

Williams Ohio Valley Midstream LLC 100 Teletech Drive Moundsville, WV 26041 (304) 843-3125 (304) 843-3196 fax

June 14, 2017

Beverly McKeone, P.E. New Source Review Program Manager WV Department of Environmental Protection Division of Air Quality 601 57th Street, SE Charleston, WV 25304

Subject: Class II Administrative Update (R13-2826J) Williams Ohio Valley Midstream LLC FORT BEELER GAS PROCESSING PLANT Cameron, Marshall County, West Virginia

Dear Ms. McKeone:

Williams Ohio Valley Midstream LLC (OVM), is submitting this Application for a Class II Administrative Update to Modify Permit R13-2826J, issued 06/16/16, for the Fort Beeler Gas Processing Plant, located approximately 3.8 miles N-NW of Cameron in Marshall County, West Virginia.

This application has been prepared and submitted to request the following updates to the facility's current air quality permit (R13-2826J, issued 06/16/16):

Increase in NOx emissions resulting from:

* Updated Emission Factors from AP-42: 13.5-1 - Flare, Dated 12/16

Decrease in VOC and HAP emissions resulting from:

* Reduction in "safety margin" (from 100% to 20%) of Gas VOC Content.

Offset by:

- * Removal of Old Process Flare (FL-01)
- * Increase in LDAR Component Count (from 18,470 Units to 24,550 Units).

A summary of changes to the facility-wide potential to emit are provided as an attachment to this cover letter.

(Note: The Groves triethylene glycol dehydrator and associated equipment, located adjacent to the Fort Beeler Gas Plant, are covered under a separate permit (R13-3212A, issued 06/07/17). The proposed updates to the Fort Beeler Gas Plant do not affect the Groves Dehydration Station operations or its permit.)

Beverly McKeone, P.E. WVDEP-DAQ June 14, 2017 Page 02 of 02

If you have any questions concerning this submittal or need additional information, please contact me at (304) 843-3125 or dave.morris@williams.com.

Sincerely,

Dave Morris Environmental Specialist

Attachment: Emissions Summary Sheet

Enclosures: Application for Class II Administrative Update Attachments A through S Check for Application Fee

Williams Ohio Valley Midstream LLC FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

EMISSIONS SUMMARY SHEET

Facility-Wide Emissions Summary [Tons per Year]			
Onitania Dallutanta	Potential Emissions		
Criteria Pollutants	Current Permit	Change	Proposed Permit
Nitrogen Oxides (NOX)	93.40	0.79	94.18
Carbon Monoxide (CO)	93.52	(4.36)	89.15
Point - Volatile Organic Compounds (VOC)	108.02	(14.41)	93.61
Fugitive - Volatile Organic Compounds (VOC)	70.76	10.17	80.93
Total - Volatile Organic Compounds (VOC)	178.79	(4.24)	174.54
Sulfur Dioxide (SO2)	0.47	(0.01)	0.46
Particulate Matter (PM10/2.5)	7.20	(0.10)	7.09
Lead (Pb)			
Hazardous Air Pollutants (HAP)	Potential Emissions (Including Fugitives)		Fugitives)
	Current Permit	Change	Proposed Permit
Acetaldehyde (C2H4O)	1.47		1.47
Acrolein (C3H4O)	0.92		0.92
Benzene (C6H6)	1.27	(0.56)	0.70
Ethylbenzene (C8H10)	0.86	(0.57)	0.30
Formaldehyde (HCHO)	4.54	(0.00)	4.54
n-Hexane (C6H14)	6.26	(2.39)	3.88
Methanol (CH40)	0.47		0.47
Toluene (C7H8)	2.27	(0.56)	1.71
2,2,4-Trimethylpentane (C8H18)	0.54	(0.46)	0.08
Xylenes (C8H10)	5.17	(0.57)	4.60
Other HAP	0.17	(0.12)	0.06
Total HAP	23.96	(5.22)	18.74
	Potential	Emissions (Including	Fugitives)
Greenhouse Gases (GHG)	Current Permit	Change	Proposed Permit
Carbon Dioxide (CO2)	98,769		97,088
Methane (CH4)	1,051	(0)	1,051
Nitrous Oxide (N2O)	0.2		0.2
Total - CO2 Equivalent (CO2e)	125,115	(1,696)	123,419

Increase in NOx Emissions resulting from:

* Updated Emissions Factors from AP-42: 13.5-1 - Flare, Dated 12/16.

Decrease in VOC and HAP emissions resulting from:

* Reduction in "Safety-Margin" (from 100% to 20%) of the Gas VOC/HAP Content Offset by:

* Removal of Old Process Flare (FL-01)

* Increase in LDAR Component Count (from 18,470 Units to 24,550 Units).

APPLICATION FOR CLASS II ADMINISTRATIVE UPDATE (R13-2826J)

For the:

Williams Ohio Valley Midstream LLC

FORT BEELER GAS PROCESSING PLANT

Cameron, Marshall County, West Virginia

Submitted to:

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALITY

Submitted by:

Williams Ohio Valley Midstream LLC 100 Teletech Drive, Suite 2 Moundsville, WV 26041

EcoLogic Environmental Consultants, LLC 864 Windsor Court Santa Barbara, CA 93111

June 2017

APPLICATION FOR CLASS II ADMINISTRATIVE UPDATE (R13-2826J)

Williams Ohio Valley Midstream LLC FORT BEELER GAS PLANT

Cameron, Marshall County, West Virginia

TABLE OF CONTENTS

COVER LETTER

APPLICATION FOR CLASS II ADMINISTRATIVE UPDATE

- SECTION I. General
- SECTION II. Additional Attachments and Supporting Documents
- SECTION III. Certification of Information

ATTACHMENTS TO APPLICATION

- ATTACHMENT A Business Certificate
- ATTACHMENT B Map(s)
- ATTACHMENT C Installation and Start-Up Schedule
- ATTACHMENT D Regulatory Discussion
- ATTACHMENT E Plot Plan
- ATTACHMENT F Detailed Process Flow Diagram(s) (PFD)
- ATTACHMENT G Process Description
- ATTACHMENT H Material Safety Data Sheets (MSDS) (And Representative Extended Gas Analysis)
- ATTACHMENT I Emission Units Table
- ATTACHMENT J Emission Points Data Summary Sheet(s)
- ATTACHMENT K Fugitive Emissions Data Summary Sheet(s)
- ATTACHMENT L Emissions Unit Data Sheet(s)
- ATTACHMENT M Air Pollution Control Device Sheet(s)
- ATTACHMENT N Supporting Emissions Calculations
- ATTACHMENT O Monitoring/Recordkeeping/Reporting/Testing Plans
- ATTACHMENT P Public Notice
- ATTACHMENT Q Business Confidential Claims (NOT APPLICABLE)
- ATTACHMENT R Authority Forms (NOT APPLICABLE)
- ATTACHMENT S Title V Permit Revision Information

APPLICATION FEE

APPLICATION FOR CLASS II ADMINISTRATIVE UPDATE (R13-2826J)

- SECTION I. General
- SECTION II. Additional Attachments and Supporting Documents
- SECTION III. Certification of Information

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALITY 601 57 th Street, SE Charleston, WV 25304 (304) 926-0475 Www.dep.wv.gov/dag		APPLICATION FOR NSR PERMIT AND TITLE V PERMIT REVISION (OPTIONAL)		
PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KNOWN CONSTRUCTION MODIFICATION RELOCATION CLASS I ADMINISTRATIVE UPDATE TEMPORARY CLASS II ADMINISTRATIVE UPDATE AFTER-THE-FACT		PLEASE CHECK TYPE OF 45CSR30 (TITLE V) REVISION (IF ANY): □ ADMINISTRATIVE AMENDMENT ☑ MINOR MODIFICATION □ SIGNIFICANT MODIFICATION □ NOT APPLICABLE IF ANY BOX ABOVE IS CHECKED, INCLUDE TITLE V REVISION INFORMATION AS ATTACHMENT S TO THIS APPLICATION		
FOR TITLE V FACILITIES ONLY: Please refer to "Title V Re (Appendix A, "Title V Permit Revision Flowchart") and abil	vision Guidance" in orde lity to operate with the cl	er to determine your Title V Revision options hanges requested in this Permit Application.		
Sectio	on I. General			
1. Name of applicant (as registered with the WV Secretary of State's Office WILLIAMS OHIO VALLEY MIDSTREAM LLC (OVM)		 Federal Employer ID No. (FEIN): 27-0856707 		
3. Name of facility (<i>if different from above</i>): FORT BEELER GAS PROCESSING PLANT (GP)		4. The applicant is the: ☐ OWNER ☐OPERATOR ⊠ BOTH		
5A. Applicant's mailing address:5B. Facility's present physical address:WILLIAMS OHIO VALLEY MIDSTREAM LLC (OVM)FORT BEELER GAS PROCESSING PLANTPARK PLACE CORPORATE CENTER 20.2 MI WEST OF US HWY 250/WAYNESBURG PIKE2000 COMMERCE DRIVE0.6 MI SE OF COUNTY RD 34//MIDDLE GRAVE CREEK RDPITTSBURGH, PA 15275CAMERON, WV 26033				
 6. West Virginia Business Registration. Is the applicant a resident of the State of West Virginia? YES NO If YES, provide a copy of the Certificate of Incorporation/Organization/Limited Partnership (one page) including any name change amendments or other Business Registration Certificate as Attachment A. If NO, provide a copy of the Certificate of Authority/Authority of L.L.C./Registration (one page) including any name change amendments or other Business Certificate as Attachment A. 				
7. If applicant is a subsidiary corporation, please provide the	name of parent corpora	tion: THE WILLIAMS COMPANIES, INC		
 8. Does the applicant own, lease, have an option to buy, or otherwise have control of the <i>proposed site</i>? XES NO If YES, please explain: APPLICANT OWNS/LEASES THE SITE If NO, you are not eligible for a permit for this source. 				
 Type of plant or facility (stationary source) to be constructed, modified, relocated, administratively updated or temporarily permitted (e.g., coa preparation plant, primary crusher, etc.): NATURAL GAS PROCESSING PLANT 				
 I1A. DAQ Plant ID No. (for existing facilities only): 0 5 1 - 0 0 1 2 7 11B. List all current 45CSR13 and 45CSR30 (Title V) permit numbers associated with this process (for existing facilities only): R13-2826J - FT BEELER GAS PLANT, ISSUED 06/26/16 R30-05100127 - FT BEELER GAS PLANT, ISSUED 01/09/1 R13-3212A - GROVES DEHYDRATOR, ISSUED 06/07/17 				
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.				

12A. Directions to the facility				
 For Modifications, Administra present location of the facility from th	tive Updates or Temporary per om the nearest state road;	mits at an existing f	acility, pleas	e provide directions to the
	 For Construction or Relocation permits, please provide directions to the proposed new site location from the nearest state road. Include a MAP as Attachment B. 			
FROM JEFFERSON AVE IN <u>M</u>	OUNDSVILLE:			
1) HEAD EAST ON 1ST ST ~0.8MI; 2) TURN LEFT ONTO TO CONTINUE ON US-250/WAYNESBURG PIKE ~11.7 MI; 3) CONTINUE ON US-250 PAST CO RD 34/MIDDLE GRAVE CREEK RD ~0.6 MI; 4) TURN RIGHT ONTO GRAVEL ACCESS ROAD ~0.2 MI; 5) ENTRANCE TO SITE IS STRAIGHT AHEAD.				
FROM MAIN ST IN <u>CAMERON</u>				
	50/WAYNESBURG PIKE ~3.7MI MI; 3) TURN LEFT ONTO GRAV			
12.B. New site address (if applicable)):	12C. Nearest city	or town:	12D. County:
0.2 MI WEST OF US HWY 250/	WAYNESBURG PIKE	CAMERO	N	MARSHALL
0.6 MI SE OF COUNTY RD 34//	MIDDLE GRAVE CREEK RD			
12.E. UTM Northing (KM): 4,414.35	12F. UTM Easting (KM): 535.00	12G. UTM Zone: 17S		
 APPLICATION OF TO UPDATED AP-42 EMISSIONS FACTOR FOR FLARES (AP-42, 13.5-1, 12/16) <u>DECREASE</u> IN VOC/HAP EMISSIONS RESULTING FROM: REDUCING THE MARGIN OF SAFETY (FROM 100% TO 20%) ON THE GAS VOC/HAP CONTENT. <u>OFFSET</u> BY: REMOVAL OF THE OLD PROCESS FLARE (FL-01). INCREASING THE NUMBER OF PIPING AND EQUIPMENT COMPONENTS (FROM 18,470 UNITS TO 24,280 UNITS). 				
14A. Provide the date of anticipated installation or change: na If this is an After-The-Fact permit application, provide the date upon which th proposed change did happen: na		upon which the		of anticipated Start-Up if a it is granted:
14C. Provide a Schedule of the planned Installation of/ Change to and Start-Up of each of the units proposed in this permit application as Attachment C (if more than one unit is involved).				
15. Provide maximum projected Operating Schedule of activity/activities outlined in this application: Hours Per Day: 24 Days Per Week: 7 Weeks Per Year: 52				
16. Is demolition or physical renovation at an existing facility involved? YES NO				
17. Risk Management Plans. If this facility is subject to 112(r) of the 1990 CAAA, or will become subject due to proposed changes (for applicability help see www.epa.gov/ceppo), submit your Risk Management Plan (RMP) to U. S. EPA Region III.				
18. Regulatory Discussion. List all Federal and State air pollution control regulations that you believe are applicable to the proposed process (<i>if known</i>). A list of possible applicable requirements is also included in Attachment S of this application (Title V Permit Revision Information). Discuss applicability and proposed demonstration(s) of compliance (<i>if known</i>). Provide this information as Attachment D.				
Section II. Additional attachments and supporting documents				
19. Include a check payable to WVDEP – Division of Air Quality with the appropriate application fee (per 45CSR22 and 45CSR13).				
20. Include a Table of Contents as the first page of your application package.				

21. Provide a **Plot Plan**, e.g. scaled map(s) and/or sketch(es) showing the location of the property on which the stationary source(s) is or is to be located as **Attachment E** (Refer to *Plot Plan Guidance*).

- Indicate the location of the nearest occupied structure (e.g. church, school, business, residence).

22. Provide a **Detailed Process Flow Diagram(s)** showing each proposed or modified emissions unit, emission point and control device as **Attachment F.**

23. Provide a Process Description as Attachment G.

- Also describe and quantify to the extent possible all changes made to the facility since the last permit review (if applicable).

Williams Ohio Valley Midstream LLC FORT BEELER GAS PROCESSING PLANT Application for Class II Administrative Update Page 02 of 04

All of the required forms and additional info	rmation can be found under the Permitt	ing Section of DAQ's website, or requested by phone.			
24. Provide Material Safety Data Sheets (MSDS) for all materials processed, used or produced as Attachment H.					
 For chemical processes, provide a M 	•	ne air.			
25. Fill out the Emission Units Table and	•				
26. Fill out the Emission Points Data Sur					
27. Fill out the Fugitive Emissions Data	· ·	achment K.			
28. Check all applicable Emissions Unit I					
Bulk Liquid Transfer (TLO/20E)	Haul Road Emissions Hot Mix Asphalt Plant	Quarry Solid Materials Sizing, Handling and Storage			
Concrete Batch Plant		Facilities			
☐ Grey Iron and Steel Foundry	Indirect Heat Exchanger	Storage Tanks (T-03/22E and T-04/23E)			
General Emission Unit, specify:					
	-	CE-01/1E thru CE-05/5E and GE-01/8E)			
NATURAL GAS FIRED HEATERS/B DEHYDRATOR AND REBOILER (DH					
Fill out and provide the Emissions Unit Da					
29. Check all applicable Air Pollution Co					
Absorption Systems	Baghouse	⊠ Flare (FL-02/18E)			
Adsorption Systems		Mechanical Collector			
Afterburner	Electrostatic Precipitator	Wet Collecting System			
Fill out and provide the Air Pollution Cont	UCTION (NSCR) AND OXIDATION C				
30. Provide all Supporting Emissions Calculations as Attachment N , or attach the calculations directly to the forms listed in					
Items 28 through 31.					
31. Monitoring, Recordkeeping, Reporting and Testing Plans. Attach proposed monitoring, recordkeeping, reporting and testing plans in order to demonstrate compliance with the proposed emissions limits and operating parameters in this permit application. Provide this information as Attachment O.					
 Please be aware that all permits must be practically enforceable whether or not the applicant chooses to propose such 					
measures. Additionally, the DAQ may not be able to accept all measures proposed by the applicant. If none of these plans are proposed by the applicant DAQ will develop such plans and include them in the permit					
proposed by the applicant, DAQ will develop such plans and include them in the permit.					
32. Public Notice. At the time that the application is submitted, place a Class I Legal Advertisement in a newspaper of general circulation in the area where the source is or will be located (See 45CSR§13-8.3 through 45CSR§13-8.5 and Example Legal Advertisement for details). Please submit the Affidavit of Publication as Attachment P immediately upon receipt.					
33. Business Confidentiality Claims. Does this application include confidential information (per 45CSR31)?					
> If YES, identify each segment of inform	nation on each page that is submitted	as confidential and provide justification for each			
segment claimed confidential, includin Notice – Claims of Confidentiality"		nd in accordance with the DAQ's <i>"Precautionary</i> c <i>tions</i> as Attachment Q.			
Section III. Certification of Information					
34. Authority/Delegation of Authority. Check applicable Authority Form below		an the responsible official signs the application.			
Authority of Corporation or Other Busin	ess Entity 🗌 Autho	rity of Partnership			
Authority of Governmental Agency	Autho	rity of Limited Partnership			
Submit completed and signed Authority Form as Attachment R.					
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.					

35A. **Certification of Information.** To certify this permit application, a Responsible Official (per 45CSR§13-2.22 and 45CSR§30-2.28) or Authorized Representative shall check the appropriate box and sign below.

Certification of Truth, Accuracy, and Completeness

I, the undersigned Responsible Official / Authorized Representative, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.

Compliance Certification

Except for requirements identified in the Title V Application for which compliance is not achieved, I, the undersigned hereby certify that, based on information and belief formed after reasonable inquiry, all air contaminant sources identified in this application are in compliance with all applicable requirements.

SIGN	SIGNATURE DATE:		ATE:	
	(Please	use blue ink)		(Please use blue ink)
35B.	Printed name of signee:		35C.	Title:
	PAUL HUNTER			GENERAL MANAGER OHIO RIVER SUPPLY HUB
35D.	E-mail:	36E. Phone:	36F.	FAX:
	PAULV.HUNTER@WILLIAMS.COM	(412) 787-5561		(412) 787-6002
36A.	A. Printed name of contact person (if different from above):		36B.	Title:
	DAVE MORRIS			ENVIRONMENTAL SPECIALIST
36C.	E-mail:	36D. Phone:	36E.	FAX:
	DAVE.MORRIS@WILLIAMS.COM	(304) 843-3125		(304) 843-3196

PLEASE CHECK ALL APPLICABLE ATTACHMENTS INCLUDED WITH THIS PERMIT APPLICATION:				
Attachment A: Business Certificate	Attachment K: Fugitive Emissions Summary Sheet			
⊠ Attachment B: Map(s)	Attachment L: Emissions Unit Data Sheet(s)			
Attachment C: Install/Startup Schedule	Attachment M: Air Pollution Control Device Sheet(s)			
Attachment D: Regulatory Discussion	Attachment N: Supporting Emissions Calculations			
🛛 Attachment E: Plot Plan	Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans			
Attachment F: Detailed Process Flow Diagram(s)	Attachment P: Public Notice			
Attachment G: Process Description	Attachment Q: Business Confidential Claims (Not Applicable)			
☑ Attachment H: Material Safety Data Sheets (MSDS)	Attachment R: Authority Forms (Not Applicable)			
Attachment I: Emission Units Table	Attachment S: Title V Permit Revision Information			
☑ Attachment J: Emission Points Data Summary Sheet	⊠ Application Fee			

Please mail an original and three (3) copies of the complete permit application with the signature(s) to the DAQ, Permitting Section, at the address listed on the first page of this application. Please DO NOT fax permit applications.

FOR AGENCY USE ONLY – IF THIS IS A TITLE V SOURCE:

□ Forward 1 copy of the application to the Title V Permitting Group and:

For Title V Administrative Amendments:

□ NSR permit writer should notify Title V permit writer of draft permit.

□ For Title V Minor Modifications:

Title V permit writer should send appropriate notification to EPA and affected states within 5 days of receipt,

□ NSR permit writer should notify Title V permit writer of draft permit.

□ For Title V Significant Modifications processed in parallel with NSR Permit revision:

□ NSR permit writer should notify a Title V permit writer of draft permit,

□ Public notice should reference both 45CSR13 and Title V permits,

EPA has 45 day review period of a draft permit.

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

Williams Ohio Valley Midstream LLC FORT BEELER GAS PROCESSING PLANT Application for Class II Administrative Update Page 04 of 04

ATTACHMENT A

Business Certificate

"6. **West Virginia Business Registration**. Provide a copy of the Certificate of Authority/Authority of L.L.C./Registration (one page) including any name change amendments or other Business Certificate as Attachment A."

• Certificate of Amendment to the Certificate of Authority

From: CAIMAN EASTERN MIDSTREAM, LLC

To: WILLIAMS OHIO VALLEY MIDSTREAM LLC

Date: May 15, 2012

• Certificate of Authority of a Foreign Limited Liability Company

To: CAIMAN EASTERN MIDSTREAM, LLC

Date: September 11, 2009

I, Natalie E. Tennant, Secretary of State of the State of West Virginia, hereby certify that

the attached true and exact copy of the Articles of Amendment to the Articles of Organization of

CAIMAN EASTERN MIDSTREAM, LLC

are filed in my office, signed and verified, as required by the provisions of West Virginia Code §31B-2-204 and conform to law. Therefore, I issue this

CERTIFICATE OF AMENDMENT TO THE CERTIFICATE OF AUTHORITY

changing the name of the limited liability company to

WILLIAMS OHIO VALLEY MIDSTREAM LLC

Given under my hand and the Great Seal of the State of West Virginia on this day of May 15, 2012

talil E. Yerre

Secretary of State

I, Natalie E. Tennant, Secretary of State of the State of West Virginia, hereby certify that

CAIMAN EASTERN MIDSTREAM, LLC

Control Number: 99GIS

a limited liability company, organized under the laws of the State of Texas

has filed its "Application for Certificate of Authority" in my office according to the provisions of West Virginia Code §31B-10-1002. I hereby declare the organization to be registered as a foreign limited liability company from its effective date of September 11, 2009, until a certificate of cancellation is filed with our office.

Therefore, I hereby issue this

CERTIFICATE OF AUTHORITY OF A FOREIGN LIMITED LIABILITY COMPANY

to the limited liability company authorizing it to transact business in West Virginia

Given under my hand and the Great Seal of the State of West Virginia on this day of September 11, 2009

Secretary of State

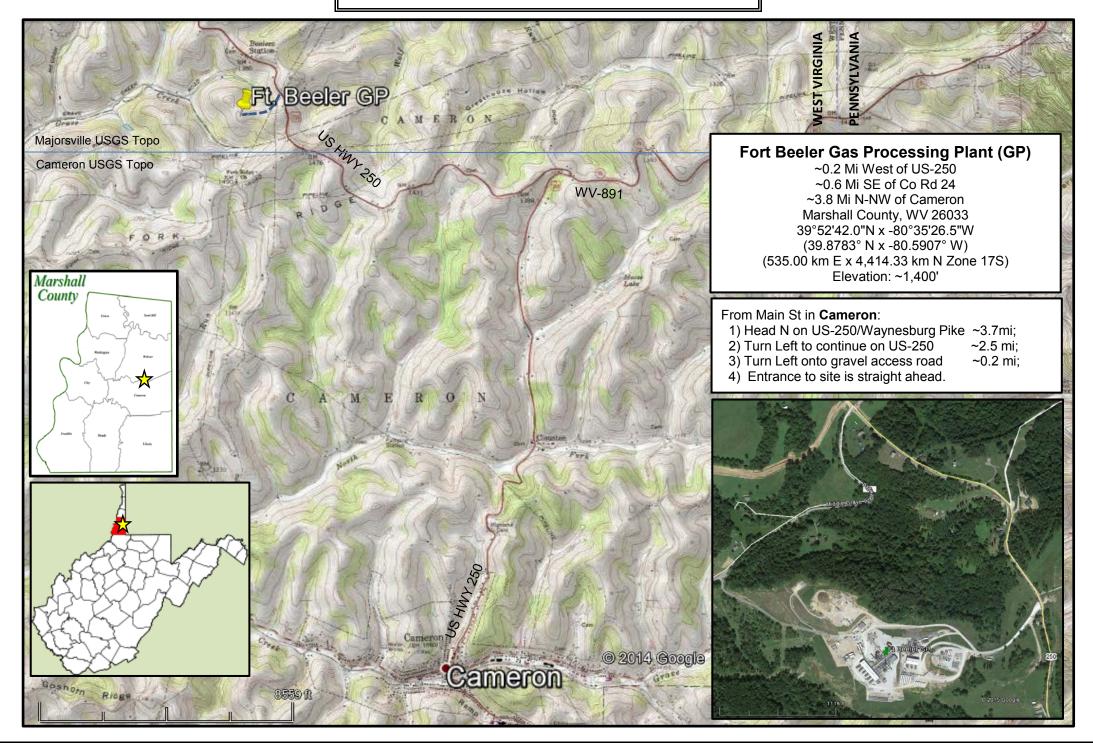
ATTACHMENT B

Map(s)

"12A. For **Modifications, Administrative Updates** or **Temporary** permits at an existing facility, please provide directions to the present location of the facility from the nearest state road. Include a MAP as Attachment B."

- Location: Cameron, Marshall County, WV 26033
- Latitude and Longitude: 39°52'42.0"N x -80°35'26.5"W (39.8783°N x -80.5907°W)
- UTM: 4,414.313 km Northing x 535.00 km Easting x Zone 17S
- Elevation: ~1,400'
- Directions:

	From Mai	n St in	Cameron:	
--	----------	---------	----------	--

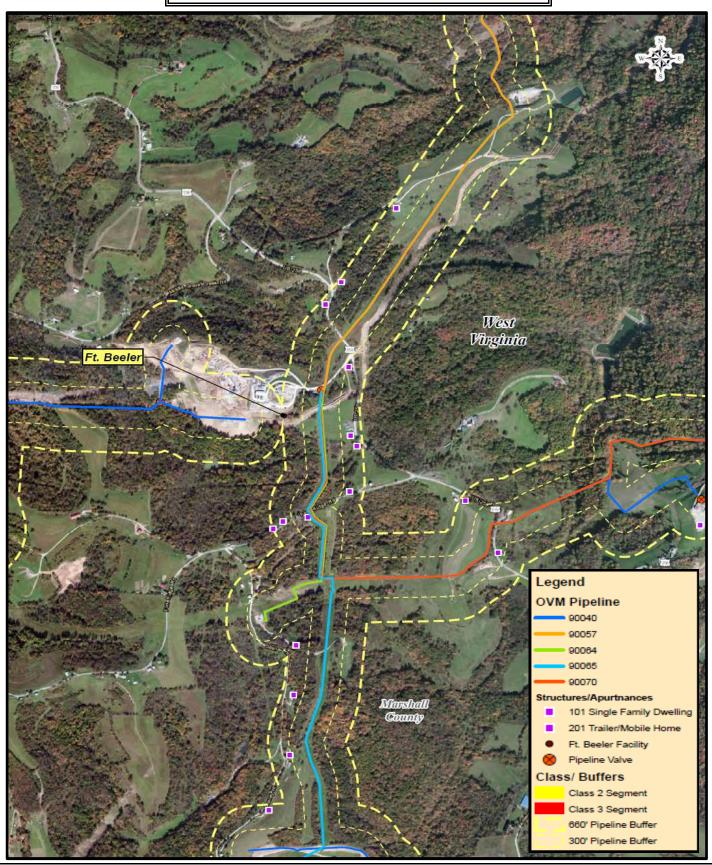

1) Head N on US-250/Waynesburg Pike	~3.7mi;
2) Turn Left to continue on US-250	~2.5 mi;
3) Turn Left onto gravel access road	~0.2 mi;
4) Entrance to site is straight ahead.	

Williams Ohio Valley Midstream LLC

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment B - Area (Topographic) Map



FORT BEELER GAS PROCESSING PLANT

Williams Ohio Valley Midstream LLC FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment B' - Pipeline Map

FORT BEELER GP

Attachment B' - Pipeline Map

Modification Permit

ATTACHMENT C

Installation and Start-Up Schedule

"14C. Provide a **Schedule** of the planned **Installation** of/**Change** to and **Start-Up** of each of the units proposed in this permit application as Attachment C."

The OVM Fort Beeler Gas Plant is an existing operation. This Class II Administrative Update does not request any facility modifications to be implemented.

ATTACHMENT D

Regulatory Discussion

"18. **Regulatory Discussion**. List all Federal and State air pollution control regulations that you believe are applicable to the proposed process (if known). Discuss applicability and proposed demonstration(s) of compliance (if known). Provide this information as Attachment D."

• Regulatory Discussion

- A. Applicability of New Source Review (NSR) Regulations
- B. Applicability of Federal Regulations
- C. Applicability of Source Aggregation
- D. Applicability of State Regulations

Williams Ohio Valley Midstream LLC FORT BEELER GAS PLANT

Class II Administrative Update (R13-2826J)

Attachment D REGULATORY DISCUSSION

A. Applicability of New Source Review (NSR) Regulations

The following New Source Review (NSR) regulations are potentially applicable to natural gas processing plants. Applicability to the facility has been determined as follows:

1. Prevention of Significant Deterioration (PSD)

This rule <u>does not apply</u>. The facility is a "PSD Natural Minor Source" for each regulated pollutant, as follows:

- NOx: PSD Natural Minor Source with Pre-Controlled PTE < 250 tpy
- CO: PSD Synthetic Minor Source with Controlled PTE < 250 tpy
- VOC: PSD Synthetic Minor Source with Controlled PTE < 250 tpy
- SO2: PSD Natural Minor Source with Pre-Controlled PTE < 250 tpy
- PM10/2.5: PSD Natural Minor Source with Pre-Controlled PTE < 250 tpy
- CO2e: Not Applicable Facility is NOT PSD Major for any other pollutant

2. Nonattainment New Source Review (NNSR)

This rule <u>does not apply</u>. The facility is in a county that is classified as Non-Attainment for Sulfur Dioxide (SO2) and as Attainment/Unclassified/Maintenance for all other criteria pollutants. (As of 10/01/15, see - http://www3.epa.gov/airquality/greenbook/ancl.html.) With the requested Federally Enforceable Limits (FEL) the facility qualifies as an "NNSR Minor Source" as follows:

• SO2: NNSR Natural Minor Source with Pre-Controlled PTE < 100 tpy

3. Major Source of Hazardous Air Pollutants (HAPs)

This rule <u>does not apply</u>. With the requested Federally Enforceable Limits (FEL), the facility qualifies as a "HAP Area Source" as follows:

- Each HAP: HAP Area Source with Controlled Formaldehyde (HCHO) PTE < 10 tpy
- Total HAPs: HAP Area Source with Controlled Total of All HAPs PTE < 25 tpy

4. Title V Operating Permit

This rule <u>does apply</u>. With the requested Federally Enforceable Limits (FEL), the facility is subject to "Title V Operating Permit" requirements as follows:

- VOC: Controlled PTE > 100 tpy
- CO2e: Controlled PTE > 100,000 tpy

[Applicable]

[Not Applicable]

[Not Applicable]

[Not Applicable]

various NSPS requirements.

B. Applicability of Federal Regulations

1. NSPS A, General Provisions

40CFR§60.1-§60.16

2. NSPS Dc, Steam Generating Units

Applicability to the facility has been determined as follows:

40CFR§60.40c-§60.48c

This rule <u>does apply</u> to the 10.0 MMBtu/hr Hot Oil Heater and 21.22 MMBtu/hr Heat Medium Heaters (H-01/9E, H-05/13E and H-06/14E) because each has a maximum design heat input capacity \geq 10 MMBtu/hr and \leq 100 MMBtu/hr (§60.40c(a)).

The following federal regulations are potentially applicable to natural gas processing plants.

(RPC/7E), Engine (GE-01/8E), and Fugitives (FUG/21E) because they are each subject to

Requirements include recording and maintaining records of the amount of each fuel combusted during each calendar month ($\S60.48c(g)(2)$).

3. NSPS Kb, Volatile Organic Liquid Storage Vessels 40CFR§60.110b-§60.117b

This rule <u>does not apply</u> because each tank either has a design capacity < 75 m3 (19,813 gal, 472 bbl) ($\S60.110b(a)$) and/or has a design capacity less than 1,589.874 m3 (420,000 gal, 10,000 bbl) and the liquids are stored prior to custody transfer ($\S60.110b(d)(4)$).

4. NSPS GG, Stationary Gas Turbines

40CFR§60.330-§60.335

This rule <u>does not apply</u> because there is no stationary gas turbine at the facility (§60.330).

5. NSPS KKK, Leaks from Natural Gas Processing Plants 40CFR§60.630-§60.636

This rule <u>does apply</u> because the facility is a natural gas processing plant (FUG/21E) that is engaged in the extraction of natural gas liquids from field gas (§60.630(e)).

Requirements include Leak Detection and Repair (LDAR) monitoring (§60.632), recordkeeping (§60.635), and reporting requirements (§60.636).

6. NSPS LLL, Onshore Natural Gas Processing: SO2 Emissions 40CFR§60.640-§60.648

This rule <u>does not apply</u> because there is no gas sweetening operation at the facility (§60.640(a)).

Attachment D – Regulatory Discussion – Page 2 of 10

This rule does apply to Heaters (H-01/9E, H-05/13E and H-06/14E), Compressors

[Not Applicable]

[Applicable]

[Not Applicable]

[Not Applicable]

[Applicable]

[Applicable]

7. NSPS IIII, Compression Ignition Reciprocating Internal Combustion Engines 40CFR§60.4200-§60.4219 [Not Applicable]

This rule <u>does not apply</u> because there is no stationary compression ignition engine at the facility (§60.4200(a)).

8. NSPS JJJJ, Stationary Spark Ignition (SI) Internal Combustion Engines (ICE)

40CFR§60.4230-§60.4248

This rule <u>does not apply</u> to the 3,550 bhp Caterpillar G3612LE compressor engines (CE-03 thru CE-05) because they are lean burn with bhp \geq 1,350 and were manufactured before 07/01/07 (§60.4230(a)(4)(i)).

This rule <u>does apply</u> to the 118 bhp Olympian G70LG Emergency Generator Engine (GE-01/8E). Compliance is achieved by purchasing an EPA Certified Engine and operating the engine in accordance with the manufacturer's emission-related written instructions.

This rule <u>does not apply</u> to the 225 bhp Caterpillar G342NA (CE-01/1E) or 625 bhp Caterpillar G398TA (CE-02/2E) engines because they each commenced construction before June 12, 2006 (§60.4230(a)(5)).

9. NSPS KKKK, Stationary Combustion Turbines

40CFR§60.4300-§60.4420

[Not Applicable]

[Applicable]

This rule <u>does not apply</u> because there is no stationary combustion turbine at the facility (§60.4300).

10. NSPS OOOO, Crude Oil and Natural Gas Production 40CFR§60.5360-§60.5430

[Applicable]

This rule <u>does apply</u> to the electric motor driven Columbia gas compressor (CM-01) because it was constructed after 08/23/11 (§60.5360 and §60.5365(c)). Requirements include replacing rod packing systems on a specified schedule (§60.5385(a)) and notification, monitoring, recordkeeping and reporting (§60.5410(c), §60.5415(c), §60.5420(b)(1) and §60.5420(b)(4)).

This rule <u>does apply</u> to the produced water tanks (T-03/22E and T-04/23E) because they are located in the oil and natural gas production segment and were constructed after 08/23/11 (§60.5360 and §60.5365(e)). However, because the tanks do not have the potential to emit VOC \geq 6 tpy there are no emission standard, or emission control (§60.5395), notification, monitoring or reporting requirements. The only requirement is to maintain documentation that the VOC emission rate is < 6 tpy (§60.5420(b)(6)(ii) and (§60.5420 (c)(5)(ii)).

This rule <u>does apply</u> to the group of all equipment, except compressors, within a process unit (§60.5365(f)). The equipment leak standards are specified in §60.5400.

This rule <u>does not apply</u> to the pneumatic controllers because they use compressed air rather than natural gas for actuation ($\S60.5365(c)(3)$).

11. NESHAP A, General Provisions

40CFR§63.1-§63.16

This rule <u>does apply</u> to the Dehydrator (DH-01/15E) and natural gas-fired compressor engines (CE-01/01 thru CE-05/5E) because they are subject to NESHAP Subpart HH and NESHAP ZZZZ respectively.

12. NESHAP HH, Oil and Natural Gas Production Facilities 40CFR§63.760-§63.779

This rule <u>does apply</u> to the Groves 5.0 MMscfd TEG Dehydrator (DH-01/15E); however, this unit is permitted separately under R13-3212A, issued 06/07/17. This unit is not affected by this application for modification permit.

This rule <u>does not apply</u> to storage vessels (tanks), compressors, or ancillary equipment because the facility is an area source of HAP emissions (§63.760(b)(2)). In no case does this rule apply to engines or turbines.

13. NESHAP HHH, Natural Gas Transmission and Storage Facilities 40CFR§63.1270-§63.1289

[Not Applicable]

This rule <u>does not apply</u> because the facility is not a natural gas transmission or storage facility transporting or storing natural gas prior to local distribution (§63.1270(a)).

14. NESHAP YYYY, Stationary Combustion Turbines 40CFR§63.6080-§63.6175

[Not Applicable]

This rule <u>does not apply</u> because there is no stationary combustion turbine at the facility (§68.6080).

15. NESHAP ZZZZ, Stationary Reciprocating Internal Combustion Engines (RICE) 40CFR§63.6580-§63.6675 [Applicable]

This rule <u>does apply</u> to all of the natural gas-fired compressor engines (CE-01/01 thru CE-05/5E).

This rule <u>does apply</u> to the 225 bhp Caterpillar G342NA (4SRB) engine (CE-01/1E) because it is an "existing engine"; i.e., commenced construction before 06/12/06 (§63.6590(a)(1)(iii)). Compliance is required no later than 10/19/13 (§63.6595(a)).

Because it is an existing, non-emergency, rich burn, remote stationary RICE \leq 500 hp, the requirements include work practice standards ((§63.6625 and Table 2d), notifications, reports and records (§63.6640 - §63.6660).

This rule <u>does apply</u> to the 625 bhp Caterpillar G398TA (4SRB) engine (CE-02/2E) because it is an "existing engine"; i.e., commenced construction before 06/12/06 (§63.6590(a)(1)(iii)). Compliance is required no later than 10/19/13 (§63.6595(a)).

Because it is an existing, non-emergency, rich burn, remote stationary RICE > 500 hp, the requirements include work practice standards ((§63.6625 and Table 2d), notifications, reports and records (§63.6640 - §63.6660).

[Applicable]

[Applicable]

This rule <u>does apply</u> to the Caterpillar G3612LE engines (CE-03 thru CE-05) because they are "existing engines"; i.e., commenced construction before 06/12/06 (§63.6590(a)(1)(iii)).

Because they are existing, non-emergency, lean burn, remote stationary RICE > 500 hp, the requirements include work practice standards ((§63.6625 and Table 2d), notifications, reports and records (§63.6640 - §63.6660).

This rule <u>does apply</u> to the 118 bhp Olympian G70LG emergency generator engine (GE-01/8E) because it is a "new engine"; i.e., commenced construction after 06/12/06 (§63.6590(a)(2)(iii)). In accordance with §63.6590(c)(1)(i), compliance with NESHAP Subpart ZZZZ is achieved by meeting the requirements of NSPS Subpart JJJJ. No further requirements apply for the emergency generator engine under NESHAP Subpart ZZZZ.

The determination that each engine at Fort Beeler Gas Plant meets the definition of "remote stationary RICE" is based on the Department of Transportation (DOT) pipeline classification. 49 CFR Part 192 at §192.5 defines various class locations and the pipeline segment at Fort Beeler meets the definition of Class 1. As found in §192.5, Class 1 is "any class location unit that has 10 or fewer buildings intended for human occupancy" and a class location unit is "an onshore area that extends 220 yards (200 meters) on either side of the centerline of any continuous 1- mile (1.6 kilometers) length of pipeline." Note the definition of "remote stationary RICE" in 40 CFR Part 63 Subpart ZZZZ is based on the Class 1 definition found in 49 CFR Part 192.

The pipeline map in Attachment B demonstrates the presence of a Class 1 pipeline at Fort Beeler Gas Plant and thus an engine classification of "remote stationary RICE" under NESHAP Subpart ZZZZ.

16. NESHAP DDDDD, Industrial, Commercial, and Institutional Boilers and Process Heaters – Major Sources

40CFR§63.7480 - §63.7575

[Not Applicable]

[Applicable]

This rule does not apply as the facility is not a major HAP source (§63.7485).

17. NESHAP JJJJJJ, Industrial, Commercial, and Institutional Boilers and Process Heaters – Area Sources 40CFR§63.11193 – §63.11237 [Not Applicable]

This rule <u>does not apply</u> because gas-fired boilers are not subject to the requirements of this subpart (§63.11195(e)).

18. Chemical Accident Prevention Provisions

40CFR§68.1-§68.220

This rule <u>does apply</u> because the facility stores more than a threshold quantity of a regulated substance in a process (§68.115).

19. Compliance Assurance Monitoring (CAM)

40CFR§64.1-§64.10

[Not Applicable]

This rule <u>does not apply</u>. Although there are pollutant specific emission units subject to an emissions limitation and a control device is used to achieve compliance, the potential precontrol emissions do not exceed 100 tpy.

20. Mandatory Greenhouse Gases (GHG) Reporting 40CFR§98.1-§98.9

[Potentially Applicable]

This rule <u>potentially applies</u> because the facility has the PTE \geq 25,000 metric ton (MT) (27,558 ton) per year of Carbon Dioxide Equivalent (CO2e) emissions.

The actual GHG emissions will be reported if CO2e emissions from stationary combustion sources exceed the 25,000 MT per year threshold (§98.2(a)).

C. Applicability of Source Aggregation

For New Source Review (NSR) and Title V permitting, the three-part regulatory criteria to determine whether emissions from two or more facilities should be aggregated and treated as a single source is whether the activities:

i) Belong to the same industrial grouping; and

- ii) Are located on one or more contiguous or adjacent properties; and
- iii) Are under control of the same person (or persons under common control).

i) Same Industrial Grouping

The subject facility will operate under SIC code 1321 (Natural Gas Liquids Extraction). The upstream gas production wells will operate under SIC code 1311 (Crude Petroleum and Natural Gas). Therefore, the subject facility shares the same two-digit major SIC code of 13 as the upstream gas production wells.

ii) Contiguous or Adjacent

The determination of whether two or more facilities are "contiguous" or "adjacent" is made on a case-by-case basis. This determination is proximity based, and it is important to focus on this criterion and whether two contiguous or adjacent facilities, considered as a single source, meet the common sense notion of a plant. The functional interrelationship of the two or more facilities is not a relevant inquiry in determining whether the facilities are "contiguous" or "adjacent."

Neither West Virginia nor federal regulations define the terms "contiguous" or "adjacent." It is clear, however, that the determination of whether two or more facilities are "contiguous" or "adjacent" is based on the plain meaning of the terms "adjacent" and "contiguous", which consider the physical distance between the facilities. The term contiguous is defined in the dictionary as being in actual contact; touching along a boundary or at a point. The term adjacent" is defined in the dictionary as not distant, nearby, having a common endpoint or border.

The Fort Beeler Processing Plant processes gas produced from multiple upstream production wells located in northern West Virginia and Eastern Ohio. The subject facility is located on a parcel that is directly adjacent to a single upstream production wellpad operated by TransEnergy (the "TransEnergy Wellpad") and is located less than half a mile from that wellpad. Other upstream production wells from which gas is processed at the Fort Beeler Processing Plant are located further from the facility.

The location of the subject facility was chosen because of suitable characteristics for construction and operation, such as the availability of a reasonably flat grade and accessibility for large trucks and equipment. Williams' business model is to construct scalable capacity that contemplates additional production from multiple operators and the initial configuration is merely a foundation for additional opportunities in the area. The subject facility does not need to be located in the immediate vicinity of the TransEnergy Wellpad in order to operate properly. Indeed, the TransEnergy Wellpad does not produce a substantial portion of the gas processed at the Fort Beeler Processing Plant and the subject facility is located further from other upstream production wells even though those wells provide a larger volume of the gas that is processed at the facility. Had suitable land been available elsewhere, the subject facility could have been located further from the TransEnergy Wellpad and could theoretically be moved further from this wellpad without affecting operations. Therefore, despite the fact that the subject facility is located in close proximity to one of many upstream production sources, aggregation of the Fort Beeler Processing Plant with this single upstream production wellpad does not meet the common sense notion of a plant.

iii) Common Control

Williams OVM operates under its parent company The Williams Companies, Inc. (Williams) and is the sole operator of the subject facility. The closest Williams-operated facility to the subject facility is the Whipkey compressor station, which is located approximately 0.9 miles away. The production wells, including the TransEnergy Wellpad, that send natural gas to the subject facility are owned and operated by other companies, which are unaffiliated with Williams. Williams has no ownership stake in the TransEnergy wellpad or in any other production well that may send natural gas to the subject facility.

Furthermore, neither Williams OVM, nor Williams, exercise operational control over any equipment owned or operated by any natural gas producer upstream of the subject facility. All employees at the subject facility are under the exclusive direction of Williams and are not under the control of any other entity. Similarly, Williams has no authority over employees of the production wells. These companies operate wholly independent of one another. No employees are expected to shuttle back and forth between the subject facility and any production well.

At this time, contracts are in place for the subject facility to process natural gas produced from multiple upstream production wells located throughout the region. As future commercial opportunities are identified, the subject facility will potentially receive gas from other producers. Williams will not have ownership or control of any future wellhead facilities. The producers are, and will be responsible for, any decisions to produce or shut-in wellhead facilities and have no control over the equipment installed, owned, and operated by

Williams. Similarly, Williams cannot control the installation or operation of any equipment located at a well site that may be considered an air contamination source.

Summary

The subject facility and the upstream production wells should not be aggregated and treated as a single source of emissions because the subject facility is not under common control with any of the upstream wells. Additionally, the subject facility and the upstream production wells, considered together, do not meet the common sense notion of a plant because the subject facility is expected to service multiple production wells and because the location of the facility was selected for reasons unrelated to the location of the production wells. Accordingly, the subject facility should not be aggregated with the upstream wells in determining major source or PSD status

D. Applicability of State Regulations

The following State regulations are potentially applicable to natural gas processing plants. Applicability to the facility has been determined as follows:

1. Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers 45CSR2 [Applicable]

The rule <u>does apply</u> to the gas-fueled heaters (9E-14E); limiting opacity to 10% based on a six minute block average.

Any fuel burning unit with a heat input \geq 10 MMBtu/hr (9E, 13E and 14E) is also subject to Sections 4 (weight emission standard), 5 (control of fugitive particulate matter), 6 (registration), 8 (testing, monitoring, recordkeeping, reporting) and 9 (startups, shutdowns, malfunctions).

2. Prevent and Control the Discharge of Air Pollutants into the Open Air which Causes or Contributes to an Objectionable Odor or Odors 45CSR4 [Applicable]

The rule <u>does apply</u> and states that an objectionable odor is an odor that is deemed objectionable when in the opinion of a duly authorized representative of the Air Pollution Control Commission (Division of Air Quality), based upon their investigations and complaints, such odor is objectionable. No odors have been deemed objectionable.

3. Control of Air Pollution from Combustion of Refuse 45CSR6

The rule <u>does apply</u> as 45CSR6 establishes emission standards for particulate matter and requirements for activities involving incineration of refuse. As the flare is required to be smokeless except for periods not to exceed a total of 5 minutes during any 2 consecutive hours, particulate matter emissions should be negligible and the flare will comply with the applicable emission standard. The facility will demonstrate compliance by maintaining records of the amount of natural gas consumed by the flare and the hours of operation. The facility will also monitor the flare pilot flame and record any malfunctions that may cause no flame to be present during facility operation.

[Applicable]

4. Prevent and Control Air Pollution from the Emission of Sulfur Oxides 45CSR10

The rule does apply to the gas-fueled heaters (9E-14E); in-stack sulfur dioxide concentration to 2,000 parts per million by volume.

Any fuel burning unit with a heat input ≥ 10 MMBtu/hr (9E, 13E and 14E) is also subject to Sections 3 (weight emission standard), 6 (registration), 7 (permits), and 8 (testing, monitoring, recordkeeping, reporting).

5. Permits for Construction, Modification, Relocation and Operation of Stationary Sources of Air Pollutants, Notification Requirements, Administrative Updates, Temporary Permits, General Permits, and Procedures for Evaluation 45CSR13 [Applicable]

The rule does apply as Williams is seeking a NSR Modification Permit to an existing permit. Williams has published the required Class I legal advertisement notifying the public of their permit application, and paid the appropriate application fee (modification).

6. Permits for Construction and Major Modification of Major Stationary Sources of Air Pollutants 45CSR14 [Not Applicable]

The rule does not apply because the proposed changes do not trigger major modification thresholds.

7. Standards of Performance for New Stationary Sources Pursuant to 40 CFR Part 60 45CSR16 [Applicable]

The rule does apply to this source by reference of §40CFR60, Subparts Dc, KKK, JJJJ, and OOOO. Williams is subject to the monitoring and recordkeeping requirements of these Subparts.

8. Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution which Cause or Contribute to Nonattainment 45CSR19 [Not Applicable]

The rule does not apply. Facility-wide emissions are below the nonattainment New Source Review thresholds of 100 TPY SO2 emissions.

9. Air Quality Management Fees Program 45CSR22

This rule does apply. It establishes a program to collect fees for certificates to operate and for permits to construct, modify or relocate sources of air pollution.

[Applicable]

[Applicable]

10. Prevent and Control Emissions of Toxic Air Pollutants 45CSR27

This rule does not apply because equipment used in the production and distribution of petroleum products is exempt, provided that the product contains no more than 5% benzene by weight (§45-22-2.4).

11. Air Pollution Emissions Banking and Trading

45CSR28

This rule does not apply. The facility does not choose to participate in the voluntarily statewide air pollutant emissions trading program.

12. Emission Statements for VOC and NOX 45CSR29

This rule does not apply because the subject facility is not located in Putnam, Kanawha, Cabell, Wayne, Wood, or Greenbrier Counties (§45-29-1).

13. Requirements for Operating Permits

45CSR30

This rule <u>does apply</u> as the facility is a major source of VOC and CO2e pollutants.

14. Emission Standards for Hazardous Air Pollutants (HAP) 45CSR34

This rule does not apply because the provisions under Subpart HH of 40 CFR Part 63 which apply to non-major area sources of hazardous air pollutants are excluded.

[Not Applicable]

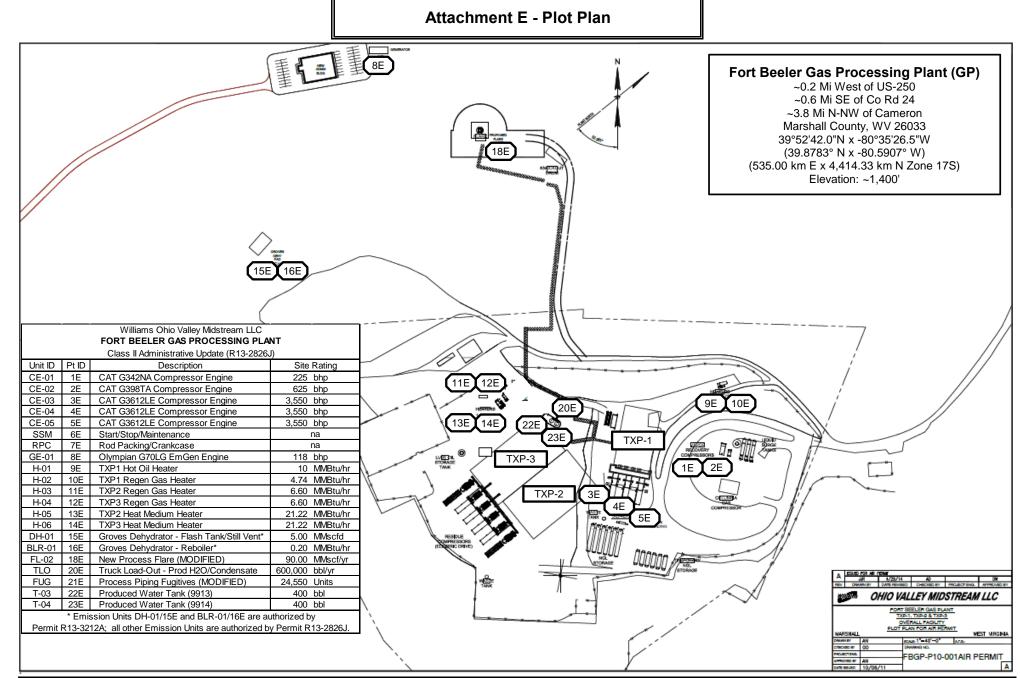
[Not Applicable]

[Not Applicable]

[Applicable]

[Not Applicable]

ATTACHMENT E Plot Plan

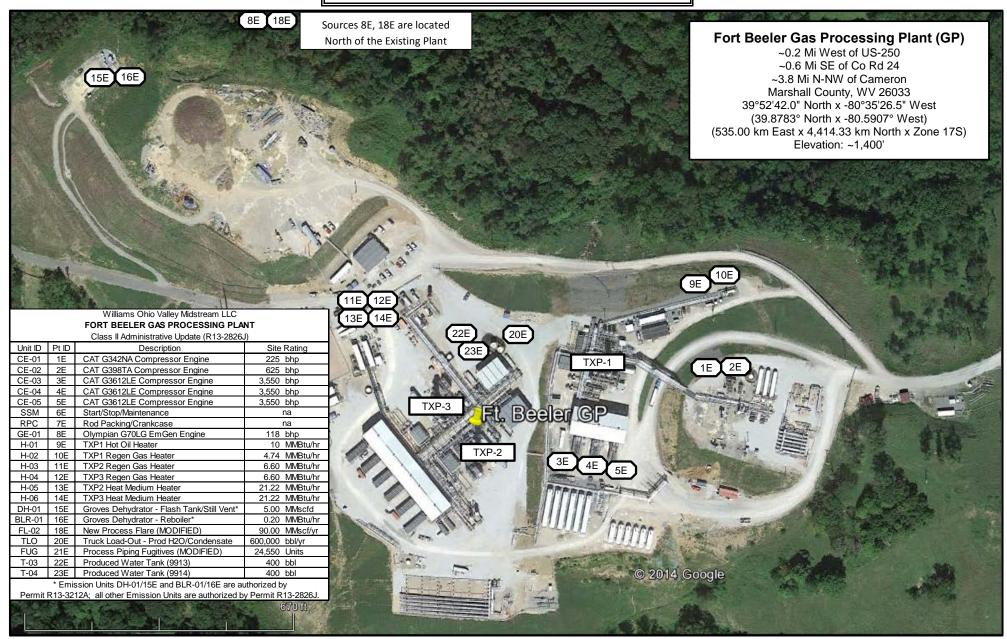

"21. Provide a **Plot Plan**, e.g. scaled map(s) and/or sketch(es) showing the location of the property on which the stationary source(s) is or is to be located as Attachment E."

• Plot Plan – Fort Beeler Gas Plant

Williams Ohio Valley Midstream LLC (OVM)

FORT BEELER GAS PROCESSING PLANT (GP)

Class II Administrative Update (R13-2826J)



Williams Ohio Valley Midstream LLC (OVM)

FORT BEELER GAS PROCESSING PLANT (GP)

Class II Administrative Update (R13-2826J)

Attachment E' - Aerial View

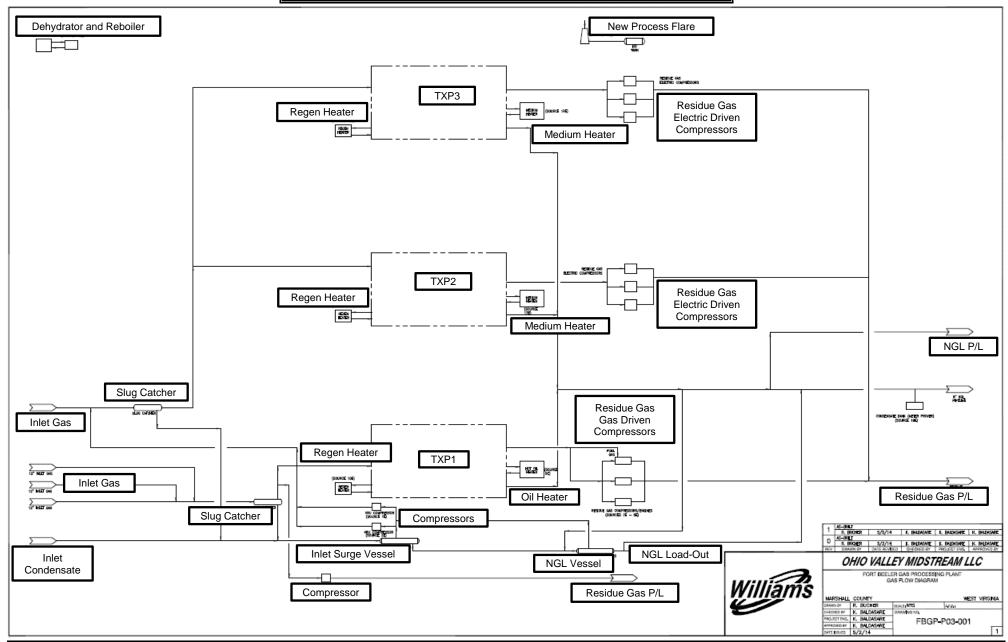
FORT BEELER GAS PROCESSING PLANT (GP)

Class II Administrative Update (R13-2826J)

ATTACHMENT F

Detailed Process Flow Diagram(s) (PFD)

"22. Provide a **Detailed Process Flow Diagram(s)** showing each proposed or modified emissions unit, emission point and control device as Attachment F."


• Process Flow Diagram (PFD) – Fort Beeler Gas Plant

Williams Ohio Valley Midstream LLC (OVM(

FORT BEELER GAS PROCESSING PLANT (GP)

Class II Administrative Update (R13-2826J)

Attachment F - Process Flow Diagram (PFD)

ATTACHMENT G

Process Description

"23. Provide **a Process Description** as Attachment G. Also describe and quantify to the extent possible all changes made to the facility since the last permit review (if applicable). "

Process Description

- A. Project Overview
- B. Cryogenic Process (Fugitives) (FUG (21E))
- C. Compressor Engines (CE-01 (1E) thru CE-05 (5E)
- D. Startup/Shutdown/Maintenance (including Blowdown) (SSM (6E))
- E. Compressor Rod Packing and Engine Crankcase Leaks (RPC (7E))
- F. Emergency Generator Engine (GE (8E))
- G. Heaters (H-01 (9E) thru H-06 (14E))
- H. Triethylene Glycol (TEG) Dehydrator (DH-01 (15E) and BLR-01 (16E))
- I. Process Flare (FL-02 (18E))
- J. Truck Load-Out (TLO (20E))
- K. Storage Tanks (T-03 (22E) and T-04 (23E))

ATTACHMENT G Process Description

Williams Ohio Valley Midstream LLC (OVM) FORT BEELER GAS PROCESSING PLANT (GP) Class II Administrative Update (R13-2826J)

A. Project Overview

Williams Ohio Valley Midstream LLC owns and operates the Fort Beeler Gas Processing Plant (facility) located along US Route 250 in Marshall County (See Appendix B – Site Location Map). The facility currently receives natural gas from local production wells and processes this gas through cryogenic processes, removing natural gas liquids from the Inlet Gas. The facility operates under Permit R13-2826J. The facility has the capacity to process 520 MMscfd of raw natural gas through one (1) 120 MMscfd cryogenic turbo-expansion plant (TXP1) and two (2) 200 MMscfd cryogenic turbo-expansion plants (TXP2 and TXP3).

This Application for Class II Administrative Update (R13-2826J) has been prepared and submitted to accomplish the following objectives:

Increase in NOx emissions resulting from:

* Updated Emissions Factors from AP-42: 13.5-1 - Flare, Dated 12/16

Decrease in VOC and HAP emissions resulting from:

* Reduction in "safety margin" (from 100% to 20%) of Gas VOC Content.

Offset by:

- * Removal of Old Process Flare (FL-01)
- * Increase in LDAR Component Count (from 18,470 Units to 24,280 Units).

B. Cryogenic Process (Fugitives) (FUG/21E)

The cryogenic process utilizes an expansion turbine to drop the temperature of the Inlet Gas to approximately minus 120 degrees Fahrenheit. This rapid temperature drop condenses much of the ethane (C2H6) and most of the other hydrocarbons (primarily propane (C3H8) and butane (C4H10), with de-minimis hexane, benzene, toluene, ethyl-benzene, xylene, etc. (together C5+)), while maintaining methane (CH4) in gaseous form.

As this is a totally enclosed system, the only emissions are fugitives from piping and equipment. These emissions are controlled by implementation of a leak detection and repair (LDAR) program.

C. Compressor Engines (CE-01/1E thru CE-05/5E)

Five (5) natural gas-fueled compressor engines are utilized in the plant processes. Each of these engines is equipped with emission control technology applicable to the operation. The rich-burn engines (CE-01/1E and CE-02/2E) utilize non-selective catalytic reduction (NSCR) and the lean-burn engines (CE-03/3E thru CE-05/5E) utilize catalytic oxidation (OxCat).

D. Startup/Shutdown/Maintenance (including Blowdown) (SSM/6E)

Start/Stop/Maintenance (SSM/6E) emissions are the sum of unburned fuel resulting from "cold-start" of idle gas-fired engines and natural gas that is purged (aka blowdown) from the

compressors and associated piping and equipment. The blowdown gas from the compressors driven by electric motors is routed to the New Process Flare (FL-02/18E).

E. Compressor Rod Packing and Engine Crankcase Leaks (RPC/7E)

Compressor rod packing generate gas leaks from the wear of mechanical joints, seals, and rotating surfaces. Similarly, exhaust gases leak from the crankcases of reciprocating engines.

F. Emergency Generator Engine (GE-01/8E)

One (1) emergency generator engine is used to provide electrical power for various activities at the site in the event of loss of purchase power. The emergency generator engine will burn either natural gas or propane fuel.

G. Heaters (H-01/9E thru H-06/14E)

Six (6) natural gas-fueled heaters are used at the facility. The regen heaters (H-02/10E thru H-04/12E) are used to regenerate the mole-sieves necessary to further dry the inlet gas and the hot oil heater (H-01/9E) and heat medium heaters (H-05/13E and H-06/14E) are used on the NGL de-methanizers.

H. Triethylene Glycol (TEG) Dehydrator (DH-01/15E and BLR-01/16E)

One (1) glycol dehydrator (and associated reboiler) is used to dehydrate a portion of the inlet gas coming into the facility from the Lucey line.

I. Process Flare (FL-02/18E)

One process flare is used at the facility to safely combust natural gas and NGL during routine operation. The new process flare (FL-02/18E) is used to combust natural gas and NGL released from numerous sources and it is estimated up to 90.0 MMscf/yr is combusted over the course of a year. During normal operating conditions, gas sent to the new flare (FL-02/17E) is associated with maintenance activities. The top five non-emergency streams routed to the vents to the new process flare (FL-02/18E) include the TXP1 Inlet Gas Separator (V-410, TXP2 Product Surge Tank (V-2404), TXP1 Product Surge Tank (V-404), TXP1 Cold Separator (V-402) and TXP1 Inlet Filter (F-441). The new process flare (FL-02/18E) will also be used to combust natural gas released during general maintenance activities (e.g., blowdowns of the six electrically driven residue gas compressors) and also emissions in the event of an upset.

J. Truck Load-Out (TLO/20E)

There are emissions from the truck loading of produced water/oil (TLO/20E). Loading of NGLs is accomplished under pressure resulting in no emissions to the atmosphere.

K. Storage Tanks (T-03/22E and T-04/23E)

There are numerous tanks at the facility used to store various materials such as produced water, condensate, NGLs, lube oil, glycol, etc. The only storage tanks with significant emissions to the atmosphere are the produced water tanks (T-03/22E and T-04/23E). All other storage tanks at the site have de-minimis emissions. Note there are no emissions from the fourteen (14) pressure vessels during normal operation.

ATTACHMENT H

Material Safety Data Sheets (MSDS) (And Representative Gas Analysis)

"24. Provide **Material Safety Data Sheets (MSDS)** for all materials processed, used or produced as Attachment H. For chemical processes, provide a MSDS for each compound emitted to the air."

