

global environmental solutions

CNX Gas Company LLC Rohrbaugh Station Camden, West Virginia Rule 13 Permit Application SLR Ref: 116.00894.00059



### **Rohrbaugh Station Rule 13 Permit Application**

Prepared for:

**CNX Gas Company LLC** 1000 Consol Energy Drive Canonsburg, PA

This document has been prepared by SLR International Corporation. The material and data in this permit application were prepared under the supervision and direction of the undersigned.

Chris Boggess Associate Engineer

fanshau use t

Jesse Hanshaw, P.E. Principal Engineer

### ATTACHMENTS

| APPLICATION FC | R PERMIT                                          |
|----------------|---------------------------------------------------|
| ATTACHMENT A   | BUSINESS CERTIFICATE                              |
| ATTACHMENT B   |                                                   |
| ATTACHMENT C   | INSTALLATION STARTUP SCHEDULE (SEE NOTE)          |
| ATTACHMENT D   |                                                   |
| ATTACHMENT E   | PLOT PLAN                                         |
| ATTACHMENT F   | PROCESS FLOW DIAGRAM                              |
| ATTACHMENT G   | PROCESS DESCRIPTION                               |
| ATTACHMENT H   | SAFETY DATA SHEETS                                |
| ATTACHMENT I   | EMISSION UNITS TABLES                             |
| ATTACHMENT J   | EMISSION POINTS DATA SUMMARY SHEETS               |
| ATTACHMENT K   | FUGITIVE EMISSIONS DATA SHEETS                    |
| ATTACHMENT L   | EMISSION UNIT DATA SHEETS                         |
| ATTACHMENT M   | AIR POLLUTION CONTROL DEVICE SHEETS               |
| ATTACHMENT N   | SUPPORTING EMISSIONS CALCULATIONS                 |
| ATTACHMENT O   | MONITORING/RECORDKEEPING/REPORTING/ TESTING PLANS |
| ATTACHMENT P   | PUBLIC NOTICE                                     |
| ATTACHMENT Q   | BUSINESS CONFIDENTIAL CLAIMS (SEE NOTE)           |
| ATTACHMENT R   | AUTHORITY FORMS (SEE NOTE)                        |
| ATTACHMENT S   | TITLE V PERMIT REVISION INFORMATION (SEE NOTE)    |
| APPLICATION FE | E                                                 |

Notes:

ATTACHMENT C - After the fact permit application addresses already installed equipment ATTACHMENT Q - No information contained within this application is claimed confidential ATTACHMENT R - No delegation of authority ATTACHMENT S - Not a Title V Permit Revision

# **APPLICATION FOR PERMIT**

# **Rule 13 Permit Application**

Rohrbaugh Station Camden, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA

| WEST VIRGINIA DEPARTMENT OF<br>ENVIRONMENTAL PROTECTION<br>DIVISION OF AIR QUALITY<br>601 57 <sup>th</sup> Street, SE<br>Charleston, WV 25304<br>(304) 926-0475<br>WWW.dep.wv.gov/dag                                                                                                                               | ,                                                                                                                                                                                                                                                               | LICATION FOR NSR PERMIT<br>AND<br>TLE V PERMIT REVISION<br>(OPTIONAL)                                                                                                                                           |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KN<br>CONSTRUCTION D MODIFICATION RELOCATION CLASS I ADMINISTRATIVE UPDATE TEMPORARY CLASS II ADMINISTRATIVE UPDATE AFTER-THE-F                                                                                                                                    | ACT IF ANY BOX ABO                                                                                                                                                                                                                                              | TYPE OF <b>45CSR30 (TITLE V)</b> REVISION (IF ANY):<br><b>TIVE AMENDMENT MINOR MODIFICATION</b><br><b>MODIFICATION</b><br>WE IS CHECKED, INCLUDE TITLE V REVISION<br>AS <b>ATTACHMENT S</b> TO THIS APPLICATION |  |  |
|                                                                                                                                                                                                                                                                                                                     | FOR TITLE V FACILITIES ONLY: Please refer to "Title V Revision Guidance" in order to determine your Title V Revision options<br>(Appendix A, "Title V Permit Revision Flowchart") and ability to operate with the changes requested in this Permit Application. |                                                                                                                                                                                                                 |  |  |
| Sec                                                                                                                                                                                                                                                                                                                 | tion I. General                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                 |  |  |
| <ol> <li>Name of applicant (as registered with the WV Secretary of State's Office):<br/>CNX Gas Company LLC</li> </ol>                                                                                                                                                                                              |                                                                                                                                                                                                                                                                 | 2. Federal Employer ID No. <i>(FEIN):</i><br>31-1782401                                                                                                                                                         |  |  |
| 3. Name of facility (if different from above):<br>Rohrbaugh Station                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                 | 4. The applicant is the:                                                                                                                                                                                        |  |  |
| 5A. Applicant's mailing address:<br>1000 Consol Energy Drive<br>Canonsburg, PA 15317                                                                                                                                                                                                                                | 5B. Facility's prese<br>Left Fork Rd.<br>Camden, WV                                                                                                                                                                                                             | ent physical address:                                                                                                                                                                                           |  |  |
| <ul> <li>6. West Virginia Business Registration. Is the applicant</li> <li>If YES, provide a copy of the Certificate of Incorpora change amendments or other Business Registration 0</li> <li>If NO, provide a copy of the Certificate of Authority/ amendments or other Business Certificate as Attachr</li> </ul> | ttion/Organization/Limi<br>Certificate as Attachmen<br>Authority of L.L.C./Reg                                                                                                                                                                                  | ted Partnership (one page) including any name at A.                                                                                                                                                             |  |  |
| 7. If applicant is a subsidiary corporation, please provide t                                                                                                                                                                                                                                                       | he name of parent corpo                                                                                                                                                                                                                                         | pration:                                                                                                                                                                                                        |  |  |
| <ul> <li>8. Does the applicant own, lease, have an option to buy o</li> <li>If YES, please explain: The applicant leases the sit</li> <li>If NO, you are not eligible for a permit for this source.</li> </ul>                                                                                                      | e.                                                                                                                                                                                                                                                              | of the <i>proposed site</i> ? 🛛 YES 🗌 NO                                                                                                                                                                        |  |  |
| <ol> <li>Type of plant or facility (stationary source) to be cons<br/>administratively updated or temporarily permitted<br/>crusher, etc.): Natural Gas Compressor Station</li> </ol>                                                                                                                               | tructed, modified, reloc<br>(e.g., coal preparation pl                                                                                                                                                                                                          | cated,<br>lant, primary10. North American Industry<br>Classification System<br>(NAICS) code for the facility:<br>211111                                                                                         |  |  |
| 11A. DAQ Plant ID No. (for existing facilities only):<br>041-00051                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                 | SR13 and 45CSR30 (Title V) permit numbers<br>s process (for existing facilities only):                                                                                                                          |  |  |

12A.

| <ul> <li>For Modifications, Administrative Updates or Tepresent location of the facility from the nearest state</li> <li>For Construction or Relocation permits, please proad. Include a MAP as Attachment B.</li> </ul> | e road;                                                              |                                       |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------|--|--|
| From Weston, take Route 33-W/119-S (towards Gle<br>Take Churchville Road for approximately 2.5 miles and t<br>of a mile and turn left. Go up-hill (then levels-off) for ¼ u<br>½ mile to Rohrbaugh Station.              | urn left onto Left Fork road (County Rou                             | ite 9/3). Go approximately 2/10th     |  |  |
| 12B. New site address (if applicable):                                                                                                                                                                                   | 12C. Nearest city or town:                                           | 12D. County:                          |  |  |
| N/A                                                                                                                                                                                                                      | Camden                                                               | Lewis                                 |  |  |
| 12.E. UTM Northing (KM): 4,157.092                                                                                                                                                                                       | 12F. UTM Easting (KM): 472.134                                       | 12G. UTM Zone: 17                     |  |  |
| 13. Briefly describe the proposed change(s) at the facilit regulated 95 HP that because of its date of manufacture JJJJ. The facility to be permitted after the fact consists c associated piping.                       | was found to have a substantive require                              | ement under 40 CFR 60, subpart        |  |  |
|                                                                                                                                                                                                                          | In a permit is granted.                                              |                                       |  |  |
| 14C. Provide a <b>Schedule</b> of the planned <b>Installation</b> of/<br>application as <b>Attachment C</b> (if more than one uni                                                                                        |                                                                      | units proposed in this permit         |  |  |
| 15. Provide maximum projected <b>Operating Schedule</b> o<br>Hours Per Day 24 Days Per Week 7                                                                                                                            | f activity/activities outlined in this application Weeks Per Year 52 | ation:                                |  |  |
| 16. Is demolition or physical renovation at an existing fa                                                                                                                                                               | cility involved? 🗌 YES 🛛 🕅 NO                                        |                                       |  |  |
| 17. Risk Management Plans. If this facility is subject to                                                                                                                                                                | 112(r) of the 1990 CAAA, or will becom                               | ne subject due to proposed            |  |  |
| changes (for applicability help see www.epa.gov/ceppo), submit your <b>Risk Management Plan (RMP)</b> to U. S. EPA Region III.                                                                                           |                                                                      |                                       |  |  |
| 18. Regulatory Discussion. List all Federal and State air pollution control regulations that you believe are applicable to the                                                                                           |                                                                      |                                       |  |  |
| proposed process (if known). A list of possible applicable requirements is also included in Attachment S of this application                                                                                             |                                                                      |                                       |  |  |
| (Title V Permit Revision Information). Discuss applicability and proposed demonstration(s) of compliance (if known). Provide this                                                                                        |                                                                      |                                       |  |  |
| information as Attachment D.                                                                                                                                                                                             |                                                                      |                                       |  |  |
| Section II. Additional att                                                                                                                                                                                               | achments and supporting d                                            | ocuments.                             |  |  |
| 19. Include a check payable to WVDEP – Division of Air                                                                                                                                                                   | Quality with the appropriate application                             | <b>1 fee</b> (per 45CSR22 and         |  |  |
| 45CSR13). See attached check for \$2,000 which of                                                                                                                                                                        | covers the Application and NSPS fees                                 |                                       |  |  |
| 20. Include a Table of Contents as the first page of you                                                                                                                                                                 | ur application package.                                              |                                       |  |  |
| 21. Provide a <b>Plot Plan</b> , e.g. scaled map(s) and/or skett source(s) is or is to be located as <b>Attachment E</b> (Re                                                                                             |                                                                      | erty on which the stationary          |  |  |
| r⇒ Indicate the location of the nearest occupied structure                                                                                                                                                               | e (e.g. church, school, business, reside                             | nce).                                 |  |  |
| 22. Provide a <b>Detailed Process Flow Diagram(s)</b> show device as <b>Attachment F.</b>                                                                                                                                | ving each proposed or modified emissio                               | ns unit, emission point and control   |  |  |
| 23. Provide a Process Description as Attachment G.                                                                                                                                                                       |                                                                      |                                       |  |  |
|                                                                                                                                                                                                                          | all changes made to the facility since the                           | e last permit review (if applicable). |  |  |
| All of the required forms and additional information can be                                                                                                                                                              | found under the Permitting Section of D                              | AQ's website, or requested by phone.  |  |  |

| 24. Provide Material Safety Data Shee                                                                                                                                                                                                                                                                                                                   | ets (MSDS) for all materials proce                                                                                                      | ssed, used or produced as Attachment H.                    |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--|--|--|
| ➡ For chemical processes, provide a N                                                                                                                                                                                                                                                                                                                   | ASDS for each compound emitted                                                                                                          | to the air.                                                |  |  |  |
| 25. Fill out the Emission Units Table a                                                                                                                                                                                                                                                                                                                 | 25. Fill out the Emission Units Table and provide it as Attachment I.                                                                   |                                                            |  |  |  |
| 26. Fill out the Emission Points Data                                                                                                                                                                                                                                                                                                                   | Summary Sheet (Table 1 and Ta                                                                                                           | ble 2) and provide it as Attachment J.                     |  |  |  |
| 27. Fill out the Fugitive Emissions Da                                                                                                                                                                                                                                                                                                                  | ta Summary Sheet and provide i                                                                                                          | t as Attachment K.                                         |  |  |  |
| 28. Check all applicable Emissions Ur                                                                                                                                                                                                                                                                                                                   | it Data Sheets listed below:                                                                                                            |                                                            |  |  |  |
| Bulk Liquid Transfer Operations                                                                                                                                                                                                                                                                                                                         | Haul Road Emissions                                                                                                                     | Quarry                                                     |  |  |  |
| Chemical Processes                                                                                                                                                                                                                                                                                                                                      | Hot Mix Asphalt Plant                                                                                                                   | Solid Materials Sizing, Handling and Storage               |  |  |  |
| Concrete Batch Plant                                                                                                                                                                                                                                                                                                                                    | Incinerator                                                                                                                             | Facilities                                                 |  |  |  |
| Grey Iron and Steel Foundry                                                                                                                                                                                                                                                                                                                             | Indirect Heat Exchanger                                                                                                                 | Storage Tanks                                              |  |  |  |
| General Emission Unit, specify: Inter                                                                                                                                                                                                                                                                                                                   | nal Combustion Engine Data She                                                                                                          | et, Tank Loading Data Sheet                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                         |                                                            |  |  |  |
| Fill out and provide the Emissions Unit                                                                                                                                                                                                                                                                                                                 |                                                                                                                                         |                                                            |  |  |  |
| 29. Check all applicable Air Pollution                                                                                                                                                                                                                                                                                                                  | Control Device Sheets listed below                                                                                                      | DW:                                                        |  |  |  |
| Absorption Systems                                                                                                                                                                                                                                                                                                                                      | Baghouse                                                                                                                                | Flare                                                      |  |  |  |
| Adsorption Systems                                                                                                                                                                                                                                                                                                                                      | Condenser                                                                                                                               | Mechanical Collector                                       |  |  |  |
| Afterburner                                                                                                                                                                                                                                                                                                                                             | Electrostatic Precipita                                                                                                                 | ator Wet Collecting System                                 |  |  |  |
| Other Collectors, specify – Non selection                                                                                                                                                                                                                                                                                                               | ctive catalytic reduction (NSCR)                                                                                                        |                                                            |  |  |  |
| Fill out and provide the Air Pollution Co                                                                                                                                                                                                                                                                                                               | ontrol Device Sheet(s) as Attach                                                                                                        | iment M.                                                   |  |  |  |
| 30. Provide all <b>Supporting Emissions</b><br>Items 28 through 31.                                                                                                                                                                                                                                                                                     | Calculations as Attachment N,                                                                                                           | or attach the calculations directly to the forms listed in |  |  |  |
| 31. <b>Monitoring, Recordkeeping, Reporting and Testing Plans.</b> Attach proposed monitoring, recordkeeping, reporting and testing plans in order to demonstrate compliance with the proposed emissions limits and operating parameters in this permit application. Provide this information as <b>Attachment O</b> .                                  |                                                                                                                                         |                                                            |  |  |  |
| Please be aware that all permits must be practically enforceable whether or not the applicant chooses to propose such measures. Additionally, the DAQ may not be able to accept all measures proposed by the applicant. If none of these plans are proposed by the applicant, DAQ will develop such plans and include them in the permit.               |                                                                                                                                         |                                                            |  |  |  |
| 32. Public Notice. At the time that the application is submitted, place a Class I Legal Advertisement in a newspaper of general                                                                                                                                                                                                                         |                                                                                                                                         |                                                            |  |  |  |
| circulation in the area where the source is or will be located (See 45CSR§13-8.3 through 45CSR§13-8.5 and Example Legal                                                                                                                                                                                                                                 |                                                                                                                                         |                                                            |  |  |  |
| Advertisement for details). Please submit the Affidavit of Publication as Attachment P immediately upon receipt.                                                                                                                                                                                                                                        |                                                                                                                                         |                                                            |  |  |  |
| 33. Business Confidentiality Claims. Does this application include confidential information (per 45CSR31)?                                                                                                                                                                                                                                              |                                                                                                                                         |                                                            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                         |                                                            |  |  |  |
| If YES, identify each segment of information on each page that is submitted as confidential and provide justification for each segment claimed confidential, including the criteria under 45CSR§31-4.1, and in accordance with the DAQ's "Precautionary Notice – Claims of Confidentiality" guidance found in the General Instructions as Attachment Q. |                                                                                                                                         |                                                            |  |  |  |
| S                                                                                                                                                                                                                                                                                                                                                       | Section III. Certification                                                                                                              | of Information                                             |  |  |  |
| 34. Authority/Delegation of Authority<br>Check applicable Authority Form                                                                                                                                                                                                                                                                                |                                                                                                                                         | ther than the responsible official signs the application.  |  |  |  |
| Authority of Corporation or Other But                                                                                                                                                                                                                                                                                                                   | siness Entity                                                                                                                           | Authority of Partnership                                   |  |  |  |
| Authority of Governmental Agency                                                                                                                                                                                                                                                                                                                        |                                                                                                                                         | Authority of Limited Partnership                           |  |  |  |
| Submit completed and signed Authority Form as Attachment R.                                                                                                                                                                                                                                                                                             |                                                                                                                                         |                                                            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                         | All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone. |                                                            |  |  |  |

35A. **Certification of Information.** To certify this permit application, a Responsible Official (per 45CSR§13-2.22 and 45CSR§30-2.28) or Authorized Representative shall check the appropriate box and sign below.

#### Certification of Truth, Accuracy, and Completeness

I, the undersigned Responsible Official / Authorized Representative, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.

#### **Compliance Certification**

Except for requirements identified in the Title V Application for which compliance is not achieved, I, the undersigned hereby certify that, based on information and belief formed after reasonable inquiry, all air contaminant sources identified in this application are in compliance with all applicable requirements.

| SIGNATURE Claig Nea                                                          | ATE: 1/19/2017<br>(Please use blue ink) |                                                                                    |
|------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------|
| 35B. Printed name of signee: Craig Neal                                      | 35C, Title:                             |                                                                                    |
|                                                                              |                                         | Vice President Gas Operations                                                      |
| 35D. E-mail: <u>craigneal@consolenergy.com</u>                               | 36E. Phone: 724-485-4000                | 36F. FAX                                                                           |
| 36A. Printed name of contact person (if different from above): Jesse Hanshaw |                                         | 36B. Title: - <del>Principal Engineer, SLR</del><br>Manager, Operations Compliance |
| 36C. E-mail: <u>jhanshaw@slreonsulting.com</u>                               | 36D. Phone: 304-545-8563                | 36E. FAX: 681-205-8969                                                             |
| Josephestanich@consolenergy.com                                              | (304) 884-2013                          |                                                                                    |

| /ITH THIS PERMIT APPLICATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>☑ Attachment K: Fugitive Emissions Data Summary Sheet</li> <li>☑ Attachment L: Emissions Unit Data Sheet(s)</li> <li>☑ Attachment M: Air Pollution Control Device Sheet(s)</li> <li>☑ Attachment N: Supporting Emissions Calculations</li> <li>☑ Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans</li> <li>☑ Attachment P: Public Notice</li> <li>□ Attachment Q: Business Confidential Claims</li> <li>□ Attachment R: Authority Forms</li> <li>□ Attachment S: Title V Permit Revision Information</li> <li>☑ Application Fee</li> </ul> |
| nit application with the signature(s) to the DAQ, Permitting Section, at the<br>plication. Please DO NOT fax permit applications.                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

FOR AGENCY USE ONLY - IF THIS IS A TITLE V SOURCE:

Forward 1 copy of the application to the Title V Permitting Group and:

□ For Title V Administrative Amendments:

NSR permit writer should notify Title V permit writer of draft permit,

For Title V Minor Modifications:

Title V permit writer should send appropriate notification to EPA and affected states within 5 days of receipt,
 NSR permit writer should notify Title V permit writer of draft permit.

□ For Title V Significant Modifications processed in parallel with NSR Permit revision:

- NSR permit writer should notify a Title V permit writer of draft permit,
  - Device a public notice should reference both 45CSR13 and Title V permits,
  - EPA has 45 day review period of a draft permit.

# ATTACHMENT A

# **BUSINESS CERTIFICATE**

# **Rule 13 Permit Application**

Rohrbaugh Station Camden, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA



### I, Natalie E. Tennant, Secretary of State of the State of West Virginia, hereby certify that

#### CNX GAS COMPANY LLC

was duly authorized under the laws of this state to transact business in West Virginia as a foreign limited liability company on June 29, 2001.

The company is filed as a term company, for the term ending June 29, 2026.

I further certify that the company's most recent annual report, as required by West Virginia Code §31B-2-211, has been filed with our office and that a certificate of cancellation has not been filed.

i(

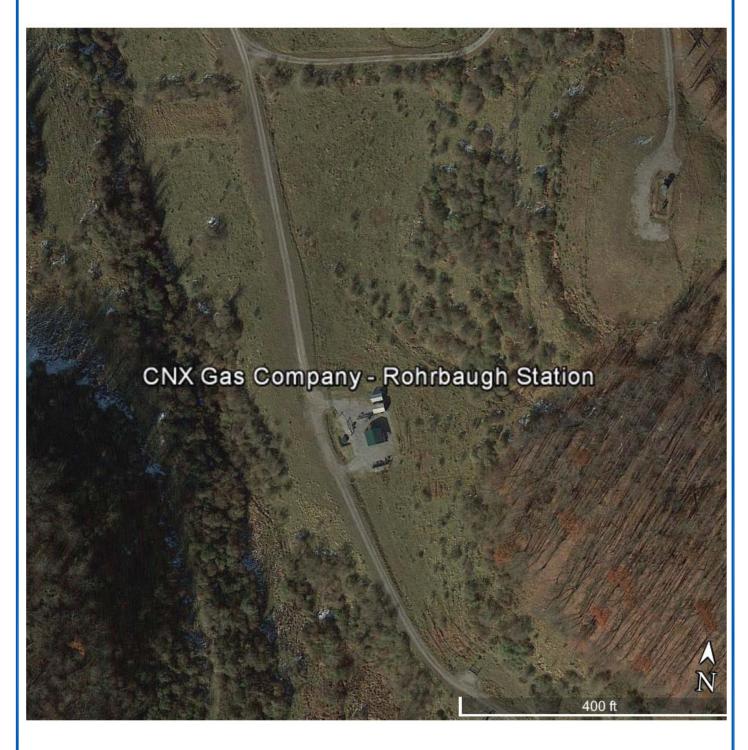
### CERTIFICATE OF AUTHORIZATION



Given under my hand and the Great Seal of the State of West Virginia on this day of October 28, 2011

Waterie E Jermienie

Secretary of State


## ATTACHMENT B

MAP

# **Rule 13 Permit Application**

Rohrbaugh Station Camden, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA



GPS Coordinates of Site: Lat: 39.07170, Long: -80.58651

UTM Coordinates of Site: Northing: 4,157.092 km, Easting: 472.134 km, Zone: 17 CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA 15317

Report Rule 13 Permit Application Rohrbaugh Station

Drawing Attachment B - Area Map

Date: December 2016 Drawn By: RSJ

Project: 116.00894.00059



## ATTACHMENT C

# **INSTALLATION AND STARTUP SCHEDULE (SEE NOTE)**

Note: After the fact permit application addresses already installed equipment

## **Rule 13 Permit Application**

Rohrbaugh Station Camden, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA

# ATTACHMENT D

# **REGULATORY DISCUSSION**

# **Rule 13 Permit Application**

Rohrbaugh Station Camden, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA

# **REGULATORY DISCUSSION**

### APPLICABLE REGULATIONS

The equipment at this facility is subject to the following applicable rules and regulations:

**45 CSR 4** – To Prevent and Control the Discharge of Air Pollutants into the Open Air Which Causes or Contributes to an Objectionable Odor or Odors

**45 CSR 11 –** *Prevention of Air Pollution Emergency Episodes* 

**45 CSR 13** – Permits for Construction, Modification, Relocation, and Operation of Stationary Source of Air Pollutants

The proposed application will address permit coverage for a previously non regulated 95 Hp., stationary RICE that was found to have a substantive requirement under 40 CFR 60, Subpart JJJJ due to its date of manufacture (mfg).

**45 CSR 17** – To Prevent and Control Particulate Matter Air Pollution from Materials Handling, Preparation, Storage And Other Sources Of Particulate Matter

Fugitive particulate emissions shall not leave the boundaries of the facility.

**40 CFR 60 Subpart JJJJ** – Standards of Performance for Stationary Spark Ignition Internal Combustion Engines

This natural gas fired RICE is considered a new unit subject to this NSPS since having been manufactured after July 1, 2008 as defined in 40CFR60.4230(4)(iii) for nonemergency units with maximum engine power less than 500 hp. However, since this engine's maximum rated engine power is less than 100 hp, this unit must comply with the emission standards for field testing found in 40CFR1048.101(c), which defines emissions for NO<sub>X</sub> and CO to not exceed 3.8 g/kW-hr and 6.5 g/kW-hr, respectively. To comply with these emission limitations, CNX has installed a non-selective catalytic reduction (NSCR) catalyst guaranteed to reduce emissions from the engine to meet established NSPS limits.

**40 CFR 63 Subpart ZZZZ** – NESHAP for Stationary Reciprocating Internal Combustion Engines

The unit was manufactured on September 13, 2008. Therefore per the definition in 40CFR63.6590(c)(1) this unit shall comply with the requirements of Subpart ZZZZ by complying with the requirements for 40 CFR 60, Subpart JJJJ.

### NON-APPLICABILITY DETERMINATIONS

The following requirements have been determined "not applicable" due to the following:

**45 CSR 21** – To Prevent and Control Air Pollution from the Emission of Volatile Organic Compounds

This site is located in Lewis County, which is not one of the designated VOC maintenance counties such as Cabell, Kanawha, Putnam, Wayne, and Wood counties.

### **45 CSR 27 –** To Prevent and Control the Emissions of Toxic Air Pollutants

Natural Gas is included as a petroleum product and contains less than 5% benzene by weight. 45CSR§27-2.4 exempts equipment "used in the production and distribution of petroleum products providing that such equipment does not produce or contact materials containing more than 5% benzene by weight".

The ProMax simulation based on representative separator samples from the area shows benzene to be present in the stock tank liquid at 0.02 wt. percent. Additionally, the wet gas measurements at the station show the total weight percent of hexanes plus to be 1.6 wt. percent, we can reason that since Benzene is lumped into this fraction it will not exceed 5 wt. percent.

**40 CFR 60 Subpart Kb** – Standards of Performance for Volatile Organic Liquid Storage Vessels

This subpart does not apply because the storage vessel is below 75m<sup>3</sup> (19,813 gallons) in capacity as specified in 60.11(b).

**40 CFR 60 Subpart KKK** – Standards of Performance for Equipment Leaks of VOC from Onshore Natural Gas Processing Plant

This subpart is not applicable because the station is not engaged in the extraction or fractionation of natural gas liquids from field gas, the fractionation of mixed natural gas liquids to natural gas products, or both.

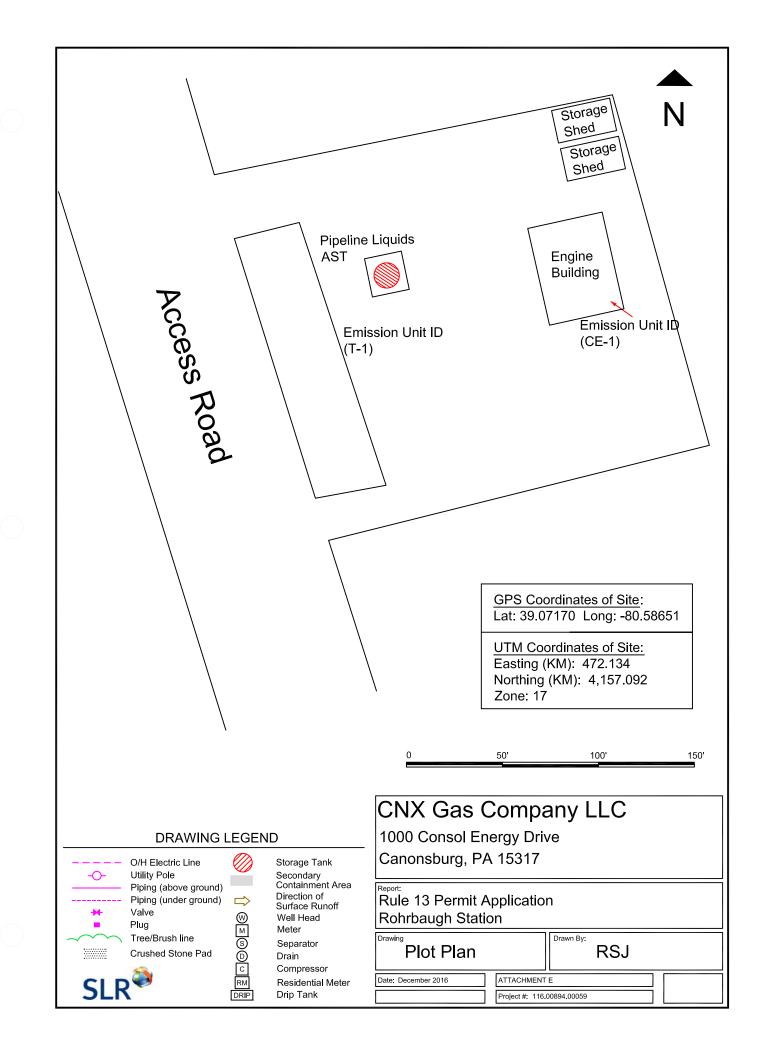
**40 CFR 60 Subpart OOOO** – Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution

This New Source Performance Standard was evaluated since it's a compression facility having potentially affected sources. The affected sources addressed by this subpart include wet seal centrifugal compressors, reciprocating compressors, pneumatic continuous bleed controllers greater than 6 scfh, and storage vessels emitting VOCs @ 6 tons per year or greater.

These potentially affected sources were evaluated and determination made that there has been no construction, modification, or reconstruction of the listed sources after the NSPS applicability date of August 23, 2011 and before September 18, 2015.

**40 CFR 60 Subpart OOOOa** – Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification, or Reconstruction Commenced after September 18, 2015

The GHG and VOC requirements defined by this NSPS are not applicable to this site because all affected sources commenced construction, modification, or reconstruction prior to September 18, 2015 in accordance with [40CFR§60.5365a]


# ATTACHMENT E

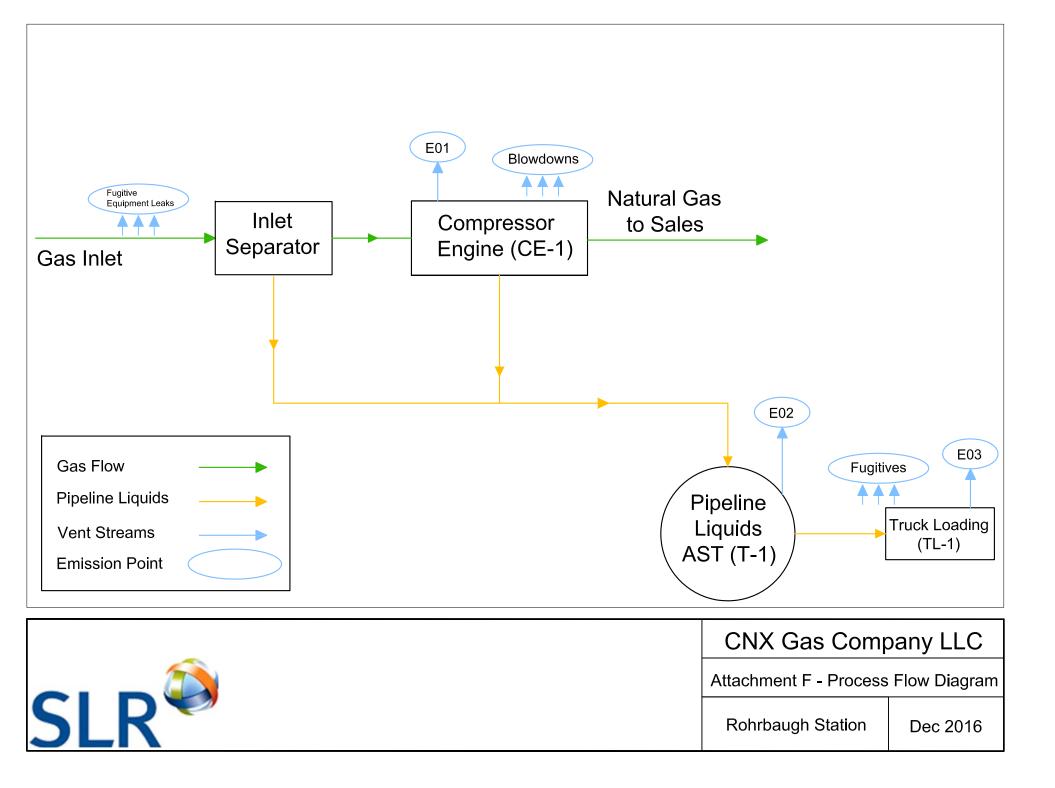
### **PLOT PLAN**

# **Rule 13 Permit Application**

Rohrbaugh Station Camden, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA




### ATTACHMENT F

# **PROCESS FLOW DIAGRAM**

# **Rule 13 Permit Application**

Rohrbaugh Station Camden, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA



## ATTACHMENT G

# **PROCESS DESCRIPTION**

# **Rule 13 Permit Application**

Rohrbaugh Station Camden, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA

## **PROCESS DESCRIPTION**

CNX Gas Company LLC is applying for an after the fact construction permit in accordance with 45CSR13, for the operation of the Rohrbaugh Booster Station. As a result of DAQ guidance, the engine at this site has been identified as subject to New Source Performance Standards (NSPS) under subpart JJJJ. The small compressor engine is a 95 HP, 4SRB unit that was manufactured in September of 2008, which puts it two months over the applicability timeframe for JJJJ (7-1-2008). The site was originally purchased from Dominion E&P on April 30, 2010.

The Rohrbaugh booster collects gas from conventional gas wells in the area and sends it to a sales line. The small natural gas fired engine will utilize a NSCR catalyst in order to assure compliance with the NSPS regulation. The engine will conduct initial compliance testing upon permit approval. Additionally, the Rohrbaugh site consists of inlet and outlet gas piping and liquid knock out separators as well as gas metering instrumentation. Liquids removed from the gas stream are sent to a 50 bbl storage vessel. Since the tank was installed prior to August 23, 2011 the storage vessel commenced construction prior to NSPS OOOO applicability. The tank's emissions were estimated based on 1 turnover per year and using representative pressurized liquid sampling as the input to ProMax equation of state simulation modeling. The results predict very low emissions, less than 0.04 tpy VOCs. Additionally, the 1 turnover per year throughput rate takes into account a safety factor of 10 when compared to actual production records.

In accordance with DAQ guidance, the facility wide emission potentials include truck loading, fugitive equipment leaks, and compressor blowdowns in addition to the typical engine and storage vessel point source emissions. The calculations summarized within this application show the facility wide total emissions to be no more than 2.60 tpy NOx, 4.44 tpy CO, and 2.40 tpy VOC, with total HAPs slightly less than 0.3 tpy from formaldehyde.

## **ATTACHMENT H**

# SAFETY DATA SHEETS

# **Rule 13 Permit Application**

Rohrbaugh Station Camden, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA

Product Name:Processed Natural GasProduct Code:NonePage 1 of 8

### 1. CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

Product Name: Processed Natural Gas Product Code: None Synonyms: Dry Gas Generic Name: Natural Gas Chemical Family: Paraffin hydrocarbon

Responsible Party: Unocal Corporation Union Oil Company of California 14141 Southwest Freeway Sugar Land, Texas 77478

For further information contact MSDS Coordinator 8am - 4pm Central Time, Mon - Fri: 281-287-5310

#### EMERGENCY OVERVIEW

#### 24 Hour Emergency Telephone Numbers:

For Chemical Emergencies: Spill, Leak, Fire or Accident Call CHEMTREC North America: (800)424-9300 Others: (703)527-3887(collect)

For Health Emergencies: California Poison Control System (800)356-3129

Health Hazards: Use with adequate ventilation.

Physical Hazards: Flammable gas. Can cause flash fire. Gas displaces oxygen available for breathing. Keep away from heat, sparks, flames, or other sources of ignition (e.g., static electricity, pilot lights, mechanical/electrical equipment). Do not enter storage areas or confined space unless adequately ventilated.

- < Physical Form: Gas
- < Appearance: Colorless
- < Odor: Odorless in the absence of H2S or mercaptans

NFPA HAZARD CLASS: Health: 1 (Slight) Flammability: 4 (Extreme) Reactivity: 0 (Least)

Issue Date: 03/18/03 Revised Sections: 1, 3

Status: Final Revised

| UNOCAL                |                       |
|-----------------------|-----------------------|
| Processed Natural Gas |                       |
| None                  | Page 2 of 8           |
|                       | Processed Natural Gas |

#### 2. COMPOSITION/INFORMATION ON INGREDIENTS

| HAZARDOUS COMPONENTS            | % Weight | EXPOSURE GUIDELINE |               |      |
|---------------------------------|----------|--------------------|---------------|------|
|                                 |          | Limits             | Agency        | Туре |
| Methane<br>CAS# 74-82-8         | 98       | 1000 ppm           | MSHA          | TWA  |
| Carbon Dioxide<br>CAS# 124-38-9 | 0-5      |                    | ACGIH<br>OSHA |      |
| Nitrogen<br>CAS# 7727-37-9      | 0-5      | 1000 ppm           | MSHA          | TWA  |
| Ethane<br>CAS# 74-84-0          | 1        | 1000 ppm           | MSHA          | TWA  |

Note: State, local or other agencies or advisory groups may have established more stringent limits. Consult an industrial hygienist or similar professional, or your local agencies, for further information.

#### 3. HAZARDS IDENTIFICATION

POTENTIAL HEALTH EFFECTS:

Eye: Not expected to be an eye irritant.

Skin: Skin contact is unlikely. Skin absorption is unlikely.

- Inhalation (Breathing): Asphyxiant. High concentrations in confined spaces may limit oxygen available for breathing.
- Ingestion (Swallowing): This material is a gas under normal
   atmospheric conditions and ingestion is unlikely.
- Signs and Symptoms: Light hydrocarbon gases are simple asphyxiants which, at high enough concentrations, can reduce the amount of oxygen available for breathing. Symptoms of overexposure can include shortness of breath, drowsiness, headaches, confusion,

| Issue Date: 03/18/03   | Status: Final Revised |
|------------------------|-----------------------|
| Revised Sections: 1, 3 |                       |

| Page 3 of 8 |
|-------------|
|             |

decreased coordination, visual disturbances and vomiting, and are reversible if exposure is stopped. Continued exposure can lead to hypoxia (inadequate oxygen), cyanosis (bluish discoloration of the skin), numbness of the extremities, unconsciousness and death. High concentrations of carbon dioxide can increase heart rate and blood pressure.

Cancer: No data available.

Target Organs: No data available.

Developmental: Limited data - See Other Comments, below.

Other Comments: High concentrations may reduce the amount of oxygen available for breathing, especially in confined spaces. Hypoxia (inadequate oxygen) and respiratory acidosis (increased carbon dioxide in blood), during pregnancy may have adverse effects on the developing fetus. Exposure during pregnancy to high concentrations of carbon monoxide, which is produced during the combustion of hydrocarbon gases, can also cause harm to the developing fetus.

Pre-Existing Medical Conditions: None known.

#### 4. FIRST AID MEASURES

Eye: If irritation or redness develops, move victim away from exposure and into fresh air. Flush eyes with clean water. If symptoms persist, seek medical attention.

**Skin:** First aid is not normally required. However, it is good practice to wash any chemical from the skin.

Inhalation (Breathing): If respiratory symptoms develop, move victim away from source of exposure and into fresh air. If symptoms persist, seek medical attention. If victim is not breathing, immediately begin artificial respiration. If breathing difficulties develop, oxygen should be administered by qualified personnel. Seek immediate medical attention.

| Issue Date: 03/18/03   | Status: Final Revi | sed |
|------------------------|--------------------|-----|
| Revised Sections: 1, 3 |                    |     |

| UNOCAL |  |
|--------|--|
| ONOCAL |  |

| Product Nam | ne: Process | sed Natural G | as |
|-------------|-------------|---------------|----|
| Product Cod | le: None    |               |    |

Page 4 of 8

#### 5. FIRE FIGHTING MEASURES

Flammable Properties: Flash Point: Not applicable (gas) OSHA Flammability Class: Flammable gas LEL / UEL: No data Autoignition Temperature: 800-1000°F

- Unusual Fire & Explosion Hazards: This material is flammable and may be ignited by heat, sparks, flames, or other sources of ignition (e.g., static electricity, pilot lights, or mechanical/electrical equipment). Vapors may travel considerable distances to a source of ignition where they can ignite, flashback, or explode. May create vapor/air explosion hazard indoors, outdoors, or in sewers. If container is not properly cooled, it can rupture in the heat of a fire. Closed containers exposed t extreme heat can rupture due to pressure buildup.
- **Extinguishing Media:** Dry chemical or carbon dioxide is recommended. Carbon dioxide can displace oxygen. Use caution when applying carbon dioxide in confined spaces.
- Fire Fighting Instructions: For fires beyond the incipient stage, emergency responders in the immediate hazard area should wear When the potential chemical hazard is unknown, in bunker gear. enclosed or confined spaces, or when explicitly required by DOT, a self-contained breathing apparatus should be worn. In addition, wear other appropriate protective equipment as conditions warrant (see Section 8). Isolate immediate hazard area, keep unauthorized personnel out. Stop spill/release if it can be done with minimal risk. If this cannot be done, allow fire to burn. Move undamaged containers from immediate hazard area if it can be done with minimal risk. Stay away from ends of container. Water spray may be useful in minimizing or dispersing vapors. Cool equipment exposed to fire with water, if it can be done with minimal risk.

#### 6. ACCIDENTAL RELEASE MEASURES

Flammable. Keep all sources of ignition and hot metal surfaces away from spill/release. The use of explosion-proof equipment is recommended. Stay upwind and away from spill/release. Notify persons down wind of spill/release, isolate immediate hazard area and keep unauthorized personnel out. Stop spill/release if it can be done with

Issue Date: 03/18/03 Revised Sections: 1, 3 Status: Final Revised

| UNOCAL               |                      |                      |                      |                      |
|----------------------|----------------------|----------------------|----------------------|----------------------|
| rocessed Natural Gas |                      |                      | -                    |                      |
| one                  | Page                 | 5                    | of                   | 8                    |
|                      | rocessed Natural Gas | rocessed Natural Gas | rocessed Natural Gas | rocessed Natural Gas |

minimal risk. Wear appropriate protective equipment including respiratory protection as conditions warrant (see Section 8). Notify fire authorities and appropriate federal, state, and local agencies. Water spray may be useful in minimizing or dispersing vapors (see Section 5).

