

Appalachia Midstream Services, LLC 100 Teletech Drive, Suite 2 Moundsville, WV 26041

February 2, 2018 (Via Federal Express)

Beverly D. McKeone New Source Review Program Manager Division of Air Quality West Virginia Department of Environmental Protection 601 57th Street SE Charleston, WV 25304-2345

Subject: Application for 45CSR13 NSR Permit Modification Appalachia Midstream Services, LLC (AMS) Sand Hill Compressor Station (SHCS) NSR Permit No. R13-2913B (Pending) Plant ID No 051-00145 Marshall County, West Virginia

Dear Ms. McKeone:

Appalachia Midstream Services, LLC (AMS) is submitting one (1) original paper copy and two (2) CD-ROMs of an Application for 45CSR13 New Source Review (NSR) Permit Modification for the existing Sand Hill Compressor Station (SHCS), located on Golden Rd / McCausland Hill Rd (Approx. 2.5 miles SW of Dallas), in the Sand Hill Tax District of Marshal County, West Virginia.

This application for Permit Modification has been prepared and submitted as the previous application, and consequentially the current permit, did not include all potential emission sources at the facility.

The most significant changes to the potential to emit (PTE) are the results of:

- 1) The previous application did not include the <u>Compressor Rod Packing (CRP)</u> emissions. (Increases the VOC point source emission estimate by 43.23 tpy.)
- The previous application used less conservative parameters and assumptions for estimating the <u>Dehydrator (DHY-01 thru DHY-03)</u> emissions. (Increases the VOC point source emission estimate by 6.00 tpy per dehydrator and 18.01 tpy total of all three dehydrators.)
- 3) The previous application used less conservative parameters and assumptions for estimating the <u>Compressor Blowdown (CBD)</u> and did not include the <u>Emergency Shutdown (ESD)</u> <u>Testing</u> emissions. (Increases the VOC point source emission estimate by 13.05 tpy.)
- The previous application used less conservative parameters and assumptions for estimating the <u>Piping and Equipment Leak (FUG-G, FUG-O)</u> emissions and did not include the <u>Engine</u> <u>Crankcase (ECC)</u> emissions. (Increases the VOC fugitive source emission estimate by 41.65 tpy.)

These changes, and other less substantial changes, are summarized on the following page:

Comparison: "Current" Permit (R13-2913A- 05/05/16) vs. "New" Application

		ompari	Comparison: "Current" Permit (R13-2913A - 05/05/16) vs. "New" Application	urrent" r		15-23151		10) vs.	New	ppilcatio	c						
Source	:			ľ				Pote	ntial-to-En	Potential-to-Emit (PTE) (tpy)	oy)	0	9			000	
₽	Description	"+uoC"	NO _x	0	0 "Now"		"Now"	PM	"Now"	SO2	"Now"	HCHO	"	TOT HAPS	1	CO2e	e "Now"
		Current	MAN	and Hill C	ompresso		- 2	our rent	Mew							Current	Man
CE-01	Compressor Engine 01 - CAT G3516B (OxCat)	6.66		5.96	5.96		4.28	0.54	0.49	0.03	0.03	0.27	0.52	1.25	0.76	6,869	8,336
CE-02	Compressor Engine 02 - CAT G3516B (OxCat)	6.66	6.66	5.96	5.96	3.86	4.28	0.54	0.49	0.03	0.03	0.27	0.52	1.25	0.76	6,869	8,336
CE-03	Compressor Engine 03 - CAT G3516B (OxCat) Compressor Engine 04 - CAT G3516B (OxCat)	0.00 6.66	0.00 6.66	5.96	5.96	3.86	4.20	0.54	0.49	0.03	0.03	0.27	0.52	1 25	0.76	6,869	0,336 8.336
CE-05	Compressor Engine 05 - CAT G3516B (OxCat)	6.66	6.66	5.96	5.96	3.86	4.28	0.54	0.49	0.03	0.03	0.27	0.52	1.25	0.76	6,869	8.336
CE-06	Compressor Engine 06 - CAT G3516B (OxCat)	6.66	6.66	5.96	5.96	3.86	4.28	0.54	0.49	0.03	0.03	0.27	0.52	1.25	0.76	6,869	8,336
CE-07	Compressor Engine 07 - CAT G3516B (OxCat)	6.66	6.66	5.96	5.96	3.86	4.28	0.54	0.49	0.03	0.03	0.27	0.52	1.25	0.76	6,869	8,336
CE-08	Compressor Engine 08 - CAT G3516B (OxCat)	6.66	6.66	5.96	5.96	3.86	4.28	0.54	0.49	0.03	0.03	0.27	0.52	1.25	0.76	6,869	8,336
CE-09	Compressor Engine 09 - CAT G3516B (OxCat)	6.66	6.66	5.96	5.96	3.86	4.28	0.54	0.49	0.03	0.03	0.27	0.52	1.25	0.76	6,869	8,336
CE-10	Compressor Engine 10 - CAT G3516B (OxCat)	6.66	6.66	5.96	5.96	3.86	4.28	0.54	0.49	0.03	0.03	0.27	0.52	1.25	0.76	6,869	8,336
CE-11	Compressor Engine 11 - CAT G3516B (OxCat)	6.66	6.66	5.96	5.96	3.86	4.28	0.54	0.49	0.03	0.03	0.27	0.52	1.25	0.76	6,869	8,336
CE-12	Compressor Engine 12 - CAT G3516B (OxCat)	6.66	6.66	5.96	5.96	3.86	4.28	0.54	0.49	0.03	0.03	0.27	0.52	1.25	0.76	6,869	8,336
CRP	Compressor Rod Packing	1		1	1	-	43.23	1	1	:		1	1	1	1.45	:	2,496
GEN	Generator - Capstone C600 Microturbine	1.09	2.10	2.70	5.78	0.07	0.57	0.22	0.20	0.11	0.02	0.02	0.04	0.03	0.06	3,859	3,534
DHY-01	Dehydrator 01 (BTEX Buster)	1	1	-	1	1.84	7.85	1	1	!	-	1	1	0.06	1.30	3.63	12.20
DHY-02	Dehydrator 02 (BTEX Buster)		-		-	1.84 2	7.85	1	1		-	1	1	0.06	1.30	3.63	12.20
DHY-03	Dehydrator 03 (BTEX Buster)	1	-		-	1.84	7.85	1	1	1		1	1	0.06	1.30	3.63	12.20
BLR-01	Reboiler 01	0.33	0.43	0.28	0.36	0.02	0.02	0.03	0.03	2E-03	3E-03	2E-04	3E-04	0.01	0.01	513	518
BLR-02	Reboiler 02	0.33	0.43	0.28	0.36	0.02	0.02	0.03	0.03	2E-03	3E-03	2E-04	3E-04	0.01	0.01	513	518
BLR-03	Reboiler 03	0.33	0.43	0.28	0.36	0.02	0.02	0.03	0.03	2E-03	3E-03	2E-04	3E-04	0.01	0.01	513	518
HTR-01	Heater-Treater Burner 01	0.17	0.21	0.14	0.18	0.01	0.01	0.01	0.02	1E-03	1E-03	1E-04	2E-04	3E-03	4E-03	256	259
HTR-02	Heater-Treater Burner 02	0.17	0.21	0.14	0.18	0.01	0.01	0.01	0.02	1E-03	1E-03	1E-04	-	3E-03	4E-03	256	259
TK-01	Storage Tank 01 - Stabilized Condensate (SC) (VRU)	1	:	1	-	1.53	0.17	1	1	-		1	1	0.08	0.05	69.13	1
TK-02	Storage Tank 02 - Stabilized Condensate (SC) (VRU)	-	1	-	1	1.53	0.17	1	1	;	-	I	1	0.08	0.05	69.13	i
TK-03	Storage Tank 03 - Stabilized Condensate (SC) (VRU)	1	-	1	-	1.53	0.17	1	1	;		1	1	0.08	0.05	69.13	-
TK-04	Storage Tank 04 - Stabilized Condensate (SC) (VRU)	1	1	-	1	1.53	0.17	1	1	;	1	I	1	0.08	0.05	69.13	i
TK-05	Storage Tank 05 - Stabilized Condensate (SC) (VRU)	1	:		1	1.53	0.17	1	1	;	-	I	1	0.08	0.05	69.13	1
TK-06	Storage Tank 06 - Stabilized Condensate (SC) (VRU)	1	-	1	-	1.53	0.17	1	1	-		1	1	0.08	0.05	69.13	-
TK-07	Storage Tank 07 - Stabilized Condensate (SC) (VRU)	1	1	-	-	1.53	0.17	1	1	;	-	1	1	0.08	0.05	69.13	:
TK-08	Storage Tank 08 - Stabilized Condensate (SC) (VRU)	1	1	:	1	1.53	0.17	1	1	;	1	1	1	0.08	0.05	69.13	;
WTK-01	Storage Tank W01 - Produced Water (PW)	1	1	1	1	0.90	0.03	1	1	!	1	1	1	0.05	0.01	42.54	;
WTK-02	Storage Tank W02 - Produced Water (PW)	I	1	1	I	0.90	0.03	I	I	1	1	1	I	0.05	0.01	42.54	1
	Truck Loading - Stabilized Condensate (SC) (CarbCan)		!	:	1	GT.0	70.0	1	1	:	1	1	1	1.4.1 1.0.1 2.0.1	00.7	77.10	:
CBD/FSD	Compressor Blowdown/Emergency Shutdown Tests	I	1	1		11 88 3	24.94	1	1	1	1	1	1	0.24	0.02	693	1 440
	Sand Hill Compressor Station (SHCS) - Point Sources	82.37	83.77	75.30	78.70		153.79	6.84	6.22	0.50	0.38	3.22	6.28	16.65	18.37	4	109.617
				SandHil	Sand Hill Compressor Station (SHCS) - Fugitives	sor Station	(SHCS) - I	Fugitives									
FUG-G	Piping & Equip Leaks - Gas		-	1	I	11 89	20.23	1	1	;	1	-	1	0.28	0.68	638	1,168
FUG-O	Piping & Equip Leaks - Light Liquid		1		1	4			1		1		I	04:0	1.10	000	1
ECC	Engine Crankcase Fugitives	1	0.21		1.24		0.63	1	0.02	;	9E-04	1	0.16	1	0.19	1	261
	Sand Hill Compressor Station (SHCS) - Fugitives	I	0.21	1	1.24	11.89	53.54	I	0.02	1	9E-04	I	0.16	0.28	1.97	638	1,429
				•	•	i											
				Sand	Sand Hill Compressor Station (SHCS) - Total	essor Stati	on (SHCS)	- Total			Ī	Ī	Ī	-	Ī	Ī	
	Sand Hill Compressor Station (SHCS) - Total	82.37	83.98	75.30	79.95	98.04	207.33	6.84	6.24	0.50	0.38	3.22	6.44	16.93	20.34	90,382 111,046	11,046
			2		,				í	10.1	1	i i					
	Increase/(Decrease):	1.61	61	4.65	55	109.29	29	(09.0)	()	(0.13)	3)	3.22	2	3.41	1	20,664	4

Beverly McKeone WVDEP – Division of Air Quality February 2, 2018 Page 03 of 04

The revised VOC PTE is greater than the Title V Major Source Threshold. Accordingly, Appalachia Midstream Services, LLC will prepare and submit a Title V Operating Permit application in the first quarter of 2018.

Appalachia Midstream Services, LLC (AMS) Sand Hill Compressor Station (SHCS)

Application for 45CSR13 New Source review Permit Modification (NSR)

Facility-W	ide Emissions Summa	ry [Tons per Year]	
Criteria Delluterte	Potentia	I Emissions (Including	Fugitives)
Criteria Pollutants	R13-2913A	CHANGE	R13-2913B (Proposed)
Nitrogen Oxides (NOX)	82.37	1.61	83.98
Carbon Monoxide (CO)	75.30	4.65	79.95
Volatile Organic Compounds (VOC)	98.04	109.29	207.33
Particulate Matter (PM10/2.5)	6.84	(0.60)	6.24
Sulfur Dioxide (SO2)	0.50	(0.13)	0.38
Hazardous Air Pollutants	Potentia	I Emissions (Including	Fugitives)
Hazardous Air Poliutants	R13-2913A	CHANGE	R13-2913B (Proposed)
Acetaldehyde	5.45	(4.20)	1.25
Acrolein	3.35	(2.58)	0.77
Benzene	0.38	0.91	1.29
Butadiene, 1,3-		0.04	0.04
Ethylbenzene	0.08	0.38	0.46
Formaldehyde (HCHO)	3.22	3.22	6.44
n-Hexane	2.15	4.28	6.43
Methanol (MeOH)	1.63	(1.26)	0.37
Polycyclic Organic Matter (POM)		0.05	0.05
Toluene	0.33	1.44	1.78
2,2,4-Trimethylpentane (TMP)		0.47	0.47
Xylenes	0.34	0.60	0.94
Other/Trace HAP*		0.05	0.05
Total Hazardous Air Pollutants (HAPs)	16.93	3.41	20.34
Other Regulated Pollutants	Potentia	I Emissions (Including	Fugitives)
(Other than Criteria and HAP)	R13-2913A	CHANGE	R13-2913B (Proposed)
Carbon Dioxide (CO ₂)	88,256	(927)	87,330
Methane (CH ₄)	83.18	862	946
Nitrous Oxide (N ₂ O)	0.16	0.10	0.26
CO ₂ equivalent (CO ₂ e)	90,382	20,664	111,046

EMISSIONS SUMMARY

*Other/Trace HAPs include: Carbon Tetrachloride, Chlorobenzene, Chloroform, Dichloropropene,

1,3-Dichloropropene, Ethylene Dibromide, Methylene Chloride, Phenol, Propylene Oxide, Styrene,

1,1,2,2-Tetrachloroethane, 1,1,2-Trichloroethane, and Vinyl Chloride (as per AP-42).

Beverly McKeone WVDEP – Division of Air Quality February 2, 2018 Page 04 of 04

This application is prepared and submitted to request modifications to the facility's potential-to-emit (PTE). Although these modifications are significant, the only physical or operational changes proposed are:

• Remove the requirements to control the Produced Water (PW) Storage Tank (WTK-01 and WTK-02) and the Produced Water (PW) Truck Load-Out (WTLO) emissions. (The combined uncontrolled VOC emissions from WTK and WTLO operations is estimated at 0.14 tpy.)

Proposed modifications to current permit (R13-2913A) are provided in Attachment L – Emission Unit Data Sheet(s).

If you have any questions concerning this submittal, or need additional information, please contact me by telephone at (304) 843-3125 or by e-mail at Dave.Morris@Williams.com.

Sincerely,

David Morris Environmental Specialist

Enclosures:

Application for NSR Permit Modification Attachments A thru S Supplements S1 thru S4 Check for Application Fee

Application for 45CSR13 New Source Review Permit Modification (NSR)

For the: Appalachia Midstream Services, LLC (AMS) Sand Hill Compressor Station (SHCS)

> Plant ID No. 051-00145 Marshall County, West Virginia

> > Submitted to:

West Virginia Department of Environmental Protection Division of Air Quality

Submitted by:

Appalachia Midstream Services, LLC 100 Teletech Drive, Suite 2 Moundsville, WV 26041-2352

EcoLogic Environmental Consultants, LLC 864 Windsor Court Santa Barbara, CA 93111-1037

February 2018

Application for 45CSR13 New Source Review Permit Modification (NSR)

Appalachia Midstream Services, LLC (AMS)

Sand Hill Compressor Station (SHCS)

Plant ID No. 051-00145 Marshall County, West Virginia

Table of Contents

Cover Letter

Title Page / Table of Contents

Application for NSR Permit Modification

- Section I. General Information
- Section II. Additional Attachments and Supporting Documents
- Section III. Certification of Information

Attachments to the NSR Application

- Attachment A Business Certificate
- Attachment B Map(s)
- Attachment C Installation and Start-Up Schedule
- Attachment D Regulatory Discussion
- Attachment E Plot Plan
- Attachment F Process Flow Diagram(s) (PFD)
- Attachment G Process Description
- Attachment H Safety Data Sheets (MSDS)
- Attachment I Emission Units Table
- Attachment J Emission Points Data Summary Sheet(s)
- Attachment K Fugitive Emissions Data Summary Sheet(s)
- Attachment L Emissions Unit Data Sheet(s)
- Attachment M Air Pollution Control Device Sheet(s)
- Attachment N Supporting Emissions Calculations
- Attachment O Monitoring/Recordkeeping/Reporting/Testing Plans
- Attachment P Public Notice
- Attachment Q Business Confidential Claims (NOT APPLICABLE)
- Attachment R Authority Forms (NOT APPLICABLE)
- Attachment S Title V Permit Revision Information (NOT APPLICABLE)

Supplements to the NSR Application

- Supplement S1 Lab Analysis (Inlet Gas)
- Supplement S2 Vendor Data (CAT G3516B / Capstone C600 /
- (BTEX Buster / VRU / CarbCan)
- Supplement S3 Emission Program Data (TANKS-4.0.9d / GRI-GLYCalc)
- Supplement S4 AP-42 / EPA Emission Factors

Application Fee

Application for 45CSR15 New Source Review Permit Modification (NSR)

- Section I. General
- Section II. Additional Attachments and Supporting Documents
- Section III. Certification of Information

NTAL PROTECTION DIVISION OF AIR QUALITY 601 57 th Street, SE Charleston, WV 25304 (304) 926-0475 www.dep.wv.gov/daq	APPLICATION FOR NSR PERMIT AND TITLE V PERMIT REVISION (OPTIONAL)
PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KNOWN): CONSTRUCTION MODIFICATION RELOCATION CLASS I ADMINISTRATIVE UPDATE TEMPORARY CLASS II ADMINISTRATIVE UPDATE AFTER-THE-FACT	PLEASE CHECK TYPE OF 45CSR30 (TITLE V) REVISION (IF ANY): ADMINISTRATIVE AMENDMENT IMINOR MODIFICATION SIGNIFICANT MODIFICATION IN NOT APPLICABLE IF ANY BOX ABOVE IS CHECKED, INCLUDE TITLE V REVISION INFORMATION AS ATTACHMENT S TO THIS APPLICATION
(Appendix A, "Title V Permit Revision Flowchart") and ability t	on Guidance" in order to determine your Title V Revision options to operate with the changes requested in this Permit Application.
Section	I. General
 Name of applicant (as registered with the WV Secretary of Appalachia Midstream Services, LLC (AMS) 	<i>State's Office):</i> 2. Federal Employer ID No. <i>(FEIN):</i> 2 6 - 3 6 7 8 9 7 2
3. Name of facility <i>(if different from above):</i> Buffalo Compressor Station (BCS)	4. The applicant is the:
5A. Applicant's mailing address: 100 Teletech Drive, Suite 2 Moundsville, WV 26041	5B. Facility's present physical address: 9628 Bethany Pike Bethany, Brooke County, WV 26032
name change amendments or other Business Registration	on/Organization/Limited Partnership (one page) including any Certificate as Attachment A. thority of L.L.C./Registration (one page) including any name
7. If applicant is a subsidiary corporation, please provide the	name of parent corporation: The Williams Companies, Inc.
 Does the applicant own, lease, have an option to buy, or or 	therwise have control of the proposed site? X YES NO

12A.	Directions	to the	facility:
------	------------	--------	-----------

051 - 00145

9.

- For **Modifications**, Administrative Updates or **Temporary permits** at an existing facility, please provide directions to the *present location* of the facility from the nearest state road;

10.

R13-2913A - Issued 05/05/16

North American Industry Classification

System (NAICS) code for the facility:

213112–Support Activities for Oil

and Gas Operations

numbers associated with this process (existing facilities):

11B. List all current 45CSR13 and 45CSR30 (Title V) permit

- For **Construction** or **Relocation permits**, please provide directions to the *proposed new site location* from the nearest state road. Include a **MAP** as **Attachment B**.

From Dallas, WV: 1) Head south on Number 2 Ridge Rd ~2.3 mi; 2) Turn right onto Golden Rd / McCausland Hill Rd ~1.4 mi; 3) Destination is on the right.

- If YES, please explain: Applicant owns the Buffalo Compressor Station (BCS).

Type of plant or facility (stationary source) to be constructed, modified,

relocated, administratively updated or temporarily permitted (e.g.,

- If **NO**, you are not eligible for a permit for this source.

coal preparation plant, primary crusher, etc.):

Natural Gas Compressor Station

11A. DAQ Plant ID No. (existing facilities):

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

12.B.	New site address (if applicable): Golden Rd / McCausland Hill Rd	12C.	Nearest city or town: Dallas	12D.	County: Marshall		
		(07		100			
12.E.	UTM Northing (KM):	12⊦.	UTM Easting (KM):	12G.	UTM Zone:		
	4,426.495 km Northing		537.897km Easting		17T		
13.	Briefly describe the proposed change(s) at t		,				
	This application is prepared and submitte these modifications are significant, the o						
	•• Remove the requirements to control th Produced Water (PW) Truck Load-Out (W and WTLO operations is estimated at 0.1	TLO) e	emissions. (The combined uncon				
14A.	Provide the date of anticipated installation o	r chang	ge:		Date of anticipated Start-Up		
	 If this is an After-The-Fact permit applica proposed change did happen: NA 	tion, pr	ovide the date upon which the		if a permit is granted: NA		
14C.	Provide a Schedule of the planned Installa application as Attachment C (if more than c			the un	ts proposed in this permit		
15.	Provide maximum projected Operating Schedule of activity/activities outlined in this application: Hours Per Day: 24 Days Per Week: 7 Weeks Per Year: 52						
16.	Is demolition or physical renovation at an existing facility involved? 🛛 YES 🖂 NO						
17.	Risk Management Plans. If this facility i changes (for applicability help see www.epa						
18.	Regulatory Discussion. List all Federal proposed process <i>(if known).</i> A list of poss (Title V Permit Revision Information). Discuthis information as Attachment D .	ible ap	plicable requirements is also incluc	ed in A	Attachment S of this application		
	Section II. Additiona	al atta	achments and supporting	doc	uments.		
19.	Include a check payable to WVDEP – Divisi 45CSR13).	on of A	ir Quality with the appropriate appli	cation	fee (per 45CSR22 and		
20.	Include a Table of Contents as the first page	ge of yo	our application package.				
21.	Provide a Plot Plan , e.g. scaled map(s) and source(s) is or is to be located as Attachme			property	on which the stationary		
	- Indicate the location of the nearest occupi	ed stru	cture (e.g. church, school, business	reside	nce).		
22.	Provide a Detailed Process Flow Diagram device as Attachment F .	(s) sho	wing each proposed or modified em	iissions	unit, emission point and control		
23.	Provide a Process Description as Attachn	nent G					
	 Also describe and quantify to the extent period 	ossible	all changes made to the facility since	e the la	ast permit review (if applicable).		
24.	Provide Material Safety Data Sheets (MSD	S) for a	all materials processed, used or pro	duced a	as Attachment H.		
	- For chemical processes, provide a MSDS		•				
25.	Fill out the Emission Units Table and provi						
26.	Fill out the Emission Points Data Summar				Attachment J.		
27.	Fill out the Fugitive Emissions Data Sumn	nary S	heet and provide it as Attachment	κ.			
All o	f the required forms and additional information	can be	found under the Permitting Section o	f DAQ's	website, or requested by phone.		

28.	Check all applicable Emissions Unit Data Sh	neets listed below:				
	☑ Bulk Liquid Transfer Operations (Lf)	Haul Road Emissions	Quarry			
	🛛 Chemical Processes (Lg)	Hot Mix Asphalt Plant	Solid Materials Sizing, Handling			
	Concrete Batch Plant	Incinerator	and Storage Facilities			
	Grey Iron and Steel Foundry	Indirect Heat Exchanger	🖂 Storage Tanks (Le)			
	⊠ General Emission Unit, specify:					
	 Natural Gas Compressor/Generator Natural Gas Glycol Dehydration Uni Fired Boiler/Line Heater Data Sheet 	t Data Sheet (Lb, Lc)				
	(*) Leak Source Data Sheet Only					
	Fill out and provide the Emissions Unit Data	Sheet(s) as Attachment L.				
29.	Check all applicable Air Pollution Control	Device Sheets listed below:				
	Absorption Systems	Baghouse	Flare			
	☑ Adsorption Systems (CarbCan)	🖂 Condenser (BTEX Buster)	Mechanical Collector			
	Afterburner	Electrostatic Precipitator	Wet Collecting System			
	☑ Other Collectors, specify:					
	 Oxidation Catalyst (OxCat) Vapor Recovery Unit (VRU) 					
	Fill out and provide the Air Pollution Control Device Sheet(s) as Attachment M.					
30.	Provide all Supporting Emissions Calculations as Attachment N, or attach the calculations directly to the forms listed in Items 28 through 31.					
31.	Monitoring, Recordkeeping, Reporting and testing plans in order to demonstrate complia application. Provide this information as Attac	nce with the proposed emissions limit				
>	Please be aware that all permits must be pra measures. Additionally, the DAQ may not be are proposed by the applicant, DAQ will deve	able to accept all measures propose	d by the applicant. If none of these plans			
32.	Public Notice. At the time that the application circulation in the area where the source is or <i>Advertisement</i> for details). Please submit the	will be located (See 45CSR§13-8.3	through 45CSR§13-8.5 and Example Legal			
33.	Business Confidentiality Claims. Does this	s application include confidential infor	mation (per 45CSR31)?			
	🗌 YES	NO				
>	If YES, identify each segment of information segment claimed confidential, including the c <i>Notice – Claims of Confidentiality"</i> guidance	riteria under 45CSR§31-4.1, and in ad	ccordance with the DAQ's "Precautionary			
	Section I	II. Certification of Information	tion			
34.	Authority/Delegation of Authority. Only re Check applicable Authority Form below:	quired when someone other than the na	responsible official signs the application.			
	Authority of Corporation or Other Busines	s Entity	tnership			
	Authority of Governmental Agency	Authority of Lim	ited Partnership			
	Submit completed and signed Authority For	m as Attachment R.				
All of	the required forms and additional information ca	n be found under the Permitting Sectio	n of DAQ's website, or requested by phone.			

35A. Certification of Information. To certify this permit application, a Responsible Official (45CSR§13-2.22 and 45CSR§30-2.28) or Authorized Representative shall check the appropriate box and sign below.

Certification of Truth, Accuracy, and Completeness

I, the undersigned Responsible Official / Authorized Representative, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.

Compliance Certification

Except for requirements identified in the Title V Application for which compliance is not achieved, I, the undersigned hereby certify that, based on information and belief formed after reasonable inquiry, all air contaminant sources identified in this application are in compliance with all applicable requirements.

SIG	NATURE:		DATE		
	(Please use blue ink)				(Please use blue ink)
35B.	Printed name of signee:	35C.	Title:		
	Paul V. Hunter		Vice President		
35D.	E-mail:	36E.	Phone:	36F.	FAX:
	PaulV.Hunter@Williams.com		(412) 787-5561		(412) 787-6002
36A.	Printed name of contact person:	36B.	Title:		
	David Morris		Environmental Specialist		
36C.	E-mail:	36D.	Phone:	36E.	FAX:
	Dave.Morris@Wiliams.com		(304) 834-3125		

PLEASE CHECK ALL APPLICABLE ATTACHMENTS INCLUDE	ED WITH THIS PERMIT APPLICATION:
Attachment A: Business Certificate	Attachment K: Fugitive Emissions Data Summary Sheet
Attachment B: Map(s)	Attachment L: Emissions Unit Data Sheet(s)
Attachment C: Installation and Start Up Schedule	Attachment M: Air Pollution Control Device Sheet(s)
Attachment D: Regulatory Discussion	Attachment N: Supporting Emissions Calculations
Attachment E: Plot Plan	Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans
Attachment F: Detailed Process Flow Diagram(s)	Attachment P: Public Notice
Attachment G: Process Description	Attachment Q: Business Confidential Claims) (NA)
Attachment H: Material Safety Data Sheets (MSDS)	Attachment R: Authority Forms) (NA)
Attachment I: Emission Units Table	Attachment S: Title V Permit Revision Information (NA)
Attachment J: Emission Points Data Summary Sheet	Application Fee

Please mail an original and three (3) copies of the complete permit application with the signature(s) to the DAQ, Permitting Section, at the address listed on the first page of this application. Please DO NOT fax permit applications.

FOR AGENCY USE ONLY – IF THIS IS A TITLE V SOURCE:

☐ Forward 1 copy of the application to the Title V Permitting Group and
☐ For Title V Administrative Amendments:
NSR permit writer should notify Title V permit writer of draft permit
For Title V Minor Modifications:
Title V permit writer should send appropriate notification to EPA and affected states within 5 days of receipt,
□ NSR permit writer should notify Title V permit writer of draft permit.
For Title V Significant Modifications processed in parallel with NSR Permit revision:
□ NSR permit writer should notify a Title V permit writer of draft permit,
Public notice should reference both 45CSR13 and Title V permits,
EPA has 45 day review period of a draft permit.
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone

Attachment A

Business Certificate

"6. **West Virginia Business Registration**. Provide a copy of the Certificate of Authority/Authority of L.L.C./Registration (one page) including any name change amendments or other Business Certificate as Attachment A."

Business Registration Certificate
 To: Appalachia Midstream Services, LLC
 Date: 06/30/10

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO: APPALACHIA MIDSTREAM SERVICES, L.L.C. 900 PENNSYLVANIA AVE CHARLESTON, WV 25302-3548

BUSINESS REGISTRATION ACCOUNT NUMBER:

2222-3681

This certificate is issued on: 06/30/2010

This certificate is issued by the West Virginia State Tax Commissioner in accordance with W.Va. Code § 11-12.

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued.

This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

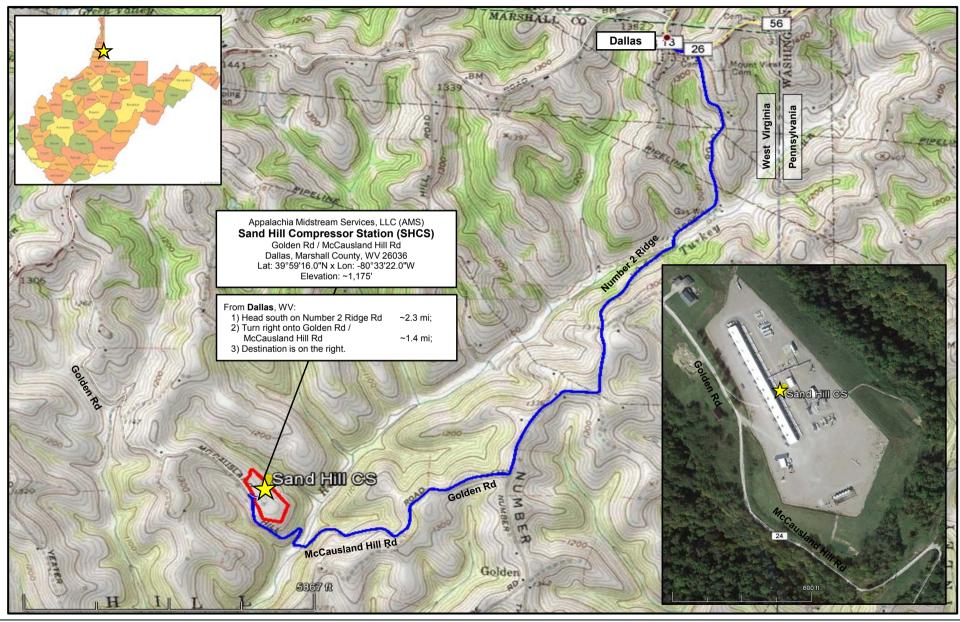
Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.1 L0250854144

Attachment B Map(s)

"12A. For Modifications, Administrative Updates or Temporary permits at an existing facility, please **provide directions to the present location** of the facility from the nearest state road. Include a MAP as Attachment B."


- Location: Sand Hill Compressor Station (SHCS) Golden Rd / McCausland Hill Rd (Approximately 2.5 miles SW of Dallas) Dallas, Marshal County, County, WV 26036 Latitude and Longitude: Lat: 39°59'16.0"N x Lon: -80°33'22.0"W Lat: 39.9878°N x Lon: -80.5561°W • UTM: 537.897 km E x 4,426.495 km N x 17T • Elevation: ~1.175' • USGS: 2016 USGS US Topo 7.5 - minute map for MAJORSVILLE, WV-PA • Directions: From Dallas, WV: 1) Head south on Number 2 Ridge Rd ~2.3 mi; 2) Turn right onto Golden Rd / McCausland Hill Rd ~1.4 mi;
 - 3) Destination is on the right.

Appalachia Midstream Services, LLC (AMS)

Sand Hill Compressor Station (SHCS)

Application for 45CSR13 New Source Review Permit Amenedment (NSR)

Attachment B - Location Map / Topographic Map

Sand Hill Compressor Station (SHCS)

Attachment B - Location Map / Topographic Map ication for 45CSR13 New Source Review Permit Amenedment (NSR)

Attachment C

Installation and Start-Up Schedule

"14C. Provide a **Schedule** of the planned **Installation** of/**Change** to and **Start-Up** of each of the units proposed in this permit application as Attachment C."

This application is prepared and submitted to request modifications to the facility's potential-to-emit (PTE). Although these modifications are significant, the only physical or operational changes proposed are to remove the requirements to control the Produced Water Storage Tank (WTK-01 and WTK-02) and Produced Water Truck Load-Out (WTLO) emissions. (Combined uncontrolled VOC emissions from WTK and WTLO sources is estimated at 0.14 tpy.)

Attachment D

Regulatory Discussion

"18. **Regulatory Discussion**. List all Federal and State air pollution control regulations that you believe are applicable to the proposed process (if known). Discuss applicability and proposed demonstration(s) of compliance (if known). Provide this information as Attachment D."

Regulatory Discussion

- A. Applicability of New Source Review (NSR) Regulations
- B. Applicability of Federal Regulations
- C. Applicability of Source Aggregation
- D. Applicability of State Regulations

Appalachia Midstream Services, LLC (AMS) Sand Hill Compressor Station (SHCS)

Application for 45CSR13 New Source Review Permit Modification (NSR)

Attachment D Regulatory Discussion

A. Applicability of New Source Review (NSR) Regulations

The following New Source Review (NSR) regulations are potentially applicable to natural gas compressor stations. Applicability to the subject facility has been determined as follows:

1. Prevention of Significant Deterioration (PSD)

This rule <u>does not apply</u> to the subject facility because the total PTE for the entire facility qualifies as a "PSD Minor Source" for each regulated pollutant; as follows:

- NOx: PSD Natural Minor Source with Pre-Controlled PTE < 250 tpy
- CO: PSD Synthetic Minor Source with Controlled PTE < 250 tpy
- VOC: PSD Synthetic Minor Source with Controlled PTE < 250 tpy
- SO2: PSD Natural Minor Source with Pre-Controlled PTE < 250 tpy
- PM10/2.5: PSD Natural Minor Source with Pre-Controlled PTE < 250 tpy

2. Non-Attainment New Source Review (NNSR)

This rule <u>does not apply</u> to the subject facility. The operations are in the Brooke County, WV, which is currently classified as Attainment, Unclassified, or Maintenance for all national ambient air quality standards (NAAQS).

3. Major Source of Hazardous Air Pollutants (HAPs)

This rule <u>does not apply</u> to the subject facility because the entire facility qualifies as a "HAP Area Source" as follows:

- Each HAP: HAP Area Source with Controlled Individual HAP PTE < 10 tpy
- Total HAPs: HAP Area Source with Controlled Total of All HAPs PTE < 25 tpy

4. Title V Operating Permit (TVOP)

This rule <u>does apply</u> because the potential to emit VOC is above than the Title V Major Source threshold of 100 tpy.

[Not Applicable] ualifies as a

[Applicable]

[Not Applicable]

[Not Applicable]

B. Applicability of Federal Regulations

The following federal regulations are potentially applicable to natural gas compressor stations. Applicability to the subject facility has been determined as follows:

1. NSPS A, General Provisions

40CFR§60.1-§60.19

This rule does apply to all sources subject to an NSPS (unless a specific provision is excluded within the source NSPS). Requirements include notification (§60.7); monitoring (§60.7); recordkeeping (§60.11); and reporting (§60.18)

2. NSPS A, Control Devices - Flares

40CFR§60.18(b)

This rule <u>does not apply</u> because there is no flare at the subject facility.

3. NSPS D (also Da, Db, and Dc), Steam Generating Units 40CFR§60.40-§60.48

These rules do not apply because there is no steam generating unit (including line heaters) at the subject facility with a maximum design heat input capacity \geq 10 MMBtu/hr and \leq 100 MMBtu/hr (§60.40c(a)).

4. NSPS K (also Ka and Kb), Volatile Organic Liquid Storage Vessels 40CFR§60.40-§60.48

This rule does not apply because there is no tank with capacity \geq 75 m3 (471.7 bbl or 19,813 gal) that is used to store volatile organic liquids (VOL) at the subject facility (§60.110(a)).

5. NSPS GG, Stationary Gas Turbines

40CFR§60.330-§60.335

This rule does not apply because there is no stationary gas turbine at the subject facility with a heat input at peak load equal to or greater than 10.7 gigajoules (10 million Btu) per hour, based on the lower heating value of the fuel fired. (§60.330).

6. NSPS KKK, Leaks from Natural Gas Processing Plants

40CFR§60.630-§60.636

This rule does not apply because the subject facility is not a natural gas processing plant (§60.630(a)).

7. NSPS LLL, Onshore Natural Gas Processing: SO2 Emissions

40CFR§60.640-§60.648

This rule does not apply because there is no gas sweetening operation at the subject facility (§60.640(a)).

[Not Applicable]

[Not Applicable]

[Not Applicable]

[Applicable]

[Not Applicable]

[Not Applicable]

[Not Applicable]

8. NSPS IIII, Compression Ignition Reciprocating Internal Combustion Engines 40CFR§60.4200-§60.4219 [Not Applicable]

This rule does not apply because there is no stationary compression ignition engine at the subject facility (§60.4200(a)).

9. NSPS JJJJ, Stationary Spark Ignition (SI) Internal Combustion Engines (ICE) 40CFR§60.4230-§60.4248

This rule does apply to the 1,380 bhp Caterpillar G3516B compressor engines (CE-01 thru CE-12) because each engine has a power rating greater than 500 HP and each engine was manufactured on or after 07/01/07 (§60.4230(a)(4)(i)).

Requirements include NOx, CO and VOC emission limits (§60.4233(e-f)); operating limits (§60.4243); performance testing (§60.4244); and notification and recordkeeping (§60.4245).

10. NSPS KKKK, Stationary Combustion Turbines

40CFR§60.4300-§60.4420

This rule does not apply because there is no stationary gas turbine at the subject facility with a heat input at peak load equal to or greater than 10.7 gigajoules (10 million Btu) per hour, based on the higher heating value of the fuel fired. ($\S60.4305(a)$).

11. NSPS OOOO, Crude Oil and Natural Gas Production

40CFR§60.5360-§60.5430

This rule does apply to each reciprocating compressor driven by a CAT G3516B engine (CE-01 thru CE-12) because the subject facility is identified within the natural gas production segment and the compressors commenced construction after 08/23/11 (§60.5360 and §60.5365(c)).

Requirements include replacing rod packing systems on a specified schedule (§60.5385(a)) and notification, monitoring, recordkeeping and reporting (§60.5410(c), §60.5415(c), §60.5420(b)(1) and §60.5420(b)(4)).

This rule does not apply to the stabilized condensate (SC) storage tanks (TK-01 thru TK-08) nor to the produced water (PW) storage tanks (WTK-01 and WTK-02) because each tank does not have the potential to emit VOC \geq 6 TPY. Note, however, there is a requirement to document that the VOC PTE is < 6 tpy per tank (§60.5420).

This rule does not apply to the pneumatic controllers because they are compressed air driven, else they have a bleed rate ≤ 6 scfh, are located between the wellhead and point of custody transfer, and are not located at a natural gas processing plant (§60.5365(d)(1)).

12. NSPS OOOOa, Crude Oil and Natural Gas Production

40CFR§60.5360a-§60.5430a

[Not Applicable]

This rule does not apply because the subject facility was constructed prior to September 18, 2015 (§60.5360a

[Applicable]

[Not Applicable]

[Applicable]

13. NESHAP Part 61 - Designated Source Standards

40CFR§61.01-§61.359

This rule <u>does not apply</u> because the subject facility is not a NESHAP Designated Facility (or Source).

Specifically, NESHAP J - Equipment Leaks (Fugitive Emission Sources) of Benzene and NESHAP V - Equipment Leaks (Fugitive Emission Sources) do not apply because all the fluids (liquid or gas) at the subject facility are < 10 wt% volatile hazardous air pollutant (VHAP) ((§61.111 and §61.241).

14. NESHAP A (Part 63 (aka, MACT)) - General Provisions

40CFR§63.1-§63.16

This rule <u>does apply</u> because the dehydrators (DHY-01 thru DHY-03) are subject NESHAP HH–Oil and Natural Gas Production Facilities and the compressor engines (CE-01 thru CE-12) are subject to NESHAP ZZZZ– Reciprocating Internal Combustion Engines (RICE).

15. NESHAP HH, Oil and Natural Gas Production Facilities

40CFR§63.760-§63.779

This rule <u>does apply</u>; however, because the subject facility is an area source of HAP emissions, and the actual average emissions of benzene from each glycol dehydration unit process vent to the atmosphere is < 0.90 megagram per year (1.0 tpy), the dehydration units (DHY-01 thru DHY-03) are exempt. The only requirement is to maintain records of the actual average benzene emissions per year (§63.774(d)(1)(i).

This rule <u>does not apply</u> to storage vessels (tanks), compressors, or ancillary equipment because the subject facility is an area source of HAP emissions (§63.760(b)(2)).

16. NESHAP HHH, Natural Gas Transmission and Storage Facilities

40CFR§63.1270-§63.1289

This rule <u>does not apply</u> because the subject facility is not a natural gas transmission or storage facility transporting or storing natural gas prior to local distribution (§63.1270(a)).

17. NESHAP YYYY, Stationary Combustion Turbines

40CFR§63.6080-§63.6175

This rule <u>does not apply</u> because subject facility is not a major source of HAP emissions (§63.6085).

[Applicable/Exempt]

[Not Applicable]

[Not Applicable]

[Not Applicable]

[Applicable]

reconstruction on or after 06/12/06 (§63.6590(a)(2)(iii)); the only requirement is compliance with §60.4230-§60.4248 (NSPS JJJJ) for Spark Ignition Internal Combustion Engines.

19. NESHAP DDDDD, Industrial, Commercial, and Institutional Boilers and Process Heaters – Major Sources

40CFR§63.7480 - §63.7575

This rule does not apply because the subject facility is an area source of HAP emissions (§63.7485).

20. NESHAP JJJJJJ, Industrial, Commercial, and Institutional Boilers and Process Heaters – Area Sources

40CFR§63.11193 - §63.11237

This rule does not apply because all boilers (BLR-01 thru BLR-03) and heaters (HTR-01 and HTR-02) at the subject facility are gas-fired (§63.11195(e)).

21. Compliance Assurance Monitoring (CAM)

40CFR§64.1-§64.10

40CFR§68.1-§68.220

This rule does apply to the dehydrators (DHY-01 thru DHY-03) because they are:

- a) Pollutant-specific emission units (PSEUs) at a major source that is required to obtain a Title V operating permit;
- b) Subject to an emissions limitation or standard;
- c) Use a control device to achieve compliance with any such emission limitation or standard; and
- d) The potential pre-control emissions of the applicable regulated air pollutant are \geq 100% of the amount required to be classified as a major source (§64.2).

Note: Only large PSEUs (i.e., PSEUs with potential post-control device emissions of an applicable regulated air pollutant that are \geq Major Source Threshold Levels) need to submit a CAM plan with the initial TVOP application. At the subject facility, the postcontrol emissions are < Major Source Threshold Levels (§64.5(b)).

22. Chemical Accident Prevention Provisions (Risk Management Plan (RMP))

[Not Applicable]

This rule does not apply because the subject facility does not store more than a threshold quantity of a regulated substance in a process. Specifically, "Prior to entry into a natural gas processing plant or a petroleum refining process unit, regulated substances in naturally occurring hydrocarbon mixtures need not be considered when determining whether more than a threshold quantity is present at a stationary source" (§68.115(b)(2)(iii)).

18. NESHAP ZZZZ, Stationary Reciprocating Internal Combustion Engines (RICE) 40CFR§63.6580-§63.6675

This rule does apply to the 1,380 bhp CAT G3516B Compressor Engines (CE-01 thru CE-12). However, because each engine is "new"; i.e., commenced construction or

[Not Applicable]

[Not Applicable]

[Applicable/Deferred]

[Applicable]

23. Mandatory Greenhouse Gases (GHG) Reporting

40CFR§98.1-§98.9

[Applicable]

This rule does apply because:

- a) The facility is not a listed source category;
- b) The aggregate max heat input capacity of stationary fuel combustion units at the facility is ≥ 30 MMBtu/hr;
- c) The CO2e emissions from all stationary sources combined within the hydrocarbon basin as defined in 40 CFR Part 98 is ≥ 25,000 metric ton/yr (§98.2(a)(3)).

Requirements include monitoring, recordkeeping, and annual reporting of GHG from stationary fuel combustion sources only (§98.2(a)(3)).

C. Applicability of Source Aggregation

The operations of the subject facility have not been aggregated with any other gas production, midstream service facilities, or transportation operations because there are no oil and gas facilities or operations "contiguous and adjacent" to the subject facility. Furthermore, there are no related facilities or operations that meet the common-sense notion of a plant and/or are under common control.

D. Applicability of State Regulations

The following state regulations are potentially applicable to natural gas compressor stations. Applicability to the subject facility has been determined as follows:

1. Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers §45CSR2 [Not Applicable]

This rule <u>does not apply</u> because there is no indirect heat exchanger at the subject facility with input capacity \geq 10 MMBtu/hr.

2. Prevent and Control the Discharge of Air Pollutants into the Open Air Which Causes or Contributes to an Objectionable Odor or Odors §45CSR4 [Applicable]

This rule <u>does apply</u> and states that an objectionable odor is an odor that is deemed objectionable when in the opinion of a duly authorized representative of the Air Pollution Control Commission (Division of Air Quality), based upon their investigations and complaints, such odor is objectionable.

3. Control of Air Pollution from Combustion of Refuse 45CSR6 [Not Applicable]

This rule <u>does not apply</u> because there is no refuse combustion performed at the subject facility.

4. Prevent and Control Air Pollution from the Emission of Sulfur Oxides 45CSR10

[Applicable]

This rule does apply and limits the discharge of SO2 to 3.1 lb/hr per million Btu of total design heat input (§45-10-3.1.d).

5. Permits for Construction, Modification, Relocation and Operation of Stationary Sources of Air Pollutants, Notification Requirements, Administrative Updates, **Temporary Permits, General Permits, and Procedures for Evaluation** 45CSR13

[Applicable]

This rule does apply because the increase in VOC emissions is > 6 lb/hr and 10 tpy.

Regulation 45CSR13 is applicable to new sources or modifications that result in an emission increase of:

- 6 lb/hr and 10 tons/yr of any regulated pollutant, or
- 144 lb/day of any regulated pollutant, or
- 2 lb/hr or 5 tons/yr of HAPs.

Appalachia Midstream Services, LLC (AMS) is applying for a 45CSR13 New Source Review Permit Modification and has published the required Class I legal advertisement notifying the public of this application and paid the appropriate application fee.

6. Permits for Construction and Major Modification of Major Stationary Sources of Air Pollutants for Prevention of Significant Deterioration 45CSR14 [Not Applicable]

The rule does not apply because the subject facility is neither a new PSD major source of pollutants nor is the proposed facility a modification to an existing PSD major source.

7. Standards of Performance for New Stationary Sources Pursuant to 40 CFR Part 60 45CSR16 [Applicable]

The rule does apply to this source by reference to §40CFR60 Subparts JJJJ and OOOO. The subject facility is subject to the notification, testing, monitoring, recordkeeping and reporting requirements of these Subparts.

8. Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution Which Cause or Contribute to Nonattainment 45CSR19

[Not Applicable]

This rule does not apply. The subject facility location is designated as "Attainment/ Unclassified" for all criteria pollutants.

9. Regulation of Volatile Organic Compounds (VOC) 45CSR21

[Not Applicable]

This rule does not apply because the subject facility is not located in Putnam County, Kanawha County, Cabell County, Wayne County, or Wood County

10. Air Quality Management Fees Program

45CSR22

This rule <u>does apply</u>. It establishes a program to collect fees for certificates to operate and for permits to construct, modify or relocate sources of air pollution.

11. Prevent and Control Emissions of Toxic Air Pollutants (Best Available Control Technology (BAT)) 45CSR27 [Not Applicable]

This rule <u>does not apply</u> because equipment used in the production and distribution of petroleum products is exempt, provided that the product contains no more than 5%

12. Air Pollution Emissions Banking and Trading

45CSR28

This rule <u>does not apply</u>. Appalachia Midstream Services, LLC (AMS) does not choose to participate in the voluntarily statewide air pollutant emissions trading program.

13. Emission Statements for VOC and NOX

benzene by weight (§45-27-2.4).

45CSR29

This rule <u>does not apply</u> because subject facility is not located in Putnam, Kanawha, Cabell, Wayne, Wood, or Greenbrier Counties (§45-29-1).

14. Requirements for Operating Permits

45CSR30

This rule <u>does apply</u> because the potential to emit VOC is above than the Title V Major Source threshold of 100 tpy (§45-30-4.1.a.2).

15. Emission Standards for Hazardous Air Pollutants (HAP)

45CSR34

This rule <u>does apply</u> because it incorporates by reference the federal air toxic regulations under the NESHAP program (40CFR61 and 40CFR63).

[Applicable]

[Applicable]

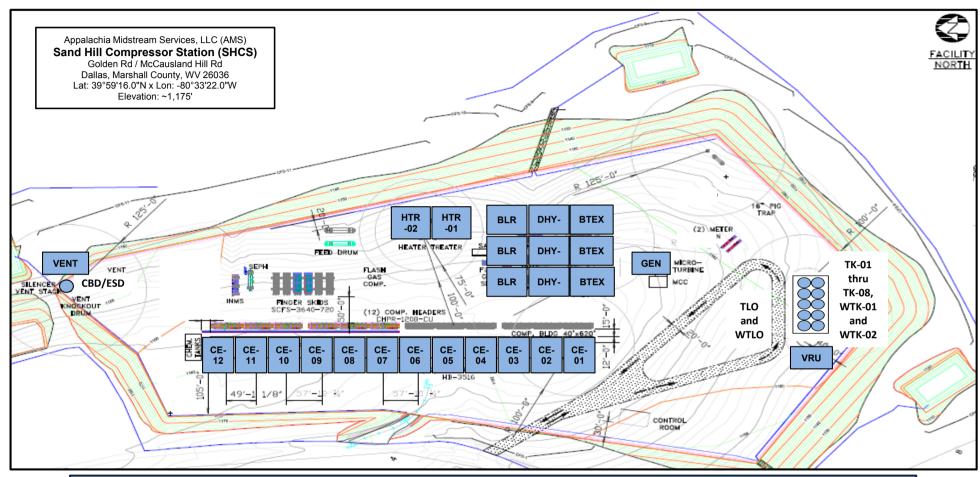
[Applicable]

[Not Applicable]

[Not Applicable]

Attachment E Plot Plan

"21. Provide a **Plot Plan**, e.g. scaled map(s) and/or sketch(es) showing the location of the property on which the stationary source(s) is or is to be located as Attachment E."


• Plot Plan – Sand Hill Compressor Station (SHCS)

Appalachia Midstream Services, LLC (AMS)

Sand Hill Compressor Station (SHCS)

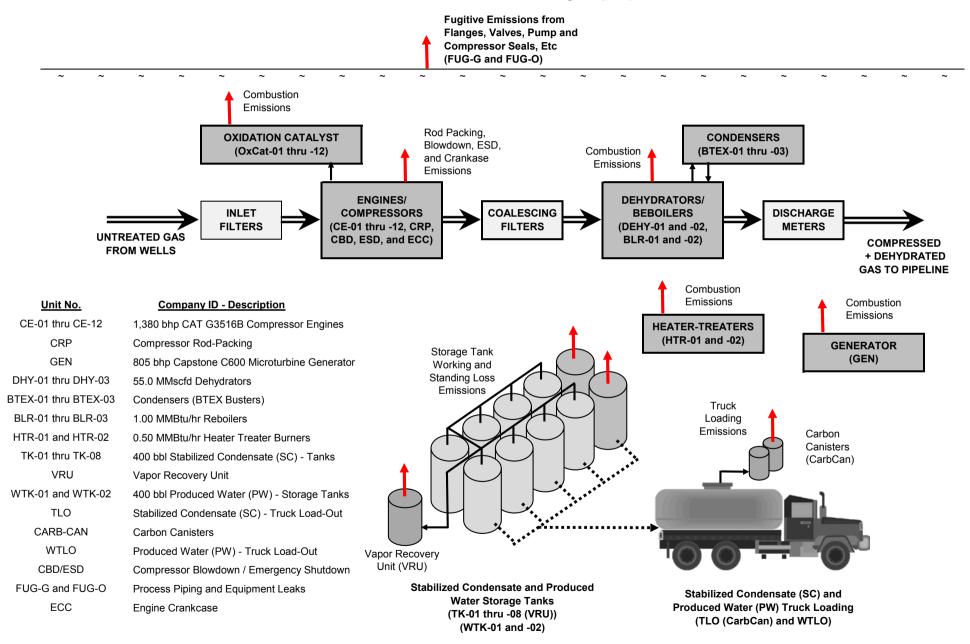
Application for 45CSR13 New Source Review Permit Amenedment (NSR)

Attachment E - Plot Plan

<u>Unit No.</u>	Company ID - Description	<u>Unit No.</u>	Company ID - Description
CE-01 thru CE-12	1,380 bhp CAT G3516B Compressor Engines	VRU	Vapor Recovery Unit
GEN	805 bhp Capstone C600 Microturbine Generator	WTK-01 and WTK-02	400 bbl Produced Water (PW) - Storage Tanks
CRP	Compressor Rod-Packing	TLO	Stabilized Condensate (SC) - Truck Load-Out
DHY-01 thru DHY-03	55.0 MMscfd Dehydrators	CARB-CAN	Carbon Canisters
BTEX-01 thru BTEX-03	Condensers (BTEX Busters)	WTLO	Produced Water (PW) - Truck Load-Out
BLR-01 thru BLR-03	1.00 MMBtu/hr Reboilers	CBD/ESD	Compressor Blowdown / Emergency Shutdown
HTR-01 and HTR-02	0.50 MMBtu/hr Heater Treater Burners	FUG-G and FUG-O	Process Piping and Equipment Leaks
TK-01 thru TK-08	400 bbl Stabilized Condensate (SC) - Tanks	ECC	Engine Crankcase

Attachment F Process Flow Diagram(s) (PFD)

"22. Provide a **Detailed Process Flow Diagram(s)** showing each proposed or modified emissions unit, emission point and control device as Attachment F."


• Process Flow Diagram (PFD) – Sand Hill Compressor Station (SHCS)

Appalachia Midstream Services, LLC (AMS)

Sand Hill Compressor Station (SHCS)

Application for 45CSR13 New Source Review Permit Amendment (NSR)

Attachment F - Process Flow Diagram (PFD)

Attachment G

Process Description

"23. Provide a **Process Description** as Attachment G. Also describe and quantify to the extent possible all changes made to the facility since the last permit review (if applicable)."

• Process Description – Sand Hill Compressor Station (SHCS)

Appalachia Midstream Services, LLC (AMS) Sand Hill Compressor Station (SHCS)

Application for 45CSR13 New Source Review Permit Application (NSR)

Attachment G Process Description

The natural gas inlet stream from surrounding area wells enters the facility at low pressure through a two-phase low-pressure inlet separator that gravity separates the inlet stream into two streams: gas and hydrocarbon/water liquids. Low-pressure inlet gas is compressed via three-stage reciprocating compressors with inter-stage cooling. Discharge from the compressors passes through filter/coalescer-separators to remove any condensed or entrained liquids present.

After the inlet gas passes through compressors, it goes through the dehydration process before exiting the facility via a sales pipeline. A portion of the discharge gas is removed prior to outlet metering for use as fuel gas.

Triethylene glycol (TEG) dehydration units are used to remove water from the gas. The units are comprised of both a glycol contactor skid and a glycol regeneration skid. In the dehydration process, gas passes through a contactor vessel where water is absorbed by the glycol. The "rich" glycol containing water goes to the glycol reboiler where heat is used to remove the water and regenerate the glycol. The heat is supplied by a natural gas-fired reboiler that exhausts to the atmosphere.

Flash tank off-gases from the glycol regeneration skid are routed to the reboiler to be burned as fuel (100% recycle). Overhead still column emissions from the glycol regeneration skid are controlled by an air-cooled condenser. The non-condensables from the still column overheads are also routed to the reboiler and burned with 95% destruction efficiency.

The TEG reboilers are equipped with a burner management system to ensure a constant flame for combustion of the vapors. Any excess vapors not burned as fuel is recycled or recompressed for 100% control efficiency.

After dehydration, fuel gas is pulled from the discharge side of the process. A fuel gas skid (not an emission source) reduces the pressure of a portion of the discharge gas to a pressure suitable for use by fuel-burning equipment.

Inlet liquids will flow from the two-phase low-pressure inlet separator to a heater-treater feed drum, a three-phase low pressure separator. Heavy liquids (water) will be separated and sent to atmospheric produced water storage tanks. Produced water will be transported off site via truck. Liquid hydrocarbons (condensate) will flow from the feed drum to the heater treater.

Any vapors evolved from the liquid to the feed drum will be routed to the electric-driven flash gas compressor and recycled to the two-phase low-pressure inlet separator. After stabilization, condensate will be sent to atmospheric condensate storage tanks. The stabilized condensate storage tanks include vapor recovery unit (VRU) which operates at a minimum of 95% control efficiency.

Produced water and stabilized condensate will be transported off site via truck. Vapors evolved from truck loading stabilized condensate are routed to carbon canisters for VOC recovery with 70% collection effectiveness and 95% control efficiency (66.5% combined).

The facility has several liquid recycle streams to reduce emissions. All high-pressure liquids are cascaded to lower pressure separators to capture gases evolved as a result of pressure reduction. All liquids formed by gas cooling in the inter-stage coolers of the three-stage reciprocating compressors are cascaded to lower pressure scrubbers on the compressor skid.

