

July 21, 2017

Mr. William F. Durham Director WVDEP, Division of Air Quality 601 – 57<sup>th</sup> Street SE Charleston, West Virginia 25304

# Re: CONE Midstream Devco III LP, 45CSR13 Permit Modification Application – Cain Run Station – Facility ID # 017-00166

Dear Mr. Durham,

CONE Midstream Devco III LP (CONE) and SLR International Corporation (SLR) have prepared the attached 45CSR13 Permit Modification Application for the Cain Run Station located in Doddridge County, West Virginia. This modification will reflect an increase to the capacity of the dehydration column from 20 mmscf/d to 50 mmscf/d and an increase in the capacity of the dehydration unit reboiler from 0.375 mmBtu/hr to 0.75 mmBtu/hr. Also through this modification CONE is correcting the manufacturing date of the engine (CE-1) from 4/6/2012 to 11/17/2014 as well as making a change to the catalyst manufacturer used for engine control.

The public notice was delivered to *The Doddridge Independent* for publication. The legal advertisement will be forwarded to your office as soon as SLR receives the original affidavit from the newspaper.

If any additional information is needed, please feel free to contact me by telephone at (304) 545-8563 or by e-mail at <u>jhanshaw@slrconsulting.com</u>

Sincerely, SLR International Corporation

Jesse Hanshaw

Jesse Hanshaw, P.E. Principal Engineer



CONE Midstream Devco III LP

Cain Run Station

New Milton, West Virginia

45CSR13 Permit Modification Application

SLR Ref: 116.00894.00069





#### Cain Run Station 45CSR13 Permit Modification Application

Prepared for:

CONE Midstream Partners LP 1000 Consol Energy Drive Canonsburg, PA 15317

This document has been prepared by SLR International Corporation. The material and data in this permit application were prepared under the supervision and direction of the undersigned.

Chris Boggess Associate Engineer

Jesse Hanshaw, P.E. Principal Engineer



#### CONTENTS

#### ATTACHMENTS

**APPLICATION FOR PERMIT** 

| ATTACHMENT A | BUSINESS CERTIFICATE                                          |
|--------------|---------------------------------------------------------------|
| ATTACHMENT B |                                                               |
| ATTACHMENT C | INSTALLATION AND START UP SCHEDULE(SEE NOTES)                 |
| ATTACHMENT D |                                                               |
| ATTACHMENT E | PLOT PLAN                                                     |
| ATTACHMENT F | PROCESS FLOW DIAGRAM                                          |
| ATTACHMENT G | PROCESS DESCRIPTION                                           |
| ATTACHMENT H | SAFETY DATA SHEETS (SDS)(SEE NOTES)                           |
| ATTACHMENT I | EMISSION UNITS TABLE                                          |
| ATTACHMENT J | EMISSION POINTS DATA SUMMARY SHEET                            |
| ATTACHMENT K | FUGITIVE EMISSIONS DATA SHEET(S)(SEE NOTES)                   |
| ATTACHMENT L | EMISSION UNIT DATA SHEET(S)                                   |
| ATTACHMENT M | AIR POLLUTION CONTROL DEVICE SHEET(S)                         |
| ATTACHMENT N | SUPPORTING EMISSIONS CALCULATIONS                             |
| ATTACHMENT O | MONITORING/RECORDKEEPING/REPORTING/ TESTING PLANS             |
| ATTACHMENT P |                                                               |
| ATTACHMENT Q | BUSINESS CONFIDENTIAL CLAIMS (SEE NOTE)                       |
| ATTACHMENT R | AUTHORITY FORMS (SEE NOTE)                                    |
| ATTACHMENT S | . TITLE V PERMIT MODIFICATION REVISION INFORMATION (SEE NOTE) |

Notes:

ATTACHMENT H - SDS included in previous permit application

ATTACHMENT K - No change in fugitive emissions associated with this permit modification

ATTACHMENT Q - No information contained within this application is claimed confidential

ATTACHMENT R - No delegation of authority

ATTACHMENT S - Not a Title V Permit Revision

#### **APPLICATION FOR PERMIT**

## **45CSR13 Permit Modification Application**

Cain Run Station New Milton, West Virginia

CONE Midstream Devco III LP 1000 Consol Energy Drive Canonsburg, PA 15317

| WEST VIRGINIA DEPARTMENT OF<br>ENVIRONMENTAL PROTECTION<br>DIVISION OF AIR QUALITY<br>601 57 <sup>th</sup> Street, SE<br>Charleston, WV 25304<br>(304) 926-0475<br>www.dep.wv.gov/dag                                                                                                                                   | Y APP.                                                                                                                    | LICATION FOR NSR PERMIT<br>AND<br>TLE V PERMIT REVISION<br>(OPTIONAL)                                                                                                                                                                                                                  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KN<br>CONSTRUCTION MODIFICATION RELOCATION<br>CLASS I ADMINISTRATIVE UPDATE TEMPORARY<br>CLASS II ADMINISTRATIVE UPDATE AFTER-THE-F<br>FOR TITLE V FACILITIES ONLY: Please refer to "Title V<br>(Appendix A "Title V Permit Revision Elevechart") and                  | NOWN): PLEASE CHECK                                                                                                       | TYPE OF 45CSR30 (TITLE V) REVISION (IF ANY):<br>TIVE AMENDMENT IMINOR MODIFICATION<br>MODIFICATION<br>DVE IS CHECKED, INCLUDE TITLE V REVISION<br>S ATTACHMENT S TO THIS APPLICATION<br>der to determine your Title V Revision options<br>changes requested in this Permit Application |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                         |                                                                                                                           |                                                                                                                                                                                                                                                                                        |  |  |  |  |
| <ol> <li>Name of applicant (as registered with the WV Secreta<br/>CONE Midstream Devco III LP</li> </ol>                                                                                                                                                                                                                | ary of State's Office):                                                                                                   | 2. Federal Employer ID No. ( <i>FEIN):</i><br>47-1054194                                                                                                                                                                                                                               |  |  |  |  |
| <ol> <li>Name of facility (if different from above):<br/>Cain Run Station</li> </ol>                                                                                                                                                                                                                                    |                                                                                                                           | 4. The applicant is the:                                                                                                                                                                                                                                                               |  |  |  |  |
| 5A. Applicant's mailing address:<br>1000 Consol Energy Drive<br>Canonsburg, PA 15317                                                                                                                                                                                                                                    | 5B. Facility's pres<br>Access road off S. F                                                                               | ent physical address:<br>Fork of Hughes River (See Coordinates)                                                                                                                                                                                                                        |  |  |  |  |
| <ul> <li>6. West Virginia Business Registration. Is the applicant</li> <li>If YES, provide a copy of the Certificate of Incorpor<br/>change amendments or other Business Registration</li> <li>If NO, provide a copy of the Certificate of Authority/<br/>amendments or other Business Certificate as Attach</li> </ul> | t a resident of the State c<br>ration/Organization/Lim<br>Certificate as Attachmer<br>/Authority of L.L.C./Reg<br>ment A. | of West Virginia? YES NO<br>ited Partnership (one page) including any name<br>it A.<br>istration (one page) including any name change                                                                                                                                                  |  |  |  |  |
| 7. If applicant is a subsidiary corporation, please provide                                                                                                                                                                                                                                                             | the name of parent corpo                                                                                                  | pration:                                                                                                                                                                                                                                                                               |  |  |  |  |
| <ul> <li>8. Does the applicant own, lease, have an option to buy or otherwise have control of the <i>proposed site</i>? XES NO</li> <li>If YES, please explain: Owner</li> <li>If NO, you are not eligible for a permit for this source.</li> </ul>                                                                     |                                                                                                                           |                                                                                                                                                                                                                                                                                        |  |  |  |  |
| <ol> <li>Type of plant or facility (stationary source) to be cons<br/>administratively updated or temporarily permitted<br/>crusher, etc.): Natural Gas Compression and Dehyde</li> </ol>                                                                                                                               | structed, modified, reloc<br>I (e.g., coal preparation p<br>ration Facility                                               | cated,<br>lant, primary10. North American Industry<br>Classification System<br>(NAICS) code for the facility:486210                                                                                                                                                                    |  |  |  |  |
| 11A. DAQ Plant ID No. (for existing facilities only):<br>017-00166                                                                                                                                                                                                                                                      | 11B. List all current 45C<br>associated with this<br>R13-3358                                                             | SR13 and 45CSR30 (Title V) permit numbers<br>s process (for existing facilities only):                                                                                                                                                                                                 |  |  |  |  |

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

12A.

- For **Modifications, Administrative Updates** or **Temporary permits** at an existing facility, please provide directions to the *present location* of the facility from the nearest state road;
- For **Construction** or **Relocation permits**, please provide directions to the *proposed new site location* from the nearest state road. Include a **MAP** as **Attachment B**.

From the intersection of WV-Hwy. 18 and Co. Rte. 25 near New Milton, WV, travel south on WV-Hwy. 18 for 3 miles. Turn right on Porto Rico Rd. for 0.7 miles, then continue straight onto Toms Fork Road for another 0.7 miles. Take slight right onto Co. Rte. 54/1 for 2.5 miles, then turns right and becomes Cain Run for 0.3 miles. Then take sharp left onto S. Fork of Hughes River for 1.0 mile. Take access road to left and to the top of the hill and stay to the left to arrive at site

| 12.B. New site address (if applicable):                                                                                                                                                                                           | 12C. Nearest city or town:                                                          | 12D. County:                                              |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------|--|--|--|--|--|--|
|                                                                                                                                                                                                                                   | New Milton                                                                          | Doddridge                                                 |  |  |  |  |  |  |
|                                                                                                                                                                                                                                   |                                                                                     |                                                           |  |  |  |  |  |  |
| 12.E. UTM Northing (KM): 4,335.746                                                                                                                                                                                                | 12F. UTM Easting (KM): 520.430                                                      | 12G. UTM Zone: 17T                                        |  |  |  |  |  |  |
|                                                                                                                                                                                                                                   |                                                                                     |                                                           |  |  |  |  |  |  |
| 13. Briefly describe the proposed change(s) at the facilit<br>CONF would like to increase the capacity of the dehydra                                                                                                             | y:<br>tion unit from 20 MMSCED to 50 MMSC                                           | CFD and implement an                                      |  |  |  |  |  |  |
| administrative change to the 4SLB Cat 3516 compresso                                                                                                                                                                              | engine manufacture date.                                                            |                                                           |  |  |  |  |  |  |
| 14A Provide the date of anticipated installation or chan                                                                                                                                                                          | ne: I Inon Permit Issuance                                                          |                                                           |  |  |  |  |  |  |
| <ul> <li>If this is an After-The-Fact permit application, prov</li> </ul>                                                                                                                                                         | ide the date upon which the proposed                                                | 14B. Date of anticipated Start-Up if a permit is granted: |  |  |  |  |  |  |
| change did happen:                                                                                                                                                                                                                |                                                                                     | 4th Quarter 2017                                          |  |  |  |  |  |  |
| 14C. Provide a Schedule of the planned Installation of/                                                                                                                                                                           | Change to and Start-Up of each of the                                               | units proposed in this permit                             |  |  |  |  |  |  |
| application as <b>Attachment C</b> (if more than one uni                                                                                                                                                                          | t is involved).                                                                     |                                                           |  |  |  |  |  |  |
| 15. Provide maximum projected <b>Operating Schedule</b> o<br>Hours Per Day 24 Days Per Week 7                                                                                                                                     | f activity/activities outlined in this applica<br>Weeks Per Year 52                 | ation:                                                    |  |  |  |  |  |  |
| 16. Is demolition or physical renovation at an existing fa                                                                                                                                                                        | 16. Is demolition or physical renovation at an existing facility involved?  YES  NO |                                                           |  |  |  |  |  |  |
| 17. Risk Management Plans. If this facility is subject to                                                                                                                                                                         | 112(r) of the 1990 CAAA, or will becom                                              | e subject due to proposed                                 |  |  |  |  |  |  |
| changes (for applicability help see www.epa.gov/cepp                                                                                                                                                                              | oo), submit your <b>Risk Management Pla</b>                                         | n (RMP) to U. S. EPA Region III.                          |  |  |  |  |  |  |
| 18. Regulatory Discussion. List all Federal and State a                                                                                                                                                                           | air pollution control regulations that you                                          | believe are applicable to the                             |  |  |  |  |  |  |
| proposed process (if known). A list of possible application                                                                                                                                                                       | able requirements is also included in Atta                                          | achment S of this application                             |  |  |  |  |  |  |
| (Title V Permit Revision Information). Discuss applica                                                                                                                                                                            | bility and proposed demonstration(s) of                                             | compliance (if known). Provide this                       |  |  |  |  |  |  |
| information as Attachment D.                                                                                                                                                                                                      |                                                                                     |                                                           |  |  |  |  |  |  |
| Section II. Additional att                                                                                                                                                                                                        | achments and supporting d                                                           | ocuments.                                                 |  |  |  |  |  |  |
| 19. Include a check payable to WVDEP – Division of Air                                                                                                                                                                            | Quality with the appropriate application                                            | <b>1 fee</b> (per 45CSR22 and                             |  |  |  |  |  |  |
| 45CSR13).                                                                                                                                                                                                                         |                                                                                     |                                                           |  |  |  |  |  |  |
| 20. Include a Table of Contents as the first page of you                                                                                                                                                                          | r application package.                                                              |                                                           |  |  |  |  |  |  |
| 21. Provide a <b>Plot Plan</b> , e.g. scaled map(s) and/or sketch(es) showing the location of the property on which the stationary source(s) is or is to be located as <b>Attachment E</b> (Refer to <b>Plot Plan Guidance</b> ). |                                                                                     |                                                           |  |  |  |  |  |  |
| <ul> <li>Indicate the location of the nearest occupied structure</li> </ul>                                                                                                                                                       | e (e.g. church, school, business, residen                                           | ce).                                                      |  |  |  |  |  |  |
| 22. Provide a <b>Detailed Process Flow Diagram(s)</b> show device as <b>Attachment F.</b>                                                                                                                                         | ving each proposed or modified emissio                                              | ns unit, emission point and control                       |  |  |  |  |  |  |
| 23. Provide a Process Description as Attachment G.                                                                                                                                                                                |                                                                                     |                                                           |  |  |  |  |  |  |
| <ul> <li>Also describe and quantify to the extent possible all changes made to the facility since the last permit review (if applicable).</li> </ul>                                                                              |                                                                                     |                                                           |  |  |  |  |  |  |

| All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone. |                                                                                                               |                                                                                                                                                                   |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 24. Provide Material Safety Data Sheets (MSDS) for all materials processed, used or produced as Attachment H.                           |                                                                                                               |                                                                                                                                                                   |  |  |  |  |
| <ul> <li>For chemical processes, provide a MSDS for each compound emitted to the air.</li> </ul>                                        |                                                                                                               |                                                                                                                                                                   |  |  |  |  |
| 25. Fill out the Emission Units Table an                                                                                                | nd provide it as Attachment I.                                                                                |                                                                                                                                                                   |  |  |  |  |
| 26. Fill out the Emission Points Data Second                                                                                            | ummary Sheet (Table 1 and Ta                                                                                  | ble 2) and provide it as Attachment J.                                                                                                                            |  |  |  |  |
| 27. Fill out the Fugitive Emissions Data                                                                                                | a Summary Sheet and provide i                                                                                 | as Attachment K.                                                                                                                                                  |  |  |  |  |
| 28. Check all applicable Emissions Unit                                                                                                 | t Data Sheets listed below:                                                                                   |                                                                                                                                                                   |  |  |  |  |
| Bulk Liquid Transfer Operations                                                                                                         | Haul Road Emissions                                                                                           | Quarry                                                                                                                                                            |  |  |  |  |
| Chemical Processes                                                                                                                      | Hot Mix Asphalt Plant                                                                                         | Solid Materials Sizing, Handling and Storage                                                                                                                      |  |  |  |  |
| Concrete Batch Plant                                                                                                                    | Incinerator                                                                                                   | Facilities                                                                                                                                                        |  |  |  |  |
| Grey Iron and Steel Foundry                                                                                                             | Indirect Heat Exchanger                                                                                       | Storage Tanks                                                                                                                                                     |  |  |  |  |
| General Emission Unit, specify : TEG                                                                                                    | Dehydration Emission Unit Data                                                                                | Sheet (EUDS), SI RICE Engine Data Sheet                                                                                                                           |  |  |  |  |
|                                                                                                                                         |                                                                                                               |                                                                                                                                                                   |  |  |  |  |
| Fill out and provide the Emissions Unit                                                                                                 | Data Sheet(s) as Attachment L                                                                                 |                                                                                                                                                                   |  |  |  |  |
| 29. Check all applicable Air Pollution C                                                                                                | ontrol Device Sheets listed bel                                                                               | DW:                                                                                                                                                               |  |  |  |  |
| Absorption Systems                                                                                                                      | Baghouse                                                                                                      | ⊠ Flare                                                                                                                                                           |  |  |  |  |
| Adsorption Systems                                                                                                                      | Condenser                                                                                                     | Mechanical Collector                                                                                                                                              |  |  |  |  |
| Afterburner                                                                                                                             | Electrostatic Precipita                                                                                       | ator 🗌 Wet Collecting System                                                                                                                                      |  |  |  |  |
| Other Collectors, specify: OxCat.                                                                                                       |                                                                                                               |                                                                                                                                                                   |  |  |  |  |
|                                                                                                                                         |                                                                                                               |                                                                                                                                                                   |  |  |  |  |
| Fill out and provide the Air Pollution Cor                                                                                              | ntrol Device Sheet(s) as Attach                                                                               | ment M.                                                                                                                                                           |  |  |  |  |
| 30. Provide all <b>Supporting Emissions C</b><br>Items 28 through 31.                                                                   | Calculations as Attachment N,                                                                                 | or attach the calculations directly to the forms listed in                                                                                                        |  |  |  |  |
| 31. <b>Monitoring, Recordkeeping, Repor</b><br>testing plans in order to demonstrate<br>application. Provide this information           | ting and Testing Plans. Attack<br>compliance with the proposed e<br>as Attachment O.                          | n proposed monitoring, recordkeeping, reporting and<br>missions limits and operating parameters in this permit                                                    |  |  |  |  |
| Please be aware that all permits mus<br>measures. Additionally, the DAQ ma<br>are proposed by the applicant, DAQ                        | t be practically enforceable whe<br>y not be able to accept all meas<br>will develop such plans and inclu     | ther or not the applicant chooses to propose such<br>ures proposed by the applicant. If none of these plans<br>ude them in the permit.                            |  |  |  |  |
| 32. Public Notice. At the time that the a                                                                                               | application is submitted, place a                                                                             | Class I Legal Advertisement in a newspaper of general                                                                                                             |  |  |  |  |
| circulation in the area where the sour                                                                                                  | ce is or will be located (See 450                                                                             | SR§13-8.3 through 45CSR§13-8.5 and <i>Example Legal</i>                                                                                                           |  |  |  |  |
| Advertisement for details). Please s                                                                                                    | submit the Affidavit of Publicat                                                                              | on as Attachment P immediately upon receipt.                                                                                                                      |  |  |  |  |
| 33. Business Confidentiality Claims.                                                                                                    | Does this application include cor                                                                             | fidential information (per 45CSR31)?                                                                                                                              |  |  |  |  |
|                                                                                                                                         | 🖾 NO                                                                                                          |                                                                                                                                                                   |  |  |  |  |
| If YES, identify each segment of infor<br>segment claimed confidential, includi<br>Notice – Claims of Confidentiality'                  | rmation on each page that is sub<br>ing the criteria under 45CSR§31<br>' guidance found in the <b>General</b> | mitted as confidential and provide justification for each<br>-4.1, and in accordance with the DAQ's <i>"Precautionary</i><br><i>Instructions</i> as Attachment Q. |  |  |  |  |
| Se                                                                                                                                      | ection III. Certification                                                                                     | of Information                                                                                                                                                    |  |  |  |  |
| 34. Authority/Delegation of Authority.<br>Check applicable Authority Form be                                                            | Only required when someone c<br>elow:                                                                         | ther than the responsible official signs the application.                                                                                                         |  |  |  |  |
| Authority of Corporation or Other Busi                                                                                                  | ness Entity                                                                                                   | Authority of Partnership                                                                                                                                          |  |  |  |  |
| Authority of Governmental Agency                                                                                                        |                                                                                                               | Authority of Limited Partnership                                                                                                                                  |  |  |  |  |
| Submit completed and signed Authority                                                                                                   | Form as Attachment R.                                                                                         |                                                                                                                                                                   |  |  |  |  |
| All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone. |                                                                                                               |                                                                                                                                                                   |  |  |  |  |

35A. **Certification of Information.** To certify this permit application, a Responsible Official (per 45CSR§13-2.22 and 45CSR§30-2.28) or Authorized Representative shall check the appropriate box and sign below.

#### Certification of Truth, Accuracy, and Completeness

I, the undersigned 🖾 **Responsible Official** / 🗋 **Authorized Representative**, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.

#### **Compliance Certification**

Except for requirements identified in the Title V Application for which compliance is not achieved, I, the undersigned hereby certify that, based on information and belief formed after reasonable inquiry, all air contaminant sources identified in this application are in compliance with all applicable requirements

| SIGNATURE                                       | ATE: <u><i>La 24/17</i></u><br>(Please Use blue ink) |                                                    |
|-------------------------------------------------|------------------------------------------------------|----------------------------------------------------|
| 35B. Printed name of signee: Joseph Fink        |                                                      | 35C. Title: Chief Operating Officer                |
| 35D. E-mail: joefink@consolenergy.com           | 36E. Phone: 724-485-3524                             | 36F. FAX:                                          |
| 36A. Printed name of contact person (if differe | nt from above): Patrick Flynn                        | 36B. Title: Engineer Air Permitting and Compliance |
| 36C. E-mail:<br>PatrickFlynn@consolenergy.com   | 36D. Phone: 724-485-3156                             | 36E. FAX:                                          |

| PLEASE CHECK ALL APPLICABLE ATTACHMENTS INCLUDE                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D WITH THIS PERMIT APPLICATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| <ul> <li>Attachment A: Business Certificate</li> <li>Attachment B: Map(s)</li> <li>Attachment C: Installation and Start Up Schedule</li> <li>Attachment D: Regulatory Discussion</li> <li>Attachment E: Plot Plan</li> <li>Attachment F: Detailed Process Flow Diagram(s)</li> <li>Attachment G: Process Description</li> <li>Attachment H: Material Safety Data Sheets (MSDS)</li> <li>Attachment I: Emission Units Table</li> <li>Attachment J: Emission Points Data Summary Sheet</li> </ul> | <ul> <li>Attachment K: Fugitive Emissions Data Summary Sheet</li> <li>Attachment L: Emissions Unit Data Sheet(s)</li> <li>Attachment M: Air Pollution Control Device Sheet(s)</li> <li>Attachment N: Supporting Emissions Calculations</li> <li>Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans</li> <li>Attachment P: Public Notice</li> <li>Attachment Q: Business Confidential Claims</li> <li>Attachment R: Authority Forms</li> <li>Attachment S: Title V Permit Revision Information</li> <li>Application Fee</li> </ul> |  |  |  |  |  |
| Please mail an original and three (3) copies of the complete permit application with the signature(s) to the DAQ, Permitting Section, at the address listed on the first page of this application. Please DO NOT fax permit applications.                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |



 FOR AGENCY USE ONLY – IF THIS IS A TITLE V SOURCE:

 Forward 1 copy of the application to the Title V Permitting Group and:

 For Title V Administrative Amendments:

 NSR permit writer should notify Title V permit writer of draft permit,

 For Title V Minor Modifications:

 Title V permit writer should send appropriate notification to EPA and affected states within 5 days of receipt,

 NSR permit writer should notify Title V permit writer of draft permit.

 For Title V permit writer should notify Title V permit writer of draft permit.

 NSR permit writer should notify Title V permit writer of draft permit.

 For Title V Significant Modifications processed in parallel with NSR Permit revision:

 NSR permit writer should notify a Title V permit writer of draft permit,

 Public notice should reference both 45CSR13 and Title V permits,

 EPA has 45 day review period of a draft permit.

 All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

#### ATTACHMENT A

#### **BUSINESS CERTIFICATE**

## **45CSR13 Permit Modification Application**

Cain Run Station New Milton, West Virginia

CONE Midstream Devco III LP 1000 Consol Energy Drive Canonsburg, PA 15317



## I, Natalie E. Tennant, Secretary of State of the State of West Virginia, hereby certify that

#### CONE MIDSTREAM DEVCO III LP

#### **Control Number: 9A6SN**

has filed its application for "Certificate of Registration" in my office according to the provisions of the West Virginia Code. I hereby declare the organization to be registered as a foreign limited partnership from its effective date of August 12, 2014 until a certificate of cancellation has been filed with Secretary of State.

