

January 18, 2017

West Virginia – Dept. of Environmental Protection Division of Air Quality Beverly McKeone, NSR Manager 601 57th Street, SE Charleston, WV 25304

Reference: General Permit Registration Modification PDC West Compressor Station G35-A107B Plant ID # 033-00187 Clarksburg, Harrison County, West Virginia

Dear Ms. McKeone:

MK Midstream Holdings, LLC is submitting this General Permit G-35D Registration Modification (1 paper copy and 2 PDF copies on a CD) for the PDC West Compressor Station facility, Plant ID # 033-00187, located in Clarksburg, Harrison County, West Virginia. This facility currently operates under a G35-A registration issued November 17, 2015 to MK Midstream Holdings LLC which includes equipment at three locations: Goff Compressor Station, Goff M&R and Cather Compression Station.

As requested, the permit modification includes information regarding existing emission sources and modifications under the G35-D application. Please note the required \$4,000 permit fee has already been submitted with a previous permit application submitted October 21, 2016 that subsequently been withdrawn per a letter received from the West Virginia DEP dated December 12, 2016.

The purpose of this modification is to 1) increase the flow rate of the two existing Dehydration Units to 67 mmscf/day at the Goff M&R 2) replace two engines (CE-3R and CE-4R) with two engines of the same make and model (CE-7R and CE-8R) and 3) add Tanks TK-3, 4, and 5. Once these changes are made the following equipment will be located at the facility.

Engines:

- CE-1R Caterpillar G3516B LE Compressor Engine Goff Compressor Station
- CE-2R Caterpillar G3516B LE Compressor Engine Goff Compressor Station
- CE-5R Caterpillar G3608TALE Compressor Engine Cather Compressor Station
- CE-6R Caterpillar G3606TALE Compressor Engine Cather Compressor Station
- CE-7R Caterpillar G3516B LE Compressor Engine Goff Compressor Station
- CE-8R Caterpillar G3516B LE Compressor Engine Goff Compressor Station

Dehydration Units:

- RSV-1 Exterran Dehydration Unit 2012, 67 mmscf/day-Goff M&R
- RBV-1 Exterran Reboiler 2012, 1.0 mm BTU/Hr -Goff M&R
- RSV-2 Exterran Dehydration Unit 2013, 67 mmscf/day-Goff M&R
- RBV-2 Exterran Reboiler Unit 2013, 1.0 mm BTU/Hr -Goff M&R

Ms. McKeone January 13, 2017 Page 2

Tanks:

- TK-1, TEG/Produced Liquid Goff M&R
- TK-2, Oil Catch Storage Tank Goff Compressor Station
- TK-3, Produced Liquid Goff Compressor Station
- TK-4, Stormwater/Leaked Oils Cather Compressor Station
- TK-5, Stormwater/Leaked Oils Cather Compressor Station

Please note, the combined potential emissions from the listed equipment do not exceed major facility thresholds.

MK Midstream Holdings, LLC would like to take this time to notify the Department that the paperwork to rename "PDC West Compressor Station" (as it is listed currently in the Certificate to Operate for Plant ID # 033-00187), to "Goff West Compressor Station" is in the process of being submitted. "Goff West Compressor Station" will still include the facilities identified in the first paragraph above: Goff Compressor Station, Goff M&R and Cather Compression Station.

Please feel free to contact me at 724-940-1112, if the WVDEP-DAQ has any questions regarding the information in this General Permit Registration Modification.

Sincerely, Mountaineer Keystone, LLC

Meghan M.B. Yingling Environmental Compliance Manager

cc: Stacey Lucas, Vice President, HSE, Mountaineer Keystone LLC William Veigel, Director of Production, Mountaineer Keystone LLC Thomas S. Seguljic, PE, HRP Associates, Inc.

dep	west virginia department of environmental protection Division of Air Qua 601 57 th Stree Charleston, WV 25 Phone (304) 926-0 Fax (304) 926-0 www.dep.wv.						
G35-D GEN	NERAL PE	RMIT RI	EGISTRATION A	PPLICATION			
			NREGARD TO THE CONSTRU				
	RELOCATION, A	DMINISTRATI	VE UPDATE AND OPERATION ID/OR DEHYDRATION FACIL	OF			
CONSTRUC X MODIFICA	TION		□CLASS I ADMINISTRATIV □CLASS II ADMINISTRATIV				
	SE	CTION 1. GENE	RAL INFORMATION				
Name of Applicant (as r	egistered with the V	VV Secretary of S	tate's Office):				
MK MIDSTREAM HOL	DINGS, LLC						
Federal Employer ID No). (FEIN):47-191965	54					
Applicant's Mailing Add	dress: 65 PROFES	SIONAL PLACE	SUITE 200				
City:BRIDGEPORT		State: WV		ZIP Code:26330			
Facility Name: PDC WE	EST COMPRESSO	R STATION					
Operating Site Physical If none available, list ro			CLARKSBURG, HARRISON CO	DUNTY, WV			
City:CLARKSBURG		Zip Code:26302		County:HARRISON			
Latitude & Longitude Co Latitude: 39.275550 Longitude: -80.403099	oordinates (NAD83,	Decimal Degrees	s to 5 digits):				
SIC Code: 1311 NAICS Code: 211111			DAQ Facility ID No. (For exist 03-00187	ing facilities)			
	CERTIFICATION OF INFORMATION						
This G35-DGeneral Permit Registration Application shall be signed below by a Responsible Official. A Responsible Official is a President, Vice President, Secretary, Treasurer, General Partner, General Manager, a member of the Board of Directors, or Owner, depending on business structure. A business may certify an Authorized Representative who shall have authority to bind the Corporation, Partnership, Limited Liability Company, Association, Joint Venture or Sole Proprietorship. Required records of daily throughput, hours of operation and maintenance, general correspondence, compliance certifications and all required notifications must be signed by a Responsible Official or an Authorized Representative. If a business wishes to certify an Authorized Representative, the official agreement below shall be check ed off and the appropriate names and signatures entered. Any administratively incomplete or improperly signed or unsigned G35-D Registration Application will be returned to the applicant. No substitution of forms is allowed.							
I hereby certify that is an Authorized Representative and in that capacity shall represent the interest of the business (e.g., Corporation, Partnership, Limited Liability Company, Association Joint Venture or Sole Proprietorship) and may obligate and legally bind the business. If the business changes its Authorized Representative, a Responsible Official shall notify the Director of the Division of Air Quality immediately.							
I hereby certify that all information contained in this G35-DGeneral Permit Registration Application and any supporting documents appended hereto is, to the best of my knowledge, true, accurate and complete, and that all reasonable efforts have been made to provide the most comprehensive information possible.							
	Responsible Official Signature: Name and Title: Stacey Lucas, Vice President, Health Safety and Environment Fax						
Email:slucas@mkeyston	e.com	D	ate: 1/17/17				
If applicable: Authorized Representati Name and Title: Email:	ve Signature:	Phone: Date:	Fax:				
If applicable: Environmental Contact Name and Title:Meghan M.B. Vingling, Environmental Compliance Manager Phone:724-940-1112 Fax: Email:myingling@mkeystone.com Date: 1-17-17							

OPERATING SITE INFORMATION

Briefly describe the proposed new operation and/or any change(s) to the facility: The purpose of this modification is to increase the flow rate on the two existing Dehydration Units to 67 mmscf/day on the Goff M&R, to replace two engines (CE-3R and CE-4R) with two engines of the same make and model (CE-7R and CE-8R), and add TK-3, TK-4, and TK-5.

Directions to the facility: From I-79 South; (1.) At exit 119, take ramp right for US-50 West toward Clarksburg, Travel 7.0 miles (2.) Turn left onto WV-98/Old US 50 / Sun Valley Rd. travel 0.4 miles (3.) turn left to stay on WV-98 and ravel 0.3 miles (4.) arrive at the PDC West Compressor Station on the right.

ATTACHMENTS AND SUPPORTING DOCUMENTS

I have enclosed the following required documents:

Check payable to WVDEP - Division of Air Quality with the appropriate application fee (per 45CSR13 and 45CSR22).

 \Box Check attached to front of application.

□ I wish to pay by electronic transfer. Contact for payment (incl. name and email address):

□ I wish to pay by credit card.Contact for payment (incl. name and email address):

X \$500 (Construction, Modification, and Relocation) \$300 (Class II Administrative Update)

X \$1,000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ and/or OOOO and/or OOOOa¹

X \$2,500 NESHAP fee for 40 CFR63, Subpart ZZZZ and/or HH²

PLEASE NOTE \$4,000 FEE WAS SUBMITTED UNDER PREVIOUS WITHDRAWN PERMIT APPLICATION ¹ Only one NSPS fee will apply.

² Only one NESHAP fee will apply. The Subpart ZZZZ NESHAP fee will be waived for new engines that satisfy requirements by complying with NSPS, Subparts IIII and/or JJJJ.

NSPS and NESHAP fees apply to new construction or if the source is being modified.

□ Responsible Official or Authorized Representative Signature (if applicable)

X Single Source Determination Form (must be completed in its entirety)– Attachment A

□Siting Criteria Waiver (if applicable) – Attachment B	X Current Business Certificate – Attachment C				
X Process Flow Diagram – Attachment D	X Process Description – Attachment E				
X Plot Plan – Attachment F	X Area Map – Attachment G				
X G35-D Section Applicability Form – Attachment H	X Emission Units/ERD Table – Attachment I				

X Fugitive Emissions Summary Sheet - Attachment J

X Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable) – Attachment K

X Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Heater Treaters, In-Line Heaters if applicable) – Attachment L

X Internal Combustion Engine Data Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment M

X Tanker Truck Loading Data Sheet (if applicable) – Attachment N

X Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalcTM input and output reports and information on reboiler if applicable) – Attachment O

X Pneumatic Controllers Data Sheet – Attachment P

X Centrifugal Compressor Data Sheet – Attachment Q

X Reciprocating Compressor Data Sheet – Attachment R

X Blowdown and Pigging Operations Data Sheet - Attachment S

□ Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment T

X Emission Calculations (please be specific and include all calculation methodologies used) – Attachment U

X Facility-wide Emission Summary Sheet(s) – Attachment V

X Class I Legal Advertisement – Attachment W

X One (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments

All attachments must be identified by name, divided into sections, and submitted in order.

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

Classifying multiple facilities as one "stationary source" under 45CSR13, 45CSR14, and 45CSR19 is based on the definition of Building, structure, facility, or installation as given in §45-14-2.13 and §45-19-2.12. The definition states:

"Building, Structure, Facility, or Installation" means all of the pollutant-emitting activities which belong to the same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the control of the same person (or persons under common control). Pollutant-emitting activities are a part of the same industrial grouping if they belong to the same "Major Group" (i.e., which have the same two (2)digit code) as described in the Standard Industrial Classification Manual, 1987 (United States Government Printing Office stock number GPO 1987 0-185-718:QL 3).

The Source Determination Rule for the oil and gas industry was published in the Federal Register on June 3, 2016 and will become effective on August 2, 2016. EPA defined the term "adjacent" and stated that equipment and activities in the oil and gas sector that are under common control will be considered part of the same source if they are located on the same site or on sites that share equipment and are within ¹/₄ mile of each other.

Is there equipment and activities in the same industrial grouping (defined by SIC code)?

Yes X No \Box

Is there equipment and activities under the control of the same person/people?

Yes X No \Box

Is there equipment and activities located on the same site or on sites that share equipment and are within $\frac{1}{4}$ mile of each other? Yes \Box No X

Please see the Attached Discussion for Further Detail

Attachment A Cont.

To determine if aggregation of facilities is appropriate, the following three-prong test must be completed;

The sources belong to a single major industrial grouping (same two-digit major SIC code);

The Compressor Stations and well pads are both listed as SIC Code 1311 which includes:

Establishments primarily engaged in operating oil and gas field properties. Such activities may include exploration for crude petroleum and natural gas; drilling, competing, and equipping wells; operation of separators, emulsion breakers, distilling equipment, and field gathering lines for crude petroleum; and all other activities in the preparation of oil and gas up to the point of shipment from the producing property. This industry includes the production of oil through the mining and extraction of oil from oil sands and the production of gas and hydrocarbon liquids through gasification, liquid faction, and pyrolysis at the mine site.

- The sources are under common control of the same person (or persons under common control); The sources are under common control of the same person (or persons under common control) since Mountaineer Keystone is the majority owner of the Goff West Station and Mountaineer Keystone employees work and manage both the well pads and Goff Compressor Station.
- 3. The sources are located on one or more "contiguous or adjacent" properties The WPA has established that any operations within ¼ mile are considered contiguous or adjacent. The noted wellpads are located greater than ¼ mile from the Goff West Station.

In summary, since the facilities are greater than 1/4 mile apart, the Single source determination does not apply.

ATTACHMENT C-CURRENT BUSINESS CERTIFICATE

If the applicant is a resident of West Virginia, the applicant should provide a copy of the current Business Registration Certificate issued to them from the West Virginia Secretary of State's Office. If the applicant is not a resident of the State of West Virginia, the registrant should provide a copy of the Certificate of Authority/Authority of LLC/Registration. This information is required for all sources to operate a business in West Virginia regardless of whether it is a construction, modification, or administrative update.

If you are a new business to West Virginia and have applied to the West Virginia Secretary of State's Office for a business license, please include a copy of your application.

Please note: Under the West Virginia Bureau of Employment Programs, 96CSR1, the DAQ may not grant, issue, or renew approval of any permit, general permit registration, or Certificate to Operate to any employing unit whose account is in default with the Bureau of Employment Programs Unemployment Compensation Division.

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO: MK MIDSTREAM HOLDINGS, LLC 65 PROFESSIONAL PL 200 BRIDGEPORT, WV 26330-1889

BUSINESS REGISTRATION ACCOUNT NUMBER: 2306-9776

This certificate is issued on: 02/19/2015

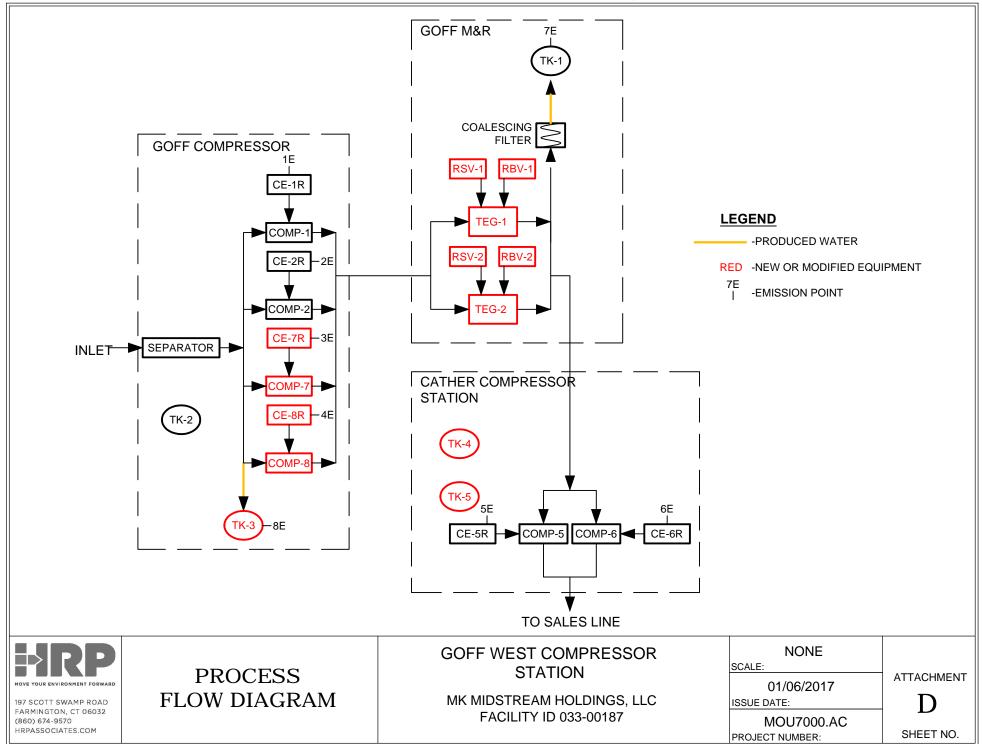
This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.


atL006 v.4 L0264094016

ATTACHMENT D – PROCESS FLOW DIAGRAM

Provide a diagram or schematic that supplements the process description of the operation. The process flow diagram must show all sources, components or facets of the operation in an understandable line sequence of operation. The process flow diagram should include the emission unit ID numbers, the pollution control device ID numbers, and the emission point ID numbers consistent with references in other attachments of the application. For a proposed modification, clearly identify the process areas, emission units, emission points, and/or control devices that will be modified, and specify the nature and extent of the modification.

Use the following guidelines to ensure a complete process flow diagram:

- The process flow diagram shall logically follow the entire process from beginning to end.
- Identify each emission source and air pollution control device with proper and consistent emission unit identification numbers, emission point identification numbers, and control device identification numbers.
- The process flow lines may appear different for clarity. For example, dotted lines may be used for vapor flow and solid lines used for liquid flow and arrows for direction of flow.
- The process flow lines may be color coded. For example: new or modified equipment may be red; old or existing equipment may be blue; different stages of preparation such as raw material may be green; and, finished product or refuse, another color.

ATTACHMENT E – PROCESS DESCRIPTION

Provide a detailed written description of the operation for which the applicant is seeking a permit. The process description is used in conjunction with the process flow diagram to provide the reviewing engineer a complete understanding of the activity at the operation. Describe in detail and order the complete process operation.

Use the following guidelines to ensure a complete Process Description:

- The process flow diagram should be prepared first and used as a guide when preparing the process description. The written description shall follow the logical order of the process flow diagram.
- All emission sources, emission points, and air pollution control devices must be included in the process description.
- When modifications are proposed, describe the modifications and the effect the changes will have on the emission sources, emission points, control devices and the potential emissions.
- Proper emission source ID numbers must be used consistently in the process description, the process flow diagram, the emissions calculations, and the emissions summary information provided.
- Include any additional information that may facilitate the reviewers understanding of the process operation.

The process description is required for all sources regardless of whether it is a construction, modification, or administrative update.

Pipeline quality natural gas (dry) is supplied to six (6) 1380 BHP Caterpillar Internal combustion engine (CE-1R, CE-2R, CE-5R, CE-6R, CE-7R and CE-8R) each equipped Oxidation Catalytic Converters, for emission reductions. The engines drive compressors to move the natural gas through a pipeline into two (2) 67 MMCFD Tri-Ethylene Glycol (TEG) Dehydrators (TEG-1 and TEG-2) for drying the gas to below 7.0lbs/MMSCFD of Water Content and eventually into a sales line.

Produced liquid, which is mainly water with minimal levels of VOCs, from initial separation and dehydration, is stored within tanks TK-1 and TK-3. The produced liquids are transferred from the tanks to trucks via transfer hoses for off-site treatment/disposal. In addition, stormwater collected from the pads and oil collected from the compressors is stored in tanks TK-2, TK-4 and TK-5.

There are fugitive emissions associated with piping connection, valves and controllers. These emissions occur due to potential seepage from connections, flanges and open ended lines.

This permit modification includes:

- Increasing Glycol Dehydration units RSV-1 and RSV-2 from 31 mmscf/day and 45 mmscf/day to 67mmscf/day for both units

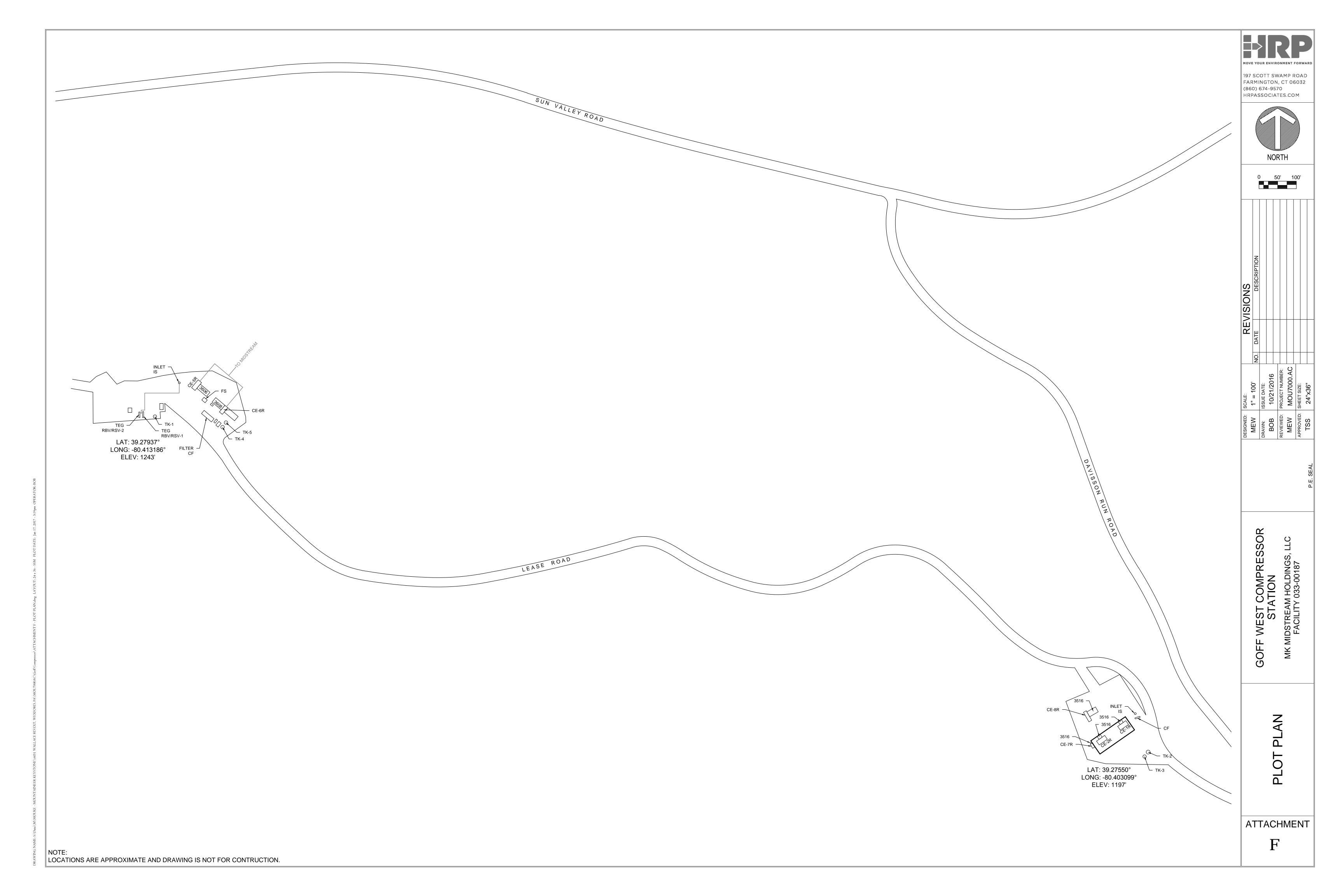
- Addition of the following Tanks:

1. TK 3-100 bbl Tank used to collect produced water from Compressor CE-1R, CE-2R, CE-7R and CE-8R located on Goff Compressor Station

2. TK-4 and TK-5 2 50 bbl tanks located on Cather Compressor Station to collect produced water from compressor CE-5R and CE-6R

- Replacement of engines CE-3R and CE-4R with like-kind engines (CE-7R and CE-8R).

