

west virginia department of environmental protection

Division of Air Quality 601 57th Street SE Charleston, WV 25304 Phone (304) 926-0475 • FAX: (304) 926-0479 Ear Ray Tomblin, Governor Randy C. Huffman, Cabinet Secretary www.dep.wv.gov

ENGINEERING EVALUATION / FACT SHEET

BACKGROUND INFORMATION

Application No.:	R14-0013E
Plant ID No.:	031-00002
Applicant:	Columbia Gas Transmission LLC
Facility Name:	Lost River Compressor Station
Location:	Hardy County
NAICS Code:	486210
Application Type:	Minor Modification
Received Date:	January 25, 2016
Engineer Assigned:	Jerry Williams, P.E.
Fee Amount:	\$2,000
Date Received:	January 25, 2016
Complete Date:	February 24, 2016
Due Date:	May 24, 2016
Applicant Ad Date:	January 20, 2016
Newspaper:	The Moorefield Examiner
UTM's:	Easting: 685.5 km Northing: 4,305.1 km Zone: 17
Latitude/Longitude:	38.87517/-78.86162
Description:	Addition of two (2) new Solar Mars 100 turbines, one (1) process heater, 48
	catalytic heaters and the removal of one (1) existing Clark HRA-8T
	Compressor engine. Additionally, the synthetic minor limit on the two (2)
	existing Solar 70 turbines for GHG will be removed. A Prevention of
	Significant Deterioration (PSD) applicability analysis is included in the
	following review.

On February 19, 2003, Columbia Gas Transmission LLC (Columbia Gas) was issued PSD Permit Number R14-0013 for a major modification of the Lost River Compressor Station (which was constructed in 1952). The major modification consisted of removing limitations on Engine E10 (Clark TLAD-10 4,640 hp) that had not been previously permitted but had been operating with restrictions under a Consent Order (signed in 1990) with the West Virginia Air Pollution Control Commission. The following is a brief discussion of substantive preconstruction permitting actions involving the facility since that time.

- On July 10, 2006, Permit Number R14-0013A was issued to Columbia Gas as a minor modification to a major source. The modification involved adjusting CO emission levels from engines E1 through E9.
- On August 8, 2007, Permit Number R14-0013B was issued to Columbia Gas as a minor modification to a major source. The modification involved the addition of Engine E11 and the removal of Engines E03 and E06 (which did not occur until 2009).
- On April 17, 2008, Permit Number R14-0013C was issued to Columbia Gas as a minor modification to a major source. The modification involved changing the required retirement date of Engines E03 and E06.
- On May 31, 2013, Permit Number R14-0013D was issued to Columbia Gas as a minor modification to a major source. The modification involved the addition of two (2) new Solar Taurus 70 Combustion Turbines and removal of three (3) existing Clark HRA-8T Compressor Engines.

DESCRIPTION OF PROCESS/MODIFICATIONS

Existing Facility

The existing Lost River Compressor Station is a typical large natural gas compression facility that utilizes reciprocating internal combustion engines (RICE) to drive centrifugal gas compressors. In addition to compressor engines the existing facility also contains two (2) turbines, two (2) natural gas-fired emergency generators, one (1) waste water evaporator/boiler, one (1) fuel gas heater, and numerous storage tanks. The existing facility consists of the following substantive combustion sources:

Emission Unit ID	Description	M ake/M odel	Design Capacity	Installed
001-01	Heating System Boiler	Pennco 633SA	3.99 MMBtu/hr	1953
001-02	Fuel Heater #1	NATCO SBW/20-8D	0.72 MMBtu/hr	1990
001-03	Wastewater Evaporator Boiler	SAMSCO	0.20 MMBtu/hr	1997
001-04	Fuel Gas Heater #2	NA	0.75 MMBTU/hr	2013
001-05	Fuel Gas Heater #3	NA	0.25 MMBTU/hr	2013
001-06	40 Catalytic Heaters	NA	40 x 0.072 MMBTU/hr	2013
002-01	Compressor Engine	Clark HRA-8T	1,320 hp	1953 (To be retired by 10/2017)

Table 1: Lost River Combustion Source

002-02	Compressor Engine	Clark HRA-8T	1,320 hp	1953
002-04	Compressor Engine	Clark HRA-8T	1,320 hp	1953
002-05	Compressor Engine	Clark HRA-8T	1,320 hp	1954
002-07	Compressor Engine	Clark TLA-8	2,700 hp	1969
002-08	Compressor Engine	Clark TLA-8	2,700 hp	1969
002-09	Compressor Engine	Clark TLA-8	2,700 hp	1970
002-10	Compressor Engine	Clark TLA-10	4,640 hp	1991
002-11	Emergency Generator	Ingersoll-RandPVG-6	306 hp	1952
002-12	Emergency Generator	Waukesha VGF48GL	1,063 hp	2009
002-13	Compressor Engine	Caterpillar G3616	4,735 hp	2009
003-01	Turbine	Solar Taurus 70	9,236 hp @ 59° F 11,557 hp @ 0° F	2013
003-02	Turbine	Solar Taurus 70	9,236 hp @ 59° F 11,557 hp @ 0° F	2013
006-01	Water Evaporation Unit	NA	50,000 gal/yr	2009

