TP3/PE).

Conveyor C2/N transfers material to conveyor C3/N (TP4/PE), then onto a radial stacker RS1/N (TP5/PE). From this radial stacker, material can either be placed in several stockpiles, OS1-OS6/N (TP6/MD) or material can transfer to another conveyor belt C5/N (TP6/PE). From C5/N, material is transferred to another radial stacker, RS2/N (TP6A/PE), which currently places material into stockpiles OS1-OS6/N (TP7/MD). This modification will add an additional radial stacker, RS5/N which will accept material transferred from RS2/N (TP7/PE) and move the material to stockpiles OS1-OS6/N (TP7A/MD).

Conveyor C4/N transfers material to radial stacker RS3/N (TP9/PE), which transports material to stockpile OS7/N or OS8/N (TP10/MD) or to conveyor C6/N (TP10/PE). Conveyor C6/N transfers material to radial stacker RS4/N (TP10A/PE), which transfers material to stockpile OS7/N or OS8/N (TP11/MD).

Recycled asphalt pavement (RAP) is trucked to the site and stored in stockpile OS9/CA (TP12/CA).

Aggregates from OS1/N through OS6/N transferred by a front-end loader to aggregate feed bins B1/PE through B5/PE (TP13/MD). This modification will add two additional aggregate bins, B5A/PE and B5B/PE (TP13/MD). From the bins, material drops onto conveyor belts located beneath each bin then onto a single conveyor belt; B1/PE to UC1/PE (TP14/PE) to UC6/PE (TP19/PE), B2/PE to UC2/PE (TP15/PE) to UC6/PE (TP20/PE), B3/PE to UC3/PE (TP16/PE) to UC6/PE (TP21/PE), B4/PE to UC4/PE (TP17/PE) to UC6/PE (TP22/PE), B5/PE to UC5/PE (TP18/PE) to UC6/PE (TP23A/PE), and B5B/PE to UC5B/PE (TP18B/PE) to UC6/PE (TP23B/PE).

Conveyor UC6/PE feeds an in-line scalping screen S1/PE (TP24/N). Oversized material drops to the ground (TP24A/PE) and properly sized material drops onto conveyor belt UC11/N (TP24B/PE) which feeds the new dryer/drum CFDM1/APCD1 & APCD2 (TP24C/FE).

RAP from OS9/CA is transferred by front-end loader to the existing RAP hopper B6/PE (TP29/CA), or the new RAP hopper B6A/PE (TP29/CA) that is being added as part of this modification. The RAP drops from the existing hopper B6/PE onto conveyor belt UC7A/PE+CA (TP29A/FE+CA) and then onto conveyor belt UC7/CA (TP30/PE+CA). From the new hopper B6A/PE, RAP drops onto new conveyor belt UC7B/PE+CA (TP29B/PE+CA) and then onto conveyor belt UC7/CA (TP30/PE+CA). Conveyor UC7/CA feeds conveyor belt UC7C/CA (TP30A/WS+CA), which feeds the RAP screen S6\PE (TP31/PE+CA). Oversized material from both screen decks drops onto conveyor belt UC9/N (TP34/PE), which feeds the RAP crusher CR1\FE (TP35/FE). RAP leaves the crusher and drops back onto conveyor belt UC7C/CA (TP36/FE), which returns the material to the RAP screen. A mister is located along this conveyor belt just after TP36/FE. Properly sized material leaves from the bottom deck of the screen only and drops onto conveyor belt UC8/N (TP32/FE), which transports the material to the new dryer/drum CFDM1/APCD1 & APCD2 (TP33/FE).

Liquid asphaltic cement from T1 and T4 is piped to CFDM1/APCD1 & APCD2, where the various materials are mixed to form hot mix asphalt (HMA) or warm mix asphalt (WMA). The dryer/drum is fired with natural gas, number 2 fuel oil from tank T2, or used oil from tank T3. The dryer/drum CFDM1 is vented to a baghouse equipped with an inertial separator APCD1 & APCD2.

Once mixed, the HMA/WMA leaves the drum and drops onto drag link conveyor DL1/FE (TP37/PE). HMA/WMA leaving drag link conveyor DL1/FE drops into asphalt silo BS1/FE or onto drag link conveyor DL2/FE via TP38/PE. From drag link conveyor DL2/FE, asphalt drops into asphalt silo BS2/FE or drag link conveyor DL3/FE via TP39/PE. From drag link conveyor DL3/FE, asphalt drops into BS3/FE (TP40/PE).

The HMA/WMA is transferred to trucks via the truck load-outs at the base of each of the silos (TP41/PE) and is shipped offsite.

Emissions from CFDM1 are vented to the inertial separator and baghouse APCD1 & APCD2 (1E). Collected particulate matter is returned to CFDM1/APCD1 & APCD2 via auger SC1/FE (TP42/FE and TP43/FE), where it becomes part of the product.

Asphaltic cement is trucked to the site and stored in heated tanks T1 and T4. Both tanks are heated via a natural gas-fired asphalt heater AH1/N (2E). Number 2 fuel oil is trucked to the site and stored in tank T2 and used oil is trucked to the site and stored in tank T3. Natural gas is piped to the facility. Asphalt emulsion (tack) is trucked to the site and stored in tank T5. This material is not used in the manufacture of HMA; rather it is transferred to asphalt paving contractor trucks for use off-site.

PORTABLE FRAP SYSTEM

West Virginia Paving, Inc. uses an ASTEC ProSizer® 3100 (a portable FRAP processing system), to process reclaimed asphalt pavement (RAP) at the site into high-quality, well-graded aggregate coated with asphaltic cement. The ASTEC ProSizer 3100 is equipped with a 200 tph double-deck screen and a 75 tph horizontal shaft impactor. The unit is powered by a John Deere 6068H 173 hp engine (F-ENG1/N [F-1E]) which is a non-road engine. A portable radial stacker is used with the system and is powered by the same engine. The unit is utilized for a short time before it is moved to another site and returns to the site as needed. FRAP is fed into the asphalt plant via the existing RAP feed system and the RAP throughput of the asphalt plant is not increased. There is no change in the permitted throughput or maximum storage capacity of the facility's raw and sized RAP stockpile (OS9/N).

RAP from existing RAP stockpile (OS9/N) is loaded into feed hopper F-H1/PE by an end loader [F-TP1/MD]. The feed bin feeds belt conveyor F-BC1/PE [F-TP2/FE], which transports the RAP to the double-deck screen F-S1/FE [F-TP3/PE]. Oversized material is fed to belt conveyor F-BC2/N [F-TP4/FE], which transports the material to the horizontal shaft impactor F-CR1/FE [F-TP5/FE]. The material drops from the crusher onto belt conveyor F-BC1/PE [F-TP7/FE], which transports it back to the screen. The crusher can also be arranged so that oversized material from the screen bypasses the crusher and returns to the RAP stockpile OS9/N [F-TP6/N].

The smaller fractions from the screen are discharged to belt conveyor F-BC3/N [F-TP8/PE] and F-BC4/N [F-TP10/PE]. F-BC3/N and F-BC4/N can transfer material directly to the sized RAP stockpiles OS9A/N [F-TP9/MD] and OS9B/N [F-TP11/MD] or to radial stacker F-RS1/N [F-TP9/MD or F-TP11/MD]. The radial stacker is only fed by one of the belt conveyors F-BC3/N or F-BC4/N at any given time; not both at the same time. Material from F-RS1/N is transferred to OS9A/N or OS9B/N [F-TP12/MD]. From stockpiles OS9A/N and OS9B/N, materials are transferred via end loader to the existing stationary RAP hopper B6/PE [TP-29/PE] or B6A/PE [TP-29PE].

When FRAP is transferred to the existing RAP system, the flop gate on the screen is opened so that the fractionated RAP passes through the screen and is not double-processed.

Sized FRAP stockpiles OS9A/N and OS9B/N will be part of the existing RAP stockpile OS9/N. The throughput of RAP will not be changed with this application, nor will additional storage be created. RAP will either be sized to a single size using the existing RAP equipment and there will be a single large RAP stockpile OS9/N or RAP will be sized to two different sizes with the portable FRAP equipment and there will be two smaller sized FRAP stockpiles OS9A/N and OS9B/N, but the capacity and base of the RAP/FRAP stockpile will remain unchanged.

PORTABLE CRUSHING AND SCREENING

West Virginia Paving, Inc. is submitting this application to have a Portable Crushing and Screening System for its Dunbar facility in Kanawha City permitted together with the HMA Plant and FRAP System under the same Regulation 13 Individual Permit. The portable unit

crushes RAP and is powered by a diesel generator set (P-ENG1 [P-1E]). The portable system may be located anywhere at the existing RAP stockpile. RAP is transferred from the existing site pile permitted under G20-B187B by front endloader to RAP bin P-B1/PE (P-TP1/MD). P-B1/PE drops material onto belt conveyor P-C1/N (P-TP2/PE) to screen P-SCR1/PE (P-TP3/N). Oversized material transfers to belt conveyor P-C2/N (P-TP4/PE) and is transported to the RAP crusher P-CR1/FE (P-TP5/N). Material leaving the crusher transfers to belt conveyor P-C3/N (P-TP6/PE) and back to P-C1/N (P-TP7/N) then to P-SCR1/PE. Pass through RAP from P-SCR1/PE transfers to conveyor P-C4/N (P-TP8/PE) to OS1/N (P-TP9/N) and to conveyor P-C5/N (P-TP10/PE) to OS1/N (P-TP11/N).

The diesel generator set (P-ENG1 [P-1E]) is a non-road engine. This genset is mounted in a trailer. When the portable crushing and screening facility is brought to this location, it will be powered by the non-road engine-genset. The genset is brought to the site and parked. The genset is not fastened to the ground or installed in any manner except being parked on the site.

ATTACHMENT I EMISSION UNITS TABLE

Emission Units Table

(includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)-

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
CE1	3E	Clamshell Compression Engine	2000 (Man.)	NA	No Change	N
НІ	HI	Aggregate Hopper	2001	400 tph	No Change	N
C1	C1	Conveyor Belt	2001	400 tph	No Change	N
C2	C2	Conveyor Belt	2001	400 tph	No Change	N
С3	C3	Conveyor Belt	2001	400 tph	No Change	N
RS1	RS1	Radial Stacker	2001	400 tph	No Change	N
C5	C5	Conveyor Belt	2001	400 tph	No Change	N
RS2	RS2	Radial Stacker	2001	400 tph	No Change	N
RS5	RS5	Radial Stacker	2013	400 tph	No Change	N
C4	C4	Conveyor Belt	2001	400 tph	No Change	N
RS3	RS3	Radial Stacker	2001	400 tph	No Change	N
C6	C6	Conveyor Belt	2001	400 tph	No Change	N
RS4	RS4	Radial Stacker	2001	400 tph	No Change	N
B1	B1	Aggregate Bin	2001	400 tph	No Change	PE
B2	B2	Aggregate Bin	2001	400 tph	No Change	PE
В3	В3	Aggregate Bin	2001	400 tph	No Change	PE
B4	B4	Aggregate Bin	2001	400 tph	No Change	PE
В5	В5	Aggregate Bin	2001	400 tph	No Change	PE
B5A	B5A	Aggregate Bin	2001	400 tph	No Change	PE
B5B	B5B	Aggregate Bin	2001	400 tph	No Change	PE

¹ For Emission Units (or <u>Sources</u>) use the following numbering system:1S, 2S, 3S,... or other appropriate designation.

² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

³ New, modification, removal

⁴ For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

Note: PF = Process Fugitive Emissions, OD = Open Dust Emissions

Emission Units Table

(includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)-

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
UC1	UC1	Conveyor Belt	2001	400 tph	No Change	PE
UC2	UC2	Conveyor Belt	2001	400 tph	No Change	PE
UC3	UC3	Conveyor Belt	2001	400 tph	No Change	PE
UC4	UC4	Conveyor Belt	2001	400 tph	No Change	PE
UC5	UC5	Conveyor Belt	2001	400 tph	No Change	PE
UC5A	UC5A	Conveyor Belt	2001	400 tph	No Change	PE
UC5B	UC5B	Conveyor Belt	2001	400 tph	No Change	PE
UC6	UC6	Conveyor Belt	2001	400 tph	No Change	N
S1	S1	Scalping Screen	2001	400 tph	No Change	PE
UC11	UC11	Conveyor Belt	2001	400 tph	No Change	N
В6	В6	RAP Bin	2001	100 tph	No Change	PE
B6A	B6A	RAP Bin	2013	100 tph	No Change	PE
UC7A	UC7A	Conveyor Belt	2001	100 tph	No Change	PE+CA
UC7B	UC7B	Conveyor Belt	2013	100 tph	No Change	PE+CA
UC7	UC7	Conveyor Belt	2001	100 tph	No Change	CA
UC7C	UC7C	Conveyor Belt	2001	100 tph	No Change	CA
S6	S6	RAP Screen	2001	100 tph	No Change	PE
UC8	UC8	Conveyor Belt	2001	100 tph	No Change	N
UC9	UC9	Conveyor Belt	2001	100 tph	No Change	N
CR1	CR1	RAP Crusher	2001	100 tph	No Change	FE

¹ For Emission Units (or <u>S</u>ources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation.

Note: PF = Process Fugitive Emissions, OD = Open Dust Emissions

² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.
³ New, modification, removal

⁴ For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

Emission Units Table

(includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)-

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
CFDM1	1E	Counterflow Drum Mixer	2013	400 tph	No Change	APCD1 & APCD2
DL1	DL1	Drag Link Conveyor	2001	400 tph	No Change	FE
DL2	DL2	Drag Link Conveyor	2001	400 tph	No Change	FE
DL3	DL3	Drag Link Conveyor	2001	400 tph	No Change	FE
SC1	SC1	Screw Conveyor	2013	40 tph	No Change	FE
BS1	BS1	HMA Storage Silo	2001	400 tph	No Change	FE
BS2	BS2	HMA Storage Silo	2001	400 tph	No Change	FE
BS3	BS3	HMA Storage Silo	2001	400 tph	No Change	FE
OS1	OS1	Aggregate Stockpile	2001	400 tph	No Change	N
OS2	OS2	Aggregate Stockpile	2001	400 tph	No Change	N
OS3	OS3	Aggregate Stockpile	2001	400 tph	No Change	N
OS4	OS4	Aggregate Stockpile	2001	400 tph	No Change	N
OS5	OS5	Aggregate Stockpile	2001	400 tph	No Change	N
OS6	OS6	Aggregate Stockpile	2001	400 tph	No Change	N
OS7	OS7	Aggregate Stockpile	2001	400 tph	No Change	N
OS8	OS8	Aggregate Stockpile	2001	400 tph	No Change	N
OS9	OS9	RAP Stockpile	2001	400 tph	No Change	N
T1	T1	Asphaltic Cement Tank	2001	35,000 gal	No Change	N
T2	T2	No. 2 Fuel Oil Tank	2001	20,000 gal	No Change	N
Т3	Т3	Used Oil Tank	2001	22,000 gal	No Change	N
T4	T4	Asphaltic Cement Tank	2001	30,000 gal	No Change	N
T5	T5	Asphaltic Emulsion (Tack) Tank	2013	5,000 gal	No Change	N
AH1	2E	Asphalt Heater	2001	NA	No Change	N

¹ For Emission Units (or <u>S</u>ources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation. ² For <u>E</u>mission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

³ New, modification, removal

⁴ For <u>Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.</u>

PORTABLE FRAP SYSTEM

Emission Units Table

(includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

		min be part or time permit applied	, . e ga	unese en pen	mumg etatae,	
Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
F-H1	F-H1	RAP Hopper	2015	25 tons	No Change	PE
F-CR1	F-CR1	RAP Crusher	2015	75 tph	No Change	FE
F-S1	F-S1	Screen	2015	200 tph	No Change	FE
F-BC1	F-BC1	Belt Conveyor	2015	200 tph	No Change	PE
F-BC2	F-BC2	Belt Conveyor	2015	75 tph	No Change	N
F-BC3	F-BC3	Belt Conveyor	2015	200 tph	No Change	N
F-BC4	F-BC4	Belt Conveyor	2015	200 tph	No Change	N
F-RS1	F-RS1	Belt Conveyor	2015	200 tph	No Change	N
F-ENG1	F-1E	Gen Set (Non-Road)*	2015	9.28 gal/hr	No Change	N
*The engin		definition of a non-road engine under	r 40CFR Part 1068.3	1 30 and is not su	bject to Regulation 1	3 per Section

 $^{^1}$ For Emission Units (or \underline{S} ources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation. 2 For \underline{E} mission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

Note: PF = Process Fugitive Emissions, OD = Open Dust Emissions

³ New, modification, removal ⁴ For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

PORTABLE CRUSHING AND SCREENING SYSTEM

Attachment I

Emission Units Table

(includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

	tilati	will be part of this permit applie	ation review, regu	raicos or peri	mitting status,	
Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device 4
P-B1	P-B1	RAP Bin	2018	20 tons	New	PE
P-C1	P-C1	Belt Conveyor	2018	100 tph	New	N
P-SCR1	P-SCR1	Screen	2018	100 tph	New	PE
P-C2	P-C2	Belt Conveyor	2018	100 tph	New	N
P-CR1	P-CR1	RAP Crusher	2018	100 tph	New	FE
P-C3	P-C3	Belt Conveyor	2018	100 tph	New	N
P-C4	P-C4	Belt Conveyor	2018	100 tph	New	N
P-C5	P-C5	Belt Conveyor	2018	100 tph	New	N
P-ENG1	P-1E	Gen Set (Non-Road)*	2018	47.5 gal/hr	New	N
*The engir 1.1., Scope		definition of a non-road engine unde	er 40CFR Part 1068.3	30 and is not su	bject to Regulation 1	3 per Section

¹ For Emission Units (or <u>S</u>ources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation. ² For <u>E</u>mission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

³ New, modification, removal

⁴ For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

Note: PF = Process Fugitive Emissions, OD = Open Dust Emissions

ATTACHMENT J EMISSION POINTS DATA SUMMARY SHEET

${\bf Attachment\ J-Emission\ Points\ Data\ Summary\ Sheet}$

Table 1: Emissions Data - HMA PLANT															
Emission Point ID No. (Must match	Emission Point	Through (Must Emission	Jnit Vented This Point match Units Table t Plan)	(Mu Emission	ution Control Device Ist match Units Table & ot Plan)	(chei	ime for on Unit mical esses ally)	All Regulated Pollutants Chemical Name/CAS ³	Maximum Uncon Emiss	trolled	Maximum Controlled E		Emission Form or Phase (At exit	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
Emission Units Table-& Plot Plan)	Type ¹	ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	(Speciate VOCs & HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	conditions, Solid, Liquid or Gas/Vapor)		
ΙE	UVS	CFDM1	Counter Flow Drum Mixer	APCD1 APDC2	Inertial Separator Baghouse	NA	NA	PM PM10 PM2.5 SOx NOx CO VOC HCl HAPS-VOC* HAPS-Metal*	5,264 1,211 290 23.20 22.00 52.00 12.80 0.08 4.15 0.0495	3,290 757 181 14.50 13.75 32.50 8.00 0.05 2.60 0.0312	26.32 6.05 1.45 23.20 22.00 52.00 12.80 0.08 4.15 0.0495	16.45 3.60 0.86 14.50 13.75 32.50 8.00 0.05 2.60 0.0312	Solid Solid Solid Vapor Vapor Vapor Vapor Mist Vapor Solid	EE	NA
2E	UVS	АН1	Hot Oil Heater	NA	NA	NA	NA	PM PM10 PM2.5 SOx NOx CO VOC HAPS*	0.01 0.01 0.01 0.001 0.14 0.11 0.01 0.0026	0.04 0.04 0.04 0.004 0.59 0.50 0.03 0.0112	0.01 0.01 0.01 0.001 0.14 0.11 0.01 0.0026	0.04 0.04 0.04 0.004 0.59 0.50 0.03 0.0112	Solid Solid Solid Vapor Vapor Vapor Vapor Vapor	EE	NA
3E	UVS	CE1	Diesel Engine	NA	NA	NA	NA	PM PM10 PM2.5 SOx NOx CO VOC HAPS*	0.45 0.45 0.45 0.43 6.47 1.39 0.53 0.0055	1.30 1.30 1.30 1.24 18.63 4.00 1.53 0.0160	0.45 0.45 0.45 0.43 6.47 1.39 0.53 0.0055	1.30 1.30 1.30 1.24 18.63 4.00 1.53 0.0160	Solid Solid Solid Vapor Vapor Vapor Vapor Vapor	EE	NA
CR1	NA	CR1	RAP Crusher	FE	Full Enclosure	NA	NA	PM PM10 PM2.5	0.20 0.10 0.02	0.06 0.03 0.01	0.04 0.02 0.01	0.01 0.01 0.01	Solid Solid Solid	EE	NA
S1	NA	SI	Aggregate Screen	PE	Partial Enclosure	NA	NA	PM PM10 PM2.5	10.00 3.48 0.71	6.25 2.18 0.45	5.00 1.74 0.36	3.13 1.09 0.22	Solid Solid Solid	EE	NA

^{*} See Attachment N for speciation of VOCs and HAPs

	Table 1: Emissions Data (continued) - HMA PLANT														
Emission Point ID No. (Must match Emission Units Table	Emission Point Type ¹	Through (Must mate Units Ta	Unit Vented This Point oh Emission ble & Plot an)	De (Mus Emission U	ion Control evice t match Units Table &	Emiss (che	Fime for ion Unit emical ses only)	All Regulated Pollutants - Chemical Name/CAS ³	Maxin Poter Uncont Emissi	ntial rolled	Con	n Potential trolled ssions ⁵	Emission Form or Phase (At exit	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
& Plot Plan)		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	(Speciate VOCs & HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	conditions, Solid, Liquid or Gas/Vapor)		
S6	NA	S6	RAP Screen	PE	Partial Enclosure	NA	NA	PM PM10 PM2.5	2.50 0.87 0.18	2.34 0.82 0.17	1.25 0.44 0.09	1.17 0.41 0.0	Solid Solid Solid	EE	NA
TP1 to TP36	NA	TP1 to TP36	Transfer Points	Various	Various	NA	NA	PM PM10 PM2.5	24.15 11.71 1.47	14.72 7.14 0.96	14.64 7.11 0.91	9.13 4.39 0.66	Solid Solid Solid	EE	NA
TP37 to TP40	NA	TP37 to TP40	Silo Filling	Various	Various	NA	NA	PM PM10 PM2.5 VOC CO HAPS*	0.92 0.20 0.04 19.48 1.88 0.253	0.60 0.12 0.04 12.20 1.16 0.158	0.46 0.10 0.02 19.48 1.88 0.253	0.30 0.06 0.02 12.20 1.16 0.158	Solid Solid Solid Vapor Vapor Vapor	EE	NA
TP41	NA	TP41	HMA Loadout	Various	Various	NA	NA	PM PM10 PM2.5 VOC CO HAPS*	0.21 0.05 0.01 1.56 0.54 0.025	0.13 0.03 0.01 0.98 0.34 0.016	0.11 0.03 0.01 1.56 0.54 0.025	0.07 0.02 0.01 0.98 0.34 0.016	Solid Solid Solid Vapor Vapor Vapor	EE	NA
TP42 & TP 43	NA	TP42 & TP 43	Baghouse Dust Return	FE	FE	NA	NA	PM PM10 PM2.5	0.26 0.12 0.02	0.16 0.08 0.02	0.06 0.04 0.02	0.04 0.02 0.02	Solid Solid Solid	EE	NA

^{*} See Attachment N for speciation of HAPs

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

² Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (i.e., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).

³ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS2, VOCs, H2S, Inorganics, Lead, Organics, O3, NO, NO2, SO2, SO3, all applicable Greenhouse Gases (including CO2 and methane), etc. DO NOT LIST H2, H2O, N2, O2, and Noble Gases.

⁴ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁵ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁶ Indicate the method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

⁷ Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m3) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO2, use units of ppmv (See 45CSR10).

	Table 2: Release Parameter Data - HMA PLANT													
	Inner Diameter (ft.)		Exit Gas		Emission Point El	evation (ft)	UTM Coordinat	es (km)						
Emission Point ID No. (Must match Emission Units Table)		Temp. (°F)	Volumetric Flow ¹ (acfm) at operating conditions	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ² (Release height of emissions above ground level)	Northing	Easting						
1E	NAv	220-365	76,718	NAv	~591 ft.	NAv	4,247.035	433.551						
2E	NAv	NAv	NAv	NAv	~591 ft.	NAv	4,247.035	433.551						
3E	NAv	NAv	NAv	NAv	~591 ft.	NAv	4,247.035	433.551						

¹ Give at operating conditions. Include inerts. ² Release height of emissions above ground level.

Attachment J – Emission Points Data Summary Sheet

	Table 1: Emissions Data (continued) – PORTABLE FRAP SYSTEM														
Emission Point ID No. (Must match Emission Units Table	Emission Point Type ¹	Through T (Must match	Through This Point (Must match Emission Jnits Table & Plot Plan) Emission		Pollution Control Vent Tim- Device Emission (Must match (chemics processes Plot Plan)		ion Unit emical	All Regulated Pollutants - Chemical Name/CAS ³	Maxin Poter Uncont Emissi	ntial rolled	Maximum Potential Controlled Emissions ⁵		Emission Form or Phase (At exit	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
& Plot Plan)		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	(Speciate VOCs & HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	conditions, Solid, Liquid or Gas/Vapor)		
F-TP1-12	NA	F-TP1-12	Transfer Points	Various	Various	NA	NA	PM PM10 PM2.5	0.94 0.57 0.08	0.30 0.18 0.02	0.64 0.38 0.05	0.21 0.12 0.02	Solid Solid Solid	EE	NA
F-CR1	NA	F-CR1	FRAP Crusher	FE	Full Enclosure	NA	NA	PM PM10 PM2.5	0.15 0.08 0.02	0.05 0.02 0.01	0.03 0.02 0.01	0.01 0.01 0.01	Solid Solid Solid	EE	NA
F-S1	NA	F-S1	FRAP Screen	FE	Full Enclosure	NA	NA	PM PM10 PM2.5	5.0 1.74 0.36	1.56 0.54 0.11	1.00 0.35 0.07	0.31 0.11 0.02	Solid Solid Solid Vapor Vapor Vapor	EE	NA
F-E1	UVS	F-ENG1	Diesel Engine	NA	NA	NA	NA	NON-ROA	AD ENGI	NE NOT	r inclu	DED IN PI	ГE	EE	NA

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

² Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (i.e., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).

³ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS2, VOCs, H2S, Inorganics, O3, NO, NO2, SO2, SO3, all applicable Greenhouse Gases (including CO2 and methane), etc. DO NOT LIST H2, H2O, N2, O2, and Noble Gases.

⁴ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁵ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁶ Indicate the method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

⁷ Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m3) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO2, use units of ppmv (See 45CSR10).

	Table 2: Release Parameter Data - PORTABLE FRAP SYSTEM													
	Inner Diameter (ft.)		Exit Gas		Emission Point El	evation (ft)	UTM Coordinat	es (km)						
Emission Point ID No. (Must match Emission Units Table)		Temp. (°F)	Volumetric Flow ¹ (acfm) at operating conditions	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ² (Release height of emissions above ground level)	Northing	Easting						
F-E1	NA	NA	NA	NA	~591 ft.	NA	4,247.0348	433.5511						

¹ Give at operating conditions. Include inerts. ² Release height of emissions above ground level.

Attachment J - Emission Points Data Summary Sheet

	Table 1: Emissions Data (continued) - PORTABLE CRUSHING AND SCREENING SYSTEM														
Emission Point ID No. (Must match Emission Units Table	Emission Point Type ¹	Emission U Through T (Must matc Units Table	his Point h Emission	De (Mus Emission U	ion Control evice t match Units Table & t Plan)	Emiss (che	Time for ion Unit emical ses only)	All Regulated Pollutants - Chemical Name/CAS³	Maxin Poter Uncont Emissi	ntial rolled	Maximum Potential Controlled Emissions ⁵		Emission Form or Phase (At exit	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
& Plot Plan)		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	(Speciate VOCs & HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	conditions, Solid, Liquid or Gas/Vapor)		
P-TP1-11	NA	P-TP1-11	Transfer Points	Various	Various	NA	NA	PM PM10 PM2.5	3.14 1.52 0.19	1.55 0.75 0.14	2.50 1.20 0.15	1.25 0.61 0.12	Solid Solid Solid	EE	NA
P-CR1	NA	P-CR1	RAP Crusher	FE	Full Enclosure	NA	NA	PM PM10 PM2.5	0.20 0.10 0.02	0.06 0.04 0.01	0.04 0.02 0.01	0.02 0.01 0.01	Solid Solid Solid	EE	NA
P-SCR1	NA	P-SCR1	RAP Screen	PE	Partial Enclosure	NA	NA	PM PM10 PM2.5	3.75 1.31 0.27	2.34 0.82 0.17	1.88 0.66 0.13	1.17 0.41 0.08	Solid Solid Solid	EE	NA
P-1E	UVS	P-ENG1	Diesel Engine	NA	NA	NA	NA	NON-R	OAD EN	GINE N	OT INCI	LUDED IN	PTE	EE	NA

^{*} See Attachment N for speciation of HAPs

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

- ¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.
- 2 Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (i.e., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).
- 3 List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS2, VOCs, H2S, Inorganics, O3, NO, NO2, SO2, SO3, all applicable Greenhouse Gases (including CO2 and methane), etc. DO NOT LIST H2, H2O, N2, O2, and Noble Gases.
- 4 Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
- 5 Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
- 6 Indicate the method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).
- 7 Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m3) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO2, use units of ppmv (See 45CSR10).

	Table 2: Release Parameter Data – PORTABLE CRUSHING AND SCREENING SYSTEM													
			Exit Gas		Emission Point El	evation (ft)	UTM Coordinat	es (km)						
Emission Point ID No. (Must match Emission Units Table)	Inner Diameter (ft.)	Temp. (°F)	Volumetric Flow ¹ (acfm) at operating conditions	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ² (Release height of emissions above ground level)	Northing	Easting						
P-1E	0.67	891	4,587	NA	~588 ft.	NA	4,247.2606	433.3526						

¹ Give at operating conditions. Include inerts. ² Release height of emissions above ground level.

ATTACHMENT K FUGITIVE EMISSIONS DATA SUMMARY SHEET

Attachment K - Fugitive Emissions Data Summary Sheet

HMA PLANT

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS
1.)	Will there be haul road activities?
	⊠ Yes □ No
	☐ If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.
2.)	Will there be Storage Piles?
	☐ If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.
3.)	Will there be Liquid Loading/Unloading Operations?
	☐ Yes ☐ No
	☐ If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?
1	☐ Yes ☐ No
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
5.)	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?
	☐ Yes ☐ No
<u> </u>	$\hfill \square$ If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.
6.)	Will there be General Clean-up VOC Operations?
I	☐ Yes ☐ No
<u> </u>	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
7.)	Will there be any other activities that generate fugitive emissions?
l	☐ Yes ☐ No
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.
	rou answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive issions Summary."

K1 of K6 Revision 2/11

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants - Chemical Name/CAS ¹	Maximum Uncontrolled		Maximum P Controlled Em		Est. Method
	Chemical Name/CA5	lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
Haul Road/Road Dust Emissions Paved Haul Roads	PM PM10 PM2.5	18.50 3.70 0.93	9.31 1.86 0.47	4.63 0.93 0.23	2.33 0.47 0.12	EE
Unpaved Haul Roads	PM PM10 PM2.5	126.79 37.36 3.81	77.74 22.91 2.33	31.70 9.35 0.95	19.44 5.73 0.58	EE
Storage Pile Emissions	PM PM10 PM2.5	0.258 0.123 0.020	1.128 0.537 0.090	0.258 0.123 0.020	1.128 0.537 0.090	EE
Loading/Unloading Operations	NA					
Wastewater Treatment Evaporation & Operations	NA					
Equipment Leaks	NA					
General Clean-up VOC Emissions	NA					
Other	NA					

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

K2 of K6 Revision 2/11

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

Attachment K – Fugitive Emissions Data Summary Sheet

FRAP PLANT

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS
1.)	Will there be haul road activities?
	⊠ Yes □ No
	☐ If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.
2.)	Will there be Storage Piles?
	☐ If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.
3.)	Will there be Liquid Loading/Unloading Operations?
	☐ Yes
<u> </u>	☐ If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?
I	☐ Yes
l <u></u>	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
5.)	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?
	☐ Yes No
Ĺ <u></u>	☐ If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.
6.)	Will there be General Clean-up VOC Operations?
I	☐ Yes
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
7.)	Will there be any other activities that generate fugitive emissions?
1	☐ Yes ☐ No
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.
	ou answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive issions Summary."

