GENERAL PERMIT G40-C PERMIT PACKAGE

Applicant – TUNNEL RIDGE, LLC

TABLE OF CONTENTS

- TABLE OF CONTENTS
- COVER SHEET
- LETTER
- APPLICATION FOR GENERAL PERMIT REGISTRATION
- ATTACHMENT A CURRENT BUSINESS CERTIFICATE
- ATTACHMENT B PROCESS DESCRIPTION
- ATTACHMENT C DESCRIPTION OF FUGITIVE EMISSIONS
- ATTACHMENT D PROCESS FLOW DIAGRAM
- ATTACHMENT F LOCATION MAP
- ATTACHMENT G AFFECTED SOURCE SHEETS
- ATTACHMENT I EMISSIONS CALCULATIONS
- ATTACHMENT J CLASS I LEGAL ADVERTISEMENT
- ATTACHMENT L GENERAL PERMIT REGISTRATION APPLICATION FEE

GENERAL PERMIT G40-C PERMIT PACKAGE

Applicant – TUNNEL RIDGE, LLC

Location: 1901 Short Creek Road Richland District Ohio County, WV

> Prepared For: Tunnel Ridge, LLC 2596 Battle Run Road Triadelphia, WV 26059

Prepared By: JHA Companies 68011 Vineyard Road St. Clairsville, Ohio 43950 Ph: (740) 695-6100 Fax: (740) 449-2343

Date Prepared: December 19, 2016

January 18, 2016

West Virginia Department of Environmental Protection Division of Air Quality 601 57th Street Charleston, WV 25304

RE: Tunnel Ridge, LLC Portable Crushing Unit Application for General Permit Registration (Relocation) G40-C – Nonmetallic Minerals Processing

To Whom It May Concern,

Please find attached two (2) original set and two electronic copies with signatures of an Application for General Permit Registration (G40-C – Nonmetallic Minerals Processing) for the relocation of a portable crushing unit to be in operation in Ohio County, WV. The crushing unit will be operated on an existing coal preparation plant site. If you have any questions, please contact my office at (304) 547-2937.

Sincerely,

Evan Midler

Tunnel Ridge, LLC, 2596 Battle Run Road, Triadelphia, West Virginia 26059 Telephone: (304) 547-2937 Fax: (304) 547-2940

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALITY 601 57 th Street, SE Charleston, WV 25304 (304) 926-0475 WWW.dep.WV.gov/dag						
PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KNOW	N): PLEASE CHECK TYPE OF 45CSR30 (TITLE V) REVISION (IF ANY):					
☐ CONSTRUCTION ☐ MODIFICATION ☐ RELOCATION	ADMINISTRATIVE AMENDMENT MINOR MODIFICATION					
CLASS I ADMINISTRATIVE UPDATE TEMPORARY						
CLASS II ADMINISTRATIVE UPDATE AFTER-THE-FACT	IF ANY BOX ABOVE IS CHECKED, INCLUDE TITLE V REVISION INFORMATION AS ATTACHMENT S TO THIS APPLICATION					
	rision Guidance" in order to determine your Title V Revision options ty to operate with the changes requested in this Permit Application.					
Sectio	n I. General					
1. Name of applicant (as registered with the WV Secretary of State's Office): 2. Federal Employer ID No. (FEIN): Tunnel Ridge, LLC 7 3 1 6 1 8 1 3 7						
3. Name of facility (if different from above): 4. The applicant is the: Image: Imag						
5A. Applicant's mailing address: 2596 Battle Run Road, Triadelphia, WV 26059 5B. Facility's present physical address: 1901 Short Creek Road, Wheeling WV 26003						
 6. West Virginia Business Registration. Is the applicant a resident of the State of West Virginia? YES NO If YES, provide a copy of the Certificate of Incorporation/Organization/Limited Partnership (one page) including any name change amendments or other Business Registration Certificate as Attachment A. If NO, provide a copy of the Certificate of Authority/Authority of L.L.C./Registration (one page) including any name change amendments or other Business Certificate as Attachment A. 						
7. If applicant is a subsidiary corporation, please provide the	name of parent corporation: Alliance Coal, LLC					
8. Does the applicant own, lease, have an option to buy or ot	nerwise have control of the proposed site? XES DO					
 If YES, please explain: Tunnel Ridge, LLC leases t 	he property from Alliance Resources General Partnership					
 If NO, you are not eligible for a permit for this source. 						
 Type of plant or facility (stationary source) to be construct administratively updated or temporarily permitted (e.g. crusher, etc.): crusher 						
11A. DAQ Plant ID No. (for existing facilities only): 0 6 6 – 0 0 0 9 9	List all current 45CSR13 and 45CSR30 (Title V) permit numbers associated with this process (for existing facilities only): R13-2790A					
All of the required forms and additional information can be foun	d under the Permitting Section of DAQ's website, or requested by phone.					

12A.

present location of the facility from the near		acility, please provide directions to the
 For Construction or Relocation permits, p road. Include a MAP as Attachment B. 	lease provide directions to the proposed	new site location from the nearest state
From SR 2 turn east onto SR 1, travel 2.65 miles.	The entrance is on the south side of SR	1.
12.B. New site address (if applicable):	12C. Nearest city or town:	12D. County:
	Short Creek	Ohio
12.E. UTM Northing (KM): 4444.739994	12F. UTM Easting (KM): 529.297959	12G. UTM Zone: 17
13. Briefly describe the proposed change(s) at th	e facility:	· ·
A rock crusher will be used.		

and the second second

ſ	14A. Provide the date of anticipated installation or change: 01/25/2017	14B. Date of anticipated Start-Up
	- If this is an After-The-Fact permit application, provide the date upon which the proposed	if a permit is granted:
	change did happen: / /	01/25/2017

14C. Provide a Schedule of the planned Installation of/Change to and Start-Up of each of the units proposed in this permit	
application as Attachment C (if more than one unit is involved).	

15. Provide maximum projected **Operating Schedule** of activity/activities outlined in this application: Hours Per Day 8 Days Per Week 5 Weeks Per Year50

16. Is demolition or physical renovation at an existing facility involved?
YES NO

17. Risk Management Plans. If this facility is subject to 112(r) of the 1990 CAAA, or will become subject due to proposed

changes (for applicability help see www.epa.gov/ceppo), submit your Risk Management Plan (RMP) to U. S. EPA Region III.

18. Regulatory Discussion. List all Federal and State air pollution control regulations that you believe are applicable to the

proposed process (if known). A list of possible applicable requirements is also included in Attachment S of this application

(Title V Permit Revision Information). Discuss applicability and proposed demonstration(s) of compliance *(if known)*. Provide this information as **Attachment D**.

Section II. Additional attachments and supporting documents.

19. Include a check payable to WVDEP – Division of Air Quality with the appropriate **application fee** (per 45CSR22 and 45CSR13).

20. Include a Table of Contents as the first page of your application package.

21. Provide a **Plot Plan**, e.g. scaled map(s) and/or sketch(es) showing the location of the property on which the stationary source(s) is or is to be located as **Attachment E** (Refer to *Plot Plan Guidance*).

- Indicate the location of the nearest occupied structure (e.g. church, school, business, residence).

22. Provide a **Detailed Process Flow Diagram(s)** showing each proposed or modified emissions unit, emission point and control device as **Attachment F.**

23. Provide a Process Description as Attachment G.

- Also describe and quantify to the extent possible all changes made to the facility since the last permit review (if applicable).