Proposed Modifications

The proposed modifications evaluated herein are:

- Addition of two (2) Solar Mars 100 15,067 hp natural gas-fired turbines (003-03 and 003-04);
- Addition of one (1) 0.50 mmBtu/hr natural gas-fired Fuel Heater (001-07);
- Addition of 26 natural gas-fired Catalytic Heaters (18 x 0.072 mmBtu/hr, 8 x 0.005 mmBtu/hr) (001-08);
- Addition of 22 previously unpermitted 0.03 mmBtu/hr natural gas-fired Catalytic Heaters (001-09); and
- Removal of six (6) existing Clark TLA-8 2,700 hp compressor engines (E01 E06) and one (1) Clark TLA-10 4,640 hp compressor engine (E10) on standby status;

In addition Columbia Gas is proposing to remove synthetic minor limits on the two (2) existing Solar Taurus 70 Turbines (T01) and (T02) which is contained in R14-0013D permit condition 4.1.7. On July 24, 2014, EPA rescinded the Tailoring Rule, therefore, PSD cannot be triggered solely based on GHG emissions. Because of this, the limit is no longer needed. Columbia Gas also requests removal of permit condition 4.2.5, which requires visible emission monitoring of the catalytic heaters.

SITE INSPECTION

On March 28, 2014, Karl Dettinger of the Compliance/Enforcement (C/E) Section conducted a site inspection of the Lost River Compressor Station. The result of the inspection was, at the time: "Status 30 - In Compliance." Due to the recent site inspection of the facility conducted by a C/E inspector, an additional inspection by the writer was deemed unnecessary.

AIR EMISSIONS AND CALCULATION METHODOLOGIES

The following will detail the air emissions and calculation methodologies for the emission units added/removed as part of this permitting action and added/removed during the PSD applicability analysis contemporaneous period (see below under the Regulatory Applicability for a full discussion of this analysis).

New Emission Units

Solar Mars 100 Turbines

Potential emissions from each of the two (2) 15,067 hp natural gas-fired Solar Mars 100 turbines (T03 and T04) were based on emission factors provided by the turbine manufacturer (NO_x, CO, and VOC), fuel mass balance calculations (SO₂), and as given in AP-42, Section 3.1 (particulate matter and GHGs). AP-42 is a database of emission factors maintained by USEPA.

For particulate matter, hourly emissions were based on the maximum design heat input (MDHI) of the turbine of 128.84 mmBtu/hr (HHV) and annual emissions were based on 8,760 hours of operation per year. For GHGs, hourly emissions were based on the MDHI of the turbine and annual emissions were based on 8,760 hours of operation per year. For SO₂, hourly emissions were based on the MDHI of the turbine and a worst-case fuel (short-term) sulfur level of 20 grains/100 ft³-natural gas. Annual emissions of SO₂ were based on a worst-case fuel (long-term) sulfur level of 0.25 grains/100 ft³-natural gas and 8,760 hours of operation per year. For NO_x, CO, and VOC, hourly emissions were based on the emission factors provided by Solar that are temperature/load dependent. Annual emissions were based on an aggregate total operation of 8,760 hours of operation per year with a worst-case estimate of operational hours at each temperature/load with different emissions characteristics. The following table details the potential-to-emit (PTE) of each engine:

Pollutant	Emission Factor	Source	Hourly ⁽¹⁾ (lb/hr)	Annual (ton/yr)
СО	Varies Based on Load/Temperature -See Above	Vendor	7.07	48.14
NO _X	Varies Based on Load/Temperature -See Above	Vendor	6.96	32.26
PM ⁽²⁾	6.60 x 10 ⁻³ lb/mmBtu	AP-42, Table 3.1-2a	0.85	3.72

Table	1:	Per-	Turbine	РТЕ
Lanc	1.	101-	I UI DIIIC	1 1 1/

Pollutant	Emission Factor	Source	Hourly ⁽¹⁾ (lb/hr)	Annual (ton/yr)
SO ₂	20 grains-S/ft ³ /hr 0.25 grains-S/ft ³ /yr	Mass Balance	7.36	0.40
VOCs ⁽³⁾	Varies Based on Load/Temperature	Vendor	0.81	3.81
Formaldehyde	7.10 x 10 ⁻⁴ lb/mmBtu	AP-42, Table 3.1-3	0.09	0.39
Non-CH ₂ O HAPs ⁽⁴⁾	3.17 x 10 ⁻⁴ lb/mmBtu	AP-42, Table 3.1-3	0.04	0.19
Total HAPs	n/a	n/a	0.13	0.58
CO ₂ e ⁽⁵⁾	n/a	40CFR98 Subpart C	15,087.00	66,079.00

(1) Hourly emissions listed are for the worst-case short-term emissions even if expected to occur only rarely.