K3 of K6 Revision 2/11

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants - Chemical Name/CAS ¹	Maximum Uncontrolled		Maximum P Controlled Em		Est. Method
	Chemical Name/CA5	lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
Haul Road/Road Dust Emissions Paved Haul Roads	NA	NA	NA	NA	NA	NA
Unpaved Haul Roads	PM PM10 PM2.5	34.20 10.09 1.01	10.69 3.15 0.32	10.26 3.03 0.30	3.21 0.95 0.10	EE
Storage Pile Emissions	NA					
Loading/Unloading Operations	NA					
Wastewater Treatment Evaporation & Operations	NA					
Equipment Leaks	NA					
General Clean-up VOC Emissions	NA					
Other	NA					

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

K4 of K6 Revision 2/11

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

Attachment K – Fugitive Emissions Data Summary Sheet

PORTABLE CRUSHING AND SCREENING SYSTEM

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS	
1.)	Vill there be haul road activities?	
	⊠ Yes □ No	
	If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.	
2.)	Vill there be Storage Piles?	
	⊠ Yes □ No	
	If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.	4
3.)	Vill there be Liquid Loading/Unloading Operations?	
	☐ Yes	
	If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.	
4.)	Vill there be emissions of air pollutants from Wastewater Treatment Evaporation?	
	☐ Yes	
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.	
5.)	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relied devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?	∍f
	☐ Yes	
	If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.	S
6.)	Vill there be General Clean-up VOC Operations?	
	☐ Yes	
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.	
7.)	Vill there be any other activities that generate fugitive emissions?	
	☐ Yes	
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.	
	u answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive sions Summary."	е

K5 of K6 Revision 2/11

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants - Chemical Name/CAS ¹	Maximum Potential Uncontrolled Emissions ²		Maximum P Controlled Em	Est. Method	
	Chemical Name/CA5	lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
Haul Road/Road Dust Emissions Paved Haul Roads - Endloaders	NA					
Unpaved Haul Roads - Endloaders	PM PM10 PM2.5	17.10 5.05 0.50	10.69 3.15 0.32	5.13 1.52 0.15	3.21 0.95 0.10	EE
Storage Pile Emissions	PM PM10 PM2.5	0.11 0.05 0.01	0.47 0.22 0.04	0.11 0.05 0.01	0.47 0.22 0.04	EE
Loading/Unloading Operations	NA					
Wastewater Treatment Evaporation & Operations	NA					
Equipment Leaks	NA					
General Clean-up VOC Emissions	NA					
Other	NA					

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

K6 of K6 Revision 2/11

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

ATTACHMENT L EMISSION UNIT DATA SHEETS

HMA PLANT PRODUCTION AFFECTED SOURCE SHEET

	Source Identification Number ¹	CFDM1				
	Manufacturer & Model Number	ASTEC RDB-9640				
	Date of Manufacture		2013			
General HMA Plant Information	Plant Type ²		CFDM			
	Max Production Rate (ton/hour)		400			
	Max Yearly Production (tons/year)		500,000			
	Annual Operation (hours/year)		5,760			
Batch Plant	Tons per Batch	NA				
Information	Batches per Hour	NA				
Drum Mixer	Drum Length (ft)	40				
Information	Drum Diameter (ft)	8				
	Burner Manufacturer & Model Number	ASTEC WJ-100-G-OH-SF-S				
	Design Heat Input (mmBTU/hour)	110	110	110		
	Excess Air (%)	20-25	25-30	25-30		
Burner, Fuel &	Fuel Type ³	PNG	#2FO	UO		
Combustion Data	Maximum Fuel Usage ⁴	110,000 SCF/hr	774 gal/hr5760	774 gal/hr		
	Fuel Heating Value ⁵	1,028 Btu/SCF	138,000 Btu/gal	139,000 Btu/gal		
	Maximum Sulfur Content (%)	20 gr/100 SCF	0.5%	0.5%		
	Maximum Ash Content (%)	NA	0.01%	2.0%		

^{1.} Enter the appropriate Source Identification Number for each rotary dryer or drum mixer. Batch plant rotary dryer should be designated BPRD-1, parallel flow drum mixer designated PFDM-1, and counterflow drum mixer designated CDFM-1, etc.

2. Enter the Plant Type designation using the following codes:

Batch Batch Plant PFDM Parallel Flow Drum Mix Plant

CFDM Counterflow Drum Mix Plant CNMX Continuous Mix Plant

COMB Combination Batch/Drum Mix Plant

3. Enter the Fuel Type(s) using the following code:

PNG Pipeline Quality Natural Gas #2FO Number 2 Fuel Oil

UO Used or Recycled Oil

- 4. Enter the maximum fuel use in standard cubic feet per hour (natural gas) or gallons per hour (fuel oil). List appropriate units.
- 5. Enter the Fuel heating value in Btu per standard cubic foot (natural gas) or Btu per gallon (fuel Oil). List appropriate units.

AIR POLLUTION CONTROL DEVICE AFFECTED SOURCE SHEET

HMA PLA	ANT AIR POLLUTION CONTROL DEVICE DATA SHEET	PRIMARY COLLECTION (INERTIAL SEPARATOR)	SECONDARY COLLECTION (BAGHOUSE)
General	APCD Identification Number ¹	APCD1	APCD2
Information	Manufacturer & Model Number	No separate model number	ASTEC RBH-76
	Number of Cylinders		
	Number of Compartments	1 compartment, 7 baffles	1 compartment, 1,152 bags
	Cylinder Diameter (ft)		
	Cylinder Length (ft)		
D	Cone Length (ft)		
Physical Parameters	Gas Inlet Area (ft)		25.56
Turumeters	Gas Outlet Area (ft)		14.33
	Bag Cleaning Mechanism ²		Pulse jet
	Total Cloth (fabric) Area (ft ²)		13,949
	Draft Fan HP		300
	Outlet Stack Area (ft²)		13.77
	Minimum Design ΔP (in H20)		2
	Maximum Design ΔP (in H20)		6
	Inlet Gas Flow Rate (ACFM)		76,718
	Inlet Gas Temperature (°F)		220-365
Operational Parameters	Inlet Gas Pressure (PSIA)		Varies, typically ~4 in. WC
1 arameters	Inlet Gas Velocity (ft/sec)		Up to 50.0
	PM Inlet Rate (grains/ACF)		48.7 (based on maximum air flow)
	PM Outlet Rate (grains/ACF)		0.04*
	Operating Air/Cloth Ratio (ft/min)		5.5

^{1.} Enter the appropriate Air Pollution Control Device Identification Number for the primary and secondary collectors. The primary collector should be designated APCD-1 and the secondary collector designated APCD-2. If the secondary collector incorporates a knockdown or settling chamber and combines the functions of a primary and secondary collector, enter NONE for the primary collector APCD identification number and designate the secondary collector APCD-1.

^{2.} Enter method used to clean bags: shaker, pulse jet, reverse jet or other.

^{*} Emission limit from 40CFR60, Subpart I.

HMA PLANT PARTICULATE MATTER CAPTURE SYSTEM AFFECTED SOURCE SHEET

Pursuant to Section 2.3.5 of General Permit G-20B and 45CSR3, the registrant shall not cause, allow or permit a hot mix asphalt plant to operate that is not equipped with a particulate matter capture system. Such systems and devices shall be designed, operated and maintained in such a manner as to prevent the emission of particulate matter from any point other than a stack outlet.

A particulate matter capture system shall be used to confine, collect and transport particulate matter from dryers, hot elevators, screens, drum mixers, pugmills, weigh hoppers, hot bins and related components to air pollution control devices. Particulate matter capture systems shall include but not be limited to hoods, bins, ductwork, enclosures, air pollution control devices and fans.

Provide a written description of the hot mix asphalt plant's particulate matter capture system below:

The particulate matter capture system is comprised of an inertial separator, baghouse; exhaust fans, motors, and ducting. The particulates pass from the dryer through the ductwork and into the inertial separator where the larger particles are pulled out of the air stream to the bottom of the baghouse. The airflow continues into the baghouse where the remaining fines are captured by the bags and released by pulse jet air to the bottom of the baghouse. The fines and large particles are returned to the drum mixer through an auger system and become part of the final product.

Source Identification Number ¹	OS1	OS2	OS3	OS4	OS5	OS6
Material Stored ²	Natural Sand Slag Sand	Slag	#8 Limestone	#8 Limestone	#67 Limestone	Limestone Sand
Maximum Yearly Throughput (tons/year) ³	75,000 10,000	100,000	50,000	50,000	200,000	10,000
Typical Moisture Content (%) ⁴	7	3	3	3	3	7
Average % of Material Passing Through 200 Mesh Sieve ⁵	6	1	1	1	1	6
Maximum Stockpile Base Area (ft ²) ⁶	12,000	15,900	4,500	10,500	13,225	8,000
Maximum Stockpile Height (ft) ⁷	50	50	50	50	50	25
Maximum Storage Capacity (tons) ⁸	25,000	10,000	8,500	8,500	10,000	3,000
Dust Control Method Applied to Storage ⁹	N	N	N	N	N	N
Method of Material Load-in to Bin or Stockpile ¹⁰	MC	MC	MC	MC	MC	MC
Dust Control Method Applied During Load-in ¹¹	MD	MD	MD	MD	MD	MD
Method of Material Load-out from Bin or Stockpile ¹⁰	FE	FE	FE	FE	FE	FE
Dust Control Method Applied During Load-out ¹¹	MD	MD	MD	MD	MD	MD

- 1. Enter the appropriate Source Identification Number for each storage activity using the following codes. For example, if the facility utilizes four open stockpiles and one storage silo, the Source Identification Numbers should be OS-1, OS-2, OS-3, and OS-4; and BS-1, respectively.
 - OS Open Stockpile
- E3 Enclosure (three-sided enclosure)

Storage Building (full enclosure)

- SF Stockpiles with wind fences
- OT Other

(please specify)

2. Describe the type of material stored or stockpiled.

BS Bin or Storage Silo (full enclosure) SB

- 3. Enter the maximum yearly storage throughput for each storage activity.
- 4. Enter the average percent moisture content of the stored material.
- 5. Enter the average percent of material that will pass through a 200 mesh sieve.
- $\ensuremath{\mathsf{6}}.$ For stockpiles, enter the maximum stockpile base area.
- 7. For stockpiles, enter the maximum stockpile height.
- 8. Enter the maximum storage capacity for each storage activity in tons (e.g. silo capacity, maximum stockpile size, etc.).
- 9. Enter the dust control method applied to storage activity using the following codes:
 - CA Crusting Agent WS Water Spray
 FE Full Enclosure NO None
 OT Other ______ (please specify)
- 10. Enter the method of load-in or load-out to/from stockpiles or bins using the following codes:
 - FE Front Endloader SS Stationary Conveyor/Stacker ST Stacking Tube MC Mobile Conveyor/Stacker CS Clamshell TD Truck Dump
- OT Other _____ (please specify)
- 11. Enter the dust control method applied during load-in or load-out using the following codes:
 - CA Crusting Agent WS Water Spray
 FE Full Enclosure MD Minimize Drop Height
 - ST Stacking Tube NO None

Source Identification Number ¹	OS7	OS8	OS9	В1	B2	В3
Material Stored ²	467's Limestone	Crusher Run Limestone	RAP		Aggregates	
Maximum Yearly Throughput (tons/year) ³	100,000	10,000	125,000	500,00	0 for B1-B5B co	ombined
Typical Moisture Content (%) ⁴	3	3	3		3-7	
Average % of Material Passing Through 200 Mesh Sieve ⁵	1	1	1		1-6	
Maximum Stockpile Base Area (ft²) ⁶	10,000	10,350	84,000			
Maximum Stockpile Height (ft) ⁷	50	25	50			
Maximum Storage Capacity (tons) ⁸	5,500	3,000	100,000	20	20	20
Dust Control Method Applied to Storage ⁹	N	N	CA	PE	PE	PE
Method of Material Load-in to Bin or Stockpile ¹⁰	MC	MC	TD	FE	FE	FE
Dust Control Method Applied During Load-in ¹¹	MD	MD	MD	MD	MD	MD
Method of Material Load-out from Bin or Stockpile ¹⁰	FE	FE	FE	SS	SS	SS
Dust Control Method Applied During Load-out ¹¹	MD	MD	CA	PE	PE	PE

1. Enter the appropriate Source Identification Number for each storage activity using the following codes. For example, if the facility utilizes four open stockpiles and one storage silo, the Source Identification Numbers should be OS-1, OS-2, OS-3, and OS-4; and BS-1, respectively.

OS Open Stockpile E3 Enclosure (three-sided enclosure)

BS Bin or Storage Silo (full enclosure) SB Storage Building (full enclosure)

SF Stockpiles with wind fences OT Other _____ (please specify)

2. Describe the type of material stored or stockpiled.

3. Enter the maximum yearly storage throughput for each storage activity.

4. Enter the average percent moisture content of the stored material.

5. Enter the average percent of material that will pass through a 200 mesh sieve.

6. For stockpiles, enter the maximum stockpile base area.

7. For stockpiles, enter the maximum stockpile height.

8. Enter the maximum storage capacity for each storage activity in tons (e.g. silo capacity, maximum stockpile size, etc.).

9. Enter the dust control method applied to storage activity using the following codes:

CA Crusting Agent WS Water Spray
FE Full Enclosure NO None
OT Other ______ (please specify)

10. Enter the method of load-in or load-out to/from stockpiles or bins using the following codes:

FE Front Endloader SS Stationary Conveyor/Stacker
ST Stacking Tube MC Mobile Conveyor/Stacker

CS Clamshell TD Truck Dump
OT Other _______ (please specify)

11. Enter the dust control method applied during load-in or load-out using the following codes:

CA Crusting Agent WS Water Spray
FE Full Enclosure MD Minimize Drop Height

ST Stacking Tube NO None

OT Other _____ (please specify)

Source Identification Number ¹	B4	В5	B5A	B5B	В6	B6A
Material Stored ²		Aggre	egates		RAP	
Maximum Yearly Throughput (tons/year) ³	5	500,000 for B1	-B5B combined	d	125,000 0	combined
Typical Moisture Content (%) ⁴		3	-7		3	3
Average % of Material Passing Through 200 Mesh Sieve ⁵		1	-6			1
Maximum Stockpile Base Area (ft ²) ⁶						
Maximum Stockpile Height (ft) ⁷						
Maximum Storage Capacity (tons) ⁸	20	20	20	20	20	20
Dust Control Method Applied to Storage ⁹	PE	PE	PE	PE	PE	PE
Method of Material Load-in to Bin or Stockpile ¹⁰	FE	FE	FE	FE	FE	FE
Dust Control Method Applied During Load-in ¹¹	MD	MD	MD	MD	CA	CA
Method of Material Load-out from Bin or Stockpile ¹⁰	SS	SS	SS	SS	SS	SS
Dust Control Method Applied During Load-out ¹¹	PE	PE	PE	PE	FE+CA	FE+CA
1. Enter the appropriate Source Identification Number for each storage activity using the following codes. For example, if the facility utilizes four open stockpiles and one storage silo, the Source Identification Numbers should be OS-1, OS-2, OS-3, and OS-4; and BS-1, respectively. OS Open Stockpile E3 Enclosure (three-sided enclosure) B8 Bin or Storage Silo (full enclosure) SB Storage Building (full enclosure) S7 Stockpiles with wind fences OT Other						
	D Minimize Dro O None	p Height				

(please specify)

NO None

ST

Stacking Tube

Other

Source Identification Number ¹	BS1	BS2	BS3	H1	
Material Stored ²		НМА		Aggregates	
Maximum Yearly Throughput (tons/year) ³		500,000		500,000	
Typical Moisture Content (%) ⁴				3-7	
Average % of Material Passing Through 200 Mesh Sieve ⁵				1-6	
Maximum Stockpile Base Area (ft²) ⁶					
Maximum Stockpile Height (ft) ⁷					
Maximum Storage Capacity (tons) ⁸	200	200	200	200	
Dust Control Method Applied to Storage ⁹	FE	FE	FE	PE	
Method of Material Load-in to Bin or Stockpile ¹⁰	SS	SS	SS	CS	
Dust Control Method Applied During Load-in ¹¹	PE	PE	PE	MD	
Method of Material Load-out from Bin or Stockpile ¹⁰	Chute	Chute	Chute	SS	
Dust Control Method Applied During Load-out ¹¹	PE	PE	PE	PE	

- OS Open Stockpile E3 Enclosure (three-sided enclosure)
- BS Bin or Storage Silo (full enclosure) SB Storage Building (full enclosure)
- SF Stockpiles with wind fences OT Other _____ (please specify)
- $2. \ Describe the type of material stored or stockpiled.\\$
- 3. Enter the maximum yearly storage throughput for each storage activity.
- 4. Enter the average percent moisture content of the stored material.
- 5. Enter the average percent of material that will pass through a 200 mesh sieve.
- 6. For stockpiles, enter the maximum stockpile base area.
- 7. For stockpiles, enter the maximum stockpile height.
- 8. Enter the maximum storage capacity for each storage activity in tons (e.g. silo capacity, maximum stockpile size, etc.).
- 9. Enter the dust control method applied to storage activity using the following codes:
 - CA Crusting Agent WS Water Spray
 FE Full Enclosure NO None
 OT Other (please specify)
- 10. Enter the method of load-in or load-out to/from stockpiles or bins using the following codes:
 - FE Front Endloader SS Stationary Conveyor/Stacker
 ST Stacking Tube MC Mobile Conveyor/Stacker
 - CS Clamshell TD Truck Dump
 - OT Other <u>Chute</u> (please specify)
- 11. Enter the dust control method applied during load-in or load-out using the following codes:
 - CA Crusting Agent WS Water Spray
 FE Full Enclosure MD Minimize Drop Height
 - ST Stacking Tube NO None
 - OT Other _____ (please specify)

HMA PLANT FUGITIVE DUST CONTROL SYSTEM AFFECTED SOURCE SHEET

	Fugitive Dust Control Method ¹	WS	
	Design Water Flow Rate (gpm) ²	7.1 or 28.3 (depending on nozzle size)	
	Chemical Additive ³	N/A	
	Water/Additive Mix Ratio ⁴	N/A	
	Amount (gal/yd) ⁵	~0.3	
Fugitive Dust Control	Frequency of Application ⁶	As needed to control	
System Data	Haulroad Surface ⁷	Gravel	
	Work/Storage Area Surface 8	Gravel	
	Haulroad Length 9	0.25 mile (round-trip)	
	Number of Vehicles per day 10	444	
	Number of Wheels per Vehicle ¹¹	Varies – see Attachment N	
	Weight of Vehicle (tons) 12	Varies – see Attachment N	

1.Enter the fugitive dust control method(s) using the	e following codes:
---	--------------------

WT Water Truck WS Fixed Water Sprays
UW Underbody Truck Wash RS Rumble Strips
OT Other ______ (please specify)

- 2. Enter the design water flow rate for the water truck or fixed water sprays in gallons per minute.
- 3. Enter manufacturer and type, specification or grade of chemical additive.
- 4. Enter the water/chemical additive mix ratio.
- 5. Enter the amount of water or water/chemical additive mix to be applied to haulroads, storage and work areas in gallons per square yard.
- 6. Enter the frequency of application of water/chemical additive mix to haulroads, storage and work areas during periods of dry weather.
- 7. Enter the type of haulroad, work and storage area surface (asphalt pavement, concrete, dirt, coarse gravel, reddog, etc.).
- 8. Enter the approximate length of haulroad(s) in miles or feet. List appropriate units.
- 9. Enter the maximum daily vehicle traffic (trucks per day).
- 10. Enter the maximum number of wheels per vehicle.
- 11. Enter the mean vehicle weight in tons.
- 12. Complete a separate HMA Plant Fugitive Dust Control System Data sheet for each fugitive dust control system.

Provide a written description of the hot mix asphalt plant's fugitive dust control system below:

Fugitive emissions occur during load-in and load-out of materials to the stockpiles, aggregate feed bins, and RAP bin, as well on the storage area and haulroad due to vehicle traffic. During load-in and load-out of the aggregate stockpiles and feed bins, minimization of drop height is used to control fugitives.

Load-in to the RAP bin is controlled by the inherent crusting quality of the asphalt associated with RAP. Load-out is controlled not only by the inherent crusting agent, but also by partial enclosures.

A dust suppression system made up fixed water sprays is used to control fugitive emissions from the vehicle traffic in the storage area and on the haulroad.

HMA PLANT ASPHALT HEATER AFFECTED SOURCE SHEET

Source Identification Number ¹	Maximum Fuel Use ²	Fuel Type ³	Hours of Operation (hrs/yr) ⁴
AH1	1,350 scf/h	PNG	8,760*

^{*} Hours of operation for asphalt heater are higher than the hours of operation for the asphalt plant to allow asphaltic cement and emulsion to stay warm during hours when the plant is not operational.

- 1. Enter the appropriate Source Identification Number for each asphaltic cement tank heater located at the hot mix asphalt plant. Asphaltic cement tank heaters should be designated AH-1, AH-2, etc.
- 2. Enter the maximum fuel use in standard cubic foot per hour (natural gas) or gallons per hour (fuel oil). List appropriate units.
- 3. Enter the Fuel Type using the following codes:

PNG Pipeline Quality Natural Gas #2FO Number 2 Fuel Oil

UO Used Oil

4. Enter the maximum hours of operation each year.

HMA PLANT STORAGE TANK AFFECTED SOURCE SHEET

Source Identification Number ¹	Content ²	Length ³ (ft)	Dia ⁴ (ft)	Volume ⁵ (gallons)	Throughput ⁶ (gal/yr)	Orientation ⁷	Liquid Height ⁸ (ft)
T1	Asphaltic Cement	43	11.7	35,000	6,000,000*	VERT	~29
T2	#2 FO/ Diesel	22	12.5	20,000	2,000,000	VERT	~15
Т3	UO	24	12.5	22,000	2,000,000	VERT	~16
T4	Asphaltic Cement	38	11.7	30,000	6,000,000*	VERT	~25
T5	Asphaltic Emulsion	21	6.5	5,000	125,000	HORZ	~4.25

^{*}Annual throughput of T1 and T4 combined.

- 1. Enter the appropriate Source Identification Number for each storage tank located at the hot mix asphalt plant. Storage tanks should be designated T-1, T-2, T-3, etc.
- 2.Enter storage tank content (#2 fuel oil, asphaltic cement, water, etc.)
- 3.Enter storage tank length in feet.
- 4.Enter storage tank diameter in feet.
- 5. Enter storage tank volume in gallons. Storage tank volume may be calculated using the following mathematical relationship: (length of tank) X (area conversion) X (tank diameter)² X (liquid volume conversion) or, $(L_{tank} \ ft) \ X \ (3.14/4) \ X \ (d^2_{tank} \ ft^2) \ X \ (7.48 \ gallons/ft^3)$
- 6. Enter storage tank throughput in gallons per year.
- 7. Enter storage tank orientation using the following codes:
 VERT Vertical Tank HORZ Horizontal Tank
- 8. Enter storage tank average liquid height in feet.
- 9. Storage tank emissions may be calculated using TANKS emission calculation program.

CRUSHING AND SCREENING AFFECTED SOURCE SHEET

Source Ider	ntification Number ¹	S1	S6	CR1	
Type of C	rusher or Screen ²	Scalping Screen	Scalping Screen	Mill Crusher	
Make, Moo	lel No., Serial No. ³	ASTEC	ASTEC	ASTEC	
	etion, Reconstruction, or on (Month/Year) ⁴	2001	2001	2001	
Maximum	tons/hour	400	100	100	
Throughput ⁵	tons/year	500,000	125,000	125,000	
Material sized from/to: ⁶		2" x 0"	½" x 0"	2" x 0"/ ½" x 0"	
Average Mo	oisture Content (%) ⁷	3-7	2	2	
Control D	evice ID Number ⁸	NA	NA	NA	
	height (ft)				
Baghouse	diameter (ft)				
Stack	volume (ACFM)				
Parameters ⁹	exit temp (F)				
	UTM Coordinates				
Maximum	hours/day	24	24	24	
Operating	days/year	240	240	240	
Schedule ¹⁰	hours/year	5760	5760	5760	

^{1.} Enter the appropriate Source Identification Number for each crusher and screen. For example, in the case of an operation which incorporates multiple crushers, the crushers should be designated CR-1, CR-2, CR-3 etc. beginning with the breaker or primary crusher. Multiple screens should be designated S-1, S-2, S-3 etc.

2. Describe types of crushers and screens using the following codes:

HM	Hammermill	SS	Stationary Screen	DR	Double Roll Crusher
SD	Single Deck Screen	BM	Ball Mill	DD	Double-Deck Screen
RB	Rotary Breaker	TD	Triple Deck Screen	JC	Jaw Crusher
GC	Gyratory Crusher	OT	Other		

- 3. Enter the make, model number, and serial number of the crusher/screen.
- 4. Enter the date that each crusher and screen was constructed, reconstructed, or modified.
- 5. Enter the maximum throughput for each crusher and screen in tons per hour and tons per year.
- 6. Describe the nominal material size reduction (e.g. +2"/ -3/8").
- 7. Enter the average percent moisture content of the material processed.
- 8. Enter the appropriate Control Device Identification Number for each crusher and screen. Refer to Table A Control Device Listing and Control Device Identification Number Instructions in the Reference Document for Control Device ID prefixes and numbering.
- 9. Enter the appropriate stack parameters if a baghouse control device is used.
- 10. Enter the maximum operating schedule for each crusher and screen in hours per day, days per year and hours per year.

CONVEYING AFFECTED SOURCE SHEET

Source	Date of Construction, Reconstruction,	Type of	Size of		n Material er Rate ⁵	Average Moisture	Control
Identification Number ¹	or Modification (Month/Year) ²	Material Handled ³	Material Handled ⁴	tons/hour	tons/year	Content (%) ⁶	Device ⁷
C1	2001	Aggregates	2" x 0"	400	500,000	3-7	N
C2	2001	Aggregates	2" x 0"	400	500,000	3-7	N
C3	2001	Aggregates	2" x 0"	400	500,000	3-7	N
RS1	2001	Aggregates	2" x 0"	400	500,000	3-7	N
C5	2001	Aggregates	2" x 0"	400	500,000	3-7	N
RS2	2001	Aggregates	2" x 0"	400	500,000	3-7	N
RS5	2013	Aggregates	2" x 0"	400	500,000	3-7	N
C4	2001	Aggregates	2" x 0"	400	500,000	3-7	N
RS3	2001	Aggregates	2" x 0"	400	500,000	3-7	N
C6	2001	Aggregates	2" x 0"	400	500,000	3-7	N
RS4	2001	Aggregates	2" x 0"	400	500,000	3-7	N
UC1	2001	Aggregates	2" x 0"	400	500,000	3-7	N
UC2	2001	Aggregates	2" x 0"	400	500,000	3-7	N
UC3	2001	Aggregates	2" x 0"	400	500,000	3-7	N
UC4	2001	Aggregates	2" x 0"	400	500,000	3-7	N
UC5	2001	Aggregates	2" x 0"	400	500,000	3-7	N

1. Enter the appropriate Source Identification Number for each conveyor using the following codes. For example, multiple belt conveyors should be designated BC-1, BC-2, BC-3 etc. Transfer points are considered emission points, not sources, and should not be included in the *Conveying Affected Source Sheet*. Transfer Point Identification Numbers shall be assigned in the *Emission Calculation Sheet*.

BC Belt Conveyor BE Bucket Elevator DL Drag-link Conveyor PS Pneumatic System SC Screw Conveyor VC Vibrating Conveyor OT Other

- 2. Enter the date that each crusher and screen was constructed, reconstructed, or modified.
- 3. Enter the type of material being handled Raw Coal (RC) Sized Coal (SC) Clean Coal (CC) Refuse (R) Other (O)
- 4. Enter the nominal size of the material being conveyed (e.g. clean coal ¾" x 0). If more than one material is handled by the listed conveyor, list each material and enter the appropriate data for each material.
- 5. Enter the maximum material transfer rate for each conveyor in tons per hour and tons per year.
- 6. Enter the average percent moisture content of the conveyed material.
- 7. Enter the control device for the conveyor. PE Partial Enclosure (example 3/4 hoop), FE Full Enclosure, N None,

CONVEYING AFFECTED SOURCE SHEET

Source Identification	Date of Construction, Reconstruction,	Type of Material	Size of Material		n Material er Rate ⁵	Average Moisture	Control
Number ¹	or Modification (Month/Year) ²	Handled ³	Handled ⁴	tons/hour	tons/year	Content (%) ⁶	Device ⁷
UC5A	2001	Aggregates	2" x 0"	400	500,000	3-7	PE
UC5B	2001	Aggregates	2" x 0"	400	500,000	3-7	PE
UC6	2001	Aggregates	2" x 0"	400	500,000	3-7	N
UC7A	2001	RAP	2" x 0"	100	500,000	3	PE+CA
UC7B	2013	RAP	2" x 0"	100	125,000	3	PE+CA
UC7	2001	RAP	2" x 0"	100	125,000	3	CA
UC7C	2001	RAP	2" x 0"	100	125,000	3	CA
UC8	2001	RAP	2" x 0"	100	125,000	3	N
UC9	2001	RAP	2" x 0"	100	500,000	3	N
UC11	2001	Aggregates	2" x 0"	400	500,000	3-7	N
DL1	2001	HMA	NA	400	500,000	NA	FE
DL2	2001	HMA	NA	400	500,000	NA	FE
DL3	2001	HMA	NA	400	500,000	NA	FE
SC1	2013	Baghouse Dust	-0"	40	50,000	1	FE

^{1.} Enter the appropriate Source Identification Number for each conveyor using the following codes. For example, multiple belt conveyors should be designated BC-1, BC-2, BC-3 etc. Transfer points are considered emission points, not sources, and should not be included in the *Conveying Affected Source Sheet*. Transfer Point Identification Numbers shall be assigned in the *Emission Calculation Sheet*.

