

June 9, 2017

Mr. William F. Durham Director WVDEP, Division of Air Quality 601 – 57th Street SE Charleston, West Virginia 25304

Re: EQT Production Company, General G70-D Permit Application, GLO176 Well Pad

Dear Mr. Durham,

Enclosed are two electronic copies and one original hard copy of a proposed application for a G70-D General Air Permit for the GLO176 Well Pad. A legal advertisement will be published in the next few days and proof of publication will be forwarded as soon as it is received. Please contact me for payment of the application fee by credit card.

If you have any questions concerning this permit application, please contact me at (412) 395-3699 or by e-mail at abosiljevac@eqt.com

Sincerely,

Alex Bosiljevac EQT Corporation

PROJECT REPORT

EQT Production GLO 176 Pad

G70-D Permit Application

Where energy meets innovation.

TRINITY CONSULTANTS 4500 Brooktree Drive Suite 103 Wexford, PA 15090 (724) 935-2611

May 2017

EHS Solutions Delivered Uncommonly Well

1. INTRODUCTION	4
1.1. FACILITY AND PROJECT DESCRIPTION	4
1.2. SOURCE STATUS	4
1.3. G70-D APPLICATION ORGANIZATION	5
2. SAMPLE EMISSION SOURCE CALCULATIONS	6
3. REGULATORY DISCUSSION	7
3.1. Prevention of Significant Deterioration Source Classification	7
3.2. Title V Operating Permit Program	7
3.3. New Source Performance Standards	7
3.3.1 NSPS Subparts D. Da. Db. and Dc. – Steam Generating Units	8
3.3.2 NSPS Subparts K. Ka. and Kh. – Storage Vessels for Petroleum Liquids/Volatile Organic Liquids	8
3.3.3. NSPS Subparts IIII – Stationary Spark Ignition Internal Combustion Engines	8
3.3.4. NSPS Subpart 0000 - Crude Oil and Natural Gas Production. Transmission. and Distribution	8
3.3.5. NSPS Subpart 0000a—Crude Oil and Natural Gas Facilities	8
3.3.6. Non-Applicability of All Other NSPS	9
3.4. National Emission Standards for Hazardous Air Pollutants	9
3.4.1. 40 CFR 63 Subpart HH – Oil and Natural Gas Production Facilities	10
3.4.2. 40 CFR 63 Subpart ZZZZ – Stationary Reciprocating Internal Engines	10
3.4.3. 40 CFR 63 Subpart JJJJJJ – Industrial, Commercial, and Institutional Boilers	10
3.5. West Virginia SIP Regulations	10
3.5.1. 45 CSR 2: To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat	ī
Exchangers	10
3.5.2. 45 CSR 4: To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contr	ibutes
to an Objectionable Odor	10
3.5.3. 45 CSR 16: Standards of Performance for New Stationary Sources	10 nation
Storage and Other Sources of Fugitive Particulate Matter	10 II,
3.5.5. 45 CSR 21-28: Petroleum Liquid Storage in Fixed Roof Tanks	11
3.5.6. 45 CSR 34: Emissions Standards for Hazardous Air Pollutants	11
3.5.7. Non-Applicability of Other SIP Rules	11
4. G70-D APPLICATION FORMS	12
ATTACHMENT A: SINGLE SOURCE DETERMINATION	
ATTACHMENT B: SITING CRITERIA WAIVER (NOT APPLICABLE)	
ATTACHMENT C: BUSINESS CERTIFICATE	
ATTACHMENT D: PROCESS FLOW DIAGRAM	
ATTACHMENT E: PROCESS DESCRIPTION	

ATTACHMENT F: PLOT PLAN ATTACHMENT G: AREA MAP ATTACHMENT H: G70-D SECTION APPLICABILITY FORM **ATTACHMENT I: EMISSION UNITS TABLE** ATTACHMENT J: FUGITIVE EMISSIONS SUMMARY SHEET ATTACHMENT K: GAS WELL DATA SHEET ATTACHMENT L: STORAGE VESSEL DATA SHEET ATTACHMENT M: HEATERS DATA SHEET ATTACHMENT N: ENGINES DATA SHEET ATTACHMENT O: TRUCK LOADING DATA SHEET ATTACHMENT P: GLYCOL DEHYDRATOR DATA SHEET (NOT APPLICABLE) ATTACHMENT Q: PNEUMATIC CONTROLLER DATA SHEET ATTACHMENT R: PNEUMATIC PUMP DATA SHEET (NOT APPLICABLE) ATTACHMENT S: AIR POLLUTION CONTROL DEVICE DATA SHEET ATTACHMENT T: EMISSION CALCULATIONS ATTACHMENT U: EMISSION SUMMARY SHEET ATTACHMENT V: CLASS I LEGAL ADVERTISEMENT ATTACHMENT W: GENERAL PERMIT REGISTRATION APPLICATION FEE

EQT Production Company (EQT) is submitting this Class II General Permit (G70-D) application to the West Virginia Department of Environmental Protection (WVDEP) for the construction and operation of equipment at a natural gas production well pad, GLO 176, located in Marion County, West Virginia. Note that the pad was formerly owned by Transenergy as the Wright Pad.

EQT is seeking this general permit since it is planning to drill and hydraulically fracture two (2) wells at the GLO 176 wellpad, which would be subject to LDAR requirements under the New Source Performance Standards (NSPS) Subpart OOOOa. WVDEP has determined that LDAR work practice requirements under this regulations are substantive requirements, and as such, require general permits. Except for LDAR requirements, the wellpad would be exempt from permitting as emissions are below applicable thresholds.

1.1. FACILITY AND PROJECT DESCRIPTION

The GLO 176 pad is a natural gas production facility that will consists of two (2) natural gas wells. Natural gas and liquids (including water and condensate) are extracted from deposits underneath the surface. Natural gas is transported from the well to a gas line for additional processing and compression, as necessary. The liquids produced are stored in storage vessels.

This application seeks to permit the following equipment:

- > Four (4) 400 barrel (bbl) storage tanks for condensate/water (produced fluids);
- > One (1) 100 bbl storage tanks for sand and produced fluids from the sand separator;
- > Four (4) line heaters, each rated at 1.54 MMBtu/hr (heat input);
- > One (1) thermoelectric generator, each rated at 0.013 MMBtu/hr (heat input);
- > Produced fluid truck loading; and
- > Associated piping and components.

A process flow diagram is included as Attachment D. A comparison of the potential emissions of the proposed equipment at the wellpad in comparison with G70-D emission limits is provided in Table 1. Facility emissions are well below the permit limits. Note that in accordance with condition 1.1.1. of the G70-D permit, fugitive emissions are not considered in determining eligibility of the permit.

Pollutant	Wellpad Potential Annual Emissions (tpy)	G70-D Maximum Annual Emission Limits (tpy)
Nitrogen Oxides	2.57	50
Carbon Monoxide	2.16	80
Volatile Organic Compounds	0.19	80
Particulate Matter – 10/2.5	0.20	20
Sulfur Dioxide	0.02	20
Individual HAP (n-hexane) ¹	0.11	8
Total HAP ¹	0.05	20

Гable 1 ·	Comparison	of Wellpad	Potential	Emissions to	G70-D	Permit	Emission	Limits

1. Includes fugitive emissions

1.2. SOURCE STATUS

WVDEP must make stationary source determinations on a case-by-case basis using the guidance under the Clean Air Act (CAA) and EPA's and WVDEP's implementing regulations. The definition of stationary source in 40 CFR 51.166(b) includes the following:

"(6) Building, structure, facility, or installation means all of the pollutant emitting activities which belong to the same industrial grouping, are located on or more contiguous or adjacent properties, and are under control of the same person (or persons under common control)."

Other additional pollutant emitting facilities should be aggregated with the GLO 176 Pad for air permitting purposes if, and only if, all three elements of the "stationary source" definition above are fulfilled.

There are no Marcellus facilities within a quarter-mile radius of the GLO 176 Pad. Therefore, the GLO 176 pad should be considered a separate stationary source with respect to permitting programs, including Title V and Prevention of Significant Deterioration (PSD). As discussed in this application, the facility is a minor source of air emissions with respect to New Source Review (NSR) and Title V permitting.

1.3. G70-D APPLICATION ORGANIZATION

This West Virginia Code of State Regulations, Title 45 (CSR) Series 13 (45 CSR 13) G70-D permit application is organized as follows:

- > Section 2: Sample Emission Source Calculations;
- > Section 3: Regulatory Discussion;
- > Section 4: G70-D Application Form;
- > Attachment A: Single Source Determination;
- > Attachment B: Siting Criteria Waiver (Not Applicable);
- > Attachment C: Business Certificate;
- > Attachment D: Process Flow Diagram;
- > Attachment E: Process Description;
- > Attachment F: Plot Plan;
- > Attachment G: Area Map;
- > Attachment H: G70-D Section Applicability Form;
- > Attachment I: Emission Units Table;
- > Attachment J: Fugitive Emissions Summary Sheet;
- > Attachment K: Gas Well Data Sheet;
- > Attachment L: Storage Vessel Data Sheet;
- > Attachment M: Heaters Data Sheet;
- > Attachment N: Engines Data Sheet;
- > Attachment O: Truck Loading Data Sheet;
- > Attachment P: Glycol Dehydrator Data Sheet (Not Applicable);
- > Attachment Q: Pneumatic Controller Data Sheet;
- > Attachment R: Pneumatic Pump Data Sheet (Not Applicable);
- > Attachment S: Air Pollution Control Device Data Sheet (Not Applicable);
- > Attachment T: Emission Calculations;
- > Attachment U: Emission Summary Sheet;
- > Attachment V: Class I Legal Advertisement; and
- > Attachment W: General Permit Registration Application Fee.

The characteristics of the air emissions from the natural gas production operations, along with the methodology for calculating these emissions, are briefly described in this section of the application. Detailed emission calculations are presented in Attachment T of this application.

Emissions from this project will result from natural gas combustion in the line heaters, thermoelectric generators, as well as storage of organic liquids in storage tanks and loading of organic liquids into tank trucks. In addition, fugitive emissions will result from component leaks from the operation of the station. The method by which emissions from each of these source types, as well as the existing source types, are calculated is summarized below.

- Line Heaters: Potential emissions of criteria pollutants and hazardous air pollutants (HAPs) are calculated using U.S. EPA's AP-42 factors for natural gas external combustion.¹ These calculations assume a site-specific heat content of natural gas. Greenhouse gas emissions are calculated according to 40 CFR 98 Subpart C.²
- Fugitive Equipment Leaks: Emissions of VOC and HAPs from leaking equipment components have been estimated using facility estimated component counts and types along with emission factors from the *Protocol for Equipment Leak Emission Estimates, EPA 453/R-95-017, November 1995.* Emission factors are based on average measured TOC from component types indicated. Greenhouse gas emissions from component leaks are calculated according to the procedures in 40 CFR 98 Subpart W.³ Pneumatic devices at the wellpad are intermittent bleed and are assumed to be in operation 1/3 of the year.
- Storage Tanks: Working, breathing and flashing emissions of VOC and HAPs from the storage tanks at the facility are calculated using Bryan Research & Engineering ProMax® Software. The wellpad is not expected to produce condensate but will generate produced water. The throughput for the produced fluids tanks are based on the maximum annualized monthly produced water at the nearby Shaver Pad (i.e., the maximum monthly throughput for the pad times 12) and includes a safety factor of one hundred and twenty percent. The composition for the analysis was from a sample taken at GLO 176. Emissions of VOC and HAPs from the sand separator tank are calculated using ProMax. The produced fluids throughput is calculated as follows:

- Tank Truck Loading: Uncontrolled emissions of VOC and HAPs from the loading of organic liquids from storage tanks to tank truck are calculated using Bryan Research Engineering ProMax® Software. U.S. EPA's AP-42 Chapter 5 Section 2 factors were used for capture efficiency.⁴
- Haul Roads: Fugitive dust emitted from facility roadways has been estimated using projected vehicle miles traveled along with U.S. EPA's AP-42 factors for unpaved haul roads.⁵

¹U.S. EPA, AP 42, Fifth Edition, Volume I, Chapter 1.4, Natural Gas Combustion, Supplement D, July 1998.

² 40 CFR 98 Subpart C, General Stationary Fuel combustion Sources, Tables C-1 and C-2.

³ 40 CFR 98 Subpart W, Petroleum and Natural Gas Systems, Section 98.233(r), Population Count and Emission Factors.

⁴ U.S. EPA, AP 42, Fifth Edition, Volume I, Chapter 5.2, Transportation And Marketing Of Petroleum Liquids, June 2008.

⁵ U.S. EPA, AP 42, Fifth Edition, Volume I, Section 13.2.2, Unpaved Roads, November 2006.

This section documents the applicability determinations made for Federal and State air quality regulations. In this section, applicability or non-applicability of the following regulatory programs is addressed:

- > Prevention of Significant Deterioration permitting;
- > Title V of the 1990 Clean Air Act Amendments;
- > New Source Performance Standards (NSPS);
- > National Emission Standards for Hazardous Air Pollutants (NESHAP); and
- > West Virginia State Implementation Plan (SIP) regulations.

This review is presented to supplement and/or add clarification to the information provided in the WVDEP G70-D permit application forms.

In addition to providing a summary of applicable requirements, this section of the application also provides nonapplicability determinations for certain regulations, allowing the WVDEP to confirm that identified regulations are not applicable to the wellpad. Note that explanations of non-applicability are limited to those regulations for which there may be some question of applicability specific to the operations at the wellpad. Regulations that are categorically nonapplicable are not discussed (e.g., NSPS Subpart J, Standards of Performance for Petroleum Refineries).

3.1. PREVENTION OF SIGNIFICANT DETERIORATION SOURCE CLASSIFICATION

Federal construction permitting programs regulate new and modified sources of attainment pollutants under Prevention of Significant Deterioration. PSD regulations apply when a major source makes a change, such as installing new equipment or modifying existing equipment, and a significant increase in emissions results from the change. The wellpad is not a major source with respect to the PSD program since its potential emissions are below all the PSD thresholds. As such, PSD permitting is not triggered by this construction activity. EQT will monitor future construction activities at the site closely and will compare any future increase in emissions with the PSD thresholds to ensure these activities will not trigger this program.

3.2. TITLE V OPERATING PERMIT PROGRAM

Title 40 of the Code of Federal Regulations Part 70 (40 CFR 70) establishes the federal Title V operating permit program. West Virginia has incorporated the provisions of this federal program in its Title V operating permit program in West Virginia CSR 45-30. The major source thresholds with respect to the West Virginia Title V operating permit program regulations are 10 tons per year (tpy) of a single HAP, 25 tpy of any combination of HAP and 100 tpy of all other regulated pollutants. The potential emissions of all regulated pollutants are below the corresponding threshold(s) at this facility after the proposed project. Therefore, the wellpad is not a major source for Title V purposes.

3.3. NEW SOURCE PERFORMANCE STANDARDS

New Source Performance Standards, located in 40 CFR 60, require new, modified, or reconstructed sources to control emissions to the level achievable by the best demonstrated technology as specified in the applicable provisions. Moreover, any source subject to an NSPS is also subject to the general provisions of NSPS Subpart A, except where expressly noted. The following is a summary of applicability and non-applicability determinations for NSPS regulations of relevance to the wellpad. The following NSPS could potentially apply to the wellpad:

- > 40 CFR Part 60 Subparts D/Da/Db/Dc Steam Generating Units
- > 40 CFR Part 60 Subpart K/Ka/Kb Storage Vessels for Petroleum Liquids/Volatile Organic Liquids
- > 40 CFR Part 60 Subpart JJJJ Stationary Spark Ignition Internal Combustion Engines

- > 40 CFR Part 60 Subpart 0000 Crude Oil and Natural Gas Production, Transmission, and Distribution
- > 40 CFR Part 60 Subpart 0000a Crude Oil and Natural Gas Facilities

3.3.1. NSPS Subparts D, Da, Db, and Dc - Steam Generating Units

These subparts apply to steam generating units of various sizes, all greater than 10 MMBtu/hr. The proposed project does not include any steam generating units with a heat input greater than 10 MMbtu/hr, therefore the requirements of these subparts do not apply.

3.3.2. NSPS Subparts K, Ka, and Kb - Storage Vessels for Petroleum Liquids/Volatile Organic Liquids

These subparts apply to storage tanks of certain sizes constructed, reconstructed, or modified during various time periods. Subpart K applies to storage tanks constructed, reconstructed, or modified prior to 1978, and Subpart Ka applies to those constructed, reconstructed, or modified prior to 1984. Both Subparts K and Ka apply to storage tanks with a capacity greater than 40,000 gallons. Subpart Kb applies to volatile organic liquid (VOL) storage tanks constructed, reconstructed, or modified after July 23, 1984 with a capacity equal to or greater than 75 m³ (~19,813 gallons). All of the tanks at the wellpad have a capacity of 19,813 gallons or less. As such, Subparts K, Ka, and Kb do not apply to the storage tanks at the wellpad.

3.3.3. NSPS Subparts JJJJ - Stationary Spark Ignition Internal Combustion Engines

New Source Performance Standards 40 CFR Part 60 Subpart JJJJ (NSPS JJJJ) affects owners and operators of stationary spark ignition internal combustion engines (SI ICE) that commence construction, reconstruction or modification after June 12, 2006. Applicability dates are based on the date the engine was ordered by the operator. The proposed project will not include a SI ICE, as such, this subpart will not apply.

3.3.4. NSPS Subpart OOOO - Crude Oil and Natural Gas Production, Transmission, and Distribution

Subpart OOOO, Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution, applies to affected facilities that commenced construction, reconstruction, or modification after August 23, 2011 and or before September 18, 2015. This NSPS was published in the Federal Register on August 16, 2012, and subsequently amended. The proposed project does not change applicability dates with respect to NSPS Subpart OOOO for existing equipment. Therefore, this subpart is not applicable to the proposed project.

3.3.5. NSPS Subpart OOOOa-Crude Oil and Natural Gas Facilities

Subpart OOOOa, Standards of Standards of Performance for Crude Oil and Natural Gas Facilities, applies to affected facilities that commenced construction, reconstruction, or modification after September 18, 2015. The regulation was published final in the Federal Register on June 3, 2016. The rule includes provisions for the following facilities:

- > Hydraulically fractured wells;
- Centrifugal compressors located between the wellhead and the point of custody transfer to the natural gas distribution segment;
- Reciprocating compressors located between the wellhead and the point of custody transfer to the natural gas distribution segment;
- Continuous bleed natural gas-driven pneumatic controllers with a bleed rate of > 6 scfh located in the production, gathering, processing, or transmission and storage segments (excluding natural gas processing plants);
- > Continuous bleed natural gas-driven pneumatic controllers located at natural gas processing plants;
- > Pneumatic pumps located in the production and processing segments;
- > Storage vessels located in the production, gathering, processing, or transmission and storage segments;

- > The collection of fugitive emissions components at a well site;
- > The collection of fugitive emissions components at a compressor station; and
- > Sweetening units located onshore that process natural gas produced from either onshore or offshore wells.

Based on the rule, the following paragraphs describe the applicability of the facilities to be located at the proposed facility.

There are four (4) produced fluid storage vessels at the wellpad. The storage vessels at the facility will each have potential VOC emissions less than 6 tpy based on the permit application materials and enforceable limits to be included in the G70-D permit. As such, per 60.5365a(e), the tanks will not be storage vessel affected facilities under the rule.

Due to the proposed drilling and hydraulically fracturing of the two (2) wells at the pad, the wellpad will be subject to the requirements of hydraulically fractured wells under 40 CFR 60 Subpart OOOOa–Standards of Performance for Crude Oil and Natural Gas Facilities per 60.5365a(i). Therefore, EQT will be required to monitor all fugitive emission components (ex. connectors, flanges, etc.) with an optical gas imaging (OGI) device, and repair all sources of fugitive emissions in accordance with the rule. EQT must also develop a corporate-wide monitoring plan and a site specific monitoring plan (or one plan that incorporates all required elements), and conduct surveys on a semi-annual basis. EQT is also subject to the applicable recordkeeping and reporting requirements of the rule.

The new pneumatic controllers will potentially be subject to NSPS 0000a. Per 60.5365a(d)(1), a pneumatic controller affected facility is a single continuous bleed natural gas driven pneumatic controller operating at a natural gas bleed rate greater than 6 scfh. No pneumatic controllers installed will meet the definition of a pneumatic controller affected facility. Therefore, these units are not subject to the requirements of Subpart 0000a.

As part of this application, EQT will not be installing any pneumatic pumps as part of the well pad.

3.3.6. Non-Applicability of All Other NSPS

NSPS are developed for particular industrial source categories. Other than NSPS developed for natural gas processing plants (Subparts 0000) and associated equipment (Subparts D-Dc and K-Kb), the applicability of a particular NSPS to the wellpad can be readily ascertained based on the industrial source category covered. All other NSPS are categorically not applicable to the proposed project.

3.4. NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS

Part 63 NESHAP allowable emission limits are established on the basis of a maximum achievable control technology (MACT) determination for a particular major source. A HAP major source is defined as having potential emissions in excess of 25 tpy for total HAP and/or potential emissions in excess of 10 tpy for any individual HAP. The wellpad is an Area (minor) source of HAP since its potential emissions of HAP are less than the 10/25 major source thresholds. NESHAP apply to sources in specifically regulated industrial source categories (Clean Air Act Section 112(d)) or on a case-by-case basis (Section 112(g)) for facilities not regulated as a specific industrial source type. Besides 40 CFR 63 Subpart A (NESHAP Subpart A), which is similar to 40 CFR 60 Subpart A (NSPS Subpart A), the following NESHAP could potentially apply to the wellpad:

- > 40 CFR Part 63 Subpart HH Oil and Natural Gas Production Facilities
- > 40 CFR Part 63 Subpart ZZZZ Stationary Reciprocating Internal Combustion Engines
- > 40 CFR Part 63 Subpart JJJJJJ Industrial, Commercial, and Institutional Boilers

The applicability of these NESHAP Subparts is discussed in the following sections.

