

www.swn.com

MICHAEL RATCLIFFE PAD

R-13 CLASS I ADMINISTRATIVE UPDATE

0	CHK	09/2012	-	R13-2995		
1	СНК	03/2013	REM: 1 COMB MOD: route LPT vapors to ENG	R13-2995A		
2	СНК	02/2014	REM: LPT, 1 ENG ADD: 1 ENG	R13-2995C		
3	SWN	01/2018	REM: 1 ENG, 1 LH	R13-2995D	AML	01/09/2018
REV	BY	DATE	DESCRIPTION	PERMIT	FACILITIES REVIEWED	DATE

TABLE OF CONTENTS

TABLE OF CONTEN	TS	i
INTRODUCTION		1
Proposed Emissi	ions	1
APPLICATION FOR	NSR PERMIT	3
ATTACHMENT A:	BUSINESS CERTIFICATE	8
ATTACHMENT C:	INSTALLATION/START-UP SCHEDULE	10
ATTACHMENT D:	REGULATORY DISCUSSION	11
ATTACHMENT E:	PLOT PLAN	18
ATTACHMENT F:	PROCESS FLOW DIAGRAM	19
ATTACHMENT G:	PROCESS DESCRIPTION	20
ATTACHMENT I:	EMISSION UNITS TABLE	S
ATTACHMENT J:	EMISSION POINTS DATA SUMMARY SHEET	21
ATTACHMENT K:	FUGITIVE EMISSIONS DATA SUMMARY SHEET	26
ATTACHMENT L:	EMISSION UNIT DATA SHEETS	30
ATTACHMENT M:	AIR POLLUTION CONTROL DEVICE SHEET	55
ATTACHMENT N:	SUPPORTING EMISSIONS CALCULATIONS	60
APPENDIX A: SLIPP	PORT DOCUMENTS	95

INTRODUCTION

SWN Production Company, LLC (SWN), operates the Michael Ratcliffe Pad under Permit No. R13-2995C, issued on March 24, 2014. With this Class I Administrative Update application, SWN requests authorization to remove one 23.6-hp Kubota DG972-E2 engine and one line heater. Combustor controls have also been removed from the produced water loading. Tank throughputs and compositions have been updated and fugitive emissions have been revised to include one sand separator and one fuel gas separator. As a result of these changes, truck loading, vapor combustor, fugitive, and haul road emissions have also been updated. This project qualifies as a Class I Update. Equipment to be authorized includes the following:

- One (1) Sand Separator (not an emissions source other than fugitive components)
- One (1) Fuel Gas Separator (not an emissions source other than fugitive components)
- One (1) 1.0-mmBtu/hr Gas Production Unit
- One (1) 0.5-mmBtu/hr Heater Treater
- Three (3) 400-bbl Condensate Tanks
- Three (3) 400-bbl Produced Water Tanks
- Condensate Truck Loading
- Produced Water Truck Loading
- One (1) 15.0-mmBtu/hr Vapor Combustor with Pilot
- Fugitive Emissions
- Fugitive Haul Road Emissions

Note that other small storage tanks may be present on site (i.e., methanol, lube oil) but are considered de minimis sources per Table 45-13B and are not addressed further in this application.

Proposed Emissions

Emissions calculations for the facility are presented in Attachment N. A fuel heating value of 905 Btu/scf was used to calculate emissions from natural gas-fired equipment. Actual heating value may vary (generally 905 - 1,300) but using a lower heating value in the emissions calculations provides a more conservative (higher) estimate of fuel use.

Condensate and produced water tank emissions were calculated using ProMax process simulation software. Storage tank emissions are routed to a vapor combustor with 100% capture efficiency and 98% destruction efficiency. Loading emissions were calculated using ProMax process simulation software and AP-42 calculations. Condensate loading emissions are routed

SWN Production Company, LLC Michael Ratcliffe Pad January 2018

to a vapor combustor with 70% capture efficiency and 98% destruction efficiency. Produced water loading emissions are vented to the atmosphere.

Fugitive emissions were calculated with a component count by equipment type from a similar facility, and representative extended gas and liquids analyses. Fugitive haul road emissions were calculated using EPA/AP-42 methodologies.

Greenhouse gas emissions were calculated with the latest EPA factors and manufacturer data when available. Documents used as references for the emissions calculations, including AP-42 and EPA emission factor references, gas and liquids analyses, and process simulation results are attached.

APPLICATION FOR NSR PERMIT

WEST VIRGINIA DEPARTMENT OF **ENVIRONMENTAL PROTECTION**

DIVISION OF AIR QUALITY

APPLICATION FOR NSR PERMIT *AND*

Charleston, WV 25304 (304) 926-0475 www.dep.wv.gov/daq		TITLE V PERMIT REVISION (OPTIONAL)								
PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KN	OWN): PLEASE CH	CK TYPE OF 450	CSR30 (TITLE V) REV	/ISION (IF ANY):						
\square CONSTRUCTION \square MODIFICATION \square RELOCATION	_	RATIVE AMENDA	-	MODIFICATION						
☐ CLASS I ADMINISTRATIVE UPDATE ☐ TEMPORARY	IE ANIV BOY	ANT MODIFICATION	אס ED, INCLUDE TITLE V	/ DEVISION						
☐ CLASS II ADMINISTRATIVE UPDATE ☐ AFTER-THE-F			NT S TO THIS APPLIC							
FOR TITLE V FACILITIES ONLY: Please refer to "Title V Revision Guidance" in order to determine your Title V Revision options (Appendix A, "Title V Permit Revision Flowchart") and ability to operate with the changes requested in this Permit Application.										
Section I. General										
 Name of applicant (as registered with the WV Secretary SWN Production Company, LLC 	y of State's Office):	2. Federal 26-4388	mployer ID No. <i>(FEIN):</i> 27							
3. Name of facility (if different from above):		4. The appli	cant is the:							
Michael Ratcliffe Pad		☐ OWNER	□OPERATOR	⊠ вотн						
5A. Applicant's mailing address: 10000 Energy Drive Spring, TX 77389	355 Long Run	5B. Facility's present physical address: 355 Long Run Rd. Valley Grove, WV 26060								
 6. West Virginia Business Registration. Is the applicant If YES, provide a copy of the Certificate of Incorpora change amendments or other Business Registration C If NO, provide a copy of the Certificate of Authority/v amendments or other Business Certificate as Attachments 	ation/Organization/l Certificate as Attach Authority of L.L.C./	imited Partners nent A.	hip (one page) inclu							
7. If applicant is a subsidiary corporation, please provide t	he name of parent c	orporation: SWN	Production Company	y, LLC						
8. Does the applicant own, lease, have an option to buy or	r otherwise have con	trol of the propos	sed site? XES	□NO						
 If YES, please explain: SWN is leasing the land 	on which the site is	constructed								
 If NO, you are not eligible for a permit for this source. 										
9. Type of plant or facility (stationary source) to be const administratively updated or temporarily permitted crusher, etc.): Oil and natural gas production well pad										
11A. DAQ Plant ID No. (for existing facilities only): 069-00133	1B. List all current 4 associated with R13-2995C	ist all current 45CSR13 and 45CSR30 (Title V) permit numbers associated with this process (for existing facilities only):								

All of the required forms and additional information can be	found under the Permitting Section of DA	Q's website, or requested by phone.
12A.		
 For Modifications, Administrative Updates or Telepresent location of the facility from the nearest state 		please provide directions to the
For Construction or Relocation permits , please proad. Include a MAP as Attachment B .	rovide directions to the proposed new s	ite location from the nearest state
Take exit 11 (CR 41, Dallas Pike) from I-70 east of Wh Road). Turn right (east) on US 40 and travel for 4.02 mile stop sign and turn left to continue on CR 45 (G C & P Ro NOT follow CR 45 to the left but continue straight on what CR 37 (G C & P Road) to CR 53/1 (Long Run Road) are left. (Total mileage on G C & P road, which includes CR 40)	es to CR 45 (Atkinson Crossing Road) a bad). (After traveling 0.85 miles from sto at is now CR 37 but is still G C & P Roa ad turn right. Travel 0.37 miles on CR 5	nd turn left. Travel for 1.18 miles to op sign, CR 45 turns to the left. DO d). Travel 2.44 miles on CR 45 and 3/1 to well pad access road on the
12B. New site address (if applicable):	12C. Nearest city or town:	12D. County:
See above	Valley Grove	Ohio
12.E. UTM Northing (KM): 4,444.30127	12F. UTM Easting (KM): 536.89123	12G. UTM Zone: 17T
13. Briefly describe the proposed change(s) at the facilit This application includes one (1) 1.0-mmBtu/hr natural mmBtu/hr natural gas-fired heater treater (EU-HT1), th produced water tanks (EU-TANKS-PW), condensate and (1) 15.0-mmBtu/hr vapor combustor (APC-COMB) with fugitive haul road emissions (EU-HR).	ol gas-fired gas production unit (GPU) ree (3) 400-bbl condensate tanks (EU- d produced water truck loading (EU-LOA	TANKS-COND), three (3) 400-bbl AD-COND and EU-LOAD-PW), one
Provide the date of anticipated installation or change If this is an After-The-Fact permit application, proving thange did happen: / /	, , ,	14B. Date of anticipated Start-Up if a permit is granted: March 2018, but contingent upon permit issuance
14C. Provide a Schedule of the planned Installation of/application as Attachment C (if more than one unit		units proposed in this permit
15. Provide maximum projected Operating Schedule of Hours Per Day 24 Days Per Week	f activity/activities outlined in this applica 7 Weeks Per Year 52	ation:
16. Is demolition or physical renovation at an existing fac	cility involved?	
17. Risk Management Plans. If this facility is subject to changes (for applicability help see www.epa.gov/cepp		
18. Regulatory Discussion. List all Federal and State a	air pollution control regulations that you b	pelieve are applicable to the
proposed process (if known). A list of possible applica	able requirements is also included in Atta	achment S of this application
(Title V Permit Revision Information). Discuss applica	bility and proposed demonstration(s) of	compliance (if known). Provide this
information as Attachment D.		
Section II. Additional atta	achments and supporting de	ocuments.
 Include a check payable to WVDEP – Division of Air 45CSR13). 	Quality with the appropriate application	fee (per 45CSR22 and
20. Include a Table of Contents as the first page of you	ır application package.	
21. Provide a Plot Plan , e.g. scaled map(s) and/or sketo source(s) is or is to be located as Attachment E (Re		rty on which the stationary

Revised - 05/2010

22. Provide a **Detailed Process Flow Diagram(s)** showing each proposed or modified emissions unit, emission point and control device as **Attachment F.**

Indicate the location of the nearest occupied structure (e.g. church, school, business, residence).

23. Provide a Process Description as A									
 Also describe and quantify to the extent possible all changes made to the facility since the last permit review (if applicable). 									
All of the required forms and additional inf	formation can be found under the Pe	ermitting Section of DAQ's website, or requested by phone.							
		sed, used or produced as Attachment H.							
	- For chemical processes, provide a MSDS for each compound emitted to the air.								
25. Fill out the Emission Units Table ar									
26. Fill out the Emission Points Data S		•							
27. Fill out the Fugitive Emissions Data		as Attachment K.							
28. Check all applicable Emissions Uni		— -							
☐ Bulk Liquid Transfer Operations	☐ Haul Road Emissions	Quarry							
☐ Chemical Processes	☐ Hot Mix Asphalt Plant	☐ Solid Materials Sizing, Handling and Storage Facilities							
Concrete Batch Plant	☐ Incinerator	☐ Storage Tanks							
Grey Iron and Steel Foundry	☐ Indirect Heat Exchanger	☐ Storage Taliks							
General Emission Unit, specify:									
Fill out and provide the Emissions Unit I									
29. Check all applicable Air Pollution C									
Absorption Systems	☐ Baghouse	☐ Flare (VAPOR COMBUSTOR)							
Adsorption Systems	☐Condenser —	☐ Mechanical Collector							
Afterburner	☐ Electrostatic Precipitate	or							
☐ Other Collectors, specify									
Fill out and provide the Air Pollution Co	ntrol Device Sheet(s) as Attachn	nent M.							
30. Provide all Supporting Emissions (Items 28 through 31.	Calculations as Attachment N, o	r attach the calculations directly to the forms listed in							
	e compliance with the proposed en	proposed monitoring, recordkeeping, reporting and nissions limits and operating parameters in this permit							
	ay not be able to accept all measu	ner or not the applicant chooses to propose such res proposed by the applicant. If none of these plans le them in the permit.							
32. Public Notice. At the time that the	application is submitted, place a C	Class I Legal Advertisement in a newspaper of general							
circulation in the area where the sou	rce is or will be located (See 45CS	SR§13-8.3 through 45CSR§13-8.5 and <i>Example Legal</i>							
Advertisement for details). Please	submit the Affidavit of Publication	n as Attachment P immediately upon receipt.							
33. Business Confidentiality Claims.	Does this application include confi	dential information (per 45CSR31)?							
☐ YES	⊠ NO								
	ling the criteria under 45CSR§31-4	nitted as confidential and provide justification for each 4.1, and in accordance with the DAQ's "Precautionary instructions as Attachment Q.							
Se	ection III. Certification o	f Information							
34. Authority/Delegation of Authority. Check applicable Authority Form be		ner than the responsible official signs the application.							
☐ Authority of Corporation or Other Busi	iness Entity	Authority of Partnership							
☐ Authority of Governmental Agency		Authority of Limited Partnership							
Submit completed and signed Authority	Form as Attachment R.								
Submit completed and signed Authority Form as Attachment R. All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.									

35A. Certification of Information. To certify 2.28) or Authorized Representative shall chec		cial (per 45CSR§13-2.22 and 45CSR§30-		
Certification of Truth, Accuracy, and Comp	leteness			
I, the undersigned Responsible Official / application and any supporting documents appreasonable inquiry I further agree to assume restationary source described herein in accordal Environmental Protection, Division of Air Quall and regulations of the West Virginia Division of business or agency changes its Responsible Contified in writing within 30 days of the official	pended hereto, is true, accurate, and complesponsibility for the construction, modification are with this application and any amendme ity permit issued in accordance with this application for Quality and W.Va. Code § 22-5-1 et so Official or Authorized Representative, the D	lete based on information and belief after on and/or relocation and operation of the nts thereto, as well as the Department of plication, along with all applicable rules eq. (State Air Pollution Control Act). If the		
Compliance Certification				
Except for requirements identified in the Title hat, based on information and belief formed a compliance with all applicable requirements.	/ Application for which compliance is not ac fter reasonable inquiry, all air contaminant	chieved, I, the undersigned hereby certify sources identified in this application are in		
SIGNATURE		DATE: 1/4/2018		
35B. Printed name of signee: Clay Murral	(Please use blue ink) 35C. Title: Regulatory Supervisor			
35D. E-mail: Clay_Murral@SWN.com	36E. Phone: 304-884-1715	36F. FAX:		
36A. Printed name of contact person (if different Heather Cready	ent from above):	36B. Title: Regulatory Technician		
36C. E-mail: Heather Cready@SWN.com	36D. Phone: 304-884-1651	36E. FAX:		
PLEASE CHECK ALL APPLICABLE ATTACHMEN	ITS INCLUDED WITH THIS PERMIT APPLICAT	ION:		
	Attachment L: Emission Attachment M: Air Pollut Attachment N: Supportir Attachment O: Monitorir (m(s) Attachment Q: Business (MSDS) Attachment R: Authority Attachment S: Title V Pe	tion Control Device Sheet(s) ng Emissions Calculations ng/Recordkeeping/Reporting/Testing Plans ntice Confidential Claims Forms rmit Revision Information ture(s) to the DAQ, Permitting Section, at the		
FOR AGENCY USE ONLY – IF THIS IS A TITLE V	/ SOURCE:			
 □ Forward 1 copy of the application to the Title □ For Title V Administrative Amendments: □ NSR permit writer should notify Title □ For Title V Minor Modifications: 	e V Permitting Group and: V permit writer of draft permit, ropriate notification to EPA and affected state V permit writer of draft permit. ed in parallel with NSR Permit revision: le V permit writer of draft permit, 15CSR13 and Title V permits, aft permit.			
L AU OLDIE LEGUILEG TOLIUS AND ADDITIONAL INTORMA	non can be round under the Perinifing Sectio	JII OI DAG S WEDSILE. OF FEGUESIEG DV DNONE.		

ATTACHMENT A: BUSINESS CERTIFICATE

WEST VIRGINIA STATE TAX DEPARTMENT

BUSINESS REGISTRATION

SSUED TO:

SWN PRODUCTION COMPANY, LLC 5400D BIG TYLER RD

CHARLESTON, WV 25313-1103

RÉGISTRATION ACCOUNT NUMBE

2307-3731

UNE

This cettiticate is issued by

accordance: With Chapter U.A. Article 12, of the West Virginia Code

The person of organization identified on this certificate is registered to conduct business in the State of West-Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or carricelled by the Tax Commissioner.

Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET-VENDORS: Must-carry a copy of this certificate in every Vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia?

atL006 v.4 L1180094016

ATTACHMENT C: INSTALLATION/START-UP SCHEDULE

No new equipment is proposed in this project.

ATTACHMENT D: REGULATORY DISCUSSION

STATE

45 CSR 13 - PERMITS FOR CONSTRUCTION, MODIFICATION, RELOCATION AND OPERATION OF STATIONARY SOURCES OF AIR POLLUTANTS, NOTIFICATION REQUIREMENTS, ADMINISTRATIVE UPDATES, TEMPORARY PERMITS, GENERAL PERMITS, AND PROCEDURES FOR EVALUATION:

Potential emissions associated with the proposed project are less than the minor source construction or modification permit thresholds of 6 pounds per hour (pph) AND 10 tons per year (tpy) of any regulated air pollutant OR 144 pounds per day (ppd) of any regulated air pollutant OR 2 pph OR 5 tpy of aggregated hazardous air pollutants (HAP) OR 45 CSR 27 toxic air pollutant (TAP) (10% increase if above BAT triggers or increase to Best Available Technology (BAT) triggers). This project qualifies as a Class I Update.

45 CSR 22 - AIR QUALITY MANAGEMENT FEE PROGRAM:

The facility will be required to maintain a valid Certificate to Operate on the premises.

45 CSR 30 - REQUIREMENTS FOR OPERATING PERMITS:

Emissions from the facility do not exceed major source thresholds; therefore, this rule does not apply.

FEDERAL

40 CFR PART 60 SUBPART KB—STANDARDS OF PERFORMANCE FOR VOLATILE ORGANIC LIQUID STORAGE VESSELS (INCLUDING PETROLEUM LIQUID STORAGE VESSELS) FOR WHICH CONSTRUCTION, RECONSTRUCTION, OR MODIFICATION COMMENCED AFTER JULY 23, 1984

The affected facility to which this Subpart applies is each storage vessel with a capacity greater than or equal to 75 cubic meters (m³) that is used to store volatile organic liquids (VOL) for which construction, reconstruction, or modification is commenced after July 23, 1984. The tanks at this facility were constructed after the effective date of this Subpart but are less than 75 m³ (which equals approximately 471 bbl); therefore, this Subpart does not apply.

40 CFR PART 60 SUBPART KKK - STANDARDS OF PERFORMANCE FOR STATIONARY FOR EQUIPMENT LEAKS OF VOC FROM ONSHORE NATURAL GAS PROCESSING PLANTS:

The facility is not considered an affected source (natural gas processing plant) and is therefore not subject to this Subpart.

40 CFR PART 60 SUBPART IIII - STANDARDS OF PERFORMANCE FOR STATIONARY COMPRESSION IGNITION INTERNAL COMBUSTION ENGINES:

The facility does not contain the affected source (diesel-fired engine) and is therefore not subject to this Subpart.

40 CFR PART 60 SUBPART JJJJ - STANDARDS OF PERFORMANCE FOR STATIONARY SPARK IGNITION INTERNAL COMBUSTION ENGINES:

The facility does not contain the affected source (natural gas-fired engine) and is therefore not subject to this Subpart.

40 CFR PART 60 SUBPART OOOO - STANDARDS OF PERFORMANCE FOR CRUDE OIL AND NATURAL GAS PRODUCTION, TRANSMISSION, AND DISTRIBUTION:

The emission sources affected by this Subpart include well completions, pneumatic controllers, equipment leaks from natural gas processing plants, sweetening units at natural gas processing plants, reciprocating compressors, centrifugal compressors and storage vessels which are constructed, modified or reconstructed after August 23, 2011 and before September 18, 2015.

The one (1) existing well at this location was completed during the effective date of this Subpart and is subject to the compliance requirements. There is no centrifugal compressor using wet gas seals at this facility. The pneumatic controllers utilized at the facility are considered low-bleed and are not subject to this Subpart. The storage vessel venting is controlled to less than six (6) TPY VOC and federally enforceable limits are requested; therefore, the storage vessels are not subject to this Subpart.

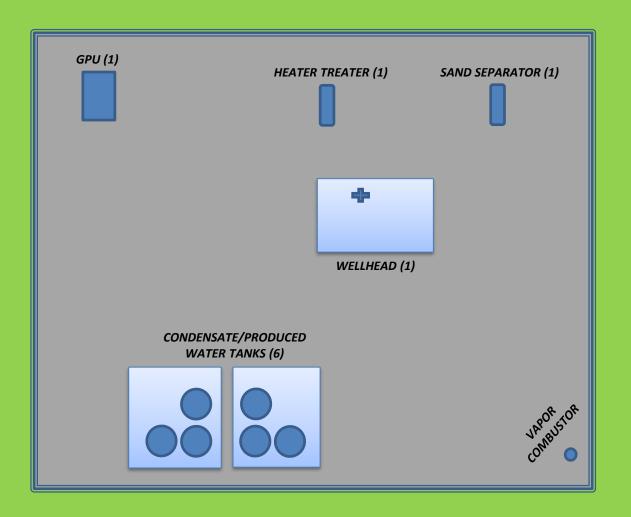
40 CFR PART 60 SUBPART OOOOA - STANDARDS OF PERFORMANCE FOR CRUDE OIL AND NATURAL GAS FACILITIES FOR WHICH CONSTRUCTION, MODIFICATION, OR RECONSTRUCTION COMMENCED AFTER SEPTEMBER 18, 2015:

The emission sources affected by this Subpart include well completions, centrifugal compressors, reciprocating compressors, pneumatic controllers, storage vessels, fugitive sources at well sites, fugitive sources at compressor stations, pneumatic pumps, equipment leaks from natural gas processing plants and sweetening units at natural gas processing plants which are constructed, modified or reconstructed after September 18, 2015.

The one (1) existing well at this location was completed before the effective date of this Subpart and is not subject to the compliance requirements. There is no centrifugal compressor using wet gas seals at this facility. The pneumatic controllers utilized at the facility are considered low-bleed and are not subject to this Subpart. The storage vessels were constructed before the effective date of this Subpart and are not subject to this Subpart.