• STREAM COMPOSITION

- Inlet Natural Gas Composition
- Residue Natural Gas Composition
- Natural Gas Liquids (NGL) Composition
- Extended Gas Analysis Summary
- Dehydrator Inlet Gas Composition
- Dehydrator Extended Gas Analysis
- Waste Gas Composition New Process Flare
- Btu Analysis New Process Flare

• MATERIAL SAFETY DATA SHEETS (MSDS):

- Wellhead Natural Gas
- Residue Natural Gas
- Natural Gas Liquids (NGL)
- Natural Gasoline
- Condensate
- Triethylene Glycol (TEG)
- Lube Oil

(AVAILABLE UPON REQUEST)

Williams Ohio Valley Midstream LLC FORT BEELER GAS PROCESSING PLANT Class II Administrative Update (R13-2826J)

Attachment H - MSDS and Lab Analysis

Inlet Gas Composition

Sample Date:	11/01/13	(More recen	it analysis are	less "rich")	http://www.chemindustry.com/apps/chemicals			
Compound	CAS	Formula	Molecular Weight (MW)	Mole % (M% = V%)	Mole Fract (M%/Sum- M%)	Weighted Sum (MW*MF)	Weight % (WS/Sum- WS)	lb/MMscf (WS/UGC#)
Nitrogen	7727-37-9	N2	28.013	0.4955	0.004955	0.1388	0.6466	365.79
Hydrogen Sulfide	2148-87-8	H2S	34.086					
Carbon Dioxide	124-38-9	CO2	44.010	0.1887	0.001887	0.0830	0.3869	218.85
Methane*	75-82-8	CH4	16.042	73.4443	0.734463	11.7826	54.8851	31,049.14
Ethane*	74-84-0	C2H6	30.069	17.2512	0.172517	5.1874	24.1638	13,669.71
Propane**	74-98-6	C3H8	44.096	6.0946	0.060948	2.6875	12.5189	7,082.09
i-Butane**	75-28-5	C4H10	58.122	0.5849	0.005849	0.3400	1.5836	895.87
n-Butane**	106-97-8	C4H10	58.122	1.3036	0.013036	0.7577	3.5295	1,996.67
Cyclopentane**	287-92-3	C5H10	70.100					
i-Pentane**	78-78-4	C5H12	72.149	0.2148	0.002148	0.1550	0.7219	408.40
n-Pentane**	109-66-0	C5H12	72.149	0.2357	0.002357	0.1701	0.7922	448.14
Cyclohexane**	110-82-7	C6H12	84.159	0.0112	0.000112	0.0094	0.0439	24.84
Other Hexanes**	varies	C6H14	86.175	0.0750	0.000750	0.0646	0.3011	170.32
Methylcyclohexane**	varies	C7H14	98.186	0.0062	0.000062	0.0061	0.0284	16.04
Heptanes**	varies	C7H16	100.202	0.0287	0.000287	0.0288	0.1340	75.78
C8+ Heavies**	varies	C8+	114.229	0.0087	0.000087	0.0099	0.0463	26.19
n-Hexane***	110-54-3	C6H14	86.175	0.0518	0.000518	0.0446	0.2079	117.63
Benzene***	71-43-2	C6H6	78.112	0.0008	0.000008	0.0006	0.0029	1.65
Toluene***	108-88-3	C7H8	92.138	0.0013	0.000013	0.0012	0.0056	3.16
Ethylbenzene***	100-41-4	C8H10	106.165	0.0001	0.000001	0.0001	0.0005	0.28
Xylenes***	1330-20-7	C8H10	106.165	0.0001	0.000001	0.0001	0.0005	0.28
2,2,4-Trimethylpentane***	540-84-1	C8H18	114.229	0.0001	0.000001	0.0001	0.0005	0.30
			Totals:	100.00	1.0000	21.4677	100.00	56,571.12
				100.00	1.0000	21.40/1	100.00	50,571.12

Totals:	100.00	1.0000	21.4677	100.00	56,571.12
THC:	99.31	0.9932	21.2459	98.97	55,986.49
Total VOC:	8.62	0.0862	4.2759	19.92	11,267.63
Total HAP:	0.05	0.0005	0.0468	0.22	123.30

* = Hydrocarbon (HC) ** = also Volatile Organic Compound (EPA-VOC) *** = also Hazardous Air Pollutant (EPA-HAP) #UGC (Universal Gas Constant) = 379.482 scf/lb-mol @ 60 °F and 14.696 psia. Pound "X"/scf = M% of "X" * MW of "X" / UGC

To be conservative, the following "worst-case" values were assumed:					20%	% Safetry Mai	rgin		
Compound	CAS	Formula	Represe	Representative Gas Analysis			Assumed "Worst-Case" Parameters		
Compound	CAS	Fornula	Mole %	Wgt %	lb/MMscf	Mole %	Wgt %	lb/MMscf	
Carbon Dioxide	124-38-9	CO2	0.189	0.387	218.85	0.226	0.464	262.62	
Methane	75-82-8	CH4	73.444	54.885	31,049.14	88.133	75.000	37,258.97	
Ethane	74-84-0	CH5	17.251	24.164	13,669.71				
VOC (Propane)	74-98-6	C3H8	8.618	19.918	11,267.63	10.341	23.901	13,521.16	
n-Hexane	110-54-3	C6H14	0.0518	0.2079	117.63	0.0622	0.2495	141.16	
Benzene	71-43-2	C6H6	0.0008	0.0029	1.65	0.0010	0.0035	1.98	
Toluene	108-88-3	C7H8	0.0013	0.0056	3.16	0.0016	0.0067	3.79	
Ethylbenzene	100-41-4	C8H10	0.0001	0.0005	0.28	0.0001	0.0006	0.34	
Xylenes	1330-20-7	C8H10	0.0001	0.0005	0.28	0.0001	0.0006	0.34	
2,2,4-Trimethylpentane	540-84-1	C8H18	0.0001	0.0005	0.30	0.0001	0.0006	0.36	
Total HAP:	Various	C6 thru C8	0.0542	0.2180	123.30	0.0650	0.2615	147.96	

98.8308

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Williams Ohio Valley Midstream LLC FORT BEELER GAS PROCESSING PLANT Class II Administrative Update (R13-2826J)

Attachment H - MSDS and Lab Analysis

Inlet Gas Lab Analysis

Legacy Measurement Solutions

Ch-+ 1 A Good

Shreveport, LA	
318-226-7237	

Customer	: 2259 - WILLIAMS	Date Sam	
Station ID	5001	Date Ana	R
Cylinder ID	: 5203	Effective	Date : 12/01/2013
Producer	:	Cyl Press	sure : 900
Lease	FORT BEELER 12 INCH	Temp	: 60
Area	: 500 - OHIO VALLEY MID	Cylinder	Type : Spot
State	: WV	Sample E	Sy : JM
	COMPONENT	MOL% G	PM@14.73(PSIA)
	Oxygen	0.0030	0.000
	Nitrogen	0.4955	0.000
	Methane	73.4443	0.000
	Carbon-Dioxide	0.1887	0.000
	Ethane	17.2512	4.630
	Propane	6.0946	1.685
	Iso-Butane	0.5849	0.192
	Normal-Butane	1.3036	0.412
	Iso-Pentane	0.2148	0.079
	Normal-Pentane	0.2357	0.086
	2,2-Dimethylbutane	0.0045	0.002
	2,3-Dimethylbutane/CycloC5	0.0087	0.003
	2-methylpentane	0.0393	0.016
	3-methylpentane	0.0225	0.009
	Normal-Hexane	0.0518	0.021
	2,2-Dimethylpentane	0.0004	0.000
	Methylcyclopentane	0.0062	0.002
	BENZENE	0.0008	0.000
	3,3-Dimethylpentane	0.0006	0.000
	CYCLOHEXANE	0.0050	0.002
	2-Methylhexane	0.0075	0.003
	2,3-Dimethylpentane	0.0019	0.001
	3-Methylhexane	0.0075	0.003
	1,t2-DMCYC5 / 2,2,4-TMC5	0.0001	0.000
	1,t3-Dimethylcyclopentane	0.0002	0.000
	N-Heptane	0.0108	0.005
	METHYLCYCLOHEXANE	0.0059	0.003
	2,5-Dimethylhexane	0.0005	0.000
	2,3-Dimethylhexane	0.0007	0.000
	TOLUENE	0.0013	0.000
	2-Methylheptane	0.0017	0.001
	4-Methylheptane	0.0007	0.000
	3-Methylheptane	0.0014	0.001
	1,t4-Dimethylcyclohexane	0.0007	0.000
	N-OCTANE / 1,T2-DMCYC6	0.0022	0.001
	1,t3-DMCYC6/1,C4- DMCYC6/1,C2,C3-TMCYC5	0.0000	0.000
	2,4,4 TMC6	0.0000	0.000

Williams Ohio Valley Midstream LLC FORT BEELER GAS PROCESSING PLANT Class II Administrative Update (R13-2826J) Attachment H - MSDS and Lab Analysis

Residue Gas Composition

Sample Date:	2012				http	o://www.chem	industry.com/ap	ops/chemicals
Compound	CAS	Formula	Molecular Weight (MW)	Mole % (M% = V%)	Mole Fract (M%/Sum- M%)	Weighted Sum (MW*MF)	Weight % (WS/Sum-WS)	lb/MMscf (WS/UGC#)
Nitrogen	7727-37-9	N2	28.013	0.4052	0.004052	0.1135	0.6200	299.10
Hydrogen Sulfide	2148-87-8	H2S	34.086					
Carbon Dioxide	124-38-9	CO2	44.010	0.1754	0.001754	0.0772	0.4216	203.37
Methane*	75-82-8	CH4	16.042	84.6798	0.846798	13.5847	74.2120	35,798.08
Ethane*	74-84-0	C2H6	30.069	14.0913	0.140913	4.2371	23.1470	11,165.57
Propane**	74-98-6	C3H8	44.096	0.6174	0.006174	0.2722	1.4873	717.42
i-Butane**	75-28-5	C4H10	58.122	0.0100	0.000100	0.0058	0.0318	15.32
n-Butane**	106-97-8	C4H10	58.122	0.0112	0.000112	0.0065	0.0357	17.23
Cyclopentane**	287-92-3	C5H10	70.100					
i-Pentane**	78-78-4	C5H12	72.149	0.0007	0.000007	0.0005	0.0029	1.39
n-Pentane**	109-66-0	C5H12	72.149	0.0008	0.000008	0.0006	0.0031	1.49
Cyclohexane**	110-82-7	C6H12	84.159					
Other Hexanes**	varies	C6H14	86.175					
Methylcyclohexane**	varies	C7H14	98.186					
Heptanes**	varies	C7H16	100.202					
C8+ Heavies**	varies	C8+	114.229					
n-Hexane***	110-54-3	C6H14	86.175	0.0076	0.000076	0.0066	0.0359	17.34
Benzene***	71-43-2	C6H6	78.112	0.0001	0.000001	0.0001	0.0004	0.21
Toluene***	108-88-3	C7H8	92.138	0.0001	0.000001	0.0001	0.0005	0.24
Ethylbenzene***	100-41-4	C8H10	106.165	0.0001	0.000001	0.0001	0.0006	0.28
Xylenes***	1330-20-7	C8H10	106.165	0.0001	0.000001	0.0001	0.0006	0.28
2,2,4-Trimethylpentane***	540-84-1	C8H18	114.229	0.0001	0.000001	0.0001	0.0006	0.30
			Totals:	100.00	1.0000	18.3053	100.00	48,237.61
			THC:	99.42	0.9942	18.1146	98.96	47,735.14

Totals:	100.00	1.0000	18.3053	100.00	48,237.61
THC:	99.42	0.9942	18.1146	98.96	47,735.14
Total VOC:	0.65	0.0065	0.2928	1.60	771.50
Total HAP:	0.01	0.0001	0.0071	0.04	18.65

* = Hydrocarbon (HC) ** = also Volatile Organic Compound (EPA-VOC) #UGC (Universal Gas Constant) = 379.482 scf/lb-mol @ 60 °F and 14.696 psia.

*** = also Hazardous Air Pollutant (EPA-HAP)

To be concervative	the following "worst ease" values were easymed:

Pound "X"/scf = M% of "X" * MW of "X" / UGC

To be conservative, the following "worst-case" values were assumed:						20% Safetry Margin		
Compound	CAS	Formula	Representative Gas Analysis			Assumed "Worst-Case" Parameters		
Compound	CAS	Fornula	Mole %	Wgt %	lb/MMscf	Mole %	Wgt %	lb/MMscf
Carbon Dioxide	124-38-9	CO2	0.175	0.422	203.37	0.210	0.506	244.04
Methane	75-82-8	CH4	84.680	74.212	35,798.08	100.000	100.000	42,275.00
Ethane	74-84-0	C2H6	14.091	23.147	11,165.57			
VOC (Propane)	74-98-6	C3H8	0.648	1.599	771.50	0.778	1.919	925.80
n-Hexane	110-54-3	C6H14	0.0076	0.0359	17.34	0.0092	0.0431	20.81
Benzene	71-43-2	C6H6	0.0001	0.0004	0.21	0.0001	0.0005	0.25
Toluene	108-88-3	C7H8	0.0001	0.0005	0.24	0.0001	0.0006	0.29
Ethylbenzene	100-41-4	C8H10	0.0001	0.0006	0.28	0.0001	0.0007	0.34
Xylenes	1330-20-7	C8H10	0.0001	0.0006	0.28	0.0001	0.0007	0.34
2,2,4-Trimethylpentane	540-84-1	C8H18	0.0001	0.0006	0.30	0.0001	0.0007	0.36
Total HAP:	Various	C6 thru C8	0.0081	0.0387	18.65	0.0098	0.0464	22.38
101.0079								

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Natural Gas Liquid (NGL) Composition

Sample Date:	04/16/17	http://www.chemindustry.com/apps/chemicals						
Compound	CAS	Formula	Molecular Weight (MW)	Mole % (M% = V%)	Mole Fraction (M%/Sum- M%)	Weighted Sum (MW*MF)	Weight % (WS/Sum-WS)	lb/MMscf (WS/UGC#)
Nitrogen	7727-37-9	N2	28.013					
Hydrogen Sulfide	2148-87-8	H2S	34.086					
Carbon Dioxide	124-38-9	CO2	44.010					
Methane*	75-82-8	CH4	16.042	24.7852	0.247852	3.9762	9.5118	10,477.85
Ethane*	74-84-0	C2H6	30.069	23.7642	0.237642	7.1457	17.0939	18,830.05
Propane**	74-98-6	C3H8	44.096	20.4126	0.204126	9.0011	21.5324	23,719.34
i-Butane**	75-28-5	C4H10	58.122	4.4718	0.044718	2.5991	6.2176	6,849.10
n-Butane**	106-97-8	C4H10	58.122	11.2799	0.112799	6.5561	15.6836	17,276.51
Cyclopentane**	287-92-3	C5H10	70.100	1.3108	0.013108	0.9189	2.1981	2,421.39
i-Pentane**	78-78-4	C5H12	72.149	3.9094	0.039094	2.8206	6.7474	7,432.72
n-Pentane**	109-66-0	C5H12	72.149	4.2504	0.042504	3.0666	7.3360	8,081.05
Cyclohexane**	110-82-7	C6H12	84.159	0.2052	0.002052	0.1727	0.4132	455.13
Other Hexanes**	varies	C6H14	86.175	0.7411	0.007411	0.6387	1.5279	1,683.04
Methylcyclohexane**	varies	C7H14	98.186	0.3495	0.003495	0.3432	0.8209	904.28
Heptanes**	varies	C7H16	100.202	1.3162	0.013162	1.3189	3.1550	3,475.44
C8+ Heavies**	varies	C8+	114.229	1.6814	0.016814	1.9207	4.5946	5061.25
n-Hexane***	110-54-3	C6H14	86.175	1.4018	0.014018	1.2080	2.8899	3,183.41
Benzene***	71-43-2	C6H6	78.112	0.0231	0.000231	0.0181	0.0433	47.65
Toluene***	108-88-3	C7H8	92.138	0.0579	0.000579	0.0533	0.1275	140.50
Ethylbenzene***	100-41-4	C8H10	106.165	0.0015	0.000015	0.0016	0.0039	4.33
Xylenes***	1330-20-7	C8H10	106.165	0.0023	0.000023	0.0025	0.0059	6.48
2,2,4-Trimethylpentane***	540-84-1	C8H18	114.229	0.0355	0.000355	0.0405	0.0970	106.83
			Totals:	100.00	1.0000	41.8023	100.00	110,156.34
Hexane+ =	7.1265	M%	THC:	100.00	1.0000	41.8023	100.00	110,156.34
			Total VOC:	51.45	0.5145	30.6805	73.39	80,848.43

* = Hydrocarbon (HC) ** = also Volatile Organic Compound (EPA-VOC) *** = also Hazardous Air Pollutant (EPA-HAP) #UGC (Universal Gas Constant) = 379.482 scf/lb-mol @ 60 °F and 14.696 psia. Pound "X"/scf = M% of "X" * MW of "X" / UGC

Total HAP:

To be conservative, the following "worst-case" values were assumed:						20% Safetry Margin		
Compound	CAS	Formula	Representative Gas Analysis			Assumed "Worst-Case" Parameters		
Compound	CAS	Formula	Mole %	Wgt %	lb/MMscf	Mole %	Wgt %	lb/MMscf
Carbon Dioxide	124-38-9	CO2						
Methane	75-82-8	CH4	24.785	9.512	10,477.85	29.7422	11.4142	12,573.42
Ethane	74-84-0	CH5	23.764	17.094	18,830.05			
VOC (Propane)	74-98-6	C3H8	51.451	73.394	80,848.43	100.000	100.000	97,018.12
n-Hexane	110-54-3	C6H14	1.4018	2.8899	3,183.41	1.6822	3.4679	3,820.09
Benzene	71-43-2	C6H6	0.0231	0.0433	47.65	0.0278	0.0519	57.17
Toluene	108-88-3	C7H8	0.0579	0.1275	140.50	0.0694	0.1531	168.60
Ethylbenzene	100-41-4	C8H10	0.0015	0.0039	4.33	0.0019	0.0047	5.19
Xylenes	1330-20-7	C8H10	0.0023	0.0059	6.48	0.0028	0.0071	7.78
2,2,4-Trimethylpentane	540-84-1	C8H18	0.0355	0.0970	106.83	0.0426	0.1164	128.19
Total HAP	Various	C6 thru C8	1.5222	3.1675	3,489.19	1.8267	3.8010	4,187.03

1.52

0.0152

1.3241

3.17

3,489.19

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

133.3956

Williams Ohio Valley Midstream LLC FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment H - MSDS and Lab Analysis

NGL Lab Analysis

Williams Quality Control Facility Extended Analysis by GPA 2186

Sample Information

	Sample Information
Sample Name	FT BEELER PIG LIQUIDS OMNI 040617 1100
Station #	52154-55
County	Marshall
State	WV
Sample Date & Time	04/06/17 1100
Sampled By	G. Stickler
Sample Type	Spot
Pressure, psig	859.0
Temp., deg. F	50.8
Cylinder #	96500
Technician	R Dibble
Calibration Name	GPA 2186
Injection Date	2017-04-06 12:47:21
Report Date	2017-04-06 13:50:35
EZReporter Configuration File	Williams - ORSH Liquid Custody Samples - May 2015.cfgx

Component Results

Component Name	Ret. Time	Peak Area	Norm Mole%	Norm Weight%	Norm Volume%
Methane	5.89	4559504.2	24.7852	9.5076	15.4834
Ethane	6.02	8632312.8	23.7642	17.0864	23.4256
Propane	6.32	11394255.4	20.4126	21.5236	20.7318
iso-Butane	6.82	3335155.8	4.4718	6.2147	5.3918
n-Butane	7.20	8489667.8	11.2799	15.6764	13.1079
iso-Pentane	8.55	3712595.6	3.9094	6.7443	5.2745
n-Pentane	9.19	3997922.4	4.2504	7.3326	5.6740
Hexanes Plus	0.00	0.0	7.1265	15.9144	10.9110
Total:			100.0000	100.0000	100.0000

NGL Lab Analysis - Continued

C6+ Extended Fraction Component Results

4 2-2-Dimethylutane 1.5.678 2.1.827 2.1.424 7 3-Merthylpentane 15.3916 15.3916 15.3916 15.3916 7 3-Merthylpentane 15.3916 1	#	Component	C6+ Wt%	C6+ Mol%	C6+ Vol%	
7 9.5071 9.5071 9.5071 0 Methycycopentane/2-4-Dimethypentane 2.543 2.5757 2.4517 2.3 - Strinethybutane 1.335 1.4560 1.4036 2.8 enzene 0.2716 0.3248 0.2165 2.4 Muthybusane 6.2251 5.8027 6.4434 2.3 Dimethybpentane 1.6260 1.4615 1.5666 3.4 Enthybpentane 1.021 0.4567 1.0360 2.4 -Timethybpentane 1.021 0.4567 1.0360 2.4 -Timethybpentane 0.6164 0.4222 0.6567 2.4 -Dimethybreane/Enthycopentane/2.2-3-Timethybpentane 0.5164 0.4271 0.7678 2.4 -Dimethybreane/Enthycopentane/2.2-3-Timethybpentane 0.2610 0.0433 0.2635 2.4 -Dimethybreane/Enthycopentane/2.2-3-Timethybpentane 0.2610 0.0433 0.2635 2.4 -Dimethybreane/Enthybpentane 0.2610 0.0433 0.2635 2.4 -Dimethybreane/Enthybpentane 0.2630 0.0433 0.2635 2.4 -Dimethybreane/Enthybpentane 0.2630 0.0433 <					inter the contract	
8 n-Hexnine 18.144 19.6709 19.467 12 2-3-Timettylputane 1.367 1.2450 1.405 12 2-3-Timettylputane 1.337 1.2450 1.4055 4 Cyclobexane 2.2730 2.5225 2.0657 5 2-Mottylphexane 1.650 1.4615 1.5666 6 2-Dimethylpentane 1.660 1.4615 1.5666 7 3-Einylpentane 0.601 0.4980 0.6227 9 3-Einylpentane 0.603 0.0433 10.0007 4 Methylcyclobexane/1-1-3-Timethylcyclopentane/2-2-Dimethylpentane 0.4810 0.215 0.0535 6 2-Domethylfhexane 0.413 0.2815 0.0365 7 2-Domethylfhexane 0.0120 0.0535 0.0365 7 2-Domethylfhexane 0.0510 0.0535 0.0365 7 2-Domethylfhexane 0.0510 0.0535 0.0365 7 2-Domethylfhexane 0.0510 0.0525 0.0365						
0 Methylpstane 2.549 2.8797 2.481 2.3-5-Tmethylbulane 1.23-5 0.3248 0.2168 2 Revene 0.2716 0.3248 0.2168 2 Methylbexane 0.2716 0.3248 0.2168 2 Althylbexane 0.6221 0.5627 1.5556 3 Stephylpentane 1.021 0.5627 1.0350 2 2-4-Timethylpentane 9.663 9.0073 10.0077 2 2-4-Timethylpentane 9.663 9.0073 10.0037 2 2-4-Timethylpentane 0.9143 0.1031 1.031 2 2-4-Timethylpentane 0.934 0.2815 0.3478 2 2-4-Dimethylperane 0.053 0.0438 0.0558 2 2-4-Dimethylperane 0.053 0.0438 0.0568 2 2-4-Dimethylperane 0.050 0.0414 0.0568 2 2-4-Dimethylperane 0.050 0.0414 0.0568 2-4-Dimethylperane						
1 2.5.2.1mmethylbutane 1.3357 1.2450 1.2450 2 Benzane 2.2730 2.5225 2.0550 4 Cycholexane 2.2730 2.5225 2.0550 5 Johnethylpentane 1.262 4.5027 0.6327 6 2.5.Dimethylpentane 1.0631 0.4890 0.5227 1 2.4.4.trinethylpentane 0.6631 0.0490 0.6237 1 2.4.4.trinethylpentane 0.6631 0.0422 0.5256 2.5.Dimethylperane 0.514 0.4222 0.5256 2.4.Dimethylfhexane 0.413 0.2815 0.3476 8 trans-1.2, 65.5-Trinethylpentane 0.0533 0.0535 0 Tolkene 0.6011 0.120 0.6541 2.4.5-Trinethylpentane 0.0503 0.0433 0.0535 0 Tolkene 0.0506 0.1025 0.0566 2.4.5-Trinethylpentane 0.0501 0.1325 0.0565 2.4.5-Trinethylpentane 0.0502 0.0466 1.0						
2 Benzene 0.2716 0.2348 0.2168 2 Cyclohoxane 0.250 2.6057 0.6459 2 Althythexane 6.2254 6.8027 6.8449 2 3.50methythexane 1.0221 0.9567 1.0556 3 <ethythertane< td=""> 1.021 0.9567 1.0556 2 2.4-Timethythycane 5.161 4.6717 4.7104 2 2.4-Timethythycane 5.161 4.6717 4.7104 2 2.4-Dimethythexane 0.951 0.1033 1.0033 2 2.4-Dimethythytexane/Ethytychopentane/2.2-3-Timethythexane 0.951 0.0433 0.0635 2 2.4-Dimethythytexane/Ethytychopentane/2.2-3-Timethythexane 0.053 0.0433 0.0537 3 Jonethythexane/Ethythexane 0.053 0.0433 0.0537 3 Jonethythytexane/Ethythexane 0.053 0.0433 0.0537 3 Jonethythytexane/Ethythexane 0.053 0.0433 0.0537 3 Jonethythytexane/Ethythytexane 0.053<td></td><td></td><td></td><td></td><td></td><td></td></ethythertane<>						
4 Cyclobexane 2.2730 2.5281 5.8027 6.4849 6 2-3-Dimethylpentane 1.5680 1.4615 1.3956 9 2-4-Artmethylpentane 0.6991 0.4880 0.5277 1 2-4-Artmethylpentane 0.6991 0.4880 0.5277 1 1 0.6991 0.4890 0.5277 1 1 0.6991 0.4890 0.5277 1 1 0.6991 0.4890 0.5276 1 1 0.6991 0.813 0.0535 2-5.0methylbecane 0.9531 0.9378 0.9385 2-3-4.7imethylpetane 0.8911 0.8120 0.9385 2-3-4.7imethylpetane 0.8931 0.8132 0.6537 2-3-4.7imethylpetane 0.1059 0.8336 1.10256 3-4.0imethylpetane 0.1059 0.8336 1.10256 3-4.0imethylpetane 0.0530 0.0483 0.0537 1 1 0.8176 0.2283 1.0286 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
5 2.3.Dimethylpentane 6.225.J 5.8.0027 6.3492 9.3.Eintylpentane 1.0221 0.9527 1.3856 9.3.Eintylpentane 0.0691 0.4900 0.8227 1.2.2-4.Tmmethylpentane 9.6633 9.0073 10.0007 4.Methylcyclohexane/1-1.3-Tinnethylcyclopentane/2-2-Dimethylhexane 0.5154 0.4222 0.5266 2.4-Dimethylnexane/Ethylcyclopentane/2-2-3-Tirmethylpentane 0.3431 0.2810 1.0031 3.2-Dimethylnexane/Ethylcyclopentane 0.3431 0.2810 0.0336 2.4-Dimethylnexane/Ethylcyclopentane 0.0330 0.0433 0.06541 3.domethylheptane 0.0500 0.0433 0.06531 3.domethylheptane 0.0500 0.0433 0.0653 1.10methylcyclohexane 0.2471 0.2376 0.3366 1.10methylcyclohexane 0.2471 0.2075 0.2386 1.10methylcyclohexane 0.2471 0.2075 0.2386 1.10methylcyclohexane 0.2601 0.0471 0.3445 1.10methylcyclohexane 0.0560 0.0572						
6 2-5.Dimethylpentane 1.5680 1.4615 1.9566 9 S-Ethylpentane 0.6091 0.4980 0.5277 1 2-4-4rinnethylpentane 0.6091 0.4980 0.5277 1 1-1-4ptinae 0.6131 0.0107 4 Methylpectonexane/1-3-Trimethylpectopentane/2-2-Dimethylnexane 0.8143 0.2220 0.5266 2-5-Dimethylmexane 0.9391 0.8120 1.0031 3-3-Dimethylpectopentane/2-2-3-Trimethylpentane 0.9997 0.0758 0.9986 3-3-Dimethylpectane 0.0897 0.0758 0.9986 2-3-4-Trimethylpectane 0.0991 0.0433 0.0537 3-Dimethylpectane 0.0590 0.0386 1.0236 3-4-Dimethylpectonexane 0.1059 0.0386 1.0236 3-4-Dimethylpectonexane 0.0390 0.0327 0.2383 1-100methylpectonexane 0.0390 0.0325 0.0386 1-100methylpectonexane 0.0590 0.0327 0.2383 1-100methylpectonexane 0.0590 0.0326 0.2384						
9 9:8:Ftylpentane 1.0221 0.9527 1.0560 2:2-4-Timethylpentane 9.6533 9.0073 10.0007 4 Methylcyclohexane/1-1-3-Timethylpyclopentane/2-2-Dimethylhexane 0.5125 4.717 4.7104 2:4-Dimethylhexane 0.5164 0.4222 0.5285 2:4-Dimethylhexane 0.3413 0.2815 0.3178 3:5Dimethylhexane 0.3531 0.4133 0.0535 2:4-Dimethylhexane 0.0530 0.0433 0.0535 2:A-Dimethylhexane 0.0530 0.0433 0.0537 2:A-Dimethylhexane 0.0530 0.0433 0.0537 2:A-Dimethylhexane 0.1059 0.0666 0.1052 3:A-Dimethylhexane 0.1059 0.0666 0.1052 1:Nomethylhexane 0.1059 0.0666 0.1052 1:Nomethylhexane 0.0500 0.0433 0.0661 1:Nomethylhexane 0.0500 0.0322 0.0380 1:Nomethylhexane 0.0500 0.0322 0.0380 1:Nomethylhexane 0.0500 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
1 2.2-4 ⁻¹ Timethylpertane 0.6991 0.4980 0.6227 4 Methylcychorxane/1-3-Timethylcychopentane/2-2-Dimethylhexane 5.1215 4.8717 4.7104 2.5-Dimethylhexane 0.5164 0.4222 0.5266 2.4-Dimethylhexane 0.5164 0.4222 0.5266 3.3-Dimethylhexane 0.8611 0.8120 0.0336 3.3-Dimethylhexane 0.0827 0.7759 0.0936 2.4-A-Timethylcychopentane 0.0830 0.0433 0.0531 2.4-Dimethylheptane 0.0501 0.0433 0.0531 3-Dimethylheptane 0.0590 0.0536 0.0433 0.0551 3-Inimethyloptane 0.0490 0.0536 0.0433 0.0561 1-Inimethyloptane 0.0490 0.0557 0.0386 1.0566 2-Dimethyloptane 0.0500 0.0541 0.0586 2-Dimethyloptane 0.0600 0.0541 0.0486 2-Dimethyloptane 0.2601 0.2165 0.3346 2-Dimethyloptane 0.2601 0.2165 0.334						
4 Methycyclohexane/1-1-3-Trimethylcyclopentane/2-2-Dimethylnexane 5.12/methylnexane 0.15164 0.4222 0.5266 6 2-4-Dimethylnexane 0.3341 0.8120 0.0356 6 2-3-Dimethylnexane 0.3343 0.0433 0.0356 7 - 3-Dimethylnexane 0.0530 0.0433 0.0537 8 Trainer 0.0530 0.0433 0.0537 9 2-3-4 Trimethylcyclopentane 0.0530 0.0433 0.0537 1 Toltene 0.0530 0.0433 0.0537 2 3-4-Dimethylneptane 1.0165 0.0335 0.0352 3 -Trainethylneptane 0.0411 0.0305 0.0360 1 1-methyl-trainel/cyclohexane 0.0471 0.0355 0.0360 1 1-methylneptane 0.0550 0.0433 0.0443 1 1-methylneytochexane 0.0451 0.0552 0.0360 2 2-Dimethylneytochexane 0.0550 0.0541 0.0550 2 2-Dimethylneptane 0.0550			0.6091	0.4980	0.6227	
5 0.5164 0.4220 0.0226 2-4-Dimethylexame/Emycyclopentane/2-2-3-Trimethylpentane 0.9931 0.04120 1.0031 3-3-Dimethylexame/Emycyclopentane 0.0433 0.0255 0.0433 0.0555 2-3-4-Trimethylpentane 0.0530 0.0433 0.0555 2-3-4-Trimethylpentane 0.0501 0.0433 0.0537 2-methylhexame 0.0509 0.0433 0.0536 3-LDimethylhexame 0.1059 0.0483 0.01357 3-LDimethylexame 0.0159 0.0866 0.1062 3-LDimethylexichexame 0.0159 0.0267 0.2263 1-Internethylexichexame 0.0359 0.0356 0.0364 0.0566 1-LOBiethylexichexame 0.0357 0.2263 0.0469 0.0469 2-4-Dimethylexichexame 0.0350 0.0325 0.0386 0.2361 0.2361 2-4-Dimethylexichexame 0.0459 0.0463 0.0469 0.0463 0.0469 0.0463 0.0469 0.0464 0.0561 0.2346 0.24-50 0.2346	2	n-Heptane	9.6633	9.0073	10.0007	
6 24-Dimethylexane 0.9391 0.9120 0.0131 9.3-Dimethylexane 0.0343 0.02815 0.3478 8 trans-1-2.cis-3-Timethylexolopentane 0.0530 0.0433 0.0535 9 2.3-4-Timethyleptane 0.0530 0.0433 0.0535 1 Tolkene 0.0530 0.0433 0.0537 3 Tolkene 0.0530 0.0433 0.0537 4 methylheptane 1.0155 0.0366 0.1052 3 Tolkene 0.0474 0.0356 0.0366 3 Tolkene 0.0471 0.2035 0.0366 4 1-nethyleptane 0.0471 0.2035 0.0366 4 1-nethyleptane 0.0471 0.2043 0.0469 2 2-0.000000 0.0325 0.0343 0.0469 2 2-0.000000 0.0520 0.0433 0.0469 2 2-0.000000 0.0520 0.0433 0.0469 2 2-0.000000 0.0170	4	Methylcyclohexane/1-1-3-Trimethylcyclopentane/2-2-Dimethylhexane	5.1215	4.8717	4.7104	
3-3-Dimetrylnexane 0.3443 0.2815 0.3478 1 trans-1-2,cis-Trimethylopatane 0.0927 0.0758 0.0355 2-3-4-Trimethylopatane 0.0530 0.0433 0.0535 3 Z-methylneptane 0.0530 0.0433 0.0535 3 4-Dimethylnexane 2.1052 1.7213 2.0137 3 4-Dimethylnexane 0.1059 0.0836 1.0226 3 4-Dimethylnexane 0.1059 0.0866 0.0652 1-1.Dimethylcyclohexane 0.0357 0.2283 1 trans-1.2-Dimethylcyclohexane 0.0350 0.0352 0.0366 1 trans-1.2-Dimethylcyclohexane 0.0560 0.0541 0.5666 2-2-Dimethylneptane 0.2601 0.2416 0.2434 2-2-Dimethylneptane 0.2601 0.2436 0.2434 2-2-Dimethylneptane 0.0550 0.0343 0.0469 2-2-Dimethylneptane 0.0560 0.0572 0.0344 2-2-Dimethylneptane 0.0560 0.0572 0.0344 2-2-Dimethylneptane 0.0578 0.0453 0.04	5	2-5-Dimethylhexane	0.5164	0.4222	0.5266	
8 trans-1-2;cis-3-Timethylepetane 0.0927 0.0738 0.0936 2-3-4-Timethylepetane 0.0830 0.0433 0.0637 3 4-methylineptane 0.0830 0.0433 0.0637 3 4-methylineptane 0.0830 0.0433 0.0637 3 4-methylineptane 1.0195 0.8366 1.0236 3 -methylineptane 0.1095 0.0866 0.1062 1 1-methyl-cyclohexane 0.2471 0.2377 0.2283 1 1-methyl-cyclohexane 0.0490 0.0325 0.0360 1 1-methyl-cyclohexane 0.0491 0.0493 0.0493 2 2-Dimethyleptane 0.0500 0.0541 0.0562 2 2-Dimethyleptane 0.0500 0.0541 0.0586 2 2-Dimethyleptane 0.0501 0.0522 0.0433 0.0469 2 2-A-Dimethyleptane 0.0501 0.0572 0.0541 0.0586 0.0522 2 -A-Dimethyleptane 0.0650	6	2-4-Dimethylhexane/Ethylcyclopentane/2-2-3-Trimethylpentane	0.9931	0.8120	1.0031	
9 2-3-Trimethylpentane 0.0530 0.0433 0.0535 3 2-methylheptane 0.0530 0.0433 0.0537 4 4-methylheptane 2.1052 1.7213 2.1137 5 3-d-Dimethylhexane 0.1059 0.0836 1.0236 6 3-methylheptane 0.2037 0.2283 1-1-Dimethyleyclohexane 0.0390 0.0325 0.0360 1 1-1-Dimethyleyclohexane 0.0390 0.0325 0.0360 1 trans-1-2-Dimethyleyclohexane 0.0520 0.0433 0.0469 2-2-Dimethyleyclohexane 0.0520 0.0433 0.0469 2-2-Dimethyleyclohexane 0.0781 0.0586 0.0352 2-2-Dimethyleyclohexane 0.0781 0.0580 0.0793 2-2-Dimethyleyclohexane 0.0781 0.0580 0.0793 2-2-Dimethyleyclohexane 0.0781 0.0580 0.0702 2-1-Dimethyleyclohexane 0.0781 0.0580 0.0702 2-2-Dimethyleyclohexane 0.0781 0.0583 0.045			0.3443	0.2815	0.3478	
0 Tokené 0.8011 0.8131 0.8131 0.8131 3 2-methylheptane 0.0830 0.433 0.0637 3 4-methylheptane 1.0195 0.8330 0.0433 3 -methylheptane 0.1059 0.0866 0.1062 1 -Libmethylcyclohexane 0.2471 0.2057 0.2283 1 -methyl-cyclohexane 0.3972 0.3440 0.3660 1 arents-1-2-Dimethylcyclohexane 0.3972 0.3440 0.3443 1 trans-1-3-Dimethylcyclohexane 0.0550 0.0651 0.22165 0.2346 2 4-Dimethylheptane 0.0500 0.0451 0.0586 0.2346 2 4-Dimethylheptane 0.0500 0.0451 0.0586 0.2346 2 4-Dimethylheptane 0.0200 0.0433 0.0469 2 4-Dimethylheptane 0.0200 0.0433 0.0469 2 4-Dimethylheptane 0.0201 0.0433 0.0467 2 3-3.Timethylhexane 0.0170 0.0374 0.1400 2 3-3.Timethylhexane 0.0202 0.04433 0.0467			0.0927	0.0758	0.0936	
3 2.methytheptane 0.0830 0.1433 0.0537 4 4-methytheptane 2.1052 1.7213 2.1137 5 3-d-Dirmethythexane 0.1059 0.0836 1.0236 5 3-methytheptane 0.1059 0.0836 1.0236 1-1-Dirmethyticyclohexane 0.0377 0.3140 0.3443 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.3520 0.0350 1 1 0.3520 0.0433 1 2-2.01methythytoplane 0.0520 0.0433 0.0459 2 2-3.01methytoplane 0.0520 0.0433 0.0450 2 2-3.01methytoplane 0.0520 0.0433 0.0450 2 2-3.01methytoplane 0.0520 0.0433 0.0450 2 2-3.01methytoplane 0.0520 0.0433 0.0457 2-3.01methytoplane 0.0521 0.025						
4 4-methylheptane 2.1052 1.7.13 2.1137 5 3-4-Dimethylhexane 1.0196 0.8386 1.0236 5 3-methylheptane 0.1059 0.0866 0.1062 1 1-Dimethylcyclohexane 0.2471 0.20257 0.2283 1 -methyl-telthylcyclohexane 0.0372 0.3443 6 trans-1-2-Dimethylcyclohexane 0.0650 0.0641 0.6866 1 2-2-Dimethylheptane 0.0650 0.0443 0.0469 2-4-Dimethylheptane 0.0650 0.0443 0.0469 2-4-Dimethylheptane 0.0610 0.0521 0.0433 2-4-Dimethylheptane 0.0610 0.0532 0.0522 1-1-4-Timethylhexane/1-1-3-Timethyleyclohexane 0.1170 0.0778 0.0818 2-3-3-Timethylheptane 0.0261 0.0217 0.0234 2-3-4-Timethylheptane 0.0520 0.0443 0.0467 2-3-4-Timethylheptane 0.0520 0.0463 0.0467 2-3-4-Timethylheptane 0.0520 0.0463	31					
5 3-Loimethylhexane 1.0195 0.836 1.0236 6 3-methylhextane 0.01059 0.0866 0.1062 1-Loimethylcyclohexane 0.2471 0.2057 0.0866 1 trasni-2-Dimethylcyclohexane 0.0370 0.0325 0.0866 1 trasni-2-Dimethylcyclohexane 0.0650 0.0541 0.04869 1 trasni-1-2-Dimethylcyclohexane 0.0520 0.0433 0.0469 2 -2-Dimethylcyclohexane 0.0520 0.0433 0.0469 2 -2-Dimethylcyclohexane 0.0520 0.0433 0.0469 2 -2-Dimethylcyclohexane 0.0170 0.0974 0.1040 Ethylcyclohexane 0.0170 0.0974 0.1040 2 -2-3-Timethylnexane/1-1-3-Timethylcyclohexane 0.0761 0.0650 0.0702 1 -1-4-Timethylnexane 0.0211 0.0754 0.0816 0 -2-3-Timethylneytane 0.0261 0.0217 0.0234 2 -3-Dimethylcyclohexane 0.0501 0.0117 0.0234 2 -3-Dimethylcyclohexane 0.0520 0.433 0.467						
6 3-methylciplonesane 0.1059 0.0066 0.1062 2 1-1-Dimethylcyclopentane/Cycloheptane 0.0390 0.0325 0.2383 1 1-methyl-lethylcyclopentane/Cycloheptane 0.0390 0.0325 0.0360 6 trans-1-2-Dimethylcyclohexane 0.0500 0.0541 0.5866 2-2-Dimethylcyclohexane 0.0500 0.0433 0.0469 2-2-Dimethylcyclohexane 0.0500 0.0541 0.0550 2-2-Dimethylcyclohexane 0.0500 0.0541 0.0550 2-2-Dimethylcyclohexane 0.0170 0.0974 0.1040 2-2-Dimethylcyclohexane 0.0170 0.0974 0.1040 2-3-3-Trimethylcexane/1-1-3-Trimethylcyclohexane 0.0171 0.0758 0.0813 2-3-3-Trimethylcexane/1-1-3-Trimethylcyclohexane 0.0261 0.0217 0.0234 2-3-3-Trimethylcexane 0.0250 0.0433 0.0467 2-3-3-Trimethylcexane 0.0261 0.0217 0.0234 2-3-Trimethylcexane 0.0500 0.0433 0.0467 2-3-Trimethylcexane						
2 1-Dimethyleyclohexane 0.2471 0.2057 0.2283 4 1-methyl-1-ethyleyclopentane/Cyclohexane 0.0390 0.03925 0.0306 7 9 Unknown 1 0.03772 0.14059 0.3443 7 9 Unknown 1 0.0572 0.0453 0.0469 12 2-Dimethylicyclohexane 0.0520 0.0433 0.0469 2 2-Dimethylicyclohexane 0.0390 0.0325 0.0352 2 2-Dimethylicyclohexane 0.0390 0.0325 0.0352 5 cl-1-2-Dimethylicyclohexane 0.0171 0.0678 0.0181 2 2-3-Timethylinexane/1-1-3-Timethylicyclohexane 0.0171 0.0234 0.0467 2 3-3-Timethylinexane/1-1-3-Timethylicyclohexane 0.0261 0.0217 0.0234 1 1-4-Timethylinexane 0.0520 0.0433 0.0467 2 3-Dimethylicyclohexane 0.0261 0.0217 0.0234 2-3-Dimethylicyclohexane 0.0520 0.0433 0.0467 2-3-Dimethylicyclohexane <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
4 1-methyl-terhylcyclopentane/Cyclohepane 0.0390 0.0325 0.0390 6 trans-1-2-Dimethylcyclohexane 11.4976 9.5702 10.4959 7 SUnknown 1 0.3772 0.3140 0.3443 8 trans-1-3-Dimethylcyclohexane 0.0650 0.0433 0.0469 2-2-Dimethylcyclohexane 0.0390 0.0225 0.0352 2-2-Dimethylcyclohexane 0.0390 0.0225 0.0352 2-3-3Trimethylnexane 0.0390 0.0255 0.0352 2-3-3-Trimethylnexane 0.0471 0.0606 0.0702 3-3-3-Trimethylnexane 0.0520 0.0433 0.0467 2-3-3-Trimethylnexane 0.0261 0.0788 0.0818 0 2-3-1rimethylnexane 0.0261 0.0784 0.0433 1 2-3-4-Trimethylnexane 0.0261 0.0433 0.0467 2-3-4-Dimethylneptane 0.0262 0.0433 0.0467 2-3-4-Trimethylnexane 0.0386 0.8989 0.6453 0 2-Dimethylneptane 0.0386 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
6 trans-1-2-Dimethylcyclohexane 11.4976 9.5702 10.4959 7 G9 Unknown 1 0.3772 0.3140 0.3443 1 2-2-Dimethylkeptane 0.0650 0.0433 0.0469 2-2-Dimethylkeptane 0.0620 0.0433 0.0469 2-2-Dimethylkeptane 0.0390 0.0325 0.0352 1 1-2-Dimethylcyclohexane 0.0495 0.7903 0.8530 2-3-Jimethylkexane/1-1-3-Timethylcyclohexane 0.0171 0.0254 0.07702 1-1-4-Timethylkexane/1-1-3-Timethylcyclohexane 0.0261 0.0217 0.0234 0 9-1-4-Timethylkexane/1-2-37.0000 0.0467 0.0264 0.0467 2-3-Dimethylcyclohexane 0.0252 0.0433 0.0467 2-3-Dimethylcyclohexane 0.0252 0.0433 0.0466 2-3-Dimethylcyclohexane 0.0261 0.0217 0.0234 2-3-Dimethylcyclohexane/1-2-cis.cis-3-Trimethylcyclohexane/1-2-cis.cis-3-Trimethylcyclohexane/1-2-cis.cis-3-Trimethylcyclohexane/1-2-cis.cis-3-Trimethylcyclohexane/1-2-cis.cis-3-Trimethylcyclohexane/1-2-cis.cis-3-Trimethylcyclohexane/1-2-cis.cis-3-Trimethylcyclohexane/1-2-cis.cis-3-Trimethylcyclohexane/1						
7 C9 Unknown 1 0.3772 0.3140 0.3443 6 trans-1-3-Dimethylcyclohexane 0.0650 0.0431 0.0566 2-2-Dimethylcyclohexane 0.0650 0.0433 0.0469 2-2-Dimethylcyclohexane 0.2601 0.2165 0.2346 2-2-3-Timethylcyclohexane 0.0474 0.1040 5 cis-1-2-Dimethylcyclohexane 0.1170 0.0974 0.1040 5 cis-1-2-Dimethylcyclohexane 0.0435 0.7903 0.8830 2-3-3-Timethylnexane 0.0520 0.0433 0.0467 2-3-3-Dimethylnexane 0.0520 0.0433 0.0467 2-3-3-Timethylnexane 0.0520 0.0433 0.0467 2-3-Dimethylneplane 0.0520 0.0433 0.0467 2-3-Dimethylneplane 0.0520 0.0433 0.0467 2-3-10inethylneplane 0.0520 0.0433 0.0467 2-3-10inethylneplane 0.0520 0.0433 0.0467 2-3-10inethylneplane 0.0520 0.0433 0.0466 2-2-Dinethyl						
8 trans-1-3-Dimethylcyclohexane 0.0650 0.0541 0.0566 2-4-Dimethylheptane 0.0500 0.0433 0.0469 2-4-Dimethylheptane 0.0500 0.0325 0.0352 2-3-Trimethylhexane 0.0390 0.0325 0.0352 2-3-Trimethylcyclohexane 0.1170 0.0974 0.1040 Ethylcyclohexane 0.0781 0.0650 0.0702 1-1-4-Trimethylcyclohexane 0.0261 0.0217 0.0234 2-3-Dimethylheptane 0.0261 0.0217 0.0234 2-3-Dimethylheptane 0.0262 0.1400 0.1708 2-3-Dimethylheptane 0.0261 0.0217 0.0234 2-3-Dimethylheptane 0.0502 0.4433 0.0467 2-3-Dimethylheptane 0.0529 0.4440 0.1160 2-3-Dimethylheptane 0.0521 0.0217 0.0234 2-3-Dimethylheptane 0.0592 0.4433 0.0467 2-3-Dimethylheptane 0.0369 0.0325 0.0297 3-sophyleptane 0.0366 0.1173 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
1 2-2-Dimethylheptane 0.0520 0.0433 0.0469 2 2-4-Dimethylheptane 0.2001 0.2165 0.2346 2-2-3-Timethylhexane 0.0170 0.0974 0.1040 6 Ethylcyclohexane 0.1170 0.0974 0.1040 6 Ethylcyclohexane 0.0170 0.0974 0.01650 0.0702 9 1-1-4-Trimethylcyclohexane 0.0911 0.0758 0.0818 0.0261 0.02217 0.0234 0 9 Unknown 3 0.0261 0.0217 0.0234 0.467 2-3-4-Trimethylteytane 0.0520 0.0433 0.0467 2-3-4-Trimethyltexane 0.0520 0.0433 0.0467 3-methyloctane 0.0984 0.0666 0.0752						
2 2-4-Dimethyltheptane 0.2601 0.2165 0.2346 4 2-2-3-Trimethylthexane 0.0390 0.0352 0.0352 6 11/10 0.0974 0.1400 6 Ethylcyclohexane 0.9495 0.7903 0.8530 8 2-3-3-Trimethylcyclohexane 0.0711 0.0650 0.0702 9 1-1-4-Trimethylcyclohexane 0.0911 0.0758 0.0818 0 0.9 1.0 0.0520 0.04433 0.0467 2-3-4-Trimethyltheptane 0.02092 0.1840 0.1708 2-3-4-Trimethyltheptane 0.02092 0.1840 0.1708 2-3-trimethyltoctane 0.07876 0.6929 0.6453 3-methyloctane 0.0984 0.0866 0.0792 0 0-Vylene 0.0984 0.0866 0.0792 2 9 Uhknown 5 0.0390 0.0325 0.0330 1 1.8075 1.1875 1.1875 1 2-2.01grathyloctane 0.1199 0.0866 0.0		and the second				
4 2-3-Trimethylnexane 0.0390 0.0325 0.0352 5 ds-1-2-Dimethylcyclohexane 0.1170 0.0974 0.1040 6 Ethylcyclohexane 0.9495 0.7903 0.8530 8 2-3-Trimethylbrache/1-1-3-Trimethylcyclohexane 0.0761 0.0650 0.0752 9 1-1-4-Trimethylcyclohexane 0.0211 0.0234 0.0214 0 9 1-0.0217 0.0234 0.0473 0 9 1-14-Trimethylcyclohexane 0.0202 0.1440 0.1708 0 2-3-Dimethyloctane/4-methyloctane 0.2092 0.1440 0.1708 4 2-3-Dimethyloctane 0.0984 0.0866 0.0792 5 2-methyloctane 0.0984 0.0866 0.0792 C 9 Unknown 6 0.0984 0.0866 0.0173 5 1-2-cis,trans-3-Trimethylcyclohexane/1-2-cis,cis-3-Trimethylcyclohexane 0.1189 0.0866 0.1173 7 Isopropylbenzene 0.1394 0.1083 0.1145 9 <						
5 cis-12-Dimethylocyclohexane 0.1170 0.0974 0.1040 6 Ethylocyclohexane 0.9495 0.7903 0.8530 2-33-Trimethylocyclohexane 0.0761 0.0650 0.0702 9 1-14-Trimethylocyclohexane 0.0911 0.0758 0.0818 0 2-34-Trimethylocyclohexane 0.0220 0.0433 0.0467 2-34-Trimethylocyclane 0.2092 0.1840 0.1708 2-3-Trimethylocyclane 0.2092 0.1840 0.1708 2-arethyloctane 0.7876 0.6929 0.6453 8 C9 Unknown 5 0.0984 0.0866 0.0806 0 -Xylene 0.0369 0.0325 0.0297 4 n-Nonane 1.2041 0.8769 1.1875 1-2-cis,irans-3-Trimethylocyclohexane/1-2-cis,cis-3-Trimethylocyclohexane 0.1394 0.1083 0.1145 2-2-Dimethyloctane 0.1394 0.1083 0.1145 0.2400 0.0325 0.0330 1 Sopropylocylohexane/n-butylocylohexane 0.0390 0.03						
6 Ethylcyclohexane 0.9495 0.7903 0.8530 2 3-3-Trimethylinexane/1-1-3-Trimethylcyclohexane 0.0911 0.0650 0.0702 0 92 Unknown 3 0.0261 0.0217 0.0234 1 2-3-4-Trimethylinexane 0.0261 0.0217 0.0234 2 3-a-trimethylinexane 0.0202 0.0433 0.0467 2 3-methyloctane/4-methyloctane 1.2675 1.1151 1.0385 7 3-methyloctane/4-methyloctane 0.7876 0.6929 0.6453 0 0.5944 0.0866 0.0994 0.0866 0.0792 2 C9 Unknown 6 0.0369 0.0325 0.0297 1 n-Nonane 1.2041 0.8766 0.1173 1 Isopropylbenzene 0.1394 0.1083 0.1145 2 2-2-Dimethyloctane 0.0390 0.0325 0.0330 1 C10 Unknown 3 0.1145 0.1394 0.1083 0.1145 2 2-Dimethyloctane 0.0390 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
8 2-3-3-Trimethylicyclohexane 0.0781 0.0650 0.0702 9 1-4-Trimethylicyclohexane 0.0911 0.0758 0.0818 0 S9 Unknown 3 0.0261 0.027 0.0234 1 2-3-4-Trimethylicyclohexane 0.0520 0.0433 0.0467 2-3-Dimethylicyclane/4-methyloctane 1.2675 1.1151 1.0385 7 3-methyloctane/4-methyloctane 0.7876 0.6929 0.6453 8 G9 Unknown 5 0.0984 0.0866 0.0806 0 -Xytene 0.0369 0.0325 0.0297 2 G9 Unknown 6 0.0369 0.1832 0.1173 7 Isopropylbenzene 0.1189 0.0866 0.1173 8 2-2-Dimethyloctane 0.1394 0.1083 0.1145 8 2-2-Dimethyloctane 0.0390 0.0325 0.0330 0 C10 Unknown 3 0.0110 0.0110 0.0110 0 P-Propylcyclohexane/n-buthylcyclopentane 0.0293 0.0217 0.0						
9 1-1-4-Trimethylcyclohexane 0.0911 0.0758 0.0818 0 29 Uhknown 3 0.0261 0.0271 0.0234 1 2-3-4-Trimethylhexane 0.0520 0.0433 0.0467 2 2-3-Dimethylheptane 0.2092 0.1840 0.1708 6 2-methyloctane/4-methyloctane 1.2675 1.1151 1.0385 7 3-methyloctane/4-methyloctane 0.0984 0.0866 0.0806 0 0-Sylene 0.0369 0.0325 0.0297 1 n-Nonane 1.2041 0.8769 1.1875 5 1-2-cis,trans-3-Trimethylcyclohexane/1-2-cis,cis-3-Trimethylcyclohexane 0.1189 0.0866 0.1173 7 Isopropylbenzene 0.1394 0.1083 0.1145 9 Cyclooctane/iso-propylcyclohexane 0.1394 0.1083 0.1145 9 Cyclooctane/iso-propylcyclohexane 0.0390 0.0325 0.0330 0 10 Uhknown 2 0.0390 0.0325 0.0392 1 10 Uhknown 3 0.0130 0.0108 0.0110 1 10 Uhknown 2						
0 GSUnknown 3 0.0261 0.0217 0.0234 1 2-3Trimethylhexane 0.0520 0.0433 0.0467 2-3-Dimethylhoctane 0.2092 0.1840 0.1708 6 2-methyloctane/4-methyloctane 1.2675 1.1151 1.0385 7 3-methyloctane 0.0984 0.0866 0.0806 0 o-Xylene 0.0389 0.0325 0.0297 1 1.2041 0.8769 1.1875 1 1-2-dis,trans-3-Trimethylcyclohexane/1-2-cis,cis-3-Trimethylcyclohexane 0.1189 0.0866 0.1173 1 sopropylbenzene 0.1394 0.1083 0.1145 9 Cyclooctane/iso-propylcyclohexane 0.1390 0.0325 0.0330 0 C10 Unknown 3 0.0130 0.0108 0.0110 0 n-Perpylcyclohexane/n-butylcyclopentane 0.0390 0.0325 0.0392 3 3-3-Dimethyloctane 0.0293 0.0217 0.0261 10 Unknown 3 0.0108 0.0110 0.01392 <td></td> <td></td> <td>0.0911</td> <td>0.0758</td> <td>0.0818</td> <td></td>			0.0911	0.0758	0.0818	
4 2-3-Dimethylheptane 0.2092 0.1840 0.1708 6 2-methyloctane/4-methyloctane 1.2675 1.1151 1.0385 7 3-methyloctane 0.07876 0.6929 0.6453 8 CS Unknown 5 0.0984 0.0866 0.0806 0 o-Xylene 0.0394 0.0866 0.0792 2 CS Unknown 6 0.0399 0.0325 0.0297 4 n-Nonane 1.2041 0.8769 1.1875 5 1-2-cls,trans-3-Trimethylcyclohexane/1-2-cls,cis-3-Trimethylcyclohexane 0.1194 0.0183 0.1145 8 2-2-Dimethyloctane 0.1394 0.1083 0.1145 9 Cyclooctane/iso-propylcyclohexane 0.0390 0.0325 0.0330 0 C10 Unknown 3 0.0130 0.0108 0.0110 2 n-Propylcyclohexane/n-butylcyclopentane 0.0293 0.0217 0.0226 3 3-Dimethyloctane 0.0233 0.0217 0.0228 1 1-0 Unknown 3 0.0130 0.0130 0.0132 0.0217 1 n-Propylcyclohexan			0.0261	0.0217	0.0234	
6 2-methyloctane/4-methyloctane 1.2675 1.1151 1.0385 7 3-methyloctane 0.7876 0.6929 0.6453 8 C9 Unknown 5 0.0984 0.0866 0.0806 0 0-Xylene 0.0984 0.0866 0.0806 2 C9 Unknown 6 0.0369 0.0325 0.0297 4 n-Nonane 1.2041 0.8769 1.1875 5 1-2-cits rans-3-Trimethylcyclohexane/1-2-cits cits-3-Trimethylcyclohexane 0.1189 0.0866 0.1173 7 Isopropylbenzene 0.1394 0.1083 0.1145 8 2-2-Dimethyloctane 0.0390 0.0325 0.0330 0 C10 Unknown 3 0.0130 0.0108 0.0110 2 n-Propylcyclohexane/n-butylcyclopentane 0.0439 0.0325 0.0332 3 3-3-Dimethyloctane 0.0130 0.0108 0.0110 2 n-ethyltoluene/2-3-Dimethyloctane 0.0293 0.0217 0.0228 1 3-diffyloctane 0.0352 0.0330 0.1414 0 2-methylonane 0.0279 <td>1</td> <td>2-3-4-Trimethylhexane</td> <td>0.0520</td> <td>0.0433</td> <td>0.0467</td> <td></td>	1	2-3-4-Trimethylhexane	0.0520	0.0433	0.0467	
7 3-methyloctane 0.7876 0.6929 0.6453 8 C5 Unknown 5 0.0984 0.0866 0.0792 0 o-Xylene 0.0369 0.0325 0.0297 4 n-Nonane 1.2041 0.8769 1.1875 5 1-2-cis, trans-3-Trimethylcyclohexane/1-2-cis, cis-3-Trimethylcyclohexane 0.1189 0.0866 0.1173 7 Isopropylbenzene 0.1394 0.1083 0.1145 8 2-2-Dimethyloctane 0.0390 0.0325 0.0330 0 C10 Unknown 2 0.0390 0.0325 0.0330 0 C10 Unknown 3 0.0108 0.0110 0 n-Propylcyclohexane/n-butylcyclopentane 0.0439 0.0325 0.0332 1 C10 Unknown 3 0.0130 0.0108 0.0110 1 n-Propylcyclohexane/n-butylcyclopentane 0.0439 0.0325 0.0332 3 3-3-Dimethyloctane 0.0439 0.0325 0.0332 0 n-ethyltoluene 0.0439 0.0217 0.0226 1 s-tethyltoluene 0.0557 0.0433	4	2-3-Dimethylheptane	0.2092	0.1840	0.1708	
8 C9 Unknown 5 0.0984 0.0866 0.0792 0 0-Xylene 0.0369 0.0325 0.0297 2 C9 Unknown 6 0.0369 0.0325 0.0297 4 n-Nonane 1.2041 0.8769 1.1875 5 1-2-cis, trans-3-Trimethylcyclohexane/1-2-cis, cis-3-Trimethylcyclohexane 0.1189 0.0866 0.1173 7 Isopropylbenzene 0.1394 0.1083 0.1145 8 2-2-Dimethyloctane 0.0390 0.0325 0.0330 0 C10 Unknown 3 0.0130 0.0108 0.0110 0 n-Propylcyclohexane/n-butylcyclopentane 0.0293 0.0217 0.0261 7 m-ethyltoluene/2-3-Dimethyloctane 0.0130 0.0108 0.0110 1 C10 Unknown 3 0.0130 0.0183 0.1141 1 D-repropylcyclohexane/n-butylcyclopentane 0.0293 0.0217 0.0261 1 -hytotane 0.0439 0.0332 0.0392 1 3-ethylotane 0.0577	6	2-methyloctane/4-methyloctane	1.2675	1.1151	1.0385	
0 o-Xylene 0.0984 0.0966 0.0792 2 C9 Unknown 6 0.0369 0.0325 0.0297 4 n-Nonane 1.2041 0.8769 1.1875 5 1-2-cis, trans-3-Trimethylcyclohexane/1-2-cis, cis-3-Trimethylcyclohexane 0.1189 0.0866 0.1173 7 Isopropylbenzene 0.1394 0.1083 0.1145 8 2-2-Dimethyloctane 0.0390 0.0325 0.0330 0 C10 Unknown 2 0.0390 0.0325 0.0330 1 C10 Unknown 3 0.0130 0.0110 0.0130 0.0110 2 n-Propylcyclohexane/n-butylcyclopentane 0.0439 0.0325 0.0392 3 3-3-Dimethyloctane 0.0293 0.0217 0.0261 7 m-ethyltoluene/2-3-Dimethyloctane 0.0439 0.0325 0.0392 10 2-methyltoluene/2-3-Dimethyloctane 0.0279 0.0217 0.0228 11 3-ethyltoluene/2-3-Dimethyloctane 0.0357 0.0433 0.0456 12			0.7876	0.6929	0.6453	
2 C9 Unknown 6 0.0369 0.0325 0.0297 4 n-Nonane 1.2041 0.8769 1.1875 5 1-2-cis,trans-3-Trimethylcyclohexane/1-2-cis,cis-3-Trimethylcyclohexane 0.1189 0.0866 0.1173 7 Isopropylbenzene 0.1394 0.1083 0.1145 8 2-2-Dimethyloctane 0.0390 0.0325 0.0330 9 Cyclooctane/iso-propylcyclohexane 0.0390 0.0325 0.0330 0 C10 Unknown 3 0.0108 0.0110 0.0108 0.0110 2 n-Propylcyclohexane/n-butylcyclopentane 0.0439 0.0325 0.0392 3 3-Dimethyloctane 0.0293 0.0217 0.0261 7 m-ethyltoluene 0.0696 0.0541 0.0572 8 p-ethyltoluene/2-3-Dimethyloctane 0.0279 0.0217 0.0228 10 2-methylnonane 0.0279 0.0217 0.0228 11 3-c10 Unknown 6 0.0557 0.433 0.4456 12 C10 Unknown 8 0.2786 0.2165 0.2280 13 C11 Un	3.					
4 n-Nonane 1.2041 0.8769 1.1875 5 1-2-cis,trans-3-Trimethylcyclohexane/1-2-cis,cis-3-Trimethylcyclohexane 0.1189 0.0866 0.1173 7 Isopropylbenzene 0.1394 0.1083 0.1145 8 2-2-Dimethyloctane 0.1394 0.1083 0.1145 9 Cyclooctane/iso-propylcyclohexane 0.0390 0.0325 0.0330 0 C10 Unknown 2 0.0390 0.0325 0.0330 1 C10 Unknown 3 0.0130 0.0108 0.0110 2 n-Propylcyclohexane/n-butylcyclopentane 0.0239 0.0217 0.02261 3 3-3-Dimethyloctane 0.0293 0.0217 0.0261 7 m-ethyltoluene/2-3-Dimethyloctane 0.0566 0.541 0.572 8 p-ethyltoluene/2-3-Dimethyloctane 0.0279 0.0217 0.0228 01 3-ethylonane 0.0557 0.0433 0.1141 03 C10 Unknown 6 0.0557 0.0433 0.0456 05 C10 Unknown 1 0.0279 0.0217 0.0228 04 1-methyl-3						
5 1-2-cis,trans-3-Trimethylcyclohexane/1-2-cis,cis-3-Trimethylcyclohexane 0.1189 0.0866 0.1173 7 Isopropylbenzene 0.1394 0.1083 0.1145 8 2-2-Dimethyloctane 0.0390 0.0325 0.0330 9 Cyclooctane/iso-propylcyclohexane 0.0390 0.0325 0.0330 0 C10 Unknown 2 0.0390 0.0325 0.0330 1 C10 Unknown 3 0.0110 0.0108 0.0110 2 n-Propylcyclohexane/n-butylcyclopentane 0.0439 0.0325 0.0392 3 3-3-Dimethyloctane 0.0293 0.0217 0.0261 7 m-ethyttoluene 0.0696 0.0541 0.0572 9 p-ethyttoluene/2-3-Dimethyloctane 0.0279 0.0217 0.0228 01 3-ethylotane 0.0279 0.0217 0.0228 02 2-methylionane 0.0276 0.0433 0.1414 03 C10 Unknown 6 0.0557 0.0433 0.1456 04 1-methyl-3-isopropylbenzene 0.0276 0.2165 0.2280 05 C10 Unk						
7 Isopropylbenzene 0.1394 0.1083 0.1145 8 2-2-Dimethyloctane 0.1394 0.1083 0.1145 9 Cyclooctane/iso-propylcyclohexane 0.0390 0.0325 0.0330 0 C10 Unknown 2 0.0390 0.0325 0.0330 1 C10 Unknown 3 0.0130 0.0108 0.0110 2 n-Propylcyclohexane/n-butylcyclopentane 0.0439 0.0325 0.0392 3 3-3-Dimethyloctane 0.0293 0.0217 0.0261 7 m-ethyltoluene 0.0696 0.0541 0.0572 8 p-ethyltoluene/2-3-Dimethyloctane 0.0279 0.0217 0.0228 01 3-ethyloctane 0.0557 0.0433 0.1141 03 C10 Unknown 6 0.0557 0.0433 0.0456 05 C10 Unknown 1 0.0557 0.0433 0.0456 02 C11 Unknown 1 0.0312 0.0217 0.0221 04 1-methyl-3-isopropylbenzene 0.0326 0.0217 0.0221 04 1-methyl-3-isopropylbenzene 0.0312 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
8 2-2-Dimethyloctane 0.1394 0.1083 0.1145 9 Cyclooctane/iso-propylcyclohexane 0.0390 0.0325 0.0330 0 C10 Unknown 2 0.0390 0.0325 0.0330 1 C10 Unknown 3 0.0130 0.0108 0.0110 2 n-Propylcyclohexane/n-butylcyclopentane 0.0439 0.0325 0.0392 3-3-Dimethyloctane 0.0293 0.0217 0.0261 7 m-ethyltoluene 0.0696 0.0541 0.0572 8 p-ethyltoluene/2-3-Dimethyloctane 0.1333 0.1191 0.1259 01 3-ethyloctane 0.0279 0.0217 0.0228 01 3-ethyloctane 0.0355 0.0433 0.1141 03 C10 Unknown 6 0.2786 0.2165 0.2280 04 1-methyl-3-isopropylbenzene 0.0279 0.0217 0.0221 04 1-methyl-3-isopropylbenzene 0.0312 0.0217 0.0221 04 1-methyl-3-isopropylbenzene 0.0312 0.0217 0.0257 04 1-methyl-3-isopropylbenzene 0.0312						
9 Cyclooctane/iso-propylcyclohexane 0.0390 0.0325 0.0330 0 C10 Unknown 2 0.0390 0.0325 0.0330 1 C10 Unknown 3 0.0130 0.0108 0.0110 2 n-Propylcyclohexane/n-butylcyclopentane 0.0439 0.0325 0.0392 3 3-3-Dimethyloctane 0.0293 0.0217 0.0261 7 m-ethyltoluene 0.0696 0.0541 0.0572 9 p-ethyltoluene/2-3-Dimethyloctane 0.0279 0.0217 0.0228 01 3-ethyloctane 0.1394 0.1083 0.1141 03 C10 Unknown 6 0.0279 0.0217 0.0228 04 1-methyl-3-isopropylbenzene 0.0312 0.0217 0.0256 12 C11 Unknown 1 0.0312 0.0217 0.0221 14 -methyl-3-isopropylbenzene 0.0326 0.0217 0.0257 14 1-methyl-3-isopropylbenzene 0.0312 0.0217 0.0257 14 1-methyl-3-isopropylbenzene 0.0312 0.0217 0.0257 14 Diethylbenzene/1-methyl-3-pro						
0 C10 Unknown 2 0.0390 0.0325 0.0330 1 C10 Unknown 3 0.0110 0.0108 0.0110 2 n-Propylcyclohexane/n-butylcyclopentane 0.0439 0.0325 0.0392 3 3-3-Dimethyloctane 0.0293 0.0217 0.0261 7 m-ethyltoluene 0.0696 0.0541 0.0572 8 p-ethyltoluene/2-3-Dimethyloctane 0.0279 0.0217 0.0228 0 2-methylnonane 0.0557 0.0433 0.1141 03 C10 Unknown 6 0.0557 0.0433 0.0456 05 C10 Unknown 1 0.0278 0.2175 0.0228 12 C11 Unknown 1 0.0312 0.0217 0.0256 14 1-methyl-3-isopropylbenzene 0.0326 0.0217 0.0221 16 C11 Unknown 2 0.0312 0.0217 0.0257 14 1-methyl-3-isopropylbenzene 0.0312 0.0217 0.0257 14 1-methyl-3-isopropylbenzene 0.0312 0.0217 0.0257 14 1-methyl-3-isopropylbenzene 0.0312						
1 C10 Unknown 3 0.0130 0.0108 0.0110 2 n-Propylcyclohexane/n-butylcyclopentane 0.0439 0.0325 0.0392 3 3-3-Dimethyloctane 0.0293 0.0217 0.0261 7 m-ethyltoluene/2-3-Dimethyloctane 0.0696 0.0541 0.0572 8 p-ethyltoluene/2-3-Dimethyloctane 0.0279 0.0217 0.0228 01 3-ethylonane 0.0557 0.0433 0.1141 03 C10 Unknown 6 0.0557 0.0433 0.0456 05 C10 Unknown 1 0.0312 0.0217 0.0228 12 C11 Unknown 1 0.0312 0.0217 0.0261 14 1-methyl-3-isopropylbenzene 0.0312 0.0217 0.0261 14 1-methyl-3-isopropylbenzene 0.0312 0.0217 0.0228 14 1-methyl-3-isopropylbenzene 0.0326 0.0217 0.0226 14 1-methyl-3-isopropylbenzene 0.0312 0.0217 0.0257 14 1-methyl-3-isopropylbenzene 0.0312 0.0217 0.0257 14 1-methyl-3-iso						
2 n-Propylcyclohexane/n-butylcyclopentane 0.0439 0.0325 0.0392 3 3-3-Dimethyloctane 0.0293 0.0217 0.0261 7 m-ethyltoluene 0.0696 0.0541 0.0572 8 p-ethyltoluene/2-3-Dimethyloctane 0.1533 0.1191 0.1259 0 2-methylnonane 0.0279 0.0217 0.0228 11 3-ethyloctane 0.1394 0.1083 0.1141 03 C10 Unknown 6 0.0557 0.0433 0.0456 05 C10 Unknown 8 0.2786 0.2165 0.2280 12 C11 Unknown 1 0.0312 0.0217 0.0261 14 1-methyl-3-isopropylbenzene 0.0312 0.0217 0.0228 14 1-methyl-3-isopropylbenzene 0.0326 0.0217 0.0289 14 1-methyl-3-isopropylbenzene 0.0326 0.0217 0.0289 14 1-methyl-3-isopropylbenzene 0.0312 0.0217 0.0289 15 n-Butylbenzene/1-methyl-3-propylbenzene 0.0312 0.0217 0.0257 14 1-methyl-2-ethylben						
3 3-3-Dimethyloctane 0.0293 0.0217 0.0261 7 m-ethyltoluene 0.0696 0.0541 0.0572 8 p-ethyltoluene/2-3-Dimethyloctane 0.1533 0.1191 0.1259 0 2-methylnonane 0.0279 0.0217 0.0228 0 3-ethyloctane 0.1394 0.1083 0.1141 03 C10 Unknown 6 0.0557 0.0433 0.0456 05 C10 Unknown 8 0.2786 0.2165 0.2280 12 C11 Unknown 1 0.0312 0.0217 0.0221 14 1-methyl-3-isopropylbenzene 0.0326 0.0217 0.0221 16 C11 Unknown 2 0.0312 0.0217 0.0257 13 n-Butylbenzene/1-methyl-3-propylbenzene 0.0312 0.0217 0.0257 14 1-4-Diethylbenzene 0.0312 0.0217 0.0257 14 1-4-Diethylbenzene 0.0312 0.0217 0.0257 14 1-4-Diethylbenzene 0.0312 0.0217 0.0257 14 1-4-Dimethyl,2-ethylbenzene 0.0312 0.0217<						
7 m-ethyltoluene 0.0696 0.0541 0.0572 8 p-ethyltoluene/2-3-Dimethyloctane 0.1533 0.1191 0.1259 0 2-methylnonane 0.0279 0.0217 0.0228 01 3-ethyloctane 0.1394 0.1083 0.1141 03 C10 Unknown 6 0.0557 0.0433 0.0456 05 C10 Unknown 1 0.0279 0.217 0.0228 14 1-methyl-3-isopropylbenzene 0.0312 0.2165 0.2280 14 1-methyl-3-isopropylbenzene 0.0279 0.0217 0.0221 16 C11 Unknown 2 0.0139 0.0108 0.0110 12 1-3-Diethylbenzene/1-methyl-3-propylbenzene 0.0312 0.0217 0.0257 13 n-Butylbenzene 0.0312 0.0217 0.0257 14 1-4-Diethylbenzene 0.0312 0.0217 0.0257 14 1-4-Dimethyl,2-ethylbenzene 0.0312 0.0217 0.0257 14 1-4-Dimethyl,2-ethylbenzene 0.0312 0.0217 0.0257 14 1-4-Dimethyl,2-ethylbenzene						
8 p-ethyltoluene/2-3-Dimethyloctane 0.1533 0.1191 0.1259 0 2-methylnonane 0.0279 0.0217 0.0228 01 3-ethyloctane 0.1394 0.1083 0.1141 03 C10 Unknown 6 0.0557 0.0433 0.0456 05 C10 Unknown 1 0.0557 0.0217 0.0228 12 C11 Unknown 1 0.0557 0.0433 0.0456 14 1-methyl-3-isopropylbenzene 0.0217 0.0217 0.0221 16 C11 Unknown 2 0.0139 0.0108 0.0110 12 1-3-Diethylbenzene/1-methyl-3-propylbenzene 0.0312 0.0217 0.0257 13 n-Butylbenzene 0.0312 0.0217 0.0257 14 1-4-Diethylbenzene 0.0312 0.0217 0.0257 14 1-4-Diethylbenzene 0.0312 0.0217 0.0257 14 1-4-Dimethyl,2-ethylbenzene 0.0312 0.0217 0.0257 14 1-4-Dimethyl,2-ethylbenzene 0.0312 0.0217 0.0257 15 1-4-Dimethyl,2-ethylbenzene 0.03						
0 2-methylnonane 0.0279 0.0217 0.0228 1 3-ethyloctane 0.1394 0.1083 0.1141 13 C10 Unknown 6 0.0557 0.0433 0.0456 15 C10 Unknown 8 0.2786 0.2165 0.2280 14 1-methyl-3-isopropylbenzene 0.0312 0.0217 0.0256 14 1-methyl-3-isopropylbenzene 0.0279 0.0217 0.0221 15 C11 Unknown 1 0.0139 0.0108 0.0110 12 1-3-Diethylbenzene/1-methyl-3-propylbenzene 0.0312 0.0217 0.0257 13 n-Butylbenzene 0.0312 0.0217 0.0257 14 1-4-Diethylbenzene 0.0312 0.0217 0.0257 14 1-4-Diethylbenzene 0.0312 0.0217 0.0257 14 1-4-Dimethyl,2-ethylbenzene 0.0312 0.0217 0.0257 14 1-4-Dimethyl,2-ethylbenzene 0.0312 0.0217 0.0257 15 1-4-Dimethyl,2-ethylbenzene 0.0312 0.0217 0.0257 14 1-4-Dimethyl,2-ethylbenzene						
3 C10 Unknown 6 0.0557 0.0433 0.0456 4 0.0557 0.0433 0.0456 5 C10 Unknown 8 0.2786 0.2165 0.2280 2 C11 Unknown 1 0.0312 0.0217 0.0256 4 1-methyl-3-isopropylbenzene 0.0279 0.0217 0.0221 6 C11 Unknown 2 0.0139 0.0108 0.0110 12 1-3-Diethylbenzene/1-methyl-3-propylbenzene 0.0326 0.0217 0.0289 3 n-Butylbenzene 0.0312 0.0217 0.0257 4 1-4-Diethylbenzene 0.0312 0.0217 0.0257 4 1-4-Dimethyl,2-ethylbenzene 0.0777 0.0541 0.0640 4 1-4-Dimethyl,3-athylbenzene 0.0155 0.0108<	00	2-methylnonane	0.0279	0.0217	0.0228	
95 C10 Unknown 8 0.2786 0.2165 0.2280 12 C11 Unknown 1 0.0312 0.0217 0.0256 14 1-methyl-3-isopropylbenzene 0.0279 0.0217 0.0221 16 C11 Unknown 2 0.0139 0.0108 0.0110 12 1-3-Diethylbenzene/1-methyl-3-propylbenzene 0.0326 0.0217 0.0289 13 n-Butylbenzene 0.0312 0.0217 0.0257 14 1-4-Diethylbenzene 0.0312 0.0217 0.0257 14 1-4-Dimethyl,2-ethylbenzene 0.0312 0.0217 0.0257 14 1-4-Dimethyl,2-ethylbenzene 0.0312 0.0217 0.0257 14 1-methyl,2-ethylbenzene 0.0312 0.0217 0.0257 14 1-methyl,2-ethylbenzene 0.0312 0.0217 0.0257 14 1-methyl,2-ethylbenzene 0.0312 0.0217 0.0257 15 1.0400 0.0155 0.0108 0.0128	01	3-ethyloctane	0.1394	0.1083	0.1141	
12 C11 Unknown 1 0.0312 0.0217 0.0256 14 1-methyl-3-isopropylbenzene 0.0279 0.0217 0.0221 16 C11 Unknown 2 0.0139 0.0108 0.0110 12 1-3-Diethylbenzene/1-methyl-3-propylbenzene 0.0326 0.0217 0.0289 13 n-Butylbenzene 0.0312 0.0217 0.0257 14 1-4-Diethylbenzene 0.0312 0.0217 0.0257 14 1-4-Dimethyl,2-ethylbenzene 0.0312 0.0217 0.0257 15 0.0108 0.0128 0.0128 0.0128)3	C10 Unknown 6	0.0557	0.0433	0.0456	
1-methyl-3-isopropylbenzene 0.0279 0.0217 0.0221 16 C11 Unknown 2 0.0139 0.0108 0.0110 12 1-3-Diethylbenzene/1-methyl-3-propylbenzene 0.0326 0.0217 0.0289 13 n-Butylbenzene 0.0312 0.0217 0.0257 14 1-4-Diethylbenzene 0.0312 0.0217 0.0257 14 1-4-Dimethyl,2-ethylbenzene 0.0312 0.0217 0.0257 12 1-4-Dimethyl,2-ethylbenzene 0.0312 0.0217 0.0257 14 Dimethyl,2-ethylbenzene 0.0312 0.0217 0.0257 13 Naphthalene 0.0777 0.0541 0.0640	05	C10 Unknown 8	0.2786	0.2165	0.2280	
6 C11 Unknown 2 0.0139 0.0108 0.0110 12 1-3-Diethylbenzene/1-methyl-3-propylbenzene 0.0326 0.0217 0.0289 13 n-Butylbenzene 0.0312 0.0217 0.0257 14 1-4-Diethylbenzene 0.0312 0.0217 0.0257 14 -Dimethyl,2-ethylbenzene 0.0312 0.0217 0.0257 12 C11 Unknown 8 0.0777 0.0541 0.0640 13 Naphthalene 0.0155 0.0108 0.0128						
1-3-Diethylbenzene/1-methyl-3-propylbenzene 0.0326 0.0217 0.0289 1-3-Diethylbenzene 0.0312 0.0217 0.0257 1-4-Diethylbenzene 0.0312 0.0217 0.0257 1-4-Dimethyl,2-ethylbenzene 0.0312 0.0217 0.0257 1-4-Dimethyl,2-ethylbenzene 0.0312 0.0217 0.0257 1-4-Dimethyl,2-ethylbenzene 0.0312 0.0217 0.0257 1-4-Dimethyl,2-ethylbenzene 0.0777 0.0541 0.0640 1-4-Dimethyl,3-ethylbenzene 0.0155 0.0108 0.0128						
23 n-Butylbenzene 0.0312 0.0217 0.0257 24 1-4-Diethylbenzene 0.0312 0.0217 0.0257 26 1-4-Dimethyl,2-ethylbenzene 0.0312 0.0217 0.0257 26 1-4-Dimethyl,2-ethylbenzene 0.0312 0.0217 0.0257 26 C11 Unknown 8 0.0777 0.0541 0.0640 33 Naphthalene 0.0155 0.0108 0.0128						
24 1-4-Diethylbenzene 0.0312 0.0217 0.0257 26 1-4-Dimethyl,2-ethylbenzene 0.0312 0.0217 0.0257 32 C11 Unknown 8 0.0777 0.0541 0.0640 33 Naphthalene 0.0155 0.0108 0.0128						
26 1-4-Dimethyl,2-ethylbenzene 0.0312 0.0217 0.0257 32 C11 Unknown 8 0.0777 0.0541 0.0640 33 Naphthalene 0.0155 0.0108 0.0128						
32 C11 Unknown 8 0.0777 0.0541 0.0640 33 Naphthalene 0.0105 0.0108 0.0128						
53 Naphthalene 0.0128 0.0155 0.0108 0.0128						
	10	ALCONTRACTOR AND A				