BC Belt Conveyor BE Bucket Elevator DL Drag-link Conveyor PS Pneumatic System SC Screw Conveyor VC Vibrating Conveyor

OT Other

- 2. Enter the date that each crusher and screen was constructed, reconstructed, or modified.
- 3. Enter the type of material being handled Raw Coal (RC) Sized Coal (SC) Clean Coal (CC) Refuse (R) Other (O)
- 4. Enter the nominal size of the material being conveyed (e.g. clean coal ¾" x 0). If more than one material is handled by the listed conveyor, list each material and enter the appropriate data for each material.
- 5. Enter the maximum material transfer rate for each conveyor in tons per hour and tons per year.
- 6. Enter the average percent moisture content of the conveyed material.
- 7. Enter the control device for the conveyor. PE Partial Enclosure (example 3/4 hoop), FE Full Enclosure, N None,

ENGINE DATA SHEET

				_			
Source Idea	ntification Number ¹	CE1	(3E)				
Engine Man	ufacturer and Model		PC750-6 D140E				
Manufactur	er's Rated bhp/rpm	444 HP at	1,800 rpm				
Sou	urce Status ²	F	ES				
Date Installed/Modified/Removed (Month/Year) ³		20	000				
Engine Manufactured/Reconstruction Date ⁴		N	ΙA				
Is this a Certified Ignition Engine accurrence IIII? (Yes or No) ⁵	d Stationary Compression ording to 40CFR60 Subpart	1	10				
Is this a Certified Stationary Spark Ignition Engine according to 40CFR60 Subpart JJJJ? (Yes or No) ⁶		Ν	1 0				
	Engine Type ⁷		on Ignition				
	APCD Type ⁸]	N				
	Fuel Type ⁹	#2 FO					
Engine, Fuel and	H ₂ S (gr/100 scf)	N	ΙA				
Combustion Data	Operating bhp/rpm	444 HP @1,800 rpm					
	BSFC (Btu/bhp-hr)	NA					
	Fuel throughput (ft ³ /hr)	11 gal/hr					
	Fuel throughput (MMft ³ /yr)	63,360 gal/yr					
	Operation (hrs/yr)	5,	760				
Reference ¹⁰	Potential Emissions ¹¹	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr
AP	NO_X	6.47	18.63				
AP	CO	1.39*	4.00*				
AP	VOC	0.53	1.53				
AP	SO_2	0.43	1.24				
AP	PM_{10}	0.45	1.30				
AP	Formaldehyde	0.0017	0.0049				
requirements for the	to CFR63, Subpart ZZZZ. e rule with reduction of CO b n here are pre-catalyst installa	y at least 70%					

^{1.} Enter the appropriate Source Identification Number for each reciprocating internal combustion compressor/generator engine located at the facility. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Emergency Generator engines should be designated EG-1, EG-2, EG-3 etc. If more than three (3) engines exist, please use additional sheets.

2. Enter the Source Status using the following codes:

NS Construction of New Source (installation) ES Existing Source
MS Modification of Existing Source RS Removal of Source

- 3. Enter the date (or anticipated date) of the engine's installation (construction of source), modification or removal.
- 4. Enter the date that the engine was manufactured, modified or reconstructed.
- 5. Is the engine a certified stationary compression ignition internal combustion engine according to 40CFR60 Subpart IIII. If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance according to 40CFR§60.4210 as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6. Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart JJJJ. If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance according to 40CFR§60.4243a(2)(i) through (iii), as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

7.	Enter the	Engine	Type	designation	n(s) ı	ising the	following	codes:

LB2S Lean Burn Two Stroke RB4S Rich Burn Four Stroke

LB4S Lean Burn Four Stroke

8. Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:

A/F Air/Fuel Ratio IR Ignition Retard

HEIS High Energy Ignition System SIPC Screw-in Precombustion Chambers

PSC Prestratified Charge LEC Low Emission Combustion

NSCR Rich Burn & Non-Selective Catalytic Reduction SCR Lean Burn & Selective Catalytic Reduction

9. Enter the Fuel Type using the following codes:

PQ Pipeline Quality Natural Gas
2FO #2 Fuel Oil RG Raw Natural Gas
LPG Liquid Propane Gas

10. Enter the Potential Emissions Data Reference designation using the following codes. Attach all referenced data to this *Compressor/Generator Data Sheet(s)*.

MD Manufacturer's Data AP AP-42
GR GRI-HAPCalcTM OT Other _____ (please list)

11. Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

Attachment L FUGITIVE EMISSIONS FROM UNPAVED HAULROADS

UNPAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

 k =
 Particle size multiplier
 0.80
 0.36

 s =
 Silt content of road surface material (%)
 0.80
 0.36

 p =
 Number of days per year with precipitation >0.01 in.
 0.80
 0.80

Item Number	Description	Number of Wheels	Mean Vehicle Weight (tons)	Mean Vehicle Speed (mph)	Miles per Trip	Maximum Trips per Hour	Maximum Trips per Year	Control Device ID Number	Control Efficiency (%)
1	Trucks	10-18	29	NA	0.06	10	6,945	WS	7S
2	Endloaders	4	34	NA	0.25	67	83,334	WS	7S
3									
4									
5									
6									
7									

Source: AP-42 Fifth Edition - 13.2.2 Unpaved Roads

 $E = k \times 5.9 \times (s \div 12) \times (S \div 30) \times (W \div 3)^{0.7} \times (w \div 4)^{0.5} \times ((365 - p) \div 365) = \\ lb/Vehicle Mile Traveled (VMT)$

Where:

		PM	PM-10
k =	Particle size multiplier	0.80	0.36
s =	Silt content of road surface material (%)		
S =	Mean vehicle speed (mph)		
W =	Mean vehicle weight (tons)		
w =	Mean number of wheels per vehicle		
p =	Number of days per year with precipitation >0.01 in.		

For lb/hr: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$

For TPY: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] \times [Ton \div 2000 lb] = Tons/year$

SUMMARY OF UNPAVED HAULROAD EMISSIONS

		Р	M		PM-10/PM2.5				
Item No.	Uncontrolled		Controlled		Uncon	Uncontrolled		Controlled	
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	
1	4.01	1.39	1.00	0.35	1.18/0.12	0.41/0.04	0.30/0.03	0.10/0.01	
2	122.78	76.35	30.70	19.09	36.18/3.69	22.50/2.29	9.05/0.92	5.63/0.57	
3									
4									
5									
6									
7									
TOTALS	126.79	77.74	31.70	19.44	37.36/3.81	22.91/2.33	9.35/0.95	5.73/0.58	

FUGITIVE EMISSIONS FROM PAVED HAULROADS

INDUSTRIAL PAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

l =	Industrial augmentation factor (dimensionless)	
n =	Number of traffic lanes	
s =	Surface material silt content (%)	
L=	Surface dust loading (lb/mile)	

Item Number	Description	Mean Vehicle Weight (tons)	Miles per Trip	Maximum Trips per Hour	Maximum Trips per Year	Control Device ID Number	Control Efficiency (%)
1	Trucks	28.72	0.25	37	37,234	WS	7S
2							
3							
4							
5							
6							
7							

Source: AP-42 Fifth Edition – 11.2.6 Industrial Paved Roads

 $E = 0.077 \times I \times (4 \div n) \times (s \div 10) \times (L \div 1000) \times (W \div 3)^{0.7} =$

lb/Vehicle Mile Traveled (VMT)

Where:

l =	Industrial augmentation factor (dimensionless)	
n =	Number of traffic lanes	
s =	Surface meterial silt content (%)	
L=	Surface dust loading (lb/mile)	
W =	Average vehicle weight (tons)	

For lb/hr: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$

For TPY: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] \times [Ton \div 2000 lb] = Tons/year$

SUMMARY OF PAVED HAULROAD EMISSIONS

Itama Nia	Uncor	trolled	Controlled			
Item No.	lb/hr	TPY	lb/hr	TPY		
1	18.50/3.70/0.93	9.31/1.86/0.47	4.63/0.93/0.23	2.33/0.47/0.12		
2						
3						
4						
5						
6						
7						
8						
TOTALS	18.50/3.70/0.93	9.31/1.86/0.47	4.63/0.93/0.23	2.33/0.47/0.12		

FRAP SYSTEM

		I				
Source Identification Number ¹	F-H1					
Material Stored ²	Raw RAP					
Maximum Yearly Throughput (tons/year) ³	125,000					
Typical Moisture Content (%) ⁴	7.5					
Average % of Material Passing Through 200 Mesh Sieve ⁵	7.5					
Maximum Stockpile Base Area (ft²) ⁶						
Maximum Stockpile Height (ft) ⁷						
Maximum Storage Capacity (tons) ⁸	25					
Dust Control Method Applied to Storage ⁹	PE					
Method of Material Load-in to Bin or Stockpile ¹⁰	FE					
Dust Control Method Applied During Load-in ¹¹	MD					
Method of Material Load-out from Bin or Stockpile ¹⁰	SS					
Dust Control Method Applied During Load-out ¹¹	FE					
1. Enter the appropriate Source Identification Number for each storage activity using the following codes. For example, if the facility utilizes four open stockpiles and one storage silo, the Source Identification Numbers should be OS-1, OS-2, OS-3, and OS-4; and BS-1, respectively. OS Open Stockpile E3 Enclosure (three-sided enclosure) B8 Bin or Storage Silo (full enclosure) SB Storage Building (full enclosure) SF Stockpiles with wind fences OT Other (please specify) 2. Describe the type of material stored or stockpiled. 3. Enter the maximum yearly storage throughput for each storage activity. 4. Enter the average percent moisture content of the stored material. 5. Enter the average percent of material that will pass through a 200 mesh sieve. 6. For stockpiles, enter the maximum stockpile base area. 7. For stockpiles, enter the maximum stockpile height. 8. Enter the maximum storage capacity for each storage activity in tons (e.g. silo capacity, maximum stockpile size, etc.). 9. Enter the dust control method applied to storage activity using the following codes: CA Crusting Agent WS Water Spray FE Full Enclosure NO None OT Other (please specify) 10. Enter the method of load-in or load-out to/from stockpiles or bins using the following codes: FE Front Endloader SS Stationary Conveyor/Stacker ST Stacking Tube MC Mobile Conveyor/Stacker CS Clamshell TD Truck Dump OT Other (Please specify) 11. Enter the dust control method applied during load-in or load-out using the following codes: CA Crusting Agent WS Water Spray FE Full Enclosure MD Minimize Drop Height ST Stacking Tube NO None						
ST Stacking Tube NO OT Other	O None (please spe	ecify)				

CRUSHING AND SCREENING AFFECTED SOURCE SHEET

Source Identification Number ¹		F-CR1	F-S1				
Type of Crusher or Screen ²		HSI	DD				
Make, Model No., Serial No. ³		KPI-JCI 3136	PEP Vari-Vibe				
Date of Construction, Reconstruction, or Modification (Month/Year) ⁴		2014*	2014*	*Initial usage was in 2014. This is a portable system that is used a this site then moved to other sites as needed.			is used at
Maximum	tons/hour	75	200				
Throughput ⁵	tons/year	67,500	125,000				
Material	l sized from/to:6	+4"/-4"	-1/2"				
Average Mo	oisture Content (%) ⁷	7.5	7.5				
Control Device ID Number ⁸							
	height (ft)						
Baghouse	diameter (ft)						
Stack	volume (ACFM)						
Parameters ⁹	exit temp (F)						
	UTM Coordinates						
Maximum	hours/day	12	12				
Operating	days/year	52	52				
Schedule ¹⁰	hours/year	625	625				

^{1.} Enter the appropriate Source Identification Number for each crusher and screen. For example, in the case of an operation which incorporates multiple crushers, the crushers should be designated CR-1, CR-2, CR-3 etc. beginning with the breaker or primary crusher. Multiple screens should be designated S-1, S-2, S-3 etc.

2. Describe types of crushers and screens using the following codes:

HM	Hammermill	SS	Stationary Screen	DR	Double Roll Crusher
SD	Single Deck Screen	BM	Ball Mill	DD	Double-Deck Screen
RB	Rotary Breaker	TD	Triple Deck Screen	JC	Jaw Crusher
GC	Gyratory Crusher	ОТ	Other	HSI	Horizontal Shaft Impactor

- 3. Enter the make, model number, and serial number of the crusher/screen.
- 4. Enter the date that each crusher and screen was constructed, reconstructed, or modified.
- 5. Enter the maximum throughput for each crusher and screen in tons per hour and tons per year.
- 6. Describe the nominal material size reduction (e.g. $+2''/-\frac{3}{8}$ ").
- 7. Enter the average percent moisture content of the material processed.
- 8. Enter the appropriate Control Device Identification Number for each crusher and screen. Refer to Table A Control Device Listing and Control Device Identification Number Instructions in the Reference Document for Control Device ID prefixes and numbering.
- 9. Enter the appropriate stack parameters if a baghouse control device is used.
- 10. Enter the maximum operating schedule for each crusher and screen in hours per day, days per year and hours per year.

CONVEYING AFFECTED SOURCE SHEET

Source Identification					n Material er Rate ⁵	Average Moisture	Control
Number ¹	or Modification (Month/Year) ²	Handled ³	Handled ⁴	tons/hour	tons/year	Content (%) ⁶	Device ⁷
F-BC1	2015	RAP	+4"	200	125,000	7.5	PE
F-BC2	2015	RAP	+4"	75	46,875	7.5	N
F-BC3	2015	FRAP	-4" to +1/2"	200	125,000	7.5	N
F-BC4	2015	FRAP	-1/2"	200	125,000	7.5	N
F-RS1	2015	FRAP	-4" to 0"	200	125,000	7.5	N

1. Enter the appropriate Source Identification Number for each conveyor using the following codes. For example, multiple belt conveyors should be designated BC-1, BC-2, BC-3 etc. Transfer points are considered emission points, not sources, and should not be included in the *Conveying Affected Source Sheet*. Transfer Point Identification Numbers shall be assigned in the *Emission Calculation Sheet*.

BC Belt Conveyor BE Bucket Elevator DL Drag-link Conveyor PS Pneumatic System SC Screw Conveyor VC Vibrating Conveyor OT Other

- 2. Enter the date that each crusher and screen was constructed, reconstructed, or modified.
- 3. Enter the type of material being handled Raw Coal (RC) Sized Coal (SC) Clean Coal (CC) Refuse (R) Other (O)
- 4. Enter the nominal size of the material being conveyed (e.g. clean coal ¾" x 0). If more than one material is handled by the listed conveyor, list each material and enter the appropriate data for each material.
- 5. Enter the maximum material transfer rate for each conveyor in tons per hour and tons per year.
- 6. Enter the average percent moisture content of the conveyed material.
- 7. Enter the control device for the conveyor. PE Partial Enclosure (example 3/4 hoop), FE Full Enclosure, N None

ENGINE DATA SHEET

Source Iden	ntification Number ¹	F-EN	NG1*			
Engine Man	ufacturer and Model	John Deere 6068HFC93A				
Manufactur	rer's Rated bhp/rpm	173 hp @	2,400 rpm			
Sou	ırce Status ²	N	AS .			
	d/Modified/Removed onth/Year) ³	01/2	2015			
Engine Manufactu	ured/Reconstruction Date ⁴	05/17	7/2013			
	d Stationary Compression ording to 40CFR60 Subpart	Yes, but no	ot applicable			
Is this a Certified	Stationary Spark Ignition to 40CFR60 Subpart JJJJ?	Ν	Vo			
	Engine Type ⁷	Compressi	ion Ignition			
	APCD Type ⁸]	N			
	Fuel Type9	#2	FO			
Engine, Fuel and	H ₂ S (gr/100 scf)	Not ap	plicable			
Combustion Data	Operating bhp/rpm	172 hp @ 2,400 rpm				
Data	BSFC (Btu/bhp-hr)	Not available				
	Fuel throughput (ft ³ /hr)	9.28 gal/hr				
	Fuel throughput (MMft ³ /yr)	5,800	gal/yr			
	Operation (hrs/yr)	6	25			
Reference ¹⁰	Potential Emissions ¹¹	lbs/hr	tons/yr	lbs/hr	tons/yr	
	non-road which excludes it fro IIII and 40CFR63, Subpart Z					
	<u>-</u>					

^{1.} Enter the appropriate Source Identification Number for each reciprocating internal combustion compressor/generator engine located at the facility. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Emergency Generator engines should be designated EG-1, EG-2, EG-3 etc. If more than three (3) engines exist, please use additional sheets.

2. Enter the Source Status using the following codes:

NS Construction of New Source (installation) ES Existing Source
MS Modification of Existing Source RS Removal of Source

- 3. Enter the date (or anticipated date) of the engine's installation (construction of source), modification or removal.
- 4. Enter the date that the engine was manufactured, modified or reconstructed.
- 5. Is the engine a certified stationary compression ignition internal combustion engine according to 40CFR60 Subpart IIII. If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance according to 40CFR§60.4210 as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6. Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart JJJJ. If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance according to 40CFR§60.4243a(2)(i) through (iii), as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

7.	Enter the	Engine	Type	designation(s) using	the follow	ving codes:

LB2S Lean Burn Two Stroke RB4S Rich Burn Four Stroke

LB4S Lean Burn Four Stroke

8. Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:

A/F Air/Fuel Ratio IR Ignition Retard

HEIS High Energy Ignition System SIPC Screw-in Precombustion Chambers

PSC Prestratified Charge LEC Low Emission Combustion

NSCR Rich Burn & Non-Selective Catalytic Reduction SCR Lean Burn & Selective Catalytic Reduction

9. Enter the Fuel Type using the following codes:

PQ Pipeline Quality Natural Gas
2FO #2 Fuel Oil RG Raw Natural Gas
LPG Liquid Propane Gas

10. Enter the Potential Emissions Data Reference designation using the following codes. Attach all referenced data to this *Compressor/Generator Data Sheet(s)*.

MD Manufacturer's Data AP AP-42
GR GRI-HAPCalcTM OT Other _____ (please list)

11. Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

Attachment L FUGITIVE EMISSIONS FROM UNPAVED HAULROADS

UNPAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

 k =
 Particle size multiplier
 0.80
 0.36

 s =
 Silt content of road surface material (%)
 0.80
 0.36

 p =
 Number of days per year with precipitation >0.01 in.
 0.80
 0.80

Item Number	Description	Number of Wheels	Mean Vehicle Weight (tons)	Mean Vehicle Speed (mph)	Miles per Trip	Maximum Trips per Hour	Maximum Trips per Year	Control Device ID Number	Control Efficiency (%)
1	Front Endloaders	4	31	NA	0.14	33	20,833	HR-WS	70
2									
3									
4									
5									
6									
7									

Source: AP-42 Fifth Edition - 13.2.2 Unpaved Roads

 $E = k \times 5.9 \times (s \div 12) \times (S \div 30) \times (W \div 3)^{0.7} \times (w \div 4)^{0.5} \times ((365 - p) \div 365) =$ lb/Vehicle Mile Traveled (VMT)

Where:

		PM	PM-10
k =	Particle size multiplier	0.80	0.36
s =	Silt content of road surface material (%)		
S =	Mean vehicle speed (mph)		
W =	Mean vehicle weight (tons)		
w =	Mean number of wheels per vehicle		
p =	Number of days per year with precipitation >0.01 in.		

For lb/hr: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$

For TPY: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] \times [Ton \div 2000 lb] = Tons/year$

SUMMARY OF UNPAVED HAULROAD EMISSIONS

		Р	M			PM	-10	
Item No.	Uncon	trolled	Controlled		Uncon	trolled	Controlled	
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
1	34.20	10.69	10.26	3.21	10.09/1.01	3.15/0.32	3.03/0.30	0.95/0.10
2								
3								
4								
5								
6								
7								
TOTALS	34.20	10.69	10.26	3.21	10.09/1.01	3.15/0.32	3.03/0.30	0.95/0.10

PORTABLE CRUSHING AND SCREENING SYSTEM

Affected Source Sheet Source Specific Emissions Data: Solid Materials Sizing, Handling and Storage Facilities

Required Information Regarding
Dust Control Equipment Measures

- 1. If water or chemical sprays are to be used on conveyors, transfer points, stockpiles, etc... for dust control, the location of all spray bars or spray systems should be shown on the plot plans and/or line drawings. The following information should be provided for each spray system:
 - a. Design water flow through spray bar
 - b. Type and amount of chemicals used and the mix ratio of chemical to water used at the sprays.
 - c. Methods employed to winterize sprays (e.g. keep sprays from freezing and becoming inoperable during cold weather)

Not Applicable

- 2. A detailed written description should be submitted of dust control measures/programs that will be employed on haul roads and in areas of vehicle activity around material stockpiled. The haulways and areas to be treated should be shown by shading or similar description on the plant plan. The following points should be specifically addressed:
 - a. Equipment (e.g. water trucks, fixed spray bars, wheel and truck underbody washers, etc...) that will be used in this dust control program.
 - b. Frequency of application of water and chemical to roads and stockpile areas during dry periods.
 - c. Amount of chemical suppressants to be used, if applicable, in pounds or gallons per square yard of surface to be treated.
 - d. Type of haulroad or haulway surface(s) that will be maintained (e.g. coarse gravel, reddog, etc...)
 - e. Approximate maximum length of haulroads (miles or feet).
 - f. Maximum daily truck traffic on haulroads (number of trucks).

Not Applicable

- 3. If full or partial enclosures are to be used to minimize dust entrainment, a drawing of each such enclosure should be submitted (for example at truck dump bins, breakers, conveyor transfer points).
- 4. If particulate control devices such as baghouses or scrubbers are to be used, complete an appropriate <u>Air Pollution Control Device Sheet</u> and furnish a drawing showing details of enclosures and ductwork associated with these control systems.

AFFECTED SOURCE SHEET

Source Specific Emissions Data: Solid Materials Sizing, Handling, and Storage Facilities

Plot Plan(s) and Line Drawing(s)

- a. Finish the plot plan(s) of the plant area which contains sufficient detail to show the scaled layout of the equipment involved in each materials handling system (e.g. conveyors, transfer points, crushers, screens, bins, stockpiles, truck dump bins, etc...). Show equipment or buildings described in other sections of this application on the plot plan as appropriate. The guidelines for Plot Plans should be followed to the extent possible.
- b. Furnish the line drawing(s) or schematic(s) showing each component or facet of each materials handling system (e.g. conveyors, transfer points, stockpiles, crushers, screens, bins etc...). Show process equipment described in other sections of this application as needed for clarity.
 - c. On the line drawing(s) or schematic(s) furnished in accordance with item (b) assign an ID number to each conveyor, transfer point (including truck, barge and rail car loading/unloading etc...), storage structure, stockpile, crusher, and screening unit. If any equipment is shown on the line drawing(s) which was described in other sections of this application, use the ID numbers assigned to the equipment in those other sections and indicate equipment name or type (e.g. rotary dryer, vertical kiln etc...)
- d. To the extent possible, note the numbers assigned for equipment and storage facilities as per item (c) on the Plot Plans(s).
- e. The assigned ID numbers for equipment and transfer points must be used to complete Tables 1, 2, and 3 following.

Table 1: Affected Storage Activity

ID Number	OS1	P-B1		
Affected Source Name	Open Stockpiling	B1		
Type Storage ¹	OS	Bin		
Material Stored	RAP	RAP		
Typical Moisture Content (%)	3	3		
Avg % of material passing 200 mesh sieve	4	4		
Maximum Total Yearly Throughput in storage (tons)	125,000	125,000		
Maximum Quantity of Material in Storage ² (tons)	50,000	20		
Maximum Stockpile Base Area (sq. ft.)	111,600	NA		
Maximum Stockpile height (ft)	25	NA		
Type dust controls during storage ³	N	PE		
Method of material load-in to bin or stockpile ⁴	SS	FE		
Type dust controls during load-in ⁵	MD	MD		
Method of material load-out to bin or stockpile ⁴	FE	Feeder		
Type dust controls during load-out ⁵	N	PE		

Table 2: Conveying and Transfer

		Material Handled [(Note nominal	Material Cor Transfer Rate	nveying or	Type Dust	Approximate Material	
ID Number	Type Conveyor or Transfer Point ⁶		Maximum TPH	Maximum MM TPY	Control Measures ⁵	Moisture Content (%)	
		Conv	eyor Belts				
P-C1	ВС	+4" to -1/2"	150	187,500	N	3	
P-C2	BC	+4" to -1/2"	100	62,500	N	3	
P-C3	BC	+4" to -1/2"	100	62,500	N	3	
P-C4	BC	+4" to -1/2"	100	125,000	N	3	
P-C5	BC	+4" to -1/2"	100	125,000	N	3	
		Trans	sfer Points				
P-TP1	OTH1	+4"/-4"	100	125,000	MD	3	
P-TP2	OTH2	+4"/-4"	100	125,000	PE	3	
P-TP3	OTH5	+4"/-4"	150	187,500	N	3	
P-TP4	OTH4	+4"/-4"	100	62,500	PE	3	
P-TP5	OTH5	+4"/-4"	100	62,500	N	3	
P-TP6	OTH4	+4"/-4"	100	62,500	PE	3	
P-TP7	01	+4"/-4"	100	62,500	N	3	
P-TP8	OTH4	+4"/-4"	100	125,000	PE	3	
P-TP9	ОТН3	+4"/-4"	100	125,000	N	3	
P-TP10	OTH4	+4"/-4"	100	125,000	PE	3	
P-TP11	ОТН3	+4"/-4"	100	125,000	N	3	
OTH1 Exca	OTH1 Excavator/Endloader to Hopper			or to Hopper	or Bin		
OTH2 Hopper to Crusher or Belt			10 Excavator to Truck or Other Stockpile				
OTH3 Conv	veyor to Stockpile						
OTH4 Crus	her/Screen to Belt Co	onveyor					
OTH5 Belt	Conveyor to Crusher	Screen					

Table 3: Crushing and Screening

ID Number		P-CR1	P-SCR1	
Type Crusher of	or Screen ⁸	Crusher	Double Deck	
Material Sized		RAP	RAP	
Maximum	Tons/hour	100	150	
Material Throughput	Tons/year	62,500	187,500	
Material sized f	rom/to:9	+4"/-4"	+4"/-4"	
Typical moistons as crushed control (%)		3	3	
Type dust cont	rol	FE	PE	
	height (ft)	NA	NA	
Stack Parameters	diameter (ft)	NA	NA	
	Volume (ACFM)	NA	NA	
	Temp (°F)	NA	NA	
	hour/day	24	24	
Maximum Operating	day/year	365	365	
Schedule	hour/year	2,100	2,100	
	Jan-Mar	25%	25%	
Approximate	April-June	25%	25%	
Percentage	July-Sept	25%	25%	
of Operation from:	Oct-Dec	25%	25%	
Maximum	lb/hour	PM/PM10/PM2.5 0.04/0.02/0.01	PM/PM10/PM2.5 1.88/0.66/0.13	
Particulate Emissions	Ton/year	PM/PM10/PM2.5 0.02/0.01/0.01	PM/PM10/PM2.5 1.17/0.41/0.08	

Describe method of determining emissions and dust control efficiencies (if by test on a similar unit provide report, if by emission factor reference emission factors):

- 1 Type Storage Code as follows: (Capacity of each bin, building or enclosure)
 - OS Open Stockpile
 - B Bin or Storage Silo (full enclosure)
 - SB Storage Building (full enclosure)
 - E- Enclosure (walls but no top)
 - SWF- Stockpiles with wind fences
 - OTH- Other Specify in footnote or attachment
- 2. Give maximum and average quantity of material in storage at any given time (e.g. silo capacity, stockpile size, etc...)
- TYPE DUST CONTROLS DURING STORAGE

If storage is by other than by bin or full enclosure Code as follows:

- N None
- WS- Water Sprays
- C- Spraying with chemical surfactant
 - OTH- Other Specify in footnote or attachment
- 4. METHOD OF PLACING MATERIAL ONTO STOCKPILE OR INTO BINS OR LOADING OUT FROM STOCKPILES OR BINS Code as follows:
 - C- Clamshell
 - TD- Truck Dumping
 - FE-Front Endloader
 - ST-Stacking Tubes
 - MS- Mobile Conveyor Stacker
 - SS- Stationary Conveyor Stacker
 - P- Pneumatic Conveyor Stacker
 - FC- Fixed Height Chute from bins
 - TC- Telescoping Chute from bins
 - UC- Under-pole or under-bin reclaim conveyor
 - RC- Reclaim Conveyor (rake or bucket reclaim conveyor reclaiming from surface of stockpile)
 - OTH- Other Describe in a footnote or attachment
- 5. TYPE DUST CONTROLS Code as follows:
 - N- None
 - WS- Water Sprays
 - WSA- Water Sprays with Wetting Agents
 - CS- Chemical Dust Suppressant (sprays, etc...)
 - **FE-Full Enclosures**
 - PE- Partial Enclosures
 - MD- Minimization of material drop height
 - EM- Enclosure and evacuation to mechanical collector
 - EB- Enclosure and evacuation to baghouse
 - ES- Enclosure and evacuation to scrubber
 - OTH- Other describe in footnote or attachment

6. TYPE CONVEYOR OR TRANSFER POINT - Code as follows:

Conveyors

- BC- Belt Conveyor
- VC- Vibrating Conveyor
- SC- Screw Conveyor
- DL-Drag-link conveyor
- BE- Bucket Elevator
- PS- Pneumatic System
- OTH- Other describe in footnote or attachment

Transfer Points

- 01- Conveyor to Conveyor
- 02-Conveyor to Bucket Elevator
- 03- Conveyor to Hopper or Bin
- 04-Bucket Elevator to Hopper or Bin
- 05-Pneumatic conveyor to bin
- 06-Truck Dumping onto ground
- 07- Truck Dumping into hopper
- 08- Loading trucks through stationary chute
- 09- Loading trucks through telescoping chute
- 10- Loading Trucks by endloader
- 11- Railcar unloading-side or bottom dumping
- 12- Railcar unloading-rotary unloader
- 13- Railcar loading /unloading by pneumatic system
- 14- Railcar loading through stationary source
- 15- Railcar loading through telescopic chute
- 16- Railcar loading by front end-loader
- 17- Railcar loading by railcar
- 18- Barge loading/unloading by clamshell
- 19-Barge unloading bucket ladder unloader
- 20-Barge unloading from a fixed-height conveyor or stationary chute
- 21- Barge loading variable height conveyor or telescoping chute
- 22- Other describe in footnote or attachment
- 7. If more than one material is handled by the listed conveyor or transfer point list each material and furnish the requested data in the table for each material.
- 8. Describe type of unit such as hammermill, ball mill, double-deck (DD) screen, double roll (DR) crusher, etc....
- 9. Describe nominal size reduction, example +2" / -3/8

ATTACHMENT L

FUGITIVE EMISSIONS FROM UNPAVED HAULROADS

UNPAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

PM PM-10

k =	Particle size multiplier	
s =	Silt content of road surface material (%)	See calculations for input into equation.
p =	Number of days per year with precipitation >0.01 in.	

Item Number	Description	Number of Wheels	Mean Vehicle Weight (tons)	Mean Vehicle Speed (mph)	Miles per Trip	Maximum Trips per Hour	Maximum Trips per Year	Control Device ID Number	Control Efficiency (%)
1	Front Endloaders	4	31	NA	0.14	17	20,833	HR-WS	70
2									
3									
4									
5									
6									
7									

Source: AP-42 Fifth Edition – 13.2.2 Unpaved Roads, 12/03

 $E = [k \times (s/12)^a \times (W/3)^b] * [(365 - p) \div 365] = lb/Vehicle Mile Traveled (VMT)$

Where:

PM PM-10

k =	Particle size multiplier	
s =	Silt content of road surface material (%)	
W =	Mean vehicle weight (tons)	See calculations for input into equation.
p =	Number of days per year with precipitation >0.01 in.	

For lb/hr: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$

For TPY: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] \times [Ton \div 2000 lb] = Tons/year$

SUMMARY OF UNPAVED HAULROAD EMISSIONS

	SUMMANT OF UNFAVED HADEROAD EMISSIONS											
		Р	M			PM-10	/PM2.5					
Item No.	Uncon	trolled	Cont	rolled	Uncon	trolled	Controlled					
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY				
1	17.10	10.69	5.13	3.21	5.05/0.50	3.15/0.32	1.52/0.15	0.95/0.10				
2												
3												
4												
5												
6												
7												
TOTALS	17.10	10.69	5.13	3.21	5.05/0.50	3.15/0.32	1.52/0.15	0.95/0.10				

ENGINE DATA SHEET

Source Ide	entification Number ¹	P-EN	NG1*			
Engine Mar	nufacturer and Model	Caterpil	llar 3412			
Manufactu	rer's Rated bhp/rpm	917/	1,836			
So	ource Status ²	N	IS			
	ed/Modified/Removed Ionth/Year) ³	20)17			
	cured/Reconstruction Date ⁴	19	989			
Ignition Engine acc IIII? (Yes or No) ⁵	ed Stationary Compression cording to 40CFR60 Subpart	N	0*			
Is this a Certified Engine according (Yes or No) ⁶	Stationary Spark Ignition to 40CFR60 Subpart JJJJ?	N	No			
	Engine Type ⁷	4-St	roke			
	APCD Type ⁸	A/F				
Engine	Fuel Type ⁹	21	FO			
Fuel and	Engine,		NA			
Data	Operating bhp/rpm	917/	1,836			
	BSFC (Btu/bhp-hr)	NA				
	Fuel throughput (ft ³ /hr)	47.5	gal/hr			
	Fuel throughput (MMft ³ /yr)		IA			
	Operation (hrs/yr)	12	20			
Reference ¹⁰	Potential Emissions ¹¹	lbs/hr	tons/yr			
*This engine is no	on-road which excludes it fro	m the PTE a	nd 40CFR60.			
	CFR63, Subpart ZZZZ regulati		,			
					1	
_	1 1		I			

^{1.} Enter the appropriate Source Identification Number for each reciprocating internal combustion compressor/generator engine located at the facility. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Emergency Generator engines should be designated EG-1, EG-2, EG-3 etc. If more than three (3) engines exist, please use additional sheets.