### 7. HANDLING AND STORAGE

- Handling: The use of explosion-proof equipment is recommended and may be required (see appropriate fire codes). Do not enter confined spaces such as tanks or pits without following proper entry procedures such as ASTM D-4276 and 29CFR 1910.146. The use of appropriate respiratory protection is advised when concentrations exceed any established exposure limits (see Section 2 and 8). Use good personal hygiene practice.
- Storage: Keep container(s) tightly closed. Use and store this
  material in cool, dry, well-ventilated areas away from heat,
  direct sunlight, hot metal surfaces, and all sources of ignition.
  Post area "No Smoking or Open Flame." Store only in approved
  containers. Keep away from any incompatible material (see
  Section 10). Protect container(s) against physical damage.
  Outdoor or detached storage is preferred.

#### 8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Engineering controls: If current ventilation practices are not adequate to maintain airborne concentrations below the established exposure limits (see Section 2), additional ventilation or exhaust systems may be required. Where explosive mixtures may be present, electrical systems safe for such locations must be used (see appropriate electrical codes).

Personal Protective Equipment (PPE):

- Respiratory: Wear a positive pressure air supplied respirator in oxygen deficient environments (oxygen content <19.5%). A respiratory protection program that meets OSHA's 29 CFR 1910.134 and ANSI Z88.2 requirements must be followed whenever workplace conditions warrant a respirator's use.
- Skin: Not required based on the hazards of the material. However, it is considered good practice to wear gloves when handling chemicals.

| Issue Date: 03/18/03   | Status: Final Revised |
|------------------------|-----------------------|
| Revised Sections: 1, 3 |                       |

| UNOCAL        |                       |             |  |
|---------------|-----------------------|-------------|--|
| Product Name: | Processed Natural Gas |             |  |
| Product Code: | None                  | Page 6 of 8 |  |

**Eye/Face:** While contact with this material is not expected to cause irritation, the use of approved eye protection to safeguard against potential eye contact is considered good practice.

Other Protective Equipment: A source of clean water should be available in the work area for flushing eyes and skin. Impervious clothing should be worn as needed. Self-contained respirators should be available for non-routine and emergency situations.

#### 9. PHYSICAL AND CHEMICAL PROPERTIES

Note: Unless otherwise stated, values are determined at 20°C (68°F) and 760 mm Hg (1 atm).

Flash Point: Not applicable (gas)
Flammable/Explosive Limits (%): No data
Autoignition Temperature: 800-1000°F
Appearance: Colorless
Physical State: Gas
Odor: Odorless in the absence of H2S or mercaptans
Vapor Pressure (mm Hg): No data
Vapor Density (air=1): <1
Boiling Point: -259°F
Freezing/Melting Point: No data
Solubility in Water: Slight
Specific Gravity: 0.30+ (Air=1)
Percent Volatile: 100 vol.%
Evaporation Rate (nBuAc=1): N/A (Gas)</pre>

#### 10. STABILITY AND REACTIVITY

| Chemical Stability: Stable under normal conditions of storage and     |
|-----------------------------------------------------------------------|
|                                                                       |
| handling.                                                             |
|                                                                       |
|                                                                       |
| Conditions To Avoid: Avoid all possible sources of ignition (see      |
|                                                                       |
| Sections 5 & 7).                                                      |
|                                                                       |
|                                                                       |
| Incompatible Materials, Anoid contest with                            |
| Incompatible Materials: Avoid contact with strong oxidizing agents.   |
|                                                                       |
|                                                                       |
| Hazardous Decomposition Products: Combustion can yield carbon dioxide |
| i i i i i i i i i i i i i i i i i i i                                 |
| and carbon monoxide.                                                  |
|                                                                       |
|                                                                       |
| Issue Date: 03/18/03 Status: Final Revised                            |
| Revised Sections: 1, 3                                                |
|                                                                       |

| UNOCAL |
|--------|
|--------|

| Product 1 | Name: | Processed | Natural | Gas |
|-----------|-------|-----------|---------|-----|
| Product ( | Code: | None      |         |     |

Page 7 of 8

#### Hazardous Polymerization: Will not occur.

#### 11. TOXICOLOGICAL INFORMATION

No definitive information available on carcinogenicity, mutagenicity, target organs or developmental toxicity.

#### 12. DISPOSAL CONSIDERATIONS

This material, if discarded as produced, would be a RCRA "characteristic" hazardous waste due to the characteristic(s) of ignitability (D001). If the material is spilled to soil or water, characteristic testing of the contaminated materials is recommended. Further, this material is subject to the land disposal restriction in 40 CFR 268.40 and may require treatment prior to disposal to meet specific standards. Consult state and local regulations to determine whether they are more stringent than the federal requirements.

Container contents should be completely used and containers should be emptied prior to discard. Container rinsate could be considered a RCRA hazardous waste and must be disposed of with care and in full compliance with federal, state and local regulations. Larger empty containers, such as drums, should be returned to the distributor or to a drum reconditioner. To assure proper disposal of smaller empty containers, consult with state and local regulations and disposal authorities.

#### 13. TRANSPORT INFORMATION

DOT Proper Shipping Name / Technical Name: Hydrocarbon Gas, Liquified N.O.S. (Methane) Hazard Class or Division: 2.1 ID #: UN1965

#### 14. REGULATORY INFORMATION

This material contains the following chemicals subject to the reporting requirements of **SARA 313** and 40 CFR 372:

--None--Warning: This material contains the following chemicals which are known to the State of California to cause cancer, birth defects or

| Issue Da |       | 03/18 | 3/03 |   |  |
|----------|-------|-------|------|---|--|
| Revised  | Sect: | ions: | 1,   | 3 |  |

Status: Final Revised

| UNOCAL |
|--------|
|--------|

| Product Name: | Processed Natural Gas |             |
|---------------|-----------------------|-------------|
| Product Code: | None                  | Page 8 of 8 |

other reproductive harm, and are subject to the requirements of **California Proposition 65** (CA Health & Safety Code Section 25249.5):

--None Known--

This material has not been identified as a carcinogen by NTP, IARC, or OSHA.

EPA (CERCLA) Reportable Quantity: -- None--

#### 15. DOCUMENTARY INFORMATION

Issue Date: 03/18/03 Previous Issue Date: 11/29/99 Product Code: None Previous Product Code: None

#### 16. DISCLAIMER OF EXPRESSED AND IMPLIED WARRANTIES

The information in this document is believed to be correct as of the date issued. HOWEVER, NO WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY OTHER WARRANTY IS EXPRESSED OR IS TO BE IMPLIED REGARDING THE ACCURACY OR COMPLETENESS OF THIS INFORMATION, THE RESULTS TO BE OBTAINED FROM THE USE OF THIS INFORMATION OR THE PRODUCT, THE SAFETY OF THIS PRODUCT, OR THE HAZARDS RELATED TO ITS USE. This information and product are furnished on the condition that the person receiving them shall make his own determination as to the suitability of the product for his particular purpose and on the condition that he assume the risk of his use thereof.

Issue Date: 03/18/03 Revised Sections: 1, 3

Status: Final Revised



### Safety Data Sheet (SDS)

#### **Section 1 – Identification**

1(a) Product Identifier used on Label: Condensate

1(b) Other Means of Identification: Natural Gas Condensate, Produced Hydrocarbons, Drip Gas, Natural Gasoline, Petroleum Crude Oil Condensates

1(c) Recommended Use of the Chemical and Restrictions on Use: Used as a petrochemical feedstock, home heating fuel and refinery blending.

1(d) Name, Address, and Telephone Number:

CONSOL Energy Inc. 1000 CONSOL Energy Drive Canonsburg, PA 15317 General information: (724) 485-4000

1(e) Emergency Phone Number: Chemtrec (800) 424-9300

#### Section 2 – Hazard(s) Identification

**2(a) Classification of the Chemical: Condensate** is considered a hazardous material according to the criteria specified in REACH [REGULATION (EC) No 1907/2006] and CLP [REGULATION (EC) No 1272/2008] and OSHA 29 CFR 1910.1200 Hazard Communication Standard. The categories of Health Hazards as defined in <u>"GLOBALLY HARMONIZED SYSTEM OF CLASSIFICATION AND LABELLING OF CHEMICALS (GHS), Third revised edition ST/SG/AC.10/30/Rev. 3" United Nations, New York and Geneva, 2009 have been evaluated. Refer to Section 3, 8 and 11 for additional information.</u>

2(b) Signal Word, Hazard Statement(s), Symbol(s) and Precautionary Statement(s):

| Hazard<br>Symbol                                                           | Hazard Classification                                                                                                                                                                                              | Signal Word | Hazard Statement(s)                                                                                                                                                                                                                                                                        |  |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                            | Flammable Liquid - 2                                                                                                                                                                                               |             |                                                                                                                                                                                                                                                                                            |  |
| <b>\$</b>                                                                  | Germ Cell Mutagenicity - 1B<br>Carcinogenicity - 1A<br>Toxic Reproduction - 1B<br>Specific Target Organ Toxicity (STOT)<br>Following Single Exposure - 2<br>STOT following Repeated Exposure - 1<br>Aspiration - 1 | Danger      | Highly Flammable liquid and vapor<br>Toxic if inhaled<br>Causes skin irritation and serious eye irritation<br>May cause genetic defects, cancer and damage fertility or the unborn child<br>May cause damage to central and peripheral nervous system, lungs, liver and<br>red blood cells |  |
|                                                                            | Acute Toxicity Hazard - 3                                                                                                                                                                                          |             | Causes damage to the blood, spleen, and liver through prolonged or repeat<br>exposures<br>May be fatal if swallowed and enters airways                                                                                                                                                     |  |
|                                                                            | Skin Corrosion/Irritation - 2<br>Eye Damage/ Irritation - 2A                                                                                                                                                       |             |                                                                                                                                                                                                                                                                                            |  |
| Precautionary                                                              | Statement(s)                                                                                                                                                                                                       |             |                                                                                                                                                                                                                                                                                            |  |
|                                                                            | Keep away from heat/sparks/open flames/hot surfaces. No smoking.<br>Keep container tightly closed.<br>Ground/Bond container and receiving equipment.                                                               |             | If on skin: Wash with plenty of water If skin irritation occurs: Get medical advice/attention. Take off contaminated clothing and wash it before reuse.                                                                                                                                    |  |
|                                                                            | Use explosion-proof electrical/ventilating/lighting/equipment.<br>Use only non-sparking tools.                                                                                                                     |             | If swallowed: Immediately call a poison center/doctor/ Do NOT induce vomiting.                                                                                                                                                                                                             |  |
| Take p                                                                     | precautionary measures against static disc                                                                                                                                                                         | charge.     | Obtain special instructions before use.                                                                                                                                                                                                                                                    |  |
| Wear protective gloves/protective clothing/eye protection/face protection. |                                                                                                                                                                                                                    |             | Do not handle until all safety precautions have been read and understood<br>Wash thoroughly after handling.                                                                                                                                                                                |  |
| Do not breathe dust/fume/gas/mist/ vapors/spray.                           |                                                                                                                                                                                                                    |             | Do not eat, drink or smoke when using this product.                                                                                                                                                                                                                                        |  |
| •                                                                          | oncerned or feel unwell: Get medical adv                                                                                                                                                                           |             | If exposed or concerned: Call a poison center or doctor. Get medical attention if you feel unwell.                                                                                                                                                                                         |  |
| II IIIIaled: I                                                             | If inhaled: Remove person to fresh air and keep comfortable for breathing. Call a poison center/doctor.                                                                                                            |             | Store in well-ventilated place. Keep cool. Use only outdoors or in a well-                                                                                                                                                                                                                 |  |
|                                                                            | If in eyes: Rinse cautiously with water for several minutes. Remove                                                                                                                                                |             | ventilated area. Store locked up.                                                                                                                                                                                                                                                          |  |
|                                                                            | contact lenses, if present and easy to do. Continue rinsing. If eye irritation persists: Get medical advice/attention.                                                                                             |             | Dispose of contents in accordance with federal, state and local regulations.                                                                                                                                                                                                               |  |
|                                                                            |                                                                                                                                                                                                                    |             | 1 -69                                                                                                                                                                                                                                                                                      |  |



### CONDENSATE

#### Section 2 – Hazard(s) Identification (continued)

2(c) Hazards not Otherwise Classified: None Known or Found

2(d) Unknown Acute Toxicity Statement (mixture): None Known or Found

#### Section 3 – Composition/Information on Ingredients

#### 3(a-c) Chemical Name, Common Name (synonyms), CAS Number and Other Identifiers, and Concentration:

| 5(a-c) Chemical Name, Common Name (synonyms), CAS Number and Other Identifiers, and Concentration:                                                                         |            |                      |          |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------|----------|--|--|--|
| Chemical Name                                                                                                                                                              | CAS Number | EC Number            | % weight |  |  |  |
| Natural Gas Condensate                                                                                                                                                     | 64741-47-5 | 64741-47-5 265-047-3 |          |  |  |  |
| Natural Gas Condensate is a petroleum substance comprised of a complex mixture of hydrocarbons. Major classes of hydrocarbons contained in the substance are listed below: |            |                      |          |  |  |  |
| Hydrocarbons Aromatic                                                                                                                                                      | Mixture    | Mixture              | ~ 5      |  |  |  |
| Hydrocarbons Naphthalenes                                                                                                                                                  | Mixture    | Mixture              | ~ 8      |  |  |  |
| Hydrocarbons (total Paraffin and isoparaffin)                                                                                                                              | Mixture    | Mixture              | ~ 65     |  |  |  |
| Benzene                                                                                                                                                                    | 71-43-2    | 200-753-7            | ~ 0.1    |  |  |  |

EC - European Community

CAS - Chemical Abstract Service

### **Section 4 – First-aid Measures**

#### 4(a) Description of Necessary Measures: If exposed, concerned or feel unwell: Get medical advice/attention.

- Inhalation: If inhaled: Remove person to fresh air and keep comfortable for breathing. Call a poison center/doctor.
- Eye Contact: If in eyes: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. If eye irritation persists: Get medical advice/attention.
- Skin Contact: If on skin: Wash with plenty of water. If skin irritation occurs: Get medical advice/attention. Take off contaminated clothing and wash it before reuse.
- Ingestion: If swallowed: Immediately call a poison center/doctor/ DO NOT induce vomiting.

#### 4(b) Most Important Symptoms/Effects, Acute and Delayed (chronic):

#### Acute Effects:

- Inhalation: Aspiration hazard, May be fatal if enters airways. May cause CNS and peripheral depression and damage to liver lungs and red blood cells.
- Eye: Causes irritation to eyes and mucous membranes.
- Skin: Causes irritation to skin.
- Ingestion: Aspiration hazard. May be fatal if swallowed.

#### Delayed (chronic) Effects:

• May cause genetic defects or cancer. May damage fertility or cause damage to the unborn child. Causes damage to the hematopoietic (blood) system, spleen, and liver through prolonged or repeat exposures.

4(c) Immediate Medical Attention and Special Treatment: If exposed, concerned or feel unwell: Get medical advice/attention.

#### Additional Information:

Primary Entry Routes: Inhalation, Ingestion, skin and eye contact.

**Target Organs:** Central nervous system, blood, eyes, skin lungs, and liver. Causes damage to the hematopoietic (blood) system, spleen, and liver. **Carcinogenicity:** IARC, NTP, ACGIH and OSHA list benzene as a carcinogen.

#### **Section 5 – Fire-fighting Measures**

**5(a)** Suitable (and unsuitable) Extinguishing Media: In case of fire: Use foam, dry powder or carbon dioxide for extinction. Do not use a solid stream of water as it may scatter and spread the fire.

5(b) Specific Hazards Arising from the Chemical: Vapors are heavier than air and may accumulate in low areas. Fire will produce irritating, corrosive and toxic gasses.

**5(c) Special Protective Equipment and Precautions for Fire-Fighters:** Self-contained NIOSH approved respiratory protection and full protective clothing should be worn when fumes and/or smoke from fire are present. Heat and flames cause formation of acrid smoke and fumes. Do not release runoff from fire control methods to sewers or waterways. Firefighters should wear full face-piece self-contained breathing apparatus and chemical protective clothing with thermal protection. Direct water stream will scatter and spread flames and, therefore, should not be used. Evacuate area. Remove pressurized gas cylinders from the immediate vicinity. Cool containers exposed to flames with water until well after the fire is out. Close the valve if no risk is involved. Fight fire from a protected location. Prevent buildup of vapors or gases to explosive concentrations.



### CONDENSATE

#### **Section 6 - Accidental Release Measures**

**6(a) Personal Precautions, Protective Equipment and Emergency Procedures:** Spills of condensate will create a fire hazard and may form an explosive atmosphere. Stay up wind and away from the spill. Clean-up personnel should be protected against contact with eyes and skin. Collect material in appropriate, labeled containers for recovery or disposal in accordance with federal, state, and local regulations.

**6(b)** Methods and Materials for Containment and Clean Up: Collect with sand or oil absorbing materials. Collect material in appropriate, labeled containers for recovery or disposal in accordance with federal, state, and local regulations. Follow applicable OSHA regulations (29 CFR 1910.120) and all other pertinent state and federal requirements.

#### **Section 7 - Handling and Storage**

7(a) Precautions for Safe Handling: Keep away from heat/sparks/open flames/hot surfaces. No smoking. Ground/Bond container and receiving equipment. Use explosion-proof electrical/ventilating/lighting/equipment. Use only non-sparking tools. Take precautionary measures against static discharge.

7(b) Conditions for Safe Storage, Including Any Incompatibilities: Store in well-ventilated place. Keep cool. Take precautions to avoid static discharges around stored condensate. Ground storage tanks and transfer piping. Use only outdoors or in a well-ventilated area. If feasible, store locked up.

#### **Section 8 - Exposure Controls / Personal Protection**

**8(a) Occupational Exposure Limits (OELs):** The following exposure limits are offered as reference, for an experience industrial hygienist to review.

| Ingredients | OSHA PEL <sup>1</sup> | ACGIH TLV <sup>2</sup>                 | NIOSH REL <sup>3</sup>                  | IDLH <sup>4</sup> |
|-------------|-----------------------|----------------------------------------|-----------------------------------------|-------------------|
| Benzene     | 1.0 ppm               | 0.5 ppm (1.6 mg/m <sup>3</sup> ), skin | 0.1 ppm (0.32 mg/m <sup>3</sup> )       | 500 ppm           |
|             | "STEL" 5.0 ppm        | "STEL" 2.5 ppm (8 mg/m <sup>3</sup> )  | "STEL" 1.0 ppm (3.2 mg/m <sup>3</sup> ) |                   |

1. OSHA PEL are 8-hour TWA concentrations unless otherwise noted. A Short Term Exposure Limit (STEL) is defined in the benzene standard as: The employer shall assure that no employee is exposed to an airborne concentration of benzene in excess of five (5) ppm as averaged over any 15 minute period.

2. TLVs established by the ACGIH are 8-hour TWA concentrations unless otherwise noted. ACGIH TLVs are for guideline purposes only and as such are not legal, regulatory limits for compliance purposes. A Short Term Exposure Limit (STEL) is defined as the maximum concentration to which workers can be exposed for a short period of time (15 minutes) for only four times throughout the day with at least one hour between exposures.

- 3. The NIOSH-REL- Compendium of Policy and Statements. NIOSH, Cincinnati, OH (1992). NIOSH is the federal agency designated to conduct research relative to occupational safety and health. As is the case with ACGIH TLVs, NIOSH RELs are for guideline purposes only and as such are not legal, regulatory limits for compliance purposes.
- 4. The IDLHs are used by NIOSH as part of the respirator selection criteria and were first developed in the mid 1970's by NIOSH. The Documentation for IDLHs is a compilation of the rationale and sources of information used by NIOSH during the original determination of 387 IDLHs and their subsequent review and revision in 1994.

**8(b)** Appropriate Engineering Controls: Local exhaust ventilation should be used to control the emission of air contaminants. General dilution ventilation may assist with the reduction of air contaminant concentrations. Emergency eye wash stations and deluge safety showers should be available in the work area.

#### 8(c) Individual Protection Measures:

• **Respiratory Protection:** Seek professional advice prior to respirator selection and use. Follow OSHA respirator regulations (29 CFR 1910.134) and, if necessary, use only a NIOSH-approved respirator. Select respirator based on its suitability to provide adequate worker protection for given working conditions, level of airborne contamination, and presence of sufficient oxygen. Concentration in air of the various contaminants determines the extent of respiratory protection needed. Half-mask negative-pressure, air-purifying respirator equipped with organic vapor cartridge is acceptable for concentrations up to 10 times the exposure limit. Full-face negative-pressure air purifying respirator equipped with organic vapor cartridges is acceptable for concentrations up to 50 times the exposure limit. Protection by air purifying both negative-pressure and powered air respirators is limited. Use a positive-pressure-demand, full-face, supplied air respirator or self contained breathing apparatus (SCBA) for concentrations above 50 times the exposure limit. If exposure is above the IDLH (Immediately dangerous to life or health) for any of the constituents, or there is a possibility of an uncontrolled release or exposure levels are unknown, then use a positive-demand, full-face, supplied air respirator with escape bottle or SCBA.

Warning! Air-purifying respirators both negative-pressure, and powered-air do not protect workers in oxygen-deficient atmospheres.

- Eyes: Employees should be required to wear chemical safety glasses to prevent eye contact. A face shield should be used when appropriate to prevent contact with splashed materials. Chemical goggles, face shields or glasses should be worn to prevent eye contact. Contact lenses should not be worn where industrial exposure to this material is likely.
- Skin: Persons handling this product should wear appropriate clothing to prevent skin contact. Contaminated work clothing should not be allowed out of the workplace. Wash contaminated clothing before reuse. Wear protective gloves. Chemical goggles, face shields or glasses should be worn to prevent eye contact. Contact lenses should not be worn where industrial exposure to this material is likely. Wash skin that has been exposed with soap and water.

• Other Protective Equipment: An eyewash fountain and deluge shower should be readily available in the work area.

#### **Section 9 - Physical and Chemical Properties**

| 9(a) Appearance (physical state, color, etc.): Colorless to amber | 9(j) Upper/lower Flammability or Explosive Limits: 10% / 1% |
|-------------------------------------------------------------------|-------------------------------------------------------------|
| liquid                                                            |                                                             |
| 9(b) Odor: gasoline - like                                        | 9(k) Vapor Pressure: 200-500 mmHg@68°F                      |



### CONDENSATE

#### Section 9 - Physical and Chemical Properties (continued)

| 9(c) Odor Threshold: NA                                                          | 9(1) Vapor Density (Air = 1): ND                   |
|----------------------------------------------------------------------------------|----------------------------------------------------|
| 9(d) pH: NA                                                                      | 9(m) Relative Density: 6.25 lbs/gal (Bulk Density) |
| 9(e) Melting Point/Freezing Point: NA                                            | 9(n) Solubility(ies): ND                           |
| <b>9(f) Initial Boiling Point and Boiling Range:</b> 96.8 - 258 °F (36-125.6 °C) | 9(o) Partition Coefficient n-octanol/water: ND     |
| <b>9(g) Flash Point:</b> <-50°F (<-45.6 °C)                                      | 9(p) Auto-ignition Temperature: ND                 |
| 9(h) Evaporation Rate: NA                                                        | 9(q) Decomposition Temperature: ND                 |
| 9(i) Flammability (liquid): Highly Flammable                                     | 9(r) Viscosity: ND                                 |
| NA - Not Applicable                                                              |                                                    |
| <b>ND</b> - Not Determined for product as a whole                                |                                                    |

### Section 10 - Stability and Reactivity

10(a) Reactivity: Not Determined (ND) for product as a whole.

10(b) Chemical Stability: Stable under normal storage and handling conditions.

10(c) Possibility of Hazardous Reaction: No Data Found

10(d) Conditions to Avoid: Storage with incompatible materials. Avoid heat, flame, or ignition sources.

10(e) Incompatible Materials: Strong acids and oxidizing agents.

10(f) Hazardous Decomposition Products: Can produce carbon dioxide and carbon monoxide.

### **Section 11 - Toxicological Information**

**11(a-e)** Information on Toxicological Effects: The following toxicity data have been determined using the information available for its components applied to the guidance on the preparation of an SDS under the GHS requirements of OSHA and the EU CPL:

| Hazard Classification                                                                         | Hazard Category |                   | Hazard  | Simul Ward  |                                                                                                              |  |
|-----------------------------------------------------------------------------------------------|-----------------|-------------------|---------|-------------|--------------------------------------------------------------------------------------------------------------|--|
| Hazaru Classification                                                                         | EU*             | OSHA              | Symbols | Signal Word | Hazard Statement                                                                                             |  |
| Acute Toxicity Hazard (covers<br>Categories 1-5)                                              | NA**            | 3ª                |         | Danger      | Toxic if inhaled                                                                                             |  |
| Skin Corrosion/Irritation<br>(covers Categories 1A, 1B, 1C and<br>2)                          | 2               | 2 <sup>b</sup>    |         | Warning     | Causes skin irritation                                                                                       |  |
| <b>Eye Damage/ Irritation</b> (covers Categories 1, 2A and 2B)                                | NA**            | 2A <sup>c</sup>   |         | Warning     | Causes serious eye irritation                                                                                |  |
| Skin/Dermal Sensitization<br>(covers Category 1)                                              | NA**            | NA**              | NA**    | NA**        | NA**                                                                                                         |  |
| Germ Cell Mutagenicity (covers<br>Categories 1A, 1B and 2)                                    | 1B              | $1\mathbf{B}^{d}$ |         | Danger      | May cause genetic defects                                                                                    |  |
| <b>Carcinogenicity</b> (covers<br>Categories 1A, 1B and 2)                                    | 1B              | 1A <sup>e</sup>   |         | Danger      | May cause cancer                                                                                             |  |
| <b>Toxic Reproduction</b> (covers<br>Categories 1A, 1B and 2)                                 | NA**            | $1B^{\rm f}$      |         | Danger      | May damage fertility or the unborn child                                                                     |  |
| Specific Target Organ Toxicity<br>(STOT) Following Single<br>Exposure (covers Categories 1-3) | NA**            | 2 <sup>g</sup>    |         | Warning     | May cause CNS and Peripheral depression, and damage lung liver<br>(vacuoled hepatocytes) and red blood cells |  |
| <b>STOT following Repeated</b><br><b>Exposure</b> (covers Categories 1<br>and 2)              | NA**            | 1 <sup>h</sup>    |         | Warning     | May cause damage to the Hematopoietic system, spleen, liver through prolonged or repeat exposures            |  |
| Aspiration (covers category 1)                                                                | 1               | 1                 |         | Danger      | May be fatal if swallowed and enters the airway                                                              |  |

\*Natural Gas Condensate has been harmonized as - Base classification: High Benzene Naphtha, flashpoint  $< 23^{\circ}$ C and initial boiling point  $\ge 35^{\circ}$ C, benzene or 1,3-butadiene  $\ge 0.1\%$ , naphthalene < 25%.

\*\* Not Applicable - Many categories have conclusive but not sufficient for classification information.



| Section 11 - Toxicological Information (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 11(a-e) Information on toxicological effects (continued):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| a. The following $LC_{50}$ or $LD_{50}$ has been established for <b>Condensate</b> as a mixture:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| • Rat (4 hr) $LC_{50} > 5.2 \text{ mg/L}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| • Rat (4 hr) $LC_{50} > 5.81 \text{ mg/L}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| • Rat (4 hr) LC <sub>50</sub> >5.2 mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| b. The following Skin Corrosion/Irritation information was found for Condensate as a mixture:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| • Rabbit – Slightly irritating.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| Rabbit - Irritating but not corrosive.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| <ul> <li>c. The following Eye Damage/Irritation information was found for Condensate as a mixture:</li> <li>Rabbit – Slightly irritating.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| d. No Germ Cell Mutagenicity data available for Condensate as a mixture. The following Germ Cell Mutagenicity information was found for the components:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| Benzene - Positive with activation. Positive In vitro Clastogenicity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| e. No Carcinogenicity data available for Condensate as a mixture. The following Carcinogenicity information was found for the components:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| Benzene - Listed as class 1 carcinogen by the NTP, IARC, EPA and ACGIH.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| f. No <b>Reproductive Toxicity</b> data available for <b>Condensate</b> as a mixture. The following <b>Reproductive Toxicity</b> information was found for the components:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| • Benzene - NOAEC for both adult and offspring toxicity and female fertility. 300ppm (960 mg/m <sup>3</sup> ). NOAEC for maternal toxicity as teratogenicity was 100 ppm (320 mg/m <sup>3</sup> ). The NOAEC for slight fetotoxicity was 40 ppm (128 mg/m <sup>3</sup> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| g. No <b>Specific Target Organ Toxicity (STOT) following Single Exposure</b> data available for <b>Condensate</b> as a mixture. The following STC following Single Exposure information was found for the components:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| • Benzene - CNS and peripheral Depression, lung liver (vacuoled hepatocytes) and red blood cells may be effected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| h. No Specific Target Organ Toxicity (STOT) following Repeated Exposure data available for Condensate as a mixture. The following STOT following Repeated Exposure data is available for the components:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| <ul> <li>Benzene - Spleen hematopoiesis, Liver, lung kidney effects are specific to male Rat. Early signs and symptoms of chronic overexposure inclue effects on CNS &amp; the GI tract (headache, loss of appetite, drowsiness, nervousness, &amp; pallor) but the major manifestation of toxicity is aplass anemia. Bone marrow depression may occur resulting in leucopoenia, anemia, or thrombocytopenia (leukemogenic action). With continue exposure the disease states may progress to pancytopenia resulting from bone marrow aplasia. Evidence has linked benzene in the etiology leukemia.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| The above toxicity information was determined from available scientific sources to illustrate the prevailing posture of the scientific community. The scientific resources includes: T<br>American Conference of Governmental Industrial Hygienist (ACGIH) Documentation of the Threshold Limit Values (TLVs) and Biological Exposure indices (BEIs) with Other Worldwi<br>Occupational Exposure Values 2009, The International Agency for Research on Cancer (IARC), The National Toxicology Program (NTP) updated documentation, the World Hea<br>Organization (WHO) and other available resources, the International Uniform Chemical Information Database (IUCLID), European Union Risk Assessment Report (EU-RAR), Conc<br>International Chemical Assessment Documents (CICAD), European Union Scientific Committee for Occupational Exposure Limits (EU-SCOEL), Agency for Toxic Substances a<br>Disease Registry (ATSDR), Hazardous Substance Data Bank (HSDB), and International Programme on Chemical Safety (IPCS). |  |  |  |  |  |  |
| Section 12 - Ecological Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| 12(a) Ecotoxicity (aquatic & terrestrial): No Data Found                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| 12(b) Persistence & Degradability: Loss due to volatility. Not readily biodegradable but is inherently biodegradable by microorganisms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| 12(c) Bioaccumulative Potential: No Data Found                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| <b>12(d)</b> Mobility (in soil): Will float on water and will volatilize in air.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| 12(e) Other adverse effects: No Data Found                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| Additional Information:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| Hazard Category: Not Reported Signal Word: No Signal Word                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| Hazard<br>Symbol:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| Hazard Statement: No Statement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| Section 13 - Disposal Considerations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| Disposal: Waste code D001: Waste Flammable material with a flash point <140°F. This material and its container must be disposed of as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| hazardous waste. Under RCRA, it is the responsibility of the user of the product to determine, at the time of disposal, whether the product mee RCRA criteria for hazardous waste. <b>European Waste Catalogue (EWC):</b> 05-01-99 (waste from petroleum refining).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |

**Container Cleaning and Disposal:** Containers should be completely empty prior to discarding. Dispose of contents in accordance with federal, state and local regulations. Observe safe handling precautions.

Please note this information is for Condensate in its original form. Any alterations can void this information.



### **Section 14 - Transportation Information**

#### 14(a-g) Transportation Information:

US DOT under 49 CFR 172.101 regulates Condensate as a hazardous material. All federal, state, and local laws and regulations that apply to the transport of this type of material must be adhered to. Shipping Name: RQ, UN3295, Hydrocarbon, Liquid, N.O.S. **Packaging Authorizations Ouantity Limitations** a) Exceptions: 150 PGIII (Benzene) a) Passenger, Aircraft, or Railcar: 60L Shipping Symbols: Flammable Liquid b) Non-Bulk: 203 b) Cargo Aircraft Only: 220L Hazard Class: 3 c) Bulk: 242 **Vessel Stowage Requirements** UN No.: UN3295 a) Vessel Stowage: A Packing Group: III b) Other: NA DOT/ IMO Label: 3 DOT Reportable Quantities: 10 lbs. Special Provisions (172.102): 144, B1, IB3, T4, TP1, TP29 IMDG and RID classification, packaging and shipping requirements follow the US DOT Hazardous Materials Regulation. ADR regulates Condensate as a hazardous material. Shipping Name: Hydrocarbons, Liquid, N.O.S. Portable Tanks & Bulk Containers Packaging **Classification Code: 3** a) Packing Instructions: P001, LP01 a) Instructions: T4 UN No.: 3295 b) Special Packing Provisions: NA b) Special Provisions: TP1, TP29 Packing Group: III c) Mixed Packing Provisions: NA ADR Label: Flammable Liquid Special Provisions: 223 Limited Quantities: 5L Excepted Quantities (EQ): E1 IATA regulates Condensate as a hazardous material. Shipping Name: Hydrocarbons, Liquid, N.O.S. Cargo Aircraft Only **Special Provisions:** Passenger & Cargo Aircraft A3 Class/Division: 3 Limited Quantity (EQ) Pkg Inst: 303 ERG Code: 3H Hazard Label (s): Flammable Liquid Pkg Inst: Pkg Inst: 302 Max Net Qty/Pkg: 30 Forbidden Max Net Qty/Pkg: L UN No.: 3295 Max Net Otv/Pkg: 1L Packing Group: 1 Forbidden Excepted Quantities (EQ): E3 Pkg Inst - Packing Instructions Max Net Qty/Pkg - Maximum Net Quantity per Package ERG - Emergency Response Drill Code TDG Classification: Condensate does have a TDG classification. **Section 15 - Regulatory Information** Regulatory Information: The following listing of regulations relating to a CONSOL Energy Inc. product may not be complete and should not be solely relied upon for all regulatory compliance responsibilities. This product and/or its constituents are subject to the following regulations: OSHA Regulations: Air Contaminant (29 CFR 1910.1000, Table Z-1, Z-2, Z-3): The product, Condensate as a whole is not listed. However, individual components of the product are listed: Refer to Section 8, Exposure Controls and Personal Protection EPA Regulations: Condensate is not listed as a whole. However, individual components of the product are listed: Components Regulations SARA 313, CERCLA, RCRA, SDWA, CWA, CAA Benzene SARA Potential Hazard Categories: Immediate Acute Health Hazard, Delayed Chronic Health Hazard, Fire Hazard **Regulations Key:** CAA Clean Air Act (42 USC Sec. 7412; 40 CFR Part 61 [As of: 8/18/06]) CERCLA Comprehensive Environmental Response, Compensation and Liability Act (42 USC Secs. 9601(14), 9603(a); 40 CFR Sec. 302.4, Table 302.4, Table 302.4 and App. A) CWA Clean Water Act (33 USC Secs. 1311; 1314(b), (c), (e), (g); 136(b), (c); 137(b), (c) [as of 8/2/06]) RCRA Resource Conservation Recovery Act (42 USC Sec. 6921; 40 CFR Part 261 App VIII) SARA Superfund Amendments and Reauthorization Act of 1986 Title III Section 302 Extremely Hazardous Substances (42 USC Secs. 11023, 13106; 40 CFR Sec. 372.65) and Section 313 Toxic Chemicals (42 USC Secs. 11023, 13106; 40 CFR Sec. 372.65 [as of 6/30/05]) TSCA Toxic Substance Control Act (15 U.S.C. s/s 2601 et seq. [1976]) SDWA Safe Drinking Water Act (42 U.S.C. s/s 300f et seq. [1974])

Section 313 Supplier Notification: This product, Condensate contains the following toxic chemicals subject to the reporting requirements of section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 and 40 CFR part 372:

| CAS #   | CAS # Chemical Name |     |  |  |  |
|---------|---------------------|-----|--|--|--|
| 71-43-2 | Benzene             | 0.1 |  |  |  |



|                | Section 15 - Regulatory Information (continued)                                                                                                |                   |                                                                                                                                                                   |  |  |  |  |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Regulato       | ry Information (continued):                                                                                                                    |                   |                                                                                                                                                                   |  |  |  |  |
|                | gulations: The product, Condensate as a whole is not listed various state regulations:                                                         | l in any state    | regulations. However, individual components of the product are                                                                                                    |  |  |  |  |
|                | ania Right to Know: Contains regulated material in the follo                                                                                   | owing categor     | ries:                                                                                                                                                             |  |  |  |  |
| -              | vironmental Hazards: Benzene                                                                                                                   | 0 0               |                                                                                                                                                                   |  |  |  |  |
| • Spe          | cial Hazardous Substance: Benzene                                                                                                              |                   |                                                                                                                                                                   |  |  |  |  |
| California     | a Prop. 65: This product contains materials known to the Sta                                                                                   | te of Califorr    | ia to cause cancer. Benzene                                                                                                                                       |  |  |  |  |
| New Jerse      | ey: Contains regulated material in the following categories:                                                                                   | Hazardous Su      | ubstance: Benzene                                                                                                                                                 |  |  |  |  |
| Minnesot       | a: Benzene                                                                                                                                     |                   |                                                                                                                                                                   |  |  |  |  |
| Massachu       | isetts: Benzene                                                                                                                                |                   |                                                                                                                                                                   |  |  |  |  |
|                | gulations:<br>Classification (Canadian): Condensate is not listed as a v                                                                       | vhole. Howev      | er individual components are listed.                                                                                                                              |  |  |  |  |
|                | redients WHMIS Classification                                                                                                                  |                   |                                                                                                                                                                   |  |  |  |  |
|                | nzene D-2A, D-2B, B-2                                                                                                                          |                   |                                                                                                                                                                   |  |  |  |  |
|                |                                                                                                                                                | Products Regulat  | tions and the SDS contains all the information required by the Controlled Products                                                                                |  |  |  |  |
| Regulations.   |                                                                                                                                                | _                 |                                                                                                                                                                   |  |  |  |  |
|                | Section 16 -                                                                                                                                   | Other Inf         | ormation                                                                                                                                                          |  |  |  |  |
| Prepared       | By: CONSOL Energy Inc.                                                                                                                         | Issue             | <b>a Date:</b> 8/12/2013                                                                                                                                          |  |  |  |  |
|                | al Information:                                                                                                                                |                   |                                                                                                                                                                   |  |  |  |  |
| HMIS CI        | assification                                                                                                                                   | NFP               | A                                                                                                                                                                 |  |  |  |  |
| Health H       | Hazard 2                                                                                                                                       |                   | 3                                                                                                                                                                 |  |  |  |  |
| Fire Haz       | zard 3                                                                                                                                         | 2                 | 1                                                                                                                                                                 |  |  |  |  |
| Physica        | l Hazard 1                                                                                                                                     |                   |                                                                                                                                                                   |  |  |  |  |
|                |                                                                                                                                                | HEAT              | $\mathbf{T}$ $\mathbf{T}$ $\mathbf{T}$ $\mathbf{T}$ $\mathbf{T}$ $\mathbf{T}$ $\mathbf{T}$ $\mathbf{T}$ $\mathbf{T}$                                              |  |  |  |  |
|                | <ol> <li>Temporary or minor injury may occur.</li> <li>Materials capable of ignition under almost all normal temperature cond</li> </ol>       |                   | TH = 2, Intense or continued exposure could cause temporary incapacitation or le residual injury unless prompt medical attention is given.                        |  |  |  |  |
| Includes flan  | mmable liquids with flash points below 73 °F and boiling points above 100                                                                      |                   | = 3, Liquids and solids that can be ignited under almost all ambient conditions.                                                                                  |  |  |  |  |
| -              | ds with flash points between 73 °F and 100 °F. (Classes IB & IC).<br>HAZARD = $1$ , Materials that are normally stable but can become unstable |                   | ABILITY = $1$ , Normally stable, but can become unstable at elevated temperatures essures or may react with water with some release of energy, but not violently. |  |  |  |  |
|                | the temperatures and pressures. Materials may react non-violently with we                                                                      |                   | essures of may feact with water with some felease of energy, but not violently.                                                                                   |  |  |  |  |
| undergo haz    | ardous polymerization in the absence of inhibitors.                                                                                            |                   |                                                                                                                                                                   |  |  |  |  |
| ABBREV         | /IATIONS/ACRONYMS:                                                                                                                             |                   | 1                                                                                                                                                                 |  |  |  |  |
| ACGIH          | American Conference of Governmental Industrial Hygienists                                                                                      | mg/m <sup>3</sup> | milligram per cubic meter of air                                                                                                                                  |  |  |  |  |
| ADR            | Regulations Concerning the International Carriage of<br>Dangerous Goods by Road                                                                | NFPA              | National Fire Protection Association                                                                                                                              |  |  |  |  |
| CAS            | Chemical Abstracts Service                                                                                                                     | NIOSH             | National Institute for Occupational Safety and Health                                                                                                             |  |  |  |  |
| CERCLA         | Comprehensive Environmental Response, Compensation, and                                                                                        | NOAEC             |                                                                                                                                                                   |  |  |  |  |
|                | Liability Act                                                                                                                                  |                   |                                                                                                                                                                   |  |  |  |  |
| CFR            | Code of Federal Regulations                                                                                                                    | NTP               | National Toxicology Program                                                                                                                                       |  |  |  |  |
| CNS            | Central Nervous System                                                                                                                         | OSHA              | Occupational Safety and Health Administration                                                                                                                     |  |  |  |  |
| CPL<br>DOT     | Classification, Labeling and Packaging                                                                                                         | PEL               | Permissible Exposure Limit                                                                                                                                        |  |  |  |  |
| EC             | Department of Transportation                                                                                                                   | ppm<br>RCRA       | parts per million Percentration and Percentration                                                                                                                 |  |  |  |  |
| EU             | European Community European Union                                                                                                              | REACH             | Resource Conservation and Recovery Act           Registration, Evaluation, Authorization and Restriction of Chemical                                              |  |  |  |  |
| Le             |                                                                                                                                                | REATON            | substances.                                                                                                                                                       |  |  |  |  |
| EWC            |                                                                                                                                                |                   |                                                                                                                                                                   |  |  |  |  |
| CLOT           | Castro Intestinal Castro Intestinal Tract                                                                                                      | DEI               | Goods by Rail Personmended Exposure Limits                                                                                                                        |  |  |  |  |
| GI, GIT<br>GHS | Gastro-Intestinal, Gastro-Intestinal Tract<br>Globally Harmonized System                                                                       | REL<br>SDS        | Recommended Exposure Limits Safety Data Sheet                                                                                                                     |  |  |  |  |
| HMIS           | Hazardous Materials Identification System                                                                                                      | SARA              | Superfund Amendment and Reauthorization Act                                                                                                                       |  |  |  |  |
| IARC           | International Agency for Research on Cancer                                                                                                    | SARA              | Self-contained Breathing Apparatus                                                                                                                                |  |  |  |  |
| IATA           | International Air Transport Association                                                                                                        | STEL              | Short Term Exposure Limit                                                                                                                                         |  |  |  |  |
| IDLH           | Immediately Dangerous to Life or Health                                                                                                        | TDG               | Transport Dangerous Goods                                                                                                                                         |  |  |  |  |
| IMDG           | International Maritime Dangerous Goods                                                                                                         | TLV               | Threshold Limit Value                                                                                                                                             |  |  |  |  |
| LC50           | Median Lethal Concentration                                                                                                                    | TWA               | Time-weighted Average                                                                                                                                             |  |  |  |  |
|                | 1                                                                                                                                              | 1 1               |                                                                                                                                                                   |  |  |  |  |



### **Section 16 - Other Information (continued)**

#### ABBREVIATIONS/ACRONYMS (continued):

| MSHA | Mine Safety and Health Administration |
|------|---------------------------------------|
| mg/L | milligram per liter                   |
| -    |                                       |

WHMIS Workplace Hazardous Materials Information System

**Disclaimer:** This information is taken from sources or based upon data believed to be reliable. Our objective in sending this information is to help you protect the health and safety of your personnel and to comply with the OSHA Hazard Communication Standard and Title III of the Superfund Amendment and Reauthorization Act of 1986. CONSOL Energy Inc. makes no warranty as to the absolute correctness, completeness, or sufficiency of any of the foregoing, or any additional, or other measures that may be required under particular conditions. CONSOL Energy Inc. MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING THE IMPLIED WARRANTY OF MERCHANTABILITY, OR ANY IMPLIED WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE, AND ANY IMPLIED WARRANTIES OTHERWISE ARISING FROM COURSE OF DEALING OR TRADE.