Williams Ohio Valley Midstream LLC FORT BEELER GAS PROCESSING PLANT Class II Administrative Update (R13-2826J) Attachment H - MSDS and Lab Analysis

Natural Gas Liquid (NGL) Composition

NGL Composition (04/15/14)

http://www.chemindustry.com/apps/chemicals

Compound	CAS	Formula	Molecular Weight (MW)	Mole % (M% = V%)	Mole Fraction (M%/Sum- M%)	Weighted Sum (MW*MF)	Weight % (WS/Sum-WS)	lb/MMscf (WS/UGC#)
Nitrogen	7727-37-9	N2	28.013					
Hydrogen Sulfide	2148-87-8	H2S	34.086					
Carbon Dioxide	124-38-9	CO2	44.010					
Methane*	75-82-8	CH4	16.042					
Ethane*	74-84-0	C2H6	30.069	1.3372	0.013372	0.4021	0.7830	1,059.53
Propane**	74-98-6	C3H8	44.096	62.5289	0.625274	27.5718	53.6920	72,656.53
i-Butane**	75-28-5	C4H10	58.122	7.8072	0.078070	4.5376	8.8363	11,957.37
n-Butane**	106-97-8	C4H10	58.122	16.5929	0.165925	9.6439	18.7801	25,413.40
Cyclopentane**	287-92-3	C5H10	70.100					
i-Pentane**	78-78-4	C5H12	72.149	3.7435	0.037434	2.7008	5.2594	7,117.14
n-Pentane**	109-66-0	C5H12	72.149	3.9706	0.039705	2.8647	5.5785	7,548.90
Cyclohexane**	110-82-7	C6H12	84.159	0.2330	0.002330	0.1961	0.3818	516.72
Other Hexanes**	varies	C6H14	86.175	1.6520	0.016520	1.4236	2.7722	3,751.38
Methylcyclohexane**	varies	C7H14	98.186	0.1300	0.001300	0.1276	0.2486	336.35
Heptanes**	varies	C7H16	100.202	0.6460	0.006460	0.6473	1.2605	1,705.72
C8+ Heavies**	varies	C8+	114.229	0.1970	0.001970	0.2250	0.4382	592.98
n-Hexane***	110-54-3	C6H14	86.175	1.0850	0.010850	0.9350	1.8207	2,463.83
Benzene***	71-43-2	C6H6	78.112	0.0180	0.000180	0.0141	0.0274	37.05
Toluene***	108-88-3	C7H8	92.138	0.0250	0.000250	0.0230	0.0449	60.70
Ethylbenzene***	100-41-4	C8H10	106.165	0.0001	0.000001	0.0001	0.0002	0.28
Xylenes***	1330-20-7	C8H10	106.165	0.0250	0.000250	0.0265	0.0517	69.94
2,2,4-Trimethylpentane***	540-84-1	C8H18	114.229	0.0110	0.000110	0.0126	0.0245	33.11

Totals:	100.00	1.0000	51.3519	100.00	135,320.93
THC:	100.00	1.0000	51.3519	100.00	135,320.93
Total VOC:	98.67	0.9866	50.9498	99.22	134,261.39
Total HAP:	1.16	0.0116	1.0113	1.97	2,664.91

** = also Volatile Organic Compound (EPA-VOC) *** = also Hazardous Air Pollutant (EPA-HAP) * = Hydrocarbon (HC) #UGC (Universal Gas Constant) = 379.482 scf/lb-mol @ 60 °F and 14.696 psia. Pound "X"/scf = M% of "X" * MW of "X" / UGC

To be conservative, the fo				entative Gas /	Analysis	Assumed "Worst-Case" Parameters		
Compound	CAS	Formula	Mole %	Wgt %	lb/MMscf	Mole %	Wgt %	lb/MMscf
Carbon Dioxide	124-38-9	CO2						
Methane	75-82-8	CH4						
Ethane	74-84-0	CH5	1.337	0.783	1,059.53	1.388	1.000	1,100.00
VOC (Propane)	74-98-6	C3H8	98.665	99.217	134,261.39	100.000	100.000	135,000.00
n-Hexane	110-54-3	C6H14	1.0850	1.8207	2,463.83	2.2019	3.6949	5,000.00
Benzene	71-43-2	C6H6	0.0180	0.0274	37.05	0.0729	0.1108	150.00
Toluene	108-88-3	C7H8	0.0250	0.0449	60.70	0.1030	0.1847	250.00
Ethylbenzene	100-41-4	C8H10	0.0001	0.0002	0.28	0.0036	0.0074	10.00
Xylenes	1330-20-7	C8H10	0.0250	0.0517	69.94	0.1072	0.2217	300.00
2,2,4-Trimethylpentane	540-84-1	C8H18	0.0110	0.0245	33.11	0.0498	0.1108	150.00
Total HAP:	Various	C6 thru C8	1.1641	1.9693	2,664.91	2.5383	4.3304	10,700.00
						105.0767		
FORT BEELER GAS PRO	CESSING PL	ANT			Cla	ass II Administ	rative Update ((R13-2826J)

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Williams Ohio Valley Midstream LLC FORT BEELER GAS PROCESSING PLANT Class II Administrative Update (R13-2826J) Attachment H - MSDS and Lab Analysis

Dehydrator Inlet Gas Composition

Dehydrator Inlet Gas Composition (Groves Master - 07/02/13)

Compound	CAS	Formula	Molecular Weight (MW)	Mole % (M% = V%)	Mole Fraction (M%/Sum- M%)	Weighted Sum (MW*MF)	Weight % (WS/Sum-WS)	lb/MMscf (WS/UGC#)
Nitrogen	7727-37-9	N2	28.013	0.3474	0.003474	0.0973	0.4886	256.46
Hydrogen Sulfide	2148-87-8	H2S	34.086					
Carbon Dioxide	124-38-9	CO2	44.010	0.1322	0.001322	0.0582	0.2921	153.32
Methane*	75-82-8	CH4	16.042	81.0242	0.810262	12.9986	65.2631	34,253.53
Ethane*	74-84-0	C2H6	30.069	12.9568	0.129571	3.8961	19.5614	10,266.84
Propane**	74-98-6	C3H8	44.096	3.5869	0.035870	1.5817	7.9414	4,168.06
i-Butane**	75-28-5	C4H10	58.122	0.4831	0.004831	0.2808	1.4098	739.94
n-Butane**	106-97-8	C4H10	58.122	0.7906	0.007906	0.4595	2.3072	1,210.93
Cyclopentane**	287-92-3	C5H10	70.100					
i-Pentane**	78-78-4	C5H12	72.149	0.2243	0.002243	0.1618	0.8125	426.46
n-Pentane**	109-66-0	C5H12	72.149	0.1722	0.001722	0.1242	0.6238	327.40
Cyclohexane**	110-82-7	C6H12	84.159	0.0136	0.000136	0.0114	0.0575	30.16
Other Hexanes**	varies	C6H14	86.175	0.1051	0.001051	0.0906	0.4547	238.67
Methylcyclohexane**	varies	C7H14	98.186	0.0117	0.000117	0.0115	0.0577	30.27
Heptanes**	varies	C7H16	100.202	0.0624	0.000624	0.0625	0.3139	164.77
C8+ Heavies**	varies	C8+	114.229	0.0242	0.000242	0.0276	0.1388	72.85
n-Hexane***	110-54-3	C6H14	86.175	0.0535	0.000535	0.0461	0.2315	121.49
Benzene***	71-43-2	C6H6	78.112	0.0012	0.000012	0.0009	0.0047	2.47
Toluene***	108-88-3	C7H8	92.138	0.0030	0.000030	0.0028	0.0139	7.28
Ethylbenzene***	100-41-4	C8H10	106.165	0.0001	0.000001	0.0001	0.0005	0.28
Xylenes***	1330-20-7	C8H10	106.165	0.0047	0.000047	0.0050	0.0251	13.15
2,2,4-Trimethylpentane***	540-84-1	C8H18	114.229	0.0003	0.000003	0.0003	0.0017	0.90

Totals:	100.00	1.0000	19.9172	100.00	52,485.26
THC:	99.52	0.9952	19.7617	99.22	52,075.49
Total VOC:	5.54	0.0554	2.8670	14.39	7,555.11
Total HAP:	0.06	0.0006	0.0552	0.28	145.58

* = Hydrocarbon (HC)
 ** = also Volatile Organic Compound (EPA-VOC)
 #** = also Hazardous Air Pollutant (EPA-HAP)
 #UGC (Universal Gas Constant) = 379.482 scf/lb-mol @ 60 °F and 14.696 psia.
 Pound "X"/scf = M% of "X" * MW of "X" / UGC

Compound	CAS	Formula	Represe	entative Gas A	Analysis	Assumed "Worst-Case" Parameters		
Compound	CAS	Fornula	Mole %	Wgt %	lb/MMscf	Mole %	Wgt %	lb/MMscf
Carbon Dioxide	124-38-9	CO2	0.132	0.292	153.32	0.172	0.381	200.00
Methane	75-82-8	CH4	81.024	65.263	34,253.53	99.348	75.000	42,000.00
Ethane	74-84-0	CH5	12.957	19.561	10,266.84			
VOC (Propane)	74-98-6	C3H8	5.537	14.395	7,555.11	6.669	17.338	9,100.00
n-Hexane	110-54-3	C6H14	0.0535	0.2315	121.49	0.0661	0.2858	150.00
Benzene	71-43-2	C6H6	0.0012	0.0047	2.47	0.0049	0.0191	10.00
Toluene	108-88-3	C7H8	0.0030	0.0139	7.28	0.0041	0.0191	10.00
Ethylbenzene	100-41-4	C8H10	0.0001	0.0005	0.28	0.0018	0.0095	5.00
Xylenes	1330-20-7	C8H10	0.0047	0.0251	13.15	0.0071	0.0381	20.00
2,2,4-Trimethylpentane	540-84-1	C8H18	0.0003	0.0017	0.90	0.0017	0.0095	5.00
Total HAP:	Various	C6 thru C8	0.0628	0.2774	145.58	0.0856	0.3811	200.00

To be conservative, the following "worst-case" values were assumed:

Class II Administrative Update (R13-2826J)

106.3607

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment H - MSDS and Lab Analysis

Dehydrator Inlet Gas Analysis

J-W Measurement Company Canonsburg, PA

Good

		724-749-5180		
Customer	: 2259 - WILLIAMS		Date Sampled	: 07/02/2013
Station ID	: 52033-50		Date Analyzed	: 07/11/2013
Cylinder ID	: W1100		Effective Date	: 08/01/2013
Producer	: 009402-TRANS ENERGY INC			: 864
Lease	GROVES MASTER			: 75
Area	: 500 - OHIO VALLEY MID		-	: Spot
State	: WV			: JR
	COMPONENT	MOL%	GPM@14.73(PSIA)	
	Methane	81.0242		
	Ethane	12.9568		
	Propane	3.5869	0.991	
	Iso-Butane	0.4831	0.159	
	Normal-Butane	0.7906	0.250	
	Iso-Pentane	0.2243	0.082	
	Normal-Pentane	0.1722	0.063	
	Nitrogen	0.3474	0.000	
	Carbon-Dioxide	0.1322	0.000	
	Oxygen	0.0000		
	BENZENE	0.0012		
	TOLUENE	0.0030		
	ETHYLBENZENE	0.0000		
	M-XYLENE/P-XYLENE	0.0000		
	2,2-Dimethylbutane	0.0092		
	2,3-Dimethylbutane/CycloC5	0.0126		
	2-methylpentane	0.0516		
	3-methylpentane Normal-Hexane	0.0317		
	2,2-Dimethylpentane	0.0010		
	Methylcyclopentane	0.0082		
	3,3-Dimethylpentane	0.0002		
	CYCLOHEXANE	0.0040		
	2-Methylhexane	0.0216		
	2,3-Dimethylpentane	0.0042		
	3-Methylhexane	0.0143	0.007	
	1,t3-Dimethylcyclopentane	0.0002	0.000	
	1,t2-DMCYC5 / 2,2,4-TMC5	0.0003	0.000	
	N-Heptane	0.0173	0.008	
	METHYLCYCLOHEXANE	0.0112	0.005	
	2,5-Dimethylhexane	0.0012	0.001	
	2,3-Dimethylhexane	0.0013	0.001	
	2-Methylheptane	0.0049		
	4-Methylheptane	0.0019		
	3-Methylheptane	0.0036		
	1,t4-Dimethylcyclohexane	0.0016		
	N-OCTANE / 1,T2-DMCYC6	0.0051		
	1,t3-DMCYC6/1,C4- DMCYC6/1,C2,C3-TMCYC5	0.0011	0.000	
	2,4,4 TMC6	0.0000	0.000	
	2,6-Dimethylheptane / 1,C2- DMCYC6	0.0009	0.000	
	Ethylcyclohexane	0.0005	0.000	
	M-XYLENE	0.0029		
	P-XYLENE	0.0016		
	O-XYLENE	0.0002		
	NONANE	0.0021	0.001	
	N-DECANE	0.0016	0.001	
	N-UNDECANE	0.0013	0.001	
	TOTAL	100.0000	5.140	

Williams Ohio Valley Midstream LLC FORT BEELER GAS PROCESSING PLANT Class II Administrative Update (R13-2826J) Attachment H - MSDS and Lab Analysis

Waste Gas Composition - New Process Flare

	http://www.chemindustry.com/apps/chemica										
Compound	CAS	Formula	Molecular Weight (MW)	Mole % (M% = V%)	Mole Fraction (M%/Sum- M%)	Weighted Sum (MW*MF)	Weight % (WS/Sum-WS)	lb/MMscf (WS/UGC#)			
Nitrogen	7727-37-9	N2	28.013	0.4861	0.004861	0.1362	0.6442	358.88			
Hydrogen Sulfide	2148-87-8	H2S	34.086								
Carbon Dioxide	124-38-9	CO2	44.010	0.1873	0.001873	0.0824	0.3900	217.24			
Methane*	75-82-8	CH4	16.042	74.6090	0.746108	11.9694	56.6200	31,541.43			
Ethane*	74-84-0	C2H6	30.069	16.9236	0.169241	5.0889	24.0725	13,410.13			
Propane**	74-98-6	C3H8	44.096	5.5268	0.055270	2.4372	11.5287	6,422.31			
i-Butane**	75-28-5	C4H10	58.122	0.5253	0.005253	0.3053	1.4443	804.59			
n-Butane**	106-97-8	C4H10	58.122	1.1696	0.011697	0.6798	3.2159	1,791.48			
Cyclopentane**	287-92-3	C5H10	70.100								
i-Pentane**	78-78-4	C5H12	72.149	0.1926	0.001926	0.1390	0.6574	366.21			
n-Pentane**	109-66-0	C5H12	72.149	0.2113	0.002114	0.1525	0.7213	401.84			
Cyclohexane**	110-82-7	C6H12	84.159	0.0100	0.000100	0.0084	0.0400	22.26			
Other Hexanes**	varies	C6H14	86.175	0.0672	0.000672	0.0579	0.2740	152.66			
Methylcyclohexane**	varies	C7H14	98.186	0.0056	0.000056	0.0055	0.0258	14.38			
Heptanes**	varies	C7H16	100.202	0.0257	0.000257	0.0258	0.1219	67.93			
C8+ Heavies**	varies	C8+	114.229	0.0078	0.000078	0.0089	0.0421	23.47			
n-Hexane***	110-54-3	C6H14	86.175	0.0472	0.000472	0.0407	0.1925	107.24			
Benzene***	71-43-2	C6H6	78.112	0.0007	0.000007	0.0006	0.0027	1.50			
Toluene***	108-88-3	C7H8	92.138	0.0012	0.000012	0.0011	0.0051	2.85			
Ethylbenzene***	100-41-4	C8H10	106.165	0.0001	0.000001	0.0001	0.0005	0.28			
Xylenes***	1330-20-7	C8H10	106.165	0.0001	0.000001	0.0001	0.0005	0.28			
2,2,4-Trimethylpentane***	540-84-1	C8H18	114.229	0.0001	0.000001	0.0001	0.0005	0.30			

Totals:	100.00	1.0000	21.1399	100.00	55,707.25
THC:	99.32	0.9933	20.9213	98.97	55,131.13
Total VOC:	7.79	0.0779	3.8630	18.27	10,179.58
Total HAP:	0.049	0.00049	0.0427	0.202	112.45

* = Hydrocarbon (HC)
 ** = also Volatile Organic Compound (EPA-VOC)
 #WGC (Universal Gas Constant) = 379.482 scf/lb-mol @ 60 °F and 14.696 psia.
 *** = also Hazardous Air Pollutant (EPA-HAP)
 Pound "X"/scf = M% of "X" * MW of "X" / UGC

To be conservative, the fol	lowing "worst-o	case" values w	ere assumed:			20% Safety Margin			
Compound	CAS	Formula	Represe	entative Gas A	Analysis	Assumed "Worst-Case" Parameters			
Compound	CAS	Fornula	Mole %	Wgt %	lb/MMscf	Mole %	Wgt %	lb/MMscf	
Carbon Dioxide	124-38-9	CO2	0.187	0.390	217.24	0.225	0.468	260.69	
Methane	75-82-8	CH4	74.609	56.620	31,541.43	89.531	67.944	37,849.71	
Ethane	74-84-0	C2H6	16.924	24.072	13,410.13				
VOC (Propane)	74-98-6	C3H8	7.742	18.071	10,179.58	9.290	21.686	12,215.49	
n-Hexane	110-54-3	C6H14	0.0472	0.1925	107.24	0.0567	0.2310	128.68	
Benzene	71-43-2	C6H6	0.0007	0.0027	1.50	0.0009	0.0032	1.80	
Toluene	108-88-3	C7H8	0.0012	0.0051	2.85	0.0014	0.0061	3.43	
Ethylbenzene	100-41-4	C8H10	0.0001	0.0005	0.28	0.2000	0.9000	0.34	
Xylenes	1330-20-7	C8H10	0.0001	0.0005	0.28	0.2000	0.9000	0.34	
2,2,4-Trimethylpentane	540-84-1	C8H18	0.0001	0.0005	0.30	0.0001	0.0006	0.36	
Total HAP:	Various	C6 thru C8	0.0494	0.2019	112.45	0.4591	2.0410	134.94	

Williams Ohio Valley Midstream LLC FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Btu Analysis - New Process Flare

Based on Streams Disposed in New Flare Stack

		Molecular	Component	Pilot + P	urge Gas	Process + N	laintenance	Combine	d Stream
Component	Formula	Weight	Btu/scf	Flow: 1,	065 scfh	Flow: 9,	209 scfh	Flow: 10	,274 scfh
		(MW)	(HHV)	Mole %	Btu/scf	Mole %	Btu/scf	Mole %	Btu/scf
Nitrogen	N2	28.013	0.0	0.4052		0.4955		0.4861	
Hydrogen Sulfide	H2S	34.086	652.0						
Carbon Dioxide	CO2	44.010	0.0	0.1754		0.1887		0.1873	
Methane*	CH4	16.042	1,010.4	84.6798	855.643	73.4443	742.114	74.6090	753.882
Ethane*	C2H6	30.069	1,798.6	14.0913	253.441	17.2512	310.272	16.9236	304.381
Propane**	C3H8	44.096	2,572.1	0.6174	15.880	6.0946	156.760	5.5268	142.156
i-Butane**	C4H10	58.122	3,333.8	0.0100	0.333	0.5849	19.499	0.5253	17.513
n-Butane**	C4H10	58.122	3,345.3	0.0112	0.376	1.3036	43.610	1.1696	39.128
Cyclopentane**	C5H10	70.100	3,902.3						
i-Pentane**	C5H12	72.149	4,110.0	0.0007	0.030	0.2148	8.828	0.1926	7.916
n-Pentane**	C5H12	72.149	4,118.8	0.0008	0.032	0.2357	9.708	0.2113	8.705
Cyclohexane**	C6H12	84.159	4,644.1			0.0112	0.520	0.0100	0.466
Other Hexanes**	C6H14	86.175	4,893.1			0.0750	3.670	0.0672	3.289
Methylcyclohexane**	C7H14	98.186	5,404.1			0.0062	0.335	0.0056	0.300
Heptanes**	C7H16	100.202	5,666.7			0.0287	1.626	0.0257	1.458
C8+ Heavies**	C8+	114.2 est	6,440.2 est			0.0087	0.560	0.0078	0.502
n-Hexane***	C6H14	86.175	4,893.1	0.0076	0.374	0.0518	2.535	0.0472	2.311
Benzene***	C6H6	78.112	3,989.4	0.0001	0.004	0.0008	0.032	0.0007	0.029
Toluene***	C7H8	92.138	4,748.6	0.0001	0.005	0.0013	0.062	0.0012	0.056
Ethylbenzene***	C8H10	106.165	5,522.7	0.0001	0.006	0.0001	0.006	0.0001	0.006
Xylenes***	C8H10	106.165	5,509.0	0.0001	0.006	0.0001	0.006	0.0001	0.006
,2,4-Trimethylpentane*	C8H18	114.229	6,924.0	0.0001	0.007	0.0001	0.007	0.0001	0.007
				100.00		100.00		100.00	

Btu/scf (HHV):

1,126.14

1.20

1,300.15

11.97

1,282.11

Total:

13.17

MMBtu/hr (HHV):

FORT BEELER GAS PROCESSING PLANT Btu Analysis - New Process Flare

ATTACHMENT I

Emission Units Table

"25. Fill out the Emission Units Table and provide it as Attachment I."

• Emissions Unit Table

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment I

EMISSION UNITS TABLE

(Include all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status.)

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
		Equipment Authorized by R13-2826J - I	Fort Beeler (Gas Processing Plan	t	
1E	CE-01	CAT G342NA Compressor Engine	2010/	225 bhp	Existing	01-NSCR
2E	CE-02	CAT G398TA Compressor Engine	2011/	625 bhp	Existing	02-NSCR
3E	CE-03	CAT G3612LE Compressor Engine	2010/	3,550 bhp	Existing	01-OxCat
4E	CE-04	CAT G3612LE Compressor Engine	2010/	3,550 bhp	Existing	02-OxCat
5E	CE-05	CAT G3612LE Compressor Engine	2010/	3,550 bhp	Existing	03-OxCat
6E	SSM	Start/Stop/Maintenance	2010/2017	na	Modified	Part-FL-02
7E	RPC	Rod Packing/Crankcase	2010/	na	Existing	na
8E	GE-01	Olympian G70LG EmGen Engine	2014/	118 bhp	Existing	na
9E	H-01	TXP1 Hot Oil Heater	2010/	10.00 MMBtu/hr	Existing	na
10E	H-02	TXP1 Regen Gas Heater	2010/	4.74 MMBtu/hr	Existing	na
11E	H-03	TXP2 Regen Gas Heater	2011/	6.60 MMBtu/hr	Existing	na
12E	H-04	TXP3 Regen Gas Heater	2012/	6.60 MMBtu/hr	Existing	na
13E	H-05	TXP2 Heat Medium Heater	2011/	21.22 MMBtu/hr	Existing	na
14E	H-06	TXP3 Heat Medium Heater	2012/	21.22 MMBtu/hr	Existing	na
18E	FL-02	New Process Flare (MODIFIED)	2014/2017	90.00 MMscf/yr	Modified	na
20E	TLO	Truck Load-Out - Prod H2O/Condensate	2010/	600,000 bbl/yr	na	na
21E	FUG	Process Piping Fugitives (MODIFIED)	2010/2017	24,550 Units	Modified	na
22E	T-03	Produced Water Tank (9913)	2011/	400 bbl	na	na
23E	T-04	Produced Water Tank (9914)	2011/	400 bbl	na	na
		Please see Attachement L - Storage Tank	CData Sheet (1	Г-02, T-05 thru T-25)		
		Equipment Authorized by R13-32124	A - Groves D	ehydration Station		
15E	DH-01	Groves Dehydrator - Flash Tank/Still Vent*	2011/	5.00 MMscfd	na	na
16E	BLR-01	Groves Dehydrator - Reboiler*	2011/	0.20 MMBtu/hr	na	na

¹ For Emission Units (or <u>Sources</u>) use the following numbering system: 1S, 2S, 3S, ... or other appropriate designation.

² For Emission Points use the following numbering system: 1E, 2E, 3E, ... or other appropriate designation.

³ New, modification, removal, etc.

⁴ For Control Devices use the following numbering system: 1C, 2C, 3C, ... or other appropriate designation.

ATTACHMENT J

Emission Points Data Summary Sheet

"26. Fill out the **Emission Points Data Summary Sheet** (Table 1 and Table 2) and provide it as Attachment J."

• Table 1 – Emissions Data

- Recovery Compressor Engine 01 225 bhp CAT G342NA (CE-01 (1E))
- Recovery Compressor Engine 02 625 bhp CAT G398TA (CE-02 (2E))
- TXP1 Compressor Engines 03 thru 05 3,550 bhp CAT G3612LE (CE-03 (3E) thru CE-05 (5E)) (EACH)
- Startup/Shutdown/Maintenance (Including Blowdown) (SSM (6E))
- Compressor Rod Packing and Engine Crankcase (RPC (7E))
- Emergency Generator Engine 118 bhp Olympian G70LG (GE-01 (8E))
- o TXP1 Hot Oil Heater 10.0 MMBtu/hr (H-01 (9E))
- TXP1 Regenerator Gas Heater 4.74 MMBtu/hr (H-02 (10E))
- TXP2 and TXP3 Regenerator Gas Heater 6.60 MMBtu/hr (H-03 (11E) and H-04 (12E)) (EACH)
- TXP2 and TXP3 Heat Medium Heater 21.22 MMBtu/hr (H-05 (13E) and H-06 (14E)) (EACH)
- o Groves Dehydrator Flash Tank and Still Vent 5.0 MMscfd (DH-01 (15E))
- o Groves Dehydrator Reboiler 0.20 MMBtu/hr (BLR-01 (16E))
- New Process Flare (FL-02 (18E)) (MODIFIED)
- Truck Load-Out (TLO (20E))
- Process Piping Fugitive Emissions (FUG (21E)) (MODIFIED)
- Produced H2O Storage Tank Emissions (T-03 (22E) and T-04 (23E)) (TOTAL)
- FACILITY-WIDE SUMMARY (Including Fugitives (FUG (1F))
- o Table 1 Notes
- Table 2 Release Parameter Data

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment J - Emission Points Data Summary Sheet

Recovery Compressor Engine 01 - 225 bhp CAT G342NA (CE-01/1E)

							Table 1:	Emissions Data							
Emission Point ID No. (Must match Emission Units Table &	Emission Point Type ¹	Vented This <i>(Must</i> <i>Emissic</i>	on Unit Through Point <i>match</i> on Units Plot Plan)	(Must Emissio	Illution Device match on Units Plot Plan)	Vent T Emissi (Che. process	on Unit <i>mical</i>	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Pote Uncor Emis	imum ential htrolled sions ⁴	Pote Cont	mum ential rolled sions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmv or mg/m ³)
Plot Plan)		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)		U ,
								NOx	6.40	28.03	0.05	0.22	Gas	Vendor	
		Deeres		.				CO	6.80	29.77	0.99	4.35	Gas	Vendor	
			ery Compro p CAT G34					VOC	0.37	1.63	0.28	1.22	Gas	Vendor	
					- (//			SOx	1.2E-03	0.01	1.2E-03	0.01	Gas	AP-42	
								PM10/2.5	0.04	0.18	0.04	0.18	Liq/Solid	AP-42	
								Acetaldehyde	0.01	0.03	0.01	0.03	Gas		
								Acrolein	0.01	0.02	0.01	0.02	Gas		
								Benzene	3.4E-03	0.01	3.4E-03	0.01	Gas	AP-42	
								Ethylbenzene	5.3E-05	2.3E-04	5.3E-05	2.3E-04	Gas		
								Formaldehyde	0.12	0.54	0.03	0.13	Gas	Vendor	
								n-Hexane					Gas	AP-42	
CE-01	Upward	CE-01	CE-01	NSCR				Methanol	0.01	0.03	0.01	0.03	Gas		
(1E)	Vertical	(1E)	(1E)	-01	NSCR	С	8,760	Toluene	1.2E-03	0.01	1.2E-03	0.01	Gas	AP-42	
								2,2,4-TMP					Gas		
								Xylenes	4.1E-04	1.8E-03	4.1E-04	1.8E-03	Gas		
								Other HAP	3.8E-04	0.00	3.8E-04	0.00	Gas	AP-42	
								Total HAP	0.15	0.65	0.05	0.23	Gas	Sum	
								CO2	249	1,093	249	1,093	Gas	40CFR98	
								CH4	0.89	3.91	0.89	3.91	Gas	Vendor	
								N2O	4.7E-04	2.0E-03	4.7E-04	2.0E-03	Gas	40CFR98	
								CO2e	272	1,191	272	1,191	Gas	Wgt Sum	

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment J - Emission Points Data Summary Sheet

Recovery Compressor Engine 02 - 625 bhp CAT G398TA (CE-02/2E)

							Table 1:	Emissions Data							
Emission Point ID No. (Must match Emission Units Table &	Emission Point Type ¹	Vented This <i>(Must</i> <i>Emissio</i>	on Unit Through Point <i>match</i> on Units Plot Plan)	(Must Emissio	Illution Device match on Units Plot Plan)	Vent T Emissi (Che. process	on Unit <i>mical</i>	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Pote Uncor	mum ential htrolled sions ⁴	Pote Cont	mum ential rolled sions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmv or mg/m ³)
Plot Plan)		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)		- /
								NOx	13.50	59.14	0.69	3.02	Gas	Vendor	
		Deeres		.				CO	14.74	64.58	0.69	3.04	Gas	Vendor	
			ery Compro p CAT G39					VOC	0.41	1.81	0.09	0.39	Gas	Vendor	
				(- (//			SOx	3.4E-03	0.01	3.4E-03	0.01	Gas	AP-42	
								PM10/2.5	0.11	0.49	0.11	0.49	Liq/Solid	AP-42	
								Acetaldehyde	0.02	0.07	3.2E-03	0.01	Gas		
								Acrolein	0.02	0.07	3.1E-03	0.01	Gas		
								Benzene	0.01	0.04	1.8E-03	0.01	Gas	AP-42	
								Ethylbenzene	1.4E-04	6.3E-04	2.9E-05	1.3E-04	Gas		
								Formaldehyde	0.14	0.60	0.03	0.14	Gas	Vendor	
								n-Hexane					Gas	AP-42	
CE-02	Upward	CE-02	CE-02	NSCR				Methanol	0.02	0.08	3.6E-03	0.02	Gas		
(2E)	Vertical	(2E)	(2E)	-02	NSCR	С	8,760	Toluene	3.2E-03	0.01	6.5E-04	0.00	Gas	AP-42	
								2,2,4-TMP					Gas		
								Xylenes	1.1E-03	5.0E-03	2.3E-04	9.9E-04	Gas		
								Other HAP	0.00	0.00	2.1E-04	9.1E-04	Gas	AP-42	
								Total HAP	0.20	0.88	0.05	0.20	Gas	Sum	
								CO2	684	2,995	684	2,995	Gas	40CFR98	
								CH4 N2O	1.10 1.3E-03	4.83 0.01	1.10	4.83 0.01	Gas Gas	Vendor 40CFR98	
								CO2e	1.3E-03 712	3,117	1.3E-03 712	3.117	Gas Gas	40CFR98 Wgt Sum	
								COZE	112	3,117	112	3,117	Gas	wyi Sum	

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment J - Emission Points Data Summary Sheet

TXP1 Compressor Engines 03 thru 05 - 3,550 bhp CAT G3612LE (CE-03/3E thru CE-05/5E)

Emission Point ID No. (Must match Emission Units Table & Plot Plan)	sion Unit d Through s Point st match sion Units a Plot Plan) Source	Contro (Must Emissio	ollution I Device match on Units Plot Plan) Device	Emissi (Che process	ime for on Unit <i>mical</i> es only)	All Regulated Pollutants - Chemical		mum ential	Maxi Pote		Emission Form or		Emission
ID No.	compressor	ID No.	Device			Name/CAS ³ (Speciate VOCs	Emiss			rolled sions ⁵	Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmv or mg/m ³)
	•		Туре	Short Term ²	Max (hr/yr)	& HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)		
	•					NOx	3.91	17.14	3.91	17.14	Gas	Vendor	
	•	Engines 02	thru 05			СО	21.52	94.27	2.15	9.43	Gas	Vendor	
	612LE (CE-0	•) (EACH)		VOC	7.12	31.19	2.85	12.48	Gas	Vendor	
	`	()	. ,	,, ,		SOx	1.5E-02	0.07	1.5E-02	0.07	Gas	AP-42	
						PM10/2.5	0.26	1.14	0.26	1.14	Liq/Solid	AP-42	
						Acetaldehyde	0.22	0.96	1.1E-01	0.48	Gas		
						Acrolein	0.13	0.59	6.7E-02	0.29	Gas		
						Benzene	0.01	0.05	5.7E-03	0.03	Gas	AP-42	
						Ethylbenzene	1.0E-03	4.5E-03	5.2E-04	2.3E-03	Gas		
						Formaldehyde	2.03	8.91	0.31	1.34	Gas	Vendor	
		OxCat -03				n-Hexane	2.9E-02	0.13	1.4E-02	0.06	Gas	AP-42	
	E CE-03/3E E CE-04/4E	OxCat	Oxidation	с	8760	Methanol	0.07	0.29	3.3E-02	0.14	Gas		
	E CE-04/4E	-04	Catalyst	C	(Each)	Toluene	1.1E-02 6.5E-03	0.05	5.3E-03 3.3E-03	0.02 1.4E-02	Gas Gas	AP-42	
		OxCat -05				2,2,4-TMP Xylenes	4.8E-03	2.1E-02	2.4E-03	1.4E-02	Gas		
						Other HAP	4.8 ∟ -03	0.04	2.4E-03 4.2E-03	1.1E-02	Gas	AP-42	
						Total HAP	2.52	11.06	0.55	2.41	Gas	Sum	
						CO2	3,451	15,117	3,451	15,117	Gas	Vendor	
						CH4	42.81	187.51	42.81	187.51	Gas	Vendor	
						N2O	5.8E-03	0.03	5.8E-03	0.03	Gas	40CFR98	
	1		1	1			1						·

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment J - Emission Points Data Summary Sheet

Startup/Shutdown/Maintenance (Including Blowdown) (SSM/6E)

							Table 1:	Emissions Data							
Emission Point ID No. (Must match Emission Units Table &	Emission Point Type ¹	Vented This <i>(Must</i> Emissio	ion Unit Through Point <i>match</i> on Units Plot Plan)	Control (Must Emissio	ollution Device match on Units Plot Plan)		on Unit mical	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Pote Uncoi	imum ential ntrolled ssions ⁴	Pote Cont	mum ential rolled sions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmv or mg/m ³)
Plot Plan)		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)		5 /
								NOx					Gas		
		Chart	un/Chutdau					CO					Gas		
			up/Shutdov ding Blowd					VOC		9.57		8.24	Gas	Various	
		`		- ,((- //			SOx					Gas		
								PM10/2.5					Liq/Solid		
								Acetaldehyde					Gas		
								Acrolein					Gas		
								Benzene		2.1E-03		1.6E-03	Gas	Various	
								Ethylbenzene		2.1E-03		1.6E-03	Gas	Various	
								Formaldehyde					Gas		
								n-Hexane		0.16		0.13	Gas	Various	
SSM		SSM	SSM	FL-02	Flare			Methanol					Gas		
(6E)	na	(6E)	(6E)	(18E)	(Partial)	I	na	Toluene		2.1E-03		1.6E-03	Gas	Various	
								2,2,4-TMP		2.1E-03		1.6E-03	Gas		
								Xylenes		2.1E-03		1.6E-03	Gas	Various	
								Other HAP					Gas		
								Total HAP CO2		0.17		0.13	Gas Gas		
								CO2 CH4		 225		 164	Gas	 Various	
								N2O					Gas	various	
								CO2e		5,617		4.094	Gas		
L								0026		3,017		4,034	043	0	

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment J - Emission Points Data Summary Sheet

Compressor Rod Packing and Engine Crankcase (RPC/7E)

							Table 1:	Emissions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Vented This <i>(Must</i> <i>Emissio</i>	on Unit Through Point <i>match</i> on Units Plot Plan)	(Must Emissio	Device		on Unit <i>mical</i>	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Pote Uncor	imum ential htrolled sions ⁴	Pote Cont	mum ential rolled sions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmv or mg/m ³)
Pill Pian)		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)		- /
								NOx					Gas		
		Com		ad Deeking	and			CO					Gas		
				od Packing ase (RPC (VOC	2.81	12.29	2.81	12.29	Gas	vendor	
								SOx					Gas		
								PM10/2.5					Liq/Solid		
								Acetaldehyde					Gas		
								Acrolein					Gas		
								Benzene	0.01	0.04	0.01	0.04	Gas	mass bal	
								Ethylbenzene	0.01	0.04	0.01	0.04	Gas	mass bal	
								Formaldehyde	0.05	0.22	0.05	0.22	Gas		
								n-Hexane	0.01	0.04	0.01	0.04	Gas	mass bal	`
RPC		RPC	RPC					Methanol					Gas		
(7E)	na	(7E)	(7E)	na	na	С	8,760	Toluene	0.01	0.04	0.01	0.04	Gas	mass bal	
								2,2,4-TMP	0.01	0.04	0.01	0.04	Gas	mass bal	
								Xylenes	0.01	0.04	0.01	0.04	Gas	mass bal	
								Other HAP					Gas		
								Total HAP	0.10	0.44	0.10	0.44	Gas		
								CO2	85	371	85	371	Gas		
								CH4	41.19	180	41	180	Gas	mass bal	
								N2O					Gas		
								CO2e	1,115	4,882	1,115	4,882	Gas		

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment J - Emission Points Data Summary Sheet

Emergency Generator Engine - 118 bhp Olympian G70LG (GE-01/8E)

							Table 1:	Emissions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Vented This <i>(Must</i> <i>Emissio</i>	ion Unit Through Point <i>match</i> on Units Plot Plan)	Air Po Control (Must Emissic Table & F	Device match on Units	Vent T Emissi (Che. process	on Unit <i>mical</i>	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Pote Uncor	mum ential htrolled sions ⁴	Pote Cont	mum ential rolled sions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmv or mg/m ³)
Piot Pian)		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)		- /
								NOx	0.93	0.23	0.93	0.23	Gas	Vendor	
		E			•			CO	29.10	7.28	29.10	7.28	Gas	Vendor	
			0 7	erator Eng				VOC	0.38	0.10	0.38	0.10	Gas	Vendor	
			•.jp.a		•• (•=))			SOx	8.9E-04	2.2E-04	8.9E-04	2.2E-04	Gas	AP-42	
								PM10/2.5	0.03	0.01	0.03	0.01	Liq/Solid	AP-42	
								Acetaldehyde	4.2E-03	1.1E-03	4.2E-03	1.1E-03	Gas		
								Acrolein	4.0E-03	9.9E-04	4.0E-03	9.9E-04	Gas		
								Benzene	2.4E-03	6.0E-04	2.4E-03	6.0E-04	Gas	AP-42	
								Ethylbenzene	3.7E-05	9.4E-06	3.7E-05	9.4E-06	Gas		
								Formaldehyde	0.03	0.01	0.03	0.01	Gas	Vendor	
								n-Hexane					Gas	AP-42	
GE-01	Upward	GE-01	GE-01					Methanol	4.6E-03	1.2E-03	4.6E-03	1.2E-03	Gas		
(8E)	Vertical	(8E)	(8E)	na	na	I	500	Toluene	8.4E-04	2.1E-04	8.4E-04	2.1E-04	Gas	AP-42	
								2,2,4-TMP					Gas		
								Xylenes	2.9E-04	7.4E-05	2.9E-04	7.4E-05	Gas		
								Other HAP	2.7E-04	6.8E-05	2.7E-04	6.8E-05	Gas	AP-42	
								Total HAP	0.05	0.01	0.05	0.01	Gas	Sum	
								CO2	136	34	136	34	Gas	40CFR98	
								CH4	1.26	0.31	1.26	0.31	Gas	Vendor	
								N2O	1.3E-03	3.3E-04	1.3E-03	3.3E-04	Gas	40CFR98	
								CO2e	168	42	168	42	Gas	Wgt Sum	

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment J - Emission Points Data Summary Sheet

TXP1 Hot Oil Heater - 10.0 MMBtu/hr (H-01/9E)

							Table 1:	Emissions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Vented This <i>(Must</i> <i>Emissio</i>	on Unit Through Point <i>match</i> on Units Plot Plan)	(Must Emissio	Illution Device match on Units Plot Plan)	Vent T Emissi (Che. process	on Unit mical	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Pote Uncor Emis	mum ential htrolled sions ⁴	Pote Cont	mum ential rolled sions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmv or mg/m ³)
Piol Pian)		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)		- /
								NOx	1.09	4.76	1.09	4.76	Gas	AP-42	
				Sil Llagtor				CO	0.91	4.00	0.91	4.00	Gas	AP-42	
			TXP1 Hot ().0 MMBtu/		E))			VOC	0.06	0.26	0.06	0.26	Gas	AP-42	
					-//			SOx	0.01	0.03	0.01	0.03	Gas	AP-42	
								PM10/2.5	0.08	0.36	0.08	0.36	Liq/Solid	AP-42	
								Acetaldehyde					Gas		
								Acrolein					Gas		
								Benzene	2.3E-05	1.0E-04	2.3E-05	1.0E-04	Gas	AP-42	
								Ethylbenzene					Gas		
								Formaldehyde	8.2E-04	3.6E-03	8.2E-04	3.6E-03	Gas	AP-42	
								n-Hexane	0.02	0.09	0.02	0.09	Gas	AP-42	
H-01	Upward	H-01	H-01					Methanol					Gas		
(9E)	Vertical	(9E)	(9E)	na	na	С	8,760	Toluene	3.7E-05	1.6E-04	3.7E-05	1.6E-04	Gas	AP-42	
								2,2,4-TMP					Gas		
								Xylenes					Gas		
								Other HAP	1.3E-05	5.7E-05	1.3E-05	5.7E-05	Gas	AP-42	
								Total HAP	0.02	0.09	0.02	0.09	Gas	Sum	
								CO2 CH4	1,297 0.02	5,681 0.11	1,297 0.02	5,681 0.11	Gas Gas	40CFR98 40CFR98	
								N2O	0.02 2.4E-03	0.11	0.02 2.4E-03	0.11	Gas Gas	40CFR98	
								CO2e	2.4E-03	5,686	2.4E-03	5.686	Gas	Wgt Sum	
								0026	1,290	3,000	1,290	5,000	Gas	wyi Sulli	

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment J - Emission Points Data Summary Sheet

TXP1 Regenerator Gas Heater - 4.74 MMBtu/hr (H-02/10E)

							Table 1:	Emissions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Vented This <i>(Must</i> <i>Emissio</i>	on Unit Through Point <i>match</i> on Units Plot Plan)	Air Po Control <i>(Must</i> Emissic Table & F	Device match on Units	Vent T Emissi (Che. process	on Unit <i>mical</i>	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Pote Uncor	imum ential htrolled sions ⁴			Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmv or mg/m ³)
Piol Pian)		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)		
								NOx	0.52	2.26	0.52	2.26	Gas	AP-42	
		TVD4	Devenere		-4			CO	0.43	1.90	0.43	1.90	Gas	AP-42	
			l Regenera /4 MMBtu/h					VOC	0.03	0.12	0.03	0.12	Gas	AP-42	
				\ - \ -	<i>''</i>	-		SOx	3.1E-03	0.01	3.1E-03	0.01	Gas	AP-42	
								PM10/2.5	0.04	0.17	0.04	0.17	Liq/Solid	AP-42	
								Acetaldehyde					Gas		
								Acrolein					Gas		
								Benzene	1.1E-05	4.7E-05	1.1E-05	4.7E-05	Gas	AP-42	
								Ethylbenzene					Gas		
								Formaldehyde	3.9E-04	1.7E-03	3.9E-04	1.7E-03	Gas	AP-42	
								n-Hexane	0.01	0.04	0.01	0.04	Gas	AP-42	
H-02	Upward	H-02	H-02					Methanol					Gas		
(10E)	Vertical	(10E)	(10E)	na	na	С	8,760	Toluene	1.8E-05	7.7E-05	1.8E-05	7.7E-05	Gas	AP-42	
								2,2,4-TMP					Gas		
								Xylenes					Gas		
								Other HAP	6.2E-06	2.7E-05	6.2E-06	2.7E-05	Gas	AP-42	
								Total HAP	0.01	0.04	0.01	0.04	Gas	Sum	
								CO2	615	2,693	615	2,693	Gas	40CFR98	
								CH4	0.01	0.05	0.01	0.05	Gas	40CFR98	
								N2O	1.2E-03	0.01	1.2E-03	0.01	Gas	40CFR98	
								CO2e	615	2,695	615	2,695	Gas	Wgt Sum	

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment J - Emission Points Data Summary Sheet

TXP2 and TXP3 Regenerator Gas Heater - 6.60 MMBtu/hr (H-03/11E and H-04/12E)

							Table 1:	Emissions Data							
Emission Point ID No. (Must match Emission Units Table &	Emission Point Type ¹	Vented This <i>(Must</i> <i>Emissi</i> o	on Unit Through Point <i>match</i> on Units Plot Plan)	(Must Emissio	Illution Device match on Units Plot Plan)	Vent T Emissi (Che process	on Unit <i>mical</i>	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Pote Uncor Emis	imum ential htrolled sions ⁴	Pote Cont	mum ential rolled sions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmv or mg/m ³)
Plot Plan)		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)		0 /
								NOx	0.72	3.14	0.72	3.14	Gas	AP-42	
								CO	0.60	2.64	0.60	2.64	Gas	AP-42	
	6.60		-	enerator Ga		CH)		VOC	0.04	0.17	0.04	0.17	Gas	AP-42	
			(.,	()) (,		SOx	0.00	0.02	0.00	0.02	Gas	AP-42	
								PM10/2.5	0.05	0.24	0.05	0.24	Liq/Solid	AP-42	
								Acetaldehyde					Gas		
								Acrolein					Gas		
								Benzene	1.5E-05	6.6E-05	1.5E-05	6.6E-05	Gas	AP-42	
								Ethylbenzene					Gas		
								Formaldehyde	5.4E-04	2.4E-03	5.4E-04	2.4E-03	Gas	AP-42	
								n-Hexane	0.01	0.06	0.01	0.06	Gas	AP-42	
H-03 (11E)	Upward	H-03 (11E)	H-03 (11E)			_	8760	Methanol					Gas		
H-04 (12E)	Vertical	H-04	H-04	na	na	С	(Each)	Toluene	2.4E-05	1.1E-04	2.4E-05	1.1E-04	Gas	AP-42	
		(12E)	(12E)					2,2,4-TMP					Gas		
								Xylenes					Gas		
								Other HAP	8.6E-06	3.8E-05	8.6E-06	3.8E-05	Gas	AP-42	
								Total HAP	0.01	0.06	0.01	0.06	Gas	Sum	
								CO2	856	3,749	856	3,749	Gas	40CFR98	
								CH4	0.02	0.07	0.02	0.07	Gas	40CFR98	
								N2O	1.6E-03	0.01	1.6E-03	0.01	Gas	40CFR98	
L		_			_			CO2e	857	3,753	857	3,753	Gas	Wgt Sum	

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment J - Emission Points Data Summary Sheet

TXP2 and TXP3 Heat Medium Heater - 21.22 MMBtu/hr (H-05/13E and H-06/14E)

							Table 1:	Emissions Data							
Emission Point ID No. (Must match Emission Units Table &	Emission Point Type ¹	Vented This <i>(Must</i> Emissio	on Unit Through Point <i>match</i> on Units Plot Plan)		Device		on Unit <i>mical</i>	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Pote Uncor Emis	imum ential htrolled sions ⁴	Pote Cont	mum ential rolled sions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmv or mg/m ³)
Plot Plan)		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	` & HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)		5 /
								NOx	2.31	10.10	2.31	10.10	Gas	AP-42	
		TYPO		- 4 M	Heaten			CO	1.94	8.49	1.94	8.49	Gas	AP-42	
	21.2		id TXP3 He r (H-05 (13I			CH)		VOC	0.13	0.56	0.13	0.56	Gas	AP-42	
				_,	(,		SOx	0.01	0.06	0.01	0.06	Gas	AP-42	
								PM10/2.5	0.18	0.77	0.18	0.77	Liq/Solid	AP-42	
								Acetaldehyde					Gas		
								Acrolein					Gas		
								Benzene	4.8E-05	2.1E-04	4.8E-05	2.1E-04	Gas	AP-42	
								Ethylbenzene					Gas		
								Formaldehyde	1.7E-03	7.6E-03	1.7E-03	7.6E-03	Gas	AP-42	
								n-Hexane	0.04	0.18	0.04	0.18	Gas	AP-42	
H-03 (13E)	Upward	H-03 (13E)	H-03 (13E)				8760	Methanol					Gas		
H-04 (14E)	Vertical	H-04	H-04	na	na	С	(Each)	Toluene	7.8E-05	3.4E-04	7.8E-05	3.4E-04	Gas	AP-42	
		(14E)	(14E)					2,2,4-TMP					Gas		
								Xylenes					Gas		
								Other HAP	2.8E-05	1.2E-04	2.8E-05	1.2E-04	Gas	AP-42	
								Total HAP	0.04	0.19	0.04	0.19	Gas	Sum	
								CO2	2,752	12,054	2,752	12,054	Gas	40CFR98	
								CH4	0.05	0.23	0.05	0.23	Gas	40CFR98	
								N2O	5.2E-03	0.02	5.2E-03	0.02	Gas	40CFR98	
								CO2e	2,755	12,067	2,755	12,067	Gas	Wgt Sum	

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment J - Emission Points Data Summary Sheet Groves Dehydrator Flash Tank and Still Vent - 5.0 MMscfd (DH-01/15E)

Authorized by R13-3212A - Groves Dehydration Station

							Table 1:	Emissions Data							
Emission Point ID No. (Must match Emission Units Table &	Emission Point Type ¹	Vented This <i>(Must</i> <i>Emissio</i>	on Unit Through Point match on Units Plot Plan)	Control (Must Emissio	Illution Device match on Units Plot Plan)	Vent T Emissi (Che. process	on Unit mical	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Pote Uncor	imum ential htrolled sions⁴	Pote Cont	imum ential rolled sions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmv or mg/m ³)
Plot Plan)		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)		3. 7
								NOx					Gas		
				- h. T l	-l 04:11 \/4			CO					Gas		
	G	-	ydrator Flas 0 MMscfd (-		VOC	5.77	25.28	3.88	17.00	Gas	GLYCALC	
			•					SOx					Gas		
								PM10/2.5					Liq/Solid		
								Acetaldehyde					Gas		
								Acrolein					Gas		
								Benzene	0.08	0.34	0.07	0.31	Gas	GLYCALC	
								Ethylbenzene					Gas		
								Formaldehyde					Gas		
								n-Hexane	0.11	0.50	0.07	0.30	Gas	GLYCALC	
	Upward	DH-01	DH-01					Methanol					Gas		
DH-01 (15E)	Vertical	(15E)	(15E)	na	na	С	8,760	Toluene	0.32	1.41	0.31	1.34	Gas	GLYCALC	
								2,2,4-TMP					Gas		
								Xylenes	1.00	4.37	0.98	4.27	Gas	GLYCALC	
								Other HAP					Gas		
								Total HAP	1.51	6.62	1.42	6.22	Gas	Sum	
								CO2					Gas		
								CH4	10.19	44.63	5.14	22.50	Gas	GLYCALC	
								N2O					Gas		
								CO2e	255	1,116	128	562	Gas	Wgt Sum	

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment J - Emission Points Data Summary Sheet

Groves Dehydrator Reboiler - 0.20 MMBtu/hr (BLR-01/16E)

Authorized by R13-3212A - Groves Dehydration Station

							Table 1:	Emissions Data							
Emission Point ID No. (Must match Emission Units Table &	Emission Point Type ¹	Vented This <i>(Must</i> <i>Emissic</i>	ion Unit Through Point <i>match</i> on Units Plot Plan)	(Must Emissio	Device			All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Pote Uncor	mum ential htrolled sions ⁴	Pote Cont	mum ential rolled sions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmv or mg/m ³)
Plot Plan)		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)		0 /
								NOx	0.02	0.10	0.02	0.10	Gas	AP-42	
		Cree	vee Debud	atar Dahai	la			CO	0.02	0.08	0.02	0.08	Gas	AP-42	
			ves Dehydr MMBtu/hr					VOC	1.2E-03	0.01	1.2E-03	0.01	Gas	AP-42	
				((-	//			SOx	1.3E-04	5.7E-04	1.3E-04	5.7E-04	Gas	AP-42	
								PM10/2.5	1.7E-03	0.01	1.7E-03	0.01	Liq/Solid	AP-42	
								Acetaldehyde					Gas		
								Acrolein					Gas		
								Benzene	4.6E-07	2.0E-06	4.6E-07	2.0E-06	Gas	AP-42	
								Ethylbenzene					Gas		
								Formaldehyde	1.6E-05	7.1E-05	1.6E-05	7.1E-05	Gas	AP-42	
								n-Hexane	3.9E-04	1.7E-03	3.9E-04	1.7E-03	Gas	AP-42	
BLR-01	Upward	BLR-01	BLR-01					Methanol					Gas		
(16E)	Vertical	(16E)	(16E)	na	na	С	8,760	Toluene	7.4E-07	3.2E-06	7.4E-07	3.2E-06	Gas	AP-42	
								2,2,4-TMP					Gas		
								Xylenes					Gas		
								Other HAP	2.6E-07	1.1E-06	2.6E-07	1.1E-06	Gas	AP-42	
								Total HAP	4.1E-04	1.8E-03	4.1E-04	1.8E-03	Gas	Sum	
								CO2	25.94	113.61	25.94	113.61	Gas	40CFR98	
								CH4	4.9E-04	2.1E-03	4.9E-04	2.1E-03	Gas	40CFR98	
								N2O	4.9E-05	2.1E-04	4.9E-05	2.1E-04	Gas	40CFR98	
								CO2e	26	114	25.97	114	Gas	Wgt Sum	

Continued ...

