

G70-D General Permit Application

UNB Natural Gas Production Site

Taylor County, West Virginia

Prepared By:

Environmental Resources Management, Inc. Hurricane, West Virginia

June 2017

People Powered. Asset Strong.

June 2, 2017

Mr. William F. Durham, Director West Virginia Department of Environmental Protection Division of Air Quality 601 57th Street, SE Charleston, West Virginia, 25304

RE: G70-D General Permit Registration Application Arsenal Resources UNB Natural Gas Production Site

Dear Director Durham:

Enclosed are one (1) original hard copy and two (2) complete PDFs included on CD-ROM of a G70-D General Permit Registration Application for the authority to construct the UNB natural gas production site located in Taylor County, West Virginia.

A legal advertisement will be published in the next few days and proof of publication will be forwarded as soon as it is received. Please contact me for payment of the application fee by credit card.

If you have any questions concerning this permit application, please contact me at (724) 940-1112 or by email at myingling@arsenalresources.com.

Sincerely,

Meghan M.B. Yingling Environmental Compliance Manager Arsenal Resources

Enclosures

6031 Wallace Road Ext, Suite 300 Wexford, PA 15090 P: 724-940-1100 F: 800-428-0981 www.arsenalresources.com

1.0 INTRODUCTION NARRATIVE

Arsenal Resources, LLC (Arsenal) submits this G70-D Class II General Permit application to the West Virginia Department of Environmental Protection's Department of Air Quality (WVDAQ) for the UNB Wellpad (UNB) site located in Taylor County, West Virginia. This application addresses the operational activities associated with the production of natural gas and produced water at the UNB pad.

Arsenal would like to submit a G70-D Class II General permit to reflect the following at the UNB site:

- Five (5) Natural Gas Wells;
- Five (5) Gas Production Units/Heaters each rated at 1.00 MMBtu/hr input;
- One (1) 210 bbl Blowdown Tank;
- Five (5) 400 bbl Produced Water Tank;
- One (1) Produced Water Loadout; and
- One (1) Thermoelectric Generator.

Statement of aggregation

The UNB pad will be located in Taylor County, WV and operated by Arsenal. Stationary sources of air pollutants may require aggregation of total emission levels if these sources share the same industrial grouping, are operating under common control, and are classified as contiguous or adjacent properties. Arsenal operates the UNB with the same industrial grouping as nearby facilities, and some of these facilities are under common control. However, the UNB site is not subject to the aggregation of stationary emission sources because these sites do not meet the definition of contiguous or adjacent facilities.

The UNB pad operates under SIC code 1311 (Crude Petroleum and Natural Gas Extraction). There are surrounding wells operated by Arsenal that share the same two digit major SIC code of 13 for Crude Petroleum and Natural Gas Extraction. Therefore, the UNB pad does share the same SIC codes as the surrounding wells and compressor stations.

Arsenal is the sole operator of the UNB pad. Arsenal is also the sole operator of other production sites and compressor stations in the area. Therefore, Arsenal does qualify as having nearby operations under common control.

On August 18, 2016 the EPA Administrator signed the *Source Determination for Certain Emission Units in the Oil and Natural Gas Sector*. This notice clarified EPA's position regarding how properties in the oil and natural gas sector are determined to be adjacent in order to assist permitting authorities and permit applicants in making consistent source determinations. The following proposed regulatory text defines "adjacent" for the oil and gas sector in terms of proximity.

> Pollutant emitting activities shall be considered adjacent if they are located on the same surface site, or on surface sites that are located within ¹/₄ mile of one another.

There are no Arsenal owned or operated sites with a ¹/₄ mile radius of the UNB pad. Nearby sites do not meet the definition of contiguous or adjacent properties since they are not in contact and do not share a common boundary. The operations conducted at the UNB site do not rely on or interact with other sites. Furthermore, operations separated by this distance do not meet the common sense notion of a "plant."

Based on the above reasoning, Arsenal is not subject to the aggregation of stationary emission sources since the stationary sources are not considered contiguous or adjacent facilities.

2.0 REGULATORY DISCUSSION

This section outlines the State air quality regulations that could be reasonably expected to apply to the UNB pad and makes an applicability determination for each regulation based on activities conducted at the site and the emissions of regulated air pollutants. This review is presented to supplement and/or add clarification to the information provided in the WVDEP G70-D permit application forms. The West Virginia State Regulations address federal regulations, including Prevention of Significant Deterioration permitting, Title V permitting, New Source Performance Standards, and National Emission Standards for Hazardous Air Pollutants.

The regulatory requirements in reference to UNB are described in detail in the below section.

West Virginia State Air Regulations

45 CSR 02 – To Prevent and Control Particulate Air Pollution From Combustion of Fuel in Indirect Heat Exchangers

The line heaters associated with gas production units are indirect heat exchangers that combust natural gas but are exempt from this regulation since the heat input capacities are less than 10 MMBtu/hr.

45 CSR 04 – To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contributes to an Objectionable Odor

Operations conducted at the UNB well pad are subject to this requirement. Based on the nature of the process at the well pad, the presence of objectionable odors is unlikely.

45 CSR 06 – Control of Air Pollution from the Combustion of Refuse

The UNB Wellpad does not have a combustion device and is therefore not subject to this rule.

45 CSR 10 – To Prevent and Control Air Pollution from the Emission of Sulfur Oxides

The line heaters are indirect heat exchangers that combust natural gas but are exempt from this regulation since the heat input capacities are less than 10 MMBtu/hr.

45 CSR 13 – Permits for Construction, Modification, Relocation and Operation of Stationary Sources of Air Pollutants

This G70-D permit application is being submitted for the operational activities associated with Arsenal's production of natural gas.

45 CSR 14 – Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution for the Prevention of Significant Deterioration

Federal construction permitting programs regulate new and modified sources of attainment pollutants under Prevention of Significant Deterioration (PSD). The G70-D applicability criterion excludes facilities that meet the definition of a major source as defined in 45 CSR 19 for being eligible for the general permit.

Operation of equipment at the UNB pad will not exceed emission thresholds established by this permitting program. Arsenal will monitor future construction and modification activities at the site closely and will compare any future increase in emissions with the PSD thresholds to ensure these activities will not trigger this program.

45 CSR 16 - Standards of Performance for New Stationary Sources (NSPS)

45 CSR 16 applies to all registrants that are subject to any of the NSPS requirements described in more detail in the Federal Regulations section.

45 CSR 19 – Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution which Cause or Contributed to Non-attainment

Federal construction permitting programs regulate new and modified sources of nonattainment pollutants under Non-Attainment New Source Review (NNSR). The G70-D applicability criterion excludes facilities that meet the definition of a major source as defined in 45 CSR 19 for being eligible for the general permit.

Taylor County, WV is in attainment for all pollutants with a National Ambient Air Quality Standard (NAAQS). Therefore, this regulation would not apply to the UNB site.

45 CSR 25 – Control of Air Pollution from Hazardous Waste Treatment, Storage, and Disposal Facilities

No hazardous waste will be burned at this well site; therefore, it is not subject to this hazardous waste rule.

45 CSR 30 – Requirements for Operating Permits

45 CSR 30 applies to the requirements of the federal Title V operating permit program (40 CFR 70). The major source thresholds for the Title V operating permit program regulations are 10 tons per year (tpy) of a single hazardous air pollutant (HAP), 25 tpy of any combination of HAPs, or 100 tpy of all other regulated pollutants.

The potential emissions of all regulated pollutants at the proposed site are below the corresponding major source threshold(s). Therefore, the UNB wellpad will not be a major source under the Title V program.

45 CSR 34 – National Emission Standards for Hazardous Air Pollutants (NESHAP)

45 CSR 34 applies to all registrants that are subject to any of the NESHAP requirements. The NESHAP Rules are discussed further in the Federal Regulation section of this document.

Federal Regulations

New Source Performance Standards

40 CFR 60, Subpart OOOO (Standards of Performance for Crude oil and Natural Gas Production, Transmission and Distribution)

Subpart OOOO establishes emission standards and compliance schedules for the control of volatile organic compounds (VOC) and sulfur dioxide (SO₂) emissions from affected facilities that commence construction, modification or reconstruction between August 23, 2011 and September 18, 2015. The applicable provisions and requirements of Subpart OOOO are included under the G70-D permit.

The UNB site does not have any affected facilities subject to Subpart OOOO.

Subpart OOOOa (Standards Of Performance For Crude Oil And Natural Gas Facilities For Which Construction, Modification, Or Reconstruction Commenced After September 18, 2015)

The UNB site will commence construction after September 18, 2015 and therefore will qualify as an affected facility under OOOOa. The UNB site will qualify as a collection of fugitive components affected facility. As a fugitive component affected facility, in order to comply, LDAR monitoring at the UNB site must be performed within 60 days of startup of production and then semi-annually thereafter. The UNB site will also qualify as a gas well affected facility for all production wells.

There are several equipment types that have been installed at UNB that do not meet the affected facility definitions as specified by EPA. These include:

- Storage vessels: Emissions from each storage vessel were determined to be below 6 tons per year (tpy) of VOC. Therefore, the produced water tanks are not affected storage vessels.
- Pneumatic devices: All pneumatic devices installed at the UNB site are either low-continuous bleed or intermittent bleed and do not qualify as affected sources.

40 CFR 60 Subpart JJJJ (Standards of Performance for Stationary Spark Ignition Internal Combustion Engines)

The UNB site does not operate any engines and therefore will not be subject to 40 CFR 60 Subpart JJJJ.

No additional NSPS are expected to be applicable to this site.

National Emissions Standards for Hazardous Air Pollutants

The following NESHAP included in the G70-D permit are not applicable to the UNB site:

- 40 CFR 63 Subpart HH (National Emission Standards for Hazardous Air Pollutants from Oil and Natural Gas Production Facilities).
- 40CFR63 Subpart ZZZZ (National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines)

No additional NESHAP are expected to be applicable to this site.

General Permit G70-D will establish an emission cap on the following regulated and hazardous air pollutants (consistent with the PTE of the site):

Regulated Pollutant	Potential Annual Emissions (tpy)	Maximum Annual Emission Limit (tpy)
со	1.80	80
NOx	2.15	50
PM	0.16	20
PM-10	0.01	20
SO ₂	< 0.01	20
VOC	26.90	80
Total HAPs	0.99	20

The fugitive emissions of a stationary source shall not be considered in determining whether it is a major stationary source for the purposes of 45CSR30-2.26.b or for eligibility of this General Permit.

G70-D GENERAL PH	ERMIT RE	EGISTRAT	ION A	PPLICATION
PREVENTION AND CONTROL OF AII RELOCATION, NATURAL GAS PRO	ADMINISTRATIV	VE UPDATE AND	OPERATION	N OF
⊠CONSTRUCTION		CLASS I ADM	INISTRATIV	'E UPDATE
□ MODIFICATION □ RELOCATION		□CLASS II ADM	IINISTRATIV	VE UPDATE
	ECTION 1 GENE	RAL INFORMATIO	N	
Name of Applicant (as registered with the				
Name of Applicant (as registered with the	w v Secretary of S	tate s office). Als		
Federal Employer ID No. (FEIN): 47-1919	9654			
Applicant's Mailing Address: 65 Profess	ional Place Suit	e 200		
City: Bridgeport	State: WV			ZIP Code: 26330
Facility Name: UNB Natural Gas Produ	ction Site			
Operating Site Physical Address: 8740 Vic If none available, list road, city or town an		fton, WV 26354		
City: Grafton	Zip Code: 26354	1		County: Taylor
Latitude & Longitude Coordinates (NAD83 Latitude: 39.43408 Longitude: -79.94391	3, Decimal Degrees	to 5 digits):		
SIC Code: 1331		DAQ Facility ID	No. (For exist	ting facilities)
NAICS Code: 211111		N/A		
	CERTIFICATION	OF INFORMATION	I	
This G70-D General Permit Registratio Official is a President, Vice President, Se Directors, or Owner, depending on busines authority to bind the Corporation, P Proprietorship. Required records of da compliance certifications and all requ Representative. If a business wishes to cer off and	cretary, Treasurer, ss structure. A busi artnership, Limitec ily throughput, hou ired notifications r tify an Authorized	General Partner, General Partner, Geness may certify an Liability Company ars of operation and nust be signed by a	eneral Manage Authorized R , Association maintenance Responsible (official agree	er, a member of the Board of Representative who shall have , Joint Venture or Sole , general correspondence, Official or an Authorized
I hereby certify that is an Aut business (e.g., Corporation, Partnership, L may obligate and legally bind the business shall notify the Director of the Division of I hereby certify that all information contai	imited Liability Co . If the business ch Air Quality immed	ompany, Association langes its Authorized diately.	l Joint Ventur d Representat	e or Sole Proprietorship) and ive, a Responsible Official
documents appended hereto is, to the best have been made to provide the most compr	of my knowledge,	true, accurate and co		
Responsible Official Signature: Name and Title: Email:		Phone: Date:		Fax:
If applicable:	syng			
Authorized Representative Signature: Name and Title: Meghan M.B. Yingling, I Email: myingling@arsenalresources.com		mpliance Manager Date: 6-2-17	Phone: 724	-940-1112 Fax:
If applicable:	L	Jaie. 0-2-1/		
Environmental Contact Name and Title: Meghan M.B. Yingling, I Email: myingling@arsenalresources.com		mpliance Manager ate:	Phone: 724	-940-1112 Fax:

OPERATING SITE INFORMATION

Briefly describe the proposed new operation and/or any change(s) to the facility: **Construction of new facility with five** (5) natural gas production wells and associated equipment.

Directions to the facility: From I79 N take Exit 124 for WV-279 toward US 50E/Jerry Dove Dr. (125 mi) Take US-50 E/Northwestern Turnpike to US-119 N/Victory Ave. in Eastern (24.3 mi) - Turn right onto WV-279 (2.6 mi) - Turn left onto US-50 E/Northwsestern Turnpike (7.8 mi) -Keep left to stay on US-50E/Northwestern Turnpike (5.2 mi) - Turn left onto US-119 N/Victory Ave. (8.7 mi) ATTACHMENTS AND SUPPORTING DOCUMENTS I have enclosed the following required documents: Check payable to WVDEP – Division of Air Quality with the appropriate application fee (per 45CSR13 and 45CSR22). \Box Check attached to front of application. □ I wish to pay by electronic transfer. Contact for payment (incl. name and email address): I wish to pay by credit card. Contact for payment (incl. name and email address): Meghan Yingling myingling@aresenalresources.com ⊠\$500 (Construction, Modification, and Relocation) □\$300 (Class II Administrative Update) ⊠\$1,000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ, OOOO and/or OOOOa¹ □\$2,500 NESHAP fee for 40 CFR63, Subpart ZZZZ and/or HH² ¹ Only one NSPS fee will apply. ² Only one NESHAP fee will apply. The Subpart ZZZZ NESHAP fee will be waived for new engines that satisfy requirements by complying with NSPS, Subparts IIII and/or JJJJ. NSPS and NESHAP fees apply to new construction or if the source is being modified. Responsible Official or Authorized Representative Signature (if applicable) Single Source Determination Form (**must be completed**) – Attachment A □ Siting Criteria Waiver (if applicable) – Attachment B Current Business Certificate – Attachment C 🛛 Process Flow Diagram – Attachment D ☑ Process Description – Attachment E 🛛 Plot Plan – Attachment F 🖾 Area Map – Attachment G G70-D Section Applicability Form – Attachment H Emission Units/ERD Table - Attachment I Fugitive Emissions Summary Sheet - Attachment J Gas Well Affected Facility Data Sheet (if applicable) – Attachment K Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable) - Attachment L 🛛 Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Heater Treaters, In-Line Heaters if applicable) – Attachment М □ Internal Combustion Engine Data Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment Ν Tanker Truck/Rail Car Loading Data Sheet (if applicable) – Attachment O □ Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalcTM input and output reports and information on reboiler if applicable) - Attachment P 🛛 Pneumatic Controllers Data Sheet – Attachment Q Pneumatic Pump Data Sheet - Attachment R □ Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) - Attachment S 🗵 Emission Calculations (please be specific and include all calculation methodologies used) – Attachment T Facility-wide Emission Summary Sheet(s) - Attachment U 🛛 Class I Legal Advertisement – Attachment V Sone (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments

All attachments must be identified by name, divided into sections, and submitted in order.

Attachment A

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

Classifying multiple facilities as one "stationary source" under 45CSR13, 45CSR14, and 45CSR19 is based on the definition of Building, structure, facility, or installation as given in §45-14-2.13 and §45-19-2.12. The definition states:

"Building, Structure, Facility, or Installation" means all of the pollutant-emitting activities which belong to the same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the control of the same person (or persons under common control). Pollutant-emitting activities are a part of the same industrial grouping if they belong to the same "Major Group" (i.e., which have the same two (2)-digit code) as described in the Standard Industrial Classification Manual, 1987 (United States Government Printing Office stock number GPO 1987 0-185-718:QL 3).

The Source Determination Rule for the oil and gas industry was published in the Federal Register on June 3, 2016 and will become effective on August 2, 2016. EPA defined the term "adjacent" and stated that equipment and activities in the oil and gas sector that are under common control will be considered part of the same source if they are located on the same site or on sites that share equipment and are within ¹/₄ mile of each other.

Is there equipment and activities in the same industrial grouping (defined by SIC code)?

 $Yes \square \qquad No \boxtimes$

Is there equipment and activities under the control of the same person/people? Note \square Note \square

 $Yes \square \qquad No \boxtimes$

Is there equipment and activities located on the same site or on sites that share equipment and are within ¹/₄ mile of each other?

Yes \Box No \boxtimes

Attachment B (Not Applicable)

Attachment C

WEST VIRGINIA STATE TAX DEPARTMENT

BUSINESS REGISTRATION CERTIFICATE

ISSUED TO: ARSENAL RESOURCES LLC 6031 WALLACE ROAD EXT 300 WEXFORD, PA 15090-3430

BUSINESS REGISTRATION ACCOUNT NUMBER:

2247-4512

This certificate is issued on:

03/8/2017

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued

This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

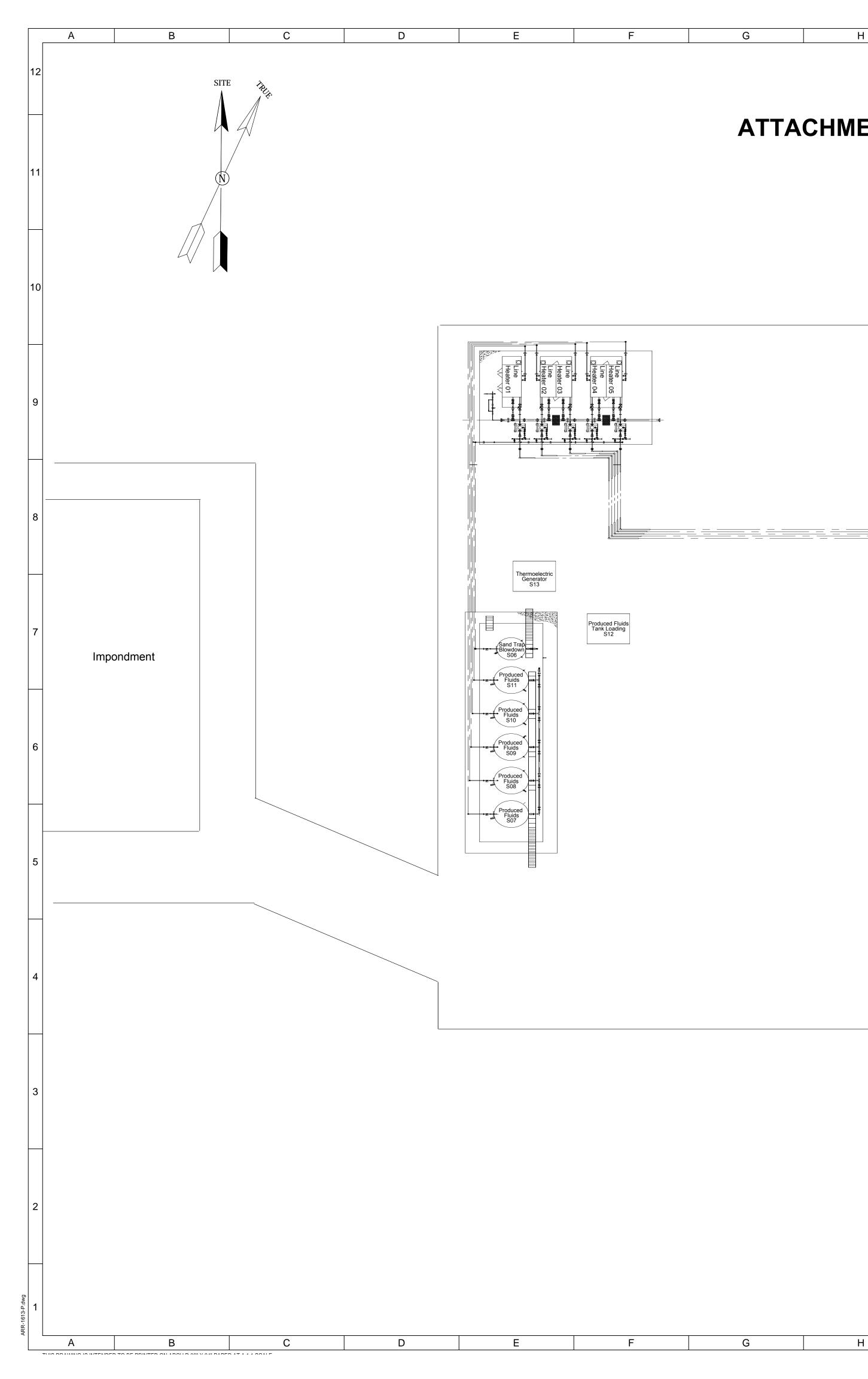
Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.4 L1096398016