ATTACHMENT F – PLOT PLAN


Provide an accurately scaled and detailed Plot Plan showing the locations of all emission units, emission points, and air pollution control devices. Show all emission units, affected facilities, enclosures, buildings and plant entrances and exits from the nearest public road(s) as appropriate. Note height, width and length of proposed or existing buildings and structures.

A scale between 1"=10' and 1"=200' should be used with the determining factor being the level of detail necessary to show operation or plant areas, affected facilities, emission unit sources, transfer points, etc. An overall small scale plot plan (e.g., 1"=300') should be submitted in addition to larger scale plot plans for process or activity areas (e.g., 1"=50') if the plant is too large to allow adequate detail on a single plot plan. Process or activity areas may be grouped for the enlargements as long as sufficient detail is shown.

Use the following guidelines to ensure a complete Plot Plan:

- Facility name
- Company name
- Company facility ID number (for existing facilities)
- Plot scale, north arrow, date drawn, and submittal date.
- Facility boundary lines
- Base elevation
- Lat/Long reference coordinates from the area map and corresponding reference point elevation
- Location of all point sources labeled with proper and consistent source identification numbers

This information is required for all sources regardless of whether it is a construction, modification, or administrative update.



ATTACHMENT G – AREA MAP

Provide an Area Map showing the current or proposed location of the operation. On this map, identify plant or operation property lines, access roads and any adjacent dwelling, business, public building, school, church, cemetery, community or institutional building or public park within a 300' boundary circle of the collective emission units.

Please provide a 300' boundary circle on the map surrounding the proposed emission units collectively.

This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

- Goff Compressor
- Goff M-R

0

Cather Compressor

300 foot Buffer

	Area Map	Issue Date: 10/21/2016	Designed By: MEW		visions			197 FAF (86) НRF	Move
Ą	PDC West	10/21/2010		No.	Date			SCO MIN 0) 6: ASS	
	Compressor Station	Project No:	Drawn By:			150		TT SW/ GTON, 14-9570 OCIATI	
() ¥	MK Midstream Holdings, LLC	MOU7000.AC	BOB			μ		AMP CT 0 D ES.CC	
ENT	Facility ID 033-00187	Sheet Size:				300 rth		ROAD 6032 0M	FORWA
		11x17	TSS			et			RO

ATTACHMENT H-G35-D SECTION APPLICABILITY FORM

General Permit G35-D Registration Section Applicability Form

General Permit G35-D was developed to allow qualified applicants to seek registration for a variety of sources. These sources include storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, centrifugal compressors, reciprocating compressors, reciprocating internal combustion engines (RICEs), tank truck loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G35-D allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply.Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

	SENERAL PERMIT G35-D APPLICABLE SECTIONS
X Section 5.0	Storage Vessels Containing Condensate and/or Produced Water ¹
\Box Section 6.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO/OOOOa)
□Section 7.0	Control Devices and Emission Reduction Devices not subject to NSPS Subpart OOOO/OOOOa and/or NESHAP Subpart HH
X Section 8.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc
□Section 9.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO/OOOOa)
□ Section 10.0	Centrifugal Compressor Affected Facility (NSPS, Subpart OOOO/OOOOa) ²
X Section 11.0	Reciprocating Compressor Affected Facility (NSPS, Subpart OOOO/OOOOa) ²
X Section 12.0	Reciprocating Internal Combustion Engines, Generator Engines. Microturbine Generators
X Section 13.0	Tanker Truck Loading ³
X Section 14.0	Glycol Dehydration Units ⁴
X Section 15.0	Blowdown and Pigging Operations
X Section 16.0	Fugitive Emission Components (NSPS, Subpart OOOOa)

1 Applicants that are subject to Section 5 may also be subject to Section 6 if the applicant is subject to the NSPS, Subpart OOOO/OOOOa control requirements or the applicable control device requirements of Section 7.

2 Applicants that are subject to Section 10 and 11 may also be subject to the applicable RICE requirements of Section 12.

- 3 Applicants that are subject to Section 13 may also be subject to control device and emission reduction device requirements of Section 7.
- 4 Applicants that are subject to Section 14may also be subject to the requirements of Section 8 (reboilers). Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 7.

ATTACHMENT I – EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment K table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type ⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
CE-1R	1E	Caterpillar G3516B LE Compressor Engine	2011	After 2010	1380 hp/1,400 rpm	Existing	Oxidation Catalyst	1D
CE-2R	2E	Caterpillar G3516B LE Compressor Engine	2011	After 2010	1380 hp/1,400 rpm	Existing	Oxidation Catalyst	2D
CE-7R	3E	Caterpillar G3516B LE Compressor Engine	2017	11/16/2012	1380 hp/1,400 rpm	New	Oxidation Catalyst	3D
CE-8R	4E	Caterpillar G3516B LE Compressor Engine	2017	3/17/2013	1380 hp/1,400 rpm	New	Oxidation Catalyst	4D
CE-5R	5E	Caterpillar G3608 TALE Compressor Engine	2015	4/11/2011	2370 hp/1,000 rpm	Existing	Oxidation Catalyst	5D
CE-6R	6E	Caterpillar G3606 TALE Compressor Engine	2015	12/12/2014	1775 hp/1,000 rpm	Existing	Oxidation Catalyst	6D
TEG-1	RSV-1	Exterran Dehydration Unit	2012	2012	67 mmscf.day	Modified	N/A	NA
TEG-1	RBV-1	Exterran Reboiler	2012	2012	1.0mmBtu/hr	Existing	N/A	NA
TEG-2	RSV-2	Exterran Dehydration Unit	2013	2012	67 mmscf/day	Modified	N/A	NA
TEG-2	RBV-2	Exterran Reboiler	2013	2012	1.0 mmBtu/hr	Existing	N/A	NA
TK-1	7E	TEG/Produced Liquid	2011	2011	210 bbl	Existing	N/A	NA
TK-3	8E	Produced Liquid	2016	2016	100 bbl	New	N/A	NA

¹ For Emission Units (or Sources) use the following numbering system: 1S, 2S, 3S,... or other appropriate designation.

² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

³ When required by rule

⁴ New, modification, removal, existing

⁵ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

⁶ For ERDs use the following numbering system: 1D, 2D, 3D,... or other appropriate designation.

	Source	es of fu			de loading operations, ach associated source of				emissions,	etc.
Source/Equipmen	t: Facility-	Wide		Ose extra pages for e	ach associated source of	n cqui		cessary.		
Leak Detection M				idible, visual, and tory (AVO) inspections	□Infrared (FLIR) cameras		Other (please of	lescribe)		X None required*
Is the facility sub	ject to quar	terly LD.	AR mo	nitoring under 40CFR60 Su	bpart OOOOa? X Yes 🗆] No. If n	o, why?			
Component	Closed			Source of	of Leak Factors		ream type		Estimated Emis	sions (tpy)
Туре	Vent System	Со	unt	(EPA, o	ther (specify))	(ga	as, liquid, etc.)	VOC	HAP	GHG (CO ₂ e)
Pumps	□ Yes X No	9		13.3 scf/hr/component, Pl	hysical Count		Gas Liquid Both	3.16	<0.001	498.15
Valves	□ Yes X No	205		0.027 scf/hr/component,	0.027 scf/hr/component, Valve maintenance records			0.15	<0.001	23.03
Safety Relief Valves	□ Yes X No	24		0.040 scf/hr/component, Relief valve test records/component count			Gas Liquid Both	0.16	<0.001	4.00
Open Ended Lines	□ Yes X No	5		0.061 scf/hr/component, one per tank			Gas Liquid Both	0.01	<0.001	1.27
Sampling Connections	□ Yes □ No						Gas Liquid Both			
Connections(Not sampling)	□ Yes X No	496		0.003 scf/hr/component, I	Drawings		Gas Liquid Both	0.04	<0.001	6.19
Compressors**	□ Yes X No						Gas Liquid Both			
Flanges	□ Yes □ No	292		0.003 scf/hr/component, Drawings			as Liquid Both	0.02	<0.001	3.65
Other ¹	□ Yes □ No						Gas Liquid Both			

*None required to date, will complete necessary LDAR per the requirements of Subpart OOOOa by June 3, 2017

**Compressor fugitive emissions accounted for in compressor blowdown in Attachment S

Please provide an explanation of the sources of fugitive emissions (e.g. pigging operations, equipment blowdowns, pneumatic controllers, etc.): Pigging operations and equipment blowdowns

Please indicate if there are any closed vent bypasses (include component):

NA

Specify all equipment used in the closed vent system (e.g. VRU, ERD, thief hatches, tanker truck loading, etc.)

NA

ATTACHMENT K – STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water. (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). **Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.**

The following information is **REQUIRED**:

 \Box Composition of the representative sample used for the simulation

- \Box For each stream that contributes to flashing emissions:
- \Box Temperature and pressure (inlet and outlet from separator(s))
- \square Simulation-predicted composition
- \Box Molecular weight
- \Box Flow rate

 \square Resulting flash emission factor or flashing emissions from simulation

□ Working/breathing loss emissions from tanks and/or loading emissions if simulation is used to quantify those emissions

Additional information may be requested if necessary.

GENERAL INFORMATION

1. Bulk Storage Area Name Goff West Compressor Station	2. Tank Name: TK-3				
3. Emission Unit ID number TK-3	4. Emission Point ID number: 8E				
5. Date Installed, Modified or Relocated (for existing tanks)	6. Type of change:				
2016	X New construction \Box New stored material \Box Other				
Was the tank manufactured after August 23, 2011?	Relocation				
X Yes 🗆 No					
A Tes L NO					
7A. Description of Tank Modification (<i>if applicable</i>)					
7B. Will more than one material be stored in this tank? If so, a	separate form must be completed for each material.				
\Box Yes X No					
7C West LICEDA Tentes simulation as from a stiling do					
7C. Was USEPA Tanks simulation software utilized?					
□ Yes X No					
If Yes, please provide the appropriate documentation and items 8-42 below are not required.					
	-				

TANK INFORMATION

8. Design Capacity (specify barrels or gallons). Use the inte	8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height.					
210 bb1						
9A. Tank Internal Diameter (ft.) 10	9B. Tank Internal Height (ft.) 15					
10A. Maximum Liquid Height (ft.) 12.75	10B. Average Liquid Height (ft.) 12.75					
11A. Maximum Vapor Space Height (ft.) 2.25	11B. Average Vapor Space Height (ft.)					
12. Nominal Capacity (specify barrels or gallons). This is al	so known as "working volume". 210 bbl					
13A. Maximum annual throughput (gal/yr) 458,640	13B. Maximum daily throughput (gal/day) 1,256					
14. Number of tank turnovers per year 52	15. Maximum tank fill rate (gal/min) 0.04					
16. Tank fill method X Submerged	Bottom Loading					
17. Is the tank system a variable vapor space system? \Box Y	es X No					
If yes, (A) What is the volume expansion capacity of the syste	em (gal)?					
(B) What are the number of transfers into the system p	er year?					
18. Type of tank (check all that apply):						
X Fixed Roof \Box vertical \Box horizontal \Box flat ro	of \Box cone roof \Box dome roof \Box other (describe)					
□ External Floating Roof □ pontoon roof □ doub	ble deck roof					
Domed External (or Covered) Floating Roof						
□ Internal Floating Roof □ vertical column support	□ self-supporting					
□ Variable Vapor Space □ lifter roof □ diaphrag	m					
\Box Pressurized \Box spherical \Box cylindrical						
□ Other (describe)						

PRESSURE/VACUUM CONTROL DATA

19. Check as many as apply:									
X Does Not Apply	t Apply 🗌 Rupture Disc (psig)								
□ Inert Gas Blanket of	\Box Inert Gas Blanket of \Box Carbon Adsorption ¹								
□Vent to Vapor Combust	ion Devic	e ¹ (vapor	combusto	rs, flares, t	hermal oxi	dizers, end	closed com	bustors)	
Conservation Vent (psi	ig)□Con	denser ¹							
Vacuum Setting		Pressure	Setting						
Emergency Relief Value	ve (psig)								
Vacuum Setting		Pressure	Setting						
□ Thief Hatch Weighted □	∃Yes □	No							
¹ Complete appropriate Air	r Pollution	n Control	Device Sh	eet					
20. Expected Emission Ra	te (submi	t Test Da	ta or Calcu	lations he	re or elsew	here in the	e applicatio	on).	
Material Name	Flashi	ng Loss	Breathi	ng Loss	Working Loss		Total		Estimation
							Emissi	ons	Method ¹
							Loss (VOC)	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
Produced Liquid							0.0028	0.0121	MB

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

TANK CONSTRUCTION AND OPERATION INFORMATION							
21. Tank Shell Construction:							
X Riveted 🛛 Gunite lined 🗆 Epoxy-	-coated rivets \Box Oth	ner (desc	cribe)				
21A. Shell Color: Tan21B. Roof Color: Tan21C. Year Last Painted:2015							
22. Shell Condition (if metal and unlined):							
X No Rust Light Rust Dense Rust Not applicable							
22A. Is the tank heated? \Box Yes X No	22B. If yes, operating t	emperati	ire:	22C. If yes tank?	s, how is heat provided to		
23. Operating Pressure Range (psig):							
Must be listed for tanks using VRUs with							
24. Is the tank a Vertical Fixed Roof Tank ? X Yes □No	24A. If yes, for dome	roof prov	ide radius (ft):	24B. If yes	s, for cone roof, provide slop (ft/ft):		
25. Complete item 25 for Floating Roof Tanks	\square Does not apply	Х					
25A. Year Internal Floaters Installed:							
25B. Primary Seal Type (check one):	llic (mechanical) shoe	seal	□ Liquid mou	nted resilie	nt seal		
	ther (describe):		1				
25C. Is the Floating Roof equipped with a seco		□No					
	-			(1 '1)			
25D. If yes, how is the secondary seal mounted				(describe)			
25E. Is the floating roof equipped with a weath	er shield? 🛛 Yes	□ N	0				
25F. Describe deck fittings:							
26. Complete the following section for Interna	l Floating Roof Tanks	X Does	not apply				
26A. Deck Type: Bolted W	Velded	26B. I	For bolted decks,	provide decl	k construction:		
26C. Deck seam. Continuous sheet constructio	n:						
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide	e 🛛 5 x 7.5 ft. wide	□ 5 x	12 ft. wide] other (de	scribe)		
	of deck (ft ²):		For column suppo	7	26G. For column supported		
			# of columns:		tanks, diameter of column:		
27. Closed Vent System with VRU? Yes	X No			•			
28. Closed Vent System with Enclosed Combus							
SITE INFORMATION							
29. Provide the city and state on which the data	in this section are based	Charle	ston. WV				
30. Daily Avg. Ambient Temperature (°F):54.7				mum Tempe	rature (°F): 65.5		
32. Annual Avg. Minimum Temperature (°F): 4	44	33. Av	g. Wind Speed	(mph): 6.3			
34. Annual Avg. Solar Insulation Factor (BTU/	'ft ² -day):1123	35. At	mospheric Press	ure (psia):14	.617		
LIQUID INFORMATION		•					
36. Avg. daily temperature range of bulk	36A. Minimum (°F):	52.2	36B. Maximum (°F): 66.7				
liquid (°F):14.5							
37. Avg. operating pressure range of tank (psig): 0.4525	37A. Minimum (psig) 0.2191	:		37B. Maximum (psig): 0.9075			
38A. Minimum liquid surface temperature (°F)			Corresponding va				
39A. Avg. liquid surface temperature (°F):56.3		39B. Corresponding vapor pressure (psia) :0.4525					
40A. Maximum liquid surface temperature (°F)			Corresponding va		(psia): 0.9075		
41. Provide the following for each liquid or gas			itional pages if r	iecessary.			
41A. Material name and composition:	Produce Liquid 100%						
41B. CAS number: 41C. Liquid density (lb/gal):	B. CAS number: NA C. Liquid density (lb/gal): 8.33						
41D. Liquid density (10/gar).	18.02						
41E. Vapor molecular weight (lb/lb-mole):	18.02						
41F. Maximum true vapor pressure (psia):	1.0						
41G. Maximum Reid vapor pressure (psia):	0.46						
41H. Months Storage per year.	12						
From:Jan. To: Dec.	12						
42. Final maximum gauge pressure and							
temperature prior to transfer into tank used as	0/Ambient						
inputs into flashing emission calculations.	o, ranoront						

ATTACHMENT K – STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water. (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). **Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.**

The following information is **REQUIRED**:

□Composition of the representative sample used for the simulation □For each stream that contributes to flashing emissions:

 \Box Temperature and pressure (inlet and outlet from separator(s))

□ Simulation-predicted composition

□Molecular weight

□Flow rate

□Resulting flash emission factor or flashing emissions from simulation

□Working/breathing loss emissions from tanks and/or loading emissions if simulation is used to quantify those emissions

Additional information may be requested if necessary.

GENERAL INFORMATION

1. Bulk Storage Area Name: Goff M&R	2. Tank Name: TK-1				
3. Emission Unit ID number TK-1	4. Emission Point ID number: 7E				
5. Date Installed , Modified or Relocated (for existing tanks)	6. Type of change:				
2011	\Box New construction \Box New stored material X Other				
Was the tank manufactured after August 23, 2011?	Relocation				
X Yes 🗆 No					
7A. Description of Tank Modification (<i>if applicable</i>)					
7B. Will more than one material be stored in this tank? If so, a	separate form must be completed for each material.				
□ Yes X No					
7C. Was USEPA Tanks simulation software utilized?					
□ Yes X No					
If Yes, please provide the appropriate documentation and items 8-42 below are not required.					

TANK INFORMATION

8. Design Capacity (specify barrels or gallons). Use the intern	al cross-sectional area multiplied by internal height.					
100 bbl						
9A. Tank Internal Diameter (ft.) 8	9B. Tank Internal Height (ft.) 10					
10A. Maximum Liquid Height (ft.) 8.5	10B. Average Liquid Height (ft.) 8.5					
11A. Maximum Vapor Space Height (ft.) 2.25	11B. Average Vapor Space Height (ft.)					
12. Nominal Capacity (specify barrels or gallons). This is also	known as "working volume". 100 bb1					
13A. Maximum annual throughput (gal/yr) 218,400	13B. Maximum daily throughput (gal/day) 598					
14. Number of tank turnovers per year 52	15. Maximum tank fill rate (gal/min)					
16. Tank fill method X Submerged □ Splash	Bottom Loading					
17. Is the tank system a variable vapor space system? \Box Yes	X No					
If yes, (A) What is the volume expansion capacity of the system	ı (gal)?					
(B) What are the number of transfers into the system per	year?					
18. Type of tank (check all that apply):						
X Fixed Roof \Box vertical \Box horizontal \Box flat root	\Box cone roof \Box dome roof \Box other (describe)					
□ External Floating Roof □ pontoon roof □ double	e deck roof					
Domed External (or Covered) Floating Roof						
□ Internal Floating Roof □ vertical column support	□ self-supporting					
□ Variable Vapor Space □ lifter roof □ diaphragm						
\square Pressurized \square spherical \square cylindrical						
□ Other (describe)						

PRESSURE/VACUUM CONTROL DATA

19. Check as many as appl	ly:								
X Does Not Apply			[□ Ruptur	e Disc (ps	ig)			
□ Inert Gas Blanket of		Ca	arbon Adso	orption ¹					
□Vent to Vapor Combusti	ion Devic	e ¹ (vapor	combusto	rs, flares,	thermal ox	dizers, e	nclosed co	mbustors)	
□ Conservation Vent (psi	g) 🗆 Cone	denser ¹							
Vacuum Setting		Pressure	Setting						
□ Emergency Relief Valv	ve (psig)								
Vacuum Setting		Pressure	Setting						
\Box Thief Hatch Weighted \Box									
¹ Complete appropriate Air	Pollution	n Control	Device Sh	leet					
20. Expected Emission Ra							<u> </u>	-	I — · ·
Material Name	Flashi	ng Loss	Breathi	ng Loss	Workin	ig Loss	Total E		Estimation
		I		I			Loss (V	-	Method ¹
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	-
Produced Liquid	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	-	-	Method ¹ MB
Produced Liquid	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	-
Produced Liquid	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	-
Produced Liquid	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	-
Produced Liquid	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	-
Produced Liquid	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	-
Produced Liquid	b/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	-
Produced Liquid	b/hr	tpy	b/hr	tpy	b/hr		lb/hr	tpy	-