40 CFR PART 63 SUBPART HH - NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES FROM OIL AND NATURAL GAS PRODUCTION FACILITIES:

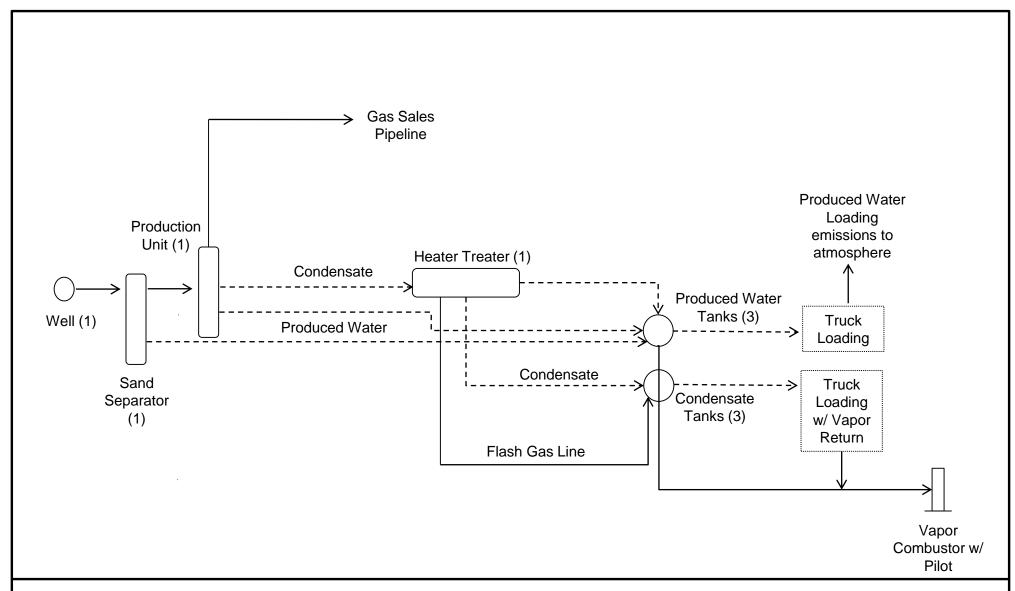
The site is a minor (area) source of hazardous air pollutants. This Subpart applies to affected emission points that are located at facilities that are major and area sources of HAP, and either process, upgrade, or store hydrocarbon liquids prior to custody transfer or that process, upgrade, or store natural gas prior to entering the natural gas transmission and storage source category. For purposes of this Subpart natural gas enters the natural gas transmission and storage source category after the natural gas processing plant, if present. The facility is a minor (area) source of HAP; however, there is no triethylene glycol (TEG) dehydration unit present at the facility and therefore this Subpart does not apply.


40 CFR PART 63 SUBPART HHH - NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES FROM NATURAL TRANSMISSION AND STORAGE FACILITIES:

The facility is not a natural gas transmission and storage facility and is therefore not subject to this Subpart.

40 CFR PART 63 SUBPART ZZZZ - NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES FROM STATIONARY RECIPROCATING INTERNAL COMBUSTION ENGINES - AREA SOURCE:

The facility does not contain the affected source (natural gas-fired engine) and is therefore not subject to this Subpart.


ATTACHMENT E: PLOT PLAN

<u>NOTE</u>: Image is only a representation of production/emissions equipment. Actual location specifications and equipment placement are not to scale.

January 2018

ATTACHMENT F: PROCESS FLOW DIAGRAM

Gas/Vapor
Liquids (Condensate and Produced Water)

Note: Drawing is a depiction of general facility process and is not intended to represent facility and/or equipment layout.

SWN Production Company, LLC Michael Ratcliffe Pad

Attachment F: Process Flow Diagram January 2018

ATTACHMENT G: PROCESS DESCRIPTION

The facility is an oil and natural gas exploration and production facility, responsible for the production of condensate and natural gas. Storage of condensate and produced water also occurs on-site. A description of the facility process is as follows: Condensate, gas and water come from the wellhead through the sand separator then to the production unit, where the first stage of separation occurs. Produced water is sent from the production unit to the produced water tanks. Condensate and residual water are sent to the heater treater. Produced water from the heater treater flows into the produced water storage tanks. Condensate flows into the condensate storage tanks.

The natural gas stream exits the facility for transmission via pipeline. Condensate and produced water are transported offsite via truck. Working, breathing and flashing vapors from the storage tanks are routed to the vapor combustor with 100% capture efficiency to be burned with at least 98% combustion efficiency. Condensate loading emissions are routed to a vapor combustor with 70% capture efficiency and 98% destruction efficiency. Produced water loading emissions are vented to the atmosphere. The vapor combustor has one (1) natural gas-fired pilot to ensure a constant flame for combustion.

A process flow diagram reflecting facility operations is shown in Attachment D.

ATTACHMENT I: EMISSION UNITS TABLE

ATTACHMENT I - EMISSION UNITS TABLE

Include ALL emission units and air pollution control devices that will be part of this permit application review, regardless of permitting

Emission Unit	Emission Point ID ²	Emission Unit Description	Year Installed/M odified	Design Capacity	Type ³ and Date of Change	Control Device(s) ⁴
EU-ENG1	EP-ENG1	23.6-hp Kubota DG972-E2 Engine	2014	23.6-hp	Removal	N/A
EU-GPU1	EP-GPU1	1.0-mmBtu/hr GPU Burner	2013	1.0-mmBtu/hr	Existing	N/A
EU-LH1	EP-LH1	1.5-mmBtu/hr Line Heater	2013	1.5-mmBtu/hr	Removal	N/A
EU-HT1	EP-HT1	0.5-mmBtu/hr Heater Treater	2013	0.5-mmBtu/hr	Existing	N/A
EU-TANKS- COND	APC-COMB	Three (3) 400-bbl Condensate Tanks Routed to Vapor Combustor	2013	400-bbl	Modification	APC-COMB
EU-TANKS- PW	APC-COMB	Three (3) 400-bbl Produced Water Tanks Routed to Vapor Combustor	2013	400-bbl	Modification	-
EU-LOAD- COND	EU-LOAD- COND and APC-COMB	Condensate Truck Loading w/ Vapor Return Routed to Combustor	2013	308,792 gal/yr	Modification	Vapor Return and APC- COMB
EU-LOAD- PW	EP-LOAD- PW	Produced Water Truck Loading	2013		Modification	
APC-COMB	APC-COMB	15.0-mmBtu/hr Vapor Combustor	2013	15.0- mmBtu/hr	Modification	N/A
EU-PILOT	APC-COMB	Vapor Combustor Pilots	2013	50-scfh	Modification	-
EU-FUG	EP-FUG	Fugitive Emissions	2013	N/A	Modification	
EU-HR	EP-HR	Fugitive Haul Road Emissions	2013	N/A	Modification	N/A

¹ For Emission Units (or Sources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation.

² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

³ New, modification, removal, existing

⁴ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

ATTACHMENT J: EMISSION POINTS DATA SUMMARY SHEET

Attachment J EMISSION POINTS DATA SUMMARY SHEET

							Table	1: Emissions	Data						
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	n Point Ve Type¹ Throu Po (Mus Emissi		n This nt	Control (Must Emissio	ollution Device match on Units Plot Plan)	Emissi (che	ime for on Unit mical ses only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)	Uncor	n Potential ntrolled sions ⁴	Conf	n Potential trolled sions ⁵	Emission Form or Phase (At exit condition s, Solid, Liquid or	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)		lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vap or)		
EP-GPU1	Upward vertical stack	EU- GPU1	GPU Burner	N/A	None	N/A	N/A	NOx CO VOC SO2 PM ₁₀ PM Total n-Hexane Formaldehyde Benzene Toluene Carbon Dioxide Methane Nitrous Oxide	0.11 0.09 0.01 <0.01 0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.48 0.41 0.03 <0.01 0.03 0.04 0.01 <0.01 <0.01 <0.01 512.36 0.01 <0.01	N/A	N/A	Gas/Vapor	O = AP-42	N/A
EP-HT1	Upward vertical stack	EU- HT1	Heater Treater	N/A	None	N/A	N/A	NOx CO VOC SO2 PM10 PM Total n-Hexane Formaldehyde Benzene Toluene Carbon Dioxide Methane Nitrous Oxide	0.06 0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.24 0.20 0.01 <0.01 0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	N/A	N/A	Gas/Vapor	O = AP-42	N/A
EP- LOAD- COND	Fugitive	EU- LOAD- COND	Condensate Truck Loading	-	Vapor Return and APC-COMB	N/A	N/A	VOC n-Hexane Benzene Toluene Ethylbenzene Xylenes Carbon Dioxide Methane	N/A	0.95 0.05 <0.01 <0.01 <0.01 0.01 <0.01 0.01	N/A	0.29 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.05	Gas/Vapor	O = AP-42/Promax	N/A

EP- LOAD- PW	Fugitive	EU- LOAD-PW	Produced Water Truck Loading	-	None	N/A	N/A	VOC n-Hexane Benzene Toluene Ethylbenzene Xylenes Carbon Dioxide Methane	N/A	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	N/A	N/A	Gas/Vapor	O = AP-42/Promax	N/A
APC-COMB	Upward vertical stack(s)	EU- TANKS- COND, EU- TANKS- PW, EU- COND- LOAD, APC- COMB, EU-PILOT	Vapor Combustor	,	None	N/A	N/A	NOx CO PM VOC n-Hexane Benzene Toluene Ethylbenzene Xylenes Carbon Dioxide Methane Nitrous Oxide	2.08 4.14 0.05 24.18 1.25 0.02 0.08 0.09 0.13 1,759.95 0.03 <0.01	9.09 18.12 0.21 105.92 5.47 0.07 0.33 0.40 0.58 7,708.58 0.15 0.01	2.08 4.14 0.05 0.48 <0.01 <0.01 <0.01 <0.01 <0.01 1,759.95 0.03 <0.01	9.09 18.12 0.21 2.12 0.11 <0.01 0.01 0.01 0.01 7,708.58 0.15 0.01	Gas/Vapor	O = AP-42, Mass Balance, ProMax	N/A
EP-FUG	Fugitive	EU-FUG	Fugitive Components	-	None	N/A	N/A	VOC n-Hexane Benzene Toluene Ethylbenzene Xylenes Carbon Dioxide Methane	N/A	3.02 0.13 <0.01 0.01 0.01 0.01 0.01 1.62	N/A	N/A	Gas/Vapor	O = EPA-453/ R-95-017	N/A
EP-HR	Fugitive	EU-HR	Fugitive Haul Road Emissions	-	None	N/A	N/A	PM Total PM ₁₀ PM _{2.5}	0.02 <0.01 <0.01	0.06 0.02 <0.01	N/A	N/A	Gas/Vapor	O = AP-42	N/A

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

- ¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.
- ² Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).
- ³ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. **LIST** Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. **DO NOT LIST** H₂, H₂O, N₂, O₂, and Noble Gases.
- ⁴ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
- ⁵ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
- 6 Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).
- Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m³) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO₂, use units of ppmv (See 45CSR10).

Attachment J EMISSION POINTS DATA SUMMARY SHEET

	Table 2: Release Parameter Data										
Emission Point ID	Inner		Exit Gas		Emission Point El	evation (ft)	tes (km)				
No. (Must match Emission Units Table)	Diameter (ft.)	Temp. (°F)	Volumetric Flow ¹ (acfm) at operating conditions	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ² (Release height of emissions above ground level)	Northing	Easting			
EP-GPU1	1.0 (est.)	500 (est.)	~992.4	~21.1	~1,275	10.75	4,444.30127	536.89123			
EP-HT1	0.7	450 (est.)	~13,067	~277.3	~1,275	10	4,444.30127	536.89123			
EP-LOAD- COND	N/A	Ambient	N/A	N/A	~1,275	3 (est.)	4,444.30127	536.89123			
EP-LOAD-PW	N/A	Ambient	N/A	N/A	~1,275	3 (est.)	4,444.30127	536.89123			
APC-COMB	5.5	1,000 (est.)	Unknown	Unknown	~1,275	30	4,444.30127	536.89123			
EP-FUG	N/A	Ambient	N/A	N/A	~1,275	N/A	4,444.30127	536.89123			
EP-HR	N/A	Ambient	N/A	N/A	~1,275	N/A	4,444.30127	536.89123			
		Note:	In lieu of equipment UTM	coordinates, site U	TM coordinates provid	led.					

Note:

¹ Give at operating conditions. Include inerts. ² Release height of emissions above ground level.

^{**}Stack parameters for GPU and heater treater are estimated based on typical equipment configurations but may vary.

ATTACHMENT K: FUGITIVE EMISSIONS DATA SUMMARY SHEET

Attachment K

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS
1.)	Will there be haul road activities?
	⊠ Yes □ No
	☐ If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.
2.)	Will there be Storage Piles?
	☐ Yes ☐ No
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
3.)	Will there be Liquid Loading/Unloading Operations?
	⊠ Yes □ No
	$oxed{oxed}$ If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?
	☐ Yes
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
5.)	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?
	⊠ Yes □ No
	$\ \boxtimes$ If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.
6.)	Will there be General Clean-up VOC Operations?
	☐ Yes ☐ No
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
7.)	Will there be any other activities that generate fugitive emissions?
	☐ Yes ☐ No
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.
	ou answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions mmary."

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants - Chemical Name/CAS 1	Maximum Uncontrolled		Maximum Po Controlled Em	Est. Method	
	Onemical Name, 6746	lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
Haul Road/Road Dust Emissions Paved Haul Roads						
Unpaved Haul Roads	PM Total PM ₁₀ PM _{2.5}	0.02 <0.01 <0.01	0.06 0.02 <0.01	N/A	N/A	O – AP-42 13.2.2
Storage Pile Emissions						
Loading/Unloading Operations - Condensate	VOC n-Hexane Benzene Toluene Ethylbenzene Xylenes Carbon Dioxide Methane	Does not apply	0.95 0.05 <0.01 <0.01 <0.01 0.01 <0.01 0.16	Does not apply	0.29 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.05	O – AP-42 5.2-4 / API 5-12
Loading/Unloading Operations – Produced Water	VOC n-Hexane Benzene Toluene Ethylbenzene Xylenes Carbon Dioxide Methane	Does not apply	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.03	Does not apply	N/A	O – AP-42 5.2-4 / API 5-12
Wastewater Treatment Evaporation & Operations						

Equipment Leaks	VOC n-Hexane Benzene Toluene Ethylbenzene Xylenes Carbon Dioxide Methane	Does not apply	3.02 0.13 <0.01 0.01 0.01 0.01 0.01 1.62	Does not apply	N/A	O – EPA- 453/R- 95-017
General Clean-up VOC Emissions						
Other						

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

Note: Greenhouse Gas (GHG) emissions were calculated using EPA Mandatory Reporting Rule and 2009 API Compendium guidance. With the exception of fugitive emissions (which are calculated by mass balance), emissions calculation methodologies are intended to calculate metric tons (tonnes) for the purposes of emissions reporting to EPA.

These values were converted to tons for consistency with other pollutants.

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

ATTACHMENT L: EMISSION UNIT DATA SHEETS

EUDS - STORAGE TANK(S): CONDENSATE

EUDS - STORAGE TANK(S): PRODUCED WATER

EUDS - BULK LIQUID TRANSFER OPERATIONS - CONDENSATE

EUDS - BULK LIQUID TRANSFER OPERATIONS - PRODUCED WATER

EUDS - CHEMICAL PROCESS (LEAK SOURCES)

EUDS - FUGITIVE EMISSIONS FROM HAUL ROADS

Attachment L EMISSIONS UNIT DATA SHEET STORAGE TANKS

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT www.epa.gov/tnn/tanks.html), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (http://www.epa.gov/tnn/chief/).

I. GENERAL INFORMATION (required)

1. Bulk Storage Area Name	2. Tank Name			
Condensate Storage	Three (3) 400-bbl Condensate Storage Tanks			
Tank Equipment Identification No. (as assigned on Equipment List Form) EU-TANKS-COND	Emission Point Identification No. (as assigned on Equipment List Form) APC-COMB			
5. Date of Commencement of Construction (for existing tanks) 2013				
6. Type of change ☐ New Construction ☐ New Stored Material ☐ Other Tank Modification				
7. Description of Tank Modification (if applicable) Update composition and throughput.				
7A. Does the tank have more than one mode of operation?				
7B. If YES, explain and identify which mode is covered by this application (Note: A separate form must be completed for each mode).				
7C. Provide any limitations on source operation affecting emissions, any work practice standards (e.g. production variation, etc.):				
Not applicable				
II. TANK INFORM	IATION (required)			
8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height. 400 barrels (per tank)				
9A. Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)			
12	20			
10A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)			
19	10			
11A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)			
20	10			
12. Nominal Capacity (specify barrels or gallons). This is also known as "working volume" and considers design liquid levels and overflow valve heights. 16,074.56 gallons (per EPA TANKS 4.0.9d – previously submitted)				

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)			
308,792 (Total for all tanks)	846 (Total for all tanks)			
	*Rolling daily throughput total not to exceed maximum annual throughput.			
14. Number of Turnovers per year (annual net throughpu	ut/maximum tank liquid volume)			
18.38 (Total t	for all tanks)			
15. Maximum tank fill rate (gal/min) Unknown				
16. Tank fill method Submerged				
17. Complete 17A and 17B for Variable Vapor Space Tank Systems				
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year			
18. Type of tank (check all that apply): Fixed Roof vertical horizontal other (describe) External Floating Roof pontoon roof				
☐ Domed External (or Covered) Floating Roof				
☐ Internal Floating Roof vertical column support self-supporting ☐ Variable Vapor Space lifter roof diaphragm ☐ Pressurized spherical cylindrical				
☐ Underground ☐ Other (describe)				
III. TANK CONSTRUCTION & OPERATION INFORMATION (optional if providing TANKS Summary Sheets) Refer to enclosed Tank Emissions.				
19. Tank Shell Construction:				
☐ Riveted ☐ Gunite lined ☐ Epoxy-coate	d rivets			
20A. Shell Color 20B. Roof Colo	r 20C. Year Last Painted			
21. Shell Condition (if metal and unlined): ☐ No Rust ☐ Light Rust ☐ Dense Rust ☐ Not applicable				
22A. Is the tank heated? YES NO				
22B. If YES, provide the operating temperature (°F)				
22C. If YES, please describe how heat is provided to tank.				
23. Operating Pressure Range (psig):				
24. Complete the following section for Vertical Fixed Roof Tanks Does Not Apply				
24A. For dome roof, provide roof radius (ft)				
24B. For cone roof, provide slope (ft/ft)				
25. Complete the following section for Floating Roof Tanks Does Not Apply				
25A. Year Internal Floaters Installed:				
25B. Primary Seal Type:	·			
25C. Is the Floating Roof equipped with a Secondary	Seal? YES NO			

		25D. If YES, how is the secondary seal mounted? (check one)				
25E. Is the Floating Roof equipped with a weather shield? YES NO						
ne number of eac	ch type of fitting:					
ACCESS	HATCH					
UNBOLTED COVER, GASKETED: UNBOLTED COVER, UNGASKETE						
AUTOMATIC GAUGE FLOAT WELL						
		UNBOLTED COVER, UNGASKETED:				
COLUM	N WELL					
BUILT-UP COLUMN - SLIDING F		PIPE COLUMN – FLEXIBLE FABRIC SLEEVE SEAL:				
LADDE	R WELL					
PIP COLUMN – SLIDING COVER, GASKETED:		PIPE COLUMN – SLIDING COVER, UNGASKETED:				
GAUGE-HATCH	: /SAMPLE PORT					
SLIDING COVER, GASKETED:		SLIDING COVER, UNGASKETED:				
ROOF LEG OR	HANGER WELL					
GHTED MECHANICAL WEIGHTED		SAMPLE WELL-SLIT FABRIC SEAL (10% OPEN AREA)				
VACUUM		<u> </u>				
WEIGHTED MECHANICAL ACTUATION, GASKETED:						
RIM VENT						
WEIGHTED MECHANICAL ACTUATION GASKETED:		WEIGHTED MECHANICAL ACTUATION, UNGASKETED:				
DECK DRAIN (3-INCH DIAMETER)						
OPEN: 90% CLOSED:						
STUB DRAIN						
1-INCH DIAMETER:						
	ACCESS NBOLTED COVE JTOMATIC GAU NBOLTED COVE COLUM JILT-UP COLU DVER, UNGASK LADDEI KETED: GAUGE-HATCH ROOF LEG OR EIGHTED CTUATION, UNC VACUUM I, GASKETED: RIM N I GASKETED:	ACCESS HATCH NBOLTED COVER, GASKETED: JTOMATIC GAUGE FLOAT WELL NBOLTED COVER, GASKETED: COLUMN WELL JILT-UP COLUMN - SLIDING DVER, UNGASKETED: LADDER WELL KETED: PIPE COLUMN - SLIDING COVER, GAUGE-HATCH/SAMPLE PORT SLIDING COVER, ROOF LEG OR HANGER WELL EIGHTED MECHANICAL CTUATION, UNGASKETED: VACUUM BREAKER I, GASKETED: WEIGHTED MECHA RIM VENT I GASKETED: WEIGHTED MECHA ECK DRAIN (3-INCH DIAMETER) 90% CLOSED:				

26. Complete the following section for Internal Floating Roof Tanks Does Not Apply				
26A. Deck Type: Bolted Welded				
26B. For Bolted decks, provide deck construction:				
26C. Deck seam:				
☐ Continuous sheet construction 5 feet wide ☐ Continuous sheet construction 6 feet wide				
Continuous sheet construction 7 feet wide				
☐ Continuous sheet construction 5 × 7.5 feet wide ☐ Continuous sheet construction 5 × 12 feet wide				
Other (describe)				
26D. Deck seam length (ft)	26E. Area of deck (ft²)			
For column supported tanks:	26G. Diameter of each column:			
26F. Number of columns:				
IV. SITE INFORMANTION (optional	if providing TANKS Summary Sheets)			
27. Provide the city and state on which the data in this se	ection are based.			
Refer to enclosed Tank Emissions.				
28. Daily Average Ambient Temperature (°F)				
29. Annual Average Maximum Temperature (°F)				
30. Annual Average Minimum Temperature (°F)				
31. Average Wind Speed (miles/hr)				
32. Annual Average Solar Insulation Factor (BTU/(ft²-da)	32. Annual Average Solar Insulation Factor (BTU/(ft²-day))			
33. Atmospheric Pressure (psia)				
V. LIQUID INFORMATION (optional if providing TANKS Summary Sheets)				
34. Average daily temperature range of bulk liquid: Refer to enclosed Tank Emissions.				
34A. Minimum (°F)	34B. Maximum (°F)			
35. Average operating pressure range of tank:				
35A. Minimum (psig)	35B. Maximum (psig)			
36A. Minimum Liquid Surface Temperature (°F)	36B. Corresponding Vapor Pressure (psia)			
37A. Average Liquid Surface Temperature (°F)	37B. Corresponding Vapor Pressure (psia)			
38A. Maximum Liquid Surface Temperature (°F)	38B. Corresponding Vapor Pressure (psia)			
39. Provide the following for <u>each</u> liquid or gas to be stored in tank. Add additional pages if necessary.				
39A. Material Name or Composition				
39B. CAS Number				
39C. Liquid Density (lb/gal)				
39D. Liquid Molecular Weight (lb/lb-mole)				
39E. Vapor Molecular Weight (lb/lb-mole)				
-				

39F. True (psia)	sure							
39G. Reid (psia)								
Months Storage per Yo	ear							
39H. From								
39I. To								
VI. EMISSIONS AND CONTROL DEVICE DATA (required)								
40. Emission Control [Devices (check as many	y as apply):	☐ Does No	ot Apply				
☐ Carbon Adsorp	tion ¹							
☐ Condenser ¹								
☐ Conservation V	ent (psig)							
Vacuum S	Setting		Pressure Se	etting				
☐ Emergency Re	lief Valve (psig)							
☐ Inert Gas Blank	cet of							
☐ Insulation of Ta	ank with							
Liquid Absorpti	on (scrubber)1							
Refrigeration of	,							
☐ Rupture Disc (p								
☐ Vent to Incinera	= :							
☐ Other¹ (describ	e): Vapor Combusto	r						
,	•		Sheet.					
 Complete appropriate Air Pollution Control Device Sheet. 41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application). 								
41. Expected Emission	n Rate (submit Test Dat	ta or Calcul	ations here	or elsewhere in the ap	plication).			
•	·		ations here					
41. Expected Emission Material Name & CAS No.	n Rate (submit Test Dat Breathing Loss (lb/hr)			or elsewhere in the ap Annual Loss (lb/yr)	plication). Estimation Method ¹			
Material Name &	Breathing Loss	Workin Amount	g Loss Units	Annual Loss (lb/yr)				
Material Name &	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)				
Material Name &	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)				
Material Name &	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)				
Material Name &	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)				
Material Name &	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)				
Material Name &	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)				
Material Name &	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)				
Material Name &	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)				

 $^{^{1}}$ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

[⊠] Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

Attachment L EMISSIONS UNIT DATA SHEET STORAGE TANKS

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT www.epa.gov/tnn/tanks.html), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (http://www.epa.gov/tnn/chief/).