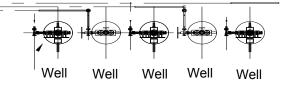
Attachment D

Attachment E

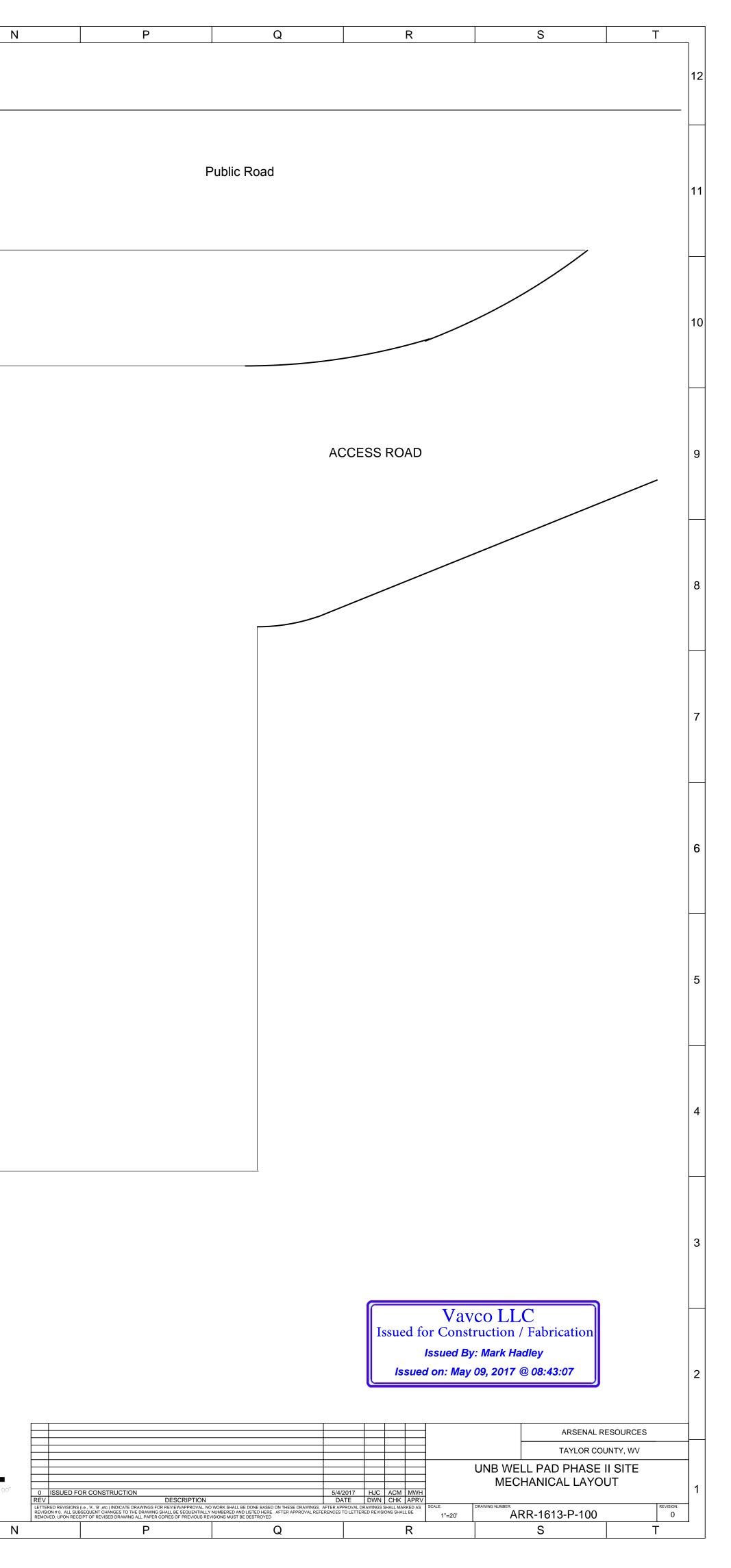

Attachment E – Process Description

This permit application is being filed for Arsenal Resources, LLC and addresses operational activities associated with the UNB Wellpad natural gas production site. Natural gas and produced water will flow from the five (5) wellheads that will be drilled and completed on the UNB pad. The raw gas and produced water are first routed through the sand traps to remove any sediment. Fluids from these sand traps are manually blown down to the sand trap blowdown tank (S06), as needed. From the sand traps, raw gas and produced water are routed through line heaters (S01-S05) to assist with the phase separation process in the downstream separators. In the separator, produced water are removed from the raw gas before being dumped to produced water tanks (S07-S11). The separated gas is then sent off site via a sales pipeline. The produced water are pumped into a tank truck (S12) on an as needed basis and are disposed of off-site.

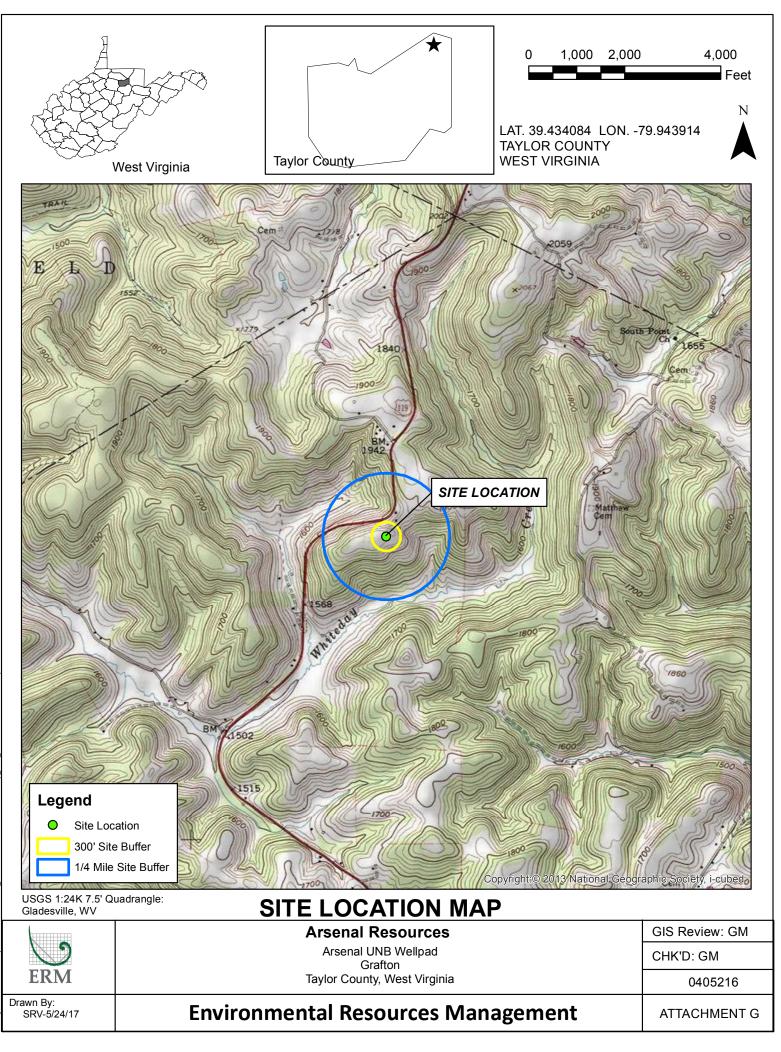
Power to the site is provided by a thermoelectric generator (S13)


A Process Flow Diagram is included as Attachment D.

Attachment F


G	Н	J	K	L	М

ATTACHMENT F - UNB WELL PAD PLOT PLAN



Н

	10' 0'	10' 20'	30' 40'	50' 60'	70' 80'	90'	100
	<u>SCALE 1</u>	<u>"=20'</u>					
J	K	L			М		

Attachment G

Attachment H

ATTACHMENT H – G70-D SECTION APPLICABILITY FORM

General Permit G70-D Registration Section Applicability Form

General Permit G70-D was developed to allow qualified applicants to seek registration for a variety of sources. These sources include gas well affected facilities, storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, pneumatic pumps, reciprocating internal combustion engines (RICEs), tank truck/rail car loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G70-D allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

GENERAL PER	MIT G70-D APPLICABLE SECTIONS
\boxtimes Section 5.0	Gas and Oil Well Affected Facility (NSPS, Subpart OOOO/OOOOa)
\boxtimes Section 6.0	Storage Vessels Containing Condensate and/or Produced Water ¹
□ Section 7.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO/OOOOa)
□ Section 8.0	Control Devices and Emission Reduction Devices not subject to NSPS Subpart OOOO/OOOOa and/or NESHAP Subpart HH
\boxtimes Section 9.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc
□ Section 10.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO/OOOOa)
□ Section 11.0	Pneumatic Pump Affected Facility (NSPS, Subpart OOOOa)
Section 12.0	Fugitive Emissions GHG and VOC Standards (NSPS, Subpart OOOOa)
□ Section 13.0	Reciprocating Internal Combustion Engines, Generator Engines
Section 14.0	Tanker Truck/Rail Car Loading ²
□ Section 15.0	Glycol Dehydration Units ³

1 Applicants that are subject to Section 6 may also be subject to Section 7 if the applicant is subject to the NSPS, Subparts OOOO or OOOOa control requirements or the applicable control device requirements of Section 8.

2 Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 8.

3 Applicants that are subject to Section 15 may also be subject to the requirements of Section 9 (reboilers). Applicants that are subject to Section 15 may also be subject to control device and emission reduction device requirements of Section 8.

Attachment I

ATTACHMENT I – EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment L table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type ⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
S01	E01	Line Heater	2017	2017	1.0 MMBtu/hr	New	N/A	N/A
S02	E02	Line Heater	2017	2017	1.0 MMBtu/hr	New	N/A	N/A
S03	E03	Line Heater	2017	2017	1.0 MMBtu/hr	New	N/A	N/A
S04	E04	Line Heater	2017	2017	1.0 MMBtu/hr	New	N/A	N/A
S05	E05	Line Heater	2017	2017	1.0 MMBtu/hr	New	N/A	N/A
S06	E06	Sand Trap Blowdown Tank	2017	2017	210 bbl	New	N/A	N/A
S07	E07	Produced Water Tank	2017	2017	400 bbl	New	N/A	N/A
S08	E08	Produced Water Tank	2017	2017	400 bbl	New	N/A	N/A
S09	E09	Produced Water Tank	2017	2017	400 bbl	New	N/A	N/A
S10	E10	Produced Water Tank	2017	2017	400 bbl	New	N/A	N/A
S11	E11	Produced Water Tank	2017	2017	400 bbl	New	N/A	N/A
S12	E12	Produced Water Loading	2017	2017	574,600 bbl/yr	New	N/A	N/A
S13	E13	Thermoelectric Generator	2017	2017	0.0007 MMBTU/hr	New	N/A	N/A

¹ For Emission Units (or Sources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation.

² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

³ When required by rule

⁴ New, modification, removal, existing

⁵ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

⁶ For ERDs use the following numbering system: 1D, 2D, 3D,... or other appropriate designation.

Attachment J

			ATTACHMEN	NT J – FUGITIVE EMIS	SIONS SUMM	IARY SHE	ET	
	S	Sources	of fugitive emissions ma Use extra page	y include loading operations for each associated sour				ions, etc.
	Source/Equipm	ent: UNB	site equipment					
	Leak Detection Method Used		□ Audible, visual, and olfactory (AVO) inspections			e describe)		□ None required
с . т	Closed	G	Source of	Leak Factors	Stream type		Estimated Emi	ssions (tpy)
Component Ty	pe Vent System	Count		ner (specify))	(gas, liquid, etc.)	VOC	НАР	GHG (methane, CO ₂ e)
Pumps	□ Yes □ No				□ Gas □ Liquid ⊠ Both			
Valves	□ Yes ⊠ No	187		EPA	⊠ Gas □ Liquid □ Both	0.01	<0.01	0.88, 22.06
Safety Relief Valves	Yes □ No	5		EPA	⊠ Gas □ Liquid □ Both	<0.01	<0.01	0.03, 0.87
Open Ended Lines	⊠ Yes □ No	13		EPA		<0.01	<0.01	0.13, 3.33
Sampling Connections	□ Yes □ No				☐ Gas □ Liquid □ Both			
Connections (N sampling)	lot □ Yes ⊠ No	815		EPA	⊠ Gas □ Liquid □ Both	<0.01	<0.01	0.43, 10.68
Compressors	□ Yes □ No				Gas Liquid Both			
Flanges	□ Yes □ No				Gas Liquid Both			
Other ¹	□ Yes □ No				□ Gas □ Liquid □ Both			
¹ Other equipm	ent types may in	nclude co	mpressor seals, relief valves, dia	phragms, drains, meters, etc.				
Please provide	an explanation	of the sou	urces of fugitive emissions (e.g. p	igging operations, equipment blo	wdowns, pneumatio	c controllers, et	c.): N/A	
Please indicate	if there are any	closed ve	ent bypasses (include component)	: N/A				
Specify all equi	ipment used in t	he closed	l vent system (e.g. VRU, ERD, th	ief hatches, tanker truck/rail car	loading, etc.) N/A			

Attachment K

ATTACHMENT K – GAS WELL AFFECTED FACILITY DATA SHEET

Complete this data sheet if you are the owner or operator of a gas well affected facility for which construction, modification or reconstruction commenced after August 23, 2011. This form must be completed for natural gas well affected facilities regardless of when flowback operations occur (or have occurred).

API Number	Date of Flowback	Date of Well Completion	Green Completion and/or Combustion Device	Subject to OOOO or OOOOa?
047-091-01325	9/11/17	9/20/17	Green Completion	0000a
047-091-01328	9/11/17	9/20/17	Green Completion	0000a
047-091-01329	9/11/17	9/20/17	Green Completion	0000a
047-091-01330	9/11/17	9/20/17	Green Completion	0000a
047-091-01331	9/11/17	9/20/17	Green Completion	0000a

Note: If future wells are planned and no API number is available please list as PLANNED. If there are existing wells that commenced construction prior to August 23, 2011, please acknowledge as existing.

This is the same API (American Petroleum Institute) well number(s) provided in the well completion notification and as provided to the WVDEP, Office of Oil and Gas for the well permit. The API number may be provided on the application without the state code (047).

Every oil and gas well permitted in West Virginia since 1929 has been issued an API number. This API is used by agencies to identify and track oil and gas wells.

The API number has the following format: 047-001-00001

Where,

,	
047 =	State code. The state code for WV is 047.
001 =	County Code. County codes are odd numbers, beginning with 001
	(Barbour) and continuing to 109 (Wyoming).
00001=	Well number. Each well will have a unique well number.

Attachment L

ATTACHMENT L – STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water. (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). **Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.**

The following information is **REQUIRED**:

- □ Composition of the representative sample used for the simulation
- $\hfill\square$ For each stream that contributes to flashing emissions:
 - \Box Temperature and pressure (inlet and outlet from separator(s))
 - □ Simulation-predicted composition
 - □ Molecular weight
 - \Box Flow rate
- □ Resulting flash emission factor or flashing emissions from simulation
- □ Working/breathing loss emissions from tanks and/or loading emissions if

simulation is used to quantify those emissions

Additional information may be requested if necessary.

GENERAL INFORMATION (REQUIRED)

1. Bulk Storage Area Name	2. Tank Name
Produced Water Storage Battery	Produced Water Tank (S07-S011)
3. Emission Unit ID number S07-S11	4. Emission Point ID number E07-E11
5. Date Installed , Modified or Relocated (for existing tanks)	6. Type of change:
NA	\boxtimes New construction \square New stored material \square Other
Was the tank manufactured after August 23, 2011 and on or	\Box Relocation
before September 18, 2015?	
\Box Yes \boxtimes No	
Was the tank manufactured after September 18, 2015?	
\boxtimes Yes \Box No	
7A. Description of Tank Modification (<i>if applicable</i>)	
7B. Will more than one material be stored in this tank? If so, a	separate form must be completed for each material.
\Box Yes \boxtimes No	
7C. Was USEPA Tanks simulation software utilized?	
\Box Yes \boxtimes No	
If Yes, please provide the appropriate documentation and items	s 8-42 below are not required.

TANK INFORMATION

8. Design Capacity (specify barrels or gallons). Use the international sector of the i	l cross-sectional area multiplied by internal height.				
400 bbl					
9A. Tank Internal Diameter (ft.) 12	9B. Tank Internal Height (ft.) 20				
10A. Maximum Liquid Height (ft.) 20	10B. Average Liquid Height (ft.) 10				
11A. Maximum Vapor Space Height (ft.) 19	11B. Average Vapor Space Height (ft.)				
12. Nominal Capacity (specify barrels or gallons). This is also known as "working volume". 400 bbl					
13A. Maximum annual throughput (gal/yr) 21,840,000	13B. Maximum daily throughput (gal/day) 59,835				
14. Number of tank turnovers per year 1,300	15. Maximum tank fill rate (gal/min) 41.55				
16. Tank fill method \Box Submerged \boxtimes Splash	Bottom Loading				
17. Is the tank system a variable vapor space system? \Box Yes	🖾 No				
If yes, (A) What is the volume expansion capacity of the system	(gal)?				
(B) What are the number of transfers into the system per	year?				
18. Type of tank (check all that apply):					
\boxtimes Fixed Roof \boxtimes vertical \square horizontal \square flat root	f \square cone roof \square dome roof \square other (describe)				
\Box External Floating Roof \Box pontoon roof \Box double	deck roof				
Domed External (or Covered) Floating Roof					
□ Internal Floating Roof □ vertical column support	□ self-supporting				
\Box Variable Vapor Space \Box lifter roof \Box diaphragm					
□ Pressurized □ spherical □ cylindrical					
\Box Other (describe)					

PRESSURE/VACUUM CONTROL DATA

☑ Does Not Apply									
				🗆 Ruptu	re Disc (p	sig)			
□ Inert Gas Blanket of				□ Carbo	n Adsorpt	ion ¹			
□ Vent to Vapor Combus	tion Devi	ce ¹ (vapo	r combust	ors, flares	, thermal o	oxidizers,	enclosed c	ombustors	5)
Conservation Vent (psi	g)			□ Conde	enser ¹				
Vacuum Setting		Pressure	Setting						
Emergency Relief Valv	e (psig)								
Vacuum Setting		Pressure	Setting						
□ Thief Hatch Weighted	□ Yes □] No							
¹ Complete appropriate Air	Pollution	n Control	Device Sh	leet					
20. Expected Emission Ra	te (submi	t Test Dat	a or Calcu	ilations he	re or else	whore in t	ha ammliaa	tion	
	aterial Name Flashing Loss			and to mo		where in t	ne applica	uon).	
Material Name	Flashi			ng Loss	Workin		Total	uon).	Estimation Method ¹
-	Flashi						Total	ons Loss	Estimation Method ¹
-	Flashin lb/hr						Total		Estimation Method ¹
-		ng Loss	Breathi lb/hr	ng Loss	Workin	ng Loss	Total Emissio	ons Loss	Estimation Method ¹
-		ng Loss	Breathi lb/hr	ng Loss tpy	Workin	ng Loss	Total Emissio	ons Loss	Estimation Method ¹
-		ng Loss	Breathi lb/hr	ng Loss tpy	Workin	ng Loss	Total Emissio	ons Loss	Estimation Method ¹
-		ng Loss	Breathi lb/hr	ng Loss tpy	Workin	ng Loss	Total Emissio	ons Loss	Estimation Method ¹

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

TANK CONSTRUCTION AND OPERATIO	N INFORMATION			
21. Tank Shell Construction:				
\Box Riveted \Box Gunite lined \Box Epox	y-coated rivets 🛛 🛛 O	ther (describe) Welde	d	
21A. Shell Color: Green	21B. Roof Color: Green		21C. Year Last Painted: 2017	
22. Shell Condition (if metal and unlined):				
🖾 No Rust 🗌 Light Rust 🗌 Dense Rust 🔲 Not applicable				
22A. Is the tank heated? \Box Yes \boxtimes No 22B. If yes, operating temperature:			22C. If yes, how is heat provided to tank?	
23. Operating Pressure Range (psig):				
Must be listed for tanks using VRUs with closed vent system.				
24. Is the tank a Vertical Fixed Roof Tank ?	24A. If yes, for dome roof provide radius (ft):		24B. If yes, for cone roof, provide slop (ft/ft):	
\boxtimes Yes \Box No			0.06	
25. Complete item 25 for Floating Roof Tanks \Box Does not apply \boxtimes				
25A. Year Internal Floaters Installed:				
25B. Primary Seal Type (check one):				
\Box Vapor mounted resilient seal \Box Other (describe):				
25C. Is the Floating Roof equipped with a secondary seal? Yes No				
25D. If yes, how is the secondary seal mounted? (<i>check one</i>) \Box Shoe \Box Rim \Box Other (describe):				
25F. Describe deck fittings:				
26. Complete the following section for Internal Floating Roof Tanks 🛛 Does not apply				
26A. Deck Type: Bolted Welded 26B. For bolted decks, provide deck construction:				
26C. Deck seam. Continuous sheet construction:				
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide \Box 5 x 7.5 ft. wide \Box 5 x 12 ft. wide \Box other (describe)				
26D. Deck seam length (ft.): 26E. Area			orted	26G. For column supported
		tanks, # of columns:		tanks, diameter of column:
27. Closed Vent System with VRU? Yes No				
28. Closed Vent System with Enclosed Combustor? Ves No				
SITE INFORMATION – PROMAX Simulation Included				
29. Provide the city and state on which the data in this section are based:				
30. Daily Avg. Ambient Temperature (°F):32. Annual Avg. Minimum Temperature (°F):		31. Annual Avg. Maximum Temperature (°F):33. Avg. Wind Speed (mph):		
 34. Annual Avg. Solar Insulation Factor (BTU/ 	35. Atmospheric Pressure (psia):			
LIQUID INFORMATION				
36. Avg. daily temperature range of bulk 36A. Minimum (°F): 36B. Maximum (°F):				
liquid (°F):				
37. Avg. operating pressure range of tank	37A. Minimum (psig): 0.0		37B. Maximum (psig): 0.0	
(psig): 0.0				
38A. Minimum liquid surface temperature (°F)	38B. Corresponding v			
39A. Avg. liquid surface temperature (°F):			9B. Corresponding vapor pressure (psia):	
40A. Maximum liquid surface temperature (°F): 40B. Corresponding vapor pressure (psia):				
41. Provide the following for each liquid or gas to be stored in the tank. Add additional pages if necessary.				
41A. Material name and composition:				
41B. CAS number: 41C. Liquid density (lb/gal):				
41C. Liquid density (lb/gal): 41D. Liquid molecular weight (lb/lb-mole):				
41D. Elquid molecular weight (lb/lb-mole): 41E. Vapor molecular weight (lb/lb-mole):				
41F. Maximum true vapor pressure (psia):				
41G. Maximum Reid vapor pressure (psia):				
41H. Months Storage per year.				
From: To:				
42. Final maximum gauge pressure and				
temperature prior to transfer into tank used as				
inputs into flashing emission calculations.				