3.4.1. 40 CFR 63 Subpart HH - Oil and Natural Gas Production Facilities

This standard contains requirements for both major and area sources of HAP. At area sources, the only affected source is a triethylene glycol dehydration unit (§63.760(b)(2)). The wellpad does not include a triethylene glycol dehydration unit; therefore the requirements of this subpart do not apply.

3.4.2. 40 CFR 63 Subpart ZZZZ - Stationary Reciprocating Internal Engines

This rule affects reciprocating internal combustion engines (RICE) located at a major and area sources of HAP. The wellpad does not include a stationary RICE; therefore the requirement of this subpart do not apply.

3.4.3. 40 CFR 63 Subpart JJJJJJ - Industrial, Commercial, and Institutional Boilers

This MACT standard applies to industrial, commercial, and institutional boilers of various sizes and fuel types at area sources. The line heaters are natural gas-fired and are specifically exempt from this subpart. Therefore, no sources at the wellpad are subject to any requirements under 40 CFR 63 Subpart JJJJJJ.

3.5. WEST VIRGINIA SIP REGULATIONS

The wellpad is potentially subject to regulations contained in the West Virginia Code of State Regulations, Chapter 45 (Code of State Regulations). The Code of State Regulations fall under two main categories, those regulations that are generally applicable (e.g., permitting requirements), and those that have specific applicability (e.g., PM standards for manufacturing equipment).

3.5.1. 45 CSR 2: To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers

45 CSR 2 applies to fuel burning units, defined as equipment burning fuel "for the primary purpose of producing heat or power by indirect heat transfer". The line heaters are fuel burning units and therefore must comply with this regulation. Per 45 CSR 2-3, opacity of emissions from units shall not exceed 10 percent.

3.5.2. 45 CSR 4: To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contributes to an Objectionable Odor

According to 45 CSR 4-3:

No person shall cause, suffer, allow or permit the discharge of air pollutants which cause or contribute to an objectionable odor at any location occupied by the public.

The wellpad is generally subject to this requirement. However, due to the nature of the process at the wellpad, production of objectionable odor from the wellpad during normal operation is unlikely.

3.5.3. 45 CSR 16: Standards of Performance for New Stationary Sources

45 CSR 16-1 incorporates the federal Clean Air Act (CAA) standards of performance for new stationary sources set forth in 40 CPR Part 60 by reference. As such, by complying with all applicable requirements of 40 CFR Part 60 at the wellpad, EQT will be complying with 45 CSR 16.

3.5.4. 45 CSR 17: To Prevent and Control Particulate Matter Air Pollution from Materials Handling, Preparation, Storage and Other Sources of Fugitive Particulate Matter

According to 45 CSR 17-3.1:

EQT Production, LLC | GLO 176 Pad Trinity Consultants No person shall cause, suffer, allow or permit fugitive particulate matter to be discharged beyond the boundary lines of the property lines of the property on which the discharge originates or at any public or residential location, which causes or contributes to statutory air pollution.

Due to the nature of the activities at the wellpad, it is unlikely that fugitive particulate matter emissions will be emitted under normal operating conditions. However, EQT will take measures to ensure any fugitive particulate matter emissions will not cross the property boundary should any such emissions occur.

3.5.5. 45 CSR 21-28: Petroleum Liquid Storage in Fixed Roof Tanks

45 CSR 21-28 applies to any fixed roof petroleum liquid storage tank with a capacity greater than 40,000 gallons. The capacity of each storage tank proposed for the wellpad is less than 40,000 gallons; therefore, 45 CSR 21-28 will not apply to the petroleum liquid storage tanks at this wellpad.

3.5.6. 45 CSR 34: Emissions Standards for Hazardous Air Pollutants

45 CSR 34-1 incorporates the federal Clean Air Act (CAA) national emissions standards for hazardous air pollutants (NESHAPs) as set forth in 40 CPR Parts 61 and 63 by reference. As such, by complying with all applicable requirements of 40 CFR Parts 61 and 63 at the wellpad, EQT will be complying with 45 CSR 34. Note that there are no applicable requirements under 40 CFR Parts 61 and 63 for the wellpad.

3.5.7. Non-Applicability of Other SIP Rules

A thorough examination of the West Virginia SIP rules with respect to applicability at the wellpad reveals many SIP regulations that do not apply or impose additional requirements on operations. Such SIP rules include those specific to a particular type of industrial operation that is categorically not applicable to the wellpad.

The WVDEP permit application forms contained in this application include all applicable G70-D application forms including the required attachments.

dep	west virginia depar	Division of Air Quality 601 57 th Street SE Charleston, WV 25 4 Phone (304) 926-0475 Fax (304) 926-0479 www.dep.wv.gov		
G70-D GE	NERAL PERM	IT REGI	STRATION A	PPLICATION
PREVENTION AND	CONTROL OF AIR POLL RELOCATION, ADMIN TURAL GAS PRODUCTIO	UTION IN REG ISTRATIVE UP ON FACILITIE:	ARD TO THE CONSTRU DATE AND OPERATION S LOCATED AT THE WE	UCTION, MODIFICATION, N OF ELL SITE
	ICTION ATION ION		LASS I ADMINISTRATIV LASS II ADMINISTRATIV	'E UPDATE VE UPDATE
Part and the second	SECTION	1. GENERAL I	NFORMATION	weeten and the second second such
Name of Applicant (as	registered with the WV Seco	retary of State's	Office) EQT Production	Сотрапу
Federal Employer ID 1	lo: (FEIN): 25-0724685			
Applicant's Mailing A	ddress: 625 Liberty Avenue	, Suite 1700		
City: Pittsburgh	State	PA		ZIP Code: 15222
Facility Name: GLO 1	76			
Operating Site Physics If none available, list	I Address: See lat/long oad, city or town and zip of	facility.		
City: Coburn	Zip C	ode: 26582		County: Marion
Latitude & Longitude Latitude: 39,588137° Longitude: -80,43800	Coordinates (NAD83, Decim 7°	al Degrees to 5	digits)	
SIC Code: 1311 NAICS Code: 211111	ne contra	DA	Q Facility ID No. (For exis	ting facilities)
	CERTIF	ICATION OF IN	FORMATION	
Official is a President Directors, or Owner, d authority to bin Proprietorship. Re compliance certif Representative. If a bu off and the approp unsigned G70-D Regi utilized, t I hereby certify thati business (e.g., Corpora may obligate and legal shall notify the Direct	Vice President, Secretary, Vice President, Secretary, epending on business structu d the Corporation, Partnersh quired records of daily throu cations and all required noti siness wishes to certify an A vitate names and signatures e stration Application will be the application will be return <u>Mike Gavin</u> is an Authoriz tition, Partnership, Limited L ly bind the business. If the b or of the Division of Air Qua	Treasurer, Gener Treasurer, Gener are. A business n ip, Limited Liabi ghput, hours of fications must be withorized Repre- entered. Any adr e returned to the red to the appli- ted Representative iability Company pusiness changes ality immediately	al Partner, General Manag al Partner, General Manag hay certify an Authorized F lity Company, Association operation and maintenance e signed by a Responsible (sentative, the official agreen ninistratively incomplete e applicant. Furthermore cant. No substitution of e and in that capacity shally, Association Joint Ventur its Authorized Representation	er, a member of the Board of lepresentative who shall have , Joint Venture or Sole , general correspondence, Official or an Authorized ement below shall be checked or improperly signed or , if the G70-D forms are no forms is allowed. I represent the interest of the re or Sole Proprietorship) and tive, a Responsible Official
I hereby certify that al documents appended h have been made to pro	I information contained in the ereto is, to the best of my kr vide the most comprehensive	tis G70-D Gener towledge, true, a e information po	al Permit Registration App courate and complete, and ssible.	lication and any supporting that all reasonable efforts
Responsible Official S Name and Title: Mike Email: gavinm@eqt.co	ignature Gavin, Vice President m	Date Phone 7	/17 Fax	
If applicable Authorized Representa Name and Title Email	tive Signature	Phone Date	Fax	
If applicable Environmental Contac Name and Title: Alex Email: ABosilievac@e	Bosiljevac, Environmental C qt.com	oordinator Date	Phone 412-395-3699	Fax: 412-395-7027

OPERATING SITE INFORMATION						
Briefly describe the proposed new operation and/or any chang	ge(s) to the facility:					
EQT Production Company (EQT) is submitting this Class II General Permit (G70-D) application to the West Virginia Department of Environmental Protection (WVDEP) for the construction and operation of equipment at a natural gas production well pad, GLO 176, located in Marion County, West Virginia. Note that the pad was formerly owned by Transenergy as the Wright Pad.						
Directions to the facility:						
From Logansport, WV, head south on Buffalo Rd toward Curt right to continue on Glovers Gap- Seven Pines. Turn Sharp let	isville Pike for 1.2 miles. Continue onto 7 Pines Rd. Keep ft onto Co Rd 4/4/Murray Run. Arrive at station at right					
ATTACHMENTS AND SU	PPORTING DOCUMENTS					
I have enclosed the following required document	ts:					
Check payable to WVDEP – Division of Air Quality with the	appropriate application fee (per 45CSR13 and 45CSR22).					
 □ Check attached to front of application. □ I wish to pay by electronic transfer. Contact for payment (incl. name and email address): ⊠ I wish to pay by credit card. Contact for payment (incl. name and email address): R. Alex Bosiljevac, abosiljevac@eqt.com ⊠ \$500 (Construction, Modification, and Relocation) □ \$300 (Class II Administrative Update) ⊠ \$1,000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ, OOOO and/or OOOOa ¹ □ \$2,500 NESHAP fee for 40 CFR63, Subpart ZZZZ and/or HH ² 						
 ¹ Only one NSPS fee will apply. ² Only one NESHAP fee will apply. The Subpart ZZZZ NESH requirements by complying with NSPS, Subparts IIII and/or J. NSPS and NESHAP fees apply to new construction or if the so 	IAP fee will be waived for new engines that satisfy JJJ. <i>burce is being modified</i> .					
🛛 Responsible Official or Authorized Representative Signatu	re (if applicable)					
Single Source Determination Form (must be completed) –	Attachment A					
🗆 Siting Criteria Waiver (if applicable) – Attachment B	🛛 Current Business Certificate – Attachment C					
🖾 Process Flow Diagram – Attachment D	⊠ Process Description – Attachment E					
🛛 Plot Plan – Attachment F	🖾 Area Map – Attachment G					
🛛 G70-D Section Applicability Form – Attachment H	🖾 Emission Units/ERD Table – Attachment I					
🛛 Fugitive Emissions Summary Sheet – Attachment J						
🛛 🖾 Gas Well Affected Facility Data Sheet (if applicable) – Att	tachment K					
Storage Vessel(s) Data Sheet (include gas sample data, US) HYSYS, etc.), etc. where applicable) – Attachment L	EPA Tanks, simulation software (e.g. ProMax, E&P Tanks,					
\boxtimes Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, M	Heater Treaters, In-Line Heaters if applicable) – Attachment					
□ Internal Combustion Engine Data Sheet(s) (include manufa N	cturer performance data sheet(s) if applicable) – Attachment					
\boxtimes Tanker Truck/Rail Car Loading Data Sheet (if applicable) -	– Attachment O					
\Box Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalc TM input and output reports and information on reboiler if applicable) – Attachment P						
Pneumatic Controllers Data Sheet – Attachment Q						
⊠ Pneumatic Pump Data Sheet – Attachment R						
□ Air Pollution Control Device/Emission Reduction Device(s applicable) – Attachment S	s) Sheet(s) (include manufacturer performance data sheet(s) if					
\boxtimes Emission Calculations (please be specific and include all c	alculation methodologies used) - Attachment T					
⊠ Facility-wide Emission Summary Sheet(s) – Attachment U						
🖾 Class I Legal Advertisement – Attachment V						
\boxtimes One (1) paper copy and two (2) copies of CD or DVD with	pdf copy of application and attachments					

All attachments must be identified by name, divided into sections, and submitted in order.

ATTACHMENT A

Single Source Determination

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

Classifying multiple facilities as one "stationary source" under 45CSR13, 45CSR14, and 45CSR19 is based on the definition of Building, structure, facility, or installation as given in §45-14-2.13 and §45-19-2.12. The definition states:

"Building, Structure, Facility, or Installation" means all of the pollutant-emitting activities which belong to the same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the control of the same person (or persons under common control). Pollutant-emitting activities are a part of the same industrial grouping if they belong to the same "Major Group" (i.e., which have the same two (2)-digit code) as described in the Standard Industrial Classification Manual, 1987 (United States Government Printing Office stock number GPO 1987 0-185-718:QL 3).

The Source Determination Rule for the oil and gas industry was published in the Federal Register on June 3, 2016 and will become effective on August 2, 2016. EPA defined the term "adjacent" and stated that equipment and activities in the oil and gas sector that are under common control will be considered part of the same source if they are located on the same site or on sites that share equipment and are within ¹/₄ mile of each other.

Is there equipm	ent and	activities	in the	same	industrial	grouping	(defined
by SIC code)?							
	_						

Yes \boxtimes No \square

Is there equipment and activities under the control of the same person/people?

Yes \boxtimes No \square

Is there equipment and activities located on the same site or on sites that share equipment and are within ¹/₄ mile of each other?

Yes \Box No \boxtimes

ATTACHMENT A: SINGLE SOURCE DETERMINATION MAP

Figure 1 - Map of GLO 176 Location with 1 Mile Radius Circle

<u>Coordinates:</u> Latitude: 39°35'17.28" N Longitude: 80°26'16.80" W

ATTACHMENT B

Siting Criteria Waiver (Not Applicable)

ATTACHMENT B - SITING CRITERIA WAIVER – NOT APPLICABLE

If applicable, please complete this form and it must be notarized.

G70-D General Permit Siting Criteria Waiver

WV Division of Air Quality 300' Waiver

Ι____ hereby Print Name acknowledge and agree that ______ General Permit Applicant's Name will construct an emission unit(s) at a natural gas production facility that will be located within 300' of my dwelling and/or business. . I hereby offer this waiver of siting criteria to the West Virginia Department of Environmental Protection Division of Air Quality as permission to construct, install and operate in such location. Signed: Signature Date Signature Date Taken, subscribed and sworn before me this _____ day of _____, 20_____. My commission expires: SEAL Notary Public

ATTACHMENT C

Business Certificate

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO: EQT PRODUCTION COMPANY 625 LIBERTY AVE 1700 PITTSBURGH, PA 15222-3114

BUSINESS REGISTRATION ACCOUNT NUMBER:

1022-8081

This certificate is issued on: 08/4/2010

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued. This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.3 L0553297664

ATTACHMENT D

Process Flow Diagram

ATTACHMENT E

Process Description

ATTACHMENT E: PROCESS DESCRIPTION

This G70-D Permit Application involves the construction of a new natural gas production wellpad (GLO-176). The wellpad will consist of two (2) wells, each with the same basic operation. The following equipment will be installed at the facility: four (4) storage tanks, four (4) line heaters, and one (1) sand separator tank.

The incoming gas/liquid stream from the underground wells will pass through a sand separator, where sand, water, and residual solids are displaced and transferred to the sand separator tank (S010). The gas stream will then pass through the line heaters (S005-S008) to raise/maintain temperature. The stream will then pass through the high pressure (3 phase) separators, which will separate gas (natural gas from the separator is sent to the sales line) from liquids (produced water). The produced fluids stream is then transferred to the produced fluid storage vessels (S001-S004).

Once the tanks are filled, the contents are loaded into trucks for transport. EQT utilizes vapor balancing in the condensate truck loading operations, which means the vapors displaced by the filling of tanker trucks (S011) are routed back into the battery of tanks and ultimately to the combustors. Electricity will be provided at the facility through the natural gas fired thermoelectric generator (S009).

A process flow diagram is included as Attachment D.

ATTACHMENT F

Plot Plan

ATTACHMENT G

Area Map

ATTACHMENT G: AREA MAP

Figure 1 - Map of GLO-176 Location

 Zone: 17
 4,382.196

 UTM Northing (KM):
 4,382.196

 UTM Easting (KM):
 548.258

 Elevation:
 ~1,527 ft

ATTACHMENT H

G70-D Section Applicability Form

ATTACHMENT H – G70-D SECTION APPLICABILITY FORM

General Permit G70-D Registration Section Applicability Form

General Permit G70-D was developed to allow qualified applicants to seek registration for a variety of sources. These sources include gas well affected facilities, storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, pneumatic pumps, reciprocating internal combustion engines (RICEs), tank truck/rail car loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G70-D allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

GENERAL PERMIT G70-D APPLICABLE SECTIONS						
\boxtimes Section 5.0	Gas and Oil Well Affected Facility (NSPS, Subpart OOOO/OOOOa)					
\boxtimes Section 6.0	Storage Vessels Containing Condensate and/or Produced Water ¹					
□Section 7.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO/OOOOa)					
□ Section 8.0	Control Devices and Emission Reduction Devices not subject to NSPS Subpart OOOO/OOOOa and/or NESHAP Subpart HH					
\boxtimes Section 9.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc					
□Section 10.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO/OOOOa)					
□Section 11.0	Pneumatic Pump Affected Facility (NSPS, Subpart OOOOa)					
⊠Section 12.0	Fugitive Emissions GHG and VOC Standards (NSPS, Subpart OOOOa)					
□ Section 13.0	Reciprocating Internal Combustion Engines, Generator Engines					
⊠ Section 14.0	Tanker Truck/Rail Car Loading ²					
□Section 15.0	Glycol Dehydration Units ³					

1 Applicants that are subject to Section 6 may also be subject to Section 7 if the applicant is subject to the NSPS, Subparts OOOO or OOOOa control requirements or the applicable control device requirements of Section 8.

2 Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 8.

3 Applicants that are subject to Section 15 may also be subject to the requirements of Section 9 (reboilers). Applicants that are subject to Section 15 may also be subject to control device and emission reduction device requirements of Section 8.

ATTACHMENT I

Emission Units Table

EQT Production, LLC | GLO 176 Pad Trinity Consultants

ATTACHMENT I – EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment L table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type ⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
S001	E001	Produced Fluid Storage Tank	TBD	TBD	400 bbl	New	None	
S002	E002	Produced Fluid Storage Tank	TBD	TBD	400 bbl	New	None	
S003	E003	Produced Fluid Storage Tank	TBD	TBD	400 bbl	New	None	
S004	E004	Produced Fluid Storage Tank	TBD	TBD	400 bbl	New	None	
S005	E005	Line Heater	TBD	TBD	1.54 MMBtu/hr	New	None	
S006	E006	Line Heater	TBD	TBD	1.54 MMBtu/hr	New	None	
S007	E007	Line Heater	TBD	TBD	1.54 MMBtu/hr	New	None	
S008	E008	Line Heater	TBD	TBD	1.54 MMBtu/hr	New	None	
S009	E009	TEG	TBD	TBD	0.013 MMBtu/hr	New	None	
S010	E010	Sand Separator Storage Tank	TBD	TBD	100 bbl	New	None	
S011	E011 (Uncaptured)	Liquid Loading	TBD	TBD	766,500 gal/yr	New	None	

¹ For Emission Units (or Sources) use the following numbering system: 1S, 2S, 3S,... or other appropriate designation.

² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

When required by rule

⁴ New, modification, removal, existing

⁵ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

⁶ For ERDs use the following numbering system: 1D, 2D, 3D,... or other appropriate designation.

3

ATTACHMENT J

Fugitive Emissions Summary Sheet

	ATTACHMENT J – FUGITIVE EMISSIONS SUMMARY SHEET									
	Sources of fugitive emissions may include loading operations, equipment leaks, blowdown emissions, etc. Use extra pages for each associated source or equipment if necessary.									
	Source/Equipment: Fugitive Emissions									
	Leak Detection Method UsedImage: Audible, visual, and olfactory (AVO) inspectionsImage: Infrared (FLIR) camerasImage: Other (please describe) Will satisfy condition 12.1.1 of the G70-DImage: Other (please describe) Will satisfy 						□ None required			
Componer	Closed		Source of Leak Factors	Stream type		Estimated Emis	sions (tpy)			
Туре	Vent System	Count	(EPA, other (specify))	(gas, liquid, etc.)	VOC	HAP	GHG (methane, CO ₂ e)			
Pumps	□ Yes ⊠ No	8	U.S. EPA. Office of Air Quality Planning and Standards. Protocol for Equipment Leak Emission Estimates. Table 2-1. (EPA-453/R-95-017, 1995).	□ Gas ⊠ Liquid □ Both	0.01	9.5E-04	0.32			
Valves	□ Yes ⊠ No	147	U.S. EPA. Office of Air Quality Planning and Standards. Protocol for Equipment Leak Emission Estimates. Table 2-1. (EPA-453/R-95-017, 1995).	⊠ Gas □ Liquid □ Both	0.18	0.01	17.06			
Safety Reli Valves	ef \square Yes \boxtimes No	16	U.S. EPA. Office of Air Quality Planning and Standards. Protocol for Equipment Leak Emission Estimates. Table 2-1. (EPA-453/R-95-017, 1995).	⊠ Gas □ Liquid □ Both	0.34	0.02	2.75			
Open Endeo Lines	d □ Yes ⊠ No	14	U.S. EPA. Office of Air Quality Planning and Standards. Protocol for Equipment Leak Emission Estimates. Table 2-1. (EPA-453/R-95-017, 1995).	☐ Gas □ Liquid ⊠ Both	4.7E-03	3.1E-04	3.54			
Sampling Connection	s S Yes No	0	N/A	□ Gas □ Liquid □ Both						
Connection (Not samplin	s S No	657	U.S. EPA. Office of Air Quality Planning and Standards. Protocol for Equipment Leak Emission Estimates. Table 2-1. (EPA-453/R-95-017, 1995).	□ Gas □ Liquid ⊠ Both	0.25	0.02	8.47			
Compresso	rs \square Yes \boxtimes No	0	U.S. EPA. Office of Air Quality Planning and Standards. Protocol for Equipment Leak Emission Estimates. Table 2-1. (EPA-453/R-95-017, 1995).	⊠ Gas □ Liquid □ Both						
Flanges	□ Yes □ No		(included in connections)	□ Gas □ Liquid □ Both						
Other ¹	□ Yes ⊠ No	10	40 CFR 98 Subpart W	⊠ Gas □ Liquid □ Both	0.19	0.01	85.94			
¹ Other equip	oment types may	include cor	npressor seals, relief valves, diaphragms, drains, meters, etc.	· · · · · ·			·			
Please provide an explanation of the sources of fugitive emissions (e.g. pigging operations, equipment blowdowns, pneumatic controllers, etc.):										

Pneumatic Controller count is 'Other' category. An estimate of Miscellaneous Gas Venting emissions are included in the Emission Calculations and serve to include such sources as compressor venting, pigging, vessel blowdowns and other sources.

