REGULATION 13 APPLICATION FOR RAVENSWOOD HMA PLANT #61 JACKSON COUNTY, WEST VIRGINIA

Prepared for:

Southern West Virginia Asphalt, Inc. 2950 Charles Avenue Dunbar, West Virginia 25064

Prepared by:

Potesta & Associates, Inc. 7012 MacCorkle Avenue, SE Charleston, West Virginia 25304 Phone: (304) 342-1400 Fax: (304) 343-9031 Email: potesta@potesta.com

Project No. 0101-17-0480

January 2018

TABLE OF CONTENTS

General Applicant Information	SECTION I - III
Business Certificate	ATTACHMENT A
Area Map	ATTACHMENT B
Installation and Start Up Schedule	ATTACHMENT C
Regulatory Discussion	ATTACHMENT D
Plot Plan	ATTACHMENT E
Detailed Process Flow Diagram	ATTACHMENT F
Process Description	ATTACHMENT G
Emission Units Table	ATTACHMENT I
Emission Points Data Summary Sheet	ATTACHMENT J
Fugitive Emissions Data Summary Sheet	ATTACHMENT K
Emissions Unit Data Sheets	ATTACHMENT L
Supporting Emissions Calculations	ATTACHMENT N
Monitoring/Recordkeeping/Reporting/Testing Plans	ATTACHMENT O
Public Notice	ATTACHMENT P

Attachments Not Applicable to this Application: Attachments H, M*, Q, R, and S. * Information on the inertial separator and baghouse included in Attachment L.

SECTION I - III

GENERAL APPLICANT INFORMATION

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALITY 601 57 th Street, SE Charleston, WV 25304 (304) 926-0475 www.dep.wv.gov/daq	Y	APPLICATION FOR NSR PERMIT AND TITLE V PERMIT REVISION (OPTIONAL)						
PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KN		ADMINISTRATIV	/E AMENDM ODIFICATIO E IS CHECKE	—				
FOR TITLE V FACILITIES ONLY: Please refer to "Title V (Appendix A, "Title V Permit Revision Flowchart") and								
Sec	tion I.	General						
1. Name of applicant (as registered with the WV Secreta Southern West Virginia Asphalt, Inc.	ry of State	's Office):	2. Federa	al Employer ID No. <i>(FEIN):</i> 55-0714092				
 Name of facility (if different from above): Ravenswood HMA Plant #61 			4. The app	olicant is the: R □OPERATOR ⊠ BOTH				
5A. Applicant's mailing address: 2950 Charles Avenue Dunbar, West Virginia 25064		5B. Facility's pre Dale, India		cal address:				
 6. West Virginia Business Registration. Is the applicant If YES, provide a copy of the Certificate of Incorport change amendments or other Business Registration (If NO, provide a copy of the Certificate of Authority/ amendments or other Business Certificate as Attach 	ation/Orga Certificate Authority	anization/Limite as Attachment /	d Partners A.	hip (one page) including any name				
7. If applicant is a subsidiary corporation, please provide	the name	of parent corpora	tion: Oldcas	tle Materials				
 8. Does the applicant own, lease, have an option to buy of the second second	e site.	e have control of	the propos	ed site? 🛛 YES 🗌 NO				
 9. Type of plant or facility (stationary source) to be constructed, modified, relocated, administratively updated or temporarily permitted (e.g., coal preparation plant, primary crusher, etc.): Hot Mix Asphalt Plant 10. North American Industry Classification System (NAICS) code for the facilit 324121 								
11A. DAQ Plant ID No. (for existing facilities only): 11B. List all current 45CSR13 and 45CSR30 (Title V) permit number associated with this process (for existing facilities only): Not applicable 11B. List all current 45CSR13 and 45CSR30 (Title V) permit number associated with this process (for existing facilities only):								
All of the required forms and additional information cn be fo	ound under	the Permitting Se	ection of DA	Q's website, or requested by phone.				

12A.

 For Modifications, Administrative Updates or Tempresent location of the facility from the nearest state For Construction or Relocation permits, please proad. Include a MAP as Attachment B. 	e road;	
From I-77 North, take Exit 146 and take ramp r US-33/WV-2. Go 2.4 miles and turn right onto US Street. Go one block and, at Race street, turn left, t railroad tracks and turn into the Martin Marietta M	-33/WV-68/Washington Street. Go 1.1 hen take an immediate right back onto S	l miles and turn left onto Sycamore Sycamore Street. Go straight across
12.B. New site address (if applicable):	12C. Nearest city or town:	12D. County:
105 Sycamore Street	Ravenswood	Jackson
12.E. UTM Northing (KM): 4,311.490	12F. UTM Easting (KM): 433.620	12G. UTM Zone: 17S
13. Briefly describe the proposed change(s) at the facilit New facility.	y:	
 14A. Provide the date of anticipated installation or change If this is an After-The-Fact permit application, providence did happen: 	-	14B. Date of anticipated Start-Up if a permit is granted: 05/01/2018
14C. Provide a Schedule of the planned Installation of/ application as Attachment C (if more than one unit		units proposed in this permit
15. Provide maximum projected Operating Schedule of Hours Per Day <u>24</u> Days Per Week <u>6</u> <u>*The FRAP system will operate no more than 504 h</u>	Weeks Per Year 45	ation:
16. Is demolition or physical renovation at an existing fac	cility involved? 🗌 YES 🛛 🛛 NO	
17. Risk Management Plans. If this facility is subject to changes (for applicability help see www.epa.gov/cepp		
 18. Regulatory Discussion. List all Federal and State a proposed process <i>(if known)</i>. A list of possible applica (Title V Permit Revision Information). Discuss applica information as Attachment D. 	ir pollution control regulations that you l ble requirements is also included in Atta	believe are applicable to the achment S of this application
Section II. Additional atta	achments and supporting de	ocuments.
 Include a check payable to WVDEP – Division of Air 45CSR13). 	Quality with the appropriate application	fee (per 45CSR22 and
20. Include a Table of Contents as the first page of you	r application package.	
 Provide a Plot Plan, e.g. scaled map(s) and/or sketc source(s) is or is to be located as Attachment E (Re 		rty on which the stationary
Solution of the nearest occupied structure	e (e.g. church, school, business, resider	nce).
22. Provide a Detailed Process Flow Diagram(s) show device as Attachment F.	ring each proposed or modified emission	ns unit, emission point and control
23. Provide a Process Description as Attachment G.		
Also describe and quantify to the extent possible		
All of the required forms and additional information can be	found under the Permitting Section of DA	Q's website, or requested by phone.
24. Provide Material Safety Data Sheets (MSDS) for al ↔ For chemical processes, provide a MSDS for each co		d as Attachment H.

25. Fill out the Emission Units Table and	provide it as Attachment I.							
26. Fill out the Emission Points Data Su	mmary Sheet (Table 1 and Tabl	e 2) and provide it as Attachment J.						
27. Fill out the Fugitive Emissions Data	Summary Sheet and provide it a	s Attachment K.						
28. Check all applicable Emissions Unit	Data Sheets listed below:							
Bulk Liquid Transfer Operations								
Chemical Processes								
Concrete Batch Plant	Incinerator	Facilities						
Grey Iron and Steel Foundry	Indirect Heat Exchanger	Storage Tanks						
General Emission Unit, specify	🖾 Engine							
	Fill out and provide the Emission	s Unit Data Sheet(s) as Attachment L.						
29. Check all applicable Air Pollution Co	ntrol Device Sheets listed below	Г.						
Absorption Systems	Baghouse Included in HM							
Adsorption Systems	Condenser	Mechanical Collector						
Afterburner	Electrostatic Precipitato	Dr Uvet Collecting System						
Other Collectors, specify								
Fill out and provide the Air Pollution Cont	rol Device Sheet(s) as Attachm	ent M.						
30. Provide all Supporting Emissions Ca Items 28 through 31.	alculations as Attachment N, or	attach the calculations directly to the forms listed in						
	compliance with the proposed em	proposed monitoring, recordkeeping, reporting and issions limits and operating parameters in this permit						
	not be able to accept all measur	er or not the applicant chooses to propose such es proposed by the applicant. If none of these plans e them in the permit.						
32. Public Notice. At the time that the a	oplication is submitted, place a C	lass I Legal Advertisement in a newspaper of general						
circulation in the area where the source	e is or will be located (See 45CS	R§13-8.3 through 45CSR§13-8.5 and <i>Example Legal</i>						
Advertisement for details). Please su	ubmit the Affidavit of Publication	n as Attachment P immediately upon receipt.						
33. Business Confidentiality Claims. D	oes this application include confid	dential information (per 45CSR31)?						
	⊠ NO							
	g the criteria under 45CSR§31-4	itted as confidential and provide justification for each .1, and in accordance with the DAQ's " <i>Precautionary</i> estructions as Attachment Q.						

Section III. Certification of Information

34. Authority/Delegation of Authority. Only required when someone other than the responsible official signs the application. Check applicable Authority Form below: Not required.
Authority of Corporation or Other Business Entity
Authority of Governmental Agency
Authority of Limited Partnership
Submit completed and signed Authority Form as Attachment R.
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

35A. Certification of Information. To certify this permit application, a Responsible Official (per 45CSR§13-2.22 and 45CSR§30-2.28) or Authorized Representative shall check the appropriate box and sign below.

Certification of Truth, Accuracy, and Completeness

I, the undersigned Responsible Official / Authorized Representative, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.

Compliance Certification

Except for requirements identified in the Title V Application for which compliance is not achieved, I, the undersigned hereby certify that, based on information and belief formed after reasonable inquiry, all air contaminant sources identified in this application are in compliance with all applicable requirements.

SIGNATURE Deb Brooking	DATE: <u>/- /5- /8</u> (Please use blue ink)	
35B. Printed name of signee: Bob Brookover		35C. Title: Vice President
35D. E-mail: bbrookover@wvpaving.com	36E. Phone: 304-768-9733	36F. FAX: 304-720-6492
36A. Printed name of contact person (if differe	nt from above): Same	36B. Title:
36C. E-mail:	36D. Phone:	36E. FAX:

PLEASE CHECK ALL APPLICABLE ATTACHMENTS INCLUDE	D WITH THIS PERMIT APPLICATION:
 Attachment A: Business Certificate Attachment B: Map(s) Attachment C: Installation and Start Up Schedule Attachment D: Regulatory Discussion Attachment E: Plot Plan Attachment F: Detailed Process Flow Diagram(s) Attachment G: Process Description Attachment H: Material Safety Data Sheets (MSDS) Attachment I: Emission Units Table Attachment J: Emission Points Data Summary Sheet 	 Attachment K: Fugitive Emissions Data Summary Sheet Attachment L: Emissions Unit Data Sheet(s) Attachment M: Air Pollution Control Device Sheet(s) Attachment N: Supporting Emissions Calculations Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans Attachment P: Public Notice Attachment Q: Business Confidential Claims Attachment R: Authority Forms Attachment S: Title V Permit Revision Information Application Fee
	ermit application with the signature(s) to the DAQ, Permitting Section, at the application. Please DO NOT fax permit applications.
FOR AGENCY USE ONLY - IF THIS IS A TITLE V SOURCE:	
Forward 1 copy of the application to the Title V Permitting	Group and:
For Title V Administrative Amendments:	
□ NSR permit writer should notify Title V permit write For Title V Minor Modifications:	er of draft permit,
	ication to EPA and affected states within 5 days of receipt,
NSR permit writer should notify Title V permit write	
For Title V Significant Modifications processed in parallel	•
NSR permit writer should notify a Title V permit writer	
Public notice should reference both 45CSR13 and	Title V permits,
EPA has 45 day review period of a draft permit.	
All of the required forms and additional information can be for	ound under the Permitting Section of DAQ's website, or requested by phone.

ATTACHMENT A

BUSINESS CERTIFICATE

WEST VIRGINIA STATE TAX DEPARTMENT

BUSINESS REGISTRATION CERTIFICATE

ISSUED TO: SOUTHERN WEST VIRGINIA ASPHALT INC 651 EWART AVE BECKLEY, WV 25801-3416

BUSINESS REGISTRATION ACCOUNT NUMBER:

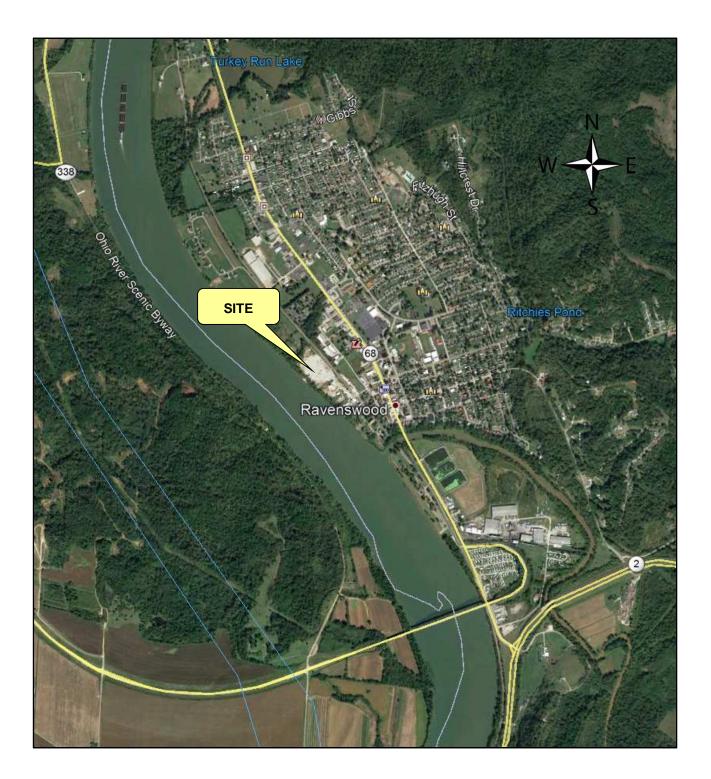
1041-9335

This certificate is issued on: 07/19/2011

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued. This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.


Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.4 L0738230912

ATTACHMENT B

AREA MAP

Potesta & Associates, Inc 7012 MacCorkle Avenue, SE Charleston, WV 25304 Phone: (304) 342-1400 Fax: (304) 343-9031 E-mail: potesta@potesta.com

Attachment B Area Map Southern West Virginia Asphalt, Inc. Ravenswood HMA Plant #61, Jackson County, West Virginia

Project No. 0101-17-0480

ATTACHMENT C

INSTALLATION AND START UP SCHEDULE

ATTACHMENT C

SCHEDULE OF INSTALLATION

The company proposes to begin installation of the plant around April 1, 2018. This is a portable plant, so it will take approximately one month to install the equipment and operations are scheduled to begin May 1, 2018.