Therefore, I hereby issue this

# **CERTIFICATE OF REGISTRATION**



Given under my hand and the Great Seal of the State of West Virginia on this day of August 12, 2014

tatil E Yum

Secretary of State

#### ATTACHMENT B

MAP

## **45CSR13 Permit Modification Application**

Cain Run Station New Milton, West Virginia

CONE Midstream Devco III LP 1000 Consol Energy Drive Canonsburg, PA 15317

# Attachment B - Maps

CONE Midstream Devco III LP Cain Run Station - Facility ID: 017-00166

UTM Coordinates of Site: Northing: 4,355.746 km, Easting: 520.430 km, Zone 17 Legend 300' Barrier

\$

Cain Run Station

Cain Run Station

Google earth

∧ N

#### ATTACHMENT C

#### **INSTALLATION AND START-UP SCHEDULE**

## **45CSR13 Permit Modification Application**

Cain Run Station New Milton, West Virginia

CONE Midstream Devco III LP 1000 Consol Energy Drive Canonsburg, PA 15317

## INSTALLATION AND STARTUP SCHEDULE

CONE expects to install the proposed equipment and startup in the 4<sup>th</sup> quarter of 2017.

#### ATTACHMENT D

#### **REGULATORY DISCUSSION**

## **45CSR13 Permit Modification Application**

Cain Run Station New Milton, West Virginia

CONE Midstream Devco III LP 1000 Consol Energy Drive Canonsburg, PA 15317

#### **REGULATORY DISCUSSION**

#### **APPLICABLE REGULATIONS**

The newly added and modified equipment at this facility are subject to the following applicable rules and regulations:

#### Federal and State:

**45 CSR 2** – To Prevent and Control Particulate Air Pollution Control from Combustion of Indirect Heat Exchangers

The indirect heat exchanger utilized as the TEG reboiler will be subject to the visible emission standard of §45-2-3 as follows:

3.1. No person shall cause, suffer, allow or permit emission of smoke and/or particulate matter into the open air from any fuel burning unit which is greater than ten (10) percent opacity based on a six minute block average.

However, in accordance with the exemptions defined with §45-2-11 this source has limited requirements as follows:

11.1. Any fuel burning unit(s) having a heat input under ten (10) million B.T.U.'s per hour will be exempt from sections 4, 5, 6, 8 and 9. However, failure to attain acceptable air quality in parts of some urban areas may require the mandatory control of these sources at a later date.

Therefore, the reboiler burner utilized on the dehydration system at this site is exempt from the weight emission standards of section 4 and the control of fugitive particulate matter standards of section 5. The additionally exempt sections of this rule, section 6, 8, and 9 pertain to registration, testing, monitoring, recordkeeping and reporting as well as startup, shutdown and malfunctions.

#### **45 CSR 6** – To Prevent and Control Air Pollution From Combustion of Refuse

This state rule is geared towards reducing particulate matter emissions from the combustion of refuse and is specific to burning solid waste, but also includes combustion of waste gas in flares. The rule sets PM limits and establishes a 20% visible emission limit, both of which shouldn't be any problem for the natural gas fired ground flare to meet.

The weight rate of waste gas going to the ground flare is estimated based on manufacturers design rates to be 96.55 lb/hr or 0.048 tph. Therefore, the corresponding Rule 6 PM limit would be 0.262 lb/hr. [E(lb/hr) = 5.43 \* 0.048]

When using emission factors for flare combustion presented in AP-42 Chapter 13 EPA's guidance specifies that combustion sources using natural gas should not have PM emissions and therefore no PM/soot factor is given.

#### **45 CSR 10** – To Prevent and Control Air Pollution from the Emission of Sulfur Oxides

The facility evaluated within this application utilizes a fuel burning unit for the TEG dehydration unit reboiler less than the exemption threshold of 10 MMBtu/hr as stated in 45CSR§10-10.1:

Any fuel burning units having a design heat input under ten (10) million BTU's per hour will be exempt from section 3 and sections 6 through 8. However, failure to attain acceptable air quality in parts of some urban areas may require the mandatory control of these sources at a later date.

# **45 CSR 13** – Permits for Construction, Modification, Relocation, and Operation of Stationary Source of Air Pollutants

The company has applied for a modification to its current Rule 13 permit (R13-3358) to address the installation of new equipment at the site. Under the facility's current air permit, the facility was to install a TEG dehydration column rated at 20 MMSCF/d and dehydration unit reboiler rated at 0.375 mmBtu/hr. Since the time of permit issuance and CONE's construction of the site, CONE has decided it would like to reflect an increase in the capacity of the dehydration column to 50 MMscf/d and an increase in the capacity of the dehydration column to 50 MMscf/d and an increase in the capacity of the dehydration unit reboiler to 0.75 mmBtu/hr. Also, through this permit modification CONE would like to correct the manufacturing date of the compressor engine (CE-1) from 4-16-2012 to 11-17-2014. Although, there will be no change to regulatory requirements or emissions associated with this engine its control device manufacturer is also being updated to reflect a DCL catalyst instead of the original Emit.

**40 CFR 60 Subpart OOOOa** – Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification, or Reconstruction Commenced after September 18, 2015

# Fugitive Components at Compressor Stations and Reciprocating Compressor Packing

Since the compressor at this station will commence construction after September 18, 2015, the fugitive components will become subject to the equipment leak standards of §60.5397a. As a result, the source will be required to develop and implement a fugitive monitoring plan and conduct quarterly OGI surveys. The initial survey will be required within 60 days of startup or by June 3, 2017, whichever is later in accordance with §60.5397a(f)(2). However, on April 18, 2017 the USEPA Administrator, E. Scott Pruitt, issued a letter of reconsideration based on comments received from industry groups on August 2, 2016. This letter authorizes a 90 day stay of the compliance date for fugitive emissions monitoring requirements, which extends the compliance date to Sept. 1, 2017.

The reciprocating compressor associated with the emission unit will also be subject to the rod packing standards of §60.5385a that requires them to be replaced/rebuilt every

26,000 hrs or 3 years. Records shall be maintained based on months or hours of operations since initial startup and each subsequent rebuild or replacement of the compressor's rod packing.

**40 CFR 60 Subpart JJJJ** – Standards of Performance for Stationary Spark Ignition Internal Combustion Engines

The natural gas fueled compressor engine (CE-1) is a 1380 Hp 4SLB G3516BLE Caterpillar engine and was manufactured on 11-17-2014. This manufacturing date differs from what was proposed in the current permit and CONE is administratively correcting the error. The engine is subject to the Table 1 emission limits for SI Engines greater than 1,350 hp. Since the engine's mfg. date is after 7-1-2010 the corresponding emission limits for this unit are represented as follows:

|     | g/Hp hr |     | ן<br>י | pmvd at 15% C | 2   |
|-----|---------|-----|--------|---------------|-----|
| NOx | CO      | VOC | NOx    | CO            | VOC |
| 1   | 2       | 0.7 | 82     | 270           | 60  |

Table 1 Emission Limits – SI 4SLB > 1350 Hp installed after 7-1-2010

**40 CFR 63 Subpart HH** – National Emission Standards for Hazardous Air Pollutants from Oil and Natural Gas Production Facilities

CONE has plans to install a 50 MMscf/d TEG Dehydration Column and Reboiler to work in a parallel configuration with the existing desiccant dehydrator vessels (gas will flow either to the TEG or the desiccant dehydration system). This TEG unit will be subject to the area source requirements of Subpart HH and shall comply by utilizing a ground flare for control to maintain actual emissions below the 1 tpy benzene exemption threshold. Additionally, this facility was evaluated and found not to be located within the geographical applicability criteria associated with the 2 mile offset from the 2000 Census Urban Areas. The closest Urban Area was identified to be around the town of Weston, which is much greater than 2 miles from the proposed site.

**40 CFR 63 Subpart ZZZZ** – National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines

The natural gas compressor engine (CE-1) is a 4SLB G3516TALE Caterpillar engine manufactured on 11-17-2014; therefore, per 40CFR63.6590(c)(1) the requirements of this regulation are to comply with new SI engines standards in accordance with 40CFR60, Subpart JJJJ.

#### NON-APPLICABILITY DETERMINATIONS

The following requirements have been determined to be "not applicable" in relation to the newly added and modified equipment at this facility:

#### Federal and State:

**45 CSR 30** – Requirements for Operating Permits – Title V of the Clean Air Act

This facility does not meet the emission threshold to trigger a 45 CSR 30 Title V Operating Permit nor is it subject to any Federal Standards that trigger the need for a Title V Permit.

**40 CFR 63 HHH** – National Emission Standards for Hazardous Air Pollutants from Natural Gas Transmission and Storage Facilities

This subpart is not applicable since the facility is not a major source of HAPs.

**40 CFR 63 Subpart DDDDD** – *NESHAP for Industrial, Commercial, and Institutional Boilers and Process Heaters* 

This subpart is not applicable because the facility is not a major source of HAPs.

**40 CFR 63 Subpart JJJJJJ** – *NESHAP for Industrial, Commercial, and Institutional Boilers Area Sources* 

This subpart is not applicable because the dehy unit reboiler at this facility utilizes natural gas fuel, which is exempt from regulation under this area source GACT standard.

#### ATTACHMENT E

#### **PLOT PLAN**

## **45CSR13 Permit Modification Application**

Cain Run Station New Milton, West Virginia

CONE Midstream Devco III LP 1000 Consol Energy Drive Canonsburg, PA 15317



#### ATTACHMENT F

#### **PROCESS FLOW DIAGRAM**

## **45CSR13 Permit Modification Application**

Cain Run Station New Milton, West Virginia

CONE Midstream Devco III LP 1000 Consol Energy Drive Canonsburg, PA 15317



#### ATTACHMENT G

#### **PROCESS DESCRIPTION**

## **45CSR13 Permit Modification Application**

Cain Run Station New Milton, West Virginia

CONE Midstream Devco III LP 1000 Consol Energy Drive Canonsburg, PA 15317

The site will consist of a single compressor, TEG dehydration unit, Ground Flare, 400 bbl Process Water Tank, Salt Dryer, 30 kW MicroTurbine Generator, and a PIG Launcher.

The Cain Run Station collects gas from unconventional wells and provides compression and dehydration services. The dehydration capabilities at Cain Run will consist of two options, a salt dryer which can be operated in parallel with a TEG Dehydration Column. The TEG dehydration unit will utilize a ground flare control device to minimize emissions. The salt dryer produces brine liquids but no direct emissions to the atmosphere. The liquids removed from the process by the salt dryer and TEG Dehydrator will be stored in a single 400 barrel (bbl) storage vessel. The tank's resulting emissions will be uncontrolled as a result of containing mostly water.

#### **PROPOSED PROCESS CHANGES**

CONE Midstream Devco III LP has applied for a modification to its current Rule 13 permit (R13-3358) to address the installation of new equipment at the site. Under the facility's current air permit, the facility was to install a TEG dehydration column rated at 20 MMSCF/d and dehydration unit reboiler rated at 0.375 mmBtu/hr as well as a 1,380 hp 4SLB engine. Since the time of permit issuance and CONE's construction of the site, CONE has decided it would like to reflect in the permit an increase to the capacity of the dehydration column to 50 MMSCF/d and an increase in the capacity of the dehydration unit reboiler to 0.75 mmBtu/hr. Also, through this permit modification CONE would like to correct the manufacturing date of the compressor engine (CE-1) from 4-16-2012 to 11-17-2014, as well as make a change to the oxidation catalyst manufacturer used for engine control.

#### ATTACHMENT H

### SAFETY DATA SHEETS (SDS)

NOT APPLICABLE - SDS included in previous permit application

#### **45CSR13 Permit Modification Application**

Cain Run Station New Milton, West Virginia

CONE Midstream Devco III LP 1000 Consol Energy Drive Canonsburg, PA 15317

### **ATTACHMENT I**

#### **EMISSION UNITS TABLE**

## **45CSR13 Permit Modification Application**

Cain Run Station New Milton, West Virginia

CONE Midstream Devco III LP 1000 Consol Energy Drive Canonsburg, PA 15317

#### Attachment I

#### **Emission Units Table**

#### (includes all emission units and air pollution control devices

#### that will be part of this permit application review, regardless of permitting status)

| Emission<br>Unit ID <sup>1</sup> | Emission<br>Point ID <sup>2</sup> | Emission Unit Description      | Year Installed/<br>Modified | Design<br>Capacity | Type <sup>3</sup> and Date of Change | Control<br>Device <sup>4</sup> |
|----------------------------------|-----------------------------------|--------------------------------|-----------------------------|--------------------|--------------------------------------|--------------------------------|
| CE-1                             | 1e                                | Cat G3516BLE Compressor Engine | 2017                        | 1380 Hp            | Modified                             | C-1                            |
| RBV-1                            | 3e                                | TEG Reboiler                   | 2017                        | 0.375 MMBtu/hr     | Removed                              | None                           |
| RSV-1                            | 4e                                | TEG Dehy Still Vent            | 2017                        | 20 MMscf/d         | Removed                              | F-1                            |
| RBV-2                            | 3e                                | TEG Reboiler                   | 2017                        | 0.75 MMBtu/hr      | New                                  | None                           |
| RSV-2                            | 4e                                | TEG Dehy Still Vent            | 2017                        | 50 MMscf/d         | New                                  | F-1                            |
| F-1                              | 4e                                | Ground Flare                   | 2017                        | 2 MMBtu/hr         | Modified                             | APCD                           |

<sup>1</sup> For Emission Units (or <u>Sources</u>) use the following numbering system:1S, 2S, 3S,... or other appropriate designation. <sup>2</sup> For <u>E</u>mission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation. <sup>3</sup> New, modification, removal <sup>4</sup> For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

### ATTACHMENT J

#### **EMISSION POINTS DATA SUMMARY SHEET**

## **45CSR13 Permit Modification Application**

Cain Run Station New Milton, West Virginia

CONE Midstream Devco III LP 1000 Consol Energy Drive Canonsburg, PA 15317

#### Attachment J EMISSION POINTS DATA SUMMARY SHEET

| Table 1: Emissions Data                                                            |                                        |                                       |                                                                               |                                                   |                                                                |                                                      |                                                  |                                                                                                                                                       |                                                                          |                                                                            |                                                                                       |                                                                               |                                                         |                                     |                                                                           |
|------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------------|
| Emission<br>Point ID No.<br>(Must match<br>Emission<br>Units Table-&<br>Plot Plan) | Emission<br>Point<br>Type <sup>1</sup> | Emiss<br>Thro<br><i>(Mus</i><br>Units | sion Unit Vented<br>ough This Point<br>t match Emission<br>Table & Plot Plan) | Air Po<br>Contro<br>(Musi<br>Emissi<br>Table<br>P | Dilution<br>I Device<br>t match<br>ion Units<br>& Plot<br>lan) | Vent<br>for Em<br>Ur<br><i>(chei<br/>proce</i><br>on | Time<br>iission<br>nit<br>mical<br>esses<br>nly) | All Regulated<br>Pollutants -<br>Chemical<br>Name/CAS <sup>3</sup><br>(Speciate VOCs                                                                  | Maxi<br>Pote<br>Uncor<br>Emiss                                           | mum<br>ential<br>htrolled<br>sions <sup>4</sup>                            | Maxi<br>Pote<br>Cont<br>Emise                                                         | mum<br>ential<br>rolled<br>sions <sup>5</sup>                                 | Emission<br>Form or<br>Phase<br>(At exit<br>conditions, | Est.<br>Method<br>Used <sup>6</sup> | Emission<br>Concentration <sup>7</sup><br>(ppmv or<br>mg/m <sup>4</sup> ) |
|                                                                                    |                                        | ID No.                                | Source                                                                        | ID No.                                            | Device<br>Type                                                 | Short<br>Term <sup>2</sup>                           | Max<br>(hr/yr)                                   | & HAPS)                                                                                                                                               | lb/hr                                                                    | ton/yr                                                                     | lb/hr                                                                                 | ton/yr                                                                        | or<br>Gas/Vapor)                                        |                                     |                                                                           |
| le                                                                                 | Vertical<br>Stack                      | CE-1                                  | 4SLB RICE<br>CAT<br>G3516BLE                                                  | C-1                                               | OC                                                             | С                                                    | 8760                                             | $\begin{array}{c} \text{NO}_{\text{X}}\\ \text{CO}\\ \text{VOC}\\ \text{SO}_2\\ \text{PM}_{10}\\ \text{CH2O}\\ \text{HAPs}\\ \text{CO2e} \end{array}$ | 3.04<br>8.82<br>2.19<br>0.01<br>0.11<br>1.19<br>1.43<br>1745.52          | 13.33<br>38.64<br>9.59<br>0.03<br>0.49<br>5.20<br>6.24<br>6950.63          | 6.08<br>2.13                                                                          | 26.65<br>9.33                                                                 | Gas/<br>Vapor                                           | EE                                  | Can Supply<br>Upon Request                                                |
| 3e                                                                                 | Vertical<br>Stack                      | RBV-2                                 | TEG Reboiler                                                                  | NA                                                | NA                                                             | С                                                    | 8760                                             | $\begin{array}{c} \text{NO}_{\text{X}}\\ \text{CO}\\ \text{VOC}\\ \text{SO}_2\\ \text{PM}_{10}\\ \text{CO2e} \end{array}$                             | $\begin{array}{c} 0.07\\ 0.06\\ <0.01\\ <0.01\\ 0.01\\ 87.76\end{array}$ | $\begin{array}{c} 0.32\\ 0.27\\ 0.02\\ < 0.01\\ 0.02\\ 384.38 \end{array}$ |                                                                                       |                                                                               | Gas/<br>Vapor                                           | EE                                  | Can Supply<br>Upon Request                                                |
| 4e                                                                                 | Vertical<br>Stack                      | RSV-2                                 | TEG Still Vent                                                                | F-1                                               | Flare                                                          | С                                                    | 8760                                             | Benzene<br>Toluene<br>Ethylbenzene<br>Xylene<br>n-Hexane<br>HAPs<br>VOCs                                                                              | 1.80<br>7.38<br>0.13<br>8.41<br>1.85<br>19.57<br>68.65                   | 7.90<br>32.33<br>0.56<br>36.82<br>8.11<br>85.71<br>300.67                  | $\begin{array}{c} 0.04 \\ 0.15 \\ < 0.01 \\ 0.17 \\ 0.04 \\ 0.39 \\ 1.37 \end{array}$ | $\begin{array}{c} 0.16\\ 0.65\\ 0.01\\ 0.74\\ 0.16\\ 1.71\\ 6.01 \end{array}$ | Gas/<br>Vapor                                           | EE                                  | Can Supply<br>Upon Request                                                |

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

<sup>2</sup> Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).

<sup>2</sup> List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. **LIST** Acids, CO, CS<sub>2</sub>, VOCs, H<sub>2</sub>S, Inorganics, Lead, Organics, O<sub>3</sub>, NO, NO<sub>2</sub>, SO<sub>2</sub>, SO<sub>3</sub>, all applicable Greenhouse Gases (including CO<sub>2</sub> and methane), etc. **DO NOT LIST** H<sub>2</sub>O, N<sub>2</sub>O, O<sub>2</sub>, and Noble Gases.

Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

<sup>5</sup> Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

<sup>7</sup> Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m<sup>3</sup>) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO<sub>2</sub>, use units of ppmv (See 45CSR10).

#### ATTACHMENT K

#### FUGITIVE EMISSIONS DATA SHEET

NOT APPLICABLE - No change in fugitive emissions associated with this permit modification

### **45CSR13 Permit Modification Application**

Cain Run Station New Milton, West Virginia

CONE Midstream Devco III LP 1000 Consol Energy Drive Canonsburg, PA 15317

#### ATTACHMENT L

#### **EMISSION UNIT DATA SHEET**

## **45CSR13 Permit Modification Application**

Cain Run Station New Milton, West Virginia

CONE Midstream Devco III LP 1000 Consol Energy Drive Canonsburg, PA 15317

| GLYCOL DEHYDRATION UNIT<br>DATA SHEET                                                                                                                                                                                                   |                                                                                             |                                                |                                                 |                                                 |                                                    |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------|-------------------------------------------------|----------------------------------------------------|--|--|
| Complete this data sheet for each Glycol Dehydration Unit, Reboiler, Flash Tank and/or Regenerator at the facility. Include gas sample analysis and GRI-GLYCalc <sup>TM</sup> input and aggregate report. Use extra pages if necessary. |                                                                                             |                                                |                                                 |                                                 |                                                    |  |  |
| Manufacturer: Fred                                                                                                                                                                                                                      | erick Logan Company                                                                         | y, Inc                                         | Model: NA                                       |                                                 |                                                    |  |  |
| Max. Dry Gas Flow                                                                                                                                                                                                                       | Rate: 50 mmscf/day                                                                          | 7                                              | Reboiler Design He                              | at Input: 0.75 MMB'                             | TU/hr                                              |  |  |
| Design Type: 🛛 TEG 🔤 DEG 🔤 EG Source Status <sup>1</sup> : MS                                                                                                                                                                           |                                                                                             |                                                |                                                 |                                                 |                                                    |  |  |
| Date Installed/Modified/Removed <sup>2</sup> : 2017 Regenerator Still Vent APCD/ERD <sup>3</sup> : FL (Flare)                                                                                                                           |                                                                                             |                                                |                                                 |                                                 |                                                    |  |  |
| Control Device/ERI                                                                                                                                                                                                                      | D ID# <sup>3</sup> : F-1                                                                    |                                                | Fuel HV (BTU/scf)                               | : 1,171                                         |                                                    |  |  |
| H <sub>2</sub> S Content (gr/10                                                                                                                                                                                                         | 0 scf): 0.25                                                                                |                                                | Operation (hours/ye                             | ear): 8760                                      |                                                    |  |  |
| Pump Rate (scfm):                                                                                                                                                                                                                       | 15 GPM TEG                                                                                  |                                                | 1                                               |                                                 |                                                    |  |  |
| Water Content (wt                                                                                                                                                                                                                       | %) in: Wet Gas: Sat                                                                         | urated lbs H20/MMs                             | cf Dry Gas: 7.0 l                               | bs H2O/MMSCF                                    |                                                    |  |  |
| Is the glycol dehydr                                                                                                                                                                                                                    | ration unit exempt fro                                                                      | om 40CFR63 Section                             | 764(d)? 🛛 Yes                                   | □ No: If Yes, answ                              | ver the following:                                 |  |  |
| The actual annual a meters per day, as c                                                                                                                                                                                                | verage flowrate of na<br>letermined by the pro                                              | tural gas to the glyco<br>cedures specified in | ol dehydration unit is<br>§63.772(b)(1) of this | less than 85 thousand<br>subpart. 🔲 Yes         | l standard cubic<br>⊠ No                           |  |  |
| The actual average<br>megagram per year<br>No                                                                                                                                                                                           | emissions of benzene<br>(1 ton per year), as d                                              | from the glycol dehy<br>etermined by the pro-  | dration unit process<br>cedures specified in §  | vent to the atmospher<br>63.772(b)(2) of this s | e are less than 0.90 subpart. 🛛 Yes                |  |  |
| Is the glycol dehydr                                                                                                                                                                                                                    | ration unit located wi                                                                      | thin an Urbanized Ar                           | ea (UA) or Urban Clu                            | ister (UC)? 🗌 Yes                               | 🖾 No                                               |  |  |
| Is a lean glycol pun                                                                                                                                                                                                                    | np optimization plan                                                                        | being utilized? 🔲 Y                            | es 🛛 No                                         |                                                 |                                                    |  |  |
| Recycling the glyco         □ Yes       ⊠ No         Recycling the glyco         □ Yes       ⊠ No                                                                                                                                       | ol dehydration unit ba                                                                      | ck to the flame zone                           | of the reboiler.<br>of the reboiler and m       | ixed with fuel.                                 |                                                    |  |  |
| What happens when<br>Still vent emissi<br>Still vent emissi<br>Still vent emissi                                                                                                                                                        | temperature controll<br>ons to the atmosphere<br>ons stopped with valv<br>ons to glow plug. | ler shuts off fuel to th<br>e.<br>ve.          | ne reboiler?                                    |                                                 |                                                    |  |  |
| Please indicate if th<br>⊠ Flash Tank<br>⊠ Burner managem                                                                                                                                                                               | e following equipment                                                                       | nt is present.<br>nuously burns conde          | nser or flash tank vap                          | ors                                             |                                                    |  |  |
|                                                                                                                                                                                                                                         |                                                                                             | <b>Control Device</b>                          | Technical Data                                  |                                                 |                                                    |  |  |
|                                                                                                                                                                                                                                         | Pollutants Controlled                                                                       |                                                | Manufacturer's                                  | Guaranteed Control                              | Efficiency (%)                                     |  |  |
| VOCs and HAPs                                                                                                                                                                                                                           |                                                                                             |                                                |                                                 | 98.0                                            |                                                    |  |  |
|                                                                                                                                                                                                                                         |                                                                                             | Fmissic                                        | ns Data                                         |                                                 |                                                    |  |  |
|                                                                                                                                                                                                                                         |                                                                                             |                                                |                                                 | Controlled                                      |                                                    |  |  |
| Emission Unit<br>ID / Emission<br>Point ID <sup>4</sup>                                                                                                                                                                                 | Description                                                                                 | Calculation<br>Methodology <sup>5</sup>        | PTE <sup>6</sup>                                | Maximum<br>Hourly<br>Emissions<br>(lb/hr)       | Controlled<br>Maximum<br>Annual<br>Emissions (tpy) |  |  |
|                                                                                                                                                                                                                                         |                                                                                             | AP                                             | NOx                                             | 0.07                                            | 0.32                                               |  |  |
|                                                                                                                                                                                                                                         |                                                                                             | AP                                             | СО                                              | 0.06                                            | 0.27                                               |  |  |
|                                                                                                                                                                                                                                         | Dehoiler Vert                                                                               | AP                                             | VOC                                             | <0.01                                           | 0.02                                               |  |  |
| КВУ-2/3е                                                                                                                                                                                                                                | Keboller vent                                                                               | AP                                             | SO2                                             | < 0.01                                          | < 0.01                                             |  |  |
|                                                                                                                                                                                                                                         |                                                                                             | AP                                             | PM10                                            | < 0.01                                          | 0.02                                               |  |  |
|                                                                                                                                                                                                                                         |                                                                                             | AP                                             | GHG (CO2e)                                      | 87.86                                           | 384.38                                             |  |  |

| RSV-2 /4e |                                                         | GR | VOC          | 1.37  | 6.01 |
|-----------|---------------------------------------------------------|----|--------------|-------|------|
|           | Glycol Reboiler<br>Still Vent<br>Controlled by<br>Flare | GR | Benzene      | 0.04  | 0.16 |
|           |                                                         | GR | Toluene      | 0.15  | 0.65 |
|           |                                                         | GR | Ethylbenzene | <0.01 | 0.01 |
|           |                                                         | GR | Xylenes      | 0.17  | 0.74 |
|           |                                                         | GR | n-Hexane     | 0.04  | 0.16 |

1 Enter the Source Status using the following codes: NS Construction of New Source ES

Existing Source

MS Modification of Existing Source

2 Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source), modification or removal.

