June 16, 2017

Director WVDEP – Division of Air Quality 601 57th Street SE Charleston, WV 25304

Tracking No. 1Z 865 F5F 01 9336 9074

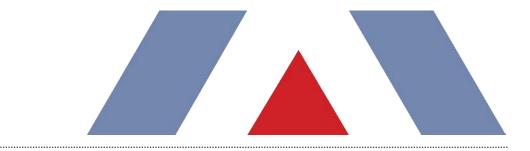
RE: DTE Appalachia Gathering, LLC Coopers Run Compressor Station (Facility ID No. 061-00205, Permit No. R13-3291) G35-D Construction Application

To Whom It May Concern:

On behalf of DTE Appalachia Gathering, LLC (DTE)¹, we are submitting this G35-D Construction Application to convert the Coopers Run Compressor Station's current R13 permit into a G35-D and install new sources at the facility.

Enclosed are one (1) original hard copy and two (2) CDs with PDFs of the application, along with a check for the application fee in the amount of \$1,500. The affidavit of publication for the Class I Legal Advertisement will be forwarded upon receipt.

DTE appreciates your review of this submittal. If you have any questions or comments about the attached information, please contact me at (724) 935-2611 x104.


Respectfully,

Domenic a. Ledeno

Domenic Tedesco Senior Consultant Trinity Consultants

Attachments

¹ DTE Appalachia Holdings, LLC recently purchased 100% of M3 Appalachia Gathering, LLC (M3) and retained the company's Federal Employer Identification Number (FEIN). Subsequently, M3's name was changed to DTE Appalachia Gathering, LLC (DTE). DTE will be sending a concurrent notification to WVDEP regarding this change.

PROJECT REPORT DTE Appalachia Gathering, LLC Coopers Run Compressor Station

G35-D Permit Application

TRINITY CONSULTANTS 4500 Brooktree Drive Suite 103 Wexford, PA 15090 (724) 935-2611

June 2017

Environmental solutions delivered uncommonly well

1. INTRODUCTION	4
1.1. Facility and Project Description	4
1.2. Source Status	4
1.3. G35-D Application Organization	5
2. SAMPLE EMISSION SOURCE CALCULATIONS	6
3. REGULATORY DISCUSSION	7
3.1. PSD and NNSR Source Classification	7
3.2. Title V Operating Permit Program	7
3.3. New Source Performance Standards	8
3.3.1. NSPS Subparts D, Da, Db, and Dc – Steam Generating Units	8
3.3.2. NSPS Subparts K, Ka, and Kb – Storage Vessels for Petroleum Liquids/Volatile Organic Liquids	
3.3.3. NSPS Subpart GG – Stationary Gas Turbines	8
3.3.4. NSPS Subpart JJJJ – Stationary Spark Ignition Internal Combustion Engines	8
3.3.5. NSPS Subpart KKKK – Stationary Combustion Turbines	9
3.3.6. NSPS Subpart 0000 — Crude Oil and Natural Gas Production, Transmission, and Distribution	9
3.3.7. NSPS Subpart 0000a — Crude Oil and Natural Gas Facilities	9
3.3.8. Non-Applicability of All Other NSPS	10
3.4. National Emission Standards for Hazardous Air Pollutants	10
3.4.1. NESHAP Subpart HH – Oil and Natural Gas Production Facilities	10
3.4.2. NESHAP Subpart ZZZZ – Stationary Reciprocating Internal Combustion Engines	10
3.4.3. NESHAP JJJJJJ – Industrial, Commercial, and Institutional Boilers	11
3.5. West Virginia SIP Regulations	11
3.5.1. 45 CSR 2: To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirec	t Heat
Exchangers	11
3.5.2. 45 CSR 4: To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or to an Objectionable Odor	Contributes 11
3.5.3. 45 CSR 6: To Prevent and Control the Air Pollution from the Combustion of Refuse	11
3.5.4. 45 CSR 10: To Prevent and Control Air Pollution from the Emission of Sulfur Oxides	11
3.5.5. 45 CSR 16: Standards of Performance for New Stationary Sources	12
3.5.6. 45 CSR 17: To Prevent and Control Particulate Matter Air Pollution from Materials Handling, P	
Storage and Other Sources of Fugitive Particulate Matter	12
3.5.7. 45 CSR 21-28: Petroleum Liquid Storage in Fixed Roof Tanks	12
3.5.8. 45 CSR 34: Emissions Standards for Hazardous Air Pollutants	12
3.5.9. Non-Applicability of Other SIP Rules	12
4. G35-D APPLICATION FORMS	13
ATTACHMENT A SINGLE SOURCE DETERMINATION FORM	
ATTACHMENT B SITING CRITERIA WAIVER (NOT APPLICABLE)	
ATTACHMENT C CURRENT BUSINESS CERTIFICATE	

ATTACHMENT D	PROCESS FLOW DIAGRAM
ATTACHMENT E	PROCESS DESCRIPTION
ATTACHMENT F	PLOT PLAN
ATTACHMENT G	AREA MAP
ATTACHMENT H	G35-D SECTION APPLICABILITY FORM
ATTACHMENT I	EMISSION UNITS/ERD TABLE
ATTACHMENT J	FUGITIVE EMISSIONS SUMMARY
ATTACHMENT K	STORAGE VESSEL(S) DATA SHEET
ATTACHMENT L	NATURAL GAS FIRED FUEL BURNING UNIT(S) DATA SHEET
ATTACHMENT M	INTERNAL COMBUSTION ENGINE DATA SHEET(S)
ATTACHMENT N	TANKER TRUCK LOADING DATA SHEET
ATTACHMENT O	GLYCOL DEHYDRATION UNIT DATA SHEET(S)
ATTACHMENT P	PNEUMATIC CONTROLLERS DATA SHEET(S)
ATTACHMENT Q	CENTRIFUGAL COMPRESSOR DATA SHEET(S)
ATTACHMENT R	RECIPROCATING COMPRESSOR DATA SHEET(S)
ATTACHMENT S	BLOWDOWN AND PIGGING OPERATIONS DATA SHEET(S)
ATTACHMENT T	AIR POLLUTION CONTROL DEVICE
ATTACHMENT U	EMISSION CALCULATIONS
ATTACHMENT V	FACILITY-WIDE EMISSION SUMMARY SHEET(S)
ATTACHMENT W	CLASS I LEGAL ADVERTISEMENT

DTE Appalachia Gathering, LLC (DTE), which is owned by DTE Energy Company, is submitting this G35-D Permit application to the West Virginia Department of Environmental Protection (WVDEP) for an existing natural gas compressor station located in Monongalia County, West Virginia (Coopers Run Compressor Station or 'Coopers Run Station'). The Coopers Run Station is currently operating under R13 permit number R13-3291. This general permit application seeks to add new compression and ancillary equipment and replace the current R13 permit with a G35-D permit.

1.1. FACILITY AND PROJECT DESCRIPTION

The Coopers Run Station is an existing natural gas compressor station covered under standard industrial code (SIC) 1311. The station compresses natural gas from nearby wells for transportation across the pipeline.

The station currently consists of the following equipment:

- > Three (3) Caterpillar G3606 compressor engines (CE-1 to CE-3), each rated at 1,775 bhp; and
- > Several miscellaneous tanks.

With this submittal, the applicant specifically seeks to do the following:

- > Add one (1) Caterpillar G3606 compressor engine (CE-4), rated at 1,775 bhp;
- > Add two (2) Caterpillar G3606 compressor engine (CE-5 and CE-6), rated at 1,875 bhp;
- > Add one (1) Generac 14.2 L emergency generator engine (GE-2), rated at 304 bhp;
- > Add one (1) Flex Energy GT250S microturbine (MT-1);
- > Add several miscellaneous tanks (in place of those currently in the permit)¹; and
- > Add one (1) tank heater.

A process flow diagram is included as Attachment D.

1.2. SOURCE STATUS

WVDEP must make stationary source determinations on a case-by-case basis using the guidance under the Clean Air Act (CAA) and EPA's and WVDEP's implementing regulations. The definition of stationary source in 40 CFR 51.166(b) includes the following:

"(6) Building, structure, facility, or installation means all of the pollutant emitting activities which belong to the same industrial grouping, are located on or more contiguous or adjacent properties, and are under control of the same person (or persons under common control)."

Other additional pollutant emitting facilities should be aggregated with the Coopers Run Station for air permitting purposes if, and only if, all three elements of the "stationary source" definition above are fulfilled. WVDEP previously determined that the Coopers Run Station is a separate stationary source when the current permit was issued. It should be noted that there is one (1) natural gas production facility located within a quarter-mile radius of the facility; however, that facility is not owned by DTE or any related legal entity.

¹ The permit application forms include a complete listing of tanks; the applicant is requesting that the issued permit reflect the forms.

1.3. G35-D APPLICATION ORGANIZATION

This West Virginia G35-D permit application is organized as follows:

- > Section 2: Sample Emission Source Calculations;
- > Section 3: Regulatory Discussion;
- > Section 4: G35-D Application Form;
- > Attachment A: Single Source Determination Form
- > Attachment B: Siting Criteria Waiver (not applicable)
- > Attachment C: Current Business Certificate
- > Attachment D: Process Flow Diagram
- > Attachment E: Process Description
- > Attachment F: Plot Plan
- > Attachment G: Area Map
- > Attachment H: G35-D Section Applicability Form
- > Attachment I: Emission Units/ERD Table
- > Attachment J: Fugitive Emission Summary Sheet(s)
- > Attachment K: Storage Vessels Data Sheet(s)
- > Attachment L: Natural Gas Fired Fuel Burning Unit Data Sheet(s)
- > Attachment M: Internal Combustion Engine Data Sheet(s)
- > Attachment N: Tanker Truck Loading Data Sheet
- > Attachment O: Glycol Dehydration Unit Data Sheet(s)
- > Attachment P: Pneumatic Controller Data Sheet(s)
- > Attachment Q: Centrifugal Compressor Data Sheet(s)
- > Attachment R: Reciprocating Compressor Data Sheet(s)
- > Attachment S: Blowdown and Pigging Operation Data Sheet(s)
- > Attachment T: Air Pollution Control Device Data Sheet(s)
- > Attachment U: Emission Calculations
- > Attachment V: Facility-wide Emission Summary Sheet(s)
- > Attachment W: Class I Legal Advertisement

The characteristics of air emissions from the facility, along with the methodology for calculating emissions, are briefly described in this section of the application. Detailed emission calculations are presented in Attachment U of this application.

Emissions at this facility will result from combustion of natural gas (in the engines, tank heater and microturbine), operation of the storage tanks, as well as piping blowdowns and fugitive emissions from components leaks and the facility roadway. The methods by which emissions from each of these source types is calculated are summarized below.

- Compressor Engines: Potential emissions of nitrogen oxides (NO_X), CO, VOC, formaldehyde are calculated using factors provided by the engine and catalyst manufacturer. Potential emissions of sulfur dioxide (SO₂), particulate matter (PM/PM₁₀/PM_{2.5}), and all other hazardous air pollutants (HAPs) are calculated using U.S. EPA's AP-42 factors for four-stroke lean-burn engines.
- Senerator Engine: Potential emissions of nitrogen oxides (NO_x), CO and VOC are calculated using factors provided in the EPA Certificate of Conformity. Potential emissions of sulfur dioxide (SO₂), particulate matter (PM/PM₁₀/PM_{2.5}), and all other hazardous air pollutants (HAPs) are calculated using U.S. EPA's AP-42 factors for four-stroke rich-burn engines.
- Microturbine: Potential emissions of nitrogen oxides (NO_x), CO and VOC are calculated using factors provided by the manufacturer. Potential emissions of sulfur dioxide (SO₂), particulate matter (PM/PM₁₀/PM_{2.5}), and all other hazardous air pollutants (HAPs) are calculated using U.S. EPA's AP-42 factors for stationary gas turbines.
- > **Tank Heater:** Potential emissions of all criteria pollutants and HAPs are calculated using U.S. EPA's AP-42 factors for natural gas external combustion equipment. These calculations assume a site-specific heat content of natural gas.
- Storage Tanks and Liquid Loading: Working, breathing and flashing emissions of VOC and HAPs from the waste fluid tanks are calculated using E&P TANK v2.0 software. Working and breathing emissions from all other tanks, along with the waste fluid loading emissions, were calculated using EPA Tanks 4.0.9d and AP-42 methodology.
- Fugitive Emissions: Emissions from fugitive equipment leaks are calculated using published EPA emission factors and 40 CFR Part 98, Subpart W emission factors. Emissions from blowdown events are calculated using engineering estimates of the amount of gas vented. Site specific gas analyses were used to speciate VOC, HAP, and GHG emissions.
- > Haul Roads: Fugitive dust emitted from facility roadways has been estimated using projected vehicle miles traveled along with U.S. EPA's AP-42 factors for unpaved haul roads.²

Potential emissions of greenhouse gas pollutants (GHGs) are calculated using manufacturer's data as available (CO₂ and CH₄ in this case) and U.S. EPA's emission factors from 40 CFR Part 98, Subpart C for all others.

² U.S. EPA, AP 42, Fifth Edition, Volume I, Section 13.2.2, Unpaved Roads, November 2006.

This section documents the applicability determinations made for Federal and State air quality regulations. In this section, applicability or non-applicability of the following regulatory programs is addressed:

- > Prevention of Significant Deterioration (PSD) permitting;
- > Non-attainment New Source Review (NNSR) permitting;
- > Title V of the 1990 Clean Air Act Amendments;
- > New Source Performance Standards (NSPS);
- > National Emission Standards for Hazardous Air Pollutants (NESHAP); and
- > West Virginia State Implementation Plan (SIP) regulations.

This review is presented to supplement and/or add clarification to the information provided in the WVDEP G35-D operating permit application forms.

In addition to providing a summary of applicable requirements, this section of the application also provides nonapplicability determinations for certain regulations, allowing the WVDEP to confirm that identified regulations are not applicable to the facility. Note that explanations of non-applicability are limited to those regulations for which there may be some question of applicability specific to the operations at the station. Regulations that are categorically nonapplicable are not discussed (e.g., NSPS Subpart J, Standards of Performance for Petroleum Refineries).

3.1. PSD AND NNSR SOURCE CLASSIFICATION

Federal construction permitting programs regulate new and modified sources of attainment pollutants under Prevention of Significant Deterioration and new and modified sources of non-attainment pollutants under Non-Attainment New Source Review. PSD regulations apply when a new source is constructed in which emissions exceed major source thresholds, an existing minor source undergoes a modification in which emission increases exceed PSD major source thresholds, or an existing major source undergoes a modification in which emission increases exceed PSD significant emission rates. The facility will remain a minor source with respect to the NSR program after the project since potential emissions are below all the PSD thresholds. As such, PSD permitting is not triggered by this construction activity. NNSR regulations only apply in areas designated as non-attainment. The facility is located in Monongalia County, which is designated as attainment/unclassifiable for all criteria pollutants.³ Therefore, NNSR regulations do not apply to the facility.

3.2. TITLE V OPERATING PERMIT PROGRAM

Title 40 of the Code of Federal Regulations Part 70 (40 CFR 70) establishes the federal Title V operating permit program. West Virginia has incorporated the provisions of this federal program in its Title V operating permit program in West Virginia Code of State Regulations (CSR) 45-30. The major source thresholds with respect to the West Virginia Title V operating permit program regulations are 10 tons per year (tpy) of a single HAP, 25 tpy of any combination of HAP, and 100 tpy of all other regulated pollutants. The potential emissions of all regulated pollutants are below the corresponding threshold(s) at this facility after the proposed project. Therefore, the facility is not a major source for Title V purposes.

³ U.S. EPA Green Book, <u>http://www.epa.gov/airquality/greenbook/anayo_wv.html</u>, as of February 13, 2017.

3.3. NEW SOURCE PERFORMANCE STANDARDS

New Source Performance Standards, located in 40 CFR 60, require new, modified, or reconstructed sources to control emissions to the level achievable by the best demonstrated technology as specified in the applicable provisions. Moreover, any source subject to an NSPS is also subject to the general provisions of NSPS Subpart A, except where expressly noted. The following is a summary of applicability and non-applicability determinations for NSPS regulations of relevance to the facility. Besides 40 CFR 60 Subpart A (NSPS Subpart A), which is similar to 40 CFR 63 Subpart A (NESHAP Subpart A), the following NSPS could potentially apply to the facility:

- > 40 CFR Part 60 Subparts D, Da, Db, and Dc Steam Generating Units
- > 40 CFR Part 60 Subparts K, Ka, and Kb Storage Vessels for Petroleum Liquids/Volatile Organic Liquids
- > 40 CFR Part 60 Subpart GG Stationary Gas Turbines
- > 40 CFR Part 60 Subpart JJJJ Stationary Spark Ignition Internal Combustion Engines
- > 40 CFR Part 60 Subpart KKKK Stationary Combustion Turbines
- > 40 CFR Part 60 Subpart 0000 Crude Oil and Natural Gas Production, Transmission, and Distribution
- > 40 CFR Part 60 Subpart 0000a Crude Oil and Natural Gas Facilities

3.3.1. NSPS Subparts D, Da, Db, and Dc - Steam Generating Units

These subparts apply to steam generating units of various sizes, all greater than 10 MMBtu/hr. The proposed project does not include any steam generating units with a heat input greater than 10 MMBtu/hr, therefore the requirements of these subparts do not apply.

3.3.2. NSPS Subparts K, Ka, and Kb - Storage Vessels for Petroleum Liquids/Volatile Organic Liquids

These subparts apply to storage tanks of certain sizes constructed, reconstructed, or modified during various time periods. Subpart K applies to storage tanks constructed, reconstructed, or modified prior to 1978, and Subpart Ka applies to those constructed, reconstructed, or modified prior to 1984. Both Subparts K and Ka apply to storage tanks with a capacity greater than 40,000 gallons. Subpart Kb applies to volatile organic liquid (VOL) storage tanks constructed, reconstructed, or modified after July 23, 1984 with a capacity equal to or greater than 75 m³ (~19,813 gallons). All of the tanks at the facility have a capacity of 19,813 gallons or less. As such, Subparts K, Ka, and Kb do not apply to the storage tanks at the facility.

3.3.3. NSPS Subpart GG - Stationary Gas Turbines

Subpart GG, Standards of Performance for Stationary Gas Turbines, applies to all gas turbines with a heat input at peak load greater than or equal to 10 MMBtu/hr based on the lower heating value of the fuel fired. This standard was promulgated in 1979. The applicability of Subpart KKKK, promulgated in 2006, is similar to that of Subpart GG and applies to stationary combustion turbines that commence construction after February 18, 2005. The proposed microturbine is not subject to the requirements of Subpart GG based on heat input.

3.3.4. NSPS Subpart JJJJ - Stationary Spark Ignition Internal Combustion Engines

Subpart JJJJ, Standards of Performance for Stationary Spark Ignition Internal Combustion Engines, applies to manufacturers, owners and operators of stationary spark ignition (SI) engines. The requirements for SI engines with a maximum power rating greater than or equal to 500 hp (except lean burn engines 500 hp \leq hp < 1,350) apply to owner/operators of such engines ordered on or after July 1, 2007. The proposed compressor engines will be a 4-stroke, lean burn spark ignition RICE, four (4) of which are rated at 1,775 hp (CE-1 to CE-4) and two (2) of which are rated at 1,875 hp (CE-5 and CE-6). As such, the engines will be subject to the emissions standards per Table 1 to NSPS Subpart JJJJ (for non-emergency use engines), as well as performance testing every 8,760 hours of operation or three (3) years, and associated notification and reporting requirements.

The generator engine (GE-2) is also subject to Subpart JJJJ. However, as this is an EPA Certified Unit (see attached Certificate of Conformity), the applicant is not required to conduct performance testing. Instead, it is required to operate and maintain the certified stationary SI internal combustion engine and control device according to the manufacturer's emission-related written instructions.

3.3.5. NSPS Subpart KKKK - Stationary Combustion Turbines

Subpart KKKK, Standards of Performance for Stationary Combustion Turbines, applies to stationary combustion units with a heat input at peak load equal to or greater than 10 MMBtu/hr, based on the higher heating value of the fuel, commencing construction after February 18, 2005. The proposed microturbine will have a heat input less than 10 MMbtu/hr and is therefore not subject to this standard.

3.3.6. NSPS Subpart OOOO – Crude Oil and Natural Gas Production, Transmission, and Distribution

Subpart OOOO – *Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution,* applies to affected facilities that commenced construction, reconstruction, or modification after August 23, 2011 and before September 18, 2015. The facility does not include any existing sources that are affected sources under this regulation, nor will any new sources fall into this date range. Therefore, the facility has no applicable requirements under this regulation.

3.3.7. NSPS Subpart OOOOa - Crude Oil and Natural Gas Facilities

Subpart OOOOa, Standards of Standards of Performance for Crude Oil and Natural Gas Facilities, will apply to affected facilities that commenced construction, reconstruction, or modification after September 18, 2015. The regulation was published final in the Federal Register on June 3, 2016. The rule includes provisions for the following facilities:

- > Hydraulically fractured wells;
- Centrifugal compressors located between the wellhead and the point of custody transfer to the natural gas distribution segment;
- Reciprocating compressors located between the wellhead and the point of custody transfer to the natural gas distribution segment;
- Continuous bleed natural gas-driven pneumatic controllers with a bleed rate of > 6 scfh located in the production, gathering, processing, or transmission and storage segments (excluding natural gas processing plants);
- > Continuous bleed natural gas-driven pneumatic controllers located at natural gas processing plants;
- > Pneumatic pumps located in the production, gathering, processing, or transmission and storage segments;
- > Storage vessels located in the production, gathering, processing, or transmission and storage segments;
- > The collection of fugitive emissions components at a well site;
- > The collection of fugitive emissions components at a compressor station; and
- > Sweetening units located onshore that process natural gas produced from either onshore or offshore wells.

The reciprocating compressors will be required to change rod packing every 26,000 hours of operation or every 36 months, or collect the methane and VOC emissions using a rod packing collection system which operates under negative pressure. The compressors will also be subject to the recordkeeping and annual reporting requirements of the rule.

The new waste fluid storage tank will be a 'storage vessel' as defined by the regulation, however, potential emissions of VOC will be less than six tons per year. Therefore, it will not be a storage vessel affected facility under the rule.

As a result of the proposed project (installation of new compressors), the applicant will be required to monitor all fugitive emission components (ex. connectors, flanges, etc.) with an optical gas imaging (OGI) device, and repair all sources of fugitive emissions in accordance with the rule. The applicant must also develop a monitoring plan, conduct

surveys on a quarterly basis, and will be subject to the applicable recordkeeping and reporting requirements of the rule.

All pneumatic controllers currently at or proposed to be located at the facility are intermittent or low-bleed. Therefore, they will not be subject to any pneumatic controller requirements under Subpart OOOOa. As currently proposed, there are no other affected source categories under the rule that will apply to the proposed equipment involved in this project.

Note that in a June 5, 2017 Federal Register Publication⁴, the EPA implemented a 90 day stay for fugitive emissions requirements, well site pneumatic pumps standards, and requirements for certification of closed vent systems by a professional engineer (P.E). The EPA is currently reconsidering the requirements for the affected sources and is proposing to extend the stay for an additional two (2) years. The applicant will comply with all requirements of the rule once the EPA issues a final action for the affected sources.

3.3.8. Non-Applicability of All Other NSPS

NSPS are developed for particular industrial source categories. Other than NSPS developed for natural gas processing plants (Subparts 0000 and 0000a) and associated equipment (Subpart K-Kb), the applicability of a particular NSPS to the facility can be readily ascertained based on the industrial source category covered. All other NSPS are categorically not applicable to the proposed project.

3.4. NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS

Part 63 NESHAP allowable emission limits are established on the basis of a maximum achievable control technology (MACT) determination for a particular major source. A HAP major source is defined as having potential emissions in excess of 25 tpy for total HAP and/or potential emissions in excess of 10 tpy for any individual HAP. The facility is an area (minor) source of HAP since its potential emissions of HAP are less than the 10/25 major source thresholds. Besides 40 CFR 63 Subpart A (NESHAP Subpart A), which is similar to 40 CFR 60 Subpart A (NSPS Subpart A), the following NESHAP could potentially apply to the facility:

- > 40 CFR Part 63 Subpart HH Oil and Natural Gas Production Facilities
- > 40 CFR 63 Subpart ZZZZ Stationary Reciprocating Internal Combustion Engines
- > 40 CFR Part 63 Subpart JJJJJJ Industrial, Commercial, and Institutional Boilers

3.4.1. NESHAP Subpart HH - Oil and Natural Gas Production Facilities

This MACT standard contains requirements for both major and area sources of HAP. The facility does not have dehydration units, as such, this subpart does not apply.

3.4.2. NESHAP Subpart ZZZZ - Stationary Reciprocating Internal Combustion Engines

Stationary reciprocating internal combustion engines (RICE) at both area and major sources of HAP emissions are potentially subject to Subpart ZZZZ – NESHAP for Stationary Reciprocating Internal Combustion Engines (RICE). Per §63.6590(a)(2)(iii), a stationary RICE located at an area source of HAP emissions is new if you commenced construction of the stationary reciprocating internal combustion engine (RICE) on or after 6/12/2006. The compressor engines and generator engine have or will have commenced construction after this date, and are therefore new RICE under Subpart ZZZZ. Per §63.6590(c), "[...] An affected source that meets any of the criteria in

⁴ <u>https://www.gpo.gov/fdsys/pkg/FR-2017-06-05/pdf/2017-11457.pdf</u>

paragraphs (c)(1) through (7) of this section must meet the requirements of this part by meeting the requirements of 40 CFR part 60 subpart IIII, for compression ignition engines or 40 CFR part 60 Subpart JJJJ, for spark ignition engines. No further requirements apply for such engines under this part." Specifically, §63.6590(c)(1) includes "a new or reconstructed stationary RICE located at an area source"; the compressor engines and generator engines fall into this category. Therefore, the engines have no applicable Subpart ZZZZ requirements, other than to comply with any applicable 40 CFR 60 Subpart JJJJ requirements.

3.4.3. NESHAP JJJJJJ - Industrial, Commercial, and Institutional Boilers

This MACT standard applies to industrial, commercial, and institutional boilers of various sizes and fuel types at area sources. There are no boilers at the facility, therefore this subpart does not apply.

3.5. WEST VIRGINIA SIP REGULATIONS

The facility is potentially subject to regulations contained in the West Virginia Code of State Regulations, Chapter 45 (Code of State Regulations). The Code of State Regulations fall under two main categories: those regulations that are generally applicable (e.g., permitting requirements), and those that have specific applicability (e.g., PM standards for manufacturing equipment).

3.5.1. 45 CSR 2: To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers

45 CSR 2 applies to fuel burning units, defined as equipment burning fuel "for the primary purpose of producing heat or power by indirect heat transfer". The tank heater is a fuel burning unit and therefore must comply with this regulation. Per 45 CSR 2-3, opacity of emissions from units shall not exceed 10 percent, based on a six-minute block average. Note that as the tank heater is less than 10 MMBtu/hr, it is exempt from PM emission limits.

3.5.2. 45 CSR 4: To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contributes to an Objectionable Odor

According to 45 CSR 4-3:

No person shall cause, suffer, allow or permit the discharge of air pollutants which cause or contribute to an objectionable odor at any location occupied by the public.

The facility is generally subject to this requirement. However, due to the nature of the process at the station, production of objectionable odor during normal operation is unlikely.

3.5.3. 45 CSR 6: To Prevent and Control the Air Pollution from the Combustion of Refuse

45 CSR 6 applies to activities involving incineration of refuse, defined as "the destruction of combustible refuse by burning in a furnace designed for that purpose. For the purposes of this rule, the destruction of any combustible liquid or gaseous material by burning in a flare or flare stack, thermal oxidizer or thermal catalytic oxidizer stack shall be considered incineration." There are no control devices at the facility that utilize 'incineration'.

3.5.4. 45 CSR 10: To Prevent and Control Air Pollution from the Emission of Sulfur Oxides

This rule potentially applies to fuel burning units, including glycol dehydration unit reboilers. Per 45 CSR 10-10.1, units rated less than 10 MMBtu/hr are exempt from the SO₂ emission limitations and testing, monitoring, recordkeeping, and reporting requirements of this rule. The tank heater is rated less than 10 MMBtu/hr and as such is exempt from this rule.

3.5.5. 45 CSR 16: Standards of Performance for New Stationary Sources

45 CSR 16-1 incorporates the federal Clean Air Act (CAA) standards of performance for new stationary sources set forth in 40 CSR Part 60 by reference. As such, by complying with all applicable requirements of 40 CFR Part 60 at the facility, the applicant will be complying with 45 CSR 16.

3.5.6. 45 CSR 17: To Prevent and Control Particulate Matter Air Pollution from Materials Handling, Preparation, Storage and Other Sources of Fugitive Particulate Matter

According to 45 CSR 17-3.1:

No person shall cause, suffer, allow or permit fugitive particulate matter to be discharged beyond the boundary lines of the property lines of the property on which the discharge originates or at any public or residential location, which causes or contributes to statutory air pollution.

Due to the nature of the activities at the facility, it is unlikely that fugitive particulate matter emissions will be emitted under normal operating conditions. However, the applicant will take measures to ensure any fugitive particulate matter emissions will not cross the property boundary should any such emissions occur.

3.5.7. 45 CSR 21-28: Petroleum Liquid Storage in Fixed Roof Tanks

45 CSR 21-28 applies to any fixed roof petroleum liquid storage tank with a capacity greater than 40,000 gallons located in Putnam County, Kanawha County, Cabell County, Wayne County, and Wood County. The capacity of each storage tank at the facility is less than 40,000 gallons and the facility is not located in the listed counties. Therefore, 45 CSR 21-28 does not apply to the storage tanks at this station.

3.5.8. 45 CSR 34: Emissions Standards for Hazardous Air Pollutants

45 CSR 34-1 incorporates the federal Clean Air Act (CAA) national emissions standards for hazardous air pollutants (NESHAPs) as set forth in 40 CPR Parts 61 and 63 by reference. As such, by complying with all applicable requirements of 40 CFR Parts 61 and 63 at the facility, the applicant will be complying with 45 CSR 34.

3.5.9. Non-Applicability of Other SIP Rules

A thorough examination of the West Virginia SIP rules with respect to applicability at the facility reveals many SIP regulations that do not apply or impose additional requirements on operations. Such SIP rules include those specific to a particular type of industrial operation that is categorically not applicable to the facility.

The WVDEP permit application forms contained in this application include all applicable G35-D application forms including the required attachments.

dep	west virginia	Division of Air Quality 601 57 th Street SE Charleston, WV 25304 Phone (304) 926-0475 Fax (304) 926-0479 www.dep.wv.gov		
G35-D GE	NERAL PE	RMIT RE	GISTRATION A	PPLICATION
PREVENTION AND	CONTROL OF AIR RELOCATION, A	POLLUTION IN	REGARD TO THE CONSTRUCT E UPDATE AND OPERATIO D/OR DEHYDRATION FACIL	UCTION, MODIFICATION, N OF
⊠CONSTRU □MODIFICA □RELOCAT	TION		□CLASS I ADMINISTRATI □CLASS II ADMINISTRATI	
	SE	CTION 1. GENER	RAL INFORMATION	
Name of Applicant (as	registered with the V	WV Secretary of St	ate's Office): DTE Appalachia	a Gathering, LLC
Federal Employer ID N	o. (FEIN): 45-07186	571		www.contention.com/doi/10.000/00.000/000/000/000/000/000/000/0
Applicant's Mailing Ac	Idress: 333 Technol	logy Drive, Ste 25	55	
City: Canonsburg		State: PA		ZIP Code: 15317
Facility Name: Cooper	s Run Compressor	Station		
Operating Site Physical If none available, list re	Address: See lat/lon oad, city or town and	ng 1 zip of facility.		
City: Blacksville		Zip Code: 26521		County: Monongalia
Latitude & Longitude C Latitude: 39.70389 Longitude: -80.20556	Coordinates (NAD83	, Decimal Degrees	to 5 digits):	
SIC Code: 1311 NAICS Code: 211111			DAQ Facility ID No. (For exis 061-00205	ting facilities)
	C	ERTIFICATION C	OF INFORMATION	an sana ana ana sana ang man sana ang man sana ang sana a
Official is a President, Directors, or Owner, de authority to bind Proprietorship., Rec compliance certific Representative. If a bus off and the appropr unsigned G35-D Regis utilized, th	Vice President, Sec epending on business the Corporation, Pa quired records of dail cations and all requir siness wishes to certi- riate names and sign tration Application we application will b	retary, Treasurer, 6 structure. A busin rtnership, Limited ly throughput, hour red notifications m ify an Authorized I atures entered. An will be returned e returned to the	be signed below by a Responsib General Partner, General Manag ness may certify an Authorized I Liability Company, Association rs of operation and maintenance ust be signed by a Responsible Representative, the official agre y administratively incomplete to the applicant. Furthermore applicant. No substitution of	er, a member of the Board of Representative who shall have a, Joint Venture or Sole a, general correspondence, Official or an Authorized ement below shall be checked or improperly signed or e, if the G35-D forms are not forms is allowed.
	nership, Limited Lia d the business. If the	bility Company, A e business changes	d in that capacity shall represen ssociation Joint Venture or Sole its Authorized Representative,	Proprietorship) and may
	ereto is, to the best o	f my knowledge, tr	General Permit Registration App rue, accurate and complete, and on possible.	
Responsible Official Si Name and Title: Ken M Phone: (724) 416-7263 Email: Kenneth.Magyar	agyar, VP, Project D	Developmen & Bus	siness Development Fax: n/a Date: JUNE 14, 2	דוס?
If applicable: Authorized Representat Name and Title: Email:		Phone: Date:	Fax:	
If applicable: Environmental Contact Name and Title: Ian Co Email: ian.connelly@dt	nnelly, Gas Pipeline	0	none: (724) 916-4938 Fax: late: June 14, 2017	

.

OPERATING SITE INFORMATION						
Briefly describe the proposed new operation and/or any change(s) to the facility: Addition of compression and ancillary equipment to the facility.						
Directions to the facility: From 601 57th St SE, Charleston, WV 25304: head northeast on 57th St SE toward Washington Ave SE (travel 0.1 mi). Turn left onto MacCorkle Ave SE (travel 1.8 mi). Turn right onto 36th St SE (travel 0.2 mi). Continue onto 36th St Southeast Bridge (travel 0.2 mi). Use the right lane to take the ramp onto 1-64 W/I-77 N (travel 0.1 mi). Merge onto 1-64 W/I-77 N (travel 2.5 mi). Use the right 2 lanes to take the Interstate 77 N/Interstate 79 N exit toward Parkersburg (travel 0.5 mi). Continue onto 1-77 N (travel 1.4 mi). Keep right at the fork to continue on I-79 N, follow signs for Clarksburg (travel 160 mi). Take exit 1 toward Mt Morris (travel 0.2 mi). Turn left onto Bald Hill Road (travel 0.6 mi). Slight turn onto Wades Run Road (travel 308 ft). Turn left onto WV-7 W (travel 6.2 mi). Turn left onto WV-218 S (travel 1.3 mi). Turn left onto Walnut Ln (travel 2.2 mi). Turn left onto the access road, travel 1.4 miles and the facility will be on your left.						
ATTACHMENTS AND SU	PPORTING DOCUMENTS					
I have enclosed the following required document	ts:					
Check payable to WVDEP – Division of Air Quality with the	appropriate application fee (per 45CSR13 and 45CSR22).					
 Check attached to front of application. I wish to pay by electronic transfer. Contact for payment (i I wish to pay by credit card. Contact for payment (incl. na \$500 (Construction, Modification, and Relocation) \$1,000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ and/or Official content of the second sec	me and email address): □\$300 (Class II Administrative Update)					
 ¹ Only one NSPS fee will apply. ² Only one NESHAP fee will apply. The Subpart ZZZZ NESH requirements by complying with NSPS, Subparts IIII and/or J. 	□\$2,500 NESHAP fee for 40 CFR63, Subpart ZZZZ and/or HH ²					
Responsible Official or Authorized Representative Signatu	re (if applicable)					
Single Source Determination Form (must be completed in						
Siting Criteria Waiver (if applicable) – Attachment B	Current Business Certificate – Attachment C					
Process Flow Diagram – Attachment D	⊠ Process Description – Attachment E					
Plot Plan – Attachment F	🖾 Area Map – Attachment G					
Image: Section Applicability Form – Attachment H	🖾 Emission Units/ERD Table – Attachment I					
 Fugitive Emissions Summary Sheet – Attachment J Storage Vessel(s) Data Sheet (include gas sample data, US) 	EPA Tanks simulation software (e.g. ProMax, E&P Tanks					
HYSYS, etc.), etc. where applicable) – Attachment K						
⊠ Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs,	Heater Treaters, In-Line Heaters if applic.) – Attachment L					
🛛 Internal Combustion Engine Data Sheet(s) (include manuf. performance data sheet(s) if applicable) – Attachment M						
In Tanker Truck Loading Data Sheet (if applicable) – Attachn	nent N					
\boxtimes Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalc TM input and output reports and information on reboiler if applicable) – Attachment O						
Pneumatic Controllers Data Sheet – Attachment P						
🗵 Centrifugal Compressor Data Sheet – Attachment Q						
🖾 Reciprocating Compressor Data Sheet – Attachment R						
Blowdown and Pigging Operations Data Sheet – Attachment S						
⊠ Air Pollution Control Device/Emission Reduction Device(s applicable) – Attachment T	s) Sheet(s) (include manufacturer performance data sheet(s) if					
🖾 Emission Calculations (please be specific and include all c	alculation methodologies used) – Attachment U					
⊠ Facility-wide Emission Summary Sheet(s) – Attachment V						
🛛 Class I Legal Advertisement – Attachment W						
One (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments						

All attachments must be identified by name, divided into sections, and submitted in order.

Single Source Determination Form

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

Classifying multiple facilities as one "stationary source" under 45CSR13, 45CSR14, and 45CSR19 is based on the definition of Building, structure, facility, or installation as given in §45-14-2.13 and §45-19-2.12. The definition states:

"Building, Structure, Facility, or Installation" means all of the pollutant-emitting activities which belong to the same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the control of the same person (or persons under common control). Pollutant-emitting activities are a part of the same industrial grouping if they belong to the same "Major Group" (i.e., which have the same two (2)-digit code) as described in the Standard Industrial Classification Manual, 1987 (United States Government Printing Office stock number GPO 1987 0-185-718:QL 3).

The Source Determination Rule for the oil and gas industry was published in the Federal Register on June 3, 2016 and will become effective on August 2, 2016. EPA defined the term "adjacent" and stated that equipment and activities in the oil and gas sector that are under common control will be considered part of the same source if they are located on the same site or on sites that share equipment and are within ¹/₄ mile of each other.

Is there equipment and activities in the same industrial grouping (defined by SIC code)?

Yes \boxtimes No \square

Is there equipment and activities under the control of the same person/people?

 $Yes \square No \boxtimes$

Is there equipment and activities located on the same site or on sites that share equipment and are within ¹/₄ mile of each other?

Yes \Box No \boxtimes

ATTACHMENT A: SINGLE SOURCE DETERMINATION MAP

Figure 1 - Map of Location with 1 Mile Radius Circle

<u>Coordinates:</u> Latitude: 39° 42' 14" N, Longitude: -80° 12' 20" W

Siting Criteria Waiver (not applicable)

ATTACHMENT B – SITING CRITERIA WAIVER – NOT APPLICABLE

If applicable, please complete this form and it must be notarized.

G35-D General Permit Siting Criteria Waiver

WV Division of Air Quality 300' Waiver

I ______ hereby
Print Name
acknowledge and agree that ______ General Permit Applicant's Name
will

construct an emission unit(s) at a natural gas compressor and/or dehydration facility that will be located within 300' of my dwelling and/or business.

I hereby offer this waiver of siting criteria to the West Virginia Department of Environmental Protection Division of Air Quality as permission to construct, install and operate in such location.

.

Signed:

Signature	Date
Signature	Date
Taken, subscribed and sworn before me	this day of
,	20
My commission expires:	
SEAL	
Notary Public	

Current Business Certificate

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO: DTE APPALACHIA GATHERING, LLC ONE ENERGY PLAZA, 2055 WCB DETROIT, MI 48226-0000

BUSINESS REGISTRATION ACCOUNT NUMBER:

2252-1954

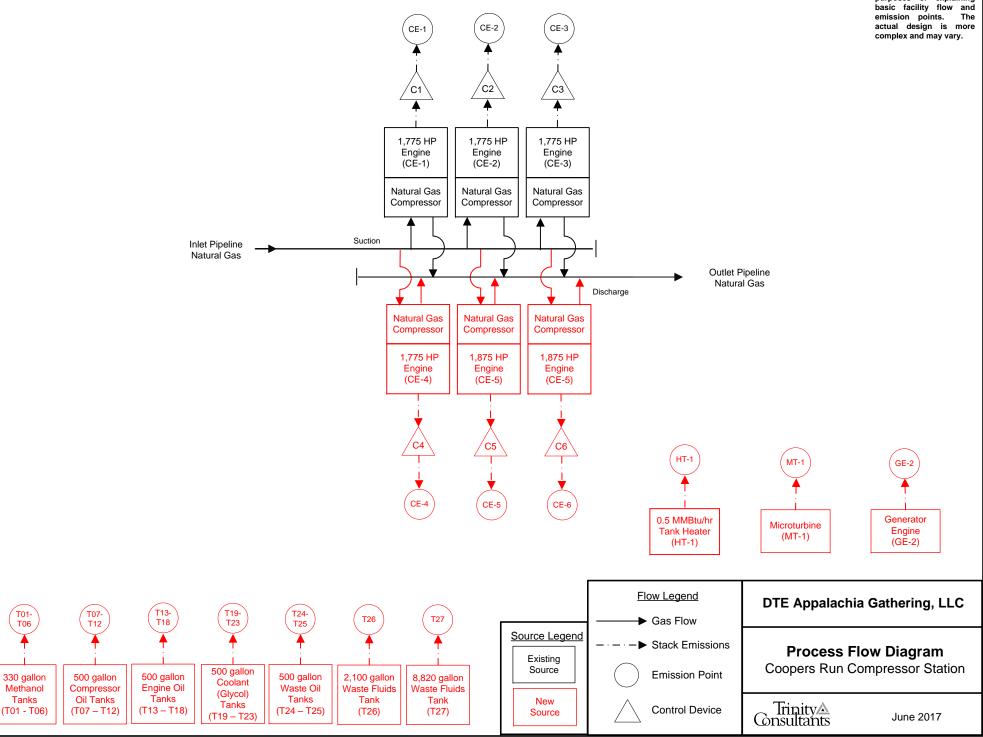
This certificate is issued on: 05/5/2017

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued

This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.


Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

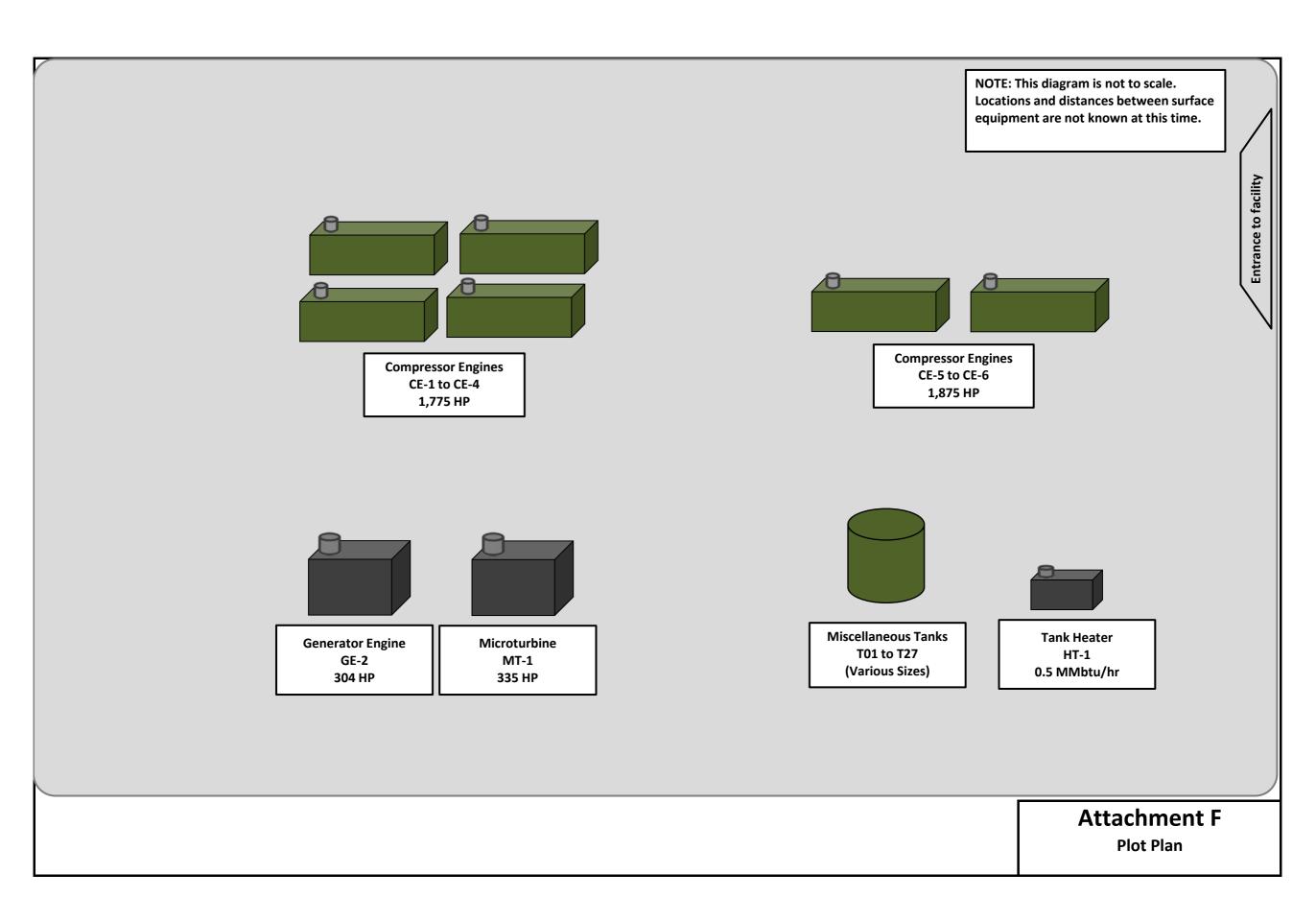
atL006 v.4 L2060078272

Process Flow Diagram

Note that this is a * simplified diagram for the purposes of explaining

Process Description

ATTACHMENT E: PROCESS DESCRIPTION


DTE Appalachia Gathering, LLC is proposing to install additional compression and ancillary equipment at the existing Coopers Run Compressor Station.

The Coopers Run Compressor Station compresses natural gas from production wells prior to transmission along the pipeline system. Reciprocating compressors utilize the power created by reciprocating internal combustion engines (RICE) to compress (raise the pressure of) the incoming gas stream. Subsequently, the gas stream travels into the downstream pipeline. The compressor engines' exhaust streams are controlled by oxidation catalysts. Emergency electrical power is provided to the facility via a microturbine generator and generator engines.

A process flow diagram is included as Attachment D.

ATTACHMENT F

Plot Plan

ATTACHMENT G

Area Map

ATTACHMENT G: AREA MAP

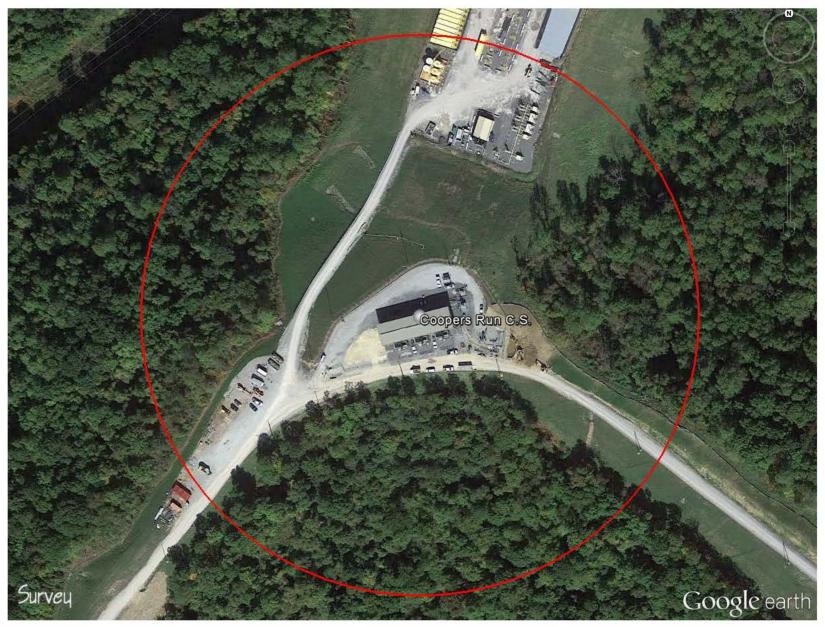


Figure 1 - Map of Location with 300 foot Boundary Circle

568.11

UTM Northing (KM): 4,395.19

UTM Easting (KM):

Elevation: ~1,500 ft

G35-D Section Applicability Form

ATTACHMENT H – G35-D SECTION APPLICABILITY FORM

General Permit G35-D Registration Section Applicability Form

General Permit G35-D was developed to allow qualified applicants to seek registration for a variety of sources. These sources include storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, centrifugal compressors, reciprocating compressors, reciprocating internal combustion engines (RICEs), tank truck loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G35-D allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

GENERAL PERMIT G35-D APPLICABLE SECTIONS				
Section 5.0	Storage Vessels Containing Condensate and/or Produced Water ¹			
□ Section 6.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO/OOOOa)			
Section 7.0	Control Devices and Emission Reduction Devices not subject to NSPS Subpart OOOO/OOOOa and/or NESHAP Subpart HH			
Section 8.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc			
Section 9.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO/OOOOa)			
Section 10.0	Centrifugal Compressor Affected Facility (NSPS, Subpart OOOO/OOOOa) ²			
Section 11.0	Reciprocating Compressor Affected Facility (NSPS, Subpart OOOO/OOOOa) ²			
Section 12.0	Reciprocating Internal Combustion Engines, Generator Engines. Microturbine Generators			
Section 13.0	Tanker Truck Loading ³			
Section 14.0	Glycol Dehydration Units ⁴			
Section 15.0	Blowdown and Pigging Operations			
Section 16.0	Fugitive Emission Components (NSPS, Subpart OOOOa)			

1 Applicants that are subject to Section 5 may also be subject to Section 6 if the applicant is subject to the NSPS, Subpart OOOO/OOOOa control requirements or the applicable control device requirements of Section 7.

- 2 Applicants that are subject to Section 10 and 11 may also be subject to the applicable RICE requirements of Section 12.
- 3 Applicants that are subject to Section 13 may also be subject to control device and emission reduction device requirements of Section 7.
- 4 Applicants that are subject to Section 14 may also be subject to the requirements of Section 8 (reboilers). Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 7.

ATTACHMENT I

Emission Units/ERD Table

ATTACHMENT I – EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment K table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type ⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
CE-1	CE-1	Caterpillar G3606 Compressor Engine	2016	2016	1,775 HP	Existing	C1	
CE-2	CE-2	Caterpillar G3606 Compressor Engine	2016	2016	1,775 HP	Existing	C2	
CE-3	CE-3	Caterpillar G3606 Compressor Engine	2016	2016	1,775 HP	Existing	C3	
CE-4	CE-4	Caterpillar G3606 Compressor Engine	TBD	TBD	1,775 HP	New	C4	
CE-5	CE-5	Caterpillar G3606 Compressor Engine	TBD	TBD	1,875 HP	New	C5	
CE-6	CE-6	Caterpillar G3606 Compressor Engine	TBD	TBD	1,875 HP	New	C6	
GE-2	GE-2	Cummins 14.2 L Generator Engine	TBD	TBD	304 HP	New	None	
MT-1	MT-1	Flex Energy GT250S Microturbine	TBD	TBD	250 kW	New	None	
T01	T01	Methanol Tank	TBD		330 Gallons	New*	None	
T02	T02	Methanol Tank	TBD		330 Gallons	New*	None	
Т03	T03	Methanol Tank	TBD		330 Gallons	New*	None	
T04	T04	Methanol Tank	TBD		330 Gallons	New*	None	
T05	T05	Methanol Tank	TBD		330 Gallons	New*	None	
T06	T06	Methanol Tank	TBD		330 Gallons	New*	None	
T07	T07	Compressor Oil Tank	TBD		500 Gallon	New*	None	
T08	T08	Compressor Oil Tank	TBD		500 Gallon	New*	None	
Т09	Т09	Compressor Oil Tank	TBD		500 Gallon	New*	None	
T10	T10	Compressor Oil Tank	TBD		500 Gallon	New*	None	
T11	T11	Compressor Oil Tank	TBD		500 Gallon	New*	None	
T12	T12	Compressor Oil Tank	TBD		500 Gallon	New*	None	
T13	T13	Engine Oil Tank	TBD		500 Gallon	New*	None	
T14	T14	Engine Oil Tank	TBD		500 Gallon	New*	None	
T15	T15	Engine Oil Tank	TBD		500 Gallon	New*	None	
T16	T16	Engine Oil Tank	TBD		500 Gallon	New*	None	
T17	T17	Engine Oil Tank	TBD		500 Gallon	New*	None	

T18	Engine Oil Tank	TBD		500 Gallon	New*	None	
T19	Coolant Tank	TBD		500 Gallon	New*	None	
T20	Coolant Tank	TBD		500 Gallon	New*	None	
T21	Coolant Tank	TBD		500 Gallon	New*	None	
T22	Coolant Tank	TBD		500 Gallon	New*	None	
T23	Coolant Tank	TBD		500 Gallon	New*	None	
T24	Waste Oil Tank	TBD		500 Gallon	New*	None	
T25	Waste Oil Tank	TBD		500 Gallon	New*	None	
T26	Waste Fluids Tank	TBD		2,100 Gallon	New*	None	
T27	Waste Fluids Tank	TBD		8,820 Gallon	New*	None	
HT-1	Tank Heater	TBD		0.5 MMbtu/hr	New*	None	
L01	Liquid Loading			131,040 Gallons	Existing	None	
	Fugitives				Existing	None	
	Haul Roads				Existing	None	
	T19 T20 T21 T22 T23 T24 T25 T26 T27 HT-1 L01 	T19Coolant TankT20Coolant TankT21Coolant TankT22Coolant TankT23Coolant TankT24Waste Oil TankT25Waste Oil TankT26Waste Fluids TankT27Waste Fluids TankHT-1Tank HeaterL01Liquid LoadingFugitives	T19Coolant TankTBDT20Coolant TankTBDT21Coolant TankTBDT22Coolant TankTBDT23Coolant TankTBDT24Waste Oil TankTBDT25Waste Oil TankTBDT26Waste Fluids TankTBDT27Waste Fluids TankTBDHT-1Tank HeaterTBDL01Liquid LoadingFugitives	T19Coolant TankTBDT20Coolant TankTBDT21Coolant TankTBDT22Coolant TankTBDT23Coolant TankTBDT24Waste Oil TankTBDT25Waste Oil TankTBDT26Waste Fluids TankTBDT27Waste Fluids TankTBDHT-1Tank HeaterTBDL01Liquid LoadingFugitives	T10Eligine on TunkTBDTBDFind the transkT19Coolant TankTBD500 GallonT20Coolant TankTBD500 GallonT21Coolant TankTBD500 GallonT22Coolant TankTBD500 GallonT23Coolant TankTBD500 GallonT24Waste Oil TankTBD500 GallonT25Waste Oil TankTBD500 GallonT26Waste Fluids TankTBD500 GallonT27Waste Fluids TankTBD8,820 GallonHT-1Tank HeaterTBD0.5 MMbtu/hrL01Liquid LoadingFugitives	T10Lighte on TankTBDTBDFor the controlRefT19Coolant TankTBD500 GallonNew*T20Coolant TankTBD500 GallonNew*T21Coolant TankTBD500 GallonNew*T22Coolant TankTBD500 GallonNew*T23Coolant TankTBD500 GallonNew*T24Waste Oil TankTBD500 GallonNew*T25Waste Oil TankTBD500 GallonNew*T26Waste Fluids TankTBD500 GallonNew*T27Waste Fluids TankTBD8,820 GallonNew*HT-1Tank HeaterTBD0.5 MMbtu/hrNew*L01Liquid Loading131,040 GallonsExistingFugitivesExisting	TiesTi

¹ For Emission Units (or Sources) use the following numbering system: 1S, 2S, 3S,... or other appropriate designation.

² For Emission Points use the following numbering system: 1E, 2E, 3E, ... or other appropriate designation.

³ When required by rule

⁴ New, modification, removal, existing

⁵ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

⁶ For ERDs use the following numbering system: 1D, 2D, 3D,... or other appropriate designation.

* The facility includes existing tanks and will be installing new tanks, however this permit application seeks to revise the list of tanks to ensure completeness and correctness. The permit application forms include a complete listing of tanks; the applicant is requesting that the issued permit reflect the forms (all tanks are listed as 'New*'.

Fugitive Emission Summary Sheet(s)

	Sources	s of fug			loading operations, equipme associated source or equipm			ons, etc.	
Source/Equipm	ent: Fugitiv	e Emiss		se extra pages for each	associated source of equipm		y.		
Leak Detection				udible, visual, and tory (AVO) inspections	⊠ Infrared (FLIR) cameras	□ Other (please	e describe)		□ None required
Is the facility s	ubject to qua	rterly L	DAR r	nonitoring under 40CFR60 S	Subpart OOOOa? 🛛 🖾 Yes 🗆 🛚	No. If no, why?			-
Component	Closed			Source	of Leak Factors	Stream type	Estir	nated Emission	ns (tpy)
Туре	Vent System	Cou	int		other (specify))	(gas, liquid, etc.)	VOC	HAP	GHG (CO ₂ e)
Pumps	□ Yes ⊠ No	3		Protocol for Equipment Lea	Quality Planning and Standards. ak Emission Estimates. Table 2-1. R-95-017, 1995).	□ Gas ⊠ Liquid □ Both	0.58	<0.01	0.13
Valves	□ Yes ⊠ No	13	2	Protocol for Equipment Lea	U.S. EPA. Office of Air Quality Planning and Standards. Protocol for Equipment Leak Emission Estimates. Table 2-1. (EPA-453/R-95-017, 1995).			<0.01	15.98
Safety Relief Valves	□ Yes ⊠ No	4		U.S. EPA. Office of Air C Protocol for Equipment Lea (EPA-453/	⊠ Gas □ Liquid □ Both	0.02	<0.01	0.72	
Open Ended Lines	□ Yes ⊠ No		_		□ Gas □ Liquid ⊠ Both				
Sampling Connections	□ Yes ⊠ No		_		N/A	□ Gas □ Liquid □ Both			
Connections (Not sampling)	□ Yes ⊠ No	61	7	Protocol for Equipment Lea	Quality Planning and Standards. ak Emission Estimates. Table 2-1. R-95-017, 1995).	□ Gas □ Liquid ⊠ Both	0.04	<0.01	8.29
Compressors	□ Yes ⊠ No	6		Protocol for Equipment Lea	Quality Planning and Standards. ak Emission Estimates. Table 2-1. R-95-017, 1995).	⊠ Gas □ Liquid □ Both	0.05	<0.01	112.17
Flanges	□ Yes □ No		-	(included	(included in connections)				
Other ¹	□ Yes ⊠ No	32	2	40 CFR 98 Subpart W □ Liquid 0.34 <0.01 □ Both				286.93	
¹ Other equipm	ent types ma	y includ	e com	pressor seals, relief valves, d	liaphragms, drains, meters, etc.	·			
Please indicate	if there are a	any clos	ed ven	t bypasses (include compone	ent):				

Storage Vessel Data Sheet(s)

ATTACHMENT K – STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water. (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.

The following information is **REQUIRED**:

- ⊠ Composition of the representative sample used for the simulation
- ☑ For each stream that contributes to flashing emissions:
 - \boxtimes Temperature and pressure (inlet and outlet from separator(s))
 - ☑ Simulation-predicted composition
 - ⊠ Molecular weight
 - \boxtimes Flow rate
- ⊠ Resulting flash emission factor or flashing emissions from simulation

 \boxtimes Working/breathing loss emissions from tanks and/or loading emissions if simulation is used to quantify those emissions

Additional information may be requested if necessary.

GENERAL INFORMATION

1. Bulk Storage Area Name	2. Tank Name				
Coopers Run Compressor Station	Waste Fluids Tank(s)				
3. Emission Unit ID number	4. Emission Point ID number				
T26 to T27	T26 to T27				
5. Date Installed, Modified or Relocated (for existing tanks)	6. Type of change:				
Was the tank manufactured after August 23, 2011?	⊠ New construction				
\boxtimes Yes \Box No	□ New stored material				
	⊠ Other				
	□ Relocation				
7A. Description of Tank Modification (<i>if applicable</i>) N/A					
7B. Will more than one material be stored in this tank? If so, a separate form must be	e completed for each material.				
\Box Yes \boxtimes No					
7C. Was USEPA Tanks simulation software utilized?					
\Box Yes \boxtimes No					
If Yes, please provide the appropriate documentation and items 8-42 below are not r	equired.				