ATTACHMENT D

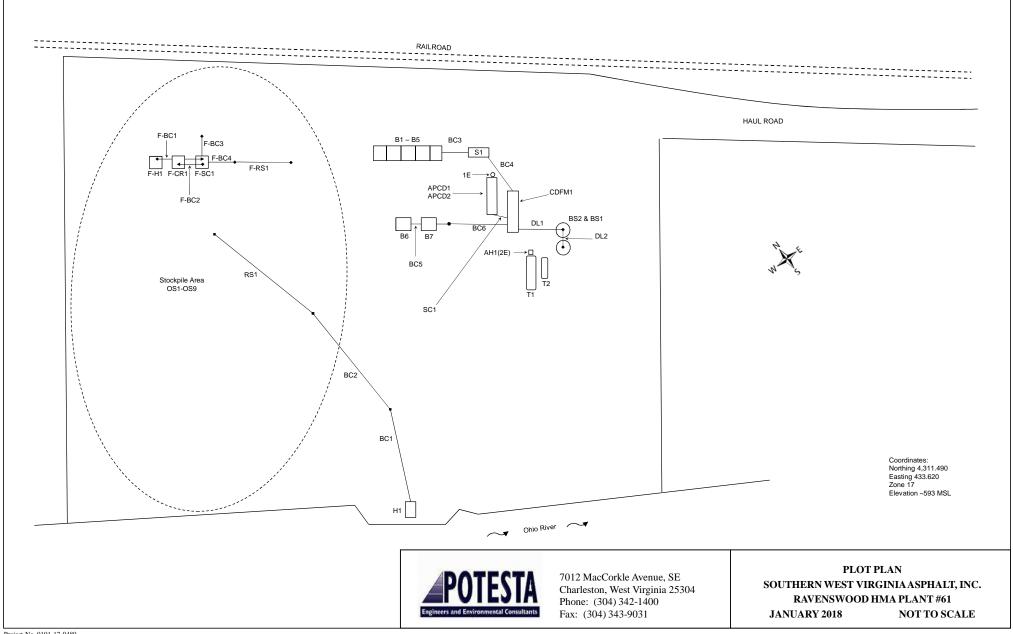
REGULATORY DISCUSSION

ATTACHMENT D

REGULATORY DISCUSSION

The facility is subject to the following regulations:

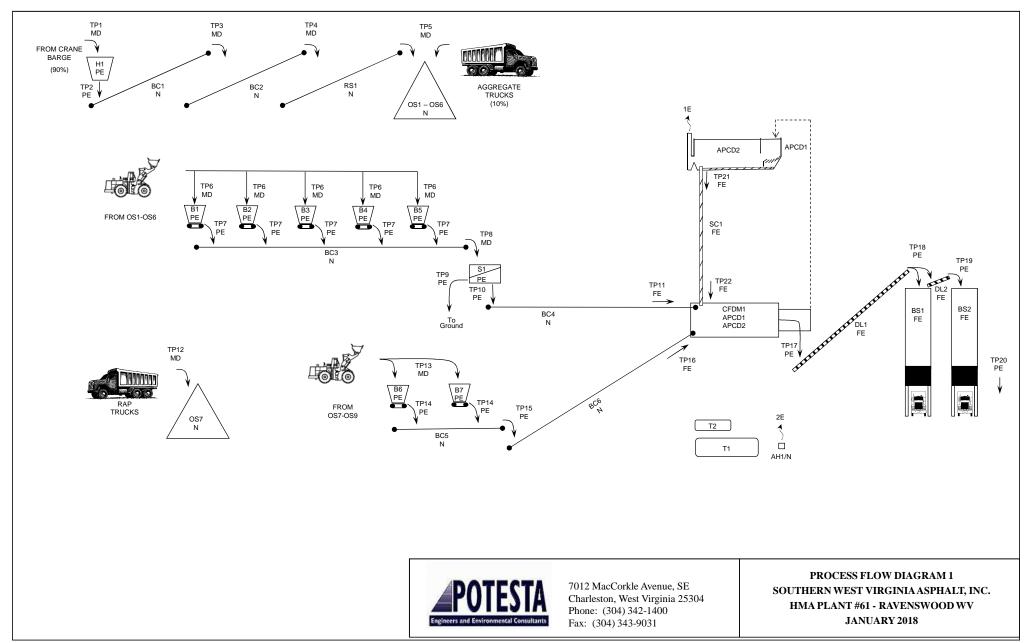
- A. 45CSR3 "To Prevent and Control Particulate Air Pollution from the Operation of Hot Mix Asphalt Plants".
- B. 45CSR13 "Permits for Construction, Modification, Relocation and Operation of Stationary Sources of Air Pollutants, Notification Requirements, Temporary Permits, General Permits, and Procedures for Evaluation".
- C. 45CSR16–"Standards of Performance for Stationary Sources," which incorporates by reference 40CFR60 Subpart I, "Standards of Performance for Hot Mix Asphalt Facilities", and 40CFR60 Subpart OOO, "Standards of Performance for Non-Metallic Mineral Processing Plants".
- D. 45CSR22 "Air Quality Management Fee Program".
- E. 45CSR30 "Requirements for Operating Permits" (Deferred Source). The facility potential to emit does not exceed 100 tons per year (tpy) of a regulated air pollutant or 10 tpy of a single HAP or 25 tpy of aggregated HAPs.

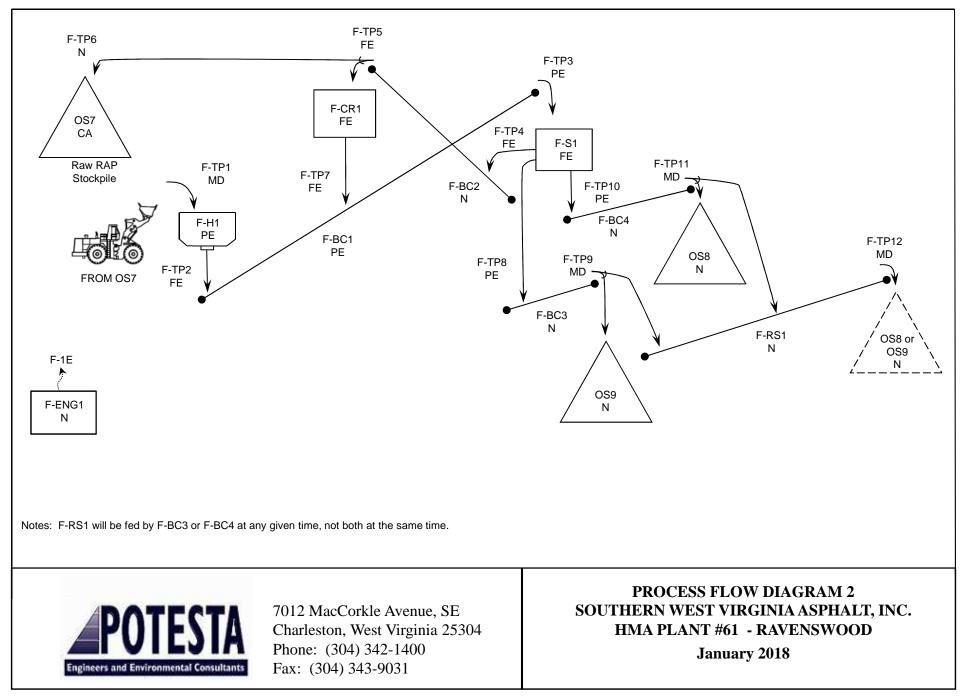

Notes:

FRAP System Engine: F-ENG1 is mounted on the ASTEC ProSizer 3100 portable screen/crusher and powers that equipment. The ProSizer is portable/transportable, as indicated by its wheels, and is hauled by a semi-tractor from one HMA plant to another throughout the year to process recycled asphalt pavement. The ProSizer will operate at this location for no more than 500 hours per year. The ProSizer engine F-ENG1 is a non-road RICE because it is portable or transportable, and will not be located at a single location at a facility for 12 consecutive months or longer. Therefore F-ENG1 is not subject to 40CFR63, Subpart ZZZZ, 40CFR60, Subpart IIII or 45CSR13. Nevertheless, information on this engine, including its potential emissions, has been provided in this application at the request of the Division of Air Quality (DAQ).

Hot Oil Heater AH1: The DAQ "Policy on Regulations 2 and 10 Record Keeping and Reporting Requirements", exempts fuel burning units less than 10 million BTUs from the provisions of 45CSR2 and 45CSR10 as detailed in §45-2-11 and §45-10-9, and from the reporting and record keeping guidance found within the policy.

ATTACHMENT E


PLOT PLAN



Project No. 0101-17-0480 Prepared by LKB

ATTACHMENT F

DETAILED PROCESS FLOW DIAGRAM

ATTACHMENT G

PROCESS DESCRIPTION

ATTACHMENT G

PROCESS DESCRIPTION

Aggregates (sand, slag sand, and limestone) are delivered to the site by barge (90 %) or by truck (10 %). Materials shipped by barge are unloaded by a crane barge that deposits material into a hopper H1/PE (TP1/MD). Material drops from the hopper onto a conveyor belt, BC1/N (TP2/PE). BC1/N transfers material to conveyor belt BC2/N (TP3/MD), which then transfers material to a radial stacker RS1/N (TP4/MD). The radial stacker transfers material to open stockpiles OS1/N through OS6/N (TP5/MD). Materials shipped by truck are directly transferred to OS1/N through OS6/N (TP5/MD). Recycled asphalt pavement (RAP) is trucked to the site and directly transferred to stockpile OS7/CA (TP12/CA).

Aggregates from OS1/N through OS6/N are transferred by a front-end loader to cold feed bins B1/PE through B5/PE (TP6/MD). From the bins, material is transferred by belt feeders to a collector conveyor belt BC3/N (TP7/PE). The collector conveyor belt feeds an in-line dual screen scalping screen S1/PE (TP8/MD). Oversized material drops to the ground (TP9/PE) and properly sized material drops onto conveyor belt BC4/N (TP10/PE) which feeds the counterflow drum mixer CFDM1/APCD1 & APCD2 (TP11/FE). Only one screen is used at a time on the scalping screen. When the upper screen is not in use, a section of the screen is lifted to allow material to freely pass to the lower screen.

RAP from OS7/CA can be transferred by front-end loader directly to one of two RAP bins B6/PE or B7/PE (TP13/MD). The RAP drops from bin B6/PE or B7/PE onto conveyor belt BC5/N (TP14/PE) and then onto conveyor belt BC6/N (TP15/PE), which feeds the counterflow drum mixer CFDM1/APCD1 & APCD2 (TP16/FE).

Liquid asphaltic cement from T1 is piped to CFDM1/APCD1 & APCD2, where the various materials are mixed to form hot mix asphalt (HMA). The CFDM1 burner is fired with natural gas.

Once mixed, the HMA leaves the drum and drops onto drag link conveyor DL1/FE (TP17/PE). HMA leaving the drag link conveyor DL1/FE drops into asphalt silo BS1/FE or onto drag link conveyor DL2/FE (TP18/PE). From drag link conveyor DL2/FE, asphalt drops into asphalt silo BS2/FE (TP19/PE). The HMA is transferred to trucks via the truck load-outs at the base of each of the silos (TP20/PE) and is shipped offsite.

Emissions from CFDM1 are vented to the inertial separator APCD1 and baghouse APCD2 and are vented to the atmosphere through emissions point 1E. Collected particulate matter is returned to CFDM1/APCD1 & APCD2 via auger SC1/FE (TP21/FE and TP22/FE), where it becomes part of the product.

Asphaltic cement is trucked to the site and stored in heated tank T1, which is heated via a natural gas-fired asphalt heater AH1/N (2E). Number 2 fuel oil for use in the endloader and portable FRAP engine is trucked to the site and stored in tank T2. Natural gas is piped to the facility.

FRAP System

RAP from OS7/CA can also be transferred by front-end loader to the hopper F-H1/PE (F-TP1/CA) on the portable fractionated RAP system. The hopper feeds belt conveyor F-BC1/PE (F-TP2/FE), which transports the RAP to the double-deck screen F-S1/FE (F-TP3/PE). Oversized material is fed to belt conveyor F-BC2/N (F-TP4/FE), which transports the material to the horizontal shaft impactor F-CR1/FE (F-TP5/FE). The material drops from the crusher onto belt conveyor F-BC1/PE (F-TP7/FE), which transports it back to the screen. The crusher can also be arranged so that oversized material from the screen bypasses the crusher and returns to the RAP stockpile OS7/CA (F-TP6/N).

The smaller fractions from the screen are discharged to belt conveyors F-BC3/N (F-TP8/PE) and F-BC4/N (F-TP10/PE). F-BC3/N and F-BC4/N can transfer material directly to the sized RAP stockpiles OS9/N (F-TP9/MD) and OS8/N (F-TP11/MD) or to radial stacker F-RS1/N (F-TP9/MD or F-TP11/MD). The radial stacker is only fed by one of the belt conveyors F-BC3/N or F-BC4/N at any given time. Material from F-RS1/N is transferred to OS8/N or OS9/N (F-TP12/MD). From stockpiles OS8/N and OS9/N, materials are transferred via end loader to one of the stationary RAP bins B6/PE or B7/PE (TP13/MD).