3 Enter the Air Pollution Control Device (APCD)/Emission Reduction Device (ERD) type designation using the following codes and the device ID number:

NA None CD Condenser FL Flare CC Condenser/Combustion Combination TO Thermal Oxidizer O Other (please list)

4 Enter the appropriate Emission Unit ID Numbers and Emission Point ID Numbers for the glycol dehydration unit reboiler vent and glycol regenerator still vent. The glycol dehydration unit reboiler vent and glycol regenerator still vent should be designated RBV-1 and RSV-1, respectively. If the compressor station incorporates multiple glycol dehydration units, a Glycol Dehydration Emission Unit Data Sheet shall be completed for each, using Source Identification RBV-2 and RSV-2, RBV-3 and RSV-3, etc.

Enter the Potential Emissions Data Reference designation using the following codes:
 MD Manufacturer's Data AP AP-42
 GR GRI-GLYCalc<sup>TM</sup> OT Other ProMax EOS Simulator

GR GRI-GLYCalc<sup>TM</sup>
 OT Other ProMax EOS Simulator (please list)
 Enter the Reboiler Vent and Glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs per hour and tons per year. The Glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalc<sup>TM</sup> (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalc<sup>TM</sup> Aggregate Calculations Report (shall include emissions reports, equipment reports, and stream reports) to this Glycol Dehydration Emission Unit Data Sheet(s). Backup pumps do not have to be considered as operating for purposes of PTE. This PTE data shall be incorporated in the Emissions Summary Sheet.


June 14, 2017

CONE MIDSTREAM 1000 Consol Energy Drive Canonsburg, PA 15317-6506

Attention: Mr. Andres Zapata, Process Engineer IV

Reference: 50MMSCFD Dehydration System Specs

Dear Mr. Zapata,

In reference to your request for information, we are pleased to provide the following capacities for your equipment:

# **CNX Dehydration System**

| Process Fluid                          | Natural Gas                                     |
|----------------------------------------|-------------------------------------------------|
| Process Flow                           | 50 MMSCFD                                       |
| Min/Max Inlet Gas Temperature          | 60-110°F                                        |
| Operating Pressure Range               | 850-950 PSIG                                    |
| Specific Gravity used                  | 0.6                                             |
| Max. Inlet Water Content               | Theoretically saturated at 950 PSIG & 110 DEG F |
| Outlet Water Content                   | < 7lbs H20 / MMSCF                              |
| Electrical Service Available at Site   | Unknown                                         |
| Electrical Classification              | Class I Div. II                                 |
| Reboiler Size                          | 750M BTU/HR                                     |
| Contact Tower Size (Structured Packed) | 36" ID x 21'-6" S/S                             |

The Dehydrator is sufficient for these rates. The unit has (2) Kimray Model: 45020PV capable of pumping 450 gallons per hour max each. Please let us know if you need any further information

Best Regards,

Harley German

Harley German Engineer 724-776-9300 <u>HGerman@floco.com</u> GRI-GLYCalc VERSION 4.0 - SUMMARY OF INPUT VALUES Case Name: File Name: N:\West Virginia\CONE Midstream\2017\Projects\Air Permitting\Cain Run Station\GLYCalc\CainRun R13 PTEReport.ddf Date: June 22, 2017 DESCRIPTION: \_\_\_\_\_ Description: Annual Hours of Operation: 8760.0 hours/yr WET GAS: \_\_\_\_\_ Temperature: 110.00 ucg 950.00 psig 110.00 deg. F Wet Gas Water Content: Saturated Component Conc. (vol %) ----- -----Carbon Dioxide 0.1770 Hydrogen Sulfide 0.0001 Nitrogen 0.4480 Methane 81.9120 Ethane 12.1410 
 Propane
 3.1640

 Isobutane
 0.4500

 n-Butane
 0.7480

 Isopentane
 0.2310

 n-Pentane
 0.1840
 Cyclopentane0.0001n-Hexane0.0980Cyclohexane0.0130Other Hexanes0.1770Heptanes0.1350 Methylcyclohexane0.02902,2,4-Trimethylpentane0.0001Benzene0.0030Toluene0.0080Ethylbenzene0.0001 Xylenes 0.0050 C8+ Heavies 0.0770 DRY GAS: \_\_\_\_\_ Flow Rate: 50.0 MMSCF/day Water Content: 7.0 lbs. H2O/MMSCF LEAN GLYCOL: Glycol Type: TEG Water Content: 1.5 wt% Flow Rate: 15.0 gpm

Page: 1

\_\_\_\_\_

Page: 2

Glycol Pump Type: Electric/Pneumatic

FLASH TANK: \_\_\_\_\_ Flash Control: Combustion device Flash Control Efficiency: 98.00 % Temperature: 149.0 deg. F Pressure: 60.0 psig REGENERATOR OVERHEADS CONTROL DEVICE: Control Device: Combustion Device Destruction Efficiency: 98.0 % Excess Oxygen: 150.0 % Ambient Air Temperature: 70.0 deg. F

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

#### Case Name:

File Name: N:\West Virginia\CONE Midstream\2017\Projects\Air Permitting\Cain Run
Station\GLYCalc\CainRun R13\_PTEReport.ddf
Date: June 23, 2017

DESCRIPTION:

Description:

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

#### CONTROLLED REGENERATOR EMISSIONS

| Component                   | lbs/hr  | lbs/day | tons/yr |
|-----------------------------|---------|---------|---------|
| Hydrogen Sulfide            | 0.0001  | 0.002   | 0.0003  |
| Methane                     | 0.0286  | 0.687   | 0.1255  |
| Ethane                      | 0.0658  | 1.579   | 0.2882  |
| Propane                     | 0.0639  | 1.535   | 0.2801  |
| Isobutane                   | 0.0196  | 0.470   | 0.0857  |
| n-Butane                    | 0.0482  | 1.157   | 0.2112  |
| Isopentane                  | 0.0184  | 0.442   | 0.0807  |
| n-Pentane                   | 0.0205  | 0.493   | 0.0900  |
| Cyclopentane                | 0.0001  | 0.002   | 0.0003  |
| n-Hexane                    | 0.0244  | 0.585   | 0.1067  |
| Cyclohexane                 | 0.0192  | 0.460   | 0.0840  |
| Other Hexanes               | 0.0313  | 0.752   | 0.1372  |
| Heptanes                    | 0.0790  | 1.897   | 0.3462  |
| Methylcyclohexane           | 0.0520  | 1.247   | 0.2276  |
| 2,2,4-Trimethylpentane      | <0.0001 | 0.001   | 0.0001  |
| Benzene                     | 0.0353  | 0.846   | 0.1545  |
| Toluene                     | 0.1456  | 3.494   | 0.6377  |
| Ethylbenzene                | 0.0025  | 0.061   | 0.0111  |
| Xylenes                     | 0.1671  | 4.012   | 0.7321  |
| C8+ Heavies                 | 0.2974  | 7.136   | 1.3024  |
| Total Emissions             | 1.1191  | 26.858  | 4.9015  |
| Total Hydrocarbon Emissions | 1.1190  | 26.856  | 4.9012  |
| Total VOC Emissions         | 1.0246  | 24.590  | 4.4876  |
| Total HAP Emissions         | 0.3749  | 8.998   | 1.6422  |
| Total BTEX Emissions        | 0.3505  | 8.413   | 1.5354  |

#### UNCONTROLLED REGENERATOR EMISSIONS

| Component        | lbs/hr | lbs/day | tons/yr                                                                         |
|------------------|--------|---------|---------------------------------------------------------------------------------|
| Hydrogen Sulfide | 0.0033 | 0.079   | $\begin{array}{c} 0.0144 \\ 6.2727 \\ 14.4097 \\ 14.0043 \\ 4.2855 \end{array}$ |
| Methane          | 1.4321 | 34.371  |                                                                                 |
| Ethane           | 3.2899 | 78.957  |                                                                                 |
| Propane          | 3.1973 | 76.736  |                                                                                 |
| Isobutane        | 0.9784 | 23.482  |                                                                                 |
| n-Butane         | 2.4113 | 57.871  | 10.5614                                                                         |
| Isopentane       | 0.9216 | 22.119  | 4.0366                                                                          |
| n-Pentane        | 1.0270 | 24.649  | 4.4985                                                                          |

Page: 1

| Cyclopentane<br>n-Hexane    | 0.0036<br>1.2184 | 0.087<br>29.242 | Page: 2<br>0.0159<br>5.3367 |  |
|-----------------------------|------------------|-----------------|-----------------------------|--|
| Cyclohexane                 | 0.9584           | 23.001          | 4.1978                      |  |
| Other Hexanes               | 1.5663           | 37.591          | 6.8604                      |  |
| Heptanes                    | 3.9522           | 94.853          | 17.3107                     |  |
| Methylcyclohexane           | 2.5980           | 62.351          | 11.3791                     |  |
| 2,2,4-Trimethylpentane      | 0.0012           | 0.029           | 0.0053                      |  |
| Benzene                     | 1.7635           | 42.323          | 7.7239                      |  |
| Toluene                     | 7.2793           | 174.704         | 31.8835                     |  |
| Ethylbenzene                | 0.1268           | 3.042           | 0.5552                      |  |
| Xylenes                     | 8.3573           | 200.575         | 36.6050                     |  |
| C8+ Heavies                 | 14.8675          | 356.820         | 65.1197                     |  |
| Total Emissions             | 55.9535          | 1342.883        | 245.0762                    |  |
| Total Hydrocarbon Emissions | 55.9502          | 1342.804        | 245.0618                    |  |
| Total VOC Emissions         | 51.2282          | 1229.476        | 224.3794                    |  |
| Total HAP Emissions         | 18.7465          | 449.916         | 82.1096                     |  |
| Total BTEX Emissions        | 17.5269          | 420.645         | 76.7676                     |  |

#### FLASH GAS EMISSIONS

| Component                   | lbs/hr            | lbs/day          | tons/yr          |
|-----------------------------|-------------------|------------------|------------------|
| Hydrogen Sulfide<br>Methane | <0.0001<br>0.4347 | <0.001<br>10.433 | 0.0001<br>1.9040 |
| Ethane                      | 0.3034            | 7.282            | 1.3290           |
| Propane                     | 0.1429            | 3.430            | 0.6260           |
| Isobutane                   | 0.0304            | 0.729            | 0.1331           |
| n-Butane                    | 0.0584            | 1.403            | 0.2560           |
| Isopentane                  | 0.0201            | 0.483            | 0.0882           |
| n-Pentane                   | 0.0183            | 0.439            | 0.0801           |
| Cyclopentane                | <0.0001           | <0.001           | 0.0001           |
| n-Hexane                    | 0.0127            | 0.304            | 0.0554           |
| Cyclohexane                 | 0.0025            | 0.060            | 0.0110           |
| Other Hexanes               | 0.0211            | 0.506            | 0.0923           |
| Heptanes                    | 0.0211            | 0.507            | 0.0925           |
| Methylcyclohexane           | 0.0055            | 0.132            | 0.0241           |
| 2,2,4-Trimethylpentane      | <0.0001           | <0.001           | 0.0001           |
| Benzene                     | 0.0007            | 0.017            | 0.0032           |
| Toluene                     | 0.0020            | 0.048            | 0.0088           |
| Ethylbenzene                | <0.0001           | 0.001            | 0.0001           |
| Xylenes                     | 0.0010            | 0.024            | 0.0043           |
| C8+ Heavies                 | 0.0115            | 0.276            | 0.0505           |
| Total Emissions             | 1.0865            | 26.076           | 4.7589           |
| Total Hydrocarbon Emissions | 1.0865            | 26.076           | 4.7588           |
| Total VOC Emissions         | 0.3483            | 8.360            | 1.5258           |
| Total HAP Emissions         | 0.0164            | 0.394            | 0.0719           |
| Total BTEX Emissions        | 0.0037            | 0.090            | 0.0164           |

| FLASH | TANK | OFF | GAS |  |
|-------|------|-----|-----|--|
|       |      |     |     |  |

| Component      | lbs/hr     | lbs/day | tons/yr |
|----------------|------------|---------|---------|
| Hvdrogen Sulfi | de 0.0008  | 0.020   | 0.0037  |
| Metha          | ne 21.7350 | 521.640 | 95.1993 |
| Etha           | ne 15.1715 | 364.116 | 66.4511 |
| Propa          | ne 7.1465  | 171.517 | 31.3019 |
| Isobuta        | ne 1.5189  | 36.454  | 6.6528  |

| n-Butane                    | 2.9225  | 70.139   | 12.8004  |
|-----------------------------|---------|----------|----------|
| Isopentane                  | 1.0070  | 24.169   | 4.4108   |
| n-Pentane                   | 0.9147  | 21.953   | 4.0064   |
| Cyclopentane                | 0.0008  | 0.020    | 0.0036   |
| n-Hexane                    | 0.6327  | 15.184   | 2.7711   |
| Cyclohexane                 | 0.1256  | 3.014    | 0.5501   |
| Other Hexanes               | 1.0535  | 25.284   | 4.6143   |
| Heptanes                    | 1.0556  | 25.335   | 4.6237   |
| Methylcyclohexane           | 0.2756  | 6.614    | 1.2070   |
| 2,2,4-Trimethylpentane      | 0.0006  | 0.015    | 0.0027   |
| Benzene                     | 0.0362  | 0.868    | 0.1585   |
| Toluene                     | 0.1008  | 2.420    | 0.4417   |
| Ethylbenzene                | 0.0011  | 0.025    | 0.0046   |
| Xylenes                     | 0.0493  | 1.184    | 0.2161   |
| C8+ Heavies                 | 0.5760  | 13.825   | 2.5230   |
| <br>Total Emissions         | 54.3248 | 1303.795 | 237.9426 |
| Total Hydrocarbon Emissions | 54.3240 | 1303.775 | 237.9389 |
| Total VOC Emissions         | 17.4175 | 418.020  | 76.2886  |
| Total HAP Emissions         | 0.8207  | 19.697   | 3.5947   |
| Total BTEX Emissions        | 0.1874  | 4.498    | 0.8208   |

COMBINED REGENERATOR VENT/FLASH GAS EMISSIONS

| Component                   | lbs/hr  | lbs/day | tons/yr |
|-----------------------------|---------|---------|---------|
| Hydrogen Sulfide            | 0.0001  | 0.002   | 0.0004  |
| Methane                     | 0.4633  | 11.120  | 2.0294  |
| Ethane                      | 0.3692  | 8.861   | 1.6172  |
| Propane                     | 0.2069  | 4.965   | 0.9061  |
| Isobutane                   | 0.0499  | 1.199   | 0.2188  |
| n-Butane                    | 0.1067  | 2.560   | 0.4672  |
| Isopentane                  | 0.0386  | 0.926   | 0.1689  |
| n-Pentane                   | 0.0388  | 0.932   | 0.1701  |
| Cyclopentane                | 0.0001  | 0.002   | 0.0004  |
| n-Hexane                    | 0.0370  | 0.889   | 0.1622  |
| Cyclohexane                 | 0.0217  | 0.520   | 0.0950  |
| Other Hexanes               | 0.0524  | 1.258   | 0.2295  |
| Heptanes                    | 0.1002  | 2.404   | 0.4387  |
| Methylcyclohexane           | 0.0575  | 1.379   | 0.2517  |
| 2,2,4-Trimethylpentane      | <0.0001 | 0.001   | 0.0002  |
| Benzene                     | 0.0360  | 0.864   | 0.1576  |
| Toluene                     | 0.1476  | 3.542   | 0.6465  |
| Ethylbenzene                | 0.0026  | 0.061   | 0.0112  |
| Xylenes                     | 0.1681  | 4.035   | 0.7364  |
| C8+ Heavies                 | 0.3089  | 7.413   | 1.3529  |
| Total Emissions             | 2.2056  | 52.934  | 9.6604  |
| Total Hydrocarbon Emissions | 2.2055  | 52.932  | 9.6600  |
| Total VOC Emissions         | 1.3729  | 32.950  | 6.0134  |
| Total HAP Emissions         | 0.3913  | 9.392   | 1.7141  |
| Total BTEX Emissions        | 0.3543  | 8.503   | 1.5518  |

COMBINED REGENERATOR VENT/FLASH GAS EMISSION CONTROL REPORT:

Page: 3

Page: 4

|                                                                                                                                                         | tons/yr                                                                                                                               | tons/yr                                                                                          | Page: 4                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Hydrogen Sulfide<br>Methane<br>Ethane<br>Propane<br>Isobutane                                                                                           | 0.0181<br>101.4719<br>80.8608<br>45.3062<br>10.9382                                                                                   | 0.0004<br>2.0294<br>1.6172<br>0.9061<br>0.2188                                                   | 98.00<br>98.00<br>98.00<br>98.00<br>98.00<br>98.00                                              |
| n-Butane<br>Isopentane<br>n-Pentane<br>Cyclopentane<br>n-Hexane                                                                                         | 23.3618<br>8.4475<br>8.5048<br>0.0195<br>8.1078                                                                                       | 0.4672<br>0.1689<br>0.1701<br>0.0004<br>0.1622                                                   | 98.00<br>98.00<br>98.00<br>98.00<br>98.00<br>98.00                                              |
| Cyclohexane<br>Other Hexanes<br>Heptanes<br>Methylcyclohexane<br>2,2,4-Trimethylpentane<br>Benzene<br>Toluene<br>Ethylbenzene<br>Xylenes<br>C8+ Heavies | $\begin{array}{r} 4.7478\\ 11.4747\\ 21.9344\\ 12.5861\\ 0.0080\\ \hline 7.8824\\ 32.3252\\ 0.5599\\ 36.8211\\ 67.6427\\ \end{array}$ | 0.0950<br>0.2295<br>0.4387<br>0.2517<br>0.0002<br>0.1576<br>0.6465<br>0.0112<br>0.7364<br>1.3529 | 98.00<br>98.00<br>98.00<br>98.00<br>98.00<br>98.00<br>98.00<br>98.00<br>98.00<br>98.00<br>98.00 |
| Total Emissions<br>Total Hydrocarbon Emissions<br>Total VOC Emissions<br>Total HAP Emissions<br>Total BTEX Emissions                                    | 483.0189<br>483.0007<br>300.6680<br>85.7043<br>77.5885                                                                                | 9.6604<br>9.6600<br>6.0134<br>1.7141<br>1.5518                                                   | 98.00<br>98.00<br>98.00<br>98.00<br>98.00<br>98.00                                              |

EQUIPMENT REPORTS:

COMBUSTION DEVICE

| Ambient Temperature:           | 70.00     | deg. F    |
|--------------------------------|-----------|-----------|
| Excess Oxygen:                 | 150.00    | 00        |
| Combustion Efficiency:         | 98.00     | 00        |
| Supplemental Fuel Requirement: | 5.58e-001 | MM BTU/hr |

| Component              | Emitted | Destroyed |
|------------------------|---------|-----------|
| Hydrogen Sulfide       | 2.00%   | 98.00%    |
| Methane                | 2.00%   | 98.00%    |
| Ethane                 | 2.00%   | 98.00%    |
| Propane                | 2.00%   | 98.00%    |
| Isobutane              | 2.00%   | 98.00%    |
| n-Butane               | 2.00%   | 98.00%    |
| Isopentane             | 2.00%   | 98.00%    |
| n-Pentane              | 2.00%   | 98.00%    |
| Cyclopentane           | 2.00%   | 98.00%    |
| n-Hexane               | 2.00%   | 98.00%    |
| Cyclohexane            | 2.00%   | 98.00%    |
| Other Hexanes          | 2.00%   | 98.00%    |
| Heptanes               | 2.00%   | 98.00%    |
| Methylcyclohexane      | 2.00%   | 98.00%    |
| 2,2,4-Trimethylpentane | 2.00%   | 98.00%    |
| Benzene                | 2.00%   | 98.00%    |

Page: 5

| Toluene      | 2.00% | 98.00% |
|--------------|-------|--------|
| Ethylbenzene | 2.00% | 98.00% |
| Xylenes      | 2.00% | 98.00% |
| C8+ Heavies  | 2.00% | 98.00% |

ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

| Calculated Absorber Stages:<br>Calculated Dry Gas Dew Point:                                             | 1.25<br>4.24                                     | lbs. H2O/MMSCF                       |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------|
| Temperature:<br>Pressure:<br>Dry Gas Flow Rate:<br>Glycol Losses with Dry Gas:<br>Wet Gas Water Content: | 110.0<br>950.0<br>50.0000<br>1.4106<br>Saturated | deg. F<br>psig<br>MMSCF/day<br>lb/hr |
| Calculated Wet Gas Water Content:<br>Calculated Lean Glycol Recirc. Ratio:                               | 80.56<br>5.66                                    | lbs. H2O/MMSCF<br>gal/lb H2O         |
| Rei                                                                                                      | maining 2                                        | Absorbed                             |

| Component              | in Dry Gas | in Glycol |
|------------------------|------------|-----------|
| Water                  | 5.26%      | 94.74%    |
| Carbon Dioxide         | 99.62%     | 0.38%     |
| Hydrogen Sulfide       | 97.79%     | 2.21%     |
| Nitrogen               | 99.96%     | 0.04%     |
| Methane                | 99.97%     | 0.03%     |
| Ethane                 | 99.91%     | 0.09%     |
| Propane                | 99.87%     | 0.13%     |
| Isobutane              | 99.83%     | 0.17%     |
| n-Butane               | 99.78%     | 0.22%     |
| Isopentane             | 99.78%     | 0.21%     |
| n-Pentane              | 99.73%     | 0.27%     |
| Cyclopentane           | 98.84%     | 1.16%     |
| n-Hexane               | 99.60%     | 0.40%     |
| Cyclohexane            | 98.20%     | 1.80%     |
| Other Hexanes          | 99.69%     | 0.31%     |
| Heptanes               | 99.33%     | 0.67%     |
| Methylcyclohexane      | 98.16%     | 1.84%     |
| 2,2,4-Trimethylpentane | 99.71%     | 0.29%     |
| Benzene                | 86.02%     | 13.98%    |
| Toluene                | 81.77%     | 18.23%    |
| Ethylbenzene           | 78.08%     | 21.92%    |
| Xylenes                | 71.17%     | 28.83%    |
| C8+ Heavies            | 97.86%     | 2.14%     |

| FLASH | TAN | K |      |      |      |      |      |      |      |      |      |   |      |      |  |
|-------|-----|---|------|------|------|------|------|------|------|------|------|---|------|------|--|
|       |     |   | <br> | · | <br> | <br> |  |

| Flash Contr            | rol: Combust      | ion device              |
|------------------------|-------------------|-------------------------|
| Flash Control Efficier | ncy: 98.00        | %                       |
| Flash Temperatu        | nre: 149          | 0.0 deg. F              |
| Flash Pressu           | nre: 60           | 0.0 psig                |
| Component              | Left in<br>Glycol | Removed in<br>Flash Gas |

|                        |                  | P      | age: 6 |
|------------------------|------------------|--------|--------|
| Water                  | 99.94%           | 0.06%  | -      |
| Carbon Dioxide         | 40.06%           | 59.94% |        |
| Hydrogen Sulfide       | 79.61%           | 20.39% |        |
| Nitrogen               | 6.00%            | 94.00% |        |
| Methane                | 6.18%            | 93.82% |        |
| Ethono                 | 17 00%           | 00 108 |        |
| Ethane                 | 17.826<br>20.01% | 82.186 |        |
| Propane                | 30.916           | 69.098 |        |
| Isobulane              | 39.186           | 60.826 |        |
| n-Butane               | 45.218           | 54.798 |        |
| Isopentane             | 48.05%           | 51.95% |        |
| n-Pentane              | 53.13%           | 46.87% |        |
| Cvclopentane           | 81.64%           | 18.36% |        |
| n-Hexane               | 65.99%           | 34.01% |        |
| Cyclohexane            | 88.79%           | 11.21% |        |
| Other Hexanes          | 60.19%           | 39.81% |        |
|                        |                  |        |        |
| Heptanes               | 79.03%           | 20.97% |        |
| Methylcyclohexane      | 90.79%           | 9.21%  |        |
| 2,2,4-Trimethylpentane | 66.50%           | 33.50% |        |
| Benzene                | 98.09%           | 1.91%  |        |
| Toluene                | 98.74%           | 1.26%  |        |
| Ethvlbenzene           | 99.26%           | 0.74%  |        |
| Xvlenes                | 99.49%           | 0.51%  |        |
| C8+ Heavies            | 96 72%           | 3 28%  |        |
| 001 H00410D            | 20120            | 0.200  |        |

#### REGENERATOR

No Stripping Gas used in regenerator.

| Component                                                          | Remaining<br>in Glycol            | Distilled<br>Overhead                   |
|--------------------------------------------------------------------|-----------------------------------|-----------------------------------------|
| Water<br>Carbon Dioxide<br>Hydrogen Sulfide<br>Nitrogen<br>Mothana | 44.30%<br>0.00%<br>0.00%<br>0.00% | 55.70%<br>100.00%<br>100.00%<br>100.00% |
| Ethane                                                             | 0.00%                             | 100.00%                                 |
| Propane                                                            | 0.00%                             | 100.00%                                 |
| Isobutane                                                          | 0.00%                             | 100.00%                                 |
| n-Butane                                                           | 0.00%                             | 100.00%                                 |
| Isopentane                                                         | 1.04%                             | 98.96%                                  |
| n-Pentane                                                          | 0.94%                             | 99.06%                                  |
| Cyclopentane                                                       | 0.61%                             | 99.39%                                  |
| n-Hexane                                                           | 0.76%                             | 99.24%                                  |
| Cyclohexane                                                        | 3.60%                             | 96.40%                                  |
| Heptanes                                                           | 0.63%                             | 99.37%                                  |
| Methylcyclohexane                                                  | 4.41%                             | 95.59%                                  |
| 2,2,4-Trimethylpentane                                             | 2.26%                             | 97.74%                                  |
| Benzene                                                            | 5.10%                             | 94.90%                                  |
| Toluene                                                            | 8.00%                             | 92.00%                                  |
| Ethylbenzene                                                       | 10.49%                            | 89.51%                                  |
| Xylenes                                                            | 12.98%                            | 87.02%                                  |
| C8+ Heavies                                                        | 12.42%                            | 87.58%                                  |

# Page: 7

WET GAS STREAM \_\_\_\_\_ Temperature: 110.00 deg. F Pressure: 964.70 psia Pressure: 964.70 psia Flow Rate: 2.09e+006 scfh Loading Component Conc. (vol%) (lb/hr) \_\_\_\_\_ \_\_\_\_\_ Water 1.70e-001 1.68e+002 Carbon Dioxide 1.77e-001 4.28e+002 Hydrogen Sulfide 9.98e-005 1.87e-001 Nitrogen 4.47e-001 6.89e+002 Methane 8.18e+001 7.22e+004 Ethane 1.21e+001 2.01e+004 Propane 3.16e+000 7.67e+003 Isobutane 4.49e-001 1.44e+003 n-Butane 7.47e-001 2.39e+003 Isopentane 2.31e-001 9.16e+002 n-Pentane 1.84e-001 7.29e+002 Cyclopentane 9.98e-005 3.85e-001 n-Hexane 9.78e-002 4.64e+002 Cyclohexane 1.30e-002 6.01e+001 Other Hexanes 1.77e-001 8.38e+002 Heptanes 1.35e-001 7.43e+002 Methylcyclohexane 2.90e-002 1.56e+002 2,2,4-Trimethylpentane 9.98e-005 6.28e-001 Benzene 2.99e-003 1.29e+001 Toluene 7.99e-003 4.05e+001 Ethylbenzene 9.98e-005 5.83e-001 Xylenes 4.99e-003 2.92e+001 C8+ Heavies 7.69e-002 7.21e+002 Total Components 100.00 1.10e+005 DRY GAS STREAM Temperature: 110.00 deg. F Pressure: 964.70 psia Flow Rate: 2.08e+006 scfh Conc. Component Loading (vol%) (lb/hr) Water 8.94e-003 8.84e+000 Carbon Dioxide 1.76e-001 4.26e+002 Hydrogen Sulfide 9.78e-005 1.83e-001 Nitrogen 4.48e-001 6.89e+002 Methane 8.19e+001 7.22e+004 Ethane 1.21e+001 2.00e+004 Propane 3.16e+000 7.65e+003 Isobutane 4.49e-001 1.43e+003 n-Butane 7.47e-001 2.38e+003 Isopentane 2.31e-001 9.14e+002 n-Pentane 1.84e-001 7.27e+002 Cyclopentane 9.89e-005 3.81e-001 n-Hexane 9.77e-002 4.62e+002 Cyclohexane 1.28e-002 5.90e+001

Other Hexanes 1.77e-001 8.35e+002 Heptanes 1.34e-001 7.38e+002 Methylcyclohexane 2.85e-002 1.54e+002 2,2,4-Trimethylpentane 9.98e-005 6.26e-001 Benzene 2.58e-003 1.11e+001 Toluene 6.54e-003 3.31e+001 Ethylbenzene 7.81e-005 4.55e-001 Xylenes 3.56e-003 2.08e+001 C8+ Heavies 7.54e-002 7.05e+002 \_\_\_\_\_ \_\_\_\_ Total Components 100.00 1.09e+005 LEAN GLYCOL STREAM Temperature: 110.00 deg. F Flow Rate: 1.50e+001 gpm Conc. Loading (wt%) (lb/hr) Component \_\_\_\_\_ \_\_\_\_\_ TEG 9.84e+001 8.31e+003 Water 1.50e+000 1.27e+002 Carbon Dioxide 1.92e-012 1.62e-010 Hydrogen Sulfide 4.90e-015 4.14e-013 Nitrogen 3.00e-013 2.53e-011 Methane 9.22e-018 7.78e-016 Ethane 1.03e-007 8.71e-006 Propane 4.99e-009 4.21e-007 Isobutane 8.88e-010 7.49e-008 n-Butane 1.57e-009 1.32e-007 Isopentane 1.15e-004 9.69e-003 n-Pentane 1.16e-004 9.76e-003 Cyclopentane 2.65e-007 2.24e-005 n-Hexane 1.10e-004 9.30e-003 Cyclohexane 4.25e-004 3.58e-002 Other Hexanes 3.14e-004 2.65e-002 Heptanes 2.98e-004 2.52e-002 Methylcyclohexane 1.42e-003 1.20e-001 2,2,4-Trimethylpentane 3.30e-007 2.79e-005 Benzene 1.12e-003 9.47e-002 Toluene 7.50e-003 6.33e-001 Ethylbenzene 1.76e-004 1.48e-002 Xylenes 1.48e-002 1.25e+000 C8+ Heavies 2.50e-002 2.11e+000 Total Components 100.00 8.44e+003 RICH GLYCOL STREAM \_\_\_\_\_ Temperature:110.00 deg. FPressure:964.70 psiaFlow Rate:1.55e+001 gpm NOTE: Stream has more than one phase. Component Conc. Loading (wt%) (lb/hr)

TEG 9.54e+001 8.31e+003 Water 3.28e+000 2.86e+002 Carbon Dioxide 1.86e-002 1.62e+000

Hydrogen Sulfide 4.75e-005 4.14e-003 Nitrogen 2.91e-003 2.53e-001 Methane 2.66e-001 2.32e+001 Ethane 2.12e-001 1.85e+001 Propane 1.19e-001 1.03e+001 Isobutane 2.87e-002 2.50e+000 n-Butane 6.12e-002 5.33e+000 Isopentane 2.23e-002 1.94e+000 n-Pentane 2.24e-002 1.95e+000 Cyclopentane 5.14e-005 4.47e-003 n-Hexane 2.14e-002 1.86e+000 Cyclohexane 1.29e-002 1.12e+000 Other Hexanes 3.04e-002 2.65e+000 Heptanes 5.78e-002 5.03e+000 Methylcyclohexane 3.44e-002 2.99e+000 2,2,4-Trimethylpentane 2.13e-005 1.86e-003 Benzene 2.18e-002 1.89e+000 Toluene 9.20e-002 8.01e+000 Ethylbenzene 1.64e-003 1.43e-001 Xylenes 1.11e-001 9.65e+000 C8+ Heavies 2.02e-001 1.76e+001 Total Components 100.00 8.71e+003

FLASH TANK OFF GAS STREAM

\_\_\_\_\_ Temperature: 149.00 deg. F Pressure: 74.70 psia Flow Rate: 8.36e+002 scfh Conc. Loading (vol%) (lb/hr) Component Water 4.01e-001 1.59e-001 Carbon Dioxide 1.00e+000 9.72e-001 Hydrogen Sulfide 1.12e-003 8.44e-004 Nitrogen 3.86e-001 2.38e-001 Methane 6.15e+001 2.17e+001 Ethane 2.29e+001 1.52e+001 Propane 7.35e+000 7.15e+000 Isobutane 1.19e+000 1.52e+000 n-Butane 2.28e+000 2.92e+000 Isopentane 6.33e-001 1.01e+000 n-Pentane 5.75e-001 9.15e-001 Cyclopentane 5.31e-004 8.21e-004 n-Hexane 3.33e-001 6.33e-001 Cyclohexane 6.77e-002 1.26e-001 Other Hexanes 5.55e-001 1.05e+000 Heptanes 4.78e-001 1.06e+000 Methylcyclohexane 1.27e-001 2.76e-001 2,2,4-Trimethylpentane 2.47e-004 6.23e-004 Benzene 2.10e-002 3.62e-002 Toluene 4.97e-002 1.01e-001 Ethylbenzene 4.54e-004 1.06e-003 Xylenes 2.11e-002 4.93e-002 C8+ Heavies 1.53e-001 5.76e-001 ----- -----\_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ Total Components 100.00 5.57e+001

FLASH TANK GLYCOL STREAM \_\_\_\_\_ Temperature: 149.00 deg. F Flow Rate: 1.54e+001 gpm Component Conc. Loading (wt%) (lb/hr) TEG 9.60e+001 8.31e+003 Water 3.30e+000 2.86e+002 Carbon Dioxide 7.51e-003 6.50e-001 Hydrogen Sulfide 3.81e-005 3.30e-003 Nitrogen 1.76e-004 1.52e-002 Methane 1.66e-002 1.43e+000 Ethane 3.80e-002 3.29e+000 Propane 3.70e-002 3.20e+000 Isobutane 1.13e-002 9.78e-001 n-Butane 2.79e-002 2.41e+000 Isopentane 1.08e-002 9.31e-001 n-Pentane 1.20e-002 1.04e+000 Cyclopentane 4.22e-005 3.65e-003 n-Hexane 1.42e-002 1.23e+000 Cyclohexane 1.15e-002 9.94e-001 Other Hexanes 1.84e-002 1.59e+000 Heptanes 4.60e-002 3.98e+000 Methylcyclohexane 3.14e-002 2.72e+000 2,2,4-Trimethylpentane 1.43e-005 1.24e-003 Benzene 2.15e-002 1.86e+000 Toluene 9.14e-002 7.91e+000 Ethylbenzene 1.64e-003 1.42e-001 Xylenes 1.11e-001 9.60e+000 C8+ Heavies 1.96e-001 1.70e+001 ----- ------Total Components 100.00 8.65e+003 FLASH GAS EMISSIONS Flow Rate: 3.48e+003 scfh Control Method: Combustion Device Control Efficiency: 98.00 Component Conc. Loading (vol%) (lb/hr) Water 6.11e+001 1.01e+002 Carbon Dioxide 3.83e+001 1.55e+002 Hydrogen Sulfide 5.40e-006 1.69e-005 Nitrogen 9.26e-002 2.38e-001 Methane 2.95e-001 4.35e-001 Ethane 1.10e-001 3.03e-001 Propane 3.53e-002 1.43e-001 Isobutane 5.70e-003 3.04e-002 n-Butane 1.10e-002 5.84e-002 Isopentane 3.04e-003 2.01e-002 n-Pentane 2.76e-003 1.83e-002 Cyclopentane 2.55e-006 1.64e-005 n-Hexane 1.60e-003 1.27e-002 Cyclohexane 3.25e-004 2.51e-003 Other Hexanes 2.66e-003 2.11e-002

Heptanes 2.30e-003 2.11e-002

Methylcyclohexane 6.12e-004 5.51e-003 2,2,4-Trimethylpentane 1.19e-006 1.25e-005 Benzene 1.01e-004 7.24e-004 Toluene 2.39e-004 2.02e-003 Ethylbenzene 2.18e-006 2.12e-005 Xylenes 1.01e-004 9.87e-004 C8+ Heavies 7.37e-004 1.15e-002 Total Components 100.00 2.57e+002

#### REGENERATOR OVERHEADS STREAM

| Temp<br>Pres<br>Flow | perature:<br>ssure:<br>v Rate: | 212.00<br>14.70<br>3.64e+003 | deg.<br>psia<br>scfh                       | F                                    |                                                               |                                                               |  |
|----------------------|--------------------------------|------------------------------|--------------------------------------------|--------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|--|
|                      |                                | Component                    | :                                          |                                      | Conc.<br>(vol%)                                               | Loading<br>(lb/hr)                                            |  |
|                      |                                | Carbor<br>Hydroger           | Wa<br>n Diox<br>n Sulf<br>Nitro<br>Meth    | ater<br>ide<br>ide<br>ogen<br>nane   | 9.22e+001<br>1.54e-001<br>1.01e-003<br>5.66e-003<br>9.31e-001 | 1.59e+002<br>6.50e-001<br>3.30e-003<br>1.52e-002<br>1.43e+000 |  |
|                      |                                | l                            | Eth<br>Prop<br>Isobut<br>n-But<br>sopent   | ane<br>ane<br>ane<br>ane<br>ane      | 1.14e+000<br>7.56e-001<br>1.76e-001<br>4.33e-001<br>1.33e-001 | 3.29e+000<br>3.20e+000<br>9.78e-001<br>2.41e+000<br>9.22e-001 |  |
|                      |                                | r<br>Cycl<br>Cyc<br>Other    | n-Pent<br>opent<br>n-Hex<br>clohex<br>Hexa | ane<br>ane<br>ane<br>anes            | 1.48e-001<br>5.40e-004<br>1.47e-001<br>1.19e-001<br>1.90e-001 | 1.03e+000<br>3.63e-003<br>1.22e+000<br>9.58e-001<br>1.57e+000 |  |
|                      | 2,2,                           | Methylcyc<br>4-Trimethy      | Hepta<br>clohex<br>vlpent<br>Benz<br>Tolu  | anes<br>cane<br>cane<br>cene<br>iene | 4.11e-001<br>2.76e-001<br>1.10e-004<br>2.35e-001<br>8.24e-001 | 3.95e+000<br>2.60e+000<br>1.21e-003<br>1.76e+000<br>7.28e+000 |  |
|                      |                                | Ethy<br>C8+                  | vlbenz<br>Xyle<br>Heav                     | enes<br>vies                         | 1.25e-002<br>8.21e-001<br>9.10e-001                           | 1.27e-001<br>8.36e+000<br>1.49e+001                           |  |
|                      |                                | IULAI CC                     | mpone                                      | EIICS                                | 100.00                                                        | 2.100+002                                                     |  |

#### COMBUSTION DEVICE OFF GAS STREAM

Temperature: 1000.00 deg. F Pressure: 14.70 psia Flow Rate: 5.58e+000 scfh Component Conc. Loading (vol%) (lb/hr) Hydrogen Sulfide 1.32e-002 6.59e-005 Methane 1.21e+001 2.86e-002 Ethane 1.49e+001 6.58e-002 Propane 9.86e+000 6.39e-002 Isobutane 2.29e+000 1.96e-002 n-Butane 5.64e+000 4.82e-002 Isopentane 1.74e+000 1.84e-002 n-Pentane 1.94e+000 2.05e-002 Cyclopentane 7.04e-003 7.26e-005 n-Hexane 1.92e+000 2.44e-002 Cyclohexane 1.55e+000 1.92e-002 Other Hexanes 2.47e+000 3.13e-002 Heptanes 5.37e+000 7.90e-002 Methylcyclohexane 3.60e+000 5.20e-002 2,2,4-Trimethylpentane 1.44e-003 2.42e-005 Benzene 3.07e+000 3.53e-002 Toluene 1.07e+001 1.46e-001 Ethylbenzene 1.62e-001 2.54e-003 Xylenes 1.07e+001 1.67e-001 C8+ Heavies 1.19e+001 2.97e-001 Total Components 100.00 1.12e+000

#### FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

Sample: Oxford Pad 11-K GPU Outlet Gas Sampled @ 986 psig & 72 °F

Date Sampled: 06/10/16

Job Number: 62455.001

**GLYCALC FORMAT** 

| COMPONENT              | MOL%         | GPM   | Wt %         |
|------------------------|--------------|-------|--------------|
| Carbon Dioxide         | 0.177        |       | 0.391        |
| Hydrogen Sulfide       |              |       |              |
| Nitrogen               | 0.448        |       | 0.631        |
| Methane                | 81.912       |       | 66.028       |
| Ethane                 | 12.141       | 3.239 | 18.344       |
| Propane                | 3.164        | 0.870 | 7.010        |
| Isobutane              | 0.450        | 0.147 | 1.314        |
| n-Butane               | 0.748        | 0.236 | 2.191        |
| Isopentane             | 0.231        | 0.084 | 0.837        |
| n-Pentane              | 0.184        | 0.067 | 0.667        |
| Cyclopentane           | 0.000        | 0.000 | 0.000        |
| n-Hexane               | 0.098        | 0.040 | 0.424        |
| Cyclohexane            | 0.013        | 0.004 | 0.055        |
| Other C6's             | 0.177        | 0.073 | 0.767        |
| Heptanes               | 0.135        | 0.060 | 0.670        |
| Methylcyclohexane      | 0.029        | 0,012 | 0.143        |
| 2,2,4 Trimethylpentane | 0.000        | 0.000 | 0.000        |
| Benzene                | 0.003        | 0.001 | 0.012        |
| Toluene                | 0.008        | 0.003 | 0.037        |
| Ethylbenzene           | 0.000        | 0.000 | 0.000        |
| Xylenes                | 0.005        | 0.002 | 0.027        |
| Octanes Plus           | <u>0.077</u> | 0.038 | <u>0.452</u> |
| Totals                 | 100.000      | 4.875 | 100.000      |

#### Real Characteristics Of Octanes Plus:

| Specific Gravity    | 4.045  | (Air=1) |
|---------------------|--------|---------|
| Molecular Weight    | 116.78 |         |
| Gross Heating Value | 5995   | BTU/CF  |

#### Real Characteristics Of Total Sample:

| Specific Gravity    | 0.689  | (Air=1) |
|---------------------|--------|---------|
| Compressibility (Z) | 0.9968 |         |
| Molecular Weight    | 19,90  |         |
| Gross Heating Value |        |         |
| Dry Basis           | 1205   | BTU/CF  |
| Saturated Basis     | 1185   | BTU/CF  |

### INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. Generator(s) and microturbine generator(s) shall also use this form.