The facility also has several gas recycle streams. All condensate storage tank emissions are controlled 95% by vapor recovery compression. The vapor recovery compressors discharge in the flash gas compressor. The flash gas compressor compresses these gases and discharge into the two-phase low-pressure inlet separator. Overhead gases from the heater-treater feed drum and heater treater are routed to the flash gas compressor and recycled to the two-phase low-pressure inlet separator.

The generator provides electric power to the vapor recovery and flash gas compressors, electric glycol pumps, and other electrical equipment. Fugitive emissions from component leaks will also occur.

Please note that the compressor station will have two primary suction pressure operating points, 125 psig and 50 psig. The expected discharge pressure range is 900 - 1,200 psig. The facility initially operates at 125 psig suction pressure and will continue to do so until such time that field production volumes decline. At that time, the suction pressure will be lowered to 50 psig, resulting in a diminished facility capacity.

Attachment H

Safety Data Sheets (SDS) (And Representative Gas Analysis)

"24. Provide **Safety Data Sheets (SDS)** for all materials processed, used or produced as Attachment H. For chemical processes, provide a SDS for each compound emitted to the air."

• SAFETY DATA SHEETS (SDS):

Williams Safety Data Sheets (SDS) provide detailed information needed to use the products in a safe and environmentally acceptable manner and meet local, state and federal requirements.

Copies of SDS can be accessed at: <u>http://co.williams.com/safety/safety-data-sheets/</u>

- Butane, Normal
- Carbon Dioxide
- Crude Butadiene
- Debutanized Aromatic Concentrate
- Demethanized-Mix Y Grade
- Ethane/Propane Mix
- Ethane Purity
- Ethylene
- Isobutane
- Liquid Natural Gas LNG
- Mixed Butane
- Natural Gas Condensate Sour
- Natural Gas Condensate Sweet
- Natural Gas Liquids NGL
- Natural Gas
- Natural Gasoline
- Propane
- Propylene Polymer Grade
- Reclaimed Methanol
- Rich Water
- Wellhead Natural Gas

Attachment I Emission Units Table

"25. Fill out the Emission Units Table and provide it as ATTACHMENT I."

• Emission Unit Table – Sand Hill Compressor Station (SHCS)

Attachment I EMISSION UNITS TABLE

(Include all emission units and air pollution control devices

that will be part of this permit application review, regardless of permitting status.)

Emission Unit ID ¹	Emission Point ID ²	Source ID	Emission Unit Description	Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
EUCE-1	EPCE-1	CE-01	Compressor Engine 01 - CAT G3516B (OxCat)	'12/'18	1,380 bhp	Modified	OxCat-01
EUCE-2	EPCE-2	CE-02	Compressor Engine 02 - CAT G3516B (OxCat)	'12/'18	1,380 bhp	Modified	OxCat-02
EUCE-3	EPCE-3	CE-03	Compressor Engine 03 - CAT G3516B (OxCat)	'12/'18	1,380 bhp	Modified	OxCat-03
EUCE-4	EPCE-4	CE-04	Compressor Engine 04 - CAT G3516B (OxCat)	'12/'18	1,380 bhp	Modified	OxCat-04
EUCE-5	EPCE-5	CE-05	Compressor Engine 05 - CAT G3516B (OxCat)	'12/'18	1,380 bhp	Modified	OxCat-05
EUCE-6	EPCE-6	CE-06	Compressor Engine 06 - CAT G3516B (OxCat)	'12/'18	1,380 bhp	Modified	OxCat-06
EUCE-7	EPCE-7	CE-07	Compressor Engine 07 - CAT G3516B (OxCat)	'12/'18	1,380 bhp	Modified	OxCat-07
EUCE-8	EPCE-8	CE-08	Compressor Engine 08 - CAT G3516B (OxCat)	'12/'18	1,380 bhp	Modified	OxCat-08
EUCE-9	EPCE-9	CE-09	Compressor Engine 09 - CAT G3516B (OxCat)	'12/'18	1,380 bhp	Modified	OxCat-09
EUCE-10	EPCE-10	CE-10	Compressor Engine 10 - CAT G3516B (OxCat)	'12/'18	1,380 bhp	Modified	OxCat-10
EUCE-11	EPCE-11	CE-11	Compressor Engine 11 - CAT G3516B (OxCat)	'12/'18	1,380 bhp	Modified	OxCat-11
EUCE-12	EPCE-12	CE-12	Compressor Engine 12 - CAT G3516B (OxCat)	'12/'18	1,380 bhp	Modified	OxCat-12
EUCRP	EPCRP	CRP	Compressor Rod Packing	'12/'18	12 Units	Modified	
EUGEN-1	EPGEN-1	GEN	Generator - Capstone C600 Microturbine	'12/'18	805 bhp	Modified	
EUDHY-1	EPSTL-1	DHY-01	Dehydrator 01 (BTEX Buster)	'12/'18	55.0 MMscfd	Modified	BTEX-01
EUDHY-2	EPSTL-2	DHY-02	Dehydrator 02 (BTEX Buster)	'12/'18	55.0 MMscfd	Modified	BTEX-02
EUDHY-3	EPSTL-3	DHY-03	Dehydrator 03 (BTEX Buster)	'12/'18	55.0 MMscfd	Modified	BTEX-03
EURBL-1	EPRBL-1	BLR-01	Reboiler 01	'12/'18	1.00 MMBtu/hr	Modified	
EURBL-2	EPRBL-2	BLR-02	Reboiler 02	'12/'18	1.00 MMBtu/hr	Modified	
EURBL-3	EPRBL-3	BLR-03	Reboiler 03	'12/'18	1.00 MMBtu/hr	Modified	
EUHT-1	EPHT-1	HTR-01	Heater-Treater Burner 01	'12/'18	0.50 MMBtu/hr	Modified	
EUHT-2	EPHT-2	HTR-02	Heater-Treater Burner 02	'12/'18	0.50 MMBtu/hr	Modified	
EUTK-1	EPTK-1	TK-01	Storage Tank 01 - Stabilized Condensate (SC) (VRU)	'12/'18	400 bbl	Modified	VRU
EUTK-2	EPTK-2	TK-02	Storage Tank 02 - Stabilized Condensate (SC) (VRU)	'12/'18	400 bbl	Modified	VRU
EUTK-3	EPTK-3	TK-03	Storage Tank 03 - Stabilized Condensate (SC) (VRU)	'12/'18	400 bbl	Modified	VRU
EUTK-4	EPTK-4	TK-04	Storage Tank 04 - Stabilized Condensate (SC) (VRU)	'12/'18	400 bbl	Modified	VRU
EUTK-5	EPTK-5	TK-05	Storage Tank 05 - Stabilized Condensate (SC) (VRU)	'12/'18	400 bbl	Modified	VRU
EUTK-6	EPTK-6	TK-06	Storage Tank 06 - Stabilized Condensate (SC) (VRU)	'12/'18	400 bbl	Modified	VRU
EUTK-7	EPTK-7	TK-07	Storage Tank 07 - Stabilized Condensate (SC) (VRU)	'12/'18	400 bbl	Modified	VRU
EUTK-8	EPTK-8	TK-08	Storage Tank 08 - Stabilized Condensate (SC) (VRU)	'12/'18	400 bbl	Modified	VRU
EUWTK-9	EPWTK-9	WTK-01	Storage Tank W01 - Produced Water (PW)	'12/'18	400 bbl	Modified	
EUWTK-10	EPWTK-10	WTK-02	Storage Tank W02 - Produced Water (PW)	'12/'18	400 bbl	Modified	
EULOAD-1	EPLOAD-1	TLO	Truck Loading - Stabilized Condensate (SC) (CarbCan)	'12/'18	9,965 Mgal/yr	Modified	CarbCan
EULOAD-2	EPLOAD-2	WTLO	Truck Loading - Produced Water (PW)	'12/'18	1,533 Mgal/yr	Modified	
EUBD	EPBD	CBD/ESD	Compressor Blowdown/Emergency Shutdown Tests	'12/'18	1,249 events/yr	Modified	
ELIEUC	EDEUC	FUG-G	Piping & Equip Leaks - Gas	'12/'18	7,472 Units	Modified	
EUFUG	EPFUG	FUG-O	Piping & Equip Leaks - Light Liquid	'12/'18	3,407 Units	Modified	
EUECC	EPECC	ECC	Engine Crankcase Fugitives	'12/'18	17,365 bhp	Modified	

¹ For Emission Units (or <u>Sources</u>) use the following numbering system: 1S, 2S, 3S, ... or other appropriate designation.

² For Emission Points use the following numbering system: 1E, 2E, 3E, ... or other appropriate designation.

³New, modification, removal, etc.

⁴ For Control Devices use the following numbering system: 1C, 2C, 3C, ... or other appropriate designation.

Attachment J

Emission Points Data Summary Sheet

"26. Fill out the **Emission Points Data Summary Sheet** (Table 1 and Table 2) and provide it as Attachment J."

• Table 1 – Emissions Data

- Compressor Engines 1,380 bhp CAT G3516B (CE-01 thru CE-12)
- Microturbine Generator 805 bhp Capstone C600 (GEN)
- Compressor Rod Packing (CRP)
- Emergency Shutdown Testing (ESD)
- Dehydrators 55.0 MMscfd (DHY-01 thru DHY-03)
- Reboilers 1.00 MMscfd (BLR-01 thru BLR-03)
- Heater Treater 0.50 MMBtu/hr (HTR-01 and HTR-02)
- Stabilized Condensate (SC) 400 bbl Storage tanks (TK-01 thru TK-08)
- Produced Water (PW) Storage Tanks (WTK-01 and WTK-02)
- Stabilized Condensate (SC) Truck Loading (TLO)
- Produced Water (PW) Truck Loading (WTLO)
- Pigging Operations (PIG)
- PLANT-WIDE SUMMARY w/o Fugitives
- PLANT-WIDE SUMMARY <u>with Fugitives</u>
- Table 2 Release Parameter Data

						Τa	able 1: Em	issions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emissior Vented Th This Po <i>(Must m</i> <i>Emission</i> Table & Ple	hrough oint hatch hatch	Air Pol Control (Must I Emissio Table & F	Device match n Units	Vent T Emissi (Che process	on Unit <i>mical</i>	All Regulated Pollutants - Chemical Name/CAS ³ <i>(Speciate VOCs</i> & HAPS)	Pote Uncor	mum ential htrolled sions ⁴	Pote Cont	imum ential rolled sions⁵	Emission Form or Phase (At exit conditions, Solid, Liquid or	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmvd or mg/m ³)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAF 3)	lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)		
								NOX	1.52	6.66	1.52	6.66	Gas	Vendor	
		C	-		. 40			CO	9.07	39.71	1.36	5.96	Gas	Vendor	
		1,380 bhp C		gine 01 thru SB (w/ OxCa				NMNEHC	3.29	14.39	0.82	3.60	Gas	Vendor	
		1,000 5110 0						VOC	4.62	20.25	0.98	4.28	Gas	Vendor	
								PM10/2.5	0.11	0.49	0.11	0.49	S/L/G	AP-42	
								SO2	0.01	0.03	0.01	0.03	Gas	AP-42	
								Acetaldehyde	0.09	0.41	0.02	0.10	Gas	AP-42	
								Acrolein	0.06	0.25	0.01	0.06	Gas	AP-42	
EPCE-1		EUCE-1	CE-01	OxCat-01				Benzene	5E-03	0.02	1E-03	5E-03	Gas	AP-42	
EPCE-2		EUCE-2	CE-02	OxCat-02				Butadiene	3E-03	0.01	7E-04	3E-03	Gas	AP-42	
EPCE-3		EUCE-3	CE-03	OxCat-03				Ethylbenzene	4E-04	2E-03	1E-04	5E-04	Gas	AP-42	
EPCE-4 EPCE-5		EUCE-4 EUCE-5	CE-04 CE-05	OxCat-04 OxCat-05				НСНО	1.19	5.20	0.12	0.52	Gas	Vendor	
EPCE-6	Upward	EUCE-6	CE-05 CE-06	OxCat-05 OxCat-06		0	0 700	n-Hexane	0.01	0.05	3E-03	0.01	Gas	AP-42	
EPCE-7	Vertical Stack	EUCE-7	CE-07	OxCat-07	OxCat	С	8,760	Methanol	0.03	0.12	0.01	0.03	Gas	AP-42	
EPCE-8 EPCE-9	Oldon	EUCE-8 EUCE-9	CE-08 CE-09	OxCat-08 OxCat-09	(Each)	(Each)	(Each)	POM	4E-03	0.02	1E-03	4E-03	Gas	AP-42	
EPCE-9 EPCE-10	(Each)	EUCE-9	CE-09 CE-10	OxCat-09 OxCat-10				Toluene	5E-03	0.02	1E-03	5E-03	Gas	AP-42	
EPCE-11		EUCE-11	CE-11	OxCat-11				2,2,4-TMP	3E-03	0.01	7E-04	3E-03	Gas	AP-42	
EPCE-12		EUCE-12	CE-12	OxCat-12				Xylenes	2E-03	0.01	5E-04	2E-03	Gas	AP-42	
(Each)		(Each)	(Each)	(Each)				Other HAP	4E-03	0.02	9E-04	4E-03	Gas	AP-42	
(Euch)		(Luon)	(Edon)	(Luon)				Total HAP	1.40	6.15	0.17	0.76	Gas	Sum	
								CO2	1,552	6,796	1,552	6,796	Gas	Vendor	
								CH4	14.04	61.49	14.04	61.49	Gas	Vendor	
								N2O	2E-03	0.01	2E-03	0.01	Gas	CFR98	
								CO2e	1,903	8,336	1,903	8,336	Gas	Sum	

						Τa	able 1: Em	issions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emission Vented Th This Po <i>(Must m</i> <i>Emission</i> Table & Ple	nrough oint <i>atch</i> <i>Units</i>	Air Pol Control (Must I Emissio Table & F	Device match n Units			All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)	Pote Uncor	mum ential htrolled sions ⁴	Pote Cont	mum ential rolled sions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid or	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmvd or mg/m ³)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAFS)	lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)		
								NOX	0.48	2.10	0.48	2.10	Gas	Vendor	
			Generator	Turbina				CO	1.32	5.78	1.32	5.78	Gas	Vendor	
				stone C600				NMNEHC	0.12	0.53	0.12	0.53	Gas	Vendor	
			sub eab					VOC	0.13	0.57	0.13	0.57	Gas	Vendor	
								PM10/2.5	0.05	0.20	0.05	0.20	S/L/G	AP-42	
								SO2	0.00	0.02	0.00	0.02	Gas	AP-42	
								Acetaldehyde	5E-04	2E-03	5E-04	2E-03	Gas	AP-42	
								Acrolein	9E-05	4E-04	9E-05	4E-04	Gas	AP-42	
								Benzene	2E-04	7E-04	2E-04	7E-04	Gas	AP-42	
								Butadiene	6E-06	3E-05	6E-06	3E-05	Gas	AP-42	
								Ethylbenzene	4E-04	2E-03	4E-04	2E-03	Gas	AP-42	
								НСНО	0.01	0.04	0.01	0.04	Gas	AP-42	
	Linuard							n-Hexane					Gas	AP-42	
EPGEN-01	Upward Vertical	EUGEN-01	GEN	na	na	С	8,760	Methanol					Gas	AP-42	
	Stack		02.1			C C	0,100	POM	4E-04	0.00	4E-04	2E-03	Gas	AP-42	
								Toluene	2E-03	0.01	2E-03	8E-03	Gas	AP-42	
								2,2,4-TMP					Gas	AP-42	
								Xylenes	9E-04	4E-03	9E-04	4E-03	Gas	AP-42	
								Other HAP	4E-04	2E-03	4E-04	2E-03	Gas	AP-42	
								Total HAP	0.01	0.06	0.01	0.06	Gas	Sum	
								CO2	798	3,494	798	3,494	Gas	Vendor	
								CH4	0.12	0.52	0.12	0.52	Gas	AP-42	
								N2O	0.02	0.09	0.02	0.09	Gas	AP-42	
								CO2e	807	3,534	807	3,534	Gas	Sum	

						Та	able 1: Em	issions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emissior Vented Th This Po <i>(Must m</i> Emission Table & Plo	nrough oint vatch Units	Air Pol Control (Must I Emissio Table & F	Device match n Units	Vent T Emissi (Chei process	on Unit <i>mical</i>	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)	Pote Uncor	mum ential htrolled sions⁴	Pote Cont	imum ential rolled sions⁵	Emission Form or Phase (At exit conditions, Solid, Liquid or	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmvd or mg/m ³)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAF SJ	lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)		
								NOX					Gas		
		C			h			CO					Gas		
		Compress	Eac	acking 01 t	nru 12			NMNEHC	0.82	3.60	0.82	3.60	Gas		
			(200	,				VOC	0.82	3.60	0.82	3.60	Gas	Vendor	
								PM10/2.5					S/L/G		
								SO2					Gas		
								Acetaldehyde					Gas		
								Acrolein					Gas		
EPCRP-1		EUCRP-1	CRP-01					Benzene	1E-03	0.01	1E-03	0.01	Gas	MB	
EPCRP-2		EUCRP-2	CRP-02					Butadiene					Gas		
EPCRP-3		EUCRP-3	CRP-03					Ethylbenzene	1E-03	0.01	1E-03	0.01	Gas	MB	
EPCRP-4 EPCRP-5		EUCRP-4 EUCRP-5	CRP-04 CRP-05					НСНО					Gas		
EPCRP-6		EUCRP-6	CRP-06			0	0 700	n-Hexane	0.02	0.09	0.02	0.09	Gas	MB	
EPCRP-7	Upward Vertical	EUCRP-7	CRP-07	na	na	С	8,760	Methanol					Gas		
EPCRP-8 EPCRP-9	Stack	EUCRP-8 EUCRP-9	CRP-08 CRP-09	na	na	(Each)	(Each)	POM					Gas		
EPCRP-10		EUCRP-10	CRP-09 CRP-10					Toluene	1E-03	0.01	1E-03	0.01	Gas	MB	
EPCRP-11		EUCRP-11	CRP-11					2,2,4-TMP	1E-03	0.01	1E-03	0.01	Gas	MB	
EPCRP-12		EUCRP-12	CRP-12					Xylenes	1E-03	0.01	1E-03	0.01	Gas	MB	
(Each)		(Each)	(Each)					Other HAP					Gas		
()		()	()					Total HAP	0.03	0.12	0.03	0.12	Gas	Sum	
								CO2	0.01	0.04	0.01	0.04	Gas	MB	
								CH4	1.90	8.32	1.90	8.32	Gas	MB	
								N2O					Gas		
								CO2e	47.48	208	47.48	208	Gas	Sum	

						Τa	able 1: Em	issions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emissior Vented Th This Po (Must m Emission Table & Plo	nrough oint atch Units	Air Po Control (Must i Emissio Table & F	Device match n Units	Emissi	ime for on Unit <i>mical</i> es only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Pote Uncor	mum ential htrolled sions⁴	Pote Cont	imum ential rolled sions⁵	Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmvd or mg/m ³)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)		
								NOX					Gas		
		Compr	aaaar Bla	udouro (Cl	חכ			СО					Gas		
		Compr	essor Бю (Eac	wdown (Cl :h)	(שב			NMNEHC	28.31	1.47	28.31	1.47	Gas	MB	
			(,				VOC	28.31	1.47	28.31	1.47	Gas	MB	
								PM10/2.5					S/L/G		
								SO2					Gas		
								Acetaldehyde					Gas		
								Acrolein					Gas		
EPCBD-1		EUCBD-1	CBD-01					Benzene	0.05	2E-03	0.05	2E-03	Gas	MB	
EPCBD-2		EUCBD-2	CBD-02					Butadiene					Gas		
EPCBD-3		EUCBD-3	CBD-03					Ethylbenzene	0.05	2E-03	0.05	2E-03	Gas	MB	
EPCBD-4 EPCBD-5		EUCBD-4 EUCBD-5	CBD-04 CBD-05					НСНО					Gas		
EPCBD-6	Linuard	EUCBD-6	CBD-06			с	8,760	n-Hexane	0.71	0.04	0.71	0.04	Gas	MB	
EPCBD-7	Upward Vertical	EUCBD-7	CBD-07	na	na	C	0,700	Methanol					Gas		
EPCBD-8 EPCBD-9	Stack	EUCBD-8 EUCBD-9	CBD-08 CBD-09			(Each)	(Each)	POM					Gas		
EPCBD-10		EUCBD-10	CBD-00 CBD-10					Toluene	0.05	2E-03	0.05	2E-03	Gas	MB	
EPCBD-11		EUCBD-11	CBD-11					2,2,4-TMP	0.05	2E-03	0.05	2E-03	Gas	MB	
EPCBD-12		EUCBD-12	CBD-12					Xylenes	0.05	2E-03	0.05	2E-03	Gas	MB	
(Each)		(Each)	(Each)					Other HAP					Gas		
(,		(,	(Total HAP	0.95	0.05	0.95	0.05	Gas	Sum	
								CO2	0.29	0.01	0.29	0.01	Gas	MB	
								CH4	65.36	3.40	65.36	3.40	Gas	MD	
								N2O					Gas		
								CO2e	1,634	84.98	1,634	84.98		Sum	

						Та	ble 1: Em	issions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emission Vented Ti This P <i>(Must m</i> Emission Table & Pl	hrough oint hatch hatch	Air Po Control (Must i Emissio Table & F	Device match n Units	Vent Ti Emissio (Chei processio	on Unit <i>mical</i>	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Pote	mum ential htrolled sions⁴	Pote Cont	imum ential rolled sions⁵	Emission Form or Phase (At exit conditions, Solid, Liquid or	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmvd or mg/m ³)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)		
								NOX					Gas		
		F		(500) 7	· · · · · ·			CO					Gas		
		(Subset of C		wn (ESD) T or Bowdow				NMNEHC		7.27		7.27	Gas	MB	
			, empresses	or Borraon				VOC		7.27		7.27	Gas	MB	
								PM10/2.5					S/L/G		
								SO2					Gas		
								Acetaldehyde					Gas		
								Acrolein					Gas		
								Benzene		0.01		0.01	Gas	MB	
								Butadiene					Gas		
								Ethylbenzene		0.01		0.01	Gas	MB	
								НСНО					Gas		
ESD		ESD	ESD					n-Hexane		0.18		0.18	Gas	MB	
	Upward Vertical			na	na	1	na	Methanol					Gas		
(Subset	Stack	(Subset of CBD)	(Subset of CBD)	na	na	event/yr	na	POM					Gas		
of CBD)								Toluene		0.01		0.01	Gas	MB	
								2,2,4-TMP		0.01		0.01	Gas	MB	
								Xylenes		0.01		0.01	Gas	MB	
								Other HAP					Gas		
								Total HAP		0.24		0.24	Gas	Sum	
								CO2		0.07		0.07	Gas	MB	
								CH4		16.79		16.79	Gas	MD	
								N2O					Gas		
								CO2e		420		420	Gas	Sum	

						Та	able 1: Em	nissions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emission Vented Tl This P <i>(Must m</i> Emission Table & Pl	hrough oint hatch hatch	Air Pol Control (Must r Emissio Table & F	Device match n Units	Emissi	ime for on Unit <i>mical</i> es only)	All Regulated Pollutants - Chemical Name/CAS ³ <i>(Speciate</i> <i>VOCs</i> & HAPS)	Pote Uncor	mum ential htrolled sions⁴	Pote Cont	imum ential rrolled sions⁵	Emission Form or Phase (At exit conditions, Solid, Liquid or	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmvd or mg/m ³)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	« ПАРЗ)	lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)		
								NOX			See	BLR-01 th	ru BLR-03		
		De	hydrator	01 thru 03				СО			See	BLR-01 th	ru BLR-03		
	55.0	MMscfd (w/	-		cycle/Recl	aim)		NMNEHC	52.27	228.93	1.79	7.85	Gas	GLYCalc	
			(Eac	h)				VOC	52.27	228.93	1.79	7.85	Gas	GLYCalc	
								PM10/2.5			See	BLR-01 th	ru BLR-03		
								SO2			See	BLR-01 th	ru BLR-03		
								Acetaldehyde			See	BLR-01 th	ru BLR-03		
								Acrolein			See	BLR-01 th	ru BLR-03		
								Benzene	1.75	7.66	0.06	0.27	Gas	GLYCalc	
								Butadiene			See	BLR-01 th	ru BLR-03		
								Ethylbenzene	0.32	1.41	4E-03	0.02	Gas	GLYCalc	
								НСНО			See	BLR-01 th	ru BLR-03		
EPDHY-1	Upward	EUDHY-1	DHY-01	BTEX-01	Cond/			n-Hexane	2.30	10.07	0.09	0.40	Gas	GLYCalc	
EPDHY-2 EPDHY-3	Vertical Stack	EUDHY-2 EUDHY-3	DHY-02 DHY-03	BTEX-02 BTEX-03	Comb	С	8,760	Methanol			See	BLR-01 th	ru BLR-03		
	Oldek	LODITI-5	DITI-00	DILA-00	(Each)	(Each)	(Each)	POM		-	See	BLR-01 th	ru BLR-03	-	-
(Each)	(Each)	(Each)	(Each)	(Each)	(Each)	. ,		Toluene	4.42	19.35	0.10	0.43	Gas	GLYCalc	
								2,2,4-TMP	0.23	1.00	2E-03	1E-02	Gas	GLYCalc	
								Xylenes	3.79	16.58	0.04	0.17	Gas	GLYCalc	
								Other HAP			See	BLR-01 th	ru BLR-03		
								Total HAP	12.80	56.07	0.30	1.30	Gas	Sum	
								CO2	0.58	2.54	0.58	2.54	Gas	GLYCalc	
								CH4	1.76	7.73	0.09	0.39	Gas	GLYCalc	
								N2O			(GRI-GLYC	alc 4.0		
								CO2e	44.70	195.78	2.79	12.20	Gas	Sum	

						Τa	able 1: Em	issions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emission Vented Tl This P (Must m Emission Table & Pl	hrough oint hatch haunits	Air Po Control (Must i Emissio Table & F	Device match n Units			All Regulated Pollutants - Chemical Name/CAS ³ <i>(Speciate VOCs</i> & HAPS)	Pote Uncor	mum ential htrolled sions⁴	Pote Cont	mum ential rolled sions⁵	Emission Form or Phase (At exit conditions, Solid, Liquid or	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmvd or mg/m ³)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	« ПАРЗ)	lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)		
								NOX	0.10	0.43	0.10	0.43	Gas	AP-42	
			Reboiler 01	1 thru 03				CO	0.08	0.36	0.08	0.36	Gas	AP-42	
				/hr (Each)				NMNEHC	0.01	0.02	0.01	0.02	Gas	AP-42	
				(VOC	0.01	0.02	0.01	0.02	Gas	AP-42	
								PM10/2.5	0.01	0.03	0.01	0.03	S/L/G	AP-42	
								SO2	6E-04	3E-03	6E-04	3E-03	Gas	AP-42	
								Acetaldehyde					Gas	AP-42	
								Acrolein					Gas	AP-42	
								Benzene	2E-06	9E-06	2E-06	9E-06	Gas	AP-42	
								Butadiene					Gas	AP-42	
								Ethylbenzene					Gas	AP-42	
								НСНО	7E-05	3E-04	7E-05	3E-04	Gas	AP-42	
EPRBL-1 EPRBL-2	Upward Vertical	EURBL-1 EURBL-2	BLR-01 BLR-02			С	8,760	n-Hexane	2E-03	8E-03	2E-03	8E-03	Gas	AP-42	
EPRBL-3	Stack	EURBL-3	BLR-02	na	na	C	0,700	Methanol					Gas	AP-42	
						(Each)	(Each)	POM	7E-07	3E-06	7E-07	3E-06	Gas	AP-42	
(Each)	(Each)	(Each)	(Each)					Toluene	3E-06	1E-05	3E-06	1E-05	Gas	AP-42	
								2,2,4-TMP					Gas	AP-42	
								Xylenes					Gas	AP-42	
								Other HAP	1E-06	5E-06	1E-06	5E-06	Gas	AP-42	
								Total HAP	2E-03	8E-03	2E-03	0.01	Gas	Sum	
								CO2	118	515	118	515	Gas	AP-42	
								CH4	2E-03	0.01	2E-03	0.01	Gas	AP-42	
								N2O	2E-03	0.01	2E-03	0.01	Gas	AP-42	
								CO2e	118	518	118	518	Gas WVDEP-DA	Sum	

						Τa	able 1: Em	issions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emission Vented Tl This P (Must m Emission Table & Pl	hrough oint hatch hatch	Air Po Control (Must i Emissio Table & F	Device match n Units	Emissi	mical	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)	Pote Uncor	mum ential htrolled sions⁴	Pote Cont	mum ential rolled sions⁵	Emission Form or Phase (At exit conditions, Solid, Liquid or	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmvd or mg/m ³)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	« парз)	lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)		
								NOX	0.06	0.21	0.06	0.21	Gas	AP-42	
								CO	0.05	0.18	0.05	0.18	Gas	AP-42	
				r 01 and 02 /hr (Each)	2			NMNEHC	3E-03	0.01	3E-03	0.01	Gas	AP-42	
		0						VOC	3E-03	0.01	3E-03	0.01	Gas	AP-42	
								PM10/2.5	5E-03	0.02	5E-03	0.02	S/L/G	AP-42	
								SO2	4E-04	1E-03	4E-04	1E-03	Gas	AP-42	
								Acetaldehyde					Gas	AP-42	
								Acrolein					Gas	AP-42	
								Benzene	1E-06	5E-06	1E-06	5E-06	Gas	AP-42	
								Butadiene					Gas	AP-42	
								Ethylbenzene					Gas	AP-42	
								НСНО	5E-05	2E-04	5E-05	2E-04	Gas	AP-42	
EPHT-1	Upward	EUHT-1	HTR-01					n-Hexane	1E-03	4E-03	1E-03	4E-03	Gas	AP-42	
EPHT-2	Vertical Stack	EUHT-2	HTR-02	na	na	С	8,760	Methanol					Gas	AP-42	
	Older			na	na	(Each)	(Each)	POM	4E-07	1E-06	4E-07	1E-06	Gas	AP-42	
(Each)	(Each)	(Each)	(Each)			· · ·	. ,	Toluene	2E-06	7E-06	2E-06	7E-06	Gas	AP-42	
								2,2,4-TMP					Gas	AP-42	
								Xylenes					Gas	AP-42	
								Other HAP	7E-07	3E-06	7E-07	3E-06	Gas	AP-42	
								Total HAP	1E-03	4E-03	1E-03	4E-03	Gas	Sum	
								CO2	72	258	72	258	Gas	AP-42	
								CH4	1E-03	5E-03	1E-03	5E-03	Gas	AP-42	
								N2O	1E-03	5E-03	1E-03	5E-03	Gas	AP-42	
								CO2e	59	259	59	259	Gas	Sum	

						Та	able 1: Em	issions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emission Vented Tl This P (Must m Emission Table & Pl	hrough oint natch natrits	Air Po Control (Must i Emissio Table & F	Device match n Units	Vent T Emissi (Che process	on Unit <i>mical</i>	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)	Pote Uncor	mum ential htrolled sions ⁴	Pote Cont	imum ential rrolled sions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid or	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmvd or mg/m ³)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& <i>ПАГЗ</i>)	lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)		
								NOX					Gas		
	0	tabilized Ca	- down of a		04.46	0		CO					Gas		
	5	tabilized Cor	400 bbl		01 thru 08	5		NMNEHC	0.77	3.37	0.04	0.17	Gas	EPA	
			400 551	Luon				VOC	0.77	3.37	0.04	0.17	Gas	EPA	
								PM10/2.5					S/L/G		
								SO2					Gas		
								Acetaldehyde					Gas		
								Acrolein					Gas		
								Benzene	0.02	0.07	8E-04	0.00	Gas	MB	
								Butadiene					Gas		
EPTK-1		EUTK-1	TK-01	VRU-01				Ethylbenzene	0.02	0.07	8E-04	0.00	Gas	MB	
EPTK-2 EPTK-3		EUTK-2 EUTK-3	TK-02 TK-03	VRU-01 VRU-01				НСНО					Gas		
EPTK-4	Upward	EUTK-3	TK-03	VRU-01		0	0 700	n-Hexane	0.15	0.67	0.01	0.03	Gas	MB	
EPTK-5	Vertical Stack	EUTK-5	TK-05	VRU-01	VRU	С	8,760	Methanol					Gas		
EPTK-6 EPTK-7	Oldok	EUTK-6 EUTK-7	TK-06 TK-07	VRU-01 VRU-01	VILO	(Each)	(Each)	POM					Gas		
EPTK-7 EPTK-8	(Each)	EUTK-7 EUTK-8	TK-07 TK-08	VRU-01 VRU-01				Toluene	0.02	0.07	8E-04	0.00	Gas	MB	
								2,2,4-TMP	0.02	0.07	8E-04	0.00	Gas	MB	
(Each)		(Each)	(Each)	(Each)				Xylenes	0.02	0.07	8E-04	0.00	Gas		
								Other HAP					Gas		
								Total HAP	0.23	1.01	0.01	0.05	Gas	Sum	
								CO2					Gas	MB	
								CH4					Gas	MB	
								N2O					Gas		
								CO2e					Gas	Sum	

						Та	able 1: Em	issions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emission Vented Th This P (Must m Emission Table & Pl	hrough oint hatch Units	Air Po Control (Must i Emissio Table & F	Device match n Units			All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Pote Uncor	mum ential htrolled sions⁴	Pote Cont	imum ential rolled sions⁵	Emission Form or Phase (At exit conditions, Solid, Liquid or	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmvd or mg/m ³)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)		
								NOX					Gas		
		Dueduced		0 Taulas 04	a			CO					Gas		
		Produced V	400 bbl		and 02			NMNEHC	0.01	0.03	0.01	0.03	Gas	EPA	
			400 551	Luch				VOC	0.01	0.03	0.01	0.03	Gas	EPA	
								PM10/2.5					S/L/G		
								SO2					Gas		
								Acetaldehyde					Gas		
								Acrolein					Gas		
								Benzene	1E-04	6E-04	1E-04	6E-04	Gas	MB	
								Butadiene					Gas		
								Ethylbenzene	1E-04	6E-04	1E-04	6E-04	Gas	MB	
								НСНО					Gas		
EPWTK-1	Upward	EUWTK-1	WTK-01				0 700	n-Hexane	1E-03	6E-03	1E-03	6E-03	Gas	MB	
EPWTK-2	Vertical Stack	EUWTK-2	WTK-02	na	na	С	8,760	Methanol					Gas		
(Fach)	Oldok	(Each)	(Each)	na	na	(Each)	(Each)	POM					Gas		
(Each)	(Each)	(Each)	(Each)			. ,	. ,	Toluene	1E-04	6E-04	1E-04	6E-04	Gas	MB	
								2,2,4-TMP	1E-04	6E-04	1E-04	6E-04	Gas	MB	
								Xylenes	1E-04	6E-04	1E-04	6E-04	Gas		
								Other HAP					Gas		
								Total HAP	2E-03	0.01	2E-03	9E-03	Gas	Sum	
								CO2					Gas	MB	
								CH4					Gas	MB	
								N2O					Gas		
								CO2e					Gas	Sum	

						Та	able 1: Em	issions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emissior Vented Th This Po <i>(Must m</i> <i>Emission</i> Table & Pla	nrough oint <i>atch</i> <i>Unit</i> s	Air Pol Control (Must r Emissio Table & P	Device natch n Units	Vent T Emissi (Che process	on Unit <i>mical</i>	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)	Pote Uncor	mum ential htrolled sions⁴	Pote Cont	mum ential rolled sions⁵	Emission Form or Phase (At exit conditions, Solid, Liquid or	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmvd or mg/m ³)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)		
								NOX					Gas		
								CO					Gas		
	5	Stabilized Co	ndensate	(SC) Truck	Load-Out			NMNEHC	35.72	25.43	11.97	8.52	Gas	AP-42	
								VOC	35.72	25.43	11.97	8.52	Gas	AP-42	
								PM10/2.5					S/L/G		
								SO2					Gas		
								Acetaldehyde					Gas		
								Acrolein					Gas		
								Benzene	0.71	0.51	0.24	0.17	Gas	MB	
								Butadiene					Gas		
								Ethylbenzene	0.71	0.51	0.24	0.17	Gas	MB	
								НСНО					Gas		
	Linuard				Carban			n-Hexane	7.14	5.09	2.39	1.70	Gas	MB	
EPLOAD-1	Upward Vertical	EULOAD-1	TLO	CARB-01	Carbon Can-	7,000	0	Methanol					Gas		
	Stack				nister	gal/hr	-	POM					Gas		
								Toluene	0.71	0.51	0.24	0.17	Gas	MB	
								2,2,4-TMP	0.71	0.51	0.24	0.17	Gas	MB	
								Xylenes	0.71	0.51	0.24	0.17	Gas		
								Other HAP					Gas		
								Total HAP	10.72	7.63	3.59	2.56	Gas	Sum	
								CO2					Gas		
								CH4					Gas		
								N2O					Gas		
								CO2e					Gas		

						Та	able 1: Em	issions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emission Vented Th This Po <i>(Must m</i> <i>Emission</i> Table & Ple	nrough oint <i>hatch</i> <i>Units</i>	Air Pol Control (Must I Emissio Table & F	Device match n Units	Vent Ti Emissio (Chei processio	on Unit mical	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)	Pote	mum ential htrolled sions⁴	Pote Cont	imum ential rolled sions⁵	Emission Form or Phase (At exit conditions, Solid, Liquid or	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmvd or mg/m ³)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& naps)	lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)		
								NOX					Gas		
								CO					Gas		
		Produced	Water (PW	V) Truck Lo	ad-Out			NMNEHC	0.72	0.08	0.72	0.08	Gas	AP-42	
								VOC	0.72	0.08	0.72	0.08	Gas	AP-42	
								PM10/2.5					S/L/G		
								SO2					Gas		
								Acetaldehyde					Gas		
								Acrolein					Gas		
								Benzene	0.01	2E-03	0.01	2E-03	Gas	MB	
								Butadiene					Gas		
								Ethylbenzene	0.01	2E-03	0.01	2E-03	Gas	MB	
								НСНО					Gas		
	Linuard							n-Hexane	0.14	2E-02	0.14	2E-02	Gas	MB	
EPLOAD-2	Upward Vertical	EULOAD-2	WTLO	na	na	7,000	0	Methanol					Gas		
	Stack	2020/10 2		na	na	gal/hr	Ũ	POM					Gas		
								Toluene	0.01	2E-03	0.01	2E-03	Gas	MB	
								2,2,4-TMP	0.01	2E-03	0.01	2E-03	Gas	MB	
								Xylenes	0.01	2E-03	0.01	2E-03	Gas		
								Other HAP					Gas		
								Total HAP	0.22	0.02	0.22	0.02	Gas	Sum	
								CO2					Gas		
								CH4					Gas		
								N2O					Gas		
								CO2e					Gas		

						т	able 1: En	nissions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emissior Vented Th This Po <i>(Must m</i> <i>Emission</i> Table & Ple	nrough oint <i>patch</i> <i>Units</i>	Air Po Control (Must) Emissio Table & F	Device match n Units	Emissi	ime for on Unit <i>mical</i> es only)	Chemical Potential Name/CAS ³ Uncontrolle		Maximum Maximum Potential Potential Uncontrolled Controlled Emissions ⁴ Emissions ⁵		Emission Form or Phase (At exit conditions, Solid, Liquid or	Form or Phase (At exit conditions, Solid, Liquid		
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	,	lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)		
								NOX	19	84	19	83.77	Gas	Varies	
				SIIMMA	DV			CO	110.46	483.75	17.99	78.70	Gas	Varies	
	PLANT-WIDE SUMMARY (w/o Fugitives)						NMNEHC	589	981	378	145.51	Gas	Varies		
			<u>w/01ug</u>	111765				VOC	605	1,051	380	153.79	Gas	Varies	
								PM10/2.5	1.42	6.22	1.42	6.22	S/L/G	AP-42	
								SO2	0.09	0.38	0.09	0.38	Gas	AP-42	
								Acetaldehyde	1.13	4.94	0.28	1.24	Gas	AP-42	
								Acrolein	0.69	3.03	0.17	0.76	Gas	AP-42	
								Benzene	6.75	24.41	1.05	1.20	Gas	Varies	
								Butadiene	0.04	0.16	0.01	0.04	Gas	AP-42	
								Ethylbenzene	2.41	5.42	0.86	0.37	Gas	Varies	
								НСНО	14.25	62.41	1.43	6.28	Gas	Varies	
								n-Hexane	24.37	43.11	11.72	5.10	Gas	Varies	
								Methanol	0.34	1.48	0.08	0.37	Gas	AP-42	
								POM	0.05	0.21	0.01	0.05	Gas	AP-42	
								Toluene	14.75	59.47	1.16	1.69	Gas	Varies	
								2,2,4-TMP	2.16	4.32	0.86	0.38	Gas	Varies	
								Xylenes	12.82	51.02	0.97	0.85	Gas	Varies	
								Other HAP	0.04	0.19	0.01	0.05	Gas	AP-42	
								Total HAP	79.79	260.16	18.62	18.37	Gas	Sum	
								CO2	19,919	87,117	19,919	87,117	Gas	Varies	
								CH4	981	919	976	897	Gas	Varies	
								N2O	0.06	0.26	0.06	0.26	Gas	40CFR98	
								CO2e	44,435	110,168	44,309	109,617	Gas	sum	

						Т	able 1: En	nissions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emission Vented Th This P <i>(Must m</i> <i>Emission</i> Table & Pl	hrough oint hatch haunits	Air Po Control (Must Emissic Table & F	Device match on Units	Emissi (Che. process		All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)	Maximum Potential Uncontrolled Emissions ⁴		Maximum Potential Controlled Emissions ⁵		Emission Form or Phase (At exit conditions, Solid, Liquid or	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmvd or mg/m ³)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)		lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)		
								NOX	19.20	83.98	19.20	83.98	Gas	Varies	
				SUMMA	DV			CO	110.75	484.99	18.27	79.95	Gas	Varies	
			with Fug		K I			NMNEHC	617	1,105	392.08	207.33	Gas	Varies	
		Ĺ,	<u>withi u</u>	<u>gitives</u>)				VOC	617	1,105	392.08	207.33	Gas	Varies	
								PM10/2.5	1.43	6.24	1.43	6.24	S/L/G	AP-42	
								SO2	0.09	0.38	0.09	0.38	Gas	AP-42	
								Acetaldehyde	1.13	4.95	0.29	1.25	Gas	AP-42	
								Acrolein	0.69	3.04	0.18	0.77	Gas	AP-42	
								Benzene	6.77	24.50	1.07	1.29	Gas	Varies	
								Butadiene	0.04	0.16	0.01	0.04	Gas	AP-42	
								Ethylbenzene	2.43	5.51	0.88	0.46	Gas	Varies	
								НСНО	14.29	62.57	1.47	6.44	Gas	Varies	
								n-Hexane	24.68	44.44	12.02	6.43	Gas	Varies	
								Methanol	0.34	1.48	0.09	0.37	Gas	AP-42	
								POM	0.05	0.21	0.01	0.05	Gas	AP-42	
								Toluene	14.77	59.56	1.18	1.78	Gas	Varies	
								2,2,4-TMP	2.18	4.41	0.88	0.47	Gas	Varies	
								Xylenes	12.84	51.11	0.99	0.94	Gas	Varies	
								Other HAP	0.04	0.19	0.01	0.05	Gas	AP-42	
								Total HAP	80.24	262.12	19.07	20.34	Gas	Sum	
								CO2	19,968	87,330	19,968	87,330	Gas	Varies	
								CH4	992	968	987	946	Gas	Varies	
								N2O	0.06	0.26	0.06	0.26	Gas	40CFR98	
								CO2e	44,761	111,597	44,636	111,046	Gas	sum	

Appalachia Midstream Services, LLC (AMS) Sand Hill Compressor Station (SHCS)

Application for 45CSR13 New Source review Permit Modification (NSR)

Attachment J EMISSION POINTS DATA SUMMARY SHEET - Continued

Table 1: Emissions Data - Continued

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

- 1 Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.
- 2 Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).
- 3 List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS2, VOCs, H2S, Inorganics, Lead, Organics, O3, NO, NO2, SO2, SO3, all applicable Greenhouse Gases (including CO2 and methane), etc. DO NOT LIST H2, H2O, N2, O2, and Noble Gases.
- 4 Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
- 5 Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
- 6 Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).
- 7 Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m3) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO2, use units of ppmv (See 45CSR10).

Attachment J EMISSION POINTS DATA SUMMARY SHEET - Continued

			Table 2: I	Release Parar	neter Data			
Emission			Exit Gas		Emission Poir	t Elevation (ft)	UTM Coord	inates (km)
Point ID No. (Must match Emission Units Table)	Inner Diameter (ft.)	Temp. (oF)	Volumetric Flow ¹ (acfm) (At operating conditions)	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ² (Height of emissions above ground level)	Northing	Easting
EPCE-1	1.0	1,012	9,227	195.8	1,175 ft	20 ft	4,426.495	537.897
EPCE-2	1.0	1,012	9,227	195.8	1,175 ft	20 ft	4,426.495	537.897
EPCE-3	1.0	1,012	9,227	195.8	1,175 ft	20 ft	4,426.495	537.897
EPCE-4	1.0	1,012	9,227	195.8	1,175 ft	20 ft	4,426.495	537.897
EPCE-5	1.0	1,012	9,227	195.8	1,175 ft	20 ft	4,426.495	537.897
EPCE-6	1.0	1,012	9,227	195.8	1,175 ft	20 ft	4,426.495	537.897
EPCE-7	1.0	1,012	9,227	195.8	1,175 ft	20 ft	4,426.495	537.897
EPCE-8	1.0	1,012	9,227	195.8	1,175 ft	20 ft	4,426.495	537.897
EPCE-9	1.0	1,012	9,227	195.8	1,175 ft	20 ft	4,426.495	537.897
EPCE-10	1.0	1,012	9,227	195.8	1,175 ft	20 ft	4,426.495	537.897
EPCE-11	1.0	1,012	9,227	195.8	1,175 ft	20 ft	4,426.495	537.897
EPCE-12	1.0	1,012	9,227	195.8	1,175 ft	20 ft	4,426.495	537.897
EPCRP	0.3	1,382	2,995		1,175 ft	8 ft	4,426.495	537.897
EPGEN-1		110			1,175 ft		4,426.495	537.897
EPSTL-1	2.0	110			1,175 ft	20 ft	4,426.495	537.897
EPSTL-2		212			1,175 ft		4,426.495	537.897
EPSTL-3		212			1,175 ft		4,426.495	537.897
EPRBL-1		212			1,175 ft		4,426.495	537.897
EPRBL-2	1.1	400			1,175 ft		4,426.495	537.897
EPRBL-3	1.1	400			1,175 ft		4,426.495	537.897
EPHT-1	1.1	400			1,175 ft		4,426.495	537.897
EPHT-2	0.7	450			1,175 ft		4,426.495	537.897
EPTK-1	0.7	450			1,175 ft		4,426.495	537.897
EPTK-2		Ambient			1,175 ft	20 ft	4,426.495	537.897
EPTK-3		Ambient			1,175 ft	20 ft	4,426.495	537.897
EPTK-4		Ambient			1,175 ft	20 ft	4,426.495	537.897
EPTK-5		Ambient			1,175 ft	20 ft	4,426.495	537.897
EPTK-6		Ambient			1,175 ft	20 ft	4,426.495	537.897
EPTK-7		Ambient			1,175 ft	20 ft	4,426.495	537.897
EPTK-8		Ambient			1,175 ft	20 ft	4,426.495	537.897
EPWTK-9		Ambient			1,175 ft	20 ft	4,426.495	537.897
EPWTK-10		Ambient			1,175 ft	20 ft	4,426.495	537.897
EPLOAD-1		Ambient			1,175 ft	20 ft	4,426.495	537.897
EPLOAD-2		Ambient			1,175 ft	8 ft	4,426.495	537.897
EPBD		Ambient			1,175 ft	8 ft	4,426.495	537.897

¹ Give at operating conditions. Include inerts.

2 Release height of emissions above ground level.

Attachment K

Fugitive Emissions Data Summary Sheet

"27. Fill out the **Fugitive Emissions Data Summary Sheet** and provide it as Attachment K."

- Application Forms Checklist
- Fugitive Emissions Data Summary Sheet

Sand Hill Compressor Station (SHCS)

Application for 45CSR13 New Source review Permit Modification (NSR)

Attachment K - Fugitive Emissions

Fugitive Emissions Data Summary Sheet

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS
1.)	Will there be haul road activities?
	□ Yes ☑ No
	□ If Yes, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.
2.)	Will there be Storage Piles?
	□ Yes ☑ No
	□ If Yes, then complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.
3.)	Will there be Liquid Loading/Unloading Operations?
	□ Yes Ø No ((Truck Load-Out (TLO and WTLO) are include in the Point Source Emissions))
	If Yes, then complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?
	□ Yes Ø No
	□ If Yes, then complete the GENERAL EMISSIONS UNIT DATA SHEET.
· ·	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, npling connections, flanges, agitators, cooling towers, etc.)?
	⊠ Yes □ No
	If Yes, then complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS DATA SHEET.
6.)	Will there be General Clean-up VOC Operations?
	□ Yes ☑ No
	□ If Yes, then complete the GENERAL EMISSIONS UNIT DATA SHEET.
7.)	Will there be any other activities that generate fugitive emissions?
	□ Yes ☑ No
	□ If Yes, then complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.
	If you answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions Summary."

Sand Hill Compressor Station (SHCS)

Application for 45CSR13 New Source review Permit Modification (NSR)

Attachment K - Fugitive Emissions

Fugitive Emissions Data Summary Sheet - Continued

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions.

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants Chemical Name/CAS ¹		n Potential ed Emissions ²	Maximum Potential Controlled Emissions ³		Est. Method Used ⁴	
	Name/CAS	lb/hr	ton/yr	lb/hr	ton/yr	0300	
Paved Haul Roads	na						
Unpaved Haul Roads	na						
Storage Pile Emissions	na						
Loading/Unloading Operations	((Truck Load-C	Out (TLO and WTL	O) are include in th	ne Point Source Er	nissions))	-	
Wastewater Treatment	na						
	NOX	0.05	0.21	0.05	0.21	Vendor	
Process and Piping Fugitives (FUG-G, FUG-O)	CO	0.28	1.24	0.28	1.24	Vendor	
(F0G-G, F0G-O)	VOC	12.22	53.54	12.22	53.54	Varies	
Engine Crankcase	PM10/2.5	4E-03	0.02	4E-03	0.02	Vendor	
(ECC)	SO2	2E-04	9E-04	2E-04	9E-04	Vendor	
(Total Combined)	Total HAPs	0.45	1.97	0.45	1.97	Sum	
(1012)	Carbon Dioxide Equivalent (CO2e)	326	1,429	326	1,429	Sum	
General Clean-up VOC Emissions	na						
Other	na						

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases, etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in min (e.g. 5 lb VOC/20 min batch).

³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in min (e.g. 5 lb VOC/20 min batch).

⁴ Indicate method used to determine emission rate as follows:

MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

Attachment L

Emissions Unit Data Sheet(s)

"28. Fill out the Emissions Unit Data Sheet(s) as Attachment L."

- Natural Gas-Fired Compressor/Generator Engine Data Sheet
 - 1,380 bhp CAT G3516B Generator Engines (CE-01 thru CE-12)
 - 805 bhp Capstone C600 Microturbine Generator (GEN)
- Natural Gas Glycol Dehydrator Unit Data Sheet
 - Dehydrators (DHY-01 thru DHY-03)
 - o Reboilers (BLR-01 thru BLR-03)
 - o 40 CFR Part 63; Subpart HH & HHH Registration Form
- Gas-Fired Boiler/Line Heater Data Sheet
 - o 0.50 MMBtu/hr Heater Treaters (HTR-01 and HTR-02)

• Storage Tank Data Sheet

- Stabilized Condensate (SC) Storage Tanks (TK-01 thru TK-08)
- Produced Water (PW) Storage Tanks (WTK-01 and WTK-02)
- Bulk Liquid Transfer Operations Data Sheet
 - Stabilized Condensate (SC) Truck Load-Out (TLO)
 - Produced Water (PW) Truck Load-Out (WTLO)
- Leak Source Data Sheet

Appalachia Midstream Services, LLC (AMS) Sand Hill Compressor Station (SHCS)

Application for 45CSR13 New Source review Permit Modification (NSR)

Attachment J EMISSION POINTS DATA SUMMARY SHEET - Continued

Table 1: Emissions Data - Continued

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

- 1 Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.
- 2 Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).
- 3 List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS2, VOCs, H2S, Inorganics, Lead, Organics, O3, NO, NO2, SO2, SO3, all applicable Greenhouse Gases (including CO2 and methane), etc. DO NOT LIST H2, H2O, N2, O2, and Noble Gases.
- 4 Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
- 5 Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
- 6 Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).
- 7 Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m3) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO2, use units of ppmv (See 45CSR10).

Attachment J EMISSION POINTS DATA SUMMARY SHEET - Continued

			Table 2: I	Release Parar	neter Data			
Emission			Exit Gas		Emission Poir	t Elevation (ft)	UTM Coord	inates (km)
Point ID No. (Must match Emission Units Table)	Inner Diameter (ft.)	Temp. (oF)	Volumetric Flow ¹ (acfm) (At operating conditions)	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ² (Height of emissions above ground level)	Northing	Easting
EPCE-1	1.0	1,012	9,227	195.8	1,175 ft	20 ft	4,426.495	537.897
EPCE-2	1.0	1,012	9,227	195.8	1,175 ft	20 ft	4,426.495	537.897
EPCE-3	1.0	1,012	9,227	195.8	1,175 ft	20 ft	4,426.495	537.897
EPCE-4	1.0	1,012	9,227	195.8	1,175 ft	20 ft	4,426.495	537.897
EPCE-5	1.0	1,012	9,227	195.8	1,175 ft	20 ft	4,426.495	537.897
EPCE-6	1.0	1,012	9,227	195.8	1,175 ft	20 ft	4,426.495	537.897
EPCE-7	1.0	1,012	9,227	195.8	1,175 ft	20 ft	4,426.495	537.897
EPCE-8	1.0	1,012	9,227	195.8	1,175 ft	20 ft	4,426.495	537.897
EPCE-9	1.0	1,012	9,227	195.8	1,175 ft	20 ft	4,426.495	537.897
EPCE-10	1.0	1,012	9,227	195.8	1,175 ft	20 ft	4,426.495	537.897
EPCE-11	1.0	1,012	9,227	195.8	1,175 ft	20 ft	4,426.495	537.897
EPCE-12	1.0	1,012	9,227	195.8	1,175 ft	20 ft	4,426.495	537.897
EPCRP	0.3	1,382	2,995		1,175 ft	8 ft	4,426.495	537.897
EPGEN-1		110			1,175 ft		4,426.495	537.897
EPSTL-1	2.0	110			1,175 ft	20 ft	4,426.495	537.897
EPSTL-2		212			1,175 ft		4,426.495	537.897
EPSTL-3		212			1,175 ft		4,426.495	537.897
EPRBL-1		212			1,175 ft		4,426.495	537.897
EPRBL-2	1.1	400			1,175 ft		4,426.495	537.897
EPRBL-3	1.1	400			1,175 ft		4,426.495	537.897
EPHT-1	1.1	400			1,175 ft		4,426.495	537.897
EPHT-2	0.7	450			1,175 ft		4,426.495	537.897
EPTK-1	0.7	450			1,175 ft		4,426.495	537.897
EPTK-2		Ambient			1,175 ft	20 ft	4,426.495	537.897
EPTK-3		Ambient			1,175 ft	20 ft	4,426.495	537.897
EPTK-4		Ambient			1,175 ft	20 ft	4,426.495	537.897
EPTK-5		Ambient			1,175 ft	20 ft	4,426.495	537.897
EPTK-6		Ambient			1,175 ft	20 ft	4,426.495	537.897
EPTK-7		Ambient			1,175 ft	20 ft	4,426.495	537.897
EPTK-8		Ambient			1,175 ft	20 ft	4,426.495	537.897
EPWTK-9		Ambient			1,175 ft	20 ft	4,426.495	537.897
EPWTK-10		Ambient			1,175 ft	20 ft	4,426.495	537.897
EPLOAD-1		Ambient			1,175 ft	20 ft	4,426.495	537.897
EPLOAD-2		Ambient			1,175 ft	8 ft	4,426.495	537.897
EPBD		Ambient			1,175 ft	8 ft	4,426.495	537.897

¹ Give at operating conditions. Include inerts.

2 Release height of emissions above ground level.

Sand Hill Compressor Station (SHCS)

Application for 45CSR13 New Source review Permit Modification (NSR)

Attachment K - Fugitive Emissions

Fugitive Emissions Data Summary Sheet

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS
1.)	Will there be haul road activities?
	□ Yes ☑ No
	□ If Yes, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.
2.)	Will there be Storage Piles?
	□ Yes ☑ No
	□ If Yes, then complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.
3.)	Will there be Liquid Loading/Unloading Operations?
	□ Yes Ø No ((Truck Load-Out (TLO and WTLO) are include in the Point Source Emissions))
	If Yes, then complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?
	□ Yes Ø No
	□ If Yes, then complete the GENERAL EMISSIONS UNIT DATA SHEET.
· ·	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, npling connections, flanges, agitators, cooling towers, etc.)?
	⊠ Yes □ No
	If Yes, then complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS DATA SHEET.
6.)	Will there be General Clean-up VOC Operations?
	□ Yes ☑ No
	□ If Yes, then complete the GENERAL EMISSIONS UNIT DATA SHEET.
7.)	Will there be any other activities that generate fugitive emissions?
	□ Yes ☑ No
	□ If Yes, then complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.
	If you answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions Summary."

Sand Hill Compressor Station (SHCS)

Application for 45CSR13 New Source review Permit Modification (NSR)

Attachment K - Fugitive Emissions

Fugitive Emissions Data Summary Sheet - Continued

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions.

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants Chemical Name/CAS ¹		n Potential ed Emissions ²	Maximum Potential Controlled Emissions ³		Est. Method Used ⁴	
	Name/CAS	lb/hr	ton/yr	lb/hr	ton/yr	0300	
Paved Haul Roads	na						
Unpaved Haul Roads	na						
Storage Pile Emissions	na						
Loading/Unloading Operations	((Truck Load-C	Out (TLO and WTL	O) are include in th	ne Point Source Er	nissions))		
Wastewater Treatment	na						
	NOX	0.05	0.21	0.05	0.21	Vendor	
Process and Piping Fugitives (FUG-G, FUG-O)	CO	0.28	1.24	0.28	1.24	Vendor	
(F0G-G, F0G-O)	VOC	12.22	53.54	12.22	53.54	Varies	
Engine Crankcase	PM10/2.5	4E-03	0.02	4E-03	0.02	Vendor	
(ECC)	SO2	2E-04	9E-04	2E-04	9E-04	Vendor	
(Total Combined)	Total HAPs	0.45	1.97	0.45	1.97	Sum	
(1012)	Carbon Dioxide Equivalent (CO2e)	326	1,429	326	1,429	Sum	
General Clean-up VOC Emissions	na						
Other	na						

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases, etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in min (e.g. 5 lb VOC/20 min batch).