ATTACHMENT I

EMISSION UNITS TABLE

Attachment I

Emission Units Table

(includes all emission units and air pollution control devices

that will be part of this permit application review, regardless of permitting status)-

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
H1	H1	Aggregate Hopper	2018	300 tph	New	PE
OS1	OS1	Aggregate Stockpile	2018	300 tph	New	Ν
OS2	OS2	Aggregate Stockpile	2018	300 tph	New	Ν
OS3	OS3	Aggregate Stockpile	2018	300 tph	New	Ν
OS4	OS4	Aggregate Stockpile	2018	300 tph	New	Ν
OS5	OS5	Aggregate Stockpile	2018	300 tph	New	Ν
OS6	OS6	Aggregate Stockpile	2018	300 tph	New	Ν
OS7	OS7	RAP Stockpile	2018	300 tph	New	Ν
OS8	OS8	RAP Stockpile	2018	300 tph	New	Ν
OS9	OS9	RAP Stockpile	2018	300 tph	New	Ν
BC1	BC1	Conveyor Belt	2018	300 tph	New	Ν
BC2	BC2	Conveyor Belt	2018	300 tph	New	Ν
RS1	RS1	Radial Stacker	2018	300 tph	New	Ν
B1	B1	Cold Feed Bin	2018	300 tph	New	PE
B2	B2	Cold Feed Bin	2018	300 tph	New	PE
B3	B3	Cold Feed Bin	2018	300 tph	New	PE
B4	B4	Cold Feed Bin	2018	300 tph	New	PE
B5	B5	Cold Feed Bin	2018	300 tph	New	PE
BC3	BC3	Collector Conveyor Belt	2018	300 tph	New	Ν
S 1	S1	Scalping Screen	2018	300 tph	New	PE
BC4	BC4	Conveyor Belt	2018	300 tph	New	Ν
CFDM1	1E Counterflow Drum Mixer		2018	300 tph	New	APCD1 & APCD2
B6	B6	RAP Bin	2018	300 tph	New	PE

¹ For Emission Units (or <u>Sources</u>) use the following numbering system:1S, 2S, 3S,... or other appropriate designation. ² For <u>E</u>mission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation. ³ New, modification, removal

⁴ For <u>Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.</u>

Note: PF = Process Fugitive Emissions, OD = Open Dust Emissions

Attachment I

Emission Units Table

(includes all emission units and air pollution control devices

that will be part of this permit application review, regardless of permitting status)-

B7		Modified	Capacity	of Change	Device ⁴
	RAP Bin	2018	300 tph	New	PE
BC5	Conveyor Belt	2018	300 tph	New	Ν
BC6	Conveyor Belt	2018	300 tph	New	Ν
DL1	Drag Link Conveyor	2018	300 tph	New	FE
DL2	Drag Link Conveyor	2018	300 tph	New	FE
BS1	HMA Storage Silo	2018	200 tons	New	FE
BS2	HMA Storage Silo	2018	200 tons	New	FE
T1	Asphaltic Cement Tank	2018	30,000 gal.	New	Ν
T2	Diesel Fuel Tank	2018	1,000 gal.	New	Ν
2E	Asphalt Heater	2018	NA	New	Ν
F-H1	Portable FRAP Feed Hopper	2018	200 tph		PE
F-BC1	Portable FRAP Belt Conveyor	2018	300 tph		PE
F-S1	Portable FRAP Screen	2018	200 tph		FE
F-BC2	Portable FRAP Belt Conveyor	2018	75 tph	Portable	Ν
F-CR1	Portable FRAP Crusher	2018	75 tph	will be brought to	FE
F-BC3	Portable FRAP Belt Conveyor	2018	200 tph	this site for the first time in 2018.	Ν
F-BC4	Portable FRAP Belt Conveyor	2018	200 tph		Ν
F-RS1	Portable FRAP Radial Stacker	2018	200 tph		Ν
F-1E	FRAP Engine	2018	9.28 gal/hr		Ν
	DL1 DL2 BS1 BS2 T1 2E 2E F-H1 F-BC1 F-BC1 F-S1 F-BC2 F-CR1 F-BC3 F-BC3 F-BC4 F-RS1 F-RS1 F-1E	DL1Drag Link ConveyorDL2Drag Link ConveyorBS1HMA Storage SiloBS2HMA Storage SiloT1Asphaltic Cement TankT2Diesel Fuel Tank2EAsphalt HeaterF-H1Portable FRAP Feed HopperF-BC1Portable FRAP Belt ConveyorF-BC2Portable FRAP Belt ConveyorF-BC3Portable FRAP Belt ConveyorF-BC4Portable FRAP Belt ConveyorF-RS1Portable FRAP Belt ConveyorF-RS1Portable FRAP Belt ConveyorF-BC4Portable FRAP Belt ConveyorF-RS1Portable FRAP Engine	DeterministicContreport DataDL1Drag Link Conveyor2018DL2Drag Link Conveyor2018BS1HMA Storage Silo2018BS2HMA Storage Silo2018T1Asphaltic Cement Tank2018T2Diesel Fuel Tank20182EAsphalt Heater2018F-H1Portable FRAP Feed Hopper2018F-BC1Portable FRAP Screen2018F-BC2Portable FRAP Screen2018F-BC3Portable FRAP Belt Conveyor2018F-BC4Portable FRAP Belt Conveyor2018F-RS1Portable FRAP Belt Conveyor2018F-BC4Portable FRAP Belt Conveyor2018F-BC4Portable FRAP Belt Conveyor2018F-BC4Portable FRAP Belt Conveyor2018F-RS1Portable FRAP Belt Conveyor2018F-BC4Portable FRAP Engine2018F-BC4Importable FRAP Engine2018F-BC4Importable FRAP Engine2018F-BC4Importable FRAP Engine2018	DL1 Drag Link Conveyor 2018 300 tph DL2 Drag Link Conveyor 2018 300 tph BS1 HMA Storage Silo 2018 200 tons BS2 HMA Storage Silo 2018 200 tons T1 Asphaltic Cement Tank 2018 30,000 gal. T2 Diesel Fuel Tank 2018 1,000 gal. 2E Asphalt Heater 2018 200 tph F-H1 Portable FRAP Feed Hopper 2018 200 tph F-BC1 Portable FRAP Screen 2018 300 tph F-S1 Portable FRAP Belt Conveyor 2018 200 tph F-BC2 Portable FRAP Screen 2018 200 tph F-BC3 Portable FRAP Belt Conveyor 2018 75 tph F-BC3 Portable FRAP Belt Conveyor 2018 200 tph F-BC4 Portable FRAP Belt Conveyor 2018 200 tph F-RS1 Portable FRAP Radial Stacker 2018 200 tph F-RS1 Portable FRAP Radial Stacker 2018 200 tph <	DL1Drag Link Conveyor2018300 tphNewDL2Drag Link Conveyor2018300 tphNewBS1HMA Storage Silo2018200 tonsNewBS2HMA Storage Silo2018200 tonsNewT1Asphaltic Cement Tank201830,000 gal.NewT2Diesel Fuel Tank20181,000 gal.New2EAsphalt Heater2018NANewF-H1Portable FRAP Feed Hopper2018200 tphPortableF-S1Portable FRAP Belt Conveyor2018300 tphPortableF-BC2Portable FRAP Belt Conveyor201875 tphPortableF-BC3Portable FRAP Belt Conveyor2018200 tphFirst time in 2018.F-BC4Portable FRAP Belt Conveyor2018200 tph100 this site for the first time in 2018.F-RS1Portable FRAP Belt Conveyor2018200 tph100 this site for the first time in 2018.F-BC3Portable FRAP Belt Conveyor2018200 tph100 this site for the first time in 2018.F-BC4Portable FRAP Belt Conveyor2018200 tph100 this site for the first time in 2018.F-RS1Portable FRAP Belt Conveyor2018200 tph100 this site for the first time in 2018.

* This engine is a nonroad engine (see Attachment D Regulatory Discussion) and is therefore no subject to 45CSR13. This information is being provided by request of DAQ.

¹ For Emission Units (or <u>Sources</u>) use the following numbering system:1S, 2S, 3S,... or other appropriate designation.

² For <u>E</u>mission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

³New, modification, removal

⁴ For <u>Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.</u>

Note: PF = Process Fugitive Emissions, OD = Open Dust Emissions

ATTACHMENT J

EMISSION POINTS DATA SUMMARY SHEET

							Table	e 1: Emissions [Data						
match Poi	Emission Point	Emission Unit Vented Through This Point (Must match Emission Units Table & Plot Plan)		Device (Must match		Vent Time for Emission Unit (chemical processes only)		All Regulated Pollutants Chemical Name/CAS ³	Maximum Uncon Emiss	trolled	Maximum Potential Controlled Emissions ⁵		Emission Form or Phase <i>(At exit</i>	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
	Type ¹	ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	(Speciate VOCs & HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	condition s, Solid, Liquid or Gas/Vap or)		
IE	UVS	CFDM1	Counter Flow Drum Mixer	APCD1 APDC2	Inertial Separator Baghouse	NA	NA	PM PM10 PM2.5 SOx NOx CO VOC HCl HAPS-VOC* HAPS-Metal*	3,582.0 823.86 197.01 17.40 16.50 39.00 9.60 0.06 3.11 0.373	$\begin{array}{c} 1,194.0\\ 274.62\\ 65.67\\ 5.80\\ 5.50\\ 13.00\\ 3.20\\ 0.02\\ 1.04\\ 0.0126\end{array}$	$17.91 \\ 4.12 \\ 4.12 \\ 17.40 \\ 16.50 \\ 39.00 \\ 9.60 \\ 0.06 \\ 3.11 \\ 0.373$	5.97 1.37 1.37 5.80 5.50 13.00 3.20 0.02 1.04 0.0126	Solid Solid Solid Vapor Vapor Vapor Mist Vapor Solid	EE	NA
2E	UVS	AH1	Hot Oil Heater	NA	NA	NA	NA	PM PM10 PM2.5 SOx NOx CO VOC HAPS*	$\begin{array}{c} 0.01 \\ 0.01 \\ 0.001 \\ 0.14 \\ 0.11 \\ 0.001 \\ 0.00255 \end{array}$	$\begin{array}{c} 0.04 \\ 0.04 \\ 0.003 \\ 0.51 \\ 0.43 \\ 0.03 \\ 0.00963 \end{array}$	$\begin{array}{c} 0.01 \\ 0.01 \\ 0.001 \\ 0.14 \\ 0.11 \\ 0.01 \\ 0.00255 \end{array}$	$\begin{array}{c} 0.04 \\ 0.04 \\ 0.003 \\ 0.51 \\ 0.43 \\ 0.03 \\ 0.00963 \end{array}$	Solid Solid Solid Vapor Vapor Vapor Vapor Vapor	EE	NA
S 1	NA	SI	Scalping Screen	PE	Partial Enclosure	NA	NA	PM PM10 PM2.5	7.50 2.61 0.54	2.5 0.87 0.18	3.75 1.31 0.27	1.25 0.44 0.09	Solid Solid Solid	EE	NA
TP1 to TP16, TP21, T22	NA	TP1 to TP16, TP21, TP22	Transfer Points	Various	Various	NA	NA	PM PM10 PM2.5	10.14 4.83 0.72	3.38 1.61 0.24	7.24 3.45 0.52	2.44 1.16 0.17	Solid Solid Solid	EE	NA
TP17 to TP19	NA	TP17 to TP19	Silo Filling	Various	Various	NA	NA	PM PM10 PM2.5 VOC CO HAPS*	0.54 0.12 0.03 10.98 1.05 0.143	0.18 0.03 0.01 3.66 0.36 0.048	0.27 0.06 0.02 10.98 1.05 0.143	$\begin{array}{c} 0.09 \\ 0.02 \\ 0.01 \\ 3.66 \\ 0.36 \\ 0.048 \end{array}$	Solid Solid Solid Vapor Vapor Vapor	EE	NA

Attachment J – Emission Points Data Summary Sheet

* See Attachment N for speciation of VOCs and HAPs ** This engine is a nonroad engine (see Attachment D Regulatory Discussion) and is therefore not subject to 45CSR13. This information is being provided by request of DAQ.

	Table 1: Emissions Data (continued)														
Point ID No. Point		Point Through This Po Type ¹ (Must match Emis Units Table & Pl		Through This PointDev(Must match Emission(MustUnits Table & PlotEmission U		Air Pollution Control Device (Must match Emission Units Table & Plot Plan)		All Regulated Pollutants - Chemical Name/CAS ³	Poter Uncont	Maximum Potential Uncontrolled Emissions ⁴		Potential rolled sions ⁵	Emission Form or Phase <i>(At exit</i>	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
& Plot Plan)		ID No.	Source	ID No.	. Device Short Max Type Term ² (hr/yr)			(Speciate VOCs & HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	conditions, Solid, Liquid or Gas/Vapor)		
TP20	NA	TP41	HMA Loadout	Various	Various	NA	NA	PM PM10 PM2.5 VOC CO HAPS*	$\begin{array}{c} 0.16 \\ 0.04 \\ 0.04 \\ 1.17 \\ 0.40 \\ 0.019 \end{array}$	$\begin{array}{c} 0.05 \\ 0.01 \\ 0.01 \\ 0.39 \\ 0.13 \\ 0.006 \end{array}$	$\begin{array}{c} 0.08 \\ 0.02 \\ 0.01 \\ 1.17 \\ 0.40 \\ 0.019 \end{array}$	0.03 0.01 0.01 0.39 0.13 0.006	Solid Solid Solid Vapor Vapor Vapor	EE	NA
F-1E**	UVS	F-ENG1	Non- road Engine	NA	NA	NA	NA	PM PM10 PM2.5 SOx NOx CO VOC HAPS*	$\begin{array}{c} 0.40\\ 0.40\\ 0.40\\ 0.37\\ 5.65\\ 1.22\\ 0.46\\ 0.0049\\ \end{array}$	$\begin{array}{c} 0.10\\ 0.10\\ 0.10\\ 0.09\\ 1.41\\ 0.31\\ 0.12\\ 0.001\\ \end{array}$	$\begin{array}{c} 0.40\\ 0.40\\ 0.40\\ 0.37\\ 5.65\\ 1.22\\ 0.46\\ 0.0049\\ \end{array}$	$\begin{array}{c} 0.10\\ 0.10\\ 0.10\\ 0.09\\ 1.41\\ 0.31\\ 0.12\\ 0.001\\ \end{array}$	Solid Solid Solid Vapor Vapor Vapor Vapor Vapor	EE	NA
F-S1	NA	F-S1	FRAP Screen	FE	Full Enclosure	NA	NA	PM PM10 PM2.5	5.00 1.74 0.36	0.63 0.22 0.05	1.00 0.35 0.07	0.13 0.04 0.01	Solid Solid Solid	EE	NA
F-CR1	NA	CR1	FRAP Crusher	FE	Full Enclosure	NA	NA	PM PM10 PM2.5	0.15 0.08 0.02	0.02 0.01 0.01	0.08 0.04 0.01	0.01 0.01 0.01	Solid Solid Solid	EE	NA
F-TP1 to F-TP12	NA	F-TP1 to F-TP12	Portable RAP System	Various	Various	NA	NA	PM PM10 PM2.5	4.00 1.90 0.29	0.48 0.23 0.03	2.64 1.26 0.19	0.35 0.17 0.03	Solid Solid Solid	EE	NA

* See Attachment N for speciation of HAPs

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

2 Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (i.e., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).

3 List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS2, VOCs, H2S, Inorganics, Ca, NO, NO2, SO2, SO3, all applicable Greenhouse Gases (including CO2 and methane), etc. DO NOT LIST H2, H2O, N2, O2, and Noble Gases.

4 Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

5 Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

6 Indicate the method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

7 Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m3) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO2, use units of ppmv (See 45CSR10).

			Table 2: F	Release Para	ameter Data				
			Exit Gas		Emission Point El	evation (ft)	UTM Coordinates (km)		
Emission Point ID No. (Must match Emission Units Table)		Temp. (°F)	Volumetric Flow ¹ (acfm) <i>at operating conditions</i>	(acfm)		Ground Level (Height above mean sea level) Stack Height ² (Release height of emissions above ground level)		Easting	
1E	NAv	220-365	52,264	NAv	~590 ft.	NAv	4,311.490	433.620	
2E	NAv	NAv	NAv	NAv	~590 ft.	NAv	4,311.490	433.620	
F-1E	NAv	NAv	NAv	NAv	~590 ft.	NAv	4,311.490	433.620	

¹Give at operating conditions. Include inerts. ²Release height of emissions above ground level.