WVDEP-DAQ Revision 2/11

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment J - Emission Points Data Summary Sheet

New Process Flare (FL-02/18E) (MODIFIED)

							Table 1:	Emissions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Vented This <i>(Must</i> <i>Emissic</i>	ion Unit Through Point <i>match</i> on Units Plot Plan)	Control (Must Emissic	ollution Device match on Units Plot Plan)	Vent T Emissi (Che process	on Unit <i>mical</i>	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Pote Uncor	imum ential htrolled sions ⁴	Pote Cont	mum ential rolled sions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmv or mg/m ³)
Pill Pian)		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)		- /
								NOx			45.10	5.69	Gas	AP-42	
								СО			142.61	17.99	Gas	AP-42	
	١	lew Proces	ss Flare (FL	02 (18E)) ()		VOC	4405.75	555.77	88.11	11.12	Gas	Mass Bal	
								SOx			0.27	3.4E-02	Gas	AP-42	
								PM10/2.5			3.43	0.43	Liq/Solid	AP-42	
								Acetaldehyde					Gas		
								Acrolein					Gas		
								Benzene	0.64	0.08	0.01	1.6E-03	Gas	EE	
								Ethylbenzene	0.12	0.02	2.4E-03	3.0E-04	Gas	EE	
								Formaldehyde			0.03	4.3E-03	Gas	AP-42	
								n-Hexane	45.91	5.79	0.92	0.12	Gas	EE	
FL-02	Upward	FL-02	FL-02					Methanol					Gas		
(18E)	Vertical	(18E)	(18E)	na	na	С	8,760	Toluene	1.22	0.15	0.02	3.1E-03	Gas	EE	
								2,2,4-TMP					Gas	Mass Bal	
								Xylenes	0.12	0.02	2.4E-03	3.0E-04	Gas	EE	
								Other HAP	5.4E-04	6.8E-05	5.4E-04	6.8E-05	Gas	AP-42	
								Total HAP	48.01	6.06	0.99	0.13	Gas	Sum	
								CO2			56,681	7,150	Gas	40CFR98	
								CH4	13,502	1,703.24	270.04	34.06	Gas	40CFR98	
								N2O			3.5E-01	0.04	Gas	40CFR98	
								CO2e	337,551	42,581	63,538	8,015	Gas	Wgt Sum	

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment J - Emission Points Data Summary Sheet

Truck Load-Out (TLO/20E)

							Table 1:	Emissions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Vented This <i>(Must</i> Emissio	ion Unit Through Point <i>match</i> on Units Plot Plan)	Control (Must Emissio	Illution Device match on Units Plot Plan)	Vent T Emissi (Che. process	on Unit mical	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Pote Uncor	imum ential htrolled sions ⁴	Pote Cont	imum ential rolled sions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmv or mg/m ³)
Plot Plan)		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)		U ,
								NOx					Gas		
								CO					Gas		
		Tr	uck Load-C	Out (TLO/20	E)			VOC		1.96		1.96	Gas	AP-42	
				-	-	-		SOx					Gas		
								PM10/2.5					Liq/Solid		
								Acetaldehyde					Gas		
								Acrolein					Gas		
								Benzene		0.10		0.10	Gas	Mass Bal	
								Ethylbenzene		0.10		0.10	Gas	Mass Bal	
								Formaldehyde					Gas		
								n-Hexane		0.10		0.10	Gas	Mass Bal	
TLO	Upward	TLO	TLO					Methanol					Gas		
(20E)	Vertical	(20E)	(20E)	na	na	I	na	Toluene		0.10		0.10	Gas	Mass Bal	
								2,2,4-TMP					Gas		
								Xylenes		0.10		0.10	Gas	Mass Bal	
								Other HAP					Gas		
								Total HAP		0.49		0.49	Gas	Sum	
								CO2					Gas		
								CH4					Gas		
								N2O					Gas		
								CO2e					Gas		

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment J - Emission Points Data Summary Sheet

Process Piping Fugitive Emissions (FUG/21E) (MODIFIED)

							Table 1:	Emissions Data							
Emission Point ID No. (Must match Emission Units Table &	Emission Point Type ¹	Vented This <i>(Must</i> Emissio	on Unit Through Point <i>match</i> on Units Plot Plan)	Control (Must Emissic	Illution Device match on Units Plot Plan)	Vent T Emissi (Che. process	on Unit mical	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Pote Uncor	imum ential htrolled sions ⁴	Pote Cont	mum ential rolled sions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmv or mg/m ³)
Plot Plan)		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)		Ĵ,
								NOx					Gas		
								CO					Gas		
	Process	s Piping Fu	gitive Emis	sions (FUC	G/21E) (MO	DIFIED)		VOC	34.57	151.42	18.48	80.93	Gas	EPA	
		-		-	-	-		SOx					Gas		
								PM10/2.5					Liq/Solid		
								Acetaldehyde					Gas		
								Acrolein					Gas		
								Benzene	0.02	0.09	0.01	0.05	Gas	EE	
								Ethylbenzene	0.02	0.09	0.01	0.05	Gas	EE	
								Formaldehyde					Gas		
								n-Hexane	0.95	4.15	0.53	2.30	Gas	EE	
FUG		FUG	FUG					Methanol					Gas		
(21E)	na	(21E)	(21E)	na	na	С	8,760	Toluene	0.02	0.09	0.01	0.05	Gas	EE	
								2,2,4-TMP					Gas		
								Xylenes	0.02	0.09	0.01	0.05	Gas	EE	
								Other HAP					Gas		
								Total HAP	1.03	4.52	0.57	2.51	Gas	Sum	
								CO2	0.21	0.93	0.10	0.44	Gas	EE	
								CH4	36.67	160.60	17.74	77.70	Gas	EE	
								N2O					Gas		
								CO2e	917	4,016	444	1,943	Gas	Wgt Sum	

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment J - Emission Points Data Summary Sheet

Produced Water Storage Tank Emissions (T-03/22E and T-04/23E)

							Table 1:	Emissions Data							
Emission Point ID No. (Must match Emission Units Table &	Emission Point Type ¹	Vented This <i>(Must</i> <i>Emissic</i>	on Unit Through Point <i>match</i> on Units Plot Plan)	(Must Emissio	Illution Device match on Units Plot Plan)			All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Pote Uncor	imum ential htrolled sions ⁴	Pote Cont	mum ential rolled sions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmv or mg/m ³)
Plot Plan)		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)		U ,
								NOx					Gas		
		Duradurated	1100 044					CO					Gas		
				ge Tank En 04 (23E)) (T				VOC	0.46	2.03	0.46	2.03	Gas	EPA	
		· · · · ·	,	- (- // (- /	-		SOx					Gas		
								PM10/2.5					Liq/Solid		
								Acetaldehyde					Gas		
								Acrolein					Gas		
								Benzene	0.02	0.10	0.02	0.10	Gas	Mass Bal	
								Ethylbenzene	0.02	0.10	0.02	0.10	Gas	Mass Bal	
								Formaldehyde					Gas		
T-03		T-03	T-03					n-Hexane	0.02	0.10	0.02	0.10	Gas	Mass Bal	
(22E)		(22E)	(22E)					Methanol					Gas		
and T-04	na	and T-04	and T-04	na	na	С	8,760	Toluene	0.02	0.10	0.02	0.10	Gas	Mass Bal	
(23E)		(23E)	(23E)					2,2,4-TMP					Gas		
								Xylenes	0.02	0.10	0.02	0.10	Gas	Mass Bal	
								Other HAP					Gas		
								Total HAP CO2	0.12	0.51	0.12	0.51	Gas	Sum	
								CO2 CH4					Gas Gas		
								N2O					Gas Gas		
								CO2e					Gas		
								0026				I	043		

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment J - Emission Points Data Summary Sheet

FACILITY-WIDE SUMMARY

						Table	1: Emissio	ons Data - Continu	ied						
Emission Point ID No. (Must match Emission Units Table &	Emission Point Type ¹	Vented This <i>(Must</i> <i>Emissio</i>	on Unit Through Point <i>match</i> on Units Plot Plan)	(Must Emissio	Device match			All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Maxi Pote Uncon Emiss	ential trolled	Pote Cont	imum ential rolled sions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmv or mg/m ³)
Plot Plan)		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)		
								NOx	40.24	172.43	66.18	94.18	Gas	Sum	
								CO	121.65	412.65	186.30	89.15	Gas	Sum	
		EA	CILITY-WI		DV			VOC - Point	4,437.74	705.87	104.98	93.61	Gas	Sum	
			iding Fugit					VOC - Fug	34.57	151.42	18.48	80.93	Gas	Sum	
		(())			VOC - Total	4,472	857.29	123.46	174.54	Gas	Sum	
				-				SOx	0.10	0.42	0.37	0.46	Gas	Sum	
								PM10/2.5	1.55	6.66	4.98	7.09	Solid/Gas	Sum	
								Acetaldehyde	0.68	2.96	0.34	1.47	Gas	Sum	
								Acrolein	0.43	1.85	0.21	0.92	Gas	Sum	
								Benzene	0.82	0.96	0.15	0.70	Gas	Sum	
								Ethylbenzene	0.18	0.36	0.05	0.30	Gas	Sum	
								Formaldehyde	6.45	28.14	1.10	4.54	Gas	Sum	
								n-Hexane	47.22	11.82	1.73	3.88	Gas	Sum	
								Methanol	0.22	0.96	0.11	0.47	Gas	Sum	
na	na	na	na	na	na	na	na	Toluene	1.63	2.05	0.39	1.71	Gas	Sum	
								2,2,4-TMP	0.03	0.12	0.02	0.08	Gas	Sum	
								Xylenes	1.19	4.79	1.03	4.60	Gas	Sum	
								Other HAP	0.03	0.12	0.01	0.06	Gas	Sum	
								Total HAP	59	54.14	5.15	18.74	Gas	Sum	
								CO2	20,662	89,939	77,344	97,088	Gas	Sum	
								CH4	13,722	2,886	466	1,051	Gas	Sum	
								N2O	0.04	0.16	0.39	0.20	Gas	Sum	
								CO2e	363,723	162,134	89,110	123,419	Gas	Sum	

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment J - Emission Points Data Summary Sheet

Table 1 Notes

Criteria Pollutants								
Pollutant	CAS							
NO2	10102-44-0							
CO	630-08-0							
VOC	varies							
Propane	74-98-6							
i-Butane	75-28-5							
n-Butane	106-97-8							
SO2	7446-09-5							
PM10/2.5	varies							
Lead	7439-92-1							
Ozone	10028-15-5							

Hazardous Air Pollutants (HAPs)							
Pollutant	CAS						
Acetaldehyde	75-07-0						
Acrolein	107-02-8						
Benzene	71-43-2						
Ethylbenzene	100-41-4						
Formadehyde	50-00-0						
n-Hexane	110-54-3						
Methanol	67-56-1						
Toluene	108-88-3						
2,2,4-TMP	540-84-1						
Xylenes	1330-20-7						

Greenhouse Ga	s (GHG) Pollutants
Pollutant	CAS
CO2	124-38-9
CH4	74-82-8
N2O	10024-97-2
CO2e	na

Table 1: Notes

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

1 Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

ST = stack test (give date of test);

- 2 Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).
- 3 List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS2, VOCs, H2S, Inorganics, Lead, Organics, O3, NO, NO2, SO2, SO3, all applicable Greenhouse Gases (including CO2 and methane), etc. DO NOT LIST H2, H2O, N2, O2, and Noble Gases.

4 Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

5 Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

6 Indicate method used to determine emission rate as follows:

MB = material balance;

EE = engineering estimate; O = other (specify).

7 Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m3) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO2, use units of ppmv (See 45CSR10).

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment J - Emission Points Data Summary Sheet

Table 2 - RELEASE PARAMETER DATA

Emission Unit ID	Emission Point ID	Inner Diameter (Ft)	Temper- ature (oF)	Flow Rate ¹ (acfm)	Ground Elevation (ft)	Stack Height ² (ft)	Northing (km)	Easting (km)
	E	Equipment Aut	horized by R1	3-2826J - Fort	Beeler Gas Pr	ocessing Plar	nt	
1E	CE-01	1.00	1,170	851	1,400	10	4,414.33	535.00
2E	CE-02	0.75	1,112	3,040	1,400	10	4,414.33	535.00
3E	CE-03	2.00	838	24,013	1,400	34	4,414.33	535.00
4E	CE-04	2.00	838	24,013	1,400	34	4,414.33	535.00
5E	CE-05	2.00	838	24,013	1,400	34	4,414.33	535.00
6E	SSM	na	100	na	1,400	4	4,414.33	535.00
7E	RPC	na	800	na	1,400	4	4,414.33	535.00
8E	GE-01	0.50	1,250	680	1,400	8	4,414.33	535.00
9E	H-01	1.00	310	8,100	1,400	16.6	4,414.33	535.00
10E	H-02	0.75	550	4,100	1,400	14.6	4,414.33	535.00
11E	H-03	0.75	550	4,100	1,400	16.5	4,414.33	535.00
12E	H-04	0.75	550	4,100	1,400	16.5	4,414.33	535.00
13E	H-05	1.25	255	8,600	1,400	17.9	4,414.33	535.00
14E	H-06	1.25	255	8,600	1,400	17.9	4,414.33	535.00
18E	FL-02	na	1,200	na	1,400	190	4,414.33	535.00
19E	T-01	0.50	100	na	1,400	10	4,414.33	535.00
20E	TLO	0.50	100	400	1,400	10	4,414.33	535.00
21E	FUG	na	100	na	1,400	4	4,414.33	535.00
22E	T-03	0.50	100	na	1,400	10	4,414.33	535.00
23E	T-04	0.50	100	na	1,400	10	4,414.33	535.00
		Equipment A	uthorized by I	R13-3212A - 0	Groves Dehydi	ration Statior		
15E	DH-01	0.50	212	3,500	1,400	10	4414.33	535.00
16E	BLR-01	0.60	120	500	1,400	10	4414.33	535.00

1 Give at operating conditions. Include inerts.

2 Release height of emissions above ground level.

ATTACHMENT K

Fugitive Emissions Data Summary Sheet

"27. Fill out the **Fugitive Emissions Data Summary Sheet** and provide it as Attachment K."

- Application Forms Checklist
- Fugitive Emissions Summary
- Leak Source Data Sheet

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment K - Fugitive Emissions

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

		APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS
1.)	Will there be I	haul road activities?
	□ Yes	☑ No
	□ If Yes, then	a complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.
2.)	Will there be \$	Storage Piles?
	□ Yes	☑ No
	□ If Yes, then	complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.
3.)	Will there be I	Liquid Loading/Unloading Operations?
	□ Yes	☑ No
	□ If Yes, then	complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.
4.)	Will there be e	emissions of air pollutants from Wastewater Treatment Evaporation?
	□ Yes	☑ No
	□ If Yes, then	complete the GENERAL EMISSIONS UNIT DATA SHEET.
		Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, ions, flanges, agitators, cooling towers, etc.)?
	⊠ Yes	□ No
	☑ If Yes, the	n complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT
	DATA SHE	ET.
6.)	Will there be	General Clean-up VOC Operations?
	□ Yes	☑ No
	□ If Yes, then	complete the GENERAL EMISSIONS UNIT DATA SHEET.
7.)	Will there be a	any other activities that generate fugitive emissions?
	□ Yes	☑ No
	□ If Yes, then	complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.
	If you answere	ed "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions Summary."

Williams Ohio Valley Midstream LLC **FORT BEELER GAS PROCESSING PLANT** Class II Administrative Update (R13-2826J) **Attachment K - Fugitive Emissions**

FUGITIVE EMISSIONS DATA SUMMARY SHEET - Continued

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions.

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants Chemical Name/CAS ¹		n Potential ed Emissions ²	Maximum Potential Controlled Emissions ³		Est. Method Used ⁴
	Name/CAS	lb/hr	ton/yr	lb/hr	ton/yr	Used
Paved Haul Roads	na					
Unpaved Haul Roads	na					
Storage Pile Emissions	na					
Loading/Unloading Operations	na					
Wastewater Treatment	na					
	VOC	34.57	151.42	18.48	80.93	AP-42
	Benzene	0.02	0.09	0.01	0.05	EE
	Ethylbenzene	0.02	0.09	0.01	0.05	EE
	Formaldehyde					
	n-Hexane	0.95	4.15	0.53	2.30	EE
	Toluene	0.02	0.09	0.01	0.05	EE
Equipment Leaks	2,2,4-TMP					
(FUG (21E)) (MODIFIED)	Xylenes	0.02	0.09	0.01	0.05	EE
	Other HAP					
	Total HAP	1.03	4.52	0.57	2.51	EE
	CO2	0.21	0.93	0.10	0.44	EE
	CH4	36.67	160.60	17.74	77.70	EE
	N2O					
	CO2e	916.85	4,015.82	444	1,943	Wgt Sum
General Clean-up VOC Emissions	na					
Other	na					

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂,

VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases, etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in min (e.g. 5 lb VOC/20 min batch).

³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in min (e.g. 5 lb VOC/20 min batch).

⁴ Indicate method used to determine emission rate as follows:

MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

Williams Ohio Valley Midstream LLC FORT BEELER GAS PROCESSING PLANT Class II Administrative Update (R13-2826J) Attachment K - Fugitive Emissions

DESCRIPTION OF FUGITIVE EMISSIONS

Soure Category	Pollutant	Number of Source Components ¹	Number of Components Monitored by Frequency ²	Average Time to Repair (Days) ³	Estimated Annual Emission Rate (lb/yr) ⁴				
Light Liquid VOC ^{6,7}									
Pumps⁵	Heavy Liquid VOC ⁸								
	Non-VOC ⁹								
	Gas VOC								
Valves ¹⁰	Light Liquid VOC								
Valves	Heavy Liquid VOC								
	Non-VOC								
	Gas VOC								
Safety Relief Valves ¹¹	Light Liquid VOC								
	Non-VOC								
	Gas VOC		FUG (21E)						
	Light Liquid VOC		Diagon Poferences						
	Non-VOC		Please Reference: Attachment J - Process Piping Fugitive Emissions						
	Gas VOC								
Sampling Connections ¹³	Light Liquid VOC	Allaci	Attachment K - Fugitive Emissions Summary Data Sheet						
	Non-VOC		and and Brasses Bi	-	ono				
Compressors	Gas VOC	All	achment N - Process Pi	ping rugitive Emissi	ons				
Compressors	Non-VOC								
	Gas VOC								
Flanges / Connectors	Light Liquid VOC								
	Non-VOC								
	Gas VOC								
Other*	Light Liquid VOC								
	Non-VOC								
				TOTAL (lb/yr)	161,867				

*Other components include compressor seals, relief valves, diaphragms, drains, meters, etc.

Williams Ohio Valley Midstream LLC FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment K DESCRIPTION OF FUGITIVE EMISSIONS - Continued

Notes for Leak Source Data Sheet

1. For VOC sources include components on streams and equipment that contain greater than 10% VOC, including feed streams, reaction/separation facilities, and product/by-product delivery lines. Do not include certain leakless equipment as defined below by category.

2. By monitoring frequency, give the number of sources routinely monitored for leaks, using a portable detection device that measures concentration in visual or soap-bubble leak detection ppm. Do not include monitoring by methods. "M/Q(M)/Q/SA/A/0" means the time period between inspections as follows: Monthly/Quarterly, with Monthly follow-up of repaired leakers/Quarterly/Semi-annual/Annually/other (specify time period)

If source category is not monitored, a single zero in the space will suffice. For example, if 50 gas-service valves are monitored quarterly, with monthly follow-up of those repaired, 75 are monitored semi-annually, and 50 are checked bimonthly (alternate months), with non checked at any other frequency, you would put in the category valves, gas service: 0/50/0/75/0/50 (bimonthly).

3. Give the average number of days, after a leak is discovered, that an attempt will be made to repair the leak.

- 4. Note the method used: MB material balance; EPA emission factors established by EPA (cite document used);
 - EE engineering estimate; 0 other method, such as in-house emission factor (specify).

5. Do not include in the equipment count seal-less pumps (canned motor or diaphragm) or those with enclosed venting to a control device. (Emissions from vented equipment should be included in the estimates given in the Emission Points Data Sheet.)

6. Volatile organic compounds (VOC) means the term as defined in 40 CFR. 51.100 (s).

7. A light liquid is defined as a fluid with vapor pressure equal to or greater than 0.04 psi (0.3 Kpa) at 20°C. For mixtures, if 20% w/w or more of the stream is composed of fluids with vapor pressures greater than 0.04 psi (0.3 Kpa) at 20°C, then the fluid is defined as a light liquid.

8. A heavy liquid is defined as a fluid with a vapor pressure less than 0.04 psi (0.3 Kpa) at 20°c. For mixtures, if less than 20% w/w of the stream is composed of fluids with vapor pressures greater than 0.04 psi (0.3 Kpa) at 20°C. then the fluid is defined as a heavy liquid.

9. LIST CO, H2S, mineral acids, NO, SO, etc. DO NOT LIST H, H2O, N, O, and Noble Gases.

10. Include all process valves whether in-line or on an open-ended line such as sample, drain and purge valves. Do not include safety-relief valves, or leakless valves such as check, diaphragm, and bellows seal valves.

11. Do not include a safety-relief valve if there is a rupture disk in place upstream of the valve, or if the valve vents to a control device.

12. Open-ended lines include purge, drain and vent lines. Do not include sampling connections, or lines sealed by plugs, caps, blinds or second valves.

13. Do not include closed-purge sampling connections.

ATTACHMENT L

Emissions Unit Data Sheet(s)

"28. Fill out the **Emissions Unit Data Sheet(s**) as Attachment L."

• NATURAL GAS COMPRESSOR/GENERATOR ENGINE DATA SHEETS

- o 225 bhp CAT G342NA (CE-01/1E) 4SRB Compressor Engine
- 625 bhp CAT G398NA (CE-02/2E) 4SRB Compressor Engine
- o 3,550 bhp CAT G3612LE (CE-03/3E thru CE-05/5E) 4SLB Compressor Engines
- 118 bhp Olympian G70LG (GE-01/8E) 4SRB Emergency Generator Engine

• NATURAL GAS FIRED HEATERS/BOILER UNIT DATA SHEETS

- 10.0 MMBtu/hr TXP1 Hot Oil Heater (H-01/9E)
- o 4.74 MMBtu/hr TXP-1 Regen Gas Heater (H-02/10E)
- o 6.60 MMBtu/hr TXP-2 Regen Gas Heater (H-03/11E)
- o 6.60 MMBtu/hr TXP-3 Regen Gas Heater (H-04/12E)
- o 21.22 MMBtu/hr TXP-2 Heat Medium Heater (H-05/13E)
- o 21.22 MMBtu/hr TXP-3 Heat Medium Heater (H-06/14E)

• NATURAL GAS GLYCOL DEHYDRATION UNIT DATA SHEETS

- 5.0 MMscfd Glycol Dehydration Unit 01 (DH-01/15E and BLR-01/16E)
- 40 CFR Part 63; Subpart HH & HHH Registration Form

• TRUCK LOAD-OUT UNIT DATA SHEET

600,000 gal/yr Produced Water Load-Out (TLO/20E))

• STORAGE TANK UNIT DATA SHEETS

• 400 bbl Produced Water Storage Tanks (T-03/22E and T-04/23E)

Williams Ohio Valley Midstream LLC **FORT BEELER GAS PROCESSING PLANT** Class II Administrative Update (R13-2826J) **Attachment L - Emission Unit Data Sheet**

NATURAL GAS COMPRESSOR/GENERATOR ENGINE DATA SHEET

Source Identifi	CE-0)4/4E	CE-0)5/5E	GE	-01/	
Engine Manufa	cturer and Model	CAT G	3612LE	CAT G3612LE		Olympian G70LG	
Manufacturer's	3,550 / 1,000		3,550	3,550 / 1,000		118 / 1,800	
Source	Status ²	E	S	E	S	N	S
Date Installed/M	odified/Removed ³	201	0/	201	0/	201	5/
Manufactured/Re	construction Date ⁴	After 0	6/12/06	After 0	6/12/06	After 0	1/01/09
Certified Engine (40	CFR60 NSPS JJJJ) ⁵	N	lo	N	lo	N	lo
Engine, Fuel and	Combustion Data	LB	4S	LE	34S	RE	84S
	APCD Type ⁷	Ox	Cat	Ox	Cat	n	a
	Fuel Type ⁸	RG		R	G	R	G
	H ₂ S (gr/100 scf)	0	.2	0	.2	0.2	
	Operating bhp/rpm	3,550 / 1,000		3,550 / 1,000		118 / 1,800	
Engine, Fuel and Combustion Data	BSFC (Btu/bhp-hr)	6,6	629	6,629		7,650	
Compaction Data	Fuel (ft ³ /hr)	25,579		25,579		985	
	Fuel (MMft ³ /yr)	224.07		224.07		0.49	
	Operation (hrs/yr)	8,7	8,760		8,760		00
	PTE ¹⁰	lbs/hr	· · · · · · · · · · · · · · · · · · ·		tons/yr	lbs/hr	tons/yr
MD	NOx	3.91	17.14	3.91	17.14	0.93	0.23
MD	СО	2.15	9.43	2.15	9.43	29.10	7.28
MD	VOC	2.85	12.48	2.85	12.48	0.38	0.10
AP	SOx	0.02	0.07	0.02	0.07	8.9E-04	2.2E-04
AP	PM10/2.5	0.26	1.14	0.26	1.14	0.03	0.01
MD	НСНО	0.31	1.34	0.31	1.34	0.03	0.01
MD/AP	Total HAP	0.55	2.41	0.55	2.41	0.05	0.01
MD/40CFR98	CO2e	4,523	19,813	4,523	19,813	168	42

Williams Ohio Valley Midstream LLC **FORT BEELER GAS PROCESSING PLANT** Class II Administrative Update (R13-2826J) **Attachment L - Emission Unit Data Sheet**

NATURAL GAS COMPRESSOR/GENERATOR ENGINE DATA SHEET

Source Identifi	CE-0)4/4E	CE-0)5/5E	GE	-01/	
Engine Manufa	cturer and Model	CAT G	3612LE	CAT G3612LE		Olympian G70LG	
Manufacturer's	3,550 / 1,000		3,550	3,550 / 1,000		118 / 1,800	
Source	Status ²	E	S	E	S	N	S
Date Installed/M	odified/Removed ³	201	0/	201	0/	201	5/
Manufactured/Re	construction Date ⁴	After 0	6/12/06	After 0	6/12/06	After 0	1/01/09
Certified Engine (40	CFR60 NSPS JJJJ) ⁵	N	lo	N	lo	N	lo
Engine, Fuel and	Combustion Data	LB	4S	LE	34S	RE	84S
	APCD Type ⁷	Ox	Cat	Ox	Cat	n	a
	Fuel Type ⁸	RG		R	G	R	G
	H ₂ S (gr/100 scf)	0	.2	0	.2	0.2	
	Operating bhp/rpm	3,550 / 1,000		3,550 / 1,000		118 / 1,800	
Engine, Fuel and Combustion Data	BSFC (Btu/bhp-hr)	6,6	629	6,629		7,650	
Compaction Data	Fuel (ft ³ /hr)	25,579		25,579		985	
	Fuel (MMft ³ /yr)	224.07		224.07		0.49	
	Operation (hrs/yr)	8,7	8,760		8,760		00
	PTE ¹⁰	lbs/hr	· · · · · · · · · · · · · · · · · · ·		tons/yr	lbs/hr	tons/yr
MD	NOx	3.91	17.14	3.91	17.14	0.93	0.23
MD	СО	2.15	9.43	2.15	9.43	29.10	7.28
MD	VOC	2.85	12.48	2.85	12.48	0.38	0.10
AP	SOx	0.02	0.07	0.02	0.07	8.9E-04	2.2E-04
AP	PM10/2.5	0.26	1.14	0.26	1.14	0.03	0.01
MD	НСНО	0.31	1.34	0.31	1.34	0.03	0.01
MD/AP	Total HAP	0.55	2.41	0.55	2.41	0.05	0.01
MD/40CFR98	CO2e	4,523	19,813	4,523	19,813	168	42

NATURAL GAS COMPRESSOR/GENERATOR ENGINE DATA SHEET

Notes to NATURAL GAS COMPRESSOR/GENERATOR ENGINE DATA SHEET

1. Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. If more than three (3) engines exist, please use additional sheets.

- 2. Enter the Source Status using the following codes:
 - NS = Construction of New Source (installation)
 - ES = Existing Source
 - MS = Modification of Existing Source
 - RS = Removal of Source

3. Enter the date (or anticipated date) of the engine's installation (construction of source), modification or removal.

4. Enter the date that the engine was manufactured, modified or reconstructed.

5. Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart JJJJ. If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance according to 40CFR§60.4243a(2)(i) through (iii), as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

- 6. Enter the Engine Type designation(s) using the following codes:
 - LB2S = Lean Burn Two Stroke
 - RB4S = Rich Burn Four Stroke
 - LB4S = Lean Burn Four Stroke
- 7. Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:
 - A/F = Air/Fuel Ratio IR = Ignition Retard HEIS = High Energy Ignition System SIPC = Screw-in Precombustion Chambers PSC = Prestratified Charge LEC = Low Emission Combustion NSCR = Non-Selective Catalytic Reduction
 - SCR = Lean Burn & Selective Catalytic Reduction
- 8. Enter the Fuel Type using the following codes: PQ = Pipeline Quality Natural Gas RG = Raw Natural Gas

9. Enter the Potential Emissions Data Reference designation using the following codes. Attach all referenced data to this Compressor/Generator Data Sheet(s).

MD = Manufacturer's Data AP = AP-42 GR = GRI-HAPCalcTM OT = Other (please list)

10. Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the Emissions Summary Sheet.

Prepared For: Mr. Alan Kane

INFORMATION PROVIDED BY CATERPILLAR Engine: G342 NA HCR Horsepower: 225 RPM: 1200 Compression Ratio: 10.5:1 Exhaust Flow Rate: 851 ft³/min Exhaust Temperature: 1170 °F Reference: LEBQ9194 Fuel: Natural Gas

8760

Incontrolled Emissions Data

Annual Operating Hours:

		and the set
NO _x :	12.90	g/bhp-hr
CO:	13.70	g/bhp-hr
THC:	<mark>1.80</mark>	g/bhp-hr
NMHC:	N/A	g/bhp-hr
NMNEHC:	N/A	g/bhp-hr
HCHO:	N/A	g/bhp-hr
Oxygen:	0.50	%

POST CATALYST EMISSIONS

NO _x :	<0.1	g/bhp-hr
CO:	<2.0	g/bhp-hr
VOC:	<0.5	g/bhp-hr
HCHO:	<mark>>76%</mark>	reduction

CONTROL EQUIPMENT

Catalytic Converter

Model: Catalyst Type: Manufacturer: Element Size: Catalyst Elements: Housing Type: Catalyst Installation: Construction: Sample Ports: Inlet Connections: Outlet Connections: Configuration: Silencer: Silencer Grade: Insertion Loss:

EAS-1700T-0606F-22CEE NSCR, Precious group metals EMIT Technologies, Inc. 17" x 3.5" 2 2 Element Capacity Accessible Housing 10 gauge Carbon Steel 6 (0.5" NPT) 6" Flat Face Flange 6" Flat Face Flange End In / End Out Integrated Critical 20-25 dBA

Air Fuel Ratio Controller

Part Number:	
Manufacturer:	
Description:	

ENG-S-125-T EMIT Technologies, Inc. **EDGE NG Air Fuel** 4-Wire Narrowband **Digital Power Valve** O2 Sensor Wiring Harnesses (2) 25' Type K Digital Power Valve Size: 1.25" NPT

WARRANTY

EMIT Technologies, Inc. warrants that the goods supplied will be free from defects in workmanship by EMIT Technologies, Inc. for a period of one (1) year from date of shipment. EMIT Technologies, Inc. will not be responsible for any defects which result from improper use, neglect, failure to properly maintain or which are attributable to defects, errors or omissions in any drawings, specifications, plans or descriptions, whether written or oral, supplied to EMIT Technologies, Inc. by Buyer.

Catalyst performance will be guaranteed for a period of 1 year from installation, or 8760 operating hours, whichever comes first. The catalyst shall be operated with an automatic air/fuel ratio controller. The performance guarantee shall not cover the effects of continuous engine misfires (cylinder or ignition) exposing the catalyst to excessive exothermic reaction temperatures.

The exhaust temperature operating range at the converter inlet is 600°F minimum for oxidation catalyst and 750 °F for NSCR catalyst and 1250°F maximum.

If a high temperature shut down switch is not installed, thermal deactivation of catalyst at temperatures above 1300 °F is not covered.

The catalyst conversion efficiencies (% reduction) will be guaranteed for engine loads of 50 to 100 percent.

Engine lubrication oil shall contain less than 0.6% ash (by weight) with a maximum allowable specific oil consumption of 0.01 gal/bhp-hr. The maximum ash loading on the catalyst shall be limited to 350 g/m3. Phosphorous and zinc additives are limited to 0.03% (by weight).

The catalyst must not be exposed to the following know poisoning agents, including: iron, nickel, sodium, chromium, arsenic, zinc, lead, phosphorous, silicon, potassium, magnesium, copper, tin, and mercury. Total poison concentrations in the gas are limited to 0.3 ppm.

Jun 27, 2011

Joey Owens Exterran Energy Solutions LP 337 Industrial Dr Oak Hill, WV 25901

625 bhp CAT G398TA (4SRB@1,200 rpm) Compressor Engine w/ NSCR

Exterran QHSE and Operations Services 16666 Northchase Drive Houston, Texas 77060 U.S.A.

Main 281.836.7000 Fax 281.836.8161 www.exterran.com

Re: Engine Pedigree for Exterran Compressor Unit 70704, Engine Serial Number 73B01671

In order to better assist your company with any of its state and federal permitting needs, Exterran submits the following information in regards to the engine of the above-referenced compressor unit, which Exterran is currently utilizing to provide your company contract compression services. This letter should provide information necessary to answer questions pertaining to, but not limited to, the New Source Performance Standards (NSPS) for Stationary Spark Ignition Internal Combustion Engines, Subpart JJJJ. This information is current as of Jun 27, 2011.

Engine Make:	CATERPILLAR
Engine Model:	G398TAA
Engine Serial Number:	73B01671
Engine Type:	4 Stroke RB
Engine Category:	Existing
Engine Subcategory:	Non Certified
Engine NSPS Status*:	Exempt
Exemption Justification*:	Overhauls since 6/12/06 have not triggered recon./modif.
Engine Speed:	1200.00
OEM Rated HP:	625.00
Engine Manufacture Date:	Pre June 12, 2006
Customer:	N/A
Business Unit:	N/A
Exterran Unit Number:	70704
Customer Lease Name:	N/A

Please contact Kyle Poycker with any questions at or kyle.poycker@exterran.com.

* The "Engine NSPS Status" and "Exemption Justification" entries herein are based on Exterran's present knowledge of the engine in question and its reading of U.S. EPA's regulations and guidance pursuant to 40 C.F.R. Part 60, Subpart JJJJ. Any change in law or in the federal, state, or local interpretation of existing law could result in this engine being subject to additional or different legal requirements. These conclusions are Exterran's and are not offered as legal opinions or advice to your company. Additionally, any reconstruction or modification respecting this engine (as those terms are defined in the applicable regulations) could result in the applicability of Subpart JJJJ or other legal requirements to this engine and create legal compliance responsibilities for your company.

625 bhp CAT G398TA (4SRB@1,200 rpm) Compressor Engine w/ NSCR

ENGINE RATING NOX CO HC %02 A/FR Tstack EXH FLOW AIR FLOW BSFC										
	(hp/rpm)		(gram/hp-hr)			vol/vol	deg F	cfm	kg/hr	Btu/hp-hr
NA HCR	500/1200 stand/catalyst	12.7	13.7	2.0	0.5	9.5	1100	2251	1437	7800
NA HCR	412/1000 stand	18.3	0.8	1.2	2.0	10.5	1090	1895	1225	7460
	catalyst	11.2	12.1	1.7	0.5	9.5	1101	1838	1139	7669
A LCR	450/1200 stand/catalyst	11.4	11.5	0.8	0.5	9.5	1202	2435	1459	8803
A LCR	375/1000 stand	15.1	0.8	0.8	2.0	10.4	1000	1778	1220	8273
	catalyst	11.3	11.8	0.8	0.5	9.5	1032	1720	1145	8582
ALCH	625/1200 stand catalyst	20.5 <mark>9.8</mark>	0.8 10.7	0.8 <mark>0.8</mark>	2.0 0.5	10.5 9.5	1040 1112	3053 3043	2040 1929	8026 8387
ALCR	550/1000									
	stand catalyst	19.0 9.7	0.9 9.7	0.9 0.9	2.0 0.5	10.4 9.5	1004 1056	2558 2445	1750 1607	8011 8052
ALCR	700/1200 stand	18.3	0.8	1.1	2.0	_	1096	3107	1999	7936
AHCR	700/1200									
	stand catalyst	15.2 9.4	1.1 9.9	0.9 1.6	2.0 0.5	10.5 9.5	1103	3278 3144	2155 1968	7778 7850
TA LOR	610/1000 stand	16.8	0.9	1.2	2.0	-	984	2484	1723	7846
AHCR	610/1000									
	stand catalyst	14.9 8.9	0.8 9.6	1.1 1.8	2.0 0.5	10.5 9.5	1064	2775 3032	1825 1698	7587 7804
A HCR 32C OW EMIS	700/1200 stand	5.0	1.6	1.4	6.2	13.6	1010	4482	3100	7643
A HCR 32C OW EMIS	610/1000 stand	5.0	1.2	2.0	7.8	14.2	950	3841	2770	7529
A HCR 54C	625/1200 stand	5.0	1.5	1.3	6.0	13.6	992	4136	2890	7791

Prepared For:

Kyle Poycker EXTERRAN

Oxygen:

Y CATERPILLAR
G398 TA LCR
625
1200
7.0:1
3043 CFM
1112 °F
LEBQ9194
Natural Gas
8760
9.80 g/bhp-hr
10.70 g/bhp-hr
0.80 g/bhp-hr
N/A
N/A
N/A

0.50 %

<0.5 g/bhp-hr

<0.5 g/bhp-hr

<0.04 g/bhp-hr

>76% Reduction

POST CATALYST EMISSIONS

NOx:		
CO:		
VOC:		
HCHO:		

CONTROL EQUIPMENT Catalytic Converter

Model: Catalyst Type: Manufacturer: Element Size: Catalyst Elements: Housing Type: Catalyst Installation: Construction: Sample Ports: Inlet Connections: Outlet Connections: Outlet Connections: Silencer: Silencer: Silencer Grade: Insertion Loss:

EAS-2500T-0808F-21CEE NSCR, Precious group metals EMIT Technologies, Inc. Round 25 x 3.5 1 2 Element Capacity Accessible Housing 10 gauge Carbon Steel 6 (0.5" NPT) 8" Flat Face Flange 8" Flat Face Flange 8" Flat Face Flange End In / End Out Integrated Critical 20-25 dBA

Air Fuel Ratio Controller

Model: Manufacturer: Description:

ENG-D-125-TA EMIT Technologies, Inc.

EDGE NG Air Fuel Ratio Controller (2) 4-Wire Narrowband O2 Sensor (2) Digital Power Valve (2) O2 Sensor Weldment Armored Wiring Hamess (2) 25' Type K Thermocouple 1.25'' NPT

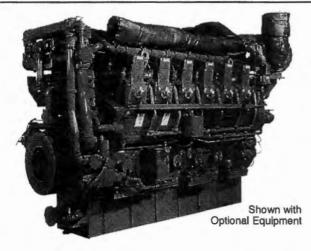
Digital Power Valve Size: 1.25" NPT

WARRANTY

EMIT Technologies, Inc. warrants that the goods supplied will be free from defects in workmanship by EMIT Technologies, Inc. for a period of one (1) year from date of shipment. EMIT Technologies, Inc. will not be responsible for any defects which result from improper use, neglect, failure to properly maintain or which are attributable to defects, errors or omissions in any drawings, specifications, plans or descriptions, whether written or oral, supplied to EMIT Technologies, Inc. by Buyer.

Catalyst performance will be guaranteed for a period of 1 year from installation, or 8760 operating hours, whichever comes first. The catalyst (Rich Burn Engines Only) shall be operated with an automatic airfluel ratio controlier. The performance guarantee shall not cover the effects of excessive ash masking due to operation at low load, improper engine maintenance, or inappropriate lubrication oil. The performance guarantee shall not cover the effects of continuous engine mistires (cylinder or ignition) exposing the catalyst to excessive exchemic reaction temperatures.

The exhaust temperature operating range at the converter inlet is 600°F minimum for oxidation catalyst and 750 °F for NSCR catalyst and 1250°F maximum.


If a high temperature shut down switch is not installed, thermal deactivation of catalyst at temperatures above 1300 °F is not covered.

The catalyst conversion efficiencies (% reduction) will be guaranteed for engine loads of 50 to 100 percent.

Engine lubrication oil shall contain less than 0.6% ash (by weight) with a maximum allowable specific oil consumption of 0.01 gal/bhp-hr. The maximum ash loading on the catalyst shall be limited to 350 g/m3. Phosphorous and zinc additives are limited to 0.03% (by weight).

The catalyst must not be exposed to the following know polsoning agents, including: iron, nickel, sodium, chromium, areanic, zinc, lead, phosphorous, silicon, potassium, magnesium, copper, tin, and mercury. Total polson concentrations in the gas are limited to 0.3 ppm.

CATERPILLAR

G3612 LE Gas Petroleum Engine

2647-2823 bkW (3550-3785 bhp) 1000 rpm

0.5 g/bhp-hr NOx or 0.7 g/bhp-hr NOx (NTE)

CAT® ENGINE SPECIFICATIONS

V-12, 4-Stroke-Cycle

Bore	300 mm (11.8 in.)
Stroke	
Displacement	
Aspiration Tur	
Digital Engine Management	
Governor and Protection E	lectronic (ADEM™ A3)
Combustion Low	Emission (Lean Burn)
Engine Weight	
net dry (approx)	
Power Density	8.9 kg/kW (14.6 lb/hp)
Power per Displacement	
Total Cooling System Capacity	
Jacket Water	
Aftercooler Circuit	
Lube Oil System (refill)	
Oil Change Interval	
Rotation (from flywheel end)	
Flywheel Teeth	255

FEATURES

Engine Design

- Proven reliability and durability
- Ability to burn a wide spectrum of gaseous fuels
- Robust diesel strength design prolongs life and lowers owning and operating costs
- Broad operating speed range

Emissions

Meets U.S. EPA Spark Ignited Stationary NSPS Emissions for 2010/11 with the use of an oxidation catalyst

Lean Burn Engine Technology

Lean-burn engines operate with large amounts of excess air. The excess air absorbs heat during combustion reducing the combustion temperature and pressure, greatly reducing levels of NOx. Lean-burn design also provides longer component life and excellent fuel consumption.

Ease of Operation

- High-strength pan and rails for excellent mounting and stability
- Side covers on block allow for inspection of internal components

Advanced Digital Engine Management

ADEM A3 engine management system integrates speed control, air/fuel ratio control, and ignition/detonation controls into a complete engine management system. ADEM A3 has improved: user interface, display system, shutdown controls, and system diagnostics.

Full Range of Attachments

Large variety of factory-installed engine attachments reduces packaging time.

Testing

Every engine is full-load tested to ensure proper engine performance.

Gas Engine Rating Pro

GERP is a PC-based program designed to provide site performance capabilities for Cat[®] natural gas engines for the gas compression industry. GERP provides engine data for your site's altitude, ambient temperature, fuel, engine coolant heat rejection, performance data, installation drawings, spec sheets, and pump curves.

Product Support Offered Through Global Cat Dealer Network

More than 2,200 dealer outlets

Cat factory-trained dealer technicians service every aspect of your petroleum engine

Cat parts and labor warranty

Preventive maintenance agreements available for repairbefore-failure options

S•O•S[™] program matches your oil and coolant samples against Caterpillar set standards to determine:

- Internal engine component condition
- Presence of unwanted fluids
- Presence of combustion by-products
- Site-specific oil change interval

Over 80 Years of Engine Manufacturing Experience Over 60 years of natural gas engine production

Ownership of these manufacturing processes enables Caterpillar to produce high quality, dependable products

- Cast engine blocks, heads, cylinder liners, and flywheel housings
- Machine critical components
- Assemble complete engine

Web Site

For all your petroleum power requirements, visit www.catoilandgas.cat.com.

CATERPILLAR

G3612 LE

3,550 bhp CAT G3612LE (4SLB@1,000 rpm) Compressor Engines w/ OxCat (3X) (Each)

2647-2823 bkW (3550-3785 bhp)

STANDARD EQUIPMENT

Air Inlet System

Air cleaner — standard duty Inlet air adapter

Control System

A3 control system — provides electronic governing integrated with air/fuel ratio control and individual cylinder ignition timing control

Cooling System

Jacket water pump Jacket water thermostats and housing Aftercooler pump Aftercooler water thermostats and housing Single-stage aftercooler

Exhaust System

Dry wrapped exhaust manifolds Vertical outlet adapter

Flywheel & Flywheel Housing SAE standard rotation

Fuel System

Gas admission valves — electronically controlled fuel supply pressure

Ignition System

A3 control system — senses individual cylinder detonation and controls individual cylinder timing

Instrumentation

LCD display panel — monitors engine parameters and displays diagnostic codes

Lube System

Crankcase breathers — top mounted Oil cooler Oil filter Oil pan drain valve

Mounting System

Engine mounting feet (six total)

Protection System

Electronic shutoff system with purge cycle Crankcase explosion relief valves Gas shutoff valve

Starting System Air starting system

General Paint - Cat

Paint — Cat yellow Vibration dampers

OPTIONAL EQUIPMENT

Air Inlet System

Heavy-duty air cleaner with precleaners Heavy-duty air cleaner with rain protection

Charging System Charging alternators

Control System

Custom control system software — available for nonstandard ratings, field programmable using flash memory

Cooling System

Expansion tank Flexible connections Jacket water heater

Exhaust System Flexible bellows adapters Exhaust expander Weld flanges

Fuel System Fuel filter Gas pressure regulator Flexible connection Low energy fuel system Corrosive gas fuel system

Ignition System CSA certification

Instrumentation

Remote data monitoring and speed control Compatible with Cat Electronic Technician (ET) and Data View Communication Device — PL1000T/E Display panel deletion is optional

Lube System

Air or electric motor-driven prelube Duplex oil filter LH or RH service Lube oil makeup system

Mounting System Mounting plates (set of six)

Power Take-Offs Front stub shafts

Starting System Air pressure reducing valve Natural gas starting system

General Engine barring device Damper guard CATERPILLAR

G3612 LE

3,550 bhp CAT G3612LE (4SLB@1,000 rpm) Compressor Engines w/ OxCat (3X) (Each)

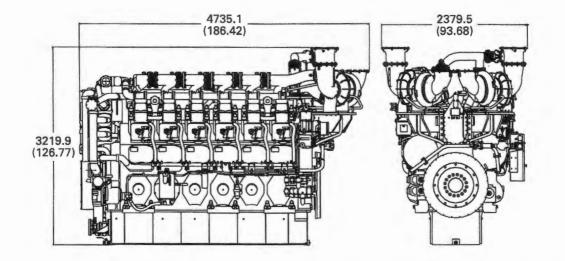
2647-2823 bkW (3550-3785 bhp)

TECHNICAL DATA

		DM5134-02	DM5309-05	DM5310-05	DM8607-01
Engine Power	nharana 20 ang ¹⁰ ang 10 ang 10 ang 10	and the second second			
@ 100% Load	bkW (bhp)	2733 (3665)	2823 (3785)	2647 (3550)	2647 (3550)
@ 75% Load	bkW (bhp)	2050 (2729)	2117 (2839)	1985 (2663)	1985 (2663)
Engine Speed	rpm	1000	1000	1000	1000
Max Altitude @ Rated Torque and 38°C (100°F) Speed Turndown @ Max	m (ft)	1219.2 (4000)	1219.2 (4000)	609.6 (2000)	304.8 (1000)
Altitude, Rated Torque, and 38°C (100°F)	%	21	20	23	23
SCAC Temperature	°C (°F)	43 (110)	32 (90)	55 (130)	55 (130)
Emissions*	·····				
NOx	g/bkW-h <mark>r (g/bhp-hr)</mark>	0.94 (0.7)	0.94 (0.7)	0.94 (0.7)	0.67 (0.5)
CO	g/bkW-hr (g/bhp-hr)	3.4 (2.5)	3.4 (2.5)	3.4 (2.5)	3.7 (2.75)
co,	g/bkW-hr (g/bhp-hr)	587 (438)	585 (436)	589 (439)	591 (441)
VOC**	g/bkW-hr (g/bhp-hr)	0.79 (0.59)	0.75 (0.56)	0.82 (0.61)	0.87 (0.65)
and the second	3				
Fuel Consumption*** @ 100% Load	M InkW by (Dtumbo by)	0.01 (0590)	0.00 (6561)	9.34 (6600)	0.29 (6620)
@ 75% Load	MJ/bkW-hr (Btu/bhp-hr) MJ/bkW-hr (Btu/bhp-hr)	9.31 (6580) 9.7 (6856)	9.28 (6561) 9.66 (6829)	9.74 (6883)	9.38 <mark>(6629)</mark> 9.78 (6914)
Heat Balance			·····		
Heat Rejection to					
Jacket Water					
@ 100% Load	bkW (Btu/min)	657 (37,360)	678 (38,565)	640 (36,401)	639 (36,360)
@ 75% Load	bkW (Btu/min)	576 (32,727)	594 (33,770)	546 (31,064)	548 (31,192)
Heat Rejection to					
Aftercooler					
@ 100% Load	bkW (Btu/min)	515 (29,299)	563 (32,045)	468 (26,661)	488 (27,783)
@ 75% Load	bkW (Btu/min)	281 (15,954)	310 (17,616)	252 (14,361)	264 (15,016)
Heat Rejection to					
Exhaust		a that is a second second			
@ 100% Load @ 75% Load	bkW (Btu/min) bkW (Btu/min)	2705 (153,813) 2152 (122,365)	2743 (156,017) 2184 (124,184)	2664 (151,486) 2132 (121,263)	2673 (152,035) 2141 (121,731)
Exhaust System					
Exhaust Gas Flow Rate					
@ 100% Load	N•m³/bkW-hr (cfm)	690.14 (24,372)	705.85 (24,927)	674.20 (23,809)	682.15 (24,090)
@ 75% Load	N•m³/bkW-hr (cfm)	543.32 (19,187)	553.65 (19,552)	532.67 (18,811)	538.95 (19,033)
Exhaust Stack					
Temperature					
@ 100% Load	°C (°F)	453.30 (848)	448 (838)	459 (858)	448 (838)
@ 75% Load	°C (°F)	472.20 (882)	464 (867)	480 (896)	469 (876)
Intake System					
Air Inlet Flow Rate	3 (1) (1) (1) (1)				
@ 100% Load	N•m³/bkW-hr (scfm)	265.78 (9386)	273.91 (9673)	257.66 (9099)	264.99 (9358)
C ===+ 1 1	NI-m3/hl/A/ hr /nofma)	000 0E /7100)	210 00 /7/16)	197.71 (6982)	203.34 (7181)
@ 75% Load	N•m³/bkW-hr (scfm)	203.85 (7199)	210.00 (7416)	197.71 (0902)	200.04 (/101)

*at 100% load and speed, all values are listed as not to exceed

**Volatile organic compounds as defined in U.S. EPA 40 CFR 60, subpart JJJJ



^{***}ISO 3046/1

2647-2823 bkW (3550-3785 bhp)

GAS PETROLEUM ENGINE

G3612 LE

	DIMENSIONS	
Length	mm (in)	4735.1 (186.42)
Width	mm (in)	2379.5 (93.68)
Height	mm (in)	3219.9 (126.77)
Shipping Weight	kg (lb)	25,084 (55,300)

CATERPILLAR

Note: General configuration not to be used for installation. See general dimension drawings for detail.

RATING DEFINITIONS AND CONDITIONS

Engine performance is obtained in accordance with SAE J1995, ISO3046/1, BS5514/1, and DIN6271/1 standards.

Transient response data is acquired from an engine/ generator combination at normal operating temperature and in accordance with ISO3046/1 standard ambient conditions. Also in accordance with SAE J1995, BS5514/1, and DIN6271/1 standard reference conditions. **Conditions:** Power for gas engines is based on fuel having an LHV of 33.74 kJ/L (905 Btu/cu ft) at 101 kPa (29.91 in. Hg) and 15° C (59° F). Fuel rate is based on a cubic meter at 100 kPa (29.61 in. Hg) and 15.6° C (60.1° F). Air flow is based on a cubic foot at 100 kPa (29.61 in. Hg) and 25° C (77° F). Exhaust flow is based on a cubic foot at 100 kPa (29.61 in g) and stack temperature.

Materials and specifications are subject to change without notice. The International System of Units (SI) is used in this publication. CAT, CATERPILLAR, their respective logos, S•O•S, ADEM, "Caterpillar Yellow" and the "Power Edge" trade dress, as well as corporate and product identity used herein, are trademarks of Caterpillar and may not be used without permission.

Performance Numbers: DM5134-02, DM5309-05, DM5310-05, DM8607-01 LEHW0041-01 (2-10) ©2010 Caterpillar All rights reserved.

Prepared For:

Kyle Poycker EXTERRAN 10497 Town & Country Way, Ste. 940 Houston, TX 77024 Office: 307.673.0883 | Direct: 307.675.5073 cparisi@emittechnologies.com

QUOTE: QUO-07132-H8J5

Expires: September 13, 2012

INFORMATION PROVIDED BY CATERPILLAR

Engine:	G3612
Horsepower:	3550
RPM:	1000
Compression Ratio:	9.0:1
Exhaust Flow Rate:	24013 CFM
Exhaust Temperature:	838 °F
Reference:	DM8607-02
Fuel:	Natural Gas
Annual Operating Hours:	8760

Uncontrolled Emissions

O2:

	g/bhp-hr	<u>Lb/Hr</u>	Tons/Year
NOx:	0.50	3.91	17.14
CO:	2.75	21.52	94.27
THC:	6.46	50.56	221.45
NMHC	1.82	14.25	62.42
NMNEHC:	0.65	5.05	22.13
HCHO:	0.26	2.06	9.02

12.80 %

POST CATALYST EMISSIONS

	% Reduction	<u>g/bhp-hr</u>	<u>Lb/Hr</u>	Tons/Year
NOx:	Unaffected by	Oxidation C	atalyst	
CO:	>90 %	<0.28	<2.15	<9.43
VOC:	>51 %	<0.32	<2.47	<10.80
HCHO:	>85 %	<0.04	<0.31	<1.37

CONTROL EQUIPMENT

Catalytic Converter

Model: Catalyst Type: Manufacturer: Element Size: Catalyst Elements: Housing Type: Catalyst Installation: Construction: Sample Ports: Inlet Connections: Outlet Connections: Configuration: Silencer: Silencer Grade: Insertion Loss:

ELH-5000Z-1820F-43CEE-36 (QTY 2 Housings)

Oxidation, Precious group metals EMIT Technologies, Inc. Rectangle 36 x 15 x 3.5 nts: 3 (6 Total) 4 Element Capacity ation: Accessible Housing 10 gauge Carbon Steel 9 (0.5" NPT) ns: 18" Flat Face Flange ions: 20" Flat Face Flange End In / End Out Integrated : Hospital 35-40 dBA

The information in this quotation, and any files transmitted with it, is confidential and may be legally privileged. It is intended only for the use of individual(s) within the company named above. If you are the intended recipient, be aware that your use of any confidential or personal information may be restricted by state and federal privacy laws

PRICING

ELH-5000Z-1820F-43CEE-36

Carbon Steel

Quantity 2

WARRANTY

EMIT Technologies, Inc. warrants that the goods supplied will be free from defects in workmanship by EMIT Technologies, Inc. for a period of one (1) year from date of shipment. EMIT Technologies, Inc. will not be responsible for any defects which result from improper use, neglect, failure to properly maintain or which are attributable to defects, errors or omissions in any drawings, specifications, plans or descriptions, whether written or oral, supplied to EMIT Technologies, Inc. by Buyer.

Catalyst performance using an EMIT Air/Fuel ratio controller is dependent upon properly defined set-points, variable with engine and fuel gas composition. Air/fuel ratio controller performance is guaranteed, but not limited, to fuel gas with a HHV content of 1400 BTU/SCF.

Catalyst performance will be guaranteed for a period of 1 year from installation, or 8760 operating hours, whichever comes first. The catalyst shall be operated with an automatic air/fuel ratio controller. The performance guarantee shall not cover the effects of excessive ash masking due to operation at low load, improper engine maintenance, or inappropriate lubrication oil. The performance guarantee shall not cover the effects of continuous engine misfires (cylinder or ignition) exposing the catalyst to excessive exothermic reaction temperatures. In most cases, excluding thermal deactivation, catalyst performance is redeemable by means of proper washing (refer to EMIT Catalyst/Silencer Housing Manual for element wash information, or contact a local EMIT Sales representative).

The exhaust temperature operating range at the converter inlet is a minimum of 600°F for oxidation catalyst and 750 °F for NSCR catalyst, and a maximum of 1250°F.

If a properly functioning, high temperature shut down switch is not installed, thermal deactivation of catalyst at sustained temperatures above 1250°F is not covered. If excessive exposure to over oxygenation of NSCR catalyst occurs due to improperly functioning or non-existent Air/Fuel ratio control, then deactivation of catalyst is not warranted.

The catalyst conversion efficiencies (% reduction) will be guaranteed for engine loads of 50 to 100 percent. Standard Oxidation Catalyst conversion efficiencies (% reduction) will be guaranteed for fuel gas containing less than 1.5% mole fraction of non-methane, nonethane hydrocarbons. Applications where fuel gas exceeds this level will require a Premium Oxidation Catalyst to maintain guaranteed VOC conversion efficiencies.

Engine lubrication oil shall contain less than 0.5 wt% Sulfated Ash with a maximum allowable specific oil consumption of 0.7 g/bhp-hr. The catalyst shall be limited to a maximum ash loading of 0.022 lb/ft3. Phosphorous and zinc additives are limited to 0.03 wt%. New or Reconstructed engines must operate for a minimum of 100 hours prior to catalyst installation, otherwise the warranty is void.

The catalyst must not be exposed to the following know poisoning agents, including: antimony, arsenic, chromium, copper, iron, lead, lithium, magnesium, mercury, nickel, phosphorous, potassium, silicon, sodium, sulfur, tin, and zinc. Total poison concentrations in the fuel gas must be limited to 0.25 ppm or less for catalyst to function properly.

Shipment - Promised shipping dates are approximate lead times from the point of manufacture and are not guaranteed. EMIT Technologies, Inc. will not be liable for any loss, damage or delay in manufacture or delivery resulting from any cause beyond its control including, but not limited to a period equal to the time lost by reason of that delay. All products will be crated as per best practice to prevent any damage during shipment. Unless otherwise specified, Buyer will pay for any special packing and shipping requirements. Acceptance of goods by common carrier constitutes delivery to Buyer. EMIT Technologies, Inc. shall not be responsible for goods damaged or lost in transit.

Terms: Credit is extended to purchaser for net 30 time period. If payment is not received in the net 30 timeframe, interest on the unpaid balance will accrue at a rate of 1.5% per month from the invoice date.

Order Cancellation Terms: Upon cancellation of an order once submittal of a Purchase Order has occurred, the customer will pay a 25% restocking fee for Catalyst Housings, Catalyst Elements, and Air/Fuel Ratio Controllers; 50% restocking fee for Cooler Top Solutions, Exhaust System Accessories, and other Custom Built Products; 100% of all associated shipping costs incurred by EMIT; 100% of all project expenses incurred by EMIT for Field Services.

Oct 23, 2012

Chip Fenske Exterran Energy Solutions 114 Cornerstone Drive Marietta, OH 45750 Exterran QHSE and Operations Services 16666 Northchase Drive Houston, Texas 77060 U.S.A.

Main 281.836.7000 Fax 281.836.8161 www.exterran.com

Re: Engine Pedigree for Exterran Compressor Unit 77434, Engine Serial Number 1YG00128

In order to better assist your company with any of its state and federal permitting needs, Exterran submits the following information in regards to the engine of the above-referenced compressor unit, which Exterran is currently utilizing to provide your company contract compression services. This letter should provide information necessary to answer questions pertaining to, but not limited to, the New Source Performance Standards (NSPS) for Stationary Spark Ignition Internal Combustion Engines, Subpart JJJJ. This information is current as of Oct 23, 2012.

Engine Make:	CATERPILLAR
Engine Model:	G3612LE
Engine Serial Number:	1YG00128
Engine Type:	4 Stroke LB
Engine Category:	Existing
Engine Subcategory:	Non Certified
Engine NSPS Status*:	Exempt
Exemption Justification*:	Overhauls since 6/12/06 have not triggered recon./modif.
Engine Speed:	1000.00
OEM Rated HP:	3550.00
Engine Manufacture Date:	Jan 09, 1998
Customer:	CAIMAN EASTERN MIDSTREAM LLC
Business Unit:	Northeast
Exterran Unit Number:	77434
Customer Lease Name:	FORT BEELER RECOMPRESSOR #1

Please contact Erin Badough with any questions at 281-836-7514 or erin.badough@exterran.com.

^{*} The "Engine NSPS Status" and "Exemption Justification" entries herein are based on Exterran's present knowledge of the engine in question and its reading of U.S. EPA's regulations and guidance pursuant to 40 C.F.R. Part 60, Subpart JJJJ. Any change in law or in the federal, state, or local interpretation of existing law could result in this engine being subject to additional or different legal requirements. These conclusions are Exterran's and are not offered as legal opinions or advice to your company. Additionally, any reconstruction or modification respecting this engine (as those terms are defined in the applicable regulations) could result in the applicability of Subpart JJJJ or other legal requirements to this engine and create legal compliance responsibilities for your company.

Oct 23, 2012

Chip Fenske Exterran Energy Solutions 114 Cornerstone Drive Marietta, OH 45750 Exterran QHSE and Operations Services 16666 Northchase Drive Houston, Texas 77060 U.S.A.

Main 281.836.7000 Fax 281.836.8161 www.exterran.com

Re: Engine Pedigree for Exterran Compressor Unit 77476, Engine Serial Number 1YG00256

In order to better assist your company with any of its state and federal permitting needs, Exterran submits the following information in regards to the engine of the above-referenced compressor unit, which Exterran is currently utilizing to provide your company contract compression services. This letter should provide information necessary to answer questions pertaining to, but not limited to, the New Source Performance Standards (NSPS) for Stationary Spark Ignition Internal Combustion Engines, Subpart JJJJ. This information is current as of Oct 23, 2012.

Engine Make:	CATERPILLAR
Engine Model:	G3612LE
Engine Serial Number:	1YG00256
Engine Type:	4 Stroke LB
Engine Category:	Existing
Engine Subcategory:	Non Certified
Engine NSPS Status*:	Exempt
Exemption Justification*:	No overhauls since 6/12/06
Engine Speed:	1000.00
OEM Rated HP:	3550.00
Engine Manufacture Date:	Apr 02, 2002
Customer:	CAIMAN EASTERN MIDSTREAM LLC
Business Unit:	Northeast
Exterran Unit Number:	77476
Customer Lease Name:	FORT BEELER RECOMPRESSOR #2

Please contact Erin Badough with any questions at 281-836-7514 or erin.badough@exterran.com.

^{*} The "Engine NSPS Status" and "Exemption Justification" entries herein are based on Exterran's present knowledge of the engine in question and its reading of U.S. EPA's regulations and guidance pursuant to 40 C.F.R. Part 60, Subpart JJJJ. Any change in law or in the federal, state, or local interpretation of existing law could result in this engine being subject to additional or different legal requirements. These conclusions are Exterran's and are not offered as legal opinions or advice to your company. Additionally, any reconstruction or modification respecting this engine (as those terms are defined in the applicable regulations) could result in the applicability of Subpart JJJJ or other legal requirements to this engine and create legal compliance responsibilities for your company.

Oct 23, 2012

Chip Fenske Exterran Energy Solutions 114 Cornerstone Drive Marietta, OH 45750 Exterran QHSE and Operations Services 16666 Northchase Drive Houston, Texas 77060 U.S.A.

Main 281.836.7000 Fax 281.836.8161 www.exterran.com

Re: Engine Pedigree for Exterran Compressor Unit 77757, Engine Serial Number BKE00301

In order to better assist your company with any of its state and federal permitting needs, Exterran submits the following information in regards to the engine of the above-referenced compressor unit, which Exterran is currently utilizing to provide your company contract compression services. This letter should provide information necessary to answer questions pertaining to, but not limited to, the New Source Performance Standards (NSPS) for Stationary Spark Ignition Internal Combustion Engines, Subpart JJJJ. This information is current as of Oct 23, 2012.

Engine Make:	CATERPILLAR
Engine Model:	G3612LE
Engine Serial Number:	BKE00301
Engine Type:	4 Stroke LB
Engine Category:	Existing
Engine Subcategory:	Non Certified
Engine NSPS Status*:	Exempt
Exemption Justification*:	No overhauls since 6/12/06
Engine Speed:	1000.00
OEM Rated HP:	3550.00
Engine Manufacture Date:	Jan 31, 2006
Customer:	CAIMAN EASTERN MIDSTREAM LLC
Business Unit:	Northeast
Exterran Unit Number:	77757
Customer Lease Name:	FORT BEELER RECOMPRESSOR #3

Please contact Erin Badough with any questions at 281-836-7514 or erin.badough@exterran.com.

^{*} The "Engine NSPS Status" and "Exemption Justification" entries herein are based on Exterran's present knowledge of the engine in question and its reading of U.S. EPA's regulations and guidance pursuant to 40 C.F.R. Part 60, Subpart JJJJ. Any change in law or in the federal, state, or local interpretation of existing law could result in this engine being subject to additional or different legal requirements. These conclusions are Exterran's and are not offered as legal opinions or advice to your company. Additionally, any reconstruction or modification respecting this engine (as those terms are defined in the applicable regulations) could result in the applicability of Subpart JJJJ or other legal requirements to this engine and create legal compliance responsibilities for your company.