## **ATTACHMENT I**

## **EMISSION UNITS TABLE**

# **Rule 13 Permit Application**

Rohrbaugh Station Camden, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA

January 2017

## Attachment I

## **Emission Units Table**

### (includes all emission units and air pollution control devices

### that will be part of this permit application review, regardless of permitting status)

| Emission<br>Unit ID <sup>1</sup> | Emission<br>Point ID <sup>2</sup>         | Emission Unit Description                                                  | Year Installed/<br>Modified | Design<br>Capacity | Type <sup>3</sup> and Date of Change | Control<br>Device <sup>4</sup> |
|----------------------------------|-------------------------------------------|----------------------------------------------------------------------------|-----------------------------|--------------------|--------------------------------------|--------------------------------|
| CE-1                             | E01                                       | Reciprocating Engine/Integral<br>Compressor; Caterpillar G3304 NA;<br>4SRB | 2011                        | 95 hp              | Existing                             | C1                             |
| T-1                              | E02                                       | Pipeline Liquids AST                                                       | Pre August 2011             | 2,100 gal          | Existing                             | NA                             |
| TL-1                             | TL-1 E03 Pipeline Liquids – Truck Loading |                                                                            | 2011                        | 2,100 gal/yr       | Existing                             | NA                             |
|                                  |                                           |                                                                            |                             |                    |                                      |                                |

<sup>1</sup> For Emission Units (or <u>Sources</u>) use the following numbering system:1S, 2S, 3S,... or other appropriate designation. <sup>2</sup> For <u>E</u>mission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation. <sup>3</sup> New, modification, removal

<sup>4</sup> For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

## ATTACHMENT J

## **EMISSION POINTS DATA SUMMARY SHEET**

# **Rule 13 Permit Application**

Rohrbaugh Station Camden, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA

January 2017

## Attachment J EMISSION POINTS DATA SUMMARY SHEET

|                                                                    | Table 1: Emissions Data                |                   |                                                                          |                                    |                                                          |                                                                      |                |                                                                                             |                                                               |                                                                  |                                                       |                                                                                      |                                   |                                                 |                                |        |                                                         |                                     |                                                                           |
|--------------------------------------------------------------------|----------------------------------------|-------------------|--------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------|--------------------------------|--------|---------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------------|
| Emission<br>Point ID<br>No.<br>(Must<br>match<br>Emission<br>Units | Emission<br>Point<br>Type <sup>1</sup> | Throu<br>(Must ma | on Unit Vented<br>ugh This Point<br>tch Emission Units<br>e & Plot Plan) | Contro<br>(Must<br>Emissi<br>Table | Dilution<br>Device<br>match<br>on Units<br>& Plot<br>an) | Vent Time<br>for Emission<br>Unit<br>(chemical<br>processes<br>only) |                | e for Emission<br>Unit<br>(chemical<br>processes                                            |                                                               | for Emission<br>Unit<br>(chemical<br>processes                   |                                                       | All Regulated<br>Pollutants -<br>Chemical<br>Name/CAS <sup>3</sup><br>(Speciate VOCs | Pote<br>Uncor                     | mum<br>ential<br>ntrolled<br>sions <sup>4</sup> | Maxi<br>Pote<br>Conti<br>Emiss | rolled | Emission<br>Form or<br>Phase<br>(At exit<br>conditions, | Est.<br>Method<br>Used <sup>6</sup> | Emission<br>Concentration <sup>7</sup><br>(ppmv or<br>mg/m <sup>4</sup> ) |
| Table-&<br>Plot Plan)                                              |                                        | ID No.            | Source                                                                   | ID No.                             | Device<br>Type                                           | Short<br>Term <sup>2</sup>                                           | Max<br>(hr/yr) | & HAPS)                                                                                     | lb/hr                                                         | ton/yr                                                           | lb/hr                                                 | ton/yr                                                                               | Solid, Liquid<br>or<br>Gas/Vapor) |                                                 |                                |        |                                                         |                                     |                                                                           |
| E01                                                                | Horizontal<br>Stack                    | CE-1              | 4SRB RICE<br>CAT G3304 NA                                                | C1                                 | NSCR                                                     | NA                                                                   | NA             | NO <sub>x</sub><br>CO<br>VOC<br>SO <sub>2</sub><br>PM <sub>10</sub><br>CH2O<br>HAPs<br>CO2e | 2.88<br>2.89<br>0.11<br>0.01<br>0.02<br>0.06<br>0.07<br>99.78 | 12.63<br>12.64<br>0.48<br>0.01<br>0.07<br>0.25<br>0.29<br>437.02 | 0.59<br>1.01<br>0.11<br>0.02<br>0.06<br>0.07<br>99.78 | 2.60<br>4.44<br>0.48<br>0.01<br>0.07<br>0.25<br>0.29<br>437.02                       | Gas/<br>Vapor                     | EE                                              | Can Supply<br>Upon Request     |        |                                                         |                                     |                                                                           |
| E02                                                                | Vertical<br>Stack                      | T-1               | Pipeline Liquids<br>AST                                                  | NA                                 | -                                                        | -                                                                    | -              | VOC                                                                                         | 0.01                                                          | 0.04                                                             | -                                                     | -                                                                                    | Gas/<br>Vapor                     | EE                                              | Can Supply<br>Upon Request     |        |                                                         |                                     |                                                                           |

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

<sup>1</sup> Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

<sup>2</sup> Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).

<sup>3</sup> List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. **LIST** Acids, CO, CS<sub>2</sub>, VOCs, H<sub>2</sub>S, Inorganics, Lead, Organics, O<sub>3</sub>, NO, NO<sub>2</sub>, SO<sub>2</sub>, SO<sub>3</sub>, all applicable Greenhouse Gases (including CO<sub>2</sub> and methane), etc. **DO NOT LIST** H<sub>2</sub>, H<sub>2</sub>O, N<sub>2</sub>, O<sub>2</sub>, and Noble Gases.

<sup>4</sup> Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

<sup>5</sup> Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

6 Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

<sup>7</sup> Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m<sup>3</sup>) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO<sub>2</sub>, use units of ppmv (See 45CSR10).

## Attachment J **EMISSION POINTS DATA SUMMARY SHEET**

|                                                            | Table 2: Release Parameter Data |               |                                                                          |                   |                                                  |                                                                                     |                      |         |
|------------------------------------------------------------|---------------------------------|---------------|--------------------------------------------------------------------------|-------------------|--------------------------------------------------|-------------------------------------------------------------------------------------|----------------------|---------|
| Emission                                                   | Inner                           |               | Exit Gas                                                                 |                   | Emission Point El                                | evation (ft)                                                                        | UTM Coordinates (km) |         |
| Point ID<br>No.<br>(Must match<br>Emission<br>Units Table) | Diameter<br>(ft.)               | Temp.<br>(°F) | Volumetric Flow <sup>1</sup><br>(acfm)<br><i>at operating conditions</i> | Velocity<br>(fps) | Ground Level<br>(Height above<br>mean sea level) | Stack Height <sup>2</sup><br>(Release height of<br>emissions above<br>ground level) | Northing             | Easting |
| E01                                                        | 0.25                            | 1100          | 453                                                                      | 28.7              | 1,200 ft                                         | 8.0 ft                                                                              | 4,157.092            | 472.134 |
| E02                                                        | 0.17                            | 60            | 0.00                                                                     | 0.00              | 1,200 ft                                         | 10 ft                                                                               | 4,157.092            | 472.134 |

<sup>1</sup>Give at operating conditions. Include inerts. <sup>2</sup>Release height of emissions above ground level.

## ATTACHMENT K

## **FUGITIVE EMISSIONS DATA SHEET**

# **Rule 13 Permit Application**

Rohrbaugh Station Camden, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA

January 2017

## Attachment K

## FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

|     | APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS                                                                                                                                                                                               |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.) | Will there be haul road activities?                                                                                                                                                                                                            |
|     | □ Yes                                                                                                                                                                                                                                          |
|     | If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.                                                                                                                                                                                 |
| 2.) | Will there be Storage Piles?                                                                                                                                                                                                                   |
|     | □ Yes                                                                                                                                                                                                                                          |
|     | ☐ If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.                                                                                                                                                   |
| 3.) | Will there be Liquid Loading/Unloading Operations?                                                                                                                                                                                             |
|     | 🖾 Yes 🗌 No                                                                                                                                                                                                                                     |
|     | If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.                                                                                                                                                                |
| 4.) | Will there be emissions of air pollutants from Wastewater Treatment Evaporation?                                                                                                                                                               |
|     | □ Yes                                                                                                                                                                                                                                          |
|     | If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.                                                                                                                                                                                        |
| 5.) | Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?                                        |
|     | 🖾 Yes 🗌 No                                                                                                                                                                                                                                     |
|     | ☑ If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS<br>UNIT DATA SHEET. Note: Component count and emission totals are included within site calculations. No<br>monitoring or LDAR required at this site. |
| 6.) | Will there be General Clean-up VOC Operations?                                                                                                                                                                                                 |
|     | □ Yes                                                                                                                                                                                                                                          |
|     | If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.                                                                                                                                                                                        |
| 7.) | Will there be any other activities that generate fugitive emissions?                                                                                                                                                                           |
|     | □ Yes                                                                                                                                                                                                                                          |
|     | ☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.                                                                                                                                                         |
|     | bu answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions<br>nmary."                                                                                                                |

| FUGITIVE EMISSIONS SUMMARY                        | All Regulated Pollutants <sup>-</sup><br>Chemical Name/CAS <sup>1</sup> | Maximum<br>Uncontrolled |        | Maximum P<br>Controlled Em | Est.<br>Method |                   |
|---------------------------------------------------|-------------------------------------------------------------------------|-------------------------|--------|----------------------------|----------------|-------------------|
|                                                   | Chemical Name/CAS                                                       | lb/hr                   | ton/yr | lb/hr                      | ton/yr         | Used <sup>4</sup> |
| Haul Road/Road Dust Emissions<br>Paved Haul Roads | -                                                                       | -                       | -      | -                          | -              | EE                |
| Unpaved Haul Roads                                | -                                                                       | -                       | -      | -                          | -              | EE                |
| Storage Pile Emissions                            | -                                                                       | -                       | -      | -                          | -              | EE                |
| Loading/Unloading Operations                      | VOC                                                                     | 0.01                    | 0.01   | -                          | -              | EE                |
| Wastewater Treatment Evaporation & Operations     | -                                                                       | -                       | -      | -                          | -              | EE                |
| Equipment Leaks                                   | VOC                                                                     | 0.38                    | 1.65   | -                          | -              | EE                |
| General Clean-up VOC Emissions                    | -                                                                       | -                       | -      | -                          | -              | EE                |
| Other                                             | -                                                                       | -                       | -      | -                          | -              | EE                |

<sup>1</sup> List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS<sub>2</sub>, VOCs, H<sub>2</sub>S, Inorganics, Lead, Organics, O<sub>3</sub>, NO, NO<sub>2</sub>, SO<sub>2</sub>, SO<sub>3</sub>, all applicable Greenhouse Gases (including CO<sub>2</sub> and methane), etc. DO NOT LIST H<sub>2</sub>, H<sub>2</sub>O, N<sub>2</sub>, O<sub>2</sub>, and Noble Gases.

<sup>2</sup> Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

<sup>3</sup> Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

<sup>4</sup> Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

## ATTACHMENT L

## **EMISSION UNIT DATA SHEET**

# **Rule 13 Permit Application**

Rohrbaugh Station Camden, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA

January 2017

#### **INTERNAL COMBUSTION ENGINE DATA SHEET** Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. *Generator(s) and microturbine generator(s)* shall also use this form. Emission Unit ID#1 CE-1 Engine Manufacturer/Model Caterpillar/G3304 NA 95/1800 Manufacturers Rated bhp/rpm NS Source Status<sup>2</sup> Date Installed/ 2011 Modified/Removed/Relocated<sup>3</sup> Engine Manufactured 9/13/2008 /Reconstruction Date<sup>4</sup> ⊠40CFR60 Subpart JJJJ □40CFR60 Subpart JJJJ □40CFR60 Subpart JJJJ □JJJJ Certified? □JJJJ Certified? □JJJJ Certified? □40CFR60 Subpart IIII □40CFR60 Subpart IIII □40CFR60 Subpart IIII Check all applicable Federal □IIII Certified? □IIII Certified? □IIII Certified? Rules for the engine (include ⊠40CFR63 Subpart ZZZZ □40CFR63 Subpart ZZZZ □40CFR63 Subpart ZZZZ EPA Certificate of Conformity □ NESHAP ZZZZ/ NSPS □ NESHAP ZZZZ/ NSPS $\Box$ NESHAP ZZZZ/ NSPS if applicable)<sup>5</sup> JJJJ Window JJJJ Window JJJJ Window □ NESHAP ZZZZ Remote □ NESHAP ZZZZ Remote □ NESHAP ZZZZ Remote Sources Sources Sources Engine Type<sup>6</sup> 4SRB APCD Type<sup>7</sup> NSCR RG Fuel Type<sup>8</sup> 0.25 $H_2S$ (gr/100 scf) 95/1800 Operating bhp/rpm 8.976 BSFC (BTU/bhp-hr) ft<sup>3</sup>/hr 764.1 Hourly Fuel Throughput Annual Fuel Throughput MMft<sup>3</sup>/yr 6.694 (Must use 8,760 hrs/yr unless gal/yr emergency generator) Fuel Usage or Hours of Yes 🗵 No 🗆 Yes 🗆 No 🗆 Yes 🗆 No 🗆 Operation Metered Annual Hourly Hourly Annual Hourly Annual Calculation PTE РТЕ PTE PTE PTE РТЕ Pollutant<sup>10</sup> $(lb/hr)^{11}$ (lb/hr) 11 (lb/hr) 11 Methodology<sup>9</sup> (tons/year) (tons/year) (tons/year) MD 0.59 2.60 NO<sub>x</sub> MD 1.01 4.44 CO MD voc 0.11 0.48 AP $SO_2$ 0.01 0.01 AP $PM_{10}$ 0.02 0.07 MD Formaldehyde 0.06 0.25 AP Total HAPs 0.07 0.30 AP 99.78 437.02 GHG (CO<sub>2</sub>e)

1 Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.

2 Enter the Source Status using the following codes:

| NS  | Construction of New Source (installation) | ES | Existing Source  |
|-----|-------------------------------------------|----|------------------|
| MS  | Modification of Existing Source           | RS | Relocated Source |
| REM | Removal of Source                         |    |                  |

- 3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.
- 4 Enter the date that the engine was manufactured, modified or reconstructed.

5 Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintained to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

#### Provide a manufacturer's data sheet for all engines being registered.

| 6 | Enter the Engine Type designation(s) using the following codes: |                                                        |         |              |                  |               |       |                 |
|---|-----------------------------------------------------------------|--------------------------------------------------------|---------|--------------|------------------|---------------|-------|-----------------|
|   | 2SLB                                                            | Two Stroke Lean Burn                                   | 4SRI    | B Four St    | roke Rich Burn   |               |       |                 |
|   | 4SLB                                                            | Four Stroke Lean Burn                                  |         |              |                  |               |       |                 |
| 7 | Enter th                                                        | e Air Pollution Control Device (APCD) type designation | tion(s) | using the fo | ollowing codes:  |               |       |                 |
|   | A/F                                                             | Air/Fuel Ratio                                         |         | IR           | Ignition Retard  | 1             |       |                 |
|   | HEIS                                                            | High Energy Ignition System                            |         | SIPC         | Screw-in Preco   | ombustion Cha | mbers | 5               |
|   | PSC                                                             | Prestratified Charge                                   |         | LEC          | Low Emission     | Combustion    |       |                 |
|   | NSCR                                                            | Rich Burn & Non-Selective Catalytic Reduction          |         | OxCat        | Oxidation Cata   | ılyst         |       |                 |
|   | SCR                                                             | Lean Burn & Selective Catalytic Reduction              |         |              |                  |               |       |                 |
| 8 | Enter th                                                        | e Fuel Type using the following codes:                 |         |              |                  |               |       |                 |
|   | PQ                                                              | Pipeline Quality Natural Gas RO                        | G I     | Raw Natura   | l Gas /Productio | n Gas         | D     | Diesel          |
|   |                                                                 |                                                        |         |              |                  |               |       |                 |
| 9 | Enter t                                                         | he Potential Emissions Data Reference design           | ation u | ising the f  | ollowing code    | s. Attach all | refer | ence data used. |
|   | MD                                                              | Manufacturer's Data                                    | 1       | AP AF        | -42              |               |       |                 |
|   | GR                                                              | GRI-HAPCalc <sup>™</sup>                               | (       | OT Ot        | her              | (please list) |       |                 |

10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

### STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water . (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). **Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.** 

## The following information is **REQUIRED**:

- ⊠ Composition of the representative sample used for the simulation
- ☑ For each stream that contributes to flashing emissions:
  - $\boxtimes$  Temperature and pressure (inlet and outlet from separator(s))
  - ⊠ Simulation-predicted composition
  - ⊠ Molecular weight
  - $\boxtimes$  Flow rate
- ⊠ Resulting flash emission factor or flashing emissions from simulation
- ⊠ Working/breathing loss emissions from tanks and/or loading emissions if simulation is used to quantify those emissions

Additional information may be requested if necessary.

### **GENERAL INFORMATION**

| 1. Bulk Storage Area Name                                                                   | 2. Tank Name                                                                 |  |  |  |
|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|--|--|
| Rohrbaugh Station                                                                           | Pipeline Liquids AST                                                         |  |  |  |
| 3. Emission Unit ID number                                                                  | 4. Emission Point ID number                                                  |  |  |  |
| T-1                                                                                         | E02                                                                          |  |  |  |
| 5. Date Installed , Modified or Relocated (for existing tanks)                              | 6. Type of change:                                                           |  |  |  |
| 2011                                                                                        | $\boxtimes$ New construction $\square$ New stored material $\boxtimes$ Other |  |  |  |
| Was the tank manufactured after August 23, 2011?                                            | $\Box$ Relocation                                                            |  |  |  |
| $\Box$ Yes $\boxtimes$ No                                                                   |                                                                              |  |  |  |
| 7A. Description of Tank Modification (if applicable) Inclusion                              | of tank emissions from existing tank with new permit                         |  |  |  |
| application                                                                                 |                                                                              |  |  |  |
| 7B. Will more than one material be stored in this tank? If so, a                            | separate form must be completed for each material.                           |  |  |  |
| $\Box$ Yes $\boxtimes$ No                                                                   |                                                                              |  |  |  |
| 7C. Was USEPA Tanks simulation software utilized?                                           |                                                                              |  |  |  |
| □ Yes                                                                                       |                                                                              |  |  |  |
| If Yes, please provide the appropriate documentation and items 8-42 below are not required. |                                                                              |  |  |  |

### TANK INFORMATION

| 8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height. |                                               |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--|--|--|
| 50 bbl / 2,100 gal                                                                                                    |                                               |  |  |  |
| 9A. Tank Internal Diameter (ft.) 8.45                                                                                 | 9B. Tank Internal Height (ft.) 5              |  |  |  |
| 10A. Maximum Liquid Height (ft.) 5                                                                                    | 10B. Average Liquid Height (ft.) 2.5          |  |  |  |
| 11A. Maximum Vapor Space Height (ft.) 5                                                                               | 11B. Average Vapor Space Height (ft.) 2.5     |  |  |  |
| 12. Nominal Capacity (specify barrels or gallons). This is also                                                       | known as "working volume". 50 bbl / 2,100 gal |  |  |  |
| 13A. Maximum annual throughput (gal/yr) 2,100                                                                         | 13B. Maximum daily throughput (gal/day) 5.75  |  |  |  |
| 14. Number of tank turnovers per year 1                                                                               | 15. Maximum tank fill rate (gal/min) 0.10     |  |  |  |
| 16. Tank fill method $\Box$ Submerged $\boxtimes$ Splash                                                              | Bottom Loading                                |  |  |  |

| 17. Is the tank system a variable vapor space system? $\Box$ Yes $\boxtimes$ No                                                                           |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| If yes, (A) What is the volume expansion capacity of the system (gal)?                                                                                    |  |  |  |  |  |  |
| (B) What are the number of transfers into the system per year?                                                                                            |  |  |  |  |  |  |
| 18. Type of tank (check all that apply):                                                                                                                  |  |  |  |  |  |  |
| $\boxtimes$ Fixed Roof $\boxtimes$ vertical $\square$ horizontal $\boxtimes$ flat roof $\square$ cone roof $\square$ dome roof $\square$ other (describe) |  |  |  |  |  |  |
|                                                                                                                                                           |  |  |  |  |  |  |
| $\Box$ External Floating Roof $\Box$ pontoon roof $\Box$ double deck roof                                                                                 |  |  |  |  |  |  |
| Domed External (or Covered) Floating Roof                                                                                                                 |  |  |  |  |  |  |
| $\Box$ Internal Floating Roof $\Box$ vertical column support $\boxtimes$ self-supporting                                                                  |  |  |  |  |  |  |
| $\Box$ Variable Vapor Space $\Box$ lifter roof $\Box$ diaphragm                                                                                           |  |  |  |  |  |  |
| $\Box$ Pressurized $\Box$ spherical $\boxtimes$ cylindrical                                                                                               |  |  |  |  |  |  |
| □ Other (describe)                                                                                                                                        |  |  |  |  |  |  |
|                                                                                                                                                           |  |  |  |  |  |  |
|                                                                                                                                                           |  |  |  |  |  |  |

### PRESSURE/VACUUM CONTROL DATA

| VOCs                                                                    | 0.001                                                                                                             | 0.001      | 0.009             | 0.038                      | 0.009        | 0.038  | Promax                         |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------|-------------------|----------------------------|--------------|--------|--------------------------------|
|                                                                         | lb/hr tpy lb/hr tpy lb/hr tpy                                                                                     |            |                   |                            |              |        |                                |
| Emissions Loss                                                          |                                                                                                                   |            |                   |                            |              |        |                                |
| Material Name                                                           | Flashing                                                                                                          | g Loss     | Working/I         | Breathing Loss             | Total        |        | Estimation Method <sup>1</sup> |
| 20. Expected Emission Ra                                                | te (submit                                                                                                        | Test Data  | or Calculations h | ere or elsewhere in        | the applicat | tion). |                                |
|                                                                         |                                                                                                                   |            |                   |                            |              |        |                                |
| <sup>1</sup> Complete appropriate Air                                   | Pollution                                                                                                         | Control D  | Device Sheet      |                            |              |        |                                |
| □ Thief Hatch Weighted                                                  | □ Yes □                                                                                                           | No         |                   |                            |              |        |                                |
| Vacuum Setting                                                          | I                                                                                                                 | Pressure S | etting            |                            |              |        |                                |
| Emergency Relief Valv                                                   | e (psig)                                                                                                          |            |                   |                            |              |        |                                |
| -0.03 Vacuum Setting                                                    | 0.03 Pre                                                                                                          | essure Set | ting              |                            |              |        |                                |
| $\Box \text{ Conservation Vent (psig)} \qquad \Box \text{ Condenser}^1$ |                                                                                                                   |            |                   |                            |              |        |                                |
| $\Box$ Vent to Vapor Combus                                             | □ Vent to Vapor Combustion Device <sup>1</sup> (vapor combustors, flares, thermal oxidizers, enclosed combustors) |            |                   |                            |              |        |                                |
| □ Inert Gas Blanket of                                                  |                                                                                                                   |            | □ Carb            | on Adsorption <sup>1</sup> |              |        |                                |
| $\Box$ Does Not Apply                                                   |                                                                                                                   |            |                   |                            |              |        |                                |
| 19. Check as many as apply:                                             |                                                                                                                   |            |                   |                            |              |        |                                |

<sup>1</sup> EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.* 

| TANK CONSTRUCTION AND OPERATION INFORMATION                                                                                       |                                                 |                                                   |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------|--|--|--|--|
| 21. Tank Shell Construction:                                                                                                      |                                                 |                                                   |  |  |  |  |
| $\Box$ Riveted $\Box$ Gunite lined $\Box$ Epoxy-coated rivets $\boxtimes$ Other (describe) Welded Seams                           |                                                 |                                                   |  |  |  |  |
| 21A. Shell Color: Green                                                                                                           | 21B. Roof Color: Green                          | 21C. Year Last Painted: 2014                      |  |  |  |  |
| 22. Shell Condition (if metal and unlined):                                                                                       |                                                 |                                                   |  |  |  |  |
| $\boxtimes$ No Rust $\square$ Light Rust $\square$ Dense                                                                          | Rust 🛛 Not applicable                           |                                                   |  |  |  |  |
| 22A. Is the tank heated? $\Box$ Yes $\boxtimes$ No 22B. If yes, operating temperature: 22C. If yes, how is heat provided to tank? |                                                 |                                                   |  |  |  |  |
|                                                                                                                                   |                                                 |                                                   |  |  |  |  |
| 23. Operating Pressure Range (psig):                                                                                              |                                                 |                                                   |  |  |  |  |
| Must be listed for tanks using VRUs wi                                                                                            | th closed vent system.                          |                                                   |  |  |  |  |
| 24. Is the tank a <b>Vertical Fixed Roof Tank</b> ?                                                                               | 24A. If yes, for dome roof provide radius (ft): | 24B. If yes, for cone roof, provide slop (ft/ft): |  |  |  |  |
| $\boxtimes$ Yes $\square$ No                                                                                                      |                                                 |                                                   |  |  |  |  |
| 25. Complete item 25 for Floating Roof Tanks                                                                                      | s $\Box$ Does not apply $\boxtimes$             |                                                   |  |  |  |  |
| 25A. Year Internal Floaters Installed:                                                                                            | 25A. Year Internal Floaters Installed:          |                                                   |  |  |  |  |
| 25B. Primary Seal Type (check one):                                                                                               | allic (mechanical) shoe seal $\Box$ Liquid mo   | ounted resilient seal                             |  |  |  |  |
| 🗆 🗆 Vap                                                                                                                           | oor mounted resilient seal $\Box$ Other (der    | scribe):                                          |  |  |  |  |
| 25C. Is the Floating Roof equipped with a seco                                                                                    | ndary seal? 🗆 Yes 🛛 No                          |                                                   |  |  |  |  |
| 25D. If yes, how is the secondary seal mounted                                                                                    | ? (check one) $\Box$ Shoe $\Box$ Rim $\Box$ Ot  | her (describe):                                   |  |  |  |  |
| 25E. Is the floating roof equipped with a weath                                                                                   | er shield? $\Box$ Yes $\Box$ No                 |                                                   |  |  |  |  |

| 25F. Describe deck fittings:                    |                      |                                 |                                                |                                   |                           |                                                      |
|-------------------------------------------------|----------------------|---------------------------------|------------------------------------------------|-----------------------------------|---------------------------|------------------------------------------------------|
| 26. Complete the following section              | n for <b>Interna</b> | l Floating Roof Tanks           | $\boxtimes$                                    | Does not apply                    | y                         |                                                      |
| 26A. Deck Type: 🗌 Bolted                        | □ W                  | /elded                          | 26B. 1                                         | For bolted decks,                 | provide decl              | k construction:                                      |
| 26C. Deck seam. Continuous shee                 | t constructio        | n:                              |                                                |                                   |                           |                                                      |
| $\Box$ 5 ft. wide $\Box$ 6 ft. wide $\Box$      | ☐ 7 ft. wid          | e $\Box$ 5 x 7.5 ft. wide       | □ 5 x                                          | 12 ft. wide $\Box$                | other (de                 | scribe)                                              |
| 26D. Deck seam length (ft.):                    | 26E. Area            | of deck (ft <sup>2</sup> ):     |                                                | For column suppo<br># of columns: | orted                     | 26G. For column supported tanks, diameter of column: |
|                                                 |                      |                                 |                                                |                                   |                           |                                                      |
| 27. Closed Vent System with VRU                 | J? □ Yes             | ⊠ No                            | l                                              |                                   |                           |                                                      |
| 28. Closed Vent System with Enclo               | osed Combu           | stor? 🗆 Yes 🗵 No                |                                                |                                   |                           |                                                      |
| SITE INFORMATION                                |                      |                                 |                                                |                                   |                           |                                                      |
| 29. Provide the city and state on w             |                      |                                 |                                                |                                   |                           |                                                      |
| 30. Daily Avg. Ambient Temperate                |                      |                                 |                                                |                                   |                           | rature (°F): 61.15                                   |
| 32. Annual Avg. Minimum Tempe                   |                      |                                 |                                                | vg. Wind Speed                    |                           |                                                      |
| 34. Annual Avg. Solar Insulation F              | Factor (BTU/         | 'ft <sup>2</sup> -day): 1,193.7 | 35. A                                          | mospheric Press                   | ure (psia): 1             | 3.73                                                 |
| LIQUID INFORMATION                              |                      |                                 |                                                |                                   |                           |                                                      |
| 36. Avg. daily temperature range o              | f bulk               | 36A. Minimum (°F):              | 36.97                                          |                                   | 36B. Maxi                 | mum (°F): 61.15                                      |
| liquid (°F): 49.07                              |                      |                                 |                                                |                                   |                           |                                                      |
| 37. Avg. operating pressure range               | of tank              | 37A. Minimum (psig): -0.03      |                                                |                                   | 37B. Maximum (psig): 0.03 |                                                      |
| (psig): 0.0                                     |                      |                                 |                                                |                                   |                           |                                                      |
| 38A. Minimum liquid surface temp                |                      |                                 |                                                | Corresponding va                  |                           | -                                                    |
| 39A. Avg. liquid surface temperatu              |                      |                                 | 39B. Corresponding vapor pressure (psia): 6.77 |                                   |                           |                                                      |
| 40A. Maximum liquid surface tem                 |                      |                                 | 40B. Corresponding vapor pressure (psia): 7.19 |                                   |                           |                                                      |
| 41. Provide the following for each CALCULATIONS | liquid or gas        | to be stored in the tank.       | Add add                                        | litional pages if r               | necessary. Sl             | EE PROMAX MODEL IN                                   |
| 41A. Material name and compositi                | on:                  |                                 |                                                |                                   |                           |                                                      |
| 41B. CAS number:                                |                      |                                 |                                                |                                   |                           |                                                      |
| 41C. Liquid density (lb/gal):                   |                      |                                 |                                                |                                   |                           |                                                      |
| 41D. Liquid molecular weight (lb/l              | lb-mole):            |                                 |                                                |                                   |                           |                                                      |
| 41E. Vapor molecular weight (lb/ll              | b-mole):             |                                 |                                                |                                   |                           |                                                      |
| 41F. Maximum true vapor pressure                | e (psia):            |                                 |                                                |                                   |                           |                                                      |
| 41G. Maximum Reid vapor pressu                  | ıre (psia):          |                                 |                                                |                                   |                           |                                                      |
| 41H. Months Storage per year.                   |                      |                                 |                                                |                                   |                           |                                                      |
| From: To:                                       |                      |                                 |                                                |                                   |                           |                                                      |
| 42. Final maximum gauge pressure                | and                  |                                 |                                                |                                   |                           |                                                      |
| temperature prior to transfer into ta           | nk used as           |                                 |                                                |                                   |                           |                                                      |
| inputs into flashing emission calcul            | ations.              |                                 |                                                |                                   |                           |                                                      |

## TANKER TRUCK LOADING DATA SHEET

Complete this data sheet for each new or modified bulk liquid transfer area or loading rack at the facility. This is to be used for bulk liquid transfer operations to tanker trucks. Use extra pages if necessary.

### **Truck Loadout Collection Efficiencies**

The following applicable capture efficiencies of a truck loadout are allowed:

- For tanker trucks passing the MACT level annual leak test 99.2%
- For tanker trucks passing the NSPS level annual leak test 98.7%
- For tanker trucks not passing one of the annual leak tests listed above 70%

Compliance with this requirement shall be demonstrated by keeping records of the applicable MACT or NSPS Annual Leak Test certification for *every* truck and railcar loaded/unloaded. This requirement can be satisfied if the trucking company provided certification that its entire fleet was compliant. This certification must be submitted in writing to the Director of the DAQ. These additional requirements must be noted in the Registration Application and will be noted on the issued G35-C Registration.

| Emission Unit ID#: TL-                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                 | Emission Point |               | : E03          |          | Year Installed               | lled/Modified: 2011     |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------|----------------|----------|------------------------------|-------------------------|--|
| Emission Unit Descripti                                                                                                                                                                                                                                                                                                               | on: Emissions                                                                                                                                     | from Truc      | k Loading a   | re vented to A | tmosph   | ere                          |                         |  |
|                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                   |                | Loading       | Area Data      |          |                              |                         |  |
| Number of Pumps: 1 / C                                                                                                                                                                                                                                                                                                                | n Truck                                                                                                                                           | Numbe          | er of Liquids | Loaded: 1      |          | Max number of<br>(1) time: 1 | f trucks loading at one |  |
| Are tanker trucks pressu<br>If Yes, Please describe:                                                                                                                                                                                                                                                                                  | Are tanker trucks pressure tested for leaks at this or any other location? $\Box$ Yes $\Box$ No $\boxtimes$ Not Required If Yes, Please describe: |                |               |                |          |                              | Not Required            |  |
| Provide description of c                                                                                                                                                                                                                                                                                                              | Provide description of closed vent system and any bypasses.                                                                                       |                |               |                |          |                              |                         |  |
| <ul> <li>Are any of the following truck loadout systems utilized?</li> <li>Closed System to tanker truck passing a MACT level annual leak test?</li> <li>Closed System to tanker truck passing a NSPS level annual leak test?</li> <li>Closed System to tanker truck not passing an annual leak test and has vapor return?</li> </ul> |                                                                                                                                                   |                |               |                |          | nala)                        |                         |  |
|                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                 | •              | U             | ,              |          | er point as a wl             | ,                       |  |
| Time                                                                                                                                                                                                                                                                                                                                  | Jan – M                                                                                                                                           | ar             | Apr           | - Jun          | J        | ul – Sept                    | Oct - Dec               |  |
| Hours/day                                                                                                                                                                                                                                                                                                                             | 24                                                                                                                                                |                | 2             | .4             |          | 24                           | 24                      |  |
| Days/week                                                                                                                                                                                                                                                                                                                             | 7                                                                                                                                                 |                |               | 7              |          | 7                            | 7                       |  |
|                                                                                                                                                                                                                                                                                                                                       | Bu                                                                                                                                                | lk Liquid      | Data (use e   | xtra pages a   | s necess | ary)                         |                         |  |
| Liquid Name                                                                                                                                                                                                                                                                                                                           | Р                                                                                                                                                 | peline Li      | quids         |                |          |                              |                         |  |
| Max. Daily Throughput<br>(1000 gal/day)                                                                                                                                                                                                                                                                                               |                                                                                                                                                   | 0.01           |               |                |          |                              |                         |  |
| Max. Annual Throughpu<br>(1000 gal/yr)                                                                                                                                                                                                                                                                                                | ıt                                                                                                                                                | 2.1            |               |                |          |                              |                         |  |
| Loading Method <sup>1</sup>                                                                                                                                                                                                                                                                                                           |                                                                                                                                                   | SUB            |               |                |          |                              |                         |  |
| Max. Fill Rate (gal/min)                                                                                                                                                                                                                                                                                                              | )                                                                                                                                                 | 0.01           |               |                |          |                              |                         |  |
| Average Fill Time<br>(min/loading)                                                                                                                                                                                                                                                                                                    |                                                                                                                                                   | 60             |               |                |          |                              |                         |  |
| Max. Bulk Liquid<br>Temperature (°F)                                                                                                                                                                                                                                                                                                  |                                                                                                                                                   | 49.1           |               |                |          |                              |                         |  |

| True Vapor Pressure <sup>2</sup>            |                     | 4.89 |  |
|---------------------------------------------|---------------------|------|--|
| Cargo Vessel Condition <sup>3</sup>         |                     | С    |  |
| Control Equipment or<br>Method <sup>4</sup> |                     | None |  |
| Max. Collection Efficiency<br>(%)           |                     | 0    |  |
| Max. Contro<br>(%)                          | l Efficiency        | 0    |  |
| Max.VOC                                     | Loading<br>(lb/hr)  | 0.01 |  |
| Emission<br>Rate                            | Annual<br>(ton/yr)  | 0.01 |  |
| Max.HAP                                     | Loading<br>(lb/hr)  | 0.00 |  |
| Emission<br>Rate Annual<br>(ton/yr)         |                     | 0.00 |  |
| Estimation M                                | 1ethod <sup>5</sup> | ТМ   |  |

| 1 | BF      | Bottom Fill                 | SP         | Splash Fi   | 11         |           | SUB        | Submerged Fill        |
|---|---------|-----------------------------|------------|-------------|------------|-----------|------------|-----------------------|
| 2 | At maxi | mum bulk liquid temperature |            | -           |            |           |            | -                     |
| 3 | В       | Ballasted Vessel            | С          | Cleaned     |            | U         | Uncleane   | d (dedicated service) |
|   | 0       | Other (describe)            |            |             |            |           |            |                       |
| 4 | List as | many as apply (complete and | submit ap  | propriate A | Air Pollut | ion Contr | ol Device  | Sheets)               |
|   | CA      | Carbon Adsorption           |            | VB          | Dedicate   | ed Vapor  | Balance (o | closed system)        |
|   | ECD     | Enclosed Combustion Device  | ce         | F           | Flare      |           |            |                       |
|   | ТО      | Thermal Oxidization or Inc  | ineration  |             |            |           |            |                       |
| 5 | EPA     | EPA Emission Factor in AP   | -42        |             |            | MB        | Materia    | Balance               |
|   |         |                             |            |             |            |           |            |                       |
|   | TM      | Test Measurement based up   | on test da | ta submitt  | tal        | 0         | Other (de  | escribe)              |
|   |         |                             |            |             |            |           |            |                       |

## ATTACHMENT M

## AIR POLLUTION CONTROL DEVICE

# **Rule 13 Permit Application**

Rohrbaugh Station Camden, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA

January 2017

## Attachment M Air Pollution Control Device Sheet

(Non-Selective Catalytic Reduction)

Control Device ID No. (C1):

### **Equipment Information**

| 1.  | Manufacturer: DCL America<br>Model No. DC44-3                                                                                                                                                                                                                           | <ol> <li>Control Device Name: C1<br/>Type: Non-Selective Catalytic Reduction (NSCR)</li> </ol> |  |  |  |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 3.  | . Provide diagram(s) of unit describing capture system with duct arrangement and size of duct, air volume, capacity, horsepower of movers. If applicable, state hood face velocity and hood collection efficiency.                                                      |                                                                                                |  |  |  |  |  |
| 4.  | On a separate sheet(s) supply all data and calculation                                                                                                                                                                                                                  | ns used in selecting or designing this collection device.                                      |  |  |  |  |  |
| 5.  | Provide a scale diagram of the control device showing                                                                                                                                                                                                                   | g internal construction                                                                        |  |  |  |  |  |
| 6.  | Submit a schematic and diagram with dimensions and                                                                                                                                                                                                                      | d flow rates.                                                                                  |  |  |  |  |  |
| 7.  | Guaranteed minimum collection efficiency for each pollutant collected: The catalyst manufacturer guarantees the unit will meet the limits defined in 40 CFR 1048.101(c) for $NO_X$ and CO                                                                               |                                                                                                |  |  |  |  |  |
| 8.  | Attached efficiency curve and/or other efficiency infor                                                                                                                                                                                                                 | mation. NA                                                                                     |  |  |  |  |  |
| 9.  | Design inlet volume: 153.3 SCFM                                                                                                                                                                                                                                         | 10. Capacity: NA                                                                               |  |  |  |  |  |
| 11. | Indicate the liquid flow rate and describe equipment p                                                                                                                                                                                                                  | provided to measure pressure drop and flow rate, if any.                                       |  |  |  |  |  |
|     | No liquid flow associated with this catalytic converter and although pressure drop may be measured periodically, the inlet and outlet temperature will be measured continuously by this unit in order to assess performance with manufacturer's operating requirements. |                                                                                                |  |  |  |  |  |
| 12. | 2. Attach any additional data including auxiliary equipment and operation details to thoroughly evaluate the control equipment. NA                                                                                                                                      |                                                                                                |  |  |  |  |  |
| 13. | 3. Description of method of handling the collected material(s) for reuse of disposal. NA                                                                                                                                                                                |                                                                                                |  |  |  |  |  |
|     | Gas Stream C                                                                                                                                                                                                                                                            | haracteristics                                                                                 |  |  |  |  |  |
| 14. | Are particulates present?                                                                                                                                                                                                                                               | es ⊠ No<br>es ⊠ No<br>es ⊠ No                                                                  |  |  |  |  |  |

| Are metals present?                   |         |         |
|---------------------------------------|---------|---------|
| 15. Inlet Emission stream parameters: | Maximum | Typical |
| Pressure (mmHg):                      |         |         |
| Heat Content (BTU/scf):               |         |         |
| Oxygen Content (%):                   |         |         |
| Moisture Content (%):                 |         |         |
| Relative Humidity (%):                |         |         |

| 16. | Type of pollutant(s) of Particulate (type):            |                    | ] SO <sub>x</sub> | $\Box$ Odor<br>$\boxtimes$ Other NO <sub>x</sub> | , CO                                    |                |                 |
|-----|--------------------------------------------------------|--------------------|-------------------|--------------------------------------------------|-----------------------------------------|----------------|-----------------|
| 17. | Inlet gas velocity:                                    | 28.67              | ft/sec            | 18. Pollutant                                    | specific gravity:                       | 0.9667 - CO    |                 |
| 19. | Gas flow into the coll<br>453 ACFM @                   |                    | 4.7 PSIA          | 20. Gas strea                                    | m temperature:<br>Inlet:<br>Outlet:     | 1100<br>1200   |                 |
| 21. | Gas flow rate:<br>Design Maximum:<br>Average Expected: | 453<br>338         | ACFM<br>ACFM      | 22. Particulat                                   | e Grain Loading<br>Inlet: NA<br>Outlet: | -              |                 |
| 23. | Emission rate of eacl                                  | h pollutant (speci | fy) into and out  | of collector:                                    |                                         |                |                 |
|     | Pollutant                                              | IN Poll            | utant             | Emission                                         | OUT Po                                  | llutant        | Control         |
|     |                                                        | lb/hr              | grains/acf        | Capture<br>Efficiency<br>%                       | lb/hr                                   | grains/acf     | Efficiency<br>% |
|     | A NO <sub>X</sub>                                      | 2.884              | -                 | 100                                              | 0.591                                   | -              | 79.5            |
|     | B CO                                                   | 2.886              | -                 | 100                                              | 1.013                                   | -              | 64.9            |
|     | С                                                      |                    |                   |                                                  |                                         |                |                 |
|     | D                                                      |                    |                   |                                                  |                                         |                |                 |
|     | E                                                      |                    |                   |                                                  |                                         |                |                 |
| 24. | Dimensions of stack:                                   | Heigh              | nt 8.0            | ft.                                              | Diameter                                | 0.25           | ft.             |
| 25. | Supply a curve show rating of collector. No            |                    |                   |                                                  | volume from 25                          | 5 to 130 perce | nt of design    |