ATTACHMENT K

FUGITIVE EMISSIONS DATA SUMMARY SHEET

Attachment K – Fugitive Emissions Data Summary Sheet

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS
1.)	Will there be haul road activities?
	⊠ Yes □ No
	If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.
2.)	Will there be Storage Piles?
	Yes No
	☐ If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.
3.)	Will there be Liquid Loading/Unloading Operations?
	□ Yes
	☐ If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
5.)	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?
	☐ Yes
	☐ If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.
6.)	Will there be General Clean-up VOC Operations?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
7.)	Will there be any other activities that generate fugitive emissions?
	□ Yes
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.
	ou answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive issions Summary."

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants ⁻ Chemical Name/CAS ¹	Maximum Potential Uncontrolled Emissions ²		Maximum Potential Controlled Emissions ³		Est. Method
		lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
Haul Road/Road Dust Emissions Paved Haul Roads	PM PM10 PM2.5	NA	NA	NA	NA	EE
Unpaved Haul Roads	PM PM10 PM2.5	252.26 74.40 7.50	60.90 17.96 1.81	63.06 18.60 1.88	15.23 4.49 0.46	EE
Storage Pile Emissions	PM PM10 PM2.5	0.024 0.011 0.010	0.100 0.048 0.010	0.024 0.011 0.010	0.100 0.048 0.010	EE
Loading/Unloading Operations	NA					
Wastewater Treatment Evaporation & Operations	NA					
Equipment Leaks	NA					
General Clean-up VOC Emissions	NA					
Other	NA					

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

ATTACHMENT L

EMISSION UNIT DATA SHEETS

General HMA Plant Information	Source Identification Number ¹	CFDM1
	Manufacturer & Model Number	Dillman D-PUCF9050
	Date of Manufacture	6/28/2016
	Plant Type ²	CFDM
	Max Production Rate (ton/hour)	300
	Max Yearly Production (tons/year)	200,000
	Annual Operation (hours/year)	7,560
Batch Plant	Tons per Batch	NA
Information	Batches per Hour	NA
Drum Mixer Information	Drum Length (ft)	50
	Drum Diameter (ft)	7.5
	Burner Manufacturer & Model Number	ASTEC WJ-75-O
	Design Heat Input (mmBTU/hour)	75
	Excess Air (%)	20
Burner, Fuel & Combustion Data	Fuel Type ³	PNG
	Maximum Fuel Usage ⁴	73,000 SCF/hr
	Fuel Heating Value ⁵	1,028 Btu/SCF
	Maximum Sulfur Content (%)	20 gr/100 SCF
	Maximum Ash Content (%)	NA

HMA PLANT PRODUCTION AFFECTED SOURCE SHEET

1. Enter the appropriate Source Identification Number for each rotary dryer or drum mixer. Batch plant rotary dryer should be designated BPRD-1, parallel flow drum mixer designated PFDM-1, and counterflow drum mixer designated CDFM-1, etc.

2. Enter the Plant Type designation using the following codes:				
	Batch	Batch Plant	PFDM	Parallel Flow Drum Mix Plant
	CFDM	Counterflow Drum Mix Plant	CNMX	Continuous Mix Plant
	COMB	Combination Batch/Drum Mix Plant		
3. Enter th	ie Fuel Typ PNG UO	e(s) using the following code: Pipeline Quality Natural Gas Used or Recycled Oil	#2FO	Number 2 Fuel Oil

4. Enter the maximum fuel use in standard cubic feet per hour (natural gas) or gallons per hour (fuel oil). List appropriate units.

5. Enter the Fuel heating value in Btu per standard cubic foot (natural gas) or Btu per gallon (fuel Oil). List appropriate units.

AIR POLLUTION CONTROL DEVICE AFFECTED SOURCE SHEET

HMA PLA	ANT AIR POLLUTION CONTROL DEVICE DATA SHEET	PRIMARY COLLECTION (INERTIAL SEPARATOR)	SECONDARY COLLECTION (BAGHOUSE)
General	APCD Identification Number ¹	APCD1	APCD2
Information	Manufacturer & Model Number	No separate model number	ASTEC PEBH-52
Physical Parameters	Number of Cylinders		
	Number of Compartments	1 compartment, 7 baffles	1 compartment, 1,152 bags
	Cylinder Diameter (ft)		
	Cylinder Length (ft)		
	Cone Length (ft)		
	Gas Inlet Area (ft)		NAv
	Gas Outlet Area (ft)		NAv
	Bag Cleaning Mechanism ²		Pulse jet
	Total Cloth (fabric) Area (ft ²)		13,949
	Draft Fan HP		200
	Outlet Stack Area (ft ²)		10.6145
	Minimum Design ΔP (in H20)		2
	Maximum Design ΔP (in H20)		6
	Inlet Gas Flow Rate (ACFM)		52,264
	Inlet Gas Temperature (°F)		220-365
Operational Parameters	Inlet Gas Pressure (PSIA)		Varies, typically ~4 in. WC
	Inlet Gas Velocity (ft/sec)		Up to 50.0
	PM Inlet Rate (grains/ACF)		48.7 (based on maximum air flow)
	PM Outlet Rate (grains/ACF)		0.04*
	Operating Air/Cloth Ratio (ft/min)		5.5

1. Enter the appropriate Air Pollution Control Device Identification Number for the primary and secondary collectors. The primary collector should be designated APCD-1 and the secondary collector designated APCD-2. If the secondary collector incorporates a knockdown or settling chamber and combines the functions of a primary and secondary collector, enter NONE for the primary collector APCD identification number and designate the secondary collector APCD-1.

2. Enter method used to clean bags: shaker, pulse jet, reverse jet or other.

* Emission limit from 40CFR60, Subpart I.

HMA PLANT PARTICULATE MATTER CAPTURE SYSTEM AFFECTED SOURCE SHEET

Pursuant to Section 2.3.5 of General Permit G-20B and 45CSR3, the registrant shall not cause, allow or permit a hot mix asphalt plant to operate that is not equipped with a particulate matter capture system. Such systems and devices shall be designed, operated and maintained in such a manner as to prevent the emission of particulate matter from any point other than a stack outlet.

A particulate matter capture system shall be used to confine, collect and transport particulate matter from dryers, hot elevators, screens, drum mixers, pugmills, weigh hoppers, hot bins and related components to air pollution control devices. Particulate matter capture systems shall include but not be limited to hoods, bins, ductwork, enclosures, air pollution control devices and fans.

Provide a written description of the hot mix asphalt plant's particulate matter capture system below:

The particulate matter capture system is comprised of an inertial separator, baghouse; exhaust fans, motors, and ducting. The particulates pass from the dryer through the ductwork and into the inertial separator located at the front end of the baghouse where the larger particles are pulled out of the air stream to the bottom of the baghouse. The airflow continues into the baghouse where the remaining fines are captured by the bags and released by pulse jet air to the bottom of the baghouse. The fines and large particles are returned to the drum mixer through an auger system and become part of the final product.

AFFECTED SOURCE SHEET							
Source Identification Number ¹	H1	OS1	OS2	OS3	OS4	OS5	
Material Stored ²	Aggregates	Slag sand	Limestone Sand	#8 Limestone	#8 Limestone	#67 Limestone	
Maximum Yearly Throughput (tons/year) ³	200,000	30,000	4,000	50,000	50,000	100,000	
Typical Moisture Content (%) ⁴	3-7	7	7	3	3	3	
Average % of Material Passing Through 200 Mesh Sieve ⁵	1-6	6	6	1	1	1	
Maximum Stockpile Base Area (ft ²) ⁶		479	479	958	958	958	
Maximum Stockpile Height (ft) ⁷		25	25	50	50	50	
Maximum Storage Capacity (tons) ⁸	200	5,000	5,000	20,000	20,000	20,000	
Dust Control Method Applied to Storage ⁹	PE	Ν	Ν	Ν	Ν	Ν	
Method of Material Load-in to Bin or Stockpile ¹⁰	CS	MC/TD	MC/TD	MC/TD	MC/TD	MC/TD	
Dust Control Method Applied During Load-in ¹¹	MD	MD	MD	MD	MD	MD	
Method of Material Load-out from Bin or Stockpile ¹⁰	SS	FE	FE	FE	FE	FE	
Dust Control Method Applied During Load-out ¹¹	PE	MD	MD	MD	MD	MD	
1. Enter the appropriate Source Identification Number for each storage activity using the following codes. For example, if the facility utilizes four open stockpiles and one storage silo, the Source Identification Numbers should be OS-1, OS-2, OS-3, and OS-4; and BS-1, respectively. OS Open Stockpile E3 Enclosure (three-sided enclosure) BS Bin or Storage Silo (full enclosure) SB Storage Building (full enclosure) SF Stockpiles with wind fences OT Other (please specify) 2. Describe the type of material stored or stockpiled. 3. Enter the maximum yearly storage throughput for each storage activity. 4. 4. Enter the average percent moisture content of the stored material. 5. 5. Enter the average percent of material that will pass through a 200 mesh sieve. 6. For stockpiles, enter the maximum stockpile base area. 7. For stockpiles, enter the maximum stockpile height. 8. Enter the maximum storage capacity for each storage activity in tons (e.g. silo capacity, maximum stockpile size, etc.). 9. 9. Enter the dust control method applied to storage activity using the following codes: CA CA Crusting Agent WS Water Spray FE Full Enclosure NO None None OT Other							

Source Identification Number ¹	OS6	OS7	OS8	OS9	B1	B2	
Material Stored ²	467's Limestone	RAP	RAP	RAP	Aggregates	Aggregates	
Maximum Yearly Throughput (tons/year) ³	50,000	50,000	50,000 c	ombined	200,000	combined	
Typical Moisture Content (%) ⁴	3	3	3	3	3-7	3-7	
Average % of Material Passing Through 200 Mesh Sieve ⁵	1	1	1	1	1-6	1-6	
Maximum Stockpile Base Area (ft ²) ⁶	958	4,790	4,790	4,790			
Maximum Stockpile Height (ft) ⁷	50	25	25	25			
Maximum Storage Capacity (tons) ⁸	20,000	50,000	50,000	50,000	20	20	
Dust Control Method Applied to Storage ⁹	N	Ν	N	Ν	PE	PE	
Method of Material Load-in to Bin or Stockpile ¹⁰	MC/TD	TD	MC	МС	FE	FE	
Dust Control Method Applied During Load-in ¹¹	MD	MD	MD	MD	MD	MD	
Method of Material Load-out from Bin or Stockpile ¹⁰	FE	FE	FE	FE	OT-BF	OT-BF	
Dust Control Method Applied During Load-out ¹¹	MD	MD	MD	MD	PE	PE	
1. Enter the appropriate Source Identification Number for each storage activity using the following codes. For example, if the facility utilizes four open stockpiles and one storage silo, the Source Identification Numbers should be OS-1, OS-2, OS-3, and OS-4; and BS-1, respectively. OS Open Stockpile E3 Enclosure (three-sided enclosure) BS Bin or Storage Silo (full enclosure) SB Storage Building (full enclosure) SF Stockpiles with wind fences OT Other							

Source Identification Number ¹	В3	B4	В5	B6	B7	BS1		
Material Stored ²	Aggregates	Aggregates	Aggregates	RAP	RAP	HMA		
Maximum Yearly Throughput (tons/year) ³	200,000 combined	200,000 combined	200,000 combined	50,000 combined	50,000 combined	200,000 combined		
Typical Moisture Content (%) ⁴	3-7	3-7	3-7	3	3			
Average % of Material Passing Through 200 Mesh Sieve ⁵	1-6	1-6	1-6	1	1			
Maximum Stockpile Base Area (ft ²) ⁶								
Maximum Stockpile Height (ft) ⁷								
Maximum Storage Capacity (tons) ⁸	20	20	20	20	20	200		
Dust Control Method Applied to Storage ⁹	PE	PE	PE	PE	PE	FE		
Method of Material Load-in to Bin or Stockpile ¹⁰	FE	FE	FE	FE	FE	SS		
Dust Control Method Applied During Load-in ¹¹	MD	MD	MD	MD	MD	PE		
Method of Material Load-out from Bin or Stockpile ¹⁰	OT-BF	OT-BF	OT-BF	OT-BF	OT-BF	OT-CH		
Dust Control Method Applied During Load-out ¹¹	PE	PE	PE	PE	PE	PE		
1. Enter the appropriate Source Identification Number for each storage activity using the following codes. For example, if the facility utilizes four open stockpiles and one storage silo, the Source Identification Numbers should be OS-1, OS-2, OS-3, and OS-4; and BS-1, respectively. OS Open Stockpile E3 Enclosure (three-sided enclosure) BS Bin or Storage Silo (full enclosure) SB Storage Building (full enclosure) SF Stockpile C7 Other								

Source Identification Number ¹	BS2		F-H1				
Material Stored ²	HMA		RAP				
Maximum Yearly Throughput (tons/year) ³	200,000 combined		50,000				
Typical Moisture Content (%) ⁴			3				
Average % of Material Passing Through 200 Mesh Sieve ⁵			1				
Maximum Stockpile Base Area (ft ²) ⁶							
Maximum Stockpile Height (ft) ⁷							
Maximum Storage Capacity (tons) ⁸	200		25				
Dust Control Method Applied to Storage ⁹	FE		PE				
Method of Material Load-in to Bin or Stockpile ¹⁰	SS		FE				
Dust Control Method Applied During Load-in ¹¹	PE		MD				
Method of Material Load-out from Bin or Stockpile ¹⁰	OT-CH		SS				
Dust Control Method Applied During Load-out ¹¹	PE		FE				
Appried During Toda-out							

HMA PLANT FUGITIVE DUST CONTROL SYSTEM AFFECTED SOURCE SHEET

	Fugitive Dust Control Method ¹	WT
	Design Water Flow Rate (gpm) ²	7.1
	Chemical Additive ³	N/A
	Water/Additive Mix Ratio ⁴	N/A
	Amount (gal/yd) ⁵	~0.3
Fugitive Dust Control	Frequency of Application ⁶	As needed to control
System Data	Haulroad Surface ⁷	Gravel
	Work/Storage Area Surface ⁸	Gravel
	Haulroad Length ⁹	Varies – see Attachment N
	Number of Vehicles per day ¹⁰	Varies – see Attachment N
	Number of Wheels per Vehicle ¹¹	Varies – see Attachment N
	Weight of Vehicle (tons) ¹²	Varies – see Attachment N

1.Enter the fugitive dust control method(s) using the following codes:

WT Water Truck WS Fixed Water Sprays

UW Underbody Truck Wash RS Rumble Strips

OT Other ______ (please specify)

2. Enter the design water flow rate for the water truck or fixed water sprays in gallons per minute.

3. Enter manufacturer and type, specification or grade of chemical additive.

4. Enter the water/chemical additive mix ratio.

5. Enter the amount of water or water/chemical additive mix to be applied to haulroads, storage and work areas in gallons per square yard.

6. Enter the frequency of application of water/chemical additive mix to haulroads, storage and work areas during periods of dry weather.

7. Enter the type of haulroad, work and storage area surface (asphalt pavement, concrete, dirt, coarse gravel, reddog, etc.).

