January 12, 2018

Director WVDEP – Division of Air Quality 601 57th Street SE Charleston, WV 25304

UPS Tracking No. 1Z 865 F5F 01 9421 7413

RE: DTE Appalachia Gathering, LLC Carrico Compressor Station G35-D Construction Application

To Whom It May Concern:

On behalf of DTE Appalachia Gathering, LLC (DTE), we are submitting this G35-D Construction Application to construct and operate a new natural gas compressor station (Carrico Compressor Station).

Enclosed are one (1) original hard copy and two (2) CDs with PDFs of the application, along with a check for the application fee in the amount of \$1,500. The affidavit of publication for the Class I Legal Advertisement will be forwarded upon receipt.

DTE appreciates your review of this submittal. If you have any questions or comments about the attached information, please contact me at (724) 935-2611 x104.

Respectfully,

Jomenic a. L'édesco

Domenic Tedesco Senior Consultant Trinity Consultants

Attachments

PROJECT REPORT DTE Appalachia Gathering, LLC Carrico Compressor Station

G35-D Permit Application

TRINITY CONSULTANTS 4500 Brooktree Drive Suite 103 Wexford, PA 15090 (724) 935-2611

January 2018

TABLE OF CONTENTS

1. INTRODUCTION		4	
1.1. Facility and Projec	t Description	4	
1.2. Source Status		4	
1.3. G35-D Application	Organization	5	
2. SAMPLE EMISSION SC	DURCE CALCULATIONS	6	
3. REGULATORY DISCU	SSION	7	
3.1. PSD and NNSR Sou	rce Classification	7	
3.2. Title V Operating F	Permit Program	7	
3 3 New Source Perfor	mance Standards	8	
2.2.1 NCDC Color ante		0	
3.3.1. NSPS Subparts	D, Da, Db, and Dc – Steam Generating Units	8	
3.3.2. NSPS Subparts	K, Ka, and Kb – Storage vessels for Petroleum Liquids/volatile Organic Liquids	8	
3.3.3. NSPS Subpart J	JJJ – Stationary Spark Ignition Internal Combustion Engines	8	
3.3.4. NSPS Subpart (DOOD — Crude Oil and Natural Gas Production, Transmission, and Distribution	8	
3.3.5. NSPS Subpart (JOOOa — Crude Oil and Natural Gas Facilities	9	
3.3.6. Non-Applicabil	ity of All Other NSPS	9	
3.4. National Emission	Standards for Hazardous Air Pollutants	9	
3.4.1. NESHAP Subpa	rt HH – Oil and Natural Gas Production Facilities	10	
3.4.2. NESHAP Subpa	rt ZZZZ – Stationary Reciprocating Internal Combustion Engines	10	
3.4.3. NESHAP JJJJJJ -	Industrial, Commercial, and Institutional Boilers	10	
3.5. West Virginia SIP I	Regulations	10	
3.5.1. 45 CSR 2: To P	revent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat		
Exchangers		10	
3.5.2. 45 CSR 4: To P	revent and Control the Discharge of Air Pollutants into the Air Which Causes or Contril	outes	
to an Objectionable (Odor	10	
3.5.3. 45 CSR 6: To P	revent and Control the Air Pollution from the Combustion of Refuse	11	
3.5.4. 45 CSR 10: To	Prevent and Control Air Pollution from the Emission of Sulfur Oxides	11	
3.5.5. 45 CSR 16: Sta	3.5.5. 45 CSR 16: Standards of Performance for New Stationary Sources		
3.5.6. 45 CSR 17: To	Prevent and Control Particulate Matter Air Pollution from Materials Handling, Prepara	tion,	
Storage and Other Sc	burces of Fugitive Particulate Matter	11	
3.5.7. 45 CSR 21-28:	Petroleum Liquid Storage in Fixed Roof Tanks	11	
3.5.8. 45 CSR 34: Emissions Standards for Hazardous Air Pollutants			
3.5.9. Non-Applicability of Other SIP Rules			
4. G35-D APPLICATION	FORMS	13	
ATTACHMENT A	SINGLE SOURCE DETERMINATION FORM		
ATTACHMENT B	SITING CRITERIA WAIVER (NOT APPLICABLE)		
ATTACHMENT C	CURRENT BUSINESS CERTIFICATE		

ATTACHMENT D PROCESS FLOW DIAGRAM

ATTACHMENT E	PROCESS DESCRIPTION
ATTACHMENT F	PLOT PLAN
ATTACHMENT G	AREA MAP
ATTACHMENT H	G35-D SECTION APPLICABILITY FORM
ATTACHMENT I	EMISSION UNITS/ERD TABLE
ATTACHMENT J	FUGITIVE EMISSIONS SUMMARY
ATTACHMENT K	STORAGE VESSEL(S) DATA SHEET
ATTACHMENT L	NATURAL GAS FIRED FUEL BURNING UNIT(S) DATA SHEET
ATTACHMENT M	INTERNAL COMBUSTION ENGINE DATA SHEET(S)
ATTACHMENT N	TANKER TRUCK LOADING DATA SHEET
ATTACHMENT O	GLYCOL DEHYDRATION UNIT DATA SHEET(S)
ATTACHMENT P	PNEUMATIC CONTROLLERS DATA SHEET(S)
ATTACHMENT Q	CENTRIFUGAL COMPRESSOR DATA SHEET(S)
ATTACHMENT R	RECIPROCATING COMPRESSOR DATA SHEET(S)
ATTACHMENT S	BLOWDOWN AND PIGGING OPERATIONS DATA SHEET(S)
ATTACHMENT T	AIR POLLUTION CONTROL DEVICE
ATTACHMENT U	EMISSION CALCULATIONS
ATTACHMENT V	FACILITY-WIDE EMISSION SUMMARY SHEET(S)
ATTACHMENT W	CLASS I LEGAL ADVERTISEMENT

DTE Appalachia Gathering, LLC (DTE), which is owned by DTE Energy Company, is submitting this G35-D Permit application to the West Virginia Department of Environmental Protection (WVDEP) for a new natural gas compressor station located in Monongalia County, West Virginia (Carrico Compressor Station or 'Carrico Station').

1.1. FACILITY AND PROJECT DESCRIPTION

The Carrico Station is a new natural gas compressor station covered under standard industrial code (SIC) 1311. The station compresses natural gas for transportation across the pipeline.

DTE is proposing to install the following equipment at the station:

- > Two (2) Caterpillar G3606 compressor engines (CE-1 to CE-2), each rated at 1,875 bhp and controlled by oxidation catalysts;
- > One (1) PSI Heavy Duty 11.1LTCAC prime power generator (GE-1) rated at 272 bhp;
- > One (1) 16,800 gallon produced fluids tank; and
- > Seven (7) miscellaneous tanks.

A process flow diagram is included as Attachment D.

1.2. SOURCE STATUS

WVDEP must make stationary source determinations on a case-by-case basis using the guidance under the Clean Air Act (CAA) and EPA's and WVDEP's implementing regulations. The definition of stationary source in 40 CFR 51.166(b) includes the following:

"(6) Building, structure, facility, or installation means all of the pollutant emitting activities which belong to the same industrial grouping, are located on or more contiguous or adjacent properties, and are under control of the same person (or persons under common control)."

Other additional pollutant emitting facilities should be aggregated with the Carrico Station for air permitting purposes if, and only if, all three elements of the "stationary source" definition above are fulfilled.

There are no pollutant emitting activities that belong to DTE or any related legal entity within a quarter-mile radius of the facility. As such, the Carrico Station should be considered a separate stationary source for the purposes of this permitting action.

1.3. G35-D APPLICATION ORGANIZATION

This West Virginia G35-D permit application is organized as follows:

- > Section 2: Sample Emission Source Calculations;
- > Section 3: Regulatory Discussion;
- Section 4: G35-D Application Form;
- > Attachment A: Single Source Determination Form
- > Attachment B: Siting Criteria Waiver (not applicable)
- > Attachment C: Current Business Certificate
- > Attachment D: Process Flow Diagram
- > Attachment E: Process Description
- > Attachment F: Plot Plan
- > Attachment G: Area Map
- > Attachment H: G35-D Section Applicability Form
- > Attachment I: Emission Units/ERD Table
- > Attachment J: Fugitive Emission Summary Sheet(s)
- > Attachment K: Storage Vessels Data Sheet(s)
- > Attachment L: Natural Gas Fired Fuel Burning Unit Data Sheet(s)
- > Attachment M: Internal Combustion Engine Data Sheet(s)
- > Attachment N: Tanker Truck Loading Data Sheet
- > Attachment O: Glycol Dehydration Unit Data Sheet(s)
- > Attachment P: Pneumatic Controller Data Sheet(s)
- > Attachment Q: Centrifugal Compressor Data Sheet(s)
- > Attachment R: Reciprocating Compressor Data Sheet(s)
- > Attachment S: Blowdown and Pigging Operation Data Sheet(s)
- > Attachment T: Air Pollution Control Device Data Sheet(s)
- > Attachment U: Emission Calculations
- > Attachment V: Facility-wide Emission Summary Sheet(s)
- > Attachment W: Class I Legal Advertisement

The characteristics of air emissions from the facility, along with the methodology for calculating emissions, are briefly described in this section of the application. Detailed emission calculations are presented in Attachment U of this application.

Emissions at this facility will result from combustion of natural gas (in the engines,), operation of the storage tanks, as well as piping blowdowns and fugitive emissions from components leaks and the facility roadway. The methods by which emissions from each of these source types is calculated are summarized below.

- Compressor Engines: Potential emissions of nitrogen oxides (NO_x), CO, VOC, formaldehyde are calculated using factors provided by the engine and catalyst manufacturer. Potential emissions of sulfur dioxide (SO₂), particulate matter (PM/PM₁₀/PM_{2.5}), and all other hazardous air pollutants (HAPs) are calculated using U.S. EPA's AP-42 factors for four-stroke lean-burn engines.
- Generator Engine: Potential emissions of nitrogen oxides (NO_x), CO and VOC are calculated using factors provided in the EPA Certificate of Conformity. Potential emissions of sulfur dioxide (SO₂), particulate matter (PM/PM₁₀/PM_{2.5}), and all other hazardous air pollutants (HAPs) are calculated using U.S. EPA's AP-42 factors for four-stroke rich-burn engines.
- Storage Tanks and Liquid Loading: Working, breathing and flashing emissions of VOC and HAPs from the waste fluid tank are calculated using E&P TANK v2.0 software. Working and breathing emissions from all other tanks, along with the waste fluid loading emissions, were calculated using EPA Tanks 4.0.9d and AP-42 methodology.
- Fugitive Emissions: Emissions from fugitive equipment leaks are calculated using published EPA emission factors and 40 CFR Part 98, Subpart W emission factors. Emissions from blowdown events are calculated using engineering estimates of the amount of gas vented. Site specific gas analyses were used to speciate VOC, HAP, and GHG emissions.
- > Haul Roads: Fugitive dust emitted from facility roadways has been estimated using projected vehicle miles traveled along with U.S. EPA's AP-42 factors for unpaved haul roads.¹

Potential emissions of greenhouse gas pollutants (GHGs) are calculated using manufacturer's data as available (CO₂ and CH₄ in this case) and U.S. EPA's emission factors from 40 CFR Part 98, Subpart C for all others.

¹ U.S. EPA, AP 42, Fifth Edition, Volume I, Section 13.2.2, Unpaved Roads, November 2006.

This section documents the applicability determinations made for Federal and State air quality regulations. In this section, applicability or non-applicability of the following regulatory programs is addressed:

- > Prevention of Significant Deterioration (PSD) permitting;
- > Non-attainment New Source Review (NNSR) permitting;
- > Title V of the 1990 Clean Air Act Amendments;
- > New Source Performance Standards (NSPS);
- > National Emission Standards for Hazardous Air Pollutants (NESHAP); and
- > West Virginia State Implementation Plan (SIP) regulations.

This review is presented to supplement and/or add clarification to the information provided in the WVDEP G35-D operating permit application forms.

In addition to providing a summary of applicable requirements, this section of the application also provides nonapplicability determinations for certain regulations, allowing the WVDEP to confirm that identified regulations are not applicable to the facility. Note that explanations of non-applicability are limited to those regulations for which there may be some question of applicability specific to the operations at the station. Regulations that are categorically nonapplicable are not discussed (e.g., NSPS Subpart J, Standards of Performance for Petroleum Refineries).

3.1. PSD AND NNSR SOURCE CLASSIFICATION

Federal construction permitting programs regulate new and modified sources of attainment pollutants under Prevention of Significant Deterioration and new and modified sources of non-attainment pollutants under Non-Attainment New Source Review. PSD regulations apply when a new source is constructed in which emissions exceed major source thresholds, an existing minor source undergoes a modification in which emission increases exceed PSD major source thresholds, or an existing major source undergoes a modification in which emission increases exceed PSD significant emission rates. The facility will be a minor source with respect to the NSR program since potential emissions are below all the PSD thresholds. As such, PSD permitting is not triggered by this construction activity. NNSR regulations only apply in areas designated as non-attainment. The facility is located in Monongalia County, which is designated as attainment/unclassifiable for all criteria pollutants.² Therefore, NNSR regulations do not apply to the facility.

3.2. TITLE V OPERATING PERMIT PROGRAM

Title 40 of the Code of Federal Regulations Part 70 (40 CFR 70) establishes the federal Title V operating permit program. West Virginia has incorporated the provisions of this federal program in its Title V operating permit program in West Virginia Code of State Regulations (CSR) 45-30. The major source thresholds with respect to the West Virginia Title V operating permit program regulations are 10 tons per year (tpy) of a single HAP, 25 tpy of any combination of HAP, and 100 tpy of all other regulated pollutants. The potential emissions of all regulated pollutants are below the corresponding threshold(s) at this facility. Therefore, the facility is not a major source for Title V purposes.

² U.S. EPA Green Book, <u>http://www.epa.gov/airquality/greenbook/anayo_wv.html</u>, as of February 13, 2017.

3.3. NEW SOURCE PERFORMANCE STANDARDS

New Source Performance Standards, located in 40 CFR 60, require new, modified, or reconstructed sources to control emissions to the level achievable by the best demonstrated technology as specified in the applicable provisions. Moreover, any source subject to an NSPS is also subject to the general provisions of NSPS Subpart A, except where expressly noted. The following is a summary of applicability and non-applicability determinations for NSPS regulations of relevance to the facility. Besides 40 CFR 60 Subpart A (NSPS Subpart A), which is similar to 40 CFR 63 Subpart A (NESHAP Subpart A), the following NSPS could potentially apply to the facility:

- > 40 CFR Part 60 Subparts D, Da, Db, and Dc Steam Generating Units
- > 40 CFR Part 60 Subparts K, Ka, and Kb Storage Vessels for Petroleum Liquids/Volatile Organic Liquids
- > 40 CFR Part 60 Subpart JJJJ Stationary Spark Ignition Internal Combustion Engines
- > 40 CFR Part 60 Subpart 0000 Crude Oil and Natural Gas Production, Transmission, and Distribution
- > 40 CFR Part 60 Subpart 0000a Crude Oil and Natural Gas Facilities

3.3.1. NSPS Subparts D, Da, Db, and Dc - Steam Generating Units

These subparts apply to steam generating units of various sizes, all greater than 10 MMBtu/hr. The proposed facility does not include any steam generating units with a heat input greater than 10 MMBtu/hr, therefore the requirements of these subparts do not apply.

3.3.2. NSPS Subparts K, Ka, and Kb - Storage Vessels for Petroleum Liquids/Volatile Organic Liquids

These subparts apply to storage tanks of certain sizes constructed, reconstructed, or modified during various time periods. Subpart K applies to storage tanks constructed, reconstructed, or modified prior to 1978, and Subpart Ka applies to those constructed, reconstructed, or modified prior to 1984. Both Subparts K and Ka apply to storage tanks with a capacity greater than 40,000 gallons. Subpart Kb applies to volatile organic liquid (VOL) storage tanks constructed, reconstructed, or modified after July 23, 1984 with a capacity equal to or greater than 75 m³ (~19,813 gallons). All of the tanks at the facility have a capacity of 19,813 gallons or less. As such, Subparts K, Ka, and Kb do not apply to the storage tanks at the facility.

3.3.3. NSPS Subpart JJJJ - Stationary Spark Ignition Internal Combustion Engines

Subpart JJJJ, Standards of Performance for Stationary Spark Ignition Internal Combustion Engines, applies to manufacturers, owners and operators of stationary spark ignition (SI) engines. The requirements for SI engines with a maximum power rating greater than or equal to 500 hp (except lean burn engines 500 hp \leq hp < 1,350) apply to owner/operators of such engines ordered on or after July 1, 2007. The proposed compressor engines will be a 4-stroke, lean burn spark ignition RICE rated at 1,875 hp (CE-1 and CE-2). As such, the engines will be subject to the emissions standards per Table 1 to NSPS Subpart JJJJJ (for non-emergency use engines), as well as performance testing every 8,760 hours of operation or three (3) years, and associated notification and reporting requirements.

The generator engine (GE-1) is also subject to Subpart JJJJ. However, as this unit is an EPA Certified Unit (see attached Certificate of Conformity), the applicant is not required to conduct performance testing. Instead, it is required to operate and maintain the certified stationary SI internal combustion engine and control device according to the manufacturer's emission-related written instructions.

3.3.4. NSPS Subpart OOOO – Crude Oil and Natural Gas Production, Transmission, and Distribution

Subpart 0000 – *Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution,* applies to affected facilities that commenced construction, reconstruction, or modification after August 23, 2011 and

before September 18, 2015. The facility sources will not fall into this date range. Therefore, the facility has no applicable requirements under this regulation.

3.3.5. NSPS Subpart OOOOa - Crude Oil and Natural Gas Facilities

Subpart OOOOa, Standards of Standards of Performance for Crude Oil and Natural Gas Facilities, will apply to affected facilities that commenced construction, reconstruction, or modification after September 18, 2015. The regulation was published final in the Federal Register on June 3, 2016. The rule includes provisions for the following facilities:

- > Hydraulically fractured wells;
- Centrifugal compressors located between the wellhead and the point of custody transfer to the natural gas distribution segment;
- Reciprocating compressors located between the wellhead and the point of custody transfer to the natural gas distribution segment;
- Continuous bleed natural gas-driven pneumatic controllers with a bleed rate of > 6 scfh located in the production, gathering, processing, or transmission and storage segments (excluding natural gas processing plants);
- > Continuous bleed natural gas-driven pneumatic controllers located at natural gas processing plants;
- > Pneumatic pumps located in the production, gathering, processing, or transmission and storage segments;
- > Storage vessels located in the production, gathering, processing, or transmission and storage segments;
- > The collection of fugitive emissions components at a well site;
- > The collection of fugitive emissions components at a compressor station; and
- > Sweetening units located onshore that process natural gas produced from either onshore or offshore wells.

The reciprocating compressors will be required to change rod packing every 26,000 hours of operation or every 36 months, or collect the methane and VOC emissions using a rod packing collection system which operates under negative pressure. The compressors will also be subject to the recordkeeping and annual reporting requirements of the rule.

The produced fluids storage tank will be a 'storage vessel' as defined by the regulation, however, potential emissions of VOC will be less than six tons per year. Therefore, it will not be a storage vessel affected facility under the rule.

DTE will be required to monitor all fugitive emission components (ex. connectors, flanges, etc.) with an optical gas imaging (OGI) device, and repair all sources of fugitive emissions in accordance with the rule. DTE must also develop a monitoring plan, conduct surveys on a quarterly basis, and will be subject to the applicable recordkeeping and reporting requirements of the rule.

All pneumatic controllers proposed to be located at the facility are intermittent or low-bleed. Therefore, they will not be subject to any pneumatic controller requirements under Subpart 0000a. As currently proposed, there are no other affected source categories under the rule that will apply to the proposed equipment.

3.3.6. Non-Applicability of All Other NSPS

NSPS are developed for particular industrial source categories. Other than NSPS developed for natural gas processing plants (Subparts 0000 and 0000a) and associated equipment (Subpart K-Kb), the applicability of a particular NSPS to the facility can be readily ascertained based on the industrial source category covered. All other NSPS are categorically not applicable to the proposed facility.

3.4. NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS

Part 63 NESHAP allowable emission limits are established on the basis of a maximum achievable control technology (MACT) determination for a particular major source. A HAP major source is defined as having potential emissions in excess of 25 tpy for total HAP and/or potential emissions in excess of 10 tpy for any individual HAP. The facility is an

area (minor) source of HAP since its potential emissions of HAP are less than the 10/25 major source thresholds. Besides 40 CFR 63 Subpart A (NESHAP Subpart A), which is similar to 40 CFR 60 Subpart A (NSPS Subpart A), the following NESHAP could potentially apply to the facility:

- > 40 CFR Part 63 Subpart HH Oil and Natural Gas Production Facilities
- > 40 CFR 63 Subpart ZZZZ Stationary Reciprocating Internal Combustion Engines
- > 40 CFR Part 63 Subpart JJJJJJ Industrial, Commercial, and Institutional Boilers

3.4.1. NESHAP Subpart HH - Oil and Natural Gas Production Facilities

This MACT standard contains requirements for both major and area sources of HAP. The facility does not have dehydration units, as such, this subpart does not apply.

3.4.2. NESHAP Subpart ZZZZ - Stationary Reciprocating Internal Combustion Engines

Stationary reciprocating internal combustion engines (RICE) at both area and major sources of HAP emissions are potentially subject to Subpart ZZZZ – NESHAP for Stationary Reciprocating Internal Combustion Engines (RICE). Per §63.6590(a)(2)(iii), a stationary RICE located at an area source of HAP emissions is new if you commenced construction of the stationary reciprocating internal combustion engine (RICE) on or after 6/12/2006. The compressor engines and generator will commence construction after this date, and will therefore be considered new RICE under Subpart ZZZZ. Per §63.6590(c), "[...] An affected source that meets any of the criteria in paragraphs (c)(1) through (7) of this section must meet the requirements of this part by meeting the requirements of 40 CFR part 60 subpart IIII, for compression ignition engines or 40 CFR part 60 Subpart JJJJ, for spark ignition engines. No further requirements apply for such engines under this part." Specifically, §63.6590(c)(1) includes "a new or reconstructed stationary RICE located at an area source"; the compressor engines fall into this category. Therefore, the compressor and generator engines have no applicable Subpart ZZZZ requirements, other than to comply with any applicable 40 CFR 60 Subpart JJJJ requirements.

3.4.3. NESHAP JJJJJJ - Industrial, Commercial, and Institutional Boilers

This MACT standard applies to industrial, commercial, and institutional boilers of various sizes and fuel types at area sources. There are no boilers at the facility, therefore this subpart does not apply.

3.5. WEST VIRGINIA SIP REGULATIONS

The facility is potentially subject to regulations contained in the West Virginia Code of State Regulations, Chapter 45 (Code of State Regulations). The Code of State Regulations fall under two main categories: those regulations that are generally applicable (e.g., permitting requirements), and those that have specific applicability (e.g., PM standards for manufacturing equipment).

3.5.1. 45 CSR 2: To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers

45 CSR 2 applies to fuel burning units, defined as equipment burning fuel "for the primary purpose of producing heat or power by indirect heat transfer". There are no fuel burning units at the facility that meet this definition. As such, this regulation is not applicable.

3.5.2. 45 CSR 4: To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contributes to an Objectionable Odor

According to 45 CSR 4-3:

No person shall cause, suffer, allow or permit the discharge of air pollutants which cause or contribute to an objectionable odor at any location occupied by the public.

The facility is generally subject to this requirement. However, due to the nature of the process at the station, production of objectionable odor during normal operation is unlikely.

3.5.3. 45 CSR 6: To Prevent and Control the Air Pollution from the Combustion of Refuse

45 CSR 6 applies to activities involving incineration of refuse, defined as "the destruction of combustible refuse by burning in a furnace designed for that purpose. For the purposes of this rule, the destruction of any combustible liquid or gaseous material by burning in a flare or flare stack, thermal oxidizer or thermal catalytic oxidizer stack shall be considered incineration." There are no control devices at the facility that utilize 'incineration'.

3.5.4. 45 CSR 10: To Prevent and Control Air Pollution from the Emission of Sulfur Oxides

This rule potentially applies to fuel burning units, including glycol dehydration unit reboilers. Per 45 CSR 10-10.1, units rated less than 10 MMBtu/hr are exempt from the SO₂ emission limitations and testing, monitoring, recordkeeping, and reporting requirements of this rule. There are no fuel burning units at the facility that meet this definition. As such, this regulation is not applicable.