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

24. Provide Material Safety Data Sheets	(MSDS) for all materials proc	essed, used or produced as Attachment H.				
- For chemical processes, provide a MSI	 For chemical processes, provide a MSDS for each compound emitted to the air. 					
25. Fill out the Emission Units Table and	d provide it as Attachment I.					
26. Fill out the Emission Points Data Su	mmary Sheet (Table 1 and 1	Fable 2) and provide it as Attachment J.				
27. Fill out the Fugitive Emissions Data	Summary Sheet and provide	it as Attachment K.				
28. Check all applicable Emissions Unit	Data Sheets listed below:					
Bulk Liquid Transfer Operations	Haul Road Emissions	Quarry				
Chemical Processes	Hot Mix Asphalt Plant	Solid Materials Sizing, Handling and Storage				
Concrete Batch Plant	Incinerator	Facilities				
Grey Iron and Steel Foundry	Indirect Heat Exchanger	Storage Tanks				
General Emission Unit, specify						
Fill out and provide the Emissions Unit D	ata Sheet(s) as Attachment	L.				
29. Check all applicable Air Pollution Co	ontrol Device Sheets listed be	elow:				
Absorption Systems	Baghouse	Flare				
Adsorption Systems	Condenser	Mechanical Collector				
	Electrostatic Precip	itator Uet Collecting System				
Other Collectors, specify						
Fill out and provide the Air Pollution Con	trol Device Sheet(s) as Atta	chment M.				
30. Provide all Supporting Emissions Calculations as Attachment N , or attach the calculations directly to the forms listed in Items 28 through 31.						
31. Monitoring, Recordkeeping, Reporting and Testing Plans. Attach proposed monitoring, recordkeeping, reporting and testing plans in order to demonstrate compliance with the proposed emissions limits and operating parameters in this permit application. Provide this information as Attachment O .						
	y not be able to accept all mea	ether or not the applicant chooses to propose such asures proposed by the applicant. If none of these plans clude them in the permit.				
32. Public Notice. At the time that the a	pplication is submitted, place	a Class I Legal Advertisement in a newspaper of general				
circulation in the area where the source	ce is or will be located (See 45	SCSR§13-8.3 through 45CSR§13-8.5 and <i>Example Legal</i>				
Advertisement for details). Please s	ubmit the Affidavit of Publica	ation as Attachment P immediately upon receipt.				
33. Business Confidentiality Claims. D	oes this application include co	onfidential information (per 45CSR31)?				
	⊠ NO					
segment claimed confidential, includir Notice – Claims of Confidentiality"	ng the criteria under 45CSR§3 guidance found in the Genera					
Se	ction III. Certification	n of Information				
34. Authority/Delegation of Authority. Check applicable Authority Form be		other than the responsible official signs the application.				
Authority of Corporation or Other Busin	ess Entity	Authority of Partnership				
Authority of Governmental Agency		Authority of Limited Partnership				
Submit completed and signed Authority F						
		e Permitting Section of DAQ's website, or requested by phone.				

35A. **Certification of Information**. To certify this permit application, a Responsible Official (per 45CSR§13-2.22 and 45CSR§30-2.28) or Authorized Representative shall check the appropriate box and sign below.

Certification of Truth, Accuracy, and Completeness

I, the undersigned Responsible Official / Authorized Representative, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.

Compliance Certification

Except for requirements identified in the Title V Application for which compliance is not achieved, I, the undersigned hereby certify that, based on information and belief formed after reasonable inquiry, all air contaminant sources identified in this application are in compliance with all applicable requirements.

SIGNATURE (Please) (Please) 35B. Printed name of signee: Evan Midler	use blue ink)	ATE: (Please use blue ink) 35C. Title: Land Manager
35D. E-mail: evan.midler@arlp.com	36E. Phone: 304-547-2937	36F. FAX: 304-547-2940
36A. Printed name of contact person (if differe	nt from above):	36B. Title:
36C. E-mail:	36D. Phone:	36E. FAX:

Attachment A: Business Certificate Attachment K: Fugitive Emissions Data Summary Sheet Attachment B: Map(s) Attachment L: Emissions Unit Data Sheet(s) Attachment C: Installation and Start Up Schedule Attachment M: Air Pollution Control Device Sheet(s) Attachment D: Regulatory Discussion Attachment N: Supporting Emissions Calculations Attachment E: Plot Plan Attachment O: Monitoring/Recordkeeping/Reporting/Testing Attachment G: Process Description Attachment Q: Business Confidential Claims Attachment H: Material Safety Data Sheets (MSDS) Attachment R: Authority Forms Attachment J: Emission Points Data Summary Sheet Attachment S: Title V Permit Revision Information	
	g Plans
Please mail an original and three (3) copies of the complete permit application with the signature(s) to the DAQ, Permitting Section address listed on the first page of this application. Please DO NOT fax permit applications.	ion, at the

Forward 1 copy of the application to the Title V Permitting Group and:

For Title V Administrative Amendments:

□ NSR permit writer should notify Title V permit writer of draft permit,

For Title V Minor Modifications:

Title V permit writer should send appropriate notification to EPA and affected states within 5 days of receipt,

NSR permit writer should notify Title V permit writer of draft permit.

□ For Title V Significant Modifications processed in parallel with NSR Permit revision:

- □ NSR permit writer should notify a Title V permit writer of draft permit,
- Public notice should reference both 45CSR13 and Title V permits,

EPA has 45 day review period of a draft permit.

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

GENERAL PERMIT G40-C PERMIT PACKAGE

Applicant – TUNNEL RIDGE, LLC

Location: 1901 Short Creek Road Richland District Ohio County, WV

> Prepared For: Tunnel Ridge, LLC 2596 Battle Run Road Triadelphia, WV 26059

ATTACHMENT A: CURRENT BUSINESS CERTIFICATE

I, Natalie E. Tennant, Secretary of State of the State of West Virginia, hereby certify that

TUNNEL RIDGE, LLC

was duly authorized under the laws of this state to transact business in West Virginia as a foreign limited liability company on August 08, 2001.

The company is filed as an at-will company, for an indefinite period.

I further certify that the LLC (PLLC) has not been revoked by the State of West Virginia nor has a Certificate of Cancellation been issued.

Therefore, I hereby issue this

CERTIFICATE OF AUTHORIZATION

Validation ID:0WV0Y_A89MX

Given under my hand and the Great Seal of the State of West Virginia on this day of June 28, 2016

Secretary of State

TOT WEST UIPER

Notice: A certificate issued electronically from the West Virginia Secretary of State's Web site is fully and immediately valid and effective. However, as an option, the issuance and validity of a certificate obtained electronically may be established by visiting the Certificate Validation Page of the Secretary of State's Web site, https://apps.wv.gov/sos/businessentitysearch/validate.aspx entering the validation ID displayed on the certificate, and following the instructions displayed. Confirming the issuance of a certificate is merely optional and is not necessary to the valid and effective issuance of a certificate.

GENERAL PERMIT G40-C PERMIT PACKAGE

Tunnel Ridge, LLC 2596 Battle Run Road Triadelphia, WV 26059

ATTACHMENT B: PROCESS DESCRIPTION

The purpose of this Application for General Permit Registration is to setup a portable rock crushing unit to crush rock excavated at a previously permitted coal mine preparation plant and refuse site in Ohio County, West Virginia. This processed rock will be placed onsite for various uses, such as riprap, energy dissipaters or fill material.

The process will begin with a hydraulic loader moving previously stockpiled rock to the Metso 2008 LT-106 Track Jaw Crusher feeder hopper(1). The vibrating grizzly feeder hopper transfers the rock to the jaw crusher(2). The material will go from the jaw crusher to the main product conveyor. A factory installed water spray bar will provide for dust suppression for the main product conveyor. From the conveyors, the processed rock will go to a screen. The double deck screen will then send different sized material onto one of two conveyor belts. These two conveyor belts will make separate stockpiles. A water truck will provide dust suppression for the stockpiles. The processed rock will be stockpiled for use in site activities at a later date.

GENERAL PERMIT G40-C PERMIT PACKAGE

Tunnel Ridge, LLC 2596 Battle Run Road Triadelphia, WV 26059

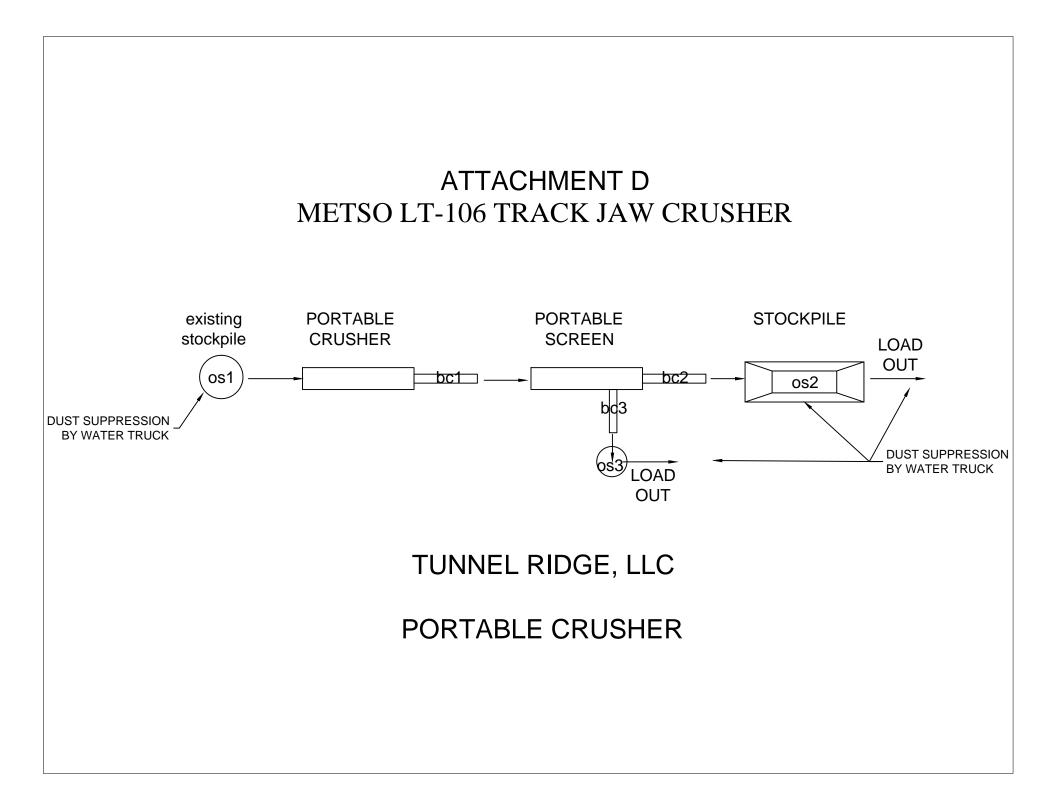
ATTACHMENT C: DESCRIPTION OF FUGITIVE EMISSIONS