### Particulate Distribution

| 26. Complete the table:          | Particle Size Distribution at Inlet<br>to Collector | Fraction Efficiency of Collector |
|----------------------------------|-----------------------------------------------------|----------------------------------|
| Particulate Size Range (microns) | Weight % for Size Range                             | Weight % for Size Range          |
| 0 – 2                            |                                                     |                                  |
| 2-4                              |                                                     |                                  |
| 4 - 6                            |                                                     |                                  |
| 6 – 8                            |                                                     |                                  |
| 8 – 10                           |                                                     |                                  |
| 10 – 12                          |                                                     |                                  |
| 12 – 16                          |                                                     |                                  |
| 16 – 20                          |                                                     |                                  |
| 20 - 30                          |                                                     |                                  |
| 30 - 40                          |                                                     |                                  |
| 40 - 50                          |                                                     |                                  |
| 50 - 60                          |                                                     |                                  |
| 60 - 70                          |                                                     |                                  |
| 70 - 80                          |                                                     |                                  |
| 80 - 90                          |                                                     |                                  |
| 90 - 100                         |                                                     |                                  |
| >100                             |                                                     |                                  |

27. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification): NA

28. Describe the collection material disposal system: NA

29. Have you included *Other Collectores Control Device* in the Emissions Points Data Summary Sheet? Yes C1

| Please propose m                                        | g parameters. Please propose                                                                                                                                                                                                   | and Testing<br>porting in order to demonstrate compliance with the<br>testing in order to demonstrate compliance with the                                                                                                                                                                                 |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONITORING:<br>Hours of operation and                   | malfunctions will be monitored.                                                                                                                                                                                                | RECORDKEEPING:<br>All maintenance records will be maintained and made<br>available upon request.                                                                                                                                                                                                          |
| results for the unit sha                                | s of the initial performance test<br>Il be submitted to the EPA within<br>n of such test. In addition, any<br>shall be reported.                                                                                               | TESTING:<br>Initial performance demonstration shall be completed.<br>Testing shall consist of 3 one hour runs conducted<br>within 10% of 100% peak load for the unit.<br>Initial compliance has been achieved once<br>demonstration shows emission limits found within<br>40CFR1048.101(c) are being met. |
| MONITORING:<br>RECORDKEEPING:<br>REPORTING:<br>TESTING: | monitored in order to demons<br>equipment or air control device.<br>Please describe the proposed rec<br>Please describe any proposed<br>pollution control device.<br>Please describe any proposed<br>pollution control device. | becess parameters and ranges that are proposed to be<br>strate compliance with the operation of this process<br>cordkeeping that will accompany the monitoring.<br>emissions testing for this process equipment on air<br>emissions testing for this process equipment on air                             |
| 31. Manufacturer's Gua                                  | aranteed Control Efficiency for eac                                                                                                                                                                                            | h air pollutant. 79.5% NO <sub>X</sub>                                                                                                                                                                                                                                                                    |
| 32. Manufacturer's Gua                                  | aranteed Control Efficiency for each                                                                                                                                                                                           | h air pollutant. 64.9% CO                                                                                                                                                                                                                                                                                 |
|                                                         | ing ranges and maintenance proce                                                                                                                                                                                               | edures required by Manufacturer to maintain warranty.                                                                                                                                                                                                                                                     |
| NA                                                      |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                           |

## ATTACHMENT N

## SUPPORTING EMISSIONS CALCULATIONS

# **Rule 13 Permit Application**

Rohrbaugh Station Camden, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA

January 2017

#### Table 1. Annual Potential To Emit (PTE) Summary CNX Gas Company - Rohrbaugh Compressor Station

#### Criteria Pollutants

| Proposed Facility Wide PTE - Criteria | Pollutants |       | Gineria | ronutants |       |       |       |         |
|---------------------------------------|------------|-------|---------|-----------|-------|-------|-------|---------|
| Source                                | PM         | PM10  | PM2.5   | SO2       | NOx   | со    | VOC   | CO2e    |
| Engines (ton/yr)                      | 0.072      | 0.072 | 0.072   | 0.002     | 2.596 | 4.440 | 0.477 | 437.022 |
| Tanks (ton/yr)                        | -          | -     | -       | -         | -     | -     | 0.038 | -       |
| Truck Loading (ton/yr)                | -          | -     | -       | -         | -     | -     | 0.001 | -       |
| Compressor Blowdowns (ton/yr)         |            |       |         |           |       |       | 0.231 |         |
| Fugitives (ton/yr)                    | -          | -     | -       | -         | -     | -     | 1.651 | 38.389  |
| Total Emissions (ton/yr)              | 0.072      | 0.072 | 0.072   | 0.002     | 2.596 | 4.440 | 2.399 | 475.411 |
| Total Emissions (lb/hr)               | 0.017      | 0.017 | 0.017   | 0.001     | 0.593 | 1.014 | 0.548 | 108.541 |

#### Proposed Facility Wide PTE - HAPs

#### Hazardous Air Pollutants (HAPs)

| Source                        | Acetaldehyde | Benzene | Toluene | Ethylbenzene | Xylene | n-Hexane | Formaldehyde | Total HAPs |
|-------------------------------|--------------|---------|---------|--------------|--------|----------|--------------|------------|
| Engines (ton/yr)              | 0.0104       | 0.0059  | 0.0021  | 0.0001       | 0.0007 | -        | 0.248        | 0.292      |
| Tanks (ton/yr)                | -            | -       | -       | -            | -      | -        | -            | -          |
| Truck Loading (ton/yr)        | -            | -       | -       | -            | -      | -        | -            | -          |
| Compressor Blowdowns (ton/yr) | -            | -       | -       | -            | -      | -        | -            | -          |
| Fugitives (ton/yr)            | -            | -       | -       | -            | -      | -        | -            | -          |
| Total Emissions (ton/yr)      | 0.010        | 0.006   | 0.002   | 0.000        | 0.001  | 0.000    | 0.248        | 0.292      |
| Total Emissions (lb/hr)       | 0.002        | 0.001   | 0.000   | 0.000        | 0.000  | 0.000    | 0.057        | 0.067      |

|                                  | Maximum Hour                        | ly Emi | issions                |     | Annual Err                          | nissio | ns                   |     |
|----------------------------------|-------------------------------------|--------|------------------------|-----|-------------------------------------|--------|----------------------|-----|
| Pollutant                        | Emission Factor                     | ·      | PTE  <br>Engi<br>(lb/h | ne  | Emission Factor                     |        | PTE per E<br>(tons/y |     |
| Criteria Pollutants              |                                     |        |                        |     |                                     |        |                      |     |
| PM/PM10/PM2.5**                  | 1.94E-02 lb/MMBtu                   | (1)    | 0.017                  | (a) | 1.94E-02 lb/MMBtu                   | (1)    | 0.07                 | (c) |
| SO <sub>2</sub>                  | 0.25 grains S / 100 ft <sup>3</sup> | (2)    | 0.001                  | (e) | 0.25 grains S / 100 ft <sup>3</sup> | (2)    | 0.002                | (f) |
| NOx                              | 2.83E+00 g/hp-hr                    | (3)    | 0.59                   | (b) | 2.83E+00 g/hp-hr                    | (3)    | 2.60                 | (d) |
| CO                               | 4.84E+00 g/hp-hr                    | (3)    | 1.01                   | (b) | 4.84E+00 g/hp-hr                    | (3)    | 4.44                 | (d) |
| VOC                              | 5.20E-01 g/hp-hr                    | (3)    | 0.11                   | (b) | 5.20E-01 g/hp-hr                    | (3)    | 0.48                 | (d) |
| Hazardous Air Pollutants         |                                     |        |                        |     |                                     |        |                      |     |
| 1,1,2,2-Tetrachloroethane        | 2.53E-05 lb/MMBtu                   | (1)    | 0.000                  | (a) | 2.53E-05 lb/MMBtu                   | (1)    | 0.000                | (c) |
| 1,1,2-Trichloroethane            | 1.53E-05 lb/MMBtu                   | (1)    | 0.000                  | (a) | 1.53E-05 lb/MMBtu                   | (1)    | 0.000                | (c) |
| 1,3-Butadiene                    | 6.63E-04 lb/MMBtu                   | (1)    | 0.001                  | (a) | 6.63E-04 lb/MMBtu                   | (1)    | 0.002                | (c) |
| 1,3-Dichloropropene              | 1.27E-05 lb/MMBtu                   | (1)    | 0.000                  | (a) | 1.27E-05 lb/MMBtu                   | (1)    | 0.000                | (c) |
| Acetaldehyde                     | 2.79E-03 lb/MMBtu                   | (1)    | 0.002                  | (a) | 2.79E-03 lb/MMBtu                   | (1)    | 0.010                | (c) |
| Acrolein                         | 2.63E-03 lb/MMBtu                   | (1)    | 0.002                  | (a) | 2.63E-03 lb/MMBtu                   | (1)    | 0.010                | (c) |
| Benzene                          | 1.58E-03 lb/MMBtu                   | (1)    | 0.001                  | (a) | 1.58E-03 lb/MMBtu                   | (1)    | 0.006                | (c) |
| Carbon Tetrachloride             | 1.77E-05 lb/MMBtu                   | (1)    | 0.000                  | (a) | 1.77E-05 lb/MMBtu                   | (1)    | 0.000                | (c) |
| Chlorobenzene                    | 1.29E-05 lb/MMBtu                   | (1)    | 0.000                  | (a) | 1.29E-05 lb/MMBtu                   | (1)    | 0.000                | (c) |
| Chloroform                       | 1.37E-05 lb/MMBtu                   | (1)    | 0.000                  | (a) | 1.37E-05 lb/MMBtu                   | (1)    | 0.000                | (c) |
| Ethylbenzene                     | 2.48E-05 lb/MMBtu                   | (1)    | 0.000                  | (a) | 2.48E-05 lb/MMBtu                   | (1)    | 0.000                | (c) |
| Ethylene Dibromide               | 2.13E-05 lb/MMBtu                   | (1)    | 0.000                  | (a) | 2.13E-05 lb/MMBtu                   | (1)    | 0.000                | (c) |
| Formaldehyde                     | 2.70E-01 g/hp-hr                    | (3)    | 0.057                  | (b) | 2.70E-01 g/hp-hr                    | (3)    | 0.248                | (d) |
| Methanol                         | 3.06E-03 lb/MMBtu                   | (1)    | 0.003                  | (a) | 3.06E-03 lb/MMBtu                   | (1)    | 0.011                | (c) |
| Methylene Chloride               | 4.12E-05 lb/MMBtu                   | (1)    | 0.000                  | (a) | 4.12E-05 lb/MMBtu                   | (1)    | 0.000                | (c) |
| Naphthalene                      | 9.71E-05 lb/MMBtu                   | (1)    | 0.000                  | (a) | 9.71E-05 lb/MMBtu                   | (1)    | 0.000                | (c) |
| PAH (POM)                        | 1.41E-04 lb/MMBtu                   | (1)    | 0.000                  | (a) | 1.41E-04 lb/MMBtu                   | (1)    | 0.001                | (c) |
| Styrene                          | 1.19E-05 lb/MMBtu                   | (1)    | 0.000                  | (a) | 1.19E-05 lb/MMBtu                   | (1)    | 0.000                | (c) |
| Toluene                          | 5.58E-04 lb/MMBtu                   | (1)    | 0.000                  | (a) | 5.58E-04 lb/MMBtu                   | (1)    | 0.002                | (c) |
| Vinyl Chloride                   | 7.16E-06 lb/MMBtu                   | (1)    | 0.000                  | (a) | 7.16E-06 lb/MMBtu                   | (1)    | 0.000                | (c) |
| Xylenes                          | 1.95E-04 lb/MMBtu                   | (1)    | 0.000                  | (a) | 1.95E-04 lb/MMBtu                   | (1)    | 0.001                | (c) |
| Total HAP                        |                                     |        | 0.067                  |     |                                     |        | 0.292                |     |
| Greenhouse Gas Emissions         |                                     |        |                        |     |                                     |        |                      |     |
| CO <sub>2</sub>                  | 116.89 lb/MMBtu                     | (4)    | 99.67                  | (a) | 116.89 lb/MMBtu                     | (4)    | 436.57               | (c) |
| CH <sub>4</sub>                  | 2.2E-03 lb/MMBtu                    | (4)    | 0.00                   | (a) | 2.2E-03 lb/MMBtu                    | (4)    | 0.01                 | (c) |
| N <sub>2</sub> O                 | 2.2E-04 lb/MMBtu                    | (4)    | 0.00                   | (a) | 2.2E-04 lb/MMBtu                    | (4)    | 0.00                 | (c) |
| CO <sub>2</sub> e <sup>(g)</sup> |                                     |        | 99.78                  |     |                                     |        | 437.02               |     |

PM emission factor includes condensables and filterables

#### Calculations:

Maximum Hourly Emissions - If emission factor note 1 or 4 is used, use calculation (a). If emission factor note 3 is used, use calculation (b).

(a) Maximum Hourly Emissions (lb/hr) = Emission factor (lb/MMBtu) \* (1MMBtu/1000000 Btu) \* Engine Power Output (hp) \* Average BSFC (Btu/hp-hr)

(b) Maximum Hourly Emissions (lb/hr) = Emission factor (g/hp-hr) \* Engine Power Output (hp) \* (1 lb/453.6 g)

Annual Emissions - If emission factor note 1 or 4 is used, use calculation (c). If emission factor note 3 is used, use calculation (d).

(c) Annual emissions (tons/yr) = Emission factor (lb/MMBtu) \* (1MMBtu/1000000Btu) \* Engine Power Output (hp) \* Average BSFC (Btu/hp-hr) \* Annual Hours of operation (hr/yr) \* (1ton/2000lbs)

(d) Annual emissions (tons/yr) = Emission factor (g/hp-hr) \* Engine Power Output (hp) \* (1 lb/453.6 g) \* Annual Hours of operation (hr/yr) \* (1 ton/2000lbs)

SO2 Emissions - If emission factor note 2 is used, use calculations (e) and (f) for hourly and annual emissions, respectively.

٦

(e) Maximum Hourly Emissions SO2 Caclulation (lb/hr) = (0.25 grain S/100ft3) \* Fuel throughput (ft3/hr) \* (1lb/7000 grains) \* (lbmol S/32.06 lb S) \* (lbmol SO2/ lbmol S) \* (64.07 lb SO2/lbmol SO2)

(f) Annual Emissions SO2 Caclulation (ton/yr) = (0.25 grain S/100ft3) \* Fuel throughput (ft3/hr) \* (1b/7000 grains) \* (lbmol S/32.06 lb S) \* (lbmol SO2/ lbmol S) \*(64.07 lb SO2/lbmol SO2) \* Annual hours of operation (hr/yr) \* (1ton/2000lbs)

#### MAXIMUM HOURLY EMISSION INPUTS

| 71      |                                      |
|---------|--------------------------------------|
| 95      |                                      |
| 1       |                                      |
| 8,976   | (5)                                  |
| 1,116.0 | (6)                                  |
| 764.1   | (7)                                  |
| 8,760   |                                      |
|         | 95<br>1<br>8,976<br>1,116.0<br>764.1 |

(g) CO<sub>2</sub> equivalent = [(CO<sub>2</sub> emissions)\*(GWP<sub>CO2</sub>)]+[(CH<sub>4</sub> emissions)\*(GWP<sub>CH4</sub>)]+[(N<sub>2</sub>O emissions)\*(GWP<sub>N2O</sub>)] Global Warming Potential (GWP)

| CO <sub>2</sub>  | 1   | (8) |
|------------------|-----|-----|
| $CH_4$           | 25  | (8) |
| N <sub>2</sub> O | 298 | (8) |

Notes:

Г

(1) AP-42, Chapter 3.2, Table 3.2-3. Natural Gas-fired Reciprocating Engines (7/00). Uncontrolled Emission Factors for 4-Stroke Rich-Burn Engines.

(2) AP-42, Chapter 5.3, Section 5.3.1

(3) Emission Factors supplied from manufacturer's specification sheets (4) Emission factors are from 40 CFR 98, Subpart C, Table C-1 and C-2.

(5) Fuel consumption from manufacturer's specification sheet.

(6) Value supplied from client based on gas composition in area field (7) Fuel throughput = BSFC (BTU/HP-hr) x Power (HP) / Heat Content (BTU/scf)

(8) Global Warming Potentials obtained from 40 CFR 98, Subpart A, Table A-1

| Emission Unit<br>ID | Tank<br>Capacity<br>(gal) | Tank Contents    | Control<br>Devices | Tank<br>Throughput<br>(bbls/day) | VOC Emission<br>Factor (lbs/bbls) | VOC<br>Emissions<br>(lbs/yr) <sup>(a)</sup> | VOC<br>Emissions<br>(lb/hr) <sup>(b)</sup> | VOC<br>Emissions<br>(tons/yr) <sup>(c)</sup> |
|---------------------|---------------------------|------------------|--------------------|----------------------------------|-----------------------------------|---------------------------------------------|--------------------------------------------|----------------------------------------------|
| T-1                 | 2100                      | Pipeline Liquids | None               | 0.14                             | 1.54E+00 (1)                      | 76.98                                       | 0.009                                      | 0.038                                        |
| Totals              |                           |                  |                    |                                  |                                   | 76.98                                       | 0.01                                       | 0.04                                         |

(c) VOC Emissions (ton/yr) = VOC Emissions (lbs/yr) \* (1ton/2000lbs)

#### Notes:

(1) VOC emission factor includes Flashing/Working/Breathing losses as calculated from the Promax Model Simulation report

| Pipeline Liquids       2,100 gal/yr       2.04E-04       8.95E-04         Total       2.04E-04       8.95E-04         Calculations:       (a) PTE VOC Emissions (ton/yr) given as calculated in the Promax Model simulation report       Pipeline liquids         Saturation factor       0.60       Note <sup>(1)</sup> Pvap (psia)       4.89       Note <sup>(2)</sup> Molecular Weight Vap (lb/lbmol)       25.35       Note <sup>(2)</sup> Bulk Liquid Tempurature (F)       49.08       Note <sup>(2)</sup> | Contents         | Volume Transferred                         | PTE VOC<br>Emissions (lb/hr) | PTE VOC Emissions<br>(ton/yr) <sup>(a)</sup> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------|------------------------------|----------------------------------------------|
| Calculations:<br>(a) PTE VOC Emissions (ton/yr) given as calculated in the Promax Model simulation report<br><u>Pipeline liquids</u><br>Saturation factor 0.60 Note <sup>(1)</sup><br>Pvap (psia) 4.89 Note <sup>(2)</sup><br>Molecular Weight Vap (lb/lbmol) 25.35 Note <sup>(2)</sup>                                                                                                                                                                                                                           | Pipeline Liquids | 2,100 gal/yr                               | 2.04E-04                     | 8.95E-04                                     |
| Calculations:<br>(a) PTE VOC Emissions (ton/yr) given as calculated in the Promax Model simulation report<br><u>Pipeline liquids</u><br>Saturation factor 0.60 Note <sup>(1)</sup><br>Pvap (psia) 4.89 Note <sup>(2)</sup><br>Molecular Weight Vap (lb/lbmol) 25.35 Note <sup>(2)</sup>                                                                                                                                                                                                                           | Total            |                                            | 2.04E-04                     | 8.95E-04                                     |
| Molecular Weight Vap (lb/lbmol) 25.35 Note (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | Saturation factor                          | 0 60                         | Note (1)                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                                            |                              |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Molec            | Pvap (psia)                                | 4.89                         | Note (2)                                     |
| Notes:<br>(1) AP-42 Section 5.2, Table 5.2-1 Saturation Factors for Calculating Petroleum Liquid Loading Losses,                                                                                                                                                                                                                                                                                                                                                                                                  |                  | Pvap (psia)<br>cular Weight Vap (lb/lbmol) | 4.89<br>25.35                | Note <sup>(2)</sup><br>Note <sup>(2)</sup>   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B                | Pvap (psia)<br>cular Weight Vap (lb/lbmol) | 4.89<br>25.35                | Note <sup>(2)</sup><br>Note <sup>(2)</sup>   |

### Table 5. Fugitive Leak Emissions CNX Gas Company - Rohrbaugh Compressor Station

| Pollutant                               | Er      | mission Factor |      | PTE <sup>(a) Gas</sup><br>Service<br>(tons/yr) |
|-----------------------------------------|---------|----------------|------|------------------------------------------------|
| Valves                                  | 9.9E-03 | lb/hr/source   | (1)  | 3.08                                           |
| Low Bleed Pneumatic Valves              | 9.9E-03 | lb/hr/source   | (1)  | 1.56                                           |
| Flanges                                 | 8.6E-04 | lb/hr/source   | (1)  | 1.13                                           |
| Connector                               | 4.4E-04 | lb/hr/source   | (1)  | 0.58                                           |
| Other Points in Gas Service             | 1.9E-02 | lb/hr/source   | (1)  | 1.50                                           |
| Total Gas Released                      | -       | -              |      | 7.86                                           |
| Total <b>VOC</b> Released (gas service) |         |                | (b)  | 1.65                                           |
| Calculations:                           |         |                | CO2e | 38.39                                          |

(a) Annual emissions (tons/yr) = [Emission Factor (lb/hr/source)] x [Number of Sources] x [Hours of Operation per Year] x [0.0005 tons/ lb]

(b) Gas sample from station's gas analysis assumed to be worst case at **21** wt % VOC from 2012 fractional gas analysis measurements

Number of Components in Gas Service

|                                | Valves=                       | 71    | (2) |
|--------------------------------|-------------------------------|-------|-----|
|                                | Low Bleed Pneumatic Valves=   | 36    | (2) |
|                                | Connectors=                   | 301   | (2) |
|                                | Other Points in Gas Service = | 8     | (2) |
| Global Warming Potential (GWP) | Maximum Hour of Operation =   | 8,760 |     |
|                                | CO <sub>2</sub>               | 1     | (3) |
|                                | $CH_4$                        | 25    | (3) |
|                                | N <sub>2</sub> O              | 298   | (3) |
|                                |                               |       |     |

 (1) Emission factors from 1995 EPA Protocol for Equipment Leak Emission Estimates, Table 2-4 Oil and Gas Production
 (2) Default Average Component Counts for Major Onshore Natural Gas Production Equipment from 40 CFR 98, Subpart W, Table W-1B

(3) Global Warming Potentials obtained from 40 CFR 98, Subpart A, Table A-1

## Table 8. Reciprocating Engine / Integral Compressor Emissions (E01) Blowdown Venting Caterpillar G-3304NA; 4SRB CNX Gas Company - Rohrbaugh Compressor Station

|                     | Maximum Hourl     | y Emi | ssions                     |       | Annual E          | mission | S                |     |
|---------------------|-------------------|-------|----------------------------|-------|-------------------|---------|------------------|-----|
| Pollutant           | Emission Factor   |       | PTE p<br>Engine l<br>(lb/h | Event | Emission Factor   |         | Annual<br>(tons/ |     |
| Criteria Pollutants |                   |       |                            |       |                   |         |                  |     |
| VOC                 | 7.70E+00 lb/Event | (1)   | 7.70                       | (a)   | 7.70E+00 lb/Event | (1)     | 0.23             | (a) |



| Data of Manufacture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                          | Cat                                                          | erpillar G3304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NA Engine Emis                                                                                                                                                              | sions                                                                                                                                                        |                                                                                                                         |                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------|
| Date of Manufacture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | September 13, 2008                                                                                                                                                       | Engine                                                       | e Serial Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N4F03357                                                                                                                                                                    | Date Modified/                                                                                                                                               | Reconstructed                                                                                                           | N/.                    |
| Driver Rated HP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95                                                                                                                                                                       | Rated                                                        | Speed in RPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1800                                                                                                                                                                        | Combustion Ty                                                                                                                                                | pe Number                                                                                                               | Spark Ignited 4 Stroke |
| of Cylinders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                        | Comp                                                         | ression Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.5:1                                                                                                                                                                      | Combustion Set                                                                                                                                               | tting                                                                                                                   | Rich Burr              |
| Displacement, in <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 425                                                                                                                                                                      | Fuel D                                                       | Delivery Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Carburetor                                                                                                                                                                  | Combustion Air                                                                                                                                               | Treatment                                                                                                               | Naturally Aspirated    |
| Raw Engine Emissions with Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | stomer Supplied Fuel Gas A                                                                                                                                               | Analysis                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                             |                                                                                                                                                              |                                                                                                                         |                        |
| Fuel Consumption<br>Altitude<br>Maximum Air Inlet Temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8139 LHV BTU/bhp-hr<br>1200 ft<br>90 F                                                                                                                                   | or                                                           | 8976 HHV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ' BTU/bhp-hr                                                                                                                                                                |                                                                                                                                                              |                                                                                                                         |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                          |                                                              | g/bhp-hr <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ib/MMBTU <sup>2</sup>                                                                                                                                                       | lb/br                                                                                                                                                        | ТРҮ                                                                                                                     |                        |
| Nitrogen Oxides (NOx)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                          |                                                              | 13.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                             | lb/hr<br>2.884                                                                                                                                               | 12.632                                                                                                                  | -                      |
| Carbon Monoxide (CO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                          |                                                              | 13.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                             | 2.884                                                                                                                                                        | 12.632                                                                                                                  |                        |
| Volatile Organic Compounds (V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OC or NMNEHC excluding (                                                                                                                                                 | °H2O)                                                        | 0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                             | 0.109                                                                                                                                                        | 0.477                                                                                                                   |                        |
| Formaldehyde (CH2O)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                          | 211207                                                       | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                             | 0.057                                                                                                                                                        | 0.248                                                                                                                   |                        |
| Particulate Matter (PM) Filterable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +Condensable                                                                                                                                                             |                                                              | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.94E-02                                                                                                                                                                    |                                                                                                                                                              |                                                                                                                         |                        |
| Sulfur Dioxide (SO2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                          |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.94E-02<br>5.88E-04                                                                                                                                                        | 0.017<br>0.001                                                                                                                                               | 0.075<br>0.004                                                                                                          |                        |
| Sulla Dioxide (SO2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                          |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | J.88L-04                                                                                                                                                                    | 0.001                                                                                                                                                        | 0.004                                                                                                                   |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                          |                                                              | g/bhp-hr <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | lb/MMBTU <sup>2</sup>                                                                                                                                                       | lb/hr                                                                                                                                                        | Metric Tonne/yr                                                                                                         |                        |
| Carbon Dioxide (CO2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                          |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 110.0                                                                                                                                                                       | 94                                                                                                                                                           | 375                                                                                                                     | -                      |
| earsen 210/1142 (002)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                          |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 110.0                                                                                                                                                                       | 54                                                                                                                                                           | 575                                                                                                                     |                        |
| Methane (CH4)<br><sup>1</sup> g/bhp-hr are based on Caterp<br>Note that g/bhp-hr values are I<br>It is recommended to add a saf                                                                                                                                                                                                                                                                                                                                                                                                                                          | Nominal and are not represe<br>ety margin to the above en                                                                                                                | entative of                                                  | Not-To-Exceed Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.23<br>1200 ft elevation, and<br>es and are based on 100                                                                                                                   | 0.196<br>90 F Max Air Inlet Te<br>0% Load Operation.                                                                                                         | 0.859                                                                                                                   |                        |
| Methane (CH4)<br><sup>1</sup> g/bhp-hr are based on Caterp<br>Note that g/bhp-hr values are f                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nominal and are not represe<br>ety margin to the above en<br>position.<br>n EPA's AP-42, Fifth Edition,                                                                  | entative of<br>nissions for                                  | Not-To-Exceed Value<br>Air Permitting to all                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.23<br>1200 ft elevation, and<br>es and are based on 100<br>ow for operational flexi                                                                                       | 0.196<br>90 F Max Air Inlet Te<br>0% Load Operation.<br>ibility                                                                                              | 0.859<br>mperature.                                                                                                     |                        |
| Methane (CH4)<br><sup>1</sup> g/bhp-hr are based on Caterp<br>Note that g/bhp-hr values are I<br>It is recommended to add a saf<br>and variations in fuel gas comp<br><sup>2</sup> Emission Factor obtained from                                                                                                                                                                                                                                                                                                                                                         | Nominal and are not represe<br>ety margin to the above en<br>position.<br>n EPA's AP-42, Fifth Edition,                                                                  | entative of<br>nissions for                                  | Not-To-Exceed Value<br>Air Permitting to all                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.23<br>1200 ft elevation, and<br>es and are based on 100<br>ow for operational flexi                                                                                       | 0.196<br>90 F Max Air Inlet Te<br>0% Load Operation.<br>ibility                                                                                              | 0.859<br>mperature.                                                                                                     |                        |
| Methane (CH4)<br><sup>1</sup> g/bhp-hr are based on Caterp<br>Note that g/bhp-hr values are I<br>It is recommended to add a saf<br>and variations in fuel gas comp<br><sup>2</sup> Emission Factor obtained from<br>Gas-Fired Reciprocating Engine                                                                                                                                                                                                                                                                                                                       | Nominal and are not represented<br>rety margin to the above en<br>position.<br>n EPA's AP-42, Fifth Edition,<br>es, Table 3.2-2).                                        | entative of<br>nissions for                                  | Not-To-Exceed Value<br>Air Permitting to all                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.23<br>1200 ft elevation, and<br>es and are based on 100<br>ow for operational flexi                                                                                       | 0.196<br>90 F Max Air Inlet Te<br>0% Load Operation.<br>ibility                                                                                              | 0.859<br>mperature.                                                                                                     |                        |
| Methane (CH4)<br><sup>1</sup> g/bhp-hr are based on Caterp<br>Note that g/bhp-hr values are I<br>It is recommended to add a saf<br>and variations in fuel gas comp<br><sup>2</sup> Emission Factor obtained from<br>Gas-Fired Reciprocating Engine<br>Catalytic Converter Emissions                                                                                                                                                                                                                                                                                      | Nominal and are not repressively margin to the above enposition.<br>In EPA's AP-42, Fifth Edition,<br>es, Table 3.2-2).<br>Model: DCL,                                   | entative of<br>nissions for<br>Volume I,                     | Not-To-Exceed Value<br>Air Permitting to all                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.23<br>1200 ft elevation, and<br>es and are based on 100<br>ow for operational flexi                                                                                       | 0.196<br>90 F Max Air Inlet Te<br>0% Load Operation.<br>ibility                                                                                              | 0.859<br>mperature.                                                                                                     |                        |
| Methane (CH4)<br><sup>1</sup> g/bhp-hr are based on Caterp<br>Note that g/bhp-hr values are I<br>It is recommended to add a saf<br>and variations in fuel gas comp<br><sup>2</sup> Emission Factor obtained from<br>Gas-Fired Reciprocating Engine<br><b>Catalytic Converter Emissions</b><br><i>Catalytic Converter Make and M</i>                                                                                                                                                                                                                                      | Nominal and are not represented<br>fety margin to the above en-<br>position.<br>In EPA's AP-42, Fifth Edition,<br>es, Table 3.2-2).<br>Model:<br>Subject DCL,<br>3 Works | entative of<br>nissions for<br>Volume I,<br>DC44             | Not-To-Exceed Value<br>Air Permitting to all                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.23<br>1200 ft elevation, and<br>es and are based on 100<br>ow for operational flexi                                                                                       | 0.196<br>90 F Max Air Inlet Te<br>0% Load Operation.<br>ibility                                                                                              | 0.859<br>mperature.                                                                                                     |                        |
| Methane (CH4)<br><sup>1</sup> g/bhp-hr are based on Caterp<br>Note that g/bhp-hr values are I<br>It is recommended to add a saf<br>and variations in fuel gas comp<br><sup>2</sup> Emission Factor obtained from<br>Gas-Fired Reciprocating Engine<br><b>Catalytic Converter Emissions</b><br><i>Catalytic Converter Make and M</i><br><i>Element Type:</i>                                                                                                                                                                                                              | Nominal and are not represented<br>fety margin to the above en-<br>position.<br>In EPA's AP-42, Fifth Edition,<br>es, Table 3.2-2).<br>Model:<br>Subject DCL,<br>3 Works | entative of<br>nissions for<br>Volume I,<br>DC44             | Not-To-Exceed Value<br>Air Permitting to all                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.23<br>1200 ft elevation, and<br>es and are based on 100<br>ow for operational flexi                                                                                       | 0.196<br>90 F Max Air Inlet Te<br>0% Load Operation.<br>ibility                                                                                              | 0.859<br>mperature.                                                                                                     |                        |
| Methane (CH4)<br><sup>1</sup> g/bhp-hr are based on Caterp<br>Note that g/bhp-hr values are I<br>It is recommended to add a saf<br>and variations in fuel gas comp<br><sup>2</sup> Emission Factor obtained from<br>Gas-Fired Reciprocating Engine<br><b>Catalytic Converter Emissions</b><br><i>Catalytic Converter Make and N</i><br><i>Element Type:</i><br><i>Number of Elements in Housing</i><br><i>Air/Fuel Ratio Control</i>                                                                                                                                     | Nominal and are not represented wargin to the above enposition.<br>In EPA's AP-42, Fifth Edition, es, Table 3.2-2).<br>Model: DCL, 3 Warging 1                           | entative of<br>nissions for<br>Volume I,<br>DC44             | Not-To-Exceed Value<br>Air Permitting to all                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.23<br>1200 ft elevation, and<br>es and are based on 100<br>ow for operational flexi                                                                                       | 0.196<br>90 F Max Air Inlet Te<br>0% Load Operation.<br>ibility                                                                                              | 0.859<br>mperature.                                                                                                     |                        |
| Methane (CH4)<br><sup>1</sup> g/bhp-hr are based on Caterp<br>Note that g/bhp-hr values are I<br>It is recommended to add a saf<br>and variations in fuel gas comp<br><sup>2</sup> Emission Factor obtained from<br>Gas-Fired Reciprocating Engine<br><b>Catalytic Converter Emissions</b><br><i>Catalytic Converter Make and N</i><br><i>Element Type:</i><br><i>Number of Elements in Housing</i>                                                                                                                                                                      | Nominal and are not represented wargin to the above enposition.<br>In EPA's AP-42, Fifth Edition, es, Table 3.2-2).<br>Model: DCL, 3 Warging 1                           | entative of<br>nissions for<br>Volume I,<br>DC44             | Not-To-Exceed Value<br>r Air Permitting to all<br>Chapter 3: Stationar<br><u>% Reduction</u><br>79.5                                                                                                                                                                                                                                                                                                                                                                                                    | 0.23<br>1200 ft elevation, and<br>es and are based on 100<br>ow for operational flexi<br>y Internal Combution S                                                             | 0.196<br>90 F Max Air Inlet Te<br>0% Load Operation.<br>ibility<br>ources (Section 3.2 M<br>                                                                 | 0.859<br>mperature.<br>Natural                                                                                          | _                      |
| Methane (CH4)<br><sup>1</sup> g/bhp-hr are based on Caterp<br>Note that g/bhp-hr values are I<br>It is recommended to add a saf<br>and variations in fuel gas comp<br><sup>2</sup> Emission Factor obtained from<br>Gas-Fired Reciprocating Engine<br><b>Catalytic Converter Emissions</b><br><i>Catalytic Converter Make and N</i><br><i>Element Type:</i><br><i>Number of Elements in Housing</i><br><i>Air/Fuel Ratio Control</i><br>Nitrogen Oxides (NOx)<br>Carbon Monoxide (CO)                                                                                    | Nominal and are not repressively margin to the above enposition.<br>In EPA's AP-42, Fifth Edition, es, Table 3.2-2).<br>Model: DCL,<br>3 Wa<br>1<br>Yes                  | entative of<br>nissions for<br>Volume I,<br>DC44<br>ny, NSCR | Not-To-Exceed Value<br>r Air Permitting to all<br>Chapter 3: Stationar<br>% Reduction<br>79.5<br>64.9                                                                                                                                                                                                                                                                                                                                                                                                   | 0.23<br>1200 ft elevation, and<br>es and are based on 100<br>ow for operational flexi<br>y Internal Combution S<br>unternal Combution S<br><u>g/ bhp-hr</u><br>2.83<br>4.84 | 0.196<br>90 F Max Air Inlet Ter<br>0% Load Operation.<br>ibility<br>ources (Section 3.2 M<br>                                                                | 0.859<br>mperature.<br>latural<br><u>TPY</u><br>2.59<br>4.44                                                            |                        |
| Methane (CH4)<br><sup>1</sup> g/bhp-hr are based on Caterp<br>Note that g/bhp-hr values are I<br>It is recommended to add a saf<br>and variations in fuel gas comp<br><sup>2</sup> Emission Factor obtained from<br>Gas-Fired Reciprocating Engine<br><b>Catalytic Converter Emissions</b><br><i>Catalytic Converter Make and N</i><br><i>Element Type:</i><br><i>Number of Elements in Housing</i><br><i>Air/Fuel Ratio Control</i><br>Nitrogen Oxides (NOx)<br>Carbon Monoxide (CO)<br>Volatile Organic Compounds (V                                                   | Nominal and are not repressively margin to the above enposition.<br>In EPA's AP-42, Fifth Edition, es, Table 3.2-2).<br>Model: DCL,<br>3 Wa<br>1<br>Yes                  | entative of<br>nissions for<br>Volume I,<br>DC44<br>ny, NSCR | Not-To-Exceed Value<br>r Air Permitting to all<br>Chapter 3: Stationar<br>Keduction<br>79.5<br>64.9<br>0                                                                                                                                                                                                                                                                                                                                                                                                | 0.23<br>1200 ft elevation, and<br>es and are based on 100<br>ow for operational flexi<br>y Internal Combution S<br><u>g/ bhp-hr</u><br>2.83                                 | 0.196<br>90 F Max Air Inlet Ter<br>0% Load Operation.<br>ibility<br>ources (Section 3.2 M<br>                                                                | 0.859<br>mperature.<br>latural<br><u>TPY</u><br>2.59<br>4.44<br>0.48                                                    |                        |
| Methane (CH4)<br><sup>1</sup> g/bhp-hr are based on Caterp<br>Note that g/bhp-hr values are I<br>It is recommended to add a saf<br>and variations in fuel gas comp<br><sup>2</sup> Emission Factor obtained from<br>Gas-Fired Reciprocating Engine<br><b>Catalytic Converter Emissions</b><br><i>Catalytic Converter Make and N</i><br><i>Element Type:</i><br><i>Number of Elements in Housing</i><br><i>Air/Fuel Ratio Control</i><br>Nitrogen Oxides (NOx)<br>Carbon Monoxide (CO)<br>Volatile Organic Compounds (V<br>Formaldehyde (CH2O)                            | Nominal and are not repressively margin to the above enposition.<br>In EPA's AP-42, Fifth Edition, es, Table 3.2-2).<br>Model: DCL,<br>3 Wa<br>1<br>Yes                  | entative of<br>nissions for<br>Volume I,<br>DC44<br>ny, NSCR | Not-To-Exceed Value<br>r Air Permitting to all<br>Chapter 3: Stationar<br>% Reduction<br>79.5<br>64.9<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                         | 0.23<br>1200 ft elevation, and<br>as and are based on 100<br>ow for operational flexi<br>y Internal Combution S<br><u>g/ bhp-hr</u><br>2.83<br>4.84                         | 0.196<br>90 F Max Air Inlet Ter<br>0% Load Operation.<br>ibility<br>ources (Section 3.2 M<br>                                                                | 0.859<br>mperature.<br>latural<br><u>TPY</u><br>2.59<br>4.44<br>0.48<br>0.25                                            |                        |
| Methane (CH4)<br><sup>1</sup> g/bhp-hr are based on Caterp<br>Note that g/bhp-hr values are I<br>It is recommended to add a saf<br>and variations in fuel gas comp<br><sup>2</sup> Emission Factor obtained from<br>Gas-Fired Reciprocating Engine<br><b>Catalytic Converter Emissions</b><br><i>Catalytic Converter Make and N</i><br><i>Element Type:</i><br><i>Number of Elements in Housing</i><br><i>Air/Fuel Ratio Control</i><br>Nitrogen Oxides (NOx)<br>Carbon Monoxide (CO)<br>Volatile Organic Compounds (V<br>Formaldehyde (CH2O)<br>Particulate Matter (PM) | Nominal and are not repressively margin to the above enposition.<br>In EPA's AP-42, Fifth Edition, es, Table 3.2-2).<br>Model: DCL,<br>3 Wa<br>1<br>Yes                  | entative of<br>nissions for<br>Volume I,<br>DC44<br>ny, NSCR | Not-To-Exceed Value<br>r Air Permitting to all<br>Chapter 3: Stationar<br>% Reduction<br>79.5<br>64.9<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                    | 0.23<br>1200 ft elevation, and<br>as and are based on 100<br>ow for operational flexi<br>y Internal Combution S<br><u>g/ bhp-hr</u><br>2.83<br>4.84                         | 0.196<br>90 F Max Air Inlet Ter<br>0% Load Operation.<br>ibility<br>ources (Section 3.2 M<br>0.591<br>1.013<br>0.11<br>0.06<br>1.70E-02                      | 0.859<br>mperature.<br>latural<br><u>TPY</u><br>2.59<br>4.44<br>0.48<br>0.25<br>7.50E-02                                | -                      |
| Methane (CH4)<br><sup>1</sup> g/bhp-hr are based on Caterp<br>Note that g/bhp-hr values are I<br>It is recommended to add a saf<br>and variations in fuel gas comp<br><sup>2</sup> Emission Factor obtained from<br>Gas-Fired Reciprocating Engine<br><b>Catalytic Converter Emissions</b><br><i>Catalytic Converter Make and N</i><br><i>Element Type:</i><br><i>Number of Elements in Housing</i><br><i>Air/Fuel Ratio Control</i><br>Nitrogen Oxides (NOx)<br>Carbon Monoxide (CO)<br>Volatile Organic Compounds (V<br>Formaldehyde (CH2O)                            | Nominal and are not repressively margin to the above enposition.<br>In EPA's AP-42, Fifth Edition, es, Table 3.2-2).<br>Model: DCL,<br>3 Wa<br>1<br>Yes                  | entative of<br>nissions for<br>Volume I,<br>DC44<br>ny, NSCR | Not-To-Exceed Value<br>r Air Permitting to all<br>Chapter 3: Stationar<br>% Reduction<br>79.5<br>64.9<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                         | 0.23<br>1200 ft elevation, and<br>as and are based on 100<br>ow for operational flexi<br>y Internal Combution S<br><u>g/ bhp-hr</u><br>2.83<br>4.84                         | 0.196<br>90 F Max Air Inlet Ter<br>0% Load Operation.<br>ibility<br>ources (Section 3.2 M<br>                                                                | 0.859<br>mperature.<br>latural<br><u>TPY</u><br>2.59<br>4.44<br>0.48<br>0.25                                            |                        |
| Methane (CH4)<br><sup>1</sup> g/bhp-hr are based on Caterp<br>Note that g/bhp-hr values are I<br>It is recommended to add a saf<br>and variations in fuel gas comp<br><sup>2</sup> Emission Factor obtained from<br>Gas-Fired Reciprocating Engine<br><b>Catalytic Converter Emissions</b><br><i>Catalytic Converter Make and N</i><br><i>Element Type:</i><br><i>Number of Elements in Housing</i><br><i>Air/Fuel Ratio Control</i><br>Nitrogen Oxides (NOx)<br>Carbon Monoxide (CO)<br>Volatile Organic Compounds (V<br>Formaldehyde (CH2O)<br>Particulate Matter (PM) | Nominal and are not repressively margin to the above enposition.<br>In EPA's AP-42, Fifth Edition, es, Table 3.2-2).<br>Model: DCL,<br>3 Wa<br>1<br>Yes                  | entative of<br>nissions for<br>Volume I,<br>DC44<br>ny, NSCR | Not-To-Exceed Value<br>Air Permitting to all<br>Chapter 3: Stationar<br>79.5<br>64.9<br>0<br>0<br>0<br>0<br>0<br>0<br>% Reduction                                                                                                                                                                                                                                                                                                                                                                       | 0.23<br>1200 ft elevation, and<br>as and are based on 100<br>ow for operational flexi<br>y Internal Combution S<br><u>g/ bhp-hr</u><br>2.83<br>4.84                         | 0.196<br>90 F Max Air Inlet Ter<br>0% Load Operation.<br>ibility<br>ources (Section 3.2 M<br>0.591<br>1.013<br>0.11<br>0.06<br>1.70E-02<br>1.00E-03<br>lb/hr | 0.859<br>mperature.<br>latural<br><u>TPY</u><br>2.59<br>4.44<br>0.48<br>0.25<br>7.50E-02<br>4.00E-03<br>Metric Tonne/yr | -                      |
| Methane (CH4)<br><sup>1</sup> g/bhp-hr are based on Caterp<br>Note that g/bhp-hr values are I<br>It is recommended to add a saf<br>and variations in fuel gas comp<br><sup>2</sup> Emission Factor obtained from<br>Gas-Fired Reciprocating Engine<br><b>Catalytic Converter Emissions</b><br><i>Catalytic Converter Make and N</i><br><i>Element Type:</i><br><i>Number of Elements in Housing</i><br><i>Air/Fuel Ratio Control</i><br>Nitrogen Oxides (NOx)<br>Carbon Monoxide (CO)<br>Volatile Organic Compounds (V<br>Formaldehyde (CH2O)<br>Particulate Matter (PM) | Nominal and are not repressively margin to the above enposition.<br>In EPA's AP-42, Fifth Edition, es, Table 3.2-2).<br>Model: DCL,<br>3 Wa<br>1<br>Yes                  | entative of<br>nissions for<br>Volume I,<br>DC44<br>ny, NSCR | % Reduction         79.5         64.9         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 | 0.23<br>1200 ft elevation, and<br>as and are based on 100<br>ow for operational flexi<br>y Internal Combution S<br><u>g/ bhp-hr</u><br>2.83<br>4.84                         | 0.196<br>90 F Max Air Inlet Ter<br>0% Load Operation.<br>ibility<br>ources (Section 3.2 M<br>0.591<br>1.013<br>0.11<br>0.06<br>1.70E-02<br>1.00E-03          | 0.859<br>mperature.<br>latural<br><u>TPY</u><br>2.59<br>4.44<br>0.48<br>0.25<br>7.50E-02<br>4.00E-03                    | -                      |