³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in min (e.g. 5 lb VOC/20 min batch).

⁴ Indicate method used to determine emission rate as follows:

MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

Sand Hill Compressor Station (SHCS)

Application for 45CSR13 New Source review Permit Modification (NSR)

Attachment L - Emission Unit Data Sheet

NATURAL GAS COMPRESSOR/GENERATOR ENGINE DATA SHEET

Desc	cription	Compress	or Engines	Generato	or Turbine	
Source Identif	ication Number ¹	CE-01 thru C	CE-12 (Each)	GI	ΞN	
Engine Manufa	cturer and Model	CAT G	3516B	0.00		
Manufacturer's	Rated bhp/rpm	1,380	/ 1,400	805 /	61,000	
Source	e Status ²	Μ	IS	N	IS	
Date Installed/M	Date Installed/Modified/Removed ³		018 / na	2012 / 2	018 / na	
Manufactured/Re	construction Date ⁴	2012 / 2	018 / na	2012 / 2	018 / na	
Certified Engine (40	CFR60 NSPS JJJJ) ⁵	N	lo	Ν	lo	
	Engine Type ⁶	4S	LB	Microt	urbine	
	APCD Type ⁷	Ox	Cat	n	а	
	Fuel Type ⁸	R	G	R	G	
	H ₂ S (gr/100 scf)	0	.2	0	.2	
Engine, Fuel and Combustion Data	Operating bhp/rpm	1,380	/ 1,400	805 /	61,000	
Compustion Data	BSFC (Btu/bhp-hr)	8,1	38	()	
	Fuel (ft ³ /hr)	11,	010	6,7	709	
	Fuel (MMft ³ /yr)	96	.45	58	.77	
	Operation (hrs/yr)	8,760			0	
Reference ⁹	PTE ¹⁰	lbs/hr	tons/yr	lbs/hr	tons/yr	
MD/AP	NOX	1.52	6.66	0.48	2.10	
MD/AP	CO	1.36	5.96	1.32	5.78	
MD/AP	NMNEHC	0.82	3.60	0.12	0.53	
MD/AP	VOC	0.98	4.28	0.13	0.57	
AP	PM10/2.5	0.11	0.49	0.05	0.20	
AP	SO2	0.01	0.03	0.00	0.02	
AP	Acetaldehyde	0.02	0.10	5E-04	2E-03	
AP	Acrolein	0.01	0.06	9E-05	4E-04	
AP	Benzene	1E-03	5E-03	2E-04	7E-04	
AP	Butadiene, 1,3-	7E-04	3E-03	6E-06	3E-05	
AP	Ethylbenzene	1E-04	5E-04	4E-04	2E-03	
MD/AP	Formaldehyde	0.12	0.52	0.01	0.04	
AP	n-Hexane	3E-03	0.01			
AP	Methanol (MeOH)	0.01	0.03			
AP	POM	1E-03	4E-03	4E-04	2E-03	
AP	Toluene	1E-03	5E-03	2E-03	8E-03	
AP	2,2,4-TMP (i-Octane)	7E-04	3E-03			
AP	Xylenes	5E-04	2E-03	9E-04	4E-03	
AP	Other/Trace HAP	9E-04	4E-03	4E-04	2E-03	
SUM	Total HAP	0.17	0.76	0.01	0.06	
MD/AP	CO2	1,552	6,796	798	3,494	
MD/40CFR98	CH4	14	61	0.12	0.52	
MD/40CFR98	N2O	2E-03	0.01	0.02	0.09	
WGT SUM	CO2e	1,903	8,336	807	3,534	

NATURAL GAS COMPRESSOR/GENERATOR ENGINE DATA SHEET

Proposed Permit Modifications

Emission Unit Description CE-01 thru CE-12 (each) Proposed Modifications to WVDEP-DAQ Permit R13-2913A are shown below: 5.1.1. To demonstrate compliance with Section 5.1.2, the quantity of natural gas that shall be consumed in each of the twelve (12) 1,380 hp natural gas fired reciprocating engines, Caterpillar G3516B (EPCE-1 - EPCE-12) shall not exceed 9,233 11,010 scf/hr and 80.88 96.45 x 10⁶ scf/yr for each engine. 5.1.2. Maximum emissions from each of the twelve (12) 1,380 hp natural gas fired reciprocating engines, Caterpillar G3516B (EPCE-1 - EPCE-12) shall not exceed the following limits: Pollutant Maximum lb/hr Maximum ton/yr Nitrogen Oxides 1.52 6.66 Carbon Monoxide 1.36 5.96 Volatile Organic Compounds 0.88 0.98 4.28 3.86 Formaldehyde 0.06 0.27 0.52 0.12

Emission Unit Description

Proposed Modifications to WVDEP-DAQ Permit R13-2913A are shown below:

- 6.1.1. To demonstrate compliance with Section 6.1.2, the quantity of natural gas that shall be consumed in 805 hp natural gas-fired microturbine generator, Capstone C600 (EPGEN-1) shall not exceed 5,623 6,709 scf/hr and 49.26 58.77 x 10^6 scf/yr.
- 6.1.2. Maximum emissions from the 805 hp natural gas-fired microturbine generator, Capstone C600 (EPGEN-1) shall not exceed the following limits:

Pollutant	Maximum lb/hr	Maximum ton/yr		
Nitrogen Oxides	0.25 0.48	1.09 2.10		
Carbon Monoxide	0.62 1.32	2.70 5.78		
Volatile Organic Compounds	0.02 0.13	0.07 0.57		
Formaldehyde	0.01	0.02 0.04		

GEN

Notes to NATURAL GAS COMPRESSOR/GENERATOR ENGINE DATA SHEET

1. Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. If more than three (3) engines exist, please use additional sheets.

2. Enter the Source Status using the following codes:

NS = Construction of New Source (installation)

ES = Existing Source

MS = Modification of Existing Source

RS = Removal of Source

3. Enter the date (or anticipated date) of the engine's installation (construction of source), modification or removal.

4. Enter the date that the engine was manufactured, modified or reconstructed.

5. Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart JJJJ. If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance according to 40CFR§60.4243a(2)(i) through (iii), as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6. Enter the Engine Type designation(s) using the following codes:

LB2S = Lean Burn Two Stroke

RB4S = Rich Burn Four Stroke

LB4S = Lean Burn Four Stroke

7. Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:

A/F = Air/Fuel Ratio IR = Ignition Retard HEIS = High Energy Ignition System SIPC = Screw-in Precombustion Chambers PSC = Prestratified Charge LEC = Low Emission Combustion NSCR = Non-Selective Catalytic Reduction SCR = Lean Burn & Selective Catalytic Reduction

8. Enter the Fuel Type using the following codes: PQ = Pipeline Quality Natural Gas RG = Raw Natural Gas

9. Enter the Potential Emissions Data Reference designation using the following codes. Attach all referenced data to this Compressor/Generator Data Sheet(s).

MD = Manufacturer's Data

AP = AP-42 GR = GRI-HAPCalcTM

OT = Other (please list)

10. Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the Emissions Summary Sheet.

NATURAL GAS GLYCOL DEHYDRATION UNIT DATA SHEET

		Compa	inv ID	DHY-01	thru -03	1	
		Manufacture	-	-		1	
		Max Dry Gas Flow		55	5.0		
		Heat Input (MM			00		
Con	eral Glycol	Design Type (I	,		EG		
	dration Unit	Source	,		IS		
Deny	Data	Date Installed/Mo			018 / na		
		Regenerator Sti			C		
		Fuel HV (Btu		1,020			
		H ₂ S Content	,		20		
		Operation			20 760		
Source ID #1	Vent	Reference ⁵	PTE ⁶	lbs/hr	tons/yr		
	veni	GRI-GLYCalc	VOC	1.79	7.85		+
	Dehydrator	GRI-GLYCalc	Benzene	0.06	0.27		
	01 thru 03	GRI-GLYCalc	E-Benzene	4E-03	0.27		┨────┦
DHY-01	Regenerator Still	GRI-GLYCalc	n-Hexane	4E-03 0.09	0.02		┨────┦
DHY-02 DHY-03	Vent	GRI-GLYCalc	Toluene	0.09	0.40		┨────┦
0111-03		GRI-GLYCalc	2,2,4-TMP	2E-03	0.43		┨────┦
(Each)	(Flash Tank						
()	CIT-Gas Is 100%	GRI-GLYCalc	Xylenes	0.04	0.17		
	Recycle/Recalim)	GRI-GLYCalc	Total HAP	0.30	1.30		
		GRI-GLYCalc	CO2e	2.79	12.20		
		AP-42	NOX	0.10	0.43		
		AP-42	CO	0.08	0.36		
		AP-42	VOC	0.01	0.02		
		AP-42	PM10/2.5	0.01	0.03		
		AP-42	SO2	6E-04	3E-03		
		AP-42	Acetaldehyde				
		AP-42	Acrolein				
		AP-42	Benzene	2E-06	9E-06		
		AP-42	Butadiene, 1,3-				ļļ
BLR-01	Reboiler	AP-42	Ethylbenzene				
BLR-02	01 thru 03	AP-42	Formaldehyde	7E-05	3E-04		ļ
BLR-03		AP-42	n-Hexane	2E-03	0.01		ļ
(Each)	(Each)	AP-42	Methanol			ļ	ļļ
(Each)		AP-42	POM	7E-07	3E-06		ļ
		AP-42	Toluene	3E-06	1E-05		ļ
		AP-42	TMP, 2,2,4-				ļ
		AP-42	Xylenes				ļ
		AP-42	Other HAP	1E-06	5E-06		ļ
		AP-42	Total HAP	2E-03	0.01		
		AP-42	CO2	118	515		
		AP-42	CH4	2E-03	0.01		
		AP-42	N2O	2E-03	0.01		
		40CFR98	CO2e	118	518		

NATURAL GAS GLYCOL DEHYDRATION UNIT DATA SHEET

Proposed Permit Modifications

Emission Unit Description DHY-01 thru DHY-03 Proposed Modifications to WVDEP-DAQ Permit R13-2913A are shown below: 7.1.5. Maximum emissions from each of the Glycol Regenerator Still Columns (EPSTL-1, EPSTL-2, EPSTL-3) shall not exceed the following limits: Pollutant Maximum lb/hr Maximum ton/yr Volatile Organic Compounds 0.42 1.84 1.79 7.85 **Total HAPs** 0.01 0.30 0.01 1.30

Emission Unit Description

BLR-01 thru BLR-03

Proposed Modifications to WVDEP-DAQ Permit R13-2913A are shown below:

- To demonstrate compliance with Section 7.1.4, the quantity of natural gas that shall be consumed in each of the 1.0 MMBtu/hr Glycol Reboilers (EPRBL-1, EPRBL-2, EPRBL-3) shall not exceed 750 980 scf/hr and 6.55 8.59 x 10⁶ scf/yr for each reboiler.
- 7.1.4. Maximum emissions from each of the Glycol Reboilers (EURBL-1, EURBL-2, EURBL-3) shall not exceed the following limits:

Pollutant	Maximum lb/hr	Maximum ton/yr		
Nitrogen Oxides	0.08 0.10	0.33 0.43		
Carbon Monoxide	0.06 0.08	0.28 0.36		
Volatile Organic Compounds	0.01	0.02		

Notes to NATURAL GAS GLYCOL DEHYDRATION UNIT DATA SHEET

1. Enter the appropriate Source Identification Numbers for the glycol dehydration unit Reboiler Vent and glycol Regenerator Still Vent. The glycol dehydration unit Reboiler Vent and glycol Regenerator Still Vent should be designated RBV-1 and RSV-1, respectively. If the compressor station incorporates multiple glycol dehydration units, a Glycol Dehydration Unit Data Sheet shall be completed for each, using Source Identification #s RBV-2 and RSV-2, RBV-3 and RSV-3, etc.

2. Enter the Source Status using the following codes:

NS = Construction of New Source

ES = Existing Source

MS = Modification of Existing Source

RS = Removal of Source

3. Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source), modification or removal.

4. Enter the Air Pollution Control Device (APCD) type designation using the following codes:

NA = None

CD = Condenser

FL = Flare

CC = Condenser/Combustion Combination

TO = Thermal Oxidizer

5. Enter the Potential Emissions Data Reference designation using the following codes:

MD = Manufacturer's Data AP = AP-42

GR = GRI-GLYCalcTM

OT = Other (please list): ____

6. Enter the Reboiler Vent and glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs per hour and tons per year. The glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalcTM (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalc Aggregate Calculations Report to this Glycol Dehydration Unit Data Sheet(s). This PTE data shall be incorporated in the Emissions Summary Sheet.

Include a copy of the GRI-GLYCalcTM analysis. This includes a printout of the aggregate calculations report, which shall include emissions reports, equipment reports, and stream reports.

*An explanation of input parameters and examples, when using GRI-GLYCalcTM is available on our website.

Sand Hill Compressor Station (SHCS)

Application for 45CSR13 New Source review Permit Modification (NSR)

Attachment L

40 CFR Part 63; Subpart HH & HHH Registration Form

West Virginia Department of Environmental Protection

Division of Air Quality

40 CFR Part 63; Subpart HH & HHH Registration Form

DIVISION OF AIR QUALITY: (304) 926-0475

WEB PAGE: http://www.wvdep.org

Complete this form for any oil and natural gas production or natural gas transmission and storage facility that uses an affected unit under HH/HHH, whether subject or not.

Section A: Facility Description		
Affected facility actual annual average natural gas throughput (scf/day):	55.0 MN	l (Each)
Affected facility actual annual average hydrocarbon liquid throughput: (bbl/day):	na	
The affected facility processes, upgrades, or stores hydrocarbon liquids prior to custody transfer.	⊠ Yes	🗆 No
The affected facility processes, upgrades, or stores natural gas prior to the point at which natural gas (NG) enters the NG transmission and storage source category or is delivered to the end user.	⊠ Yes	□ No
The affected facility is: ☑ prior to a NG processing plant □ NG processing plant □ prior to the point of custody transfer and there is no NG processing plant		
The affected facility transports or stores natural gas prior to entering the pipeline to a local distribution company or to a final end user (if there is no local distribution company).	□ Yes	⊠ No
The affected facility exclusively processes, stores, or transfers black oil with an initial producing gas-to-oil ratio (GOR): na scf/bbl API gravity: na degrees	□ Yes	⊠ No

Description: 55.0 MMs	iscfd - Dehydrator 01 thru -03 (Each)
Date of Installation: 2012	Annual Operating Hours: 8,760 Burner rating (MMbtu/hr): 1.
Exhaust Stack Height (ft): 10.0	Stack Diameter (ft): 0.6 Stack Temp. (oF): 12
Glycol Type: 🗹 TEG	EG Other: na
Glycol Pump Type: 🛛 Elect	Gas If Gas, what is the volume ratio?: na
Condenser installed? 🗹 Yes	□ No Exit Temp: 120 oF Condenser Pressure: 14.08 psia
Incinerator/flare installed? □ Yes	☑ No Destruction Eff.: na
Other controls installed? Ø Yes	□ No Describe: Condenser Off Gas used as fuel w/ 95% Control
Wet Gas ² :	Gas Temperature: 95 oF Gas Pressure: 1,100 psig
(Upstream of Contact Tower)) Saturated Gas?: ☑ Yes ☐ No If no, water content?: na
Dry Gas:	: Gas Flowrate: Actual: 55.0 MMscfd Design: 55.0 MMscfd
(Downstream of Contact Tower)	Water Content: 7.0 lb/MMscf
Lean Glycol:	Circulation Rate: Actual ³ : 22.0 gpm Max ⁴ : 22.0 gpm
Lean Glycol.	Pump make/model: Electric
Glycol Flash Tank (if applicable):	Temp: 120 oF Pressure: 50 psig Vented: □ Yes ☑ No
	If no, describe vapor control: 100% Flash Tank Off-Gas Recycle or Reclaim

Appalachia Midstream Services, LLC (AMS) Sand Hill Compressor Station (SHCS) Application for 45CSR13 New Source review Permit Modification (NSR)

Attachment L

40 CFR Part 63; Subpart HH & HHH Registration Form - Continued

Please attach the following required dehydration unit information:

- 1. System map indicating the chain of custody information. See Page 43 of this document for an example of a gas flow schematic. It is not intended that the applicant provide this level of detail for all sources. The level of detail that is necessary is to establish where the custody transfer points are located. This can be accomplished by submitting a process flow diagram indicating custody transfer points and the natural gas flow. However, the DAQ reserves the right to request more detailed information in order to make the necessary decisions.
- 2. Extended gas analysis from the Wet Gas Stream, including mole percent of C1-C8, benzene, ethylbenzene, toluene, xylene and n-hexane, using Gas Processors Association (GPA) 2286 (or similar). A sample should be taken from the inlet gas line, downstream from any inlet separator, and using a manifold to remove entrained liquids from the sample and a probe to collect the sample from the center of the gas line. GPA standard 2166 reference method or a modified version of EPA Method TO-14, (or similar) should be used.

3. GRI-GLYCalc Ver. 3.0 aggregate report based on maximum Lean Glycol circulation rate and maximum throughput.

4. Detailed calculations of gas or hydrocarbon flow rate.

Section C: Facility NESHAPS Subpart HH/HHH status						
Affected facility status: — (choose only one) ——		Subject to Subpart HH However, <u>EXEMPT</u> because the facility is an area source of HAP emissions <u>and</u> the actual average emissions of benzene from the glycol dehy- dration unit process vent to the atmosphere is < 0.90 megagram per year (1.0 tpy); see 40CFR§63.764(e)(1)(ii).				
		Subject to Subpart HHH				
		Not Subject Because:		< 10/25 TPY Affected facility exclusively handles black oil. Facility-wide actual annual average NG throughput is < 650 thousand scf/day and facility-wide actual annual average hydrocarbon liquid is < 250 bpd.		
				No affected source is present.		

Sand Hill Compressor Station (SHCS)

Application for 45CSR13 New Source review Permit Modification (NSR)

Attachment L

NATURAL GAS FIRED BOILER/LINE HEATER DATA SHEET

Source ID	Status	Design Heat Input (MMBtu/hr)	Hours of Operation (hrs/yr)	Fuel Heating Value (Btu/scf)	
HTR-01	Existing	0.5 MMBtu/hr	8,760	1,020	
HTR-02	Existing	0.5 MMBtu/hr	8,760	1,020	
		RED BOILER/LINE HEA	TER DATA SHEET mbers (Source ID #) for e	each boiler or line heater	
locat Heat	ed at the compre ers or Line Heate	ssor station. Boilers sho	uld be designated BLR-1 HTR-1, HTR-2, HTR-3,	, BLR-2, BLR-3, etc.	
EXIS	T Existing Equip	ach boiler or line heater u ment NEW Installa	ation of New Equipment	REM Equipment Re	moved

- 3. Enter boiler or line heater design heat input in mmBtu/hr.
- 4. Enter the annual hours of operation in hours/year for each boiler or line heater.
- 5. Enter the fuel heating value in Btu/standard cubic foot.

NATURAL GAS FIRED BOILER/LINE HEATER DATA SHEET

Proposed Permit Modifications

Emission Unit Description

HTR-01 and HTR-02

Proposed Modifications to WVDEP-DAQ Permit R13-2913A are shown below:

8.1.2. Maximum emissions from each of the 0.50 MMBTU/hr Heater-Treaters (EPHT-1, EPHT-2) shall not exceed the following limits:

Pollutant	Maximum lb/hr	Maximum ton/yr		
Nitrogen Oxides	0.04 0.06	0.16 0.21		
Carbon Monoxide	0.03 0.05	0.14 0.18		

8.1.3.

To demonstrate compliance with Section 8.1.2, the quantity of natural gas that shall be consumed in each of the 0.50 MMBTU/hr Heater-Treaters (EPHT-1, EPHT-2) shall not exceed 375 600 scf/hr and 3.27 4.29 x 10⁶ scf/yr.

Sand Hill Compressor Station (SHCS)

Application for 45CSR13 New Source review Permit Modification (NSR)

Attachment L

STORAGE TANK DATA SHEET

Source ID	Status	Contents	Volume (gal)	Diam (ft)	Thru-Put (gal/yr)	Orientation	Ave Liq Hght (ft)
TK-01	Existing	Stabilized Condensate (SC)	16,800	12.0	1.25 MM	Vert	10.0
TK-02	Existing	Stabilized Condensate (SC)	16,800	12.0	1.25 MM	Vert	10.0
TK-03	Existing	Stabilized Condensate (SC)	16,800	12.0	1.25 MM	Vert	10.0
TK-04	Existing	Stabilized Condensate (SC)	16,800	12.0	1.25 MM	Vert	10.0
TK-05	Existing	Stabilized Condensate (SC)	16,800	12.0	1.25 MM	Vert	10.0
TK-06	Existing	Stabilized Condensate (SC)	16,800	12.0	1.25 MM	Vert	10.0
TK-07	Existing	Stabilized Condensate (SC)	16,800	12.0	1.25 MM	Vert	10.0
TK-08	Existing	Stabilized Condensate (SC)	16,800	12.0	1.25 MM	Vert	10.0
WTK-01	Existing	Produced Water (PW)	16,800	12.0	0.77 MM	Vert	10.0
WTK-02	Existing	Produced Water (PW)	16,800	12.0	0.77 MM	Vert	10.0

Notes to STORAGE TANK DATA SHEET

- 1. Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the compressor station. Tanks should be designated T01, T02, T03, etc.
- 2. Enter storage tank Status using the following:
 - EXIST Existing Equipment
 - NEW Installation of New Equipment
 - REM Equipment Removed
- 3. Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, etc.
- 4. Enter storage tank volume in gallons.
- 5. Enter storage tank diameter in feet.
- 6. Enter storage tank throughput in gallons per year.
- 7. Enter storage tank orientation using the following:
 - VERT Vertical Tank
 - HORZ Horizontal Tank
- 8. Enter storage tank average liquid height in feet.

STORAGE TANK DATA SHEET

Proposed Permit Modifications

Emission Unit DescriptionTK-01 thru TK-08, and WTK-01 and WTK-02

Proposed Modifications to WVDEP-DAQ Permit R13-2913A are shown below:

- 9.1.1. Emissions from the stabilized condensate storage tanks (EPTK-1 EPTK-8, EPWTK-1, EPWTK-2) shall be controlled by a vapor recovery system. This vapor recovery system shall be designed to achieve a minimum guaranteed control efficiency of 98% 95% for volatile organic compound (VOC) emissions.
- 9.1.2. The vapor recovery system must be installed and operating prior to start-up of the storage tanks (EPTK-1 EPTK-8, EPWTK 1, EPWTK 2).
- 9.2.1. For the purposes of determining compliance with Section 9.1.1, the permittee shall conduct monitoring to show compliance with the capture efficiency requirement of the storage tanks (EPTK-1 EPTK-8, EPWTK 1, EPWTK 2). The monitoring shall be conducted initially within 60 days after achieving the maximum roduction rate at which the facility will be operated or within 180 days of start-up, whichever is earlier. Monitoring will be conducted once every calendar year thereafter per the requirements of §60.482-10.

a. The vapor recovery system will be operated and monitored in compliance with §60.482-10(b), (f) through (m), and §60.485.

b. Records of the vapor recovery system will be maintained according to the requirements of §60.486 and §60.635(b).

Appalachia Midstream Services, LLC (AMS) Sand Hill Compressor Station (SHCS) Application for 45CSR13 New Source review Permit Modification (NSR) Attachment L - Emission Unit Data Sheet

Bulk Liquid Transfer Operations

Furnish the following information for each new or modified bulk liquid transfer area or loading rack, as shown on the Equipment List Form and other parts of this application. This form is to be used for bulk liquid transfer operations such as to and from drums, marine vessels, rail tank cars, and tank trucks

Identification Number (as assigned on Equipment List Form):				FLO / WTLO
1. Loading Area Name: Sand Hill Compressor Station (SH				r Station (SHCS)
2. Type of cargo vess	sels accommodated at	this rack or transfer po	int (check as many as a	apply):
Drums	Marine V	essels 🛛 🗆 Rai	il Tank Cars	Tank Trucks
3. Loading Rack or Transfer Point Data:				
Number of Pumps	3		Two (2)	
Number of Liquids	s Loaded		Two (2)	
	of marine vessels, cars, and/or drums		Two (2)	
loading at one tim				
4. Does ballasting of	4. Does ballasting of marine vessels occur at this loading area?:			
□ Yes	□ No	⊠ Doe	es Not Apply	
5. Describe cleaning	location, compounds a	and procedure for cargo	o vessels using this trar	nsfer point:
na				
-	pressure tested for lea	-	ocation?	
□ Yes	🖾 No			
If YES, describe:	na			
7. Projected Maximu	Im Operating Schedule	(for rack or transfer po	int as a whole):	
Maximum	Jan - Mar	Apr - Jun	Jul - Sep	Oct - Dec
hours/day	24	24	24	24
days/week	7	7	7	7
weeks/quarter	13	13	13	13

Appalachia Midstream Services, LLC (AMS) **Sand Hill Compressor Station (SHCS)** Application for 45CSR13 New Source review Permit Modification (NSR) **Attachment L - Emission Unit Data Sheet**

Bulk Liquid Transfer Operations - Continued

		SC	PW		
Liquid Name		Stabilized Condensate (SC)	Produced Water (PW)		
Max daily thru	uput (1,000 gal/day)	134	14		
Max annual t	nruput (1,000 gal/yr)	9,965	1,533		
Loading Meth	lod ¹	SUB	SUB		
Max Fill Rate	(gal/min)	150	150		
Ave Fill Time	(min/load)	60	60		
Max Bulk Liquid Temperature (oF)		100	100		
True Vapor Pressure ²		5.44	0.25		
Cargo Vessel Condition ³		U	U		
Control Equipment or Method ⁴		СА	None		
Minimum Cor	ntrol Efficiency	66.5%	na		
Maximum	Loading (lb/hr)	11.97	0.72		
Emission – Rate:	Annual (lb/yr)	17,035	157		
Estimation M	ethod⁵	EPA	EPA		
BF = Bottom F	III SP = Splash Fill SU	IB = Submerged Fill			
	ulk liquid temperature				
		Incleaned (dedicated service), O = oth			
•		mit appropriate Air Pollution Control D	evice Sheets):		
CA = Carbon Adsorption LOA = Lean Oil Adsorption CO = Condensation SC = Scrubber (Absorption) CRA = Compressor-Refrigeration-Absorption					
TO = Thermal Oxidation or Incineration CRC = Compression-Refrigeration-Condensation					
		ystem) O = other (describe)			

Attachment L - Emission Unit Data Sheet

Bulk Liquid Transfer Operations

Proposed Permit Modifications

Emission Unit Description TLO and WTLO

Proposed Modifications to WVDEP-DAQ Permit R13-2913A are shown below:

- 10.1.1. Maximum Throughput Limitation. The maximum condensate throughput to the Condensate Truck Loading (EPLOAD-1) shall not exceed 15.2 134.4 x 10³ gal/day and 2.52 9.965 x 10⁶ gal/yr. Compliance with the Maximum Throughput Limitation shall be determined using a twelve month rolling total. A twelve month rolling total shall mean the sum of the monthly throughput at any given time during the previous twelve consecutive calendar months.
- 10.1.2. Maximum Throughput Limitation. The maximum produced water throughput to the Produced Water Truck Loading (EPLOAD-2) shall not exceed 15.12 33.6 x 10³ gal/day and 15.33 1.53 x 10⁶ gal/yr. Compliance with the Maximum Throughput Limitation shall be determined using a twelve-month rolling total. A twelve-month rolling total shall mean the sum of the monthly throughput at any given time during the previous twelve consecutive calendar months.
- 10.1.3. The Condensate Truck Loading (EPLOAD-1) and the Produced Water Truck Loading (EPLOAD-2) shall be operated in accordance with the plans and specifications filed in Permit Application Rl3-2913. All emissions from the Condensate Truck Loading (EPLOAD-1) and the Produced Water Truck Loading (EPLOAD-2) will be controlled by a carbon canister (APC-CARBON) that shall be designed to achieve a minimum guaranteed control efficiency of 95% for volatile organic compound (VOC) emissions.
- 10.1.4. The carbon canister (APC-CARBON) must be operated at all times when gases, vapors, and fumes are vented from the Condensate Truck Loading (EPLOAD-1) and the Produced Water Truck Loading (EPLOAD 2). In addition, the carbon canister must be operated in series, as dual carbon canisters, in case of emission breakthrough in one carbon canister.

Sand Hill Compressor Station (SHCS)

Application for 45CSR13 New Source review Permit Modification (NSR)

Attachment L - Emission Unit Data Sheet

Fugitive Emissions Data Summary Sheet

Leak Source Data Sheet

Soure Category	Pollutant	Number of Source Components ¹	Number of Components Monitored by Frequency ²	Average Time to Repair (Days) ³	Estimated Annual Emission Rate (Ib/yr) ⁴
Pumps⁵	Light Liquid VOC ^{6,7}	18	na	na	0.52
	Heavy Liquid VOC ⁸				
	Non-VOC ⁹				
Valves ¹⁰	Gas VOC	1,440	na	na	3.35
	Light Liquid VOC	864	na	na	4.76
	Heavy Liquid VOC				
	Non-VOC				
Safety Relief Valves ¹¹	Gas VOC	See "Other"	na	na	
	Light Liquid VOC	See "Other"	na	na	
	Non-VOC				
Open Ended Lines ¹²	Gas VOC	50	na	na	0.05
	Light Liquid VOC	30	na	na	0.09
	Non-VOC				
Sampling Connections ¹³	Gas VOC	See "Open Ended Lines"	na	na	
	Light Liquid VOC	See "Open Ended Lines"	na	na	
	Non-VOC				
Compressors	Gas VOC	See "Other"	na	na	
	Non-VOC				
Flanges	Gas VOC	1,175	na	na	0.24
	Light Liquid VOC	486	na	na	0.12
	Non-VOC				
Connectors	Gas VOC	4,699	na	na	0.49
	Light Liquid VOC	1,944	na	na	0.90
	Non-VOC				
Other	Gas VOC	108	na	na	0.49
	Light Liquid VOC	65	na	na	1.07
	Non-VOC				

Sand Hill Compressor Station (SHCS)

Application for 45CSR13 New Source review Permit Modification (NSR)

Attachment L - Emission Unit Data Sheet

Notes for Leak Source Data Sheet

Notes for Leak Source Data Sheet

1. For VOC sources include components on streams and equipment that contain greater than 10% VOC, including feed streams, reaction/separation facilities, and product/by-product delivery lines. Do not include certain leakless equipment as defined below by category.

2. By monitoring frequency, give the number of sources routinely monitored for leaks, using a portable detection device that measures concentration in visual or soap-bubble leak detection ppm. Do not include monitoring by methods. "M/Q(M)/Q/SA/A/0" means the time period between inspections as follows: Monthly/Quarterly, with Monthly follow-up of repaired leakers/Quarterly/Semi-annual/Annually/other (specify time period)

If source category is not monitored, a single zero in the space will suffice. For example, if 50 gas-service valves are monitored quarterly, with monthly follow-up of those repaired, 75 are monitored semi-annually, and 50 are checked bimonthly (alternate months), with non checked at any other frequency, you would put in the category valves, gas service: 0/50/0/75/0/50 (bimonthly).

3. Give the average number of days, after a leak is discovered, that an attempt will be made to repair the leak.

4. Note the method used: MB - material balance; EE - engineering estimate; EPA - emission factors established by EPA (cite document used); 0 - other method, such as in-house emission factor (specify).

5. Do not include in the equipment count seal-less pumps (canned motor or diaphragm) or those with enclosed venting to a control device. (Emissions from vented equipment should be included in the estimates given in the Emission Points Data Sheet.)

6. Volatile organic compounds (VOC) means the term as defined in 40 CFR. 51.100 (s).

7. A light liquid is defined as a fluid with vapor pressure equal to or greater than 0.04 psi (0.3 Kpa) at 20°C. For mixtures, if 20% w/w or more of the stream is composed of fluids with vapor pressures greater than 0.04 psi (0.3 Kpa) at 20°C, then the fluid is defined as a light liquid.

8. A heavy liquid is defined as a fluid with a vapor pressure less than 0.04 psi (0.3 Kpa) at 20°c. For mixtures, if less than 20% w/w of the stream is composed of fluids with vapor pressures greater than 0.04 psi (0.3 Kpa) at 20°C. then the fluid is defined as a heavy liquid.

9. LIST CO, H2S, mineral acids, NO, NO, SO, etc. DO NOT LIST CO, H, H2O, N, O, and Noble Gases.

10. Include all process valves whether in-line or on an open-ended line such as sample, drain and purge valves. Do not include safety-relief valves, or leakless valves such as check, diaphragm, and bellows seal valves.

11. Do not include a safety-relief valve if there is a rupture disk in place upstream of the valve, or if the valve vents to a control device.

12. Open-ended lines include purge, drain and vent lines. Do not include sampling connections, or lines sealed by plugs, caps, blinds or second valves.

13. Do not include closed-purge sampling connections.

Attachment M

Air Pollution Control Device Sheet(s)

"29. Fill out the Air Pollution Control Device Sheet(s) as Attachment M."

- Oxidation Catalyst (OxCat-01 thru OxCat-12) (Serves CE-01 thru CE-12)
- BTEX Buster/Condenser (BTEX-01 and BTEX-02) (Serves DHY-01 thru DHY-03)
- Vapor Recovery Unit (VRU) (Serves TK-01 thru TK-08)
- Carbon Canister (CarbCan) (Serves TLO)

Sand Hill Compressor Station (SHCS)

Application for 45CSR13 New Source review Permit Modification (NSR)

Attachment M

AIR POLLUTION CONTROL DEVICE (APCD) SHEET (OxCat)

Control Device Unit No. (must match Emision Units Table): OxCat-01 thru OxCat-12 (Each)

Equipment Information

1. Manufacturer:	2. Control Devic	e Name:		
EMIT Technologies	Oxidation Ca	Oxidation Catalyst (OxCat) (Each of 12)		
	(Controls CE-01 thru CE-12)			
3. Provide diagram(s) of unit describing capture sy	stem with duct arrangement a	nd size of duct, air volume, capacity,		
horsepower of movers. If applicable, state hood	face velocity and hood collect	tion efficiency.		
4. On a separate sheet(s) supply all data and calcu	ulations used in selecting or de	signing this collection device.		
5. Provide a scale diagram of the control device sh				
6. Submit a schematic and diagram with dimensior				
7. Guaranteed minimum <u>collection</u> efficiency for ea	ch pollutant collected:			
CO 100%	NMNEHC 100%	HCHO 100%		
8. Attached efficiency curve and/or other efficiency				
9. Design inlet volume: 9,240 ACFM	10. Capacity:	na		
11. Indicate the liquid flow rate and describe equip	oment provided to measure pro	essure drop and flow rate, if any.		
na				
12. Attach any additional data including auxiliary ed	quipment and operation details	to thoroughly evaluate the control		
equipment. na				
13. Description of method of handling the collected	I material(s) for reuse of dispo	sal.		
na				
Gas	Stream Characteristics			
14. Are halogenated organics present?	□ Yes ☑ No			
Are particulates present?	□ Yes ☑ No			
Are metals present?	□ Yes ☑ No			
15. Inlet emission stream parameters:	Maximum	Typical		
Pressure (mmHg):	na	na		
Heat Content (BTU/scf):	na	na		
Oxygen Content (%):	na na			
Moisture Content (%):	na	na		
Relative Humidity (%):	na	na		

Sand Hill Compressor Station (SHCS)

Application for 45CSR13 New Source review Permit Modification (NSR)

Attachment M

AIR POLLUTION CONTROL DEVICE (APCD) SHEET (OxCat)

Control Device Unit No. (must match Emision Units Table): OxCat-01 thru OxCat-12 (Each)

Equipment Information - Continued

16. Type of pollutant(s) controlled: \Box SO2	□ Odor					
	Ø Other:	CO, NMN	EHC/VOC, H	СНО		
17. Inlet gas velocity: na		18. Pollutar	nt specific gra	ivity:	varies	
19. Gas flow into the collector:		20. Gas str	eam tempera	ture:		
9,240 ACFM			Inlet:	1,012	oF	
			Outlet:	na	oF	
21. Gas flow rate:		22. Particul	ate Grain Loa	ading:		
Design Maximum: 9,240 ACFM			Inlet:	na	grains/scf	
Average Expected: 9,240 ACFM			Outlet:	na	grains/scf	
23. Emission rate of each pollutant (specify) into a	nd out of col	ector:				
Pollutant	IN Po	llutant	Capture	OUT P	ollutant	Control
Foliutarit	g/bhp-hr	lb/hr	Efficiency	g/bhp-hr	lb/hr	Efficiency
СО	2.98	9.07	100%	0.45	1.36	85%
NMNEHC (VOC w/o HCHO)	1.08	3.29	100%	0.27	0.82	75%
VOC (including HCHO)	1.52	4.62	100%	0.32	0.98	79%
НСНО	0.39	1.19	100%	0.04	0.12	90%
24. Dimensions of stack: Height:	20.0	ft	Diameter:	1.0	ft	
25. Supply a curve showing proposed collection efficiency collector.		-				-
26. Complete the table:	Particle Size Distribution				Efficiency of	
Particulate Size Range (microns)	Weight % for Size Range		Weight % for Size Range			
0-2	na		na			
2-4	na		na			
4 - 6	na		na			
6 - 8	na		na			
8 – 10	na		na			
10 – 12	na		na			
12 – 16	na		na			
16 – 20	na		na			
20 - 30		na			na	
30 - 40		na			na	
40 – 50		na			na	
50 - 60		na			na	
60 – 70		na			na	
70 – 80	na				na	
80 – 90		na			na	
90 – 100		na			na	
>100		na			na	

Sand Hill Compressor Station (SHCS)

Application for 45CSR13 New Source review Permit Modification (NSR)

Attachment M

AIR POLLUTION CONTROL DEVICE (APCD) SHEET (OxCat)

Control Device Unit No. (must match Emision Units Table): OxCat-01 thru OxCat-12 (Each)

Equipment Information - Continued

27. Describe any air po humidification):	llution control device	inlet and outlet gas	conditioning pr	ocesses (e.g., gas cool	ng, gas reheating, gas
na					
28. Describe the collect	tion material disposal	system:			
na					
29. Describe the collecti	ion material disposal	system:	na		
30. Proposed Monitoring	g, Recordkeeping, Re	eporting, and Testir	ng		
	•			strate compliance with t th the proposed emissio	
MONITORING: RECORDKEEPING:					
As per NSPS JJJJ and Current Permit As per NSPS JJJJ and Current Permit			mit		
REPORTING: TESTING:					
As per NSPS JJJJ an	nd Current Permit		As per NSPS JJJJ and Current Permit		
MONITORING:					
				ranges that are propose f this process equipmer	
RECORDKEEPING	Please describe the	e proposed recordk	eeping that will	accompany the monitor	ing.
REPORTING	Please describe an device.	y proposed emission	ons testing for tl	nis process equipment c	on air pollution control
TESTING	Please describe an device.	y proposed emission	ons testing for t	nis process equipment c	on air pollution control
31. Manufacturer's Guar	ranteed <u>Collection</u> Ef	ficiency for each ai	r pollutant.		
CC		NMNEHC/VOC	100%	НСНО	100%
32. Manufacturer's Guar					
CC		NMNEHC/VOC	≥75%	НСНО	≥90%
33. Describe all operatir	ng ranges and mainte	enance procedures	required by Ma	nutacturer to maintain w	arranty.
na					

Sand Hill Compressor Station (SHCS)

Application for 45CSR13 New Source review Permit Modification (NSR)

Attachment M

Air Pollution Control Device (APCD) Sheet (Condenser)

Control Device Unit No. (must match Emission Units Table):

BTEX-01 thru BTEX-03

Equipment Information

1. Manufacturer:	2. Control Device Nar	ne:
NATCO	BETX Buster (Cor	idenser)
	(Controls DHY-01	thru DHY-03)
3. Provide diagram(s) of unit describing capture sy	stem with duct arrangement and size	ze of duct, air volume, capacity,
horsepower of movers. If applicable, state hood	face velocity and hood collection e	fficiency.
4. On a separate sheet(s) supply all data and calcu	lations used in selecting or designing	ng this collection device.
5. Provide a scale diagram of the control device sh	-	
6. Submit a schematic and diagram with dimension		
7. Guaranteed minimum collection efficiency for ea	ch pollutant collected:	
VOC 100%	V-HAP 100%	
8. Attached efficiency curve and/or other efficiency		
9. Design inlet volume: 2,570		
11. Indicate the liquid flow rate and describe equip	ment provided to measure pressure	e drop and flow rate, if any.
na		
12. Attach any additional data including auxiliary ed	quipment and operation details to th	oroughly evaluate the control
equipment. na		
13. Description of method of handling the collected	material(s) for reuse of disposal.	
na		
Gas	Stream Characteristics	
14. Are halogenated organics present?	🗆 Yes 🗹 No	
Are particulates present?	🗆 Yes 🗹 No	
Are metals present?	🗆 Yes 🗹 No	
15. Inlet emission stream parameters:	Maximum	Typical
Pressure (mmHg):	na	na
Heat Content (BTU/scf):	na	na
Oxygen Content (%):	na na	
Moisture Content (%):	na na	
Relative Humidity (%):	na	na

Sand Hill Compressor Station (SHCS)

Application for 45CSR13 New Source review Permit Modification (NSR)

Attachment M

Air Pollution Control Device (APCD) Sheet (Condenser)

Control Device Unit No. (must match Emission Units Table):

BTEX-01 thru BTEX-03

Equipment Information - Continued

16. Type of pollutant(s) controlled: □ SO2	□ Odor					
□ PM	☑ Other:	VOC, V-H	AP			
17. Inlet gas velocity: na		18. Pollutar	nt specific grav	vity:	varies	
19. Gas flow into the collector:		20. Gas stre	eam temperat	ure:		
2,570 SCFH			Inlet:	212	oF	
			Outlet:	120	oF	
21. Gas flow rate:		22. Particula	ate Grain Loa	ding:		
Design Maximum: 2,570 SCFH			Inlet:	na	grains/scf	
Average Expected: 2,570 SCFH			Outlet:	na	grains/scf	
23. Emission rate of each pollutant (specify) into a	nd out of coll	ector:				_
Pollutant	IN Po	llutant	Capture	OUT P	ollutant	Control
i oliutant	lb/yr	tpy	Efficiency	lb/yr	tpy	Efficiency
VOC	52.27	228.93	100%	1.79	7.85	96.6%
TOTAL HAP	12.80	56.07	100%	0.30	1.30	97.7%
24. Dimensions of stack: Height:	na		Diameter:	na		
25. Supply a curve showing proposed collection eff	iciency versu	is gas volum	e from 25 to 7	130 percent	of design rat	ing of
collector.						
26. Complete the table:		le Size Distri			Efficiency of	
Particulate Size Range (microns)	Weight % for Size Range		Weight % for Size Range		Range	
0 – 2		na			na	
2 – 4		na		na		
4 - 6	na		na			
6 – 8	na		na			
8 – 10	na		na			
10 – 12		na			na	
12 – 16		na			na	
16 – 20		na			na	
20 – 30		na			na	
30 – 40		na			na	
40 – 50		na			na	
50 – 60		na			na	
60 – 70		na			na	
70 – 80		na			na	
80 – 90		na			na	
90 – 100		na			na	
>100		na			na	

Sand Hill Compressor Station (SHCS)

Application for 45CSR13 New Source review Permit Modification (NSR)

Attachment M

Air Pollution Control Device (APCD) Sheet (Condenser)

Control Device Unit No. (must match Emission Units Table):

BTEX-01 thru BTEX-03

Equipment Information - Continued

27. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification):

Exhaust Gases are Burned as Fuel (Recycle) or Recompressed (Reclaimed)

28. Describe the collection material disposal system:

Condensed Liquids are pumped to the Stabilized Condensate Storage Tanks (TK-01 thru TK-08)

29. Describe the collect	ction material disposal system:	na
30. Proposed Monitori	ng, Recordkeeping, Reporting, and Testi	ng
		order to demonstrate compliance with the proposed operating e compliance with the proposed emissions limits.
MONITORING:		RECORDKEEPING:
As per Current Permit		As per Current Permit
REPORTING:		TESTING:
As per Current Perr	nit	As per Current Permit
MONITORING: Please list and describe the process parameters and ranges that are proposed to be monitore order to demonstrate compliance with the operation of this process equipment or air control d		
RECORDKEEPING	Please describe the proposed record	keeping that will accompany the monitoring.
REPORTING	Please describe any proposed emiss device.	ions testing for this process equipment on air pollution control
TESTING	Please describe any proposed emiss device.	ions testing for this process equipment on air pollution control
31. Manufacturer's Gu	aranteed Collection Efficiency for each a	ir pollutant.
na		
	aranteed Control Efficiency for each air p	pollutant.
na		, and the Manufacture to an interiment.
33. Describe all operation	ling ranges and maintenance procedures	s required by Manufacturer to maintain warranty.
L		

Sand Hill Compressor Station (SHCS)

Application for 45CSR13 New Source review Permit Modification (NSR)

Attachment M

Air Pollution Control Device (APCD) Sheet

(VRU)

Control Device Unit No. (must match Emission Units Table):

VRU

Equipment Information

1. Manufacturer:	2. Control Device Na	me:
na	Vapor Recovery I	Jnit (VRU)
	(Controls TK-01 t	hru TK-08)
3. Provide diagram(s) of unit describing capture sy	stem with duct arrangement and s	ize of duct, air volume, capacity,
horsepower of movers. If applicable, state hood	face velocity and hood collection	efficiency.
On a separate sheet(s) supply all data and calcu	lations used in selecting or design	ing this collection device.
5. Provide a scale diagram of the control device sh	-	
6. Submit a schematic and diagram with dimensior	is and flow rates.	
7. Guaranteed minimum collection efficiency for ea	ch pollutant collected:	
na		
Attached efficiency curve and/or other efficiency	information.	
9. Design inlet volume: na	10. Capacity:	na
11. Indicate the liquid flow rate and describe equip	ment provided to measure pressur	e drop and flow rate, if any.
na		
12. Attach any additional data including auxiliary ed	quipment and operation details to t	noroughly evaluate the control
equipment. na		
13. Description of method of handling the collected	I material(s) for reuse of disposal.	
na		
Gas	Stream Characteristics	
	official onaracteristics	
14. Are halogenated organics present?	🗆 Yes 🗹 No	
Are particulates present?	🗆 Yes 🗹 No	
Are metals present?	🗆 Yes 🗹 No	
15. Inlet emission stream parameters:	Maximum	Typical
Pressure (mmHg):	na	na
Heat Content (BTU/scf):	na	na
Oxygen Content (%):	na	na
Moisture Content (%):	na	na
Relative Humidity (%):	na	na

Sand Hill Compressor Station (SHCS)

Application for 45CSR13 New Source review Permit Modification (NSR)

Attachment M

Air Pollution Control Device (APCD) Sheet (VRU)

Control Device Unit No. (must match Emission Units Table):

Equipment Information - Continued

16. Type of pollutant(s) controlled: □ SO2	□ Odor					
D PM	☑ Other:	VOC, V-H	AP			
17. Inlet gas velocity: na		18. Pollutar	nt specific grav	/ity:	varies	
19. Gas flow into the collector:		20. Gas str	eam temperat	ure:		
na			Inlet:	na		
			Outlet:	na		
21. Gas flow rate:		22. Particul	ate Grain Loa	ding:		
Design Maximum: na			Inlet:	na		
Average Expected: na			Outlet:	na		
23. Emission rate of each pollutant (specify) into a	nd out of coll	ector:				
Pollutant	IN Pol	llutant	Capture	OUT Po	ollutant	Control
i onutant	lb/yr	tpy	Efficiency	lb/yr	tpy	Efficiency
VOC	6.16	26.97	100%	0.31	1.35	95%
TOTAL HAP	1.85	8.09	100%	0.09	0.40	95%
24. Dimensions of stack: Height:	na		Diameter:	na		
 Supply a curve showing proposed collection eff collector. 	iciency versu	ıs gas volum	e from 25 to 1	30 percent o	of design rat	ing of
26. Complete the table:	Partic	le Size Distri	bution	Fraction	Efficiency of	Collector
Particulate Size Range (microns)	Weight % for Size Range		Weight % for Size Range		Range	
0 – 2		na		na		
2 – 4		na		na		
4 – 6	na		na			
6 – 8	na		na			
8 – 10	na			na		
10 – 12		na			na	
12 – 16		na			na	
16 – 20		na			na	
20 – 30		na			na	
30 – 40		na			na	
40 – 50		na			na	
50 – 60		na			na	
60 – 70		na			na	
70 – 80		na			na	
80 – 90		na			na	
90 – 100		na			na	
>100		na			na	

Sand Hill Compressor Station (SHCS)

Application for 45CSR13 New Source review Permit Modification (NSR)

Attachment M

Air Pollution Control Device (APCD) Sheet

(VRU)

Control Device Unit No. (must match Emission Units Table):

VRU

Equipment Information - Continued

	• •		
27. Describe any air p humidification):	ollution control device inlet and outlet ga	s conditioning processes (e.g., gas cooling, gas reheating, gas	
	Exhaust Gases are Burned as Fuel (R	ecycle) or Recompressed (Reclaimed)	
28. Describe the colle	ction material disposal system:		
Condense	ed Liquids are returned to the Stabilize	d Condensate Storage Tanks (TK-01 thru TK-08)	
29. Describe the collect	ction material disposal system:	na	
30. Proposed Monitorii	ng, Recordkeeping, Reporting, and Testi	ng	
		order to demonstrate compliance with the proposed operating e compliance with the proposed emissions limits.	
MONITORING:		RECORDKEEPING:	
	per Current Permit move WTK-01 and WTK-02)	As per Current Permit (Except Remove WTK-01 and WTK-02)	
REPORTING:		TESTING:	
	per Current Permit	As per Current Permit	
	move WTK-01 and WTK-02)	(Except Remove WTK-01 and WTK-02)	
MONITORING:			
		barameters and ranges that are proposed to be monitored in the operation of this process equipment or air control device.	
RECORDKEEPING	Please describe the proposed record	keeping that will accompany the monitoring.	
REPORTING			
TESTING	Please describe any proposed emissi device.	ons testing for this process equipment on air pollution control	
31. Manufacturer's Gu	aranteed Collection Efficiency for each a	ir pollutant.	
na			
32. Manufacturer's Gu	aranteed <u>Control</u> Efficiency for each air p	pollutant.	
na			
	ing ranges and maintenance procedures	required by Manufacturer to maintain warranty.	
na			

Sand Hill Compressor Station (SHCS)

Application for 45CSR13 New Source review Permit Modification (NSR)

Attachment M

Air Pollution Control Device (APCD) Sheet (Adsorption)

Control Device Unit No. (must match Emission Units Table):

CarbCan

Equipment Information

1. Manufacturer:	2. Control Device Na	me:
na	Carbon Canister	
	(Controls TLO)	
3. Provide diagram(s) of unit describing capture sy	ystem with duct arrangement and s	ize of duct, air volume, capacity,
horsepower of movers. If applicable, state hood	I face velocity and hood collection	efficiency.
4. On a separate sheet(s) supply all data and calcu	ulations used in selecting or desigr	ing this collection device.
5. Provide a scale diagram of the control device sh	-	
6. Submit a schematic and diagram with dimension	ns and flow rates.	
7. Guaranteed minimum <u>collection</u> efficiency for ea	ch pollutant collected:	
VOC: 70%	V-HAP: 70%	
8. Attached efficiency curve and/or other efficiency	information.	
9. Design inlet volume: na	10. Capacity:	na
11. Indicate the liquid flow rate and describe equip	pment provided to measure pressu	re drop and flow rate, if any.
na		
12. Attach any additional data including auxiliary e	quipment and operation details to t	horoughly evaluate the control
equipment. na		
13. Description of method of handling the collected	I material(s) for reuse of disposal.	
na		
Gas	Stream Characteristics	
14. Are halogenated organics present?	□Yes ☑ No	
Are particulates present?	🗆 Yes 🛛 No	
Are metals present?	🗆 Yes 🛛 No	
15. Inlet emission stream parameters:	Maximum	Typical
Pressure (mmHg):	na	na
Heat Content (BTU/scf):	na	na
Oxygen Content (%):	na	na
Moisture Content (%):	na	na
Relative Humidity (%):	na	na

Sand Hill Compressor Station (SHCS)

Application for 45CSR13 New Source review Permit Modification (NSR)

Attachment M

Air Pollution Control Device (APCD) Sheet (Adsorption)

Control Device Unit No. (must match Emission Units Table):

CarbCan

Equipment Information - Continued

16. Type of pollutant(s) controlled: □ SO2	□ Odor					
□ PM	☑ Other	VOC, V-H	AP			
17. Inlet gas velocity: na		18. Pollutar	nt specific grav	vity:	varies	
19. Gas flow into the collector:		20. Gas str	eam temperat	ure:		
na			Inlet:	na		
			Outlet:	na		
21. Gas flow rate:		22. Particul	ate Grain Loa	ding:		
Design Maximum: na			Inlet:	na		
Average Expected: na			Outlet:	na		
23. Emission rate of each pollutant (specify) into a	nd out of col	lector:				
Pollutant	IN Po	llutant	Capture	OUT Po	ollutant	Control
	lb/yr	tpy	Efficiency	lb/yr	tpy	Efficiency
VOC	35.72	25.43	70%	11.97	8.52	95%
TOTAL HAP	10.72	7.63	70%	3.59	2.56	95%
24. Dimensions of stack: Height:	4.0		Diameter:	0.3	-	
 Supply a curve showing proposed collection eff collector. 	ficiency vers	us gas volum	ne from 25 to 1	130 percent o	of design rat	ing of
26. Complete the table:	Partic	le Size Distr	ibution	Fraction I	Efficiency of	Collector
Particulate Size Range (microns)	Weigł	nt % for Size	Range	Weigh	t % for Size	Range
0 – 2		na			na	
2 – 4		na			na	
4 - 6		na			na	
6 – 8		na			na	
8 – 10		na			na	
10 – 12		na			na	
12 – 16		na			na	
16 – 20		na			na	
20 – 30		na			na	
30 – 40		na			na	
40 – 50		na			na	
50 – 60		na			na	
60 – 70		na			na	
70 – 80		na			na	
80 – 90		na			na	
90 – 100		na			na	
>100		na			na	

Sand Hill Compressor Station (SHCS)

Application for 45CSR13 New Source review Permit Modification (NSR)

Attachment M

Air Pollution Control Device (APCD) Sheet

(Adsorption)

Control Device Unit No. (must match Emission Units Table):

