

March 7, 2017

Mr. Jerry Williams
WV Department of Environmental Protection
Division of Air Quality
601 57th Street, SE
Charleston, WV 25304

RE: Antero Treatment LLC – Antero Clearwater Facility
West Virginia Department of Environmental Protection, Division of Air Quality,
45CSR13 Class II Administrative Update, R13-3260A

Mr. Williams,

On behalf of Antero Treatment LLC, please find attached the 45CSR13 Air Permit Class II Administrative Update for the Antero Clearwater Facility (017-00157) located in Doddridge County, West Virginia. The Antero Clearwater Facility (the Facility) is currently permitted under permit number R13-3260A.

Proposed updates to the Facility include the following:

- 1. Update to the boiler fuel use language in permit R13-3260A. Currently the boilers (2E and 3E) are limited to each using 1,794.6 MMscf per year of natural gas as fuel. However, the boilers may not operate equally in actual operations and one boiler may operate more than the other. It is requested that permit condition 6.1.1 state that the boilers together are limited to using 3,589.3 MMscf per year of natural gas on a 12 month rolling total. Additionally, it is requested that the table in permit condition 6.1.2 show the emission totals for both boilers together. The emissions in Attachment N have been updated to show the emissions for the boilers together. Note that the annual fuel use limit and emission totals have not changed since the permit application for R13-3260A, rather it is being requested that the values are written in the permit as a collective value rather than a per boiler value.
- 2. For purposes of completion, it is being noted that there are three (3) proposed Calcium Chloride storage tanks (TK-6100A TK-6100C) to be installed at the Facility. These tanks will each have a capacity of 200 barrels and will store a calcium chloride brine that is a byproduct of the process at the Facility. This brine will be offloaded for product use. The tanks are not expected to have any emissions and are being noted for purposes of submitting a complete equipment inventory to the WVDEP.
- 3. The Stage 1 Filtrate Tank (TK-1130) is currently permitted to be routed to the thermal oxidizer for control of the off-gases. However, due to safety concerns, this tank cannot be routed to this control device. It is being proposed that this tank now be routed to a carbon canister for control of the off-gases. This application contains information on the adsorptive control device. Because the carbon canister has at least a 98% capture efficiency, the emission values from TK-1130 will not change due to this change in control device.
- 4. Lastly, based on new production information, it is expected that the gas stream coming into the fuel conditioning skid will now contain liquids to be separated out and not just dry gas as was previously expected. There will be an additional gunbarrel tank (TK-GB) that will be pressurized. The flash gas from the gunbarrel tank will be used as fuel gas in a closed loop system. The liquids from the pressurized gunbarrel tank will be loaded at

approximately 40 psig into pressurized trucks (LD-GB). Because the gunbarrel tank itself is pressurized, it will not have any emissions. The only emissions from the pressurized loading process is when the hose is disconnected. The emissions from the loading process are less than the modification thresholds of 6 lbs/hr and 10 tons/year.

Enclosed is the original hard copy application plus two copies on CDs, including the permit application form and the required attachments. Per 45CSR13, a \$300 application fee is also enclosed, which covers the base Class II Administrative Update application fee.

A copy of the Air Quality Permit Notice for the advertisement is included as Attachment P. As the Notice is being submitted simultaneously with the application, the official affidavit of publication will be submitted to the Division of Air Quality separately once it is completed.

Please call if you have any questions or if I can be of further assistance. I can be reached at (719)632-3593 or by email at msteyskal@kleinfelder.com.

Sincerely,

KLEINFELDER

Michele Steyskal Air Quality Specialist

Michele Sterpkal

Enclosures: Antero Clearwater Facility Air Permit Class II Administrative Update

Antero Treatment LLC

Antero Clearwater Facility

NSR Permit Class II Administrative Update Application West Virginia Department of Environmental Protection Division of Air Quality 45CSR13 – R13-3260A

Doddridge County, West Virginia

March 2017

Prepared by:

1801 California Street, Suite 1100 Denver, CO 80202 (303) 237-6601 Fax (303) 237-6602 www.kleinfelder.com

> © 2017 Kleinfelder DEN17O55039

Table of Contents

45CSR13 Application Form Discussion of Nearby Facilities

Attachment A. Business Certificate

Attachment B. Area and Topographic Maps
Attachment C. Installation and Startup Schedule

Attachment D. Regulatory Discussion

Attachment E. Plot Plan

Attachment F. Process Flow Diagram Attachment G. Process Description

Attachment H. Material Safety Data Sheets

Attachment I. Emission Units Table

Attachment J. Emission Point Data Summary Sheet Attachment K. Fugitive Emissions Data Summary Sheet

Attachment L. Emissions Unit Data Sheets

a. Storage Tanks

b. Pressurized Truck Loading

Attachment M. Air Pollution Control Device Sheets

a. Carbon Canister

Attachment N. Supporting Emissions Calculations

a. Emission Calculations

Attachment O. Monitoring, Recordkeeping, Reporting, and Testing Plans

Attachment P. Public Notice

Attachment R. Authority/Delegation of Authority

WEST VIRGINIA DEPARTMENT OF **ENVIRONMENTAL PROTECTION**

DIVISION OF AIR QUALITY

APPLICATION FOR NSR PERMIT AND TITLE V PERMIT REVISION

601 57th Street, SE Charleston, WV 25304 (304) 926-0475 (OPTIONAL) www.dep.wv.gov/dag PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KNOWN): PLEASE CHECK TYPE OF 45CSR30 (TITLE V) REVISION (IF ANY): ☐ CONSTRUCTION ☐ MODIFICATION ☐ RELOCATION ☐ ADMINISTRATIVE AMENDMENT ☐ MINOR MODIFICATION ☐ SIGNIFICANT MODIFICATION ☐ CLASS I ADMINISTRATIVE UPDATE ☐ TEMPORARY IF ANY BOX ABOVE IS CHECKED, INCLUDE TITLE V REVISION **□** CLASS II ADMINISTRATIVE UPDATE ☐ AFTER-THE-FACT INFORMATION AS **ATTACHMENT'S** TO THIS APPLICATION FOR TITLE V FACILITIES ONLY: Please refer to "Title V Revision Guidance" in order to determine your Title V Revision options (Appendix A, "Title V Permit Revision Flowchart") and ability to operate with the changes requested in this Permit Application. Section I. General 1. Name of applicant (as registered with the WV Secretary of State's Office): 2. Federal Employer ID No. (FEIN): Antero Treatment LLC 300882879 3. Name of facility (if different from above): 4. The applicant is the: **◯** OWNER **□** OPERATOR Antero Clearwater Facility □ BOTH 5B. Facility's present physical address: 5A. Applicant's mailing address: 1615 Wynkoop Street 364 Gum Run Road Denver, CO 80202 Pennsboro, WV 26415 6. West Virginia Business Registration. Is the applicant a resident of the State of West Virginia? ☐ YES \bowtie NO If YES, provide a copy of the Certificate of Incorporation/Organization/Limited Partnership (one page) including any name change amendments or other Business Registration Certificate as Attachment A. If NO, provide a copy of the Certificate of Authority/Authority of L.L.C./Registration (one page) including any name change amendments or other Business Certificate as Attachment A. 7. If applicant is a subsidiary corporation, please provide the name of parent corporation: 8. Does the applicant own, lease, have an option to buy or otherwise have control of the *proposed site?* 🛛 YES If **YES**, please explain: Antero Treatment LLC owns the land for the proposed site If **NO**, you are not eligible for a permit for this source. Type of plant or facility (stationary source) to be constructed, modified, relocated, 10. North American Industry administratively updated or temporarily permitted (e.g., coal preparation plant, primary Classification System (NAICS) code for the facility: crusher, etc.): Water treatment facility for oil and gas operation support 213112 11B. List all current 45CSR13 and 45CSR30 (Title V) permit numbers 11A. DAQ Plant ID No. (for existing facilities only): associated with this process (for existing facilities only): 017 - 00157R13-3260A

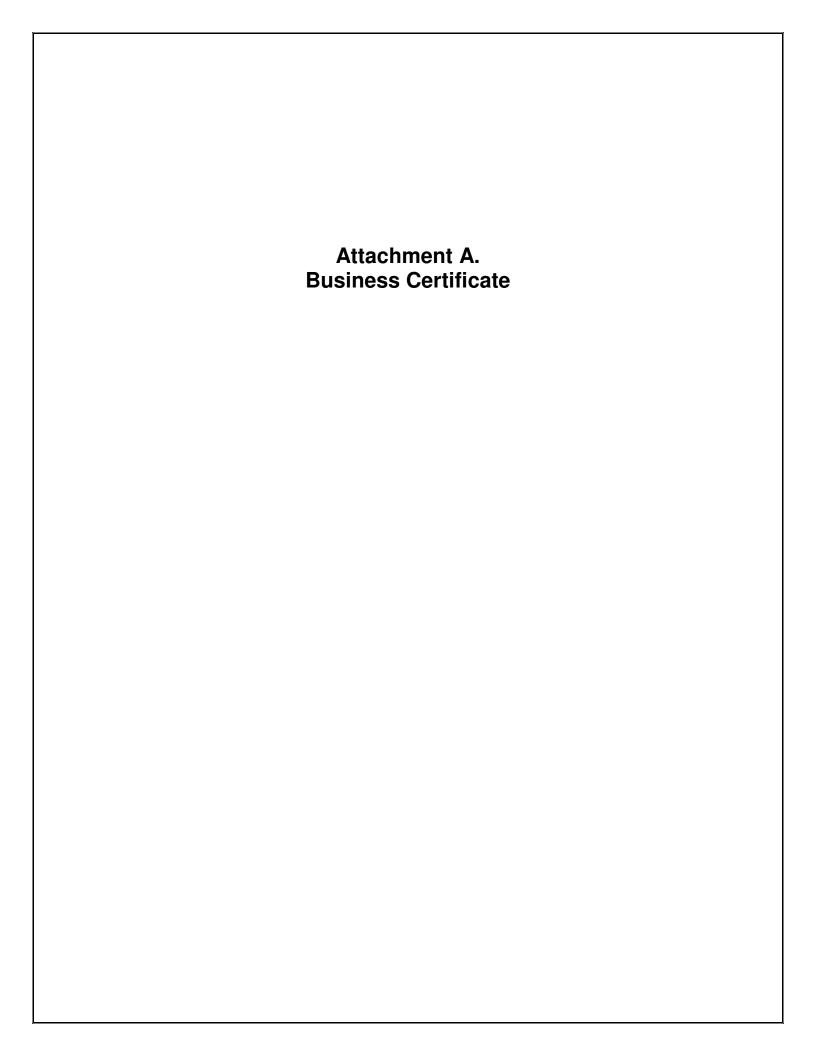
Page 1 of 4

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

12A.		
 For Modifications, Administrative Updates or Te present location of the facility from the nearest state 		please provide directions to the
 For Construction or Relocation permits, please proad. Include a MAP as Attachment B. 	rovide directions to the proposed new s	ite location from the nearest state
From Greenwood, WV (north of US-50), head southeast across US-50, turn right onto Gum Run Road (50/3		
12.B. New site address (if applicable):	12C. Nearest city or town:	12D. County:
364 Gum Run Road	Greenwood	Doddridge
Pennsboro, WV 26415		
12.E. UTM Northing (KM): 4346.659	12F. UTM Easting (KM): 509.222	12G. UTM Zone: 17
13. Briefly describe the proposed change(s) at the facilit Stage 1 Filtrate tank off-gases routed to a carbon canister rathe use of the boilers, addition of three calcium chloride storage tan truck loading to the fuel conditioning skid.	r than the thermal oxidizer due to safety conc ks with no emissions, and addition of a gunba	eerns, change in language for the fuel arrel tank and associated pressurized
14A. Provide the date of anticipated installation or change: Upon permit issuance - If this is an After-The-Fact permit application, provide the date upon which the proposed change did happen: - After-The-Fact permit application, provide the date upon which the proposed if a permit is granted: - September 1, 20:		
14C. Provide a Schedule of the planned Installation of/application as Attachment C (if more than one unit	-	units proposed in this permit
15. Provide maximum projected Operating Schedule of Hours Per Day 24 Days Per Week 7	f activity/activities outlined in this applica Weeks Per Year 52	ation:
16. Is demolition or physical renovation at an existing fac-	cility involved? YES NO	
17. Risk Management Plans. If this facility is subject to	112(r) of the 1990 CAAA, or will becom	e subject due to proposed
changes (for applicability help see www.epa.gov/cepp	o), submit your Risk Management Pla	n (RMP) to U. S. EPA Region III.
18. Regulatory Discussion. List all Federal and State a	air pollution control regulations that you b	pelieve are applicable to the
proposed process (if known). A list of possible applica-	ble requirements is also included in Atta	achment S of this application
(Title V Permit Revision Information). Discuss applica	bility and proposed demonstration(s) of	compliance (if known). Provide this
information as Attachment D.		
Section II. Additional atta	achments and supporting de	ocuments.
 Include a check payable to WVDEP – Division of Air 45CSR13). 	Quality with the appropriate application	fee (per 45CSR22 and
20. Include a Table of Contents as the first page of you	ır application package.	
21. Provide a Plot Plan , e.g. scaled map(s) and/or sketc source(s) is or is to be located as Attachment E (Re		rty on which the stationary
 Indicate the location of the nearest occupied structure 	e (e.g. church, school, business, residen	ce).
 Provide a Detailed Process Flow Diagram(s) show device as Attachment F. 	ving each proposed or modified emission	ns unit, emission point and control
23. Provide a Process Description as Attachment G. $ \label{eq:continuous} % \begin{array}{c} \textbf{Provide a Process Description as Attachment G.} \\ \textbf{Provide a Process Description Attachment G.} \\ \textbf{Provide a Process Description Attachment G.} \\ \textbf{Process Description Attachment G.} \\ Process Description Attachment$		
 Also describe and quantify to the extent possible and approximately according to the extent possible according to the extent		
All of the required forms and additional information can be	found under the Permitting Section of DA	Q's website, or requested by phone.