I. GENERAL INFORMATION (required)

1. Bulk Storage Area Name	2. Tank Name
Produced Water Storage	Three (3) 400-bbl Produced Water Storage Tanks
Tank Equipment Identification No. (as assigned on Equipment List Form) EU-TANKS-PW	Emission Point Identification No. (as assigned on Equipment List Form) APC-COMB
5. Date of Commencement of Construction (for existing	tanks) 2013
6. Type of change	New Stored Material
7. Description of Tank Modification (if applicable) Update throughput and composition.	
7A. Does the tank have more than one mode of operatio (e.g. Is there more than one product stored in the tar	k?)
7B. If YES, explain and identify which mode is covere completed for each mode).	ed by this application (Note: A separate form must be
7C. Provide any limitations on source operation affecting variation, etc.):	emissions, any work practice standards (e.g. production
Not applicable	
II. TANK INFORM	IATION (required)
height.	the internal cross-sectional area multiplied by internal s (per tank)
9A. Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)
12	20
10A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)
19	10
11A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)
20	10
 Nominal Capacity (specify barrels or gallons). This liquid levels and overflow valve heights. 16,074.56 gallons (per EPA TANK) 	is also known as "working volume" and considers design \$\times 4.0.9d - \text{previously submitted}\$

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)
58,791 (Total for all tanks)	161 (Total for all tanks)
	*Rolling daily throughput total not to exceed maximum annual throughput.
14. Number of Turnovers per year (annual net throughpu	ut/maximum tank liquid volume)
3.50 (Total f	or all tanks)
15. Maximum tank fill rate (gal/min) Unknown	
16. Tank fill method	
17. Complete 17A and 17B for Variable Vapor Space Ta	nk Systems
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year
18. Type of tank (check all that apply): ☐ Fixed Roof ☐ vertical horizontal ☐ other (describe) ☐ External Floating Roof pontoon roof	
☐ Domed External (or Covered) Floating Roof	
☐ Internal Floating Roof vertical column su ☐ Variable Vapor Space lifter roof ☐ Pressurized spherical cylindrica ☐ Underground ☐ Other (describe)	diaphragm
, , , , , , , , , , , , , , , , , , ,	ATION (optional if providing TANKS Summary Sheets)
Refer to enclosed Tank Emissions.	ATION (optional if providing PANNS Summary Sheets)
19. Tank Shell Construction:	
☐ Riveted ☐ Gunite lined ☐ Epoxy-coate	d rivets Other (describe)
20A. Shell Color 20B. Roof Colo	r 20C. Year Last Painted
21. Shell Condition (if metal and unlined): ☐ No Rust ☐ Light Rust ☐ Dense R	uet Net applicable
☐ No Rust ☐ Light Rust ☐ Dense R 22A. Is the tank heated? ☐ YES ☐ NO	ust Not applicable
22B. If YES, provide the operating temperature (°F)	
22C. If YES, please describe how heat is provided to t	ank
23. Operating Pressure Range (psig):	alik.
24. Complete the following section for Vertical Fixed Ro	of Tanks Does Not Apply
24A. For dome roof, provide roof radius (ft)	Does Not Apply
24B. For cone roof, provide slope (ft/ft)	
25. Complete the following section for Floating Roof Ta	nks Does Not Apply
25A. Year Internal Floaters Installed:	
25B. Primary Seal Type:	·
25C. Is the Floating Roof equipped with a Secondary S	Seal? YES NO

25D. If YES, how is the secondary	seal mounted? (che	eck one)	e Rim Other (describe):				
25E. Is the Floating Roof equipped with a weather shield?							
25F. Describe deck fittings; indicate	e the number of eac	ch type of fitting:					
	ACCESS	SHATCH					
BOLT COVER, GASKETED:	UNBOLTED COVE	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:				
	AUTOMATIC GAU	JGE FLOAT WELL					
BOLT COVER, GASKETED:	UNBOLTED COVE	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:				
	COLUM	N WELL					
BUILT-UP COLUMN - SLIDING							
COVER, GASKETED:	COVER, UNGASK	(ETED:	FABRIC SLEEVE SEAL:				
		R WELL					
PIP COLUMN – SLIDING COVER, GA	ASKETED:	PIPE COLUMN – S	SLIDING COVER, UNGASKETED:				
	,						
	GAUGE-HATCH	: I/SAMPLE PORT					
SLIDING COVER, GASKETED:	,	SLIDING COVER,	UNGASKETED:				
	!						
	POOF LEGIOR	HANGER WELL					
WEIGHTED MECHANICAL			SAMPLE WELL-SLIT FABRIC SEAL				
ACTUATION, GASKETED:	ACTUATION, UNC		(10% OPEN AREA)				
	VACUUM I	BREAKER					
WEIGHTED MECHANICAL ACTUAT			ANICAL ACTUATION, UNGASKETED:				
	!						
RIM VENT							
WEIGHTED MECHANICAL ACTUAT			ANICAL ACTUATION, UNGASKETED:				
	,						
ODEN.	DECK DRAIN (3-I	NCH DIAMETER) 90% CLOSED:					
OPEN:	,	90% CLUSED.					
	STUB	DRAIN					
1-INCH DIAMETER:							
OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)							

26. Complete the following section for Internal Floating F	Roof Tanks Does Not Apply
26A. Deck Type:	
26B. For Bolted decks, provide deck construction:	
26C. Deck seam:	
☐ Continuous sheet construction 5 feet wide ☐ Continuous sheet construction 6 feet wide	
Continuous sheet construction 7 feet wide	
☐ Continuous sheet construction 5 × 7.5 feet wide ☐ Continuous sheet construction 5 × 12 feet wide	
Other (describe)	
26D. Deck seam length (ft)	26E. Area of deck (ft²)
For column supported tanks:	26G. Diameter of each column:
26F. Number of columns:	
IV. SITE INFORMANTION (optional	if providing TANKS Summary Sheets)
27. Provide the city and state on which the data in this se	ection are based.
Refer to enclosed Tank Emissions.	
28. Daily Average Ambient Temperature (°F)	
29. Annual Average Maximum Temperature (°F)	
30. Annual Average Minimum Temperature (°F)	
31. Average Wind Speed (miles/hr)	
32. Annual Average Solar Insulation Factor (BTU/(ft²-day	y))
33. Atmospheric Pressure (psia)	
	if providing TANKS Summary Sheets)
34. Average daily temperature range of bulk liquid: Ref	
34A. Minimum (°F)	34B. Maximum (°F)
35. Average operating pressure range of tank:	
35A. Minimum (psig)	35B. Maximum (psig)
36A. Minimum Liquid Surface Temperature (°F)	36B. Corresponding Vapor Pressure (psia)
37A. Average Liquid Surface Temperature (°F)	37B. Corresponding Vapor Pressure (psia)
38A. Maximum Liquid Surface Temperature (°F)	38B. Corresponding Vapor Pressure (psia)
39. Provide the following for each liquid or gas to be stor	red in tank. Add additional pages if necessary.
39A. Material Name or Composition	
39B. CAS Number	
39C. Liquid Density (lb/gal)	
39D. Liquid Molecular Weight (lb/lb-mole)	
39E. Vapor Molecular Weight (lb/lb-mole)	
-	

39F. True (psia)	sure								
39G. Reid (psia)									
Months Storage per Yo	ear								
39H. From									
39I. To									
	VI. EMISSIONS AND CONTROL DEVICE DATA (required)								
40. Emission Control [Devices (check as many	y as apply):	☐ Does No	ot Apply					
☐ Carbon Adsorp	tion ¹								
☐ Condenser ¹									
☐ Conservation V	ent (psig)								
Vacuum S	Setting		Pressure Se	etting					
☐ Emergency Re	lief Valve (psig)								
☐ Inert Gas Blank	cet of								
☐ Insulation of Ta	ank with								
☐ Liquid Absorpti	on (scrubber)1								
☐ Refrigeration of	f Tank								
☐ Rupture Disc (p									
☐ Vent to Incinera	= :								
Other¹ (describ)	e): Vapor Combusto	r							
,	•	rol Device S	Sheet.						
 Complete appropriate Air Pollution Control Device Sheet. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application). 									
41. Expected Emission	n Rate (submit Test Dai	ta or Calcul	ations here	or elsewhere in the ap	plication).				
41. Expected Emission Material Name &	İ		ations here ig Loss						
•	n Rate (submit Test Dat Breathing Loss (lb/hr)			or elsewhere in the ap Annual Loss (lb/yr)	plication). Estimation Method¹				
Material Name &	Breathing Loss	Workin Amount	g Loss Units	Annual Loss (lb/yr)					
Material Name &	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)					
Material Name &	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)					
Material Name &	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)					
Material Name &	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)					
Material Name &	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)					
Material Name &	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)					
Material Name &	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)					
Material Name &	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)					

 $^{^{1}}$ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

[⊠] Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

Attachment L EMISSIONS UNIT DATA SHEET BULK LIQUID TRANSFER OPERATIONS

Furnish the following information for each new or modified bulk liquid transfer area or loading rack, as shown on the *Equipment List Form* and other parts of this application. This form is to be used for bulk liquid transfer operations such as to and from drums, marine vessels, rail tank cars, and tank trucks.

Identification Number (as assigned on <i>Equipment List Form</i>): EU-LOAD-COND and APC-COMB					
1. Loading Area Name: Condensate Truck Loading					
2. Type of cargo vessels accommodated at this rack or transfer point (check as many as apply): Drums Marine Vessels Rail Tank Cars XTank Trucks					
3. Loading Rack or Transfer Point Data:					
Number of pumps	One (1)				
Number of liquids loaded	One (1)				
Maximum number of marine vessels, tank trucks, tank cars, and/or drums loading at one time	One (1)				
4. Does ballasting of marine vessels occ Yes No	cur at this loading area? ☑ Does not apply				
5. Describe cleaning location, compounds and procedure for cargo vessels using this transfer point:Point is kept clear. Scotches are provided. Lines kept in good working order and tested periodically.					
6. Are cargo vessels pressure tested for leaks at this or any other location? Yes No If YES, describe: Vessel pressure tested in accordance with DOT requirements, if applicable.					

WVDEP-OAQ Revision 03-2007

7. Projected Maximum Operating Schedule (for rack or transfer point as a whole):					
Maximum	ım Jan Mar. Apr June July - Sept. Oct Dec.				
hours/day	24	24	24	24	
days/week 5 5 5 5					
weeks/quarter	13	13	13	13	

8. Bulk Liquid Data (add pages as necessary):				
Pump ID No.		N/A		
Liquid Name		Condensate		
Max. daily throughput (1000 gal/day)		0.85		
Max. annual throughput (1000 gal/yr)		308.79		
Loading Method	1	SUB		
Max. Fill Rate (g	al/min)	125		
Average Fill Time (min/loading)		~60		
Max. Bulk Liquid Temperature (°F)		120		
True Vapor Pres	ssure ²	13.5987		
Cargo Vessel Co	ondition ³	U		
Control Equipment or Method ⁴		O = Vapor Return w/ Combustion Controls		
Minimum control efficiency (%)		70% Capture / 98% Combustion / 69% Overall		
Maximum Emission Rate	Loading (lb/hr)	20.12		
	Annual (lb/yr)	570.05 (based on 0.29 tons/year)		
Estimation Meth	od ⁵	EPA		

WVDEP-OAQ Revision 03-2007

¹ BF = Bottom Fill SP = Splash Fill SUB = Submerged Fill

² At maximum bulk liquid temperature

³ B = Ballasted Vessel, C = Cleaned, U = Uncleaned (dedicated service), O = other (describe)

⁴ List as many as apply (complete and submit appropriate *Air Pollution Control Device Sheets*):CA = Carbon Adsorption LOA = Lean Oil AdsorptionCO = Condensation SC = Scrubber (Absorption)CRA = Compressor-Refrigeration-Absorption TO = Thermal Oxidation or Incineration

CRC = Compression-Refrigeration-Condensation VB = Dedicated Vapor Balance (closed system)

O = other (descibe)

⁵ EPA = EPA Emission Factor as stated in AP-42

MB = Material Balance

TM = Test Measurement based upon test data submittal

O = other (describe)

9. Proposed Monitoring, Recordkeeping, Reporting, and Testing

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING Captured loading emissions shall be routed to the vapor combustor. The combustor shall be operated in accordance with the existing permit requirements.	RECORDKEEPING As currently permitted
REPORTING As currently permitted	TESTING As currently permitted

MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION/AIR POLLUTION CONTROL DEVICE.

RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.

REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.

10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty

Not applicable

Attachment L EMISSIONS UNIT DATA SHEET BULK LIQUID TRANSFER OPERATIONS

Furnish the following information for each new or modified bulk liquid transfer area or loading rack, as shown on the *Equipment List Form* and other parts of this application. This form is to be used for bulk liquid transfer operations such as to and from drums, marine vessels, rail tank cars, and tank trucks.

ti dollo:						
Identification Number (as assigned on Equipment List Form): EU-LOAD-PW						
1. Loading Area Name: Produced Water Truck Loading						
2. Type of cargo vessels accommodated at this rack or transfer point (check as many as apply): Drums Marine Vessels Rail Tank Cars Tank Trucks						
3. Loading Rack or Transfer Point Data:						
Number of pumps	One (1)					
Number of liquids loaded	One (1)					
Maximum number of marine vessels, tank trucks, tank cars, and/or drums loading at one time						
4. Does ballasting of marine vessels occ Yes No	cur at this loading area? ⊠ Does not apply					
5. Describe cleaning location, compounds and procedure for cargo vessels using this transfer point:						
Point is kept clear. Scotches are provided. Lines kept in good working order and tested periodically.						
6. Are cargo vessels pressure tested for leaks at this or any other location?						
Vessel pressure tested in accordance with DOT requirements, if applicable.						

WVDEP-OAQ Revision 03-2007

7. Projected Maximum Operating Schedule (for rack or transfer point as a whole):					
Maximum	Maximum Jan Mar. Apr June July - Sept. Oct Dec.				
hours/day	24	24	24	24	
days/week 5 5 5 5					
weeks/quarter	13	13	13	13	

8. Bulk Liquid	8. Bulk Liquid Data (add pages as necessary):					
Pump ID No.		N/A				
Liquid Name		Produced Water				
Max. daily throug	ghput (1000 gal/day)	0.16				
Max. annual thro	oughput (1000 gal/yr)	58.79				
Loading Method	1	SUB				
Max. Fill Rate (g	al/min)	125				
Average Fill Tim	e (min/loading)	~60				
Max. Bulk Liquid	Temperature (°F)	120				
True Vapor Pres	ssure ²	13.4507				
Cargo Vessel Co	ondition ³	U				
Control Equipme	ent or Method ⁴	None				
Minimum control	efficiency (%)	N/A				
Maximum Emission Rate	Loading (lb/hr)	0.56				
	Annual (lb/yr)	<0.01 (based on <0.01 tons/year)				
Estimation Meth	od ⁵	EPA				

WVDEP-OAQ Revision 03-2007

¹ BF = Bottom Fill SP = Splash Fill SUB = Submerged Fill

² At maximum bulk liquid temperature

³ B = Ballasted Vessel, C = Cleaned, U = Uncleaned (dedicated service), O = other (describe)

⁴ List as many as apply (complete and submit appropriate *Air Pollution Control Device* Sheets):CA = Carbon Adsorption LOA = Lean Oil AdsorptionCO = SC = Scrubber (Absorption)CRA = Compressor-Condensation TO = Thermal Oxidation or Incineration Refrigeration-Absorption

CRC = Compression-Refrigeration-Condensation VB = Dedicated Vapor Balance (closed system)

O = other (descibe)

⁵ EPA = EPA Emission Factor as stated in AP-42

MB = Material Balance

TM = Test Measurement based upon test data submittal

O = other (describe)

9. Proposed Monitoring, Recordkeeping, Reporting, and Testing

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING Monitor and record throughput records.	RECORDKEEPING Monitor and record throughput records.
REPORTING As currently permitted	TESTING N/A

MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION/AIR POLLUTION CONTROL DEVICE.

RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.

REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.

10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty

Not applicable

Attachment L FUGITIVE EMISSIONS FROM UNPAVED HAULROADS

UNPAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

k =	Particle size multiplier	4.90	1.50
s =	Silt content of road surface material (%)	3.9	3.9
p =	Number of days per year with precipitation >0.01 in.	150	150

Item Number	Description	Number of Wheels	Mean Vehicle Weight (tons)	Mean Vehicle Speed (mph)	Miles per Trip	Maximum Trips per Hour	Maximum Trips per Year	Control Device ID Number	Control Efficiency (%)
1	Light Vehicles	4	2	10	0.54	1	23	N/A	N/A
2	Medium Trucks	10	15	10	0.54	1	12	N/A	N/A
3	Heavy Trucks	18	23.5	10	0.54	1	46	N/A	N/A
4									
5									
6									
7									
8									

Source: AP-42 Fifth Edition - 13.2.2 Unpaved Roads

 $E = k \times 5.9 \times (s \div 12) \times (S \div 30) \times (W \div 3)^{0.7} \times (w \div 4)^{0.5} \times ((365 - p) \div 365) =$

lb/Vehicle Mile Traveled (VMT)

Where:

k =	Particle size multiplier	4.90	1.50
s =	Silt content of road surface material (%)	3.9	3.9
S =	Mean vehicle speed (mph)	10	10
W =	Mean vehicle weight (tons)	16.1	16.1
w =	Mean number of wheels per vehicle	13	13
p =	Number of days per year with precipitation >0.01 in.	150	150

For lb/hr: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$

For TPY: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] \times [Ton \div 2000 \ lb] = Tons/year$

SUMMARY OF UNPAVED HAULROAD EMISSIONS

	PM				PM-10			
Item No.	Uncon	trolled	Cont	rolled	Uncontrolled		Controlled	
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
1	0.01	0.02	-	-	<0.01	<0.01	-	-
2	<0.01	0.01	•	-	<0.01	<0.01	-	•
3	0.01	0.04	-	-	<0.01	0.01	-	-
4								
5								
6								
7								
8								
TOTALS	0.02	0.06	-	-	<0.01	0.02	-	-

Note: Minimum one-per-day average pick-up trucks and service trucks even if tanker truck not required every day. Per EPA BID calculations, all emissions based on average trips. Estimated maximum hourly, daily and yearly trips provided for information only.

FUGITIVE EMISSIONS FROM PAVED HAULROADS - Not Applicable

INDUSTRIAL PAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

l =	Industrial augmentation factor (dimensionless)	
n =	Number of traffic lanes	
s =	Surface material silt content (%)	
L=	Surface dust loading (lb/mile)	

Item Number	Description	Mean Vehicle Weight (tons)	Miles per Trip	Maximum Trips per Hour	Maximum Trips per Year	Control Device ID Number	Control Efficiency (%)
1							
2							
3							
4							
5							
6							
7							
8							

Source: AP-42 Fifth Edition – 11.2.6 Industrial Paved Roads

 $E = 0.077 \times I \times (4 \div n) \times (s \div 10) \times (L \div 1000) \times (W \div 3)^{0.7} =$

lb/Vehicle Mile Traveled (VMT)

Where:

I =	Industrial augmentation factor (dimensionless)	
n =	Number of traffic lanes	
s =	Surface meterial silt content (%)	
L=	Surface dust loading (lb/mile)	
W =	Average vehicle weight (tons)	

For lb/hr: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$

For TPY: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] \times [Ton \div 2000 \ lb] = Tons/year$

SUMMARY OF PAVED HAULROAD EMISSIONS

SOMMAN OF TAVED HAVEN TO ENGINEERS								
Itama Nia	Uncon	trolled	Controlled					
Item No.	lb/hr	TPY	lb/hr	TPY				
1								
2								
3								
4								
5								
6								
7								
8								
TOTALS								

Attachment L EMISSIONS UNIT DATA SHEET CHEMICAL PROCESS

	For chemical processes please fill out this sheet and all supplementary forms (see below) that apply. Please check all supplementary forms that have been completed.						
	☐ Emergency Vent Summary Sheet ☐ Leak Sources Data Sheet ☐ Toxicology Data Sheet ☐ Reactor Data Sheet ☐ Distillation Column Data Sheet						
1.	Chemical process area name and Components in natural gas and lig	equipment ID number (as shown in Edith liquid service (EU-FUG)	quipment List Form)				
2.	Standard Industrial Classification (Codes (SICs) for process(es)					
3.	 List raw materials and ☐ attach MSDSs – Previously submitted Natural gas and condensate 						
4.	List Products and Maximum Produ	uction and attach MSDSs					
Des	scription and CAS Number	Maximum Hourly (lb/hr)	Maximum Annual (ton/year)				
Not	applicable						
5.	Complete the Emergency Vent St	ummary Sheet for all emergency relief of	devices.				
6.	· · · · · · · · · · · · · · · · · · ·						
7.	Clearly describe below or attach to	o application Accident Procedures to be	e followed in the event of an accidental				
	spill or release.						
	In the event of an accidental spill or reimmediate steps to stop the spill or re	elease, personnel will be protected, emergen elease will be implemented.	acy response personnel will be notified and				

 8A. Complete the <i>Toxicology Data Sheet</i> or attach to application a toxicology report (an up-to-date material safety data sheets (MSDS) may be used) outlining the currently known acute and chronic health effects of each compound or chemical entity emitted to the air. If these compounds have already been listed in Item 3, then a duplicate MSDS sheet is not required. Include data such as the OSHA time weighted average (TWA) or mutagenicity, teratogenicity, irritation, and other known or suspected effects should be addressed. Indicate where these are unknown, and provide references. 8B. Describe any health effects testing or epidemiological studies on these compounds that are being or may be conducted by the company or required under TSCA, RCRA or other federal regulations. Discuss the persistence in the environment of any emission (e.g. pesticides, etc.). 9. Waste Products - Waste products status: (If source is subject to RCRA or 45CSR25, please contact the Hazardous Waste Section of WVDEP, OAQ at (304) 926-3647.) 					
9A. Types and amo	ounts of wastes to be dispos	sed:			
9B. Method of disponents	osal and location of waste d	lisposa	al facilities: Phone:		
9C. Check here if a	pproved USEPA/State Haza	ardous	s Waste Landfill will be used 🗌		
10. Maximum and	1	1	dule for process or project as a who	,	
circle units:	(hrs/day) (hr/batch)	(day	s), (batches/day), (batches/week)	(days/yr), (weeks/year)	
10A. Maximum					
10B. Typical					
11. Complete a Re	actor Data Sheet for each re	eactor	in this chemical process.		
12. Complete a Dis	stillation Column Data Sheet	t for ea	ach distillation column in this chemi	ical process.	
Please propose operating parar limits. MONITORING	13. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the propose operating parameters. Please propose testing in order to demonstrate compliance with the proposed emission limits.				
REPORTING As currently permitted			TESTING As currently permitted		
MONITORING. Please list and describe the process parameters and ranges that are proposed to be monitored in order to demonstrate compliance with the operation of this process equipment operation or air pollution control device. RECORDKEEPING. Please describe the proposed recordkeeping that will accompany the monitoring. REPORTING. Please describe the proposed frequency of reporting of the recordkeeping. TESTING. Please describe any proposed emissions testing for this process equipment or air pollution control device. 14. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty					
Not applicable					

LEAK SOURCE DATA SHEET

Source Category	Pollutant	Number of Source Components ¹	Number of Components Monitored by Frequency ²	Average Time to Repair (days) ³	Estimated Annual Emission Rate (lb/yr) ⁴
Pumps ⁵	light liquid VOC ^{6,7}	0	N/A	N/A	0
	heavy liquid VOC8				
	Non-VOC ⁹				
Valves ¹⁰	Gas VOC	17	N/A	N/A	342.03
	Light Liquid VOC	72	N/A	N/A	3,317.87
	Heavy Liquid VOC				
	Non-VOC				
Safety Relief Valves ¹¹	Gas VOC	24	N/A	N/A	944.27
	Non VOC				
Open-ended Lines ¹²	voc	0	N/A	N/A	0
	Non-VOC				
Sampling Connections ¹³	voc	0	N/A	N/A	0
	Non-VOC				
Compressors	VOC	0	N/A	N/A	0
	Non-VOC				
Flanges	voc	81 (Gas), 12 (LL)	N/A	N/A	141.24 (Gas), 24.33 (LL)
	Non-VOC				
Other	voc	260	N/A	N/A	999.35
	Non-VOC				

¹⁻¹³ See notes on the following page.