#### 12620 FM 1960 W, Ste A4 Box # 560, Houston, TX 77065 Tel.: 877-897-9759 Fax: 281-605-5858 E-mail: info@dclamerica.com

| То   | Chris Magee       | Phone |                           |
|------|-------------------|-------|---------------------------|
|      | USA Compression   | Fax   |                           |
| Date | December 19, 2016 | Email | cmagee@usacompression.com |

### **RE: Emissions Statement – CNX Rohrbaugh**

#### ENGINE DATA

| Engine model | Caterpillar G3304NA |
|--------------|---------------------|
| Power        | 95 hp               |
| Fuel         | PQNG                |

### CATALYST SYSTEM DATA

| Catalyst Housing   | DC44-3 (A7CD-01-1Y07-31) |
|--------------------|--------------------------|
| Catalyst Diameter  | 6.06"                    |
| Catalyst Type      | NSCR                     |
| Number of Elements | 1                        |
| Cell Density       | 300 cpsi                 |

### EMISSION REQUIREMENTS

| Exhaust Gas<br>Component | Engine Output<br>(g/bhp-hr) | Converter Output<br>(g/bhp-hr) |
|--------------------------|-----------------------------|--------------------------------|
| NOx                      | 13.78                       | 2.83                           |
| СО                       | 13.77                       | 4.84                           |
| VOC (NMNEHC)             | 0.52                        | <1                             |

Regards

Sam Kirk Regional Sales Manager DCL America 281-253-3091



### GAS ENGINE SITE SPECIFIC TECHNICAL DATA

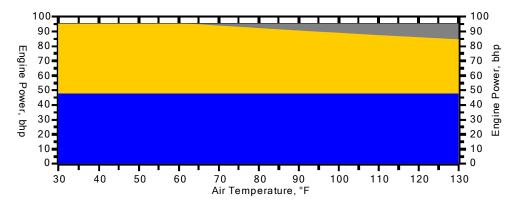
## **CATERPILLAR®**

#### CNX Rohrbaugh G3304NA

| ENGINE SPEED (rpm):<br>COMPRESSION RATIO:<br>JACKET WATER OUTLET (°F):<br>ASPIRATION:<br>COOLING SYSTEM:<br>CONTROL SYSTEM:<br>EXHAUST MANIFOLD:<br>COMBUSTION:<br>EXHAUST OXYGEN (% O2):<br>SET POINT TIMING: | 1800<br>10.5<br>210<br>NA<br>JW+OC<br>MAG<br>WC<br>CATALYST SETTING<br>0.5<br>27 | RATING<br>FUEL S'<br>FUEL:<br>FUEL PF<br>FUEL M<br>FUEL LF<br>ALTITUI<br>MAXIMU | YSTEM:<br>DNDITIONS:<br>RESSURE RAN<br>ETHANE NUME<br>IV (Btu/scf): | GE(psig): (See<br>BER:<br>'EMPERATURE | ,                 |      | R FUEL RATI          | STANDARD<br>CONTINUOUS<br>LPG IMPCO<br>O CONTROL<br>Fuel 12-19-16<br>1.5-10.0<br>57.8<br>1116<br>1200<br>90<br>hp@1800rpm |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------|-------------------|------|----------------------|---------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                |                                                                                  |                                                                                 |                                                                     |                                       | MAXIMUM<br>RATING | -    | 'ING AT M<br>R TEMPE | -                                                                                                                         |
|                                                                                                                                                                                                                | RATING                                                                           |                                                                                 | NOTES                                                               | LOAD                                  | 100%              | 100% | 75%                  | 53%                                                                                                                       |
| ENGINE POWER                                                                                                                                                                                                   |                                                                                  | (WITHOUT FAN)                                                                   | (2)                                                                 | bhp                                   | 95                | 91   | 68                   | 48                                                                                                                        |
| INLET AIR TEMPERATURE                                                                                                                                                                                          |                                                                                  |                                                                                 |                                                                     | °F                                    | 63                | 90   | 90                   | 90                                                                                                                        |

|                                                                                            |                    | 1                    | 00           | 50          | 50           | 50           |
|--------------------------------------------------------------------------------------------|--------------------|----------------------|--------------|-------------|--------------|--------------|
| ENGINE DATA                                                                                | 1                  |                      |              |             |              |              |
| FUEL CONSUMPTION (LHV)                                                                     | (3) (3)            | Btu/bhp-hr           | 8139         | 8196        | 8627         | 9832         |
| FUEL CONSUMPTION (HHV)                                                                     | (4)(5)             | Btu/bhp-hr           | 8976         | 9040        | 9515         | 10843        |
| AIR FLOW (@inlet air temp, 14.7 psia) (WET)                                                |                    | ft3/min              | 136          | 138         | 109          | 88           |
| AIR FLOW (WET)                                                                             |                    | lb/hr                | 620          | 595         | 473          | 379          |
| FUEL FLOW (60°F, 14.7 psia)                                                                | (6) (7)            | scfm                 | 12           | 11          | 9            | 7            |
| INLET MANIFOLD PRESSURE                                                                    | (8)(5)             | in Hg(abs)           | 26.3         | 26.3        | 22.7         | 18.9         |
| EXHAUST TEMPERATURE - ENGINE OUTLET                                                        | (8)(5)             | °F                   | 1100         | 1095        | 1066         | 1019         |
| EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (WET)                                    |                    | ft3/min              | 453          | 433         | 338          | 262          |
| EXHAUST GAS MASS FLOW (WET)                                                                |                    | lb/hr                | 657          | 631         | 501          | 402          |
| EMISSIONS DATA - ENGINE OUT                                                                | 1                  |                      |              |             |              |              |
|                                                                                            | (0)(10)            | */hh* h*             | 13.77        | 13.42       | 11.64        | 9.65         |
| NOx (as NO2)<br>CO                                                                         | (9)(10)            | g/bhp-hr<br>g/bhp-hr | 13.77        | 13.42       | 11.64        | 9.65         |
| THC (mol. wt. of 15.84)                                                                    | (9)(10)            | g/bhp-hr             | 2.50         | 2.58        | 3.03         | 9.65<br>3.80 |
| NMHC (mol. wt. of 15.84)                                                                   | (9)(10)<br>(9)(10) | g/bhp-hr             | 2.50<br>0.95 | 2.58        | 3.03<br>1.14 | 3.80<br>1.44 |
| NMNEHC (MOL: wt. of 15.84)<br>NMNEHC (VOCs) (mol. wt. of 15.84)                            | (9)(10)(11)        | g/bhp-hr             | 0.95         | 0.53        | 0.63         | 0.78         |
| HCHO (Formaldehyde)                                                                        | (9)(10)            | g/bhp-hr             | 0.32         | 0.33        | 0.03         | 0.78         |
| CO2                                                                                        | (9)(10)            | g/bhp-hr             | 534          | 540         | 581          | 674          |
| EXHAUST OXYGEN                                                                             | (9)(12)            | % DRY                | 0.5          | 0.5         | 0.5          | 0.5          |
| HEAT REJECTION                                                                             |                    |                      |              |             |              |              |
| HEAT REJ. TO JACKET WATER (JW)                                                             | (12)               | Btu/min              | 4380         | 4000        | 2500         | 3106         |
| HEAT REJ. TO JACKET WATER (JW)<br>HEAT REJ. TO ATMOSPHERE                                  | (13)<br>(13)       | Btu/min<br>Btu/min   | 4380<br>517  | 4233<br>495 | 3509<br>391  | 3106         |
| HEAT REJ. TO LUBE OIL (OC)                                                                 | (13)               | Btu/min<br>Btu/min   | 716          | 495<br>692  | 574          | 508          |
|                                                                                            | (13)               | Dtu/IIIII            | 710          | 092         | 574          | 500          |
| COOLING SYSTEM SIZING CRITERIA                                                             |                    |                      |              | _           |              |              |
| TOTAL JACKET WATER CIRCUIT (JW+OC)                                                         | (14)               | Btu/min              | 5677         | ]           |              |              |
| A cooling system safety factor of 0% has been added to the cooling system sizing criteria. |                    |                      |              | ]           |              |              |
|                                                                                            |                    |                      |              |             |              |              |

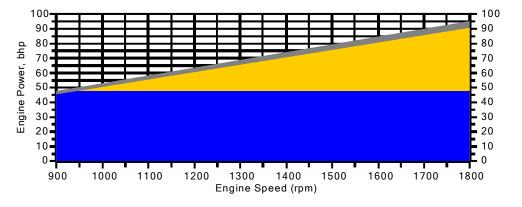
#### CONDITIONS AND DEFINITIONS


Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

For notes information consult page three. \*\*\*WARNINGS ISSUED FOR THIS RATING CONSULT PAGE 3\*\*\*


#### CNX Rohrbaugh G3304NA

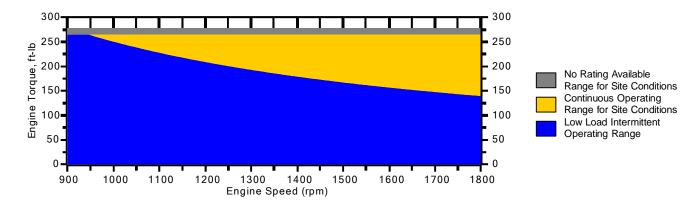
### **Engine Power vs. Inlet Air Temperature**


Data represents temperature sweep at 1200 ft and 1800 rpm



 No Rating Available Range for Site Conditions
 Continuous Operating Range for Site Conditions
 Low Load Intermittent Operating Range




Data represents speed sweep at 1200 ft and 90 °F





## Engine Torque vs. Engine Speed

Data represents speed sweep at 1200 ft and 90 °F



Note: At site conditions of 1200 ft and 90°F inlet air temp., constant torque can be maintained down to 950 rpm. The minimum speed for loading at these conditions is 950 rpm.

## G3304

#### NON-CURRENT

GAS COMPRESSION APPLICATION

### GAS ENGINE SITE SPECIFIC TECHNICAL DATA



#### CNX Rohrbaugh G3304NA

#### NOTES

1. Fuel pressure range specified is to the engine fuel pressure regulator. Additional fuel train components should be considered in pressure and flow calculations.

2. Engine rating is with one engine driven jacket water pump. Tolerance is ± 3% of full load.

- 3. Fuel consumption tolerance is  $\pm$  5.0% of full load data.
- 4. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of ± 5 %.
- 5. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.
- 6. Inlet manifold pressure is a nominal value with a tolerance of  $\pm$  5 %.
- 7. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.
- 8. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of ± 6 %.
- Emissions data is at engine exhaust flange prior to any after treatment.

10. Emission values are based on engine operating at steady state conditions. Fuel methane number cannot vary more than ± 3. Values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate "Not to Exceed" values. THC, NMHC, and NMNEHC do not include aldehydes. Part Load data requires customer supplied air fuel ratio control.

11. VOCs - Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ

12. Exhaust Oxygen tolerance is ± 0.2.

13. Heat rejection values are nominal. Tolerances, based on treated water, are ± 10% for jacket water circuit, ± 50% for radiation, ± 20% for lube oil circuit.

14. Cooling system sizing criteria are maximum circuit heat rejection for the site, with applied tolerances.

WARNING(S): 1. The lower heating value of the fuel is higher than or equal to 1050 Btu/scf and lower than 1400 Btu/scf. May require on-site adjustment or tuning of the fuel system hardware.

RECOMMENDED ACTION For additional information please contact your Caterpillar engine dealer.

| Constituent      | Abbrev    | Mole %   | Norm     |                                     |                    |
|------------------|-----------|----------|----------|-------------------------------------|--------------------|
| Water Vapor      | H2O       | 0.0000   | 0.0000   |                                     |                    |
| Methane          | CH4       | 80.3208  | 80.3208  | Fuel Makeup:                        | CNX Rohrbaugh Fuel |
| Ethane           | C2H6      | 11.0550  | 11.0550  | Unit of Measure:                    | English            |
| Propane          | C3H8      | 4.5675   | 4.5675   |                                     | -                  |
| Isobutane        | iso-C4H1O | 0.7154   | 0.7154   | Calculated Fuel Properties          |                    |
| Norbutane        | nor-C4H1O | 1.2044   | 1.2044   | Caterpillar Methane Number:         | 57.8               |
| Isopentane       | iso-C5H12 | 0.3805   | 0.3805   |                                     | 57.8               |
| Norpentane       | nor-C5H12 | 0.2643   | 0.2643   |                                     |                    |
| Hexane           | C6H14     | 0.3422   | 0.3422   | Lower Heating Value (Btu/scf):      | 1116               |
| Heptane          | C7H16     | 0.0000   | 0.0000   | Higher Heating Value (Btu/scf):     | 1231               |
| Nitrogen         | N2        | 1.0813   | 1.0813   | WOBBE Index (Btu/scf):              | 1328               |
| Carbon Dioxide   | CO2       | 0.0426   | 0.0426   |                                     |                    |
| Hydrogen Sulfide | H2S       | 0.0000   | 0.0000   | THC: Free Inert Ratio:              | 96.34              |
| Carbon Monoxide  | CO        | 0.0000   | 0.0000   | Total % Inerts (% N2, CO2, He):     | 1.12%              |
| Hydrogen         | H2        | 0.0000   | 0.0000   |                                     |                    |
| Oxygen           | O2        | 0.0260   | 0.0260   | RPC (%) (To 905 Btu/scf Fuel):      | 100%               |
| Helium           | HE        | 0.0000   | 0.0000   |                                     |                    |
| Neopentane       | neo-C5H12 | 0.0000   | 0.0000   | Compressibility Factor:             | 0.997              |
| Octane           | C8H18     | 0.0000   | 0.0000   | Stoich A/F Ratio (Vol/Vol):         | 11.58              |
| Nonane           | C9H20     | 0.0000   | 0.0000   | Stoich A/F Ratio (Mass/Mass):       | 16.42              |
| Ethylene         | C2H4      | 0.0000   | 0.0000   | Specific Gravity (Relative to Air): | 0.705              |
| Propylene        | C3H6      | 0.0000   | 0.0000   | . ,                                 | 1.286              |
| TOTAL (Volume %) |           | 100.0000 | 100.0000 | Fuel Specific Heat Ratio (K):       | 1.200              |

#### CONDITIONS AND DEFINITIONS

Caterpillar Methane Number represents the knock resistance of a gaseous fuel. It should be used with the Caterpillar Fuel Usage Guide for the engine and rating to determine the rating for the fuel specified. A Fuel Usage Guide for each rating is included on page 2 of its standard technical data sheet.

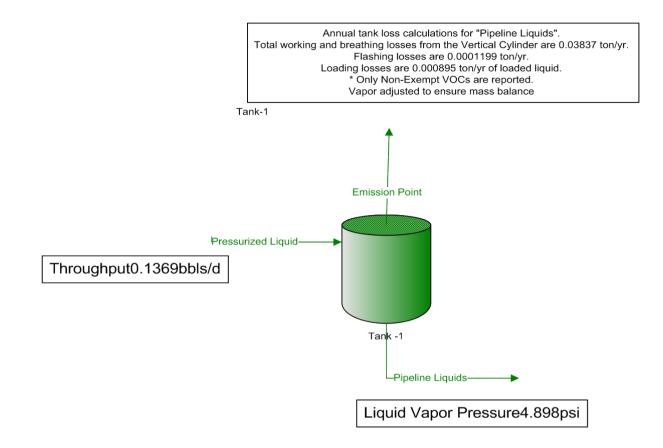
RPC always applies to naturally aspirated (NA) engines, and turbocharged (TA or LE) engines only when they are derated for altitude and ambient site conditions.

Project specific technical data sheets generated by the Caterpillar Gas Engine Rating Pro program take the Caterpillar Methane Number and RPC into account when generating a site rating.

Fuel properties for Btu/scf calculations are at 60F and 14.696 psia.

Caterpillar shall have no liability in law or equity, for damages, consequently or otherwise, arising from use of program and related material or any part thereof.

EUEL LIQUIDS Field gases, well head gases, and associated gases typically contain liquid water and heavy hydrocarbons entrained in the gas. To prevent detonation and severe damage to the engine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid separator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground in accordance with local codes and standards.


To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel operating temperature.

WARNING(S)
1. The lower heating value of the fuel is higher than or equal to 1050 Btu/scf and lower than 1400 Btu/scf. May require on-site adjustment or tuning of the fuel system hardware.

#### RECOMMENDED ACTION

For additional information please contact your Caterpillar engine dealer.

|              |                   |                                  | Flowsheet1<br>Plant Schematic                                                                                                                                                                                                                                                                                               |                             |
|--------------|-------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Client Name: | CNX Gas           |                                  |                                                                                                                                                                                                                                                                                                                             | Job: Tank Emission Estimate |
| Location:    | Rohrbough Station |                                  |                                                                                                                                                                                                                                                                                                                             |                             |
| Flowsheet:   | Flowsheet1        |                                  |                                                                                                                                                                                                                                                                                                                             |                             |
|              |                   |                                  |                                                                                                                                                                                                                                                                                                                             |                             |
|              |                   | т                                | Annual tank loss calculations for "Pipeline Liquids".<br>Total working and breathing losses from the Vertical Cylinder are 0.0383<br>Flashing losses are 0.0001199 ton/yr.<br>Loading losses are 0.000895 ton/yr of loaded liquid.<br>°On/y Non-Exempt VOCs are reported.<br>Vapor adjusted to ensure mass balance<br>ank-1 | 7 ton/yr.                   |
|              |                   |                                  | Emission Point                                                                                                                                                                                                                                                                                                              |                             |
|              |                   | Pressu<br>Throughput0.1369bbls/d | rized Liquid<br>Tank -1                                                                                                                                                                                                                                                                                                     |                             |
|              |                   |                                  | Liquid Vapor Pressure4.898psi                                                                                                                                                                                                                                                                                               |                             |