(2) Conservatively, all particulate matter emissions are assumed to be less than 2.5 microns. Includes condensables.

(3) VOC emissions based on 25% of Unburned Hydrocarbon (UHC) vendor emission factors per Solar.

(4) An aggregate of all HAP emission factors (minus C_2HO) from AP-42 Table 3.1-3.

(5) Based on multiplying the mass amount of emissions for each of the six greenhouse gases by the gas's associated global warming potential published at Table A-1 to Subpart A of 40 CFR Part 98 - Global Warming Potentials. Used to determine major source status of facilities under 45CSR14.

Natural Gas-Fired Heaters

Potential emissions from the Fuel Heater (001-07) and the Catalytic Heaters (001-08, 001-09) were based on the emission factors provided for natural gas combustion as given in AP-42 Section 1.4. and fuel mass balance calculations (SO₂). Hourly emissions were based on the maximum design heat input (MDHI) of each unit and annual emissions were based on an annual operation of 8,760 hours. A heat content of the gas of 1,020 Btu/scf was used in the calculations. For SO₂, hourly emissions were based on a maximum natural gas usage of 490.2 ft³/hour and a worst-case fuel (short-term) sulfur level of 20 grains/100 ft³-natural gas. Annual emissions of SO₂ were based on a worst-case fuel (long-term) sulfur level of 0.25 grains/100 ft³-natural gas and 8,760 hours of operation per year.

Pollutant	Fuel Heater 4 (001-07)		Catalytic (001		Catalytic Heaters 3 (001-09)		
	lbs/hr	tons/year	lbs/hr	tons/year	lbs/hr	tons/year	
СО	0.04	0.18	0.11	0.48	0.05	0.24	
NO _X	0.05	0.21	0.13	0.57	0.06	0.28	
PM ⁽¹⁾	< 0.01	< 0.01	0.01	0.04	< 0.01	0.02	
SO ₂	0.03	< 0.01	0.08	< 0.01	0.04	< 0.01	
VOCs	< 0.01	0.01	0.01	0.03	< 0.01	0.02	
HAPs	< 0.01	< 0.01	< 0.01	0.01	< 0.01	0.01	

Table 2: Natural Gas-Fired Heaters' Exhaust PTE

Pollutant	Fuel Heater	Fuel Heater 4 (001-07)		Catalytic Heaters 2 (001-08)		Catalytic Heaters 3 (001-09)	
	lbs/hr	tons/year	lbs/hr	tons/year	lbs/hr	tons/year	
CO_2e	58.55	256.45	156.92	687.31	77.29	338.53	

(1) Conservatively, all particulate matter emissions are assumed to be less than 2.5 microns. Includes condensables.

Removed Emission Units

Clark HRA-8T Engines (E01-E06)

Engines E03 and E06 were removed in 2009. Potential emissions from 2-Stroke Lean Burn (2SLB) Clark HRA-8T 1,320 hp engine (E01) to be removed was based on the annual emission limits given under Section A of R14-0013D (NO_x and CO) and on AP-42, Section 3.2 (other criteria pollutants, HAPs, and GHGs). When AP-42 emission factors were used, hourly emissions were based on the maximum design heat input (MDHI) of each unit (calculated @ 8,200 Btu/hp) and annual emissions were based on an annual operation of 8,760 hours.

Actual emissions of NO_x and CO from the above units and the three (3) 2SLB Clark HRA-8T 1,320 hp engines (E02, E04, E05) removed in 2014 are also based on the emission factors discussed above with actual operating data from November 2010 through October 2012 used to calculate annualized average emissions. For the determination of actual emissions, however, Columbia did not use the hourly emission limits (given in g/hp-hr) listed in R14-0013D for the engines as these represent short-term emission limits with built-in safety factors. Instead the annual emission limits were used and, based on 8,760 hours of operation per year, a long-term average hourly emission rate was calculated. This hourly emission rate, when combined with the operating data, was used to calculate actual emissions. Using the long-term average hourly emission rate produces lower emissions than using the short-term emission limit listed in the permit (see 45CSR14 discussion in the Regulatory Applicability section below).

Other Contemporaneous Changes

In 2013, two (2) natural gas fired Solar Taurus 70 turbines (T01, T02), two (2) fuel gas heaters (HTR2, HTR3), and 40 catalytic space heaters were installed. In addition, three (3) RICE compressors (E02, E04, E05) were retired. There were also vented GHG and VOC emissions associated with these changes. The past actual baseline emissions of the RICE (E02, E04, E05) was determined from the period between November 2010 through October 2012.