| shall also i                                                                                                                  | ise inis jorm                                                                                            | ·•                                                                                                                                                                                                        |                                                                                                 |                                                                                                                                      |                                                                                      |                                                                                                                                                                                          |                                      |  |
|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|
| Emission Unit I                                                                                                               | D#1                                                                                                      | CE                                                                                                                                                                                                        | -1                                                                                              |                                                                                                                                      |                                                                                      |                                                                                                                                                                                          |                                      |  |
| Engine Manufac                                                                                                                | cturer/Model                                                                                             | Caterpillar/G3516BLE                                                                                                                                                                                      |                                                                                                 |                                                                                                                                      |                                                                                      |                                                                                                                                                                                          |                                      |  |
| Manufacturers F                                                                                                               | Rated bhp/rpm                                                                                            | 1380/                                                                                                                                                                                                     | 1400                                                                                            |                                                                                                                                      |                                                                                      |                                                                                                                                                                                          |                                      |  |
| Source Status <sup>2</sup>                                                                                                    |                                                                                                          | M                                                                                                                                                                                                         | IS                                                                                              |                                                                                                                                      |                                                                                      |                                                                                                                                                                                          |                                      |  |
| Date Installed/<br>Modified/Remov                                                                                             | ved/Relocated <sup>3</sup>                                                                               | 20                                                                                                                                                                                                        | 17                                                                                              |                                                                                                                                      |                                                                                      |                                                                                                                                                                                          |                                      |  |
| Engine Manufac<br>/Reconstruction                                                                                             | ctured<br>Date <sup>4</sup>                                                                              | 11/17                                                                                                                                                                                                     | /2014                                                                                           |                                                                                                                                      |                                                                                      |                                                                                                                                                                                          |                                      |  |
| Check all applicable Federal<br>Rules for the engine (include<br>EPA Certificate of Conformity<br>if applicable) <sup>5</sup> |                                                                                                          | <ul> <li>⋈ 40CFR60 S</li> <li>□ JJJJ Certific</li> <li>□ 40CFR60 S</li> <li>□ IIII Certific</li> <li>⋈ 40CFR63 S</li> <li>□ NESHAP Z</li> <li>JJJJ Window</li> <li>□ NESHAP Z</li> <li>Sources</li> </ul> | ubpart JJJJ<br>ed?<br>ubpart IIII<br>ed?<br>ubpart ZZZZ<br>ZZZ/ NSPS<br>ZZZZ Remote             | ☐ 40CFR60 S<br>☐ JJJJ Certifi<br>☐ 40CFR60 S<br>☐ IIII Certifie<br>☐ 40CFR63 S<br>☐ NESHAP 2<br>JJJJ Window<br>☐ NESHAP 2<br>Sources | ubpart JJJJ<br>ed?<br>ubpart IIII<br>ed?<br>ubpart ZZZZ<br>ZZZZ/ NSPS<br>ZZZZ Remote | □40CFR60 Subpart JJJJ<br>□JJJJ Certified?<br>□40CFR60 Subpart IIII<br>□IIII Certified?<br>□40CFR63 Subpart ZZZZ<br>□ NESHAP ZZZZ/ NSPS<br>JJJJ Window<br>□ NESHAP ZZZZ Remote<br>Sources |                                      |  |
| Engine Type <sup>6</sup>                                                                                                      |                                                                                                          | 45                                                                                                                                                                                                        | LB                                                                                              |                                                                                                                                      |                                                                                      |                                                                                                                                                                                          |                                      |  |
| APCD Type <sup>7</sup>                                                                                                        |                                                                                                          | OxCa                                                                                                                                                                                                      | tA/F                                                                                            |                                                                                                                                      |                                                                                      |                                                                                                                                                                                          |                                      |  |
| Fuel Type <sup>8</sup>                                                                                                        |                                                                                                          | R                                                                                                                                                                                                         | G                                                                                               |                                                                                                                                      |                                                                                      |                                                                                                                                                                                          |                                      |  |
| H <sub>2</sub> S (gr/100 scf)                                                                                                 | )                                                                                                        | 0.                                                                                                                                                                                                        | 25                                                                                              |                                                                                                                                      |                                                                                      |                                                                                                                                                                                          |                                      |  |
| Operating bhp/r                                                                                                               | pm                                                                                                       | 1380/                                                                                                                                                                                                     | /1400                                                                                           |                                                                                                                                      |                                                                                      |                                                                                                                                                                                          |                                      |  |
| BSFC (BTU/bhp                                                                                                                 | p-hr)                                                                                                    | 8,200                                                                                                                                                                                                     | ) HHV                                                                                           |                                                                                                                                      |                                                                                      |                                                                                                                                                                                          |                                      |  |
| Hourly Fuel Th                                                                                                                | oughput                                                                                                  | 9,391 ft                                                                                                                                                                                                  | . <sup>3</sup> /hr                                                                              | ft <sup>3</sup> /hr                                                                                                                  |                                                                                      | ft <sup>3</sup> /hr<br>gal/hr                                                                                                                                                            |                                      |  |
| Annual Fuel The<br>(Must use 8,760)<br>emergency gene                                                                         | roughput<br>hrs/yr unless<br>rator)                                                                      | 82.27 MMft <sup>3</sup> /yr                                                                                                                                                                               |                                                                                                 | MMft <sup>3</sup> /yr                                                                                                                |                                                                                      | MMft <sup>3</sup> /yr<br>gal/yr                                                                                                                                                          |                                      |  |
| Fuel Usage or Hours of<br>Operation Metered                                                                                   |                                                                                                          | Yes 🛛 No 🗆                                                                                                                                                                                                |                                                                                                 |                                                                                                                                      |                                                                                      |                                                                                                                                                                                          |                                      |  |
| Operation Meter                                                                                                               | lours of<br>red                                                                                          | Yes 🖂                                                                                                                                                                                                     | No 🗆                                                                                            | Yes 🖂                                                                                                                                | No 🗆                                                                                 | Yes 🗆                                                                                                                                                                                    | No 🗆                                 |  |
| Operation Meter<br>Calculation<br>Methodology <sup>9</sup>                                                                    | lours of<br>red<br>Pollutant <sup>10</sup>                                                               | Yes ⊠<br>Hourly<br>PTE<br>(lb/hr) <sup>11</sup>                                                                                                                                                           | No □<br>Annual<br>PTE<br>(tons/year)                                                            | Yes<br>Hourly<br>PTE<br>(lb/hr) <sup>11</sup>                                                                                        | No □<br>Annual<br>PTE<br>(tons/year)                                                 | Yes<br>Hourly<br>PTE<br>(lb/hr) <sup>11</sup>                                                                                                                                            | No □<br>Annual<br>PTE<br>(tons/year) |  |
| Operation Meter<br>Calculation<br>Methodology <sup>9</sup><br>MD                                                              | Pollutant <sup>10</sup>                                                                                  | Yes ⊠<br><b>Hourly</b><br><b>PTE</b><br>( <b>lb/hr</b> ) <sup>11</sup><br>3.04                                                                                                                            | No<br>Annual<br>PTE<br>(tons/year)<br><sup>11</sup><br>13.33                                    | Yes 🛛<br>Hourly<br>PTE<br>(lb/hr) <sup>11</sup>                                                                                      | No<br>Annual<br>PTE<br>(tons/year)                                                   | Yes<br>Hourly<br>PTE<br>(lb/hr) <sup>11</sup>                                                                                                                                            | No<br>Annual<br>PTE<br>(tons/year)   |  |
| Operation Meter<br>Calculation<br>Methodology <sup>9</sup><br>MD<br>MD                                                        | Pollutant <sup>10</sup> NO <sub>x</sub> CO                                                               | Yes ⊠ Hourly PTE (lb/hr) <sup>11</sup> 3.04 6.08                                                                                                                                                          | No □<br>Annual<br>PTE<br>(tons/year)<br><sup>11</sup><br>13.33<br>26.65                         | Yes<br>Hourly<br>PTE<br>(lb/hr) <sup>11</sup>                                                                                        | No 🗆<br>Annual<br>PTE<br>(tons/year)<br>11                                           | Yes<br>Hourly<br>PTE<br>(lb/hr) <sup>11</sup>                                                                                                                                            | No □<br>Annual<br>PTE<br>(tons/year) |  |
| Operation Meter       Calculation       Methodology <sup>9</sup> MD       MD                                                  | Pollutant <sup>10</sup> NO <sub>x</sub> CO VOC*                                                          | Yes ⊠ Hourly PTE (lb/hr) <sup>11</sup> 3.04 6.08 3.38                                                                                                                                                     | No □<br>Annual<br>PTE<br>(tons/year)<br>13.33<br>26.65<br>14.79                                 | Yes ⊠<br>Hourly<br>PTE<br>(lb/hr) <sup>11</sup>                                                                                      | No<br>Annual<br>PTE<br>(tons/year)                                                   | Yes<br>Hourly<br>PTE<br>(lb/hr) <sup>11</sup>                                                                                                                                            | No<br>Annual<br>PTE<br>(tons/year)   |  |
| Operation Meter       Calculation<br>Methodology <sup>9</sup> MD       MD       AP                                            | Intervention       Pollutant <sup>10</sup> NOx       CO       VOC*       SO2                             | Yes ⊠ Hourly PTE (lb/hr) <sup>11</sup> 3.04 6.08 3.38 0.01                                                                                                                                                | No □<br>Annual<br>PTE<br>(tons/year)<br>13.33<br>26.65<br>14.79<br>0.03                         | Yes<br>Hourly<br>PTE<br>(lb/hr) <sup>11</sup>                                                                                        | No  Annual PTE (tons/year) 11                                                        | Yes<br>Hourly<br>PTE<br>(lb/hr) <sup>11</sup>                                                                                                                                            | No<br>Annual<br>PTE<br>(tons/year)   |  |
| Operation Meter       Calculation<br>Methodology <sup>9</sup> MD       MD       AP       AP                                   | Pollutant <sup>10</sup> NO <sub>x</sub> CO VOC* SO <sub>2</sub> PM <sub>10</sub>                         | Yes ⊠ Hourly PTE (lb/hr) <sup>11</sup> 3.04 6.08 3.38 0.01 0.11                                                                                                                                           | No □<br>Annual<br>PTE<br>(tons/year)<br>13.33<br>26.65<br>14.79<br>0.03<br>0.49                 | Yes<br>Hourly<br>PTE<br>(lb/hr) <sup>11</sup>                                                                                        | No  Annual PTE (tons/year) 11                                                        | Yes<br>Hourly<br>PTE<br>(lb/hr) <sup>11</sup>                                                                                                                                            | No<br>Annual<br>PTE<br>(tons/year)   |  |
| Operation Meter<br>Calculation<br>Methodology <sup>9</sup><br>MD<br>MD<br>MD<br>AP<br>AP<br>MD                                | Pollutant <sup>10</sup> NO <sub>x</sub> CO VOC* SO <sub>2</sub> PM <sub>10</sub> Formaldehyde            | Yes ⊠ Hourly PTE (lb/hr) <sup>11</sup> 3.04 6.08 3.38 0.01 0.11 1.25                                                                                                                                      | No □<br>Annual<br>PTE<br>(tons/year)<br>13.33<br>26.65<br>14.79<br>0.03<br>0.49<br>5.46         | Yes<br>Hourly<br>PTE<br>(lb/hr) <sup>11</sup>                                                                                        | No  Annual PTE (tons/year) 11                                                        | Yes<br>Hourly<br>PTE<br>(lb/hr) <sup>11</sup>                                                                                                                                            | No  Annual PTE (tons/year) 11        |  |
| Operation Meter       Calculation<br>Methodology <sup>9</sup> MD       MD       AP       AP       MD       AP       AP        | Pollutant <sup>10</sup> NO <sub>x</sub> CO VOC* SO <sub>2</sub> PM <sub>10</sub> Formaldehyde Total HAPs | Yes ⊠ Hourly PTE (lb/hr) <sup>11</sup> 3.04 6.08 3.38 0.01 0.11 1.25 1.43                                                                                                                                 | No □<br>Annual<br>PTE<br>(tons/year)<br>13.33<br>26.65<br>14.79<br>0.03<br>0.49<br>5.46<br>6.24 | Yes 🛛<br>Hourly<br>PTE<br>(lb/hr) <sup>11</sup>                                                                                      | No  Annual PTE (tons/year) 11                                                        | Yes<br>Hourly<br>PTE<br>(lb/hr) <sup>11</sup>                                                                                                                                            | No  Annual PTE (tons/year) 11        |  |

#### \*VOCs include Formaldehyde.

1 Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion engine/generator engine located at the well site. Multiple engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.

2 Enter the Source Status using the following codes:

| NS  | Construction of New Source (installation) | ES | Existing Source  |
|-----|-------------------------------------------|----|------------------|
| MS  | Modification of Existing Source           | RS | Relocated Source |
| REM | Removal of Source                         |    |                  |

- 3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.
- 4 Enter the date that the engine was manufactured, modified or reconstructed.
- 5 Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

#### Provide a manufacturer's data sheet for all engines being registered.

6 Enter the Engine Type designation(s) using the following codes:

|   | 2SLB<br>4SLB                      | Two Stroke Lean Burn<br>Four Stroke Lean Burn                                                                                                                       | 4SRB     | Four St                    | oke Rich Burn                                                           |                                   |       |                |  |
|---|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------|-------------------------------------------------------------------------|-----------------------------------|-------|----------------|--|
| 7 | Enter th                          | e Air Pollution Control Device (APCD) type designat                                                                                                                 | ion(s) u | ising the fo               | llowing codes:                                                          |                                   |       |                |  |
|   | A/F<br>HEIS<br>PSC<br>NSCR<br>SCR | Air/Fuel Ratio<br>High Energy Ignition System<br>Prestratified Charge<br>Rich Burn & Non-Selective Catalytic Reduction<br>Lean Burn & Selective Catalytic Reduction |          | IR<br>SIPC<br>LEC<br>OxCat | Ignition Retard<br>Screw-in Precor<br>Low Emission C<br>Oxidation Catal | nbustion Cha<br>Combustion<br>yst | mbers | 5              |  |
| 8 | Enter th                          | e Fuel Type using the following codes:                                                                                                                              |          |                            |                                                                         |                                   |       |                |  |
|   | PQ                                | Pipeline Quality Natural Gas RC                                                                                                                                     | i R      | aw Natural                 | Gas /Production                                                         | Gas                               | D     | Diesel         |  |
| 9 | Enter t                           | he Potential Emissions Data Reference designa                                                                                                                       | tion us  | sing the f                 | ollowing codes                                                          | Attach all                        | refer | ence data used |  |
|   | MD<br>GR                          | Manufacturer's Data<br>GRI-HAPCalc <sup>™</sup>                                                                                                                     | A<br>O   | P AP<br>0T Oth             | -42<br>ner                                                              | (please list)                     |       |                |  |

10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

11 PTE for engines shall be calculated from manufacturer's data unless unavailable.



| L                                                                                                                                                                                                                                                                                               | JSA Compress                                                            | ion Unit 1543 Cate                                                                          | rpillar G3516BLE                                                                     | Engine Emissio                                                     | ns                 |                                           |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------|-------------------------------------------|--|
| Date of Manufacture1                                                                                                                                                                                                                                                                            | 1/17/2014                                                               | Engine Serial Number                                                                        | JEF03169                                                                             | Date Modified/Reconstructed                                        |                    | Not Any                                   |  |
| Driver Rated HP                                                                                                                                                                                                                                                                                 | 1380                                                                    | Rated Speed in RPM                                                                          | 1400                                                                                 | Combustion Ty                                                      | ре                 | Spark Ignited 4 Stroke<br>Ultra Lean Burn |  |
| Number of Cylinders                                                                                                                                                                                                                                                                             | 16                                                                      | Compression Ratio                                                                           | 8:1                                                                                  | Combustion Se                                                      | tting              |                                           |  |
| Total Displacement (in <sup>3</sup> )                                                                                                                                                                                                                                                           | 4211                                                                    | Fuel Delivery Method                                                                        | Carburetor                                                                           | Combustion Air                                                     | r Treatment        | T.C./Aftercooled                          |  |
| Raw Engine Emissions (Customer Supplied Fue                                                                                                                                                                                                                                                     | l Gas with H2S < 10                                                     | PPM)                                                                                        |                                                                                      |                                                                    |                    |                                           |  |
| Fuel Consumption 7427                                                                                                                                                                                                                                                                           | LHV BTU/bhp-hr                                                          | or 8200 HHV                                                                                 | BTU/bhp-hr                                                                           |                                                                    |                    |                                           |  |
| Altitude 1200                                                                                                                                                                                                                                                                                   | ft                                                                      |                                                                                             |                                                                                      |                                                                    |                    |                                           |  |
| Maximum Air Inlet Temp 90                                                                                                                                                                                                                                                                       | F                                                                       |                                                                                             |                                                                                      |                                                                    |                    |                                           |  |
|                                                                                                                                                                                                                                                                                                 |                                                                         | g/bhp-hr <sup>1</sup>                                                                       | lb/MMBTU <sup>2</sup>                                                                | lb/hr                                                              | ТРҮ                |                                           |  |
| Nitrogen Oxides (NOx)                                                                                                                                                                                                                                                                           |                                                                         | 0.5                                                                                         |                                                                                      | 1.52                                                               | 6.66               |                                           |  |
| Carbon Monoxide (CO)                                                                                                                                                                                                                                                                            |                                                                         | 2.9                                                                                         |                                                                                      | 8.82                                                               | 38.64              |                                           |  |
| Volatile Organic Compounds (VOC or NMNEHC e                                                                                                                                                                                                                                                     | excluding CH2O)                                                         | 0.72                                                                                        |                                                                                      | 2.19                                                               | 9.59               |                                           |  |
| Formaldehyde (CH2O)                                                                                                                                                                                                                                                                             |                                                                         | 0.41                                                                                        |                                                                                      | 1.25                                                               | 5.46               |                                           |  |
| Particulate Matter (PM) Filterable+Condensable                                                                                                                                                                                                                                                  |                                                                         |                                                                                             | 9.99E-03                                                                             | 1.13E-01                                                           | 4.95E-01           |                                           |  |
| Sulfur Dioxide (SO2)                                                                                                                                                                                                                                                                            |                                                                         |                                                                                             | 5.88E-04                                                                             | 6.65E-03                                                           | 2.91E-02           |                                           |  |
|                                                                                                                                                                                                                                                                                                 |                                                                         | g/bhp-hr <sup>1</sup>                                                                       |                                                                                      | lb/hr                                                              | Metric Tonne/yr    |                                           |  |
| Carbon Dioxide (CO2)                                                                                                                                                                                                                                                                            |                                                                         | 499                                                                                         |                                                                                      | 1518                                                               | 6031               |                                           |  |
| Methane (CH4)                                                                                                                                                                                                                                                                                   |                                                                         | 2.98                                                                                        |                                                                                      | 9.07                                                               | 36.02              |                                           |  |
| <ol> <li>g/bhp-hr are based on Caterpillar Specification<br/>Note that g/bhp-hr values are based on 100% Lo<br/>variations in fuel gas composition and load.</li> <li><sup>2</sup> Emission Factor obtained from EPA's AP-42, Fit<br/>Gas-Fired Reciprocating Engines, Table 3.2-2).</li> </ol> | ns (GERP) assuming S<br>Dad Operation. It is r<br>fth Edition, Volume I | 005 LHV BTU/SCF fuel gas, 12<br>recommended to add a safet<br>, Chapter 3: Stationary Inter | 200 ft elevation, and 105 F<br>y margin to CO, VOC, and<br>nal Combution Sources (Se | Max Air Inlet Temper<br>Formaldehyde to acco<br>ection 3.2 Natural | ature.<br>Dunt for |                                           |  |
| Catalytic Converter Emissions                                                                                                                                                                                                                                                                   |                                                                         |                                                                                             |                                                                                      |                                                                    |                    |                                           |  |
| Catalytic Converter Make and Model:                                                                                                                                                                                                                                                             | DCL DC6                                                                 | 4L2-16                                                                                      |                                                                                      |                                                                    |                    |                                           |  |
| Element Type:                                                                                                                                                                                                                                                                                   | Oxidatio                                                                | n                                                                                           |                                                                                      |                                                                    |                    |                                           |  |
| Number of Elements in Housing:                                                                                                                                                                                                                                                                  | 2                                                                       |                                                                                             |                                                                                      |                                                                    |                    |                                           |  |
| Air/Fuel Ratio Control                                                                                                                                                                                                                                                                          | Caterpill                                                               | ar ADEM3, NOx Feedback                                                                      |                                                                                      |                                                                    |                    |                                           |  |
|                                                                                                                                                                                                                                                                                                 |                                                                         | % Reduction                                                                                 | g/bhp-hr                                                                             | lb/hr                                                              | ТРҮ                |                                           |  |
| Nitrogen Oxides (NOx)                                                                                                                                                                                                                                                                           |                                                                         | 0                                                                                           | <1.00                                                                                | 3.04                                                               | 13.33              |                                           |  |
| Carbon Monoxide (CO)                                                                                                                                                                                                                                                                            |                                                                         | 31                                                                                          | 2.00                                                                                 | 6.09                                                               | 26.66              |                                           |  |
| Volatile Organic Compounds (VOC or NMNEHC                                                                                                                                                                                                                                                       | excluding CH2O)                                                         | 3                                                                                           | 0.70                                                                                 | 2.13                                                               | 9.33               |                                           |  |
| Formaldehyde (CH2O)                                                                                                                                                                                                                                                                             |                                                                         | 0                                                                                           | 0.41                                                                                 | 1.25                                                               | 5.46               |                                           |  |
| Particulate Matter (PM)                                                                                                                                                                                                                                                                         |                                                                         | 0                                                                                           |                                                                                      | 1.13E-01                                                           | 4.95E-01           |                                           |  |
| Sulfur Dioxide (SO2)                                                                                                                                                                                                                                                                            |                                                                         | 0                                                                                           |                                                                                      | 6.65E-03                                                           | 2.91E-02           |                                           |  |
|                                                                                                                                                                                                                                                                                                 |                                                                         | % Reduction                                                                                 |                                                                                      | lb/hr                                                              | Metric Tonne/yr    |                                           |  |
| Carbon Dioxide (CO2)                                                                                                                                                                                                                                                                            |                                                                         | 0                                                                                           |                                                                                      | 1518                                                               | 6031               |                                           |  |
| Methane (CH4)                                                                                                                                                                                                                                                                                   |                                                                         | 0                                                                                           |                                                                                      | 9.07                                                               | 36.02              |                                           |  |



GAS COMPRESSION APPLICATION

#### GAS ENGINE SITE SPECIFIC TECHNICAL DATA **CNX CAIN RIDGE 6-8-17**

| CAT | ERPI | LLAR® |
|-----|------|-------|
|-----|------|-------|

ENGINE SPEED (rpm): 1400 COMPRESSION RATIO: 8 SCAC AFTERCOOLER TYPE: AF TERCOOLER TYPE: AFTERCOOLER - STAGE 2 INLET (°F): AFTERCOOLER - STAGE 1 INLET (°F): JACKET WATER OUTLET (°F): ASPIRATION: COOLING SYSTEM: CONTROL SYSTEM: EXHAUST MANIFOLD: 130 201 210 FUEL: TA JW+OC+1AC, 2AC ADEM3 DRY COMBUSTION: LOW EMISSION NOx EMISSION LEVEL (g/bhp-hr NOx): 0.5 SET POINT TIMING: 28

RATING STRATEGY: RATING LEVEL: FUEL SYSTEM: SITE CONDITIONS:

FUEL: FUEL PRESSURE RANGE(psig): (See note 1) FUEL METHANE NUMBER: FUEL LHV (Btu/scf): ALTITUDE(ft): MAXIMUM INLET AIR TEMPERATURE(°F): STANDARD RATED POWER:

STANDARD CONTINUOUS CAT WIDE RANGE WITH AIR FUEL RATIO CONTROL

> CNX CAIN RIDGE 6-8-17 7.0-40.0 58.9 1094 1200 90 1380 bhp@1400rpm

|                                                                                            |             |            | MAXIMUM<br>RATING | SITE RA | TING AT N<br>IR TEMPE | IAXIMUM<br>RATURE |
|--------------------------------------------------------------------------------------------|-------------|------------|-------------------|---------|-----------------------|-------------------|
| RATING                                                                                     | NOTES       | LOAD       | 100%              | 100%    | 75%                   | 50%               |
| ENGINE POWER (WITHOUT FAN)                                                                 | (2)         | bhp        | 1380              | 1380    | 1035                  | 690               |
| INLET AIR TEMPERATURE                                                                      |             | °F         | 90                | 90      | 90                    | 90                |
| ENGINE DATA                                                                                |             |            |                   |         |                       |                   |
| FUEL CONSUMPTION (LHV)                                                                     | (3)         | Btu/bhp-hr | 7427              | 7427    | 7955                  | 8544              |
| FUEL CONSUMPTION (HHV)                                                                     | (3)         | Btu/bhp-hr | 8200              | 8200    | 8782                  | 9433              |
| AIR FLOW (@inlet air temp, 14.7 psia) (WET)                                                | (4)(5)      | ft3/min    | 3225              | 3225    | 2530                  | 1769              |
| AIR FLOW (WET)                                                                             | (4)(5)      | lb/hr      | 13963             | 13963   | 10953                 | 7657              |
| FUEL FLOW (60°F, 14.7 psia)                                                                |             | scfm       | 156               | 156     | 125                   | 90                |
| INLET MANIFOLD PRESSURE                                                                    | (6)         | in Hg(abs) | 93.4              | 93.4    | 75.8                  | 53.3              |
| EXHAUST TEMPERATURE - ENGINE OUTLET                                                        | (7)         | °F         | 995               | 995     | 980                   | 989               |
| EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (WET)                                    | (8)(5)      | ft3/min    | 9151              | 9151    | 7117                  | 5013              |
| EXHAUST GAS MASS FLOW (WET)                                                                | (8)(5)      | lb/hr      | 14452             | 14452   | 11346                 | 7939              |
| EMISSIONS DATA - ENGINE OUT                                                                |             |            |                   |         |                       |                   |
| NOx (as NO2)                                                                               | (9)(10)     | a/bhp-hr   | 0.50              | 0.50    | 0.50                  | 0.50              |
| CO                                                                                         | (9)(10)     | a/bhp-hr   | 2.90              | 2.90    | 3.10                  | 3.05              |
| THC (mol. wt. of 15.84)                                                                    | (9)(10)     | a/bhp-hr   | 4.58              | 4.58    | 4.91                  | 4.99              |
| NMHC (mol. wt. of 15.84)                                                                   | (9)(10)     | a/bhp-hr   | 1.60              | 1.60    | 1.71                  | 1.74              |
| NMNEHC (VOCs) (mol. wt. of 15.84)                                                          | (9)(10)(11) | g/bhp-hr   | 0.72              | 0.72    | 0.77                  | 0.78              |
| HCHO (Formaldehyde)                                                                        | (9)(10)     | g/bhp-hr   | 0.41              | 0.41    | 0.40                  | 0.40              |
| CO2                                                                                        | (9)(10)     | g/bhp-hr   | 499               | 499     | 533                   | 580               |
| EXHAUST OXYGEN                                                                             | (9)(12)     | % DRY      | 9.1               | 9.1     | 8.8                   | 8.4               |
| HEAT REJECTION                                                                             |             |            | -                 |         |                       |                   |
|                                                                                            | (13)        | Btu/min    | 23111             | 23111   | 21796                 | 20489             |
| HEAT REAL TO ATMOSPHERE                                                                    | (13)        | Btu/min    | 6110              | 6110    | 5092                  | 4074              |
| HEAT REJ TO LUBE OIL (OC)                                                                  | (13)        | Btu/min    | 4475              | 4475    | 3978                  | 3363              |
| HEAT REJ TO A/C - STAGE 1 (1AC)                                                            | (13)(14)    | Btu/min    | 11313             | 11313   | 9368                  | 3232              |
| HEAT REJ. TO A/C - STAGE 2 (2AC)                                                           | (13)(14)    | Btu/min    | 5520              | 5520    | 5197                  | 3392              |
|                                                                                            |             |            |                   |         |                       |                   |
|                                                                                            |             |            |                   |         |                       |                   |
| TOTAL JACKET WATER CIRCUIT (JW+OC+1AC)                                                     | (14)(15)    | Btu/min    | 42670             |         |                       |                   |
| IUTAL AFTERCOULER CIRCUIT (2AC)                                                            | (14)(15)    | Btu/min    | 5796              |         |                       |                   |
| A cooling system safety factor of U% has been added to the cooling system sizing criteria. |             |            |                   |         |                       |                   |

CONDITIONS AND DEFINITIONS Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

For notes information consult page three

G3516B

#### GAS ENGINE SITE SPECIFIC TECHNICAL DATA CNX CAIN RIDGE 6-8-17



# Engine Power vs. Inlet Air Temperature

Data represents temperature sweep at 1200 ft and 1400 rpm





Data represents speed sweep at 1200 ft and 90 °F



# Engine Torque vs. Engine Speed

Data represents speed sweep at 1200 ft and 90 °F



Note: At site conditions of 1200 ft and 90°F inlet air temp., constant torque can be maintained down to 1050 rpm. The minimum speed for loading at these conditions is 1050 rpm.