Rohrbough Tank Run.pmx

|                                                                                                                                                                                                                                                                                                                                                                                   | /2016 8:17:43 PM |     | Konibough                                                                                                                                                                                                                                                                                                                                                                                                                               | Tank Run.pmx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | Page 1 of |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|
|                                                                                                                                                                                                                                                                                                                                                                                   |                  |     | All St                                                                                                                                                                                                                                                                                                                                                                                                                                  | eams Report<br>reams<br><sub>y Total Phase</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |
| Client Nome:                                                                                                                                                                                                                                                                                                                                                                      | CNX Gas          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Job: Topk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Emission Estimato |           |
|                                                                                                                                                                                                                                                                                                                                                                                   |                  | :   |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Job: Tank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Emission Estimate |           |
|                                                                                                                                                                                                                                                                                                                                                                                   | Rohrbough Stat   | ion |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |
| Flowsheet:                                                                                                                                                                                                                                                                                                                                                                        | Flowsheet1       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |
|                                                                                                                                                                                                                                                                                                                                                                                   |                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |
|                                                                                                                                                                                                                                                                                                                                                                                   |                  |     | Conn                                                                                                                                                                                                                                                                                                                                                                                                                                    | ections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |
|                                                                                                                                                                                                                                                                                                                                                                                   |                  | [   | Emission                                                                                                                                                                                                                                                                                                                                                                                                                                | Pipeline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pressurized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                 | -         |
|                                                                                                                                                                                                                                                                                                                                                                                   |                  |     | Point                                                                                                                                                                                                                                                                                                                                                                                                                                   | Liquids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Liquid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |           |
| Frank Dia da                                                                                                                                                                                                                                                                                                                                                                      |                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Liquia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |           |
| From Block                                                                                                                                                                                                                                                                                                                                                                        |                  |     | Tank -1                                                                                                                                                                                                                                                                                                                                                                                                                                 | Tank -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <br>Taulu 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |           |
| To Block                                                                                                                                                                                                                                                                                                                                                                          |                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tank -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |           |
|                                                                                                                                                                                                                                                                                                                                                                                   |                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |
|                                                                                                                                                                                                                                                                                                                                                                                   |                  |     | Stream Co                                                                                                                                                                                                                                                                                                                                                                                                                               | omposition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |
|                                                                                                                                                                                                                                                                                                                                                                                   |                  |     | Emission                                                                                                                                                                                                                                                                                                                                                                                                                                | Pipeline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pressurized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |           |
|                                                                                                                                                                                                                                                                                                                                                                                   |                  |     | Point                                                                                                                                                                                                                                                                                                                                                                                                                                   | Liquids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Liquid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |           |
| Mole Fraction                                                                                                                                                                                                                                                                                                                                                                     |                  |     | %                                                                                                                                                                                                                                                                                                                                                                                                                                       | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |           |
| Carbon Dioxide                                                                                                                                                                                                                                                                                                                                                                    |                  |     | /8                                                                                                                                                                                                                                                                                                                                                                                                                                      | /8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |           |
|                                                                                                                                                                                                                                                                                                                                                                                   |                  |     | 1.15424                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00213663                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0160002 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |           |
| Nitrogen                                                                                                                                                                                                                                                                                                                                                                          |                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |
| Methane                                                                                                                                                                                                                                                                                                                                                                           |                  |     | 58.7391                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.297773                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00101 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |           |
| Ethane                                                                                                                                                                                                                                                                                                                                                                            |                  |     | 24.6112                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.747858                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.03501 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |           |
| Propane                                                                                                                                                                                                                                                                                                                                                                           |                  |     | 9.51729                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.13616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.23701 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |           |
| sobutane                                                                                                                                                                                                                                                                                                                                                                          |                  |     | 1.40471                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.469754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.481005 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |           |
| n-Butane                                                                                                                                                                                                                                                                                                                                                                          |                  |     | 2.34122                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.1355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.15001 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |           |
| sopentane                                                                                                                                                                                                                                                                                                                                                                         |                  |     | 0.703333                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.992489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.98901 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |           |
| n-Pentane                                                                                                                                                                                                                                                                                                                                                                         |                  |     | 0.568989                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.08725                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.08101 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |           |
| Benzene                                                                                                                                                                                                                                                                                                                                                                           |                  |     | 0.0100047                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0768046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0760008 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |           |
| Foluene                                                                                                                                                                                                                                                                                                                                                                           |                  |     | 0.0163253                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.489701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.484005 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |           |
|                                                                                                                                                                                                                                                                                                                                                                                   |                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                      |                  |     | 0.00415519                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.426081                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.421004 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |           |
| o-Xylene                                                                                                                                                                                                                                                                                                                                                                          |                  |     | 0.0124147                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.36529                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.34901 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |           |
| n-Hexane                                                                                                                                                                                                                                                                                                                                                                          |                  |     | 0.203179                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.4986                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.48301 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |           |
| 2,2,4-Trimethylpentar                                                                                                                                                                                                                                                                                                                                                             | ne               |     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |           |
| Other C6's                                                                                                                                                                                                                                                                                                                                                                        |                  |     | 0.311067                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.73313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.71602 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |           |
|                                                                                                                                                                                                                                                                                                                                                                                   |                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |
|                                                                                                                                                                                                                                                                                                                                                                                   |                  |     | 0.26142                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.6003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.53606 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |           |
| Heptanes<br>Octanes                                                                                                                                                                                                                                                                                                                                                               |                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.53606 *<br>8.04608 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |           |
| Heptanes<br>Octanes                                                                                                                                                                                                                                                                                                                                                               |                  |     | 0.26142<br>0.119034                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.6003<br>8.14263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.04608 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |           |
| Heptanes<br>Octanes<br>Nonanes                                                                                                                                                                                                                                                                                                                                                    |                  |     | 0.26142                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.6003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |
| Heptanes<br>Octanes<br>Nonanes                                                                                                                                                                                                                                                                                                                                                    |                  |     | 0.26142<br>0.119034<br>0.0223659                                                                                                                                                                                                                                                                                                                                                                                                        | 5.6003<br>8.14263<br>5.07384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.04608 *<br>5.01305 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |           |
| Heptanes<br>Octanes<br>Nonanes                                                                                                                                                                                                                                                                                                                                                    |                  |     | 0.26142<br>0.119034<br>0.0223659<br>3.96089E-07                                                                                                                                                                                                                                                                                                                                                                                         | 5.6003<br>8.14263<br>5.07384<br>69.7247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.04608 *<br>5.01305 *<br>68.8857 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |           |
| Heptanes<br>Octanes<br>Nonanes                                                                                                                                                                                                                                                                                                                                                    |                  |     | 0.26142<br>0.119034<br>0.0223659                                                                                                                                                                                                                                                                                                                                                                                                        | 5.6003<br>8.14263<br>5.07384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.04608 *<br>5.01305 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |           |
| Heptanes<br>Dctanes<br>Nonanes<br>Decanes +                                                                                                                                                                                                                                                                                                                                       |                  |     | 0.26142<br>0.119034<br>0.0223659<br>3.96089E-07<br>Emission                                                                                                                                                                                                                                                                                                                                                                             | 5.6003<br>8.14263<br>5.07384<br>69.7247<br>Pipeline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.04608 *<br>5.01305 *<br>68.8857 *<br>Pressurized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |           |
| Heptanes<br>Dotanes<br>Nonanes<br>Decanes +<br>Mass Flow                                                                                                                                                                                                                                                                                                                          |                  |     | 0.26142<br>0.119034<br>0.0223659<br>3.96089E-07<br>Emission<br>Point                                                                                                                                                                                                                                                                                                                                                                    | 5.6003<br>8.14263<br>5.07384<br>69.7247<br>Pipeline<br>Liquids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.04608 *<br>5.01305 *<br>68.8857 *<br>Pressurized<br>Liquid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |           |
| Heptanes<br>Octanes<br>Nonanes<br>Decanes +<br>Mass Flow<br>Carbon Dioxide                                                                                                                                                                                                                                                                                                        |                  |     | 0.26142<br>0.119034<br>0.0223659<br>3.96089E-07<br>Emission<br>Point<br>Ib/h<br>0                                                                                                                                                                                                                                                                                                                                                       | 5.6003<br>8.14263<br>5.07384<br>69.7247<br>Pipeline<br>Liquids<br>Ib/h<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.04608 *<br>5.01305 *<br>68.8857 *<br>Pressurized<br>Liquid<br>Ib/h<br>0 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |           |
| Heptanes<br>Doctanes<br>Nonanes<br>Decanes +<br>Mass Flow<br>Carbon Dioxide<br>Nitrogen                                                                                                                                                                                                                                                                                           |                  |     | 0.26142<br>0.119034<br>0.0223659<br>3.96089E-07<br>Emission<br>Point<br>Ib/h<br>0<br>2.83953E-05                                                                                                                                                                                                                                                                                                                                        | 5.6003<br>8.14263<br>5.07384<br>69.7247<br>Pipeline<br>Liquids<br>Ib/h<br>0<br>4.31558E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.04608 *<br>5.01305 *<br>68.8857 *<br>Pressurized<br>Liquid<br>Ib/h<br>0 *<br>3.27109E-05 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |           |
| Heptanes<br>Doctanes<br>Nonanes<br>Decanes +<br>Mass Flow<br>Carbon Dioxide<br>Nitrogen<br>Methane                                                                                                                                                                                                                                                                                |                  |     | 0.26142<br>0.119034<br>0.0223659<br>3.96089E-07<br>Emission<br>Point<br>Ib/h<br>0<br>2.83953E-05<br>0.000827528                                                                                                                                                                                                                                                                                                                         | 5.6003<br>8.14263<br>5.07384<br>69.7247<br><b>Pipeline</b><br>Liquids<br>Ib/h<br>0<br>4.31558E-06<br>0.00034443                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.04608 *<br>5.01305 *<br>68.8857 *<br>Pressurized<br>Liquid<br>Ib/h<br>0 *<br>3.27109E-05 *<br>0.00117196 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |           |
| Heptanes<br>Doctanes<br>Nonanes<br>Decanes +<br>Mass Flow<br>Carbon Dioxide<br>Nitrogen<br>Methane<br>Ethane                                                                                                                                                                                                                                                                      |                  |     | 0.26142<br>0.119034<br>0.0223659<br>3.96089E-07<br>Emission<br>Point<br>Ib/h<br>0<br>2.83953E-05<br>0.000827528<br>0.000649885                                                                                                                                                                                                                                                                                                          | 5.6003<br>8.14263<br>5.07384<br>69.7247<br><b>Pipeline</b><br>Liquids<br>Ib/h<br>0<br>4.31558E-06<br>0.00034443<br>0.00162137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.04608 *<br>5.01305 *<br>68.8857 *<br>Pressurized<br>Liquid<br>Ib/h<br>0 *<br>3.27109E-05 *<br>0.00117196 *<br>0.00227126 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |           |
| Heptanes<br>Octanes<br>Nonanes<br>Decanes +<br>Mass Flow<br>Carbon Dioxide<br>Nitrogen<br>Methane<br>Ethane<br>Propane                                                                                                                                                                                                                                                            |                  |     | 0.26142<br>0.119034<br>0.0223659<br>3.96089E-07<br>Emission<br>Point<br>Ib/h<br>0<br>2.83953E-05<br>0.000827528<br>0.000649885<br>0.000368547                                                                                                                                                                                                                                                                                           | 5.6003<br>8.14263<br>5.07384<br>69.7247<br><b>Pipeline</b><br>Liquids<br>Ib/h<br>0<br>4.31558E-06<br>0.00034443<br>0.00162137<br>0.00361227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.04608 *<br>5.01305 *<br>68.8857 *<br>Pressurized<br>Liquid<br>Ib/h<br>3.27109E-05 *<br>0.00117196 *<br>0.00227126 *<br>0.00398082 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |           |
| Heptanes<br>Octanes<br>Nonanes<br>Decanes +<br>Mass Flow<br>Carbon Dioxide<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>sobutane                                                                                                                                                                                                                                                |                  |     | 0.26142<br>0.119034<br>0.0223659<br>3.96089E-07<br>Emission<br>Point<br>Ib/h<br>0<br>2.83953E-05<br>0.000827528<br>0.000649885<br>0.000368547<br>7.16989E-05                                                                                                                                                                                                                                                                            | 5.6003<br>8.14263<br>5.07384<br>69.7247<br>Pipeline<br>Liquids<br>Ib/h<br>0<br>4.31558E-06<br>0.00034443<br>0.00162137<br>0.00361227<br>0.0019686                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.04608         *           5.01305         *           68.8857         *           Pressurized<br>Liquid<br>Ib/h         *           0         *           3.27109E-05         *           0.00117196         *           0.00227126         *           0.00398082         *           0.0020403         *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |           |
| Heptanes<br>Detanes<br>Nonanes<br>Decanes +<br>Mass Flow<br>Carbon Dioxide<br>Vitrogen<br>Methane<br>Ethane<br>Propane<br>sobutane<br>n-Butane                                                                                                                                                                                                                                    |                  |     | 0.26142<br>0.119034<br>0.0223659<br>3.96089E-07<br>Emission<br>Point<br>Ib/h<br>0<br>2.83953E-05<br>0.000827528<br>0.000649885<br>0.000368547<br>7.16989E-05<br>0.0001195                                                                                                                                                                                                                                                               | 5.6003<br>8.14263<br>5.07384<br>69.7247<br>Pipeline<br>Liquids<br>Ib/h<br>0<br>4.31558E-06<br>0.00034443<br>0.00162137<br>0.00361227<br>0.0019686<br>0.00475856                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.04608 *<br>5.01305 *<br>68.8857 *<br>Pressurized<br>Liquid<br>Ib/h<br>0 *<br>3.27109E-05 *<br>0.00117196 *<br>0.00227126 *<br>0.00238082 *<br>0.00298082 *<br>0.0020403 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |           |
| Heptanes<br>Detanes<br>Nonanes<br>Decanes +<br>Mass Flow<br>Carbon Dioxide<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>sobutane<br>n-Butane<br>sopentane                                                                                                                                                                                                                       |                  |     | 0.26142<br>0.119034<br>0.0223659<br>3.96089E-07<br>Emission<br>Point<br>Ib/h<br>0<br>2.83953E-05<br>0.000827528<br>0.000649885<br>0.000368547<br>7.16989E-05<br>0.0001195<br>4.4563E-05                                                                                                                                                                                                                                                 | 5.6003<br>8.14263<br>5.07384<br>69.7247<br>Pipeline<br>Liquids<br>Ib/h<br>0<br>4.31558E-06<br>0.00034443<br>0.00162137<br>0.00361227<br>0.0019686<br>0.00475856<br>0.00516297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.04608         *           5.01305         *           68.8857         *           Liquid<br>Ib/h         0           0         *           3.27109E-05         *           0.00117196         *           0.00227126         *           0.00398082         *           0.0020403         *           0.0024703         *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |           |
| Heptanes<br>Detanes<br>Nonanes<br>Decanes +<br>Mass Flow<br>Carbon Dioxide<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>sobutane<br>n-Butane<br>sopentane<br>n-Pentane                                                                                                                                                                                                          |                  |     | 0.26142<br>0.119034<br>0.0223659<br>3.96089E-07<br>Emission<br>Point<br>Ib/h<br>0<br>2.83953E-05<br>0.000827528<br>0.000649885<br>0.000368547<br>7.16989E-05<br>0.0001195<br>4.4563E-05<br>3.6051E-05                                                                                                                                                                                                                                   | 5.6003<br>8.14263<br>5.07384<br>69.7247<br>Pipeline<br>Liquids<br>Ib/h<br>0<br>4.31558E-06<br>0.00034443<br>0.00162137<br>0.00361227<br>0.0019686<br>0.00475856<br>0.00516297<br>0.00565591                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.04608         *           5.01305         *           68.8857         *           Liquid<br>Ib/h         *           0         *           3.27109E-05         *           0.00127126         *           0.00227126         *           0.00238082         *           0.002403         *           0.002403         *           0.00487806         *           0.00520753         *           0.00569196         *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |           |
| Heptanes<br>Doctanes<br>Nonanes<br>Decanes +<br>Mass Flow<br>Carbon Dioxide<br>Vitrogen<br>Methane<br>Ethane<br>Propane<br>sobutane<br>-Butane<br>sopentane<br>-Pentane<br>Benzene                                                                                                                                                                                                |                  |     | 0.26142<br>0.119034<br>0.0223659<br>3.96089E-07<br>Emission<br>Point<br>Ib/h<br>0<br>2.83953E-05<br>0.000827528<br>0.000368547<br>7.16989E-05<br>0.0001195<br>4.4563E-05<br>3.6051E-05<br>6.86285E-07                                                                                                                                                                                                                                   | 5.6003<br>8.14263<br>5.07384<br>69.7247<br>Pipeline<br>Liquids<br>Ib/h<br>0<br>4.31558E-06<br>0.00034443<br>0.00162137<br>0.00361227<br>0.0019686<br>0.00475856<br>0.00516297<br>0.00565591<br>0.000432562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.04608           5.01305           68.8857           Pressurized           Liquid           Ib/h           0           3.27109E-05           0.00117196           0.00227126           0.00398082           0.0022603           0.00227126           0.0020403           0.0022753           0.00569196           0.000433249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |           |
| Heptanes<br>Doctanes<br>Nonanes<br>Decanes +<br>Mass Flow<br>Carbon Dioxide<br>Vitrogen<br>Methane<br>Ethane<br>Propane<br>sobutane<br>-Butane<br>sopentane<br>-Pentane<br>Benzene                                                                                                                                                                                                |                  |     | 0.26142<br>0.119034<br>0.0223659<br>3.96089E-07<br>Emission<br>Point<br>Ib/h<br>0<br>2.83953E-05<br>0.000827528<br>0.000649885<br>0.000368547<br>7.16989E-05<br>0.0001195<br>4.4563E-05<br>3.6051E-05                                                                                                                                                                                                                                   | 5.6003<br>8.14263<br>5.07384<br>69.7247<br>Pipeline<br>Liquids<br>Ib/h<br>0<br>4.31558E-06<br>0.00034443<br>0.00162137<br>0.00361227<br>0.0019686<br>0.00475856<br>0.00516297<br>0.00565591                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.04608         *           5.01305         *           68.8857         *           Liquid<br>Ib/h         *           0         *           3.27109E-05         *           0.00127126         *           0.00227126         *           0.00238082         *           0.002403         *           0.002403         *           0.00487806         *           0.00520753         *           0.00569196         *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |           |
| Heptanes<br>Doctanes<br>Nonanes<br>Decanes +<br>Mass Flow<br>Carbon Dioxide<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>sobutane<br>n-Butane<br>sopentane<br>n-Pentane<br>Benzene<br>Toluene                                                                                                                                                                                   |                  |     | 0.26142<br>0.119034<br>0.0223659<br>3.96089E-07<br>Emission<br>Point<br>Ib/h<br>0<br>2.83953E-05<br>0.000827528<br>0.000649885<br>0.000368547<br>7.16989E-05<br>0.0001195<br>4.4563E-05<br>3.6051E-05<br>6.86285E-07<br>1.32095E-06                                                                                                                                                                                                     | 5.6003<br>8.14263<br>5.07384<br>69.7247<br>Pipeline<br>Liquids<br>Ib/h<br>0<br>4.31558E-06<br>0.0034443<br>0.00162137<br>0.00361227<br>0.0019686<br>0.00475856<br>0.00475856<br>0.00516297<br>0.00565591<br>0.000432562<br>0.00325324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.04608           5.01305           68.8857           Pressurized           Liquid           lb/h           0           3.27109E-05           *           0.00117196           0.00227126           0.00238082           0.0020403           0.0020403           0.00520753           0.00569196           0.000433249           0.00325457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |           |
| Heptanes<br>Doctanes<br>Nonanes<br>Decanes +<br>Mass Flow<br>Carbon Dioxide<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>sobutane<br>n-Butane<br>sopentane<br>n-Butane<br>Sopentane<br>D-Pentane<br>Benzene<br>Foluene<br>Ethylbenzene                                                                                                                                          |                  |     | 0.26142<br>0.119034<br>0.0223659<br>3.96089E-07<br>Emission<br>Point<br>Ib/h<br>0<br>2.83953E-05<br>0.000827528<br>0.000649885<br>0.000368547<br>7.16989E-05<br>0.0001195<br>4.4563E-05<br>3.6051E-05<br>6.86285E-07<br>1.32095E-06<br>3.87398E-07                                                                                                                                                                                      | 5.6003<br>8.14263<br>5.07384<br>69.7247<br>Pipeline<br>Liquids<br>Ib/h<br>0<br>4.31558E-06<br>0.00034443<br>0.00162137<br>0.00361227<br>0.0019686<br>0.00475856<br>0.00516297<br>0.00565591<br>0.000432562<br>0.00325324<br>0.00326151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.04608         *           5.01305         *           68.8857         *           Image: Constraint of the second sec |                   |           |
| Heptanes<br>Doctanes<br>Nonanes<br>Decanes +<br>Mass Flow<br>Carbon Dioxide<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>sobutane<br>n-Butane<br>sopentane<br>n-Butane<br>Sopentane<br>D-Pentane<br>Benzene<br>Toluene<br>Ethylbenzene<br>D-Xylene                                                                                                                              |                  |     | 0.26142<br>0.119034<br>0.0223659<br>3.96089E-07<br>Emission<br>Point<br>Ib/h<br>0<br>2.83953E-05<br>0.000827528<br>0.000649885<br>0.000368547<br>7.16989E-05<br>0.0001195<br>4.4563E-05<br>3.6051E-05<br>6.86285E-07<br>1.32095E-06<br>3.87398E-07<br>1.15745E-06                                                                                                                                                                       | 5.6003<br>8.14263<br>5.07384<br>69.7247<br>Pipeline<br>Liquids<br>Ib/h<br>0<br>4.31558E-06<br>0.00034443<br>0.00162137<br>0.00361227<br>0.00361227<br>0.0019686<br>0.00475856<br>0.00475856<br>0.00516297<br>0.00565591<br>0.000432562<br>0.00325324<br>0.00326151<br>0.0104509                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.04608           5.01305           68.8857           Pressurized           Liquid           lb/h           0           3.27109E-05           *           0.00217126           *           0.00227126           *           0.0020403           0.0020403           0.00520753           0.00569196           0.000433249           0.00326457           0.0032619           0.010452                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |           |
| Heptanes<br>Detanes<br>Detanes<br>Nonanes<br>Decanes +<br>Mass Flow<br>Carbon Dioxide<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>sobutane<br>n-Butane<br>sopentane<br>n-Pentane<br>Benzene<br>Toluene<br>Ethylbenzene<br>Doluene<br>Ethylbenzene<br>Doluene<br>Toluene<br>Doluene<br>Toluene                                                                                  |                  |     | 0.26142<br>0.119034<br>0.0223659<br>3.96089E-07<br>Emission<br>Point<br>Ib/h<br>0<br>2.83953E-05<br>0.000827528<br>0.000649885<br>0.000368547<br>7.16989E-05<br>0.0001195<br>4.4563E-05<br>3.6051E-05<br>6.86285E-07<br>1.32095E-06<br>3.87398E-07<br>1.15745E-06<br>1.53761E-05                                                                                                                                                        | 5.6003<br>8.14263<br>5.07384<br>69.7247<br>Pipeline<br>Liquids<br>Ib/h<br>0<br>4.31558E-06<br>0.00034443<br>0.00162137<br>0.00361227<br>0.00361227<br>0.0019686<br>0.00475856<br>0.00475856<br>0.00516297<br>0.00565591<br>0.000432562<br>0.00325324<br>0.00326151<br>0.0104509<br>0.00931139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.04608           5.01305           68.8857           68.8857           Pressurized<br>Liquid<br>Ib/h           0           3.27109E-05           *           0.00217126           *           0.00227126           *           0.002278082           0.0020403           0.0020403           0.00520753           0.00569196           0.0052457           0.00325457           0.0032619           0.010452           0.00932677                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |           |
| Heptanes<br>Detanes<br>Detanes<br>Vonanes<br>Decanes +<br><b>Mass Flow</b><br>Carbon Dioxide<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>sobutane<br>n-Butane<br>sopentane<br>-Pentane<br>Benzene<br>Toluene<br>Ethylbenzene<br>D-Xylene<br>n-Hexane<br>2,2,4-Trimethylpentar                                                                                                  | ne               |     | 0.26142<br>0.119034<br>0.0223659<br>3.96089E-07<br>Emission<br>Point<br>Ib/h<br>0<br>2.83953E-05<br>0.000827528<br>0.000827528<br>0.000649885<br>0.000368547<br>7.16989E-05<br>0.0001195<br>4.4563E-05<br>3.6051E-05<br>6.86285E-07<br>1.32095E-06<br>3.87398E-07<br>1.15745E-06<br>1.53761E-05<br>0                                                                                                                                    | 5.6003<br>8.14263<br>5.07384<br>69.7247<br>Pipeline<br>Liquids<br>Ib/h<br>0<br>4.31558E-06<br>0.00034443<br>0.00162137<br>0.00361227<br>0.00361227<br>0.0016686<br>0.00475856<br>0.00475856<br>0.00516297<br>0.00565591<br>0.000432562<br>0.00325324<br>0.00326151<br>0.000432562<br>0.00326151<br>0.00043250<br>0.000931139<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.04608           5.01305           68.8857           68.8857           Pressurized<br>Liquid<br>Ib/h           0           3.27109E-05           *           0.00217126           *           0.00227126           *           0.00227126           *           0.00227126           *           0.00227126           *           0.00227126           *           0.00227126           *           0.00227126           *           0.00227126           *           0.00227126           *           0.00227126           *           0.00227126           *           0.00227126           *           0.00569196           0.0032619           0.00032619           0.000932677           0.00932677                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |           |
| Heptanes<br>Dectanes<br>Nonanes<br>Decanes +<br>Mass Flow<br>Carbon Dioxide<br>Vitrogen<br>Methane<br>Ethane<br>Propane<br>sobutane<br>n-Butane<br>sopentane<br>n-Butane<br>Sopentane<br>Hylbenzene<br>Ethylbenzene<br>D-Xylene<br>n-Hexane<br>2,2,4-Trimethylpentar<br>Dther C6's                                                                                                | ne               |     | 0.26142<br>0.119034<br>0.0223659<br>3.96089E-07<br>Emission<br>Point<br>Ib/h<br>0<br>2.83953E-05<br>0.000827528<br>0.000649885<br>0.000368547<br>7.16989E-05<br>0.0001195<br>4.4563E-05<br>3.6051E-05<br>6.86285E-07<br>1.32095E-06<br>3.87398E-07<br>1.15745E-06<br>1.53761E-05<br>0<br>2.32197E-05                                                                                                                                    | 5.6003<br>8.14263<br>5.07384<br>69.7247<br>Pipeline<br>Liquids<br>Ib/h<br>0<br>4.31558E-06<br>0.00034443<br>0.00162137<br>0.00361227<br>0.00361227<br>0.0019686<br>0.00475856<br>0.00475856<br>0.00516297<br>0.00565591<br>0.000432562<br>0.00325324<br>0.00326151<br>0.0104509<br>0.00931139<br>0<br>0<br>0.0106217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.04608           5.01305           68.8857           68.8857           Pressurized           Liquid           lb/h           0           3.27109E-05           0.00117196           0.00227126           0.00227126           0.00227126           0.0020403           0.0020403           0.00520753           0.00569196           0.00326457           0.0032619           0.010452           0.00932677           0.00932677           0.00106449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |           |
| Heptanes<br>Dectanes<br>Nonanes<br>Decanes +<br>Mass Flow<br>Carbon Dioxide<br>Vitrogen<br>Methane<br>Ethane<br>Propane<br>sobutane<br>n-Butane<br>sopentane<br>n-Butane<br>Benzene<br>Foluene<br>Ethylbenzene<br>D-Xylene<br>n-Hexane<br>2,2,4-Trimethylpentar<br>Dther C6's<br>Heptanes                                                                                         | ne               |     | 0.26142<br>0.119034<br>0.0223659<br>3.96089E-07<br>Emission<br>Point<br>Ib/h<br>0<br>2.83953E-05<br>0.000827528<br>0.000649885<br>0.000368547<br>7.16989E-05<br>0.0001195<br>4.4563E-05<br>3.6051E-05<br>6.86285E-07<br>1.32095E-06<br>3.87398E-07<br>1.15745E-06<br>1.53761E-05<br>0<br>2.32197E-05<br>2.30056E-05                                                                                                                     | 5.6003<br>8.14263<br>5.07384<br>69.7247<br>Pipeline<br>Liquids<br>Ib/h<br>0<br>4.31558E-06<br>0.00034443<br>0.00162137<br>0.00361227<br>0.0019686<br>0.00475856<br>0.00516297<br>0.00565591<br>0.000432562<br>0.00326324<br>0.00326151<br>0.000326151<br>0.0104509<br>0.00931139<br>0<br>0.0106217<br>0.0404638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.04608           5.01305           68.8857           Pressurized<br>Liquid<br>Ib/h           0           3.27109E-05           0.00117196           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00433249           0.00325477           0.0032619           0.0010452           0.0032677           0           0.0106449           0.0106449           0.0404869                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |           |
| Heptanes<br>Detanes<br>Detanes<br>Nonanes<br>Decanes +<br>Mass Flow<br>Carbon Dioxide<br>Vitrogen<br>Methane<br>Ethane<br>Propane<br>sobutane<br>n-Butane<br>sopentane<br>n-Butane<br>Banzene<br>Foluene<br>Ethylbenzene<br>D-Xylene<br>n-Hexane<br>2,2,4-Trimethylpentar<br>Dither C6's<br>Heptanes<br>Dottanes                                                                  | ne               |     | 0.26142<br>0.119034<br>0.0223659<br>3.96089E-07<br>Emission<br>Point<br>Ib/h<br>0<br>2.83953E-05<br>0.000827528<br>0.000649885<br>0.000368547<br>7.16989E-05<br>0.0001195<br>4.4563E-05<br>3.6051E-05<br>6.86285E-07<br>1.32095E-06<br>3.87398E-07<br>1.15745E-06<br>1.53761E-05<br>0<br>2.32197E-05<br>2.30056E-05<br>1.19168E-05                                                                                                      | 5.6003<br>8.14263<br>5.07384<br>69.7247<br>Pipeline<br>Liquids<br>Ib/h<br>0<br>4.31558E-06<br>0.00034443<br>0.00162137<br>0.00361227<br>0.0019686<br>0.00475856<br>0.00516297<br>0.00565591<br>0.000432562<br>0.00325324<br>0.00326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326152<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326152<br>0.000326151<br>0.000326152<br>0.000326152<br>0.000326152<br>0.000326152<br>0.000326152<br>0.000326152<br>0.000326152<br>0.000326152<br>0.000326152<br>0.000326152<br>0.000326152<br>0.000326152<br>0.000326152<br>0.000326152<br>0.000326152<br>0.000326152<br>0.000326152<br>0.000326152<br>0.000326152<br>0.000326152<br>0.000326152<br>0.000325324<br>0.000326152<br>0.000325324<br>0.000326152<br>0.000325324<br>0.000326152<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.00032532555555555555555555555555555555 | 8.04608           5.01305           68.8857           Pressurized<br>Liquid<br>Ib/h           0           3.27109E-05           0.00117196           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00226193           0.000520753           0.000433249           0.00325457           0.0032619           0.0010452           0.0032677           0.0032677           0.0106449           0.0106449           0.0404869           0.0404869                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |           |
| Heptanes<br>Detanes<br>Detanes<br>Nonanes<br>Decanes +<br>Mass Flow<br>Carbon Dioxide<br>Vitrogen<br>Methane<br>Ethane<br>Propane<br>sobutane<br>n-Butane<br>sopentane<br>N-Pentane<br>Benzene<br>Foluene<br>Ethylbenzene<br>D-Xylene<br>n-Hexane<br>2,2,4-Trimethylpentar<br>Dther C6's<br>Heptanes<br>Detanes<br>Nonanes                                                        | ne               |     | 0.26142<br>0.119034<br>0.0223659<br>3.96089E-07<br>Emission<br>Point<br>Ib/h<br>0<br>2.83953E-05<br>0.000827528<br>0.000649885<br>0.000368547<br>7.16989E-05<br>0.0001195<br>4.4563E-05<br>3.6051E-05<br>6.86285E-07<br>1.32095E-06<br>3.87398E-07<br>1.15745E-06<br>1.53761E-05<br>0<br>2.32197E-05<br>2.30056E-05<br>1.19168E-05<br>2.51409E-06                                                                                       | 5.6003<br>8.14263<br>5.07384<br>69.7247<br>Pipeline<br>Liquids<br>Ib/h<br>0<br>4.31558E-06<br>0.00034443<br>0.00162137<br>0.00361227<br>0.0019686<br>0.00475856<br>0.00516297<br>0.00565591<br>0.000432562<br>0.00325324<br>0.00326151<br>0.000432562<br>0.00326151<br>0.000432562<br>0.00326151<br>0.000931139<br>0<br>0.0106217<br>0.0404638<br>0.066929<br>0.0468264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.04608           5.01305           68.8857           Pressurized<br>Liquid<br>Ib/h           0           3.27109E-05           0.00117196           0.00227126           0.00227126           0.00398082           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.0024033           0.0024034           0.00250753           0.000433249           0.00326157           0.00326196           0.0032619           0.0032619           0.0032619           0.0032619           0.0010452           0.0010452           0.0010454           0.00106449           0.0404869           0.0404869           0.0404829           0.046829                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |
| Heptanes<br>Detanes<br>Detanes<br>Nonanes<br>Decanes +<br>Mass Flow<br>Carbon Dioxide<br>Vitrogen<br>Methane<br>Ethane<br>Propane<br>sobutane<br>n-Butane<br>sopentane<br>n-Butane<br>Sopentane<br>D-Pentane<br>Benzene<br>Foluene<br>Ethylbenzene<br>D-Xylene<br>n-Hexane<br>2,2,4-Trimethylpentar<br>Dther C6's<br>Heptanes<br>Detanes<br>Nonanes                               | ne               |     | 0.26142<br>0.119034<br>0.0223659<br>3.96089E-07<br>Emission<br>Point<br>Ib/h<br>0<br>2.83953E-05<br>0.000827528<br>0.000649885<br>0.000368547<br>7.16989E-05<br>0.0001195<br>4.4563E-05<br>3.6051E-05<br>6.86285E-07<br>1.32095E-06<br>3.87398E-07<br>1.15745E-06<br>1.53761E-05<br>0<br>2.32197E-05<br>2.30056E-05<br>1.19168E-05                                                                                                      | 5.6003<br>8.14263<br>5.07384<br>69.7247<br>Pipeline<br>Liquids<br>Ib/h<br>0<br>4.31558E-06<br>0.00034443<br>0.00162137<br>0.00361227<br>0.0019686<br>0.00475856<br>0.00516297<br>0.00565591<br>0.000432562<br>0.00325324<br>0.00326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326152<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326151<br>0.000326152<br>0.000326151<br>0.000326152<br>0.000326152<br>0.000326152<br>0.000326152<br>0.000326152<br>0.000326152<br>0.000326152<br>0.000326152<br>0.000326152<br>0.000326152<br>0.000326152<br>0.000326152<br>0.000326152<br>0.000326152<br>0.000326152<br>0.000326152<br>0.000326152<br>0.000326152<br>0.000326152<br>0.000326152<br>0.000326152<br>0.000325324<br>0.000326152<br>0.000325324<br>0.000326152<br>0.000325324<br>0.000326152<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.000325324<br>0.00032532555555555555555555555555555555 | 8.04608           5.01305           68.8857           Pressurized<br>Liquid<br>Ib/h           0           3.27109E-05           0.00117196           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00226193           0.000520753           0.000433249           0.00325457           0.0032619           0.0010452           0.0032677           0.0032677           0.0106449           0.0106449           0.0404869           0.0404869                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |           |
| Heptanes<br>Octanes<br>Nonanes<br>Decanes +<br>Mass Flow<br>Carbon Dioxide<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>Isobutane<br>n-Butane<br>Isopentane<br>Benzene<br>Toluene<br>Ethylbenzene<br>o-Xylene<br>n-Hexane<br>2,2,4-Trimethylpentar<br>Other C6's<br>Heptanes<br>Octanes<br>Nonanes                                                                              | ne               |     | 0.26142<br>0.119034<br>0.0223659<br>3.96089E-07<br>Emission<br>Point<br>Ib/h<br>0<br>2.83953E-05<br>0.000827528<br>0.000649885<br>0.000368547<br>7.16989E-05<br>0.0001195<br>4.4563E-05<br>3.6051E-05<br>6.86285E-07<br>1.32095E-06<br>3.87398E-07<br>1.15745E-06<br>1.53761E-05<br>0<br>2.32197E-05<br>2.30056E-05<br>1.19168E-05<br>2.51409E-06                                                                                       | 5.6003<br>8.14263<br>5.07384<br>69.7247<br>Pipeline<br>Liquids<br>Ib/h<br>0<br>4.31558E-06<br>0.00034443<br>0.00162137<br>0.00361227<br>0.0019686<br>0.00475856<br>0.00516297<br>0.00565591<br>0.000432562<br>0.00325324<br>0.00326151<br>0.000432562<br>0.00326151<br>0.000432562<br>0.00326151<br>0.000931139<br>0<br>0.0106217<br>0.0404638<br>0.066929<br>0.0468264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.04608           5.01305           68.8857           Pressurized<br>Liquid<br>Ib/h           0           3.27109E-05           0.00117196           0.00227126           0.00227126           0.00398082           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.0024033           0.0024034           0.00250753           0.000433249           0.00326157           0.00326196           0.0032619           0.0032619           0.0032619           0.0032619           0.0010452           0.0010452           0.0010454           0.00106449           0.0404869           0.0404869           0.0404829           0.046829                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |
| Heptanes<br>Octanes<br>Nonanes<br>Decanes +<br>Mass Flow<br>Carbon Dioxide<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>Isobutane<br>n-Butane<br>Isopentane<br>Benzene<br>Toluene<br>Ethylbenzene<br>o-Xylene<br>n-Hexane<br>2,2,4-Trimethylpentar<br>Other C6's<br>Heptanes<br>Octanes<br>Nonanes                                                                              | ne               |     | 0.26142<br>0.119034<br>0.0223659<br>3.96089E-07<br>Emission<br>Point<br>Ib/h<br>0<br>2.83953E-05<br>0.000827528<br>0.000649885<br>0.000368547<br>7.16989E-05<br>0.0001195<br>4.4563E-05<br>3.6051E-05<br>6.86285E-07<br>1.32095E-06<br>3.87398E-07<br>1.15745E-06<br>1.53761E-05<br>0<br>2.32197E-05<br>2.30056E-05<br>1.19168E-05<br>2.51409E-06                                                                                       | 5.6003<br>8.14263<br>5.07384<br>69.7247<br>Pipeline<br>Liquids<br>Ib/h<br>0<br>4.31558E-06<br>0.00034443<br>0.00162137<br>0.00361227<br>0.0019686<br>0.00475856<br>0.00516297<br>0.00565591<br>0.000432562<br>0.00325324<br>0.00326151<br>0.000432562<br>0.00326151<br>0.000432562<br>0.00326151<br>0.000931139<br>0<br>0.0106217<br>0.0404638<br>0.066929<br>0.0468264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.04608           5.01305           68.8857           Pressurized<br>Liquid<br>Ib/h           0           3.27109E-05           0.00117196           0.00227126           0.00227126           0.00398082           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.0024033           0.0024034           0.00250753           0.000433249           0.00326157           0.00326196           0.0032619           0.0032619           0.0032619           0.0032619           0.0010452           0.0010452           0.0010454           0.00106449           0.0404869           0.0404869           0.0404829           0.046829                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |
| Heptanes<br>Octanes<br>Nonanes<br>Decanes +<br>Mass Flow<br>Carbon Dioxide<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>Isobutane<br>n-Butane<br>Isopentane<br>Benzene<br>Toluene<br>Ethylbenzene<br>o-Xylene<br>n-Hexane<br>2,2,4-Trimethylpentar<br>Other C6's<br>Heptanes<br>Octanes<br>Nonanes                                                                              | ne               |     | 0.26142<br>0.119034<br>0.0223659<br>3.96089E-07<br>Emission<br>Point<br>Ib/h<br>0<br>2.83953E-05<br>0.000827528<br>0.000649885<br>0.000368547<br>7.16989E-05<br>0.0001195<br>4.4563E-05<br>3.6051E-05<br>6.86285E-07<br>1.32095E-06<br>3.87398E-07<br>1.15745E-06<br>1.53761E-05<br>0<br>2.32197E-05<br>2.30056E-05<br>1.19168E-05<br>2.51409E-06<br>9.88557E-11<br>Emission                                                            | 5.6003<br>8.14263<br>5.07384<br>69.7247<br>Pipeline<br>Liquids<br>Ib/h<br>0<br>4.31558E-06<br>0.00034443<br>0.00162137<br>0.00361227<br>0.00361227<br>0.0019686<br>0.00475856<br>0.00475856<br>0.00516297<br>0.00565591<br>0.000432562<br>0.00325324<br>0.00326151<br>0.000432562<br>0.00325324<br>0.00326151<br>0.0104509<br>0.000931139<br>0<br>0<br>0.0106217<br>0.0404638<br>0.066929<br>0.0468264<br>1.42875<br>Pipeline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.04608           5.01305           68.8857           Pressurized<br>Liquid<br>Ib/h           0           3.27109E-05           0.00117196           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.002403           0.00227126           0.0020403           0.0020403           0.00227126           0.002403           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227153           0.000520753           0.000325457           0.00032619           0.010452           0.00032619           0.010452           0.00106449           0.0404869           0.0404869           0.046829           1.42875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |           |
| Heptanes<br>Doctanes<br>Nonanes<br>Decanes +<br>Mass Flow<br>Carbon Dioxide<br>Vitrogen<br>Methane<br>Ethane<br>Propane<br>sobutane<br>h-Butane<br>sobutane<br>h-Pentane<br>Benzene<br>Foluene<br>Ethylbenzene<br>D-Pentane<br>Benzene<br>Foluene<br>Ethylbenzene<br>D-Yylene<br>h-Hexane<br>2,2,4-Trimethylpentar<br>Dther C6's<br>Heptanes<br>Doctanes<br>Doctanes<br>Decanes + | ne               |     | 0.26142<br>0.119034<br>0.0223659<br>3.96089E-07<br>Emission<br>Point<br>Ib/h<br>0<br>2.83953E-05<br>0.000827528<br>0.000649885<br>0.000649885<br>0.000368547<br>7.16989E-05<br>0.0001195<br>4.4563E-05<br>3.6051E-05<br>6.86285E-07<br>1.32095E-06<br>3.87398E-07<br>1.15745E-06<br>1.53761E-05<br>0<br>2.32197E-05<br>2.30056E-05<br>1.19168E-05<br>2.51409E-06<br>9.88557E-11<br>Emission<br>Point                                    | 5.6003<br>8.14263<br>5.07384<br>69.7247<br>Pipeline<br>Liquids<br>Ib/h<br>0<br>4.31558E-06<br>0.00034443<br>0.00162137<br>0.00361227<br>0.00361227<br>0.00361237<br>0.00361297<br>0.00565591<br>0.000475856<br>0.00325324<br>0.00326151<br>0.000432562<br>0.00326151<br>0.000432562<br>0.00326151<br>0.000432562<br>0.00326151<br>0.000463264<br>0.00931139<br>0<br>0<br>0.0106217<br>0.0404638<br>0.066929<br>0.0468264<br>1.42875<br>Pipeline<br>Liquids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.04608           5.01305           68.8857           Pressurized           Liquid           lb/h           0           3.27109E-05           0.00117196           0.00227126           0.00227126           0.00227126           0.00238082           0.002403           0.00227126           0.00227126           0.00227126           0.00227126           0.00227127           0.00569196           0.000433249           0.00325457           0.0032619 *           0.0032619 *           0.0032619 *           0.010452 *           0.0032619 *           0.010452 *           0.0032647 *           0.0032647 *           0.0032649 *           0.010649 *           0.0404869 *           0.0404869 *           0.046829 *           1.42875 *           Pressurized           Liquid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |           |
| Heptanes<br>Doctanes<br>Nonanes<br>Decanes +<br>Mass Flow<br>Carbon Dioxide<br>Vitrogen<br>Methane<br>Ethane<br>Propane<br>sobutane<br>h-Butane<br>sobutane<br>h-Pentane<br>Benzene<br>Foluene<br>Ethylbenzene<br>-Xylene<br>h-Hexane<br>2,2,4-Trimethylpentar<br>Dither C6's<br>Heptanes<br>Doctanes<br>Nonanes<br>Decanes +<br>Molumetric Flow                                  | ne               |     | 0.26142<br>0.119034<br>0.0223659<br>3.96089E-07<br>Emission<br>Point<br>Ib/h<br>0<br>2.83953E-05<br>0.000827528<br>0.000649885<br>0.000368547<br>7.16989E-05<br>0.0001195<br>4.4563E-05<br>3.6051E-05<br>6.86285E-07<br>1.32095E-06<br>3.87398E-07<br>1.15745E-06<br>1.53761E-05<br>0<br>2.32197E-05<br>2.30056E-05<br>1.19168E-05<br>2.51409E-06<br>9.88557E-11<br>Emission<br>Point<br>ft^3/h                                         | 5.6003<br>8.14263<br>5.07384<br>69.7247<br>Pipeline<br>Liquids<br>Ib/h<br>0<br>4.31558E-06<br>0.00034443<br>0.00162137<br>0.00361227<br>0.00361227<br>0.00361227<br>0.0019686<br>0.00475856<br>0.00516297<br>0.00565591<br>0.000432562<br>0.00325324<br>0.00325324<br>0.00326151<br>0.000432562<br>0.00325324<br>0.00325324<br>0.00326151<br>0.000432562<br>0.00325324<br>0.00326151<br>0.000432562<br>0.00325324<br>0.00326151<br>0.000432562<br>0.000325324<br>0.006929<br>0.0468264<br>1.42875<br>Pipeline<br>Liquids<br>gpm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.04608           5.01305           68.8857           Pressurized           Liquid           lb/h           0           3.27109E-05           0.00117196           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227127           0.00227128           0.00227133           0.00569196           0.000433249           0.00325457           0.00325457           0.0032619           0.010452           0.0032619           0.010452           0.0032619           0.010452           0.0032619           0.010452           0.0048809           0.0404869           0.046829           0.046829           1.42875           Pressurized           Liquid           ft^3/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |           |
| Heptanes<br>Dectanes<br>Nonanes<br>Decanes +<br>Mass Flow<br>Carbon Dioxide<br>Vitrogen<br>Methane<br>Ethane<br>Propane<br>sobutane<br>n-Butane<br>Sopentane<br>n-Pentane<br>Benzene<br>Toluene<br>Ethylbenzene<br>-Xylene<br>n-Pentane<br>2,2,4-Trimethylpentar<br>Dther C6's<br>Heptanes<br>Decanes +<br>Decanes +<br>Volumetric Flow<br>Carbon Dioxide                         | ne               |     | 0.26142<br>0.119034<br>0.0223659<br>3.96089E-07<br>Emission<br>Point<br>Ib/h<br>0<br>2.83953E-05<br>0.000827528<br>0.000649885<br>0.000368547<br>7.16989E-05<br>0.0001195<br>4.4563E-05<br>3.6051E-05<br>6.86285E-07<br>1.32095E-06<br>3.87398E-07<br>1.15745E-06<br>1.53761E-05<br>0<br>2.32197E-05<br>2.30056E-05<br>1.19168E-05<br>2.51409E-06<br>9.88557E-11<br>Emission<br>Point<br>ft^3/h<br>0                                    | 5.6003<br>8.14263<br>5.07384<br>69.7247<br>Pipeline<br>Liquids<br>Ib/h<br>0<br>4.31558E-06<br>0.00034443<br>0.00162137<br>0.00361227<br>0.00361227<br>0.00361227<br>0.0019686<br>0.00475856<br>0.00475856<br>0.00516297<br>0.00565591<br>0.000432562<br>0.00325324<br>0.00325324<br>0.00325324<br>0.00325324<br>0.00325324<br>0.00325324<br>0.00325324<br>0.00325151<br>0.000432562<br>0.00325324<br>0.00325324<br>0.00326151<br>0.0106217<br>0.0404638<br>0.066929<br>0.0468264<br>1.42875<br>Pipeline<br>Liquids<br>gpm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.04608           5.01305           68.8857           68.8857           Ib/h           0           3.27109E-05           0.00117196           0.00227126           0.00227126           0.00227126           0.00227126           0.0020403           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00487806           0.00520753           0.00520753           0.00325457           0.00325457           0.0032619           0.0106429           0.0106449           0.0404869           0.0404829           0.046829           1.42875           Pressurized           Liquid           ft^3/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |           |
| Heptanes<br>Dectanes<br>Nonanes<br>Decanes +<br>Mass Flow<br>Carbon Dioxide<br>Vitrogen<br>Methane<br>Ethane<br>Propane<br>sobutane<br>Butane<br>Sopentane<br>Pentane<br>Benzene<br>Toluene<br>Ethylbenzene<br>Xylene<br>Hexane<br>2,2,4-Trimethylpentar<br>Diher C6's<br>Heptanes<br>Decanes +<br>Decanes +<br>Volumetric Flow<br>Carbon Dioxide<br>Vitrogen                     | ne               |     | 0.26142<br>0.119034<br>0.0223659<br>3.96089E-07<br>Emission<br>Point<br>Ib/h<br>0<br>2.83953E-05<br>0.000827528<br>0.000827528<br>0.000649885<br>0.000368547<br>7.16989E-05<br>0.0001195<br>4.4563E-05<br>3.6051E-05<br>6.86285E-07<br>1.32095E-06<br>3.87398E-07<br>1.15745E-06<br>1.53761E-05<br>0<br>2.32197E-05<br>2.30056E-05<br>1.19168E-05<br>2.51409E-06<br>9.88557E-11<br>Emission<br>Point<br>ft^3/h<br>0<br>0<br>0.000383943 | 5.6003<br>8.14263<br>5.07384<br>69.7247<br>Pipeline<br>Liquids<br>Ib/h<br>0<br>4.31558E-06<br>0.00034443<br>0.00162137<br>0.00361227<br>0.00361227<br>0.003665591<br>0.00475856<br>0.00475856<br>0.00516297<br>0.00565591<br>0.000432562<br>0.00325324<br>0.00325324<br>0.00326151<br>0.0104509<br>0.000931139<br>0<br>0.0106217<br>0.0404638<br>0.066929<br>0.0468264<br>1.42875<br>Pipeline<br>Liquids<br>gpm<br>0<br>0<br>9.32925E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.04608           5.01305           68.8857           68.8857           Pressurized<br>Liquid<br>Ib/h           0           3.27109E-05           0.00117196           0.00227126           0.00227126           0.0020403           0.0020403           0.0020753           0.00520753           0.00569196           0.00325457           0.0032619           0.00032619           0.00106429           0.010649           0.010669409           0.046829           1.42875           Pressurized<br>Liquid<br>ft*3/h           0           3.2017E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |           |
| Heptanes                                                                                                                                                                                                                                                                                                                                                                          | ne               |     | 0.26142<br>0.119034<br>0.0223659<br>3.96089E-07<br>Emission<br>Point<br>Ib/h<br>0<br>2.83953E-05<br>0.000827528<br>0.000649885<br>0.000368547<br>7.16989E-05<br>0.0001195<br>4.4563E-05<br>3.6051E-05<br>6.86285E-07<br>1.32095E-06<br>3.87398E-07<br>1.15745E-06<br>1.53761E-05<br>0<br>2.32197E-05<br>2.30056E-05<br>1.19168E-05<br>2.51409E-06<br>9.88557E-11<br>Emission<br>Point<br>ft^3/h<br>0                                    | 5.6003<br>8.14263<br>5.07384<br>69.7247<br>Pipeline<br>Liquids<br>Ib/h<br>0<br>4.31558E-06<br>0.00034443<br>0.00162137<br>0.00361227<br>0.00361227<br>0.00361227<br>0.0019686<br>0.00475856<br>0.00475856<br>0.00516297<br>0.00565591<br>0.000432562<br>0.00325324<br>0.00325324<br>0.00325324<br>0.00325324<br>0.00325324<br>0.00325324<br>0.00325324<br>0.00325151<br>0.000432562<br>0.00325324<br>0.00325324<br>0.00326151<br>0.0106217<br>0.0404638<br>0.066929<br>0.0468264<br>1.42875<br>Pipeline<br>Liquids<br>gpm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.04608           5.01305           68.8857           68.8857           Ib/h           0           3.27109E-05           0.00117196           0.00227126           0.00227126           0.00227126           0.00227126           0.0020403           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00227126           0.00487806           0.00520753           0.00520753           0.00325457           0.00325457           0.0032619           0.0106429           0.0106449           0.0404869           0.0404829           0.046829           1.42875           Pressurized           Liquid           ft^3/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |           |

\* User Specified Values ? Extrapolated or Approximate Values

Licensed to SLR International Corporation and Affiliates

|                          | Process Streams Report<br>All Streams<br>Tabulated by Total Phase |          |                             |                            |                                 |                   |  |
|--------------------------|-------------------------------------------------------------------|----------|-----------------------------|----------------------------|---------------------------------|-------------------|--|
| Client Name: Cl          | NX Gas                                                            |          |                             |                            | Job: Tank                       | Emission Estimate |  |
|                          | phrbough Stat                                                     | tion     |                             |                            |                                 |                   |  |
|                          | owsheet1                                                          |          |                             |                            |                                 |                   |  |
|                          |                                                                   |          |                             |                            |                                 |                   |  |
| Volumetric Flow          |                                                                   |          | Emission<br>Point<br>ft^3/h | Pipeline<br>Liquids<br>gpm | Pressurized<br>Liquid<br>ft^3/h |                   |  |
| Propane                  |                                                                   |          | 0.0031106                   | 1.22155E-05                | 0.000152635                     |                   |  |
| Isobutane                |                                                                   |          | 0.000456675                 | 6.60212E-06                | 6.10388E-05                     |                   |  |
| n-Butane                 |                                                                   |          | 0.000760417                 | 1.54075E-05                | 0.000136846                     |                   |  |
| Isopentane               |                                                                   |          | 0.000227044                 | 1.62726E-05                | 0.000134581                     |                   |  |
| n-Pentane                |                                                                   |          | 0.000183631                 | 1.75583E-05                | 0.000144115                     |                   |  |
| Benzene                  |                                                                   |          | 3.22587E-06                 | 9.48835E-07                | 7.66316E-06                     |                   |  |
| Toluene                  |                                                                   |          | 5.23133E-06                 | 7.37284E-06                | 5.92086E-05                     |                   |  |
| Ethylbenzene             |                                                                   |          | 1.32238E-06                 | 7.50771E-06                | 6.02146E-05                     |                   |  |
| p-Xylene                 |                                                                   |          | 3.94857E-06                 | 2.40791E-05                | 0.000193143                     |                   |  |
| n-Hexane                 |                                                                   |          | 6.51556E-05                 | 2.79113E-05                | 0.000225036                     |                   |  |
| 2,2,4-Trimethylpentane   |                                                                   |          | 0                           | 0                          | 0                               |                   |  |
| Other C6's               |                                                                   |          | 9.98407E-05                 | 3.21242E-05                | 0.000259428                     |                   |  |
| Heptanes                 |                                                                   |          | 8.34279E-05                 | 0.000116503                | 0.000935695                     |                   |  |
| Octanes                  |                                                                   |          | 3.77759E-05                 | 0.000186967                | 0.00149981                      |                   |  |
| Nonanes                  |                                                                   |          | 7.05639E-06                 | 0.000127435                | 0.00102192                      |                   |  |
| Decanes +                |                                                                   |          | 1.16107E-10                 | 0.00337781                 | 0.0270938                       |                   |  |
|                          |                                                                   |          |                             |                            |                                 |                   |  |
|                          |                                                                   |          |                             | Properties                 |                                 |                   |  |
| Property                 |                                                                   | Units    | Emission<br>Point           | Pipeline<br>Liquids        | Pressurized<br>Liquid           |                   |  |
| Temperature              |                                                                   | °F       | 57.7653                     | 57.7653                    | 58 *                            |                   |  |
| Pressure                 |                                                                   | psia     | 14.6959                     | 14.6959                    | 35.6959 *                       |                   |  |
| Mole Fraction Vapor      |                                                                   | %        | 100                         | 0                          | 0.0938779                       |                   |  |
| Mole Fraction Light Liqu |                                                                   | %        | 0                           | 100                        | 99.9061                         |                   |  |
| Mole Fraction Heavy Lie  | quid                                                              | %        | 0                           | 0                          | 0                               |                   |  |
| Molecular Weight         |                                                                   | lb/lbmol | 25.345                      | 227.932                    | 225.494                         |                   |  |
| Molar Flow               |                                                                   | lbmol/h  | 8.78182E-05                 | 0.00721016                 | 0.00729798                      |                   |  |
| Mass Flow                |                                                                   | lb/h     | 0.00222575                  | 1.64343                    | 1.64565                         |                   |  |
| Vapor Volumetric Flow    |                                                                   | ft^3/h   | 0.032981                    | 0.0319544                  | 0.0330725                       |                   |  |
| Liquid Volumetric Flow   |                                                                   | gpm      | 0.00411192                  | 0.00398392                 | 0.00412332                      |                   |  |
| Std Vapor Volumetric F   |                                                                   | MMSCFD   | 7.99814E-07                 | 6.56674E-05                | 6.64672E-05                     |                   |  |
| Std Liquid Volumetric F  | ow                                                                | sgpm     | 1.18362E-05                 | 0.00398356                 | 0.0039954 *                     |                   |  |
| Specific Gravity         |                                                                   |          | 0.875095                    | 0.824615                   |                                 |                   |  |
| API Gravity              |                                                                   |          |                             | 40.2833                    |                                 |                   |  |
| Net Ideal Gas Heating \  |                                                                   | Btu/ft^3 | 1358.11                     | 11167.2                    | 11049.1                         |                   |  |
| Net Liquid Heating Valu  | e                                                                 | Btu/lb   | 20239.2                     | 18439.8                    | 18442.2                         |                   |  |