	•		ed, used or produced as Attachment H.		
	For chemical processes, provide a MSI	•	the air.		
	Fill out the Emission Units Table and				
	Fill out the Emission Points Data Su				
	Fill out the Fugitive Emissions Data		s Attachment K.		
28.	Check all applicable Emissions Unit	Data Sheets listed below:			
	Bulk Liquid Transfer Operations	☐ Haul Road Emissions	☐ Quarry		
	Chemical Processes	☐ Hot Mix Asphalt Plant	Solid Materials Sizing, Handling and Storage		
	Concrete Batch Plant	☐ Incinerator	Facilities		
	Grey Iron and Steel Foundry	☐ Indirect Heat Exchanger	☐ Storage Tanks		
	General Emission Unit, specify:				
Fill	out and provide the Emissions Unit D	ata Sheet(s) as Attachment L.			
29.	Check all applicable Air Pollution Co	ntrol Device Sheets listed below	r:		
	Absorption Systems	☐ Baghouse	☐ Flare		
\boxtimes	Adsorption Systems	☐ Condenser	☐ Mechanical Collector		
	Afterburner	☐ Electrostatic Precipitato	r		
	Other Collectors, specify:				
Fill	out and provide the Air Pollution Con	trol Device Sheet(s) as Attachm	ent M.		
30.	Provide all Supporting Emissions C Items 28 through 31.	alculations as Attachment N, or	attach the calculations directly to the forms listed in		
31.		compliance with the proposed em	proposed monitoring, recordkeeping, reporting and issions limits and operating parameters in this permit		
>		not be able to accept all measur	er or not the applicant chooses to propose such es proposed by the applicant. If none of these plans e them in the permit.		
32.	32. Public Notice. At the time that the application is submitted, place a Class I Legal Advertisement in a newspaper of general				
	circulation in the area where the source	e is or will be located (See 45CS	R§13-8.3 through 45CSR§13-8.5 and Example Legal		
	Advertisement for details). Please s	ubmit the Affidavit of Publication	n as Attachment P immediately upon receipt.		
33.	Business Confidentiality Claims. D	oes this application include confid	dential information (per 45CSR31)?		
	☐ YES	oxtimes NO			
>	➢ If YES, identify each segment of information on each page that is submitted as confidential and provide justification for each segment claimed confidential, including the criteria under 45CSR§31-4.1, and in accordance with the DAQ's "Precautionary Notice – Claims of Confidentiality" guidance found in the General Instructions as Attachment Q.				
Section III. Certification of Information					
34.	Authority/Delegation of Authority. Check applicable Authority Form be		er than the responsible official signs the application.		
\boxtimes					
	Authority of Corporation or Other Busin	ess Entity	authority of Partnership		
	Authority of Corporation or Other Busin Authority of Governmental Agency	•	Authority of Partnership Authority of Limited Partnership		
	Authority of Governmental Agency				
Sub	Authority of Governmental Agency omit completed and signed Authority F	orm as Attachment R.			

35A. Certification of Information. To certify 2.28) or Authorized Representative shall check		nsible Official (per 45CSR§13-2.22 and 45CSR§30-				
Certification of Truth, Accuracy, and Comp	leteness	•				
I, the undersigned Responsible Official / Authorized Representative, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.						
Compliance Certification	- Mandadara					
Except for requirements identified in the Title that, based on information and belief formed a compliance with all applicable requirements. SIGNATURE	after reasonable inquiry, all air cor	the is not achieved, I, the undersigned hereby certify intaminant sources identified in this application are in DATE:				
35B. Printed name of signee: Al Schopp	use blue ink)	35C. Title: Regional Senior Vice President and Chief Administrative Officer				
35D. E-mail: aschopp@anteroresources.com	36E. Phone: (303) 357-7325	36F. FAX: (303) 357-7315				
36A. Printed name of contact person (if differe	nt from above): Barry Schatz	36B. Title: Senior Environmental and Regulatory Manager				
36C. E-mail: bschatz@anteroresources.com	36D. Phone: (303) 357-7276	36E. FAX: (303) 357-7315				
	MSDS) Attachment K: Attachment L: Attachment M: Attachment N: Attachment N: Attachment O: Attachment O: Attachment P: Attachment Q: Attachment R: Attachment S: Attachment S: Application Fe	Fugitive Emissions Data Summary Sheet Emissions Unit Data Sheet(s) : Air Pollution Control Device Sheet(s) Supporting Emissions Calculations : Monitoring/Recordkeeping/Reporting/Testing Plans Public Notice : Business Confidential Claims Authority Forms Title V Permit Revision Information the signature(s) to the DAQ, Permitting Section, at the				
FOR AGENCY USE ONLY – IF THIS IS A TITLE V	SOURCE:					
☐ Forward 1 copy of the application to the Title ☐ For Title V Administrative Amendments: ☐ NSR permit writer should notify Title ☐ For Title V Minor Modifications: ☐ Title V permit writer should send applications ☐ NSR permit writer should notify Title ☐ For Title V Significant Modifications processe ☐ NSR permit writer should notify a Title ☐ Public notice should reference both 4 ☐ EPA has 45 day review period of a drawn and the should reference of the should reference of a drawn and the should reference both 4 ☐ EPA has 45 day review period of a drawn and the should reference both 4	e V Permitting Group and: V permit writer of draft permit, ropriate notification to EPA and afformation V permit writer of draft permit. ed in parallel with NSR Permit revis ee V permit writer of draft permit, secure 1555 155 155 155 155 155 155 155 155 1					


All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

Discussion of Nearby Faciliti	es

Antero Clearwater Facility – Closest Antero Facilities

- 1. Common Control: Only those facilities that are owned and managed by Antero were included in the aggregation discussion. This includes all facilities owned and operated by Antero Resources Corporation, Antero Midstream LLC, and Antero Treatment LLC.
- 2. SIC Code: The Antero Clearwater Facility will operate under SIC code 1389 (oil and gas field services). The closest facility owned by Antero Resources Corporation is a production facility located 0.66 miles northeast of the water treatment facility. However, this production facility operates under the SIC code of 1311. The closest facility owned by Antero Midstream LLC is located 2 miles northeast of the water treatment facility and does not operate under SIC code 1389. The closest facility owned by Antero Treatment LLC and operating under SIC code 1389 is the Antero Landfill (Clearwater Landfill). This facility is approximately 0.5 miles away.
- 3. Contiguous or Adjacent: The land between the Antero Landfill and the Antero Clearwater Facility is owned and managed by Antero Treatment LLC. Additionally, the Antero Landfill is a support facility for the Antero Clearwater Facility.

Based on this three-pronged evaluation, the Antero Clearwater Facility will aggregate emissions with the Antero Landfill.

I, Natalie E. Tennant, Secretary of State of the State of West Virginia, hereby certify that

ANTERO TREATMENT LLC

Control Number: 9ABIM

a limited liability company, organized under the laws of the State of Delaware has filed its "Application for Certificate of Authority" in my office according to the provisions of West Virginia Code §31B-10-1002. I hereby declare the organization to be registered as a foreign limited liability company from its effective date of September 17, 2015, until a certificate of cancellation is filed with our office.

Therefore, I hereby issue this

CERTIFICATE OF AUTHORITY OF A FOREIGN LIMITED LIABILITY COMPANY

to the limited liability company authorizing it to transact business in West Virginia

Given under my hand and the Great Seal of the State of West Virginia on this day of September 17, 2015

Secretary of State

FILED

SEP 09 2015

Submitted by: CT Corporation Rep-Terry Stamper Terry.Stamper@wolterskluwer.com 304-776-1152

Natalie E. Tennant
West Virginia Secretary SECURETARY OF STATE
1900 Kanawha Blvd. East
Bldg. 1, Suite 157-K
Charleston, WV 25305

WEST VIRGINIA APPLICATION FOR CERTIFICATE OF AUTHORITY OF LIMITED LIABILITY COMPANY Penney Barker, Manager Business & Licensing Division Tel: (304)558-8000 Fax: (304)558-8381

Website: <u>www.wvsos.com</u> E-mail: <u>business@wvsos.com</u>

Office Hours: Monday - Friday 8:30 a.m. - 5:00 p.m. EST

copy returned to you.)
FILING FEE: \$150

FILE ONE ORIGINAL

(Two if you want a filed stamped

* Fee Waived for Veteran-owned organization

Control #	9A	31	M
C0			

**	* The undersigned, having authority to t comply with the requirements of	ransact b West V	ousiness on behalf of a for irginia Code §31B-10-100	eign (out-of- 2 to apply fo	state) regi: or Certifica	stered entity, agrees to *** ate of Authority.
1.	The name of the limited liability companies registered in its home state is:	y as An	tero Treatment LLC			
	and the <u>State</u> or <u>Country</u> of organization					
ļ	CHECK HERE to indicate you have o STANDING), dated during the current the certificate may be obtained by contained.	ax year, fi	rom your home state of origi	inal formatior	ı as require	d to process your application.
2.	The business name to be used in West Virginia will be: [The name must contain one of the required terms such as "limited liability company" or abbreviations such as "LLC" or "PLLC." See instructions for complete list of acceptable terms and requirements for use of Trade Name.]	(If to in DBA I	e State name as listed in S name is not available, check D Section 2. attached.) Name e special instructions in Section is application. Click here to se	DBA Name box	the Letter	follow special instructions of Resolution attached to
3.	The company will be a: [See instructions for limitations on professions which may form P.L.L.C. in WV. All members must have WV professional license. See (*) note at the right.]	Pro	ular LLC ofessional LLC* for the pro n most cases, a Letter of Auth icensing Board is required to	orization/App		
4.	The address of the principal office of the company will be:	Street:	1615 Wynkoop Street			
		City:	Denver	State:	<u>co</u>	Zip Code: 80202
	Located in the County of (required):	County	Denver	 .		
•	The mailing address of the above location, if different, will be:	Street:				
	·	City:		State:		Zip Code:
5.	The address of the initial designated (physical) office of the company in	Street:				
	West Virginia, if any, will be:	City:		State:		Zip Code:
	Located in the County of:	County	<i>'</i> :			

Issued by the Office of the Secretary of State

Rev. 6/15

5. (Continued from previous page)					•	
The mailing address of the above location, if different, will be:	Street:					
	City:		State:		Zip Cod	le:
6. Agent of Process: may be sent, if any, will be:	Name:	CT Corporation Syst	em			
	Street:	5400 D Big Tyler Ro	ad			
	City:	Charleston	State:	wv	Zip Cod	le: 25313
7. E-mail address where business corresp	ondence ma	ay be received: jgiani	naula@anteroresc	urces.com		
8. Website address of the business, if any	(ex: yourde	omainname.com): an	teroresources.con	1		
 Do you own or operate more than one business in West Virginia? If "Yes" a. How many businesses? 	e Ye	b. Located in ho	low. No		e to answe	er
(required)		conducting business for the				
(required)MANAGER	-MANAGE	[List the names and a D [List the names and	addresses of all n	nanagers be	low.]	
List the name(s) and address(es) of th		s)/Manager(s) of the eet Address	company (require City		litional pa State	ges if necessary): Zip Code
Antero Midstream Partners 1615 W	ynkoop Stre		Denver		СО	80202
<u>_P</u>					-	
12. All or specified members of a limited liability company are liable in their		No - All debts, obliga				
capacity as members for all or special debts, obligations or liabilities of the company (required):	fied L	Yes - Those persons obligations or l adoption of the	who are made in the iability of the comprovision or to be	pany have co	onsented i	n writing to the
13. The <u>purpose(s)</u> for which this limited [Describe the type(s) of business activity buildings," "commercial painting," "profe may conclude with words " including the Virginia."]	which will be essional pract transaction	conducted, for example ice of law" (see Section of any or all lawful bus	, "real estate," "con: 2. for acceptable "p:	rofessional" b	usiness acti	ivities). Purpose
Any lawful business or activity unde	r the laws o	of this state.		·		- Laurence Control
					· 	
14. Is the business a Scrap Metal Dealer	?					
Yes [If "Yes," you must complete the	he Scrap Me	tal Dealer Registration	Form (Form SMD	<u>-1</u>) and proce	ed to Section	on 15.]
No [Proceed to Section 15.]						