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

TANK CONSTRUCTION AND OPERATION INFORMATION							
21. Tank Shell Construction:							
X Riveted \Box Gunite lined \Box Epoxy-coated rivets \Box Other (describe)							
21A. Shell Color: Tan	21B. Roof Color: Tan			21C Year	Last Painted: 2015		
22. Shell Condition (if metal and unlined):	21D. Roof Color. Full			210. 100	Lust I united. 2015		
X No Rust 🗆 Light Rust 🗆 Dense							
22A. Is the tank heated? \Box Yes X No	22B. If yes, operating t	emperatu	re:	22C. If yes tank?	s, how is heat provided to		
23. Operating Pressure Range (psig):							
Must be listed for tanks using VRUs with	th closed vent system	ı.					
24. Is the tank a Vertical Fixed Roof Tank ?	24A. If yes, for dome		de radius (ft):	24B. If yes	s, for cone roof, provide slop (ft/ft):		
X Yes 🗆 No	5						
25. Complete item 25 for Floating Roof Tanks □ Does not apply X							
25. Complete Rein 25 for Floating Root Faints Dees not apply R							
25B. Primary Seal Type (<i>check one</i>):							
\Box Vapor mounted resilient seal \Box O	ther (describe):						
25C. Is the Floating Roof equipped with a second	ndary seal? 🛛 Yes	□No					
25D. If yes, how is the secondary seal mounted	? (check one) \Box Shoe	🗆 Ri	im 🗆 Other	(describe)			
25E. Is the floating roof equipped with a weather	er shield? 🗌 Yes	🗆 No)				
25F. Describe deck fittings:			-				
251. Describe deck muligs.							
26. Complete the following section for Interna	l Floating Roof Tanks)	Does no	ot apply				
26A. Deck Type: Bolted W	/elded	26B. F	or bolted decks,	provide decl	k construction:		
	olucu			1			
26C. Deck seam. Continuous sheet constructio	n:	•					
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide	e \Box 5 x 7.5 ft. wide	□ 5 x	12 ft. wide	other (de	scribe)		
26D. Deck seam length (ft.): 26E. Area	of deck (ft ²):	26F. Fo	or column suppo	orted	26G. For column supported		
		tanks, #	of columns:		tanks, diameter of column:		
27. Closed Vent System with VRU? □ Yes 2	X No						
28. Closed Vent System with Enclosed Combus							
SITE INFORMATION							
29. Provide the city and state on which the data	in this spation are based	Charles	ton WV				
30. Daily Avg. Ambient Temperature (°F):54.7				mum Tompo	rature (°F) :65.5		
32. Annual Avg. Minimum Temperature (°F): 4			g. Wind Speed (-	lature (1):03:5		
34. Annual Avg. Solar Insulation Factor (BTU/			nospheric Press	-	1.617		
LIQUID INFORMATION	it duy). 1125	55. mi	nospherie i ress	ure (psiu). 1-			
36. Avg. daily temperature range of bulk	36A. Minimum (°F):	52.2		36B Maxi	mum (°F): 66.7		
liquid (°F): 14.5		0212		0021 1141			
37. Avg. operating pressure range of tank	37A. Minimum (psig)	: 0.2191		37B. Maxi	mum (psig): 0.9075		
(psig): 0.4525							
38A. Minimum liquid surface temperature (°F)	: 52.2	38B. C	orresponding va	apor pressure	(psia): 0.2191		
39A. Avg. liquid surface temperature (°F): 56.					(psia): 0.4525		
40A. Maximum liquid surface temperature (°F)					(psia): 0.9075		
41. Provide the following for each liquid or gas	to be stored in the tank.	Add addi	tional pages if n	ecessary.			
41A. Material name and composition:	Produced Liqui	d					
41B. CAS number:							
41C. Liquid density (lb/gal):	8.33						
41D. Liquid molecular weight (lb/lb-mole):	18.02						
41E. Vapor molecular weight (lb/lb-mole):	18.02						
41F. Maximum true vapor pressure (psia):	1.00						
41G. Maximum Reid vapor pressure (psia):	0.46						
41H. Months Storage per year. From:January To: December	12						
42. Final maximum gauge pressure and							
temperature prior to transfer into tank used as	O/Ambient						
inputs into flashing emission calculations.	0/Ambient						

STORAGE TANK DATA TABLE

List all deminimis storage tanks (i.e. lube oil, glycol, diesel etc.)

Source ID # ¹	Status ²	Content ³	Volume ⁴
TK-2	EXIST	Oil	4200 (gal)
TK-4	NEW	Stormwater/leaked oils	2100 (gal)
TK-5	NEW	Stormwater/leaked oils	2100 (gal)

Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the compressor station. 1. Tanks should be designated T01, T02, T03, etc. Enter storage tank Status using the following: 2.

EXIST Existing Equipment

- NEW Installation of New Equipment
- REM Equipment Removed

Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, diesel, mercaptan etc. 3.

4. Enter the maximum design storage tank volume in gallons.

ATTACHMENT L – SMALL HEATERS AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART DC DATA SHEET

Complete this data sheet for each small heater and reboiler not subject to 40CFR60 Subpart Dc at the facility. *The Maximum Design Heat Input (MDHI)must be less than 10 MMBTU/hr.*

Emission Unit ID# ¹	Emission Point ID# ²	Emission Unit Description (manufacturer, model #)	Year Installed/ Modified	Type ³ and Date of Change	Maximum Design Heat Input (MMBTU/hr) ⁴	Fuel Heating Value (BTU/scf) ⁵
TEG-1	RBV-1	Exterran Reboiler	2012	NA	1.0	1030
TEG-2	RBV-2	Exterran Reboiler	2013	NA	1.0	1030

- ¹ Enter the appropriate Emission Unit (or Source) identification number for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.
- ² Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.
- ³ New, modification, removal
- ⁴ Enter design heat input capacity in MMBtu/hr.
- ⁵ Enter the fuel heating value in BTU/standard cubic foot.

ATTACHMENT M – INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. *Generator(s) and microturbine generator(s) shall also use this form*.

Emission Unit I	D#1	CE	-IR	CE	E-2R	CE	2-7R
Engine Manufac	turer/Model	CAT C	G3516B	CAT (G3516B	CAT (G3516B
Manufacturers F	Rated bhp/rpm	1380	/1400	1380	/1400	1380	/1400
Source Status ²		E	S	E	ES	١	١S
Date Installed/ Modified/Remov	ved/Relocated ³	20	011	20	011	20)17
Engine Manufac /Reconstruction	ctured Date ⁴	After	2010	Afte	r 2010	11/1	16/12
Check all applic Rules for the en EPA Certificate if applicable) ⁵	gine (include	X 40CFR60 S JJJJ Certifi 40CFR60 S IIII Certific 40CFR63 S X NESHAP Z JJJJ Window NESHAP Z Sources	ed? bubpart IIII ed? bubpart ZZZZ	X NESHAP JJJJ Window	ied? Subpart IIII ed? Subpart ZZZZ ZZZZ/ NSPS	X NESHAF JJJJ Window	ied? Subpart IIII
Engine Type ⁶		48	LB	48	LB	48	LB
APCD Type ⁷		Ox	Cat	0	Cat	Ох	Cat
Fuel Type ⁸		R	G	F	RG	F	RG
H ₂ S (gr/100 scf))	0.0	025	0.	025	0.	025
Operating bhp/r	pm	1380	/1400	1380	/1400	1380	/1400
BSFC (BTU/bhg	o-hr)	73	301	7:	301	73	301
Hourly Fuel Th	oughput	11,340 ft ³ /h gal/		11,340 ft ³ gal/	/hr /hr	11,340 ft ³ /l gal/	
Annual Fuel The (Must use 8,760) emergency gene	hrs/yr unless	MN 99.3 gal/y	Aft ³ /yr yr	MN 99.3 gal/	Aft ³ /yr yr	MMf 99.3 gal/yr	
Fuel Usage or H Operation Meter		Yes X	No 🗆	Yes X	No 🗆	Yes X	No 🗆
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)
Stack Test/Spec Sheet	NO _x	1.06	4.66	1.12	4.92	1.52	6.66
Stack Test/Spec Sheet	СО	0.5161	2.26	0.1822	0.7979	3.70	16.19
Stack Test/Spec Sheet	VOC	0.0304	0.1330	0.0607	0.2660	1.46	6.40
AP-42	SO_2	0.0021	0.0090	0.0021	0.0090	0.0021	0.0090
AP 42	PM10	0.0003	0.0012	0.0003	0.0012	0.0003	0.0012
AP 42	Formaldehyde	0.1853	0.8117	0.1853	0.8117	0.2100	0.9200
AP 42	Total HAPs	0.2534	1.11	0.2534	1.11	0.2781	1.22
AP 42	GHG (CO ₂ e)	386.18	1691	386.18	1691	386.18	1691

ATTACHMENT M – INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. *Generator(s) and microturbine generator(s) shall also use this form.*

Emission Unit I	D#1	CE	-8R	CE	-5R	CE	E-6R
Engine Manufac	cturer/Model	CAT C	G3516B	CAT G3	608TALE	CAT G3	606TALE
Manufacturers H	Rated bhp/rpm	1380	/1400	2370	/1000	1775	5/1000
Source Status ²		N	IS	E	S	E	ES
Date Installed/ Modified/Remo	ved/Relocated ³	20	017	20)15	20	015
Engine Manufac /Reconstruction	ctured Date ⁴	3/17/	/2013	4/11	/2011	12/12	2/2014
Check all applic Rules for the en EPA Certificate if applicable) ⁵	gine (include	X 40CFR60 S JJJJ Certifi 40CFR60 S IIII Certific 40CFR63 S X NESHAP Z JJJJ Window NESHAP Z Sources	ed? ubpart IIII ed? ubpart ZZZZ	X NESHAP JJJJ Window	ed? Subpart IIII ed? Subpart ZZZZ	X NESHAR JJJJ Window	ied? Subpart IIII ed? Subpart ZZZZ ? ZZZZ/ NSPS
Engine Type ⁶		4S	LB	48	LB	45	SLB
APCD Type ⁷		Ox	Cat	Ox	Cat	Ох	cat
Fuel Type ⁸		R	G	F	kG	F	RG
H ₂ S (gr/100 scf))	0.0)25	0.	025	0.	025
Operating bhp/r	pm	1380	/1400	2370	/1000	1775	5/1000
BSFC (BTU/bhj	p-hr)	7,3	301	6,	677	6,	697
Hourly Fuel Th	roughput	11,340 ft gal/	³ /hr hr	17,940 ft ³ /gal/		13,440 ft ³ / gal/	
Annual Fuel The (Must use 8,760) emergency gene	hrs/yr unless	MM 99.3 gal/y	1ft ³ /yr /r		Aft ³ /yr /yr	MMf 117.7 gal/y	
Fuel Usage or H Operation Meter		Yes X	No 🗆	Yes X	No 🗆	Yes X	No 🗆
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)
OT(Stack Test/Spec Sheet)	NO _x	1.52	6.66	1.15	5.02	1.48	6.50
OT(Stack Test/Spec Sheet)	со	3.70	16.19	0.0521	0.2284	0.2734	1.20
OT(Stack Test/Spec Sheet)	VOC	1.46	6.40	0.1043	0.4567	0.1953	0.8552
AP-42	SO ₂	0.0021	0.0090	0.0035	0.0155	0.0027	0.0116
AP-42	PM10	0.0003	0.0012	0.0005	0.0020	0.0003	0.0015
AP-42	Formaldehyde	0.2100	0.9200	0.3184	1.39	0.2387	1.05
AP-42	Total HAPs	0.2781	1.22	0.4353	1.91	0.3263	1.43
AP-42	GHG (CO ₂ e)	386.18	1691	663.22	2,905	496.72	2,176

- 1 Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc.Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc.If more than three (3) engines exist, please use additional sheets.
- 2 Enter the Source Status using the following codes:

NS	Construction of New Source (installation)	ES	Existing Source
MS	Modification of Existing Source	RS	Relocated Source
REM	Removal of Source		

- 3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.
- 4 Enter the date that the engine was manufactured, modified or reconstructed.
- 5 Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6 Enter the Engine Type designation(s) using the following codes:

2SLB	Two Stroke Lean Burn	4SRB	Four Stroke Rich Burn
4SLB	Four Stroke Lean Burn		

7 Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:

	A/F HEIS PSC NSCR SCR	Air/Fuel Ratio High Energy Ignition System Prestratified Charge Rich Burn & Non-Selective Catalytic Reduction Lean Burn & Selective Catalytic Reduction	L	IR SIPC LEC OxCat	Ignition Retard screw-in Preco Low Emission Oxidation Cata	mbustion Chan Combustion	nbers	
8	Enter th	e Fuel Type using the following codes:						
	PQ	Pipeline Quality Natural Gas	RG	Raw Natura	ll Gas /Productio	n Gas	D	Diesel
9	Enter t	he Potential Emissions Data Reference des	ignation	using the f	following code:	s. Attach all 1	refer	ence data used.
	MD	Manufacturer's Data GRI-HAPCalc [™]			2-42			
	GR	UKI-MAPUAIC		OT Ot	her	(please list)		

10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

Engine Air Pollution Control Device (Emission Unit ID#CE-1R, use extra pages as necessary)

Air Pollution Control Device Manufacturer's Data Sheet included? Yes \Box No X

\Box NSCR \Box SC	R X Oxidation Catalyst
Provide details of process control used for proper mixing/	control of reducing agent with gas stream:
Manufacturer: EMIT	Model #: ELX-4200Z
Design Operating Temperature: 800°F	Design gas volume: 9000 scfm
Service life of catalyst: 3-5 Yr.	Provide manufacturer data? 🗆 Yes 🛛 X No
Volume of gas handled: 9042 acfm at 982°F	Operating temperature range for NSCR/Ox Cat: From 600°F to 1250°F
Reducing agent used, if any: NA	Ammonia slip (ppm): NA
Pressure drop against catalyst bed (delta P): 3.5 inches of	H ₂ O
Provide description of warning/alarm system that protects	unit when operation is not meeting design conditions:
Over Temperature Warning to Shut Down Automatically	
Is temperature and pressure drop of catalyst required to be	monitored per 40CFR63 Subpart ZZZZ?
□ Yes XNo	
	aced (hours of operation)?

Engine Air Pollution Control Device (Emission Unit ID#CE-2R, use extra pages as necessary)

Air Pollution Control Device Manufacturer's Data Sheet included? Yes \Box No X

\Box NSCR \Box S	CR X Oxidation Catalyst
Provide details of process control used for proper mixing	g/control of reducing agent with gas stream:
Manufacturer: EMIT	Model #: ELH-4200Z
Design Operating Temperature: 800°F	Design gas volume: 9000 scfm
Service life of catalyst: 3-5 Yr.	Provide manufacturer data? 🗆 Yes 🛛 X No
Volume of gas handled: 9042 acfm at 982°F	Operating temperature range for NSCR/Ox Cat: From 600°F to 1250°F
Reducing agent used, if any: NA	Ammonia slip (ppm): NA
Pressure drop against catalyst bed (delta P): 3.5 inches of	of H ₂ O
Provide description of warning/alarm system that protec	ts unit when operation is not meeting design conditions:
Provide description of warning/alarm system that protec Over Temperature Warning to Shut Down Automatically Is temperature and pressure drop of catalyst required to Yes XNo	
Over Temperature Warning to Shut Down Automatically Is temperature and pressure drop of catalyst required to	be monitored per 40CFR63 Subpart ZZZ2?

Engine Air Pollution Control Device (Emission Unit ID#CE-5R, use extra pages as necessary)

Air Pollution Control Device Manufacturer's Data Sheet included? Yes 🗆 No X

		X Oxidation Catalyst
Provide details of process control used for prope	r mixing/control of	reducing agent with gas stream:
Manufacturer: DCL	Mode	1 #: D106-01-4QIT 36
Design Operating Temperature: 800°F	Desig	n gas volume: 9000 scfm
Service life of catalyst: 3-5 Yr.	Provi	de manufacturer data? □Yes X No
Volume of gas handled: 9042 acfm at 982°F		ting temperature range for NSCR/Ox Cat: 600°F to 1250°F
Reducing agent used, if any: NA	Amm	onia slip (ppm): NA
Pressure drop against catalyst bed (delta P): 3.5	inches of H ₂ O	
Provide description of warning/alarm system that Over Temperature Warning to Shut Down Autom	•	operation is not meeting design conditions:
Is temperature and pressure drop of catalyst required Temperature \Box Yes XNo	ired to be monitored	per 40CFR63 Subpart ZZZZ?
How often is catalyst recommended or required t 26,280 – 43,800 hrs.	to be replaced (hours	of operation)?
How often is performance test required? X Initial Annual X Every 8 760 hours of operation		

X Every 8,760 hours of operation Field Testing Required No performance test required. If so, why (please list any maintenance required and the applicable sections in NSPS/GACT,

Engine Air Pollution Control Device (Emission Unit ID#CE-6R, use extra pages as necessary)				
Air Pollution Control D	evice Manufacturer's Data Sheet included? Yes □ No X			
□NSCR	SCR X Oxidation Catalyst			
Provide details of process control used for proper mi	ixing/control of reducing agent with gas stream:			
Manufacturer: DCL	Model #: DC64L2			
Design Operating Temperature: 800°F	Design gas volume: 9000 scfm			
Service life of catalyst: 3-5 Yr.	Provide manufacturer data? □Yes X No			
Volume of gas handled: 9042 acfm at 982°F	Operating temperature range for NSCR/Ox Cat: From 600°F to 1250°F			
Reducing agent used, if any: NA	Ammonia slip (ppm): NA			
Pressure drop against catalyst bed (delta P): 3.5 inch	nes of H ₂ O			
Provide description of warning/alarm system that pro Over Temperature Warning to Shut Down Automatic Is temperature and pressure drop of catalyst required				
□ Yes XNo	I I I I I I I I I I			
How often is catalyst recommended or required to be 26,280 – 43,800 hrs.	e replaced (hours of operation)?			
How often is performance test required? X Initial Annual X Every 8,760 hours of operation Field Testing Required				

☐ No performance test required. If so, why (please list any maintenance required and the applicable sections in NSPS/GACT,

Engine Air Pollution Control Device (Emission Unit ID#CE-7R, use extra pages as necessary)

Air Pollution Control Device Manufacturer's Data Sheet included? Yes \Box No X

\Box NSCR \Box	SCR X Oxidation Catalyst
Provide details of process control used for proper mixin	g/control of reducing agent with gas stream:
Manufacturer: EMIT	Model #: ELX-5000Z
Design Operating Temperature: 800°F	Design gas volume: 9000 scfm
Service life of catalyst: 3-5 Yr.	Provide manufacturer data? 🗆 Yes 🛛 X No
Volume of gas handled: 9042 acfm at 982°F	Operating temperature range for NSCR/Ox Cat: From 600°F to 1250°F
Reducing agent used, if any: NA	Ammonia slip (ppm): NA
Pressure drop against catalyst bed (delta P): 3.5 inches	of H ₂ O
Provide description of warning/alarm system that protect	ets unit when operation is not meeting design conditions:
Provide description of warning/alarm system that protect Over Temperature Warning to Shut Down Automatically Is temperature and pressure drop of catalyst required to Yes XNo	y
Over Temperature Warning to Shut Down Automatically Is temperature and pressure drop of catalyst required to	be monitored per 40CFR63 Subpart ZZZ?

Engine Air Pollution Control Device (Emission Unit ID#CE-8R, use extra pages as necessary)				
Air Pollution C		turer's Data Sheet included? Io X		
		X Oxidation Catalyst		
Provide details of process control used for	proper mixing/control of	f reducing agent with gas stream:		
Manufacturer: DCL	Mo	del #: DC64L2		
Design Operating Temperature: 800°F	De	ign gas volume: 9000 scfm		
Service life of catalyst: 3-5 Yr.	Pro	vide manufacturer data? □Yes X No		
Volume of gas handled: 9042 acfm at 982°		erating temperature range for NSCR/Ox Cat: m 600°F to 1250°F		
Reducing agent used, if any: NA	Am	monia slip (ppm): NA		
Pressure drop against catalyst bed (delta P)	: 3.5 inches of H ₂ O			
Provide description of warning/alarm syste Over Temperature Warning to Shut Down A	L	n operation is not meeting design conditions:		
Is temperature and pressure drop of catalys	t required to be monitor	ed per 40CFR63 Subpart ZZZZ?		
How often is catalyst recommended or requ 26,280 – 43,800 hrs.	nired to be replaced (how	urs of operation)?		
How often is performance test required? X Initial Annual X Every 8,760 hours of operation Field Testing Required				

☐ Field Testing Required ☐ No performance test required. If so, why (please list any maintenance required and the applicable sections in NSPS/GACT,

ATTACHMENT N – TANKER TRUCK LOADING DATA SHEET

Complete this data sheet for each new or modified bulk liquid transfer area or loading rack at the facility. This is to be used for bulk liquid transfer operations to tanker trucks. Use extra pages if necessary.

Truck Loadout Collection Efficiencies

The following applicable capture efficiencies of a truck loadout are allowed:

- For tanker trucks passing the MACT level annual leak test 99.2%
- For tanker trucks passing the NSPS level annual leak test 98.7%
- For tanker trucks not passing one of the annual leak tests listed above 70%

Compliance with this requirement shall be demonstrated by keeping records of the applicable MACT or NSPS Annual Leak Test certification for *every* truck and railcar loaded/unloaded. This requirement can be satisfied if the trucking company provided certification that its entire fleet was compliant. This certification must be submitted in writing to the Director of the DAQ. These additional requirements must be noted in the Registration Application and will be noted on the issued G35-D Registration.