2. Enter the Source Status using the following codes:

NS Construction of New Source (installation) ES Existing Source
MS Modification of Existing Source RS Removal of Source

- 3. Enter the date (or anticipated date) of the engine's installation (construction of source), modification or removal.
- 4. Enter the date that the engine was manufactured, modified or reconstructed.
- 5. Is the engine a certified stationary compression ignition internal combustion engine according to 40CFR60 Subpart IIII. If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance according to 40CFR§60.4210 as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6. Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart JJJJ. If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance according to 40CFR§60.4243a(2)(i) through (iii), as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

7. Enter the Engine Type designation(s) using the following codes:

LB2S Lean Burn Two Stroke RB4S Rich Burn Four Stroke

LB4S Lean Burn Four Stroke

8. Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:

A/F Air/Fuel Ratio IR Ignition Retard

HEIS High Energy Ignition System SIPC Screw-in Precombustion Chambers

PSC Prestratified Charge LEC Low Emission Combustion

NSCR Rich Burn & Non-Selective Catalytic Reduction SCR Lean Burn & Selective Catalytic Reduction

9. Enter the Fuel Type using the following codes:

PQ Pipeline Quality Natural Gas
2FO #2 Fuel Oil RG Raw Natural Gas
LPG Liquid Propane Gas

10. Enter the Potential Emissions Data Reference designation using the following codes. Attach all referenced data to this *Compressor/Generator Data Sheet(s)*.

MD Manufacturer's Data AP AP-42
GR GRI-HAPCalcTM OT Other (please list)

11. Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

ATTACHMENT N SUPPORTING EMISSIONS CALCULATIONS

By: AM
Date: 02/26/2018

Checked by : PEW
Date: 02/26/2018

Date: 02/26/2018												ate: 02/26/2018
		PTE HMA	PLANT #30			PTE Poratabl	e FRAP System		P	TE Portable Crus	hing and Screen	ing
	Uncor	itrolled	Cont	rolled	Unco	ntrolled	Controlled		Unco	ntrolled	Con	trolled
Emission Type	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
TSP	5,448.25	3403.78	84.93	54.54	40.29	12.6	11.93	3.74	24.30	15.11	9.66	6.12
PM10	1,268.89	793.75	26.40	17.86	12.48	3.89	3.78	1.19	8.03	4.98	3.45	2.20
PM2.5	297.19	186.84	4.53	4.05	1.47	0.46	0.43	0.15	0.99	0.68	0.45	0.35
VOC	34.38	22.74	34.38	22.74								
SO2	23.63	15.74	23.63	15.74								
NOx	28.61	32.97	28.61	32.97								
CO	55.92	38.5	55.92	38.5								
HCl	0.08	0.05	0.08	0.05								
Acetaldehyde	0.52	0.33	0.52	0.33								
Benzene	0.17	0.11	0.17	0.11								
Ethylbenzene	0.11	0.07	0.11	0.07								
Toluene	1.18	0.74	1.18	0.74								
Xylene	0.14	0.09	0.14	0.09								
1,3-Butadiene	0.0001	0.0003	0.0001	0.0003								
Formaldehyde	1.38	0.87	1.38	0.87								
Acrolein	0.0001	0.0003	0.0001	0.0003								
Naphthalene	0.0001	0.0003	0.0001	0.0003								
PAH HAPs	0.35	0.22	0.35	0.22								
Total VOC HAPs	4.44	2.80	4.44	2.80								
Metal HAPs	0.05	0.03	0.05	0.03								
Total HAPs	4.49	2.83	4.49	2.83								

Total PTE

	Uncor	ntrolled	Cont	rolled
Emission Type	lb/hr	tons/yr	lb/hr	tons/yr
TSP	5,512.84	3431.49	106.52	64.40
PM10	1,289.41	802.62	33.63	21.25
PM2.5	299.65	187.98	5.41	4.55
VOC	34.38	22.74	34.38	22.74
SO2	23.63	15.74	23.63	15.74
NOx	28.61	32.97	28.61	32.97
CO	55.92	38.50	55.92	38.50
HCl	0.08	0.05	0.08	0.05
Acetaldehyde	0.52	0.33	0.52	0.33
Benzene	0.17	0.11	0.17	0.11
Ethylbenzene	0.11	0.07	0.11	0.07
Toluene	1.18	0.74	1.18	0.74
Xylene	0.14	0.09	0.14	0.09
1,3-Butadiene	0.0001	0.0003	0.0001	0.0003
Formaldehyde	1.38	0.87	1.38	0.87
Acrolein	0.0001	0.0003	0.0001	0.0003
Naphthalene	0.0001	0.0003	0.0001	0.0003
PAH HAPs	0.35	0.22	0.35	0.22
Total VOC HAPs	4.44	2.80	4.44	2.80
Metal HAPs	0.05	0.03	0.05	0.03
Total HAPs	4.49	2.83	4.49	2.83

Fugitive Emissions

		Uncon	trolled	Contr	rolled
Emissio	on Type	lb/hr	tons/yr	lb/hr	tons/yr
	TSP	145.55	88.18	36.59	22.90
Main Plant	PM10	41.18	25.31	10.40	6.74
	PM2.5	4.76	2.89	1.20	0.79
	TSP	34.2	10.69	10.26	3.21
FRAP	PM10	10.09	3.15	3.03	0.95
	PM2.5	1.01	0.32	0.3	0.1
Constitute 0	TSP	17.21	11.16	5.24	3.68
Crushing & Screening	PM10	5.10	3.37	1.57	1.17
	PM2.5	0.51	0.36	0.16	0.14

Total Fugitives

TSP	196.96	110.03	52.09	29.79
PM10	56.37	31.83	15.00	8.86
PM2.5	6.28	3.57	1.66	1.03

By: LKB
Date: 07/26/13

Checked By: PEW
Date: 08/01/13

PTE

		Point S	ource 1			Fugi	tive 2	
	Uncon	itrolled		rolled	Uncor	itrolled		rolled
Emission Type	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
TSP	5,302.70	3,315.60	48.34	31.64	145.55	88.18	36.59	22.90
PM_{10}	1,227.71	768.44	15.99	11.12	41.18	25.31	10.40	6.74
PM _{2.5}	292.43	183.95	3.33	3.26	4.76	2.89	1.20	0.79
VOC	34.38	22.74	34.38	22.74				
SO_2	23.63	15.74	23.63	15.74				
NO _x	28.61	32.97	28.61	32.97				
CO	55.92	38.50	55.92	38.50				
HCl	0.08	0.05	0.08	0.05				
Acetaldehyde	0.521	0.333	0.521	0.333]			
Benzene	0.168	0.109	0.168	0.109]			
Ethylbenzene	0.112	0.068	0.112	0.068		Not Ap	plicable	
Toluene	1.176	0.742	1.176	0.742]			
Xylene	0.138	0.087	0.138	0.087				
Formaldehyde	1.378	0.870	1.378	0.870				
PAH HAPs	0.35	0.22	0.35	0.22				
Total VOC HAPs ³	4.44	2.80	4.44	2.80				
Metal HAPs	0.05	0.03	0.05	0.03				
Total HAPs	4.49	2.83	4.49	2.83				

		 									
	Uncon	trolled	Cont	rolled							
Emission Type	lb/hr	tons/yr	lb/hr	tons/yr							
TSP	5,448.25	3,403.78	84.93	54.54							
PM_{10}	1,268.89	793.75	26.40	17.86							
PM _{2.5}	297.19	186.84	4.53	4.05							
VOC	34.38	22.74	34.38	22.74							
SO ₂	23.63	15.74	23.63	15.74							
NO _x	28.61	32.97	28.61	32.97							
CO	55.92	38.50	55.92	38.50							
HCl	0.08	0.05	0.08	0.05							
Acetaldehyde	0.52	0.33	0.52	0.33							
Benzene	0.17	0.11	0.17	0.11							
Ethylbenzene	0.11	0.07	0.11	0.07							
Toluene	1.18	0.74	1.18	0.74							
Xylene	0.14	0.09	0.14	0.09							
Formaldehyde	1.38	0.87	1.38	0.87							
PAH HAPs	0.35	0.22	0.35	0.22							
Total VOC HAPs3	4.44	2.80	4.44	2.80							
Metal HAPs	0.05	0.03	0.05	0.03							
Total HAPs	4.49	2.83	4.49	2.83							

Point source emissions include transfer points, drum mixer, and tanks.

² Fugitive emissions include vehicular traffic and open stockpiles.

³ Total VOC Haps include PAH HAPs

West Virginia Paving, Inc. Dunbar Plant #30

By: LKB Checked By: PEW Date: 07/26/13 Date: 08/01/13

MATERIALS HANDLING

Defining transfer point empirical expression variables, where: $e = k(0.0032)(U/5)^{1.3}/(M/2)^{1.4}$

> ? e= lb/ton k for TSP = 0.74 dimensionless $k \ for \ PM_{10}$ 0.35 dimensionless k for $PM_{2.5}$ 0.053 dimensionless U= 10 mean wind speed, mph M =3.0 material moisture content, %

Calculating transfer point emission factor for TSP:

e =0.0033 lb/ton

Calculating transfer point emission factor for PM₁₀:

e =0.0016 lb/ton

Calculating transfer point emission factor for PM_{2.5}:

e = 0.0002 lb/ton

Emission factor calculation taken from AP-42 Section

13.2.4 Aggregate Handling and Storage Piles

500,000 tpy Production rate: RAP rate 100 tph 125,000 tpy

TSP Emissions			KAP rau	: 100	цп	123,000		ounding =	2	
		Transfe	r Capacities	e	Co	ntrol		Emi	ssions	
ID	Description		•	(U)	De	evice	Uncont	trolled	Cont	rolled
	_	tons/hour	tons/year	lb/T	Type	Effic(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
TP1	Barge to HI	400	500,000	0.0033	MD	0	1.32	0.83	1.32	0.83
TP2	HI to C1	400	500,000	0.0033	PE	50	1.32	0.83	0.66	0.42
TP3	C1 to C2 or C4	400	500,000	0.0033	PE	50	1.32	0.83	0.66	0.42
TP4	C2 to C3	400	500,000	0.0033	PE	50	1.32	0.83	0.66	0.42
TP5	C3 to RS1	400	500,000	0.0033	PE	50	1.32	0.83	0.66	0.42
TP6	RS1 to OS1-OS6 or C5	400	500,000	0.0033	MD	0	1.32	0.83	1.32	0.83
TP6A	C5 to RS2	400	500,000	0.0033	PE	50	1.32	0.83	0.66	0.42
TP7	RS2 to OS1-OS6 or RS5	400	500,000	0.0033	MD	0	1.32	0.83	1.32	0.83
TP7A	RS5 to OS1-OS6	400	500,000	0.0033	MD	0	1.32	0.83	1.32	0.83
TP9*	C4 to RS3	400	500,000	0.0033	PE	50			0.00	0.00
TP10*	RS3 to OS7-OS8 or C6	400	500,000	0.0033	MD	0			0.00	0.00
TP10A*	C6 to RS4	400	500,000	0.0033	PE	50			0.00	0.00
TP11*	RS4 to OS7-OS8	400	500,000	0.0033	MD	0			0.00	0.00
TP12****	Truck to OS9	180	125,000	0.0033	CA	75	0.59	0.21	0.15	0.05
TP13	FE to B1-B5B	400	500,000	0.0033	MD	0	1.32	0.83	1.32	0.83
TP14	B1 to UC1	400	500,000	0.0033	PE	50	1.32	0.83	0.66	0.42
TP15*	B2 to UC2	400	500,000	0.0033	PE	50			0.00	0.00
TP16*	B3 to UC3	400	500,000	0.0033	PE	50			0.00	0.00
TP17*	B4 to UC4	400	500,000	0.0033	PE	50			0.00	0.00
TP18*	B5 to UC5	400	500,000	0.0033	PE	50			0.00	0.00
TP18A*	B5A to UC5A	400	500,000	0.0033	PE	50			0.00	0.00
TP18B*	B5B to UC5B	400	500,000	0.0033	PE	50			0.00	0.00
TP19	UC1 to UC6	400	500,000	0.0033	PE	50	1.32	0.83	0.66	0.42
TP20*	UC2 to UC6	400	500,000	0.0033	PE	50			0.00	0.00
TP21*	UC3 to UC6	400	500,000	0.0033	PE	50			0.00	0.00
TP22*	UC4 to UC6	400	500,000	0.0033	PE	50			0.00	0.00
TP23*	UC5 to UC6	400	500,000	0.0033	PE	50			0.00	0.00
TP23A*	UC5A to UC6	400	500,000	0.0033	PE	50			0.00	0.00
TP23B*	UC5B to UC6	400	500,000	0.0033	PE	50			0.00	0.00
TP24	UC6 to S1	400	500,000	0.0033	N	0	1.32	0.83	1.32	0.83
TP24A	S1 to Ground	40	50,000	0.0033	PE	50	0.13	0.08	0.07	0.04
TP24B	S1 to UC11	400	500,000	0.0033	PE	50	1.32	0.83	0.66	0.42
TP24C	UC11 to CFDM1	400	500,000	0.0033	FE	80	1.32	0.83	0.27	0.17
TP29	FE to B6 or B6A	100	125,000	0.0033	CA	75	0.33	0.21	0.09	0.06
TP29A	B6 to UC7A	100	125,000	0.0033	FE+CA	80	0.33	0.21	0.07	0.05
TP29B	B6A to UC7B	100	125,000	0.0033	FE+CA	80	0.33	0.21	0.07	0.05

By: LKB Checked By: PEW Date: 07/26/13 Date: 08/01/13

MATERIALS HANDLING

TP41 TP42***	BS1-BS3 to Trucks APCD2 to SC1	See "HMA Lo:	ading" worksheet 50,000	0.0033	FE	80	0.13	0.08	0.03	0.02
TP40	DL3 to BS3		ading" worksheet							
TP39	DL2 to BS2 or DL3		ading" worksheet							
TP38	DL1 to BS1 or DL2	See "HMA Lo	ading" worksheet							
TP37	CFDM1 to DL1	See "HMA Loa	ading" worksheet	•			-	•		
TP36**	CR1 to UC7C	100	62,500	0.0033	FE	80	0.33	0.10	0.07	0.0
TP35**	UC9 to CR1	100	62,500	0.0033	FE	80	0.33	0.10	0.07	0.0
TP34**	S6 Deck1 and S6 Deck 2 to UC9	100	62,500	0.0033	PE	50	0.33	0.10	0.17	0.0
TP33	UC8 to CFDM1	100	125,000	0.0033	FE	80	0.33	0.21	0.07	0.0
TP32	S6 to UC8	100	125,000	0.0033	FE	80	0.33	0.21	0.07	0.0
TP31	UC7C to S6	100	125,000	0.0033	PE+CA	75	0.33	0.21	0.09	0.0
TP30A	UC7 to UC7C	100	125,000	0.0033	WS+CA	75	0.33	0.21	0.09	0.0
TP30	UC7A or UC7B to UC7	100	125,000	0.0033	PE+CA	75	0.33	0.21	0.09	0.0

Calculations for these emissions points omitted because maximum throughput is through one feed system or a combination thereof.

Note that some mixes do not contain RAP, therefore the maximum aggregate processing rate was retained for emissions calculations.

PM₁₀ Emissions

ID	Description	Transfe	r Capacities	e	Co	ntrol		Emi	issions	
	•		•	(U)	De	evice	Uncon	trolled	Cont	rolled
		tons/hour	tons/year	lb/T	Type	Effic(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
TP1	Barge to HI	400	500,000	0.0016	MD	0	0.64	0.40	0.64	0.40
TP2	HI to C1	400	500,000	0.0016	PE	50	0.64	0.40	0.32	0.20
TP3	C1 to C2 or C4	400	500,000	0.0016	PE	50	0.64	0.40	0.32	0.20
TP4	C2 to C3	400	500,000	0.0016	PE	50	0.64	0.40	0.32	0.20
TP5	C3 to RS1	400	500,000	0.0016	PE	50	0.64	0.40	0.32	0.20
TP6	RS1 to OS1-OS6 or C5	400	500,000	0.0016	MD	0	0.64	0.40	0.64	0.40
TP6A	C5 to RS2	400	500,000	0.0016	PE	50	0.64	0.40	0.32	0.20
TP7	RS2 to OS1-OS6 or RS5	400	500,000	0.0016	MD	0	0.64	0.40	0.64	0.40
TP7A	RS5 to OS1-OS6	400	500,000	0.0016	MD	0	0.64	0.40	0.64	0.40
TP9*	C4 to RS3	400	500,000	0.0016	PE	0			0.00	0.00
TP10*	RS3 to OS7-OS8 or C6	400	500,000	0.0016	MD	0			0.00	0.00
TP10A*	C6 to RS4	400	500,000	0.0016	PE	50			0.00	0.00
TP11*	RS4 to OS7-OS8	400	500,000	0.0016	MD	0			0.00	0.00
TP12****	Truck to OS9	180	125,000	0.0016	CA	75	0.29	0.10	0.07	0.03
TP13	FE to B1-B5B	400	500,000	0.0016	MD	0	0.64	0.40	0.64	0.40
TP14	B1 to UC1	400	500,000	0.0016	PE	50	0.64	0.40	0.32	0.20
TP15*	B2 to UC2	400	500,000	0.0016	PE	50			0.00	0.00
TP16*	B3 to UC3	400	500,000	0.0016	PE	50			0.00	0.00
TP17*	B4 to UC4	400	500,000	0.0016	PE	50			0.00	0.00
TP18*	B5 to UC5	400	500,000	0.0016	PE	50			0.00	0.00
TP18A*	B5A to UC5A	400	500,000	0.0016	PE	50			0.00	0.00
TP18B*	B5B to UC5B	400	500,000	0.0016	PE	50			0.00	0.00
TP19	UC1 to UC6	400	500,000	0.0016	PE	50	0.64	0.40	0.32	0.20
TP20*	UC2 to UC6	400	500,000	0.0016	PE	50			0.00	0.00
TP21*	UC3 to UC6	400	500,000	0.0016	PE	50			0.00	0.00
TP22*	UC4 to UC6	400	500,000	0.0016	PE	50			0.00	0.00
TP23*	UC5 to UC6	400	500,000	0.0016	PE	50			0.00	0.00
TP23A*	UC5A to UC6	400	500,000	0.0016	PE	50			0.00	0.00
TP23B*	UC5B to UC6	400	500,000	0.0016	PE	50			0.00	0.00
TP24	UC6 to S1	400	500,000	0.0016	N	0	0.64	0.40	0.64	0.40
TP24A	S1 to Ground	40	50,000	0.0016	PE	50	0.06	0.04	0.03	0.02
TP24B	S1 to UC11	400	500,000	0.0016	PE	50	0.64	0.40	0.32	0.20
TP24C	UC11 to CFDM1	400	500,000	0.0016	FE	80	0.64	0.40	0.13	0.08
TP29	FE to B6 or B6A	100	125,000	0.0016	CA	75	0.16	0.10	0.04	0.03
TP29A	B6 to UC7A	100	125,000	0.0016	FE+CA	80	0.16	0.10	0.04	0.02
TP29B	B6A to UC7B	100	125,000	0.0016	FE+CA	80	0.16	0.10	0.04	0.02
TP30	UC7A or UC7B to UC7	100	125,000	0.0016	PE+CA	75	0.16	0.10	0.04	0.03

^{**}Assumes an annual maximum of 50% oversized material running through RAP crusher circuit.

^{***} Assumes a maximum rate of 1 % baghouse dust re-introduction.

^{****}Based on a maximum of 10 RAP trucks per hour

Checked By: PEW Date: 08/01/13 By: LKB Date: 07/26/13

MATERIALS HANDLING

TP30A	UC7 to UC7C	100	125,000	0.0016	WS+CA	75	0.16	0.10	0.04	0.03
TP31	UC7C to S6	100	187,500	0.0016	PE+CA	75	0.16	0.15	0.04	0.04
TP32	S6 to UC8	100	125,000	0.0016	FE	80	0.16	0.10	0.04	0.02
TP33	UC8 to CFDM1	100	125,000	0.0016	FE	80	0.16	0.10	0.04	0.02
TP34**	S6 Deck1 and S6 Deck 2 to UC9	100	62,500	0.0016	PE	50	0.16	0.05	0.08	0.03
TP35**	UC9 to CR1	100	62,500	0.0016	FE	80	0.16	0.05	0.04	0.01
TP36**	CR1 to UC7C	100	62,500	0.0016	FE	80	0.16	0.05	0.04	0.01
TP37	CFDM1 to DL1	See "HMA Loa	See "HMA Loading" worksheet							
TP38	DL1 to BS1 or DL2	See "HMA Loa	ading" worksheet							
TP39	DL2 to BS2 or DL3	See "HMA Loa	ading" worksheet							
TP40	DL3 to BS3	See "HMA Loa	ading" worksheet							
TP41	BS1-BS3 to Trucks	See "HMA Loa	ading" worksheet							
TP42***	APCD2 to SC1	40	50,000	0.0016	FE	80	0.06	0.04	0.02	0.01
TP43***	SC1 to CFDM1	40	50,000	0.0016	FE	80	0.06	0.04	0.02	0.01
alculations for these e	missions points omitted because maximum throughp	ut is through one feed	l system or a combination	n thereof.		Sub-total	11.83	7.22	7.15	4.41

Note that some mixes do not contain RAP, therefore the maximum aggregate processing rate was retained for emissions calculations.

PM_{2.5} Emissions

ID	Description	Transfe	er Capacities	e	Co	ntrol		Emi	issions	
			•	(U)	De	evice	Uncon	trolled	Cont	rolled
		tons/hour	tons/year	lb/T	Type	Effic(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
TP1	Barge to HI	400	500,000	0.0002	MD	50	0.08	0.05	0.04	0.03
TP2	HI to C1	400	500,000	0.0002	PE	50	0.08	0.05	0.04	0.03
TP3	C1 to C2 or C4	400	500,000	0.0002	PE	50	0.08	0.05	0.04	0.03
TP4	C2 to C3	400	500,000	0.0002	PE	50	0.08	0.05	0.04	0.03
TP5	C3 to RS1	400	500,000	0.0002	PE	50	0.08	0.05	0.04	0.03
TP6	RS1 to OS1-OS6 or C5	400	500,000	0.0002	MD	0	0.08	0.05	0.08	0.05
TP6A	C5 to RS2	400	500,000	0.0002	PE	50	0.08	0.05	0.04	0.03
TP7	RS2 to OS1-OS6 or RS5	400	500,000	0.0002	MD	0	0.08	0.05	0.08	0.05
TP7A	RS5 to OS1-OS6	400	500,000	0.0002	MD	0	0.08	0.05	0.08	0.05
TP9*	C4 to RS3	400	500,000	0.0002	PE	0			0.00	0.00
TP10*	RS3 to OS7-OS8 or C6	400	500,000	0.0002	MD	0			0.00	0.00
TP10A*	C6 to RS4	400	500,000	0.0002	PE	50			0.00	0.00
TP11*	RS4 to OS7-OS8	400	500,000	0.0002	MD	0			0.00	0.00
TP12****	Truck to OS9	180	125,000	0.0002	CA	75	0.04	0.01	0.01	0.01
TP13	FE to B1-B5B	400	500,000	0.0002	MD	0	0.08	0.05	0.08	0.05
TP14	B1 to UC1	400	500,000	0.0002	PE	50	0.08	0.05	0.04	0.03
TP15*	B2 to UC2	400	500,000	0.0002	PE	50			0.00	0.00
TP16*	B3 to UC3	400	500,000	0.0002	PE	50			0.00	0.00
TP17*	B4 to UC4	400	500,000	0.0002	PE	50			0.00	0.00
TP18*	B5 to UC5	400	500,000	0.0002	PE	50			0.00	0.00
TP18A*	B5A to UC5A	400	500,000	0.0002	PE	50			0.00	0.00
TP18B*	B5B to UC5B	400	500,000	0.0002	PE	50			0.00	0.00
TP19	UC1 to UC6	400	500,000	0.0002	PE	50	0.08	0.05	0.04	0.03
TP20*	UC2 to UC6	400	500,000	0.0002	PE	50			0.00	0.00
TP21*	UC3 to UC6	400	500,000	0.0002	PE	50			0.00	0.00
TP22*	UC4 to UC6	400	500,000	0.0002	PE	50			0.00	0.00
TP23*	UC5 to UC6	400	500,000	0.0002	PE	50			0.00	0.00
TP23A*	UC5A to UC6	400	500,000	0.0002	PE	50			0.00	0.00
TP23B*	UC5B to UC6	400	500,000	0.0002	PE	50			0.00	0.00
TP24	UC6 to S1	400	500,000	0.0002	N	0	0.08	0.05	0.08	0.05
TP24A	S1 to Ground	40	50,000	0.0002	PE	50	0.01	0.01	0.01	0.01
TP24B	S1 to UC11	400	500,000	0.0002	PE	50	0.08	0.05	0.04	0.03
TP24C	UC11 to CFDM1	400	500,000	0.0002	FE	80	0.08	0.05	0.02	0.01
TP29	FE to B6 or B6A	100	125,000	0.0002	CA	75	0.02	0.02	0.01	0.01
TP29A	B6 to UC7A	100	125,000	0.0002	FE+CA	80	0.02	0.02	0.01	0.01
TP29B	B6A to UC7B	100	125,000	0.0002	FE+CA	80	0.02	0.02	0.01	0.01
TP30	UC7A or UC7B to UC7	100	125,000	0.0002	PE+CA	75	0.02	0.02	0.01	0.01
TP30A	UC7 to UC7C	100	125,000	0.0002	WS+CA	75	0.02	0.02	0.01	0.01
TP31	UC7C to S6	100	187,500	0.0002	PE+CA	75	0.02	0.02	0.01	0.01

^{**}Assumes an annual maximum of 50% oversized material running through RAP crusher circuit.

^{***} Assumes a maximum rate of 1 % baghouse dust re-introduction.

^{****}Based on a maximum of 10 RAP trucks per hour

By: LKB Checked By: PEW Date: 07/26/13 Date: 08/01/13

MATERIALS HANDLING

TP32	S6 to UC8	100	125,000	0.0002	FE	80	0.02	0.02	0.01	0.01
TP33	UC8 to CFDM1	100	125,000	0.0002	FE	80	0.02	0.02	0.01	0.01
TP34**	S6 Deck1 and S6 Deck 2 to UC9	100	62,500	0.0002	PE	50	0.02	0.01	0.01	0.01
TP35**	UC9 to CR1	100	62,500	0.0002	FE	80	0.02	0.01	0.01	0.01
TP36**	CR1 to UC7C	100	62,500	0.0002	FE	80	0.02	0.01	0.01	0.01
TP37	CFDM1 to DL1	See "HMA Loa	ading" worksheet							
TP38	DL1 to BS1 or DL2	See "HMA Loa	ading" worksheet							
TP39	DL2 to BS2 or DL3	See "HMA Loa	ading" worksheet							•
TP40	DL3 to BS3	See "HMA Loa	ading" worksheet							
TP41	BS1-BS3 to Trucks	See "HMA Loa	ading" worksheet							
TP42***	APCD2 to SC1	40	50,000	0.0002	FE	80	0.01	0.01	0.01	0.01
TP43***	SC1 to CFDM1	40	50,000	0.0002	FE	80	0.01	0.01	0.01	0.01
* Calculations for these en	nissions points omitted because maximum throughpu	t is through one feed	l system or a combination	n thereof.		Sub-total	1.49	0.98	0.93	0.68

^{*} Calculations for these emissions points omitted because maximum throughput is through one feed system or a combination thereof.

Note that some mixes do not contain RAP, therefore the maximum aggregate processing rate was retained for emissions calculations.

^{**}Assumes an annual maximum of 50% oversized material running through RAP crusher circuit.

^{***} Assumes a maximum rate of 1 % baghouse dust re-introduction.

^{****}Based on a maximum of 10 RAP trucks per hour

Potesta & Associates, Inc. Project No. 0101-16-0318-030

By: LKB Date: 07/26/13 Checked By: PEW Date: 08/01/13

Emission Factors (lbs/ton)

Emission Factors (ibs/ton)			
	PM	PM10	Source
Primary Crushing	0.002	0.001	DAQ G40-C Emissions Worksheet
Secondary & Tertiary Crushing	0.0054	0.0024	DAQ G40-C Emissions Worksheet
Screening	0.025	0.0087	DAQ G40-C Emissions Worksheet

Totals for Crushing and Screening

	P	M			PN	110		PM2.5					
Uncon	trolled	Cont	rolled	Uncon	trolled	Cont	rolled	Uncon	trolled	Cont	rolled		
(lb/hr)	(tons/yr)												
12.70	8.65	6.29	4.31	4.45	3.03	2.20	1.51	0.91	0.63	0.46	0.31		

Crushing and Screening

Crusher Emissions

					Control Contol PM					PM10				PM2.5 ⁽¹⁾				
Crusher Identification	Crusher Type	ID	Throu	ighput	Type	Efficiency	Uncor	trolled	Cont	rolled	Uncor	trolled	Contr	rolled	Uncon	trolled	Contr	olled
			(ton/hr)	(tons/yr)		(%)	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)
RAP Crusher	Mill crusher	CR1	100	62,500	FE	80	0.20	0.06	0.04	0.01	0.10	0.03	0.02	0.01	0.02	0.01	0.01	0.01
						Totals:	0.20	0.06	0.04	0.01	0.10	0.03	0.02	0.01	0.02	0.01	0.01	0.01

Screen Emissions

					Control	ontrol Contol PM		PM10				PM2.5 ⁽¹⁾						
Screen Identification	Screen Type	ID	Throu	ighput	Type	Efficiency	Uncor	itrolled	Cont	rolled	Uncor	trolled	Cont	rolled	Uncor	trolled	Conti	rolled
			(ton/hr)	(tons/yr)		(%)	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)
Aggregates Screen	Scalping	S1	400	500,000	PE	50	10.00	6.25	5.00	3.13	3.48	2.18	1.74	1.09	0.71	0.45	0.36	0.22
RAP Screen	Scalping 2-deck	S6	100	187,500	PE	50	2.50	2.34	1.25	1.17	0.87	0.82	0.44	0.41	0.18	0.17	0.09	0.08
						Totals:	12.50	8.59	6.25	4.30	4.35	3.00	2.18	1.50	0.89	0.62	0.45	0.30

(1)- PM2.5 equal to PM/14: Particle size multipliers (k) AP42 Section 13.2.4-4 (11/06):

PM	PM10	PM2.5
0.74	0.35	0.053
C	2.1	1.4

By: LKB Checked By: PEW Date: 07/26/13 Date: 08/01/13

DRUM MIX ASPHALT PLANT COUNTER FLOW DRUM MIXER

400 Production Rate: tons/hr

500,000 tons/year

Rounding to

lb/hr

0.0495

4.20

VOC HAPs

Metal HAPs

Total HAPs

tons/yr

2.60

0.0312

2.63

Criteria Pollutants

				Control		
Emission	Emission Factor 1	Uncontrol	lled Emissions ⁴	Efficiency	Controlled	1 Emissions
Type	(lb/ton of HMA)	lb/hr tons/yr		%	lb/hr	tons/yr
TSP	0.0658	5,264	3,290	99.5	26.32	16.45
PM_{10}	0.0151	1,211	757	99.5	6.05	3.78
PM _{2.5}	0.0036	290	181	99.5	1.45	0.90
VOC	0.032	12.80	8.00	0	12.80	8.00
SO ₂	0.058	23.20	14.50	0	23.20	14.50
NO _x	0.055	22.00	13.75	0	22.00	13.75
CO	0.13	52.00	32.50	0	52.00	32.50
HCl	0.00021	0.08	0.05	0	0.08	0.05

Calculate PM/PM10 Emission Factor - 40CFR60, Subpart I Allowable Limit.⁵

0.04	grains ²	X	76,718	cubic feet BH flow ³ X	60	minutes	X
1	dscf		1	minute	1	hour	
1	lb	X	1	hour	=	0.0658	lb
7000	grains		400	tons of HMA throughput		1	ton
PM1	0 is	23%	of TSP	PM2.5 is	5.5%	of TSP	

Hazardous Air Pollutants - Controlled and Uncontrolled Emissions will be the same.