8. Enter the approximate length of haulroad(s) in miles or feet. List appropriate units.

9. Enter the maximum daily vehicle traffic (trucks per day).

10. Enter the maximum number of wheels per vehicle.

11. Enter the mean vehicle weight in tons.

12. Complete a separate HMA Plant Fugitive Dust Control System Data sheet for each fugitive dust control system.

Provide a written description of the hot mix asphalt plant's fugitive dust control system below:

A water truck will be used to control fugitive emissions from the vehicle traffic in the storage area and on the haulroad.

HMA PLANT ASPHALT HEATER AFFECTED SOURCE SHEET

Source Identification Number ¹	Maximum Fuel Use ²	Fuel Type ³	Hours of Operation (hrs/yr) ⁴	
AH1	AH1 1,350 scf/h		7,560*	

* Hours of operation for asphalt heater are higher than the hours of operation for the asphalt plant to allow asphaltic cement to stay warm 24 hours a day during the operational season.

1. Enter the appropriate Source Identification Number for each asphaltic cement tank heater located at the hot mix asphalt plant. Asphaltic cement tank heaters should be designated AH-1, AH-2, etc.

2. Enter the maximum fuel use in standard cubic foot per hour (natural gas) or gallons per hour (fuel oil). List appropriate units.

3. Enter the Fuel Type using the following codes:

PNG Pipeline Quality Natural Gas #2FO Number 2 Fuel Oil UO Used Oil

4. Enter the maximum hours of operation each year.4400

HMA PLANT STORAGE TANK AFFECTED SOURCE SHEET

Source Identification Number ¹	Content ²	Length ³ (ft)	Dia ⁴ (ft)	Volume ⁵ (gallons)	Throughput ⁶ (gal/yr)	Orientation ⁷	Liquid Height ⁸ (ft)
T1	Asphaltic Cement	43	11.7	30,000	2,800,000	HORZ	6
Τ2	Diesel Fuel	12	4	1,000	20,400	HORZ	2

1.Enter the appropriate Source Identification Number for each storage tank located at the hot mix asphalt plant.

Storage tanks should be designated T-1, T-2, T-3, etc.

2.Enter storage tank content (#2 fuel oil, asphaltic cement, water, etc.)

3.Enter storage tank length in feet.

4.Enter storage tank diameter in feet.

5. Enter storage tank volume in gallons. Storage tank volume may be calculated using the following mathematical relationship: (length of tank) X (area conversion) X (tank diameter)² X (liquid volume conversion) or, (L_{tank} ft) X (3.14/4) X (d²_{tank} ft²) X (7.48 gallons/ft³)

6. Enter storage tank throughput in gallons per year.

7. Enter storage tank unoughput in garlons per year.

VERT Vertical Tank HORZ Horizontal Tank

8. Enter storage tank average liquid height in feet.

9. Storage tank emissions may be calculated using TANKS emission calculation program.

Che					
Source Ider	tification Number ¹	S1	F-S1	F-CR1	
Type of C	rusher or Screen ²	DD	DD	OT-HSI	
Make, Moc	Make, Model No., Serial No. ³		ASTEC PEP Vari-Vibe	KPI-JCI 3136	
	ction, Reconstruction, or on (Month/Year) ⁴	2016	2013	2013	
Maximum	tons/hour	300	200	75	
Throughput ⁵	tons/year	200,000	50,000	18,750	
Material	sized from/to:6	2" x 0"	-1/2"	+4"/-4"	
Average Mo	bisture Content (%) ⁷	3-7	3	3	
Control De	evice ID Number ⁸	NA	NA	NA	
	height (ft)				
Baghouse	diameter (ft)				
Stack	volume (ACFM)				
Parameters ⁹	exit temp (F)				
	UTM Coordinates				
Maximum	hours/day	24	12	12	
Operating	days/year	315	42	42	
Schedule ¹⁰	hours/year	7,560	504	504	

CRUSHING AND SCREENING AFFECTED SOURCE SHEET

Enter the appropriate Source Identification Number for each crusher and screen. For example, in the case of an operation 1. which incorporates multiple crushers, the crushers should be designated CR-1, CR-2, CR-3 etc. beginning with the breaker or primary crusher. Multiple screens should be designated S-1, S-2, S-3 etc.

Describe types of crushers and screens using the following codes: 2.

- HM Hammermill SS Stationary Screen Single Deck Screen Ball Mill SD BM
 - RB Rotary Breaker TD
- Triple Deck Screen

Double-Deck Screen

Double Roll Crusher

JC Jaw Crusher

DR

DD

GC Gyratory Crusher

OT Other HSI-Horizontal Shaft Impactor

3 Enter the make, model number, and serial number of the crusher/screen.

Enter the date that each crusher and screen was constructed, reconstructed, or modified. 4 5.

Enter the maximum throughput for each crusher and screen in tons per hour and tons per vear.

Describe the nominal material size reduction (e.g. $+2''/ -\frac{3}{3}$). 6.

Enter the average percent moisture content of the material processed. 7.

Enter the appropriate Control Device Identification Number for each crusher and screen. Refer to Table A - Control Device 8. Listing and Control Device Identification Number Instructions in the Reference Document for Control Device ID prefixes and numbering.

9. Enter the appropriate stack parameters if a baghouse control device is used.

10. Enter the maximum operating schedule for each crusher and screen in hours per day, days per year and hours per year.

* The values provided are based on design capacity, however actual throughputs are closer to 100 tph for the screen and 37.5 tph for the crusher. The screen throughput assumes an annual maximum of 50% oversized material running through the RAP crusher circuit.

CONVEYING AFFECTED SOURCE SHEET

Source	Date of Construction, Type of Reconstruction, Material		Type of Size of Material Material		n Material er Rate ⁵	Average Moisture Content	Control
Identification Number ¹	or Modification (Month/Year) ²	Material Handled ³	Material Handled ⁴	tons/hour	tons/hour tons/year		Device ⁷
BC1	2018	Aggregates	2" x 0"	300	200,000	3-7	Ν
BC2	2018	Aggregates	2" x 0"	300	200,000	3-7	Ν
RS1	2018	Aggregates	2" x 0"	300	200,000	3-7	Ν
BC3	2018	Aggregates	2" x 0"	300	200,000	3-7	N
BC4	2018	Aggregates	2" x 0"	300	200,000	3-7	N
BC5	2018	RAP	-4" x 0"	300	50,000	3	N
BC6	2018	RAP	-4" x 0"	300	50,000	3	N
SC1	2018	Baghouse Dust	-1"	20	20,000	1	FE
DL1	2018	HMA	NA	300	200,000	NA	FE
DL2	2018	HMA	NA	300	200,000	NA	FE
F-BC1	2018	RAP	+4"	200	50,000	3	PE
F-BC2	2018	RAP	+4"	75	18,750	3	Ν
F-BC3	2018	RAP	-4" x +1/2"	200	50,000	3	Ν
F-BC4	2018	RAP	-1/2" x 0	200	50,000	3	Ν
F-RS1	2018	RAP	-4" x 0"	200	50,000	3	N

1. Enter the appropriate Source Identification Number for each conveyor using the following codes. For example, multiple belt conveyors should be designated BC-1, BC-2, BC-3 etc. Transfer points are considered emission points, not sources, and should not be included in the *Conveying Affected Source Sheet*. Transfer Point Identification Numbers shall be assigned in the *Emission Calculation Sheet*.

	• • • • • • • • • • • • • • • • • • • •		
BC	Belt Conveyor	BE	Bucket Elev
PS	Pneumatic System	SC	Screw Conveyor

et Elevator

DL Drag-link Conveyor VC Vibrating Conveyor

OT Other

2. Enter the date that each crusher and screen was constructed, reconstructed, or modified.

3. Enter the type of material being handled - Raw Coal (RC) Sized Coal (SC) Clean Coal (CC) Refuse (R) Other (O)

4. Enter the nominal size of the material being conveyed (e.g. clean coal - ³/₄" x 0). If more than one material is handled by the listed conveyor, list each material and enter the appropriate data for each material.

5. Enter the maximum material transfer rate for each conveyor in tons per hour and tons per year.

6. Enter the average percent moisture content of the conveyed material.

7. Enter the control device for the conveyor. PE - Partial Enclosure (example 3/4 hoop), FE - Full Enclosure, N - None,

Source Iden	tification Number ¹	F-EI	NG1*				
Engine Man	ufacturer and Model	John Deer 6068HFC93A					
Manufactur	er's Rated bhp/rpm	173 hp @	2,400 rpm				
Sou	rrce Status ²	N/	/A*				
	l/Modified/Removed onth/Year) ³	to this site	l be brought for the first d May 2018				
Engine Manufactu	red/Reconstruction Date4	05/17	7/2013				
Ignition Engine acco IIII? (Yes or No) ⁵	1 Stationary Compression ording to 40CFR60 Subpart		ngine is a l engine*				
	Stationary Spark Ignition o 40CFR60 Subpart JJJJ?	Ν	//A				
	Engine Type ⁷	Compressi	ion Ignition				
	APCD Type ⁸]	N				
	Fuel Type ⁹	#2	FO				
Engine, Fuel and	H ₂ S (gr/100 scf)	NA					
Combustion Data	Operating bhp/rpm	172 hp @ 2,400 rpm					
Data	BSFC (Btu/bhp-hr)	Not available					
	Fuel throughput (ft ³ /hr)	9.28	gal/hr				
	Fuel throughput (MMft ³ /yr)	4,678	gal/yr				
	Operation (hrs/yr)	504 hrs/yr	(at this site)				
Reference ¹⁰	Potential Emissions ¹¹	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr
AP	NO _X	5.65	1.42				
AP	СО	1.22	0.31				
AP	VOC	0.46	0.12				
AP	SO ₂	0.37	0.09				
AP	PM ₁₀	0.40	0.10				
AP	Formaldehyde	0.0015	0.0004				
* Th:		nt D. D. avalata	Diama Diama			- 45CCD12	

ENGINE DATA SHEET

* This engine is a nonroad engine (see Attachment D Regulatory Discussion) and is therefore not subject to 45CSR13. This information is being provided by request of DAQ.

- 1. Enter the appropriate Source Identification Number for each reciprocating internal combustion compressor/generator engine located at the facility. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Emergency Generator engines should be designated EG-1, EG-2, EG-3 etc. If more than three (3) engines exist, please use additional sheets.
- 2. Enter the Source Status using the following codes:
 - NS Construction of New Source (installation) ES Existing Source
 - MS Modification of Existing Source
- RS Removal of Source

RB4S Rich Burn Four Stroke

- 3. Enter the date (or anticipated date) of the engine's installation (construction of source), modification or removal.
- 4. Enter the date that the engine was manufactured, modified or reconstructed.
- 5. Is the engine a certified stationary compression ignition internal combustion engine according to 40CFR60 Subpart IIII. If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintained in accordance with the manufacturer's emission-related testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance according to 40CFR§60.4210 as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6. Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart JJJJ. If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance according to 40CFR§60.4243a(2)(i) through (iii), as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

- 7. Enter the Engine Type designation(s) using the following codes:
 - LB2S Lean Burn Two Stroke
 - LB4S Lean Burn Four Stroke
- 8. Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:

		Air/Fuel Ratio High Energy Ignition System Prestratified Charge Rich Burn & Non-Selective Catalytic Reduction	LEC	Ignition Retard Screw-in Precombustion Chambers Low Emission Combustion Lean Burn & Selective Catalytic Reduction
9.	Enter the F	Fuel Type using the following codes:		
	PQ 2FO	Pipeline Quality Natural Gas #2 Fuel Oil	RG LPG	Raw Natural Gas Liquid Propane Gas

10. Enter the Potential Emissions Data Reference designation using the following codes. Attach all referenced data to this

Compressor/Generator Data Sheet(s).

MD	Manufacturer's Data	AP	AP-42	
GR	GRI-HAPCalc TM	OT	Other	(please list)

11. Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

ATTACHMENT N

SUPPORTING EMISSIONS CALCULATIONS

Checked By: PEW Date: January 10, 2018

EMISSIONS SUMMARY

		Point S	ource ¹			Fugi	tive ²				
	Uncon	trolled	Cont	rolled	Uncon	trolled		rolled			
Emission Type	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr			
PM	3,609.90	1,201.38	51.29	10.41	252.28	61.00	63.08	15.33			
PM ₁₀	835.59	277.74	15.13	4.73	74.41	18.01	18.61	4.54			
PM _{2.5}	199.39	66.35	2.48	0.80	7.51	1.82	1.89	0.47			
VOC	22.22	7.28	22.22	7.28							
SO ₂	17.77	5.89	17.77	5.89							
NO _x	22.29	7.43	22.29	7.43							
CO	41.78	14.23	41.78	14.23							
HCl	0.06	0.02	0.06	0.02							
Acetaldehyde	0.391	0.130	0.391	0.130							
Benzene	0.126	0.042	0.126	0.042							
Ethylbenzene	0.077	0.022	0.077	0.022		Not Ap	plicable				
Toluene	0.881	0.293	0.881	0.293							
Xylene	0.094	0.031	0.094	0.031							
Formaldehyde	1.009	0.336	1.009	0.336							
PAH HAPs	0.26	0.09	0.26	0.09	-						
Total VOC HAPs ³	3.28	1.10	3.28	1.10							
Metal HAPs	0.04	0.01	0.04	0.01							
Total HAPs	3.32	1.12	3.32	1.12							

	Facility Total								
	Uncon	trolled	Cont	rolled					
Emission Type	lb/hr	tons/yr	lb/hr	tons/yr					
PM	3,862.18	1,262.38	114.37	25.74					
PM ₁₀	910.00	295.75	33.74	9.27					
PM _{2.5}	206.90	68.17	4.37	1.27					
VOC	22.22	7.28	22.22	7.28					
SO ₂	17.77	5.89	17.77	5.89					
NO _x	22.29	7.43	22.29	7.43					
CO	41.78	14.23	41.78	14.23					
HCl	0.06	0.02	0.06	0.02					
Acetaldehyde	0.39	0.13	0.39	0.13					
Benzene	0.13	0.04	0.13	0.04					
Ethylbenzene	0.08	0.02	0.08	0.02					
Toluene	0.88	0.29	0.88	0.29					
Xylene	0.09	0.03	0.09	0.03					
Formaldehyde	1.01	0.34	1.01	0.34					
PAH HAPs	0.26	0.09	0.26	0.09					
Total VOC HAPs3	3.28	1.10	3.28	1.10					
Metal HAPs	0.04	0.01	0.04	0.01					
Total HAPs	3.32	1.12	3.32	1.12					

¹ Point source emissions include transfer points, screening and crushing, drum mixer, asphalt heaters, and engines.

² Fugitive emissions include vehicular traffic and open stockpiles.