20239.2

1490.1

22215.3

Btu/ft^3

Btu/lb

Btu/lb

18439.8

11904.2

19666.9

18442.2

11778.9

19670.3

Remarks

Net Liquid Heating Value Gross Ideal Gas Heating Value

Gross Liquid Heating Value

| Simulation Initiated on 12/2 | 21/2016 8:17:43 PM |         | Rohrbough   | Tank Run.pmx               |             |                | Page 1 of   |
|------------------------------|--------------------|---------|-------------|----------------------------|-------------|----------------|-------------|
|                              |                    |         | Tar         | ocks<br>Nk -1<br>or Report |             |                |             |
| Client Name:                 | CNX Gas            |         |             |                            | Job: Tank I | Emission Estin | nate        |
| Location:                    | Rohrbough Station  |         |             |                            | Modified: 7 | :58 PM, 12/21  | /2016       |
| Flowsheet:                   | Flowsheet1         |         |             |                            | Status: Sol | ved 8:00 PM,   | 12/21/2016  |
|                              |                    |         |             |                            |             |                |             |
|                              |                    |         | Conne       | ections                    |             |                |             |
| Stream                       | Connection Ty      | pe      | Other Block | Stream                     | Connect     | tion Type      | Other Block |
| Pressurized Liqui            | d Inlet            |         |             | Emission Point             | Vapor       | Outlet         |             |
| Pipeline Liquids             | Light Liquid Ou    | tlet    |             |                            | •           |                |             |
|                              |                    |         |             |                            |             |                |             |
|                              |                    |         | Block Pa    | arameters                  |             |                |             |
| * Pressure Drop              |                    | 21      | psi         | Main Liquid Phase          |             | Light L        | iquid       |
| Mole Fraction Vap            | or                 | 1.20332 | %           | Heat Duty                  |             |                | 0 Btu/h     |
| Mole Fraction Light          | nt Liquid          | 98.7967 | %           | Heat Release Curve T       | уре         | Plug           | Flow        |
| Mole Fraction Hea            | avy Liquid         | 0       | %           | Heat Release Curve         |             |                | 10          |
|                              |                    |         |             | Increments                 |             |                |             |
|                              |                    |         |             |                            |             |                |             |
| Remarks                      |                    |         |             |                            |             |                |             |
|                              |                    |         |             |                            |             |                |             |
|                              |                    |         |             |                            |             |                |             |
|                              |                    |         |             |                            |             |                |             |

|                                                                                                                                                                          |                | F                                                                                      |                                                                               | Environment<br>onment1                                                                                                      |              |                                                                               |                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Client Name:                                                                                                                                                             | CNX Gas        | I                                                                                      |                                                                               |                                                                                                                             | Job: Tank En | nission Estimate                                                              |                                                                               |
| Location:                                                                                                                                                                | Rohrbough Stat | ion                                                                                    |                                                                               |                                                                                                                             |              |                                                                               |                                                                               |
| Flowsheet:                                                                                                                                                               | Flowsheet1     |                                                                                        |                                                                               |                                                                                                                             |              |                                                                               |                                                                               |
|                                                                                                                                                                          |                |                                                                                        |                                                                               |                                                                                                                             |              |                                                                               |                                                                               |
|                                                                                                                                                                          |                |                                                                                        | Environm                                                                      | ent Settings                                                                                                                |              |                                                                               |                                                                               |
| Number of Poynt                                                                                                                                                          | ing Intervals  | 0                                                                                      |                                                                               | Phase Tolerance                                                                                                             |              | 1 %                                                                           |                                                                               |
| Gibbs Excess Mo                                                                                                                                                          | odel           | 77 °F                                                                                  |                                                                               | Emulsion Enabled                                                                                                            |              | False                                                                         |                                                                               |
| Evaluation Temp                                                                                                                                                          |                |                                                                                        |                                                                               |                                                                                                                             |              |                                                                               |                                                                               |
| Freeze Out Temp                                                                                                                                                          |                | 10 °F                                                                                  |                                                                               |                                                                                                                             |              |                                                                               |                                                                               |
| Threshold Differe                                                                                                                                                        | ence           |                                                                                        |                                                                               |                                                                                                                             |              |                                                                               |                                                                               |
|                                                                                                                                                                          |                |                                                                                        |                                                                               |                                                                                                                             |              |                                                                               |                                                                               |
|                                                                                                                                                                          |                |                                                                                        | Comp                                                                          | onents                                                                                                                      |              |                                                                               |                                                                               |
| Component Name                                                                                                                                                           | 9              | Henry's Law<br>Component                                                               | Phase<br>Initiator                                                            | Component Name                                                                                                              |              | Henry's Law<br>Component                                                      | Phase<br>Initiator                                                            |
|                                                                                                                                                                          |                |                                                                                        |                                                                               |                                                                                                                             |              |                                                                               |                                                                               |
| Carbon Dioxide                                                                                                                                                           |                | False                                                                                  | False                                                                         | Toluene                                                                                                                     |              | False                                                                         | False                                                                         |
|                                                                                                                                                                          |                | False<br>False                                                                         | False<br>False                                                                | I oluene<br>Ethylbenzene                                                                                                    |              | False<br>False                                                                | False<br>False                                                                |
| Nitrogen                                                                                                                                                                 |                |                                                                                        |                                                                               |                                                                                                                             |              |                                                                               |                                                                               |
| Nitrogen<br>Methane                                                                                                                                                      |                | False                                                                                  | False                                                                         | Ethylbenzene                                                                                                                |              | False                                                                         | False                                                                         |
| Nitrogen<br>Methane<br>Ethane                                                                                                                                            |                | False<br>False<br>False<br>False                                                       | False<br>False<br>False<br>False                                              | Ethylbenzene<br>p-Xylene<br>n-Hexane<br>2,2,4-Trimethylpentane                                                              |              | False<br>False<br>False<br>False<br>False                                     | False<br>False<br>False<br>False                                              |
| Nitrogen<br>Methane<br>Ethane<br>Propane                                                                                                                                 |                | False<br>False<br>False<br>False<br>False<br>False                                     | False<br>False<br>False<br>False<br>False                                     | Ethylbenzene<br>p-Xylene<br>n-Hexane                                                                                        |              | False<br>False<br>False<br>False<br>False<br>False                            | False<br>False<br>False<br>False<br>False<br>False                            |
| Nitrogen<br>Methane<br>Ethane<br>Propane<br>Isobutane                                                                                                                    |                | False<br>False<br>False<br>False<br>False<br>False<br>False                            | False<br>False<br>False<br>False<br>False<br>False                            | Ethylbenzene<br>p-Xylene<br>n-Hexane<br>2,2,4-Trimethylpentane                                                              |              | False<br>False<br>False<br>False<br>False<br>False<br>False                   | False<br>False<br>False<br>False<br>False<br>False                            |
| Nitrogen<br>Methane<br>Ethane<br>Propane<br>Isobutane<br>n-Butane<br>Isopentane                                                                                          |                | False<br>False<br>False<br>False<br>False<br>False<br>False                            | False<br>False<br>False<br>False<br>False<br>False<br>False                   | Ethylbenzene<br>p-Xylene<br>n-Hexane<br>2,2,4-Trimethylpentane<br>Other C6's<br>Heptanes<br>Octanes                         |              | False<br>False<br>False<br>False<br>False<br>False<br>False                   | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False          |
| Nitrogen<br>Methane<br>Ethane<br>Propane<br>Isobutane<br>n-Butane<br>Isopentane<br>n-Pentane                                                                             |                | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False          | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False          | Ethylbenzene<br>p-Xylene<br>n-Hexane<br>2,2,4-Trimethylpentane<br>Other C6's<br>Heptanes<br>Octanes<br>Nonanes              |              | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False          | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False          |
| Nitrogen<br>Methane<br>Ethane<br>Propane<br>Isobutane<br>n-Butane<br>Isopentane<br>n-Pentane                                                                             |                | False<br>False<br>False<br>False<br>False<br>False<br>False                            | False<br>False<br>False<br>False<br>False<br>False<br>False                   | Ethylbenzene<br>p-Xylene<br>n-Hexane<br>2,2,4-Trimethylpentane<br>Other C6's<br>Heptanes<br>Octanes                         |              | False<br>False<br>False<br>False<br>False<br>False<br>False                   | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False          |
| Nitrogen<br>Methane<br>Ethane<br>Propane<br>Isobutane<br>n-Butane<br>Isopentane<br>n-Pentane                                                                             |                | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False          | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False          | Ethylbenzene<br>p-Xylene<br>n-Hexane<br>2,2,4-Trimethylpentane<br>Other C6's<br>Heptanes<br>Octanes<br>Nonanes              |              | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False          | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False          |
| Nitrogen<br>Methane<br>Ethane<br>Propane<br>Isobutane<br>n-Butane<br>Isopentane<br>n-Pentane                                                                             |                | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False          | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False | Ethylbenzene<br>p-Xylene<br>n-Hexane<br>2,2,4-Trimethylpentane<br>Other C6's<br>Heptanes<br>Octanes<br>Nonanes<br>Decanes + |              | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False          | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False          |
| Nitrogen<br>Methane<br>Ethane<br>Propane<br>Isobutane<br>n-Butane<br>Isopentane<br>n-Pentane<br>Benzene                                                                  | e              | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False          | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False | Ethylbenzene<br>p-Xylene<br>n-Hexane<br>2,2,4-Trimethylpentane<br>Other C6's<br>Heptanes<br>Octanes<br>Nonanes              |              | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False          | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False |
| Carbon Dioxide<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>Isobutane<br>n-Butane<br>Isopentane<br>n-Pentane<br>Benzene<br>Liquid Molar Volum<br>Stability Calculatior |                | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False | Ethylbenzene<br>p-Xylene<br>n-Hexane<br>2,2,4-Trimethylpentane<br>Other C6's<br>Heptanes<br>Octanes<br>Nonanes<br>Decanes + |              | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False |

F

|                                                                                                                                                                                                          |                  | Eı                                                                                                                                   | nvironm                                                                                                                     | ents Report                                                                                                                                                                              |             |                                                                                                              |                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Client Name:                                                                                                                                                                                             | CNX Gas          |                                                                                                                                      |                                                                                                                             |                                                                                                                                                                                          | Job: Tank E | Emission Estimate                                                                                            |                                                                                                     |
| Location:                                                                                                                                                                                                | Rohrbough Statio | n                                                                                                                                    |                                                                                                                             |                                                                                                                                                                                          |             |                                                                                                              |                                                                                                     |
|                                                                                                                                                                                                          |                  |                                                                                                                                      |                                                                                                                             |                                                                                                                                                                                          |             |                                                                                                              |                                                                                                     |
|                                                                                                                                                                                                          |                  | Р                                                                                                                                    | roiect-Wi                                                                                                                   | de Constants                                                                                                                                                                             |             |                                                                                                              |                                                                                                     |
| Atmospheric Pressu                                                                                                                                                                                       | ire              | 14.6959                                                                                                                              |                                                                                                                             | Ideal Gas Reference Pre                                                                                                                                                                  | ssure       | 14.6959                                                                                                      | psia                                                                                                |
| Ideal Gas Reference                                                                                                                                                                                      | e Temperature    |                                                                                                                                      | °F                                                                                                                          | Ideal Gas Reference Vol                                                                                                                                                                  | ume         | 379.484                                                                                                      | ft^3/lbmol                                                                                          |
| Liquid Reference Te                                                                                                                                                                                      | emperature       | 60                                                                                                                                   | °F                                                                                                                          |                                                                                                                                                                                          |             |                                                                                                              |                                                                                                     |
|                                                                                                                                                                                                          |                  |                                                                                                                                      | <b>.</b>                                                                                                                    |                                                                                                                                                                                          |             |                                                                                                              |                                                                                                     |
|                                                                                                                                                                                                          |                  |                                                                                                                                      |                                                                                                                             | [Environment1]                                                                                                                                                                           |             |                                                                                                              |                                                                                                     |
|                                                                                                                                                                                                          |                  |                                                                                                                                      | Environm                                                                                                                    | ent Settings                                                                                                                                                                             |             |                                                                                                              |                                                                                                     |
| Number of Poynting Intervals<br>Gibbs Excess Model                                                                                                                                                       |                  | 0<br>77 °F                                                                                                                           |                                                                                                                             | Phase Tolerance                                                                                                                                                                          |             | 1 %                                                                                                          |                                                                                                     |
| GIDDS EXCESS IVIO                                                                                                                                                                                        |                  | // F                                                                                                                                 |                                                                                                                             | Emulsion Enabled                                                                                                                                                                         |             | False                                                                                                        |                                                                                                     |
|                                                                                                                                                                                                          | ratura           |                                                                                                                                      |                                                                                                                             |                                                                                                                                                                                          |             |                                                                                                              |                                                                                                     |
| Evaluation Tempe                                                                                                                                                                                         |                  | 10 °F                                                                                                                                |                                                                                                                             |                                                                                                                                                                                          |             |                                                                                                              |                                                                                                     |
|                                                                                                                                                                                                          | erature          | 10 °F                                                                                                                                |                                                                                                                             |                                                                                                                                                                                          |             |                                                                                                              |                                                                                                     |
| Evaluation Tempe<br>Freeze Out Temp                                                                                                                                                                      | erature          | 10 °F                                                                                                                                |                                                                                                                             |                                                                                                                                                                                          |             |                                                                                                              |                                                                                                     |
| Evaluation Tempe<br>Freeze Out Temp<br>Threshold Differer                                                                                                                                                | erature          |                                                                                                                                      | Comp                                                                                                                        | oonents                                                                                                                                                                                  |             |                                                                                                              |                                                                                                     |
| Evaluation Tempe<br>Freeze Out Temp<br>Threshold Differer                                                                                                                                                | erature          | 10 °F<br>Henry's Law<br>Component                                                                                                    | Comp<br>Phase<br>Initiator                                                                                                  | Donents<br>Component Name                                                                                                                                                                |             | Henry's Law<br>Component                                                                                     | Phase                                                                                               |
| Evaluation Tempe<br>Freeze Out Temp<br>Threshold Differen<br>Component Name<br>Carbon Dioxide                                                                                                            | erature          | Henry's Law<br>Component<br>False                                                                                                    | Phase<br>Initiator<br>False                                                                                                 | Component Name Toluene                                                                                                                                                                   |             | Component<br>False                                                                                           | Initiator<br>False                                                                                  |
| Evaluation Tempe<br>Freeze Out Temp<br>Threshold Differen<br>Component Name<br>Carbon Dioxide<br>Nitrogen                                                                                                | erature          | Henry's Law<br>Component<br>False<br>False                                                                                           | Phase<br>Initiator<br>False<br>False                                                                                        | Component Name<br>Toluene<br>Ethylbenzene                                                                                                                                                |             | Component<br>False<br>False                                                                                  | Initiator<br>False<br>False                                                                         |
| Evaluation Tempe<br>Freeze Out Temp<br>Threshold Differen<br>Component Name<br>Carbon Dioxide<br>Nitrogen<br>Methane                                                                                     | erature          | Henry's Law<br>Component<br>False<br>False<br>False                                                                                  | Phase<br>Initiator<br>False<br>False<br>False                                                                               | Component Name Toluene Ethylbenzene p-Xylene                                                                                                                                             |             | Component<br>False<br>False<br>False                                                                         | Initiator<br>False<br>False<br>False                                                                |
| Evaluation Tempe<br>Freeze Out Temp<br>Threshold Differen<br>Component Name<br>Carbon Dioxide<br>Nitrogen<br>Methane<br>Ethane                                                                           | erature          | Henry's Law<br>Component<br>False<br>False<br>False<br>False<br>False                                                                | Phase<br>Initiator<br>False<br>False<br>False<br>False                                                                      | Component Name Toluene Ethylbenzene p-Xylene n-Hexane                                                                                                                                    |             | Component<br>False<br>False<br>False<br>False<br>False                                                       | Initiator<br>False<br>False<br>False<br>False                                                       |
| Evaluation Tempe<br>Freeze Out Temp<br>Threshold Differen<br>Component Name<br>Carbon Dioxide<br>Nitrogen<br>Methane<br>Ethane<br>Propane                                                                | erature          | Henry's Law<br>Component<br>False<br>False<br>False<br>False<br>False<br>False                                                       | Phase<br>Initiator<br>False<br>False<br>False<br>False<br>False                                                             | Component Name<br>Toluene<br>Ethylbenzene<br>p-Xylene<br>n-Hexane<br>2,2,4-Trimethylpentane                                                                                              |             | Component<br>False<br>False<br>False<br>False<br>False                                                       | Initiator<br>False<br>False<br>False<br>False<br>False                                              |
| Evaluation Tempe<br>Freeze Out Temp<br>Threshold Differen<br>Component Name<br>Carbon Dioxide<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>Isobutane                                                   | erature          | Henry's Law<br>Component<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                              | Phase<br>Initiator<br>False<br>False<br>False<br>False<br>False<br>False                                                    | Component Name           Toluene           Ethylbenzene           p-Xylene           n-Hexane           2,2,4-Trimethylpentane           Other C6's                                      |             | Component<br>False<br>False<br>False<br>False<br>False<br>False                                              | Initiator<br>False<br>False<br>False<br>False<br>False<br>False                                     |
| Evaluation Tempe<br>Freeze Out Temp<br>Threshold Differen<br>Component Name<br>Carbon Dioxide<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>Isobutane<br>n-Butane                                       | erature          | Henry's Law<br>Component<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                     | Phase<br>Initiator<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                           | Component Name<br>Toluene<br>Ethylbenzene<br>p-Xylene<br>n-Hexane<br>2,2,4-Trimethylpentane<br>Other C6's<br>Heptanes                                                                    |             | Component<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                     | Initiator<br>False<br>False<br>False<br>False<br>False<br>False<br>False                            |
| Evaluation Tempe<br>Freeze Out Temp<br>Threshold Differen<br>Component Name<br>Carbon Dioxide<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>Isobutane<br>n-Butane<br>Isopentane                         | erature          | Henry's Law<br>Component<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                   | Phase<br>Initiator<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                  | Component NameTolueneEthylbenzenep-Xylenen-Hexane2,2,4-TrimethylpentaneOther C6'sHeptanesOctanes                                                                                         |             | Component<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                   | Initiator<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                   |
| Evaluation Tempe<br>Freeze Out Temp<br>Threshold Differen<br>Component Name<br>Carbon Dioxide<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>Isobutane<br>n-Butane<br>Isopentane<br>n-Pentane            | erature          | Henry's Law<br>Component<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False          | Phase<br>Initiator<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                         | Component Name         Toluene         Ethylbenzene         p-Xylene         n-Hexane         2,2,4-Trimethylpentane         Other C6's         Heptanes         Octanes         Nonanes |             | Component<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False          | Initiator<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False          |
| Evaluation Tempe<br>Freeze Out Temp<br>Threshold Differen<br>Component Name<br>Carbon Dioxide<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>Isobutane<br>n-Butane<br>Isopentane<br>n-Pentane            | erature          | Henry's Law<br>Component<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                   | Phase<br>Initiator<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                  | Component NameTolueneEthylbenzenep-Xylenen-Hexane2,2,4-TrimethylpentaneOther C6'sHeptanesOctanes                                                                                         |             | Component<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                   | Initiator<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                   |
| Evaluation Tempe<br>Freeze Out Temp<br>Threshold Differen<br>Component Name<br>Carbon Dioxide<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>Isobutane<br>n-Butane<br>Isopentane<br>n-Pentane            | erature          | Henry's Law<br>Component<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False          | Phase<br>Initiator<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                | Component Name<br>Toluene<br>Ethylbenzene<br>p-Xylene<br>n-Hexane<br>2,2,4-Trimethylpentane<br>Other C6's<br>Heptanes<br>Octanes<br>Nonanes<br>Decanes +<br>Perty Method Sets            |             | Component<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False | Initiator<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False          |
| Evaluation Tempe<br>Freeze Out Temp<br>Threshold Differen<br>Component Name<br>Carbon Dioxide<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>Isobutane<br>n-Butane<br>Isopentane<br>n-Pentane<br>Benzene | erature nce      | Henry's Law<br>Component<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False          | Phase<br>Initiator<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                | Component Name<br>Toluene<br>Ethylbenzene<br>p-Xylene<br>n-Hexane<br>2,2,4-Trimethylpentane<br>Other C6's<br>Heptanes<br>Octanes<br>Nonanes<br>Decanes +                                 |             | Component<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False | Initiator<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False          |
| Evaluation Tempe<br>Freeze Out Temp<br>Threshold Differen<br>Component Name<br>Carbon Dioxide<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>Isobutane<br>n-Butane<br>Isopentane                         | erature<br>nce   | Henry's Law<br>Component<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False | Phase<br>Initiator<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>Sical Prope | Component Name<br>Toluene<br>Ethylbenzene<br>p-Xylene<br>n-Hexane<br>2,2,4-Trimethylpentane<br>Other C6's<br>Heptanes<br>Octanes<br>Nonanes<br>Decanes +<br>Perty Method Sets            |             | Component<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False | Initiator<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False |

| Volume Average Boiling     661.659     °F     Low       * Molecular Weight     284.2     lb/lbmol     Ten Visc       * Specific Gravity     0.8465     Higl       API Gravity     35.6589     Wat                                                                         | Job: Tank Emission Estimate                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Volume Average Boiling       661.659       °F       Low         Point       284.2       lb/lbmol       Ten         * Molecular Weight       284.2       lb/lbmol       Ten         * Specific Gravity       0.8465       Higl         API Gravity       35.6589       Wat | w Temperature Viscosity 6.79714 cP<br>mperature of High T 210 °F<br>cosity |
| Volume Average Boiling<br>Point       661.659 °F       Low         * Molecular Weight       284.2 lb/lbmol       Ten<br>Visc         * Specific Gravity       0.8465       Higl         API Gravity       35.6589       Wat                                               | w Temperature Viscosity 6.79714 cP<br>mperature of High T 210 °F<br>cosity |
| Volume Average Boiling<br>Point       661.659 °F       Low         * Molecular Weight       284.2 lb/lbmol       Ten<br>Visc         * Specific Gravity       0.8465       Higl         API Gravity       35.6589       Wat                                               | w Temperature Viscosity 6.79714 cP<br>mperature of High T 210 °F<br>cosity |
| Volume Average Boiling<br>Point       661.659 °F       Low         * Molecular Weight       284.2 lb/lbmol       Ten<br>Visc         * Specific Gravity       0.8465       Higl         API Gravity       35.6589       Wat                                               | w Temperature Viscosity 6.79714 cP<br>mperature of High T 210 °F<br>cosity |
| Point     Ten       * Molecular Weight     284.2 lb/lbmol     Ten       * Specific Gravity     0.8465     Higl       API Gravity     35.6589     Wat                                                                                                                      | mperature of High T 210 °F<br>cosity                                       |
| Visc           * Specific Gravity         0.8465         Higt           API Gravity         35.6589         Wat                                                                                                                                                           | cosity                                                                     |
| API Gravity 35.6589 Wat                                                                                                                                                                                                                                                   | h Tomporoturo Vigoopity 1 92072 op                                         |
| ,                                                                                                                                                                                                                                                                         |                                                                            |
| Critical Temperature 951.235 °F AST                                                                                                                                                                                                                                       | itson K 12.273                                                             |
|                                                                                                                                                                                                                                                                           | TM D86 10-90% Slope 0 °F/%                                                 |
| Critical Pressure 185.306 psia AST                                                                                                                                                                                                                                        | TM D93 Flash Point 338.345 °F                                              |
| Critical Volume 17.6652 ft^3/lbmol Pou                                                                                                                                                                                                                                    | ur Point 61.4934 °F                                                        |
| Acentric Factor 0.880769 Para                                                                                                                                                                                                                                             | raffinic Fraction 71.7542 %                                                |
|                                                                                                                                                                                                                                                                           | phthenic Fraction 22.5066 %                                                |
|                                                                                                                                                                                                                                                                           | omatic Fraction 5.73929 %                                                  |
| Temperature of Low T 100 °F Idea<br>Viscosity                                                                                                                                                                                                                             | al Gas Heat Capacity 103.423 Btu/(lbmol*°F)                                |
|                                                                                                                                                                                                                                                                           |                                                                            |

Warning: Carbon to Hydrogen Ratio calculation: The value of 661.659 °F for Volume Average Boiling Point should be between 80 °F and 650 °F.

| Rohrbough Station       Properties         Volume Average Boiling       204.17 °F       Low Temperature Viscosity       0.347616 cP         Point       100.21 lb/lbmol       Temperature of High T       210 °F         Molecular Weight       100.21 lb/lbmol       Temperature Viscosity       0.211224 cP         API Gravity       0.7016       High Temperature Viscosity       0.211224 cP         API Gravity       70.1819       Watson K       12.4336         Critical Temperature       512.987 °F       ASTM D86 10-90% Slope       0 °F/%         Critical Volume       6.61841 ftv3/lbmol       ? Pour Point       2.66945 °F         Acentric Factor       0.328178       Paraffinic Fraction       72.8431 %         Carbon to Hydrogen Ratio       5.34609       Naphthenic Fraction       5.742 %         Temperature of Low T       100 °F       Ideal Gas Heat Capacity       37.1664 Btu/(lbmol*°F                                                                                                                                                                                                                    |                                      |                 |          | He         | ptanes                     |                        |                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------|----------|------------|----------------------------|------------------------|----------------|
| Properties         Volume Average Boiling<br>Point       204.17       °F       Low Temperature Viscosity       0.347616       cP         Molecular Weight       100.21       lb/lbmol       Temperature of High T<br>Viscosity       210       °F         Specific Gravity       0.7016       High Temperature Viscosity       0.211224       cP         API Gravity       0.7016       High Temperature Viscosity       0.211224       cP         Critical Temperature       512.987       °F       ASTM D86 10-90% Slope       0       °F/%         Critical Pressure       410.863       psia       ASTM D93 Flash Point       22.6774       °F         Critical Volume       6.61841       ft^3/lbmol       ? Pour Point       -5.66945       °F         Acentric Factor       0.328178       Paraffinic Fraction       72.8431       %         Carbon to Hydrogen Ratio       5.34609       Naphthenic Fraction       5.742       %         Refractive Index       1.39189       Aromatic Fraction       5.742       %         Temperature of Low T       100       °F       Ideal Gas Heat Capacity       37.1664       Btu/(lbmol*°F | Client Name:                         |                 |          |            | Job:                       | Tank Emission Estimate |                |
| Volume Average Boiling<br>Point204.17 °FLow Temperature Viscosity0.347616 cP* Molecular Weight100.21 lb/lbmolTemperature of High T<br>Viscosity210 °F* Specific Gravity0.7016High Temperature Viscosity0.211224 cPAPI Gravity70.1819Watson K12.4336Critical Temperature512.987 °FASTM D86 10-90% Slope0 °F/%Critical Pressure410.863 psiaASTM D93 Flash Point22.6774 °FCritical Volume6.61841 ft^3/lbmol? Pour Point-5.66945 °FAcentric Factor0.328178Paraffinic Fraction72.8431 %Carbon to Hydrogen Ratio5.34609Naphthenic Fraction21.4149 %Temperature of Low T100 °FIdeal Gas Heat Capacity37.1664 Btu/(lbmol*°F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Location:                            | Rohrbough Stati | on       |            |                            |                        |                |
| Volume Average Boiling<br>Point204.17 °FLow Temperature Viscosity0.347616 cP* Molecular Weight100.21 lb/lbmolTemperature of High T<br>Viscosity210 °F* Specific Gravity0.7016High Temperature Viscosity0.211224 cPAPI Gravity70.1819Watson K12.4336Critical Temperature512.987 °FASTM D86 10-90% Slope0 °F/%Critical Pressure410.863 psiaASTM D93 Flash Point22.6774 °FCritical Volume6.61841 ft^3/lbmol? Pour Point-5.66945 °FAcentric Factor0.328178Paraffinic Fraction72.8431 %Carbon to Hydrogen Ratio5.34609Naphthenic Fraction21.4149 %Temperature of Low T100 °FIdeal Gas Heat Capacity37.1664 Btu/(lbmol*°F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      |                 |          |            |                            |                        |                |
| PointTemperature of High T<br>Viscosity210 °FMolecular Weight100.21 lb/lbmolTemperature of High T<br>Viscosity210 °FSpecific Gravity0.7016High Temperature Viscosity0.211224 cPAPI Gravity70.1819Watson K12.4336Critical Temperature512.987 °FASTM D86 10-90% Slope0 °F/%Critical Pressure410.863 psiaASTM D93 Flash Point22.6774 °FCritical Volume6.61841 ft^3/lbmol? Pour Point-5.66945 °FAcentric Factor0.328178Paraffinic Fraction72.8431 %Carbon to Hydrogen Ratio5.34609Naphthenic Fraction21.4149 %Temperature of Low T100 °FIdeal Gas Heat Capacity37.1664 Btu/(lbmol*°F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                 |          | Pr         | operties                   |                        |                |
| Viscosity* Specific Gravity0.7016High Temperature Viscosity0.211224CPAPI Gravity70.1819Watson K12.4336Critical Temperature512.987°FASTM D86 10-90% Slope0°F/%Critical Pressure410.863psiaASTM D93 Flash Point22.6774°FCritical Volume6.61841ft^3/lbmol? Pour Point-5.66945°FAcentric Factor0.328178Paraffinic Fraction72.8431%Carbon to Hydrogen Ratio5.34609Naphthenic Fraction21.4149%Temperature of Low T100°FIdeal Gas Heat Capacity37.1664Btu/(lbmol*°F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | Boiling         | 204.17   | °F         | Low Temperature Viscosity  | 0.347616               | cP             |
| API Gravity70.1819Watson K12.4336Critical Temperature512.987 °FASTM D86 10-90% Slope0 °F/%Critical Pressure410.863 psiaASTM D93 Flash Point22.6774 °FCritical Volume6.61841 ft^3/lbmol? Pour Point-5.66945 °FAcentric Factor0.328178Paraffinic Fraction72.8431 %Carbon to Hydrogen Ratio5.34609Naphthenic Fraction21.4149 %Refractive Index1.39189Aromatic Fraction5.742 %Temperature of Low T100 °FIdeal Gas Heat Capacity37.1664 Btu/(lbmol*°F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>Molecular Weight</li> </ul> |                 | 100.21   | lb/lbmol   |                            | 210                    | °F             |
| Critical Temperature512.987°FASTM D86 10-90% Slope0°F/%Critical Pressure410.863psiaASTM D93 Flash Point22.6774°FCritical Volume6.61841ft^3/lbmol? Pour Point-5.66945°FAcentric Factor0.328178Paraffinic Fraction72.8431%Carbon to Hydrogen Ratio5.34609Naphthenic Fraction21.4149%Refractive Index1.39189Aromatic Fraction5.742%Temperature of Low T100°FIdeal Gas Heat Capacity37.1664Btu/(lbmol*°F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | * Specific Gravity                   |                 | 0.7016   |            | High Temperature Viscosity | 0.211224               | cP             |
| Critical Pressure410.863 psiaASTM D93 Flash Point22.6774 °FCritical Volume6.61841 ft^3/lbmol? Pour Point-5.66945 °FAcentric Factor0.328178Paraffinic Fraction72.8431 %Carbon to Hydrogen Ratio5.34609Naphthenic Fraction21.4149 %Refractive Index1.39189Aromatic Fraction5.742 %Temperature of Low T100 °FIdeal Gas Heat Capacity37.1664Btu/(lbmol*°F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | API Gravity                          |                 | 70.1819  |            | Watson K                   | 12.4336                |                |
| Critical Volume6.61841ft^3/lbmol? Pour Point-5.66945°FAcentric Factor0.328178Paraffinic Fraction72.8431%Carbon to Hydrogen Ratio5.34609Naphthenic Fraction21.4149%Refractive Index1.39189Aromatic Fraction5.742%Temperature of Low T100°FIdeal Gas Heat Capacity37.1664Btu/(lbmol*°F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Critical Temperate                   | ure             | 512.987  | °F         | ASTM D86 10-90% Slope      |                        |                |
| Acentric Factor0.328178Paraffinic Fraction72.8431 %Carbon to Hydrogen Ratio5.34609Naphthenic Fraction21.4149 %Refractive Index1.39189Aromatic Fraction5.742 %Temperature of Low T100 °FIdeal Gas Heat Capacity37.1664Btu/(Ibmol*°FViscosityViscosityViscosity37.1664Btu/(Ibmol*°F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Critical Pressure                    |                 | 410.863  | psia       | ASTM D93 Flash Point       | 22.6774                | °F             |
| Carbon to Hydrogen Ratio     5.34609     Naphthenic Fraction     21.4149 %       Refractive Index     1.39189     Aromatic Fraction     5.742 %       Temperature of Low T     100 °F     Ideal Gas Heat Capacity     37.1664 Btu/(lbmol*°F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Critical Volume                      |                 | 6.61841  | ft^3/lbmol |                            | -5.66945               | °F             |
| Refractive Index         1.39189         Aromatic Fraction         5.742 %           Temperature of Low T         100 °F         Ideal Gas Heat Capacity         37.1664         Btu/(Ibmol*°F           Viscosity         Viscosity         Viscosity         Viscosity         Viscosity         Viscosity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                 | 0.328178 |            | Paraffinic Fraction        | 72.8431                | %              |
| Temperature of Low T     100 °F     Ideal Gas Heat Capacity     37.1664 Btu/(lbmol*°F       Viscosity     37.1664 Btu/(lbmol*°F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      | en Ratio        |          |            |                            |                        |                |
| Viscosity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |                 |          |            |                            | _                      |                |
| Warmingan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      | ow T            | 100      | °F         | Ideal Gas Heat Capacity    | 37.1664                | Btu/(Ibmol*°F) |
| warnings<br>ProMax:ProMax!Project!Oils!Heptanes!Properties!Pour Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Warnings                             |                 |          |            |                            |                        |                |

|                                            |                   |                     | -          | e Oil Report<br>onanes             |           |                     |                |
|--------------------------------------------|-------------------|---------------------|------------|------------------------------------|-----------|---------------------|----------------|
| Client Name:                               | CNX Gas           |                     |            |                                    | Job: Tanl | k Emission Estimate |                |
| Location:                                  | Rohrbough Stat    | ion                 |            |                                    |           |                     |                |
|                                            |                   |                     |            |                                    |           |                     |                |
|                                            |                   |                     |            |                                    |           |                     |                |
|                                            |                   |                     | Pr         | operties                           |           |                     |                |
| Volume Average                             | Boiling           | 296.6               | °F         | Low Temperature Visco              | osity     | 0.569789            | cP             |
| Point                                      |                   | 400                 | 11. /11    | Tana and the Allish T              |           | 010                 | ° <b>F</b>     |
| * Molecular Weigh                          | t                 | 128                 | lb/lbmol   | Temperature of High T<br>Viscositv |           | 210                 | °F             |
| * Specific Gravity                         |                   | 0.7424              |            | High Temperature Visc              | ositv     | 0.313911            | cP             |
| API Gravity                                |                   | 59.0981             |            | Watson K                           | oony      | 12.2722             | 01             |
| Critical Temperat                          | ture              | 612.483             | °F         | ASTM D86 10-90% Slo                | ре        | 0                   | °F/%           |
| Critical Pressure                          |                   | 354.662             | psia       | ASTM D93 Flash Point               |           | 86.4541             | °F             |
| Critical Volume                            |                   | 8.2844              | ft^3/lbmol | ? Pour Point                       |           | -11.0241            | °F             |
| Acentric Factor                            |                   | 0.420394            |            | Paraffinic Fraction                |           | 62.406              | %              |
| Carbon to Hydro                            | gen Ratio         | 5.62062             |            | Naphthenic Fraction                |           | 24.7656             | %              |
| Refractive Index                           |                   | 1.41424             |            | Aromatic Fraction                  |           | 12.8284             |                |
| Temperature of L<br>Viscosity              | ₋ow T             | 100                 | °F         | Ideal Gas Heat Capacit             | У         | 46.6471             | Btu/(Ibmol*°F) |
|                                            |                   |                     |            |                                    |           |                     |                |
| Warnings                                   |                   |                     |            |                                    |           |                     |                |
| ProMax <sup>•</sup> ProMax <sup>!</sup> Pr | oiect!Oils!Nonane | s!Properties!Pour P | oint       |                                    |           |                     |                |

|                               |                |                                                    | -          | e Oil Report<br>ctanes                 |                      |                |
|-------------------------------|----------------|----------------------------------------------------|------------|----------------------------------------|----------------------|----------------|
| Client Name:                  | CNX Gas        |                                                    |            | Job: Tan                               | k Emission Estimate  |                |
| Location:                     | Rohrbough Stat | ion                                                |            |                                        |                      |                |
|                               |                |                                                    |            |                                        |                      |                |
|                               |                |                                                    | Pr         | operties                               |                      |                |
| Volume Average<br>Point       | Boiling        | 251.542                                            | °F         | Low Temperature Viscosity              | 0.446533             | сP             |
| * Molecular Weight            |                | 114                                                | lb/lbmol   | Temperature of High T<br>Viscosity     | 210                  | °F             |
| * Specific Gravity            |                | 0.724                                              |            | High Temperature Viscosity             | 0.258447             | cP             |
| API Gravity                   |                | 63.942                                             |            | Watson K                               | 12.329               |                |
| Critical Temperat             | ure            | 565.037                                            | °F         | ASTM D86 10-90% Slope                  | 0                    | °F/%           |
| Critical Pressure             |                | 382.089                                            | psia       | ASTM D93 Flash Point                   | 55.3642              | °F             |
| Critical Volume               |                | 7.43719                                            | ft^3/lbmol | ? Pour Point                           | -9.58266             | °F             |
| Acentric Factor               |                | 0.374061                                           |            | Paraffinic Fraction                    | 66.614               | %              |
| Carbon to Hydrog              | gen Ratio      | 5.49569                                            |            | Naphthenic Fraction                    | 23.6971              | %              |
| Refractive Index              |                | 1.40406                                            |            | Aromatic Fraction                      | 9.68898              |                |
| Temperature of L<br>Viscosity | ow T           | 100                                                | °F         | Ideal Gas Heat Capacity                | 41.8093              | Btu/(lbmol*°F) |
|                               |                |                                                    |            |                                        |                      |                |
|                               |                | Properties!Pour Pour Pour Pour Pour Pour Pour Pour |            | or Volume Average Boiling Point should | be between 340.33 °F | and 1040.33 °  |

|                                |                |          |            | le Oil Report<br>her C6's          |                   |                |
|--------------------------------|----------------|----------|------------|------------------------------------|-------------------|----------------|
| Client Name:                   | CNX Gas        |          |            | Job: Tank                          | Emission Estimate |                |
| Location:                      | Rohrbough Stat | ion      |            |                                    |                   |                |
|                                |                |          |            |                                    |                   |                |
|                                |                |          |            |                                    |                   |                |
|                                |                |          | P          | roperties                          |                   |                |
| Volume Average E<br>Point      | Boiling        | 147.291  | °F         | Low Temperature Viscosity          | 0.25668           | cP             |
| * Molecular Weight             |                | 85       | lb/lbmol   | Temperature of High T<br>Viscosity | 210               | °F             |
| * Specific Gravity             |                | 0.664    |            | High Temperature Viscosity         | 0.164743          | cP             |
| API Gravity                    |                | 81.6024  |            | Watson K                           | 12.7512           |                |
| Critical Temperatu             | re             | 445.48   | °F         | ASTM D86 10-90% Slope              | 0                 | °F/%           |
| Critical Pressure              |                | 434.91   | psia       | ? ASTM D93 Flash Point             | -16.5692          | °F             |
| Critical Volume                |                | 5.75172  | ft^3/lbmol | ? Pour Point                       | 5.82321           | °F             |
| Acentric Factor                |                | 0.277116 |            | ? Paraffinic Fraction              | 86.4939           |                |
| Carbon to Hydroge              | en Ratio       | 5.07336  |            | ? Naphthenic Fraction              | 13.5061           |                |
| Refractive Index               |                | 1.37271  |            | ? Aromatic Fraction                |                   | %              |
| Temperature of Lo<br>Viscosity | w T            | 100      | °F         | Ideal Gas Heat Capacity            | 32.5709           | Btu/(Ibmol*°F) |
| Warnings                       |                |          |            |                                    |                   |                |

#### Warnings

ProMax:ProMax!Project!Oils!Other C6's!Properties!ASTM D93 Flash Point

Warning: ASTM D93 Flash Point calculation: The value of 147.291 °F for Volume Average Boiling Point should be between 150 °F and 850 °F.

ProMax:ProMax!Project!Oils!Other C6's!Properties!Pour Point Warning: Pour Point calculation: The value of 147.291 °F for Volume Average Boiling Point should be between 340.33 °F and 1040.33 °F.

| User Value Sets Report                                 |                 |                  |               |                                 |           |                   |
|--------------------------------------------------------|-----------------|------------------|---------------|---------------------------------|-----------|-------------------|
| Client Name:                                           | CNX Gas         |                  |               |                                 | Job: Tank | Emission Estimate |
| Location:                                              | Rohrbough Stati | on               |               |                                 |           |                   |
|                                                        |                 |                  |               |                                 |           |                   |
|                                                        |                 |                  | Та            | n <b>k-1</b>                    |           |                   |
|                                                        |                 |                  |               | BlockReady]                     |           |                   |
| * Parameter                                            |                 | 1                |               | Upper Bound                     |           |                   |
| Lower Bound                                            |                 | •                |               | * Enforce Bounds                |           | False             |
|                                                        |                 |                  |               |                                 |           |                   |
|                                                        |                 |                  | User Value [  | ShellLength]                    |           |                   |
| * Parameter                                            |                 | 5                |               | Upper Bound                     |           | ft                |
| * Lower Bound                                          |                 | 0                | ft            | * Enforce Bounds                |           | False             |
|                                                        |                 |                  |               |                                 |           |                   |
| * Density of                                           |                 | 0.47             |               | [ShellDiam]                     |           |                   |
| <ul> <li>* Parameter</li> <li>* Lower Bound</li> </ul> |                 | <u>8.45</u><br>0 |               | Upper Bound * Enforce Bounds    |           | ft<br>False       |
|                                                        |                 | 0                | n             | LINUICE DOUNUS                  |           | 1-0156            |
|                                                        |                 |                  | llser Value   | [BreatherVP]                    |           |                   |
| * Parameter                                            |                 | 0.03             |               | Upper Bound                     |           | psig              |
| Lower Bound                                            |                 | 0.05             | psig          | * Enforce Bounds                |           | False             |
|                                                        |                 |                  | 1-5           |                                 |           |                   |
|                                                        |                 |                  | User Value [E | BreatherVacP]                   |           |                   |
| * Parameter                                            |                 | -0.03            |               | Upper Bound                     |           | psig              |
| Lower Bound                                            |                 |                  | psig          | * Enforce Bounds                |           | False             |
|                                                        |                 |                  |               |                                 |           |                   |
|                                                        |                 |                  |               | DomeRadius]                     |           |                   |
| * Parameter                                            |                 | 4.23             |               | Upper Bound                     |           | ft                |
| Lower Bound                                            |                 |                  | ft            | * Enforce Bounds                |           | False             |
|                                                        |                 |                  | Lleen Velue   |                                 |           |                   |
| * Domonoston                                           |                 | 0                |               | e [OpPress]                     |           |                   |
| * Parameter<br>Lower Bound                             |                 | 0                | psig<br>psig  | Upper Bound<br>* Enforce Bounds |           | psig<br>False     |
| Lower Bound                                            |                 |                  | polg          | Enioree Bounds                  |           | 1 4100            |
|                                                        |                 |                  | User Value [A | vgPercentLiq]                   |           |                   |
| * Parameter                                            |                 | 50               |               | Upper Bound                     |           | %                 |
| Lower Bound                                            |                 |                  | %             | * Enforce Bounds                |           | False             |
|                                                        |                 |                  |               |                                 |           |                   |
|                                                        |                 |                  | User Value [N | laxPercentLiq]                  |           |                   |
| * Parameter                                            |                 | 90               |               | Upper Bound                     |           | %                 |
| Lower Bound                                            |                 |                  | %             | * Enforce Bounds                |           | False             |
|                                                        |                 |                  |               | P.4                             |           |                   |
| * Description                                          |                 | 0.400402         |               | [AnnNetTP]                      |           | 6.6.17.1          |
| <ul> <li>* Parameter</li> <li>* Lower Bound</li> </ul> |                 | 0.136109         |               | Upper Bound<br>* Enforce Bounds |           | bbl/day           |
|                                                        |                 | 0                | bbl/day       | Enlorce Dounds                  |           | False             |
|                                                        |                 |                  | Llear Valu    | ue [OREff]                      |           |                   |
| * Parameter                                            |                 | 0                |               | Upper Bound                     |           | %                 |
| Lower Bound                                            |                 | 0                | %             | * Enforce Bounds                |           | False             |
|                                                        |                 |                  |               |                                 |           |                   |
|                                                        |                 |                  | User Value    | [MaxAvgT]                       |           |                   |
| * Parameter                                            |                 | 61.15            |               | Upper Bound                     |           | °F                |
| Lower Bound                                            |                 |                  | °F            | * Enforce Bounds                |           | False             |
|                                                        |                 |                  |               |                                 |           |                   |
|                                                        |                 |                  | User Value    | e [MinAvgT]                     |           |                   |
| * Parameter                                            |                 | 36.9667          | °F            | Upper Bound                     |           | °F                |
| Lower Bound                                            |                 |                  | °F            | * Enforce Bounds                |           | False             |
|                                                        |                 |                  |               |                                 |           |                   |
|                                                        |                 |                  |               | e [BulkLiqT]                    |           |                   |
| * Parameter                                            |                 | 49.0783          |               | Upper Bound                     |           | °F                |
| Lower Bound                                            |                 |                  | °F            | * Enforce Bounds                |           | False             |

\* User Specified Values ? Extrapolated or Approximate Values ProMax 4.0.16071.0 Copyright © 2002-2016 BRE Group, Ltd.