WEST VIRGINIA APPLICATION FOR CERTIFICATE OF AUTHORITY OF LIMITED LIABILITY COMPANY

Page 2

WEST VIRGINIA	APPLICATION FOR	CERTIFICATE OF	AUTHORITY OF LIMITED	LIABILITY COMPANY
***************************************	ALL LANGACIA OF LOW	CERTIFICATION	ACTION OF BUILDING	CANDIDATI COMINICI

Page 3

15. Other provisions which may be set forth in the o		tters not inconsister	nt with law	
16. The number of pages attached and included in t	hese Articles is:			
17. The requested effective date is: [Requested date may not be earlier than filing nor later than 90 days after filing in our office]	the date and time of			ate's Office,
	the following date		and time	•
18. Is the organization a "veteran-owned" organization				
Effective JULY 1, 2015, to meet the requirement the following criteria per West Virginia Co-		l" organization, the	entity fili	ng the registration must
 A "veteran" must be honorably discharged or A "veteran-owned business" means a busine or Is at least fifty-one percent (51%) uncondition or In the case of a publicly owned business, at more veterans. 	ess that meets one of the fo ionally owned by one or m	llowing criteria: ore veterans; or	uncondition	ally owned by one or
Yes (If "Yes," attach Form DD214)	CHECK BOX indicating	g you have attached	Veteran Afi	airs Form DD214
■ No	You may obtain a copy of your Veterans Affairs Form DD214 by contacting:	Phone: 314-801-0	iel Records 138 ARA-NAR 1800	
Per WV Code 59-1-2(j) effective July 1, 2015, the rorganization. See attached instructions to determine if four (4) consecutive years of Annual Report fees wait	the organization qualifies for ived AFTER the organization	this waiver. In addit 's initial formation [so	ion, a "veter se WV Code	an-owned" entity will have
 Contact and Signature Information* (See below) Contact person to reach in case there is a problem. 			<u>mre):</u> Phone:	+1 (713) 758-3380
,	em with imag. Sean Rober	(3	. —	(, 13) / 30 3300
b. Print or type name of signer: Alvyn A. Schopp		Title/Capacity o	f signer: Ch	nief Admin/Regional VP
c. Signature:	Date: <u>8</u>	repois		
*Important Legal Notice Regarding Signature: Possible a record authorized or required to be filed under this recover damages for the loss from a person who signed false at the time the record was signed.	chapter contains a false states	ment, one who suffer	s loss by rel	iance on the statement may
Important Note: This form is a public document. Pleas security number, bank account numbers, credit card num	se do <u>NOT</u> provide any per- bers, tax identification or driv	sonal identifiable in er's license numbers.	formátion e	on this form such as social
Reset Form Print Form				

Delaware

PAGE 1

The First State

I, JEFFREY W. BULLOCK, SECRETARY OF STATE OF THE STATE OF

DELAWARE, DO HEREBY CERTIFY "ANTERO TREATMENT LLC" IS DULY

FORMED UNDER THE LAWS OF THE STATE OF DELAWARE AND IS IN GOOD

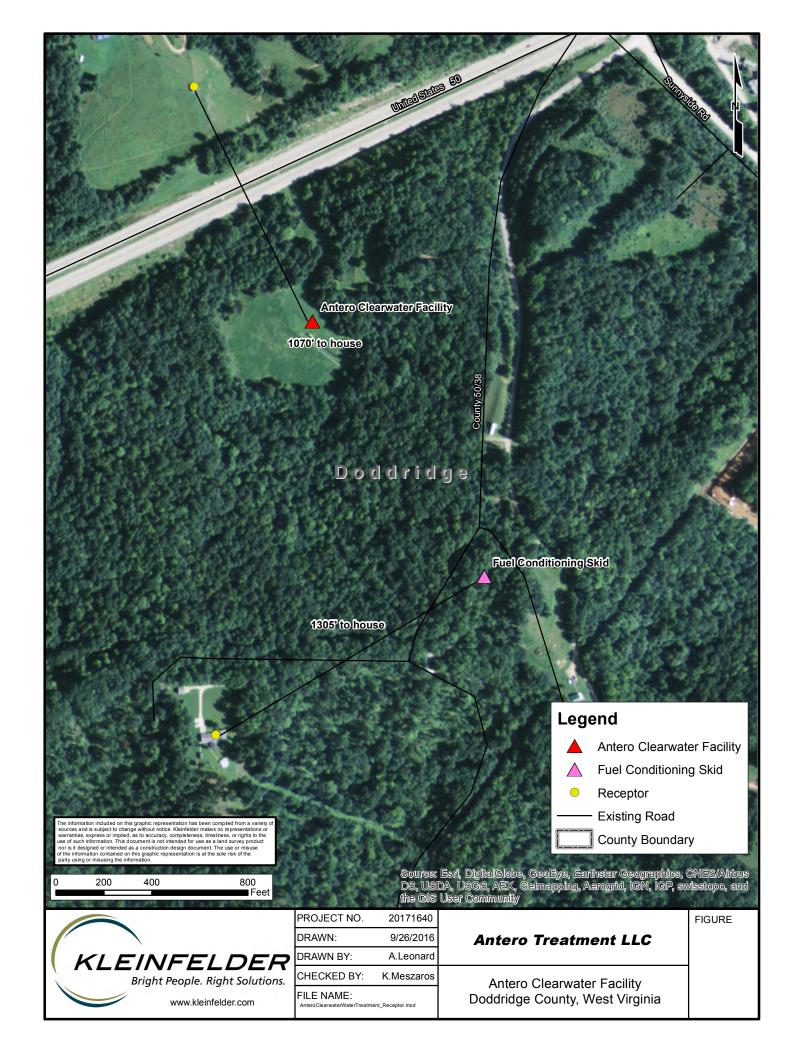
STANDING AND HAS A LEGAL EXISTENCE SO FAR AS THE RECORDS OF THIS

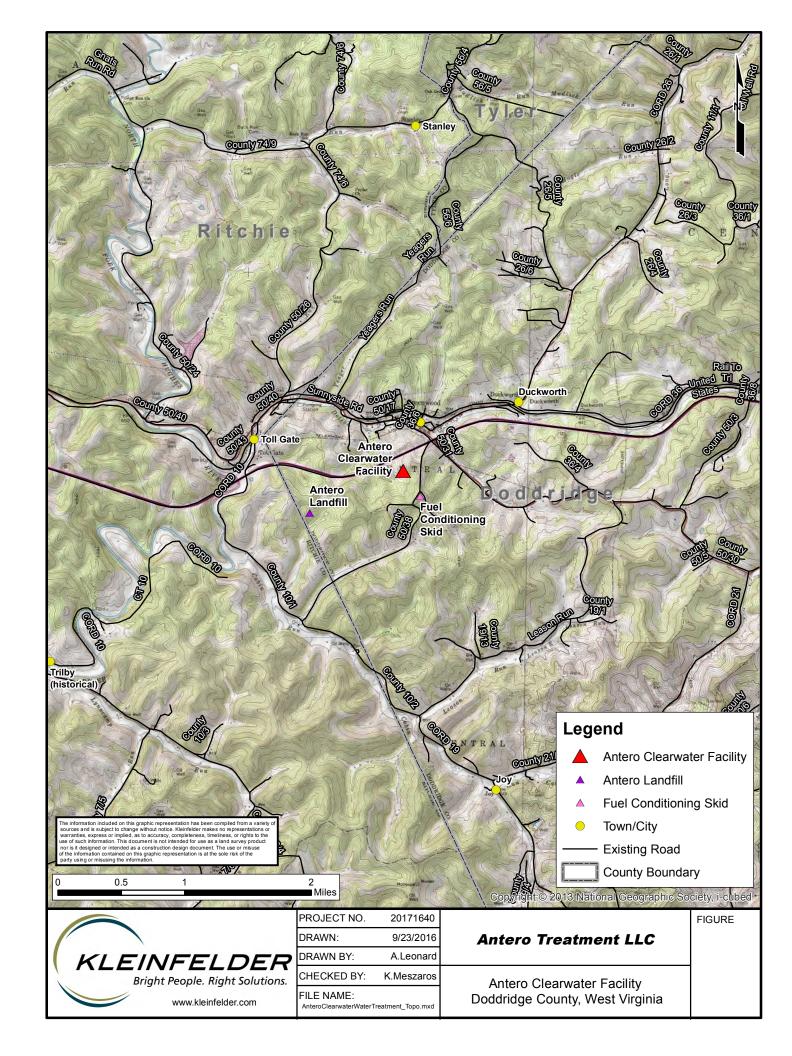
OFFICE SHOW, AS OF THE THIRTY-FIRST DAY OF AUGUST, A.D. 2015.

AND I DO HEREBY FURTHER CERTIFY THAT THE ANNUAL TAXES HAVE NOT BEEN ASSESSED TO DATE.

5803812 8300

151238375


Jeffrey W. Bullock, Secretary of State


AUTHENT (CATION: 2690344

DATE: 08-31-15

You may verify this certificate online at corp.delaware.gov/authver.shtml

Attachment B. Area and Topographic Maps	

Attachr Installation and S		

Antero Clearwater Facility – Installation and Startup Schedule

The Antero Clearwater Facility will be an updated facility located in Doddridge County, WV, approximately 0.5 miles south of Greenwood, WV. Ground clearing and other site preparation activities have already begun. Installation of equipment currently permitted under R13-3260A is also occurring. The proposed carbon canister is scheduled to be installed September 1, 2017. Installation of the new calcium chloride tanks will occur in 2018. Installation of the proposed equipment at the fuel conditioning skid is scheduled for Spring 2017. Facility operations are scheduled to begin on or around March 2017 for currently permitted equipment.

Attachment D. Regulatory Discussion	

Antero Clearwater Facility – Regulatory Discussion Federal Regulations

40 CFR Part 60 – Standards of Performance for New Stationary Sources

I. Subpart Db – Standards of Performance for Industrial-Commercial-Institutional Steam Generating Units

<u>Applicability</u>: Subpart Db applies to steam generating units that commence construction, modification, or reconstruction after June 19, 1984 with a heat input capacity of more than 29 MW or 100 MMBtu/hr. Subpart Db applies to the two (2) onsite boilers at the Antero Clearwater Facility. The Subpart outlines SO₂, PM, and NOx emission standards, however since these boilers will only fire low sulfur natural gas, they will be exempt from all emissions standards except for NOx and for opacity.

II. Subpart Kb - Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984.

Applicability: Subpart Kb applies to volatile organic liquid storage tanks with a capacity greater than or equal to 75 m³ (§60.110b(a)). Storage vessels with a capacity greater than or equal to 151 m³ storing a liquid with a maximum true vapor pressure less than 3.5 kilopascals (0.5 psia) or with a capacity greater than or equal to 75 m³ but less than 151 m³ storing a liquid a liquid with a maximum true vapor pressures less than 15 kPa (2.18 psia) are exempt from this Subpart (§60.110b(b)). The following storage vessels have a maximum capacity less than 75 m³ and/or do not contain a volatile liquid and are therefore exempt from this Subpart:

Oil collection tank	Clarifier effluent tank	Stage 1 clarifier pump tank
(TK-1065)	(TK-2015)	(TK-1115)
Stage 1 filtrate tank	Boiler blowdown flash tank	4B disposal centrate tank
(TK-1130)	(TK-2450)	(TK-2460)
CIP tank	Process distillate level tank	Steam condensate level tank
(TK-2320)	(TK-2120)	(TK-2085)
4A disposal centrate tank	Boiler deaerator tank	Brine maker tank
(TK-2160)	(TK-2315)	(TK-2149)
Post treatment effluent tank	Post treatment sludge tank	Breakpoint chlorination frac
(TK-2515)	(TK-2520)	tank (TK-2800)
Sodium sulfate day tank	Sodium bicarbonate day tank	Lime slurry tank A and B
(TK-4039)	(TK-4017)	(TK-4049A and TK-4049B)
Ferric chloride storage tank	Caustic bulk storage tank	Post Treatment polymer
(TK-4000)	(TK-4020)	system aging tank (TK-4170)
Calcium chloride bulk tank	Breakpoint chlorination sodium	Methanol bulk storage tank
(TK-4200)	hypochlorite tank (TK-4500)	(TK-4115)
Barometric condenser hot	Hydrogen peroxide tank	Sodium bisulfite tank
well (TK-2130)	(TK-4025)	(TK-4080)
All totes (TK-4054, 4057, 4120, 4155, 4015, 4125, 4150, 4065,		Calaium Chlarida staraga
4185, 4190, 4210, 4220, 4230, 4240, 4250, 4260, 4310, 4255,		Calcium Chloride storage
4270)		tanks (TK-6100A – TK-6100C)

The Clarifier Pump Tanks A & B (TK-1060A and TK-1060B) each have a capacity between 75 m³ and 151 m³ with a vapor pressure less than 15 kPa (2.18 psia) and are therefore exempt from this Subpart. The following tanks have a maximum storage capacity greater than 151 m³ and are exempt from this Subpart since their vapor pressure will be less than 3.5 kPa.

Grit clarifier tank	Equalization tank	Thermal feed tank
(TK-1055A)	(TK-1070)	(TK-2040)
Sludge holding tank	Boiler feedwater tank	Recovered water tank
(TK-2020)	(TK-2180)	(TK-2140)
Post treatment tank 1	Post treatment tank 2	Post treatment tank 3
(TK-2500)	(TK-2550)	(TK-2555)
Product water storage tank	Stage 1 Clarifier	Solids Clarifier Tank (TK-
(TK-2545)	(TK-1055B)	2010)
Post treatment system tanks	Stage 1 sludge holding tank	Stage 1 reaction tanks A & B
(CF-2510)	(TK-1120)	(TK-1105A & TK-1105B)

All onsite storage tanks were addressed for applicability to Subpart Kb. With the determinations above, Subpart Kb is not applicable to the Antero Clearwater Facility.

III. Subpart QQQ – Standards of Performance for VOC Emissions from Petroleum Refinery Wastewater Systems

<u>Applicability:</u> Subpart QQQ applies to facilities constructed, modified, or reconstructed after May 4, 1987 that operate an oil-water separator at a petroleum refinery (§60.690(a)(3)). Though the Antero Clearwater Facility will be constructed after May 4, 1987, it is not considered a petroleum refinery. Therefore, Subpart QQQ does not apply to the Antero Clearwater Facility.

IV. Subpart IIII - Standards of Performance for Compression Ignition Internal Combustion Engines

<u>Applicability:</u> Subpart IIII applies to compression ignition engines that commence construction after July 11, 2005 and are manufactured after April 1, 2006 and are not fire pump engines (§60.4200(a)(2)(i)). Thus, Subpart IIII applies to the Antero Clearwater Facility since the emergency generator engine will be installed after July 2005 and manufactured after April 2006. The emergency generator engine will operate as a true emergency engine as defined in §60.4219.