³ Total VOC Haps include PAH HAPs

Checked 1	By:	PEW
Date: January	10.	2018

MATERIALS HANDLING

Defining transfer point empirical expression variables, where: $e = k(0.0032)(U/5)^{1.3}/(M/2)^{1.4}$? e = lb/ton k for PM =0.74 dimensionless 0.35 k for PM_{10} dimensionless k for $PM_{2.5}$ 0.053 dimensionless U = 7 mean wind speed, mph 3 material moisture content, % M Aggregates/RAP = M Baghouse Dust = 1 material moisture content, %

Calculating transfer point emission factor for PM:

e _{Aggregates/RAP PM} = 0.0021 lb/ton

 $e_{Baghouse Dust PM} = 0.0097$ lb/ton

Partlicle size multipliers (k) AP42 Section 13.2.4-4 (11/06):

PM	PM10	PM2.5	
0.74	0.35	0.053	
Conversion Facto	or 2.1	14	

tph

HMA production rate: 300

200,000 tpy

	Ĩ	ietion fute.		upin	200,000	(P)	Ro	unding =	2
		Transfer	Capacities		Control			issions	
ID	Description		-		Device	Uncont			(tpy) 0.21 0.11 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.11 0.21 0.11 0.11 0.11 0.04 0.21 0.11
		tons/hour	v	Туре	Eff. (%)	(lb/hr)	(tpy)	(lb/hr)	
TP1	Barge to HI	300	200,000	MD	0	0.63	0.21	0.63	0.21
TP2	HI to BC1	300	200,000	PE	50	0.63	0.21	0.32	0.11
TP3	BC1 to BC2	300	200,000	MD	0	0.63	0.21	0.63	0.21
TP4	BC2 to RS1	300	200,000	MD	0	0.63	0.21	0.63	0.21
TP5	RS1 or Truck to OS1-OS6	300	200,000	MD	0	0.63	0.21	0.63	0.21
TP6	OS1-OS6 to B1-B5	300	200,000	MD	0	0.63	0.21	0.63	0.21
TP7	B1-B5 to BC3	300	200,000	PE	50	0.63	0.21	0.32	0.11
TP8	BC3 to S1	300	200,000	MD	0	0.63	0.21	0.63	0.21
TP9	S1 to Ground	300	200,000	PE	50	0.63	0.21	0.32	0.11
TP10	S1 to BC4	300	200,000	PE	50	0.63	0.21	0.32	0.11
TP11	BC4 to CFDM1	300	200,000	FE	80	0.63	0.21	0.13	0.04
TP12	Truck to OS7	300	200,000	MD	0	0.63	0.21	0.63	0.21
TP13	OS7 to B6 or B7	300	200,000	MD	0	0.63	0.21	0.63	0.21
TP14	B6 or B7 to BC5	300	200,000	PE	50	0.63	0.21	0.32	0.11
TP15	BC5 to BC6	300	200,000	PE	50	0.63	0.21	0.32	0.11
TP16	BC6 to CFDM1	300	200,000	FE	80	0.63	0.21	0.13	0.04
TP17-TP20	See HMA Loading								
TP21*	APCD2 to SC1	3	2,000	FE	80	0.03	0.01	0.01	0.01
TP22*	SC1 to CFDM1	3	2,000	FE	80	0.03	0.01	0.01	0.01
				PN	1 Emissions	10.14	3.38	7.24	2.44
				PM1	0 Emissions	4.83	1.61	3.45	1.16
				PM2.	5 Emissions	0.72	0.24	0.52	0.17

Checked By: PEW Date: January 10, 2018

MATERIALS HANDLING

Notes:

* Assumes a maximum rate of 1% baghouse dust re-introduction.

Some mixes do not contain RAP; therefore, the maximum aggregate processing rate was retained for emissions calculations. Emission factor calculation and mean wind speed were taken from WVDEP General Permit G40-C Emissions Calculation Control efficiencies taken from WVDEP General Permit G40-C, Instruction and Forms, May 6, 2011.

CRUSHING AND SCREENING

Emission Factors

	PM	PM10
Primary Crushing	0.002	0.001
Secondary & Tertiary Crushing	0.0054	0.002
Screening	0.025	0.009

Emission factors taken from DAQ G40-C Emissions Worksheet.

PM2.5 equal to PM/14:

Partlicle size multipliers (k) AP42 Section 13.2.4-4 (11/06):

	РМ	PM10	PM2.5
	0.74	0.35	0.053
Co	nversion Factor	2.1	14

Crusher Emissions

Crusher Identification	Crusher Type	ID	Thro	ughput	Control	Control Efficiency	Pollutant	Uncon	trolled	Cont	trolled
			(ton/hr)	(tons/yr)	Туре	(%)		(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)
							PM	0.00	0.00	0.00	0.00
N/A							PM10	0.00	0.00	0.00	0.00
							PM2.5	0.00	0.00	0.00	0.00
							PM	0.00	0.00	0.00	0.00
N/A							PM10	0.00	0.00	0.00	0.00
							PM2.5	0.00	0.00	0.00	0.00

Screen Emissions

Screen Identification	Screen Type	ID	Thro	ughput	Control Type	Control Efficiency	Pollutant	Uncon	trolled	Cont	trolled
			(ton/hr)	(tons/yr)		(%)		(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)
	Scalping						PM	7.50	2.5	3.75	1.25
Aggregates Screen	Screen	S 1	300	200,000	PE	50	PM10	2.61	0.87	1.31	0.44
	Screen						PM2.5	0.54	0.18	0.27	0.09
							PM	0.00	0.00	0.00	0.00
N/A							PM10	0.00	0.00	0.00	0.00
							PM2.5	0.00	0.00	0.00	0.00

Totals for Crushing and Screening

Pollutant	Uncon	trolled	Cont	trolled
Follutalit	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)
PM	7.50	2.50	3.75	1.25
PM10	2.61	0.87	1.31	0.44
PM2.5	0.54	0.18	0.27	0.09

By: L	KB			
Date:	January	8,	2018	

FRAP MATERIALS HANDLING

Defining transfer point empirical expression variables, where: $e = k(0.0032)(U/5)^{1.3}/(M/2)^{1.4}$

e =	?	lb/ton
k for $PM =$	0.74	dimensionless
U =	7	mean wind speed, mph
M=	3.0	material moisture content, %

Calculating transfer point emission factor for PM: $_{e PM} = 0.0021$ lb/ton

Partlicle size multipliers (k) AP42 Section 13.2.4-4 (11/06):

PM	PM10	PM2.5
0.74	0.35	0.053
Conversion Factor	2.1	14

tph

tph

FRAP System Design rate:200FRAP Crusher Design rate:75

	_
50,000	tpy
18,750	tpy
	_

	1			Contr	ol		R Emis	ounding =	2
ID	Description	Transfer	Capacities	Devic		Uncon	trolled	Controlled	
	_	tons/hour	tons/year	Туре	Effic (%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
F-TP1	OS7 to F-HI	200	50,000	MD	0	0.42	0.05	0.42	0.05
F-TP2	F-HI to F-BC1	200	50,000	FE	80	0.42	0.05	0.08	0.01
F-TP3	F-BC1 to F-S1	200	50,000	PE	50	0.42	0.05	0.21	0.03
F-TP4	F-S1 to F-BC2	75	18,750	FE	80	0.16	0.02	0.03	0.01
F-TP5	F-BC2 to F-CR1	75	18,750	FE	80	0.16	0.02	0.03	0.01
F-TP6	F-BC2 to OS7	75	18,750	Ν	0	0.16	0.02	0.16	0.02
F-TP7	F-CR1 to F-BC1	75	18,750	FE	80	0.16	0.02	0.03	0.01
F-TP8	F-SI to F-BC3	200	50,000	PE	50	0.42	0.05	0.21	0.03
F-TP9	F-BC3 to OS9 or F-RS1	200	50,000	MD	0	0.42	0.05	0.42	0.05
F-TP10	F-S1 to F-BC4	200	50,000	PE	50	0.42	0.05	0.21	0.03
F-TP11	F-BC4 to OS8 or F-RS1	200	50,000	MD	0	0.42	0.05	0.42	0.05
F-TP12	F-RS1 to OS8 or OS9	200	50,000	MD	0	0.42	0.05	0.42	0.05
				PM	Emissions	4.00	0.48	2.64	0.35
				PM ₁₀	Emissions	1.90	0.23	1.26	0.17
				PM ₂₅	Emissions	0.29	0.03	0.19	0.03

Notes:

Emission factor calculation and mean wind speed were taken from WVDEP General Permit G40-C Emissions Calculation Spreadsheet, May 6, 2011.

Control efficiencies taken from WVDEP General Permit G40-c, Instruction and Forms, May 6, 2011, except for crusting agents. The rate used in the emissions calculations is the design capacity. The actual process rate is closer to 100 tph, which is the value used to estimate hours of operation at this facility.

FRAP CRUSHING AND SCREENING

Emission Factors

	PM	PM10
Primary Crushing	0.002	0.001
Secondary & Tertiary Crushing	0.0054	0.002
Screening	0.025	0.009

Emission factors taken from 199.39

PM2.5 equal to PM/14:

Partlicle size multipliers (k) AP42 Section 13.2.4-4 (11/06):

	PM	PM10	PM2.5
	0.74	0.35	0.053
Co	nversion Factor	2.1	14

Crusher Emissions

Crusher Identification	Crusher Type	ID	Thro	ughput	Control	Control Efficiency	Pollutant	Uncon	trolled	Cont	rolled
			(ton/hr)	(tons/yr)	Туре	(%)		(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)
							PM	0.15	0.02	0.08	0.01
FRAP Crusher	HIS	F-CR1	75	18,750	PE	50	PM10	0.08	0.01	0.04	0.01
							PM2.5	0.02	0.01	0.01	0.01
							PM	0.00	0.00	0.00	0.00
N/A						0	PM10	0.00	0.00	0.00	0.00
							PM2.5	0.00	0.00	0.00	0.00

Screen Emissions

Crusher Identification	Crusher Type	ID	Thro	ughput	Control	Control Efficiency	Pollutant	Uncon	trolled	Cont	rolled
			(ton/hr)	(tons/yr)	Туре	(%)		(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)
							PM	5.00	0.63	1.00	0.13
FRAP Screen	Dual Deck HF	F-S1	200	50,000	FE	80	PM10	1.74	0.22	0.35	0.04
							PM2.5	0.36	0.05	0.07	0.01
							PM	0.00	0.000	0.00	0.00
N/A							PM10	0.00	0.000	0.00	0.00
							PM2.5	0.00	0.00	0.00	0.00

Totals for Crushing and Screening

Pollutant		trolled		trolled
	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)
PM	5.15	0.65	1.08	0.14
PM10	1.82	0.23	0.39	0.05
PM2.5	0.38	0.06	0.08	0.02

Checked By: PEW Date: January 10, 2018

COUNTER FLOW DRUM MIXER

iteria Pollutants	Production Rate:	300 200,000	tons/hr tons/year	Rounding to	2	
Emission	Emission Factor ¹	Uncontroll	ed Emissions ⁴	Control Efficiency	Control	lled Emissions
Туре	(lb/ton of HMA)	lb/hr	tons/yr	%	lb/hr	tons/yr
PM	0.0597	3,582.00	1,194.00	99.5	17.91	5.97
PM ₁₀	0.0137	823.86	274.62	99.5	4.12	1.37
PM _{2.5}	0.0033	197.01	65.67	99.5	0.99	0.33
VOC	0.032	9.60	3.20	0	9.60	3.20
SO ₂	0.058	17.40	5.80	0	17.40	5.80
NO _x	0.055	16.50	5.50	0	16.50	5.50
CO	0.13	39.00	13.00	0	39.00	13.00
HCl	0.00021	0.06	0.02	0	0.06	0.02

Calculate PM/PM10 Emission Factor - 40CFR60, Subpart I Allowable Limit.⁵

0.04	grains ²	Х	52,264	cf BH flow ³ X	60	minutes	Х
1	dscf		1	minute	1	hour	
1	lb	Х	1	hour	=	0.0597	lb
7000	grains		300	tons of HMA throu	ıghput	1	ton
PN	A10 is 2	23%	of PM	PM2.5 is	5.5%	of PM	

Hazardous Air Pollutants - Controlled and Uncontrolled Emissions will be the same.

Emission	Emission Factor ⁶	Emissions			
Туре	(lb/ton of HMA)	lb/hr	tons/yr		
Non-PAH HAPs					
Acetaldehyde	0.0013	0.39	0.13		
Benzene	0.00039	0.12	0.04		
Ethylbenzene	0.00024	0.07	0.02		
Formaldehyde	0.0031	0.93	0.31		
Toluene	0.0029	0.87	0.29		
Xylene	0.0002	0.06	0.02		
Non-PAH HAPs Total ⁷	0.0095	2.85	0.95		
PAH HAPs Total ⁷	0.00088	0.26	0.09		
	Total VOC HAPs	3.11	1.04		

COUNTER FLOW DRUM MIXER

Metals Emissions

Metals Emissions						
Emission	Emission Factor ⁸	Emis	sions		lb/hr	tons/yr
Туре	lb/ton HMA	lb/hr	tons/yr	VOC HAPs	3.11	1.04
Antimony	1.80E-07	0.0001	0.0001	Metal HAPs	0.0373	0.0126
Arsenic	5.60E-07	0.0002	0.0001	Total HAPs	3.15	1.05
Barium	5.80E-06	0.0017	0.0006			
Cadmium	4.10E-07	0.0001	0.0000			
Cobalt	2.60E-08	0.0001	0.0001			
Copper	3.10E-06	0.0009	0.0003			
Chromium	5.50E-06	0.0017	0.0006			
Hexavalent Chromium	4.50E-07	0.0002	0.0001			
Lead	1.50E-05	0.0045	0.0015			
Manganese	7.70E-06	0.0023	0.0008			
Mercury	2.60E-06	0.0008	0.0003			
Nickel	6.30E-05	0.0189	0.0063			
Phosphorus	2.80E-05	0.0084	0.0028			
Silver	4.80E-07	0.0001	0.0000			
Selenium	3.50E-07	0.0001	0.0000			
Thallium	4.10E-09	0.0001	0.0001			
Zinc	6.10E-05	0.0183	0.0061			
	HAP Metals	0.0373	0.0126			
	Total Metals	0.0585	0.0198			

Rounding to 4

Notes:

2. Emission limit from 40CFR60 Subpart I. The calculated EF falls within the range shown in AP42 Table 11.1-1P.

3. Manufacturers information.

- 4. Uncontrolled emissions for PM/PM10/PM2.5 are back calculated from the controlled emissions
- 5. Table EF for PM10 and PM2.5 are calculated based on Table 11.1-4 Particle Size Distribution.
- 6. Emission factors taken from AP-42 Table11.1-10. Highest value between natural gas, No.2 fuel, and waste oil fired dryers shown.