3.5.5. 45 CSR 16: Standards of Performance for New Stationary Sources

45 CSR 16-1 incorporates the federal Clean Air Act (CAA) standards of performance for new stationary sources set forth in 40 CSR Part 60 by reference. As such, by complying with all applicable requirements of 40 CFR Part 60 at the facility, the applicant will be complying with 45 CSR 16.

3.5.6. 45 CSR 17: To Prevent and Control Particulate Matter Air Pollution from Materials Handling, Preparation, Storage and Other Sources of Fugitive Particulate Matter

According to 45 CSR 17-3.1:

No person shall cause, suffer, allow or permit fugitive particulate matter to be discharged beyond the boundary lines of the property lines of the property on which the discharge originates or at any public or residential location, which causes or contributes to statutory air pollution.

Due to the nature of the activities at the facility, it is unlikely that fugitive particulate matter emissions will be emitted under normal operating conditions. However, the applicant will take measures to ensure any fugitive particulate matter emissions will not cross the property boundary should any such emissions occur.

3.5.7. 45 CSR 21-28: Petroleum Liquid Storage in Fixed Roof Tanks

45 CSR 21-28 applies to any fixed roof petroleum liquid storage tank with a capacity greater than 40,000 gallons located in Putnam County, Kanawha County, Cabell County, Wayne County, and Wood County. The capacity of each storage tank at the facility is less than 40,000 gallons and the facility is not located in the listed counties. Therefore, 45 CSR 21-28 does not apply to the storage tanks at this station.

3.5.8. 45 CSR 34: Emissions Standards for Hazardous Air Pollutants

45 CSR 34-1 incorporates the federal Clean Air Act (CAA) national emissions standards for hazardous air pollutants (NESHAPs) as set forth in 40 CPR Parts 61 and 63 by reference. As such, by complying with all applicable requirements of 40 CFR Parts 61 and 63 at the facility, the applicant will be complying with 45 CSR 34.

3.5.9. Non-Applicability of Other SIP Rules

A thorough examination of the West Virginia SIP rules with respect to applicability at the facility reveals many SIP regulations that do not apply or impose additional requirements on operations. Such SIP rules include those specific to a particular type of industrial operation that is categorically not applicable to the facility.

The WVDEP permit application forms contained in this application include all applicable G35-D application forms including the required attachments.

1	14 A.
i.	Sec. 20 - 1
A REAL PROPERTY AND ADDRESS OF AD	dep

west virginia department of environmental protection

Division of Air Quality 601 57th Street SE Charleston, WV 25304 Phone (304) 926-0475 Fax (304) 926-0479 www.dep.wv.gov

G35-D GENERAL PE PREVENTION AND CONTROL OF AIR RELOCATION, A NATURAL GAS CO	RMIT RE POLLUTION IN ADMINISTRATIV	CGISTRATIO REGARD TO THE CO VE UPDATE AND OPE D/OR DEHYDRATION	N APPLICAT INSTRUCTION, MODIFI RATION OF FACILITIES	ION CATION,
⊠CONSTRUCTION □MODIFICATION □RELOCATION		□CLASS I ADMINIS □CLASS II ADMINIS	TRATIVE UPDATE TRATIVE UPDATE	
SE	CTION 1. GENEI	RAL INFORMATION		
Name of Applicant (as registered with the V	WV Secretary of S	tate's Office): DTE App	alachia Gathering, LLC	2010000, presidenti sono a seno, enc., e
Federal Employer ID No. (FEIN): 45-0718	671			
Applicant's Mailing Address: 1000 Noble	Energy Drive, 5th	Floor		*****
City: Canonsburg	State: PA		ZIP Code: 1531	7
Facility Name: Carrico Compressor Statio	on	**********		
Operating Site Physical Address: See lat/log If none available, list road, city or town and	ng 1 zip of facility.			
City: Maidsville	Zip Code: 26541		County: Monong	galia
Latitude & Longitude Coordinates (NAD83 Latitude: 39.69716 Longitude: -80.16659	, Decimal Degrees	to 5 digits):		
SIC Code: 1311 NAICS Code: 211111		DAQ Facility ID No. (For existing facilities)		
	CERTIFICATION (OF INFORMATION		
 This G35-D General Permit Registration Application shall be signed below by a Responsible Official. A Responsible Official is a President, Vice President, Secretary, Treasurer, General Partner, General Manager, a member of the Board of Directors, or Owner, depending on business structure. A business may certify an Authorized Representative who shall have authority to bind the Corporation, Partnership, Limited Liability Company, Association, Joint Venture or Sole Proprietorship. Required records of daily throughput, hours of operation and maintenance, general correspondence, compliance certifications and all required notifications must be signed by a Responsible Official or an Authorized Representative. If a business wishes to certify an Authorized Representative, the official agreement below shall be checked off and the appropriate names and signatures entered. Any administratively incomplete or improperly signed or unsigned G35-D Registration Application will be returned to the applicant. Furthermore, if the G35-D forms are not utilized the applicant of the applicant. 				
I hereby certify that is an Authorized (e.g., Corporation, Partnership, Limited Lia obligate and legally bind the business. If th notify the Director of the Division of Air Q	l Representative an bility Company, A e business changes uality immediately	nd in that capacity shall association Joint Venture is its Authorized Represent.	represent the interest of the or Sole Proprietorship) an itative, a Responsible Offi	e business d may cial shall
I hereby certify that all information contained in this G35-D General Permit Registration Application and any supporting documents appended hereto is, to the best of my knowledge, true, accurate and complete, and that all reasonable efforts have been made to provide the most comprehensive information possible.				
Responsible Official Signature: Name and Title: Kenneth D. Magyar, VP, P Phone: (724) 416-7263 Email: Kenneth.Magyar@dteenergy.com	roject Developmen	nt & Business Developm Fax: n/a Date: Tan 6	ent ZOLA	
If applicable: Authorized Representative Signature: Name and Title: Email:	Phone: Date:	F	ax:	
If applicable: Environmental Contact Colami Name and Title: Adam Snee, Gas Pipeline E Email: adam.snee@dteenergy.com	Engineer Pho Da	one: (724) 416-7822 te: JAN. 9, 201	Fax:	

OPERATING SITE INFORMATION				
Briefly describe the proposed new operation and/or any change(s) to the facility: Addition of compression and ancillary equipment to the facility.				
Directions to the facility: From 601 57th St SE, Charleston, WV 25304: head northeast on 57th St SE toward Washington Ave SE (travel 0.1 mi). Turn left onto MacCorkle Ave SE (travel 1.8 mi). Turn right onto 36th St SE (travel 0.2 mi). Continue onto 36th St Southeast Bridge (travel 0.2 mi). Use the right lane to take the ramp onto I-64 W/I-77 N (travel 0.1 mi). Merge onto I-64 W/I-77 N (travel 2.5 mi). Use the right 2 lanes to take the Interstate 77 N/Interstate 79 N exit toward Parkersburg (travel 0.5 mi). Continue onto I-77 N (travel 1.4 mi). Keep right at the fork to continue on I-79 N, follow signs for Clarksburg (travel 160 mi). Take exit 1 toward Mt Morris (travel 0.2 mi). Turn left onto Bald Hill Road (travel 0.6 mi). Slight turn onto Wades Run Road (travel 308 ft). Turn left onto Buckeye Road (travel 3.7 mi). Turn right onto WV-7 E (travel 2.7 mi). Turn left onto Jakes Run Road (travel 1.0 mi). Turn right onto the access road.				
ATTACHMENTS AND SU	PPORTING DOCUMENTS			
I have enclosed the following required documen	ts:			
Check payable to WVDEP – Division of Air Quality with the	appropriate application fee (per 45CSR13 and 45CSR22).			
 ☑ Check attached to front of application. □ I wish to pay by electronic transfer. Contact for payment (incl. name and email address): □ I wish to pay by credit card. Contact for payment (incl. name and email address): ☑ \$500 (Construction, Modification, and Relocation) □ \$300 (Class II Administrative Update) ☑ \$1,000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ and/or OOOO and/or OOOOa ¹ 				
 \$2,500 NESHAP fee for 40 CFR63, Subpart ZZZZ and/or HH² ¹ Only one NSPS fee will apply. ² Only one NESHAP fee will apply. The Subpart ZZZZ NESHAP fee will be waived for new engines that satisfy requirements by complying with NSPS, Subparts IIII and/or JJJJ. NSPS and NESHAP fees apply to new construction or if the source is being modified. 				
Responsible Official of Authorized Representative Signatu				
Single Source Determination Form (must be completed in	Its entirety) – Attachment A			
String Criteria waiver (ii applicable) – Attachment B	Current Business Certificate – Attachment C			
Plot Plan Attachment F	Area Man Attachment G			
C35 D Section Applicability Form Attachment H	Emission Units/EPD Table Attachment I			
Experiment Attachment I	Emission Units/EKD Table – Attachment I			
Storage Vessel(s) Data Sheet (include gas sample data, US HYSYS, etc.), etc. where applicable) – Attachment K	EPA Tanks, simulation software (e.g. ProMax, E&P Tanks,			
⊠ Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs,	Heater Treaters, In-Line Heaters if applic.) – Attachment L			
Internal Combustion Engine Data Sheet(s) (include manuf.	performance data sheet(s) if applicable) - Attachment M			
🛛 Tanker Truck Loading Data Sheet (if applicable) – Attachment N				
⊠ Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalc [™] input and output reports and information on reboiler if applicable) – Attachment O				
🖾 Pneumatic Controllers Data Sheet – Attachment P				
🖾 Centrifugal Compressor Data Sheet – Attachment Q				
🖾 Reciprocating Compressor Data Sheet – Attachment R				
Blowdown and Pigging Operations Data Sheet – Attachment S				
Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment T				
🖾 Emission Calculations (please be specific and include all calculation methodologies used) - Attachment U				
⊠ Facility-wide Emission Summary Sheet(s) – Attachment V				
🖾 Class I Legal Advertisement – Attachment W				
In One (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments				

All attachments must be identified by name, divided into sections, and submitted in order.

ATTACHMENT A

Single Source Determination Form

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM
Classifying multiple facilities as one "stationary source" under 45CSR13, 45CSR14, and 45CSR19 is based on the definition of Building, structure, facility, or installation as given in §45-14-2.13 and §45-19-2.12. The definition states:
"Building, Structure, Facility, or Installation" means all of the pollutant-emitting activities which belong to the same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the control of the same person (or persons under common control). Pollutant-emitting activities are a part of the same industrial grouping if they belong to the same "Major Group" (i.e., which have the same two (2)-digit code) as described in the Standard Industrial Classification Manual, 1987 (United States Government Printing Office stock number GPO 1987 0-185-718:QL 3).
The Source Determination Rule for the oil and gas industry was published in the Federal Register on June 3, 2016 and will become effective on August 2, 2016. EPA defined the term "adjacent" and stated that equipment and activities in the oil and gas sector that are under common control will be considered part of the same source if they are located on the same site or on sites that share equipment and are within ¹ / ₄ mile of each other.
Is there equipment and activities in the same industrial grouping (defined by SIC code)? Yes \Box No \boxtimes
Is there equipment and activities under the control of the same person/people? Yes □ No ⊠
Is there equipment and activities located on the same site or on sites that share equipment and are within $\frac{1}{4}$ mile of each other? Yes \Box No \boxtimes

ATTACHMENT A: SINGLE SOURCE DETERMINATION MAP

Figure 1 - Map of Location with 1 Mile Radius Circle

<u>Coordinates:</u> Latitude: 39° 41' 49.9" N, Longitude: -80° 09' 59.7" W

ATTACHMENT B

Siting Criteria Waiver (not applicable)

ATTACHMENT B – SITING CRITERIA WAIVER – NOT APPLICABLE

If applicable, please complete this form and it must be notarized.

G35-D General Permit Siting Criteria Waiver

WV Division of Air Quality 300' Waiver

I ______ hereby
Print Name
acknowledge and agree that ______ will
General Permit Applicant's Name

construct an emission unit(s) at a natural gas compressor and/or dehydration facility that will be located within 300' of my dwelling and/or business.

I hereby offer this waiver of siting criteria to the West Virginia Department of Environmental Protection Division of Air Quality as permission to construct, install and operate in such location.

.

Signed:

Signature	Date
Signature	Date
Taken, subscribed and sworn before me th	nis day of
, 2	.0
My commission expires:	
SEAL	
Notary Public	

ATTACHMENT C

Current Business Certificate

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO: DTE APPALACHIA GATHERING, LLC ONE ENERGY PLAZA, 2055 WCB DETROIT, MI 48226-0000

BUSINESS REGISTRATION ACCOUNT NUMBER:

2252-1954

This certificate is issued on: 05/5/2017

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued

This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.4 L2060078272

ATTACHMENT D

Process Flow Diagram

* Note that this is a simplified diagram for the purposes of explaining basic facility flow and emission points. The actual design is more complex and may vary.

ATTACHMENT E

Process Description

ATTACHMENT E: PROCESS DESCRIPTION

The Carrico Compressor Station compresses natural gas and sends it along the pipeline system. Reciprocating compressors utilize the power created by reciprocating internal combustion engines (RICE) to compress (raise the pressure of) the incoming gas stream. Subsequently, the gas stream travels into the downstream pipeline. The compressor engines' exhaust streams are controlled by oxidation catalysts.

A process flow diagram is included as Attachment D.

ATTACHMENT F

Plot Plan

ATTACHMENT G

Area Map

ATTACHMENT G: AREA MAP

Figure 1 - Map of Location with 300 foot Boundary Circle

571.453

UTM Northing (KM): 4,394.478

UTM Easting (KM):

Elevation:

~1,380 ft

ATTACHMENT H

G35-D Section Applicability Form

ATTACHMENT H – G35-D SECTION APPLICABILITY FORM

General Permit G35-D Registration Section Applicability Form

General Permit G35-D was developed to allow qualified applicants to seek registration for a variety of sources. These sources include storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, centrifugal compressors, reciprocating compressors, reciprocating internal combustion engines (RICEs), tank truck loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G35-D allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

GENERAL PERMIT G35-D APPLICABLE SECTIONS			
Section 5.0	Storage Vessels Containing Condensate and/or Produced Water ¹		
□ Section 6.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO/OOOOa)		
□ Section 7.0	Control Devices and Emission Reduction Devices not subject to NSPS Subpart OOOO/OOOOa and/or NESHAP Subpart HH		
□ Section 8.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc		
□ Section 9.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO/OOOOa)		
□ Section 10.0	Centrifugal Compressor Affected Facility (NSPS, Subpart OOOO/OOOOa) ²		
Section 11.0	Reciprocating Compressor Affected Facility (NSPS, Subpart OOOO/OOOOa) ²		
Section 12.0	Reciprocating Internal Combustion Engines, Generator Engines. Microturbine Generators		
Section 13.0	Tanker Truck Loading ³		
□ Section 14.0	Glycol Dehydration Units ⁴		
Section 15.0	Blowdown and Pigging Operations		
Section 16.0	Fugitive Emission Components (NSPS, Subpart OOOOa)		

1 Applicants that are subject to Section 5 may also be subject to Section 6 if the applicant is subject to the NSPS, Subpart OOOO/OOOOa control requirements or the applicable control device requirements of Section 7.

- 2 Applicants that are subject to Section 10 and 11 may also be subject to the applicable RICE requirements of Section 12.
- 3 Applicants that are subject to Section 13 may also be subject to control device and emission reduction device requirements of Section 7.
- 4 Applicants that are subject to Section 14 may also be subject to the requirements of Section 8 (reboilers). Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 7.

ATTACHMENT I

Emission Units/ERD Table

ATTACHMENT I – EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment K table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
CE-1	CE-1	Caterpillar G3606 Compressor Engine	TBD		1,875 HP	New	C1	
CE-2	CE-2	Caterpillar G3606 Compressor Engine	TBD		1,875 HP	New	C2	
GE-1	GE-1	PSI Heavy Duty 11.1LTCAC	TBD		272 HP	New	None	
T01	T01	Produced Fluids Tank	TBD		16,800 Gallons	New	None	
T02	T02	Waste Oil Tank	TBD		8,820 Gallons	New	None	
Т03	Т03	Compressor Oil Tank	TBD		500 Gallons	New	None	
T04	T04	Compressor Oil Tank	TBD		500 Gallons	New	None	
T05	T05	Engine Oil Tank	TBD		500 Gallons	New	None	
T06	T06	Engine Oil Tank	TBD		500 Gallons	New	None	
T07	T07	Methanol Tank	TBD		500 Gallons	New	None	
T08	T08	Methanol Tank	TBD		500 Gallons	New	None	
L01	L01	Liquid Loading			201,600 Gallons	New	None	
		Fugitives				New	None	
		Haul Roads				New	None	

¹ For Emission Units (or Sources) use the following numbering system: 1S, 2S, 3S,... or other appropriate designation.

² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

³ When required by rule

⁴ New, modification, removal, existing

⁵ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

⁶ For ERDs use the following numbering system: 1D, 2D, 3D,... or other appropriate designation.

ATTACHMENT J

Fugitive Emission Summary Sheet(s)
		ATT	CACHMENT J – FU	GITIVE EMISSIONS SU	MMARY SH	ЕЕТ					
	Source	s of fugitive o U	emissions may include se extra pages for each	loading operations, equipmer associated source or equipme	nt leaks, blowc ent if necessar	lown emissi y.	ions, etc.				
Source/Equipm	ent: Fugitiv	e Emissions									
Leak Detection	Leak Detection Method Used Audible, visual, and olfactory (AVO) inspectionsInfrared (FLIR) camerasOther (please describe)None required										
Is the facility s	ubject to qua	arterly LDAR m	nonitoring under 40CFR60 S	ubpart OOOOa? 🛛 🖾 Yes 🗆 N	lo. If no, why?						
Component	Closed		Source	of Leak Factors	Stream type	Estir	nated Emissio	ns (tpy)			
Туре	Vent System	Count	(EPA, c	ther (specify))	(gas, liquid, etc.)	VOC	НАР	GHG (CO ₂ e)			
Pumps	□ Yes ⊠ No	3	U.S. EPA. Office of Air (Protocol for Equipment Lea (EPA-453/	Quality Planning and Standards. ak Emission Estimates. Table 2-1. R-95-017, 1995).	□ Gas ⊠ Liquid □ Both	0.58	<0.01	0.13			
Valves	□ Yes ⊠ No	57	U.S. EPA. Office of Air (Protocol for Equipment Lea (EPA-453/	Quality Planning and Standards. ak Emission Estimates. Table 2-1. R-95-017, 1995).	⊠ Gas □ Liquid □ Both	0.01	<0.01	6.90			
Safety Relief Valves	□ Yes ⊠ No	4	U.S. EPA. Office of Air (Protocol for Equipment Lea (EPA-453/	⊠ Gas □ Liquid □ Both	0.01	<0.01	0.72				
Open Ended Lines	□ Yes □ No			□ Gas □ Liquid □ Both							
Sampling Connections	□ Yes □ No			N/A							
Connections (Not sampling)	□ Yes ⊠ No	257	U.S. EPA. Office of Air (Protocol for Equipment Lea (EPA-453/	U.S. EPA. Office of Air Quality Planning and Standards. Protocol for Equipment Leak Emission Estimates. Table 2-1. (EPA-453/R-95-017, 1995).		0.02	<0.01	3.45			
Compressors	□ Yes ⊠ No	2	U.S. EPA. Office of Air (Protocol for Equipment Lea (EPA-453/	U.S. EPA. Office of Air Quality Planning and Standards. Protocol for Equipment Leak Emission Estimates. Table 2-1. (EPA-453/R-95-017, 1995).		0.02	<0.01	37.39			
Flanges	□ Yes □ No		(included	(included in connections)							
Other ¹	Other1 \boxtimes Yes \square No1240 CFR 98 Subpart W \boxtimes Gas \square Liquid \square Both0.13<0.01107.60							107.60			
¹ Other equipment types may include compressor seals, relief valves, diaphragms, drains, meters, etc.											
Please indicate	if there are	any closed vent	bypasses (include compone	ent):							
Specify all equ	ipment used	in the closed ve	ent system (e.g. VRU, ERD,	thief hatches, tanker truck loading	g, etc.)						

ATTACHMENT K

Storage Vessel Data Sheet(s)

ATTACHMENT K – STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water. (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.

The following information is **REQUIRED**:

- ⊠ Composition of the representative sample used for the simulation
- ☑ For each stream that contributes to flashing emissions:
 - \boxtimes Temperature and pressure (inlet and outlet from separator(s))
 - ⊠ Simulation-predicted composition
 - ⊠ Molecular weight
 - \boxtimes Flow rate
- ⊠ Resulting flash emission factor or flashing emissions from simulation

 \boxtimes Working/breathing loss emissions from tanks and/or loading emissions if simulation is used to quantify those emissions

Additional information may be requested if necessary.

GENERAL INFORMATION

1. Bulk Storage Area Name	2. Tank Name
Carrico Compressor Station	Produced Fluids Tank
3. Emission Unit ID number	4. Emission Point ID number
T01	T01
5. Date Installed, Modified or Relocated (for existing tanks)	6. Type of change:
Was the tank manufactured after August 23, 2011?	☑ New construction
\boxtimes Yes \square No	\Box New stored material
	□ Other
	□ Relocation
7A. Description of Tank Modification (<i>if applicable</i>) N/A	
7B. Will more than one material be stored in this tank? If so, a separate form must be	e completed for each material.
\Box Yes \boxtimes No	
7C. Was USEPA Tanks simulation software utilized?	
\Box Yes \boxtimes No	
If Yes, please provide the appropriate documentation and items 8-42 below are not r	required.