CarbCan

Equipment Information - Continued

28. Describe the collection material disposal system: The Carbon Canisters (CarbCan) are returned to the manufacture for regeneration as requisite. 29. Describe the collection material disposal system: na 30. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. MONITORING: As per Current Permit (Except Remove WTLO) REPORTING: TESTING: As per Current Permit (Except Remove WTLO) As per Current Permit (Except Remove WTLO) MONITORING: Please list and describe the process parameters and ranges that are proposed to be monitored in order to demonstrate compliance with the operation of this process equipment or air control device. RECORDKEEPING Please list and describe the process parameters and ranges that are proposed to be monitored in order to demonstrate compliance with the operation of this process equipment or air control device. RECORDKEEPING Please describe the proposed recordkeeping that will accompany the monitoring.	27. Describe any air po humidification): na	ollution control device inlet and outlet gas	s conditioning processes (e.g., gas cooling, gas reheating, gas
The Carbon Canisters (CarbCan) are returned to the manufacture for regeneration as requisite. 29. Describe the collection material disposal system: na 30. Proposed Monitoring, Recordkeeping, and resting Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. MONITORING: As per Current Permit (Except Remove WTLO) RECORDKEEPING: As per Current Permit (Except Remove WTLO) REPORTING: As per Current Permit (Except Remove WTLO) TESTING: As per Current Permit (Except Remove WTLO) MONITORING: Please list and describe the process parameters and ranges that are proposed to be monitored in order to demonstrate compliance with the operation of this process equipment on air control device. RECORDKEEPING Please describe the proposed emissions testing for this process equipment on air pollution control device. RECORDKEEPING Please describe any proposed emissions testing for this process equipment on air pollution control device. TESTING Please describe any proposed emissions testing for this process equipment on air pollution control device. TESTING Please describe any proposed emissions testing for this process equipment on air pollution control device. TESTING Please describe any proposed emissions testing for this process equipment on air pollution control device. 31. Man			
29. Describe the collection material disposal system: na 30. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. MONITORING: As per Current Permit (Except Remove WTLO) RECORDKEEPING: REPORTING: As per Current Permit (Except Remove WTLO) TESTING: MONITORING: Please list and describe the process parameters and ranges that are proposed to be monitored in order to demonstrate compliance with the operation of this process equipment or air control device. RECORDKEEPING Please describe the proposed recordkeeping that will accompany the monitoring. REPORTING: Please describe the proposed recordkeeping that will accompany the monitoring. RECORDKEEPING Please describe any proposed emissions testing for this process equipment on air pollution control device. TESTING Please describe any proposed emissions testing for this process equipment on air pollution control device. TESTING Please describe any proposed emissions testing for this process equipment on air pollution control device. TESTING Please describe any proposed emissions testing for this process equipment on air pollution control device. TESTING Please describe any proposed emissions testing for this process equipment on air polluti	28. Describe the collect	ction material disposal system:	
30. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. MONITORING: As per Current Permit (Except Remove WTLO) REPORTING: As per Current Permit (Except Remove WTLO) MONITORING: TESTING: As per Current Permit (Except Remove WTLO) TESTING: MONITORING: Please list and describe the process parameters and ranges that are proposed to be monitored in order to demonstrate compliance with the operation of this process equipment or air control device. RECORDKEEPING Please describe the proposed recordkeeping that will accompany the monitoring. REPORTING: Please describe the proposed emissions testing for this process equipment on air pollution control device. RECORDKEEPING Please describe any proposed emissions testing for this process equipment on air pollution control device. TESTING Please describe any proposed emissions testing for this process equipment on air pollution control device. 31. Manufacturer's Guaranteed <u>Collection</u> Efficiency for each air pollutant. na 32. Manufacturer's Guaranteed <u>Control</u> Efficiency for each air pollutant. na 33. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.	The Carbo	on Canisters (CarbCan) are returned t	o the manufacture for regeneration as requisite.
Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. MONITORING: As per Current Permit (Except Remove WTLO) RECORDKEEPING: REPORTING: As per Current Permit (Except Remove WTLO) TESTING: MONITORING: Please list and describe the process parameters and ranges that are proposed to be monitored in order to demonstrate compliance with the operation of this process equipment or air control device. MONITORING: Please list and describe the process parameters and ranges that are proposed to be monitored in order to demonstrate compliance with the operation of this process equipment or air control device. RECORDKEEPING Please describe the proposed recordkeeping that will accompany the monitoring. REPORTING Please describe any proposed emissions testing for this process equipment on air pollution control device. TESTING Please describe any proposed emissions testing for this process equipment on air pollution control device. 31. Manufacturer's Guaranteed <u>Collection</u> Efficiency for each air pollutant. na 32. Manufacturer's Guaranteed <u>Control</u> Efficiency for each air pollutant. 1 33. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.		· · · ·	
parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. MONITORING: As per Current Permit (Except Remove WTLO) RECORDKEEPING: As per Current Permit (Except Remove WTLO) REPORTING: As per Current Permit (Except Remove WTLO) TESTING: As per Current Permit (Except Remove WTLO) MONITORING: Please list and describe the process parameters and ranges that are proposed to be monitored in order to demonstrate compliance with the operation of this process equipment or air control device. RECORDKEEPING Please describe the proposed recordkeeping that will accompany the monitoring. REPORTING Please describe any proposed emissions testing for this process equipment on air pollution control device. TESTING Please describe any proposed emissions testing for this process equipment on air pollution control device. 31. Manufacturer's Guaranteed <u>Collection</u> Efficiency for each air pollutant. na 32. Manufacturer's Guaranteed <u>Control</u> Efficiency for each air pollutant. na 33. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.			-
MONITORING: As per Current Permit (Except Remove WTLO) RECORDKEEPING: REPORTING: As per Current Permit (Except Remove WTLO) TESTING: As per Current Permit (Except Remove WTLO) TESTING: MONITORING: Please list and describe the process parameters and ranges that are proposed to be monitored in order to demonstrate compliance with the operation of this process equipment or air control device. RECORDKEEPING Please describe the proposed recordkeeping that will accompany the monitoring. REPORTING Please describe the proposed emissions testing for this process equipment on air pollution control device. TESTING Please describe any proposed emissions testing for this process equipment on air pollution control device. 31. Manufacturer's Guaranteed Collection Efficiency for each air pollutant. ma 32. Manufacturer's Guaranteed Control Efficiency for each air pollutant. ma 33. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.			
As per Current Permit (Except Remove WTLO) As per Current Permit (Except Remove WTLO) REPORTING: As per Current Permit (Except Remove WTLO) TESTING: MONITORING: Please list and describe the process parameters and ranges that are proposed to be monitored in order to demonstrate compliance with the operation of this process equipment or air control device. RECORDKEEPING Please describe the proposed recordkeeping that will accompany the monitoring. REPORTING Please describe the proposed emissions testing for this process equipment on air pollution control device. TESTING Please describe any proposed emissions testing for this process equipment on air pollution control device. TESTING Please describe any proposed emissions testing for this process equipment on air pollution control device. 31. Manufacturer's Guaranteed <u>Collection</u> Efficiency for each air pollutant. na Image: Control Efficiency for each air pollutant. Image: Control Efficiency for each air pollutant. 33. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty. State of the maintenance procedures required by Manufacturer to maintain warranty.		e propose testing in order to demonstrate	
(Except Remove WTLO) (Except Remove WTLO) REPORTING: As per Current Permit (Except Remove WTLO) TESTING: MONITORING: Please list and describe the process parameters and ranges that are proposed to be monitored in order to demonstrate compliance with the operation of this process equipment or air control device. RECORDKEEPING Please describe the proposed recordkeeping that will accompany the monitoring. REPORTING Please describe any proposed emissions testing for this process equipment on air pollution control device. TESTING Please describe any proposed emissions testing for this process equipment on air pollution control device. TESTING Please describe any proposed emissions testing for this process equipment on air pollution control device. 31. Manufacturer's Guaranteed Collection Efficiency for each air pollutant. na na 32. Manufacturer's Guaranteed Control Efficiency for each air pollutant. na 1 33. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.		nor Current Dormit	
REPORTING: As per Current Permit (Except Remove WTLO) TESTING: MONITORING: Please list and describe the process parameters and ranges that are proposed to be monitored in order to demonstrate compliance with the operation of this process equipment or air control device. RECORDKEEPING Please describe the proposed recordkeeping that will accompany the monitoring. REPORTING Please describe any proposed emissions testing for this process equipment on air pollution control device. TESTING Please describe any proposed emissions testing for this process equipment on air pollution control device. 31. Manufacturer's Guaranteed <u>Collection</u> Efficiency for each air pollutant. na 1 32. Manufacturer's Guaranteed <u>Control</u> Efficiency for each air pollutant. na 1 33. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.		-	-
As per Current Permit (Except Remove WTLO) As per Current Permit (Except Remove WTLO) MONITORING: Please list and describe the process parameters and ranges that are proposed to be monitored in order to demonstrate compliance with the operation of this process equipment or air control device. RECORDKEEPING Please describe the proposed recordkeeping that will accompany the monitoring. REPORTING Please describe any proposed emissions testing for this process equipment on air pollution control device. TESTING Please describe any proposed emissions testing for this process equipment on air pollution control device. 31. Manufacturer's Guaranteed <u>Collection</u> Efficiency for each air pollutant. na Image: Collection Structure for each air pollutant. 32. Manufacturer's Guaranteed <u>Control</u> Efficiency for each air pollutant. na Image: Collection Structure for each air pollutant. 33. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty. Image: Collection Structure to maintain warranty.			()
(Except Remove WTLO) (Except Remove WTLO) MONITORING: Please list and describe the process parameters and ranges that are proposed to be monitored in order to demonstrate compliance with the operation of this process equipment or air control device. RECORDKEEPING Please describe the proposed recordkeeping that will accompany the monitoring. REPORTING Please describe any proposed emissions testing for this process equipment on air pollution control device. TESTING Please describe any proposed emissions testing for this process equipment on air pollution control device. 31. Manufacturer's Guaranteed Collection Efficiency for each air pollutant. na 32. Manufacturer's Guaranteed Control Efficiency for each air pollutant. na 33. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty. 33.	REPORTING:		TESTING:
MONITORING: Please list and describe the process parameters and ranges that are proposed to be monitored in order to demonstrate compliance with the operation of this process equipment or air control device. RECORDKEEPING Please describe the proposed recordkeeping that will accompany the monitoring. REPORTING Please describe any proposed emissions testing for this process equipment on air pollution control device. TESTING Please describe any proposed emissions testing for this process equipment on air pollution control device. 31. Manufacturer's Guaranteed Collection Efficiency for each air pollutant. na 32. Manufacturer's Guaranteed Control Efficiency for each air pollutant. na 33. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty. State of the secure of the secccc of the secure of the secure of the secure of the s		-	-
Please list and describe the process parameters and ranges that are proposed to be monitored in order to demonstrate compliance with the operation of this process equipment or air control device. RECORDKEEPING Please describe the proposed recordkeeping that will accompany the monitoring. REPORTING Please describe any proposed emissions testing for this process equipment on air pollution control device. TESTING Please describe any proposed emissions testing for this process equipment on air pollution control device. 31. Manufacturer's Guaranteed Collection Efficiency for each air pollutant. na 32. Manufacturer's Guaranteed Control Efficiency for each air pollutant. na 33. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty. Please and maintenance procedures required by Manufacturer to maintain warranty.	(Exc	ept Remove WILO)	(Except Remove WILO)
REPORTING Please describe any proposed emissions testing for this process equipment on air pollution control device. TESTING Please describe any proposed emissions testing for this process equipment on air pollution control device. 31. Manufacturer's Guaranteed Collection Efficiency for each air pollutant. na 32. Manufacturer's Guaranteed Control Efficiency for each air pollutant. na 33. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty. State of the section of the sectio	MONITORING:		•
device. TESTING Please describe any proposed emissions testing for this process equipment on air pollution control device. 31. Manufacturer's Guaranteed Collection Efficiency for each air pollutant. na 32. Manufacturer's Guaranteed Control Efficiency for each air pollutant. na 33. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.	RECORDKEEPING	Please describe the proposed record	keeping that will accompany the monitoring.
device. 31. Manufacturer's Guaranteed Collection Efficiency for each air pollutant. na 32. Manufacturer's Guaranteed Control Efficiency for each air pollutant. na 33. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.	REPORTING		ons testing for this process equipment on air pollution control
na 32. Manufacturer's Guaranteed <u>Control</u> Efficiency for each air pollutant. na 33. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.	TESTING		ons testing for this process equipment on air pollution control
 32. Manufacturer's Guaranteed <u>Control</u> Efficiency for each air pollutant. na 33. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty. 	31. Manufacturer's Gua	aranteed Collection Efficiency for each a	ir pollutant.
na 33. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.			
33. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.	32. Manufacturer's Gua	aranteed <u>Control</u> Efficiency for each air p	pollutant.
		ng ranges and maintenance procedures	required by Manufacturer to maintain warranty.
	Πά		

Attachment N

Emissions Calculations

"30. Provide all Supporting Emissions Calculations as Attachment N."

• Emission Summary Spreadsheets

- o Potential to Emit (PTE) Criteria Pollutants Controlled
- Potential to Emit (PTE) Hazardous Air Pollutants (HAP) Controlled
- Potential to Emit (PTE) Greenhouse Gases (GHG) Controlled
- Potential to Emit (PTE) Criteria Pollutants PRE-Controlled
- Potential to Emit (PTE) Hazardous Air Pollutants (HAP) PRE-Controlled
- Potential to Emit (PTE) Greenhouse Gases (GHG) PRE-Controlled

Unit-Specific Emission Spreadsheets

- Compressor Engine (CE-01 thru CE-12) Emissions
- Compressor Rod Packing (CRP) Emissions
- Microturbine Generator (GEN) Emissions
- o Dehydrator (DHY-01 thru DHY-03) Emissions
- Reboiler (BLR-01 thru BLR-03) Emissions
- Heater Treater (HTR-01 and HTR-02) Emissions
- o Stabilized Condensate Storage Tank (TK-01 thru TK-08) Emissions
- Produced Water Storage Tank (WTK-01 and WTK-02) Emissions
- Stabilized Condensate (SC) Truck Load-Out (TLO) Emissions
- Produced Water (PW) Truck Load-Out (WTLO) Emissions
- o Compressor Blowdown (CBD) / Emergency Shutdown (ESD) Emissions
- Fugitive Emissions
 - Process Piping and Equipment Leak (FUG-G) Emissions Gas
 - Process Piping and Equipment Leak (FUG-O) Emissions Light Liquid
 - Engine Crankcase (ECC) Emissions

Criteria Pollutants - Controlled

Unit	Point	Source			NC	X	C	:0	VOC (w	/HCHO)	PM1	0/2.5	S	02
ID	ID	ID	Description	Site Rating	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy
			5	and Hill Compressor Sta	tion (SHCS)	- Point Sour	ces		1					
EUCE-1	EPCE-1	CE-01	Compressor Engine 01 - CAT G3516B (OxCat)	1,380 bhp	1.52	6.66	1.36	5.96	0.98	4.28	0.11	0.49	0.01	0.03
EUCE-2	EPCE-2	CE-02	Compressor Engine 02 - CAT G3516B (OxCat)	1,380 bhp	1.52	6.66	1.36	5.96	0.98	4.28	0.11	0.49	0.01	0.03
EUCE-3	EPCE-3	CE-03	Compressor Engine 03 - CAT G3516B (OxCat)	1,380 bhp	1.52	6.66	1.36	5.96	0.98	4.28	0.11	0.49	0.01	0.03
EUCE-4	EPCE-4	CE-04	Compressor Engine 04 - CAT G3516B (OxCat)	1,380 bhp	1.52	6.66	1.36	5.96	0.98	4.28	0.11	0.49	0.01	0.03
EUCE-5	EPCE-5	CE-05	Compressor Engine 05 - CAT G3516B (OxCat)	1,380 bhp	1.52	6.66	1.36	5.96	0.98	4.28	0.11	0.49	0.01	0.03
EUCE-6	EPCE-6	CE-06	Compressor Engine 06 - CAT G3516B (OxCat)	1,380 bhp	1.52	6.66	1.36	5.96	0.98	4.28	0.11	0.49	0.01	0.03
EUCE-7	EPCE-7	CE-07	Compressor Engine 07 - CAT G3516B (OxCat)	1,380 bhp	1.52	6.66	1.36	5.96	0.98	4.28	0.11	0.49	0.01	0.03
EUCE-8	EPCE-8	CE-08	Compressor Engine 08 - CAT G3516B (OxCat)	1,380 bhp	1.52	6.66	1.36	5.96	0.98	4.28	0.11	0.49	0.01	0.03
EUCE-9	EPCE-9	CE-09	Compressor Engine 09 - CAT G3516B (OxCat)	1,380 bhp	1.52	6.66	1.36	5.96	0.98	4.28	0.11	0.49	0.01	0.03
EUCE-10	EPCE-10	CE-10	Compressor Engine 10 - CAT G3516B (OxCat)	1,380 bhp	1.52	6.66	1.36	5.96	0.98	4.28	0.11	0.49	0.01	0.03
EUCE-11	EPCE-11	CE-11	Compressor Engine 11 - CAT G3516B (OxCat)	1,380 bhp	1.52	6.66	1.36	5.96	0.98	4.28	0.11	0.49	0.01	0.03
EUCE-12	EPCE-12	CE-12	Compressor Engine 12 - CAT G3516B (OxCat)	1,380 bhp	1.52	6.66	1.36	5.96	0.98	4.28	0.11	0.49	0.01	0.03
EUCRP	EPCRP	CRP	Compressor Rod Packing	12 Units					9.87	43.23				
EUGEN-1	EPGEN-1	GEN	Generator - Capstone C600 Microturbine	805 bhp	0.48	2.10	1.32	5.78	0.13	0.57	0.05	0.20	4E-03	0.02
EUDHY-1	EPSTL-1	DHY-01	Dehydrator 01 (BTEX Buster)	55.0 MMscfd					1.79	7.85				
EUDHY-2	EPSTL-2	DHY-02	Dehydrator 02 (BTEX Buster)	55.0 MMscfd					1.79	7.85				
EUDHY-3	EPSTL-3	DHY-03	Dehydrator 03 (BTEX Buster)	55.0 MMscfd					1.79	7.85				
EURBL-1	EPRBL-1	BLR-01	Reboiler 01	1.00 MMBtu/hr	0.10	0.43	0.08	0.36	0.01	0.02	0.01	0.03	6E-04	3E-03
EURBL-2	EPRBL-2	BLR-02	Reboiler 02	1.00 MMBtu/hr	0.10	0.43	0.08	0.36	0.01	0.02	0.01	0.03	6E-04	3E-03
EURBL-3	EPRBL-3	BLR-03	Reboiler 03	1.00 MMBtu/hr	0.10	0.43	0.08	0.36	0.01	0.02	0.01	0.03	6E-04	3E-03
EUHT-1	EPHT-1	HTR-01	Heater-Treater Burner 01	0.50 MMBtu/hr	0.06	0.21	0.05	0.18	3E-03	0.01	5E-03	0.02	4E-04	1E-03
EUHT-2	EPHT-2	HTR-02	Heater-Treater Burner 02	0.50 MMBtu/hr	0.06	0.21	0.05	0.18	3E-03	0.01	5E-03	0.02	4E-04	1E-03
EUTK-1	EPTK-1	TK-01	Storage Tank 01 - Stabilized Condensate (SC) (VRU)	400 bbl					0.04	0.17				
EUTK-2	EPTK-2	TK-02	Storage Tank 02 - Stabilized Condensate (SC) (VRU)	400 bbl					0.04	0.17				
EUTK-3	EPTK-3	TK-03	Storage Tank 03 - Stabilized Condensate (SC) (VRU)	400 bbl					0.04	0.17				
EUTK-4	EPTK-4	TK-04	Storage Tank 04 - Stabilized Condensate (SC) (VRU)	400 bbl					0.04	0.17				
EUTK-5	EPTK-5	TK-05	Storage Tank 05 - Stabilized Condensate (SC) (VRU)	400 bbl					0.04	0.17				
EUTK-6	EPTK-6	TK-06	Storage Tank 06 - Stabilized Condensate (SC) (VRU)	400 bbl					0.04	0.17				
EUTK-7	EPTK-7	TK-07	Storage Tank 07 - Stabilized Condensate (SC) (VRU)	400 bbl					0.04	0.17				
EUTK-8	EPTK-8	TK-08	Storage Tank 08 - Stabilized Condensate (SC) (VRU)	400 bbl					0.04	0.17				
EUWTK-9	EPWTK-9	WTK-01	Storage Tank W01 - Produced Water (PW)	400 bbl					0.01	0.03				
EUWTK-10	EPWTK-10	WTK-02	Storage Tank W02 - Produced Water (PW)	400 bbl					0.01	0.03				
EULOAD-1	EPLOAD-1	TLO	Truck Loading - Stabilized Condensate (SC) (CarbCan)	9,965 Mgal/yr					11.97	8.52				
EULOAD-2	EPLOAD-2	WTLO	Truck Loading - Produced Water (PW)	1,533 Mgal/yr					0.72	0.08				
EUBD	EPBD	CBD/ESD	Compressor Blowdown/Emergency Shutdown Tests	1,249 events/yr					28.31	24.94				
			Sand Hill Compressor Station	SHCS) - Point Sources	19.15	83.77	17.99	78.70	68.45	153.79	1.42	6.22	0.09	0.38
				Sand Hill Compressor S	Station (SHC	S) - Fugitive	s							
EUFUG	EPFUG	FUG-G	Piping & Equip Leaks - Gas	7,472 Units					4.62	20.23				
20100	LI 100	FUG-O	Piping & Equip Leaks - Light Liquid	3,407 Units					7.46	32.68				
EUECC	EPECC	ECC	Engine Crankcase Fugitives	17,365 bhp	0.05	0.21	0.28	1.24	0.14	0.63	4E-03	0.02	2E-04	9E-04
			Sand Hill Compressor Sta	tion (SHCS) - Fugitives	0.05	0.21	0.28	1.24	12.22	53.54	4E-03	0.02	2E-04	9E-04
				Sand Hill Compresso	r Station (SH	CS) - Total								
			Sand Hill Compressor	Station (SHCS) - Total	19.20	83.98	18.27	79.95	80.67	207.33	1.43	6.24	0.09	0.38

Hazardous Air Pollutants (HAP) - Controlled

Source	Acetald	lehvde	Acro	olein	Benz	zene	Butadie	ene. 1.3-	Ethylb	enzene	HC	НО	n-He	xane	Meth	anol	PC	DM	Toli	uene	TMP.	2,2,4-	Xvle	enes	Othe	r HAP	ΤΟΤΑΙ	HAPs
ID	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy
	10/11	τ ρ γ	10/111	t p y	10/11	τ ρ γ	10/11	(p)	10/111		Sand Hill							τpj	10/11	493	10/11	τpj	10/11	(p)	10/111	τρy	15/111	τ ρ γ
CE-01	0.02	0.10	0.01	0.06	1E-03	5E-03	7E-04	3E-03	1E-04	5E-04	0.12	0.52	3E-03	0.01	0.01	0.03	1E-03	4E-03	1E-03	5E-03	7E-04	3E-03	5E-04	2E-03	9E-04	4E-03	0.17	0.76
CE-02	0.02	0.10	0.01	0.06	1E-03	5E-03	7E-04	3E-03	1E-04	5E-04	0.12	0.52	3E-03	0.01	0.01	0.03	1E-03	4E-03	1E-03	5E-03	7E-04	3E-03	5E-04	2E-03	9E-04	4E-03	0.17	0.76
CE-03	0.02	0.10	0.01	0.06	1E-03	5E-03	7E-04	3E-03	1E-04	5E-04	0.12	0.52	3E-03	0.01	0.01	0.03	1E-03	4E-03	1E-03	5E-03	7E-04	3E-03	5E-04	2E-03	9E-04	4E-03	0.17	0.76
CE-04	0.02	0.10	0.01	0.06	1E-03	5E-03	7E-04	3E-03	1E-04	5E-04	0.12	0.52	3E-03	0.01	0.01	0.03	1E-03	4E-03	1E-03	5E-03	7E-04	3E-03	5E-04	2E-03	9E-04	4E-03	0.17	0.76
CE-05	0.02	0.10	0.01	0.06	1E-03	5E-03	7E-04	3E-03	1E-04	5E-04	0.12	0.52	3E-03	0.01	0.01	0.03	1E-03	4E-03	1E-03	5E-03	7E-04	3E-03	5E-04	2E-03	9E-04	4E-03	0.17	0.76
CE-06	0.02	0.10	0.01	0.06	1E-03	5E-03	7E-04	3E-03	1E-04	5E-04	0.12	0.52	3E-03	0.01	0.01	0.03	1E-03	4E-03	1E-03	5E-03	7E-04	3E-03	5E-04	2E-03	9E-04	4E-03	0.17	0.76
CE-07	0.02	0.10	0.01	0.06	1E-03	5E-03	7E-04	3E-03	1E-04	5E-04	0.12	0.52	3E-03	0.01	0.01	0.03	1E-03	4E-03	1E-03	5E-03	7E-04	3E-03	5E-04	2E-03	9E-04	4E-03	0.17	0.76
CE-08	0.02	0.10	0.01	0.06	1E-03	5E-03	7E-04	3E-03	1E-04	5E-04	0.12	0.52	3E-03	0.01	0.01	0.03	1E-03	4E-03	1E-03	5E-03	7E-04	3E-03	5E-04	2E-03	9E-04	4E-03	0.17	0.76
CE-09	0.02	0.10	0.01	0.06	1E-03	5E-03	7E-04	3E-03	1E-04	5E-04	0.12	0.52	3E-03	0.01	0.01	0.03	1E-03	4E-03	1E-03	5E-03	7E-04	3E-03	5E-04	2E-03	9E-04	4E-03	0.17	0.76
CE-10	0.02	0.10	0.01	0.06	1E-03	5E-03	7E-04	3E-03	1E-04	5E-04	0.12	0.52	3E-03	0.01	0.01	0.03	1E-03	4E-03	1E-03	5E-03	7E-04	3E-03	5E-04	2E-03	9E-04	4E-03	0.17	0.76
CE-11	0.02	0.10	0.01	0.06	1E-03	5E-03	7E-04	3E-03	1E-04	5E-04	0.12	0.52	3E-03	0.01	0.01	0.03	1E-03	4E-03	1E-03	5E-03	7E-04	3E-03	5E-04	2E-03	9E-04	4E-03	0.17	0.76
CE-12	0.02	0.10	0.01	0.06	1E-03	5E-03	7E-04	3E-03	1E-04	5E-04	0.12	0.52	3E-03	0.01	0.01	0.03	1E-03	4E-03	1E-03	5E-03	7E-04	3E-03	5E-04	2E-03	9E-04	4E-03	0.17	0.76
CRP					0.02	0.07			0.02	0.07			0.25	1.09					0.02	0.07	0.02	0.07	0.02	0.07			0.33	1.45
GEN	0.00	0.00	0.00	0.00	0.00	0.00	6E-06	0.00	4E-04	2E-03	0.01	0.04					4E-04	2E-03	2E-03	0.01			9E-04	4E-03	4E-04	2E-03	0.00	0.06
DHY-01					0.06	0.27			4E-03	0.02			0.09	0.40					0.10	0.43	2E-03	0.01	0.04	0.17			0.30	1.30
DHY-02					0.06	0.27			4E-03	0.02			0.00	0.40					0.10	0.43	2E-03	0.01	0.04	0.17			0.30	1.30
DHY-03					0.06	0.27			4E-03	0.02			0.09	0.40					0.10	0.43	2E-03	0.01	0.04	0.17			0.30	1.30
BLR-01					2E-06	9E-06					7E-05	3E-04	2E-03	0.01			7E-07	3E-06	3E-06	1E-05					1E-06	5E-06	2E-03	0.01
BLR-02					2E-06	9E-06					7E-05	3E-04	2E-03	0.01			7E-07	3E-06	3E-06	1E-05					1E-06	5E-06	2E-03	0.01
BLR-03					2E-06	9E-06					7E-05	3E-04	2E-03	0.01			7E-07	3E-06	3E-06	1E-05					1E-06	5E-06	2E-03	0.01
HTR-01					1E-06	5E-06					5E-05	2E-04	1E-03	4E-03			4E-07	1E-06	2E-06	7E-06					7E-07	3E-06	1E-03	4E-03
HTR-02					1E-06	5E-06					5E-05	2E-04	1E-03	4E-03			4E-07	1E-06	2E-06	7E-06					7E-07	3E-06	1E-03	4E-03
TK-01					8E-04	3E-03			8E-04	3E-03			0.01	0.03					8E-04	3E-03	8E-04	3E-03	8E-04	3E-03			0.01	0.05
TK-02					8E-04	3E-03			8E-04	3E-03			0.01	0.03					8E-04	3E-03	8E-04	3E-03	8E-04	3E-03			0.01	0.05
TK-03					8E-04	3E-03			8E-04	3E-03			0.01	0.03					8E-04	3E-03	8E-04	3E-03	8E-04	3E-03			0.01	0.05
TK-04					8E-04	3E-03			8E-04	3E-03			0.01	0.03					8E-04	3E-03	8E-04	3E-03	8E-04	3E-03			0.01	0.05
TK-05					8E-04	3E-03			8E-04	3E-03			0.01	0.03					8E-04	3E-03	8E-04	3E-03	8E-04	3E-03			0.01	0.05
TK-06					8E-04	3E-03			8E-04	3E-03			0.01	0.03					8E-04	3E-03	8E-04	3E-03	8E-04	3E-03			0.01	0.05
TK-07					8E-04	3E-03			8E-04	3E-03			0.01	0.03					8E-04	3E-03	8E-04	3E-03	8E-04	3E-03			0.01	0.05
TK-08					8E-04	3E-03			8E-04	3E-03			0.01	0.03					8E-04	3E-03	8E-04	3E-03	8E-04	3E-03			0.01	0.05
WTK-01					1E-04	6E-04			1E-04	6E-04			1E-03	0.00					1E-04	6E-04			1E-04	6E-04			2E-03	0.00
WTK-01 WTK-02					1E-04	6E-04			1E-04	6E-04			1E-03	0.01					1E-04	6E-04	1E-04	6E-04	1E-04	6E-04			2E-03	0.01
TLO					0.24	0.17			0.24	0.17			2.39	1.70					0.24	0.17	0.24	0.17	0.24	0.17			3.59	2.56
WTLO					0.24	2E-03			0.24	2E-03			0.14	0.02					0.24	2E-03	0.24	2E-03	0.24	2E-03			0.22	0.02
CBD/ESD					0.01	0.04			0.01	0.04			0.71	0.63					0.01	0.04	0.01	0.04	0.01	0.04			0.95	0.84
SHCS-PS	0.28	1.24	0.17	0.76	0.53	1.20	0.01	0.04	0.34	0.37	1.43	6.28	3.88	5.10	0.08	0.37	0.01	0.05	0.64	1.69	0.34	0.38	0.45	0.85	0.01	0.05	8.17	18.37
0110010	0.20		••••	011.0	0.00		0.01	0101	0.01	0.01		0.20	0.00		0.00	0.01		0.00	0.01		0.01	0.00	0110	0100	0.01	0100	0	
											Sand H	lill Com	pressor	Station ((SHCS) -	Fugitive	es											
FUG-G					0.01	0.03			0.01	0.03			0.12	0.51					0.01	0.03	0.01	0.03	0.01	0.03			0.16	0.68
FUG-O					0.01	0.05			0.01	0.05			0.12	0.82					0.01	0.05	0.01	0.05	0.01	0.05			0.25	1.10
ECC	3E-03	0.01	2E-03	0.01	2E-04	7E-04	9E-05	4E-04	1E-05	6E-05	0.04	0.16	4E-04	2E-03	9E-04	4E-03	1E-04	5E-04	1E-04	6E-04	9E-05	4E-04	6E-05	3E-04	1E-04	5E-04	0.04	0.19
SHCS-FUG	3E-03	0.01	2E-03	0.01	0.02	0.09	9E-05	4E-04	0.02	0.09	0.04	0.16	0.30	1.33	9E-04	4E-03		5E-04	0.02	0.09	0.02	0.09	0.02	0.09	1E-04		0.45	1.97
	••		••													••	1 • •								• .	• ·		
											Sand	d Hill Co	mpresso	or Statio	n (SHCS) - Total												
SHCS-TOT	0.29	1.25	0.18	0.77	0.55	1.29	0.01	0.04	0.36	0.46	1.47	6.44	4.18	6.43	0.09	0.37	0.01	0.05	0.66	1.78	0.36	0.47	0.47	0.94	0.01	0.05	8.62	20.34
* = Ib/hr is b																												

Application for 45CSR13 New Source review Permit Modification (NSR)

Greenhouse Gas (GHG) Pollutants - Controlled

Source			Heat Input	Hours of	CO2	CO2e	CH4	CO2e	N2O	CO2e		TAL
ID	Description	Site Rating	MMBtu/hr (HHV)	Operation	GWP:	1	GWP:	25	GWP:	298		02e
		Cond		hr/yr*	tpy CS) - Point Sour	tpy	tpy	tpy	tpy	tpy	lb/hr*	tpy
CE-01	Compressor Engine 01 - CAT G3516B (OxCat)	1,380 bhp	11.23	8,760	6,796	6,796	61.49	1,537	0.01	3.23	1,903	8,336
CE-01 CE-02	Compressor Engine 02 - CAT G3516B (OxCat)	1,380 bhp	11.23	8,760	6,796	6,796	61.49	1,537	0.01	3.23	1,903	8,336
CE-02 CE-03	Compressor Engine 02 - CAT G3516B (OxCat)	1,380 bhp	11.23	8,760	6,796	6,796	61.49	1,537	0.01	3.23	1,903	8,336
CE-03	Compressor Engine 04 - CAT G3516B (OxCat)	1,380 bhp	11.23	8,760	6,796	6,796	61.49	1,537	0.01	3.23	1,903	8,336
CE-04 CE-05	Compressor Engine 05 - CAT G3516B (OxCat)	1,380 bhp	11.23	8,760	6,796	6,796	61.49	1,537	0.01	3.23	1,903	8,336
CE-05 CE-06	Compressor Engine 06 - CAT G3516B (OxCat)		11.23	8,760	6,796	6,796	61.49	1,537	0.01	3.23	1,903	8,336
CE-00 CE-07	Compressor Engine 07 - CAT G3516B (OxCat)	1,380 bhp	11.23	8,760	6,796	6,796	1	1,537	0.01	3.23		
CE-07 CE-08	Compressor Engine 08 - CAT G3516B (OxCat)	1,380 bhp	11.23	-	-		61.49	-	0.01	3.23	1,903	8,336
CE-08 CE-09	Compressor Engine 09 - CAT G3516B (OxCat) Compressor Engine 09 - CAT G3516B (OxCat)	1,380 bhp		8,760	6,796 6,796	6,796	61.49 61.49	1,537 1,537	0.01	3.23	1,903	8,336
		1,380 bhp	11.23	8,760		6,796	4				1,903	8,336
CE-10	Compressor Engine 10 - CAT G3516B (OxCat)	1,380 bhp	11.23	8,760	6,796	6,796	61.49	1,537	0.01	3.23	1,903	8,336
CE-11	Compressor Engine 11 - CAT G3516B (OxCat)	1,380 bhp	11.23	8,760	6,796	6,796	61.49	1,537	0.01	3.23	1,903	8,336
CE-12	Compressor Engine 12 - CAT G3516B (OxCat)	1,380 bhp	11.23	8,760	6,796	6,796	61.49	1,537	0.01	3.23	1,903	8,336
CRP	Compressor Rod Packing	12 Units		8,760	0.44	0.44	99.81	2,495			570	2,496
GEN	Generator - Capstone C600 Microturbine	805 bhp	6.84	8,760	3,494	3,494	0.52	13	9E-02	26.80	807	3,534
DHY-01	Dehydrator 01 (BTEX Buster)	55.0 MMscfd		8,760	2.54	2.54	0.39	9.66			2.79	12.20
DHY-02	Dehydrator 02 (BTEX Buster)	55.0 MMscfd		8,760	2.54	2.54	0.39	9.66			2.79	12.20
DHY-03	Dehydrator 03 (BTEX Buster)	55.0 MMscfd		8,760	2.54	2.54	0.39	9.66			2.79	12.20
BLR-01	Reboiler 01	1.00 MMBtu/hr	1.00	8,760	515	515	0.01	0.25	0.01	2.82	118	518
BLR-02	Reboiler 02	1.00 MMBtu/hr	1.00	8,760	515	515	0.01	0.25	0.01	2.82	118	518
BLR-03	Reboiler 03	1.00 MMBtu/hr	1.00	8,760	515	515	0.01	0.25	0.01	2.82	118	518
HTR-01	Heater-Treater Burner 01	0.50 MMBtu/hr	0.50	8,760	258	258	5E-03	0.12	5E-03	1.41	59.17	259
HTR-02	Heater-Treater Burner 02	0.50 MMBtu/hr	0.50	8,760	258	258	5E-03	0.12	5E-03	1.41	59.17	259
TK-01	Storage Tank 01 - Stabilized Condensate (SC) (VRU)											
TK-02	Storage Tank 02 - Stabilized Condensate (SC) (VRU)											
TK-03	Storage Tank 03 - Stabilized Condensate (SC) (VRU)											
TK-04	Storage Tank 04 - Stabilized Condensate (SC) (VRU)			There are D	e Minimis GHGs	in Stabilized	Condensate (SC) Storage Tar	nk Emissions			
TK-05	Storage Tank 05 - Stabilized Condensate (SC) (VRU)							, etc. age i a				
TK-06	Storage Tank 06 - Stabilized Condensate (SC) (VRU)											
TK-07	Storage Tank 07 - Stabilized Condensate (SC) (VRU)											
TK-08	Storage Tank 08 - Stabilized Condensate (SC) (VRU)											
WTK-01	Storage Tank W01 - Produced Water (PW)			There are	e De Minimis GH	Gs in Produc	ed Water (PW) S	Storage Tank R	Emissions			
WTK-02	Storage Tank W02 - Produced Water (PW)							•				
TLO	Truck Loading - Produced Water (PW)						Condensate (SC	,	9			
WTLO	Truck Loading - Stabilized Condensate (SC) (CarbCan)						e Water (PW) Tru	uck Loading	Emissions			
CBD/ESD	Compressor Blowdown/Emergency Shutdown Tests	1,249 events/yr		8,760	0.25	0.25	57.57	1,439			329	1,440
		Sand Hill Compressor Stati	on (SHCS) - Po	oint Sources	87,117	87,117	897	22,423	0.26	76.84	25,027	109,617
			d Hill Compres		HCS) - Fugitive		•				-	
FUG-G	Piping & Equip Leaks - Gas	7,472 Units		8,760	0.20	0.20	46.71	1,168			267	1,168
FUG-O	Piping & Equip Leaks - Light Liquid	ļ				HGs in Light	Liquid Piping & E	Equip Leak En	1			
ECC	Engine Crankcase Fugitives	17,365 bhp		8,760	213	213	1.93	48.15	3E-04	0.10	59.62	261
		Sand Hill Compressor	Station (SHCS) - Fugitives	213	213	48.63	1,216	3E-04	0.10	326	1,429
			-		(SHCS) - Total							
		Sand Hill Compres	sor Station (Sl	HCS) - Total	87,330	87,330	946	23,639	0.26	76.94	25,353	111,046

6			
ions			
S			
-		329	1,440
6	76.84	25,027	109,617
-		267	1,168
)4	0.10	59.62	261
04	0.10	326	1,429
6	76.94	25,353	111,046

Criteria Pollutants - PRE-Control

Unit	Point	Source			NC	X		:0	VOC (w	/HCHO)	PM1	0/2.5	S	02
ID	ID	ID	Description	Site Rating	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy
			Sand H	l Iill Cmpressor Station (S				ιpy	10/11	ιpy	10/11	tpy	10/111	ι py
EUCE-1	EPCE-1	CE-01	Compressor Engine 01 - CAT G3516B (OxCat)	1,380 bhp	1.52	6.66	9.07	39.71	4.62	20.25	0.11	0.49	0.01	0.03
EUCE-2	EPCE-2	CE-02	Compressor Engine 02 - CAT G3516B (OxCat)	1,380 bhp	1.52	6.66	9.07	39.71	4.62	20.25	0.11	0.49	0.01	0.03
EUCE-3	EPCE-3	CE-03	Compressor Engine 03 - CAT G3516B (OxCat)	1,380 bhp	1.52	6.66	9.07	39.71	4.62	20.25	0.11	0.49	0.01	0.03
EUCE-4	EPCE-4	CE-04	Compressor Engine 04 - CAT G3516B (OxCat)	1,380 bhp	1.52	6.66	9.07	39.71	4.62	20.25	0.11	0.49	0.01	0.03
EUCE-5	EPCE-5	CE-05	Compressor Engine 05 - CAT G3516B (OxCat)	1,380 bhp	1.52	6.66	9.07	39.71	4.62	20.25	0.11	0.49	0.01	0.03
EUCE-6	EPCE-6	CE-06	Compressor Engine 06 - CAT G3516B (OxCat)	1,380 bhp	1.52	6.66	9.07	39.71	4.62	20.25	0.11	0.49	0.01	0.03
EUCE-7	EPCE-7	CE-07	Compressor Engine 07 - CAT G3516B (OxCat)	1,380 bhp	1.52	6.66	9.07	39.71	4.62	20.25	0.11	0.49	0.01	0.03
EUCE-8	EPCE-8	CE-08	Compressor Engine 08 - CAT G3516B (OxCat)	1,380 bhp	1.52	6.66	9.07	39.71	4.62	20.25	0.11	0.49	0.01	0.03
EUCE-9	EPCE-9	CE-00	Compressor Engine 09 - CAT G3516B (OxCat)	1,380 bhp	1.52	6.66	9.07	39.71	4.62	20.25	0.11	0.49	0.01	0.03
EUCE-10	EPCE-10	CE-10	Compressor Engine 10 - CAT G3516B (OxCat)	1,380 bhp	1.52	6.66	9.07	39.71	4.62	20.25	0.11	0.49	0.01	0.03
EUCE-11	EPCE-11	CE-10 CE-11	Compressor Engine 11 - CAT G3516B (OxCat)	1,380 bhp	1.52	6.66	9.07	39.71	4.62	20.25	0.11	0.49	0.01	0.03
EUCE-11	EPCE-11 EPCE-12	CE-11 CE-12	Compressor Engine 12 - CAT G3516B (OxCat)	1,380 bhp	1.52	6.66	9.07	39.71	4.62	20.25	0.11	0.49	0.01	0.03
EUCRP	EPCE-12	CRP	Compressor Rod Packing	12 Units		0.00	9.07		9.87	43.23		0.49		
EUGEN-1	EPGEN-1	GEN	Generator - Capstone C600 Microturbine	805 bhp	0.48	2.10	1.32	5.78	0.13	0.57	0.05	0.20	4E-03	0.02
EUGEN-1 EUDHY-1	EPGEN-1 EPSTL-1	DHY-01							52.27					
EUDHY-1 EUDHY-2	EPSTL-1 EPSTL-2	DHY-01 DHY-02	Dehydrator 01 (BTEX Buster)	55.0 MMscfd					52.27	229 229				
EUDHY-2 EUDHY-3	EPSTL-2 EPSTL-3	DHY-02 DHY-03	Dehydrator 02 (BTEX Buster)	55.0 MMscfd					52.27	229				
			Dehydrator 03 (BTEX Buster)	55.0 MMscfd										
EURBL-1	EPRBL-1	BLR-01	Reboiler 01	1.00 MMBtu/hr	0.10	0.43	0.08	0.36	0.01	0.02	0.01	0.03	6E-04	3E-03
EURBL-2	EPRBL-2	BLR-02	Reboiler 02	1.00 MMBtu/hr	0.10	0.43	0.08	0.36	0.01	0.02	0.01	0.03	6E-04	3E-03
EURBL-3	EPRBL-3	BLR-03	Reboiler 03	1.00 MMBtu/hr	0.10	0.43	0.08	0.36	0.01	0.02	0.01	0.03	6E-04	3E-03
EUHT-1	EPHT-1	HTR-01	Heater-Treater Burner 01	0.50 MMBtu/hr	0.06	0.21	0.05	0.18	3E-03	0.01	5E-03	0.02	4E-04	1E-03
EUHT-2	EPHT-2	HTR-02	Heater-Treater Burner 02	0.50 MMBtu/hr	0.06	0.21	0.05	0.18	3E-03	0.01	5E-03	0.02	4E-04	1E-03
EUTK-1	EPTK-1	TK-01	Storage Tank 01 - Stabilized Condensate (SC) (VRU)	400 bbl					0.77	3.37				
EUTK-2	EPTK-2	TK-02	Storage Tank 02 - Stabilized Condensate (SC) (VRU)	400 bbl					0.77	3.37				
EUTK-3	EPTK-3	TK-03	Storage Tank 03 - Stabilized Condensate (SC) (VRU)	400 bbl					0.77	3.37				
EUTK-4	EPTK-4	TK-04	Storage Tank 04 - Stabilized Condensate (SC) (VRU)	400 bbl					0.77	3.37				
EUTK-5	EPTK-5	TK-05	Storage Tank 05 - Stabilized Condensate (SC) (VRU)	400 bbl					0.77	3.37				
EUTK-6	EPTK-6	TK-06	Storage Tank 06 - Stabilized Condensate (SC) (VRU)	400 bbl					0.77	3.37				
EUTK-7	EPTK-7	TK-07	Storage Tank 07 - Stabilized Condensate (SC) (VRU)	400 bbl					0.77	3.37				
EUTK-8	EPTK-8	TK-08	Storage Tank 08 - Stabilized Condensate (SC) (VRU)	400 bbl					0.77	3.37				
EUWTK-9	EPWTK-9	WTK-01	Storage Tank W01 - Produced Water (PW)	400 bbl					0.01	0.03				
	EPWTK-10	WTK-02	Storage Tank W02 - Produced Water (PW)	400 bbl					0.01	0.03				
	EPLOAD-1	TLO	Truck Loading - Produced Water (PW)	9,965 Mgal/yr					35.72	25.43				
	EPLOAD-2	WTLO	Truck Loading - Stabilized Condensate (SC) (CarbCan)	1,533 Mgal/yr					0.72	0.08				
EUBD	EPBD	CBD/ESD	Compressor Blowdown/Emergency Shutdown Tests	1,249 events/yr					5.69	24.94				
			Sand Hill Cmpressor Station (SHCS) - Point	Sources - PRE-Control	19.15	84	110	484	271	1,051	1.42	6.22	0.09	0.38
				Hill Compressor Station	(SHCS) - Fu	gitives - PRE	E-Control							
EUFUG	EPFUG	FUG-G	Piping & Equip Leaks - Gas	7,472 Units					4.62	20.23				
		FUG-O	Piping & Equip Leaks - Light Liquid	3,407 Units					7.46	32.68				
EUECC	EPECC	ECC	Engine Crankcase Fugitives	17,365 bhp	0.05	0.21	0.28	1.24	0.14	0.63	4E-03	0.02	2E-04	9E-04
			Sand Hill Compressor Station (SHCS) - F	ugitives - PRE-Control	0.05	0.21	0.28	1.24	12.22	53.54	4E-03	0.02	2E-04	9E-04
							-							
				nd Hill Compressor Station	· ·									
			Sand Hill Compressor Station (SHCS at Compressor Blowdowns (CBD/ESD) Truck Load-Out (TLC	,	19.20	84	111	485	283	1,105	1.43	6.24	0.09	0.38

Hazardous Air Pollutants (HAP) - PRE-Control

Source	Acetald	lehyde	Acro	lein	Benz	zene	Butadie	ne, 1.3-	Ethylbe	enzene	HC	НО	n-He	xane	Meth	anol	PC	DM	Tolu	ene	TMP.	2,2,4-	Xyle	enes	Othe	r HAP	TOTAL	L HAPs
ID	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy	lb/hr*	tpy
		-1- 7						7									RE-Cont						1	7		-1- 7		5
CE-01	0.09	0.41	0.06	0.25	5E-03	0.02	3E-03	0.01	4E-04	2E-03	1.19	5.20	0.01	0.05	0.03	0.12	4E-03	0.02	5E-03	0.02	3E-03	0.01	2E-03	0.01	4E-03	0.02	1.40	6.15
CE-02	0.09	0.41	0.06	0.25	5E-03	0.02	3E-03	0.01	4E-04	2E-03	1.19	5.20	0.01	0.05	0.03	0.12	4E-03	0.02	5E-03	0.02	3E-03	0.01	2E-03	0.01	4E-03	0.02	1.40	6.15
CE-03	0.09	0.41	0.06	0.25	5E-03	0.02	3E-03	0.01	4E-04	2E-03	1.19	5.20	0.01	0.05	0.03	0.12	4E-03	0.02	5E-03	0.02	3E-03	0.01	2E-03	0.01	4E-03	0.02	1.40	6.15
CE-04	0.09	0.41	0.06	0.25	5E-03	0.02	3E-03	0.01	4E-04	2E-03	1.19	5.20	0.01	0.05	0.03	0.12	4E-03	0.02	5E-03	0.02	3E-03	0.01	2E-03	0.01	4E-03	0.02	1.40	6.15
CE-05	0.09	0.41	0.06	0.25	5E-03	0.02	3E-03	0.01	4E-04	2E-03	1.19	5.20	0.01	0.05	0.03	0.12	4E-03	0.02	5E-03	0.02	3E-03	0.01	2E-03	0.01	4E-03	0.02	1.40	6.15
CE-06	0.09	0.41	0.06	0.25	5E-03	0.02	3E-03	0.01	4E-04	2E-03	1.19	5.20	0.01	0.05	0.03	0.12	4E-03	0.02	5E-03	0.02	3E-03	0.01	2E-03	0.01	4E-03	0.02	1.40	6.15
CE-07	0.09	0.41	0.06	0.25	5E-03	0.02	3E-03	0.01	4E-04	2E-03	1.19	5.20	0.01	0.05	0.03	0.12	4E-03	0.02	5E-03	0.02	3E-03	0.01	2E-03	0.01	4E-03	0.02	1.40	6.15
CE-08	0.09	0.41	0.06	0.25	5E-03	0.02	3E-03	0.01	4E-04	2E-03	1.19	5.20	0.01	0.05	0.03	0.12	4E-03	0.02	5E-03	0.02	3E-03	0.01	2E-03	0.01	4E-03	0.02	1.40	6.15
CE-09	0.09	0.41	0.06	0.25	5E-03	0.02	3E-03	0.01	4E-04	2E-03	1.19	5.20	0.01	0.05	0.03	0.12	4E-03	0.02	5E-03	0.02	3E-03	0.01	2E-03	0.01	4E-03	0.02	1.40	6.15
CE-10	0.09	0.41	0.06	0.25	5E-03	0.02	3E-03	0.01	4E-04	2E-03	1.19	5.20	0.01	0.05	0.03	0.12	4E-03	0.02	5E-03	0.02	3E-03	0.01	2E-03	0.01	4E-03	0.02	1.40	6.15
CE-11	0.09	0.41	0.06	0.25	5E-03	0.02	3E-03	0.01	4E-04	2E-03	1.19	5.20	0.01	0.05	0.03	0.12	4E-03	0.02	5E-03	0.02	3E-03	0.01	2E-03	0.01	4E-03	0.02	1.40	6.15
CE-12	0.09	0.41	0.06	0.25	5E-03	0.02	3E-03	0.01	4E-04	2E-03	1.19	5.20	0.01	0.05	0.03	0.12	4E-03	0.02	5E-03	0.02	3E-03	0.01	2E-03	0.01	4E-03	0.02	1.40	6.15
CRP					0.02	0.07			0.02	0.07			0.25	1.09					0.02	0.07	0.02	0.07	0.02	0.07			0.33	1.45
GEN	0.00	0.00	0.00	0.00	0.00	0.00	6E-06	0.00	4E-04	2E-03	0.01	0.04					4E-04	2E-03	2E-03	0.01			9E-04	4E-03	4E-04	2E-03	0.01	0.06
DHY-01					1.75	7.66			0.32	1.41			2.30	10.07					4.42	19.35	0.23	1.00	3.79	16.58			12.80	56.07
DHY-02					1.75	7.66			0.32	1.41			2.30	10.07					4.42	19.35	0.23	1.00	3.79	16.58			12.80	56.07
DHY-03					1.75	7.66			0.32	1.41			2.30	10.07					4.42	19.35	0.23	1.00	3.79	16.58			12.80	56.07
BLR-01					2E-06	9E-06					7E-05	3E-04	2E-03	0.01			7E-07	3E-06	3E-06	1E-05					1E-06	5E-06	2E-03	0.01
BLR-02					2E-06	9E-06					7E-05	3E-04	2E-03	0.01			7E-07	3E-06	3E-06	1E-05					1E-06	5E-06	2E-03	0.01
BLR-03					2E-06	9E-06					7E-05	3E-04	2E-03	0.01			7E-07	3E-06	3E-06	1E-05					1E-06	5E-06	2E-03	0.01
HTR-01					1E-06	5E-06					5E-05	2E-04	1E-03	4E-03			4E-07	1E-06	2E-06	7E-06					7E-07	3E-06	1E-03	4E-03
HTR-02					1E-06	5E-06					5E-05	2E-04	1E-03	4E-03			4E-07	1E-06	2E-06	7E-06					7E-07	3E-06	1E-03	4E-03
TK-01					0.02	0.07			0.02	0.07			0.15	0.67					0.02	0.07	0.02	0.07	0.02	0.07			0.23	1.01
TK-02					0.02	0.07			0.02	0.07			0.15	0.67					0.02	0.07	0.02	0.07	0.02	0.07			0.23	1.01
TK-03					0.02	0.07			0.02	0.07			0.15	0.67					0.02	0.07	0.02	0.07	0.02	0.07			0.23	1.01
TK-04 TK-05					0.02	0.07			0.02	0.07			0.15 0.15	0.67					0.02	0.07	0.02	0.07	0.02	0.07			0.23	1.01
TK-05 TK-06					0.02	0.07			0.02	0.07			0.15	0.67					0.02	0.07	0.02	0.07	0.02	0.07			0.23	1.01 1.01
TK-00 TK-07					0.02	0.07			0.02	0.07			0.15	0.67					0.02	0.07	0.02	0.07	0.02	0.07			0.23	1.01
TK-07					0.02	0.07			0.02	0.07			0.15	0.67					0.02	0.07	0.02	0.07	0.02	0.07			0.23	1.01
WTK-01					1E-04	6E-04			1E-04	6E-04			1E-03	0.07					1E-04	6E-04	1E-04	6E-04	1E-04	6E-04			2E-03	0.01
WTK-01 WTK-02					1E-04	6E-04			1E-04	6E-04			1E-03	0.01					1E-04	6E-04	1E-04	6E-04	1E-04	6E-04			2E-03	0.01
TLO					0.71	0.51			0.71	0.51			7.14	5.09					0.71	0.51	0.71	0.51	0.71	0.51			10.72	7.63
WTLO					0.01	2E-03			0.01	2E-03			0.14	0.03					0.01	2E-03	0.01	2E-03	0.01	2E-03			0.22	0.02
CBD/ESD					0.05	0.04			0.05	0.04			0.71	0.63					0.05	0.04	0.01	0.04	0.05	0.04			0.95	0.84
SHCS-PS	1.13	4.94	0.69	3.03	6.22	24.41	0.04	0.16	1.89	5.42	14.25	62.41	16.53	43.11	0.34	1.48	0.05	0.21	14.23	59.47	1.64	4.32	12.30	51.02	0.04	0.19	69.34	260.16
	-							-									1											
										Sand	Hill Con	npressor	r Station	(SHCS)	- Fugitiv	es - PRI	E-Contro											
FUG-G					0.01	0.03			0.01	0.03			0.12	0.51					0.01	0.03	0.01	0.03	0.01	0.03			0.16	0.68
FUG-O					0.01	0.05			0.01	0.05			0.19	0.82					0.01	0.05	0.01	0.05	0.01	0.05			0.25	1.10
ECC	3E-03	0.01	2E-03	0.01	2E-04	7E-04	9E-05	4E-04	1E-05	6E-05	0.04	0.16	4E-04	2E-03	9E-04	4E-03	1E-04	5E-04	1E-04	6E-04	9E-05	4E-04	6E-05	3E-04	1E-04	5E-04	0.04	0.19
SHCS-FUG	3E-03	0.01	2E-03	0.01	0.02	0.09	9E-05	4E-04	0.02	0.09	0.04	0.16	0.30	1.33	9E-04	4E-03			0.02	0.09	0.02	0.09	0.02	0.09	1E-04		0.45	1.97
										Sar	nd Hill Co	ompress	or Statio	on (SHCS	S) - Tota	I - PRE-0	Control											
SHCS-TOT	1.13	4.95	0.69	3.04	6.24	24.50	0.04	0.16	1.91	5.51	14.29	62.57	16.84	44.44	0.34	1.48	0.05	0.21	14.25	59.56	1.66	4.41	12.32	51.11	0.04	0.19	69.79	262.12
* = lb/hr is b	and on	0 760 hr	hur ovoor	t Compr	occor Plo	wdowno			k Lood (and Dia	aina (DIC) oro loo	o froquor	at												

Greenhouse Gas (GHG) Pollutants - PRE-Control

Source			Heat Input	Hours of	CO2	CO2e	CH4	CO2e	N2O	CO2e		TAL
ID	Description	Site Rating	MMBtu/hr	Operation	GWP:	1	GWP:	25	GWP:	298)2e
			(HHV)	hr/yr*	tpy	tpy	tpy	tpy	tpy	tpy	lb/hr*	tpy
05.04			-	,	nt Sources - PF		01.40	4 507	0.04	0.00	4 000	0.000
CE-01	Compressor Engine 01 - CAT G3516B (OxCat)	1,380 bhp	11.23	8,760	6,796	6,796	61.49	1,537	0.01	3.23	1,903	8,336
CE-02	Compressor Engine 02 - CAT G3516B (OxCat)	1,380 bhp	11.23	8,760	6,796	6,796	61.49	1,537	0.01	3.23	1,903	8,336
CE-03	Compressor Engine 03 - CAT G3516B (OxCat)	1,380 bhp	11.23	8,760	6,796	6,796	61.49	1,537	0.01	3.23	1,903	8,336
CE-04	Compressor Engine 04 - CAT G3516B (OxCat)	1,380 bhp	11.23	8,760	6,796	6,796	61.49	1,537	0.01	3.23	1,903	8,336
CE-05	Compressor Engine 05 - CAT G3516B (OxCat)	1,380 bhp	11.23	8,760	6,796	6,796	61.49	1,537	0.01	3.23	1,903	8,336
CE-06	Compressor Engine 06 - CAT G3516B (OxCat)	1,380 bhp	11.23	8,760	6,796	6,796	61.49	1,537	0.01	3.23	1,903	8,336
CE-07	Compressor Engine 07 - CAT G3516B (OxCat)	1,380 bhp	11.23	8,760	6,796	6,796	61.49	1,537	0.01	3.23	1,903	8,336
CE-08	Compressor Engine 08 - CAT G3516B (OxCat)	1,380 bhp	11.23	8,760	6,796	6,796	61.49	1,537	0.01	3.23	1,903	8,336
CE-09	Compressor Engine 09 - CAT G3516B (OxCat)	1,380 bhp	11.23	8,760	6,796	6,796	61.49	1,537	0.01	3.23	1,903	8,336
CE-10	Compressor Engine 10 - CAT G3516B (OxCat)	1,380 bhp	11.23	8,760	6,796	6,796	61.49	1,537	0.01	3.23	1,903	8,336
CE-11	Compressor Engine 11 - CAT G3516B (OxCat)	1,380 bhp	11.23	8,760	6,796	6,796	61.49	1,537	0.01	3.23	1,903	8,336
CE-12	Compressor Engine 12 - CAT G3516B (OxCat)	1,380 bhp	11.23	8,760	6,796	6,796	61.49	1,537	0.01	3.23	1,903	8,336
CRP	Compressor Rod Packing	12 Units		8,760	0.44	0.44	99.81	2,495			570	2,496
GEN	Generator - Capstone C600 Microturbine	805 bhp	6.84	8,760	3,494	3,494	0.52	12.95	0.09	26.80	807	3,534
DHY-01	Dehydrator 01 (BTEX Buster)	55.0 MMscfd		8,760	2.54	2.54	7.73	193			44.70	196
DHY-02	Dehydrator 02 (BTEX Buster)	55.0 MMscfd		8,760	2.54	2.54	7.73	193			44.70	196
DHY-03	Dehydrator 03 (BTEX Buster)	55.0 MMscfd		8,760	2.54	2.54	7.73	193			44.70	196
BLR-01	Reboiler 01	1.00 MMBtu/hr	1.00	8,760	515	515	0.01	0.25	0.01	2.82	118	518
BLR-02	Reboiler 02	1.00 MMBtu/hr	1.00	8,760	515	515	0.01	0.25	0.01	2.82	118	518
BLR-03	Reboiler 03	1.00 MMBtu/hr	1.00	8,760	515	515	0.01	0.25	0.01	2.82	118	518
HTR-01	Heater-Treater Burner 01	0.50 MMBtu/hr	0.50	8,760	258	258	5E-03	0.12	5E-03	1.41	59.17	259
HTR-02	Heater-Treater Burner 02	0.50 MMBtu/hr	0.50	8,760	258	258	5E-03	0.12	5E-03	1.41	59.17	259
TK-01	Storage Tank 01 - Stabilized Condensate (SC) (VRU)	-										
TK-02	Storage Tank 02 - Stabilized Condensate (SC) (VRU)	-										
TK-03	Storage Tank 03 - Stabilized Condensate (SC) (VRU)	-										
TK-04	Storage Tank 04 - Stabilized Condensate (SC) (VRU)	_		There are D	e Minimis GHG	s in Stabilized	Condensate (So	C) Storage Tar	k Emissions			
TK-05	Storage Tank 05 - Stabilized Condensate (SC) (VRU)	-					× ×	, 0				
TK-06	Storage Tank 06 - Stabilized Condensate (SC) (VRU)	_										
TK-07	Storage Tank 07 - Stabilized Condensate (SC) (VRU)	_										
TK-08	Storage Tank 08 - Stabilized Condensate (SC) (VRU)											
WTK-01	Storage Tank W01 - Produced Water (PW)	_		There are	De Minimis GH	IGs in Produc	ed Water (PW)	Storage Tank I	Emissions			
WTK-02	Storage Tank W02 - Produced Water (PW)											
TLO	Truck Loading - Produced Water (PW)						Condensate (SC	-	÷			
WTLO	Truck Loading - Stabilized Condensate (SC) (CarbCan)		•				e Water (PW) T	-	Emissions			
CBD/ESD	Compressor Blowdown/Emergency Shutdown Tests	1,249 events/yr		8,760	0.25	0.25	57.57	1,439			329	1,440
		Sand Hill Compressor Stat	on (SHCS) - Po	oint Sources	87,117	87,117	919	22,974	0.26	76.8	25,152	110,168
					ugitives - PRE		(1					
FUG-G	Piping & Equip Leaks - Gas	7,472 Units		8,760	0.20	0.20	46.71	1,168			267	1,168
FUG-O	Piping & Equip Leaks - Light Liquid	/ -				-	Liquid Piping &					
ECC	Engine Crankcase Fugitives	17,365 bhp		8,760	213	213	1.93	48.15	3E-04	0.10	59.62	261
		Sand Hill Compressor	Station (SHCS) - Fugitives	213	213	48.63	1,216	3E-04	0.10	326	1,429
		0 and 111	Compressor	Station (01100)		ontrol						
			-	. ,	- Total - PRE-C		000	04.400	0.00	70.04	05 470	444 505
		Sand Hill Compres	sor station (S	nus) - rotar	87,330	87,330	968	24,190	0.26	76.94	25,479	111,597

Application for 45CSR13 New Source review Permit Modification (NSR)

Compressor Engine (CE-01 thru CE-12) Emissions

Source ID	Description	Reference	Pollutant		Pre-Con Emiss			Control Efficiency		Controlled Emissions	
				g/bhp-hr	lb/MMBtu	lb/hr	tpy	Enciency	g/bhp-hr	lb/hr	tpy
		Vendor Data	NOX	0.50	0.14	1.52	6.66		0.50	1.52	6.66
	Compressor Engines 01 thru 12 (Each)	Vendor Data	CO	2.98	0.81	9.07	39.71	85.0%	0.45	1.36	5.96
	(OxCat-01 thru OxCat-12)	Vendor Data	NMNEHC	1.08	0.29	3.29	14.39	75.0%	0.27	0.82	3.60
	(,	Sum	VOC (w/Aldehyde)	1.52	0.41	4.62	20.25	78.8%	0.32	0.98	4.28
		AP-42 Table 3.2-2	PM10/2.5	3.69E-02	9.99E-03	0.11	0.49		0.04	0.11	0.49
	Caterpillar (CAT) G3516B (4SLB)	AP-42 Table 3.2-2	SO2	2.17E-03	5.88E-04	0.01	0.03		2E-03	0.01	0.03
05.04		AP-42 Table 3.2-2	*Acetaldehyde	3.09E-02	8.36E-03	0.09	0.41	75.0%	0.01	0.02	0.10
CE-01 CE-02	1,380 bhp (Each)	AP-42 Table 3.2-2	*Acrolein	1.90E-02	5.14E-03	0.06	0.25	75.0%	5E-03	0.01	0.06
CE-02 CE-03	8,760 hr/yr (Each)	AP-42 Table 3.2-2	Benzene	1.62E-03	4.40E-04	5E-03	0.02	75.0%	4E-04	1E-03	5E-03
CE-04	1,400 rpm, 16 cyl	AP-42 Table 3.2-2	Butadiene, 1,3-	9.86E-04	2.67E-04	3E-03	0.01	75.0%	2E-04	7E-04	3E-03
CE-05	264 in3/cyl	AP-42 Table 3.2-2	Ethylbenzene	1.47E-04	3.97E-05	4E-04	2E-03	75.0%	4E-05	1E-04	5E-04
CE-06 CE-07		Vendor Data	*Formaldehyde	0.39	0.11	1.19	5.20	90.0%	0.04	0.12	0.52
CE-07 CE-08	1,012 Exhaust Temp (oF)	AP-42 Table 3.2-2	n-Hexane	4.10E-03	1.11E-03	0.01	0.05	75.0%	1E-03	3E-03	0.01
CE-09	9,240 Exhaust Flow (acfm)	AP-42 Table 3.2-2	Methanol	9.23E-03	2.50E-03	0.03	0.12	75.0%	2E-03	0.01	0.03
CE-10		AP-42 Table 3.2-2	POM	1.28E-03	3.47E-04	4E-03	0.02	75.0%	3E-04	1E-03	4E-03
CE-11	Manufactured ≥ 07/01/10	AP-42 Table 3.2-2	Toluene	1.51E-03	4.08E-04	5E-03	0.02	75.0%	4E-04	1E-03	5E-03
CE-12	NSPS JJJJ Affected	AP-42 Table 3.2-2	TMP, 2,2,4-	9.86E-04	2.67E-04	3E-03	0.01	75.0%	2E-04	7E-04	3E-03
(Each)		AP-42 Table 3.2-2	Xylenes	6.79E-04	1.84E-04	2E-03	0.01	75.0%	2E-04	5E-04	2E-03
	8,138 Btu/bhp-hr (HHV)	AP-42 Table 3.2-2	Other/Trace HAP	1.18E-03	3.21E-04	4E-03	0.02	75.0%	3E-04	9E-04	4E-03
	11.23 MMBtu/hr (HHV) (Each)	Sum	Total HAP	0.46	0.13	1.40	6.15	87.7%	0.06	0.17	0.76
	11,010 scf/hr (Each)	Vendor Data	CO2 (GWP=1)	510	138	1,552	6,796		510	1,552	6,796
	96.45 MMscf/yr (Each)	AP-42 Table 3.2-2	CH4 (GWP=25)	4.61	1.25	14.04	61.49		4.61	14.04	61.49
	1,020 Btu/scf (HHV)	40CFR98 - Table C2	N2O (GWP=298)	8.14E-04	2.20E-04	2E-03	0.01		8E-04	2E-03	0.01
		Weighted Sum	CO2e	626	169	1,903	8,336		626	1,903	8,336

* = Aldehyde Notes:

1 - The emissions shown are based on operation at 100% of rated load for 8,760 hr/yr. Actual load and operating hours will be less.