Emission Unit ID#: LO-1			Emission Point ID#:			Year Installed/Modified:		
Emission Unit Description: Produced Water Tank Truck Loading TK-1, TK-3								
			Loading .	Area Data				
Number of Pumps: NANumber of Liquids Loaded:Max number of trucks loading (1) time: 1						f trucks loading at one		
Are tanker trucks pressu If Yes, Please describe:	are tested for 1	eaks at this	s or any other	r location?	□ Yes	🗆 No 🗙 Not F	Required	
Provide description of c	closed vent sys	em and an	y bypasses.	NA				
Are any of the following Closed System to tag Closed System to tag Closed System to tag Closed System to tag Pro	nker truck pass nker truck pass nker truck not	ing a MAC ing a NSP passing an	CT level annu S level annua annual leak	al leak test? test and has		urn? čer point as a wh	nole)	
Time	Jan – I	-		- Jun		Jul – Sept	Oct - Dec	
Hours/day	2			2		2	2	
Days/week	1			1	1		1	
	В	ulk Liquid	Data (use e	extra pages a	s necess	ary)		
Liquid Name	Produc	tion Liqui	d					
Max. Daily Throughput (1000 gal/day)	21.4							
Max. Annual Throughpu (1000 gal/yr)	ut 151.2							
Loading Method ¹	BF							
Max. Fill Rate (gal/min) 60							
Average Fill Time (min/loading)	Fime 59							
Max. Bulk Liquid Temperature (°F)	80	80						
True Vapor Pressure ² 10.2								
Cargo Vessel Condition ³ C								
Control Equipment or Method ⁴	NA							
Max. Collection Efficie (%)	ncy 0							

Max. Control (%)	Efficiency	NA	
Max.VOC Emission	Loading (lb/hr)	< 0.0174	
Rate	Annual (ton/yr)	<0.0761	
Max.HAP	Loading (lb/hr)	<0.0010	
Emission Rate	Annual (ton/yr)	<0.0044	
Estimation Method ⁵		МВ	

1	BF	Bottom Fill	SP	Splash Fill	SUB	Submerged Fill
2	At maxin	um bulk liquid temperature				
3	В	Ballasted Vessel	С	Cleaned	U	Uncleaned (dedicated service)

MB

4

5

 O
 Other (describe)

 List as many as apply (complete and submit appropriate Air Pollution Control Device Sheets)

Dedicated Vapor Balance (closed system) CAVB

Carbon Adsorption Enclosed Combustion Device ECD F Flare

Thermal Oxidization or Incineration EPA Emission Factor in AP-42 то

EPA

Material Balance ТМ Test Measurement based upon test data submittal 0 Other (describe)

ATTACHMENT O – GLYCOL DEHYDRATION UNIT DATA SHEET

Complete this data sheet for each Glycol Dehydration Unit, Reboiler, Flash Tank and/or Regenerator at the facility. Include gas sample analysis and GRI- GLYCalc [™] input and aggregate report. Use extra pages if necessary.						
Manufacturer: Exte	rran		Model: HANO-486836035			
Max. Dry Gas Flow	Rate: 67 mmscf/day	7	Reboiler Design He	at Input: 1 MMBTU	/hr	
Design Type: X TEC	G □ DEG□	EG	Source Status ¹ : MS			
Date Installed/Mod	ified/Removed ² : 2017	7	Regenerator Still V	ent APCD/ERD ³ : NA		
Control Device/ERI	D ID# ³ : NA		Fuel HV (BTU/scf):	1020		
H ₂ S Content (gr/100	0 scf): <0.25		Operation (hours/ye	ar): 8760		
Pump Rate (scfm):	46.5					
Water Content (wt 9	%) in: Wet Gas:Satu	trated 0.17	Dry Gas: 0.014			
Is the glycol dehydi	ation unit exempt fro	om 40CFR63 Section	764(d)? X Yes	□ No: If Yes, answer	the following:	
The actual annual average flowrate of natural gas to the glycol dehydration unit is less than 85 thousand standard cubic meters per day, as determined by the procedures specified in $63.772(b)(1)$ of this subpart. \Box Yes X No The actual average emissions of benzene from the glycol dehydration unit process vent to the atmosphere are less than 0.90 megagram per year (1 ton per year), as determined by the procedures specified in $63.772(b)(2)$ of this subpart. X Yes						
□ No Is the glycol dehydration unit located within an Urbanized Area (UA) or Urban Cluster (UC)? □ Yes X No						
		being utilized?			A 110	
Recycling the glycol dehydration unit back to the flame zone of the reboiler. X Yes □ No If yes: □ Is the reboiler configured to accept flash drum vapors (straight from the glycol dehydrator)? □ Yes X No Is the reboiler configured to accept still vent vapors (after a condenser)? □ Yes X No Is the reboiler configured to accept both in the same operation? □ Yes X No Recycling the glycol dehydration unit back to the flame zone of the reboiler and mixed with fuel. □ Yes X No						
X Still vent emissi	ons to the atmosphere ons stopped with value		e reboiler?			
Please indicate if th	e following equipme	nt is present. nuously burns conder	nser or flash tank vap	ors		
		Control Device	Technical Data			
	Pollutants Controlled	1	Manufacturer's	Guaranteed Control	Efficiency (%)	
NA			NA			
		Emissio	ons Data			
Emission Unit ID / Emission Point ID ⁴	Description	Calculation Methodology ⁵	PTE ⁶	Controlled Maximum Hourly Emissions (lb/hr)	Controlled Maximum Annual Emissions (tpy)	
		AP-42	NO _x	0.0971	0.4252	
TEC 1/DDV 1	Daheller V (AP-42	СО	0.0816	0.3572	
TEG-1/RBV-1	Reboiler Vent	AP-42	VOC	0.0053	0.0234	
		AP-42	SO ₂	0.0006	0.0026	

		AP-42	PM_{10}	0.0074	0.0323
		AP-42	GHG (CO ₂ e)	116.50	510.29
		GRI-GlyCalc TM	VOC	0.6765	2.96
		GRI-GlyCalc TM	Benzene	0.0006	0.0026
	Glycol	GRI-GlyCalc TM	Toluene	0.0011	0.0048
TEG-1/RSV-1	Regenerator Still Vent	GRI-GlyCalc TM	Ethylbenzene	0.0018	0.0081
		GRI-GlyCalc TM	Xylenes	0.0027	0.119
		GRI-GlyCalc TM	n-Hexane	0.0208	0.0909
		GRI-GlyCalc [™]	VOC	NA	NA
		GRI-GlyCalc TM	Benzene	NA	NA
N7.4	Glycol Flash	GRI-GlyCalc TM	Toluene	NA	NA
NA	Tank	GRI-GlyCalc TM	Ethylbenzene	NA	NA
		GRI-GlyCalc TM	Xylenes	NA	NA
		GRI-GlyCalc TM	n-Hexane	NA	NA

1 Enter the Source Status using the following codes:

Construction of New Source **Existing Source** NS ES MS Modification of Existing Source

- Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source), modification or 2 removal.
- 3 Enter the Air Pollution Control Device (APCD)/Emission Reduction Device (ERD) type designation using the following codes and the device ID number: CD Condenser
 - NA None
- FL Flare CC Condenser/Combustion Combination TO Thermal Oxidizer Other 0 (please list) Enter the appropriate Emission Unit ID Numbers and Emission Point ID Numbers for the glycol dehydration unit reboiler vent 4 and glycol regenerator still vent. The glycol dehydration unit reboiler vent and glycol regenerator still vent should be designated RBV-1 and RSV-1, respectively. If the compressor station incorporates multiple glycol dehydration units, a Glycol Dehydration Emission Unit Data Sheet shall be completed for each, using Source Identification RBV-2 and RSV-2, RBV-3 and RSV-3, etc.

5 Enter the Potential Emissions Data Reference designation using the following codes:

Manufacturer's Data MD ΑP AP-42

GRI-GLYCalcTM GR OT Other (please list)

Enter the Reboiler Vent and Glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs 6 per hour and tons per year. The Glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalcTM (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalcTM Aggregate Calculations Report (shall include emissions reports, equipment reports, and stream reports) to this Glycol Dehydration Emission Unit Data Sheet(s). Backup pumps do not have to be considered as operating for purposes of PTE. This PTE data shall be incorporated in the Emissions Summary Sheet.

ATTACHMENT O – GLYCOL DEHYDRATION UNIT DATA SHEET

Complete this data sheet for each Glycol Dehydration Unit, Reboiler, Flash Tank and/or Regenerator at the facility. Include gas sample analysis and GRI-GLYCalc TM input and aggregate report. Use extra pages if necessary.										
Manufacturer: Exte	•	1	Model: HANO-486836035							
Max. Dry Gas Flow	Rate: 67 mmscf/da	y	Reboiler Design Heat Input: 1 MMBTU/hr							
Design Type: X TE	G 🗆 DEG	∃ EG	Source Status ¹ : MS	-						
	ified/Removed ² : 201	.7	Regenerator Still V	ent APCD/ERD ³ : NA						
Control Device/ER	D ID# ³ : NA		Fuel HV (BTU/scf)							
H ₂ S Content (gr/10			Operation (hours/ye							
Pump Rate (scfm):	-			,						
Water Content (wt %) in: Wet Gas:Saturated 0.17 Dry Gas: 0.014										
Is the glycol dehyd	ration unit exempt fr	com 40CFR63 Section	764(d)? X Yes	□ No: If Yes, answe	er the following:					
		atural gas to the glyco ocedures specified in			l standard cubic X No					
		e from the glycol deh determined by the pro								
Is the glycol dehyd	ration unit located w	vithin an Urbanized A	rea (UA) or Urban Clu	uster (UC)? 🗆 Yes	X No					
Is a lean glycol pur	np optimization plan	being utilized? 🗆 Ye	es X No							
Recycling the glycol dehydration unit back to the flame zone of the reboiler. X Yes INO If yes: Is the reboiler configured to accept flash drum vapors (straight from the glycol dehydrator)? Yes X No Is the reboiler configured to accept still vent vapors (after a condenser)? Yes X No Is the reboiler configured to accept both in the same operation? Yes X No Recycling the glycol dehydration unit back to the flame zone of the reboiler and mixed with fuel. Yes X No										
X Still vent emissi	ons to the atmospherions stopped with val		ie reboiler?							
🔲 Flash Tank	ne following equipment system that con-	ent is present. tinuously burns conde	nser or flash tank vap	ors						
Control Device Te	chnical Data									
Pollutants Controlle	ed		Manufacturer's Gua	aranteed Control Effic	ciency (%)					
NA			NA							
Emissions Data										
				Controlled						
Emission Unit ID / Emission Point ID ⁴	Description	Calculation Methodology ⁵	PTE ⁶	Maximum Hourly Emissions (lb/hr)	Controlled Maximum Annual Emissions (tpy)					
		AP-42	NO _x	0.0971	0.4252					
		AP-42	СО	0.0816	0.3572					
		AP-42	VOC	0.0053	0.0234					
TEG-2/RBV-2	Reboiler Vent	AP-42	SO ₂	0.0006	0.0026					
		AP-42	PM ₁₀	0.0074	0.0323					
		AP-42	GHG (CO ₂ e)	116.50	510.29					

		GRI-GlyCalc TM	VOC	0.6765	2.96
		GRI-GlyCalc TM	Benzene	0.0006	0.0026
TEG-2/RSV-2	Glycol	GRI-GlyCalc TM	Toluene	0.0011	0.0048
1EG-2/KSV-2	Regenerator Still Vent	GRI-GlyCalc TM	Ethylbenzene	0.0018	0.0081
		GRI-GlyCalc TM	Xylenes	0.0027	0.119
		GRI-GlyCalc TM	n-Hexane	0.0208	0.0909
		GRI-GlyCalc TM	VOC	NA	NA
		GRI-GlyCalc TM	Benzene	NA	NA
NI A	Glycol Flash	GRI-GlyCalc TM	Toluene	NA	NA
NA	Tank	GRI-GlyCalc TM	Ethylbenzene	NA	NA
		GRI-GlyCalc TM	Xylenes	NA	NA
		GRI-GlyCalc TM	n-Hexane	NA	NA

1 Enter the Source Status using the following codes: NS Construction of New Source ES

Existing Source

MS Modification of Existing Source

2 Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source), modification or removal.

- 3 Enter the Air Pollution Control Device (APCD)/Emission Reduction Device (ERD) type designation using the following codes and the device ID number:
 - NA

5

- None Condenser FL Flare CD Condenser/Combustion Combination TO Thermal Oxidizer 0 Other
- CC (please list) Enter the appropriate Emission Unit ID Numbers and Emission Point ID Numbers for the glycol dehydration unit reboiler vent 4 and glycol regenerator still vent. The glycol dehydration unit reboiler vent and glycol regenerator still vent should be designated RBV-1 and RSV-1, respectively. If the compressor station incorporates multiple glycol dehydration units, a Glycol Dehydration Emission Unit Data Sheet shall be completed for each, using Source Identification RBV-2 and RSV-2, RBV-3 and RSV-3, etc.
 - Enter the Potential Emissions Data Reference designation using the following codes:
 - Manufacturer's Data GRI-GLYCalcTM AP-42 MD AP
 - GR OT Other (please list)
- 6 Enter the Reboiler Vent and Glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs per hour and tons per year. The Glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalcTM (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalcTM Aggregate Calculations Report (shall include emissions reports, equipment reports, and stream reports) to this Glycol Dehydration Emission Unit Data Sheet(s). Backup pumps do not have to be considered as operating for purposes of PTE. This PTE data shall be incorporated in the Emissions Summary Sheet.

ATTACHMENT P – PNEUMATIC CONTROLLERS DATA SHEET

Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015? \Box Yes \boxtimes No Please list approximate number. Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after September 18, 2015? Yes No Please list approximate number. Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015? \Box Yes \Box No Please list approximate number. Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after September 18, 2015? \Box Yes \Box No Please list approximate number.

ATTACHMENT Q – CENTRIFUGAL COMPRESSOR DATA SHEET

	re any centrifugal compressors at this facility that commenced n, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?							
	\Box Yes \boxtimes No							
	Please list:							
Emission Compressor Description Unit ID#								
	e any centrifugal compressors at this facility that commenced tion, modification or reconstruction after September 18, 2015?							
	\Box Yes \boxtimes No							
	Please list:							
Emission Unit ID#	Compressor Description							

ATTACHMENT R – RECIPROCATING COMPRESSOR DATA SHEET

DATA SHEET					
Are there any reciprocating compressors at this facility that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?					
	Yes No				
	Please list:				
Emission Unit ID#	Compressor Description				
COMP-1	Ariel F35882				
COMP-2	Ariel F36217				
	any reciprocating compressors at this facility that commenced tion, modification or reconstruction after September 18, 2015?				
	Yes No				
	Please list:				

Emission Unit ID#		Compressor Description
COMP-5	Ariel F49981	
COMP-6	Ariel F49871	
COMP-7	Ariel F40297	
COMP-8	Ariel F43118	

ATTACHMENT S – BLOWDOWN AND PIGGING OPERATIONS DATA SHEET

Will there be any blowdown and pigging operations that occur at this facility?

Please list:

Type of Event	# of Events (event/yr)	Amount Vented per event (scf/event)	MW of vented gas (lb/lb-mol)	Total Emissions (ton/yr)	VOC weight fraction	VOC emissions (ton/yr)
Compressor Blowdown	48	642.9	16.68	0.7173	7%	0.0502
Compressor Startup	6	5000	16.68	0.6974	7%	0.0488
Plant Shutdown	0					
Low Pressure Pig Venting	36	69,444	16.68	58.23	7%	4.08
High Pressure Pig Venting						

Type of Event	# of Events (event/yr)	Amount Vented per event (scf/event)	MW of vented gas (lb/lb-mol)	Total Emissions (ton/yr)	HAP weight fraction	HAPemissions (ton/yr)
Compressor Blowdown	48	642.9	16.68	0.7173	<1%*	< 0.0072
Compressor Startup	6	5,000	16.68	0.6974	<1%*	< 0.0070
Plant Shutdown	0					
Low Pressure Pig Venting	36	69,444	16.88	58.23	<1%*	<0.5823
High Pressure Pig Venting						

*Laboratory Analysis indicated each analyzed HAP was below laboratory detection limit

ATTACHMENT U-EMISSIONS CALCULATIONS

Provide detailed potential to emit (PTE) emission calculations for criteria and hazardous air pollutants (HAPs) for each emission point identified in the application. For hazardous air pollutants and volatile organic compounds (VOCs), the speciated emission calculations must be included.

Use the following guidelines to ensure complete emission calculations:

- All emission sources and fugitive emissions are included in the emission calculations, as well as all methods used to calculate the emissions.
- Proper emission point identification numbers and APCD and ERD identification numbers are used consistently in the emission calculations that are used throughout the application.
- A printout of the emission summary sheets is attached to the registration application.
- Printouts of any modeling must be included with the emission calculations. The modeling printout must show all inputs/outputs or assumptions that the modeled emissions are based upon.
- If emissions are provided from the manufacturer, the manufacturer's documentation and/or certified emissions must also be included.
- The emission calculations results must match the emissions provided on the emissions summary sheet.
- If calculations are based on a compositional analysis of the gas, attach the laboratory analysis. Include the following information: the location that the sample was taken as representative; the date the sample was taken; and, if the sample is considered representative, the reasons that it is considered representative (same gas field, same formation and depth, distance from actual site, etc.).
- Potential to emit (PTE) from the main or backup control device may be calculated based on the highest emission from a control device that could handle the stream, plus any intrinsic emission such as those from pilot flames.
- Provide any additional clarification as necessary. Additional clarification or information is especially helpful when reviewing modeling calculations to assist the engineer in understanding the basis of assumptions and/or inputs.

Please follow specific guidance provided on the emissions summary sheet when providing the calculations.

Fugitive Emission Calculations

Mountaineer Keystone - PDC West Compressor Station Plant ID# 033-00187 Fugitive Emission Calculations (See Attachment J)

Density							
Pollutant	Density (kg/m ³)	Density (lb/scf)					
VOC	1.38	0.0860					
CH4	0.656	0.0409					

	Emission Factors ¹								
Component Type	Count ⁵	(scf /hr/ component)							
Pumps	9	13.3							
Valves	205	0.027							
Safety Relief Valves	24	0.04							
Open Ended Lines	5	0.061							
Connections	496	0.003							
Flanges	292	0.003							

Emissions							
Componenty Type	VOC Emissions (tons/yr) ^{2,3}	Methane (tons/yr) ⁴	CO2 eq (tons/yr)				
Pumps	3.16	19.93	498.15				
Valves	0.15	0.92	23.03				
Safety Relief Valves	0.0253	0.16	3.9952				
Open Ended Lines	0.01	0.05	1.27				
Connections	0.04	0.25	6.19				
Flanges	0.02	0.15	3.65				
Total	3.40	21.45	536.29				

Emissions are calculated as follows:

Emissions = Emission Factor (scf/hr/component) * Component Count * Density (lb/scf) * 8,760 (hrs/yr) * Constituent wt%

CO2e Emissions = Methane Emissions (tons/yr) * 25 (GWP)

¹ Emission Factors for Pumps, Valves. Safety Relief Valves, and Open Ended Lines taken from 40 CFR 98 Table W-1A. Flanges emission factor assumed to be equal to Connections emission factor

Notes:

² VOC calculated using gas analysis average of VOCs

³ VOC weight % approximated to be 7% of fugitive emissions based on gas analysis

⁴ Methane weight % assumed to be about 93% of fugitive emissions

⁵ Component counts were either taken from maintenance records or physiclaly counted on drawings or at the site

Tank Emission Calculations

Mountaineer Keystone - PDC West Compressor Station Plant ID# 033-00187 TK-3 Emission Calculation (See Attachment K)

Throughput ²	bbl/yr	gal/yr	L/yr		
Throughput ²	10,920	458,640	1,735,952		
Compound	Concentration ¹ (ug/L)	Emissions (g/yr)	Emissions (lbs/yr)	Emissions (lbs/hr)	Emissions (tons/yr)
Methane	18000	31,247	68.89	0.0079	0.0344
Ethane	2400	4,166	9.19	0.0010	0.0046
Ethene	0.26	0.4513	0.0010	1.14E-07	4.98E-07
Propane	150	260.39	0.5741	6.55E-05	0.0003
iso-Butane	7.5	13.02	0.0287	3.28E-06	1.44E-05
n-Butane	17	29.51	0.0651	7.43E-06	3.25E-05
Benzene	260	451.35	0.9951	0.0001	0.0005
Toluene	240	416.63	0.9185	0.0001	0.0005
Ethylbenzene	11	19.10	0.0421	4.81E-06	2.10E-05
m,p-Xylene	50	86.80	0.1914	2.18E-05	9.57E-05
o-Xylene	27	46.87	0.1033	1.18E-05	5.17E-05

TK-3 - 210bbl Capacity

GHG Total	-	62,494	137.78	0.0157	0.0689
CO2eq	-	3,124,714	6,889	0.7864	3.44
VOC Total	-	10,981	24.21	0.0028	0.0121
HAPS Total	-	2,041	4.50	0.0005	0.0023

Emissions are calculated as follows:

Emissions = Throughput (L/yr) * Concentration (ug/L)

¹ Concentrations of Produced Liquid is based on analytical results dated November 11, 2016

² The tank is fully unloaded once per week (52 weeks/yr * 210 bbl = 10,920 bbl/yr)

Assumptions:

- All VOC, HAPS, and GHG present in the Produced Liquid is emitted

- Produced liquid is mostly water with minimal amounts of VOC, HAPS, and GHG

- VOC, HAPS, and GHG totals from the above calculation is doubled for each tank in the facility total to overestimate any other potential VOCs not detected in the analytical results

Mountaineer Keystone - PDC West Compressor Station Plant ID# 033-00187 TK-1 Emission Calculation (See Attachment K)

gal/yr

5,200	218,400	826,644		
Concentration ¹ (ug/L)	Emissions (g/yr)	Emissions (lbs/yr)	Emissions (lbs/hr)	Emissions (tons/yr)
10000	8,266	18.22	0.0021	0.0091
12000	9,920	21.87	0.0025	0.0109
4300	3,555	7.84	0.0009	0.0039
440	363.72	0.8019	9.15E-05	0.0004
780	644.78	1.42	0.0002	0.0007
860	710.91	1.57	0.0002	0.0008
-	16,533	36.45	0.0042	0.0182
-	826,644	1,822	0.2080	0.9112
-	30,387	66.99	0.0076	0.0335
-	1,422	3.13	0.0004	0.0016
	Concentration ¹ (ug/L) 10000 12000 4300 440 780	Concentration ¹ (ug/L) Emissions (g/yr) 10000 8,266 12000 9,920 4300 3,555 440 363.72 780 644.78 860 710.91 - 16,533 - 826,644 - 30,387	Concentration ¹ (ug/L) Emissions (g/yr) Emissions (lbs/yr) 10000 8,266 18.22 12000 9,920 21.87 4300 3,555 7.84 440 363.72 0.8019 780 644.78 1.42 860 710.91 1.57 - 16,533 36.45 - 826,644 1,822 - 30,387 66.99	(ug/L)(g/yr)(lbs/yr)(lbs/hr)100008,26618.220.0021120009,92021.870.002543003,5557.840.0009440363.720.80199.15E-05780644.781.420.0002860710.911.570.0022-16,53336.450.0042-826,6441,8220.2080-30,38766.990.0076

TK-1 - 100bbl Capacity

Throughput²

bbl/yr

Emissions are calculated as follows:

Emissions = Throughput (L/yr) * Concentration (ug/L)

¹ Concentrations of Produced Liquid is based on analytical results dated November 11, 2016 ² The tank is fully unloaded once per week (52 weeks/yr * 100 bbl = 5,200 bbl/yr)

Assumptions:

- All VOC, HAPS, and GHG present in the Produced Liquid is emitted

- Produced liquid is mostly water with minimal amounts of VOC, HAPS, and GHG

- VOC, HAPS, and GHG totals from the above calculation is doubled for each tank in the facility total to overestimate any other potential VOCs not detected in the analytical results

Produced Liquid Analysis

Pace Analytical Energy Services LLC 220 William Pitt Way Pittsburgh, PA 15238

> Phone: (412) 826-5245 Fax: (412) 826-3433

November 11, 2016

Michael Michalski Ryan Environmental 5793 W Memorial Veteran's Hwy Bridgeport, WV 26330

RE: 161028_MKM_COMET&GOLFF

Pace Workorder: 20814

Dear Michael Michalski:

Enclosed are the analytical results for sample(s) received by the laboratory on Monday, October 31, 2016. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Ruth Weiss

Ruth Welsh 11/11/2016 Ruth.Welsh@pacelabs.com

Customer Service Representative

Enclosures

As a valued client we would appreciate your comments on our service. Please email PAESfeedback@pacelabs.com.