Subpart IIII also applies to compression ignition engines that are fire pump engines that commence construction after July 11, 2005 and are manufactured after July 1, 2006 (§60.4200(a)(2)(ii)). Thus, Subpart IIII applies to the Antero Clearwater Facility since the fire pump engine was manufactured after July 1, 2006.

40 CFR Part 61 – National Emission Standards for Hazardous Air Pollutants

I. Subpart V – National Emission Standard for Equipment Leaks (Fugitive Emission Sources)

Applicability: Subpart V applies to components such as compressors, valves, and pumps that are intended to operate in volatile hazardous air pollutant (VHAP) service (§61.240(a)). VHAP service means that a component contains or contacts a fluid that is at least 10 percent by weight a VHAP. Subpart V does not apply to the Antero Clearwater Facility because none of the components will have fluid (i.e., water) that is over 10 percent by weight of any VHAP.

II. Subpart FF – National Emission Standard for Benzene Waste Operations

<u>Applicability:</u> Subpart FF applies to owners and operators of chemical manufacturing plants, coke by-product recovery plants, and petroleum refineries. The Antero Clearwater Facility is not categorized as any of those facilities, therefore is not applicable to Subpart FF.

40 CFR Part 63 – National Emission Standards for Hazardous Air Pollutants for Source Categories

I. Subpart DD – National Emission Standards for Hazardous Air Pollutants from Off-Site Waste and Recovery Operations

<u>Applicability</u>: Subpart DD applies to certain provisions of wastewater treatment facilities that are a major source of hazardous air pollutants (§63.6804(a)). Since the Antero Clearwater Facility is not a major source of hazardous air pollutants, it is not applicable to Subpart DD.

II. Subpart VV – National Emission Standards for Oil-Water Separators and Organic-Water Separators

<u>Applicability:</u> Subpart VV applies to those facilities that reference this Subpart in 40 CFR Parts 60, 61, and 63 to use the emission controls of Subpart VV to demonstrate compliance with the applicable subparts. The Antero Clearwater Facility is not subject to any Subpart of 40 CFR Parts 60, 61, or 63 therefore is not applicable to the provisions of Subpart VV.

III. Subpart EEEE – National Emission Standards for Hazardous Air Pollutants: Organic Liquids Distribution (Non-Gasoline)

<u>Applicability:</u> Subpart EEEE applies to organic liquids distribution operations that are located at major source of HAP emissions (§63.2334(a)). Subpart EEEE does not apply to the Antero Clearwater Facility as it is not a major source of HAP emissions.

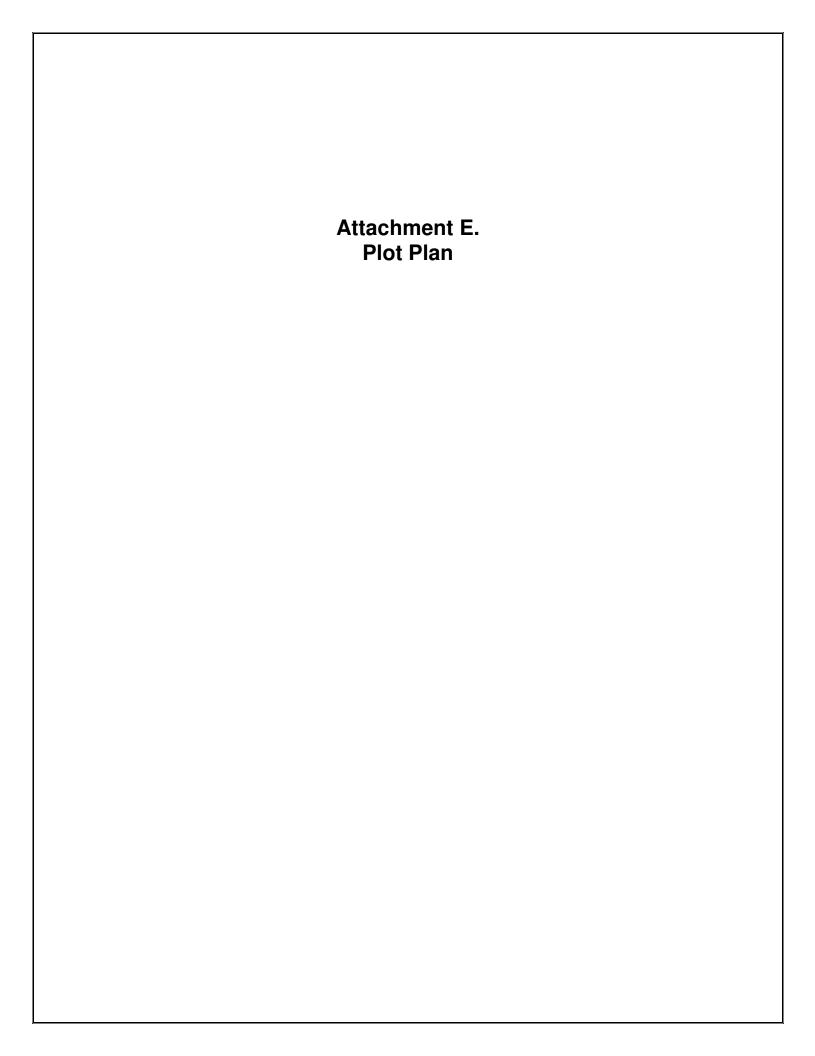
IV. Subpart ZZZZ - National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines

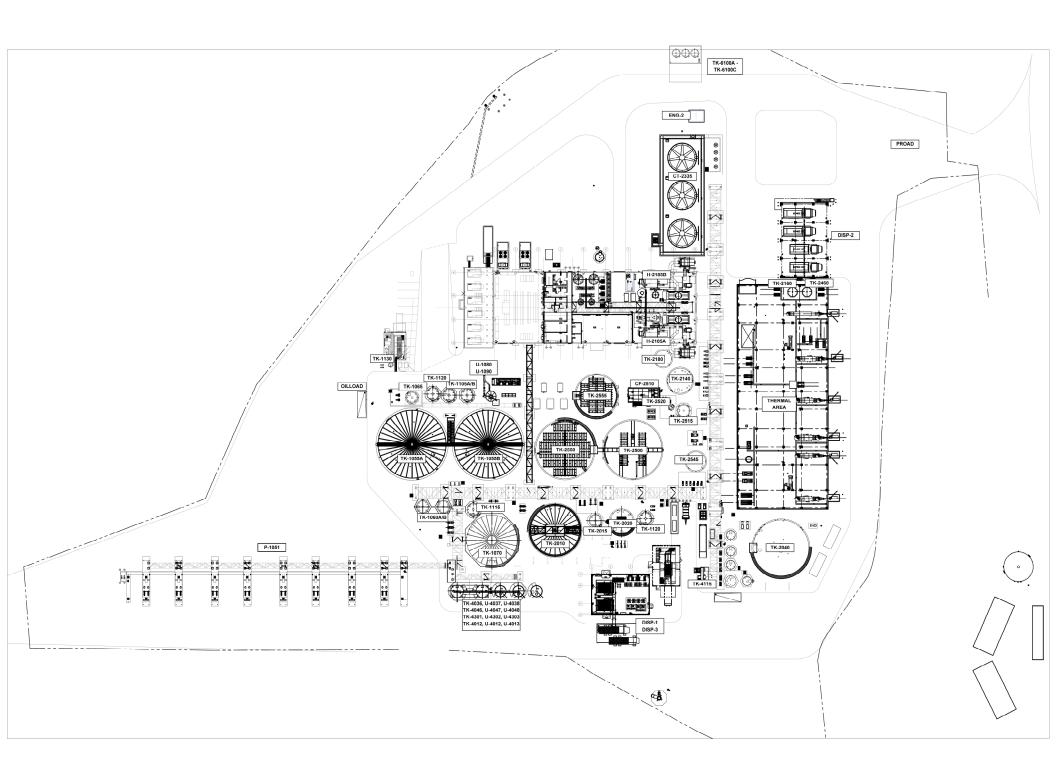
<u>Applicability:</u> Subpart ZZZZ applies to stationary RICE at a major or area source of HAP emissions (§63.6585). Subpart ZZZZ applies to the Antero Clearwater Facility as the generator engine and fire pump engine will be new RICE. These engines will meet Subpart ZZZZ by meeting 40 CFR Part 60, Subpart IIII as the Antero Clearwater Facility is an area source of HAP emissions (§63.6590(c)(1)).

V. Subpart DDDDD – National Emission Standards for Hazardous Air Pollutants for Industrial, Commercial, and Institutional Boilers and Process Heaters

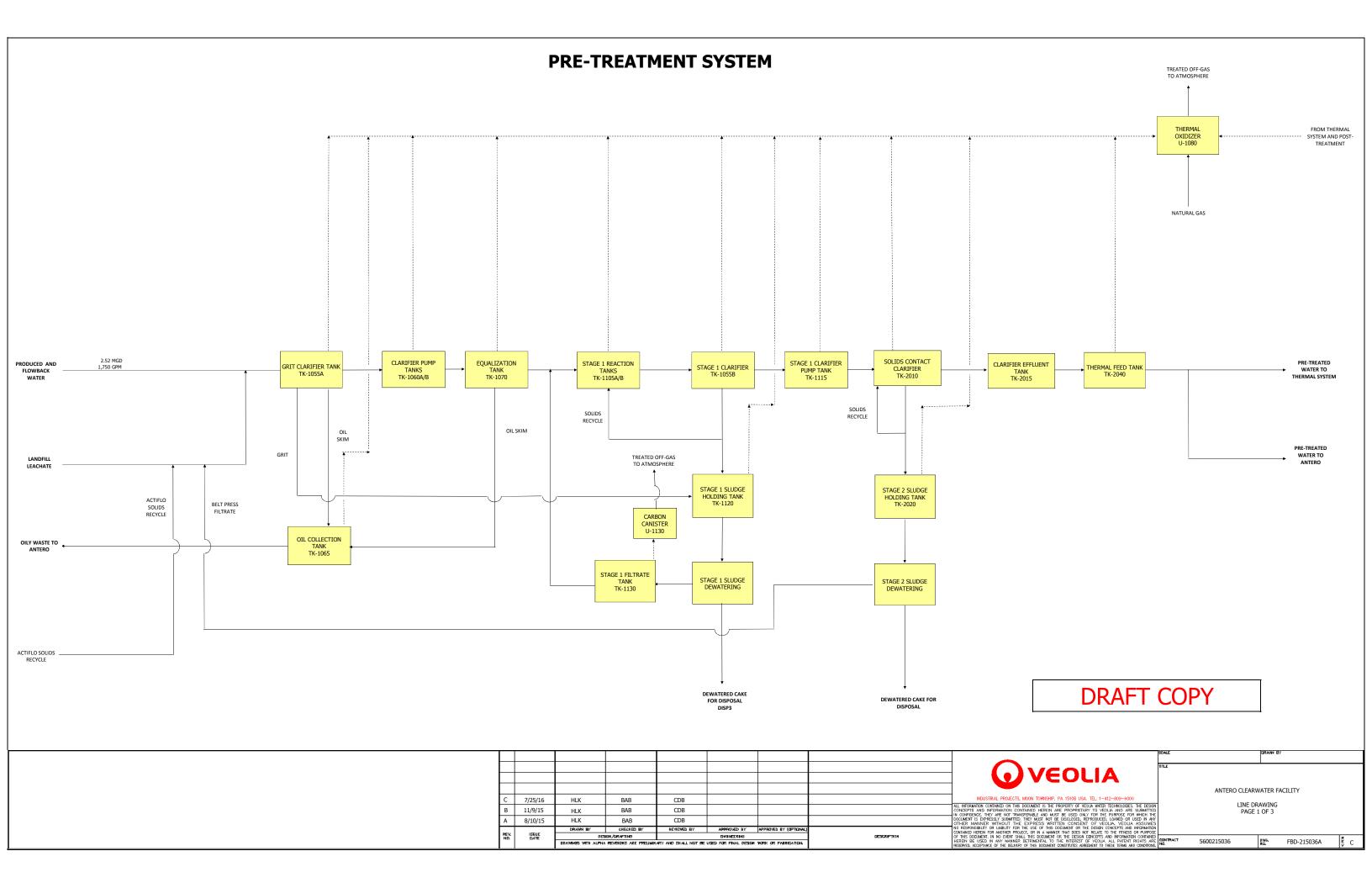
<u>Applicability:</u> Subpart DDDDD applies to process heaters at a major source of HAP emissions (§63.7485). Subpart DDDDD does not apply to the Antero Clearwater Facility as it is not a major source of HAP emissions.

VI. Subpart JJJJJJ - National Emission Standards for Hazardous Air Pollutants for Industrial, Commercial, and Institutional Boilers Area Sources


<u>Applicability</u>: Subpart JJJJJJ applies to industrial boilers at major and area sources of HAP emissions (§63.11193). The boilers are located at an area source of HAP emissions and will be firing natural gas only, and therefore meet the exemption criteria outlined in §63.11193. Subpart JJJJJJ does not apply to the Antero Clearwater Facility.