Note: Component counts taken by equipment type at representative facility and made site-specific according to the number of each equipment type at this site.

Notes for Leak Source Data Sheet

- For VOC sources include components on streams and equipment that contain greater than 10% w/w VOC, including feed streams, reaction/separation facilities, and product/by-product delivery lines. Do not include certain leakless equipment as defined below by category.
- 2. By monitoring frequency, give the number of sources routinely monitored for leaks, using a portable detection device that measures concentration in ppm. Do not include monitoring by visual or soap-bubble leak detection methods. "M/Q(M)/Q/SA/A/O" means the time period between inspections as follows:

Monthly/Quarterly, with Monthly follow-up of repaired leakers/Quarterly/Semi-annual/Annually/Other (specify time period)

If source category is not monitored, a single zero in the space will suffice. For example, if 50 gas-service valves are monitored quarterly, with monthly follow-up of those repaired, 75 are monitored semi-annually, and 50 are checked bimonthly (alternate months), with non checked at any other frequency, you would put in the category "valves, gas service:" 0/50/0/75/0/50 (bimonthly).

- 3. Give the average number of days, after a leak is discovered, that an attempt will be made to repair the leak.
- 4. Note the method used: MB material balance; EE engineering estimate; EPA emission factors established by EPA (cite document used); O other method, such as in-house emission factor (specify).
- 5. Do not include in the equipment count sealless pumps (canned motor or diaphragm) or those with enclosed venting to a control device. (Emissions from vented equipment should be included in the estimates given in the Emission Points Data Sheet.)
- 6. Volatile organic compounds (VOC) means the term as defined in 40 CFR □51.100 (s).
- 7. A light liquid is defined as a fluid with vapor pressure equal to or greater than 0.04 psi (0.3 Kpa) at 20°C. For mixtures, if 20% w/w or more of the stream is composed of fluids with vapor pressures greater than 0.04 psi (0.3 Kpa) at 20 °C, then the fluid is defined as a light liquid.
- 8. A heavy liquid is defined as a fluid with a vapor pressure less than 0.04 psi (0.3 Kpa) at 20°C. For mixtures, if less than 20% w/w of the stream is composed of fluids with vapor pressures greater than 0.04 psi (0.3 Kpa) at 20 °C, then the fluid is defined as a heavy liquid.
- 9. LIST CO, H₂S, mineral acids, NO, NO₂, SO₃, etc. DO NOT LIST CO₂, H₂, H₂O, N₂, O₂, and Noble Gases.
- 10. Include all process valves whether in-line or on an open-ended line such as sample, drain and purge valves. Do not include safety-relief valves, or leakless valves such as check, diaphragm, and bellows seal valves.
- 11. Do not include a safety-relief valve if there is a rupture disk in place upstream of the valve, or if the valve vents to a control device.
- 12 Open-ended lines include purge, drain and vent lines. Do not include sampling connections, or lines sealed by plugs, caps, blinds or second valves.
- 13. Do not include closed-purge sampling connections.

ATTACHMENT M: AIR POLLUTION CONTROL DEVICE SHEET

APCDS – COMBUSTOR

VAPOR COMBUSTOR SPECIFICATION SHEET

Attachment M Air Pollution Control Device Sheet

(FLARE VAPOR COMBUSTOR SYSTEM*)

Manufacturer: MRW Technologies, Inc. Model No. TBF-5.5-30-147000	2. Method: ☐ Elevated flare ☐ Ground flare ☐ Other ☐ Describe: Vapor Combustor
Provide diagram(s) of unit describing capture syst capacity, horsepower of movers. If applicable, state	em with duct arrangement and size of duct, air volume, hood face velocity and hood collection efficiency.
Method of system used: Not applicable ☐ Steam-assisted ☐ Air-assisted	☐ Pressure-assisted ☐ Non-assisted
5. Maximum capacity of flare -vapor combustor: ~102 scf/min ~6,125 scf/hr *Based on 147,000 scfd	6. Dimensions of stack: Diameter 5.5 ft. Height 30 ft.
7. Estimated combustion efficiency: (Waste gas destruction efficiency) Estimated: ≥98% Minimum guaranteed: 98%	8. Fuel used in burners: Natural Gas Fuel Oil, Number Other, Specify:
9. Number of burners:	11. Describe method of controlling flame:
Rating: 15 mmBTU/hr 10. Will preheat be used? Yes No	The pilot is monitored via flame rod.
12. FlareVapor Combustor height: 30 ft	14. Natural gas flow rate to flare pilot flame per pilot light: ~0.83 scf/min
13. Flare tip inside diameter: N/A ft	\leq 50 scf/hr
15. Number of pilot lights:	16. Will automatic re-ignition be used? ☐ Yes ☐ No
	l automatically attempt to relight the pilot. If the re- live will automatically close and a local and remote
18. Is pilot flame equipped with a monitor?	a-Red nera with monitoring control room
19. Hours of unit operation per year: 8,760	

Steam Injection

20.	Will steam injection be used	d? 🗌 Yes	⊠ No	21.	Steam pressure Minimum Expected:		PSIG		
					Design Maximum:				
22.	Total Steam flow rate:		LB/hr	23.	Temperature:		°F		
24.	Velocity		ft/sec	25. Number of jet streams					
26.	Diameter of steam jets:		in	27. Design basis for steam injected:					
20	How will stoom flow he con	tralled if steem	inication is			B steam/LB h	vdrocarbon		
20.	How will steam flow be con	irolled li steam	injection is	use	eur				
	Ch	aracteristics of	f the Wast	e G	as Stream to be Burned				
29.		Quan			Quantity	0	f Matarial		
	Name	Grains of H			(LB/hr, ft ³ /hr, etc)	Source	of Material		
	See Vapor Combustor								
	Calculations in								
	Attachment N								
	-								
30.	Estimate total combustible	to flare vapor co	ombustor:	24.	18 lb/hr VOC	LB/hr or A(CF/hr		
	(Maximum mass flow rate of	•		102					
31.	Estimated total flow rate to		ombustor i	nclu	ding materials to be burr	ed, carrier ga	ses, auxiliary		
	fuel, etc.:								
20	24.18 lb/hr VOC		or ACF/hr						
32.	Give composition of carrier	gases:							
33.	Temperature of emission st	ream:		34.	Identify and describe all	auxiliary fuels			
	~1,000	°F					BTU/scf		
	Heating value of emission s				Not applicable		BTU/scf		
	2,450 Mean molecular weight of e	BTU/f mission stream					BTU/scf		
	MW = lb/lb-m						BTU/scf BTU/scf		
35	Temperature of flare vapor cor	mhuetor dae: ~	1,000 °F	36	Flare Vapor combustor g	as flow rate:			
	Flare-Vapor combustor gas he		1,000 1		Flare Vapor combustor g				
57.	2,450 BTU/ft ³	eat content.		30.	scf/min	jas exit velocit	у.		
39.	Maximum rate during emer	gency for one n	najor piece	of e	equipment or process unit	: sc	/min		
	Maximum rate during emer						U/min		
41.	Describe any air pollution reheating, gas humidification		inlet and c	utle	t gas conditioning proces	ses (e.g., gas	cooling, gas		
	reneating, gas numumcatio	711 <i>)</i> .							

42. Describe the collect N/A	tion material disposal system:	
43. Have you included Yes	Flare Vapor Combustor Contro	I Device in the Emissions Points Data Summary Sheet?
Please propose n	g parameters. Please propose	and Testing eporting in order to demonstrate compliance with the testing in order to demonstrate compliance with the
MONITORING:		RECORDKEEPING:
As currently permitted		As currently permitted
REPORTING:		TESTING:
As currently permitted		As currently permitted
MONITORING: RECORDKEEPING:	monitored in order to demons equipment or air control device. Please describe the proposed re	ocess parameters and ranges that are proposed to be strate compliance with the operation of this process cordkeeping that will accompany the monitoring.
REPORTING: TESTING:	pollution control device.	emissions testing for this process equipment on air emissions testing for this process equipment on air
45. Manufacturer's Gua	aranteed Capture Efficiency for ea	ch air pollutant.
<u>></u> 98%	aranteed Control Efficiency for eac	•
47. Describe all operat	ing ranges and maintenance proce	edures required by Manufacturer to maintain warranty.

^{*}Although a vapor combustor is not considered a flare by design, the function is consistent in that it combusts a waste stream for the purpose controlling emissions. Since there is not APCDS specifically for this device, the APCDS for Flare Systems most accurately reflects the characteristics of this control device.

^{**}Assuming <50 SCFH pilot fuel consumption and 905 Btu/scf fuel heating value.

Tank Battery Flare Specification Sheet MRW Technologies, Inc. Flare Model Number: TBF-5.5-30-147000

Expected Destruction Removal Efficiency (DRE): 98% or Greater of

Non-Methane Hydrocarbons

Unit Size: 5.5-foot Diameter

30-Foot Overall Height

Design Heat Input: 15 MMBTU/HR

Design Flow Rates: 147,000 SCFD

Design Heat Content: 2450 BTU/SCF

Waste Gas Flame Arrestor: 2" Enardo

Pilot Type: MRW Electric Ignition

Pilot Operation (Continuous/Intermittent): Continuous

Pilot Fuel Consumption: 50 SCFH or Less

Pilot Monitoring Device: Flame Rod

Automatic Re-Ignition: Included

Remote Alarm Indication: Included

Description of Control Scheme:

The flare pilot is monitored via flame rod. If the pilot flame is lost, the control system will automatically attempt to relight the pilot. If the reignition attempt fails, the pilot solenoid valve will automatically close and a local & remote alarm signal will be generated to indicate loss of pilot flame.

ATTACHMENT N: SUPPORTING EMISSIONS CALCULATIONS

EXAMPLE CALCULATIONS

g/hp-hr Emission Factors:

Emission Factor (g/hp-hr) * Engine Rating (hp) * 1 lb/453.6 g = lb/hr

Ib/mmBtu Emission Factors:

Emission Factor (lb/mmBtu) * Engine Rating (hp) * Fuel Use (Btu/hp-hr) * 1 mmBtu/1000000 Btu = lb/hr

Emission Factor (lb/mmBtu) * Combustor Rating (mmBtu/hr) = lb/hr

Ib/mmscf Emission Factors:

Emission Factor (lb/mmscf) * Heater Rating (mmBtu/hr) * 1/Fuel Heating Value (Btu/scf) = lb/hr

kg/mmBtu Emission Factors:

Emission Factor (kg/mmBtu) * Engine Rating (hp) * Fuel Use (Btu/hp-hr) * 2.20462 lb/kg * 1 mmBtu/1000000 Btu = lb/hr

Emission Factor (kg/mmBtu) * Heater Rating (mmBtu/hr) * 2.20462 lb/kg = lb/hr

Emissions with Capture and Control Systems:

Uncontrolled Emissions = Potential to Emit without Capture and/or Control

Uncaptured Emissions = Uncontrolled Emissions * (1 – Capture Efficiency %)

Controlled Emissions = Captured Emissions * (1 – Control Efficiency %)

Fugitives:

TOC Emission Factor (lb/hr/source) * Number of Sources * VOC wt% = lb/hr VOC

Tons per Year (TPY) Conversion:

lb/hr * Hours/Year * 1 ton/2000 lb = TPY

Tonnes/Year * 1.10231131 = TPY

SWN Production Company, LLC Michael Ratcliffe Pad Summary of Criteria Air Pollutant Emissions

Equipment	Unit ID	Emission Point	N	Ox	C	:0	Total	VOC1	s	O ₂	PM 1	Γotal
Equipment	Onit ib	ID	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
1.0-mmBtu/hr GPU Burner	EU-GPU1	EP-GPU1	0.11	0.48	0.09	0.41	0.01	0.03	<0.01	<0.01	0.01	0.04
0.5-mmBtu/hr Heater Treater	EU-HT1	EP-HT1	0.06	0.24	0.05	0.20	<0.01	0.01	<0.01	<0.01	<0.01	0.02
Three (3) 400-bbl Condensate Tanks Routed to Vapor Combustor	EU-TANKS- COND	APC-COMB	-	-	-	-	-	-	-	-	-	-
Three (3) 400-bbl Produced Water Tanks Routed to Vapor Combustor	EU-TANKS-PW	APC-COMB	-	-	-	-	-	-	-	-	-	-
Condensate Truck Loading w/ Vapor Return Routed to Combustor	EU-LOAD- COND	APC-COMB		-	-	-	0.07	0.29	-	-	-	=
Produced Water Truck Loading	EU-LOAD-PW	EP-LOAD-PW	-	-	-	-	<0.01	<0.01	-	-	-	-
15.0-mmBtu/hr Vapor Combustor	APC-COMB	APC-COMB	2.07	9.07	4.13	18.10	0.48	2.12	-	-	0.05	0.20
Vapor Combustor Pilot	EU-PILOT	APC-COMB	<0.01	0.02	<0.01	0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fugitive Emissions	EU-FUG	EP-FUG	-	-	-	-	0.69	3.02	-	-	-	-
Fugitive Haul Road Emissions	EU-HR	EP-HR	-	-	-	-	-	-	-	-	0.02	0.06
		Total =	2.24	9.81	4.28	18.73	1.25	5.47	<0.01	<0.01	0.08	0.32
Total minus fugitives =			2.24	9.81	4.28	18.73	0.56	2.44	<0.01	<0.01	0.06	0.26
Curre	Current Permit Allowable Emissions =			11.95	9.96	43.64	3.05	13.35	0.00	0.01	0.34	1.20
	Change in Emissions =			(2.13)	(5.69)	(24.91)	(1.80)	(7.89)	(0.00)	(0.00)	(0.26)	(0.88)

¹ Total VOC includes all constituents heavier than Propane (C3+), including hazardous air pollutants (HAP). Speciated HAP presented in following table.

SWN Production Company, LLC Michael Ratcliffe Pad Summary of Hazardous Air Pollutants

						Estimated Em	issions (lb/hr)				
Equipment	Unit ID	Acetaldehyde	Acrolein	Benzene	Ethylbenzene	Formalde- hyde	Methanol	n-Hexane	Toluene	Xylenes	Total HAP
1.0-mmBtu/hr GPU Burner	EU-GPU1	-	-	<0.01	-	<0.01	-	<0.01	<0.01	-	<0.01
0.5-mmBtu/hr Heater Treater	EU-HT1	-	-	<0.01	-	<0.01	-	<0.01	<0.01	-	<0.01
Three (3) 400-bbl Condensate Tanks Routed to Vapor Combustor	EU-TANKS- COND	-	-	-	-	-	-	-	-	-	-
Three (3) 400-bbl Produced Water Tanks Routed to Vapor Combustor	EU-TANKS-PW	-	-	-	-	-	-	-	-	-	-
Condensate Truck Loading w/ Vapor Return Routed to Combustor	EU-LOAD- COND	-	-	<0.01	<0.01	-	-	<0.01	<0.01	<0.01	<0.01
Produced Water Truck Loading	EU-LOAD-PW	-	-	<0.01	<0.01	-	-	<0.01	<0.01	<0.01	<0.01
15.0-mmBtu/hr Vapor Combustor	APC-COMB	-	-	<0.01	<0.01	-	-	0.02	<0.01	<0.01	0.03
Vapor Combustor Pilot	EU-PILOT	-	-	<0.01	-	<0.01	-	<0.01	<0.01	-	<0.01
Fugitive Emissions	EU-FUG	-	-	<0.01	<0.01	-	-	0.03	<0.01	<0.01	0.04
Fugitive Haul Road Emissions	EU-HR	-	-	-	-	=	-	-	-	-	-
	Total =	0.00	0.00	<0.01	<0.01	<0.01	0.00	0.06	<0.01	0.01	0.08
Current Permit Allowa	ble Emissions =	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	0.16	0.01	0.03	0.22
Change in Emissions =		(0.00)	(0.00)	(0.00)	(0.01)	(0.00)	(0.00)	(0.10)	(0.01)	(0.02)	(0.14)

Continued on Next Page

SWN Production Company, LLC Michael Ratcliffe Pad Summary of Hazardous Air Pollutants (Continued)

						Estimated Em	nissions (TPY)				
Equipment	Unit ID	Acetaldehyde	Acrolein	Benzene	Ethylbenzene	Formalde- hyde	Methanol	n-Hexane	Toluene	Xylenes	Total HAP
1.0-mmBtu/hr GPU Burner	EU-GPU1	-	-	<0.01	-	<0.01	-	0.01	<0.01	-	0.01
0.5-mmBtu/hr Heater Treater	EU-HT1	-	-	<0.01	-	<0.01	-	<0.01	<0.01	-	<0.01
Three (3) 400-bbl Condensate Tanks Routed to Vapor Combustor	EU-TANKS- COND	-	-	-	-	-	-	-	-	-	-
Three (3) 400-bbl Produced Water Tanks Routed to Vapor Combustor	EU-TANKS-PW	-	-	-	-	-	-	-	-	-	-
Condensate Truck Loading w/ Vapor Return Routed to Combustor	EU-LOAD- COND	-	-	<0.01	<0.01	-	-	0.01	<0.01	<0.01	0.02
Produced Water Truck Loading	EU-LOAD-PW	-	-	<0.01	<0.01	-	-	<0.01	<0.01	<0.01	<0.01
15.0-mmBtu/hr Vapor Combustor	APC-COMB	-	-	<0.01	0.01	-	-	0.11	0.01	0.01	0.14
Vapor Combustor Pilot	EU-PILOT	-	-	<0.01	-	<0.01	-	<0.01	<0.01	-	<0.01
Fugitive Emissions	EU-FUG	-	-	<0.01	0.01	-	-	0.13	0.01	0.01	0.16
Fugitive Haul Road Emissions	EU-HR	-	-	-	-	-	-	-	-	-	-
	Total =	0.00	0.00	<0.01	0.02	<0.01	0.00	0.27	0.02	0.03	0.33
Current Permit Allowa	ble Emissions =	<0.01	<0.01	0.01	0.05	0.02	<0.01	0.68	0.05	0.15	0.96
Change	(0.00)	(0.00)	(0.01)	(0.03)	(0.02)	(0.00)	(0.41)	(0.03)	(0.12)	(0.63)	

SWN Production Company, LLC Michael Ratcliffe Pad Summary of Greenhouse Gas Emissions - Metric Tons per Year (Tonnes)

Equipment	Unit ID	Carbon Di	oxide (CO ₂)	Methar	ne (CH ₄)	Methane (0	CH ₄) as CO _{2 Eq.}	Nitrous C	xide (N ₂ O)	Nitrous Oxide	(N ₂ O) as CO _{2 Eq.}	Total CO ₂ + CO _{2 Eq.} 1	
Equipment	Onit ib	lb/hr	tonnes/yr	lb/hr	tonnes/yr	lb/hr	tonnes/yr	lb/hr	tonnes/yr	lb/hr	tonnes/yr	lb/hr	tonnes/yr
1.0-mmBtu/hr GPU Burner	EU-GPU1	116.98	464.80	<0.01	0.01	0.06	0.22	<0.01	<0.01	0.07	0.26	117.10	465.28
0.5-mmBtu/hr Heater Treater	EU-HT1	58.49	232.40	<0.01	<0.01	0.03	0.11	<0.01	<0.01	0.03	0.13	58.55	232.64
Three (3) 400-bbl Condensate Tanks Routed to Vapor Combustor	EU-TANKS- COND	-	-	-	-	-	-	-	-	-	-	-	-
Three (3) 400-bbl Produced Water Tanks Routed to Vapor Combustor	EU-TANKS-PW	-	-	-	-	-	-	-	-	-	-	-	-
Condensate Truck Loading w/ Vapor Return Routed to Combustor	EU-LOAD-COND	<0.01	<0.01	0.01	0.04	0.27	1.08	-	-	-	-	0.27	1.08
Produced Water Truck Loading	EU-LOAD-PW	<0.01	<0.01	0.01	0.03	0.17	0.69	-	-	-	-	0.17	0.69
15.0-mmBtu/hr Vapor Combustor	APC-COMB	1,754.66	6,972.07	0.03	0.13	0.83	3.28	<0.01	0.01	0.99	3.92	1,756.47	6,979.27
Vapor Combustor Pilot	EU-PILOT	5.29	21.03	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	0.01	5.30	21.05
Fugitive Emissions	EU-FUG	<0.01	0.01	0.37	1.47	9.24	36.70	-	-	-	-	9.24	36.70
Fugitive Haul Road Emissions	EU-HR	-	-	-	-	-	-	-	-	-	-	-	-
	Total =	1,935.42	7,690.32	0.42	1.68	10.59	42.09	<0.01	0.01	1.09	4.32	1,947.10	7,736.72

¹ CO2 Equivalent = Pollutant times GWP multiplier. 40 CFR 98 Table A-1, Global Warming Potential (GWP) multiplier (100-Year Time Horizon): CO2 = 1, CH4 = 25, N2O = 298

² Per API Compendium (2009) Chapter 5: Because most of the CH₄ and CO₂ emissions from the condensate tanks are assumed to be negligible.