ATTACHMENT L – STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water. (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). **Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.**

The following information is **REQUIRED**:

- □ Composition of the representative sample used for the simulation
- $\hfill\square$ For each stream that contributes to flashing emissions:
 - \Box Temperature and pressure (inlet and outlet from separator(s))
 - □ Simulation-predicted composition
 - □ Molecular weight
 - \Box Flow rate
- □ Resulting flash emission factor or flashing emissions from simulation
- □ Working/breathing loss emissions from tanks and/or loading emissions if

simulation is used to quantify those emissions

Additional information may be requested if necessary.

GENERAL INFORMATION (REQUIRED)

1. Bulk Storage Area Name	2. Tank Name			
Blowdown Storage Vessel	Sand Trap Blowdown Tank			
3. Emission Unit ID number S06	4. Emission Point ID number E06			
5. Date Installed , Modified or Relocated (for existing tanks)	6. Type of change:			
Was the tank manufactured after August 23, 2011 and on or	\boxtimes New construction \square New stored material \boxtimes Other			
before September 18, 2015?	□ Relocation			
\Box Yes \boxtimes No				
Was the tank manufactured after September 18, 2015?				
\boxtimes Yes \Box No				
7A. Description of Tank Modification (if applicable) N/A				
7B. Will more than one material be stored in this tank? If so, a	separate form must be completed for each material.			
\Box Yes \boxtimes No				
7C. Was USEPA Tanks simulation software utilized?				
\Box Yes \boxtimes No				
If Yes, please provide the appropriate documentation and items	s 8-42 below are not required.			

TANK INFORMATION

8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height.					
210 bbl					
9A. Tank Internal Diameter (ft.) 10	9B. Tank Internal Height (ft.) 15				
10A. Maximum Liquid Height (ft.) 15	10B. Average Liquid Height (ft.) 7.5				
11A. Maximum Vapor Space Height (ft.) 14	11B. Average Vapor Space Height (ft.)				
12. Nominal Capacity (specify barrels or gallons). This is also	known as "working volume". 210 bbl				
13A. Maximum annual throughput (gal/yr) 2,293,200	13B. Maximum daily throughput (gal/day) 6,283				
14. Number of tank turnovers per year 260	15. Maximum tank fill rate (gal/min) 4.36				
16. Tank fill method \Box Submerged \boxtimes Splash	□ Bottom Loading				
17. Is the tank system a variable vapor space system? \Box Yes	s 🖂 No				
If yes, (A) What is the volume expansion capacity of the system	n (gal)?				
(B) What are the number of transfers into the system per	year?				
18. Type of tank (check all that apply):					
\boxtimes Fixed Roof \boxtimes vertical \square horizontal \square flat root	of \square cone roof \square dome roof \square other (describe)				
\Box External Floating Roof \Box pontoon roof \Box doubl	e deck roof				
Domed External (or Covered) Floating Roof					
□ Internal Floating Roof □ vertical column support	□ self-supporting				
□ Variable Vapor Space □ lifter roof □ diaphragn	I				
□ Pressurized □ spherical □ cylindrica	l				
\Box Other (describe)					

PRESSURE/VACUUM CONTROL DATA

19. Check as many as appl	y:								
☑ Does Not Apply				🗆 Ruptu	re Disc (p	sig)			
□ Inert Gas Blanket of				□ Carbo	n Adsorpt	tion ¹			
□ Vent to Vapor Combus	tion Devi	ice1 (vapo	r combust	ors, flares	, thermal o	oxidizers,	enclosed c	combustors	3)
□ Conservation Vent (psi	g)			□ Conde	enser ¹				
Vacuum Setting		Pressure	Setting						
□ Emergency Relief Valv	e (psig)								
Vacuum Setting		Pressure	Setting						
□ Thief Hatch Weighted	□ Yes □	□ No							
¹ Complete appropriate Air	Pollution	n Control	Device Sh	leet					
20. Expected Emission Ra			1		ere or else	where in t		tion).	
	Flashing Loss Breathing Loss		Working Loss Total			Estimation Mathad			
Material Name	Flashi	ng Loss	Breath	ng Loss	W OF KIN	ig Loss			Estimation Method ¹
Material Name							Emissio	ons Loss	Esumation Method
Material Name	Flashii lb/hr	ng Loss tpy	lb/hr	tpy	lb/hr	tpy		ons Loss tpy	Estimation Method
Material Name			lb/hr		lb/hr		Emissio		Estimation Method
Material Name			lb/hr	tpy	lb/hr		Emissio		
Material Name			lb/hr	tpy	lb/hr		Emissio		
Material Name			lb/hr	tpy	lb/hr		Emissio		
Material Name			lb/hr	tpy	lb/hr		Emissio		
Material Name			lb/hr	tpy	lb/hr		Emissio		
Material Name			lb/hr	tpy	lb/hr		Emissio		
Material Name			lb/hr	tpy	lb/hr		Emissio		

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

TANK CONSTRUCTION AND OPERATION INFORMATION											
21. Tank Shell Construction:											
\Box Riveted \Box Gunite lined \Box E	$\mathbf{I} = \mathbf{I} + \mathbf{I}$										
21A. Shell Color: Green	21B. Roof Color: Gr	een	21C. Year	Last Painted: 2017							
22. Shell Condition (if metal and unlined):											
🗵 No Rust 🛛 Light Rust 🔲 Dense Rust 🗌 Not applicable											
22A. Is the tank heated? \Box Yes \boxtimes No 22B. If yes, operating temperature: 22C. If yes, how is heat provided to tank?											
23. Operating Pressure Range (psig):											
Must be listed for tanks using VRUs with closed vent system.											
24. Is the tank a Vertical Fixed Roof Tank \square No	24. Is the tank a Vertical Fixed Roof Tank? 24A. If yes, for dome roof provide radius (ft): 24B. If yes, for cone roof, provide slop (ft/ft): ☑ Yes □ No 0.06										
25. Complete item 25 for Floating Roof Ta	nks Does not apply										
25A. Year Internal Floaters Installed:	6 (11° () 1 ° 1) 1	1	. 1 .1.	. 1							
25B. Primary Seal Type (check one):		-		ent seal							
	apor mounted resilient	seal \Box Other (de	scribe):								
25C. Is the Floating Roof equipped with a s	econdary seal? 🗆 Yes	□ No									
25D. If yes, how is the secondary seal mou	ted? (check one) 🗌 She	be 🗆 Rim 🗆 Ot	her (describ	pe):							
25E. Is the floating roof equipped with a we	ather shield?	🗆 No									
25F. Describe deck fittings:											
26. Complete the following section for Inte	rnal Floating Roof Tanks	☑ Does not appl	y								
	Welded	26B. For bolted decks	-	k construction:							
	Welded		· 1								
26C. Deck seam. Continuous sheet constru	ction:										
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft.	vide \Box 5 x 7.5 ft. wide	\Box 5 x 12 ft. wide	□ other (de	escribe)							
26D. Deck seam length (ft.): 26E.	rea of deck (ft ²):	26F. For column supp	orted	26G. For column supported							
		tanks, # of columns:		tanks, diameter of column:							
27. Closed Vent System with VRU?	s 🖾 No										
28. Closed Vent System with Enclosed Cor											
SITE INFORMATION – PROMAX Simu											
29. Provide the city and state on which the		1.									
30. Daily Avg. Ambient Temperature (°F):	ata in uns section are based	31. Annual Avg. Max	imum Tempe	erature (°F).							
30. Daily Avg. Amblent Temperature (1).	<i>.</i>).	33. Avg. Wind Speed	-	statute (1).							
34. Annual Avg. Solar Insulation Factor (B		35. Atmospheric Pres	-								
LIQUID INFORMATION	(), it aug).	ber minospherie ries	oure (point).								
36. Avg. daily temperature range of bulk	36A. Minimum (°F):		36B. Max	imum (°F):							
liquid (°F):											
37. Avg. operating pressure range of tank $(x, y) = 0$	37A. Minimum (psig)): 0.0	37B. Max	imum (psig): 0.0							
(psig): 0.0 38A. Minimum liquid surface temperature	°E).	38B. Corresponding v	apor proseur	a (naia):							
39A. Avg. liquid surface temperature (°F):	1').	39B. Corresponding v		-							
40A. Maximum liquid surface temperature	°F):	40B. Corresponding v		-							
41. Provide the following for each liquid or											
41A. Material name and composition:		10	<u>,</u>								
41B. CAS number:											
41C. Liquid density (lb/gal):											
41D. Liquid molecular weight (lb/lb-mole)											
41E. Vapor molecular weight (lb/lb-mole):											
41F. Maximum true vapor pressure (psia):											
41G. Maximum Reid vapor pressure (psia)											
41H. Months Storage per year.											
From: To:											
42. Final maximum gauge pressure and	_										
temperature prior to transfer into tank used a inputs into flashing emission calculations.	8										
inputs into masining emission calculations.	1										

STORAGE TANK DATA TABLE

List all deminimis storage tanks (i.e. lube oil, glycol, diesel etc.)

Source ID # ¹	Status ²	Content ³	Volume ⁴
None	None	None	None

1. Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the well site. Tanks should be designated T01, T02, T03, etc. 2.

Enter storage tank Status using the following:

EXIST Existing Equipment NEW Installation of New Equipment NEW

REM Equipment Removed

Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, diesel, mercaptan etc. 3.

4. Enter the maximum design storage tank volume in gallons.

Attachment M

ATTACHMENT M – SMALL HEATERS AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART DC DATA SHEET

Complete this data sheet for each small heater and reboiler not subject to 40CFR60 Subpart Dc at the facility. *The Maximum Design Heat Input (MDHI) must be less than 10 MMBTU/hr.*

Emission Unit ID# ¹	Emission Point ID# ²	Emission Unit Description (manufacturer, model #)	Year Installed/ Modified	Type ³ and Date of Change	Maximum Design Heat Input (MMBTU/hr) ⁴	Fuel Heating Value (BTU/scf) ⁵
S01	E01	Line Heater	2017	New	1.00	1,020
S02	E02	Line Heater	2017	New	1.00	1,020
S03	E03	Line Heater	2017	New	1.00	1,020
S04	E04	Line Heater	2017	New	1.00	1,020
S05	E05	Line Heater	2017	New	1.00	1,020
S13	E13	TEG	2017	New	0.0007	1,020

¹ Enter the appropriate Emission Unit (or Source) identification number for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.

² Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.

³ New, modification, removal

⁴ Enter design heat input capacity in MMBtu/hr.

⁵ Enter the fuel heating value in BTU/standard cubic foot.

Attachment N (Not Applicable)

Attachment O

ATTACHMENT O – TANKER TRUCK/RAIL CAR LOADING DATA SHEET

Complete this data sheet for each new or modified bulk liquid transfer area or loading rack at the facility. This is to be used for bulk liquid transfer operations to tanker trucks/rail cars. Use extra pages if necessary.

Truck/Rail Car Loadout Collection Efficiencies

The following applicable capture efficiencies of a truck/rail car loadout are allowed:

- For tanker trucks/rail cars passing the MACT level annual leak test 99.2%
- For tanker trucks/rail cars passing the NSPS level annual leak test 98.7%
- For tanker trucks/rail cars not passing one of the annual leak tests listed above 70%

Compliance with this requirement shall be demonstrated by keeping records of the applicable MACT or NSPS Annual Leak Test certification for *every* truck and railcar loaded/unloaded. This requirement can be satisfied if the trucking/rail car company provided certification that its entire fleet was compliant. This certification must be submitted in writing to the Director of the DAQ. These additional requirements must be noted in the Registration Application.

Emission Unit ID#: S12			Emission Point ID#: E12			Year Installed/Modified: 2017		
Emission Unit Description:	Tanker Tru	ıck Loadiı	ng for Produ	iced Water T	anks			
			Loading A	Area Data				
Number of Pumps: 2	Numbe	Number of Liquids Loaded: 1			Max number of trucks/rail cars loading at one (1) time: 1			
Are tanker trucks/rail cars p If Yes, Please describe:	pressure teste	d for leaks	at this or an	y other locat	ion? □] Yes	🛛 No	□ Not Required
Provide description of close	ed vent system	n and any	bypasses. N	/A				
Are any of the following tru Closed System to tanken Closed System to tanken Closed System to tanken	r truck/rail ca r truck/rail ca r truck/rail ca	r passing a r passing a r not passi	a MACT leve a NSPS level ing an annual	el annual leak annual leak l leak test and	test? I has vap			
		•		e (for rack o		•		
Time	Jan – N	lar	1	- Jun	Jul – Sept		t	Oct - Dec
Hours/day	24		24			24		24
Days/week	7		7			7		7
	Bı	ılk Liquid	Data (use e	xtra pages as	necessa	ary)		
Liquid Name	P	roduced H	luids *					
Max. Daily Throughput (10 gal/day)	00	66.12						
Max. Annual Throughput (1000 gal/yr)		24,133.	2					
Loading Method ¹		SP						
Max. Fill Rate (gal/min)		45.92						
Average Fill Time (min/loading)		NA						
Max. Bulk Liquid Temperature (°F)		60						
True Vapor Pressure ²		NA						
Cargo Vessel Condition ³		U						
Control Equipment or Method ⁴		None						

Max. Collection Efficiency (%)		NA	
Max. Control Efficiency (%)		NA	
Max.VOC	Loading (lb/hr)	0.01	
Emission Rate		0.05	
	Loading (lb/hr)	<0.01	
Emission Rate Annual (ton/yr)		<0.01	
Estimation Method ⁵		O - ProMax	

*Arsenal Resources is providing estimates of fluid throughputs from tank unloading activities based upon expected operations. The types of fluids are identified between loading racks, so it is requested that a single permit limitation is placed on total fluid throughputs for the site.

1	BF	Bottom Fill	SP	Splash Fi	ill		SUB	Submerged Fill
2	At maxi	mum bulk liquid temperature						
3	В	Ballasted Vessel	С	Cleaned			U	Uncleaned (dedicated service)
	0	Other (describe)						
4	List as	many as apply (complete and	submit app	propriate	Air Pollut	ion Cont	rol Device	Sheets)
	CA	Carbon Adsorption		VB	Dedicat	ed Vapor	Balance (closed system)
	ECD	Enclosed Combustion Devi	ce	F	Flare			
	TO	Thermal Oxidization or Inc	ineration					
5	EPA	EPA Emission Factor in AF	P-42			MB	Materia	l Balance
	TM	Test Measurement based up	oon test da	ta submit	tal	0	Other (de	escribe)

Attachment P (Not Applicable)

Attachment Q

Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?							
\Box Yes \boxtimes No							
Please list approximate number.							
Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after September 18, 2015?							
🗌 Yes 🛛 No							
Please list approximate number.							
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are							
required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?							
required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or							
required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?							
required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?							
 required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015? Yes No Please list approximate number. Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or							
required based on functional needs, including but not limited to response time,							

Attachment R

ATTACHMENT R – PNEUMATIC PUMP DATA SHEET

Are there any natural gas-driven diaphragm pumps located at a well site that commenced construction, modification or reconstruction after September 18, 2015?

Yes No

Please list.

Source ID #	Date	Pump Make/Model	Pump Size
		l	

Attachment S (Not Applicable)

Attachment T

Attachment T - Emission Calculations Line Heaters S01 - S05

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Boiler Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions. (Ib/hr)	Max. Annual Emissions. (tpy)
VOC's	5.5	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,020	8,760	<0.01	0.02
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,020	8,760	<0.01	<0.01
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,020	8,760	<0.01	<0.01
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,020	8,760	<0.01	<0.01
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,020	8,760	<0.01	<0.01
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,020	8,760	<0.01	<0.01
СО	84	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,020	8,760	0.08	0.36
NOx	100	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,020	8,760	0.10	0.43
PM _{Filterable}	1.9	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,020	8,760	<0.01	<0.01
PM _{Condensable}	5.7	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,020	8,760	<0.01	0.02
PM _{Total}	7.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,020	8,760	<0.01	0.03
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,020	8,760	<0.01	<0.01
CO ₂	53.06	kg CO ₂ / MMBtu	40 CFR Subpart C	1.00	1,020	8,760	116.98	512.36
CH ₄	0.001	kg CO ₂ / MMBtu	40 CFR Subpart C	1.00	1,020	8,760	<0.01	<0.01
N ₂ O	0.0001	kg CO ₂ / MMBtu	40 CFR Subpart C	1.00	1,020	8,760	<0.01	<0.01
Total HAPs							<0.01	<0.01
Total CO ₂ e							117.03	512.33

Notes:

-Emission rates displayed above represent the max. hourly and max. annual emissions for one line heater. Cumulative emission rates for all 8 line heaters are diplayed in the Total Site Emissions Table.

-Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

-AP-42, Chapter 1.4 references are from the July 1998 revision.

Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

-CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

Example Equations:

Max. Hourly Emission Rate (Ib/hr) = Emission Factor (Ib/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr)

Attachment T - Emission Calculations Sand Trap Blowdown Tank S06

Pollutant	Max. Hourly Emissions using ProMax (Ib/hr)	Max. Annual Emissions using ProMax (tons/yr)
VOCs	0.24	1.07
Total HAPs	<0.01	0.04
Hexane	<0.01	0.03
Benzene	<0.01	<0.01
Toluene	<0.01	<0.01
Ethylbenzene	<0.01	<0.01
Xylene	<0.01	<0.01
CO ₂	<0.01	<0.01
CH ₄	0.13	0.55
Total CO ₂ e	3.13	13.72

Notes:

-Blowdown operations are conducted on the UNB pad daily to allow for the removal of fluids from the sand traps. Based on available operational information, blowdowns are assummed to occur for one hour per day.

-Emission rates for the Sand Trap Blowdown Tank were calculated using ProMax software. ProMax output sheets for the UNB Pad are attached. -CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1. GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

Attachment T - Emission Calculations Produced Water Tanks S07 - S11

Pollutant	Max. Hourly Emissions using ProMax (lb/hr)	Max. Annual Emissions using ProMax (tons/yr)
VOCs	5.86	25.67
Total HAPs	0.21	0.92
Hexane	0.18	0.79
Benzene	<0.01	0.02
Toluene	0.02	0.09
Ethylbenzene	<0.01	<0.01
Xylene	<0.01	<0.01
CO ₂	0.02	0.09
CH ₄	3.01	13.18
Total CO ₂ e	75.22	329.47

Notes:

-Emission rates for Produced Fluid Tanks S07 - S11 were calculated using ProMax software. ProMax output sheets for the UNB Pad are attached. -CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

-For emission calculation purposes, the total throughput for tanks S07 - S11 is modeled as being received through a single tank. The throughput value represents the total throughput for all five (5) 400-barrel tanks. Therefore, emission rates represent a total from all produced fluids tanks located on the well pad. Actual throughput for each tank will vary based on operations.

-Arsenal Resources will operate the UNB Site in Taylor County where the produced hydrocarbon condensate is expected to be minimal. A representative analysis was used in order to establish a conservative esitmate of emissions from prduced tank operations. As required by the G70-D permit, Arsenal will collect and analyze a pressurized tank liquid sample within 30 days of production start up. The site specific sample will allow for the gathering of actual tank emissions.

Attachment T - Emission Calculations Liquids Unloading S12

Pollutant	Max. Hourly Emissions using ProMax (lb/hr)	Max. Annual Emissions using ProMax (tons/yr)
VOCs	0.01	0.05
Total HAPs	<0.01	<0.01
Hexane	<0.01	<0.01
Benzene	<0.01	<0.01
Toluene	<0.01	<0.01
Ethylbenzene	<0.01	<0.01
Xylene	<0.01	<0.01
CO ₂	<0.01	<0.01
CH ₄	<0.01	0.03
Total CO ₂ e	0.20	0.86

Notes:

-Emission rates for Liquids Unloading was calculated using ProMax software. ProMax output sheets for the UNB Pad are attached.

-CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

Attachment T - Emission Calculations Liquids Unloading S12

Pollutant	Max. Hourly Emissions using ProMax (lb/hr)	Max. Annual Emissions using ProMax (tons/yr)
VOCs	0.01	0.05
Total HAPs	<0.01	<0.01
Hexane	<0.01	<0.01
Benzene	<0.01	<0.01
Toluene	<0.01	<0.01
Ethylbenzene	<0.01	<0.01
Xylene	<0.01	<0.01
CO ₂	<0.01	<0.01
CH ₄	<0.01	0.03
Total CO ₂ e	0.20	0.86

Notes:

-Emission rates for Liquids Unloading was calculated using ProMax software. ProMax output sheets for the UNB Pad are attached.

-CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

Attachment T - Emission Calculations TEG (S13)

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Boiler Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions. (Ib/hr)	Max. Annual Emissions. (tpy)
VOC's	5.5	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.0007	1,020	8,760	<0.01	<0.01
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.0007	1,020	8,760	<0.01	<0.01
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.0007	1,020	8,760	<0.01	<0.01
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.0007	1,020	8,760	<0.01	<0.01
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.0007	1,020	8,760	<0.01	<0.01
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.0007	1,020	8,760	<0.01	<0.01
CO	84	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.0007 1,020		8,760	<0.01	<0.01
NOx	100	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.0007	1,020	8,760	<0.01	<0.01
PM _{Filterable}	1.9	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.0007	1,020	8,760	<0.01	<0.01
PM _{Condensable}	5.7	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.0007	1,020	8,760	<0.01	<0.01
PM _{Total}	7.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.0007	1,020	8,760	<0.01	<0.01
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.0007	1,020	8,760	<0.01	<0.01
CO ₂	53.06	kg CO ₂ / MMBtu	40 CFR Subpart C	0.0007	1,020	8,760	0.08	0.36
CH ₄	0.001	kg CO ₂ / MMBtu	40 CFR Subpart C	0.0007	1,020	8,760	<0.01	<0.01
N ₂ O	0.0001	kg CO ₂ / MMBtu	40 CFR Subpart C	0.0007	1,020	8,760	<0.01	<0.01
Total HAPs							<0.01	<0.01
Total CO ₂ e							0.08	0.36

Notes:

-Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

-AP-42, Chapter 1.4 references are from the July 1998 revision.

⁻Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

-CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

Example Equations:

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr)

Attachment T - Emission Calculations Fugitive Leaks

Default Average Co	mponent Counts for Majo	or Onshore Natural Gas Produ	ction Equipment	
Facility Equipment Type	Valves	Connectors	Open-ended Lines	Pressure Relief Valves
Wellheads	8	38	0.5	0
Separators	1	6	0	0
Meters/Piping	12	45	0	0
Compressors	12	57	0	0
In-line Heaters	14	65	2	1
Dehydrators	24	90	2	2

Well Specific Equ	ipment Counts
Facility Equipment Type	Count on Site
Wellheads	5
Separators	5
Meters/Piping	6
Compressors	0
In-line Heaters	5
Dehydrators	0

- Table W-1B to 40CFR98 Subpart W

	Gas Composition														
	Propane	Butane	Pentanes	Heptane	Octanes	Nonanes	Decanes	Hexane	Benzene	Toluene	Ethylbenzene	Xylene	CO ₂	CH ₄	
Mole %	0.20	0.02	0.002	<0.01	<0.001	<0.001	<0.001	0.0046	<0.001	<0.001	<0.001	<0.001	0.11	96.12	
MW	44	58	72	100	114	128	142	86.00	78.00	92.00	106.00	106.00	44.00	16.00	

	Fugitive Emissions														
Facility Equipment Type	Total Count	Emission Rate (scf/hr/component) ²	Hours of Operation	VOCs (Ibs/hr)	VOCs (tons/yr)	HAPs (Ibs/hr)	HAPs (tons/yr)	CO ₂ (lbs/hr)	CO ₂ (tons/yr)	CH ₄ (Ibs/hr)	CH₄ (tons/yr)	Total CO ₂ e (lbs/hr)	Total CO ₂ e (tons/yr)		
Valves	187	0.027	8760	0.00	0.01	<0.001	<0.001	0.001	0.004	0.20	0.88	5.04	22.06		
Connectors	815	0.003	8760	<0.001	0.00	<0.001	<0.001	<0.001	0.002	0.10	0.43	2.44	10.68		
Open-ended Lines	13	0.06	8760	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.03	0.13	0.76	3.33		
Pressure Relief Valves	5	0.04	8760	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.01	0.03	0.20	0.87		
			Total Emissions:	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	0.34	1.48	8.44	36.95		

- Table W-1A to 40CFR98 Subpart W

Example Equations: Fugitive Emissions (lb/hr) = Count x Emission Rate x Hours of Operation ÷ 385.5 scf/lbmol x mol VOC's

Attachment T - Emission Calculations Fugitive Emissions from Unpaved Haul Roads

Indus	trial Roads	
PM	PM-10	PM-2.5
4.9	1.5	0.15
0.7	0.9	0.9
0.45	0.45	0.45
	PM 4.9 0.7	4.9 1.5 0.7 0.9

where

k

s

р

Patricle size multiplier¹

4.8 Silt content of road surface material (%)

150 Number of days per year with precipitation

Item Number	Description	Number of Wheels	W Mean Vehicle Weight (tons)	Miles per Trip	Maximum Trips per Year	Control Device ID Number	Control Efficiency (%)	PM Emissions (Ibs/hr)	PM Emissions (tons/yr)	PM-10 Emissions (Ibs/hr)	PM-10 Emissions (tons/yr)	PM-2.5 Emissions (lbs/hr)	PM-2.5 Emissions (tons/yr)
1	Liquids Hauling	14	30	1.17	7,183	NA	NA	5.01	18.00	1.28	4.59	0.13	0.46
2	Employee Vehicles	4	3	1.17	200	NA	NA	1.78	0.18	0.45	0.05	0.05	0.005
							Totals:	6.79	18.18	1.73	4.63	0.17	0.46

Notes:

¹ - Particle Size Multiplier used from AP-42 13.2.2 - Final Version 11/2006

² - Silt Content of Road Surface uses Sand and Gravel Processing Plant Road from AP-42 13.2.2 - Final Version 11/2006

³ - Number of days per year with precipitation >0.01 in3 found using AP-42 13.2.2 Figure 13.2.2-1 - Final Version 11/2006

Example Calculations:

Emissions (lb/Vehicle Mile Traveled) - $E = k \times (s/12)^{a} \times (W/3)^{b}$

Equation 1a from AP-42 13.2.2 - Final Version 11/2006

Size Specific Emissions (lb/VMT) - $E_{ext} = E[(365-p)/365]$

Equation 2 from AP-42 13.2.2 - Final Version 11/2006

Attachment T - Emission Calculations

UNB Site Emission Levels

	VOCs HAPS CO		N	IO _x	PM ·	Total	PM -	PM - 10/2.5 PM - CON			SO ₂		С	02	CH₄		N ₂ O		CO ₂ e					
Emission Sources	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Line Heater (E01)	<0.01	0.02	<0.01	<0.01	0.0824	0.36	0.10	0.43	<0.01	0.03	<0.01	<0.01	<0.01	0.02	<0.01	<0.01	116.98	512.36	<0.01	<0.01	<0.01	<0.01	117.10	512.89
Line Heater (E02)	<0.01	0.02	<0.01	<0.01	0.0824	0.36	0.10	0.43	<0.01	0.03	<0.01	<0.01	<0.01	0.02	<0.01	<0.01	116.98	512.36	<0.01	<0.01	<0.01	<0.01	117.10	512.89
Line Heater (E03)	<0.01	0.02	<0.01	<0.01	0.0824	0.36	0.10	0.43	<0.01	0.03	<0.01	<0.01	<0.01	0.02	<0.01	<0.01	116.98	512.36	<0.01	<0.01	<0.01	<0.01	117.10	512.89
Line Heater (E04)	<0.01	0.02	<0.01	<0.01	0.0824	0.36	0.10	0.43	<0.01	0.03	<0.01	<0.01	<0.01	0.02	<0.01	<0.01	116.98	512.36	<0.01	<0.01	<0.01	<0.01	117.10	512.89
Line Heater (E05)	<0.01	0.02	<0.01	<0.01	0.0824	0.36	0.10	0.43	<0.01	0.03	<0.01	<0.01	<0.01	0.02	<0.01	<0.01	116.98	512.36	<0.01	<0.01	<0.01	<0.01	117.10	512.89
Blowdown Tank (E06)	0.24	1.07	<0.01	0.04													<0.01	<0.01	0.13	0.55			3.13	13.72
Fluids Tank (E07-E11)	5.86	25.67	0.21	0.92													0.02	0.09	3.01	13.18			75.22	329.47
Tank Truck Loading Activities (E12)	0.01	0.05	<0.01	<0.01													<0.01	<0.01	<0.01	0.03			0.20	0.86
TEG (E13)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.08	0.36	<0.01	<0.01	<0.01	<0.01	0.08	0.36
Haul Roads									6.79	18.18	6.79	18.18												
Fugitives Leaks	<0.01	0.01	<0.01	<0.01													<0.01	<0.01	0.34	1.48			8.44	36.95
Totals	6.14	26.91	0.23	0.99	0.41	1.80	0.49	2.15	6.83	18.34	6.80	18.22	0.03	0.12	<0.01	0.01	584.99	2562.26	3.49	15.28	<0.01	<0.01	672.56	2945.81

Attachment T - Emission Calculations UNB Site Emission Levels - HAP Speciation

	Total	HAPs	Forma	ldehyde	He>	ane	Ben	zene	Tol	uene	Ethylb	enzene	Ху	lene
Emission Sources	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr								
Line Heater (E01)	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (E02)	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (E03)	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (E04)	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (E05)	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Blowdown Tank (E06)	<0.01	0.04	<0.01	<0.01	<0.01	0.03	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fluids Tanks (E07-E11)	0.21	0.92	<0.01	<0.01	0.18	0.79	<0.01	0.02	0.02	0.09	<0.01	<0.01	<0.01	<0.01
Tank Truck Loading Activities (E12)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
TEG (E13)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Haul Roads														
Fugitives Leaks	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Totals	0.23	0.99	<0.01	<0.01	0.20	0.86	<0.01	0.02	0.02	0.09	<0.01	0.01	<0.01	0.01

Gary Vermillion Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Field: Station N Station Number: Sample Point: Analyzed: 10/23/2014 14:04:51 by GR

Certificate of Analysis Number: 2030-14100210-001A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Oct. 27, 2014

Sampled By:GR-SPLSample Of:CondensateSpotSample Date:10/08/2014 15:00Sample Conditions:630 psigMethod:GPA-2186M/GPA-2103

Analytical Data										
Components	Mol. %	MW	Wt. %	Sp. Gravity	L.V. %					
Nitrogen	NIL	28.013	NIL	0.807	NIL					
Methane	10.674	16.043	1.735	0.300	4.055					
Carbon Dioxide	0.065	44.010	0.029	0.817	0.025					
Ethane	5.377	30.069	1.638	0.356	3.224					
Propane	3.736	44.096	1.669	0.507	2.308					
Iso-Butane	1.359	58,122	0.800	0.563	0.997					
n-Butane	2.754	58.122	1.622	0.584	1.947					
lso-Pentane	2.508	72.149	1,833	0.625	2.056					
n-Pentane	2.250	72.149	1.645	0.631	1.829					
I-Hexanes	4.742	85.172	4.092	0.667	4.303					
n-Hexane	2.718	86.175	2.373	0.664	2.506					
2,2,4-Trimethylpentane	0.018	114.231	0.021	0.697	0.021					
Benzene	0.109	78.114	0.086	0.885	0.068					
Heptanes	13.220	98.287	13,166	0.700	13.187					
Toluene	1.097	92.141	1.024	0.872	0.823					
Octanes	15.626	110,146	17.442	0.732	16.710					
Ethylbenzene	0.200	106.167	0.215	0.872	0.173					
Xylenes	0.368	106.167	0.396	0.885	0.314					
Nonanes	11.599	124,568	14.638	0.744	13.792					
Decanes Plus	21.580	162.726	35.576	0.788	31.662					
	100.000		100.000	on ou	100.000					
Physical Properties		1	otal	C10+						
Specific Gravity at 60°F		0.1	7012	0.7879						
API Gravity at 60°F			.284	48.091						
Molecular Weight			.699	162,726						
Pounds per Gallon (in Vacuu	ım)		.846	6.569						
Pounds per Gallon (in Air)	n sharibi		.840	6.562						
Cu. Ft. Vapor per Gallon @ 1	14.73 psia		.427	15.283						

Patti L. Detro

Hydrocarbon Laboratory Manager

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Gary Vermillion Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Field: Station Name: Station Number: Sample Point: Analyzed: 10/23/2014 14:04:51 by GR

Certificate of Analysis 4

Number: 2030-14100210-001A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Oct. 27, 2014

Sampled By:GR-SPLSample Of:CondensateSpotSample Date:10/08/2014 15:00Sample Conditions: 630 psigMethod:GPA-2186M/GPA-2103

	Analytical Data											
Components	Mol. %	MW	Wt. %	Sp. Gravity	L.V. %							
Nitrogen	NIL	28.013	NIL	0.807	NIL							
Carbon Dioxide	0.065	44.010	0.029	0.817	0.025							
Methane	10.674	16.043	1.735	0.300	4.055							
Ethane	5.377	30.069	1.638	0.356	3.224							
Propane	3.736	44.096	1.669	0.507	2.308							
Iso-butane	1.359	58.122	0.800	0.563	0.997							
n-Butane	2.754	58.122	1.622	0.584	1.947							
Iso-pentane	2.508	72.149	1.833	0.625	2.056							
n-Pentane	2.250	72.149	1.645	0.631	1.829							
Hexanes	7.460	85.537	6.465	0.666	6.809							
Heptanes Plus	63.817	127.692	82.564	0.754	76.750							
	100.000		100.000		100.000							
Physical Properties			Tot	tal	C7+							
Specific Gravity at 60)°F		0.70	12 (0.7543							
API Gravity at 60°F			70.2	84 (56.084							
Molecular Weight	- 1127-2 × 201		98.69	99 12	27.692							
Pounds per Gallon (i			5.84		6.289							
Pounds per Gallon (i		72	5.84	40	6.282							
Cu. Ft. Vapor per Ga	llon @ 14.73	psia	22.42	27 1	18.647							

Pater L. Petro

Hydrocarbon Laboratory Manager

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Gary Vermillion Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Field: Station Name: . Station Number: Sample Point:

Certificate of Analysis

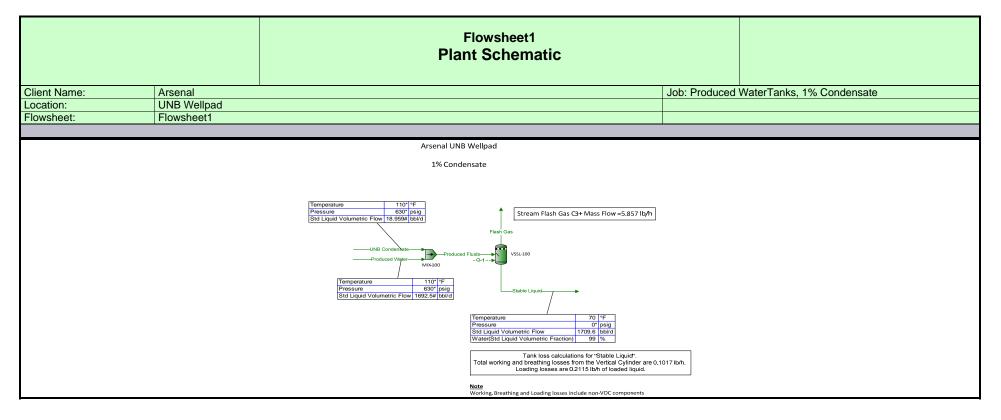
Number: 2030-14100210-001A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Oct. 27, 2014

Sampled By:GR-SPLSample Of:CondensateSpotSample Date:10/08/2014 15:00Sample Conditions:630 psig

Analytical Data


Test	Method	Result	Units	Detection Limit	Lab Tech.	Analysis Date
Color Visual	Proprietary	Straw			СМ	10/23/2014
API Gravity @ 60° F	ASTM D-5002	60.59	ō		CM	10/23/2014
Specific Gravity @ 60/60° F	ASTM D-5002	0.7366			CM	10/23/2014
Density @ 60° F	ASTM D-5002	0.7359	g/ml		CM	10/23/2014
Shrinkage Factor	Proprietary	0.9173			CM	10/23/2014
Flash Factor	Proprietary	198.5929 C	u. Ft./S.T. Bbl		CM	10/23/2014