West Virginia State Regulations

Title 45 Legislative Rule – Division of Environmental Protection, Office of Air Quality


The following Title 45 Legislative Rules will be applicable to the Antero Clearwater Facility:

- I. 45CSR2 To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers
- II. 45CSR2A Testing, Monitoring, Recordkeeping and Reporting Requirements Under 45CSR2
- III. 45CSR4 To Prevent and Control the Discharge of Air Pollutants into the Open Air Which Causes or Contributes to an Objectionable Odor or Odors
- IV. 45CSR6 Control of Air Pollution from Combustion of Refuse
- V. 45CSR8 Ambient Air Quality Standards
- VI. 45CSR11 Prevention of Air Pollution Emergency Episodes
- VII. 45CSR13 Permits for Construction, Modification, Relocation and Operation of Stationary Sources of Air Pollutants, Notification Requirements, Administrative Updates, Temporary Permits, General Permits, and Procedures for Evaluation
- VIII. 45CSR16 Standards of Performance for New Stationary Sources Pursuant to 40 CFR, Part 60
- IX. 45CSR20 Good Engineering Practice as Applicable to Stack Heights
- X. 45CSR22 Air Quality Management Fee Program
- XI. 45CSR27 To Prevent and Control the Emissions of Toxic Air Pollutants
- XII. 45CSR33 Acid Rain Provisions and Permits
- XIII. 45CSR34 Emission Standards for Hazardous Air Pollutants for Source Categories Pursuant to 40 CFR, Part 63
- XIV. 45CSR38 Provisions for Determination of Compliance with Air Quality Management Rules
- XV. 45CSR42 Greenhouse Gas Emissions Inventory

Attachment F. Process Flow Diagram	

THERMAL SYSTEM TO U-1080 COOLING TOWER TREATMENT TO COOLING WATER USERS IN THERMAL SYSTEM DEAERATOR VENT CONDENSER E-2076 COOLING WATER SUPPLY COOLING WATER RETURN BAROMETRIC ONDENSER HOTWELI TK-2130 COOLING TOWER BAROMETRIC CONDENSERS BASIN CT-2335 STEAM STEAM STEAM TO RECOVERED WATER TANK TK-2140 FROM TK-2040 CRYSTALLIZER PREHEATERS / TRIM HEATERS / SALT TO DISPOSAL DISP2 DISPOSAL CENTRATE TANKS TK-2160/2460 DEAERATOR DISPOSAL CENTRIFUGES CONDENSATE HEATERS AND COOLERS 4-EFFECT COLD® CRYSTALLIZATION SYSTEM PROCESS DISTILLATE LEVEL TANK TK-2120 TREATMENT STEAM CONDENSATE FLASH TANK TK-2085 BOILER FEEDWATER TANK TK-2180 BOILER DEAERATOR BOILER A/B H-2185A/B TO STEAM HEADER BOILER FEED PRETREATMENT BOILER BLOWDOWN TO COOLING FLASH TANK TK-2450 TO RECOVERED WATER TANK TK-2140 PAGE 2 **○** VEOLIA ANTERO CLEARWATER FACILITY LINE DRAWING PAGE 2 OF 3 ISBUE DATE DESIGN/DRAFTING CHARLESNS DRAWNOS WITH ALPHA REVISIONS ARE PREJIMHARY AND SHALL NOT BE USED FOR FINAL DESIGN WORK OR FABRICATION PWS. FBD-114141B 5600114141

POST-TREATMENT SYSTEM TO U-1080 ◆-FROM THERMAL SYSTEM POST-TREATMENT CLARIFIER CF-2510 POST TREATMENT EFFLUENT TANK TK-2515 POST TREATMENT TANKS 2 AND 3 TK-2550 AND TK-2555 RECOVERED WATER POST TREATMENT TANK PRODUCT WATER STORAGE TANK TK-2545 TREATED EFFLUENT TO REUSE OR DISCHARGE POST-TREATMENT PROCESS TANK TK-2140 TK-2500 POST TREATMENT SLUDGE TANK TK-2520 TO TK-1055A **○** VEOLIA ANTERO CLEARWATER FACILITY LINE DRAWING PAGE 3 OF 3 1 5/29/15 0 4/23/15 CDB HLK BAB HLK BAB JAS CDB TRAINE BY GRECKED BY BENEMED BY APPROVED BY APPROVED BY GPTENA OCCURNOSATION DEPOSITIONS OF PRESIDENCE OF PROJECT BY GRANESTERS BRANKERS WITH AUPHA RESTRICTS OF PRESIDENCE OF PRESIDENCE OF PROJECT BY GRANESTING DATE FBD-114141B 5600114141

Attachment G. Process Description	

Attachment G – Summarized Process Description Antero Clearwater Water Treatment Facility

The water treatment facility was designed to treat wastewater associated with shale development to an effluent water purity suitable for surface discharge or reuse with future oil and gas operations. The treatment system includes the following processes:

- Brine pre-treatment system including truck offloading, clarification, equalization, solids contact clarifier for selective ion removal and equalization
- Thermal brine treatment system
- Post-treatment system

All processes are planned to operate 24 hours a day 7 days a week. A basic process flow diagram (PFD) of the entire treatment process is provided in Attachment F.

Upstream Equipment – Truck Off-loading Station

The influent to the water treatment facility will be delivered by trucks (PROAD). An offloading station will be provided with 16 truck bays (P-1051). The water will flow from offload bays to the clarifiers (TK-1055A and TK-1055B). All pumping units at the facility are electric-powered and have no associated emissions. Leachate from the Antero Landfill may also be pumped to the influent water stream for treatment at the Clearwater Facility.

Pre-Treatment Technology Description

Grit Clarifiers

The raw influent is transferred to two Grit Clarifiers (TK-1055A and TK-1055B) operating in parallel. Each clarifier is designed to be able to accept simultaneous flow from all of the sixteen truck offloading stations if required (i.e., if one clarifier is out of service), but normally, flow will be split equally between the two clarifiers. Each clarifier will have the capability for solids and oil removal. Solids from the Grit Clarifiers (TK-1055A and TK-1055B) will be pumped to the Sludge Holding Tank (TK-2020). Oil that is removed from the Grit Clarifiers (TK-1055A and TK-1055B) will be pumped to the Oil Collection Tank (TK-1065). Water will flow from the Grit Clarifiers (TK-1055A and TK-1055B) into the small Clarifier Pump Tanks (TK-1060A and TK-1060B) before being pumped to a larger Equalization Tank (TK-1070). The Grit Clarifiers (TK-1055A and TK-1055B) and the Clarifier Pump Tanks (TK-1060A and TK-1060B) will all be covered and vented, with all off-gas being routed to a Thermal Oxidizer (U-1080).

Equalization Tank

Water will be pumped from the Clarifier Pump Tanks (TK-1060A and TK-1060B) to an Equalization Tank (TK-1070). The Equalization Tank (TK-1070) will include an oil removal device. Oil that is removed from the tank will also be pumped to the Oil Collection Tank (TK-1065). The Clarifier Pump Tanks (TK-1060A and TK-1060B) and Equalization Tank (TK-1060B).

1070) will be covered and vented, with all off-gas being routed to the Thermal Oxidizer (U-1080).

Oil Collection Tank

Oil from the Grit Clarifiers (TK-1055A and TK-1055B) and the Equalization Tank (TK-1070) is pumped to an Oil Collection Tank (TK-1065) and then trucked offsite (OILLOAD). The Oil Collection Tank (TK-1065) will be covered and vented, with all off-gas being routed to the Thermal Oxidizer (U-1080).

Solids Contact Clarifier

The water is pumped from the Equalization Tank (TK-1070) and enters the Solids Clarifier Tank (TK-2010) where select constituents are chemically removed. Select constituent removal aids in both incremental water treatment, as well as protection and optimal water chemistry for the thermal system's equipment and process.

The solids generated during pretreatment are removed from the Solids Clarifier Tank (TK-2010) and pumped to the Sludge Holding Tank (TK-2020). The clarified effluent from the Solids Clarifier Tank (TK-2010) will flow into a Clarifier Effluent Tank (TK-2015). All of the tanks in this process are covered and vented with all off-gas routed for emissions control by the Thermal Oxidizer (U-1080).

Pre-Treatment Dewatering System

The volumetric feed to the Sludge Holding Tank (TK-2020) will consist of sludge from the Solids Clarifier Tank (TK-2010) and sludge from the Grit Clarifiers (TK-1055A and TK-1055B).

The sludge is continuously pumped from the Sludge Holding Tank (TK-2020) to Dewatering Equipment which is housed in a building. Recovered filtrate from dewatering equipment is then sent to the Sludge Filtrate Sump (SP-2030) for temporary storage before it is recycled to the Grit Clarifiers (TK-1055A and TK-1055B) to be retreated. The dewatered cake will be transferred to appropriate disposal containers which are filled directly on truck under a covered canopy. The dewatered cake will be transported to an appropriate landfill for disposal (DISP1). The dewatering equipment will also be operated 24 hours per day, 7 days per week.

Thermal Feed Tank

Effluent from the Solids Clarifier Tank (TK-2010) will flow into a small Clarifier Effluent Tank (TK-2015) and will then be pumped to the Thermal Feed Tank (TK-2040). The Thermal Feed Tank (TK-2040) will be covered and vented, with all off-gas being routed to a Thermal Oxidizer (U-1080). An off-spec line will also be added so that the water can be recycled back to the front of the pre-treatment system in the event that it is not acceptable as feed to the thermal system.

Stage 1 Sludge Segregation System

The pre-treatment portion of the facility will initially be operated as described above. In the later stages of commissioning a Stage 1 Sludge Segregation System will be integrated and from that point forward the pre-treatment operation will occur as described below.

Grit Clarifiers

When the Stage 1 Sludge Segregation System is integrated, the raw influent will be transferred to a single Grit Clarifier (TK-1055A), while the other Grit Clarifier (TK-1055B) will be re-purposed downstream. At this time, solids from the Grit Clarifier (TK-1055A) will be pumped (i.e., redirected) to a Stage 1 Sludge Holding Tank (TK-1120). The rest of the Grit Clarifier System will operate as described above under the original pre-treatment scheme.

Equalization Tank

The Equalization Tank will operate in an identical manner as described above under the original pre-treatment scheme.

Oil Collection Tank

The Oil Collection Tank will operate in an identical manner as described above under the original pre-treatment scheme.

Stage 1 Reaction Tanks and Clarifier

The water is pumped from the Equalization Tank (TK-1070) and enters the Stage 1 Reaction Tanks (TK-1105A and TK-1105B) where select constituents (including radium) are chemically precipitated and then removed in the downstream Stage 1 Clarifier (TK-1055B; repurposed Grit Clarifier). These precipitated solids are routed to Stage 1 Sludge Dewatering System which is housed in a building and transferred to appropriate disposal containers also loaded inside a building. These dewatered solids will be transferred offsite for disposal at an appropriate landfill (DISP 3).

The solids generated during this step are removed from the Stage 1 Clarifier (TK-1055B) and pumped to the Stage 1 Sludge Holding Tank (TK-1120). The clarified effluent from the Stage 1 Clarifier (TK-1055B) will flow into a Stage 1 Clarifier Pump Tank (TK-1115). All of the tanks in this process are covered and vented with all off-gas routed for emissions control by the Thermal Oxidizer (U-1080).

Stage 1 Sludge Dewatering System

The volumetric feed to the Stage 1 Sludge Holding Tank (TK-1120) will consist of sludge from the Stage 1 Clarifier (TK-1055B) and sludge from the Grit Clarifier (TK-1055A).

The sludge is intermittently pumped from the Stage 1 Sludge Holding Tank (TK-1120) to the Stage 1 Dewatering Equipment. Recovered filtrate from dewatering equipment is then sent to the Stage 1 Filtrate Tank (TK-1130) for temporary storage before it is recycled to the Stage 1 Reaction Tanks (TK-1105A and TK-1105B) to be retreated. The dewatered cake will be

transferred to an appropriate landfill for disposal (DISP3). Off-gases from the Stage 1 Filtrate Tank (TK-1130) are routed to a carbon canister (U-1130) for capture of emissions.

Solids Contact Clarifier

The water is pumped from the Stage 1 Clarifier Pump Tank (TK-1115) and enters the Solids Clarifier Tank (TK-2010) where select constituents are chemically removed. Select constituent removal aids in both incremental water treatment, as well as protection and optimal water chemistry for the thermal system's equipment and process.

The solids generated during pretreatment are removed from the Solids Clarifier Tank (TK-2010) and pumped to the Stage 2 Sludge Holding Tank (TK-2020). The clarified effluent from the Solids Clarifier Tank (TK-2010) will flow into an Clarifier Effluent Tank (TK-2015). All of the tanks in this process are covered and vented with all off-gas routed for emissions control by the Thermal Oxidizer (U-1080).

Solids Contact Clarifier Dewatering System

The volumetric feed to the Stage 2 Sludge Holding Tank (TK-2020) will consist of sludge from the Solids Clarifier Tank (TK-2010).

The sludge is continuously pumped from the Stage 2 Sludge Holding Tank (TK-2020) to the Stage 2 Dewatering Equipment. Recovered filtrate from dewatering equipment is then sent to the Stage 2 Sludge Filtrate Sump (SP-2030) for temporary storage before it is recycled to the Grit Clarifier (TK-1055A) to be retreated. The dewatered cake will be transferred to an appropriate landfill for disposal (DISP1).

Thermal Feed Tank

The Thermal Feed Tank (TK-2040) will operate in an identical manner as described above under the original pre-treatment scheme.

Thermal Process System

Thermal Feed brine is pumped from the Crystallizer Feed Tank (TK-2040) into the thermal system. Steam from two (2) natural gas-fired boilers (H-2185A and H-2185B) provides the energy to drive the thermal process.

A small amount of steam is passed through the Deaerator (E-2076) counter-current to the feed brine. The vent from the Deaerator (E-2076) will include components such as ammonia and volatile organics which are sent to the thermal oxidizer (U-1080). Deaerator brine from the Deaerator is temporarily stored in the Process Distillate Level Tank (TK-2120).

Slurry from the thermal process is pumped to the dewatering building where solids are removed for disposal (DISP2). Centrate from the dewatering process is returned to the thermal process after temporary storage in the Disposal Centrate Tanks (TK-2160 and TK-2460).