2 - As per vendor specifications, NMNEHC (non-methane/non-ethane hydrocarbons) do NOT include aldehydes. VOC is the sum of NMNEHC, Acetaldehyde, Acrolein, and Formaldehyde.

3 - PM10/2.5 is filterable and condensable particulate matter; including PM10 and PM2.5

4 - "Other/Trace HAPs" includes: CarbonTetrachloride, Chlorobenzene, Chloroform, Dichloropropene, 1,3-Dichloropropene, Ethylene Dibromide, Methylene Chloride, Phenol, Propylene Oxide, Styrene, 1,1,2,2-Tetrachloroethane, 1,1,2-Trichloroethane, and Vinyl Chloride (as per AP-42).

5 - The fuel heating value will vary, 1,020 Btu/scf (HHV) is at the low end of the range and results in a high (conservative) fuel consumption estimate.

6 - Total NMNEHC, VOC, HCHO, HAP and CO2e emissions include Compressor Rod Packing (CRP), Compressor Blowdown (CBD), Engine Start-up (ESU), and Engine Crankcase (ECC) Emissions:

	.				-
Description (Each Engine w/ Compressor)	NMNEHC	VOC	НСНО	Tot HAP	CO2e
Engine Operations (See Above)	3.60 tpy	4.28 tpy	0.52 tpy	0.76 tpy	8,336 tpy
Compressor Rod Packing (CRP)	3.60 tpy	3.60 tpy		0.12 tpy	208 tpy
Compressor Blowdown (CBD)	1.47 tpy	1.47 tpy		0.05 tpy	84.98 tpy
Engine Start-up (ESU)	I	Electric or Compres	sed Air Starter - No	Start-up Emission	S
Engine Crankcase (ECC)	0.04 tpy	0.05 tpy	0.01 tpy	0.02 tpy	20.75 tpy
TOTAL:	8.71 tpy	9.41 tpy	0.53 tpy	0.94 tpy	8,650 tpy

7 - Last permit application showed CO control at 98%. To be conservative this has been reduced to 93%.

8 - Last permit application showed HCHO control at 95%. To be conservative this has been reduced to 90%.

Application for 45CSR13 New Source review Permit Modification (NSR)

Compressor Rod Packing (CRP) Emissions

Source ID	Unit Description (Compressor Rod Packing)	No of Cylinders	scfh per Cylinder	Contin- gency		Fugitive k Rate	Control Efficiency	VOC 14,900.00 Ib/MMscf		14,900.00		CO2 150.00 Ib/MMscf		150.00 34,400.00		CO2e CH4 GWP = 25	
					scfh	MMscfy		lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy		
	Reciprocating Compressor - 01	4	12.0	15%	55.20	0.48		0.82	3.60	0.01	0.04	1.90	8.32	47	208		
	Reciprocating Compressor - 02	4	12.0	15%	55.20	0.48		0.82	3.60	0.01	0.04	1.90	8.32	47	208		
	Reciprocating Compressor - 03	4	12.0	15%	55.20	0.48		0.82	3.60	0.01	0.04	1.90	8.32	47	208		
	Reciprocating Compressor - 04	4	12.0	15%	55.20	0.48		0.82	3.60	0.01	0.04	1.90	8.32	47	208		
	Reciprocating Compressor - 05	4	12.0	15%	55.20	0.48		0.82	3.60	0.01	0.04	1.90	8.32	47	208		
CRP	Reciprocating Compressor - 06	4	12.0	15%	55.20	0.48	20	0.82	3.60	0.01	0.04	1.90	8.32	47	208		
CRP	Reciprocating Compressor - 07	4	12.0	15%	55.20	0.48	na	0.82	3.60	0.01	0.04	1.90	8.32	47	208		
	Reciprocating Compressor - 08	4	12.0	15%	55.20	0.48		0.82	3.60	0.01	0.04	1.90	8.32	47	208		
	Reciprocating Compressor - 09	4	12.0	15%	55.20	0.48		0.82	3.60	0.01	0.04	1.90	8.32	47	208		
	Reciprocating Compressor - 10	4	12.0	15%	55.20	0.48		0.82	3.60	0.01	0.04	1.90	8.32	47	208		
	Reciprocating Compressor - 11	4	12.0	15%	55.20	0.48		0.82	3.60	0.01	0.04	1.90	8.32	47	208		
	Reciprocating Compressor - 12	4	12.0	15%	55.20	0.48		0.82	3.60	0.01	0.04	1.90	8.32	47	208		
							TOTAL:	9.87	43.23	0.10	0.44	22.79	99.81	570	2,496		

		Benz	ene	E-Ber	nzene	n-He	xane	Tolu	ene	2,2,4-	TMP	Xyle	ene	Tot	HAP
Source ID	Unit Description (Compressor Rod Packing)	25.00 Ib/MMscf		25. Ib/MI	.00 Mscf		5.00 Mscf	25. Ib/MI		25. Ib/MM		25.00 Ib/MMscf		500.00 Ib/MMscf	
		lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
	Reciprocating Compressor - 01	1E-03	0.01	1E-03	0.01	0.02	0.09	1E-03	0.01	1E-03	0.01	1E-03	0.01	0.03	0.12
	Reciprocating Compressor - 02	1E-03	0.01	1E-03	0.01	0.02	0.09	1E-03	0.01	1E-03	0.01	1E-03	0.01	0.03	0.12
	Reciprocating Compressor - 03	1E-03	0.01	1E-03	0.01	0.02	0.09	1E-03	0.01	1E-03	0.01	1E-03	0.01	0.03	0.12
	Reciprocating Compressor - 04	1E-03	0.01	1E-03	0.01	0.02	0.09	1E-03	0.01	1E-03	0.01	1E-03	0.01	0.03	0.12
	Reciprocating Compressor - 05	1E-03	0.01	1E-03	0.01	0.02	0.09	1E-03	0.01	1E-03	0.01	1E-03	0.01	0.03	0.12
CRP	Reciprocating Compressor - 06	1E-03	0.01	1E-03	0.01	0.02	0.09	1E-03	0.01	1E-03	0.01	1E-03	0.01	0.03	0.12
UKF	Reciprocating Compressor - 07	1E-03	0.01	1E-03	0.01	0.02	0.09	1E-03	0.01	1E-03	0.01	1E-03	0.01	0.03	0.12
	Reciprocating Compressor - 08	1E-03	0.01	1E-03	0.01	0.02	0.09	1E-03	0.01	1E-03	0.01	1E-03	0.01	0.03	0.12
	Reciprocating Compressor - 09	1E-03	0.01	1E-03	0.01	0.02	0.09	1E-03	0.01	1E-03	0.01	1E-03	0.01	0.03	0.12
	Reciprocating Compressor - 10	1E-03	0.01	1E-03	0.01	0.02	0.09	1E-03	0.01	1E-03	0.01	1E-03	0.01	0.03	0.12
	Reciprocating Compressor - 11	1E-03	0.01	1E-03	0.01	0.02	0.09	1E-03	0.01	1E-03	0.01	1E-03	0.01	0.03	0.12
	Reciprocating Compressor - 12	1E-03	0.01	1E-03	0.01	0.02	0.09	1E-03	0.01	1E-03	0.01	1E-03	0.01	0.03	0.12
	TOTAL:	0.02	0.07	0.02	0.07	0.25	1.09	0.02	0.07	0.02	0.07	0.02	0.07	0.33	1.45

Notes: 1 - As per the manufacturer (Ariel): "Packing in new and broken-in condition will leak 5-10 scfh through the vent. This leakage rate will increase over time due to wear of the non-metallic sealing rings." The Williams' engineering department provides a conservative leak rate estimate of 12 scfh/cylinder (equal to 48 scfh/compressor). In this instance, an additional 15% contingency was added to yield 55.20 scfh/compressor.

2 - The results of a representative **Wet Gas Analysis** were used to determine the following worst-case components (See Appendix A - Lab Data):

		Minimum Co	ontingency:	10%
Pollutant	Wet Gas	Worst Case	%Total	%VOC
CO2	101 lb/MMscf	150 lb/MMscf	0.24	
Methane (CH4)	31,244 lb/MMscf	34,400 lb/MMscf	54.17	
N2/Water/Ethane/Etc	12,858 lb/MMscf	14,050 lb/MMscf	22.13	
VOC	13,518 lb/MMscf	14,900 lb/MMscf	23.46	100.00
TOTAL Gas	57,720 lb/MMscf	63,500 lb/MMscf	100.00	100.00
		63,500	100	100

3 - Prior permit applications did not include Compressor Rod Packing (CRP) emissions.

		Minimum Co	ontingency:	10%
Pollutant	Wet Gas	Worst Case	%Total	%VOC
Benzene	4 lb/MMscf	25 lb/MMscf	0.04	0.17
Ethylbenzene	1 lb/MMscf	25 lb/MMscf	0.04	0.17
n-Hexane	322 lb/MMscf	375 lb/MMscf	0.59	2.52
Toluene	8 lb/MMscf	25 lb/MMscf	0.04	0.17
2,2,4-TMP	6 lb/MMscf	25 lb/MMscf	0.04	0.17
Xylenes	5 lb/MMscf	25 lb/MMscf	0.04	0.17
Total HAP	346 lb/MMscf	500 lb/MMscf	0.79	3.36
	346	500	0.79	3.36

Application for 45CSR13 New Source review Permit Modification (NSR)

Generator Engine (GEN) Emissions

Source ID	Description	Reference	Pollutant			ntrolled sions		Control Efficiency		Controlled Emissions	
10				g/bhp-hr	lb/MMBtu	lb/hr	tpy	Emclency	g/bhp-hr	lb/hr	tpy
		Vendor Data x 2	NOX	0.27	7.01E-02	0.48	2.10		0.27	0.48	2.10
	Non-Emergency	Vendor Data x 2	CO	0.74	0.19	1.32	5.78		0.74	1.32	5.78
	Microturbine Generator	Vendor Data x 2	NMNEHC	6.76E-02	1.75E-02	0.12	0.53		0.07	0.12	0.53
		SUM	VOC (w/HCHO)	7.34E-02	1.90E-02	0.13	0.57		0.07	0.13	0.57
		AP-42 Table 3.1-2a	PM10/2.5	2.56E-02	6.63E-03	0.05	0.20		0.03	0.05	0.20
	Capstone C600	AP-42 Table 3.1-2a	SO2	2.27E-03	5.88E-04	4E-03	0.02		2E-03	4E-03	0.02
		AP-42 Table 3.1-3 x 2	Acetaldehyde	3.08E-04	8.00E-05	5.47E-04	2E-03		3E-04	5E-04	2E-03
	805 bhp	AP-42 Table 3.1-3 x 2	Acrolein	4.94E-05	1.28E-05	8.76E-05	4E-04		5E-05	9E-05	4E-04
	8,760 hr/yr	AP-42 Table 3.1-3 x 2	Benzene	9.25E-05	2.40E-05	1.64E-04	7E-04		9E-05	2E-04	7E-04
		AP-42 Table 3.1-3 x 2	Butaadiene, 1,3-	3.32E-06	8.60E-07	6E-06	3E-05		3E-06	6E-06	3E-05
		AP-42 Table 3.1-3 x 2	Ethylbenzene	2.47E-04	6.40E-05	4E-04	2E-03		2E-04	4E-04	2E-03
		AP-42 Table 3.1-3 x 2	Formaldehyde	5.48E-03	1.42E-03	9.72E-03	0.04		0.01	0.01	0.04
GEN	535 Exhaust Temp (oF)	AP-42 Table 3.1-3 x 2	n-Hexane								
		AP-42 Table 3.1-3 x 2	Methanol								
		AP-42 Table 3.1-3 x 2	POM	2.51E-04	6.50E-05	4E-04	2E-03		3E-04	4E-04	2E-03
		AP-42 Table 3.1-3 x 2	Toluene	1.00E-03	2.60E-04	2E-03	0.01		1E-03	2E-03	0.01
		AP-42 Table 3.1-3 x 2	TMP, 2,2,4-								
		AP-42 Table 3.1-3 x 2	Xylenes	4.94E-04	1.28E-04	9E-04	4E-03		5E-04	9E-04	4E-03
	8,501 Btu/bhp-hr (HHV)	AP-42 Table 3.1-3 x 2	Other/Trace HAP	2.24E-04	5.80E-05	4E-04	2E-03		2E-04	4E-04	2E-03
	6.84 MMBtu/hr (HHV)	Sum	Total HAP	8.15E-03	2.11E-03	0.01	0.06		0.01	0.01	0.06
	6,709 scf/hr	Vendor Data	CO2 (GWP=1)	450	117	798	3,494		450	798	3,494
	58.77 MMscf/yr	AP-42 Table 3.1-3 x 2	CH4 (GWP=25)	6.66E-02	1.73E-02	0.12	0.52		0.07	0.12	0.52
	1,020 Btu/scf (HHV)	40CFR98 - Table C2	N2O (GWP=298)	1.16E-02	3.00E-03	2E-02	0.09		1E-02	2E-02	9E-02
		Weighted Sum	CO2e	455	118	807	3,534		455	807	3,534

* = Aldehyde

Notes: 1 - The emissions estimates are based on operation at 100% of rated load for 8,760 hr/yr. Actual load and operating hours will be less.

 2 - A footnote to AP-42 Table 3.4-1 indicates that "THC is based on EPA Test Method 25A" and "VOC = THC - Methane". However, EPA Method 25A does NOT measure aldehydes (or methanol).
 Accordingly, and to be conservative, total VOC is estimated by NMNEHC + aldehydes.

3 - PM10/2.5 is filterable and condensable particulate matter; including PM10 and PM2.5

4 - The fuel heating value will vary, 1,020 Btu/scf (HHV) is at the low end of the range and results in a high (conservative) fuel consumption estimate.

5 - The turbine's operating load has a considerable effect on the resulting emission levels.
With reduced loads (lower than 80 percent) the NOX, CO, and THC (NMNEHC, VOC, HAP, and CH4) emissions are expected to be higher.
The vendor states that "fuel flows can be up to two times higher than steady state values."
Accordingly, and to be conservative, the vendor and AP-42 [full load, steady-state] emission factor data are increased by a factor of two (2).
(The Capstone C600 is comprised of three (3) 200 kWhe turbine generators operating in parallel, thus mininizing the low-load operations.)

Application for 45CSR13 New Source review Permit Modification (NSR)

Dehydrator (DHY-01 thru -03) Emissions

Source ID	Description	Reference	Pollutant		st-Case ol Emissions	Control Efficiency	Worst Controlled	
U				lb/hr	tpy	%	lb/hr	tpy
		See BLR-01 thru BLR-03	NOX			See BLR-01 thru BLR-03	3	
	Dehydrator 01 thru 03	See BLR-01 thru BLR-03	CO			See BLR-01 thru BLR-03	3	
	(Each)	GRI-GLYCalc 4.0	NMNEHC	52.27	228.93	96.6%	1.79	7.85
	(No Combustion	GRI-GLYCalc 4.0	VOC	52.27	228.93	96.6%	1.79	7.85
	Emissions Shown,	See BLR-01 thru BLR-03	SO2			See BLR-01 thru BLR-03	3	
	See BLR-01 thru 03)	See BLR-01 thru BLR-03	PM10/2.5			See BLR-01 thru BLR-03	3	
		See BLR-01 thru BLR-03	Acetaldehyde			See BLR-01 thru BLR-03	3	
	55.0 MMscfd (Each)	See BLR-01 thru BLR-03	Acrolein			See BLR-01 thru BLR-03	3	
	Г	GRI-GLYCalc 4.0	Benzene	1.75	7.66	96.4%	0.06	0.27
	T F	See BLR-01 thru BLR-03	Butadiene, 1,3-			See BLR-01 thru BLR-03	3	
DHY-01	8,760 hr/yr (Each)	GRI-GLYCalc 4.0	Ethylbenzene	0.32	1.41	98.9%	4E-03	0.02
DHY-02		See BLR-01 thru BLR-03	Formaldehyde			See BLR-01 thru BLR-03	3	
DHY-03	*All the Flash-Tank Off-Gas Stream	GRI-GLYCalc 4.0	n-Hexane	2.30	10.07	96.1%	0.09	0.40
(Each)	is Recycled as Fuel or otherwise	See BLR-01 thru BLR-03	Methanol			See BLR-01 thru BLR-03	3	
	reclaimed. Recycle/reclaim is <u>NOT</u>	See BLR-01 thru BLR-03	POM			See BLR-01 thru BLR-03	3	
	an Emissions Control Technology.	GRI-GLYCalc 4.0	Toluene	4.42	19.35	97.8%	0.10	0.43
	Γ	GRI-GLYCalc 4.0	TMP, 2,2,4-	0.23	1.00	99.0%	2E-03	0.01
	20,075 MMscf/yr (Each)	GRI-GLYCalc 4.0	Xylenes	3.79	16.58	99.0%	0.04	0.17
	T F	See BLR-01 thru BLR-03	Other/Trace HAP			See BLR-01 thru BLR-03	3	
	2.29 MMscf/hr (Each)	SUM	Total HAP	12.80	56.07	97.7%	0.30	1.30
	T F	GRI-GLYCalc 4.0	CO2 (GWP=1)	0.58	2.54		0.58	2.54
	NESHAP HH - Exempt	GRI-GLYCalc 4.0	CH4 (GWP=25)	1.76	7.73	95.0%	0.09	0.39
	(Less than 1.0 tpy Benzene)	GRI-GLYCalc 4.0	N2O (GWP=298)			GRI-GLYCalc 4.0		
	I F	WEIGHTED SUM	CO2e	44.70	195.78	94%	2.79	12.20

1 - Results of GRI-GLYCalc Model are shown below: Notes:

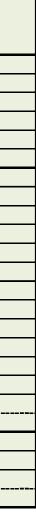
		GRI-GL	(Calc 4.0*			*Dehydrator Ope	rating Parameters	
55.0 MMscfd DHY-01	PRE-Control	Emissions	Controlled I	Emissions		(See Supplement S6	- Emission Programs)	
5111-01	GLYCalc Results	Worst-Case**	GLYCalc Results	Worst-Case**	Manufacturer:	na	Dry Gas Flow Rate:	55.0 MMscfd
NMNEHC = VOC	208.12 tpy	228.93 tpy	7.14 tpy	7.85 tpy	Wet Gas:	95.00 oF	Gas Analysis:	11/02/16
Benzene	6.96 tpy	7.66 tpy	0.25 tpy	0.27 tpy	Wet Gas:	1,100.00 psig	Primary Pump:	Electric
Ethylbenzene	1.28 tpy	1.41 tpy	1E-02 tpy	0.02 tpy	Wet Gas:	Saturated	Backup Pump:	2xKimray 45020PV
n-Hexane	9.15 tpy	10.07 tpy	0.36 tpy	0.40 tpy	Wet Gas:	47.69 lb-H2O/MMscf	Glycol Circ Rate:	22.00 gpm
Toluene	17.59 tpy	19.35 tpy	0.40 tpy	0.43 tpy	Dry Gas:	7.00 lb H2O/MMscf	Glycol Circ Ratio:	12.57 gal/lb-H2O
2,2,4-TMP	0.11 tpy	1.00 tpy	3E-03 tpy	0.01 tpy	Lean Glycol:	1.50 wt% H2O	Rich Glycol:	2.30 wt% H2O
Xylenes	15.07 tpy	16.58 tpy	0.15 tpy	0.17 tpy	Flash Temp:	120.00 oF	Regen Overhead:	2,570 scfh
Total HAP	50.17 tpy	56.07 tpy	1.17 tpy	1.30 tpy	Flash Pressure:	50.00 psig	Regen Control:	Cond/Comb
Carbon Dioxide (CO2)	2.31 tpy	2.54 tpy	2.31 tpy	2.54 tpy	Flash Off-Gas:	1,560 scfh	Condenser Temp:	120.00 oF
Methane (CH4)	7.03 tpy	7.73 tpy	0.35 tpy	0.39 tpy	Off-Gas Recycle:	100.00%	Condenser Press:	14.08 psia
(*	*Worst-Case is determined	with a 110% "Safety M	largin".)		Off-Gas Control:	na	Comb Control Eff:	95.00%
					Stripping Gas:	na	Ambient Temp:	52.00 oF
2 - The emissions shown are based on o	1	apacity for 8,760 hr/yr.			Stripping Gas:	na	Condenser Vent:	286 scfh

Actual load and operating hours will be less.

3 - Emissions from utilization of the Kimray 45020PV Backup glycol pump (2x7.5 gpm) actually results in a reduction of hourly VOC emissions (Kimray: 0.71 lb/hr vs Electric: 1.72 lb/hr)

Reboiler (BLR-01 thru -03) Emissions

Source ID	Description	Reference	Pollutant		ssion ctor	Emis	sions
				lb/MMscf	lb/MMBtu	lb/hr	tpy
		EPA AP-42 Table 1.4-1	NOX	100	9.80E-02	0.10	0.43
		EPA AP-42 Table 1.4-1	CO	84	8.24E-02	0.08	0.36
	Reboiler 01 thru 03 (Each)	EPA AP-42 Table 1.4-2	NMNEHC	5.5	5.39E-03	0.01	0.02
		EPA AP-42 Table 1.4-2	VOC	5.5	5.39E-03	0.01	0.02
		EPA AP-42 Table 1.4-2	PM10/2.5	7.6	7.45E-03	0.01	0.03
	1	EPA AP-42 Table 1.4-2	SO2	0.6	5.88E-04	6E-04	3E-03
	[EPA AP-42 Table 1.4-3	Acetaldehyde				
		EPA AP-42 Table 1.4-3	Acrolein				
	1.00 MMBtu/hr (HHV) (Each)	EPA AP-42 Table 1.4-3	Benzene	2.10E-03	2.06E-06	2E-06	9E-06
		EPA AP-42 Table 1.4-4	Butadiene, 1,3-				
BLR-01		EPA AP-42 Table 1.4-3	Ethylbenzene				
BLR-02 BLT-03		EPA AP-42 Table 1.4-3	Formaldehyde	7.50E-02	7.35E-05	7E-05	3E-04
BL1-03		EPA AP-42 Table 1.4-3	n-Hexane	1.80	1.76E-03	2E-03	0.01
(Each)		EPA AP-42 Table 1.4-3	Methanol				
	1,020 Btu/scf (HHV)	EPA AP-42 Table 1.4-3	POM	6.98E-04	6.85E-07	7E-07	3E-06
		EPA AP-42 Table 1.4-3	Toluene	3.40E-03	3.33E-06	3E-06	1E-05
		EPA AP-42 Table 1.4-3	TMP, 2,2,4-				
	8,760 hr/yr (Each)	EPA AP-42 Table 1.4-3	Xylenes				
		EPA AP-42 Table 1.4-3	Other/Trace HAP	1.20E-03	1.18E-06	1E-06	5E-06
		SUM	Total HAP	1.88	1.85E-03	2E-03	0.01
	980 scf/hr (Each)	EPA AP-42 Table 1.4-2	CO2 (GWP=1)	120,000	118	118	515
	8.59 MMscf/yr (Each)	EPA AP-42 Table 1.4-2	CH4 (GWP=25)	2.30	2.25E-03	2E-03	0.01
	1	EPA AP-42 Table 1.4-2	N2O (GWP=298)	2.20	2.16E-03	2E-03	0.01
		WEIGHTED SUM	CO2e	120,713	118	118	518


Notes:

1 - The emissions shown are based on operation at 100% of rated load for 8,760 hr/yr. Actual load and operating hours will be less.

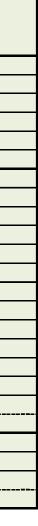
2 - The fuel heating value will vary, 1,020 Btu/scf (HHV) is at the low end of the range and results in a high (conservative) fuel consumption estimate.

3 - PM10/2.5 is filterable and condensable particulate matter; including PM10 and PM2.5

4 - "Other/Trace HAPs" includes: CarbonTetrachloride, Chlorobenzene, Chloroform, Dichloropropene, 1,3-Dichloropropene, Ethylene Dibromide, Methylene Chloride, Phenol, Propylene Oxide, Styrene, 1,1,2,2-Tetrachloroethane, 1,1,2-Trichloroethane, and Vinyl Chloride (as per AP-42).

Heater-Treater (HTR-01 and HTR-02) Emissions

Source ID	Description	Reference	Pollutant		ssion ctor	Emis	sions
				lb/MMscf	lb/MMBtu	lb/hr	tpy
		EPA AP-42 Table 1.4-1	NOX	100	9.80E-02	0.06	0.21
		EPA AP-42 Table 1.4-1	CO	84	8.24E-02	0.05	0.18
	Heater-Treater 01 and 02 (Each)	EPA AP-42 Table 1.4-2	NMNEHC	5.5	5.39E-03	3E-03	0.01
		EPA AP-42 Table 1.4-2	VOC	5.5	5.39E-03	3E-03	0.01
		EPA AP-42 Table 1.4-2	PM10/2.5	7.6	7.45E-03	5E-03	0.02
		EPA AP-42 Table 1.4-2	SO2	0.6	5.88E-04	4E-04	1E-03
		EPA AP-42 Table 1.4-3	Acetaldehyde				
		EPA AP-42 Table 1.4-3	Acrolein				
	0.50 MMBtu/hr (HHV) (Each)	EPA AP-42 Table 1.4-3	Benzene	2.10E-03	2.06E-06	1E-06	5E-06
		EPA AP-42 Table 1.4-4	Butadiene, 1,3-				
		EPA AP-42 Table 1.4-3	Ethylbenzene				
HTR-01		EPA AP-42 Table 1.4-3	Formaldehyde	7.50E-02	7.35E-05	5E-05	2E-04
HTR-02		EPA AP-42 Table 1.4-3	n-Hexane	1.80	1.76E-03	1E-03	4E-03
		EPA AP-42 Table 1.4-3	Methanol				
	1,020 Btu/scf (HHV)	EPA AP-42 Table 1.4-3	POM	6.98E-04	6.85E-07	4E-07	1E-06
		EPA AP-42 Table 1.4-3	Toluene	3.40E-03	3.33E-06	2E-06	7E-06
		EPA AP-42 Table 1.4-3	TMP, 2,2,4-				
	8,760 hr/yr (Each)	EPA AP-42 Table 1.4-3	Xylenes				
		EPA AP-42 Table 1.4-3	Other/Trace HAP	1.20E-03	1.18E-06	7E-07	3E-06
		SUM	Total HAP	1.88	1.85E-03	1E-03	4E-03
	600 scf/hr (Each)	EPA AP-42 Table 1.4-2	CO2 (GWP=1)	120,000	118	72	258
	4.29 MMscf/yr (Each)	EPA AP-42 Table 1.4-2	CH4 (GWP=25)	2.30	2.25E-03	1E-03	5E-03
		EPA AP-42 Table 1.4-2	N2O (GWP=298)	2.20	2.16E-03	1E-03	5E-03
		WEIGHTED SUM	CO2e	120,713	118	59	259


1 - The emissions shown are based on operation at 100% of rated load for 8,760 hr/yr. Actual load and operating hours will be less.

2 - The fuel heating value will vary, 1,020 Btu/scf (HHV) is at the low end of the range and results in a high (conservative) fuel consumption estimate. (Operator experience indicates 600 scf/hr is requisite for "cold-starts".)

3 - PM10/2.5 is filterable and condensable particulate matter; including PM10 and PM2.5

4 -"Other/Trace HAPs" includes: CarbonTetrachloride, Chlorobenzene, Chloroform, Dichloropropene, 1,3-Dichloropropene, Ethylene Dibromide, Methylene Chloride, Phenol, Propylene Oxide, Styrene, 1,1,2,2-Tetrachloroethane, 1,1,2-Trichloroethane, and Vinyl Chloride (as per AP-42).

Notes:

Application for 45CSR13 New Source review Permit Modification (NSR)

Stabilized Condensate - Storage Tank (TK01 thru TK-08) Emissions

•				Consolty	T D.4	F	PRE-CONTRO)L	VRU	V)C	CO2 (w/o	Control)	CI	H4	CO	2e
Source ID	Source ID	Material St	ored	Capacity	T-Put	W+B	Flash	Total	Control	(10	0%)		voc		VOC	CH4 GV	VP = 25
				bbl	bbl/yr	lb/yr	lb/yr	lb/yr	Efficiency	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
	TK-01	Stabilized Con	densate	400	29,656	6,741		6,741		0.04	0.17						
	TK-02	Stabilized Con	densate	400	29,656	6,741		6,741] [0.04	0.17						
	TK-03	Stabilized Con	densate	400	29,656	6,741		6,741] [0.04	0.17						
EUTK1-8	TK-04	Stabilized Con	densate	400	29,656	6,741		6,741	95%	0.04	0.17						
EUTKI-0	TK-05	Stabilized Con	densate	400	29,656	6,741		6,741	95%	0.04	0.17						
	TK-06	Stabilized Con	densate	400	29,656	6,741		6,741		0.04	0.17						
	TK-07	Stabilized Con	densate	400	29,656	6,741		6,741] [0.04	0.17						
	TK-08	Stabilized Con	densate	400	29,656	6,741		6,741		0.04	0.17						
				3,200	237,250			53,931	TOTAL:	0.31	1.35						
			-	Mgal/yr:	9,965			PRE-Co	ntrol (Each):	0.77	3.37						
				Turnovers:	74.14			PRE-Co	ontrol (Total):	6.16	26.97						
		Benzen	e	Ethylb	enzene	n-He	exane	Mot	hanol	Tolu	iene	2,2,4-	ТМР	Xyl	ene	Total	НАР
Source	Tank ID	2.00% VO	-	2.00%		20.00%			eOH)	2.00%		2.00%		2.00%		30.00%	
ID		lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
	TK-01	8E-04	3E-03	8E-04	3E-03	0.01	0.03			8E-04	3E-03	8E-04	3E-03	8E-04	3E-03	0.01	0.05
	TK-02	05.04															
		8E-04	3E-03	8E-04	3E-03	0.01	0.03			8E-04	3E-03	8E-04	3E-03	8E-04	3E-03	0.01	0.05
	TK-03		3E-03 3E-03	8E-04 8E-04	3E-03 3E-03	0.01 0.01	0.03			8E-04 8E-04	3E-03 3E-03	8E-04 8E-04	3E-03 3E-03	8E-04 8E-04	3E-03 3E-03	0.01 0.01	0.05 0.05
		8E-04															
EUTK1-8	TK-03	8E-04 8E-04	3E-03	8E-04	3E-03	0.01	0.03			8E-04	3E-03	8E-04	3E-03	8E-04	3E-03	0.01	0.05
EUTK1-8	TK-03 TK-04	8E-04 8E-04 8E-04	3E-03 3E-03	8E-04 8E-04	3E-03 3E-03	0.01 0.01	0.03 0.03			8E-04 8E-04	3E-03 3E-03	8E-04 8E-04	3E-03 3E-03	8E-04 8E-04	3E-03 3E-03	0.01	0.05 0.05
EUTK1-8	TK-03 TK-04 TK-05	8E-04 8E-04 8E-04 8E-04	3E-03 3E-03 3E-03	8E-04 8E-04 8E-04	3E-03 3E-03 3E-03	0.01 0.01 0.01	0.03 0.03 0.03			8E-04 8E-04 8E-04	3E-03 3E-03 3E-03	8E-04 8E-04 8E-04	3E-03 3E-03 3E-03	8E-04 8E-04 8E-04	3E-03 3E-03 3E-03	0.01 0.01 0.01	0.05 0.05 0.05
EUTK1-8	TK-03 TK-04 TK-05 TK-06	8E-04 8E-04 8E-04 8E-04 8E-04	3E-03 3E-03 3E-03 3E-03	8E-04 8E-04 8E-04 8E-04	3E-03 3E-03 3E-03 3E-03	0.01 0.01 0.01 0.01	0.03 0.03 0.03 0.03	 		8E-04 8E-04 8E-04 8E-04	3E-03 3E-03 3E-03 3E-03	8E-04 8E-04 8E-04 8E-04	3E-03 3E-03 3E-03 3E-03	8E-04 8E-04 8E-04 8E-04	3E-03 3E-03 3E-03 3E-03	0.01 0.01 0.01 0.01	0.05 0.05 0.05 0.05
EUTK1-8	TK-03 TK-04 TK-05 TK-06 TK-07	8E-04 8E-04 8E-04 8E-04 8E-04	3E-03 3E-03 3E-03 3E-03 3E-03	8E-04 8E-04 8E-04 8E-04 8E-04	3E-03 3E-03 3E-03 3E-03 3E-03	0.01 0.01 0.01 0.01 0.01	0.03 0.03 0.03 0.03 0.03	 	 	8E-04 8E-04 8E-04 8E-04 8E-04	3E-03 3E-03 3E-03 3E-03 3E-03	8E-04 8E-04 8E-04 8E-04 8E-04	3E-03 3E-03 3E-03 3E-03 3E-03	8E-04 8E-04 8E-04 8E-04 8E-04	3E-03 3E-03 3E-03 3E-03 3E-03 3E-03	0.01 0.01 0.01 0.01 0.01	0.05 0.05 0.05 0.05 0.05
	TK-03 TK-04 TK-05 TK-06 TK-07 TK-08	8E-04 8E-04 8E-04 8E-04 8E-04 8E-04	3E-03 3E-03 3E-03 3E-03 3E-03 3E-03	8E-04 8E-04 8E-04 8E-04 8E-04 8E-04	3E-03 3E-03 3E-03 3E-03 3E-03 3E-03	0.01 0.01 0.01 0.01 0.01 0.01	0.03 0.03 0.03 0.03 0.03 0.03 0.03	 	 	8E-04 8E-04 8E-04 8E-04 8E-04 8E-04	3E-03 3E-03 3E-03 3E-03 3E-03 3E-03	8E-04 8E-04 8E-04 8E-04 8E-04 8E-04	3E-03 3E-03 3E-03 3E-03 3E-03 3E-03	8E-04 8E-04 8E-04 8E-04 8E-04 8E-04	3E-03 3E-03 3E-03 3E-03 3E-03 3E-03	0.01 0.01 0.01 0.01 0.01 0.01	0.05 0.05 0.05 0.05 0.05 0.05

0		Benz	ene	Ethylbo	enzene	n-He	xane	Meth	anol	ΤοΙι	iene	2,2,4	ТМР	Xyle	ene	Total	HAP
Source ID	Tank ID	2.00%	voc	2.00%	VOC	20.00%	VOC	(Me	OH)	2.00%	VOC	2.00%	voc	2.00%	VOC	30.00%	VOC
10		lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
	TK-01	8E-04	3E-03	8E-04	3E-03	0.01	0.03			8E-04	3E-03	8E-04	3E-03	8E-04	3E-03	0.01	0.05
	TK-02	8E-04	3E-03	8E-04	3E-03	0.01	0.03			8E-04	3E-03	8E-04	3E-03	8E-04	3E-03	0.01	0.05
	TK-03	8E-04	3E-03	8E-04	3E-03	0.01	0.03			8E-04	3E-03	8E-04	3E-03	8E-04	3E-03	0.01	0.05
EUTK1-8	TK-04	8E-04	3E-03	8E-04	3E-03	0.01	0.03			8E-04	3E-03	8E-04	3E-03	8E-04	3E-03	0.01	0.05
EUIKI-0	TK-05	8E-04	3E-03	8E-04	3E-03	0.01	0.03			8E-04	3E-03	8E-04	3E-03	8E-04	3E-03	0.01	0.05
	TK-06	8E-04	3E-03	8E-04	3E-03	0.01	0.03			8E-04	3E-03	8E-04	3E-03	8E-04	3E-03	0.01	0.05
	TK-07	8E-04	3E-03	8E-04	3E-03	0.01	0.03			8E-04	3E-03	8E-04	3E-03	8E-04	3E-03	0.01	0.05
	TK-08	8E-04	3E-03	8E-04	3E-03	0.01	0.03			8E-04	3E-03	8E-04	3E-03	8E-04	3E-03	0.01	0.05
	TOTAL:	0.01	0.03	0.01	0.03	0.06	0.27			0.01	0.03	0.01	0.03	0.01	0.03	0.09	0.40
PRE-Cor	ntrol (Each):	0.02	0.07	0.02	0.07	0.15	0.67			0.02	0.07	0.02	0.07	0.02	0.07	0.23	1.01
PRE-Cor	ntrol (Total):	0.12	0.54	0.12	0.54	1.23	5.39			0.12	0.54	0.12	0.54	0.12	0.54	1.85	8.09

1 - EPA TANKS 4.0.9d was used to determine working and breathing losses from Notes: each (of 2) Produced Water Storage Tank - See Supplement S6 - Emission Programs.

TANKS 4.0.9d Emissions Report - Summary Format Individual Tank Emission Totals

Emissions Report for: Annual

Battle Run CF 400 bbl Stablized Condensate Tank - Vertical Fixed Roof Tank Near Dallas, West Virginia

	Losses(lbs)								
Components	Working Loss	Breathing Loss	Total Emissions						
Gasoline (RVP 12)	5,721.52	1,019.88	6,741.40						

Application for 45CSR13 New Source review Permit Modification (NSR)

Produced Water - Storage Tank (WTK-01 and WTK-02) Emissions

			Consoitu	T-Put	F	PRE-CONTRO	L	VRU	V	ос	CO2 (w/o	Control)	CI	H4	CO	/2e
Source ID	Tank ID	Material Stored	Capacity	I-Pul	W+B	Flash	Total	Control	v	00		VOC		VOC	CH4 GV	NP = 25
U			bbl	bbl/yr	lb/yr	lb/yr	lb/yr	Efficiency	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
EPWTK	WTK-01	Produced Water	400	18,250	61		61	0%	0.01	0.03						
	WTK-02	Produced Water	400	18,250	61		61	0 %	0.01	0.03						
			800	36,500			122.00	TOTAL:	0.01	0.06						
			Mgal/yr:	1,533	•		PRE-Co	ontrol (Each):	0.01	0.03						
			Turnovers:	45.63			PRE-Co	ontrol (Total):	0.01							

Source ID	Tank ID	Benz 2.00%		Ethylbo 2.00%		n-He 20.00%		Meth (Me		Tolı 2.00%	Jene VOC	2,2,4 2.00%	-TMP VOC	Xyl 2.00%	ene VOC	Total 30.00%	
	10	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
EPWTK	WTK-01	1E-04	6E-04	1E-04	6E-04	1E-03	0.01			1E-04	6E-04	1E-04	6E-04	1E-04	6E-04	2E-03	0.01
EFVVIK	WTK-02	1E-04	6E-04	1E-04	6E-04	1E-03	0.01			1E-04	6E-04	1E-04	6E-04	1E-04	6E-04	2E-03	0.01
	TOTAL:	3E-04	1E-03	3E-04	1E-03	3E-03	0.01			3E-04	1E-03	3E-04	1E-03	3E-04	1E-03	4E-03	0.02
PRE-Co	ntrol (Each):	1E-04	6E-04	1E-04	6E-04	1E-03	0.01	an an an		1E-04	6E-04	1E-04	6E-04	1E-04	6E-04	2E-03	0.01
PRE-Co	ntrol (Total):	3E-04	1E-03	3E-04	1E-03		0.01			3E-04	1E-03	3E-04	1E-03	3E-04	1E-03	4E-03	0.02

Notes: 1 - EPA TANKS 4.0.9d was used to determine working and breathing losses from each (of 2) Produced Water Storage Tank - See Supplement S6 - Emission Programs.

TANKS 4.0.9d Emissions Report - Summary Format Individual Tank Emission Totals

Emissions Report for: Annual

Battle Run 400 bbl Produced Water Tank - Vertical Fixed Roof Tank Near Dallas, West Virginia

		Losses(lbs)	
Components	Working Loss	Breathing Loss	Total Emissions
Produced Water	101.51	18.57	120.08
Water	49.94	9.14	59.08
Gasoline (RVP 12)	51.57	9.44	61.00

Application for 45CSR13 New Source review Permit Modification (NSR)

Stabilized Condensate (SC) - Truck Load-Out (TLO) Emissions

Sauraa		e	Р	м	т	CE	Ι.	T-Put	vo)C	C	02	CH	4	CO	2e
Source ID	Description	3	F	IVI				1-Fut	v					-	CH4 GW	/P = 25
		sat. fac.	psia	lb/lb-mol	°R	%	lb/Mgal	Mgal/yr	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
TLO	Truck Load-Out - SC	0.60	5.44	64.00	510	66.5%	1.71	9,965	11.97	8.52						
		(See Att	tachment D3 -	EPA TANKS 4	.0.9d Emission	n Report)		TOTAL:	11.97	8.52						
							-		0 = =0							

134,400

9,964,500

1,424

gal.

hr/yr

gal/yr =

PRE-Control:	35.72	25.4
--------------	-------	------

5.4	

Source ID	Ben: 2.00%	zene VOC	Ethylb 2.00%	enzene VOC	n-He 20.00%		Meth (Met		Tolu 2.00%	iene VOC	2,2,4 2.00%	-TMP VOC	Xyl 2.00%		Total 30.00%	HAP VOC
.0	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
TLO	0.24	0.17	0.24	0.17	2.39	1.70			0.24	0.17	0.24	0.17	0.24	0.17	3.59	2.56
TOTAL:	0.24	0.17	0.24	0.17	2.39	1.70			0.24	0.17	0.24	0.17	0.24	0.17	3.59	2.56
PRE-Cont:	0.71	0.51	0.71	0.51	7.14	5.09			0.71	0.51	0.71	0.51	0.71	0.51	10.72	7.63

bbl =

bbl/yr =

Notes: 1 - Emission factors and formulas are from AP-42 Section 5.2 "Transportation and Marketing of Petroleum Liquids":

 L_{L} = 12.46 x S x P x M / T x (1 - CE)

where: L_{L} = loading loss, lb/1000 gal of liquid loaded

S = saturation factor, use 0.60 for submerged fill.

P = true vapor pressure of liquid loaded, psia.

2 - For condensate loading, the collection efficiency is 70% for tanker trucks not subject to annual leak test.

3 - Emissions from loading of stabilized condensate will be controlled with 95% efficient carbon canisters.

4 - Stabilized condensate (SC) vapor pressure, molecular weight, and temperature are from EPA TANKS 4.0.9d output.

5 - The total stabilized condensate storage tank capacity at the facility is:

6 -The maxium stabilized condensate throughput at the facility is:

7 - n-Hexane, each BTEX, and 2,2,4-TMP components are conservatively estimated at 5% of VOC emissions and Total HAP is estimated at 30% of VOC emissions.

8 - It is assumed each tanker truck holds 7,000 gallons and can be loaded in one hour:

M = molecular weight of vapors, lb/lb-mol.

T = temperature of bulk liquid loaded, $^{\circ}R = ^{\circ}F + 460$

74.14

CE = overall emission reduction efficiency (collection efficiency x control efficiency).

t-o/vr

TANKS 4.0.9d Emissions Report - Summary Format Liquid Contents of Storage Tank

3,200

237,250

Battle Run CF 400 bbl Stablized Condensate Tank - Vertical Fixed Roof Tank Near Dallas, West Virginia

					Liquid								
		Da	aily Liquid S	urf.	Bulk				Vapor	Liquid	Vapor		
		Tem	perature (de	eg F)	Temp	Vap	or Pressure	(psia)	Mol.	Mass	Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 12)	All	51.94	47.06	56.81	50.33	5.4430	4.9447	5.9807	64.0000			92.00	Option 4: RVP=12, ASTM Slope=3

Application for 45CSR13 New Source review Permit Modification (NSR)

Produced Water (PW) - Truck Load-Out (WTLO) Emissions

Source ID	Descr	iption	S	Р	м	т	CE	L	T-Put	V	oc	C(02	CI	H4)2e VP = 25
U			sat. fac.	psia	lb/lb-mol	°R	%	lb/Mgal	Mgal/yr	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
WTLO	Truck Load-	Out - PW	0.60	0.25	28.35	510		0.10	1,533	0.72	0.08						
									TOTAL:	0.72	0.08						
									PRE-Control:	0.72							
•	Benz	ene	Ethylb	enzene	n-He	xane	Meth	nanol	Tolu	iene	2,2,4	1-TMP	Ху	lene	Tota	I HAP	
Source ID	2.00%	VOC	2.00%	VOC	20.00%	VOC	(Me	eOH)	2.00%	VOC	2.00%	S VOC	2.00%	VOC	30.00%	VOC	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
WTLO	0.01	2E-03	0.01	2E-03	0.14	0.02			0.01	2E-03	0.01	2E-03	0.01	2E-03	0.22	0.02	
TOTAL:	0.01	2E-03	0.01	2E-03	0.14	0.02			0.01	2E-03	0.01	2E-03	0.01	2E-03	0.22	0.02	
RE-Cont:	0.01	2E-03	0.01	2E-03	0.14	0.02			0.01	2E-03	0.01	2E-03	0.01	2E-03	0.22	0.02	-
			S = P = essure, molect	saturation fac true vapor pro ular weight, ar	Ib/1000 gal of li ctor, use 0.60 fo essure of liquid nd temperature	or submerged loaded, psia.	operator expe		T = CE = npling data at v	temperature o overall emissi various location	ion reduction e	oaded, °R = °F efficiency (colle	ction efficienc	y x control effic	ciency).		
	3 - The total p 4 - The maxium 5 - n-		•		•		800 36,500	bbl = bbl/yr =	33,600 1,533,000	gal. gal/yr =	45.63	t-o/yr					
		ed each tanke	r truck holds 7	,000 gallons a	and can be load	ed in one hou	r:		219	hr/yr							
							TANKS	4.0.9d									

Battle Run 400 bbl Produced Water Tank - Vertical Fixed Roof Tank Near Dallas, West Virginia

			aily Liquid S nperature (d		Liquid Bulk Temp	Var	oor Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Produced Water	All	51.94	47.06	56.81	50.33	0.2465	0.2101	0.2893	28.3522			18.75	
Gasoline (RVP 12)						5.4430	4.9447	5.9807	64.0000	0.0500	0.5080	92.00	Option 4: RVP=12, ASTM Slope=3
Water						0.1930	0.1614	0.2307	18.0000	0.9500	0.4920	18.00	Option 1: VP50 = .178073 VP60 = .255246