TANK INFORMATION

8. Design Capacity (specify barrels or gallons). Use the interna	l cross-sectional area multiplied by internal height.			
16,800 gal				
9A. Tank Internal Diameter (ft.) 12	9B. Tank Internal Height (ft.) 20			
10A. Maximum Liquid Height (ft.) 20	10B. Average Liquid Height (ft.) 10			
11A. Maximum Vapor Space Height (ft.) 20	11B. Average Vapor Space Height (ft.) 10			
12. Nominal Capacity (specify barrels or gallons). This is also	known as "working volume".			
16,800 gal				
13A. Maximum annual throughput (gal/yr) See attached	13B. Maximum daily throughput (gal/day) See attached			
emissions calculations for all throughput values	emissions calculations for all throughput values			
14. Number of tank turnovers per year See attached	15. Maximum tank fill rate (gal/min) See attached emissions			
emissions calculations for all throughput values	calculations for all throughput values			
16. Tank fill method \Box Submerged \boxtimes Splash	Bottom Loading			
17. Is the tank system a variable vapor space system? \Box Yes	🖂 No			
If yes, (A) What is the volume expansion capacity of the system	(gal)?			
(B) What are the number of transfers into the system per	year?			
18. Type of tank (check all that apply):				
\boxtimes Fixed Roof \boxtimes vertical \square horizontal \square flat roof	\boxtimes cone roof \square dome roof \square other (describe)			
 External Floating Roof pontoon roof double deck roof Domed External (or Covered) Floating Roof 				
\Box Internal Floating Roof \Box vertical column support	□ self-supporting			
$\Box Variable Vapor Space \Box lifter roof \Box diaphragm$				
\Box Pressurized \Box spherical \Box cylindrical				
\Box Other (describe)				

PRESSURE/VACUUM CONTROL DATA

19. Check as many as app	oly:								
□ Does Not Apply □ Rupture Disc (psig)									
□ Inert Gas Blanket of _				□ Carbo	n Adsorpti	ion ¹			
□ Vent to Vapor Combu	stion Dev	ice1 (vapo	r combust	ors, flares,	, thermal o	xidizers, o	enclosed c	ombustors	.)
□ Conservation Vent (ps	sig)			□ Conde	nser ¹				
Vacuum Setting		Pressure	Setting						
□ Emergency Relief Val	□ Emergency Relief Valve (psig)								
Vacuum Setting		Pressure	Setting						
☑ Thief Hatch Weighted	\boxtimes Thief Hatch Weighted \boxtimes Yes \square No								
¹ Complete appropriate A	ir Pollutio	n Control	Device Sh	leet					
20. Expected Emission R	ate (subm	it Test Dat	a or Calcu	ilations he	ere or elsev	where in th	ne applicat	tion).	
Material Name	Flashing	g Loss	Breathi	ng Loss	Workin	g Loss	Total		Estimation Method ¹
							Emissio	ns Loss	
	lb/hr	tpy	lb/hr	Тру	lb/hr	tpy	lb/hr	tpy	
Produced Fluids	0.06	0.27	< 0.01	< 0.01	< 0.01	< 0.01	0.06	0.27	E&P TANK v2.0

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

TANK CONSTRUCTION AND OPERATIO	N INFORMATION				
21. Tank Shell Construction:					
\boxtimes Riveted \square Gunite lined \square Epox	y-coated rivets 🛛 🛛 O	ther (des	scribe)		
21A. Shell Color:	21B. Roof Color:			21C. Year l	Last Painted:
22. Shell Condition (if metal and unlined):					
🛛 No Rust 🗌 Light Rust 🗌 Dense	Rust 🗌 Not applic	able			
22A. Is the tank heated? \Box Yes \boxtimes No	22B. If yes, operating t	emperatu	ire:	22C. If yes,	how is heat provided to tank?
23. Operating Pressure Range (psig): zero (no	pressure, atmospheric	c)			
Must be listed for tanks using VRUs wi	th closed vent system	ı .			
24. Is the tank a Vertical Fixed Roof Tank ? ⊠ Yes □ No	24A. If yes, for dome	roof prov	ide radius (ft):	24B. If yes,	for cone roof, provide slop (ft/ft):
25 Complete item 25 for Electing Boof Tank	$\square \qquad \square \qquad$				
25. Complete item 25 for Floating Roof Fails					
25A. Tear Internal Floaters Installed.	11. (1 . 1) 1	1	□ T · · 1	. 1 . 11	· 1
25B. Primary Seal Type (<i>check one</i>):	allic (mechanical) sho	e seal		unted resilie	nt seal
	or mounted resilient s	eal	\Box Other (des	cribe):	
25C. Is the Floating Roof equipped with a seco	ndary seal? 🛛 Yes	🗆 No			
25D. If yes, how is the secondary seal mounted	? (check one) \Box Sho	e 🗆	Rim 🗆 Oth	ner (describe):
25E. Is the floating roof equipped with a weath	er shield? Ves		0		
25E. Describe deck fittings:			0		
251. Describe deck nungs.	l Electing Deef Tenks		Doos not apply	7	
26. Complete the following section for Interna	I Floating Roof Tanks		Does not appry		
26A. Deck Type: \Box Bolted \Box W	Velded	26B. F	or bolted decks,	provide deck	construction:
26C. Deck seam. Continuous sheet construction	n:				
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide	e \Box 5 x 7.5 ft. wide	□ 5 x	12 ft. wide \Box	other (des	cribe)
26D. Deck seam length (ft.): 26E. Area	a of deck (ft ²):	26F. F tanks, #	or column suppo # of columns:	orted	26G. For column supported tanks, diameter of column:
27. Closed Vent System with VRU? \Box Yes	🛛 No				
28 Closed Vent System with Enclosed Combu	stor? 🗌 Ves 🕅 No				
SITE INFORMATION Not A price block			ducing E & D /	FANK coffe	
20 Provide the city and state on which the data	in this section are based		u using E&F	I AINK SOILV	vare
30 Daily Avg Ambient Temperature (°F):	in this section are based	31 An	nual Avo Maxi	mum Temper	ature (°F):
32. Annual Avg Minimum Temperature (°F):		33. Av	vg. Wind Speed ((mph):	
34. Annual Avg. Solar Insulation Factor (BTU)	(ft ² -day):	35. At	mospheric Press	ure (psia):	
LIOUID INFORMATION - Not Applicable	le: Tank calculations	perfor	med using E&	P TANK so	oftware
36. Avg. daily temperature range of bulk	36A. Minimum (°F):		8	36B. Maxir	num (°F):
liquid (°F):					
37. Avg. operating pressure range of tank	37A. Minimum (psig)	:		37B. Maxir	num (psig):
(psig):					
38A. Minimum liquid surface temperature (°F)	:	38B. C	Corresponding va	apor pressure	(psia):
39A. Avg. liquid surface temperature (°F):		39B. Corresponding vapor pressure (psia):			(psia):
40A. Maximum liquid surface temperature (°F)):	40B. C	Corresponding va	apor pressure	(psia):
41. Provide the following for each liquid or gas	to be stored in the tank.	Add add	itional pages if r	necessary.	
41A. Material name and composition:					
41B. CAS number:					
41C. Liquid density (lb/gal):					
41D. Liquid molecular weight (lb/lb-mole):					
41E. Vapor molecular weight (10/10-mole):					
411. Maximum Lue vapor pressure (psia):					
41H Months Storage per year					
From: To					
42. Final maximum gauge pressure and					
temperature prior to transfer into tank used as					
inputs into flashing emission calculations.					

STORAGE TANK DATA TABLE

List all deminimis storage tanks (i.e. lube oil, glycol, diesel etc.)

Source ID #1	Status ²	Content ³	Volume ⁴
T02	New	Waste Oil	8,820 gallons
T03	New	Compressor Oil	500 gallons
T04	New	Compressor Oil	500 gallons
T05	New	Engine Oil	500 gallons
T06	New	Engine Oil	500 gallons
T07	New	Methanol	500 gallons
T08	New	Methanol	500 gallons

Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the compressor station. 1. Tanks should be designated T01, T02, T03, etc. 2.

Enter storage tank Status using the following:

EXIST Existing Equipment

NEW Installation of New Equipment

REM Equipment Removed

3. 4. Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, diesel, mercaptan etc.

Enter the maximum design storage tank volume in gallons.

Natural Gas Fired Fuel Burning Unit Data Sheet(s)

ATTACHMENT L – SMALL HEATERS AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART DC DATA SHEET– NOT APPLICABLE

Complete this data sheet for each small heater and reboiler not subject to 40CFR60 Subpart Dc at the facility. *The Maximum Design Heat Input (MDHI) must be less than 10 MMBTU/hr.*

Emission Unit ID# ¹	Emission Point ID# ²	Emission Unit Description (manufacturer, model #)	Year Installed/ Modified	Type ³ and Date of Change	Maximum Design Heat Input (MMBTU/hr) ⁴	Fuel Heating Value (BTU/scf) ⁵

- ¹ Enter the appropriate Emission Unit (or Source) identification number for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.
- ² Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.
- ³ New, modification, removal
- ⁴ Enter design heat input capacity in MMBtu/hr.
- ⁵ Enter the fuel heating value in BTU/standard cubic foot.

Internal Combustion Engine Data Sheet(s)

ATTACHMENT M - INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. *Generator(s) and microturbine generator(s) shall also use this form*.

Emission Unit ID#1		CE-1 a	nd CE-2	GE-1					
		Cate	rpillar	PSI					
Engine Manufacturer/Model		G3606		Heavy Duty 11.1LTCAC					
Manufacturers F	Rated bhp/rpm	1,8	375	2	.72				
Source Status ²		N	ew	N	ew				
Date Installed/ Modified/Remov	ved/Relocated ³	TI	BD	Т	BD				
Engine Manufac /Reconstruction	tured Date ⁴	TI	BD	т	BD				
Check all applicable Federal Rules for the engine (include EPA Certificate of Conformity if applicable) ⁵		 ⋈ 40CFR6(JJJJ □ JJJJ Certi □ 40CFR6(IIII □ IIII Certi ⋈ 40CFR63 ZZZZ □ NESHA NSPS JJJJ □ NESHA Remote Som) Subpart ified?) Subpart ified? 3 Subpart P ZZZZ/ Window P ZZZZ urces	 ☑ 40CFR60 Subpart JJJJ ☑ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? ☑ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 		□ 40CFR60 Subpart JJJJ □ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? □ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources		☐ 40CFR60 Subpart JJJJ ☐ JJJJ Certified? ☐ 40CFR60 Subpart IIII ☐ IIII Certified? ☐ 40CFR63 Subpart ZZZZ ☐ NESHAP ZZZZ/ NSPS JJJJ Window ☐ NESHAP ZZZZ Remote Sources	
Engine Type ⁶		45	SLB	49	SRB				
APCD Type ⁷		OxCat		L	EC				
Fuel Type ⁸		PQ		PQ					
H ₂ S (gr/100 scf))	Neg.		Neg.					
Operating bhp/r	pm	1,875		272					
BSFC (BTU/bhg	o-hr)	7,5	7,556		N/A				
Hourly Fuel Thr	oughput	13,754	ft ³ /hr	1,980 ft ³ /hr		ft³/hr		ft ³	/hr
Annual Fuel Thi (Must use 8,760 emergency gene	roughput hrs/yr unless rator)	120.5	MMft ³ /yr	17.3 MMft ³ /yr		MMft ³ /yr		MMft ³ /yr	
Fuel Usage or H Operation Meter	ours of red	Yes 🗵	No 🗆	Yes 🛛	No 🗆	Yes 🗆	No 🗆	Yes 🗆	No 🗆
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Hourly PTE (lb/hr) ¹¹	Hourly PTE (lb/hr) ¹¹	Hourly PTE (lb/hr) ¹¹	Hourly PTE (lb/hr) ¹¹	Annual PTE (tpy) ¹¹	Hourly PTE (lb/hr) ¹¹	Annual PTE (tpy) ¹¹
See Emissions Calculations	NO _x	2.07	9.05	0.60	2.63				
See Emissions Calculations	СО	0.45	1.99	1.20	5.25				
See Emissions Calculations	VOC	0.54	2.35	0.46	2.02				
See Emissions Calculations	SO ₂	0.01	0.04	1.20 E-03	0.01				
See Emissions Calculations	PM_{10}	0.14	0.62	0.04	0.17				
See Emissions Calculations	Formaldehyde	0.17	0.72	0.04	0.18				
See Emissions Calculations	Total HAPs	0.44	1.93	0.07	0.29				
See Emissions Calculations	GHG (CO ₂ e)	2,222	9,731	239	1,046				

- 1 Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.
- 2 Enter the Source Status using the following codes:

NS	Construction of New Source (installation)	ES	Existing Source
MS	Modification of Existing Source	RS	Relocated Source

- REM Removal of Source
- 3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.
- 4 Enter the date that the engine was manufactured, modified or reconstructed.
- 5 Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6 Enter the Engine Type designation(s) using the following codes:

	2SLB 4SLB	Two Stroke Lean Burn Four Stroke Lean Burn	4SRE	B Four S	troke Rich Burn				
7	Enter th	e Air Pollution Control Device (APCD) type designa	tion(s)	using the f	ollowing codes:				
	A/F HEIS PSC NSCR SCR	Air/Fuel Ratio High Energy Ignition System Prestratified Charge Rich Burn & Non-Selective Catalytic Reduction Lean Burn & Selective Catalytic Reduction		IR SIPC LEC OxCat	Ignition Retard Screw-in Preco Low Emission Oxidation Cata	l ombustion Cha Combustion ılyst	umber	s	
8	Enter th	e Fuel Type using the following codes:							
	PQ	Pipeline Quality Natural Gas RC	G F	Raw Natur	al Gas /Productio	n Gas	D	Diesel	
9	Enter t MD GR	he Potential Emissions Data Reference design Manufacturer's Data GRI-HAPCalc [™]	ation u A C	sing the s AP A DT O	following code P-42 ther	s. Attach all (please list)	refei	ence data u	ised.

10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

Engine Air Pollution Control Device (Emission Unit ID# CE-1 and CE-2, use extra pages as necessary)

Air Pollution Control	Device Man	ufacturer's	Data Sheet included?
	Yes 🖂	No 🗆	

	SCR	\boxtimes Oxidation Catalyst				
Provide details of process control used for proper mixin N/A	Provide details of process control used for proper mixing/control of reducing agent with gas stream: N/A					
Manufacturer: EMIT Technologies (or equivalent)	Model #:	ELS-4200-1820F-4CE0-362 (or equivalent)				
Design Operating Temperature: 835 °F	Design ga	s volume: 11,801 acfm				
Service life of catalyst: TBD	Provide m	anufacturer data? 🛛 Yes 🛛 🖓 No				
Volume of gas handled: 11,801 acfm at 835 °F	Operating From TBI	temperature range for NSCR/Ox Cat: °F to TBD °F				
Reducing agent used, if any: N/A Ammonia slip (ppm): N/A						
Pressure drop against catalyst bed (delta P): TBD inches of H ₂ O						
Provide description of warning/alarm system that protects unit when operation is not meeting design conditions: TBD						
Is temperature and pressure drop of catalyst required to \Box Yes \boxtimes No	be monitored per	40CFR63 Subpart ZZZZ?				
How often is catalyst recommended or required to be re TBD	placed (hours of o	peration)?				
How often is performance test required? Initial Annual Every 8,760 hours of operation Field Testing Required No performance test required. If so, why (please list any maintenance required and the applicable sections in NSPS/GACT,						

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Exterran DTE ENERGY

ENGINE SPEED (rpm):	1000	RATING STRATEGY:	STANDARD
COMPRESSION RATIO:	7.6	RATING LEVEL:	CONTINUOUS
AFTERCOOLER TYPE:	SCAC	FUEL SYSTEM:	GAV
AFTERCOOLER - STAGE 2 INLET (°F):	130		WITH AIR FUEL RATIO CONTROL
AFTERCOOLER - STAGE 1 INLET (°F):	174	SITE CONDITIONS:	
JACKET WATER OUTLET (°F):	190	FUEL:	Gas Analysis
ASPIRATION:	TA	FUEL PRESSURE RANGE(psig): (See note 1)	58.0-70.3
COOLING SYSTEM:	JW+1AC, OC+2AC	FUEL METHANE NUMBER:	90.8
CONTROL SYSTEM:	ADEM4	FUEL LHV (Btu/scf):	929
EXHAUST MANIFOLD:	DRY	ALTITUDE(ft):	1500
COMBUSTION:	LOW EMISSION	MAXIMUM INLET AIR TEMPERATURE(°F):	100
NOx EMISSION LEVEL (g/bhp-hr NOx):	0.5	STANDARD RATED POWER:	1875 bhp@1000rpm
SET POINT TIMING:	18		
		MAYIMUM	

			RATING	INLET A		RATURE
RATING	NOTES	LOAD	100%	100%	75%	50%
ENGINE POWER (WITHOUT FAN)	(2)	bhp	1875	1875	1406	938
INLET AIR TEMPERATURE		°F	100	100	100	100
ENGINE DATA						
FUEL CONSUMPTION (LHV)	(3)	Btu/bhp-hr	6811	6811	7088	7668
FUEL CONSUMPTION (HHV)	(3)	Btu/bhp-hr	7556	7556	7864	8506
AIR FLOW (@inlet air temp, 14.7 psia) (WET)	(4)(5)	ft3/min	4782	4782	3622	2491
AIR FLOW (WET)	(4)(5)	lb/hr	20333	20333	15402	10592
FUEL FLOW (60°F, 14.7 psia)		scfm	229	229	179	129
INLET MANIFOLD PRESSURE	(6)	in Hg(abs)	100.0	100.0	76.7	54.9
EXHAUST TEMPERATURE - ENGINE OUTLET	(7)	°F	835	835	907	990
EXHAUST GAS FLOW (@engine outlet temp, 14.5 (WET)	(8)(5)	ft3/min	11801	11801	9451	6909
psia)						
EXHAUST GAS MASS FLOW (WET)	(8)(5)	lb/hr	20932	20932	15870	10930
EMISSIONS DATA - ENGINE OUT						
NOx (as NO2)	(9)(10)	g/bhp-hr	0.50	0.50	0.50	0.50
со	(9)(10)	g/bhp-hr	2.20	2.20	2.20	2.19
THC (mol. wt. of 15.84)	(9)(10)	g/bhp-hr	4.59	4.59	4.80	5.07
NMHC (mol. wt. of 15.84)	(9)(10)	g/bhp-hr	0.42	0.42	0.44	0.47
NMNEHC (VOCs) (mol. wt. of 15.84)	(9)(10)(11)	g/bhp-hr	0.29	0.29	0.30	0.32
HCHO (Formaldehyde)	(9)(10)	g/bhp-hr	0.20	0.20	0.21	0.24
CO2	(9)(10)	g/bhp-hr	433	433	447	484
EXHAUST OXYGEN	(9)(12)	% DRY	10.9	10.9	10.7	10.3
HEAT REJECTION						
HEAT REJ. TO JACKET WATER (JW)	(13)	Btu/min	21993	21993	17927	14592
HEAT REJ. TO ATMOSPHERE	(13)	Btu/min	5737	5737	5618	5409
HEAT REJ. TO LUBE OIL (OC)	(13)	Btu/min	11708	11708	10800	9347
HEAT REJ. TO A/C - STAGE 1 (1AC)	(13)(14)	Btu/min	16043	16043	7871	2307
HEAT REJ. TO A/C - STAGE 2 (2AC)	(13)(14)	Btu/min	7319	7319	4454	2218
COOLING SYSTEM SIZING CRITERIA						_
TOTAL JACKET WATER CIRCUIT (JW+1AC)	(14)(15)	Btu/min	41037			

TOTAL JACKET WATER CIRCUIT (JW+1AC)	(14)(15)	Btu/min	41037			
TOTAL STAGE 2 AFTERCOOLER CIRCUIT (OC+2AC)	(14)(15)	Btu/min	21735			
A cooling system safety factor of 0% has been added to the cooling system sizing criteria.						

CONDITIONS AND DEFINITIONS

Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

For notes information consult page three.

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Exterran DTE ENERGY

Engine Power vs. Inlet Air Temperature

Data represents temperature sweep at 1500 ft and 1000 rpm

Engine Power vs. Engine Speed

Engine Torque vs. Engine Speed

Data represents speed sweep at 1500 ft and 100 °F

Note: At site conditions of 1500 ft and 100°F inlet air temp., constant torque can be maintained down to 750 rpm. The minimum speed for loading at these conditions is 750 rpm.

G3606

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Exterran DTE ENERGY

GAS COMPRESSION APPLICATION

NOTES

1. Fuel pressure range specified is to the engine gas shutoff valve (GSOV). Additional fuel train components should be considered in pressure and flow calculations.

2. Engine rating is with two engine driven water pumps. Tolerance is ± 3% of full load.

3. Fuel consumption tolerance is $\pm 2.5\%$ of full load data.

4. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of \pm 5 %.

5. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.

6. Inlet manifold pressure is a nominal value with a tolerance of \pm 5 %.

7. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.

8. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of ± 6 %.

9. Emissions data is at engine exhaust flange prior to any after treatment.

10. Values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate the maximum values expected under steady state conditions. Fuel methane number cannot vary more than ± 3. THC, NMHC, and NMNEHC do not include aldehydes. An oxidation catalyst may be required to meet Federal, State or local CO or HC requirements.

11. VOCs - Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ

12. Exhaust Oxygen level is the result of adjusting the engine to operate at the specified NOx level. Tolerance is ± 0.5.

13. Heat rejection values are nominal. Tolerances, based on treated water, are ± 10% for jacket water circuit, ± 50% for radiation, ± 20% for lube oil circuit, and ± 5% for aftercooler circuit.

14. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.

15. Cooling system sizing criteria are maximum circuit heat rejection for the site, with applied tolerances.

CATERPILLAR®

Constituent	Abbrev	Mole %	Norm		
Water Vapor	H2O	0.0115	0.0115		
Methane	CH4	96.7490	96.7380	Fuel Makeup:	Gas Analysis
Ethane	C2H6	2.4777	2.4774	Unit of Measure:	English
Propane	C3H8	0.1257	0.1257		
Isobutane	iso-C4H1O	0.0200	0.0200	Calculated Fuel Properties	
Norbutane	nor-C4H1O	0.0210	0.0210	Catornillar Mothana Numbar	00.8
Isopentane	iso-C5H12	0.0204	0.0204	Caterpliar Methane Number.	90.8
Norpentane	nor-C5H12	0.0134	0.0134		
Hexane	C6H14	0.0346	0.0346	Lower Heating Value (Btu/scf):	929
Heptane	C7H16	0.0000	0.0000	Higher Heating Value (Btu/scf):	1031
Nitrogen	N2	0.2943	0.2943	WOBBE Index (Btu/scf):	1227
Carbon Dioxide	CO2	0.2438	0.2438		
Hydrogen Sulfide	H2S	0.0000	0.0000	THC: Free Inert Ratio	184.82
Carbon Monoxide	CO	0.0000	0.0000		0 54%
Hydrogen	H2	0.0000	0.0000		0.34%
Oxygen	O2	0.0000	0.0000	RPC (%) (1 o 905 Btu/scf Fuel):	100%
Helium	HE	0.0000	0.0000		
Neopentane	neo-C5H12	0.0000	0.0000	Compressibility Factor:	0.998
Octane	C8H18	0.0000	0.0000	Stoich A/F Ratio (Vol/Vol):	9.70
Nonane	C9H20	0.0000	0.0000	Stoich A/F Ratio (Mass/Mass):	16.94
Ethylene	C2H4	0.0000	0.0000	Specific Gravity (Relative to Air)	0.573
Propylene	C3H6	0.0000	0.0000	Evol Specific Heat Patio (K):	1 211
TOTAL (Volume %)		100.0114	100.0001		1.311

CONDITIONS AND DEFINITIONS

Caterpillar Methane Number represents the knock resistance of a gaseous fuel. It should be used with the Caterpillar Fuel Usage Guide for the engine and rating to determine the rating for the fuel specified. A Fuel Usage Guide for each rating is included on page 2 of its standard technical data sheet.

RPC always applies to naturally aspirated (NA) engines, and turbocharged (TA or LE) engines only when they are derated for altitude and ambient site conditions.

Project specific technical data sheets generated by the Caterpillar Gas Engine Rating Pro program take the Caterpillar Methane Number and RPC into account when generating a site rating.

Fuel properties for Btu/scf calculations are at 60F and 14.696 psia.

Caterpillar shall have no liability in law or equity, for damages, consequently or otherwise, arising from use of program and related material or any part thereof.

FUEL LIQUIDS

Field gases, well head gases, and associated gases typically contain liquid water and heavy hydrocarbons entrained in the gas. To prevent detonation and severe damage to the engine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid separator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground in accordance with local codes and standards.

To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel operating temperature.

Proposal Prepared For:	Prepared By:	Jesse Stinson			Proposal	QUO-22071
Doug Kern O: (307)675-5081					Revision:	1
Exterran		jstinson@emi	ttechnologies.com		Expires:	September 7, 2017
APPLICATION INFORMAT	ΓΙΟΝ		EMISSIONS AND HOUSING INFOR	SILENC	ING INFORMATION (Standard Offering)	
Make:	Caterpillar		HOUSING			
Model:	G3606 A4		Make:	Critical G	arade Cooler Mount Catalys	t/Silencer
Horsepower:	1875		Insertion Loss:	25-30 dB	A	
RPM:	1000		Model:	ELS-420	0-1820F-4CE0-362	
Compression Ratio:	7.6		Element Capacity:	4		
Exhaust Flow Rate (CFM):	11801		Weight:	1583 Lbs	5	
Exhaust Temperature (°F):	835					
Allowable Backpressure:	12" WC		CATALYST			
Reference:	EM0555-07-001		Catalyst Model:	RT-3615	-Z	
Fuel:	Custom		Catalyst Type:	Oxidatior	n, Standard Precious Metals	s Group
Annual Operating Hours:	8760		Catalyst Size:	Rectangl	e, 36" x 15" x 3.5"	
			Catalyst Qty:	4		
GAS COOLER			Blank Qty:	0		
Make:	N/A					
Model:	N/A		POST CATALYS	T EMISSI	ONS - DTE Emissions	
Orientation:	Horizontal			g/bhp-hr	% Reduction	
			NO _x :	Unaffecte	ed by Oxidation Catalyst	
UNCONTROLLED EMISSI	ONS DATA		CO:	<0.11	>95%	
	g/bhp-hr		VOC:	<0.09	>68%	
NO _x :	0.50		HCHO:	<0.04	>80%	
CO:	2.20					
THC:	4.59		SYSTEM BACKP	RESSUR	E (Standard Offering)	
NMHC ¹	0.42		Total System Bac	koressure -	<6.30" WC	
NMNEHC.	0.29					
HCHO:	0.20					
Oxygen:	10.90%					

GILLETTE GENERATORS

LIQUID COOLED NAT. GAS ENGINE GENERATOR SET

Model		PRIME 105°C RISE
	HZ	NATURAL GAS
PR-1800-60 HERTZ	60	180

All generator sets are USA prototype built and thoroughly tested. Production models are USA factory built and 100% load tested.