Please indicate if there are any closed vent bypasses (include component): N/A

Specify all equipment used in the closed vent system (e.g. VRU, ERD, thief hatches, tanker truck/rail car loading, etc.) N/A
ATTACHMENT K

Gas Well Data Sheet

ATTACHMENT K – GAS WELL AFFECTED FACILITY DATA SHEET

Complete this data sheet if you are the owner or operator of a gas well affected facility for which construction, modification or reconstruction commenced after August 23, 2011. This form must be completed for natural gas well affected facilities regardless of when flowback operations occur (or have occurred).

API Number	Date of Flowback	Date of Well Completion	Green Completion and/or Combustion Device	Subject to OOOO or OOOOa?
47-049-02281	10/1/2017	10/1/2017	Green	Yes – OOOOa
47-049-02282	10/1/2017	10/1/2017	Green	Yes – OOOOa

Note: If future wells are planned and no API number is available please list as PLANNED. If there are existing wells that commenced construction prior to August 23, 2011, please acknowledge as existing.

This is the same API (American Petroleum Institute) well number(s) provided in the well completion notification and as provided to the WVDEP, Office of Oil and Gas for the well permit. The API number may be provided on the application without the state code (047).

Every oil and gas well permitted in West Virginia since 1929 has been issued an API number. This API is used by agencies to identify and track oil and gas wells.

The API number has the following format: 047-001-00001

Where.	
--------	--

047 =	State code. The state code for WV is 047.
001 =	County Code. County codes are odd numbers, beginning with 001
	(Barbour) and continuing to 109 (Wyoming).

00001= Well number. Each well will have a unique well number.

ATTACHMENT L

Storage Vessel Data Sheet

ATTACHMENT L – STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water. (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). **Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.**

The following information is **REQUIRED**:

- ⊠ Composition of the representative sample used for the simulation
- ☑ For each stream that contributes to flashing emissions:
 - ⊠ Temperature and pressure (inlet and outlet from separator(s))
 - ⊠ Simulation-predicted composition
 - ⊠ Molecular weight
 - \boxtimes Flow rate
- ⊠ Resulting flash emission factor or flashing emissions from simulation
- \boxtimes Working/breathing loss emissions from tanks and/or loading emissions if

simulation is used to quantify those emissions

Additional information may be requested if necessary.

1. Bulk Storage Area Name	2. Tank Name
GLO 176	Produced Fluids Tanks (water)
3. Emission Unit ID number	4. Emission Point ID number
S001-S004	E001-E004
5. Date Installed, Modified or Relocated (for existing tanks)	6. Type of change: Existing, no change
Was the tank manufactured after August 23, 2011 and on or	\boxtimes New construction \square New stored material \square Other \square
before September 18, 2015?	Relocation
\Box Yes \boxtimes No	
Was the tank manufactured after September 18, 2015?	
\boxtimes Yes \square No	
7A. Description of Tank Modification (if applicable) N/A	
7B. Will more than one material be stored in this tank? If so, a s	separate form must be completed for each material.
\Box Yes \boxtimes No	
7C. Was USEPA Tanks simulation software utilized?	
\Box Yes \boxtimes No	
If Yes, please provide the appropriate documentation and items	8-42 below are not required.

GENERAL INFORMATION (REQUIRED)

TANK INFORMATION

 8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height.

 400 bbls

 9A. Tank Internal Diameter (ft.) 12
 9B. Tank Internal Height (ft.) 20

 10A. Maximum Liquid Height (ft.) 20
 10B. Average Liquid Height (ft.) 10

 11A. Maximum Vapor Space Height (ft.) 20
 11B. Average Vapor Space Height (ft.) 10

 12. Nominal Capacity (specify barrels or gallons). This is also known as "working volume". 400 bbls

13A. Maximum annual throughput (gal/yr) See attached 13	13B. Maximum daily throughput (gal/day) See attached				
emissions calculations for all throughput values en	emissions calculations for all throughput values				
14. Number of tank turnovers per year See attached 15	5. Maximum tank fill rate (gal/min) See attached emissions				
emissions calculations for all throughput values ca	alculations for all throughput values				
16. Tank fill method \Box Submerged \boxtimes Splash	Bottom Loading				
17. Is the tank system a variable vapor space system? \Box Yes \boxtimes	3 No				
If yes, (A) What is the volume expansion capacity of the system (ga	d)?				
(B) What are the number of transfers into the system per year	r?				
18. Type of tank (check all that apply):					
\boxtimes Fixed Roof \boxtimes vertical \square horizontal \square flat roof	\boxtimes cone roof \square dome roof \square other (describe)				
\Box External Floating Roof \Box pontoon roof \Box double dec	ck roof				
□ Domed External (or Covered) Floating Roof					
□ Internal Floating Roof □ vertical column support □	self-supporting				
□ Variable Vapor Space □ lifter roof □ diaphragm					
□ Pressurized □ spherical □ cylindrical					
□ Other (describe)					
PRESSURE/VACUUM CONTROL DATA					

19. Check as many as appl	y:							
□ Does Not Apply		[🗆 Ruptu	re Disc (p	sig)			
□ Inert Gas Blanket of	\Box Carbon Adsorption ¹							
Vent to Vapor Combust	tion Device ¹ (vapo	or combusto	ors, flares,	, thermal c	xidizers,	enclosed c	ombustors	3)
Conservation Vent (psig	g)	[□ Conde	nser ¹				
0.5 oz Vacuum Setting	14.4 oz Press	ure Setting						
Emergency Relief Valv	e (psig)							
Vacuum Setting	Pressure	Setting						
□ Thief Hatch Weighted	🗆 Yes 🖾 No							
¹ Complete appropriate Air	Pollution Control	Device Sh	eet					
	te (submit Test Da	ta or Calcu	lations he	re or elsev	where in t	ne applicat	tion).	
20. Expected Emission Rat	te (sublint Test Du		nations ne			ie appliea		
20. Expected Emission Rat Material Name	Flashing Loss	Breathin	ng Loss	Workin	g Loss	Total)-	Estimation Method ¹
20. Expected Emission Rat Material Name	Flashing Loss	Breathin	ng Loss	Workin	g Loss	Total Emissio	ns Loss	Estimation Method ¹
20. Expected Emission Rat	Flashing Loss	Breathin lb/hr	ng Loss tpy	Workin lb/hr	g Loss tpy	Total Emissio lb/hr	ns Loss tpy	Estimation Method ¹
20. Expected Emission Rat	Flashing Loss Ib/hr tpy See att	Breathin lb/hr ached Em	ng Loss tpy issions C	Workin lb/hr alculation	g Loss tpy for all v	Total Emissio lb/hr alues	ns Loss tpy	Estimation Method
20. Expected Emission Rat	Flashing Loss Ib/hr tpy See att	Breathin lb/hr ached Em	ng Loss tpy issions C	Workin lb/hr alculation	g Loss tpy for all v	Total Emissio lb/hr alues	ns Loss tpy	Estimation Method ¹
20. Expected Emission Rat	Flashing Loss bb/hr tpy See att	Breathin lb/hr ached Em	ng Loss tpy issions C	Workin lb/hr alculation	g Loss tpy 1 for all v	Total Emissio lb/hr alues	ns Loss tpy	Estimation Method
20. Expected Emission Rat	Flashing Loss Ib/hr tpy See att	Breathin lb/hr ached Em	ng Loss tpy issions C	Workin lb/hr alculation	g Loss tpy for all v	Total Emissio lb/hr alues	ns Loss tpy	Estimation Method
20. Expected Emission Rat	Flashing Loss Ib/hr tpy See att	Breathin lb/hr ached Em	tpy issions C	Workin lb/hr alculation	g Loss tpy for all v	Total Emissio lb/hr alues	ns Loss tpy	Estimation Method ¹
20. Expected Emission Rat	Flashing Loss Ib/hr tpy See att	Breathin Ib/hr ached Em	tpy issions C	Workin lb/hr alculation	g Loss tpy for all v	Total Emissio lb/hr alues	ns Loss tpy	Estimation Method ¹

22A. Is the tank heated? \Box Yes \boxtimes No	22B. If yes, operating temperature:	22C. If yes, how is heat provided to tank?							
23. Operating Pressure Range (psig): Must be listed for tanks using VPUs with closed yout syst	23. Operating Pressure Range (psig):								
24. Is the tank a Vertical Fixed Roof Tank?	24B If yes for cone roof provide slop (ft/ft)								
∇ Vec \Box No	roof provide radius (ft):	0 17							
	roor provide radius (it)								
25. Complete item 25 for Floating Roof Tanks Does not apply									
25A. Year Internal Floaters Installed:									
25B. Primary Seal Type (<i>check one</i>): Metallic (mechanical) shoe seal Liquid mounted resilient seal									
\Box Vapor mounted resilier	nt seal 🛛 🗆 Other (de	scribe):							
25C. Is the Floating Roof equipped with a secondary seal? \Box Yes	□ No								
25D. If yes, how is the secondary seal mounted? (<i>check one</i>)	Shoe 🗆 Rim 🗆 Ot	her (describe):							
25E. Is the floating roof equipped with a weather shield? \Box Yes	□ No								
25F. Describe deck fittings:									
26. Complete the following section for Internal Floating Roof Tan	s 🛛 Does not appl	у							
26A. Deck Type: Bolted Welded	26B. For bolted decks	, provide deck construction:							
26C. Deck seam. Continuous sheet construction:									
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide \Box 5 x 7.5 ft. wi	de \Box 5 x 12 ft. wide \Box	☐ other (describe)							
26D. Deck seam length (ft.):26E. Area of deck (ft²):	26F. For column supp	ported 26G. For column supported							
	tanks, # of columns:	tanks, diameter of column:							
27. Closed Vent System with VRU? □ Yes ⊠ No									
28. Closed Vent System with Enclosed Combustor? \Box Yes \boxtimes No)								
SITE INFORMATION - Not Applicable: Tank calculations	performed using ProM	ax software							
29. Provide the city and state on which the data in this section are bas	sed:								
30. Daily Avg. Ambient Temperature (°F):	31. Annual Avg. Max	imum Temperature (°F):							
32. Annual Avg. Minimum Temperature (°F):	33. Avg. Wind Speed	33. Avg. Wind Speed (mph):							
34. Annual Avg. Solar Insulation Factor (BTU/ft ² -day):	35. Atmospheric Press	sure (psia):							
LIQUID INFORMATION - Not Applicable: Tank calculatio	ns performed using Pro	Max software							
36. Avg. daily temperature range of bulk liquid (°F):	36A. Minimum (°F):	36B. Maximum (°F):							
37. Avg. operating pressure range of tank (psig):	37A. Minimum (psig):	37B. Maximum (psig):							
38A. Minimum liquid surface temperature (°F):	38B. Corresponding v	apor pressure (psia):							
39A. Avg. liquid surface temperature (°F):	39B. Corresponding v	apor pressure (psia):							
40A. Maximum liquid surface temperature (°F):	40B. Corresponding v	apor pressure (psia):							
41. Provide the following for each liquid or gas to be stored in the tar	nk. Add additional pages if	necessary.							
41A. Material name and composition:									
41B. CAS number:									
41C. Liquid density (lb/gal):									
41D. Liquid molecular weight (lb/lb-mole):									
41E. Vapor molecular weight (lb/lb-mole):									
41F. Maximum true vapor pressure (psia):									
41G. Maximum Reid vapor pressure (psia):									
41H. Months Storage per year.									
From: To:									
42. Final maximum gauge pressure and temperature prior to transfer									
into tank used as inputs into flashing emission calculations.									

GENERAL INFORMATION (REQUIRED)

1. Bulk Storage Area Name	2. Tank Name
GLO 176	Sand Separator Tank
3. Emission Unit ID number	4. Emission Point ID number
S010	E010
5. Date Installed , Modified or Relocated (for existing tanks)	6. Type of change: Existing, no change
Was the tank manufactured after August 23, 2011 and on or	\boxtimes New construction \square New stored material
before September 18, 2015?	\Box Other \Box Relocation
\Box Yes \boxtimes No	
Was the tank manufactured after September 18, 2015?	
\boxtimes Yes \square No	
7A. Description of Tank Modification (<i>if applicable</i>) N/A	
7B. Will more than one material be stored in this tank? If so, a s	separate form must be completed for each material.
\Box Yes \boxtimes No	
7C. Was USEPA Tanks simulation software utilized?	
\Box Yes \boxtimes No	
If Yes, please provide the appropriate documentation and items	8-42 below are not required.

TANK INFORMATION

8. Design Capacity (<i>specify barrels or gallons</i>). Use the intern 100 bbls	al cross-sectional area multiplied by internal height.				
9A. Tank Internal Diameter (ft.) 10	9B. Tank Internal Height (ft.) 10				
10A. Maximum Liquid Height (ft.) 10	10B. Average Liquid Height (ft.) 5				
11A. Maximum Vapor Space Height (ft.) 10	11B. Average Vapor Space Height (ft.) 5				
12. Nominal Capacity (specify barrels or gallons). This is also	o known as "working volume". 140 bbls				
13A. Maximum annual throughput (gal/yr) See attached	13B. Maximum daily throughput (gal/day) See attached				
emissions calculations for all throughput values	emissions calculations for all throughput values				
14. Number of tank turnovers per year See attached	15. Maximum tank fill rate (gal/min) See attached emissions				
emissions calculations for all throughput values	calculations for all throughput values				
16. Tank fill method \Box Submerged \boxtimes Splash	Bottom Loading				
17. Is the tank system a variable vapor space system? \Box Yes	s 🛛 No				
If yes, (A) What is the volume expansion capacity of the system	n (gal)?				
(B) What are the number of transfers into the system per	year?				
18. Type of tank (check all that apply):					
\boxtimes Fixed Roof \square vertical \boxtimes horizontal \square flat roo	of \Box cone roof \Box dome roof \Box other (describe)				
\Box External Floating Roof \Box pontoon roof \Box double deck roof					
Domed External (or Covered) Floating Roof					
\Box Internal Floating Roof \Box vertical column support	□ self-supporting				
□ Variable Vapor Space □ lifter roof □ diaphragm	1				
□ Pressurized □ spherical □ cylindrica	1				

PRESSURE/VACUUM CONTROL DATA

19. Check as many as apply:	
☑ Does Not Apply	□ Rupture Disc (psig)
□ Inert Gas Blanket of	\Box Carbon Adsorption ¹
\Box Vent to Vapor Combustion Device ¹ (vapor comb	pustors, flares, thermal oxidizers, enclosed combustors)
□ Conservation Vent (psig)	\Box Condenser ¹
Vacuum Setting Pressure Setting	
□ Emergency Relief Valve (psig)	

Vacuum Setting Pressure Setting

 \Box Thief Hatch Weighted \Box Yes \Box No

¹ Complete appropriate Air Pollution Control Device Sheet

20. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application).

Material Name	Flashir	ng Loss	Breathi	ng Loss	Working Loss		Total Emissions Loss		Estimation Method ¹
							Emissions Loss		
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
See attached Emissions Calculation for all values									

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

TANK CONSTRUCTION AND OPERATION INFORMATION							
21. Tank Shell Construction:							
\Box Riveted \Box Gunite lined \Box Epoxy-coated rivets \boxtimes Other (describe) Welded							
21A. Shell Color: Gray	ray 21B. Roof Color: Gray 21C. Year Last Painted: 2016						
22. Shell Condition (if metal and unlined):							
🖾 No Rust 🛛 Light Rust 🗍 Dense Rust 🖓 Not applicable							
22A. Is the tank heated? \Box Yes \boxtimes No	22B. If yes, operating temperature: 22C. If yes, how is heat provided to tank?						
23. Operating Pressure Range (psig):							
Must be listed for tanks using VRUs with	th closed vent system	•					
24. Is the tank a Vertical Fixed Roof Tank ?	24A. If yes, for dome	roof provide radius (ft):	24B. If ye	s, for cone roof, provide slop (ft/ft):			
\Box Yes \boxtimes No							
25. Complete item 25 for Floating Roof Tanks	\square Does not apply	\boxtimes					
25A. Year Internal Floaters Installed:							
25B. Primary Seal Type (check one):	allic (mechanical) sho	e seal 🛛 🗆 Liquid mo	unted resili	ent seal			
🗆 Vap	or mounted resilient s	eal \Box Other (des	scribe):				
25C. Is the Floating Roof equipped with a seco	ndary seal? 🗌 Yes	🗆 No					
25D. If yes, how is the secondary seal mounted	? (check one) \Box Sho	e 🗆 Rim 🗆 Otl	her (describ	e):			
25E. Is the floating roof equipped with a weath	er shield? 🛛 Yes	🗆 No					
25F. Describe deck fittings:							
26. Complete the following section for Interna	l Floating Roof Tanks	\boxtimes Does not apply	у				
26A. Deck Type: Bolted W	26A. Deck Type: Bolted Welded 26B. For bolted decks, provide deck construction:						
26C. Deck seam. Continuous sheet construction	n:						
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wid	\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide \Box 5 x 7.5 ft. wide \Box 5 x 12 ft. wide \Box other (describe)						
26D. Deck seam length (ft.): 26E. Area	of deck (ft ²):	26F. For column support	orted	26G. For column supported			
	tanks, # of columns: tanks, diameter of column:						
27. Closed Vent System with VRU? Yes No							
28. Closed Vent System with Enclosed Combustor? Yes No							
SITE INFORMATION - Not Applicable: Tank calculations performed using E&P Tank software							
29. Provide the city and state on which the data	in this section are based						
30. Daily Avg. Ambient Temperature (°F):		31. Annual Avg. Maxi	mum Tempe	erature (°F):			
32. Annual Avg. Minimum Temperature (°F): 33. Avg. Wind Speed (mph):							

34. Annual Avg. Solar Insulation Factor (BTU/ft ² -day):		35. Atmospheric Pressure (psia):			
LIQUID INFORMATION - Not Applicable: Tank calculations performed using E&P Tank software					
36. Avg. daily temperature range of bulk	36A. Minimum (°F):			36B. Maximur	m (°F):
liquid (°F):					
37. Avg. operating pressure range of tank	37A. Minimum (psig):			37B. Maximur	n (psig):
(psig):					
38A. Minimum liquid surface temperature (°F):		38B. (Corresponding va	apor pressure (ps	ia):
39A. Avg. liquid surface temperature (°F):		39B. (Corresponding va	apor pressure (ps	ia):
40A. Maximum liquid surface temperature (°F)):	40B. 0	Corresponding va	apor pressure (ps	ia):
41. Provide the following for each liquid or gas	to be stored in the tank.	Add add	litional pages if 1	necessary.	
41A. Material name and composition:					
41B. CAS number:					
41C. Liquid density (lb/gal):					
41D. Liquid molecular weight (lb/lb-mole):					
41E. Vapor molecular weight (lb/lb-mole):					
41F. Maximum true vapor pressure (psia):					
41G. Maximum Reid vapor pressure (psia):					
41H. Months Storage per year.					
From: To:					
42. Final maximum gauge pressure and					
temperature prior to transfer into tank used as					
inputs into flashing emission calculations.					

STORAGE TANK DATA TABLE

List all deminimis storage tanks (i.e. lube oil, glycol, diesel etc.)

Source ID # ¹	Status ²	Content ³	Volume ⁴
10 "	Status		, oranic
	1	Not Applicable	

1. Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the well site. Tanks should be designated T01, T02, T03, etc. 2.

Enter storage tank Status using the following: EXIST Existing Equipment NEW Installation of New Equipment

- REM Equipment Removed
- Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, diesel, mercaptan etc. 3.

4. Enter the maximum design storage tank volume in gallons.

ATTACHMENT M

Heaters Data Sheet

ATTACHMENT M – SMALL HEATERS AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART DC DATA SHEET

Complete this data sheet for each small heater and reboiler not subject to 40CFR60 Subpart Dc at the facility. *The Maximum Design Heat Input (MDHI) must be less than 10 MMBTU/hr.*

Emission Unit ID# ¹	Emission Point ID# ²	Emission Unit Description (manufacturer, model #)	Year Installed/ Modified	Type ³ and Date of Change	Maximum Design Heat Input (MMBTU/hr) ⁴	Fuel Heating Value (BTU/scf) ⁵
S005	E005	Line Heater	TBD	New	1.54	~1,066
S006	E006	Line Heater	TBD	New	1.54	~1,066
S007	E007	Line Heater	TBD	New	1.54	~1,066
S008	E008	Line Heater	TBD	New	1.54	~1,066
S009	E009	TEG	TBD	New	0.013	~1,066

¹ Enter the appropriate Emission Unit (or Source) identification number for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.

- ² Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.
- ³ New, modification, removal
- ⁴ Enter design heat input capacity in MMBtu/hr.
- ⁵ Enter the fuel heating value in BTU/standard cubic foot.

ATTACHMENT N

Engines Data Sheet

ATTACHMENT N – INTERNAL COMBUSTION ENGINE DATA SHEET – NOT APPLICABLE

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. <i>Generator(s) and microturbine generator(s) shall also use this form</i> .					anufacturer ges if		
Emission Unit II	D # ¹						
Engine Manufact	turer/Model						
Manufacturers R	ated bhp/rpm						
Source Status ²							
Date Installed/ Modified/Remov	ved/Relocated ³						
Engine Manufact /Reconstruction	tured Date ⁴						
Check all applicable Federal Rules for the engine (include EPA Certificate of Conformity if applicable) ⁵		□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources		☐ 40CFR60 Sub ☐ JJJJ Certified ☐ 40CFR60 Sub ☐ IIII Certified ☐ 40CFR63 Sub ☐ NESHAP ZZ Window ☐ NESHAP ZZ Sources	ppart JJJJ ? ppart IIII ? ppart ZZZZ ZZ/ NSPS JJJJ ZZ Remote	□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources	
Engine Type ⁶							
APCD Type ⁷							
Fuel Type ⁸							
H ₂ S (gr/100 scf)							
Operating bhp/rp	om						
BSFC (BTU/bhp	-hr)						
Hourly Fuel Three	oughput	ft ³ /hr gal/hr		ft ³ /hr gal/hr		ft ³ /hr gal/hr	
Annual Fuel Thr (Must use 8,760 emergency gener	oughput hrs/yr unless cator)	MMf gal/y	t ³ /yr r	MMf gal/y	r r	MMf gal/y	r r
Fuel Usage or He Operation Meter	ours of ed	Yes 🗆	No 🗆	Yes 🗆 No 🗆		Yes 🗆	No 🗆
	Pollutant ¹⁰		Annual PTE (tons/year) ¹¹	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year) ¹¹	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year) ¹¹
	NO _x						
	СО						
	VOC						
	SO_2						
	PM ₁₀						
	Formaldehyde						
	Total HAPs						
	GHG (CO ₂ e)						

Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion engine/generator engine located at 1 the well site. Multiple engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.

2 Enter the Source Status using the following codes:

NS Construction of New Source (installation) ES RS

Modification of Existing Source MS REM Removal of Source

Existing Source

Relocated Source

- 3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.
- 4 Enter the date that the engine was manufactured, modified or reconstructed.
- 5 Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6	Enter th	e Engine Type designation(s) using the following co	des:				
	2SLB 4SLB	Two Stroke Lean Burn Four Stroke Lean Burn	4SRI	B Four St	troke Rich Burn		
7	Enter th	e Air Pollution Control Device (APCD) type designation	ation(s)	using the fo	ollowing codes:		
	A/F HEIS PSC NSCR SCR	Air/Fuel Ratio High Energy Ignition System Prestratified Charge Rich Burn & Non-Selective Catalytic Reduction Lean Burn & Selective Catalytic Reduction		IR SIPC LEC OxCat	Ignition Retard Screw-in Precombustion C Low Emission Combustion Oxidation Catalyst	hamber 1	s
8	Enter th	e Fuel Type using the following codes:					
	PQ	Pipeline Quality Natural Gas R	G I	Raw Natura	al Gas /Production Gas	D	Diesel
9	Enter t	he Potential Emissions Data Reference design	ation u	sing the f	collowing codes. Attach a	ll refe	rence data used.
	MD GR	Manufacturer's Data GRI-HAPCalc™	1	AP AF OT Ot	P-42 her (please list)	

10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

Engine Air Pollution Control Device (Emission Unit ID# use extra pages as necessary)

Air Pollution Control Device Manufacturer's Data Sheet included? Yes 🗆 No 🗆

	□ SCR	□ Oxidation Catalyst					
Provide details of process control used fo fuel injection	r proper mixing/con	trol of reducing agent with gas stream: Sequential multi-part					
Manufacturer:		Model #:					
Design Operating Temperature:		Design gas volume:					
Service life of catalyst:		Provide manufacturer data? 🗆 Yes 🛛 No					
Volume of gas handled:		Operating temperature range for NSCR/Ox Cat:					
Reducing agent used, if any:		Ammonia slip (ppm):					
Pressure drop against catalyst bed (delta l	P):						
Provide description of warning/alarm system that protects unit when operation is not meeting design conditions:							
Is temperature and pressure drop of cataly	yst required to be mo	onitored per 40CFR63 Subpart ZZZZ?					
How often is catalyst recommended or required to be replaced (hours of operation)?							
How often is performance test required? Initial Annual Every 8,760 hours of operation Field Testing Required No performance test required. If so, w NSPS/GACT,	vhy (please list any 1	naintenance required and the applicable sections in					

ATTACHMENT O

Truck Loading Data Sheet

ATTACHMENT O – TANKER TRUCK/RAIL CAR LOADING DATA SHEET

Complete this data sheet for each new or modified bulk liquid transfer area or loading rack at the facility. This is to be used for bulk liquid transfer operations to tanker trucks/rail cars. Use extra pages if necessary.

Truck/Rail Car Loadout Collection Efficiencies

The following applicable capture efficiencies of a truck/rail car loadout are allowed:

- For tanker trucks/rail cars passing the MACT level annual leak test 99.2%
- For tanker trucks/rail cars passing the NSPS level annual leak test 98.7%
- For tanker trucks/rail cars not passing one of the annual leak tests listed above 70%

Compliance with this requirement shall be demonstrated by keeping records of the applicable MACT or NSPS Annual Leak Test certification for *every* truck and railcar loaded/unloaded. This requirement can be satisfied if the trucking/rail car company provided certification that its entire fleet was compliant. This certification must be submitted in writing to the Director of the DAQ. These additional requirements must be noted in the Registration Application.

Emission Unit ID#: S01	1	Emissi	on Point ID#	E011		Year Instal	led/Modif	ïed: N/A
Emission Unit Descripti	om loading o	of produced f	luids int	o tanker truck	<s< td=""><td></td></s<>			
			Loading A	Area Data				
Number of Pumps: 1		Numbe	er of Liquids	Loaded: 1		Max numbe at one (1) t	er of truck ime: 1	s/rail cars loading
Are tanker trucks/rail cars pressure tested for leaks at this or any other location? \Box Yes \boxtimes No \Box Not Required If Yes, Please describe:						□ Not Required		
Provide description of c back into battery of tanl	losed vent syste xs.	m and an	y bypasses.	Trucks utiliz	e vapor i	recovery line:	s to route	displaced vapors
Are any of the following Closed System to tai Closed System to tai Closed System to tai	g truck/rail car l nker truck/rail ca nker truck/rail ca nker truck/rail ca	oadout sy ar passing ar passing ar not pas	stems utilize g a MACT le g a NSPS lev ssing an annu	ed? vel annual le el annual lea ial leak test a	ak test? k test? nd has v	apor return?		
Pro	jected Maximu	n Operat	ing Schedul	e (for rack o	r transf	er point as a	whole)	
Time	Jan – Ma	ır	Apr	- Jun	J	lul – Sept		Oct - Dec
Hours/day	Varies		Va	ries	Varies			Varies
Days/week	7		,	7		7		7
	Bul	k Liquid	Data (use e	xtra pages a	s necess	ary)		
Liquid Name	Pr	oduced F	luids					
Max. Daily Throughput (1000 gal/day)	See a calc thr	ttached e culations oughput	missions for all values					
Max. Annual Throughpu (1000 gal/yr)	it See a calc	ttached e culations oughput	missions for all values					
Loading Method ¹		SP						
Max. Fill Rate (gal/min) Varie		Varies						
Average Fill Time (min/loading) Varies								
Max. Bulk Liquid Temperature (°F)		ProMax	results					
True Vapor Pressure ² See ProMax re		results						
Cargo Vessel Condition	3	U						
Control Equipment or VE Method ⁴ (captured load		VB red loadin	ng losses)					

Max. Collection Efficiency (%)		0	
Max. Control Efficiency (%)		0	
Max.VOC	Loading (lb/hr)	See attached emission calculations for breakdown	
Rate Annual (ton/yr)		See attached emission calculations for breakdown	
Max.HAP Loading (lb/hr)		See attached emission calculations for breakdown	
Rate Annual (ton/yr)		See attached emission calculations for breakdown	
Estimation Method ⁵		AP-42 Section 5.2 Methodology (via ProMax)	

2 At maximum bulk liquid temperature 3 B Ballasted Vessel C Cleaned U Uncleaned (dedicated servic of the control dedicated service of the c	1	BF	Bottom Fill	SP	Splash Fil	1	SUB	Submerged Fill
3 B Ballasted Vessel C Cleaned U Uncleaned (dedicated servic control Device) 4 List as many as apply (complete and submit appropriate Air Pollution Control Device Sheets) CA Carbon Adsorption VB Dedicated Vapor Balance (closed system) ECD Enclosed Combustion Device F Flare	2	At maxin	num bulk liquid temperature					
O Other (describe) 4 List as many as apply (complete and submit appropriate Air Pollution Control Device Sheets) CA Carbon Adsorption VB Dedicated Vapor Balance (closed system) ECD Enclosed Combustion Device F Flare	3	В	Ballasted Vessel	С	Cleaned		U	Uncleaned (dedicated service)
4 List as many as apply (complete and submit appropriate Air Pollution Control Device Sheets) CA Carbon Adsorption VB Dedicated Vapor Balance (closed system) ECD Enclosed Combustion Device F Flare		0	Other (describe)					
CACarbon AdsorptionVBDedicated Vapor Balance (closed system)ECDEnclosed Combustion DeviceFFlare	4	List as r	nany as apply (complete and a	submit app	ropriate A	ir Pollution Control	l Device S	Sheets)
ECD Enclosed Combustion Device F Flare		CA	Carbon Adsorption		VB	Dedicated Vapor B	alance (cl	losed system)
		ECD	Enclosed Combustion Device	ce	F	Flare		-

ECD TO

5 EPA

Enclosed Combustion Device F F Thermal Oxidization or Incineration EPA Emission Factor in AP-42 Test Measurement based upon test data submittal Material Balance Other (describe) MB ТМ 0

ATTACHMENT P

Glycol Dehydrator Data Sheet (Not Applicable)

ATTACHMENT P – GLYCOL DEHYDRATION UNIT DATA SHEET - NOT APPLICABLE

Complete this data sheet for each Glycol Dehydration Unit, Reboiler, Flash Tank and/or Regenerator at the facility. Include gas sample analysis and GRI- GLYCalcTM input and aggregate report. Use extra pages if necessary.

F ==	<i>8</i>	F8-	~ J ·						
Manufacturer:			Model:						
Max. Dry Gas Flow	Rate: mmscf	/day	Reboiler Design He	at Input: MM	IBTU/hr				
Design Type: 🗆 TE	EG 🗆 DEG	🗆 EG	Source Status ¹ :						
Date Installed/Mod	ified/Removed ² :		Regenerator Still V	ent APCD/ERD ³ :					
Control Device/ERI	D ID# ³ :		Fuel HV (BTU/scf)	:					
H ₂ S Content (gr/100	0 scf):		Operation (hours/ye	ear):					
Pump Rate (gpm):									
Water Content (wt %) in: Wet Gas: Dry Gas:									
Is the glycol dehydr	ration unit exempt fro	om 40CFR63 Section	764(d)? 🗆 Yes	□ No: If Yes, answ	ver the following:				
The actual annual average flowrate of natural gas to the glycol dehydration unit is less than 85 thousand standard cubic meters per day, as determined by the procedures specified in $63.772(b)(1)$ of this subpart. \Box Yes \Box No The actual average emissions of benzene from the glycol dehydration unit process vent to the atmosphere are less than 0.90 megagram per year (1 ton per year), as determined by the procedures specified in $63.772(b)(2)$ of this subpart. \Box Yes									
Is the glycol dehydi	ration unit located wi	thin an Urbanized Ar	ea (UA) or Urban Clu	ister (UC)? 🗆 Yes	□ No				
Is a lean glycol pun	np optimization plan	being utilized? 🗆 Ye	s 🗆 No						
Recycling the glyco Yes No Recycling the glyco	Recycling the glycol dehydration unit back to the flame zone of the reboiler.								
\Box Yes \Box No	or denyaration ante ou	lex to the nume zone	or the recorder and m						
What happens when Still vent emissi Still vent emissi Still vent emissi	temperature controll ons to the atmosphere ons stopped with valv ons to glow plug.	ler shuts off fuel to th e. ve.	ie reboiler?						
Please indicate if th Flash Tank Burner managen	ne following equipment	nt is present. nuously burns conder	nser or flash tank vap	ors					
		Control Device	Technical Data						
	Pollutants Controlled	l	Manufacturer's	s Guaranteed Control	Efficiency (%)				
Emissions Data									
Emission Unit ID / Emission Point ID ⁴	Description	Calculation Methodology ⁵	PTE ⁶ Controlled Maximum Hourly Emissions (lb/hr) Controlled Maximum Annual Emissions (tpy)						
			NO _x						
			СО						
	Reboiler Vent		VOC						
			SO ₂						
			PM_{10}						

Image: style s					
GRI-GlyCalcTMVOCIntermediateGRI-GlyCalcTMBenzeneIntermediateGRI-GlyCalcTMTolueneIntermediateGRI-GlyCalcTMEthylbenzeneIntermediateGRI-GlyCalcTMSylenesIntermediateGRI-GlyCalcTMN-HexaneIntermediateGRI-GlyCalcTMVOCIntermediateGRI-GlyCalcTMBenzeneIntermediateGRI-GlyCalcTMBenzeneIntermediateGRI-GlyCalcTMBenzeneIntermediateGRI-GlyCalcTMTolueneIntermediateGRI-GlyCalcTMBenzeneIntermediateGRI-GlyCalcTMSylenesIntermediateGRI-GlyCalcTMSylenesIntermediateGRI-GlyCalcTMSylenesIntermediateGRI-GlyCalcTMSylenesIntermediateGRI-GlyCalcTMSylenesIntermediateGRI-GlyCalcTMSylenesIntermediateGRI-GlyCalcTMSylenesIntermediateGRI-GlyCalcTMSylenesIntermediateGRI-GlyCalcTMSylenesIntermediateGRI-GlyCalcTMSylenesIntermediateGRI-GlyCalcTMSylenesIntermediateGRI-GlyCalcTMSylenesIntermediateGRI-GlyCalcTMSylenesIntermediateGRI-GlyCalcTMSylenesIntermediateGRI-GlyCalcTMSylenesIntermediateGRI-GlyCalcTMSylenesIntermediateGRI-GlyCalcTMSylenesIntermediateGRI-GlyCalcTMSylenesIntermediate				GHG (CO ₂ e)	
Glycol Regenerator Still VentGRI-GlyCalcTMBenzeneImage: constraint of the state of t			GRI-GlyCalc [™]	VOC	
$ \begin{array}{ c c c c c } GRi-GlyCalc^{TM} & Toluene & & & & & & & & & & & & & & & & & & $			GRI-GlyCalc TM	Benzene	
		Glycol	GRI-GlyCalc [™]	Toluene	
$ \begin{array}{ c c c c } \hline GRI-GlyCalc^{TM} & Xylenes & \hline GRI-GlyCalc^{TM} & N-Hexane & \hline \\ \hline GRI-GlyCalc^{TM} & NOC & \hline \\ \hline GRI-GlyCalc^{TM} & VOC & \hline \\ \hline GRI-GlyCalc^{TM} & Benzene & \hline \\ \hline GRI-GlyCalc^{TM} & Toluene & \hline \\ \hline GRI-GlyCalc^{TM} & Ethylbenzene & \hline \\ \hline GRI-GlyCalc^{TM} & Xylenes & \hline \\ \hline \\ \hline GRI-GlyCalc^{TM} & NOC & \hline \\ \hline$		Still Vent	GRI-GlyCalc [™]	Ethylbenzene	
GRI-GlyCalc TM n-Hexane GRI-GlyCalc TM VOC GRI-GlyCalc TM VOC GRI-GlyCalc TM Benzene GRI-GlyCalc TM Benzene GRI-GlyCalc TM Toluene GRI-GlyCalc TM Ethylbenzene GRI-GlyCalc TM Kylenes GRI-GlyCalc TM N-Hexane			GRI-GlyCalc [™]	Xylenes	
$ \begin{array}{ c c c c } \hline & GRI-GlyCalc^{TM} & VOC & & & & \\ \hline & GRI-GlyCalc^{TM} & Benzene & & & \\ \hline & GRI-GlyCalc^{TM} & Toluene & & & \\ \hline & GRI-GlyCalc^{TM} & Ethylbenzene & & & \\ \hline & GRI-GlyCalc^{TM} & Xylenes & & & \\ \hline & GRI-GlyCalc^{TM} & N - Hexane & & & \\ \hline \end{array} $			GRI-GlyCalc [™]	n-Hexane	
GRI-GlyCalc TM Benzene GRI-GlyCalc TM Toluene GRI-GlyCalc TM Ethylbenzene GRI-GlyCalc TM Xylenes GRI-GlyCalc TM N-Hexane			GRI-GlyCalc [™]	VOC	
$ \begin{array}{c} Glycol \ Flash \\ Tank \\ \hline GRI-GlyCalc^{TM} \\ \hline \end{array} \begin{array}{c} Toluene \\ \hline Ethylbenzene \\ \hline \end{array} \end{array} $			GRI-GlyCalc [™]	Benzene	
Tank GRI-GlyCalc TM Ethylbenzene GRI-GlyCalc TM Xylenes GRI-GlyCalc TM n-Hexane		Glycol Flash Tank	GRI-GlyCalc [™]	Toluene	
GRI-GlyCalc TM Xylenes GRI-GlyCalc TM n-Hexane			GRI-GlyCalc [™]	Ethylbenzene	
GRI-GlyCalc TM n-Hexane			GRI-GlyCalc TM	Xylenes	
			GRI-GlyCalc TM	n-Hexane	

1 Enter the Source Status using the following codes:

NS Construction of New Source ES **Existing Source**

MS Modification of Existing Source

2 Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source), modification or removal.

- 3 Enter the Air Pollution Control Device (APCD)/Emission Reduction Device (ERD) type designation using the following codes and the device ID number:
 - NA None CD Condenser FL. Flare CC Condenser/Combustion Combination TO Thermal Oxidizer 0 Other (please list)

Enter the appropriate Emission Unit ID Numbers and Emission Point ID Numbers for the glycol dehydration unit reboiler vent 4 and glycol regenerator still vent. The glycol dehydration unit reboiler vent and glycol regenerator still vent should be designated RBV-1 and RSV-1, respectively. If the well site incorporates multiple glycol dehydration units, a Glycol Dehydration Emission Unit Data Sheet shall be completed for each, using Source Identification RBV-2 and RSV-2, RBV-3 and RSV-3, etc.

5 Enter the Potential Emissions Data Reference designation using the following codes:

- MD Manufacturer's Data AP AP-42
 - GR GRI-GLYCalc[™] OT Other
- (please list) Enter the Reboiler Vent and Glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs 6 per hour and tons per year. The Glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalcTM (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalcTM Aggregate Calculations Report (shall include emissions reports, equipment reports, and stream reports) to this Glycol Dehydration Emission Unit Data Sheet(s). Backup pumps do not have to be considered as operating for purposes of PTE. This PTE data shall be incorporated in the Emissions Summary Sheet.

ATTACHMENT Q

Pneumatic Controller Data Sheet

ATTACHMENT Q – PNEUMATIC CONTROLLERS DATA SHEET
Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?
\Box Yes \boxtimes No
Please list approximate number.
Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after September 18, 2015?
\Box Yes \boxtimes No
Please list approximate number.
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?
\Box Yes \boxtimes No
Please list approximate number.
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after September 18, 2015?
\Box Yes \boxtimes No
Please list approximate number.

ATTACHMENT R

Pneumatic Pump Data Sheet (Not Applicable)

ATTACHMENT R – PNEUMATIC PUMP DATA SHEET

Are there any natural gas-driven diaphragm pumps located at a well site that commenced construction, modification or reconstruction after September 18, 2015?

🗌 Yes 🛛 🖾 No

Please list.

Source ID #	Date	Pump Make/Model	Pump Size

ATTACHMENT S

Air Pollution Control Device Data Sheet

ATTACHMENT S – AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION DEVICE SHEETS

Complete the applicable air pollution control device sheets for each flare, vapor combustor, thermal oxidizer, condenser, adsorption system, vapor recovery unit, BTEX Eliminator, Reboiler with and without Glow Plug, etc. at the facility. Use extra pages if necessary.

Emissions calculations must be performed using the most conservative control device efficiency.