Project Emissions Summary

Based on the above estimation methodology, which is determined to be appropriate, a summary of the post-modification PTE change is given in the following table:

Source	CO	NOx	PM ⁽¹⁾	SO ₂	VOCs	HAPs	CO ₂ e
500100	ιυ	ΝU _x	F IVI . '	502	vocs	пагу	$co_2 e$
Turbine T03	48.14	32.26	3.72	0.40	3.81	0.58	66,079
Turbine T04	48.14	32.26	3.72	0.40	3.81	0.58	66,079
Process Heater HTR4	0.18	0.21	0.02	0.00	0.01	0.00	256
26 Catalytic Heaters SH2	0.48	0.57	0.04	0.00	0.03	0.01	685
22 Catalytic Heaters SH3	0.24	0.28	0.02	0.00	0.02	0.01	339
Equipment Leaks (fugitive) ⁽²⁾	0.00	0.00	0.00	0.00	0.40	0.00	258
Venting	0.00	0.00	0.00	0.00	9.99	0.00	6,471
New Equipment Increase 🔿	97.19	65.59	7.53	0.81	17.68	1.18	139,910
Engine E01	28.10	103.20	2.29	0.03	5.69	3.77	5,552
Fuel Gas Heater HTR1	0.26	0.31	0.02	0.00	0.02	0.01	369
Removed Equipment Decrease 🔿	(28.36)	(103.51)	(2.31)	(0.04)	(5.71)	(3.78)	(5,921)
Project PTE Change →	68.83	(37.92)	5.22	0. 77	11.97	(2.60)	133,989

Table 3: Annual (ton/yr) Criteria Pollutant/HAP/GHG PTE Summary

(1) Conservatively, all particulate matter emissions are assumed to be less than 2.5 microns. Includes condensables.

(2) Fugitive emissions are not part of PSD applicability analysis.

Based on information given in the current permit application, the new post-modification facility-wide PTE is given in the following table:

Table 4: Post-Modification Change in Annual (ton/yr) PTE

Source	NOx	CO	VOCs	SO ₂	PM ⁽¹⁾	HAPs	CO ₂ e
Pre-Modification	838.76	464.06	112.62	1.07	20.36	47.05	186,508.0 0
Modification Change	(37.92)	68.83	11.97	0.77	5.22	(2.60)	133,989
Post-Modification	800.84	532.89	124.59	1.84	25.58	44.45	320,497

REGULATORY APPLICABILITY

This section will address the potential regulatory applicability/non-applicability of substantive state and federal air quality rules relevant to the new emissions units discussed above.

45CSR2: To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers

The Fuel Heater (001-07) and the Catalytic Heaters (001-08, 001-09) each have been determined to meet the definition of a "fuel burning unit" under 45CSR2 and are, therefore, subject to the applicable requirements therein. However, pursuant to the exemption given under §45-2-11, as the MDHI of the units are each less than 10 mmBtu/hr, they are not subject to sections 4, 5, 6, 8 and 9 of 45CSR2. The only remaining substantive requirement is under Section 3.1 - Visible Emissions Standards.

Pursuant to 45CSR2, Section 3.1, the heaters are subject to an opacity limit of 10%. Proper maintenance and operation of the units (and the use of natural gas as fuel) should keep the opacity of the units well below 10% during normal operations.

45CSR10: To Prevent and Control Air Pollution from the Emission of Sulfur Oxides (nonapplicability)

45CSR10 has requirements limiting SO₂ emissions from "fuel burning units," limiting in-stack SO₂ concentrations of "manufacturing processes," and limiting H₂S concentrations in process gas streams. The only potential applicability of 45CSR10 to Lost River is the limitations on fuel burning units. The Fuel Heater (001-007) and the Catalytic Heaters (001-08, 001-09) have each been determined to meet the definition of a "fuel burning unit" under 45CSR10. However, pursuant to the exemption given under §45-10-10.1, as the MDHI of the units are all less than 10 mmBtu/hr, those units are not subject to the limitations on fuel burning units under 45CSR10.

45CSR13: Permits for Construction, Modification, Relocation and Operation of Stationary Sources of Air Pollutants, Notification Requirements, Administrative Updates, Temporary Permits, General Permits, and Procedures for Evaluation

The proposed changes at Lost River have the potential to increase a regulated pollutant in excess of six (6) lbs/hour and ten (10) TPY that would, pursuant to \$45-13-2.17, define the changes as a "modification" under 45CSR13. Pursuant to \$45-13-5.1, "[n]o person shall cause, suffer, allow or permit the modification . . . and operation of any stationary source to be commenced without . . . obtaining a permit to construct." Therefore, Columbia Gas was required to obtain a permit under 45CSR13 for the proposed modification discussed herein.

As required under §45-13-8.3 ("Notice Level A"), Columbia Gas placed a Class I legal advertisement in a "newspaper of general circulation in the area where the source is . . . located." The ad ran on January 20, 2016 in the *Moorefield Examiner*. The affidavit of publication for this legal advertisement was submitted on February 19, 2016.