OLYMPIAN™

2014 EPA SPARK-IGNITED EXHAUST EMISSIONS DATA

Effective since 2009, the EPA has implemented exhaust emissions regulations on stationary spark-ignited (gaseous) engine generators for emergency applications. All Olympian spark-ignited gensets, including LG and LTA series gensets, that are built with engines manufactured in 2009 and later meet the requirements of 40CFR part 60 subpart JJJJ and are EPA certified. These generator sets are labeled as EPA Certified with decals affixed to the engines' valve cover(s).

The attached documents summarize the general information relevant to EPA certification on these generator sets. This information can be used for submittal data and for permitting purposes, if required. These documents include the following information:

EPA Engine Family

The EPA Engine Family is assigned by the Manufacturer under EPA guidelines for certification purposes and appears on the EPA certificate.

Catalyst Required

Indicates whether an exhaust catalyst and Air/Fuel Ratio control system are required on the generator set to meet EPA certification requirements. Generally, units rated 80kW and smaller do not require a catalyst to meet EPA certification requirements. Please note that some units that do not require a catalyst to meet EPA requirements do need a catalyst if the California SCAQMD option is selected. Please see "California SCAQMD" below for additional information on this option.

Combination Catalyst or Separate Catalyst

LG series generator sets typically utilize a single combination catalyst/silencer as part of meeting EPA certification requirements. Many LTA series generator sets use the same engines as LG series units, but have different exhaust configurations that require the use of conventional silencers with additional separate catalysts installed.

EPA Certificate Number

Upon certification by the EPA, a Certificate Number is assigned by the EPA.

Emissions Actuals - Grams/bhp-hr

Actual exhaust emission data for Total Hydrocarbons (THC), Nitrogen Oxides (NOx) and Carbon Monoxide (CO) that were submitted to EPA and are official data of record for certification. This data can be used for permitting if necessary. Values are expressed in grams per brake horsepower-hour; to convert to grams/kW-hr, multiply by 1.341. Please see advisory notes below for further information.

California Units, SCAQMD CEP Number

A separate low-emissions option is available on many Olympian gaseous-fueled generator sets to comply with the more stringent South Coast Air Quality Management District requirements that are recognized in certain areas in California. Gensets that include this option are also EPA Certified.

OLYMPIAN™

General Advisory Note to Dealers

The information provided here is proprietary to Olympian and its' authorized dealers. This information may only be disseminated upon request, to regulatory governmental bodies for emissions permitting purposes or to specifying organizations as submittal data when expressly required by project specifications, and shall remain confidential and not open to public viewing. This information is not intended for compilation or sales purposes and may not be used as such, nor may it be reproduced without the expressed written permission of Olympian Power Systems, Inc.

Advisory Notes on Emissions Actuals

- The stated values are actual exhaust emission test measurements obtained from units representative of the generator types and engines described.
- Values are official data of record as submitted to the EPA and SCAQMD for certification purposes. Testing was conducted in accordance with prevailing EPA protocols, which are typically accepted by SCAQMD and other regional authorities.
- No emission values provided are to be construed as guarantees of emissions levels for any given Olympian generator unit.
- Olympian Power Systems reserves the right to revise this information without prior notice.
- Consult state and local regulatory agencies for specific permitting requirements.
- The emissions performance data supplied by the equipment manufacturer is only one element required toward completion of the permitting and installation process. State and local regulations may vary on a case-by-case basis and must be consulted by the permit applicant/equipment owner prior to equipment purchase or installation. The data supplied herein by Olympian Power Systems cannot be construed as a guarantee of installability of the generator set.
- The emission values provided are the result of multi-mode, weighted scale testing in accordance with EPA testing regulations, and may not be representative of any specific load point.
- The emission values provided are not to be construed as emission limits.

OLYMPIAN[™]

OLYMPIAN[™]

Matrix Matrix<	[2014 EPA	Certifie	d Gas	s Industri	al Generators - <u>No</u>	n Cal	ifornia	<u>u</u> Unite	S		
Image Funity Funity Funity Funity Reg of a series of a				EPA Engine		САТ		EPA	Gra	ms/bhp	o-hr.	Rated		
Matrix Control Control NR EGNXB02 42NL003 1.43 4.38 8.81 1800 4.32 17.59 G3GLG 5.4 EGNXB05 42NL LPG No NR EGNXB05 42NL013 1.24 3.45 112.01 1800 82.30 3.460 G40LG 5.4 EGNXB05 42NL LPG No NR EGNXB05 42NL013 1.24 3.45 112.01 1800 82.30 3.460 G40LG 5.4 EGNXB05 42NL LPG No NR EGNXB05 42NL013 1.24 3.45 112.01 1800 82.30 3.460 G45LG 5.4 EGNXB05 42NL LPG No NR EGNXB05 42NL013 1.24 3.45 112.01 1800 84.00 3.490 3.490 3.490 3.491 3.491 3.491 3.491 3.491 3.491 3.491 3.490 3.490 3.490 3.490 3.490 3.490 3.490 3.491 3.490 3.4113 3.80 3.490		Model	Engine	-	Fuel	Req'd	-	Cert #	тнс	NOx	со	RPM	внь	Flow (lb/hr)
G3LG 5.4 EGNXB05.42NN NG NG NR EGNXB05.42NN-012 1.60 2.52 95.22 1800 82.10 36.91 G3LG 5.4 EGNXB05.42NN NG NR EGNXB05.42NN-012 1.60 2.52 95.22 1800 82.10 36.91 G40LG 5.4 EGNXB05.42NN NG NO NR EGNXB05.42NN-012 1.60 2.52 95.22 1800 82.10 36.91 G40LG 5.4 EGNXB05.42NN NG NO NR EGNXB05.42NN-012 1.60 2.52 95.22 1800 82.30 34.60 G45LG 5.4 EGNXB05.42NN NG NO NR EGNXB05.42NN-013 1.24 3.45 11.201 1800 82.30 34.60 G50LG 6.8 EGNXB05.82NN NG NO NR EGNXB05.82NN-011 1.44 3.45 11.01 1800 86.37 37.37 G50LG 6.8 EGNXB06.82NN NG NO <t< td=""><td></td><td>G25LTA</td><td>2.4</td><td>EGNXB02.42NN</td><td>NG</td><td>No</td><td>NR</td><td>EGNXB02.42NN-008</td><td>2.14</td><td>2.37</td><td>93.95</td><td>1800</td><td>38.39</td><td>16.52</td></t<>		G25LTA	2.4	EGNXB02.42NN	NG	No	NR	EGNXB02.42NN-008	2.14	2.37	93.95	1800	38.39	16.52
G35LG 5.4 EGNXB05.42NL LPG No NR EGNXB05.42NL-013 1.2.4 3.4.5 11.2.01 1800 82.30 34.60 G40LG 5.4 EGNXB05.42NL NG No NR EGNXB05.42NL-013 1.2.4 3.4.5 112.01 1800 82.30 34.60 G46LG 5.4 EGNXB05.42NL NG No NR EGNXB05.42NL-013 1.2.4 3.4.5 112.01 1800 82.30 34.60 G46LG 5.4 EGNXB05.42NL NG No NR EGNXB05.42NL-013 1.2.4 3.4.5 112.01 1800 82.30 34.60 G50LG 5.4 EGNXB05.42NL NG No NR EGNXB06.82NL-001 1.4.6 6.5.7 30.88 1800 84.30 37.17 G50LG 6.8 EGNXB06.82NL LPG No NR EGNXB06.82NL-002 1.8.6 6.57 30.88 1800 84.60 37.67 G60LG 6.8 EGNXB06.82NL <th< td=""><td></td><td>G25LTA</td><td>2.4</td><td>EGNXB02.42NL</td><td>LPG</td><td>No</td><td>NR</td><td>EGNXB02.42NL-003</td><td>1.43</td><td>4.38</td><td>86.18</td><td>1800</td><td>43.29</td><td>17.59</td></th<>		G25LTA	2.4	EGNXB02.42NL	LPG	No	NR	EGNXB02.42NL-003	1.43	4.38	86.18	1800	43.29	17.59
G40LG 6.4 EGNXB05.42NN NG N0 NR EGNXB05.42NN-012 1.60 2.52 96.32 1800 82.10 36.91 G40LG 5.4 EGNXB05.42NL LPG N0 NR EGNXB05.42NN-013 1.24 34.55 112.01 1800 82.30 34.60 G45LG 5.4 EGNXB05.42NL LPG N0 NR EGNXB05.42NN-013 1.24 34.51 112.01 1800 82.30 34.60 G50LG 5.4 EGNXB05.42NL LPG N0 NR EGNXB05.42NN-013 1.24 34.51 112.01 1800 82.30 34.60 G50LG 6.8 EGNXB06.82NN NG N0 NR EGNXB06.82NN-001 146 6.57 0.80 88.100 96.60 41.20 G50LG 6.8 EGNXB06.82NN NG N0 NR EGNXB06.82NN-001 146 6.57 0.80 81.00 96.60 41.20 G50LG 6.8 EGNXB06.82NN NG		G35LG	5.4	EGNXB05.42NN	NG	No	NR	EGNXB05.42NN-012	1.60	2.52	95.32	1800	82.10	36.91
Prop G40LG 6.4 EGNXB05.42NL LPG No NR EGNXB05.42NL-013 1.24 3.45 11.201 1800 82.30 34.00 G45LG 5.4 EGNXB05.42NL LPG No NR EGNXB05.42NL-013 1.24 3.45 11.201 1800 82.30 34.00 G50LG 5.4 EGNXB05.42NL LPG No NR EGNXB05.42NL-013 1.24 3.45 11.201 1800 82.30 34.00 G50LG 5.4 EGNXB05.42NL LPG No NR EGNXB05.42NL-013 1.24 3.45 11.201 1800 82.30 34.60 G50LG 6.8 EGNXB06.32NL LPG No NR EGNXB06.82NL-001 1.47 2.94 7.58 1800 66.67 36.76 G50LG 6.8 EGNXB06.82NL LPG No NR EGNXB06.82NL-001 1.41 31.80 16.30 14.13 1800 16.41 31.81 G50LG 6.8		G35LG	5.4	EGNXB05.42NL	LPG	No	NR	EGNXB05.42NL-013	1.24	3.45	112.01	1800	82.30	34.60
G50LG 5.4 EGNXB05.42NN NG NG NR EGNXB05.42NN-012 1.60 2.52 95.32 1800 82.10 36.91 G50LG 5.4 EGNXB05.42NL LPG No NR EGNXB05.22NL-013 1.24 3.45 112.01 1800 82.03 34.60 G50LG 6.8 EGNXB06.32NL LPG No NR EGNXB06.82NL-001 1.46 6.57 30.88 1800 96.07 37.17 G50LG 6.8 EGNXB06.82NL LPG No NR EGNXB06.82NL-001 1.47 2.94 75.88 1800 96.67 37.67 G70LG 6.8 EGNXB06.82NL LPG No NR EGNXB06.82NL-001 1.46 3.55 68.40 1800 1800 190.7 42.33 G70LG 6.8 EGNXB06.82NN NG No NR EGNXB06.82NN-003 0.64 2.00 14.13 1800 124.3 4.13 G70LG 6.8 EGNXB08.92NN	ω	G40LG	5.4	EGNXB05.42NN	NG	No	NR	EGNXB05.42NN-012	1.60	2.52	95.32	1800	82.10	36.91
G50LG 5.4 EGNXB05.42NN NG NG NR EGNXB05.42NN-012 1.60 2.52 95.32 1800 82.10 36.91 G50LG 5.4 EGNXB05.42NL LPG No NR EGNXB05.22NL-013 1.24 3.45 112.01 1800 82.30 34.60 G50LG 6.8 EGNXB05.82NL LPG No NR EGNXB06.82NL-001 1.46 6.57 30.88 1800 96.67 37.77 G50LG 6.8 EGNXB06.82NL LPG No NR EGNXB06.82NL-001 1.47 2.94 75.88 1800 96.67 37.76 G70LG 6.8 EGNXB06.82NL LPG No NR EGNXB06.82NL-001 1.46 3.55 68.40 1800 1800 1800 180.7 42.33 G70LG 6.8 EGNXB06.82NL LPG No NR EGNXB06.82NL-001 1.46 3.55 68.40 1800 182.41 43.01 18001 122.43 4.13	ORI	G40LG	5.4	EGNXB05.42NL	LPG	No	NR	EGNXB05.42NL-013	1.24	3.45	112.01	1800	82.30	34.60
G50LG 5.4 EGNXB05.42NN NG NG NR EGNXB05.42NN-012 1.60 2.52 95.32 1800 82.10 36.91 G50LG 5.4 EGNXB05.42NL LPG No NR EGNXB05.22NL-013 1.24 3.45 112.01 1800 82.30 34.60 G50LG 6.8 EGNXB05.82NL LPG No NR EGNXB06.82NL-001 1.46 6.57 30.88 1800 96.67 37.77 G50LG 6.8 EGNXB06.82NL LPG No NR EGNXB06.82NL-001 1.47 2.94 75.88 1800 96.67 37.76 G70LG 6.8 EGNXB06.82NL LPG No NR EGNXB06.82NL-001 1.46 3.55 68.40 1800 1800 1800 180.7 42.33 G70LG 6.8 EGNXB06.82NL LPG No NR EGNXB06.82NL-001 1.46 3.55 68.40 1800 182.41 43.01 18001 122.43 4.13	E (S	G45LG	5.4	EGNXB05.42NN	NG	No	NR	EGNXB05.42NN-012	1.60	2.52	95.32	1800	82.10	36.91
By Total Control Contro Control <thcontrol< th=""> <th< td=""><td>SSI</td><td>G45LG</td><td>5.4</td><td>EGNXB05.42NL</td><td>LPG</td><td>No</td><td>NR</td><td>EGNXB05.42NL-013</td><td>1.24</td><td>3.45</td><td>112.01</td><td>1800</td><td>82.30</td><td>34.60</td></th<></thcontrol<>	SSI	G45LG	5.4	EGNXB05.42NL	LPG	No	NR	EGNXB05.42NL-013	1.24	3.45	112.01	1800	82.30	34.60
Physical GS0LG 6.8 EGNXB06.82NI LPG No NR EGNXB06.82NN-000 1.86 2.67 17.30 18.00 94.66 38.76 G60LG 6.8 EGNXB06.82NI NG NO NR EGNXB06.82NN-002 1.42 2.94 7.88 18.00 96.67 38.76 G60LG 6.8 EGNXB06.82NI NG NO NR EGNXB06.82NN-002 1.42 32.8 18.00 96.67 37.76 G70LG 6.8 EGNXB06.82NN NG NR EGNXB06.82NN-002 1.62 32.8 11.19 18.00 12.43 41.31 18.00 12.43 41.31 G80LG 9.0 EGNXB06.82NN NGL NO NR EGNXB08.92NN-003 0.76 2.81 42.10 18.00 12.43 44.01 G80LG 9.0 EGNXB08.92NN-00 NGL NO NR EGNXB08.92NN-000 0.76 2.81 42.10 18.00 12.63 16.00 12.63 16.00 1		G50LG	5.4	EGNXB05.42NN	NG	No	NR	EGNXB05.42NN-012	1.60	2.52	95.32	1800	82.10	36.91
Physical GS0LG 6.8 EGNXB06.82NL LPG No NR EGNXB06.82NL-000 1.86 2.67 17.30 18.00 94.66 45.56 G60LG 6.8 EGNXB06.82NL NG NO NR EGNXB06.82NL-000 1.47 2.94 75.88 18.00 96.67 37.60 G60LG 6.8 EGNXB06.82NL LPG NO NR EGNXB06.82NL-000 1.48 43.5 86.00 100.7 2.237 G70LG 6.8 EGNXB06.82NL LPG NO NR EGNXB06.82NL-000 1.40 3.00 18.41 5.180 G80LG 9.0 EGNXB06.82NL NG NO NR EGNXB06.82NL-000 0.76 2.81 42.10 18.00 12.43 46.19 G80LG 9.0 EGNXB06.82NL NO NR EGNXB06.82NL-000 1.11 4.02 7.70 18.00 12.43 46.19 G80LG 9.0 EGNXB06.82NL NO NR EGNXB06.82NL-000 <t< td=""><td>ines</td><td>G50LG</td><td>5.4</td><td>EGNXB05.42NL</td><td>LPG</td><td>No</td><td>NR</td><td>EGNXB05.42NL-013</td><td>1.24</td><td>3.45</td><td>112.01</td><td>1800</td><td>82.30</td><td>34.60</td></t<>	ines	G50LG	5.4	EGNXB05.42NL	LPG	No	NR	EGNXB05.42NL-013	1.24	3.45	112.01	1800	82.30	34.60
Physical GS0LG 6.8 EGNXB06.82NL LPG No NR EGNXB06.82NL-000 1.86 2.67 17.30 18.00 94.66 45.56 G60LG 6.8 EGNXB06.82NL NG NO NR EGNXB06.82NL-000 1.47 2.94 75.88 18.00 96.67 37.60 G60LG 6.8 EGNXB06.82NL LPG NO NR EGNXB06.82NL-000 1.48 43.5 86.00 100.7 2.237 G70LG 6.8 EGNXB06.82NL LPG NO NR EGNXB06.82NL-000 1.40 3.00 18.41 5.180 G80LG 9.0 EGNXB06.82NL NG NO NR EGNXB06.82NL-000 0.76 2.81 42.10 18.00 12.43 46.19 G80LG 9.0 EGNXB06.82NL NO NR EGNXB06.82NL-000 1.11 4.02 7.70 18.00 12.43 46.19 G80LG 9.0 EGNXB06.82NL NO NR EGNXB06.82NL-000 <t< td=""><td>Eng</td><td>G50LG</td><td>6.8</td><td>EGNXB06.82NN</td><td>NG</td><td>No</td><td>NR</td><td>EGNXB06.82NN-001</td><td>1.46</td><td>6.57</td><td>30.88</td><td>1800</td><td>84.90</td><td>37.17</td></t<>	Eng	G50LG	6.8	EGNXB06.82NN	NG	No	NR	EGNXB06.82NN-001	1.46	6.57	30.88	1800	84.90	37.17
Galles 9.0 EGNXB06 92NN NG NR EGNXB08.92NN-003 0.94 3.91 41.13 1800 124.83 44.32 Galles (op) 9.0 EGNXB08.92NN NG/LPV No NR EGNXB08.92NN-003 0.76 2.81 42.10 1800 124.83 46.19 Galles (op) 9.0 EGNXB08.92NN NG/LPV No NR EGNXB08.92NN-003 0.76 2.81 42.10 1800 124.83 46.19 Galles (op) 9.0 EGNXB08.92NN NG/LPV No NR EGNXB08.92NL-004 0.78 2.67 78.16 1800 126.21 49.55 50.62 Galles (op) 0.0 EGNXB06.82C1 UPL No NR EGNXB06.82C1-004 1.11 4.02 67.77 1800 120.57 50.62 G130LG (DF) 6.8 EGNXB06.82C3 NG Yes Cat Muff EGNXB06.82C-031 0.06 0.05 0.92 3000 193.49 72.31 G130LG (DF) 6.8<	ted	G50LG	6.8	EGNXB06.82NL	LPG	No	NR	EGNXB06.82NN-002	1.86	2.67	172.30	1800	84.66	46.55
Goods 9.0 EGNXB06.92NN NG NR EGNXB08.92NN-003 0.94 3.91 41.13 1800 124.83 44.32 G80LG (DF) 9.0 EGNXB08.92NN NG/LPV No NR EGNXB08.92NN-003 0.76 2.81 42.10 1800 124.83 46.19 G80LG (DF) 9.0 EGNXB08.92NN NG/LPV No NR EGNXB08.92NN-003 0.76 2.81 42.10 1800 124.83 46.19 G80LG (DF) 9.0 EGNXB08.92NN NG/LPV No NR EGNXB08.92NL-004 0.78 2.67 78.16 1800 126.21 49.55 50.52 G30LG 9.0 EGNXB08.92NL LPL No NR EGNXB06.82NL-004 1.11 4.02 67.07 1800 126.27 50.52 G130LG (DF) 6.8 EGNXB06.82C3 NG Yes Cat Muff EGNXB06.82C-0.301 0.06 0.05 0.92 3000 13.49 72.31 G130LG (DF) 6.8	lgni	G60LG	6.8	EGNXB06.82NN	NG	No	NR	EGNXB06.82NN-001	1.47	2.94	75.88	1800	96.67	38.76
Galles 9.0 EGNXB06 92NN NG NR EGNXB08.92NN-003 0.94 3.91 41.13 1800 124.83 44.32 Galles (op) 9.0 EGNXB08.92NN NG/LPV No NR EGNXB08.92NN-003 0.76 2.81 42.10 1800 124.83 46.19 Galles (op) 9.0 EGNXB08.92NN NG/LPV No NR EGNXB08.92NN-003 0.76 2.81 42.10 1800 124.83 46.19 Galles (op) 9.0 EGNXB08.92NN NG/LPV No NR EGNXB08.92NL-004 0.78 2.67 78.16 1800 126.21 49.55 50.62 Galles (op) 0.0 EGNXB06.82C1 UPL No NR EGNXB06.82C1-004 1.11 4.02 67.77 1800 120.57 50.62 G130LG (DF) 6.8 EGNXB06.82C3 NG Yes Cat Muff EGNXB06.82C-031 0.06 0.05 0.92 3000 193.49 72.31 G130LG (DF) 6.8<	ark I	G60LG	6.8	EGNXB06.82NL	LPG	No	NR	EGNXB06.82NN-002	1.26	4.23	99.05	1800	96.60	41.20
Galles 9.0 EGNXB06 92NN NG NR EGNXB08.92NN-003 0.94 3.91 41.13 1800 124.83 44.32 Galles (op) 9.0 EGNXB08.92NN NG/LPV No NR EGNXB08.92NN-003 0.76 2.81 42.10 1800 124.83 46.19 Galles (op) 9.0 EGNXB08.92NN NG/LPV No NR EGNXB08.92NN-003 0.76 2.81 42.10 1800 124.83 46.19 Galles (op) 9.0 EGNXB08.92NN NG/LPV No NR EGNXB08.92NL-004 0.78 2.67 78.16 1800 126.21 49.55 50.62 Galles (op) 0.0 EGNXB06.82C1 UPL No NR EGNXB06.82C1-004 1.11 4.02 67.77 1800 120.57 50.62 G130LG (DF) 6.8 EGNXB06.82C3 NG Yes Cat Muff EGNXB06.82C-031 0.06 0.05 0.92 3000 193.49 72.31 G130LG (DF) 6.8<	Spi	G70LG	6.8	EGNXB06.82NN	NG	No	NR	EGNXB06.82NN-001	1.46	3.55	68.40	1800	109.72	42.37
Galles 9.0 EGNXB06 92NN NG NR EGNXB08.92NN-003 0.94 3.91 41.13 1800 124.83 44.32 Galles (op) 9.0 EGNXB08.92NN NG/LPV No NR EGNXB08.92NN-003 0.76 2.81 42.10 1800 124.83 46.19 Galles (op) 9.0 EGNXB08.92NN NG/LPV No NR EGNXB08.92NN-003 0.76 2.81 42.10 1800 124.83 46.19 Galles (op) 9.0 EGNXB08.92NN NG/LPV No NR EGNXB08.92NL-004 0.78 2.67 78.16 1800 126.21 49.55 50.62 Galles (op) 0.0 EGNXB06.82C1 UPL No NR EGNXB06.82C1-004 1.11 4.02 67.77 1800 120.57 50.62 G130LG (DF) 6.8 EGNXB06.82C3 NG Yes Cat Muff EGNXB06.82C-031 0.06 0.05 0.92 3000 193.49 72.31 G130LG (DF) 6.8<	nall	G70LG	6.8	EGNXB06.82NL	LPG	No	NR	EGNXB06.82NN-002	1.26	3.28	111.49	1800	118.41	51.86
G80LG (DF) 9.0 EGNXB08.92NN NG/LPL No NR EGNXB08.92NN-003 0.69 2.89 30.46 1800 124.61 44.16 G80LG 9.0 EGNXB08.92NL LPV No NR EGNXB08.92NL-004 0.78 2.67 78.16 1800 126.21 49.55 G80LG 9.0 EGNXB08.92NL LPL No NR EGNXB08.92NL-004 1.11 4.02 67.70 1800 126.21 49.55 G80LG 9.0 EGNXB08.92NL LPL No NR EGNXB08.92NL-004 1.11 4.02 67.70 1800 126.21 49.55 G130LG 6.8 EGNXB06.82C3 NG Yes Cat Muff EGNXB06.82C3-031 0.06 0.05 0.92 3000 19.49 72.31 G150LG 6.8 EGNXB06.82C3 NG Yes Cat Muff EGNXB06.82C3-031 0.16 0.14 1.54 3600 23.10 91.34 G150LG (DF 6.8 EGNXB06.82C3	s	G80LG	9.0	EGNXB08.92NN	NG	No	NR	EGNXB08.92NN-003	0.94	3.91	41.13	1800	125.96	44.32
G80LG 9.0 EGNXB08.92NL LPV No NR EGNXB08.92NL-004 0.78 2.67 78.16 1800 126.21 49.55 G80LG 9.0 EGNXB08.92NL LPL No NR EGNXB08.92NL-004 1.11 4.02 67.70 1800 120.57 50.62 G130LG 6.8 EGNXB06.82C3 NG Yes Cat Muff EGNXB06.82C3-031 0.06 0.05 0.92 3000 13.49 72.31 G130LG 6.8 EGNXB06.82C3 NG Yes Cat Muff EGNXB06.82C3-031 0.06 0.05 0.92 3000 13.49 72.31 G130LG 6.8 EGNXB06.82C3 NG Yes Cat Muff EGNXB06.82C3-031 0.06 0.05 0.92 3000 13.49 72.31 G150LG 6.8 EGNXB06.82C3 NG Yes Cat Muff EGNXB06.82C3-031 0.18 0.14 1.54 3600 23.10 91.34 G150LG 0.0F 6.8		G80LG (DF)	9.0	EGNXB08.92NN	NG/LPV	No	NR	EGNXB08.92NN-003	0.76	2.81	42.10	1800	124.83	46.19
G80LG 9.0 EGNXB08.92NL LPL No NR EGNXB08.92NL-004 1.11 4.02 67.70 1800 120.57 50.62 G130LG 6.8 EGNXB06.82C3 NG Yes Cat Muff EGNXB06.82C3-031 0.06 0.05 0.92 3000 13.49 72.31 G130LG 6.8 EGNXB06.82C4 LPG Yes Cat Muff EGNXB06.82C3-031 0.06 0.05 0.92 3000 13.49 72.31 G130LG 6.8 EGNXB06.82C3 NG Yes Cat Muff EGNXB06.82C3-031 0.06 0.05 0.92 3000 13.49 72.31 G150LG 6.8 EGNXB06.82C3 NG Yes Cat Muff EGNXB06.82C3-031 0.18 0.14 1.54 3600 23.10 91.34 G150LG 6.8 EGNXB08.92C1 NG Yes Cat Muff EGNXB06.82C3-031 0.18 0.14 1.54 3600 23.10 91.34 G150LG 9.0 EGNXB08.		G80LG (DF)	9.0	EGNXB08.92NN	NG/LPL	No	NR	EGNXB08.92NN-003	0.69	2.89	30.46	1800	124.61	44.16
G130LG 6.8 EGNXB06.82C3 NG Yes Cat Muff EGNXB06.82C3-031 0.06 0.05 0.92 3000 193.49 72.31 G130LG 6.8 EGNXB06.82C4 LPG Yes Cat Muff EGNXB06.82C4-032 0.03 0.21 1.06 3000 208.48 79.99 G130LG 6.8 EGNXB06.82C3 NG Yes Cat Muff EGNXB06.82C3-031 0.06 0.05 0.92 3000 193.49 72.31 G150LG 6.8 EGNXB06.82C3 NG Yes Cat Muff EGNXB06.82C3-031 0.18 0.14 1.54 3600 231.00 91.34 G150LG 6.8 EGNXB06.82C4 LPG Yes Cat Muff EGNXB06.82C3-031 0.18 0.14 1.54 3600 231.00 91.34 G150LG 6.8 EGNXB08.82C1 NG Yes Cat Muff EGNXB08.82C1-032 0.03 0.18 0.14 1.54 360 231.00 91.34 31.36 31.36		G80LG	9.0	EGNXB08.92NL	LPV	No	NR	EGNXB08.92NL-004	0.78	2.67	78.16	1800	126.21	49.55
G130LG 6.8 EGNXB06.82C4 LPG Yes Cat Muff EGNXB06.82C4.032 0.03 0.21 1.06 3000 208.48 79.99 G130LG (DF) 6.8 EGNXB06.82C3 NG & LP Yes Cat Muff EGNXB06.82C3-031 0.06 0.05 0.92 3000 193.49 72.31 G150LG 6.8 EGNXB06.82C3 NG Yes Cat Muff EGNXB06.82C3-031 0.18 0.14 1.54 3600 231.00 91.34 G150LG 6.8 EGNXB06.82C3 NG & LP Yes Cat Muff EGNXB06.82C4-032 0.03 1.18 1.56 3600 230.13 89.41 G150LG 6.8 EGNXB06.82C3 NG & LP Yes Cat Muff EGNXB06.82C4-032 0.03 1.18 1.56 3600 231.00 91.34 G150LG 0.F 6.8 EGNXB08.92C1 NG Yes Cat Muff EGNXB08.92C1-0.34 0.14 1.54 3600 231.00 91.44 G100LG <t< td=""><td></td><td>G80LG</td><td>9.0</td><td>EGNXB08.92NL</td><td>LPL</td><td>No</td><td>NR</td><td>EGNXB08.92NL-004</td><td>1.11</td><td>4.02</td><td>67.70</td><td>1800</td><td>120.57</td><td>50.62</td></t<>		G80LG	9.0	EGNXB08.92NL	LPL	No	NR	EGNXB08.92NL-004	1.11	4.02	67.70	1800	120.57	50.62
G130LG (DF) 6.8 EGNXB06.82C3 NG & LP Yes Cat Muff EGNXB06.82C3-031 0.06 0.05 0.92 3000 193.49 72.31 G150LG 6.8 EGNXB06.82C3 NG Yes Cat Muff EGNXB06.82C3-031 0.18 0.14 1.54 3600 231.00 91.34 G150LG 6.8 EGNXB06.82C4 LPG Yes Cat Muff EGNXB06.82C3-031 0.18 0.14 1.54 3600 231.00 91.34 G150LG 6.8 EGNXB06.82C3 NG & LP Yes Cat Muff EGNXB06.82C3-031 0.18 0.14 1.54 3600 231.00 91.34 G150LG 6.8 EGNXB08.92C1 NG Yes Cat Muff EGNXB08.82C1-034 0.17 0.003 0.06 1800 133.16 45.66 G100LG (DF 9.0 EGNXB08.92C1 NG/LPV Yes Cat Muff EGNXB08.92C1-034 0.30 0.400 0.79 1800 133.16 45.47 G100LG (DF		G130LG	6.8	EGNXB06.82C3	NG	Yes	Cat Muff	EGNXB06.82C3-031	0.06	0.05	0.92	3000	193.49	72.31
G150LG 6.8 EGNXB06.82C3 NG Yes Cat Muff EGNXB06.82C3-031 0.18 0.14 1.54 3600 231.00 91.34 G150LG 6.8 EGNXB06.82C4 LPG Yes Cat Muff EGNXB06.82C4-032 0.03 1.18 1.56 3600 231.00 91.34 G150LG 6.8 EGNXB06.82C3 NG & LP Yes Cat Muff EGNXB06.82C3-031 0.18 0.14 1.54 3600 231.00 91.34 G150LG 0.6 8 EGNXB08.92C1 NG Yes Cat Muff EGNXB08.92C1-034 0.17 0.003 0.06 1800 148.90 46.86 G100LG 9.0 EGNXB08.92C1 NG/LPV Yes Cat Muff EGNXB08.92C1-034 0.30 0.400 0.79 1800 133.16 45.36 G100LG 9.0 EGNXB08.92C1 NG/LPL Yes Cat Muff EGNXB08.92C1-034 0.34 0.006 1.10 1800 156.15 54.47 G100LG<		G130LG	6.8	EGNXB06.82C4	LPG	Yes	Cat Muff	EGNXB06.82C4-032	0.03	0.21	1.06	3000	208.48	79.99
G150LG 6.8 EGNXB06.82C4 LPG Yes Cat Muff EGNXB06.82C4-032 0.03 1.18 1.56 3600 230.13 89.41 G150LG (DF) 6.8 EGNXB06.82C3 NG & LP Yes Cat Muff EGNXB06.82C3-031 0.18 0.14 1.54 3600 231.00 91.34 G100LG (DF) 6.8 EGNXB08.92C1 NG Yes Cat Muff EGNXB08.92C1-034 0.17 0.003 0.06 1800 148.00 46.86 G100LG (DF) 9.0 EGNXB08.92C1 NG/LPV Yes Cat Muff EGNXB08.92C1-034 0.30 0.400 0.79 1800 133.16 45.36 G100LG (DF) 9.0 EGNXB08.92C1 NG/LPV Yes Cat Muff EGNXB08.92C1-034 0.34 0.006 1.10 1800 135.75 45.47 G100LG 9.0 EGNXB08.92C2 LPG Yes Cat Muff EGNXB08.92C2-035 0.03 0.04 0.30 1800 37.67 53.08 G100LG		G130LG (DF)	6.8	EGNXB06.82C3	NG & LP	Yes	Cat Muff	EGNXB06.82C3-031	0.06	0.05	0.92	3000	193.49	72.31
G100LG 9.0 EGNXB08.92C1 NG Yes Cat Muff EGNXB08.92C1-034 0.17 0.003 0.06 1800 148.90 46.86 G100LG (DF) 9.0 EGNXB08.92C1 NG/LPV Yes Cat Muff EGNXB08.92C1-034 0.30 0.400 0.79 1800 133.16 45.36 G100LG (DF) 9.0 EGNXB08.92C1 NG/LPV Yes Cat Muff EGNXB08.92C1-034 0.30 0.400 0.79 1800 133.16 45.36 G100LG (DF) 9.0 EGNXB08.92C1 NG/LPV Yes Cat Muff EGNXB08.92C1-034 0.34 0.006 1.10 1800 133.16 45.36 G100LG 9.0 EGNXB08.92C2 LPG Yes Cat Muff EGNXB08.92C2-035 0.03 0.03 1800 157.67 53.08 G100LG 9.0 EGNXB12.92C2 NG Yes Cat Muff EGNXB12.92C-039 0.53 0.13 0.53 1800 307.87 107.98 6230LG 12.9 EGNXB1		G150LG	6.8	EGNXB06.82C3	NG	Yes	Cat Muff	EGNXB06.82C3-031	0.18	0.14	1.54	3600	231.00	91.34
G100LG 9.0 EGNXB08.92C1 NG Yes Cat Muff EGNXB08.92C1-034 0.17 0.003 0.06 1800 148.90 46.86 G100LG (DF) 9.0 EGNXB08.92C1 NG/LPV Yes Cat Muff EGNXB08.92C1-034 0.30 0.400 0.79 1800 133.16 45.36 G100LG (DF) 9.0 EGNXB08.92C1 NG/LPV Yes Cat Muff EGNXB08.92C1-034 0.30 0.400 0.79 1800 133.16 45.36 G100LG (DF) 9.0 EGNXB08.92C1 NG/LPV Yes Cat Muff EGNXB08.92C1-034 0.34 0.006 1.10 1800 133.16 45.36 G100LG 9.0 EGNXB08.92C2 LPG Yes Cat Muff EGNXB08.92C2-035 0.03 0.03 1800 157.67 53.08 G100LG 9.0 EGNXB12.92C2 NG Yes Cat Muff EGNXB12.92C-039 0.53 0.13 0.53 1800 307.87 107.98 6230LG 12.9 EGNXB1	SIE)	G150LG	6.8	EGNXB06.82C4	LPG	Yes	Cat Muff	EGNXB06.82C4-032	0.03	1.18	1.56	3600	230.13	89.41
Big G100LG (DF) 9.0 EGNXB08.92C1 NG/LPV Yes Cat Muff EGNXB08.92C1-034 0.30 0.400 0.79 1800 133.16 45.36 G100LG (DF) 9.0 EGNXB08.92C1 NG/LPL Yes Cat Muff EGNXB08.92C1-034 0.30 0.400 0.79 1800 133.16 45.36 G100LG (DF) 9.0 EGNXB08.92C1 NG/LPL Yes Cat Muff EGNXB08.92C1-034 0.34 0.006 1.10 1800 135.75 45.47 G100LG 9.0 EGNXB08.92C2 LPG Yes Cat Muff EGNXB08.92C2-035 0.03 0.08 0.13 1800 156.15 54.47 G100LG 9.0 EGNXB12.92C2 NG Yes Cat Muff EGNXB08.92C2-035 0.03 0.04 0.30 1800 307.87 107.95 G150LG 12.9 EGNXB12.92C2 NG Yes Cat Muff EGNXB12.92C2-039 0.53 0.13 0.53 1800 307.87 107.95	- (F	G150LG (DF)	6.8	EGNXB06.82C3	NG & LP	Yes	Cat Muff	EGNXB06.82C3-031	0.18	0.14	1.54	3600	231.00	91.34
G230LG 12.9 EGNXB12.92C2 NG Yes Cat Muff EGNXB12.92C2.039 0.38 0.03 0.53 1800 379.10 125.30 G250LG 12.9 EGNXB12.92C2 NG Yes Cat Muff EGNXB12.92C2.039 0.38 0.03 0.53 1800 379.10 125.30 G275LG 12.9 EGNXB12.92C3 NG Yes Cat Muff EGNXB12.92C3-041 0.06 0.681 2150 477.00 164.20	les	G100LG	9.0	EGNXB08.92C1	NG	Yes	Cat Muff	EGNXB08.92C1-034	0.17	0.003	0.06	1800	148.90	46.86
G230LG 12.9 EGNXB12.92C2 NG Yes Cat Muff EGNXB12.92C2.039 0.38 0.03 0.53 1800 379.10 125.30 G250LG 12.9 EGNXB12.92C2 NG Yes Cat Muff EGNXB12.92C2.039 0.38 0.03 0.53 1800 379.10 125.30 G275LG 12.9 EGNXB12.92C3 NG Yes Cat Muff EGNXB12.92C3-041 0.06 0.681 2150 477.00 164.20	ngiı	G100LG (DF)	9.0	EGNXB08.92C1	NG/LPV	Yes	Cat Muff	EGNXB08.92C1-034	0.30	0.400	0.79	1800	133.16	45.36
G230LG 12.9 EGNXB12.92C2 NG Yes Cat Muff EGNXB12.92C2.039 0.38 0.03 0.53 1800 379.10 125.30 G250LG 12.9 EGNXB12.92C2 NG Yes Cat Muff EGNXB12.92C2.039 0.38 0.03 0.53 1800 379.10 125.30 G275LG 12.9 EGNXB12.92C3 NG Yes Cat Muff EGNXB12.92C3-041 0.06 0.681 2150 477.00 164.20	дE	G100LG (DF)	9.0	EGNXB08.92C1	NG/LPL	Yes	Cat Muff	EGNXB08.92C1-034	0.34	0.006	1.10	1800	135.75	45.47
G230LG 12.9 EGNXB12.92C2 NG Yes Cat Muff EGNXB12.92C2-039 0.38 0.03 0.53 1800 379.10 125.30 G250LG 12.9 EGNXB12.92C2 NG Yes Cat Muff EGNXB12.92C2-039 0.38 0.03 0.53 1800 379.10 125.30 G275LG 12.9 EGNXB12.92C3 NG Yes Cat Muff EGNXB12.92C3-041 0.06 0.68 2150 477.00 164.20	inite	G100LG	9.0	EGNXB08.92C2	LPG	Yes	Cat Muff	EGNXB08.92C2-035	0.03	0.08	0.13	1800	157.67	53.08
G230LG 12.9 EGNXB12.92C2 NG Yes Cat Muff EGNXB12.92C2.039 0.38 0.03 0.53 1800 379.10 125.30 G250LG 12.9 EGNXB12.92C2 NG Yes Cat Muff EGNXB12.92C2.039 0.38 0.03 0.53 1800 379.10 125.30 G275LG 12.9 EGNXB12.92C3 NG Yes Cat Muff EGNXB12.92C3-041 0.06 0.681 2150 477.00 164.20	k-lg	G100LG	9.0	EGNXB08.92C2	LPL	Yes	Cat Muff	EGNXB08.92C2-035	0.07	0.04	0.30	1800	156.15	54.47
G230LG 12.9 EGNXB12.92C2 NG Yes Cat Muff EGNXB12.92C2-039 0.38 0.03 0.53 1800 379.10 125.30 G250LG 12.9 EGNXB12.92C2 NG Yes Cat Muff EGNXB12.92C2-039 0.38 0.03 0.53 1800 379.10 125.30 G275LG 12.9 EGNXB12.92C3 NG Yes Cat Muff EGNXB12.92C3-041 0.06 0.68 2150 477.00 164.20	Spar	G150LG	12.9	EGNXB12.92C2	NG	Yes	Cat Muff	EGNXB12.92C2-039	0.53	0.13	0.53	1800	307.87	107.99
G230LG 12.9 EGNXB12.92C2 NG Yes Cat Muff EGNXB12.92C2-039 0.38 0.03 0.53 1800 379.10 125.30 G250LG 12.9 EGNXB12.92C2 NG Yes Cat Muff EGNXB12.92C2-039 0.38 0.03 0.53 1800 379.10 125.30 G275LG 12.9 EGNXB12.92C3 NG Yes Cat Muff EGNXB12.92C3-041 0.06 0.68 2150 477.00 164.20	ge (G175LG	12.9	EGNXB12.92C2	NG	Yes	Cat Muff	EGNXB12.92C2-039	0.53	0.13	0.53	1800	307.87	107.99
G250LG 12.9 EGNXB12.92C2 NG Yes Cat Muff EGNXB12.92C2-039 0.38 0.03 0.53 1800 379.10 125.30 G275LG 12.9 EGNXB12.92C3 NG Yes Cat Muff EGNXB12.92C3-041 0.06 0.68 2150 477.00 164.20	Lar	G200LG	12.9	EGNXB12.92C2	NG	Yes	Cat Muff	EGNXB12.92C2-039	0.53	0.13	0.53	1800	307.87	107.99
G275LG 12.9 EGNXB12.92C3 NG Yes Cat Muff EGNXB12.92C3-041 0.06 0.081 2150 477.00 164.20		G230LG	12.9	EGNXB12.92C2	NG	Yes	Cat Muff	EGNXB12.92C2-039	0.38	0.03	0.53	1800	379.10	125.30
		G250LG	12.9	EGNXB12.92C2	NG	Yes	Cat Muff	EGNXB12.92C2-039	0.38	0.03	0.53	1800	379.10	125.30
G300LG 12.9 EGNXB12.92C3 NG Ves Cat Muff EGNXB12.92C3.041 0.06 0.06 0.81 2450 477.00 164.20		G275LG	12.9	EGNXB12.92C3	NG	Yes	Cat Muff	EGNXB12.92C3-041	0.06	0.06	0.81	2150	477.00	164.20
GUUDEO 12.0 EGIVAD12.02C0 100 160 Cativitin EGIVAD12.02C0-041 0.00 0.01 2100 477.00 104.20		G300LG	12.9	EGNXB12.92C3	NG	Yes	Cat Muff	EGNXB12.92C3-041	0.06	0.06	0.81	2150	477.00	164.20

(DF): Dual Fuel NR: Not Required

NATURAL GAS FIRED BOILER/LINE HEATER DATA SHEET

(Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.)

Source ID # ¹	Status ²	Design Heat Input (MMBtu/hr) ³	Hours of Operation (hrs/yr) ⁴	Fuel Heating Value (Btu/scf) ⁵	
H-01	Exist	10.0	8,760	920 (LHV)	
H-02	Exist	4.74	8,760	920 (LHV)	
H-03	Exist	6.60	8,760	920 (LHV)	
H-04	Exist	6.60	8,760	920 (LHV)	
H-05	Exist	21.22	8,760	920 (LHV)	
H-06	Exist	21.22	8,760	920 (LHV)	

Notes to NATURAL GAS FIRED BOILER/LINE HEATER DATA SHEET

- 1. Enter the appropriate Source Identification Numbers (Source ID #) for each boiler or line heater located at the compressor station. Boilers should be designated BLR-1, BLR-2, BLR-3, etc. Heaters or Line Heaters should be designated HTR-1, HTR-2, HTR-3, etc.
- 2. Enter the Status for each boiler or line heater using the following:
 - EXIST Existing Equipment
 - NEW Installation of New Equipment
 - REM Equipment Removed
- 3. Enter boiler or line heater design heat input in MMBtu/hr.
- 4. Enter the annual hours of operation in hours/year for each boiler or line heater.
- 5. Enter the fuel heating value in Btu/standard cubic foot.

10.0 MMBtu/hr Hot Oil Heater 8.402 MMBtu/hr / 0.84 eff. = 10.0 MMBtu/hr

THOMAS RUSSELL CO. Tulsa, Oklahoma

No. Units: Therm Inlet 29,300 51.55 320 0.5135 0.0697 3.74 0 190 75 Allow. 20 Allow. 0,1 50 PSIG 20 °F @ 0.0 3" - 5" Ceramic 34.0%	HEATER ninol 55 Outle 129,30 48.75 320 0.569 0.065 1.25 0 310 55 002 400 150 0625 Fiber on Interior (Assume 39)	5 2	Tag No Type: Model LHV (BTL Mol. Wt. Gravity Pressure Avail. (ps Pressure Req'd (p Steam for Atomizing Fuel Gas Req'd (MSt Mfgr: Type: F Number Req'd Pilots Req'd Nox Seismic Zone, (3) Ambient, °F Elevation, Ft	Heatec HCI- Burners Ga (/cf) 90 16 sig) 10 sig) 10 sig) 17 Eclipse Ratio orced Draft - Yes	H-781 Helical Coil -8010-50-G as O 00 3.2 3.2 N/ omatic 2000 20 Hp Blower One s, electric ignit < 65 ppmvd	A
No. Units: Therm Inlet 29,300 51.55 320 0.5135 0.0697 3.74 0 190 75 Allow. 20 Allow. 0, 50 PSIG 20 °F @ 0.0 3" - 5" Ceramic 34.0% 1 25,300	ninol 55 Outle 129,30 48.75 320 0.569 0.065 1.25 0.065 1.25 0.005 0.005 0	t)0 5 2 2 Calc. Calc. Calc. °F	Type: Model LHV (BTL Mol. Wt. Gravity Pressure Avail. (ps Pressure Req'd (p Steam for Atomizing Fuel Gas Req'd (MSt Mfgr: Type: F Number Req'd Pilots Req'd Nox Seismic Zone, (3) Ambient, °F Elevation, Ft	Heatec HCI- Burners Ga (/cf) 90 16 sig) 10 sig) 10 sig) 17 Eclipse Ratio orced Draft - Yes	Helical Coil -8010-50-G as O 00 0 3.2 N/ 00 0 3.2 N/ omatic 2000 20 Hp Blower One s, electric ignit < 65 ppmvd	A
No. Units: Therm Inlet 29,300 51.55 320 0.5135 0.0697 3.74 0 190 75 Allow. 20 Allow. 0, 50 PSIG 20 °F @ 0.0 3" - 5" Ceramic 34.0% 1 25,300	ninol 55 Outle 129,30 48.75 320 0.569 0.065 1.25 0.065 1.25 0.005 0.005 0	t)0 5 2 2 Calc. Calc. Calc. °F	Type: Model LHV (BTL Mol. Wt. Gravity Pressure Avail. (ps Pressure Req'd (p Steam for Atomizing Fuel Gas Req'd (MSt Mfgr: Type: F Number Req'd Pilots Req'd Nox Seismic Zone, (3) Ambient, °F Elevation, Ft	Heatec HCI- Burners Ga (/cf) 90 16 sig) 10 sig) 10 sig) 17 Eclipse Ratio orced Draft - Yes	Helical Coil -8010-50-G as O 00 0 3.2 N/ 00 0 3.2 N/ omatic 2000 20 Hp Blower One s, electric ignit < 65 ppmvd ign -20 / 110 -20 / 110	A
No. Units: Therm Inlet 29,300 51.55 320 0.5135 0.0697 3.74 0 190 75 Allow. 20 Allow. 0, 50 PSIG 20 °F @ 0.0 3" - 5" Ceramic 34.0% 1 25,300	ninol 55 Outle 129,30 48.75 320 0.569 0.065 1.25 0.065 1.25 0.005 0.005 0	t)0 5 2 2 Calc. Calc. Calc. °F	Type: Model LHV (BTL Mol. Wt. Gravity Pressure Avail. (ps Pressure Req'd (p Steam for Atomizing Fuel Gas Req'd (MSt Mfgr: Type: F Number Req'd Pilots Req'd Nox Seismic Zone, (3) Ambient, °F Elevation, Ft	Heatec HCI- Burners Ga (/cf) 90 16 sig) 10 sig) 10 sig) 17 Eclipse Ratio orced Draft - Yes	Helical Coil -8010-50-G as O 00 0 3.2 N/ 00 0 3.2 N/ omatic 2000 20 Hp Blower One s, electric ignit < 65 ppmvd	A
Therm Inlet 29,300 51.55 320 0.5135 0.0697 3.74 0 190 75 Allow. 20 Allow. 0.1 50 PSIG 20 °F @ 0.0 3" - 5" Ceramic 34.0% 1 25,300	Outle 129,30 48.75 320 0.569 0.065 1.25 0 310 55 002 400 150 0625 5 liber on Interior	t)0 5 2 2 Calc. Calc. Calc. °F	Type: Model LHV (BTL Mol. Wt. Gravity Pressure Avail. (ps Pressure Req'd (p Steam for Atomizing Fuel Gas Req'd (MSt Mfgr: Type: F Number Req'd Pilots Req'd Nox Seismic Zone, (3) Ambient, °F Elevation, Ft	Heatec HCI- Burners Ga (/cf) 90 16 sig) 10 sig) 10 sig) 17 Eclipse Ratio orced Draft - Yes	Helical Coil -8010-50-G as O 00 0 3.2 N/ 00 0 3.2 N/ omatic 2000 20 Hp Blower One s, electric ignit < 65 ppmvd	A
Therm Inlet 29,300 51.55 320 0.5135 0.0697 3.74 0 190 75 Allow. 20 Allow. 0.1 50 PSIG 20 °F @ 0.0 3" - 5" Ceramic 34.0% 1 25,300	Outle 129,30 48.75 320 0.569 0.065 1.25 0 310 55 002 400 150 0625 5 liber on Interior	t)0 5 2 2 Calc. Calc. Calc. °F	Model Model LHV (BTL Mol. Wt. Gravity Pressure Avail. (ps Pressure Req'd (p Steam for Atomizing Fuel Gas Req'd (MSt Mfgr: Type: F Number Req'd Pilots Req'd Nox Stru Wind Load, MPH, (3) Seismic Zone, (3) Ambient, °F Elevation, Ft	Burners Ga V(cf) 90 16 sig) 10 sig) 10 sig) 20 CFD) 170 Eclipse Ration orced Draft - Yes uctural Des	-8010-50-G as O 00 3.2 00 3.2 00 3.2 00 3.2 00 3.2 N/ omatic 2000 20 Hp Blower One s, electric ignit < 65 ppmvd ign -20 / 110	A
Therm Inlet 29,300 51.55 320 0.5135 0.0697 3.74 0 190 75 Allow. 20 Allow. 0.1 50 PSIG 20 °F @ 0.0 3" - 5" Ceramic 34.0% 1 25,300	Outle 129,30 48.75 320 0.569 0.065 1.25 0 310 55 002 400 150 0625 5 liber on Interior	t)0 5 2 2 Calc. Calc. Calc. °F	LHV (BTL Mol. Wt. Gravity Pressure Avail. (ps Pressure Req'd (p Steam for Atomizing Fuel Gas Req'd (MSt Mfgr: Type: F Number Req'd Pilots Req'd Nox Seismic Zone, (3) Ambient, °F Elevation, Ft	Burners Ga V(cf) 90 16 sig) 10 sig) 10 sig) 20 CFD) 170 Eclipse Ration orced Draft - Yes uctural Des	as O 00 3.2 3.2 N/ omatic 2000 20 Hp Blower One s, electric ignit < 65 ppmvd ign -20 / 110	A
Inlet 29,300 51.55 320 0.5135 0.697 3.74 0 190 75 Allow. 20 Allow. 0. 50 PSIG 20 °F @ 0.0 3" - 5" Ceramic 34.0% 1 25,300	Outle 129,30 48.75 320 0.569 0.065 1.25 0 310 55 002 400 150 0625 5 liber on Interior	00 5 2 2 Calc. Calc. Calc.	Mol. Wt. Gravity Pressure Avail. (ps Pressure Req'd (p Steam for Atomizing Fuel Gas Req'd (MSt Mfgr: Type: F Number Req'd Pilots Req'd Nox Wind Load, MPH, (3) Seismic Zone, (3) Ambient, °F Elevation, Ft	Ga /(cf) 90 16 sig) 10 sig) 10 sig) 17 Eclipse Rational orced Draft - Yese Instant Des	200 3.2 00 3.2 N/ omatic 2000 20 Hp Blower One s, electric ignit < 65 ppmvd ign -20 / 110	A
29,300 51.55 320 .5135 .0697 3.74 0 190 75 Allow. 20 Allow. 0,1 50 PSIG 20 °F @ 0.0 3" - 5" Ceramic 34.0% 1 25,300	129,30 48.75 320 0.569 0.065 1.25 0 0 0 0 0 0 0 0 0 0 0 0 0	00 5 2 2 Calc. Calc. Calc.	Mol. Wt. Gravity Pressure Avail. (ps Pressure Req'd (p Steam for Atomizing Fuel Gas Req'd (MSt Mfgr: Type: F Number Req'd Pilots Req'd Nox Wind Load, MPH, (3) Seismic Zone, (3) Ambient, °F Elevation, Ft	/cf) 90 16 sig) 10 sig) 10 Sig) 17 Eclipse Rational orced Draft - Yes Inctural Des	200 3.2 00 3.2 N/ omatic 2000 20 Hp Blower One s, electric ignit < 65 ppmvd ign -20 / 110	A
51.55 320 0.5135 0.0697 3.74 0 190 75 Allow. 20 Allow. 0.0 50 PSIG 20 °F @ 0.0 3" - 5" Ceramic 34.0% 1 25,300	48.75 320 0.569 0.065 1.25 0 310 55 002 400 150 0625 5 Fiber on Interior	5 2 2 Calc. Calc. Calc.	Mol. Wt. Gravity Pressure Avail. (ps Pressure Req'd (p Steam for Atomizing Fuel Gas Req'd (MSt Mfgr: Type: F Number Req'd Pilots Req'd Nox Wind Load, MPH, (3) Seismic Zone, (3) Ambient, °F Elevation, Ft	ig) 10 sig) 10 sig) 17 CFD) 17 Eclipse Ratio orced Draft - Yes uctural Des	3.2 N/ 3.2 N/ omatic 2000 20 Hp Blower One s, electric ignit < 65 ppmvd ign -20 / 110	
320 0.5135 0.0697 3.74 0 190 75 Allow. 20 Allow. 0,1 50 PSIG 20 °F @ 0.0 3" - 5" Ceramic 34.0% 1 25,300	320 0.569 0.065 1.25 0 310 55 310 55 002 400 150 0625 5 Fiber on Interior	5 2 2 Calc. Calc. Calc.	Gravity Pressure Avail. (ps Pressure Req'd (p) Steam for Atomizing Fuel Gas Req'd (MSG Mfgr: Type: F Number Req'd Pilots Req'd Nox Stru Wind Load, MPH, (3) Seismic Zone, (3) Ambient, °F Elevation, Ft	sig) 10 sig) 17 EFD) 17 Eclipse Ratio orced Draft - Yes uctural Des	3.2 N/ omatic 2000 20 Hp Blower One s, electric ignit < 65 ppmvd ign	
0.5135 0.0697 3.74 0 190 75 Allow. 20 Allow. 0,1 50 PSIG 20 °F @ 0.0 3" - 5" Ceramic 34.0% 1 25,300	0.569 0.065 1.25 0 310 55 002 400 150 0625 5 Fiber on Interior	2 Calc. Calc. °F	Pressure Avail. (ps Pressure Req'd (p Steam for Atomizing Fuel Gas Req'd (MSt Mfgr: Type: F Number Req'd Pilots Req'd Nox Wind Load, MPH, (3) Seismic Zone, (3) Ambient, °F Elevation, Ft	sig) CFD) 17: Eclipse Rational orced Draft - Yese Ictural Des	3.2 N/ omatic 2000 20 Hp Blower One s, electric ignit < 65 ppmvd ign -20 / 110	
190 75 Allow. 20 Allow. 50 PSIG 20 °F @ 0.0 3" - 5" Ceramic 34.0% 1 5,300	0.065 1.25 0 310 55 002 400 150 0625 5 Fiber on Interior	2 Calc. Calc. °F	Pressure Req'd (p. Steam for Atomizing Fuel Gas Req'd (MSt Mfgr: Type: F Number Req'd Pilots Req'd Nox Wind Load, MPH, (3) Seismic Zone, (3) Ambient, °F Elevation, Ft	sig) CFD) 17: Eclipse Ratio orced Draft - Yes ictural Des	3.2 N/ omatic 2000 20 Hp Blower One s, electric ignit < 65 ppmvd ign -20 / 110	
3.74 0 190 75 Allow. 20 Allow. 0.0 50 PSIG 20 °F @ 0.0 3" - 5" Ceramic 34.0% 1 25,300	1.25 0 310 55 002 400 150 0625 5 Fiber on Interior	Calc. Calc. °F	Steam for Atomizing Fuel Gas Req'd (MSr Mfgr: Type: F Number Req'd Pilots Req'd Nox Seismic Zone, (3) Ambient, °F Elevation, Ft	DFD) 173 Eclipse Ratio forced Draft - Yes Inctural Des	omatic 2000 20 Hp Blower One s, electric ignit < 65 ppmvd ign -20 / 110	
0 190 75 Allow. 20 Allow. 0. 50 PSIG 20 °F @ 0.0 3" - 5" Ceramic 34.0% 1. 5,300	0 310 55 002 400 150 0625 5 Fiber on Interior	Calc. Calc. °F	Fuel Gas Req'd (MSr Mfgr: Type: F Number Req'd Pilots Req'd Nox Stru Wind Load, MPH, (3) Seismic Zone, (3) Ambient, °F Elevation, Ft	Eclipse Ratio orced Draft - Yes Ictural Des	omatic 2000 20 Hp Blower One s, electric ignit < 65 ppmvd ign -20 / 110	
190 75 Allow. 20 Allow. 0. 50 PSIG 20 °F @ 0.0 3" - 5" Ceramic 34.0% 1 25,300	310 55 002 400 150 0625 5 Fiber on Interior	Calc. °F	Mfgr: Type: F Number Req'd Pilots Req'd Nox Stru Wind Load, MPH, (3) Seismic Zone, (3) Ambient, °F Elevation, Ft	Eclipse Ratio orced Draft - Yes Ictural Des	omatic 2000 20 Hp Blower One s, electric ignit < 65 ppmvd ign -20 / 110	
75 Allow. 0. 50 PSIG 20 °F @ 0.0 3" - 5" Ceramic 34.0% 1 25,300	55 002 400 150 0625 5 Fiber on Interior	Calc. °F	Type: F Number Req'd Pilots Req'd Nox Stru Wind Load, MPH, (3) Seismic Zone, (3) Ambient, °F Elevation, Ft	orced Draft - Yes Ictural Des	20 Hp Blower One s, electric ignit < 65 ppmvd ign -20 / 110	
75 Allow. 0. 50 PSIG 20 °F @ 0.0 3" - 5" Ceramic 34.0% 1 25,300	55 002 400 150 0625 5 Fiber on Interior	Calc. °F	Number Req'd Pilots Req'd Nox Wind Load, MPH, (3 Seismic Zone, (3) Ambient, °F Elevation, Ft	Yes Ictural Des	One s, electric ignit < 65 ppmvd ign -20 / 110	
75 Allow. 0. 50 PSIG 20 °F @ 0.0 3" - 5" Ceramic 34.0% 1 25,300	55 002 400 150 0625 5 Fiber on Interior	Calc. °F	Pilots Req'd Nox Wind Load, MPH, (3) Seismic Zone, (3) Ambient, °F Elevation, Ft	ictural Des	s, electric ignit < 65 ppmvd ign -20 / 110	on
75 Allow. 0. 50 PSIG 20 °F @ 0.0 3" - 5" Ceramic 34.0% 1 25,300	55 002 400 150 0625 5 Fiber on Interior	Calc. °F	Nox Wind Load, MPH, (3) Seismic Zone, (3) Ambient, °F Elevation, Ft	ictural Des	< 65 ppmvd iign -20 / 110	<u></u>
75 Allow. 0. 50 PSIG 20 °F @ 0.0 3" - 5" Ceramic 34.0% 1 25,300	55 002 400 150 0625 5 Fiber on Interior	Calc. °F	Stru Wind Load, MPH, (3) Seismic Zone, (3) Ambient, °F Elevation, Ft	• • • • • • • • • • • • • • • • • • • •	-20 / 110	
75 Allow. 0. 50 PSIG 20 °F @ 0.0 3" - 5" Ceramic 34.0% 1 25,300	55 002 400 150 0625 5 Fiber on Interior	Calc. °F	Wind Load, MPH, (3) Seismic Zone, (3) Ambient, °F Elevation, Ft	• • • • • • • • • • • • • • • • • • • •	-20 / 110	
Allow. 20 Allow. 50 PSIG 20 °F @ 0.0 3" - 5" Ceramic 34.0% 1: 25,300	002 400 150 0625 c Fiber on Interior	Calc. °F	Seismic Zone, (3) Ambient, °F Elevation, Ft	· · · · · · · · · · · · · · · · · · ·		
20 Allow. 0,1 50 PSIG 20 °F @ 0,0 3" - 5" Ceramic 34.0% 1. 25,300	400 150 0625 c Fiber on Interior	Calc. °F	Ambient, °F Elevation, Ft			
0. 50 PSIG 20 °F @ 0.0 3" - 5" Ceramic 34.0% 1 25,300	400 150 0625 c Fiber on Interior	°F	Elevation, Ft			
50 PSIG 20 °F @ 0.0 3" - 5" Ceramic 34.0% 1 25,300	400 150 0625 c Fiber on Interior				3000	
20 °F @ 0.0 3" - 5" Ceramic 34.0% 1 25,300	150 0625 c Fiber on Interior					
0.0 3" - 5" Ceramic 34.0% 1 25,300	0625 CFiber on Interior	PSIG		tack Desig		
3" - 5" Ceramic 34.0% 1 25,300	Fiber on Interior		Self-supporting		Yes	
34.0% 1 25,300			Minimum Height		above top of he	ater
1.	(Assume 39		Minimum Wall Thick	ness:	0.125	
5,300	·······	% Loss)	Lining Type		No	
	5%		Lining Thickness:		No	
One - process	BTU/Hr-	Ft^3	Damper:		No	
adiant	Convectio	n-Bare	Convection-Fin	ned		
0/310						-
One		· ··· · ····				
Sch. 40	5"300# ANSI R	FWN Flg.	Inlet and Outlet			
1,130	·					· • · · · · · · · · · ·
N/A						
3,241			-			
A- 106 Gr. B	SA-		SA-			
Thickness:		No. / inch:				
)' - 0" H (less st	ack)				nt	
	Stamp:	Yes	Nat'l B	oard:	Yes	
- 1, 1, 3 A-)' siç	 130 J/A .241 .106 Gr. B 	 130 1/A ,241 106 Gr. B SA- Thickness: I - 0" H (less stack) Stamp: gn. posure C. Seismic design per A	130 1/A	130 1/A	130 1/A 1/A 1/A 106 Gr. B SA- Thickness: No. / inch: Material: -0" H (less stack) Stamp: Yes Nat'l Board: gn. posure C. Seismic design per ASCE 7-05, I=1.25, Site D, S _S =100%, S ₁ =40°	130 130 1/A

4.74 MMBtu/hr Hot Oil Heater 4.079 MMBtu/hr / 0.86 eff. = 4.74 MMBtu/hr

THOMAS RUSSELL CO.