TANK INFORMATION

8. Design Capacity (specify barrels or gallons). Use the interna	l cross-sectional area multiplied by internal height.					
2,100 gal (T26) & 8,820 gal (T27)						
9A. Tank Internal Diameter (ft.) 8 & 10	9B. Tank Internal Height (ft.) 5 & 15					
10A. Maximum Liquid Height (ft.) 5 & 15	10B. Average Liquid Height (ft.) 2.5 & 7.5					
11A. Maximum Vapor Space Height (ft.) 5 & 15	11B. Average Vapor Space Height (ft.) 2.5 & 7.5					
12. Nominal Capacity (specify barrels or gallons). This is also	known as "working volume".					
2,100 gal (T26) & 8,820 gal (T27)						
13A. Maximum annual throughput (gal/yr) See attached	13B. Maximum daily throughput (gal/day) See attached					
emissions calculations for all throughput values	emissions calculations for all throughput values					
14. Number of tank turnovers per year See attached	15. Maximum tank fill rate (gal/min) See attached emissions					
emissions calculations for all throughput values	calculations for all throughput values					
16. Tank fill method \Box Submerged \boxtimes Splash	Bottom Loading					
17. Is the tank system a variable vapor space system? \Box Yes	🖾 No					
If yes, (A) What is the volume expansion capacity of the system	(gal)?					
(B) What are the number of transfers into the system per y	/ear?					
18. Type of tank (check all that apply):						
\boxtimes Fixed Roof \boxtimes vertical \square horizontal \square flat roof	\boxtimes cone roof \square dome roof \square other (describe)					
Domed External (or Covered) Floating Roof						
\Box Internal Floating Roof \Box vertical column support	□ self-supporting					
$\Box Variable Vapor Space \qquad \Box lifter roof \Box diaphragm$						
\Box Pressurized \Box spherical \Box cylindrical						
\Box Other (describe)						

PRESSURE/VACUUM CONTROL DATA

19. Check as many as app	ply:								
\Box Does Not Apply	s Not Apply 🗌 Rupture Disc (psig)								
□ Inert Gas Blanket of _	\Box Inert Gas Blanket of \Box Carbon Adsorption ¹								
□ Vent to Vapor Combu	stion Dev	ice1 (vapo	r combust	ors, flares,	, thermal c	xidizers, e	enclosed c	ombustors)
□ Conservation Vent (ps	sig)			□ Conde	enser ¹				
Vacuum Setting		Pressure	Setting						
Emergency Relief Val	□ Emergency Relief Valve (psig)								
Vacuum Setting		Pressure	Setting						
☑ Thief Hatch Weighted	l⊠Yes [□ No							
¹ Complete appropriate A	ir Pollutio	n Control	Device Sh	leet					
20. Expected Emission R	ate (subm	it Test Da	ta or Calcu	ulations he	ere or elsev	where in th	ne applicat	tion).	
Material Name	Flashing	g Loss	Breathi	ng Loss	Workin	g Loss	Total		Estimation Method ¹
							Emissio	ns Loss	
	lb/hr	tpy	lb/hr	Тру	lb/hr	tpy	lb/hr	tpy	
Waste Fluids*	0.06	0.27	< 0.01	< 0.01	< 0.01	< 0.01	0.06	0.27	E&P TANK v2.0

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

*Emissions values are on a per-tank basis

TANK CONSTRUCTION AND OPERATION INFORMATION						
21. Tank Shell Construction:						
\boxtimes Riveted \square Gunite lined \square Epox	y-coated rivets \Box O	ther (des	scribe)			
21A. Shell Color:	21B. Roof Color:			21C. Year I	Last Painted:	
22. Shell Condition (if metal and unlined):						
□ No Rust ⊠ Light Rust □ Dense						
22A. Is the tank heated? \Box Yes \boxtimes No	22B. If yes, operating t	emperatu	ire:	22C. If yes,	how is heat provided to tank?	
23. Operating Pressure Range (psig): zero (no	pressure, atmospheric	2)				
Must be listed for tanks using VRUs wi						
24. Is the tank a Vertical Fixed Roof Tank? ⊠ Yes □ No	24A. If yes, for dome	roof prov	ide radius (ft):	24B. If yes,	for cone roof, provide slop (ft/ft):	
25. Complete item 25 for Floating Roof Tanks		\boxtimes				
25A. Year Internal Floaters Installed:						
25B. Primary Seal Type (check one): □ Met	allie (machanical) sho	a saal	□ Liquid mo	unted resilie	at saal	
	oor mounted resilient s		□ Diquid ino □ Other (des		iit seai	
1				clibe).		
25C. Is the Floating Roof equipped with a seco		□ No				
25D. If yes, how is the secondary seal mounted	$(check one) \square$ Sho	e ⊔	Rim 🗆 Oth	ner (describe):	
25E. Is the floating roof equipped with a weath	er shield? 🛛 Yes	□ N	о			
25F. Describe deck fittings:						
26. Complete the following section for Interna	l Floating Roof Tanks	\boxtimes	Does not apply	ý		
26A. Deck Type: 🗆 Bolted 🗆 W	Velded	26B. F	For bolted decks,	provide deck	construction:	
26C. Deck seam. Continuous sheet construction	n:					
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wid		□ 5 x	12 ft. wide	other (des	cribe)	
	$r of deck (ft^2)$:		For column suppo		26G. For column supported	
20D. Deek seam lengur (h.).	tor deek (it).		# of columns:	, ited	tanks, diameter of column:	
27. Closed Vent System with VRU? Yes	🛛 No					
28. Closed Vent System with Enclosed Combu	stor? 🗆 Yes 🖾 No					
SITE INFORMATION - Not Applicable:	Tank calculations pe	rforme	d using E&P '	TANK softv	vare	
29. Provide the city and state on which the data	in this section are based	:				
30. Daily Avg. Ambient Temperature (°F):		31. Ar	nnual Avg. Maxi	mum Tempera	ature (°F):	
32. Annual Avg. Minimum Temperature (°F):			g. Wind Speed			
34. Annual Avg. Solar Insulation Factor (BTU/			mospheric Press	-		
LIQUID INFORMATION - Not Applicable		perfor	med using E&			
36. Avg. daily temperature range of bulk	36A. Minimum (°F):			36B. Maxir	num (°F):	
liquid (°F): 37. Avg. operating pressure range of tank	37A. Minimum (psig):			27D Marin		
(psig):	57A. Winninum (psig).			37B. Maxir	num (psig).	
38A. Minimum liquid surface temperature (°F)	:	38B. C	Corresponding va	apor pressure	(psia):	
39A. Avg. liquid surface temperature (°F):		39B. C	Corresponding va	apor pressure	(psia):	
40A. Maximum liquid surface temperature (°F)			Corresponding va		psia):	
41. Provide the following for each liquid or gas	to be stored in the tank.	Add add	itional pages if 1	necessary.		
41A. Material name and composition:						
41B. CAS number:						
41C. Liquid density (lb/gal):						
41D. Liquid molecular weight (lb/lb-mole):						
41E. Vapor molecular weight (lb/lb-mole):						
41F. Maximum true vapor pressure (psia):						
41G. Maximum Reid vapor pressure (psia):						
41H. Months Storage per year.						
From: To: 42. Final maximum gauge pressure and						
temperature prior to transfer into tank used as						
inputs into flashing emission calculations.						

STORAGE TANK DATA TABLE List all deminimis storage tanks (i.e. lube oil, glycol, diesel etc.)

Source ID #1	Status ²	Content ³	Volume ⁴
T01	New*	Methanol	330 gallons
T02	New*	Methanol	330 gallons
T03	New*	Methanol	330 gallons
presT04	New*	Methanol	330 gallons
T05	New*	Methanol	330 gallons
T06	New*	Methanol	330 gallons
T07	New*	Compressor Oil	500 gallons
Т08	New*	Compressor Oil	500 gallons
Т09	New*	Compressor Oil	500 gallons
T10	New*	Compressor Oil	500 gallons
T11	New*	Compressor Oil	500 gallons
T12	New*	Compressor Oil	500 gallons
T13	New*	Engine Oil	500 gallons
T14	New*	Engine Oil	500 gallons
T15	New*	Engine Oil	500 gallons
T16	New*	Engine Oil	500 gallons
T17	New*	Engine Oil	500 gallons
T18	New*	Engine Oil	500 gallons
T19	New*	Coolant	500 gallons
Т20	New*	Coolant	500 gallons
T21	New*	Coolant	500 gallons
T22	New*	Coolant	500 gallons
Т23	New*	Coolant	500 gallons
T24	New*	Waste Oil	500 gallons
T25	New*	Waste Oil	500 gallons

1. Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the compressor station. Tanks should be designated T01, T02, T03, etc.

2. Enter storage tank Status using the following:

3.

4.

EXIST Existing Equipment

NEW Installation of New Equipment

REM Equipment Removed

Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, diesel, mercaptan etc.

Enter the maximum design storage tank volume in gallons.

* The facility includes existing tanks and will be installing new tanks, however this permit application seeks to revise the list of tanks to ensure completeness and correctness. The permit application forms include a complete listing of tanks; the applicant is requesting that the issued permit reflect the forms (all tanks are listed as 'New*'.

Natural Gas Fired Fuel Burning Unit Data Sheet(s)

ATTACHMENT L – SMALL HEATERS AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART DC DATA SHEET

Complete this data sheet for each small heater and reboiler not subject to 40CFR60 Subpart Dc at the facility. *The Maximum Design Heat Input (MDHI) must be less than 10 MMBTU/hr.*

Emission Unit ID# ¹	Emission Point ID# ²	Emission Unit Description (manufacturer, model #)	Year Installed/ Modified	Type ³ and Date of Change	Maximum Design Heat Input (MMBTU/hr) ⁴	Fuel Heating Value (BTU/scf) ⁵
HT-1	HT-1	Tank Heater	TBD	New	0.5	1,030

- ¹ Enter the appropriate Emission Unit (or Source) identification number for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.
- ² Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.
- ³ New, modification, removal
- ⁴ Enter design heat input capacity in MMBtu/hr.
- ⁵ Enter the fuel heating value in BTU/standard cubic foot.

Internal Combustion Engine Data Sheet(s)

ATTACHMENT M - INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. *Generator(s) and microturbine generator(s) shall also use this form*.

extra pages	Generator(s) and microturbine gener								
Emission Unit ID#1		CE-1 to CE-4		CE-5 to CE-6		GE	-2	MT	Γ-1
Engine Manufacturer/Model		Caterpillar		Caterpillar		Cumr	nins	Flex E	Inergy
			6TALE		6TALE	14.2		GT250S	
Manufacturers F	Rated bhp/rpm	,	775	1,	875	30	4	33	35
Source Status ²			CE-1-CE-3) (CE-4)	N	ew	Ne	w	Ne	ew
Date Installed/ Modified/Remov	ved/Relocated ³		1 to CE-3), (CE-4)	т	BD	ТВ	D	TE	3D
Engine Manufac /Reconstruction			1 to CE-3), (CE-4)	т	BD	ТВ	D	TI	3D
Check all applicable Federal Rules for the engine (include EPA Certificate of Conformity if applicable) ⁵		 ☑ 40CFR60 Subpart JJJJ Certified? □ 40CFR60 Subpart □ IIII Certified? ☑ 40CFR63 Subpart ☑ XZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 		 ⋈ 40CFR60 Subpart JJJJ □ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? ⋈ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 		 ⋈ 40CFR60 Subpart JJJJ ⋈ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? ⋈ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 		□ 40CFR60 Subpart JJJJ □ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? □ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources	
Engine Type ⁶		49	SLB	4SLB		4SRB		Turbine	
APCD Type ⁷		OxCat		OxCat		LEC		LEC	
Fuel Type ⁸		PQ		PQ		PQ		PQ	
$H_2S (gr/100 \text{ scf})$		Neg.		Neg.		Neg.		Neg.	
Operating bhp/rpm		1,775		1,875		304		3:	35
BSFC (BTU/bhr	p-hr)	7,610		7,669		N/A		N/A	
Hourly Fuel Thr	oughput	13,114	ft³/hr	13,960	ft³/hr	2,571	ft ³ /hr	3,172	ft ³ /hr
Annual Fuel Thi (Must use 8,760 emergency gene	hrs/yr unless	114.9	MMft ³ /yr	122.3	MMft ³ /yr	1.3 M	IMft ³ /yr	27.8	MMft ³ /yr
Fuel Usage or H Operation Meter	lours of	Yes 🛛	No 🗆	Yes 🛛	No 🗆	Yes 🛛	No 🗆	Yes 🗵	No 🗆
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tpy) ¹¹	Hourly PTE (lb/hr) ¹¹	Annual PTE (tpy) ¹¹	Hourly PTE (lb/hr) ¹¹	Annual PTE (tpy) ¹¹	Hourly PTE (lb/hr) ¹¹	Annual PTE (tpy) ¹¹
See Emissions Calculations	NO _X	1.96	8.57	1.24	5.43	1.35	0.34	0.11	0.49
See Emissions Calculations	СО	0.63	2.74	1.03	4.53	2.70	0.67	0.28	1.23
See Emissions Calculations	VOC	0.90	3.94	0.87	3.80	0.70	0.18	0.06	0.27
See Emissions Calculations	SO ₂	0.01	0.03	0.01	0.04	1.56E- 03	3.90E- 04	1.11 E-02	4.87 E-02
See Emissions Calculations	PM_{10}	0.13	0.59	0.14	0.63	0.05	0.01	0.02	0.09
See Emissions Calculations	Formaldehyde	0.23	1.03	0.17	0.72	0.05	0.01	2.32 E-03	0.01
See Emissions Calculations	Total HAPs	0.50	2.18	0.44	1.95	0.09	0.02	3.36 E-03	0.01
See Emissions	GHG (CO ₂ e)	2,251	9,859	2,302	10,084	310	78	383	1,677

- 1 Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.
- 2 Enter the Source Status using the following codes:

NS	Construction of New Source (installation)	ES	Existing Source
MS	Modification of Existing Source	RS	Relocated Source
REM	Removal of Source		

- 3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.
- 4 Enter the date that the engine was manufactured, modified or reconstructed.

5 Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6 Enter the Engine Type designation(s) using the following codes:

	2SLB 4SLB	Two Stroke Lean Burn Four Stroke Lean Burn	4SRB	Four St	roke Rich Burn		
7	Enter th	e Air Pollution Control Device (APCD) type designation	tion(s) u	sing the fo	llowing codes:		
	A/F HEIS PSC NSCR SCR	Air/Fuel Ratio High Energy Ignition System Prestratified Charge Rich Burn & Non-Selective Catalytic Reduction Lean Burn & Selective Catalytic Reduction		IR SIPC LEC OxCat	Ignition Retard Screw-in Precombu Low Emission Con Oxidation Catalyst	nbustion	rs
8	Enter th	e Fuel Type using the following codes:					
	PQ	Pipeline Quality Natural Gas R	G R	aw Natura	l Gas /Production Ga	us D	Diesel
9	Enter t	he Potential Emissions Data Reference design	ation us	ing the f	ollowing codes. A	ttach all refe	erence data used.
	MD GR	Manufacturer's Data GRI-HAPCalc [™]	A O		-42 her (ple	ease list)	

10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

Engine Air Pollution Control Device (Emission Unit ID# CE-1 to CE-4, use extra pages as necessary)

Air Pollution Control Device Manufacturer's Data Sheet included? Yes \boxtimes No \square

\Box NSCR	□ SCR	🛛 Oxidation Catalyst
Provide details of process control used for proper m N/A	ixing/control of	reducing agent with gas stream:
Manufacturer: EMIT Technologies (or equivalent)	Mod	el #: ELS-4200-1820F-4CE0-361 (or equivalent
Design Operating Temperature: 847 °F	Desi	gn gas volume: 12,213 acfm
Service life of catalyst: TBD	Prov	de manufacturer data? 🛛 Yes 🛛 No
Volume of gas handled: 12,213 acfm at 847 °F		ating temperature range for NSCR/Ox Cat: TBD °F to TBD °F
Reducing agent used, if any: N/A	Amn	onia slip (ppm): N/A
Pressure drop against catalyst bed (delta P): TBD i	nches of H ₂ O	
Provide description of warning/alarm system that pr TBD	otects unit when	operation is not meeting design conditions:
Is temperature and pressure drop of catalyst require \Box Yes \boxtimes No	d to be monitore	l per 40CFR63 Subpart ZZZZ?
How often is catalyst recommended or required to b TBD	e replaced (hour	s of operation)?
How often is performance test required? Initial Annual Every 8,760 hours of operation Field Testing Required No performance test required. If so, why (please NSPS/GACT,	e list any mainte	nance required and the applicable sections in

Engine Air Pollution Control Device (Emission Unit ID# CE-5 to CE-6, use extra pages as necessary)

Air Pollution Control	Device Man	ufacturer's	Data Sheet included?
	Yes 🖂	No 🗆	

	Yes 🖂	No 🗆
	□ SCR	🛛 Oxidation Catalyst
Provide details of process control used for proper N/A	mixing/contr	rol of reducing agent with gas stream:
Manufacturer: TBD		Model #: TBD
Design Operating Temperature: TBD °F		Design gas volume: TBD acfm
Service life of catalyst: TBD		Provide manufacturer data? 🛛 Yes 🛛 🖓 No
Volume of gas handled: TBD °F to TBD °F		Operating temperature range for NSCR/Ox Cat: From TBD °F to TBD °F
Reducing agent used, if any: N/A		Ammonia slip (ppm): N/A
Pressure drop against catalyst bed (delta P): TBD	inches of H ₂	20
Provide description of warning/alarm system that TBD	protects unit	when operation is not meeting design conditions:
Is temperature and pressure drop of catalyst requir \Box Yes \boxtimes No	ed to be mor	nitored per 40CFR63 Subpart ZZZ?
How often is catalyst recommended or required to TBD	be replaced	(hours of operation)?
How often is performance test required? Initial Annual Every 8,760 hours of operation Field Testing Required No performance test required. If so, why (plea NSPS/GACT,	se list any m	aintenance required and the applicable sections in

Tanker Truck Loading Data Sheet(s)

ATTACHMENT N – TANKER TRUCK LOADING DATA SHEET

Complete this data sheet for each new or modified bulk liquid transfer area or loading rack at the facility. This is to be used for bulk liquid transfer operations to tanker trucks. Use extra pages if necessary.

Truck Loadout Collection Efficiencies

The following applicable capture efficiencies of a truck loadout are allowed:

- For tanker trucks passing the MACT level annual leak test 99.2%
- For tanker trucks passing the NSPS level annual leak test 98.7%
- For tanker trucks not passing one of the annual leak tests listed above 70%

Compliance with this requirement shall be demonstrated by keeping records of the applicable MACT or NSPS Annual Leak Test certification for *every* truck and railcar loaded/unloaded. This requirement can be satisfied if the trucking company provided certification that its entire fleet was compliant. This certification must be submitted in writing to the Director of the DAQ. These additional requirements must be noted in the Registration Application and will be noted on the issued G35-D Registration.

Emission Unit ID#: L01	I	Emission Point II	D#: L01		Year Installed	/Modified: N/A
Emission Unit Description	on: Liquid loading	g of waste fluids				
		Loading	g Area Data			
Number of Pumps: 2	1	Number of Liquic	ls Loaded: 1		Max number of (1) time: 1	of trucks loading at one
Are tanker trucks pressure tested for leaks at this or any other location? \Box Yes \boxtimes No \boxtimes Not Required If Yes, Please describe:						Not Required
Provide description of cl	osed vent system a	and any bypasses	. N/A			
Are any of the following Closed System to tan Closed System to tan Closed System to tan	ker truck passing a ker truck passing a	a MACT level an a NSPS level ann	ual leak test?	vapor ret	urn?	
Proj	ected Maximum (Operating Sched	ule (for rack o	or transf	er point as a w	hole)
Time	Jan – Mar	Ap	or - Jun	J	Jul – Sept	Oct - Dec
Hours/day	2		2		2	2
Days/week	5		5		5	5
	Bulk I	Liquid Data (use	extra pages a	s necess	ary)	
Liquid Name	Wa	ste Fluids				
Max. Daily Throughput (1000 gal/day)		0.4				
Max. Annual Throughput (1000 gal/yr)		131				
Loading Method ¹		SP				
Max. Fill Rate (gal/min)		~182				
Average Fill Time (min/loading)		~60				
Max. Bulk Liquid Temperature (°F)		52.14				
True Vapor Pressure ²		0.3240				
Cargo Vessel Condition ³		U				
Control Equipment or Method ⁴		None				

Max. Collect	ion Efficiency	0	
Max. Control (%)	Efficiency	0	
Max.VOC	Loading (lb/hr)	0.02	
Emission Rate	Annual (ton/yr)	0.01	
Max.HAP Emission	Loading (lb/hr)	<0.01	
Rate	Annual (ton/yr)	<0.01	
Estimation M	ethod ⁵	EPA	

1	BF	Bottom Fill	SP	Splash Fill	SUB	Submerged Fill
---	----	-------------	----	-------------	-----	----------------

At maximum bulk liquid temperature B Ballasted Vessel 2 3 С Cleaned U Uncleaned (dedicated service)

MB

Material Balance

0 Other (describe)

4 List as many as apply (complete and submit appropriate Air Pollution Control Device Sheets)

Carbon Adsorption Enclosed Combustion Device Thermal Oxidization or Incineration Dedicated Vapor Balance (closed system) CA VB

ECD F Flare

ТО

5 EPA EPA Emission Factor in AP-42

ТМ Test Measurement based upon test data submittal 0 Other (describe)

Glycol Dehydration Unit Data Sheet(s)

ATTACHMENT O – GLYCOL DEHYDRATION UNIT DATA SHEET – NOT APPLICABLE

Complete this data sheet for each Glycol D and/or Regenerator at the facility. Include input and aggregate report. Use extra page	gas sample analysis and GRI- GLYCalc™
	Nr. 1.1
Manufacturer:	Model:
Max. Dry Gas Flow Rate:	Reboiler Design Heat Input:
Design Type: TEG DEG EG	Source Status ¹ :
Date Installed/Modified/Removed ² :	Regenerator Still Vent APCD/ERD ³ :
Control Device/ERD ID# ³ :	Fuel HV (BTU/scf):
H_2S Content (gr/100 scf):	Operation (hours/year):
Pump Rate (scfm):	
Water Content (wt %) in: Dry Gas:	
Is the glycol dehydration unit exempt from 40CFR63 Section 7 Yes No: If Yes, answer the following:	764(d)?
The actual annual average flowrate of natural gas to the glyco meters per day, as determined by the procedures specified in § Yes No	
The actual average emissions of benzene from the glycol dehy megagram per year (1 ton per year), as determined by the proc	
Is the glycol dehydration unit located within an Urbanized Are Yes Do	ea (UA) or Urban Cluster (UC)?
Is a lean glycol pump optimization plan being utilized? □ Yes □ No	
Recycling the glycol dehydration unit back to the flame zone Yes INO	of the reboiler.
If yes: Is the reboiler configured to accept flash drum vapors (straigh Is the reboiler configured to accept still vent vapors (after a co Is the reboiler configured to accept both in the same operation	ondenser)? 🗆 Yes 🛛 No
Recycling the glycol dehydration unit back to the flame zone of \Box Yes \Box No	of the reboiler and mixed with fuel.
What happens when temperature controller shuts off fuel to th Still vent emissions to the atmosphere. Still vent emissions stopped with valve. Still vent emissions to glow plug.	e reboiler?
Please indicate if the following equipment is present. Flash Tank Burner management system that continuously burns conder	iser or flash tank vapors
Control Device	Technical Data
Pollutants Controlled	Manufacturer's Guaranteed Control Efficiency (%)

	Emissions Data					
Emission Unit ID / Emission Point ID ⁴	Description	Calculation Methodology ⁵	PTE ⁶	Controlled Maximum Hourly Emissions (lb/hr)	Controlled Maximum Annual Emissions (tpy)	

1 Enter the Source Status using the following codes: Construction of New Source ES

Existing Source

- MS Modification of Existing Source
- 2 Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source), modification or removal.
- 3 Enter the Air Pollution Control Device (APCD)/Emission Reduction Device (ERD) type designation using the following codes and the device ID number:
 - NA CC

NS

None CD Condenser FL Flare Condenser/Combustion Combination TO Thermal Oxidizer Other 0 (please list)

(please list)

- Enter the appropriate Emission Unit ID Numbers and Emission Point ID Numbers for the glycol dehydration unit reboiler vent 4 and glycol regenerator still vent. The glycol dehydration unit reboiler vent and glycol regenerator still vent should be designated RBV-1 and RSV-1, respectively. If the compressor station incorporates multiple glycol dehydration units, a Glycol Dehydration Emission Unit Data Sheet shall be completed for each, using Source Identification RBV-2 and RSV-2, RBV-3 and RSV-3, etc.
- 5 Enter the Potential Emissions Data Reference designation using the following codes:
 - MD Manufacturer's Data AP AP-42
 - GRI-GLYCalcTM Other GR OT
- Enter the Reboiler Vent and Glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs 6 per hour and tons per year. The Glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalcTM (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalcTM Aggregate Calculations Report (shall include emissions reports, equipment reports, and stream reports) to this Glycol Dehydration Emission Unit Data Sheet(s). Backup pumps do not have to be considered as operating for purposes of PTE. This PTE data shall be incorporated in the Emissions Summary Sheet.

Pneumatic Controller Data Sheet(s)

ATTACHMENT P – PNEUMATIC CONTROLLERS DATA SHEET			
Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?			
\Box Yes \boxtimes No			
Please list approximate number.			
Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after September 18, 2015?			
\Box Yes \boxtimes No			
Please list approximate number.			
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?			
\Box Yes \boxtimes No			
Please list approximate number.			
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after September 18, 2015?			
\Box Yes \boxtimes No			
Please list approximate number.			

Centrifugal Compressor Data Sheet(s)

ATTACHMENT Q – CENTRIFUGAL COMPRESSOR
DATA SHEET

Are there any centrifugal compressors at this facility that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?

🗌 Yes 🛛 🖾 No

Please list:

Emission Unit ID#	Compressor Description
	e any centrifugal compressors at this facility that commenced tion, modification or reconstruction after September 18, 2015?
	\Box Yes \boxtimes No
	Please list:
Emission Unit ID#	Compressor Description
l	

Reciprocating Compressor Data Sheet(s)

ATTACHMENT R – RECIPROCATING COMPRESSOR DATA SHEET

Are there any reciprocating compressors at this facility that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?

🗌 Yes 🛛 🖾 No

Please list:

Emission Unit ID#	Compressor Description

Are there any reciprocating compressors at this facility that commenced construction, modification or reconstruction after September 18, 2015?

🛛 Yes	No
-------	----

Please list:

Compressor Description	
Reciprocating Compressor #1	
Reciprocating Compressor #2	
Reciprocating Compressor #3	
Reciprocating Compressor #4	
Reciprocating Compressor #5	
Reciprocating Compressor #6	
	Reciprocating Compressor #1 Reciprocating Compressor #2 Reciprocating Compressor #3 Reciprocating Compressor #4 Reciprocating Compressor #5

Blowdown and Pigging Operation Data Sheet(s)

ATTACHMENT S – BLOWDOWN AND PIGGING OPERATIONS DATA SHEET

Will there be any blowdown and pigging operations that occur at this facility?

🛛 Yes 🗌 No

Please list:

Type of Event	# of Events (event/yr)	Amount Vented per event (scf/event)	MW of vented gas (lb/lb-mol)	Total Emissions (ton/yr)	VOC weight fraction	VOC emissions (ton/yr)
Compressor Blowdown	360	4,500	16.55	35.42	0.0041	0.14
Compressor Startup	360	1,000	16.55	7.87	0.0041	0.03
Plant Shutdown	1	900,000	16.55	19.66	0.0041	0.08
Low Pressure Pig Venting	52	1,000	16.55	1.12	0.0041	4.6E-03
High Pressure Pig Venting	52	1,000	16.55	1.12	0.0041	4.6E-03

Type of Event	# of Events (event/yr)	Amount Vented per event (scf/event)	MW of vented gas (lb/lb- mol)	Total Emissions (ton/yr)	HAP weight fraction	HAP emissions (ton/yr)
Compressor Blowdown	360	4,500	16.55	35.42	< 0.0001	< 0.01
Compressor Startup	360	1,000	16.55	7.87	< 0.0001	< 0.01
Plant Shutdown	1	900,000	16.55	19.66	< 0.0001	< 0.01
Low Pressure Pig Venting	52	1,000	16.55	1.12	<0.0001	< 0.01
High Pressure Pig Venting	52	1,000	16.55	1.12	<0.0001	< 0.01

Air Pollution Control Device Data Sheet(s)

ATTACHMENT T – AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION DEVICE SHEETS

Complete the applicable air pollution control device sheets for each flare, vapor combustor, thermal oxidizer, condenser, adsorption system, vapor recovery unit, BTEX Eliminator, Reboiler with and without Glow Plug, etc. at the facility. Use extra pages if necessary.

Emissions calculations must be performed using the most conservative control device efficiency.

The following five (5) rows are only to be completed if registering an alternative air pollution control device.									
Emission Unit ID: N/A	Make/Model:								
Primary Control Device ID:	Make/Model:								
Control Efficiency (%):	APCD/ERD Data Sheet Completed: Yes No								
Secondary Control Device ID:	Make/Model:								
Control Efficiency (%):	APCD/ERD Data Sheet Completed: Yes No								

	(I :	VAPOR CO ncluding Enclo			rs)			
		General Ir	formation					
Control Device ID#: N/A			Installation		Iodified	Relocated		
Maximum Rated Total Flow scfh	Capacity cfd		Maximum Heat Input mfg. spec MMBTU/h	(from sheet)		leat Content TU/scf		
		Control Devic	e Informati	on				
Enclosed Combustion D	vice	Type of Vapor Co		ontrol?		Ground Flare		
Manufacturer: Model:			Hours of o	peration	per year?			
List the emission units whose	e emissions	s are controlled by this	vapor contr	ol device	(Emission	Point ID#)		
Emission Unit ID# Emission Sourc	Descriptio	on	Emission Unit ID#	Emissio	on Source l	Description		
If this vapor combustor	controls e	missions from more the	an six (6) em	iission un	its, please	attach additional pages.		
Assist Type (Flares only)		Flare Height	Tip Diameter			Was the design per §60.18?		
Steam Ai Pressure N		feet	feet			☐ Yes ☐ No Provide determination.		
		Waste Gas 1	Information	L				
Maximum Waste Gas Flow (scfm)	Rate	Heat Value of W	'aste Gas Str BTU/ft ³	eam	Exit Vel	elocity of the Emissions Stream (ft/s)		
Provide	ın attachme	ent with the characteri	stics of the v	vaste gas	stream to	be burned.		
		Pilot Gas I	nformation					
Number of Pilot Lights		Flow Rate to Pilot Flame per Pilot scfh	Heat I	nput per BTU/		Will automatic re-ignition be used? □ Yes □ No		
If automatic re-ignition is u	ed, please	describe the method.						
Is pilot flame equipped with presence of the flame?	a monitor] Yes	to detect the □ No	If Yes, wh	• 1	□ Thermoo □ Camera	couple		
Describe all operating range unavailable, please indicate		tenance procedures req	uired by the	manufac	turer to ma	intain the warranty. (If		
Additional information attac Please attach copies of many performance testing.			flame demoi	nstration	per §60.18	or §63.11(b) and		

CONDENSER											
General I	nformation										
Control Device ID#: N/A	Installation Date:	Modified 🔲 Relocated									
Manufacturer:	Model:	Control Device Name:									
Control Efficiency (%):											
Manufacturer's required temperature range for control efficie	ncy. °F										
Describe the warning and/or alarm system that protects against	st operation when uni	t is not meeting the design requirements:									
Describe all operating ranges and maintenance procedures req	uired by the manufac	turer to maintain the warranty.									
Additional information attached? Yes No Please attach copies of manufacturer's data sheets.											
Is condenser routed to a secondary APCD or ERD?											

ADSORPTI	ON SYSTEM
General I	nformation
Control Device ID#: N/A	Installation Date:
Manufacturer:	Model: Control Device Name:
Design Inlet Volume: scfm	Adsorbent charge per adsorber vessel and number of adsorber vessels:
Length of Mass Transfer Zone supplied by the manufacturer:	Adsorber diameter: ft Adsorber area: ft ²
Adsorbent type and physical properties:	Overall Control Efficiency (%):
Working Capacity of Adsorbent (%):	
Operating	Parameters
Inlet volume: scfm @ °F	
Adsorption time per adsorption bed (life expectancy):	Breakthrough Capacity (lbs of VOC/100 lbs of adsorbent):
Temperature range of carbon bed adsorber. °F - °F	·
Control Device	Technical Data
Pollutants Controlled	Manufacturer's Guaranteed Control Efficiency (%)
Describe the warning and/or alarm system that protects against	st operation when unit is not meeting the design requirements:
Has the control device been tested by the manufacturer and co	ertified?
Describe all operating ranges and maintenance procedures rec	uired by the manufacturer to maintain the warranty.
Additional information attached? Yes No Please attach copies of manufacturer's data sheets, drawings,	and performance testing.

	VAPOR REC	OVERY	UNIT	
	General II	nformation		
Emission U	Jnit ID#: N/A	n Date:	Relocated	
	Device In	formation		
Manufactu Model:	rer:			
List the en	nission units whose emissions are controlled by this	vapor recov	very unit (Emission Po	int ID#)
Emission Unit ID#	Emission Source Description	Emission Unit ID#	Emission Source Des	scription
If this	vapor recovery unit controls emissions from more t	han six (6) e	emission units, please o	attach additional pages.
Please atta	information attached? Ves No ch copies of manufacturer's data sheets, drawings, rant may claim a capture and control efficiency of 9	1	C	time) for the vapor
recovery u	nit.			
0	rant may claim a capture and control efficiency of 9 8.1.2 of this general permit.	98% if the V	RU has a backup flare	that meet the requirements
The regist	rant may claim a capture and control efficiency of 9	98% if the V	RU has a backup VRU	

Emission Calculations

Company Name: Facility Name: **Project Description:**

DTE Appalachia Gathering, LLC **Coopers Run Compressor Station**

G35-D Application

			Facility-Wide Emission Su	mmary - Controlled
Wells	0	per site		
Storage Tanks:	2	per site	Carbon equivalent	t emissions (CO ₂ e) are based
Sand Separator Tank	0	per site	Global Warming P	Potentials (GWP) from 40 CFF
Line Heaters:	0	per site	CO ₂ 1	
TEGs:	0	per site	CH ₄ 25	
Dehy Reboilers:	0	per site	N ₂ O 298	3
Glycol Dehydrators:	0	per site	_	
Dehy Drip Tanks:	0	per site		
Dehy Combustors:	0	per site		
Compressors:	6	per site		
High Pressure Separators:	4	per site		
Low Pressure Separator	0	per site		
Vapor Recovery Unit	0	per site		
Tank Combustor	0	per site		
Length of lease road:	7,300	feet		

Emission	Emission	Emission	Ν	0 _x	C	0	VC	C	S	SO ₂		PM ₁₀		PM _{2.5}		CH ₄		CO ₂ e	
Point ID #	Source ID#s	Source Description	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
CE-1	CE-1	Caterpillar G3606 Comp. Engine	1.96	8.57	0.63	2.74	0.90	3.94	0.01	0.03	0.13	0.59	0.13	0.59	20.97	91.87	2,250.99	9,859.35	
CE-2	CE-2	Caterpillar G3606 Comp. Engine	1.96	8.57	0.63	2.74	0.90	3.94	0.01	0.03	0.13	0.59	0.13	0.59	20.97	91.87	2,250.99	9,859.35	
CE-3	CE-3	Caterpillar G3606 Comp. Engine	1.96	8.57	0.63	2.74	0.90	3.94	0.01	0.03	0.13	0.59	0.13	0.59	20.97	91.87	2,250.99	9,859.35	
CE-4	CE-4	Caterpillar G3606 Comp. Engine	1.96	8.57	0.63	2.74	0.90	3.94	0.01	0.03	0.13	0.59	0.13	0.59	20.97	91.87	2,250.99	9,859.35	
CE-5	CE-5	Caterpillar G3606 Comp. Engine	1.24	5.43	1.03	4.53	0.87	3.80	0.01	0.04	0.14	0.63	0.14	0.63	19.64	86.00	2,302.38	10,084.41	
CE-6	CE-6	Caterpillar G3606 Comp. Engine	1.24	5.43	1.03	4.53	0.87	3.80	0.01	0.04	0.14	0.63	0.14	0.63	19.64	86.00	2,302.38	10,084.41	
GE-2	GE-2	Generac 14.2 L Generator Engine	1.35	0.34	2.70	0.67	0.70	0.18	1.6E-03	3.9E-04	0.05	0.01	0.05	0.01	0.01	0.00	310.15	77.54	
MT-1	MT-1	Flex Energy GT250S Microturbine	0.11	0.49	0.28	1.23	0.06	0.27	0.01	0.05	0.02	0.09	0.02	0.09	0.01	0.03	382.98	1,677.44	
T26 to T27	T26 to T27	Waste Fluids Tanks					0.10	0.46							2.7E-03	0.01	0.07	0.30	
T01 to T25	T01 to T25	De minimis storage tanks					0.01	0.06											
HT-1	HT-1	Tank Heater	0.05	0.21	0.04	0.18	2.7E-03	0.01	3.1E-03	0.01	3.7E-03	0.02	3.7E-03	0.02	1.1E-03	4.8E-03	58.56	256.49	
L01	L01	Liquid Loading					0.02	0.01											
		Fugitives						1.54								127.49		3,187.35	
		Haul Roads										0.16		0.02					
Facility Total			11.82	46.19	7.59	22.10	6.25	25.90	0.06	0.28	0.90	3.90	0.90	3.76	123.19	667.03	14,360.48	64,805.31	
Facility Total (excluding	fugitive emissions)		11.82	46.19	7.59	22.10	6.25	24.36	0.06	0.28	0.90	3.75	0.90	3.75	123.19	539.53	14,360.48	61,617.96	

Emission	Emission	Emission	Forma	dehyde	Ben	zene	Tolı	iene	Ethylb	enzene	Xyle	enes	n-Hexane		Total	BTEX	Tota	l HAP
Point ID #	Source ID#s	Source Description	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy								
CE-1	CE-1	Caterpillar G3606 Comp. Engine	0.23	1.03	5.9E-03	2.6E-02	5.5E-03	2.4E-02	5.4E-04	2.3E-03	2.5E-03	1.1E-02	0.01	0.07	0.01	0.06	0.50	2.18
CE-2	CE-2	Caterpillar G3606 Comp. Engine	0.23	1.03	5.9E-03	2.6E-02	5.5E-03	2.4E-02	5.4E-04	2.3E-03	2.5E-03	1.1E-02	0.01	0.07	0.01	0.06	0.50	2.18
CE-3	CE-3	Caterpillar G3606 Comp. Engine	0.23	1.03	5.9E-03	2.6E-02	5.5E-03	2.4E-02	5.4E-04	2.3E-03	2.5E-03	1.1E-02	0.01	0.07	0.01	0.06	0.50	2.18
CE-4	CE-4	Caterpillar G3606 Comp. Engine	0.23	1.03	5.9E-03	2.6E-02	5.5E-03	2.4E-02	5.4E-04	2.3E-03	2.5E-03	1.1E-02	0.01	0.07	0.01	0.06	0.50	2.18
CE-5	CE-5	Caterpillar G3606 Comp. Engine	0.17	0.72	6.3E-03	2.8E-02	5.9E-03	2.6E-02	5.7E-04	2.5E-03	2.6E-03	1.2E-02	0.02	0.07	0.02	0.07	0.44	1.95
CE-6	CE-6	Caterpillar G3606 Comp. Engine	0.17	0.72	6.3E-03	2.8E-02	5.9E-03	2.6E-02	5.7E-04	2.5E-03	2.6E-03	1.2E-02	0.02	0.07	0.02	0.07	0.44	1.95
GE-2	GE-2	Generac 14.2 L Generator Engine	0.05	0.01	4.2E-03	1.0E-03	1.5E-03	3.7E-04	6.6E-05	1.6E-05	5.2E-04	1.3E-04			0.01	1.6E-03	0.09	0.02
MT-1	MT-1	Flex Energy GT250S Microturbine	2.3E-03	0.01	3.9E-05	1.7E-04	4.3E-04	1.9E-03	1.0E-04	4.6E-04	2.1E-04	9.2E-04			7.8E-04	3.4E-03	3.4E-03	0.01
T26 to T27	T26 to T27	Waste Fluids Tanks			9.1E-04	4.0E-03	4.6E-04	2.0E-03	< 0.01	< 0.01	< 0.01	< 0.01	5.9E-03	2.6E-02	1.4E-03	0.01	3.7E-05	1.6E-04
T01 to T25	T01 to T25	De minimis storage tanks															0.01	0.06
HT-1	HT-1	Tank Heater	3.6E-05	1.6E-04	1.0E-06	4.5E-06	1.7E-06	7.2E-06					8.7E-04	3.8E-03	2.7E-06	1.2E-05	9.2E-04	4.0E-03
L01	L01	Liquid Loading															2.2E-03	5.8E-04
		Fugitives																
		Haul Roads																
Facility Total			1.33	5.59	0.04	0.16	0.04	0.15	3.5E-03	0.01	0.02	0.07	0.10	0.43	0.10	0.40	2.98	12.70
Facility Total (excluding	fugitive emissions)		1.33	5.59	0.04	0.16	0.04	0.15	3.5E-03	0.01	0.02	0.07	0.10	0.43	0.10	0.40	2.98	12.70

ed

sed on the following CFR Part 98, Table A-1:

DTE Appalachia Gathering, LLC Coopers Run Compressor Station G35-D Application

Compressor Engines

Engine Information:

Source Designation:	CE-1 to CE-4
Manufacturer:	Caterpillar
Model No.:	G3606
Stroke Cycle:	4-stroke
Type of Burn:	Lean
Rated Horsepower (bhp):	1,775

Engine Fuel Information:

Fuel Type:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,030
Specific Fuel Consumption (Btu/bhp-hr):	7,610
Maximum Fuel Consumption at 100% Load (scf/hr):	13,114
Heat Input (MMBtu/hr):	13.51
Potential Fuel Consumption (MMBtu/yr):	118,328
Max. Fuel Consumption at 100% (MMscf/hr):	0.0131
Max. Fuel Consumption (MMscf/yr):	114.9
Max. Annual Hours of Operation (hr/yr):	8,760

Engine Emissions Data:

Pollutant	Emission Factor	Maximum Poten Units		ntial Emissions	Estimation Basis / Emission
Fonutant	Emission ractor	Units	lbs/hr	tpy	Factor Source
NO _X	0.50	g/bhp-hr	1.96	8.57	Manufacturer Specifications
VOC (excludes HCHO)	0.17	g/bhp-hr	0.67	2.91	Manufacturer Specifications
VOC (includes HCHO)			0.90	3.94	VOC + HCHO
СО	0.16	g/bhp-hr	0.63	2.74	Manufacturer Specifications
SO _x	0.001	lb/MMBtu	0.01	0.03	AP-42, Table 3.2-2 (Jul-2000)
PM ₁₀	0.01	lb/MMBtu	0.13	0.59	AP-42, Table 3.2-2 (Jul-2000)
PM _{2.5}	0.01	lb/MMBtu	0.13	0.59	AP-42, Table 3.2-2 (Jul-2000)
Formaldehyde (HCHO)	0.06	g/bhp-hr	0.23	1.03	Manufacturer Specifications
GHG (CO ₂ e)	See Tabl	e Below	2,251	9,859	40 CFR 98, Tables C-1 & C-2
Other (Total HAP)	See Tabl	e Below	0.50	2.18	AP-42, Table 3.2-2 (Jul-2000)

Notes:

1. PM_{10} and $PM_{2.5}$ are total values (filterable + condensable).

2. GHG (CO₂e) is carbon dioxide equivalent, which is the summation of CO₂ (GWP = 1) + CH₄ (GWP = 25) + N₂O (GWP = 298).

3. Total HAP is the summation of all hazardous air pollutants for which there is a published emission factor for this source type.

DTE Appalachia Gathering, LLC Coopers Run Compressor Station G35-D Application

Compressor Engines					
Greenhouse Gas (GHG) & Hazardous Air Pollutant (HAP) Emissions Calculations:					
Pollutant	Emission Factor	Emission Factor Units —	Maximum Potential Emissions		Estimation Basis / Emission
Tonutant			lbs/hr	tpy	Factor Source
<u>GHGs:</u>					
CO ₂	441	g/bhp-hr	1,725.73	7,558.71	Manufacturer Specifications
CH ₄	5.36	g/bhp-hr	20.97	91.87	Manufacturer (THC - NMHC)
N ₂ O	0.0001	kg/MMBtu	0.00	0.01	40 CFR 98, Table C-2
GHG (CO ₂ e)			2,251	9,859	
Organic HAPs:					
1,1,2,2-Tetrachloroethane	4.00E-05	lb/MMBtu	5.4E-04	2.4E-03	AP-42, Table 3.2-2 (Jul-2000)
1,1,2-Trichloroethane	3.18E-05	lb/MMBtu	4.3E-04	1.9E-03	AP-42, Table 3.2-2 (Jul-2000)
1,3-Butadiene	2.67E-04	lb/MMBtu	3.6E-03	1.6E-02	AP-42, Table 3.2-2 (Jul-2000)
1,3-Dichloropropene	2.64E-05	lb/MMBtu	3.6E-04	1.6E-03	AP-42, Table 3.2-2 (Jul-2000)
2-Methylnapthalene	3.32E-05	lb/MMBtu	4.5E-04	2.0E-03	AP-42, Table 3.2-2 (Jul-2000)
2,2,4-Trimethylpentane	2.50E-04	lb/MMBtu	3.4E-03	1.5E-02	AP-42, Table 3.2-2 (Jul-2000)
Acenaphthene	1.25E-06	, lb/MMBtu	1.7E-05	7.4E-05	AP-42, Table 3.2-2 (Jul-2000)
Acenaphthylene	5.53E-06	lb/MMBtu	7.5E-05	3.3E-04	AP-42, Table 3.2-2 (Jul-2000)
Acetaldehyde	8.36E-03	lb/MMBtu	1.1E-01	4.9E-01	AP-42, Table 3.2-2 (Jul-2000)
Acrolein	5.14E-03	lb/MMBtu	6.9E-02	3.0E-01	AP-42, Table 3.2-2 (Jul-2000)
Benzene	4.40E-04	lb/MMBtu	5.9E-03	2.6E-02	AP-42, Table 3.2-2 (Jul-2000)
Benzo(b)fluoranthene	1.66E-07	lb/MMBtu	2.2E-06	9.8E-06	AP-42, Table 3.2-2 (Jul-2000)
Benzo(e)pyrene	4.15E-07	lb/MMBtu	5.6E-06	2.5E-05	AP-42, Table 3.2-2 (Jul-2000)
Benzo(g,h,i)perylene	4.14E-07	lb/MMBtu	5.6E-06	2.4E-05	AP-42, Table 3.2-2 (Jul-2000)
Biphenyl	2.12E-04	lb/MMBtu	2.9E-03	1.3E-02	AP-42, Table 3.2-2 (Jul-2000)
Carbon Tetrachloride	3.67E-05	lb/MMBtu	5.0E-04	2.2E-03	AP-42, Table 3.2-2 (Jul-2000)
Chlorobenzene	3.04E-05	lb/MMBtu	4.1E-04	1.8E-03	AP-42, Table 3.2-2 (Jul-2000)
Chloroform	2.85E-05	lb/MMBtu	3.8E-04	1.7E-03	AP-42, Table 3.2-2 (Jul-2000)
Chrysene	6.93E-07	lb/MMBtu	9.4E-06	4.1E-05	AP-42, Table 3.2-2 (Jul-2000)
Ethylbenzene	3.97E-05	lb/MMBtu	5.4E-00	2.3E-03	AP-42, Table 3.2-2 (Jul-2000)
Ethylene Dibromide	4.43E-05	lb/MMBtu	6.0E-04	2.6E-03	AP-42, Table 3.2-2 (Jul-2000)
Fluoranthene	1.11E-06	lb/MMBtu	1.5E-05	6.6E-05	AP-42, Table 3.2-2 (Jul-2000)
Fluorene	5.67E-06	lb/MMBtu	7.7E-05	3.4E-04	AP-42, Table 3.2-2 (Jul-2000)
	2.50E-03	lb/MMBtu	3.4E-02	1.5E-01	AP-42, Table 3.2-2 (Jul-2000)
Methanol Methalana Chlarida	2.00E-05	lb/MMBtu	2.7E-02	1.2E-01 1.2E-03	AP-42, Table 3.2-2 (Jul-2000) AP-42, Table 3.2-2 (Jul-2000)
Methylene Chloride					AP-42, Table 3.2-2 (Jul-2000) AP-42, Table 3.2-2 (Jul-2000)
n-Hexane	1.11E-03	lb/MMBtu	1.5E-02	6.6E-02	
Naphthalene	7.44E-05	lb/MMBtu	1.0E-03	4.4E-03	AP-42, Table 3.2-2 (Jul-2000)
PAH	2.69E-05	lb/MMBtu	3.6E-04	1.6E-03	AP-42, Table 3.2-2 (Jul-2000)
Phenanthrene	1.04E-05	lb/MMBtu	1.4E-04	6.2E-04	AP-42, Table 3.2-2 (Jul-2000)
Phenol	2.40E-05	lb/MMBtu	3.2E-04	1.4E-03	AP-42, Table 3.2-2 (Jul-2000)
Pyrene	1.36E-06	lb/MMBtu	1.8E-05	8.0E-05	AP-42, Table 3.2-2 (Jul-2000)
Styrene	2.36E-05	lb/MMBtu	3.2E-04	1.4E-03	AP-42, Table 3.2-2 (Jul-2000)
Tetrachloroethane	2.48E-06	lb/MMBtu	3.3E-05	1.5E-04	AP-42, Table 3.2-2 (Jul-2000)
Toluene	4.08E-04	lb/MMBtu	5.5E-03	2.4E-02	AP-42, Table 3.2-2 (Jul-2000)
Vinyl Chloride	1.49E-05	lb/MMBtu	2.0E-04	8.8E-04	AP-42, Table 3.2-2 (Jul-2000)
Xylene	1.84E-04	lb/MMBtu	2.5E-03	1.1E-02	AP-42, Table 3.2-2 (Jul-2000)
Total HAP (including HCHO)			0.50	2.18	

DTE Appalachia Gathering, LLC Coopers Run Compressor Station G35-D Application

Compressor Engines

Engine Information:

Source Designation:	CE-5 and CE-6
Manufacturer:	Caterpillar
Model No.:	G3606
Stroke Cycle:	4-stroke
Type of Burn:	Lean
Rated Horsepower (bhp):	1,875

Engine Fuel Information:

Fuel Type:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,030
Specific Fuel Consumption (Btu/bhp-hr):	7,669
Maximum Fuel Consumption at 100% Load (scf/hr):	13,960
Heat Input (MMBtu/hr):	14.38
Potential Fuel Consumption (MMBtu/yr):	125,963
Max. Fuel Consumption at 100% (MMscf/hr):	0.0140
Max. Fuel Consumption (MMscf/yr):	122.3
Max. Annual Hours of Operation (hr/yr):	8,760

Engine Emissions Data:

Pollutant	Emission Factor	Emission Factor Units	Maximum Potential Emissions		Estimation Basis / Emission
Fonutant		Units	lbs/hr	tpy	Factor Source
NO _X	0.30	g/bhp-hr	1.24	5.43	Manufacturer Specifications
VOC (excludes HCHO)	0.17	g/bhp-hr	0.70	3.08	Manufacturer Specifications
VOC (includes HCHO)			0.87	3.80	VOC + HCHO
СО	0.25	g/bhp-hr	1.03	4.53	Manufacturer Specifications
SO _x	0.001	lb/MMBtu	0.01	0.04	AP-42, Table 3.2-2 (Jul-2000)
PM ₁₀	0.01	lb/MMBtu	0.14	0.63	AP-42, Table 3.2-2 (Jul-2000)
PM _{2.5}	0.01	lb/MMBtu	0.14	0.63	AP-42, Table 3.2-2 (Jul-2000)
Formaldehyde (HCHO)	0.04	g/bhp-hr	0.17	0.72	Manufacturer Specifications
GHG (CO ₂ e)	See Tabl	e Below	2,302	10,084	40 CFR 98, Tables C-1 & C-2
Other (Total HAP)	See Tabl	e Below	0.44	1.95	AP-42, Table 3.2-2 (Jul-2000)

Notes:

1. PM_{10} and $PM_{2.5}$ are total values (filterable + condensable).

2. GHG (CO₂e) is carbon dioxide equivalent, which is the summation of CO₂ (GWP = 1) + CH₄ (GWP = 25) + N₂O (GWP = 298).

3. Total HAP is the summation of all hazardous air pollutants for which there is a published emission factor for this source type.

DTE Appalachia Gathering, LLC Coopers Run Compressor Station G35-D Application

Compressor Engines Greenhouse Gas (GHG) & Hazardous Air Pollutant (HAP) Emissions Calculations: **Maximum Potential Emissions Estimation Basis / Emission** Pollutant **Emission Factor** Units **Factor Source** lbs/hr tpy GHGs: CO_2 Manufacturer Specifications 438 g/bhp-hr 1,810.56 7,930.23 CH_4 Manufacturer (THC - NMHC) 4.75 g/bhp-hr 19.64 86.00 40 CFR 98, Table C-2 N_2O 0.0001 0.00 0.01 kg/MMBtu GHG (CO₂e) 2,302 10,084 <u>Organic HAPs:</u> 4.00E-05 lb/MMBtu 5.8E-04 2.5E-03 AP-42, Table 3.2-2 (Jul-2000) 1,1,2,2-Tetrachloroethane 3.18E-05 lb/MMBtu 4.6E-04 2.0E-03 AP-42, Table 3.2-2 (Jul-2000) 1,1,2-Trichloroethane 1,3-Butadiene 2.67E-04 lb/MMBtu 3.8E-03 1.7E-02 AP-42, Table 3.2-2 (Jul-2000) 1,3-Dichloropropene 2.64E-05 lb/MMBtu 3.8E-04 1.7E-03 AP-42, Table 3.2-2 (Jul-2000) 3.32E-05 lb/MMBtu 4.8E-04 2.1E-03 AP-42, Table 3.2-2 (Jul-2000) 2-Methylnapthalene lb/MMBtu 1.6E-02 AP-42, Table 3.2-2 (Jul-2000) 2,2,4-Trimethylpentane 2.50E-04 3.6E-03 1.25E-06 lb/MMBtu 1.8E-05 7.9E-05 AP-42, Table 3.2-2 (Jul-2000) Acenaphthene 5.53E-06 lb/MMBtu 8.0E-05 3.5E-04 AP-42, Table 3.2-2 (Jul-2000) Acenaphthylene 1.2E-01 8.36E-03 lb/MMBtu 5.3E-01 AP-42, Table 3.2-2 (Jul-2000) Acetaldehyde AP-42, Table 3.2-2 (Jul-2000) lb/MMBtu 7.4E-02 3.2E-01 Acrolein 5.14E-03 AP-42, Table 3.2-2 (Jul-2000) Benzene 4.40E-04 lb/MMBtu 6.3E-03 2.8E-02 Benzo(b)fluoranthene 1.66E-07 lb/MMBtu 2.4E-06 1.0E-05 AP-42, Table 3.2-2 (Jul-2000) Benzo(e)pyrene 4.15E-07 lb/MMBtu 6.0E-06 2.6E-05 AP-42, Table 3.2-2 (Jul-2000) 4.14E-07 lb/MMBtu 6.0E-06 2.6E-05 AP-42, Table 3.2-2 (Jul-2000) Benzo(g,h,i)perylene 2.12E-04 lb/MMBtu 1.3E-02 AP-42, Table 3.2-2 (Jul-2000) 3.0E-03 Biphenyl AP-42, Table 3.2-2 (Jul-2000) 3.67E-05 lb/MMBtu 5.3E-04 2.3E-03 Carbon Tetrachloride 3.04E-05 lb/MMBtu 4.4E-04 1.9E-03 AP-42, Table 3.2-2 (Jul-2000) Chlorobenzene AP-42, Table 3.2-2 (Jul-2000) 2.85E-05 lb/MMBtu 4.1E-04 1.8E-03 Chloroform AP-42, Table 3.2-2 (Jul-2000) 6.93E-07 lb/MMBtu 1.0E-05 4.4E-05 Chrysene AP-42, Table 3.2-2 (Jul-2000) Ethylbenzene 3.97E-05 lb/MMBtu 5.7E-04 2.5E-03 Ethylene Dibromide 4.43E-05 lb/MMBtu 6.4E-04 2.8E-03 AP-42, Table 3.2-2 (Jul-2000) 1.11E-06 lb/MMBtu 1.6E-05 7.0E-05 AP-42, Table 3.2-2 (Jul-2000) Fluoranthene 5.67E-06 lb/MMBtu 3.6E-04 AP-42, Table 3.2-2 (Jul-2000) Fluorene 8.2E-05 1.6E-01 AP-42, Table 3.2-2 (Jul-2000) 2.50E-03 lb/MMBtu 3.6E-02 Methanol 2.00E-05 lb/MMBtu 2.9E-04 1.3E-03 AP-42, Table 3.2-2 (Jul-2000) Methylene Chloride lb/MMBtu 7.0E-02 AP-42, Table 3.2-2 (Jul-2000) 1.11E-03 1.6E-02 n-Hexane 7.44E-05 lb/MMBtu 1.1E-03 4.7E-03 AP-42, Table 3.2-2 (Jul-2000) Naphthalene PAH 2.69E-05 lb/MMBtu 3.9E-04 1.7E-03 AP-42, Table 3.2-2 (Jul-2000) Phenanthrene 1.04E-05 lb/MMBtu 1.5E-04 6.6E-04 AP-42, Table 3.2-2 (Jul-2000) Phenol 2.40E-05 lb/MMBtu 3.5E-04 1.5E-03 AP-42, Table 3.2-2 (Jul-2000) 1.36E-06 lb/MMBtu 2.0E-05 8.6E-05 AP-42, Table 3.2-2 (Jul-2000) Pyrene Styrene 2.36E-05 lb/MMBtu 3.4E-04 1.5E-03 AP-42, Table 3.2-2 (Jul-2000) AP-42, Table 3.2-2 (Jul-2000) Tetrachloroethane 2.48E-06 lb/MMBtu 3.6E-05 1.6E-04 4.08E-04 lb/MMBtu 5.9E-03 2.6E-02 AP-42, Table 3.2-2 (Jul-2000) Toluene Vinyl Chloride 1.49E-05 AP-42, Table 3.2-2 (Jul-2000) lb/MMBtu 2.1E-04 9.4E-04 AP-42, Table 3.2-2 (Jul-2000) 1.84E-04 lb/MMBtu 2.6E-03 1.2E-02 Xylene Total HAP (including HCHO) 1.95 0.44

DTE Appalachia Gathering, LLC Coopers Run Compressor Station G35-D Application

Emergency Generator Engine

Engine Information:

Source Designation:	GE-2
Manufacturer:	Generac
Model No.:	14.2 L
Stroke Cycle:	4-stroke
Type of Burn:	Rich
Rated Horsepower (bhp):	304
Rated Power (kW):	227

Engine Fuel Information:

Fuel Type:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,030
Maximum Fuel Consumption at 100% Load (scf/hr):	2,571
Heat Input (MMBtu/hr):	2.65
Potential Fuel Consumption (MMBtu/yr):	1,324
Max. Fuel Consumption at 100% (MMscf/hr):	0.0026
Max. Fuel Consumption (MMscf/yr):	1.3
Max. Annual Hours of Operation (hr/yr):	500

Engine Emissions Data:

Pollutant	Emission Factor			ntial Emissions	Estimation Basis / Emission
Ponutant	Emission Factor	Units	lbs/hr	tpy	Factor Source
NO _X	2.7	g/kW-hr	1.35	0.34	EPA Certificate of Conformity
VOC (excludes HCHO)	1.3	g/kW-hr	0.65	0.16	EPA Certificate of Conformity
VOC (includes HCHO)			0.70	0.18	VOC + HCHO
СО	5.4	g/kW-hr	2.70	0.67	EPA Certificate of Conformity
SO _x	0.001	lb/MMBtu	1.56E-03	3.89E-04	AP-42, Table 3.2-3 (Aug-2000)
PM ₁₀	0.02	lb/MMBtu	0.05	0.01	AP-42, Table 3.2-3 (Aug-2000)
PM _{2.5}	0.02	lb/MMBtu	0.05	0.01	AP-42, Table 3.2-3 (Aug-2000)
Formaldehyde (HCHO)	0.02	lb/MMBtu	0.05	0.01	AP-42, Table 3.2-3 (Aug-2000)
GHG (CO ₂ e)	See Tabl	e Below	310	78	40 CFR 98, Tables C-1 & C-2
Other (Total HAP)	See Tabl	e Below	0.09	0.02	AP-42, Table 3.2-3 (Aug-2000)

Notes:

1. PM_{10} and $PM_{2.5}$ are total values (filterable + condensable).

2. GHG (CO₂e) is carbon dioxide equivalent, which is the summation of CO₂ (GWP = 1) + CH₄ (GWP = 25) + N₂O (GWP = 298).

3. Total HAP is the summation of all hazardous air pollutants for which there is a published emission factor for this source type.

DTE Appalachia Gathering, LLC Coopers Run Compressor Station G35-D Application

Emergency Generator Engine

Greenhouse Gas (GHG) & Hazardous Air Pollutant (HAP) Emissions Calculations:

Dollutout	Paris in Paris	Emission Factor Units –	Maximum Potential Emissions		Estimation Basis / Emission
Pollutant	Emission Factor		lbs/hr	tpy	Factor Source
GHGs:					
CO_2	53.06	kg/MMBtu	309.83	77.46	40 CFR 98, Table C-1
CH_4	0.001	kg/MMBtu	5.8E-03	1.5E-03	40 CFR 98, Table C-2
N ₂ O	0.0001	kg/MMBtu	5.8E-04	1.5E-04	40 CFR 98, Table C-2
GHG (CO ₂ e)			310	78	
Organic HAPs:					
1,1,2,2-Tetrachloroethane	2.53E-05	lb/MMBtu	6.7E-05	1.7E-05	AP-42, Table 3.2-3 (Aug-2000)
1,1,2-Trichloroethane	1.53E-05	lb/MMBtu	4.1E-05	1.0E-05	AP-42, Table 3.2-3 (Aug-2000)
1,3-Butadiene	6.63E-04	lb/MMBtu	1.8E-03	4.4E-04	AP-42, Table 3.2-3 (Aug-2000)
1,3-Dichloropropene	1.27E-05	lb/MMBtu	3.4E-05	8.4E-06	AP-42, Table 3.2-3 (Aug-2000)
Acetaldehyde	2.79E-03	lb/MMBtu	7.4E-03	1.8E-03	AP-42, Table 3.2-3 (Aug-2000)
Acrolein	2.63E-03	lb/MMBtu	7.0E-03	1.7E-03	AP-42, Table 3.2-3 (Aug-2000)
Benzene	1.58E-03	lb/MMBtu	4.2E-03	1.0E-03	AP-42, Table 3.2-3 (Aug-2000)
Carbon Tetrachloride	1.77E-05	lb/MMBtu	4.7E-05	1.2E-05	AP-42, Table 3.2-3 (Aug-2000)
Chlorobenzene	1.29E-05	lb/MMBtu	3.4E-05	8.5E-06	AP-42, Table 3.2-3 (Aug-2000)
Chloroform	1.37E-05	lb/MMBtu	3.6E-05	9.1E-06	AP-42, Table 3.2-3 (Aug-2000)
Ethylbenzene	2.48E-05	lb/MMBtu	6.6E-05	1.6E-05	AP-42, Table 3.2-3 (Aug-2000)
Ethylene Dibromide	2.13E-05	lb/MMBtu	5.6E-05	1.4E-05	AP-42, Table 3.2-3 (Aug-2000)
Methanol	3.06E-03	lb/MMBtu	8.1E-03	2.0E-03	AP-42, Table 3.2-3 (Aug-2000)
Methylene Chloride	4.12E-05	lb/MMBtu	1.1E-04	2.7E-05	AP-42, Table 3.2-3 (Aug-2000)
Naphthalene	9.71E-05	lb/MMBtu	2.6E-04	6.4E-05	AP-42, Table 3.2-3 (Aug-2000)
РАН	1.41E-04	lb/MMBtu	3.7E-04	9.3E-05	AP-42, Table 3.2-3 (Aug-2000)
Styrene	1.19E-05	lb/MMBtu	3.2E-05	7.9E-06	AP-42, Table 3.2-3 (Aug-2000)
Toluene	5.58E-04	lb/MMBtu	1.5E-03	3.7E-04	AP-42, Table 3.2-3 (Aug-2000)
Vinyl Chloride	7.18E-06	lb/MMBtu	1.9E-05	4.8E-06	AP-42, Table 3.2-3 (Aug-2000)
Xylene	1.95E-04	lb/MMBtu	5.2E-04	1.3E-04	AP-42, Table 3.2-3 (Aug-2000)
Total HAP (including HCHO)	I		0.09	0.02	

DTE Appalachia Gathering, LLC Coopers Run Compressor Station G35-D Application

Microturbine Generator

Engine Information:

Source Designation:	MT-1
Manufacturer:	Flex Energy
Model No.:	GT250S
Engine Type:	Microturbine
Rated Horsepower (bhp):	335
Rated Electrical Power Output (kW):	250
Rated Electrical Power Output (MW):	0.3
Number of Units:	1

Engine Fuel Information:

Fuel Type:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,030
Maximum Fuel Consumption at 100% Load (scf/hr):	3,175
Heat Input (MMBtu/hr):	3.27
Potential Fuel Consumption (MMBtu/yr):	28,645
Max. Fuel Consumption at 100% (MMscf/hr):	0.0032
Max. Fuel Consumption (MMscf/yr):	27.8
Max. Annual Hours of Operation (hr/yr):	8,760

Engine Emissions Data:

Dellutent	Emission Easter	Unite	Maximum Pote	ntial Emissions	Estimation Basis / Emission	
Pollutant	Emission Factor	Units	lbs/hr	tpy	Factor Source	
NO _X	0.45	lb/MWhe	0.11	0.49	Manufacturer's Specifications	
VOC	0.25	lb/MWhe	0.06	0.27	Manufacturer's Specifications	
СО	1.12	lb/MWhe	0.28	1.23	Manufacturer's Specifications	
SO _x	0.003	lb/MMBtu	1.11E-02	4.87E-02	AP-42, Table 3.1-2a (Apr-2000)	
PM ₁₀	0.01	lb/MMBtu	0.02	0.09	AP-42, Table 3.1-2a (Apr-2000)	
PM _{2.5}	0.01	lb/MMBtu	0.02	0.09	AP-42, Table 3.1-2a (Apr-2000)	
Formaldehyde (HCHO)	0.001	lb/MMBtu	2.32E-03	0.01	AP-42, Table 3.1-3 (Apr-2000)	
GHG (CO ₂ e)	See Tabl	e Below	383	1,677	40 CFR 98, Tables C-1 & C-2	
Other (Total HAP)	See Tabl	See Table Below		0.01	AP-42, Table 3.1-3 (Apr-2000)	

Notes:

1. PM_{10} and $PM_{2.5}$ are total values (filterable + condensable).

2. GHG (CO₂e) is carbon dioxide equivalent, which is the summation of CO₂ (GWP = 1) + CH₄ (GWP = 25) + N₂O (GWP = 298).

3. Total HAP is the summation of all hazardous air pollutants for which there is a published emission factor for this source type.

DTE Appalachia Gathering, LLC Coopers Run Compressor Station G35-D Application

Microturbine Generator Greenhouse Gas (GHG) & Hazardous Air Pollutant (HAP) Emissions Calculations: Maximum Potential Emission

Dellestert	Emission Esster	11	Maximum Pote	ntial Emissions	Estimation Basis / Emission
Pollutant	Emission Factor	Units	lbs/hr	tpy	Factor Source
<u>GHGs:</u>					
CO ₂	53.06	kg/MMBtu	383	1,676	40 CFR 98, Table C-1
CH ₄	0.001	kg/MMBtu	7.2E-03	3.2E-02	40 CFR 98, Table C-2
N ₂ O	0.0001	kg/MMBtu	7.2E-04	3.2E-03	40 CFR 98, Table C-2
GHG (CO ₂ e)			383	1,677	
Organic HAPs:					
1,3-Butadiene	4.30E-07	lb/MMBtu	1.4E-06	6.2E-06	AP-42, Table 3.1-3 (Apr-2000)
Acetaldehyde	4.00E-05	lb/MMBtu	1.3E-04	5.7E-04	AP-42, Table 3.1-3 (Apr-2000)
Acrolein	6.40E-06	lb/MMBtu	2.1E-05	9.2E-05	AP-42, Table 3.1-3 (Apr-2000)
Benzene	1.20E-05	lb/MMBtu	3.9E-05	1.7E-04	AP-42, Table 3.1-3 (Apr-2000)
Ethylbenzene	3.20E-05	lb/MMBtu	1.0E-04	4.6E-04	AP-42, Table 3.1-3 (Apr-2000)
Naphthalene	1.30E-06	lb/MMBtu	4.3E-06	1.9E-05	AP-42, Table 3.1-3 (Apr-2000)
РАН	2.20E-06	lb/MMBtu	7.2E-06	3.2E-05	AP-42, Table 3.1-3 (Apr-2000)
Propylene oxide	2.90E-05	lb/MMBtu	9.5E-05	4.2E-04	AP-42, Table 3.1-3 (Apr-2000)
Toluene	1.30E-04	lb/MMBtu	4.3E-04	1.9E-03	AP-42, Table 3.1-3 (Apr-2000)
Xylene	6.40E-05	lb/MMBtu	2.1E-04	9.2E-04	AP-42, Table 3.1-3 (Apr-2000)
Total HAP (including HCHO)	•		0.00	0.01	

DTE Appalachia Gathering, LLC **Coopers Run Compressor Station** G35-D Application

Storage Vessels

Operational Hours

8,760 hrs/yr

Storage Tanks - Uncontrolled^{1,2,3}

Source Designation: Contents: Number: Capacity: Throughput: Condensate Throughput:	Meth 6 330 3,960	to T06 nanol tank(s) gal (each) gal (each)	Compre 6 500 6,000	o T12 essor Oil tank(s) gal (each) gal (each)	Engin 6 500 6,000	to T18 ne Oil tank(s) gal (each) gal (each)	Coolant 5 500 6,000	to T23 (Glycol) tank(s) gal (each) gal (each)	2 500 6,000	te Oil tank(s) gal (each) gal (each)	Waste 1 2,100 25,200	26 Fluids tank(s) gal (each) gal (each) bbl (day (aach)	1 8,820 105,840	Fluids tank(s) gal (each) gal (each)
Condensate Inroughput:	-	 	-		-	 	-				0.1	bbl/day (each)	0.1	bbl/day (each)
Emissions (per tank)	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
VOC	0.002	0.010	3.7E-05	1.6E-04	3.7E-05	1.6E-04	2.3E-06	1.0E-05	3.7E-05	1.6E-04	0.052	0.229	0.052	0.229
НАР	0.002	0.010	3.7E-05	1.6E-04	3.7E-05	1.6E-04	2.3E-06	1.0E-05	3.7E-05	1.6E-04	0.005	0.020	0.005	0.020
Benzene											4.6E-04	0.002	4.6E-04	0.002
Toluene											2.3E-04	0.001	2.3E-04	0.001
Ethylbenzene											< 0.001	< 0.001	< 0.001	< 0.001
Xylene											< 0.001	< 0.001	< 0.001	< 0.001
n-Hexane											0.003	0.013	0.003	0.013
Methane											0.001	0.006	0.001	0.006

¹ Uncontrolled emissions calculation using E&P TANK v2.0 for tanks with flashing; emissions include working, breathing and flashing losses. Conservatively assumes 1% condensate in waste fluids.

² Uncontrolled emissions calculation using EPA Tanks 4.0.9d for tanks without flashing; emissions include working and breathing losses.

³ Conservatively assumes one turnover per month, per tank.

Company Name:DTE Appalachia Gathering, LLCFacility Name:Coopers Run Compressor StationProject Description:G35-D Application

	Tank Heater
Source Designation:	HT-1
Fuel Used:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,030
Heat Input (MMBtu/hr)	0.50
Fuel Consumption (MMscf/hr):	4.85E-04
Potential Annual Hours of Operation (hr/yr):	8,760

<u>Criteria and GHG Pollutant Emission Rates:</u>

Π

	Emission Factor	Potential Emissions			
Pollutant	(lb/MMscf) ^{1,4}	(lb/hr) ²	(tons/yr) ³		
NO _x	100	0.05	0.21		
СО	84	0.04	0.18		
VOC	5.5	2.7E-03	0.01		
SO ₂	0.6	2.9E-04	1.3E-03		
PM Total	7.6	3.7E-03	0.02		
PM Condensable	5.7	2.8E-03	0.01		
PM ₁₀ (Filterable)	1.9	9.2E-04	4.0E-03		
PM _{2.5} (Filterable)	1.9	9.2E-04	4.0E-03		
Lead	5.00E-04	2.4E-07	1.1E-06		
CO ₂	117.0	58.50	256.22		
CH ₄	2.21E-03	1.1E-03	4.8E-03		
N ₂ O	2.21E-04	1.1E-04	4.8E-04		

<u>DTE Appalachia Gathering, LLC</u> **Coopers Run Compressor Station** G35-D Application

Tank Heater

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential	Emissions
Pollutant	(lb/MMscf) ¹	(lb/hr) ²	(tons/yr) ³
HAPs:			
2-Methylnaphthalene	2.4E-05	1.2E-08	5.1E-08
3-Methylchloranthrene	1.8E-06	8.7E-10	3.8E-09
7,12-Dimethylbenz(a)anthracene	1.6E-05	7.8E-09	3.4E-08
Acenaphthene	1.8E-06	8.7E-10	3.8E-09
Acenaphthylene	1.8E-06	8.7E-10	3.8E-09
Anthracene	2.4E-06	1.2E-09	5.1E-09
Benz(a)anthracene	1.8E-06	8.7E-10	3.8E-09
Benzene	2.1E-03	1.0E-06	4.5E-06
Benzo(a)pyrene	1.2E-06	5.8E-10	2.6E-09
Benzo(b)fluoranthene	1.8E-06	8.7E-10	3.8E-09
Benzo(g,h,i)perylene	1.2E-06	5.8E-10	2.6E-09
Benzo(k)fluoranthene	1.8E-06	8.7E-10	3.8E-09
Chrysene	1.8E-06	8.7E-10	3.8E-09
Dibenzo(a,h) anthracene	1.2E-06	5.8E-10	2.6E-09
Dichlorobenzene	1.2E-03	5.8E-07	2.6E-06
Fluoranthene	3.0E-06	1.5E-09	6.4E-09
Fluorene	2.8E-06	1.4E-09	6.0E-09
Formaldehyde	7.5E-02	3.6E-05	1.6E-04
Hexane	1.8E+00	8.7E-04	3.8E-03
Indo(1,2,3-cd)pyrene	1.8E-06	8.7E-10	3.8E-09
Naphthalene	6.1E-04	3.0E-07	1.3E-06
Phenanthrene	1.7E-05	8.3E-09	3.6E-08
Pyrene	5.0E-06	2.4E-09	1.1E-08
Toluene	3.4E-03	1.7E-06	7.2E-06
Arsenic	2.0E-04	9.7E-08	4.3E-07
Beryllium	1.2E-05	5.8E-09	2.6E-08
Cadmium	1.1E-03	5.3E-07	2.3E-06
Chromium	1.4E-03	6.8E-07	3.0E-06
Cobalt	8.4E-05	4.1E-08	1.8E-07
Manganese	3.8E-04	1.8E-07	8.1E-07
Mercury	2.6E-04	1.3E-07	5.5E-07
Nickel	2.1E-03	1.0E-06	4.5E-06
Selenium	2.4E-05	1.2E-08	5.1E-08
Total HAP		9.2E-04	4.0E-03

¹ Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, & 1.4-3

² Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) × Emission Factor (lb/MMscf). ³ Annual Emissions (tons/yr)_{Potential} = (lb/hr)_{Emissions} × (Maximum Allowable Operating Hours, 8760 hr/yr) × (1 ton/2000 lb). ⁴ GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

DTE Appalachia Gathering, LLC Coopers Run Compressor Station G35-D Application

<u>Gee D Application</u>

Liquid Loading

Throughput Capture Efficiency Control Efficiency 131,040 gal/yr0% non-tested tanker trucks0% Combustor destruction efficiency

Liquid Loading Emissions

Source ID:

L01

Uncontrolled Loading Losses: L_L (lb/10³ gal) = 12.46 (SPM)/T Controlled Loading Losses: L_L (lb/10³ gal) = 12.46 (SPM)/T * (1 - Capture Efficiency * Control Efficiency)

Parameter	Value	Description
S	0.60	Saturation factor for "Submerged Loading: dedicated normal service" (AP-42 Table 5.2-1)
Capture Efficiency	0%	Capture Efficiency
Control Efficiency	0%	Control Efficiency
Р	0.3240	true vapor pressure of liquid loaded (psia) - from EPA TANKS run
М	19.3610	molecular weight of vapors (lb/lb-mol) - from EPA TANKS run
Т	511.81	bulk liquid temperature of liquids loaded (deg R) - from EPA TANKS run

Description	Uncontrolled Loading Losses	Maximum Throughput ¹	VOC En	nissions	HAP En	nissions
	(lb/10 ³ gal)	(gal/yr)	(tpy)	(lb/hr) ²	(tpy)	(lb/hr) ²
Truck Loading of Produced Fluids	0.09	131,040	0.01	0.02	0.00	0.00

¹ Total estimated maximum annual throughput for the waste fluid tanks.

¹ Lb/hr values assume two (2) hours of loading per day, five (5) days per week.

DTE Appalachia Gathering, LLC Coopers Run Compressor Station G35-D Application

Fugitive Emissions

Fugitive Emissions from Component Leaks

Facility Equipment Type ¹	Valves	Connectors	Open-Ended Lines	Pressure Relief Devices
Wellhead	8	38	0.5	0
Separators	1	6	0	0
Meters/Piping	12	45	0	0
Compressors	12	57	0	0
In-line heaters	14	65	2	1
Dehydrators	24	90	2	2

¹ Table W-1B to Subpart W of Part 98 — Default Average Component Counts for Major Onshore Natural Gas Production

Fugitive VOC/Total Emissions from Component Leaks

Equipment Type	Service	Emission Factors ¹ (kg/hr/source)	Facility Equipment Count ² (units)	TOC Annual Fugitive Emissions (tpy)	Weight Fraction VOC	Weight Fraction HAP		HAP Emissions ³ (tpy)
Pumps	Light Liquid	0.01990	3	0.58	1.00	0.0E+00	0.58	0.0E+00
Compressor	Gas	0.22800	6	13	0.00	0.0E+00	0.05	0.0E+00
Valves	Gas	0.00597	132	7.61	0.00	0.0E+00	0.03	0.0E+00
Pressure Relief Valves	Gas	0.10400	4	4.02	0.00	0.0E+00	0.02	0.0E+00
Open-Ended Lines	All	0.00170	0	0.00	0.00	0.0E+00	0.0E+00	0.0E+00
Connectors	All	0.00183	617	10.89	0.00	0.0E+00	0.04	0.0E+00
Intermittent Pneumatic Devices ⁴	Gas	13.5	32				0.34	0.0E+00
			Emission Totals:	36.31			1.06	0.0E+00

¹ U.S. EPA. Office of Air Quality Planning and Standards. *Protocol for Equipment Leak Emission Estimates.* Table 2-1. (Research Triangle Park, NC: U.S. EPA EPA-453/R-95-017, 1995). SOCMI factors were used as it was representative of natural gas extraction. The pneumatic controller value is from 40 CFR 98 Subpart W, Table W-1A (units of scf/hr-component).

² Assumes one pump for each tank and one meter. Pressure relief valves count includes two for each storage tank. Pneumatic controllers operate on air (no gas emissions). A 50% compliance margin is added to the component counts based on Subpart W counts.

³ Potential emissions VOC/HAP (tpy) = Emission factor (kg/hr/source) * Number of Sources * Weight % VOC/HAP x 2.2046 (lb/kg) x 8,760 (hr/yr) ÷ 2,000 (lb/ton)

⁴ Potential emissions VOC/HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % VOC/HAP ÷ 100 ÷ 379 (scf/lb-mol) ÷ 2,000 (lb/ton)

DTE Appalachia Gathering, LLC **Coopers Run Compressor Station G35-D** Application

Fugitive Emissions

Fugitive Specific HAP Emissions from Component Leaks

Equipment Type	Service	Emission Factors ¹ (kg/hr/source)	Facility Equipment Count ² (units)	TOC Annual Fugitive Emissions (tpy)	Benzene Emissions ³ (tpy)	Toluene Emissions ³ (tpy)	Ethylbenzene Emissions ³ (tpy)	Xylene Emissions ³ (tpy)
Pumps	Light Liquid	0.01990	3	0.58	<0.01	< 0.01	< 0.01	<0.01
Compressor	Gas	0.22800	6	13.21	< 0.01	< 0.01	< 0.01	< 0.01
Valves	Gas	0.00597	132	7.61	< 0.01	< 0.01	< 0.01	< 0.01
Pressure Relief Valves	Gas	0.10400	4	4.02	< 0.01	< 0.01	< 0.01	< 0.01
Open-Ended Lines	All	0.00170	0	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Connectors	All	0.00183	617	10.89	< 0.01	< 0.01	< 0.01	< 0.01
Intermittent Pneumatic Devices ⁴	Gas	13.5	32		<0.01	< 0.01	<0.01	< 0.01
			Emission Totals:	36.31	<0.01	<0.01	<0.01	<0.01

¹ U.S. EPA. Office of Air Quality Planning and Standards. *Protocol for Equipment Leak Emission Estimates*. Table 2-1. (Research Triangle Park, NC: U.S. EPA EPA-453/R-95-017, 1995). SOCMI factors were used as it was representative of natural gas liquids extraction. Pneumatic controllers operate on air (no gas emissions).

² Assumes one pump for each tank. Pressure relief valves count includes one Emergency Pressure Relief valve and one lock-down hatch for each storage tank. Pneumatic controllers operate on air (no gas emissions). A 50% compliance margin is added to the component counts based on Subpart W counts.

³ Potential emissions HAP (tpy) = Emission factor (kg/hr/source) * Number of Sources * Weight % HAP x 2.2046 (lb/kg) x 8,760 (hr/yr) ÷ 2,000 (lb/ton)

⁴ Potential emissions HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % HAP ÷ 100 ÷ 379 (scf/lb-mol) ÷ 2,000 (lb/ton)

GHG Fugitive Emissions from Component Leaks

		GHG Emission	CH ₄		
Component	Component	Factor ¹		-	$CO_2 e Emissions^4$
Component	Count	cf/hr/componen	(tpy)	(tpy)	(tpy)
Pumps	3	0.01	0.01	3.8E-05	0.13
Compressor	6	4.17	4.49	0.03	112.17
Valves	132	0.027	0.64	4.5E-03	15.98
Pressure Relief Devices	4	0.04	0.03	2.0E-04	0.72
Open-Ended Lines	0	0.061	0.0E+00	0.0E+00	0.0E+00
Connectors	617	0.003	0.33	2.3E-03	8.29
Intermittent Pneumatic Devices	32	6	11.47	0.08	286.93
То	tal		16.96	0.12	424.22

¹ Population emission factors for gas service in the Eastern U.S. from Table W-1A of Subpart W - Default Whole Gas Emission Factors for Onshore Production, 40 CFR 98, Subpart W (table W-6 for compressor).

² Calculated in accordance with Equations W-32a, W-35 and W-36 in Subpart W of 40 CFR 98. See footnote 4 above for sample calculation.

³ Potential emissions VOC/HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % VOC/HAP ÷ 100 ÷ 379 (scf/lb-mol) ÷ 2,000 (lb/ton)

Mole fractions of CH₄ and CO₂ based on gas analysis: 97% CO₂: 0.25% $CH_{4:}$

⁴ Carbon equivalent emissions (CO₂e) are based on the following Global Warming Potentials (GWP) from 40 CFR Part 98, Table A-1: Carbon Dioxide (CO₂): 1

thane (
$$CH_4$$
): 25

n-Hexane Emissions ⁴ (tpy)
< 0.01
< 0.01
<0.01
< 0.01
< 0.01
<0.01
< 0.01
<0.01

DTE Appalachia Gathering, LLC **Coopers Run Compressor Station** G35-D Application

Fugitive Emissions

Fugitive Emissions from Venting

	Number of Events	Gas Vented Per Event	Total Volume Vented	Total Emissions	VOC Emissions	Benzene Emissions	Toluene Emissions	Ethylbenzene Emissions	Xylene Emissions	n-Hexane Emissions	HAP Emissions	CH ₄ Emissions	CO ₂ Emissions	CO ₂ e Emissions
Source	(events per yr)	(scf/event)	(scf/yr)	(ton/yr)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
Rod Packing Venting		2,417,760	2,417,760	52.80	0.22	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	49.48	0.35	1,237
Compressor Blowdown	360	4,500	1,620,000	35.38	0.14	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	33.15	0.23	829
Compressor Startup	360	1,000	360,000	7.86	0.03	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	7.37	0.05	184
Plant Shutdown	1	900,000	900,000	19.66	0.08	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	18.42	0.13	461
Low Pressure Pig Venting	52	1,000	51,500	1.12	4.6E-03	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.05	0.01	26
High Pressure Pig Venting	52	1,000	51,500	1.12	4.6E-03	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.05	0.01	26
Total			5,400,760	117.95	0.48	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	110.53	0.78	2,764

¹ VOC and HAP emissions are based on sum of the fractions of the pollutants in the site-specific gas analysis in those classifications, and are calculated in accordance with standard conversion methodology and factors.

² CH₄ and CO₂ emissions are based on fractions of these pollutants in the site-specific gas analysis, and are calculated in accordance with Equations W-35 and W-36 in Subpart W of 40 CFR 98.

³ GHG (CO₂e) is carbon dioxide equivalent, which is the summation of CO₂ (GWP = 1) + CH₄ (GWP = 25) + N₂O (GWP = 298).

⁴ Total gas volume emitted (and thus subsequent emissions values) is estimated based on engineering judgement and is conservative.

⁵ Total gas volume emitted includes blowdowns and other venting activities, such as pigging.

⁶ Potential emissions VOC/HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % VOC/HAP ÷ 100 ÷ 379 (scf/lb-mol) ÷ 2,000 (lb/ton)

⁷ Potential emissions CH_4/CO_2 (tpy) = Gas volume vented (scf/yr) * Mole % $CH_4/CO_2 \div 100$ * Density CH_4/CO_2 (kg/scf) * 1,000 (g/kg) \div 453.6 (g/lb) \div 2,000 (lb/ton)

Company Name:	DTE Appalachia Gathering, LLC
Facility Name:	Coopers Run Compressor Station
Project Description:	G35-D Application

Haul Roads

Estimated Potential Road Fugitive Emissions

Unpaved Road Emis	sions
--------------------------	-------

Unpaved Road	ds: E (lb/VMT) =	= k(s/12) ^a (W/3) ^b	')*[(365-p)/3	65]
	PM	PM ₁₀	PM _{2.5}	
k Factor (lb/VMT)	4.9	1.5	0.15	AP-42 Table 13.2.2-2 (Final, 11/06)
Silt content, s	4.8	%		AP-42 Table 13.2.2-1 (11/06), for Sand and Gravel Processing
Number of Rain Days, p	150			AP-42 Figure 13.2.1-2
а	0.7	0.9	0.9	AP-42 Table 13.2.2-2 (Final, 11/06)
b	0.45	0.45	0.45	AP-42 Table 13.2.2-2 (Final, 11/06)

Description	Weight of Empty Truck (tons)	Weight of Truck w/ Max Load (tons)	Mean Vehicle Weight (tons)	Length of Unpaved Road Traveled (mile)	Trips Per Year	Mileage Per Year	Control (%)	F PM	Emissions (tpy PM ₁₀) PM _{2.5}
Liquids Hauling Employee Vehicles	20 3	40 3	30 3	1.38 1.38	33 200	91 553	0 0	0.19 0.42	0.05 0.11	$0.00 \\ 0.01$
Total Potential Emissions								0.61	0.16	0.02

DTE Appalachia Gathering, LLC Coopers Run Compressor Station G35-D Application

Gas Analysis

Sample Location: HHV (Btu/scf):	Coopers Run Compressor Station 1,030										
Constituent	Natural Gas Stream Speciation (Mole %)	Molecular Weight	Molar Weight	Average Weight Fraction	Natural Gas Stream Speciation (Wt. %)						
Carbon Dioxide	0.2500	44.01	0.11	0.01	0.665						
Nitrogen	0.2900	28.01	0.08	0.00	0.491						
Methane	96.7000	16.04	15.51	0.94	93.696						
Ethane	2.6100	30.07	0.78	0.05	4.741						
Propane	0.1400	44.10	0.06	0.00	0.373						
Isobutane	<0.001	58.12	0.00	0.00	0.000						
n-Butane	0.0100	58.12	0.01	0.00	0.035						
Isopentane	< 0.001	72.15	0.00	0.00	0.000						
n-Pentane	<0.001	72.15	0.00	0.00	0.000						
Cyclopentane	<0.001	70.1	0.0	0.0	0.000						
n-Hexane	< 0.001	86.18	0.00	0.00	0.000						
Cyclohexane	<0.001	84.16	0.00	0.00	0.000						
Other Hexanes	< 0.001	86.18	0.00	0.00	0.000						
Heptanes	< 0.001	100.21	0.00	0.00	0.000						
Methylcyclohexane	< 0.001	98.19	0.00	0.00	0.000						
2,2,4-Trimethylpentane	< 0.001	114.23	0.00	0.00	0.000						
Benzene*	< 0.001	78.11	0.00	0.00	0.000						
Toluene*	< 0.001	92.14	0.00	0.00	0.000						
Ethylbenzene*	< 0.001	106.17	0.00	0.00	0.000						
Xylenes*	< 0.001	106.16	0.00	0.00	0.000						
C8 + Heavies	< 0.001	130.80	0.00	0.00	0.000						
Totals	100.000		16.55	1.00	100						

TOC (Total)	99.46	98.84
VOC (Total)	0.15	0.41
HAP (Total)	0.00	0.00

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification							
User Identification:	Cooper's Run Station (Glycol Tanks)						
City:							
State:	West Virginia						
Company:							
Type of Tank:	Horizontal Tank						
Description:	Coolant Tanks						
Tank Dimensions							
Shell Length (ft):	6.00						
Diameter (ft):	4.00						
Volume (gallons):	500.00						
Turnovers:	12.00						
Net Throughput(gal/yr):	6,000.00						
Is Tank Heated (y/n):	Ν						
Is Tank Underground (y/n):	Ν						
Paint Characteristics							
Shell Color/Shade:	Gray/Medium						
Shell Condition	Good						
Breather Vent Settings							
Vacuum Settings (psig):	-0.03						
Pressure Settings (psig)	0.03						

Meterological Data used in Emissions Calculations: Elkins, West Virginia (Avg Atmospheric Pressure = 13.73 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Cooper's Run Station (Glycol Tanks) - Horizontal Tank

			aily Liquid S perature (d		Liquid Bulk Temp	Vapor Pressure (psia)		Pressure (psia)		1 u /		Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations		
Propylene glycol	All	57.20	47.16	67.23	52.14	0.0008	0.0005	0.0014	76.1100			76.11	Option 2: A=8.2082, B=2085.9, C=203.54		

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Cooper's Run Station (Glycol Tanks) - Horizontal Tank

Annual Emission Calcaulations	
Standing Losses (Ib):	0.0142
Vapor Space Volume (cu ft):	48.0243
Vapor Density (lb/cu ft):	0.0000
Vapor Space Expansion Factor:	0.0734
Vented Vapor Saturation Factor:	0.9999
Fank Vapor Space Volume:	
Vapor Space Volume (cu ft):	48.0243
Tank Diameter (ft):	4.0000
Effective Diameter (ft):	5.5293
Vapor Space Outage (ft):	2.0000
Tank Shell Length (ft):	6.0000
/apor Density	
Vapor Density (lb/cu ft):	0.0000
Vapor Molecular Weight (lb/lb-mole):	76.1100
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	8000.0
Daily Avg. Liquid Surface Temp. (deg. R):	516.8667
Daily Average Ambient Temp. (deg. F):	49.0583
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	511.8083
Tank Paint Solar Absorptance (Shell):	0.6800
Daily Total Solar Insulation	4 400 0070
Factor (Btu/sqft day):	1,193.8870
/apor Space Expansion Factor	0.070
Vapor Space Expansion Factor:	0.0734
Daily Vapor Temperature Range (deg. R):	40.1436
Daily Vapor Pressure Range (psia):	0.0009
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	0.0000
Surface Temperature (psia):	0.0008
Vapor Pressure at Daily Minimum Liquid	0.0005
Surface Temperature (psia):	0.0005
Vapor Pressure at Daily Maximum Liquid	0.001
Surface Temperature (psia):	0.0014
Daily Avg. Liquid Surface Temp. (deg R):	516.8667
Daily Min. Liquid Surface Temp. (deg R): Daily Max. Liquid Surface Temp. (deg R):	506.8308 526.9026
Daily Max. Liquid Surface Temp. (deg R). Daily Ambient Temp. Range (deg. R):	24.1833
/ented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.9999
Vapor Pressure at Daily Average Liquid:	0.5555
Surface Temperature (psia):	0.0008
Vapor Space Outage (ft):	2.0000
vapor opaso outago (n).	2.0000
Norking Losses (Ib):	0.0088
Vapor Molecular Weight (lb/lb-mole):	76.1100
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0008
Annual Net Throughput (gal/yr.):	6,000.0000
Annual Turnovers:	12.0000
Turnover Factor:	1.0000
Tank Diameter (ft):	4.0000
	1.0000
Working Loss Product Factor:	
Working Loss Product Factor:	

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Cooper's Run Station (Glycol Tanks) - Horizontal Tank										
		Losses(lbs)								
Components	Working Loss	Breathing Loss	Total Emissions							
Propylene glycol	0.01	0.01	0.02							

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification	
User Identification:	Cooper's Run Station (Liquid Loading)
City:	Cooper e Man Claudin (Elquia Ecading)
State:	West Virginia
Company:	
Type of Tank:	Vertical Fixed Roof Tank
Description:	Liquid loading parameter calculations for truck loading of produced fluids
Tank Dimensions	
Shell Height (ft):	14.00
Diameter (ft):	10.00
Liquid Height (ft) :	14.00
Avg. Liquid Height (ft):	7.00
Volume (gallons):	8,820.00
Turnovers:	34.86
Net Throughput(gal/yr):	307,440.00
Is Tank Heated (y/n):	Ν
Paint Characteristics	
Shell Color/Shade:	Gray/Medium
Shell Condition	Good
Roof Color/Shade:	Gray/Medium
Roof Condition:	Good
Roof Characteristics	
Туре:	Cone
Height (ft)	0.00
Slope (ft/ft) (Cone Roof)	0.00
Breather Vent Settings	
Vacuum Settings (psig):	-0.03
Pressure Settings (psig)	0.03

Meterological Data used in Emissions Calculations: Elkins, West Virginia (Avg Atmospheric Pressure = 13.73 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Cooper's Run Station (Liquid Loading) - Vertical Fixed Roof Tank

		Daily Liquid Surf.			Liquid Bulk	Mara		(Vapor		Vapor		
/ixture/Component	Month	Avg.	perature (de Min.	eg ⊢) Max.	Temp (deg F)	Avg.	r Pressure Min.	(psia) Max.	Mol. Weight.	Mass Fract.	Mass Fract.	Mol. Weight	Basis for Vapor Pressure Calculations
					(3)								
Produced Water	All	57.20	47.16	67.23	52.14	0.2365	0.1708	0.3240	19.3610			18.17	
Benzene						1.0800	0.8090	1.4225	78.1100	0.0001	0.0004	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Butane (-n)						0.4772	0.3937	0.5736	58.1200	0.0005	0.0009	58.12	Option 2: A=5.09536, B=935.86, C=238.73
Decane (-n)						0.0313	0.0249	0.0394	142.2900	0.0045	0.0006	142.29	Option 1: VP50 = .026411 VP60 = .033211
Ethylbenzene						0.0984	0.0684	0.1390	106.1700	0.0000	0.0000	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Heptane (-n)						0.5620	0.4123	0.7572	100.2000	0.0008	0.0017	100.20	Option 3: A=37358, B=8.2585
Hexane (-n)						1.7780	1.3561	2.3024	86.1700	0.0010	0.0071	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Isopentane						9.4118	7.3180	11.8312	72.1500	0.0003	0.0123	72.15	Option 1: VP50 = 7.889 VP60 = 10.005
Nonane (-n)						0.0614	0.0482	0.0782	128.2600	0.0009	0.0002	128.26	Option 1: VP50 = .051285 VP60 = .065278
Octane (-n)						0.1362	0.1051	0.1764	114.2300	0.0009	0.0005	114.23	Option 1: VP50 = .112388 VP60 = .145444
Pentane (-n)						6.4211	5.1036	8.0084	72.1500	0.0006	0.0163	72.15	Option 3: A=27691, B=7.558
Propane (-n)						103.5663	88.7398	120.2028	44.0956	0.0002	0.0657	44.10	Option 2: A=7.340862493, B=1104.2267744 C=291.70993941
Toluene						0.3024	0.2186	0.4120	92.1300	0.0001	0.0001	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Water						0.2277	0.1634	0.3135	18.0150	0.9900	0.8941	18.02	Option 1: VP50 = .178 VP60 = .247
Xylene (-m)						0.0818	0.0567	0.1160	106.1700	0.0001	0.0000	106.17	Option 2: A=7.009, B=1462.266, C=215.11

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Cooper's Run Station (Liquid Loading) - Vertical Fixed Roof Tank

D : (1) (1)	
Standing Losses (lb):	12.8805
Vapor Space Volume (cu ft):	549.7787
Vapor Density (lb/cu ft):	8000.0
Vapor Space Expansion Factor:	0.0846
Vented Vapor Saturation Factor:	0.9193
Tank Vapor Space Volume:	5 40 3303
Vapor Space Volume (cu ft):	549.7787
Tank Diameter (ft):	10.0000
Vapor Space Outage (ft): Tank Shell Height (ft):	14.0000
Average Liquid Height (ft):	7.0000
Roof Outage (ft):	0.0000
Roof Outage (Cone Roof)	
Roof Outage (ft):	0.0000
Roof Height (ft):	0.0000
Roof Slope (ft/ft):	0.0000
Shell Radius (ft):	5.0000
/apor Density	
Vapor Density (lb/cu ft):	0.0008
Vapor Molecular Weight (lb/lb-mole):	19.3610
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.2365
Daily Avg. Liquid Surface Temp. (deg. R):	516.8667
Daily Average Ambient Temp. (deg. F): Ideal Gas Constant R	49.0583
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	511.8083
Tank Paint Solar Absorptance (Shell):	0.6800
Tank Paint Solar Absorptance (Roof): Daily Total Solar Insulation	0.6800
Factor (Btu/sqft day):	1,193.8870
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0846
Daily Vapor Temperature Range (deg. R):	40.1436
Daily Vapor Pressure Range (psia):	0.1531
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.2365
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	0.1708
Vapor Pressure at Daily Maximum Liquid	0.3240
Surface Temperature (psia): Daily Avg. Liquid Surface Temp. (deg R):	516.8667
Daily Min. Liquid Surface Temp. (deg R):	506.8308
Daily Max. Liquid Surface Temp. (deg R):	526,9026
Daily Ambient Temp. Range (deg. R):	24.1833
/ented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.9193
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	0.2365
Vapor Space Outage (ft):	7.0000
Vorking Losses (lb):	33.5192
Vapor Molecular Weight (lb/lb-mole):	19.3610
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.2365
Annual Net Throughput (gal/yr.):	307,440.0000
Annual Turnovers:	34.8571
Turnover Factor:	1.0000
Maximum Liquid Volume (gal):	8,820.0000
Maximum Liquid Height (ft):	14.0000
Tank Diameter (ft): Working Loss Product Factor:	10.0000 1.0000
Working Loss Product Factor:	1.0000
	46.3997
otal Losses (lb):	

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Cooper's Run Station (Liquid Loading) - Vertical Fixed Roof Tank

		Losses(lbs)	
Components	Working Loss	Breathing Loss	Total Emissions
Produced Water	33.52	12.88	46.40
Decane (-n)	0.02	0.01	0.03
Nonane (-n)	0.01	0.00	0.01
Ethylbenzene	0.00	0.00	0.00
Octane (-n)	0.02	0.01	0.02
Toluene	0.00	0.00	0.01
Heptane (-n)	0.06	0.02	0.08
Benzene	0.01	0.00	0.02
Hexane (-n)	0.24	0.09	0.33
Isopentane	0.41	0.16	0.57
Pentane (-n)	0.55	0.21	0.76
Water	29.97	11.52	41.49
Propane (-n)	2.20	0.85	3.05
Butane (-n)	0.03	0.01	0.04
Xylene (-m)	0.00	0.00	0.00

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification								
User Identification:	Cooper's Run Station (Methanol Tanks)							
City: State: Company:	West Virginia							
Type of Tank:	Horizontal Tank							
Description:	Methanol Tanks							
Tank Dimensions								
Shell Length (ft):	6.00							
Diameter (ft):	4.00							
Volume (gallons):	330.00							
Turnovers:	12.00							
Net Throughput(gal/yr):	3,960.00							
Is Tank Heated (y/n):	Ν							
Is Tank Underground (y/n):	Ν							
Paint Characteristics								
Shell Color/Shade:	Gray/Medium							
Shell Condition	Good							
Breather Vent Settings								
Vacuum Settings (psig):	-0.03							
Pressure Settings (psig)	0.03							
3- (1 - 5)								

Meterological Data used in Emissions Calculations: Elkins, West Virginia (Avg Atmospheric Pressure = 13.73 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Cooper's Run Station (Methanol Tanks) - Horizontal Tank

			aily Liquid S perature (d		Liquid Bulk Temp	Vapor Pressure (psia)		Vapor Pressure (psia)		Liquid Vapor Mass Mass		Basis for Vapor Pressure	
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Methyl alcohol	All	57.20	47.16	67.23	52.14	1.3195	0.9508	1.8044	32.0400			32.04	Option 2: A=7.897, B=1474.08, C=229.13

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Cooper's Run Station (Methanol Tanks) - Horizontal Tank

Standing Losses (Ib):	16.5979
Vapor Space Volume (cu ft):	48.0243
Vapor Density (lb/cu ft):	0.0076
Vapor Space Expansion Factor:	0.1416
Vented Vapor Saturation Factor:	0.8773
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	48.0243
Tank Diameter (ft):	4.0000
Effective Diameter (ft):	5.5293
Vapor Space Outage (ft):	2.0000
Tank Shell Length (ft):	6.0000
/apor Density	
Vapor Density (lb/cu ft):	0.0076
Vapor Molecular Weight (lb/lb-mole):	32.0400
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	1.3195
Daily Avg. Liquid Surface Temp. (deg. R):	516.8667
Daily Average Ambient Temp. (deg. F):	49.0583
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	511.8083
Tank Paint Solar Absorptance (Shell):	0.6800
Daily Total Solar Insulation	0.0000
Factor (Btu/sqft day):	1,193.8870
/apor Space Expansion Factor	
Vapor Space Expansion Factor:	0.1416
Daily Vapor Temperature Range (deg. R):	40.1436
Daily Vapor Pressure Range (psia):	0.8536
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	0.0000
Surface Temperature (psia):	1.3195
Vapor Pressure at Daily Minimum Liquid	1.0150
Surface Temperature (psia):	0.9508
Vapor Pressure at Daily Maximum Liquid	0.9500
	4 0044
Surface Temperature (psia):	1.8044
Daily Avg. Liquid Surface Temp. (deg R):	516.8667
Daily Min. Liquid Surface Temp. (deg R):	506.8308
Daily Max. Liquid Surface Temp. (deg R):	526.9026
Daily Ambient Temp. Range (deg. R):	24.1833
/ented Vapor Saturation Factor Vented Vapor Saturation Factor:	0.8773
	0.0773
Vapor Pressure at Daily Average Liquid: Surface Temperature (psia):	1.3195
	2.0000
Vapor Space Outage (ft):	2.0000
Vorking Losses (Ib):	3.9861
Vapor Molecular Weight (lb/lb-mole):	32.0400
	32.0400
Vapor Pressure at Daily Average Liquid	4 0 4 0 5
Surface Temperature (psia):	1.3195
Annual Net Throughput (gal/yr.):	3,960.0000
Annual Turnovers:	12.0000
Turnover Factor:	1.0000
Tank Diameter (ft):	4.0000
Working Loss Product Factor:	1.0000
	00 50 10
otal Losses (lb):	20.5840

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Cooper's Run Station (Methanol Tanks) - Horizontal Tank												
		Losses(lbs)										
Components	Working Loss	Breathing Loss	Total Emissions									
Methyl alcohol	3.99	16.60	20.58									

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company:	Cooper's Run Station (Oil Tanks) West Virginia
Type of Tank:	Horizontal Tank
Description:	Compressor and Engine Lube Oil Tanks
Tank Dimensions Shell Length (ft): Diameter (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n): Is Tank Underground (y/n):	6.00 4.00 500.00 12.00 6,000.00 N N
Paint Characteristics	
Shell Color/Shade: Shell Condition	Gray/Medium Good
Breather Vent Settings	
Vacuum Settings (psig):	-0.03
Pressure Settings (psig)	0.03

Meterological Data used in Emissions Calculations: Elkins, West Virginia (Avg Atmospheric Pressure = 13.73 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Cooper's Run Station (Oil Tanks) - Horizontal Tank

			aily Liquid S perature (d		Liquid Bulk Temp	k			Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure	
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Distillate fuel oil no. 2	All	57.20	47.16	67.23	52.14	0.0066	0.0041	0.0086	130.0000			188.00	Option 1: VP50 = .0045 VP60 = .0074

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Cooper's Run Station (Oil Tanks) - Horizontal Tank

Standing Losses (Ib):	0.1991
Vapor Space Volume (cu ft):	48.0243
Vapor Density (lb/cu ft):	0.0002
Vapor Space Expansion Factor:	0.0736
Vented Vapor Saturation Factor:	0.9993
ank Vapor Space Volume:	
Vapor Space Volume (cu ft):	48.0243
Tank Diameter (ft):	4.0000
Effective Diameter (ft):	5.5293
Vapor Space Outage (ft):	2.0000
Tank Shell Length (ft):	6.0000
/apor Density	
Vapor Density (lb/cu ft):	0.0002
Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid	130.0000
Surface Temperature (psia):	0.0066
Daily Avg. Liquid Surface Temp. (deg. R):	516.8667
Daily Average Ambient Temp. (deg. F): Ideal Gas Constant R	49.0583
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	511.8083
Tank Paint Solar Absorptance (Shell):	0.6800
Daily Total Solar Insulation	4 400 0070
Factor (Btu/sqft day):	1,193.8870
/apor Space Expansion Factor	0.0736
Vapor Space Expansion Factor:	
Daily Vapor Temperature Range (deg. R):	40.1436
Daily Vapor Pressure Range (psia):	0.0045
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	0.0000
Surface Temperature (psia):	0.0066
Vapor Pressure at Daily Minimum Liquid	0.0041
Surface Temperature (psia):	0.0041
Vapor Pressure at Daily Maximum Liquid	0.0000
Surface Temperature (psia):	0.0086
Daily Avg. Liquid Surface Temp. (deg R):	516.8667 506.8308
Daily Min. Liquid Surface Temp. (deg R):	
Daily Max. Liquid Surface Temp. (deg R): Daily Ambient Temp. Range (deg. R):	526.9026 24.1833
	2 111000
Vented Vapor Saturation Factor Vented Vapor Saturation Factor:	0.9993
Vapor Pressure at Daily Average Liquid:	2.0000
Surface Temperature (psia):	0.0066
Vapor Space Outage (ft):	2.0000
Vorking Losses (Ib):	0.1223
Vapor Molecular Weight (lb/lb-mole):	130.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0066
Annual Net Throughput (gal/yr.):	6,000.0000
Annual Turnovers:	12.0000
Turnover Factor:	1.0000
Tank Diameter (ft):	4.0000
Working Loss Product Factor:	1.0000
otal Losses (lb):	0.3214

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Cooper's Run Station (Oil Tanks) - Horizontal Tank								
	Losses(lbs)							
Components	Working Loss	Breathing Loss	Total Emissions					
Distillate fuel oil no. 2	0.12	0.20	0.32					

	oject Setup I	
Project	File t Selection	: P:\Client\DTE\West Virginia\Coopers Run\Projects\173901.0084 Permit Modification\04 : Oil Tank with Separator
		: Oll Tank with Separator : RVP Distillation
Calculation Method Control Efficiency		: RVP Distillation : 100.0%
	parator Stream	
	ical Region	: All Regions in US
	Air Composit:	-
<u> </u>	ALL COMPOSED	
Filed Na	me	: Cooper's Run Compressor Station
Well Nam	e	: Waste Fluid Tanks
Date		: 2017.06.15

	ta Input	*
******	*****	***************************************
7	2	
	r Pressure	: 50.00[psig]
-	or Temperature Pressure	: 125.00[F] : 14.70[psia]
	Temperature	: 14.70[psia] : 125.00[F]
C10+ SG	Temperacure	: 0.8420
C10+ SG C10+ MW		: 287.00
610. 1		. 207.00
Low P	ressure Oil -	
No.	Component	mol %
1	H2S	1.2800
2	02	0.0000
3	CO2	0.0300
4	N2	0.0000
5	C1	1.2700
6	C2	2.0800
7	C3	4.5700
8	i-C4	1.8900
9	n-C4	6.4800
10	i-C5	3.8800
11	n-C5	7.0400
12	C6	3.0500
13	C7	6.8200
14	C8 C9	7.7800
15 16	C10+	7.2300
16	Benzene	37.9300 0.8300
18	Toluene	1.0200
19	E-Benzene	0.0700
20	Xylenes	0.6500
21	n-C6	6.1000
22	224Trimethy	
Sales	0il	
Producti	on Rate	: 0.1[bbl/day]
		ion : 365 [days/year]
API Grav	-	: 49.0
Reid Vap	or Pressure	: 8.90[psia]

	lculation Res	* ************************************
*****	******	***************************************
Emiss	ion Gummary -	
Item	=	ncontrolled Uncontrolled
		con/yr] [lb/hr]
	-	

	al HAPs	0.020		0.005					
	al HC	0.254		0.058					
	s, C2+	0.24		0.056					
VOC	s, C3+	0.229	9	0.052					
Unc	ontrolled Recover	ry Ini	Eo.						
	Vapor	10.60	500 x1E-3	[MSCFD]					
	HC Vapor	9.910	00 x1E-3	[MSCFD]					
	GOR	106.0	50	[SCF/bbl]					
	Emiggion Composit								
NO	Emission Composit Component		ntrolled	Uncontrol	led				
		[ton,		[lb/hr]					
1	H2S	0.012		0.003					
2	02	0.000)	0.000					
3	CO2	0.000)	0.000					
4	N2	0.000	0	0.000					
5	C1	0.006	5	0.001					
6	C2	0.018	3	0.004					
7	C3	0.049	Ð	0.011					
8	i-C4	0.020)	0.005					
9	n-C4	0.059	Ð	0.013					
10	i-C5	0.026	5	0.006					
11	n-C5	0.039	Ð	0.009					
12	C6	0.008	3	0.002					
13	C7	0.008	3	0.002					
14	C8	0.004	1	0.001					
15	C9	0.002	2	0.000					
16	C10+	0.000)	0.000					
17	Benzene	0.002	2	0.000					
18	Toluene	0.001	L	0.000					
	E-Benzene	0.000)	0.000					
	Xylenes	0.000		0.000					
	n-C6	0.013		0.003					
22	224Trimethylp	0.000		0.000					
	Total	0.26	7	0.061					
;	Stream Data								
No.	Component		MW	LP Oil	Flash Oil	Sale Oil	Flash Gas	W&S Gas	Total Emission
				mol %	mol %	mol %	mol %	mol %	mol %
1	H2S		34.80	1.2800	0.2130	0.2130	6.8990	0.0000	6.8990
2	02		32.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3	CO2		44.01	0.0300	0.0021	0.0021	0.1768	0.0000	0.1768
4	N2		28.01	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
5	C1		16.04	1.2700	0.0369	0.0369	7.7635	0.0000	7.7635
6	C2		30.07	2.0800	0.2466	0.2466	11.7345	0.0000	11.7345
7	C3		44.10	4.5700	1.3445	1.3445	21.5554	0.0000	21.5554
8	i-C4		58.12	1.8900	0.9750	0.9750	6.7085	0.0000	6.7085
9	n-C4		58.12	6.4800	3.9279	3.9279	19.9192	0.0000	19.9192
	i-C5		72.15	3.8800	3.2983	3.2983	6.9431	0.0000	6.9431
	n-C5		72.15	7.0400	6.3906	6.3906	10.4595	0.0000	10.4595
12			86.16	3.0500	3.2895	3.2895	1.7886	0.0000	1.7886
13	C7		100.20	6.8200	7.8112	7.8112	1.6004	0.0000	1.6004
14			114.23	7.7800	9.1297	9.1297	0.6724	0.0000	0.6724
15	C9		128.28	7.2300	8.5561	8.5561	0.2466	0.0000	0.2466
	C10+		166.00	37.9300	45.1329	45.1329	0.0000	0.0000	0.0000
	Benzene		78.11	0.8300	0.9150	0.9150	0.3821	0.0000	0.3821
18			92.13	1.0200	1.1834	1.1834	0.1596	0.0000	0.1596
	E-Benzene		106.17	0.0700	0.0825	0.0825	0.0041	0.0000	0.0041
	Xylenes		106.17	0.6500	0.7670	0.7670	0.0341	0.0000	0.0341
	n-C6		86.18	6.1000	6.6977	6.6977	2.9524	0.0000	2.9524
~ ~	224Trimethylp		114.24	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
22									51 00
22	MW			159 21	170 60	179 60	51 88	0 00	
22	MW Stream Mole Rati	io		159.21	179.60 0.8404	179.60 0.8404	51.88 0.1596	0.00	51.88 0.1596
22	Stream Mole Rati	io	[BTTI / ۲/ ۲۰۰۰]	159.21 1.0000	179.60 0.8404	179.60 0.8404	0.1596	0.0000	0.1596
22		io	[BTU/SCF] [Gas/Air]						

RVP @ 100F	[psia]	27.72	8.66	8.66
Spec. Gravity @ 100F		0.690	0.698	0.698

GAS COMPRESSION APPLICATION

ENGINE SPEED (rpm): COMPRESSION RATIO: AFTERCOOLER TYPE: JACKET WATER OUTLET (°F): **ASPIRATION:** COOLING SYSTEM: CONTROL SYSTEM: EXHAUST MANIFOLD: COMBUSTION: NOx EMISSION LEVEL (g/bhp-hr NOx): GAS ENGINE SITE SPECIFIC TECHNICAL DATA Exterran M3 Coopers Run/Hamilton

1000 9.2:1 SCAC

190

TA JW, OC+AC CIS/ADEM3

DRY

0.5

LOWEMISSION

CE-1 to CE-4 **Compressor Engine Specifications**

RATING STRATEGY:	STANDARD
RATING LEVEL:	CONTINUOUS
FUEL SYSTEM:	GAV
	WITH AIR FUEL RATIO CONTROL
SITE CONDITIONS:	
FUEL:	Gas Analysis
FUEL PRESSURE RANGE(psig):	42.8-47.0
FUEL METHANE NUMBER:	90,8
FUEL LHV (Btu/scf):	929
ALTITUDE(ft):	1500
MAXIMUM INLET AIR TEMPERATURE(°F):	100
STANDARD RATED POWER:	1775 bhp@1000rpm

			MAXIMUM RATING	INLETA	TING AT N	RATURE
RATING	NOTE	S LOAD	100%	100%	75%	50%
ENGINE POWER (WITHOUT	-AN) (1)	bhp	1775	1775	1331	888
INLETAIRTEMPERATURE		°F	100	100	100	100
ENGINE DATA						
FUEL CONSUMPTION (LHV)	(2)	Btu/bhp-hr	6860	6860	7102	7619
FUEL CONSUMPTION (HHV)	(2)	Btu/bhp-hr	7610	7610	7879	8453
AIR FLOW (@inlet air temp, 14.7 psia) (V	VET) (3)(4)	ft3/min	4921	4921	3806	2564
r witt He tr	VET) (3)(4)	lb/hr	20924	20924	16181	10900
FUEL FLOW (60°F, 14.7 psia)		scfm	218	218	170	121
INLET MANIFOLD PRESSURE	(5)	in Hg(abs)	74.3	74.3	57.9	41.2
EXHAUST TEMPERATURE - ENGINE OUTLET	(6)	°F	847	847	870	937
EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (V	VET) (7)(4)	ft3/min	12213	12213	9613	6821
EXHAUST GAS MASS FLOW	VET) (7)(4)	lb/hr	21496	21496	16625	11218
EMISSIONS DATA - ENGINE OUT						
NOx (as NO2)	(8)(9)	g/bhp-hr	0.50	0.50	0.50	0.50
CO	(8)(9)	g/bhp-hr	2.74	2.74	2.74	2.74
THC (mol. wt. of 15.84)	(8)(9)	g/bhp-hr	6,30	6.30	6.50	6.77
NMHC (mol. wt. of 15.84)	(8)(9)	g/bhp-hr	0.94	0.94	0.98	1.01
NMNEHC (VOCs) (mol. wt. of 15.84)	(8)(9)(10) g/bhp-hr	0.63	0.63	0.65	0.68
HCHO (Formaldehyde)	(8)(9)	g/bhp-hr	0.26	0.26	0.28	0.31
CO2	(8)(9)	g/bhp-hr	441	441	460	494
EXHAUSTOXYGEN	(8)(11)	% DRY	12.8	12,8	12.1	11.1
HEATREJECTION						
HEAT REJ. TO JACKET WATER (JW)	(12)	Btu/min	18749	18749	15593	13024
HEAT REJ. TO ATMOSPHERE	(12)	Btu/min	7103	7103	6619	6199
HEAT REJ. TO LUBE OIL (OC)	(12)	Btu/min	9132	9132	8667	8453
HEAT REJ. TO AFTERCOOLER (AC)	(12)(13)) Btu/min	17645	17645	9609	1869
COOLING SYSTEM SIZING CRITERIA	1					
TOTAL JACKET WATER CIRCUIT (JW)	(13)	Btu/min	20624	1		
TOTAL AFTERCOOLER CIRCUIT (OC+AC)	(13)(14)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	29487			
A cooling system safety factor of 0% has been added to the cooling system sizing criteria.			1			

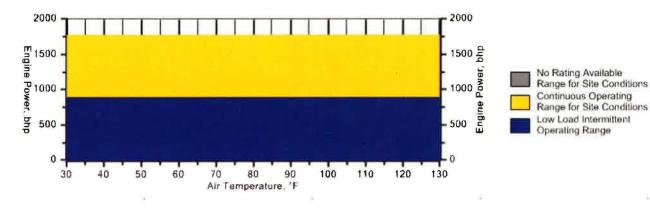
CONDITIONS AND DEFINITIONS Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

For notes information consult page three.

G3606

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Exterran M3 Coopers Run/Hamilton

GAS COMPRESSION APPLICATION


0

750


800

Engine Power vs. Inlet Air Temperature

Data represents temperature sweep at 1500 ft and 1000 rpm

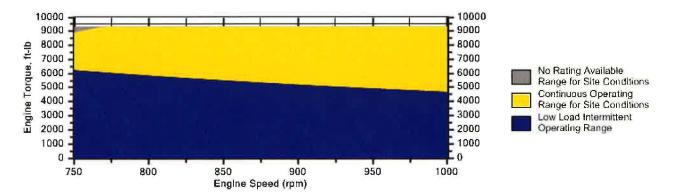
Engine Power vs. Engine Speed Data represents speed sweep at 1500 ft and 100 °F

Engine Speed (rpm)

850

900

0


1000

Caterpillar'

Engine Torque vs. Engine Speed

950

Data represents speed sweep at 1500 ft and 100 °F

Note: At site conditions of 1500 ft and 100°F inlet air temp., constant torque can be maintained down to 770 rpm. The minimum speed for loading at these conditions is 750 rpm.

PREPARED BY: Doug Kern, Exterran Data generated by Gas Engine Rating Pro Version 5.04.00 Ref. Data Set DM8605-06-001, Printed 16Jul2015

G3606

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Exterran M3 Coopers Run/Hamilton

CATERPILLAR®

GAS COMPRESSION APPLICATION

 $\frac{\text{NOTES}}{\text{1. Engine rating is with two engine driven water pumps}, \text{ Tolerance is } \pm 3\% \text{ of full load}.$

2. Fuel consumption tolerance is ± 2.5% of full load data,

3. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of ± 5 %.

4. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.

5. Inlet manifold pressure is a nominal value with a tolerance of ± 5 %,

6. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.

7. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of ± 6 %.

8. Emissions data is at engine exhaust flange prior to any after treatment.

9. Emission values are based on engine operating at steady state conditions. Fuel methane number cannot vary more than ± 3. Values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate "Not to Exceed" values. THC, NMHC, and NMNEHC do not include aldehydes. An oxidation catalyst may be required to meet Federal, State or local CO or HC requirements.

10, VOCs - Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ

11. Exhaust Oxygen level is the result of adjusting the engine to operate at the specified NOx level. Tolerance is ± 0.5 .

12. Heat rejection values are nominal. Tolerances, based on treated water, are ± 10% for jacket water circuit, ± 50% for radiation, ± 20% for lube oil circuit, and ± 5% for aftercooler circuit.

13. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.

14. Cooling system sizing criteria are maximum circuit heat rejection for the site, with applied tolerances.

PREPARED BY: Doug Kern, Exterran Data generated by Gas Engine Rating Pro Version 5.04.00 Ref. Data Set DM8605-06-001, Printed 16Jul2015

Constituent	Abbrev	Mole %	Norm	
Water Vapor	H2O	0.0115	0.0115	
Vethane	CH4	96.7490	96.7380	Fuel Makeup:
Ethane	C2H6	2.4777	2.4774	Unit of Measure:
Propane	C3H8	0.1257	0.1257	
Isobutane	iso-C4H1O	0.0200	0.0200	Calculated Fuel Pro
Norbutane	nor-C4H1O	0.0210	0.0210	Caterpillar Methanel
Isopentane	iso-C5H12	0.0204	0.0204	Caterpillar Methanen
Norpentane	nor-C5H12	0.0134	0.0134	
Hexane	C6H14	0.0346	0.0346	Lower Heating Value (
Heptane	C7H16	0.0000	0.0000	Higher Heating Value (B
Nitrogen	N2	0.2943	0.2943	WOBBE Index (Btu/scf)
Carbon Dioxide	CO2	0.2438	0.2438	
Hydrogen Sulfide	H2S	0.0000	0.0000	THC: Free Inert Ratio:
Carbon Monoxide	CO	0.0000	0.0000	appropriation contains according to contained and
Hydrogen	H2	0.0000	0.0000	Total % Inerts (% N2, CO2
Oxygen	02	0.0000	0.0000	RPC (%) (To 905 Btu/scf Fi
Helium	HE	0.0000	0.0000	
Neopentane	neo-C5H12	0.0000	0.0000	Compressibility Factor:
Octane	C8H18	0.0000	0.0000	Stoich A/F Ratio (Vol/Vol):
Nonane	C9H20	0.0000	0.0000	Stoich A/F Ratio (Mass/Mass)
Ethylene	C2H4	0.0000	0.0000	Specific Gravity (Relative to Ai
Propylene	C3H6	0.0000	0.0000	
TOTAL (Volume %)		100.0114	100.0001	Specific Heat Constant (K):

CONDITIONS AND DEFINITIONS Caterpillar Methane Number represents the knock resistance of a gaseous fuel. It should be used with the Caterpillar Fuel Usage Guide for the engine and rating to determine the rating for the fuel specified. A Fuel Usage Guide for each rating is included on page 2 of its standard technical data sheet.

RPC always applies to naturally aspirated (NA) engines, and turbocharged (TA or LE) engines only when they are derated for altitude and ambient site conditions.

Project specific technical data sheets generated by the Caterpillar Gas Engine Rating Pro program take the Caterpillar Methane Number and RPC into account when generating a site rating.

Fuel properties for Btu/scf calculations are at 60F and 14.696 psia.

Caterpillar shall have no liability in law or equity, for damages, consequently or otherwise, arising from use of program and related material or any part thereof.

EUEL LIQUIDS Field gases, well head gases, and associated gases typically contain liquid water and heavy hydrocarbons entrained in the gas. To prevent detonation and severe damage to the engine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid separator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground in accordance with local codes and standards.

To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel operating temperature.

2585 Heartland Dr. Sheridan, WY 82801 Office: | Direct: +1 (307) 675.5081 riames@emittechnologies.com

Prepared For: QUOTE: QUO-16887-C0L8 Alfredo Suarez Expires: October 29, 2015 **EXTERRAN** CONTROL EQUIPMENT INFORMATION PROVIDED BY CATERPILLAR Engine: G3606 **Catalyst Housing** Horsepower: 1775 Model: EL-4200-1820F-4CE0-361 RPM: 1000 Manufacturer: **EMIT** Technologies, Inc **Compression Ratio:** 9.0 Element Size: Rectangle 36" x 15" x 3.5" Exhaust Flow Rate: 12213 CFM Housing Type: **4 Element Capacity** Exhaust Temperature: 847 °F Catalyst Installation: Accessible Housing Reference: DM8605-06-001 Construction: 10 gauge Carbon Steel Fuel: Natural Gas Sample Ports: 9 (0.5" NPT) Annual Operating Hours: 8760 18" Flat Face Flange Inlet Connections: Outlet Connections: 20" Flat Face Flange Uncontrolled Emissions Configuration: End In / Side Out Silencer: N/A g/bhp-hr Lb/Hr Tons/Year Silencer Grade: N/A NOx: 1.96 0.50 8.57 Insertion Loss: N/A CO: 2.74 10.72 46.96 Estimated Lead Time: 2 Weeks to Ship THC: 6.30 24.65 107.98 NMHC 0.94 3.68 16.11 **Catalyst Element** NMNEHC: 0.63 2.47 10.80 Mo HCHO: 0.26 1.02 4.46 C 02: 12.80 % S M POST CATALYST EMISSIONS E

a/bhp-hr

NOx:	Unaffected by Oxidation Catalyst
CO:	<0.16
VOC:	<0.17
HCHO:	<0.06

Model:	RT-3615-Z
Catalyst Type:	Oxidation, Standard Precious Group Metals
Substrate Type:	BRAZED
Manufacturer:	EMIT Technologies, Inc
Element Quantity:	2
Element Size:	Rectangle 36" x 15" x 3.5"
Estimated Lead Time:	7-10 Business Days to Ship

The information in this quotation, and any files transmitted with it, is confidential and may be legally privileged. It is intended only for the use of Individual(s) within the company named above. If you are the intended recipient, be aware that your use of any confidential or personal information may be restricted by state and federal privacy laws

	Unit	IBD Caterpillar G36				
Date of Manufacture	after 7/2010	Engine Serial Number	TBD	Date Modified/	Reconstructed	Not Any
 Driver Rated HP	1875	Rated Speed in RPM	1000	Combustion Ty	ре	Spark Ignited 4 Stroke
Number of Cylinders	6	Compression Ratio	7.6	Combustion Se		Ultra Lean Burn
Total Displacement, in ³	7762	Fuel Delivery Method	Fuel Injection	Combustion Air	0	T.C./Aftercooled
	1702	ruer beiner y method		Combustion Air	incutinent	1.0.7Attereooled
Raw Engine Emissions (Customer St	upplied Fuel Gas with little	o no H2S)				
Fuel Consumption	6913 LHV BTU/bhp-hr	or 7669 HHV	/ BTU/bhp-hr			
Altitude	1200 ft					
Maximum Air Inlet Temp	90 F					
		g/bhp-hr ¹	lb/MMBTU ²	lb/hr	ТРҮ	
Nitrogen Oxides (NOx)		0.3		1.24	5.43	
Carbon Monoxide (CO)		2.5		10.33	45.26	
Volatile Organic Compounds (VOC o	or NMNEHC excluding CH2O)	0.33		1.36	5.97	
Formaldehyde (CH2O)	с,	0.19		0.79	3.44	
Particulate Matter (PM) Filterable+Conde	ensable		9.99E-03	1.44E-01	6.29E-01	
Sulfur Dioxide (SO2)			5.88E-04	8.46E-03	3.70E-02	
		<i>n</i> · · · 1		lb/hr	Metric Tonne/yr	
		g/bhp-hr ⁻				
Carbon Dioxide (CO2)		g/bhp-hr ¹ 438		<u>.</u>	7193	
Carbon Dioxide (CO2) Methane (CH4) ¹ g/bhp-hr are based on Caterpillar S Note that g/bhp-hr values are based	d on 100% Load Operation.	438 4.75 her supplied fuel gas, 1200 ft e or air permitting, it is recomm	nended to use a 20% saf	1811 19.63 x Air Inlet Temperatu	7193 78.00	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar S	d on 100% Load Operation. F pounds to allow for variation A's AP-42, Fifth Edition, Volu	438 4.75 her supplied fuel gas, 1200 ft e for air permitting, it is recomm i in operating parameters and	nended to use a 20% saf fuel gas quality.	1811 19.63 x Air Inlet Temperatu iety margin	7193 78.00	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar S Note that g/bhp-hr values are based for CO, VOC and other organic com ² Emission Factor obtained from EPA	d on 100% Load Operation. F pounds to allow for variation A's AP-42, Fifth Edition, Volu	438 4.75 her supplied fuel gas, 1200 ft e for air permitting, it is recomm i in operating parameters and	nended to use a 20% saf fuel gas quality.	1811 19.63 x Air Inlet Temperatu iety margin	7193 78.00	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar S Note that g/bhp-hr values are based for CO, VOC and other organic com ² Emission Factor obtained from EPA Gas-Fired Reciprocating Engines, Ta	d on 100% Load Operation. F pounds to allow for variation A's AP-42, Fifth Edition, Volu able 3.2-2).	438 4.75 her supplied fuel gas, 1200 ft e for air permitting, it is recomm i in operating parameters and	nended to use a 20% saf fuel gas quality.	1811 19.63 x Air Inlet Temperatu iety margin	7193 78.00	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar S Note that g/bhp-hr values are based for CO, VOC and other organic com ² Emission Factor obtained from EPA Gas-Fired Reciprocating Engines, Ta Catalytic Converter Emissions	d on 100% Load Operation. F pounds to allow for variation A's AP-42, Fifth Edition, Volu able 3.2-2).	438 4.75 her supplied fuel gas, 1200 ft e or air permitting, it is recomm in operating parameters and me I, Chapter 3: Stationary Int	nended to use a 20% saf fuel gas quality.	1811 19.63 x Air Inlet Temperatu iety margin	7193 78.00	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar S Note that g/bhp-hr values are based for CO, VOC and other organic com ² Emission Factor obtained from EPA Gas-Fired Reciprocating Engines, Ta Catalytic Converter Emissions <i>Catalytic Converter Make and Mode</i>	d on 100% Load Operation. F pounds to allow for variation A's AP-42, Fifth Edition, Volu able 3.2-2).	438 4.75 her supplied fuel gas, 1200 ft e or air permitting, it is recomm in operating parameters and me I, Chapter 3: Stationary Int	nended to use a 20% saf fuel gas quality.	1811 19.63 x Air Inlet Temperatu iety margin	7193 78.00	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar S Note that g/bhp-hr values are based for CO, VOC and other organic com ² Emission Factor obtained from EPA Gas-Fired Reciprocating Engines, Ta Catalytic Converter Emissions <i>Catalytic Converter Make and Mode</i> <i>Element Type:</i>	d on 100% Load Operation. F pounds to allow for variation A's AP-42, Fifth Edition, Volu able 3.2-2). the TBD Oxida	438 4.75 her supplied fuel gas, 1200 ft e or air permitting, it is recomm in operating parameters and me I, Chapter 3: Stationary Int	nended to use a 20% saf fuel gas quality.	1811 19.63 x Air Inlet Temperatu iety margin	7193 78.00	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar S Note that g/bhp-hr values are based for CO, VOC and other organic com ² Emission Factor obtained from EPA Gas-Fired Reciprocating Engines, Ta Catalytic Converter Emissions Catalytic Converter Make and Mode Element Type: Number of Elements in Housing:	d on 100% Load Operation. F pounds to allow for variation A's AP-42, Fifth Edition, Volu able 3.2-2). the TBD Oxida TBD	438 4.75 her supplied fuel gas, 1200 ft e or air permitting, it is recomm in operating parameters and me I, Chapter 3: Stationary Int	nended to use a 20% saf fuel gas quality.	1811 19.63 x Air Inlet Temperatu iety margin	7193 78.00	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar S Note that g/bhp-hr values are based for CO, VOC and other organic com ² Emission Factor obtained from EPA Gas-Fired Reciprocating Engines, Ta Catalytic Converter Emissions Catalytic Converter Make and Mode Element Type: Number of Elements in Housing:	d on 100% Load Operation. F pounds to allow for variation A's AP-42, Fifth Edition, Volu able 3.2-2). the TBD Oxida TBD	438 4.75 her supplied fuel gas, 1200 ft e or air permitting, it is recomm i n operating parameters and me I, Chapter 3: Stationary Int	nended to use a 20% saf fuel gas quality. ernal Combution Source	1811 19.63 x Air Inlet Temperatu ety margin es (Section 3.2 Natur	7193 78.00 Ire.	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar S Note that g/bhp-hr values are based for CO, VOC and other organic com ² Emission Factor obtained from EPA Gas-Fired Reciprocating Engines, Ta Catalytic Converter Emissions Catalytic Converter Make and Mode Element Type: Number of Elements in Housing: Air/Fuel Ratio Control	d on 100% Load Operation. F pounds to allow for variation A's AP-42, Fifth Edition, Volu able 3.2-2). the TBD Oxida TBD	438 4.75 her supplied fuel gas, 1200 ft e for air permitting, it is recomm in operating parameters and me I, Chapter 3: Stationary Int tion 4 <u>% Reduction</u> 0 90	nended to use a 20% saf fuel gas quality. ernal Combution Source g/bhp-hr	1811 19.63 x Air Inlet Temperatu ety margin es (Section 3.2 Natur (Section 3.2 Natur Lb/hr 1.24 1.03	7193 78.00 Ire. ral <u>TPY</u> 5.43 4.53	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar S Note that g/bhp-hr values are based for CO, VOC and other organic com ² Emission Factor obtained from EPA Gas-Fired Reciprocating Engines, Ta Catalytic Converter Emissions <i>Catalytic Converter Make and Mode</i> <i>Element Type:</i> <i>Number of Elements in Housing:</i> <i>Air/Fuel Ratio Control</i> Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC o	d on 100% Load Operation. F pounds to allow for variation A's AP-42, Fifth Edition, Volu able 3.2-2). TBD Oxida TBD ADEM	438 4.75 her supplied fuel gas, 1200 ft e for air permitting, it is recomm in operating parameters and me I, Chapter 3: Stationary Int tion 4 <u>% Reduction</u> 90 50	nended to use a 20% saf fuel gas quality. ernal Combution Source <u>g/bhp-hr</u> 0.30 0.25 0.17	1811 19.63 x Air Inlet Temperatu ety margin es (Section 3.2 Natur (Section 3.2 Natur 1.24 1.03 0.68	7193 78.00 Ire. ral <u>TPY</u> 5.43 4.53 2.99	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar S Note that g/bhp-hr values are based for CO, VOC and other organic com ² Emission Factor obtained from EPA Gas-Fired Reciprocating Engines, Ta Catalytic Converter Emissions <i>Catalytic Converter Make and Mode</i> <i>Element Type:</i> <i>Number of Elements in Housing:</i> <i>Air/Fuel Ratio Control</i> Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC o Formaldehyde (CH2O)	d on 100% Load Operation. F pounds to allow for variation A's AP-42, Fifth Edition, Volu able 3.2-2). TBD Oxida TBD ADEM	438 4.75 her supplied fuel gas, 1200 ft e for air permitting, it is recomm in operating parameters and me I, Chapter 3: Stationary Int tion 4 <u>% Reduction</u> 90 50 80	nended to use a 20% saf fuel gas quality. ernal Combution Source <u>g/bhp-hr</u> 0.30 0.25	1811 19.63 x Air Inlet Temperatu ety margin es (Section 3.2 Natur (Section 3.2 Natur 1.24 1.03 0.68 0.16	7193 78.00 Ire. ral <u>TPY</u> 5.43 4.53 2.99 0.69	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar S Note that g/bhp-hr values are based for CO, VOC and other organic com ² Emission Factor obtained from EPA Gas-Fired Reciprocating Engines, Ta Catalytic Converter Emissions <i>Catalytic Converter Make and Mode</i> <i>Element Type:</i> <i>Number of Elements in Housing:</i> <i>Air/Fuel Ratio Control</i> Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC o Formaldehyde (CH2O) Particulate Matter (PM)	d on 100% Load Operation. F pounds to allow for variation A's AP-42, Fifth Edition, Volu able 3.2-2). TBD Oxida TBD ADEM	438 4.75 her supplied fuel gas, 1200 ft e ior air permitting, it is recomm in operating parameters and me I, Chapter 3: Stationary Int tion 4 <u>% Reduction</u> 0 90 50 80 0	nended to use a 20% saf fuel gas quality. ernal Combution Source <u>g/bhp-hr</u> 0.30 0.25 0.17	1811 19.63 x Air Inlet Temperatu ety margin es (Section 3.2 Natur 1.24 1.03 0.68 0.16 1.44E-01	7193 78.00 Ire. ral TPY 5.43 4.53 2.99 0.69 6.29E-01	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar S Note that g/bhp-hr values are based for CO, VOC and other organic com ² Emission Factor obtained from EPA Gas-Fired Reciprocating Engines, Ta Catalytic Converter Emissions <i>Catalytic Converter Make and Mode</i> <i>Element Type:</i> <i>Number of Elements in Housing:</i> <i>Air/Fuel Ratio Control</i> Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC o Formaldehyde (CH2O)	d on 100% Load Operation. F pounds to allow for variation A's AP-42, Fifth Edition, Volu able 3.2-2). TBD Oxida TBD ADEM	438 4.75 her supplied fuel gas, 1200 ft e for air permitting, it is recomm in operating parameters and me I, Chapter 3: Stationary Int tion 4 <u>% Reduction</u> 90 50 80	nended to use a 20% saf fuel gas quality. ernal Combution Source <u>g/bhp-hr</u> 0.30 0.25 0.17	1811 19.63 x Air Inlet Temperatu ety margin es (Section 3.2 Natur (Section 3.2 Natur 1.24 1.03 0.68 0.16	7193 78.00 Ire. ral <u>TPY</u> 5.43 4.53 2.99 0.69	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar S Note that g/bhp-hr values are based for CO, VOC and other organic com ² Emission Factor obtained from EPA Gas-Fired Reciprocating Engines, Ta Catalytic Converter Emissions <i>Catalytic Converter Make and Mode</i> <i>Element Type:</i> <i>Number of Elements in Housing:</i> <i>Air/Fuel Ratio Control</i> Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC o Formaldehyde (CH2O) Particulate Matter (PM) Sulfur Dioxide (SO2)	d on 100% Load Operation. F pounds to allow for variation A's AP-42, Fifth Edition, Volu able 3.2-2). TBD Oxida TBD ADEM	438 4.75 her supplied fuel gas, 1200 ft effort air permitting, it is recommended in operating parameters and me I, Chapter 3: Stationary Int tion 4 4 <u>% Reduction</u> 0 90 50 80 0 0 0 <u>% Reduction</u>	nended to use a 20% saf fuel gas quality. ernal Combution Source <u>g/bhp-hr</u> 0.30 0.25 0.17	1811 19.63 x Air Inlet Temperatu ety margin es (Section 3.2 Natur 1.24 1.03 0.68 0.16 1.44E-01 8.46E-03 lb/hr	7193 78.00 Ire. ral TPY 5.43 4.53 2.99 0.69 6.29E-01 3.70E-02 Metric Tonne/yr	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar S Note that g/bhp-hr values are based for CO, VOC and other organic com ² Emission Factor obtained from EPA Gas-Fired Reciprocating Engines, Ta Catalytic Converter Emissions <i>Catalytic Converter Make and Mode</i> <i>Element Type:</i> <i>Number of Elements in Housing:</i> <i>Air/Fuel Ratio Control</i> Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC o Formaldehyde (CH2O) Particulate Matter (PM)	d on 100% Load Operation. F pounds to allow for variation A's AP-42, Fifth Edition, Volu able 3.2-2). TBD Oxida TBD ADEM	438 4.75 her supplied fuel gas, 1200 ft e for air permitting, it is recomm in operating parameters and me I, Chapter 3: Stationary Int tion 4 <u>% Reduction</u> 0 90 50 80 0 0	nended to use a 20% saf fuel gas quality. ernal Combution Source <u>g/bhp-hr</u> 0.30 0.25 0.17	1811 19.63 x Air Inlet Temperatu ety margin es (Section 3.2 Natur 1.24 1.03 0.68 0.16 1.44E-01 8.46E-03	7193 78.00 Ire. ral 5.43 4.53 2.99 0.69 6.29E-01 3.70E-02	

G3606

SET POINT TIMING:

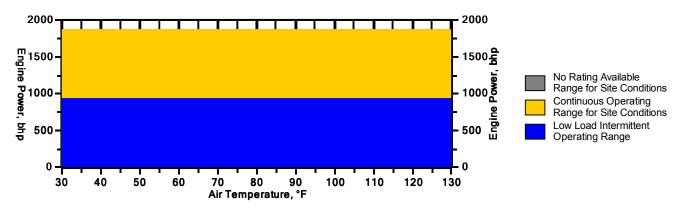
ENCINE SITE SPECIEIC TECHNICAL DATA

18

00000	GAS ENGINE SITE SPECIFIC TECHNICAL DATA					
GAS COMPRESSION APPLICATION	G3606 A4 STD Engine					
ENGINE SPEED (rpm):	1000	RATING STRATEGY:	STANDARD			
COMPRESSION RATIO:	7.6	RATING LEVEL:	CONTINUOUS			
AFTERCOOLER TYPE:	SCAC	FUEL SYSTEM:	GAV			
AFTERCOOLER - STAGE 2 INLET (°F):	130		WITH AIR FUEL RATIO CONTROL			
AFTERCOOLER - STAGE 1 INLET (°F):	174	SITE CONDITIONS:				
JACKET WATER OUTLET (°F):	190	FUEL:	Nat Gas			
ASPIRATION:	TA	FUEL PRESSURE RANGE(psig): (See note 1)	58.0-70.3			
COOLING SYSTEM:	JW+1AC, OC+2AC	FUEL METHANE NUMBER:	84.7			
CONTROL SYSTEM:	ADEM4	FUEL LHV (Btu/scf):	905			
EXHAUST MANIFOLD:	DRY	ALTITUDE(ft):	1200			
COMBUSTION:	LOW EMISSION	MAXIMUM INLET AIR TEMPERATURE(°F):	90			
NOx EMISSION LEVEL (g/bhp-hr NOx):	0.3	STANDARD RATED POWER:	1875 bhp@1000rpm			

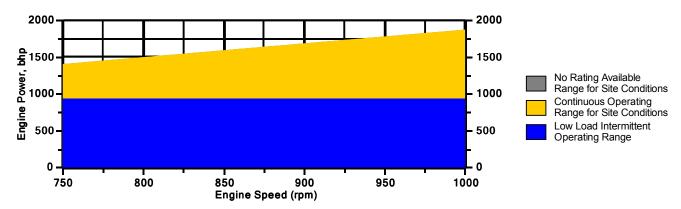
CATERPILLAR®

			MAXIMUM RATING	-	TING AT N IR TEMPE	
RATING	NOTES	LOAD	100%	100%	75%	50%
ENGINE POWER (WITHOUT FAN)	(2)	bhp	1875	1875	1406	938
INLET AIR TEMPERATURE		°F	90	90	90	90
ENGINE DATA						
FUEL CONSUMPTION (LHV)	(3)	Btu/bhp-hr	6913	6913	7193	7770
FUEL CONSUMPTION (HHV)	(3)	Btu/bhp-hr	7669	7669	7979	8619
AIR FLOW (@inlet air temp, 14.7 psia) (WET)	(4)(5)	ft3/min	4816	4816	3659	2512
AIR FLOW (WET)	(4)(5)	lb/hr	20848	20848	15839	10875
FUEL FLOW (60°F, 14.7 psia)		scfm	239	239	186	134
INLET MANIFOLD PRESSURE	(6)	in Hg(abs)	102.1	102.1	78.8	56.1
EXHAUST TEMPERATURE - ENGINE OUTLET	(7)	°F	822	822	893	971
EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (WET)	(8)(5)	ft3/min	11998	11998	9630	7010
EXHAUST GAS MASS FLOW (WET)	(8)(5)	lb/hr	21502	21502	16349	11242
EMISSIONS DATA - ENGINE OUT						
NOx (as NO2)	(9)(10)	g/bhp-hr	0.30	0.30	0.30	0.30
CO	(9)(10)	g/bhp-hr	2.50	2.50	2.50	2.50
THC (mol. wt. of 15.84)	(9)(10)	g/bhp-hr	5.23	5.23	5.40	5.73
NMHC (mol. wt. of 15.84)	(9)(10)	g/bhp-hr	0.48	0.48	0.50	0.53
NMNEHC (VOCs) (mol. wt. of 15.84)	(9)(10)(11)	g/bhp-hr	0.33	0.33	0.34	0.36
HCHO (Formaldehyde)	(9)(10)	g/bhp-hr	0.19	0.19	0.20	0.22
CO2	(9)(10)	g/bhp-hr	438	438	454	492
EXHAUST OXYGEN	(9)(12)	% DRY	11.0	11.0	10.9	10.5
HEAT REJECTION						
HEAT REJ. TO JACKET WATER (JW)	(13)	Btu/min	22822	22822	18354	15210
HEAT REJ. TO ATMOSPHERE	(13)	Btu/min	5813	5813	5595	5388
HEAT REJ. TO LUBE OIL (OC)	(13)	Btu/min	11668	11668	10790	9350
HEAT REJ. TO A/C - STAGE 1 (1AC)	(13)(14)	Btu/min	15573	15573	7959	2379
HEAT REJ. TO A/C - STAGE 2 (2AC)	(13)(14)	Btu/min	7331	7331	4551	2274
COOLING SYSTEM SIZING CRITERIA						
TOTAL JACKET WATER CIRCUIT (JW+1AC)	(14)(15)	Btu/min	41456	1		
TOTAL STAGE 2 AFTERCOOLER CIRCUIT (OC+2AC)	(14)(15)	Btu/min	21700			
A cooling system safety factor of 0% has been added to the cooling system sizing criteria.			•			
CONDITIONS AND DEFINITIONS				•		

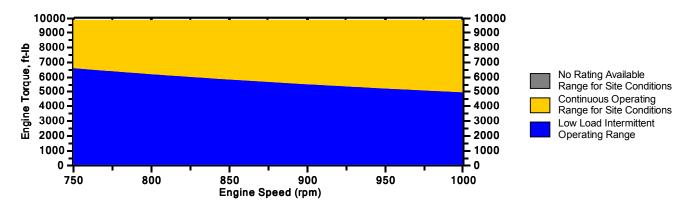

CONDITIONS AND DEFINITIONS Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

For notes information consult page three.

GAS ENGINE SITE SPECIFIC TECHNICAL DATA G3606 A4 STD Engine


Engine Power vs. Inlet Air Temperature

Data represents temperature sweep at 1200 ft and 1000 rpm


Engine Power vs. Engine Speed

Data represents speed sweep at 1200 ft and 90 °F

Engine Torque vs. Engine Speed

Data represents speed sweep at 1200 ft and 90 °F

Note: At site conditions of 1200 ft and 90°F inlet air temp., constant torque can be maintained down to 750 rpm. The minimum speed for loading at these conditions is 750 rpm.

G3606

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA G3606 A4 STD Engine

NOTES

1. Fuel pressure range specified is to the engine gas shutoff valve (GSOV). Additional fuel train components should be considered in pressure and flow calculations.

2. Engine rating is with two engine driven water pumps. Tolerance is \pm 3% of full load.

3. Fuel consumption tolerance is ± 2.5% of full load data.

4. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of \pm 5 %.

- 5. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.
- 6. Inlet manifold pressure is a nominal value with a tolerance of \pm 5 %.

7. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.

8. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of ± 6 %.

9. Emissions data is at engine exhaust flange prior to any after treatment.

10. Values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate the maximum values expected under steady state conditions. Fuel methane number cannot vary more than ± 3. THC, NMHC, and NMNEHC do not include aldehydes. An oxidation catalyst may be required to meet Federal, State or local CO or HC requirements.

11. VOCs - Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ

12. Exhaust Oxygen level is the result of adjusting the engine to operate at the specified NOx level. Tolerance is ± 0.5.

13. Heat rejection values are nominal. Tolerances, based on treated water, are ± 10% for jacket water circuit, ± 50% for radiation, ± 20% for lube oil circuit, and ± 5% for aftercooler circuit.

14. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.

15. Cooling system sizing criteria are maximum circuit heat rejection for the site, with applied tolerances.

Constituent	Abbrev	Mole %	Norm		
Water Vapor	H2O	0.0000	0.0000		
Methane	CH4	92.2700	92.2700	Fuel Makeup:	Nat Gas
Ethane	C2H6	2.5000	2.5000	Unit of Measure:	English
Propane	C3H8	0.5000	0.5000		0
Isobutane	iso-C4H1O	0.0000	0.0000	Calculated Fuel Properties	
Norbutane	nor-C4H1O	0.2000	0.2000	• •	84.7
Isopentane	iso-C5H12	0.0000	0.0000	Caterpillar Methane Number:	04./
Norpentane	nor-C5H12	0.1000	0.1000		
Hexane	C6H14	0.0500	0.0500	Lower Heating Value (Btu/scf):	905
Heptane	C7H16	0.0000	0.0000	Higher Heating Value (Btu/scf):	1004
Nitrogen	N2	3.4800	3.4800	WOBBE Index (Btu/scf):	1168
Carbon Dioxide	CO2	0.9000	0.9000		
Hydrogen Sulfide	H2S	0.0000	0.0000	THC: Free Inert Ratio:	21.83
Carbon Monoxide	CO	0.0000	0.0000		4.38%
Hydrogen	H2	0.0000	0.0000	Total % Inerts (% N2, CO2, He):	
Oxygen	O2	0.0000	0.0000	RPC (%) (To 905 Btu/scf Fuel):	100%
Helium	HE	0.0000	0.0000		
Neopentane	neo-C5H12	0.0000	0.0000	Compressibility Factor:	0.998
Octane	C8H18	0.0000	0.0000	Stoich A/F Ratio (Vol/Vol):	9.45
Nonane	C9H20	0.0000	0.0000	Stoich A/F Ratio (Mass/Mass):	15.75
Ethylene	C2H4	0.0000	0.0000	Specific Gravity (Relative to Air):	0.600
Propylene	C3H6	0.0000	0.0000	Fuel Specific Heat Ratio (K):	1.313
TOTAL (Volume %)		100.0000	100.0000		1.313

CONDITIONS AND DEFINITIONS

Caterpillar Nethane Number represents the knock resistance of a gaseous fuel. It should be used with the Caterpillar Fuel Usage Guide for the engine and rating to determine the rating for the fuel specified. A Fuel Usage Guide for each rating is included on page 2 of its standard technical data sheet.

RPC always applies to naturally aspirated (NA) engines, and turbocharged (TA or LE) engines only when they are derated for altitude and ambient site conditions.

Project specific technical data sheets generated by the Caterpillar Gas Engine Rating Pro program take the Caterpillar Methane Number and RPC into account when generating a site rating.

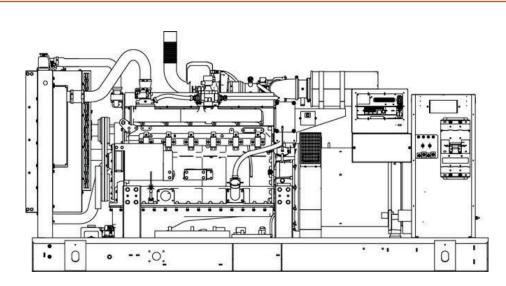
Fuel properties for Btu/scf calculations are at 60F and 14.696 psia.

Caterpillar shall have no liability in law or equity, for damages, consequently or otherwise, arising from use of program and related material or any part thereof.

FUEL LIQUIDS Field gases, well head gases, and associated gases typically contain liquid water and heavy hydrocarbons entrained in the gas. To prevent detonation and severe damage to the engine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid separator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground in accordance with local codes and standards.

To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel operating temperature.

14.2L | 200 kW **SG200** INDUSTRIAL SPARK-IGNITED GENERATOR SET


EPA Certified Stationary Emergency

STANDBY POWER RATING

200 kW, 250 kVA, 60 Hz

PRIME POWER RATING* 180 kW, 225 kVA, 60 Hz

*EPA Certified Prime ratings are not available in the U.S. or its Territories.

Image used for illustration purposes only

INDUSTRIAL

CODES AND STANDARDS

*Built in the USA using domestic and foreign parts

Generac products are designed to the following standards:

UL2200, UL508, UL142, UL498

NFPA70, 99, 110, 37

NEC700, 701, 702, 708

ISO9001, 8528, 3046, 7637, Pluses #2b, 4

NEMA ICS10, MG1, 250, ICS6, AB1

ANSI C62.41

os Dpd IBC 2009, CBC 2010, IBC 2012, ASCE 7-05, ASCE 7-10, ICC-ES AC-156 (2012)

POWERING AHEAD

For over 50 years, Generac has led the industry with innovative design and superior manufacturing.

Generac ensures superior quality by designing and manufacturing most of its generator components, including alternators, enclosures and base tanks, control systems and communications software.

Generac's gensets utilize a wide variety of options, configurations and arrangements, allowing us to meet the standby power needs of practically every application.

Generac searched globally to ensure the most reliable engines power our generators. We choose only engines that have already been proven in heavy-duty industrial application under adverse conditions.

Generac is committed to ensuring our customers' service support continues after their generator purchase.