7. Includes HAPs not shown in the table. Highest value between natural gas, No.2 fuel, and waste oil fired dryers shown.

8. AP42 Table 11.1-12.

^{1.} AP42 Emission factors for CO, NOx, and SO2 Table 11.1-7; for VOC Table11.1-8 (maximum VOC emission factor used). Controlled emission factor for PM calculated above.

By: L	KB	
Date:	January 8, 2018	

SILO FILLING

Emission Factor (EF) Calculations for silo filling from AP42 Table 11.1-14 (March, 2004).

V = -0.5 asphalt volatility T = 325 degrees Fahrenheit HMA mix temperature

PM Emission Factor: $EF = 0.000332 + 0.00105 (-V) e^{((0.0251)(T+460)-20.43)}$

PM EF = 0.000586 lb/ton

PM₁₀ Emission Factor is 23% of PM Table 11.1-4 Particle Size Distribution

PM₁₀ **EF** = **0.000135** lb/ton

PM_{2.5} Emission Factor is 5.5% of PM Table 11.1-4 Particle Size Distribution

PM₁₀ EF = 0.000032 lb/ton

VOC Emission Factor: VOC EF = TOC EF = $0.0504 (-V) e^{((0.0251)(T+460)-20.43)}$ (VOC EF = TOC EF from AP42 Table 11.1-16, footnote a.) **VOC EF = 0.012187** lb/ton

CO Emission Factor: CO EF = 0.00488 (-V) $e^{((0.0251)(T+460)-20.43)}$

CO EF = 0.001180 lb/ton

AP42 Table 11.1-16 referenced for HAP emission factors and calculated according to footnote a.

								Rounding to	3	
					Number o	f transfers:	3	or	2	
Emission	ID	Transfer	Capacities	EF	Conti	rol		Emi	issions	
Туре					Devi	ce	Unco	ntrolled	Cont	rolled
		tons/hour	tons/year	lb/ton	Туре	Eff. (%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
PM	TP17-TP19	300	200,000	0.000586	PE	50	0.54	0.18	0.27	0.09
PM ₁₀	TP17-TP19	300	200,000	0.000135	PE	50	0.12	0.03	0.06	0.02
PM _{2.5}	TP17-TP19	300	200,000	0.000032	PE	50	0.03	0.01	0.02	0.01
VOC	TP17-TP19	300	200,000	0.012187	Ν	0	10.98	3.66	10.98	3.66
CO	TP17-TP19	300	200,000	0.001180	N	0	1.05	0.36	1.05	0.36
Hazardous Air Po	ollutants (HA	APs)								
Benzene	TP17-TP19	300	200,000	0.000004	N	0	0.004	0.001	0.004	0.001
Ethylbenzene	TP17-TP19	300	200,000	0.000005	N	0	0.004	0.001	0.004	0.001
Toluene	TP17-TP19	300	200,000	0.000008	N	0	0.007	0.002	0.007	0.002
Xylene	TP17-TP19	300	200,000	0.000031	N	0	0.028	0.009	0.028	0.009
Formaldehyde	TP17-TP19	300	200,000	0.000084	N	0	0.076	0.025	0.076	0.025
Total HAPs	TP17-TP19	300	200,000	0.000158	N	0	0.143	0.048	0.143	0.048

By: L	KB	
Date:	January 8, 2018	

SILO LOADOUT

Emission Factor (EF) Calculations for loadout from AP11.1-14 (March, 2004).				
V = -0.5 $T = 325$	asphalt volat degrees Fahr	ility enheit HMA mix temperature		
PM Emission Factor: $EF = 0.000$	0181 + 0.00141	$(-V) e^{((0.0251)(T+460)-20.43)}$		
PM EF =	= 0.000522	lb/ton		
PM ₁₀ Emission Factor is 23%	of PM	Table 11.1-4 Particle Size Distribution		
$PM_{10} EF =$	= 0.000120	lb/ton		
PM2.5 Emn Factor is 5.5%	of PM	Table 11.1-4 Particle Size Distribution		
PM _{2.5} EF =	= 0.000029	lb/ton		
VOC Emission Factor: VOC EF = $0.94 * \text{TOC EF} = 0.94 * (0.0172 (-V) e^{((0.0251)(T+460)-20.43)})$ TOC EF = 0.00416 lb/ton VOC EF = 0.00391 lb/ton				
CO Emission Factor: C0 $EF = 0.0$	$00558 (-V) e^{(0)}$	0251)(T+460)-20.43)		

CO EF = 0.00135 lb/ton

AP42 Table 11.1-16 referenced for HAP emission factors and calculated according to footnote a.

							•		Rounding to	3
						Number of	f	1	or	2
Emission	ID	Transfor	Capacities	EF	Cont	rol		Emi	issions	
Туре		Tansier	Capacities		Devi	ce	Unco	ntrolled	Cont	rolled
		tons/hour	tons/year	lb/T	Туре	Eff. (%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
PM	TP20	300	200,000	0.000522	PE	50	0.16	0.05	0.08	0.03
PM ₁₀	TP20	300	200,000	0.000120	PE	50	0.04	0.01	0.02	0.01
PM _{2.5}	TP20	300	200,000	0.000029	PE	50	0.01	0.01	0.01	0.01
VOC	TP20	300	200,000	0.003909	N	0	1.17	0.39	1.17	0.39
CO	TP20	300	200,000	0.001349	N	0	0.40	0.13	0.40	0.13
Hazardous Air Po	llutants (HA	APs)								
Benzene	TP20	300	200,000	0.000002	N	0	0.001	0.001	0.001	0.001
Ethylbenzene	TP20	300	200,000	0.000012	N	0	0.003	0.001	0.003	0.001
Toluene	TP20	300	200,000	0.000009	N	0	0.003	0.001	0.003	0.001
Xylene	TP20	300	200,000	0.000020	N	0	0.006	0.002	0.006	0.002
Formaldehyde	TP20	300	200,000	0.000004	N	0	0.001	0.000	0.001	0.000
Total HAPs	TP20	300	200,000	0.000062	N	0	0.019	0.006	0.019	0.006

Checked By: PEW Date: January 10, 2018

TOTALS FOR SILO FILLING AND LOADOUT

Emission					
Pollutant	Uncor	ntrolled	Controlled		
Pollutant	(lb/hr)	(tpy)	(lb/hr)	(tpy)	
PM	0.70	0.23	0.35	0.12	
PM ₁₀	0.16	0.04	0.08	0.03	
PM _{2.5}	0.04	0.02	0.03	0.02	
VOC	12.15	4.05	12.15	4.05	
CO	1.45	0.49	1.45	0.49	
Hazardous Air Pollut	ants (HAPs	s)			
Benzene	0.005	0.002	0.005	0.002	
Ethylbenzene	0.007	0.002	0.007	0.002	
Toluene	0.010	0.003	0.010	0.003	
Xylene	0.034	0.011	0.034	0.011	
Formaldehyde	0.077	0.025	0.077	0.025	
Total HAPs	0.162	0.054	0.162	0.054	

By: LKB	Checked By: PEW
Date: January 8, 2018	Date: January 10, 2018

ASPHALT HEATER AH1

		Natural Gas Use	
1,350	scf/hr ¹	$0.00135 10^6 \mathrm{scf}$	′hr
10,206,000	scf/yr	$10.206 \ 10^6 \ \text{scf}$	/yr
erating Hours =	7,560	hrs/yr ²	

Emission	EF ⁽³⁾	Emissions				
Туре	lb/10 ⁶ scf	lb/hr	tons/year			
СО	84	0.11	0.43			
NO _X	100	0.14	0.51			
PM _{2.5} ⁽⁴⁾	7.6	0.01	0.04			
PM ₁₀ ⁽⁴⁾	7.6	0.01	0.04			
PM	7.6	0.01	0.04			
SO ₂	0.6	0.001	0.003			
VOC	5.5	0.01	0.03			
Lead	0.0005	0.000001	0.000003			

Notes:

1. Information supplied by client.

Hours of operation for asphalt heater are higher than the hours of operation for the asphalt plant to allow asphaltic cement to stay warm during hours when the plant is not operational. Basis is 24 hours a day, 7 days a week for 45 weeks per year.
 Emission factors from AP-42, Tables 1.4-1 and 1.4-2, Natural Gas Combustion,

7/98.

4. PM10 and PM2.5 are assumed to be equal to PM.

Checked By: PEW Date: January 10, 2018

ASPHALT HEATER AH1

Natural Gas Use =	0.00135 10 ⁶ scf/hr
	$10.206 10^6 \text{scf/yr}$

Hazardous Air Pollutants (HAPS)

		EF ^(a)	Emissions		
CAS No.	Hazardous Air Pollutants	lb/10 ⁶ scf	lb/hr	tons/year	
91-57-6	2-Methylnaphthalene	2.40E-05	3.24E-08	1.22E-07	
56-49-5	3-Methylchloranthrene	1.80E-06	2.43E-09	9.19E-09	
57-97-6	7,12-Dimethylbenz(a)anthracene	1.60E-05	2.16E-08	8.16E-08	
83-32-9	Acenaphthene	1.80E-06	2.43E-09	9.19E-09	
203-96-8	Acenaphthylene	1.80E-06	2.43E-09	9.19E-09	
120-12-7	Anthracene	2.40E-06	3.24E-09	1.22E-08	
56-55-3	Benz(a)anthracene	1.80E-06	2.43E-09	9.19E-09	
71-43-2	Benzene	2.10E-03	2.84E-06	1.07E-05	
50-32-8	Benzo(a)pyrene	1.20E-06	1.62E-09	6.12E-09	
205-99-2	Benzo(b)fluoranthene	1.80E-06	2.43E-09	9.19E-09	
191-24-2	Benzo(g,h,i)perylene	1.20E-06	1.62E-09	6.12E-09	
205-82-3	Benzo(k)fluoranthene	1.80E-06	2.43E-09	9.19E-09	
218-01-9	Chrysene	1.80E-06	2.43E-09	9.19E-09	
53-70-3	Dibenzo(a,h)anthracene	1.20E-06	1.62E-09	6.12E-09	
25321-22-6	Dichlorobenzene	1.20E-03	1.62E-06	6.12E-06	
206-44-0	Fluoranthene	3.00E-06	4.05E-09	1.53E-08	
86-73-7	Fluorene	2.80E-06	3.78E-09	1.43E-08	
50-00-0	Formaldehyde	7.50E-02	1.01E-04	3.83E-04	
110-54-3	Hexane	1.80E+00	2.43E-03	9.19E-03	
193-39-5	Indeno(1,2,3-cd)pyrene	1.80E-06	2.43E-09	9.19E-09	
91-20-3	Naphthalene	6.10E-04	8.24E-07	3.11E-06	
85-01-8	Phenanthrene	1.70E-05	2.30E-08	8.68E-08	
129-00-0	Pyrene	5.00E-06	6.75E-09	2.55E-08	
108-88-3	Toluene	3.40E-03	4.59E-06	1.74E-05	
7440-38-2	Arsenic	2.00E-04	2.70E-07	1.02E-06	
7440-41-7	Beryllium	1.20E-05	1.62E-08	6.12E-08	
7440-43-9	Cadmium	1.10E-03	1.49E-06	5.61E-06	
7440-47-3	Chromium	1.40E-03	1.89E-06	7.14E-06	
7440-48-4	Cobalt	8.40E-05	1.13E-07	4.29E-07	
7439-96-5	Manganese	3.80E-04	5.13E-07	1.94E-06	
7439-97-6	Mercury	2.60E-04	3.51E-07	1.33E-06	
7440-02-0	Nickel	2.10E-03	2.84E-06	1.07E-05	
7782-49-2	Selenium	2.40E-05	3.24E-08	1.22E-07	
		VOC HAPs Subtotal	2.54E-03	9.61E-03	
		Metal HAPs Subtotal	7.51E-06	2.84E-05	
		Total HAPs	2.55E-03	9.63E-03	

References:

AP42 Table 1.4-3 and Table 1.4-4.

Checked By: PEW Date: January 10, 2018

ENGINE EMISSIONS

Portable Nonroad FRAP System Engine (F-ENG1)¹

Fuel Usage	9.28 gallons/hour	CARB Certificate
_	4,678 gallons/year	Calculated
Assumed Heating Value of Diesel Fuel:	138,000 Btu/gallon	HHV from 40 CFR 98, Table C-1
Maximum Horsepower:	173 hp	Manufacturer
Maximum Fuel Input:	1.28 MMBtu/hour	Calculated

		Но	ours Per Year ² =	504
Regulated Pollutant	Emission Factor (lb/MMBtu)	Emission Factor (g/kW-hr)	Hourly Emissions (lbs/hour)	Annual Emissions (tons/year)
NO _X	4.41		5.65	1.42
СО	0.95		1.22	0.31
SO _X	0.29		0.37	0.09
PM/PM ₁₀ /PM _{2.5}	0.31		0.40	0.10
TOC (VOC)	0.36		0.46	0.12

Hazardous Air Polluta	Hazardous Air Pollutants (HAPS)							
Benzene	9.33E-04	0.0012	0.0003					
Toluene	4.09E-04	0.0005	0.0001					
Xylenes	2.85E-04	0.0004	0.0001					
1,3-Butadiene	3.91E-05	0.0001	0.00003					
Formaldehyde	1.18E-03	0.0015	0.0004					
Acetaldehyde	7.67E-04	0.001	0.0003					
Acrolein	9.25E-05	0.0001	0.0001					
Naphthalene	8.48E-05	0.0001	0.0001					
Total HAPS		0.0049	0.001					

Notes:

Emission factors from AP-42 Table 3.3-1(Criteria Pollutants) Table 3.3-2 (HAPS) unless noted.

1. This engine is a nonroad engine (see Attachment D Regulatory Discussion) and is therefore not subject to 45CSR13. This information is being provided by request of DAQ.

2. Hours are based on an expected actual hourly throughput of 100 tph (as opposed to the design capacity of 200 tph), and an annual throughput of 50,000 tpy at this facility.

Checked By: PEW Date: January 10, 2018

VEHICLE ACTIVITY

Materials Transported and Estimated Vehicle Usages

	HMA Trucks	RAP Trucks	Asphaltic Cement Trucks*	Aggregate Trucks**	No. 2 Fuel Oil Trucks	Total/Mean Trucks	Endloaders
TPH	300	200	18	30	19	567	500
TPY	200,000	50,000	12,000	20,000	85	282,085	250,000
Load Weight (tons)	18	18	52	18	18.5	18.52	6
Vehicle Weight (tons)	20	20	12	20	12	N/A	31
Vehicles Per Hour	17	12	1	2	1	33	84
Vehicles Per Year	11,112	2,778	231	1,112	21	15,254	41,667
Mean Vehicle Weight (tons)	29	29	38	29	21.25	29.13	34
Unpaved round-trip (ft)	1,400	2,000	2,300	0	0	2,300	1,320
Paved round-trip (ft)	0	0	0	0	0	0	0
* Based on 6% of total producti	on.			Roundup to =	0	Assuming no	partial loads.