Compressor Blowdown (CBD) / Emergency Shutdown (ESD) Emissions

							V	00		C	02	C	H4	CC	D2e
Source ID	Unit Description	Site Rating	Blowdown and ESD	Blowdown Gas	Total Gas Vented	Control %	· · · ·	900 Mscf			50 Mscf		400 Mscf	CH4 G\	WP = 25
		bhp	Events/yr	scf/bhp	MMscf/yr		lb/hr	tpy		lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
	Reciprocating Compressor - 01	1,380	104	1.38	0.20		28.31	1.47		0.29	0.01	65.36	3.40	1,634	84.98
	Reciprocating Compressor - 02	1,380	104	1.38	0.20		28.31	1.47		0.29	0.01	65.36	3.40	1,634	84.98
	Reciprocating Compressor - 03	1,380	104	1.38	0.20		28.31	1.47		0.29	0.01	65.36	3.40	1,634	84.98
	Reciprocating Compressor - 04	1,380	104	1.38	0.20		28.31	1.47		0.29	0.01	65.36	3.40	1,634	84.98
	Reciprocating Compressor - 05	1,380	104	1.38	0.20		28.31	1.47		0.29	0.01	65.36	3.40	1,634	84.98
	Reciprocating Compressor - 06	1,380	104	1.38	0.20		28.31	1.47		0.29	0.01	65.36	3.40	1,634	84.98
CBD/ESD	Reciprocating Compressor - 07	1,380	104	1.38	0.20	na	28.31	1.47		0.29	0.01	65.36	3.40	1,634	84.98
	Reciprocating Compressor - 08	1,380	104	1.38	0.20		28.31	1.47		0.29	0.01	65.36	3.40	1,634	84.98
	Reciprocating Compressor - 09	1,380	104	1.38	0.20		28.31	1.47		0.29	0.01	65.36	3.40	1,634	84.98
	Reciprocating Compressor - 10	1,380	104	1.38	0.20		28.31	1.47		0.29	0.01	65.36	3.40	1,634	84.98
	Reciprocating Compressor - 11	1,380	104	1.38	0.20		28.31	1.47		0.29	0.01	65.36	3.40	1,634	84.98
	Reciprocating Compressor - 12	1,380	104	1.38	0.20		28.31	1.47		0.29	0.01	65.36	3.40	1,634	84.98
	Emergency Shutdown Testing (ESD)	16,560	1	58.93	0.98			7.27			0.07		16.79		419.72
Assumes 1	hr/CBD	TOTAL:	1,249	TOTAL:	3.35	TOTAL:	28.31	24.94	TOTAL:	0.29	0.25	65.36	57.57	1,634	1,440
		_		-	Pre	-Controlled:	28.31	24.94		0.29	0.25	65.36	57.57	1,634	1,440
		D													
	Unit Description	Ben	izene	Ethylbo	enzene	n-He	exane	Tolu	uene	2,2,4	-ТМР	Xyl	ene	Tota	I HAP
Source		25	5.00	25	.00	375	5.00	25	.00	25	.00	25	.00	500	0.00
Source ID	(Compressor Blowdown	25 Ib/N	5.00 IMscf	25. Ib/M	.00 Mscf	375 Ib/M	5.00 IMscf	25 Ib/M		25 Ib/M	.00 Mscf	25 Ib/M	.00 Mscf	500 Ib/M	0.00 Mscf
	(<u>Compressor Blowdown</u> <u>- Raw Natural Gas</u>)	25 Ib/N Ib/hr	5.00 IMscf tpy	25. Ib/M Ib/hr	.00 Mscf tpy	37 Ib/M Ib/hr	5.00 Mscf tpy	25 Ib/M Ib/hr	.00 Mscf tpy	25 Ib/M Ib/hr	.00 Mscf tpy	25 Ib/M Ib/hr	.00 Mscf tpy	500 lb/M lb/hr	0.00 Mscf tpy
	(Compressor Blowdown - Raw Natural Gas) Reciprocating Compressor - 01	25 Ib/N Ib/hr 0.05	5.00 IMscf tpy 2E-03	25. Ib/M Ib/hr 0.05	.00 Mscf <u>tpy</u> 2E-03	37! Ib/M Ib/hr 0.71	5.00 Mscf tpy 0.04	25 Ib/M Ib/hr 0.05	.00 Mscf tpy 2E-03	25 Ib/M Ib/hr 0.05	.00 Mscf <u>tpy</u> 2E-03	25 Ib/M Ib/hr 0.05	.00 Mscf tpy 2E-03	500 Ib/M Ib/hr 0.95	0.00 Mscf tpy 0.05
	(Compressor Blowdown <u>- Raw Natural Gas</u>) Reciprocating Compressor - 01 Reciprocating Compressor - 02	25 Ib/N 0.05 0.05	5.00 IMscf 2E-03 2E-03	25. Ib/M Ib/hr 0.05 0.05	.00 Mscf <u>tpy</u> 2E-03 2E-03	37 Ib/M Ib/hr 0.71 0.71	5.00 IMscf 0.04 0.04	25 Ib/M Ib/hr 0.05 0.05	.00 Mscf 2E-03 2E-03	25 Ib/M Ib/hr 0.05 0.05	.00 Mscf <u>tpy</u> 2E-03 2E-03	25 Ib/M Ib/hr 0.05 0.05	.00 Mscf 2E-03 2E-03	500 Ib/M Ib/hr 0.95 0.95	0.00 Mscf 0.05 0.05
	(<u>Compressor Blowdown</u> <u>- Raw Natural Gas</u>) Reciprocating Compressor - 01 Reciprocating Compressor - 02 Reciprocating Compressor - 03	25 Ib/N Ib/hr 0.05 0.05 0.05	5.00 IMscf 2E-03 2E-03 2E-03	25. Ib/M 0.05 0.05 0.05	.00 Mscf 2E-03 2E-03 2E-03	37 Ib/M Ib/hr 0.71 0.71 0.71	5.00 Mscf 0.04 0.04 0.04	25 Ib/M 0.05 0.05 0.05	.00 Mscf 2E-03 2E-03 2E-03	25 Ib/M 0.05 0.05 0.05	.00 Mscf 2E-03 2E-03 2E-03	25 Ib/M Ib/hr 0.05 0.05 0.05	.00 Mscf 2E-03 2E-03 2E-03	500 Ib/M Ib/hr 0.95 0.95 0.95	0.00 Mscf 0.05 0.05 0.05
	(Compressor Blowdown - Raw Natural Gas) Reciprocating Compressor - 01 Reciprocating Compressor - 02 Reciprocating Compressor - 03 Reciprocating Compressor - 04	25 1b/N 1b/hr 0.05 0.05 0.05 0.05	5.00 IMscf 2E-03 2E-03 2E-03 2E-03	25. Ib/M 0.05 0.05 0.05 0.05	.00 Mscf 2E-03 2E-03 2E-03 2E-03 2E-03	37: Ib/M 0.71 0.71 0.71 0.71 0.71	5.00 Mscf 0.04 0.04 0.04 0.04	25 Ib/M 0.05 0.05 0.05 0.05	.00 Mscf 2E-03 2E-03 2E-03 2E-03 2E-03	25 Ib/M 0.05 0.05 0.05 0.05	.00 Mscf 2E-03 2E-03 2E-03 2E-03 2E-03	25 Ib/M Ib/hr 0.05 0.05 0.05 0.05	.00 Mscf 2E-03 2E-03 2E-03 2E-03	500 Ib/M 0.95 0.95 0.95 0.95	0.00 Mscf 0.05 0.05 0.05 0.05
	(Compressor Blowdown <u>- Raw Natural Gas</u>) Reciprocating Compressor - 01 Reciprocating Compressor - 02 Reciprocating Compressor - 03 Reciprocating Compressor - 04 Reciprocating Compressor - 05	25 1b/N 1b/hr 0.05 0.05 0.05 0.05 0.05	5.00 IMscf 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	25. Ib/M 0.05 0.05 0.05 0.05 0.05 0.05	.00 Mscf 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	37! Ib/M 0.71 0.71 0.71 0.71 0.71 0.71	5.00 Mscf 0.04 0.04 0.04 0.04 0.04 0.04	25 Ib/M 0.05 0.05 0.05 0.05 0.05 0.05	00 Mscf 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	25 Ib/M 0.05 0.05 0.05 0.05 0.05 0.05	.00 Mscf 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	25 Ib/M Ib/hr 0.05 0.05 0.05 0.05 0.05	.00 Mscf 2E-03 2E-03 2E-03 2E-03 2E-03	500 Ib/M Ib/hr 0.95 0.95 0.95 0.95 0.95	0.00 Mscf 0.05 0.05 0.05 0.05 0.05 0.05
ID	(Compressor Blowdown - Raw Natural Gas) Reciprocating Compressor - 01 Reciprocating Compressor - 02 Reciprocating Compressor - 03 Reciprocating Compressor - 04 Reciprocating Compressor - 05 Reciprocating Compressor - 06	25 1b/N 1b/hr 0.05 0.05 0.05 0.05 0.05 0.05	5.00 IMscf 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	25. Ib/Mr 0.05 0.05 0.05 0.05 0.05 0.05 0.05	.00 Mscf 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	37! Ib/M 0.71 0.71 0.71 0.71 0.71 0.71 0.71	5.00 Mscf 0.04 0.04 0.04 0.04 0.04 0.04 0.04	25 Ib/M 0.05 0.05 0.05 0.05 0.05 0.05	.00 Mscf 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	25 Ib/M 0.05 0.05 0.05 0.05 0.05 0.05	.00 Mscf 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	25 Ib/M 0.05 0.05 0.05 0.05 0.05 0.05 0.05	.00 Mscf 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	500 Ib/M 0.95 0.95 0.95 0.95 0.95 0.95 0.95	0.00 Mscf tpy 0.05 0.05 0.05 0.05 0.05 0.05
	(Compressor Blowdown <u>- Raw Natural Gas)</u> Reciprocating Compressor - 01 Reciprocating Compressor - 02 Reciprocating Compressor - 03 Reciprocating Compressor - 04 Reciprocating Compressor - 05 Reciprocating Compressor - 06 Reciprocating Compressor - 07	25 1b/N 1b/hr 0.05 0.05 0.05 0.05 0.05 0.05 0.05	5.00 IMscf 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	25. Ib/M Ib/hr 0.05 0.05 0.05 0.05 0.05 0.05 0.05	.00 Mscf 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	37! Ib/M 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71	5.00 Mscf 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.0	25 Ib/M 0.05 0.05 0.05 0.05 0.05 0.05 0.05	.00 Mscf 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	25 Ib/M 0.05 0.05 0.05 0.05 0.05 0.05 0.05	.00 Mscf 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	25 Ib/M Ib/hr 0.05 0.05 0.05 0.05 0.05 0.05 0.05	.00 Mscf 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	500 Ib/M 0.95 0.95 0.95 0.95 0.95 0.95 0.95	0.00 Mscf tpy 0.05 0.05 0.05 0.05 0.05 0.05 0.05
ID	(Compressor Blowdown - Raw Natural Gas) Reciprocating Compressor - 01 Reciprocating Compressor - 02 Reciprocating Compressor - 03 Reciprocating Compressor - 04 Reciprocating Compressor - 05 Reciprocating Compressor - 06 Reciprocating Compressor - 07 Reciprocating Compressor - 08	25 1b/N 1b/hr 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	5.00 IMscf 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	25. Ib/Mr 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	.00 Mscf 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	37! Ib/M 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71	5.00 Mscf 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.0	25 Ib/M 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	00 Mscf 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	25 Ib/M 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	.00 Mscf 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	25 Ib/M 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	.00 Mscf 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	500 Ib/M 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	0.00 Mscf tpy 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
ID	(Compressor Blowdown - Raw Natural Gas)Reciprocating Compressor - 01Reciprocating Compressor - 02Reciprocating Compressor - 03Reciprocating Compressor - 04Reciprocating Compressor - 05Reciprocating Compressor - 06Reciprocating Compressor - 07Reciprocating Compressor - 08Reciprocating Compressor - 09	28 1b/N 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	5.00 IMscf 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	25. Ib/Mr 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	.00 Mscf 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	37! Ib/M 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71	5.00 Mscf 1004 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04	25 Ib/M 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	.00 Mscf 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	25 Ib/M 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	.00 Mscf 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	25 Ib/M 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	.00 Mscf 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	500 Ib/M 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	0.00 Mscf tpy 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
ID	(Compressor Blowdown - Raw Natural Gas)Reciprocating Compressor - 01Reciprocating Compressor - 02Reciprocating Compressor - 03Reciprocating Compressor - 04Reciprocating Compressor - 05Reciprocating Compressor - 05Reciprocating Compressor - 06Reciprocating Compressor - 07Reciprocating Compressor - 08Reciprocating Compressor - 09Reciprocating Compressor - 01	25 1b/N 1b/hr 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	5.00 IMscf 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	25. Ib/M Ib/hr 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	.00 Mscf 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	37: Ib/M 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71	5.00 Mscf 199 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04	25 Ib/M 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	00 Mscf 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	25 Ib/M 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	.00 Mscf 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	25 Ib/M Ib/hr 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	.00 Mscf 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	500 Ib/M 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	0.00 Mscf tpy 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
ID	(Compressor Blowdown <u>- Raw Natural Gas</u>) Reciprocating Compressor - 01 Reciprocating Compressor - 02 Reciprocating Compressor - 03 Reciprocating Compressor - 04 Reciprocating Compressor - 05 Reciprocating Compressor - 06 Reciprocating Compressor - 07 Reciprocating Compressor - 08 Reciprocating Compressor - 09 Reciprocating Compressor - 10 Reciprocating Compressor - 11	25 1b/hr 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	5.00 IMscf 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	25. Ib/Mr 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	.00 Mscf 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	37! Ib/M 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71	5.00 Mscf tpy 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04	25 Ib/M 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	00 Mscf 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	25 Ib/M Ib/hr 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	.00 Mscf 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	25 Ib/M Ib/hr 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	.00 Mscf 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	500 Ib/M 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	D.00 Mscf tpy 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
ID	(Compressor Blowdown - Raw Natural Gas)Reciprocating Compressor - 01Reciprocating Compressor - 02Reciprocating Compressor - 03Reciprocating Compressor - 04Reciprocating Compressor - 04Reciprocating Compressor - 05Reciprocating Compressor - 06Reciprocating Compressor - 07Reciprocating Compressor - 08Reciprocating Compressor - 09Reciprocating Compressor - 10Reciprocating Compressor - 11Reciprocating Compressor - 12	25 1b/N 1b/hr 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	5.00 IMscf tpy 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	25. Ib/M Ib/hr 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	.00 Mscf 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	37: Ib/M 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71	5.00 Mscf tpy 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04	25 Ib/M 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	.00 Mscf tpy 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	25 Ib/M 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	.00 Mscf 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	25 Ib/M Ib/hr 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	.00 Mscf 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	500 Ib/M 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	0.00 Mscf tpy 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
ID CBD/ESD	(Compressor Blowdown - Raw Natural Gas) Reciprocating Compressor - 01 Reciprocating Compressor - 02 Reciprocating Compressor - 03 Reciprocating Compressor - 04 Reciprocating Compressor - 05 Reciprocating Compressor - 06 Reciprocating Compressor - 07 Reciprocating Compressor - 08 Reciprocating Compressor - 09 Reciprocating Compressor - 10 Reciprocating Compressor - 11 Reciprocating Compressor - 12 Emergency Shutdown Testing (ESD)	25 1b/N 1b/hr 0.05 0	5.00 IMscf 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	25. Ib/Mr 0.05	.00 Mscf 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	37: Ib/M Ib/hr 0.71	5.00 Mscf 1py 0.04 0.18 0	25 Ib/M 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	00 Mscf 1py 2E-03 0 0 0 0 0 0 0 0 0 0 0 0 0	25 Ib/M Ib/hr 0.05 0	.00 Mscf 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	25 Ib/M Ib/hr 0.05 0	.00 Mscf 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	500 Ib/Mr 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	D.00 Mscf tpy 0.05 0
ID	(Compressor Blowdown - Raw Natural Gas) Reciprocating Compressor - 01 Reciprocating Compressor - 02 Reciprocating Compressor - 03 Reciprocating Compressor - 04 Reciprocating Compressor - 05 Reciprocating Compressor - 06 Reciprocating Compressor - 07 Reciprocating Compressor - 08 Reciprocating Compressor - 09 Reciprocating Compressor - 10 Reciprocating Compressor - 11 Reciprocating Compressor - 12 Emergency Shutdown Testing (ESD)	28 1b/hr 0.05 0	5.00 IMscf tpy 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	25. Ib/M Ib/hr 0.05	.00 Mscf 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	37: Ib/M 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71	5.00 Mscf tpy 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04	25 Ib/M 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	.00 Mscf tpy 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	25 Ib/M Ib/hr 0.05 0	.00 Mscf 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	25 Ib/M Ib/hr 0.05 0	.00 Mscf 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03 2E-03	500 Ib/M 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	0.00 Mscf tpy 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

1 - The results of a representative Wet Gas Analysis were used to determine the following worst-case Notes: components (See Appendix A - Lab Data):

		Minimum Contingency: 10%						
Pollutant	Wet Gas	Worst Case	%Total	%VOC				
CO2	101 lb/MMscf	150 lb/MMscf	0.24	0.01				
Methane (CH4)	31,244 lb/MMscf	34,400 lb/MMscf	54.17	2.31				
N2/Water/Ethane/Etc	12,858 lb/MMscf	14,050 lb/MMscf	22.13	0.94				
VOC	13,518 lb/MMscf	14,900 lb/MMscf	23.46	1.00				
TOTAL Gas	57,720 lb/MMscf	63,500 lb/MMscf	100.00					

Pollutant	Wet Gas	Worst Case	%Total	%VOC
Benzene	4.12 lb/MMscf	25.00 lb/MMscf	0.04	0.17
Ethylbenzene	0.56 lb/MMscf	25.00 lb/MMscf	0.04	0.17
n-Hexane	322.24 lb/MMscf	375.00 lb/MMscf	0.59	2.52
Toluene	8.50 lb/MMscf	25.00 lb/MMscf	0.04	0.17
2,2,4-TMP	5.72 lb/MMscf	25.00 lb/MMscf	0.04	0.17
Xylenes	5.04 lb/MMscf	25.00 lb/MMscf	0.04	0.17
Total HAP	346.17 lb/MMscf	500.00 lb/MMscf	0.79	3.36

2 - Conversion from Actual Cubic Feet (acf) to Standard Cubic Feet (scf): scf = acf x [(psig+ave.psia)/(std.psia)] x [(std.oF+460)/(oF+460)] (https://www.mide.com/pages/air-pressure-at-altitude-calculator)

	Description	acf	psig	oF	% Gas
	Emergency Shutdown Testing (ESD)	15,000	1,000	100	100
	Ave Atmospheric pressure at:	1,175	ft elev =	14.0825	ave.psia
Standard Temperature and Pressure:		68.0 std.oF		14.6959 std.psia	

Compressor Blowdown (CBD) / Emergency Shutdown (ESD) Emissions Attachment N - Emission Estimates - Page 17 of 20

Gas scf 100 975,920 sia

Hourly ESD Emission are Not Applicable

Application for 45CSR13 New Source review Permit Modification (NSR)

Appalachia Midstream Services, LLC (AMS) Sand Hill Compressor Station (SHCS)

Application for 45CSR13 New Source review Permit Modification (NSR)

Process Piping and Equipment Leak (FUG-G) Emissions – Gas

Source ID	Description	Component (Unit) Type	Unit Count	Cons'tive Multipiler	Leak Factor	LDAR Control		rolled aks		OC Wgt%		O2 Wgt%	Cł 54.173		-)2e NP = 25
		(Gas)	Count	150%	lb/hr/Unit	Credit	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
		Valves	960	1,440	9.92E-03		14.29	62.57	3.35	14.68	0.03	0.15	7.74	33.90	194	848
		Pump Seals			5.29E-03											
FUG-G	Process Piping and Equipment Leaks	Other	72	108	1.94E-02		2.10	9.18	0.49	2.15	5E-03	0.02	1.14	4.97	28.38	124
F0G-G	(Gas)	Connectors	3,132	4,699	4.41E-04		2.07	9.07	0.49	2.13	5E-03	0.02	1.12	4.92	28.06	123
	()	Flanges	783	1,175	8.60E-04		1.01	4.42	0.24	1.04	2E-03	0.01	0.55	2.40	13.68	59.92
		Open-ended Lines	34	50	4.41E-03		0.22	0.97	0.05	0.23	5E-04	2E-03	0.12	0.53	3.01	13.18
		TOTAL:	4,981	7,472				TOTAL:	4.62	20.23	0.05	0.20	10.66	46.71	267	1,168
		-			•		PRE	-Controlled:	4.62	20.23	0.05	0.20	10.66	46.71	267	1168

Source ID	Description	Component (Unit) Type	-	zene Wgt%		enzene Wgt%	n-He 0.591	xane Wgt%	Tolu 0.039	iene Wgt%		-TMP Wgt%	Xyle 0.039			l HAP Wgt%
		(Gas)	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
		Valves	0.01	0.02	0.01	0.02	0.08	0.37	0.01	0.02	0.01	0.02	0.01	0.02	0.11	0.49
		Pump Seals														
FUG-G	Process Piping and Equipment Leaks	Other	8E-04	4E-03	8E-04	4E-03	0.01	0.05	8E-04	4E-03	8E-04	4E-03	8E-04	4E-03	0.02	0.07
FUG-G	(Gas)	Connectors	8E-04	4E-03	8E-04	4E-03	0.01	0.05	8E-04	4E-03	8E-04	4E-03	8E-04	4E-03	0.02	0.07
	(000)	Flanges	4E-04	2E-03	4E-04	2E-03	0.01	0.03	4E-04	2E-03	4E-04	2E-03	4E-04	2E-03	0.01	0.03
		Open-ended Lines	9E-05	4E-04	9E-05	4E-04	1E-03	0.01	9E-05	4E-04	9E-05	4E-04	9E-05	4E-04	2E-03	0.01
		TOTAL:	0.01	0.03	0.01	0.03	0.12	0.51	0.01	0.03	0.01	0.03	0.01	0.03	0.16	0.68
		PRE-Controlled:	0.01	0.03	0.01	0.03	0.12	0.51	0.01	0.03	0.01	0.03	0.01	0.03	0.16	0.68

Notes: 1 - Assumed 8,760 hours per year of fugitive emissions.

2 - Gas/Vapor emissions calculated using EPA Protocol for Equipment Leak Emission Estimates, EPA-453/R-95-017, Nov 1995; Table 2-4, Oil and Gas Production Operations:

	G	as	Lig	ht Oil	Wat	er/Oil
Equipment Type	kg/hr	lb/hr/unit	kg/hr	lb/hr/unit	kg/hr	lb/hr/unit
Valves	4.5E-03	9.92E-03	2.5E-03	5.51E-03	9.8E-05	2.16E-04
Pump Seals	2.4E-03	5.29E-03	1.3E-02	2.87E-02	2.4E-05	5.29E-05
Others	8.8E-03	1.94E-02	7.5E-03	1.65E-02	1.4E-02	3.09E-02
Connectors	2.0E-04	4.41E-04	2.1E-04	4.63E-04	1.1E-04	2.43E-04
Flanges	3.9E-04	8.60E-04	1.1E-04	2.43E-04	2.9E-06	6.39E-06
Open-Ended Lines	2.0E-03	4.41E-03	1.4E-03	3.09E-03	2.5E-04	5.51E-04

3 - "Other" components include pressure relief devices (PRD), compressors, diaphragms, drains, meters, etc.

4 - Component counts based on engineering judgment plus a 50% contingency.

5 - The results of a representative Wet Gas Analysis were used to determine the following worst-case components (See Appendix A - Lab Data):

		Minimum Co	ntingency:	10%
Pollutant	Wet Gas	Worst Case	%Total	%VOC
CO2	101 lb/MMscf	150 lb/MMscf	0.236	
Methane (CH4)	31,244 lb/MMscf	34,400 lb/MMscf	54.173	
N2/Water/Ethane/Etc	12,858 lb/MMscf	14,050 lb/MMscf	22.126	
VOC	13,518 lb/MMscf	14,900 lb/MMscf	23.465	100.000
TOTAL Gas	57,720 lb/MMscf	63,500 lb/MMscf	100.000	
Benzene	4 lb/MMscf	25 lb/MMscf	0.039	0.168
Ethylbenzene	1 lb/MMscf	25 lb/MMscf	0.039	0.168
n-Hexane	322 lb/MMscf	375 lb/MMscf	0.591	2.517
Toluene	8 lb/MMscf	25 lb/MMscf	0.039	0.168
2,2,4-TMP	6 lb/MMscf	25 lb/MMscf	0.039	0.168
Xylenes	5 lb/MMscf	25 lb/MMscf	0.039	0.168
Total HAP	346 lb/MMscf	500 lb/MMscf	0.787	3.356
	57,720	63,500		

Appalachia Midstream Services, LLC (AMS) Sand Hill Compressor Station (SHCS)

Application for 45CSR13 New Source review Permit Modification (NSR)

Process Piping and Equipment Leak (FUG-O) Emissions – Light Oil

Source ID	Description	Component (Unit) Type	Unit Count	Cons'tive Multipiler	Leak Factor	LDAR Control		trolled aks	VC 100.000	DC Wgt%	C	O2 Wgt%	CI 	H4 Wgt%	-)2e NP = 25
		(Light Liquid)	oount	150%	lb/hr/Unit	Credit	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
		Valves	576	864	5.51E-03	0%	4.76	20.86	4.76	20.86						
		Pump Seals	12	18	2.87E-02	0%	0.52	2.26	0.52	2.26						
FUG-O	Process Piping and Equipment Leaks	Other	43	65	1.65E-02	0%	1.07	4.69	1.07	4.69						
F0G-0	(Light Oil)	Connectors	1,296	1,944	4.63E-04	0%	0.90	3.94	0.90	3.94						
	(Flanges	324	486	2.43E-04	0%	0.12	0.52	0.12	0.52						
		Open-ended Lines	20	30	3.09E-03	0%	0.09	0.41	0.09	0.41						
		TOTAL:	2,271	3,407				TOTAL:	7.46	32.68						

PRE-Controlled:

Source ID	Description	Component (Unit) Type	-	zene %VOC	-	enzene %VOC	n-He 2.517	xane %VOC		iene %VOC	2,2,4 0.168	-TMP %VOC	Xyle 0.168	nes %VOC		I HAP %VOC
U		(Gas)	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
		Valves	0.01	0.03	0.01	0.03	0.12	0.52	0.01	0.03	0.01	0.03	0.01	0.03	0.16	0.70
		Pump Seals	9E-04	4E-03	9E-04	4E-03	0.01	0.06	9E-04	4E-03	9E-04	4E-03	9E-04	4E-03	0.02	0.08
FUG-O	Process Piping and Equipment Leaks	Other	2E-03	0.01	2E-03	0.01	0.03	0.12	2E-03	0.01	2E-03	0.01	2E-03	0.01	0.04	0.16
FUG-U	(Light Oil)	Connectors	2E-03	0.01	2E-03	0.01	0.02	0.10	2E-03	0.01	2E-03	0.01	2E-03	0.01	0.03	0.13
	(Flanges	2E-04	9E-04	2E-04	9E-04	3E-03	0.01	2E-04	9E-04	2E-04	9E-04	2E-04	9E-04	4E-03	0.02
		Open-ended Lines	2E-04	7E-04	2E-04	7E-04	2E-03	0.01	2E-04	7E-04	2E-04	7E-04	2E-04	7E-04	3E-03	0.01
		TOTAL:	0.01	0.05	0.01	0.05	0.19	0.82	0.01	0.05	0.01	0.05	0.01	0.05	0.25	1.10
		PRE-Controlled:	0.01	0.05	0.01	0.05	0.19	0.82	0.01	0.05	0.01	0.05	0.01	0.05	0.25	1.10

Notes: 1 - Assumed 8,760 hours per year of fugitive emissions.

2 - Light oil emissions calculated using EPA Protocol for Equipment Leak Emission Estimates, EPA-453/R-95-017, Nov 1995; Table 2-4, Oil and Gas Production Operations:

	G	as	Ligl	ht Oil	Wat	er/Oil
Equipment Type	kg/hr	lb/hr/unit	kg/hr	lb/hr/unit	kg/hr	lb/hr/unit
Valves	4.5E-03	9.92E-03	2.5E-03	5.51E-03	9.8E-05	2.16E-04
Pump Seals	2.4E-03	5.29E-03	1.3E-02	2.87E-02	2.4E-05	5.29E-05
Others	8.8E-03	1.94E-02	7.5E-03	1.65E-02	1.4E-02	3.09E-02
Connectors	2.0E-04	4.41E-04	2.1E-04	4.63E-04	1.1E-04	2.43E-04
Flanges	3.9E-04	8.60E-04	1.1E-04	2.43E-04	2.9E-06	6.39E-06
Open-Ended Lines	2.0E-03	4.41E-03	1.4E-03	3.09E-03	2.5E-04	5.51E-04

3 - "Other" components include pressure relief devices (PRD), diaphragms, drains, meters, etc.

4 - Component counts based on engineering judgment plus a 50% contingency.

5 - The results of a representative **Wet Gas Analysis** were used to determine the following worst-case components (See Appendix A - Lab Data):

		Minimum Co	ntingency:	10%
Pollutant	Wet Gas	Worst Case	%Total	%VOC
CO2	101 lb/MMscf	150 lb/MMscf	0.236	
Methane (CH4)	31,244 lb/MMscf	34,400 lb/MMscf	54.173	
N2/Water/Ethane/Etc	12,858 lb/MMscf	14,050 lb/MMscf	22.126	
VOC	13,518 lb/MMscf	14,900 lb/MMscf	23.465	100.000
TOTAL Gas	57,720 lb/MMscf	63,500 lb/MMscf	100.000	
Benzene	4 lb/MMscf	25 lb/MMscf	0.039	0.168
Ethylbenzene	1 lb/MMscf	25 lb/MMscf	0.039	0.168
n-Hexane	322 lb/MMscf	375 lb/MMscf	0.591	2.517
Toluene	8 lb/MMscf	25 lb/MMscf	0.039	0.168
2,2,4-TMP	6 lb/MMscf	25 lb/MMscf	0.039	0.168
Xylenes	5 lb/MMscf	25 lb/MMscf	0.039	0.168
Total HAP	346 lb/MMscf	500 lb/MMscf	0.787	3.356
	57,720	63,500		

346

500

Appalachia Midstream Services, LLC (AMS) Sand Hill Compressor Station (SHCS) Application for 45CSR13 New Source review Permit Modification (NSR)

Engine Crankcase (ECC) Emissions

							N	Эx	C	0	V	00	Р	М	S	02		CC	02	CI	H4	N2	20	CC)2e		
				Leak	Rate		1.	52	9.	07	4.	62	0.	11	0.	01		1,5		14	.04	2.48	E-03	1,9	03		
Source	Site R	ating	Operations					/hr		/hr		/hr	lb/		lb/			lb/			/hr	lb/			/hr		
ID		Ū			.36		7.		45		23		0.		0.			7,8			.62	1.25		-	575		
					hp-hr		Ib/M		Ib/M		Ib/M		Ib/M		Ib/M			Ib/MI			Mscf	Ib/MI			Mscf		
	1 200	h h n	0.700 hr/ur		scf/yr		Ib/hr	tpy	lb/hr	tpy	lb/hr	tpy	Ib/hr	tpy	Ib/hr	tpy		lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy		
CE-01	1,380		8,760 hr/yr		.33		4E-03	0.02	0.02	0.10	0.01	0.05	3E-04	1E-03	2E-05	7E-05		3.86	16.92	0.03	0.15	6E-06	3E-05	4.74	20.75		
CE-02 CE-03	1,380		8,760 hr/yr 8,760 hr/yr		.33 .33		4E-03 4E-03	0.02	0.02	0.10 0.10	0.01 0.01	0.05 0.05	3E-04 3E-04	1E-03 1E-03	2E-05 2E-05	7E-05 7E-05		3.86 3.86	16.92 16.92	0.03	0.15 0.15	6E-06 6E-06	3E-05 3E-05	4.74 4.74	20.75 20.75		
CE-03 CE-04	1,380 1,380		8,760 hr/yr		.33		4E-03	0.02	0.02	0.10	0.01	0.05	3E-04	1E-03	2E-05	7E-05		3.86	16.92	0.03	0.15	6E-06	3E-05	4.74	20.75		
CE-04 CE-05	1,380		8,760 hr/yr 8,760 hr/yr		.33		4E-03	0.02	0.02	0.10	0.01	0.05	3E-04	1E-03	2E-05	7E-05		3.86	16.92	0.03	0.15	6E-06	3E-05	4.74	20.75		
CE-05	1,380		8,760 hr/yr		.33		4E-03	0.02	0.02	0.10	0.01	0.05	3E-04	1E-03		7E-05		3.86	16.92	0.03	0.15	6E-06	3E-05	4.74	20.75		
CE-07	1,380		8,760 hr/yr		.33		4E-03	0.02	0.02	0.10	0.01	0.05	3E-04	1E-03	2E-05	7E-05		3.86	16.92	0.03	0.15	6E-06	3E-05	4.74	20.75		
CE-08	1,380		8,760 hr/yr		.33		4E-03	0.02	0.02	0.10	0.01	0.05	3E-04	1E-03	2E-05	7E-05		3.86	16.92	0.03	0.15	6E-06	3E-05	4.74	20.75		
CE-09	1,380		8,760 hr/yr		.33		4E-03	0.02	0.02	0.10	0.01	0.05	3E-04	1E-03	2E-05	7E-05		3.86	16.92	0.03	0.15	6E-06	3E-05	4.74	20.75		
CE-10	1,380	-	8,760 hr/yr	4.	.33		4E-03	0.02	0.02	0.10	0.01	0.05	3E-04	1E-03	2E-05	7E-05		3.86	16.92	0.03	0.15	6E-06	3E-05	4.74	20.75		
CE-11	1,380	bhp	8,760 hr/yr	4.	.33		4E-03	0.02	0.02	0.10	0.01	0.05	3E-04	1E-03	2E-05	7E-05		3.86	16.92	0.03	0.15	6E-06	3E-05	4.74	20.75		
CE-12	1,380	bhp	8,760 hr/yr	4.	.33		4E-03	0.02	0.02	0.10	0.01	0.05	3E-04	1E-03	2E-05	7E-05		3.86	16.92	0.03	0.15	6E-06	3E-05	4.74	20.75		
GEN	805	bhp	8,760 hr/yr	2.	.53		2E-03	0.01	0.01	0.06	0.01	0.03	2E-04	7E-04	1E-05	4E-05		2.25	9.87	0.02	0.09	4E-06	2E-05	2.76	12.10		
TOT:	17,36	5 bhp	113,880 hr/yr	54	.54	TOT:	0.05	0.21	0.28	1.24	0.14	0.63	4E-03	0.02	2E-04	9E-04	TOT:	48.60	213	0.44	1.93	8E-05	3E-04	59.62	261		
				_		_									-												
	Acetalo	-	Acrolein		zene		diene	Ethylb		HC		n-He			anol	PO		Tolu		TMP,		Xyle		Other		Total	
	9.39	E-02	5.77E-02	4.94	IE-03	3.00	E-03	4.46	E-04	1.19	E+00	1.25	E-02	2.81	E-02	3.89	E-03	4.58	E-03	3.00	E-03	2.07	E-03	3.60	E-03	1.4	40
Source	9.39I Ib/	E-02 hr	5.77E-02 lb/hr	4.94 Ib	4E-03)/hr	3.00 Ib/	E-03 /hr	4.46 Ib/	E-04 /hr	1.19I lb/	E+00 'hr	1.25 Ib/	E-02 /hr	2.81 Ib/	E-02 /hr	3.89I Ib/	E-03 hr	4.58l lb/	E-03 'hr	3.00 Ib/	E-03 /hr	2.07 lb/	E-03 ′hr	3.60 Ib/	E-03 /hr	1.4 b/	40 /hr
Source ID	9.39 b/ 4.72	E-02 hr E-01	5.77E-02 lb/hr 2.90E-01	4.94 Ib 2.49	4E-03)/hr 9E-02	3.00 Ib/ 1.51	E-03 /hr E-02	4.46 Ib 2.24	E-04 /hr E-03	1.19I b/ 5.97I	E+00 'hr E+00	1.25 b/ 6.27	E-02 /hr E-02	2.81 1.41	E-02 /hr E-01	3.89I lb/ 1.96I	E-03 hr E-02	4.58 b/ 2.31	E-03 'hr E-02	3.00 lb/ 1.51	E-03 /hr E-02	2.07 lb/ 1.04	E-03 ′hr E-02	3.60 b/ 1.81	E-03 /hr E-02	1.4 b/ 7.0	40 /hr 06
	9.39 lb/ 4.72 lb/Ml	E-02 hr E-01 Viscf	5.77E-02 Ib/hr 2.90E-01 Ib/MMscf	4.94 Ib 2.49 Ib/M	IE-03)/hr)E-02 IMscf	3.00 b/ 1.51 b/M	E-03 /hr E-02 Mscf	4.46 Ib 2.24 Ib/M	E-04 /hr E-03 Mscf	1.191 Ib/ 5.971 Ib/Mi	E+00 /hr E+00 Mscf	1.25 b/ 6.27 b/M	E-02 /hr E-02 Mscf	2.81 b/ 1.41 b/M	E-02 /hr E-01 Mscf	3.89 b/ 1.96 b/M	E-03 hr E-02 Mscf	4.58 b/ 2.31 b/M	E-03 'hr E-02 Mscf	3.00 Ib/ 1.51 Ib/M	E-03 /hr E-02 Mscf	2.07 b/ 1.04 b/M	E-03 /hr E-02 Mscf	3.60 b/ 1.81 b/M	E-03 /hr E-02 Mscf	1.4 b/ 7.0 b/MI	40 /hr 06 Mscf
ID	9.39 b/ 4.72 b/M b/hr	E-02 hr E-01 Viscf tpy	5.77E-02 Ib/hr 2.90E-01 Ib/MMscf Ib/hr tpy	4.94 lb 2.49 lb/M lb/hr	IE-03 //hr DE-02 IMscf tpy	3.00 b, 1.51 b/M b/hr	E-03 /hr E-02 Mscf tpy	4.46 Ib 2.24 Ib/M Ib/hr	E-04 /hr E-03 Mscf tpy	1.191 b/ 5.971 b/Mi b/hr	E+00 /hr E+00 Mscf tpy	1.25 b/ 6.27 b/M b/hr	E-02 /hr E-02 Mscf tpy	2.81 b, 1.41 b/M b/hr	E-02 /hr E-01 Mscf tpy	3.89 b/ 1.96 b/M b/hr	E-03 hr E-02 Mscf tpy	4.58 b/ 2.31 b/M b/hr	E-03 /hr E-02 Mscf tpy	3.00 b/ 1.51 b/M b/hr	E-03 /hr E-02 Mscf tpy	2.07 b/ 1.04 b/MI b/hr	E-03 /hr E-02 Mscf tpy	3.60 b/ 1.81 b/M b/hr	E-03 /hr E-02 Mscf tpy	1.4 b/ 7.0 b/MI b/hr	40 /hr 06 Mscf tpy
ID CE-01	9.39 lb/ 4.72 lb/MI lb/hr 2E-04	E-02 hr E-01 Mscf tpy 1E-03	5.77E-02 Ib/hr 2.90E-01 Ib/MMscf Ib/hr tpy 1E-04 6E-04	4.94 lb 2.49 lb/M lb/hr 1E-05	HE-03 b/hr DE-02 IMscf tpy 5E-05	3.00 lb. 1.51 lb/M 1b/hr 7E-06	E-03 /hr E-02 Mscf tpy 3E-05	4.46 Ib. 2.24 Ib/M Ib/hr 1E-06	E-04 /hr E-03 Mscf tpy 5E-06	1.19 lb/ 5.97 lb/M lb/hr 3E-03	E+00 /hr E+00 Mscf tpy 0.01	1.25 Ib/ 6.27 Ib/M Ib/hr 3E-05	E-02 /hr E-02 Mscf tpy 1E-04	2.81 Ib 1.41 Ib/M Ib/hr 7E-05	E-02 /hr E-01 Mscf tpy 3E-04	3.89 lb/ 1.96 lb/MI lb/hr 1E-05	E-03 hr E-02 Mscf tpy 4E-05	4.58 lb/ 2.31 lb/MI lb/hr 1E-05	E-03 /hr E-02 Mscf tpy 5E-05	3.00 lb/ 1.51 lb/M 1b/hr 7E-06	E-03 /hr E-02 Mscf tpy 3E-05	2.07 Ib/ 1.04 Ib/MI Ib/hr 5E-06	E-03 /hr E-02 Mscf tpy 2E-05	3.60 lb/ 1.81 lb/M lb/hr 9E-06	E-03 /hr E-02 Mscf tpy 4E-05	1.4 Ib/ 7.0 Ib/MI Ib/hr 3E-03	40 /hr 06 Mscf tpy 0.02
ID CE-01 CE-02	9.39 lb/ 4.72 lb/MI lb/hr 2E-04 2E-04	E-02 hr E-01 Mscf tpy 1E-03 1E-03	5.77 E-02 Ib/hr 2.90 E-01 Ib/MMscf Ib/hr tpy 1E-04 6E-04 1E-04 6E-04	4.94 Ib 2.49 Ib/M 1b/hr 1E-05 1E-05	E-03 //hr DE-02 IMscf tpy 5E-05 5E-05	3.00 Ib/ 1.51 Ib/M 1b/hr 7E-06 7E-06	E-03 /hr E-02 Mscf tpy 3E-05 3E-05	4.46 Ib. 2.24 Ib/M Ib/hr 1E-06 1E-06	E-04 /hr E-03 Mscf tpy 5E-06 5E-06	1.191 Ib/ Ib/MI Ib/hr 3E-03 3E-03	E+00 /hr E+00 Mscf tpy 0.01 0.01	1.25 Ib/ 6.27 Ib/M Ib/hr 3E-05 3E-05	E-02 /hr E-02 Mscf tpy 1E-04 1E-04	2.81 Ib/ 1.41 Ib/M 7E-05 7E-05	E-02 /hr E-01 Mscf tpy	3.891 Ib/ 1.961 Ib/MI Ib/hr 1E-05 1E-05	E-03 hr E-02 Mscf tpy 4E-05 4E-05	4.58 lb/ 2.31 lb/MI lb/hr 1E-05 1E-05	E-03 /hr E-02 Mscf tpy 5E-05 5E-05	3.00 lb/ 1.51 lb/M lb/hr 7E-06 7E-06	E-03 /hr E-02 Mscf tpy 3E-05 3E-05	2.07 lb/ 1.04 lb/M lb/hr 5E-06 5E-06	E-03 /hr E-02 Mscf tpy 2E-05 2E-05	3.60 lb/ 1.81 lb/M lb/hr 9E-06 9E-06	E-03 /hr E-02 Mscf tpy 4E-05 4E-05	1.4 Ib/ Ib/MI Ib/hr 3E-03 3E-03	40 /hr 06 Mscf tpy 0.02 0.02
ID CE-01	9.39 lb/ 4.72 lb/MI lb/hr 2E-04	E-02 hr E-01 Mscf tpy 1E-03	5.77E-02 Ib/hr 2.90E-01 Ib/MMscf Ib/hr tpy 1E-04 6E-04	4.94 lb 2.49 lb/M lb/hr 1E-05	E-03 //hr DE-02 IMscf tpy 5E-05 5E-05 5E-05	3.00 lb. 1.51 lb/M 1b/hr 7E-06	E-03 /hr E-02 Mscf tpy 3E-05	4.46 Ib. 2.24 Ib/M Ib/hr 1E-06	E-04 /hr E-03 Mscf tpy 5E-06	1.19 lb/ 5.97 lb/M lb/hr 3E-03	E+00 /hr E+00 Mscf tpy 0.01	1.25 Ib/ 6.27 Ib/M Ib/hr 3E-05	E-02 /hr E-02 Mscf tpy 1E-04	2.81 Ib 1.41 Ib/M Ib/hr 7E-05	E-02 /hr E-01 Mscf tpy 3E-04 3E-04	3.891 lb/ 1.961 lb/MI lb/hr 1E-05 1E-05 1E-05	E-03 hr E-02 Mscf tpy 4E-05	4.58 lb/ 2.31 lb/MI lb/hr 1E-05 1E-05 1E-05	E-03 /hr E-02 Mscf tpy 5E-05	3.00 lb/ 1.51 lb/M 1b/hr 7E-06 7E-06 7E-06	E-03 /hr E-02 Mscf tpy 3E-05	2.07 Ib/ 1.04 Ib/MI Ib/hr 5E-06	E-03 /hr E-02 Mscf tpy 2E-05	3.60 lb/ 1.81 lb/M 9E-06 9E-06 9E-06	E-03 /hr E-02 Mscf tpy 4E-05	1.4 Ib/ 7.0 Ib/MI Ib/hr 3E-03	40 /hr 06 Mscf tpy 0.02
ID CE-01 CE-02 CE-03	9.39 Ib/ 4.72 Ib/MI Ib/hr 2E-04 2E-04 2E-04	E-02 hr E-01 Mscf tpy 1E-03 1E-03 1E-03	5.77 E-02 Ib/hr 2.90 E-01 Ib/M Scf Ib/hr tpy 1E-04 6E-04 1E-04 6E-04 1E-04 6E-04	4.94 lb 2.49 lb/M 1E-05 1E-05 1E-05	E-03 //hr DE-02 IMscf tpy 5E-05 5E-05 5E-05 5E-05	3.00 lb. 1.51 lb/M lb/hr 7E-06 7E-06 7E-06	E-03 /hr E-02 Mscf tpy 3E-05 3E-05 3E-05	4.46 lb. 2.24 lb/M lb/hr 1E-06 1E-06 1E-06	E-04 /hr E-03 Mscf tpy 5E-06 5E-06 5E-06	1.19 lb/ 5.97 lb/M 3E-03 3E-03 3E-03	E+00 hr E+00 Mscf tpy 0.01 0.01 0.01	1.25 Ib, 6.27 Ib/M Ib/hr 3E-05 3E-05 3E-05	E-02 /hr E-02 Mscf tpy 1E-04 1E-04 1E-04	2.81 Ib/ 1.41 Ib/M 1b/hr 7E-05 7E-05 7E-05	E-02 /hr E-01 Mscf tpy 3E-04 3E-04 3E-04	3.891 lb/ 1.961 lb/MI lb/hr 1E-05 1E-05 1E-05	E-03 hr E-02 Mscf tpy 4E-05 4E-05 4E-05	4.58 lb/ 2.31 lb/MI lb/hr 1E-05 1E-05 1E-05	E-03 hr E-02 Mscf tpy 5E-05 5E-05 5E-05	3.00 lb/ 1.51 lb/M lb/hr 7E-06 7E-06	E-03 /hr E-02 Mscf tpy 3E-05 3E-05 3E-05	2.07 lb/ 1.04 lb/M 1b/hr 5E-06 5E-06 5E-06	E-03 (hr E-02 Mscf tpy 2E-05 2E-05 2E-05	3.60 lb/ 1.81 lb/M lb/hr 9E-06 9E-06	E-03 /hr E-02 Mscf tpy 4E-05 4E-05 4E-05	1.4 Ib/ Ib/MI Ib/hr 3E-03 3E-03 3E-03	40 /hr 06 Mscf tpy 0.02 0.02 0.02
ID CE-01 CE-02 CE-03 CE-04	9.39 Ib/ 4.72 Ib/MI 2E-04 2E-04 2E-04 2E-04	E-02 hr E-01 Mscf tpy 1E-03 1E-03 1E-03 1E-03	5.77 E-02 Ib/hr 2.90 E-01 Ib/M Scf Ib/hr tpy 1E-04 6E-04 1E-04 6E-04 1E-04 6E-04 1E-04 6E-04	4.94 lb 2.49 lb/M 1E-05 1E-05 1E-05 1E-05	E-03 //hr DE-02 IMscf tpy 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05	3.00 lb. 1.51 lb/M 7E-06 7E-06 7E-06 7E-06	E-03 /hr E-02 Mscf tpy 3E-05 3E-05 3E-05 3E-05	4.46 Ib. 2.24 Ib/M 1E-06 1E-06 1E-06 1E-06	E-04 /hr E-03 Mscf tpy 5E-06 5E-06 5E-06	1.19 b/ 5.97 b/M b/hr 3E-03 3E-03 3E-03 3E-03	E+00 /hr E+00 Mscf tpy 0.01 0.01 0.01 0.01	1.25 Ib/ 6.27 Ib/M 3E-05 3E-05 3E-05 3E-05	E-02 /hr E-02 Mscf tpy 1E-04 1E-04 1E-04 1E-04	2.81 Ib. 1.41 Ib/M Ib/hr 7E-05 7E-05 7E-05 7E-05	E-02 /hr E-01 Mscf tpy 3E-04 3E-04 3E-04 3E-04	3.89 b/ 1.96 b/MI 1b/MI 1E-05 1E-05 1E-05 1E-05	E-03 hr E-02 Mscf tpy 4E-05 4E-05 4E-05 4E-05	4.58 b/ 2.31 b/M b/hr 1E-05 1E-05 1E-05 1E-05	E-03 hr E-02 Mscf 5E-05 5E-05 5E-05 5E-05	3.00 lb/ 1.51 lb/M 1b/hr 7E-06 7E-06 7E-06 7E-06	E-03 /hr E-02 Mscf tpy 3E-05 3E-05 3E-05 3E-05	2.07 b/ 1.04 b/MI b/hr 5E-06 5E-06 5E-06 5E-06	E-03 (hr E-02 Mscf tpy 2E-05 2E-05 2E-05 2E-05	3.60 b/ 1.81 b/M 9E-06 9E-06 9E-06 9E-06	E-03 /hr E-02 Mscf tpy 4E-05 4E-05 4E-05	1.4 Ib/ Ib/MI Ib/hr 3E-03 3E-03 3E-03 3E-03	40 /hr 06 Mscf tpy 0.02 0.02 0.02 0.02
ID CE-01 CE-02 CE-03 CE-04 CE-05	9.39 Ib/ 4.72 Ib/MI 2E-04 2E-04 2E-04 2E-04 2E-04	E-02 hr E-01 Mscf tpy 1E-03 1E-03 1E-03 1E-03 1E-03	5.77 E-02 Ib/hr 2.90 E-01 Ib/MWscf Ib/hr tpy 1E-04 6E-04	4.94 lb 2.49 lb/M 1E-05 1E-05 1E-05 1E-05 1E-05	E-03 /hr DE-02 IMscf tpy 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05	3.00 lb, 1.51 lb/M 7E-06 7E-06 7E-06 7E-06	E-03 //hr E-02 Mscf tpy 3E-05 3E-05 3E-05 3E-05 3E-05	4.46 lb, 2.24 lb/M 1E-06 1E-06 1E-06 1E-06 1E-06	E-04 //hr E-03 Mscf tpy 5E-06 5E-06 5E-06 5E-06	1.19 b/ 5.97 b/M b/hr 3E-03 3E-03 3E-03 3E-03 3E-03	E+00 /hr E+00 Mscf tpy 0.01 0.01 0.01 0.01 0.01	1.25 Ib/ 6.27 Ib/M 3E-05 3E-05 3E-05 3E-05 3E-05	E-02 /hr E-02 Mscf tpy 1E-04 1E-04 1E-04 1E-04	2.81 Ib/ 1.41 Ib/M 7E-05 7E-05 7E-05 7E-05 7E-05	E-02 /hr E-01 Mscf tpy 3E-04 3E-04 3E-04 3E-04	3.89 lb/ 1.96 lb/MI 1E-05 1E-05 1E-05 1E-05 1E-05	E-03 hr E-02 Mscf tpy 4E-05 4E-05 4E-05 4E-05	4.58 b/ 2.31 b/MI b/hr 1E-05 1E-05 1E-05 1E-05 1E-05	E-03 hr E-02 Mscf 5E-05 5E-05 5E-05 5E-05 5E-05	3.00 lb/ 1.51 lb/hr 7E-06 7E-06 7E-06 7E-06 7E-06	E-03 //hr E-02 Mscf tpy 3E-05 3E-05 3E-05 3E-05 3E-05	2.07 b/ 1.04 b/hr 5E-06 5E-06 5E-06 5E-06 5E-06	E-03 /hr E-02 Mscf 2E-05 2E-05 2E-05 2E-05 2E-05	3.60 Ib/ 1.81 Ib/M 9E-06 9E-06 9E-06 9E-06	E-03 /hr E-02 Mscf tpy 4E-05 4E-05 4E-05 4E-05	1.4 Ib/ Ib/MI 3E-03 3E-03 3E-03 3E-03 3E-03	40 /hr 06 Mscf tpy 0.02 0.02 0.02 0.02 0.02
ID CE-01 CE-02 CE-03 CE-04 CE-05 CE-06 CE-06	9.39 Ib/ 4.72 Ib/MI 2E-04 2E-04 2E-04 2E-04 2E-04 2E-04 2E-04 2E-04	E-02 hr E-01 Mscf 1E-03 1E-03 1E-03 1E-03 1E-03 1E-03 1E-03 1E-03	5.77 E-02 Ib/hr 2.90 E-01 Ib/MMscf Ib/hr tpy 1E-04 6E-04	4.94 lb 2.49 lb/M 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05	E-03 /hr DE-02 IMscf tpy 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05	3.00 lb. 1.51 lb/M 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06	E-03 /hr E-02 Mscf 190 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05	4.46 lb. 2.24 lb/M 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06	E-04 /hr E-03 Mscf 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06	1.19 b/ 5.97 b/M b/hr 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03	E+00 hr E+00 Mscf 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0	1.25 b/ 6.27 b/M 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05	E-02 /hr E-02 Mscf 1E-04 1E-04 1E-04 1E-04 1E-04 1E-04 1E-04	2.81 b/ 1.41 b/M 7E-05 7E-05 7E-05 7E-05 7E-05 7E-05	E-02 /hr E-01 Mscf tpy 3E-04 3E-04 3E-04 3E-04 3E-04 3E-04	3.89 b/ 1.96 1.96 1.96 1.96 1.96 1.97 1.05 1.	E-03 hr E-02 Mscf tpy 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05	4.58 b/ 2.31 b/M 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05	E-03 hr E-02 Mscf 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05	3.00 lb/ 1.51 lb/M 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06	E-03 /hr E-02 Mscf 1505 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05	2.07 b/ 1.04 b/MI 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06	E-03 /hr E-02 Mscf 2E-05 2E-05 2E-05 2E-05 2E-05 2E-05 2E-05	3.60 lb/ 1.81 lb/hr 9E-06 9E-06 9E-06 9E-06 9E-06 9E-06	E-03 /hr E-02 Mscf tpy 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05	1.4 Ib/ Ib/MI 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03	40 /hr 06 Mscf tpy 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0
ID CE-01 CE-02 CE-03 CE-04 CE-05 CE-06 CE-06	9.39 Ib/ 4.72 Ib/MI 2E-04 2E-04 2E-04 2E-04 2E-04 2E-04 2E-04 2E-04 2E-04	E-02 hr E-01 Wscf tpy 1E-03 1E-03 1E-03 1E-03 1E-03 1E-03 1E-03 1E-03	5.77 E-02 Ib/hr 2.90 E-01 Ib/M Scf Ib/M tpy 1E-04 6E-04	4.94 lb 2.49 lb/M 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05	E-03 //hr DE-02 IMScf tpy 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05	3.00 lb. 1.51 lb/M 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06	E-03 /hr E-02 Mscf 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05	4.46 Ib. 2.24 Ib/M 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06	E-04 /hr E-03 Mscf 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06	1.19 b/ 5.97 b/M b/hr 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03	E+00 hr E+00 Mscf tpy 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	1.25 Ib/ 6.27 Ib/M 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05	E-02 /hr E-02 Mscf 1E-04 1E-04 1E-04 1E-04 1E-04 1E-04 1E-04	2.81 1.41 1b/M 1b/hr 7E-05 7E-05 7E-05 7E-05 7E-05 7E-05 7E-05 7E-05	E-02 /hr E-01 Mscf 3E-04 3E-04 3E-04 3E-04 3E-04 3E-04 3E-04	3.89 b/ 1.96 1.96 1b/MI 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05	E-03 hr E-02 Mscf 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05	4.58 b/ 2.31 b/M 1b/M 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05	E-03 hr E-02 Mscf 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05	3.00 lb/ 1.51 lb/M 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06	E-03 /hr E-02 Mscf 149 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05	2.07 b/ 1.04 1b/M b/hr 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06	E-03 /hr E-02 Mscf 2E-05 2E-05 2E-05 2E-05 2E-05 2E-05 2E-05 2E-05	3.60 b/ 1.81 b/M 9E-06 9E-06 9E-06 9E-06 9E-06 9E-06 9E-06	E-03 /hr E-02 Mscf 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05	1.4 Ib/ Ib/MI 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03	40 /hr 06 Mscf tpy 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0
ID CE-01 CE-02 CE-03 CE-04 CE-04 CE-05 CE-06 CE-07 CE-08	9.39 Ib/ 4.72 Ib/MI 2E-04 2E-04 2E-04 2E-04 2E-04 2E-04 2E-04 2E-04 2E-04 2E-04	E-02 hr E-01 Vscf tpy 1E-03 1E-03 1E-03 1E-03 1E-03 1E-03 1E-03 1E-03 1E-03	5.77 E-02 Ib/r 2.90 E-01 Ib/m IE-04	4.94 lb 2.49 lb/M 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05	E-03 //r E-02 E-02 E-02 E-02 E-02 E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05	3.00 lb, 1.51 lb/M 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06	E-03 /hr E-02 Mscf tpy 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05	4.46 lb, 2.24 lb/M 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06	E-04 /hr E-03 Mscf tpy 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06	1.19 b/ 5.97 b/M b/hr 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03	E+00 /hr E+00 Mscf tpy 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0	1.25 Ib/M 6.27 Ib/M 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05	E-02 /hr E-02 Mscf 1E-04 1E-04 1E-04 1E-04 1E-04 1E-04 1E-04 1E-04 1E-04 1E-04	2.81 1.41 1b/M 7E-05 7E-05 7E-05 7E-05 7E-05 7E-05 7E-05 7E-05 7E-05 7E-05 7E-05 7E-05	E-02 /hr E-01 Mscf 12-04 3E-04 3E-04 3E-04 3E-04 3E-04 3E-04 3E-04 3E-04 3E-04	3.89 b/ 1.96 1.96 1.96 1.96 1.97 1.2-05	E-03 hr E-02 Mscf tpy 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05	4.58 b/ 2.311 b/m 1b/hr 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05	E-03 hr E-02 Mscf 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05	3.00 lb/ 1.51 lb/Mr 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06	E-03 //hr E-02 Mscf tpy 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05	2.07 b/ 1.04 1.04 1b/hr 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06	E-03 /hr E-02 Mscf 2E-05 2E-05 2E-05 2E-05 2E-05 2E-05 2E-05 2E-05 2E-05 2E-05	3.60 b/ 1.81 b/hr 9E-06 9E-06 9E-06 9E-06 9E-06 9E-06 9E-06 9E-06 9E-06	E-03 /hr E-02 Mscf tpy 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05	1.4 Ib/MI Ib/hr 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03	40 //hr 06 Mscf tpy 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0
ID CE-01 CE-02 CE-03 CE-04 CE-05 CE-05 CE-06 CE-07 CE-08 CE-09	9.39 Ib/ 4.72 Ib/MI 2E-04 2E-04 2E-04 2E-04 2E-04 2E-04 2E-04 2E-04 2E-04 2E-04	E-02 hr E-01 Wscf 1E-03 1E-03 1E-03 1E-03 1E-03 1E-03 1E-03 1E-03 1E-03 1E-03 1E-03	5.77 ⊢02 Ib/r 2.90 ⊢01 Ib/M Ib/R 1E/04 6E-04 1E-04 6E-04	4.94 lb 2.49 lb/M 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05	E-03 //hr DE-02 IMScf tpy 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05	3.00 lb. 1.51 lb/M 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06	E-03 /hr E-02 Mscf 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05	4.46 lb, 2.24 lb/M 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06	E-04 /hr E-03 Mscf 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06	1.19 b/M 5.97 b/M 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03	E+00 hr E+00 Mscf 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	1.25 b/ b/M 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05	E-02 /hr E-02 Mscf 1E-04 1E-04 1E-04 1E-04 1E-04 1E-04 1E-04 1E-04 1E-04 1E-04	2.81 1.41 1b/M 1b/hr 7E-05 7E-05 7E-05 7E-05 7E-05 7E-05 7E-05 7E-05 7E-05 7E-05 7E-05	E-02 /hr E-01 Mscf 3E-04 3E-04 3E-04 3E-04 3E-04 3E-04 3E-04 3E-04 3E-04 3E-04	3.89 b/ 1.96 1.96 1.96 1.96 1.97 1.05	E-03 hr E-02 Mscf 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05	4.58 b/ 2.31 b/M 1b/M 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05	E-03 hr E-02 tpy 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05	3.00 lb/ 1.51 lb/M 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06	E-03 /hr E-02 Mscf 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05	2.07 b/ 1.04 1.04 1.0/MI 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06	E-03 /hr E-02 Mscf 2E-05 2E-05 2E-05 2E-05 2E-05 2E-05 2E-05 2E-05 2E-05 2E-05	3.60 b/ 1.81 b/hr 9E-06 9E-06 9E-06 9E-06 9E-06 9E-06 9E-06 9E-06 9E-06	E-03 /hr E-02 Mscf 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05	1.4 Ib/MI Ib/MI 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03	40 /hr 06 Mscf 199 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.
ID CE-01 CE-02 CE-03 CE-04 CE-05 CE-06 CE-07 CE-08 CE-09 CE-10 CE-11 CE-11	9.39 Ib/ Ib/MI 2E-04 2E-04 2E-04 2E-04 2E-04 2E-04 2E-04 2E-04 2E-04 2E-04 2E-04 2E-04 2E-04 2E-04 2E-04	E-02 hr E-01 Wscf tpy 1E-03 1E-03 1E-03 1E-03 1E-03 1E-03 1E-03 1E-03 1E-03 1E-03 1E-03 1E-03 1E-03	5.77 ⊢02 Ib/r 2.90 ⊢01 Ib/R tpy Ib/R 6E-04 1E-04 6E-04	4.94 lb 2.49 lb/M 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05	E-03 //hr DE-02 E-02 E-02 DE-02 DE-02 DE-05 5E-05	3.00 lb/ 1.51 lb/M 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06	E-03 /hr E-02 Mscf 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05	4.46 lb, 2.24 lb/M 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06	E-04 /hr E-03 Mscf 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06	1.19 b/ 5.97 b/M b/hr 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03	E+00 hr E+00 Mscf tpy 0.01 0.0	1.25 1b/M 1b/hr 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05	E-02 /hr E-02 Mscf 1E-04 1E-04 1E-04 1E-04 1E-04 1E-04 1E-04 1E-04 1E-04 1E-04 1E-04 1E-04	2.81 1.41 1b/M 1b/hr 7E-05 7E-05 7E-05 7E-05 7E-05 7E-05 7E-05 7E-05 7E-05 7E-05 7E-05 7E-05 7E-05 7E-05 7E-05	E-02 /hr E-01 Mscf 3E-04 3E-04 3E-04 3E-04 3E-04 3E-04 3E-04 3E-04 3E-04 3E-04 3E-04	3.89 b/ 1.96 1.96 1.96 1.96 1.97 1.2-05	E-03 hr E-02 Mscf 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05	4.58 b/ 2.31 b/M 1b/M 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05	E-03 hr E-02 Mscf 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05	3.00 Ib/ 1.51 Ib/M 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06	E-03 /hr E-02 Mscf 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05	2.07 b/ 1.04 1.04 1b/M 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06	E-03 /hr E-02 Mscf 2E-05 2E-05 2E-05 2E-05 2E-05 2E-05 2E-05 2E-05 2E-05 2E-05 2E-05 2E-05	3.60 b/ 1.81 b/M 9E-06 9E-06 9E-06 9E-06 9E-06 9E-06 9E-06 9E-06 9E-06 9E-06 9E-06 9E-06	E-03 /hr E-02 Mscf 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05	1.4 Ib/MI 1b/MI 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03	40 /hr 06 Mscf 199 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.
ID CE-01 CE-02 CE-03 CE-04 CE-05 CE-06 CE-07 CE-08 CE-09 CE-10 CE-11 CE-12 GEN	9.39 Ib/ Ib/MI 2E-04 2E-04 2E-04 2E-04 2E-04 2E-04 2E-04 2E-04 2E-04 2E-04 2E-04 2E-04 2E-04 2E-04 2E-04	E-02 hr E-01 Wscf tpy 1E-03 1E-03 1E-03 1E-03 1E-03 1E-03 1E-03 1E-03 1E-03 1E-03 1E-03 1E-03 1E-03 6E-04	5.77 ⊢02 Ib/r 2.90 ⊢01 Ib/R tpy Ib/R 6E-04 1E-04 6E-04 6E-05 4E-04	4.94 Ib 2.49 Ib/M 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 7E-06	E-03 //hr DE-02 E-02 E-02 DE-02 DE-02 DE-05 5E-05	3.00 1b/m 1.51 1b/M 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06 4E-06	E-03 /hr E-02 Mscf 199 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05	4.46 lb, 2.24 lb/M 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 6E-07	E-04 /hr E-03 Mscf 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06	1.19 b/ 5.97 b/M b/hr 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03	E+00 hr E+00 Mscf tpy 0.01 0.0	1.25 Ib/M 6.27 Ib/M 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05	E-02 /hr E-02 Mscf tpy 1E-04 1E-04 1E-04 1E-04 1E-04 1E-04 1E-04 1E-04 1E-04 1E-04 1E-04 1E-04 8E-05	2.81 1.41 1b/M 1b/hr 7E-05 7E-05 7E-05 7E-05 7E-05 7E-05 7E-05 7E-05 7E-05 7E-05 7E-05 7E-05 4E-05	E-02 /hr E-01 Mscf 199 3E-04 3E-04 3E-04 3E-04 3E-04 3E-04 3E-04 3E-04 3E-04 3E-04 3E-04 3E-04	3.89 b/ 1.96 1.96 1.96 1.97 1.2-05 1.2-	E-03 hr E-02 Wscf 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05	4.58 b/ 2.31 b/M b/hr 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 7E-06	E-03 hr E-02 Mscf 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05	3.00 b/ 1.51 b/M 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06 7E-06 4E-06	E-03 //hr E-02 Mscf 1py 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05	2.07 b/ 1.04 1.04 1b/hr 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06 5E-06 3E-06 3E-06 3E-06 3E-06	E-03 /hr E-02 Mscf 2E-05 2E-05 2E-05 2E-05 2E-05 2E-05 2E-05 2E-05 2E-05 2E-05 2E-05 2E-05 2E-05 2E-05	3.60 b/ 1.81 b/M 9E-06 9E-06 9E-06 9E-06 9E-06 9E-06 9E-06 9E-06 9E-06 9E-06 9E-06 9E-06 9E-06	E-03 /hr E-02 Mscf 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05	1.4 Ib/MI Ib/MI 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03 3E-03	40 //hr 06 Mscf 1py 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0

Notes: 1 - As per Caterpillar's <u>Application & Installation Guide - Crankcase Ventilation Systems</u>: "[B]ow-by on a new engine is approx. 0.5 ft3 /bhp-hr and design for a worn engine should be 1.0 ft3 /bhp-hr." http://s7d2.scene7.com/is/content/Caterpillar/CM20160713-53120-62603

2 - Blowby emission rates converted from "actual" cubic feet to "standard" cubic feet:

scf	= acf * [(P+14.6959)/14.6959] * [527.67/(T+4	459.67)]	
	Actual to Standard Conversions	1.0 acf =	0.36 scf
	(@ 1,012 oF vs. 68 oF (Ignore ∆ psi):	1.0 aci =	0.30 501

3 - Engine Exhaust Flow Rates converted from "actual" cubic feet per minute to "standard" cubic feet per minute:

scf = acf * [(P+14.6959)/14.6959] * [527.67/(T+459.67)]

Actual to Standard Conversions	9.240 acfm =	3.313 scfm
(@ 1,012 oF vs. 68 oF (Ignore ∆ psi):	9,240 aciiii -	3,313 50111

Attachment O

Monitoring/Recordkeeping/Reporting/Testing Plans

"31. **Monitoring, Recordkeeping, Reporting and Testing Plans**. Attach proposed monitoring, recordkeeping, reporting and testing plans to demonstrate compliance with the proposed emissions limits and operating parameters in this permit application. Provide this information as Attachment O."