# G3516B

GAS COMPRESSION APPLICATION

#### GAS ENGINE SITE SPECIFIC TECHNICAL DATA CNX CAIN RIDGE 6-8-17



#### NOTES

1. Fuel pressure range specified is to the engine fuel pressure regulator. Additional fuel train components should be considered in pressure and flow calculations.

2. Engine rating is with two engine driven water pumps. Tolerance is ± 3% of full load.

3. Fuel consumption tolerance is ± 3.0% of full load data.

4. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of  $\pm$  5 %.

- 5. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.
- 6. Inlet manifold pressure is a nominal value with a tolerance of  $\pm$  5 %.

7. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.

8. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of ± 6 %.

9. Emissions data is at engine exhaust flange prior to any after treatment.

10. Values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate the maximum values expected under steady state conditions. Fuel methane number cannot vary more than ± 3. THC, NMHC, and NMNEHC do not include aldehydes. An oxidation catalyst may be required to meet Federal, State or local CO or HC requirements.

11. VOCs - Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ

12. Exhaust Oxygen level is the result of adjusting the engine to operate at the specified NOx level. Tolerance is ± 0.5.

13. Heat rejection values are nominal. Tolerances, based on treated water, are ± 10% for jacket water circuit, ± 50% for radiation, ± 20% for lube oil circuit, and ± 5% for aftercooler circuit.

14. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.

15. Cooling system sizing criteria are maximum circuit heat rejection for the site, with applied tolerances.

| Constituent      | Abbrev    | Mole %   | Norm     |                                     |                   |
|------------------|-----------|----------|----------|-------------------------------------|-------------------|
| Water Vapor      | H2O       | 0.0000   | 0.0000   |                                     |                   |
| Methane          | CH4       | 81.9120  | 81.9120  | Fuel Makeup:                        | CNX CAIN RIDGE 6- |
| Ethane           | C2H6      | 12.1410  | 12.1410  | Unit of Measure:                    | English           |
| Propane          | C3H8      | 3.1640   | 3.1640   |                                     | -                 |
| Isobutane        | iso-C4H1O | 0.4500   | 0.4500   | Calculated Eucl Properties          |                   |
| Norbutane        | nor-C4H1O | 0.7380   | 0.7380   | Cotornillor Mothono Number          | E8 0              |
| Isopentane       | iso-C5H12 | 0.2310   | 0.2310   | Caterpillar Methane Number.         | 56.9              |
| Norpentane       | nor-C5H12 | 0.1940   | 0.1940   |                                     |                   |
| Hexane           | C6H14     | 0.5450   | 0.5450   | Lower Heating Value (Btu/scf):      | 1094              |
| Heptane          | C7H16     | 0.0000   | 0.0000   | Higher Heating Value (Btu/scf):     | 1207              |
| Nitrogen         | N2        | 0.4480   | 0.4480   | WOBBE Index (Btu/scf):              | 1321              |
| Carbon Dioxide   | CO2       | 0.1770   | 0.1770   |                                     |                   |
| Hydrogen Sulfide | H2S       | 0.0000   | 0.0000   | THC: Free Inert Batio:              | 159               |
| Carbon Monoxide  | CO        | 0.0000   | 0.0000   |                                     | 0.63%             |
| Hydrogen         | H2        | 0.0000   | 0.0000   |                                     | 0.03%             |
| Oxygen           | O2        | 0.0000   | 0.0000   | RPC (%) (10 905 Btu/scf Fuel):      | 100%              |
| Helium           | HE        | 0.0000   | 0.0000   |                                     |                   |
| Neopentane       | neo-C5H12 | 0.0000   | 0.0000   | Compressibility Factor:             | 0.997             |
| Octane           | C8H18     | 0.0000   | 0.0000   | Stoich A/F Ratio (Vol/Vol):         | 11.36             |
| Nonane           | C9H20     | 0.0000   | 0.0000   | Stoich A/F Ratio (Mass/Mass):       | 16.57             |
| Ethylene         | C2H4      | 0.0000   | 0.0000   | Specific Gravity (Relative to Air): | 0.686             |
| Propylene        | C3H6      | 0.0000   | 0.0000   | Evel Specific Heat Patie (K):       | 1 200             |
| TOTAL (Volume %) |           | 100.0000 | 100.0000 | ruei Specific neat Ratio (K):       | 1.288             |

#### CONDITIONS AND DEFINITIONS

Caterpillar Nethane Number represents the knock resistance of a gaseous fuel. It should be used with the Caterpillar Fuel Usage Guide for the engine and rating to determine the rating for the fuel specified. A Fuel Usage Guide for each rating is included on page 2 of its standard technical data sheet.

RPC always applies to naturally aspirated (NA) engines, and turbocharged (TA or LE) engines only when they are derated for altitude and ambient site conditions.

Project specific technical data sheets generated by the Caterpillar Gas Engine Rating Pro program take the Caterpillar Methane Number and RPC into account when generating a site rating.

Fuel properties for Btu/scf calculations are at 60F and 14.696 psia.

Caterpillar shall have no liability in law or equity, for damages, consequently or otherwise, arising from use of program and related material or any part thereof.

FUEL LIQUIDS Field gases, well head gases, and associated gases typically contain liquid water and heavy hydrocarbons entrained in the gas. To prevent detonation and severe damage to the engine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid separator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground in accordance with local codes and standards.

To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel operating temperature.

# ATTACHMENT M

# **AIR POLLUTION CONTROL DEVICE**

# **45CSR13 Permit Modification Application**

Cain Run Station New Milton, West Virginia

CONE Midstream Devco III LP 1000 Consol Energy Drive Canonsburg, PA 15317

July 2017

# **AIR POLLUTION CONTROL DEVICE** Vapor Combustion Control Device Sheet

Complete this vapor combustion control device sheet for each enclosed combustion device, flare, thermal oxidizer, or completion combustion device that is located at the natural gas production pad for the purpose of thermally destructing waste gas to control emissions of regulated pollutants to the atmosphere.

| IMPORTANT: READ THE INSTRUCTIONS ACCOMPANYING THIS FORM BEFORE COMPLETING.                   |                           |                                      |                                                                                                    |                                               |                                               |                 |  |
|----------------------------------------------------------------------------------------------|---------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------|--|
|                                                                                              |                           | General II                           | oformation                                                                                         |                                               |                                               |                 |  |
| 1. Control Device ID#: F-1                                                                   |                           |                                      | 2. Installation Dat                                                                                | te: 2017                                      |                                               | 🛛 New           |  |
| 3. Maximum Rated Total Flow<br>2,000 scfh 48,000 sct                                         | v Capacity:<br>fd         | 4. Maximum D<br>2 MMBtu/hr           | esign Heat Input:                                                                                  | 5. Design<br>1,000                            | Heat Content:<br>BTU/scf                      |                 |  |
| Control Device Information                                                                   |                           |                                      |                                                                                                    |                                               |                                               |                 |  |
| 6. Select the type                                                                           | e of vapor com            | bustion control de                   | vice being used:                                                                                   | ] Enclosed C                                  | ombusti                                       | on Device       |  |
| Elevated Flar                                                                                | e⊠ Ground I               | Flare 🗌 Thern                        | nal Oxidizer 🔲 (                                                                                   | Completion C                                  | ombusti                                       | on Device       |  |
| 7. Manufacturer: The Frederick Logan Company, Inc       8. Hours of operation per year: 8760 |                           |                                      |                                                                                                    |                                               |                                               |                 |  |
| 9. List the emiss                                                                            | sion units whos           | se emissions are c<br>(Emission F    | ontrolled by this vap<br>oint ID#: 8e)                                                             | por combustio                                 | n contro                                      | ol device:      |  |
| 10. Emission Unit ID#                                                                        | Emission So               | urce Description:                    | Emission Un                                                                                        | Emission Unit ID# Emission Source Description |                                               |                 |  |
| RSV-2                                                                                        | Dehy Reboil<br>Dehy TEG F | er Still Vent and<br>Flash Separator |                                                                                                    |                                               |                                               |                 |  |
|                                                                                              | <b></b>                   |                                      | <b>_</b>                                                                                           |                                               |                                               |                 |  |
| If this vapor combuste                                                                       | or controls emi           | issions from more                    | than six emission u                                                                                | nits, please at                               | tach ada                                      | litional pages. |  |
| 11. Ass                                                                                      | ist Type                  |                                      | 12. Flare<br>Height                                                                                | 13. Tip Dia                                   | 13. Tip Diameter14. Was the de<br>per §60.18* |                 |  |
| Steam - Air - ]                                                                              | Pressure - 🔀              | ] Non -                              | 20 ft                                                                                              | ft To Be Determined Yes No                    |                                               | Yes No          |  |
| Waste Gas Information                                                                        |                           |                                      |                                                                                                    |                                               |                                               |                 |  |
| 15. Maximum waste gas<br>flow rate (scfm):                                                   | 16. Heat val<br>stream    | ue of waste gas<br>(BTU/ft3)         | 17. Temperature of the<br>emissions stream (°F)18. Exit Velocity of the<br>emissions stream (ft/s) |                                               | Exit Velocity of the ssions stream (ft/s)     |                 |  |
| 33.33                                                                                        | 200 o                     | r greater                            | 1450                                                                                               |                                               |                                               | 4.52            |  |
| 19. Provide an attachment with the characteristics of the waste gas stream to be burned.     |                           |                                      |                                                                                                    |                                               |                                               |                 |  |

|                                                                                                                                                                                                                                                                                                                                               | Pilot Information                                                                                                                                                                       |                                                             |                                    |                                             |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------|---------------------------------------------|--|--|
| 20. Type/Grade of pilot fuel:                                                                                                                                                                                                                                                                                                                 | 21. Number of pilot<br>lights:                                                                                                                                                          | 22. Fuel flow rate to<br>pilot flame per pilot<br>(scf/hr): | 23. Heat input per pilot (BTU/hr): | 24. Will automatic re-<br>ignition be used? |  |  |
| Fuel Gas                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                       | 5                                                           | 5000                               | Yes 🗌 No                                    |  |  |
| 25. If automatic re-ig<br>proof of pilot flame t                                                                                                                                                                                                                                                                                              | 25. If automatic re-ignition will be used, describe the method: Electronic re-ignition will be installed and monitored for proof of pilot flame through flame ionization, auto relight. |                                                             |                                    |                                             |  |  |
| 26. Describe the method of controlling flame: Temperature monitoring of combustion chamber to keep between 1450F and 1600F                                                                                                                                                                                                                    |                                                                                                                                                                                         |                                                             |                                    |                                             |  |  |
| <ul> <li>27. Is pilot flame equipped with a monitor to detect the presence of the flame?</li> <li>28. If yes, what type? □ Thermocouple □ Infra-Red □ Ultra Violet</li> <li>□ Camera with monitoring control room □ Other, describe: Ionization rod which sends a signal to controller as long as it is in contact with the flame.</li> </ul> |                                                                                                                                                                                         |                                                             |                                    |                                             |  |  |
|                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                         |                                                             |                                    |                                             |  |  |

| 29. Pollutant(s) Controlled                                     | 30. % Capture Efficiency           | <ol> <li>Manufacturer's Guaranteed<br/>Control Efficiency (%)</li> </ol> |  |  |  |  |
|-----------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------|--|--|--|--|
| VOC                                                             | 100                                | 98                                                                       |  |  |  |  |
|                                                                 |                                    |                                                                          |  |  |  |  |
|                                                                 |                                    |                                                                          |  |  |  |  |
|                                                                 |                                    |                                                                          |  |  |  |  |
| 32. Has the control device been tested by the manufa            | cturer and certified? No           |                                                                          |  |  |  |  |
|                                                                 |                                    |                                                                          |  |  |  |  |
|                                                                 |                                    |                                                                          |  |  |  |  |
| 33. Describe all operating ranges and maintenance pr            | rocedures required by the manufact | urer to maintain warranty: Available                                     |  |  |  |  |
| Opon request                                                    |                                    |                                                                          |  |  |  |  |
|                                                                 |                                    |                                                                          |  |  |  |  |
| 34. Additional Information Attached? XES NO                     |                                    |                                                                          |  |  |  |  |
| Please attach a copy of manufacturer's data sheet.              |                                    |                                                                          |  |  |  |  |
| Please attach a copy of manufacturer's drawing.                 |                                    |                                                                          |  |  |  |  |
| Please attach a copy of the manufacturer's performance testing. |                                    |                                                                          |  |  |  |  |

If any of the requested information is not available, please contact the manufacturer.

#### <u>INSTRUCTIONS:</u> Vapor Combustion Control Device

This form assumes one vapor combustion control device emissions are being released from the emission point identification number (including the waste gas emissions and pilot emissions). If multiple vapor combustion control devices are being used at the oil and natural gas production facility, a vapor control device sheet must be completed for each device. The same form is being used for all types of vapor combustion control devices.

#### **General Information**

- 1. Enter the control device ID#(s) that has been assigned to this control device. A unique control device identification number should identify each control device located at the affected facility.
- 2. Enter the date that the control device was installed at the affected facility. Include the month, day, and year. If this is a new control device that has yet to be installed, check the "NEW" box.
- 3. Enter the maximum rated total flow rate of the vapor combustion device. This includes the flow rate of all materials to be burned including the pilot fuel and the waste gas.
- 4. Enter the maximum rated design heat input capacity of the vapor combustion device in terms of million British thermal units per hour (MMBtu/hr).
- 5. Enter the total design heat content of the pilot in terms of million British thermal units per hour (MMBtu/hr).

### **Control Device Information**

- 6. Indicate the type of vapor combustion device that applies.
- 7. Enter the manufacturer and model number of the control device.
- 8. Enter the hours of operation that the control device is planned to be used. This should be the same basis as the emissions calculations.
- 9. Enter the emission point identification number.
- 10. Enter ALL of the emission units whose emissions will be controlled and then emitted from the control device.
- 11. Select whether the flare is steam-assisted, air-assisted, pressure-assisted, or non-assisted.
- 12. Enter the height of the stack in terms of feet.
- 13. Enter the tip diameter (in feet) of the top of the stack where the emissions are discharged.
- 14. Is the applicant having the combustion device designed per §60.18? Only flares required by an NSPS standard are required to be designed and operated in accordance with §60.18.

### Waste Gas Information

The waste gas is the vapor emissions that are being controlled.

- 15. Enter the waste gas flow rate in cubic feet per minute that is being consumed.
- 16. Enter the heat content of the waste gas being combusted in units of BTU per cubic feet.
- 17. Enter the minimum temperature of the emissions stream (°F).
- 18. Enter the velocity in feet per second of the gas as it discharges from the top of the stack.
- 19. Provide the characterization of the waste gas stream that is being controlled. This could be a certificate of analysis of the natural gas from this facility or from a similar facility. This is the basis of the emissions calculations.

#### **Pilot Information**

- 20. Enter the type/grade(s) of fuel that will combusted in the combustion flare's pilot (examples: natural gas pipeline quality, propane, etc.).
- 21. How many pilot lights does the device have?
- 22. What is the fuel capacity for each pilot?
- 23. What is the heat input for each pilot?
- 24. Is the system designed with automatic re-ignition?
- 25. Describe the re-ignition method and system.
- 26. Describe the method of controlling the pilot flame.
- 27. Is the pilot flame equipped with a monitoring device?
- 28. What is the monitoring device for the pilot flame?

\*continued next page

#### **Control Information**

- 29. Enter the types of pollutants that the control equipment controls (i.e., reduces). If numerous pollutants are controlled, indicate the different pollutants controlled in line with their respective control efficiencies.
- 30. What is the % capture efficiency of the collection system to the control device? In other words, what is the percentage of the waste gas stream will be controlled?
- 31. Enter the control efficiency of the control equipment for each pollutant being controlled. The manufacturer typically provides a manufacturer's minimum guarantee control efficiency. Provide the manufacturer's data sheet that documents the minimum guarantee.
- 32. Please answer if the control device had a performance test conducted by the manufacturer and if it is certified.
- 33. Describe the manufacturer's operating and maintenance requirements that the guaranteed control efficiency is based upon.
- 34. Please include any additional information associated with the control device you feel should be submitted with this application. Please attach a copy of the manufacturer's data sheet. Please include the manufacturer's performance testing.

#### <u>INSTRUCTIONS:</u> Vapor Combustion Control Device

This form assumes one vapor combustion control device emissions are being released from the emission point identification number (including the waste gas emissions and pilot emissions). If multiple vapor combustion control devices are being used at the oil and natural gas production facility, a vapor control device sheet must be completed for each device. The same form is being used for all types of vapor combustion control devices.

#### **General Information**

- 1. Enter the control device ID#(s) that has been assigned to this control device. A unique control device identification number should identify each control device located at the affected facility.
- 2. Enter the date that the control device was installed at the affected facility. Include the month, day, and year. If this is a new control device that has yet to be installed, check the "NEW" box.
- 3. Enter the maximum rated total flow rate of the vapor combustion device. This includes the flow rate of all materials to be burned including the pilot fuel and the waste gas.
- 4. Enter the maximum rated design heat input capacity of the vapor combustion device in terms of million British thermal units per hour (MMBtu/hr).
- 5. Enter the total design heat content of the pilot in terms of million British thermal units per hour (MMBtu/hr).

### **Control Device Information**

- 6. Indicate the type of vapor combustion device that applies.
- 7. Enter the manufacturer and model number of the control device.
- 8. Enter the hours of operation that the control device is planned to be used. This should be the same basis as the emissions calculations.
- 9. Enter the emission point identification number.
- 10. Enter ALL of the emission units whose emissions will be controlled and then emitted from the control device.
- 11. Select whether the flare is steam-assisted, air-assisted, pressure-assisted, or non-assisted.
- 12. Enter the height of the stack in terms of feet.
- 13. Enter the tip diameter (in feet) of the top of the stack where the emissions are discharged.
- 14. Is the applicant having the combustion device designed per §60.18? Only flares required by an NSPS standard are required to be designed and operated in accordance with §60.18.

### Waste Gas Information

The waste gas is the vapor emissions that are being controlled.

- 15. Enter the waste gas flow rate in cubic feet per minute that is being consumed.
- 16. Enter the heat content of the waste gas being combusted in units of BTU per cubic feet.
- 17. Enter the minimum temperature of the emissions stream (°F).
- 18. Enter the velocity in feet per second of the gas as it discharges from the top of the stack.
- 19. Provide the characterization of the waste gas stream that is being controlled. This could be a certificate of analysis of the natural gas from this facility or from a similar facility. This is the basis of the emissions calculations.

#### **Pilot Information**

- 20. Enter the type/grade(s) of fuel that will combusted in the combustion flare's pilot (examples: natural gas pipeline quality, propane, etc.).
- 21. How many pilot lights does the device have?
- 22. What is the fuel capacity for each pilot?
- 23. What is the heat input for each pilot?
- 24. Is the system designed with automatic re-ignition?
- 25. Describe the re-ignition method and system.
- 26. Describe the method of controlling the pilot flame.
- 27. Is the pilot flame equipped with a monitoring device?
- 28. What is the monitoring device for the pilot flame?

\*continued next page

#### **Control Information**

- 29. Enter the types of pollutants that the control equipment controls (i.e., reduces). If numerous pollutants are controlled, indicate the different pollutants controlled in line with their respective control efficiencies.
- 30. What is the % capture efficiency of the collection system to the control device? In other words, what is the percentage of the waste gas stream will be controlled?
- 31. Enter the control efficiency of the control equipment for each pollutant being controlled. The manufacturer typically provides a manufacturer's minimum guarantee control efficiency. Provide the manufacturer's data sheet that documents the minimum guarantee.
- 32. Please answer if the control device had a performance test conducted by the manufacturer and if it is certified.
- 33. Describe the manufacturer's operating and maintenance requirements that the guaranteed control efficiency is based upon.
- 34. Please include any additional information associated with the control device you feel should be submitted with this application. Please attach a copy of the manufacturer's data sheet. Please include the manufacturer's performance testing.



June 14, 2017

CONE MIDSTREAM 1000 Consol Energy Drive Canonsburg, PA 15317-6506

Attention: Mr. Andres Zapata, Process Engineer IV

**Reference:** 50MMSCFD Enclosed Ground Flare System Specs

Dear Mr. Zapata,

In reference to your RFQ, we are pleased to propose the following equipment for your application:

# **50 MMSCFD FLOW RATE DEHYDRATOR VAPOR GROUND FLARE**

[Below process conditions are for each reboiler]

### **50 MMSCFD DEHYDRATOR OPERATING PARAMETERS**

Process Fluid Process Flow Operating Temperature Operating Pressure Specific Gravity Glycol Pump: Flash Gas Separator Electrical Service Available at Site Natural Gas 50 MMSCFD 60-110°F 850-950 PSIG 0.6 Kimray Energy Exchange 40 PSIG Operating, 120°F None



## **Equipment Description**

ITEM QTY DESCRIPTION

1

1

# DVC-36 Skid Mounted, Valve Train Enclosed Flare complete with:

- > 36" Dia. Combustion Chamber
- 36" x 20' Tall Exhaust Stack
- (3) 24" Adjustable Flame Cell Air Inlets (one Hinged)
- > (2) Dual Type K thermocouples with Thermowell
- ➤ (2) 4" Flanged Sample Ports
- Stack Lined with 4" 2300 deg. Folded Blanket Flue Liners
- Lower stack lined with 4" Castable Refractory
- ➤ (1) Sight Glass
- Stack Material –A-36
- Surface prep and paint:
  - o Standard 2 coat paint
  - Color to be determined
- 4" Dehy Overhead Still Column Vapor Inlet. To be mounted on top of the Heated Enclosure. Block & Vent valves to be installed. Vent line to extend 6' above roof. (vent line to be removed for shipping)
- Install low point drains on bottom of vent line, run SS tubing with hand valve to + 1' above grade.
- Install low point drain upstream of the 3" Flame arrestor. Install SS tubing and hand valve.
- > (1) 1" NPT for Flash Gas and Vessel Relief Vapors Inlet.
- > (2) Lifting lug mounted on top stack section.
- Valve Train C/W: Pneumatic Shutoff Valve, Pilot Solenoid, Manual Block Valve, Strain, and Regulator.
- 2 1 2 MMBTU/HR Burner
  - Natural Draft Gas induced Burner

#### 3 1 MR-1000 Pilot

- Self-inspirited pilot.
- Direct Spark Ignition
- Flame Ionization Detection Rod.

#### 4 1 Burner Control Panel

- > 24 VDC Solar power Option
  - Solar Panel and mounting bracket
  - Solar Charging Module

- (2) 12 VDC deep cycle batteries
- (1) Battery enclosure
- Mounting pole
- ProFire 2100 Ignition System with Modbus Communications card.
- > NEMA 4 Main Enclosure
- Assist heat burner is on when temperature drops below 1450 deg F.
- Continuous pilot operation.
- System shut down for the following events:
  - Loss of Flame
  - High Stack Temp
  - Customer contacts for the following signals
  - ➤ Fault
  - ➢ At Temp

### 5 1 Process Valve Train

- ➤ 4" Pneumatic Block Valve for Dehy Stream Vapors.
- 1/2" ASCO Solenoid Low draw Valve for burner gas
- > 1" Pneumatic block Valve for flash Gas inlet.
- ½" ASCO Next Generation low draw solenoid valve for pilot gas
- ¼" 3-way Solenoid valve for Pneumatic valve operation.
- Manual block valve for pilot gas
- ➢ fuel gas regulator
- Instrument gas regulator for pneumatic controls
- Fuel Gas Strainer

## 6 2 Flame Arrestor

- 3" 150#, CS/AL construction, for Low Pressure Overhead Dehy Inlet.
- 1" NPT Threaded, CS/AL construction, for High Pressure Flash Gas Vapors.

### 7 3 Documentation

Operation and Maintenance Manual

## 8 1 FAT – Factory Acceptance Test

- Complete test of system at Fort Worth, TX location
- 9 1 Heated Enclosure for Vessels and Skid mounted Valve train

- 1" thick lined insulation on roof and walls
- ➢ 6,000 BTU/HR Catco Heater
- Access door
- Louvered Vent ports

# 10124" Dia. Knockout/Blow Pot Vessel with complete<br/>instrumentation

- ASME Pressure Vessel
- 150 PSIG @250 deg F
- ➢ 4" NPT inlet
- ➢ 4" NPT Outlet
- > 1" NPT Liquid Drain
- 2" NPT Level Controller Connection
- 1" NPT Level Gauge Connections
- Kimray Gen II Level controller
- Kimray dump valve
- 1" Check valve
- 3-way pneumatic valve

# **Technical Summary**

# Process inlet stream: Based on GRI-Gly calc output (attached)

|          | Overhead Still Inlet            |                                                                           |
|----------|---------------------------------|---------------------------------------------------------------------------|
|          | Inlet Temperature:              | 212 °F                                                                    |
|          | Inlet Pressure:                 | ≥ 2″ WC                                                                   |
|          | Flash Gas Inlet                 |                                                                           |
|          | Inlet Temperature:              | 100 °F                                                                    |
|          | Inlet Pressure:                 | 20-50 PSIG                                                                |
|          | Combustion Chamber Temp:        | 1450 – 1600 deg F                                                         |
|          | Destruction Efficiency:         | ≥98.0%                                                                    |
| Site Co  | nditions:                       |                                                                           |
|          | Wind Speed                      | 90 MPH                                                                    |
|          | Seismic Zone                    | 1                                                                         |
|          | Elevation                       | 1,000 ft.                                                                 |
|          | Humidity                        | High                                                                      |
| Utilitie | s:                              |                                                                           |
|          | Gas Service Required for Burner | 400 SCFH – Natural Gas Intermittent use,<br>Only on when temp <1450 deg F |
|          | Electrical Service Required     | Solar Powered 24 VDC, 5 amps                                              |
|          | Gas Consumption at Start-up     | 400,000 Btu/hr                                                            |
|          | Gas Consumption under load      | ≤ 400 SCFH, Dependent on BTU value of waste stream                        |

Z

# Attachment M Air Pollution Control Device Sheet

(Oxidation Catalyst)

Control Device ID No. (C-1):

#### **Equipment Information**

| 1.       | . Manufacturer: DCL America Inc.<br>Model No. DC64AL2 2. Control Device Name: Engine Catalytic Converter<br>Type: Oxidation Catalyst                                                                                                                                                                                                             |                                                               |                                        |  |  |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------|--|--|--|
| 3.<br>Se | <ol> <li>Provide diagram(s) of unit describing capture system with duct arrangement and size of duct, air volume, capacity, horsepower of movers. If applicable, state hood face velocity and hood collection efficiency.</li> <li>See attached information for arrangement, size, flows, temperatures, catalyst type, and dimensions</li> </ol> |                                                               |                                        |  |  |  |
| 4.       | On a separate sheet(s) supply all data and calculations used in selecting or designing this collection device. This device was designed to meet the 1/2/0.7 (g/hp hr) requirements for NOx, CO, VOCs respectively. See Cat Spec Sheet                                                                                                            |                                                               |                                        |  |  |  |
| 5.       | Provide a scale diagram of the control device sh                                                                                                                                                                                                                                                                                                 | owing internal construction.                                  | See Converter Drawing Attached         |  |  |  |
| 6.       | Submit a schematic and diagram with dimensio exhaust temp 850F and Catalyst Dimensions of                                                                                                                                                                                                                                                        | ns and flow rates. Catalyst S<br>35.875 by 14.875 by 3.50 inc | Specs attached list 9,151 acfm at hes. |  |  |  |
| 7.       | . Guaranteed minimum collection efficiency for each pollutant collected: The catalyst manufacturer list 31% reduction efficiency for CO and 3% reduction efficiency for VOCs                                                                                                                                                                     |                                                               |                                        |  |  |  |
| 8.       | Attached efficiency curve and/or other efficiency information. NA                                                                                                                                                                                                                                                                                |                                                               |                                        |  |  |  |
| 9.       | Design inlet volume: 9151 ACFM                                                                                                                                                                                                                                                                                                                   | 10. Capacity: 9151 AC                                         | FM                                     |  |  |  |
| 11.      | 11. Indicate the liquid flow rate and describe equipment provided to measure pressure drop and flow rate, if any.                                                                                                                                                                                                                                |                                                               |                                        |  |  |  |
|          | No liquid flow associated with this catalytic converter and although pressure drop may be measured periodically, the inlet and outlet temperature will be measured continuously by this unit in order to assess performance with manufacturer's operating requirements.                                                                          |                                                               |                                        |  |  |  |
| 12.      | Attach any additional data including auxiliary control equipment. NA                                                                                                                                                                                                                                                                             | equipment and operation de                                    | etails to thoroughly evaluate the      |  |  |  |
| 13.      | Description of method of handling the collected r                                                                                                                                                                                                                                                                                                | material(s) for reuse of dispos                               | sal. NA                                |  |  |  |
|          | Gas Strea                                                                                                                                                                                                                                                                                                                                        | am Characteristics                                            |                                        |  |  |  |
| 14.      | 4. Are halogenated organics present?       □ Yes       ⊠ No         Are particulates present?       □ Yes       ⊠ No         Are metals present?       □ Yes       ⊠ No                                                                                                                                                                          |                                                               |                                        |  |  |  |
| 15.      | Inlet Emission stream parameters:                                                                                                                                                                                                                                                                                                                | Maximum                                                       | Typical                                |  |  |  |
|          | Pressure (mmHg):                                                                                                                                                                                                                                                                                                                                 | NA                                                            |                                        |  |  |  |
|          | Heat Content (BTU/scf):                                                                                                                                                                                                                                                                                                                          | NA                                                            |                                        |  |  |  |
|          | Oxygen Content (%):                                                                                                                                                                                                                                                                                                                              | 8.4-9.1 %                                                     |                                        |  |  |  |
|          | Moisture Content (%):                                                                                                                                                                                                                                                                                                                            | NA                                                            |                                        |  |  |  |
|          | Relative Humidity (%): NA                                                                                                                                                                                                                                                                                                                        |                                                               |                                        |  |  |  |

Page 1 of 3
| 16. Type of pollutant(s)                                                  | controlled:<br>):       | □ SO <sub>x</sub>         | ☐ Odor<br>⊠ Other CO, VOC                                            |                                     |                  |                 |  |
|---------------------------------------------------------------------------|-------------------------|---------------------------|----------------------------------------------------------------------|-------------------------------------|------------------|-----------------|--|
| 17. Inlet gas velocity:                                                   | 41.3 ft/s               | ec                        | 18. Pollutant s                                                      | specific gravity:                   |                  |                 |  |
| 19. Gas flow into the co<br>9151 AC                                       | llector:<br>ンF @ 850 °F |                           | 20. Gas strea                                                        | m temperature:<br>Inlet:<br>Outlet: | 850 °F<br>900 °F |                 |  |
| 21. Gas flow rate:<br>Design Maximum: 9151 ACFM<br>Average Expected: ACFM |                         |                           | 22. Particulate Grain Loading in grains/scf:<br>Inlet: NA<br>Outlet: |                                     |                  |                 |  |
| 23. Emission rate of eac                                                  | ch pollutant (spe       | ecify) into and out       | of collector:                                                        |                                     |                  |                 |  |
| Pollutant                                                                 | IN Pe                   | ollutant                  | Emission                                                             | OUT Po                              | ollutant         | Control         |  |
|                                                                           | lb/hr                   | grains/acf                | Capture<br>Efficiency<br>%                                           | lb/hr                               | grains/acf       | Efficiency<br>% |  |
| A CO                                                                      | 8.82                    |                           | 100                                                                  | 6.08                                |                  | 31              |  |
| B VOC                                                                     | 2.19                    |                           | 100                                                                  | 2.13                                |                  | 3               |  |
| С                                                                         |                         |                           |                                                                      |                                     |                  |                 |  |
| D                                                                         |                         |                           |                                                                      |                                     |                  |                 |  |
| E                                                                         |                         |                           |                                                                      |                                     |                  |                 |  |
| 24. Dimensions of stack                                                   | : He                    | ight                      | Diameter                                                             |                                     |                  |                 |  |
| 25. Supply a curve sho rating of collector. N                             | wing proposed<br>IA     | collection efficien       | icy versus gas                                                       | volume from 2                       | 5 to 130 perce   | nt of design    |  |
|                                                                           |                         | Particulate               | Distribution                                                         |                                     |                  |                 |  |
| 26. Complete the table:                                                   |                         | Particle Size Dis<br>to ( | stribution at In<br>Collector                                        | let Fraction                        | 1 Efficiency of  | Collector       |  |
| Particulate Size Rang                                                     | e (microns)             | Weight % fo               | or Size Range                                                        | Weig                                | ght % for Size   | Range           |  |
| 0 - 2                                                                     |                         |                           |                                                                      |                                     |                  |                 |  |
| 2-4                                                                       |                         |                           |                                                                      |                                     |                  |                 |  |

| 10 – 12  |  |
|----------|--|
| 12 – 16  |  |
| 16 – 20  |  |
| 20 - 30  |  |
| 30 - 40  |  |
| 40 - 50  |  |
| 50 - 60  |  |
| 60 - 70  |  |
| 70 - 80  |  |
| 80 - 90  |  |
| 90 – 100 |  |
| >100     |  |
|          |  |

4-6 6-8 8-10 27. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification): NA

28. Describe the collection material disposal system: NA

29. Have you included Other Collectores Control Device in the Emissions Points Data Summary Sheet? Yes

30. **Proposed Monitoring, Recordkeeping, Reporting, and Testing** Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

| MONITORING:                                                                                                          |                                                                                                                                                                                             | RECORDKEEPING:                                                                                                                                                                                |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| The inlet and outlet<br>measured to assure pro<br>manufacturer's specifica                                           | catalyst temperatures will be<br>oper operation in accordance with<br>ations                                                                                                                | All maintenance records will be maintained and made available upon request.                                                                                                                   |  |  |  |  |  |
| REPORTING: Any mathat cause an emission<br>the Director of the Wy<br>testing compliance of<br>reported in accordance | Ifunctions of control equipment<br>a exceedance will be reported to<br>/ DAQ. Additionally, the stack<br>demonstration results will be<br>with 40CFR60, subpart JJJJ                        | TESTING: The engine will be tested to verify compliance with NSPS JJJJ emission limitations for NOx, CO, and VOCs. This shall consist of an initial test as well as ongoing periodic testing. |  |  |  |  |  |
| MONITORING:                                                                                                          | Please list and describe the pro-<br>monitored in order to demons<br>equipment or air control device.                                                                                       | cess parameters and ranges that are proposed to be<br>trate compliance with the operation of this process                                                                                     |  |  |  |  |  |
| RECORDKEEPING:<br>REPORTING:                                                                                         | Please describe the proposed recordkeeping that will accompany the monitoring.<br>Please describe any proposed emissions testing for this process equipment on air pollution control device |                                                                                                                                                                                               |  |  |  |  |  |
| TESTING:                                                                                                             | Please describe any proposed pollution control device.                                                                                                                                      | emissions testing for this process equipment on air                                                                                                                                           |  |  |  |  |  |

31. Manufacturer's Guaranteed Control Efficiency for each air pollutant. 31% reduction efficiency for CO, 3% reduction efficiency for VOCs

32. Manufacturer's Guaranteed Control Efficiency for each air pollutant. Same as #31

33. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.

NA



### 12620 FM 1960 W, Ste A4 Box # 560, Houston, TX 77065 Tel.: 877-897-9759 Fax: 281-605-5858 E-mail: info@dclamerica.com

------

| То   | Chris Magee     | Phone |                           |
|------|-----------------|-------|---------------------------|
|      | USA Compression | Fax   |                           |
| Date | June 2016       | Email | cmagee@usacompression.com |

### **RE:** EMISSIONS GUARANTEE

Chris,

We hereby guarantee that our QUICK-LID<sup>TM</sup> **Model** DC64AL2-16 Hospital+ Grade Catalytic Silencer described below:

| Catalyst model                         | DC64AL2               |
|----------------------------------------|-----------------------|
| Catalyst coating                       | Oxidation (A coating) |
| Outside Diameter of catalyst substrate | 24.23"                |
| No. Of Catalyst Layers                 | 2                     |
| No. of catalyst substrates             | 2                     |
| Cell Density                           | 300 cpsi              |
| Approx. Attenuation                    | 40-52 dBA             |

and sized for the following engine:

| Engine model        | CAT G3516B                   |
|---------------------|------------------------------|
| Power               | 1380 hp @ 1400 rpm           |
| Fuel                | Pipeline Quality Natural Gas |
| Exhaust Temperature | 850 F                        |

will perform as follows:

| Emissions            | After Catalyst<br>(% destruction) |
|----------------------|-----------------------------------|
| Carbon Monoxide (CO) | 31%                               |
| VOC (NMNEHC)         | 3%                                |

for a period of 1 year (after invoice date) or 8000 hours, whichever comes first, subject to all terms and conditions contained in the attached warranty document being respected and met.

Best regards, DCL America

Sam Kirk Regional Account Manager

Confidential Communication

## ATTACHMENT N

# SUPPORTING EMISSIONS CALCULATIONS

# **45CSR13 Permit Modification Application**

Cain Run Station New Milton, West Virginia

CONE Midstream Devco III LP 1000 Consol Energy Drive Canonsburg, PA 15317

July 2017

## Table 1. Annual Potential To Emit (PTE) CONE Midstream Devco III LP Cain Run Station

| Proposed Rule 13 Modifications        |      |      |       |      |       |       |       |         |
|---------------------------------------|------|------|-------|------|-------|-------|-------|---------|
| Source                                | PM   | PM10 | PM2.5 | SO2  | NOx   | CO    | VOC   | CO2e    |
| Dehy Reboiler Burner (tons/yr)        | 0.02 | 0.02 | 0.02  | 0.00 | 0.32  | 0.27  | 0.02  | 384.38  |
| Dehydration/Ground Flare (ton/yr)     |      |      |       | 0.04 | 0.60  | 2.72  | 6.01  | 1023.96 |
| Compressor Engine (tons/yr)           | 0.49 | 0.49 | 0.49  | 0.03 | 13.33 | 26.65 | 9.33  | 6950.63 |
| Compressor Blowdowns (tons/yr)        |      |      |       |      |       |       | 1.40  | 157.75  |
| Total Point Source Emissions (ton/yr) | 0.52 | 0.52 | 0.52  | 0.07 | 14.24 | 29.64 | 16.75 | 8516.72 |
| (lb/hr)                               | 0.12 | 0.12 | 0.12  | 0.02 | 3.25  | 6.77  | 3.83  | 1944.46 |

| Source                                | Benzene | Toluene | Ethylbenzene | Xylene | n-Hexane | Formaldehyde | Total HAPs |
|---------------------------------------|---------|---------|--------------|--------|----------|--------------|------------|
| Dehy Reboiler Burner (tons/yr)        | 0.00    | 0.00    |              |        | 0.01     | 0.00         | 0.01       |
| Dehydration/Ground Flare (ton/yr)     | 0.16    | 0.65    | 0.01         | 0.74   | 0.16     |              | 1.71       |
| Compressor Engine (tons/yr)           | 0.02    | 0.02    | 0.00         | 0.01   | 0.06     | 5.46         | 6.51       |
| Total Point Source Emissions (ton/yr) | 0.18    | 0.67    | 0.01         | 0.75   | 0.22     | 5.46         | 8.23       |
| (lb/hr)                               | 0.04    | 0.15    | 0.00         | 0.17   | 0.05     | 1.25         | 1.88       |

| Current Rule 13 Permit Allowables     |      |      |       |      |       |       |       |         |
|---------------------------------------|------|------|-------|------|-------|-------|-------|---------|
| Source                                | PM   | PM10 | PM2.5 | SO2  | NOx   | CO    | VOC*  | CO2e    |
| Slop/Brine Tank (tons/yr)             |      |      |       |      |       |       | 0.00  | -       |
| Dehy Reboiler Burner (tons/yr)        | 0.01 | 0.01 | 0.01  | 0.00 | 0.16  | 0.14  | 0.01  | 192.19  |
| Dehydration/Ground Flare (ton/yr)     |      |      |       | 0.04 | 0.60  | 2.72  | 1.23  | 1023.96 |
| MicroTurbine (ton/yr)                 |      |      |       |      | 0.08  | 0.24  | 0.03  | 222.07  |
| Compressor Engine (tons/yr)           | 0.45 | 0.45 | 0.45  | 0.03 | 13.33 | 26.65 | 9.33  | 6947.29 |
| Compressor Blowdowns (tons/yr)        |      |      |       |      |       |       | 1.19  | 158.42  |
| Pigging Vent Emissions (tons/yr)      |      |      |       |      |       |       | 0.80  | 106.24  |
| Total Point Source Emissions (ton/yr) | 0.46 | 0.46 | 0.46  | 0.06 | 14.17 | 29.75 | 12.59 | 8650.17 |
| (lb/hr)                               | 0.10 | 0.10 | 0.10  | 0.01 | 3.23  | 6.79  | 2.87  | 1974.92 |

\*VOC does not include formaldehyde

| Source                                | Benzene | Toluene | Ethylbenzene | Xylene | n-Hexane | Formaldehyde | Total HAPs |
|---------------------------------------|---------|---------|--------------|--------|----------|--------------|------------|
| Dehy Reboiler Burner (tons/yr)        | 0.00    | 0.00    |              |        | 0.00     | 0.00         | 0.00       |
| Dehydration/Ground Flare (ton/yr)     | 0.02    | 0.06    | 0.02         | 0.06   | 0.02     |              | 0.18       |
| Compressor Engine (tons/yr)           | 0.02    | 0.02    | 0.00         | 0.01   | 0.05     | 5.20         | 6.14       |
| Total Point Source Emissions (ton/yr) | 0.04    | 0.08    | 0.02         | 0.07   | 0.07     | 5.20         | 6.32       |
| (lb/hr)                               | 0.01    | 0.02    | 0.01         | 0.02   | 0.02     | 1.19         | 1.44       |

| Proposed Rule 13 Permit Allowables    |      |      |       |      |       |       |       |         |
|---------------------------------------|------|------|-------|------|-------|-------|-------|---------|
| Source                                | PM   | PM10 | PM2.5 | SO2  | NOx   | CO    | voc   | CO2e    |
| Slop/Brine Tank (tons/yr)             |      |      |       |      |       |       | 0.00  | -       |
| Dehy Reboiler Burner (tons/yr)        | 0.02 | 0.02 | 0.02  | 0.00 | 0.32  | 0.27  | 0.02  | 384.38  |
| Dehydration/Ground Flare (ton/yr)     |      |      |       | 0.04 | 0.60  | 2.72  | 6.01  | 1023.96 |
| MicroTurbine (ton/yr)                 |      |      |       |      | 0.08  | 0.24  | 0.03  | 222.07  |
| Compressor Engine (tons/yr)           | 0.49 | 0.49 | 0.49  | 0.03 | 13.33 | 26.65 | 9.33  | 6950.63 |
| Compressor Blowdowns (tons/yr)        |      |      |       |      |       |       | 1.40  | 157.75  |
| Pigging Vent Emissions (tons/yr)      |      |      |       |      |       |       | 0.80  | 106.24  |
| Total Point Source Emissions (ton/yr) | 0.52 | 0.52 | 0.52  | 0.07 | 14.33 | 29.87 | 17.58 | 8845.03 |
| (lb/hr)                               | 0.12 | 0.12 | 0.12  | 0.02 | 3.27  | 6.82  | 4.01  | 2019.41 |

\*VOC does not include formaldehyde

| Source                                | Benzene | Toluene | Ethylbenzene | Xylene | n-Hexane | Formaldehyde | Total HAPs |
|---------------------------------------|---------|---------|--------------|--------|----------|--------------|------------|
| Dehy Reboiler Burner (tons/yr)        | 0.00    | 0.00    |              |        | 0.01     | 0.00         | 0.01       |
| Dehydration/Ground Flare (ton/yr)     | 0.16    | 0.65    | 0.01         | 0.74   | 0.16     |              | 1.71       |
| Compressor Engine (tons/yr)           | 0.02    | 0.02    | 0.00         | 0.01   | 0.06     | 5.46         | 6.51       |
| Total Point Source Emissions (ton/yr) | 0.18    | 0.67    | 0.01         | 0.75   | 0.22     | 5.46         | 8.23       |
| (lb/hr)                               | 0.04    | 0.15    | 0.00         | 0.17   | 0.05     | 1.25         | 1.88       |

### Proposed Difference of Emissions

| Source                                | PM   | PM10 | PM2.5 | SO2  | NOx  | CO   | VOC  | CO2e   |
|---------------------------------------|------|------|-------|------|------|------|------|--------|
| Total Point Source Emissions (ton/yr) | 0.06 | 0.06 | 0.06  | 0.00 | 0.16 | 0.13 | 5.00 | 194.86 |
| (lb/hr)                               | 0.01 | 0.01 | 0.01  | 0.00 | 0.04 | 0.03 | 1.14 | 44.49  |

| Source                                | Benzene | Toluene | Ethylbenzene | Xylene | n-Hexane | Formaldehyde | Total HAPs |
|---------------------------------------|---------|---------|--------------|--------|----------|--------------|------------|
| Total Point Source Emissions (ton/yr) | 0.14    | 0.59    | -0.01        | 0.68   | 0.15     | 0.27         | 1.90       |
| (lb/hr)                               | 0.03    | 0.13    | 0.00         | 0.15   | 0.03     | 0.06         | 0.43       |

### Table 2 Reboiler Burner (RBV-2) Rates and Emissions CONE Midstream Devco III LP

| Bollutant                        | Emission             | Emissions | Emissions |
|----------------------------------|----------------------|-----------|-----------|
| Follutalit                       | Factor               | (lbs/hr)  | (tons/yr) |
|                                  |                      |           |           |
| Criteria Pollutants              |                      |           |           |
| PM/PM10/PM2.5                    | 7.6 lb/MMcf (1)      | 0.006     | 0.024     |
| SO <sub>2</sub>                  | 0.6 lb/MMcf (1)      | 0.000     | 0.002     |
| NOx                              | 100 lb/MMcf (2)      | 0.07      | 0.32      |
| CO                               | 84 lb/MMcf (2)       | 0.06      | 0.27      |
| VOC                              | 5.5 lb/MMcf (1)      | 0.004     | 0.018     |
| Hazardous Air Pollutants         |                      |           |           |
| Arsonic                          | 2.0E-04 lb/MMcf (3)  | 1 475-7   | 6 44 E-7  |
| Benzene                          | 2.0E 04 10/MMcf (4)  | 1.47E 7   | 6.76E-6   |
| Beryllium                        | 1 2E-05 lb/MMcf (3)  | 8.82E-9   | 3.86E-8   |
| Cadmium                          | 1 1E-03 lb/MMcf (3)  | 8.09E-7   | 3.54E-6   |
| Chromium                         | 1 4F-03 lb/MMcf (3)  | 1.03E-6   | 4.51E-6   |
| Cobalt                           | 8.4E-05 lb/MMcf (3)  | 6.18E-8   | 2.71E-7   |
| Dichlorobenzene                  | 1.2E-03 lb/MMcf (4)  | 8.82E-7   | 3.86E-6   |
| Formaldehyde                     | 7.5E-02 lb/MMcf (4)  | 5.51E-5   | 2.42E-4   |
| Hexane                           | 1.8E+00 lb/MMcf (4)  | 1.32E-3   | 5.80E-3   |
| Lead                             | 5.0E-04 lb/MMcf (3)  | 3.68E-7   | 1.61E-6   |
| Manganese                        | 3.8E-04 lb/MMcf (3)  | 2.79E-7   | 1.22E-6   |
| Mercury                          | 2.6E-04 lb/MMcf (3)  | 1.91E-7   | 8.37E-7   |
| Naphthalene                      | 6.1E-04 lb/MMcf (4)  | 4.49E-7   | 1.96E-6   |
| Nickel                           | 2.1E-03 lb/MMcf (3)  | 1.54E-6   | 6.76E-6   |
| PAH/POM                          | 1.3E-03 lb/MMcf (4)  | 9.47E-7   | 4.15E-6   |
| Selenium                         | 2.4E-05 lb/MMcf (3)  | 1.76E-8   | 7.73E-8   |
| Toluene                          | 3.4E-03 lb/MMcf (4)  | 2.50E-6   | 1.10E-5   |
|                                  |                      | 1 205 2   | 6 00F 3   |
|                                  | 1.9E+00 ID/MIMICF    | 1.392-3   | 0.09E-3   |
| Greenhouse Gas Emissions         |                      |           |           |
| CO <sub>2</sub>                  | 116.89 lb/MMBtu (5)  | 8.77E+1   | 3.84E+2   |
| CH <sub>4</sub>                  | 2.2E-03 lb/MMBtu (5) | 1.65E-3   | 7.24E-3   |
| N <sub>2</sub> O                 | 0.0 lb/MMBtu (5)     | 1.65E-4   | 7.24E-4   |
| CO <sub>2</sub> e <sup>(b)</sup> |                      | 87.7574   | 384.3775  |

#### Calculations:

(a) Annual emissions (tons/yr) = [Annual Usage (MMBtu/yr or MMCF/yr)]x [Number of Identical Heaters] x [Emission Factor (lb/MMBtu or lb/MMCF)] / [2,000 lb/ton]

Number of Line Heaters= 1 Fuel Use (MMBtu/hr) = 0.75 Hours of Operation (hr/yr)= 8760 PTE Fuel Use (MMcf/yr) = 6.4

(b) CO<sub>2</sub> equivalent = [(CO<sub>2</sub> emissions)\*(GWP<sub>CO2</sub>)]+[(CH<sub>4</sub> emissions)\*(GWP<sub>CH4</sub>)]+[(N<sub>2</sub>O emissions)\*(GWP<sub>N2O</sub>)] Global Warming Potential (GWP)

| CO <sub>2</sub> | 1   | (6) |
|-----------------|-----|-----|
| $CH_4$          | 25  | (6) |
| $N_2O$          | 298 | (6) |

(7)

### Notes:

(1) AP-42, Chapter 1.4, Table 1.4-2. Emission Factors For Criteria Pollutants and Greenhouse Gases From Natural Gas Combustion, July 1998.