The potential sources of fugitive particulate emissions are:

- 1. Feeding Vibratory Grizzly Feeder Hopper
- 2. Vibrating Grizzly Feeder Hopper
- 3. Jaw Crusher
- 4. Main Product Conveyor
- 5. Crusher Conveyor to Screen Hopper
- 6. Screen Hopper to conveyor
- 7. Conveyor to screen
- 8. Screen to conveyor
- 9. Screen to side conveyor

The primary fugitive dust control equipment will be a 3,000 gallon water truck. The water truck will be used primarily to control fugitive particulate emissions on the haul roads, and stock piles. By wetting the material in the surge pile and stockpile, fugitive particulate emissions will also be controlled at the receiving hopper and conveyor by moisture carryover. The water truck has a maximum application rate of approximately 10,000 gph and application frequency will be dependent on environmental conditions. The frequency will vary from zero during rainy conditions to approximately four to five applications per day during extremely dry conditions. In addition to the water truck, a factory installed spray bar on the main product conveyor will be used. This spray system has a maximum application rate of 1,000 gph. Again the frequency rate will vary depending on environmental conditions. The spray bar will be used continuously during operation.

GENERAL PERMIT G40-C PERMIT PACKAGE


Applicant – TUNNEL RIDGE, LLC

Location: 1901 Short Creek Road Richland District Ohio County, WV

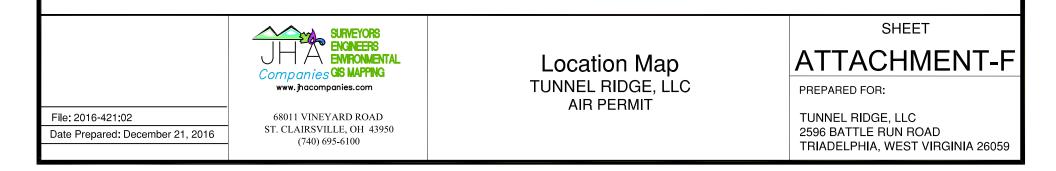
> Prepared For: Tunnel Ridge, LLC 2596 Battle Run Road Triadelphia, WV 26059

ATTACHMENT D: PROCESS FLOW DIAGRAM

GENERAL PERMIT G40-C PERMIT PACKAGE

Applicant – TUNNEL RIDGE, LLC

Location: 1901 Short Creek Road Richland District Ohio County, WV


> Prepared For: Tunnel Ridge, LLC 2596 Battle Run Road Triadelphia, WV 26059

ATTACHMENT F: AREA MAP

Possible Portable Crusher Unit Locations $_{\odot}$

GENERAL PERMIT G40-C PERMIT PACKAGE

Applicant – TUNNEL RIDGE, LLC

Location: 1901 Short Creek Road Richland District Ohio County, WV

> Prepared For: Tunnel Ridge, LLC 2596 Battle Run Road Triadelphia, WV 26059

ATTACHMENT G: Affected Source Sheets

		_			
Source Identification Number ¹		CR-1	SC-1		
Type of C	rusher or Screen ²	JC	DD		
Malta Mad	lal No. Social No.3	Metso	Terex		
Make, Model No., Serial No. ³		LT106	883		
Date of Construction, Reconstruction, or Modification (Month/Year) ⁴		05/2008	09/2015		
Maximum	tons/hour	300	110		
Throughput ⁵	tons/year	1,315,000	1,315,000		
Material	sized from/to:6	+24"/~3"	N/A		
Average Moisture Content (%) ⁷		2	2		
Control Device ID Number ⁸		CS-FW	CS-FE		
	height (ft)	N/A			
Baghouse	diameter (ft)	N/A			
Stack	volume (ACFM)	N/A			
Parameters9	exit temp (F)	N/A			
	UTM Coordinates	N/A			
Maximum	hours/day	8	8		
WIAXIIIIUIII		1	1		1

CRUSHING AND SCREENING AFFECTED SOURCE SHEET

Enter the appropriate Source Identification Number for each crusher and screen. For example, in the case of an operation 1. which incorporates multiple crushers, the crushers should be designated CR-1, CR-2, CR-3 etc. beginning with the breaker or primary crusher. Multiple screens should be designated S-1, S-2, S-3 etc.

250

2,000

2. Describe types of crushers and screens using the following codes:

days/year

hours/year

HMHammermill

Operating

Schedule¹⁰

RB

- SD Single Deck Screen
- Stationary Screen

250

2,000

- Ball Mill Triple Deck Screen
- Rotary Breaker TD
- GC Gyratory Crusher OT Other
- 3. Enter the make, model number, and serial number of the crusher/screen.
- 4. Enter the date that each crusher and screen was constructed, reconstructed, or modified.
- 5. Enter the maximum throughput for each crusher and screen in tons per hour and tons per year.

SS

BM

- Describe the nominal material size reduction (e.g. $+2^{"}/-3/8"$). 6.
- Enter the average percent moisture content of the material processed. 7.
- 8. Enter the appropriate Control Device Identification Number for each crusher and screen. Refer to Table A - Control Device Listing and Control Device Identification Number Instructions in the Reference Document for Control Device ID prefixes and numbering.
- 9 Enter the appropriate stack parameters if a baghouse control device is used.
- 10. Enter the maximum operating schedule for each crusher and screen in hours per day, days per year and hours per year.

- Double Roll Crusher
- Double-Deck Screen
- Jaw Crusher

DR

DD

JC

Source Identification	Date of Construction, Reconstruction,	Type of Material	Size of Material		n Material er Rate ⁵	Average Moisture Content	Control Device ⁷
Number ¹	or Modification (Month/Year) ²	Handled ³	Handled ⁴	tons/hour	tons/year	(%) ⁶	Device
BC-1	05/2008	SM	~3"	300	75,000	2	Ν
BC-2	09/2015	SM	~3"	200	50,000	2	N
BC-3	09/2015	SM	~3"	300	75,000	2	N

CONVEYING AFFECTED SOURCE SHEET

1. Enter the appropriate Source Identification Number for each conveyor using the following codes. For example, multiple belt conveyors should be designated BC-1, BC-2, BC-3 etc. Transfer points are considered emission points, not sources, and should not be included in the *Conveying Affected Source Sheet*. Transfer Point Identification Numbers shall be assigned in the *Emission Calculation Sheet*.

BC	Belt Conveyor	BE	Bucket Elevator	DL	Drag-link Conveyor
PS	Pneumatic System	SC	Screw Conveyor	VC	Vibrating Conveyor
0.77	0.1				

- OT Other
- 2. Enter the date that each crusher and screen was constructed, reconstructed, or modified.
- 3. Enter the type of material being handled Raw Material (RM) Sized Material (SM) Refuse (R) Other (O)
- 4. Enter the nominal size of the material being conveyed (e.g. sized material- ³/₄" x 0). If more than one material is handled by the listed conveyor, list each material and enter the appropriate data for each material.
- 5. Enter the maximum material transfer rate for each conveyor in tons per hour and tons per year.
- 6. Enter the average percent moisture content of the conveyed material.
- 7. Enter the control device for the conveyor. PE Partial Enclosure (example 3/4 hoop), FE Full Enclosure, N None

STORAGE ACTIVITY AFFECTED SOURCE SHEET

	-	r		1	
Source Identification Number ¹	OS-1	OS-2	OS-3		
Type of Material Stored ²	RM	SM	SM		
Average Moisture Content (%) ³	2	2	2		
Maximum Yearly Storage Throughput (tons) ⁴	75,000	75,000	50,000		
Maximum Storage Capacity (tons) ⁵	3,000	3,000	2,000		
Maximum Base Area (ft ²) ⁶	5,000	5,000	3,500		
Maximum Pile Height (ft) ⁷	25	25	25		
Method of Material Load-in ⁸		МС	МС		
Load-in Control Device Identification Number ⁹	N/A	МС	МС		
Storage Control Device Identification Number ⁹	SW-WS	SW-WS	SW-WS		
Method of Material Load-out ⁸					
Load-out Control Device Identification Number ⁹					