Tulsa, Oklahoma

JOB NO:	TRJ-211	
<u></u>	<u>.</u>	

Chesapeake Energy CLIENT:

SUBJECT: 120 MM Cryo Plant DATE: 7/31/2008 BY: AHO

		FIRED	HEATER		
Service: Regen Ga	s Heater			Tag No:	H-741
Design Duty, MBTU/Hr	4079		-	Type:	Helical Coil
No. of Coils per Unit	On	e No. Units:	One	Model: Heatec I	-ICI-4010-40-G
Fluid		Rege	en Gas	Burr	iers
		Inlet	Outlet		Gas Oil
Liquids	Lbs/Hr			LHV (BTU/cf)	905
Density	Lbs/CuFt			Mol. Wt.	16.2
Molecular Weight				Gravity	
Specific Heat	BTU/Lb °F			Pressure Avail. (psig)	100
Thermal Cond.	BTU/Hr-Ft-°F			Pressure Reg'd (psig)	10
Viscosity	cP	·		Steam for Atomizing	
Vapor	Lbs/Hr	15293	15293	Fuel Gas Reg'd (MSCFD)	129.56 N/A
Density	Lbs/CuFt	3.803	1.871	··· • · · · · · · · · · · · · · · · · ·	clipse WiNOx
Molecular Weight		21.43	21.43		Draft - 20 Hp Blower
Specific Heat	BTU/Lb °F	0.6041	0.7047	Number Reg'd	One
Thermal Cond.	BTU/HrFt °F	0.02298	0.04196	Pilots Req'd	Yes, electric ignition
Viscosity	cP	0.01427	0.0199	NOx	40 ppmvd
Operating Temp.	°F	130	550	Structura	
Operating Pressure	PSIA	950	940	Wind Load, MPH, (3)	i Desigli
Velocity	Ft/Sec		Calc.	Seismic Zone, (3)	
Pressure Drop	PSI	10 Allow.	2 Calc.	Ambient, °F	-20 / 110
Fouling Resistance	SqFt*F/BTU		<u> </u>		
Design Press. / Temp.	Sqrt 17BTO		650 °F	Elevation, Ft	3000
Min. Design Mtl. Temp.		-20 °F@		Stack I	
Corrosion Allowance				Self-supporting	Yes
Insulation Thickness			1625	Minimum Height	8 ft above top of heater
	(0/)		p ceramic fiber	Minimum Wall Thickness:	0.125
Efficiency-Based on LHV Excess Air	(%)	86.0%	(Assume 3% Loss)	Lining Type	No
Firebox Unit Heat Release		· · · · · · · · · · · · · · · · · · ·		Lining Thickness:	No
		32,900	BTU/Hr- Ft^3	Damper:	No
Number of Passes			s, Two fireside		
<u>Coil Design</u>		Radiant	Convection-Bare	Convection-Finned	
Gas Temperature	In/Out	89 / 550		·	······
Number Tubes		One			
Tube O.D.	ln	Single Circuit 4"	4" 900# ANSI RTJ Flg	Inlet and Outlet	
Tube Length	Eff. Ft				
Bare Surface	Sq Ft	569		·	
Finned Surface	Sq Ft	N/A			
Avg. Heat Flux	BTU/Hr-Sq Ft	8,084			
Tube Materials		SA-106 Gr.B Sch 80	SA-	SA-	
Convection Fins (inch):	Height:	Thickness:	No. / inch:	Material:	
Overall Dimension:			(7' - 0" H (Less Stack)	Dry W	eight: 14,600 lbs
Code Requirements:	AS	SME VIII Div I	Stamp: Yes	Nat'l Board:	Yes
2) See attach 3) Wind desig	ed Scope of Supp gn per ASCE 7-05 power to be 480 v	-	smic design per ASCE 7-05	5, I=1.25, Site D. , S _S =100%	, S ₁ =40%
REVISION ENGINEER/DA	ATE	A AHO 7/31/08 Check Rate	0 DDO9/3/08 Purchase	1 JRG 12/9/08 Revised Process	<u> </u>

6.59 MMBtu/hr Hot Oil Heater 5.605 MMBtu/hr / 0.85 eff. = 6.59 MMBtu/hr (each)

THOMAS RUSSELL CO. Tulsa, Oklahoma

JOB NO: 231 CLIENT: SUBJECT: 200 MMs	cfd Cryo Plant		DATE: BY:	9/21/2 JR(231-	G		
		FIRED	HEATER				
Service: Regen Gas	s Heater			Tag No:	H-74	¥1	
Design Duty, MBTU/Hr	5605			Туре:	Helical	Coil	
No. of Coils per Unit	On	e No. Units:	On	e Model: Heatec H	HCI-5010-40-G)	
Fluid		Rege	n Gas	Burn	ners		
		Inlet	Outlet		Gas	Oil	
Liquids	Lbs/Hr	0	0	LHV (BTU/cf)	973		
Density	Lbs/CuFt			Mol. Wt.	18.26		
Molecular Weight				Gravity			
Specific Heat	BTU/Lb °F			Pressure Avail. (psig)	100		
Thermal Cond.	BTU/Hr-Ft-°F			Pressure Req'd (psig)	10		
Viscosity	cP			Steam for Atomizing			
Vapor	Lbs/Hr	20840	20840	Fuel Gas Req'd (MSCFD)	167.53	N/A	
Density	Lbs/CuFt	3.824	1.885	Mfgr: E	clipse WiNOX		
Molecular Weight		21.57	21.57	Type: Forced Draft - 20 Hp Blower		Blower	
Specific Heat	BTU/Lb °F	0.6169	0.7189	Number Req'd	On		
Thermal Cond.	BTU/HrFt °F	0.0232	0.0422	Pilots Req'd	Yes, electrical ignition		
Viscosity	Viscosity CP		0.0143 0.0198		NOx 40 ppm		
Operating Temp.	ating Temp. °F		550	550 Structur		ral Design	
Operating Pressure	PSIA	949	939	Wind Load, MPH, (3)	90, Exp.C, I=1	.15, Cf=0.7	
Velocity	Ft/Sec	Allow.	28.7 Calc.	Seismic Zone, (3)	I = 1.	25	
Pressure Drop	PSI	10 Allow.	6 Calc.	Ambient, °F	-20 /	110	
Fouling Resistance	SqFt*F/BTU	0.0	001	Elevation, Ft	750)	
Design Press. / Temp.	and the second	1095 PSIG	650 °F	Stack D	Design		
Min. Design Mtl. Temp.		-20 °F @	1095 PSIG	Self-supporting	Ye	S	
Corrosion Allowance		0.0	625	Minimum Height	8 ft above to	o of heate	
Insulation Thickness		3" - 5" ceramic fi	ber on the interior	Minimum Wall Thickness: 0.125		25	
Efficiency-Based on LHV	(%)	85.0%	(Assume 3% Loss)	Lining Type No		1	
Excess Air		1	5	Lining Thickness:	No	1	
Firebox Unit Heat Release		27,800	BTU/Hr- Ft ³	Damper:	No		
Number of Passes		One - process	, Two - fireside				
Coil Design		Radiant	Convection-Bare	Convection-Finned			
Gas Temperature	In/Out	135 / 550					
Number Tubes		One					
Tube O.D.	In	Single Circuit 4"	4" 900# RTJ Flg	Inlet and Outlet			
Tube Length	Eff. Ft						
Bare Surface	Sq Ft	697					
Finned Surface	Sq Ft	N/A					
Avg. Heat Flux	BTU/Hr-Sq Ft	8,278					
Tube Materials		SA-106 Gr.B Sch 80	SA-	SA-			
Convection Fins (inch):	Height:	Thickness:	No. / inch:	Material:			
Overall Dimension:		5' - 8" L x 7' - 0" W x 8' - 6'		Dry Weight:	18,450 lbs		
 See atta Wind de 	% to duty and 10 ached Scope of S esign per ASCE 7 power to be 480			Nat'l Board: 7-05, I=1.25, Site D. , S _s =409	Ye: % , S ₁ =8%	5	
REVISION	T	Α	0	1 1			
ENGINEER/DA	TE	JRG 9/21/10	JRG 9/21/10		Т		
ISSUED FOR		5121110	3/21/10				

ISSUED FOR

RFQ

Purchase

7/7/2011, 3:15 PM, Form-FRD-HTR

21.22 MMBtu/hr Hot Oil Heater 17.4 MMBtu/hr / 0.82 eff. = 21.22 MMBtu/hr (each)

THOMAS RUSSELL CO. Tulsa, Oklahoma

Г

and the second	a series a series of the serie				and the second
		FIRED	HEATER		
	ter for E-207			Tag No:	H-781
Design Duty, MBTU/Hr	17,400			Туре:	Helical Coil
No. of Coils per Unit	On	e No. Units:	Or		0010-40(D)-G
Fluid		50:50 TI	EG - Water		ners
11		Inlet	Outlet		Gas Oil
Liquids	Lbs/Hr	333,142	333,142	LHV (BTU/scf)	973
Density	Lbs/CuFt	64.15	62.56	Mol. Wt.	18.26
Molecular Weight		32.17	32.17	Gravity	
Specific Heat	BTU/Lb °F	0.859	0.882	Pressure Avail. (psig)	100
Thermal Cond.	BTU/Hr-Ft-°F	0.223	0.220	Pressure Req'd (psig)	
Viscosity	cP	1.186	0.831	Steam for Atomizing	
Vapor	Lbs/Hr	0	0	Fuel Gas Req'd (MSCFD)	539.10 N/A
Density	Lbs/CuFt				lipse Ratiomatic
Molecular Weight					Draft - 40 HP Blower
Specific Heat	BTU/Lb °F			Number Reg'd	One
Thermal Cond.	BTU/HrFt °F			Pilots Reg'd (Note 4)	Yes, electrical ignition
Viscosity	cP			NOx	▲ < 75 ppmvd
Operating Temp.	°F	195	255	Structura	
Operating Pressure	PSIA	90		Wind Load, MPH, (3)	boolgii
Velocity	Ft/Sec		A 8 Calc.	Seismic Zone, (3)	
Pressure Drop	PSI	20 Allow.	▲ 17 Calc.	Ambient, °F	-20 / 110
Fouling Resistance	SqFt*F/BTU	0.0	0020	Elevation, Ft	1300
Design Press. / Temp.		150 PSIG	400 °F	Stack I	the second state of the second s
Min. Design Mtl. Temp.		-20 °F @	150 PSIG	Self-supporting	Yes
Corrosion Allowance		0.125		Minimum Height	8 ft above top of heater
Insulation Thickness		3-5" high tem	p ceramic fiber	Minimum Wall Thickness:	0.125
Efficiency-Based on LHV	(%)	▲ 82.0%	(Assume 3% Loss)	Lining Type	No
Excess Air			15	Lining Thickness:	No
Firebox Unit Heat Release		▲ 28,834	BTU/Hr- Ft^3	Damper:	No
Number of Passes			, Two - Fireside		NO
Coil Design		Radiant	Convection-Bare	Convection-Finned	
Gas Temperature	In/Out	195 / 255		Convection-1 milieu	
Number Tubes		Two			
Tube O.D.	In	A 4" Sch 40		Inlet and Outlet	
Tube Length	Eff. Ft				▲8" 300# RFWN
Bare Surface	Sq Ft	1 ,453			
Finned Surface	Sq Ft	N/A			
Avg. Heat Flux	BTU/Hr-Sq Ft	▲ 15,235			
Tube Materials		SA- 106 Gr. B	SA-	SA-	
Convection Fins (inch):	Height:	Thickness:	No. / inch:		
Overall Dimension:		x 10' H (Less Stack)	NO. 7 IIIOII.	30,000 lbs Dry	Weight
Code Requirements:		ME VIII Div I	Stamp: Yes	Nat'l Board:	
2) See atta		ipply.		7-05, I=1.25, Site D. , S _S =409	Yes % , S ₁ =8%
REVISION		3	0	1	2
ENGINEER/DA		JRG 1/11/11	JRG 9/21/10	GER 11/22/10	JRG 1/10/11
ISSUED FOR		Revised - Purchase	Purchase	Revised	Revised

Purchase

Revised

Revised

Williams Ohio Valley Midstream LLC **FORT BEELER GAS PROCESSING PLANT** Class II Administrative Update (R13-2826J) **Attachment L - Emission Unit Data Sheet**

NATURAL GAS GLYCOL DEHYDRATION UNIT DATA SHEET

		Manufacture	er and Model	KWI - TEG DI	EHYDRATOR
		Max Dry Gas Flow Rate (MMscf/day)		5.0	
General Glycol Dehydration Unit		Design Heat Input (MMBtu/hr) - HHV		0.22	
		Design Type (DEG or TEG)		TEG	
		Source Status ²		ES	
-	ata	Date Installed/Modified/Removed ³		201	1/
		Regenerator Still Vent APCD ⁴		NA	
		Fuel HV (Btu/scf) - HHV		1,0	20
		H ₂ S Content (gr/100 scf)		0.2	
		Operation (hrs/yr)		8,760	
Source ID # ¹	Vent	Reference⁵	PTE ⁶	lbs/hr	tons/yr
		GRI-GLYCalc	VOC	3.88	17.00
		GRI-GLYCalc	Benzene	0.07	0.31
		GRI-GLYCalc	Ethylbenzene		
		GRI-GLYCalc	Formaldehyde		
	Dehydrator 01	GRI-GLYCalc	n-Hexane	0.07	0.30
DH-01/15E	(Flash Tank and Still Vent	GRI-GLYCalc	Toluene	0.31	1.34
	(Regenerator))	GRI-GLYCalc	2,2,4-TMP		
		GRI-GLYCalc	Xylenes	0.98	4.27
		GRI-GLYCalc	Other HAPs		
		GRI-GLYCalc	Total HAP	1.42	6.22
		40CFR98	CO2e	128	562
Source ID # ¹	Vent	Reference ⁵	PTE ⁶	lbs/hr	tons/yr
		AP	NOx	0.02	0.10
		AP	CO	0.02	0.08
		AP	VOC	1.2E-03	0.01
		AP	SO2	1.3E-04	5.7E-04
		AP	PM10/2.5	1.7E-03	0.01
		Sum	Benzene	4.6E-07	2.0E-06
		AP	Ethylbenzene		
BLR-01/16E	Reboiler 01	AP	Formaldehyde	1.6E-05	7.1E-05
		AP	n-Hexane	3.9E-04	1.7E-03
		AP	Toluene	7.4E-07	3.2E-06
		AP	2,2,4-TMP		
		AP	Xylenes		
		AP	Other HAPs	2.6E-07	1.1E-06
		SUM	Total HAP	4.1E-04	1.8E-03
		40CFR98	CO2e	26	114

Williams Ohio Valley Midstream LLC FORT BEELER GAS PROCESSING PLANT Class II Administrative Update (R13-2826J) Attachment L - Emission Unit Data Sheet

NATURAL GAS GLYCOL DEHYDRATION UNIT DATA SHEET (Continued)

Notes to NATURAL GAS GLYCOL DEHYDRATION UNIT DATA SHEET

1. Enter the appropriate Source Identification Numbers for the glycol dehydration unit Reboiler Vent and glycol Regenerator Still Vent. The glycol dehydration unit Reboiler Vent and glycol Regenerator Still Vent should be designated RBV-1 and RSV-1, respectively. If the compressor station incorporates multiple glycol dehydration units, a Glycol Dehydration Unit Data Sheet shall be completed for each, using Source Identification #s RBV-2 and RSV-2, RBV-3 and RSV-3, etc.

2. Enter the Source Status using the following codes:

NS = Construction of New Source

ES = Existing Source

MS = Modification of Existing Source

RS = Removal of Source

3. Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source), modification or removal.

4. Enter the Air Pollution Control Device (APCD) type designation using the following codes:

NA = None

CD = Condenser

FL = Flare

CC = Condenser/Combustion Combination

TO = Thermal Oxidizer

5. Enter the Potential Emissions Data Reference designation using the following codes:

MD = Manufacturer's Data AP = AP-42 GR = GRI-GLYCalcTM OT = Other (please list):

6. Enter the Reboiler Vent and glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs per hour and tons per year. The glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalcTM (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalc Aggregate Calculations Report to this Glycol Dehydration Unit Data Sheet(s). This PTE data shall be incorporated in the Emissions Summary Sheet.

Include a copy of the GRI-GLYCalcTM analysis. This includes a printout of the aggregate calculations report, which shall include emissions reports, equipment reports, and stream reports.

*An explanation of input parameters and examples, when using GRI-GLYCalcTM is available on our website.

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment L - Emission Unit Data Sheet

40 CFR Part 63; Subpart HH & HHH Registration Form

West Virginia Department of Environmental Protection

Division of Air Quality

DH-01/17E

40 CFR Part 63; Subpart HH & HHH Registration Form

DIVISION OF AIR QUALITY : (304) 926-0475 WEB PAGE: http://www.wvdep.org

Complete this form for any oil and natural gas production or natural gas transmission and storage facility that uses an affected unit under HH/HHH, whether subject or not.

	Section A: Facility Description			
Affected facility actual annu	5.00			
Affected facility actual annu	na			
The affected facility process	☑ Yes	□ No		
The affected facility process the NG transmission and st The affected facility is:	☑ Yes	□ No		
	□ prior to the point of custody transfer and there is no NG processing plant			
The affected facility transports or stores natural gas prior to entering the pipeline to a local distribution company or to a final end user (if there is no local distribution company).				
The affected facility exclusively processes, stores, or transfers black oil □ Yes ☑ with an initial producing gas-to-oil ratio (GOR): na scf/bbl API gravity: na degrees				

	Section B: Dehydration Unit (if applicable) ¹						
Description: 5.0 MMscfd - DH-01/15E							
Date of Installation: 2011	Annual Operating Hours: 8,760 Burner rating (MMBtu/hr): 0.20						
Exhaust Stack Height (ft): 10.0	Stack Diameter (ft): 0.6 Stack Temp. (oF): 212						
Glycol Type: 🗹 TEG	EG Other: na						
Glycol Pump Type: 🛛 Elect	☑ Gas If Gas, what is the volume ratio?: 0.08 acfm/gpm						
Condenser installed? □ Yes	☑ No Exit Temp: na Condenser Pressure: na						
Incinerator/flare installed?	☑ No Destruction Eff.: na						
Other controls installed?	☑ No Describe: na						
Wet Gas ² :	Gas Temperature: 72 oF Gas Pressure: 832 psig						
(Upstream of Contact Tower)	Saturated Gas?: If Yes I No If no, water content?: na						
Dry Gas:	Gas Flowrate: Actual: 5.0 MMscfd Design: 5.0 MMscfd						
(Downstream of Contact Tower)	Water Content: 7.0 lb/MMscf						
Loop Clypel:	Circulation Rate: Actual ³ : 0.67 gpm Max ⁴ : 0.67 gpm						
Lean Glycol:	Pump make/model: Kimray 4020 PV						
Clused Electh Tank (if applicable);	Temp: 150 oF Pressure: 50 psig Vented: ☑ Yes □ No						
Glycol Flash Tank (if applicable):	If no, describe vapor control: At least 50% of flash tank vapors used as						
	reboiler fuel, the remainder is vented to atmosphere.						
Stripping Gas (if applicable):	Source of Gas na Rate: na						

Williams Ohio Valley Midstream LLC **FORT BEELER GAS PROCESSING PLANT** Class II Administrative Update (R13-2826J)

Attachment L - Emission Unit Data Sheet

40 CFR Part 63; Subpart HH & HHH Registration Form - DH-01/17E - Cont

Please attach the following required dehydration unit information:

- 1. System map indicating the chain of custody information. See Page 43 of this document for an example of a gas flow schematic. It is not intended that the applicant provide this level of detail for all sources. The level of detail that is necessary is to establish where the custody transfer points are located. This can be accomplished by submitting a process flow diagram indicating custody transfer points and the natural gas flow. However, the DAQ reserves the right to request more detailed information in order to make the necessary decisions.
- 2. Extended gas analysis from the Wet Gas Stream, including mole percent of C1-C8, benzene, ethylbenzene, toluene, xylene and n-hexane, using Gas Processors Association (GPA) 2286 (or similar). A sample should be taken from the inlet gas line, downstream from any inlet separator, and using a manifold to remove entrained liquids from the sample and a probe to collect the sample from the center of the gas line. GPA standard 2166 reference method or a modified version of EPA Method TO-14, (or similar) should be used.

3. GRI-GLYCalc Ver. 3.0 aggregate report based on maximum Lean Glycol circulation rate and maximum throughput.

4. Detailed calculations of gas or hydrocarbon flow rate.

Section C: Facility NESHAPS Subpart HH/HHH status							
		Subject to Subpart HH However, <u>EXEMPT</u> because the facility is an area source of HAP emissions <u>and</u> the actual average emissions of benzene from the glycol dehy- dration unit process vent to the atmosphere is < 0.90 megagram per year (1.0 tpy); see 40CFR§63.764(e)(1)(ii).					
Affected facility status: — (choose only one) —		□ Subject to Subpart HHH					
		Not Subject		< 10/25 TPY			
		Because:		Affected facility exclusively handles black oil.			
				Facility-wide actual annual average NG throughput is < 650 thousand scf/day and facility-wide actual annual average hydrocarbon liquid is < 250 bpd.			
				No affected source is present.			

Page: 1 GRI-GLYCalc VERSION 4.0 - SUMMARY OF INPUT VALUES Case Name: Groves TEG Dehydrator (Fort Beeler) File Name: C:\projects2\wfs\OVM\Fort Beeler\Groves Dehy (Fort Beeler).ddf Date: May 07, 2014 DESCRIPTION: Description: 5 MMscfd TEG Dehydrator. Extended inlet gas analysis for Groves Master dated 07-02-13. Inlet gas temp = 72F, pressure=836 psig. Kimray 4020 PV glycol pump. Annual Hours of Operation: 8760.0 hours/yr WET GAS: _____ Temperature: 72.00 usy. 836.00 psig 72.00 deg. F Wet Gas Water Content: Saturated Component Conc. (vol %) ----- -----Carbon Dioxide 0.1322 Nitrogen 0.3474 Methane 81.0242 Ethane 12.9568 Propane 3.5869
 Isobutane
 0.4831

 n-Butane
 0.7906

 Isopentane
 0.2243

 n-Pentane
 0.1722

 n-Hexane
 0.0535
 Cyclohexane 0.0136 Other Hexanes 0.1051 Heptanes 0.0629 Methylcyclohexane 0.0112 Benzene 0.0012
 Toluene
 0.0030

 Xylenes
 0.0047

 C8+ Heavies
 0.0271
 DRY GAS: Flow Rate: 5.0 MMSCF/day Water Content: 7.0 lbs. H2O/MMSCF LEAN GLYCOL: _____ Glycol Type: TEG Water Content: 1.5 wt% H2O Flow Rate: 0.7 gpm

Att L - 5.0 MMscfd TEG DEHYDRATOR 01 - DH-01/15E - Page 1 of 11

PUMP:

FLASH TANK:

Flash Control: Combustion device Flash Control Efficiency: 50.00 % Temperature: 150.0 deg. F Pressure: 50.0 psig

Page: 1

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: Groves TEG Dehydrator (Fort Beeler)
File Name: C:\projects2\wfs\OVM\Fort Beeler\Groves Dehy (Fort Beeler).ddf
Date: May 07, 2014

DESCRIPTION:

Description: 5 MMscfd TEG Dehydrator. Extended inlet gas analysis for Groves Master dated 07-02-13. Inlet gas temp = 72F, pressure=836 psig. Kimray 4020 PV glycol pump.

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.0683		0.2992
Ethane	0.0827		0.3623
Propane	0.0782	1.878	0.3427
Isobutane	0.0227	0.545	0.0994
n-Butane	0.0540	1.297	0.2367
Isopentane	0.0206	0.494	0.0902
n-Pentane	0.0222	0.534	0.0974
n-Hexane	0.0183	0.439	0.0800
Cyclohexane	0.0416	0.998	0.1822
Other Hexanes	0.0236	0.566	0.1032
Heptanes	0.0668	1.604	0.2928
Methylcyclohexane	0.0478	1.148	0.2094
Benzene	0.0551	1.322	0.2412
Toluene	0.2408	5.780	1.0548
Xylenes	0.7943	19.064	3.4792
C8+ Heavies Total Emissions	0.1718	4.123	0.7524
Total Hydrocarbon Emissions	1.8089	43.414	7.9231
Total VOC Emissions	1.6579	39.790	7.2616
Total HAP Emissions	1.1085	26.604	4.8552
Total BTEX Emissions	1.0902	26.165	4.7752

FLASH GAS EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	4.2117	101.082	18.4474
Ethane	1.5360	36.864	6.7278
Propane	0.7116	17.078	3.1168
Isobutane	0.1427	3.425	0.6250
n-Butane	0.2655	6.371	1.1627
Isopentane	0.0925	2.220	0.4052
n-Pentane	0.0813	1.951	0.3560
n-Hexane	0.0385	0.924	0.1687
Cyclohexane	0.0222	0.533	0.0973
Other Hexanes	0.0653	1.567	0.2861

Heptanes	0.0717	1.721	0.3141
Methylcyclohexane	0.0206	0.495	0.0903
Benzene	0.0046	0.110	0.0201
Toluene	0.0135	0.324	0.0591
Xylenes	0.0190	0.455	0.0830
C8+ Heavies	0.0270	0.648	0.1183
Total Emissions	7.3237	175.769	32.0779
Total Hydrocarbon Emissions	7.3237	175.769	32.0779
Total VOC Emissions	1.5760	37.823	6.9027
Total HAP Emissions	0.0756	1.814	0.3310
Total BTEX Emissions	0.0371	0.889	0.1623

FLASH TANK OFF GAS

Component	lbs/hr	lbs/day	tons/yr
Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane	8.4235 3.0720 1.4232 0.2854 0.5309 0.1850 0.1626 0.0770	34.156 6.850 12.742 4.440 3.902 1.849	6.2335 1.2501 2.3254 0.8104 0.7120 0.3374
Cyclohexane	0.0444	1.066	0.1946
Other Hexanes	0.1306	3.135	0.5721
Heptanes	0.1434	0.221	0.6283
Methylcyclohexane	0.0412		0.1806
Benzene	0.0092		0.0403
Toluene	0.0270		0.1182
Xylenes	0.0379		0.1661
C8+ Heavies	0.0540	1.296	0.2365
Total Emissions	14.6474		64.1558
Total Hydrocarbon Emissions	14.6474		64.1558
Total VOC Emissions	3.1519		13.8054
Total HAP Emissions	0.1511		0.6619
Total BTEX Emissions	0.0741		0.3246

COMBINED REGENERATOR VENT/FLASH GAS EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	4.2800	102.721	18.7466
Ethane	1.6187	38.850	7.0901
Propane	0.7898	18.956	3.4594
Isobutane	0.1654	3.970	0.7244
n-Butane	0.3195	7.668	1.3994
Isopentane	0.1131	2.714	0.4954
n-Pentane	0.1035	2.485	0.4534
n-Hexane	0.0568	1.363	0.2487
Cyclohexane	0.0638	1.531	0.2794
Other Hexanes	0.0889	2.133	0.3893
Heptanes	0.1386	3.326	0.6069
Methylcyclohexane	0.0684	1.642	0.2997
Benzene	0.0597	1.432	0.2614

Toluene Xylenes	0.2543 0.8133	6.103 19.519	Page: 3 1.1139 3.5622
C8+ Heavies	0.1988	4.771	0.8707
Total Emissions	9.1326	219.183	40.0010
Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions	9.1326 3.2339 1.1841 1.1273	219.183 77.613 28.417 27.055	40.0010 14.1643 5.1862 4.9375

COMBINED REGENERATOR VENT/FLASH GAS EMISSION CONTROL REPORT:

Component	Uncontrolled tons/yr	Controlled tons/yr	% Reduction
Methane Ethane Propane Isobutane n-Butane	37.1940 13.8178 6.5762 1.3495 2.5620	18.7466 7.0901 3.4594 0.7244 1.3994	48.69 47.39
Isopentane	0.9006	0.4954	44.99
n-Pentane	0.8094	0.4534	43.98
n-Hexane	0.4174	0.2487	40.41
Cyclohexane	0.3767	0.2794	25.82
Other Hexanes	0.6754	0.3893	42.36
Heptanes	0.9211	0.6069	34.11
Methylcyclohexane	0.3900	0.2997	23.15
Benzene	0.2815	0.2614	7.15
Toluene	1.1730	1.1139	5.04
Xylenes	3.6453	3.5622	2.28
C8+ Heavies	0.9890	0.8707	11.96
Total Emissions	72.0788	40.0010	44.50
Total Hydrocarbon Emissions	72.0788	40.0010	44.50
Total VOC Emissions	21.0670	14.1643	32.77
Total HAP Emissions	5.5172	5.1862	6.00
Total BTEX Emissions	5.0997	4.9375	3.18

EQUIPMENT REPORTS:

ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages:	1.25
Calculated Dry Gas Dew Point:	1.24 lbs. H2O/MMSCF
Temperature:	72.0 deg. F
Pressure:	836.0 psig
Dry Gas Flow Rate:	5.0000 MMSCF/day

Att L - 5.0 MMscfd TEG DEHYDRATOR 01 - DH-01/15E - Page 5 of 11

Glycol Losses with Dry Gas:	0.0226 lb/hr
Wet Gas Water Content:	Saturated
Calculated Wet Gas Water Content:	28.38 lbs. H2O/MMSCF
Calculated Lean Glycol Recirc. Ratio:	7.10 gal/lb H2O

Component	Remaining in Dry Gas	
Water	4.36%	95.64%
Carbon Dioxide	99.80%	0.20%
Nitrogen	99.99%	0.01%
Methane	99.99%	0.01%
Ethane	99.96%	0.04%
Propane	99.93%	0.07%
Isobutane	99.91%	0.09%
n-Butane	99.87%	0.13%
Isopentane	99.87%	0.13%
n-Pentane	99.84%	0.16%
n-Hexane	99.73%	0.27%
Cyclohexane	98.74%	1.26%
Other Hexanes	99.80%	0.20%
Heptanes	99.50%	0.50%
Methylcyclohexane	98.63%	1.37%
Benzene	87.62%	12.38%
Toluene	82.46%	17.54%
Xylenes	69.73%	30.27%
C8+ Heavies	99.22%	0.78%

FLASH TANK

	Flash Control:	Combustion device
Flash	Control Efficiency:	50.00 %
	Flash Temperature:	150.0 deg. F
	Flash Pressure:	50.0 psig

Component	Left in Glycol	Removed in Flash Gas
Water Carbon Dioxide Nitrogen Methane Ethane	99.54% 7.56% 0.79% 0.80% 2.62%	99.21%
Propane	5.21%	94.79%
Isobutane	7.37%	92.63%
n-Butane	9.24%	90.76%
Isopentane	10.26%	89.74%
n-Pentane	12.30%	87.70%
n-Hexane	19.47%	80.53%
Cyclohexane	49.88%	50.12%
Other Hexanes	15.85%	84.15%
Heptanes	32.07%	67.93%
Methylcyclohexane	55.42%	44.58%
Benzene	86.41%	13.59%
Toluene	90.71%	9.29%
Xylenes	96.03%	3.97%
C8+ Heavies	78.65%	21.35%

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	
Water Carbon Dioxide Nitrogen Methane Ethane	50.18% 0.00% 0.00% 0.00% 0.00%	100.00%
Propane	0.00%	100.00%
Isobutane	0.00%	100.00%
n-Butane	0.00%	100.00%
Isopentane	2.64%	97.36%
n-Pentane	2.48%	97.52%
n-Hexane	1.85%	98.15%
Cyclohexane	5.93%	94.07%
Other Hexanes	4.16%	95.84%
Heptanes	1.29%	98.71%
Methylcyclohexane	6.72%	93.28%
Benzene	5.74%	94.26%
Toluene	8.66%	91.34%
Xylenes	13.41%	86.59%
C8+ Heavies	13.66%	86.34%

STREAM REPORTS:

WET GAS STREAM

Temperature: Pressure: Flow Rate:	72.00 deg. F 850.70 psia 2.09e+005 scfh		
	Component	Conc. (vol%)	Loading (lb/hr)
	Carbon Dioxide Nitrogen Methane	5.98e-002 1.32e-001 3.47e-001 8.10e+001 1.29e+001	3.20e+001 5.34e+001 7.14e+003
	Isobutane n-Butane Isopentane	3.58e+000 4.83e-001 7.90e-001 2.24e-001 1.72e-001	1.54e+002 2.52e+002 8.89e+001
	Cyclohexane Other Hexanes	1.05e-001 6.29e-002	6.29e+000 4.97e+001 3.46e+001
	Toluene	1.20e-003 3.00e-003 4.70e-003 2.71e-002	1.52e+000 2.74e+000

Total Components 100.00 1.10e+004

DRY GAS STREAM

(vol%)	Loading (lb/hr)
2.61e-003 1.32e-001 3.47e-001 3.10e+001	2.58e-001 3.19e+001 5.34e+001 7.14e+003 2.14e+003
4.83e-001 7.90e-001 2.24e-001	8.68e+002 1.54e+002 2.52e+002 8.88e+001 6.81e+001
1.34e-002 1.05e-001 5.26e-002	2.53e+001 6.21e+000 4.96e+001 3.44e+001 5.96e+000
2.47e-003 3.28e-003 2.69e-002	4.51e-001 1.25e+000 1.91e+000 2.52e+001
	1.09e+004
Conc.	Loading
	Loading
Conc. (wt%) 9.85e+001 1.50e+000 1.73e-012 2.11e-013	Loading
Conc. (wt%) 9.85e+001 1.50e+000 1.73e-012 2.11e-013 3.18e-018 1.11e-007 5.26e-009 1.15e-009 2.09e-009	Loading (lb/hr) 3.71e+002 5.66e+000 6.51e-012 7.96e-013
Conc. (wt%) 9.85e+001 1.50e+000 1.73e-012 2.11e-013 3.18e-018 1.11e-007 5.26e-009 1.15e-009 2.09e-009 1.48e-004 1.50e-004 9.12e-005 5.96e-004 2.72e-004	Loading (lb/hr) 3.71e+002 5.66e+000 6.51e-012 7.96e-013 3.08e-017 4.17e-007 2.36e-008 4.33e-009 7.86e-009
1381 34721 51151 1232 -	(vol%) .61e-003 .32e-001 .47e-001 .10e+001 .30e+001 .59e+000 .83e-001 .90e-001 .24e-001 .34e-002 .34e-002 .05e-001 .26e-002 .10e-002 .05e-003 .47e-003 .28e-003 .28e-002

Page: 7

C8+ Heavies 7.21e-003 2.72e-002 Total Components 100.00 3.77e+002

RICH GLYCOL AND PUMP GAS STREAM Temperature:72.00 deg. FPressure:850.70 psiaFlow Rate:7.18e-001 gpm NOTE: Stream has more than one phase. Component Conc. Loading (wt%) (lb/hr) TEG 9.30e+001 3.71e+002 Water 2.84e+000 1.13e+001 Carbon Dioxide 2.48e-002 9.90e-002 Nitrogen 1.62e-002 6.47e-002 Methane 2.13e+000 8.49e+000 Ethane 7.90e-001 3.15e+000 Propane 3.76e-001 1.50e+000 Isobutane 7.72e-002 3.08e-001 n-Butane 1.47e-001 5.85e-001 Isopentane 5.16e-002 2.06e-001 n-Pentane 4.64e-002 1.85e-001 n-Hexane 2.40e-002 9.56e-002 Cyclohexane 2.22e-002 8.86e-002 Other Hexanes 3.89e-002 1.55e-001 Heptanes 5.29e-002 2.11e-001 Methylcyclohexane 2.32e-002 9.25e-002 Benzene 1.69e-002 6.76e-002 Toluene 7.28e-002 2.91e-001 Xylenes 2.39e-001 9.55e-001 C8+ Heavies 6.34e-002 2.53e-001 _____ ____ Total Components 100.00 3.99e+002 FLASH TANK OFF GAS STREAM

Temperature: 150.00 deg. F Pressure: 64.70 psia Pressure: 64.70 psia Flow Rate: 2.62e+002 scfh Component Conc. Loading (vol%) (lb/hr) Water 4.18e-001 5.21e-002 Carbon Dioxide 3.01e-001 9.15e-002 Nitrogen 3.31e-001 6.42e-002 Methane 7.59e+001 8.42e+000 Ethane 1.48e+001 3.07e+000 Propane 4.67e+000 1.42e+000 Isobutane 7.10e-001 2.85e-001 n-Butane 1.32e+000 5.31e-001 Isopentane 3.71e-001 1.85e-001 n-Pentane 3.26e-001 1.63e-001 n-Hexane 1.29e-001 7.70e-002 Cyclohexane 7.63e-002 4.44e-002 Other Hexanes 2.19e-001 1.31e-001 Heptanes 2.07e-001 1.43e-001 Methylcyclohexane 6.07e-002 4.12e-002 Benzene 1.70e-002 9.19e-003 Toluene 4.24e-002 2.70e-002 Xylenes 5.16e-002 3.79e-002 C8+ Heavies 4.58e-002 5.40e-002 Total Components 100.00 1.49e+001

FLASH TANK GLYCOL STREAM

FLASH TANK GLYCOL STREAM		
Temperature: 150.00 deg. F Flow Rate: 6.85e-001 gpm		
Component	(wt응)	Loading (lb/hr)
TEG Water Carbon Dioxide Nitrogen	9.65e+001 2.93e+000	3.71e+002 1.13e+001 7.49e-003 5.08e-004
Propane Isobutane	2.15e-002 2.04e-002 5.90e-003 1.41e-002 5.50e-003	7.82e-002 2.27e-002 5.40e-002
n-Hexane Cyclohexane Other Hexanes		1.86e-002 4.42e-002 2.46e-002
Toluene	1.52e-002 6.86e-002 2.39e-001 5.18e-002	5.84e-002 2.64e-001 9.17e-001 1.99e-001
Total Components		
FLASH GAS EMISSIONS Flow Rate: 6.21e+002 scfh Control Method: Combustion Dev Control Efficiency: 50.00	vice	
Component	Conc. (vol%)	Loading (lb/hr)
Carbon Dioxide Nitrogen Methane	4.99e+001 2.91e+001 1.40e-001 1.60e+001 3.12e+000	2.09e+001 6.42e-002 4.21e+000
Isobutane n-Butane Isopentane	9.86e-001 1.50e-001 2.79e-001 7.84e-002 6.89e-002	1.43e-001 2.65e-001 9.25e-002
n-Hexane Cyclohexane Other Hexanes		2.22e-002

Page: 9

 Heptanes
 4.37e-002
 7.17e-002

 Methylcyclohexane
 1.28e-002
 2.06e-002

 Benzene
 3.60e-003
 4.60e-003

 Toluene
 8.95e-003
 1.35e-002

 Xylenes
 1.09e-002
 1.90e-002

 C8+
 Heavies
 9.69e-003
 2.70e-002

 Total
 Components
 100.00
 4.30e+001

REGENERATOR OVERHEADS STREAM

Temperature: Pressure: Flow Rate:	212.00 deg. F 14.70 psia 1.28e+002 scfh			
	Component	Conc. (vol%)	Loading (lb/hr)	
	Wate	er 9.26e+001	5.61e+000	

Carbon Dioxide Nitrogen Methane	5.06e-002 5.39e-003 1.27e+000 8.17e-001	7.49e-003 5.08e-004 6.83e-002
Propane Isobutane n-Butane Isopentane	5.27e-001 1.16e-001 2.76e-001	7.82e-002 2.27e-002 5.40e-002 2.06e-002
Cyclohexane Other Hexanes	8.13e-002 1.98e-001	4.16e-002 2.36e-002 6.68e-002
Toluene	2.09e-001 7.77e-001 2.22e+000 3.00e-001	2.41e-001 7.94e-001
Total Components	100.00	7.43e+000

Williams Ohio Valley Midstream LLC

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment L - Emission Unit Data Sheet

Storage Tank Data Sheet (Insignificant Emissions Units)

Source	Contents	Orient'n	Volume	Thru-Put	V	oc	НАР		
ID			(gal)	(gal/yr)	lb/hr	tpy	lb/hr	tpy	
T-01	Condensate (Meter Prover Skid Tank)				Removed				
T-02	Condensate Tank (60 Site 880 Tank)	Vertical	8,400	8,400,000					
T-03	Produced Water Tank (Tank 9913)	Vertical	8,820	8,400,000		See Atta	chment N		
T-04	Produced Water Tank (Tank 9914)	Vertical	8,820	8,400,000		See Atta	chment N		
T-05	Diesel Fuel	Horizontal	500	2,000	2.2E-05	9.5E-05			
T-06	Gasoline	Horizontal	300	2,000	0.02	0.07	4.0E-03	0.02	
T-07	Methanol (TXP1)	Horizontal	3,000	6,000	0.01	0.04	0.01	0.04	
T-08	Lube Oil (Tank 4401)	Vertical	4,200	25,200					
T-09	Glycol (TK-2902 Slop Tank)	Vertical	3,460	41,520					
T-10	Glycol (TK-2902A Slop Tank)	Vertical	4,200	50,400					
T-11	Glycol (Groves Tank)	Horizontal	225	2,700					
T-12	Methanol (Groves Tank)	Horizontal	130	1,560	2.0E-03	0.01	2.0E-03	0.01	
T-13	Oil (TXP1 ATM Slop Tank)	Horizontal	8,820	105,840					
T-14	Lube Oil (TXP Residue Compressor)	Horizontal	2,000	24,000					
T-15	Lube Oil (Engine Day Tank)	Horizontal	300	3,600					
T-16	Lube Oil (Engine Day Tank)	Horizontal	300	3,600					
T-17	Lube Oil (C-120)	Horizontal	300	3,600					
T-18	Oil (60 Site)	Horizontal	2,000	24,000					
T-19	Oil (TXP2/TXP3 Residue Compressors)	Horizontal	300	3,600					
T-20	Heat Medium (Oil)	na	750	9,000					
T-21	Heat Medium (Oil)	na	750	9,000					
T-22	Heat Medium (Oil)	na	750	9,000					
T-23	Lube Oil (Engine Day Tank)	Horizontal	300	3,600					
T-24	Used Oil	na	100	1,200					
T-25	Used Oil	na	100	1,200					
				TOTAL:	0.03	0.11	0.01	0.06	
			THR	ESHOLD:	1.00	5.00	0.10	0.50	

TANKS 4.0.9d Emissions Report - Summary Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	Fort Beeler 9913, 9914 Waste Tanks Moundsville West Virginia Williams OVM Vertical Fixed Roof Tank 210 bbl Waste Tanks
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	15.00 10.00 14.00 8.00 8,820.00 952.38 8,400,000.00 N
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Gray/Light Good Gray/Light Good
Roof Characteristics Type: Height (ft) Radius (ft) (Dome Roof)	Dome 0.00 10.00
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

Meterological Data used in Emissions Calculations: Pittsburgh, Pennsylvania (Avg Atmospheric Pressure = 14.11 psia)

TANKS 4.0.9d Emissions Report - Summary Format Liquid Contents of Storage Tank

Fort Beeler 9913, 9914 Waste Tanks - Vertical Fixed Roof Tank Moundsville, West Virginia

			aily Liquid Soperature (de		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Slop Liquids	All	56.69	48.70	64.69	52.55	0.2410	0.1804	0.3187	19.9891			18.28	
Heptane (-n)						0.5535	0.4327	0.7028	100.2000	0.0046	0.0097	100.20	Option 3: A=37358, B=8.2585
Hexane (-n)						1.7546	1.4148	2.1588	86.1700	0.0017	0.0113	86.17	Option 2: A=6.876, B=1171.17, C=224.41
iso-Butane						36.1072	31.2831	41.4341	58.1300	0.0001	0.0137	58.13	Option 1: VP50 = 31.982 VP60 = 38.144
Isopentane						9.3056	7.6276	11.1889	72.1500	0.0005	0.0177	72.15	Option 1: VP50 = 7.889 VP60 = 10.005
n-Butane						24.6056	21.0778	28.5399	58.1300	0.0004	0.0374	58.13	Option 1: VP50 = 21.583 VP60 = 26.098
n-Pentane						6.4112	5.3254	7.6555	72.1500	0.0006	0.0146	72.15	Option 1: VP50 = 5.476 VP60 = 6.873
Propane						103.0798	90.9417	116.2827	44.1100	0.0001	0.0391	44.11	Option 1: VP50 = 92.73 VP60 = 108.19
Residual oil no. 6						0.0000	0.0000	0.0000	190.0000	0.0096	0.0000	387.00	Option 1: VP50 = .00003 VP60 = .00004
Water						0.2297	0.1707	0.3057	18.0000	0.9824	0.8566	18.00	Option 1: VP50 = .178073 VP60 = .255246

TANKS 4.0.9d Emissions Report - Summary Format Individual Tank Emission Totals

Emissions Report for: Annual

Fort Beeler 9913, 9914 Waste Tanks - Vertical Fixed Roof Tank Moundsville, West Virginia

		Losses(lbs)								
Components	Working Loss	Breathing Loss	Total Emissions							
Slop Liquids	190.93	11.79	202.72							
Propane	7.47	0.46	7.93							
iso-Butane	2.62	0.16	2.78							
n-Butane	7.13	0.44	7.57							
n-Pentane	2.79	0.17	2.96							
Hexane (-n)	2.16	0.13	2.30							
Water	163.54	10.10	173.64							
Isopentane	3.37	0.21	3.58							
Heptane (-n)	1.85	0.11	1.96							
Residual oil no. 6	0.00	0.00	0.00							

TANKS 4.0.9d Emissions Report - Summary Format Tank Indentification and Physical Characteristics

Identification

User Identification: City: State: Company: Type of Tank: Description:	Fort Beeler Diesel Tank Moundsville West Virginia Williams OVM Horizontal Tank 500 gallon diesel tank
Tank Dimensions	
Shell Length (ft):	5.80
Diameter (ft):	4.00
Volume (gallons):	500.00
Turnovers:	4.00
Net Throughput(gal/yr):	2,000.00
Is Tank Heated (y/n):	N
Is Tank Underground (y/n):	Ν
Paint Characteristics	
Shell Color/Shade:	Gray/Light
Shell Condition	Good
Breather Vent Settings	
Vacuum Settings (psig):	-0.03
Pressure Settings (psig)	0.03

Meterological Data used in Emissions Calculations: Pittsburgh, Pennsylvania (Avg Atmospheric Pressure = 14.11 psia)

TANKS 4.0.9d Emissions Report - Summary Format Liquid Contents of Storage Tank

Fort Beeler Diesel Tank - Horizontal Tank Moundsville, West Virginia

			ily Liquid Si perature (de		Liquid Bulk Temp Vapor Pressure (psia		Vapor Pressure (psia)		Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Distillate fuel oil no. 2	All	56.69	48.70	64.69	52.55	0.0064	0.0043	0.0082	130.0000			188.00	Option 1: VP50 = .0045 VP60 = .0074

TANKS 4.0.9d Emissions Report - Summary Format Individual Tank Emission Totals

Emissions Report for: Annual

Fort Beeler Diesel Tank - Horizontal Tank Moundsville, West Virginia

	Losses(lbs)				
Components	Working Loss	Breathing Loss	Total Emissions		
Distillate fuel oil no. 2	0.04	0.15	0.19		

TANKS 4.0.9d Emissions Report - Summary Format Tank Indentification and Physical Characteristics

Identification

User Identification: City: State: Company: Type of Tank: Description:	Fort Beeler Gasoline Tank Moundsville West Virginia Williams OVM Horizontal Tank 300 gallon gasoline tank
Tank Dimensions	
Shell Length (ft):	5.13
Diameter (ft):	3.20
Volume (gallons): Turnovers:	300.00 6.67
Net Throughput(gal/yr):	2,000.00
Is Tank Heated (y/n):	N
Is Tank Underground (y/n):	Ν
Paint Characteristics	
Shell Color/Shade: Shell Condition	Gray/Light Good
Breather Vant Sattings	
Breather Vent Settings Vacuum Settings (psig):	-0.03
Pressure Settings (psig)	0.03
5 (1 6)	

Meterological Data used in Emissions Calculations: Pittsburgh, Pennsylvania (Avg Atmospheric Pressure = 14.11 psia)

file:///C:/Program%20Files%20(x86)/Tanks409d/summarydisplay.htm

TANKS 4.0.9d Emissions Report - Summary Format Liquid Contents of Storage Tank

Fort Beeler Gasoline Tank - Horizontal Tank Moundsville, West Virginia

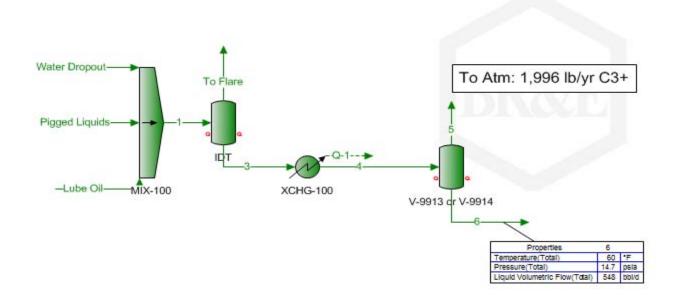
			ily Liquid Si perature (de		Liquid Bulk Temp	Vapo	or Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 12)	All	56.69	48.70	64.69	52.55	5.9671	5.1083	6.9373	64.0000			92.00	Option 4: RVP=12, ASTM Slope=3

TANKS 4.0.9d Emissions Report - Summary Format Individual Tank Emission Totals

Emissions Report for: Annual

Fort Beeler Gasoline Tank - Horizontal Tank Moundsville, West Virginia

	Losses(lbs)				
Components	Working Loss	Breathing Loss	Total Emissions		
Gasoline (RVP 12)	18.19	122.44	140.63		


TANKS 4.0.9d Emissions Report - Summary Format Total Emissions Summaries - All Tanks in Report

Emissions Report for: Annual

	Tank Identification				Losses (lbs)	
\rightarrow	Fort Beeler 9913, 9914 Waste Tanks	Williams OVM	Vertical Fixed Roof Tank	Moundsville, West Virginia	202.72	each tank
	Fort Beeler Diesel Tank	Williams OVM	Horizontal Tank	Moundsville, West Virginia	0.19	
	Fort Beeler Gasoline Tank	Williams OVM	Horizontal Tank	Moundsville, West Virginia	140.63	
	Total Emissions for all Tanks:				343.54	

VOC emissions from each tank (9913 and 9914) are 29.08 lbs (working and breathing) + 1,996 lbs (flash) = 2,025.08 lbs

Ft Beeler 9913 or 9914 Tank Flash Emissions as Proposed for Permit Revision May 2014

Ft Beeler 9913 or 9914 tank Flash Emissions 200020 bbl/yr 0.998 ton/yr Condensate Volume: Total VOC's:

Emissi	ons to Atmosphere	
Temperature	°F	60
Pressure	psig	0
Mole Fraction Vapor	%	100

Location:

Emissions to Atmosphere				
Component	tons/year			
Carbon Dioxide	0.05			
Nitrogen	0.00			
Methane	0.36			
Ethane	0.23			
Propane	0.23			
Isobutane	0.10			
Butane	0.26			
Isopentane	0.13			
Pentane	0.12			
Hexane	0.09			
Heptane	0.08			
Octane	0.00			
Nonane	0.00			
Decane	0.00			
Water	0.02			
Therminol 55	0.00			

Produced Liquids			
Temperature	°F	60	
Pressure	psig	0	
Std Liquid Volumetric Flow	bbl/d	548	

Produced Liquids				
Component	mass fraction %			
Carbon Dioxide	0.00			
Nitrogen	0.00			
Methane	0.00			
Ethane	0.00			
Propane	0.01			
Isobutane	0.01			
Butane	0.04			
Isopentane	0.05			
Pentane	0.06			
Hexane	0.17			
Heptane	0.46			
Octane	0.00			
Nonane	0.00			
Decane	0.00			
Water	98.23			
Therminol 55	0.96			

Attachment L EMISSIONS UNIT DATA SHEET BULK LIQUID TRANSFER OPERATIONS

Furnish the following information for each new or modified bulk liquid transfer area or loading rack, as shown on the *Equipment List Form* and other parts of this application. This form is to be used for bulk liquid transfer operations such as to and from drums, marine vessels, rail tank cars, and tank trucks.

Identification Number (as assigned on <i>Equipment List Form</i>): TLO					
1. Loading Area N	lame: FORT BEEL	LER			
2. Type of cargo	vessels accommod			ck as many as apply): ∃ Tank Trucks	
3. Loading Rack of	or Transfer Point Da	ta:			
Number of pum	ips	1			
Number of liqui	ds loaded	1			
Maximum number of marine vessels, 1 tank trucks, tank cars, and/or drums loading at one time					
	g of marine vessel s No <u>Does</u>	s occur at this loadii <u>s not apply</u>	ng area?		
5. Describe clean point: NA	ing location, compo	ounds and procedur	e for cargo vessels	s using this transfer	
 6. Are cargo vessels pressure tested for leaks at this or any other location? NA Yes No <u>Does not apply</u> If YES, describe: NA 					
7. Projected Maximum Operating Schedule (for rack or transfer point as a whole):					
Maximum	Jan Mar.	Apr June	July - Sept.	Oct Dec.	
hours/day	24	24	24	24	
days/week	7	7	7	7	
weeks/quarter	13	13	13	13	

8. Bulk Liqu	8. Bulk Liquid Data (add pages as necessary):						
Pump ID No.		1					
Liquid Name		Prod H2O/ Oil					
Max. daily thro	oughput (1000 gal/day)	69					
Max. annual tl	hroughput (1000 gal/yr)	25200					
Loading Metho	od ¹	SP					
Max. Fill Rate	(gal/min)	200					
Average Fill T	ime (min/loading)	60					
Max. Bulk Liquid Temperature (°F)		50					
True Vapor Pr	True Vapor Pressure ²						
Cargo Vessel	Cargo Vessel Condition ³						
Control Equip	Control Equipment or Method ⁴						
Minimum cont	rol efficiency (%)	N/A					
Maximum	Loading (lb/hr)						
Emission Rate (VOC)	Annual (lb/yr)	3920					
Estimation Me	ethod ⁵	EPA					
¹ BF = Bottom Fil	¹ BF = Bottom Fill SP = Splash Fill SUB = Submerged Fill						
² At maximum bulk liquid temperature							
³ B = Ballasted Vessel, C = Cleaned, U = Uncleaned (dedicated service), O = other (describe)							
 ⁴ List as many as apply (complete and submit <i>Air Pollution Control Device Sheets</i>): CA = Carbon Adsorption, LOA = Lean Oil Adsorption, CO = Condensation, SC = Scrubber (Absorption), CRA = Compressor-Refrigeration-Absorption, TO = Thermal Oxidation or Incineration, CRC = Compression- Refrigeration-Condensation, VB = Dedicated Vapor Balance (closed system), O = other (describe) 							
 ⁵ EPA = EPA Emission Factor as stated in AP-42 MB = Material Balance TM = Test Measurement based upon test data submittal O = other (describe) 							

9. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.				
MONITORING RECORDKEEPING				
REPORTING	TESTING			
MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION/AIR POLLUTION CONTROL DEVICE.				
RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED REC	ORDKEEPING THAT WILL ACCOMPANY THE MONITORING.			
REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.				
TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.				
10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty. NA				

ATTACHMENT M

Air Pollution Control Device Sheet(s)

"29. Fill out the Air Pollution Control Device Sheet(s) as Attachment M."

- 225 bhp Caterpillar G342NA Compressor Engine (CE-01/1E)
- 625 bhp Caterpillar G398TA Compressor Engine (CE-02/2E)
- 3,550 bhp Caterpillar G3612LE Compressor Engines (CE-03/3E thru CE-05/5E)
- New Process Flare (FL-02/18E) Zeeco AFTA-20/56 90.0 MMscf/yr MODIFIED

Attachment M Air Pollution Control Device Sheet (OTHER COLLECTORS)

Control Device ID No. (must match Emission Units Table): 01-NSCR

Equipment Information

1.	Manufacturer: EMIT Model No. EAS-1700T-0606F-22CEE (or equiv.)	2. Control Device Nam Type: NSCR	ne: Catalytic Converter			
3.	Provide diagram(s) of unit describing capture system with duct arrangement and size of duct, air volume, capacity, horsepower of movers. If applicable, state hood face velocity and hood collection efficiency.					
4.	On a separate sheet(s) supply all data and calculation	ns used in selecting or de	signing this collection device.			
5.	Provide a scale diagram of the control device showing	g internal construction.				
6.	Submit a schematic and diagram with dimensions and	d flow rates.				
7.	Guaranteed minimum collection efficiency for each po	ollutant collected:				
NO	0x (≥99.2%), CO (≥85.4%), VOC (≥25.3%), HCHO (≥76	6%)				
8.	Attached efficiency curve and/or other efficiency infor	rmation.				
9.	Design inlet volume: SCFM	10. Capacity:				
11.	. Indicate the liquid flow rate and describe equipment p	provided to measure pres	sure drop and flow rate, if any.			
12.	. Attach any additional data including auxiliary equip control equipment.	oment and operation det	ails to thoroughly evaluate the			
13.	Description of method of handling the collected mater	rial(s) for reuse of disposa	al.			
<u> </u>	Gas Stream C	haracteristics				
14.	Are halogenated organics present? Are particulates present? Are metals present?	□ Yes □ No □ Yes □ No □ Yes □ No				
15.	Inlet Emission stream parameters:	Maximum	Typical			
	Pressure (mmHg):					
	Heat Content (BTU/scf):					
	Oxygen Content (%):					
	Moisture Content (%):					
	Relative Humidity (%):					

16. Type of pollutant(s) o		SOx	☐ Odor ⊠ Other NOx	, CO, VOC and	НСНО	
17. Inlet gas velocity:		ft/sec	18. Pollutant	specific gravity:		
19. Gas flow into the coll 851 ACFM @	lector: 1170°F and	PSIA	20. Gas strea	m temperature: Inlet: Outlet:	1170	°F °F
21. Gas flow rate: Design Maximum: Average Expected:	851 851	ACFM ACFM	22. Particulat	e Grain Loading Inlet: Outlet:	in grains/scf:	
23. Emission rate of eac	h pollutant (spec	ify) into and out	of collector:			
Pollutant	IN Pol	lutant	Emission	OUT Po	llutant	Control
	g/bhp-hr	grains/acf	Capture Efficiency %	g/bhp-hr	grains/acf	Efficiency %
NOx	12.90		100	0.10		99.2%
CO	13.70		100	2.00		85.4%
VOC	0.75		100	0.56		25.3%
НСНО	0.25		100	0.06		76%
24. Dimensions of stack: Height ft. Diameter ft. 25. Supply a curve showing proposed collection efficiency versus gas volume from 25 to 130 percent of design						
	rating of collector. Particulate Distribution					

26. Complete the table:	Particle Size Distribution at Inlet to Collector	Fraction Efficiency of Collector
Particulate Size Range (microns)	Weight % for Size Range	Weight % for Size Range
0 – 2		
2-4		
4-6		
6 – 8		
8 – 10		
10 – 12		
12 – 16		
16 – 20		
20 – 30		
30 - 40		
40 - 50		
50 - 60		
60 – 70		
70 – 80		
80 - 90		
90 – 100		
>100		

27. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification):							
28. Describe the collect	28. Describe the collection material disposal system:						
29. Have you included	Other Collectores Control Devic	e in the Emissions Points Data Summary Sheet?					
Please propose r	ng parameters. Please propose	and Testing eporting in order to demonstrate compliance with the testing in order to demonstrate compliance with the					
MONITORING:		RECORDKEEPING:					
REPORTING:		TESTING:					
MONITORING:		bcess parameters and ranges that are proposed to be strate compliance with the operation of this process					
RECORDKEEPING: REPORTING:	Please describe the proposed replease describe any proposed	cordkeeping that will accompany the monitoring. emissions testing for this process equipment on air					
TESTING:	pollution control device. TESTING: Please describe any proposed emissions testing for this process equipment on ail pollution control device.						
31. Manufacturer's Guaranteed Control Efficiency for each air pollutant.							
NOx (≥99.2%), CO (≥85.4%), VOC (≥25.3%), HCHO (≥76%)							
32. Manufacturer's Guaranteed Control Efficiency for each air pollutant.							
33. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.							

Attachment M Air Pollution Control Device Sheet (OTHER COLLECTORS)

Control Device ID No. (must match Emission Units Table): 02-NSCR

Equipment Information

1.	Manufacturer: EMIT Model No. EAS-2500T-0808F-21 CEE (or equiv.)	2. Control Device Nan Type: NSCR	ne: Catalytic Converter			
3.	Provide diagram(s) of unit describing capture system with duct arrangement and size of duct, air volume, capacity, horsepower of movers. If applicable, state hood face velocity and hood collection efficiency.					
4.	On a separate sheet(s) supply all data and calculation	ns used in selecting or de	esigning this collection device.			
5.	Provide a scale diagram of the control device showing	g internal construction.				
6.	Submit a schematic and diagram with dimensions and	d flow rates.				
7.	Guaranteed minimum collection efficiency for each po	ollutant collected:				
NO	0x (≥94.9%), CO (≥95.3%), VOC (≥78.7%), HCHO (≥76	6%)				
8.	Attached efficiency curve and/or other efficiency infor	rmation.				
9.	Design inlet volume: SCFM	10. Capacity:				
11.	11. Indicate the liquid flow rate and describe equipment provided to measure pressure drop and flow rate, if any.					
12.	. Attach any additional data including auxiliary equip control equipment.	oment and operation def	tails to thoroughly evaluate the			
13.	. Description of method of handling the collected mater	rial(s) for reuse of dispos	al.			
	Gas Stream C	haracteristics				
14.	Are halogenated organics present? Are particulates present? Are metals present?	□ Yes □ No □ Yes □ No □ Yes □ No				
15.	Inlet Emission stream parameters:	Maximum	Typical			
	Pressure (mmHg):					
	Heat Content (BTU/scf):					
	Oxygen Content (%):					
	Moisture Content (%):					
	Relative Humidity (%):					

16.	6. Type of pollutant(s) controlled: □ SO _x □ Odor □ Particulate (type): □ Other NOx, CO, VOC and HCHO						
17.	Inlet gas velocity:		ft/sec	18. Pollutant	specific gravity:		
19.	Gas flow into the coll 3043 ACFM @		PSIA	20. Gas strea	im temperature: Inlet: Outlet:	1112	°F °F
	Gas flow rate: Design Maximum: Average Expected:	3043 3043	ACFM ACFM	22. Particulat	e Grain Loading Inlet: Outlet:	in grains/scf:	
23.	Emission rate of eac	h pollutant (speci	fy) into and out	of collector:			_
	Pollutant	IN Pol	utant	Emission	OUT Po	llutant	Control
		g/bhp-hr	grains/acf	Capture Efficiency %	g/bhp-hr	grains/acf	Efficiency %
	NOx	9.80		100	0.50		94.9%
	CO	10.70		100	0.50		95.3%
	VOC	0.30		100	0.06		78.7%
	НСНО	0.10		100	0.02		76%
	24. Dimensions of stack: Height ft. Diameter ft. 25. Supply a curve showing proposed collection efficiency versus gas volume from 25 to 130 percent of design ratios of collectors ft.						
<u> </u>	rating of collector. Particulate Distribution						

26. Complete the table:	Particle Size Distribution at Inlet to Collector	Fraction Efficiency of Collector
Particulate Size Range (microns)	Weight % for Size Range	Weight % for Size Range
0 – 2		
2-4		
4-6		
6 – 8		
8 – 10		
10 – 12		
12 – 16		
16 – 20		
20 – 30		
30 - 40		
40 - 50		
50 - 60		
60 – 70		
70 – 80		
80 – 90		
90 – 100		
>100		

	27. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification):						
28. Describe the collect	28. Describe the collection material disposal system:						
29. Have you included	Other Collectores Control Devic	e in the Emissions Points Data Summary Sheet?					
Please propose n	ig parameters. Please propose	and Testing eporting in order to demonstrate compliance with the testing in order to demonstrate compliance with the					
MONITORING:		RECORDKEEPING:					
REPORTING:	REPORTING: TESTING:						
	monitored in order to demons equipment or air control device.	bcess parameters and ranges that are proposed to be strate compliance with the operation of this process					
RECORDKEEPING: REPORTING:		cordkeeping that will accompany the monitoring. emissions testing for this process equipment on air					
TESTING:							
31. Manufacturer's Guaranteed Control Efficiency for each air pollutant.							
NOx (≥94.9%), CO (≥95.3%), VOC (≥78.7%), HCHO (≥76%)							
32. Manufacturer's Guaranteed Control Efficiency for each air pollutant.							
33. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.							

Attachment M Air Pollution Control Device Sheet (OTHER COLLECTORS)

Control Device ID No. (must match Emission Units Table): 01-OxCat, 02-OxCat, 03-OxCat

Equipment Information

1.	Manufacturer: EMIT Technologies Model No. ELH-5000Z-1820F-43CEE-36 (or equiv.)	2.	Control Device Nam Type: OxCat	ne: Catalytic Converter	
3.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state				
4.	On a separate sheet(s) supply all data and calculation	ns us	sed in selecting or de	esigning this collection device.	
5.	Provide a scale diagram of the control device showin	g inte	ernal construction.		
6.	Submit a schematic and diagram with dimensions an	d flov	w rates.		
7.	Guaranteed minimum collection efficiency for each p	olluta	int collected:		
со	(≥90%), VOC (≥60%) and HCHO (≥85%)				
8.	Attached efficiency curve and/or other efficiency info	mati	on.		
9.	Design inlet volume: SCFM	10.	Capacity:		
11.	11. Indicate the liquid flow rate and describe equipment provided to measure pressure drop and flow rate, if any.				
12.	Attach any additional data including auxiliary equip control equipment.	omer	t and operation det	ails to thoroughly evaluate the	
13.	13. Description of method of handling the collected material(s) for reuse of disposal.				
	Gas Stream C	hara	cteristics		
14.	Are halogenated organics present? Are particulates present? Are metals present?	ΞY	es INO es No es No		
15.	Inlet Emission stream parameters:	Ν	laximum	Typical	
	Pressure (mmHg):				
	Heat Content (BTU/scf):				
	Oxygen Content (%):				
	Moisture Content (%):				
	Relative Humidity (%):				

16.	6. Type of pollutant(s) controlled: □ SO _x □ Odor □ Particulate (type): □ Other CO, VOC and HCHO						
17.	Inlet gas velocity:		ft/sec	18. Pollutant	specific gravity:		
19.	0. Gas flow into the collector: 24013 ACFM @ 838°F and PSIA		20. Gas stream temperature: Inlet: 838 Outlet:		838	°F °F	
21.	Gas flow rate: Design Maximum: Average Expected:	24013 24013	ACFM ACFM				
23.	Emission rate of eacl	h pollutant (speci	fy) into and out	of collector:			
	Pollutant	IN Pol	lutant	Emission	OUT Po	llutant	Control
		g/bhp-hr	grains/acf	Capture Efficiency %	g/bhp-hr	grains/acf	Efficiency %
	СО	2.75		100	0.28		90
	VOC	0.91		100	0.36		60
	НСНО	0.26		100	0.04		85
24.	Dimensions of stack:	Heig	ht	ft.	Diameter		ft.
25.	5. Supply a curve showing proposed collection efficiency versus gas volume from 25 to 130 percent of design rating of collector.						

Particulate Distribution

26. Complete the table:	Particle Size Distribution at Inlet to Collector	Fraction Efficiency of Collector
Particulate Size Range (microns)	Weight % for Size Range	Weight % for Size Range
0 – 2		
2-4		
4-6		
6 – 8		
8 – 10		
10 – 12		
12 – 16		
16 – 20		
20 – 30		
30 - 40		
40 – 50		
50 - 60		
60 - 70		
70 – 80		
80 – 90		
90 – 100		
>100		

27. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification):							
28. Describe the collect	28. Describe the collection material disposal system:						
29. Have you included	Other Collectores Control Devic	ce in the Emissions Points Data Summary Sheet?					
Please propose n proposed operatin	30. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.						
MONITORING:		RECORDKEEPING:					
REPORTING:		TESTING:					
MONITORING: RECORDKEEPING:	monitored in order to demonstrate compliance with the operation of this process equipment or air control device.						
REPORTING: TESTING:	EPORTING: Please describe any proposed emissions testing for this process equipment on air pollution control device.						
31. Manufacturer's Guaranteed Control Efficiency for each air pollutant.							
CO (≥90%), VOC (≥60%) and HCHO (≥85%)							
32. Manufacturer's Guaranteed Control Efficiency for each air pollutant.							
33. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.							

Attachment M Air Pollution Control Device Sheet (FLARE SYSTEM)

Control Device ID No. (must match Emission Units Table): $FL\mathchar`-02$

	Equipment	Information				
1.	Manufacturer: Zeeco Model No. AFTA-20/56	2. Method: 🛛 Elevated flare Ground flare Other Describe				
3.	Provide diagram(s) of unit describing capture system with duct arrangement and size of duct, air volume, capacity, horsepower of movers. If applicable, state hood face velocity and hood collection efficiency.					
4.	Method of system used:	Pressure-assisted Non-assisted				
5.	Maximum capacity of flare: scf/min 425,950 scf/hr	 Dimensions of stack: Diameter Height 190 feet 				
7.	Estimated combustion efficiency: (Waste gas destruction efficiency) Estimated: 98 % Minimum guaranteed: 98 %	 8. Fuel used in burners: ☑ Natural Gas □ Fuel Oil, Number □ Other, Specify: 				
9.	Number of burners: 1 Rating: 541.2 MMBTU/hr (Max)	11. Describe method of controlling flame:				
10.	Will preheat be used? Yes No					
	Flare height: ft	14. Natural gas flow rate to flare pilot flame per pilot light: scf/min				
13.	Flare tip inside diameter: ft	65 scf/hr				
15.	Number of pilot lights: Total 3	16. Will automatic re-ignition be used? ⊠ Yes □ No				
17.	 If automatic re-ignition will be used, describe the method: Manual/Automatic Flame Front Generator (FFG) Ignition System with Fuel Gas Train 					
	 18. Is pilot flame equipped with a monitor? Yes No If yes, what type? Thermocouple Infra-Red Ultra Violet Camera with monitoring control room Other, Describe: 19. Hours of unit operation per year: 8760 hr/yr. 					