The vast majority of the water that enters the system leaves as clean, recovered distillate. Condensed vapors from the thermal system flow by gravity to a Barometric Condenser Hot Well (TK-2130) before being transferred to the Recovered Water Tank (TK-2140). Vapors from the Recovered Water Tank (TK-2140) are sent to the Thermal Oxidizer (U-1080). Most often, this distillate is planned to be reused in future oil and gas operations. If distillate production exceeds the need for recycled fracing water, the balance of the distillate stream may be discharged to a surface water source, but only if the chemical makeup of that distillate complies with strict water quality standards designated by appropriate government permits. This water treatment facility has been designed to meet those anticipated discharge water quality requirements.

Condensate from the Thermal System is collected in a Steam Condensate Flash Tank (TK-2085) before being transferred to a Condensate Treatment System and then collected in a Boiler Feedwater Tank (TK-2180). The condensate leaves the Boiler Feedwater Tank (TK-2180) and is pumped to the Boiler Deaerator Tank (TK-2315) prior to feeding the Boiler System. Blowdown from the Boiler System is collected in the Boiler Blowdown Flash Tank (TK-2450) and recycled into the process. The Condensate Treatment Process includes an ion exchange system that needs to be regenerated with brine. The brine will be stored in the Brine Maker (TK-2149) until it is required for regeneration.

Cooling water is required for various uses. Plant service water is used as make-up water to the cooling tower (CT-2335); this water is treated distillate, so it is of high quality. Blowdown from the tower will be released based on cooling water conductivity.

A cooling tower treatment package is included to satisfy regulatory requirements associated with the operation of the tower. One or more biocides will be added to control biological activity and to control health risks.

In the event that chemical cleaning is required in the Thermal System, the CIP Tank (TK-2320) will be used to store the cleaning solution that will be fed to the Thermal System.

Post-Treatment

From the Thermal System, distillate will flow to the Recovered Water Tank (TK-2140), which will be covered and vented with all off-gas being routed to the Thermal Oxidizer (U-1080). Distillate will then flow to Post Treatment Tank 1 (TK-2500) followed by Post Treatment Tanks 2 and 3 (TK-2550 and TK-2555). This is where the distillate will be post-treated for reduction of ammonia and benzene in order to achieve a water quality that is suitable for discharge to the environment. The treated water will then flow into the Post Treatment Clarifier (CF-2510) and the Post Treatment Effluent Tank (TK-2515), through one final post treatment process, and finally to the Product Water Storage Tank (TK-2545) before leaving site as qualifying effluent. Any sludge generated in the post treatment process will be sent to the Post Treatment Sludge Tank (TK-2520) and ultimately the same dewatering system as the pretreatment sludge by being returned to the Grit Clarifier in the pretreatment process.

During initial commissioning, a Breakpoint Chlorination Frac Tank (TK-2800) will be utilized to temporarily treat the distillate water for ammonia reduction.

Chemical Storage

Throughout the process flow, a number of chemicals will be stored and pumped throughout the site to assist in water treatment. These chemical material safety data sheets have been included in Attachment H of this application. Below is a tabled reference to all of the small storage bins and tanks that hold these chemicals. Some of these storage vessels hold inorganic materials or solids therefore have no resulting emissions. Please see the Emissions Summary in Attachment N for a full explanation for each vessel.

Ferric Chloride Storage Tank (TK-4000)	Sodium Bicarbonate Silo (TK-4012)	Caustic Bulk Storage Tank (TK-4020)		
Hydrogen Peroxide Bulk Tank (TK-4025)	Sodium Sulfate Silo (TK-4036)	Sodium Sulfate Day Tank (TK-4039)		
Lime Silos A/B (TK-4046A/B)	Lime Slurry Tanks A&B (TK-4049A/B)	Polymer Totes (TK-4054, TK-4057, TK-4120, TK-4155, and TK-4310)		
Urea Tote (TK-4065)	Sodium Bisulfite Bulk Tank (TK-4080)	Methanol Bulk Storage Tank (TK-4115)		
Phosphoric Acid Tote (TK-4125)	Micronutrient Tote (TK-4150)	Sodium Hypochlorite Tote (TK-4185)		
Hydrex 2252 Tote (TK-4190)	Calcium Chloride Bulk Tank (TK-4200)	Hydrex 2233 Tote (TK-4210)		
Hydrex 1425 Tote (TK-4220)	Hydrex 1317 Tote (TK-4230)	Hydrex 1565 Tote (TK-4240)		
Hydrex 1605 Tote (TK-4250)	Demulsifier Tote (TK-4260)	Calcium Carbonate Silo (TK-4301)		
Actiflo Polymer System Aging Tank (TK-4170)	Antiscalant Tote (TK-4255)	Liquid Carbon Dioxide Tank (TK-4075)		
Breakpoint Chlorination System Sodium Hypochlorite Bulk Tank (TK-4500)	Antifoam Tote (TK-4015)	Crystallizer Antifoam Tote (TK-4270)		
Sodium Bicarbonate Day Tank (TK-4017)				

Fuel Conditioning Skid

An offsite fuel conditioning skid will be used to condition the fuel gas that will be used at the Clearwater Facility. This skid will contain two (2) - 2.4 MMBtu/hr heaters (HTFUEL1 and HTFUEL2), and a pig receiver (VENT1). Other equipment located at the skid, such as a 500 gallon dry gas tank (TK-SLOP), an inlet separator, scrubber, and pressure vessel, will be in a

closed loop and will not produce any emissions. The gas stream coming into the fuel conditioning skid will contain liquids to be separated out. The gas stream will enter a pressurized gunbarrel (TK-GB) tank. The flash gas from the gunbarrel tank will be used as fuel gas in a closed loop system, and the liquids from the pressurized gunbarrel tank will be loaded at approximately 40 psig into pressurized trucks from the fuel conditioning skid (LD-GB).

Other Support Equipment

An emergency generator (GEN-1) is located at the Facility and will be used to shut down the Facility in case of emergency. This generator will not supply long term backup power. An emergency flare (U-1090) located at the Facility will be used to treat the gas blanket (waste gas header) bleed stream when the thermal oxidizer is down for maintenance. Lastly, a fire water pump engine (ENG-2) will provide fire water to the cooling tower only in case of emergency.

Attachm	ent H.
Material Safety	Data Sheets
material edicty	Bata Gricoto
Note: The MODO test steel to this effective at	Secretary of the second secretary floor like
Note: The MSDS included in this attachment	is representative and may not reflect the
selected chemical supplier as the exac	t supplier is not known at this time.

Material Safety Data Sheet

Section 1 - Product Identification and Use

Product Identifier: GRANULAR ACTIVATED CARBON (GAC)

Description: Black granule, pellet or powder, activated carbon

Product Use: Water filtration & treatment/air treatment

Manufacturer's Name: Supplier's Name:

PICA USA Inc.

432 McCormick Boulevard

Columbus, Ohio 43213-1585

Phone: [614] 864-8100

AWI (Anthratech Western Inc.)

4450 – 46 Avenue, SE

Calgary, Alberta T2B 3N7

Emergency Phone: [403] 255-7377

Phone: [614] 864-8100 Emergency Phone: [800] 424-9300

* Activated Carbon is manufactured by PICA USA Inc. and is distributed by AWI.

Section 2 - Hazardous Ingredients

This material is composed of 100% activated carbon. Caution should be taken not to inhale dust.

CARBON: LD50-Oral: N/A C.A.S. #: 7440-44-0

LC50: N/A Range % (w/w): 90-100 LD50-Dermal: N/A T.L.V.: 3.5 mg/cu.m

Section 3 - Physical Data

Boiling Point: N/A Incompatibility: Avoid contact with strong oxidizers

Solubility in Water: Not soluble Flash Point: N/A Specific Gravity: 0.30 - 0.50 @ 25 °C Stability: Stable

Melting Point: 3500 °C pH: 8-10, 10% suspension in water

Appearance and Odour: Odourless black solid, flake, granule or pellet, no odour

Section 4 - Fire and Explosion Data

Flash Point: N/A Extinguishing Media: Water, foam, CO₂, or dry chemical

Upper Flammable Limit: N/A Lower Flammable Limit: N/A

General Fire Hazards: When exposed to air activated carbon can be a potential fire hazard because of its very high

surface area and absorptive capacity. Accumulation of airborne dusts may present an explosion or

fire hazard in the presence of an ignition source.

Hazardous Combustion Products: Upon combustion, this product may emit carbon monoxide, carbon dioxide and/or low

molecular weight hydrocarbons. Other materials absorbed onto the carbon may also be released

during combustion.

Section 5 - Reactivity Data

Stability: Stable

Incompatibility: Oxidizers, nitric acid, hydrogen, peroxide, metals, oxosalts, potassium, nitric acid, sodium

sulphide, halogens, oxygen, ozone bromates, chlorates, iodates and nitrates.

Hazardous Polymerization: Will not occur Hazardous Decomposition: Normal combustion

Section 6 - Toxicological Properties

Potential Health Effects:

Eye Contact: Contact may produce mechanical eye irritation.

Skin Contact: Skin irritation would not be expected from single short term exposure to this product. Prolonged

or repeated contact may produce some irritation.

Ingestion: Ingestion of this product may cause gastrointestinal irritation, nausea, vomiting and constipation.

Small amounts of this product in solution, if aspirated into lungs, may cause mild to severe

pulmonary injury, possibly death.

Inhalation: Chronic inhalation may produce carbon deposition in the lungs. Oral LD50 rats: >5g/kg.

No carcinogenicity data available for this product.

Section 7 - Preventative Measures

Spilled or released material may be swept up and discarded or repackaged

Waste Disposal: Non toxic. Dispose of in accordance with all federal, provincial and local regulations.

Handling/Storage: Provide adequate ventilation. Store away from heat, ignition sources, combustible materials and

incompatible materials.

CAUTION! Wet activated carbon removes oxygen from the air causing a severe hazard to workers in confined spaces. Sampling and work procedures for low oxygen levels should be taken whenever workers may be entering carbon vessels, enclosed, or confined spaces. All federal, provincial, and local regulations should be observed.

Respiratory: Wear approved dust and mist respirator NIOSH/OHSA

Eyes: Approved safety glasses with side shields must be worn at all times.

Gloves: (protective) None required

Ventilation: Local exhaust

Clothing: Proper work clothing to be worn to prevent skin contact

Hygiene: Maintain clean environment

Section 8 - First Aid Measures

Eyes: Immediately flush eyes with plenty of water for at least 15 minutes. Seek medical attention if irritation persists.

Skin: Wash with soap and large amounts of water. If irritation persists, seek medical attention.

Ingestion: If material is swallowed, get immediate medical attention or advice – DO NOT induce vomiting unless

instructed to do so by medical personnel.

Inhalation: Remove source of contamination or move victim to fresh air. Seek medical attention if irritation persists.

Section 9 - Preparation of Date of MSDS

Prepared by: Kellsie Donaldson (Safety Officer)

AWI, 4450 – 46 Ave SE; Calgary, AB T2B 3N7

Telephone Number: [403] 255- 7377 Date Prepared: January 13, 2010

The information contained herein is accurate to the best of our knowledge. However, data, safety standards and government regulations are subject to change, and conditions of handling, use or misuse of this product are beyond our control. Users should satisfy themselves that they are aware of all of the current data relevant to their particular use.

Attachment I. Emission Units Table	

Attachment I

Emission Units Table

(includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
GEN-1	1E	Emergency Generator	2016	2,923 hp	NA	NA
H-2185A	2E	Boiler #1	2016	275.3 MMBtu/hr	NA	NA
H-2185B	3E	Boiler #2	2016	275.3 MMBtu/hr	NA	NA
U-1080	4E	Thermal Oxidizer	2016	11 MMBtu/hr	NA	1C
TK-1055A	4E	Grit Clarifier Tank	2016	562,000 gal	NA	1C
TK-1055B	4E	Stage 1 Clarifier Tank	2016	562,000 gal	NA	1C
TK-1060A	4E	Clarifier Pump Tank A	2016	23,000 gal	NA	1C
TK-1060B	4E	Clarifier Pump Tank B	2016	23,000 gal	NA	1C
TK-1065	4E	Oil Collection Tank	2016	13,500 gal	NA	1C
ГК-1070	4E	Equalization Tank	2016	1,030,000 gal	NA	1C
ГК-2010	4E	Solids Clarifier Tank	2016	435,000 gal	NA	1C
TK-2015	4E	Clarifier Effluent Tank	2016	12,000 gal	NA	1C
TK-2020	4E	Stage 2 Sludge Holding Tank	2016	103,000 gal	NA	1C
TK-2040	4E	Thermal Feed Tank	2016	1,400,000 gal	NA	1C
TK-2140	4E	Recovered Water Tank	2016	230,000 gal	NA	1C
E-2076	4E	Deaerator Vent Condenser	2016	1,121 lb/hr	NA	1C
TK-1120	4E	Stage 1 Sludge Holding Tank	2016	27,000 gal	NA	1C
TK-1105A	4E	Stage 1 Reaction Tank A	2016	32,000 gal	NA	1C
TK-1105B	4E	Stage 1 Reaction Tank B	2016	32,000 gal	NA	1C
TK-1115	4E	Stage 1 Clarifier Pump Tank	2016	18,000 gal	NA	1C
TK-1130	4E	Stage 1 Filtrate Tank	2016	1,700 gal	Modified	2C
TK-2120	20E	Process Distillate Level Tank	2015	5,575 gal	NA	NA
TK-2500	21E	Post Treatment Tank 1	2015	770,000 gal	NA	NA
TK-2550	22E	Post Treatment Tank 2	2015	770,000 gal	NA	NA

Emission	Units Tabl	e
	03/200	7

23E	Post Treatment Tank 3	2015	406,100 gal	NA	NA
24E	Post Treatment Effluent Tank	2015	12,000 gal	NA	NA
25E	Post Treatment Sludge Tank	2015	1,270 gal	NA	NA
26E	Methanol Bulk Storage Tank	2016	8,000 gal	NA	NA
28E	Cooling Tower Basin	2015	34,500 gpm	NA	NA
29E	Emergency Flare	2016	2.2 MMRtu/hr	NA	2C
30E	Fire Water Pump Engine	2016	136 hp	NA	NA
31E	Fuel Skid Heater 1	2016	2.4 MMRtu/hr	NA	NA
32E	Fuel Skid Heater 2	2016	2.4 MMBtu/hr	NA	NA
33E	Carbon Canister	2017	20 cfm	New	2C
	24E 25E 26E 28E 29E 30E 31E 32E	24E Post Treatment Effluent Tank 25E Post Treatment Sludge Tank 26E Methanol Bulk Storage Tank 28E Cooling Tower Basin 29E Emergency Flare 30E Fire Water Pump Engine 31E Fuel Skid Heater 1 32E Fuel Skid Heater 2	24EPost Treatment Effluent Tank201525EPost Treatment Sludge Tank201526EMethanol Bulk Storage Tank201628ECooling Tower Basin201529EEmergency Flare201630EFire Water Pump Engine201631EFuel Skid Heater 1201632EFuel Skid Heater 22016	24E Post Treatment Effluent Tank 2015 12,000 gal 25E Post Treatment Sludge Tank 2015 1,270 gal 26E Methanol Bulk Storage Tank 2016 8,000 gal 28E Cooling Tower Basin 2015 34,500 gpm 29E Emergency Flare 2016 2.2 MMRtn/hr 30E Fire Water Pump Engine 2016 136 hp 31E Fuel Skid Heater 1 2016 2.4 MMRtn/hr 32E Fuel Skid Heater 2 2016 2.4 MMBtu/hr	24E Post Treatment Effluent Tank 2015 12,000 gal NA 25E Post Treatment Sludge Tank 2015 1,270 gal NA 26E Methanol Bulk Storage Tank 2016 8,000 gal NA 28E Cooling Tower Basin 2015 34,500 gpm NA 29E Emergency Flare 2016 2.2 NA 30E Fire Water Pump Engine 2016 136 hp NA 31E Fuel Skid Heater 1 2016 2.4 NA MMBtu/hr 2.4 NA MMBtu/hr 32E Fuel Skid Heater 2 2016 2.4 NA

¹ For Emission Units (or <u>S</u>ources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation. ² For <u>E</u>mission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation. ³ New, modification, removal ⁴ For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

Attachment J. Emission Point Data Summary Sheet	

Attachment J EMISSION POINTS DATA SUMMARY SHEET

							Table 1	I : Emissions	Data						
Emission Point ID No. (Must match Emission Units Table & Plot Plan)		Emission Unit Vented Through This Point (Must match Emission Units Table & Plot Plan)		Air Pollution Control Device (Must match Emission Units Table & Plot Plan)		Vent Time for Emission Unit (chemical processes only)		All Regulated Pollutants - Chemical Name/CAS ³	Maximum Potential Uncontrolled Emissions ⁴		l Potential led Controlled		Form or Phase Use (At exit conditions,	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Solid, Liquid or Gas/Vapor)		
1E	Upwar d vertical stack	GEN-1	Emergency Generator			Emerg ency use	500	NOx CO VOC PM10 SO2 Total HAPs CO2e	25.78 16.83 2.69 0.96 0.033 0.03 3598	6.44 4.21 0.67 0.24 0.0083 0.0075 899.5	25.78 16.83 2.69 0.96 0.033 0.03 3598	6.44 4.21 0.67 0.24 0.0083 0.0075 899.5	Gas/Vapor	EE	
2E and 3E	Upwar d vertical stacks	H-2185A and H-2185B	Boiler 1 and 2			С	8,760 each	NOx CO VOC PM10 SO2 Total HAPs CO2e	20.05 20.34 2.20 5.51 0.32 1.02 64631	78.42 79.57 8.61 21.54 1.27 3.97 252786	20.05 20.34 2.20 5.51 0.32 1.02 64631	78.42 79.57 8.61 21.54 1.27 3.97 252786	Gas/Vapor	EE	
4E	Upwar d vertical stack	U-1080 (TK-1055A/B, TK-1060A/B, TK-1070 TK-11105A/B, TK-1115 TK-2010, TK-2015, TK-2040, TK-1065 TK-1120, TK-2020, TK-2020, TK-2076)	Thermal oxidizer	1C	Thermal oxidizer	С	8,760	NOx CO VOC PM10 SO2 Total HAPs Ammonia CO2e	 220.21 0.47 57.63 167.57	 777.53 1.33 243.84 274.04	1.08 0.93 4.40 1.3e-4 1.1e-5 9.4e-3 1.15 1461	4.74 4.08 15.55 5.9e-4 4.6e-5 2.7e-2 4.88 5939	Gas/Vapor	EE	

20E	Upwar d vertical stack	TK-2120	Process Distillat e Level Tank	С	8,760	Ammonia	0.29	1.18	0.29	1.18	Gas/Vapor	EE
21E	Open Top tank	TK-2500	Post Treatme nt Tank 1	С	8,760	VOC Total HAPs Ammonia	1.18 0.012 1.96	4.74 0.049 7.87	1.18 0.012 1.96	4.74 0.049 7.87	Gas/Vapor	EE
22E	Open Top tank	TK-2550	Post Treatme nt Tank 2	С	8,760	CO2e	60.18	239.62	60.18	239.62	Gas/Vapor	EE
23E	Open Top tank	TK-2555	Post Treatme nt Tank 3	С	8,760	CO2e	60.18	239.62	60.18	239.62	Gas/Vapor	EE
24E	Upwar d vertical stack	TK-2515	Post Treatme nt Effluent Tank	С	8,760	VOC Total HAPs Ammonia CO2e	0.77 0.0005 0.0014 0.95	3.10 0.0021 0.0057 3.81	0.77 0.0005 0.0014 0.95	3.10 0.0021 0.0057 3.81	Gas/Vapor	EE
25E	Open Top tank	TK-2520	Post Treatme nt Sludge Tank	С	8,760	VOC Total HAPs Ammonia CO2e	0.015 5.0E-5 0.0009 0.027	0.064 0.00023 0.0039 0.12	0.015 5.0E-5 0.0009 0.027	0.064 0.00023 0.0039 0.12	Gas/Vapor	EE
26E	Upwar d vertical stack	TK-4115	Methano 1 Bulk Storage Tank	С	8,760	VOC Total HAPs	0.067 0.067	0.25 0.25	0.067 0.067	0.25 0.25	Gas/Vapor	EE
28E	Upwar d vertical stack	CT-2335	Cooling Tower Basin	С	8,760	PM10 PM2.5	0.94 0.94	4.12 4.12	0.94 0.94	4.12 4.12	Gas/Vapor	EE

29E	Upwar d vertical stack	U-1090	Emergen cy Flare			Emerg ency use	120 (pilot 8760)	NOx CO VOC PM10 SO2 Total HAPs CO2e	 	 	0.16 0.69 4.0e-4 5.5e-4 4.4e-5 1.4e-4 12.3	0.041 0.068 1.7e-3 2.4e-3 1.9e-4 6.0-4 53.75	Gas/Vapor	EE	
30E	Upwar d vertical stack	ENG-2	Fire Water Pump Engine			Emerg ency use	500	NOx CO VOC PM10 SO2 Total HAPs CO2e	0.85 1.11 0.045 0.066 0.27 0.0035 155	0.21 0.28 0.011 0.016 0.069 0.0009 38.75	0.85 1.11 0.045 0.066 0.27 0.004 155	0.21 0.28 0.011 0.016 0.069 0.0009 38.75	Gas/Vapor	EE	
31E	Upwar d vertical stack	HTFUE L1	Fuel Skid Heater 1			С	8,760	NOx CO VOC PM10 SO2 Total HAPs CO2e	0.24 0.20 0.013 0.018 0.0014 0.0044 140.86	1.03 0.87 0.057 0.078 0.0062 0.019 616.97	0.24 0.20 0.013 0.018 0.0014 0.0044 140.9	1.03 0.87 0.057 0.078 0.0062 0.019 616.97	Gas/Vapor	EE	
32E	Upwar d vertical stack	HTFUE L2	Fuel Skid Heater 2			С	8,760	NOx CO VOC PM10 SO2 Total HAPs CO2e	0.24 0.20 0.013 0.018 0.0014 0.0044 140.86	1.03 0.87 0.057 0.078 0.0062 0.019 616.97	0.24 0.20 0.013 0.018 0.0014 0.0044 140.9	1.03 0.87 0.057 0.078 0.0062 0.019 616.97	Gas/Vapor	EE	
33E	Upwar d vertical stack	U-1130 (TK- 1130)	Carbon Canister	2C	Carbon Caniste r	С	8760	VOC Total HAPs Ammonia CO2e	0.43 0.0018 0.044 0.11	1.67 0.0072 0.19 0.36	0.009 3.7e-5 0.044 0.11	0.033 1.4e-4 0.19 0.36	Gas/Vapor	EE	

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

- ¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.
- ² Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).
- ³ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. **LIST** Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. **DO NOT LIST** H₂O, N₂, O₂, and Noble Gases.
- ⁴ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
- ⁵ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
- 6 Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).
- Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m³) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO₂, use units of ppmy (See 45CSR10).

Attachment J EMISSION POINTS DATA SUMMARY SHEET

			Table 2: Re	lease Parameter	Data				
Emission	Inner		Exit Gas		Emission Point Ele	evation (ft)	UTM Coordinates (km)		
Point ID No.	Diameter (ft.) Temp.		Volumetric Flow ¹ (acfm) at operating conditions	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ²	Northing	Easting	
1E	1.17	979	19209	149 dual exhaust	1029	17	TBD	TBD	
2E	5.5	322	68799	48	1029	50	4346.745	509.333	
3E	5.5	322	68799	48	1029	50	4346.753	509.333	
4E	2.7	872	9727	28.3	1029	63.5	4346.718	509.276	
20E	0.17	144	unknown	unknown	1029	10	4346.742	509.318	
21E	Open tanks	80-90	unknown	unknown	1029	N/A	4346.701	509.324	
22E	Open tanks	80-90	unknown	unknown	1029	N/A	4346.701	509.301	
23E	Open tanks	80-90	unknown	unknown	1029	N/A	4346.719	509.312	
24E	0.17	80-90	unknown	unknown	1029	0.17	4346.715	509.341	
25E	Open tank	80-90	unknown	unknown	1029	N/A	4346.715	509.337	
26E	0.17	atmospheric	unknown	unknown	1029	10	4346.658	509.349	
28E	unknown	unknown	unknown	unknown	1029	38.84	4346.788	509.340	
29E	1	unknown	unknown	unknown	1029	60	4346.718	509.276	
30E	unknown	unknown	unknown	unknown	1029	TBD	4346.816	509.344	
31E	1.25	300	unknown	unknown	1029	18	TBD	TBD	
32E	1.25	300	unknown	unknown	1029	18	TBD	TBD	
33E	0.16	80	20 points of emissions above	16.6	1029	11	4346.705	509.238	

¹ Give at operating conditions. Include inerts. ² Release height of emissions above ground level.

At Fugitive Emissi	tachment K. ons Data Summ	nary Sheet	

Attachment K

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

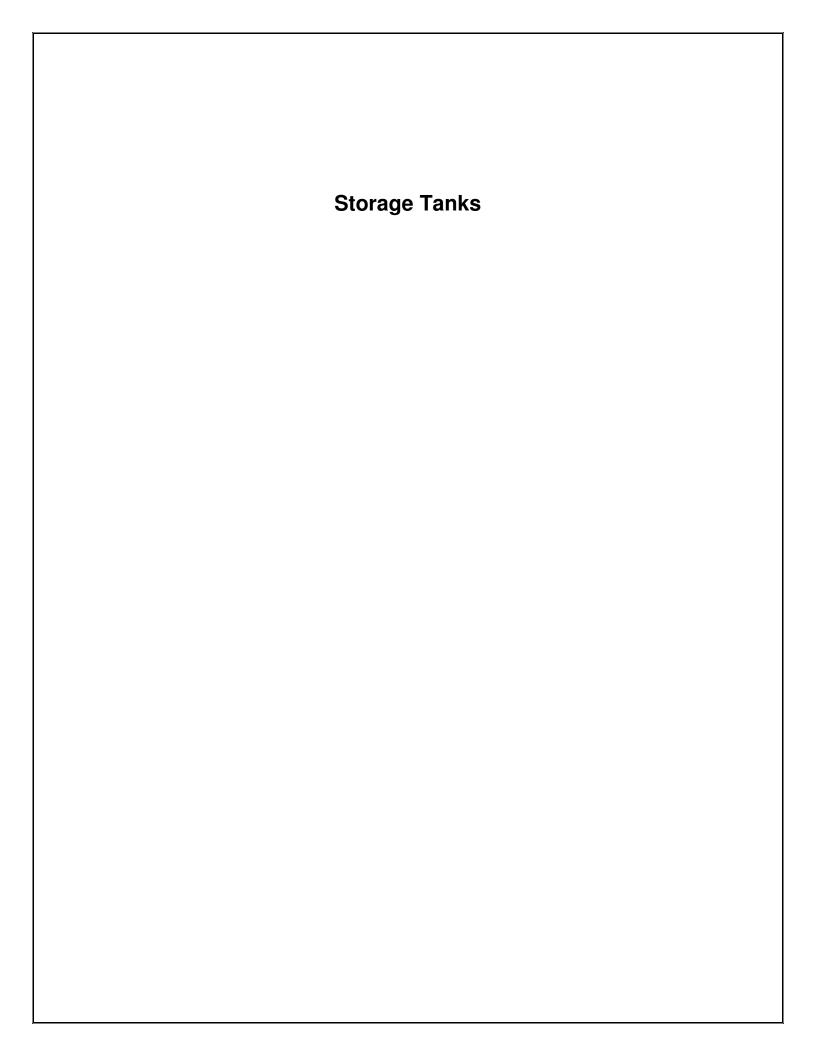
Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS
1.)	Will there be haul road activities?
	⊠ Yes □ No
	☐ If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.
2.)	Will there be Storage Piles?
	☐ Yes ☐ No
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
3.)	Will there be Liquid Loading/Unloading Operations?
	⊠ Yes □ No
	$oxed{oxed}$ If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?
	⊠ Yes □ No
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
5.)	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?
	☐ Yes
	$\hfill \square$ If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.
6.)	Will there be General Clean-up VOC Operations?
	☐ Yes
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
7.)	Will there be any other activities that generate fugitive emissions?
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.
	ou answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions mmary."