UL1446, UL508, UL142, UL498

NFPA 110, 99, 70, 37

All generator sets meet NFPA-110 Level 1, when equipped with the necessary accessories and installed per NFPA standards.

NEC 700, 701, 702, 708

NEMA ICS10, MG1, ICS6, AB1

ANSI C62.41, 27, 59, 32, 480, 40Q, 81U, 360-05 ansi

ASCE ASCE 7-05 & 7-10

All generator sets meet 180 MPH rating.

EPA EPA 40CFR Part 60, 1048, 1065, 1068

PRIME MODEL

PR-1800

60 HERTZ

"OPEN" GEN-SET

There is no enclosure, so gen-set must be placed within a weather protected area, un-inhabited by humans or animals, with proper ventilation. Silencer not supplied, as installation requirements are not known. However, this item is available as optional equipment.

"LEVEL 2" HOUSED GEN-SET Full aluminum weather protection and superior sound attenuation for specific low noise applications. Critical grade muffler is standard.

GENERATOR RATINGS					NATURAL GAS FUEL		
GENERATOR MODEL	VOLT	TAGE	РН	HZ	105°C RISE PRIME RATING		POWER LEAD CONNECTIONS
	L-N	L-L			KW/KVA	AMP	
PR-1800-1-1	120	240	1	60	180/180	750	4 LEAD DEDICATED 1 PH.
PR-1800-3-2	120	208	3	60	180/225	625	12 LEAD LOW WYE
PR-1800-3-3	120	240	3	60	180/225	542	12 LEAD HIGH DELTA
PR-1800-3-4	277	480	3	60	180/225	271	12 LEAD HIGH WYE
PR-1800-3-5	127	220	3	60	180/225	591	12 LEAD LOW WYE
PR-1800-3-16	346	600	3	60	180/225	217	4 LEAD DEDICATED 3 PH.

RATINGS: All single phase gen-sets are dedicated 4 lead windings, rated at unity (1.0) power factor. All three phase gen-sets are 12 lead windings, rated at (.8) power factor. 105°C "PRIME RATINGS" are strictly for gen-sets provide the prime source of electric power, where normal utility power is unavailable or unreliable. A 10% overload is allowed for a total of 1 hour, within every 12 hours of operation of PRIME RATED systems. All gen-set power ratings are based on temperature rise measured by resistance method as defined by MIL-STD 705C and IEEE STD 115, METHOD 6.4.4. All generators have class H (180°C) insulation system on both rotor and stator windings. All factory tests and KW/KVA charts shown above are based on 105°C (prime) R/R winding temperature, within a maximum 40°C ambient condition. Specifications & ratings are subject to change without prior notice.

APPLICATION AND ENGINEERING DATA FOR MODEL PR-1800-60 HZ

GENERATOR SPECIFICATIONS

Manufacturer Marathon Electric Generators
Model & Type 432PSL6228, 4 Pole, 4 Lead, Single Phase
ExciterBrushless, shunt excited
Voltage Regulator
Voltage Regulation ¹ / ₂ %, No load to full load
FrequencyField convertible, 60 HZ to 50 HZ
Frequency Regulation
Unbalanced Load Capability 100% of prime amps
Total Stator and Load InsulationClass H, 180°C
Temperature Rise
1 Ø Motor Starting @ 30% Voltage Dip (240V)
3 Ø Motor Starting @ 30% Voltage Dip (208-240V)430 kVA
3 Ø Motor Starting @ 30% Voltage Dip (480V)580 kVA
Bearing
CouplingDirect flexible disc
Total Harmonic Distortion Max 3½% (MIL-STD705B)
Telephone Interference Factor Max 50 (NEMA MG1-22)
Deviation Factor Max 5% (MIL-STD 405B)
Ltd. Warranty Period

GENERATOR FEATURES

- World Renown Marathon Electric Generator having UL-1446 certification.
- Full generator protection with **Deep Sea 7420** controller, having UL-508 certification.
- Automatic voltage regulator with over-excitation, underfrequency compensation, under-speed protection, and EMI filtering. Entire solid-state board is encapsulated for moisture protection.
- Generator power ratings are based on temperature rise, measured by resistance method, as defined in MIL-STD 705C and IEEE STD 115, Method 6.4.4.
- Power ratings will not exceed temperature rise limitation for class H insulation as per NEMA MG1-22.40.
- Insulation resistance to ground, exceeds 1.5 meg-ohm.
- Stator receives 2000 V. hi-potential test on main windings, and rotor windings receive a 1500 V. hi-potential test, as per MIL-STD 705B.
- Full amortisseur windings with UL-1446 certification.
- Complete engine-generator torsional acceptance, confirmed during initial prototype testing.
- Full load testing on all engine-generator sets, before shipping.
- Self ventilating and drip-proof & revolving field design

ENGINE SPECIFICATIONS AND APPLICATIONS DATA

ENGINE

Manufacturer	Power Solutions Inc. (PSI)
Model and TypeHeavy	Duty 11.1LTCAC, 4 cycle
AspirationTurbochan	rged & Charge Air Cooled
Cylinder Arrangement	6 Cylinders, Inline
Displacement Cu. In. (Liters)	
Bore & Stroke In. (Cm.)	4.84 x 6.1 (12.3 x 15.5)
Compression Ratio	
Main Bearings & Style	7, Precision Half-Shell
Cylinder Head	Cast Iron
Pistons	Cast Aluminum
Crankshaft	Forged Steel
Exhaust Valve	Inconel, A193
Governor	Electronic
Frequency Reg. (no load-full load)	Isochronous
Frequency Reg. (steady state)	± 1/4%
Air Cleaner	Dry, Replaceable Cartridge
Engine Speed	
Piston Speed, ft/min (m./min)	
Max Power, bhp (kwm) Prime/NG	
Ltd. Warranty Period12 Months	or 2000 hrs., first to occur

FUEL SYSTEM

Туре	NAT. GAS, Vapor Withdrawal
Fuel Pressure (kpa), in. H ₂ O	
Secondary Fuel Regulator	NG Vapor System
Auto Fuel Lock-Off Solenoid	Standard on all sets
Fuel Supply Inlet Line	

FUEL CONSUMPTION

NAT. GAS: FT ³ /HR (M ³ /HR)	PRIME		
100% LOAD	1980 (56.1)		
75% LOAD	1500 (42.5)		
50% LOAD	1075 (30.4)		
NG = 1000 BTU X FT ³ /HR = Total BTU/HR			

OIL SYSTEM

Type	Full Pressure
Oil Pan Capacity qt. (L)	
Oil Pan Cap. W/ filter qt. (L)	
Oil Filter	1, Replaceable Spin-On

ELECTRICAL SYSTEM

Ignition SystemElectronic Eng. Alternator/Starter: 24 VDC, negative ground, 45 amp/hr.

Recommended battery to $-18^{\circ}C$ (0° F):(2) 12 VDC, BCI# 27, Max. Dimensions: 12"lg x 6 3/4" wi x 9" hi, with standard round posts. Min output 700 CCA. Battery tray (max. dim. at 12"lg x 7"wi). This model has (2) battery trays, (2) hold down straps, (2) sets of battery cables, and (1) battery charger. Installation of (2) 12VDC starting batteries connected in series for 24VDC output is required, with possible higher AMP/HR rating, as described above, if the normal environment temperature averages -13° F (-25°C) or cooler.

APPLICATION AND ENGINEERING DATA FOR MODEL PR-1800-60 HZ

COOLING SYSTEM

Type of System	Pressurized, closed recovery
Coolant Pump	Pre-lubricated, self-sealing
Cooling Fan Type (no. of blades)	Pusher (12)
Fan Diameter inches (mm)	
Ambient Capacity of Radiator °F (°C	C)125 (51.6)
Engine Jacket Coolant Capacity Gal	(L)5.5 (21.0)
Radiator Coolant Capacity Gal. (L).	
Maximum Restriction of Cooling Ai	r Intake
and discharge side of radiator in. H ₂ /	0 (kpa) 0.5 (.125)
Water Pump Capacity gpm (L/min).	
Heat Reject Coolant: Btu/min (kw).	
Low Radiator Coolant Level Shutdo	wnStandard
Note: Coolant temp. shut-down switch setting (water/antifreeze) mix.	g at 230°F (110°C) with 50/50

AIR REQUIREMENTS

Combustion Air, cfm (m ³ /min)	
Radiator Air Flow cfm (m ³ /min)	
Heat Rejected to Ambient:	
Engine: kw (btu/min)	
Alternator: kw (btu/min)	

EXHAUST SYSTEM

Exhaust Outlet Size	5"
Max. Back Pressure, in. hg (KPA)	
Exhaust Flow, at rated kw: cfm (m ³ /min)	1425 (40.3)
Exhaust Temp., at rated kw: °F (°C)	1382 (750)
Engines are EPA certified for Natural Gas.	

SOUND LEVELS MEASURED IN dB(A)

	Open	Level 2	
	Set	Encl.	
Level 2, Critical Silencer			

Note: Open sets (no enclosure) has (2) optional silencer system choices due to unknown job-site applications. Level 2 enclosure has installed critical silencer with upgrade to hospital silencer. Sound tests are averaged from several test points and taken at 23 ft. (7 m) from source of noise at normal operation.

DERATE GENERATOR FOR ALTITUDE

3% per 1000 ft.(305m) above 3000 ft. (914m) from sea level

DERATE GENERATOR FOR TEMPERATURE

2% per 10°F(5.6°C) above 85°F (29.4°C)

DIMENSIONS AND WEIGHTS

	Open	Level 2
	Set	Enclosure
Length in (cm)		
Width in (cm)		
Height in (cm)		
3 Ø Net Weight lbs (kg)	6475 (2937)	
3 Ø Ship Weight lbs (kg)	6825 (3096)	

DEEP SEA 7420 DIGITAL MICROPROCESSOR CONTROLLER

<u>Deep Sea 7420</u>

The "**7420**" controller is an auto start mains (utility) failure module for single gen-set applications. This controller includes a backlit LCD display which <u>continuously</u> displays the status of the engine and generator at all times.

The "**7420**" controller will also monitor speed, frequency, voltage, current, oil pressure, coolant temp., and fuel levels. These modules have been designed to display warning and shut down status. It also includes: (11) configurable inputs • (8) configurable outputs • voltage monitoring • mains (utility) failure detection • (250) event logs • configurable timers • automatic shutdown or warning during fault detection • remote start (on load) • engine preheat • advanced metering capability • hour meter • text LCD displays • protected solid state outputs • test buttons for: stop/reset • manual mode • auto mode • lamp test • start button • power monitoring (kWh, kVAr, kVAh, kVArh)

This controller includes expansion features including RS232, RS484 (using MODBUS-RTU/TCP), direct USB connection with PC, expansion optioned using DSENet for remote annunciation and remote relay interfacing for a distance of up to 3300FT. The controller software is freely downloadable from the internet and allows monitoring with direct USB cable, LAN, or by internet via the built in web interface.

Further expansion is available by adding the optional "WebNet" gateway interface module. This device will allow comprehensive monitoring of the generator via the cloud including identification, location, and status. Some advantages of this module include: reduced site visits and maintenance costs • remote fuel management • fault analysis • asset tracking • automatic system alerts • maximized system up-time.

STANDARD FEATURES FOR MODEL PR-1800-60 HZ

STANDARD FEATURES

CONTROL PANEL:

Deep Sea 7420 digital microprocessor with logic allows programming in the field. Controller has:

- STOP-MANUAL-AUTO modes and automatic engine shutdowns, signaled by full text LCD indicators:
- Low oil pressure
- Engine fail to startEngine over speed

• Over & under voltage

- High engine tempLow Radiator Level
- Engine under speed
- Three auxiliary alarms
- Battery fail alarm

Also included is tamper-proof engine hour meter

ENGINE:

Full flow oil filter • Air filter • Oil pump • Solenoid type starter motor • Hi-temp radiator • Jacket water pump

- Thermostat Pusher fan and guard Exhaust manifold
- 24 VDC battery charging alternator Flexible exhaust

connector • "Isochronous" duty, electronic governor • Secondary dry fuel regulator • Dry fuel lock-off solenoid • Vibration isolators • Closed coolant recovery system with 50/50 water to anti-freeze mixture • flexible oil & radiator drain hose.

Design & specifications subject to change without prior notice. Dimensions shown are approximate. Contact Gillette for certified drawings. DO NOT USE DIMENSIONS FOR INSTALLATION PURPOSES.

AC GENERATOR SYSTEM:

AC generator • Shunt excited • Brushless design • Circuit Breaker installed and wired to gen-set • Direct connection to engine with flex disc • Class H, 180°C insulation • Self ventilated • Drip proof construction • UL Certified

VOLTAGE REGULATOR:

¹/₂% Voltage regulation • EMI filter • Under-speed protection • Over-excitation protection • total encapsulation

DC ELECTRICAL SYSTEM:

Battery tray • Battery cables • Battery hold down straps
2-stage battery float charger with maintaining & recharging automatic charge stages

WEATHER/SOUND PROOF ALUMINUM HOUSING CORROSION RESISTANT PROTECTION CONSISTING OF:

- 9 Heated And Agitated Wash Stages
- Zinc Phosphate Etching-coating Stage
- Final Baked On Enamel Powder Coat
- 18/8 Stainless Steel Hardware

ANNTED STATES	UNITED STATES ENVIRONM 2015 MC CERTIFICATE WITH THE (ION AGENCY	OFFICE OF TRANSI AND AIR QUA ANN ARBOR, MICH	PORTATION ALITY IIGAN 48105	
Certificate Issued To: Pow (U.S. N Certificate Number: FPSIB	ertificate Issued To: Power Solutions International, Inc. (U.S. Manufacturer or Importer) Effective Date: 11/12/2014 ertificate Number: FPSIB11.1NGP-016 Expiration Date: 12/31/2015 Byron J (C				Issue Date: 11/12/2014 Revision Date: N/A
Manufacturer: Power Solution Engine Family: FPSIB11.1N Certification Type: Mobile a Fuel : LPG/Propane Natural Gas (CNG/LN/ Emission Standards : VOC (NOx (g/Hp-hr) : 1 CO (g/Hp-hr) : 2HC + CO (g/kW-hr) : 4.4 NMHC + NOX (g/kW- Emergency Use Only : N	ons International, Inc. GP and Stationary G) (g/Hp-hr): 0.7 + NOx (g/kW-hr): 2.7 -hr): 2.7	HITED STA			

Pursuant to Section 213 of the Clean Air Act (42 U.S.C. section 7547) and 40 CFR Part 60, 40 CFR Part 1048, 1065, 1068, and 60 (stationary only and combined stationary and mobile) and subject to the terms and conditions prescribed in those provisions, this certificate of conformity is hereby issued with respect to the test engines which have been found to conform to applicable requirements and which represent the following nonroad engines, by engine family, more fully described in the documentation required by 40 CFR Part 60, 40 CFR Part 1048 and produced in the stated model year.

This certificate of conformity covers only those new nonroad spark-ignition engines which conform in all material respects to the design specifications that applied to those engines described in the documentation required by 40 CFR Part 60, 40 CFR Part 1048 and which are produced during the model year stated on this certificate of the said manufacturer, as defined in 40 CFR Part 60, 40 CFR Part

It is a term of this certificate that the manufacturer shall consent to all inspections described in 40 CFR 1068.20 and authorized in a warrant or court order. Failure to comply with the requirements of such a warrant or court order may lead to revocation or suspension of this certificate for reasons specified in 40 CFR Part 60, 40 CFR Part 1048. It is also a term of this certificate that this certificate may be revoked or suspended or rendered void *ab initio* for other reasons specified in 40 CFR Part 1048.

This certificate does not cover large nonroad engines sold, offered for sale, or introduced, or delivered for introduction, into commerce in the U.S. prior to the effective date of the certificate.

ATTACHMENT N

Tanker Truck Loading Data Sheet(s)

ATTACHMENT N – TANKER TRUCK LOADING DATA SHEET

Complete this data sheet for each new or modified bulk liquid transfer area or loading rack at the facility. This is to be used for bulk liquid transfer operations to tanker trucks. Use extra pages if necessary.

Truck Loadout Collection Efficiencies

The following applicable capture efficiencies of a truck loadout are allowed:

- For tanker trucks passing the MACT level annual leak test 99.2%
- For tanker trucks passing the NSPS level annual leak test 98.7%
- For tanker trucks not passing one of the annual leak tests listed above 70%

Compliance with this requirement shall be demonstrated by keeping records of the applicable MACT or NSPS Annual Leak Test certification for *every* truck and railcar loaded/unloaded. This requirement can be satisfied if the trucking company provided certification that its entire fleet was compliant. This certification must be submitted in writing to the Director of the DAQ. These additional requirements must be noted in the Registration Application and will be noted on the issued G35-D Registration.

Emission Unit ID#: L01 Emission Point ID#				: L01		Year Inst	talled/N	Modified: N/A	
Emission Unit Description: Liquid loading of waste fluids									
			Loading .	Area Data					
Number of Pumps: 2		Numbe	r of Liquids	Loaded: 1		Max num (1) time:	ber of 1	trucks loading at one	
Are tanker trucks pressure tested for leaks at this or any other location? \Box Yes \boxtimes No \boxtimes Not Required If Yes, Please describe:							Not Required		
Provide description of c	losed vent syste	m and an	y bypasses.	N/A					
Are any of the following Closed System to tan Closed System to tan Closed System to tan	g truck loadout s hker truck passis hker truck passis hker truck not p	systems u ng a MAC ng a NSPS assing an	tilized? CT level annu S level annua annual leak	al leak test? al leak test? test and has y	apor ret	urn?			
Pro	jected Maximu	m Operat	ing Schedul	e (for rack o	r transf	er point as	s a wh	ole)	
Time	Jan – M	Jan – Mar		- Jun	Jul – Sept			Oct - Dec	
Hours/day	2	2		2		2		2	
Days/week	5	5		5	5			5	
	Bu	lk Liquid	Data (use e	xtra pages a	s necess	ary)			
Liquid Name	Pi	oduced F	luids						
Max. Daily Throughput (1000 gal/day)		0.55							
Max. Annual Throughpu (1000 gal/yr)	ıt	201.6							
Loading Method ¹		SP							
Max. Fill Rate (gal/min))	~23							
Average Fill Time (min/loading)		~60							
Max. Bulk Liquid Temperature (°F)		52.14							
True Vapor Pressure ²		0.3240	1						
Cargo Vessel Condition	3	U							

Control Equipment or Method ⁴		None	
Max. Collectio	on Efficiency	0	
Max. Control Efficiency (%)		0	
Max.VOC	Loading (lb/hr)	0.04	
Rate	Annual (ton/yr)	0.01	
Max.HAP	Loading (lb/hr)	<0.01	
Rate	Annual (ton/yr)	<0.01	
Estimation Method ⁵		EPA	

1	BF	Bottom Fill	SP	Splash F	Fill	SUB	Submerged Fill
2	At max	imum bulk liquid temperature		-			-
3	В	Ballasted Vessel	С	Cleaned		U	Uncleaned (dedicated service)
	0	Other (describe)					
4	List as	many as apply (complete and s	ubmit a	ppropriate	Air Pollution Cont	rol Device	Sheets)
	CA	Carbon Adsorption		VB	Dedicated Vapor	Balance (closed system)
	ECD	Enclosed Combustion Device	e	F	Flare		• ·
	то	Thermal Oxidization or Inci	neratior	ı			
5	EPA	EPA Emission Factor in AP-	42		MB	Materia	al Balance

TMTest Measurement based upon test data submittalOOther (describe)

ATTACHMENT O

Glycol Dehydration Unit Data Sheet(s)

ATTACHMENT O – GLYCOL DEHYDRATION UNIT DATA SHEET – NOT APPLICABLE

Complete this data sheet for each Glycol Dehydration Unit, Reboiler, Flash Tank and/or Regenerator at the facility. Include gas sample analysis and GRI-GLYCalc[™] input and aggregate report. Use extra pages if necessary.

Manufacturer:	Model:				
Max. Dry Gas Flow Rate:	Reboiler Design Heat Input:				
Design Type: TEG DEG EG	Source Status ¹ :				
Date Installed/Modified/Removed ² :	Regenerator Still Vent APCD/ERD ³ :				
Control Device/ERD ID# ³ :	Fuel HV (BTU/scf):				
H ₂ S Content (gr/100 scf):	Operation (hours/year):				
Pump Rate (scfm):					
Water Content (wt %) in: Dry Gas:					
Is the glycol dehydration unit exempt from 40CFR63 Section □ Yes □ No: If Yes, answer the following:	764(d)?				
The actual annual average flowrate of natural gas to the glyco meters per day, as determined by the procedures specified in Yes INO	ol dehydration unit is less than 85 thousand standard cubic §63.772(b)(1) of this subpart.				
The actual average emissions of benzene from the glycol dehy megagram per year (1 ton per year), as determined by the pro Yes No	ydration unit process vent to the atmosphere are less than 0.90 cedures specified in §63.772(b)(2) of this subpart.				
Is the glycol dehydration unit located within an Urbanized Ar □ Yes □ No	rea (UA) or Urban Cluster (UC)?				
Is a lean glycol pump optimization plan being utilized? □ Yes □ No					
Recycling the glycol dehydration unit back to the flame zone	of the reboiler.				
If yes: Is the reboiler configured to accept flash drum vapors (straight from the glycol dehydrator)? □ Yes □ No Is the reboiler configured to accept still vent vapors (after a condenser)? □ Yes □ No Is the reboiler configured to accept both in the same operation? □ Yes □ No					
Recycling the glycol dehydration unit back to the flame zone	of the reboiler and mixed with fuel.				
What happens when temperature controller shuts off fuel to th Still vent emissions to the atmosphere. Still vent emissions stopped with valve. Still vent emissions to glow plug.	ne reboiler?				
Please indicate if the following equipment is present. Flash Tank Burner management system that continuously burns conder	nser or flash tank vapors				
Control Device	Technical Data				
Pollutants Controlled	Manufacturer's Guaranteed Control Efficiency (%)				
	1				

		Emissic	ons Data		
Emission Unit ID / Emission Point ID ⁴	Description	Calculation Methodology⁵	PTE ⁶	Controlled Maximum Hourly Emissions (lb/hr)	Controlled Maximum Annual Emissions (tpy)

1 Enter the Source Status using the following codes:

NS Construction of New Source ES Existing Source

MS Modification of Existing Source

2 Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source), modification or removal.

3 Enter the Air Pollution Control Device (APCD)/Emission Reduction Device (ERD) type designation using the following codes and the device ID number:

NANoneCDCondenserFLFlareCCCondenser/Combustion CombinationTOThermal OxidizerOOther

CC Condenser/Combustion Combination TO Thermal Oxidizer O Other (please list)
 Enter the appropriate Emission Unit ID Numbers and Emission Point ID Numbers for the glycol dehydration unit reboiler vent and glycol regenerator still vent. The glycol dehydration unit reboiler vent and glycol regenerator still vent. The glycol dehydration unit reboiler vent and glycol regenerator still vent. The glycol dehydration unit reboiler vent and glycol regenerator still vent should be designated RBV-1 and RSV-1, respectively. If the compressor station incorporates multiple glycol dehydration units, a Glycol Dehydration Emission Unit Data Sheet shall be completed for each, using Source Identification RBV-2 and RSV-2, RBV-3 and RSV-3, etc.

5 Enter the Potential Emissions Data Reference designation using the following codes:

MDManufacturer's DataAPAP-42GRGRI-GLYCalcTMOTOther(please list)

GR GRI-GLYCalcTM
 OT Other (please list)
 Enter the Reboiler Vent and Glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs per hour and tons per year. The Glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalcTM (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalcTM Aggregate Calculations Report (shall include emissions reports, equipment reports, and stream reports) to this Glycol Dehydration Emission Unit Data Sheet(s). Backup pumps do not have to be considered as operating for purposes of PTE. This PTE data shall be incorporated in the Emissions Summary Sheet.