Total Number of Pages

Report ID: 20814 - 861768

Page 1 of 15

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Energy Services LLC.

Phone: (412) 826-5245 Fax: (412) 826-3433

LABORATORY ACCREDITATIONS & CERTIFICATIONS

Accreditor:	Pennsylvania Department of Environmental Protection, Bureau of Laboratories
Accreditation ID:	02-00538
Scope:	NELAP Non-Potable Water and Solid & Hazardous Waste
Accreditor:	West Virginia Department of Environmental Protection, Division of Water and Waste
	Management
Accreditation ID:	395
Scope:	Non-Potable Water
Accreditor:	South Carolina Department of Health and Environmental Control, Office of Environmental
	Laboratory Certification
Accreditation ID:	89009003
Scope:	Clean Water Act (CWA); Resource Conservation and Recovery Act (RCRA)
Accreditor:	NELAP: New Jersey, Department of Environmental Protection
Accreditation ID:	PA026
Scope:	Non-Potable Water; Solid and Chemical Materials
Accreditor:	NELAP: New York, Department of Health Wadsworth Center
Accreditation ID:	11815
Scope:	Non-Potable Water; Solid and Hazardous Waste
Accreditor:	State of Connecticut, Department of Public Health, Division of Environmental Health
Accreditation ID:	PH-0263
Scope:	Clean Water Act (CWA) Resource Conservation and Recovery Act (RCRA)
Accreditor:	NELAP: Texas, Commission on Environmental Quality
Accreditation ID:	T104704453-09-TX
Scope:	Non-Potable Water
Accreditor:	State of New Hampshire
Accreditation ID:	299409
Scope:	Non-potable water
Accreditor:	State of Georgia
Accreditation ID:	Chapter 391-3-26
Scope:	As per the Georgia EPD Rules and Regulations for Commercial Laboratories, PAES is accredited by the Pennsylvania Department of Environmental Protection Bureau of Laboratories under the National Environmental Laboratory Approval Program (NELAC).

Report ID: 20814 - 861768

Page 2 of 15

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Energy Services LLC.

> Phone: (412) 826-5245 Fax: (412) 826-3433

SAMPLE SUMMARY

Workorder: 20814 161028_MKM_COMET&GOLFF

Lab ID	Sample ID	Matrix	Date Collected	Date Received
208140001	161028_MKM_COMET_TANKS386&387	Water	10/28/2016 10:45	10/31/2016 08:30
208140002	161028_MKM_COMETCOMP_TANK500	Water	10/28/2016 11:05	10/31/2016 08:30
208140003	161028_WEST GOFF M&R_TANK2680	Water	10/28/2016 12:05	10/31/2016 08:30
208140004	161028_WEST GOFF COMP_TANK2937	Water	10/28/2016 12:35	10/31/2016 08:30
208140005	161028_WEST GOFF COMP_TANK2936	Water	10/28/2016 12:50	10/31/2016 08:30

Report ID: 20814 - 861768

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Energy Services LLC. Page 3 of 15

> Phone: (412) 826-5245 Fax: (412) 826-3433

PROJECT SUMMARY

Workorder: 20814 161028_MKM_COMET&GOLFF

Workorder Comments

Some of the results contained within this report have been determined for Pace Analytical Energy Services (PAES), using subcontracted laboratory services. The final report delivered to PAES has been provided and must be consulted to properly identify any quality nonconformance issues that were encountered during the testing process.

The samples 20814 (0001-0005) were collected in an alternate container type, than that assigned to PAES method RSK175. Sample container was not preserved.

Report ID: 20814 - 861768

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Energy Services LLC.

Page 4 of 15

> Phone: (412) 826-5245 Fax: (412) 826-3433

ANALYTICAL RESULTS

Workorder: 20814 161028_MKM_COMET&GOLFF

Lab ID:	208140003			Date F	Receiv	ved: 10/31/2016 08	:30 Ma	atrix: Water
Sample ID:	161028_WEST GOFF M&R	T GOFF M&R_TANK2680			Collec	ted: 10/28/2016 12	:05	
Parameters	Resul	ts Units	PQL	MDL	DF	Analyzed	Ву	Qualifiers
RISK - PAES	6							
Analysis Des	c: EPA RSK175		Analytical Method: E	PARSK17	75	inte de later de segur 12 de centre de later		
Methane	1800	0 ug/l	50	1.9	100	11/4/2016 11:17	AK	d,B
Ethane		0 ug/l	20	0.50	100	11/4/2016 11:17	AK	d
Ethene	0.2	6 ug/l	0.20	0.0070	1	11/3/2016 11:40	AK	
Propane	15	0 ug/l	0.20	0.0080	1	11/3/2016 11:40	AK	
iso-Butane	7.	5 ug/l	0.40	0.018	1	11/3/2016 11:40	AK	
n-Butane	1	7 ug/l	0.40	0.017	1	11/3/2016 11:40	AK	
Subcontract	ted Work - SCPG		¢					G
Analysis Des	c: SW-846 8260B	4	Analytical Method: S	SW-846 82	60B			
Benzene	26	0 ug/L	1.0	0.16	1	11/10/2016 13:56	PAS	S
Toluene	24	0 ug/L	1.0	0.13	1	11/10/2016 13:56	PAS	S
Ethylbenzen	e 1	1 ug/L	1.0	0.23	1	11/10/2016 13:56	PAS	S
m,p-Xylene	5	0 ug/L	2.0	0.32	1	11/10/2016 13:56	PAS	S
o-Xylene	2	7 ug/L	1.0	0.22	1	11/10/2016 13:56	PAS	s

Report ID: 20814 - 861768

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Energy Services LLC. Page 7 of 15

> Phone: (412) 826-5245 Fax: (412) 826-3433

ANALYTICAL RESULTS

Workorder: 20814 161028_MKM_COMET&GOLFF

Lab ID:	208140005			Date	Receiv	ved: 10/31/2016 08	:30 M	atrix: Water
Sample ID:	161028_WEST GOFF COMF	EST GOFF COMP_TANK2936			Collec	ted: 10/28/2016 12	:50	
Parameters	Result	s Units	PQL	MDL	DF	Analyzed	Ву	Qualifiers
RISK - PAES	6							
Analysis Des	c: EPA RSK175		Analytical Method: E	PA RSK1	75			
Methane	1000) ug/l	50	1.9	100	11/4/2016 11:38	AK	d,B
Ethane) ug/l	20	0.50	100	11/4/2016 11:38	AK	d
Ethene	0.20 เ		0.20	0.0070	1	11/3/2016 12:01	AK	
Propane	430) ug/l	20	0.80	100	11/4/2016 11:38	AK	d
iso-Butane	44	ug/l	0.40	0.018	1	11/3/2016 12:01	AK	
n-Butane	78) ug/l	0.40	0.017	1	11/3/2016 12:01	AK	
Subcontract	ted Work - SCPG							G
Analysis Des	sc: SW-846 8260B		Analytical Method: S	SW-846 82	260B			
Benzene	580 l	J ug/kg	580	160	1	11/9/2016 19:32	PAS	S
Toluene		0 ug/kg		180	1	11/9/2016 19:32	PAS	. S
Ethylbenzen		J ug/kg		120	1	11/9/2016 19:32	PAS	S
m,p-Xylene		J ug/kg		220	1	11/9/2016 19:32	PAS	S
o-Xylene		J ug/kg		120	1	11/9/2016 19:32	PAS	S

Report ID: 20814 - 861768

Page 9 of 15

nelac

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Energy Services LLC.

> Phone: (412) 826-5245 Fax: (412) 826-3433

ANALYTICAL RESULTS QUALIFIERS

Workorder: 20814 161028_MKM_COMET&GOLFF

DEFIN	IITIONS/QL	JALIFIERS
	MDL	Method Detection Limit. Can be used synonymously with LOD; Limit Of Detection.
	PQL	Practical Quanitation Limit. Can be used synonymously with LOQ; Limit Of Quantitation.
	ND	Not detected at or above reporting limit.
	DF	Dilution Factor.
	S	Surrogate.
	RPD	Relative Percent Difference.
	% Rec	Percent Recovery.
	U	Indicates the compound was analyzed for, but not detected at or above the noted concentration.
	J	Estimated concentration greater than the set method detection limit (MDL) and less than the set reporting limit (PQL).
	G	Subcontracted to Pace Greensburg under NELAC Certification Number - PA65-00282
	s	Subcontracted; for any related quality nonconformance see additional report(s)
	В	The analyte was detected in the associated blank.
	d	The analyte concentration was determined from a dilution.
	D1	The duplicate relative percent difference (RPD) exceeded laboratory control limits.

Report ID: 20814 - 861768

nelac

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Energy Services LLC.

Page 10 of 15

> Phone: (412) 826-5245 Fax: (412) 826-3433

QUALITY CONTROL DATA

Workorder: 20814 161028_MKM_COMET&GOLFF

Parameter	Units	Blank Result	Reporting Limit Qualifiers	•	
METHOD BLANK: 4	5239				
Associated Lab Sam		140002, 208140003,	208140004, 20814000	5	
QC Batch Method:	EPA RSK175		-		
QC Batch:	DISG/5718	A	Analysis Method:	EPA RSK175	

				 - 10 ····
RISK				
Methane	ug/l	0.023J	0.50 B	
Ethane	. ug/l	0.20 U	0.20 D1	
Ethene	ug/l	0.20 U	0.20	
Propane	ug/l	0.20 U	0.20	
iso-Butane	ug/l	0.40 U	0.40	
n-Butane	ug/l	0.40 U	0.40	

45241

LABORATORY CON	TROL SAMPLE	& I CSD	45240

Spike LCS LCSD LCS LCSD % Rec Max Conc. Result Result % Rec % Rec Limit RPD RPD Qualifiers Parameter Units RISK 20 В 101 85-115 7.2 42 94 Methane ug/l 44 45 79 102 95 85-115 7.1 20 D1 83 85 Ethane ug/l 97 85-115 7.9 20 78 82 75 105 Ethene ug/l 92 85-115 7.3 20 120 120 110 99 Propane ug/l 97 91 85-115 6.4 20 160 160 140 iso-Butane ug/l 140 96 87 85-115 9.8 20 160 150 n-Butane ug/l

SAMPLE DUPLICATE: 45250		Ori	ginal: 20803000	2	•	
Parameter	Units	Original Result	DUP Result	RPD	Max RPD	Qualifiers
RISK						
Methane	ug/l	0.28	0.23	19	20	В
Ethane	ug/l	0.023	0.017	31	20	D1
Ethene	ug/l	0.026	0.026	0	20	
Propane	ug/l	0	0	0	20	
iso-Butane	ug/l	0	0	0	20	
n-Butane	ug/l	0	0	0	20	

Report ID: 20814 - 861768

Page 11 of 15

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Energy Services LLC.

> Phone: (412) 826-5245 Fax: (412) 826-3433

QUALITY CONTROL DATA

Workorder: 20814 161028_MKM_COMET&GOLFF

SAMPLE DUPLICATE: 45251		Ori	Original: 208030004			
Parameter	Units	Original Result	DUP Result	RPD	Max RPD	Qualifiers
RISK						
Methane	ug/l	0.25	0.23	10	20	В
Ethane	ug/l	0.12	0.14	9.8	20	D1
Ethene	ug/l	0.22	0.26	17	20	
Propane	ug/l	0	0	0	20	
iso-Butane	ug/l	0	0	0	20	
n-Butane	ug/l	0	0	0	20	

Report ID: 20814 - 861768

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Energy Services LLC.

Page 12 of 15

Phone: (412) 826-5245 Fax: (412) 826-3433

QUALITY CONTROL DATA

Workorder: 20814 161028_MKM_COMET&GOLFF

QC Batch:	DISG/5721		Analy	/sis Metho	d:	EPA R	SK175			
QC Batch Method:	EPA RSK175									
Associated Lab Sa	mples: 208140001, 2081	40003, 208140	004, 208	140005						
METHOD BLANK:	45275									
		Blar	ık F	Reporting						
Parameter	Units	Resu	lt	Limit (Qualifiers	5				•
RISK										
Methane	ug/l	0.021	J	0.50 l	3					
Ethane	ug/l	0.20	U	0.20						
Propane	ug/l	0.20	U	0.20						
	ONTROL SAMPLE & LCSD:	45276		45277						
LABORATORT CC	INTROL SAMPLE & LOOD.	45270		40211						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limit	RPD	RPD	Qualifiers
RISK										
Methane	ug/l	44	45	44	101	99	85-115	2	20	В
Ethane	ug/l	83	85	83	102	99	85-115	3	20	
Propane	ug/l	120	120	120	98	96	85-115	2.1	20	
SAMPLE DUPLIC	ATE: 45278		Origina	I: 208000	0001					
		Origina	I	DUP			Мах			
Parameter	Units	Resul		Result		RPD	RPD			Qualifiers
RISK										
Methane	ug/l	2300)	2300		1.7	20			d,B
SAMPLE DUPLIC	ATE: 45279		Origina	il: 208000	0006					
		Origina	1	DUP			Мах			
Parameter	Units	Resul		Result		RPD	RPD			Qualifiers
RISK								•		

Report ID: 20814 - 861768

Methane

Page 13 of 15

d,B

CERTIFICATE OF ANALYSIS

3400

1.3

20

3400

ug/l

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Energy Services LLC.

> Phone: (412) 826-5245 Fax: (412) 826-3433

QUALITY CONTROL DATA QUALIFIERS

Workorder: 20814 161028_MKM_COMET&GOLFF

QUALITY CONTROL PARAMETER QUALIFIERS

- B The analyte was detected in the associated blank.
- D1 The duplicate relative percent difference (RPD) exceeded laboratory control limits.
- d The analyte concentration was determined from a dilution.

Report ID: 20814 - 861768

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Energy Services LLC.

Page 14 of 15

> Phone: (412) 826-5245 Fax: (412) 826-3433

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: 20814 161028_MKM_COMET&GOLFF

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
208140001	161028_MKM_COMET_TANKS38 6&387			EPA RSK175	DISG/5718
208140002	161028_MKM_COMETCOMP_TA NK500			EPA RSK175	DISG/5718
208140003	161028_WEST GOFF M&R TANK2680			EPA RSK175	DISG/5718
208140004	161028_WEST GOFF COMP_TANK2937			EPA RSK175	DISG/5718
208140005	161028_WEST GOFF COMP_TANK2936			EPA RSK175	DISG/5718
208140001	161028_MKM_COMET_TANKS38 6&387			EPA RSK175	DISG/5721
208140003	161028_WEST GOFF M&R TANK2680			EPA RSK175	DISG/5721
208140004	161028_WEST GOFF COMP_TANK2937			EPA RSK175	DISG/5721
208140005	161028_WEST GOFF COMP_TANK2936			EPA RSK175	DISG/5721
208140001	161028_MKM_COMET_TANKS38 6&387			SW-846 8260B	SCPG/3050
Subcontract 208140002	ted to Pace Greensburg under NELAC Ce 161028_MKM_COMETCOMP_TA NK500	ertification Number - PA	65-00282	SW-846 8260B	SCPG/3050
Subcontract 208140003	ted to Pace Greensburg under NELAC Ce 161028_WEST GOFF M&R TANK2680	ertification Number - PA	65-00282	SW-846 8260B	SCPG/3050
208140004	ted to Pace Greensburg under NELAC Ce 161028_WEST GOFF COMP_TANK2937			SW-846 8260B	SCPG/3050
Subcontract 208140005	ted to Pace Greensburg under NELAC Ce 161028_WEST GOFF COMP_TANK2936	ertification Number - PA	65-00282	SW-846 8260B	SCPG/3050
Subcontrac	ted to Pace Greensburg under NELAC Ce	ertification Number - PA	65-00282		

Report ID: 20814 - 861768

nelac

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Energy Services LLC.

Page 15 of 15

Reboiler Emission Calculations

Mountaineer Keystone - PDC West Compressor Station Plant ID# 033-00187 TEG-1/RBV-1 and TEG-2/RBV-2 Emission Summary Criteria Pollutants (See Attachment L)

Fuel Usage						
Fuel Units Total						
Natural Gas	ft ³	8,504,854				

Emission Factors ¹				
	(1) Reboiler ²			
Pollutant	Natural Gas (lbs/ 10 ⁶ ft ³)			
Particulates	7.60			
Sulfur Dioxide	0.6000			
Oxides of Nitrogen	100.00			
PM-10	7.60			
VOC	5.50			
Carbon Monoxide	84.00			
Lead	0.0005			
CO2 Equiv	120,000			

Emissions							
	(1) Reboiler ²						
Pollutant	Natural Gas (lbs/yr)	Natural Gas (lbs/hr)	Natural Gas (tons/yr)				
Particulates	64.64	0.0074	0.0323				
Sulfur Dioxide	5.10	0.0006	0.0026				
Oxides of Nitrogen	850.49	0.0971	0.4252				
PM-10	64.64	0.0074	0.0323				
VOC	46.78	0.0053	0.0234				
Carbon Monoxide	714.41	0.0816	0.3572				
Lead	0.0043	4.85E-07	2.13E-06				
CO2 Equiv	1,020,583	116.50	510.29				

Emissions are calculated as follows:

Emissions = Volume of Gas (ft^3) * Emission Factor ($lbs/10^6 ft^3$)

¹ Natural Gas Emission Factors were taken from AP-42 Tables 1.4-1

Notes:

- Above emissions are for one reboiler
- Emissions assume 8,760 hours of operation for the reboiler per year
- Heating value of Natural Gas assumed to be 1030 Btu/ft³

² Each Reboiler rating: 1 MMBtu/hr

Mountaineer Keystone - PDC West Compressor Station Plant ID# 033-00187 TEG-1/RBV-1 and TEG-2/RBV-2 Emission Summary HAPS (See Attachment L)

Emissions are calculated as follows:

Emissions = Volume of Gas (ft^3) * Emission Factor ($lbs/10^6 ft^3$)

¹ Emission Factors from AP-42 Tables 1.4-3 and 1.4-4

Natural Gas
Reboiler
НАР
ft ³
8,504,854

			Natural Gas			
	HAP Emissions			(1) Reboiler		
			(lbs/yr)	(lbs/hr)	(tons/yr)	
НАР	CAS No.	Natural Gas ¹ (Ibs/10 ⁶ ft ³)				
2-Methylnaphthalene	91-57-6	2.40E-05	0.0002	2.33E-08	1.02E-07	
-Methylchloranthrene	56-49-5	1.80E-06	1.53E-05	1.75E-09	7.65E-09	
,12-Dimethylbenz(a)anthracene	-	1.60E-05	0.0001	1.55E-08	6.80E-08	
cenaphthene	83-32-9	1.80E-06	1.53E-05	1.75E-09	7.65E-09	
cenaphthylene	203-96-8	1.80E-06	1.53E-05	1.75E-09	7.65E-09	
nthracene	120-12-7	2.40E-06	2.04E-05	2.33E-09	1.02E-08	
enz(a)anthracene	56-55-3	1.80E-06	1.53E-05	1.75E-09	7.65E-09	
Benzene	71-43-2	2.10E-03	0.0179	2.04E-06	8.93E-06	
Benzo(a)pyrene	50-32-8	1.20E-06	1.02E-05	1.17E-09	5.10E-09	
Benzo(b)fluoranthene	205-99-2	1.80E-06	1.53E-05	1.75E-09	7.65E-09	
Benzo(g,h,i)perylene	191-24-2	1.20E-06	1.02E-05	1.17E-09	5.10E-09	
enzo(k)fluoranthene	207-08-9	1.80E-06	1.53E-05	1.75E-09	7.65E-09	
Chrysene	218-01-9	1.80E-06	1.53E-05	1.75E-09	7.65E-09	
Dibenzo(a,h)anthracene	53-70-3	1.20E-06	1.02E-05	1.17E-09	5.10E-09	
Dichlorobenzene	25321-22-6	1.20E-03	0.0102	1.17E-06	5.10E-06	
luoranthene	206-44-0	3.00E-06	2.55E-05	2.91E-09	1.28E-08	
luorene	86-73-7	2.80E-06	2.38E-05	2.72E-09	1.19E-08	
ormaldehyde	50-00-0	7.50E-02	0.6379	7.28E-05	0.0003	
lexane	110-54-3	1.80E+00	15.31	0.0017	0.0077	
ndeno(1,2,3-cd)pyrene	193-39-5	1.80E-06	1.53E-05	1.75E-09	7.65E-09	
laphthalene	91-20-3	6.10E-04	0.0052	5.92E-07	2.59E-06	
Phenanathrene	85-01-8	1.70E-05	0.0001	1.65E-08	7.23E-08	
Pyrene	129-00-0	5.00E-06	4.25E-05	4.85E-09	2.13E-08	
oluene	108-88-3	3.40E-03	0.0289	3.30E-06	1.45E-05	
rsenic	7440-38-2	2.00E-04	0.0017	1.94E-07	8.50E-07	
Beryllium	7440-41-7	1.20E-05	0.0001	1.17E-08	5.10E-08	
Cadmium	7440-43-9	1.10E-03	0.0094	1.07E-06	4.68E-06	
Chromium	7440-47-3	1.40E-03	0.0119	1.36E-06	5.95E-06	
cobalt	7440-48-4	8.40E-05	0.0007	8.16E-08	3.57E-07	
langanese	7439-96-5	3.80E-04	0.0032	3.69E-07	1.62E-06	
Aercury	7439-97-6	2.60E-04	0.0022	2.52E-07	1.11E-06	
lickel	7440-02-0	2.10E-03	0.0179	2.04E-06	8.93E-06	
elenium	7782-49-2	2.40E-05	0.0002	2.33E-08	1.02E-07	
		Total:	16.06	0.0018	0.0080	