45CSR14: Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution for the Prevention of Significant Deterioration

Determination of Existing Major Source Status

Columbia Gas' Lost River Compressor Station is located in an area - Hardy County - classified as "in attainment" with all National Ambient Air Quality Standards (NAAQS) and, therefore, the major source status of the source is determined under 45CSR14. As the facility is not a source listed under §45-14-2.43(a), the threshold for defining the existing source as a "major stationary source," pursuant to §45-14-2.43(b), is a potential-to-emit (PTE) of 250 TPY of any regulated pollutant (or greater than 100,000 TPY of CO₂e pursuant to §45-14-2.80(e)(2)).

As shown above in Table 4, the existing unmodified source has a PTE of NO_x and CO greater than 250 TPY (and a CO₂e PTE of greater than 100,000 TPY). The PTE of these pollutants define the source as an existing major stationary source under 45CSR14.

Determination of a Major Modification

As Columbia Gas is proposing a "physical change in or change in the method of operation of a major stationary source," included in the permit application is an applicability analysis to determine if the proposed changes to the facility are defined as a "major modification" and subject to Prevention of Significant Deterioration (PSD) review under 45CSR14. A "major modification" is defined under section 2.40 of 45CSR14 as a:

 \dots physical change in or change in the method of operation of a major stationary source which results in: a significant emissions increase (as defined in subsection 2.75) of any regulated NSR pollutant (as defined in subsection 2.66); and a significant net emissions increase of that pollutant from the major stationary source. [...]

Section 3.4 of 45CSR14 provides guidance on the process of determining if proposed changes are a major modification. §45-14-3.4(a) states that:

... consistent with the definition of major modification contained in subsection 2.40, a project is a major modification for a regulated NSR pollutant if it causes two types of emissions increases -- a significant emissions increase (as defined in subsection 2.75), and a significant net emissions increase (as defined in subsection 2.74). The proposed project is not a major modification if it does not cause a significant emissions increase. [...]

Therefore, for the proposed changes to meet the definition of a major modification, the changes themselves must result in a significant emissions increase. The methodology for calculating the emissions increase under the first step is given under Sections 3.4(b), 3.4(c), 3.4(d) and 3.4(f). The substantive language of each is given below:

[§45-14-3.4(b)]

The procedure for calculating (before beginning actual construction) whether a significant emissions increase (i.e., the first step of the process) will occur depends upon the type of emissions units being modified, according to subdivisions 3.4.c through 3.4.f.

Fact Sheet R14-0013E Columbia Gas Transmission LLC Lost River Compressor Station

[§45-14-3.4(c)]

Actual-to-projected-actual applicability test for projects that only involve existing emissions units. -- A significant emissions increase of a regulated NSR pollutant is projected to occur if the sum of the difference between the projected actual emissions (as defined in subsection 2.63) and the baseline actual emissions (as defined in subdivisions 2.8.a and 2.8.b), for each existing emissions unit, equals or exceeds the significant amount for that pollutant (as defined in subsection 2.74).

[§45-14-3.4(d)]

Actual-to-potential test for projects that only involve construction of a new emissions unit(s). – A significant emissions increase of a regulated NSR pollutant is projected to occur if the sum of the difference between the potential to emit (as defined in subsection 2.58) from each new emissions unit following completion of the project and the baseline actual emissions (as defined in subdivision 2.8.c) of these units before the project equals or exceeds the significant amount for that pollutant (as defined in subsection 2.74).

[\$45-14-3.4(f)]

Hybrid test for projects that involve multiple types of emissions units. -- A significant emissions increase of a regulated NSR pollutant is projected to occur if the sum of the emissions increases for each emissions unit, using the method specified in subdivisions 3.4.c through 3.4.d as applicable with respect to each emissions unit, for each type of emissions unit equals or exceeds the significant amount for that pollutant (as defined in subsection 2.74).

Further, under the definition of "projected actual emissions" - Section 2.63(a)(4), the applicant may use an emission unit's PTE in lieu of projecting actual emissions.

Columbia Gas PSD Applicability Analysis

Based on the above, Columbia Gas included a PSD applicability analysis for the proposed project as outlined in the Description of Process/Modifications above. Pursuant to Step 1 of the of the applicability analysis, the following table details the annual emissions increase of the proposed new equipment:

Source	CO	NO _x	PM ⁽²⁾	SO ₂	VOCs	CO ₂ e
Turbine T03	48.14	32.26	3.72	0.40	3.81	66,079
Turbine T04	48.14	32.26	3.72	0.40	3.81	66,079
Process Heater HTR4	0.18	0.21	0.02	0.00	0.01	256
26 Catalytic Heaters SH2	0.48	0.57	0.04	0.00	0.03	685
22 Catalytic Heaters SH3	0.24	0.28	0.02	0.00	0.02	339
New Equipment Increase →	97.18	65.58	7.52	0.81	7.68	133,438
PSD Significance Level	100	40	10	40	40	NA
Potential Major Modification?	No	Yes	No	No	No	No

Table 5: PSD Applicability Analysis Step 1 - Project Increase⁽¹⁾

(1) In lieu of projecting actual emissions, emission unit's PTEs were used.

(2) Conservatively, all particulate matter emissions are assumed to be less than 2.5 microns. Includes condensables.

Based on the above, only NO_x has the potential to trigger a major modification under 45CSR14 (equal a "significant emissions increase"). Therefore, the other pollutants do not require further review. While Columbia Gas has claimed decreases as part of the project (removal of compressor engine, heater), these decreases may only be included in the analysis as part of Step 2 - the determination of a "significant net emissions increase." This is given in the following table:

Source	NO _x	
New Equipment Increase →	65.58	
Proposed Project Removed Equipment		
Engine E01	(103.20)	
Heater HTR1	(0.31)	
Removed Equipment Decrease →	(103.51)	
Project Change →	(37.93)	

 Table 6: PSD Applicability Analysis Step 2 - Project Net Emissions Increase

For the removed sources, "baseline actual emissions" were based - pursuant to the definition under §45-14-2.8 - on the annualized actual operating data from the calendar years November 2010 through October 2012 and the emission factors as described above in the <u>AIR EMISSIONS AND</u> <u>CALCULATION METHODOLOGIES</u> Section.

It is important to note that when any emissions decrease is claimed including those associated with the proposed modification, all source-wide creditable and contemporaneous increases and decreases of the pollutant subject to netting must be included in the PSD applicability analysis (see DRAFT New Sour Review Workshop Manual - i.e., "The Puzzle Book" pp. A.36). This determination is defined under the definition of "net emissions increase" [§45-14-2.46] and must include "any other increases and decreases in actual emissions at the major source that are contemporaneous with the particular change and are otherwise creditable." A change is contemporaneous if it "occurs not more than five (5) years prior to the date on which construction on the particular change commences nor later than the date on which the increase from the particular change occurs." Based on the expected date of construction of the new equipment - January 2017, the contemporaneous period extends back to January 2012. Several changes have occurred since that time and are detailed in the following table:

Source	NOx		
Contemporaneous Decreases			
Engine E02 (2014)	(27.28)		
Engine E04 (2014)	(25.71)		
Engine E05 (2014)	(29.23)		
Removed Equipment Decrease →	(82.22)		
Contemporaneous Increases ⁽¹⁾			
Turbine T01 (2013)	23.79		
Turbine T02 (2013)	23.79		
Fuel Gas Heater HTR2 (2013)	0.32		
Fuel Gas Heater HTR3 (2013)	0.11		
Catalytic Space Heaters SH1 (2013)	1.24		
Added Equipment Increase →	49.24		
Net Emissions Increase →	(32.98)		

 Table 7: PSD Applicability Analysis Step 2 Continued - Contemporaneous Changes

(1) In lieu of projecting actual emissions, emission unit's PTEs were used.

For the removed sources, "baseline actual emissions" were based - pursuant to the definition under §45-14-2.8 - on the annualized actual operating data from the calendar years November 2010 though October 2012 and the emission factors as described above in the <u>AIR EMISSIONS AND</u> <u>CALCULATION METHODOLOGIES</u> Section.

As the net emissions increase of NO_x , when considering creditable contemporaneous increases and decreases, are less than the significant levels, the proposed modifications are not defined as a "major modification" and are not subject to PSD review. The following table provides the complete NO_x PSD Applicability Analysis:

Source	NO _x		
Turbine T03	32.26		
Turbine T04	32.26	Step 1 65.59 tpy	
Process Heater HTR4	0.21		
26 Catalytic Heaters SH2	0.57	-	
22 Catalytic Heaters SH3	0.28		
Decreases	(82.22)	Contemporaneous -32.98 tpy	
Increases	49.24		
Net Emissions Increase 🗕	32.61		
PSD Significance Level	40]	
Defined as Major Modification?	No]	

 Table 8: NOx Complete PSD Applicability Analysis

It is important to note that, based on the language of §45-14-2.46(h), and the historical interpretation thereof, the removal of engine E01 is required by the conclusion of a "reasonable shakedown period" - not to exceed 180 days from startup - of the new turbines (see 4.1.2. and 4.1.3. of the draft permit).

45CSR30: Requirements for Operating Permits

45CSR30 provides for the establishment of a comprehensive air quality permitting system consistent with the requirements of Title V of the Clean Air Act. The Lost River Compressor Station, defined under Title V as a "major source," was last issued a Title V permit on August 13, 2013. Proposed changes evaluated herein must also be incorporated into the facility's Title V operating permit. Commencement of the operations authorized by this permit shall be determined by the appropriate timing limitations associated with Title V permit revisions per 45CSR30.

40 CFR 60 Subpart KKKK: Standards of Performance for Stationary Combustion Turbines

Pursuant to §60.4305, Subpart KKKK applies to each "stationary combustion turbine with a heat input at peak load equal to or greater than 10.7 gigajoules (10 MMBtu) per hour, based on the higher heating value of the fuel, which commenced construction, modification, or reconstruction after February 18, 2005." Columbia Gas' proposed two (2) 15,067 hp natural gas-fired Solar Mars 100 turbines (T03, T04) are defined as stationary combustion turbines with a heat input greater than 10 mmBtu/hr (128.84 mmBtu/hr). Therefore, these units are subject to applicable requirements under Subpart KKKK.

Subpart KKKK requires applicable combustion turbines to meet emission limits for NO_x and SO₂. Under §60.4320, the turbines must meet the NO_x emission limits given in Table 1 of Subpart KKKK. As the Solar Turbines are each a "new turbine firing natural gas" between 50 and 850 mmBtu/hr, Table 1 sets a NO_x limit of 25 ppm at 15% O₂ or 150 ng/J of useful output. Based on information provided by Solar, the turbines will have NO_x emission rates of 15 ppm at 15% O₂ at

loads above 50% and under normal meteorological conditions. To demonstrate compliance with the limit, 60.4400(a) requires both an initial (within 180 days of startup or 60 days of achieving full load operation) and annual (not to exceed 14 months from previous test) performance test. However, 60.4340 allows the permittee to be exempted from the annual testing if continuous emission monitors or continuous parameter monitoring systems are installed that meet the requirements of the section. Additionally, if the NO_x testing results show emissions less than 75% of the limit, testing frequency can be reduced to once every 2 years (with no more than 26 months after the previous test.)

Subpart KKKK also limits SO_2 emissions from the turbines. Pursuant to 60.4330(a)(2), the facility can meet the SO_2 limit by burning fuel with a total potential SO_2 emissions of less than 0.06 lb/mmBtu. The worst-case hourly emission rate of SO_2 from each turbine is 0.056 lb/mmBtu which is in compliance with Subpart KKKK. Additionally, 60.4365(a) exempts the permittee from monitoring fuel sulfur content if a source burns only natural gas that is covered by a purchase or transportation contract that limits sulfur to no more than 20 grains per 100 scf. Columbia qualifies for this exemption.

40CFR63 Subpart DDDDD: NESHAP for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters

This rule applies to existing and new applicable units at major sources of HAPs. The new fuel has heater is a new affected source (gas 1 subcategory) and is less than 5 MMBTU/hr heat input. Therefore, it is not subject to Subpart DDDDD emissions limitations but is subject to tune-ups every five (5) years.

TOXICITY ANALYSIS OF NON-CRITERIA REGULATED POLLUTANTS

This section provides an analysis for those regulated pollutants that may be emitted from the new/modified equipment and that are not classified as "criteria pollutants" or Greenhouse Gases. Criteria pollutants are defined as Carbon Monoxide (CO), Lead (Pb), Oxides of Nitrogen (NO_x), Ozone, Particulate Matter (PM), Particulate Matter less than 10 microns (PM₁₀), Particulate Matter less than 2.5 microns (PM_{2.5}), and Sulfur Dioxide (SO₂). Criteria pollutants have National Ambient Air Quality Standards (NAAQS) set for each that are designed to protect the public health and welfare. Other pollutants of concern, although designated as non-criteria and without national concentration standards, are regulated through various federal and programs designed to limit their emissions and public exposure. These programs include federal sourcespecific Hazardous Air Pollutants (HAPs) limits promulgated under 40 CFR 61 (NESHAPS) and 40 CFR 63 (MACT). Any potential applicability to these programs were discussed above under REGULATORY APPLICABILITY.

The majority of non-criteria regulated pollutants fall under the definition of HAPs which, with some revision since, were 188 compounds identified under Section 112(b) of the Clean Air Act (CAA) as pollutants or groups of pollutants that EPA knows or suspects may cause cancer or other serious human health effects. The following table lists formaldehyde's general carcinogenic risk as based on analysis provided in the Integrated Risk Information System. EPA's Integrated Risk Information System (IRIS) is a human health assessment program that

evaluates information on health effects that may result from exposure to environmental contaminants. For a complete discussion of the known health effects of each compound, and the underlying studies supporting these assessments, refer to the IRIS database located at <u>www.epa.gov/iris.</u>

HAPs	Туре	Known/Suspected Carcinogen	Classification
Formaldehyde	VOC	Yes	B1 - Probable Human Carcinogen

Table 6: Potential HAPs - Carcinogenic Risk

All HAPs have other non-carcinogenic chronic and acute effects. These adverse health affects may be associated with a wide range of ambient concentrations and exposure times and are influenced by source-specific characteristics such as emission rates and local meteorological conditions. Health impacts are also dependent on multiple factors that affect variability in humans such as genetics, age, health status (e.g., the presence of pre-existing disease) and lifestyle (e.g., smoking). As stated previously, *there are no federal or state ambient air quality standards for these specific chemicals*.