ATTACHMENT P

Pneumatic Controller Data Sheet(s)

ATTACHMENT P – PNEUMATIC CONTROLLERS DATA SHEET
Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?
🗌 Yes 🛛 No
Please list approximate number.
Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after September 18, 2015?
🗌 Yes 🛛 No
Please list approximate number.
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?
\Box Yes \boxtimes No
Please list approximate number.
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after September 18, 2015?
\Box Yes \boxtimes No
Please list approximate number.

ATTACHMENT Q

Centrifugal Compressor Data Sheet(s)

ATTACHMENT Q – CENTRIFUGAL COMPRESSOR DATA SHEET							
Are there any centrifugal compressors at this facility that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?							
	\Box Yes \boxtimes No						
	Please list:						
Emission Unit ID#	Compressor Description						
Are ther construct	e any centrifugal compressors at this facility that commenced ion, modification or reconstruction after September 18, 2015?						
	🗌 Yes 🛛 No						
	Please list:						
Emission Unit ID#	Compressor Description						

ATTACHMENT R

Reciprocating Compressor Data Sheet(s)

ATTACHMENT R – RECIPROCATING COMPRESSOR DATA SHEET								
Are there any reciprocating compressors at this facility that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?								
	\Box Yes \boxtimes No							
	Please list:							
Emission Unit ID#	Compressor Description							
Are there construct	any reciprocating compressors at this facility that commenced ion, modification or reconstruction after September 18, 2015?							
	Yes No							
	Please list:							
Emission Unit ID#	Compressor Description							
CE-1	Reciprocating Compressor #1							
CE-2	Reciprocating Compressor #2							

Blowdown and Pigging Operation Data Sheet(s)

ATTACHMENT S – BLOWDOWN AND PIGGING OPERATIONS DATA SHEET

Will there be any blowdown and pigging operations that occur at this facility?

Yes No

Please list:

Type of Event	# of Events (event/yr)	Amount Vented per event (scf/event)	MW of vented gas (lb/lb-mol)	Total Emissions (ton/yr)	VOC weight fraction	VOC emissions (ton/yr)
Compressor Blowdown	120	4,500	16.55	11.79	0.0041	0.05
Compressor Startup	120	1,000	16.55	2.62	0.0041	0.01
Plant Shutdown	1	500,000	16.55	10.92	0.0041	0.04
Low Pressure Pig Venting	52	1,000	16.55	1.14	0.0041	4.6E-03
High Pressure Pig Venting	52	1,000	16.55	1.14	0.0041	4.6E-03

Type of Event	# of Events (event/yr)	Amount Vented per event (scf/event)	MW of vented gas (lb/lb- mol)	Total Emissions (ton/yr)	HAP weight fraction	HAP emissions (ton/yr)
Compressor Blowdown	120	4,500	16.55	11.79	<0.0001	< 0.01
Compressor Startup	120	1,000	16.55	2.62	<0.0001	< 0.01
Plant Shutdown	1	500,000	16.55	10.92	<0.0001	< 0.01
Low Pressure Pig Venting	52	1,000	16.55	1.14	<0.0001	< 0.01
High Pressure Pig Venting	52	1,000	16.55	1.14	<0.0001	<0.01
Air Pollution Control Device Data Sheet(s)

ATTACHMENT T – AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION DEVICE SHEETS – NOT APPLICABLE

Complete the applicable air pollution control device sheets for each flare, vapor combustor, thermal oxidizer, condenser, adsorption system, vapor recovery unit, BTEX Eliminator, Reboiler with and without Glow Plug, etc. at the facility. Use extra pages if necessary.

Emissions calculations must be performed using the most conservative control device efficiency.

The following five (5) rows are only to be completed if registering an alternative air pollution control device.						
Emission Unit ID: N/A	Make/Model:					
Primary Control Device ID:	Make/Model:					
Control Efficiency (%):	APCD/ERD Data Sheet Completed: Yes No					
Secondary Control Device ID:	Make/Model:					
Control Efficiency (%):	APCD/ERD Data Sheet Completed: Yes No					

VAPOR COMBUSTION (Including Enclosed Combustors)								
		General Ir	formation					
Control Device ID#: N/A	Installation Date:							
Maximum Rated Total Flow scfh	Maximum Design Heat Input (from mfg. spec sheet) MMBTU/hr			Heat Content 3TU/scf				
		Control Devic	e Informati	on				
Type of Vapor Combustion Control? Enclosed Combustion Device Elevated Flare Thermal Oxidizer Ground Flare						Ground Flare		
Manufacturer: Model:			Hours of o	peration	per year?			
List the emission units who	e emissions	are controlled by this	vapor contr	ol device	(Emission	Point ID#)		
Emission Unit ID# Emission Sourc	sion ID# Emission Source Description			Emissio	on Source Description			
If this vapor combusto	controls er	nissions from more the	an six (6) en	ission un	its, please	attach additional pages.		
Assist Type (Flares only)		Flare Height	Tip Diameter			Was the design per §60.18?		
Steam Ai Pressure N	r on	feet	feet			☐ Yes ☐ No Provide determination.		
		Waste Gas 1	Information					
Maximum Waste Gas Flow (scfm)	Rate	Heat Value of W	Vaste Gas Stream Exit Ve BTU/ft ³			locity of the Emissions Stream (ft/s)		
Provide	an attachme	ent with the characteri	stics of the v	vaste gas	stream to	be burned.		
		Pilot Gas I	nformation					
Number of Pilot Lights	Number of Pilot Lights Fuel Flow Rate to Pilot Flame per Pilot scfh			nput per BTU/	Pilot hr	Will automatic re-ignition be used? Yes No		
If automatic re-ignition is u	ed, please o	describe the method.				·		
Is pilot flame equipped with presence of the flame?	a monitor t ∃ Yes	o detect the	If Yes, what type? Thermocouple Infrared Ultraviolet Camera Other:					
Describe all operating range unavailable, please indicate	s and maint).	enance procedures req	uired by the	manufac	turer to ma	intain the warranty. (If		
Additional information attached? Yes No Please attach copies of manufacturer's data sheets, drawings, flame demonstration per §60.18 or §63.11(b) and performance testing.								

CONDENSER							
General Information							
Control Device ID#: N/A Installation Date: New Modified Relocated							
Manufacturer:	Model:	Control Device Name:					
Control Efficiency (%):							
Manufacturer's required temperature range for control efficie	ncy. °F						
Describe the warning and/or alarm system that protects agains	st operation when uni	t is not meeting the design requirements:					
Describe all operating ranges and maintenance procedures required by the manufacturer to maintain the warranty.							
Additional information attached? Yes No Please attach copies of manufacturer's data sheets.							
Is condenser routed to a secondary APCD or ERD?							

ADSORPTION SYSTEM							
General Information							
Control Device ID#: N/A	Installation Date:						
Manufacturer:	Model: Control Device Name:						
Design Inlet Volume: scfm	Adsorbent charge per adsorber vessel and number of adsorber vessels:						
Length of Mass Transfer Zone supplied by the manufacturer:	Adsorber diameter: ft Adsorber area: ft ²						
Adsorbent type and physical properties:	Overall Control Efficiency (%):						
Working Capacity of Adsorbent (%):							
Operating	Parameters						
Inlet volume: scfm @ °F							
Adsorption time per adsorption bed (life expectancy): Breakthrough Capacity (lbs of VOC/100 lbs of ad							
Temperature range of carbon bed adsorber. °F - °F	·						
Control Device	Technical Data						
Pollutants Controlled	Manufacturer's Guaranteed Control Efficiency (%)						
Describe the warning and/or alarm system that protects against	st operation when unit is not meeting the design requirements:						
Has the control device been tested by the manufacturer and co	ertified?						
Describe all operating ranges and maintenance procedures rec	uired by the manufacturer to maintain the warranty.						
Additional information attached? Yes No Please attach copies of manufacturer's data sheets, drawings,	and performance testing.						

VAPOR RECOVERY UNIT							
General Information							
Emission U	Jnit ID#: N/A	Installation	n Date:	Relocated			
	Device In	formation					
Manufactu Model:	rer:						
List the en	nission units whose emissions are controlled by this	vapor recov	very unit (Emission Po	int ID#)			
Emission Unit ID#	Emission Source Description	Emission Unit ID#	Emission Source De	scription			
If this	vapor recovery unit controls emissions from more t	han six (6) e	emission units, please o	attach additional pages.			
Additional information attached? Yes No Please attach copies of manufacturer's data sheets, drawings, and performance testing. The registrant may claim a capture and control efficiency of 95 % (which accounts for 5% downtime) for the vapor							
recovery u	nit.						
The registr of Section	rant may claim a capture and control efficiency of 9 8.1.2 of this general permit.	98% if the V	RU has a backup flare	that meet the requirements			
The regist	rant may claim a capture and control efficiency of 9	8% if the V	RU has a backup VRU				

ATTACHMENT U

Emission Calculations

Company Name: Facility Name:

DTE Appalachia Gathering, LLC Carrico Compressor Station G35-D Application

Project Description:

Facility-Wide Emission Summary - Controlled

Wells	0	per site
Storage Tanks:	2	per site
Sand Separator Tank	0	per site
Line Heaters:	0	per site
TEGs:	0	per site
Dehy Reboilers:	0	per site
Glycol Dehydrators:	0	per site
Dehy Drip Tanks:	0	per site
Dehy Combustors:	0	per site
Compressors:	2	per site
High Pressure Separators:	2	per site
Low Pressure Separator	0	per site
Vapor Recovery Unit	0	per site
Tank Combustor	0	per site
Length of lease road:	3,200	feet

Carbon equivalent emissions (CO₂e) are based on the following Global Warming Potentials (GWP) from 40 CFR Part 98, Table A-1: CO₂ 1 CH₄ 25 N₂0 298

Particul and	F i	Parissis		0		0	V	20	6	0	DA		DM		C C			
Emission	Emission	Emission	N O	U _x		0	vi vi	JL .		02	PN	1 ₁₀	PN	2.5		n ₄		J ₂ e
Point ID #	Source ID#s	Source Description	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
CE-1	CE-1	Compressor Engine	2.07	9.05	0.45	1.99	0.54	2.35	0.01	0.04	0.14	0.62	0.14	0.62	17.24	75.50	2,221.76	9,731.29
CE-2	CE-2	Compressor Engine	2.07	9.05	0.45	1.99	0.54	2.35	0.01	0.04	0.14	0.62	0.14	0.62	17.24	75.50	2,221.76	9,731.29
GE-1	GE-1	Generator	0.60	2.63	1.20	5.25	0.46	2.02	1.2E-03	0.01	0.04	0.17	0.04	0.17	0.00	0.02	238.86	1,046.20
T01	T01	Produced Fluids Tank					0.05	0.23							1.0E-03	0.01	0.03	0.15
T02 to T08	T02 to T08	De minimis storage tanks					0.01	0.03										
L01	L01	Liquid Loading					0.04	0.01										
		Fugitives						0.95								48.61		1,215.20
		Haul Roads										0.08		0.01				·
Facility Total			4.73	20.73	2.11	9.24	1.63	7.95	0.02	0.08	0.32	1.49	0.32	1.42	34.48	199.63	4,682.39	21,724.12
Facility Total (excluding	g fugitive emissions)		4.73	20.73	2.11	9.24	1.63	6.99	0.02	0.08	0.32	1.41	0.32	1.41	34.48	151.03	4,682.39	20,508.92
Emission	Emission	Emission	Forma	ldehyde	Ben	zene	Tolu	iene	Ethylb	enzene	Xyle	enes	n-He	xane	Total	BTEX	Tota	I HAP
Point ID #	Source ID#s	Source Description	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
CE-1	CE-1	Compressor Engine	0.17	0.72	6.2E-03	2.7E-02	5.8E-03	2.5E-02	5.6E-04	2.5E-03	2.6E-03	1.1E-02	0.02	0.07	0.02	0.07	0.44	1.93
CE-2	CE-2	Compressor Engine	0.17	0.72	6.2E-03	2.7E-02	5.8E-03	2.5E-02	5.6E-04	2.5E-03	2.6E-03	1.1E-02	0.02	0.07	0.02	0.07	0.44	1.93
GE-1	GE-1	Commenter	0.04	0.40	0.05.00	4 45 00		5 0 D 0 D	F 1E OF	0.00.04	4.05.04	1 75 02			4 05 02	0.02	0.07	0.29
		Generator	0.04	0.18	3.2E-03	1.4E-02	1.1E-03	5.0E-03	5.1E-05	2.2E-04	4.0E-04	1./E-U3			4.8E-03	0.02	0.07	
T01	T01	Produced Fluids Tank	0.04	0.18	3.2E-03 <0.01	1.4E-02 2.0E-03	1.1E-03 <0.01	5.0E-03 1.0E-03	<0.01	2.2E-04 <0.01	4.0E-04 <0.01	<0.01	3.0E-03	1.3E-02	4.8E-03 <0.01	3.0E-03	0.01	0.02
T01 T02 to T08	T01 T02 to T08	Produced Fluids Tank De minimis storage tanks		0.18	3.2E-03 <0.01	1.4E-02 2.0E-03	1.1E-03 <0.01	5.0E-03 1.0E-03	<0.01	<0.01 	4.0E-04 <0.01	<0.01	3.0E-03	1.3E-02	4.8E-03 <0.01	3.0E-03	0.01 0.01	0.02
T01 T02 to T08 L01	T01 T02 to T08 L01	Produced Fluids Tank De minimis storage tanks Liquid Loading		0.18 	3.2E-03 <0.01 	1.4E-02 2.0E-03	1.1E-03 <0.01 	1.0E-03	<0.01 	<0.01 	4.0E-04 <0.01	<0.01 	3.0E-03	1.3E-02 	4.8E-03 <0.01 	3.0E-03 	0.07 0.01 0.01 3.4E-03	0.02 0.03 8.9E-04
T01 T02 to T08 L01 	T01 T02 to T08 L01	Produced Fluids Tank De minimis storage tanks Liquid Loading Fugitives	0.04 	0.18 	3.2E-03 <0.01 	1.4E-02 2.0E-03 	1.1E-03 <0.01 	5.0E-03 1.0E-03 	<0.01 	2.2E-04 <0.01 	4.0E-04 <0.01 	<0.01 	3.0E-03 	1.3E-02 	<0.01 	0.02 3.0E-03 	0.01 0.01 3.4E-03	0.02 0.03 8.9E-04
T01 T02 to T08 L01 	T01 T02 to T08 L01 	Generator Produced Fluids Tank De minimis storage tanks Liquid Loading Fugitives Haul Roads	0.04 	0.18 	3.2E-03 <0.01 	1.4E-02 2.0E-03 	1.1E-03 <0.01 	5.0E-03 1.0E-03 	<0.01 	2.2E-04 <0.01 	4.0E-04 <0.01 	<0.01 	3.0E-03 	1.3E-02 	4.8E-03 <0.01 	3.0E-03 	0.01 0.01 3.4E-03	0.02 0.03 8.9E-04
T01 T02 to T08 L01 Facility Total	T01 T02 to T08 L01 	Generator Produced Fluids Tank De minimis storage tanks Liquid Loading Fugitives Haul Roads	0.04	0.18 1.63	3.2E-03 <0.01 0.02	1.4E-02 2.0E-03 0.07	1.1E-03 <0.01 0.01	5.0E-03 1.0E-03 0.06	<pre>5.1E-05 <0.01 1.2E-03</pre>	2.2E-04 <0.01 0.01	4.0E-04 <0.01 0.01		3.0E-03 0.03	1.3E-02 0.15	4.8E-03 <0.01 0.04	0.02 3.0E-03 0.16	0.01 0.01 3.4E-03 0.96	0.02 0.03 8.9E-04 4.19

DTE Appalachia Gathering, LLC Carrico Compressor Station G35-D Application

Compressor Engines

Engine Information:

Source Designation:	CE-1 and CE-2
Manufacturer:	Caterpillar
Model No.:	G3606
Stroke Cycle:	4-stroke
Type of Burn:	Lean
Rated Horsepower (bhp):	1,875

Engine Fuel Information:

Fuel Type:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,030
Specific Fuel Consumption (Btu/bhp-hr):	7,556
Maximum Fuel Consumption at 100% Load (scf/hr):	13,754
Heat Input (MMBtu/hr):	14.17
Potential Fuel Consumption (MMBtu/yr):	124,107
Max. Fuel Consumption at 100% (MMscf/hr):	0.0138
Max. Fuel Consumption (MMscf/yr):	120.5
Max. Annual Hours of Operation (hr/yr):	8,760

Engine Emissions Data:

			Maximum Pote	ntial Emissions	Estimation Basis / Emission	
Pollutant	Emission Factor	Units	lbs/hr	tpy	Factor Source	
NO _x	0.50	g/bhp-hr	2.07	9.05	Manufacturer Specifications	
VOC (excludes HCHO)	0.09	g/bhp-hr	0.37	1.63	Manufacturer Specifications	
VOC (includes HCHO)			0.54	2.35	VOC + HCHO	
со	0.11	g/bhp-hr	0.45	1.99	Manufacturer Specifications	
SO _x	0.001	lb/MMBtu	0.01	0.04	AP-42, Table 3.2-2 (Jul-2000)	
PM ₁₀	0.01	lb/MMBtu	0.14	0.62	AP-42, Table 3.2-2 (Jul-2000)	
PM _{2.5}	0.01	lb/MMBtu	0.14	0.62	AP-42, Table 3.2-2 (Jul-2000)	
Formaldehyde (HCHO)	0.04	g/bhp-hr	0.17	0.72	Manufacturer Specifications	
GHG (CO ₂ e)	See Tab	e Below	2,222	9,731	40 CFR 98, Tables C-1 & C-2	
Other (Total HAP)	See Tab	e Below	0.44	1.93	AP-42, Table 3.2-2 (Jul-2000)	

Notes:

1. PM₁₀ and PM_{2.5} are total values (filterable + condensable).

2. GHG (CO_2e) is carbon dioxide equivalent, which is the summation of CO_2 (GWP = 1) + CH₄ (GWP = 25) + N₂O (GWP = 298).

3. Total HAP is the summation of all hazardous air pollutants for which there is a published emission factor for this source type.

DTE Appalachia Gathering, LLC Carrico Compressor Station G35-D Application

Compressor Engines									
Greenhouse Gas (GHG) & Hazardous Air Pollutant (HAP) Emissions Calculations:									
Pollutant	Emission Factor	Unite	Maximum Pote	ntial Emissions	Estimation Basis / Emission				
ronutant	Emission Factor	onits	lbs/hr	tpy	Factor Source				
<u>GHGs:</u>									
CO ₂	433	g/bhp-hr	1,789.89	Manufacturer Specifications					
CH ₄	4.17	g/bhp-hr	17.24	Manufacturer (THC - NMHC)					
N ₂ O	0.0001	kg/MMBtu	0.00	40 CFR 98, Table C-2					
GHG (CO ₂ e)		2,222 9,731							
Organic HAPs:									
1,1,2,2-Tetrachloroethane	4.00E-05	lb/MMBtu	5.7E-04	2.5E-03	AP-42, Table 3.2-2 (Jul-2000)				
1,1,2-Trichloroethane	3.18E-05	lb/MMBtu	4.5E-04	2.0E-03	AP-42, Table 3.2-2 (Jul-2000)				
1,3-Butadiene	2.67E-04	lb/MMBtu	3.8E-03	1.7E-02	AP-42, Table 3.2-2 (Jul-2000)				
1,3-Dichloropropene	2.64E-05	lb/MMBtu	3.7E-04	1.6E-03	AP-42, Table 3.2-2 (Jul-2000)				
2-Methylnapthalene	3.32E-05	lb/MMBtu	4.7E-04	2.1E-03	AP-42, Table 3.2-2 (Jul-2000)				
2,2,4-Trimethylpentane	2.50E-04	lb/MMBtu	3.5E-03	1.6E-02	AP-42, Table 3.2-2 (Jul-2000)				
Acenaphthene	1.25E-06	lb/MMBtu	1.8E-05	7.8E-05	AP-42, Table 3.2-2 (Jul-2000)				
Acenaphthylene	5.53E-06	lb/MMBtu	7.8E-05	3.4E-04	AP-42, Table 3.2-2 (Jul-2000)				
Acetaldehyde	8.36E-03	lb/MMBtu	1.2E-01	5.2E-01	AP-42, Table 3.2-2 (Jul-2000)				
Acrolein	5.14E-03	lb/MMBtu	7.3E-02	3.2E-01	AP-42, Table 3.2-2 (Jul-2000)				
Benzene	4.40E-04	lb/MMBtu	6.2E-03	2.7E-02	AP-42, Table 3.2-2 (Jul-2000)				
Benzo(b)fluoranthene	1.66E-07	lb/MMBtu	2.4E-06	1.0E-05	AP-42, Table 3.2-2 (Jul-2000)				
Benzo(e)pyrene	4.15E-07	lb/MMBtu	5.9E-06	2.6E-05	AP-42, Table 3.2-2 (Jul-2000)				
Benzo(g.h.i)pervlene	4.14E-07	lb/MMBtu	5.9E-06	2.6E-05	AP-42, Table 3.2-2 (Jul-2000)				
Biphenyl	2.12E-04	lb/MMBtu	3.0E-03	1.3E-02	AP-42, Table 3.2-2 (Jul-2000)				
Carbon Tetrachloride	3.67E-05	lb/MMBtu	5.2E-04	2.3E-03	AP-42, Table 3.2-2 (Jul-2000)				
Chlorobenzene	3.04E-05	lb/MMBtu	4.3E-04	1.9E-03	AP-42, Table 3.2-2 (Jul-2000)				
Chloroform	2.85E-05	lb/MMBtu	4.0E-04	1.8E-03	AP-42. Table 3.2-2 (Jul-2000)				
Chrysene	6.93E-07	lb/MMBtu	9.8E-06	4.3E-05	AP-42, Table 3.2-2 (Jul-2000)				
Ethylbenzene	3.97E-05	lb/MMBtu	5.6E-04	2.5E-03	AP-42, Table 3.2-2 (Jul-2000)				
Ethylene Dibromide	4.43E-05	lb/MMBtu	6.3E-04	2.7E-03	AP-42. Table 3.2-2 (Jul-2000)				
Fluoranthene	1.11E-06	lb/MMBtu	1.6E-05	6.9E-05	AP-42, Table 3.2-2 (Jul-2000)				
Fluorene	5.67E-06	lb/MMBtu	8.0E-05	3.5E-04	AP-42. Table 3.2-2 (Jul-2000)				
Methanol	2.50E-03	lb/MMBtu	3.5E-02	1.6E-01	AP-42, Table 3.2-2 (Jul-2000)				
Methylene Chloride	2.00E-05	lb/MMBtu	2.8E-04	1.2E-03	AP-42, Table 3.2-2 (Jul-2000)				
n-Hexane	1.11E-03	lb/MMBtu	1.6E-02	6.9E-02	AP-42. Table 3.2-2 (Jul-2000)				
Nanhthalene	7.44E-05	lb/MMBtu	1.1E-03	4.6E-03	AP-42, Table 3.2-2 (Jul-2000)				
РАН	2.69E-05	lb/MMBtu	3.8E-04	1.7E-03	AP-42, Table 3.2-2 (Jul-2000)				
Phenanthrene	1.04E-05	lb/MMBtu	1.5E-04	6.5E-04	AP-42, Table 3.2-2 (Jul-2000)				
Phenol	2.40E-05	lb/MMBtu	3.4E-04	1.5E-03	AP-42, Table 3.2-2 (Jul-2000)				
Pyrene	1.36E-06	lb/MMBtu	1.9E-05	8.4E-05	AP-42, Table 3.2-2 (Jul-2000)				
Styrene	2.36E-05	lb/MMBtu	3.3F-04	1.5E-03	AP-42, Table 3.2-2 (Jul-2000)				
Tetrachloroethane	2.48E-06	lb/MMBtu	3.5E-05	1.5E-04	AP-42. Table 3.2-2 (Jul-2000)				
Toluene	4.08E-04	lb/MMBtu	5.8E-03	2.5E-02	AP-42. Table 3.2-2 (Jul-2000)				
Vinvl Chloride	1.49E-05	lb/MMBtu	2.1E-04	9.2E-04	AP-42. Table 3.2-2 (Jul-2000)				
Xylene	1.84E-04	lb/MMBtu	2.6E-03	1.1E-02	AP-42, Table 3.2-2 (Jul-2000)				
Total HAP (including HCHO)	1 1		0.44	1.93					

DTE Appalachia Gathering, LLC Carrico Compressor Station G35-D Application

Generator Engine

Engine Information:

Source Designation:	GE-1
Manufacturer:	PSI
Model No.:	Heavy Duty 11.1LTCAC
Stroke Cycle:	4-stroke
Type of Burn:	Rich
Rated Horsepower (bhp):	272
Rated Power (kW):	203

Engine Fuel Information:

Fuel Type:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,030
Maximum Fuel Consumption at 100% Load (scf/hr):	1,980
Heat Input (MMBtu/hr):	2.04
Potential Fuel Consumption (MMBtu/yr):	17,866
Max. Fuel Consumption at 100% (MMscf/hr):	0.0020
Max. Fuel Consumption (MMscf/yr):	17.3
Max. Annual Hours of Operation (hr/yr):	8,760

Engine Emissions Data:

Dellastant	Paulanian Pastan	I	Maximum Pote	ntial Emissions	Estimation Basis / Emission	
Ponutant	Emission Factor	Units	lbs/hr	tpy	Factor Source	
NO _x	1.0	g/hp-hr	0.60	2.63	EPA Certificate of Conformity	
VOC (excludes HCHO)	0.7	g/hp-hr	0.42	1.84	EPA Certificate of Conformity	
VOC (includes HCHO)			0.46	2.02	VOC + HCHO	
со	2.0	g/hp-hr	1.20	5.25	EPA Certificate of Conformity	
SO _x	0.001	lb/MMBtu	1.20E-03	0.01	AP-42, Table 3.2-3 (Aug-2000)	
PM ₁₀	0.02	lb/MMBtu	0.04	0.17	AP-42, Table 3.2-3 (Aug-2000)	
PM _{2.5}	0.02	lb/MMBtu	0.04	0.17	AP-42, Table 3.2-3 (Aug-2000)	
Formaldehyde (HCHO)	0.02	lb/MMBtu	0.04	0.18	AP-42, Table 3.2-3 (Aug-2000)	
GHG (CO ₂ e)	See Tab	le Below	239	1,046	40 CFR 98, Tables C-1 & C-2	
Other (Total HAP)	See Tab	le Below	0.07	0.29	AP-42, Table 3.2-3 (Aug-2000)	

Notes:

1. PM_{10} and $PM_{2.5}$ are total values (filterable + condensable).

2. GHG (CO_2e) is carbon dioxide equivalent, which is the summation of CO_2 (GWP = 1) + CH₄ (GWP = 25) + N₂O (GWP = 298).