Engine Emission Calculations

Mountaineer Keystone - PDC West Compressor Station Plant ID# 033-00187 Engine Serial JEF01233 Emission Summary CE-1R Criteria Pollutants (See Attachment M)

Fuel Usage						
Fuel Units Total						
Natural Gas	ft ³	29,858,162				

Emission Factors ¹			
	Engine		
Pollutant	Natural Gas (lbs/ 10 ⁶ ft ³)		
Particulates	0.0794		
Sulfur Dioxide	0.6056		
Oxides of Nitrogen	312.36		
PM-10	0.0794		
VOC	8.91		
Carbon Monoxide	151.42		
CO2 Equiv	113,300		

Emissions			
	Engine		
Pollutant	Natural Gas (Ibs/yr)	Natural Gas (Ibs/hr)	Natural Gas (tons/yr)
Particulates	2.37	0.0003	0.0012
Sulfur Dioxide	18.08	0.0021	0.0090
Oxides of Nitrogen	9,326	1.01	4.41
PM-10	2.37	0.0003	0.0012
VOC	265.95	0.0300	0.1500
Carbon Monoxide	4,521	0.4800	2.11
CO2 Equiv	3,382,930	386.18	1,691

Emissions are calculated as follows:

Emissions = Volume of Gas (ft^3) * Emission Factor ($lbs/10^6 ft^3$)

¹ Natural Gas Emission Factors were taken from AP-42 Table 3.2-2 (PM, PM-10, SO2, CO2e) and the attached stack test (CO, NOx, VOC)

Notes:

- Emissions assume 8,760 hours of operation for the engine per year

- Heating value of Natural Gas assumed to be 1030 Btu/ft³

Emissions Test Report

Prepared for: MK Midstream Prepared by: Steve LaRue Test Date: December 14, 2015

Regulatory Information

Permit #:	G35-A107A		
Make:	Caterpillar		
Model:	G3516BLE		
Unit Number:	2185		
Serial Number:	JEF01233 (Run Hrs-32268)		
Regulatory Citation	40 CFR 60 Subpart JJJJ		
Target Parameter(s)	NOx, CO, and VOCs		

BIVIC

Contact Information

Test Location

MK Midstream Goff West Taylor County, WV

Primary Facility Contact Kevin Williams Director of Midstream MK Midstream 65 Professional Place Suite 200 Bridgeport, WV, 26330 304-848-9130 kwilliams@mkmidstream.com

Test Company

Ecotest Energy Services 142 S. Johnson Rd. Houston, PA 15342

Company Contact Tyler Frey Compliance Specialist Tyler@Ecotest.us (570)428-2133 Wayne Philpot

V.P. Operations Wayne@ecotest.us (325)348-8070

Introduction

Ecotest Energy Services (Ecotest) has been contracted by MK Midstream, to provide emissions testing on the Caterpillar, G3516BLE Spark-Ignited engine located at the Goff West location in Taylor County, WV. The purpose of this testing was to demonstrate compliance with emission limitations contained in the sites air permit, permit G35-A107A, and 40 CFR 60 subpart JJJJ. There are emissions limitations for the oxides of nitrogen (NOx), carbon monoxide (CO) and volatile organic compounds (VOC) as non-methane non ethane hydrocarbons (NMNEHC).

Testing was conducted in accordance with an approved test protocol from the WV Source Testing Manual and the United States Environmental Protection Agency (USEPA) test methods. Testing for the engine occurred on December 14, 2015 and was conducted by Steve LaRue of Ecotest.

pounds / hour g/BHP-hr tons / year ppmvd at 15% O_2 Pollutant Permitted Emitted Permitted Permitted Emitted Permitted Emitted Emitted CO 0.52 0.48 2.27 2.11 2.00 0.17 270 25 NOx 1.52 1.01 6.66 4.41 1.00 0.35 80 31 VOCs 0.73 0.03 3.20 0.15 0.70 0.01 62 1

Emissions Summary

Mountaineer Keystone - PDC West Compressor Station Plant ID# 033-00187 Engine Serial JEF01237 Emission Summary CE-2R Criteria Pollutants (See Attachment M)

Fuel Usage			
Fuel	Units	Total	
Natural Gas	ft ³	29,858,162	

Emission Factors ¹			
	Engine		
Pollutant	Natural Gas (lbs/ 10 ⁶ ft ³)		
Particulates	0.0794		
Sulfur Dioxide	0.6056		
Oxides of Nitrogen	329.57		
PM-10	0.0794		
VOC	17.81		
Carbon Monoxide	53.44		
CO2 Equiv	113,300		

Emissions			
	Engine		
Pollutant	Natural Gas (Ibs/yr)	Natural Gas (Ibs/hr)	Natural Gas (tons/yr)
Particulates	2.37	0.0003	0.0012
Sulfur Dioxide	18.08	0.0021	0.0090
Oxides of Nitrogen	9,840	1.07	4.69
PM-10	2.37	0.0003	0.0012
VOC	531.91	0.0600	0.2600
Carbon Monoxide	1,596	0.1700	0.7500
CO2 Equiv	3,382,930	386.18	1,691

Emissions are calculated as follows:

Emissions = Volume of Gas (ft^3) * Emission Factor ($lbs/10^6 ft^3$)

¹ Natural Gas Emission Factors were taken from AP-42 Table 3.2-2 (PM, PM-10, SO2, CO2e) and the attached stack test (CO, NOx, VOC)

Notes:

- Emissions assume 8,760 hours of operation for the engine per year

- Heating value of Natural Gas assumed to be 1030 Btu/ft³

Emissions Test Report

Prepared for: MK Midstream Prepared by: Steve LaRue Test Date: December 14, 2015

Regulatory Information

Regulatory information	georgeoutgeoutgeoutgeoutgeoutgeoutgeoutgeout	
Permit #:	G35-A107A	
Make:	Caterpillar	
Model:	G3516BLE	
Unit Number:	2177	
Serial Number:	JEF01237	
Regulatory Citation	40 CRF 60 Sub	part JJJJ
Target Parameter(s)	NOx, CO, and	VOCs
Contact Information	(0)	
Test Location	~	Test Company
	CD I	
MK Midstream		Ecotest Energy Services
Goff West	<	142 S. Johnson Rd.
Taylor County, WV		Houston, PA 15342
	0	
	D	
Primary Facility Contact	0	Company Contact
Kevin Williams	. Y /	Tyler Frey
Director of Midstream		Compliance Specialist
MK Midstream		Tyler@Ecotest.us
65 Professional Place Suite 20	00	(570)428-2133
Bridgeport, WV, 26330		
204 040 0120		Maura Dhilast

304-848-9130 kwilliams@mkmidstream.com Wayne Philpot V.P. Operations Wayne@ecotest.us (325)348-8070

Introduction

Ecotest Energy Services (Ecotest) has been contracted by MK Midstream, to provide emissions testing on the Caterpillar, G3516BLE Spark-Ignited engine located at the Goff West location in Taylor County, WV. The purpose of this testing was to demonstrate compliance with emission limitations contained in the sites air permit, permit G35-A107A, and 40 CFR 60 subpart JJJJ. There are emissions limitations for the oxides of nitrogen (NOx), carbon monoxide (CO) and volatile organic compounds (VOC) as non-methane non ethane hydrocarbons (NMNEHC).

Testing was conducted in accordance with an approved test protocol from the WV Source Testing Manual and the United States Environmental Protection Agency (USEPA) test methods. Testing for the engine occurred on December 14, 2015 and was conducted by Steve LaRue of Ecotest.

	pounds	/ hour	tons / year		g/BHP-hr		ppmvd at 15% O ₂	
Pollutant	Permitted	Emitted	Permitted	Emitted	Permitted	Emitted	Permitted	Emitted
СО	0.52	0.17	2.27	0.75	2.00	0.06	270	9
NOx	1.52	1.07	6.66	4.69	1.00	0.37	80	33
VOCs	0.73	0.06	3.20	0.26	0.70	0.02	62	2

Emissions Summary

Mountaineer Keystone - PDC West Compressor Station Plant ID# 033-00187 Engine Serial BEN01121 Emission Summary CE-5R Criteria Pollutants (See Attachment M)

Fuel Usage						
Fuel Units Total						
Natural Gas	ft ³	51,278,148				

Emission Factors ¹						
	Engine					
Pollutant	Natural Gas (lbs/ 10 ⁶ ft ³)					
Particulates	0.0794					
Sulfur Dioxide	0.6056					
Oxides of Nitrogen	195.96					
PM-10	0.0794					
VOC	17.81					
Carbon Monoxide	8.91					
CO2 Equiv	113,300					

Emissions							
	Engine						
Pollutant	Natural GasNatural GasNatural Gas(lbs/yr)(lbs/hr)(tons/yr)						
Particulates	4.07	0.0005	0.0020				
Sulfur Dioxide	31.06	0.0035	0.0155				
Oxides of Nitrogen	10,048	1.06	4.66				
PM-10	4.07	0.0005	0.0020				
VOC	913.49	0.0800	0.3500				
Carbon Monoxide	456.75	0.0500	0.2200				
CO2 Equiv	5,809,814	663.22	2,905				

Emissions are calculated as follows:

Emissions = Volume of Gas (ft^3) * Emission Factor ($lbs/10^6 ft^3$)

¹ Natural Gas Emission Factors were taken from AP-42 Table 3.2-2 (PM, PM-10, SO2, CO2e) and the attached stack test (CO, NOx, VOC)

Notes:

- Emissions assume 8,760 hours of operation for the engine per year

- Heating value of Natural Gas assumed to be 1030 Btu/ft³

Emissions Test Report

Prepared for: MK Midstream Holdings, LLC Prepared by: Steve LaRue Test Date: May 4, 2016

Regulatory Information

Permit #:	G35-A107B
Make:	Caterpillar
Model:	3608
Unit Number:	2657
Serial Number:	BEN01121 (Run Hr-2805)
Regulatory Citation	40 CFR 60 Subpart JJJJ
Target Parameter(s)	NOx, CO, and VOCs

Contact Information

Test Location

MK Midstream Holdings, LLC Cather CS Harrison County, WV

Primary Facility Contact Dave Sweeley MK Midstream Holdings, LLC 65 Professional Place Suite 200 Bridgeport, WV, 26330 724-759-9822 dsweeley@mkmidstream.com Test Company

Ecotest Energy Services 142 S. Johnson Rd. Houston, PA 15342

Company Contact Tyler Frey Compliance Specialist (570)428-2133 Tyler@Ecotest.us (570)428-2133

Wayne Philpot V.P. Operations Wayne@ecotest.us (325)348-8070

Introduction

Ecotest Energy Services (Ecotest) has been contracted by MK Midstream, to provide emissions testing on the Caterpillar, 3608 Spark-Ignited engine located at the Cather location in Harrison County, WV. The purpose of this testing was to demonstrate compliance with emission limitations contained in the sites air permit, permit G35-A107B, and 40 CFR 60 subpart JJJJ. There are emissions limitations for the oxides of nitrogen (NOx), carbon monoxide (CO) and volatile organic compounds (VOC) as non-methane non ethane hydrocarbons (NMNEHC).

Testing was conducted in accordance with an approved test protocol from the WV Source Testing Manual and the United States Environmental Protection Agency (USEPA) test methods. Testing for the engine occurred on May 4, 2016 and was conducted by Steve LaRue of Ecotest.

Summary of Test Results

	pounds / hour		tons /	' year	g/BH	P-hr ppmvd at		t 15% O ₂
Pollutant	Permitted	Emitted	Permitted	Emitted	Permitted	Emitted	Permitted	Emitted
CO	1.00	0.05	4.39	0.22	2.00	0.01	270	2
NOx	2.61	1.06	11.44	4.66	1.00	0.22	82	21
VOCs	1.65	0.08	7.21	0.35	0.70	0.02	60	2

Emissions Summary

Mountaineer Keystone - PDC West Compressor Station Plant ID# 033-00187 Engine Serial 4ZS02061 Emission Summary CE-6R Criteria Pollutants (See Attachment M)

Fuel Usage						
Fuel Units Total						
Natural Gas	ft ³	38,404,520				

Emission Factors ¹					
	Engine				
Pollutant	Natural Gas (lbs/ 10 ⁶ ft ³)				
Particulates	0.0794				
Sulfur Dioxide	0.6056				
Oxides of Nitrogen	338.47				
PM-10	0.0794				
VOC	44.54				
Carbon Monoxide	62.35				
CO2 Equiv	113,300				

Emissions								
	Engine							
Pollutant	Natural Gas Natural Gas (lbs/yr) (lbs/hr) (tons/yr)							
Particulates	3.05	0.0003	0.0015					
Sulfur Dioxide	23.26	0.0027	0.0116					
Oxides of Nitrogen	12,999	0.8600	3.78					
PM-10	3.05	0.0003	0.0015					
VOC	1,710	0.0400	0.1900					
Carbon Monoxide	2,395	0.0600	0.2700					
CO2 Equiv	4,351,232	496.72	2,176					

Emissions are calculated as follows:

Emissions = Volume of Gas (ft^3) * Emission Factor ($lbs/10^6 ft^3$)

¹ Natural Gas Emission Factors were taken from AP-42 Table 3.2-2 (PM, PM-10, SO2, CO2e) and the attached stack test (CO, NOx, VOC)

Notes:

- Emissions assume 8,760 hours of operation for the engine per year

- Heating value of Natural Gas assumed to be 1030 Btu/ft³

Emissions Test Report

Prepared for: MK Midstream Holdings, LLC Prepared by: Steve LaRue Test Date: May 4, 2016

Regulatory Information

Permit #:	G35-A107B
Make:	Caterpillar
Model:	3606
Unit Number:	2669
Serial Number:	4ZS02061 (Run Hr- 2307)
Regulatory Citation	40 CFR 60 Subpart JJJJ
Target Parameter(s)	NOx, CO, and VOCs

Contact Information

Test Location

MK Midstream Holdings, LLC Cather CS Harrison County, WV

Primary Facility Contact Dave Sweeley MK Midstream Holdings, LLC 65 Professional Place Suite 200 Bridgeport, WV, 26330 724-759-9822 dsweeley@mkmidstream.com Test Company

Ecotest Energy Services 142 S. Johnson Rd. Houston, PA 15342

Company Contact Tyler Frey Compliance Specialist (570)428-2133 Tyler@Ecotest.us (570)428-2133

Wayne Philpot V.P. Operations Wayne@ecotest.us (325)348-8070

Introduction

Ecotest Energy Services (Ecotest) has been contracted by MK Midstream, to provide emissions testing on the Caterpillar, 3606 Spark-Ignited engine located at the Cather location in Harrison County, WV. The purpose of this testing was to demonstrate compliance with emission limitations contained in the sites air permit, permit G35-A107B, and 40 CFR 60 subpart JJJJ. There are emissions limitations for the oxides of nitrogen (NOx), carbon monoxide (CO) and volatile organic compounds (VOC) as non-methane non ethane hydrocarbons (NMNEHC).

Testing was conducted in accordance with an approved test protocol from the TX Source Testing Manual and the United States Environmental Protection Agency (USEPA) test methods. Testing for the engine occurred on May 4, 2016 and was conducted by Steve LaRue of Ecotest.

Summary of Test Results

	pounds / hour		tons /	' year	g/BH	P-hr	ppmvd at 15% O ₂	
Pollutant	Permitted	Emitted	Permitted	Emitted	Permitted	Emitted	Permitted	Emitted
CO	0.75	0.06	3.29	0.27	2.00	0.02	270	3
NOx	1.96	0.86	8.57	3.78	1.00	0.24	82	23
VOCs	1.23	0.04	5.40	0.19	0.70	0.01	60	1

Emissions Summary

Mountaineer Keystone - PDC West Compressor Station Plant ID# 033-00187 Engine Serial JEF02001 Emission Summary CE-7R

Criteria Pollutants (See Attachment M)

Fuel Usage				
Fuel Units Total				
Natural Gas	ft ³	29,858,162		

Emission Factors ¹				
	Engine			
Pollutant	Natural Gas (Ibs/ 10 ⁶ ft ³)			
Particulates	33.38			
Sulfur Dioxide	1.96			
Oxides of Nitrogen	446.22			
PM-10	33.38			
VOC	428.37			
Carbon Monoxide	892.44			
CO2 Equiv	439,333			

Emissions							
	Engine						
Pollutant	Natural GasNatural GasNatural Gas(lbs/yr)(lbs/hr)(tons/yr)						
Particulates	996.00 0.1140 0.4980						
Sulfur Dioxide	58.62 0.0067 0.0293						
Oxides of Nitrogen	13,320	13,320 1.52 6.66					
PM-10	996.00	996.00 0.1140 0.498					
VOC	12,790	1.46	6.40				
Carbon Monoxide	32,380 3.70 16.19						
CO2 Equiv	13,117,662	1,497	7,634				

Emissions are calculated as follows:

Emissions = Volume of Gas (ft^3) * Emission Factor ($lbs/10^6 ft^3$)

¹ Natural Gas Emission Factors were taken from the attached spec sheet. Please note the CO2e emission factor was calculated using the emission provided on the spec sheet.

Notes:

- Emissions assume 8,760 hours of operation for the engine per year

- Heating value of Natural Gas assumed to be 1030 Btu/ft³

USA Compression Unit 2408 Caterpillar G3516BLE Engine Emissions Date of Manufacture 11/16/2012 **Engine Serial Number** JEF02001 Date Modified/Reconstructed Not Any Driver Rated HP 1380 Rated Speed in RPM 1400 **Combustion Type** Spark Ignited 4 Stroke Number of Cylinders 16 **Compression Ratio** 8:1 **Combustion Setting** Ultra Lean Burn Carburetor Total Displacement (in³) 4211 Fuel Delivery Method **Combustion Air Treatment** T.C./Aftercooled Raw Engine Emissions (905 LHV BTU/SCF Fuel Gas with little to no H2S) Fuel Consumption 7442 LHV BTU/bhp-hr 8255 HHV BTU/bhp-hr or Altitude 1200 ft Maximum Air Inlet Temp 90 F g/bhp-hr¹ lb/MMBTU² lb/hr TPY Nitrogen Oxides (NOx) 0.5 1.52 6.66 Carbon Monoxide (CO) 2.43 7.39 32.38 Volatile Organic Compounds (VOC or NMNEHC) 0.48 1.46 6.40 Formaldehyde (CH2O) 0.43 1.31 5.73 Particulate Matter (PM) Filterable+Condensable 4.98E-01 9.99E-03 1.14E-01 Sulfur Dioxide (SO2) 5.88E-04 6.70E-03 2.93E-02 g/bhp-hr¹ lb/hr Metric Tonne/yr Carbon Dioxide (CO2) 472 1436 5705 4.04 Methane (CH4) 48.83 12.29 g/bhp-hr are based on Caterpillar Specifications (GERP) customer supplied fuel gas, 1200 ft elevation, and 90 F Max Air Inlet Temperature. Note that g/bhp-hr values are based on 100% Load Operation. For Air Permitting, it is recommended to add a safety margin to CO, VOC, and Formaldehyde to account for variations in fuel gas composition and load. ⁴ Emission Factor obtained from EPA's AP-42, Fifth Edition, Volume I, Chapter 3: Stationary Internal Combution Sources (Section 3.2 Natural Gas-Fired Reciprocating Engines, Table 3.2-2). Catalytic Converter Emissions Catalytic Converter Make amd Model: EMIT ELX-5000Z-1616F Element Type: EMIT RE-3615Z Number of Elements in Housing: 2 Air/Fuel Ratio Control Caterpillar ADEM3, NOx Feedback % Reduction g/bhp-hr lb/hr TPY Nitrogen Oxides (NOx) 0 0.5 1.52 6.66 Carbon Monoxide (CO) 50 16.19 3.70 1 Volatile Organic Compounds (VOC or NMNEHC) 0 0.48 6.40 1.46 Formaldehyde (CH2O) 5.73 0 0.43 1.31 Particulate Matter (PM) 0 0.037396376 1.14E-01 4.98E-01 0.002201747 2.93E-02 Sulfur Dioxide (SO2) 0 6.70E-03 % Reduction lb/hr Metric Tonne/yr Carbon Dioxide (CO2) 0 1436 5705

0

Methane (CH4)

48.83

12.29

Mountaineer Keystone - PDC West Compressor Station Plant ID# 033-00187 Engine Serial JEF02167 Emission Summary CE-8R Criteria Pollutants (See Attachment M)

Fuel Usage				
Fuel	Units	Total		
Natural Gas	ft ³	29,858,162		

Emission Factors ¹				
	Engine			
Pollutant	Natural Gas (lbs/ 10 ⁶ ft ³)			
Particulates	33.38			
Sulfur Dioxide	1.96			
Oxides of Nitrogen	446.22			
PM-10	33.38			
VOC	428.37			
Carbon Monoxide	892.44			
CO2 Equiv	439,333			

Emissions							
	Engine						
Pollutant	Natural GasNatural GasNatural Gas(lbs/yr)(lbs/hr)(tons/yr)						
Particulates	996.00 0.1140 0.4980						
Sulfur Dioxide	58.62 0.0067 0.0293						
Oxides of Nitrogen	13,320	13,320 1.52 6.66					
PM-10	996.00	996.00 0.1140 0.4					
VOC	12,790 1.46 6.40						
Carbon Monoxide	32,380 3.70 16.19						
CO2 Equiv	13,117,662	1,497	7,634				

Emissions are calculated as follows:

Emissions = Volume of Gas (ft^3) * Emission Factor ($lbs/10^6 ft^3$)

¹ Natural Gas Emission Factors were taken from the attached spec sheet. Please note the CO2e emission factor was calculated using the emission provided on the spec sheet.