The majority of non-criteria regulated pollutants fall under the definition of HAPs which, with some revision since, were 188 compounds identified under Section 112(b) of the Clean Air Act (CAA) as pollutants or groups of pollutants that EPA knows or suspects may cause cancer or other serious human health effects. As the net PTE change of HAPs from the modifications discussed herein is a decrease, no toxicity analysis is required.

AIR QUALITY IMPACT ANALYSIS

The estimated maximum emissions of the proposed changes are less than applicability thresholds that would define the proposed changes as a "major modification" under 45CSR14 and, therefore, no air quality impacts modeling analysis was required. Additionally, based on the nature of the proposed modifications, modeling was not required under 45CSR13, Section 7.

MONITORING, COMPLIANCE DEMONSTRATIONS, REPORTING, AND RECORDING OF OPERATIONS

The following substantive monitoring, compliance demonstration, reporting and recording requirements (MRR) shall be required for the new equipment (the MRR requirements for the existing equipment will substantively remain the same as under R14-0013D):

• Columbia Gas shall be required to calculate and record, on a monthly and rolling twelve month basis, the emissions of each pollutant generated by turbines T03 and T04. The calculation shall be based on the emission factors used in permit application R14-0013E and the following information:

• Columbia Gas shall be required to monitor and record the number of hours that the turbines T03 and T04 operate in the following operational modes:

(1) Normal Load @ 32°F;
 (2) Low Temp: < 0°F; and
 (3) Low Load: <50% Load.

- Columbia Gas shall be required to monitor and record the number of startup/shutdowns of each turbine;
- Columbia Gas shall be required to meet all applicable Monitoring, Compliance Demonstration, Source-Specific Recording and Reporting Requirements as given under 40 CFR 60, Subpart KKKK and 40 CFR 63, Subpart ZZZZ.

PERFORMANCE TESTING OF OPERATIONS

The following performance testing requirements shall be required for the new equipment:

- In addition to the NO_x performance testing as required under 40 CFR 60, Subpart KKKK, within 60 days after achieving full load, but not later than 180 days after initial startup, and at such times thereafter as may be required by the Director, Columbia Gas shall be required to conduct, or have conducted, a performance test on each turbine to determine compliance with the "normal load" CO emission limit specified under the draft permit and in accordance with the draft permit. Columbia Gas shall be required to use an appropriate EPA-approved test method as given under 40 CFR 60, Appendix A and approved in writing by the Director in a protocol submitted pursuant to the draft permit. The testing shall take place while the engines are operating at "normal load" as defined under the draft permit.
- In addition to the NO_x performance testing as required under 40 CFR 60, Subpart KKKK, within 60 days after achieving full load, but not later than 180 days after initial startup, and at such times thereafter as may be required by the Director, Columbia Gas shall be required to conduct, or have conducted, a performance test on each turbine to determine compliance with the particulate matter emission limit (Including condensables) specified under the draft permit. The permittee shall use an appropriate EPA-approved test method as given under 40 CFR 60, Appendix A and approved in writing by the Director in a protocol submitted pursuant to the draft permit. The testing shall take place while the engines are operating at 100% of load or, if this is not practicable, the results of the test shall scaled up by an appropriate ration to represent operation at 100% load.
- Columbia Gas shall be required to meet all applicable testing requirements as given under 40 CFR 60, Subpart KKKK.

CHANGES TO PERMIT R14-0013D

The following substantive changes were made to Permit Number R14-0013D:

- The Emissions Units Table 1.0 was revised to reflect the changes evaluated herein;
- Removed permit conditions 4.1.2 and 4.1.3 which contained shakedown period requirement of four (4) Clark HRA-8T natural-gas fired compressor engines (E01, E02, E04, E05);
- Removed permit condition 4.1.3 which contained shakedown period requirement of four (4) Clark HRA-8T natural-gas fired compressor engines (E01, E02, E04, E05);
- Emission limits and operating restrictions of the new Solar Mars 100Turbines were added;
- Emission limits of the new Fuel Heaters and Catalytic Heaters were added;
- Monitoring and recording requirements for the turbines and heaters were added;
- Performance testing of the new turbines were added; and
- Due to the restructuring of the permit, some existing requirements were moved to other places in the permit and, therefore, the requirement numbers changed.

RECOMMENDATION TO DIRECTOR

The information provided in the permit application and subsequent revisions thereto indicates that compliance with all applicable state and federal air quality regulations will be achieved. Therefore, I recommend to the Director the issuance of Permit Number R14-0013E to Columbia Gas Transmission LLC for the above discussed modifications at the Lost River Compressor Station located in Mathias, Hardy County, WV.

Jerry Williams, PE Engineer

Date