3. Total HAP is the summation of all hazardous air pollutants for which there is a published emission factor for this source type.

DTE Appalachia Gathering, LLC Carrico Compressor Station G35-D Application

Generator Engine												
Greenhouse Gas (GHG) & Hazardous Air Pollutant (HAP) Em	issions Calculation	<u>1S:</u>										
Dollutout	Emission Easton	Unito	Maximum Pote	ntial Emissions	Estimation Basis / Emission							
Pollutant	Emission Factor	Units	lbs/hr	tpy	Factor Source							
GHGs:												
CO ₂	53.06	kg/MMBtu	238.61	1045.12	40 CFR 98, Table C-1							
CH ₄	0.001	kg/MMBtu	4.5E-03	2.0E-02	40 CFR 98, Table C-2							
N ₂ O	0.0001	kg/MMBtu	4.5E-04	2.0E-03	40 CFR 98, Table C-2							
GHG (CO ₂ e)			239	1,046								
Organic HAPs:												
1,1,2,2-Tetrachloroethane	2.53E-05	lb/MMBtu	5.2E-05	2.3E-04	AP-42, Table 3.2-3 (Aug-2000)							
1,1,2-Trichloroethane	1.53E-05	lb/MMBtu	3.1E-05	1.4E-04	AP-42, Table 3.2-3 (Aug-2000)							
1,3-Butadiene	6.63E-04	lb/MMBtu	1.4E-03	5.9E-03	AP-42, Table 3.2-3 (Aug-2000)							
1,3-Dichloropropene	1.27E-05	lb/MMBtu	2.6E-05	1.1E-04	AP-42, Table 3.2-3 (Aug-2000)							
Acetaldehyde	2.79E-03	lb/MMBtu	5.7E-03	2.5E-02	AP-42, Table 3.2-3 (Aug-2000)							
Acrolein	2.63E-03	lb/MMBtu	5.4E-03	2.3E-02	AP-42, Table 3.2-3 (Aug-2000)							
Benzene	1.58E-03	lb/MMBtu	3.2E-03	1.4E-02	AP-42, Table 3.2-3 (Aug-2000)							
Carbon Tetrachloride	1.77E-05	lb/MMBtu	3.6E-05	1.6E-04	AP-42, Table 3.2-3 (Aug-2000)							
Chlorobenzene	1.29E-05	lb/MMBtu	2.6E-05	1.2E-04	AP-42, Table 3.2-3 (Aug-2000)							
Chloroform	1.37E-05	lb/MMBtu	2.8E-05	1.2E-04	AP-42, Table 3.2-3 (Aug-2000)							
Ethylbenzene	2.48E-05	lb/MMBtu	5.1E-05	2.2E-04	AP-42, Table 3.2-3 (Aug-2000)							
Ethylene Dibromide	2.13E-05	lb/MMBtu	4.3E-05	1.9E-04	AP-42, Table 3.2-3 (Aug-2000)							
Methanol	3.06E-03	lb/MMBtu	6.2E-03	2.7E-02	AP-42, Table 3.2-3 (Aug-2000)							
Methylene Chloride	4.12E-05	lb/MMBtu	8.4E-05	3.7E-04	AP-42, Table 3.2-3 (Aug-2000)							
Naphthalene	9.71E-05	lb/MMBtu	2.0E-04	8.7E-04	AP-42, Table 3.2-3 (Aug-2000)							
РАН	1.41E-04	lb/MMBtu	2.9E-04	1.3E-03	AP-42, Table 3.2-3 (Aug-2000)							
Styrene	1.19E-05	lb/MMBtu	2.4E-05	1.1E-04	AP-42, Table 3.2-3 (Aug-2000)							
Toluene	5.58E-04	lb/MMBtu	1.1E-03	5.0E-03	AP-42, Table 3.2-3 (Aug-2000)							
Vinyl Chloride	7.18E-06	lb/MMBtu	1.5E-05	6.4E-05	AP-42, Table 3.2-3 (Aug-2000)							
Xylene	1.95E-04	lb/MMBtu	4.0E-04	1.7E-03	AP-42, Table 3.2-3 (Aug-2000)							
Total HAP (including HCHO)	-		0.07	0.29								

DTE Appalachia Gathering, LLC Carrico Compressor Station G35-D Application

Storage Vessels

Operational Hours

8,760 hrs/yr

Storage Tanks - Uncontrolled 1,2,3

Source Designation: Contents: Number: Capacity: Throughput: Condensate Throughput:	To Produce 1 16,800 201,600 0.1	01 ed Fluids tank(s) gal (each) gal (each) bbl/day (each)	T(Wasi 1 8,820 105,840)2 te Oil tank(s) gal (each) gal (each)	T03 t Compre 2 500 6,000	o T04 essor Oil tank(s) gal (each) gal (each)	T05 t Engin 2 500 6,000	o T06 ne Oil tank(s) gal (each) gal (each)	T07 t Meth 2 500 6,000	o T08 hanol tank(s) gal (each) gal (each)
Emissions (per tank)	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
VOC HAP Benzene Toluene Ethylbenzene Xylene n-Hexane	0.052 0.005 <0.001 <0.001 <0.001 <0.001 0.003	0.229 0.020 0.002 0.001 <0.001 <0.001 0.013	4.4E-04 4.4E-04 	0.002 0.002 	3.7E-05 3.7E-05 	1.6E-04 1.6E-04 	3.7E-05 3.7E-05 	1.6E-04 1.6E-04 	0.003 0.003 	0.011 0.011
Methane	0.001	0.006								

¹ Uncontrolled emissions calculation using E&P TANK v2.0 for tanks with flashing; emissions include working, breathing and flashing losses. Conservatively assumes 1% condensate in waste fluids.

² Uncontrolled emissions calculation using EPA Tanks 4.0.9d for tanks without flashing; emissions include working and breathing losses.

³ Conservatively assumes one turnover per month, per tank. Assumes that waste oil tank receives all used oil.

DTE Appalachia Gathering, LLC Carrico Compressor Station G35-D Application

Liquid Loading

Throughput Capture Efficiency Control Efficiency 201,600 gal/yr 0% non-tested tanker trucks 0% Combustor destruction efficiency

Liquid Loading Emissions

Source ID:

Uncontrolled Loading Losses: L_L (lb/10³ gal) = 12.46 (SPM)/T * Controlled Loading Losses: L_L (lb/10³ gal) = 12.46 (SPM)/T * (1 - Capture Efficiency * Control Efficiency)

L01

Parameter	Value	Description
S	0.60	Saturation factor for "Submerged Loading: dedicated normal service" (AP-42 Table 5.2-1)
Capture Efficiency	0%	Capture Efficiency
Control Efficiency	0%	Control Efficiency
Р	0.3240	true vapor pressure of liquid loaded (psia) - from EPA TANKS run
М	19.3610	molecular weight of vapors (lb/lb-mol) - from EPA TANKS run
Т	511.81	bulk liquid temperature of liquids loaded (deg R) - from EPA TANKS run

Description	Uncontrolled	Maximum Throughput ¹	VOC EI	missions	HAP EI	nissions
	(lb/10 ³ gal)	(gal/yr)	(tpy)	(lb/hr) ²	(tpy)	(lb/hr) ²
Truck Loading of Produced Fluids	0.09	201,600	0.01	0.04	0.00	0.00

¹ Total estimated maximum annual throughput for the waste fluid tank.

¹ Lb/hr values assume two (2) hours of loading per day, five (5) days per week.

DTE Appalachia Gathering, LLC Carrico Compressor Station G35-D Application

Fugitive Emissions

Fugitive Emissions from Component Leaks

Facility Equipment Type ¹	Valves	Connectors	Open-Ended Lines	Pressure Relief Devices
Wellhead	8	38	0.5	0
Separators	1	6	0	0
Meters/Piping	12	45	0	0
Compressors	12	57	0	0
In-line heaters	14	65	2	1
Dehydrators	24	90	2	2

¹ Table W-1B to Subpart W of Part 98 —Default Average Component Counts for Major Onshore Natural Gas Production

Fugitive VOC/Total Emissions from Component Leaks

Equipment Type	Service	Emission Factors ¹ (kg/hr/source)	Facility Equipment Count ² (units)	TOC Annual Fugitive Emissions (tpy)	Weight Fraction VOC	Weight Fraction HAP	VOC Emissions ³ (tpy)	HAP Emissions ³ (tpy)
Pumps	Light Liquid	0.01990	3	0.58	1.00	0.0E+00	0.58	0.0E+00
Compressor	Gas	0.22800	2	4	0.00	0.0E+00	0.02	0.0E+00
Valves	Gas	0.00597	57	3.29	0.00	0.0E+00	0.01	0.0E+00
Pressure Relief Valves	Gas	0.10400	4	4.02	0.00	0.0E+00	0.02	0.0E+00
Open-Ended Lines	All	0.00170	0	0.00	0.00	0.0E+00	0.0E+00	0.0E+00
Connectors	All	0.00183	257	4.53	0.00	0.0E+00	0.02	0.0E+00
Intermittent Pneumatic Devices ⁴	Gas	13.5	12				0.13	0.0E+00
			Emission Totals:	16.82			0.77	0.0E+00

¹ U.S. EPA. Office of Air Quality Planning and Standards. Protocol for Equipment Leak Emission Estimates. Table 2-1. (Research Triangle Park, NC: U.S. EPA EPA-453/R-95-017, 1995). SOCMI factors were used as it was representative of

natural gas extraction. The pneumatic controller value is from 40 CFR 98 Subpart W, Table W-1A (units of scf/hr-component).

² Assumes one pump for each tank and one meter. Pressure relief valves count includes two for each storage tank. Pneumatic controllers operate on air (no gas emissions). A 50% compliance margin is added to the component counts based on Subpart W counts.

³ Potential emissions VOC/HAP (tpy) = Emission factor (kg/hr/source) * Number of Sources * Weight % VOC/HAP x 2.2046 (lb/kg) x 8,760 (hr/yr) + 2,000 (lb/ton)

⁴ Potential emissions VOC/HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % VOC/HAP + 100 + 379 (scf/lb-mol) + 2,000 (lb/ton)

DTE Appalachia Gathering, LLC Carrico Compressor Station G35-D Application

Fugitive Emissions

Fugitive Specific HAP Emissions from Component Leaks

Equipment Type	Service	Emission Factors ¹ (kg/hr/source)	Facility Equipment Count ² (units)	TOC Annual Fugitive Emissions (tpy)	Benzene Emissions ³ (tpy)	Toluene Emissions ³ (tpy)	Ethylbenzene Emissions ³ (tpy)	Xylene Emissions ³ (tpy)	n-Hexane Emissions ⁴ (tpy)
Pumps	Light Liquid	0.01990	3	0.58	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Compressor	Gas	0.22800	2	4.40	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Valves	Gas	0.00597	57	3.29	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pressure Relief Valves	Gas	0.10400	4	4.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Open-Ended Lines	All	0.00170	0	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Connectors	All	0.00183	257	4.53	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Intermittent Pneumatic Devices ⁴	Gas	13.5	12		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
			Emission Totals:	16.82	<0.01	<0.01	<0.01	<0.01	<0.01

¹ U.S. EPA. Office of Air Quality Planning and Standards. Protocol for Equipment Leak Emission Estimates. Table 2-1. (Research Triangle Park, NC: U.S. EPA EPA-453/R-95-017, 1995). SOCMI factors were used as it was representative of natural gas liquids extraction. Pneumatic controllers operate on air (no gas emissions).

² Assumes one pump for each tank. Pressure relief valves count includes one Emergency Pressure Relief valve and one lock-down hatch for each storage tank. Pneumatic controllers operate on air (no gas emissions). A 50% compliance margin is added to the component counts based on Subpart W counts.

³ Potential emissions HAP (tpy) = Emission factor (kg/hr/source) * Number of Sources * Weight % HAP x 2.2046 (lb/kg) x 8,760 (hr/yr) + 2,000 (lb/ton)

⁴ Potential emissions HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % HAP + 100 + 379 (scf/lb-mol) + 2,000 (lb/ton)

GHG Fugitive Emissions from Component Leaks

		GHG Emission	CH ₄		
Component	Component Count	Factor ¹ cf/hr/componen	Emissions ^{2,3} (tpy)	CO ₂ Emissions ^{2,3} (tpy)	CO ₂ e Emissions ⁴ (tpy)
Pumps	3	0.01	0.01	3.8E-05	0.13
Compressor	2	4.17	1.50	0.01	37.39
Valves	57	0.027	0.28	2.0E-03	6.90
Pressure Relief Devices	4	0.04	0.03	2.0E-04	0.72
Open-Ended Lines	0	0.061	0.0E+00	0.0E+00	0.0E+00
Connectors	257	0.003	0.14	9.8E-04	3.45
Intermittent Pneumatic Devices	12	6	4.30	0.03	107.60
Te	otal		6.25	0.04	156.19

¹ Population emission factors for gas service in the Eastern U.S. from Table W-1A of Subpart W - Default Whole Gas Emission Factors for Onshore Production , 40 CFR 98, Subpart W (table W-6 for compressor).

² Calculated in accordance with Equations W-32a, W-35 and W-36 in Subpart W of 40 CFR 98. See footnote 4 above for sample calculation.

³ Potential emissions VOC/HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % VOC/HAP + 100 + 379 (scf/lb-mol) + 2,000 (lb/ton)

Mole fractions of CH4 and CO2 based on gas analysis:					
CH _{4:}	97%	CO ₂ :	0.25%		
⁴ Carbon equivalent emissions (CO ₂ e) are based on the fo	ollowing Global W	arming Potentials (GWI	P) from 40 CF	R Part 98, Tab	le A-1:
Carbon Dioxide (CO ₂):	1				
Methane (CH ₄):	25				

DTE Appalachia Gathering, LLC Carrico Compressor Station G35-D Application

Fugitive Emissions

Fugitive Emissions from Venting

	Number of Events	Gas Vented Per Event	Total Volume Vented	Total Emissions	VOC Emissions	Benzene Emissions	Toluene Emissions	Ethylbenzene Emissions	Xylene Emissions	n-Hexane Emissions	HAP Emissions	CH4 Emissions	CO ₂ Emissions	CO ₂ e Emissions
Source	(events per yr)	(scf/event)	(scf/yr)	(ton/yr)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
Rod Packing Venting		805,920	805,920	17.60	0.07	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	16.49	0.12	412
Compressor Blowdown	120	4,500	540,000	11.79	0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	11.05	0.08	276
Compressor Startup	120	1,000	120,000	2.62	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	2.46	0.02	61
Plant Shutdown	1	500,000	500,000	10.92	0.04	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	10.23	0.07	256
Low Pressure Pig Venting	52	1,000	52,000	1.14	4.6E-03	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.06	0.01	27
High Pressure Pig Venting	52	1,000	52,000	1.14	4.6E-03	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.06	0.01	27
Total			2,069,920	45.21	0.18	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	42.36	0.30	1,059

¹ VOC and HAP emissions are based on sum of the fractions of the pollutants in the site-specific gas analysis in those classifications, and are calculated in accordance with standard conversion methodology and factors.

² CH₄ and CO₂ emissions are based on fractions of these pollutants in the site-specific gas analysis, and are calculated in accordance with Equations W-35 and W-36 in Subpart W of 40 CFR 98.

³ GHG (CO₂e) is carbon dioxide equivalent, which is the summation of CO₂ (GWP = 1) + CH₄ (GWP = 25) + N₂O (GWP = 298).

⁵ Potential emissions VOC/HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % VOC/HAP + 100 + 379 (scf/lb-mol) + 2,000 (lb/ton)

⁶ Potential emissions CH₄/CO₂ (tpy) = Gas volume vented (scf/yr) * Mole % CH₄/CO₂ + 100 * Density CH₄/CO₂ (kg/scf) * 1,000 (g/kg) + 453.6 (g/lb) + 2,000 (lb/ton)

 Company Name:
 DTE Appalachia Gathering, LLC

 Facility Name:
 Carrico Compressor Station

 Project Description:
 G35-D Application

Haul Roads

Estimated Potential Road Fugitive Emissions

Unpaved Road Emissions

iveu Koau Elliissiolis				
Unpaved Roads	E (lb/VMT)	$= k(s/12)^{a}(W/3)^{b}$)*[(365-p)/3	65]
	PM	PM ₁₀	PM _{2.5}	
k Factor (lb/VMT)	4.9	1.5	0.15	AP-42 Table 13.2.2-2 (Final, 11/06)
Silt content, s	4.8	%		AP-42 Table 13.2.2-1 (11/06), for Sand and Gravel Processing
Number of Rain Days, p	150			AP-42 Figure 13.2.1-2
a	0.7	0.9	0.9	AP-42 Table 13.2.2-2 (Final, 11/06)
b	0.45	0.45	0.45	AP-42 Table 13.2.2-2 (Final, 11/06)

Description	Weight of Empty Truck (tons)	Weight of Truck w/ Max Load (tons)	Mean Vehicle Weight (tons)	Length of Unpaved Road Traveled (mile)	Trips Per Year	Mileage Per Year	Control (%)	PM	Emissions (tpy PM ₁₀	7) PM _{2.5}
Liquids Hauling Employee Vehicles	20 3	40 3	30 3	0.61 0.61	50 200	61 242	0 0	0.13 0.18	0.03 0.05	0.00 0.00
Total Potential Emissions								0.32	0.08	0.01

DTE Appalachia Gathering, LLC Carrico Compressor Station G35-D Application

Gas Analysis	

Sample Location: HHV (Btu/scf):	Coopers Run 1,030				
Constituent	Natural Gas Stream Speciation (Mole %)	Molecular Weight	Molar Weight	Average Weight Fraction	Natural Gas Stream Speciation (Wt. %)
Carbon Dioxide	0.2500	44.01	0.11	0.01	0.665
Nitrogen	0.2900	28.01	0.08	0.00	0.491
Methane	96.7000	16.04	15.51	0.94	93.696
Ethane	2.6100	30.07	0.78	0.05	4.741
Propane	0.1400	44.10	0.06	0.00	0.373
Isobutane	< 0.001	58.12	0.00	0.00	0.000
n-Butane	0.0100	58.12	0.01	0.00	0.035
Isopentane	< 0.001	72.15	0.00	0.00	0.000
n-Pentane	< 0.001	72.15	0.00	0.00	0.000
Cyclopentane	< 0.001	70.1	0.0	0.0	0.000
n-Hexane	< 0.001	86.18	0.00	0.00	0.000
Cyclohexane	< 0.001	84.16	0.00	0.00	0.000
Other Hexanes	< 0.001	86.18	0.00	0.00	0.000
Heptanes	< 0.001	100.21	0.00	0.00	0.000
Methylcyclohexane	< 0.001	98.19	0.00	0.00	0.000
2,2,4-Trimethylpentane	< 0.001	114.23	0.00	0.00	0.000
Benzene*	< 0.001	78.11	0.00	0.00	0.000
Toluene*	< 0.001	92.14	0.00	0.00	0.000
Ethylbenzene*	< 0.001	106.17	0.00	0.00	0.000
Xylenes*	< 0.001	106.16	0.00	0.00	0.000
C8 + Heavies	< 0.001	130.80	0.00	0.00	0.000
Totals	100.000		16.55	1.00	100

TOC (Total)	99.46	98.84
VOC (Total)	0.15	0.41
HAP (Total)	0.00	0.00

******	*****	*************************
* Pr	oject Setup Info	mation *
******	******	***************************************
Project	File	: P:\Client\DTE\West Virginia\Carrico\Projects\173901.0171 Carrico G35D\04 Draft\2
Flowshee	et Selection	: Oil Tank with Separator
Calculat	lon Method	: RVP Distillation
Control	Efficiency	: 100.0%
Coograph	parator Stream	: Geographical Region
Entoring	lical Region	
Flicer Hig	AII COMPOSICION	: NO
Filed Na	ame	: Carrico Compressor Station
Well Nam	ne	: Produced Fluid Tank
Date		: 2017.12.13
******	*****	******
* Da	ita Input	*
******	*****	***************************************
Separato	or Pressure	: 50.00[psig]
separato	or Temperature	: 125.00[F]
Ampient	Pressure	: 14./U[DS1a]
Amplent	remperature	: 125.00[F] - 0.9420
C10 + SG		
CIU+ MW		: 287.00
Low F	Pressure Oil	
No.	Component	mol %
1	H2S	1.2800
2	02	0.0000
3	CO2	0.0300
4	N2	0.0000
5	C1	1.2700
6	C2	2.0800
7	C3	4.5700
8	i-C4	1.8900
9	n-C4	6.4800
10	i-C5	3.8800
11	n-C5	7.0400
12	C6	3.0500
13	C7	6.8200
14	C8	7.7800
15		7.2300
10	CIU+	37.9300
19	Teluene	1 0200
10	Toruene E-Benzene	0.0700
20	Xvleneg	0.6500
21	n-C6	6.1000
22	224Trimethylp	0.0000
Sales	3 Oil	
Producti	on Rate	: 0.1[bbl/day]
Days of	Annual Operation	: 365 [days/year]
API Grav	TTY Droggume	: 49.0
rera vap	or Pressure	: 0.20[h272]
******	******	***************************************
* Ca	lculation Result	3 *
******	******	***************************************
Emico	ion Summary -	
AMISS	IInco	trolled Uncontrolled
_ 0 0 m	[ton	/yr] [lb/hr]