Emission	Emission Factor ⁶	Em	issions
Type	(lb/ton of HMA)	lb/hr	tons/yr
Non-PAH HAPs			
Acetaldehyde	0.0013	0.52	0.33
Benzene	0.00039	0.16	0.10
Ethylbenzene	0.00024	0.10	0.06
Formaldehyde	0.0031	1.24	0.78
Toluene	0.0029	1.16	0.73
Xylene	0.0002	0.08	0.05
Non-PAH HAPs Total ⁷	0.0095	3.80	2.38
PAH HAPs Total '	0.00088	0.35	0.22
	Total VOC HAPs	4.15	2.60

Matale Emissic

Emission	Emission Factor 8	Emis	ssions
Type	lb/ton HMA	lb/hr	tons/yr
Antimony	1.80E-07	0.0001	0.0001
Arsenic	5.60E-07	0.0002	0.0001
Barium	5.80E-06	0.0023	0.0015
Cadmium	4.10E-07	0.0002	0.0001
Cobalt	2.60E-08	0.0001	0.0001
Copper	3.10E-06	0.0012	0.0008
Chromium	5.50E-06	0.0022	0.0014
Iexavalent Chromium	4.50E-07	0.0002	0.0002
Lead	1.50E-05	0.0060	0.0038
Manganese	7.70E-06	0.0031	0.0019
Mercury	2.60E-06	0.0010	0.0007
Nickel	6.30E-05	0.0252	0.0158
Phosphorus	2.80E-05	0.0112	0.0070
Silver	4.80E-07	0.0002	0.0001
Selenium	3.50E-07	0.0001	0.0001
Thallium	4.10E-09	0.0001	0.0001
Zinc	6.10E-05	0.0244	0.0153
•	HAP Metals	0.0495	0.0312
	Total Metals	0.0778	0.0491

Rounding to 4

- 1. AP42 Emission factors for CO, NOx, and SO2 Table 11.1-7; for VOC Table11.1-8 (maximum VOC emission factor used). Controlled emission factor for TSP calculated above.
- 2. Emission limit from 40CFR60 Subpart I. Note the calculated EF falls within the range shown in AP42 Table 11.1-1P.
- 3. Manufacturers information.
- 4. Uncontrolled emissions for PM/PM10/PM2.5 are back calculated from the controlled emissions
- 5. Table EF for PM10 and PM2.5 are calculated based on Table 11.1-4 Particle Size Distribution.
- 6. Emission factors taken from AP-42 Table11.1-10. Highest value between natural gas, No.2 fuel, and waste oil fired dryers shown.
- 7. Includes HAPs not shown in the table. Highest value between natural gas, No.2 fuel, and waste oil fired dryers shown.
- 8. AP42 Table 11.1-12.

West Virginia Paving, Inc. Potesta & Associates, Inc. Project No. 0101-16-0318-030 Dunbar Plant #30

By: LKB Checked By: PEW Date: 07/26/13 Date: 08/01/13

SILO FILLING

Emission Factor (EF) Calculations for silo filling from AP42 Table 11.1-14 (March, 2004).

V = -0.5

asphalt volatility degrees Fahrenheit HMA mix temperature T =325

TSP Emission Factor: $EF = 0.000332 + 0.00105 \text{ (-V) } e^{((0.0251)(T+460)-20.43)}$

 $TSP \ EF = 0.000586 \quad lb/ton$

PM₁₀ Emission Factor is 23% Table 11.1-4 Particle Size Distribution of TSP

 $PM_{10} EF = 0.000135$ lb/ton

5.5% Table 11.1-4 Particle Size Distribution PM_{2.5} Emission Factor is of TSP

 $PM_{10} EF = 0.000032$ lb/ton

VOC Emission Factor: VOC EF = TOC EF = $0.0504 \text{ (-V) } e^{((0.0251)(T+460)-20.43)}$

(VOC EF = TOC EF from AP42 Table 11.1-16, footnote a.)

VOC EF = 0.012187 lb/ton

CO Emission Factor: CO EF = 0.00488 (-V) $e^{((0.0251)(T+460)-20.43)}$

CO EF = 0.001180 lb/ton

AP42 Table 11.1-16 referenced for HAP emission factors and calculated according to footnote a.

Rounding to 3

										or	2
Emission	ID	Number	Transfe	er Capacities	EF	Con	trol		Emis	sions	
Type		of				Dev	rice	Uncontrolled		Conti	rolled
		Transfers	tons/hour	tons/year	lb/T	Type	Effic(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
TSP	TP37-TP40	4	400	500,000	0.000586	PE	50	0.92	0.60	0.46	0.30
PM_{10}	TP37-TP40	4	400	500,000	0.000135	PE	50	0.20	0.12	0.10	0.06
PM _{2.5}	TP37-TP40	4	400	500,000	0.000032	PE	50	0.04	0.04	0.02	0.02
VOC	TP37-TP40	4	400	500,000	0.012187	N	0	19.48	12.20	19.48	12.20
CO	TP37-TP40	4	400	500,000	0.001180	N	0	1.88	1.16	1.88	1.16
Hazardous Air Po	llutants (HAPs)										
Benzene	TP37-TP40	4	400	500,000	0.000004	N	0	0.006	0.004	0.006	0.004
Ethylbenzene	TP37-TP40	4	400	500,000	0.000005	N	0	0.007	0.005	0.007	0.005
Toluene	TP37-TP40	4	400	500,000	0.000008	N	0	0.012	0.008	0.012	0.008
Xylene	TP37-TP40	4	400	500,000	0.000031	N	0	0.050	0.031	0.050	0.031
Formaldehyde	TP37-TP40	4	400	500,000	0.000084	N	0	0.135	0.084	0.135	0.084
Total HAPs	TP37-TP40	4	400	500,000	0.000158	N	0	0.253	0.158	0.253	0.158

West Virginia Paving, Inc.

Potesta & Associates, Inc.

Dunbar Plant #30

Project No. 0101-16-0318-030

By: LKB
Date: 07/26/13

Checked By: PEW
Date: 08/01/13

PLANT LOADOUT

Emission Factor (EF) Calculations for loadout from AP11.1-14 (March, 2004).

V = -0.5 asphalt volatility

T = 325 degrees Fahrenheit HMA mix temperature

TSP Emission Factor: $\,$ EF = 0.000181 + 0.00141 (-V) $e^{((0.0251)(T+460)\cdot 20.43)}$

 $TSP\ EF = \quad 0.000522 \quad \ lb/ton$

 PM_{10} Emission Factor is 23% of TSP Table 11.1-4 Particle Size Distribution

 $PM_{10} EF = 0.000120$ lb/ton

PM_{2.5} Emismission Factor is 5.5% of TSP Table 11.1-4 Particle Size Distribution

 $PM_{2.5} EF = 0.000029$ lb/ton

 $VOC\;Emission\;Factor:\;VOC\;EF = \;0.94\;*\;TOC\;EF = 0.94\;*\;(\;0.0172\;(\text{-V})\;e^{((0.0251)(T+460)\cdot20.43)}\;)$

TOC EF = 0.00416 lb/ton VOC EF = 0.00391 lb/ton

CO Emission Factor: C0 EF = 0.00558 (-V) $e^{((0.0251)(T+460)-20.43)}$

CO EF = **0.00135** lb/ton

AP42 Table 11.1-16 referenced for HAP emission factors and calculated according to footnote a.

Rounding to 3 or 2

Emission	ID	Number	Transfe	Transfer Capacities		Con	trol		Emis	ssions	
Type		of				Device		Uncon	trolled	Cont	rolled
		Transfers	tons/hour	tons/year	lb/T	Type	Effic(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
TSP	TP41	1	400	500,000	0.000522	PE	50	0.21	0.13	0.11	0.07
PM_{10}	TP41	1	400	500,000	0.000120	PE	50	0.05	0.03	0.03	0.02
PM _{2.5}	TP41	1	400	500,000	0.000029	PE	50	0.01	0.01	0.01	0.01
VOC	TP41	1	400	500,000	0.003909	N	0	1.56	0.98	1.56	0.98
CO	TP41	1	400	500,000	0.001349	N	0	0.54	0.34	0.54	0.34
HAPS											
Benzene	TP41	1	400	500,000	0.000002	N	0	0.001	0.001	0.001	0.001
Ethylbenzene	TP41	1	400	500,000	0.000012	N	0	0.005	0.003	0.005	0.003
Toluene	TP41	1	400	500,000	0.000009	N	0	0.003	0.002	0.003	0.002
Xylene	TP41	1	400	500,000	0.000020	N	0	0.008	0.005	0.008	0.005
Formaldehyde	TP41	1	400	500,000	0.000004	N	0	0.001	0.001	0.001	0.001
Total HAPs	TP41	1	400	500,000	0.000062	N	0	0.025	0.016	0.025	0.016

TOTALS FOR SILO FILLING AND LOADOUT

Emission		Emissi	ions	
Type	Uncontr	olled	Co	ntrolled
	(lb/hr)	(tpy)	(lb/hr)	(tpy)
TSP	1.13	0.73	0.57	0.37
PM_{10}	0.25	0.15	0.13	0.08
PM _{2.5}	0.05	0.05	0.03	0.03
VOC	21.04	13.18	21.04	13.18
CO	2.42	1.50	2.42	1.50
•	HAPS			
Benzene	0.007	0.005	0.007	0.005
Ethylbenzene	0.012	0.008	0.012	0.008
Toluene	0.015	0.010	0.015	0.010
Xylene	0.058	0.036	0.058	0.036
Formaldehyde	0.136	0.085	0.136	0.085
Total HAPs	0.278	0.174	0.278	0.174

By: LKB Checked By: PEW Date: 07/26/13 Date: 08/01/13

ASPHALT HEATER AH1

Natural Gas Use									
1,350 scf/hr ²	2	=		$0.00135 10^6 \text{scf/hr}$					
11,826,000 scf/yr		=		11.826 10 ⁶ scf/yr					
Operating Hours =	8,760		hrs/yr ³						

Emission	EF ^(a)	Emi	issions
Type	$1b/10^6 \text{ scf}$	lb/hr	tons/year
CO	84	0.11	0.50
NO_X	100	0.14	0.59
PM _{2.5} ⁽¹⁾	7.6	0.01	0.04
$PM_{10}^{(1)}$	7.6	0.01	0.04
PM	7.6	0.01	0.04
SO_2	0.6	0.001	0.004
VOC	5.5	0.01	0.03
Lead	0.0005	0.000001	0.000003

References:

a. Emission factors from AP-42, Tables 1.4-1 and 1.4-2, Natural Gas Combustion, 7/98.

- It is assumed that PM10 and PM2.5 are equal to PM.
 Information supplied by client.
- 3. Hours of operation for asphalt heater are higher than the hours of operation for the asphalt plant to allow asphaltic cement and emulsion to stay warm during hours when the plant is not operational.

By: LKB
Date: 07/26/13

Checked By: PEW
Date: 08/01/13

ASPHALT HEATER AH1 - Continued

Natural Gas Use = $0.00135 \ 10^6 \ scf/hr$ $11.826 \ 10^6 \ scf/yr$

		EF ^(a)	Emissions		
CAS No.	Hazardous Air Pollutants	lb/10 ⁶ scf	lb/hr	tons/year	
91-57-6	2-Methylnaphthalene	2.40E-05	3.24E-08	1.42E-07	
56-49-5	3-Methylchloranthrene	1.80E-06	2.43E-09	1.06E-08	
57-97-6	7,12-Dimethylbenz(a)anthracene	1.60E-05	2.16E-08	9.46E-08	
83-32-9	Acenaphthene	1.80E-06	2.43E-09	1.06E-08	
203-96-8	Acenaphthylene	1.80E-06	2.43E-09	1.06E-08	
120-12-7	Anthracene	2.40E-06	3.24E-09	1.42E-08	
56-55-3	Benz(a)anthracene	1.80E-06	2.43E-09	1.06E-08	
71-43-2	Benzene	2.10E-03	2.84E-06	1.24E-05	
50-32-8	Benzo(a)pyrene	1.20E-06	1.62E-09	7.10E-09	
205-99-2	Benzo(b)fluoranthene	1.80E-06	2.43E-09	1.06E-08	
191-24-2	Benzo(g,h,i)perylene	1.20E-06	1.62E-09	7.10E-09	
205-82-3	Benzo(k)fluoranthene	1.80E-06	2.43E-09	1.06E-08	
218-01-9	Chrysene	1.80E-06	2.43E-09	1.06E-08	
53-70-3	Dibenzo(a,h)anthracene	1.20E-06	1.62E-09	7.10E-09	
25321-22-6	Dichlorobenzene	1.20E-03	1.62E-06	7.10E-06	
206-44-0	Fluoranthene	3.00E-06	4.05E-09	1.77E-08	
86-73-7	Fluorene	2.80E-06	3.78E-09	1.66E-08	
50-00-0	Formaldehyde	7.50E-02	1.01E-04	4.43E-04	
110-54-3	Hexane	1.80E+00	2.43E-03	1.06E-02	
193-39-5	Indeno(1,2,3-cd)pyrene		1.80E-06	2.43E-09	1.06E-08
91-20-3	Naphthalene	6.10E-04	8.24E-07	3.61E-06	
85-01-8	Phenanathrene	1.70E-05	2.30E-08	1.01E-07	
129-00-0	Pyrene	5.00E-06	6.75E-09	2.96E-08	
108-88-3	Toluene	3.40E-03	4.59E-06	2.01E-05	
7440-38-2	Arsenic	2.00E-04	2.70E-07	1.18E-06	
7440-41-7	Beryllium	1.20E-05	1.62E-08	7.10E-08	
7440-43-9	Cadmium	1.10E-03	1.49E-06	6.50E-06	
7440-47-3	Chromium	1.40E-03	1.89E-06	8.28E-06	
7440-48-4	Cobalt	8.40E-05	1.13E-07	4.97E-07	
7439-96-5	Manganese	3.80E-04	5.13E-07	2.25E-06	
7439-97-6	Mercury	2.60E-04	3.51E-07	1.54E-06	
7440-02-0	Nickel	2.10E-03	2.84E-06	1.24E-05	
7782-49-2	Selenium	2.40E-05	3.24E-08	1.42E-07	
·		VOC HAPs Subtotal	2.54E-03	1.11E-02	
		Metal HAPs Subtota	7.51E-06	3.29E-05	
		Total HAPs	2.55E-03	1.12E-02	

References:

AP42 Table 1.4-3 and Table 1.4-4.

By: LKB
Date: 07/26/13

Checked By: PEW
Date: 08/01/13

ehicle Activity

Material transported and estimated vehicle usage.

	Product Trucks	RAP Trucks	Asphaltic Cement Trucks*	Asphaltic Emulsion Trucks**	No. 2 Fuel Oil Trucks	Used Oil Trucks	Total/Mean Trucks	Endloaders
TPH	400	180	24	22	3	3	610	400
TPY	500,000	125,000	30,000	537	17,280	17,280	689,560	500,000
Load Weight (tons)	18	18	52	52	18.5	17.5	19	6
Vehicle Weight (tons)	20	20	12	12	12	12	N/A	31
Vehicles Per Hour	23	10	1	1	1	1	37	67
Vehicles Per Year	27,778	6,945	577	11	935	988	37,234	83,334
Mean Vehicle Weight (tons)	29	29	38	38	21.25	20.75	28.72	34
Gallons per hour	NA	NA	NA	NA	744	744	NA	NA
Unpaved round-trip travel (ft)	0	312	0	0	0	0	NA	1,320
Paved round-trip travel (ft)	1,320	1,320	1,320	1,320	1,320	1,320	NA	0

^{*} Based on 6% of total production.

Roundup to = 0 Assuming no partial loads. Annual hours of operation = 5,760 Client

Rounding to

Unpaved Haulroads

Emission Factor Equation from AP-42 Section 13.2.2, Unpaved Roads (December 2003):

 $e = k (s/12)^a (W/3)^b [(365-p)/365]$

	TSP	PM10	PM2.5	
$\mathbf{k} =$	4.9	1.5	0.15	constant, AP-42 Table 13.2.2-2 (dimensionless)
$_{S} =$	10	10	10	%, surface material silt content
$W_{truck} =$	28.72	28.72	28.72	tons, mean vehicle weight
$W_{endloader} =$	34	34	34	tons, mean vehicle weight
a =	0.7	0.9	0.9	constant, AP-42 Table 13.2.2-2 (dimensionless)
b =	0.45	0.45	0.45	constant, AP-42 Table 13.2.2-2 (dimensionless)
p =	157	157	157	no. days/year with at least 0.01in of rain
e truck =	6.79	2.00	0.20	lb/VMT
$e_{endloader} =$	7.33	2.16	0.22	lb/VMT

Trucks

Pollutant	No. of Vehicles		Miles Control Per Trip Device			Emissions			
						Uncontrolled		Controlled	
	Per Hour	Per Year	(mi)	Type	Effic(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
TSP	10	6,945	0.06	WS	75	4.01	1.39	1.00	0.35
PM_{10}	10	6,945	0.06	WS	75	1.18	0.41	0.30	0.10
PM _{2.5}	10 6,945		0.06	WS	75	0.12	0.04	0.03	0.01

Endloaders

Birdrouders									
Pollutant	No).	Miles	Control			Emiss	sions	
	of Vehicles Per Hour Per Year		Per Trip	Per Trip Device		Uncontrolled		Controlled	
			(mi) Type		Effic(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
TSP	67	83,334	0.25	WS	75	122.78	76.35	30.70	19.09
PM ₁₀			0.25	WS	75	36.18	22.50	9.05	5.63
PM2.5			0.25	WS	75	3.69	2.29	0.92	0.57

Summary of Haulroad Emissions

Pollutant	Uncontrolle	d Emissions	Controlled	Emissions
	(lb/hr)	(TPY)	(lb/hr)	(TPY)
TSP	126.79	77.74	31.70	19.44
PM ₁₀	37.36	22.91	9.35	5.73
$PM_{2.5}$	3.81	2.33	0.95	0.58

^{**} Based on a maximum of one 5,000 gallon truck per day and maximum annual throughput of 125,000 gallons/yr.

 By: LKB
 Checked By: PEW

 Date: 07/26/13
 Date: 08/01/13

Paved Haulroads

Paved Haulroads

PM

1 1/1										
	Number of	Number of	Miles	Emission	Uncontrolled	Uncontrolled	Control	Control	Controlled	Controlled
Source	Trucks/Hour	Trucks/Year	Per Trip	Factor (1)	TSP	TSP	Device	Efficiency	TSP	TSP
				(lb/VMT)	(lb/hr)	(tpy)		(%)	(lb/hr)	(tpy)
Trucks	37	37,234	0.25	2.00	18.50	9.31	WS	75	4.63	2.33

PM10

 111110										
	Number of	Number of	Miles	Emission	Uncontrolled	Uncontrolled	Control	Control	Controlled	Controlled
Source	Trucks/Hour	Trucks/Year	Per Trip	Factor (1)	PM10	PM10	Device	Efficiency	PM10	PM10
				(lb/VMT)	(lb/hr)	(tpy)		(%)	(lb/hr)	(tpy)
Trucks	37	37.234	0.25	0.40	3.70	1.86	WS	75	0.93	0.47

PM2.5

١		Number of	Number of	Miles	Emission	Uncontrolled	Uncontrolled	Control	Control	Controlled	Controlled
	Source	Trucks/Hour	Trucks/Year	Per Trip	Factor (1)	PM2.5	PM2.5	Device	Efficiency	PM2.5	PM2.5
١					(lb/VMT)	(lb/hr)	(tpy)		(%)	(lb/hr)	(tpy)
ſ	Trucks	37	37,234	0.25	0.10	0.93	0.47	WS	75	0.23	0.12

		Emission Fa	ctors ⁽¹⁾		
		TSP	PM_{10}	$PM_{2.5}$	
	$\mathbf{k} =$	0.011	0.0022	0.00054	dimensionless, particle size multiplier
	sL =	8	8	8	surface material silt content (g/m²)
	$W_{truck} =$	28.72	28.72	29	tons, mean vehicle weight
	P =	157	157	157	no. days/year with 0.01 in of rain
	N =	365	365	365	days/year
	e =	2.00	0.40	0.10	lb/VMT truck
			Road		
		Length (ft) =	1,320	maximum di	stance used as conservative estimate
		Length (mi) =	0.25		
	Total	Hauled (tpy) =	689,560		
	Load V	Weight (tons) =	19		
	Tru	icks Per Year =	37,234		
	Total	Hauled (tph) =	610		
		Weight (tons) =	19		
	Tru	icks Per Hour =	37		
Fm	nty Truck V	Weight (tons) =	NA		
		Weight (tons) =	NA		
			28.72		
Aver	age iruck v	Weight (tons) =	28.72		

 $E = [k*(sL)^0.91*(W)^1.02]*(1-(P/4*N) = lb / Vehicle Mile Traveled (VMT) \\ 1. AP42, 13.2.1.$

Summary of Paved Haulroad Emissions

		Emissions					
Pollutant	Uncon	trolled	Controlled				
	(lb/hr)	(tpy)	(lb/hr)	(tpy)			
PM	18.50	9.31	4.63	2.33			
PM_{10}	3.70	1.86	0.93	0.47			
PM2.5	0.93	0.47	0.23	0.12			

 By: LKB
 Checked By: PEW

 Date: 07/26/13
 Date: 08/01/13

STOCKPILES

Reference: AP-42 Section 11.2.3, Fugitive Emissions (May, 1983), Equation #2

E = 1.7 (s/1.5) ((365-p)/235) (f/15)

E =	?	Emissions factor, pound per day per acre, (lb/day/acre)		
$_{S} =$	1	Silt content of material (%)		
$s_{sand} =$	6	Silt content of material (%)		
p =	157	number of days with at least 0.254 mm (0.01 in.) of precipitation per year		
f =	15	Time wind speed exceeds 12 mph (%)		
e =	1.003	lb/day/acre for aggregates and RAP	Rounding to	3
$e_{sand} =$	6.019	lb/day/acre for sand		

Stockpile	Stockpile	Base Area	Control	Control Eff.	Uncontrolled Emissions		Controlle	d Emissions
ID	Material	(acres)	Device	(%)	lb/hr	tpy	lb/hr	tpy
OS1 and OS6	Sand	0.459	N	0	0.115	0.504	0.115	0.504
OS2-OS5, OS7, OS8	Aggregates	1.480	N	0	0.062	0.271	0.062	0.271
OS9	RAP	1.928	N	0	0.081	0.353	0.081	0.353
•		•		Total PM:	0.258	1.128	0.258	1.128
				Total PM ₁₀ *:	0.123	0.537	0.123	0.537
				Total PM _{2.5} *:	0.020	0.090	0.020	0.090

^{*} PM10 = TSP/2.1; PM2.5 = PM/14.

TANKS

ID	Material Stored	Material Stored Capacity		VOC Emissions		
110	Material Storeu	gallons	gallons	lb/hr	ton/yr	
T1	Asphaltic cement	35,000	6,000,000	Negligible	Negligible	
T4	Asphaltic cement	30,000	0,000,000	Negligible	Negligible	
T2	#2 FO/Diesel	20,000	2,000,000	Negligible	Negligible	
T3	UO	22,000	2,000,000	Negligible	Negligible	
T5	Asphaltic emulsion	5,000	125,000	Negligible	Negligible	
			Total VOC:	Negligible	Negligible	

The throughput of asphaltic cement is a combined total for T1 and T4.

The emissions from the tanks are negligible due to the low volatilization of liquid.

By: LKB Checked By: PEW Date: 07/26/13 Date: 08/01/13

Clamshell

Komatsu PC750-6 Compression Engine (CE1) Manfuctured 2000

Fuel Usage 11 gallons/hour Client

63,360 gallons/year Calculated 7.2 lbs/gal Diesel Fuel Constant

Assumed Heating Value of Diesel Fuel: 133,332 Btu/gallon Constant

Maximum Horsepower: 444 hp Client

BSFC NA lb/hp-hr

 $2.547 = Btu^{(1)}$ HP/hr ×

Constant Maximum Fuel Input: 1.47 MMBtu/hour Calculated

0.75 kW/hp Constant **Engine Power** 331.09 kW Calculated

453.59 gram/lb Constant

Hours Per Year = 5,760

Regulated	Emission	Emission	Hourly	Annual
Pollutant	Factor	Factor	Emissions	Emissions
	(lb/MMBtu)	(g/kW-hr)	(lbs/hour)	(tons/year)
NO_X	4.41		6.47	18.63
CO	0.95		1.39	4.00
SO_X	0.29		0.43	1.24
PM/PM ₁₀ /PM _{2.5}	0.31		0.45	1.30
TOC (VOC)	0.36		0.53	1.53

Hazardous Air Pollutants (HAPS)								
Benzene	9.33E-04	0.0014	0.0040					
Toluene	4.09E-04	0.0006	0.0017					
Xylenes	2.85E-04	0.0004	0.0012					
1,3-Butadiene	3.91E-05	0.0001	0.0003					
Formaldehyde	1.18E-03	0.0017	0.0049					
Acetaldehyde	7.67E-04	0.0011	0.0032					
Acrolein	9.25E-05	0.0001	0.0003					
Naphthalene	8.48E-05	0.0001	0.0003					
Total HAPS		0.0055	0.0160					

Notes:

Emission factors from AP-42 Table 3.3-1(Criteria Pollutants) Table 3.3-2 (HAPS) unless noted.

- 1. Field Engineer's Manual Table 3-13.
- 2. BSFC = fuel flow (pounds/hr) / horsepower

By: LKB

Date: 07/26/13

Checked By: PEW Date: 08/01/13

Summary of CO2e Emissions

The facility has three (3) combustion sources: Counter Flow Drum Mixer (CFDM1), Asphalt Heater (AH1), and Clamshell compression engine (CE1). CDFM1 is capable of combusting natural gas, No. 2 fuel oil or used oil. AH1 is capable of burning natural gas. The clamshell engine burns No. 2 fuel. The calculations for the emissions summarized below are shown on worksheets that follow.

Facility Emissions

			Exceed 25,000	Short
	CO2e	CO2	metric tons	tons/metric
Emission Unit	(metric tons)	(short tons)	CO2e?	ton
CFDM1 (NG)	15,922	17,550.38		1.1023
AH1 (NG)	645	711.21		
CFDM1 (2FO)	20,482	22,576.96		
ENG1 (2FO)	649	715.24		
CFDM1 (UO)	20,047	22,098.06		

Worst Case	21,776	24,003	NO

NG = natural gas 2FO = No. 2 fuel oil UO = Used oil West Virginia Paving, Inc. Dunbar Plant #30

By: LKB
Date: 07/26/13
Checked By: PEW
Date: 08/01/13

CO2e Emissions from Natural Gas - CFDM1 Burner

Pote				
Fuel Type	CO2	CH4	N2O	
Natural Gas	15,906.00	0.30	0.03	
100 yr GWP*	1	21	310	Total CO2e
CO2e	15,906.00	6.30	9.30	15,922

CFDM1 Burner
600,000 btu/ton of asphalt
500,000 tons /year asphalt
300,000,000,000 btu/year
1,028 btu/scf
291,828,794 scf of natural gas burned per year

 $CO2 = 1 \ x10\text{-}3*mass \ of fuel*HHV*EF \ (Eq. \ C\text{-}2a)$ CH4 or N2O = 1 x10-3*mass of fuel*HHV*EF \ (Eq. \ C\text{-}9a)

Natural Gas Combustion

 1.00E-03
 conversion factor from kilograms to metric tons

 291,828,794
 cubic feet of natural gas burned annually

 1.028E-03
 HHV MMBtu/scf
 natural gas high heating value (HHV) from Table C-1

53.02 kg CO2/MMBtu natural gas emission factor from Table C-1
1.00E-03 kg CH4/MMBtu natural gas emission factor from Table C-2
1.00E-04 kg N2O/MMBtu natural gas emission factor from Table C-2

Equations, HHV, and emission factors from 40CFR§98 Subpart C unless otherwise noted.

^{*}Global Warming Potentials (GWP) Referenced from 40CFR§98 Subpart A Table A-1

West Virginia Paving, Inc. Dunbar Plant #30

By: LKB
Date: 07/26/13

Checked By: PEW
Date: 08/01/13

CO2e Emissions from Natural Gas - AH1

Pote				
Fuel Type	CO2	CH4	N2O	
Natural Gas	644.57	0.01	0.00	
100 yr GWP*	1	21	310	Total CO2e
CO2e	644.57	0.26	0.38	645

АН1
АПІ
11,826,000 scf of natural gas burned per year
11,020,000 ser er navarar gas earnied per year

 $CO2 = 1 \times 10\text{-}3*mass \text{ of fuel*HHV*EF (Eq. C-2a)}$ CH4 or N2O = 1 x10-3*mass of fuel*HHV*EF (Eq. C-9a)

Natural Gas Combustion

1.00E-03	conversion factor from kilograms to metric tons		
11,826,000	cubic feet of natural gas burned annually		
1.028E-03	HHV MMBtu/scf	natural gas high heating value (HHV) from Table C-1	
53.02	kg CO2/MMBtu	natural gas emission factor from Table C-1	
1.00E-03	kg CH4/MMBtu	natural gas emission factor from Table C-2	
1.00E-04	kg N2O/MMBtu	natural gas emission factor from Table C-2	

Equations, HHV, and emission factors from 40CFR§98 Subpart C unless otherwise noted.

^{*}Global Warming Potentials (GWP) Referenced from 40CFR§98 Subpart A Table A-1

Checked By: PEW By: LKB Date: 07/26/13 Date: 08/01/13

CO2e Emissions from No. 2 Fuel Oil Combustion - CFDM1 Burner

Potenti				
Fuel Type	CO2	CH4	N2O	
No. 2 Fuel	20,412.96	0.83	0.17	
100 yr GWP*	1	21	310	Total CO2e
CO2e	20,412.96	17.39	51.34	20,482

CDFM1 - Burner	
2,000,000 gallons No. 2 fuel oil burned per year	

 $CO2 = 1 \times 10-3$ mass of fuel*HHV*EF (Eq. C-2a) CH4 or N2O = $1 \times 10-3$ *mass of fuel*HHV*EF (Eq. C-9a)

No. 2 Fuel Oil Combustion							
1.00E-03	conversion factor from kilograms to metric tons						
2,000,000	gallons of No. 2 fuel oil burned						
0.138	HHV MMBtu/gal	No. 2 fuel oil high heating value (HHV) from Table C-1					
73.96	kg CO2/MMBtu	No. 2 fuel oil emission factor from Table C-1					
3.00E-03	kg CH4/MMBtu	No. 2 fuel oil emission factor from Table C-2					
6.00E-04	kg N2O/MMBtu	No. 2 fuel oil emission factor from Table C-2					

Equations, HHV, and emission factors from 40CFR§98 Subpart C unless otherwise noted.