Steam Injection							
20. Will steam injection be used? Yes	🛛 No	21. Steam pressure Minimum Expected: Design Maximum:	PSIG				
22. Total Steam flow rate:	LB/hr	23. Temperature:	°F				
24. Velocity	ft/sec	25. Number of jet streams					
26. Diameter of steam jets:	in	27. Design basis for steam injected: LB steam/LB hydroc	arbon				
28. How will steam flow be controlled if steam injection is used?							

Characteristics of the Waste Gas Stream to be Burned

29.									
29.	Name	Quantity Grains of H ₂ S/100 ft ³	Quantity (LB/hr, ft ³ /hr, etc)	Source of Material					
	Natural Gas and NGL	<1.0	< 90 MMscf/yr	Cryogenic Plants					
30.	Estimate total combustible t	o flare: 90 MMs	cf/yr LB/hr	or ACF/hr					
	(Maximum mass flow rate of waste gas) scfm								
31.	. Estimated total flow rate to flare including materials to be burned, carrier gases, auxiliary fuel, etc.:								
	Variable LB/hr or ACF/hr								
32.	 Give composition of carrier gases: Variable, typically 75-90% Methane, 5-10% Ethane, and 5-8% C3+. 								
33.	Temperature of emission st		34. Identify and describe all auxiliary fuels to be burned.						
	Extremely Variable °F		BTU/scf BTU/scf						
	Heating value of emission stream: Max Variable BTU/ft ³		BTU/scf						
	Mean molecular weight of emission stream:		BTU/scf						
	Max Va	ariable lb/lb-mole	BTU/scf						
35.	Temperature of flare gas:	°F	36. Flare gas flow rate: Varia	ble scf/min					
37.	Flare gas heat content: Var	riable BTU/ft ³	38. Flare gas exit velocity: Variable scf/min						
39.	9. Maximum rate during emergency for one major piece of equipment or process unit: 7,099 scf/min								
	D. Maximum rate during emergency for one major piece of equipment or process unit: 8.9 MM BTU/min								
41.	1. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification): None								
42.	 Describe the collection material disposal system: na 								

43. Have you included *Flare Control Device* in the Emissions Points Data Summary Sheet? Yes

Please propose m	g parameters. Please propose	and Testing porting in order to demonstrate compliance with the testing in order to demonstrate compliance with the
MONITORING:		RECORDKEEPING:
Presence of Pilot Flame	e (Daily)	MMscf/mo of Waste Gas
REPORTING:		TESTING:
MMscf/yr of Waste Gas	;	na
MONITORING:	monitored in order to demons	ocess parameters and ranges that are proposed to be trate compliance with the operation of this process
RECORDKEEPING:	equipment or air control device.	early coning that will accompany the monitoring
REPORTING:		cordkeeping that will accompany the monitoring. emissions testing for this process equipment on air
REFORTING.	pollution control device.	eniissiona teating for this process equipment on an
TESTING:		emissions testing for this process equipment on air
45. Manufacturer's Gua na	aranteed Capture Efficiency for ea	ch air pollutant.
46. Manufacturer's Gua 98% VOC/HAP	aranteed Control Efficiency for eac	h air pollutant.
		· · · · · · · · · · · · · · ·
47. Describe all operati	ing ranges and maintenance proce	edures required by Manufacturer to maintain warranty.

COMMERCIAL PROPOSAL

Scope of Supply - BASE

Our scope of supply will include:

- 1) General Arrangement Drawings for customer approval.
- 2) Operation & Maintenance Manual.
- 3) The equipment necessary for flaring the waste streams as specified in the inquiry documents, including:

190-ft Tall Air Flare Package Identical to the Williams Moundsville Flare:

Air Assisted Flare Tip with Integral Velocity Seal & 3 Pilots Self-supported Flare Stack Manual/Automatic FFG Ignition System with Fuel Gas Train Process Engineering & Design Work for the Complete Flare System Utility Piping & Supports Along Flare Stack from Tip to Near Grade Retractable Thermocouple System with JB Near Grade One (1) Vane Axial Air Blower with Bird Screen / Inlet Bell and VFD Suitable Motor Blower Silencer Flare Stack Baseplate Template

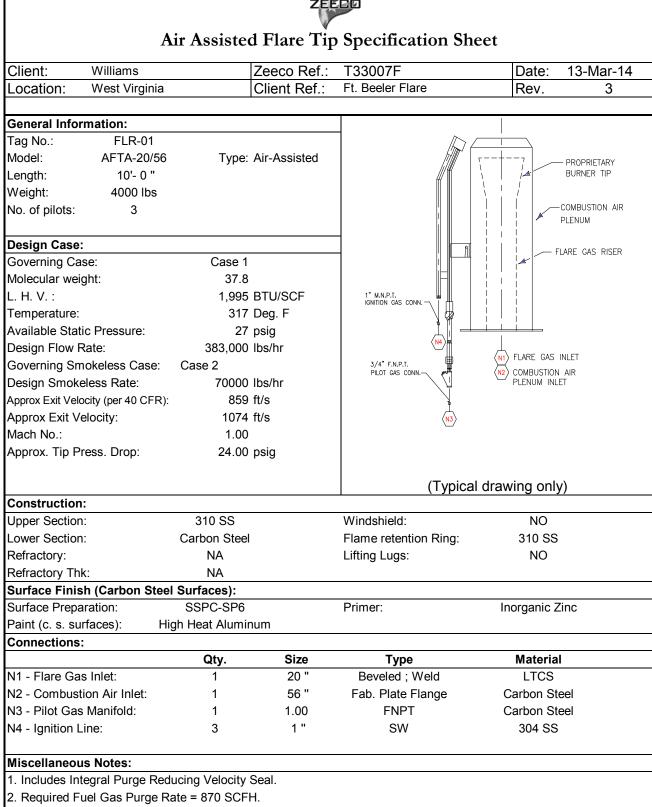
We have considered the following change	es in our Design/Offer:
 Smokeless capacity as listed for each c Blower quantity increased to 2 blowers Thermocouples changed to dual elemer Allowable nozzle loads increased to 2 x Gas riser reduced to 20" diameter. Wind and Seismic Design Changed to th For IBC 2012 / ASCE 7-10 use the following wind and seismic and seismic blowing wind and seismic blowing	nt type API 537 values e Following:
WIND: Risk Category = III Basic Wind Speed = 120 mph Exposure Category = C Topographic Factor (K _{zt}) = 1.0	$\begin{tabular}{ c c c c c }\hline\hline SEISMIC: \\ Risk Category = III \\ Importance Factor (I_E) = 1.25 \\ Mapped Spectral Response \\ Accelerations: \\ S_S = 0.103g \\ S_1 = 0.055g \\ Site Class: D \\ Spectral Response Coefficients: \\ S_{DS} = 0.110g \\ \hline\end{tabular}$
NOTE: Additional changes (changes in i nlet elevation, orientation, materials, etc) will increase the delivery time for	$S_{D1}^{-1} = 0.087g$ Seismic Design Category = B Mapped Long Period Transition Period (T_L) = 12 sec

COMMERCIAL PROPOSAL

Scope of Supply (Continued)

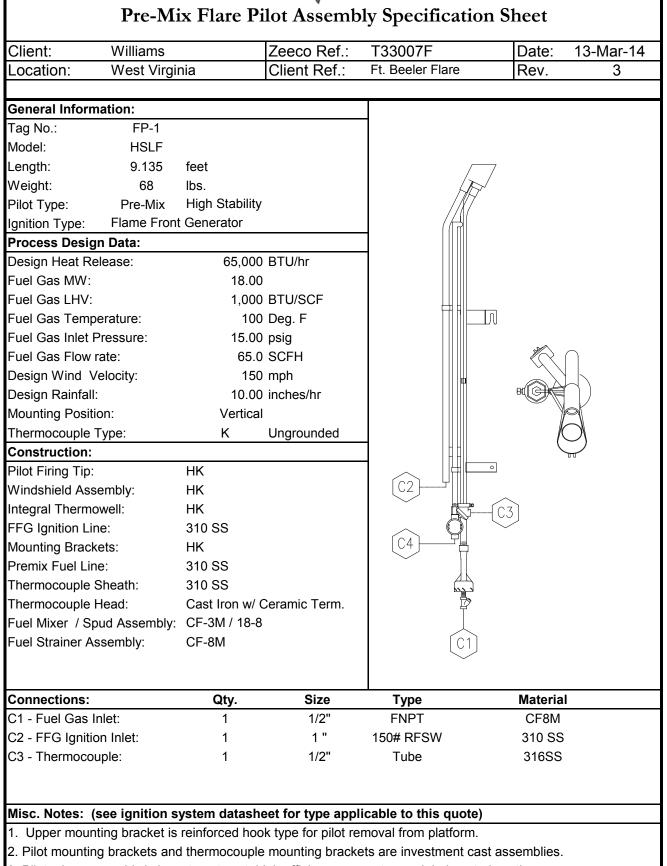
Our Scope of Supply does NOT include:

- 1) Stack or Piping External Insulation, Fireproofing, or Heat Tracing.
- 2) Field Assembly and / or Erection.
- 3) Commissioning, Start-up, Supervision, Training, etc. (PER DIEM BASIS).
- 4) Foundation Design / Supply or Civil Engineering.
- 5) Interconnecting Piping, Wiring or Conduit Between Stack Base and LCP.
- 6) Ocean or Inland Freight to Jobsite.
- 7) Shop Details / Fabrication Drawings of Proprietary Equipment.
- 8) Any Containerization of Equipment for Shipment or Storage Purposes.


9) Blank

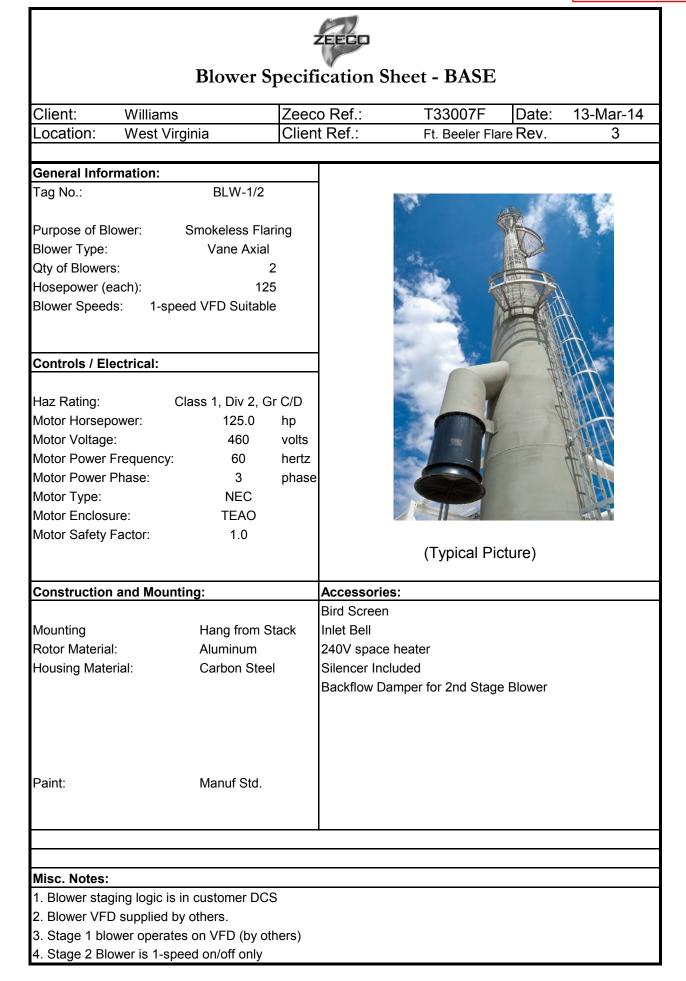
- 10) Foundation Imbedded Anchor Bolts.
- 11) Spare Parts Quoted Separately and Priced Lists Included in Proposal.
- 12) Any Motor Starters or Motor Drivers or Motor Controls.
- 13) Any Third Party Inspection / Testing / Certification Services.
- 14) Flare KO drum.
- 15) Aircraft Warning Light System
- 16) HEI Ignition System

BASE OFFER



Client: Williams		Zeeco Ref.:	T33007F		Date:	13-Mar-14
Location: West Virginia		Client Ref.:	Ft. Beeler Flare		Rev.	3
			Mol	%		
	Case 1	Case 2	Case 3	Case 4	Case E	Case F
METHANE	24.30	0.00	79.31	80.19		
ETHANE	8.66	1.38	13.60	14.71		
PROPANE	56.94	96.22	4.15	3.89		
BUTANE	8.08	2.40	1.58	0.71		
PENTANE	1.46	0.00	0.52	0.04		
HEXANE	0.19	0.00	0.13			
HEPTANE	0.05	0.22	0.03			
OCTANE	0.08		0.01			
NONANE	0.05		0.01			
DECANE	0.00					
DODECANE						
TRIDECANE						
CYCLOPENTANE						
ETHYLENE						
PROPYLENE						
BUTYLENE						
ACETYLENE						
BENZENE						
TOLUENE						
XYLENE						
CARBON MONOXIDE						
CARBON DIOXIDE	0.07		0.15	0.16		
HYDROGEN SULFIDE						
SULFUR DIOXIDE						
AMMONIA						
AIR						
HYDROGEN						
OXYGEN						
NITROGEN	0.11	0.07	0.30	0.30		
WATER						
BUTADIENE						
METHANOL						
Total	100	100	100	100		
Mol. Wt.	37.79	44.48	20.24	19.60		
	1,995		20.24	1,080		
L. H. V. (BTU/SCF):						
Temperature (Deg. F):	317.0		24.4	-31.8		
Avail. Static Pressure (psig):	27.00		0.10	2.00		
Flow Rate (lbs/hr):	383,000	229,194	9,115	97,470		
Smokeless Rate (lbs/hr):	70,000	57,299	9,115	22,000		

3. Flare system is designed for 99% destruction efficiency or better.


- 3. Pilot mixer assembly is investment cast, high efficiency computer modeled venturi section.
- 4. Thermocouples are retractable type (replaceable from grade).

Client: Williams		Zeeco Ref.:	T33007F	Date:	13-Mar-1
Location: West Virg	inia	Client Ref.:	Ft. Beeler Flare	Rev.	3
			1		
General Information:			_		
Tag No.:	IGN-1				
Model No.:	LMC-3-T/S				
Operation:	Manual/Automat	ic			
No. of Pilots Ignited:	3			≠ <u></u> >6 14 ∎	
Area Classification:	Class 1, Div 2, Gr	C/D			
Fuel Gas Data:					And a -w
Molecular Weight:	18.0				
L. H. V.:	1,000	BTU/SCF			
Temperature:	100	deg. F			
Pressure:	15	psig	-	<u> </u>	Ī
Utility Consumption:					<u></u>
Pilot Gas (Per Pilot):	65	SCFH	1		
Pilot Gas (Total):	195	SCFH			
Ignition Gas (Intermittent):	110	SCFH			
Ignition Air (Intermittent):	1,100	SCFH			
Power Available:	120 Volt, 1 F	hase, 60 Hertz	(Тур	oical drawing only)
Construction:					
Ignition Line Piping:	Carbon Steel		Ignition Chamber:	Cast Iron	
Fuel Gas Piping:	Carbon Steel		No. Thermocouples/P	ilot: 1	
Mounting Rack:	Carbon Steel		Thermocouple Type:	К	
Enclosure:	NEMA 4X w/ Z-Pu	rge	Propane Backup:	No	
Sun / Rain Shield:	Yes		Ignition Air PCV:	Yes	
Pilot Gas PCV:	Yes				
Surface Finish (Carbon St	eel Surfaces):				
Surface Preparation:	SSPC-SP1		Primer:	Red Oxide	
Paint (c. s. surfaces):	Grey Enamel				
Connections:	Qty.	Size	Туре	N	laterial
N1 - Instrument Air Inlet:	1	1/2"	3000# Thrd. Unior	n Galva	anized C.S.
N2 - Pilot Gas Inlet:	1	1/2"	3000# Thrd. Unior	n Car	bon Steel
N3 - Ignition Gas Outlet:	3	1 "	3000# Thrd. Unior	n Car	bon Steel
Pilot Gas Out. (Not Shown)	: 1	1 "	3000# Thrd. Unior		bon Steel

Miscellaneous Notes:

1. Ignition panel includes AB Controllogix PLC w/ Ethernet Communication.

ATTACHMENT N

Supporting Emissions Calculations

"30. Provide all Supporting Emissions Calculations as Attachment N."

• Emission Summary Spreadsheets

- o Criteria Pollutants Controlled Emissions Summary
- o Hazardous Air Pollutants Controlled Emissions Summary
- o Greenhouse Gas (GHG) Emissions Summary
- o Pre-Controlled Emissions Summary

• Unit-Specific Emission Spreadsheets

- Recovery Compressor Engine 01 225 bhp CAT G342NA (CE-01 (1E))
- Recovery Compressor Engine 02 625 bhp CAT G398TA (CE-02 (2E))
- TXP1 Compressor Engines 03 thru 05 3,550 bhp CAT G3612LE (CE-03 (3E) thru CE-05 (5E))
- Startup/Shutdown/Maintenance (Including Blowdown) (SSM (6E))
- Compressor Rod Packing and Engine Crankcase (RPC (7E))
- Emergency Generator Engine 118 bhp Olympian G70LG (GE-01 (8E))
- o TXP1 Hot Oil Heater 10.0 MMBtu/hr (H-01 (9E))
- o TXP1 Regenerator Gas Heater 4.74 MMBtu/hr (H-02 (10E))
- TXP2 and TXP3 Regenerator Gas Heater 6.60 MMBtu/hr (H-03 (11E) and H-04 (12E))
- TXP2 and TXP3 Heat Medium Heater 21.22 MMBtu/hr (H-05 (13E) and H-06 (14E))
- o Groves Dehydrator Flash Tank and Still Vent 5.0 MMscfd (DH-01 (15E))
- o Groves Dehydrator Reboiler 0.20 MMBtu/hr (BLR-01 (16E))
- New Process Flare (FL-02 (18E)) (MODIFIED)
- o Truck Load-Out (TLO (20E))
- Process Piping Fugitive Emissions (FUG (21E)) (MODIFIED)
- Produced H2O Storage Tank Emissions (T-03 (22E) and T-04 (23E))
- AP-42 and GHG Emission Factors

• GRI-GLYCalc Model Runs

o Groves Dehydrator Flash Tank and Still Vent - 5.0 MMscfd (DH-01 (15E))

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment N - Supporting Emissions Calculations

Criteria Pollutants - Controlled Emissions Summary

Unit ID	Point ID	Description	Site Rating	N	х	с	D	vo	ю	so	02	PM10)/2.5	cc	D2e
				lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
CE-01	1E	CAT G342NA Compressor Engine	225 bhp	0.05	0.22	0.99	4.35	0.28	1.22	1.2E-03	0.01	0.04	0.18	272	1,191
CE-02	2E	CAT G398TA Compressor Engine	625 bhp	0.69	3.02	0.69	3.04	0.09	0.39	3.4E-03	0.01	0.11	0.49	712	3,117
CE-03	3E	CAT G3612LE Compressor Engine	3,550 bhp	3.91	17.14	2.15	9.43	2.85	12.48	0.02	0.07	0.26	1.14	4,523	19,813
CE-04	4E	CAT G3612LE Compressor Engine	3,550 bhp	3.91	17.14	2.15	9.43	2.85	12.48	0.02	0.07	0.26	1.14	4,523	19,813
CE-05	5E	CAT G3612LE Compressor Engine	3,550 bhp	3.91	17.14	2.15	9.43	2.85	12.48	0.02	0.07	0.26	1.14	4,523	19,813
SSM	6E	Start/Stop/Maintenance	na						8.24						4,094
RPC	7E	Rod Packing/Crankcase	na					2.81	12.29					1,115	4,882
GE-01	8E	Olympian G70LG EmGen Engine	118 bhp	0.93	0.23	29.10	7.28	0.38	0.10	8.9E-04	2.2E-04	0.03	0.01	168	42
H-01	9E	TXP1 Hot Oil Heater	10.0 MMBtu/hr	1.09	4.76	0.91	4.00	0.06	0.26	0.01	0.03	0.08	0.36	1,298	5,686
H-02	10E	TXP1 Regen Gas Heater	4.74 MMBtu/hr	0.52	2.26	0.43	1.90	0.03	0.12	3.1E-03	0.01	0.04	0.17	615	2,695
H-03	11E	TXP2 Regen Gas Heater	6.60 MMBtu/hr	0.72	3.14	0.60	2.64	0.04	0.17	4.3E-03	0.02	0.05	0.24	857	3,753
H-04	12E	TXP3 Regen Gas Heater	6.60 MMBtu/hr	0.72	3.14	0.60	2.64	0.04	0.17	4.3E-03	0.02	0.05	0.24	857	3,753
H-05	13E	TXP2 Heat Medium Heater	21.22 MMBtu/hr	2.31	10.10	1.94	8.49	0.13	0.56	0.01	0.06	0.18	0.77	2,755	12,067
H-06	14E	TXP3 Heat Medium Heater	21.22 MMBtu/hr	2.31	10.10	1.94	8.49	0.13	0.56	0.01	0.06	0.18	0.77	2,755	12,067
DH-01	15E	Groves Dehydrator - Flash Tank/Still Vent*	5.0 MMscfd					3.88	17.00					128	562
BLR-01	16E	Groves Dehydrator - Reboiler*	0.20 MMBtu/hr	0.02	0.10	0.02	0.08	1.2E-03	0.01	1.3E-04	5.7E-04	1.7E-03	0.01	26	114
FL-02	18E	New Process Flare (MODIFIED)	90.0 MMscf/yr	45.10	5.69	142.61	17.99	88.11	11.12	0.27	0.03	3.43	0.43	63,538	8,015
TLO	20E	Truck Load-Out - Prod H2O/Condensate	600,000 bbl/yr						1.96						
FUG	21E	Process Piping Fugitives (MODIFIED)	24,550 Units					18.48	80.93					444	1,943
T-03	22E	Produced Water Tank (9913)	400 bbl					0.23	1.01						
T-04	23E	Produced Water Tank (9914)	400 bbl					0.23	1.01						

Gray Sh	aded Cells	Indicato	Modified	Data
Giav Sil	aueu cens	inuicate	Noumeu	ναια

TOTAL FACILITY-WIDE PTE:	66.18	94.18	186.30	89.15	123.46	174.54	0.37	0.46	4.98	7.09	89,110	123,419
NNSR/PSD Threshold:		250		250		250		250		250		na
TVOP Threshold:		100		100		100		100		100		100,000

Notes: * Emission Units DH-01/15E and BLR-01/16E are authorized by Permit R13-3212A, issued 06/07/17; all other Emission Units are authorized by Permit R13-2826J, issued 06/16/16.

1 - Emissions are based on operation at 100% of rated load for 8,760 hrs/yr; except GE-01, TLO and SSM emissions are intermittent (and infrequent).

2 - VOC is volatile organic compounds, as defined by EPA, and includes HCHO (formaldehyde).

3 - PM10/2.5 is filterable and condensable particulate matter; including PM10 and PM2.5.

4 - CO2e is aggregated Greenhouse Gas (GHG), comprised of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), as adjusted for Global Warming Potential (GWP).

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment N - Supporting Emissions Calculations

Hazardous Air Pollutants - Controlled Emissions Summary

Unit ID	Point ID	Acetalo	lehyde	Acro	olein	Benz	zene	Ethylb	enzene		dehyde HO)	n-He	xane	Meth (Me		Tolu	lene	2,2,4-Tri pentane	-	Xyle	nes	Othe	r HAP	Total	I HAP
		lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy								
CE-01	1E	0.01	0.03	0.01	0.02	3.4E-03	0.01	5.3E-05	2.3E-04	0.03	0.13			0.01	0.03	1.2E-03	0.01			4.1E-04	1.8E-03	3.8E-04	0.00	0.05	0.23
CE-02	2E	3.2E-03	0.01	3.1E-03	0.01	1.8E-03	0.01	2.9E-05	1.3E-04	0.03	0.14			3.6E-03	0.02	6.5E-04	2.8E-03			2.3E-04	9.9E-04	2.1E-04	9.1E-04	0.05	0.20
CE-03	3E	0.11	0.48	0.07	0.29	0.01	0.03	5.2E-04	2.3E-03	0.31	1.34	0.01	0.06	0.03	0.14	0.01	0.02	3.3E-03	0.01	2.4E-03	0.01	0.00	0.02	0.55	2.41
CE-04	4E	0.11	0.48	0.07	0.29	0.01	0.03	5.2E-04	2.3E-03	0.31	1.34	0.01	0.06	0.03	0.14	0.01	0.02	3.3E-03	0.01	2.4E-03	0.01	0.00	0.02	0.55	2.41
CE-05	5E	0.11	0.48	0.07	0.29	0.01	0.03	5.2E-04	2.3E-03	0.31	1.34	0.01	0.06	0.03	0.14	0.01	0.02	3.3E-03	0.01	2.4E-03	0.01	0.00	0.02	0.55	2.41
SSM	6E						0.00		0.00				0.13				0.00		0.00		0.00				0.13
RPC	7E					0.01	0.04	0.01	0.04	0.05	0.22	0.01	0.04			0.01	0.04	0.01	0.04	0.01	0.04			0.10	0.44
GE-01	8E	4.2E-03	1.1E-03	4.0E-03	9.9E-04	2.4E-03	6.0E-04	3.7E-05	9.4E-06	0.03	0.01			4.6E-03	1.2E-03	4.6E-03	2.1E-04			2.9E-04	7.4E-05	2.7E-04	6.8E-05	0.05	0.01
H-01	9E					2.3E-05	1.0E-04			8.2E-04	3.6E-03	0.02	0.09			3.7E-05	1.6E-04					1.3E-05	5.7E-05	0.02	0.09
H-02	10E					1.1E-05	4.7E-05			3.9E-04	1.7E-03	0.01	0.04			1.8E-05	7.7E-05					6.2E-06	2.7E-05	0.01	0.04
H-03	11E					1.5E-05	6.6E-05			5.4E-04	2.4E-03	0.01	0.06			2.4E-05	1.1E-04					8.6E-06	3.8E-05	0.01	0.06
H-04	12E					1.5E-05	6.6E-05			5.4E-04	2.4E-03	0.01	0.06			2.4E-05	1.1E-04					8.6E-06	3.8E-05	0.01	0.06
H-05	13E					4.8E-05	2.1E-04			1.7E-03	0.01	0.04	0.18			7.8E-05	3.4E-04					2.8E-05	1.2E-04	0.04	0.19
H-06	14E					4.8E-05	2.1E-04			1.7E-03	0.01	0.04	0.18			7.8E-05	3.4E-04					2.8E-05	1.2E-04	0.04	0.19
DH-01	15E					0.07	0.31					0.07	0.30			0.31	1.34			0.98	4.27			1.42	6.22
BLR-01	16E					4.6E-07	2.0E-06			1.6E-05	7.1E-05	3.9E-04	1.7E-03			7.4E-07	3.2E-06					2.6E-07	1.1E-06	4.1E-04	1.8E-03
FL-02	18E					0.01	1.6E-03	2.4E-03	3.0E-04	0.03	4.3E-03	0.92	0.12			0.02	0.00			0.00	0.00	5.4E-04	6.8E-05	0.99	0.13
TLO	20E						0.10		0.10				0.10				0.10				0.10				0.49
FUG	21E					0.01	0.05	0.01	0.05			0.53	2.30			0.01	0.05			0.01	0.05			0.57	2.51
T-03	22E					0.01	0.05	0.01	0.05			0.01	0.05			0.01	0.05			0.01	0.05			0.06	0.25
T-04	23E					0.01	0.05	0.01	0.05			0.01	0.05			0.01	0.05			0.01	0.05			0.06	0.25
		_																							
TOTAL F	PTE:	0.34	1.47	0.21	0.92	0.15	0.70	0.05	0.30	1.10	4.54	1.73	3.88	0.11	0.47	0.40	1.71	0.02	0.08	1.03	4.60	0.01	0.06	5.15	18.74
NNSR/F	SD:		na		na		na		na		na		na		na		na								
тν	OP:		10		10		10		10		10		10		10]	10		10		10		10		25
								-		- !				-		-				-		-		_ !	

Gray Shaded Cells Indicate Modified Data

Notes: 1 - Emissions are based on operation at 100% of rated load for 8,760 hrs/yr; except GE-01, TLO and SSM emissions are intermittent (and infrequent).

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment N - Supporting Emissions Calculations

Greenhouse Gas (GHG) - Emissions Summary

Unit ID	Point ID	Description	Site Rating	Operating Hours		Input	CO2 kg/MMBtu:	CO2e 53.06	CH4 kg/MMBtu:	CO2e 1.00E-03	N2O kg/MMBtu:	CO2e 1.00E-04	TOTAL CO2e
					LHV	HHV	GWP:	1	GWP:	25	GWP:	298	
				hr/yr	MMBtu/hr	MMBtu/hr	tpy	tpy	tpy	tpy	tpy	tpy	tpy
CE-01	1E	CAT G342NA Compressor Engine	225 bhp	8,760	1.91	2.12	1,093	1,093	3.91	97.77	2.0E-03	0.61	1,191
CE-02	2E	CAT G398TA Compressor Engine	625 bhp	8,760	5.24	5.81	2,995	2,995	4.83	120.70	0.01	1.67	3,117
CE-03	3E	CAT G3612LE Compressor Engine	3,550 bhp	8,760	23.53	26.09	15,117	15,117	187.51	4,688	0.03	7.51	19,813
CE-04	4E	CAT G3612LE Compressor Engine	3,550 bhp	8,760	23.53	26.09	15,117	15,117	187.51	4,688	0.03	7.51	19,813
CE-05	5E	CAT G3612LE Compressor Engine	3,550 bhp	8,760	23.53	26.09	15,117	15,117	187.51	4,688	0.03	7.51	19,813
SSM	6E	Start/Stop/Maintenance	na	8,760					164	4,094			4,094
RPC	7E	Rod Packing/Crankcase	na	8,760			371	371	180	4,511			4,882
GE-01	8E	Olympian G70LG EmGen Engine	118 bhp	500	0.91	1.01	34	34	0.31	8	3.3E-04	0.10	42
H-01	9E	TXP1 Hot Oil Heater	10.0 MMBtu/hr	8,760	10.00	11.09	5,681	5,681	0.11	3	0.01	3	5,686
H-02	10E	TXP1 Regen Gas Heater	4.74 MMBtu/hr	8,760	4.74	5.26	2,693	2,693	0.05	1	0.01	2	2,695
H-03	11E	TXP2 Regen Gas Heater	6.60 MMBtu/hr	8,760	6.60	7.32	3,749	3,749	0.07	2	0.01	2	3,753
H-04	12E	TXP3 Regen Gas Heater	6.60 MMBtu/hr	8,760	6.60	7.32	3,749	3,749	0.07	2	0.01	2	3,753
H-05	13E	TXP2 Heat Medium Heater	21.22 MMBtu/hr	8,760	21.22	23.53	12,054	12,054	0.23	6	0.02	7	12,067
H-06	14E	TXP3 Heat Medium Heater	21.22 MMBtu/hr	8,760	21.22	23.53	12,054	12,054	0.23	6	0.02	7	12,067
DH-01	15E	Groves Dehydrator - Flash Tank/Still Vent*	5.0 MMscfd	8,760					22.50	562.4			562
BLR-01	16E	Groves Dehydrator - Reboiler*	0.20 MMBtu/hr	8,760	0.20	0.22	114	114	2.1E-03	0.05	2.1E-04	0.06	114
FL-02	18E	New Process Flare (MODIFIED)	90.0 MMscf/yr	8,760	11.92	13.25	7,150	7,150	34.06	852	0.04	13.34	8,015
TLO	20E	Truck Load-Out - Prod H2O/Condensate	600,000 bbl/yr										
FUG	21E	Process Piping Fugitives (MODIFIED)	24,550 Units	8,760					78	1,942			1,942
T-03	22E	Produced Water Tank (9913)	400 bbl	8,760									
T-04	23E	Produced Water Tank (9914)	400 bbl	8,760									

av Shaded Cells Indicate Modified Data	TOTAL POINT SOURCE EMISSIONS:	178.71	97,088	97,088	1,051	26,270	0.20	61	123,418	
ay Shaded Cens Indicate Modified Data	NNSR/PSD Major Source Threshold:		na	(OR)	na	(OR)	na	(AND)	na	
	TVOP Major Source Threshold:		na		na		na		100,000	

Notes: * Emission Units DH-01/15E and BLR-01/16E are authorized by Permit R13-3212A, issued 06/07/17; all other Emission Units are authorized by Permit R13-2826J, issued 06/16/16.

1 - Emissions shown are based on operation at 100% of rated load and capacity for 8,760 hrs/yr, except:

i. GE-01/8E potential to emit is based on 500 hr/yr (operation is unlimited during emergencies); and ii. SSM/6E and TLO

ii. SSM/6E and TLO/20E emissions are infrequent and intermittent.

2 - Engine CO2 and CH4 emissions are based on vendor specifications.

3 - Dehydrator CH4 emissions are based on "Worst Case" GRI-GLYCalc Model Output.

4 - SSM CH4 emissions are based on vendor specifications and operational experience.

5 - Fugitive CH4 emissions are based on EPA Fugitive Emission Factors for Oil and Gas Production Operations.

6 - All other GHG emissions are based on the most conservative values in either AP-42 or 40CFR98, Subpart C, Table C-1.

7 - CO2e is aggregated Greenhouse Gas (GHG), comprised of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), as adjusted for Global Warming Potential (GWP).

8 - GHG TVOP and NSR/PSD Major Source Thresholds are applicable only if other regulated air pollutants exceed the corresponding Thresholds.

Gray

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment N - Supporting Emissions Calculations

Pre-Controlled Emissions Summary

Unit ID	Point ID	Description	Site Rating	N	ох	C	0	VC	C	HC	но	Xyle	enes	Total	HAP	CC)2e
	Folint ID	Description	Site Rating	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
CE-01	1E	CAT G342NA Compressor Engine	225 bhp	6.40	28.03	6.80	29.77	0.37	1.63	0.12	0.54	4.1E-04	1.8E-03	0.15	0.65	272	1,191
CE-02	2E	CAT G398TA Compressor Engine	625 bhp	13.50	59.14	14.74	64.58	0.41	1.81	0.14	0.60	1.1E-03	5.0E-03	0.20	0.88	712	3,117
CE-03	3E	CAT G3612LE Compressor Engine	3,550 bhp	3.91	17.14	21.52	94.27	7.12	31.19	2.03	8.91	4.8E-03	0.02	2.52	11.06	4,523	19,813
CE-04	4E	CAT G3612LE Compressor Engine	3,550 bhp	3.91	17.14	21.52	94.27	7.12	31.19	2.03	8.91	4.8E-03	0.02	2.52	11.06	4,523	19,813
CE-05	5E	CAT G3612LE Compressor Engine	3,550 bhp	3.91	17.14	21.52	94.27	7.12	31.19	2.03	8.91	4.8E-03	0.02	2.52	11.06	4,523	19,813
SSM	6E	Start/Stop/Maintenance	na						9.57				0.00		0.17		5,617
RPC	7E	Rod Packing/Crankcase	na					2.81	12.29	0.05	0.22	0.01	0.04	0.10	0.44	1,115	4,882
GE-01	8E	Olympian G70LG EmGen Engine	118 bhp	0.93	0.23	29.10	7.28	0.38	0.10	3.1E-02	7.7E-03	2.7E-04	6.8E-05	0.05	0.01	168	42
H-01	9E	TXP1 Hot Oil Heater	10.0 MMBtu/hr	1.09	4.76	0.91	4.00	0.06	0.26	8.2E-04	3.6E-03			0.02	0.09	1,298	5,686
H-02	10E	TXP1 Regen Gas Heater	4.74 MMBtu/hr	0.52	2.26	0.43	1.90	0.03	0.12	3.9E-04	1.7E-03			0.01	0.04	615	2,695
H-03	11E	TXP2 Regen Gas Heater	6.60 MMBtu/hr	0.72	3.14	0.60	2.64	0.04	0.17	5.4E-04	2.4E-03			0.01	0.06	857	3,753
H-04	12E	TXP3 Regen Gas Heater	6.60 MMBtu/hr	0.72	3.14	0.60	2.64	0.04	0.17	5.4E-04	2.4E-03			0.01	0.06	857	3,753
H-05	13E	TXP2 Heat Medium Heater	21.22 MMBtu/hr	2.31	10.10	1.94	8.49	0.13	0.56	1.7E-03	7.6E-03			0.04	0.19	2,755	12,067
H-06	14E	TXP3 Heat Medium Heater	21.22 MMBtu/hr	2.31	10.10	1.94	8.49	0.13	0.56	1.7E-03	7.6E-03			0.04	0.19	2,755	12,067
DH-01	15E	Groves Dehydrator - Flash Tank/Still Vent*	5.0 MMscfd					5.77	25.28			1.00	4.37	1.51	6.62	255	1,116
BLR-01	16E	Groves Dehydrator - Reboiler*	0.20 MMBtu/hr	0.02	0.10	0.02	0.08	1.2E-03	0.01	1.6E-05	7.1E-05			4.1E-04	1.8E-03	26	114
FL-02	18E	New Process Flare (MODIFIED)	90.0 MMscf/yr					4,405.75	555.77			0.12	0.02	48.01	6.06	337,551	42,581
TLO	20E	Truck Load-Out - Prod H2O/Condensate	600,000 bbl/yr						1.96				0.10		0.49		
FUG	21E	Process Piping Fugitives (MODIFIED)	24,550					34.57	151.42			0.02	0.09	1.03	4.52	917	4,016
T-03	22E	Produced Water Tank (9913)	400 bbl					0.23	1.01			0.01	0.05	0.06	0.25		
T-04	23E	Produced Water Tank (9914)	400 bbl					0.23	1.01			0.01	0.05	0.06	0.25		

TOTAL FACILITY-WIDE:	40.24	172.43	121.65	412.65	4,472	857	6.45	28.14	1.19	4.79	58.88	54.14	363,723	162,134
NNSR/PSD Threshold:		250		250		250		na		na		na		na
TVOP Threshold:		100		100		100		10		10		25		100,000

Notes: * Emission Units DH-01/15E and BLR-01/16E are authorized by Permit R13-3212A, issued 06/07/17; all other Emission Units are authorized by Permit R13-2826J, issued 06/16/16.

1 - Emission estimates are based on operation at 100% of rated load for 8,760 hr/yr, unless a Federally Enforceable Limitation (FEL) is established on hours of operation.

2 - VOC is volatile organic compounds, as defined by EPA, and includes HCHO (formaldehyde).

3 - PM10/2.5 is filterable and condensable particulate matter; including PM10 and PM2.5.

4 - CO2e is aggregated Greenhouse Gas (GHG), comprised of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O).

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment N - Supporting Emissions Calculations

Recovery Compressor Engine 01 - 225 bhp CAT G342NA (CE-01/1E)

Unit ID (Point ID)	Description	Reference	Pollutant		Pre-Cor Emiss			Control Efficiency		Contr Emiss		
(FOILT ID)				g/bhp-hr	lb/MMBtu	lb/hr	tpy	Enclency	g/bhp-hr	lb/MMBtu	lb/hr	tpy
		Vendor Specs	NOx	12.90	3.02	6.40	28.03	99.2%	0.10	0.02	0.05	0.22
	Caterpillar (CAT) G342NA Engine	Vendor Specs	CO	13.70	3.20	6.80	29.77	85.4%	2.00	0.47	0.99	4.35
	4SRB w/ NSCR	Vendor Specs	THC	1.80	0.42	0.89	3.91		1.80	0.42	0.89	3.91
		Est = 50% x THC	NMHC	0.90	0.21	0.45	1.96		0.90	0.21	0.45	1.96
		Vendor Specs	NMNEHC	0.50	0.12	0.25	1.09		0.50	0.12	0.25	1.09
	225 bhp	NMNEHC+HCHO	VOC	0.75	0.18	0.37	1.63	25.3%	0.56	0.13	0.28	1.22
	1,200 rpm	AP-42 Table 3.2-3	SO2	2.5E-03	5.9E-04	1.2E-03	0.01		2.5E-03	5.9E-04	1.2E-03	0.01
		AP-42 Table 3.2-3	PM10/2.5	0.08	0.02	0.04	0.18		0.08	0.02	0.04	0.18
	Manufacture Date:	AP-42 Table 3.2-3	Acetaldehyde	0.01	2.8E-03	5.9E-03	0.03		0.01	2.8E-03	0.01	0.03
	Before 06/12/06	AP-42 Table 3.2-3	Acrolein	0.01	2.6E-03	5.6E-03	0.02		0.01	2.6E-03	0.01	0.02
	NESHAP ZZZZ (Existing)	AP-42 Table 3.2-3	Benzene	0.01	1.6E-03	3.4E-03	0.01		0.01	1.6E-03	3.4E-03	0.01
CE-01/1E		AP-42 Table 3.2-3	Ethylbenzene	1.1E-04	2.5E-05	5.3E-05	2.3E-04		1.1E-04	2.5E-05	5.3E-05	2.3E-04
CE-01/1E	8,760 hr/yr	Vendor Specs (Est.)	Formaldehyde	0.25	0.06	0.12	0.54	76.0%	0.06	0.01	0.03	0.13
		AP-42 Table 3.2-3	n-Hexane									
	8,500 Btu/bhp-hr (LHV)	AP-42 Table 3.2-3	Methanol	1.3E-02	3.1E-03	6.5E-03	0.03		1.3E-02	3.1E-03	0.01	0.03
	9,424 Btu/bhp-hr (HHV)	AP-42 Table 3.2-3	Toluene	2.4E-03	5.6E-04	1.2E-03	0.01		2.4E-03	5.6E-04	1.2E-03	0.01
	1.91 MMBtu/hr (LHV)	AP-42 Table 3.2-3	2,2,4-TMP									
	2.12 MMBtu/hr (HHV)	AP-42 Table 3.2-3	Xylenes	8.3E-04	2.0E-04	4.1E-04	1.8E-03		8.3E-04	2.0E-04	4.1E-04	1.8E-03
	16,754 MMBtu/yr (LHV)	AP-42 Table 3.2-3	Other HAPs	7.7E-04	1.8E-04	3.8E-04	0.00		7.7E-04	1.8E-04	3.8E-04	0.00
	2,079 scf/hr	Sum	Total HAP	0.30	0.07	0.15	0.65	64.0%	0.11	0.03	0.05	0.23
	18.21 MMscf/yr	40CFR98 - Table C-1	CO2	503	118	249	1,093		503	118	249	1,093
	920 Btu/scf (LHV)	Vendor Specs (THC)	CH4	1.80	0.42	0.89	3.91		1.80	0.42	0.89	3.91
	1,020 Btu/scf (HHV)	40CFR98 - Table C-2	N2O	9.4E-04	2.2E-04	4.7E-04	2.0E-03		9.4E-04	2.2E-04	4.7E-04	2.0E-03
		Weighted Sum	CO2e	548	128	272	1,191		548	128	272	1,191

Notes: 1 - The emissions are based on operation at 100% of rated load for 8,760 hr/yr.

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment N - Supporting Emissions Calculations

Recovery Compressor Engine 02 - 625 bhp CAT G398TA (CE-02/2E)

Unit ID (Point ID)	Description	Reference	Pollutant		Pre-Cor Emiss			Control Efficiency		Conti Emis		
(Foline ID)				g/bhp-hr	lb/MMBtu	lb/hr	tpy	Enciency	g/bhp-hr	lb/MMBtu	lb/hr	tpy
		Vendor Specs	NOx	9.80	2.32	13.50	59.14	94.9%	0.50	0.12	0.69	3.02
	Caterpillar (CAT) G398TA Engine	Vendor Specs	CO	10.70	2.54	14.74	64.58	95.3%	0.50	0.12	0.69	3.04
	4SRB w/ NSCR	Vendor Specs	THC	0.80	0.19	1.10	4.83	20.0%	0.64	0.15	0.88	3.86
		Est = 50% x THC	NMHC	0.40	0.09	0.55	2.41	10.0%	0.32	0.09	0.44	1.93
		Vendor Specs	NMNEHC	0.20	0.05	0.28	1.21	80.0%	0.04	0.01	0.06	0.24
	625 bhp	NMNEHC+HCHO	VOC	0.30	0.07	0.41	1.81	78.7%	0.06	0.02	0.09	0.39
	1,200 rpm	AP-42 Table 3.2-3	SO2	2.5E-03	5.9E-04	3.4E-03	0.01		2.5E-03	5.9E-04	3.4E-03	0.01
		AP-42 Table 3.2-3	PM10/2.5	0.08	0.02	0.11	0.49		0.08	0.02	0.11	0.49
	Manufacture Date:	AP-42 Table 3.2-3	Acetaldehyde	0.01	2.8E-03	0.02	0.07	80.0%	0.00	5.6E-04	3.2E-03	0.01
	Before 06/12/06	AP-42 Table 3.2-3	Acrolein	0.01	2.6E-03	0.02	0.07	80.0%	0.00	5.3E-04	3.1E-03	0.01
	NESHAP ZZZZ (Existing)	AP-42 Table 3.2-3		0.01	1.6E-03	0.01	0.04	80.0%	1.3E-03	3.2E-04	1.8E-03	0.01
CE-02/2E		AP-42 Table 3.2-3	Ethylbenzene	1.0E-04	2.5E-05	1.4E-04	6.3E-04	80.0%	2.1E-05	5.0E-06	2.9E-05	1.3E-04
CE-02/2E	8,760 hr/yr	Vendor Specs (Est.)	Formaldehyde	0.10	0.02	0.14	0.60	76.0%	0.02	0.01	0.03	0.14
		AP-42 Table 3.2-3	n-Hexane					80.0%				
	8,387 Btu/bhp-hr (LHV)	AP-42 Table 3.2-3	Methanol	0.01	3.1E-03	0.02	0.08	80.0%	2.6E-03	6.1E-04	3.6E-03	0.02
	9,299 Btu/bhp-hr (HHV)	AP-42 Table 3.2-3	Toluene	2.4E-03	5.6E-04	3.2E-03	0.01	80.0%	4.7E-04	1.1E-04	6.5E-04	2.8E-03
	5.24 MMBtu/hr (LHV)	AP-42 Table 3.2-3	2,2,4-TMP					80.0%				
	5.81 MMBtu/hr (HHV)	AP-42 Table 3.2-3	Xylenes	8.2E-04	2.0E-04	1.1E-03	5.0E-03	80.0%	1.6E-04	3.9E-05	2.3E-04	9.9E-04
	45,919 MMBtu/yr (LHV)	AP-42 Table 3.2-3	Other HAPs	7.6E-04	1.8E-04	0.00	0.00	80.0%	1.5E-04	3.6E-05	2.1E-04	9.1E-04
	5,698 scf/hr	Sum	Total HAP	0.15	0.03	0.20	0.88	77.3%	0.03	0.01	0.05	0.20
	,	40CFR98 - Table C-1	CO2	496	118	684	2,995		496	118	684	2,995
	920 Btu/scf (LHV)	Vendor Specs (THC)	CH4	0.80	0.19	1.10	4.83		0.80	0.19	1.10	4.83
	1,020 Btu/scf (HHV)	40CFR98 - Table C-2	N2O	9.3E-04	2.2E-04	1.3E-03	0.01		9.3E-04	2.2E-04	1.3E-03	0.01
	1,020 Dia/001 (11117)	Weighted Sum	CO2e	516	122	712	3,117		516	122	712	3,117

Notes: 1 - The emissions are based on operation at 100% of rated load for 8,760 hr/yr.

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment N - Supporting Emissions Calculations

TXP1 Compressor Engines 03 thru 05 - 3,550 bhp CAT G3612LE (CE-03/3E thru CE-05/5E)

Unit ID (Point ID)	Description	Reference	Pollutant		Pre-Cor Emiss			Control Efficiency		Contr Emiss		
(FOILTE)				g/bhp-hr	lb/MMBtu	lb/hr	tpy	Enclency	g/bhp-hr	lb/MMBtu	lb/hr	tpy
		Vendor Specs	NOx	0.50	0.15	3.91	17.14	0.0%	0.50	0.15	3.91	17.14
	Caterpillar (CAT) G3612LE Engine	Vendor Specs	CO	2.75	0.82	21.52	94.27	90.0%	0.28	0.08	2.15	9.43
	4SLB w/ OxCat	Vendor Specs	THC	6.46	1.94	50.56	221.45	5.0%	6.14	1.84	48.02	210.31
		Vendor Specs	NMHC	1.82	0.55	14.24	62.39	17.9%	1.50	0.45	11.70	51.25
		Vendor Specs	NMNEHC	0.65	0.19	5.09	22.28	50.0%	0.33	0.10	2.54	11.14
	3,550 bhp (Each)	NMNEHC+HCHO	VOC	0.91	0.27	7.12	31.19	60.0%	0.36	0.11	2.85	12.48
	1,000 rpm	AP-42 Table 3.2-2	SO2	2.0E-03	5.88E-04	0.02	0.07		2.0E-03	5.9E-04	0.02	0.07
		AP-42 Table 3.2-2	PM10/2.5	0.03	0.01	0.26	1.14		0.03	0.01	0.26	1.14
	Commenced Construction	AP-42 Table 3.2-2	Acetaldehyde	0.03	0.01	0.22	0.96	50.0%	0.01	4.2E-03	0.11	0.48
	After 06/12/06	AP-42 Table 3.2-2	Acrolein	0.02	0.01	0.13	0.59	50.0%	0.01	2.6E-03	0.07	0.29
	NESHAP ZZZZ (New)	AP-42 Table 3.2-2	Benzene	1.5E-03	4.40E-04	0.01	0.05	50.0%	7.3E-04	2.2E-04	0.01	0.03
CE-03/3E CE-04/4E		AP-42 Table 3.2-2	Ethylbenzene	1.3E-04	3.97E-05	1.0E-03	4.5E-03	50.0%	6.6E-05	2.0E-05	5.2E-04	2.3E-03
CE-04/4E	8,760 hr/yr (Each)	Vendor Specs	Formaldehyde	0.26	0.08	2.03	8.91	85.0%	0.04	0.01	0.31	1.34
		AP-42 Table 3.2-2	n-Hexane	3.7E-03	1.11E-03	0.03	0.13	50.0%	1.9E-03	5.6E-04	0.01	0.06
	6,629 Btu/bhp-hr (LHV)	AP-42 Table 3.2-2	Methanol	0.01	2.50E-03	0.07	0.29	50.0%	4.2E-03	1.3E-03	0.03	0.14
	7,350 Btu/bhp-hr (HHV)	AP-42 Table 3.2-2	Toluene	1.4E-03	4.08E-04	0.01	0.05	50.0%	6.8E-04	2.0E-04	0.01	0.02
	23.53 MMBtu/hr (LHV)	AP-42 Table 3.2-2	2,2,4-TMP	8.3E-04	2.50E-04	0.01	0.03	50.0%	4.2E-04	1.3E-04	3.3E-03	0.01
	26.09 MMBtu/hr (HHV)	AP-42 Table 3.2-2	Xylenes	6.1E-04	1.84E-04	4.8E-03	0.02	50.0%	3.1E-04	9.2E-05	2.4E-03	0.01
	206,149 MMBtu/yr (LHV)	AP-42 Table 3.2-2	Other HAPs	1.1E-03	3.21E-04	0.01	0.04	50.0%	5.3E-04	1.6E-04	0.00	0.02
	25,579 scf/hr	Sum	Total HAP	0.32	0.10	2.52	11.06	78.2%	0.07	0.02	0.55	2.41
	224.07 MMscf/yr	Vendor Specs	CO2	441	132.29	3,451	15,117		441	132	3,451	15,117
	920 Btu/scf (LHV)	Vendor Specs	CH4	5.47	1.64	42.81	187.51		5.47	1.64	42.81	187.51
	1,020 Btu/scf (HHV)	40CFR98 - Table C-2	N2O	7.3E-04	2.20E-04	0.01	0.03		7.3E-04	2.2E-04	0.01	0.03
		Weighted Sum	CO2e	578	173	4,523	19,813		578	173	4,523	19,813

Notes: 1 - The emissions are based on operation at 100% of rated load for 8,760 hr/yr.

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment N - Supporting Emissions Calculations

Startup/Shutdown/Maintenance (Including Blowdown) (SSM/6E)

	Unit	No of Comp- ressor Units	Total bhp	a. Engine "Cold-Start" Gas Volume scf/SSM	b. Blowdown Gas Volume scf/SSM	SSM and Blowdown Events/vr	Total Gas Vented MMscf/yr	VOC 13,521 (Inlet) 926 (Residue) Ib/MMscf tpy	n-Hexane 141 (Inlet) 21 (Residue) Ib/MMscf tpy	BTEX,TMP 1 (Inlet) 0 (Residue) Ib/MMscf tpy	Total HAP 148 (Inlet) 22 (Residue) Ib/MMscf tpy	CH4 37,259 (Inlet) 42,275 (Residue) Ib/MMscf tpy	CO2e GWP = 25 tpy
CE-01 and	a. Cold Start (Engines)	2	na	1,400	na	104	0.15	0.98	0.01	9.9E-05	0.01	2.7	68
CE-02	b. Blowdown (Recip Comp)	2	850	na	5,283	104	0.55	3.71	0.04	3.7E-04	0.04	10.2	256
CE-03 thru	a. Cold Start (Engines)	3	na	2,100	na	104	0.22	0.10	0.00	3.4E-05	2.4E-03	4.6	115
CE-05	b. Blowdown (Recip Comp)	3	10,650	na	66,192	104	6.88	3.19	0.07	1.1E-03	0.08	145.5	3,638
CM-01	a. Cold Start (Electric Motor)	na	na	na	na	na	na	na	na	na	na	na	na
CIVI-01	b. Blowdown (Recip Comp)	1	500	na	3,108	12	0.04	0.25	0.00	2.5E-05	2.8E-03	0.7	17
CM-02 thru	a. Cold Start (Electric Motor)	na	na	na	na	na	na	na	na	na	na	na	na
CM-07	b. Blowdown (Recip Comp)	6	38,630	na	240,094	12	2.88	1.33	0.03	4.5E-04	0.03	60.9	1,522

TOTAL FACILITY-WIDE PRE-CONTROLLED SSM EMISSIONS: BLOWDOWN EMISSIONS FROM CM-02 THRU CM-07 INCLUDED IN NEW FLARE (FL-02/18E): TOTAL FACILITY-WIDE CONTROLLED SSM EMISSIONS:

9.57 0.16 0.00 0.17 225 5,617 (1.33)(0.03)(0.00)(0.03)(60.90)(1,522)8.24 0.13 0.00 0.13 164 4.094

Notes: 1 - SSM Emissions are the sum of: a. Unburned fuel resulting from "cold-start" of idle gas-fired engines and b. Natural gas that is purged (aka blowdown) from the compressors and associated piping and equipment.

2 - CM-01 and CM-02 thru CM-07 are gas compressors driven by electric motors. CM-01 is the Columbia compressor, CM-02 thru CM-07 are the residue gas compressors.

3 - Starting Gas Quantity and Blowdown (B-D) Gas Quantity as per Engineering Department. (e.g., 8,577 sct/B-D of a compressor with a 1,380 bhp engine equals 6.22 sct/bhp/B-D.)

Engines	a. Unburned "Cold-Start" Gas is Constant at:	700 scf/start
Lingines	b. Blowdown Gas is Related to bhp at:	6.22 scf/bhp/B-D

4 - To be conservative, the following gas characteristics were assumed:

.,				
Pollutant	Inlet Gas Analysis	Estimated	Residue Gas Analysis	Estimated
Carbon Dioxide	218.85 lb/MMscf	262.62 lb/MMscf	203.37 lb/MMscf	244.04 lb/MMscf
Methane	31,049.14 lb/MMscf	37,258.97 lb/MMscf	35,798.08 lb/MMscf	42,275.00 lb/MMscf
VOC (Propane)	11,267.63 lb/MMscf	13,521.16 lb/MMscf	771.50 lb/MMscf	925.80 lb/MMscf
n-Hexane	117.63 lb/MMscf	141.16 lb/MMscf	17.34 lb/MMscf	20.81 lb/MMscf
Benzene	1.65 lb/MMscf	1.98 lb/MMscf	0.21 lb/MMscf	0.25 lb/MMscf
Toluene	3.16 lb/MMscf	3.79 lb/MMscf	0.24 lb/MMscf	0.29 lb/MMscf
Ethylbenzene	0.28 lb/MMscf	0.34 lb/MMscf	0.28 lb/MMscf	0.34 lb/MMscf
Xylenes	0.28 lb/MMscf	0.34 lb/MMscf	0.28 lb/MMscf	0.34 lb/MMscf
2,2,4-TMP	0.30 lb/MMscf	0.36 lb/MMscf	0.30 lb/MMscf	0.36 lb/MMscf
Total HAP:	123.30 lb/MMscf	147.96 lb/MMscf	18.65 lb/MMscf	22.38 lb/MMscf

5 - Emission estimates are conservatively based on:

Starts-Stops per week per Engine.

Blowdown(s) per week per Compressor (except electrically driven compressors, see above).

6 - CE-01, CE-02, and CM-01 are in Inlet Gas service. CE-03 thru CE-05 and CM-02 thru CM-07 are in Residue Gas service.

2.0

2.0

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment N - Supporting Emissions Calculations

Compressor Rod Packing and Engine Crankcase (RPC/7E)

Compressor Rod Packing Leaks (Natural Gas)

Unit Description	No. of Recip Comp- ressors	Cyl per Recip Comp- ressor	scfh per Cylinder	Contin- gency	Total Leak Rate		(Inlet) esidue)	HC n n Ib/MI	a	BTEX,Hex 25 (Ir 4 (*Res Ib/MM	nlet) sidue)	148 (22 (*Re	l HAP (Inlet) esidue) Mscf	263 (244 (Re	D2 [Inlet) esidue) Mscf	CH 37,259 42,275 (F Ib/MI	(Inlet) Residue)	931,73 1,057,119	D2e 7 (Inlet) (Residue) IMscf
					MMscf/yr	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Rod Packing - CM-01(Inlet)	1	2	15	15%	0.30	0.47	2.04	na	na	8.5E-04	0.00	0.01	0.02	0.01	0.04	1	6	32	141
Rod Packing - CE-04 (inlet)	1	4	15	15%	0.60	0.93	4.09	na	na	0.00	0.01	0.01	0.04	0.02	0.08	3	11	64	282
Rod Packing - CE-05 (Inlet)	1	2	15	15%	0.30	0.47	2.04	na	na	8.5E-04	0.00	0.01	0.02	0.01	0.04	1	6	32	141
Rod Packing* - CM-02 thru -07	6	6	15	15%	5.44	0.57	2.52	na	na	0.00	0.01	0.01	0.06	0.15	0.66	26	115	656	2,875
Rod Packing* - CE-01 thru -03	3	4	15	15%	1.81	0.19	0.84	na	na	0.00	0.00	0.00	0.02	0.05	0.22	9	38	219	958

*Residue (aka, Outlet) Gas - CM-02 thru -07 and CE-01 thru -03

Crankcase Emissions (Combustion Gas from CE-01 thru -05)

	Total Effective	Leak Rate		VC	C	HC	ю	BTEX,Hex,	TMP(Ea)	Total	HAP	CO	02	CH	4	CO	2e
Unit Description	(Prorated for hr/yr)	0.50	Safety	12.13		3.4	17	0.1	0.14		30	5,879		73	3	7,7	02
Unit Description	Recip Horsepower	scf/bhp-hr	Factor	lb/M	N scf	lb/M	N scf	lb/MN	lscf	lb/M	Mscf	lb/MN	/ Iscf	lb/MM	/lscf	lb/MN	A scf
	(bhp)	MMscf/yr		lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Crankcase Emissions**	11,500	50.37	250%	0.17	0.76	0.05	0.22	2.0E-03	0.01	0.06	0.27	85	370	1	5	111	485

нсно

tpy

0.22

BTEX,Hex,TMP(Ea)

tpy

0.04

lb/hr

0.01

**Crankcase - CE-01 thru -05

CM-01 thru CM-07 are Electric Motor Driven Compressors. CE-01 thru CE-05 are Gas-Fired Engine Driven Compressors.

Notes: 1 - Misc. equipment leaks is a broad category covering leaks of natural gas from sealed surfaces, such as packing and gaskets, resulting from the wear of mechanical joints, seals, and rotating surfaces over time. It also includes the crankcase emissions from reciprocating engines.

2 - To be conservative, and to account for potential future changes, the following "worst-case" gas characteristics were assumed:

Pollutant	Worst-Case Assumption (Inlet)	Worst-Case Assumption (Outlet)
CO2	263 lb/MMscf	244 lb/MMscf
CH4	37,259 lb/MMscf	42,275 lb/MMscf
VOC	13,521 lb/MMscf	926 lb/MMscf
BTEX,Hex,TMP (ea)	25 lb/MMscf	4 lb/MMscf
Total HAP	148 lb/MMscf	22 lb/MMscf

3 - Estimates of Recip Compressor Leaks are based on vendor data w/ an appropriate contingency.

lb/hr

0.05

voc

tpy

12.29

lb/hr

2.81

Total RPC:

4 - Total Effective Recip BHP is determined as follows:

Unit ID	Utilization	BHP	Prorated
CE-01	8,760 hr/yr	225	225
CE-02	8,760 hr/yr	625	625
CE-03	8,760 hr/yr	3,550	3,550
CE-04	8,760 hr/yr	3,550	3,550
CE-05	8,760 hr/yr	3,550	3,550
	TOTAL	11,500	11,500

5 - Engine crankcase emissions are based on vendor data: "As a general rule, blow-by (i.e., crankcase emissions) on a <u>new</u> engine is approximately 0.5 scf/bhp-hr." A "safety factor" is used to account for increasing blow-by as the engines "wear". 6 - Crankcase emissions are estimated as follows:

lb/hr

85

CO2

tpy

371

Total HAP

tpy

0.44

lb/hr

0.10

(Data from CAT G3612 Data Sheet and Emissions Calculation Spreadsheet.) Tot Eng Exhaust (TEEx) (Vol) 24.053 acf/min 5.143 MMscf/vr TEEx*

CH4

tpv

180

lb/hr

41

CO2e

tpy

4,882

lb/hr

1,115

	24,000 aci/min	5,145 WINSCI/yI TEEX
Pollutant	G3612LE PTE	Crankcase Emission Factor**
Crankcase THC emissions (Mass)	221.45 tpy THC	86.12 Ib THC / MMscf TEEx
Crankcase VOC emissions (Mass)	31.19 tpy VOC	12.13 lb VOC / MMscf TEEx
Crankcase HCHO emissions (Mass)	8.91 tpy HCHO	3.47 lb HCHO / MMscf TEEx
Crankcase BTEX (ea) emissions (Ma	0.36 tpy BTEX	0.14 lb BTEX / MMscf TEEx
Crankcase HAP (tot) emissions (Mas	11.06 tpy HAP	4.30 lb HAP / MMscf TEEx
Crankcase CO2 emissions (Mass)	15,117 tpy CO2	5,879 lb CO2 / MMscf TEEx
Crankcase CH4 emissions (Mass)	188 tpy CH4	73 lb CH4 / MMscf TEEx
Crankcase CO2e emissions (Mass)	19,813 tpy CO2e	7,705 lb CO2e /MMscf TEEx

* Conversion from acf/min to scf/yr based 838 oF exhaust temp, and 68 oF std temp.

** Crankcase EmFact = PTE (tpy) from G3612LE ÷ Tot Engine Exhaust (TEEx) (MMsfy/yr).

7 - There are a total of 12 gas compressors; two are inlet gas compressors driven by the CAT G342NA and G398TA engines (CE-01 and -02), three are residue gas compressors driven by CAT G3612LE engines (CE-03 thru -05), one is an inlet gas compressor (Columbia) that is electrically driven (CM-01), and six are electrically driven residue gas compressors (CM-02 thru -07).

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment N - Supporting Emissions Calculations

Emergency Generator Engine - 118 bhp Olympian G70LG (GE-01/8E)

Unit ID (Point ID)	Description	Reference	Pollutant		Pre-Con Emiss			Control Efficiency		Contr Emis		
(1 011(12)				g/bhp-hr	lb/MMBtu	lb/hr	tpy	Enterency	g/bhp-hr	lb/MMBtu	lb/hr	tpy
	Ohmusian 0701 0 (4000)	Vendor Data	NOx	3.55	0.92	0.93	0.23		3.55	0.92	0.93	0.23
	Olympian G70LG (4SRB) 4SRB - EPA Certified	Vendor Data	CO	111.49	28.92	29.10	7.28		111.49	28.92	29.10	7.28
		Vendor Data	THC	1.46	0.38	0.38	0.10		1.46	0.38	0.38	0.10
		Conservative Est.	NMHC	1.46	0.38	0.38	0.10		1.46	0.38	0.38	0.10
	118 bhp	Conservative Est.	NMNEHC	1.46	0.38	0.38	0.10		1.46	0.38	0.38	0.10
	1,800 rpm	Conservative Est.	VOC	1.46	0.38	0.38	0.10		1.46	0.38	0.38	0.10
		AP-42 Table 3.2-3	SO2	2.3E-03	5.88E-04	8.9E-04	2.2E-04		2.3E-03	5.88E-04	8.9E-04	2.2E-04
	Manufacture Date:	AP-42 Table 3.2-3	PM10/2.5	0.07	0.02	0.03	0.01		0.07	0.02	0.03	0.01
	After 01/01/09	AP-42 Table 3.2-3	Acetaldehyde	0.01	2.79E-03	4.2E-03	1.1E-03		0.01	2.79E-03	4.2E-03	1.1E-03
	NSPS Affected	AP-42 Table 3.2-3	Acrolein	0.01	2.63E-03	4.0E-03	9.9E-04		0.01	2.63E-03	4.0E-03	9.9E-04
	NESHAP ZZZZ (New)	AP-42 Table 3.2-3	Benzene	0.01	1.58E-03	2.4E-03	6.0E-04		0.01	1.58E-03	2.4E-03	6.0E-04
GE-01/8E		AP-42 Table 3.2-3	Ethylbenzene	9.6E-05	2.48E-05	3.7E-05	9.4E-06		9.6E-05	2.48E-05	3.7E-05	9.4E-06
GE-01/8E	500 hr/yr	AP-42 Table 3.2-3	Formaldehyde	0.08	0.02	0.03	0.01		0.08	0.02	0.03	0.01
		AP-42 Table 3.2-3	n-Hexane									
	7,650 Btu/bhp-hr (LHV)	AP-42 Table 3.2-3	Methanol	0.01	3.06E-03	4.6E-03	1.2E-03		0.01	3.06E-03	4.6E-03	1.2E-03
	8,500 Btu/bhp-hr (HHV)	AP-42 Table 3.2-3	Toluene	2.2E-03	5.58E-04	8.4E-04	2.1E-04		2.2E-03	5.58E-04	8.4E-04	2.1E-04
	0.91 MMBtu/hr (LHV)	AP-42 Table 3.2-3	2,2,4-TMP									
	1.01 MMBtu/hr (HHV)	AP-42 Table 3.2-3	Xylenes	7.5E-04	1.95E-04	2.9E-04	7.4E-05		7.5E-04	1.95E-04	2.9E-04	7.4E-05
	453 MMBtu/yr (LHV)	AP-42 Table 3.2-3	Other HAPs	6.9E-04	1.79E-04	2.7E-04	6.8E-05		6.9E-04	1.79E-04	2.7E-04	6.8E-05
	985 scf/hr	Sum	Total HAP	0.12	0.03	0.05	0.01		0.12	0.03	0.05	0.01
	0.49 MMscf/yr	40CFR98 Table C-1	CO2	522	135	136	34		522	135.46	136	34
	920 Btu/scf (LHV)	AP-42 Table 3.2-3	CH4	4.82	1.25	1.26	0.31		4.82	1.25	1.26	0.31
	1,020 Btu/scf (HHV)	40CFR98 Table C-1	N2O	0.01	1.32E-03	1.3E-03	3.3E-04		0.01	1.3E-03	1.3E-03	3.3E-04
		Weighted Sum	CO2e	644	167	168	42		644	167	168	42

Notes: 1 - The emission estimates are based on operation at 100% of rated load for operation of 500 hours per year.