- 1. Enter the appropriate Source Identification Number for each storage activity using the following codes. For example, if the facility utilizes three storage bins, four open stockpiles and one storage building (full enclosure), the Source Identification Numbers should be BS-1, BS-2, and BS-3; OS-1, OS-2, OS-3, and OS-4; and SB-1, respectively.
 - BS Bin or Storage Silo (full enclosure)
- E3 Enclosure (three sided enclosure)
- OS Open Stockpile
- SB Storage Building (full enclosure)

SS Stationary Conveyor/Stacker

Telescoping Chute from Bins

Stacking Tube

- SF Stockpiles with wind fences
- 2. Describe the type of material stored or stockpiled. (e.g. sized material, raw material, refuse, etc).
- 3. Enter the average percent moisture content of the stored material.
- 4. Enter the maximum yearly storage throughput for each storage activity.
- Enter the maximum storage capacity for each storage activity in tons (e.g. silo capacity, maximum stockpile size, etc.) 5

ST

TC

OT Other

- For stockpiles, enter the maximum stockpile base area. 6.
- For stockpiles, enter the maximum stockpile height. 7.
- 8. Enter the method of load-in or load-out to/from stockpiles or bins using the following codes:
- CS Clamshell

RC

- FC Fixed Height Chute from Bins
- FE Front Endloader
- MC Mobile Conveyor/Stacker
- UC Under-pile or Under-Bin Reclaim Conveyor
 - Pneumatic Conveyor/Stacker PC Rake or Bucket Reclaim Conveyor OT Other
- Enter the appropriate Control Device Identification Number for each storage activity. Refer to Table A Control Device Listing and Control 9.

TD Truck Dump

Device Identification Number Instructions in the Reference Document for Control Device ID prefixes and numbering.

GENERAL PERMIT G40-C PERMIT PACKAGE

Applicant – TUNNEL RIDGE, LLC

Location: 1901 Short Creek Road Richland District Ohio County, WV

> Prepared For: Tunnel Ridge, LLC 2596 Battle Run Road Triadelphia, WV 26059

ATTACHMENT I: EMMISSIONS CALCULATIONS

r							
Source Ider	ntification Number ¹	CI	R-1	SC	C-1		
Engine Man	ufacturer and Model	Caterp	illar C9	Caterpillar C4.4			
Manufactur	er's Rated bhp/rpm	300/2200		110/2200			
Sou	arce Status ²	Ν	١S	N	IS		
	d/Modified/Removed onth/Year) ³	05/2	05/2008		09/2015		
Engine Manufactu	ared/Reconstruction Date4	05/2	2008	09/2	2015		
Is this a Certified Stationary Compression Ignition Engine according to 40CFR60 Subpart IIII? (Yes or No) ⁵		N	10	N	0		
	Stationary Spark Ignition o 40CFR60 Subpart JJJJ?	Ň	10	N	0		
	Engine Type ⁷	LE	34S	LE	34S		
	APCD Type ⁸	А	/F	А	/F		
. .	Fuel Type ⁹	21	FO	21	FO		
Engine, Fuel and Combustion Data	H ₂ S (gr/100 scf)	7.3 X 10^-6		7.3 X 10^-6			
	Operating bhp/rpm	300/2200		110/2200			
	BSFC (Btu/bhp-hr)	3299		6473			
	Fuel throughput (ft ³ /hr)	2.12		0.66			
	Fuel throughput (MMft ³ /yr)	.0186		.0012			
	Operation (hrs/yr)	2,000		2,000			
Reference ¹⁰	Potential Emissions ¹¹	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr
CR-1	NOx	9.30	27.16	3.41	9.96		
	СО	2.7	5.85	0.73	2.15		
	VOC	0.75	2.20	0.28	0.81		
	SO_2	0.62	1.80	0.23	0.66		
	PM ₁₀	0.66	1.93	0.24	0.71		
	Formaldehyde	0.0011	0.0032	.00011	0.0032		
R			1				1

ENGINE DATA SHEET

- 1. Enter the appropriate Source Identification Number for each reciprocating internal combustion compressor/generator engine located at the facility. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Emergency Generator engines should be designated EG-1, EG-2, EG-3 etc. If more than three (3) engines exist, please use additional sheets.
- 2. Enter the Source Status using the following codes:
 - NS Construction of New Source (installation)
 - MS Modification of Existing Source
- ES Existing Source
- RS Removal of Source

	Diesel Engine Em	issions Calcu	lation Sh	eet					
Manufacturers Da	ata:		#2 Fuel Oi	l Data:					
Horsepower	30	00 hp	142,600	btu/gallor	1				
Engine Speep	220	00 rpm	6.96	lb/gallon					
Fuel Consumption	n 0.3666666	67 lb/hp-hr	0.84	grams/cm	3				
			19,300	Btu/lb					
			0.02	MMBtu/lb)				
			2	mg/kg	Sulfur Content				
Calculate fuel thr	oughput in gallons/hr				Calculate fuel th	hrou	ghput in lb/hr		
0.366666	5667 1 gal	300 hp			.366667 lb	30	0 hp		
hp-hr	6.96 lb	=	15.80431		hp-hr	=		110 lb/hr	
Calculate BSFC in	Btu/bhp-hr								
6.94 gallons	142,600 Btu	=	3,299 Btu/	/hp-hr					
hr	1 gallon	300 hp	_						
Calculate fuel thr	ougput in cubic feet/hr, giver	6.96 lb/gal diese	el fuel						
0.36666 lb	1 gal	0.1337 cu. ft.							
hp-hr	6.96 lb	1 gal	=		./hr				
I.		0.			,				
Calculate fuel thr	ougput in million cubic feet/y	r							
2.12 cu. ft.	2,000 hrs	1 MM cu. ft.	=	0.004 MN	l cu. ft./yr				
hr	year	1,000,000 cu.	ft.	-					
Calculate H2S (gra	ains/100 cu ft.)							<i>c</i>	
2 mg H2S	0.0154 grains	0.84 g	1 kg	1 g	28,316.85 cm3	=		7.3 x 10 ⁻⁶	grains/100 cu. ft.
kg Fuel	1 mg H2S	cm3	1000 g	1000 mg	1 cu. ft.		100		
		Emiss	ions					Emiss	sions
		_				Α	P-42 Emissions		
Constituent	AP-42 Emissions Facto (lb/hp-hr)	r lb/hr	+==		Constituent		Factor (lb/MMBtu)	lb/hr	+m.,
NOx	(ib/iip-iii) 0.03	-	tpy 27.16	-	Benzene		0.000933		tpy 0.00254
CO	0.006				Ethylbenzene	*	0.000955	*	*
SOx	0.008				Toluene		0.000409		0.001113
PM-10	0.002				Xylenes		0.000409		0.000776
CO2	1.				n-Hexane	*	0.000200	*	*
*TOC:	1.	5-5.00	, 1007.40		Formaldehyde		0.00118	0,00110	0.003212
	aust 0.0024	17 0.74	2.16		sinalacityde		0.00110	0.00110	
Evapora					*Unable to loca	ite er	nission factor		
Crank									
Refue									
	Total TOC:	0.75							
		0.72	2.20						