SWN Production Company, LLC Michael Ratcliffe Pad

Summary of Greenhouse Gas Emissions - Short Tons per Year (Tons)

Equipment	Unit ID	Carbon Dioxide (CO ₂)		Methar	ne (CH ₄)	Methane (CH ₄) as CO _{2 Eq.}		Nitrous Oxide (N ₂ O)		Nitrous Oxide (N ₂ O) as CO _{2 Eq.}		Total CO ₂ + CO _{2 Eq.} 1	
Equipment	Unit ID	lb/hr	tons/yr2	lb/hr	tons/yr2	lb/hr	tons/yr	lb/hr	tons/yr2	lb/hr	tons/yr	lb/hr	tons/yr
1.0-mmBtu/hr GPU Burner	EU-GPU1	116.98	512.36	<0.01	0.01	0.06	0.24	<0.01	<0.01	0.07	0.29	117.10	512.89
0.5-mmBtu/hr Heater Treater	EU-HT1	58.49	256.18	<0.01	<0.01	0.03	0.12	<0.01	<0.01	0.03	0.14	58.55	256.44
Three (3) 400-bbl Condensate Tanks Routed to Vapor Combustor	EU-TANKS- COND	-	-	-	-	-	-	-	-	-	-	-	-
Three (3) 400-bbl Produced Water Tanks Routed to Vapor Combustor	EU-TANKS-PW	-	-	-	-	-	-	-	-	-	-	-	-
Condensate Truck Loading w/ Vapor Return Routed to Combustor	EU-LOAD-COND	<0.01	<0.01	0.01	0.05	0.27	1.19	-	-	-	-	0.27	1.19
Produced Water Truck Loading	EU-LOAD-PW	<0.01	<0.01	0.01	0.03	0.17	0.76	-	-	-	-	0.17	0.76
15.0-mmBtu/hr Vapor Combustor	APC-COMB	1,754.66	7,685.39	0.03	0.14	0.83	3.62	<0.01	0.01	0.99	4.32	1,756.47	7,693.33
Vapor Combustor Pilot	EU-PILOT	5.29	23.18	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	0.01	5.30	23.21
Fugitive Emissions	EU-FUG	<0.01	0.01	0.37	1.62	9.24	40.45	-	-	-	-	9.24	40.46
Fugitive Haul Road Emissions	EU-HR	Ē	-	-	-	-	-	-	-	-	-	-	-
	Total =	1,935.42	8,477.12	0.42	1.86	10.59	46.39	<0.01	0.02	1.09	4.76	1,947.10	8,528.28

¹ CO2 Equivalent = Pollutant times GWP multiplier. 40 CFR 98 Table A-1, Global Warming Potential (GWP) multiplier (100-Year Time Horizon): CO2 = 1, CH4 = 25, N2O = 298

² EPA and API GHG calculation methodologies calculate emissions in metric tons (tonnes). These values have been converted to short tons for consistency with permitting threshold units.

³ Per API Compendium (2009) Chapter 5: Because most of the CH₄ and CO₂ emissions from storage tanks occur as a result of flashing (which is controlled by the vapor combustor in this case), working and breathing loss emissions of these gases are very small in production and virtually non-existent in the downstream segments. Therefore, GHG emissions from the condensate tanks are assumed to be negligible.

SWN Production Company, LLC Michael Ratcliffe Pad Gas Production Unit Burner Emissions Calculations - Criteria Air Pollutants

Equipment Information

Unit ID: <u>EU-GPU1</u>

Emission Point ID: EP-GPU1

Description: Gas Production Unit Burner

Number of Units: 1

Burner Design (mmBtu/hr): 1.0
Fuel HHV (Btu/scf): 905
Annual Fuel Use (mmscf): 9.68
Annual Operating Hours: 8,760

Criteria Air Pollutant Emissions

Unit ID: <u>EU-GPU1</u>

Pollutant	lb/hr	TPY
NOx	0.11	0.48
CO	0.09	0.41
VOC	0.01	0.03
SO ₂	<0.01	<0.01
PM _{10/2.5}	0.01	0.03
PM_{COND}	<0.01	0.01
PM _{TOT}	0.01	0.04

AP-42 Emission Factors for Units <100 mmBtu/hr (lb/mmscf)¹

Pollutant	1.4-1, -2 (7/98)
NOx	100.0
СО	84.0
VOC	5.5
SO ₂	0.6
PM _{10/2.5}	5.7
PM_{COND}	1.9
PM _{TOT}	7.6

¹ All PM (total, condensable and filterable) is assumed to be <1 micrometer in diameter. Total PM is the sum of filterable PM and condensable PM.

SWN Production Company, LLC Michael Ratcliffe Pad Gas Production Unit Burner Emissions Calculations - Hazardous Air Pollutants

Equipment Information

Unit ID: <u>EU-GPU1</u> Emission Point ID: EP-GPU1

Description: Gas Production Unit Burner

Number of Units: 1

Burner Design (mmBtu/hr): 1.0 Fuel HHV (Btu/scf): 905

Annual Fuel Use (mmscf): 9.68
Annual Operating Hours: 8,760

Hazardous Air Pollutant Emissions

Unit ID: <u>EU-GPU1</u>

Pollutant	lb/hr	TPY
n-Hexane	<0.01	0.01
Formaldehyde	<0.01	<0.01
Benzene	<0.01	<0.01
Toluene	<0.01	<0.01
Total HAP =	<0.01	0.01

AP-42 Emission Factors (lb/mmscf)

Pollutant	1.4-3 (7/98)
n-Hexane	1.80E+00
Formaldehyde	7.50E-02
Benzene	2.10E-03
Toluene	3.40E-03

SWN Production Company, LLC Michael Ratcliffe Pad Gas Production Unit Burner Emissions Calculations - Greenhouse Gases

Equipment Information

Unit ID: <u>EU-GPU1</u>

Emission Point ID: EP-GPU1

Description: Gas Production Unit Burner

Number of Units: 1

Burner Design (mmBtu/hr): 1.0

Fuel HHV (Btu/scf): 905
Annual Fuel Use (mmscf): 9.68
Annual Operating Hours: 8,760

Greenhouse Gas (GHG) Emissions¹

Unit ID: <u>EU-GPU1</u>

Pollutant	lb/hr	tonnes/yr
CO_2	116.98	464.80
CH ₄	<0.01	0.01
N₂O	<0.01	<0.01
CH ₄ as CO ₂ e	0.06	0.22
N ₂ O as CO ₂ e	0.07	0.26
Total CO ₂ + CO ₂ e =	117.10	465.28

40 CFR 98 Tables C-1 and C-2 Emission Factors (kg/mmBtu)²

Carbon Dioxide (CO ₂)	53.06
Methane (CH ₄)	1.00E-03
Nitrous Oxide (N ₂ O)	1.00E-04

Notes:

40 CFR 98 Table A-1, Global Warming Potential (GWP) multiplier: CO₂ = 1, CH₄ = 25, N₂O = 298

¹ Conversion to short tons (tons) found in site-wide Summary of Greenhouse Gases - Short Tons per Year (tons) table.

²CO₂e = CO₂ equivalent (Pollutant times GWP multiplier):

SWN Production Company, LLC Michael Ratcliffe Pad Heater Treater Emissions Calculations - Criteria Air Pollutants

Equipment Information

Unit ID: EU-HT1 **Emission Point ID:** EP-HT1 **Heater Treater** Description: 1 Number of Units: 0.5 Burner Design (mmBtu/hr): Fuel HHV (Btu/scf): 905 4.84 Annual Fuel Use (mmscf): 8,760 Annual Operating Hours:

Criteria Air Pollutant Emissions

Unit ID: <u>EU-HT1</u>

Pollutant	lb/hr	TPY
NOx	0.06	0.24
CO	0.05	0.20
VOC	<0.01	0.01
SO ₂	<0.01	<0.01
PM _{10/2.5}	<0.01	0.01
PM _{COND}	<0.01	<0.01
PM _{TOT}	<0.01	0.02

AP-42 Emission Factors for Units <100 mmBtu/hr (lb/mmscf)¹

Pollutant	1.4-1, -2 (7/98)
NOx	100.0
CO	84.0
VOC	5.5
SO_2	0.6
PM _{10/2.5}	5.7
PM_{COND}	1.9
PM _{TOT}	7.6

¹ All PM (total, condensable and filterable) is assumed to be <1 micrometer in diameter. Total PM is the sum of filterable PM and condensable PM.

SWN Production Company, LLC Michael Ratcliffe Pad Heater Treater Emissions Calculations - Hazardous Air Pollutants

Annual Operating Hours:

Equipment Information

Unit ID: <u>EU-HT1</u>
Emission Point ID: EP-HT1

Description: Heater Treater

Number of Units: 1

Burner Design (mmBtu/hr): 0.5

Fuel HHV (Btu/scf): 905

Annual Fuel Use (mmscf): 4.84

Hazardous Air Pollutant Emissions

Unit ID: <u>EU-HT1</u>

8,760

Pollutant	lb/hr	TPY
n-Hexane	<0.01	<0.01
Formaldehyde	<0.01	<0.01
Benzene	<0.01	<0.01
Toluene	<0.01	<0.01
Total HAP =	<0.01	<0.01

AP-42 Emission Factors (lb/mmscf)

Pollutant	1.4-3 (7/98)
n-Hexane	1.80E+00
Formaldehyde	7.50E-02
Benzene	2.10E-03
Toluene	3.40E-03

SWN Production Company, LLC Michael Ratcliffe Pad Heater Treater Emissions Calculations - Greenhouse Gases

Equipment Information

Unit ID: EU-HT1 EP-HT1 Emission Point ID: **Heater Treater** Description: 1 Number of Units: 0.5 Burner Design (mmBtu/hr): Fuel HHV (Btu/scf): 905 4.84 Annual Fuel Use (mmscf): **Annual Operating Hours:** 8,760

Greenhouse Gas (GHG) Emissions¹

Unit ID: <u>EU-HT1</u>

Pollutant	lb/hr	tonnes/yr
CO_2	58.49	232.40
CH₄	<0.01	<0.01
N₂O	<0.01	<0.01
CH ₄ as CO ₂ e	0.03	0.11
N ₂ O as CO ₂ e	0.03	0.13
Total CO ₂ + CO ₂ e =	58.55	232.64

40 CFR 98 Tables C-1 and C-2 Emission Factors (kg/mmBtu)²

Carbon Dioxide (CO ₂)	53.06
Methane (CH ₄)	1.00E-03
Nitrous Oxide (N ₂ O)	1.00E-04

Notes:

40 CFR 98 Table A-1, Global Warming Potential (GWP) multiplier: CO₂ = 1, CH₄ = 25, N₂O = 298

¹ Conversion to short tons (tons) found in site-wide Summary of Greenhouse Gases - Short Tons per Year (tons) table.

²CO₂e = CO₂ equivalent (Pollutant times GWP multiplier):

SWN Production Company, LLC Michael Ratcliffe Pad Storage Tank Emissions - Criteria Air Pollutants

Tank Information

Unit ID:	EU-TANKS-COND	EU-TANKS-PW
Emission Point ID:	APC-COMB	APC-COMB
Contents: 1,3	Condensate	Produced Water
Number of Tanks:	3	3
Capacity (bbl) - Per Tank:	400	400
Capacity (gal) - Per Tank:	16,800	16,800
Total:		
Total Throughput (bbl/yr):	7,352	1,400
Total Throughput (gal/yr):	308,792	58,791
Total Throughput (bbl/d):	20	4
Per Tank:		
Throughput (bbl/yr):	2,451	467
Throughput (gal/yr):	102,931	19,597
Throughput (bbl/d):	7	1
Turnovers:	18.38	3.50
Tank Vapor Capture Efficiency:	100%	100%
Captured Vapors Routed to:	Vapor Combustor	Vapor Combustor

Uncontrolled Storage Tank Emissions²

Unit ID: <u>EU-TANKS-COND</u> <u>EU-TANKS-PW</u>

Emissions	lb/hr	TPY	lb/hr	TPY
Working and Breathing Losses	9.60	42.06	<0.01	0.01
Flashing Losses	14.42	63.17	<0.01	0.01
Total VOC =	24.03	105.23	<0.01	0.02

Controlled Storage Tank Emissions³

Unit ID: <u>EU-TANKS-COND</u> <u>EU-TANKS-PW</u>

Emissions	lb/hr	TPY	lb/hr	TPY
Working and Breathing Losses	0.19	0.84	<0.01	<0.01
Flashing Losses	0.29	1.26	<0.01	<0.01
Total VOC =	0.48	2.10	<0.01	<0.01
Per Tank =	0.16	0.70	<0.01	<0.01

¹ Produced water tanks assumed to contain 99% produced water and 1% condensate.

² Tank working, breathing, and flashing emissions were calculated using Promax process simulation. Reports located in Appendix A. Uncontrolled tank working/breathing/flashing emissions will be routed to a vapor combustor with 100% capture efficiency.

³ Controlled tank emissions are shown for reference only.

SWN Production Company, LLC Michael Ratcliffe Pad Storage Tank Emissions - Hazardous Air Pollutants

Uncontrolled Storage Tank Emissions

Unit ID: <u>EU-TANKS-COND</u> <u>EU-TANKS-PW</u>

Pollutant	lb/hr	TPY	lb/hr	TPY
Total VOC = 1,2	24.03	105.23	<0.01	0.02
n-Hexane	1.24	5.43	<0.01	<0.01
Benzene	0.02	0.07	<0.01	<0.01
Toluene	0.07	0.33	<0.01	<0.01
Ethylbenzene	0.09	0.39	<0.01	<0.01
Xylenes	0.13	0.57	<0.01	<0.01
Total HAP =	1.55	6.80	<0.01	<0.01

Controlled Storage Tank Emissions 3

Unit ID: <u>EU-TANKS-COND</u> <u>EU-TANKS-PW</u>

Pollutant	lb/hr	TPY	lb/hr	TPY
Total VOC = 1	0.48	2.10	<0.01	<0.01
n-Hexane	0.02	0.11	<0.01	<0.01
Benzene	<0.01	<0.01	<0.01	<0.01
Toluene	<0.01	0.01	<0.01	<0.01
Ethylbenzene	<0.01	0.01	<0.01	<0.01
Xylenes	<0.01	0.01	<0.01	<0.01
Total HAP =	0.03	0.14	<0.01	<0.01

Estimated HAP Composition (% by Weight)⁴

Pollutant	Wt%
n-Hexane	5.163%
Benzene	0.065%
Toluene	0.312%
Ethylbenzene	0.375%
Xylenes	0.545%
Total HAP =	6.460%

¹ VOC emissions calculated in Criteria Air Pollutant calculations.

² Uncontrolled tank working/breathing/flashing emissions are controlled by a vapor combustor with 100% capture efficiency.

³Controlled tank emissions are shown for reference only.

⁴ Speciated liquids analysis located in Fugitive Emissions Calculations. HAP weight % calculated as % of total hydrocarbons in the sample. All HAP assumed to volatilize from liquids for most conservative emissions estimate.

SWN Production Company, LLC Michael Ratcliffe Pad Tank Emissions Calculations - Greenhouse Gases

Equipment Information

Unit ID:	EU-TANKS-COND	EU-TANKS-PW
Emission Point ID:	APC-COMB	APC-COMB
Contents:	Condensate	Produced Water
Number of Tanks:	3	3
Capacity (bbl) - Per Tank:	400	400
Capacity (gal) - Per Tank:	16,800	16,800
Total:		
Total Throughput (bbl/yr):	7,352	1,400
Total Throughput (gal/yr):	308,792	58,791
Total Throughput (bbl/d):	20	4
Per Tank:		
Throughput (bbl/yr):	2,451	467
Throughput (gal/yr):	102,931	19,597
Throughput (bbl/d):	7	1
Turnovers:	18.38	3.50
Tank Vapor Capture Efficiency:	100%	100%
Captured Vapors Routed to:	Vapor Combustor	Vapor Combustor

Uncontrolled Greenhouse Gas Emissions^{1,2}

Unit ID: <u>EU-TANKS-COND</u> <u>EU-TANKS-PW</u>

Greenhouse Gas	Avg. lb/hr ³	tonnes/yr	Avg. lb/hr ³	tonnes/yr
CH₄	0.70	2.80	7.11	28.25
CH ₄ as CO ₂ e	17.61	69.97	177.76	706.34
CO ₂	0.02	0.10	0.38	1.50
Total CO ₂ + CO ₂ e =	17.63	70.06	178.14	707.83
Per Tank =	5.88	23.35	59.38	235.94

Greenhouse Gas	Avg. lb/hr ³	tons/yr	Avg. lb/hr ³	tons/yr
CH₄	0.70	3.08	7.11	31.14
CH₄ as CO₂e	17.61	77.12	177.76	778.60
CO_2	0.02	0.10	0.38	1.65
Total CO ₂ + CO ₂ e =	17.63	77.23	178.14	780.25
Per Tank =	5.88	25.74	59.38	260.08

SWN Production Company, LLC Michael Ratcliffe Pad Tank Emissions Calculations - Greenhouse Gases

Notes:

- 1) Per API Chapter 5: CH₄ and CO₂ emissions from crude storage tanks occur mainly as a result of flashing; working and breathing loss emissions of these gases are very small in production and virtually non-existent in downstream segments. Unless site-specific data indicate otherwise, working and breathing losses are presumed to contain no CH₄ or CO₂.
- 2) $CO_2e = CO_2$ equivalent (Pollutant times GWP multiplier)
- 3) Due to variable short-term emission rates, average lb/hr based on annual emissions shown for reference only.

40 CFR 98 Table A-1, Global Warning Potential (GWP) Multiplier

Methane (CH ₄) 25		
=======================================	Methane (CH ₄) 25	

SWN Production Company, LLC Michael Ratcliffe Pad Condensate Truck Loading Emissions - Criteria and Hazardous Air Pollutants

Loading Information

Unit ID: <u>EU-LOAD-COND</u>

Emission Point ID: APC-COMB
Fill Method: Submerged
Type of Service: Dedicated
Mode of Operation: Normal
Saturation Factor: 0.6

Em. Factor (lb/1000 gal): 9.11
Throughput (1000 gal): 308.79

Control Type: Vapor Return/Combustion

Vapor Capture Efficiency: 1 70%
Average Fill Rate (gal/hr): 7,500
Captured Vapors Routed to: Vapor Combustor
VOC Weight %: 98.16%

13.5987 = P, True vapor pressure of liquid loaded (max. psia)

51.98 = M, Molecular weight of vapor (lb/lb-mol)

120.00 = T, Temperature of bulk liquid loaded (average °F)

580.00 = T, Temperature of bulk liquid loaded (°F + 460 = °R)

Uncontrolled Loading Emissions²

Pollutant	Max. lb/hr	Avg. lb/hr	TPY
VOC =	67.08	0.22	0.95
n-Hexane	3.46	0.01	0.05
Benzene	0.04	<0.01	<0.01
Toluene	0.21	<0.01	<0.01
Ethylbenzene	0.25	<0.01	<0.01
Xylenes	0.37	<0.01	0.01
Total HAP =	4.33	0.01	0.06

Uncaptured Loading Emissions²

Pollutant	Max. lb/hr	Avg. lb/hr	TPY
VOC =	20.12	0.07	0.29
n-Hexane	1.04	<0.01	0.01
Benzene	0.01	<0.01	<0.01
Toluene	0.06	<0.01	<0.01
Ethylbenzene	0.08	<0.01	<0.01
Xylenes	0.11	<0.01	<0.01
Total HAP =	1.30	<0.01	0.02

SWN Production Company, LLC Michael Ratcliffe Pad

Condensate Truck Loading Emissions - Criteria and Hazardous Air Pollutants (Continued)

Estimated HAP Composition (% by Weight)³

Pollutant	Wt%
n-Hexane	5.163%
Benzene	0.065%
Toluene	0.312%
Ethylbenzene	0.375%
Xylenes	0.545%
Total HAP =	6.460%

¹ Uncontrolled emissions that are captured by the collection system are routed to a vapor combustor. Per AP-42 5.2-6, 70% capture efficiency can be assumed for trucks not subject to NSPS. Uncaptured emissions shown represent those not captured by the collection system or controlled by the vapor combustor.

² Maximum lb/hr based on average hourly truck loading rate. Average lb/hr based on TPY conversion assuming continuous operation.

³ Speciated liquids analysis located in Fugitive Emissions Calculations. HAP weight % calculated as % of total hydrocarbons in the sample. All HAP assumed to volatilize from liquids for most conservative emissions estimate.

SWN Production Company, LLC Michael Ratcliffe Pad Condensate Truck Loading Emissions - Greenhouse Gases

Loading Information

Unit ID: **EU-LOAD-COND**

Emission Point ID: APC-COMB Fill Method: Submerged Type of Service: Dedicated Mode of Operation: Normal

TOC Em. Factor (tonne/10⁶ gal): ¹ 0.91

Throughput (10⁶ gal): 0.309

> Control Type: Vapor Return/Combustion

Vapor Capture Efficiency: 2 70.00% Average Fill Rate (gal/hr): 7,500 Captured Vapors Routed to: Vapor Combustor

> Analysis CH₄ wt% = 51.22273% Analysis CO₂ wt% = 0.26415%

Uncontrolled Loading Emissions^{3, 4}

Pollutant	Max. lb/hr	Avg. lb/hr	tonnes/yr	tons/yr
CH ₄	7.71	0.04	0.14	0.16
CH ₄ as CO ₂ e	192.68	0.91	3.60	3.97
CO ₂	0.04	<0.01	<0.01	<0.01
Total CO ₂ + CO ₂ e =	192.72	0.91	3.60	3.97

Uncaptured Loading Emissions^{3, 4}

Pollutant	Max. lb/hr	Avg. lb/hr	tonnes/yr	tons/yr
CH₄	2.31	0.01	0.04	0.05
CH₄ as CO₂e	57.80	0.27	1.08	1.19
CO ₂	0.01	<0.01	<0.01	<0.01
Total CO ₂ + CO ₂ e =	57.82	0.27	1.08	1.19

SWN Production Company, LLC Michael Ratcliffe Pad Condensate Truck Loading Emissions - Greenhouse Gases (Continued)

API Compendium Table 5-12

Loading Type	Emission Factor (tonne TOC/10 ⁶ gal)
Rail/Truck - Submerged Loading - Dedicated Normal Service	0.91
Rail/Truck - Submerged Loading - Vapor Balance Service	1.51
Rail/Truck - Splash Loading - Dedicated Normal Service	2.20
Rail/Truck - Splash Loading - Vapor Balance Service	1.51
Marine Loading - Ships/Ocean Barges	0.28
Marine Loading - Barges	0.45

¹ API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Gas Industry, Table 5-12.

² Uncontrolled emissions that are captured by the collection system are routed to a vapor combustor. Per AP-42 5.2-6, 70% capture efficiency can be assumed for trucks not subject to NSPS. Uncaptured emissions shown represent those not captured by the collection system or controlled by the vapor combustor.

³ Maximum lb/hr based on average hourly truck loading rate. Average lb/hr based on TPY conversion assuming continuous operation.

⁴CO₂e = CO₂ equivalent (Pollutant times GWP multiplier): 40 CFR 98 Table A-1, Global Warming Potential (GWP) multiplier: CO₂ = 1, CH₄ = 25

SWN Production Company, LLC Michael Ratcliffe Pad

Produced Water Truck Loading Emissions - Criteria and Hazardous Air Pollutants

Loading Information

Unit ID: **EU-LOAD-PW Emission Point ID: EP-LOAD-PW** Fill Method: Submerged Type of Service: Dedicated Mode of Operation: Normal Saturation Factor: 0.6 Em. Factor (lb/1000 gal): 5.94 Throughput (1000 gal): 58.79 Control Type: None

Average Fill Rate (gal/hr): 7,500

VOC Weight %: 1.27%

13.4507 = P, T	True vapor pressure of liquid loaded (max. psia)
34.26 = M, I	Molecular weight of vapor (lb/lb-mol)
120.00 = T, T	Temperature of bulk liquid loaded (average °F)
580.00 = T, T	remperature of bulk liquid loaded (°F + 460 = °R)

Uncontrolled Loading Emissions¹

Pollutant	Max. lb/hr	Avg. lb/hr	TPY
VOC =	0.56	<0.01	<0.01
n-Hexane	0.03	<0.01	<0.01
Benzene	<0.01	<0.01	<0.01
Toluene	<0.01	<0.01	<0.01
Ethylbenzene	<0.01	<0.01	<0.01
Xylenes	<0.01	<0.01	<0.01
Total HAP =	0.04	<0.01	<0.01

Estimated HAP Composition (% by Weight)²

Pollutant	Wt%
n-Hexane	5.163%
Benzene	0.065%
Toluene	0.312%
Ethylbenzene	0.375%
Xylenes	0.545%
Total HAP =	6.460%

¹ Maximum lb/hr based on average hourly truck loading rate. Average lb/hr based on TPY conversion assuming continuous operation.