Tota	al HAPs	0.020	0.005					
Tota	al HC	0.254	0.058					
voc	s, C2+	0.247	0.056					
VOC	s, C3+	0.229	0.052					
	•							
Unc	ontrolled Recove	ry Info.						
	Vapor	10.6600 x1E-3	[MSCFD]					
	HC Vapor	9.9100 x1E-3	[MSCFD]					
	GOR	106.60	SCF/bbl1					
			[202/202]					
1	Emission Composi	tion						
No	Component	Uncontrolled	Uncontrol	led				
	-	[ton/yr]	[lb/hr]					
1	H2S	0.012	0.003					
2	02	0.000	0.000					
3	CO2	0.000	0.000					
4	N2	0.000	0.000					
5	C1	0.006	0.001					
6	C2	0.018	0.004					
7	C3	0.049	0.011					
8	i-C4	0.020	0.005					
9	n-C4	0.059	0.013					
10	i-C5	0.026	0.006					
11	n-C5	0.039	0.009					
12	C6	0.008	0.002					
13	C7	0.008	0.002					
14	C8	0.004	0.001					
15	C9	0.002	0.000					
16	C10+	0.000	0.000					
17	Benzene	0.002	0.000					
18	Toluene	0.001	0.000					
19	E-Benzene	0.000	0.000					
20	Xylenes	0.000	0.000					
21	n-C6	0.013	0.003					
22	224Trimethylp	0.000	0.000					
	Total	0.267	0.061					
:	Stream Data							
No.	Component	MW	LP Oil	Flash Oil	Sale Oil	Flash Gas	W&S Gas	Total Emissions
_			mol %	mol %	mol %	mol %	mol %	mol %
1	H2S	34.80	1.2800	0.2130	0.2130	6.8990	0.0000	6.8990
2	02	32.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3	CO2	44.01	0.0300	0.0021		0 1700	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	A 1960
-	N2 C1	20.01	0 0000	0.0000	0.0021	0.1768	0.0000	0.1768
5	1.1	16 04	0.0000	0.0000	0.0021	0.1768 0.0000 7.7625	0.0000	0.1768 0.0000 7.7635
7	C2	16.04	0.0000 1.2700 2.0800	0.0000 0.0369	0.0021 0.0000 0.0369 0.2466	0.1768 0.0000 7.7635 11 7345	0.0000	0.1768 0.0000 7.7635 11 7345
8	C2	16.04 30.07 44.10	0.0000 1.2700 2.0800 4.5700	0.0000 0.0369 0.2466 1.3445	0.0021 0.0000 0.0369 0.2466 1.3445	0.1768 0.0000 7.7635 11.7345 21 5554	0.0000 0.0000 0.0000 0.0000	0.1768 0.0000 7.7635 11.7345 21 5554
å	C2 C3	16.04 30.07 44.10 58.12	0.0000 1.2700 2.0800 4.5700	0.0000 0.0369 0.2466 1.3445 0.9750	0.0021 0.0000 0.0369 0.2466 1.3445 0.9750	0.1768 0.0000 7.7635 11.7345 21.5554 6.7085	0.0000 0.0000 0.0000 0.0000 0.0000	0.1768 0.0000 7.7635 11.7345 21.5554 6.7085
	C2 C3 i-C4 n-C4	16.04 30.07 44.10 58.12 58.12	0.0000 1.2700 2.0800 4.5700 1.8900 6.4800	0.0000 0.0369 0.2466 1.3445 0.9750 3.9279	0.0021 0.0000 0.0369 0.2466 1.3445 0.9750 3.9279	0.1768 0.0000 7.7635 11.7345 21.5554 6.7085 19.9192	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.1768 0.0000 7.7635 11.7345 21.5554 6.7085 19.9192
9 10	C2 C3 i-C4 n-C4 i-C5	16.04 30.07 44.10 58.12 58.12 72.15	0.0000 1.2700 2.0800 4.5700 1.8900 6.4800 3.8800	0.0000 0.0369 0.2466 1.3445 0.9750 3.9279 3.2983	0.0021 0.0000 0.0369 0.2466 1.3445 0.9750 3.9279 3.2983	0.1768 0.0000 7.7635 11.7345 21.5554 6.7085 19.9192 6.9431	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.1768 0.0000 7.7635 11.7345 21.5554 6.7085 19.9192 6.9431
9 10 11	C2 C3 i-C4 n-C4 i-C5 n-C5	16.04 30.07 44.10 58.12 58.12 72.15 72.15	0.0000 1.2700 2.0800 4.5700 1.8900 6.4800 3.8800 7.0400	0.0000 0.0369 0.2466 1.3445 0.9750 3.9279 3.2983 6.3906	0.0021 0.0000 0.0369 0.2466 1.3445 0.9750 3.9279 3.2983 6.3906	0.1768 0.0000 7.7635 11.7345 21.5554 6.7085 19.9192 6.9431 10.4595	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.1768 0.0000 7.7635 11.7345 21.5554 6.7085 19.9192 6.9431 10.4595
9 10 11 12	C2 C3 i-C4 n-C4 i-C5 n-C5 C6	16.04 30.07 44.10 58.12 58.12 72.15 72.15 86.16	0.0000 1.2700 2.0800 4.5700 1.8900 6.4800 3.8800 7.0400 3.0500	0.0000 0.0369 0.2466 1.3445 0.9750 3.9279 3.2983 6.3906 3.2895	0.0021 0.0000 0.2466 1.3445 0.9750 3.9279 3.2983 6.3906 3.2895	0.1768 0.0000 7.7635 11.7345 21.5554 6.7085 19.9192 6.9431 10.4595 1.7886	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.1768 0.0000 7.7635 11.7345 21.5554 6.7085 19.9192 6.9431 10.4595 1.7886
) 10 11 12 13	C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7	16.04 30.07 44.10 58.12 58.12 72.15 72.15 86.16 100.20	0.0000 1.2700 2.0800 4.5700 1.8900 6.4800 3.8800 7.0400 3.0500 6.8200	0.0000 0.0369 0.2466 1.3445 0.9750 3.9279 3.2983 6.3906 3.2895 7.8112	0.0021 0.0000 0.0369 0.2466 1.3445 0.9750 3.9279 3.2983 6.3906 3.2895 7.8112	0.1768 0.0000 7.7635 11.7345 21.5554 6.7085 19.9192 6.9431 10.4595 1.7886 1.6004	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.1768 0.0000 7.7635 11.7345 21.5554 6.7085 19.9192 6.9431 10.4595 1.7886 1.6004
10 11 12 13 14	C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8	16.04 30.07 44.10 58.12 58.12 72.15 72.15 86.16 100.20 114.23	0.0000 1.2700 2.0800 4.5700 1.8900 6.4800 3.8800 7.0400 3.0500 6.8200 7.7800	0.0000 0.0369 0.2466 1.3445 0.9750 3.9279 3.2983 6.3906 3.2895 7.8112 9.1297	0.0021 0.0000 0.2466 1.3445 0.9750 3.9279 3.2983 6.3906 3.2895 7.8112 9.1297	0.1768 0.0000 7.7635 11.7345 21.5554 6.7085 19.9192 6.9431 10.4595 1.7886 1.6004 0.6724	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.1768 0.0000 7.7635 11.7345 21.5554 6.7085 19.9192 6.9431 10.4595 1.7886 1.6004 0.6724
10 11 12 13 14 15	C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9	16.04 30.07 44.10 58.12 58.12 72.15 72.15 86.16 100.20 114.23 128.28	0.0000 1.2700 2.0800 4.5700 1.8900 6.4800 3.8800 7.0400 3.0500 6.8200 7.7800 7.2300	0.0000 0.0369 0.2466 1.3445 0.9750 3.9279 3.2983 6.3906 3.2895 7.8112 9.1297 8.5561	0.0021 0.0000 0.2466 1.3445 0.9750 3.9279 3.2983 6.3906 3.2895 7.8112 9.1297 8.5561	0.1768 0.0000 7.7635 11.7345 21.5554 6.7085 19.9192 6.9431 10.4595 1.7886 1.6004 0.6724 0.2466	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.1768 0.0000 7.7635 11.7345 21.5554 6.7085 19.9192 6.9431 10.4595 1.7886 1.6004 0.6724 0.2466
10 11 12 13 14 15 16	C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10+	16.04 30.07 44.10 58.12 58.12 72.15 72.15 86.16 100.20 114.23 128.28 166.00	0.0000 1.2700 2.0800 4.5700 1.8900 6.4800 3.8800 7.0400 3.0500 6.8200 7.7800 7.2300 37.9300	0.0000 0.0369 0.2466 1.3445 0.9750 3.9279 3.2983 6.3906 3.2895 7.8112 9.1297 8.5561 45.1329	0.0021 0.0000 0.2466 1.3445 0.9750 3.9279 3.2983 6.3906 3.2895 7.8112 9.1297 8.5561 45.1329	0.1768 0.0000 7.7635 11.7345 21.5554 6.7085 19.9192 6.9431 10.4595 1.7886 1.6004 0.6724 0.2466 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.1768 0.0000 7.7635 11.7345 21.5554 6.7085 19.9192 6.9431 10.4595 1.7886 1.6004 0.6724 0.2466 0.0000
10 11 12 13 14 15 16 17	C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10+ Benzene	$16.04 \\ 30.07 \\ 44.10 \\ 58.12 \\ 58.12 \\ 72.15 \\ 72.15 \\ 86.16 \\ 100.20 \\ 114.23 \\ 128.28 \\ 166.00 \\ 78.11 \\ 100.20 \\ 78.10 \\ 100.20 \\ 78.11 \\ 100.20 \\ 78.10 \\ 78.10 \\ 100.20 \\ 100.20 \\ 100.20 \\ 100.20 \\ 100.20 \\ 100.20 \\ 100.20 \\ 100.20 \\ 100.20 \\ 100.20 \\ 100.20 \\ 100.20 \\ 100.20 \\ 100.20 \\ 100.20 \\ 100.20 \\$	0.0000 1.2700 2.0800 4.5700 1.8900 6.4800 3.8800 7.0400 3.0500 6.8200 7.7800 7.2300 37.9300 0.8300	0.0000 0.0369 0.2466 1.3445 0.9750 3.9279 3.2983 6.3906 3.2895 7.8112 9.1297 8.5561 45.1329 0.9150	0.0021 0.0000 0.2466 1.3445 0.9750 3.9279 3.2983 6.3906 3.2895 7.8112 9.1297 8.5561 45.1329 0.9150	0.1768 0.0000 7.7635 11.7345 21.5554 6.7085 19.9192 6.9431 10.4595 1.7886 1.6004 0.6724 0.2466 0.0000 0.3821	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.1768 0.0000 7.7635 11.7345 21.5554 6.7085 19.9192 6.9431 10.4595 1.7886 1.6004 0.6724 0.2466 0.0000 0.3821
10 11 12 13 14 15 16 17 18	C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10+ Benzene Toluene	16.04 30.07 44.10 58.12 58.12 72.15 72.15 86.16 100.20 114.23 128.28 166.00 78.11 92.13	0.0000 1.2700 2.0800 4.5700 1.8900 6.4800 3.8800 7.0400 3.0500 6.8200 7.7800 7.2300 37.9300 0.8300 1.0200	0.0000 0.0369 0.2466 1.3445 0.9750 3.9279 3.2983 6.3906 3.2895 7.8112 9.1297 8.5561 45.1329 0.9150 1.1834	0.0021 0.0000 0.0369 0.2466 1.3445 0.9750 3.9279 3.2983 6.3906 3.2895 7.8112 9.1297 8.5561 45.1329 0.9150 1.1834	0.1768 0.0000 7.7635 11.7345 21.5554 6.7085 19.9192 6.9431 10.4595 1.7886 1.6004 0.6724 0.2466 0.0000 0.3821 0.1596	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.1768 0.0000 7.7635 11.7345 21.5554 6.7085 19.9192 6.9431 10.4595 1.7886 1.6004 0.6724 0.2466 0.0000 0.3821 0.1596
10 11 12 13 14 15 16 17 18 19	C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10+ Benzene Toluene E-Benzene	16.04 30.07 44.10 58.12 58.12 72.15 72.15 86.16 100.20 114.23 128.28 166.00 78.11 92.13 106.17	0.0000 1.2700 2.0800 4.5700 1.8900 6.4800 3.8800 7.0400 3.0500 6.8200 7.7800 7.2300 37.9300 0.8300 1.0200 0.0700	0.0000 0.0369 0.2466 1.3445 0.9750 3.9279 3.2983 6.3906 3.2895 7.8112 9.1297 8.5561 45.1329 0.9150 1.1834 0.0825	0.0021 0.0000 0.0369 0.2466 1.3445 0.9750 3.9279 3.2983 6.3906 3.2895 7.8112 9.1297 8.5561 45.1329 0.9150 1.1834 0.0825	0.1768 0.0000 7.7635 11.7345 21.5554 6.7085 19.9192 6.9431 10.4595 1.7886 1.6004 0.6724 0.2466 0.0000 0.3821 0.1596 0.0041	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.1768 0.0000 7.7635 11.7345 21.5554 6.7085 19.9192 6.9431 10.4595 1.7886 1.6004 0.6724 0.2466 0.0000 0.3821 0.1596 0.0041
10 11 12 13 14 15 16 17 18 19 20	C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10+ Benzene Toluene E-Benzene Xylenes	16.04 30.07 44.10 58.12 58.12 72.15 72.15 86.16 100.20 114.23 128.28 166.00 78.11 92.13 106.17 106.17	0.0000 1.2700 2.0800 4.5700 1.8900 6.4800 3.8800 7.0400 3.0500 6.8200 7.7800 7.2300 37.9300 0.8300 1.0200 0.0700 0.6500	0.0000 0.0369 0.2466 1.3445 0.9750 3.9279 3.2983 6.3906 3.2895 7.8112 9.1297 8.5561 45.1329 0.9150 1.1834 0.0825 0.7670	0.0021 0.0000 0.0369 0.2466 1.3445 0.9750 3.9279 3.2983 6.3906 3.2895 7.8112 9.1297 8.5561 45.1329 0.9150 1.1834 0.0825 0.7670	0.1768 0.0000 7.7635 11.7345 21.5554 6.7085 19.9192 6.9431 10.4595 1.7886 1.6004 0.6724 0.2466 0.0000 0.3821 0.1596 0.0041 0.0341	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.1768 0.0000 7.7635 11.7345 21.5554 6.7085 19.9192 6.9431 10.4595 1.7886 1.6004 0.6724 0.2466 0.0000 0.3821 0.1596 0.0041 0.0341
10 11 12 13 14 15 16 17 18 19 20 21	C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10+ Benzene Toluene E-Benzene Xylenes n-C6	16.04 30.07 44.10 58.12 58.12 72.15 72.15 86.16 100.20 114.23 128.28 166.00 78.11 92.13 106.17 106.17 86.18	0.0000 1.2700 2.0800 4.5700 1.8900 6.4800 3.8800 7.0400 3.0500 6.8200 7.7800 7.2300 37.9300 0.8300 1.0200 0.0700 0.6500 6.1000	0.0000 0.0369 0.2466 1.3445 0.9750 3.9279 3.2983 6.3906 3.2895 7.8112 9.1297 8.5561 45.1329 0.9150 1.1834 0.0825 0.7670 6.6977	0.0021 0.0000 0.0369 0.2466 1.3445 0.9750 3.9279 3.2983 6.3906 3.2895 7.8112 9.1297 8.5561 45.1329 0.9150 1.1834 0.0825 0.7670 6.6977	0.1768 0.0000 7.7635 11.7345 21.5554 6.7085 19.9192 6.9431 10.4595 1.7886 1.6004 0.6724 0.2466 0.0000 0.3821 0.1596 0.0041 0.0341 2.9524	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.1768 0.0000 7.7635 11.7345 21.5554 6.7085 19.9192 6.9431 10.4595 1.7886 1.6004 0.6724 0.2466 0.0000 0.3821 0.1596 0.0041 0.0341 2.9524
10 11 12 13 14 15 16 17 18 19 20 21 22	C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10+ Benzene Toluene E-Benzene Xylenes n-C6 224Trimethylp	16.04 30.07 44.10 58.12 58.12 72.15 72.15 86.16 100.20 114.23 128.28 166.00 78.11 92.13 106.17 106.17 86.18 114.24	0.0000 1.2700 2.0800 4.5700 1.8900 6.4800 3.8800 7.0400 3.0500 6.8200 7.7800 7.2300 37.9300 0.8300 1.0200 0.6500 6.1000 0.0000	0.0000 0.0369 0.2466 1.3445 0.9750 3.9279 3.2983 6.3906 3.2895 7.8112 9.1297 8.5561 45.1329 0.9150 1.1834 0.0825 0.7670 6.6977 0.0000	0.0021 0.0000 0.0369 0.2466 1.3445 0.9750 3.9279 3.2983 6.3906 3.2895 7.8112 9.1297 8.5561 45.1329 0.9150 1.1834 0.0825 0.7670 6.6977 0.0000	0.1768 0.0000 7.7635 11.7345 21.5554 6.7085 19.9192 6.9431 10.4595 1.7886 1.6004 0.6724 0.2466 0.0000 0.3821 0.1596 0.0041 0.0341 2.9524 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.1768 0.0000 7.7635 11.7345 21.5554 6.7085 19.9192 6.9431 10.4595 1.7886 1.6004 0.6724 0.2466 0.0000 0.3821 0.1596 0.0041 0.0341 2.9524 0.0000
10 11 12 13 14 15 16 17 18 19 20 21 22	C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10+ Benzene Toluene E-Benzene Xylenes n-C6 224Trimethylp	16.04 30.07 44.10 58.12 58.12 72.15 72.15 86.16 100.20 114.23 128.28 166.00 78.11 92.13 106.17 106.17 86.18 114.24	0.0000 1.2700 2.0800 4.5700 1.8900 6.4800 3.8800 7.0400 3.0500 6.8200 7.7800 7.2300 37.9300 0.8300 1.0200 0.6500 6.1000 0.0000	0.0000 0.0369 0.2466 1.3445 0.9750 3.9279 3.2983 6.3906 3.2895 7.8112 9.1297 8.5561 45.1329 0.9150 1.1834 0.0825 0.7670 6.6977 0.0000	0.0021 0.0000 0.0369 0.2466 1.3445 0.9750 3.9279 3.2983 6.3906 3.2895 7.8112 9.1297 8.5561 45.1329 0.9150 1.1834 0.0825 0.7670 6.6977 0.0000	0.1768 0.0000 7.7635 11.7345 21.5554 6.7085 19.9192 6.9431 10.4595 1.7886 1.6004 0.6724 0.2466 0.0000 0.3821 0.1596 0.0041 0.0341 2.9524 0.0000	0.0000 0.0000	0.1768 0.0000 7.7635 11.7345 21.5554 6.7085 19.9192 6.9431 10.4595 1.7886 1.6004 0.6724 0.2466 0.0000 0.3821 0.1596 0.0041 0.0341 2.9524 0.0000
10 11 12 13 14 15 16 17 18 19 20 21 22	C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10+ Benzene Toluene E-Benzene Xylenes n-C6 224Trimethylp MW	$16.04 \\ 30.07 \\ 44.10 \\ 58.12 \\ 58.12 \\ 72.15 \\ 72.15 \\ 86.16 \\ 100.20 \\ 114.23 \\ 128.28 \\ 166.00 \\ 78.11 \\ 92.13 \\ 106.17 \\ 106.17 \\ 106.17 \\ 86.18 \\ 114.24 \\ \end{cases}$	0.0000 1.2700 2.0800 4.5700 1.8900 6.4800 3.8800 7.0400 3.0500 6.8200 7.7800 7.2300 37.9300 0.8300 1.0200 0.6500 6.1000 0.0000 159.21	0.0000 0.0369 0.2466 1.3445 0.9750 3.9279 3.2983 6.3906 3.2895 7.8112 9.1297 8.5561 45.1329 0.9150 1.1834 0.0825 0.7670 6.6977 0.0000 179.60	0.0021 0.0000 0.0369 0.2466 1.3445 0.9750 3.9279 3.2983 6.3906 3.2895 7.8112 9.1297 8.5561 45.1329 0.9150 1.1834 0.0825 0.7670 6.6977 0.0000 179.60	0.1768 0.0000 7.7635 11.7345 21.5554 6.7085 19.9192 6.9431 10.4595 1.7886 1.6004 0.6724 0.2466 0.0000 0.3821 0.1596 0.0041 0.0341 2.9524 0.0000 51.88	0.0000 0.0000	0.1768 0.0000 7.7635 11.7345 21.5554 6.7085 19.9192 6.9431 10.4595 1.7886 1.6004 0.6724 0.2466 0.0000 0.3821 0.1596 0.0041 0.0341 2.9524 0.0000 51.88
10 11 12 13 14 15 16 17 18 19 20 21 22	C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10+ Benzene Toluene E-Benzene Xylenes n-C6 224Trimethylp MW Stream Mole Rat	16.04 30.07 44.10 58.12 58.12 72.15 72.15 86.16 100.20 114.23 128.28 166.00 78.11 92.13 106.17 106.17 86.18 114.24	0.0000 1.2700 2.0800 4.5700 1.8900 6.4800 3.8800 7.0400 3.0500 6.8200 7.7800 7.2300 37.9300 0.8300 1.0200 0.6500 6.1000 0.0000 159.21 1.0000	0.0000 0.0369 0.2466 1.3445 0.9750 3.9279 3.2983 6.3906 3.2895 7.8112 9.1297 8.5561 45.1329 0.9150 1.1834 0.0825 0.7670 6.6977 0.0000 179.60 0.8404	0.0021 0.0000 0.0369 0.2466 1.3445 0.9750 3.9279 3.2983 6.3906 3.2895 7.8112 9.1297 8.5561 45.1329 0.9150 1.1834 0.0825 0.7670 6.6977 0.0000 179.60 0.8404	0.1768 0.0000 7.7635 11.7345 21.5554 6.7085 19.9192 6.9431 10.4595 1.7886 1.6004 0.6724 0.2466 0.0000 0.3821 0.1596 0.0041 0.0341 2.9524 0.0000 51.88 0.1596	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.1768 0.0000 7.7635 11.7345 21.5554 6.7085 19.9192 6.9431 10.4595 1.7886 1.6004 0.6724 0.2466 0.0000 0.3821 0.1596 0.0041 0.0341 2.9524 0.0000 51.88 0.1596
10 11 12 13 14 15 16 17 18 19 20 21 22	C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10+ Benzene Toluene E-Benzene Xylenes n-C6 224Trimethylp MW Stream Mole Rat Heating Value	16.04 30.07 44.10 58.12 58.12 72.15 72.15 86.16 100.20 114.23 128.28 166.00 78.11 92.13 106.17 106.17 106.17 86.18 114.24 io	0.0000 1.2700 2.0800 4.5700 1.8900 6.4800 3.8800 7.0400 3.0500 6.8200 7.7800 7.2300 37.9300 0.8300 1.0200 0.6500 6.1000 0.0000 159.21 1.0000	0.0000 0.0369 0.2466 1.3445 0.9750 3.9279 3.2983 6.3906 3.2895 7.8112 9.1297 8.5561 45.1329 0.9150 1.1834 0.0825 0.7670 6.6977 0.0000 179.60 0.8404	0.0021 0.0000 0.0369 0.2466 1.3445 0.9750 3.9279 3.2983 6.3906 3.2895 7.8112 9.1297 8.5561 45.1329 0.9150 1.1834 0.0825 0.7670 6.6977 0.0000 179.60 0.8404	0.1768 0.0000 7.7635 11.7345 21.5554 6.7085 19.9192 6.9431 10.4595 1.7886 1.6004 0.6724 0.2466 0.0000 0.3821 0.1596 0.0041 0.0341 2.9524 0.0000 51.88 0.1596 2822.40	0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.00000000	0.1768 0.0000 7.7635 11.7345 21.5554 6.7085 19.9192 6.9431 10.4595 1.7886 1.6004 0.6724 0.2466 0.0000 0.3821 0.1596 0.0041 0.0341 2.9524 0.0000 51.88 0.1596 2822.40
10 11 12 13 14 15 16 17 18 19 20 21 22	C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10+ Benzene Toluene E-Benzene Xylenes n-C6 224Trimethylp MW Stream Mole Rat Heating Value Gas Gravity	16.04 30.07 44.10 58.12 58.12 72.15 72.15 86.16 100.20 114.23 128.28 166.00 78.11 92.13 106.17 106.17 106.17 86.18 114.24 io [BTU/SCF] [Gas/Air]	0.0000 1.2700 2.0800 4.5700 1.8900 6.4800 3.8800 7.0400 3.0500 6.8200 7.7800 7.2300 37.9300 0.8300 1.0200 0.6500 6.1000 0.0000 159.21 1.0000	0.0000 0.0369 0.2466 1.3445 0.9750 3.9279 3.2983 6.3906 3.2895 7.8112 9.1297 8.5561 45.1329 0.9150 1.1834 0.0825 0.7670 6.6977 0.0000 179.60 0.8404	0.0021 0.0000 0.0369 0.2466 1.3445 0.9750 3.9279 3.2983 6.3906 3.2895 7.8112 9.1297 8.5561 45.1329 0.9150 1.1834 0.0825 0.7670 6.6977 0.0000 179.60 0.8404	0.1768 0.0000 7.7635 11.7345 21.5554 6.7085 19.9192 6.9431 10.4595 1.7886 1.6004 0.6724 0.2466 0.0000 0.3821 0.1596 0.0041 0.0341 2.9524 0.0000 51.88 0.1596 2822.40 1.79	0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	0.1768 0.0000 7.7635 11.7345 21.5554 6.7085 19.9192 6.9431 10.4595 1.7886 1.6004 0.6724 0.2466 0.0000 0.3821 0.1596 0.0041 0.0341 2.9524 0.0000 51.88 0.1596 2822.40 1.79