*Use TOC for VOC

	Diesel Engi	ne Emissi	ons Calcul	ation Sh	eet					
Manufacturers Data	a:			#2 Fuel Oil	Data:					
Horsepower		110 h	р	142,600	btu/gallon					
Engine Speep		2200 rj	om	6.96	lb/gallon					
Fuel Consumption	0.31	.5911498 lk)/hp-hr	0.84	grams/cm	3				
				19,300	Btu/lb					
				0.02	MMBtu/lb					
				2	mg/kg	Sulfur Content				
Calculate fuel throu	ighput in gallons/hr					Calculate fuel th	nrough	nput in lb/hr		
0.3159114			110			.3159115 lb	110	hp		
hp-hr	6.96 lb	=		4.993		hp-hr	=		34.75 lb/hr	
Calculate BSFC in Bt	tu/bhp-hr									
4.993 gallons	142,600 Btu	=		6,472 Btu/	hp-hr					
hr	1 gallon	1	10 hp							
Calculate fuel throu	igput in cubic feet/h	r, given 6.90	5 lb/gal diese	l fuel						
0.3159115 lb	1 gal		.1337 cu. ft.							
L . L .	6.96 lb	1	gal	=	0.6675 cu.	ft./hr				
hp-hr										
		<i>.</i> . <i>.</i>								
Calculate fuel throu			NANA 64		0.0012 M	A and the loss				
Calculate fuel throu 0.6675 cu. ft.	2,000 hrs	1	MM cu. ft.		0.0013 MI	∕I cu. ft./yr				
Calculate fuel throu		1	<u>MM cu. ft.</u> ,000,000 cu. 1		0.0013 MI	И cu. ft./yr				
Calculate fuel throu 0.6675 cu. ft.	2,000 hrs year	1			0.0013 MI	И cu. ft./yr				
Calculate fuel throu 0.6675 cu. ft. hr	2,000 hrs year	<u> 1 1 </u>			_0.0013 Mf	И си. ft./yr 28,316.85 ст3	=		7.3 x 10 ⁻⁶	grains/100 cu. ft.
Calculate fuel throu 0.6675 cu. ft. hr Calculate H2S (grain	2,000 hrs year ns/100 cu ft.)	1 1 0	,000,000 cu. 1	t.			=	10		grains/100 cu. ft.
Calculate fuel throu 0.6675 cu. ft. hr Calculate H2S (grain 2 mg H2S	2,000 hrs year ns/100 cu ft.) 0.0154 grains	1 1 0	,000,000 cu. 1 .84 g	t. <u>1 kg</u> 1000 g	1 g	28,316.85 cm3	=	10	00	grains/100 cu. ft.
Calculate fuel throu 0.6675 cu. ft. hr Calculate H2S (grain 2 mg H2S	2,000 hrs year ns/100 cu ft.) 0.0154 grains	1 1 0	,000,000 cu. 1 .84 g m3	t. <u>1 kg</u> 1000 g	1 g	28,316.85 cm3		10 -42 Emissions	00 Emi	
Calculate fuel throu 0.6675 cu. ft. hr Calculate H2S (grair 2 mg H2S	2,000 hrs year ns/100 cu ft.) 0.0154 grains	1 1 0 ci	,000,000 cu. 1 .84 g m3	t. <u>1 kg</u> 1000 g	1 g	28,316.85 cm3			00 Emi	
Calculate fuel throu 0.6675 cu. ft. hr Calculate H2S (grair 2 mg H2S	2,000 hrs year ns/100 cu ft.) 0.0154 grains 1 mg H2S	1 1 0 ci s Factor r)	,000,000 cu. 1 .84 g m3	t. <u>1 kg</u> 1000 g	1 g	28,316.85 cm3 1 cu. ft. Constituent	AP	-42 Emissions	00 Emi	
Calculate fuel throu 0.6675 cu. ft. hr Calculate H2S (grain 2 mg H2S kg Fuel Constituent NOx	2,000 hrs year ns/100 cu ft.) 0.0154 grains 1 mg H2S AP-42 Emission	1 1 C C s Factor	.84 g m3 Emissi	1 kg 1000 g ons	1 g 1000 mg	28,316.85 cm3 1 cu. ft. Constituent Benzene	AP- (-42 Emissions Factor	Emi: 5 1b/hr 33 0.0008	tpy 7 0.00254
Calculate fuel throu 0.6675 cu. ft. hr Calculate H2S (grain 2 mg H2S kg Fuel Constituent NOx CO	2,000 hrs year ns/100 cu ft.) 0.0154 grains 1 mg H2S AP-42 Emission	1 1 0 cr s Factor r) 0.031 0.00668	000,000 cu. 1 .84 g m3 Emissi Ib/hr 3.41 0.73	t. <u>1 kg</u> 1000 g bns <u>tpy</u> 9.96 2.15	1 g 1000 mg	28,316.85 cm3 1 cu. ft. Constituent Benzene Ethylbenzene	AP	- 42 Emissions Factor Ib/MMBtu) 0.00093	Emi: 5 1b/hr 33 0.0008	tpy 7 0.00254
Calculate fuel throu 0.6675 cu. ft. hr Calculate H2S (grain 2 mg H2S kg Fuel Constituent NOx CO SOx	2,000 hrs year ns/100 cu ft.) 0.0154 grains 1 mg H2S AP-42 Emission	1 1 0 cr s Factor r) 0.031 0.00668 0.00205	000,000 cu. 1 .84 g m3 Emissi Ib/hr 3.41 0.73 0.23	t. <u>1 kg</u> 1000 g bns <u>tpy</u> 9.96 2.15 0.66	1 g 1000 mg	28,316.85 cm3 1 cu. ft. Constituent Benzene Ethylbenzene Toluene	AP- (-42 Emissions Factor Ib/MMBtu) 0.00093 0.00040	Emi: 5 1b/hr 33 0.0008 * 09 0.0003	tpy 7 0.00254 * 8 0.001113
Calculate fuel throu 0.6675 cu. ft. hr Calculate H2S (grain 2 mg H2S kg Fuel Constituent NOx CO SOx PM-10	2,000 hrs year ns/100 cu ft.) 0.0154 grains 1 mg H2S AP-42 Emission	1 0 cr s Factor r) 0.031 0.00668 0.00205 0.0022	000,000 cu. 1 .84 g m3 Emissi 1b/hr 3.41 0.73 0.23 0.24	t. <u>1 kg</u> 1000 g bns tpy 9.96 2.15 0.66 0.71	1 g 1000 mg	28,316.85 cm3 1 cu. ft. Constituent Benzene Ethylbenzene Toluene Xylenes	АР- (- 42 Emissions Factor Ib/MMBtu) 0.00093	Emi: 5 1b/hr 33 0.0008 * 09 0.0003 35 0.0002	tpy 7 0.00254 * 8 0.001113 7 0.000776
Calculate fuel throu 0.6675 cu. ft. hr Calculate H2S (grain 2 mg H2S kg Fuel Constituent NOx CO SOx PM-10 CO2	2,000 hrs year ns/100 cu ft.) 0.0154 grains 1 mg H2S AP-42 Emission	1 1 0 cr s Factor r) 0.031 0.00668 0.00205	000,000 cu. 1 .84 g m3 Emissi Ib/hr 3.41 0.73 0.23	t. <u>1 kg</u> 1000 g bns <u>tpy</u> 9.96 2.15 0.66	1 g 1000 mg	28,316.85 cm3 1 cu. ft. Constituent Benzene Ethylbenzene Toluene Xylenes n-Hexane	AP- (-42 Emissions Factor Ib/MMBtu) 0.00093 0.00040 0.00040	Emis b/hr 33 0.0008 4 0.0003 35 0.0002 *	tpy 7 0.00254 8 0.001113 7 0.000776
Calculate fuel throu 0.6675 cu. ft. hr Calculate H2S (grain 2 mg H2S kg Fuel Constituent NOx CO SOx PM-10 CO2 *TOC:	2,000 hrs year ns/100 cu ft.) 0.0154 grains 1 mg H2S AP-42 Emission (lb/hp-hi	1 1 0 cr s Factor r) 0.031 0.00668 0.00205 0.0022 1.15	000,000 cu. 1 .84 g m3 Emissi 1b/hr 3.41 0.73 0.23 0.24 126.50	t. 1 kg 1000 g ons tpy 9.96 2.15 0.66 0.71 369.38	1 g 1000 mg	28,316.85 cm3 1 cu. ft. Constituent Benzene Ethylbenzene Toluene Xylenes	АР- (-42 Emissions Factor Ib/MMBtu) 0.00093 0.00040	Emis b/hr 33 0.0008 4 0.0003 35 0.0002 *	tpy 7 0.00254 * 8 0.001113 7 0.000776
Calculate fuel throu 0.6675 cu. ft. hr Calculate H2S (grain 2 mg H2S kg Fuel Constituent NOx CO SOx PM-10 CO2 *TOC: Exhau	2,000 hrs year ns/100 cu ft.) 0.0154 grains 1 mg H2S AP-42 Emission (lb/hp-hi	1 1 0 cr s Factor r) 0.031 0.00668 0.00205 0.0022 1.15 0.00247	000,000 cu. 1 .84 g m3 Emissi Ib/hr 3.41 0.73 0.24 126.50 0.27	t. <u>1 kg</u> 1000 g bns tpy 9.96 2.15 0.66 0.71 369.38 0.79	1 g 1000 mg	28,316.85 cm3 1 cu. ft. Constituent Benzene Ethylbenzene Toluene Xylenes n-Hexane Formaldehyde	АР- (*	-42 Emissions Factor Ib/MMBtu) 0.00093 0.00040 0.00028 0.0011	Emis b/hr 33 0.0008 4 0.0003 35 0.0002 *	tpy 7 0.00254 8 0.001113 7 0.000776
Calculate fuel throu 0.6675 cu. ft. hr Calculate H2S (grain 2 mg H2S kg Fuel Constituent NOx CO SOx PM-10 CO2 *TOC: Exhau Evaporatio	2,000 hrs year ns/100 cu ft.) 0.0154 grains 1 mg H2S AP-42 Emission (lb/hp-hi	1 1 0 cr s Factor r) 0.031 0.00668 0.00205 0.0022 1.15 0.00247 0.00	000,000 cu. 1 .84 g m3 Emissi Ib/hr 3.41 0.73 0.24 126.50 0.27 0.00	t. 1000 g bns tpy 9.96 2.15 0.66 0.71 369.38 0.79 0.00	1 g 1000 mg	28,316.85 cm3 1 cu. ft. Constituent Benzene Ethylbenzene Toluene Xylenes n-Hexane	АР- (*	-42 Emissions Factor Ib/MMBtu) 0.00093 0.00040 0.00028 0.0011	Emis b/hr 33 0.0008 4 0.0003 35 0.0002 *	tpy 7 0.00254 8 0.001113 7 0.000776
Calculate fuel throu 0.6675 cu. ft. hr Calculate H2S (grain 2 mg H2S kg Fuel Constituent NOx CO SOx PM-10 CO2 *TOC: Exhau Evaporatio Crankcas	2,000 hrs year ns/100 cu ft.) 0.0154 grains 1 mg H2S AP-42 Emission (lb/hp-hi se 0.	1 1 0 cr s Factor r) 0.031 0.00668 0.00205 0.0022 1.15 0.00247 0.00 0.000441	000,000 cu. 1 .84 g m3 Emissi Ib/hr 3.41 0.73 0.24 126.50 0.27 0.00 0.00	t. <u>1 kg</u> 1000 g bns tpy 9.96 2.15 0.66 0.71 369.38 0.79 0.00 0.01	1 g 1000 mg	28,316.85 cm3 1 cu. ft. Constituent Benzene Ethylbenzene Toluene Xylenes n-Hexane Formaldehyde	АР- (*	-42 Emissions Factor Ib/MMBtu) 0.00093 0.00040 0.00028 0.0011	Emis b/hr 33 0.0008 4 0.0003 35 0.0002 *	tpy 7 0.00254 8 0.001113 7 0.000776
Calculate fuel throu 0.6675 cu. ft. hr Calculate H2S (grain 2 mg H2S kg Fuel Constituent NOx CO SOx PM-10 CO2 *TOC: Exhau Evaporatio	2,000 hrs year ns/100 cu ft.) 0.0154 grains 1 mg H2S AP-42 Emission (lb/hp-hi se 0.	1 1 0 cr s Factor r) 0.031 0.00668 0.00205 0.0022 1.15 0.00247 0.00	000,000 cu. 1 .84 g m3 Emissi Ib/hr 3.41 0.73 0.24 126.50 0.27 0.00	t. 1000 g bns tpy 9.96 2.15 0.66 0.71 369.38 0.79 0.00	1 g 1000 mg	28,316.85 cm3 1 cu. ft. Constituent Benzene Ethylbenzene Toluene Xylenes n-Hexane Formaldehyde	АР- (*	-42 Emissions Factor Ib/MMBtu) 0.00093 0.00040 0.00028 0.0011	Emis b/hr 33 0.0008 4 0.0003 35 0.0002 *	tpy 7 0.00254 8 0.001113 7 0.000776