Licensed to SLR International Corporation and Affiliates

| Client Name: CNX Gas Jubit CNX GAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| User Value [AvgP]         * Parameter       13.7315       psia       Upper Bound       psia         Lower Bound       psia       * Enforce Bounds       False         User Value [Thermi]         * Parameter       1193.89       Btu/ftv2/day       Upper Bound       Btu/ftv2/day         Lower Bound       Btu/ftv2/day       Upper Bound       Btu/ftv2/day         Lower Bound       Btu/ftv2/day       * Enforce Bounds       False         User Value [AvgWindSpeed]         * Parameter       6.16667       mi/h       Upper Bound       mi/h         Lower Bound       mi/h       * Enforce Bounds       False         User Value [MaxHourlyLoadingRate]         * Parameter       0.00567123       bb/hr       Upper Bound       bb/hr         * Lower Bound       0       bb/hr       * Enforce Bounds       False         User Value [EntrainedOilFrac]         * Parameter       1 %       Upper Bound       %         Lower Bound       %       * Enforce Bounds       False         User Value [TurnoverRate]         * Parameter       1.0519       Upper Bound       Salse         User Value [LLossSatFactor]   |
| Parameter       13.7315       psia       Upper Bound       psia         Lower Bound       psia       * Enforce Bounds       False         User Value [Thermi]         * Parameter       1193.89       Btu/ftv2/day       Upper Bound       Btu/ftv2/day         Lower Bound       Btu/ftv2/day       Upper Bound       Btu/ftv2/day         Verameter       1193.89       Btu/ftv2/day       Verameter       Btu/ftv2/day         Lower Bound       Btu/ftv2/day       * Enforce Bounds       False         Verameter       6.16667       mi/h       Upper Bound       mi/h         Lower Bound       mi/h       * Enforce Bounds       False         Verameter       6.16667       mi/h       Upper Bound       mi/h         * Parameter       0.00567123       bb/hr       Upper Bound       bb/hr         * Parameter       0.00567123       bb/hr       Upper Bound       %         Lower Bound       0       bb/hr       Verameter       False         User Value [EntrainedOilFrac]         * Parameter       1 %       Upper Bound       %         Lower Bound       %       * Enforce Bounds       False         User Val |
| Parameter       13.7315       psia       Upper Bound       psia         Lower Bound       psia       * Enforce Bounds       False         User Value [Thermi]         * Parameter       1193.89       Btu/ftv2/day       Upper Bound       Btu/ftv2/day         Lower Bound       Btu/ftv2/day       Upper Bound       Btu/ftv2/day         Verameter       1193.89       Btu/ftv2/day       Verameter       Btu/ftv2/day         Lower Bound       Btu/ftv2/day       * Enforce Bounds       False         Verameter       6.16667       mi/h       Upper Bound       mi/h         Lower Bound       mi/h       * Enforce Bounds       False         Verameter       6.16667       mi/h       Upper Bound       mi/h         * Parameter       0.00567123       bb/hr       Upper Bound       bb/hr         * Parameter       0.00567123       bb/hr       Upper Bound       %         Lower Bound       0       bb/hr       Verameter       False         User Value [EntrainedOilFrac]         * Parameter       1 %       Upper Bound       %         Lower Bound       %       * Enforce Bounds       False         User Val |
| Parameter       13.7315       psia       Upper Bound       psia         Lower Bound       psia       * Enforce Bounds       False         User Value [Thermi]         * Parameter       1193.89       Btu/ftv2/day       Upper Bound       Btu/ftv2/day         Lower Bound       Btu/ftv2/day       Upper Bound       Btu/ftv2/day         Verameter       1193.89       Btu/ftv2/day       Verameter       Btu/ftv2/day         Lower Bound       Btu/ftv2/day       * Enforce Bounds       False         Verameter       6.16667       mi/h       Upper Bound       mi/h         Lower Bound       mi/h       * Enforce Bounds       False         Verameter       6.16667       mi/h       Upper Bound       mi/h         * Parameter       0.00567123       bb/hr       Upper Bound       bb/hr         * Parameter       0.00567123       bb/hr       Upper Bound       %         Lower Bound       0       bb/hr       Verameter       False         User Value [EntrainedOilFrac]         * Parameter       1 %       Upper Bound       %         Lower Bound       %       * Enforce Bounds       False         User Val |
| Lower Bound       psia       * Enforce Bounds       False         User Value [Therm]]         * Parameter       1193.89       Btu/ftv2/day       Upper Bound       Btu/ftv2/day         Lower Bound       Btu/ftv2/day       * Enforce Bounds       False         User Value [AvgWindSpeed]         * Parameter       6.16667       mi/h       Upper Bound       mi/h         Lower Bound       mi/h       * Enforce Bounds       False         User Value [MaxHourlyLoadingRate]         * Parameter       0.00567123       bb/hr       Upper Bound       bb/hr         User Value [MaxHourlyLoadingRate]         * Parameter       0.00567123       bb/hr       Upper Bound       bb/hr         User Value [EntrainedOilFrac]         * Parameter       1 %       Upper Bound       %         Lower Bound       %         User Value [TurnoverRate]         * Parameter       1.0519       Upper Bound       %         Lower Bound       * Enforce Bounds       False         User Value [TurnoverRate]         * Parameter       0.5       Upper Bound         Low                                                             |
| * Parameter       1193.89       Btu/ft*2/day       Upper Bound       Btu/ft*2/day         Lower Bound       Btu/ft*2/day       * Enforce Bounds       False         User Value [AvgWindSpeed]         * Parameter       6.16667       mi/h       Upper Bound       mi/h         Lower Bound       mi/h       * Enforce Bounds       False         User Value [MaxHourlyLoadingRate]         * Parameter       0.00567123       bb/hr       Upper Bound       bb/hr         * Lower Bound       0       bb/hr       * Enforce Bounds       False         User Value [EntrainedOilFrac]         * Parameter       1 %       Upper Bound       %         Lower Bound       * Enforce Bounds       False         User Value [TurnoverRate]         * Parameter       1.10519         Lower Bound       * Enforce Bounds       False         Lower Bound                                                                                                       |
| * Parameter       1193.89       Btu/ft*2/day       Upper Bound       Btu/ft*2/day         Lower Bound       Btu/ft*2/day       * Enforce Bounds       False         User Value [AvgWindSpeed]         * Parameter       6.16667       mi/h       Upper Bound       mi/h         Lower Bound       mi/h       * Enforce Bounds       False         User Value [MaxHourlyLoadingRate]         * Parameter       0.00567123       bb/hr       Upper Bound       bb/hr         * Lower Bound       0       bb/hr       * Enforce Bounds       False         User Value [EntrainedOilFrac]         * Parameter       1 %       Upper Bound       %         Lower Bound       * Enforce Bounds       False         User Value [TurnoverRate]         * Parameter       1.10519         Lower Bound       * Enforce Bounds       False         Lower Bound                                                                                                       |
| Lower Bound       Btu/ft*2/day       * Enforce Bounds       False         User Value [AvgWindSpeed]         * Parameter       6.16667 mi/h       Upper Bound       mi/h         Lower Bound       mi/h       * Enforce Bounds       False         User Value [MaxHourlyLoadingRate]         * Parameter       0.00567123 bbl/hr       Upper Bound       bbl/hr         * Darameter       0.00567123 bbl/hr       Upper Bound       bbl/hr         * Lower Bound       0       bbl/hr       * Enforce Bounds       False         User Value [EntrainedOilFrac]         * Parameter       1 %       Upper Bound       %         Lower Bound       %         User Value [TurnoverRate]         * Parameter       1.10519       Upper Bound       %         Lower Bound       * Enforce Bounds       False         User Value [TurnoverRate]         * Parameter       1.0519       Upper Bound         Lower Bound       * Enforce Bounds       False         User Value [LLossSatFactor]         * Parameter       0.5       Upper Bound         Lower Bound       *                                                                |
| User Value [AvgWindSpeed]         * Parameter       6.16667       mi/h       Upper Bound       mi/h         Lower Bound       mi/h       Upper Bound       mi/h         User Value [MaxHourlyLoadingRate]         * Parameter       0.00567123       bbl/hr       Upper Bound       bbl/hr         * Lower Bound       0       bbl/hr       * Enforce Bounds       False         User Value [EntrainedOilFrac]         * Parameter       1 %       Upper Bound       %         Lower Bound       %         User Value [EntrainedOilFrac]         * Parameter       1 %       Upper Bound       %         Lower Bound       * Enforce Bounds         Value [LLossSatFactor]         * Parameter       0.5       Upper Bound         Lower Bound       * Enforce Bounds       False                                                                                                                                                                                                                                 |
| * Parameter       6.16667       mi/h       Upper Bound       mi/h         Lower Bound       mi/h       * Enforce Bounds       False         User Value [MaxHourlyLoadingRate]         * Parameter       0.00567123       bbl/hr       Upper Bound       bbl/hr         * Lower Bound       0       bbl/hr       * Enforce Bounds       False         User Value [EntrainedOilFrac]         * Parameter       1       %       Upper Bound       %         Lower Bound       %         User Value [EntrainedOilFrac]         * Parameter       1       %       Upper Bound       %         Lower Bound       %         User Value [TurnoverRate]         * Parameter       1.10519       Upper Bound         Lower Bound       * Enforce Bounds       False         User Value [LossSatFactor]         * Parameter       0.5       Upper Bound       Lower Bound       Lower Bound       Enforce Bounds       False                                                                                                                                                                                                                 |
| * Parameter       6.16667       mi/h       Upper Bound       mi/h         Lower Bound       mi/h       * Enforce Bounds       False         User Value [MaxHourlyLoadingRate]         * Parameter       0.00567123       bbl/hr       Upper Bound       bbl/hr         * Lower Bound       0       bbl/hr       * Enforce Bounds       False         User Value [EntrainedOilFrac]         * Parameter       1       %       Upper Bound       %         Lower Bound       %         User Value [EntrainedOilFrac]         * Parameter       1       %       Upper Bound       %         Lower Bound       %         User Value [TurnoverRate]         * Parameter       1.10519       Upper Bound         Lower Bound       * Enforce Bounds       False         User Value [LossSatFactor]         * Parameter       0.5       Upper Bound       Lower Bound       Lower Bound       Enforce Bounds       False                                                                                                                                                                                                                 |
| User Value [MaxHourlyLoadingRate]         * Parameter       0.00567123 bbl/hr       Upper Bound       bbl/hr         * Lower Bound       0 bbl/hr       * Enforce Bounds       False         User Value [EntrainedOilFrac]         * Parameter       1 %       Upper Bound       %         Lower Bound       %       * Enforce Bounds       False         User Value [EntrainedOilFrac]         * Parameter       1 %       Upper Bound       %         Lower Bound       %       * Enforce Bounds       False         User Value [TurnoverRate]         * Parameter         1.10519       Upper Bound         Lower Bound       * Enforce Bounds       False         User Value [LLossSatFactor]         * Parameter       0.5       Upper Bound         Lower Bound       * Enforce Bounds       False                                                                                                                                                                                                                                                                                                                          |
| * Parameter       0.00567123 bbl/hr       Upper Bound       bbl/hr         * Lower Bound       0 bbl/hr       * Enforce Bounds       False         User Value [EntrainedOilFrac]         * Parameter       1 %       Upper Bound       %         Lower Bound       %       * Enforce Bounds       False         User Value [EntrainedOilFrac]         * Parameter       1 %       Upper Bound       %         Lower Bound       %       * Enforce Bounds       False         User Value [TurnoverRate]         * Parameter       1.10519       Upper Bound         Lower Bound       * Enforce Bounds       False         User Value [LLossSatFactor]         * Parameter       0.5       Upper Bound         Lower Bound       * Enforce Bounds       False                                                                                                                                                                                                                                                                                                                                                                      |
| * Parameter       0.00567123 bbl/hr       Upper Bound       bbl/hr         * Lower Bound       0 bbl/hr       * Enforce Bounds       False         User Value [EntrainedOilFrac]         * Parameter       1 %       Upper Bound       %         Lower Bound       %       * Enforce Bounds       False         User Value [EntrainedOilFrac]         * Parameter       1 %       Upper Bound       %         Lower Bound       %       * Enforce Bounds       False         User Value [TurnoverRate]         * Parameter       1.10519       Upper Bound         Lower Bound       * Enforce Bounds       False         User Value [LLossSatFactor]         * Parameter       0.5       Upper Bound         Lower Bound       * Enforce Bounds       False                                                                                                                                                                                                                                                                                                                                                                      |
| * Lower Bound       0 bbl/hr       * Enforce Bounds       False         User Value [EntrainedOilFrac]         * Parameter       1 %       Upper Bound       %         Lower Bound       %       * Enforce Bounds       False         User Value [TurnoverRate]         * Parameter       1.10519       Upper Bound         Lower Bound       * Enforce Bounds       False         User Value [TurnoverRate]         * Parameter       1.10519       Upper Bound         Lower Bound       * Enforce Bounds       False         User Value [LLossSatFactor]         * Parameter       0.5       Upper Bound         Lower Bound       * Enforce Bounds       False                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| * Parameter       1 %       Upper Bound       %         Lower Bound       %       * Enforce Bounds       False         User Value [TurnoverRate]       Value [TurnoverRate]       %         * Parameter       1.10519       Upper Bound         Lower Bound       * Enforce Bounds       False            Upper Bound         Lower Bound       * Enforce Bounds       False            Upper Bound         Lower Bound       * Enforce Bounds       False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| * Parameter       1 %       Upper Bound       %         Lower Bound       %       * Enforce Bounds       False         User Value [TurnoverRate]       Value [TurnoverRate]       %         * Parameter       1.10519       Upper Bound         Lower Bound       * Enforce Bounds       False            Upper Bound         Lower Bound       * Enforce Bounds       False            Upper Bound         Lower Bound       * Enforce Bounds       False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Lower Bound       %       * Enforce Bounds       False         User Value [TurnoverRate]         * Parameter       1.10519       Upper Bound         Lower Bound       * Enforce Bounds       False         User Value [LLossSatFactor]         * Parameter       0.5       Upper Bound         Lower Bound       * Enforce Bounds       False         User Value [LLossSatFactor]         * Parameter       0.5       Upper Bound         Lower Bound       * Enforce Bounds       False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| User Value [TurnoverRate]         * Parameter       1.10519       Upper Bound         Lower Bound       * Enforce Bounds       False         User Value [LLossSatFactor]         * Parameter       0.5       Upper Bound         Lower Bound       * Enforce Bounds       False         State       State       State         * Parameter       0.5       Upper Bound         Lower Bound       * Enforce Bounds       False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| * Parameter       1.10519       Upper Bound         Lower Bound       * Enforce Bounds       False         User Value [LLossSatFactor]         * Parameter       0.5       Upper Bound         Lower Bound       * Enforce Bounds       False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| * Parameter       1.10519       Upper Bound         Lower Bound       * Enforce Bounds       False         User Value [LLossSatFactor]         * Parameter       0.5       Upper Bound         Lower Bound       * Enforce Bounds       False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| User Value [LLossSatFactor]           * Parameter         0.5         Upper Bound           Lower Bound         * Enforce Bounds         False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| * Parameter     0.5     Upper Bound       Lower Bound     * Enforce Bounds     False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| * Parameter     0.5     Upper Bound       Lower Bound     * Enforce Bounds     False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Lower Bound * Enforce Bounds False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Liser Value [AtmPressure]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| * Parameter     13.7315     psia     Upper Bound     psia       Lower Bound     psia     * Enforce Bounds     False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| User Value [TVP]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| * Parameter     6.77054 psia     Upper Bound     psia       Lower Bound     psia     * Enforce Bounds     False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Lower Bound psia * Enforce Bounds False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| User Value [MaxVP]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| * Parameter 7.1944 psia Upper Bound psia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Lower Bound psia * Enforce Bounds False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Lie en Velve (Min)/Di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| User Value [MinVP]           * Parameter         6.37364 psia         Upper Bound         psia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Lower Bound psia * Enforce Bounds False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| User Value [AvgLiqSurfaceT]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| * Parameter     50.6729     °F     Upper Bound     °F       Lower Bound     °F     * Enforce Bounds     False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| User Value [MaxLiqSurfaceT]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| * Parameter 56.4466 °F Upper Bound °F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Lower Bound °F * Enforce Bounds False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| User Value [TotalLosses]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| * Parameter 0.0383726 ton/yr Upper Bound ton/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

\* User Specified Values ? Extrapolated or Approximate Values

ProMax 4.0.16071.0 Copyright © 2002-2016 BRE Group, Ltd.

Licensed to SLR International Corporation and Affiliates

|                            |                | ι           | Jser Value S            | Sets Report                     |             |                   |
|----------------------------|----------------|-------------|-------------------------|---------------------------------|-------------|-------------------|
| Client Name:               | CNX Gas        |             |                         |                                 | lob: Topk F | Emission Estimate |
| Location:                  | Rohrbough Stat | ion         |                         |                                 | JUD. TAHK L |                   |
|                            |                |             |                         |                                 |             |                   |
|                            |                |             |                         |                                 |             |                   |
| Lower Bound                |                |             | User Value []<br>ton/yr | * Enforce Bounds                |             | False             |
|                            |                |             |                         |                                 |             |                   |
|                            |                |             |                         | orkingLosses]                   |             |                   |
| * Parameter<br>Lower Bound |                | 0.00174569  |                         | Upper Bound * Enforce Bounds    |             | ton/yr<br>False   |
| Lower Bound                |                |             | ton/yr                  | Enforce Bounds                  |             | Faise             |
|                            |                | U           | ser Value [Sta          | andingLosses]                   |             |                   |
| * Parameter                |                | 0.0366269   | ton/yr                  | Upper Bound                     |             | ton/yr            |
| Lower Bound                |                |             | ton/yr                  | * Enforce Bounds                |             | False             |
|                            |                |             | lear Value (Di          | mSealLosses]                    |             |                   |
| * Parameter                |                |             | ton/yr                  | Upper Bound                     |             | ton/yr            |
| Lower Bound                |                |             | ton/yr                  | * Enforce Bounds                |             | False             |
|                            |                |             |                         |                                 |             |                   |
| * Denemator                |                |             |                         | thdrawalLoss]                   |             |                   |
| * Parameter<br>Lower Bound |                |             | ton/yr<br>ton/yr        | Upper Bound<br>* Enforce Bounds |             | ton/yr<br>False   |
| Lower Board                |                |             |                         | Emoloo Boanao                   |             | T Glob            |
|                            |                | ι           | Jser Value [Lo          | adingLosses]                    |             |                   |
| * Parameter                |                | 0.000895039 |                         | Upper Bound                     |             | ton/yr            |
| Lower Bound                |                |             | ton/yr                  | * Enforce Bounds                |             | False             |
|                            |                | llser       | Value (MaxHo            | ourlyLoadingLoss]               |             |                   |
| * Parameter                |                | 0.000204347 |                         | Upper Bound                     |             | lb/hr             |
| Lower Bound                |                |             | lb/hr                   | * Enforce Bounds                |             | False             |
|                            |                |             |                         | 100/ 1                          |             |                   |
| Parameter                  |                |             | User Valu               | Upper Bound                     |             |                   |
| Lower Bound                |                |             |                         | * Enforce Bounds                |             | False             |
|                            |                |             |                         |                                 |             |                   |
|                            |                | U           | ser Value [All          | CTotalLosses]                   |             |                   |
| * Parameter<br>Lower Bound |                | 0.0465701   | ton/yr<br>ton/yr        | Upper Bound * Enforce Bounds    |             | ton/yr<br>False   |
| Lower Dound                |                |             | tori/yi                 | Enloree Dounds                  |             | 1 4150            |
|                            |                | Use         | er Value [AllC          | LoadingLosses]                  |             |                   |
| * Parameter                |                | 0.00108625  | ton/yr                  | Upper Bound                     |             | ton/yr            |
| Lower Bound                |                |             | ton/yr                  | * Enforce Bounds                |             | False             |
|                            |                | lleor       |                         | axHLoadingLoss]                 |             |                   |
| * Parameter                |                | 0.000248001 | lb/hr                   | Upper Bound                     |             | lb/hr             |
| Lower Bound                |                |             | lb/hr                   | * Enforce Bounds                |             | False             |
|                            |                |             |                         |                                 |             |                   |
| * Parameter                |                | 0.00036029  |                         | FlashingLosses]<br>Upper Bound  |             | ton/yr            |
| Lower Bound                |                |             | ton/yr                  | * Enforce Bounds                |             | False             |
|                            |                |             | ·                       |                                 |             |                   |
|                            |                |             |                         | kFittingLosses]                 |             |                   |
| * Parameter<br>Lower Bound |                |             | ton/yr                  | Upper Bound * Enforce Bounds    |             | ton/yr<br>False   |
|                            |                |             | ton/yr                  |                                 |             | 1°d15€            |
|                            |                | Us          | ser Value (Dec          | kSeamLosses]                    |             |                   |
| * Parameter                |                | 0           | ton/yr                  | Upper Bound                     |             | ton/yr            |
| Lower Bound                |                |             | ton/yr                  | * Enforce Bounds                |             | False             |
|                            |                |             |                         |                                 |             |                   |

|                            |                              |                                              |                                | · · · · · · · · · · · · · · · · · · · |        |  |
|----------------------------|------------------------------|----------------------------------------------|--------------------------------|---------------------------------------|--------|--|
| ent Name:                  | CNX Gas<br>Rohrbough Station |                                              |                                | Job: Tank Emission Estimat            | e      |  |
| cation.                    | Rombough Station             |                                              |                                |                                       |        |  |
|                            |                              |                                              |                                |                                       |        |  |
|                            |                              | User Value                                   | [FlashingLosses]               |                                       |        |  |
| Parameter                  | 0.000119885                  |                                              | Upper Bound                    |                                       | ton/yr |  |
| Lower Bound                |                              | ton/yr                                       | * Enforce Bounds               | Fal                                   | se     |  |
|                            |                              |                                              |                                |                                       |        |  |
|                            |                              |                                              | e [TotalResidual]              |                                       |        |  |
| Parameter                  | 7.15128                      | 3 ton/yr                                     | Upper Bound                    |                                       | ton/yr |  |
| Lower Bound                |                              | ton/yr                                       | * Enforce Bounds               | Fal                                   | se     |  |
|                            |                              |                                              |                                |                                       |        |  |
| User Value [GasMoleWeight] |                              |                                              |                                |                                       |        |  |
| Parameter                  | 0.0318968                    |                                              | Upper Bound                    |                                       | kg/mol |  |
| Lower Bound                |                              | kg/mol                                       | * Enforce Bounds               | Fal                                   | se     |  |
|                            |                              |                                              |                                |                                       |        |  |
| _                          |                              |                                              | VapReportableFrac]             |                                       |        |  |
| Parameter                  | 82.3975                      |                                              | Upper Bound                    |                                       | %      |  |
| Lower Bound                |                              | %                                            | * Enforce Bounds               | Fal                                   | se     |  |
|                            |                              |                                              | l in Domontok la Frant         |                                       |        |  |
| Parameter                  | 99.8835                      |                                              | LiqReportableFrac] Upper Bound |                                       | %      |  |
| Lower Bound                | 99.0030                      | <u>    %                                </u> | * Enforce Bounds               | Fal                                   | 7.4    |  |
| Lower Bound                |                              | 70                                           | Lilloice Boullus               | 1 di                                  | 56     |  |
|                            | U                            | ser Value [F                                 | lashReportableFrac]            |                                       |        |  |
| Parameter                  | 33.2747                      |                                              | Upper Bound                    |                                       | %      |  |
| Lower Bound                |                              | %                                            | * Enforce Bounds               | Fal                                   | se     |  |



### FESCO, Ltd. 1100 Fesco Avenue - Alice, Texas 78332

For: SLR International Corporation 900 Lee Street, Suite 500 Charleston, West Virginia 25301

Sample: CNX - Minnie Lee No. 1 (10134)

Date Sampled: 09/27/2013

Date Analyzed: 10/04/2013

Job Number: J35882

| FLASH LIBERATION OF HYDROCARBON LIQUID |           |            |  |  |
|----------------------------------------|-----------|------------|--|--|
|                                        | Separator | Stock Tank |  |  |
| Pressure, psig                         | 21        | 0          |  |  |
| Temperature, °F                        | 58        | 70         |  |  |
| Gas Oil Ratio (1)                      |           | 4.7        |  |  |
| Gas Specific Gravity (2)               |           | 1.140      |  |  |
| Separator Volume Factor (3)            | 1.0092    | 1.000      |  |  |

| STOCK TANK FLUID PROPERTIES   |        |
|-------------------------------|--------|
| Shrinkage Recovery Factor (4) | 0.9908 |
| Oil API Gravity at 60 °F      | 40.22  |
| Reid Vapor Pressure, psi (5)  | 1.19   |

| Quality Control Check |                                  |         |       |  |  |
|-----------------------|----------------------------------|---------|-------|--|--|
|                       | Sampling Conditions Test Samples |         |       |  |  |
| Cylinder No.          |                                  | W-1101* | W-578 |  |  |
| Pressure, psig        | 21                               | 24      | 24    |  |  |
| Temperature, °F       | 58                               | 70      | 70    |  |  |

(1) - Scf of flashed vapor per barrel of stock tank oil(2) - Air = 1.000

(3) - Separator volume / Stock tank volume

(4) - Fraction O. A.

(5) - Absolute pressure at 100 deg F

Analyst:

\* Sample used for flash study

Base Conditions: 14.85 PSI & 60 °F

Certified: FESCO, Ltd. - Alice, Texas

David Dannhaus 361-661-7015

#### FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: SLR International Corporation 900 Lee Street, Suite 500 Charleston, West Virginia 25301

Sample: CNX - Minnie Lee No. 1 (10134) Gas Evolved from Hydrocarbon Liquid Flashed From 21 psig & 58 °F to 0 psig & 70 °F

Date Sampled: 09/27/13

Job Number: 35882.001

| COMPONENT           | MOL%         | GPM          |
|---------------------|--------------|--------------|
| Hydrogen Sulfide*   | < 0.001      |              |
| Nitrogen            | 0.404        |              |
| Carbon Dioxide      | 0.124        |              |
| Methane             | 43.737       |              |
| Ethane              | 23.663       | 6.378        |
| Propane             | 15.041       | 4.176        |
| Isobutane           | 3.316        | 1.094        |
| n-Butane            | 5.648        | 1.795        |
| 2-2 Dimethylpropane | 0.081        | 0.031        |
| Isopentane          | 2.442        | 0.900        |
| n-Pentane           | 1.931        | 0.705        |
| Hexanes             | 1.961        | 0.815        |
| Heptanes Plus       | <u>1.652</u> | <u>0.716</u> |
| Totals              | 100.000      | 16.611       |

#### CHROMATOGRAPH EXTENDED ANALYSIS - SUMMATION REPORT

| Computed Real | Characteristics | Of Heptanes Plus: |
|---------------|-----------------|-------------------|
|---------------|-----------------|-------------------|

| Specific Gravity    | 3.494  | (Air=1) |
|---------------------|--------|---------|
| Molecular Weight    | 100.18 |         |
| Gross Heating Value | 5347   | BTU/CF  |

#### **Computed Real Characteristics Of Total Sample:**

| Specific Gravity    | 1.140  | (Air=1) |
|---------------------|--------|---------|
| Compressibility (Z) | 0.9900 |         |
| Molecular Weight    | 32.70  |         |
| Gross Heating Value |        |         |
| Dry Basis           | 1929   | BTU/CF  |
| Saturated Basis     | 1896   | BTU/CF  |

\*Hydrogen Sulfide tested in laboratory by: Stained Tube Method (GPA 2377) Results: 0.189 Gr/100 CF, 3.0 PPMV or 0.0003 Mol %

Base Conditions: 14.850 PSI & 60 Deg F

Certified: FESCO, Ltd. - Alice, Texas

Analyst: MR Processor: ANB Cylinder ID: ST-23

David Dannhaus 361-661-7015

#### CHROMATOGRAPH EXTENDED ANALYSIS TOTAL REPORT

| COMPONENT              | MOL %        | GPM          | WT %         |
|------------------------|--------------|--------------|--------------|
| Hydrogen Sulfide*      | < 0.001      |              | < 0.001      |
| Nitrogen               | 0.404        |              | 0.346        |
| Carbon Dioxide         | 0.124        |              | 0.167        |
| Methane                | 43.737       |              | 21.460       |
| Ethane                 | 23.663       | 6.378        | 21.762       |
| Propane                | 15.041       | 4.176        | 20.286       |
| Isobutane              | 3.316        | 1.094        | 5.895        |
| n-Butane               | 5.648        | 1.795        | 10.040       |
| 2,2 Dimethylpropane    | 0.081        | 0.031        | 0.179        |
| Isopentane             | 2.442        | 0.900        | 5.389        |
| n-Pentane              | 1.931        | 0.705        | 4.261        |
| 2,2 Dimethylbutane     | 0.113        | 0.048        | 0.298        |
| Cyclopentane           | 0.032        | 0.013        | 0.069        |
| 2,3 Dimethylbutane     | 0.136        | 0.056        | 0.358        |
| 2 Methylpentane        | 0.616        | 0.258        | 1.624        |
| 3 Methylpentane        | 0.354        | 0.146        | 0.933        |
| n-Hexane               | 0.710        | 0.294        | 1.871        |
| Methylcyclopentane     | 0.125        | 0.043        | 0.322        |
| Benzene                | 0.040        | 0.011        | 0.096        |
| Cyclohexane            | 0.124        | 0.043        | 0.319        |
| 2-Methylhexane         | 0.173        | 0.081        | 0.530        |
| 3-Methylhexane         | 0.157        | 0.072        | 0.481        |
| 2,2,4 Trimethylpentane | 0.000        | 0.000        | 0.000        |
| Other C7's             | 0.215        | 0.094        | 0.652        |
| n-Heptane              | 0.226        | 0.105        | 0.693        |
| Methylcyclohexane      | 0.182        | 0.074        | 0.547        |
| Toluene                | 0.063        | 0.021        | 0.178        |
| Other C8's             | 0.189        | 0.089        | 0.637        |
| n-Octane               | 0.043        | 0.022        | 0.150        |
| Ethylbenzene           | 0.002        | 0.001        | 0.006        |
| M & P Xylenes          | 0.021        | 0.008        | 0.068        |
| O-Xylene               | 0.003        | 0.001        | 0.010        |
| Other C9's             | 0.035        | 0.018        | 0.135        |
| n-Nonane               | 0.010        | 0.006        | 0.039        |
| Other C10's            | 0.009        | 0.005        | 0.039        |
| n-Decane               | 0.005        | 0.003        | 0.022        |
| Undecanes (11)         | <u>0.030</u> | <u>0.019</u> | <u>0.138</u> |
| Totals                 | 100.000      | 16.611       | 100.000      |
|                        |              |              |              |

### Computed Real Characteristics Of Total Sample:

| Specific Gravity    | 1.140  | (Air=1) |
|---------------------|--------|---------|
| Compressibility (Z) | 0.9900 |         |
| Molecular Weight    | 32.70  |         |
| Gross Heating Value |        |         |
| Dry Basis           | 1929   | BTU/CF  |
| Saturated Basis     | 1896   | BTU/CF  |

#### FESCO, Ltd. 1100 FESCO Avenue - Alice, Texas 78332

For: SLR International Corporation 900 Lee Street, Suite 500 Charleston, West Virginia 25301

Sample: CNX - Minnie Lee No. 1 (10134) Separator Hydrocarbon Liquid Sampled @ 21 psig & 58 °F

Date Sampled: 09/27/13

Job Number: 35882.002

#### CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2186-M

| COMPONENT           | MOL %         | LIQ VOL %     | WT %          |
|---------------------|---------------|---------------|---------------|
| Nitrogen            | 0.016         | 0.002         | 0.002         |
| Carbon Dioxide      | 0.000         | 0.000         | 0.000         |
| Methane             | 1.001         | 0.196         | 0.071         |
| Ethane              | 1.035         | 0.320         | 0.138         |
| Propane             | 1.237         | 0.394         | 0.243         |
| Isobutane           | 0.481         | 0.182         | 0.124         |
| n-Butane            | 1.098         | 0.400         | 0.284         |
| 2,2 Dimethylpropane | 0.052         | 0.023         | 0.017         |
| Isopentane          | 0.989         | 0.418         | 0.317         |
| n-Pentane           | 1.081         | 0.453         | 0.347         |
| 2,2 Dimethylbutane  | 0.094         | 0.046         | 0.036         |
| Cyclopentane        | 0.000         | 0.000         | 0.000         |
| 2,3 Dimethylbutane  | 0.186         | 0.088         | 0.071         |
| 2 Methylpentane     | 0.864         | 0.415         | 0.331         |
| 3 Methylpentane     | 0.571         | 0.270         | 0.219         |
| n-Hexane            | 1.483         | 0.705         | 0.568         |
| Heptanes Plus       | <u>89.811</u> | <u>96.089</u> | <u>97.231</u> |
| Totals:             | 100.000       | 100.000       | 100.000       |

#### Characteristics of Heptanes Plus:

| Specific Gravity | 0.8334 | (Water=1) |
|------------------|--------|-----------|
| °API Gravity     | 38.29  | @ 60°F    |
| Molecular Weight | 243.4  |           |
| Vapor Volume     | 10.87  | CF/Gal    |
| Weight           | 6.94   | Lbs/Gal   |
|                  |        |           |

#### **Characteristics of Total Sample:**

| Specific Gravity | 0.8236 | (Water=1) |
|------------------|--------|-----------|
| °API Gravity     | 40.31  | @ 60°F    |
| Molecular Weight | 224.9  |           |
| Vapor Volume     | 11.63  | CF/Gal    |
| Weight           | 6.86   | Lbs/Gal   |

Base Conditions: 14.850 PSI & 60 °F

FESCO, Ltd. - Alice, Texas

Analyst: XG Processor: JCMdjv Cylinder ID: W-1101

David Dannhaus 361-661-7015

#### TANKS DATA INPUT REPORT

| COMPONENT              | Mol %        | LiqVol %     | Wt %         |
|------------------------|--------------|--------------|--------------|
| Carbon Dioxide         | 0.000        | 0.000        | 0.000        |
| Nitrogen               | 0.016        | 0.002        | 0.002        |
| Methane                | 1.001        | 0.196        | 0.071        |
| Ethane                 | 1.035        | 0.320        | 0.138        |
| Propane                | 1.237        | 0.394        | 0.243        |
| Isobutane              | 0.481        | 0.182        | 0.124        |
| n-Butane               | 1.150        | 0.423        | 0.300        |
| Isopentane             | 0.989        | 0.418        | 0.317        |
| n-Pentane              | 1.081        | 0.453        | 0.347        |
| Other C-6's            | 1.716        | 0.818        | 0.658        |
| Heptanes               | 5.536        | 2.813        | 2.393        |
| Octanes                | 8.046        | 4.395        | 3.885        |
| Nonanes                | 5.013        | 3.175        | 2.830        |
| Decanes Plus           | 68.885       | 84.708       | 87.061       |
| Benzene                | 0.076        | 0.024        | 0.026        |
| Toluene                | 0.484        | 0.187        | 0.198        |
| E-Benzene              | 0.421        | 0.188        | 0.199        |
| Xylenes                | 1.349        | 0.599        | 0.637        |
| n-Hexane               | 1.483        | 0.705        | 0.568        |
| 2,2,4 Trimethylpentane | <u>0.000</u> | <u>0.000</u> | <u>0.000</u> |
| Totals:                | 100.000      | 100.000      | 100.000      |

#### **Characteristics of Total Sample:**

| Specific Gravity | 0.8236 | (Water=1) |
|------------------|--------|-----------|
| °API Gravity     | 40.31  | @ 60°F    |
| Molecular Weight | 224.9  |           |
| Vapor Volume     | 11.63  | CF/Gal    |
| Weight           | 6.86   | Lbs/Gal   |

### Characteristics of Decanes (C10) Plus:

| Specific Gravity | 0.8465 | (Water=1) |
|------------------|--------|-----------|
| Molecular Weight | 284.2  |           |

#### **Characteristics of Atmospheric Sample:**

| °API Gravity                      | 40.22 @ 60°F |
|-----------------------------------|--------------|
| Reid Vapor Pressure (ASTM D-5191) | 1.19 psi     |

| QUALITY CONTROL CHECK |                        |         |        |
|-----------------------|------------------------|---------|--------|
|                       | Sampling<br>Conditions | Test Sa | amples |
| Cylinder Number       |                        | W-1101* | W-578  |
| Pressure, PSIG        | 21                     | 24      | 24     |
| Temperature, °F       | 58                     | 70      | 70     |

\* Sample used for analysis

FESCO, Ltd.

| COMPONENT                          | Mol %          | LiqVol %       | Wt %           |
|------------------------------------|----------------|----------------|----------------|
| Nitrogen                           | 0.016          | 0.002          | 0.002          |
| Carbon Dioxide                     | 0.000          | 0.000          | 0.000          |
| Methane                            | 1.001          | 0.196          | 0.071          |
| Ethane                             | 1.035          | 0.320          | 0.138          |
| Propane                            | 1.237          | 0.394          | 0.243          |
| Isobutane                          | 0.481          | 0.182          | 0.124          |
| n-Butane                           | 1.098          | 0.400          | 0.284          |
| 2,2 Dimethylpropane                | 0.052          | 0.023          | 0.017          |
| Isopentane                         | 0.989          | 0.418          | 0.317          |
| n-Pentane                          | 1.081          | 0.453          | 0.347          |
| 2,2 Dimethylbutane                 | 0.094          | 0.046          | 0.036          |
| Cyclopentane                       | 0.000          | 0.000          | 0.000          |
| 2,3 Dimethylbutane                 | 0.186          | 0.088          | 0.071          |
| 2 Methylpentane                    | 0.864          | 0.415          | 0.331          |
| 3 Methylpentane                    | 0.571          | 0.270          | 0.219          |
| n-Hexane                           | 1.483          | 0.705          | 0.568          |
| Methylcyclopentane                 | 0.491          | 0.201          | 0.184          |
| Benzene                            | 0.076          | 0.024          | 0.026          |
| Cyclohexane                        | 0.504          | 0.198          | 0.189          |
| 2-Methylhexane                     | 1.065          | 0.572          | 0.475          |
| 3-Methylhexane                     | 0.882          | 0.468          | 0.393          |
| 2,2,4 Trimethylpentane             | 0.000          | 0.000          | 0.000          |
| Other C-7's                        | 0.675          | 0.350          | 0.298          |
| n-Heptane                          | 1.919          | 1.024          | 0.855          |
| Methylcyclohexane                  | 1.761          | 0.818          | 0.769          |
| Toluene                            | 0.484          | 0.187          | 0.198          |
| Other C-8's                        | 4.300          | 2.401          | 2.108          |
| n-Octane                           | 1.985          | 1.176          | 1.008          |
| E-Benzene                          | 0.421          | 0.188          | 0.199          |
| M & P Xylenes                      | 0.659          | 0.296          | 0.311          |
| O-Xylene                           | 0.690          | 0.303          | 0.326          |
| Other C-9's                        | 3.210          | 2.002          | 1.802          |
| n-Nonane                           | 1.803          | 1.172          | 1.028          |
| Other C-10's                       | 4.404          | 3.019          | 2.767          |
| n-decane                           | 1.482          | 1.051          | 0.937          |
| Undecanes(11)                      | 5.279          | 3.712          | 3.451          |
| Dodecanes(12)                      | 4.488          | 3.410          | 3.214          |
| Tridecanes(13)<br>Tetradecanes(14) | 4.613          | 3.757          | 3.590          |
| Pentadecanes(14)                   | 4.229<br>4.042 | 3.690<br>3.777 | 3.574          |
| Hexadecanes(16)                    | 3.452          | 3.448          | 3.703<br>3.408 |
| Heptadecanes(17)                   | 3.399          | 3.590          | 3.582          |
| Octadecanes(18)                    | 3.105          | 3.453          | 3.466          |
| Nonadecanes(19)                    | 2.914          | 3.376          | 3.409          |
| Eicosanes(20)                      | 2.616          | 3.150          | 3.199          |
| Heneicosanes(21)                   | 2.448          | 3.101          | 3.168          |
| Docosanes(22)                      | 2.239          | 2.956          | 3.037          |
| Tricosanes(23)                     | 2.224          | 3.044          | 3.145          |
| Tetracosanes(24)                   | 1.841          | 2.611          | 2.710          |
| Pentacosanes(25)                   | 1.846          | 2.717          | 2.833          |
| Hexacosanes(26)                    | 1.695          | 2.584          | 2.706          |
| Heptacosanes(27)                   | 1.667          | 2.635          | 2.772          |
| Octacosanes(28)                    | 1.376          | 2.249          | 2.375          |
| Nonacosanes(29)                    | 1.254          | 2.117          | 2.242          |
| Triacontanes(30)                   | 1.191          | 2.074          | 2.204          |
| Hentriacontanes Plus(31+)          | 7.080          | <u>19.188</u>  | <u>21.569</u>  |
| Total                              | 100.000        | 100.000        | 100.000        |

### ATTACHMENT O

# MONITORING/RECORDKEEPING/REPORTING/ TESTING PLANS

## **Rule 13 Permit Application**

Rohrbaugh Station Camden, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA

### MONITORING, RECORD KEEPING, REPORTING, TESTING PLANS

### Monitoring

CNX will at a minimum monitor hours of operation, site production throughputs, malfunctions of equipment, as well as planned and unplanned maintenance of permitted equipment comprising the facility.

### Recordkeeping

The company will retain records of the following for five (5) years, two (2) years on site, certified by a company official at such time that the DAQ may request said records

In addition to those mentioned above, the company will keep records of the items monitored, such as station throughput, hours of operation, planned maintenance activities, unplanned maintenance activities, and complaints regarding the facility.

Records of maintenance conducted shall be kept in accordance with Subpart JJJJ (40CFR60.4243(b)(2)(i)).

### Reporting

CNX at a minimum will submit results of initial performance test to the EPA Regional Office within sixty (60) days of completion of such tests. In addition, the company will report any control equipment malfunctions or emission limit deviations.

### Testing

The company will demonstrate initial compliance by conducting a performance demonstration as specified in 40CFR60.4244 showing the emission limitations in 40CFR1048.101(c) are being met.

### ATTACHMENT P

## **PUBLIC NOTICE**

# **Rule 13 Permit Application**

Rohrbaugh Station Camden, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA

### AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that CNX Gas Company LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a Construction Permit, for a natural gas compressor station located off Left Fork Rd. near Camden, in Lewis County, West Virginia. The latitude and longitude coordinates are 39.07170 and -80.58651.

The applicant estimates the potential to discharge of the following Regulated Air Pollutants will be:

| Pollutant       | Tons/yr |
|-----------------|---------|
| PM/PM10/PM2.5   | 0.07    |
| NO <sub>x</sub> | 2.60    |
| CO              | 4.44    |
| VOCs            | 2.40    |
| Formaldehyde    | 0.25    |
| Total HAPs      | 0.29    |

The operations are after the fact and have become necessary due to 40 CFR 60, Subpart JJJJ applicability. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57<sup>th</sup> Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the 25 day of January, 2017.

By: CNX Gas Company LLC Craig Neal Vice President Gas Operations 1000 Consol Energy Drive Canonsburg, PA 15317

### ATTACHMENT Q

# **BUSINESS CONFIDENTIAL CLAIMS (SEE NOTE)**

Note: No information contained within this application is claimed confidential.

# **Rule 13 Permit Application**

Rohrbaugh Station Camden, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA

### ATTACHMENT R

## **AUTHORITY FORMS (SEE NOTE)**

Note: No delegation of authority.

## **Rule 13 Permit Application**

Rohrbaugh Station Camden, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA

### **ATTACHMENT S**

# **TITLE V PERMIT REVISION INFORMATION (SEE NOTE)**

Note: Not a Title V Permit Revision.

# **Rule 13 Permit Application**

Rohrbaugh Station Camden, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA

### ATTACHMENT T

## PERMIT APPLICATION FEE

# **Rule 13 Permit Application**

Rohrbaugh Station Camden, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA