Rover Pipeline LLC

Rule 13 Permit Modification Application Rover Pipeline LLC Majorsville Compressor Station SLR Ref: 116.01094.00011

Rule 13 Permit Modification Application

Prepared for:

Rover Pipeline LLC

1300 Main Street Houston, Texas 77002

This document has been prepared by SLR International Corporation. The material and data in this report were prepared under the supervision and direction of the undersigned.

Uni Ban

Chris Boggess Associate Engineer

Jesse Hanshaw, P.E. Principal Engineer

CONTENTS

ATTACHMENTS

APPLICATION FOR PERMIT
ATTACHMENT A BUSINESS CERTIFICATE
ATTACHMENT B MAP(S)
ATTACHMENT C INSTALLATION AND STARTUP SCHEDULE
ATTACHMENT D REGULATORY DISCUSSION
ATTACHMENT E PLOT PLAN
ATTACHMENT F PROCESS FLOW DIAGRAM
ATTACHMENT G PROCESS DESCRIPTION
ATTACHMENT H SAFETY DATA SHEETS (SEE NOTES)
ATTACHMENT IEMISSION UNITS TABLE
ATTACHMENT J EMISSION POINTS DATA SUMMARY SHEET(S)
ATTACHMENT K FUGITIVE EMISSION DATA SUMMARY SHEET(S)
ATTACHMENT L EMISSION UNIT DATA SHEET(S)
ATTACHMENT M AIR POLLUTION CONTROL DEVICE SHEET(S) (SEE NOTES)
ATTACHMENT N SUPPORTING EMISSION CALCULATIONS
ATTACHMENT O MONITORING/RECORDKEEPING/REPORTING/TESTING PLANS
ATTACHMENT P PUBLIC NOTICE
ATTACHMENT Q BUSINESS CONFIDENTIAL CLAIMS (SEE NOTES)
ATTACHMENT R AUTHORITY FORMS (SEE NOTES)
ATTACHMENT S TITLE V PERMIT REVISION INFORMATION (SEE NOTES)
APPLICATION FEE
Notes:
ATTACHMENT H – Not applicable – SDS Sheets submitted with previous permit
applications
ATTACHMENT Q – Not applicable – No information contained within this
application claimed as confidential
ATTACHMENT R – Not applicable – No delegation of authority required
ATTACHMENT S – Not applicable – Facility is not subject to Title V

APPLICATION FOR PERMIT

Rule 13 Permit Modification Application

Majorsville Compressor Station, Dallas, West Virginia

> Rover Pipeline LLC 1300 Main St. Houston, Texas 77002

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALIT 601 57 th Street, SE Charleston, WV 25304 (304) 926-0475 WWW.dep.wv.gov/dag			TLE V PE	TFOR NSR PERMIT AND RMIT REVISION TIONAL)
□ CONSTRUCTION □ MODIFICATION □ RELOCATION □ ADMINISTRATION □ CLASS I ADMINISTRATIVE UPDATE □ TEMPORARY □ SIGNIFICANT □ CLASS II ADMINISTRATIVE UPDATE □ AFTER-THE-FACT IF ANY BOX ABO			TIVE AMENDM MODIFICATIO	
FOR TITLE V FACILITIES ONLY: Please refer to "Title (Appendix A, "Title V Permit Revision Flowchart") an				
Se	ection l	. General		
 Name of applicant (as registered with the WV Secret Rover Pipeline LLC 	tary of Sta	ate's Office):	2. Federal	Employer ID No. <i>(FEIN):</i> 47-1958303
3. Name of facility (if different from above):			4. The applicant is the:	
Majorsville Compressor Station				OPERATOR BOTH
5A. Applicant's mailing address:5B. Facility's present physical address:1300 Main StreetStation Located offHouston, TX 77002Ruth HillDallas, WV				ddress:
 6. West Virginia Business Registration. Is the applicant a resident of the State of West Virginia? YES NO If YES, provide a copy of the Certificate of Incorporation/Organization/Limited Partnership (one page) including any name change amendments or other Business Registration Certificate as Attachment A. If NO, provide a copy of the Certificate of Authority/Authority of L.L.C./Registration (one page) including any name change amendments or other Business Certificate as Attachment A. 				
7. If applicant is a subsidiary corporation, please provide	e the nam	ne of parent corpo	oration:	
8. Does the applicant own, lease, have an option to buy	or other	wise have control	of the propos	ed site? 🛛 YES 🗌 NO
 If YES, please explain: The applicant owns the site If NO, you are not eligible for a permit for this source. 				
 Type of plant or facility (stationary source) to be con administratively updated or temporarily permitte crusher, etc.): Natural Gas Compressor Station 			 10. North American Industry Classification System (NAICS) code for the facility: 486210 	
11A. DAQ Plant ID No. (for existing facilities only):				CSR30 (Title V) permit numbers existing facilities only):
051-00213	R13-32			

12A.

- For Modifications, Administrative Updates or Temporary permits at an existing facility, please provide directions to the present location of the facility from the nearest state road;
- For Construction or Relocation permits, please provide directions to the proposed new site location from the nearest state road. Include a MAP as Attachment B.

From Elm Grove, WV take I-70 East for 5.4 miles and take a left onto Dallas Pike. Continue on Dallas Pike for 5.3 miles. Take a right onto Number 2 Ridge Rd for 2.7 miles. Turn right on Golden Ridge Rd. for 0.7 miles. Take a slight left on Ruth Hill for 0.7 miles. Dead ends at station.

12B. New site address (if applicable):	12C. Nearest city or town:	12D. County:			
N/A	Dallas	Marshall			
12.E. UTM Northing (KM): 4,423.729	12F. UTM Easting (KM): 538.013	12G. UTM Zone: 17			
13. Briefly describe the proposed change(s) at the facility: This application will address the addition of one 4SLB reciprocating engine and the modification of two previously permitted 4SLB reciprocating engines to reflect increased formaldehyde control. The increase to catalyst efficiency for formaldehyde was in accordance with an update to the catalyst vendor's specifications from Miratech.					
 14A. Provide the date of anticipated installation or change If this is an After-The-Fact permit application, provide the provided mapping of the pro		14B. Date of anticipated Start-Up if a permit is granted: 02/2018			
14C. Provide a Schedule of the planned Installation of/ application as Attachment C (if more than one uni		units proposed in this permit			
15. Provide maximum projected Operating Schedule o Hours Per Day 24 Days Per Week 7	f activity/activities outlined in this applica Weeks Per Year 52	ation:			
16. Is demolition or physical renovation at an existing fa	cility involved? 🗌 YES 🛛 🕅 NO				
17. Risk Management Plans. If this facility is subject to	112(r) of the 1990 CAAA, or will becom	e subject due to proposed			
changes (for applicability help see www.epa.gov/cepp	oo), submit your Risk Management Pla	n (RMP) to U. S. EPA Region III.			
18. Regulatory Discussion. List all Federal and State a	air pollution control regulations that you	believe are applicable to the			
proposed process (if known). A list of possible application	able requirements is also included in Atta	achment S of this application			
(Title V Permit Revision Information). Discuss applicability and proposed demonstration(s) of compliance (if known). Provide this					
information as Attachment D.					
Section II. Additional attachments and supporting documents.					
19. Include a check payable to WVDEP – Division of Air	Quality with the appropriate application	fee (per 45CSR22 and			
45CSR13). See attached check for \$2,000 which of	covers the Application and NSPS fees				
20. Include a Table of Contents as the first page of you	ur application package.				
 Provide a Plot Plan, e.g. scaled map(s) and/or sketch(es) showing the location of the property on which the stationary source(s) is or is to be located as Attachment E (Refer to Plot Plan Guidance). 					
 Indicate the location of the nearest occupied structure 	e (e.g. church, school, business, residen	ce).			
22. Provide a Detailed Process Flow Diagram(s) show device as Attachment F.	ving each proposed or modified emissio	ns unit, emission point and control			
23. Provide a Process Description as Attachment G.					
 Also describe and quantify to the extent possible and quantify the extent possible and quantify					
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.					

24. Provide I	24. Provide Material Safety Data Sheets (MSDS) for all materials processed, used or produced as Attachment H.				
 For chemi 	cal processes, provide a MSI	DS for each compound emitte	ed to the air.		
25. Fill out th	e Emission Units Table and	d provide it as Attachment I.			
26. Fill out th	e Emission Points Data Su	mmary Sheet (Table 1 and [*]	Table 2) and provide i	it as Attachment J.	
27. Fill out th	e Fugitive Emissions Data	Summary Sheet and provide	e it as Attachment K.		
28. Check al	I applicable Emissions Unit	Data Sheets listed below:			
🗌 Bulk Liqui	d Transfer Operations	Haul Road Emissions	Quarry		
Chemical	Processes	Hot Mix Asphalt Plant		als Sizing, Handling and Storage	
Concrete	Batch Plant	Incinerator	Facilities		
Grey Iron	and Steel Foundry	Indirect Heat Exchange	r 🗌 Storage Tanl	ks	
🖾 General E	mission Unit, specify: Interna	I Combustion Engine Data SI	heet		
Fill out and p	rovide the Emissions Unit D	ata Sheet(s) as Attachment	L.		
29. Check al	l applicable Air Pollution Co	ntrol Device Sheets listed b	elow:		
Absorption	n Systems	Baghouse		Flare	
Adsorption	n Systems	Condenser		Mechanical Collector	
Afterburne	er	Electrostatic Precip	bitator	Wet Collecting System	
Other Coll	ectors, specify – Oxidation C	atalyst (OC)			
Fill out and p	ovide the Air Pollution Con	trol Device Sheet(s) as Atta	chment M.		
30. Provide all Supporting Emissions Calculations as Attachment N , or attach the calculations directly to the forms listed in Items 28 through 31.					
31. Monitoring, Recordkeeping, Reporting and Testing Plans. Attach proposed monitoring, recordkeeping, reporting and testing plans in order to demonstrate compliance with the proposed emissions limits and operating parameters in this permit application. Provide this information as Attachment O.					
Please be aware that all permits must be practically enforceable whether or not the applicant chooses to propose such measures. Additionally, the DAQ may not be able to accept all measures proposed by the applicant. If none of these plans are proposed by the applicant, DAQ will develop such plans and include them in the permit.					
32. Public N	otice. At the time that the a	pplication is submitted, place	a Class I Legal Adve	ertisement in a newspaper of general	
circulatio	n in the area where the sourc	e is or will be located (See 4	5CSR§13-8.3 through	45CSR§13-8.5 and <i>Example Legal</i>	
Advertisement for details). Please submit the Affidavit of Publication as Attachment P immediately upon receipt.					
33. Busines	s Confidentiality Claims. D	oes this application include c	onfidential information	n (per 45CSR31)?	
	YES	🖂 NO			
segment	claimed confidential, includir		31-4.1, and in accorda	ial and provide justification for each ance with the DAQ's " <i>Precautionary</i> t achment Q.	
	Se	ction III. Certification	n of Informatior	ז	
	y/Delegation of Authority. oplicable Authority Form be		e other than the respo	nsible official signs the application.	
Authority of	of Corporation or Other Busin	ess Entity	Authority of Partne	ership	
	of Governmental Agency		Authority of Limite		
-	leted and signed Authority F	orm as Attachment R		·	
			e Permitting Section of	f DAQ's website or requested by phone	
All of the requ	All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.				

35A. Certification of Information. To certify this permit application, a Responsible Official (per 45CSR§13-2.22 and 45CSR§30-2.28) or Authorized Representative shall check the appropriate box and sign below.

Certification of Truth, Accuracy, and Completeness

I, the undersigned Responsible Official / Authorized Representative, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.

Compliance Certification

Except for requirements identified in the Title V Application for which compliance is not achieved, I, the undersigned hereby certify that, based on information and belief formed after reasonable inquiry, all air contaminant sources identified in this application are in compliance with all applicable requirements.

SIGNATURE Juten Schume (Piese	DATE: 6/23/17 (Pleese use blue ink)	
35B. Printed name of signee: Dutch Schuman		35C. Title:
		Sr. Director - Operations
35D. E-mail: <u>dutch.schuman@energytransfe</u> r	.com 36E. Phone: 501-322-9622	36F. FAX
36A. Printed name of contact person (if differe	nt from above): Jesse Hanshaw	36B. Title: Principal Engineer, SLR
36C. E-mail: jhanshaw@slrconsulting.com	36D. Phone: 304-545-8563	36E. FAX: 681-205-8969

Attachment A: Business Certificate Attachment B: Map(s) Attachment C: Installation and Start Up Schedule Attachment D: Regulatory Discussion Attachment E: Plot Plan Attachment F: Detailed Process Flow Diagram(s) Attachment G: Process Description Attachment H: Material Safety Data Sheets (MSDS) Attachment I: Emission Units Table	 Attachment K: Fugitive Emissions Data Summary Sheet Attachment L: Emissions Unit Data Sheet(s) Attachment M: Air Pollution Control Device Sheet(s) Attachment N: Supporting Emissions Calculations Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans Attachment P: Public Notice Attachment Q: Business Confidential Claims Attachment R: Authority Forms Attachment S: Title V Permit Revision Information
Attachment J: Emission Points Data Summary Sheet	Application Fee

Please mail an original and three (3) copies of the complete permit application with the signature(s) to the DAQ, Permitting Section, at the address listed on the first page of this application. Please DO NOT fax permit applications.

FOR AGENCY USE ONLY - IF THIS IS A TITLE V SOURCE:

Forward 1 copy of the application to the Title V Permitting Group and:

For Title V Administrative Amendments:

□ NSR permit writer should notify Title V permit writer of draft permit,

For Title V Minor Modifications:

Title V permit writer should send appropriate notification to EPA and affected states within 5 days of receipt,
 NSR permit writer should notify Title V permit writer of draft permit.

For Title V Significant Modifications processed in parallel with NSR Permit revision:

NSR permit writer should notify a Title V permit writer of draft permit.

- Public notice should reference both 45CSR13 and Title V permits.
- EPA has 45 day review period of a draft permit.

ATTACHMENT A

BUSINESS CERTIFICATE

Rule 13 Permit Modification Application

Majorsville Compressor Station, Dallas, West Virginia

> Rover Pipeline LLC 1300 Main St. Houston, Texas 77002

I, Natalie E. Tennant, Secretary of State of the State of West Virginia, hereby certify that

ROVER PIPELINE LLC

Control Number: 9A6D4

a limited liability company, organized under the laws of the State of Delaware

has filed its "Application for Certificate of Authority" in my office according to the provisions of West Virginia Code §31B-10-1002. I hereby declare the organization to be registered as a foreign limited liability company from its effective date of July 10, 2014, until a certificate of cancellation is filed with our office.

Therefore, I hereby issue this

CERTIFICATE OF AUTHORITY OF A FOREIGN LIMITED LIABILITY COMPANY

to the limited liability company authorizing it to transact business in West Virginia

Given under my hand and the Great Seal of the State of West Virginia on this day of July 10, 2014

Wateril Eyern

Secretary of State

JUL 1 0 2014

Penney Barker, Manager **Corporations Division** IN THE OFFICE OF V SECRETARY OF STATE Fax: (304)558-8300 Fax: (304)558-8381 Website: www.wvsos.com E-mail: business@wwsos.com

WV APPLICATION FOR **CERTIFICATE OF AUTHORITY OF** LIMITED LIABILITY COMPANY

Office Hours: Monday - Friday 8:30 a.m. - 5:00 p.m. ET Control #

1. The name of the company as registered in its home state is:

Natalie E. Tennant

Secretary of State

1900 Kanawha Blvd E Bldg 1, Suite 157-K

Charleston, WV 25305

FILE ONE ORIGINAL

(Two if you want a filed

FEE: \$150

stamped copy returned to you)

Delaware

Rover Pipeline LLC

and the state or country of organization is:

CHECK HERE to indicate you have obtained and submitted with this application a CERTIFICATE OF EXISTENCE (GOOD STANDING), dated during the current tax year, from your home state of original organization as required to process your application. The certificate may be obtained by contacting the Secretary of State's Office in the home state of original organization.

2. The name to be used in West Virginia will be: [The name must contain one of the required terms such as limited liability company" or abbreviations such as "LLC" or "PLLC". See instructions for complete list of acceptable terms and requirements for use of trade name.]

Home State name as listed above, if available in WV (If name is not available, check DBA Name box below and follow special instructions in Section 2. attached.)

DBA name (See special instructions in Section 2. Regarding the

- 3. The company will be a: [See instructions for limitations on professions which may form P L.L C. in WV. All members must have WV professional license. In most cases, a Letter of Authorization/Approval from the appropriate State Licensing Board is required to process the application.]
- Letter of Resolution attached to this application.) regular LLC. Professional L.L.C. for the profession of

4.	The street address of the principal office	No. & Street:	3738 Oak Lawn Ave.
	5:	City/State/Zip:	Dallas, TX 75219
	and the mailing address (if different) is:	Street/Box:	
		City/State/Zip:	
5.	The address of the designated office of the company in WV, if any, will be:	No. & Street:	
		City/State/Zip:	
6.	Agent of Process: Properly designated	Name:	Corporation Service Company
	person to whom notice of legal process may be sent, if any:	Address:	209 West Washington Street
		City/State/Zin:	Charleston, WV 25302

Form LLF-1

RECEIVED JUL 1 0 2014

Issued by the Office of the Secretary of State

APPLICATION FOR CERTIFICATE OF AUTHORITY OF LIMITED LIABILITY COMPANY Page 2

.

Form LLF-1

7.	E-mail address where business corresp	ponder	nce may be received:	peggy.hai	rison@energytransfer.com
8.	Website address of the business, i	f any:	:		
9.	The company is:	✓	an at-will compare a term compare which will ex	any, for the	ndefinite period term ofyears,
10.	The company is:	\checkmark	member-manage	d. [List the na	mes and addresses of <u>all</u> members.] the names and addresses of <u>all</u>
	managers.]		manager -ma	nageu. [List	une names and addresses of all
	List the Name(s) and Address(es) (pages if necessary).	of the	e Member(s)/Mana	iger(s) of th	e company (attach additional
	Name		Street Addr	ess	City, State, Zip
	ET Rover Pipeline LLC	373	38 Oak Lawn Ave.		Dallas, TX 75219
11.	All or specified members of a limite company are liable in their capacity for all or specified debts, obligations of the company.	as me	embers	of the com es-Those pe capacity as or liability writing to	obligations and liabilities are those apany rsons who are liable in their s members for all debts, obligations of the company have consented in the adoption of the provision or to by the provision.
	The purpose for which this limited I (Describe the type(s) of business activity v residential and commercial buildings," "co	which v	will be conducted, for	example "res	estate " "construction of
	Pipeline transportation services				
13.	Is the business a Scrap Metal Deale Yes [If "Yes," you must complete and proceed to question 14 No [Proceed to question 14.]	e the S	Scrap Metal Dealer F	Registration	Form (<u>Form SMD-1</u>)
14. '	The number of pages attached and in	clude	d in this application	n is:	

Issued by the Office of the Secretary of State

Revised \$/13

APPLICATION FOR CERTIFICATE OF AUTHORITY OF LIMITED LIABILITY COMPANY Page 3

15. The requested effective date is: [Requested date may not be earlier than	the date & time of filing in the Secretary of State's O	ffice
filing nor later than 90 days after filing in our office.]	the following date and time	

16. Contact and Signature Information* (See below Important Legal Notice Regarding Signature):

а.	Peggy J Harrison	(918) 794-4559
	Contact Name	Phone Number
b.	Peggy J Harrison	Manager Corporate Governance
	Print or type name of signer	Title / Capacity of Signer
c. (Jeggy Harrison	6/27/2014
	Signaluke	Date

*Important Legal Notice Regarding Signature: Per West Virginia Code <u>§31B-2-209</u>. Liability for false statement in filed record. If a record authorized or required to be filed under this chapter contains a false statement, one who suffers loss by reliance on the statement may recover damages for the loss from a person who signed the record or caused another to sign it on the person's behalf and knew the statement to be false at the time the record was signed.

-

Delaware

PAGE 1

The First State

I, JEFFREY W. BULLOCK, SECRETARY OF STATE OF THE STATE OF DELAWARE, DO HEREBY CERTIFY "ROVER PIPELINE LLC" IS DULY FORMED UNDER THE LAWS OF THE STATE OF DELAWARE AND IS IN GOOD STANDING AND HAS A LEGAL EXISTENCE SO FAR AS THE RECORDS OF THIS OFFICE SHOW, AS OF THE NINTH DAY OF JULY, A.D. 2014.

AND I DO HEREBY FURTHER CERTIFY THAT THE ANNUAL TAXES HAVE NOT BEEN ASSESSED TO DATE.

AND I DO HEREBY FURTHER CERTIFY THAT THE SAID "ROVER PIPELINE LLC" WAS FORMED ON THE TWENTY-SIXTH DAY OF JUNE, A.D. 2014.

Jeffrey W. Bullock, Secretary of State

AUTHENTICATION: 1520626

DATE: 07-09-14

5559285 8300

140934897 You may verify this certificate online at corp.delaware.gov/authver.shtml

ATTACHMENT B

MAP(S)

Rule 13 Permit Modification Application

Majorsville Compressor Station, Dallas, West Virginia

> Rover Pipeline LLC 1300 Main St. Houston, Texas 77002

Attachment B - Area Map

Rover Pipeline LLC Majorsville Compressor Station - Facility ID 051-00213

UTM Coordinates of Site: Northing: 4,423.729 km, Easting: 538.013 km, Zone: 17 Legend

MAJORSVILLE

Majorsville Compressor Station

AMajorsville Compressor Station

32

© 2016 Google

ATTACHMENT C

INSTALLATION AND START-UP

Rule 13 Permit Modification Application

Majorsville Compressor Station, Dallas, West Virginia

> Rover Pipeline LLC 1300 Main St. Houston, Texas 77002

Rover Pipeline LLC (Rover) plans to install a four stroke lean burn Caterpillar G3612 reciprocating engine/compressor in the last quarter of 2017. Installation of the equipment is estimated to take a few months. Startup of the equipment at the station is estimated to begin around February of 2018.

ATTACHMENT D

REGULATORY DISCUSSION

Rule 13 Permit Modification Application

Majorsville Compressor Station, Dallas, West Virginia

> Rover Pipeline LLC 1300 Main St. Houston, Texas 77002

REGULATORY DISCUSSION

APPLICABLE REGULATIONS

This facility is subject to the following applicable rules and regulations:

Federal and State:

45 CSR 13 (Permits for Construction, Modification, Relocation and Operation of Stationary Sources of Air Pollutants, Notification Requirements, Administrative Updates, Temporary permits, General Permits, and Procedures for Evaluation)

The requirements of this WV State minor source permitting rule specifies all new stationary sources shall obtain a permit under this rule before commencing construction. A "Stationary source" is defined under 45CSR§13-2.24a as an emission unit subject to any substantive requirement of an emission control rule promulgated by the Secretary. Since this proposed new engine is subject to emission requirements under 45CSR16 and thus 40CFR60, subpart JJJJ, the proposed new compressor is considered subject to a substantive requirement.

40 CFR 60 Subpart JJJJ – Standards of Performance for Stationary Spark Ignition Internal Combustion Engines

The two previously permitted natural gas fueled compressor engines (CE-1S and CE-2S) are 3,550 Hp 4SLB G3612 Caterpillar units and are considered new units subject to Tier II JJJJ emission limits as a result of being manufactured after July 1, 2010. Therefore these engines are subject to the Table 1 emission limits for SI Engines greater than 500 Hp. Those emission limits are as follows;

g/Hp hr			ppm _{vd} at 15%	O ₂	
NOx	CO	VOC	NOx	CO	VOC
1.0	2.0	0.7	82	270	60

Table 1 Emission Limits – SI 4SLB > 1350 Hp installed after 7-1-2010

The newly proposed engine (CE-3S) is also a 3,550 hp 4SLB G3612 Caterpillar natural gas fueled compressor. This engine is being relocated from another site and was originally manufactured on July 1, 2002. However, as a result of a 2017 rebuild the existing source is going to be reclassified as a reconstructed engine as delivered to the Majorsville Station. The fixed capital cost of the rebuild work is estimated to fall between 59 and 69% of the cost of comparable new unit. The upper end of this range reflects the cost of also replacing the crankshaft if found to be damaged. As a result of trigging reconstruction under 40CFR§60.15 this engine will be subject to the emission limits defined within 40CFR§60.4233(f)(4) as listed below;

g/Hp hr			ppm_{vd} at 15%	O ₂	
NOx	CO	VOC	NOx	CO	VOC
3.0	4.0	1.0	250	540	86

40 CFR 60 Subpart OOOOa – Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015

Fugitive Components at Compressor Stations and Reciprocating Compressor Packing

Since the newly added compressor at this station, (CE-3S) will constitute a modification to the site in accordance with the definition 40CFR§60.5365a(j) after September 18, 2015, the collection of fugitive components at the site will become subject to the equipment leak standards of §60.5397a. As a result of this modification, the source will be required to develop and implement a fugitive monitoring plan and conduct quarterly OGI surveys. The initial survey will be required within 60 days of startup or by June 3, 2017, whichever is later in accordance with §60.5397a(f)(2). However, on April 18, 2017 the USEPA Administrator, E. Scott Pruitt, issued a letter of reconsideration based on comments received from industry groups on August 2, 2016. This letter authorizes a 90 day stay of the compliance date for fugitive emissions monitoring requirements.

The reciprocating compressor associated with emission unit (CE-3S) will also be subject to the rod packing standards of §60.5385a that requires them to be replaced/rebuilt every 26,000 hrs or 3 years. Records shall be maintained based on months or hours of operations since initial startup and each subsequent rebuild or replacement of the compressor's rod packing.

40 CFR 63 Subpart ZZZZ – NESHAP for Stationary Reciprocating Internal Combustion Engines (RICE)

Each of the three (3) RICE units proposed to be operated at this facility were manufactured or reconstructed after June 12, 2006 and therefore, the requirements of this regulation are to comply with new SI engines standards in accordance with 40CFR60, Subpart JJJJ.

NON-APPLICABILITY DETERMINATIONS

The following requirements have been determined "not applicable" due to the following:

Federal and State:

45 CSR 30 – Requirements for Operating Permits – Title V of the Clean Air Act

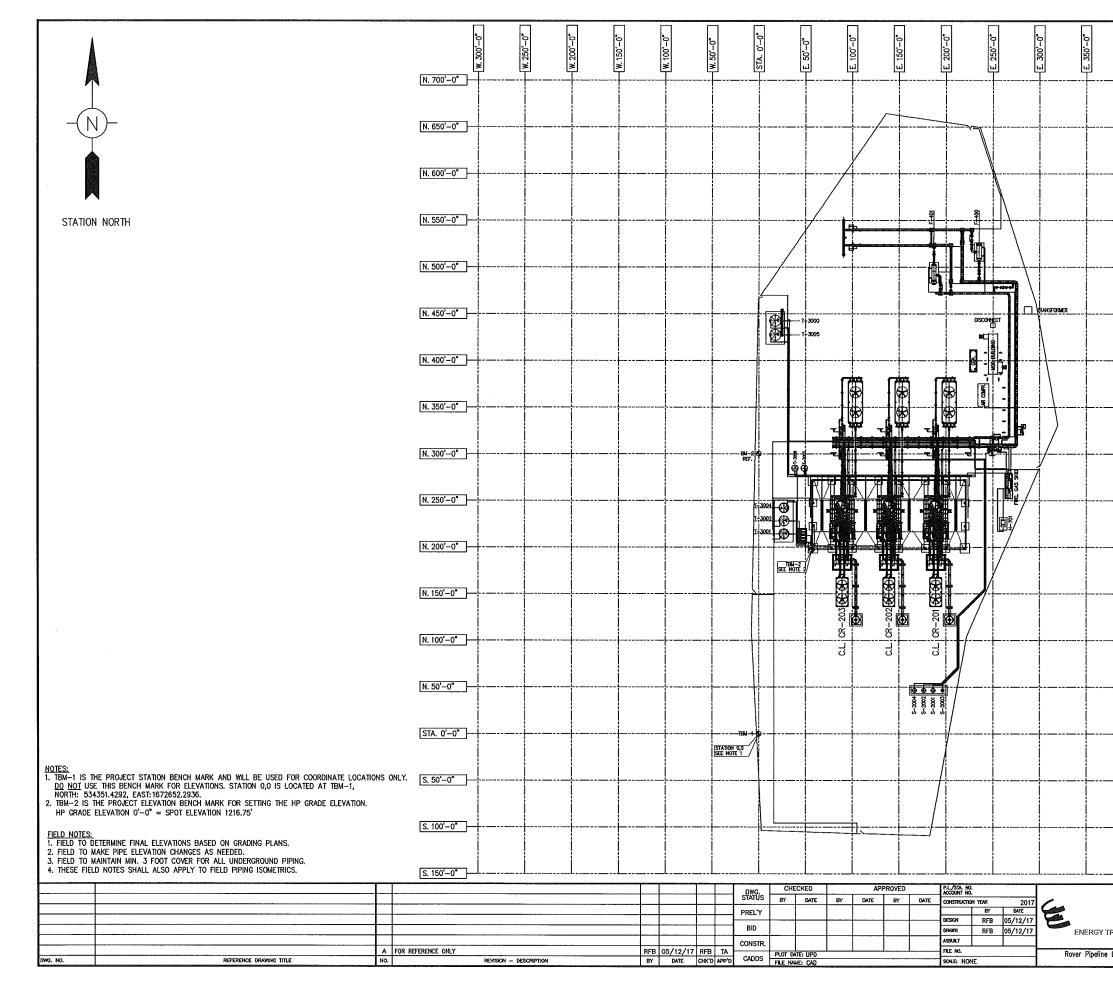
This facility does not meet the emission threshold to trigger a 45CSR30, Title V Operating Permit, nor is it subject to any Federal Standards that trigger the need for a Title V Permit.

40 CFR 60 Subpart OOOOa - Storage Vessel Requirements

The storage vessels at this site are not considered an affected source under this regulation since they commenced construction prior to September 18, 2015 or have a PTE of less than 6 tpy of VOCs.

40 CFR 60 Subpart OOOOa – Pneumatic Control Valve Requirements

The site was evaluated and found to contain only intermittent venting pneumatic control valves, which as a result of their design are rated at less than 6 scf/hr. Therefore the site is not proposing to install or operate any affected continuous bleed pneumatic devices defined by this NSPS.


ATTACHMENT E

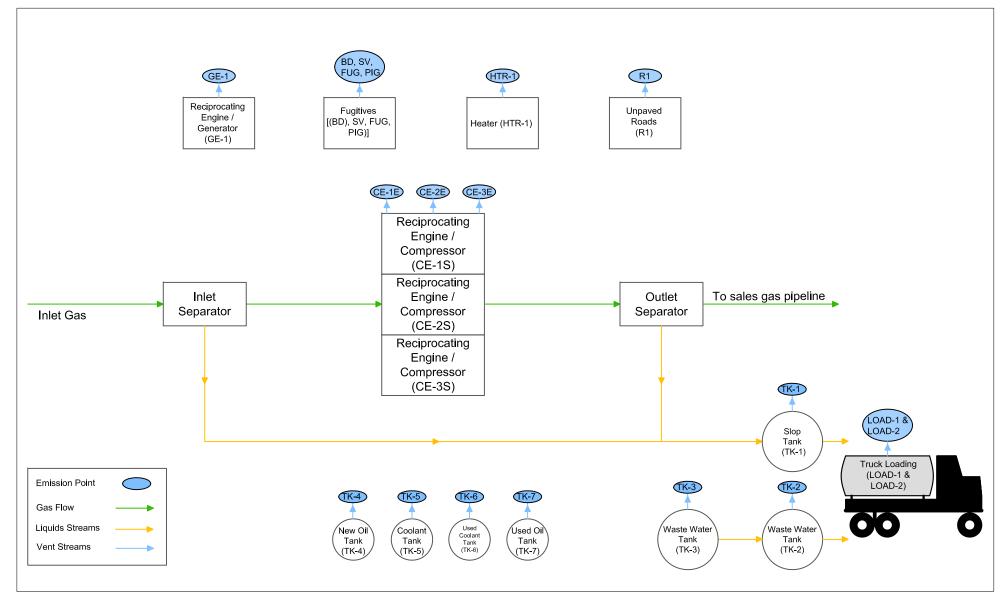
PLOT PLAN

Rule 13 Permit Modification Application

Majorsville Compressor Station, Dallas, West Virginia

> Rover Pipeline LLC 1300 Main St. Houston, Texas 77002

E. 400'-0"	E. 450 ^{0*}	
	FOR REFE	RENCE ONLY
_l		
NSFER	ENERGY TRANSFER COMPANY MAJORSVILLE COMPRESSOR STATION EXPANSION COMPRESSOR STATION PLOT PLAN	SHEET 1 OF 1
C		TK1367-200-01


ATTACHMENT F

PROCESS FLOW DIAGRAM

Rule 13 Permit Modification Application

Majorsville Compressor Station, Dallas, West Virginia

> Rover Pipeline LLC 1300 Main St. Houston, Texas 77002

ATTACHMENT G

PROCESS DESCRIPTION

Rule 13 Permit Modification Application

Majorsville Compressor Station, Dallas, West Virginia

> Rover Pipeline LLC 1300 Main St. Houston, Texas 77002

The Majorsville Compressor Station is applying for a permit to modify their existing Rule 13, R13-3238, for the installation and operation of a third compressor engine. This modification proposes the following changes:

- Addition of a reconstructed 4SLB G3612 Caterpillar SI RICE / reciprocating compressor to the facility.
- Update of emission factors for engines CE-1S and CE-2S to reflect greater control of formaldehyde by way of oxidation catalyst to ensure HAP levels remain below major source thresholds.
- Increase in fugitive emissions at the facility as a result of the engine addition.

The two compressors engines currently permitted are designed to increase the pressure of the incoming gas to satisfy demand within the transmission pipeline. The compressors are natural gas fired and have associated engine blowdowns and startups. Pigging operations of the pipeline are conducted periodically to maintain pipeline integrity. Liquids from the pipeline are separated and purged into a single slop tank. The slop tank contents are loaded via trucks for offsite disposal.

Additionally, two waste water tanks operate in series, one of which is an underground storage tank which collects cleanup and sump water. The underground storage tank contents are pumped to the second aboveground waste water storage tank where its contents are loaded via trucks for offsite disposal.

The station is also currently permitted to operate a small natural gas heater, a diesel emergency generator, and associated miscellaneous tanks. There are also emissions from equipment component leaks as well as fugitive emissions from unpaved haul roads.

ATTACHMENT H

SAFETY DATA SHEETS (SDS)

NOT APPLICABLE

Rule 13 Permit Modification Application

Majorsville Compressor Station, Dallas, West Virginia

> Rover Pipeline LLC 1300 Main St. Houston, Texas 77002

ATTACHMENT I

EMISSION UNITS TABLE

Rule 13 Permit Modification Application

Majorsville Compressor Station, Dallas, West Virginia

> Rover Pipeline LLC 1300 Main St. Houston, Texas 77002

Attachment I

Emission Units Table

(includes all emission units and air pollution control devices

that will be part of this permit application review, regardless of permitting status)

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
CE-1S	CE-1E	Reciprocating Engine/Integral Compressor; Caterpillar G3612; 4SLB	2017 / 2017	3,550 hp	Modification	CC-1
CE-2S	CE-2E	Reciprocating Engine/Integral Compressor; Caterpillar G3612; 4SLB	2017 / 2017	3,550 hp	Modification	CC-2
CE-3S	CE-3E	Reciprocating Engine/Integral Compressor; Caterpillar G3612; 4SLB	2017	3,550 hp	New	CC-3

¹ For Emission Units (or <u>S</u>ources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation. ² For <u>E</u>mission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation. ³ New, modification, removal

⁴ For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

ATTACHMENT J

EMISSION POINTS DATA SUMMARY SHEET

Rule 13 Permit Modification Application

Majorsville Compressor Station, Dallas, West Virginia

> Rover Pipeline LLC 1300 Main St. Houston, Texas 77002

Attachment J EMISSION POINTS DATA SUMMARY SHEET

	Table 1: Emissions Data														
Emission Point ID No. (Must match Emission Units	Emission Point Type ¹	Throu <i>(Must ma</i>	on Unit Vented ugh This Point tch Emission Units e & Plot Plan)	Contro (Musi Emissi Table	ollution I Device t match on Units & Plot lan)	for En U (che proc	Time nission nit emical esses nly)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Uncor	mum ential htrolled sions ⁴	Maxi Pote Conti Emiss	rolled	Emission Form or Phase (At exit conditions, Solid Liquid	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m⁴)
Table-& Plot Plan)		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Solid, Liquid or Gas/Vapor)		
CE-1E	Vertical Stack	CE-1S	4SLB RICE CAT G3612	CC-1	OxCat	NA	NA	NO _X CO VOC SO ₂ PM ₁₀ CH2O HAPs CO2e	4.30 23.67 5.60 0.02 0.29 2.24 2.86 3123.3	17.14 94.27 22.28 0.07 1.17 8.91 11.37 13680	4.30 4.74 2.80 0.02 0.29 0.67 0.93 3123.3	17.14 18.85 11.14 0.07 1.17 2.67 3.80 13680	Gas/ Vapor	EE	Can Supply Upon Request
CE-2E	Vertical Stack	CE-2S	4SLB RICE CAT G3612	CC-2	OxCat	NA	NA	$\begin{array}{c} \mathrm{NO}_{\mathrm{X}}\\ \mathrm{CO}\\ \mathrm{VOC}\\ \mathrm{SO}_{2}\\ \mathrm{PM}_{10}\\ \mathrm{CH2O}\\ \mathrm{HAPs}\\ \mathrm{CO2e} \end{array}$	4.30 23.67 5.60 0.02 0.29 2.24 2.86 3123.3	17.14 94.27 22.28 0.07 1.17 8.91 11.37 13680	4.30 4.74 2.80 0.02 0.29 0.67 0.93 3123.3	17.14 18.85 11.14 0.07 1.17 2.67 3.80 13680	Gas/ Vapor	EE	Can Supply Upon Request
CE-3E	Vertical Stack	CE-38	4SLB RICE CAT G3612	CC-3	OxCat	NA	NA	$\begin{array}{c} \text{NO}_{\text{X}}\\ \text{CO}\\ \text{VOC}\\ \text{SO}_2\\ \text{PM}_{10}\\ \text{CH2O}\\ \text{HAPs}\\ \text{CO2e} \end{array}$	4.30 23.67 5.60 0.02 0.29 2.24 2.86 3123.3	17.14 94.27 22.28 0.07 1.17 8.91 11.37 13680	4.30 4.74 2.80 0.02 0.29 0.67 0.93 3123.3	17.14 18.85 11.14 0.07 1.17 2.67 3.80 13680	Gas/ Vapor	EE	Can Supply Upon Request

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

² Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).

³ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. **LIST** Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. **DO NOT LIST** H₂O, N₂O, O₂, and Noble Gases.

⁴ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁵ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch). Ġ

Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

7 ⁷ Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m³) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO₂, use units of ppmv (See 45CSR10).

Attachment J **EMISSION POINTS DATA SUMMARY SHEET**

Table 2: Release Parameter Data												
Inner					evation (ft)	UTM Coordinates (km)						
(ft.)	Temp. (°F)	. (acfm)		Ground Level (Height above mean sea level)	Stack Height ² (Release height of emissions above ground level)	Northing	Easting					
2.5	838	24,022	81.56	1,247 ft	54 ft	4,423.729	538.013					
2.5	838	24,022	81.56	1,247 ft	54 ft	4,423.729	538.013					
2.5	838	24,022	81.56	1,247 ft	54 ft	4,423.729	538.013					
	Diameter (ft.) 2.5 2.5	Diameter (ft.) Temp. (°F) 2.5 838 2.5 838	Inner Diameter (ft.)Exit GasTemp. (°F)Volumetric Flow 1 (acfm) at operating conditions2.583824,0222.583824,022	Inner Diameter (ft.) Exit Gas Temp. (°F) Volumetric Flow ¹ (acfm) <i>at operating conditions</i> Velocity (fps) 2.5 838 24,022 81.56 2.5 838 24,022 81.56	Inner Diameter (ft.)Exit GasEmission Point El mission Point El (°F)Temp. (°F)Volumetric Flow 1 (acfm) at operating conditionsVelocity (fps)Ground Level (Height above mean sea level)2.583824,02281.561,247 ft2.583824,02281.561,247 ft	Inner Diameter (ft.)Exit GasEmission Point Elevation (ft)Temp. (°F)Volumetric Flow 1 (acfm) at operating conditionsVelocity (fps)Ground Level 	$\begin{array}{ c c c c c c } \hline Inner \\ Diameter \\ (ft.) $					

¹ Give at operating conditions. Include inerts. ² Release height of emissions above ground level.

ATTACHMENT K

FUGITIVE EMISSIONS DATA SUMMARY SHEET

Rule 13 Permit Modification Application

Majorsville Compressor Station, Dallas, West Virginia

> Rover Pipeline LLC 1300 Main St. Houston, Texas 77002

ATTACHMENT K – FUGITIVE EMISSIONS SUMMARY SHEET												
	Sour	ces of fu		lude loading operations, e each associated source or			emissions,	etc.				
Source/Equipment: Fugitives												
Leak Detection Method Used Audible, visual, and olfactory (AVO) inspections Infrared (FLIR) cameras Other (please describe)												
Is the facility subject to quarterly LDAR monitoring under 40CFR60 Subpart OOOOa? 🛛 Yes 🗆 No. If no, why?												
Component Closed Type Count Count			of Leak Factors ther (specify))	Stream type (gas, liquid,	VOC	Estimated Emiss	GHG (CO ₂ e)					
	System				etc.)	voc						
Pumps	□ Yes ⊠ No				☐ Gas ☐ Liquid ☐ Both							
Valves	□ Yes ⊠ No	296	TCEQ Technical GuidanceFugitives, Oct. 2000 (lb/h)Gas Streams – 9.92 E-03Water/Light Oil Streams –Light Oil Streams – 5.50 HHeavy Liquid – 1.85 E-05	- 2.16 E-04	☐ Gas ☐ Liquid ⊠ Both	1.28		192.68				
Safety Relief Valves	□ Yes ⊠ No	30	TCEQ Technical Guidance Fugitives, Oct. 2000 (lb/h) Gas Streams – 1.94 E-02	e Document for Equipment Leak r-component	⊠ Gas □ Liquid □ Both	0.05		57.38				
Open Ended Lines	□ Yes ⊠ No				☐ Gas ☐ Liquid ☐ Both							
Sampling Connections	□ Yes □ No				☐ Gas ☐ Liquid ☐ Both							
Connections (Not sampling)Image: Second systemTCEQ Technical Guidance Document for Equipment Leak Fugitives, Oct. 2000 (lb/hr-component Gas Streams - 4.40 E-04 Water/Light Oil Streams - 2.43 E-04 Light Oil Streams - 4.63 E-04 Heavy Liquid - 1.65 E-05				☐ Gas ☐ Liquid ⊠ Both	0.46		24.21					
Compressors	□ Yes ⊠ No				☐ Gas ☐ Liquid ☐ Both							
Flanges	□ Yes ⊠ No	195	TCEQ Technical GuidanceFugitives, Oct. 2000 (lb/h)Gas Streams – 8.60 E-04Water/Light Oil Streams –Light Oil Streams – 2.43 B	6.00 E-06	□ Gas □ Liquid ⊠ Both	0.05		10.94				

Other ¹ (Compressor Seals)	□ Yes ⊠ No	12	TCEQ Technical Guidance Document for Equipment Leak Fugitives, Oct. 2000 (lb/hr-component Gas Streams – 1.94 E-02	⊠ Gas □ Liquid □ Both	0.02		22.95	
¹ Other equipm	ent types m	ay include comp	ressor seals, relief valves, diaphragms, drains, meters, etc.					
² Assumption m	ade that fla	inge connections	are included in connections (not sampling) count					
Please indicate	Please indicate if there are any closed vent bypasses (include component):							
Specify all equ	ipment used	l in the closed ve	ent system (e.g. VRU, ERD, thief hatches, tanker truck loadin	g, etc.)				

ATTACHMENT L

EMISSION UNIT DATA SHEET

Rule 13 Permit Modification Application

Majorsville Compressor Station, Dallas, West Virginia

Rover Pipeline LLC 1300 Main St. Houston, Texas 77002

ATTACHMENT L – INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. *Generator(s) and microturbine generator(s) shall also use this form.*

Emission Unit I	D#1	CE	-1S	CE	E-2S	CE	-38	
Engine Manufac	turer/Model	Caterpill	ar G3612	Caterpillar G3612		Caterpill	ar G3612	
Manufacturers F	Rated bhp/rpm	3,550	/ 1,000	3,550	/ 1,000	3,550 / 1,000		
Source Status ²		М	IS	Ν	1S	N	IS	
Date Installed/ Modified/Remov	ved/Relocated ³	20	17	20)17	20)17	
Engine Manufac /Reconstruction		20	16	20)16	2002	/ 2017	
Check all applic Rules for the en EPA Certificate if applicable) ⁵	gine (include	 ⋈ 40CFR60 S □ JJJJ Certifi □ 40CFR60 S □ IIII Certifie ⋈ 40CFR63 S □ NESHAP Z JJJJ Window □ NESHAP Z Sources 	ed? ubpart IIII d? ubpart ZZZZ ZZZZ/ NSPS	□ NESHAP 2 JJJJ Window	ed? Subpart IIII ed? Subpart ZZZZ	□ NESHAP 2 JJJJ Window	ed? ubpart IIII ed? Subpart ZZZZ	
Engine Type ⁶		4S	LB	48	LB	45	LB	
APCD Type ⁷		Ox	Cat	OxCat		OxCat		
Fuel Type ⁸		Р	Q	PQ		PQ		
H ₂ S (gr/100 scf))	0.	25	0	.25	0.25		
Operating bhp/r	pm	3,550	1,000	3,550	3,550 / 1,000		/ 1,000	
BSFC (BTU/bhg	p-hr)	7,5	19	7,	519	7,5	519	
Hourly Fuel Th	oughput	24,120 ft ³ / gal		1 '	/hr l/hr		/hr l/hr	
Annual Fuel The (Must use 8,760 emergency gene	hrs/yr unless		Aft ³ /yr /yr		Mft ³ /yr l/yr		Mft ³ /yr l/yr	
Fuel Usage or H Operation Meter		Yes 🖂	No 🗆	Yes 🖂	No 🗆	Yes 🖂	No 🗆	
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year) ¹¹	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year) ¹¹	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year) ¹¹	
MD	NO _x	4.30	17.14	4.30	17.14	4.30	17.14	
MD	СО	4.74	18.85	4.74	18.85	4.74	18.85	
MD	VOC	2.80	11.14	2.80	11.14	2.80	11.14	
AP	SO ₂	0.02	0.07	0.02	0.07	0.02	0.07	
AP	PM ₁₀	0.29	1.17	0.29	1.17	0.29	1.17	
MD	Formaldehyde	0.67	2.67	0.67	2.67	0.67	2.67	
AP	Total HAPs	0.93	3.80	0.93	3.80	0.93	3.80	
AP	GHG (CO ₂ e)	3,123.3 13,680.0		3,123.3 13,680.0		3,123.3	13,680.0	

 Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.

2 Enter the Source Status using the following codes:

NS	Construction of New Source (installation)	ES	Existing Source
MS	Modification of Existing Source	RS	Relocated Source
D D 1			

REM Removal of Source

3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.

- 4 Enter the date that the engine was manufactured, modified or reconstructed.
- 5 Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6 Enter the Engine Type designation(s) using the following codes:

	2SLB	Two Stroke Lean Burn	4SRB	Four St	roke Rich Burn		
	4SLB	Four Stroke Lean Burn					
7	Enter th	he Air Pollution Control Device (APCD) type designate	ation(s) u	using the fo	ollowing codes:		
	A/F HEIS PSC NSCR SCR	Air/Fuel Ratio High Energy Ignition System Prestratified Charge Rich Burn & Non-Selective Catalytic Reduction Lean Burn & Selective Catalytic Reduction		IR SIPC LEC OxCat	Ignition Retard Screw-in Precombustion C Low Emission Combustio Oxidation Catalyst		s
8	Enter th	e Fuel Type using the following codes:					
	PQ	Pipeline Quality Natural Gas R	G R	law Natura	ll Gas /Production Gas	D	Diesel
9	Enter t	he Potential Emissions Data Reference design	ation u	sing the f	following codes. Attach	all refe	rence data used.
	MD	Manufacturer's Data	A	AP AP	2-42		
	GR	GRI-HAPCalc TM	C	OT Ot	her (please lis	t)	

10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

ATTACHMENT M

AIR POLLUTION CONTROL DEVICE SHEET(S)

Rule 13 Permit Modification Application

Majorsville Compressor Station, Dallas, West Virginia

> Rover Pipeline LLC 1300 Main St. Houston, Texas 77002

Attachment M Air Pollution Control Device Sheet

(Oxidation Catalyst)

Control Device ID No. (CC-1, CC-2 & CC-3):

Equipment Information

1.	Manufacturer: Miratech Model No.	 Control Device Name: CC-1, CC-2 & CC-3 Type: Oxidation Catalyst (OxCat)
3.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state I	m with duct arrangement and size of duct, air volume, hood face velocity and hood collection efficiency.
4.	On a separate sheet(s) supply all data and calculation	ns used in selecting or designing this collection device.
5.	Provide a scale diagram of the control device showing	g internal construction
6.	Submit a schematic and diagram with dimensions and	d flow rates.
	Guaranteed minimum collection efficiency for each unit will meet the following reductions: CO – 80.0% /	pollutant collected: The catalyst manufacturer estimates / VOCs – 50.0% / CH ₂ O – 70.0%
8.	Attached efficiency curve and/or other efficiency infor	mation. NA
9.	Design inlet volume: 9,771.7 SCFM	10. Capacity: NA
11.	Indicate the liquid flow rate and describe equipment p	provided to measure pressure drop and flow rate, if any.
	No liquid flow associated with this catalytic converter	and pressure drop may be measured periodically.
12.	Attach any additional data including auxiliary equip control equipment. NA	oment and operation details to thoroughly evaluate the
13.	Description of method of handling the collected mater	rial(s) for reuse of disposal. NA
	Gas Stream C	haracteristics

043		
14. Are halogenated organics present? Are particulates present? Are metals present?	☐ Yes ⊠ No ☐ Yes ⊠ No ☐ Yes ⊠ No	
15. Inlet Emission stream parameters:	Maximum	Typical
Pressure (mmHg):		
Heat Content (BTU/scf):		
Oxygen Content (%):		
Moisture Content (%):		
Relative Humidity (%):		

16.	Type of pollutant(s) of] SO _x	Odor			
	Particulate (type)			Other CO,	VOCs, CH ₂ O		
17.	Inlet gas velocity:	81.56	ft/sec	18. Pollutant	specific gravity:	0.9667 - CO	
19.	Gas flow into the col 24,022 ACFM @		4.7 PSIA	20. Gas strea	m temperature: Inlet: Outlet:	550 – 1,250 1,350	
21.	Gas flow rate: Design Maximum: Average Expected:		22 ACFM 78 ACFM	22. Particulat	e Grain Loading Inlet: NA Outlet:	•	
23.	Emission rate of eac	h pollutant (speci	fy) into and out	of collector:			
	Pollutant	IN Pol	lutant	Emission	OUT Po	ollutant	Control
		lb/hr	grains/acf	Capture Efficiency %	lb/hr	grains/acf	Efficiency %
	A CO	23.67	-	100	4.74	-	80.0
	B VOCs	5.60	-	100	2.80	-	50.0
	C CH ₂ O	2.24	-	100	0.67	-	70.0
	D						
	E						
24.	Dimensions of stack	: Heigl	nt 54.0) ft.	Diame	eter 2.5	ft.
25.	Supply a curve show rating of collector. No		llection efficien	cy versus gas	volume from 25	5 to 130 perce	nt of design

Particulate Distribution

26. Complete the table:	Particle Size Distribution at Inlet to Collector	Fraction Efficiency of Collector
Particulate Size Range (microns)	Weight % for Size Range	Weight % for Size Range
0 – 2		
2-4		
4 - 6		
6 - 8		
8 - 10		
10 - 12		
12 – 16		
16 – 20		
20 - 30		
30 - 40		
40 - 50		
50 - 60		
60 - 70		
70 - 80		
80 - 90		
90 - 100		
>100		

27. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification): NA

28. Describe the collection material disposal system: NA

29. Have you included Other Collectores Control Device in the Emissions Points Data Summary Sheet? No

30. **Proposed Monitoring, Recordkeeping, Reporting, and Testing** Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING:		RECORDKEEPING:
The inlet temperature catalyst.	will be monitored across the	All maintenance records will be maintained and made available upon request.
shall be submitted to completion. In addition shall be reported. Sub-	e initial performance test results the EPA within 60 days of on, any equipment malfunction bsequent compliance testing will 0 hours of operation or 3 years	within 10% of 100% peak load for the unit.
MONITORING: RECORDKEEPING:	monitored in order to demons equipment or air control device.	ccess parameters and ranges that are proposed to be trate compliance with the operation of this process cordkeeping that will accompany the monitoring.
REPORTING:	Please describe any proposed pollution control device.	emissions testing for this process equipment on air
TESTING:	•	emissions testing for this process equipment on air
	aranteed Control Efficiency for eac – 50.0% / CH ₂ O – 70.0%	h air pollutant.
	aranteed Control Efficiency for eac – 50.0% / CH ₂ O – 70.0%	h air pollutant.

33. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.

NA

ATTACHMENT N

SUPPORTING EMISSIONS CALCULATIONS

Rule 13 Permit Modification Application

Majorsville Compressor Station, Dallas, West Virginia

> Rover Pipeline LLC 1300 Main St. Houston, Texas 77002

Table 1. Annual Potential To Emit (PTE) Summary Rover Pipeline LLC - Majorsville Compressor Station

Proposed Rule 13 Permit Modification Application Allowables

Source	PM/PM10/PM2.5	SO2	NOx	со	VOC**	Formaldehyde	Total HAPs	CO2e
Engine - CE-1S (ton/yr)	1.167	0.069	17.140	18.854	13.814	2.674	3.802	13679.971
Engine - CE-2S (ton/yr)	1.167	0.069	17.140	18.854	13.814	2.674	3.802	13679.971
Engine - CE-3S (ton/yr)	1.167	0.069	17.140	18.854	13.814	2.674	3.802	13679.971
Fugitives (ton/yr)	-	-	-	-	1.860	-	-	308.155
Blowdown Venting (ton/yr)	-	-	-	-	0.088	-	0.002	99.125
Engine Starter Venting (ton/yr)								
Total Emissions (ton/yr)	3.500	0.206	51.419	56.561	43.391	8.021	11.407	41447.193
Total Emissions (lb/hr)	0.799	0.047	11.739	12.913	9.907	1.831	2.604	9462.829

** Total VOC emissions include CH2O emissions

Current Rule 13 Permit Allowables (R13-3238)

Source	PM/PM10/PM2.5	SO2	NOx	со	VOC**	Formaldehyde	Total HAPs	CO2e
Engine - CE-1S (ton/yr)	1.170	0.070	17.140	18.850	15.600	4.460	5.590	13680.000
Engine - CE-2S (ton/yr)	1.170	0.070	17.140	18.850	15.600	4.460	5.590	13680.000
Generator - GE-1 (ton/yr)	0.010	0.080	1.470	0.150	0.020	< 0.01	< 0.01	128.000
Catalytic Heater - HTR-1 (ton/yr)	0.020	< 0.01	0.220	0.190	0.010	< 0.01	< 0.01	263.000
Slop Storage Tank - TK-1 (ton/yr)	-	-	-	-	< 0.01	-	< 0.01	-
Waste Water Tank - TK-2 (ton/yr)	-	-	-	-	< 0.01	-	< 0.01	-
Waste Water Tank - TK-3 (ton/yr)	-	-	-	-	< 0.01	-	< 0.01	-
Slop Truck Loading - LOAD-1 (ton/yr)	-	-	-	-	< 0.01	-	< 0.01	-
Waste Water Loading - LOAD-2 (ton/yr)	-	-	-	-	< 0.01	-	< 0.01	-
Fugitives (ton/yr)	-	-	-	-	1.240	-	< 0.01	205.110
Blowdown Venting (ton/yr)	-	-	-	-	0.060	-	< 0.01	66.080
Engine Starter Venting (ton/yr)	-	-	-	-	0.080	-	< 0.01	86.730
Pigging Operations (ton/yr)	-	-	-	-	0.040	-	< 0.01	41.490
Unpaved Haulroads (ton/yr)	0.720	-	-	-	-	-	-	-
Total Emissions (ton/yr)	3.090	0.220	35.970	38.040	32.650	8.920	11.180	28150.410
Total Emissions (lb/hr)	0.705	0.050	8.212	8.685	7.454	2.037	2.553	6427.034

Proposed Rule 13 Permit Allowables (R13-3238A)