*Use TOC for VOC

									October 23, 2
					otential to E Portable Crush				
					Poltable Clusi	lei			
Source:	USEPA Compilation Section 13.2.4 Aggre			42 January, 19	995				
	1. Particulate Emissi	on Factors from bate	ch or continuous dro	p operations					
	E = k(0.0032) x [u/5]] ^{1.3} / [M/2] ^{1.4}			Where:	k = particle siz u = annual me	Factor in pound ze (dimensionle an wind speed (moisture conten	ess) (miles/hour)	
						k =	0.74	for TSP	
						k =		for PM10	
						u =			E recommendation
						M=	2	% moisture (v	worst case scenari
							Emission Facto	ors	
						TSP		<u>PM10</u>	
					Transfers	0.00508) pound/ton
					Crushing	0.00540		0.00240) pound/ton
					/				
						PA Compilation		t Emissions Fa	actors - AP42
	ssions due to use of porta	able screen			Section 11.19	9.2.2 (SCC 3-05-	020-02,03)		
Notes and As Design Limit		TPH							
0	400,000								
_alculated:	400.000	TPY							
		Hr/Day							
Calculated: Operational Assumptions py = tons pe	8 250								
Derational Assumptions py = tons pe Calculations And multiply When calcula to convert fro Assume all to Historic Mid	8 250 r year done by multiplying app ying that number by the ating tons per year entist om pounds per year to to ons delivered to North B dlings to North Branch 2	Hr/Day Days/Yr propriate emission fa control efficiency fo sions, the product of ons per year. Branch will now go ti 2005 - 337,498.84 to	r its respective trans tons per year throug hrough crusher. ons 2006 - 290,835	afer.		r was divided by	2,000		
Operational Assumptions py = tons pe Calculations And multiply When calcula to convert from Assume all to	8 250 r year done by multiplying app ying that number by the ating tons per year emission om pounds per year to to ons delivered to North B	Hr/Day Days/Yr propriate emission fa control efficiency fo sions, the product of ons per year. Branch will now go ti 2005 - 337,498.84 to	r its respective trans tons per year throug hrough crusher. ons 2006 - 290,835. ars.	afer. ghput and the 37 2007 - 359	9,237.89		2,000 SP	P	M10
perational sssumptions by = tons pe calculations and multiply Vhen calcula b convert fro sssume all to listoric Mid 431,085	s 250 r year done by multiplying app ying that number by the a ating tons per year emiss om pounds per year to to ons delivered to North B dlings to North Branch 2 <20% increase ove Transfers	Hr/Day Days/Yr propriate emission fa control efficiency fo sions, the product of ons per year. Branch will now go ti 2005 - 337,498.84 to	r its respective trans tons per year throug hrough crusher. ons 2006 - 290,835	afer. ghput and the 37 2007 - 359				P] tpy	M10 lb/hr
Derational Assumptions py = tons pe Calculations and multiply When calculations o convert from Assume all to fistoric Mid 431,085	8 250 r year done by multiplying appying that number by the ating tons per year emiss om pounds per year to to ons delivered to North B dlings to North Branch 2 <20% increase over Transfers Hopper	Hr/Day Days/Yr propriate emission fa control efficiency fo sions, the product of ons per year. Branch will now go ti 2005 - 337,498.84 to r highest of last 3 ye	r its respective trans tons per year throug nrough crusher. ms 2006 - 290,835.3 ars. Control Efficiency (%) 0	fer. ghput and the 37 2007 - 359 Thro	9,237.89 <mark>ughput</mark>	T	SP		
Derational Assumptions py = tons pe Calculations and multiply When calculations o convert from Assume all to distoric Mide 431,085 Condloader to Hopper to Be	8 250 r year done by multiplying app ying that number by the a tating tons per year emiss om pounds per year to to ons delivered to North B dlings to North Branch 2 <20% increase over Transfers Hopper elt 1	Hr/Day Days/Yr propriate emission fa control efficiency fo sions, the product of ons per year. Branch will now go ti 2005 - 337,498.84 to r highest of last 3 ye <u>Control Device</u> None None	r its respective trans tons per year throug hrough crusher. ns 2006 - 290,835 ars. Control Efficiency (%) 0 0 0	fer. ghput and the 37 2007 - 359 Thro tpy 400,000 400,000	0,237.89 ughput tph 200 200	1.0 1.0	SP lb/hr 1.0 1.0	tpy 0.5 0.5	lb/hr 0.5 0.5
Derational Assumptions py = tons pe Calculations And multiply When calculations And multiply When calculations o convert from Assume all to Historic Mid 431,085 Endloader to Hopper to Be Belt 1 to Cru	8 250 r year done by multiplying app ying that number by the a tating tons per year emiss om pounds per year to to ons delivered to North B dlings to North Branch 2 <20% increase over Transfers Hopper elt 1 Isher	Hr/Day Days/Yr propriate emission fa control efficiency fo sions, the product of ons per year. Branch will now go ti 2005 - 337,498.84 to r highest of last 3 ye <u>Control Device</u> None None Full Enclosure	r its respective trans tons per year through nrough crusher. nns 2006 - 290,835 ars. Control Efficiency (%) 0 0 0 70	fer. ghput and the 37 2007 - 359 Thro tpy 400,000 400,000	0,237.89 ughput tph 200 200 200 200	1.0 1.0 0.3	SP 1b/hr 1.0 1.0 0.3	tpy 0.5 0.5 0.1	lb/hr 0.5 0.5 0.1
Derational Assumptions py = tons pe Calculations And multiply When calcula o convert fro Assume all to Historic Mid 431,085 Endloader to Hopper to Be Belt 1 to Cru Crusher to Be	8 250 r year done by multiplying app ying that number by the a tating tons per year emiss om pounds per year to to ons delivered to North B dlings to North Branch 2 <20% increase over Transfers Hopper elt 1 Isher elt 2	Hr/Day Days/Yr propriate emission fa control efficiency fo sions, the product of ons per year. Branch will now go ti 2005 - 337,498.84 to r highest of last 3 ye <u>Control Device</u> None None Full Enclosure Full Enclosure	r its respective trans tons per year through rrough crusher. nns 2006 - 290,835 ars. Control Efficiency (%) 0 0 70 70 70	rfer. ghput and the 37 2007 - 359 Thro tpy 400,000 400,000 400,000	237.89 ughput 200 200 200 200 200 200	tpy 1.0 1.0 0.3 0.3	SP 1b/hr 1.0 1.0 0.3 0.3	tpy 0.5 0.5 0.1 0.1	lb/hr 0.5 0.5 0.1 0.1
Derational Assumptions py = tons pe Calculations And multiply When calcula do convert fro Assume all tt Historic Mid 431,085 Endloader to Hopper to Be Belt 1 to Cru Crusher to B- Belt 2 to Stor	8 250 r year done by multiplying app ying that number by the a tating tons per year emiss om pounds per year to to ons delivered to North B dlings to North Branch 2 <20% increase over Transfers Hopper elt 1 Isher	Hr/Day Days/Yr propriate emission fa control efficiency fo sions, the product of ons per year. Branch will now go ti 2005 - 337,498.84 to r highest of last 3 ye <u>Control Device</u> None None Full Enclosure	r its respective trans tons per year through nrough crusher. nns 2006 - 290,835 ars. Control Efficiency (%) 0 0 0 70	fer. ghput and the 37 2007 - 359 Thro tpy 400,000 400,000	0,237.89 ughput tph 200 200 200 200	tpy 1.0 1.0 0.3 0.3 1.0	SP 1b/hr 1.0 0.3 0.3 1.0	tpy 0.5 0.5 0.1 0.1 0.5	lb/hr 0.5 0.5 0.1 0.1 0.5
Derational Assumptions py = tons pe Calculations And multiply When calcula do convert fro Assume all tt Historic Mid 431,085 Condloader to Hopper to Be Belt 1 to Cru Crusher to Bo Belt 2 to Stoo Cotal PTE:	8 250 r year done by multiplying app ying that number by the a tating tons per year emiss om pounds per year to to ons delivered to North B dlings to North Branch 2 <20% increase over Transfers Hopper elt 1 Isher elt 2	Hr/Day Days/Yr propriate emission fa control efficiency fo sions, the product of ons per year. Branch will now go ti 2005 - 337,498.84 to r highest of last 3 ye <u>Control Device</u> None None Full Enclosure Full Enclosure	r its respective trans tons per year through rrough crusher. nns 2006 - 290,835 ars. Control Efficiency (%) 0 0 70 70 70	rfer. ghput and the 37 2007 - 359 Thro tpy 400,000 400,000 400,000	237.89 ughput 200 200 200 200 200 200	tpy 1.0 1.0 0.3 0.3	SP 1b/hr 1.0 1.0 0.3 0.3	tpy 0.5 0.5 0.1 0.1	lb/hr 0.5 0.5 0.1 0.1
Deperational Assumptions py = tons pe Calculations And multiply When calcula to convert fro assume all tt distoric Mid 431,085 Condloader to Hopper to Be Belt 1 to Cru Crusher to Bo Belt 2 to Stoo Cotal PTE:	8 250 r year done by multiplying app ying that number by the di- ating tons per year emission om pounds per year to to om pounds per year to to om pounds per year to to om pounds per year do to om pounds per year do to nost delivered to North B dlings to North Branch 2 <20% increase ove Transfers Hopper elt 1 sher elt 2 ckpile (1/2" x 0")	Hr/Day Days/Yr propriate emission fa control efficiency fo sions, the product of ons per year. Branch will now go ti 2005 - 337,498.84 to r highest of last 3 ye <u>Control Device</u> None None Full Enclosure Full Enclosure	r its respective trans tons per year through rrough crusher. nns 2006 - 290,835 ars. Control Efficiency (%) 0 0 70 70 70	rfer. ghput and the 37 2007 - 359 Thro tpy 400,000 400,000 400,000	237.89 ughput 200 200 200 200 200 200	tpy 1.0 1.0 0.3 0.3 1.0	SP 1.0 1.0 0.3 0.3 1.0 3.7	tpy 0.5 0.5 0.1 0.1 0.5	lb/hr 0.5 0.5 0.1 0.1 0.5