The following five (5) rows are only to be completed if registering an alternative air pollution control device.						
Emission Unit ID: Not Applicable	Make/Model:					
Primary Control Device ID:	Make/Model:					
Control Efficiency (%):	APCD/ERD Data Sheet Completed: Yes No					
Secondary Control Device ID:	Make/Model:					
Control Efficiency (%):	APCD/ERD Data Sheet Completed: Yes No					

VAPOR COMBUSTION– Not Applicable (Including Enclosed Combustors)										
			General Ir	formation						
Control Devi		Installation Date:								
Maximum Ra		Maximum Heat Input mfg. spec	Design (from sheet)	Design H	Heat Content					
			Control Devic	e Informati	on					
Enclosed	Combustion Dev Oxidizer	ice	Type of Vapor Co	mbustion Co ed Flare	ontrol?		Ground Flare			
Manufacture Model:	r: LEED			Hours of o	peration	per year?				
List the emis	sion units whose	emissions	are controlled by this	vapor contr	ol device	e (Emissior	n Point ID#)			
Emission Unit ID#	Emission Sourc	e Descript	ion	Emission Unit ID#	Emissie	nission Source Description				
If this v	papor combustor o	controls em	nissions from more the	an six (6) en	ission ur	nits, please	attach additional pages.			
Assist Type	(Flares only)		Flare Height	Tij	o Diamete	Was the design per §60.18?				
Steam Pressure	Air Non				□ Yes □ No □ N/A Provide determination.					
			Waste Gas	Information	L					
Maximun	n Waste Gas Flow (scfm)	Rate	Heat Value of W BTU	aste Gas Str J/ft ³	aste Gas Stream Exit Velocity of the Emiss /ft ³ Varies (ft/s)					
	Provide an	attachme	nt with the characteri	stics of the v	vaste gas	stream to	be burned.			
			Pilot Gas I	nformation						
Number of Pilot Lights Fuel Flow Rate to Pilot Flame per Pilot				Heat Input per Pilot BTU/hr			Will automatic re-ignition be used? Yes No			
If automatic	re-ignition is use	d, please d	escribe the method.							
Is pilot flam presence of t	o detect the D No	If Yes, what type? □ Thermocouple □ Infrared □ Ultraviolet □ Camera □ Other:								
Describe all unavailable,	operating ranges please indicate).	and mainte See attach	enance procedures requed information on un	uired by the it	manufac	turer to ma	aintain the warranty. (If			
Additional in Please attach performance	nformation attach a copies of manuf testing.	ed? □ Ye acturer's d	s	flame demo	nstration	per §60.18	or §63.11(b) and			

CONDENSER – Not Applicable									
General Information									
Control Device ID#:	Installation Date:	Modified 🗌 Relocated							
Manufacturer:	Model:	Control Device Name:							
Control Efficiency (%):	·	·							
Manufacturer's required temperature range for control efficie	ncy. °F								
Describe the warning and/or alarm system that protects against	st operation when uni	t is not meeting the design requirements:							
Describe all operating ranges and maintenance procedures rec	uired by the manufac	turer to maintain the warranty.							
Additional information attached? Yes No Please attach copies of manufacturer's data sheets.									
Is condenser routed to a secondary APCD or ERD?									

ADSORPTION SYSTEM – Not Applicable								
General I	nformation							
Control Device ID#:	Installation Date:							
Manufacturer:	Model: Control Device Name:							
Design Inlet Volume: scfm	Adsorbent charge per adsorber vessel and number of adsorber vessels:							
Length of Mass Transfer Zone supplied by the manufacturer:	Adsorber diameter: ft Adsorber area: ft ²							
Adsorbent type and physical properties:	Overall Control Efficiency (%):							
Working Capacity of Adsorbent (%):								
Operating	Parameters							
Inlet volume: scfm @ °F								
Adsorption time per adsorption bed (life expectancy):	Breakthrough Capacity (lbs of VOC/100 lbs of adsorbent):							
Temperature range of carbon bed adsorber. °F - °F	·							
Control Device	Technical Data							
Pollutants Controlled	Manufacturer's Guaranteed Control Efficiency (%)							
Describe the warning and/or alarm system that protects again	st operation when unit is not meeting the design requirements:							
Has the control device been tested by the manufacturer and co	ertified?							
Describe all operating ranges and maintenance procedures rec	uired by the manufacturer to maintain the warranty.							
Additional information attached? Yes No Please attach copies of manufacturer's data sheets, drawings,	and performance testing.							

VAPOR RECOVERY UNIT – Not Applicable										
General Information										
Emission Unit II	D#:	Installation	n Date:							
Device Information										
Manufacturer: Model:										
List the emission (Emission Point	n units whose emissions are controlled by this ID)	vapor recov	very unit							
Emission Unit ID#	Emission Source DescriptionEmission Unit ID#Emission Source Description									
If this vapor	recovery unit controls emissions from more t	han six (6) e	emission units, please attach additional pages.							
Additional infor Please attach coj	mation attached?	and perform	ance testing.							
The registrant m recovery unit.	The registrant may claim a capture and control efficiency of 95 % (which accounts for 5% downtime) for the vapor recovery unit.									
The registrant m of Section 8.1.2	ay claim a capture and control efficiency of 9 of this general permit.	8% if the VI	RU has a backup flare that meet the requirements							
The registrant m	ay claim a capture and control efficiency of 9	8% if the VI	RU has a backup VRU.							

ATTACHMENT T

Emission Calculations

Company Name:	EQT Production, LLC
Facility Name:	GLO 176 Pad
Project Description:	G70D Application

Facility-Wide Emission Summary - Controlled

1

25 298

Carbon equivalent emissions (CO2e) are based on the following Global Warming Potentials (GWP) from 40 CFR Part 98, Table A-1:

Wells	2	Carbo
Storage Tanks	4	CO ₂
Sand Separator Tank	1	CH ₄
Line Heaters	4	N ₂ 0
TEGs	1	
Dehy Reboiler	0	
Glycol Dehy	0	
Dehy Drip Tank	0	
Dehy Combustor	0	
Compressor	0	
High Pressure Separator	2	
Low Pressure Separator	0	
Vapor Recovery Unit	0	
Tank Combustor	0	
Longth of loops youd	1 000	faat

Length of lease road feet 1,800 PM₁₀ PM_{2.5} Emission Emission Emission NO_x CO VOC **SO**₂ CH4 CO₂e Point ID # Source ID#s lb/hr lb/hr Source Description lb/hr lb/hr lb/hr lb/hr lb/hr lb/hr tpy tpy tpv tpy tpv tpy tpy tpv E001-E004 Storage Vessels 0.37 0.01 S001-S004 0.01 0.04 0.08 2.11 9.23 E005 S005 0.15 0.64 0.12 0.54 0.04 8.8E-04 3.9E-03 0.01 0.05 0.01 0.05 180.18 789.20 Line Heater 0.01 0.00 E006 S006 Line Heater 0.15 0.64 0.12 0.54 0.01 0.04 8.8E-04 3.9E-03 0.00 0.01 0.01 0.05 0.01 0.05 180.18 789.20 E007 S007 Line Heater 0.15 0.64 0.12 0.54 0.01 0.04 8.8E-04 3.9E-03 0.00 0.01 0.01 0.05 0.01 0.05 180.18 789.20 E008 S008 Line Heater 0.15 0.64 0.12 0.54 0.01 0.04 8.8E-04 3.9E-03 0.00 0.01 0.01 0.05 0.01 0.05 180.18 789.20 E009 E010 S009 1.2E-03 5.4E-03 1.0E-03 4.5E-03 6.8E-05 3.0E-04 7.4E-06 3.2E-05 0.00 4.1E-04 9.4E-05 4.1E-04 TEG 0.00 9.4E-05 1.52 6.64 S010 Sand Separator Tank 0.00 ----7.0E-04 3.1E-03 ----0.00 0.01 0.06 --------------------E011 S011 Uncaptured Liquid Loading -----------3.0E-03 7.8E-04 -------------------------------4.72 118.08 ---Fugitives Haul Roads -------------------0.98 --------------------0.10 0.01 ----Facility Total 0.59 2.57 2.57 0.49 2.16 0.05 1.16 3.5E-03 0.02 0.10 5.15 0.43 0.04 0.29 0.04 0.21 724.37 3290.81 Facility Total (excluding fugitive emissions) 0.59 0.49 2.16 0.05 3.5E-03 0.04 0.20 0.04 724.37 3,172.72 0.19 0.02 0.10 0.20

Company Name:	EQT Production, LLC				
Facility Name:	GLO 176 Pad				
Project Description:	G70D Application				

	Facility-Wide Emission Summary - Controlled																	
Emission Point ID #	Emission Source ID#s	Emission Source Description	Forma lb/hr	ldehyde tny	Ben lb/hr	zene tnv	Tol lb/hr	iene tnv	Ethylb lb/hr	enzene tny	Xyle lh/hr	enes tny	n-He lb/hr	exane tov	BT lb/hr	EX	Tota lb/hr	l HAP tov
E001-E004	S001-S004	Storage Vessels											6.8E-05	3.0E-04			6.8E-05	3.0E-04
E005	S005	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	8.1E-06	3.5E-05	2.8E-03	0.01
E006	S006	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	8.1E-06	3.5E-05	2.8E-03	0.01
E007	S007	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	8.1E-06	3.5E-05	2.8E-03	0.01
E008	S008	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	8.1E-06	3.5E-05	2.8E-03	0.01
E009	S009	TEG	9.3E-07	4.1E-06	2.6E-08	1.1E-07	4.2E-08	1.8E-07					2.2E-05	9.7E-05	6.8E-08	3.0E-07	2.3E-05	1.0E-04
E010	S010	Sand Separator Tank											4.5E-06	2.0E-05	< 0.01	< 0.01	4.5E-06	2.0E-05
E011	S011	Uncaptured Liquid Loading											4.2E-06	1.1E-06	< 0.01	< 0.01	4.2E-06	1.1E-06
		Fugitives				< 0.01		< 0.01		< 0.01		< 0.01		0.06	< 0.01	< 0.01		0.06
		Haul Roads																
Facility Total			4.4E-04	1.9E-03	1.2E-05	5.4E-05	2.0E-05	8.7E-05	< 0.01	< 0.01	< 0.01	< 0.01	0.01	0.11	3.2E-05	1.4E-04	0.01	0.11
Facility Total (exclu	ding fugitive emissions)		4.4E-04	1.9E-03	1.2E-05	5.4E-05	2.0E-05	8.7E-05	< 0.01	< 0.01	< 0.01	< 0.01	0.01	0.05	3.2E-05	1.4E-04	0.01	0.05

 Company Name:
 EOT Production, LLC

 Facility Name:
 GLO 176 Pad

 Project Description:
 G70D Application

Produced Fluids Storage Vessels Potential Throughput Operational Hours 8,760 hrs/yr Maximum Condensate Throughput¹ 0 bbl/day Maximum Produced Water Throughput¹ 50 bbl/day

¹ Based on the highest monthly throughput recorded at the Shaver (February 2017), a similar pad near GLO 176 pad. Includes a safety factor of 50%.

Overall Control Efficiency of Combustor

0%

Storage Tanks - Uncontrolled

	Breathing		Wor	king	Flas	ning	Total Emissions		
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
Methane	< 0.001	< 0.001	< 0.001	< 0.001	0.084	0.369	0.084	0.369	
Ethane	< 0.001	< 0.001	< 0.001	< 0.001	4.9E-04	0.002	4.9E-04	0.002	
Propane	< 0.001	< 0.001	1.1E-04	4.8E-04	0.008	0.033	0.008	0.034	
Isobutane	< 0.001	< 0.001	4.9E-06	2.1E-05	5.0E-04	0.002	0.001	0.002	
n-Butane	< 0.001	< 0.001	9.6E-06	4.2E-05	0.001	0.003	0.001	0.003	
Isopentane	< 0.001	< 0.001	8.6E-07	3.7E-06	9.3E-05	4.1E-04	9.4E-05	4.1E-04	
n-Pentane	< 0.001	< 0.001	6.2E-08	2.7E-07	1.6E-05	7.2E-05	1.7E-05	7.2E-05	
Hexane	< 0.001	< 0.001	1.7E-07	7.6E-07	6.8E-05	3.0E-04	6.8E-05	3.0E-04	
Total VOC Emissions:	0.00	0.00	0.00	0.00	0.01	0.04	0.01	0.04	
Total HAP Emissions:	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	

¹ Uncontrolled emissions calculation using Promax (sum of produced water and condensate). Non-methane emissions are taken from the tank emissions stencil. Methane emissions are taken from the flash stream composition.
Company Name: EOT Production, LLC Facility Name: GLO 176 Pad Project Description: G70D Application

Produced Fluids Storage Vessels

Storage Tanks - Controlled²

	Brea lb/hr	thing tpy	Wor	king	Flasi lb/hr	hing tpy	Total Er lb/hr	nissions tpy
Methane	<0.001	<0.001	<0.001	<0.001	0.084	0.369	0.084	0.369
Ethane	<0.001	<0.001	<0.001	<0.001	4.9E-04	0.002	4.9E-04	0.002
Propane	<0.001	<0.001	1.1E-04	4.8E-04	0.008	0.033	0.008	0.034
Isobutane	<0.001	<0.001	4.9E-06	2.1E-05	5.0E-04	0.002	0.001	0.002
n-Butane	<0.001	<0.001	9.6E-06	4.2E-05	0.001	0.003	0.001	0.003
Isopentane	<0.001	<0.001	8.6E-07	3.7E-06	9.3E-05	4.1E-04	9.4E-05	4.1E-04
n-Pentane	<0.001	<0.001	6.2E-08	2.7E-07	1.6E-05	7.2E-05	1.7E-05	7.2E-05
Hexane	<0.001	<0.001	1.7E-07	7.6E-07	6.8E-05	3.0E-04	6.8E-05	3.0E-04
Total VOC Emissions:	0.00	0.00	0.00	0.00	0.01	0.04	0.01	0.04
Total HAP Emissions:	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

² Controlled emissions are equal to uncontrolled emissions since there is no control device

EQT Production, LLC GLO 176 Pad G70D Application

Sand Separator Storage Vessel

Throughput Parameter	Value	Units
Tank Capacity Operational Hours Total Produced Water and Sand Throughput Percent Produced Water Total Produced Water Throughput	4,200 8,760 200 50% 100	gallons hrs/yr bbl/month bbl/month

¹ Conservatively assumes 2 turnovers/month of sand and produced water.

Description	Potential Throughput (gal/yr)
Produced Water and Sand	100,800

Overall Control Efficiency of Combustor

0%

Storage Tanks - Uncontrolled

	Brea	thing	Woi	king	Flas	hing	Total Er	nissions
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Methane	< 0.001	< 0.001	< 0.001	< 0.001	0.001	0.003	0.001	0.003
Ethane	< 0.001	< 0.001	< 0.001	< 0.001	4.3E-07	1.9E-06	4.3E-07	1.9E-06
Propane	< 0.001	< 0.001	1.0E-04	4.4E-04	0.001	0.002	0.001	0.003
Isobutane	< 0.001	< 0.001	1.6E-06	7.2E-06	3.3E-05	1.4E-04	3.4E-05	1.5E-04
n-Butane	< 0.001	< 0.001	2.2E-06	9.5E-06	4.8E-05	2.1E-04	5.0E-05	2.2E-04
Isopentane	< 0.001	< 0.001	7.1E-08	3.1E-07	6.1E-06	2.7E-05	6.2E-06	2.7E-05
n-Pentane	< 0.001	< 0.001	3.7E-09	1.6E-08	1.1E-06	4.7E-06	1.1E-06	4.8E-06
Hexane	< 0.001	< 0.001	2.9E-09	1.3E-08	4.5E-06	2.0E-05	4.5E-06	2.0E-05
Total VOC Emissions:	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total HAP Emissions:	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

¹ Uncontrolled emissions calculation using Promax (sum of produced water and condensate). Non-methane emissions are taken from the tank emissions stencil. Methane emissions are taken from the flash stream composition.

EQT Production, LLC GLO 176 Pad G70D Application

Sand Separator Storage Vessel

Storage Tanks - Controlled²

	Brea	thing	Wor	king	Flas	hing	Total Er	nissions
	lb/hr	tpy			lb/hr	tpy	lb/hr	tpy
Methane	<0.001	<0.001	<0.001	<0.001	0.001	0.003	0.001	0.003
Ethane	< 0.001	< 0.001	< 0.001	< 0.001	4.3E-07	1.9E-06	4.3E-07	1.9E-06
Propane	< 0.001	< 0.001	1.0E-04	4.4E-04	0.001	0.002	0.001	0.003
Isobutane	< 0.001	< 0.001	1.6E-06	7.2E-06	3.3E-05	1.4E-04	3.4E-05	1.5E-04
n-Butane	< 0.001	< 0.001	2.2E-06	9.5E-06	4.8E-05	2.1E-04	5.0E-05	2.2E-04
Isopentane	< 0.001	< 0.001	7.1E-08	3.1E-07	6.1E-06	2.7E-05	6.2E-06	2.7E-05
n-Pentane	< 0.001	< 0.001	3.7E-09	1.6E-08	1.1E-06	4.7E-06	1.1E-06	4.8E-06
Hexane	< 0.001	< 0.001	2.9E-09	1.3E-08	4.5E-06	2.0E-05	4.5E-06	2.0E-05
Total VOC Emissions: Total HAP Emissions:	0.00 0.00							

² Controlled emissions are equal to uncontrolled emissions since there is no control device

Company Name: Facility Name: Project Description:	Image: EQT Production, LLC me: GLO 176 Pad cription: G70D Application		
	Line Heaters		
Source Designation: Fuel Used:	S005-S008 Natural Gas		

ruer oseu.	Natul al Gas	
Higher Heating Value (HHV) (Btu/scf):	1,050	
Heat Input (MMBtu/hr)	1.54	
Fuel Consumption (MMscf/hr):	1.47E-03	
Potential Annual Hours of Operation (hr/yr):	8,760	

Criteria and Manufacturer Specific Pollutant Emission Rates:

	Emission Factor	Potential Emissions			
Pollutant	(lb/MMscf) ^{1,4}	(lb/hr) ²	(tons/yr) ³		
NO _x	100	0.15	0.64		
со	84	0.12	0.54		
VOC	5.5	0.01	0.04		
SO ₂	0.6	8.8E-04	3.9E-03		
PM Total	7.6	0.01	0.05		
PM Condensable	5.7	0.01	0.04		
PM ₁₀ (Filterable)	1.9	2.8E-03	0.01		
PM _{2.5} (Filterable)	1.9	2.8E-03	0.01		
Lead	5.00E-04	7.3E-07	3.2E-06		
CO ₂	117.0	180.00	788.38		
CH ₄	2.21E-03	3.4E-03	1.5E-02		
N ₂ 0	2.21E-04	3.4E-04	1.5E-03		

EQT Production, LLC GLO 176 Pad G70D Application

Line Heaters

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential	Emissions
Pollutant	(lb/MMscf) ¹	(lb/hr) ²	(tons/yr) ³
HAPs:			
2-Methylnaphthalene	2.4E-05	3.5E-08	1.5E-07
3-Methylchloranthrene	1.8E-06	2.6E-09	1.2E-08
7,12-Dimethylbenz(a)anthracene	1.6E-05	2.3E-08	1.0E-07
Acenaphthene	1.8E-06	2.6E-09	1.2E-08
Acenaphthylene	1.8E-06	2.6E-09	1.2E-08
Anthracene	2.4E-06	3.5E-09	1.5E-08
Benz(a)anthracene	1.8E-06	2.6E-09	1.2E-08
Benzene	2.1E-03	3.1E-06	1.3E-05
Benzo(a)pyrene	1.2E-06	1.8E-09	7.7E-09
Benzo(b)fluoranthene	1.8E-06	2.6E-09	1.2E-08
Benzo(g,h,i)perylene	1.2E-06	1.8E-09	7.7E-09
Benzo(k)fluoranthene	1.8E-06	2.6E-09	1.2E-08
Chrysene	1.8E-06	2.6E-09	1.2E-08
Dibenzo(a,h) anthracene	1.2E-06	1.8E-09	7.7E-09
Dichlorobenzene	1.2E-03	1.8E-06	7.7E-06
Fluoranthene	3.0E-06	4.4E-09	1.9E-08
Fluorene	2.8E-06	4.1E-09	1.8E-08
Formaldehyde	7.5E-02	1.1E-04	4.8E-04
Hexane	1.8E+00	2.6E-03	1.2E-02
Indo(1,2,3-cd)pyrene	1.8E-06	2.6E-09	1.2E-08
Naphthalene	6.1E-04	8.9E-07	3.9E-06
Phenanthrene	1.7E-05	2.5E-08	1.1E-07
Pyrene	5.0E-06	7.3E-09	3.2E-08
Toluene	3.4E-03	5.0E-06	2.2E-05
Arsenic	2.0E-04	2.9E-07	1.3E-06
Beryllium	1.2E-05	1.8E-08	7.7E-08
Cadmium	1.1E-03	1.6E-06	7.1E-06
Chromium	1.4E-03	2.1E-06	9.0E-06
Cobalt	8.4E-05	1.2E-07	5.4E-07
Manganese	3.8E-04	5.6E-07	2.4E-06
Mercury	2.6E-04	3.8E-07	1.7E-06
Nickel	2.1E-03	3.1E-06	1.3E-05
Selenium	2.4E-05	3.5E-08	1.5E-07
Total HAP		2.8E-03	1.2E-02

¹ Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, & 1.4-3

² Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) × Emission Factor (lb/MMscf).

³ Annual Emission factor spract (bb/hr)_{Emissions} × (Maximum Allowable Operating Hours, 8760 hr/yr) × (1 ton/2000 lb).
 ⁴ GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

Company Name:	EQT Production, LLC
Facility Name:	GLO 176 Pad
Project Description:	G70D Application

Thermoelectric Generators			
Source Designation:	S009		
Fuel Used:	Natural Gas		

Higher Heating Value (HHV) (Btu/scf): 1,050 Heat Input (MMBtu/hr)¹ Fuel Consumption (MMscf/hr): 0.013 1.23E-05 Potential Annual Hours of Operation (hr/yr): 8,760

 1 Global Themorelectric specification sheet states 311 ${\rm ft}^3/{\rm day}$ at 1000 BTU/ft 3 .

Criteria and Manufacturer Specific Pollutant Emission Rates:

	Emission Factor	Potential Emissions			
Pollutant	(lb/MMscf) ^{2, 5}	(lb/hr) ³	(tons/yr) ⁴		
NOx	100	1.2E-03	0.01		
CO	84	1.0E-03	4.5E-03		
VOC	5.5	6.8E-05	3.0E-04		
SO ₂	0.6	7.4E-06	3.2E-05		
PM Total	7.6	9.4E-05	4.1E-04		
PM Condensable	5.7	7.0E-05	3.1E-04		
PM ₁₀ (Filterable)	1.9	2.3E-05	1.0E-04		
PM _{2.5} (Filterable)	1.9	2.3E-05	1.0E-04		
Lead	5.00E-04	6.2E-09	2.7E-08		
CO ₂	116.9	1.51	6.64		
CH ₄	2.21E-03	2.9E-05	1.3E-04		
N ₂ O	2.21E-04	2.9E-06	1.3E-05		

EQT Production, LLC GLO 176 Pad G70D Application

Thermoelectric Generators

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential Emissions			
Pollutant	(lb/MMscf) ²	(lb/hr) ³	(tons/yr) ⁴		
HAPs:					
2-Methylnaphthalene	2.4E-05	3.0E-10	1.3E-09		
3-Methylchloranthrene	1.8E-06	2.2E-11	9.7E-11		
7,12-Dimethylbenz(a)anthracene	1.6E-05	2.0E-10	8.6E-10		
Acenaphthene	1.8E-06	2.2E-11	9.7E-11		
Acenaphthylene	1.8E-06	2.2E-11	9.7E-11		
Anthracene	2.4E-06	3.0E-11	1.3E-10		
Benz(a)anthracene	1.8E-06	2.2E-11	9.7E-11		
Benzene	2.1E-03	2.6E-08	1.1E-07		
Benzo(a)pyrene	1.2E-06	1.5E-11	6.5E-11		
Benzo(b)fluoranthene	1.8E-06	2.2E-11	9.7E-11		
Benzo(g,h,i)perylene	1.2E-06	1.5E-11	6.5E-11		
Benzo(k)fluoranthene	1.8E-06	2.2E-11	9.7E-11		
Chrysene	1.8E-06	2.2E-11	9.7E-11		
Dibenzo(a,h) anthracene	1.2E-06	1.5E-11	6.5E-11		
Dichlorobenzene	1.2E-03	1.5E-08	6.5E-08		
Fluoranthene	3.0E-06	3.7E-11	1.6E-10		
Fluorene	2.8E-06	3.5E-11	1.5E-10		
Formaldehyde	7.5E-02	9.3E-07	4.1E-06		
Hexane	1.8E+00	2.2E-05	9.7E-05		
Indo(1,2,3-cd)pyrene	1.8E-06	2.2E-11	9.7E-11		
Naphthalene	6.1E-04	7.5E-09	3.3E-08		
Phenanthrene	1.7E-05	2.1E-10	9.2E-10		
Pyrene	5.0E-06	6.2E-11	2.7E-10		
Toluene	3.4E-03	4.2E-08	1.8E-07		
Arsenic	2.0E-04	2.5E-09	1.1E-08		
Beryllium	1.2E-05	1.5E-10	6.5E-10		
Cadmium	1.1E-03	1.4E-08	5.9E-08		
Chromium	1.4E-03	1.7E-08	7.6E-08		
Cobalt	8.4E-05	1.0E-09	4.5E-09		
Manganese	3.8E-04	4.7E-09	2.1E-08		
Mercury	2.6E-04	3.2E-09	1.4E-08		
Nickel	2.1E-03	2.6E-08	1.1E-07		
Selenium	2.4E-05	3.0E-10	1.3E-09		
Total HAP		2.3E-05	1.0E-04		

² Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, & 1.4-3

³ Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) × Emission Factor (lb/MMscf).

⁴ Annual Emissions (tons/yr)_{Potential} = (lb/hr)_{Emissions} × (Maximum Allowable Operating Hours, 8760 hr/yr) × (1 ton/2000 lb).
⁵ GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

EQT Production, LLC GLO 176 Pad G70D Application

Liquid Loading

Throughput Capture Efficiency Control Efficiency

gal/yr 0% non-tested tanker trucks 0% Combustor destruction efficiency 766,500

Liquid Loading Emissions

	Uncontrolle lb/hr	ed Emissions tpy	Uncapture lb/hr	d Emissions tpy	Controlled lb/hr	Emissions tpy
Propane	0.003	0.001	0.003	0.001	< 0.001	< 0.001
Isobutane	1.2E-04	3.0E-05	1.2E-04	3.0E-05	< 0.001	< 0.001
n-Butane	2.3E-04	6.0E-05	2.3E-04	6.0E-05	< 0.001	< 0.001
Isopentane	2.1E-05	5.3E-06	2.1E-05	5.3E-06	< 0.001	< 0.001
n-Pentane	1.5E-06	3.9E-07	1.5E-06	3.9E-07	< 0.001	< 0.001
Hexane	4.2E-06	1.1E-06	4.2E-06	1.1E-06	< 0.001	< 0.001
Total VOC Emissions:	0.003	0.001	0.003	0.001	< 0.001	< 0.001
Total HAP Emissions:	0.000	0.000	0.000	0.000	< 0.001	< 0.001

¹ Uncontrolled emissions calculation using Promax (sum of produced water and condensate).
² Hourly emissions assume two hours of loading per day, five days per week.

Fugitive Emissions

Fugitive Emissions from Component Leaks

Facility Equipment Type ¹	Valves	Connectors	Open-Ended Lines	Pressure Relief Devices
Wellhead	8	38	0.5	0
Separators	1	6	0	0
Meters/Piping	12	45	0	0
Compressors	12	57	0	0
In-line heaters	14	65	2	1
Dehydrators	24	90	2	2

¹ Table W-1B to Subpart W of Part 98 —Default Average Component Counts for Major Onshore Natural Gas Production

Fugitive VOC/Total Emissions from Component Leaks

Equipment Type	Service	Emission Factors ¹ (kg/hr/source)	Facility Equipment Count ² (units)	TOC Annual Fugitive Emissions (tpy)	Weight Fraction VOC	Weight Fraction HAP	VOC Emissions ³ (tpy)	HAP Emissions ³ (tpy)
Pumps	Light Liquid	0.01990	8	1.44	0.01	6.6E-04	0.01	9.5E-04
Compressor	Gas	0.22800	0		0.02	1.4E-03		
Valves	Gas	0.00597	147	8.47	0.02	1.4E-03	0.18	0.01
Pressure Relief Valves	Gas	0.10400	16	16.07	0.02	1.4E-03	0.34	0.02
Open-Ended Lines	All	0.00170	14	0.22	0.02	1.4E-03	4.7E-03	3.1E-04
Connectors	All	0.00183	657	11.61	0.02	1.4E-03	0.25	0.02
Intermittent Pneumatic Devices ⁴	Gas	13.5	10				0.19	0.01
			Emission Totals:	37.81			0.98	0.06

¹ U.S. EPA. Office of Air Quality Planning and Standards. *Protocol for Equipment Leak Emission Estimates.* Table 2-1. (Research Triangle Park, NC: U.S. EPA EPA-453/R-95-017, 1995). SOCMI factors were used as it was representative of natural gas liquids extraction. The pneumatic controller value is from 40 CFR 98 Subpart W, Table W-1A. Pneumatic assumes operation 1/3 of the year.

² Assumes one pump for each tank and one meter per wellhead. Pressure relief valves count includes one Emergency Pressure Relief valve and one lock-down hatch for each storage tank. Pneumatic devices assume 5 per well. A 50% compliance margin is added to the component counts based on Subpart W counts.

³ Potential emissions VOC/HAP (tpy) = Emission factor (kg/hr/source) * Number of Sources * Weight % VOC/HAP x 2.2046 (lb/kg) x 8,760 (hr/yr) ÷ 2,000 (lb/ton)

⁴ Potential emissions VOC/HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % VOC/HAP ÷ 100 ÷ 379 (scf/lb-mol) ÷ 2,000 (lb/ton)

Fugitive Emissions

Fugitive Specific HAP Emissions from Component Leaks

Equipment Type	Service	Emission Factors ¹ (kg/hr/source)	Facility Equipment Count ² (units)	TOC Annual Fugitive Emissions (tpy)	Benzene Emissions ³ (tpy)	Toluene Emissions ³ (tpy)	Ethylbenzene Emissions ³ (tpy)	Xylene Emissions ³ (tpy)	n-Hexane Emissions ⁴ (tpy)
Pumps	Light Liquid	0.01990	8	1.44	0.0E+00	0.0E+00	< 0.01	0.0E+00	9.5E-04
Compressor	Gas	0.22800	0				< 0.01		
Valves	Gas	0.00597	147	8.47	0.0E+00	0.0E+00	< 0.01	0.0E+00	0.01
Pressure Relief Valves	Gas	0.10400	16	16.07	0.0E+00	0.0E+00	< 0.01	0.0E+00	0.02
Open-Ended Lines	All	0.00170	14	0.22	0.0E+00	0.0E+00	< 0.01	0.0E+00	3.1E-04
Connectors	All	0.00183	657	11.61	0.0E+00	0.0E+00	< 0.01	0.0E+00	0.02
Intermittent Pneumatic Devices ⁴	Gas	13.5	10		0.0E+00	0.0E+00	< 0.01	0.0E+00	0.01
			Emission Totals:	37.81	0.0E+00	0.0E+00	<0.01	0.0E+00	0.06

¹ U.S. EPA. Office of Air Quality Planning and Standards. *Protocol for Equipment Leak Emission Estimates*. Table 2-1. (Research Triangle Park, NC: U.S. EPA EPA-453/R-95-017, 1995). SOCMI factors were used as it was representative of natural gas liquids extraction. The pneumatic controller value is from 40 CFR 98 Subpart W, Table W-1A. Pneumatic assumes operation 1/3 of the year.

² Assumes one pump for each tank and one meter per wellhead. Pressure relief valves count includes one Emergency Pressure Relief valve and one lock-down hatch for each storage tank. Pneumatic devices assume 5 per well. A 50% compliance margin is added to the component counts based on Subpart W counts.

³ Potential emissions HAP (tpy) = Emission factor (kg/hr/source) * Number of Sources * Weight % HAP x 2.2046 (lb/kg) x 8,760 (hr/yr) ÷ 2,000 (lb/ton)

⁴ Potential emissions HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % HAP + 100 + 379 (scf/lb-mol) + 2,000 (lb/ton)

GHG Fugitive Emissions from Component Leaks

		GHG Emission			
	Component	Factor ¹	CH ₄ Emissions ^{2,3}	CO ₂ Emissions ^{2,3}	CO ₂ e Emissions ⁴
Component	Count	scf/hr/component	(tpy)	(tpy)	(tpy)
Pumps	8	0.01	0.01	6.9E-05	0.32
Compressor	0	4.17			
Valves	147	0.027	0.68	3.6E-03	17.06
Pressure Relief Devices	16	0.04	0.11	5.9E-04	2.75
Open-Ended Lines	14	0.061	0.14	7.5E-04	3.54
Connectors	657	0.003	0.34	1.8E-03	8.47
Intermittent Pneumatic Devices	10	6	3.44	0.02	85.94
1	ſotal		4.72	0.03	118.08

¹ Population emission factors for gas service in the Eastern U.S. from *Table W-1A of Subpart W - Default Whole Gas Emission Factors for Onshore Production*, 40 CFR 98, Subpart W (Table W-6 for compressor). Pneumatic assumes operation 1/3 of the year. ² Calculated in accordance with Equations W-32a, W-35 and W-36 in Subpart W of 40 CFR 98. See footnote 4 above for sample calculation.

0.18%

³ Potential emissions VOC/HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % VOC/HAP ÷ 100 ÷ 379 (scf/lb-mol) ÷ 2,000 (lb/ton) Mole fractions of CH₄ and CO₂ based on gas analysis:

⁴ Carbon equivalent emissions (CO₂e) are based on the following Global Warming Potentials (GWP) from 40 CFR Part 98, Table A-1:

$$CH_{4:}$$
 93%
O₂e) are based on the following Glob
Carbon Dioxide (CO₂): 1
Methane (CH₄): 25

 Company Name:
 EQT Production, LLC

 Facility Name:
 GLO 176 Pad

 Project Description:
 G70D Application

Haul Roads

Estimated Potential Road Fugitive Emissions

Unpaved Road Emissions

Unpaved Roads	: E (lb/VMT) :	= k(s/12) ^a (W/3) ^b	')*[(365-p)/3	65]
	PM	PM10	PM _{2.5}	
k Factor (lb/VMT)	4.9	1.5	0.15	AP-42 Table 13.2.2-2 (Final, 11/06)
Silt content, s	4.8	%		AP-42 Table 13.2.2-1 (11/06), for Sand and Gravel Processing
Number of Rain Days, p	150			AP-42 Figure 13.2.1-2
а	0.7	0.9	0.9	AP-42 Table 13.2.2-2 (Final, 11/06)
b	0.45	0.45	0.45	AP-42 Table 13.2.2-2 (Final, 11/06)

Description	Weight of Empty Truck (tons)	Weight of Truck w/ Max Load (tons)	Mean Vehicle Weight (tons)	Length of Unpaved Road Traveled (mile)	Trips Per Year	Mileage Per Year	Control (%)	PM	Emissions (tpy PM ₁₀) PM _{2.5}
Liquids Hauling Employee Vehicles	20 3	40 3	30 3	0.34 0.34	192 200	131 136	0 0	0.28 0.10	0.07 0.03	0.01 0.00
Total Potential Emissions								0.38	0.10	0.01

 Company Name:
 EQT Production, LLC

 Facility Name:
 GLO 176 Pad

 Project Description:
 G70D Application

Gas Analysis

Natural Gas Stream

Speciation

Sample Location: Sample Date: HHV (Btu/scf):	Shaver 1H Gas Analys 12/13/2016 1,066	is Note: A BTU content o	f 1,050 was used for ca	lculations.
Constituent	Natural Gas Stream Speciation (Mole %)	Molecular Weight	Molar Weight	Average Weight Fraction

Constituent	(Mole %)				(Wt. %)
Carbon Dioxide	0.181	44.01	0.08	0.00	0.461
Nitrogen	0.344	28.01	0.10	0.01	0.560
Methane	92.694	16.04	14.87	0.86	86.364
Ethane	6.007	30.07	1.81	0.10	10.492
Propane	0.611	44.10	0.27	0.02	1.564
Isobutane	0.047	58.12	0.03	0.00	0.158
n-Butane	0.059	58.12	0.03	0.00	0.198
Isopentane	0.010	72.15	0.01	0.00	0.042
n-Pentane	0.005	72.15	0.00	0.00	0.020
Cyclopentane	< 0.001	70.1	0.0	0.0	0.000
n-Hexane	0.028	86.18	0.02	0.00	0.139
Cyclohexane	< 0.001	84.16	0.00	0.00	0.000
Other Hexanes	< 0.001	86.18	0.00	0.00	0.000
Heptanes	< 0.001	100.21	0.00	0.00	0.000
Methylcyclohexane	< 0.001	98.19	0.00	0.00	0.000
2,2,4-Trimethylpentane	< 0.001	114.23	0.00	0.00	0.000
Benzene*	< 0.001	78.11	0.00	0.00	0.000
Toluene*	< 0.001	92.14	0.00	0.00	0.000
Ethylbenzene*	< 0.001	106.17	0.00	0.00	0.000
Xylenes*	< 0.001	106.16	0.00	0.00	0.000
C8 + Heavies	< 0.001	130.80	0.00	0.00	0.000
Totals	99.99		17.22	1.00	100

TOC (Total)	99.46	98.98
VOC (Total)	0.76	2.12
HAP (Total)	0.03	0.14

		GLO 176 Wellpad Plant Schematic		
Client Name:	EQT Production		Job: GLO 176 V	Vellpad
Location:	GLO 176 Wellpad			
Flowsheet:	GLO 176 Wellpad			
		GLO 176 Wellpad		
		Temp Inlet 65 °F Pressure Inlet 600 psig Image: Stream Image: Stream <	70.tlet 50 bb/d 10	
		Annual tank loss calculations for 'PW Inlet'. Total working and breathing losses from the Vertical Cyfinder are 0.0005457 ton/yr. Flashing losses are 0.03947 ton/yr. Loading losses are 0.0007782 ton/yr of loaded liquid. Warning, expansion coefficient is negative. Verify vapor pressure of stored fluid Losses exceed Net annual throughput. Tank-1		

	Process Stru All St Tabulated by	eams Report reams y Total Phase		0.176 Wollbod			
Client Name: EQT Production) 2d		JOD: GLO	176 Wellpad			
Elowsheet: GLO 176 Wellp	ad						
	Conne	octions					
	Gas Oulet	Inlet Gas	PW Inlet	PW Outlet	Tank Vapor		
	Gas Oulet	Stream	I W IIIEL				
From Block	Separator		Separator	Storage Tank	Storage Tank		
To Block		MIX-100	Storage Tank				
	Stream Co	omposition					
	Gas Oulet	Inlet Gas Stream	PW Inlet	PW Outlet	Tank Vapor		
Mole Fraction	%	%	%	%	%		
Methane	92.6556	92.7083 *	0.0881184	0.00227811	87.9439		
Etnane	6.00443	6.0079 *	0.00720858	0.000288906	7.08936		
Isobutane	0.01045	0.010792	2 1387E-05	4 65649E-07	0.433601		
n-Butane	0.0586763	0.0587088 *	3.15626E-05	8.37251E-07	0.0314784		
Isopentane	0.00999604	0.0100015 *	3.22692E-06	6.40783E-08	0.00324033		
n-Pentane	0.00479814	0.00480072 *	5.65669E-07	4.12272E-09	0.000575297		
Nitrogen	0.344161	0.344352 *	0.000180049	2.29255E-06	0.18211		
Oxygen	0	0 *	0	0	0		
Carbon Dioxide	0.180308	0.180527 *	0.00333491	0.00120193	2.1864		
Hexane	0.0277893	0.0278042	1.9584E-06	1.008E-08	0.00199602		
Water	0.0370410	0	33.3007	33.3302	2.10372		
	Gas Oulet	Inlet Gas Stream	PW Inlet	PW Outlet	Tank Vapor		
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h		
Methane	16329.4	16330 *	0.572946	0.0147978	0.558149		
Ethane	1983.44	1983.53 *	0.0878509	0.00351746	0.0843334		
Propane	295.714	295.722 *	0.00779279	0.000225178	0.00756761		
ISODUTANE	29.8704	29.8709 *	0.000503812	1.09586E-05	0.000492853		
Isopentane	7 9229		9.43612E-05	1.97036E-05	9 24892E-05		
n-Pentane	3.80302	3.80304 *	1.65412E-05	1.20439E-07	1.64208E-05		
Nitrogen	105.914	105.916 *	0.00204424	2.60038E-05	0.00201824		
Oxygen	0	0 *	0	0	0		
Carbon Dioxide	87.1742	87.2337 *	0.059485	0.021418	0.038067		
Hexane	26.308	26.308 *	6.84008E-05	3.5172E-07	6.80491E-05		
Water	11.2891	0 "	729.434	729.419	0.0150077		
	Gas Oulet	Inlet Gas Stream	PW Inlet	PW Outlet	Tank Vapor		
Volumetric Flow	ft^3/h	ft^3/h	gpm	gpm	ft^3/h		
Methane	8547.12	8500.19	0.00278429	7.20568E-05	13.3047		
Ethane	422.353	420.019	0.000292319	1.17239E-05	1.06719		
Propane	32.8223	32.6511	2.21976E-05	6.42402E-07	0.0650431		
n-Butane	1.83867	2 10675	1.31204E-00	2.0093/E-08	0.00320251		
Isopentane	0 152268	0.151866	2.26078F-07	4.49124F-09	0.000481468		
	0.102200	0.0860972	3.97093E-08	2.8953E-10	8.55211E-05		
n-Pentane	0.0863093	0.0000072	0.0.000				
n-Pentane Nitrogen	0.0863093 36.2103	36.0164	5.42512E-06	6.91621E-08	0.0276286		
n-Pentane Nitrogen Oxygen	0.0863093 36.2103 0	<u>36.0164</u> 0	5.42512E-06 0	6.91621E-08 0	0.0276286		
n-Pentane Nitrogen Oxygen Carbon Dioxide	0.0863093 36.2103 0 14.7957	36.0164 0 14.7271	5.42512E-06 0 9.25719E-05	6.91621E-08 0 3.33909E-05	0.0276286 0 0.32998		
n-Pentane Nitrogen Oxygen Carbon Dioxide Hexane	0.0863093 36.2103 0 14.7957 0.0996503	36.0164 0 14.7271 0.101374	5.42512E-06 0 9.25719E-05 1.56096E-07	6.91621E-08 0 3.33909E-05 8.03739E-10	0.0276286 0 0.32998 0.000295639		
n-Pentane Nitrogen Oxygen Carbon Dioxide Hexane Water	0.0863093 36.2103 0 14.7957 0.0996503 4.96773	36.0164 0 14.7271 0.101374 0	5.42512E-06 0 9.25719E-05 1.56096E-07 1.45811	6.91621E-08 0 3.33909E-05 8.03739E-10 1.45913	0.0276286 0 0.32998 0.000295639 0.318056		

Stream Properties								
Property	Units	Gas Oulet	Inlet Gas Stream	PW Inlet	PW Outlet	Tank Vapor		
Temperature	°F	63.7283	65 *	63.7283	65.2024	65.2024		
Pressure	psia	609.696	614.696 *	609.696	14.6959	14.6959 *		
Mole Fraction Vapor	%	100	100	0	0	100		
Mole Fraction Light Liquid	%	0	0	100	100	0		

* User Specified Values ? Extrapolated or Approximate Values ProMax 4.0.16071.0 Copyright © 2002-2016 BRE Group, Ltd.

Licensed to Trinity Consultants, Inc. and Affiliates

API Gravity

Thermal Conductivity

Net Ideal Gas Heating Value

Gross Liquid Heating Value

Gross Ideal Gas Heating Value

Net Liquid Heating Value

Enthalpy

Remarks

Btu/h

Btu/ft^3

Btu/ft^3

Btu/lb

Btu/lb

Btu/(h*ft*°F)

-1463.63

926.402

19638.4

1027.64

21789.6

0.0179878

			Process Str All St Tabulated b	eams Report reams y Total Phase					
Client Name:	EQT Production				Job: GLO	176 Wellpad			
Location:	GLO 176 Wellpa	ad							
Flowsheet:	GLO 176 Wellpa	ad							
	Stream Properties								
Property		Units	Gas Oulet	Inlet Gas Stream	PW Inlet	PW Outlet	Tank Vapor		
Mole Fraction Heavy	/ Liquid	%	0	0	0	0	0		
Molecular Weight		lb/lbmol	17.2208	17.2204	18.0154	18.0156	17.8592		
Mass Density		lb/ft^3	2.08752	2.09902	62.296	62.3236	0.0467243		
Molar Flow		lbmol/h	1098.57	1097.98	40.53	40.4904	0.0395615		
Mass Flow		lb/h	18918.3	18907.7	730.166	729.459	0.706536		
Vapor Volumetric Flo	w	ft^3/h	9062.56	9007.88	11.7209	11.7044	15.1214		
Liquid Volumetric Flo	wc	gpm	1129.88	1123.06	1.46131	1.45925	1.88526		
Std Vapor Volumetri	c Flow	MMSCFD	10.0053	10 *	0.369132	0.368771	0.000360311		
Std Liquid Volumetri	c Flow	sgpm	122.006	121.988	1.46269	1.45833	0.00435691		
Compressibility			0.89545	0.89565	0.0313908	0.000754182	0.997237		
Specific Gravity			0.594589	0.594575	0.998829	0.999272	0.616629		

-3.63247E+07

0.020663

959.443

21123.7

23414.5

1063.4

-3.63993E+07

0.0205949

958.896

21110.5

1062.82

23400.6

10.0945

0.342714

0.929969

-1039.13

51.2906

21.6809

-4.98558E+06

10.0025

0.344777

0.0257287

-1059.16

50.3367

0.597034

-4.98412E+06

Client Name: EOT Dec	Client Name: EQT Production EQT Production Job: GLO 176 Wellpad						
Location: GLO 170	6 Wellpad			JOD: GLO 1			
Flowsheet: GLO 176	6 Wellpad						
		Conne	ctions				
From Block		Water	1				
To Block		 MIX-100	Separator				
			Copulation				
		Stream Co	mposition				
		Water	1				
Mole Fraction		%	%				
Ethana		0 *	89.3619 5 70104				
Propane		0 *	0.588745				
Isobutane		0 *	0.0451175				
n-Butane		0 *	0.0565897				
Isopentane		0 *	0.00964049				
n-Pentane		0 *	0.00462744				
Nitrogen		0 *	0.331922				
Oxygen		0 *	0				
Carbon Dioxide		0 *	0.174011				
Water		100 *	3 60955				
		100	0.00000				
		Water	1				
Mass Flow		lb/h	lb/h				
Methane		0 *	16330				
Ethane		0 *	1983.53				
Propane		0 *	295.722				
Isobutane		0 *	29.8709				
Isopentane		0 *	37.4003				
n-Pentane		0 *	3.80304				
Nitrogen		0 *	105.916				
Oxygen		0 *	0				
Carbon Dioxide		0 *	87.2337				
Hexane		* 0	26.308				
Water		740.723 *	740.723				
		Watar	4	<u> </u>		<u> </u>	
Volumetric Flow		apm	ft^3/h				
Methane		0	8478.38	· ·		· · ·	
Ethane		0	418.06				
Propane		0	32.4027				
Isobutane		0	1.80777				
n-Butane		0	2.07797				
Isopentane		0	0.145983				
Nitrogen		0	0.0832962				
		0	0				
Carbon Dioxide		0	14.6638				
Hexane		0	0.0830256				
Water		1.48093	16.6382				
		Stream P	roperties				
Property	Units	Water	1			· · · · · ·	
Temperature	°F	65 *	64.0335				
Pressure	psia	614.696 *	614.696				
Nole Fraction Vapor	%	0	96.4421				
Mole Fraction Light Liquid	70 0/_	100	3.33789				
Molecular Weight	/0 lb/lbmol	18 0153	17 2491				
Mass Density	lb/ft^3	62.3594	2.18309				
Molar Flow	lbmol/h	41.1164	1139.1				
* User Specified Values ? Extrapolated or Approximate Values		ProMax 4. Copyright © 2002-20	.0.16071.0 016 BRE Group, Ltd.		Licensed to Trinity Consultants	s, Inc. and Affiliates	

			Process Str All St Tabulated b	reams Report treams by Total Phase			
Client Name:	EQT Production	1			Job: GLO 1	76 Wellpad	
Location:	GLO 176 Wellpa	ad					
Flowsheet:	GLO 176 Wellpa	ad					
			Stream I	Properties			
Property		Units	Water	1			
Mass Flow		lb/h	740.723	19648.4		· · · ·	
Vapor Volumetric Flo	W	ft^3/h	11.8783	9000.29			
Liquid Volumetric Flo	W	gpm	1.48093	1122.11			
Std Vapor Volumetric	Flow	MMSCFD	0.374472	10.3745			
Std Liquid Volumetric	Flow	sgpm	1.48076 *	123.469			
Compressibility			0.0315391	0.864185			
Specific Gravity			0.999846				
API Gravity			9.92622				
Enthalpy		Btu/h	-5.06012E+06	-4.13848E+07			
Thermal Conductivity	/	Btu/(h*ft*°F)	0.344737				
Net Ideal Gas Heatin	g Value	Btu/ft^3	0	924.811			
Net Liquid Heating V	alue	Btu/lb	-1059.76	20287.4			
Gross Ideal Gas Hea	iting Value	Btu/ft^3	50.3101	1026.83			
Gross Liquid Heating	j Value	Btu/lb	0	22531.8			
Remarks							

Simulation Initiated on 5/2	2/2017 5:13:47 PM	20170417_EQT GLO 176 ProMax.pmx			Page 1 of			
			Blocks MIX-100 Mixer/Splitter Report					
Client Name:	EQT Production			Job: GLO 1	176 Wellpad			
Location:	GLO 176 Wellpad			Modified: 4:	.05 PM, 6/15/2016			
Flowsheet:	GLO 176 Wellpad			Status: Solv	ved 11:03 AM, 5/12/2017			
Connections								
Stream	Connection	Type Other Blo	ock Stream	Connect	tion Type Other Block			
Water	Inlet		Inlet Gas Stre	eam In	let			
1	Outlet	t Separat	or					
	<u>.</u>	В	lock Parameters					
Pressure Drop		0 psi	Fraction to PS	tream 1	100 %			
Remarks								

Simulation Initiated on 5/22/	imulation Initiated on 5/22/2017 5:13:47 PM 20170417_EQT					Page 1 of 1		
Client Name:	EQT Production			Job: GLO 176 W	ellpad			
Location:	GLO 176 Wellpad			Modified: 4:09 Pl	M, 6/15/2016			
Flowsheet:	GLO 176 Wellpad			Status: Solved 1	1:03 AM, 5/12/2	2017		
Connections								
Stream	Connection Type	Other Block	Stream	Connection T	ype C	Other Block		
1	Inlet	MIX-100	Gas Oulet	Vapor Outle	et			
PW Inlet	Light Liquid Outlet	Storage Tank		· · ·				
		Block P	arameters					
* Pressure Drop		5 psi	Main Liquid Phase		Light Liquid			
Mole Fraction Vap	or 96	.4419 %	Heat Duty		0	Btu/h		
Mole Fraction Ligh	it Liquid 3.!	55808 %	Heat Release Curve T	уре	Plug Flow			
Mole Fraction Hear	vy Liquid	0 %	Heat Release Curve Increments	<u> </u>	10			
Remarks								

Simulation Initiated on 5/22	2/2017 5:13:47 PM	20170417_EQT C	LO 176 ProMax.pmx			Page 1 of 1		
		Blo Stora(_{Separa}	ocks ge Tank tor Report					
Client Name:	EQT Production			Job: GLO 1	76 Wellpad			
Location:	GLO 176 Wellpad			Modified: 4:	10 PM, 6/15/20	16		
Flowsheet:	GLO 176 Wellpad			Status: Solv	ed 11:03 AM, 5	/12/2017		
Connections								
Stream	Connection Type	Other Block	Stream	Connecti	on Type	Other Block		
PW Inlet	Inlet	Separator	Tank Vapor	Vapor	Outlet			
PW Outlet	Light Liquid Outlet							
		Block P	arameters					
Pressure Drop		595 psi	Main Liquid Phase		Light Liq	uid		
Mole Fraction Vap	or 0.097	6105 %	Heat Duty			0 Btu/h		
Mole Fraction Ligh	nt Liquid 99	.9024 %	Heat Release Curve T	уре	Plug Fl	OW		
Mole Fraction Hea	avy Liquid	0 %	Heat Release Curve Increments			10		
Remarks								

Page 1 of 4

		Process All _{Tabulat}	Streams Report Streams ed by Total Phase			
Client Name:	EQT Production			Job: GLO	176 Wellpad	
Location:	GLO 176 Wellpa	ad Tapk				
Tiowsheet.	Sand Separator					
		Co	nnections			
		Flash Gas	GLO 176	Produced	Sand Trap	Water
			010	Water	Inlet	Hator
From Block		Sand		Sand	Sand Trap	
		Separator		Separator	Separator	
To Block			MIX-100	Tank	Sand	MIX-100
TO BIOCK	TO DIOCK		10117-100		Separator	1017-100
					Tank	
		Stream	Composition			
		Flash Gas	GLO 176	Produced	Sand Trap	Water
				Water	Inlet	
Mole Fraction		%	%	%	%	%
Methane		87.990	4 92.7083	* 0.00231939	0.0881686	0
Ethane		7.0936	3 6.0079	* 0.000294267	0.00721523	0
Propane		0.43414	0.610792	1.28484E-05	0.00043643	0
n Butane		0.021464	1 0.046807	* 9.52900E.07	2.14172E-05	0
		0.031501	0.000/000 0.000015	6.02009E-07	3.136/3E-03	0
n Pontano		0.0032440		* 1 1067E 00	5.23047E-00	0
Nitrogen		0.00037362	7 0.00460072 7 0.344352	4.1907E-09 * 2.33488E-06	0.000180150	0
		0.10223	0.044002	* 0	0.000100109	0
Carbon Dioxide		2 1763	2 0 180527	* 0.00121791	0.00334014	0
Hexane		0.0019976	1 0.0278042	* 1.0265E-08	1.95931E-06	0
Water		2.06443	3 0	* 99.9962	99.9006	100
		Flash Gas	GLO 176	Produced	Sand Trap	Water
		п. А.	11. /1.	Water	Inlet	11. /1.
Mass Flow		lb/h	lb/h	Ib/h	Ib/h	lb/h
Nethane		0.036696	5 16330	* 0.000990436	0.0376869	0
Ethane		0.005545	1 1983.53	* 1.50900E.05	0.00578063	0
Isobutano		2 24225E 0	5 293.722	* 7.34766E.07	2 21672E 05	0
n-Butane		<u> </u>	5 29.0709 5 37.4663	* 1 3194E-06	4 89174E-05	0
Isopentane		6.08468E-0	6 7.923	* 1.25443E-07	6.21013E-06	0
n-Pentane			0 00001	* 0.050005.00	0.2.0.02.00	-
Nitrogen		1.07967E-0	5 3.80304	" 8.05969E-09	1.08773E-06	0
		1.07967E-0 0.00013273	<u>3 3.80304</u> 3 105.916	* <u>8.05969E-09</u> * <u>1.74105E-06</u>	1.08773E-06 0.000134471	0
Oxygen		1.07967E-00 0.00013273	5 3.80304 3 105.916 0 0	* 8.05969E-09 * 1.74105E-06 * 0	1.08773E-06 0.000134471 0	0 0 0
Oxygen Carbon Dioxide		1.07967E-00 0.00013273 0.00248993	6 3.80304 3 105.916 0 0 3 87.2337	8.05969E-09 * 1.74105E-06 * 0 * 0.00142674	1.08773E-06 0.000134471 0 0.00391667	0 0 0
Oxygen Carbon Dioxide Hexane		1.07967E-00 0.00013273 0.00248993 4.4752E-00	6 3.80304 3 105.916 0 0 3 87.2337 3 26.308	8.05969E-09 * 1.74105E-06 * 0 * 0.00142674 * 2.35464E-08	1.08773E-06 0.000134471 0 0.00391667 4.49874E-06	0 0 0 0
Oxygen Carbon Dioxide Hexane Water		1.07967E-00 0.00013273 0.00248999 4.4752E-00 0.00096685	6 3.80304 3 105.916 0 0 3 87.2337 5 26.308 1 0	* 8.05969E-09 * 1.74105E-06 * 0 * 0.00142674 * 2.35464E-08 * 47.9519	1.08773E-06 0.000134471 0 0.00391667 4.49874E-06 47.9529	0 0 0 0 59.2091
Oxygen Carbon Dioxide Hexane Water		1.07967E-00 0.00013273 0.00248999 4.4752E-00 0.00096685	6 3.80304 3 105.916 0 0 3 87.2337 5 26.308 1 0	* 8.05969E-09 * 1.74105E-06 * 0 * 0.00142674 * 2.35464E-08 * 47.9519	1.08773E-06 0.000134471 0 0.00391667 4.49874E-06 47.9529	0 0 0 0 59.2091
Oxygen Carbon Dioxide Hexane Water		1.07967E-00 0.00013273 0.00248999 4.4752E-00 0.00096685 Flash Gas	6 3.80304 3 105.916 0 0 3 87.2337 5 26.308 1 0 GLO 176	* 8.05969E-09 * 1.74105E-06 * 0 * 0.00142674 * 2.35464E-08 * 47.9519 Produced	1.08773E-06 0.000134471 0 0.00391667 4.49874E-06 47.9529 Sand Trap	0 0 0 0 59.2091
Oxygen Carbon Dioxide Hexane Water		1.07967E-00 0.00013273 0.00248993 4.4752E-00 0.00096685 Flash Gas	6 3.80304 3 105.916 0 0 3 87.2337 6 26.308 1 0 GLO 176 ft^3/b	* 8.05969E-09 * 1.74105E-06 * 0 * 0.00142674 * 2.35464E-08 * 47.9519 Produced Water gpm	1.08773E-06 0.000134471 0 0.00391667 4.49874E-06 47.9529 Sand Trap Inlet apm	0 0 0 59.2091
Oxygen Carbon Dioxide Hexane Water Volumetric Flow		1.07967E-00 0.00013273 0.00248993 4.4752E-00 0.00096685 Flash Gas ft^3/h	6 3.80304 3 105.916 0 0 0 3 87.2337 6 26.308 1 0 GLO 176 ft^3/h 1 8500.19	* 8.05969E-09 * 1.74105E-06 * 0 * 0.00142674 * 2.35464E-08 * 47.9519 Produced Water gpm 4.82253E-06	1.08773E-06 0.000134471 0 0.00391667 4.49874E-06 47.9529 Sand Trap Inlet gpm 0.000183132	0 0 0 59.2091 Water gpm
Oxygen Carbon Dioxide Hexane Water Volumetric Flow Methane Ethane		1.07967E-00 0.00013273 0.00248993 4.4752E-00 0.00096685 Flash Gas ft^3/h 0.85993- 0.068975	6 3.80304 3 105.916 0 0 3 87.2337 6 26.308 1 0 GLO 176 ft^3/h 4 8500.19 3 420.019	* 8.05969E-09 * 1.74105E-06 * 0 * 0.00142674 * 2.35464E-08 * 47.9519 Produced Water gpm 4.82253E-06 7.8499E-07	1.08773E-06 0.000134471 0 0.00391667 4.49874E-06 47.9529 Sand Trap Inlet gpm 0.000183132 1.92338E-05	0 0 0 59.2091 Water gpm 0
Oxygen Carbon Dioxide Hexane Water Volumetric Flow Methane Ethane Propane		1.07967E-00 0.00013273 0.00248993 4.4752E-00 0.00096685 Flash Gas ft^3/h 0.859933 0.0689755 0.00420444	6 3.80304 3 105.916 0 0 3 87.2337 6 26.308 1 0 GLO 176 ft^3/h 4 8500.19 3 420.019 5 32.6511	* 8.05969E-09 * 1.74105E-06 * 0 * 0.00142674 * 2.35464E-08 * 47.9519 Produced Water gpm 4.82253E-06 7.8499E-07 4.30218E-08	1.08773E-06 0.000134471 0 0.00391667 4.49874E-06 47.9529 Sand Trap Inlet gpm 0.000183132 1.92338E-05 1.46053E-06	0 0 0 59.2091 Water gpm 0 0 0
Oxygen Carbon Dioxide Hexane Water Volumetric Flow Methane Ethane Propane Isobutane		1.07967E-00 0.00013273 0.00248993 4.4752E-00 0.00096685 Flash Gas ft^3/h 0.859933 0.0689753 0.00420444 0.00020713	6 3.80304 3 105.916 0 0 3 87.2337 6 26.308 1 0 GLO 176 ft^3/h 4 8500.19 3 420.019 5 32.6511 3 1.8301	* 8.05969E-09 * 1.74105E-06 * 0 * 0.00142674 * 2.35464E-08 * 47.9519 Produced Water gpm 4.82253E-06 7.8499E-07 4.30218E-08 1.91711E-09	1.08773E-06 0.000134471 0 0.00391667 4.49874E-06 47.9529 Sand Trap Inlet gpm 0.000183132 1.92338E-05 1.46053E-06 8.64113E-08	0 0 0 59.2091 Water gpm 0 0 0 0
Oxygen Carbon Dioxide Hexane Water Volumetric Flow Methane Ethane Propane Isobutane n-Butane		1.07967E-00 0.00013273 0.00248993 4.4752E-00 0.00096685 Flash Gas ft^3/h 0.859933 0.0689753 0.00420444 0.00020713 0.00020713 0.0003037	6 3.80304 3 105.916 0 0 3 87.2337 5 26.308 1 0 GLO 176 ft^3/h 4 8500.19 3 420.019 5 32.6511 3 1.8301 7 2.10675	8.05969E-09 * 1.74105E-06 * 0 * 0.00142674 * 2.35464E-08 * 47.9519 Produced Water gpm 4.82253E-06 7.8499E-07 4.30218E-08 1.91711E-09 3.3995E-09 3.3995E-09	1.08773E-06 0.000134471 0 0.00391667 4.49874E-06 47.9529 Sand Trap Inlet gpm 0.000183132 1.92338E-05 1.46053E-06 8.64113E-08 1.25856E-07	0 0 0 59.2091 Water gpm 0 0 0 0 0
Oxygen Carbon Dioxide Hexane Water Volumetric Flow Methane Ethane Propane Isobutane n-Butane Isopentane		1.07967E-00 0.00013273 0.00248993 4.4752E-00 0.00096685 Flash Gas ft^3/h 0.859933 0.0689753 0.00420444 0.00020713 0.0003037 3.11287E-03	6 3.80304 3 105.916 0 0 3 87.2337 5 26.308 1 0 GLO 176 ft^3/h 4 8500.19 3 420.019 5 32.6511 3 1.8301 7 2.10675 5 0.151866	 8.05969E-09 1.74105E-06 0 0.00142674 2.35464E-08 47.9519 Produced Water gpm 4.82253E-06 7.8499E-07 4.30218E-08 1.91711E-09 3.3995E-09 3.00957E-10 	1.08773E-06 0.000134471 0 0.00391667 4.49874E-06 47.9529 Sand Trap Inlet gpm 0.000183132 1.92338E-05 1.46053E-06 8.64113E-08 1.25856E-07 1.48782E-08	0 0 0 59.2091 Water gpm 0 0 0 0 0 0 0
Oxygen Carbon Dioxide Hexane Water Volumetric Flow Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane		1.07967E-00 0.00013273 0.00248993 4.4752E-00 0.00096685 Flash Gas ft^3/h 0.0689753 0.00420444 0.00020713 0.0003037 3.11287E-03 5.52612E-00	6 3.80304 3 105.916 0 0 3 87.2337 5 26.308 1 0 GLO 176 ft^3/h 4 8500.19 3 420.019 5 32.6511 3 1.8301 7 2.10675 5 0.151866 3 0.0860972	► 8.05969E-09 * 1.74105E-06 * 0 * 0.00142674 * 2.35464E-08 * 47.9519 Produced Water gpm 4.82253E-06 7.8499E-07 4.30218E-08 1.91711E-09 3.3995E-09 3.00957E-10 1.93744E-11 1.93744E-11	1.08773E-06 0.000134471 0 0.00391667 4.49874E-06 47.9529 Sand Trap Inlet gpm 0.000183132 1.92338E-05 1.46053E-06 8.64113E-08 1.25856E-07 1.48782E-08 2.61113E-09	0 0 0 59.2091 Water gpm 0 0 0 0 0 0 0 0
Oxygen Carbon Dioxide Hexane Water Volumetric Flow Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane Nitrogen		1.07967E-00 0.00013273 0.00248993 4.4752E-00 0.00096685 Flash Gas ft^3/h 0.859933 0.0689753 0.00420444 0.00020713 0.0003037 3.11287E-03 5.52612E-00 0.00178633	6 3.80304 3 105.916 0 0 3 87.2337 5 26.308 1 0 GLO 176 ft^3/h 4 8500.19 3 420.019 5 32.6511 3 1.8301 7 2.10675 5 0.151866 3 0.0860972 3 36.0164	 8.05969E-09 1.74105E-06 0 0.00142674 2.35464E-08 47.9519 Produced Water gpm 4.82253E-06 7.8499E-07 4.30218E-08 1.91711E-09 3.3995E-09 3.00957E-10 1.93744E-11 4.63031E-09 	1.08773E-06 0.000134471 0 0.00391667 4.49874E-06 47.9529 Sand Trap Inlet gpm 0.000183132 1.92338E-05 1.46053E-06 8.64113E-08 1.25856E-07 1.48782E-08 2.61113E-09 3.5684E-07	0 0 0 59.2091 Water gpm 0 0 0 0 0 0 0 0 0 0
Oxygen Carbon Dioxide Hexane Water Volumetric Flow Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane Nitrogen Oxygen		1.07967E-00 0.00013273 0.00248993 4.4752E-00 0.00096685 Flash Gas ft^3/h 0.859933 0.00420443 0.00020713 0.0003037 3.11287E-03 5.52612E-00 0.00178633	6 3.80304 3 105.916 0 0 3 87.2337 5 26.308 1 0 GLO 176 ft^3/h 4 8500.19 3 420.019 5 32.6511 3 1.8301 7 2.10675 5 0.151866 3 0.0860972 3 36.0164 0 0	8.05969E-09 * 1.74105E-06 * 0 * 0.00142674 * 2.35464E-08 * 47.9519 * 47.9519 * 9 * 47.9519 * 48.2253E-06 * 7.8499E-07 4.30218E-08 1.91711E-09 3.3995E-09 3.00957E-10 1.93744E-11 4.63031E-09 0 0	1.08773E-06 0.000134471 0 0.00391667 4.49874E-06 47.9529 Sand Trap Inlet gpm 0.000183132 1.92338E-05 1.46053E-06 8.64113E-08 1.25856E-07 1.48782E-08 2.61113E-09 3.5684E-07 0	0 0 0 59.2091 Water gpm 0 0 0 0 0 0 0 0 0 0 0 0
Oxygen Carbon Dioxide Hexane Water Volumetric Flow Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane Nitrogen Oxygen Carbon Dioxide		1.07967E-00 0.00013273 0.00248993 4.4752E-00 0.00096685 Flash Gas ft^3/h 0.859933 0.00420444 0.00020713 0.0003037 3.11287E-03 5.52612E-00 0.00178633 0.021217	6 3.80304 3 105.916 0 0 3 87.2337 5 26.308 1 0 GLO 176 ft^3/h 4 8500.19 3 420.019 5 32.6511 3 1.8301 7 2.10675 5 0.151866 3 36.0164 0 0 3 14.7271	* 8.05969E-09 * 1.74105E-06 * 0 * 0.00142674 * 2.35464E-08 * 47.9519 Produced Water gpm 4.82253E-06 7.8499E-07 4.30218E-08 1.91711E-09 3.3995E-09 3.00957E-10 1.93744E-11 4.63031E-09 0 2.22418E-06	1.08773E-06 0.000134471 0 0.00391667 4.49874E-06 47.9529 Sand Trap Inlet gpm 0.000183132 1.92338E-05 1.46053E-06 8.64113E-08 1.25856E-07 1.48782E-08 2.61113E-09 3.5684E-07 0 6.09487E-06	0 0 0 59.2091 Water gpm 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Oxygen Carbon Dioxide Hexane Water Volumetric Flow Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane Nitrogen Oxygen Carbon Dioxide Hexane		1.07967E-00 0.00013273 0.00248993 4.4752E-00 0.00096685 Flash Gas ft^3/h 0.859933 0.00420443 0.00020713 0.0003037 3.11287E-03 5.52612E-00 0.00178633 0.0212177 1.91062E-03 0.0212177	6 3.80304 3 105.916 0 0 3 87.2337 5 26.308 1 0 GLO 176 ft^3/h 4 8500.19 3 420.019 5 32.6511 3 1.8301 7 2.10675 5 0.151866 3 36.0164 0 0 5 14.7271 5 0.101374	* 8.05969E-09 * 1.74105E-06 * 0 * 0.00142674 * 2.35464E-08 * 47.9519 Produced Water gpm 4.82253E-06 7.8499E-07 4.30218E-08 1.91711E-09 3.3995E-09 3.00957E-10 1.93744E-11 4.63031E-09 0 2.22418E-06 5.38055E-11	1.08773E-06 0.000134471 0 0.00391667 4.49874E-06 47.9529 Sand Trap Inlet gpm 0.000183132 1.92338E-05 1.46053E-06 8.64113E-08 1.25856E-07 1.48782E-08 2.61113E-09 3.5684E-07 0 6.09487E-06 1.02661E-08 0.0055E-06	0 0 0 59.2091 Water gpm 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.0299332