² Speciated liquids analysis located in Fugitive Emissions Calculations. HAP weight % calculated as % of total hydrocarbons in the sample. All HAP assumed to volatilize from liquids for most conservative emissions estimate.

SWN Production Company, LLC Michael Ratcliffe Pad Produced Water Truck Loading Emissions - Greenhouse Gases

Loading Information

Unit ID: <u>EU-LOAD-PW</u>

Emission Point ID: APC-COMB
Fill Method: Submerged
Type of Service: Dedicated
Mode of Operation: Normal

TOC Em. Factor (tonne/10⁶ gal): 1 0.91

Throughput (10⁶ gal): 0.0588
Control Type: None

Average Fill Rate (gal/hr): 7,500

Analysis CH_4 wt% = 51.22273% Analysis CO_2 wt% = 0.26415%

Uncontrolled Loading Emissions^{2, 3}

Pollutant	Max. lb/hr	Avg. lb/hr	tonnes/yr	tons/yr
CH ₄	7.71	0.01	0.03	0.03
CH ₄ as CO ₂ e	192.68	0.17	0.69	0.76
CO_2	0.04	<0.01	<0.01	<0.01
Total CO ₂ + CO ₂ e =	192.72	0.17	0.69	0.76

API Compendium Table 5-12

Loading Type	Emission Factor (tonne TOC/10 ⁶ gal)
Rail/Truck - Submerged Loading - Dedicated Normal Service	0.91
Rail/Truck - Submerged Loading - Vapor Balance Service	1.31
Rail/Truck - Splash Loading - Dedicated Normal Service	/ / ()
Rail/Truck - Splash Loading - Vapor Balance Service	1.31
Marine Loading - Ships/Ocean Barges	0.28
Marine Loading - Barges	0.45

¹ API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Gas Industry, Table 5-12.

² Maximum lb/hr based on average hourly truck loading rate. Average lb/hr based on TPY conversion assuming continuous operation.

³CO₂e = CO₂ equivalent (Pollutant times GWP multiplier):

⁴⁰ CFR 98 Table A-1, Global Warming Potential (GWP) multiplier: $CO_2 = 1$, $CH_4 = 25$

SWN Production Company, LLC Michael Ratcliffe Pad Vapor Combustor Emissions Calculations - Criteria and Hazardous Air Pollutants

Criteria and Hazardous Air Pollutant Emissions

	Emission		Total Captured Emissions ²		Combustor Destruction Efficiency		Emissions (Post- Combustion)
Unit ID	Pollutant	Factors ¹	lb/hr	TPY	%	lb/hr	TPY
	NOx	0.138	-	-	-	2.07	9.07
APC-COMB	СО	0.2755	-		-	4.13	18.10
	PM	7.6	-		-	0.05	0.20
	VOC	Mass Balance	24.18	105.92	98.00%	0.48	2.12
	n-Hexane	Mass Balance	1.25	5.47	98.00%	0.02	0.11
	Benzene	Mass Balance	0.02	0.07	98.00%	<0.01	<0.01
	Toluene	Mass Balance	0.08	0.33	98.00%	<0.01	0.01
	Ethylbenzene	Mass Balance	0.09	0.40	98.00%	<0.01	0.01
	Xylenes	Mass Balance	0.13	0.58	98.00%	<0.01	0.01

Notes:

Hours per Year: 8,760
Number of Combustors: 1
Max. Incinerator Capacity: 147.10 lb/hr

NOx and CO emission factors (lb/mmBtu): *TCEQ Air Permit Technical Guidance for Chemical Sources: Flares and Vapor Oxidizers:* High Btu waste streams (>1,000 Btu/scf) based on heat input to each combustor =

15.0 mmBtu/hr Total Heat Input

15.0 mmBtu/hr per Combustor

¹ Although a vapor combustor is not considered a flare by design, the function is consistent in that it combusts a waste stream for the purpose of reducing emissions; therefore, flare emission factors for NOx and CO were used to provide the most accurate emissions estimates. Although the combustor is designed to be smokeless, PM emissions have been estimated using AP-42 Table 1.4-1 factor (lb/mmscf) for a conservative estimate.

² Total captured emissions are based on 100% capture efficiency from storage tanks and 70% capture efficiency from condensate truck loading with 98% destruction efficiency from the vapor combustor based on 8,760 hours of operation per year. Captured emissions from sources controlled by VOC combustor shown in following tables.

SWN Production Company, LLC Michael Ratcliffe Pad Vapor Combustor Emissions Calculations - Criteria and Hazardous Air Pollutants (Continued)

	Captured VOC Emissions		
Source	lb/hr TPY		
Condensate Storage Tanks	24.03	105.23	
Produced Water Storage Tanks	<0.01	0.02	
Condensate Truck Loading	0.15	0.67	
Total VOC =	24.18	105.92	

	Captured HAP Emissions (lb/hr)				
Source	n-Hexane	Benzene	Toluene	Ethylbenzene	Xylenes
Condensate Storage Tanks	1.24	0.02	0.07	0.09	0.13
Produced Water Storage Tanks	<0.01	<0.01	<0.01	<0.01	<0.01
Condensate Truck Loading	0.01	<0.01	<0.01	<0.01	<0.01
Total HAP =	1.25	0.02	0.08	0.09	0.13

	Captured HAP Emissions (TPY)							
Source	n-Hexane Benzene Toluene Ethylbenzene Xylenes							
Condensate Storage Tanks	5.43	0.07	0.33	0.39	0.57			
Produced Water Storage Tanks	<0.01	<0.01	<0.01	<0.01	<0.01			
Condensate Truck Loading	0.03	<0.01	<0.01	<0.01	<0.01			
Total HAP =	5.47	0.07	0.33	0.40	0.58			

SWN Production Company, LLC Michael Ratcliffe Pad Vapor Combustor Emissions Calculations - Greenhouse Gases

Equipment Information

Unit ID: APC-COMB

Description: Vapor Combustor

Number of Combustors: 1

Burner Design Capacity (mmBtu/hr): 15.0

Stream HHV (Btu/scf): 2,450
Annual Throughput (mmscf): 53.63
Annual Operating Hours: 8,760

Greenhouse Gas (GHG) Emissions

Pollutant	lb/hr	tonnes/yr	tons/yr
CO ₂	1,754.66	6,972.07	7,685.39
CH ₄	0.03	0.13	0.14
N_2O	<0.01	0.01	0.01
CH ₄ as CO ₂ e	0.83	3.28	3.62
N ₂ O as CO ₂ e	0.99	3.92	4.32
Total CO ₂ + CO ₂ e =	1,756.47	6,979.27	7,693.33

40 CFR 98 Tables C-1 and C-2 Emission Factors (kg/mmBtu)¹

Carbon Dioxide (CO ₂)	53.06
Methane (CH ₄)	1.00E-03
Nitrous Oxide (N ₂ O)	1.00E-04

Notes:

40 CFR 98 Table A-1, Global Warming Potential (GWP) multiplier: CO₂ = 1, CH₄ = 25, N₂O = 298

¹CO₂e = CO₂ equivalent (Pollutant times GWP multiplier):

SWN Production Company, LLC Michael Ratcliffe Pad Vapor Combustor Pilot Emissions Calculations - Criteria Air Pollutants

Criteria Air Pollutant Emissions

		Emission		
		Factors 1	Emissio	ns
Unit ID	Pollutant	(lb/mmscf)	lb/hr	TPY
EU-PILOT	NOx	100	<0.01	0.02
APC-COMB	CO	84	<0.01	0.02
	VOC	5.5	<0.01	<0.01
	SO ₂	0.6	<0.01	<0.01
	PM	7.6	<0.01	<0.01

905	Pilot Stream Heat Content (Btu/SCF)
8,760	Pilot Hours/Yr
50	Total Pilot Gas Flow Rate (SCFH)
45,250	Total Pilot Gas Fuel Use (Btu/hr)
0.44	Total Annual Fuel Use (MMSCF)

¹ AP-42 Table 1.4-1, -2 (7/98)

SWN Production Company, LLC Michael Ratcliffe Pad Vapor Combustor Pilot Emissions Calculations - Hazardous Air Pollutants

Hazardous Air Pollutant Emissions

		Emission Factors ¹	Emissions	
Unit ID	Pollutant	(lb/mmscf)	lb/hr	TPY
EU-PILOT	n-Hexane	1.8	<0.01	<0.01
APC-COMB	Formaldehyde	0.075	<0.01	<0.01
	Benzene	0.0021	<0.01	<0.01
	Toluene	0.0034	<0.01	<0.01
		Total HAP =	<0.01	<0.01

905	Pilot Stream Heat Content (Btu/SCF)
8,760	Pilot Hours/Yr
50	Total Pilot Gas Flow Rate (SCFH)
45,250	Total Pilot Gas Fuel Use (Btu/hr)
0.44	Total Annual Fuel Use (MMSCF)

¹ AP-42 Table 1.4-3 (7/98)

SWN Production Company, LLC Michael Ratcliffe Pad Vapor Combustor Pilot Emissions Calculations - Greenhouse Gases

Greenhouse Gas (GHG) Emissions

		Emissions			
Unit ID	Pollutant	lb/hr	tonnes/yr	tons/yr	
EU-PILOT	CO ₂	5.29	21.03	23.18	
APC-COMB	CH ₄	<0.01	<0.01	<0.01	
	N ₂ O	<0.01	<0.01	<0.01	
	CH₄ as CO₂e	<0.01	0.01	0.01	
	N₂O as CO₂e	<0.01	0.01	0.01	
	Total CO ₂ + CO ₂ e =	5.30	21.05	23.21	

905 Pilot Stream Heat Content (Btu/SCF)
8,760 Pilot Hours/Yr
50 Total Pilot Gas Flow Rate (SCFH)
45,250 Total Pilot Gas Fuel Use (Btu/hr)
0.44 Total Annual Fuel Use (MMSCF)

40 CFR 98 Tables C-1 and C-2 Emission Factors (kg/mmBtu)¹

Carbon Dioxide (CO ₂)	53.06
Methane (CH ₄)	1.00E-03
Nitrous Oxide (N ₂ O)	1.00E-04

Notes:

40 CFR 98 Table A-1, Global Warming Potential (GWP) multiplier: CO₂ = 1, CH₄ = 25, N₂O = 298

¹CO₂e = CO₂ equivalent (Pollutant times GWP multiplier):

SWN Production Company, LLC Michael Ratcliffe Pad Fugitive Emissions Calculations - Criteria and Hazardous Air Pollutants and Greenhouse Gases

Equipment Information

Source Type/Service	Number of Sources ¹	Em. Factor (lb/hr/source) ²	Control Efficiency	TOC lb/hr	TOC TPY	VOC Wt %
Valves - Gas	17	9.92E-03	0.00%	0.17	0.74	23.15%
Flanges - Gas	81	8.60E-04	0.00%	0.07	0.31	23.15%
Relief Valves - Gas	24	1.94E-02	0.00%	0.47	2.04	23.15%
Total TOC (Gas Components)			Components) =	0.70	3.08	-
Valves - Light Oil	72	5.51E-03	0.00%	0.40	1.74	95.45%
Flanges - Light Oil	12	2.43E-04	0.00%	0.00	0.01	95.45%
Connectors - Light Oil	258	4.63E-04	0.00%	0.12	0.52	95.45%
Other - Light Oil	2	1.65E-02	0.00%	0.03	0.14	95.45%
	Total TOC (Liquid Components) = 0.55 2.42 -					

VOC and Greenhouse Gas Emissions

Source Type/Service	VOC		С	H ₄	CO ₂	
Source Type/Service	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
Valves - Gas	0.04	0.17	0.09	0.38	<0.01	<0.01
Flanges - Gas	0.02	0.07	0.04	0.16	<0.01	<0.01
Relief Valves - Gas	0.11	0.47	0.24	1.05	<0.01	0.01
Components in Gas Service =	0.16	0.71	0.36	1.59	<0.01	0.01
Valves - Light Oil	0.38	1.66	<0.01	0.02	<0.01	<0.01
Flanges - Light Oil	<0.01	0.01	< 0.01	<0.01	<0.01	<0.01
Connectors - Light Oil	0.11	0.50	< 0.01	0.01	<0.01	<0.01
Other - Light Oil	0.03	0.14	< 0.01	<0.01	<0.01	<0.01
Components in Liquid Service =	0.53	2.31	0.01	0.02	<0.01	<0.01
Total (Gas + Liquid Components) =	0.69	3.02	0.37	1.62	<0.01	0.01

Hazardous Air Pollutant (HAP) Emissions (lb/hr)

Source Type/Service	n-Hexane	Benzene	Toluene	Ethylbenzene	Xylenes	2,2,4-Tri.	Total
Valves - Gas	<0.01	<0.01	<0.01	0.00	<0.01	0.00	<0.01
Flanges - Gas	<0.01	<0.01	< 0.01	0.00	<0.01	0.00	<0.01
Relief Valves - Gas	<0.01	<0.01	< 0.01	0.00	<0.01	0.00	<0.01
Components in Gas Service =	<0.01	<0.01	<0.01	0.00	<0.01	0.00	<0.01
Valves - Light Oil	0.02	<0.01	<0.01	<0.01	<0.01	0.00	0.03
Flanges - Light Oil	<0.01	<0.01	< 0.01	<0.01	<0.01	0.00	<0.01
Connectors - Light Oil	0.01	<0.01	< 0.01	<0.01	<0.01	0.00	0.01
Other - Light Oil	<0.01	<0.01	< 0.01	<0.01	<0.01	0.00	<0.01
Components in Liquid Service =	0.03	<0.01	<0.01	<0.01	<0.01	0.00	0.04
Total (Gas + Liquid Components) =	0.03	<0.01	<0.01	<0.01	<0.01	0.00	0.04

Hazardous Air Pollutant (HAP) Emissions (TPY)

Source Type/Service	n-Hexane	Benzene	Toluene	Ethylbenzene	Xylenes	2,2,4-Tri.	Total
Valves - Gas	<0.01	<0.01	<0.01	0.00	<0.01	0.00	<0.01
Flanges - Gas	<0.01	<0.01	< 0.01	0.00	<0.01	0.00	<0.01
Relief Valves - Gas	0.01	<0.01	<0.01	0.00	<0.01	0.00	0.01
Components in Gas Service =	0.01	<0.01	<0.01	0.00	<0.01	0.00	0.01
Valves - Light Oil	0.09	<0.01	0.01	0.01	0.01	0.00	0.11
Flanges - Light Oil	<0.01	<0.01	< 0.01	<0.01	<0.01	0.00	<0.01
Connectors - Light Oil	0.03	<0.01	< 0.01	<0.01	<0.01	0.00	0.03
Other - Light Oil	0.01	<0.01	< 0.01	<0.01	<0.01	0.00	0.01
Components in Liquid Service =	0.12	<0.01	0.01	0.01	0.01	0.00	0.16
Total (Gas + Liquid Components) =	0.13	<0.01	0.01	0.01	0.01	0.00	0.16

Typical Component Count per Equipment Type based on Representative Facility³

Source Type/Service	WH	GPU	HT	LPT	FGC	TK	TT-O	SP
Valves - Gas	12	3	2	5	5	0	0	0
Flanges - Gas	37	15	9	24	33	3	2	0
Compressor Seals - Gas	0	0	0	0	3	0	0	0
Relief Valves - Gas	1	3	1	1	1	3	1	0
Open-Ended Lines - Gas	0	0	0	0	0	0	0	0
Valves - Light Oil	0	5	6	12	3	6	9	8
Flanges - Light Oil	0	0	0	0	0	0	0	6
Connectors - Light Oil	0	20	24	48	12	24	30	20
Pump Seals - Light Oil	0	0	0	0	0	0	0	0
Other - Light Oil	0	0	0	0	0	0	0	1

Equipment Type	WH	GPU	HT	LPT	FGC	TK	TT-O	SP
Number of Each Type On Pad =	1	1	1	0	0	6	1	2

Speciated Gas Analysis⁴

Component	Molecular Weight	Mole %	Equiv. Wt. Basis	Weight %	HC Weight %	lb/hr	TPY
Hydrogen Sulfide	34.082	0.000%	0.000	0.000%	-	0.00	0.00
Carbon Dioxide	44.010	0.133%	0.059	0.264%	-	<0.01	0.01
Nitrogen	28.013	0.496%	0.139	0.627%	-	<0.01	0.02
Methane	16.042	70.754%	11.350	51.223%	51.683%	0.36	1.59
Ethane	30.069	18.380%	5.527	24.941%	25.165%	0.18	0.78
Propane	44.096	7.198%	3.174	14.324%	14.453%	0.10	0.45
i-Butane	58.122	0.590%	0.343	1.548%	1.561%	0.01	0.05
n-Butane	58.122	1.711%	0.994	4.488%	4.528%	0.03	0.14
i-Pentane	72.149	0.214%	0.154	0.697%	0.703%	<0.01	0.02
n-Pentane	72.149	0.317%	0.229	1.032%	1.041%	0.01	0.03
n-Hexane	86.175	0.067%	0.058	0.261%	0.263%	<0.01	0.01
Other Hexanes	86.175	0.080%	0.069	0.311%	0.314%	<0.01	0.01
Heptanes (as n-Heptane)	100.202	0.041%	0.041	0.185%	0.187%	<0.01	0.01
Benzene	78.114	0.001%	0.001	0.004%	0.004%	<0.01	<0.01
Toluene	92.141	0.001%	0.001	0.004%	0.004%	<0.01	<0.01
Ethylbenzene	106.167	0.000%	0.000	0.000%	0.000%	0.00	0.00
Xylenes	106.167	0.001%	0.001	0.005%	0.005%	<0.01	<0.01
2,2,4-Trimethylpentane	114.230	0.000%	0.000	0.000%	0.000%	0.00	0.00
Octanes (as n-Octane)	114.229	0.011%	0.013	0.057%	0.057%	<0.01	<0.01
Nonanes (as n-Nonane)	128.255	0.003%	0.004	0.017%	0.018%	<0.01	<0.01
Decanes (as n-Decane)	142.282	0.002%	0.003	0.013%	0.013%	<0.01	<0.01
	TOTAL =	100.00%	22.16	100.00%	100.00%	0.71	3.11
		TOTAL HC =	21.96	TOTAL VOC =	23.15%	0.16	0.71
	•	•		TOTAL HAP =	0.28%	<0.01	0.01

Speciated Liquids Analysis⁴

Component	Molecular Weight	Mole %	Equiv. Wt. Basis	Weight %	HC Weight %	lb/hr	TPY
Hydrogen Sulfide	34.082	0.000%	0.000	0.000%	-	0.00	0.00
Carbon Dioxide	44.010	0.010%	0.004	0.005%	-	<0.01	<0.01
Nitrogen	28.013	0.015%	0.004	0.005%	-	<0.01	<0.01
Methane	16.042	5.084%	0.816	1.018%	1.018%	0.01	0.02
Ethane	30.069	9.419%	2.832	3.536%	3.536%	0.02	0.09
Propane	44.096	13.438%	5.926	7.398%	7.398%	0.04	0.18
i-Butane	58.122	2.701%	1.570	1.960%	1.960%	0.01	0.05
n-Butane	58.122	11.641%	6.766	8.447%	8.448%	0.05	0.20
i-Pentane	72.149	3.950%	2.850	3.558%	3.558%	0.02	0.09
n-Pentane	72.149	7.673%	5.536	6.911%	6.912%	0.04	0.17
n-Hexane	86.175	4.799%	4.136	5.163%	5.163%	0.03	0.12
Other Hexanes	86.175	4.886%	4.211	5.256%	5.257%	0.03	0.13
Heptanes (as n-Heptane)	100.202	8.310%	8.327	10.395%	10.396%	0.06	0.25
Benzene	78.114	0.067%	0.052	0.065%	0.065%	<0.01	<0.01
Toluene	92.141	0.271%	0.250	0.312%	0.312%	<0.01	0.01
Ethylbenzene	106.167	0.283%	0.300	0.375%	0.375%	<0.01	0.01
Xylenes	106.167	0.411%	0.436	0.545%	0.545%	<0.01	0.01
2,2,4-Trimethylpentane	114.230	0.000%	0.000	0.000%	0.000%	0.00	0.00
Octanes (as n-Octane)	114.229	6.334%	7.235	9.033%	9.034%	0.05	0.22
Nonanes (as n-Nonane)	128.255	4.366%	5.600	6.991%	6.991%	0.04	0.17
Decanes (as n-Decane)	142.282	16.342%	23.252	29.028%	29.031%	0.16	0.70
	TOTAL =	100.00%	80.10	100.00%	100.00%	0.55	2.42
	•	TOTAL HC =	80.09	TOTAL VOC =	95.45%	0.53	2.31
				TOTAL HAP =	6.46%	0.04	0.16

¹ Component counts taken by equipment type at representative facility and made site-specific according to the number of each equipment type at this site.

² Emission Factor Source: EPA-453/R-95-017. TOC multiplied by pollutant content of streams (weight %) to obtain pollutant emissions.

³ Equipment Type Key: WH = Well Head, GPU = Gas Production Unit, HT = Heater, LPT = Low-Pressure Tower, FGC = Flash Gas Compressor, TK = Storage Tank, TT-O = Tank Truck - Oil SP = Separator

⁴ Gas and liquids analyses located in Appendix A.