INDUSTRIAL SPARK-IGNITED GENERATOR SET

EPA Certified Stationary Emergency

GENERAC[®] | INDUSTRIAL POWER

STANDARD FEATURES

ENGINE SYSTEM

General

- Oil Drain Extension
- Air Cleaner
- Fan Guard
- Stainless Steel flexible exhaust connection
- Factory Filled Oil & Coolant
- Radiator Duct Adapter (open set only)
- Critical Exhaust Silencer

Fuel System

- Flexible fuel line NPT Connection
- Primary and secondary fuel shutoff

Cooling System

- Closed Coolant Recovery System
- UV/Ozone resistant hoses
- Factory-Installed Radiator
- 50/50 Ethylene glycol antifreeze
- Radiator drain extension

Engine Electrical System

- · Battery charging alternator
- Battery cables
- Battery tray
- Rubber-booted engine electrical connections
- Solenoid activated starter motor

ALTERNATOR SYSTEM

- UL2200 Genprotect ™
- Class H insulation material
- 2/3 Pitch
- Skewed Stator
- Permanent Magnet Excitation
- Sealed Bearings
- Amortisseur winding
- · Full load capacity alternator

GENERATOR SET

- Internal Genset Vibration Isolation
- · Separation of circuits high/low voltage
- · Separation of circuits multiple breakers
- Wrapped Exhaust Piping
- Standard Factory Testing
- 2 Year Limited Warranty (Standby rated Units)
- 1 Year Warranty (Prime rated units)
- Silencer mounted in the discharge hood (enclosed only)

ENCLOSURE (IF SELECTED)

- Rust-proof fasteners with nylon washers to protect finish
- High performance sound-absorbing material (L1 & L2)
- Gasketed doors
- · Stamped air-intake louvers
- Air discharge hoods for radiator-upward pointing
- · Stainless steel lift off door hinges
- Stainless steel lockable handles
- Rhino Coat[™] Textured polyester powder coat

CONTROL SYSTEM

Control Panel

- Digital H Control Panel Dual 4x20 Display
- Programmable Crank Limiter
- 7-Day Programmable Exerciser
- Special Applications Programmable PLC
- RS-232/485
- · All-Phase Sensing DVR
- Full System Status
- Utility Monitoring
- Low Fuel Pressure Indication
- 2-Wire Start Compatible
- Power Output (kW)
- Power Factor
- kW Hours, Total & Last Run

- Real/Reactive/Apparent Power
- All Phase AC Voltage
- All Phase Currents
- Oil Pressure
- Coolant Temperature
- Coolant Level
- Engine Speed
- Battery Voltage
- Frequency
- Date/Time Fault History (Event Log)
- Isochronous Governor Control
- Waterproof/sealed Connectors
- · Audible Alarms and Shutdowns
- Not in Auto (Flashing Light)
- Auto/Off/Manual Switch
- E-Stop (Red Mushroom-Type)
- NFPA110 Level I and II (Programmable)
- · Customizable Alarms, Warnings, and Events
- Modbus protocol
- Predictive Maintenance algorithm
- Sealed Boards
- · Password parameter adjustment protection

- Single point ground
- 15 channel data logging

High Temp Shutdown)

Low Fuel Pressure Alarm

Battery Voltage Warning

during alarms & warnings

speed Shutdown)

state conditions

codes)

Shutdown)

- 0.2 msec high speed data logging
 Alarm information automatically comes up
- Alarm information automatically comes up on the display

Alarms

•

.

.

 Oil Pressure (Pre-programmable Low Pressure Shutdown)
 Coolant Temperature (Pre-programmed

Coolant Level (Pre-programmed Low Level

Alarms & warnings time and date stamped

Alarms & warnings for transient and steady

Alarms and warnings spelled out (no alarm

SPEC SHEET

2 OF 6

Snap shots of key operation parameters

Engine Speed (Pre-programmed Over

INDUSTRIAL SPARK-IGNITED GENERATOR SET

EPA Certified Stationary Emergency

CONFIGURABLE OPTIONS

ENGINE SYSTEM

General

- O Engine Block Heater
- O Oil Heater
- O Air Filter Restriction Indicator
- O Stone Guard (Open Set Only)

Fuel Electrical System

O 10A & 2.5A UL battery charger O Battery Warmer

ALTERNATOR SYSTEM

- O Alternator Upsizing
- O Anti-Condensation Heater
- O Tropical Coating

CIRCUIT BREAKER OPTIONS

- O Main Line Circuit Breaker
- O 2nd Main Line Circuit Breaker
- O Shunt Trip and Auxiliary Contact
- O Electronic Trip Breaker

ENGINEERED OPTIONS

ENGINE SYSTEM

- O Fluid containment Pans
- O Coolant heater ball valves

ALTERNATOR SYSTEM

RATING DEFINITIONS

O 3rd Breaker Systems

CONTROL SYSTEM

O Spare inputs (x4) / outputs (x4) - H Panel Only O Battery Disconnect Switch

GENERATOR SET

- O Gen-Link Communications Software (English Only)
- O Extended Factory Testing (3 Phase Only)
- O 8 Position Load Center
- O 2 Year Extended Warranty
- O 5 Year Warranty
- O 5 Year Extended Warranty

ENCLOSURE

- O Standard Enclosure
- O Level 1 Sound Attenuation
- O Level 2 Sound Attenuation
- O Steel Enclosure
- O Aluminum Enclosure
- O 150 MPH Wind Kit
- O 12 VDC Enclosure Lighting Kit
- O 120 VAC Enclosure Lighting Kit
- O AC/DC Enclosure Lighting Kit
- O Door Alarm Switch

CONTROL SYSTEM

- O 21-Light Remote Annunciator
- O Remote Relay Board (8 or 16)
- O Oil Temperature Sender with Indication Alarm
- O Remote E-Stop (Break Glass-Type, Surface Mount)
- O Remote E-Stop (Red Mushroom-Type, Surface Mount)
- O Remote E-Stop (Red Mushroom-Type, Flush Mount)
- O Remote Communication Bridge
- O Remote Communication Ethernet
- O 10A Run Relay
- O Ground Fault Indication and Protection Functions

GENERATOR SET

O Special Testing O Battery Box

ENCLOSURE

Standby - Applicable for a varying emergency load for the duration of a utility power outage with no overload capability.

O Motorized Dampers O Enclosure Ambient Heaters

Prime - Applicable for supplying power to a varying load in lieu of utility for an unlimited amount of running time. A 10% overload capacity is available for 1 out of

every 12 hours. The Prime Power option is only available on International applications. Power ratings in accordance with ISO 8528-1, Second Edition

SPEC SHEET

SG200 | **14.2L** | 200 kW INDUSTRIAL SPARK-IGNITED GENERATOR SET

EPA Certified Stationary Emergency

APPLICATION AND ENGINEERING DATA

ENGINE SPECIFICATIONS

General		Cooling System	
Make	Generac	Cooling System Type	Pressurized Closed Recovery
Cylinder #	6	Water Pump Flow -gal/min (I/min)	94 (356)
Туре	In-line	Fan Type	Pusher
Displacement - L (cu ln)	14.17 (864.71)	Fan Speed (rpm)	1894
Bore - mm (in)	135 (5.31)	Fan Diameter mm (in)	762 (30)
Stroke - mm (in)	165 (6.50)	Coolant Heater Wattage	2000
Compression Ratio	9.5:1	Coolant Heater Standard Voltage	240 V
Intake Air Method	Turbocharged/Aftercooled		
Number of Main Bearings	7		
Connecting Rods	Carbon Steel	Fuel System	
Cylinder Head Type	Cast Iron GT250, OHV	Fuel Type	Natural Gas
Cylinder Head	Ductile Iron	Carburetor	Down Draft
Cylinder Liners	Altronic CD1	Secondary Fuel Regulator	Standard
Piston Type	Aluminum	Fuel Shut Off Solenoid	Standard
Crankshaft Type	Ductile Iron	Operating Fuel Pressure (Standard)	7" - 11" H ₂ 0
Lifter Type	Solid		Z
Intake Valve Material	Special Heat-Resistant Steel		
Exhaust Valve Material	Alloy Steel, High Temp	Engine Electrical System	
Hardened Valve Seats	Alloy Steel, High Temp	System Voltage	24 VDC
Engine Governing		Battery Charging Alternator	Standard
Governor	Electronic	Battery Size	See Battery Index 0161970SBY
Frequency Regulation (Steady State)	+/- 0.25%	Battery Voltage	(2)12 VDC
Lubrication System		Ground Polarity	Negative
Oil Pump Type	Gear		
Oil Filter Type	Full-Flow Cartridge		
Crankcase Capacity - L (qts)	34.3 (36.2)		

ALTERNATOR SPECIFICATIONS

Standard Model	520
Poles	4
Field Type	Revolving
Insulation Class - Rotor	Н
Insulation Class - Stator	Н
Total Harmonic Distortion	<5%
Telephone Interference Factor (TIF)	<50

Standard Excitation	Permanent Magnet
Bearings	Sealed Ball
Coupling	Direct, Flexible Disc
Prototype Short Circuit Test	Yes
Voltage Regulator Type	Full Digital
Number of Sensed Phases	3
Regulation Accuracy (Steady State)	$\pm 0.25\%$

SPEC SHEET

OPERATING DATA

POWER RATINGS

	Natural Gas
Single-Phase 120/240 VAC @1.0pf	200 kW Amps: 833
Three-Phase 120/208 VAC @0.8pf	200 kW Amps: 694
Three-Phase 120/240 VAC @0.8pf	200 kW Amps: 601
Three-Phase 277/480 VAC @0.8pf	200 kW Amps: 301
Three-Phase 347/600 VAC @0.8pf	200 kW Amps: 241

STARTING CAPABILITIES (sKVA)

STARTING CAPABILITIES (SKVA)							sKVA vs. V	oltage Dip					
				480	VAC					208/2	40 VAC		
Alternator	kW	10%	15%	20%	25%	30%	35%	10%	15%	20%	25%	30%	35%
Standard	200	187	280	373	467	560	653	140	210	280	350	420	490
Upsize 1	250	263	395	527	658	790	922	197	296	395	494	593	692
Upsize 2	300	303	454	605	757	908	1059	227	341	454	568	681	794

FUEL CONSUMPTION RATES*

Natural Gas - ft 3/hr (m 3/hr)				
Percent Load	Standby			
25%	900 (25.5)			
50%	1543 (43.7)			
75%	2083 (59.0)			
100%	2571 (72.8)			
* Eucl cupply installation must accommodate fuel	concurrention rates at 100% load			

^r Fuel supply installation must accommodate fuel consumption rates at 100% load.

COOLING

		Standby
Air Flow (inlet air combustion and radiator)	ft³/min (m ³/in)	9432 (267)
Coolant Flow per Minute	gal/min (l/min)	6.1 (32.1)
Heat Rejection to Coolant	BTU/hr	670,280
Max. Operating Air Temp on Radiator	°F (°C)	122 (50)
Max. Operating Ambient Temperature (before derate)	°F (°C)	104 (40.0)
Maximum Radiator Backpressure	in H ₂ 0	0.5

COMBUSTION AIR REQUIREMENT

	Standby
Flow at Rated Power cfm (m ³ /min)	432 (12.2)

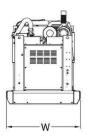
ENGINE

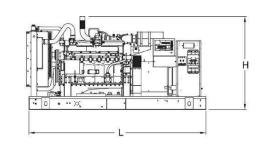
E	ΧН	AU	ST

		Standby			Standby
Rated Engine Speed	rpm	1800	Exhaust Flow (Rated Output)	cfm (m³/min)	1499 (42.4)
Horsepower at Rated kW**	hp	304	Max. Backpressure (Post Silencer)	inHg (Kpa)	0.75
Piston Speed	ft/min	1949 (594)	Exhaust Temp (Rated Output - post silencer)	°F (°C)	1384 (751)
BMEP	psi	179	Exhaust Outlet Size (Open Set)	mm (in)	3.5" I.D. Flex (No Silencer)

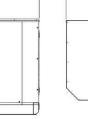
** Refer to "Emissions Data Sheet" for maximum bHP for EPA and SCAQMD permitting purposes.

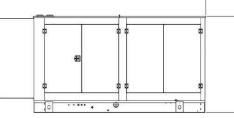
Deration – Operational characteristics consider maximum ambient conditions. Derate factors may apply under atypical site conditions. Please consult a Generac Power Systems Industrial Dealer for additional details. All performance ratings in accordance with ISO3046, BS5514, ISO8528. and DIN6271 standards.

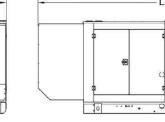

SG200 | **14.2L** | 200 kW

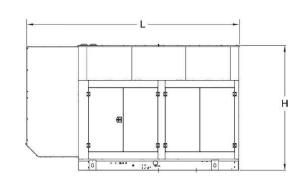

INDUSTRIAL SPARK-IGNITED GENERATOR SET

EPA Certified Stationary Emergency




DIMENSIONS AND WEIGHTS*





W

OPEN SET (Includes Exhaust Flex)

L x W x H in (mm)	127.95 (3250) x 52.93 (1344.5) x 67.37 (1711.2)
Weight lbs (kg)	5460 (2477)

STANDARD ENCLOSURE

L x W x H in (mm)	153.89 (3909) x 52.73 (1339.3) x 69.67 (1769.6)
Weight Ibs (kg)	Steel: 6440 (2921)
	Aluminum: 5974 (2710)

LEVEL 1 ACOUSTIC ENCLOSURE

L x W x H in (mm)	180.11 (4574.7) x 52.73 (1339.3) x 69.67 (1769.6)
	Stool: 6744 (3050)

Weight lbs (kg)

Н

Ĥ

Steel: 6744 (3059) Aluminum: 6104 (2769)

LEVEL 2 ACOUSTIC ENCLOSURE

L x W x H in (mm)	154.45 (3922.9) x 53.96 (1370.6) x 93.40 (2372.3)
Weight lbs (kg)	Steel: 6980 (3166) Aluminum: 6206 (2815)

*All measurements are approximate and for estimation purposes only.

YOUR FACTORY RECOGNIZED GENERAC INDUSTRIAL DEALER

6 OF 6

Specification characteristics may change without notice. Please consult a Generac Power Systems Industrial Dealer for detailed installation drawings.

UNITED STATES I DANNA	UNITED STATES ENVIRONMENTAL PROTECTION AGENCY 2017 MODEL YEAR CERTIFICATE OF CONFORMITY WITH THE CLEAN AIR ACT			OFFICE OF TRANS AND AIR QU ANN ARBOR, MIC	ALITY
Certificate Issued To: Genera (U.S. Ma Certificate Number: HGNXB1	nufacturer or Importer)	Effective Date: 11/09/2016 Expiration Date: 12/31/2017		ker, Division Director iance Division	Issue Date: 11/09/2016 Revision Date: N/A
Manufacturer: Generac Power Engine Family: HGNXB14.220 Mobile/Stationary Certificatio Fuel : Natural Gas (CNG/LNG) Emission Standards : Part 60 Subpart JJJJ Table 1 CO (g/kW-hr) : 5.4 NOx (g/kW-hr) : 2.7 VOC (g/kW-hr) : 1.3	C1 n Type: Stationary				
Emergency Use Only : Y		- SOSTA			

Pursuant to Section 213 of the Clean Air Act (42 U.S.C. section 7547) and 40 CFR Part 60, 1065, 1068, and 60 (stationary only and combined stationary and mobile) and subject to the terms and conditions prescribed in those provisions, this certificate of conformity is hereby issued with respect to the test engines which have been found to conform to applicable requirements and which represent the following nonroad engines, by engine family, more fully described in the documentation required by 40 CFR Part 60 and produced in the stated model year.

This certificate of conformity covers only those new nonroad spark-ignition engines which conform in all material respects to the design specifications that applied to those engines described in the documentation required by 40 CFR Part 60 and which are produced during the model year stated on this certificate of the said manufacturer, as defined in 40 CFR Part 60. This certificate of conformity does not cover nonroad engines imported prior to the effective date of the certificate.

It is a term of this certificate that the manufacturer shall consent to all inspections described in 40 CFR 1068.20 and authorized in a warrant or court order. Failure to comply with the requirements of such a warrant or court order may lead to revocation or suspension of this certificate for reasons specified in 40 CFR Part 60. It is also a term of this certificate that this certificate may be revoked or suspended or rendered void *ab initio* for other reasons specified in 40 CFR Part 60.

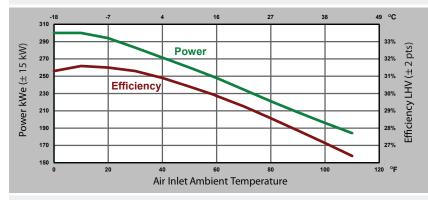
This certificate does not cover large nonroad engines sold, offered for sale, or introduced, or delivered for introduction, into commerce in the U.S. prior to the effective date of the certificate.

Microturbine MT-1 Specifications

FLEX TURBINE[™] GT250S

Ultra-clean electricity and useful thermal energy from a rugged and efficient gas turbine.

250 kW Continuous Onsite Electrical Power with Integrated Heat Recovery

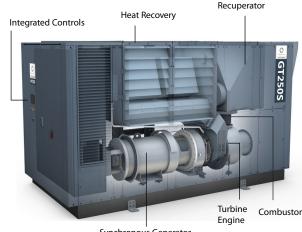

KEY FEATURES

- High system efficiency
- Synchronous generator ideal for off-grid oil & gas applications
- Grid-parallel, Grid isolated, or Dual-mode operation
- Low emissions exceed stringent environmental standards
- Integrated, variable-output, waste-heat recovery unit available
- Over two million hours of fleet operating experience

ELECTRICAL PERFORMANCE*

CHARACTERISTIC	SPECIFICATION
Electrical efficiency (± 2 pts)	30% LHV without gas booster
Electrical power** (±15 kW)	250 kW nominal

ELECTRICAL OUTPUT GRAPH SHOWS CHANGE IN POWER AND EFFICIENCY WITH TEMPERATURE



Note: kWe is electrical output at terminals corrected for parasitics, but not including gas booster power

Nominal heat rate (HHV)	12,645 Btu/kWh (13.3 MJ/kWh) without gas booster					
Nominal field fate (FIFV)	13,080 Btu/kWh (13.8 MJ/kWh) with gas booster					
Nominal heat rate (LHV)	11,380 Btu/kWh (12.0 MJ/kWh) without gas booster					
Nominal field fate (LHV)	11,770 Btu/kWh (12.4 MJ/kWh) with gas booster					
Voltage	480 VAC/400 VAC					
Frequency	60 Hz/50 Hz					
Type of service	3 phase, wye, 4 wire					
Grid-isolated regulation	± 0.50% nominal voltage					
(steady state)	± 0.30 Hz nominal frequency					
Transient handling (linear loads)	± 10% nominal voltage max					
(recovery within 5 seconds)	± 5 Hz frequency max					

* At ISO Conditions (59°F [15°C] @ sea level, 60% RH) unless otherwise noted, pipeline natural gas only.

** Elevation derate of approximately 8.80 kW per 1000 ft (305 m)

Synchronous Generator

CARB CERTIFICATION

 The GT250S is the first microturbine to be certified to the California Air Resource Board's 2007 emissions standards

RUGGED GAS TURBINE

- Back-to-back rotating components
- Proven oil-lubricated bearings
- High H₂S tolerance up to 6500 ppmv

SYNCHRONOUS GENERATOR

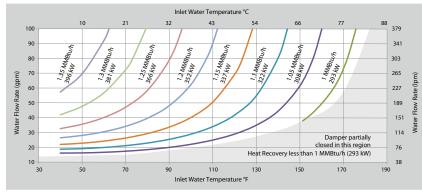
- Same technology utilities use to power the grid
- High load starting capability up to 100 hp DOL

PATENTED RECUPERATOR

- Critical to high system efficiency
- Compact rugged design

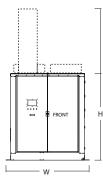
PATENTED COMBUSTOR

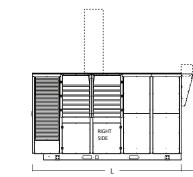
- Dry low NO_x
- Meets stringent environmental regulations


SOPHISTICATED CONTROLS

- Closed transition dual-mode functionality
- Remote monitoring capability

COMBINED HEAT AND POWER


- Controllable output level
 Integral heat recovery unit contained within turbine enclosure
- No ducting


HEAT OUTPUT RECOVERABLE TO WATER

Note: Heat Recovery Unit (HRU) at ISO conditions, damper fully open, $\pm\,15\%$

PHYSICAL SPECIFICATIONS

	DIMENSIONS		WIDTH	LENGTH	HEIGHT	WEIGHT Est.
	Indoor Unit	(in)	77.2	167.6	91.9	14,500 lb
		(cm)	196.0	425.8	229.9	6,577 kg
SEE	Outdoor Unit	(in)	77.2	167.6	158.1	14,500 lb
		(cm)	196.0	425.8	401.6	6,577 kg

MINIMUM CLEARANCE REQUIREMENTS	
CHARACTERISTIC	SPECIFICATION
Vertical clearance	
- Indoor Unit	102 in (259 cm)
- Outdoor Unit	No overhead obstruction
Horizontal front, rear and left side	48 in (122 cm)
Horizontal right side	72 in (183 cm)
GENERATOR BRAKING RESISTOR	
CHARACTERISTIC	SPECIFICATION

Europe: +44 (0)7710 827141

	CHARACTERISTIC Dimensions (LxWxH) Weight	SPECIFICATION 37x63x30 (94x160x76 cm) 485 lb (220 kg)
ator king stor	SOUND LEVELS CHARACTERISTIC Standard Low sound option	SPECIFICATION 80 dB(A) @ 1m 77 dB(A) @ 1m

CONTACT INFORMATION

INFO@FLEXENERGY.COM

PHONE USA: +1.877.477.6937

ADDRESS 30 New Hampshire Avenue Portsmouth, NH 03801 United States

HEAT RECOVERY*

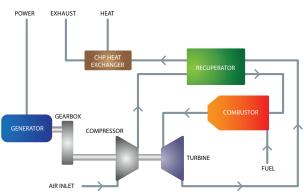
CHARACTERISTIC	SPECIFICATION
Recuperator exhaust temp. w/o HRU	493°F (256°C)
Engine air flow	4.7 lb/s (2.13 kg/s)
	3700 scfm (5950 Nm³/h)
Max water flow	100 gpm (379 lpm)
Max inlet water pressure	125 psig (862 kPa)
Max inlet water temp.	185°F (85°C)
* at ISO Conditions (59°F [15°C] @ sea level, 60% RH)	unless otherwise

noted.

FUEL REQUI	REMENTS						
CHARACTER	RISTIC	SPECIFICATION					
Inlet pressur	re						
-with gas	booster	4" (100 mm) WC to 1 psig (6.9 kPa)					
-without o	gas booster	80 to 140 psig (551 to 965 kPa)					
Min tempera	ature*	33°F (1°C)					
Max temp.	-with gas booster	115°F (46°C)					
	-without gas booste	er 175°F (79°C)					
250SW Mod	el**	325 to 600 WI Btu/ft ³					
low caloric v	alue gas, level 1	12.1 to 22.3 WI MJ/m ³					
250ST Mode	a]**	500 to 970 WI Btu/ft ³					
low caloric v	alue gas, level 2	18.6 to 36.1 WI MJ/m^3					
250SM Mod	el**	800 to 1900 WI Btu/ft ³					
medium / hi	gh caloric value gas	29.8 to 70.7 WI MJ/m^3					
* Or 18°F dew	point suppression, whicheve	er is greater					

** Wobbe Index. Lower heating value (LHV), dry basis, at 14.7 psi (101 kPa) and 59°F (15°C)

EMISSIONS AT 100% LOAD*


EMISSIONS AT TOU% LOAD"	
CHARACTERISTIC	SPECIFICATION
NOx	<5 ppmv @ 15% O ₂
СО	<5 ppmv @ 15% O ₂
VOC	<5 ppmv @ 15% O ₂
* Pipeline natural gas only at ISO conditions	

AMBIENT TEMPERATURE LIMIT

CHARACTERISTIC	SPECIFICATION
Standard	-10° to 115°F (-23° to 46°C)
Cold Weather Option*	-20° to 115°F (-29° to 46°C)

* Some configurations may require additional cold-weather options

GT250S GAS TURBINE CYCLE

©2015 FlexEnergy Inc. and/or its affiliates ("FlexEnergy"). This document comprises a general overview of the products or services described herein. It is solely for informational purposes, does not represent a warranty of the information constrained herein and is not to be construed as an offer to sell or solicitation to buy. Contact FlexEnergy for detailed product, design, and engineering information suitable to your specific applications. FlexEnergy reserves the right to modify its products and related product information at any time without prior notice.

		COL STREET
Weat	 oroo dooi	

Enclosure

Generator Braking Resistor

March 20, 2017

Subject: DTE, West Virginia – GT250S Emissions Data

Below are the expected emissions of a single Flex Turbine[®] GT250S operating on natural gas. The assumed site conditions are 1602 ft. asl., with an ambient temperature range of 0°F to 100°F. For permitting purposes, it is always recommended to permit for the maximum acceptable limits.

Constituent	Percent Power	ppmv @ 15% O ₂	lb/MWh	
	70%	12	0.45	
NOx	85%	9	0.35	
	100%	5	0.20	
	70%	50	1.12	
со	85%	11	0.26	
	100%	5	0.12	
	70%	20	0.25	
VOCs	85%	10	0.13	
	100%	5	0.07	

Let us know if you have any additional questions.

Regards,

Joe Skuza Applications Engineer FlexEnergy Inc. Phone: +1 603-957-8835 joe.skuza@flexenergy.com

Facility-Wide Emission Summary

A	ATTACHMENT V – FACILITY-WIDE CONTROLLED EMISSIONS SUMMARY SHEET													
List all sources of	List all sources of emissions in this table. Use extra pages if necessary.													
E	N	O _x		20	vo	С	SO ₂		PM ₁₀		PM _{2.5}		GHG (CO ₂ e)	
Emission Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
CE-1	1.96	8.57	0.63	2.74	0.90	3.94	0.01	0.03	0.13	0.59	0.13	0.59	2,250.99	9,859.35
CE-2	1.96	8.57	0.63	2.74	0.90	3.94	0.01	0.03	0.13	0.59	0.13	0.59	2,250.99	9,859.35
CE-3	1.96	8.57	0.63	2.74	0.90	3.94	0.01	0.03	0.13	0.59	0.13	0.59	2,250.99	9,859.35
CE-4	1.96	8.57	0.63	2.74	0.90	3.94	0.01	0.03	0.13	0.59	0.13	0.59	2,250.99	9,859.35
CE-5	1.24	5.43	1.03	4.53	0.87	3.80	0.01	0.04	0.14	0.63	0.14	0.63	2,302.38	10,084.41
CE-6	1.24	5.43	1.03	4.53	0.87	3.80	0.01	0.04	0.14	0.63	0.14	0.63	2,302.38	10,084.41
GE-2	1.35	0.34	2.70	0.67	0.70	0.18	1.6E-03	3.9E-04	0.05	0.01	0.05	0.01	310.15	77.54
MT-1	0.11	0.49	0.28	1.23	0.06	0.27	0.01	0.05	0.02	0.09	0.02	0.09	382.98	1,677.44
T26 to T27					0.10	0.46							0.07	0.30
De minimis storage tanks					0.01	0.06								
HT-1	0.05	0.21	0.04	0.18	2.7E-03	0.01	3.1E-03	0.01	3.7E-03	0.02	3.7E-03	0.02	58.56	256.49
L01					0.02	0.01								
Fugitives						1.54								3,187.35
Haul Roads										0.16		0.02		
FACILITY TOTAL	11.82	46.19	7.59	22.10	6.25	25.90	0.06	0.28	0.90	3.90	0.90	3.76	14,360.48	64,805.31
FACILITY TOTAL (Excluding fugitives)	11.82	46.19	7.59	22.10	6.25	24.36	0.06	0.28	0.90	3.75	0.90	3.75	14,360.48	61,617.96

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

	ATTACHMENT V – FACILITY-WIDE HAP CONTROLLED EMISSIONS SUMMARY SHEET													
List all sou	rces of e	missions	in this ta	able. Use	e extra pa	ges if neo	cessary.							
Emission Point ID#	Formaldehyde		Benzene		Toluene		Ethylbenzene		Xylenes		Hexane		Total HAPs	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
CE-1	0.23	1.03	5.9E-03	2.6E-02	5.5E-03	2.4E-02	5.4E-04	2.3E-03	2.5E-03	1.1E-02	0.01	0.07	0.50	2.18
CE-2	0.23	1.03	5.9E-03	2.6E-02	5.5E-03	2.4E-02	5.4E-04	2.3E-03	2.5E-03	1.1E-02	0.01	0.07	0.50	2.18
CE-3	0.23	1.03	5.9E-03	2.6E-02	5.5E-03	2.4E-02	5.4E-04	2.3E-03	2.5E-03	1.1E-02	0.01	0.07	0.50	2.18
CE-4	0.23	1.03	5.9E-03	2.6E-02	5.5E-03	2.4E-02	5.4E-04	2.3E-03	2.5E-03	1.1E-02	0.01	0.07	0.50	2.18
CE-5	0.17	0.72	6.3E-03	2.8E-02	5.9E-03	2.6E-02	5.7E-04	2.5E-03	2.6E-03	1.2E-02	0.02	0.07	0.44	1.95
CE-6	0.17	0.72	6.3E-03	2.8E-02	5.9E-03	2.6E-02	5.7E-04	2.5E-03	2.6E-03	1.2E-02	0.02	0.07	0.44	1.95
GE-2	0.05	0.01	4.2E-03	1.0E-03	1.5E-03	3.7E-04	6.6E-05	1.6E-05	5.2E-04	1.3E-04			0.09	0.02
MT-1	2.3E-03	0.01	3.9E-05	1.7E-04	4.3E-04	1.9E-03	1.0E-04	4.6E-04	2.1E-04	9.2E-04			3.4E-03	0.01
T26 to T27			9.1E-04	4.0E-03	4.6E-04	2.0E-03	< 0.01	< 0.01	< 0.01	< 0.01	5.9E-03	2.6E-02	3.7E-05	1.6E-04
De minimis storage tanks													0.01	0.06
L01													2.2E-03	5.8-04
HT-1	3.6E-05	1.6E-04	1.0E-06	4.5E-06	1.7E-06	7.2E-06					8.7E-04	3.8E-03	9.2E-04	4.0E-03
Fugitives														
Haul Roads														
FACILITY TOTAL	1.33	5.59	0.04	0.16	0.04	0.15	3.5E-03	0.01	0.02	0.07	0.10	0.43	2.98	12.70
FACILITY TOTAL (Excl. fugitives)	1.33	5.59	0.04	0.16	0.04	0.15	3.5E-03	0.01	0.02	0.07	0.10	0.43	2.98	12.70

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

Class I Legal Advertisement

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that DTE Appalachia Gathering, LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a G35D permit for an existing natural gas compressor station (Coopers Run Compressor Station) located off of Daybrook Road (Route 218) and 1.2 miles southeast of Blacksville, WV and is in Monongalia County, West Virginia. Site Latitude and Longitude Coordinates are: 39.70389, -80.20556.

The applicant estimates the potential to discharge the following Regulated Air Pollutants will be:

Pollutant	Facility Wide (tpy)	Facility Wide excluding Fugitive Emissions (tpy)		
Nitrogen Oxides	46.19	46.19		
Carbon Monoxide	22.10	22.10		
Particulate Matter-10	3.90	3.75		
Particulate Matter-2.5	3.76	3.75		
Volatile Organic Compounds	25.90	24.36		
Sulfur Dioxide	0.28	0.28		
Formaldehyde	5.59	5.59		
Benzene	0.16	0.16		
Toluene	0.15	0.15		
Ethylbenzene	0.01	0.01		
Xylenes	0.07	0.07		
Hexane	0.43	0.43		
Total Hazardous Air Pollutants	12.70	12.70		
Carbon Dioxide Equivalents (CO2e)	64,805.31	61,617.96		

The facility is currently in operation and is seeking to add additional compression and ancillary equipment. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the XX Day of June, 2017.

By: DTE Appalachia Gathering, LLC Ian Connelly, Gas Pipeline Engineer 333 Technology Drive, Suite 109 Canonsburg, PA 15317