2 - The generator set will burn propane or natural gas fuel.

3 - PM10/2.5 is Filterable and Condensable Particulate Matter; including PM10 and PM2.5

4 - HCHO is Formaldehyde; Total HAP includes HCHO, Acetaldehyde, Acrolein, BTEX (Benzene, Toluene, Ethylbenzene, Xylene), Methanol, and n-Hexane.

5 - NOx, CO and VOC emissions are based on vendor data and are the highest numbers for wither natural gas or propane. Other pollutant emissions are based on EPA AP-42 or 40 CFR Part 98.

6 - SO2, PM and HAP emissions are based on EPA AP-42 emission factors for an uncontrolled four-stroke rich-burn engine.

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment N - Supporting Emissions Calculations

TXP1 Hot Oil Heater - 10.0 MMBtu/hr (H-01/9E)

Unit ID (Point ID)	Description	Reference	Pollutant		ssion ctor	Pre-Co Emis	ntrolled sions	Control Efficiency	Conti Emis	
(Foline ID)				lb/MMscf	lb/MMBtu	lb/hr	tpy	%	lb/hr	tpy
		EPA AP-42 Table 1.4-2	NOx	100.00	9.80E-02	1.09	4.76		1.09	4.76
	TXP1 Hot Oil Heater	EPA AP-42 Table 1.4-2	CO	84.00	8.24E-02	0.91	4.00		0.91	4.00
	TXF THOUGH Heater	EPA AP-42 Table 1.4-2	THC	11.00	1.08E-02	0.12	0.52		0.12	0.52
		EPA AP-42 Table 1.4-2	NMHC	8.75	1.20E-01	1.33	5.83		1.33	5.83
		EPA AP-42 Table 1.4-2	NMNEHC	5.43	5.32E-03	0.06	0.26		0.06	0.26
	10.00 MMBtu/hr (LHV)	EPA AP-42 Table 1.4-2	VOC	5.50	5.39E-03	0.06	0.26		0.06	0.26
	11.09 MMBtu/hr (HHV)	EPA AP-42 Table 1.4-2	SO2	0.60	5.88E-04	0.01	0.03		0.01	0.03
		EPA AP-42 Table 1.4-2	PM10/2.5	7.60	7.45E-03	0.08	0.36		0.08	0.36
		EPA AP-42 Table 1.4-3								
	8,760 hr/yr	EPA AP-42 Table 1.4-3	Acrolein							
		EPA AP-42 Table 1.4-3	Benzene	2.1E-03	2.06E-06	2.3E-05	1.0E-04		2.3E-05	1.0E-04
H-01/9E		EPA AP-42 Table 1.4-3	Ethylbenzene							
H-01/3E		EPA AP-42 Table 1.4-3	Formaldehyde	0.08	7.35E-05	8.2E-04	3.6E-03		8.2E-04	3.6E-03
		EPA AP-42 Table 1.4-3	n-Hexane	1.80	1.76E-03	0.02	0.09		0.02	0.09
	10,870 scf/hr	EPA AP-42 Table 1.4-3	Methanol							
	260.87 Mscfd	EPA AP-42 Table 1.4-3	Toluene	3.4E-03	3.33E-06	3.7E-05	1.6E-04		3.7E-05	1.6E-04
	95.22 MMscf/yr	EPA AP-42 Table 1.4-3	2,2,4-TMP							
		EPA AP-42 Table 1.4-3	Xylenes							
	920 Btu/scf (LHV)	EPA AP-42 Table 1.4-3	Other HAPs	1.2E-03	1.18E-06	1.3E-05	5.7E-05		1.3E-05	5.7E-05
	1,020 Btu/scf (HHV)	EPA AP-42 Table 1.4-3	Total HAP	1.88	1.84E-03	0.02	0.09		0.02	0.09
		40CFR98 - Table C-1	CO2	119,317	1.17E+02	1,297	5,681		1,297	5,681
		40CFR98 - Table C-2	CH4	2.25	2.20E-03	0.02	0.11		0.02	0.11
		40CFR98 - Table C-2	N2O	0.22	2.20E-04	2.4E-03	0.01		2.4E-03	0.01
		Weighted Sum	CO2e	119,440	1.17E+02	1,298	5,686		1,298	5,686

Notes: 1 - The fuel heating value will vary, 920 Btu/scf (LHV) is at the low end of the range and results in a high (conservative) fuel consumption estimate.

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment N - Supporting Emissions Calculations

TXP1 Regenerator Gas Heater - 4.74 MMBtu/hr (H-02/10E)

Unit ID (Point ID)	Description	Reference	Pollutant		ssion ctor	Pre-Co Emis	ntrolled sions	Control Efficiency	Conti Emis	
(rontib)				lb/MMscf	lb/MMBtu	lb/hr	tpy	%	lb/hr	tpy
		EPA AP-42 Table 1.4-2	NOx	100.00	9.80E-02	0.52	2.26		0.52	2.26
	TXP1 Regen Gas Heater	EPA AP-42 Table 1.4-2	CO	84.00	8.24E-02	0.43	1.90		0.43	1.90
	TAP T Regen Gas nealer	EPA AP-42 Table 1.4-2	THC	11.00	1.08E-02	0.06	0.25		0.06	0.25
		EPA AP-42 Table 1.4-2	NMHC	8.75	1.20E-01	0.63	2.76		0.63	2.76
		EPA AP-42 Table 1.4-2	NMNEHC	5.43	5.32E-03	0.03	0.12		0.03	0.12
	4.74 MMBtu/hr (LHV)	EPA AP-42 Table 1.4-2	VOC	5.50	5.39E-03	0.03	0.12		0.03	0.12
	5.26 MMBtu/hr (HHV)	EPA AP-42 Table 1.4-2	SO2	0.60	5.88E-04	3.1E-03	0.01		0.00	0.01
		EPA AP-42 Table 1.4-2	PM10/2.5	7.60	7.45E-03	0.04	0.17		0.04	0.17
		EPA AP-42 Table 1.4-3	Acetaldehyde							
	8,760 hr/yr	EPA AP-42 Table 1.4-3	Acrolein							
		EPA AP-42 Table 1.4-3	Benzene	2.1E-03	2.06E-06	1.1E-05	4.7E-05		1.1E-05	4.7E-05
H-02/10E		EPA AP-42 Table 1.4-3	Ethylbenzene							
H-02/10E		EPA AP-42 Table 1.4-3	Formaldehyde	0.08	7.35E-05	3.9E-04	1.7E-03		3.9E-04	1.7E-03
		EPA AP-42 Table 1.4-3	n-Hexane	1.80	1.76E-03	0.01	0.04		0.01	0.04
	5,152 scf/hr	EPA AP-42 Table 1.4-3	Methanol							
	123.65 Mscfd	EPA AP-42 Table 1.4-3	Toluene	3.4E-03	3.33E-06	1.8E-05	7.7E-05		1.8E-05	7.7E-05
	45.13 MMscf/yr	EPA AP-42 Table 1.4-3	2,2,4-TMP							
		EPA AP-42 Table 1.4-3	Xylenes							
	920 Btu/scf (LHV)	EPA AP-42 Table 1.4-3	Other HAPs	1.2E-03	1.18E-06	6.2E-06	2.7E-05		6.2E-06	2.7E-05
	1,020 Btu/scf (HHV)	EPA AP-42 Table 1.4-3	Total HAP	1.88	1.84E-03	0.01	0.04		0.01	0.04
		40CFR98 - Table C-1	CO2	119,317	1.17E+02	615	2,693		615	2,693
		40CFR98 - Table C-2	CH4	2.25	2.20E-03	0.01	0.05		0.01	0.05
		40CFR98 - Table C-2	N2O	0.22	2.20E-04	1.2E-03	0.01		1.2E-03	0.01
		Weighted Sum	CO2e	119,440	1.17E+02	615	2,695		615	2,695

Notes: 1 - The fuel heating value will vary, 920 Btu/scf (LHV) is at the low end of the range and results in a high (conservative) fuel consumption estimate.

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment N - Supporting Emissions Calculations

TXP2 and TXP3 Regenerator Gas Heater - 6.60 MMBtu/hr (H-03/11E and H-04/12E)

Unit ID (Point ID)	Description	Reference	Pollutant		ssion ctor	Pre-Cor Emis		Control Efficiency	Contr Emis	
(Foline iD)				lb/MMscf	lb/MMBtu	lb/hr	tpy	%	lb/hr	tpy
		EPA AP-42 Table 1.4-2	NOx	100.00	9.80E-02	0.72	3.14		0.72	3.14
	TXP2 Regen Gas Heater and	EPA AP-42 Table 1.4-2	CO	84.00	8.24E-02	0.60	2.64		0.60	2.64
	TXP3 Regen Gas Heater	EPA AP-42 Table 1.4-2	THC	11.00	1.08E-02	0.08	0.35		0.08	0.35
		EPA AP-42 Table 1.4-2	NMHC	8.75	1.20E-01	0.88	3.85		0.88	3.85
		EPA AP-42 Table 1.4-2	NMNEHC	5.43	5.32E-03	0.04	0.17		0.04	0.17
	6.60 MMBtu/hr (LHV) (ea)	EPA AP-42 Table 1.4-2	VOC	5.50	5.39E-03	0.04	0.17		0.04	0.17
	7.32 MMBtu/hr (HHV) (ea)	EPA AP-42 Table 1.4-2	SO2	0.60	5.88E-04	4.3E-03	0.02		4.3E-03	0.02
		EPA AP-42 Table 1.4-2	PM10/2.5	7.60	7.45E-03	0.05	0.24		0.05	0.24
		EPA AP-42 Table 1.4-3	Acetaldehyde							
	8,760 hr/yr	EPA AP-42 Table 1.4-3	Acrolein							
		EPA AP-42 Table 1.4-3	Benzene	2.1E-03	2.06E-06	1.5E-05	6.6E-05		1.5E-05	6.6E-05
H-03/11E and		EPA AP-42 Table 1.4-3	Ethylbenzene							
H-04/12E		EPA AP-42 Table 1.4-3	Formaldehyde	0.08	7.35E-05	5.4E-04	2.4E-03		5.4E-04	2.4E-03
		EPA AP-42 Table 1.4-3	n-Hexane	1.80	1.76E-03	0.01	0.06		0.01	0.06
	7,174 scf/hr	EPA AP-42 Table 1.4-3	Methanol							
	172.17 Mscfd	EPA AP-42 Table 1.4-3	Toluene	3.4E-03	3.33E-06	2.4E-05	1.1E-04		2.4E-05	1.1E-04
	62.84 MMscf/yr	EPA AP-42 Table 1.4-3	2,2,4-TMP							
		EPA AP-42 Table 1.4-3	Xylenes							
	920 Btu/scf (LHV)	EPA AP-42 Table 1.4-3	Other HAPs	1.2E-03	1.18E-06	8.6E-06	3.8E-05		8.6E-06	3.8E-05
	1,020 Btu/scf (HHV)	EPA AP-42 Table 1.4-3	Total HAP	1.88	1.84E-03	0.01	0.06		0.01	0.06
		40CFR98 - Table C-1	CO2	119,317	1.17E+02	856	3,749		856	3,749
		40CFR98 - Table C-2	CH4	2.25	2.20E-03	0.02	0.07		0.02	0.07
		40CFR98 - Table C-2	N2O	0.22	2.20E-04	1.6E-03	0.01		1.6E-03	0.01
		40CFR98 - Table A-1	CO2e	119,440	1.17E+02	857	3,753		857	3,753

Notes: 1 - The fuel heating value will vary, 920 Btu/scf (LHV) is at the low end of the range and results in a high (conservative) fuel consumption estimate.

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment N - Supporting Emissions Calculations

TXP2 and TXP3 Heat Medium Heater - 21.22 MMBtu/hr (H-05/13E and H-06/14E)

Unit ID (Point ID)	Description	Reference	Pollutant		ssion ctor	Pre-Cor Emis		Control Efficiency		rolled sions
(rontie)				lb/MMscf	lb/MMBtu	lb/hr	tpy	%	lb/hr	tpy
		EPA AP-42 Table 1.4-2	NOx	100.00	9.80E-02	2.31	10.10	na	2.31	10.10
	TXP2 Heat Medium Heater and	EPA AP-42 Table 1.4-2	CO	84.00	8.24E-02	1.94	8.49	na	1.94	8.49
	TXP3 Heat Medium Heater	EPA AP-42 Table 1.4-2	THC	11.00	1.08E-02	0.25	1.11	na	0.25	1.11
		EPA AP-42 Table 1.4-2	NMHC	8.75	1.20E-01	2.82	12.37	na	2.82	12.37
		EPA AP-42 Table 1.4-2	NMNEHC	5.43	5.32E-03	0.13	0.55	na	0.13	0.55
	21.22 MMBtu/hr (LHV) (ea)	EPA AP-42 Table 1.4-2	VOC	5.50	5.39E-03	0.13	0.56	na	0.13	0.56
	23.53 MMBtu/hr (HHV) (ea)	EPA AP-42 Table 1.4-2	SO2	0.60	5.88E-04	1.4E-02	0.06	na	1.4E-02	0.06
		EPA AP-42 Table 1.4-2	PM10/2.5	7.60	7.45E-03	0.18	0.77	na	0.18	0.77
		EPA AP-42 Table 1.4-3	Acetaldehyde					na		
	8,760 hr/yr	EPA AP-42 Table 1.4-3	Acrolein					na		
		EPA AP-42 Table 1.4-3	Benzene	2.1E-03	2.06E-06	4.8E-05	2.1E-04	na	4.8E-05	2.1E-04
H-05/13E and		EPA AP-42 Table 1.4-3	Ethylbenzene							
H-06/14E		EPA AP-42 Table 1.4-3	Formaldehyde	0.08	7.35E-05	1.7E-03	0.01	na	1.7E-03	0.01
		EPA AP-42 Table 1.4-3	n-Hexane	1.80	1.76E-03	0.04	0.18	na	0.04	0.18
	23,065 scf/hr	EPA AP-42 Table 1.4-3	Methanol							
	553.57 Mscfd	EPA AP-42 Table 1.4-3	Toluene	3.4E-03	3.33E-06	7.8E-05	3.4E-04	na	7.8E-05	3.4E-04
	202.05 MMscf/yr	EPA AP-42 Table 1.4-3	2,2,4-TMP							
		EPA AP-42 Table 1.4-3	Xylenes							
	920 Btu/scf (LHV)	EPA AP-42 Table 1.4-3	Other HAPs	1.2E-03	1.18E-06	2.8E-05	1.2E-04	na	2.8E-05	1.2E-04
	1,020 Btu/scf (HHV)	EPA AP-42 Table 1.4-3	Total HAP	1.88	1.84E-03	0.04	0.19		0.04	0.19
		40CFR98 - Table C-1	CO2	119,317	1.17E+02	2,752	12,054	na	2,752	12,054
		40CFR98 - Table C-2	CH4	2.25	2.20E-03	0.05	0.23	na	0.05	0.23
		40CFR98 - Table C-2	N2O	0.22	2.20E-04	0.01	0.02	na	0.01	0.02
		40CFR98 - Table A-1	CO2e	119,440	1.17E+02	2,755	12,067	na	2,755	12,067

Notes: 1 - The fuel heating value will vary, 920 Btu/scf (LHV) is at the low end of the range and results in a high (conservative) fuel consumption estimate.

Williams Ohio Valley Midstream LLC FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment N - Supporting Emissions Calculations

Groves Dehydrator Flash Tank and Still Vent - 5.0 MMscfd (DH-01/15E)

Authorized by R13-3212A - Groves Dehydration Station

Unit ID	Description	Reference	Pollutant	Emissio	on Factor	Pre-Recycle	e Emissions	Recycle	Post-Recycl	e Emissions
				lb/MMscf	lb/MMBtu	lb/hr	tpy	%	lb/hr	tpy
		See BLR-01	NOx							
	Dehydrator 01	See BLR-01	CO							
	(No Combustion	GRI-GLYCalc 4.0	THC			19.75	86.49	45%	10.96	48.00
	Emissions Shown)	GRI-GLYCalc 4.0	NMHC			9.56	41.85	39%	5.82	25.51
	(See BLR-01)	GRI-GLYCalc 4.0	NMNEHC			5.77	25.28	33%	3.88	17.00
	, , , , , , , , , , , , , , , , , , ,	GRI-GLYCalc 4.0	VOC			5.77	25.28	33%	3.88	17.00
		See BLR-01	SO2							
		See BLR-01	PM10/2.5							
	5.00 MMscfd	See BLR-01	Acetaldehyde							
	5.00 MMscfd	See BLR-01	Acrolein							
		GRI-GLYCalc 4.0	Benzene			0.08	0.34	7%	0.07	0.31
DH-01/15E		GRI-GLYCalc 4.0	Ethylbenzene							
DH-01/13E		See BLR-01	Formaldehyde							
		GRI-GLYCalc 4.0	n-Hexane			0.11	0.50	40%	0.07	0.30
	8,760 hr/yr	See BLR-01	Methanol							
		GRI-GLYCalc 4.0	Toluene			0.32	1.41	5%	0.31	1.34
		GRI-GLYCalc 4.0	2,2,4-TMP							
	0.21 MMscf/hr	GRI-GLYCalc 4.0	Xylenes			1.00	4.37	2%	0.98	4.27
	1,825 MMscf/yr	See BLR-01	Other HAPs							
		GRI-GLYCalc 4.0	Total HAP			1.51	6.62	6%	1.42	6.22
	NESHAP HH - Exempt	See BLR-01	CO2							
		GRI-GLYCalc 4.0	CH4			10.19	44.63	50%	5.14	22.50
		See BLR-01	N2O							
		40CFR98 - Table A-1	CO2e			255	1,116	50%	128	562

Notes: 1 - Dehydrator flash tank off-gases are usually burned as fuel in the reboiler. However, to be conservative, it is estimated 50% of the flash tank off-gases are used as reboiler fuel.

2 - To be conservative, and to account for potential future changes in gas quality, the following worst-case emissions were assumed:

	GRI-GLYCalc 4.0*	Worst-Case Assumption	*Dehydrator C	Operating Paran	neters (See Attachment L)	
THC	40.00 tpy	48.00 tpy	Flow Rate:	5.0 gal/lb-H2O	Gas Analysis:	07/02/13
NMHC	21.25 tpy	25.51 tpy	Wet Gas Temperature:	72 oF	Flash Tank Temperature:	150 oF
NMNEHC = VOC	14.16 tpy	17.00 tpy	Wet Gas Presssure:	836 psig	Flash Tank Pressure:	50 psig
Benzene	0.26 tpy	0.31 tpy	Wet Gas Water Content:	Saturated	Flash Tank Off-Gas Control: 5	0% Recycle
Ethylbenzene	tpy	tpy	Dry Gas Water Content:)	lb-H2O/MMscf	Stripping Gas:	na
НСНО	tpy	tpy	Lean Glycol Water Content:	1.5 wt% H2O	Condenser Temperature:	na
n-Hexane	0.25 tpy	0.30 tpy	Glycol Circulation Rate:	0.67 gpm	Condenser Pressure:	na
Toluene	1.11 tpy	1.34 tpy	Glycol Pump:	Gas Injection	Regen/Cond Off-Gas Control:	na
2,2,4-TMP	tpy	tpy				
Xylenes	3.56 tpy	4.27 tpy		Additional Mo	odel Results:	
Total HAP	5.19 tpy	6.22 tpy	Glycol Recirculation Ratio:	7.1 gal/lb-H2O	Flash Tank Off-Gas Flow:	262 scfh
CH4	18.75 tpy	22.50 tpy	Rich Glycol Water Content:	2.8 gal/lb-H2O	Regen/Cond Off-Gas Flow:	128 scfh

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment N - Supporting Emissions Calculations

Groves Dehydrator Reboiler - 0.20 MMBtu/hr (BLR-01/16E)

Authorized by R13-3212A - Groves Dehydration Station

Unit ID	Description	Reference	Pollutant		ssion ctor	Pre-Co Emis	ntrolled sions	Control Efficiency	Contr Emis	rolled sions
				lb/MMscf	lb/MMBtu	lb/hr	tpy	%	lb/hr	tpy
		EPA AP-42 Table 1.4-2	NOx	100.00	9.80E-02	0.02	0.10		0.02	0.10
	Reboiler 01	EPA AP-42 Table 1.4-2	CO	84.00	8.24E-02	0.02	0.08		0.02	0.08
	(Combustion Only)	EPA AP-42 Table 1.4-2	THC	11.00	1.08E-02	2.4E-03	0.01		2.4E-03	0.01
		EPA AP-42 Table 1.4-2	NMHC	8.75	1.20E-01	2.7E-02	0.12		2.7E-02	0.12
		EPA AP-42 Table 1.4-2	NMNEHC	5.43	5.32E-03	1.2E-03	0.01		1.2E-03	0.01
	0.20 MMBtu/hr (LHV)	EPA AP-42 Table 1.4-2	VOC	5.50	5.39E-03	1.2E-03	0.01		1.2E-03	0.01
	0.22 MMBtu/hr (HHV)	EPA AP-42 Table 1.4-2	SO2	0.60	5.88E-04	1.3E-04	5.7E-04		1.3E-04	5.7E-04
		EPA AP-42 Table 1.4-2	PM10/2.5	7.60	7.45E-03	1.7E-03	0.01		1.7E-03	0.01
	8 760 br/yr	EPA AP-42 Table 1.4-3	Acetaldehyde							
	8,760 hr/yr	EPA AP-42 Table 1.4-3	Acrolein							
		EPA AP-42 Table 1.4-3	Benzene	2.1E-03	2.06E-06	4.6E-07	2.0E-06		4.6E-07	2.0E-06
BLR-01/16E		EPA AP-42 Table 1.4-3	Ethylbenzene							
BLK-01/10E		EPA AP-42 Table 1.4-3	Formaldehyde	0.08	7.35E-05	1.6E-05	7.1E-05		1.6E-05	7.1E-05
		EPA AP-42 Table 1.4-3	n-Hexane	1.80	1.76E-03	3.9E-04	1.7E-03		3.9E-04	1.7E-03
	217 scf/hr	EPA AP-42 Table 1.4-3	Methanol							
	5.22 Mscfd	EPA AP-42 Table 1.4-3	Toluene	3.4E-03	3.33E-06	7.4E-07	3.2E-06		7.4E-07	3.2E-06
	1.90 MMscf/yr	EPA AP-42 Table 1.4-3	2,2,4-TMP							
		EPA AP-42 Table 1.4-3	Xylenes							
	920 Btu/scf (LHV)	EPA AP-42 Table 1.4-3	Other HAPs	1.2E-03	1.18E-06	2.6E-07	1.1E-06		2.6E-07	1.1E-06
	1,020 Btu/scf (HHV)	EPA AP-42 Table 1.4-3	Total HAP	1.88	1.84E-03	4.1E-04	1.8E-03		4.1E-04	1.8E-03
		40CFR98 - Table C-1	CO2	119,317	1.17E+02	26	114		26	114
		40CFR98 - Table C-2	CH4	2.25	2.20E-03	4.9E-04	2.1E-03		4.9E-04	2.1E-03
		40CFR98 - Table C-2	N2O	0.22	2.20E-04	4.9E-05	2.1E-04		4.9E-05	2.1E-04
		40CFR98 - Table A-1	CO2e	119,440	1.17E+02	26	114		26	114

Notes: 1 - The fuel heating value will vary, 920 Btu/scf (LHV) is at the low end of the range and results in a high (conservative) fuel consumption estimate.

Williams Ohio Valley Midstream LLC FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment N - Supporting Emissions Calculations

New Process Flare (FL-02/18E) (MODIFIED)

Unit ID (Point ID)	Description	Reference	Pollutant		ssion ctor	Pre-Co Emis		Control Efficiency	Contr Emis	olled sions
(1 011112)				lb/MMscf	lb/MMBtu	lb/hr	tpy	%	lb/hr	tpy
	Zeeco AFTA-20/56	EPA AP-42 Table 1.4-1	NOx	126.43	0.10				45.10	5.69
	New Process Flare	EPA AP-42 Table 13.5-1	CO	399.77	0.31				142.61	17.99
	(Waste Gas and Combustion)	Engineering Estimate	THC	50,200	38.93	17,908	2,259	98.0%	358.16	45.18
	(Engineering Estimate	NMHC	12,350	9.58	4,406	556	98.0%	88.11	11.12
	98% Control Efficiency	Engineering Estimate	NMNEHC	12,350	9.58	4,406	556	98.0%	88.11	11.12
		Engineering Estimate	VOC	12,350	9.58	4,406	556	98.0%	88.11	11.12
		EPA AP-42 Table 1.4-2	SO2	0.76	5.88E-04				0.27	0.03
	460.03 MMBtu/hr (HHV) (max)	EPA AP-42 Table 1.4-2	PM10/2.5	9.61	7.45E-03				3.43	0.43
	13.25 MMBtu/hr (HHV) (avg)	Engineering Estimate	Acetaldehyde							
		Engineering Estimate	Acrolein							
	8,760 hr/yr	Engineering Estimate	Benzene	1.80	1.39E-03	0.64	0.08	98.0%	0.01	0.00
FL-02/18E		Engineering Estimate	Ethylbenzene	0.34	2.60E-04	0.12	0.02	98.0%	0.00	0.00
12-02/102	90.00 MMscf/yr	EPA AP-42 Table 1.4-2	Formaldehyde	0.09	7.35E-05				0.03	4.3E-03
		Engineering Estimate	n-Hexane	128.68	0.10	45.91	5.79	98.0%	0.92	0.12
		EPA AP-42 Table 1.4-2	Methanol							
	10,274 scf/hr (avg)	Engineering Estimate	Toluene	3.43	2.66E-03	1.22	0.15	98.0%	0.02	3.1E-03
	246.58 Mscfd (avg)	EPA AP-42 Table 1.4-2	2,2,4-TMP							
		Engineering Estimate	Xylenes	0.34	2.60E-04	0.12	0.02	98.0%	2.4E-03	3.0E-04
		EPA AP-42 Table 1.4-2	Other HAPs	1.5E-03	1.18E-06	5.4E-04	6.8E-05		5.4E-04	6.8E-05
	1,290 Btu/scf (HHV) - avg	Engineering Estimate	Total HAP	134.67	0.10	48.01	6.06	97.9%	0.99	0.13
		40CFR98 - Table C-1	CO2	158,892	123.21				56,681	7,150
		Mass Balance	CH4	37,850	29.35	13,502	1,703	98.0%	270	34
		40CFR98 - Table C-2	N2O	1.00	7.72E-04				0.35	0.04
		40CFR98 - Table A-1	CO2e	1,105,432	857.21	337,551	42,581	81.2%	63,538	8,015

Notes: 1 - PM10/2.5 is filterable and condensable particulate matter; including PM10 and PM2.5.

2 - Flare design capacity and short-term (lb/hr) emissions are based on flare vendor Case 4 (TXP2 plant maintenance) - flow rate of 21,000 lb/hr, MW = 19.6 lb/lb-mol and heating value = 1,080 Btu/scf (LHV).

3 - Heat Input and CO2 emission factors determined as follows:

Component			Waste Gas (to	Flare)				CO2 (40CFR98)	
component	Mol% (Vol%)	MMscf/yr	scf/hr	Btu/scf (HHV)	MMBtu/hr	lb/MMscf	Wgt%	kg/MMBtu	lb/MMBtu
Nitrogen	0.5%	0.44	49.95				0.6%		
Carbon Dioxide	0.2%	0.17	19.24				0.4%		
Methane	74.6%	67.15	7,665.31	1,010	7.75	37,850	56.6%	53.06	116.98
Ethane	16.9%	15.23	1,738.73	1,799	3.13		24.1%	59.60	131.40
VOC (Non-HAP)	7.7%	6.97	795.42	2,957	2.35	12,215	18.1%	62.87	138.60
n-Hexane	0.0472%	0.0425	4.85	4,893	0.0237	129	0.193%		
Benzene	0.0007%	0.0007	0.07	3,989	0.0003	2	0.003%		
Toluene	0.0012%	0.0011	0.12	4,749	0.0006	3	0.005%		
Ethylenzene	0.0001%	0.0001	0.01	5,523	0.0001	0	0.001%		
Xylenes	0.0001%	0.0001	0.01	5,509	0.0001	0	0.001%		
2,2,4-TMP	0.0001%	0.0001	0.01	6,924	0.0001	0	0.001%		
Total HAP	0.05%	0.04	5.08	4,869	0.02	135	0.202%	68.02	149.96
TOTAL	100.0%	90.00	10,274	1,290	13.25	50,200	100.0%	55.89	123.21

13.17

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment N - Supporting Emissions Calculations

Truck Load-Out (TLO/20E)

Unit ID	Description	S sat. fac.	P	M lb/lb-mol	T oR	CE %	L _L Ib/Mgal	T-Put	VOC AP-42 Sect 5.2	BTEX, n-hexane (Ea) 5.00% of VOC	Total HAP 25.00% of VOC
TLO/20E	Truck Load-Out - Prod H2O/Condensat		psia 0.24	18.28	510	% 0.0%	0.16	Mgal/yr 25,200	tpy 1.96	tpy 0.10	tpy 0.49
		DTAL TLO:	1.96	0.10	0.49						

Notes: 1 - Emission factors and formulas are from AP-42 Section 5.2 "Transportation and Marketing of Petroleum Liquids":

L_L = 12.46 x S x P x M / T x (1 - CE)

where:

 L_L = Loading loss, lb/1,000 gal of liquid loaded.

S = Saturation factor, used 1.45 for "splash loading".

P = True vapor pressure of liquid loaded, psia. The vapor pressure is taken from EPA TANKS 4.0.9d.

M = Molecular weight of vapors, lb/lb-mole. Used 18.28 lb/lb-mol from EPA TANKS 4.0.9d output.

T = Temperature of bulk liquid loaded, $^{\circ}R = ^{\circ}F + 460$. (Conservatively assumed 50 $^{\circ}F$.)

CE = Overall emission reduction efficiency (collection efficiency x control efficiency).

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment N - Supporting Emissions Calculations

Process Piping Fugitive Emissions (FUG/21E) (MODIFIED) - Page 01 of 02

Unit	Description	Component (Unit) Type	Unit Count	THC Factor	LDAR Control	Emission		DC Wgt%	-	xane Wgt%		MP (Ea) Wgt%	Total 0.26	HAP Wgt%	CC 0.46	D2 Wgt%	CH 75.00		CO GWP	
		(Gas/Vapor)	Count	lb/hr/Unit	Credit	lb/hr	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
		Valves	3,575	0.00992	67%	11.71	2.80	12.25	0.03	0.13	2.8E-04	1.2E-03	0.03	0.13	0.1	0.2	9	38	220	962
		Pump Seals		na																
	Process Piping	Pressure Relief	159	0.01940	0%	3.08	0.74	3.22	0.01	0.03	7.4E-05	3.2E-04	0.01	0.04	0.01	0.1	2	10	58	253
FUG/21E	Fugitives	Connectors	7,501	0.00044	0%	3.31	0.79	3.46	0.01	0.04	7.9E-05	3.5E-04	0.01	0.04	0.02	0.1	2	11	62	272
	(Gas/Vapor)	Flanges	1,787	0.00086	0%	1.54	0.37	1.61	3.8E-03	0.02	3.7E-05	1.6E-04	4.0E-03	0.02	0.01	0.03	1	5	29	126
		Open-ended lines	20	0.00441	0%	0.09	0.02	0.09	2.20E-04	9.64E-04	2.1E-06	9.28E-06	2.31E-04	1.01E-03	4E-04	2E-03	0.1	0.3	2	7
		Compressors	14	0.00750	0%	0.10	0.02	0.11	2.6E-04	1.1E-03	2.5E-06	1.1E-05	2.7E-04	1.2E-03	5E-04	2E-03	0.1	0.3	2	9
	SubTotal:				Su	ubTotal:	4.74	20.75	0.05	0.22	4.8E-04	2.1E-03	0.05	0.23	0.1	0.4	15	65	372	1,628

		Component	Unit	THC	LDAR	Emission	V	oc	n-He	xane	BTEX,T	MP (Ea)	Total	HAP	CC	02	CH	4	CO	2e
Unit	Description	(Unit) Type	Count	Factor	Control	S	100.00	Wgt%	3.47	Wgt%	0.08	Wgt%	3.80	Ngt%		Wgt%	11.41	Wgt%	GWP	= 25
		(Light Liquid)	oount	lb/hr/Unit	Credit	lb/hr	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
		Valves	2,924	0.00551	61%	6.29	6.29	27.53	0.22	0.95	0.01	0.02	0.24	1.05			1	3	18	79
		Pump Seals	47	0.02866	45%	0.74	0.74	3.26	0.03	0.11	6.2E-04	2.7E-03	0.03	0.12			0.1	0.4	2	9
	Process Piping	Pressure Relief	79	0.01653	0%	1.31	1.31	5.75	0.05	0.20	1.1E-03	4.8E-03	0.05	0.22			0.1	1	4	16
FUG/21E	Fugitives	Connectors	6,599	0.00046	0%	3.06	3.06	13.38	0.11	0.46	2.5E-03	0.01	0.12	0.51			0.3	2	9	38
	(Light Oil)	Flanges	1,056	0.00024	0%	0.26	0.26	1.12	0.01	0.04	2.1E-04	9.3E-04	0.01	0.04			0.03	0.1	1	3
		Open-ended lines	10	0.00309	0%	0.03	0.03	0.14	1.1E-03	4.7E-03	2.6E-05	1.1E-04	1.2E-03	0.01			4E-03	0.02	0.1	0.4
		Compressors	-	0.01653	0%															
	SubTotal:				Sı	ubTotal:	11.68	51.17	0.41	1.77	0.01	0.04	0.44	1.95			1	6	33	146

15% Contingency

Notes: 1 - Assumed 8,760 hours per year of fugitive emissions. 2 - Updated component counts from recent LDAR monitoring w/:

6 - THC = total hydrocarbons, including methane (CH4) and ethane (C2H6).

7 - VOC = non-methane/non-ethane THC (C3+).

8 - HAP = hazardous air pollutants as designated by EPA, primarily n-hexane/BTEX.

9 - The following gas	s characteristics were	e assumed:	20.0%	% Safety Margin
Pollutant	Gas/Vapor	Light Oil	Heavy Oil	Mixture (Max)
Foliutant	Estimated	Estimated	Estimated	Estimated
Carbon Dioxide	0.46 Wgt%	Wgt%	Wgt%	0.46 Wgt%
Methane	75.00 Wgt%	11.41 Wgt%	Wgt%	75.00 Wgt%
VOC (Propane)	23.90 Wgt%	100.00 Wgt%	100.00 Wgt%	100.00 Wgt%
n-Hexane	0.25 Wgt%	3.47 Wgt%	3.47 Wgt%	3.47 Wgt%
Benzene	0.003 Wgt%	0.05 Wgt%	0.05 Wgt%	0.05 Wgt%
Toluene	0.01 Wgt%	0.15 Wgt%	0.15 Wgt%	0.15 Wgt%
Ethylbenzene	0.001 Wgt%	0.005 Wgt%	0.005 Wgt%	0.005 Wgt%
Xylenes	0.001 Wgt%	0.01 Wgt%	0.01 Wgt%	0.01 Wgt%
2,2,4-TMP	0.001 Wgt%	0.12 Wgt%	0.12 Wgt%	0.12 Wgt%
Total HAP:	0.26 Wgt%	3.80 Wgt%	3.80 Wgt%	3.80 Wgt%

3 - Gas/Vapor emissions calculated using EPA Protocol for Equipment Leak Emission Estimates, 1995, EPA-453/R-95-017

TABLE 2.4	Gas/\	/apor	Ligh	t Oil	Heav	y Oil	Mixture	e (Max)
O&G PROD (AVE)	kg/hr	lb/hr	kg/hr	lb/hr	kg/hr	lb/hr	kg/hr	lb/hr
Valves	4.50E-03	0.00992	2.50E-03	0.00551	8.40E-06	0.00002	4.50E-03	0.00992
Pump Seals	na	na	1.30E-02	0.02866	2.40E-03	0.00529	1.30E-02	0.02866
Other ⁽⁴⁾	8.80E-03	0.01940	7.50E-03	0.01653	3.20E-05	0.00007	8.80E-03	0.01940
Connectors	2.00E-04	0.00044	2.10E-04	0.00046	7.50E-06	0.00002	2.10E-04	0.00046
Flanges	3.90E-04	0.00086	1.10E-04	0.00024	3.90E-07	0.00000	3.90E-04	0.00086
Open-ended lines	2.00E-03	0.00441	1.40E-03	0.00309	1.40E-04	0.00031	2.00E-03	0.00441

4 - "Other" components include compressor seals, relief valves, diaphragms, drains, meters, etc.

5 - LDAR Control Credit from "Leak Detection and Repair Compliance Assistance Guidance—A Best Practices Guide" Table 4-1, w/ Quarterly Monitoring and 10,000 ppm Leak Definition.

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment N - Supporting Emissions Calculations

Process Piping Fugitive Emissions (FUG/21E) (MODIFIED) - Page 02 of 02

Unit	Description	Component (Unit) Type	Unit	THC Factor	LDAR Control	Emission		DC	-	xane		((Ea)			cc		Cŀ		CO GWP	-
onn	Description	(Gas/Vapor)	Count	lb/hr/Unit	Credit	s Ib/hr	lb/hr	Wgt% tpy	3.47 lb/hr	Wgt% tpy	0.08 lb/hr	Wgt% tpy	3.80 lb/hr	Wgt% tpy	 lb/hr	Wgt% tpy	 lb/hr	Wgt% tpy	lb/hr	- 25 tpy
		Valves	67	0.00002	0%	1.2E-03	1.2E-03	5.4E-03	4.3E-05	1.9E-04	1.0E-06	4.5E-06	4.7E-05	2.1E-04						
		Pump Seals		0.00529																
	Process Piping	Pressure Relief	2	0.00007	0%	1.6E-04	1.6E-04	7.1E-04	5.6E-06	2.5E-05	1.4E-07	5.9E-07	6.2E-06	2.7E-05						
FUG/21E	Fugitives	Connectors	131	0.00002	0%	2.2E-03	2.2E-03	0.01	7.5E-05	3.3E-04	1.8E-06	7.9E-06	8.2E-05	3.6E-04						
	(Heavy Oil)	Flanges		0.00000																
		Open-ended lines		0.00031																
		Compressors		0.00002																
		SubTotal:	200		Sı	ubTotal:	3.6E-03	0.02	1.2E-04	5.4E-04	3.0E-06	1.3E-05	1.4E-04	5.9E-04						

		Component	Unit	THC	LDAR	Emission	VC	00	n-He	xane	BTEX	((Ea)	Total	HAP	CC	02	CF	4	CO	02e
Unit	Description	(Unit) Type	Count	Factor	Control	S	100.00	Wgt%	3.47	Wgt%	0.08	Wgt%	3.80	Wgt%	0.46	Wgt%	75.00	Wgt%	GWP	= 25
		(Light Liquid)	oount	lb/hr/Unit	Credit	lb/hr	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
		Valves	187	0.00992	0%	1.86	1.86	8.15	0.06	0.28	1.5E-03	6.8E-03	0.07	0.31	8.6E-03	0.04	1.4	6	35	153
		Pump Seals	-	0.02866	-															
	Process Piping	Pressure Relief		0.01940																
FUG/21E	Fugitives	Connectors	351	0.00046	0%	0.16	0.16	0.71	0.01	0.02	1.4E-04	5.9E-04	0.01	0.03	8E-04	3.3E-03	0.1	1	3	13
	(Mixture)	Flanges	37	0.00086	0%	0.03	0.03	0.14	1.1E-03	4.8E-03	2.6E-05	1.2E-04	1.2E-03	0.01	1E-04	6.4E-04	0.02	0.10	1	3
		Open-ended lines		0.00441																
		Compressors	-	0.01940	-														-	
		SubTotal:	575		Su	ubTotal:	2.05	9.00	0.07	0.31	1.7E-03	7.5E-03	0.08	0.34	9.5E-03	0.04	2	7	39	169

CURRENT PERMIT: 18,470

24,550 OTAL FUGITIVE EMISSIONS:

18.48

80.93

0.53 2.30 0.01 0.05

Notes: 1 - Assumed 8,760 hours per year of fugitive emissions.

2 - Updated component counts from recent LDAR monitoring w/: 15% Contingency

3 - Gas/Vapor emissions calculated using EPA Protocol for Equipment Leak Emission Estimates, 1995, EPA-453/R-95-017

TABLE 2.4	Gas/\	/apor	Ligh	t Oil	Heav	y Oil	Mixture	e (Max)
O&G PROD (AVE)	kg/hr	lb/hr	kg/hr	lb/hr	kg/hr	lb/hr	kg/hr	lb/hr
Valves	4.50E-03	0.00992	2.50E-03	0.00551	8.40E-06	0.00002	4.50E-03	0.00992
Pump Seals	na	na	1.30E-02	0.02866	2.40E-03	0.00529	1.30E-02	0.02866
Other ⁽⁴⁾	8.80E-03	0.01940	7.50E-03	0.01653	3.20E-05	0.00007	8.80E-03	0.01940
Connectors	2.00E-04	0.00044	2.10E-04	0.00046	7.50E-06	0.00002	2.10E-04	0.00046
Flanges	3.90E-04	0.00086	1.10E-04	0.00024	3.90E-07	0.00000	3.90E-04	0.00086
Open-ended lines	2.00E-03	0.00441	1.40E-03	0.00309	1.40E-04	0.00031	2.00E-03	0.00441

4 - "Other" components include compressor seals, relief valves, diaphragms, drains, meters, etc.

5 - LDAR Control Credit from "Leak Detection and Repair Compliance Assistance Guidance—A Best Practices Guide" Table 4-1, w/ Quarterly Monitoring and 10,000 ppm Leak Definition.

6 - THC = total hydrocarbons, including methane (CH4) and ethane (C2H6).

0.57

7 - VOC = non-methane/non-ethane THC (C3+).

8 - HAP = hazardous air pollutants as designated by	EPA, primarily n-hexane/BTEX.
---	-------------------------------

2.51

0.1

0.4

18

78

444

1,943

- The following gas characteristics were assumed:										
Gas/Vapor	Light Oil	Heavy Oil	Mixture (Max)							
Estimated	Estimated	Estimated	Estimated							
0.46 Wgt%	Wgt%	Wgt%	0.46 Wgt%							
75.00 Wgt%	11.41 Wgt%	Wgt%	75.00 Wgt%							
23.90 Wgt%	100.00 Wgt%	100.00 Wgt%	100.00 Wgt%							
0.25 Wgt%	3.47 Wgt%	3.47 Wgt%	3.47 Wgt%							
0.003 Wgt%	0.05 Wgt%	0.05 Wgt%	0.05 Wgt%							
0.01 Wgt%	0.15 Wgt%	0.15 Wgt%	0.15 Wgt%							
0.001 Wgt%	0.005 Wgt%	0.005 Wgt%	0.005 Wgt%							
0.001 Wgt%	0.01 Wgt%	0.01 Wgt%	0.01 Wgt%							
0.001 Wgt%	0.12 Wgt%	0.12 Wgt%	0.12 Wgt%							
0.26 Wgt%	3.80 Wgt%	3.80 Wgt%	3.80 Wgt%							
	Gas/Vapor Estimated 0.46 Wgt% 75.00 Wgt% 23.90 Wgt% 0.25 Wgt% 0.003 Wgt% 0.01 Wgt% 0.001 Wgt% 0.001 Wgt% 0.001 Wgt%	Gas/Vapor Light Oil Estimated Estimated 0.46 Wgt% Wgt% 75.00 Wgt% 11.41 Wgt% 23.90 Wgt% 100.00 Wgt% 0.25 Wgt% 3.47 Wgt% 0.003 Wgt% 0.05 Wgt% 0.01 Wgt% 0.15 Wgt% 0.001 Wgt% 0.01 Wgt% 0.001 Wgt% 0.01 Wgt%	Gas/Vapor Estimated Light Oil Estimated Heavy Oil Estimated 0.46 Wgt% Wgt% Wgt% 75.00 Wgt% 11.41 Wgt% Wgt% 23.90 Wgt% 100.00 Wgt% 100.00 Wgt% 0.25 Wgt% 3.47 Wgt% 3.47 Wgt% 0.003 Wgt% 0.05 Wgt% 0.05 Wgt% 0.01 Wgt% 0.15 Wgt% 0.15 Wgt% 0.001 Wgt% 0.01 Wgt% 0.01 Wgt% 0.001 Wgt% 0.12 Wgt% 0.12 Wgt%							

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment N - Supporting Emissions Calculations

Produced Water Storage Tank Emissions (T-03/22E and T-04/23E)

Unit ID	Material Stored	Capacity		Turnovers per Year	Throug	Throughput Emission Factor		voc		· ·	TEX (Ea) of VOC **		HAP of VOC **
		gal	bbl	poi roui	gal/yr	bbl/yr		lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
T-03/22E	Produced Water (9913)	16,800	400	500.0	8,400,000	200,000	0.0101 lb/bbl	0.23	1.01	0.01	0.05	0.06	0.25
T-04/23E	Produced Water (9914)	16,800	400	500.0	8,400,000	200,000	0.0101 lb/bbl	0.23	1.01	0.01	0.05	0.06	0.25
	TOTAL VOLUME:	33,600	800	500.0	16,800,000	400,000	TOTAL EMISSIONS:	0.46	2.03	0.02	0.10	0.12	0.51

Notes: 1 - The produced water tank emissions are based on EPA TANKS 4.0.9d (working and breathing losses) and a VMGSim model simulation (flashing losses).

2 - There are other storage tanks at the site but they are not listed above as they have de-minimis emissions as defined in West Virigina Air quality regulation 45CSR13.

Potentially Applicable **AP-42 and GHG EMISSION FACTORS** (Preferentially use test data or vendor data where available)

			GAS-FIRED ENGINES			GAS-FIRED TURBINE	3
	Dollutont	<u>AP-42 T</u>	able 3.2-1; 3.2-2; 3.2-3	<u>07/00</u>	<u>AP-42 T</u>	able 3.1-1; 3.1-2a; 3.1-	<u>3 04/00</u>
	Pollutant	2SLB	4SLB	4SRB	Uncontrolled	Water Injection	Lean Pre-Mix#
		lb/MMBtu	lb/MMBtu	lb/MMBtu	lb/MMBtu	lb/MMBtu	lb/MMBtu
	NOX (≥90% Load)	3.17E+00	4.08E+00	2.21E+00	3.20E-01	1.30E-01	9.90E-02
⊻	CO (≥90% Load)	3.86E-01	3.17E-01	3.72E+00	8.20E-02	3.00E-02	1.50E-02
ШЧ	NMNEHC (VOC w/o HCHO)	6.48E-02	6.52E-02	9.10E-03	1.39E-03	1.39E-03	2.08E-03
CRITERIA	VOC (NMNEHC w/HCHO)	1.20E-01	1.18E-01	2.96E-02	2.10E-03	2.10E-03	2.10E-03
ö	SO2 (2,000 gr-S/MMscf)	5.88E-04	5.88E-04	5.88E-04	5.88E-04	5.88E-04	5.88E-04
	PM10/2.5 (Total)	4.83E-02	9.99E-03	1.94E-02	6.60E-03	6.60E-03	6.60E-03
	Acetaldehyde	7.76E-03	8.36E-03	2.79E-03	4.00E-05	4.00E-05	4.00E-05
	Acrolein	7.78E-03	5.14E-03	2.63E-03	6.40E-06	6.40E-06	6.40E-06
	Benzene	1.94E-03	4.40E-04	1.58E-03	1.20E-05	1.20E-05	9.10E-07
	Butadiene, 1,3-	8.20E-04	2.67E-04	6.63E-04	4.30E-07	4.30E-07	4.30E-07
	Ethylbenzene	1.08E-04	3.97E-05	2.48E-05	3.20E-05	3.20E-05	3.20E-05
	Formaldehyde (HCHO)	5.52E-02	5.28E-02	2.05E-02	7.10E-04	7.10E-04	2.00E-05
HAPs	n-Hexane	4.45E-04	1.11E-03				
HA	Methanol (MeOH)	2.48E-03	2.50E-03	3.06E-03			
	Polycyclic Organic Matter (POM)	1.34E-04	3.47E-04	9.71E-05	3.03E-05	3.03E-05	3.03E-05
	Toluene	9.63E-04	4.08E-04	5.58E-04	1.30E-04	1.30E-04	1.30E-04
	Trimethylpentane, 2,2,4- (i-Octane)	8.46E-04	2.50E-04				
	Xylenes	2.68E-04	1.84E-04	1.95E-04	6.40E-05	6.40E-05	6.40E-05
	Other/Trace HAP	6.57E-04	3.21E-04	1.79E-04	2.90E-05	2.90E-05	2.90E-05
	TOTAL HAP	7.94E-02	7.22E-02	3.23E-02	1.05E-03	1.05E-03	3.53E-04
	CO2 (GWP=1)	1.10E+02	1.10E+02	1.10E+02	1.10E+02	1.10E+02	1.10E+02
GHG	CH4 (GWP=25)	1.45E+00	1.25E+00	2.30E-01	8.60E-03	8.60E-03	8.60E-03
Ģ	N2O (GWP=298)	2.20E-04	2.20E-04	2.20E-04	3.00E-03	3.00E-03	3.00E-03
	CO2e	1.46E+02	1.41E+02	1.16E+02	1.11E+02	1.11E+02	1.11E+02
	AP-42 CO2e vs. Part 98 CO2e:	1.17E+02	1.17E+02	1.17E+02	(#Lean Pre-Mix -	aka: Dry Low Emission	s (DLE) or SoLoNOx)

	AP-42 CO2e vs. Part 98 CO2e:	1.17E+02	1.17E+02	1.17E+02					
		GAS-FIR	ED EXTERNAL COME	BUSTION	FLARE	DIESEL I	ENGINES		
	Pollutant	AP-42 Table 1.4-	<u>1; 1.4-2; 1.4-3 (<100 N</u>	<u>1MBtu/hr) 07/98</u>	<u>13.5-1 12/16</u>	<u>3.3-1; 3.3-2 10/96</u>	<u>Tier 4 ≥ 750 bhp</u>		
	Pollutant	Uncontrolled	LoNOx Burners	Flue Gas Recirc	Combustion	Uncontrolled	Uncontrolled		
		lb/MMBtu	lb/MMBtu	lb/MMBtu	lb/MMBtu	lb/MMBtu	lb/MMBtu		
	NOX (<100 MMBtu/hr))	9.80E-02	4.90E-02	3.14E-02	External Combustion	4.41E+00	8.34E-01		
⊻	CO (<100 MMBtu/hr)	8.24E-02	8.24E-02	8.24E-02	3.1E-01	9.50E-01	8.34E-01		
ER	NMNEHC (VOC w/o HCHO)	5.32E-03	5.32E-03	5.32E-03		3.53E-01	4.47E-02		
CRITERIA	VOC (NMNEHC w/HCHO)	5.39E-03	5.39E-03	5.39E-03		3.55E-01	4.59E-02		
Ö	SO2 (2,000 gr-S/MMscf)	5.88E-04	5.88E-04	5.88E-04		2.90E-01	2.90E-01		
	PM10/2.5 (Total)	7.45E-03	7.45E-03	7.45E-03		3.10E-01	9.39E-03		
	Acetaldehyde					7.67E-04	7.67E-04		
	Acrolein					9.25E-05	9.25E-05		
	Benzene	2.06E-06	2.06E-06	2.06E-06		9.33E-04	9.33E-04		
	Butadiene, 1,3-				<u>USE</u>	3.91E-05	3.91E-05		
	Ethylbenzene								
	Formaldehyde (HCHO)	7.35E-05	7.35E-05	7.35E-05	≥98% DRE	1.18E-03	1.18E-03		
HAPs	n-Hexane	1.76E-03	1.76E-03	1.76E-03	<u>0R</u>				
Η	Methanol (MeOH)				<u>-011</u>				
	Polycyclic Organic Matter (POM)	6.85E-07	6.85E-07	6.85E-07	External Combustion	1.52E-04	1.52E-04		
	Toluene	3.33E-06	3.33E-06	3.33E-06		4.09E-04	4.09E-04		
	Trimethylpentane, 2,2,4- (i-Octane)				AS APPLICABLE				
	Xylenes					2.85E-04	2.85E-04		
	Other/Trace HAP	1.18E-06	1.18E-06	1.18E-06					
	TOTAL HAP	1.85E-03	1.85E-03	1.85E-03		3.86E-03	3.86E-03		
	CO2 (GWP=1)	1.18E+02	1.18E+02	1.18E+02		1.64E+02	1.64E+02		
GHG	CH4 (GWP=25)	2.25E-03	2.25E-03	2.25E-03		6.61E-03	6.61E-03		
Ġ	N2O (GWP=298)	2.16E-03	2.16E-03	2.16E-03		1.32E-03	1.32E-03		
	CO2e	1.18E+02	1.18E+02	1.18E+02		1.65E+02	1.65E+02		
	AP-42 CO2e vs. Part 98 CO2e:	1.17E+02	1.17E+02	1.17E+02		1.64E+02	1.64E+02		

1.17E+02	1.17E+02	1.17E+02							
40 CFR 98 - DEFAUL1	EMISSION FACTORS	8							
Table C-1 to Subpart C of Part S									
	Carbon Dioxide	Methane	Nitrous Oxide						
	lb CO2/MMBtu	lb CH4/MMBtu	lb N2O/MMBtu						
138,000 Btu/gal	163.0539	0.00661	0.00132						
91,000 Btu/gal	138.6046	0.00661	0.00132						
1,026 Btu/scf	116.9773	0.00220	0.00022						
	40 CFR 98 - DEFAULT <u>Table C-1 to Sub</u> Default HHV 138,000 Btu/gal 91,000 Btu/gal	40 CFR 98 - DEFAULT EMISSION FACTORSTable C-1 to Subpart C of Part 98Default HHVCarbon Dioxide Ib CO2/MMBtu138,000 Btu/gal163.053991,000 Btu/gal138.6046	40 CFR 98 - DEFAULT EMISSION FACTORSTable C-1 to Subpart C of Part 98Table C-2 to SubDefault HHVCarbon Dioxide Ib CO2/MMBtuMethane Ib CH4/MMBtu138,000 Btu/gal163.05390.0066191,000 Btu/gal138.60460.00661						

Global Wa	Global Warming Potential (100 Yr) (GWP)							
Table A-1 to Subpart A of Part 98								
CO2	CO2 CH4 N2O							
1 25 298								

	1.64E+0	02	1.64E+02
	Convers	sion	Factors
8	1.0 lb	=	453.5924 g
de	1.0 kg	=	2.2046 lb
Btu	1.0 hp	=	746.0000 Watt
	1.0 hp-hr	=	2,544.4336 Btu
	1.0 kW-hr	=	3,412.1416 Btu
	1.0 kW-hr	=	1.3410 hp-hr
	1.0 cf	=	7.4805 gal
	1.0 gal H2O	=	8.3378 lb
	1.0 m	=	3.2808 ft
	1.0 km	=	0.6214 mile
	1.0 acre	=	43,560.1742 ft2
	1.0 oF	=	(°C*9/5)+32
	1.0 oR	=	°F+459.67
	1.0 atm	=	14.6959 psia
1.0 lb	omol (60 °F & 1 atm)	=	379.482 scf

ATTACHMENT O

Monitoring/Recordkeeping/Reporting/Testing Plans

"31. **Monitoring, Recordkeeping, Reporting and Testing Plans**. Attach proposed monitoring, recordkeeping, reporting and testing plans in order to demonstrate compliance with the proposed emissions limits and operating parameters in this permit application. Provide this information as Attachment O."

Williams Ohio Valley Midstream LLC proposes that all monitoring, recordkeeping, reporting and testing requirements remain unchanged from the current permit.

ATTACHMENT P

Public Notice

"32. **Public Notice**. At the time that the application is submitted, place a **Class I Legal Advertisement** in a newspaper of general circulation in the area where the source is or will be located (See 45CSR§13-8.3 through 45CSR§13-8.5 and Example Legal Advertisement for details). Please submit the **Affidavit of Publication** as Attachment P immediately upon receipt."

The applicant shall cause such legal advertisement to appear a minimum of one (1) day in the newspaper most commonly read in the area where the facility exists or will be constructed. The notice must be published no earlier than five (5) working days of receipt by this office of your application. The original affidavit of publication must be received by this office no later than the last day of the public comment period.

Types and amounts of pollutants discharged must include all regulated pollutants (PM, PM10, VOC, SO2, Xylene, etc.) and their potential to emit or the permit level being sought in units of tons per year (including fugitive emissions).

- Legal Advertisement (as shown) will be placed in a newspaper of general circulation in the area where the source is located (See 45CSR§13-8.3 thru 45CSR§13-8.5).
- An Affidavit of Publication shall be submitted immediately upon receipt.

FORT BEELER GAS PROCESSING PLANT

Class II Administrative Update (R13-2826J)

Attachment P - Public Notice

AIR QUALITY PUBLIC NOTICE Notice of Application

Notice is given that Williams Ohio Valley Midstream LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a 45CSR13 Class II Administrative Update for the existing Fort Beeler Gas Processing Plant, located south of the intersection of County Highway 34 and US Route 250, near Cameron, in Marshall County, West Virginia.

The latitude and longitude coordinates are 39.8783^o North and -80.5907^o West.

The applicant estimates the increase/(decrease) in the potential to discharge regulated air pollutants will be as follows:

- 0.79 tons of nitrogen oxides per year
- (4.36) tons of carbon monoxide per year
- (4.24) tons of volatile organic compounds per year
- (0.01) tons of sulfur dioxide per year
- (0.10) tons of particulate matter per year
- (5.22) tons of total hazardous air pollutants per year
- (1,696) tons of carbon dioxide equivalent per year

Startup of modifications are anticipated upon permit issuance.

Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality (DAQ), 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the _____ day of _____ 2017.

By: Williams Ohio Valley Midstream LLC Paul V. Hunter General Manager Ohio River Supply Hub Park Place Corporate Center 2 2000 Commerce Drive Pittsburgh, PA 15275

ATTACHMENT Q Business Confidential Claims (NOT APPLICABLE)

also

ATTACHMENT R Authority Forms (NOT APPLICABLE)

ATTACHMENT S

Title V Permit Revision Information

Williams Ohio Valley Midstream LLC FORT BEELER GAS PLANT Class II Administrative Update (R13-2826J)

Attachment S

Title V Permit Revision Information

1. New Applicable Requirements Summary		
Mark all applicable requirements associated with the changes involved with this permit revision:		
SIP	☐ FIP	
Minor source NSR (45CSR13)	D PSD (45CSR14)	
NESHAP (45CSR15)	Nonattainment NSR (45CSR19)	
Section 111 NSPS (Subpart(s) A, KKK and OOOO)	Section 112(d) MACT standards (Subpart(s))	
Section 112(g) Case-by-case MACT	112(r) RMP	
Section 112(i) Early reduction of HAP	Consumer/commercial prod. reqts., section 183(e)	
Section 129 Standards/Reqts	Stratospheric ozone (Title VI)	
Tank vessel reqts, section 183(f)	Emissions cap 45CSR§30-2.6.1	
NAAQS, increments or visibility (temp. sources)	45CSR27 State enforceable only rule	
45CSR4 State enforceable only rule (Odors)	Acid Rain (Title IV, 45CSR33)	
Emissions Trading and Banking (45CSR28)	Compliance Assurance Monitoring (40CFR64) ⁽¹⁾	
NO _x Budget Trading Program Non-EGUs (45CSR1)	NO _x Budget Trading Program EGUs (45CSR26)	
(1) If this box is checked, please include Compliance Assurance Monitoring (CAM) Form(s) for each Pollutants Specific Emission Unit (PSEU) (See Attachment H to Title V Application). If this box is not checked, please explain why Compliance Assurance Monitoring is not applicable:		
NA		

2. Non-Applicability Determinations

List all requirements, which the source has determined not applicable to this permit revision and for which a permit shield is requested. The listing shall also include the rule citation and a rationale for the determination. **NA**

Permit Shield Requested (not applicable to Minor Modifications)

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

3. Suggested Title V Draft Permit Language

Are there any changes involved with this Title V Permit revision outside of the scope of the NSR Permit revision? \Box Yes \boxtimes No If Yes, describe the changes below.

Also, please provide **Suggested Title V Draft Permit language** for the proposed Title V Permit revision (including all applicable requirements associated with the permit revision and any associated monitoring /recordkeeping/ reporting requirements), OR attach a marked up pages of current Title V Permit. Please include appropriate citations (Permit or Consent Order number, condition number and/or rule citation (e.g. 45CSR§7-4.1)) for those requirements being added / revised.

1.1 Emission Units:

<u>Removal</u> of FL-01 | 17E Old Process Flare | All Plants | 2011 | 5 MMscf/yr | NA SSM | 6E Startup/Shutdown/Maint | All Plants | 2010/<u>2017</u> | NA | <u>FL-02 (18E)</u> See Note 3 FL-02 | 18E New Process Flare | All Plants | 2014 | <u>90.00 MMscf/yr</u> | NA

- 6.0 <u>Removal</u> of this section as Flare Control Device FL-01 is permanently disconnected.
- 7.1.1. Increase FL-02 Maximum Flare Gas thru-put from 59.21 MMscf/yr to 90.00 MMscf/yr.
- 7.1.2. Change FL-02 VOC emission limits from 127.79 lb/hr and 8.88 tpy to <u>88.11 lb/hr and 11.12 tpy</u>. Increase FL-02 NOx emission limits from 36.85 lb/hr and 2.56 tpy to <u>45.10 lb/hr and 5.69 tpy</u>. Change FL-02 CO emission limits from 200.51 lb/hr and 13.94 tpy to <u>142.61 lb/hr and 17.99 tpy</u>. Increase FL-02 PM10 emission limits from 4.04 lb/hr and 0.28 tpy to <u>3.43 lb/hr and 0.43 tpy</u>.

4. Active NSR Permits/Permit Determinations/Consent Orders Associated With This Permit Revision		
Permit or Consent Order Number	Date of Issuance	Permit/Consent Order Condition Number
R13-2826J		8.1.2.a. Increase FL-02 NOx emission limits from 31.28 lb/hr and 3.95 tpy to <u>45.10 lb/hr and 5.69 tpy</u> .

5. Inactive NSR Permits/Obsolete Permit or Consent Orders Conditions Associated With This Revision		
Permit or Consent Order Number	Date of Issuance	Permit/Consent Order Condition Number
	mm/dd/yyyy	

Pollutant	Change in Potential Emissions (+ or -), TPY
NOx	+0.79
СО	-4.36
VOC	-4.24
PM	-0.10
SO2	-0.01
HAPs	-5.22

7. Certi <i>Requ</i>	fication For Use Of Minor Modification Procedur <i>ests</i>)	es (Required Only for Minor Modification	
Note:	This certification must be signed by a responsibl certification will be returned as incomplete. Th Modification Procedures are as follows:		
i. ii. iii. iv.	Proposed changes do not violate any applicable req Proposed changes do not involve significant char recordkeeping requirements in the permit; Proposed changes do not require or change a limitation or other standard, or a source-specifi ambient air quality impacts, or a visibility increment Proposed changes do not seek to establish or change is no underlying applicable requirement and which	anges to existing monitoring, reporting, or case-by-case determination of an emission ic determination for temporary sources of an analysis; ge a permit term or condition for which there	
v.	an applicable requirement to which the source we Such terms and conditions include, but are not lim used to avoid classification as a modification under emissions limit approved pursuant to regulations Air Act; Proposed changes do not involve preconstruction 45CSR14 and 45CSR19;	ited to a federally enforceable emissions cap er any provision of Title I or any alternative promulgated under $ 112(j)(5) $ of the Clean	
vi.	Proposed changes are not required under any a significant modification;	rule of the Director to be processed as a	
procedures permits, er procedures the State Ir	nding subparagraph 45CSR§30-6.5.a.1.A. (items i the may be used for permit modifications involving the nissions trading, and other similar approaches, to the are explicitly provided for in rules of the Director white nplementation Plan under the Clean Air Act, or which the ermit issued under 45CSR30.	he use of economic incentives, marketable extent that such minor permit modification ch are approved by the U.S. EPA as a part of	
Pursuant to 45CSR§30-6.5.a.2.C., the proposed modification contained herein meets the criteria for use of Minor permit modification procedures as set forth in Section 45CSR§30-6.5.a.1.A. The use of Minor permit modification procedures are hereby requested for processing of this application.			
(Signed):		Date: / /2017	
Named (typed)	(Please use blue ink) PAUL HUNTER	(Please use blue ink) GENERAL MANAGER OHIO RIVER SUPPLY HUB	

Note: Please check if the following included (if applicable):		
	Compliance Assurance Monitoring Form(s)	
	Suggested Title V Draft Permit Language	
All of the	All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.	

APPLICATION FEE

Include a check payable to WVDEP – Division of Air Quality.

As per WV Rule 22 (45CSR22) filed on May 6, 1991, a **minimum fee of** ... **\$300 for each Class II administrative update application** filed with the WVDEP-DAQ.

- Additional charges may apply, depending on the nature of the application as outlined in Section 3.4.b. of Regulation 22, and shown below:
 - NSPS Requirements: \$1,000 Applicable
 - NESHAP Requirements: \$2,500 Not Applicable
 - New Major Source: \$10,000 Not Applicable
 - Major Modifications: \$5,000 Not Applicable
- Total application fee is \$1,300 [= \$300 minimum fee + \$1,000 additional charges]

***** End of Application for Class II Administrative Update ****