** Based on 6% of total production. ** Based on 10% of aggregates being transported by truck.

UNPAVED HAULROADS

Emission Factor Equation from AP-42 Section 13.2.2, Unpaved Roads (December 2003):
$e = k (s/12)^{a} (W/3)^{b} [(365-p)/365]$

	PM	PM10	PM2.5	
$\mathbf{k} =$	4.9	1.5	0.15	constant, AP-42 Table 13.2.2-2 (dimensionless)
s =	10	10	10	%, surface material silt content
$W_{truck} =$	29.13	29.13	29.13	tons, mean vehicle weight
$W_{endloader} =$	34	34	34	tons, mean vehicle weight
a =	0.7	0.9	0.9	constant, AP-42 Table 13.2.2-2 (dimensionless)
b =	0.45	0.45	0.45	constant, AP-42 Table 13.2.2-2 (dimensionless)
p =	157	157	157	no. days/year with at least 0.01in of rain
e _{truck} =	6.84	2.02	0.20	lb/VMT
$e_{endloader} =$	7.33	2.16	0.22	lb/VMT

Trucks

Trucks								Rounding to	2
Pollutant	No.		Miles	Control		Emissions			
	of Vehi	cles	Per Trip	Device		Uncontrolled Controlle		rolled	
	Per Hour	Per Year	(mi)	Туре	Eff. (%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
PM	33	15,254	0.44	WT	75	98.33	22.72	24.58	5.68
PM ₁₀	33	15,254	0.44	WT	75	29.04	6.71	7.26	1.68
PM _{2.5}	33	15,254	0.44	WT	75	2.88	0.66	0.72	0.17

Endloaders

Pollutant	No.		Miles	Control			Emissi	ons	
	of Vehicles		Per Trip	Device		Uncontrolled		Controlled	
	Per Hour	Per Year	(mi)	Туре	Eff. (%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
PM	84	41,667	0.25	WT	75	153.93	38.18	38.48	9.55
PM ₁₀	84	41,667	0.25	WT	75	45.36	11.25	11.34	2.81
PM2.5	84	41,667	0.25	WT	75	4.62	1.15	1.16	0.29

Summary of Unpaved Haulroad Emissions

Pollutant	Uncontrolled	Emissions	Controlled Emissions		
	(lb/hr)	(TPY)	(lb/hr)	(TPY)	
PM	252.26	60.90	63.06	15.23	
PM ₁₀	74.40	17.96	18.60	4.49	
PM _{2.5}	7.50	1.81	1.88	0.46	

By: L	KB	
Date:	January 8, 2018	

PAVED HAULROADS

Not Applicable (Not Applicable or Applicable)

NA

33

41,667

0.25

Reference: AP-42 Section 13.2.1.

Load Weight (tons) =

Miles Per Round-Trip

Vehicles Per Hour:

Vehicles Per Year

 $E = [k * (sL)^{0.91} * (W)^{1.02}] * (1 - (P/4*N) = lb / Vehicle Mile Traveled (VMT)$

k =	PM 0.011	PM10 0.0022	PM2.5 0.00054	dimensionless, particle size multiplier
s =	8	8	8	surface material silt content (g/m^2)
W =	29.13	29.13	29.13	tons, mean vehicle weight
p =	157	157	157	no. days/year with 0.01 in of rain
N =	365	365	365	days/year
E =	NA	NA	NA	lb/VMT
Total Hauled (tpy) = Load Weight (tons) =	NA NA			
Trucks Per Year =	NA			
Total Hauled (tph) =	NA			

	Emission	Control	Control	Uncontrolled	Uncontrolled	Controlled	Controlled
Pollutant	Factor ⁽¹⁾	Device	Efficiency	PM	PM	PM	PM
	(lb/VMT)		(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
PM	NA	WS	75	0	0	0	0
PM10	NA	WS	75	0	0	0	0
PM2.5	NA	WS	75	0	0	0	0

By: L	KB	
Date:	January	8,2018

3

STOCKPILES

Reference: AP-42 Section 11.2.3, Fugitive Emissions (May, 1983), Equation #2

E = 1.7 (s/1.5) ((365-p)/235) (f/15)

$E = s_{aggregates/RAP} =$? 1	Emissions factor, pound per day per acre, (lb/day/acre) Silt content of material (%)	
$s_{sand} = p = f =$	6 157 15	Silt content of material (%) number of days with at least 0.254 mm (0.01 in.) of precipitation per year Time wind speed exceeds 12 mph (%)	
$e_{aggregates/RAP} = e_{sand} =$	1.003 6.019	lb/day/acre for aggregates and RAP lb/day/acre for sand	Rounding to

Stockpile	Stockpile	Base Area	Control	Control Eff.	Uncontroll	ed Emissions	Controlled	l Emissions
ID	Material	(acres)	Device	(%)	lb/hr	tpy	lb/hr	tpy
OS1 and OS2	Sand	0.022	Ν	0	0.006	0.024	0.006	0.024
OS3-OS6	Aggregates	0.088	Ν	0	0.004	0.016	0.004	0.016
OS7-OS9	RAP	0.330	Ν	0	0.014	0.060	0.014	0.060
				Total PM:	0.024	0.100	0.024	0.100
				Total PM ₁₀ *:	0.011	0.048	0.011	0.048
				Total PM _{2.5} *:	0.010	0.010	0.010	0.010
				* DM10 DM/2		3 1/1 1		

* PM10 = PM/2.1; PM2.5 = PM/14.

TANKS

ID	Matarial Stared	Capacity	Throughput	VOC Er	nissions
ID	Material Stored	gallons	gallons	lb/hr	ton/yr
T1	Asphaltic Cement	35,000	2,800,000	Negligible	Negligible
T2	#2 FO/Diesel	1,000	20,400	Negligible	Negligible
			Total VOC:	Negligible	Negligible

The emissions from the tanks are negligible due to the low volatilization of liquid.

By: L	KB
Date:	January 8, 2018

SUMMARY OF CO2e EMISSIONS

The facility has three (3) combustion sources: Counter Flow Drum Mixer (CFDM1), Asphalt Heater (AH1), and Portable FRAP System Engine (F-ENG1)*. CDFM1 and AH1 burn natural gas. F-ENG1 burns No. 2 fuel. The calculations for the emissions summarized below are shown on worksheets that follow.

Facility Emissions

Emission Unit	CO2e (metric tons)	CO2 (short tons)	Exceed 25,000 metric tons CO2e?	Short tons/metric ton
CFDM1 (NG)	6,374	7,025.81		1.1023
AH1 (NG)	556	613.08		
CFDM1 (2FO)	0	0		
ENG1 (2FO)	48	52.81		
CFDM1 (UO)	0	0		
Worst Case	604	666	NO	

NG = natural gas

2FO = No. 2 fuel oil

UO = Used oil

* This engine is a nonroad engine (see Attachment D Regulatory Discussion) and is therefore not subject to 45CSR13. This information is being provided by request of DAQ.

Checked By: PEW Date: January 10, 2018

CO2e Emissions from Natural Gas - CFDM1 Burner

Potential Emissions (Metric Tons)					CFDM1 Burner
					600,000 btu/ton of asphalt
Fuel Type	CO2	CH4	N2O		200,000 tons /year asphalt
Natural Gas	6,367.20	0.12	0.01		120,000,000,000 btu/year
100 yr GWP*	1	25	298	Total CO2e	1,026 btu/scf
CO2e	6,367.20	3.00	3.58	6,374	116,959,064 scf of natural gas burned per year

*Global Warming Potentials (GWP) Referenced from 40CFR§98 Subpart A Table A-1

CO2 = 1 x10-3*mass of fuel*HHV*EF (Eq. C-2a) CH4 or N2O = 1 x10-3*mass of fuel*HHV*EF (Eq. C-9a)

Natural Gas Combustion

1.00E-03	conversion factor from kilograms to metric tons			
116,959,064	cubic feet of natural gas burned annually			
1.026E-03	HHV MMBtu/scf	natural gas high heating value (HHV) from Table C-1		
53.06	kg CO2/MMBtu	natural gas emission factor from Table C-1		
1.00E-03	kg CH4/MMBtu	natural gas emission factor from Table C-2		
1.00E-04	kg N2O/MMBtu	natural gas emission factor from Table C-2		

CO2e Emissions from Natural Gas - AH1

Poter] [
Fuel Type	CO2	CH4	N2O	
Natural Gas	555.61	0.01	0.001	
100 yr GWP*	1	25	298	Total CO2e
CO2e	555.61	0.26	0.31	556

AH1 10,206,000 scf of natural gas burned per year

*Global Warming Potentials (GWP) Referenced from 40CFR§98 Subpart A Table A-1

CO2 = 1 x10-3*mass of fuel*HHV*EF (Eq. C-2a)CH4 or N2O = 1 x10-3*mass of fuel*HHV*EF (Eq. C-9a)

Natural Gas Combustion

1.00E-03 conversion factor from kilograms to metric tons	conversion factor from kilograms to metric tons			
10,206,000 cubic feet of natural gas burned annually	cubic feet of natural gas burned annually			
1.026E-03 HHV MMBtu/scf natural gas high heating value (HHV) from Table 0	C-1			
53.06 kg CO2/MMBtu natural gas emission factor from Table C-1				
1.00E-03 kg CH4/MMBtu natural gas emission factor from Table C-2				
1.00E-04 kg N2O/MMBtu natural gas emission factor from Table C-2				

Checked By: PEW Date: January 10, 2018

CO2e Emissions from No. 2 Fuel Oil Combustion - CDFM1 Burner

Potenti				
Fuel Type	CO2	CH4	N2O	_
No. 2 Fuel	0.00	0.00	0.00	
100 yr GWP*	1	25	298	Total CO2e
CO2e	0.00	0.00	0.00	0

CDFM1 - Burner 0 gallons No. 2 fuel oil burned per year

*Global Warming Potentials (GWP) Referenced from 40CFR§98 Subpart A Table A-1

 $CO2 = 1 \times 10-3$ *mass of fuel*HHV*EF (Eq. C-2a) CH4 or N2O = 1 x10-3*mass of fuel*HHV*EF (Eq. C-9a)

No. 2 Fuel Oil Combustion

1.00E-03	conversion factor from k	conversion factor from kilograms to metric tons				
0	gallons of No. 2 fuel oil l	gallons of No. 2 fuel oil burned				
0.138	HHV MMBtu/gal	No. 2 fuel oil high heating value (HHV) from Table C-1				
73.96	kg CO2/MMBtu	No. 2 fuel oil emission factor from Table C-1				
3.00E-03	kg CH4/MMBtu	No. 2 fuel oil emission factor from Table C-2				
6.00E-04	kg N2O/MMBtu	No. 2 fuel oil emission factor from Table C-2				

CO2e Emissions from Diesel Fuel Combustion - F-ENG1*

Potenti				
	_	_	_	
Fuel Type	CO2	CH4	N2O	
No. 2 Fuel	47.75	0.002	0.0004	
100 yr GWP*	1	25	298	Total CO2e
CO2e	47.75	0.05	0.12	48

Engine		
4,678	gallons No. 2 fuel oil	
4,078	burned per year	
	· · ·	

*Global Warming Potentials (GWP) Referenced from 40CFR§98 Subpart A Table A-1

CO2 = 1 x10-3*mass of fuel*HHV*EF (Eq. C-2a)CH4 or N2O = 1 x10-3*mass of fuel*HHV*EF (Eq. C-9a)

No. 2 Fuel Oil Combustion

1.00E-03	conversion factor from k	conversion factor from kilograms to metric tons		
4,678	gallons of No. 2 fuel oil	gallons of No. 2 fuel oil burned		
0.138	HHV MMBtu/gal	No. 2 fuel oil high heating value (HHV) from Table C-1		
73.96	kg CO2/MMBtu	No. 2 fuel oil emission factor from Table C-1		
3.00E-03	kg CH4/MMBtu	No. 2 fuel oil emission factor from Table C-2		
6.00E-04	kg N2O/MMBtu	No. 2 fuel oil emission factor from Table C-2		

Equations, HHV, and emission factors from 40CFR§98 Subpart C unless otherwise noted.

* This engine is a nonroad engine (see Attachment D Regulatory Discussion) and is therefore not subject to 45CSR 13. This information is being provided by request of DAQ.

Checked By: PEW Date: January 10, 2018

CO2e Emissions from Used Oil Combustion - CFDM1 Burner

Potential Emissions (Metric Tons)			_		CDFM1 Burner 0 gallons of used oil burned per year
Fuel Type	CO2	CH4	N2O		
Used Oil	0.00	0.00	0.00		
100 yr GWP*	1	25	298	Total CO2e	
CO2e	0.00	0.00	0.00	0]

*Global Warming Potentials (GWP) Referenced from 40CFR§98 Subpart A Table A-1

 $CO2 = 1 \times 10-3$ *mass of fuel*HHV*EF (Eq. C-2a) CH4 or N2O = 1 x10-3*mass of fuel*HHV*EF (Eq. C-9a)

Used Oil Combustion

1.00E-03	conversion factor from kilograms to metric tons		
0	gallons of used oil burned annually		
0.138	HHV MMBtu/gal	used oil high heating value (HHV) from Table C-1	
74.00	kg CO2/MMBtu	used oil emission factor from Table C-1	
3.00E-03	kg CH4/MMBtu	used oil emission factor from Table C-2	
6.00E-04	kg N2O/MMBtu	used oil emission factor from Table C-2	

ATTACHMENT O

MONITORING, RECORDKEEPING, REPORTING, TESTING PLANS

ATTACHMENT O

MONITORING/RECORDKEEPING/ REPORTING/TESTING PLANS

Southern West Virginia Asphalt, Inc. plans to follow the monitoring, recordkeeping, reporting, and testing required by the issued permit.

ATTACHMENT P

PUBLIC NOTICE

ATTACHMENT P CLASS I LEGAL ADVERTISEMENT

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Southern West Virginia Asphalt, Inc. has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a Regulation 13 Permit Application for a Hot Mix Asphalt plant located on Sycamore Street in Ravenswood, Jackson County, West Virginia. The latitude and longitude coordinates are: 38.949848 N and -81.7660385 E.

The applicant estimates the potential to discharge the following Regulated Air Pollutants will be: PM of 25.74 tons per year (tpy) including fugitive emissions of 15.33 tpy, PM10 of 9.27 tpy including fugitive emissions of 4.54 tpy, PM2.5 of 1.26 tpy including fugitive emissions of 0.47 tpy, VOC of 7.28 tons, SO₂ of 5.89 tpy, NO_x of 7.43 tpy, CO of 14.23 tpy, and Total HAPs of 1.12 tpy.

The facility will begin operation on or about May 1, 2018. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, Charleston, WV 25304, for 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, Extension 1250, during normal business hours.

Dated this the (PLEASE INSERT DATE) day of January 2018.

By: Southern West Virginia Asphalt, Inc. Bob Brookover Vice President 2950 Charles Avenue Dunbar, West Virginia 25064