Source	PM/PM10/PM2.5	SO2	NOx	со	VOC**	Formaldehyde	Total HAPs	CO2e
Engine - CE-1S (ton/yr)	1.167	0.069	17.140	18.854	13.814	2.674	3.802	13679.971
Engine - CE-2S (ton/yr)	1.167	0.069	17.140	18.854	13.814	2.674	3.802	13679.971
Engine - CE-3S (ton/yr)	1.167	0.069	17.140	18.854	13.814	2.674	3.802	13679.971
Generator - GE-1 (ton/yr)	0.010	0.080	1.470	0.150	0.020	< 0.01	< 0.01	128.000
Catalytic Heater - HTR-1 (ton/yr)	0.020	< 0.01	0.220	0.190	0.010	< 0.01	< 0.01	263.000
Slop Storage Tank - TK-1 (ton/yr)	-	-	-	-	< 0.01	-	< 0.01	
Waste Water Tank - TK-2 (ton/yr)	-	-	-	-	< 0.01	-	< 0.01	-
Waste Water Tank - TK-3 (ton/yr)	-	-	-	-	< 0.01	-	< 0.01	-
Slop Truck Loading - LOAD-1 (ton/yr)	-	-	-	-	< 0.01	-	< 0.01	-
Waste Water Loading - LOAD-2 (ton/yr)	-	-	-	-	< 0.01	-	< 0.01	-
Fugitives (ton/yr)	-	-	-	-	1.860	-	< 0.01	308.155
Blowdown Venting (ton/yr)	-	-	-	-	0.088	-	< 0.01	99.125
Engine Starter Venting (ton/yr)	-	-	-	-	0.116	-	< 0.01	130.113
Pigging Operations (ton/yr)	-	-	-	-	0.040	-	< 0.01	41.490
Unpaved Haulroads (ton/yr)	0.720	-	-	-	-	-	-	-
Total Emissions (ton/yr)	4.250	0.286	53.109	56.901	43.577	8.021	11.405	42009.797
Total Emissions (lb/hr)	0.970	0.065	12.125	12.991	9.949	1.831	2.604	9591.278

** Total VOC emissions include CH2O emissions

Proposed Difference of Emissions								
Source	PM/PM10/PM2.5	SO2	NOx	со	VOC**	Formaldehyde	Total HAPs	CO2e
Total Emissions (ton/yr)	1.160	0.066	17.139	18.861	10.927	-0.899	0.225	13859.387
Total Emissions (lb/hr)	0.265	0.015	3.913	4.306	2.495	-0.205	0.051	3164.243
** Total V/OC amigaiana ingluda CH2O amig	niene							

Total VOC emissions include CH2O emissions

				ipiesso	or Station			
	Maximum Hou	urly Ei	missions		Annual	Emiss	ions	
Pollutant	Emission Factor		PTE per l (lb/h		Emission Factor		PTE per E (tons/)	
Criteria Pollutants								
PM/PM10/PM2.5**	9.98E-03 lb/MMBtu	(1)	0.29	(a)	9.98E-03 lb/MMBtu	(1)	1.17	(c)
SO ₂	5.88E-04 lb/MMBtu	(1)	0.02	(a)	5.88E-04 lb/MMBtu	(1)	0.07	(c)
NOx	5.00E-01 g/hp-hr	(2)	4.30	(b)	5.00E-01 g/hp-hr	(2)	17.14	(d)
CO	5.50E-01 g/hp-hr	(2)	4.30	(b)	5.50E-01 g/hp-hr	(2)	18.85	(d)
VOC	3.25E-01 g/hp-hr	(2)	2.80	(b)	3.25E-01 g/hp-hr	(2)	11.14	(d) (d)
Hazardous Air Pollutants								
1,1,2,2-Tetrachloroethane	2.00E-05 lb/MMBtu	(1)	0.001	(a)	2.00E-05 lb/MMBtu	(1)	0.002	(c)
1,1,2-Trichloroethane	1.59E-05 lb/MMBtu	(1)	0.000	(a) (a)	1.59E-05 lb/MMBtu	(1)	0.002	(c) (c)
1,3-Butadiene	1.34E-04 lb/MMBtu	(1)	0.004	(a)	1.34E-04 lb/MMBtu	(1)	0.016	(c) (c)
1,3-Dichloropropene	1.32E-05 lb/MMBtu	(1)	0.000	(a)	1.32E-05 lb/MMBtu	(1)	0.002	(c)
2-Methylnapthalene	1.66E-05 lb/MMBtu	(1)	0.000	(a)	1.66E-05 lb/MMBtu	(1)	0.002	(c)
2,2,4-Trimethylpentane	1.25E-04 lb/MMBtu	(1)	0.003	(a)	1.25E-04 lb/MMBtu	(1)	0.015	(c)
Acetaldehyde	4.18E-03 lb/MMBtu	(1)	0.112	(a)	4.18E-03 lb/MMBtu	(1)	0.489	(c)
Acrolein	2.57E-03 lb/MMBtu	(1)	0.069	(a)	2.57E-03 lb/MMBtu	(1)	0.300	(c)
Benzene	2.20E-04 lb/MMBtu	(1)	0.006	(a)	2.20E-04 lb/MMBtu	(1)	0.026	(c)
Biphenyl	1.06E-04 lb/MMBtu	(1)	0.003	(a)	1.06E-04 lb/MMBtu	(1)	0.012	(c)
Carbon Tetrachloride	1.84E-05 lb/MMBtu	(1)	0.000	(a)	1.84E-05 lb/MMBtu	(1)	0.002	(c)
Chlorobenzene	1.52E-05 lb/MMBtu	(1)	0.000	(a)	1.52E-05 lb/MMBtu	(1)	0.002	(c)
Chloroform	1.43E-05 lb/MMBtu	(1)	0.000	(a)	1.43E-05 lb/MMBtu	(1)	0.002	(c)
Ethylbenzene	1.99E-05 lb/MMBtu	(1)	0.001	(a)	1.99E-05 lb/MMBtu	(1)	0.002	(C)
Ethylene Dibromide	2.22E-05 lb/MMBtu	(1)	0.001	(a)	2.22E-05 lb/MMBtu	(1)	0.003	(C)
Formaldehyde	7.80E-02 g/hp-hr	(2)	0.671	(b)	7.80E-02 g/hp-hr	(2)	2.674	(d)
Methanol	1.25E-03 lb/MMBtu	(1)	0.033	(a)	1.25E-03 lb/MMBtu	(1)	0.146	(C)
Methylene Chloride	1.00E-05 lb/MMBtu	(1)	0.000	(a)	1.00E-05 lb/MMBtu	(1)	0.001	(c)
n-Hexane	5.55E-04 lb/MMBtu	(1)	0.015	(a)	5.55E-04 lb/MMBtu	(1)	0.065	(c)
Naphthalene	0.00E+00 lb/MMBtu	(1)	0.000	(a)	0.00E+00 lb/MMBtu	(1)	0.000	(C)
PAH (POM)	1.35E-05 lb/MMBtu	(1)	0.000	(a)	1.35E-05 lb/MMBtu	(1)	0.002	(c)
Phenol	1.20E-05 lb/MMBtu	(1)	0.000	(a)	1.20E-05 lb/MMBtu	(1)	0.001	(C)
Styrene	1.18E-05 lb/MMBtu	(1)	0.000	(a)	1.18E-05 lb/MMBtu	(1)	0.001	(C)
Tetrachloroethane	1.24E-06 lb/MMBtu	(1)	0.000	(a)	1.24E-06 lb/MMBtu	(1)	0.000	(C)
Toluene	2.04E-04 lb/MMBtu	(1)	0.005	(a)	2.04E-04 lb/MMBtu	(1)	0.024	(c)
Vinyl Chloride	7.45E-06 lb/MMBtu	(1)	0.000	(a)	7.45E-06 lb/MMBtu	(1)	0.001	(c)
Xylenes	9.20E-05 lb/MMBtu	(1)	0.002	(a)	9.20E-05 lb/MMBtu	(1)	0.011	(C)
Total HAP			0.929				3.802	
Greenhouse Gas Emissions								
CO ₂	116.89 lb/MMBtu	(3)	3120.06	(a)	116.89 lb/MMBtu	(3)	13665.85	(c)
CH ₄	2.2E-03 lb/MMBtu	(3)	0.06	(a)	2.2E-03 lb/MMBtu	(3)	0.26	(c)
N ₂ O	2.2E-04 lb/MMBtu	(3)	0.01	(a)	2.2E-04 lb/MMBtu	(3)	0.03	(c)
CO ₂ e ^(g)	2.22 01 10,1111210		3123.28				13679.97	

* A 10% Safety Factor has been applied to all Criteria Pollutants and Formaldehyde hourly emissions to account for potential fluctuations for gas fired engines ** PM emission factor includes condensables and filterables

Calculations:

Hourly Emissions - If emission factor note 1 or 4 is used, use calculation (a). If emission factor note 3 is used, use calculation (b). (a) Hourly Emissions (lb/hr) = Emission factor (lb/MMBtu) * (1MMBtu/1000000 Btu) * Engine Power Output (hp) * Average BSFC (Btu/hp-hr)

(b) Hourly Emissions (lb/hr) = Emission factor (g/hp-hr) * Engine Power Output (hp) * (lb / 453.6 g)

(d) Annual emissions (tons/yr) = Emission factor (g/hp-hr) * Engine Power Output (hp) * Annual Hours of operation (hr/yr) * (ton/2000lbs) (d) Annual emissions (tons/yr) = Emission factor (g/hp-hr) * Engine Power Output (hp) * Annual Hours of operation (hr/yr) * (ton/2000lbs) * (lb / 453.6)

MAXIMUM HOURLY EMISSION INF	UTS
Engine Power Output (kW) =	2647
Engine Power Output (hp) =	3,550
Number of Engines =	3
Average BSFC (BTU/HP-hr) =	7,519
Heat Content Natural Gas(Btu/scf) =	1,106.7
Fuel Throughput (ft3/hr) =	24,120.0
PTE Hours of Operation =	8,760

(g) CO₂ equivalent = [(CO₂ emissions)*(GWP_{CO2})]+[(CH₄ emissions)*(GWP_{CH4})]+[(N₂O emissions)*(GWP_{N2O})] Global Warming Potential (GWP)

CO_2	1	(7)	
CH_4	25	(7)	
N_2O	298	(7)	

Notes:

(1) AP-42, Chapter 3.2, Table 3.2-2. Natural Gas-fired Reciprocating Engines (7/00). Uncontrolled Emission Factors for 4-Stroke Lean-Burn Engines.

(2) Emission factors supplied from manufacturer's specification sheets
 (3) Emission factors are from 40 CFR 98, Subpart C, Table C-1 and C-2.

(4) Fuel consumption from manufacturer's specification sheet.