(2) AP-42, Chapter 1.4, Table 1.4-1. Emission Factors For Nitrogen Oxides (Nox) and Carbon Monoxide(CO) From Natural Gas Combustion, July 1998.

(3) AP-42, Chapter 1.4, Table 1.4-4. Emission Factors For Metals From Natural Gas Combustion, July 1998.
(4) AP-42, Chapter 1.4, Table 1.4-3. Emission Factors for Speciated Organic Compounds from Natural Gas Combustion, July 1998.

(5) Emission factors are from 40 CFR 98, Subpart C, Table C-1 and C-2.

(6) Global Warming Potentials obtained from 40 CFR 98, Subpart A, Table A-1

(7) MMBtu to MMcf conversion factor is 1020. AP-42, Chapter 1.4

### Table 3 TEG Dehydration Unit with Ground Flare Control System CONE Midstream Devco III LP Cain Run Station

| Stream       | Uncont | trolled Emission | Rates   | Control | ed Rates |  |  |  |  |
|--------------|--------|------------------|---------|---------|----------|--|--|--|--|
| Components   | lb/hr  | lb/d             | tpy     | lb/hr   | tpy      |  |  |  |  |
| Methane      | 23.167 | 556.010          | 101.472 | 0.46    | 2.03     |  |  |  |  |
| Ethane       | 18.461 | 443.073          | 80.861  | 0.37    | 1.62     |  |  |  |  |
| Propane      | 10.344 | 248.253          | 45.306  | 0.21    | 0.91     |  |  |  |  |
| n-Hexane     | 1.851  | 44.426           | 8.108   | 0.04    | 0.16     |  |  |  |  |
| Benzene      | 1.800  | 43.191           | 7.882   | 0.04    | 0.16     |  |  |  |  |
| Toluene      | 7.380  | 177.124          | 32.325  | 0.15    | 0.65     |  |  |  |  |
| Ethylbenzene | 0.128  | 3.068            | 0.560   | 0.00    | 0.01     |  |  |  |  |
| Xylene       | 8.407  | 201.759          | 36.821  | 0.17    | 0.74     |  |  |  |  |
| VOC          | 68.646 | 1647.496         | 300.668 | 1.37    | 6.01     |  |  |  |  |
| Total HAPs   | 19.567 | 469.613          | 85.704  | 0.39    | 1.71     |  |  |  |  |

Emission estimates were calculated using GLYCalc software.

Specs:

50 MMscf/d dehy 15 gpm TEG max pump rate (Dual Kimray 45020PV) Column Pressure 950 psig Column Temperature 110 F Wet gas water content - Saturated Dry gas water content - 7 lb H20/ MMscf Flash Tank Temperature 149 F Flash Tank Pressure 60 psia

### Table 4 Ground Flare Emissions CONE Midstream Devco III LP Cain Run Station

| Pollutant        | Emission<br>Factor<br>(lb/MMBtu) | Volume (scf/hr) | Gas Heat Value<br>(Btu/scf) | (MMBtu/<br>1000000Btu) | Emissions<br>(lbs/hr) | Emissions<br>(ton/yr) |
|------------------|----------------------------------|-----------------|-----------------------------|------------------------|-----------------------|-----------------------|
| CO               | 0.31                             | 2,000           | 1,000                       | (1/1,000,000)          | 0.62                  | 2.72                  |
| NOx              | 0.068                            | 2,000           | 1,000                       | (1/1,000,000)          | 0.14                  | 0.60                  |
| VOC <sup>a</sup> | 0.14                             | 2,000           | 1,000                       | (1/1,000,000)          | 0.28                  | 6.01                  |
| CO2e             | 116.89                           | 2,000           | 1,000                       | (1/1,000,000)          | 233.78                | 1023.96               |

<sup>a</sup> - Measured as methane equivalent, assumed worst case

Example Formula:

$$emissions\left(\frac{ton}{yr}\right) = emission factor\left(\frac{lb}{MMBtu}\right) \times Volume\left(\frac{sof}{hr}\right) \times gas heat value\left(\frac{Btu}{sof}\right) \times \frac{MMBtu}{1,000,000 Btu} \times \frac{8760 hrs}{1 yr} \times \frac{1 ton}{2,000 lbs}$$

Emission Factor = AP-42 Tables 13.5-1 and 2 emission factor for specific pollutant

Volume = 2000 scf/hr set to equate to 2 MMBtu/hr Ground Flare rating

Hours of operation calculated at 8760

Gas Heat Value = 1,000 Btu/scf

VOC emissions used are assumed to be worst case at 2% uncontrolled from the dehydration unit

| Pollutant | Volume<br>(scf/hr) | grain H2S/ 100 scf | Mol Fraction | Mol weight (g/mol) | (lb-mol /scf) | Emissions<br>(lbs/hr) | Emissions<br>(ton/yr) |
|-----------|--------------------|--------------------|--------------|--------------------|---------------|-----------------------|-----------------------|
| SO2       | 2,000              | 15.26              | 0.0002423    | 64.00              | 1/379.4       | 0.0818                | 0.0358                |

### Example Formula:

 $emissions \binom{ton}{yr} = Volume \binom{scf}{hr} \times mol \ fraction \binom{H2S}{100 \ scf} \times 0.00001588 \times molecular \ weight \times \frac{lb \ mol}{scf} \times \frac{876 \ hrs}{1 \ yr} \times \frac{1 \ ton}{2,000 \ lbs}$ 

| $\frac{1 \text{ grain H2S}}{100 \text{ scf}} = 15.26 \text{ ppm of H2S}$ |
|--------------------------------------------------------------------------|
| H2S conversion taken from supporting Sulfur Measurement Handbook         |
| grain H2S/100 scf = 15.26                                                |
| Volume = 8333 scf/hr                                                     |
| Hours of operation calculated at 8760                                    |
| 1 lb mol = 379.4 cubic feet                                              |

### For Pilot Light

| Pollutant        | Emission<br>Factor<br>(Ib/MMBtu) | Volume (scf/hr) | Gas Heat Value<br>(Btu/scf) | (MMBtu/<br>1000000Btu) | Emissions<br>(Ibs/hr) | Emissions<br>(ton/yr) |
|------------------|----------------------------------|-----------------|-----------------------------|------------------------|-----------------------|-----------------------|
| CO               | 0.31                             | 5               | 1,197                       | (1/1,000,000)          | 0.0019                | 0.0081                |
| NOx              | 0.068                            | 5               | 1,197                       | (1/1,000,000)          | 0.0004                | 0.0018                |
| VOC <sup>a</sup> | 0.14                             | 5               | 1,197                       | (1/1,000,000)          | 0.0008                | 0.0037                |

<sup>a</sup> - Measured as methane equivalent, assumed worst case

Example Formula:  $emissions\left(\frac{lon}{yr}\right) = emission factor\left(\frac{lb}{MMBtu}\right) \times Volume\left(\frac{sof}{hr}\right) \times gas heat value\left(\frac{Btu}{sof}\right) \times \frac{MMBtu}{1,000,000 Btu} \times \frac{8760 hrs}{1 yr} \times \frac{1 ton}{2,000 lbs}$ 

Emission Factor = AP-42 Tables 13.5-1 and 2 emission factor for specific pollutant Gas Heat Value = 1197 Btu/scf average of two sales gas samples taken 6-10-16

| Dollutont | Volume   | grain U25 / 100 saf | Mal Fraction | Malwaight (g/mal)  | (lb mal (cof) | Emissions | Emissions |
|-----------|----------|---------------------|--------------|--------------------|---------------|-----------|-----------|
| Pollulani | (scf/hr) | grain H25/ 100 SCI  | NOI Fraction | wor weight (g/mor) | (10-1101/501) | (lbs/hr)  | (ton/yr)  |
| SO2       | 5.00     | 15.26               | 0.0002423    | 64.00              | 1/379.4       | 0.0002    | 0.0009    |

Example Formula:

$$emissions \left(\frac{ton}{yr}\right) = Volume \left(\frac{sof}{hr}\right) \times mol \ fraction \left(\frac{H2S}{100 \ sof} \times 0.00001588\right) \times molecular \ weight \ \times \ \frac{lb \cdot mol}{sof} \times \frac{8760 \ hrs}{1 \ yr} \ \times \ \frac{1 \ ton}{2,000 \ lbs} = \frac{1000 \ sof}{100 \ sof} \times \frac{1000$$

 $\frac{1 \text{ grain H2S}}{100 \text{ orf}} = 15.26 \text{ ppm of H2S}$ 

H2S conversion taken from supporting Sulfur Measurement Handbook grain H2S/100 scf = 15.26

1 lb mol = 379.4 cubic feet

| Ground Flare and Pilot Combined |       |        |  |  |  |  |  |  |
|---------------------------------|-------|--------|--|--|--|--|--|--|
| Pollutant                       | lb/hr | ton/yr |  |  |  |  |  |  |
| CO                              | 0.622 | 2.724  |  |  |  |  |  |  |
| Nox                             | 0.136 | 0.597  |  |  |  |  |  |  |
| VOC                             | 1.373 | 6.014  |  |  |  |  |  |  |
| SO2                             | 0.082 | 0.037  |  |  |  |  |  |  |

#### Table 5 Compressor Engine Emissions (CE-1) Caterpillar G3516TALE; 4SLB CONE Midstream Devco III LP Cain Run Station

| Pollutant                            | Emission Factor       |     | PTE<br>(lb/hr) |            | PTE<br>(tons/yr) |     |
|--------------------------------------|-----------------------|-----|----------------|------------|------------------|-----|
| Critoria Bollutante                  |                       |     |                |            |                  |     |
| PM/PM10/PM2 5**                      | 9 98E-03 lb/MMBtu     | (1) | 0.11           | (a)        | 0.49             | (c) |
| SO.                                  | 5.88E-04 lb/MMBtu     | (1) | 0.01           | (a)        | 0.43             | (c) |
| NO <sup>×</sup>                      | 1.00E+00 g/bp.br      | (2) | 3.04           | (u)<br>(b) | 12.22            | (d) |
|                                      | 2.00E+00 g/hp-hr      | (2) | 6.08           | (b)        | 26.65            | (b) |
| V0C*                                 | 7 00E-01 g/hp-hr      | (2) | 2.13           | (b)        | 9.33             | (d) |
| *VOCs does not include Formaldehvde. | 1.00L of grip in      | (-/ | 2.10           | (-)        | 0.00             | (-) |
| Hazardous Air Pollutants             |                       |     |                |            |                  |     |
| 1,1,2,2-Tetrachloroethane            | 4.00E-05 lb/MMBtu     | (1) | 0.000          | (a)        | 0.002            | (c) |
| 1,1,2-Trichloroethane                | 3.18E-05 lb/MMBtu     | (1) | 0.000          | (a)        | 0.002            | (c) |
| 1,3-Butadiene                        | 2.67E-04 lb/MMBtu     | (1) | 0.003          | (a)        | 0.013            | (c) |
| 1,3-Dichloropropene                  | 2.64E-05 lb/MMBtu     | (1) | 0.000          | (a)        | 0.001            | (c) |
| 2-Methylnapthalene                   | 3.32E-05 lb/MMBtu     | (1) | 0.000          | (a)        | 0.002            | (c) |
| 2,2,4-Trimethylpentane               | 2.50E-05 lb/MMBtu     | (1) | 0.000          | (a)        | 0.001            | (c) |
| Acetaldehyde                         | 8.36E-03 lb/MMBtu     | (1) | 0.095          | (a)        | 0.414            | (c) |
| Acrolein                             | 5.14E-03 lb/MMBtu     | (1) | 0.058          | (a)        | 0.255            | (c) |
| Benzene                              | 4.40E-04 lb/MMBtu     | (1) | 0.005          | (a)        | 0.022            | (c) |
| Biphenyl                             | 2.12E-03 lb/MMBtu     | (1) | 0.024          | (a)        | 0.105            | (c) |
| Carbon Tetrachloride                 | 3.67E-05 lb/MMBtu     | (1) | 0.000          | (a)        | 0.002            | (c) |
| Chlorobenzene                        | 3.04E-05 lb/MMBtu     | (1) | 0.000          | (a)        | 0.002            | (c) |
| Chloroform                           | 2.85E-05 lb/MMBtu     | (1) | 0.000          | (a)        | 0.001            | (c) |
| Ethylbenzene                         | 3.97E-05 lb/MMBtu     | (1) | 0.000          | (a)        | 0.002            | (c) |
| Ethylene Dibromide                   | 4.43E-05 lb/MMBtu     | (1) | 0.001          | (a)        | 0.002            | (c) |
| Formaldehyde                         | 4.10E-01 g/hp-hr      | (2) | 1.247          | (b)        | 5.463            | (d) |
| Methanol                             | 2.50E-03 lb/MMBtu     | (1) | 0.028          | (a)        | 0.124            | (c) |
| Methylene Chloride                   | 2.00E-05 lb/MMBtu     | (1) | 0.000          | (a)        | 0.001            | (c) |
| n-Hexane                             | 1.11E-03 lb/MMBtu     | (1) | 0.013          | (a)        | 0.055            | (c) |
| Naphthalene                          | 7.44E-05 lb/MMBtu     | (1) | 0.001          | (a)        | 0.004            | (c) |
| PAH (POM)                            | 2.69E-05 lb/MMBtu     | (1) | 0.000          | (a)        | 0.001            | (c) |
| Phenol                               | 1.04E-05 lb/MMBtu     | (1) | 0.000          | (a)        | 0.001            | (c) |
| Styrene                              | 2.36E-05 lb/MMBtu     | (1) | 0.000          | (a)        | 0.001            | (c) |
| loluene                              | 4.08E-04 lb/MMBtu     | (1) | 0.005          | (a)        | 0.020            | (c) |
| Vinyi Chioride                       | 1.49E-05 ID/MIMBtu    | (1) | 0.000          | (a)        | 0.001            | (c) |
| Xylenes                              | 1.84E-04 ID/IVIIVIBTU | (1) | 0.002          | (a)        | 0.009            | (C) |
| Total HAP                            |                       |     | 1.485          |            | 6.506            |     |
| Greenhouse Gas Emissions             |                       |     |                |            |                  |     |
| CO <sub>2</sub>                      | 4.99E+02 g/hp-hr      | (2) | 1518.12        | (b)        | 6044.88          | (d) |
| CH <sub>4</sub>                      | 2.98E+00 g/hp-hr      | (2) | 9.07           | (b)        | 36.10            | (d) |
| N <sub>2</sub> O                     | 2.2E-04 lb/MMBtu      | (3) | 0.00           | (a)        | 0.01             | (c) |
| CO <sub>2</sub> e <sup>(e)</sup>     |                       |     | 1745.52        |            | 6950.63          |     |

\*\* includes condensible PM Calculations:

Hourly Emissions - If emission factor note 1 is used, use calculation (a). If emission factor note 2 is used, use calculation (b).

(a) Hourly Emissions (lb/hr) = Emission factor (lb/MMBtu) \* (1MMBtu/1000000 Btu) \* Engine Power Output (hp) \* BSFC (Btu/hp-hr)

(b) Hourly Emissions (lb/hr) = Emission factor (g/hp-hr) \* Engine Power Output (hp) \* (lb/453.6g)

Annual Emissions - If emission factor note 1 is used, use calculation (c). If emission factor note 2 is used, use calculation (d).

(c) Annual emissions (tons/yr) = Emission factor (lb/MMBtu) \* (1MMBtu/100000Btu) \* Engine Power Output (hp) \* BSFC (Btu/hp-hr) \* Annual Hours of operation (hr/yr) \* (1ton/2000lbs)

(d) Annual emissions (tons/yr) = Emission factor (g/hp-hr) \* Engine Power Output (hp) \* Annual Hours of operation (hr/yr) \* (1ton/2000lbs) \* (lb/453.6g)

| MAXIMUM HOURLY EMISSION INP                                                                          | UTS                                      |               |                                           |                                   |
|------------------------------------------------------------------------------------------------------|------------------------------------------|---------------|-------------------------------------------|-----------------------------------|
| Engine Power Output (kW) =                                                                           | 1029                                     |               |                                           |                                   |
| Engine Power Output (hp) =                                                                           | 1,380                                    |               |                                           |                                   |
| Number of Engines =                                                                                  | 1                                        |               |                                           |                                   |
| BSFC (BTU/HP-hr) =                                                                                   | 8,200                                    | (4)           |                                           |                                   |
| Heat Content Natural Gas(Btu/scf) =                                                                  | 1,205.0                                  | (5)           |                                           |                                   |
| Fuel Throughput (ft3/hr) =                                                                           | 9,390.9                                  | (6)           |                                           |                                   |
| PTE Hours of Operation =                                                                             | 8,760                                    |               |                                           |                                   |
| (e) CO <sub>2</sub> equivalent = [(CO <sub>2</sub> emissions)*(GWP<br>Global Warming Potential (GWP) | 2 <sub>CO2</sub> )]+[(CH <sub>4</sub> em | nissions)*(GV | VP <sub>CH4</sub> )]+[(N <sub>2</sub> Ο ε | emissions)*(GWP <sub>N2O</sub> )] |
|                                                                                                      | CO2                                      | 1             | (7)                                       |                                   |
|                                                                                                      | $CH_4$                                   | 25            | (7)                                       |                                   |
|                                                                                                      | N <sub>2</sub> O                         | 298           | (7)                                       |                                   |

Notes

(1) AP-42, Chapter 3.2, Table 3.2-2. Natural Gas-fired Reciprocating Engines (7/00). Uncontrolled Emission Factors for 4-Stroke Lean-Burn Engines.

(2) Emission factors supplied from manufacturer's specification sheet

(3) Emission factors supplied from 40 CFR 98, Subpart C, Table C-1 and C-2.

(4) Fuel consumption from manufacturer's specification sheet.

(5) Value obtained from AP-42, Chapter 3.2, Table 3.2-1, footnote b
(6) Fuel throughput = BSFC (BTU/HP-hr) x Power (HP) / Heat Content (BTU/scf)

(7) Global Warming Potentials obtained from 40 CFR 98, Subpart A, Table A-1

## Table 6 Compressor Blowdown Venting Emissions Caterpillar G3516TALE; 4SLB CONE Midstream Devco III LP Cain Run Station

| Pollutant        | Volume<br>(scf/event) | Moles | Molecular<br>Weight of Gas | lbs VOC/event | Events per<br>Year | Emissions<br>(lbs/hr) | Emissions<br>(ton/yr) |
|------------------|-----------------------|-------|----------------------------|---------------|--------------------|-----------------------|-----------------------|
| VOC <sup>a</sup> | 6,163                 | 16.01 | 19.90                      | 47            | 60                 | 46.53                 | 1.40                  |
| CO2e             |                       |       |                            |               |                    | 36.30                 | 157.75                |

Measured VOC content of GPU Gas from Oxford 11-K GPU outlet gas.

## ATTACHMENT O

# MONITORING/RECORDKEEPING/REPORTING/ TESTING PLANS

# **45CSR13 Permit Modification Application**

Cain Run Station New Milton, West Virginia

CONE Midstream Devco III LP 1000 Consol Energy Drive Canonsburg, PA 15317

July 2017

## Monitoring

Since the compressor at this station will commence construction after September 18, 2015, the fugitive components will become subject to the equipment leak standards of §60.5397a. As a result, the source will be required to develop and implement a fugitive monitoring plan and conduct quarterly OGI surveys. The initial survey will be required within 60 days of startup or by June 3, 2017, whichever is later in accordance with §60.5397a(f)(2). However, on April 18, 2017 the USEPA Administrator, E. Scott Pruitt, issued a letter of reconsideration based on comments received from industry groups on August 2, 2016. This letter authorizes a 90 day stay of the compliance date for fugitive emissions monitoring requirements.

In addition to that mentioned above, CONE will at a minimum monitor hours of operation, site production throughputs, malfunctions of equipment, as well as planned and unplanned maintenance of permitted equipment comprising the facility.

## Recordkeeping

CONE will retain records of the following for five (5) years, two (2) years on site, certified by a company official at such time that the DAQ may request said records

Records of maintenance conducted on the engine shall be kept in accordance with §60.4243(b)(2)(ii)).

The reciprocating compressor itself will also be subject to the rod packing standards of §60.5385a that require them to be replaced/rebuilt every 26,000 hrs or 3 years. Records shall be maintained based on months or hours of operations since initial startup and each subsequent rebuild or replacement of the compressor's rod packing.

In addition to those mentioned above, the company will keep records of the items monitored, such as station throughput, hours of operation, planned maintenance activities, unplanned maintenance activities, and complaints regarding the facility.

## Reporting

CONE, at a minimum, will submit results of initial performance test and subsequent performance testing to the EPA Regional Office within sixty (60) days of completion of such tests. In addition, the company will report any control equipment malfunctions or emission limit deviations.

## Testing

CONE will demonstrate initial compliance by conducting a performance test as specified in §60.4244 showing the emission limitations in Table 1 to Subpart JJJJ of Part 60 are

being met. Subsequent performance testing shall be conducted every 8,760 hours or 3 years, whichever comes first, thereafter to demonstrate compliance.

# ATTACHMENT P

# **PUBLIC NOTICE**

# **45CSR13 Permit Modification Application**

Cain Run Station New Milton, West Virginia

CONE Midstream Devco III LP 1000 Consol Energy Drive Canonsburg, PA 15317

July 2017

## AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that CONE Midstream Devco III LP has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a Rule 13 Permit Modification, for a natural gas compressor and dehydration station located off S. Fork of Hughes River, near New Milton, in Doddridge County, West Virginia. The latitude and longitude coordinates are 39.17070 and -80.76350.

The applicant estimates the increased potential to discharge of the following Regulated Air Pollutants will be:

| Pollutant       | Tons/yr |  |  |
|-----------------|---------|--|--|
| PM/PM10/PM2.5   | 0.06    |  |  |
| NO <sub>x</sub> | 0.16    |  |  |
| CO              | 0.13    |  |  |
| VOCs            | 5.00    |  |  |
| Benzene         | 0.14    |  |  |
| Toluene         | 0.59    |  |  |
| Xylenes         | 0.68    |  |  |
| n-Hexane        | 0.15    |  |  |
| Formaldehyde    | 0.27    |  |  |
| Total HAPs      | 1.90    |  |  |

Startup of operation is planned to begin in the 4<sup>th</sup> quarter of 2017. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57<sup>th</sup> Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the XX day of June, 2017.

By: CONE Midstream Devco III LP Joseph Fink Chief Operating Officer 1000 Consol Energy Drive Canonsburg, PA 15317