NOTE: AMS is not submitting any special recommendations for monitoring, recordkeeping, reporting, or testing plans other than those typically established for the emissions units in this application.

Attachment P Public Notice

"32. **Public Notice**. At the time that the application is submitted, place a **Class I Legal Advertisement** in a newspaper of general circulation in the area where the source is or will be located (See 45CSR§13-8.3 through 45CSR§13-8.5 and Example Legal Advertisement for details). Please submit the **Affidavit of Publication** as Attachment P immediately upon receipt."

The applicant shall cause such legal advertisement to appear a minimum of one (1) day in the newspaper most commonly read in the area where the facility exists or will be constructed. The notice must be published no earlier than five (5) working days of receipt by this office of your application. The original affidavit of publication must be received by this office no later than the last day of the public comment period.

The advertisement shall contain, at a minimum, the name of the applicant, the type and location of the source, the type and amount of air pollutants that will be discharged, the nature of the permit being sought, the proposed start-up date for the source and a contact telephone number for more information.

The location of the source should be as specific as possible starting with:

- 1) the street address of the source;
- 2) the nearest street or road;
- 3) the nearest town or unincorporated area;
- 4) the county; and
- 5) latitude and longitude coordinates.

Types and amounts of pollutants discharged must include all regulated pollutants (PM, PM10, VOC, SO2, Xylene, etc.) and their potential to emit or the permit level being sought in units of tons per year (including fugitive emissions).

- Legal Advertisement (as shown) will be placed in a newspaper of general circulation in the area where the source is located (See 45CSR§13-8.3 thru 45CSR§13-8.5).
- An Affidavit of Publication shall be submitted immediately upon receipt.

Application for 45CSR13 New Source review Permit Modification (NSR)

ATTACHMENT P Public Notice

AIR QUALITY PUBLIC NOTICE Notice of Application

Notice is given that Appalachia Midstream Services, LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a 45CSR13 NSR Permit Modification for the existing Sand Hill Compressor Station (SHCS), located on Golden Rd / McCausland Hill Rd (Approx. 2.5 miles SW of Dallas), in the Sand Hill Tax District of Marshal County, West Virginia.

The latitude and longitude coordinates are 39°59'16.0"N and -80°33'22.0"W.

The applicant estimates the increase/(decrease) in the potential to discharge the following regulated air pollutants will be:

- 1.61 tons of nitrogen oxides per year
- 4.65 tons of carbon monoxide per year
- 109.29 tons of volatile organic compounds per year
 - (0.60) tons of particulate matter per year
 - (0.13) tons of sulfur dioxide per year
 - 3.41 tons of total hazardous air pollutants per year
- 20,664 tons of carbon dioxide equivalent per year

Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the _____ day of _____ 2018.

By: Appalachia Midstream Services, LLC Mr. Paul V. Hunter Vice President Park Place Corporate Center 2 2000 Commerce Drive Pittsburgh, PA 15275

Attachment Q Business Confidential Claims (Not Applicable)

also

Attachment R Authority Forms (Not Applicable)

also

Attachment S Title V Permit Revision Information (Not Applicable)

Supplement S1

Lab Analysis (Inlet Gas)

- Wet Gas Summary Sand Hill Compressor Station (SHCS)
- Wet Gas Lab Analysis Sand Hill Compressor Station (SHCS)

Appalachia Midstream Services, LLC (AMS) Sand Hill Compressor Station (SHCS) Application for 45CSR13 New Source review Permit Modification (NSR)

Wet Gas - Summary

Sampled:	11/02/16						_			GPSA-Sec 23	
Component	CAS	Formula	Molecular Weight (MW)	Mole % (M% = V%)	Mole Fraction (MF)	lb/MMscf (WS/UGC#)	Weight % Total	Weight % THC	Weight % VOC	Component Btu/scf (HHV)	Btu/scf (HHV)
Water	109-86-4	H2O	18.015								
Carbon Dioxide	124-38-9	CO2	44.010	0.0869	0.038	100.78	0.1746				
Hydrogen Sulfide	2148-87-8	H2S	34.086							638	
Nitrogen	7727-37-9	N2	28.013	0.4303	0.121	317.65	0.5503				
Methane*	75-82-8	CH4	16.042	73.9064	11.856	31,243.65	54.1297	54.5249		1,010	746.455
Ethane*	74-84-0	C2H6	30.069	15.8261	4.759	12,540.14	21.7258	21.8844		1,770	280.074
Propane**	74-98-6	C3H8	44.096	5.9829	2.638	6,952.10	12.0445	12.1325	51.4292	2,516	150.542
iso-Butane**	75-28-5	C4H10	58.122	0.6737	0.392	1,031.85	1.7877	1.8007	7.6333	3,252	21.909
n-Butane**	106-97-8	C4H10	58.122	1.7221	1.001	2,637.60	4.5696	4.6030	19.5121	3,262	56.182
iso-Pentane**	78-78-4	C5H12	72.149	0.3661	0.264	696.05	1.2059	1.2147	5.1491	4,001	14.647
n-Pentane**		C5H12	72.149	0.4834	0.349	919.06	1.5923	1.6039	6.7989	4,009	19.379
Cyclopentane**	287-92-3	C5H10	70.100	0.0182	0.013	33.62	0.0582	0.0587	0.2487	3,764	0.685
Cyclohexane**		C6H12	84.162	0.0303	0.026	67.20	0.1164	0.1173	0.4971	4,482	1.358
Other Hexanes**		C6H14	86.175	0.1545	0.133	350.85	0.6078	0.6123	2.5955	4,750	7.339
Heptanes**	142-82-5	C7H16	100.205	0.1015	0.102	268.02	0.4643	0.4677	1.9827	5,503	5.585
Methylcyclohexane**	108-87-2	C7H14	98.186	0.0246	0.024	63.65	0.1103	0.1111	0.4709	5,216	1.283
C8+ Heavies**	Various	C8+	138.00 est.	0.0417	0.058	151.64	0.2627	0.2646	1.1218	7,000	2.919
Benzene***	71-43-2	C6H6	78.112	0.0020	0.002	4.12	0.0071	0.0072	0.0305	3,742	0.075
Ethylbenzene***	100-41-4	C8H10	106.165	0.0002	0.000	0.56	0.0010	0.0010	0.0041	5,222	0.010
n-Hexane***	110-54-3	C6H14	86.175	0.1419	0.122	322.24	0.5583	0.5624	2.3838	4,756	6.749
Toluene***	108-88-3	C7H8	92.138	0.0035	0.003	8.50	0.0147	0.0148	0.0629	4,475	0.157
2,2,4-Trimethylpentane***	540-84-1	C8H18	114.229	0.0019	0.002	5.72	0.0099	0.0100	0.0423	6,214	0.118
Xylenes***	1330-20-7	C8H10	106.165	0.0018	0.002	5.04	0.0087	0.0088	0.0373	5,209	0.094
////										Calculated	

#UGC (Universal Gas Constant) = 379.482 scf/lb-mol @ 60 oF and 14.6959 psia.

> lb "X"/scf = (M% of "X") x (MW of "X") / #UGC

Totals:	100.0000	21.90	57,720.03	100.000
THC:	99.4828	21.74	57,301.60	99.2751
Total VOC:	9.7503	5.13	13,517.81	23.4196
Total HAP:	0.1513	0.13	346.17	0.5997

 100.0000
 -- --

 99.2751
 100.0000
 --

 23.4196
 23.5906
 100.0000

 0.5997
 0.6041
 2.5608

Calculated Btu/scf (HHV):

1,020

Worst-Case Btu/scf (HHV):

Component	Representative Gas Analysis				Assumed "Worst-Case" Min Margin: 10%			
oomponent	Mole % Wgt % Ib/MMscf				Wgt %	Ib/MMscf		
CO2	0.087	0.1746	100.78		0.2362	150.00		
Methane*	73.906	54.1297	31,243.65		54.1732	34,400.00		
Other (N2, C2, O2, CO, H2O)	16.256	22.2761	12,857.79		22.1260	14,050.00		
VOC**	9.750	23.4196	13,517.81		23.4646	14,900.00		
TOTAL GAS	100.000	100.0000	57,720.03		100.0000	63,500.00		
Benzene***	0.002	0.0071	4.12		0.0394	25.00		
Ethylbenzene***	2E-04	0.0010	0.56		0.0394	25.00		
n-Hexane***	0.142	0.5583	322.24		0.5906	375.00		
Toluene***	0.004	0.0147	8.50		0.0394	25.00		
2,2,4-Trimethylpentane***	0.002	0.0099	5.72		0.0394	25.00		
Xylenes***	0.002	0.0087	5.04		0.0394	25.00		
Total HAP***	0.151	0.5997	346.17		0.7874	500.00		

* = Hydrocarbon (HC)

** = also Volatile Organic Compound (VOC)

*** = also Hazardous Air Pollutant (HAP)

Appalachia Midstream Services, LLC (AMS)

Sand Hill Compressor Station (SHCS)

Application for 45CSR13 New Source review Permit Modification (NSR)

Wet Gas - Lab Analysis

Williams Quality Control Facility Extended Analysis by GPA 2186

Sample Information

	Sample Information
Sample Name	SAND HILL CF DEHY INLET
Meter Number	Operational - Environmental
Effective Date	12/01/2016 10:00:00
Sample Date	11/02/2016 14:14:00
Sample Type	S
Field Remarks	None
Office Remarks	None
Sample Technician	FR
Sample Pressure, psig	940
Sample Temperature, deg F	102
Sample Bottle No.	7025
Calibration Name	GPA 2286 Ext Gas Analysis - LOW C1
Injection Date	2016-11-04 10:38:15
Report Date	2016-11-04 11:18:10
EZReporter Configuration File	Utica Gas Extended Analysis - May 2016.cfgx

Component Results

Component Name	Ret. Time	Peak Area	Norm Mole%
Nitrogen	3.54	4.200	0.4303
Methane	3.49	402.392	73.9064
Carbon Dioxide	4.53	1.000	0.0869
Ethane	3.63	170.776	15.8261
Propane	3.94	96.505	5.9829
iso-Butane	4.42	14.440	0.6737
n-Butane	4.83	37.122	1.7221
Neopentane	5.03	0.266	0.0096
iso-Pentane	6.20	9.936	0.3661
n-Pentane	6.84	12.912	0.4738
Hexanes Plus	0.00	0.000	0.5221
Total:			100.0000

Result	Dry
Pressure Base (psia)	14.73
Temperature Base	60.0
Gross Heating Value (BTU / Ideal cu.ft.)	1317.4
Gross Heating Value (BTU / Real cu.ft.)	1322.8
Relative Density (G), Ideal	0.7555
Relative Density (G), Real	0.7583
Compressibility (Z) Factor	0.9959
BTEX, mol%	0.0073
Ethane, GPM @ 14.73 psia	4.2472
Propane, GPM @ 14.73 psia	1.6541
i-Butane, GPM @ 14.73 psia	0.2213
n-Butane, GPM @ 14.73 psia	0.5451
i-Pentane, GPM @ 14.73 psia	0.1345
n-Pentane, GPM @ 14.73 psia	0.1723
Hexanes Plus, GPM @ 14.73 psia	0.2274
C5+, GPM @ 14.73 psia	0.5343
C5+, mol%	1.3620

Appalachia Midstream Services, LLC (AMS)

Sand Hill Compressor Station (SHCS)

Application for 45CSR13 New Source review Permit Modification (NSR)

Wet Gas - Lab Analysis

Total Component Results

Component	Weight%	Mole%	Volume%
Nitrogen	0.5507	0.4303	0.2395
Methane	54.1672	73.9064	63.4019
Carbon Dioxide	0.1747	0.0869	0.0750
Ethane	21.7409	15.8261	21.4232
Propane	12.0529	5.9829	8.3442
so-Butane	1.7889	0.6737	1.1155
n-Butane	4.5727	1.7221	2.7481
Neopentane	0.0316	0.0096	0.0186
so-Pentane	1.2067	0.3661	0.6783
n-Pentane	1.5617	0.4738	0.8686
2,2-Dimethylbutane	0.0421	0.0107	0.0226
2,3-Dimethylbutane/Cyclopentane	0.0650	0.0182	0.0323
2-Methylpentane	0.3242	0.0908	0.1611
B-Methylpentane	0.2087	0.0530	0.1094
n-Hexane	0.5586	0.1419	0.2952
2,2-Dimethylpentane	0.0101	0.0022	0.0052
/lethylcyclopentane/2,4-Dimethylpentane	0.0604	0.0022	0.0281
Benzene	0.0071	0.0020	0.0028
3,3-Dimethylpentane	0.0069	0.0015	0.0035
Cyclohexane	0.0561	0.0146	0.0251
2-Methylhexane	0.1108	0.0242	0.0569
2,3-Dimethylpentane	0.0261	0.0057	0.0131
3-Methylhexane	0.1190	0.0260	0.0603
rans-1,3-Dimethylcyclopentane	0.0087	0.0019	0.0044
sis-1,3-Dimethylcyclopentane	0.0069	0.0015	0.0035
2,2,4-Trimethylpentane	0.0099	0.0019	0.0050
3-Ethylpentane	0.0064	0.0014	0.0032
n-Heptane	0.1854	0.0405	0.0945
sis-1,2-Dimethylcyclopentane	0.0031	0.0006	0.0015
Methylcyclohexane/1,1,3-Trimethylcyclopentane/2,2-Dimethylhexane	0.0924	0.0206	0.0419
2,5-Dimethylhexane	0.0057	0.0011	0.0029
2,4-Dimethylhexane/Ethylcyclopentane/2,2,3-Trimethylpentane	0.0141	0.0027	0.0070
3,3-Dimethylhexane	0.0052	0.0010	0.0026
rans-1,2-cis-3-Trimethylcyclopentane	0.0016	0.0003	0.0008
Foluene	0.0147	0.0035	0.0059
1,1,2-Trimethylcyclopentane	0.0057	0.0011	0.0028
2-Methylheptane/4-Methylheptane	0.0344	0.0066	0.0172
B-Methylheptane	0.0256	0.0049	0.0126
B-Ethylhexane	0.0371	0.0071	0.0184
rans-1,2-Dimethylcyclohexane	0.0047	0.0009	0.0023
sis-1,3-Dimethylcyclohexane	0.0169	0.0033	0.0023
I,1-Dimethylcyclohexane	0.0031	0.0006	0.0015
2,2,4-Trimethylhexane	0.0016	0.0003	0.0008
n-Octane	0.0391	0.0075	0.0194
rans-1,3-Dimethylcyclohexane	0.0036	0.0007	0.0016
-Methyl-cis-2-Ethylcyclopentane	0.0018	0.0003	0.0009
is-1,2-Dimethylcyclohexane	0.0031	0.0006	0.0014
2,3,3-Trimethylhexane	0.0012	0.0002	0.0006
I,1,4-Trimethylcyclohexane	0.0006	0.0001	0.0003
2,3,4-Trimethylhexane	0.0006	0.0001	0.0003
Ethylbenzene	0.0010	0.0002	0.0004
2,3-Dimethylheptane	0.0012	0.0002	0.0006
n-Xylene	0.0078	0.0016	0.0031
p-Xylene	0.0010	0.0002	0.0004
1,1,2-Trimethylcyclohexane	0.0006	0.0001	0.0003
n-Nonane	0.0070	0.0012	0.0034
n-Propylcyclohexane	0.0006	0.0001	0.0003
n-Ethyltoluene	0.0007	0.0001	0.0003
p-Ethyltoluene	0.0013	0.0002	0.0006
2-Methylnonane	0.0007	0.0001	0.0003
1,2,4-Trimethylbenzene/tert-Butylbenzene/Methylcyclooctane	0.0005	0.0001	0.0002
, _,			
n-Decane	0.0013	0.0002	0.0006

Supplement S4 - Gas Analysis Wet Gas - Lab Analysis

Supplement S2

Vendor Data

- 1380 bhp CAT G3516B w/ Emit OxCat
- 805 bhp Capstone C600 Microturbine Generator
- BTEX Buster (Condenser)
- Vapor Recovery Unit (VRU)
- Carbon Canister (CarbCan)

G3516B

ENGINE SPEED (rpm):

ASPIRATION: COOLING SYSTEM: IGNITION SYSTEM: EXHAUST MANIFOLD:

COMBUSTION:

COMPRESSION RATIO:

GAS COMPRESSION APPLICATION

AFTERCOOLER - STAGE 2 INLET (°F):

AFTERCOOLER - STAGE 1 INLET (°F):

NOx EMISSION LEVEL (g/bhp-hr NOx): SET POINT TIMING:

JACKET WATER OUTLET (°F):

CE-01 thru CE-12 - Page 1 of 6 GAS ENGINE SITE SPECIFIC TECHNICAL DATA Gantzer 10H

FUEL:

1400

8:1

130

201

210

ΤA

DRY

0.5 28

ADEM3

JW+OC+1AC, 2AC

Ultra Lean Burn

FUEL SYSTEM: SITE CONDITIONS:

FUEL LHV (Btu/scf):

FUEL PRESSURE RANGE(psig):

ALTITUDE(ft): MAXIMUM INLET AIR TEMPERATURE(°F): STANDARD RATED POWER:

FUEL METHANE NUMBER:

CAT WIDE RANGE WITH AIR FUEL RATIO CONTROL

> Gantzer 10H 7.0-50.0 43.9 1216 500 77

1380 bhp@1400rpm

			MAXIMUM RATING			
RATING	NOTES	LOAD	100%	100%	75%	50%
ENGINE POWER (WITHOUT FAN)	(1)	bhp	1371	1371	1028	690
INLET AIR TEMPERATURE		°F	77	77	77	77

ENGINE DATA						
FUEL CONSUMPTION (LHV)	(2)	Btu/bhp-hr	7396	7396	7921	8500
FUEL CONSUMPTION (HHV)	(2)	Btu/bhp-hr	<mark>8138</mark>	8138	8716	9353
AIR FLOW (77°F, 14.7 psia) (WET	(3)(4)	scfm	3118	3118	2446	1720
AIR FLOW (WET	(3)(4)	lb/hr	13826	13826	10846	7626
INLET MANIFOLD PRESSURE	(5)	in Hg(abs)	91.6	91.6	74.4	52.6
EXHAUST TEMPERATURE - ENGINE OUTLET	(6)	°F)	<mark>1024</mark>	1024	1017	1037
EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (WET	(7)(4)	ft3/min	<mark>9227</mark>	9227	7215	5148
EXHAUST GAS MASS FLOW (WET	(7)(4)	lb/hr	14314	14314	11237	7908

EMISSIONS DATA - ENGINE OUT			_	_		
NOx (as NO2)	(8)(9)	g/bhp-hr	0.50	0.50	0.50	0.50
CO	(8)(9)	<mark>g/bhp-h</mark> r	<mark>3.10</mark>	3.10	3.32	3.26
THC (mol. wt. of 15.84)	(8)(9)	g/bhp-hr	4.06	4.06	4.35	4.41
NMHC (mol. wt. of 15.84)	(8)(9)	g/bhp-hr	2.03	2.03	2.18	2.21
NMNEHC (VOCs) (mol. wt. of 15.84)	(8)(9)(10)	g/bhp-hr	1.04	1.04	1.11	1.13
HCHO (Formaldehyde)	(8)(9)	g/bhp-hr	0.36	0.36	0.35	0.35
CO2	(8)(9)	g/bhp-hr	<mark>527</mark>	527	563	611
EXHAUST OXYGEN	(8)(11)	% DRY	9.1	9.1	8.8	8.4
HEAT REJECTION						

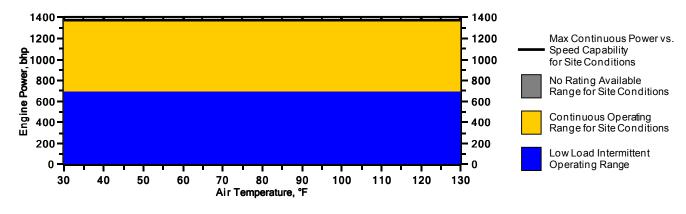
HEAT REJECTION						
HEAT REJ. TO JACKET WATER (JW)	(12)	Btu/min	21373	21373	20032	18830
HEAT REJ. TO ATMOSPHERE	(12)	Btu/min	6083	6083	5072	4074
HEAT REJ. TO LUBE OIL (OC)	(12)	Btu/min	4462	4462	3967	3363
HEAT REJ. TO A/C - STAGE 1 (1AC)	(12)(13)	Btu/min	9231	9231	7552	2392
HEAT REJ. TO A/C - STAGE 2 (2AC)	(12)(13)	Btu/min	5248	5248	4962	3291

COOLING SYSTEM SIZING CRITERIA			
TOTAL JACKET WATER CIRCUIT (JW+OC+1AC)	(13)(14)	Btu/min	38558
TOTAL AFTERCOOLER CIRCUIT (2AC)	(13)(14)	Btu/min	5510
A cooling system safety factor of 0% has been added to the cooling system sizing criteria.			

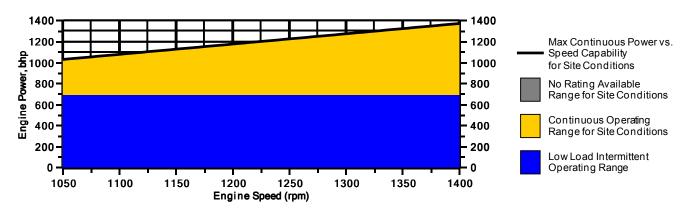
CONDITIONS AND DEFINITIONS

Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Max. rating is the maximum capability for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

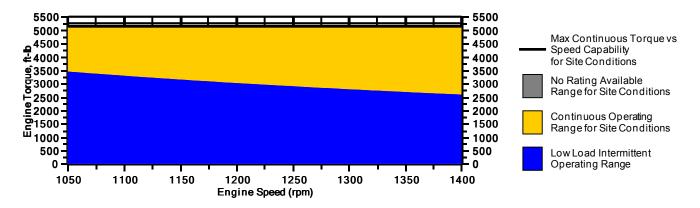
For notes information consult page three.



CE-01 thru CE-12 - Page 2 of 6 GAS ENGINE SITE SPECIFIC TECHNICAL DATA Gantzer 10H


Engine Power vs. Inlet Air Temperature

Data represents temperature sweep at 500 ft and 1400 rpm



Data represents speed sweep at 500 ft and 77 °F

Engine Torque vs. Engine Speed

Data represents speed sweep at 500 ft and 77 °F

Note: At site conditions of 500 ft and 77°F inlet air temp., constant torque can be maintained down to 1050 rpm. The minimum speed for loading at these conditions is 1050 rpm.

PREPARED BY: James Merrell, MidCon Compression Data generated by Gas Engine Rating Pro Version 3.05.00 Ref. Data Set DM8800-05-001, Printed 26Sep2011

G3516B

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Gantzer 10H

CATERPILLAR®

NOTES

1. Engine rating is with two engine driven water pumps. Tolerance is ± 3% of full load.

2. Fuel consumption tolerance is \pm 3.0% of full load data.

- 3. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of \pm 5 %.
- 4. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.
- 5. Inlet manifold pressure is a nominal value with a tolerance of \pm 5 %.
- 6. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.
- 7. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of \pm 6 %.
- 8. Emissions data is at engine exhaust flange prior to any after treatment.

9. Emission values are based on engine operating at steady state conditions. Fuel methane number cannot vary more than ± 3. Values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate "Not to Exceed" values. THC, NMHC, and NMNEHC do not include aldehydes. An oxidation catalyst may be required to meet Federal, State or local CO or HC requirements.

10. VOCs - Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ

11. Exhaust Oxygen level is the result of adjusting the engine to operate at the specified NOx level. Tolerance is ± 0.5 .

12. Heat rejection values are nominal. Tolerances, based on treated water, are ± 10% for jacket water circuit, ± 50% for radiation, ± 20% for lube oil circuit, and ± 5% for aftercooler circuit.

13. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.

14. Cooling system sizing criteria are maximum circuit heat rejection for the site, with applied tolerances.

Constituent	Abbrev	Mole %	C ENOT Im u	CE-01 thru CE-12 - Page 4 of 6	
Water Vapor	H2O	0.0000	0.0000		
Methane	CH4	71.4070	71.4070	Fuel Makeup:	Gantzer 10H
Ethane	C2H6	17.4920	17.4920	Unit of Measure:	English
Propane	C3H8	6.7840	6.7840		-
Isobutane	iso-C4H1O	0.6640	0.6640	Calculated Fuel Properties	
Norbutane	nor-C4H1O	1.8620	1.8620	Caterpillar Methane Number:	43.9
Isopentane	iso-C5H12	0.3070	0.3070	Caterpillar Methane Number.	45.9
Norpentane	nor-C5H12	0.4650	0.4650		
Hexane	C6H14	0.3740	0.3740	Lower Heating Value (Btu/scf):	1216
Heptane	C7H16	0.0000	0.0000	Higher Heating Value (Btu/scf):	1338
Nitrogen	N2	0.4920	0.4920	WOBBE Index (Btu/scf):	1387
Carbon Dioxide	CO2	0.1530	0.1530	, , , , , , , , , , , , , , , , , , ,	
Hydrogen Sulfide	H2S	0.0000	0.0000	THC: Free Inert Ratio:	154.04
Carbon Monoxide	CO	0.0000	0.0000		0.65%
Hydrogen	H2	0.0000	0.0000	Total % Inerts (% N2, CO2, He):	
Oxygen	O2	0.0000	0.0000	RPC (%) (To 905 Btu/scf Fuel):	100%
Helium	HE	0.0000	0.0000		
Neopentane	neo-C5H12	0.0000	0.0000	Compressibility Factor:	0.996
Octane	C8H18	0.0000	0.0000	Stoich A/F Ratio (Vol/Vol):	12.58
Nonane	C9H20	0.0000	0.0000	Stoich A/F Ratio (Mass/Mass):	16.37
Ethylene	C2H4	0.0000	0.0000	Specific Gravity (Relative to Air):	0.769
Propylene	C3H6	0.0000	0.0000	,	1.271
TOTAL (Volume %)		100.0000	100.0000	Specific Heat Constant (K):	1.271

CONDITIONS AND DEFINITIONS

Caterpillar Methane Number represents the knock resistance of a gaseous fuel. It should be used with the Caterpillar Fuel Usage Guide for the engine and rating to determine the rating for the fuel specified. A Fuel Usage Guide for each rating is included on page 2 of its standard technical data sheet.

RPC always applies to naturally aspirated (NA) engines, and turbocharged (TA or LE) engines only when they are derated for altitude and ambient site conditions.

Project specific technical data sheets generated by the Caterpillar Gas Engine Rating Pro program take the Caterpillar Methane Number and RPC into account when generating a site rating.

Fuel properties for Btu/scf calculations are at 60F and 14.696 psia.

Caterpillar shall have no liability in law or equity, for damages, consequently or otherwise, arising from use of program and related material or any part thereof.

FUEL LIQUIDS Field gases, well head gases, and associated gases typically contain liquid water and heavy hydrocarbons entrained in the gas. To prevent detonation and severe damage to the engine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid separator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground in accordance with local codes and standards.

To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel operating temperature.

Prepared For:

Jason Stinson MIDCON COMPRESSION, LP

INFORMATION PROVIDED BY CATERPILLAR

Engine:	G3516B
Horsepower:	1371
RPM:	<mark>1400</mark>
Compression Ratio:	8.0:1
Exhaust Flow Rate:	9227 CFM
Exhaust Temperature:	<mark>1024 °</mark> F
Reference:	DM8800-04
Fuel:	Natural Gas
Annual Operating Hours:	8760
, and a operating reares	0,00

Uncontrolled Emissions

NOx:		
CO:		
THC:		
NMHC:		
NMNEHC	:	
HCHO:		
Oxygen:		

POST CATALYST EMISSIONS

NOx:	
CO:	
VOC:	
HCHO:	

0.50 g/bhp-hr

- 3.10 g/bhp-hr 4.06 g/bhp-hr
- 2.03 g/bhp-hr 1.04 g/bhp-hr 0.36 g/bhp-hr 9.10 %

Unaffected by Oxidation Catalyst >98% Reduction >80% Reduction >95% Reduction

CONTROL EQUIPMENT

Catalytic Converter

Model:

Catalyst Type: Manufacturer: Element Size: Catalyst Elements: Housing Type: Catalyst Installation: Construction: Sample Ports: Inlet Connections: Outlet Connections: Configuration: Silencer: Silencer Grade: Insertion Loss:

ELH-4200V-1616F-42CEE-242

VOC, Precious group metals EMIT Technologies, Inc. Rectangle 24 x 15 x 3.5 2 4 Element Capacity Accessible Housing 10 gauge Carbon Steel 6 (0.5" NPT) 16" Flat Face Flange 16" Flat Face Flange End In / End Out Integrated

Hospital 35-40 dBA

www.emittechnologies.com

WARRANTY

EMIT Technologies, Inc. warrants that the goods supplied will be free from defects in workmanship by EMIT Technologies, Inc. for a period of one (1) year from date of shipment. EMIT Technologies, Inc. will not be responsible for any defects which result from improper use, neglect, failure to properly maintain or which are attributable to defects, errors or omissions in any drawings, specifications, plans or descriptions, whether written or oral, supplied to EMIT Technologies, Inc. by Buyer.

Catalyst performance will be guaranteed for a period of 1 year from installation, or 8760 operating hours, whichever comes first. The catalyst (Rich Burn Engines Only) shall be operated with an automatic air/fuel ratio controller. The performance guarantee shall not cover the effects of excessive ash masking due to operation at low load, improper engine maintenance, or inappropriate lubrication oil. The performance guarantee shall not cover the effects of continuous engine misfires (cylinder or ignition) exposing the catalyst to excessive exothermic reaction temperatures.

The exhaust temperature operating range at the converter inlet is 600°F minimum for oxidation catalyst and 750 °F for NSCR catalyst and 1250°F maximum.

If a high temperature shut down switch is not installed, thermal deactivation of catalyst at temperatures above 1300 °F is not covered.

The catalyst conversion efficiencies (% reduction) will be guaranteed for engine loads of 50 to 100 percent.

Engine lubrication oil shall contain less than 0.6% ash (by weight) with a maximum allowable specific oil consumption of 0.01 gal/bhp-hr. The maximum ash loading on the catalyst shall be limited to 350 g/m3. Phosphorous and zinc additives are limited to 0.03% (by weight).

The catalyst must not be exposed to the following know poisoning agents, including: iron, nickel, sodium, chromium, arsenic, zinc, lead, phosphorous, silicon, potassium, magnesium, copper, tin, and mercury. Total poison concentrations in the gas are limited to 0.3 ppm.

C600 600kW Power Package High-pressure Natural Gas

World's largest air-bearing microturbine produces 600kW of clean, green, and reliable power.

- High electrical efficiency over a very wide operating range
- Low-maintenance air bearings require no lube oil or coolant
- Ultra-low emissions
- High availability part load redundancy
- Proven technology with tens of millions of operating hours
- Integrated utility synchronization and protection with a modular design
- 5 and 9 year Factory Protection Plans available
- Remote monitoring and diagnostic capabilities
- Upgradable to 800kW or 1MW with field installed Capstone 200kW power modules
- Internal fuel gas compressor available for low fuel pressure natural gas applications

C600 Power Package

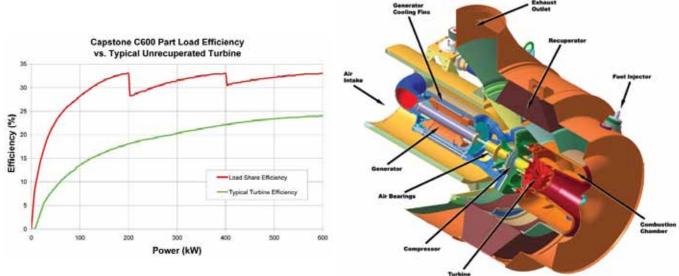
Electrical Performance ⁽¹⁾				
Electrical Power Output	600kW			
Voltage	400-480 VAC	400-480 VAC		
Electrical Service	3-Phase, 4 wire			
Frequency	50/60 Hz, grid connect operation			
	10–60 Hz, stand alone operation			
Maximum Output Current	aximum Output Current 870A RMS @ 400V, grid connect operation			
	720A RMS @ 480V, grid connect operation			
930A RMS, stand alone operation ⁽²⁾				
Electrical Efficiency LHV	33%			
Fuel/Engine Characteristics ⁽¹⁾				
Natural Gas HHV	30.7–47.5 MJ/m ³ (825–1,275 BTU	/scf)		
Inlet Pressure ⁽³⁾	517–552 kPa gauge (75–80 psig)			
Fuel Flow HHV	7,200 MJ/hr (<mark>6,840,000 BTU/hr</mark>)			
Net Heat Rate LHV	10.9 MJ/kWh (10,300 BTU/kWh)			
Exhaust Characteristics ⁽¹⁾	Standard	Low-Emissions Version		
NOx Emissions @ 15% O ₂ ⁽⁴⁾	< 9 ppmvd (18 mg/m³)	< 4 ppmvd (8 mg/m³)		
NOx / Electrical Output ⁽⁴⁾	0.14 g/bhp-hr (0.4 lb/MWhe)	0.05 g/bhp-hr (0.14 lb/MWhe)		
Exhaust Gas Flow	4.0 kg/s (<mark>8.8 lbm/s)</mark>	4.0 kg/s (8.8 lbm/s)		
Exhaust Gas Temperature	280°C <mark>(535°F)</mark>	280°C (535°F)		
Exhaust Energy	4,260 MJ/hr (4,050,000 BTU/hr)	4,260 MJ/hr (4,050,000 BTU/hr)		

Reliable power when and where you need it. Clean and simple.

Dimensi	ons &	Weig	ht ⁽⁵⁾

Width x Depth x Height Weight - Grid Connect Model Weight - Dual Mode Model 2.4 x 9.1 x 2.9 m (96 x 360 x 114 in) 12565 kg (27,700 lbs) 15014 kg (33,100 lbs)

Minimum Clearance Requirements⁽⁶⁾


Vertical Clearance	0.6 m (24 in)
Horizontal Clearance	
Left	1.5 m (60 in)
Right	0.0 m (0 in)
Front	1.5 m (60 in)
Rear	2.0 m (80 in)

Sound Levels

Acoustic Emissions at Full Load Power Nominal at 10 m (33 ft) 65 dBA

Planned Certifications

- UL 2200 and UL 1741 for natural gas operation under existing UL files⁽⁷⁾
- Will comply with IEEE 1547 and will meet statewide utility interconnection requirements for California Rule 21 and the New York State Public Service Commission
- Models will be available with optional equipment for CE marking

C200 Engine

(1) Nominal full power performance at ISO conditions: $59^{\circ}F$, 14.696 psia, 60% RH

- (2) With linear load
- (3) Inlet pressure for standard natural gas at 39.4 MJ/Nm³ (1,000 BTU/scf) (HHV)
 (4) Emissions for standard natural gas at 39.4 MJ/Nm³ (1,000 BTU/scf) (HHV)
- (4) Emissions for standard natural gas at 39.4
 (5) Approximate dimensions and weights
- (6) Clearance requirements may increase due to local code considerations
- (7) All models are planned to be UL Listed or available with optional equipment for CE marking

Specifications are not warranted and are subject to change without notice.

21211 Nordhoff Street • Chatsworth • CA • 91311 • 866.422.7786 • 818.734.5300 • www.capstoneturbine.com ©2010 Capstone Turbine Corporation. P1012 C600 600kW Power Package HP Natural Gas Data Sheet CAP155 | Capstone P/N 331050D

Capstone Turbine Corporation • 21211 Nordhoff Street • Chatsworth • CA 91311 • USA Phone: (818) 734-5300 • Fax: (818) 734-5320 • Web: <u>www.microturbine.com</u>

Technical Reference

Capstone MicroTurbineTM Systems Emissions

The C600 Generator is comprised of Three (3) C200 Microturbine Units

Summary

Capstone MicroTurbine[™] systems are inherently clean and can meet some of the strictest emissions standards in the world. This technical reference is to provide customers with information that may be requested by local air permitting organizations or to compare air quality impacts of different technologies for a specific project. The preferred units of measure are "output based"; meaning that the quantity of a particular exhaust emission is reported relative to the useable output of the microturbine – typically in pounds per megawatt hour for electrical generating equipment. This technical reference also provides volumetric measurements in parts per million and milligrams per normal cubic meter. A conversion between several common units is also provided.

Maximum Exhaust Emissions at ISO Conditions

Table 1 below summarizes the exhaust emissions at full power and ISO conditions for different Capstone microturbine models. Note that the fuel can have a significant impact on certain emissions. For example landfill and digester gas can be made up of a wide variety of fuel elements and impurities, and typically contains some percentage of carbon dioxide (CO₂). This CO₂ dilutes the fuel, makes complete combustion more difficult, and results in higher carbon monoxide emissions (CO) than for pipeline-quality natural gas.

Model	Fuel	NOx	CO	VOC ⁽⁵⁾
C30 NG	Natural Gas ⁽¹⁾	0.64	1.8	0.23
CR30 MBTU	Landfill Gas ⁽²⁾	0.64	22.0	1.00
CR30 MBTU	Digester Gas ⁽³⁾	0.64	11.0	1.00
C30 Liquid	Diesel #2 ⁽⁴⁾	2.60	0.41	0.23
C65 NG Standard	Natural Gas ⁽¹⁾	0.46	1.25	0.10
C65 NG Low NOx	Natural Gas ⁽¹⁾	0.17	1.30	0.10
C65 NG CARB	Natural Gas ⁽¹⁾	0.17	0.24	0.05
CR65 Landfill	Landfill Gas ⁽²⁾	0.46	4.0	0.10
CR65 Digester	Digester Gas ⁽³⁾	0.46	4.0	0.10
C200 NG	Natural Gas ⁽¹⁾	0.40	<mark>1.10</mark>	<mark>0.10</mark>
C200 NG CARB	Natural Gas ⁽¹⁾	0.14	0.20	0.04
CR200 Digester	Digester Gas ⁽³⁾	0.40	3.6	0.10

Table 1. Emission for Different Capstone Microturbine Models in [lb/MWhe]

Notes:

Fuel Flow (HHV) = 11.4 MMBtu/1000 kW

(1) Emissions for standard natural gas at 1,000 BTU/scf (HHV) or 39.4 MJ/m3 (HHV)

(2) Emissions for surrogate gas containing 42% natural gas, 39% CO2, and 19% Nitrogen

(3) Emissions for surrogate gas containing 63% natural gas and 37% CO2

(4) Emissions for Diesel #2 according to ASTM D975-07b

(5) Expressed as Methane

410065 Rev. B (April 2008)

Page 1 of 6

Table 2 provides the same output-based information shown in Table 1, but expressed in grams per horsepower hour (g/hp-hr).

Model	Fuel	NOx	CO	VOC ⁽⁵⁾
C30 NG	Natural Gas ⁽¹⁾	0.22	0.60	0.078
CR30 MBTU	Landfill Gas ⁽²⁾	0.22	7.4	0.340
CR30 MBTU	Digester Gas ⁽³⁾	0.22	3.7	0.340
C30 Liquid	Diesel #2 ⁽⁴⁾	0.90	0.14	0.078
C65 NG Standard	Natural Gas ⁽¹⁾	0.16	0.42	0.034
C65 NG Low NOx	Natural Gas ⁽¹⁾	0.06	0.44	0.034
C65 NG CARB	Natural Gas ⁽¹⁾	0.06	0.08	0.017
CR65 Landfill	Landfill Gas ⁽²⁾	0.16	1.4	0.034
CR65 Digester	Digester Gas ⁽³⁾	0.16	1.4	0.034
C200 NG	Natural Gas ⁽¹⁾	0.14	<mark>0.37</mark>	0.034
C200 NG CARB	Natural Gas ⁽¹⁾	0.05	0.07	0.014
CR200 Digester	Digester Gas ⁽³⁾	0.14	1.3	0.034

Table 2. Emission for Different Capstone Microturbine Models in [g/hp-hr]

Notes: - same as for Table 1

Emissions may also be reported on a volumetric basis, with the most common unit of measurement being parts per million. This is typically a measurement that is corrected to specific oxygen content in the exhaust and without considering moisture content. The abbreviation for this unit of measurement is "ppmvd" (parts per million by volume, dry) and is corrected to 15% oxygen for electrical generating equipment such as microturbines. The relationship between an output based measurement like pounds per MWh and a volumetric measurement like ppmvd depends on the characteristics of the generating equipment and the molecular weight of the criteria pollutant being measured. Table 3 expresses the emissions in ppmvd at 15% oxygen for the Capstone microturbine models shown in Table 1. Note that raw measurements expressed in ppmv will typically be lower than the corrected values shown in Table 3 because the microturbine exhaust has greater than 15% oxygen.

Another volumetric unit of measurement expresses the mass of a specific criteria pollutant per standard unit of volume. Table 4 expresses the emissions in milligrams per normal cubic meter at 15% oxygen. Normal conditions for this purpose are expresses as one atmosphere of pressure and zero degrees Celsius. Note that both the ppmvd and mg/m3 measurements are for specific oxygen content. A conversion can be made to adjust either unit of measurement to other reference oxygen contents, if required. Use the equation below to convert from one reference oxygen content to another:

Emissions at New O₂ = $\frac{(20.9 - \text{New O}_2 \text{ Percent})}{(20.9 - \text{Current O}_2 \text{ Percent})} \text{ X Emissions at Current O}_2$

For example, to express 9 ppmvd of NOx at 15% oxygen to ppmvd at 3% oxygen:

Emissions at 3% O2 =	(20.9 – 3.0)	\sim V 0 = 27 ppm/d
Emissions at 5 % 02 -	(20.9 – 15.0)	— X 9 = 27 ppmvd

410065 Rev. B (April 2008)

Page 2 of 6

Model	Fuel	NOx	СО	VOC
C30 NG	Natural Gas ⁽¹⁾	9	40	9
CR30 MBTU	Landfill Gas ⁽²⁾	9	500	40
CR30 MBTU	Digester Gas ⁽³⁾	9	250	40
C30 Liquid	Diesel #2 ⁽⁴⁾	35	9	9
C65 NG Standard	Natural Gas ⁽¹⁾	9	40	7
C65 NG Low NOx	Natural Gas ⁽¹⁾	4	40	7
C65 NG CARB	Natural Gas ⁽¹⁾	4	8	3
CR65 Landfill	Landfill Gas ⁽²⁾	9	130	7
CR65 Digester	Digester Gas ⁽³⁾	9	130	7
C200 NG	Natural Gas ⁽¹⁾	9	40	7
C200 NG CARB	Natural Gas ⁽¹⁾	4	8	3
CR200 Digester	Digester Gas ⁽³⁾	9	130	7

Table 3. Emission for Different Capstone Microturbine Models in [ppmvd] at 15% O2

Notes: same as Table 1

Table 4. Emission for Different Capstone Microturbine Models in [mg/m3] at 15% O2

Model	Fuel	NOx	СО	VOC ⁽⁵⁾
C30 NG	Natural Gas ⁽¹⁾	18	50	6
CR30 MBTU	Landfill Gas ⁽²⁾	18	620	30
CR30 MBTU	Digester Gas ⁽³⁾	18	310	30
C30 Liquid	Diesel #2 ⁽⁴⁾	72	11	6
C65 NG Standard	Natural Gas ⁽¹⁾	19	50	5
C65 NG Low NOx	Natural Gas ⁽¹⁾	8	50	5
C65 NG CARB	Natural Gas ⁽¹⁾	8	9	2
CR65 Landfill	Landfill Gas ⁽²⁾	18	160	5
CR65 Digester	Digester Gas (3)	18	160	5
C200 NG	Natural Gas ⁽¹⁾	18	50	5
C200 NG CARB	Natural Gas ⁽¹⁾	8	9	2
CR200 Digester	Digester Gas ⁽³⁾	18	160	5

Notes: same as Table 1

The emissions stated in Tables 1, 2, 3 and 4 are guaranteed by Capstone for new microturbines during the standard warranty period. They are also the expected emissions for a properly maintained microturbine according to manufacturer's published maintenance schedule for the useful life of the equipment.

Emissions at Full Power but Not at ISO Conditions

The maximum emissions in Tables 1, 2, 3 and 4 are at full power under ISO conditions. These levels are also the expected values at full power operation over the published allowable ambient temperature and elevation ranges.

410065 Rev. B (April 2008)

Page 3 of 6

Emissions at Part Power

Capstone microturbines are designed to maintain combustion stability and low emissions over a wide operating range. Capstone microturbines utilize multiple fuel injectors, which are switched on or off depending on the power output of the turbine. All injectors are typically on when maximum power is demanded, regardless of the ambient temperature or elevation. As the load requirements of the microturbine are decreased, injectors will be switched off to maintain stability and low emissions. However, the emissions relative to the lower power output may increase. This effect differs for each microturbine model.

Emissions Calculations for Permitting

Air Permitting agencies are normally concerned with the maximum amount of a given pollutant being emitted per unit of time (for example pounds per day of NOx). The simplest way to make this calculation is to use the maximum microturbine full electrical power output (expressed in MW) multiplied by the emissions rate in pounds per MWhe times the number of hours per day. For example, the C65 CARB microturbine operating on natural gas would have a NOx emissions rate of:

NOx = .17 X (65/1000) X 24 = .27 pounds per day

This would be representative of operating the equipment full time, 24 hours per day, at full power output of 65 kWe.

As a general rule, if local permitting is required, use the published agency levels as the stated emissions for the permit and make sure that this permitted level is above the calculated values in this technical reference.

Consideration of Useful Thermal Output

Capstone microturbines are often deployed where their clean exhaust can be used to provide heating or cooling, either directly or using hot water or other heat transfer fluids. In this case, the local permitting or standards agencies will usually consider the emissions from traditional heating sources as being displaced by the useful thermal output of the microturbine exhaust energy. This increases the useful output of the microturbine, and decreases the relative emissions of the combined heat and power system. For example, the CARB version C65 ICHP system with integral heat recovery can achieve a total system efficiency of 70% or more, depending on inlet water temperatures and other installation-specific characteristics. The electric efficiency of the CARB version C65 microturbine is 28% at ISO conditions. This means that the total NOx output based emissions, including the captured thermal value, is the electric-only emissions times the ratio of electric efficiency divided by total system efficiency:

NOx = .17 X 28/70 = .068 pounds per MWh (based on total system output)

This is typically much less than the emissions that would result from providing electric power using traditional central power plants, plus the emissions from a local hot water heater or boiler. In fact microturbine emissions are so low compared with traditional hot water heaters that installing a Capstone microturbine with heat recovery can actually decrease the local emissions of NOx and other criteria pollutants, without even considering the elimination of emissions from a remote power plant.

410065 Rev. B (April 2008)

Page 4 of 6

Greenhouse Gas Emissions

Many gasses are considered "greenhouse gasses", and agencies have ranked them based on their global warming potential (GWP) in the atmosphere compared with carbon dioxide (CO₂), as well as their ability to maintain this effect over time. For example, methane is a greenhouse gas with a GWP of 21. Criteria pollutants like NOx and organic compounds like methane are monitored by local air permitting authorities, and are subject to strong emissions controls. Even though some of these criteria pollutants can be more troublesome for global warming than CO₂, they are released in small quantities – especially from Capstone microturbines. So the major contributor of concern is carbon dioxide, or CO₂. Emission of CO₂ depends on two things:

- 1. Carbon content in the fuel
- 2. Efficiency of converting fuel to useful energy

It is for these reasons that many local authorities are focused on using clean fuels (for example natural gas compared with diesel fuel), achieving high efficiency using combined heat and power systems, and displacing emissions from traditional power plants using renewable fuels like waste landfill and digester gasses.

Table 5 shows the typical CO₂ emissions due to combustion for different Capstone microturbine models at full power and ISO conditions. The values do not include CO₂ that may already exist in the fuel itself, which is typical for renewable fuels like landfill and digester gas. These values are expressed on an output basis, as is done for criteria pollutants in Table 1. The table shows the pounds per megawatt hour based on electric power output only, as well as considering total useful output in a CHP system with total 70% efficiency (LHV). As for criteria pollutants, the relative quantity of CO₂ released is substantially less when useful thermal output is also considered in the measurement.

Model	Fuel	C	<mark>0</mark> 2
		Electric Only	70% Total CHP
C30 NG	Natural Gas ⁽¹⁾	1,690	625
CR30 MBTU	Landfill Gas ⁽¹⁾	1,690	625
CR30 MBTU	Digester Gas ⁽¹⁾	1,690	625
C30 Liquid	Diesel #2 ⁽²⁾	2,400	855
C65 NG Standard	Natural Gas ⁽¹⁾	1,520	625
C65 NG Low NOx	Natural Gas ⁽¹⁾	1,570	625
C65 NG CARB	Natural Gas ⁽¹⁾	1,570	625
CR65 Landfill	Landfill Gas ⁽¹⁾	1,520	625
CR65 Digester	Digester Gas ⁽¹⁾	1,520	625
C200 NG	Natural Gas ⁽¹⁾	<mark>1,330</mark>	625
C200 NG CARB	Natural Gas ⁽¹⁾	1,330	625
CR200 Digester	Digester Gas ⁽¹⁾	1,330	625

Table 5. CO₂ Emission for Capstone Microturbine Models in [lb/MWh]

Notes:

(1) Emissions due to combustion, assuming natural gas with CO₂ content of 117 lb/MMBTU (HHV)

(2) Emissions due to combustion, assuming diesel fuel with CO₂ content of 160 lb/MMBTU (HHV)

410065 Rev. B (April 2008)

Useful Conversions

The conversions shown in Table 6 can be used to obtain other units of emissions outputs. These are approximate conversions.

Table 6.	Useful Unit Conve	ersions
----------	-------------------	---------

From	Multiply By	To Get
<mark>lb/MWh</mark>	0.338	g/bhp-hr
g/bhp-hr	2.96	lb/MWh
lb	0.454	kg
kg	2.20	lb
kg	1,000	g
hp (electric)	.746	kW
<mark>kW</mark>	<mark>1.34</mark>	hp (electric)
MW	1,000	kW
kW	0.001	MW

Definitions

- ISO conditions are defined as: 15 °C (59 °F), 60% relative humidity, and sea level pressure of 101.3 kPa (14.696 psia).
- HHV: Higher Heating Value
- LHV: Lower Heating Value
- kW_{th}: Kilowatt (thermal)
- kW_e : Kilowatt (electric)
- MWh: Megawatt-hour
- hp-hr: horsepower-hour (sometimes referred to as "electric horsepower-hour")
- Scf: Standard cubic foot (standard references ISO temperature and pressure)
- m3: Normal cubic meter (normal references 0 °C and one atmosphere pressure)

Capstone Contact Information

If questions arise regarding this technical reference, please contact Capstone Turbine Corporation for assistance and information:

Capstone Applications

Toll Free Telephone: (866) 4-CAPSTONE or (866) 422-7786

Fax: (818) 734-5385

E-mail: applications@capstoneturbine.com

CAMERON

NATCO BTEX BUSTER

Removes 99.7%* of BTEX and VOC emissions from glycol reconcentrator emissions

The Simple and Cost-effective Answer to Your Emission Compliance Problems

Cameron's NATCO[®] BTEX BUSTER[®] provides a removal efficiency greater than 99.7%*, helps recover and collect saleable liquid hydrocarbons and prevents the loss of expensive fuel gas from glycol reconcentrator vent emissions.

The unit is designed using the Environmental Protection Agency-approved Gri-Glycalc computer simulation program with a flash-gas separator in the glycol regeneration process. Under common operating conditions, BTEX (benzene, toluene, ethylbenzene and xylene), as well as other volatile organic compounds (VOCs), are emitted into the atmosphere during the glycol regeneration process. The rates usually are proportional to the glycol circulation rate.

The NATCO BTEX BUSTER captures those hydrocarbon emissions.

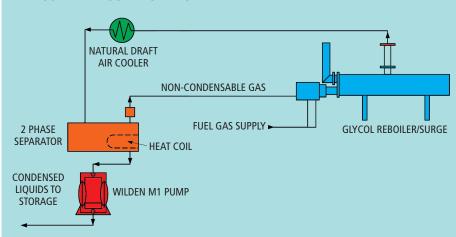
Performance

- The cost-effective system is designed to assist operators in reducing BTEX and VOC emissions below the accepted levels and complies with federal and state environmental regulations.
- Economics of the NATCO BTEX BUSTER show that it can pay for itself by recovering saleable hydrocarbon liquids and fuel gas. By condensing troublesome glycol reconcentrator vapors and routing flash gas back to the reconcentrator fuel gas inlet for burning, the unit reduces emissions during glycol plant dehydration processing.
- The NATCO BTEX BUSTER incorporates field-proven burner accessories to help prevent sooting and backpressure on your regeneration system.
- The NATCO BTEX BUSTER also features a design to eliminate potential freeze-up problems when operating in severe cold climates.
- Cameron offers the NATCO BTEX BUSTER in standard sizes to accommodate most customer needs. Our units are backed by Cameron's replacement parts, technical assistance and service available 24 hours a day.

The NATCO BTEX BUSTER cold-weather design eliminates freezing problems associated with cold climates.

How It Works

The NATCO BTEX BUSTER is a relatively simple process that is designed to maintain greater than 99.7%* removal of BTEX and VOC emissions.


The vapors emitted from the glycol still column are cooled in the natural draft air cooler to temperatures below 120° F (49° C).

The condensed liquids are collected in a small twophase separator and pumped to customer storage. Noncondensable gases from the separator are piped through an in-line flash arrestor and then burned in the glycol reboiler firebox to achieve an overall minimum destruction efficiency of 99.7%* plus.

Features	Benefits
Ideal for Remote Locations	Natural draft self-regulating system does not require any moving pieces of equipment.
Environmentally Correct	Meets Federal Regulation 40 CFR part 63 and meets or exceeds most stringent state regulations LAC 111.2116 and LAC 33:111 chapter 51.
Efficient	Removal efficiency is greater than 99.7%*.
Reduces Operating Costs	Reduces fuel gas consumption and recovers saleable liquid hydrocarbons.
Safe	Features an in-line flash arrestor, high-level switch, pressure safety valve and gas shut-down valves.
Designed for the Oil Field	Includes field-proven burner products, and the pneumatic pump handles aromatic hydrocarbons.
Designed for Cold Weather	Cold-weather design eliminates freezing problems associated with cold climates.
Cameron's Services	Includes experienced staff and worldwide locations, 24 hours a day.

NATCO BTEX BUSTER SKID UNIT

Built-in Safety Features

The NATCO BTEX BUSTER is engineered with proper controls for safe operation and long in-service life. These include an in-line flash arrestor, separator highlevel switch, pressure safety valve and gas shut-down valves for high reboiler bath temperatures. It also incorporates field-proven burner accessories that help to prevent typical sooting and backpressures on your regeneration system.

Field-proven, the NATCO BTEX BUSTER now is available through our sales and service locations worldwide.