Deperational Assumptions py = tons pe Calculations And multiply When calcula to convert fro assume all tt distoric Mid 431,085 Condloader to Hopper to Be Belt 1 to Cru Crusher to Bo Belt 2 to Stoo Cotal PTE:	8 250 r year done by multiplying app ying that number by the di- ating tons per year emission om pounds per year to to om pounds per year to to om pounds per year to to om pounds per year do to om pounds per year do to nost delivered to North B dlings to North Branch 2 <20% increase ove Transfers Hopper elt 1 sher elt 2 ckpile (1/2" x 0")	Hr/Day Days/Yr propriate emission fa control efficiency fo sions, the product of ons per year. Branch will now go ti 2005 - 337,498.84 to r highest of last 3 ye <u>Control Device</u> None Full Enclosure Full Enclosure Full Enclosure	r its respective trans tons per year through rrough crusher. nns 2006 - 290,835 ars. Control Efficiency (%) 0 0 70 70 70	fer. ghput and the 37 2007 - 359 Thro tpy 400,000 400,000 400,000 400,000	237.89 ughput 200 200 200 200 200 200	tpy 1.0 0.3 1.0 3.7	SP 1.0 1.0 0.3 0.3 1.0 3.7	tpy 0.5 0.5 0.1 0.1 0.5 1.7	lb/hr 0.5 0.5 0.1 0.1 0.5
Deperational Assumptions py = tons pe Calculations and multiply When calculat to convert fro Assume all to Assume	8 250 r year done by multiplying app ying that number by the 4 ating tons per year emiss om pounds per year emiss om pounds per year to to dings to North Branch 7 <20% increase ove Transfers Hopper elt 1 ssher elt 2 ckpile (1/2" x 0") perating day: Screening	Hr/Day Days/Yr propriate emission fa control efficiency fo sions, the product of ons per year. Branch will now go ti 2005 - 337,498.84 to r highest of last 3 ye Control Device None Full Enclosure Full Enclosure Full Enclosure None	r its respective trans tons per year through rough crusher. ms 2006 - 290,835 ars. Control Efficiency (%) 0 0 0 70 70 70 0 0 20 70 70 0 0 20 70 70 0 20 70 70 0 20 70 70 0 20 70 70 0 20 70 70 0 20 70 70 0 20 70 70 0 20 70 70 20 70 70 70 70 70 70 70 70 70 70 70 70 70	offer. ghput and the 37 2007 - 359 Thro tpy 400,000	237.89 tph 200 200 200 200 200 200 200 ughput tph	T tpy 1.0 1.0 0.3 0.3 1.0 3.7 T tpy	SP 1.0 1.0 0.3 0.3 1.0 3.7 29.3 SP Ib/hr	tpy 0.5 0.5 0.1 0.1 0.5 1.7 Pl tpy	lb/hr 0.5 0.5 0.1 0.1 0.5 1.7 I3.9
Derational Assumptions py = tons pe Calculations And multiply When calculat o convert frot Assume all to Assume al	8 250 r year done by multiplying app ying that number by the 4 ating tons per year emiss om pounds per year emiss om pounds per year to to dings to North Branch 7 <20% increase ove Transfers Hopper elt 1 ssher elt 2 ckpile (1/2" x 0") perating day: Screening	Hr/Day Days/Yr propriate emission fa control efficiency fo sions, the product of ons per year. Branch will now go ti 2005 - 337,498.84 to r highest of last 3 ye <u>Control Device</u> None Full Enclosure Full Enclosure Full Enclosure	r its respective trans tons per year throug hrough crusher. ns 2006 - 290,835.: ars. Control Efficiency (%) 0 0 70 70 70 0 0	fer. ghput and the 37 2007 - 359 Thro tpy 400,000 400,000 400,000 400,000 400,000	237.89 ughput tph 200 200 200 200 200 200 ughput	T tpy 1.0 1.0 0.3 0.3 1.0 3.7 T tpy 0.3	SP <u>lb/hr</u> 1.0 0.3 0.3 1.0 3.7 29.3 SP <u>lb/hr</u> 0.3	tpy 0.5 0.5 0.1 0.1 0.5 1.7 Pl tpy 0.1	lb/hr 0.5 0.5 0.1 0.5 1.7 13.9 W10 lb/hr 0.1
Derational Assumptions py = tons pe Calculations And multiply When calculat o convert frot Assume all to Assume all to Assume all to Assume all to Assume all to Assume all to Assume all to Crusher to Be Belt 1 to Cru Crusher to Be Belt 2 to Stoo Cotal PTE: Cotal PTE:	s 250 r year done by multiplying app ying that number by the ting tons per year emission om pounds per year to to ons delivered to North B dlings to North Branch 2 <20% increase ove Transfers Hopper elt 1 sher elt 2 ckpile (1/2" x 0") pperating day: Screening sen	Hr/Day Days/Yr propriate emission fa control efficiency fo sions, the product of ons per year. Branch will now go ti 2005 - 337,498.84 to r highest of last 3 ye Control Device None Full Enclosure Full Enclosure Full Enclosure None	r its respective trans tons per year through rough crusher. ms 2006 - 290,835 ars. Control Efficiency (%) 0 0 0 70 70 70 0 0 20 70 70 0 0 20 70 70 0 20 70 70 0 20 70 70 0 20 70 70 0 20 70 70 0 20 70 70 0 20 70 70 0 20 70 70 20 70 70 70 70 70 70 70 70 70 70 70 70 70	offer. ghput and the 37 2007 - 359 Thro tpy 400,000	237.89 tph 200 200 200 200 200 200 200 ughput tph	T tpy 1.0 1.0 0.3 0.3 1.0 3.7 T tpy	SP 1b/hr 1.0 1.0 0.3 0.3 1.0 3.7 29.3 SP 1b/hr 0.3 0.3 0.3	tpy 0.5 0.5 0.1 0.1 0.5 1.7 Pl tpy	lb/hr 0.5 0.5 0.1 0.5 1.7 13.9 M10 lb/hr 0.1
Derational Assumptions py = tons pe Calculations And multiply When calculat o convert frot Assume all to Assume all to Assume all to Assume all to Assume all to Assume all to Assume all to Crusher to Be Belt 1 to Cru Crusher to Be Belt 2 to Stoo Cotal PTE: Cotal PTE:	8 250 r year done by multiplying app ying that number by the 4 ating tons per year emiss om pounds per year emiss om pounds per year to to dings to North Branch 7 <20% increase ove Transfers Hopper elt 1 ssher elt 2 ckpile (1/2" x 0") perating day: Screening	Hr/Day Days/Yr propriate emission fa control efficiency fo sions, the product of ons per year. Branch will now go ti 2005 - 337,498.84 to r highest of last 3 ye Control Device None Full Enclosure Full Enclosure Full Enclosure None	r its respective trans tons per year through rough crusher. ms 2006 - 290,835 ars. Control Efficiency (%) 0 0 0 70 70 70 0 0 20 70 70 0 0 20 70 70 0 20 70 70 0 20 70 70 0 20 70 70 0 20 70 70 0 20 70 70 0 20 70 70 0 20 70 70 20 70 70 70 70 70 70 70 70 70 70 70 70 70	offer. ghput and the 37 2007 - 359 Thro tpy 400,000	237.89 tph 200 200 200 200 200 200 200 ughput tph	T tpy 1.0 1.0 0.3 0.3 1.0 3.7 T tpy 0.3	SP <u>lb/hr</u> 1.0 0.3 0.3 1.0 3.7 29.3 SP <u>lb/hr</u> 0.3	tpy 0.5 0.5 0.1 0.1 0.5 1.7 Pl tpy 0.1	lb/hr 0.5 0.5 0.1 0.5 1.7 13.9 W10 lb/hr 0.1
Derational Assumptions py = tons pe Calculations And multiply When calcula: o convert fro Assume all tt distoric Mid 431,085 Endloader to Hopper to Be Belt 1 to Cru Crusher to Be Belt 2 to Stoo Fotal PTE: Pounds per o Cotal PTE: Pounds per o	8 250 r year done by multiplying app ying that number by the ating tons per year emiss om pounds per year to to ons delivered to North B dlings to North Branch 2 <20% increase ove Transfers Hopper elt 1 Ssher elt 2 ckpile (1/2" x 0") perating day: Screening een perating day:	Hr/Day Days/Yr propriate emission fa control efficiency fo sions, the product of ons per year. Branch will now go ti 2005 - 337,498.84 to r highest of last 3 ye Control Device None Full Enclosure Full Enclosure Full Enclosure None	r its respective trans tons per year through rough crusher. ms 2006 - 290,835 ars. Control Efficiency (%) 0 0 0 70 70 70 0 0 20 70 70 0 0 20 70 70 0 20 70 70 0 20 70 70 0 20 70 70 0 20 70 70 0 20 70 70 0 20 70 70 0 20 70 70 20 70 70 70 70 70 70 70 70 70 70 70 70 70	offer. ghput and the 37 2007 - 359 Thro tpy 400,000	237.89 tph 200 200 200 200 200 200 200 ughput tph	T; tpy 1.0 1.0 0.3 0.3 1.0 3.7 T; tpy 0.3 0.3 0.3 T; tpy 0.3 0.3 T; tpy	SP 1.0 1.0 0.3 0.3 1.0 3.7 29.3 SP 1b/hr 0.3 0.3 2.6 SP	tpy 0.5 0.5 0.1 0.1 0.5 1.7 P tpy 0.1 0.1 0.1	lb/hr 0.5 0.5 0.1 0.5 1.7 13.9 M10 lb/hr 0.1 0.1 1.7 13.9
Derational Assumptions py = tons pe Calculations And multiply When calcula do convert fro Assume all tt Historic Mid 431,085 Endloader to Hopper to Be Belt 1 to Cru Crusher to B Belt 2 to Stor Fotal PTE: Pounds per of Portable Scree Fotal PTE:	s 250 r year done by multiplying app ying that number by the ting tons per year emission om pounds per year to to ons delivered to North B dlings to North Branch 2 <20% increase ove Transfers Hopper elt 1 sher elt 2 ckpile (1/2" x 0") pperating day: Screening sen	Hr/Day Days/Yr propriate emission fa control efficiency fo sions, the product of ons per year. Branch will now go ti 2005 - 337,498.84 to r highest of last 3 ye Control Device None Full Enclosure Full Enclosure Full Enclosure None	r its respective trans tons per year through rough crusher. ms 2006 - 290,835 ars. Control Efficiency (%) 0 0 0 70 70 70 0 0 20 70 70 0 0 20 70 70 0 20 70 70 0 20 70 70 0 20 70 70 0 20 70 70 0 20 70 70 0 20 70 70 0 20 70 70 20 70 70 70 70 70 70 70 70 70 70 70 70 70	offer. ghput and the 37 2007 - 359 Thro tpy 400,000	237.89 tph 200 200 200 200 200 200 200 ughput tph	T; tpy 1.0 1.0 0.3 0.3 1.0 3.7 T; tpy 0.3 0.3 0.3	SP 1.0 1.0 0.3 0.3 1.0 3.7 29.3 SP 1b/hr 0.3 0.3 0.3 2.6	tpy 0.5 0.5 0.1 0.1 0.5 1.7 P tpy 0.1 0.1	lb/hr 0.5 0.5 0.1 0.5 1.7 13.9 M10 lb/hr 0.1 1.7