Notes:

- Emissions assume 8,760 hours of operation for the engine per year
- Heating value of Natural Gas assumed to be 1030 Btu/ft³

USAC 2439 Caterpillar G3516BLE Engine Emissions

Date of Manufacture	3/17/2013	Engine Serial Number	JEF02167	Date Modified/Reconstructed	Not Any
Driver Rated HP	1380	Rated Speed in RPM	1400	Combustion Type	Spark Ignited 4 Stroke
Number of Cylinders	16	Compression Ratio	8:1	Combustion Setting	Ultra Lean Burn
Total Displacement (in ³)	4230	Fuel Delivery Method	Carburetor	Combustion Air Treatment	T.C./Aftercooled

With Customer Supplied Fuel Gas Analysis

1					
Fuel Consumption	7442 LHV BTU/bhp-hr or	8255 H	HHV BTU/bhp-hr		
Altitude	1200 ft				
Maximum Air Inlet Temp	90 F				
		g/bhp-hr ¹	lb/MMBTU ²	lb/hr	ТРҮ
Nitrogen Oxides (NOx)		0.5		1.52	6.66
Carbon Monoxide (CO)		2.43		7.39	32.38
Volatile Organic Compounds	(VOC or NMNEHC excluding CH2O)	0.48		1.46	6.40
Formaldehyde (CH2O)		0.43		1.31	5.73
Particulate Matter (PM) Filtera	able+Condensable		9.99E-03	1.14E-01	4.98E-01
Sulfur Dioxide (SO2)			5.88E-04	6.70E-03	2.93E-02
		g/bhp-hr ¹		lb/hr	Metric Tonne/yr
Carbon Dioxide (CO2)		472		1436	5705
Methane (CH4)		4.04		12.29	48.83

¹ g/bhp-hr are based on Caterpillar Specifications (GERP) with customer supplied fuel gas, 1200 ft elevation, and 90 F Max Air Inlet Temperature. Note that g/bhp-hr values are based on 100% Load Operation. For Air Permitting, it is recommended to add a safety margin to CO, VOC, and Formaldehyde to account for variations in fuel gas composition and load.

² Emission Factor obtained from EPA's AP-42, Fifth Edition, Volume I, Chapter 3: Stationary Internal Combution Sources (Section 3.2 Natural Gas-Fired Reciprocating Engines, Table 3.2-2).

Catalytic Converter Emissions

Catalytic Converter Make and Model:	DCL, DC64L2-HSG+
Element Type:	DC64, 24.23" round A-Coat
Number of Elements in Housing:	2
Air/Fuel Ratio Control	Caterpillar ADEM3, NOx Feedback

	% Reduction	g/bhp-hr	lb/hr	ТРҮ
Nitrogen Oxides (NOx)	0	0.5	1.52	6.66
Carbon Monoxide (CO)	50	1	3.70	16.19
Volatile Organic Compounds (VOC or NMNEHC)	0	0.48	1.46	6.40
Formaldehyde (CH2O)	0	0.43	1.31	5.73
Particulate Matter (PM)	0	0.04	1.14E-01	4.98E-01
Sulfur Dioxide (SO2)	0	0.00	6.70E-03	2.93E-02
	% Reduction		lb/hr	Metric Tonne/yr
Carbon Dioxide (CO2)	0		1436	5705
Methane (CH4)	0		12.29	48.83

Mountaineer Keystone - PDC West Compressor Station Plant ID# 033-00187 Engine Emission Summary (See Attachment M) HAPS (CE-1R, CE-2R)

Emissions are calculated as follows:

Emissions = Heat of Natural Gas (MMBtu) * Emission Factor (lbs/MMBtu) ¹ Natural Gas Emission Factors were taken from AP-42 Tables 3.2-2

CE-1R - Natural Gas	CE-2R - Natural Gas
4SLB	4SLB
НАР	НАР
MMBtu	MMBtu
30,748	30,748

HAP Emissions		Natural Gas			
		(1) Engine			
		(lbs/yr)	(lbs/hr)	(tons/yr)	
НАР	Natural Gas ¹ (Ib/MMBtu)				
,1,2,2-Tetrachloroethane	4.00E-05	1.23	0.0001	0.0006	
I,1,2-Trichloroethane	3.18E-05	0.9778	0.0001	0.0005	
I,3-Butadiene	2.67E-04	8.21	0.0009	0.0041	
1,3-Dichloropropene	2.64E-05	0.8117	9.27E-05	0.0004	
2-Methylnaphthalene	3.32E-05	1.02	0.0001	0.0005	
2,2,4-Trimethylpentane	2.50E-04	7.69	0.0009	0.0038	
Acenaphthene	1.25E-06	0.0384	4.39E-06	1.92E-05	
Acenaphthylene	5.53E-06	0.1700	1.94E-05	8.50E-05	
Acetaldehyde	8.36E-03	257.05	0.0293	0.1285	
Acrolein	5.14E-03	158.04	0.0180	0.0790	
Benzene	4.40E-04	13.53	0.0015	0.0068	
Benzo(b)fluoranthene	1.66E-07	0.0051	5.83E-07	2.55E-06	
Benzo(e)pyrene	4.15E-07	0.0128	1.46E-06	6.38E-06	
Benzo(g,h,i)perylene	4.14E-07	0.0127	1.45E-06	6.36E-06	
Bipheyl	2.12E-04	6.52	0.0007	0.0033	
Carbon Tetrachloride	3.67E-05	1.13	0.0001	0.0006	
Chlorobenzene	3.04E-05	0.9347	0.0001	0.0005	
Chloroform	2.85E-05	0.8763	0.0001	0.0004	
Chrysene	6.93E-07	0.0213	2.43E-06	1.07E-05	
thylbenzene	3.97E-05	1.22	0.0001	0.0006	
thylene Dibromide	4.43E-05	1.36	0.0002	0.0007	
luoranthene	1.11E-06	0.0341	3.90E-06	1.71E-05	
luorene	5.67E-06	0.1743	1.99E-05	8.72E-05	
ormaldehyde	5.28E-02	1,623	0.1853	0.8117	
Methanol	2.50E-03	76.87	0.0088	0.0384	
Methylene Chloride	2.00E-05	0.6150	7.02E-05	0.0003	
n-Hexane	1.11E-03	34.13	0.0039	0.0171	
Naphthalene	7.44E-05	2.29	0.0003	0.0011	
PAH	2.69E-05	0.8271	9.44E-05	0.0004	
Phenanthrene	1.04E-05	0.3198	3.65E-05	0.0002	
Phenol	2.40E-05	0.7379	8.42E-05	0.0004	
yrene	1.36E-06	0.0418	4.77E-06	2.09E-05	
Styrene	2.36E-05	0.7256	8.28E-05	0.0004	
etrachloroethane	2.48E-06	0.0763	8.70E-06	3.81E-05	
Toluene	4.08E-04	12.55	0.0014	0.0063	
/inyl Chloride	1.49E-05	0.4581	5.23E-05	0.0002	
(ylene	1.84E-04	5.66	0.0006	0.0028	
	Total:	2,220	0.2534	1.11	

Mountaineer Keystone - PDC West Compressor Station Plant ID# 033-00187 Engine Emission Summary (See Attachment M) HAPS (CE-5R)

Emissions are calculated as follows:

Emissions = Heat of Natural Gas (MMBtu) * Emission Factor (Ibs/MMBtu)

¹ Natural Gas Emission Factors were taken from AP-42 Tables 3.2-2

CE-5R - Natural Gas 4SLB
HAP
MMBtu
52,823

HAP Emissions		Natural Gas 4SLB		
		НАР	Natural Gas ¹ (Ib/MMBtu)	
1,1,2,2-Tetrachloroethane	4.00E-05	2.11	0.0002	0.0011
1,1,2-Trichloroethane	3.18E-05	1.68	0.0002	0.0008
,3-Butadiene	2.67E-04	14.10	0.0016	0.0071
,3-Dichloropropene	2.64E-05	1.39	0.0002	0.0007
2-Methylnaphthalene	3.32E-05	1.75	0.0002	0.0009
2,2,4-Trimethylpentane	2.50E-04	13.21	0.0015	0.0066
cenaphthene	1.25E-06	0.0660	7.54E-06	3.30E-05
Acenaphthylene	5.53E-06	0.2921	3.33E-05	0.0001
Acetaldehyde	8.36E-03	441.60	0.0504	0.2208
Acrolein	5.14E-03	271.51	0.0310	0.1358
Benzene	4.40E-04	23.24	0.0027	0.0116
Benzo(b)fluoranthene	1.66E-07	0.0088	1.00E-06	4.38E-06
Benzo(e)pyrene	4.15E-07	0.0219	2.50E-06	1.10E-05
Benzo(g,h,i)perylene	4.14E-07	0.0219	2.50E-06	1.09E-05
Bipheyl	2.12E-04	11.20	0.0013	0.0056
Carbon Tetrachloride	3.67E-05	1.94	0.0002	0.0010
Chlorobenzene	3.04E-05	1.61	0.0002	0.0008
Chloroform	2.85E-05	1.51	0.0002	0.0008
Chrysene	6.93E-07	0.0366	4.18E-06	1.83E-05
thylbenzene	3.97E-05	2.10	0.0002	0.0010
thylene Dibromide	4.43E-05	2.34	0.0003	0.0012
luoranthene	1.11E-06	0.0586	6.69E-06	2.93E-05
luorene	5.67E-06	0.2995	3.42E-05	0.0001
Formaldehyde	5.28E-02	2,789	0.3184	1.39
Vethanol	2.50E-03	132.06	0.0151	0.0660
Nethylene Chloride	2.00E-05	1.06	0.0001	0.0005
n-Hexane	1.11E-03	58.63	0.0067	0.0293
Naphthalene	7.44E-05	3.93	0.0004	0.0020
PAH	2.69E-05	1.42	0.0002	0.0007
Phenanthrene	1.04E-05	0.5494	6.27E-05	0.0003
Phenol	2.40E-05	1.27	0.0001	0.0006
Pyrene	1.36E-06	0.0718	8.20E-06	3.59E-05
Styrene	2.36E-05	1.25	0.0001	0.0006
Fetrachloroethane	2.48E-06	0.1310	1.50E-05	6.55E-05
Toluene	4.08E-04	21.55	0.0025	0.0108
/inyl Chloride	1.49E-05	0.7871	8.98E-05	0.0004
(ylene	1.84E-04	9.72	0.0011	0.0049
	Total:	3,814	0.4353	1.91

Mountaineer Keystone - PDC West Compressor Station Plant ID# 033-00187 Engine Emission Summary (See Attachment M) HAPS (CE-6R)

Emissions are calculated as follows:

Emissions = Heat of Natural Gas (MMBtu) * Emission Factor (Ibs/MMBtu)

¹ Natural Gas Emission Factors were taken from AP-42 Tables 3.2-2

CE-6R - Natural Gas
4SLB
НАР
MMBtu
39,595

HAP Emissions		Natural Gas 4SLB		
НАР	Natural Gas ¹ (Ib/MMBtu)			
,1,2,2-Tetrachloroethane	4.00E-05	1.58	0.0002	0.0008
,1,2-Trichloroethane	3.18E-05	1.26	0.0001	0.0006
,3-Butadiene	2.67E-04	10.57	0.0012	0.0053
,3-Dichloropropene	2.64E-05	1.05	0.0001	0.0005
-Methylnaphthalene	3.32E-05	1.31	0.0002	0.0007
2,2,4-Trimethylpentane	2.50E-04	9.90	0.0011	0.0049
cenaphthene	1.25E-06	0.0495	5.65E-06	2.47E-05
Acenaphthylene	5.53E-06	0.2190	2.50E-05	0.0001
Acetaldehyde	8.36E-03	331.02	0.0378	0.1655
Acrolein	5.14E-03	203.52	0.0232	0.1018
Benzene	4.40E-04	17.42	0.0020	0.0087
Benzo(b)fluoranthene	1.66E-07	0.0066	7.50E-07	3.29E-06
Benzo(e)pyrene	4.15E-07	0.0164	1.88E-06	8.22E-06
Benzo(g,h,i)perylene	4.14E-07	0.0164	1.87E-06	8.20E-06
Bipheyl	2.12E-04	8.39	0.0010	0.0042
Carbon Tetrachloride	3.67E-05	1.45	0.0002	0.0007
Chlorobenzene	3.04E-05	1.20	0.0001	0.0006
Chloroform	2.85E-05	1.13	0.0001	0.0006
Chrysene	6.93E-07	0.0274	3.13E-06	1.37E-05
thylbenzene	3.97E-05	1.57	0.0002	0.0008
Ethylene Dibromide	4.43E-05	1.75	0.0002	0.0009
luoranthene	1.11E-06	0.0440	5.02E-06	2.20E-05
luorene	5.67E-06	0.2245	2.56E-05	0.0001
ormaldehyde	5.28E-02	2,091	0.2387	1.05
Methanol	2.50E-03	98.99	0.0113	0.0495
Nethylene Chloride	2.00E-05	0.7919	9.04E-05	0.0004
n-Hexane	1.11E-03	43.95	0.0050	0.0220
laphthalene	7.44E-05	2.95	0.0003	0.0015
PAH	2.69E-05	1.07	0.0001	0.0005
Phenanthrene	1.04E-05	0.4118	4.70E-05	0.0002
Phenol	2.40E-05	0.9503	0.0001	0.0005
yrene	1.36E-06	0.0538	6.15E-06	2.69E-05
styrene	2.36E-05	0.9344	0.0001	0.0005
etrachloroethane	2.48E-06	0.0982	1.12E-05	4.91E-05
oluene	4.08E-04	16.15	0.0018	0.0081
/inyl Chloride	1.49E-05	0.5900	6.73E-05	0.0003
(ylene	1.84E-04	7.29	0.0008	0.0036
	Total:	2,859	0.3263	1.43

Mountaineer Keystone - PDC West Compressor Station Plant ID# 033-00187 Engine Emission Summary (See Attachment M) HAPS (CE-7R, CE-8R)

Emissions are calculated as follows:

Emissions = Heat of Natural Gas (MMBtu) * Emission Factor (lbs/MMBtu)

¹ Natural Gas Emission Factors were taken from AP-42 Tables 3.2-2 and Formaldehyde emissions (lb/hr & tpy) were taken from the spec sheet

CE-7R - Natural Gas	CE-8R - Natural Gas
4SLB	4SLB
HAP	HAP
MMBtu	MMBtu
30,748	30,748

HAP Emissions		Natural Gas (1) Engine		
		НАР	Natural Gas ¹ (Ib/MMBtu)	
1,1,2,2-Tetrachloroethane	4.00E-05	1.23	0.0001	0.0006
,1,2-Trichloroethane	3.18E-05	0.9778	0.0001	0.0005
,3-Butadiene	2.67E-04	8.21	0.0009	0.0041
,3-Dichloropropene	2.64E-05	0.8117	9.27E-05	0.0004
-Methylnaphthalene	3.32E-05	1.02	0.0001	0.0005
2,2,4-Trimethylpentane	2.50E-04	7.69	0.0009	0.0038
cenaphthene	1.25E-06	0.0384	4.39E-06	1.92E-05
cenaphthylene	5.53E-06	0.1700	1.94E-05	8.50E-05
cetaldehyde	8.36E-03	257.05	0.0293	0.1285
Acrolein	5.14E-03	158.04	0.0180	0.0790
Benzene	4.40E-04	13.53	0.0015	0.0068
Benzo(b)fluoranthene	1.66E-07	0.0051	5.83E-07	2.55E-06
Benzo(e)pyrene	4.15E-07	0.0128	1.46E-06	6.38E-06
enzo(g,h,i)perylene	4.14E-07	0.0127	1.45E-06	6.36E-06
Bipheyl	2.12E-04	6.52	0.0007	0.0033
Carbon Tetrachloride	3.67E-05	1.13	0.0001	0.0006
Chlorobenzene	3.04E-05	0.9347	0.0001	0.0005
Chloroform	2.85E-05	0.8763	0.0001	0.0004
Chrysene	6.93E-07	0.0213	2.43E-06	1.07E-05
thylbenzene	3.97E-05	1.22	0.0001	0.0006
thylene Dibromide	4.43E-05	1.36	0.0002	0.0007
luoranthene	1.11E-06	0.0341	3.90E-06	1.71E-05
luorene	5.67E-06	0.1743	1.99E-05	8.72E-05
ormaldehyde	-	1,840	0.2100	0.9200
<i>l</i> ethanol	2.50E-03	76.87	0.0088	0.0384
lethylene Chloride	2.00E-05	0.6150	7.02E-05	0.0003
n-Hexane	1.11E-03	34.13	0.0039	0.0171
laphthalene	7.44E-05	2.29	0.0003	0.0011
PAH	2.69E-05	0.8271	9.44E-05	0.0004
Phenanthrene	1.04E-05	0.3198	3.65E-05	0.0002
henol	2.40E-05	0.7379	8.42E-05	0.0004
yrene	1.36E-06	0.0418	4.77E-06	2.09E-05
tyrene	2.36E-05	0.7256	8.28E-05	0.0004
etrachloroethane	2.48E-06	0.0763	8.70E-06	3.81E-05
oluene	4.08E-04	12.55	0.0014	0.0063
/inyl Chloride	1.49E-05	0.4581	5.23E-05	0.0002
ylene	1.84E-04	5.66	0.0006	0.0028
	Total:	2,436	0.2781	1.22

Prepared For:

Chris Magee

USA COMPRESSION

APPLICATION INFORMATION DRIVER

Make:	CATERPILLAR
Model:	G3516B
Horsepower:	1380
RPM:	1400
Compression Ratio:	8.0
Exhaust Flow Rate:	9042 CFM
Exhaust Temperature:	982 °F
Reference:	DM8800-07
Fuel:	Natural Gas
Annual Operating Hours:	8760

UNCONTROLLED EMISSIONS DATA

	<u>g/bhp-hr</u>	<u>Lb/hr</u>	Tons/Year
NO _x :	0.50	1.52	6.66
CO:	2.43	7.39	32.38
THC:	475.00	14.45	63.30
NMHC:	0.71	2.16	9.46
NMNEHC	0.48	1.46	6.40
HCHO	0.43	1.31	5.73
Oxygen:	0.30%		

POST CATALYST EMISSIONS

	<u>g/bhp-hr</u>	<u>Lb/hr</u>	<u>Tons/Year</u>
NO _x :	Unaffected by O	xidation Catal	yst
CO:	<1.22	<3.70	<16.19
HCHO:	<0.07	<0.21	<0.92

2555 Heartland Drive Sheridan, WY 82801 Office: 307.673.0883 | Direct: 307.675.5073 cparisi@emittechnologies.com

QUOTE: QUO-13825-F8N1

CONTROL EQUIPMENT

Catalyst Housing

Model: Manufacturer: Element Size: Housing Type: Catalyst Installation: Construction: Sample Ports: Inlet Connections: Outlet Connections: Configuration: Silencer: Silencer Grade: Insertion Loss:

ELX-5000Z-1616F-30CEE-361 EMIT Technologies, Inc Rectangle, 36" x 15" x 3.5" 3 Element Capacity Accessible Housing 10 gauge Carbon Steel 6 (0.5" NPT) 16" Flat Face Flange 16" Flat Face Flange End In / End Out Integrated Hospital Enhanced 35-50 dBA

Catalyst Element

Model:	RT-3615-Z
Catalyst Type:	Oxidation, Standard Precious Group Metals
Substrate Type:	BRAZED
Element Size:	Rectangle, 36" x 15" x 3.5"
Element Quantity:	2

Tanker Truck Loading Calculations

Mountaineer Keystone – PDC West Compressor Station Plant ID# 033-00187 **Tanker Truck Loading Emissions (See Attachment N)**

Assumptions:

- All VOC, GHG, and HAPS that enter the tank are emitted during loading
 Lbs/tons of VOC, GHG, and HAPS are used from the tank emission calculations

$$0.0013 \frac{lbs VOC}{hr} + 0.0161 \frac{lbs VOC}{hr} = 0.0174 \frac{lbs VOC}{hr}$$
$$0.0058 \frac{tons VOC}{yr} + 0.0703 \frac{tons VOC}{yr} = 0.0761 \frac{tons VOC}{yr}$$

$$0.3745 \frac{lbs GHG}{hr} + 0.4369 \frac{lbs GHG}{hr} = 0.8114 \frac{lbs GHG}{hr}$$
$$1.64 \frac{tons GHG}{yr} + 1.91 \frac{tons GHG}{yr} = 3.55 \frac{tons GHG}{yr}$$

$$0.0002 \frac{lbs HAPS}{hr} + 0.0008 \frac{lbs HAPS}{hr} = 0.0010 \frac{lbs HAPS}{hr}$$
$$0.0011 \frac{tons HAPS}{yr} + 0.0033 \frac{tons HAPS}{yr} = 0.0044 \frac{tons HAPS}{yr}$$

GRI – GLYCalc Model

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: PDC West Compressor Station - Glycol Dehy # 2 File Name: C:\Users\vks.HRP\Desktop\New Model\67 MMSCFD Model with new analytics-01062017.ddf

Date: January 18, 2017

DESCRIPTION:

Description: PDC West Compressor Station - Glycol Dehydration Unit with one (1) 1.0 MMBtu/hr Reboiler