(5) Value obtained from AP-42, Chapter 3.2, Table 3.2-1, footnote b
 (6) Fuel throughput = BSFC (BTU/HP-hr) x Power (HP) / Heat Content (BTU/scf)

(7) Global Warming Potentials obtained from 40 CFR 98, Subpart A, Table A-1

Pollutant:	Volume of Gas (ft ³ /event)	Moles (Ib _{mol})	Specific Gravity of Gas	Molecular Weight of Gas (lbs/lb _{mol})	Wt % Pollutant	lbs _{Pollutant} /event	Events/yr**	Emissions (lbs/hr)	Emissions (ton/yr)
VOC	5164.00	13.63	0.62	28.96	2.00%	4.89	36	4.89	0.09
Benzene	5164.00	13.63	0.62	28.96	0.05%	0.12	36	0.12	0.00
Methane	5164.00	13.63	0.62	28.96	90.00%	220.18	36	220.18	3.96
Carbon Dioxide	5164.00	13.63	0.62	28.96	1.00%	2.45	36	2.45	0.04
CO ₂ e ^(a)	-	-	-	-	-	-	36	22.63	99.13
a) CO ₂ equivalent = Global Warming	Potential (GWP)			_{H4})]+[(N ₂ O emissions)*(GV	VP _{N2O})]				
		1	4 emissions)*(GWP _{CF} (1) (1)	_{H4})]+[(N ₂ O emissions)*(GV	VP _{N2O})]				

Pollutant:	Volume of Gas (ft ³ /event)	Moles (Ib _{mol})	Specific Gravity of Gas	Molecular Weight of Gas (lbs/lb _{mol})	Wt % Pollutant	lbs _{Pollutant} /e vent	Events/yr**	Emissions (Ibs/hr)	Emissions (ton/yr)
VOC	2324.00	6.13	0.62	28.96	2.00%	2.20	105	2.20	0.12
Benzene	2324.00	6.13	0.62	28.96	0.05%	0.06	105	0.06	0.00
Methane	2324.00	6.13	0.62	28.96	90.00%	99.09	105	99.09	5.20
Carbon Dioxide	2324.00	6.13	0.62	28.96	1.00%	1.10	105	1.10	0.06
CO ₂ e ^(a)						-	105	29.71	420.44
-	- ated to start up 35 t	- imes per y	- year: [(35 event/yr) x (tota	- al number of units=3)]	- = 105 events/yr		105	29.71	130.11
** Each unit estim	ated to start up 35 t [(CO ₂ emissions)*(GW	imes per y	year: [(35 event/yr) x (tota CH ₄ emissions)*(GWP _{CH4})]+[(I	al number of units=3)]	= 105 events/yr		105	29.71	130.11
** Each unit estim	ated to start up 35 t [(CO ₂ emissions)*(GW	imes per y /P _{CO2})]+[(C		al number of units=3)]	= 105 events/yr		105	29.71	130.11
** Each unit estim	ated to start up 35 t [(CO ₂ emissions)*(GW Potential (GWP)	imes per y VP _{CO2})]+[(C 1	CH ₄ emissions)*(GWP _{CH4})]+[(I	al number of units=3)]	= 105 events/yr		105	29./1	130.11

						pment Leak E orsville Comp	Emissions ressor Station					
Component	Number of Components	Emission Factors (lb/hr- component) ^(a)	Annual Operating Hours	Max VOC Wt %	Max CH ₄ Wt %	Max CO ₂ Wt %	Reduction Credit Wt % ^(a)	PTE VOC emissions (lb/hr) ^(b)	PTE VOC emissions tpy ^(c)	PTE CH ₄ emissions tpy ^(c)	PTE CO ₂ emissions tpy ^(c)	PTE CO ₂ e emissions tpy ^{(c)(d)}
Valves:												
Gas Streams	197	9.92E-03	8760	2.0%	90.0%	1.0%	0.0%	0.039	0.171	7.704	0.086	192.676
Water/Light Oil Streams	24	2.16E-04	8760	100.0%	0.0%	0.0%	0.0%	0.005	0.023	0.000	0.000	0.000
Light Oil Streams	45	5.50E-03	8760	100.0%	0.0%	0.0%	0.0%	0.248	1.084	0.000	0.000	0.000
Heavy Liquid	30	1.85E-05	8760	100.0%	0.0%	0.0%	0.0%	0.001	0.002	0.000	0.000	0.000
Relief Valves:												
Gas Streams	30	1.94E-02	8760	2.0%	90.0%	1.0%	0.0%	0.012	0.051	2.294	0.025	57.382
Compressor Seals:												
Gas Streams	12	1.94E-02	8760	2.0%	90.0%	1.0%	0.0%	0.005	0.020	0.918	0.010	22.953
Flanges:												
Gas Streams	129	8.60E-04	8760	2.0%	90.0%	1.0%	0.0%	0.002	0.010	0.437	0.005	10.938
Light Oil Streams	33	2.43E-04	8760	100.0%	0.0%	0.0%	0.0%	0.008	0.035	0.000	0.000	0.000
Water/Light Oil Streams	33	6.00E-06	8760	100.0%	0.0%	0.0%	0.0%	0.000	0.001	0.000	0.000	0.000
Connectors:												
Gas Streams	558	4.40E-04	8760	2.0%	90.0%	1.0%	0.0%	0.005	0.022	0.968	0.011	24.207
Water/Light Oil Streams	83	2.43E-04	8760	100.0%	0.0%	0.0%	0.0%	0.020	0.088	0.000	0.000	0.000
Light Oil Streams	167	4.63E-04	8760	100.0%	0.0%	0.0%	0.0%	0.077	0.339	0.000	0.000	0.000
Heavy Liquid	189	1.65E-05	8760	100.0%	0.0%	0.0%	0.0%	0.003	0.014	0.000	0.000	0.000
				•	•		Totals:	0.425	1.860	12.321	0.137	308,155

Notes:

(a) Fugitive Emission Factors and reduction credits are per TCEQ Technical Guidance Document for Equipment Leak Fugitives, dated October 2000. The emission factors are for total hydro carbons (b) Hourly emission rates calculated as follows: (Number of components) * (emission factor (lb/hr-component)) * (max wt %) * (100-reduction credit %) (c) Annual emission reates calculated as follows: (number of components) * (emission factor (lb/hr-component)) * (max wt %) * (100-reduction credit %) (c) Annual emission reates calculated as follows: (number of components) * (emission factor (lb/hr-component) * (max wt %) * (100% - reduction credit %) * (ton/2000lbs) (d) CO₂ equivalent = [(CO₂ emissions)*(GWP_{CO2})]+[(CH₄ emissions)*(GWP_{CH4})]+[(N₂O emissions)*(GWP_{NEO})] Global Warming Potential (GWP)

Global Warming Potential (G	WP)		
	CO ₂ =	1	(e)
	$CH_4 =$	25	(e)
	$N_2O =$	298	(e)
(e) Global Warming Potentials of	obtained fron	n 40 CFR 98,	Subpart A, Table A-1

G3612

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Standard Equipment Company ETC Rover - Majorsville

ENGINE SPEED (rpm): COMPRESSION RATIO: 1000 RATING STRATEGY: 9.2:1 RATING LEVEL: AFTERCOOLER TYPE: SCAC FUEL SYSTEM: AFTERCOOLER WATER INLET (°F): 130 JACKET WATER OUTLET (°F): 190 SITE CONDITIONS: ASPIRATION: ΤA FUEL: COOLING SYSTEM: JW, OC+AC FUEL PRESSURE RANGE(psig): FUEL METHANE NUMBER: CONTROL SYSTEM: CIS/ADEM3 EXHAUST MANIFOLD: DRY FUEL LHV (Btu/scf): COMBUSTION: LOW EMISSION ALTITUDE(ft): MAXIMUM INLET AIR TEMPERATURE(°F): STANDARD RATED POWER: NOx EMISSION LEVEL (g/bhp-hr NOx): 0.5

CONTINUOUS GAV WITH AIR FUEL RATIO CONTROL ETC Rover - Current Fuel 42.8-47.0

STANDARD

			MAXIMUM RATING	-	LING AT N	-
RATING	NOTES	LOAD	100%	100%	75%	50%
ENGINE POWER (WITHOUT FAN)	(1)	bhp	3550	3550	2662	1775
INLET AIR TEMPERATURE		°F	100	100	100	100
ENGINE DATA						
FUEL CONSUMPTION (LHV)	(2)	Btu/bhp-hr	6791	6791	7082	7684
FUEL CONSUMPTION (HHV)	(2)	Btu/bhp-hr	7519	7519	7841	8507
AIR FLOW (@inlet air temp, 14.7 psia) (WET)	(3)(4)	ft3/min	9765	9758	7488	5122
AIR FLOW (WET)	(3)(4)	lb/hr	41490	41490	31836	21777
FUEL FLOW (60°F, 14.7 psia)		scfm	402	402	315	228
INLET MANIFOLD PRESSURE	(5)	in Hg(abs)	73.4	73.4	57.0	39.1
EXHAUST TEMPERATURE - ENGINE OUTLET	(6)	°F	838	838	876	925
EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (WET)	(7)(4)	ft3/min	24022	24022	18978	13500
EXHAUST GAS MASS FLOW (WET)	(7)(4)	lb/hr	42630	42630	32727	22422
EMISSIONS DATA - ENGINE OUT						
NOx (as NO2)	(8)(9)	g/bhp-hr	0.50	0.50	0.50	0.50
со	(8)(9)	g/bhp-hr	2.75	2.75	2.75	2.74
THC (mol. wt. of 15.84)	(8)(9)	g/bhp-hr	6.45	6.45	6.62	6.82
NMHC (mol. wt. of 15.84)	(8)(9)	g/bhp-hr	1.47	1.47	1.51	1.55
NMNEHC (VOCs) (mol. wt. of 15.84)	(8)(9)(10)	g/bhp-hr	0.65	0.65	0.66	0.68
HCHO (Formaldehyde)	(8)(9)	g/bhp-hr	0.26	0.26	0.28	0.31
CO2	(8)(9)	g/bhp-hr	441	441	459	498
EXHAUST OXYGEN	(8)(11)	% DRY	12.8	12.8	12.1	11.0
HEAT REJECTION						
HEAT REJ. TO JACKET WATER (JW)	(12)	Btu/min	36625	36625	31417	29714
HEAT REJ. TO ATMOSPHERE	(12)	Btu/min	14063	14063	13200	12502
HEAT REJ. TO LUBE OIL (OC)	(12)	Btu/min	18081	18081	17286	17049
HEAT REJ. TO AFTERCOOLER (AC)	(12)(13)	Btu/min	34480	34480	18629	2698
COOLING SYSTEM SIZING CRITERIA						
TOTAL JACKET WATER CIRCUIT (JW)	(13)	Btu/min	44316	l		
TOTAL AFTERCOOLER CIRCUIT (OC+AC)	(13)(14)	Btu/min	63692			
A cooling system safety factor of 10% has been added to the cooling system sizing criteria.	· · · · ·	•				

CONDITIONS AND DEFINITIONS

Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

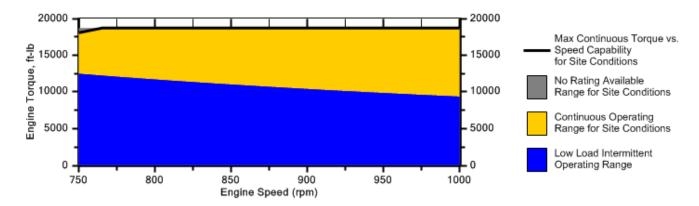
For notes information consult page three.

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Standard Equipment Company ETC Rover - Majorsville

Engine Power vs. Inlet Air Temperature

Data represents temperature sweep at 1200 ft and 1000 rpm


Engine Power vs. Engine Speed

Data represents speed sweep at 1200 ft and 100 °F

Engine Torque vs. Engine Speed

Data represents speed sweep at 1200 ft and 100 °F

Note: At site conditions of 1200 ft and 100°F inlet air temp., constant torque can be maintained down to 770 rpm. The minimum speed for loading at these conditions is 750 rpm.

G3612

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Standard Equipment Company ETC Rover - Majorsville

NOTES

1. Engine rating is with two engine driven water pumps. Tolerance is ± 3% of full load.

2. Fuel consumption tolerance is \pm 2.5% of full load data.

3. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of \pm 5 %.

4. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.

5. Inlet manifold pressure is a nominal value with a tolerance of \pm 5 %.

6. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.

7. Exhaust flow value is on a "wet" basis. Flow is a nominal value for total flow rate with a tolerance of $\pm 6\%$. Exhaust gas vented through the wastegate flows only to the right exhaust outlet. The total flow through the wastegate may be as great as 15% of the total value for conditions under which the wastegate is open. For installations that use dual exhaust runs this difference must be taken into account when specifying any items to be connected to the exhaust outlets. The flow in the right exhaust outlet must be sized for at least 65% of the total flow to allow for the wastegate full open condition, while the left outlet must be sized for 50% of the total flow for the wastegate closed condition. Both runs must meet the allowable backpressure requirement as described in the Exhaust Systems A&I Guide.