0.118363

0.999846

9.92622

-404477

50.3101

0 -1059.76

0

0.344737

0.0315391

Client Name:	EQT Producti	ion			Job: GLO	176 Wellpad	
Location:	GLO 176 We	llpad				•	
Flowsheet:	Sand Separat	tor Tank					
	·				•		
			Stream P	roperties			
Property		Units	Flash Gas	GLO 176	Produced Water	Sand Trap Inlet	Water
Temperature		°F	65.116	65 *	65.116	63.6422	65 *
Pressure		psia	14.9459 *	614.696 *	14.9459	609.696	614.696 *
Mole Fraction Vap	or	%	100	100	0	0	0
Mole Fraction Ligh	t Liquid	%	0	0	100	100	100
Mole Fraction Hea	vy Liquid	%	0	0	0	0	0
Molecular Weight		lb/lbmol	17.8563	17.2204	18.0156	18.0154	18.0153
Mass Density		lb/ft^3	0.0475216	2.09902	62.3244	62.2967	62.3594
Molar Flow		lbmol/h	0.00259967	1097.98	2.66184	2.66444	3.28661
Mass Flow		lb/h	0.0464205	18907.7	47.9546	48.001	59.2091
Vapor Volumetric	Flow	ft^3/h	0.976828	9007.88	0.769436	0.770522	0.949482
Liquid Volumetric	Flow	gpm	0.121786	1123.06	0.0959296	0.0960651	0.118377

10

121.988

0.89565

0.594575

0.020663

959.443

21123.7

1063.4

23414.5

-3.63247E+07

0.024243

0.0958708

0.999284

10.0026

-327660

0.344734

-1059.15

50.3371

0.607915

0.0261972

0.000767129

0.0242667

0.0961572

0.0313956

0.998841

10.0946

-327756

0.342672

0.930545

-1039.12

51.2912

21.6943

2.36768E-05

0.000286385

0.99719

0.616529

-96.0678

926.905

19652.7

1028.18

21805

0.0179873

Remarks

Std Vapor Volumetric Flow

Std Liquid Volumetric Flow

Compressibility

Specific Gravity

Thermal Conductivity

Net Ideal Gas Heating Value

Gross Ideal Gas Heating Value

Gross Liquid Heating Value

Net Liquid Heating Value

API Gravity

Enthalpy

MMSCFD

sgpm

Btu/h

Btu/ft^3

Btu/ft^3

Btu/lb

Btu/lb

Btu/(h*ft*°F)

			Process Str All St Tabulated b	eams Report reams y Total Phase			
Client Name:	EQT Production	1 ad			Job: GL	J 176 Wellpad	
Flowsheet:	Sand Separator	Tank					
	•				•		
			Conne	ections			
			1	2			
From Block			MIX-100	Sand Trap Separator			
To Block			Sand Trap Separator				
			Coparator				
			Stream Co	omposition			
Mala Frentian			1	2			
Mole Fraction			92 4316	92 6556			
Ethane			5.98997	6.00448			
Propane			0.608969	0.610445			
Isobutane			0.0466673	0.0467805			
n-Butane			0.0585336	0.0586755			
Isopentane			0.00997165	0.00999583			
Nitrogen			0.00478039	0.344156			
Oxvaen			0	0			
Carbon Dioxide			0.179988	0.180417			-
Hexane			0.0277212	0.0277884			
Water			0.298438	0.0568737			
			-		1		
Mass Flow			1 lb/b	2 lb/b			
Methane			16330	16329.9			
Ethane			1983.53	1983.52			
Propane			295.722	295.722			
Isobutane			29.8709	29.8709			
n-Butane			37.4663	37.4662			
Isopentane			7.923	7.92299			
n-Pentane			3.80304	3.80304			
Oxygen			105.916	105.910			
Carbon Dioxide			87.2337	87.2298			
Hexane			26.308	26.308			
Water			59.2091	11.2563			
					,		
			1	2			
Volumetric Flow			tt^3/h	tt^3/h			
Fthane			0477.13 /17.038	0040.47 105			
Propane			32,3859	32.801			
Isobutane			1.80623	1.8367			
n-Butane			2.07598	2.1141			
Isopentane			0.145572	0.151744			
n-Pentane			0.0831019	0.0860617			
Nitrogen			35.9482	36.2052			
Carbon Dioxide			14.669	14.8007			
Hexane			0.0817558	0.0980326			
Water			5.69905	4.95205			
			Stream F	Properties	1		
Property		Units	1	2			
Temperature		°F	63.9658	63.6422			
Molo Eraction Vanar		psia %	614.696	609.696			
Mole Fraction Light	iquid	<u>/o</u>	99.7003	001			
Mole Fraction Heavy	/ Liquid	%	0	0			
Molecular Weight		lb/lbmol	17.2228	17.2209			

* User Specified Values ? Extrapolated or Approximate Values

ProMax 4.0.16071.0 Copyright © 2002-2016 BRE Group, Ltd.

Licensed to Trinity Consultants, Inc. and Affiliates

			Process Str All St Tabulated b	eams Report reams y Total Phase				
Client Name:	EQT Production				Job:	GLO 1	76 Wellpad	
Location:	GLO 176 Wellpa	ad						
Flowsheet:	Sand Separator	Tank						
			Stream I	Properties				
Property		Units	1	2				
Mass Density		lb/ft^3	2.11026	2.08802		. [
Molar Flow		lbmol/h	1101.27	1098.6				
Mass Flow		lb/h	18966.9	18918.9				
Vapor Volumetric Flow		ft^3/h	8987.96	9060.71				
Liquid Volumetric Flow		gpm	1120.58	1129.65				
Std Vapor Volumetric	: Flow	MMSCFD	10.0299	10.0057				
Std Liquid Volumetric	: Flow	sgpm	122.106	122.01				
Compressibility			0.892761	0.895385				
Specific Gravity				0.59459				
API Gravity								
Enthalpy		Btu/h	-3.67292E+07	-3.64015E+07				
Thermal Conductivity	/	Btu/(h*ft*°F)		0.0205918				
Net Ideal Gas Heatin	g Value	Btu/ft^3	956.579	958.897				
Net Liquid Heating V	alue	Btu/lb	21054.4	21110.5				
Gross Ideal Gas Hea	ting Value	Btu/ft^3	1060.37	1062.82				
Gross Liquid Heating	Value	Btu/lb	23341.4	23400.6				
Remarks								

Simulation Initiated on 5/22	2/2017 5:13:47 PM	20170417_EQT GL		Page 1 of 1						
		Blo MIX Mixer/Spli	ICKS -100 itter Report							
Client Name:	EQT Production			Job: GLO 176 Wellpad						
Location:	GLO 176 Wellpad		Modified: 1:16 PM, 4/4/2	2017						
Flowsheet:	Sand Separator Tank			Status: Solved 11:03 AM	M, 5/12/2017					
Connections										
Stream	Connection Type	Other Block	Stream	Connection Type	Other Block					
GLO 176	Inlet		Water	Water Inlet						
1	Outlet	Sand Trap Separator								
		Block Pa	arameters							
Pressure Drop		0 psi	Fraction to PStream	100 %						
Remarks										

Simulation Initiated on 5/22/2017 5:13:47 PM 20170417_EQT GLO 176 ProMax.pmx										
Client Name:	EQT Production				Job: GLO 1	76 Wellpad				
Location:	GLO 176 Wellpad				Modified: 1	:23 PM, 4/4/20)17			
Flowsheet:	Sand Separator Tan	k			Status: Sol	ved 11:03 AM,	5/12/2017			
Connections										
Stream	Connection	Connection Type Other Block Stream		Connect	ion Type	Other Block				
Sand Trap Inlet	Inlet	San	d Trap Separator	Flash Gas	Vapor Outlet					
Produced Water	Light Liquid C	Outlet								
			Block Pa	rameters						
Pressure Drop		594.75	psi	Main Liquid Phase Light L			iquid			
Mole Fraction Vap	or	0.0975692	%	Heat Duty			0 Btu/h			
Mole Fraction Ligh	t Liquid	99.9024	%	Heat Release Curve T	уре	Plug	Flow			
Mole Fraction Hea	vy Liquid	0	%	Heat Release Curve 10						
				Increments						
Remarks										

Simulation Initiated on 5/22	/2017 5:13:47 PM		20170417_EQT GL	O 176 ProMax.pmx			Page 1 of 1			
			cks Separator or Report							
Client Name:	EQT Production				Job: GLO 1	76 Wellpad				
Location:	GLO 176 Wellpad				Modified: 1	:22 PM, 4/4/20)17			
Flowsheet:	Sand Separator Tank				Status: Sol	ved 11:03 AM	, 5/12/2017			
Connections										
Stream	Connection Type	nection Type Other Block		Stream	Connect	ion Type	Other Block			
1	Inlet		MIX-100	2	Vapor					
Sand Trap Inlet	Light Liquid Outlet	San	d Separator Tank							
			Block Pa	rameters						
* Pressure Drop		5	psi	Main Liquid Phase		Light Liquid				
Mole Fraction Vap	or	99.7581	%	Heat Duty			0 Btu/h			
Mole Fraction Ligh	nt Liquid	0.241943	%	Heat Release Curve T	уре	Plug	Flow			
Mole Fraction Hea	vy Liquid	%	Heat Release Curve Increments			10				
Remarks										

C6+ Gas Analysis Report

Gas Analytical

Stonewood, West Virginia 8444 Water Street Stonewood, WV 26301-8006

Report Date: Dec 14, 2016 11:49a

Client:	EQT PRODUCTION	Date Sampled:	Dec 6, 2016
Client Code:	0555	Analysis Date:	Dec 13, 2016 12:00a
Site:	SHAVER 1H 518041	Collected By:	JH
Field:	940-WEST VIRGINIA	Date Effective:	Jan 1, 2017 12:00a
Meter:	518041	Sample Pressure (PSI):	60.0
Source Laboratory	Stonewood, WV	Sample Temp (°F):	70
Lab File No:	516602841	Field H2O (lb/MMSCFD):	
Cylinder No:	1		
Analysis Status:	good		
Sample Type:	Spot		
Measurement Analyst:	ashters Free		

Component	Mol %	GPM @Contract PSIA		
H2S				
Methane	92.6944	0.0000		
Ethane	6.0070	1.6098		
Propane	0.6107	0.1686		
I-Butane	0.0468	0.0153		
N-Butane	0.0587	0.0185		
I-Pentane	0.0100	0.0037		
N-Pentane	0.0048	0.0017		
Nitrogen	0.3443	0.0000		
Oxygen	0.0150	0.0000		
Carbon Dioxide	0.1805	0.0000		
Helium	0.0000			
Hexanes+	0.0278	0.0121		
TOTAL	100.0000	1.8297		

Analytical Results at Base Conditions (Real)								
BTU/SCF (Dry):	1,065.7982 BTU/ft3							
BTU/SCF (Saturated):	1,047.5708 BTU/ft ³							
PSIA:	14.696 PSI							
Temperature (°F):	60.0 °F							
Z Factor (Dry):	0.99769							
Z Factor (Saturated):	0.99734							

Analytical Results at Contract Conditions (Real)							
BTU/SCF (Dry):	1,068.2697 BTU/ft3						
BTU/SCF (Saturated):	1,050.0431 BTU/ft ³						
PSIA:	14.730 PSI						
Temperature (°F):	60.0 °F						
Z Factor (Dry):	0.99770						
Z Factor (Saturated): 0.99734							

Calculated Specific Gravities								
Ideal Gravity: 0.5947 Real Gravity: 0.5958								
Molecular Wt:	17.2246 lb/lbmol							

Methods, standards, and uncertainties based on GPA 2261-13. Analytical Calculations performed in accordance with GPA 2172-09.

Source

Date

Notes

ATTACHMENT U

Emission Summary Sheet

EQT Production, LLC | GLO 176 Pad Trinity Consultants

ATTACHMENT U – FACILITY-WIDE CONTROLLED EMISSIONS SUMMARY SHEET																
List all sources of	List all sources of emissions in this table. Use extra pages if necessary.															
Enviroing Daint ID#	N	O _x	С	0	VC	ЭС	S	SO ₂	PN	PM ₁₀ PM ₂		2.5	2.5 CH ₄		GHG (CO ₂ e)	
Emission Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
E001-E004 (S001-S004)					0.01	0.04							0.08	0.37	2.11	9.23
E005 (S005)	0.15	0.64	0.12	0.54	0.01	0.04	8.8E- 04	3.9E-03	0.01	0.05	0.01	0.05	0.00	0.01	180.18	789.20
E006 (S006)	0.15	0.64	0.12	0.54	0.01	0.04	8.8E- 04	3.9E-03	0.01	0.05	0.01	0.05	0.00	0.01	180.18	789.20
E007 (S007)	0.15	0.64	0.12	0.54	0.01	0.04	8.8E- 04	3.9E-03	0.01	0.05	0.01	0.05	0.00	0.01	180.18	789.20
E008 (S008)	0.15	0.64	0.12	0.54	0.01	0.04	8.8E- 04	3.9E-03	0.01	0.05	0.01	0.05	0.00	0.01	180.18	789.20
E009 (S009)	1.2E- 03	5.4E- 03	1.0E- 03	4.5E- 03	6.8E- 05	3.0E- 04	7.4E- 06	3.2E-05	9.4E -05	4.1E -04	9.4E- 05	4.1E -04	<0.0 1	<0.0 1	1.52	6.64
E010 (S010)					7.0E- 04	3.1E- 03							<0.0 1	<0.0 1	0.01	0.06
E011 (S011)					3.0E- 03	7.8E- 04										
Fugitives						0.98								4.72		118.08
Haul Roads										0.10		0.01				
Facility Total	0.59	2.57	0.49	2.16	0.05	1.16	3.5E- 03	0.02	0.04	0.29	0.04	0.21	0.10	5.15	724.37	3,290.8 1
Facility Total (excl. fugitives)	0.59	2.57	0.49	2.16	0.05	0.19	3.5E- 03	0.02	0.04	0.20	0.04	0.20	0.10	0.43	724.37	3,172.7 2

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT U – FACILITY-WIDE HAP CONTROLLED EMISSIONS SUMMARY SHEET

List all sources of emissions in this table. Use extra pages if necessary.

			1		1		1		1		1		1	
Emission Boint ID#	Formal	dehyde	Benz	zene	Tol	uene	Ethylb	enzene	Xyl	enes	Hexane		Total HAPs	
Emission Form ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
E001-E004 (S001-S004)											6.8E-05	3.0E-04	6.8E-05	3.0E-04
E005 (S005)	1.1E- 04	4.8E- 04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E006 (S006)	1.1E- 04	4.8E- 04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E007 (S007)	1.1E- 04	4.8E- 04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E008 (S008)	1.1E- 04	4.8E- 04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E009(S009)	9.3E- 07	4.1E- 06	2.6E-08	1.1E-07	4.2E-08	1.8E-07					2.2E-05	9.7E-05	2.3E-05	1.0E-04
E010 (S010)											4.5E-06	2.0E-05	4.5E-06	2.0E-05
E011 (S011)											4.2E-06	1.1E-06	4.2E-06	1.1E-06
Fugitives				<0.01		<0.01		<0.01		<0.01		0.06		0.06
Haul Roads														
Facility Total	4.4E- 04	1.9E- 03	1.2E-05	5.4E-05	2.0E-05	8.7E-05	<0.01	<0.01	<0.01	<0.01	0.01	0.11	0.01	0.11
Facility Total (excl. fugitives)	4.4E- 04	1.9E- 03	1.2E-05	5.4E-05	2.0E-05	8.7E-05	<0.01	<0.01	<0.01	<0.01	0.01	0.05	0.01	0.05

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT V

Class I Legal Advertisement

EQT Production, LLC | GLO 176 Pad Trinity Consultants

RECOMMENDED PUBLIC NOTICE TEMPLATE

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that EQT Production Company has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a G70-D General Permit Registration for an existing natural gas production facility, GLO 176, located 1 miles east of Coburn in Marion County, West Virginia. The latitude and longitude coordinates are: 39.588137°N, -80.438007°W.

The applicant estimates the potential to discharge the following Regulated Air Pollutants will be:

Pollutant	Emissions in tpy (tons per year)
NOx	2.57
СО	2.16
VOC	0.19
SO ₂	0.02
РМ	0.29
Formaldehyde	1.9E-03
Benzene	5.4E-05
Toluene	8.7E-05
Ethylbenzene	<0.01
Xylene	<0.01
n-Hexane	0.11
Total HAPs	0.11
Carbon Dioxide Equivalents (CO ₂ e)	3,290.81

Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours. Dated this the <u>(Day)</u> day of <u>(Month)</u>, 2017.

By: EQT Production Company Mike Gavin, Vice President 625 Liberty Ave Suite 1700 Pittsburgh, PA 15222

ATTACHMENT W

General Permit Registration Application Fee