^{*}Global Warming Potentials (GWP) Referenced from 40CFR§98 Subpart A Table A-1

Checked By: PEW By: LKB Date: 07/26/13 Date: 08/01/13

CO2e Emissions from Diesel Fuel Combustion - CE1

Potenti				
Fuel Type	CO2	CH4	N2O	
No. 2 Fuel	646.68	0.03	0.01	
100 yr GWP*	1	21	310	Total CO2e
CO2e	646.68	0.55	1.63	649

CE1	
63,360 gallons No. 2 fuel oil burned per year	

 $CO2 = 1 \times 10-3$ mass of fuel*HHV*EF (Eq. C-2a) CH4 or N2O = $1 \times 10-3$ *mass of fuel*HHV*EF (Eq. C-9a)

No. 2 Fuel Oil Co	mbustion	
1.00E-03	conversion factor from	kilograms to metric tons
63,360	gallons of No. 2 fuel oil	burned
0.138	HHV MMBtu/gal	No. 2 fuel oil high heating value (HHV) from Table C-1
73.96	kg CO2/MMBtu	No. 2 fuel oil emission factor from Table C-1
3.00E-03	kg CH4/MMBtu	No. 2 fuel oil emission factor from Table C-2
6.00E-04	kg N2O/MMBtu	No. 2 fuel oil emission factor from Table C-2

Equations, HHV, and emission factors from 40CFR§98 Subpart C unless otherwise noted.

^{*}Global Warming Potentials (GWP) Referenced from 40CFR§98 Subpart A Table A-1

By: LKB
Date: 07/26/13

Checked By: PEW
Date: 08/01/13

CO2e Emissions from Used Oil Combustion - CFDM1 Burner

Pote				
Fuel Type	CO2	CH4	N2O	
Used Oil	19,980.00	0.81	0.16	
100 yr GWP*	1	21	310	Total CO2e
CO2e	19,980.00	17.01	50.22	20,047

CDFM1 Burner	
2,000,000 gallons of used oil burned per year	

$$\label{eq:co2} \begin{split} &CO2=1~x10\text{-}3*mass~of~fuel*HHV*EF~(Eq.~C\text{-}2a)\\ &CH4~or~N2O=1~x10\text{-}3*mass~of~fuel*HHV*EF~(Eq.~C\text{-}9a) \end{split}$$

Used Oil Combustion

1.00E-03	conversion factor from ki	lograms to metric tons
2,000,000	gallons of used oil burned	d annually
0.135	HHV MMBtu/gal	used oil high heating value (HHV) from Table C-1
74.00	kg CO2/MMBtu	used oil emission factor from Table C-1
3.00E-03	kg CH4/MMBtu	used oil emission factor from Table C-2
6.00E-04	kg N2O/MMBtu	used oil emission factor from Table C-2

Equations, HHV, and emission factors from 40CFR \$98 Subpart C unless otherwise noted.

^{*}Global Warming Potentials (GWP) Referenced from 40CFR§98 Subpart A Table A-1

 By: MAF
 Checked By:LKB

 Date: 8/5/2014
 Date:8/7/2014

FRAP PTE WITHOUT ENGINE

	Point Source 1			Fugitive ²				
	Uncon	trolled	Controlled		Uncontrolled			rolled
Emission Type	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PM	6.09	1.91	1.67	0.53	34.20	10.69	10.26	3.21
PM_{10}	2.39	0.74	0.75	0.24	10.09	3.15	3.03	0.95
PM _{2.5}	0.46	0.14	0.13	0.05	1.01	0.32	0.30	0.10
VOC	0	0	0	0				
SO ₂	0	0	0	0				
NO _x	0	0	0	0				
CO	0	0	0	0				
HCl								
Acetaldehyde	0	0	0	0				
Benzene	0	0	0	0				
Ethylbenzene								
Toluene	0	0	0	0				
Xylene	0	0	0	0				
Formaldehyde	0	0	0	0				
Total HAPs	0	0	0	0				

	Facility Total					
	Uncon	trolled	Cont	rolled		
Emission Type	lb/hr	tons/yr	lb/hr	tons/yr		
PM	40.29	12.60	11.93	3.74		
PM_{10}	12.48	3.89	3.78	1.19		
PM _{2.5}	1.47	0.46	0.43	0.15		
VOC	0	0	0	0		
SO ₂	0	0	0	0		
NO _x	0	0	0	0		
CO	0	0	0	0		
HCl						
Acetaldehyde	0	0	0	0		
Benzene	0	0	0	0		
Ethylbenzene	0	0	0	0		
Toluene	0	0	0	0		
Xylene	0	0	0	0		
Formaldehyde	0	0	0	0		
Total HAPs	0	0	0	0		

¹ Point source emissions include materials handling, and crushing and screening.

 $^{^{2}% =1.01}$ Fugitive emissions include vehicular traffic.

By: MAF
Date: 8/5/2014

Checked By:LKB
Date: 8/7/2014

FRAP PTE WITH ENGINE

	Point Source 1				Fugitive ²				
	Uncon	trolled	Controlled		Uncontrolled			rolled	
Emission Type	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
PM	6.49	2.04	2.07	0.66	34.20	10.69	10.26	3.21	
PM_{10}	2.79	0.87	1.15	0.37	10.09	3.15	3.03	0.95	
PM _{2.5}	0.86	0.27	0.53	0.18	1.01	0.32	0.30	0.10	
VOC	0.46	0.14	0.46	0.14					
SO ₂	0.37	0.12	0.37	0.12					
NO _x	5.65	1.77	5.65	1.77					
CO	1.22	0.38	1.22	0.38					
HCl									
Acetaldehyde	0.0010	0.0003	0.0010	0.0003					
Benzene	0.0012	0.0004	0.0012	0.0004					
Ethylbenzene									
Toluene	0.0005	0.0002	0.0005	0.0002					
Xylene	0.0004	0.0001	0.0004	0.0001					
Formaldehyde	0.0015	0.0005	0.0015	0.0005					
Total HAPs	0.005	0.002	0.005	0.002					

	Facility Total						
	Uncon	trolled	Cont	rolled			
Emission Type	lb/hr	tons/yr	lb/hr	tons/yr			
PM	40.69	12.73	12.33	3.87			
PM_{10}	12.88	4.02	4.18	1.32			
PM _{2.5}	1.87	0.59	0.83	0.28			
VOC	0.46	0.14	0.46	0.14			
SO_2	0.37	0.12	0.37	0.12			
NO_x	5.65	1.77	5.65	1.77			
CO	1.22	0.38	1.22	0.38			
HCl							
Acetaldehyde	0.0010	0.0003	0.0010	0.0003			
Benzene	0.0012	0.0004	0.0012	0.0004			
Ethylbenzene	0.0000	0.0000	0.0000	0.0000			
Toluene	0.0005	0.0002	0.0005	0.0002			
Xylene	0.0004	0.0001	0.0004	0.0001			
Formaldehyde	0.0015	0.0005	0.0015	0.0005			
Total HAPs	0.005	0.002	0.005	0.002			

¹ Point source emissions include materials handling, and crushing and screening.

² Fugitive emissions include vehicular traffic.

By: MAF
Date: 8/5/2014

Checked By: LKB
Date: 8/7/2014

Date: 8/7/2014

TRANSFER POINTS - PORTABLE FRAP SYSTEM

Defining transfer point empirical expression variables, where: $e = k(0.0032)(U/5)^{1.3}/(M/2)^{1.4}$

INPUT

e =	?	lb/ton
k for PM =	0.74	dimensionless
k for PM_{10}	0.35	dimensionless
k for PM _{2.5}	0.053	dimensionless
U =	7	mean wind speed, mph
M aggregates =	3.0	material moisture content, %
$M_{RAP} =$	7.5	material moisture content, %

Calculating transfer point emission factor for PM:

 $e_{aggregates} = 0.0021 \qquad lb/ton$

 $M_{RAP} = 0.0006$ lb/ton

Calculating transfer point emission factor for $\mbox{PM}_{10}\!\!:$

 $\begin{array}{ccc} e_{aggregates} = & 0.0010 & lb/ton \\ M_{RAP} = & 0.0003 & lb/ton \end{array}$

Calculating transfer point emission factor for PM_{2.5}:

 $\begin{array}{ccc} \text{e}_{\text{aggregates}} = & 0.0001 & \text{lb/ton} \\ \text{M}_{\text{RAP}} = & 4.13\text{E-05} & \text{lb/ton} \end{array}$

Notes:

Emission factor calculation and mean wind speed were taken from WVDEP General Permit G40-C Emissions Calculation Spreadsheet, May 6, 2011.

Control efficiencies taken from WVDEP General Permit G40-c, Instruction and Forms, May 6, 2011, except for crusting agents.

Crusting Agent (CA) control efficiency taken from Preferred and Alternative Methods for Estimating Air Emissions from Hot-Mix Asphalt Plants, Final Report, July 1996, Prepared for USEPA's Emission Inventory Improvement Program.

FRAP Production rate: 200 tph 125,000 tpy

PM Emissions Rounding = 2

ID	Description	Transfe	Transfer Capacities		Co	ntrol	Emissions			
				(U)	De	evice	Uncont	trolled	Cont	rolled
		tons/hour	tons/year	lb/T	Type	Effic(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
F-TP1	FE to F-HI	200	125,000	0.0006	MD	0	0.12	0.04	0.12	0.04
F-TP2	F-HI to F-BC1	200	125,000	0.0006	FE	80	0.12	0.04	0.02	0.01
F-TP3	F-BC1 to F-S1	200	125,000	0.0006	PE	50	0.12	0.04	0.06	0.02
F-TP4	F-S1 to F-BC2	75	46,875	0.0006	FE	80	0.05	0.01	0.01	0.00
F-TP5	F-BC2 to F-CR1	75	46,875	0.0006	FE	80	0.00	0.00	0.00	0.00
F-TP6	F-BC2 to OS6	75	46,875	0.0006	N	0	0.00	0.00	0.00	0.00
F-TP7	F-CR1 to F-BC1	75	46,875	0.0006	FE	80	0.05	0.01	0.01	0.00
F-TP8	F-SI to F-BC3	200	125,000	0.0006	PE	50	0.00	0.00	0.00	0.00
F-TP9	F-BC3 to OS9A or F-RS1	200	125,000	0.0006	MD	0	0.12	0.04	0.12	0.04
F-TP10	F-S1 to F-BC4	200	125,000	0.0006	PE	50	0.12	0.04	0.06	0.02
F-TP11	F-BC4 to OS9B or F-RS1	200	125,000	0.0006	MD	0	0.12	0.04	0.12	0.04
F-TP12	F-RS1 to OS9A or OS9B	200	125,000	0.0006	MD	0	0.12	0.04	0.12	0.04
	·					Sub-total	0.94	0.30	0.64	0.21

 By: MAF
 Checked By:LKB

 Date: 8/5/2014
 Date:8/7/2014

TRANSFER POINTS - PORTABLE FRAP SYSTEM

PM ₁₀ Emissions							R	ounding =	3	
ID	Description	Transfe	r Capacities	e	Co	ntrol		Emi	ssions	
					De	evice	Uncontrolled		Controlled	
		tons/hour	tons/year	lb/T	Type	Effic(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
F-TP1	FE to F-HI	200	125,000	0.0003	MD	0	0.060	0.019	0.060	0.019
F-TP2	F-HI to F-BC1	200	125,000	0.0003	FE	80	0.060	0.019	0.012	0.004
F-TP3	F-BC1 to F-S1	200	125,000	0.0003	PE	50	0.060	0.019	0.030	0.010
F-TP4	F-S1 to F-BC2	75	46,875	0.0003	FE	80	0.023	0.007	0.005	0.001
F-TP5	F-BC2 to F-CR1	75	46,875	0.0003	FE	80	0.023	0.007	0.005	0.001
F-TP6	F-BC2 to OS6	75	46,875	0.0003	N	0	0.023	0.007	0.023	0.007
F-TP7	F-CR1 to F-BC1	75	46,875	0.0003	FE	80	0.023	0.007	0.005	0.001
F-TP8	F-SI to F-BC3	200	125,000	0.0003	PE	50	0.060	0.019	0.030	0.010
F-TP9	F-BC3 to OS9A or F-RS1	200	125,000	0.0003	MD	0	0.060	0.019	0.060	0.019
F-TP10	F-S1 to F-BC4	200	125,000	0.0003	PE	50	0.060	0.019	0.030	0.010
F-TP11	F-BC4 to OS9B or F-RS1	200	125,000	0.0003	MD	0	0.060	0.019	0.060	0.019
F-TP12	F-RS1 to OS9A or OS9B	200	125,000	0.0003	MD	0	0.060	0.019	0.060	0.019
						Sub-total	0.57	0.18	0.38	0.12

PM _{2.5} Emissions							R	ounding =	4	
ID	Description	Transfe	r Capacities	e	Co	ntrol		Emi	ssions	
	-				De	evice	Uncontrolled		Controlled	
		tons/hour	tons/hour tons/year		Type	Effic(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
F-TP1	FE to F-HI	200	125000	4.13E-05	MD	0	0.008	0.003	0.008	0.003
F-TP2	F-HI to F-BC1	200	125000	4.13E-05	FE	80	0.008	0.003	0.002	0.0005
F-TP3	F-BC1 to F-S1	200	125000	4.13E-05	PE	50	0.008	0.003	0.004	0.001
F-TP4	F-S1 to F-BC2	75	46875	4.13E-05	FE	80	0.003	0.001	0.001	0.0002
F-TP5	F-BC2 to F-CR1	75	46875	4.13E-05	FE	80	0.003	0.001	0.001	0.0002
F-TP6	F-BC2 to OS6	75	46875	4.13E-05	N	0	0.003	0.001	0.003	0.001
F-TP7	F-CR1 to F-BC1	75	46875	4.13E-05	FE	80	0.003	0.001	0.001	0.000
F-TP8	F-SI to F-BC3	200	125000	4.13E-05	PE	50	0.008	0.003	0.004	0.001
F-TP9	F-BC3 to OS9A or F-RS1	200	125000	4.13E-05	MD	0	0.008	0.003	0.008	0.003
F-TP10	F-S1 to F-BC4	200	125000	4.13E-05	PE	50	0.008	0.003	0.004	0.001
F-TP11	F-BC4 to OS9B or F-RS1	200	125000	4.13E-05	MD	0	0.008	0.003	0.008	0.003
F-TP12	F-RS1 to OS9A or OS9B	200	125000	4.13E-05	MD	0	0.008	0.003	0.008	0.003
						Sub-total	0.08	0.02	0.05	0.02

By: MAF
Date: 8/5/2014

Checked By:LKB
Date: 8/7/2014

CRUSHING AND SCREENING

Emission Factors

	PM	PM10
Primary Crushing	0.002	0.001
Secondary & Tertiary Crushing	0.0054	0.0024
Screening	0.025	0.0087

Emission factors taken from DAQ G40-C Emissions Worksheet.

PM2.5 equal to PM/14:

Partlicle size multipliers (k) AP42 Section 13.2.4-4 (11/06):

	PM	PM10	PM2.5
	0.74	0.35	0.053
Co	nversion Factor	2.1	14

Crusher Emissions

Crusher Identification	Crusher Type	ID	.0 1		Control Type	Contol Efficiency	Pollutant	Uncor	itrolled	Cont	rolled
	31			(tons/yr)		(%)			(tons/yr)		(tons/yr)
							PM	0.15	0.05	0.03	0.01
FRAP Crusher	Primary	F-CR1	75	46,875	FE	80	PM10	0.08	0.02	0.02	0.01
							PM2.5	0.02	0.01	0.01	0.01

Screen Emissions

					Control	Contol			_		
Screen Identification	Screen Type	ID	Throu	ighput	Type	Efficiency	Pollutant	Uncor	trolled	Cont	rolled
			(ton/hr)	(tons/yr)		(%)		(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)
							PM	5.00	1.56	1.00	0.31
FRAP Screen	Double Deck	F-S1	200	125,000	FE	80	PM10	1.74	0.54	0.35	0.11
							PM2.5	0.36	0.11	0.07	0.02

Totals for Crushing and Screening

Pollutant	Uncon	trolled	Controlled		
	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)	
PM	5.15	1.61	1.03	0.32	
PM10	1.82	0.56	0.37	0.12	
PM2.5	0.38	0.12	0.08	0.03	

By: MAF
Date: 8/5/2014

Checked By: LKB
Date: 8/7/2014

ENGINE EMISSIONS Portable FRAP System Engine (F-ENG1) (NON-ROAD ENGINE - NOT INCLUDED IN PTE)

Fuel Usage 9.28 gallons/hour CARB Certificate 5,800 gallons/year Calculated

Assumed Heating Value of Diesel Fuel: 138,000 Btu/gallon HHV from 40 CFR 98, Table C-1

Maximum Horsepower: 173 hp Manufacturer
Maximum Fuel Input: 1.28 MMBtu/hour Calculated

		Н	Iours Per Year =	625
Regulated	Emission	Emission	Hourly	Annual
Pollutant	Factor	Factor	Emissions	Emissions
	(lb/MMBtu)	(g/kW-hr)	(lbs/hour)	(tons/year)
NO_X	4.41		5.65	1.77
СО	0.95		1.22	0.38
SO_X	0.29		0.37	0.12
PM/PM ₁₀ /PM _{2.5}	0.31		0.40	0.13
TOC (VOC)	0.36		0.46	0.14

Hazardous Air Pollutan	ts (HAPS)		
Benzene	9.33E-04	0.0012	0.0004
Toluene	4.09E-04	0.0005	0.0002
Xylenes	2.85E-04	0.0004	0.0001
1,3-Butadiene	3.91E-05	0.0001	0.00003
Formaldehyde	1.18E-03	0.0015	0.0005
Acetaldehyde	7.67E-04	0.001	0.0003
Acrolein	9.25E-05	0.0001	0.0000
Naphthalene	8.48E-05	0.0001	0.0000
Total HAPS		0.0049	0.002

Notes:

Emission factors from AP-42 Table 3.3-1 (Criteria Pollutants) Table 3.3-2 (HAPS) unless noted.

By: MAF Checked By:LKB Date: 8/5/2014 Date:8/7/2014

VEHICLE ACTIVITY

Emission factor equation:

 $E = k(s/12)^a (W/3)^b ((365-p)/365)$ From AP-42 Fifth Edition , Section 13.2.2, Fugitive Sources

	PM	PM10	PM2.5				
E =	?	?	?	lb/VMT			
k =	4.9	1.5	0.15	particle size multiplier			
a =	0.7	0.9	0.9	constant			
b =	0.45	0.45	0.45	constant	Annual Production (tpy)	125,000	
s =	10	10	10	% silt in road surface	Hourly Production (tph)	200	
· <u> </u>						Vehicle Wt	Load Wt
					Endloaders	31	6
$W_{endloader} =$	34	34	34	mean vehicle weight			
p =	157	157	157	# days with 0.01" rain			
$E_{endloader} =$	7.33	2.16	0.22	lb/VMT			

Rounding to =

2

Vehicular Tra	Vehicular Traffic Number of		Number of	Cor	ntrol	TSP Emissions					
ID	Miles/Trip	Trips/Hour	Trips/Year	Year Device		Unco	ntrolled	Controlled			
ID			_	Type	Effic(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)		
Endloaders	0.14	33	20,833	HR-WS	70	34.20	10.69	10.26	3.21		
						34.20	10.69	10.26	3.21		

Vehicular Tra	Vehicular Traffic Number of Nu		Number of	Cor	ıtrol	PM10 Emissions					
ID	Miles/Trip	Trips/Hour	Trips/Year	Trips/Year Device		Unco	ntrolled	Controlled			
ID.	(miles)	(trips/hour)	(trips/year)	Type	Effic(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)		
Endloaders	0.14	33	20,833	HR-WS	70	10.09	3.15	3.03	0.95		
						10.09	3.15	3.03	0.95		

Vehicular Tra	ffic	Number of	Number of	Cor	ntrol		PM2.5 Er	nissions	
ID	Miles/Trip	Trips/Hour	Trips/Year Device Uncontrolled		ur Trips/Year Devi		Cont	rolled	
ID	(miles)	(trips/hour)	(trips/year)	Type	Effic(%)	(lb/hr)	(tpy)		(tpy)
Endloaders	0.14	33	20,833	HR-WS	70	1.01	0.32	0.30	0.10
	•		•			1.01	0.32	0.30	0.10

PORTABLE CRUSHING AND SCREENING SYSTEM

By: AM & PEW
Date: 02/26/2018

Checked by: PEW
Date: 02/26/2018

]	Point Sour	e Emission	ıs	Fugitive Emissions				
	Uncon	trolled	rolled Controlled		Uncon	itrolled	Controlled		
Emission Type	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
PM	7.09	3.95	4.42	2.44	17.21	11.16	5.24	3.68	
PM_{10}	2.93	1.61	1.88	1.03	5.10	3.37	1.57	1.17	
PM _{2.5}	0.48	0.32	0.29	0.21	0.51	0.36	0.16	0.14	

Total Proposed PTE

	Uncon	trolled	Cont	rolled
Emissions Type	lb/hr	tons/yr	lb/hr	tons/yr
PM	24.30	15.11	9.66	6.12
PM_{10}	8.03	4.98	3.45	2.20
PM _{2.5}	0.99	0.68	0.45	0.35

Emissions for Caterpillar Engine 3412 ¹

	Uncon	trolled	Cont	rolled
Emissions Type	lb/hr	tons/yr	lb/hr	tons/yr
NO_X	28.70	30.14	28.70	30.14
CO	6.18	6.49	6.18	6.49
SO_X	1.89	1.98	1.89	1.98
PM/PM ₁₀ /PM _{2.5}	2.02	2.12	2.02	2.12
TOC (VOC)	2.34	2.46	2.34	2.46
Hazardous Air Pollu	itants (HAP	S)		
Benzene	0.0061	0.0064	0.0061	0.0064
Toluene	0.0027	0.0028	0.0027	0.0028
Xylenes	0.0019	0.0020	0.0019	0.0020
1,3-Butadiene	0.0003	0.0004	0.0003	0.0004
Formaldehyde	0.0077	0.0081	0.0077	0.0081
Acetaldehyde	0.0050	0.0053	0.0050	0.0053
Acrolein	0.0006	0.0007	0.0006	0.0007
Naphthalene	0.0006	0.0007	0.0006	0.0007
Total HAPS	0.025	0.026	0.025	0.026

1. This engine is non-road which excludes its emissions from the PTE.

 By: AM & PEW
 Checked by: PEW

 Date: 02/26/2018
 Date: 02/26/2018

Materials Handling

Defining transfer point empirical expression variables, where: $e=k(0.0032\)(U/5)^{1.3}/(M/2)^{1.4}$

 $\begin{array}{cccc} e = & ? & lb/ton \\ k \ for \ TSP = & 0.74 & dimensionless \\ k \ for \ PM_{10} = & 0.35 & dimensionless \\ k \ for \ PM_{2.5} = & 0.053 & dimensionless \\ U = & 10 & mean \ wind \ speed, \ mph \\ M_{RAP} = & 3 & material \ moisture \ content, \% \end{array}$

Calculating transfer point emission factor for TSP: $e_{RAP} = \begin{array}{cc} 0.0033 & lb/ton \end{array}$

Calculating transfer point emission factor for PM_{10} :

 $e_{RAP} = 0.0016$ lb/ton

Calculating transfer point emission factor for $PM_{2.5}$: $e_{RAP} = 0.0002 \qquad lb/ton$

Emission factor calculation taken from AP-42 Section 13.2.4

Aggregate Handling and Storage Piles

Materials Handling

PM Emissions	•						Rounding =	2	
	Transfe	r Capacities	e	Con	trol	Emissions			
ID			(U)	Dev	rice	Uncor	trolled	Contr	rolled
	tons/hour	tons/year	lb/T	Type	Effic(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
P-TP1	100	125,000	0.0033	MD	0	0.33	0.21	0.33	0.21
P-TP2	100	125,000	0.0033	PE	50	0.33	0.21	0.17	0.11
P-TP3	150	187,500	0.0033	N	0	0.50	0.31	0.50	0.31
P-TP4	100	62,500	0.0033	PE	50	0.33	0.10	0.17	0.05
P-TP5	100	62,500	0.0033	N	0	0.33	0.10	0.33	0.10
P-TP6	100	62,500	0.0033	PE	50	0.33	0.10	0.17	0.05
P-TP7	100	62,500	0.0033	N	0	0.33	0.10	0.33	0.10
P-TP8	100	125,000	0.0033	PE	50	0.33	0.21	0.17	0.11
P-TP9	100	125,000	0.0033	N	0	0.33	0.21	0.33	0.21
P-TP10	0	0	0.0033	PE	50	0.00	0.00	0.00	0.00
P-TP11	0	0	0.0033	N	0	0.00	0.00	0.00	0.00
* Assumes a maximum of	of 50% of RAP is crush	ned and recycled through	the screen.		Total	3.14	1.55	2.50	1.25

Materials Handling

PM₁₀ Emissions

	Transfe	r Capacities	e	Con	trol		Emis	ssions	
ID			(U)	Dev	rice	Uncor	trolled	Cont	rolled
	tons/hour	tons/year	lb/T	Type	Effic(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
P-TP1	100	125,000	0.0016	MD	0	0.16	0.10	0.16	0.10
P-TP2	100	125,000	0.0016	PE	50	0.16	0.10	0.08	0.05
P-TP3	150	187,500	0.0016	N	0	0.24	0.15	0.24	0.15
P-TP4	100	62,500	0.0016	PE	50	0.16	0.05	0.08	0.03
P-TP5	100	62,500	0.0016	N	0	0.16	0.05	0.16	0.05
P-TP6	100	62,500	0.0016	PE	50	0.16	0.05	0.08	0.03
P-TP7	100	62,500	0.0016	N	0	0.16	0.05	0.16	0.05
P-TP8	100	125,000	0.0016	PE	50	0.16	0.10	0.08	0.05
P-TP9	100	125,000	0.0016	N	0	0.16	0.10	0.16	0.10
P-TP10	0	0	0.0016	PE	50	0.00	0.00	0.00	0.00
P-TP11	0	0	0.0016	N	0	0.00	0.00	0.00	0.00
* Assumes a maximum of	50% of RAP is crush	ed and recycled through	the screen.		Total	1.52	0.75	1.20	0.61

Materials Handling

PM_{2.5} Emissions

	Transfe	r Capacities	e	Control			Emis	ssions	
ID			(U)	Dev	rice	Uncor	trolled	Controlled	
	tons/hour	tons/year	lb/T	Type	Effic(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
P-TP1	100	125,000	0.0002	MD	0	0.02	0.02	0.02	0.02
P-TP2	100	125,000	0.0002	PE	50	0.02	0.02	0.01	0.01
P-TP3	150	187,500	0.0002	N	0	0.03	0.02	0.03	0.02
P-TP4	100	62,500	0.0002	PE	50	0.02	0.01	0.01	0.01
P-TP5	100	62,500	0.0002	N	0	0.02	0.01	0.02	0.01
P-TP6	100	62,500	0.0002	PE	50	0.02	0.01	0.01	0.01
P-TP7	100	62,500	0.0002	N	0	0.02	0.01	0.02	0.01
P-TP8	100	125,000	0.0002	PE	50	0.02	0.02	0.01	0.01
P-TP9	100	125,000	0.0002	N	0	0.02	0.02	0.02	0.02
P-TP10	0	0	0.0002	PE	50	0.00	0.00	0.00	0.00
P-TP11	0	0	0.0002	N	0	0.00	0.00	0.00	0.00
* Assumes a maximum of	50% of RAP is crush	ed and recycled through	the screen.	<u> </u>	Total	0.19	0.14	0.15	0.12

West Virginia Paving, Inc. Portable Crushing and Screening

By: AM & PEW Checked by: PEW Date: 02/26/2018 Date: 02/26/2018

Crushing and Screening

Emission Factors (lb/ton)

	PM	PM10	Source
Primary Crushing	0.002	0.001	DAQ G40-C Emissions Worksheet
Secondary & Tertiary			
Crushing	0.0054	0.0024	DAQ G40-C Emissions Worksheet
Screening	0.025	0.0087	DAQ G40-C Emissions Worksheet

Crusher Emissions

PM Emissions

PM					Control	Contol				
Crusher Identification	Crusher Type	ID	Throu	ghput	Type	Efficiency	Uncont	trolled	Cont	rolled
			(ton/hr)	(tons/yr)		(%)	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)
RAP Crusher	Primary	P-CR1	100	62,500	FE	80	0.20	0.06	0.04	0.02
						Totals:	0.20	0.06	0.04	0.02

PM10 Emissions

					Control	Contol				
Crusher Identification	Crusher Type	ID	Throu	ighput	Type	Efficiency	Uncon	trolled	Cont	rolled
			(ton/hr)	(tons/yr)		(%)	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)
RAP Crusher	Primary	P-CR1	100	62,500	FE	80	0.10	0.04	0.02	0.01
						Totals	0.10	0.04	0.02	0.01

PM2.5 Emission

					Control	Contol				
Crusher Identification	Crusher Type	ID	Throu	ıghput	Type	Efficiency	Uncont	trolled	Cont	rolled
			(ton/hr)	(tons/yr)		(%)	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)
RAP Crusher	Primary	P-CR1	100	62,500	FE	80	0.02	0.01	0.01	0.01
						Totals	0.02	0.01	0.01	0.01

Screen Emissions PM Emissions

					Control	Contol				
Screen Identification	Screen Type	ID	Throu	ghput	Type	Efficiency	Uncont	trolled	Cont	rolled
			(ton/hr)	(tons/yr)		(%)	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)
RAP Screen	Double Deck	P-SCR1	150	187,500	PE	50	3.75	2.34	1.88	1.17
						Totals:	3.75	2.34	1.88	1.17

PM10 Emissions

					Control	Contol				
Screen Identification	Screen Type	ID	Throu	ghput	Type	Efficiency	Uncontrolled		Controlled	
			(ton/hr)	(tons/yr)		(%)	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)
RAP Screen	Double Deck	P-SCR1	150	187,500	PE	50	1.31	0.82	0.66	0.41
						Totals:	1.31	0.82	0.66	0.41

PM2.5 Emissions

					Control	Contol				
Screen Identification	Screen Type	ID	Throu	ghput	Type	Efficiency	Uncontrolled		Controlled	
			(ton/hr)	(tons/yr)		(%)	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)
RAP Screen	Double Deck	P-SCR1	150	187,500	PE	50	0.27	0.17	0.13	0.08
						Totals:	0.27	0.17	0.13	0.08

Totals for Crushing and Screening

PM .					PN	M10		PM2.5			
Uncontrolle	ed	Co	ntrolled	Uncon	trolled	Cont	trolled	Uncon	trolled	Contro	lled
(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)
3.95	2.40	1.92	1.19	1.41	0.86	0.68	0.42	0.29	0.18	0.14	0.09

(1)- PM2.5 equal to PM/14: Partlicle size multipliers (k) AP42 Section 13.2.4-4 (11/06):

 42 Dection 13.2.4-4	(11/00).	
PM	PM10	PM2.5
0.74	0.35	0.053
Conversion Factor	2.1	14

 By: AM & PEW
 Checked by: PEW

 Date: 02/26/2018
 Date: 02/26/2018

Stockpiles

Reference: AP-42 Section 11.2.3, Fugitive Emissions (May, 1983), Equation #2

E = 1.7 (s/1.5) ((365-p)/235) (f/15)

E =	?	Emissions factor, pound per day per acre, (lb/day/acre)		
$s_{agg} =$	1	Silt content of material (%)		
p =	157	number of days with at least 0.254 mm (0.01 in.) of precipitation per year		
f =	15	Time wind speed exceeds 12 mph (%)		
$e_{agg} =$	1.003	lb/day/acre for aggregates and RAP	Rounding to	3

Stockpile	Stockpile	Base Area	Control	Control Eff.	Uncontrolle	d Emissions	Controlled	Emissions
ID	Material	(acres)	Device	(%)	lb/hr	tpy	lb/hr	tpy
OS1	RAP	2.56	N	0	0.11	0.47	0.11	0.47
				PM	0.11	0.47	0.11	0.47
				PM ₁₀ *	0.05	0.22	0.05	0.22
				PM _{2.5} *	0.01	0.04	0.01	0.04

^{*} PM10 = PM/2.1; PM2.5 = PM/14.