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	42.0063	1008.152	183.9878
Ethane	3.5378	84.907	15.4955
Propane	0.4270	10.248	1.8703
Isobutane	0.0408	0.980	0.1788
n-Butane	0.0719	1.725	0.3148
Isopentane	0.0177	0.424	0.0774
n-Pentane	0.0122	0.292	0.0534
Other Hexanes	0.0208	0.498	0.0909
Heptanes	0.0319	0.767	0.1399
Benzene	0.0006	0.014	0.0026
Toluene	0.0011	0.026	0.0048
Ethylbenzene	0.0018	0.044	0.0081
Xylenes	0.0027	0.065	0.0119
C8+ Heavies	0.0480	1.152	0.2102
Total Emissions	46.2206	1109.295	202.4464
Total Hydrocarbon Emissions	46.2206	1109.295	202.4464
Total VOC Emissions	0.6765	16.236	2.9631
Total HAP Emissions	0.0063	0.150	0.0274
Total BTEX Emissions	0.0063	0.150	0.0274

EQUIPMENT REPORTS:

ABSORBER

Calculated Absorber Stages: 2.08 Specified Dry Gas Dew Point: 2.70 lbs. H2O/MMSCF Temperature: 88.0 deg. F Pressure: 650.0 psig Dry Gas Flow Rate: 67.0000 MMSCF/day Glycol Losses with Dry Gas: 0.2689 lb/hr Wet Gas Water Content: Saturated Calculated Wet Gas Water Content: 56.27 lbs. H2O/MMSCF Calculated Lean Glycol Recirc. Ratio: 1.60 gal/lb H2O

Component	Remaining in Dry Gas	Absorbed in Glycol
Water	4.79%	95.21%
Carbon Dioxide	99.94%	0.06%
Nitrogen	100.00%	0.00%
Methane	100.00%	0.00%
Ethane	99.99%	0.01%
Propane	99.97%	0.03%
Isobutane	99.96%	0.04%
n-Butane	99.95%	0.05%
Isopentane	99.95%	0.05%
n-Pentane	99.93%	0.07%
Other Hexanes	99.91%	0.09%
Heptanes	99.76%	0.24%
Benzene	94.79%	5.21%
Toluene	91.90%	8.10%
Ethylbenzene	88.25%	11.75%
Xylenes	82.65%	17.35%
C8+ Heavies	99.08%	0.92%

REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	Distilled Overhead
Water	18.40%	81.60%
Carbon Dioxide	0.00%	100.00%
Nitrogen	0.00%	100.00%
Methane	0.00%	100.00%
Ethane	0.00%	100.00%
Propane Isobutane n-Butane Isopentane n-Pentane	0.00% 0.00% 0.31% 0.34%	100.00% 100.00% 100.00% 99.69% 99.66%
Other Hexanes	0.74%	99.26%
Heptanes	0.44%	99.56%
Benzene	4.97%	95.03%
Toluene	7.88%	92.12%
Ethylbenzene	10.39%	89.61%
Xylenes	12.92%	87.08%
C8+ Heavies	11.65%	88.35%

STREAM REPORTS:

WET GAS STREAM

Temperature: 88.00 deg. F Pressure: 664.70 psia Flow Rate: 2.80e+006 scfh

Component Conc. Loading (vol%) (lb/hr) ----- -----Water 1.19e-001 1.57e+002 Carbon Dioxide 1.77e-001 5.73e+002 Nitrogen 2.62e-001 5.41e+002 Methane 9.58e+001 1.13e+005 Ethane 3.41e+000 7.55e+003 Propane 2.21e-001 7.17e+002 Isobutane 1.33e-002 5.69e+001 n-Butane 1.98e-002 8.47e+001 Isopentane 3.80e-003 2.02e+001 n-Pentane 2.20e-003 1.17e+001 Other Hexanes 2.60e-003 1.65e+001 Heptanes 1.60e-003 1.18e+001 Benzene 2.00e-006 1.15e-002 Toluene 2.00e-006 1.36e-002 Ethylbenzene 2.00e-006 1.56e-002 Xylenes 2.00e-006 1.56e-002 C8+ Heavies 4.00e-004 5.01e+000 ----- ------Total Components 100.00 1.23e+005 DRY GAS STREAM _____ Temperature: 88.00 deg. F Pressure: 664.70 psia Flow Rate: 2.79e+006 scfh Component Conc. Loading (vol%) (lb/hr) Water 5.69e-003 7.54e+000 Carbon Dioxide 1.77e-001 5.73e+002 Nitrogen 2.62e-001 5.41e+002 Methane 9.59e+001 1.13e+005 Ethane 3.41e+000 7.55e+003 Propane 2.21e-001 7.17e+002 Isobutane 1.33e-002 5.69e+001 n-Butane 1.98e-002 8.46e+001 Isopentane 3.80e-003 2.02e+001 n-Pentane 2.20e-003 1.17e+001 Other Hexanes 2.60e-003 1.65e+001 Heptanes 1.60e-003 1.18e+001 Benzene 1.90e-006 1.09e-002 Toluene 1.84e-006 1.25e-002 Ethylbenzene 1.76e-006 1.38e-002 Xylenes 1.65e-006 1.29e-002 C8+ Heavies 3.96e-004 4.97e+000 Total Components 100.00 1.23e+005

LEAN GLYCOL STREAM Temperature: 88.00 deg. F Flow Rate: 4.00e+000 gpm Component Conc. Loading (wt%) (lb/hr)

TEG 9.85e+001 2.22e+003 Water 1.50e+000 3.38e+001 Carbon Dioxide 1.62e-012 3.65e-011 Nitrogen 9.97e-014 2.25e-012 Methane 6.71e-018 1.51e-016 Ethane 2.17e-008 4.88e-007 Propane 3.42e-010 7.71e-009 Isobutane 2.93e-011 6.59e-010 n-Butane 4.82e-011 1.09e-009 Isopentane 2.45e-006 5.51e-005 n-Pentane 1.85e-006 4.18e-005 Other Hexanes 6.86e-006 1.54e-004 Heptanes 6.26e-006 1.41e-004 Benzene 1.40e-006 3.15e-005 Toluene 4.19e-006 9.43e-005 Ethylbenzene 9.48e-006 2.13e-004 Xylenes 1.79e-005 4.03e-004 C8+ Heavies 2.81e-004 6.33e-003 Total Components 100.00 2.25e+003

RICH GLYCOL AND PUMP GAS STREAM

Temperature: 88.00 deg. F Pressure: 664.70 psia Flow Rate: 4.40e+000 gpm NOTE: Stream has more than one phase.

Component Conc. Loading (wt%) (lb/hr) TEG 9.06e+001 2.22e+003 Water 7.50e+000 1.84e+002 Carbon Dioxide 2.27e-002 5.55e-001 Nitrogen 8.24e-003 2.02e-001 Methane 1.72e+000 4.20e+001 Ethane 1.45e-001 3.54e+000 Propane 1.74e-002 4.27e-001 Isobutane 1.67e-003 4.08e-002 n-Butane 2.94e-003 7.19e-002 Isopentane 7.24e-004 1.77e-002 n-Pentane 5.00e-004 1.22e-002 Other Hexanes 8.54e-004 2.09e-002 Heptanes 1.31e-003 3.21e-002 Benzene 2.59e-005 6.34e-004 Toluene 4.89e-005 1.20e-003 Ethylbenzene 8.40e-005 2.05e-003 Xylenes 1.27e-004 3.12e-003 C8+ Heavies 2.22e-003 5.43e-002 Total Components 100.00 2.45e+003

REGENERATOR OVERHEADS STREAM

_							_
	Temperature: Pressure: Flow Rate:	212.00 14.70 4.21e+003	psia	F			
		Component	2		Conc. (vol%)	Loading (lb/hr)	

----- -----Water 7.50e+001 1.50e+002 Carbon Dioxide 1.14e-001 5.55e-001 Nitrogen 6.50e-002 2.02e-001 Methane 2.36e+001 4.20e+001 Ethane 1.06e+000 3.54e+000 Propane 8.73e-002 4.27e-001 Isobutane 6.34e-003 4.08e-002 n-Butane 1.12e-002 7.19e-002 Isopentane 2.21e-003 1.77e-002 n-Pentane 1.52e-003 1.22e-002 Other Hexanes 2.17e-003 2.08e-002 Heptanes 2.88e-003 3.19e-002 Benzene 6.96e-005 6.02e-004 Toluene 1.08e-004 1.10e-003 Ethylbenzene 1.56e-004 1.84e-003 Xylenes 2.31e-004 2.71e-003 C8+ Heavies 2.54e-003 4.80e-002 Total Components 100.00 1.97e+002

Gas Analytical Services

CHARLESTON, WV 304-677-9926

: 0034 - MK MIDSTREAM

: 2601

Customer

Station ID

Date Sampled

Date Analyzed

Good

04049

LELAP Certification #

: 12/13/2016

: 12/19/2016

Ideal GPM Ideal BTU Dry		0.983 1,032.69	0.986 1,035.94	0.989 1,038.33	1.008 1,059.13			
BTU @ (PSIA)		@14.65	@14.696	@14.73	@15.02			
	vity: 0.5761	Real Gravity: 0.577		C5+ Mole % : 0.01				
Compressibil	lity Factor (Z) @ 14.	73 @ 60 Deg. F = 0.997	9	C5+ GPM : 0.00	200			
	TOTAL		100.0000	0.990				
	C12's		0.0000	0.000				
	C11's		0.0000	0.000				
	C10's		0.0000	0.000				
	C7's		0.0016	0.001				
	C9's		0.0000	0.000				
	C8's		0.0004	0.000				
	C6's		0.0026	0.001				
	M-XYLENE/P-X	YLENE	0.0000	0.000				
	TOLUENE		0.0000	0.000				
	ETHYLBENZEN	IE	0.0000	0.000				
	BENZENE		0.0000	0.000				
	Oxygen		0.0020	0.000				
	Carbon-Dioxide		0.2024	0.000				
	Nitrogen	;	0.0022 0.2624	0.001 0.000				
	Iso-Pentane Normal-Pentane		0.0038	0.001				
	Neo-Pentane		0.0006	0.000				
	Normal-Butane		0.0198	0.006				
	Iso-Butane		0.0133	0.004				
	Propane		0.2210	0.061				
	Ethane		3.4142	0.915				
	Methane		95.8791	0.000				
	COMPONENT		<u>MOL%</u>	<u>GPM@14.73(PSIA)</u>				
State	: WV		Sar	mple By : HT				
Area	: 190 - UNKNO\	WN	Cyl	linder Type : Spot	t			
Lease	: GOFF WEST		Ter	mp : 60				
Producer	:		Cyl	Pressure : 625				
Cylinder ID	: 0280		Effe	ective Date : 01/0	1/2017			
Station ID	: 2601		Dat	te Analyzed : 12/1	9/2016			

Blowdown and Pigging Operation Emission Calculations

Mountaineer Keystone – PDC West Compressor Station Plant ID# 033-00187 Blowdown and Pigging Operation Emissions (See Attachment S)

Compressor Blowdown

Assumptions:

- 642.9 scf/event summed from factors on page 137 of Background Technical Support Document – Petroleum and Natural Gas Industry (<u>https://www.epa.gov/sites/production/files/2015-05/documents/background-tsd-posted-4-12-10-epa-hq-oar-2009-0923-0027.pdf</u>)
- Events occur 48 times per year

$$\left(642.9\frac{scf}{event}\right) \left(\frac{28.32 L}{scf}\right) \left(\frac{gmol}{22.4 L}\right) \left(\frac{lbmol}{453.592 gmol}\right) \left(\frac{16.68 lb}{lbmol}\right) = 29.89\frac{lbs natural gas}{event}$$

$$\left(29.89\frac{lbs natural gas}{event}\right) \left(48\frac{events}{year}\right) = 1434.72\frac{lbs natural gas}{year} = 0.7173\frac{tons natural gas}{year}$$

$$\left(0.7173\frac{tons natural gas}{year}\right) (7\% wt VOC) = 0.0502\frac{tons VOC}{year}$$

Low Pressure Pig Venting

Assumptions:

- 10 mmscf/day of gas flow
- Each event takes 10 minutes
- Events occurs 36 times per year

$$\left(10,000,000\frac{scf}{day}\right)\left(\frac{day}{1440\text{ min}}\right)\left(\frac{10\text{ min}}{event}\right) = 69,444\frac{scf}{event}$$

$$\left(69,444\frac{scf}{event}\right)\left(\frac{28.32\text{ L}}{scf}\right)\left(\frac{gmol}{22.4\text{ L}}\right)\left(\frac{lbmol}{453.592\text{ gmol}}\right)\left(\frac{16.68\text{ lb}}{lbmol}\right) = 3,235\frac{lbs\text{ natural gas}}{event}$$

$$\left(3,235\frac{lbs\text{ natural gas}}{event}\right)\left(\frac{36\text{ events}}{year}\right) = 116,460\frac{lbs\text{ natural gas}}{year} = 58.23\frac{tons\text{ natural gas}}{year}$$

$$\left(58.23\frac{tons\text{ natural gas}}{year}\right)(7\%\text{ wt VOC}) = 4.08\frac{tons\text{ VOC}}{year}$$

Compressor Startup

Assumptions:

- 5,000 scf/event taken from Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry footnote (e) from pdf page 297 (Table 5-23) (http://www.api.org/~/media/files/ehs/climate-change/2009_ghg_compendium.ashx)
- Events occur 6 times per year

$$\left(5,000\frac{scf}{event}\right)\left(\frac{28.32 L}{scf}\right)\left(\frac{gmol}{22.4 L}\right)\left(\frac{lbmol}{453.592 gmol}\right)\left(\frac{16.68 lb}{lbmol}\right) = 232.46 \frac{lbs natural gas}{event}$$

$$\left(232.46\frac{lbs natural gas}{event}\right)\left(\frac{6 events}{year}\right) = 1,395\frac{lbs natural gas}{year} = 0.6974\frac{tons natural gas}{year}$$

$$\left(0.6974\frac{tons natural gas}{year}\right)(7\% wt VOC) = 0.0488\frac{tons VOC}{year}$$

A'	ГТАСНИ	IENT	V – FA	CILITY	-WIDE	CONT	ROLLE	ED EMI	SSION	IS SUM	MARY	SHEE	T		
List all sources of en	nissions in	n this ta	able. U	se extra	pages if	fnecess	ary.								
Emission Point ID#	N	O _x	СО		V	VOC		SO ₂		PM ₁₀		PM _{2.5}		GHG (CO ₂ e)	
Emission Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
1E (CE-1R)	1.01	4.41	0.4800	2.11	0.0300	0.1500	0.0021	0.0090	0.0003	0.0012	0.0003	0.0012	386.18	1,691	
2E (CE-2R)	1.07	4.69	0.1700	0.7500	0.0600	0.2600	0.0021	.0090	0.0003	0.0012	0.0003	0.0012	386.18	1,691	
5E (CE-5R)	1.06	4.66	0.0500	0.2200	0.0800	0.3500	0.0035	0.0155	0.0005	0.0020	0.0005	0.0020	663.22	2,905	
6E (CE-6R)	0.8600	3.78	0.0600	0.277	0.0400	0.1900	0.0027	0.0116	0.0003	0.0015	0.0003	0.0015	496.72	2,176	
3E (CE-7R)	1.52	6.66	3.70	16.19	1.46	6.40	0.0067	0.0293	0.1140	0.4980	0.1140	0.4980	1,497	7,634	
4E (CE-8R)	1.52	6.66	3.70	16.19	1.46	6.40	0.0067	0.0293	0.1140	0.4980	0.1140	0.4980	1,497	7,634	
RSV-1 (TEG-1)	NA	NA	NA	NA	0.6737	2.96	NA	NA	NA	NA	NA	NA	210	920	
RBV-1 (TEG-1)	0.0971	0.4252	0.0816	0.3572	0.0053	0.0234	0.0060	0.0026	0.0074	0.0323	0.0074	0.0323	116	510	
RSV-2 (TEG-2)	NA	NA	NA	NA	0.6737	2.95	NA	NA	NA	NA	NA	NA	1,033	4,522	
RBV-2 (TEG-2)	0.0971	0.4252	0.0816	0.3572	0.0053	0.0234	0.0060	0.0026	0.0074	0.0323	0.0074	0.0323	116	510	
7E (TK-1)	NA	NA	NA	NA	0.0161	0.0703	NA	NA	NA	NA	NA	NA	0.4369	1.91	
8E (TK-3)	NA	NA	NA	NA	0.0013	0.0058	NA	NA	NA	NA	NA	NA	0.3745	1.64	
LO-1	NA	NA	NA	NA	<0.0174	<0.0761	NA	NA	NA	NA	NA	NA	<0.8114	<3.55	
TOTAL	7.23	31.71	8.32	36.44	4.52	19.82	0.0250	0.1089	0.2442	1.07	0.2442	1.07	5,580	26,598	

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

АТ	ГТАСНМ	ENT V	– FACI	LITY-V	VIDE H	AP CON	TROL	LED E	MISSIO	NS SU	MMAI	RY SHE	ET		
List all sources of	emissions	s in this	table. U	Jse extra	pages i	f necess	ary.								
Formaldehyde		lehyde	Ben	Benzene		Toluene		Ethylbenzene		Xylenes		Hexane		Total HAPs	
Emission Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
1E (CE-1R)	0.1853	0.8117	0.0015	0.0068	0.0001	0.0063	0.0006	0.0006	6.39E-4	0.0028	0.0039	0.0171	0.2534	1.11	
2E (CE-2R)	0.1853	0.8117	0.0015	0.0068	0.0001	0.0063	0.0006	0.0006	6.39E-4	0.0028	0.0039	0.0171	0.2534	1.11	
5E (CE-5R)	0.3184	1.39	0.0027	0.0116	0.0025	0.0108	0.0002	0.0010	0.0011	0.0049	0.0069	0.0293	0.4353	1.91	
6E (CE-6R)	0.2387	1.05	0.0020	0.0087	0.0018	0.0081	0.0002	0.0008	0.0008	0.0036	0.0050	0.0220	0.3263	1.43	
3E (CE-7R)	0.2100	0.9200	0.0020	0.0068	0.001	0.0063	0.001	0.0006	6.39E-4	0.0028	0.0040	0.0171	0.2781	1.22	
4E (CE-8R)	0.2100	0.9200	0.0020	0.0068	0.001	0.0063	0.001	0.0006	6.39E-4	0.0028	0.0040	0.0171	0.2781	1.22	
RSV-1 (TEG-1)	NA	NA	0.0006	0.0026	0.0011	0.0048	0.0018	0.0081	0.0027	0.0119	0.0208	0.0909	0.0063	0.0274	
RBV-1 (TEG-1)	7.28E-5	0.0003	2.04E-6	8.93E-6	3.30E-6	1.45E-5	NA	NA	NA	NA	0.0017	0.0077	0.0018	0.0080	
RSV-2 (TEG-2)	NA	NA	0.0006	0.0026	0.0011	0.0048	0.0018	0.0081	0.0027	0.0119	0.0208	0.0909	0.0063	0.0274	
RBV-2 (TEG-2)	7.28E-5	0.0003	2.04E-6	8.93E-6	3.30E-6	1.45E-5	NA	NA	NA	NA	0.0017	0.0077	0.0018	0.0080	
7E (TK-1)	NA	NA	NA	NA	0.0002	0.0008	NA	NA	NA	NA	NA	NA	0.0004	0.0016	
8E (TK-3)	NA	NA	0.0001	0.0005	0.0001	0.0005	4.81E-6	2.10E-5	3.36E-5	0.0001	NA	NA	0.0005	0.0023	
LO-1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0010	0.0044	
TOTAL	1.35	7.53	0.0130	0.0532	0.0116	0.0550	0.0062	0.0204	0.0098	0.0436	0.0725	0.3169	1.84	8.08	

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT W – CLASS I LEGAL ADVERTISEMENT

Publication of a proper Class I legal advertisement is a requirement of the G35-D registration process. In the event the applicant's legal advertisement fails to follow the requirements of 45CSR13, Section 8 or the requirements of Chapter 59, Article 3, of the West Virginia Code, the application will be considered incomplete and no further review of the application will occur until this is corrected.

The applicant, utilizing the format for the Class I legal advertisement example provided on the following page, shall have the legal advertisement appear a minimum of one (1) day in the newspaper most commonly read in the area where the facility exists or will be constructed. The notice must be published no earlier than five (5) working days of receipt by this office of your application. The original affidavit of publication must be received by this office no later than the last day of the public comment period.

The advertisement shall contain, at a minimum, the name of the applicant, the type and location of the source, the type and amount of air pollutants that will be discharged (include fugitive emissions separately), the nature of the permit being sought, the proposed start-up date for the source, and a contact telephone number for more information.

The location of the source should be as specific as possible starting with: 1.) the street address of the source; 2.) the nearest street or road; 3.) the nearest town or unincorporated area, 4.) the county, and 5.) latitude and longitude coordinates in decimal format.

Types and amounts of pollutants discharged must include all regulated pollutants (Nitrogen Oxides, Carbon Monoxide, Particulate Matter-2.5, Particulate Matter-10, Volatile Organic Compounds, Sulfur Dioxide, Formaldehyde, Benzene, Toluene, Ethylbenzene, Xylenes, Hexane, Total Hazardous Air Pollutants) and their potential to emit or the permit level being sought in units of tons per year.

In the event the 30th day is a Saturday, Sunday, or legal holiday, the comment period will be extended until 5:00 p.m. on the following regularly scheduled business day.

A list of qualified newspapers that are eligible to publish legal ads may be found:

http://www.sos.wv.gov/elections/resource/Documents/Qualified%20Newspapers.pdf

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that MK Midstream Holdings, LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for aG35-D (General Permit Modification), for a natural gas compressor and/or dehydration facility located on Davisson Run Road, Clarksburg, in Harrison County, West Virginia. The latitude and longitude coordinates are: 39.27550 and -80.403099.

The applicant estimates the increased potential to discharge the following Regulated Air Pollutants will be:

- VOC 4.15 Tons per year;
- Benzene 0.0052 Tons per year;
- Toluene 0.0096 Tons per year;
- Ethylbenzene 0.0162 Tons per year;
- Xylenes 0.0238 Tons per year; and
- Hexane 0.1818 Tons per year.

Startup of operation is planned to begin on or about March 1, 2017. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours. Dated this 18th day of January, 2017.

By: MK Midstream Holdings, LLC Meghan M.B. Yingling Environmental Compliance Manager 65 Professional Place, Suite 200 Bridgeport, WV 26330