Paren L. Deno

Hydrocarbon Laboratory Manager

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Client Name: Location: Flowsheet: From Block To Block To Block Mole Fraction Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane	Arsenal UNB Wellpad Flowsheet1	Flash Gas VSSL-100 Stream Co Flash Gas % 0 49.2641 0.113732 21.6728 11.8694	Ctions Produced Fluids MIX-100 VSSL-100 Produced Fluids % 0 0.0151737 9.24015E-05	Produced Water 	Stable Liquid VSSL-100 Stable Liquid %	UNB Condensate MIX-100 UNB Condensate
Flowsheet: From Block To Block Mole Fraction Nitrogen Methane Carbon Dioxide Ethane Propane		Flash Gas VSSL-100 Stream Co Flash Gas % 0 49.2641 0.113732 21.6728 11.8694	Produced Fluids MIX-100 VSSL-100 Dmposition Produced Fluids % 0 0.0151737	Water MIX-100 Produced Water % 0 *	VSSL-100 Stable Liquid %	Condensate MIX-100 UNB Condensate
From Block To Block Mole Fraction Nitrogen Methane Carbon Dioxide Ethane Propane	Flowsheet1	Flash Gas VSSL-100 Stream Co Flash Gas % 0 49.2641 0.113732 21.6728 11.8694	Produced Fluids MIX-100 VSSL-100 Dmposition Produced Fluids % 0 0.0151737	Water MIX-100 Produced Water % 0 *	VSSL-100 Stable Liquid %	Condensate MIX-100 UNB Condensate
To Block Mole Fraction Nitrogen Methane Carbon Dioxide Ethane Propane		Flash Gas VSSL-100 Stream Co Flash Gas % 0 49.2641 0.113732 21.6728 11.8694	Produced Fluids MIX-100 VSSL-100 Dmposition Produced Fluids % 0 0.0151737	Water MIX-100 Produced Water % 0 *	VSSL-100 Stable Liquid %	Condensate MIX-100 UNB Condensate
To Block Mole Fraction Nitrogen Methane Carbon Dioxide Ethane Propane		Flash Gas VSSL-100 Stream Co Flash Gas % 0 49.2641 0.113732 21.6728 11.8694	Produced Fluids MIX-100 VSSL-100 Dmposition Produced Fluids % 0 0.0151737	Water MIX-100 Produced Water % 0 *	VSSL-100 Stable Liquid %	Condensate MIX-100 UNB Condensate
To Block Mole Fraction Nitrogen Methane Carbon Dioxide Ethane Propane		VSSL-100 Flash Gas % 0 49.2641 0.113732 21.6728 11.8694	Fluids MIX-100 VSSL-100 Dmposition Produced Fluids % 0 0.0151737	Water MIX-100 Produced Water % 0 *	VSSL-100 Stable Liquid %	Condensate MIX-100 UNB Condensate
To Block Mole Fraction Nitrogen Methane Carbon Dioxide Ethane Propane		Stream Co Flash Gas % 0 49.2641 0.113732 21.6728 11.8694	VSSL-100 Produced Fluids % 0 0.0151737	Produced Water % 0 *	 Stable Liquid %	UNB Condensate
Mole Fraction Nitrogen Methane Carbon Dioxide Ethane Propane		Stream Co Flash Gas % 0 49.2641 0.113732 21.6728 11.8694	Produced Fluids % 0 0.0151737	Produced Water % 0 *	Stable Liquid %	UNB Condensate
Nitrogen Methane Carbon Dioxide Ethane Propane		Flash Gas % 0 49.2641 0.113732 21.6728 11.8694	Produced Fluids % 0 0.0151737	Water % 0 *	%	Condensate
Nitrogen Methane Carbon Dioxide Ethane Propane		Flash Gas % 0 49.2641 0.113732 21.6728 11.8694	Produced Fluids % 0 0.0151737	Water % 0 *	%	Condensate
Nitrogen Methane Carbon Dioxide Ethane Propane		% 0 49.2641 0.113732 21.6728 11.8694	Fluids % 0 0.0151737	Water % 0 *	%	Condensate
Nitrogen Methane Carbon Dioxide Ethane Propane		0 49.2641 0.113732 21.6728 11.8694	% 0 0.0151737	<mark>%</mark> 0 *		
Methane Carbon Dioxide Ethane Propane		49.2641 0.113732 21.6728 11.8694	0.0151737	-		%
Carbon Dioxide Ethane Propane		0.113732 21.6728 11.8694		0 *	0	0
Ethane Propane		21.6728 11.8694	9.24015E-05	-	0.00152941	10.674
Propane		11.8694	0.00764374	0 *	6.09179E-05 0.00164144	0.065 5.377
			0.00764374	0 *	0.00164144	3.736
		2.95582	0.0019319	0 *	0.00111353	1.359
n-Butane		4.76991	0.00391498	0 *	0.00259457	2.754
Isopentane		2.10843	0.00356528	0 *	0.00298213	2.508
n-Pentane		1.50518	0.00319851 0.00674104	0 *	0.00278239	2.25 4.742
lsohexane n-Hexane		1.36244 0.552193	0.0038638	0 *	0.00636545 0.00371189	2.718
2,2,4-Trimethylpent	tane	0.0012559	2.55881E-05	0 *	2.52472E-05	0.018
Benzene		0.0143537	0.00015495	0 *	0.000151016	0.109
Heptane		0.850347	0.018793	0 *	0.0185627	13.22
Toluene		0.0569277	0.00155945	0 *	0.00154411	1.097
		0.307588	0.0222133	0 *	0.0221343	15.626
Ethylbenzene o-Xylene		0.00333332 0.00486371	0.000284312 0.000523135	0 *	0.000283468 0.000521932	0.2
Nonane		0.0691174	0.0164887	0 *	0.0164741	11.599
Decane		0.0402866	0.0306773	0 *	0.0306746	21.58
Water		2.47794	99.8578	100 *	99.8848	0
		Flash Gas	Produced Fluids	Produced Water	Stable Liquid	UNB Condensate
Molar Flow		lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h
Nitrogen		0	0	0 *		0
Methane		0.187297	0.208285	0 *	0.0209879	0.208285
Carbon Dioxide Ethane		0.000432396	0.00126836 0.104923	0 *	0.000835967 0.0225253	0.00126836 0.104923
Propane		0.0451262	0.0729016	0 *	0.0225253	0.0729016
Isobutane		0.0112377	0.0265185	0 *	0.0152808	0.0265185
n-Butane		0.0181347	0.0537396	0 *	0.0356049	0.0537396
Isopentane		0.00801601	0.0489393	0 *	0.0409233	0.0489393
n-Pentane		0.00572255	0.0439049	0 *	0.0381823	0.0439049
lsohexane n-Hexane		0.00517985 0.00209938	0.092532 0.0530371	0 *	0.0873521 0.0509377	0.092532 0.0530371
2,2,4-Trimethylpent	tane	4.77479E-06	0.000351239	0 *	0.000346464	0.000351239
Benzene		5.45712E-05	0.00212695	0 *	0.00207238	0.00212695
Heptane		0.00323293	0.257966	0 *	0.254733	0.257966
Toluene		0.000216433	0.0214061	0 *	0.0211896	0.0214061
Octane		0.00116942	0.304914 0.00390266	<u> </u>	0.303745	0.304914
Ethylbenzene o-Xylene		1.26729E-05 1.84913E-05	0.00390266	0 *	0.00388998 0.00716239	0.00390266 0.00718089
Nonane		0.000262777	0.226334	0 *	0.226072	0.226334
Decane		0.000153165	0.421097	0 *	0.420943	0.421097
Water		0.00942087	1370.71	1370.71 *	1370.7	0
					· · ·	
		Flash Gas	Produced	Produced	Stable Liquid	UNB
Mass Fraction		%	Fluids %	Water %	%	Condensate %

* User Specified Values ? Extrapolated or Approximate Values

Licensed to The ERM Group, Inc. and Affiliates

Т

Г

		All St	eams Report reams by Total Phase					
Client Name:	Arsenal				b: Produced Water Tanks % Condensate			
Location:	UNB Wellpad							
Flowsheet:	Flowsheet1							
		Flash Gas	Produced Fluids	Produced Water	Stable Liquid	UNB Condensate		
Mass Fraction		%	%	%	%	%		
Methane		 26.065	0.0134298	0 *	0.00135389	1.79018 *		
Carbon Dioxide		0.165076	0.000224353	0 *	0.000147938	0.029906 *		
Ethane		21.4927	0.0126804	0 *	0.00272354	1.69028 *		
Propane		17.2616	0.0129204	0 *	0.00492491	1.72227 *		
Isobutane		5.66601	0.00619489	0 *	0.00357134	0.825773 *		
n-Butane		9.14343	0.0125539	0 *	0.00832136	1.67342 *		
Isopentane		5.017	0.0141915	0 *	0.0118725	1.89171 *		
n-Pentane		3.58158	0.0127316	0 *	0.0110773	1.69711 *		
Isohexane		3.87219	0.0320492	0 *	0.0302691	4.27212 *		
n-Hexane		1.56939	0.0183698	0 *	0.0176509	2.44868 *		
2,2,4-Trimethylpe	ntane	0.00473136	0.000161257	0 *	0.000159139	0.0214954 *		
Benzene		0.0369774	0.000667752	0 *	0.000650921	0.0890107 *		
Heptane		2.81015	0.103891	0 *	0.102637	13.8486 *		
Toluene		0.17299	0.00792719	0 *	0.00785068	1.05669 *		
Octane		1.15878	0.139989	0 *	0.139517	18.6604 *		
Ethylbenzene		 0.0116712	0.00166527	0 *	0.00166063	0.221978 *		
o-Xylene		 0.0170297	0.00306409	0 *	0.00305761	0.40844 *		
Nonane		 0.29236	0.116672	0 *	0.116591	15.5523 *		
Decane		0.189046	0.240809	0 *	0.240833	32.0996 *		
Water		1.47227	99.2498	100 *	99.2951	0 *		
		Flash Gas	Produced	Produced	Stable Liquid	UNB		
			Fluids	Water		Condensate		
Mass Flow		lb/h	lb/h	lb/h	lb/h	lb/h		
Nitrogen		0	0	0 *	0	0 *		
Methane		3.0047	3.3414	0 *	0.336697	3.3414 *		
Carbon Dioxide		0.0190296	0.05582	0 *	0.0367905	0.05582 *		

Nitrogen	0	0	0 *	0	0 ~
Methane	3.0047	3.3414	0 *	0.336697	3.3414 *
Carbon Dioxide	0.0190296	0.05582	0 *	0.0367905	0.05582 *
Ethane	2.47762	3.15493	0 *	0.677314	3.15493 *
Propane	1.98987	3.21464	0 *	1.22477	3.21464 *
Isobutane	0.653162	1.54132	0 *	0.888154	1.54132 *
n-Butane	1.05403	3.12346	0 *	2.06943	3.12346 *
Isopentane	0.578346	3.53091	0 *	2.95256	3.53091 *
n-Pentane	0.412875	3.16768	0 *	2.75481	3.16768 *
Isohexane	0.446376	7.97397	0 *	7.5276	7.97397 *
n-Hexane	0.180915	4.57049	0 *	4.38958	4.57049 *
2,2,4-Trimethylpentane	0.000545417	0.0401215	0 *	0.0395761	0.0401215 *
Benzene	0.00426266	0.16614	0 *	0.161877	0.16614 *
Heptane	0.323946	25.8486	0 *	25.5247	25.8486 *
Toluene	0.0199418	1.97232	0 *	1.95238	1.97232 *
Octane	0.133581	34.8299	0 *	34.6963	34.8299 *
Ethylbenzene	0.00134542	0.414325	0 *	0.41298	0.414325 *
o-Xylene	0.00196313	0.762359	0 *	0.760396	0.762359 *
Nonane	0.0337025	29.0286	0 *	28.9949	29.0286 *
Decane	0.0217926	59.9143	0 *	59.8925	59.9143 *
Water	0.16972	24693.8	24693.8 *	24693.6	0 *

		Stream F	Properties			
Property	Units	Flash Gas	Produced Fluids	Produced Water	Stable Liquid	UNB Condensate
Temperature	°F	69.9831	110.005	110 *	69.9831	110 *
Pressure	psia	14.6959	644.696	644.696 *	14.6959 *	644.696 *
Mole Fraction Vapor	%	100	0	0	0	0
Mole Fraction Light Liquid	%	0	0.125337	100	0.112296	100
Mole Fraction Heavy Liquid	%	0	99.8747	0	99.8877	0
Molecular Weight	lb/lbmol	30.321	18.1256	18.0153	18.1223	95.6535
Mass Density	lb/ft^3	0.0790312	61.6398	61.8554	62.0998	41.7451
Molar Flow	lbmol/h	0.380189	1372.67	1370.71	1372.28	1.95133
Mass Flow	lb/h	11.5277	24880.4	24693.8	24868.9	186.651

* User Specified Values ? Extrapolated or Approximate Values

Licensed to The ERM Group, Inc. and Affiliates

			All St	reams Report treams				
Client Name: A	rsenal				Job. Brodu	ced Water Tanks		
					1% Conder			
Location: U	NB Wellpad							
Flowsheet: Fl	lowsheet1							
			Stream	Properties				
Property		Units	Flash Gas	Produced	Produced	Stable Liquid	UNB	
				Fluids	Water		Condensate	
Vapor Volumetric Flow		ft^3/h	145.863	403.643	399.218	400.467	4.47122	
Liquid Volumetric Flow		gpm	18.1855	50.3243	49.7726	49.9283	0.557451	
Std Vapor Volumetric F	low	MMSCFD	0.00346262	12.5017	12.4839	12.4982	0.0177719	
Std Liquid Volumetric F	low	sgpm	0.0546835	49.9177	49.3647 *	49.863	0.552974 *	
Compressibility			0.991945	0.0310097	0.0307136	0.00075451	0.241637	
Specific Gravity			1.0469	0.988308	0.991765	0.995684	0.669324	
API Gravity				10.3891	9.9226	10.4085	72.1924	
Enthalpy		Btu/h	-15575.4	-1.67775E+08	-1.676E+08	-1.68775E+08	-175503	
Mass Enthalpy		Btu/lb	-1351.12	-6743.26	-6787.13	-6786.58	-940.27	
Mass Cp		Btu/(lb*°F)	0.43574	0.976624	0.979728	0.978871	0.541859	
Ideal Gas CpCv Ratio			1.17801	1.3216	1.32394	1.32371	1.05294	
Dynamic Viscosity		cP	0.00947686	0.632637	0.636007	0.991313	0.324899	
Kinematic Viscosity		cSt	7.48591	0.640727	0.641894	0.996551	0.485873	
Thermal Conductivity		Btu/(h*ft*°F)	0.0140829	0.360555	0.363956	0.344335	0.0683226	
Surface Tension		lbf/ft		0.00469477	0.00473609	0.00499675 ?	0.000915441	
Net Ideal Gas Heating		Btu/ft^3	1595.96	6.91343	0	6.47318	4863.26	
Net Liquid Heating Valu		Btu/lb	19845.6	-908.234	-1059.76	-917.854	19138.5	
Gross Ideal Gas Heatin	ng Value	Btu/ft^3	1745.93	57.6963	50.3101	57.2286	5246.17	

21722.6

Btu/lb

154.972

Remarks

Gross Liquid Heating Value

144.974

0

20657.6

Simulation Initiated on 5/16/	/2017 10:39:41 AM		UNB_20% Contingency	_1% Cond_5.16.17.pmx			Page 1 of 1		
			MIX	cks -100 tter Report					
Client Name:						Job: Produced Water Tanks 1% Condensate			
Location:	UNB Wellpad				Modified: 5:14 PM, 7/24/2014				
Flowsheet:	Flowsheet1					ved 10:08 AM, 5	/16/2017		
Connections									
Stream	Connect	ion Type	Other Block	Stream	Connect	ion Type	Other Block		
Produced Water	In	let		UNB Condensate	In	let			
Produced Fluids	Ou	tlet	VSSL-100						
			Block Pa	rameters					
Pressure Drop		C	psi	Fraction to PStream Produced Fluids		1	00 %		
Remarks									

Simulation Initiated on 5/16	/2017 10:39:41 AM		UNB_20% Contingency	_1% Cond_5.16.17.pmx			Page 1 o			
			Blo VSSL Separato	100						
Client Name:	Arsenal				Job: Produc 1% Conden	ed Water Tanks sate				
ocation: UNB Wellpad					Modified: 11:42 AM, 5/13/2017					
Flowsheet:	Flowsheet1				Status: Solv	red 10:08 AM, 5/16	/2017			
Connections										
Stream	Connect	ion Type	Other Block	Stream	Connecti	on Type	Other Block			
Produced Fluids	In	let	MIX-100	Flash Gas	Vapor	Outlet				
Stable Liquid	Light Liqu	uid Outlet		Q-1	Ene	rgy				
			Block Pa	rameters						
Pressure Drop		630	psi	Main Liquid Phase		Light Liquid				
Mole Fraction Vap	or	0.0276972	%	Heat Duty		-1.015E+06	Btu/h			
Mole Fraction Ligh	it Liquid	0.112265	%	Heat Release Curve Ty	/pe	Plug Flow				
Mole Fraction Hea	vy Liquid	99.86	%	Heat Release Curve Increments		10				
Remarks										

		F		Environment onment1			
Client Name:	Arsenal				Job: Produced W 1% Condensate	/ater Tanks	
Location:	UNB Wellpad						
Flowsheet:	Flowsheet1						
			Environm	ent Settings			
Number of Poy		0		Phase Tolerance		1 %	
Gibbs Excess		77 °F		Emulsion Enabled		False	
Evaluation Ten							
Freeze Out Ter		10 °F					
Threshold Diffe	erence						
		I fammed a famme		onents			Dises
Component Nan	ne	Henry's Law Component	Phase Initiator	Component Name		Henry's Law Component	Phase Initiator
Nitrogen		False	False	2,2,4-Trimethylpentane		False	False
<i>Aethane</i>		False	False	Benzene		False	False
Carbon Dioxide		False	False	Heptane		False	False
Ethane		False	False	Toluene		False	False
Propane		False	False	Octane		False	False
sobutane		False	False	Ethylbenzene		False	False
n-Butane		False	False	o-Xylene		False	False
sopentane		False	False	Nonane		False	False
n-Pentane		False	False	Decane		False	False
Isohexane		False	False	Water		False	True
		False	False				
n-Hexane							
n-Hexane		Dhya	ical Prop	erty Method Sets			
							00
Liquid Molar Volu		COSTALE)	Overall Package		Peng-Robins	
n-Hexane Liquid Molar Volu Stability Calculati Light Liquid Pack	on) son	Vapor Package Vapor Package Heavy Liquid Package		Peng-Robins Peng-Robins Peng-Robins	on

		Er	nvironm	ents Report			
Client Name:	Arsenal				Job: Produce 1% Conder	ced Water Tanks	
Location:	UNB Wellpad						
		P	roiect-Wi	de Constants			
Atmospheric Press	ure	14.6959		Ideal Gas Reference Pre	ssure	14.6959	psia
Ideal Gas Referenc	e Temperature		°F	Ideal Gas Reference Vol	ume	379.484	ft^3/lbmol
Liquid Reference T	emperature	60 °	°F				
		F		[[]			
				[Environment1]			
New Jacobia	la esta esta esta		Environm	ent Settings		1 0/	
Number of Poynt		0 77 °F		Phase Tolerance		1 %	
	del	// °F		Emulsion Enabled		False	
Gibbs Excess Mo							
Evaluation Temp		10 °F					
	perature	10 °F					
Evaluation Temp Freeze Out Temp Threshold Differe	perature nce		Comj Phase	Donents Component Name		Henry's Law	Phase
Evaluation Temp Freeze Out Temp Threshold Differe	perature nce	10 °F Henry's Law Component		Component Name		Henry's Law Component	Initiato
Evaluation Temp Freeze Out Temp Threshold Differe Component Name Nitrogen	perature nce	Henry's Law Component False	Phase Initiator False	Component Name 2,2,4-Trimethylpentane		Component False	Initiato False
Evaluation Temp Freeze Out Temp Threshold Differe Component Name Nitrogen Methane	perature nce	Henry's Law Component False False	Phase Initiator False False	Component Name 2,2,4-Trimethylpentane Benzene		Component False False	Initiato False False
Evaluation Temp Freeze Out Temp Threshold Differe Component Name Nitrogen Methane Carbon Dioxide	perature nce	Henry's Law Component False False False	Phase Initiator False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane		Component False False False	Initiato False False False
Evaluation Temp Freeze Out Temp Threshold Differe Component Name Nitrogen Methane Carbon Dioxide Ethane	perature nce	Henry's Law Component False False False False False	Phase Initiator False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene		Component False False False False False	Initiato False False False False
Evaluation Temp Freeze Out Temp Threshold Differe Component Name Nitrogen Methane Carbon Dioxide Ethane Propane	perature nce	Henry's Law Component False False False False False False	Phase Initiator False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane		Component False False False False False False	Initiato False False False False False
Evaluation Temp Freeze Out Temp Threshold Differe Component Name Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane	perature nce	Henry's Law Component False False False False False False False	Phase Initiator False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene		Component False False False False False False False	Initiato False False False False False False
Evaluation Temp Freeze Out Temp Threshold Differe Component Name Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane	perature nce	Henry's Law Component False False False False False False False False	Phase Initiator False False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene		Component False False False False False False False	Initiato False False False False False False False
Evaluation Temp Freeze Out Temp Threshold Differe Component Name Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane	perature nce	Henry's Law Component False False False False False False False False False False	Phase Initiator False False False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane		Component False False False False False False False False False	Initiato False False False False False False False False
Evaluation Temp Freeze Out Temp	perature nce	Henry's Law Component False False False False False False False False	Phase Initiator False False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene		Component False False False False False False False	Initiator False False False False False False False
Evaluation Temp Freeze Out Temp Threshold Differe Component Name Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane Isohexane	perature nce	Henry's Law Component False False False False False False False False False False False	Phase Initiator False False False False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane		Component False False False False False False False False False False	False False False False False False False False
Evaluation Temp Freeze Out Temp Threshold Differe Component Name Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane Isohexane	perature nce	Henry's Law Component False False False False False False False False False False False False	Phase Initiator False False False False False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane		Component False False False False False False False False False False	Initiato False False False False False False False False False
Evaluation Temp Freeze Out Temp Threshold Differe Component Name Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane Isohexane n-Hexane	perature nce	Henry's Law Component False False False False False False False False False False False False False	Phase Initiator False False False False False False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water		Component False False False False False False False False False False	Initiato False False False False False False False False True
Evaluation Temp Freeze Out Temp Threshold Differe Component Name Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane Isohexane n-Hexane Liquid Molar Volum	e e	Henry's Law Component False False False False False False False False False False False False False False False False False	Phase Initiator False False False False False False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water erty Method Sets Overall Package		Component False False False False False False False False False False False	Initiato False False False False False False False False True
Evaluation Temp Freeze Out Temp Threshold Differe Component Name Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane Isohexane	e e e	Henry's Law Component False False False False False False False False False False False False False	Phase Initiator False False False False False False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water		Component False False False False False False False False False False	Initiato False False False False False False False False True