By: AM & PEW Date: 02/26/2018 Checked by: PEW Date: 02/26/2018

VEHICLE ACTIVITY

Emission factor equation:

 $E = k(s/12)^a (W/3)^b ((365-p)/365)$ From *AP-42 Fifth Edition*, Section 13.2.2, Fugitive Sources

	PM	PM10	PM2.5				
E =	?	?	?	lb/VMT			
k =	4.9	1.5	0.15	particle size multiplier			
a =	0.7	0.9	0.9	constant			
b =	0.45	0.45	0.45	constant	Annual Production (tpy)	125,000	
$_{S} =$	10	10	10	% silt in road surface	Hourly Production (tph)	100	
						Vehicle Wt	Load Wt
					Endloaders	31	6
$W_{endloader} =$	34	34	34	mean vehicle weight			
p =	157	157	157	# days with 0.01" rain			
				0			
				0			
$E_{endloader} =$	7.33	2.16	0.22	lb/VMT			

Rounding to =

2

Vehicular Traffic		Number of	Number of	Cor	ıtrol		TSP Em	issions	
ID	Miles/Trip1	Trips/Hour	Trips/Year	De	vice Uncontrolled		ntrolled	Cont	rolled
110				Type	Effic(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
Endloaders	0.14	17	20,833	HR-WS	70	17.10	10.69	5.13	3.21
						17.10	10.69	5.13	3.21

Vehicular Traffic		Number of	Number of	Control		PM10 Emissions				
ID	Miles/Trip	Trips/Hour	Trips/Year	Device		Device Uncontrolled		Cont	rolled	
ID	(miles)	(trips/hour)	(trips/year)	Type	Effic(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	
Endloaders	0.14	17	20,833	HR-WS	70	5.05	3.15	1.52	0.95	
						5.05	3.15	1.52	0.95	

Vehicular Tra	Vehicular Traffic Number of Number of Control		PM2.5 Emissions						
ID Miles/Trip		Trips/Hour	Trips/Year	r Device		Uncontrolled		Controlled	
110	(miles)	(trips/hour)	(trips/year)	Type	Effic(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
Endloaders	0.14	17	20,833	HR-WS	70	0.50	0.32	0.15	0.10
Notes						0.50	0.32	0.15	0.10

^{1.} Miles/trip from Dunbar FRAP

By: AM & PEW Checked by: PEW Date: 02/26/2018 Date: 02/26/2018

Caterpillar 3412 (P-ENG1) Manufactured 1989 (NON-ROAD ENGINE - NOT INCLUDED IN PTE)

47.5 gallons/hour Client Fuel Usage = 99,750 gallons/year Calculated 7.2 lbs/gal Diesel Fuel Constant 137,000 Btu/gallon

Assumed HeatingValue of Diesel Fuel² = Constant Maximum Horsepower = 917 hp Client

Maximum Fuel Input = 6.51 MMBtu/hour Calculated

Hours Per Year = 2,100

Regulated	Emission	Hourly	Annual
Pollutant	Factor	Emissions	Emissions
	$(lb/MMBtu)^1$	(lbs/hour)	(tons/year)
NO_X	4.41	28.70	30.14
CO	0.95	6.18	6.49
SO_X	0.29	1.89	1.98
PM/PM ₁₀ /PM _{2.5}	0.31	2.02	2.12
TOC (VOC)	0.36	2.34	2.46

Hazardous Air Pollu	itants (HAPS)		
Benzene	9.33E-04	0.0061	0.0064
Toluene	4.09E-04	0.0027	0.0028
Xylenes	2.85E-04	0.0019	0.0020
1,3-Butadiene	3.91E-05	0.0003	0.0004
Formaldehyde	1.18E-03	0.0077	0.0081
Acetaldehyde	7.67E-04	0.005	0.0053
Acrolein	9.25E-05	0.0006	0.0007
Naphthalene	8.48E-05	0.0006	0.0007
Total HAPS		0.025	0.026

Notes:

- 1. Emission factors from AP-42 Table 3.3-1(Criteria Pollutants) Table 3.3-2 (HAPS) unless noted.
- 2. Heating value of diesel fuel from AP-42 Appendix A.

ATTACHMENT O MONITORING, RECORDKEEPING, REPORTING, TESTING PLANS

ATTACHMENT O - MONITORING/RECORDKEEPING/ REPORTING/TESTING PLANS

West Virginia Paving, Inc. plans to follow the monitoring, recordkeeping, reporting, and testing required by the issued permit.

ATTACHMENT P PUBLIC NOTICE

ATTACHMENT P CLASS I LEGAL ADVERTISEMENT

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that West Virginia Paving, Inc. has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a Regulation 13 Permit Application for a Hot Mix Asphalt plant located on Charles Avenue in Dunbar, Kanawha County, West Virginia. The latitude and longitude coordinates are: 38.36903 N and -81.760667 E.

The applicant estimates the potential to discharge the following Regulated Air Pollutants will be: PM of 64.40 tons per year (tpy) including fugitive emissions of 29.79 tpy, PM10 of 21.25 tpy including fugitive emissions of 8.86 tpy, PM2.5 of 4.55 tpy including fugitive emissions of 1.03 tpy, VOC of 22.74 tons, SO₂ of 15.74 tpy, NO_x of 32.97 tpy, CO of 38.50 tpy, Acetaldehyde of 0.33 tpy, Benzene of 0.11 tpy, Ethylbenzene of 0.068 tpy, Toluene of 0.09 tpy, Xylene of 0.09 tpy, 1,3-Butadiene of 0.0003 tpy, Formaldehyde of 0.87 tpy, Acrolein of 0.0003 tpy, and Naphthalene of 0.0003 tpy.

The facility will begin operation under the modified permit on or about December 1, 2013. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, Extension 1250, during normal business hours.

Dated this the (PLEASE INSERT DATE) day of March, 2018.

By: West Virginia Paving, Inc.
Robert Brookover
Vice President
PO Box 544
Dunbar, West Virginia 25064

APPENDIX ENGINE STACK TEST

FINAL REPORT

CARBON MONOXIDE EMISSION TESTING

KOMATSU CLAMSHELL (SOURCE ID CE1) WVDEP PERMIT NO. G20-B187B

WEST VIRGINIA PAVING, INC. DUNBAR ASPHALT DUNBAR, WEST VIRGINIA

LEMOS LABS, LLC PROJECT 0557

TEST DATE: October 19, 2017

PREPARED BY ALEX KEFFALAS GENERAL MANAGER

LEMOS LABS, LLC

329 PILLOW STREET BUTLER, PENNSYLVANIA 16001

CERTIFICATION OF DATA ACCURACY

I, the undersigned, hereby certify that, based on the information and belief formed after reasonable inquiry, all information in the attached report, representing the period beginning October 19, 2017 and ending October 19, 2017, and any supporting documents appended hereto, is true, accurate and complete.

Test Team Supervisor
Alex Keffalas General Manager
10-19-17 Date
Source Representative
Bob Brookover President, West Virginia Paving, Inc.
Date

TABLE OF CONTENTS

1.0	EXE	CUTIVE SUMMARY	1
2.0	SCO	PE AND OBJECTIVES	2
3.0	PRO	CESS DESCRIPTION	4
4.0	PROC	CEDURES	5
	4.1	Field Work	
		4.1.1 Field Data Sheets 4.1.2 Emission Testing Station 4.1.3 Determination of Carbon Dioxide and Oxygen	5 5 5 5
		4.1.6 Summary of Test Parameters and Methods	
	4.2 4.3	Field Equipment Calibrations	6
5.0	SUMM	ARY OF RESULTS	7
TABL	ES		
Table Table Table	2	Test Results Summary Summary of Emissions Komatsu Clamshell Test Parameters and Methods	
FIGUE	RES		
Figure Figure		Komatsu Clamsheli Sampling Location Catalyst Schematic	
APPE	NDICE	S	
Apper Apper Apper Apper	idix B	Field Data Sheets Process Data Calculations Field Equipment Calibrations	

1.0 EXECUTIVE SUMMARY

West Virginia Paving, Inc. Dunbar Asphalt contracted Lemos Labs, LLC to conduct carbon monoxide (CO) reduction evaluation for the Komatsu Clamshell engine catalyst (Source ID CE1) located at the West Virginia Paving, Inc. Dunbar Asphalt Plant #30. Sampling was conducted to meet certain conditions of the WVDEP Permit No. G20-B187B. Three one-hour runs were conducted simultaneously at the inlet and outlet of the catalyst while fired with diesel fuel. Sampling and analyses was conducted using the principles of U.S. Environmental Protection Agency (EPA) methods specified in 40 CFR, Part 60, Appendix A.

The testing was conducted while the source was operated at a maximum routine rate.

The results demonstrated compliance with the WVDEP permit limits. Table 1 presents the test results summary of the emissions.

TABLE 1

WEST VIRGINIA PAVING INC. DUNBAR ASPHALT PLANT #30 DUNBAR, WEST VIRGINIA

KOMATSU CLAMSHELL (SOURCE ID CE1) PERMIT NO. G20-B187B

October 19, 2017

TEST RESULTS SUMMARY

Parameter	Average	Compliance Limit	Compliance Determination
Carbon Monoxide Emissions:			
ppmvd @ 15% O ₂	42.4	49	in-compliance
Carbon Monoxide Reduction:			
percent	89	70	in-compliance

2.0 SCOPE AND OBJECTIVES

The scope of this project was to determine CO reduction across the Komatsu Clamshell engine catalyst (Source ID CE1) while firing with diesel fuel using approved reference sampling methods. The sampling was conducted to demonstrate compliance with certain conditions of the WVDEP Permit No. G20-B187B.

As per the Permit, the results of the tests were intended to demonstrate that the source would reduce CO emissions by at least 70%. The tests are also intended to demonstrate that the source will not exceed 49 ppmvd CO at 15% O2 while fired with diesel fuel. Three runs were conducted simultaneously at the inlet and outlet of the catalyst and the average of the three runs constituted the test.

The following parameters were determined at a minimum for three test runs:

Gas Analysis

CO Emissions

CO₂ and O₂ % by volume ppmvd @ 15% O₂

CO₂ O_2

carbon dioxide

oxygen

ppmyd ppmvd@15% O2 parts per million volume dry

parts per million volume dry corrected to 15 percent oxygen

The field-sampling program was performed on October 19, 2017. The Lemos Labs test personnel consisted of Messrs. Alex Keffalas (On-Site Supervisor) and Ms. Alexandra Garsteck (Trailer Operator). The process data was collected by West Virginia Paving, Inc. Dunbar Asphalt Plant #30.

Contacts:

Lemos Labs, LLC contact: Alex Keffalas

Lemos Labs, LLC 329 Pillow Street

Butler, Pennsylvania 16001

Telephone:

(724) 519-2936

Facsimile:

(724) 519-2317

West Virginia Paving, Inc.

Dunbar Asphalt Contact:

Trey Mattox

West Virginia Paving, Inc. Dunbar Asphalt Plant #30

2950 Charles Avenue Dunbar, West Virginia

Telephone:

(304)-720-2422

3.0 PROCESS DESCRIPTION

The 99 Komatsu PC 750 excavator on pedestal with 26' droop nose stick with 4.25 cubic yard clam shell bucket. Direct connected pre-emissions power source is a 6 cylinder 4 cycle water cooled direct injection with turbocharger and after cooler with a 6" direct stack out of engine bay 444hp at 1800rpm with a max torque 0f 2100 at 1350 rpm. The engine on said machine was checked and worked on by Rish Equipment prior to emissions testing Dec. 2016, with new injectors and overhead on engine being performed. The results of this work were that engine was running at optimal performance per Komatsu Specifications.

The Komatsu PC 750 has one (1) primary function which is to unload barges from river delivery of Material (aggregate).

The stack diagram for the Komatsu Clamshell is included in Figure 1.

4.0 PROCEDURES

4.1 FIELD WORK

4.1.1 Field Data Sheets

Copies of all field data sheets are included in Appendix A.

4.1.2 Emission Testing Station

The sampling locations are in the duct before and after the catalyst. The inlet and outlet sampling locations are directly before and after the catalyst, respectively. The sampling locations do not meet the two and half-diameter criterion of Section 11.1.1 of Method 1 of 40 CFR part 60, appendix A-1. Therefore, a stratification test was conducted and sampling points were selected according to Section 8.1.2 of EPA Method 7E of 40 CFR part 60, appendix A-4. A drawing of the sampling location is included in Figure 1.

A stratification test was conducted at each stack sampling location during the first run. The source met the stratification criteria for O₂ for each location, therefore the sampling probe was positioned at a single point in the gas stream for the remainder of the testing.

4.1.3 Determination of Carbon Dioxide and Oxygen

Oxygen (O₂) was continuously measured during each test period for the calculation of dry molecular weight using EPA Method 3A - Gas Determination of Oxygen and Carbon Dioxide Concentration in Emissions From Stationary Sources. The O₂ data was collected simultaneously with the emission data.

4.1.4 Determination of Carbon Monoxide Emissions

The principles of EPA Method 10 - Determination of Carbon Monoxide Emissions From Stationary Sources was used for this test program. A gas sample was continuously and simultaneously extracted from the inlet stack and outlet stack and a portion of the sample was conveyed to an analyzer. The analyzer measured the CO concentration using the principles of gas filter correlation.

4.1.5 Process Data

During the testing, the process data was monitored and recorded at the end of every run and is provided in the final report. The process data was given to us by West Virginia Paving, Inc. Dunbar Asphalt Plant #30.

4.1.6 Summary of Test Parameters and Methods

The compliance emissions test was performed for the parameters listed in Table 3. All test methods proposed for this compliance test conform to Title 40, Code of Federal Regulations, Part 60. No variations were conducted. The test methods followed the current reference methods.

TABLE 3
TEST PARAMETERS AND METHODS

Parameter	EPA Method #	Sampling and Analytical Procedure	Variations
O ₂ , CO ₂	3A	Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources	None
СО	10	Determination of Carbon Monoxide Emissions from Stationary Sources	None

4.2 CALCULATIONS

Emission calculations were completed using a computer spreadsheet format. The results of the pertinent parameter is detailed on the spreadsheet for each sampling run. An actual calculation of a run is included in Appendix C.

4.3 FIELD EQUIPMENT CALIBRATIONS

The following field equipment calibration data is included in Appendix D:

- Analyzers; and
- Calibration gas certificates.

5.0 SUMMARY OF RESULTS

Table 2 present a summary of emission results.

The CO loading concentrations ranged from 298.0 to 317.4 ppmvd and the average was 307.0 ppmvd. The CO loading concentrations at 15% O₂ ranged from 382.2 to 402.1 ppmvd and the average was 395.1 ppmvd.

The CO emissions concentrations ranged from 28.8 to 41.5 ppmvd and the average was 34.5 ppmvd. The CO emissions concentrations at 15% O₂ ranged from 34.6 to 51.9 ppmvd and the average was 42.4 ppmvd.

The CO reduction ranged from 87 to 91 percent and the average was 89 percent.

TABLES

TABLE 1

WEST VIRGINIA PAVING INC. DUNBAR ASPHALT PLANT #30 DUNBAR, WEST VIRGINIA

KOMATSU CLAMSHELL (SOURCE ID CE1) PERMIT NO. G20-B187B

October 19, 2017

TEST RESULTS SUMMARY

Parameter	Average	Compliance Limit	Compliance Determination
Carbon Monoxide Emissions:			
ppmvd @ 15% O ₂	42.4	49	in-compliance
Carbon Monoxide Reduction:			
percent	89	70	in-compliance

TABLE 2

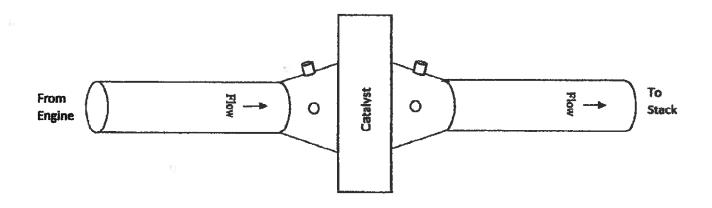
WEST VIRGINIA PAVING INC. DUNBAR ASPHALT PLANT #30 DUNBAR, WEST VIRGINIA KOMATSU CLAMSHELL (SOURCE ID CE1)

LEMOS LABS PROJECT 0557

October 19, 2017

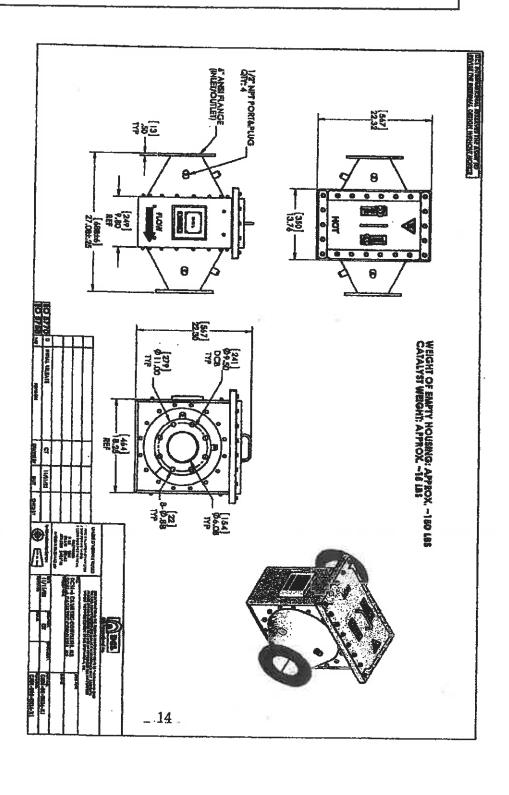
SUMMARY OF EMISSIONS AND TESTING PARAMETERS

Parameter	Run 1	Run 2	Run 3	Average
Oxygen content, % by volume Inlet	16.3	16.4	16.2	16.3
Oxygen content, % by volume Outlet	16.0	16.2	16.1	16.1
Carbon Monoxide Loading:				10,1
ppmvd	298.0	305.8	317.4	307.0
ppmvd @ 15% O ₂	382.2	401.1	402.1	395.1
Carbon Monoxide Emissions:				07011
ppmvd	28.8	41.5	33.1	34.5
ppmvd @ 15% O ₂	34.6	51.9	40.8	42.4
Carbon Monoxide Reduction:				
percent	91	87	90	89


TABLE 3
TEST PARAMETERS AND METHODS

Parameter	EPA Method #	Sampling and Analytical Procedure	Variations
O ₂ , CO ₂	3A	Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources	None
CO	10	Determination of Carbon Monoxide Emissions from Stationary Sources	None

FIGURES


FIGURE 1

West Virginia Paving Komatsu Clamshell Dunbar, West Virginia

FIGURE 2

West Virginia Paving Catalyst Schematic Dunbar, West Virginia

APPENDIX A FIELD DATA SHEETS

LEMOS LABS, LLC Average Values Report for Reference Method

WEST VIRGINIA PAVING INC. DUNBAR ASPHALT PLANT #30 DUNBAR, WEST VIRGINIA KOMATSU CLANSHELL (SOURCE ID CE1) LEMOS LABS, LLC PROJECT 0557

Run 1 Minute Deta Compliance

Date	Time	O ₂ samet	СО етнацат	C ₂ nount	CO PRECUELEY
10/19/2017	18:13:06	16,1	279.0	15.8	23,4
10/19/2017	18:14:08	16.1	278.8	15.8	23.4
10/19/2017	18:15:06	16.1	277.7	15.8	23.4
10/19/2017 10/19/2017	18: 16:08 18: 17:08	16.0 16.0	290.0 292.5	16.8	26.5
10/19/2017	18:18:08	16.0	281.9	15.8 15.8	25.9 24.3
10/19/2017	18:19:08	16.0	284.7	15.8	24.8
10/19/2017	18:20:08	16.0	290.2	15.8	25,7
10/19/2017 10/19/2017	18:21:06 18:22:08	16.0 16.1	284.7	15.8	24.8
10/18/2017	18:23:08	16.1	280.6 289.9	15.8 15.8	24.5 25.8
10/18/2017	18:24:08	16.1	290.8	15.8	25,9
10/19/2017	18:25:08	15.1	282,9	15.8	24.8
10/19/2017 10/19/2017	18:28:08 18:27:08	16.1	284.9	15.8	25.2
10/19/2017	18:28:08	16.1 16.1	291,8 293,1	15,8 15,8	26.6 26.9
10/19/2017	18:29:08	16.1	292.7	15.8	26.6
10/19/2017	18:30:08	16.1	290.6	15.8	26.9
10/19/2017	18:31:06	16.1	295,3	15.8	27.8
10/19/2017 10/19/2017	18:32:08 18:33:08	16.1	297.1	15.8	26.1
10/19/2017	18:34:08	16.1 18.1	296.2 300.3	15.8 15.8	27.9 28.8
10/19/2017	16:35:08	16.1	302.5	15.8	20.0 29.3
10/19/2017	18:38:08	18.1	302.0	15.8	29.4
10/19/2017	18:37:08	16.1	299.1	15.8	29.0
10/19/2017 10/19/2017	18:38:06 18:39:06	16.1 16.1	298.6 302.3	15.8	28.8
10/19/2017	18:40:08	16.1	302.3	15.8 15.8	29.4 29.8
10/19/2017	18:41:06	16.1	303.0	15.8	29.9
10/19/2017	18:42:08	16.1	300.1	15.8	29.4
10/19/2017	18:43:08	16.1	299.8	15.8	29.4
10/19 /2017 10/19 /2017	18:44:08 18:45:08	16.0 16.1	304.2	15.8	30.3
10/19/2017	16:46:08	16.0	302.8 294.5	15.7 15.7	30.0 28.5
10/19/2017	18:47:08	16.0	291.2	15.8	26.1
10/19/2017	18:48:06	16.0	296,6	15.8	29.1
10/19/2017 10/19/2017	18:49:06	16.0	303.1	15.8	30.1
10/19/2017	18:50:08 18:51:08	16.0 16.0	301.3 300.9	15,8 15,8	29.8
10/19/2017	18:52:08	16.1	304.2	15.6	30.1 30.7
10/19/2017	18:53:06	16.1	308.5	15.8	31.6
10/19/2017	18:54:08	16.0	304.9	15.8	30.9
10/19/2017 10/19/2017	18:55:08 18:58:08	16.1	301.0	15.6	30.4
10/19/2017	18:57:05	16.0 16.0	306,6 307,4	15.8 15.8	31.5 32.0
10/19/2017	18:58:08	16.1	305.6	15.8	31.3
10/19/2017	18:59:08	16.0	297.6	15.8	29.7
10/18/2017	19:00:0B	16.1	296.3	15.8	29.7
10/19/2017 10/19/2017	19:01:08 19:02:08	16.0 16.0	303.0 305.7	15.8	30.9
10/19/2017	19:03:08	16.0	306.9	15.8 15.8	31.9 32.4
10/19/2017	19:04:08	16.1	308.2	15.8	32.8
10/19/2017	19:05:08	16.1	307.3	15.8	33.0
10/19/2017 10/19/2017	19:06:08	16.1	304.5	15.7	32.4
10/19/2017	19:07:08 19:08:06	16.0 16.0	305,0 307.0	16.8 15,8	32. 5
10/19/2017	19:09:08	16.0	309.5	15.8	33.0 33.6
10/19/2017	19:10:06	16.0	305.7	15.6	32.3
10/19/2017	19:11:08	16.0	296,5	15,6	30.7
10/19/2017	19:12:08	16.0	300.0	15.8	31.6
Averages		16.1	297.4	15,8	28.9
Average		163	298.0	16.0	28.8
Drift Corrected		10-		100	25.0

LEMOS LABS, (LLC Average Values Report for Reference Method

WEST VIRGINIA PAVING INC. DUNBAR ASPHALT PLANT #30 DUNBAR, WEST VIRGINIA KOMATSU CLANISHELL (SOURCE ID CE1) LEMOS LABS, LLC PROJECT 0567

Run 2 Minute Data Compliance

Date	Time	O ₂ somet	CO PPRIMAT	O ₂ thousan	CO PPRIOUTLEY
10/19/2017	19:50:52	16.1	316,7	15.9	43.1
10/19/2017	19:51:52	16,1	312.6	15.9	42.5
10/19/2017	19:52:52	16,1	309.1	15.g	41.4
10/19/2017	19:53:52	16.1	303.1	15,9	39.4
10/19/2017 10/19/2017	19:54:52 19:55:52	16,1 16,1	300.9 304.2	15.9 15.9	38.9
10/19/2017	19:56:52	16.1	300.9	15.9	39.7 38.7
10/19/2017	19:57:52	16.1	300.7	15.9	38.8
10/19/2017	19:58:52	16.1	301.1	15.9	39.0
10/19/2017	19:59:52	16.1	306.5	15.9	40.7
10/19/2017	20:00:52	16.1	304.4	15.9	39.7
10/19/2017 10/19/2017	20:01:52 20:02:52	16.1	299.1 300.5	15.9	38.8
10/19/2017	20:03:52	16.1 16,1	302.4	15.9 15.9	39.2 39.6
10/19/2017	20:04:52	16.1	304.8	15.9	40.2
10/19/2017	20:05:52	16.1	308,3	15.9	41.4
10/18/2017	20:00:52	16.1	3121	15.9	42.6
10/19/2017	20:07:52	16.1	310.0	15.9	42.3
10/19/2017 10/19/2017	20:08:52 20:09:52	16.1	299.3	15.9	39.7
10/19/2017	20:10:52	16.1 16.1	304.4 303.0	15.9 15.9	41.1 40.4
10/19/2017	20:11:52	18.1	297.3	15.9	39.3
10/19/2017	20:12:52	16.1	299.2	15.9	39.3
10/19/2017	20:13:52	16,1	296.6	15,9	39.0
10/19/2017	20:14:52	16.1	299.8	15.9	39.2
10/19/2017	20:15:52	16.1	298.3	15.9	36.9
10/19/2017 10/19/2017	20:16:52 20:17:52	16.1 15.1	299.6 303.5	15.9 15.9	39.7 40.8
10/19/2017	20:18:52	16.1	303.4	15.9	40.9
10/19/2017	20;19:52	16.1	302.1	15.9	41.2
10/19/2017	20:20:52	16.1	304.7	15.9	41.9
10/19/2017	20:21:52	16.1	303.9	15.9	41.7
10/19/2017 10/19/2017	20:22:52 20:23:52	16.1 16.1	303.5 303.6	15.9 15.9	41.7
10/19/2017	20:24:52	16.1	305.8	15.9	42.2 42.7
10/19/2017	20:25:52	16.1	304.8	15.9	42.6
10/19/2017	20:26:52	16.2	307.1	15.9	43.4
10/19/2017	20:27:52	16,2	305.7	15.9	429
10/19/2017 10/19/2017	20:28:52 20:29:52	16.2	302.4	15.9	42.2
10/19/2017	20:30:52	16,2 16,1	298.1 298.5	15.9 15.9	40.7 40.2
10/19/2017	20:31:52	16.1	298.4	15.9	40.5
10/19/2017	20:32:52	16.1	297.9	15.9	40.7
10/19/2017	20:33:52	16,1	307.8	15.9	43.5
10/19/2017	20:34:53	18.1	310.7	15.9	44.8
10/19/2017 10/19/2017	20:35:52 20:36:52	16.1 18.2	309.4 309.1	15.9 15.9	44.3 44.3
10/19/2017	20:37:52	16.2	305.9	15.9	43.5
10/19/2017	20:38:53	16.2	301.7	15.9	42.8
10/19/2017	20:39:53	16.2	300,5	15.9	42.2
10/19/2017	20:40:53	16.1	301.9	15.9	42.2
10/19/2017	20:41:53	16.1	300.2	15.9	41.9
10/19/2017 10/19/2017	20:42:53 20:43:53	16.1 16,1	301.9 306.5	15.9	42.8
10/19/2017	20:44:53	16.1	303.0	15.9 15.9	44.3 43.8
10/19/2017	20:45:53	16.1	304.9	15.9	44.7
10/19/2017	20:46:53	16.1	309.3	15.9	45.6
10/19/2017	20:47:58	16.1	311.4	15.9	47.0
10/19/2017 10/19/2017	20:48:53 20:49:53	16.2 16.2	315.2 312.6	15.9	47.7
10/18/2017	20.48.03	10,2	312.0	15.9	47.4
Averages		16.1	364.2	15.9	41.7
Average		1194	305.8	16.2	41.5
Drift Corrected		FT.			