GENERAL PERMIT G40-C PERMIT PACKAGE

Applicant – TUNNEL RIDGE, LLC

Location: 1901 Short Creek Road Richland District Ohio County, WV

> ATTACHMENT J: CLASS I LEGAL ADVERTISEMENT

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Tunnel Ridge, LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a (General Permit Registration) for a Rock Crusher located on 1901 Short Creek Road, Wheeling, in Ohio County, West Virginia.

The applicant estimates the potential to discharge the following Regulated Air Pollutants will be:

Nitrogen Oxides (NOx) – 37.12 tpy Carbon Monoxide (CO) – 8.0 tpy Particulate Matter (PM) Uncontrolled – 4.0 tpy Particulate Matter-10 (PM-10) Uncontrolled – 1.9 tpy

Startup of operation is planned to begin on or about the 20th day of February, 2017. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1227, during normal business hours.

Dated this the 20th day of January, 2017.

By: Tunnel Ridge, LLC Evan Midler Land Manager 2596 Battle Run Road Triadelphia, WV 26059

GENERAL PERMIT G40-C PERMIT PACKAGE

Applicant – TUNNEL RIDGE, LLC

Location: 1901 Short Creek Road Richland District Ohio County, WV

> Prepared For: Tunnel Ridge, LLC 2596 Battle Run Road Triadelphia, WV 26059

ATTACHMENT L: GENERAL PERMIT REGISTRATION APPLICATION FEE

The required application fee will be paid by credit card. The receipt from payment shall follow this application.