		Calc	ulator Report			
Client Name:	Arsenal			Job: Produced	l Water Tanks	
La cardia c				1% Condensat	te	
Location:	UNB Wellpad					
	ł					
			nple Solver 1			
Desidual Error (for (N(1) TotolFlow 1		ource Code			
Residual Error (for C	$(v^{\dagger}) = 1$ otalFlow-1	709.5875				
Source Moniker	ProMax:ProMa Flow	Calcula x!Project!Flowsheets!Flowshee	ted Variable [CV1] httlPStreams!UNB Condensate	Phases!Total!Pro	operties!Std Liquid Volu	imetric
Value	18.9591					
Unit						
Source Moniker Value Unit	ProMax:ProMa 1709.59		Variable [TotalFlow] at1!PStreams!Stable Liquid!Pha	ses!Total!Propert	ties!Std Liquid Volumet	ric Flow
		Sal	ver Properties	St	tatus: Solved	
Error		2.00089E-11	Iterations	01	3	
Calculated Value		0.552974 sgpm	Max Iterations		20	
		sgpm	Weighting		<u> </u>	
Lower Bound						
Lower Bound Upper Bound		sgpm	Priority Solver Active		Active	
Lower Bound Upper Bound Step Size Is Minimizer		sgpm sgpm False	Priority Solver Active Group		Active	
Lower Bound Upper Bound Step Size		sgpm sgpm	Priority Solver Active	eck		
Lower Bound Upper Bound Step Size Is Minimizer Algorithm		sgpm sgpm False Default	Priority Solver Active Group Skip Dependency Ch	eck	Active	
Lower Bound Upper Bound Step Size Is Minimizer Algorithm		sgpm sgpm False Default	Priority Solver Active Group Skip Dependency Ch	eck	Active	
Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks	:V1) = PercentWa	sgpm sgpm False Default Sir	Priority Solver Active Group Skip Dependency Ch	eck	Active	
Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks	SV1) = PercentWa	sgpm sgpm False Default Sir	Priority Solver Active Group Skip Dependency Ch	eck	Active	
Lower Bound Upper Bound Step Size Is Minimizer Algorithm		sgpm sgpm False Default Sir Ster-99 Calcula	Priority Solver Active Group Skip Dependency Ch Skip Code ource Code		Active False	
Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for C	ProMax:ProMa	sgpm sgpm False Default Sir Ster-99 Calcula	Priority Solver Active Group Skip Dependency Ch		Active False	netric Flow
Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Remarks Residual Error (for C		sgpm sgpm False Default Sir Ster-99 Calcula	Priority Solver Active Group Skip Dependency Ch Skip Code ource Code		Active False	netric Flow
Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Remarks Residual Error (for C	ProMax:ProMa	sgpm sgpm False Default Sir Ster-99 Calcula	Priority Solver Active Group Skip Dependency Ch Skip Code ource Code		Active False	netric Flow
Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Remarks Residual Error (for C	ProMax:ProMa	sgpm sgpm False Default Sir Ster-99 Calcula x!Project!Flowsheets!Flowshee	Priority Solver Active Group Skip Dependency Ch Skip Copendency Ch ource Code ted Variable [CV1] et1!PStreams!Produced Water!f		Active False	netric Flow
Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Remarks Residual Error (for C Source Moniker Value Unit Source Moniker	ProMax:ProMa 1692.5 ProMax:ProMa Fraction!Water	sgpm sgpm False Default Sir Ster-99 Calcula x!Project!Flowsheets!Flowsheets Keasured V x!Project!Flowsheets!Flowsheets	Priority Solver Active Group Skip Dependency Ch Skip Code ource Code	Phases!Total!Prop	Active False	
Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Remarks Source Moniker Value Unit Source Moniker Value	ProMax:ProMa 1692.5 ProMax:ProMa	sgpm sgpm False Default Sir Ster-99 Calcula x!Project!Flowsheets!Flowsheets Keasured V x!Project!Flowsheets!Flowsheets	Priority Solver Active Group Skip Dependency Ch Skip Dependency Ch ource Code ted Variable [CV1] et1!PStreams!Produced Water!f ariable [PercentWater]	Phases!Total!Prop	Active False	
Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Remarks Source Moniker Value Unit Source Moniker Value	ProMax:ProMa 1692.5 ProMax:ProMa Fraction!Water	sgpm sgpm False Default Sir Sir S ter-99 Calcula x!Project!Flowsheets!Flowsheets Vx!Project!Flowsheets!Flowsheets	Priority Solver Active Group Skip Dependency Ch Skip Dependency Ch nple Solver 2 ource Code ted Variable [CV1] st1!PStreams!Produced Water!f ariable [PercentWater] st1!PStreams!Stable Liquid!Pha	Phases!Total!Prop	Active False	
Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Remarks Residual Error (for C Source Moniker Value Unit Source Moniker Value	ProMax:ProMa 1692.5 ProMax:ProMa Fraction!Water	sgpm sgpm False Default Sir Sir Sir Sir Sir Sir Sir Sir Sir Sir	Priority Solver Active Group Skip Dependency Ch Skip Dependency Ch nple Solver 2 ource Code ted Variable [CV1] st1!PStreams!Produced Water!F ariable [PercentWater] st1!PStreams!Stable Liquid!Pha ver Properties	Phases!Total!Prop	Active False Perties!Std Liquid Volur perties!Std Liquid Volur position!Std Liquid Volur	
Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Remarks Residual Error (for C Source Moniker Value Unit Source Moniker Value Unit Error	ProMax:ProMa 1692.5 ProMax:ProMa Fraction!Water	sgpm sgpm False Default Sir Sir Sir Sir Sir Sir Sir Sir Sir Sir	Priority Solver Active Group Skip Dependency Ch Skip Dependency Ch ource Code ted Variable [CV1] st1!PStreams!Produced Water!f ariable [PercentWater] st1!PStreams!Stable Liquid!Pha tt1!PStreams!Stable Liquid!Pha	Phases!Total!Prop	Active False perties!Std Liquid Volur psition!Std Liquid Volum tatus: Solved 3	
Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Remarks Residual Error (for C Source Moniker Value Unit Source Moniker Value	ProMax:ProMa 1692.5 ProMax:ProMa Fraction!Water	sgpm sgpm False Default Sir Sir Sir Sir Sir Sir Sir Sir Sir Sir	Priority Solver Active Group Skip Dependency Ch Skip Dependency Ch Durce Code ted Variable [CV1] st1!PStreams!Produced Water!f ariable [PercentWater] st1!PStreams!Stable Liquid!Pha tt1!PStreams!Stable Liquid!Pha	Phases!Total!Prop	Active False Perties!Std Liquid Volur perties!Std Liquid Volur position!Std Liquid Volur	
Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Remarks Source Moniker Value Unit Source Moniker Value Unit Error Calculated Value Lower Bound Upper Bound	ProMax:ProMa 1692.5 ProMax:ProMa Fraction!Water	sgpm sgpm False Default Sir Sir Sir Sir Sir Sir Sir Sir Sir Sir	Priority Solver Active Group Skip Dependency Ch Skip Dependency Ch Durce Code ted Variable [CV1] ett1!PStreams!Produced Water!F ariable [PercentWater] ett1!PStreams!Stable Liquid!Pha tt1!PStreams!Stable Liquid!Pha tt1!PStreams!Stable Liquid!Pha Priority	Phases!Total!Prop	Active False False perties!Std Liquid Volur osition!Std Liquid Volum tatus: Solved 3 20 1 0	
Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Remarks Source Moniker Value Unit Source Moniker Value Unit Error Calculated Value Lower Bound Upper Bound Step Size	ProMax:ProMa 1692.5 ProMax:ProMa Fraction!Water	sgpm sgpm False Default Sir Sir Sir Sir Sir Sir Sir Sir Sir Sir	Priority Solver Active Group Skip Dependency Ch Skip Dependency Ch Durce Code ted Variable [CV1] ett1!PStreams!Produced Water!F ariable [PercentWater] ett1!PStreams!Stable Liquid!Pha tt1!PStreams!Stable Liquid!Pha bt1!PStreams!Stable Liquid!Pha Priority Solver Active	Phases!Total!Prop	Active False Perties!Std Liquid Volur position!Std Liquid Volum tatus: Solved 3 20 1	
Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Remarks Source Moniker Value Unit Source Moniker Value Unit Error Calculated Value Lower Bound Upper Bound	ProMax:ProMa 1692.5 ProMax:ProMa Fraction!Water	sgpm sgpm False Default Sir Sir Sir Sir Sir Sir Sir Sir Sir Sir	Priority Solver Active Group Skip Dependency Ch Skip Dependency Ch Durce Code ted Variable [CV1] ett1!PStreams!Produced Water!F ariable [PercentWater] ett1!PStreams!Stable Liquid!Pha tt1!PStreams!Stable Liquid!Pha tt1!PStreams!Stable Liquid!Pha Priority	Phases!Total!Prop	Active False False perties!Std Liquid Volur osition!Std Liquid Volum tatus: Solved 3 20 1 0	

		Calculator Report		
Client Name:	Arsenal		Job: Product 1% Conder	ced Water Tanks
Location:	UNB Wellpad			

			Jser Value	e Sets Report		
Client Name:	Arsenal	I				ced Water Tanks
Location:	UNB Wellpad				1% Conder	Isate
			Cn+ F	low/Frac.		
				[CnPlusSum]		
* Parameter			lb/h	Upper Bound		
Lower Bound			lb/h	* Enforce Bounds		False
Remarks						
This User Value Set	t was programma	tically generated. G	UID={E867C48	5-3D3C-49CB-BC24-EA160)96DB2B1}	
				Losses		
* Parameter		20		[ShellLength] Upper Bound		
* Lower Bound		20		* Enforce Bounds		False
				e [ShellDiam]		
 * Parameter * Lower Bound 		<u> 12 </u> 0		Upper Bound * Enforce Bounds		False
Lower Bound		0	11	Enlorce Dounds		1 0130
			User Value	e [BreatherVP]		
* Parameter		0.03		Upper Bound		
Lower Bound				* Enforce Bounds		False
			User Value	[BreatherVacP]		
* Parameter		-0.03		Upper Bound		
Lower Bound				* Enforce Bounds		False
			Hear Value	[DomoBadius]		
Parameter			ft	[DomeRadius] Upper Bound		ft
Lower Bound			ft	* Enforce Bounds		False
* Deve meter		0		ue [OpPress]		
* Parameter Lower Bound		0	psig	* Enforce Bounds		False
			Jser Value [AvgPercentLiq]		
* Parameter Lower Bound		50	% %	Upper Bound * Enforce Bounds		False
Lower Bound			/0	Enlorce Bounds		r dise
			Jser Value [MaxPercentLiq]		
* Parameter		90	%	Upper Bound		
Lower Bound			%	* Enforce Bounds		False
			Lleor Valu	e [AnnNetTP]		
* Parameter		1708.82		Upper Bound		
* Lower Bound		0	bbl/day	* Enforce Bounds		False
* Parameter		0		Upper Bound		
Lower Bound			%	* Enforce Bounds		False
				[AtmPressure]		
* Parameter Lower Bound		14.1085	psia	Upper Bound * Enforce Bounds		False
Lower Dound						1 0.00

		User Val	ue Sets Report	
Client Name:	Arsenal			Job: Produced Water Tanks
Location:	UNB Wellpad			1% Condensate
		lloor		
* Parameter		0.258845 psia	Value [TVP]	
Lower Bound			* Enforce Bounds	False
* Demonster		User Value	[AvgLiqSurfaceT]	
* Parameter Lower Bound		57.7675 °F	Upper Bound * Enforce Bounds	False
Lower Bound			Enioroe Bounds	
		User Value	[MaxLiqSurfaceT]	
* Parameter		66.3119 °F	Upper Bound	
Lower Bound			* Enforce Bounds	False
* Parameter		0.101743 lb/h	ue [TotalLosses] Upper Bound	
Lower Bound		lb/h	* Enforce Bounds	False
			e [WorkingLosses]	
* Parameter		0.0775188 ton/yr	Upper Bound	
Lower Bound		ton/yr	* Enforce Bounds	False
		Liser Value	[StandingLosses]	
* Parameter		0.0116082 ton/yr	Upper Bound	
Lower Bound		ton/yr	* Enforce Bounds	False
* Devementer			e [RimSealLosses]	
* Parameter Lower Bound		0 ton/yr	Upper Bound * Enforce Bounds	False
		User Value	[WithdrawalLoss]	
* Parameter		0 ton/yr	Upper Bound	
Lower Bound			* Enforce Bounds	False
* Parameter		0.211517 lb/h	e [LoadingLosses] Upper Bound	
Lower Bound		lb/h	* Enforce Bounds	False
			[DeckFittingLosses]	
* Parameter Lower Bound		0 ton/yr	Upper Bound * Enforce Bounds	False
Lower Bound			Efficice Boulius	
		User Value	[DeckSeamLosses]	
* Parameter		0 ton/yr	Upper Bound	
Lower Bound			* Enforce Bounds	False
* Doromotor			e [FlashingLosses]	
* Parameter Lower Bound		0 ton/yr	Upper Bound * Enforce Bounds	False
			e [GasMoleWeight]	
* Parameter		0.0189129 kg/mol	Upper Bound	
Lower Bound			* Enforce Bounds	False
Remarks				

This User Value Set was programmatically generated. GUID={B57AFC7E-AAE8-4873-921B-7B4031991004}

* User Specified Values ? Extrapolated or Approximate Values

		Flowshee Plant Scher		
Client Name:	Arsenal		Job: Blowd	down Tank, 1% Condensate
Location:	UNB Wellpad			· · · · · ·
Flowsheet:	Flowsheet1			
		Std Liquid Volumetric Flow (0.7895# bb/d) Flash Gas UNB Condenhate Produced Fluids Produced Water Ntr 100 Temperature 110° 1° F Pressure 630° psig Std Liquid Volumetric Flow (70.521# bb/d) Temperature Pressure 5td Liquid Volumetric Flow (70.521# bb/d) Temperature Temperature Pressure Std Liquid Volumetric Std Liquid Volumetric Flow (70.521# bb/d) Temperature Total working and Face Total working and Face	_iquid 70]*F 0° ipsig	