8. Emissions data is at engine exhaust flange prior to any after treatment.

9. Emission values are based on engine operating at steady state conditions. Fuel methane number cannot vary more than ± 3. Values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate "Not to Exceed" values. THC, NMHC, and NMNEHC do not include aldehydes. An oxidation catalyst may be required to meet Federal, State or local CO or HC requirements.

10. VOCs - Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ

11. Exhaust Oxygen level is the result of adjusting the engine to operate at the specified NOx level. Tolerance is ± 0.5 .

12. Heat rejection values are nominal. Tolerances, based on treated water, are ± 10% for jacket water circuit, ± 50% for radiation, ± 20% for lube oil circuit, and ± 5% for aftercooler circuit.

13. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.

14. Cooling system sizing criteria are maximum circuit heat rejection for the site, with applied factory tolerances and an additional cooling system factor of 10%.

CATERPILLAR®

Constituent	Abbrev	Mole %	Norm		
Water Vapor	H2O	0.0000	0.0000		
Methane	CH4	86.7670	86.7670	Fuel Makeup:	ETC Rover - Current
Ethane	C2H6	12.4290	12.4290	Unit of Measure:	English
Propane	C3H8	0.2460	0.2460		Ũ
Isobutane	iso-C4H1O	0.0040	0.0040	Calculated Fuel Properties	
Norbutane	nor-C4H1O	0.0040	0.0040		73.3
Isopentane	iso-C5H12	0.0000	0.0000	Caterpillar Methane Number:	/3.3
Norpentane	nor-C5H12	0.0000	0.0000		
Hexane	C6H14	0.0000	0.0000	Lower Heating Value (Btu/scf):	999
Heptane	C7H16	0.0000	0.0000	Higher Heating Value (Btu/scf):	1106
Nitrogen	N2	0.4040	0.4040	WOBBE Index (Btu/scf):	1268
Carbon Dioxide	CO2	0.1460	0.1460	(
Hydrogen Sulfide	H2S	0.0000	0.0000	THC: Free Inert Ratio:	180.82
Carbon Monoxide	CO	0.0000	0.0000		0.55%
Hydrogen	H2	0.0000	0.0000	Total % Inerts (% N2, CO2, He):	
Oxygen	O2	0.0000	0.0000	RPC (%) (To 905 Btu/scf Fuel):	100%
Helium	HE	0.0000	0.0000		
Neopentane	neo-C5H12	0.0000	0.0000	Compressibility Factor:	0.998
Octane	C8H18	0.0000	0.0000	Stoich A/F Ratio (Vol/Vol):	10.40
Nonane	C9H20	0.0000	0.0000	Stoich A/F Ratio (Mass/Mass):	16.78
Ethylene	C2H4	0.0000	0.0000	Specific Gravity (Relative to Air):	0.620
Propylene	C3H6	0.0000	0.0000	Specific Heat Constant (K):	1.298
TOTAL (Volume %)		100.0000	100.0000	Specific real Constant (K).	1.290

CONDITIONS AND DEFINITIONS

Caterpillar Nethane Number represents the knock resistance of a gaseous fuel. It should be used with the Caterpillar Fuel Usage Guide for the engine and rating to determine the rating for the fuel specified. A Fuel Usage Guide for each rating is included on page 2 of its standard technical data sheet.

RPC always applies to naturally aspirated (NA) engines, and turbocharged (TA or LE) engines only when they are derated for altitude and ambient site conditions.

Project specific technical data sheets generated by the Caterpillar Gas Engine Rating Pro program take the Caterpillar Methane Number and RPC into account when generating a site rating.

Fuel properties for Btu/scf calculations are at 60F and 14.696 psia.

Caterpillar shall have no liability in law or equity, for damages, consequently or otherwise, arising from use of program and related material or any part thereof.

FUEL LIQUIDS Field gases, well head gases, and associated gases typically contain liquid water and heavy hydrocarbons entrained in the gas. To prevent detonation and severe damage to the engine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid separator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground in accordance with local codes and standards.

To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel operating temperature.

Application Data Report

Proposal Information	Proposal Numl Project Refere		08 Rev(8) over Project - 36 ⁻	12 (Majorsville)	Date:		4/28	/2017			
Engine Information	Application: Number of Eng Engine Make: Engine Model: Rated Speed:	jines:	1 Caterpilla G 3612 L	Gas Compression 1 Caterpillar G 3612 LE TA 1000 RPM			otion: st Manifo sure:	olds:	Gas Compression Natural Gas 0.6 wt% sulfated ash or 0.1 % Fuel Consumption 2 8 In. of WC		
Engine Cycle	Load	Speed	Power	Exhaust Flow	Exha	ust Temp.	Fue	Cons.	O2	H ₂ O	
Data	%		bhp	acfm (cfm)	F 838				%	%	
	100	Rated	3,550	24,022					12.8	17	
	Load	Speed	NOx	CO		NMH	С	NMN	EHC	CH ₂ O	
	%		g/bhp-hr	g/bhp	-hr	g/bhp	-hr	g/bh	p-hr	g/bhp-hr	
	100	Rated	0.5	2.75	5	0.97	7	0.6	65	0.26	

Emission Data			Rav	v Engine	e Emissi	ons			Tarç	get Outle	t Emissi	ions		
(100% Load)	Emission	g/bhp- hr	tons/yr	ppmvd @ 15% O ₂	ppmvd	lb/MW- hr	g/kW- hr	g/bhp- hr	tons/yr	ppmvd @ 15% O ₂	ppmvd	lb/MW- hr	g/kW- hr	Calculated Reduction
	NO _x *	0.5	17.14	49	67	1.48	0.671							N/A
	со	2.75	94.27	443	608	8.13	3.688	0.55	18.85	89	122	1.63	0.738	80%
	NMNEHC**	0.65	22.28	183	251	1.92	0.872	0.32	11.14	91	126	0.96	0.436	50%
	CH ₂ O	0.26	8.91	39	54	0.77	0.349	0.08	2.67	12	16	0.23	0.105	70%

System

Oxidation (SP-RQSIGA-90S3624x61-30-XH3B3)

Specifications	Design Exhaust Flow Rate:	24,090 acfm (cfm)
	Design Exhaust Temperature:	838°F
	Housing Model Number:	SP-RQSIGA-90S3624x61-30-HSG
	Element Model Number:	RXS-RE-304-S3624XH, RXS-RE-S3624BLIND
	Number of Catalyst Elements:	3
	Number of Spare Catalyst Tracks:	3
	System Pressure Loss:	8.0 inches of WC (Clean)
	Exhaust Temperature Limits:	550 – 1250°F (catalyst inlet); 1350°F (catalyst outlet)

* MW referenced as NO₂

** MW referenced as CH₄. Assumed as 100% unsaturated HCs. Average at steady state per EPA 40CFR60 Method 25A for HC or mutually agreed test method.

ATTACHMENT O

MONITORING/RECORDKEEPING/REPORTING/ TESTING PLANS

Rule 13 Permit Modification Application

Majorsville Compressor Station, Dallas, West Virginia

> Rover Pipeline LLC 1300 Main St. Houston, Texas 77002

Monitoring

Since the new compressor at this station, CE-3S will commence construction after September 18, 2015, the site-wide fugitive components will become subject to the equipment leak standards of §60.5397a. As a result of the modification, the site will be required to develop and implement a fugitive monitoring plan and conduct quarterly OGI surveys. The initial survey will be required within 60 days of startup or by June 3, 2017, whichever is later in accordance with §60.5397a(f)(2). However, on April 18, 2017 the USEPA Administrator, E. Scott Pruitt, issued a letter of reconsideration based on comments received from industry groups on August 2, 2016. This letter authorizes a 90 day stay of the compliance date for fugitive emissions monitoring requirements.

In addition to that mentioned above, Rover Pipeline LLC (Rover) will at a minimum monitor hours of operation, site production throughputs, malfunctions of equipment, as well as planned and unplanned maintenance of permitted equipment comprising the facility.

Recordkeeping

Rover will retain records of the following for five (5) years, two (2) years on site, certified by a company official at such time that the DAQ may request said records.

Records of maintenance conducted on the engine shall be kept in accordance with §60.4243(b)(2)(ii)).

The unit, CE-3S, will also be subject to the rod packing standards of §60.5385a that require them to be replaced/rebuilt every 26,000 hrs or 3 years. Records shall be maintained based on months or hours of operations since initial startup and each subsequent rebuild or replacement of the compressor's rod packing.

In addition to those mentioned above, the company will keep records of the items monitored, such as condensate throughput, hours of operation, planned maintenance activities, and unplanned maintenance activities.

Reporting

Rover, at a minimum, will submit results of the initial performance test and subsequent performance testing to the EPA Regional Office within sixty (60) days of completion of such tests. In addition, the company will report any control equipment malfunctions or emission limit deviations.

Testing

Rover will demonstrate initial compliance by conducting a performance test as specified in §60.4243(b)(2)(ii) showing the emission limitations in Table 1 to Subpart JJJJ of Part 60 are being met for units CE-1S and CE-2S. Since emission unit CE-3S is an engine that met the reconstruction requirements of JJJJ, it will be required to meet the following emission limitations to demonstrate initial compliance; $NO_X - 3.0$ g/hp-hr, CO - 4.0 g/hp-hr, and VOC - 1.0 g/hp-hr. Subsequent performance testing shall be conducted every 8,760 hours or 3 years, whichever comes first, thereafter to demonstrate compliance.

ATTACHMENT P

PUBLIC NOTICE

Rule 13 Permit Modification Application

Majorsville Compressor Station, Dallas, West Virginia

> Rover Pipeline LLC 1300 Main St. Houston, Texas 77002

ATTACHMENT Q

BUSINESS CONFIDENTIAL CLAIMS NOT APPLICABLE

Rule 13 Permit Modification Application

Majorsville Compressor Station, Dallas, West Virginia

> Rover Pipeline LLC 1300 Main St. Houston, Texas 77002

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Rover Pipeline LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a Rule 13 Permit Modification, for a natural gas compressor station located off Ruth Hill near Dallas, in Marshall County, West Virginia. The latitude and longitude coordinates are 39.96285 and -80.55491.

The applicant estimates the increased potential to discharge of the following Regulated Air Pollutants will be:

Pollutant	Tons/yr	
PM/PM10/PM2.5	1.16	
SO ₂	0.07	
NO _x	17.14	
CO	18.86	
VOCs	10.93	
Total HAPs	0.23	

Modification of operations is expected to begin in the last quarter of 2017. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the XX day of May, 2017.

By: Rover Pipeline LLC Mark Ryan VP Operations, Midwest Division 8910 Purdue Rd. Indianapolis, IN 46268

ATTACHMENT R

AUTHORITY FORMS

NOT APPLICABLE

Rule 13 Permit Modification Application

Majorsville Compressor Station, Dallas, West Virginia

> Rover Pipeline LLC 1300 Main St. Houston, Texas 77002

ATTACHMENT S

TITLE V PERMIT REVISION INFORMATION NOT APPLICABLE

Rule 13 Permit Modification Application

Majorsville Compressor Station, Dallas, West Virginia

> Rover Pipeline LLC 1300 Main St. Houston, Texas 77002

APPLICATION FEE

Rule 13 Permit Modification Application

Majorsville Compressor Station, Dallas, West Virginia

Rover Pipeline LLC

1300 Main St. Houston, Texas 77002

Permit Application Fee Breakdown			
		Cost	
Standard Application fee for WV NSR Rule 13 Modifcation Subject to NSPS - 40 CFR 60 Subpart IIII, JJJJ, OOOO or OOOOa		\$ 1,000.00 \$ 1,000.00	
Total:		\$ 2,000.00	