SWN Production Company, LLC Michael Ratcliffe Pad Fugitive Haul Road Emissions

Facility Data 1

Vehicle Type	Light Vehicles (Pick-ups and Cars)	Medium Trucks (Service Trucks)	Heavy Trucks (Tanker Trucks) ²
Average vehicle weight ((empty + full)/2) (tons)	2	15	23.5
Number of wheels per vehicle type (w)	4	10	18
Average number of round trips/day/vehicle type	0	0	0
Distance per round trip (miles/trip)	0.54	0.54	0.54
Vehicle miles travelled (miles/day)	0.03	0.02	0.07
Number of days operational (days/yr)	365	365	365
Vehicle miles travelled VMT (miles/yr)	13	6	25
Average vehicle speed S (mph)	10	10	10
Average number of round trips/hour/vehicle type	0.00	0.00	0.01
Average number of round trips/year/vehicle type	23	12	46
Estimated maximum number of round trips/hour/vehicle type	2	1	1
Estimated maximum number of round trips/day/vehicle type	5	2	2
Estimated maximum number of round trips/year/vehicle type	1,789	767	815

190 Average Tanker Volume (bbl) 7,980 Gallons Tanker Volume 4 bwpd

20 bopd

0.13 Tanker Trucks per Day

1,098 Length Leased Access Road (ft)

338 Longest Pad Side (ft)

2,872 Total Round Trip Feet

Formula & Calculation Inputs

E=k(s/12) ^a * (W/3) ^b * ((365-P) / 365)	Reference :	AP-42, Section	13.2.2 (11/06), Equation 1a and 2	
where:	Rate	Units	Comment	
Days per year	365			
Annual average hours per day of road operations	18			
k = PM Particle Size Multiplier	4.90	lb/VMT	AP-42 Section 13.2.2 (11/06), Table 13.2.2-2 (PM)	
k = PM10 Particle Size Multiplier	1.50	lb/VMT	AP-42 Section 13.2.2 (11/06), Table 13.2.2-2 (PM ₁₀)	
k = PM2.5 Particle Size Multiplier	0.15	lb/VMT	AP-42 Section 13.2.2 (11/06), Table 13.2.2-2 (PM _{2.5})	
s = Surface Material Silt Content	3.9	%	State Default Data from AP-42 Data (1999 NEI Data)	
P = Number of days > 0.01 inch of rain	150	days/year	AP-42 Section 13.2.2 (11/06), Figure 13.2.2-1	
a = PM Constant	0.70	unitless	AP-42 Section 13.2.2 (11/06), Table 13.2.2-2 (PM)	
a = PM10 & PM2.5 Constant	0.90	unitless	AP-42 Section 13.2.2 (11/06), Table 13.2.2-2 (PM ₁₀ & PM _{2.5})	
b = PM, PM10, & PM2.5 Constant	0.45	unitless	AP-42 Section 13.2.2 (11/06), Table 13.2.2-2	
Total hourly fleet vehicle miles travelled (miles/hr)	0.01	VMT/hr		
Total annual fleet vehicle miles travelled (miles/yr) ³	43.85	VMT/yr		
Average wheels ⁴	13			
Average vehicle weight of the fleet (W) ⁵	16.1	tons		
Moisture Ratio	1.00		Estimated based on 0.2% uncontrolled surface water content assuming no watering	EPA - BID Document 13.2.2 - 1998
Control Efficiency (CF)	0.00	%	Based on Moisture Ratio and Figure 13.2.2-2 Control	

SWN Production Company, LLC Michael Ratcliffe Pad Fugitive Haul Road Emissions (Continued)

	Emission	Factors		Control Total Vehicle Miles		Emission Rates			Emission Rates			
	PM	PM ₁₀	PM _{2.5}	Efficiency	Trav	elled	Total PM	Total PM ₁₀	PM _{2.5}	Total PM	Total PM ₁₀	PM _{2.5}
Vehicle Type	(lbs/VMT)	(lbs/VMT)	(Ibs/VMT)	(%)	(VMT/hr)	(VMT/yr)	(lb/hr)	(lb/hr)	(lb/hr)	(tons/yr)	(tons/yr)	(tons/yr)
Light Vehicles	2.80	0.69	0.07	0.00	<0.01	12.53	0.01	<0.01	<0.01	0.02	<0.01	<0.01
Medium Trucks	2.80	0.69	0.07	0.00	<0.01	6.26	<0.01	<0.01	<0.01	0.01	<0.01	<0.01
Heavy Trucks	2.80	0.69	0.07	0.00	<0.01	25.06	0.01	<0.01	<0.01	0.04	0.01	<0.01
			Total =	0.00	0.01	43.85	0.02	<0.01	<0.01	0.06	0.02	<0.01

Notes:

- 1) Facility vehicle data based on estimates, GP5.1 and AP-42 13.2.2-2 defaults for industrial unpaved roads
- 2) Tank trucker average vehicle weight as $(W_{(empty)}+W_{(full)})/2 = (7 + 40)/2 = 23.7 \text{ tons}$
- 3) Average vehicle miles travelled (VMT/yr) as (No. of round trip/vehicle * No. of vehicles/type * Roundtrip miles/trip)* 365 days/yr * No. of vehicle type)
- 4) Average wheels calculated as average of (No. of wheels per vehicle type * No. of vehicle/type)
- 5) Average vehicle fleet calculated as (Average weight of vehicle type * Percentage of each vehicle type on unpaved surface). Percentage of each vehicle type=VMT_{vehicle type}/VMT
- 6) Minimum one-per-day average pick-up trucks and service trucks even if tanker not required every day.
- 7) Per EPA BID calculations, all emissions based on average trips. Estimated maximum hourly, daily and yearly trips provided for information only.

Calculation of Emission Factors (AP-42, 13.2.2)

Equation 1a: $EF = k(s/12)^a (W/3)^b$ where k, a, and b are empirical constants and EF = size-specific emission factor (lb/VMT)

s = surface material silt content %

W = mean vehicle weight (tons)

Equation 2: $EF_{ext} = EF^*((365-P)/365)$ where:

EF _{ext} = annual size-specific emission factor extrapolated for natural mitigation, lb/VMT

EF = emission factor from Equation 1a

P = number of days in a year with at least 0.01 inches of precipitation

Calculation of Emissions

 $E = EF_{ext} * VMT/yr * ((1-CF)/100) * 1 ton/2000 lbs where:$

E = annual emissions (tons/yr)

EF_{ext} = annual size-specific emission factor extrapolated for natural mitigation, lb/VMT

CF = control efficiency (%)

APPENDIX A: SUPPORT DOCUMENTS

AP-42 AND EPA EMISSION FACTORS

REPRESENTATIVE GAS AND LIQUIDS ANALYSES

PROMAX PROCESS SIMULATION RESULTS

Table 1.4-1. EMISSION FACTORS FOR NITROGEN OXIDES (NO_x) AND CARBON MONOXIDE (CO) FROM NATURAL GAS COMBUSTION^a

	N	O _x ^b		СО
Combustor Type (MMBtu/hr Heat Input) [SCC]	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
Large Wall-Fired Boilers (>100) [1-01-006-01, 1-02-006-01, 1-03-006-01]				
Uncontrolled (Pre-NSPS) ^c	280	A	84	В
Uncontrolled (Post-NSPS) ^c	190	A	84	В
Controlled - Low NO _x burners	140	A	84	В
Controlled - Flue gas recirculation	100	D	84	В
Small Boilers (<100) [1-01-006-02, 1-02-006-02, 1-03-006-02, 1-03-006-03]				
Uncontrolled	100	В	84	В
Controlled - Low NO _x burners	50	D	84	В
Controlled - Low NO _x burners/Flue gas recirculation	32	C	84	В
Tangential-Fired Boilers (All Sizes) [1-01-006-04]				
Uncontrolled	170	A	24	C
Controlled - Flue gas recirculation	76	D	98	D
Residential Furnaces (<0.3) [No SCC]				
Uncontrolled	94	В	40	В

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. To convert from lb/10 ⁶ scf to kg/10⁶ m³, multiply by 16. Emission factors are based on an average natural gas higher heating value of 1,020 Btu/scf. To convert from 1b/10 ⁶ scf to lb/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. SCC = Source Classification Code. ND = no data. NA = not applicable.

b Expressed as NO₂. For large and small wall fired boilers with SNCR control, apply a 24 percent reduction to the appropriate NO_X emission factor. For

tangential-fired boilers with SNCR control, apply a 13 percent reduction to the appropriate NO x emission factor.

NSPS=New Source Performance Standard as defined in 40 CFR 60 Subparts D and Db. Post-NSPS units are boilers with greater than 250 MMBtu/hr of heat input that commenced construction modification, or reconstruction after August 17, 1971, and units with heat input capacities between 100 and 250 MMBtu/hr that commenced construction modification, or reconstruction after June 19, 1984.

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM NATURAL GAS COMBUSTION $^{\rm a}$

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
91-57-6	2-Methylnaphthalene ^{b, c}	2.4E-05	D
56-49-5	3-Methylchloranthrene ^{b, c}	<1.8E-06	Е
	7,12-Dimethylbenz(a)anthracene ^{b,c}	<1.6E-05	Е
83-32-9	Acenaphthene ^{b,c}	<1.8E-06	Е
203-96-8	Acenaphthylene ^{b,c}	<1.8E-06	Е
120-12-7	Anthracene ^{b,c}	<2.4E-06	Е
56-55-3	Benz(a)anthracene ^{b,c}	<1.8E-06	Е
71-43-2	Benzene ^b	2.1E-03	В
50-32-8	Benzo(a)pyrene ^{b,c}	<1.2E-06	Е
205-99-2	Benzo(b)fluoranthene ^{b,c}	<1.8E-06	Е
191-24-2	Benzo(g,h,i)perylene ^{b,c}	<1.2E-06	Е
205-82-3	Benzo(k)fluoranthene ^{b,c}	<1.8E-06	Е
106-97-8	Butane	2.1E+00	Е
218-01-9	Chrysene ^{b,c}	<1.8E-06	Е
53-70-3	Dibenzo(a,h)anthracene ^{b,c}	<1.2E-06	Е
25321-22-6	Dichlorobenzene ^b	1.2E-03	Е
74-84-0	Ethane	3.1E+00	Е
206-44-0	Fluoranthene ^{b,c}	3.0E-06	Е
86-73-7	Fluorene ^{b,c}	2.8E-06	Е
50-00-0	Formaldehyde ^b	7.5E-02	В
110-54-3	Hexane ^b	1.8E+00	Е
193-39-5	Indeno(1,2,3-cd)pyrene ^{b,c}	<1.8E-06	Е
91-20-3	Naphthalene ^b	6.1E-04	Е
109-66-0	Pentane	2.6E+00	Е
85-01-8	Phenanathrene ^{b,c}	1.7E-05	D

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM NATURAL GAS COMBUSTION (Continued)

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
74-98-6	Propane	1.6E+00	Е
129-00-0	Pyrene ^{b, c}	5.0E-06	Е
108-88-3	Toluene ^b	3.4E-03	С

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by 16. To convert from 1b/10⁶ scf to lb/MMBtu, divide by 1,020. Emission Factors preceded with a less-than symbol are based on method detection limits.

^b Hazardous Air Pollutant (HAP) as defined by Section 112(b) of the Clean Air Act.

^c HAP because it is Polycyclic Organic Matter (POM). POM is a HAP as defined by Section 112(b) of the Clean Air Act.

^d The sum of individual organic compounds may exceed the VOC and TOC emission factors due to differences in test methods and the availability of test data for each pollutant.

loading operation, resulting in high levels of vapor generation and loss. If the turbulence is great enough, liquid droplets will be entrained in the vented vapors.

A second method of loading is submerged loading. Two types are the submerged fill pipe method and the bottom loading method. In the submerged fill pipe method, the fill pipe extends almost to the bottom of the cargo tank. In the bottom loading method, a permanent fill pipe is attached to the cargo tank bottom. During most of submerged loading by both methods, the fill pipe opening is below the liquid surface level. Liquid turbulence is controlled significantly during submerged loading, resulting in much lower vapor generation than encountered during splash loading.

The recent loading history of a cargo carrier is just as important a factor in loading losses as the method of loading. If the carrier has carried a nonvolatile liquid such as fuel oil, or has just been cleaned, it will contain vapor-free air. If it has just carried gasoline and has not been vented, the air in the carrier tank will contain volatile organic vapors, which will be expelled during the loading operation along with newly generated vapors.

Cargo carriers are sometimes designated to transport only one product, and in such cases are practicing "dedicated service". Dedicated gasoline cargo tanks return to a loading terminal containing air fully or partially saturated with vapor from the previous load. Cargo tanks may also be "switch loaded" with various products, so that a nonvolatile product being loaded may expel the vapors remaining from a previous load of a volatile product such as gasoline. These circumstances vary with the type of cargo tank and with the ownership of the carrier, the petroleum liquids being transported, geographic location, and season of the year.

One control measure for vapors displaced during liquid loading is called "vapor balance service", in which the cargo tank retrieves the vapors displaced during product unloading at bulk plants or service stations and transports the vapors back to the loading terminal. Figure 5.2-5 shows a tank truck in vapor balance service filling a service station underground tank and taking on displaced gasoline vapors for return to the terminal. A cargo tank returning to a bulk terminal in vapor balance service normally is saturated with organic vapors, and the presence of these vapors at the start of submerged loading of the tanker truck results in greater loading losses than encountered during nonvapor balance, or "normal", service. Vapor balance service is usually not practiced with marine vessels, although some vessels practice emission control by means of vapor transfer within their own cargo tanks during ballasting operations, discussed below.

Emissions from loading petroleum liquid can be estimated (with a probable error of ± 30 percent)⁴ using the following expression:

$$L_{L} = 12.46 \frac{SPM}{T} \tag{1}$$

where:

 L_T = loading loss, pounds per 1000 gallons (lb/10³ gal) of liquid loaded

S = a saturation factor (see Table 5.2-1)

P = true vapor pressure of liquid loaded, pounds per square inch absolute (psia) (see Figure 7.1-5, Figure 7.1-6, and Table 7.1-2)

M = molecular weight of vapors, pounds per pound-mole (lb/lb-mole) (see Table 7.1-2)

T = temperature of bulk liquid loaded, ${}^{\circ}R$ (${}^{\circ}F + 460$)

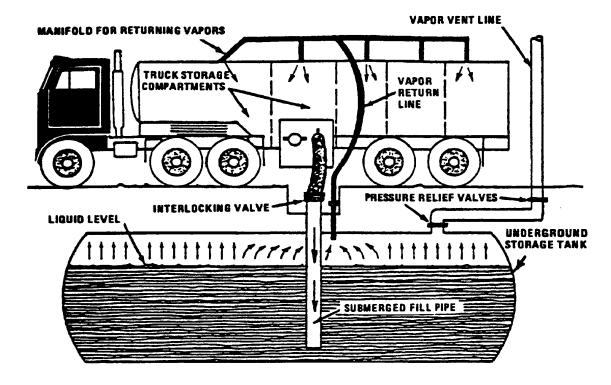


Figure 5.2-5. Tank truck unloading into a service station underground storage tank and practicing "vapor balance" form of emission control.

Table 5.2-1. SATURATION (S) FACTORS FOR CALCULATING PETROLEUM LIQUID LOADING LOSSES

Cargo Carrier	Mode Of Operation	S Factor
Tank trucks and rail tank cars	Submerged loading of a clean cargo tank	0.50
	Submerged loading: dedicated normal service	0.60
	Submerged loading: dedicated vapor balance service	1.00
	Splash loading of a clean cargo tank	1.45
	Splash loading: dedicated normal service	1.45
	Splash loading: dedicated vapor balance service	1.00
Marine vessels ^a	Submerged loading: ships	0.2
	Submerged loading: barges	0.5

^a For products other than gasoline and crude oil. For marine loading of gasoline, use factors from Table 5.2-2. For marine loading of crude oil, use Equations 2 and 3 and Table 5.2-3.

Since flares do not lend themselves to conventional emission testing techniques, only a few attempts have been made to characterize flare emissions. Recent EPA tests using propylene as flare gas indicated that efficiencies of 98 percent can be achieved when burning an offgas with at least 11,200 kJ/m³ (300 Btu/ft³). The tests conducted on steam-assisted flares at velocities as low as 39.6 meters per minute (m/min) (130 ft/min) to 1140 m/min (3750 ft/min), and on air-assisted flares at velocities of 180 m/min (617 ft/min) to 3960 m/min (13,087 ft/min) indicated that variations in incoming gas flow rates have no effect on the combustion efficiency. Flare gases with less than 16,770 kJ/m³ (450 Btu/ft³) do not smoke.

Table 13.5-1 presents flare emission factors, and Table 13.5-2 presents emission composition data obtained from the EPA tests. ¹ Crude propylene was used as flare gas during the tests. Methane was a major fraction of hydrocarbons in the flare emissions, and acetylene was the dominant intermediate hydrocarbon species. Many other reports on flares indicate that acetylene is always formed as a stable intermediate product. The acetylene formed in the combustion reactions may react further with hydrocarbon radicals to form polyacetylenes followed by polycyclic hydrocarbons.²

In flaring waste gases containing no nitrogen compounds, NO is formed either by the fixation of atmospheric nitrogen (N) with oxygen (O) or by the reaction between the hydrocarbon radicals present in the combustion products and atmospheric nitrogen, by way of the intermediate stages, HCN, CN, and OCN. Sulfur compounds contained in a flare gas stream are converted to SO_2 when burned. The amount of SO_2 emitted depends directly on the quantity of sulfur in the flared gases.

Table 13.5-1 (English Units). EMISSION FACTORS FOR FLARE OPERATIONS^a

EMISSION FACTOR RATING: B

Component	Emission Factor (lb/10 ⁶ Btu)
Total hydrocarbons ^b	0.14
Carbon monoxide	0.37
Nitrogen oxides	0.068
Soot ^c	0 - 274

^a Reference 1. Based on tests using crude propylene containing 80% propylene and 20% propane.

^b Measured as methane equivalent.

^c Soot in concentration values: nonsmoking flares, 0 micrograms per liter (μg/L); lightly smoking flares, 40 μg/L; average smoking flares, 177 μg/L; and heavily smoking flares, 274 μg/L.

TABLE 2-4. OIL AND GAS PRODUCTION OPERATIONS AVERAGE EMISSION FACTORS (kg/hr/source)

Equipment Type	Service ^a	Emission Factor (kg/hr/source)b
Valves	Gas Heavy Oil Light Oil Water/Oil	4.5E-03 8.4E-06 2.5E-03 9.8E-05
Pump seals	Gas Heavy Oil Light Oil Water/Oil	2.4E-03 NA 1.3E-02 2.4E-05
Others ^C	Gas Heavy Oil Light Oil Water/Oil	8.8E-03 3.2E-05 7.5E-03 1.4E-02
Connectors	Gas Heavy Oil Light Oil Water/Oil	2.0E-04 7.5E-06 2.1E-04 1.1E-04
Flanges	Gas Heavy Oil Light Oil Water/Oil	3.9E-04 3.9E-07 1.1E-04 2.9E-06
Open-ended lines	Gas Heavy Oil Light Oil Water/Oil	2.0E-03 1.4E-04 1.4E-03 2.5E-04

^aWater/Oil emission factors apply to water streams in oil service with a water content greater than 50%, from the point of origin to the point where the water content reaches 99%. For water streams with a water content greater than 99%, the emission rate is considered negligible.

bThese factors are for total organic compound emission rates (including non-VOC's such as methane and ethane) and apply to light crude, heavy crude, gas plant, gas production, and off shore facilities. "NA" indicates that not enough data were available to develop the indicated emission factor.

CThe "other" equipment type was derived from compressors, diaphrams, drains, dump arms, hatches, instruments, meters, pressure relief valves, polished rods, relief valves, and vents. This "other" equipment type should be applied for any equipment type other than connectors, flanges, open-ended lines, pumps, or valves.

TABLE 1-B

COMPOSITIONAL ANALYSIS OF THE SEPARATOR GAS, OIL AND MATHEMATICALLY RECOMBINED WELLSTREAM THROUGH C_{11+}

SEPARATOR GOR...... 4381 Scf/Sep Bbl

SEPARATOR PRESSURE...... 215 psig SEPARATOR TEMPERATURE.....: 55 $^{\circ}$ F

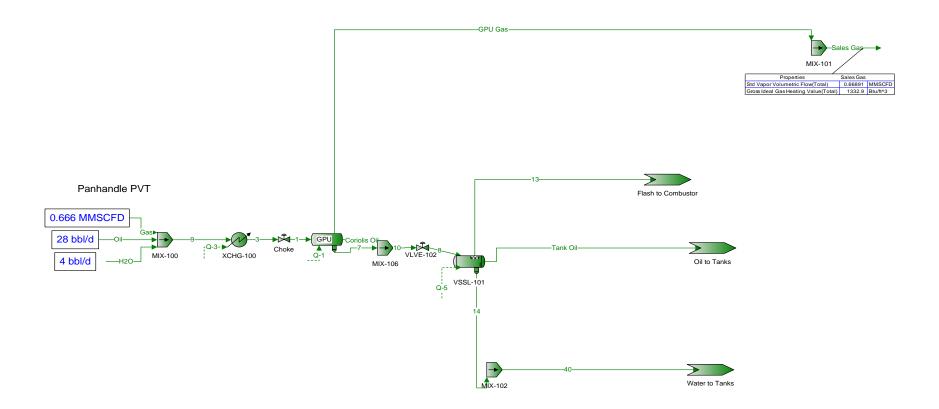
	SEPARA	TOR GAS	SEPARATOR OIL		WELLSTREAM	
		*		Liquid		*
Component	Mole%	GPM	Mole %	Volume %	Mole %	GPM
Hydrogen Sulfide	0.000	0.000	0.000	0.000	0.000	0.000
Nitrogen	0.496	0.000	0.015	0.004	0.405	0.000
Carbon Dioxide	0.133	0.000	0.010	0.011	0.110	0.000
Methane	70.754	0.000	5.084	0.773	58.285	0.000
Ethane	18.380	4.955	9.419	6.156	16.678	4.496
Propane	7.198	1.999	13.438	9.048	8.383	2.328
Iso-butane	0.590	0.195	2.701	2.160	0.991	0.327
N-butane	1.711	0.544	11.641	8.969	3.596	1.143
2-2 Dimethylpropane	0.000	0.000	0.173	0.162	0.033	0.013
Iso-pentane	0.211	0.078	3.777	3.376	0.888	0.327
N-pentane	0.317	0.116	7.673	6.798	1.714	0.626
2-2 Dimethylbutane	0.003	0.001	0.087	0.088	0.019	0.008
Cyclopentane	0.003	0.001	0.000	0.000	0.002	0.001
2-3 Dimethylbutane	0.005	0.002	0.246	0.246	0.051	0.021
2 Methylpentane	0.039	0.016	2.037	2.067	0.418	0.175
3 Methylpentane	0.022	0.009	1.250	1.248	0.255	0.105
Other Hexanes	0.000	0.000	0.000	0.000	0.000	0.000
n-Hexane	0.067	0.028	4.799	4.823	0.965	0.400
Methylcyclopentane	0.005	0.002	0.578	0.500	0.114	0.041
Benzene	0.001	0.000	0.067	0.046	0.014	0.004
Cyclohexane	0.006	0.002	0.688	0.573	0.136	0.047
2-Methylhexane	0.007	0.003	1.483	1.685	0.287	0.135
3-Methylhexane	0.007	0.003	1.361	1.527	0.264	0.122
2,2,4 Trimethylpentane	0.000	0.000	0.000	0.000	0.000	0.000
Other Heptanes	0.007	0.003	0.628	0.680	0.125	0.056
n-Heptane	0.014	0.007	3.405	3.839	0.658	0.306
Methylcyclohexane	0.006	0.002	1.433	1.408	0.277	0.112
Toluene	0.001	0.000	0.271	0.222	0.052	0.018
Other C-8's	0.008	0.004	4.169	4.862	0.798	0.384
n-Octane	0.003	0.002	2.165	2.710	0.413	0.214
Ethylbenzene	0.000	0.000	0.283	0.267	0.054	0.021
M&P-Xylene	0.001	0.000	0.288	0.273	0.055	0.022
O-Xylene	0.000	0.000	0.123	0.114	0.023	0.009
Other C-9's	0.002	0.001	2.999	3.907	0.571	0.307
n-Nonane	0.001	0.001	1.367	1.880	0.260	0.148
Other C10's	0.000	0.000	2.719	3.893	0.516	0.305
n-Decane	0.000	0.000	0.845	1.268	0.160	0.099
Undecanes Plus	0.002	0.001	12.778	24.418	2.428	1.913
TOTAL	100.000	7.974	100.000	100.000	100.000	14.229

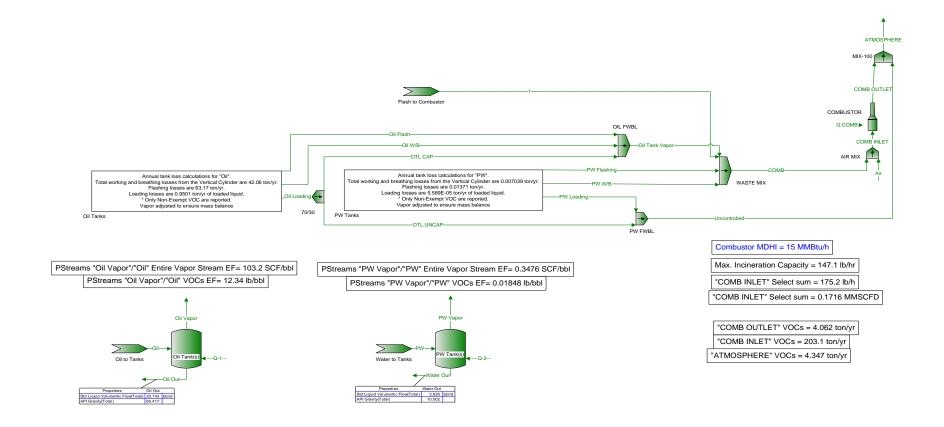
TABLE 1-B

COMPOSITIONAL ANALYSIS OF THE SEPARATOR GAS, OIL AND MATHEMATICALLY RECOMBINED WELLSTREAM THROUGH C_{11+}

SEPARATOR GOR...... 4381 Scf/Sep Bbl

SEPARATOR PRESSURE...... 215 psig SEPARATOR TEMPERATURE.....: 55 °F


UNDECANES PLUS (C ₁₁₊) FRACTION CHARACTERISTICS						
	Molecular Vapor Gross Heating Valu Specific Gravity Weight Volume					
COMPONENT	°API	**	lb/lb-mole	Scf/Gal	***	
Gas	N/A	0.8250	156.000	16.558	8,400	
Oil	41.949	0.8158	201.300	12.689	130,622	
Wellstream	N/A	0.8158	201.270	12.691	N/A	


TOTAL SAMPLE CHARACTERISTICS							
Molecular Vapor Gross Heating Value							
	Specific Gravity		Weight	Volume	Dry	Saturated	
COMPONENT	°API	**	lb/lb-mole	Scf/Gal	***	***	
Gas	N/A	0.7683	22.159	125.402	1,348	1,325	
Oil	77.724	0.6763	87.330	24.247	N/A	114,325	
Wellstream	N/A	1.1924	34.534	55.616	N/A	N/A	

^{*} GPM (gallons per Mscf) determined at 14.85 psia and 60 °F

^{**} Gas specific gravity and wellstream specific gravity determined relative to air (SG=1.000). Oil specific gravity determined relative to water (SG=1.000).