LEMOS LABS, LLC Average Values Report for Reference Method

WEBT VIRGINIA PAVING INC. DUBBAR ASPHALT PLANT 1/50 DUNBAR, WEBT VIRGINIA KOMATSU CLAMSHELL (SOURCE ID CE1) LEMOS LABS, LLC PROJECT 0567

Run 3 Minute Data Compliance

Date	Time	O ₂ wheet	CO PROBLET	O ₂ wounts	CO PPROBILEY
10/19/2017	21:06:32	15.3	297,9	15.8	35.2
10/19/2017	21:07:32	15.7	298.9	15.8	35.2 34.8
10/19/2017	21:08:32	15.8	300.9	15.8	33.4
10/19/2017 10/19/2017	21:09:32 21:10:32	15.9	300.1	15.8	32.4
10/19/2017	21:11:32	16.0 18.0	304.7 308.0	15.8 15.8	32.4 32.8
10/19/2017	21:12:32	16.0	309.1	15.6	32.6 32.7
10/19/2017	21:13:32	16,0	909.0	15.9	32.1
10/1 9/2 017 10/1 9/2 017	21:14:32	16.0	308.2	15.9	81.7
10/19/2017	21:15:32 21:16:32	16.1 16.1	309.0 310.0	15.9	31.8
10/19/2017	21:17:32	16.1	308.3	15.8 15.8	31.9 31.5
10/19/2017	21:18:32	16.0	308.0	15.8	31.3
10/19/2017	21:19:32	16,D	307.8	15.8	31.2
10/19/2017 10/19/2017	21:20:32 21:21:32	16,0 16,1	311.1 311.0	15.8	81.7
10/19/2017	21:22:32	16.1	311.0 311.8	15.8 15,9	31.9 32.2
10/19/2017	21:23:32	16.1	313.1	15.9	32.4
10/19/2017	21:24:32	18.1	311.9	15.9	32.3
10/19/2017 10/19/2017	21:25:32 21:26:32	16.1	311.7	15.9	32.1
10/19/2017	21:20:32	16.1 16.1	313.1 315.2	15.9	32,5
10/19/2017	21:28:32	16.1	315.5	15.9 15.9	32.8 33.0
10/19/2017	21:29:32	16.1	316,1	15.8	33.3
10/19/2017	21:30:32	16.1	314.7	15.8	33.1
10/19/2017 10/19/2017	21:31:32	16.1	313.7	15,8	33.1
10/19/2017	21:32:32 21:33:32	16.1 16.1	313.5 313.3	15.9	33.1
10/19/2017	21:34:82	16,1	314.0	15.9 15.9	32.6 33.1
10/19/2017	21:35:32	16,1	315.1	15.9	33.1
10/19/2017	21:36;32	16.1	312.7	15.9	32.9
10/19/2017 10/19/2017	21:37:32 21:38:32	16.1 16.1	312.7	15.8	32.8
10/19/2017	21:39:32	16.1 16.1	312.9 313.2	15.8 15.8	32.7
10/19/2017	21:40:32	16.1	315.1	15.8	32.9 33.2
10/18/2017	21:41:32	16.1	314,1	15,8	32.9
10/19/2017 10/19/2017	21:42:32	16.1	313.8	15.9	33.0
10/19/2017	21:43:32 21:44:32	16.1 16.1	315.2 312.7	15.9	\$3.3
10/19/2017	21:45:32	16.1	313.8	15.9 15.9	32,9 33,1
10/19/2017	21:46:32	16.1	312.8	15.9	32.9
10/19/2017	21:47:32	18.1	313.1	15.9	33.0
10/19/2017 10/19/2017	21:48: 32 21:49:32	16.1	313.5	15.8	33,1
10/19/2017	21:50:32	16.1 16.1	313.5 315,1	15.8 15.9	33,2 33,5
10/19/2017	21:51:32	16.1	315.7	15.9	33.8
10/19/2017	21:52:32	16.1	318.4	15.9	34.4
10/19/2017 10/1 9/2 017	21:53:32	16.1	318.2	15.9	34.4
10/19/2017	21:54:32 21:55:32	16.1 16.1	316.9 317.4	15.9	84.3
10/19/2017	21:58:32	16.1	317,2	15.9 15.9	34,1 34.0
10/19/2017	21:57:32	16.1	316.5	15.8	33.8
10/19/2017	21:58:32	16.1	317.6	15.8	34.1
10/19/2017 10/19/2017	21:59:32	16.1	316.3	15.8	33.9
10/19/2017	22:00:32 22:01:32	16,1 16,1	317.2 318.5	15.9	33.9
10/19/2017	22:02:32	16,1	318.5	15.9 15.9	33.8 34.1
10/19/2017	22:03:32	16.1	317.4	15.6	34.3
10/19/2017	22:04:32	16.1	318.1	15.9	34.4
10/19/2017	22:05:32	16.1	317.8	15.8	34.5
Averages		16.0	312.6	15.8	33,1
Average Drift Corrected		162	317.4	16.1	33.1

APPENDIX B PROCESS DATA

WEST VIRGINIA PAVING, INC. DUNBAR ASPHALT PLANT #30 KOMATSU CLAMSHELL (SOURCE ID CE1)

PROCESS DATA October 19, 2017

	Time	Load	Engine Speed	No. 2 Fuel Oil consumed
		%	rpm	gal/hr
Run 1	1813-1913	90	1780	8.6
Run 2	1950-2050	90	1780	5.4
Run 3	2106-2206	90	1780	5.9
Three-Run A	verage	90	1780	6.6

	W Panna 0557 10-19-17 Komatsu Clamshell Engine Prouss Data Field Notes
	run 1:6:13-7:13 (90%, 1780 App 8.6 gal/hr) run 2:7:50-8:50 (90%, 1780 rpm, 5.4 gal/hr) run 3:9:06-10:06 (90%, 1780 rpm, 5.9 gal/hr)
:	
· ;	
1	

-	
To company	21

APPENDIX C CALCULATIONS

LEMOS LABS PROJECT 0557

October 19, 2017

CARBON MONOXIDE EMISSIONS

SYMBOL	DESCRIPTION	RUN 1	RUN 2	RUN 3	AVERAGE
O ₂ in	O ₂ in stack gas, % Inlet	16.3	16.4	16.2	16.3
O ₂ out	O ₂ in stack gas, % Outlet	16.0	16.2	16.1	16.1
cCOin .	Carbon monoxide concentration, ppmvd Inlet	298.0	305.8	317.4	307.0
cCOout	Carbon monoxide concentration, ppmvd Outlet	28.8	41.5	33.1	34.5
	CARBON MONOXIDE LOADIN	(G SUMMARY			
Csin (a)	Carbon monoxide concentration, ppmvd, Inlet	298.0	305.8	317.4	307.0
Csin (b)	Carbon monoxide concentration, ppmvd @ 15% O2, Inlet	382.2	401.1	402.1	395.1
	CARBON MONOXIDE EMISSK	ON SUMMARY			
Csout (a)	Carbon monoxide concentration, ppmvd, Outlet	28.8	41.5	33.1	34.5
Csout (b)	Carbon monoxide concentration, ppmvd @ 15% O2, Outlet	34.6	51.9	40.8	42.4
	CARBON MONOXIDE REI	DUCTION			
Cred	Carbon monoxide reduction, %	91	87	90	89

LEMOS LABS, LLC CALCULATIONS RUN 1

WEST VIRGINIA PAVING INC. DUNBAR ASPHALT PLANT #30 DUNBAR, WEST VIRGINIA KOMATSU CLAMSHELL (SOURCE ID CE1)

LEMOS LABS PROJECT 0557

Computed by AG

Cs(b)in CO @ 15% O_2 = (cCO ppmvd inlet)((20.9-15)/(20.9-O2 %inlet)) Cs(b)in CO @ 15% O_2 = (298.0)((20.9-15)/(20.9-16.3))

Cs(b)in CO = 382.2 ppmvd @15% O₂

Cs(b)out CO @ 15% O_2 = (cCO ppmvd outlet)((20.9-15)/(20.9-02 %outlet)) Cs(b)out CO @ 15% O_2 = (28.84)((20.9-15)/(20.9-16.0))

Cs(b)out CO = 34.6 ppmvd @15% O₂

CO red = 100(Cs(b)in ppmvd@15%O2-Cs(b)out ppmvd@15%O2)/(Cs(b)in ppmvd@15%O2) CO red = 100(382.2-34.6)/(382.2)

CO Red = 91 %

APPENDIX D FIELD EQUIPMENT CALIBRATIONS

LEMOS LABS, LLC Determination of Stratification

WEST VIRGINIA PAVING, INC. DUMBAR ASPHALT PLANT #30 KOMATSU CLAMSHELL (SOURCE (D CE1) - INLET

Deta		Time	O ₂ %
	10/19/17	18:13:08	16.1
	10/19/17	18:14:08	16.1
	10/19/17 10/19/17	18:15:05 18:16:08	16.1 16.0
	10/19/17	18:17:08	18.0
	10/19/17 10/19/17	18:18:08	16.0
	10/19/17	18:19:08 18:20:08	16.0 16.0
	10/19/17	18:21:08	16.0
Average Point 1	10/19/17	18:22:05	16.1 16.0
A SOCIATION IN THE			10.0
	10/19/17 10/19/17	18:23:06 18:24:06	16.1
	10/19/17	18:25:08	18,1 18.1
	10/19/17	18:28:08	16.1
	10/19/17 10/19/17	18:27:08 18:28:08	16.1 16.1
	10/19/17	18:29:08	16.1
	10/19/17	18:30:08	16.1
	10/19/17 10/19/17	18:31:06 18:82:08	16.1 16.1
Average Point 2	101111	10.02.00	16.1
	10/19/17	18:33:08	16.1
	10/19/17 10/19/17	18:34:08 18:35:08	16.1 18.1
	10/19/17	18:36:08	16.1
	10/19/17	18:37:08	16.1
	10/19/17 10/19/17	18:38:08 18:39:08	16.1 16.1
	10/19/17	18:40:08	16.1
	10/19/17	18:41:08	16.1
Average Point 3	10/19/17	18:42:08	16.1 16.1
	10/19/17	18:43:08	16.1
	10/19/17	18:44:08	16.0
	10/19/17 10/19/17	18:45:08 18:46:08	16.1 18.0
	10/19/17	18:47:08	16.0
	10/19/17 10/19/17	18:48:08 18:49:08	18.0 16.0
	10/19/17	18:50:08	16.0
	10/19/17	18:51:08	16.0
Average Point 4	10/19/17	18:52:06	16.1 16.0
	10/19/17	18:53:06	16.1
	10/19/17	18:54:08	16.0
	10/19/17 10/19/17	18:55:08 18:56:08	16.1 16.0
	10/19/17	18:57:08	16.0
	10/19/17 10/19/17	18:58:08	16.1
	10/19/17	18:59:06 19:00:08	18.0 18.1
	10/19/17	19:01:06	16.0
Average Point 5	10/19/17	19:02:06	16.0 1 6.0
	10/19/17	19:03:08	16.0
	10/19/17	19:04:05	18.1
	10/19/17 10/19/17	19:05:08 19:06:08	18.1 18.1
	10/19/17	19:07:08	16.0
	10/19/17 10/19/17	19:08:08	16.0
	10/19/17	19:09:08 19:10:08	16.0 16.0
	10/19/17	19:11:08	16.0
Average Point 6	10/19/17 4	· 9 9:12:08	16.0 16.0

LEMOS LABS, LLC

Determination of Stratification Method 3A

Teledyne Model T803 O₂ Analyzer Seriai # 62

WEST VIRGINIA PAVING, INC. DUNBAR ASPHALT PLANT #30 KOMATSU CLAMSHELL (SOURCE ID CE1) - INLET

October 19, 2017

Point	Value	Difference	Evaluation (5% Allowable Error)
1	16.0	-0.02	Pass
2	16.1	0.03	Pass
3	16.1	0.06	Pass
4	16.0	-0.03	Pass
5	16.0	-0.02	Pass
6	16.0	-0.02	Pass
Mean	16.05		

LEMOS LABS, LLC Determination of Stratification

WEST VIRGINIA PAVING, INC. DUNBAR ASPHALT PLANT #30 KOMATSU CLAMSHELL (SOURCE ID CE1) - OUTLET

		IOOOHOE IS	CE1/-00
Dete		Time	O ₂ s.
	10/19/17	18:13:08	15.8
	10/19/17	18:14:08	15.8
	10/19/17	18:15:08	15.8
	10/19/17	16:16:08	15.8
	10/19/17	18:17:06	15.8
	10/19/17	18:18:08	15.8
	10/19/17 10/19/17	18:19:06	15.8
	10/19/17	18:20:08 18:21:08	15.8 15.8
	10/19/17	18:22:06	15.8
Average Point 1			15.8
_			10-2
	10/19/17	18:23:08	15.8
	10/19/17	18:24:08	15.8
	10/19/17	18:25:08	15.8
	10/19/17 10/19/17	18:25:06 18:27:08	15.8
	10/19/17	18:28:08	15.8 15.6
	10/19/17	18:29:06	15.8
	10/19/17	18:30:06	15.8
	10/19/17	18:31:08	15,8
	10/19/17	18:32:08	15.8
Average Point 2			16.8
	10/19/17 10/19/17	18:33:08	15.8
	10/19/17	18:34:08 18:38:08	15.8
	10/19/17	18:38:08	15.8 15.8
	10/19/17	18:37:08	15.8
	10/19/17	18:38:08	15.8
	10/19/17	18:39:08	15.8
	10/19/17	18:40:08	15.8
	10/19/17	18:41:08	15.8
Average Point 3	10/19/17	18;42:06	15.8
Mania Ba Louitt 9			15.8
	10/19/17	18:43:08	15.8
	10/19/17	18:44:08	15.6
	10/19/17	18:45:06	15.7
	10/19/17	18:46:08	15.7
	10/19/17	18:47:08	15.8
	10/19/17 10/19/17	18:48:08	15.8
	10/19/17	18:49;08 18:50:08	15.6 15.8
	10/19/17	18:51:08	15.8
	10/19/17	18:52:08	15.8
Average Point 4			16.8
	10/19/17	18:53:08	15.8
	10/19/17	18:54:08	15.8
	10/19/17 10/19/17	18:55:08 18:56:08	15.8
	10/19/17	18:57:08	15.8 15.8
	10/19/17	16:56:08	15.8
	10/19/17	18:59:08	15.8
	10/19/17	19:00:08	15.8
	10/19/17	19:01:08	15.8
Assessed Ballet #	10/19/17	19:02:06	15.8
Average Point 5			15.8
	10/19/17	19:03:08	15.8
	10/19/17	19:04:08	15.8
	10/19/17	19:05:08	15.8
	10/19/17	19:06:06	15.7
	10/19/17	19:07:08	15.8
	10/19/17	19:06:08	15.6
	10/19/17 10/19/17	19:09:08 19:10:08	15.8
	10/19/17	19:10:08 19:11:08	15.8 15.8
		99:12:08	16.8
Average Point 6			15.8

LEMOS LABS, LLC

Determination of Stratification Method 3A

Teledyne Model T803 O₂ Analyzer Serial # 62

WEST VIRGINIA PAVING, INC. DUNBAR ASPHALT PLANT #30 KOMATSU CLAMSHELL (SOURCE ID CE1) - OUTLET

October 19, 2017

Point	Value	Difference	Evaluation (5% Allowable Error)
1	15.8	-0.01	Pass
2	15.8	0.03	Pass
3	15.8	0.04	Pass
4	15.8	-0.12	Pass
5	15.8	0.06	Pass
6	15.8	0.00	Pass
Mean	15.78		

October 19, 2017

O2 ANALYZER CALIBRATION (INLET)

Analyzer:

TELEDYNE T803

Span 0 to

20.1

Pre-test Calibration

Calibration	Calibration	Internal	Calibration	L		
Gas	Gas Value	Response	Error	Cylinder	PPM	Component
zero	0.0	0.0	0.00%	CC23095A		100% Nitrogen
mid	12.1	11.9	-1.00%	SG9167326BAL		5.05% CO2-12.05% O2
high	20.1	20.1	0.00%	CC207966		16.99% CO2-20.11% O2

Allowable Error

+/- 2%

Test Run:

Start:

18:13

Stop: 19:12 Actual

Corrected Concentration

Concentration 16.1

16.3

Calibration Gas	Internal Response	Pre Run Blas Response	Pre Run Bias Error	Post Run Bias Response	Post Run Bias Error	Drift
2000	0.0	0.0	0.00%	0.0	0.00%	0.00%
mid	11.9	11.9	0.00%	11.9	0.00%	0.00%
Allowable Error			+/- 5%		+/- 5%	+/- 3%

Test Run:

2

Start:

19:50

Stop: 20:49 Actual

Corrected

Concentration 16.1

Concentration 16.4

Calibration Gas	Internal Response	Pre Run Bias Response	Pre Run Bias Error	Post Run Bias Response	Post Run Bias Error	Drift
zero	0.0	0.0	0.00%	0.0	0.00%	0.00%
mid	11.9	11.9	0.00%	11.9	0.00%	0.00%
Allowable Error			+/- 5%		+/- 5%	+/- 3%

Test Run:

3

21:06

Start:

Stop: 22:05 +/- 5%

Actual

Corrected Concentration

Concentration 16.0

16.2

Calibration Gas	Internal Response	Pre Run Bies Response	Pre Run Bies Error	Post Run Bias Response	Post Run Bias Error	Drift
zero	0.0	0.0	0.00%	0.0	0.00%	0.00%
mid	11.9	11.9	0.00%	12.0	0.50%	0.50%
Allowahle Error			1.1.504			

Allowable Error

+/- 5%

+/- 5%

+/- 3%

October 19, 2017

CO ANALYZER CALIBRATION (INLET)

Analyzer:

TELEDYNE T200H

Span 0 to

591.0

Pre-test Calibration

Calibration	Calibration	Internal	Calibration			
Gas	Gas Value	Response	Error	Cylinder	PPM	Component
zero	0.0	0.0	0.00%	CC23095A		100% Nitrogen
mid	301.2	302.7	0.25%	SX-48245	301.2	CO
high	591.0	591.0	0.00%	CC77991	591.0	CO

Allowable Error

+/- 2%

Test Run:

Start: Stop:

18:13 19:12 Actual

Corrected

Concentration Concentration 297.4

298.0

Calibration Gas	Internal Response	Pre Run Bias Response	Pre Run Bias Error	Post Run Bias Response	Post Run Bias Error	Drift
zero	0.0	-0.4	-0.07%	-0.3	-0.05%	0.02%
mid	302.7	299.7	-0.51%	301.6	-0.19%	0.32%

Allowable Error

+/- 5%

+/- 5%

+/- 3%

Test Run:

Stop:

2

Start: 19:50

20:49

Actual Concentration Concentration

Corrected

304.2

305.8

Calibration Gas	Internal Response	Pre Run Bias Response	Pre Run Bias Error	Post Run Bias Response	Post Run Bias Error	Drift
zero	0.0	-0.3	-0.05%	-0.5	-0.08%	-0.03%
mid	302.7	301.6	-0.19%	297.6	-0.86%	-0.68%
Allowable Error			+/- 5%		+/- 5%	+/- 3%

+/- 5%

Test Run:

21:06

Actual Concentration Concentration

Corrected

Start: Stop:

22:05

312.6

317.4

Calibration Gas	Internal Response	Pre Run Bias Response	Pre Run Bias Error	Post Run Bias Response	Post Run Bias Error	Drift
zero	0.0	-0.5	-0.08%	-0.5	-0.08%	0.00%
mid	302.7	297.6	-0.86%	295.8	-1.17%	-0.30%
Allowable Error			+/- 5%		+/- 5%	+/- 3%

October 19, 2017

O2 ANALYZER CALIBRATION (OUTLET)

Analyzer:

TELEDYNE T300M

Span 0 to

20.1

Pre-test Calibration

Calibration	Calibration	Internal	Calibration			
Gas	Gas Value	Response	Error	Cylinder	PPM	Component
ZCTO	0.0	0.0	0.00%	CC23095A		100% Nitrogen
tnid	12.1	12.0	-0.50%	SG9167326BAL		5.05% CO2-12.05% O2
high	20.1	20.1	0.00%	CC207966		16.99% CO2-20,11% O2

Allowable Error

+/- 2%

Test Run:

Start:

Stop:

18:13

19:12

Actual Concentration

Corrected Concentration

15.8

16.0

Calibration Gas	Internal Response	Pre Run Bias Response	Pre Run Bias Error	Post Run Bias Response	Post Run Blas Error	Drift
280	0.0	0.0	0.00%	0.0	0.00%	0.00%
mid	12.0	12.0	0.00%	11.9	-0.50%	-0.50%
Allowable Error			+/- 5%		+/- 5%	+/- 3%

Test Run:

2

Start: Stop:

19:50 20:49 +/- 5%

+/- 5%

Corrected

Actual Concentration 15.9

Concentration

16.2

Calibration Gas	Internal Response	Pre Run Bias Response	Pre Run Bias Error	Post Run Bias Response	Post Run Bins Error	Drift
2000	0.0	0.0	0.00%	0.0	0.00%	0.00%
mid	12.0	11.9	-0.50%	11.9	-0.50%	0.00%
Allowable Error			±1.594		1 80/	- 1 007

Test Run:

Start: Stop:

21:06 22:05 +/- 5%

+/- 5%

+/- 3%

Actual Concentration

Corrected Concentration

15.8

16.1

Calibration Gas	Internal Response	Pre Run Bias Response	Pre Run Bias Error	Post Run Bias Response	Post Run Bias Error	Drift
zero	0.0	0.0	0.00%	0.0	0.00%	0.00%
mid	12.0	11.9	-0.50%	11.9	-0.50%	0.00%
Allowable Error			+/- 5%		+/- 5%	+/- 3%

October 19, 2017

CO ANALYZER CALIBRATION (OUTLET)

Analyzer:

TELEDYNE T300M

Span 0 to

59.9

Pre-test Calibration

Calibration	Calibration	Internal	Calibration	1	_	
Gas	Gas Value	Response	Error	Cylinder	PPM	Component
zero	0.0	0.0	0.00%	CC23095A		100% Nitrogen
mid	25,4	25.4	0.00%	CC274851	25.4	CO
high	59.9	59.9	0.00%	SX-38759	59.9	CO

Allowable Error

+/- 2%

Test Run:

Start: Stop:

1 18:13

19:12

Actual

Corrected

Concentration Concentration 28.9

28.8

Calibration Gas	Internal Response	Pre Run Bias Response	Pre Run Bias Error	Post Run Bins Response	Post Run Bias Error	Drift
ZETO	0.0	-0.2	-0.33%	-0.3	-0.50%	-0.17%
mid	25.4	25.4	0.00%	25.4	0.00%	0.00%
Allowable Error			+/- 5%		+/- 5%	+/- 3%

Test Run:

Start: Stop:

19:50 20:49 Actual

Corrected Concentration Concentration

41.7

41.5

Calibration Gas	Internal Response	Pre Run Bias Response	Pre Run Bias Error	Post Run Bias Response	Post Run Bias Error	Drift
ZETO	0.0	-0.3	-0.50%	-0.3	-0.50%	0.00%
mid	25.4	25.4	0.00%	25.4	0.00%	0.00%
Allowable Error			+/- 5%		+/- 5%	+/- 3%

Test Run:

Start: Stop:

21:06 22:05

Actual

Corrected

Concentration Concentration 33.1

33.1

Calibration Gas	Internal Response	Pre Run Bias Response	Pre Run Bias Error	Post Run Bias Response	Post Run Bias Error	Drift
zero	0.0	-0.3	-0.50%	-0.2	-0.33%	0.17%
mid	25.4	25.4	0.00%	25.3	-0.17%	-0.17%
Allowable Error			+/- 5%		+/- 5%	+/- 3%

Airgas Great Lakes region Airgas USA, LLC 2009 Bellaire Royal Oak, MI 48067 Airgas com

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Customer:

OAKWOOD

Part Number: Cylinder Number:

E03NI83E15A1086 SG9167326BAL

Laboratory:

112 - Royal Oak-32 (SAP) - MI

PGVP Number: Gas Code:

B62016 **CO2,02,BALN**

Reference Number: 32-400806707-1

Cylinder Volume: Cylinder Pressure:

148.1 CF 2015 PSIG

Valve Outlet:

590

Certification Date:

Nov 16, 2016

Expiration Date: Nov 16, 2024

Gertification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures fieled. Analytical Methodology does not require correction for amplyical interference. This cylinder has a total analytical uncertainty as stated below with a certificance level of 95%. There are no significant imposities which affect the use of this calibration subdure. All concentrations are on a volume/volume basis unless otherwise noted.

Do Not Use This Cylinder below 100 paig, Le. 0.7 megapascuts.

Component Requested			ANALYTICA			
		Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates
CARBON OXYGEN NITROGE		5.000 % 12.00 % Balance	5.050 % 12.05 %	G1 G1	+/- 1.0% NIST Traceable +/- 1.0% NIST Traceable	11/16/2016
Туре	Lot ID	Cylinder No	CALIBRATION Concentration	STANDARD	S Uncertainty	Expiration Date
NTRM NTRM	10060112 09060222	CC261295 CC263070	5.027 % CARBON DI 9.961 % OXYGEN/NI		+/-0.4% +/- 0.3%	Dec 02, 2021 Nov 08, 2018
	mt/Make/Mod	o)	ANALYTICAL Analytical Prin	EQUIPMENT	Last Multipoint Call	bration
	polet 6700 CO2 EMENS OXYMA	T 6 E/N 182	FTIR Paramagnetic		Nov 15, 2016 Oct 17, 2016	

Triad Data Available Upon Request

Approved for Release

Page 1 of 32-480808707-1

Airgas USA, LLC

2009 BELLAIRE AVE ROYAL OAK, MI 48087 248-399-8020 Airges.com

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Customer:

OAKWOOD

Part Number:

E03Ni63E15A0002

Cylinder Number: Laboratory:

CC207966

PGVP Number:

Gas Code:

CO2, O2, BALN

MIC - Royal Oak-32 (SAP) - MI

B62016

Reference Number: 32-400668780-1

Cylinder Volume:

157.1 CF 2015 PSIG-

Cylinder Pressure: Valve Outlet:

590

Certification Date:

Feb 10, 2016

Expiration Date: Feb 10, 2024

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/551, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 85%. There are no significant impurities which affect the use of this celibration mixture. All concentrations are on a volume/volume basis unless etherwise noted.

Do Not Use This Cylinder below 100 palg, i.e. 0.7 megapascals.

	•		ANALYTICA	L RESULTS		
Compon	ent	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates
CARBON OXYGEN NITROGE	,	17.00 % 20.00 % Balanca	16.99 % 20.11 %	G1 G1	+/- 0.8% NIST Traceable +/- 0.9% NIST Traceable	02/10/2016 02/10/2016
Туре	Lot ID	Cylinder No	CALIBRATION Concentration	STANDARD	S Uncertainty	Expiration Date
NTRM NTRM	13060733 09081422	CC413804 CC273738	16.939 % CARBON-E 22.63 % OXYGEN/N		+/- 0.8% +/-0.4%	May 08, 2019 Mar 08, 2019
	nt/Make/Mod		ANALYTICAL Analytical Prince		Last Multipoint Ca	ilbration
	ENS ULTRAM/ EMENS OXYMA		Nondisperaive info Paramagnetic	ared(NDIR)	Feb 05, 2016 Feb 04, 2016	

Triad Data Available Upon Request

i,

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Part Number Cylinder Number: E03NI99E15A0170

CC274851

Laboratory: **PGVP Number:** Gaş Code:

ASG - Chicago - IL B12015

CO,NO,NOX,BALN

Reference Number: 54-124523383-1

Cylinder Volume:

Cylinder Pressure:

Valve Outlet:

144.3 CF **2015 PSIG**

660

Nov 23, 2015

Certification Date: Expiration Date: Nov 23, 2023

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This opinion has a total analytical uncertainty as stated below with a confidence level of 86%. There are no significant impurities which affect the use of this calibration mixture. At concentrations, are on a volume/volume basis unless otherwise noted.

Do Not Use This Cylinder below 103 paig, Le. 6.7 magapuscal

Component	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates
NOX	50.00 PPM	50.37 PPM	G1	+/- 0.9% NIST Traceable	11/16/2015, 11/23/2015
CARBON MONOXIDE	25.00 PPM	25.38 PPM	G1	+/- 0.7% NIST Traceable	11/18/2015
NITRIC OXIDE	50.00 PPM	50,37 PPM	Gf	+/- 0.9% NIST Traceable	11/16/2015, 11/23/2015
NITROGEN	Balance				

Туре	Lot ID	Cylinder No	CALIBRATION STANDARDS Concentration	Uncertainty	Expiration Date
HURSH	09061840	CC282663	24.35 PPM CARBON MONOXIDE/NITROGEN	+% 0.8%	May 24, 2219
PRM	12312	680179	10.01 PPM NITROGEN DIOXIDE/NITROGEN	+/- 2.0%	Feb 14, 2012
NIRM	13061007	GC422721	99.86 PPM NITRIC OXIDE/NITROGEN	+/- 0.8%	Nov 19, 2019
GNAS	0207201402	CC500987	4.845 PPM NITROGEN DIOXIDE/NITROGEN	+/- 2.0%	Feb 67, 2017
The SRM.	FRM or RGM noted at	ove is only in reference	to the GMIS used in the assay and not part of the analysis.		1000112017

· · · · · · · · · · · · · · · · · · ·			
	ANALYTICAL EQUI	PMENT	1.5
instrument/fileke/Model	Analytical Principle	Last Multipoint Calibration	
Nexus 470 AEP0000428	FIR	Oct 28, 2015	
Next 470 AEP0000428	FTIR	Oct 28, 2015	
Nexus 470 AEP0000428	FTIR	Oct 28, 2015	

Triad Data Available Upon Request

Approved for Rele

confidence of 95%,

Analyst

1650 Enterprise Parkway Twinsburg, OH 44087 215-648-4000

Lott

109-96-37718

Certificate of Analysis - EPA Protocol Mixtures

Customer: Matheson Valley Cylinder Number: SX-38759 Cylinder Pressure: 1800 pale Last Analysis Date: 12/1/2016 Expiration Date: 12/1/2024

Protocol: Reference #: G1 689526 Part #: G 2692140

Date

12/1/2016

REPLICATE RESPONSES Component: Carbon Monoxide Date: 12/1/2016 59.9 ppm Certified Conc. 59.9 ppm +/-0.4 ppm 59.8 ppm 59.9 ppm BALANCE GAS: Nitrogen REFERENCE STANDARDS: Cartion Monoide Component SRM # NTRM-081315 Sample #: 2E+05 Cylinder #: ND43277 Concentration: 98.79 pom CERTIFICATION INSTRUMENTS Component. Carbon Monoxide Make/Model: CO Horbs VIA-510 HIGH Serial Number: MLDE13T1 Measurement Principle: NOR Lest Calibration: 12/1/2016 Notes:

The certification was performed according to EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards May 2012, using procedure G1 and/or G2. U.S EPA Vendor ID Number: D42016, PGVP Participation Date: 01/01/16, PGVP Renewal Date: 01/01/17. The expanded uncertainty listed for each component was calculated at a coverage factor of k=2 and at a level of

1650 Enterprise Parkway Twinsburg, OH 44087 215-648-4000

Certificate of Analysis - EPA Protocol Mixtures

Customer: Matheson Valley Cylinder Number: SX-48245 Cylinder Pressure: 1800 psig

Last Analysis Date: Expiration Date:

8/14/2017 8/14/2025

Component: Carbon Monoxide

Protocol:

Reference #:

Lot#:

G1

715041

109-96-39027

Pert #: G 2675073

病性 1000 美洲城市 建油层外产品 Original Projection 1991 (1991)

REPLICATE RESPONSES

Date:

8/14/2017

Certified Conc: 301.2 ppm +/-

0.9 ppm

301.3 ppm 301.2 ppm

301.2 ppm

BALANCE GAS:

Nitrogen

REFERENCE STANDARDS:

Component:

Carbon Monoxide

SRM#: Sample #: NTRM-080815

Cylinder#:

2E+05

ND42984

Concentration:

490.7 ppm

CERTIFICATION INSTRUMENTS

Component:

Carbon Monoxide

Make/Model:

CO Horiba VIA-510 HIGH

Serial Number:

MLOE13T1

Measurement Principle:

NDIR

Last Calibration:

8/14/2017

Notes:

The certification was performed according to EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards May 2012, using procedure G1 and/or G2. U.S EPA Vendor ID Number: D42017, PGVP Participation Date: 01/01/17, PGVP Renewal Date: 01/01/18. The expanded uncertainty listed for each component was calculated at a coverage factor of k=2 and at a level of confidence of 95%.

Date

8/23/2017

Praxair Distribution Mid-Atlantic One Steel Road East. Morrisville, PA 19067 Tel: (800) 638-6360 Fax:(215) 736 5240

PGVP ID: F32017

DocNumber:

000020730

CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

Customer & Order Information;

PRAXAIR PKG STATE COLLEGE

1348 BENNER PIKE

STATE COLLEGE

Praxair Order Number: 70253954

Customer P. O. Number:

Customer Reference Number:

Part Munber:

4/11/2017 NI COSCOE-AS

Let Hunder:

Fill Date:

304613101703

ler Style & Chatlet: AS Cylinder Pressure & Values:

2000 asig 140 cu. ft.

Certified Concentration:

Expiration Date: Cylinder Number:

PA 16801

4/17/2025 CC77991

NIST Traceable Analytical Uncertainty:

CARBON MONOXIDE

± 0.5 %

Balance NITROGEN

ppm

Certification Information: Certification Date: 4/17/2017

Term: 96 Months

Expiration Date: 4/17/2025

GMB

CC198815

This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1. Do Not Use this Standard if Pressure is less than 100 PSIG.

Analytical Dato:

(ReReference Standard, ZeZero Gas, CeGas Candidate).

4/17/2017

1. Component: CARBON MONOXIDE

Requested Concentration: Certified Concentration:

Instrument Used:

Analytical Method: Last Multipoint Collegations 591 ppm HORBA VIA-3000 S/N Y9EY76L5

Deter

NDIR 2/20/2017

600 ppm

First Analysis Date: 24 0 648 Æ Z: Ð

2: C: 0 UOM: PPM

Cone: 648 R: Mean Test Assay:

Conc. **FAN** 501 PPM

591

Analyzed by:

Ċ:

Meghe Patel

Reference Standard Type: Ref. Std. Cylinder # :

Ref. Bld, Conc.

Flef. Std. Traceable to SRM#:

648 PPM CAL019038

SRM Sample # : SRM Cylinder # :

R Z:

2: a C: UON: PPM

0

R 0 Mean Test Assay:

OPPM

Min Joodh

Certified by:

increation contained herein has been prepared at your request by qualified experts within Praxeig Djoribution, two. White we butleve that the information is accurate within the firm withing employed and it complete to the waters of the profite analyses performed, we make no gillparty or representation as to the autability of the use of the information for eny formation is effected with the understanding that any use of the information is at the sole discretion and not of the user. In no event shell the Sability of Praxeir Distribution, Inc., as so of the information con tained herein exceed the See established for providing such information.