Standard BTEX Size (1)	Reconcentrator Duty Btu/hr	Glycol Pump gal/hr	Max Capacity water/day (2)	Non-condensable vapor/day (3)	Cooler Duty Btu/hr (3)
150	75,000	40	273	7	30,000
150	150,000	40	273	10	30,000
250	250,000	90	1216	27	51,000
375	375,000	210	1807	45	76,000
550	550,000	210	2650	60	112,000
750	750,000	450	3615	100	152,000

(1) Standard BTEX

Performance of unit is based on a non-condensable vapor HHV greater than 400 Btu/cf and less than 1800 Btu/cf and a glycol circulation rate of no more than 3 gal/lb of water removed.

(2) Maximum Capacity of Water/day

Represents the maximum capacity of water in pounds per day for each of Cameron's standard reboiler size based on a glycol circulation rate of 2 gallons of glycol per pound of water removed.

(3) Non-condensable Vapor/day

Maximum non-condensable vapor rate was calculated with the Gri-Glycalc computer simulation program with a flashgas separator used in the glycol regeneration process and a BTEX concentration in the inlet gas stream of no more than 700 ppm.

Using adiabatic combustion calculations, a minimum of 99.7%* of these non-condensable vapors are destroyed.

(4) Cooler Duty Btu/hr

Cooler duty was calculated based on a prevailing windspeed of 3 mph and a maximum ambient temperature of 100° F (38° C).

Note: Cameron is not responsible for the disposal of any condensed liquids associated with its BTEX BUSTER units.

* Certain gas streams contain more BTEX and VOCs than represented by Gri-Glycalc. Consult with Cameron's engineers for system evaluation, equipment sizing and application to ensure conversion efficiency.

		LOCATIONS		
United States of America 11210 Equity Dr., Suite 100 Houston, TX 77041 USA Tel 713.849.7500	Marcellus/Utica Laceyville 570.869.3104 Nitro 304.755.9400 Midcontinent Oklahoma City 405.677.8827	Rockies Casper 307.234.7183 Bloomfield 505.634.1400 Grand Junction 970.243.3600 Vernal 435.789.1796 Williston 701.774.5500	Texas Caldwell 979.272.7101 Corpus Christi 361.289.0488 Godley 817.389.2676 Longview 903.759.2738 Odessa 432.530.3600	Canada Leduc 780.986.9803

www.c-a-m.com

Installing Vapor Recovery Units on Storage Tanks

Executive Summary

There are about 500,000 crude oil storage tanks in the United States. These tanks are used to hold oil for brief periods of time in order to stabilize flow between production wells and pipeline or trucking transportation sites. In addition, the condensate liquids contained in produced gas that are captured by a mist eliminator filter/ coalescer ahead of the first compressor station in transmission pipelines are often directed to a storage tank as well. During storage, light hydrocarbons dissolved in the crude oil or condensate-including methane and other volatile organic compounds (VOC), natural gas liquids (NGLs), hazardous air pollutants (HAP), and some inert gases-vaporize or "flash out" and collect in the space between the liquid and the fixed roof of the tank. As the liquid level in the tank fluctuates, these vapors are often vented to the atmosphere.

One way to prevent emissions of these light hydrocarbon vapors and yield significant economic savings is to install vapor recovery units (VRUs) on storage tanks. VRUs are relatively simple systems that can capture about 95 percent of the Btu-rich vapors for sale or for use onsite as fuel. Currently, between 7,000 and 9,000 VRUs are installed in the oil production sector, with an average of four tanks connected to each VRU.

Natural Gas STAR partners have generated significant savings from recovering and marketing these vapors while at the same time substantially reducing methane and HAP emissions. Partners have found that when the volume of vapors is sufficient, installing a VRU on one or multiple storage tanks can save up to \$606,800 per year and payback in as little as two months. This Lessons Learned study describes how partners can identify when and where VRUs should be installed to realize these economic and environmental benefits.

Technology Background

Underground crude oil contains manv lighter hydrocarbons in solution. When the oil is brought to the surface and processed, many of the dissolved lighter hydrocarbons (as well as water) are removed through a series of high-pressure and low-pressure separators. The crude oil is then injected into a storage tank to await sale and transportation off site; the remaining hydrocarbons in the oil are emitted as vapors into the tank. The same principles apply for condensate, which accumulates as a result of the conditions within the pipelines and is removed ahead of the first compressor station. The recovered condensate, which contains dissolved light hydrocarbons, is routed to a storage tank where the dissolved light hydrocarbons are emitted as vapors. These vapors are either vented, flared, or recovered by vapor recovery units (VRUs). Losses of the remaining lighter hydrocarbons are categorized in three ways:

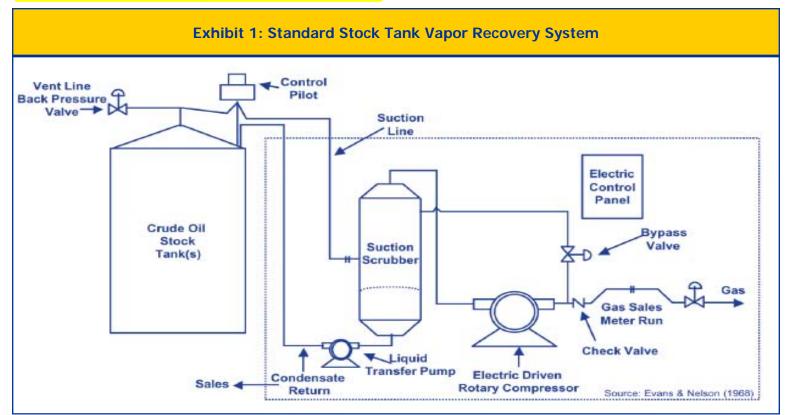
- ★ Flash losses occur when the separator or heater treater, operating at approximately 35 pounds per square inch (psi), dumps oil into the storage tanks, which are at atmospheric pressure.
- \star Working losses refer to the vapor released from the

		Econom	ic and En	vironme	ntal Benefits				
Method for Reducing	Volume of Natural Gas	Value of	Natural Gas (\$/yr) ¹	Savings	Implementation	Other	Pay	back (Mon	ths)
Natural Gas Losses Sa	Savings (Mcf/yr)	\$3 per Mcf	\$5 per Mcf	\$7 per Mcf	Cost (\$)	Costs (\$)	\$3 per Mcf	\$5 per Mcf	\$7 per Mcf
Installing Vapor Recovery Units (VRUs) on Oil Production Storage Tanks	4,900—96,000	\$13,965— \$273,600	\$23,275— \$456,000	\$32,585— \$638,400	\$35,738— \$103,959	\$7,367— \$16,839	6 — 37	4 — 23	3 — 16

¹ Assumes 95% of the annual volume of gas lost can be recovered using a VRU.

changing fluid levels and agitation of tank contents associated with the circulation of fresh oil through the storage tanks.

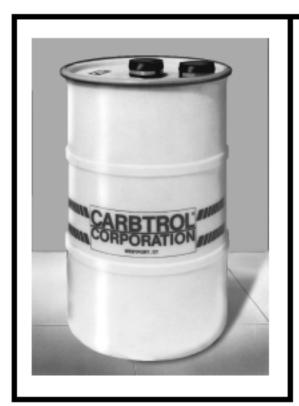
★ Standing losses occur with daily and seasonal temperature changes.


The volume of gas vapor coming off a storage tank depends on many factors. Lighter crude oils (API gravity>36°) flash more hydrocarbon vapors than heavier crudes (API gravity<36°). In storage tanks where the oil is frequently cycled and the overall throughput is high, more "working vapors" will be released than in tanks with low throughput and where the oil is held for longer periods and allowed to "weather." Finally, the operating temperature and pressure of oil in the vessel dumping into the tank will affect the volume of flashed gases coming out of the oil.

The makeup of these vapors varies, but the largest component is methane (between 40 and 60 percent). Other components include more complex hydrocarbon compounds such as propane, butane, and ethane; natural inert gases such as nitrogen and carbon dioxide; and HAP like benzene, toluene, ethyl-benzene, and xylene (collectively these four HAP are referred to as BTEX).

VRUs can recover over 95 percent of the hydrocarbon

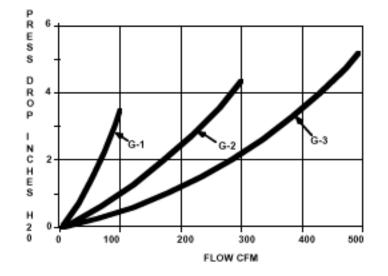
emissions that accumulate in storage tanks. Because recovered vapors contain natural gas liquids (even after condensates have been captured by the suction scrubber), they have a Btu content that is higher than that of pipeline quality natural gas (between 950 and 1,100 Btu per standard cubic foot [scf]). Depending on the volume of NGLs in the vapors, the Btu content can reach as high as 2,000 Btu per scf. Therefore, on a volumetric basis, the recovered vapors can be more valuable than methane alone.


Exhibit 1 illustrates a VRU installed on a single crude oil storage tank (multiple tank installations are also common). Hydrocarbon vapors are drawn out of the storage (stock) tank under low-pressure, typically between four ounces and two psi, and are first piped to a separator (suction scrubber) to collect any liquids that condense out. The liquids are usually recycled back to the storage tank. From the separator, the vapors flow through a compressor that provides the low-pressure suction for the VRU system. (To prevent the creation of a vacuum in the top of a tank when oil is withdrawn and the oil level drops, VRUs are equipped with a control pilot to shut down the compressor and permit the back flow of vapors into the tank.) The vapors are then metered and removed from the VRU system for pipeline sale or onsite fuel supply.

CARBTROL[®]

AIR PURIFICATION CANISTERS 140-200 LB. ACTIVATED CARBON

G-1 G-2 G-3

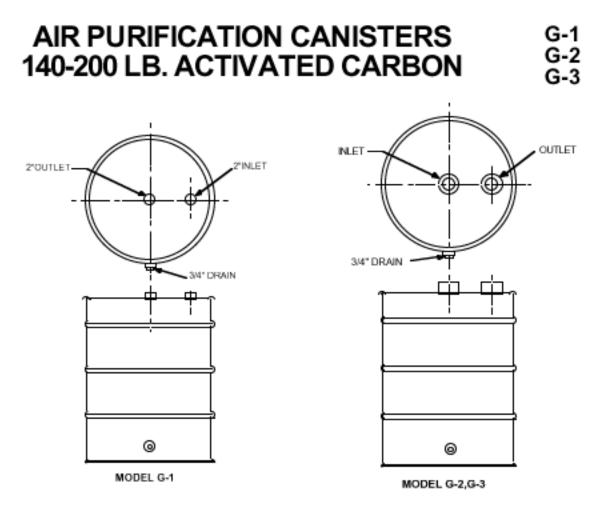

APPLICATIONS

- · Soil vapor remediation
- Air stripper exhausts
- Tank vents
- Exhaust hoods
- Work area purification
- · Sewage plant odor control

The CARBTROL "G" Canisters handles flows up to 500 CFM.

FEATURES

- · High activity carbon.
- · Epoxy lined steel or polyethylene construction.
- Acceptable for transport of hazardous spent carbon.
- · Side drain for removal of accumulated condensate.
- · Low pressure drop.
- · PVC internal piping.
- · High temperature (180°F) steel units available.


Copyright 1991 Carbtrol Corporation - 10/4/02

AT-116/#1

955 Connecticut Ave., Suite 5202 Bridgeport, CT 06607 800-242-1150 Fax: 203-337-4347 www.carbtrol.com info@carbtrol.com

CARBTROL[®]

SPECIFICATIONS

MODEL	DIAMETER/HEIGHT	CARBON WEIGHT	INLET/OUTLET	MAXIMUM RATED FLOW	APPROXIMATE SHIP WEIGHT
G-1*	24"/36"	200 lbs.	2"/2"	100 CFM	250 lbs.
G-2*	24"/36"	170 lbs.	4"/4"	300 CFM	220 lbs.
G-3P	24"/36"	140 lbs.	6"/6"	500 CFM	190 lbs.
G-3S	24"/34"	140 lbs.	4"/4"	500 CFM	180 lbs.

* Specify: Polyethylene (P) or Epoxy Lined Steel (S)

SAFETY

Certain chemical compounds in the presence of activated carbon may oxidize, decompose or polymerize. This could result in temperature increases sufficient to cause ignition of the activated carbon or adsorbed material. If a compounds reaction with activated carbon is unknown, appropriate tests should be considered.

955 Connecticut Ave., Suite 5202 Bridgeport, CT 06607 800-242-1150 Fax: 203-337-4347 www.carbtrol.com info@carbtrol.com

Supplement S3

Emission Program Data

- EPA Tanks 4.0.9d Stabilized Condensate (SC) Tank Emissions
- EPA Tanks 4.0.9d Produced Water (PW) Tank Emissions
- GRI-GLYCalc 55.0 MMscfd Dehydrator

Appalachia Midstream Services, LLC (AMS) Sand Hill Compressor Station (SHCS) Application for 45CSR13 New Source review Permit Modification (NSR)

Stabilized Condensate (SC) - Storage Tank (TK1-8)

TANKS 4.0.9d

Emissions Report - Summary Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	Battle Run CF 400 bbl Stablized Condensate Tank Near Dallas West Virginia Appalachia Midstream Services Vertical Fixed Roof Tank Each of Eight 400 bbl Stabilized Condensate Tanks. Assume Gasoline RVP=12 as product stored.
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	20.00 12.00 19.00 10.00 16,074.56 77.49 1,245,552.00 N
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	White/White Good White/White Good
Roof Characteristics Type: Height (ft) Slope (ft/ft) (Cone Roof)	Cone 0.00 0.06
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

Meterological Data used in Emissions Calculations: Pittsburgh, Pennsylvania (Avg Atmospheric Pressure = 14.11 psia)

TANKS 4.0.9d Emissions Report - Summary Format Liquid Contents of Storage Tank

Battle Run CF 400 bbl Stablized Condensate Tank - Vertical Fixed Roof Tank Near Dallas, West Virginia

			aily Liquid So perature (de		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 12)	All	51.94	47.08	56.81	50.33	5.4430	4.9447	5.9807	64.0000			92.00	Option 4: RVP=12, ASTM Slope=3

TANKS 4.0.9d Emissions Report - Summary Format Individual Tank Emission Totals

Emissions Report for: Annual

Battle Run CF 400 bbl Stablized Condensate Tank - Vertical Fixed Roof Tank Near Dallas, West Virginia

	Losses(lbs)								
Components	Working Loss	Breathing Loss	Total Emissions						
Gasoline (RVP 12)	5,721.52	1,019.88	6,741.40						

Appalachia Midstream Services, LLC (AMS) Sand Hill Compressor Station (SHCS) Application for 45CSR13 New Source review Permit Modification (NSR)

Produced Water (PW) - Storage Tank (WTK)

TANKS 4.0.9d

Emissions Report - Summary Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	Battle Run 400 bbl Produced Water Tank Near Dallas West Virginia Appalachia Midstream Services Vertical Fixed Roof Tank 400 bbl Produced Water Tank. Assume 95% Water + 5% Gasoline RVP=12 as product stored.
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	20.00 12.00 19.00 10.00 16,074.56 47.68 766,500.00 N
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	White/White Good White/White Good
Roof Characteristics Type: Height (ft) Slope (ft/ft) (Cone Roof)	Cone 0.00 0.06
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

Meterological Data used in Emissions Calculations: Pittsburgh, Pennsylvania (Avg Atmospheric Pressure = 14.11 psia)

TANKS 4.0.9d Emissions Report - Summary Format Liquid Contents of Storage Tank

Battle Run 400 bbl Produced Water Tank - Vertical Fixed Roof Tank Near Dallas, West Virginia

			aily Liquid S perature (d		Liquid Bulk Temp	Vapo	or Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for ∀apor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Produced Water	All	51.94	47.06	56.81	50.33	0.2465	0.2101	0.2893	28.3522			18.75	
Gasoline (R∨P 12)						5.4430	4.9447	5.9807	64.0000	0.0500	0.5080	92.00	Option 4: RVP=12, ASTM Slope=3
Water						0.1930	0.1614	0.2307	18.0000	0.9500	0.4920	18.00	Option 1: VP50 = .178073 VP60 = .255246

TANKS 4.0.9d Emissions Report - Summary Format Individual Tank Emission Totals

Emissions Report for: Annual

Battle Run 400 bbl Produced Water Tank - Vertical Fixed Roof Tank Near Dallas, West Virginia

	Losses(lbs)					
Components	Working Loss	Breathing Loss	Total Emissions			
Produced Water	101.51	18.57	120.08			
Water	49.94	9.14	59.08			
Gasoline (RVP 12)	51.57	9.44	61.00			

GRI-GLYCalc VERSION 4.0 - EMISSIONS SUMMARY

Case Name: SHCS-55.0 Dehy-Electric Pump-010818
File Name: C:\Users\Clyde\Documents\Documents\04.16 - Ecologic\07 - AMS 000-BRCS-BCS-SHCS-TVOP-122617\SHCS-TVOP-DRAFT\SHCS-TVOP-S6c-55.0 Dehy - Electric Pump.ddf
Date: January 07, 2018

CONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.0802	1.924	0.3511
Ethane	0.2803	6.728	1.2279
Propane	0.3613	8.672	1.5826
Isobutane	0.0875	2.100	0.3832
n-Butane	0.3368	8.084	1.4753
	0.0000	0.001	1.1/55
Isopentane	0.0834	2.002	0.3653
n-Pentane	0.1469	3.526	0.6434
n-Hexane	0.0821	1.970	0.3595
Cyclohexane	0.1006	2.415	0.4408
Other Hexanes	0.0755	1.813	0.3309
Heptanes	0.0958	2.299	0.4196
Methylcyclohexane	0.0726	1.743	0.3181
2,2,4-Trimethylpentane	0.0007	0.017	0.0030
Benzene	0.0566	1.358	0.2478
Toluene	0.0903	2.167	0.3954
Ethylbenzene	0.0033	0.080	0.0146
Xylenes	0.0348	0.835	0.1523
C8+ Heavies	0.0009	0.023	0.0041
Total Emissions	1.9897	47.753	8.7148
Total Hydrocarbon Emissions	1.9897	47.753	8.7148
Total VOC Emissions	1.6292	39.101	7.1359
Total HAP Emissions	0.2677	6.425	1.1726
Total BTEX Emissions	0.1850	4.439	0.8101

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	1.6043	38.503	7.0267
Ethane	5.6231	134.954	24.6292
Propane	7.3225	175.739	32.0724
Isobutane	1.7959	43.102	7.8661
n-Butane	6.9824	167.577	30.5829
Isopentane	1.8193	43.662	7.9684
n-Pentane	3.2803	78.728	14.3678
n-Hexane	2.0894	50.147	9.1518
Cyclohexane	2.7780	66.672	12.1677
Other Hexanes	1.8118	43.483	7.9357
Heptanes	3.3516	80.438	14.6800
Methylcyclohexane	2.5528	61.267	11.1812
2,2,4-Trimethylpentane	0.0244	0.587	0.1071
Benzene	1.5901	38.162	6.9646
Toluene	4.0164	96.393	17.5917
Ethylbenzene	0.2924	7.018	1.2809
Xylenes	3.4416	82.598	15.0742
C8+ Heavies	4.3664	104.795	19.1250

Total Emission	s 54.7427	1313.826	Page: 2 239.7732
Total Hydrocarbon Emission Total VOC Emission Total HAP Emission Total BTEX Emission	s 47.5154 s 11.4544	1313.826 1140.369 274.905 224.172	239.7732 208.1173 50.1701 40.9113

FLASH GAS EMISSIONS

Note: Flash Gas Emissions are zero with the Recycle/recompression control option.

FLASH	TANK	OFF	GAS

Component	lbs/hr	lbs/day	tons/yr
Methane	34.8694	836.865	152.7278
Ethane	32.9984	791.962	144.5331
Propane	20.4362	490.469	89.5106
Isobutane	3.2273	77.456	14.1357
n-Butane	9.4919	227.805	41.5744
Isopentane	2.1155	50.772	9.2658
n-Pentane	3.0205	72.491	13.2297
n-Hexane	1.0344	24.825	4.5306
Cyclohexane	0.3321	7.970	1.4545
Other Hexanes	1.1930	28.632	5.2253
Heptanes	0.7794	18.707	3.4139
Methylcyclohexane	0.2335	5.604	1.0228
2,2,4-Trimethylpentane	0.0115	0.275	0.0502
Benzene	0.0266	0.639	0.1166
Toluene	0.0419	1.006	0.1836
Ethylbenzene	0.0017	0.041	0.0075
Xylenes	0.0140	0.335	0.0612
C8+ Heavies	0.0858	2.058	0.3756
Total Emissions	109.9130	2637.911	481.4187
Total Hydrocarbon Emissions	109.9130	2637.911	481.4187
Total VOC Emissions	42.0452	1009.084	184.1579
Total HAP Emissions	1.1300	27.121	4.9496
Total BTEX Emissions	0.0842	2.021	0.3688

COMBINED REGENERATOR VENT/FLASH GAS EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.0802	1.924	0.3511
Ethane	0.2803	6.728	1.2279
Propane	0.3613	8.672	1.5826
Isobutane	0.0875	2.100	0.3832
n-Butane	0.3368	8.084	1.4753
Isopentane	0.0834	2.002	0.3653
n-Pentane	0.1469	3.526	0.6434
<mark>n-Hexane</mark>	0.0821	1.970	0.3595
Cyclohexane	0.1006	2.415	0.4408
Other Hexanes	0.0755	1.813	0.3309
Heptanes	0.0958	2.299	0.4196
Methylcyclohexane	0.0726	1.743	0.3181

2,2,4-Trimethylpentane Benzene (Toluene)	0.0007 0.0566 0.0903	0.017 1.358 2.167	Page: 3 0.0030 0.2478 0.3954
<mark>(Ethylbenzene)</mark>	0.0033	0.080	0.0146
<mark>Xylenes)</mark>	0.0348	0.835	0.1523
C8+ Heavies	0.0009	0.023	0.0041
Total Emissions	1.9897	47.753	8.7148
Total Hydrocarbon Emissions	1.9897	47.753	8.7148
Total VOC Emissions	1.6292	39.101	7.1359
Total HAP Emissions	0.2677	6.425	1.1726
Total BTEX Emissions	0.1850	4.439	0.8101

Page: 1 GRI-GLYCalc VERSION 4.0 - SUMMARY OF INPUT VALUES Case Name: SHCS-55.0 Dehy-Electric Pump-010818 File Name: C:\Users\Clyde\Documents\Documents\04.16 - Ecologic\07 - AMS -000-BRCS-BCS-SHCS-TVOP-122617\SHCS-TVOP-DRAFT\SHCS-TVOP-S6c-55.0 Dehy - Electric Pump.ddf Date: January 07, 2018 DESCRIPTION: _____ Description: 55MMscfd, 1.0 MMbtu/hr reboiler 22 gpm Electric Pump Flash Tank w/ 100% Recycle BTEX Buster at 120 oF w/ 95% Control Annual Hours of Operation: 8760.0 hours/yr WET GAS: _____ Temperature: 95.00 403 1100.00 psig 95.00 deg. F Wet Gas Water Content: Saturated Component Conc. (vol %) ----- -----
 Carbon Dioxide
 0.0869

 Nitrogen
 0.4303

 Methane
 73.9064

 Ethane
 15.8261

 Propane
 5.9829

 Isobutane
 0.6737

 n-Butane
 1.7221

 Isopentane
 0.3757

 n-Pentane
 0.4738

 n-Hexane
 0.1419
 Cyclohexane0.0303Other Hexanes0.1727Heptanes0.1015Methylcyclohexane0.02462,2,4-Trimethylpentane0.0019
 Benzene
 0.0020

 Toluene
 0.0035

 Ethylbenzene
 0.0002

 Xylenes
 0.0018

 C8+ Heavies
 0.0417
 DRY GAS: _____ Flow Rate: 55.0 MMSCF/day Water Content: 7.0 lbs. H2O/MMSCF LEAN GLYCOL: Glycol Type: TEG Water Content: 1.5 wt% Flow Rate: 22.0 gpm

Page: 2

Glycol Pump Type: Electric/Pneumatic FLASH TANK: Flash Control: Recycle/recompression Temperature: 120.0 deg. F Pressure: 50.0 psig REGENERATOR OVERHEADS CONTROL DEVICE: Control Device: Condenser Temperature: 120.0 deg. F Pressure: 14.1 psia Control Device: Combustion Device Destruction Efficiency: 95.0 % Excess Oxygen: 0.0 % Ambient Air Temperature: 52.0 deg. F

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: SHCS-55.0 Dehy-Electric Pump-010818
File Name: C:\Users\Clyde\Documents\Documents\04.16 - Ecologic\07 - AMS 000-BRCS-BCS-SHCS-TVOP-122617\SHCS-TVOP-DRAFT\SHCS-TVOP-S6c-55.0 Dehy - Electric Pump.ddf
Date: January 07, 2018

DESCRIPTION:

Description: 55MMscfd, 1.0 MMbtu/hr reboiler 22 gpm Eectric Pump Flash Tank w/ 100% Recycle BTEX Buster at 120 oF w/ 95% Control

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

CONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.0802	1.924	0.3511
Ethane	0.2803	6.728	1.2279
Propane	0.3613	8.672	1.5826
Isobutane	0.0875	2.100	0.3832
n-Butane	0.3368	8.084	1.4753
Isopentane	0.0834	2.002	0.3653
n-Pentane	0.1469	3.526	0.6434
n-Hexane	0.0821	1.970	0.3595
Cyclohexane	0.1006	2.415	0.4408
Other Hexanes	0.0755	1.813	0.3309
Heptanes	0.0958	2.299	0.4196
Methylcyclohexane	0.0726	1.743	0.3181
2,2,4-Trimethylpentane	0.0007	0.017	0.0030
Benzene	0.0566	1.358	0.2478
Toluene	0.0903	2.167	0.3954
Ethylbenzene	0.0033	0.080	0.0146
Xylenes	0.0348	0.835	0.1523
C8+ Heavies	0.0009	0.023	0.0041
Total Emissions	1.9897	47.753	8.7148
Total Hydrocarbon Emissions	1.9897	47.753	8.7148
Total VOC Emissions	1.6292	39.101	7.1359
Total HAP Emissions	0.2677	6.425	1.1726
Total BTEX Emissions	0.1850	4.439	0.8101

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	1.6043	38.503	7.0267
Ethane	5.6231	134.954	24.6292
Propane	7.3225	175.739	32.0724
Isobutane	1.7959	43.102	7.8661
n-Butane	6.9824	167.577	30.5829
Isopentane	1.8193	43.662	7.9684
n-Pentane	3.2803	78.728	14.3678

n-Hexane Cyclohexane Other Hexanes	2.0894 2.7780 1.8118	50.147 66.672 43.483	Page: 2 9.1518 12.1677 7.9357
Heptanes	3.3516	80.438	14.6800
Methylcyclohexane	2.5528	61.267	11.1812
2,2,4-Trimethylpentane	0.0244	0.587	0.1071
Benzene	1.5901	38.162	6.9646
Toluene	4.0164	96.393	17.5917
Ethylbenzene	0.2924	7.018	1.2809
Xylenes	3.4416	82.598	15.0742
C8+ Heavies	4.3664	104.795	19.1250
Total Emissions	54.7427	1313.826	239.7732
Total Hydrocarbon Emissions	54.7427	1313.826	239.7732
Total VOC Emissions	47.5154	1140.369	208.1173
Total HAP Emissions	11.4544	274.905	50.1701
Total BTEX Emissions	9.3405	224.172	40.9113

FLASH GAS EMISSIONS

Note: Flash Gas Emissions are zero with the Recycle/recompression control option.

FLASH TANK OFF GAS

Component	lbs/hr	lbs/day	tons/yr
Methane Ethane	34.8694 32.9984	836.865 791.962	152.7278 144.5331
Propane	20.4362	490.469	89.5106
Isobutane	3.2273	77.456	14.1357
n-Butane	9.4919	227.805	41.5744
Isopentane	2.1155	50.772	9.2658
n-Pentane	3.0205	72.491	13.2297
n-Hexane	1.0344	24.825	4.5306
Cyclohexane	0.3321	7.970	1.4545
Other Hexanes	1.1930	28.632	5.2253
Heptanes	0.7794	18.707	3.4139
Methylcycloĥexane	0.2335	5.604	1.0228
2,2,4-Trimethylpentane	0.0115	0.275	0.0502
Benzene	0.0266	0.639	0.1166
Toluene	0.0419	1.006	0.1836
Ethylbenzene	0.0017	0.041	0.0075
Xylenes	0.0140	0.335	0.0612
C8+ Heavies	0.0858	2.058	0.3756
Total Emissions	109.9130	2637.911	481.4187
Total Hydrocarbon Emissions	109.9130	2637.911	481.4187
Total VOC Emissions	42.0452	1009.084	184.1579
Total HAP Emissions	1.1300	27.121	4.9496
Total BTEX Emissions	0.0842	2.021	0.3688

COMBINED	REGENERATOR	VENT	/FLASH	GAS	EMISSIONS

Component	lbs/hr	lbs/day	tons/yr

Methane Ethane Propane Isobutane n-Butane	0.0802 0.2803 0.3613 0.0875 0.3368	1.924 6.728 8.672 2.100 8.084	Page: 3 0.3511 1.2279 1.5826 0.3832 1.4753
Isopentane	0.0834	2.002	0.3653
n-Pentane	0.1469	3.526	0.6434
n-Hexane	0.0821	1.970	0.3595
Cyclohexane	0.1006	2.415	0.4408
Other Hexanes	0.0755	1.813	0.3309
Heptanes	0.0958	2.299	0.4196
Methylcyclohexane	0.0726	1.743	0.3181
2,2,4-Trimethylpentane	0.0007	0.017	0.0030
Benzene	0.0566	1.358	0.2478
Toluene	0.0903	2.167	0.3954
Ethylbenzene	0.0033	0.080	0.0146
Xylenes	0.0348	0.835	0.1523
C8+ Heavies	0.0009	0.023	0.0041
Total Emissions	1.9897	47.753	8.7148
Total Hydrocarbon Emissions	1.9897	47.753	8.7148
Total VOC Emissions	1.6292	39.101	7.1359
Total HAP Emissions	0.2677	6.425	1.1726
Total BTEX Emissions	0.1850	4.439	0.8101

COMBINED REGENERATOR VENT/FLASH GAS EMISSION CONTROL REPORT:

Component	Uncontrolled tons/yr	Controlled tons/yr	% Reduction
Methane	159.7545	0.3511	99.78
Ethane	169.1622	1.2279	99.27
Propane	121.5830	1.5826	98.70
Isobutane	22.0019	0.3832	98.26
n-Butane	72.1572	1.4753	97.96
Isopentane	17.2342	0.3653	97.88
n-Pentane	27.5975	0.6434	97.67
n-Hexane	13.6824	0.3595	97.37
Cyclohexane	13.6221	0.4408	96.76
Other Hexanes	13.1610	0.3309	97.49
Heptanes	18.0939	0.4196	97.68
Methylcyclohexane	12.2040	0.3181	97.39
2,2,4-Trimethylpentane	0.1573	0.0030	98.07
Benzene	7.0812	0.2478	96.50
Toluene	17.7752	0.3954	97.78
Ethylbenzene	1.2884	0.0146	98.87
Xylenes	15.1353	0.1523	98.99
C8+ Heavies	19.5006	0.0041	99.98
Total Emissions	721.1919	8.7148	98.79
Total Hydrocarbon Emissions	721.1919	8.7148	98.79
Total VOC Emissions	392.2752	7.1359	98.18
Total HAP Emissions	55.1197	1.1726	97.87
Total BTEX Emissions	41.2801	0.8101	98.04

EQUIPMENT REPORTS:

Page: 4

CONDENSER AND COMBUSTION DEVICE

Condenser Outlet Temperature Condenser Pressure Condenser Duty Hydrocarbon Recovery Produced Wate Ambient Temperature Excess Oxyger Combustion Efficiency Supplemental Fuel Requirement	e: 14.08 y: 1.61e-001 y: 1.20 r: 7.07 e: 52.00 n: 0.00 y: 95.00	mg psia MM BTU/hr bbls/day bbls/day deg. F %
Component	Emitted	Destroyed
Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Cyclohexane	4.48% 3.93%	95.01% 95.07% 95.13% 95.18% 95.42% 95.52% 96.07% 96.38%
Methylcyclohexane 2,2,4-Trimethylpentane Benzene Toluene	2.84% 3.56% 2.25%	97.16% 97.16% 96.44% 97.75%
Ethylbenzene Xylenes C8+ Heavies	1.01%	98.99%

ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages:	1.25	
Calculated Dry Gas Dew Point:	1.87	lbs. H2O/MMSCF
Temperature:	95.0	deg. F
Pressure:		
Dry Gas Flow Rate:	55.0000	MMSCF/day
Glycol Losses with Dry Gas:	2.1072	lb/hr
Wet Gas Water Content:	Saturated	
Calculated Wet Gas Water Content:		lbs. H2O/MMSCF
Calculated Lean Glycol Recirc. Ratio:	12.57	gal/lb H2O

Component	Remaining in Dry Gas	Absorbed in Glycol
Water	3.91%	96.09%
Carbon Dioxide Nitrogen	99.37% 99.94%	0.63%
Methane	99.95%	0.05%

Ethane	99.87%	Page: 0.13%	5
Propane Isobutane n-Butane Isopentane n-Pentane	99.83% 99.79% 99.73% 99.76% 99.70%	0.17% 0.21% 0.27% 0.24% 0.30%	
n-Hexane Cyclohexane Other Hexanes Heptanes Methylcyclohexane	99.58% 97.98% 99.67% 99.33% 98.09%	0.42% 2.02% 0.33% 0.67% 1.91%	
2,2,4-Trimethylpentane Benzene Toluene Ethylbenzene Xylenes	99.738 82.888 79.188 77.088 70.088	22.92% 29.92%	
C8+ Heavies	98.96%	1.04%	

FLASH TANK

Flash Contr Flash Temperatu Flash Pressu	re: 120	/recompression .0 deg. F .0 psig
Component		Removed in Flash Gas
Water Carbon Dioxide Nitrogen Methane Ethane	36.36%	95.70% 95.60%
	26.38% 35.75% 42.38% 46.50% 52.30%	64.25% 57.62%
n-Hexane Cyclohexane Other Hexanes Heptanes Methylcyclohexane	67.05% 89.66% 60.69% 81.23% 91.95%	10.34% 39.31%
2,2,4-Trimethylpentane Benzene Toluene Ethylbenzene Xylenes	68.56% 98.44% 99.05% 99.48% 99.65%	1.56% 0.95%
C8+ Heavies	98.31%	1.69%

REGENERATOR

No Stripping Gas used in regenerator.

	Remaining	Distilled
Component	in Glycol	Overhead

		Page:	6
Water	63.87%		
Carbon Dioxide	0.00%	100.00%	
Nitrogen	0.00%	100.00%	
Methane	0.00%	100.00%	
Ethane	0.00%	100.00%	
Propane	0.00%	100.00%	
Isobutane	0.00%		
n-Butane	0.00%		
Isopentane	1.07%		
n-Pentane	0.96%		
ii i ciicuiic	0.900		
n-Hexane	0.75%	99.25%	
Cyclohexane	3.57%	96.43%	
Other Hexanes	1.65%	98.35%	
Heptanes	0.62%	99.38%	
Methylcyclohexane	4.35%	95.65%	
	0 1 0 9	0.7.01.0	
2,2,4-Trimethylpentane	2.19%		
Benzene	5.08%		
Toluene		92.02%	
Ethylbenzene	10.46%		
Xylenes	12.96%	87.04%	
C8+ Heavies	12.21%	87.79%	

STREAM REPORTS:

WET GAS STREAM		
Temperature: 95.00 deg. F Pressure: 1114.70 psia Flow Rate: 2.30e+006 scfh		
Component	Conc. (vol%)	Loading (lb/hr)
Carbon Dioxide Nitrogen Methane	1.00e-001 8.68e-002 4.30e-001 7.38e+001 1.58e+001	2.31e+002 7.29e+002 7.17e+004
Isobutane n-Butane Isopentane	5.98e+000 6.73e-001 1.72e+000 3.75e-001 4.73e-001	2.37e+003 6.05e+003 1.64e+003
Cyclohexane Other Hexanes	1.73e-001 1.01e-001	1.54e+002 9.00e+002 6.15e+002
Toluene Ethylbenzene	2.00e-003 3.50e-003	9.44e+000 1.95e+001 1.28e+000
C8+ Heavies Total Components		

DRY GAS STREAM _____ Temperature: 95.00 deg. F Pressure: 1114.70 psia Flow Rate: 2.29e+006 scfh Component Conc. Loading (vol%) (lb/hr) Water 3.94e-003 4.28e+000 Carbon Dioxide 8.64e-002 2.30e+002 Nitrogen 4.30e-001 7.28e+002 Methane 7.39e+001 7.16e+004 Ethane 1.58e+001 2.87e+004 Propane 5.98e+000 1.59e+004 Isobutane 6.73e-001 2.36e+003 n-Butane 1.72e+000 6.03e+003 Isopentane 3.75e-001 1.63e+003 n-Pentane 4.73e-001 2.06e+003 n-Hexane 1.41e-001 7.36e+002 Cyclohexane 2.97e-002 1.51e+002 Other Hexanes 1.72e-001 8.97e+002 Heptanes 1.01e-001 6.11e+002 Methylcyclohexane 2.41e-002 1.43e+002 2,2,4-Trimethylpentane 1.90e-003 1.31e+001 Benzene 1.66e-003 7.83e+000 Toluene 2.77e-003 1.54e+001 Ethylbenzene 1.54e-004 9.89e-001 Xylenes 1.26e-003 8.10e+000 C8+ Heavies 4.13e-002 4.25e+002 Total Components 100.00 1.32e+005 LEAN GLYCOL STREAM _____ Temperature: 95.00 deg. F Flow Rate: 2.20e+001 gpm Component Conc. Loading (wt%) (lb/hr) TEG 9.85e+001 1.22e+004 Water 1.50e+000 1.86e+002 Carbon Dioxide 1.17e-012 1.45e-010 Nitrogen 3.70e-013 4.58e-011 Methane 9.90e-018 1.23e-015 Ethane 1.47e-007 1.82e-005 Propane 9.12e-009 1.13e-006 Isobutane 1.22e-009 1.51e-007 n-Butane 3.30e-009 4.08e-007 Isopentane 1.60e-004 1.98e-002 n-Pentane 2.56e-004 3.17e-002 n-Hexane 1.27e-004 1.57e-002 Cyclohexane 8.30e-004 1.03e-001 Other Hexanes 2.45e-004 3.03e-002 Heptanes 1.68e-004 2.08e-002 Methylcyclohexane 9.37e-004 1.16e-001 2,2,4-Trimethylpentane 4.41e-006 5.47e-004

DEY-01 thru DHY-03 - Page 13 of 17

Page: 8

Benzene 6.87e-004 8.51e-002 Toluene 2.81e-003 3.48e-001 Ethylbenzene 2.76e-004 3.42e-002 Xylenes 4.14e-003 5.12e-001 C8+ Heavies 4.91e-003 6.08e-001 Total Components 100.00 1.24e+004

RICH GLYCOL STREAM

Temperature: 95.00 deg. F Pressure: 1114.70 psia Flow Rate: 2.26e+001 gpm NOTE: Stream has more than one phase.

Component	Conc. (wt%)	Loading (lb/hr)
Water Carbon Dioxide Nitrogen	9.64e+001 2.30e+000 1.15e-002 3.63e-003 2.88e-001	2.91e+002 1.45e+000 4.60e-001
Propane Isobutane	3.05e-001 2.19e-001 3.97e-002 1.30e-001 3.12e-002	2.78e+001 5.02e+000 1.65e+001
n-Hexane Cyclohexane Other Hexanes		3.14e+000 3.21e+000 3.04e+000
	2.88e-004 1.34e-002 3.48e-002	3.65e-002 1.70e+000 4.41e+000
Xylenes C8+ Heavies Total Components		

FLASH TANK OFF GAS STREAM

		_
Temperature: 120.00 deg. F Pressure: 64.70 psia Flow Rate: 1.56e+003 scfh		
Component	Conc. Loading (vol%) (lb/hr)	
Carbon Dioxide Nitrogen Methane	1.42e-001 1.05e-001 5.11e-001 9.24e-001 3.82e-001 4.40e-001 5.29e+001 3.49e+001 2.67e+001 3.30e+001	
Isobutane	1.13e+001 2.04e+001 1.35e+000 3.23e+000 3.97e+000 9.49e+000	

Isopentane 7.14e-001 2.12e+000 n-Pentane 1.02e+000 3.02e+000 n-Hexane 2.92e-001 1.03e+000 Cyclohexane 9.60e-002 3.32e-001 Other Hexanes 3.37e-001 1.19e+000 Heptanes 1.89e-001 7.79e-001 Methylcyclohexane 5.79e-002 2.34e-001 2,2,4-Trimethylpentane 2.44e-003 1.15e-002 Benzene 8.29e-003 2.66e-002 Toluene 1.11e-002 4.19e-002 Ethylbenzene 3.92e-004 1.71e-003 Xylenes 3.20e-003 1.40e-002 C8+ Heavies 1.23e-002 8.58e-002 ------Total Components 100.00 1.11e+002 FLASH TANK GLYCOL STREAM

Temperature: 120.00 deg. F Flow Rate: 2.23e+001 gpm Component Conc. Loading (wt%) (lb/hr) TEG 9.72e+001 1.22e+004 Water 2.32e+000 2.91e+002 Carbon Dioxide 4.21e-003 5.28e-001 Nitrogen 1.58e-004 1.98e-002 Methane 1.28e-002 1.60e+000 Ethane 4.48e-002 5.62e+000 Propane 5.84e-002 7.32e+000 Isobutane 1.43e-002 1.80e+000 n-Butane 5.57e-002 6.98e+000 Isopentane 1.47e-002 1.84e+000 n-Pentane 2.64e-002 3.31e+000 n-Hexane 1.68e-002 2.11e+000 Cyclohexane 2.30e-002 2.88e+000 Other Hexanes 1.47e-002 1.84e+000 Heptanes 2.69e-002 3.37e+000 Methylcyclohexane 2.13e-002 2.67e+000 2,2,4-Trimethylpentane 1.99e-004 2.50e-002 Benzene 1.34e-002 1.68e+000 Toluene 3.48e-002 4.36e+000 Ethylbenzene 2.60e-003 3.27e-001 Xylenes 3.15e-002 3.95e+000 C8+ Heavies 3.97e-002 4.97e+000 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . ------Total Components 100.00 1.25e+004

FLASH GAS EMISSIONS Control Method: Recycle/recompression Control Efficiency: 100.00

Note: Flash Gas Emissions are zero with the Recycle/recompression control option.

REGENERATOR OVERHEADS STREAM

Temperature:212.00 deg. FPressure:14.70 psiaFlow Rate:2.57e+003 scfh		
Component		Loading (lb/hr)
Carbon Dioxide Nitrogen Methane	8.60e+001 1.77e-001 1.04e-002 1.47e+000 2.76e+000	5.28e-001 1.98e-002 1.60e+000
Isobutane n-Butane Isopentane	2.45e+000 4.55e-001 1.77e+000 3.72e-001 6.70e-001	1.80e+000 6.98e+000 1.82e+000
Cyclohexane Other Hexanes	3.10e-001 4.93e-001	2.78e+000 1.81e+000 3.35e+000
Toluene Ethylbenzene	3.00e-001 6.42e-001	1.59e+000 4.02e+000 2.92e-001
C8+ Heavies	3.78e-001	4.37e+000
Total Components	100.00	1.60e+002

CONDENSER PRODUCED WATER STREAM

Temperature: 120.00 deg. F Flow Rate: 2.06e-001 gpm

Component	Conc. (wt%)	Loading (lb/hr)	(ppm)
Carbon Dioxide Nitrogen Methane		1.11e-006 1.73e-004	
Isobutane n-Butane Isopentane	8.80e-004 1.16e-004 5.92e-004 1.03e-004 1.95e-004	1.19e-004 6.10e-004 1.06e-004	9. 1. 6. 1. 2.
Cyclohexane Other Hexanes	6.69e-005 5.82e-005	6.45e-004 6.90e-005 6.01e-005	1. 6. 1. 1. 2.
Toluene Ethylbenzene	9.93e-003 1.30e-002	1.02e-002 1.34e-002 3.71e-004	0. 99. 130. 4. 52.

CE	8+ Heavies	3.58e-007	3.70e-007	0.
Total (Components	100.00	1.03e+002	1000000.

CONDENSER RECOVERED OIL STREAM _____ Temperature: 120.00 deg. F Flow Rate: 3.51e-002 gpm Component Conc. Loading (wt%) (lb/hr) Water 3.38e-002 5.04e-003 Carbon Dioxide 4.55e-003 6.79e-004 Nitrogen 4.32e-005 6.45e-006 Methane 5.56e-003 8.29e-004 Ethane 1.05e-001 1.57e-002 Propane 6.38e-001 9.52e-002 Isobutane 3.09e-001 4.62e-002 n-Butane 1.64e+000 2.45e-001 Isopentane 1.01e+000 1.51e-001 n-Pentane 2.29e+000 3.42e-001 n-Hexane 3.00e+000 4.48e-001 Cyclohexane 5.12e+000 7.65e-001 Other Hexanes 2.02e+000 3.01e-001 Heptanes 9.62e+000 1.44e+000 Methylcyclohexane 7.37e+000 1.10e+000 2,2,4-Trimethylpentane 7.07e-002 1.06e-002 Benzene 3.00e+000 4.48e-001 Toluene 1.47e+001 2.20e+000 Ethylbenzene 1.51e+000 2.26e-001 Xylenes 1.84e+001 2.74e+000 C8+ Heavies 2.91e+001 4.35e+000 Total Components 100.00 1.49e+001

CONDENSER VENT STREAM Temperature: 120.00 deg. F Pressure: 14.08 psia Flow Rate: 3.49e+002 scfh Conc. Component Loading (vol%) (lb/hr) Water 1.21e+001 2.00e+000 Carbon Dioxide 1.30e+000 5.26e-001 Nitrogen 7.67e-002 1.98e-002 Methane 1.09e+001 1.60e+000 Ethane 2.03e+001 5.61e+000 Propane 1.78e+001 7.23e+000 Isobutane 3.27e+000 1.75e+000 n-Butane 1.26e+001 6.74e+000 Isopentane 2.51e+000 1.67e+000 n-Pentane 4.43e+000 2.94e+000 n-Hexane 2.07e+000 1.64e+000 Cyclohexane 2.60e+000 2.01e+000 Other Hexanes 1.91e+000 1.51e+000 Heptanes 2.08e+000 1.92e+000

Methylcyclohexane 1.61e+000 1.45e+000 2,2,4-Trimethylpentane 1.32e-002 1.39e-002 Benzene 1.57e+000 1.13e+000 Toluene 2.13e+000 1.81e+000 Ethylbenzene 6.80e-002 6.64e-002 Xylenes 7.12e-001 6.96e-001 C8+ Heavies 1.20e-002 1.88e-002 Total Components 100.00 4.23e+001

COMBUSTION DEVICE OFF GAS STREAM

Temperature: 1000.00 deg. F

Pressure: 14.70 psia Flow Rate: 1.51e+001 scfh		
Component	Conc. (vol%)	Loading (lb/hr)
Ethane Propane Isobutane	1.26e+001 2.34e+001 2.06e+001 3.78e+000 1.46e+001	2.80e-001 3.61e-001 8.75e-002
	5.12e+000 2.39e+000 3.00e+000	1.47e-001 8.21e-002 1.01e-001
Methylcyclohexane 2,2,4-Trimethylpentane Benzene		7.26e-002 6.94e-004 5.66e-002
Ethylbenzene Xylenes C8+ Heavies	8.23e-001	3.48e-002
Total Components	100.00	1.99e+000

Supplement S4 AP-42 / EPA Emission Factors

- AP-42 Combustion Emission Factor Summary
- EPA Protocol for Equipment Leak Emission Estimates

Potentially Applicable AP-42 and GHG EMISSION FACTORS (Preferentially use test data or vendor data where available)

			GAS-FIRED ENGINES			GAS-FIRED TURBINES	8
AP-42 Table 3.2-1; 3.2-2; 3.2-3 07/00		<u>AP-42 Table 3.1-1; 3.1-2a; 3.1-3 04/00</u>					
	Pollutant	2SLB	4SLB	4SRB	Uncontrolled	Water Injection	Lean Pre-Mix#
		lb/MMBtu	lb/MMBtu	lb/MMBtu	lb/MMBtu	lb/MMBtu	lb/MMBtu
	NOX (≥ 90% Load)	3.17E+00	4.08E+00	2.21E+00	3.23E-01	1.28E-01	9.91E-02
⊻	CO (≥ 90% Load)	3.86E-01	3.17E-01	3.72E+00	8.23E-02	2.95E-02	1.51E-02
ER	VOC (NMNEHC w/o HCHO)	4.68E-02	4.92E-02	6.20E-04	2.06E-03	2.06E-03	2.06E-03
CRITERIA	VOC (NMNEHC w/ HCHO)	1.20E-01	1.18E-01	2.96E-02	2.82E-03	2.82E-03	2.13E-03
Ö	PM10/2.5 (Total)	4.83E-02	9.99E-03	1.94E-02	6.63E-03	6.63E-03	6.63E-03
	SO2 (2,000 gr-S/MMscf ≈ 0.0007 W%)	5.88E-04	5.88E-04	5.88E-04	5.88E-04	5.88E-04	5.88E-04
	Acetaldehyde	7.76E-03	8.36E-03	2.79E-03	4.00E-05	4.00E-05	4.00E-05
	Acrolein	7.78E-03	5.14E-03	2.63E-03	6.40E-06	6.40E-06	6.40E-06
	Benzene	1.94E-03	4.40E-04	1.58E-03	1.20E-05	1.20E-05	9.10E-07
	Butadiene, 1,3-	8.20E-04	2.67E-04	6.63E-04	4.30E-07	4.30E-07	4.30E-07
	Ethylbenzene	1.08E-04	3.97E-05	2.48E-05	3.20E-05	3.20E-05	3.20E-05
	Formaldehyde (HCHO)	5.52E-02	5.28E-02	2.05E-02	7.10E-04	7.10E-04	2.00E-05
HAPs	n-Hexane	4.45E-04	1.11E-03				
HA	Methanol (MeOH)	2.48E-03	2.50E-03	3.06E-03			
	Polycyclic Organic Matter (POM/PAH)	1.34E-04	3.47E-04	9.71E-05	3.25E-05	3.25E-05	3.25E-05
	Toluene	9.63E-04	4.08E-04	5.58E-04	1.30E-04	1.30E-04	1.30E-04
	Trimethylpentane, 2,2,4- (i-Octane)	8.46E-04	2.50E-04				
	Xylenes	2.68E-04	1.84E-04	1.95E-04	6.40E-05	6.40E-05	6.40E-05
	Other/Trace HAP*	6.57E-04	3.21E-04	1.79E-04	2.90E-05	2.90E-05	2.90E-05
	TOTAL HAP	7.94E-02	7.22E-02	3.23E-02	1.06E-03	1.06E-03	3.55E-04
	CO2 (GWP=1)	1.10E+02	1.10E+02	1.10E+02	1.10E+02	1.10E+02	1.10E+02
GHG	CH4 (GWP=25)	1.45E+00	1.25E+00	2.30E-01	8.64E-03	8.64E-03	8.64E-03
ц С	N2O (GWP=298)	2.20E-04	2.20E-04	2.20E-04	3.00E-03	3.00E-03	3.00E-03
	CO2e	1.46E+02	1.41E+02	1.16E+02	1.11E+02	1.11E+02	1.11E+02

(#Lean Pre-Mix - aka: Dry Low Emissions (DLE or DLN) or SoLoNOx)							
	GAS-FIRED EXTERNAL COMBUSTION		FLARE	DIESEL ENGINES	DIESEL EMGEN		
Pollutant <u>AP-42 Table 1.4-1; 1.4-2; 1.4-3 (<100 MMBtu/hr) 07/98</u>		<u>13.5-1 06/17</u>	<u>3.3-1; 3.3-2 10/96</u>	<u>Tier 4 ≥ 751 bhp</u>			
	Foliutant	Uncontrolled	LoNOx Burners	Flue Gas Recirc	Combustion	Uncontrolled	Controlled
		lb/MMBtu	lb/MMBtu	lb/MMBtu	lb/MMBtu	lb/MMBtu	lb/MMBtu
	NOX (≥ 90% Load)	9.80E-02	4.90E-02	3.14E-02	External Comb.	4.41E+00	4.18E+00
◄	CO (≥ 90% Load)	8.24E-02	8.24E-02	8.24E-02	3.10E-01	9.50E-01	2.35E+00
CRITERIA	VOC (NMNEHC w/o HCHO)	5.32E-03	5.32E-03	5.32E-03	98% Control	3.52E-01	1.27E-01
ЧТ	VOC (NMNEHC w/ HCHO)	5.39E-03	5.39E-03	5.39E-03	98% Control	3.53E-01	1.28E-01
Ö	PM10/2.5 (Total)	7.45E-03	7.45E-03	7.45E-03	External Comb.	3.10E-01	1.35E-01
	SO2 (2,000 gr-S/MMscf ≈ 0.0007 W%)	5.88E-04	5.88E-04	5.88E-04	External Comb.	2.90E-01	2.90E-01
	Acetaldehyde					7.67E-04	2.77E-04
	Acrolein					9.25E-05	3.35E-05
	Benzene	2.06E-06	2.06E-06	2.06E-06		9.33E-04	3.38E-04
	Butadiene, 1,3-					3.91E-05	1.41E-05
	Ethylbenzene						
	Formaldehyde (HCHO)	7.35E-05	7.35E-05	7.35E-05		1.18E-03	4.27E-04
HAPs	n-Hexane	1.76E-03	1.76E-03	1.76E-03			
ЧA	Methanol (MeOH)				Use		
	Polycyclic Organic Matter (POM/PAH)	6.85E-07	6.85E-07	6.85E-07	External Combustion	1.68E-04	6.08E-05
	Toluene	3.33E-06	3.33E-06	3.33E-06	or 98% Control,	4.09E-04	1.48E-04
	Trimethylpentane, 2,2,4- (i-Octane)				As Appropriate		
	Xylenes					2.85E-04	1.03E-04
	Other/Trace HAP*	1.18E-06	1.18E-06	1.18E-06			
	TOTAL HAP	1.85E-03	1.85E-03	1.85E-03		3.87E-03	1.40E-03
	CO2 (GWP=1)	1.18E+02	1.18E+02	1.18E+02		1.64E+02	1.64E+02
GHG	CH4 (GWP=25)	2.25E-03	2.25E-03	2.25E-03		6.61E-03	6.61E-03
ġ	N2O (GWP=298)	2.16E-03	6.27E-04	6.27E-04		1.32E-03	1.32E-03
	CO2e	1.18E+02	1.18E+02	1.18E+02		1.65E+02	1.65E+02

40 CFR 98 - DEFAULT EMISSION FACTORS					
	Table C-1 to Subpart C of Part 98		Table C-2 to Subpart C of Part 98		Weighted Sum
Fuel Type	Default HHV	Carbon Dioxide	Methane	Nitrous Oxide	CO2e
		lb CO2/MMBtu	lb CH4/MMBtu	lb N2O/MMBtu	lb CO2e/MMBtu
Fuel Oil No. 2 (Diesel)	138,000 Btu/gal	1.63E+02	6.61E-03	1.32E-03	1.64E+02
Propane	91,000 Btu/gal	1.39E+02	6.61E-03	1.32E-03	1.39E+02
Natural Gas	1,026 Btu/scf	1.17E+02	2.20E-03	2.20E-04	1.17E+02

*Other/Trace HAPs include: CarbonTetrachloride, Chlorobenzene, Chloroform, Dichloropropene, 1,3-Dichloropropene, Ethylene Dibromide, Methylene Chloride, Phenol, Propylene Oxide, Styrene, 1,1,2,2-Tetrachloroethane, 1,1,2-Trichloroethane, and Vinyl Chloride (as per AP-42).

Global Warming Potential (100 Yr) (GWP)				
Table A-1 to Subpart A of Part 98				
CO2	CH4	N2O		
1	25	298		

Reviewed and Revised: 01/03/18 - CAR

Air

EPA-453/R-95-017 November 1995

EPA Protocol for Equipment Leak Emission Estimates

TABLE 2-4. OIL AND GAS PRODUCTION OPERATIONS AVERAGE EMISSION FACTORS (kg/hr/source)

_Equipment Type	Service ^a	Emission Factor (kg/hr/source) ^b
Valves	Gas Heavy Oil Light Oil Water/Oil	4.5E-03 8.4E-06 2.5E-03 9.8E-05
Pump seals	Gas Heavy Oil Light Oil Water/Oil	2.4E-03 NA 1.3E-02 2.4E-05
Others ^C	Gas Heavy Oil Light Oil Water/Oil	8.8E-03 3.2E-05 7.5E-03 1.4E-02
Connectors	Gas Heavy Oil Light Oil Water/Oil	2.0E-04 7.5E-06 2.1E-04 1.1E-04
Flanges	Gas Heavy Oil Light Oil Water/Oil	3.9E-04 3.9E-07 1.1E-04 2.9E-06
Open-ended lines	Gas Heavy Oil Light Oil Water/Oil	2.0E-03 1.4E-04 1.4E-03 2.5E-04

^aWater/Oil emission factors apply to water streams in oil service with a water content greater than 50%, from the point of origin to the point where the water content reaches 99%. For water streams with a water content greater than 99%, the emission rate is considered negligible.

^bThese factors are for total organic compound emission rates (including non-VOC's such as methane and ethane) and apply to light crude, heavy crude, gas plant, gas production, and off shore facilities. "NA" indicates that not enough data were available to develop the indicated emission factor.

^CThe "other" equipment type was derived from compressors, diaphrams, drains, dump arms, hatches, instruments, meters, pressure relief valves, polished rods, relief valves, and vents. This "other" equipment type should be applied for any equipment type other than connectors, flanges, open-ended lines, pumps, or valves. Include a check payable to WVDEP – Division of Air Quality.

- As per WV Rule 22 (45CSR22) filed on May 6, 1991, a **Minimum fee of \$1,000** must be submitted for each 45CSR13 permit application filed with the WVDEP-DAQ.
- Additional Charges may apply, depending on the nature of the application as outlined in Section 3.4.b. of Regulation 22, and shown below:
 - NSPS Requirements: \$1,000 JJJJ-Compressor Engines
 - NESHAP Requirements: \$2,500 Not Applicable
 - New Major Source: \$10,000 Not Applicable
 - Major Modifications: \$5,000 Not Applicable
- Total application fee is \$2,000
 [= \$1,000 Minimum Fee + \$1,000 Additional Charges

** End of Application for 45CSR13 New Source Review Permit Modification (NSR) **