RVP @	100F	[psia]	27.72	8.66	8.66
Spec.	Gravity @	100F	0.690	0.698	0.698

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

	User Identification:	Carrico Station (Methanol Tanks)
. 1	City:	
	State:	West Virginia
	Company:	
	Type of Tank:	Horizontal Tank
	Description:	Methanol Tanks
Tan	k Dimensions	
	Shell Length (ft):	6.00
	Diameter (ft):	4.00
	Volume (gallons):	500.00
	Turnovers:	12.00
	Net Throughput(gal/yr):	6,000.00
	Is Tank Heated (y/n):	Ν
	Is Tank Underground (y/n):	Ν
Pai	nt Characteristics	
	Shell Color/Shade:	Gray/Medium
	Shell Condition	Good
Bre	ather Vent Settings	
	Vacuum Settings (psig):	-0.03
	Pressure Settings (psig)	0.03
	5 (1 6)	

Meterological Data used in Emissions Calculations: Elkins, West Virginia (Avg Atmospheric Pressure = 13.73 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Carrico Station (Methanol Tanks) - Horizontal Tank

		Dail Temp	y Liquid Su erature (de	rf. g F)	Liquid Bulk Temp	Vapor	Pressure (psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Methyl alcohol	All	57.20	47.16	67.23	52.14	1.3195	0.9508	1.8044	32.0400			32.04	Option 2: A=7.897, B=1474.08, C=229.13

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Carrico Station (Methanol Tanks) - Horizontal Tank

Annual Emission Calcaulations	
Standing Losses (lb):	16.5979
Vapor Space Volume (cu ft):	48.0243
Vapor Density (lb/cu ft):	0.0076
Vapor Space Expansion Factor:	0.1416
Vented Vapor Saturation Factor:	0.8773
Fank Vapor Space Volume:	10.0010
Vapor Space Volume (cu ft):	48.0243
Tank Diameter (ft):	4.0000
Effective Diameter (ft):	5.5293
Vapor Space Outage (π):	2.0000
Tank Shell Length (it):	6.0000
/apor Density	0.0076
Vapor Density (ID/Cu It):	0.0076
Vapor Pressure at Daily Average Liquid	32.0400
Surface Temperature (psia):	1.3195
Daily Avg. Liquid Surface Temp. (deg. R):	516.8667
Daily Average Ambient Temp. (deg. F):	49.0583
Ideal Gas Constant R	
(psia cutt / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	511.8083
Tank Paint Solar Absorptance (Shell):	0.6800
Eactor (Btu/soft day):	1 193 8870
	1,100,001 0
/apor Space Expansion Factor	
vapor Space Expansion Factor:	0.1416
Daily Vapor Temperature Range (deg. R):	40.1436
Daily vapor Pressure Range (psia):	0.8536
Vener Pressure et Deily Averera Liquid	0.0600
Surface Temperature (psia):	1 3105
Vapor Pressure at Daily Minimum Liquid	1.0100
Surface Temperature (psia):	0.9508
Vapor Pressure at Daily Maximum Liquid	0.0000
Surface Temperature (psia):	1 8044
Daily Avg. Liquid Surface Temp. (deg.R):	516 8667
Daily Min, Liquid Surface Temp. (deg R):	506.8308
Daily Max, Liquid Surface Temp, (deg R):	526,9026
Daily Ambient Temp. Range (deg. R):	24.1833
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.8773
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	1.3195
Vapor Space Outage (ft):	2.0000
/Vorking Losses (lb):	6.0396
Vapor IvioleCular Weight (ID/ID-mole):	32.0400
vapor Fressure at Daily Average Liquid	1 2405
Appual Net Throughout (gal/yr.):	6 000 0000
Appual Turpovers:	12 0000
Turnover Eactor:	1 0000
Tank Diameter (ft):	4 0000
Working Loss Product Factor:	4.0000
Tomany 2000 Fround Factor.	1.0000
Total Losses (Ib).	22 6274
1 Oldi LOGGOG (ID).	22.03/4

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Carrico Station (Methanol Tanks) - Horizontal Tank								
	Losses(lbs)							
Components	Working Loss	Breathing Loss	Total Emissions					
Methyl alcohol	6.04	16.60	22.64					

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

lde	ntification								
	User Identification:	Carrico Station (Oil Tanks)							
	City:								
	State:	west virginia							
	Company:	Horizontal Tank							
	Type of Tank:								
	Description:	Compressor and Engine Lube Oil Tanks							
Та	nk Dimensions								
	Shell Length (ft):	6.00							
	Diameter (ft):	4.00							
	Volume (gallons):	500.00							
	Turnovers:	12.00							
	Net Throughput(gal/yr):	6,000.00							
	Is Tank Heated (y/n):	N							
	Is Tank Underground (y/n):	Ν							
Pai	int Characteristics								
	Shell Color/Shade:	Gray/Medium							
	Shell Condition	Good							
Bre	eather Vent Settings								
	Vacuum Settings (psig):	-0.03							
	Pressure Settings (psig)	0.03							

Meterological Data used in Emissions Calculations: Elkins, West Virginia (Avg Atmospheric Pressure = 13.73 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Carrico Station (Oil Tanks) - Horizontal Tank

Daily Liquid Surf. Temperature (deg F)		Liquid Bulk Temp	uid ulk mp Vapor Pressure (psia)			Vapor Liquid Mol. Mass	Vapor Mass	Mol.	Basis for Vapor Pressure				
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Distillate fuel oil no. 2	All	57.20	47.16	67.23	52.14	0.0066	0.0041	0.0086	130.0000			188.00	Option 1: VP50 = .0045 VP60 = .0074

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Carrico Station (Oil Tanks) - Horizontal Tank

Annual Emission Calcaulations	
Standing Losses (lb):	0.1991
Vapor Space Volume (cu ft):	48.0243
Vapor Density (lb/cu ft):	0.0002
Vapor Space Expansion Factor:	0.0736
Vented Vapor Saturation Factor:	0.9993
Fank Vapor Space Volume:	
Vapor Space Volume (cu ft):	48.0243
Tank Diameter (ft):	4.0000
Effective Diameter (ft):	5.5293
Vapor Space Outage (ft):	2.0000
Tank Shell Length (ft):	6.0000
/apor Density	
Vapor Density (lb/cu ft):	0.0002
Vapor Molecular Weight (lb/lb-mole):	130.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0066
Daily Avg. Liquid Surface Temp. (deg. R):	516.8667
Daily Average Ambient Temp. (deg. F):	49.0583
Ideal Gas Constant R	
(psia cutt / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	511.8083
Tank Paint Solar Absorptance (Snell):	0.6800
Daily Total Solar Insulation	1 102 0070
Factor (Blu/sqlt day).	1,195.6670
/apor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0736
Daily Vapor Temperature Range (deg. R):	40.1436
Daily Vapor Pressure Range (psia):	0.0045
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	0.0000
Surrace Temperature (psia):	0.0066
Surface Temperature (agia)	0.0044
Sunace remperature (psia):	0.0041
Surface Temperature (agia):	0.0006
Surface Temperature (psia):	0.0000
Daily Min, Liquid Surface Temp, (deg R):	506 8308
Daily Max, Liquid Surface Temp. (deg R):	500.000C
Daily Ambient Temp, Range (deg, R):	24 183
Daily Ambient Temp. Range (deg. R).	24.1000
Vented Vapor Saturation Factor	0.0003
Vener Pressure et Deily Average Liquid:	0.9993
Surface Temperature (psia):	0.0066
Vapor Space Outage (ft):	2.0000
Norking Losses (Ib):	0.1223
Vapor Molecular Weight (lb/lb-mole):	130.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0066
Annual Net Throughput (gal/yr.):	6,000.0000
Annual Turnovers:	12.0000
Turnover Factor:	1.0000
Tank Diameter (ft):	4.0000
Working Loss Product Factor:	1.0000
Total Losses (lb):	0.3214

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Carrico Station (Oil Tanks) - Horizontal Tank										
		Losses(lbs)								
Components	Working Loss	Breathing Loss	Total Emissions							
Distillate fuel oil no. 2	0.12	0.20	0.32							

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification								
User Identification:	Carrico Station - Waste Oil Tank							
City:								
State:	West Virginia							
Company:								
Type of Tank:	Vertical Fixed Roof Tank							
Description:	Waste Oil							
ank Dimensions								
Shell Height (ft):	15.00							
Diameter (ft):	10.00							
Liquid Height (ft) :	15.00							
Avg. Liquid Height (ft):	8.00							
Volume (gallons):	8,820.00							
Turnovers:	12.00							
Net Throughput(gal/yr):	105,840.00							
Is Tank Heated (y/n):	Ν							
Paint Characteristics								
Shell Color/Shade:	Gray/Light							
Shell Condition	Good							
Roof Color/Shade:	Gray/Light							
Roof Condition:	Good							
Roof Characteristics								
Type:	Cone							
Height (ft)	0.00							
Slope (ft/ft) (Cone Roof)	0.06							
Breather Vent Settings								
Vacuum Settings (psia):	-0.03							
Pressure Settings (psig)	0.03							

Meterological Data used in Emissions Calculations: Elkins, West Virginia (Avg Atmospheric Pressure = 13.73 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Carrico Station - Waste Oil Tank - Vertical Fixed Roof Tank

		Dail Temp	ly Liquid Su erature (de	rf. g F)	Liquid Bulk Temp	Vapor	r Pressure ((psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Distillate fuel oil no. 2	All	55.41	46.54	64.27	51.30	0.0061	0.0040	0.0081	130.0000			188.00	Option 1: VP50 = .0045 VP60 = .0074

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Carrico Station - Waste Oil Tank - Vertical Fixed Roof Tank

Standing Losses (lb):	1.8783
Vapor Space Volume (cu ft):	557.9599
Vapor Density (Ib/cu ft):	0.0001
Vapor Space Expansion Factor:	0.0648
Vented Vapor Saturation Factor:	0.9977
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	557.9599
Tank Diameter (ft):	10.0000
Vapor Space Outage (π):	7.1042
Average Liquid Height (ft):	15.0000
Roof Outage (ft):	0.1042
Roof Outage (Cone Roof)	
Roof Outage (60he 100h)	0 1042
Roof Height (ft):	0.0000
Roof Slope (ft/ft):	0.0625
Shell Radius (ft):	5.0000
Vapor Density	
Vapor Density (lb/cu ft):	0.0001
Vapor Molecular Weight (lb/lb-mole):	130.0000
vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0061
Daily Avg. Liquid Surface Temp. (deg. R):	515.0759
Daily Average Ambient Temp. (deg. F):	49.0583
Ideal Gas Constant R	40 704
(psia cuti / (ib-moi-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	510.9683
Tank Paint Solar Absorptance (Sneil):	0.5400
Daily Total Solar Insulation	0.5400
Factor (Btu/sqft day):	1,193.8870
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0648
Daily Vapor Temperature Range (deg. R):	35.4636
Daily Vapor Pressure Range (psia):	0.0041
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0061
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	0.0040
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	0.0081
Daily Avg. Liquid Surface Temp. (deg R):	515.0759
Daily Min. Liquid Surface Temp. (deg R):	506.2100
Daily Max. Liquid Surface Temp. (deg R):	523.9417
Daily Ambient Temp. Range (deg. R):	24.1833
/ented Vapor Saturation Factor	
Veneu Vapor Saturation Factor:	0.9977
vapor Pressure at Daily AVerage Liquid:	0.0004
Vapor Space Outage (ft):	7.1042
Norking Lossos (Ib)	4 0070
Vapor Molecular Weight (Ib/Ib-mole)	130/00
Vapor Pressure at Daily Average Liquid	130.0000
Surface Temperature (psia):	0.0061
Annual Net Throughput (gal/yr.):	105,840.0000
Annual Turnovers:	12.0000
Turnover Factor:	1.0000
Maximum Liquid Volume (gal):	8,820.0000
Maximum Liquid Height (ft):	15.0000
Tank Diameter (ft):	10.0000
Working Loss Product Factor:	1.0000
Total Losses (lb):	3.8661

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Carrico Station - Waste Oil Tank - Vertical Fixed Roof Tank										
		Losses(lbs)								
Components	Working Loss	Breathing Loss	Total Emissions							
Distillate fuel oil no. 2	1.99	1.88	3.87							

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification										
User Identification:	Carrico Station (Liquid Loading)									
City: State:	West Virginia									
Company: Type of Tank:	Vertical Fixed Roof Tank									
Description:	Liquid loading parameter calculations for truck loading of produced fluids									
Tank Dimensions										
Shell Height (ft):	14.00									
Diameter (ft):	10.00									
Liquid Height (ft) :	14.00									
Avg. Liquid Height (ft):	7.00									
Volume (gallons):	8,820.00									
Turnovers:	22.86									
Net Throughput(gal/yr):	201,600.00									
Is Tank Heated (y/n):	Ν									
Paint Characteristics										
Shell Color/Shade:	Gray/Medium									
Shell Condition	Good									
Roof Color/Shade:	Gray/Medium									
Roof Condition:	Good									
Roof Characteristics										
Type:	Cone									
Height (ft)	0.00									
Slope (ft/ft) (Cone Roof)	0.00									
Breather Vent Settings										
Vacuum Settings (psig):	-0.03									
Pressure Settings (psig)	0.03									

Meterological Data used in Emissions Calculations: Elkins, West Virginia (Avg Atmospheric Pressure = 13.73 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Carrico Station (Liquid Loading) - Vertical Fixed Roof Tank

		Da Tem	aily Liquid Superature (de	urf. eg F)	Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Produced Water	All	57.20	47.16	67.23	52.14	0.2365	0.1708	0.3240	19.3610			18.17	
Benzene						1.0800	0.8090	1.4225	78.1100	0.0001	0.0004	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Butane (-n)						0.4772	0.3937	0.5736	58.1200	0.0005	0.0009	58.12	Option 2: A=5.09536, B=935.86, C=238.73
Decane (-n)						0.0313	0.0249	0.0394	142.2900	0.0045	0.0006	142.29	Option 1: VP50 = .026411 VP60 = .033211
Ethylbenzene						0.0984	0.0684	0.1390	106.1700	0.0000	0.0000	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Heptane (-n)						0.5620	0.4123	0.7572	100.2000	0.0008	0.0017	100.20	Option 3: A=37358, B=8.2585
Hexane (-n)						1.7780	1.3561	2.3024	86.1700	0.0010	0.0071	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Isopentane						9.4118	7.3180	11.8312	72.1500	0.0003	0.0123	72.15	Option 1: VP50 = 7.889 VP60 = 10.005
Nonane (-n)						0.0614	0.0482	0.0782	128.2600	0.0009	0.0002	128.26	Option 1: VP50 = .051285 VP60 = .065278
Octane (-n)						0.1362	0.1051	0.1764	114.2300	0.0009	0.0005	114.23	Option 1: VP50 = .112388 VP60 = .145444
Pentane (-n)						6.4211	5.1036	8.0084	72.1500	0.0006	0.0163	72.15	Option 3: A=27691, B=7.558
Propane (-n)						103.5663	88.7398	120.2028	44.0956	0.0002	0.0657	44.10	Option 2: A=7.340862493, B=1104.2267744, C=291.70993941
Toluene						0.3024	0.2186	0.4120	92.1300	0.0001	0.0001	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Water						0.2277	0.1634	0.3135	18.0150	0.9900	0.8941	18.02	Option 1: VP50 = .178 VP60 = .247
Xylene (-m)						0.0818	0.0567	0.1160	106.1700	0.0001	0.0000	106.17	Option 2: A=7.009, B=1462.266, C=215.11
TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Carrico Station (Liquid Loading) - Vertical Fixed Roof Tank

Annual Emission Calcaulations	
Standing Losses (lb):	12.8805
Vapor Space Volume (cu ft):	549.7787
vapor Density (ib/cu π):	0.0008
Vapor Space Expansion Factor:	0.0846
vented vapor Saturation Factor.	0.9195
Fank Vapor Space Volume:	549 7787
Tank Diameter (ft):	10,0000
Vapor Space Outage (ft):	7 0000
Tank Shell Height (ft):	14.0000
Average Liquid Height (ft):	7 0000
Roof Outage (ft):	0.0000
Roof Outage (Cone Roof)	
Roof Outage (ft):	0.0000
Roof Height (ft):	0.0000
Roof Slope (ft/ft):	0.0000
Shell Radius (ft):	5.0000
/apor Density	
Vapor Density (lb/cu ft):	0.0008
vapor Molecular Weight (lb/lb-mole):	19.3610
vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.2365
Daily Avg. Liquid Surface Temp. (deg. R):	516.8667
Daily Average Ambient Temp. (deg. F):	49.0583
Ideal Gas Constant R	10 701
(psia cuπ / (ib-moi-deg R)):	10.731
Liquid Buik Temperature (deg. K):	511.8083
Tank Paint Solar Absorptance (Snell):	0.6800
Daily Total Solar Insulation	0.0000
Factor (Btu/sqft day):	1,193.8870
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0846
Daily Vapor Temperature Range (deg. R):	40.1436
Daily Vapor Pressure Range (psia):	0.1531
Breather Vent Press, Setting Range(psia);	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.2365
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	0.1708
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	0.3240
Daily Avg, Liquid Surface Temp, (deg R);	516.8667
Daily Min. Liquid Surface Temp. (deg R):	506.8308
Daily Max. Liquid Surface Temp. (deg R):	526.9026
Daily Ambient Temp. Range (deg. R):	24.1833
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.9193
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	0.2365
Vapor Space Outage (ft):	7.0000
Working Losses (Ib):	21.9798
Vapor Molecular Weight (lb/lb-mole):	19.3610
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.2365
Annual Net Throughput (gal/yr.):	201,600.0000
Annual Turnovers:	22.8571
Turnover Factor:	1.0000
Maximum Liquid Volume (gal):	8,820.0000
Maximum Liquid Height (ft):	14.0000
Tank Diameter (ft):	10.0000
Working Loss Product Factor:	1.0000
Total Losses (lb):	34.8603

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Carrico Station (Liquid Loading) - Vertical Fixed Roof Tank

	Losses(lbs)						
Components	Working Loss	Breathing Loss	Total Emissions				
Produced Water	21.98	12.88	34.86				
Decane (-n)	0.01	0.01	0.02				
Nonane (-n)	0.00	0.00	0.01				
Ethylbenzene	0.00	0.00	0.00				
Octane (-n)	0.01	0.01	0.02				
Toluene	0.00	0.00	0.01				
Heptane (-n)	0.04	0.02	0.06				
Benzene	0.01	0.00	0.01				
Hexane (-n)	0.16	0.09	0.25				
Isopentane	0.27	0.16	0.43				
Pentane (-n)	0.36	0.21	0.57				
Water	19.65	11.52	31.17				
Propane (-n)	1.44	0.85	2.29				
Butane (-n)	0.02	0.01	0.03				
Xylene (-m)	0.00	0.00	0.00				

ATTACHMENT V

Facility-Wide Emission Summary

ATTACHMENT V – FACILITY-WIDE CONTROLLED EMISSIONS SUMMARY SHEET														
List all sources of emissions in this table. Use extra pages if necessary.														
Emission Drint ID#	NO _x		СО		VOC		SO ₂		PM_{10}		PM _{2.5}		GHG (CO ₂ e)	
Emission Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
CE-1	2.07	9.05	0.45	1.99	0.54	2.35	0.01	0.04	0.14	0.62	0.14	0.62	2,221.76	9,731.29
CE-2	2.07	9.05	0.45	1.99	0.54	2.35	0.01	0.04	0.14	0.62	0.14	0.62	2,221.76	9,731.29
GE-1	0.60	2.63	1.20	5.25	0.46	2.02	1.2E-03	0.01	0.04	0.17	0.04	0.17	238.86	1,046.20
T01					0.05	0.23							0.03	0.15
De minimis storage tanks (T02 to T08)					0.01	0.03								
L01					0.04	0.01								
Fugitives						0.95								1,215.20
Haul Roads										0.08		0.01		
FACILITY TOTAL	4.73	20.73	2.11	9.24	1.63	7.95	0.02	0.08	0.32	1.49	0.32	1.42	4,682.39	21,724.12
FACILITY TOTAL (Excluding fugitives)	4.73	20.73	2.11	9.24	1.63	6.99	0.02	0.08	0.32	1.41	0.32	1.41	4,682.39	20,508.92

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT V – FACILITY-WIDE HAP CONTROLLED EMISSIONS SUMMARY SHEET														
List all sources of emissions in this table. Use extra pages if necessary.														
Emission Point	int Formaldehyde		Benzene		Toluene		Ethylbenzene		Xylenes		Hexane		Total HAPs	
ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
CE-1	0.17	0.72	6.2E-03	2.7E-02	5.8E-03	2.5E-02	5.6E-04	2.5E-03	2.6E-03	1.1E-02	0.02	0.07	0.44	1.93
CE-2	0.17	0.72	6.2E-03	2.7E-02	5.8E-03	2.5E-02	5.6E-04	2.5E-03	2.6E-03	1.1E-02	0.02	0.07	0.44	1.93
GE-1	0.04	0.18	3.2E-03	1.4E-02	1.1E-03	5.0E-03	5.1E-05	2.2E-04	4.0E-04	1.7E-03			0.07	0.29
T01			< 0.01	2.0E-03	< 0.01	1.0E-03	< 0.01	< 0.01	< 0.01	< 0.01	3.0E-03	1.3E-02	0.01	0.02
De minimis storage tanks (T02 to T08)													0.01	0.03
L01													3.4E-03	8.9E-04
Fugitives														
Haul Roads														
FACILITY TOTAL	0.37	1.63	0.02	0.07	0.01	0.06	1.2E-03	0.01	0.01	0.02	0.03	0.15	0.96	4.19
FACILITY TOTAL (Excluding fugitives)	0.37	1.63	0.02	0.07	0.01	0.06	1.2E-03	0.01	0.01	0.02	0.03	0.15	0.96	4.19

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT W

Class I Legal Advertisement

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that DTE Appalachia Gathering, LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a G35D permit for a new natural gas compressor station (Carrico Compressor Station) located off Jakes Run Road (Route 29) and 1 mile south of Pentress, WV and is in Monongalia County, West Virginia. Site Latitude and Longitude Coordinates are: 39.69716, - 80.16659.

The applicant estimates the potential to discharge the following Regulated Air Pollutants will be:

Pollutant	Facility Wide (tpy)	Facility Wide excluding Fugitive Emissions (tpy)			
Nitrogen Oxides	20.73	20.73			
Carbon Monoxide	9.24	9.24			
Particulate Matter-10	1.49	1.41			
Particulate Matter-2.5	1.42	1.41			
Volatile Organic Compounds	7.95	6.99			
Sulfur Dioxide	0.08	0.08			
Formaldehyde	1.63	1.63			
Benzene	0.07	0.07			
Toluene	0.06	0.06			
Ethylbenzene	0.01	0.01			
Xylenes	0.02	0.02			
Hexane	0.15	0.15			
Total Hazardous Air Pollutants	4.19	4.19			
Carbon Dioxide Equivalents (CO2e)	21,724.12	20,508.92			

The facility is currently in operation and is seeking to add additional compression and ancillary equipment. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the XX Day of January, 2018.

By: DTE Appalachia Gathering, LLC Adam Snee, Gas Pipeline Engineer 1000 Noble Energy Drive, 5th Floor Canonsburg, PA 15317