^{***} Gross Heating Value units for gas (real basis) and oil are BTU/Scf and BTU/Gal, respectively.

Process Streams		Oil Flash	Oil Loading	Oil W/B	PW Flashing	PW Loading	PW W/B
Composition	Status:	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block:						
11001	To Block:	OIL FWBL	70/30	OIL FWBL	WASTE MIX	PW FWBL	WASTE MIX
Mass Flow		lb/h	lb/h	lb/h	lb/h	lb/h	lb/h
H2S		0*	0*	0*	0*	0*	0*
N2		0.000205243*		1.83118E-06*	1.52950E-06*		3.00853E-07*
CO2		0.00396108*		0.000278300*	2.18614E-05*	1.28213E-06*	
C1		0.126308*	7.38792E-05*	0.00327090*	0.000603295*		0.000242832*
C2		1.23685*	0.00397735*	0.176092*	0.00150321*	6.56632E-06*	
C3		4.10550*	0.0445415*	1.97201*	0.00161959*		0.000619383*
iC4		1.10289*	0.0191752*	0.848956*	0.000173461*		4.12677E-05*
nC4 2,2-Dimethylbutane		4.25999* 0.0103918*	0.0741388* 0.000171940*	3.28239* 0.00761241*	0.000910013* 4.63780E-07*		0.000320421* 3.83741E-08*
iC5		1.07877*	0.000171940	0.00761241	0.000125782*		2.88483E-05*
nC5		1.84383*	0.0301367*	1.33426*	0.000123782		1.43504E-05*
2,2-Dimethylpropane		0.0191052*	0.000322309*	0.0142698*	1.67615E-06*		2.51845E-07*
Cyclopentane		0.00787432*	0.000322303	0.00515443*	2.45611E-06*		3.02674E-06*
2,3-Dimethylbutane		0.0421944*	0.000689638*	0.0305328*	3.38734E-06*		5.92625E-07*
2-Methylpentane		0.328941*	0.00535091*	0.236904*	2.50893E-05*		3.40638E-06*
3-Methylpentane		0.187047*	0.00303331*	0.134296*	2.77321E-05*		8.96503E-06*
C6		0.594874*	0.00980223*	0.433980*	2.65764E-05*		1.86784E-06*
Methylcyclopentane		0.0649311*	0.000931951*	0.0412608*	1.30484E-05*	5.41550E-08*	6.82100E-06*
Benzene		0.00769763*	8.02486E-05*	0.00355290*	3.90391E-06*	1.27168E-06*	0.000160173*
Cyclohexane		0.0642691*	0.000882849*	0.0390869*	1.94283E-05*	1.78902E-07*	2.25332E-05*
2-Methylhexane		0.106122*	0.000511870*	0.0226623*	4.11296E-06*		3.17921E-07*
3-Methylhexane		0.0918636*	0.00145269*	0.0643159*	3.93994E-06*		3.50774E-07*
2,2,4-Trimethylpentane		0*	0*	0*	0*	0*	0*
C7		0.219579*	0.00339407*	0.150268*	6.62229E-06*		3.18456E-07*
Methylcyclohexane		0.0767165*	0.00115828*	0.0512814*	1.48990E-05*		7.37549E-06*
Toluene		0.0123165*	0.000130354*	0.00577127*	6.58281E-06*		0.000205324*
C8		0.134543*	0.00204472*	0.0905273*	2.20491E-06*		4.83882E-08*
Ethylbenzene		0.00508823*	5.84218E-05*	0.00258654*	2.67846E-06*		6.94799E-05*
m-Xylene		0.00516046* 0.00180424*	7.61113E-05*	0.00336972* 0.000767852*	2.93972E-06* 9.82625E-07*		5.35525E-05* 3.83851E-05*
o-Xylene C9		0.00180424	0.000525372*	0.0232601*	3.65707E-07*		6.33384E-09*
C10		0.0108621*	0.000323372	0.00686873*	4.23192E-08*		2.29592E-10*
C11		0.00314797*	4.42698E-05*	0.00195998*	8.67061E-09*		3.82530E-11*
C12		0.000914748*		0.000542042*	7.31462E-09*		1.04114E-10*
C13		0.000279841*		0.000158038*	5.12775E-09*		1.69527E-10*
C14		8.90132E-05*		4.73888E-05*	3.32874E-09*		2.20769E-10*
C15		2.56420E-05*		1.36980E-05*	1.90339E-09*		2.57472E-10*
C16		7.83740E-06*		3.53279E-06*	1.19205E-09*	3.20222E-12*	4.03330E-10*
C17		2.45889E-06*	2.12355E-08*	9.40173E-07*	6.55880E-10*	4.50487E-12*	5.67403E-10*
C18		1.00746E-06*	7.61834E-09*	3.37291E-07*	3.74553E-10*	5.80208E-12*	7.30790E-10*
C19		2.95022E-07*	1.80776E-09*	8.00362E-08*	1.34717E-10*	5.33318E-12*	6.71731E-10*
C20		7.72875E-08*	5.52998E-10*	2.44832E-08*	3.98683E-11*		5.97502E-10*
C21		2.15463E-08*		6.24236E-09*	1.13517E-11*		3.43568E-10*
C22		9.38050E-09*	4.59232E-11*		4.76133E-12*	2.94980E-12*	
C23		2.67312E-09*		5.52505E-10*	1.28237E-12*		3.79947E-10*
C24		5.02840E-10*		1.36787E-10*	2.41682E-13*		1.41225E-10*
C25		1.86982E-10*		4.60711E-11*	8.41068E-14*		4.77464E-11*
C26		7.96373E-11*		2.45333E-11*	3.40164E-14*		1.87560E-11*
C27		7.56418E-12*		2.75659E-12*	3.10913E-15*		1.66183E-12*
C28		5.79622E-12*		6.55062E-13*	2.20170E-15*		1.14612E-12*
C29 C30		2.48513E-12* 7.42081E-12*		2.59292E-13* 2.40736E-13*	9.64001E-16*		4.97973E-13* 1.34188E-12*
H2O		0.0492976*		2.40736E-13* 3.04772E-05*	2.68162E-15* 0.000167757*	0.000985606*	1.34188E-12" 0.124140*
Oxygen		0.0492976	0.00302E-07 0*	3.04772E-05 0*	0.000167757	0.000965606	0.124140 0*
- CAYGOTT	lb/hr:	14.42	0.22	9.60	<0.01	<0.01	<0.01
	TPY:	63.17	0.22	42.06	0.01	<0.01	0.01
	- 11 1.	00.11	0.50	72.00	0.01	70101	0.01

	User Valu	ue Sets Report	
Client Name:	Air Permit	Job:	C:\Users\creadyh
ocation:	0	•	,
lowsheet:	Main		
	0	oil Tanks	
		ue [ShellLength]	
Parameter	20* ft	Upper Bounc	ft
ower Bound	0* ft	Enforce Bour	FALSE
	12* ft	lue [ShellDiam]	tı.
arameter ower Bound	12° ft 0* ft	Upper Bounc Enforce Bour	ft FALSE
ower Boaria	O II	Ellioree Boul	TALOL
	User Valu	ue [BreatherVP]	
Parameter	0.0300000* psig	Upper Bounc	psig
ower Bound	psig	Enforce Bour	FALSE
	Hear Value	e [BreatherVacP]	
Parameter	-0.0300000* psig	Upper Bounc	psig
ower Bound	psig	Enforce Bour	FALSE
	User Valu	ie [DomeRadius]	
Parameter	ft	Upper Bounc	ft
ower Bound	ft	Enforce Bour	FALSE
	User Va	alue [OpPress]	
Parameter	0* psig	Upper Bounc	psig
ower Bound	psig	Enforce Bour	FALSE
		[AvgPercentLiq]	
arameter ower Bound	50* % %	Upper Bounc Enforce Bour	% FALSE
ower Bouria	70	Emore Boar	TALOL
	User Value	e [MaxPercentLiq]	
Parameter	90* %	Upper Bounc	%
ower Bound	%	Enforce Bour	FALSE
	Hear Val	lue [AnnNetTP]	
Parameter	20.0197* bbl/day	Upper Bounc	bbl/day
ower Bound	0* bbl/day	Enforce Bour	FALSE
	·		
		/alue [OREff]	
Parameter	0* %	Upper Bounc	% FALCE
ower Bound	%	Enforce Bour	FALSE
	User Va	lue [MaxAvgT]	
arameter	59.9* °F	Upper Bounc	°F
ower Bound	°F	Enforce Bour	FALSE .
		alue [MinAvgT]	
Parameter	40.7* °F	Upper Bounc	°F
ower Bound	<u>°F</u>	Enforce Bour	FALSE
	User Va	lue [BulkLiqT]	
Parameter	120* °F	Upper Bounc	°F
arameter		4 - F F	

	User Valu	ue [AvaP]	
Parameter	14.1085* psia	Upper Bounc	psia
Lower Bound	psia	Enforce Bour	FALSE
		F=1 17	
	User Value		D: //:40/ I
Parameter Lower Bound	1069* Btu/ft^2/day Btu/ft^2/day	Upper Bounc Enforce Bour	Btu/ft^2/day FALSE
Lower Boaria	Biu/it 2/day	Efficice Boul	I ALGE
	User Value [A	vgWindSpeed1	
Parameter	9.1* mi/h	Upper Bounc	mi/h
Lower Bound	mi/h	Enforce Bour	FALSE
	User Value [MaxHe		
Parameter	175* bbl/hr	Upper Bounc	bbl/hr
Lower Bound	0* bbl/hr	Enforce Bour	FALSE
	User Value [En	trainedOilFrac1	
Parameter	1* %	Upper Bounc	%
Lower Bound	%	Enforce Bour	FALSE
	User Value [T	urnoverRate]	
Parameter	4.03021*	Upper Bounc	
Lower Bound		Enforce Bour	FALSE
	11	C-4F11	
	User Value [LL		
Parameter Lower Bound	0.5*	Upper Bounc Enforce Bour	FALSE
Lower Bound		Enforce Bour	FALSE
	User Value [A	\tmPressure1	
Parameter	14.1085* psia	Upper Bounc	psia
Lower Bound	psia	Enforce Bour	FALSE
	·		
	User Val	ue [TVP]	
Parameter	13.5987* psia	Upper Bounc	psia
Lower Bound	psia	Enforce Bour	FALSE
	User Value [Av	ral iaCurfacaTl	
Parameter	90.7677* °F	Upper Bounc	°F
Lower Bound	90.7677 F °F	Enforce Bour	FALSE
Lower Boaria	·	Ellioree Bour	TAEGE
	User Value [Ma	axLigSurfaceT]	
Parameter	95.4958* °F	Upper Bounc	°F
Lower Bound	°F	Enforce Bour	FALSE
	User Value [
Parameter	42.8506* ton/yr	Upper Bounc	ton/yr
Lower Bound	ton/yr	Enforce Bour	FALSE
	User Value [W	orkingLosses1	
Parameter	0.407205* ton/yr	Upper Bounc	ton/yr
Lower Bound	ton/yr	Enforce Bour	FALSE
	User Value [St	andingLosses]	
Parameter	8.16292* ton/yr	Upper Bounc	ton/yr
Lower Bound	ton/yr	Enforce Bour	FALSE
	Hear Value IB:	mSoall occosi	
Darameter	User Value [Ri		4pmhru
Parameter Lower Bound	0* ton/yr ton/yr	Upper Bounc Enforce Bour	ton/yr FALSE
LOWOT DOUTE	ton, yi	I Elliotoe Boul	IALOL
	User Value [Wi	ithdrawalLoss1	
Parameter	0* ton/yr	Upper Bounc	ton/yr
Parameter Lower Bound	0* ton/yr ton/yr	Upper Bound Enforce Bour	ton/yr FALSE

	User Value [L	oadingLosses]	
Parameter	0.967859* ton/yr	Upper Bounc	ton/yr
Lower Bound	ton/yr	Enforce Bour	FALSE
	User Value [Maxl	lourlyLoadingLoss]	
Parameter	58.8024* lb/hr	Upper Bounc	lb/hr
Lower Bound	lb/hr	Enforce Bour	FALSE
	llear Va	lue [PStar]	
Parameter	OSCI VII	Upper Bounc	
Lower Bound		Enforce Bour	FALSE
	Hoor Value IDs	eckFittingLosses]	
Parameter	0* ton/yr	Upper Bounc	ton/yr
Lower Bound	ton/yr	Enforce Bour	FALSE
	Hear Value ID:	ackCoom! accos!	
Parameter	0* ton/yr	eckSeamLosses] Upper Bounc	ton/yr
Lower Bound	ton/yr	Enforce Bour	FALSE
	11- 1/ 1	Jackinal	
Parameter	User Value [F	lupper Pounc	tonhir
Parameter Lower Bound	69.3720° ton/yr ton/yr	Upper Bounc Enforce Bour	ton/yr FALSE
	,		
		TotalResidual]	
Parameter Lower Bound	860.481* ton/yr ton/yr	Upper Bounc Enforce Bour	ton/yr FALSE
		BasMoleWeight]	
Parameter Lower Bound	0.0519792* kg/mol kg/mol	Upper Bound Enforce Bour	kg/mol FALSE
Lower Bound	кулпо	Efficice Bodi	TALSE
	User Value [Va	pReportableFrac]	
Parameter	98.1635* %	Upper Bounc	%
Lower Bound	%	Enforce Bour	FALSE
	User Value [Lie	ReportableFrac]	
Parameter	99.9089* %	Upper Bounc	%
Lower Bound	<u></u> %	Enforce Bour	FALSE
	User Value [Flas	shReportableFrac]	
Parameter	91.0557* %	Upper Bounc	%
Lower Bound	<u>%</u>	Enforce Bour	FALSE
	User Value	[BlockReady]	
Parameter	1*	Upper Bounc	
Lower Bound		Enforce Bour	FALSE
Notes:			
	as programmatically generated. GUI	D={2B5C6D0D-40DB-404F-AC	15-16FC81688D28}
	PW	Tanks	
		[BlockReady]	
Parameter	1*	Upper Bounc	511.05
Lower Bound		Enforce Bour	FALSE
	User Value	[ShellLength]	
Parameter	20* ft	Upper Bounc	ft
Lower Bound	0* ft	Enforce Bour	FALSE
	llser Value	e [ShellDiam]	
Parameter	12* ft	Upper Bounc	ft
Lower Bound	0* ft	Enforce Bour	FALSE

	User Value	[BreatherVP]	
Parameter	0.0300000* psig	Upper Bounc	psig
Lower Bound	psig	Enforce Bour	FALSE
	User Value [BreatherVacP]	
Parameter	-0.0300000* psig	Upper Bounc	psig
Lower Bound	psig	Enforce Bour	FALSE
	User Value	[DomeRadius]	
Parameter	ft	Upper Bounc	ft
Lower Bound	ft	Enforce Bour	FALSE
	User Valu	e [OpPress]	
Parameter	0* psig	Upper Bounc	psig
Lower Bound	psig	Enforce Bour	FALSE
	User Value [/	AvgPercentLiq]	
Parameter	50* %	Upper Bounc	%
Lower Bound	%	Enforce Bour	FALSE
	Hear Value II	MaxPercentLiq]	
Parameter	90* %	Upper Bounc	%
Lower Bound	%	Enforce Bour	FALSE
	Haar Velice	[AnnNotTD]	
Parameter	3.85355* bbl/day	E [AnnNetTP] Upper Bounc	bbl/day
Lower Bound	0* bbl/day	Enforce Bour	FALSE
		IODE(II	
Doromotor	O* %	ue [OREff]	%
Parameter Lower Bound	% %	Upper Bounc Enforce Bour	% FALSE
		e [MaxAvgT]	05
Parameter Lower Bound	59.9* °F °F	Upper Bounc Enforce Bour	°F FALSE
		e [MinAvgT]	
Parameter Lower Bound	40.7* °F °F	Upper Bound Enforce Bour	°F FALSE
zowor zoana			
		e [BulkLiqT]	
Parameter Lower Bound	120* °F °F	Upper Bounc Enforce Bour	°F FALSE
Lower Boaria	·	Efficied Bour	TALOL
		lue [AvgP]	
Parameter Lower Bound	14.1085* psia psia	Upper Bound Enforce Bour	psia FALSE
LOWER DOUBLE	μδια	ILIIIOICE BOUI	I ALUL
		ue [Therml]	
Parameter Lower Bound	1069* Btu/ft^2/day Btu/ft^2/day	Upper Bounc Enforce Bour	Btu/ft^2/day FALSE
Lower Bourla	Diu/ii z/uay	Eniorce bour	FALSE
		\vgWindSpeed]	
Parameter	9.1* mi/h	Upper Bounc	mi/h
Lower Bound	mi/h	Enforce Bour	FALSE
		lourlyLoadingRate]	
Parameter	175* bbl/hr	Upper Bounc	bbl/hr
Lower Bound	0* bbl/hr	Enforce Bour	FALSE
	User Value [E	ntrainedOilFrac]	
Parameter	1* %	Upper Bounc	%
Lower Bound	%	Enforce Bour	FALSE

	User Value	[TurnoverRate]	
Parameter	0.775766*	Upper Bounc	
Lower Bound		Enforce Bour	FALSE
	User Value [L	LossSatFactor]	
Parameter	0.5*	Upper Bounc	
Lower Bound		Enforce Bour	FALSE
	User Value	[AtmPressure]	
Parameter	14.1085* psia	Upper Bounc	psia
Lower Bound	psia	Enforce Bour	FALSE
	User V:	alue [TVP]	
Parameter	13.4507* psia	Upper Bounc	psia
Lower Bound	psia	Enforce Bour	FALSE
	Hear Value [/	AvgLiqSurfaceT]	
Parameter	90.7677* °F	Upper Bounc	°F
Lower Bound	°F	Enforce Bour	FALSE
	Hoor Volum PA	layliaCurtagaT1	
Parameter	95.4958* °F	MaxLiqSurfaceT] Upper Bounc	°F
Lower Bound	95.4956 F °F	Enforce Bour	FALSE
		F7 4 11 -	
Demonstra		[TotalLosses]	t
Parameter Lower Bound	0.556168* ton/yr ton/yr	Upper Bounc Enforce Bour	ton/yr FALSE
	·		
		WorkingLosses]	
Parameter Lower Bound	0.00185779* ton/yr ton/yr	Upper Bound Enforce Bour	ton/yr FALSE
Lower Board	tornyi	Elliotoo Bodi	TALOE
		StandingLosses]	
Parameter Lower Bound	0.109376* ton/yr ton/yr	Upper Bounc Enforce Bour	ton/yr FALSE
Lower Bouria	tonyi	Efficice Boul	FALSE
	User Value [F	RimSealLosses]	
Parameter	0* ton/yr	Upper Bounc	ton/yr
Lower Bound	ton/yr	Enforce Bour	FALSE
	User Value [V	VithdrawalLoss]	
Parameter	0* ton/yr	Upper Bounc	ton/yr
Lower Bound	ton/yr	Enforce Bour	FALSE
	User Value [I	LoadingLosses]	
Parameter	0.00441567* ton/yr	Upper Bounc	ton/yr
Lower Bound	ton/yr	Enforce Bour	FALSE
	User Value [Maxi-	HourlyLoadingLoss]	
Parameter	38.3313* lb/hr	Upper Bounc	lb/hr
Lower Bound	lb/hr	Enforce Bour	FALSE
	Hoor Vo	lue [PStar]	
Parameter	USEI VA	Upper Bounc	
Lower Bound		Enforce Bour	FALSE
	Hoor Value ID:	okEitting! coss-1	
Parameter	O* ton/yr	Upper Bounc	ton/yr
Lower Bound	ton/yr	Enforce Bour	FALSE
		10 1	
Doromotor		eckSeamLosses]	too her
Parameter Lower Bound	0* ton/yr ton/yr	Upper Bounc Enforce Bour	ton/yr FALSE
	,-		-

User Value [FlashingLosses]				
Parameter	0.0237761* ton/yr	Upper Bounc	ton/yr	
Lower Bound	ton/yr	Enforce Bour	FALSE	
	User Value	[TotalResidual]		
Parameter	244.500* ton/yr	Upper Bounc	ton/yr	
Lower Bound	ton/yr	Enforce Bour	FALSE	
	User Value	[GasMoleWeight]		
Parameter	0.0342564* kg/mol	Upper Bounc	kg/mol	
Lower Bound	kg/mol	Enforce Bour	FALSE	
	User Value (V	apReportableFrac]		
Parameter	1.26565* %	Upper Bounc	%	
Lower Bound	%	Enforce Bour	FALSE	
	User Value [L	.iqReportableFrac]		
Parameter	0.00289527* %	Upper Bounc	%	
Lower Bound	%	Enforce Bour	FALSE	
	Hear Value (El	ashReportableFrac]		
Danamatan			0/	
Parameter	57.6730* %	Upper Bounc Enforce Bour	%	
Lower Bound	%	Enlorce Bour	FALSE	
Notes:				
This Hear Value Set	was programmatically generated. Gl	IID={31605A22-C5CB-4512-A14	D-428RFF7840RF\	