		All	Streams Repo	rt		
Client Name:	Arsenal			Job: Blow	down Tank 1% Cor	ndensate
Location:	UNB Wellpad					
Flowsheet:	Flowsheet1					
			onnections			
		Flash Gas	Produced	Produced	Stable Liquid	UNB
From Disal)/00L 400	Fluids	Water	V(00) 400	Condensate
From Block To Block		VSSL-100	MIX-100 VSSL-100	 MIX-100	VSSL-100	 MIX-100
TO BIOCK			V33L-100	1017-100		IMIX-100
		Streen	Composition			
			n Composition	Draducad	Ctable Linuid	UNB
		Flash Gas	Produced Fluids	Produced Water	Stable Liquid	Condensate
Mole Fraction		%	Fiulds %	water %	%	%
Nitrogen				70°	70	/6
Methane		49.266	-		-	10.674
Carbon Dioxide		0.11368			6.08983E-05	0.065
Ethane		21.672		6 0 *	0.00164113	5.377
Propane		11.869			0.00202324	3.736
Isobutane		2.9556			0.00111301	1.359
n-Butane		4.7695			0.0025933	2.754
Isopentane		2.1081			0.00298052	2.508
n-Pentane		<u> </u>		T V	0.00210001	2.25 4.742
lsohexane n-Hexane		0.55208		1 0	0.00370976	2.718
2,2,4-Trimethylpe	entane	0.0012556		-	2.52326E-05	0.018
Benzene	intario	0.014348			* 0.00015093	0.109
Heptane		0.85014			* 0.0185519	13.22
Toluene		0.056911				1.097
Octane		0.30750	5 0.0222003	3 0 *	0.0221213	15.626
Ethylbenzene		0.0033323			0.000283302	0.2
o-Xylene		0.004862			* 0.000521627	0.368
Nonane		0.069096			0.0104045	11.599
Decane		0.040273			* 0.0306567 * 99.8849	21.58
Water		2.4772	5 99.6578	3 100	99.0049	0
		Flash Gas	Produced	Produced	Stable Liquid	UNB
		Tiash Gas	Fluids	Water		Condensate
Molar Flow		lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h
				lbmol/h	Ibmol/h	lbmol/h 0
Nitrogen Methane		0.0077989	0 (6 0.0086734	0 0 [*] 5 0 [*]	* 0 * 0.000874487	0.00867345
Nitrogen Methane Carbon Dioxide		0.0077989 1.79967E-0	0 (0 6 0.00867345 5 5.28175E-05	0 0 ° 5 0 ° 5 0 °	* 0 * 0.000874487 * 3.48208E-05	0 0.00867345 5.28175E-05
Nitrogen Methane Carbon Dioxide Ethane		0.0077989 1.79967E-0 0.0034308	0 0 6 0.00867345 5 5.28175E-05 6 0.00436923	0 0 ° 5 0 ° 5 0 ° 3 0 °	* 0 * 0.000874487 * 3.48208E-05 * 0.000938373	0 0.00867345 5.28175E-05 0.00436923
Nitrogen Methane Carbon Dioxide Ethane Propane		0.0077989 1.79967E-0 0.0034308 0.0018789	0 (0 6 0.00867345 5 5.28175E-05 6 0.00436922 3 0.00303575	0 0 ° 5 0 ° 5 0 ° 3 0 °	* 0 0.000874487 * 3.48208E-05 * 0.000938373 * 0.00115686	0 0.00867345 5.28175E-05 0.00436923 0.00303579
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane		0.0077989 1.79967E-0 0.0034308 0.0018789 0.00046788	0 0 6 0.00867345 5 5.28175E-05 6 0.00436923 3 0.00303575 8 0.00110425	0 0 ° 5 0 ° 5 0 ° 3 0 ° 9 0 °	0 0.000874487 3.48208E-05 0.000938373 0.00115686 0.000636404	0 0.00867345 5.28175E-05 0.00436923 0.00303579 0.00110429
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane		0.0077989 1.79967E-0 0.0034308 0.0018789 0.00046788 0.00075502	0 0 6 0.00867345 5 5.28175E-05 6 0.00436923 3 0.00303575 8 0.00110425 8 0.00223784	0 0 0 5 0 7 5 0 7 3 0 7 9 0 7 4 0 7	0 0.000874487 3.48208E-05 0.000938373 0.00115686 0.000636404 0.00148281	0 0.00867345 5.28175E-05 0.00436923 0.00303579 0.00110429 0.00223784
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane		0.0077989 1.79967E-0 0.0034308 0.0018789 0.00046788 0.00075502 0.00033372	0 0 6 0.00867345 5 5.28175E-05 6 0.00436923 3 0.00303575 8 0.00110425 8 0.00223784 4 0.00203794	0 0 0 5 0 5 3 0 7 9 0 7 4 0 7	0 0.000874487 3.48208E-05 0.000938373 0.00115686 0.000636404 0.000148281 0.00170422	0 0.00867345 5.28175E-05 0.00436923 0.00303579 0.00110429 0.00223784 0.00203794
Molar Flow Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane Isohexane		0.0077989 1.79967E-0 0.0034308 0.0018789 0.00046788 0.00075502	0 0 0 6 0.00867345 5 5.28175E-05 6 0.00436923 3 0.00303575 8 0.00110425 8 0.00223784 4 0.00203794 9 0.0018283	0 0 0 5 5 0 5 3 0 7 9 0 7 4 0 7 4 0 7	0 0.000874487 3.48208E-05 0.000938373 0.00115686 0.000636404 0.00148281	0 0.00867345 5.28175E-05 0.00436923 0.00303579 0.00110429 0.00223784 0.00203794 0.0018283
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane		0.0077989 1.79967E-0 0.0034308 0.0018789 0.00046788 0.00075502 0.00033372 0.00023823	0 0 0 6 0.00867345 5 5.28175E-05 6 0.00436923 3 0.00303575 8 0.00110425 8 0.00223784 4 0.00203794 9 0.0018283 7 0.00385324	0 0 0 0 5 0 0 0 5 0 0 0 3 0 0 0 9 0 0 0 4 0 0 0 3 0 0 0	0 0.000874487 3.48208E-05 0.000938373 0.00115686 0.000636404 0.00148281 0.00170422 0.00159006	0 0.00867345 5.28175E-05 0.00436923 0.00303579 0.00110429 0.00223784 0.00203794
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane Isopentane Isohexane n-Hexane 2,2,4-Trimethylpe	entane	0.0077989 1.79967E-0 0.0034308 0.0018789 0.00046788 0.00075502 0.00033372 0.00023823 0.00021563 8.73954E-0 1.98765E-0	0 0 0 6 0.00867345 5 5.28175E-05 6 0.00436923 3 0.00303575 8 0.00110425 8 0.00223784 4 0.00203794 9 0.0018283 7 0.00385324 5 0.00220855 7 1.46264E-05	0 0 0 5 0 7 5 0 7 3 0 7 9 0 7 4 0 7 3 0 7 4 0 7 9 0 7 5 0 7	0 0.000874487 3.48208E-05 0.000938373 0.00115686 0.000636404 0.00148281 0.00170422 0.00159006 0.0036376 0.00212119 1.44276E-05	0 0.00867345 5.28175E-05 0.00436923 0.00303579 0.00110429 0.00223784 0.00223784 0.0018283 0.0018283 0.00385324 0.00220859 1.46264E-05
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Bentane Isopentane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene	entane	0.0077989 1.79967E-0 0.0034308 0.0018789 0.00046788 0.00075502 0.00033372 0.00023823 0.00021563 8.73954E-0 1.98765E-0 2.27132E-0	0 0 0 6 0.00867345 5 5.28175E-05 6 0.00436923 3 0.00303577 8 0.00110425 8 0.00223784 4 0.00203794 9 0.0018285 7 0.00385325 5 0.00220855 7 1.46264E-05 6 8.85709E-05	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0.000874487 3.48208E-05 0.000938373 0.00115686 0.000636404 0.00148281 0.00170422 0.00159006 0.0036376 0.00212119 1.44276E-05 8.62996E-05	0 0.00867345 5.28175E-05 0.00436923 0.00303579 0.00110429 0.00223784 0.00203794 0.0018283 0.00385324 0.00220859 1.46264E-05 8.85709E-05
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Bentane Isopentane Isopentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane	entane	0.0077989 1.79967E-0 0.0034308 0.0018789 0.00046788 0.00075502 0.00033372 0.00023823 0.00021563 8.73954E-0 1.98765E-0 2.27132E-0 0.00013457	0 0 6 0.00867345 5 5.28175E-05 6 0.00436923 3 0.00303575 8 0.00110425 8 0.00223784 4 0.00203794 9 0.0018285 7 0.00385325 5 0.00220855 7 1.46264E-05 6 8.85709E-05 9 0.0107425	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0.000874487 3.48208E-05 0.000938373 0.00115686 0.000636404 0.00148281 0.00170422 0.00159006 0.0036376 0.00212119 1.44276E-05 8.62996E-05 0.0106077	0 0.00867345 5.28175E-05 0.00436923 0.00303579 0.00110429 0.00223784 0.002203794 0.0018283 0.00385324 0.00220859 1.46264E-05 8.85709E-05 0.0107423
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane Isohexane 2,2,4-Trimethylpe Benzene Heptane Toluene	entane	0.0077989 1.79967E-0 0.0034308 0.0018789 0.00046788 0.00075502 0.00033372 0.00023823 0.00023823 0.00021563 8.73954E-0 1.98765E-0 0.00013457 9.00915E-0	0 0 6 0.00867345 5 5.28175E-05 6 0.00436923 3 0.00303575 8 0.00110425 8 0.00223784 4 0.00223784 9 0.00182832 7 0.00385324 5 0.00220855 7 1.46264E-05 6 8.85709E-05 9 0.0107422 6 0.000891397	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0.000874487 3.48208E-05 0.000938373 0.00115686 0.000636404 0.00170422 0.00159006 0.0036376 0.00212119 1.44276E-05 8.62996E-05 0.0106077 0.000882388	0 0.00867345 5.28175E-05 0.00436923 0.00303579 0.00110429 0.00223784 0.002203794 0.0018283 0.00385324 0.00220859 1.46264E-05 8.85709E-05 0.0107423 0.000891397
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane Isopentane Isohexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane	entane	0.0077989 1.79967E-0 0.0034308 0.0018789 0.00046788 0.00075502 0.00033372 0.00023823 0.00023823 0.00021563 8.73954E-0 1.98765E-0 2.27132E-0 0.00013457 9.00915E-0 4.86785E-0	0 0 6 0.00867345 5 5.28175E-05 6 0.00436925 3 0.00303575 8 0.00110425 8 0.00223784 4 0.00203794 9 0.00182852 7 0.00385324 5 0.00220855 7 1.46264E-05 6 8.85709E-05 9 0.0107422 6 0.000891397 5 0.0126975	0 0 0 5 0 7 6 0 7 7 0	0 0.000874487 3.48208E-05 0.000938373 0.00115686 0.000636404 0.00148281 0.00179422 0.00159006 0.0036376 0.00212119 1.44276E-05 8.62996E-05 0.0106077 0.000882388 0.0126487	0 0.00867345 5.28175E-05 0.00436923 0.00303579 0.00110429 0.00223784 0.00223784 0.0018283 0.00385324 0.00385324 0.00220859 1.46264E-05 8.85709E-05 0.0107423 0.000891397 0.0126973
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene	entane	0.0077989 1.79967E-0 0.0034308 0.0018789 0.00046788 0.00075502 0.00033372 0.00023823 0.00021563 8.73954E-0 1.98765E-0 2.27132E-0 0.00013457 9.00915E-0 4.86785E-0 5.27521E-0	0 0 6 0.00867345 5 5.28175E-05 6 0.00436923 3 0.00303575 8 0.00110425 8 0.00223784 4 0.00203794 9 0.0018283 7 0.00385324 5 0.00220856 7 1.46264E-05 6 8.85709E-00 9 0.0107422 6 0.000891397 5 0.0126973 7 0.00036515	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0.000874487 3.48208E-05 0.000938373 0.00115686 0.000636404 0.00148281 0.00170422 0.00159006 0.0036376 0.00212119 1.44276E-05 8.62996E-05 0.0106077 0.000882388 0.0126487 0.000161988	0 0.00867345 5.28175E-05 0.00436923 0.00303579 0.00110429 0.00223784 0.002203794 0.0018283 0.00385324 0.00385324 0.00220859 1.46264E-05 8.85709E-05 0.0107423 0.000891397 0.0126973 0.000162515
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene	entane	0.0077989 1.79967E-0 0.0034308 0.0018789 0.00046788 0.00075502 0.00033372 0.00023823 0.00021563 8.73954E-0 1.98765E-0 2.27132E-0 0.00013457 9.00915E-0 4.86785E-0 5.27521E-0 7.6971E-0	0 0 6 0.00867345 5 5.28175E-05 6 0.00436923 3 0.00303575 8 0.00110425 8 0.00223784 4 0.00203794 9 0.0018283 7 0.00385324 5 0.00220856 7 1.46264E-05 6 8.85709E-06 9 0.0107422 6 0.000891393 5 0.0126973 7 0.000162515 7 0.000162515 7 0.000299028	0 0 0 0 5 0 7 0 7 3 0 7 0 7 9 0 7 0 7 3 0 7 0 7 3 0 7 0 7 3 0 7 0 7 3 0 7 0 7 3 0 7 0 7 3 0 7 0 7 3 0 7 0 7 3 0 7 0 7 3 0 7 0 7 3 0 7 0 7 3 0 7 0 7 3 0 7 0 7 3 0 7 0 7 3 0 7 0 7 3 0 7 0 7 3 0 7 0 <td>0 0.000874487 3.48208E-05 0.000938373 0.00115686 0.000636404 0.00148281 0.00170422 0.00159006 0.0036376 0.00212119 1.44276E-05 0.000212119 1.44276E-05 0.000882388 0.0126487 0.000161988 0.000298259</td> <td>0 0.00867345 5.28175E-05 0.00436923 0.00303579 0.00110429 0.00223784 0.00223784 0.002203794 0.0018283 0.00385324 0.00385324 0.00220859 1.46264E-05 8.85709E-05 0.0107423 0.000891397 0.0126973 0.000162515 0.000299028</td>	0 0.000874487 3.48208E-05 0.000938373 0.00115686 0.000636404 0.00148281 0.00170422 0.00159006 0.0036376 0.00212119 1.44276E-05 0.000212119 1.44276E-05 0.000882388 0.0126487 0.000161988 0.000298259	0 0.00867345 5.28175E-05 0.00436923 0.00303579 0.00110429 0.00223784 0.00223784 0.002203794 0.0018283 0.00385324 0.00385324 0.00220859 1.46264E-05 8.85709E-05 0.0107423 0.000891397 0.0126973 0.000162515 0.000299028
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane Isopentane N-Pentane Sopentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane	entane	0.0077989 1.79967E-0 0.0034308 0.0018789 0.00046788 0.00075502 0.00033372 0.00023823 0.00021563 8.73954E-0 1.98765E-0 2.27132E-0 0.00013457 9.00915E-0 4.86785E-0 5.27521E-0 7.6971E-0 1.09381E-0	0 0 6 0.00867345 5 5.28175E-05 6 0.00436923 3 0.00303575 8 0.00110423 8 0.00223784 4 0.00203794 9 0.0018283 7 0.00385324 5 0.00220850 6 8.85709E-06 9 0.0107422 6 0.00089139 5 0.0126973 7 0.000162515 7 0.000162515 7 0.000290265 5 0.00245065	0 0 0 0 5 0 7 3 0 7 9 0 7 4 0 7 5 0 7 6 0 7 7 0 7 3 0 7 3 0 7 3 0 7 3 0 7 3 0 7 5 0 7 3 0 7 6 0 7	0 0.000874487 3.48208E-05 0.000938373 0.00115686 0.000636404 0.00148281 0.00170422 0.00159006 0.0036376 0.00212119 1.44276E-05 8.62996E-05 0.0106077 0.000882388 0.0126487 0.000161988 0.000298259 0.00941415	0 0.00867345 5.28175E-05 0.00436923 0.00303579 0.00110429 0.00223784 0.00223784 0.00223784 0.0018283 0.00385324 0.00385324 0.00220859 1.46264E-05 8.85709E-05 0.0107423 0.000891397 0.0126973 0.000162515 0.000299028 0.00942508
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane Isopentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane	entane	0.0077989 1.79967E-0 0.0034308 0.0018789 0.00046788 0.00075502 0.00033372 0.00023823 0.00021563 8.73954E-0 1.98765E-0 2.27132E-0 0.00013457 9.00915E-0 4.86785E-0 5.27521E-0 7.6971E-0	0 0 6 0.00867345 5 5.28175E-05 6 0.00436923 3 0.00303575 8 0.00110423 8 0.00223784 4 0.00203794 9 0.0018283 7 0.00385324 5 0.002208503 6 8.85709E-06 9 0.0107423 6 0.000891393 5 0.0126973 7 0.000162511 7 0.000162512 7 0.000290202 5 0.00126973 6 0.00942503 6 0.0175354	0 0 0 0 5 0 7 3 0 7 9 0 7 4 0 7 5 0 7 5 0 7 5 0 7 3 0 7 3 0 7 3 0 7 3 0 7 3 0 7 3 0 7 5 0 7 3 0 7 4 0 7 4 0 7	0 0.000874487 3.48208E-05 0.000938373 0.00115686 0.000636404 0.00148281 0.00170422 0.00159006 0.0036376 0.00212119 1.44276E-05 8.62996E-05 0.0106077 0.000882388 0.0126487 0.000161988 0.000298259 0.000941415 0.0017529	0 0.00867345 5.28175E-05 0.00436923 0.00303579 0.00110429 0.00223784 0.00223784 0.00223784 0.0018283 0.00385324 0.00385324 0.00220859 1.46264E-05 8.85709E-05 0.0107423 0.000891397 0.0126973 0.000162515 0.000299028
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane	entane	0.0077989 1.79967E-0 0.0034308 0.0018789 0.00046788 0.00075502 0.00033372 0.00023823 0.00021563 8.73954E-0 1.98765E-0 2.27132E-0 0.00013457 9.00915E-0 4.86785E-0 5.27521E-0 7.6971E-0 1.09381E-0 6.37532E-0	0 0 6 0.00867345 5 5.28175E-05 6 0.00436923 3 0.00303575 8 0.00110423 8 0.00223784 4 0.00203794 9 0.0018283 7 0.00385324 5 0.002208503 6 8.85709E-06 9 0.0107423 6 0.000891393 5 0.0126973 7 0.000162511 7 0.000162512 7 0.000290202 5 0.00126973 6 0.00942503 6 0.0175354	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0.000874487 3.48208E-05 0.000938373 0.00115686 0.000636404 0.00148281 0.00170422 0.00159006 0.0036376 0.00212119 1.44276E-05 8.62996E-05 0.0106077 0.000882388 0.0126487 0.000161988 0.000298259 0.00941415	0 0.00867345 5.28175E-05 0.00436923 0.00303579 0.00110429 0.00223784 0.00223784 0.00223784 0.0018283 0.00385324 0.00220859 1.46264E-05 8.85709E-05 0.0107423 0.000891397 0.0126973 0.000162515 0.000299028 0.00942508 0.0175354
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane Isopentane N-Pentane Sopentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane	entane	0.0077989 1.79967E-0 0.0034308 0.0018789 0.00046788 0.00075502 0.00033372 0.00023823 0.00021563 8.73954E-0 1.98765E-0 2.27132E-0 0.00013457 9.00915E-0 4.86785E-0 5.27521E-0 7.6971E-0 1.09381E-0 6.37532E-0	0 0 6 0.00867345 5 5.28175E-05 6 0.00436923 3 0.00303575 8 0.00110423 8 0.00223784 4 0.00203794 9 0.0018283 7 0.00385324 5 0.002208503 6 8.85709E-06 9 0.0107423 6 0.00289139 5 0.0126973 7 0.000162515 7 0.000162515 7 0.000290265 6 0.0175354 2 57.113*	0 0 0 0 5 0 7 3 0 7 9 0 7 4 0 7 5 0 7 6 0 7 7 0 7 3 0 7 5 0 7 3 0 7 3 0 7 3 0 7 5 0 7 3 0 7 4 0 7 3 0 7 4 0 7 5 0 7 8 0 7 4 0 7 1 57.1131 7	0 0.000874487 3.48208E-05 0.000938373 0.00115686 0.000636404 0.00148281 0.00170422 0.00159006 0.0036376 0.00212119 1.44276E-05 8.62996E-05 0.0106077 0.000882388 0.0126487 0.000161988 0.000298259 0.000941415 0.0017529	0 0.00867345 5.28175E-05 0.00436923 0.00303579 0.00110429 0.00223784 0.00223784 0.00223784 0.0018283 0.00385324 0.00220859 1.46264E-05 8.85709E-05 0.0107423 0.000891397 0.0126973 0.00042515 0.000299028 0.00942508 0.0175354 0 0
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane	entane	0.0077989 1.79967E-0 0.0034308 0.0018789 0.00046788 0.00075502 0.00033372 0.00023823 0.00021563 8.73954E-0 1.98765E-0 2.27132E-0 0.00013457 9.00915E-0 4.86785E-0 5.27521E-0 7.6971E-0 1.09381E-0 6.37532E-0 0.00039215	0 0 6 0.00867345 5 5.28175E-05 6 0.00436923 3 0.00303575 8 0.00110425 8 0.0022378- 4 0.0020379- 9 0.0018283 7 0.00385324 5 0.00220856 6 8.85709E-05 9 0.0107422 6 0.000891393 5 0.0126973 7 0.000162511 7 0.000162512 7 0.000290285 6 0.0175354 5 0.0024508 6 0.0175354 2 57.113*	0 0 0 0 5 0 7 3 0 7 9 0 7 4 0 7 5 0 7 5 0 7 5 0 7 5 0 7 5 0 7 3 0 7 5 0 7 3 0 7 5 0 7 3 0 7 4 0 7 3 0 7 6 0 7 7 0 7 8 0 7 4 0 7 1 57.1131 7	0 0.000874487 3.48208E-05 0.000938373 0.00115686 0.000636404 0.00148281 0.00170422 0.00159006 0.0036376 0.00212119 1.44276E-05 8.62996E-05 0.0106077 0.000882388 0.0126487 0.000161988 0.000298259 0.000298259 0.000941415 0.0017529 57.1127	0 0.00867345 5.28175E-05 0.00436923 0.00303579 0.00110429 0.00223784 0.00223784 0.00223784 0.0018283 0.00385324 0.00220859 1.46264E-05 8.85709E-05 0.0107423 0.000891397 0.0126973 0.000162515 0.000299028 0.00942508 0.0175354 0

* User Specified Values ? Extrapolated or Approximate Values

Licensed to The ERM Group, Inc. and Affiliates

r

		All St	reams Report Treams by Total Phase			
Client Name:	Arsenal			Job: Blowd	own Tank, 1% Cor	Idensate
Location:	UNB Wellpad					
Flowsheet:	Flowsheet1					
Flowsheet.	Flowsheet1					
		Flash Gas	Produced Fluids	Produced Water	Stable Liquid	UNB Condensate
Mass Fraction		%	%	%	%	%
Methane		26.0672	0.013422	0 *	0.00135388	1.79018
Carbon Dioxide		0.165017	0.000224222	0 *	0.000147891	0.029906
Ethane		21.4936	0.012673	0 *	0.00272302	1.69028
Propane		17.2621	0.0129128	0 *	0.00492302	1.72227
Isobutane		5.66593	0.00619128	0 *	0.00356969	0.825773
n-Butane		9.14307	0.0125466	0 *	0.00831732	1.67342
Isopentane		5.01653	0.0141833	0 *	0.0118662	1.89171
n-Pentane		3.5812	0.0127242	0 *	0.0110713	1.69711
Isohexane		3.87162	0.0320305	0 *	0.030252	4.27212
n-Hexane		1.56913	0.0183591	0 *	0.0176408	2.44868
2,2,4-Trimethylpe	entane	0.00473044	0.000161163	0 *	0.000159047	0.0214954
Benzene		0.0369643	0.000667364	0 *	0.000650551	0.0890107
Heptane		2.80958	0.103831	0 *	0.102578	13.8486
Toluene		0.172946	0.00792258	0 *	0.00784614	1.05669
Octane		1.15851	0.139908	0 *	0.139436	18.6604
Ethylbenzene		0.0116683	0.0016643	0 *	0.00165966	0.221978
o-Xylene		0.0170253	0.00306231	0 *	0.00305584	0.40844
Nonane		0.292282	0.116604	0 *	0.116523	15.5523
Decane		0.18899	0.240669	0 *	0.240693	32.0996
Water		1.47191	99.2502	100 *	99.2955	0

	Flash Gas	Produced Fluids	Produced Water	Stable Liquid	UNB Condensate
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
Nitrogen	0	0	0 *	0	0 *
Methane	0.125115	0.139143	0 *	0.0140289	0.139143 *
Carbon Dioxide	0.000792028	0.00232447	0 *	0.00153245	0.00232447 *
Ethane	0.103163	0.131378	0 *	0.028216	0.131378 *
Propane	0.0828526	0.133865	0 *	0.0510124	0.133865 *
Isobutane	0.0271947	0.0641839	0 *	0.0369892	0.0641839 *
n-Butane	0.0438839	0.130068	0 *	0.0861842	0.130068 *
Isopentane	0.0240778	0.147035	0 *	0.122957	0.147035 *
n-Pentane	0.0171886	0.13191	0 *	0.114721	0.13191 *
Isohexane	0.0185826	0.332054	0 *	0.313472	0.332054 *
n-Hexane	0.00753133	0.190326	0 *	0.182794	0.190326 *
2,2,4-Trimethylpentane	2.27046E-05	0.00167075	0 *	0.00164805	0.00167075 *
Benzene	0.000177417	0.00691844	0 *	0.00674102	0.00691844 *
Heptane	0.0134851	1.0764	0 *	1.06291	1.0764 *
Toluene	0.000830089	0.0821319	0 *	0.0813018	0.0821319 *
Octane	0.00556048	1.4504	0 *	1.44484	1.4504 *
Ethylbenzene	5.60042E-05	0.0172535	0 *	0.0171974	0.0172535 *
o-Xylene	8.17162E-05	0.0317464	0 *	0.0316646	0.0317464 *
Nonane	0.00140286	1.20882	0 *	1.20741	1.20882 *
Decane	0.000907091	2.49497	0 *	2.49406	2.49497 *
Water	0.00706473	1028.91	1028.91 *	1028.9	0 *

	Stream Properties							
Property	Units	Flash Gas	Produced Fluids	Produced Water	Stable Liquid	UNB Condensate		
Temperature	°F	69.9749	110.005	110 *	69.9749	110 *		
Pressure	psia	14.6959	644.696	644.696 *	14.6959 *	644.696 *		
Mole Fraction Vapor	%	100	0	0	0	0		
Mole Fraction Light Liquid	%	0	0.12526	100	0.112231	100		
Mole Fraction Heavy Liquid	%	0	99.8747	0	99.8878	0		
Molecular Weight	lb/lbmol	30.3199	18.1256	18.0153	18.1222	95.6535		
Mass Density	lb/ft^3	0.0790296	61.6399	61.8554	62.1	41.7451		
Molar Flow	lbmol/h	0.0158302	57.1944	57.1131	57.1786	0.0812577		
Mass Flow	lb/h	0.479969	1036.68	1028.91	1036.2	7.77259		

* User Specified Values ? Extrapolated or Approximate Values

Licensed to The ERM Group, Inc. and Affiliates

5246.17

20657.6

				reams Report treams by Total Phase			
Client Name:	Arsenal				Job: Blow	down Tank. 1% Co	ndensate
Location:	UNB Wellpad						
Flowsheet:	Flowsheet1						
			Stream	Properties			
Property		Units	Flash Gas	Produced	Produced	Stable Liquid	UNB
				Fluids	Water		Condensate
Vapor Volumetric	Flow	ft^3/h	6.07328	16.8183	16.6341	16.686	0.186192
Liquid Volumetric	Flow	gpm	0.757188	2.09683	2.07386	2.08033	0.0232135
Std Vapor Volume	etric Flow	MMSCFD	0.000144175	0.520904	0.520164	0.52076	0.000740064
Std Liquid Volume	etric Flow	sgpm	0.00227686	2.07989	2.05686 *	2.07761	0.0230271
Compressibility			0.991945	0.0310095	0.0307136	0.000754516	0.241637
Specific Gravity			1.04686	0.98831	0.991765	0.995687	0.669324
API Gravity				10.3888	9.9226	10.4083	72.1924
Enthalpy		Btu/h	-648.504	-6.99065E+06	-6.98334E+06	-7.0323E+06	-7308.33
Mass Enthalpy		Btu/lb	-1351.14	-6743.29	-6787.13	-6786.61	-940.27
Mass Cp		Btu/(lb*°F)	0.435739	0.976625	0.979728	0.978874	0.541859
Ideal Gas CpCv F			1.17801	1.3216	1.32394	1.32372	1.05294
Dynamic Viscosit		cP	0.00947681	0.632639	0.636007	0.991419	0.324899
Kinematic Viscos		cSt	7.48603	0.640727	0.641894	0.996654	0.485873
Thermal Conduct	ivity	Btu/(h*ft*°F)	0.0140828	0.360557	0.363956	0.344333	0.0683226
Surface Tension		lbf/ft		0.0046948	0.00473609	0.00499683	0.000915441
Net Ideal Gas He		Btu/ft^3	1595.92	6.90938	0	6.46945	4863.26
Net Liquid Heatin		Btu/lb	19845.8	-908.322	-1059.76	-917.935	19138.5
Cross Ideal Cos I	looting Value	D+++/#+A2	1745 00	E7 C00	E0 0101	E7 0046	E046 47

57.692

154.882

0

50.3101

57.2246

144.891

1745.88

21722.7

Remarks

Gross Ideal Gas Heating Value

Gross Liquid Heating Value

Btu/ft^3

Btu/lb

Simulation Initiated on 5/16/	2017 11:00:12 AM		UNB_Blowdown Tank_		Page 1 o			
			MIX	ocks -100 tter Report				
Client Name:	Arsenal				Job: Blowdo	wn Tank, 1%	Condensate	
Location:	UNB Wellpad				Modified: 5:	14 PM, 7/24/20)14	
Elocation OND Weinpad Modified: 0.141 M, 7/24/2 Flowsheet: Flowsheet1 Status: Solved 10:50 AM,								
			Conne	ections				
Stream	Connecti	on Type	Other Block	Stream	Connecti	on Type	Other Block	
Produced Water	Inl	et		UNB Condensate	Inle	et		
Produced Fluids	Ou	tlet	VSSL-100					
			Block Pa	rameters				
Pressure Drop		C	psi	Fraction to PStream Produced Fluids			100 %	
Remarks								

Simulation Initiated on 5/16/	/2017 11:00:12 AM		UNB_Blowdown Tank_	1% Cond_5.16.17.pmx			Page 1 of 2	
Client Name:	Arsenal				Job: Blowdow	vn Tank, 1% Cor	ndensate	
Location:	UNB Wellpad				Modified: 11:4	42 AM, 5/13/2017	7	
Flowsheet:	Flowsheet1				Status: Solve	d 10:50 AM, 5/16	5/2017	
			Conne	ections				
Stream	Connect	tion Type 🛛 🗘	Other Block	Stream	Connectio	n Type	Other Block	
Produced Fluids	In	nlet	MIX-100	Flash Gas	Vapor O	utlet		
Stable Liquid	Light Liq [,]	uid Outlet		Q-1	Energ	JY		
			Block Pa	rameters				
Pressure Drop		630	psi	Main Liquid Phase		Light Liguid		
Mole Fraction Vapo	or	0.0276778	%	Heat Duty		-42300 Btu/h		
Mole Fraction Light	it Liquid	0.1122	%	Heat Release Curve Ty	уре	Plug Flow	ı	
Mole Fraction Heav	vy Liquid	99.8601	%	Heat Release Curve Increments	10			
Remarks								

	F		Environment onment1					
Arsenal				Job: Blowdown 1	Fank, 1% Condens	ate		
UNB Wellpad								
Flowsheet1								
		Environm	ent Settings					
ng Intervals	0				1 %			
del	77 °F		Emulsion Enabled		False			
erature	10 °F							
ICE								
		Com	onents					
	Henry's Law Component	Phase	Component Name		Henry's Law Component	Phase Initiator		
	False	False	2,2,4-Trimethylpentane		False	False		
	False	False	Benzene		False	False		
	False	False	Heptane		False	False		
	False	False	Toluene		False	False		
	False	False	Octane		False	False		
	False	False	Ethylbenzene		False	False		
	False	False	o-Xylene		False	False		
	False	False	Nonane		False	False		
	False	False	Decane		False	False		
	False	False	Water		False	True		
	False	False						
	Disc	in al Duran						
)	COSTALD		erty Method Sets Overall Package		Peng-Robins	son		
			Vapor Package					
;	Peng-Robins			Peng-Robinson Peng-Robinson				
	UNB Wellpad Flowsheet1	UNB Wellpad Flowsheet1 Ing Intervals 0 del 77 °F rature erature 10 °F nce Henry's Law Component False	Arsenal UNB Wellpad Flowsheet1 Environm g Intervals 0 del 77 °F rature erature 10 °F nee Component Henry's Law Component Initiator False Fa	UNB Weilpad Flowsheet1	Arsenal Job: Blowdown T UNB Wellpad Flowsheet1 Flowsheet1 Flowsheet1 Environment Settings ng Intervals 0 del 77 °F erature 10 °F components Menry's Law Phase Component Name Initiator Component Name False False False False False False False False Benzene False False False False	Arsenal Job: Blowdown Tank, 1% Condensa UNB Wellpad Flowsheet1 Flowsheet1 Flowsheet1 idel 77 °F Emulsion Enabled False rature 10 °F ce Component S Component S Henry's Law Phase Initiator Component Initiator False False False False Benzene False False False <		

		E	nvironm	ents Report			
Client Name:	Arsenal				Job: Blowd	own Tank, 1% Condens	ate
Location:	UNB Wellpad						
		P	Project-Wi	de Constants			
Atmospheric Press		14.6959		Ideal Gas Reference Pres		14.6959	
Ideal Gas Reference		60		Ideal Gas Reference Volu	ume	379.484 1	t^3/lbmol
Liquid Reference T	emperature	60	°F				
		Env	vironment	[Environment1]			
				ent Settings			
Number of Poynt	ing Intervals	0		Phase Tolerance		1 %	
Gibbs Excess Mo	odel	77 °F		Emulsion Enabled		False	
	erature						
Evaluation Temp	ciuluic						
Freeze Out Temp	perature	10 °F					
Evaluation Temp Freeze Out Temp Threshold Differe	perature	10 °F					
Freeze Out Temp	perature	10 °F	Com				
Freeze Out Temp Threshold Differe	perature ence			ponents		Honry's Low	Phase
Freeze Out Temp Threshold Differe	perature ence	10 °F Henry's Law Component	Comj Phase Initiator	Component Name		Henry's Law Component	Phase
Freeze Out Temp Threshold Differe	perature ence	Henry's Law	Phase				
Freeze Out Temp Threshold Differe Component Name Nitrogen Methane	perature ence	Henry's Law Component False False	Phase Initiator False False	Component Name 2,2,4-Trimethylpentane Benzene		Component False False	Initiator False False
Freeze Out Temp Threshold Differe Component Name Nitrogen Methane Carbon Dioxide	perature ence	Henry's Law Component False False False	Phase Initiator False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane		Component False False False	Initiator False False False
Freeze Out Temp Threshold Differe Component Name Nitrogen Methane Carbon Dioxide Ethane	perature ence	Henry's Law Component False False False False	Phase Initiator False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene		Component False False False False False	Initiato False False False False
Freeze Out Temp Threshold Differe Component Name Nitrogen Methane Carbon Dioxide Ethane Propane	perature ence	Henry's Law Component False False False False False False	Phase Initiator False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane		Component False False False False False False	Initiator False False False False False
Freeze Out Temp Threshold Differe Component Name Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane	perature ence	Henry's Law Component False False False False False False False False	Phase Initiator False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene		Component False False False False False False False	Initiator False False False False False False
Freeze Out Temp Threshold Differe Component Name Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane	perature ence	Henry's Law Component False False False False False False False False False	Phase Initiator False False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene		Component False False False False False False False False	Initiato False False False False False False False
Freeze Out Temp Threshold Differe Component Name Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane	perature ence	Henry's Law Component False False False False False False False False False False	Phase Initiator False False False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane		Component False False False False False False False False False	Initiatol False False False False False False False False False
Freeze Out Temp Threshold Differe Component Name Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane	perature ence	Henry's Law Component False False False False False False False False False False False	Phase Initiator False False False False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane		Component False False False False False False False False False False	Initiato False False False False False False False False False
Freeze Out Temp Threshold Differe Component Name Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane Isohexane	perature ence	Henry's Law Component False False False False False False False False False False False False	Phase Initiator False False False False False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane		Component False False False False False False False False False	Initiator False False False False False False False False
Freeze Out Temp Threshold Differe Component Name Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane Isohexane	perature ence	Henry's Law Component False False False False False False False False False False False	Phase Initiator False False False False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane		Component False False False False False False False False False False	Initiato False False False False False False False False False
Freeze Out Temp Threshold Differe Component Name Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane Isohexane	perature ence	Henry's Law Component False False False False False False False False False False False False False	Phase Initiator False False False False False False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water		Component False False False False False False False False False False	Initiato False False False False False False False False False
Freeze Out Temp Threshold Differe Component Name Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane Isopentane Isopentane n-Pentane Isohexane n-Hexane	perature ence	Henry's Law Component False False False False False False False False False False False False False	Phase Initiator False False False False False False False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water erty Method Sets		Component False False False False False False False False False False	Initiato False False False False False False False False True
Freeze Out Temp Threshold Differe Component Name Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane	eeerature	Henry's Law Component False False False False False False False False False False False False False False	Phase Initiator False False False False False False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water		Component False False False False False False False False False False	Initiato False False False False False False False False True

			Calculat	or Report			
						The second se	
Client Name:	Arsenal				Job: Blowd	own Tank, 1% Condensate	
Location:	UNB Wellpad						
			Simple	Solver 1			
		74.0000	Sourc	e Code			
Residual Error (for C	V(1) = 1 otalFlow-	1.2329					
Source Moniker Value	ProMax:ProMa Flow 0.7895	ax!Project!Flowsheet	Calculated \ s!Flowsheet1!PS	/ariable [CV1] treams!UNB Condensate!	Phases!Total	IProperties!Std Liquid Volumetric	c
Unit							
Source Moniker Value Unit	ProMax:ProMa 71.2325	M ax!Project!Flowsheet	easured Vari	able [TotalFlow] treams!Stable Liquid!Phas	ses!Total!Pro	perties!Std Liquid Volumetric Flor	W
			Solver	Properties		Status: Solved	
Error		-0.000421525	Solver F	Iterations		2	
Calculated Value			sgpm	Max Iterations		20	
Lower Bound Upper Bound			sgpm sgpm	Weighting Priority		<u> </u>	
Step Size			sgpm	Solver Active		Active	
Is Minimizer Algorithm		False Default		Group Skip Dependency Che	eck	False	
			Simple	Solver 2			
Residual Error (for C	:V1) = PercentWa	ater-99		e Code /ariable [CV1]			
Source Moniker	ProMax:ProMa	ax!Project!Flowsheet			hases!Total!I	Properties!Std Liquid Volumetric	Flow
Value Unit	70.521						
		Меа	asured Variat	le [PercentWater]			
Source Moniker Value	ProMax:ProMa Fraction!Wate 99.0006		s!Flowsheet1!PS	treams!Stable Liquid!Phas	ses!Total!Cor	nposition!Std Liquid Volumetric	
Unit							
			Solver F	roperties		Status: Solved	
Error		0.00056712		Iterations		2	
Calculated Value Lower Bound		2.05686		Max Iterations		20	
Upper Bound			sgpm sgpm	Weighting Priority		0	
Step Size			sgpm	Solver Active		Active	
Is Minimizer Algorithm		False Default		Group Skip Dependency Che	eck	False	
Remarks							

			Jser Value	Sets Report		
Client Name:	Arsenal				Job: Blowd	own Tank, 1% Condensate
Location:	UNB Wellpad					
	ļ					
			Cn+ Flo	w/Frac.		
			User Value [
* Parameter			lb/h	Upper Bound		
Lower Bound			lb/h	* Enforce Bounds		False
Remarks This User Value Set	was programma	ically generated. G	UID={E867C485-	3D3C-49CB-BC24-EA160	96DB2B1}	
			Tank L	OSSES		
			User Value [
* Parameter		10	ft	Upper Bound		
* Lower Bound		0	ft	* Enforce Bounds		False
			User Value	[ShollDiam]		
* Parameter		10		Upper Bound		
* Lower Bound		0		* Enforce Bounds		False
* Parameter		0.03	User Value [BreatherVP] Upper Bound		
Lower Bound		0.05	psig	* Enforce Bounds		False
* 5			User Value [E			
* Parameter Lower Bound		-0.03	psig	Upper Bound * Enforce Bounds		False
			User Value [[
Parameter Lower Bound			ft ft	Upper Bound * Enforce Bounds		ft False
Lower Bound			11	Enlorce Dounds		1 0130
			User Value	[OpPress]		
* Parameter		0	psig	Upper Bound		
Lower Bound				* Enforce Bounds		False
			User Value [A	vgPercentLiq]		
* Parameter		50	%	Upper Bound		
Lower Bound			%	* Enforce Bounds		False
			lsor Value [M	axPercentLiq]		
* Parameter		90		Upper Bound		
Lower Bound			%	* Enforce Bounds		False
* Parameter		71.2007	User Value	Upper Bound		
* Lower Bound			bbl/day	* Enforce Bounds		False
* Doromater			User Valu	le [OREff]		
* Parameter Lower Bound		0	<u>%</u> %	Upper Bound * Enforce Bounds		False
			User Value [A			
* Parameter Lower Bound		14.1085	psia	Upper Bound * Enforce Bounds		False
						1 0100

* User Specified Values ? Extrapolated or Approximate Values

		User Val	ue Sets Report		
Client Name:	Arsenal			Job: Blowde	own Tank, 1% Condensate
Location:	UNB Wellpad				
			Value [TVP]		
* Parameter Lower Bound		0.258842 psia	Upper Bound * Enforce Bounds		Falsa
Lower Bound			Enforce Bounds		False
			[AvgLiqSurfaceT]		
* Parameter		57.7675 °F	Upper Bound		Esta a
Lower Bound			* Enforce Bounds		False
		User Value	[MaxLiqSurfaceT]		
* Parameter		66.3119 °F	Upper Bound		
Lower Bound			* Enforce Bounds		False
		User Valu	ue [TotalLosses]		
* Parameter		0.00577823 lb/h	Upper Bound		
Lower Bound		lb/h	* Enforce Bounds		False
* Parameter		0.0198475 ton/yr	[WorkingLosses] Upper Bound		
Lower Bound		ton/yr	* Enforce Bounds		False
		User Value	[StandingLosses]		
* Parameter Lower Bound		0.00546121 ton/yr ton/yr	Upper Bound * Enforce Bounds		False
Lower Board		toniyyi	Enioree Bounds		1 0.50
			[RimSealLosses]		
* Parameter Lower Bound		0 ton/yr	Upper Bound * Enforce Bounds		False
Lower Bound			Enloree Dounds		1 000
		User Value	[WithdrawalLoss]		
* Parameter		0 ton/yr	Upper Bound * Enforce Bounds		Esta a
Lower Bound			Enforce Bounds		False
		User Value	[LoadingLosses]		
* Parameter		0.0212978 lb/h	Upper Bound		
Lower Bound		lb/h	* Enforce Bounds		False
		User Value [DeckFittingLosses]		
* Parameter		0 ton/yr	Upper Bound		
Lower Bound			* Enforce Bounds		False
* Parameter		0 ton/yr	[DeckSeamLosses] Upper Bound		
Lower Bound			* Enforce Bounds		False
* Parameter		User Value 0 ton/yr	[FlashingLosses] Upper Bound		
Lower Bound		0 (01//y)	* Enforce Bounds		False
* 5			[GasMoleWeight]		
* Parameter Lower Bound		0.0189126 kg/mol	Upper Bound * Enforce Bounds		False
Remarks					

This User Value Set was programmatically generated. GUID={B57AFC7E-AAE8-4873-921B-7B4031991004}

* User Specified Values ? Extrapolated or Approximate Values

Attachment U

A	ATTACHMENT U – FACILITY-WIDE CONTROLLED EMISSIONS SUMMARY SHEET															
List all sources of e	List all sources of emissions in this table. Use extra pages if necessary.															
	NO	D _x	С	0	VOC		SO ₂		PM_{10}		PM _{2.5}		CH ₄		GHG	(CO ₂ e)
Emission Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Line Heater (E01)	0.10	0.43	0.08	0.36	< 0.01	0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	117.10	512.89
Line Heater (E02)	0.10	0.43	0.08	0.36	< 0.01	0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	117.10	512.89
Line Heater (E03)	0.10	0.43	0.08	0.36	< 0.01	0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	117.10	512.89
Line Heater (E04)	0.10	0.43	0.08	0.36	< 0.01	0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	117.10	512.89
Line Heater (E05)	0.10	0.43	0.08	0.36	< 0.01	0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	117.10	512.89
Sand Trap Blowdown Tank (E06)					0.24	1.07							0.13	0.55	3.13	13.72
Produced Water Tanks (E07-E11)					5.86	25.67							3.01	13.18	75.22	329.47
Produced Water Loading (E12)					0.01	0.05							< 0.01	0.03	0.20	0.86
Thermoelectric Generator (E13)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.08	0.36
TOTAL	0.49	2.15	0.41	1.80	6.14	26.90	< 0.01	0.01	0.01	0.04	0.01	0.04	3.15	13.81	664.12	2,906.05

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators .According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTA	CHMEN	IT U –	FACIL	ITY-W	IDE H	AP C	ONTRO	OLLED	EMIS	SIONS	SUMN	ARY S	SHEET	
List all sources of	emissio	ons in t	his table	e. Use e	extra p	ages if	necessa	ary.						
Emission Point ID#	Formalo	lehyde	Ben	Benzene		Toluene		Ethylbenzene		Xylenes		Hexane		al HAPs
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Line Heater (E01)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Line Heater (E02)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Line Heater (E03)	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Line Heater (E04)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Line Heater (E05)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Sand Trap Blowdown Tank (E06)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.03	< 0.01	0.04
Produced Water Tanks (E07-E11)	< 0.01	< 0.01	< 0.01	0.02	0.0	0.09	< 0.01	< 0.01	< 0.01	0.01	0.18	0.79	0.21	0.92
Produced Water Loading (E12)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Thermoelectric Generator (E13)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
TOTAL	<0.01	<0.01	<0.01	0.02	0.02	0.09	< 0.01	0.01	< 0.01	0.01	0.20	0.86	0.23	0.99

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

Attachment V

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Arsenal Resources, LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a G70-D General Permit for a natural gas production operation located in Taylor County, West Virginia. The latitude and longitude coordinates are: 39.43408 and -79.94391.

The applicant estimates the maximum potential to discharge the following regulated air pollutants on a facility-wide basis will be:

Particulate Matter (PM) = 0.16 tpy Sulfur Dioxide (SO₂) = 0.01 tpy Volatile Organic Compounds (VOC) = 26.90 tpy Carbon Monoxide (CO) = 1.80 tpy Nitrogen Oxides (NO_x) = 2.15 tpy Total Hazardous Air Pollutants (HAPs) = 0.99 tpy Hexane = 0.86 tpy Benzene = 0.02 tpy Toluene = 0.09 tpy Ethylbenzene = 0.01 tpy Xylene = 0.01 tpy Carbon Dioxide Equivalents (CO₂e) = 2,908.86 tpy

Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the 2nd day of June 2017.

By: Arsenal Resources, LLC Meghan M.B. Yingling Environmental Compliance Manager 6031 Wallace Road Ext. Suite 300 Wexford, PA 15090