Page 1 of 2 Revision 2/11

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants - Chemical Name/CAS 1	Maximum Potential Uncontrolled Emissions ²		Maximum Potential Controlled Emissions ³		Est. Method
	Onemical Name/OAS	lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
Haul Road/Road Dust Emissions Paved Haul Roads						
Paved Haul Roads (PROAD)	PM-10 PM-2.5	1.41 0.35	5.55 1.36	1.41 0.35	5.55 1.36	EE
Storage Pile Emissions						
Loading/Unloading Operations (P-1051, OILLOAD, LD-GB)	VOCs Total HAPs CO2e	77.83 0.68 52,409	64.51 0.51 47,822	37.21 0.41 16,459	27.33 0.26 15,018	EE
Wastewater Treatment Evaporation & Operations (DISP1, DISP2,and DISP3)	VOCs Total HAPs CO2e NH3	4.66 0.00077 0.0073 0.071	20.39 0.0034 0.032 0.31	4.66 0.00077 0.0073 0.071	20.39 0.0034 0.032 0.31	МВ
Equipment Leaks						
General Clean-up VOC Emissions						
Other - Venting from Pigging Operations (VENT1)	VOCs Total HAPs CO2e	7.53 0.18 710.3	0.20 0.0047 18.47	7.53 0.18 710.3	0.20 0.0047 18.47	EE
Other all Transfer Points (TK-4036, U-4037, U-4038, TK-4046A/B, U-4047A/B, U-4048A/B, TK-4012, U-4012, U-4013, TK-4301, U-4302, U-4303)	PM-10 PM-2.5	2.65 0.75	5.64 1.59	2.65 0.75	5.64 1.59	EE

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.


Page 2 of 2 Revision 2/11

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

Attachment L.	
Emission Unit Data Sheets	

Attachment L EMISSIONS UNIT DATA SHEET STORAGE TANKS

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT www.epa.gov/tnn/tanks.html), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (http://www.epa.gov/tnn/chief/).

I. GENERAL INFORMATION (required)

Bulk Storage Area Name	2. Tank Name					
Pre-Treatment	Stage 1 Filtrate Tank					
 Tank Equipment Identification No. (as assigned on Equipment List Form) TK-1130 	Emission Point Identification No. (as assigned on Equipment List Form) 33E					
5. Date of Commencement of Construction (for existing	tanks)					
6. Type of change ☐ New Construction ☐ I	New Stored Material					
7. Description of Tank Modification (if applicable) Tank off gas no longer goes to the thermal oxidizer	due to safety concerns and now goes to a carbon canister					
7A. Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tank	k?)					
7B. If YES, explain and identify which mode is covere completed for each mode).	7B. If YES, explain and identify which mode is covered by this application (Note: A separate form must be completed for each mode).					
7C. Provide any limitations on source operation affecting variation, etc.): None	•					
II TANK INFORM	ATION (required)					
Design Capacity (specify barrels or gallons). Use height.	the internal cross-sectional area multiplied by internal orgallons					
9A. Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)					
6	8					
10A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)					
5	5					
11A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)					
3	3					
liquid levels and overflow valve heights.	is also known as "working volume" and considers design 0 gallons					

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)					
12,088,800	144,000					
 Number of Turnovers per year (annual net throughput/maximum tank liquid volume) 12089 						
15. Maximum tank fill rate (gal/min) 100						
16. Tank fill method	⊠ Splash ☐ Bottom Loading					
17. Complete 17A and 17B for Variable Vapor Space Tai						
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year					
18. Type of tank (check all that apply): ☐ Fixed Roof X vertical horizontal flat roof cone roof dome roof ☐ other (describe) ☐ External Floating Roof pontoon roof double deck roof ☐ Domed External (or Covered) Floating Roof ☐ Internal Floating Roof vertical column support self-supporting ☐ Variable Vapor Space lifter roof diaphragm						
☐ Pressurized spherical cylindrical☐ Underground☐ Other (describe)						
III. TANK CONSTRUCTION & OPERATION INFORM	ATION (optional if providing TANKS Summary Sheets)					
19. Tank Shell Construction:	d rivets					
20A. Shell Color 20B. Roof Color						
21. Shell Condition (if metal and unlined):	<u> </u>					
	ust Not applicable					
22A. Is the tank heated? ☐ YES ☐ NO						
22B. If YES, provide the operating temperature (°F)						
22C. If YES, please describe how heat is provided to to	ank.					
23. Operating Pressure Range (psig): atmosph	neric					
24. Complete the following section for Vertical Fixed Ro	of Tanks					
24A. For dome roof, provide roof radius (ft) 3						
24B. For cone roof, provide slope (ft/ft)						
25. Complete the following section for Floating Roof Tai	nks Does Not Apply					
25A. Year Internal Floaters Installed:						
25B. Primary Seal Type:	·					
25C. Is the Floating Roof equipped with a Secondary S	Seal? YES NO					
25D. If YES, how is the secondary seal mounted? (che	eck one)					
25E. Is the Floating Roof equipped with a weather shie	eld?					

25F. Describe deck fittings; indica	te the number of eac	ch type of fittina:					
ACCESS HATCH							
BOLT COVER, GASKETED:	UNBOLTED COV	=	UNBOLTED COVER, UNGASKETED:				
	AUTOMATIC GAL	JGE FLOAT WELL	<u>; </u>				
BOLT COVER, GASKETED:	UNBOLTED COV		UNBOLTED COVER, UNGASKETED:				
	COLLIM	N WELL	<u> </u>				
BUILT-UP COLUMN – SLIDING COVER, GASKETED:		JMN – SLIDING	PIPE COLUMN – FLEXIBLE FABRIC SLEEVE SEAL:				
	LADDE	R WELL	1				
PIP COLUMN – SLIDING COVER, G			SLIDING COVER, UNGASKETED:				
	GAUGE-HATCH	/SAMPLE PORT					
SLIDING COVER, GASKETED:		SLIDING COVER	, UNGASKETED:				
	ROOF LEG OR	HANGER WELL					
WEIGHTED MECHANICAL ACTUATION, GASKETED:	WEIGHTED ACTUATION, UN		SAMPLE WELL-SLIT FABRIC SEAL (10% OPEN AREA)				
	· VACIIIM	BREAKER	i				
WEIGHTED MECHANICAL ACTUAT		•	ANICAL ACTUATION, UNGASKETED:				
	DIM '	: VENT					
WEIGHTED MECHANICAL ACTUAT			ANICAL ACTUATION, UNGASKETED:				
OPEN:	DECK DRAIN (3-	NCH DIAMETER) 90% CLOSED:					
	OTI ID	DDAIN					
STUB DRAIN 1-INCH DIAMETER:							
OTHER (DESC	RIBE, ATTACH ADI	DITIONAL PAGES	IF NECESSARY)				

26. Complete the following section for Internal	Floating Ro	of Tanks	□ Does Not Apply	/
26A. Deck Type: Bolted We	elded			
26B. For Bolted decks, provide deck constru	uction:			
26C. Deck seam:				
☐ Continuous sheet construction 5 feet wi ☐ Continuous sheet construction 6 feet wi				
Continuous sheet construction 7 feet wi	de			
☐ Continuous sheet construction 5 × 7.5 fo ☐ Continuous sheet construction 5 × 12 fe				
Other (describe)	or wide			
		005 4	() ((0))	
26D. Deck seam length (ft)			ea of deck (ft²)	
For column supported tanks: 26F. Number of columns:	,	26G. Dia	ameter of each column	
IV. SITE INFORMANTION	(optional if	providina T	ANKS Summary Shee	ts)
27. Provide the city and state on which the data	` •			,
Elkins, West Virginia				
28. Daily Average Ambient Temperature (°F)		49.0	06	
29. Annual Average Maximum Temperature (°l	F)	61.1	5	
30. Annual Average Minimum Temperature (°F	-)	36.9	7	
31. Average Wind Speed (miles/hr)		6.17	, 	
32. Annual Average Solar Insulation Factor (B	TU/(ft²·day)) 1,19	3.89	
33. Atmospheric Pressure (psia)		13.7	3	
V. LIQUID INFORMATION	(optional if	providing 7	ANKS Summary Shee	ets)
34. Average daily temperature range of bulk lic	quid:			
34A. Minimum (°F) 40		34B. Ma	ximum (°F) 80	
35. Average operating pressure range of tank:				
35A. Minimum (psig) atmospheric	;	35B. Ma	aximum (psig) atmos	spheric
36A. Minimum Liquid Surface Temperature	(°F)	36B. Co	rresponding Vapor Pre	ssure (psia)
40	o=`	.=	0.13	
37A. Average Liquid Surface Temperature (°F)	37B. Co	rresponding Vapor Pre 0.26	ssure (psia)
38A. Maximum Liquid Surface Temperature	(°F)	38B. Co	rresponding Vapor Pre	ssure (psia)
80	(' '		0.51	com c (poss)
39. Provide the following for each liquid or gas	to be store	d in tank. /	Add additional pages if	necessary.
39A. Material Name or Composition	Stage 1 Filt	trate		
39B. CAS Number				
39C. Liquid Density (lb/gal)	8.3	34		
39D. Liquid Molecular Weight (lb/lb-mole)		~18		
39E. Vapor Molecular Weight (lb/lb-mole)		~18		

Maximum Vapor Press 39F. True (psia)	sure						
39G. Reid (psia)							
Months Storage per Y	ear						
39H. From		Jan	uary				
39I. To		Dece	ember				
	VI. EMISSIONS A	ND CONTR	OL DEVICE	E DATA (required)			
40. Emission Control Devices (check as many as apply): ☐ Does Not Apply							
☐ Carbon Adsorption¹							
☐ Condenser ¹							
☐ Conservation \	•						
Vacuum S	J	F	Pressure Se	etting			
	lief Valve (psig)						
☐ Inert Gas Blanl							
☐ Insulation of Ta							
Liquid Absorpti	ion (scrubber)1						
☐ Refrigeration o	f Tank						
Rupture Disc (•						
☐ Vent to Inciner	ator ¹						
	e): Carbon Canister						
¹ Complete appropriate Air Pollution Control Device Sheet.							
¹ Complete approp	oriate Air Pollution Con	trol Device S	Sheet.				
	oriate Air Pollution Con n Rate (submit Test Da			or elsewhere in the	application).		
	n Rate (submit Test Da	ata or Calcula Working	ations here	Annual Loss	application). Estimation Method¹		
41. Expected Emissio Material Name & CAS No.	n Rate (submit Test Da	ata or Calcula	ations here	Annual Loss (lb/yr)			
41. Expected Emissio Material Name & CAS No. VOCs	n Rate (submit Test Da	ata or Calcula Working	ations here	Annual Loss (lb/yr) 66.99			
41. Expected Emissio Material Name & CAS No.	n Rate (submit Test Da	ata or Calcula Working	ations here	Annual Loss (lb/yr) 66.99 378			
41. Expected Emissio Material Name & CAS No. VOCs	n Rate (submit Test Da	ata or Calcula Working	ations here	Annual Loss (lb/yr) 66.99	Estimation Method ¹		
41. Expected Emissio Material Name & CAS No. VOCs Ammonia	n Rate (submit Test Da	ata or Calcula Working	ations here	Annual Loss (lb/yr) 66.99 378			
41. Expected Emissio Material Name & CAS No. VOCs Ammonia Benzene	n Rate (submit Test Da	ata or Calcula Working	ations here	Annual Loss (lb/yr) 66.99 378 0.29	Estimation Method ¹		
41. Expected Emissio Material Name & CAS No. VOCs Ammonia Benzene Ethylbenzene	n Rate (submit Test Da	ata or Calcula Working	ations here	Annual Loss (lb/yr) 66.99 378 0.29	Estimation Method ¹		
41. Expected Emissio Material Name & CAS No. VOCs Ammonia Benzene Ethylbenzene Toluene	n Rate (submit Test Da	ata or Calcula Working	ations here	Annual Loss (lb/yr) 66.99 378 0.29	Estimation Method ¹		
41. Expected Emissio Material Name & CAS No. VOCs Ammonia Benzene Ethylbenzene Toluene Xylenes	n Rate (submit Test Da	ata or Calcula Working	ations here	Annual Loss (lb/yr) 66.99 378 0.29	Estimation Method ¹		
41. Expected Emissio Material Name & CAS No. VOCs Ammonia Benzene Ethylbenzene Toluene Xylenes	n Rate (submit Test Da	ata or Calcula Working	ations here	Annual Loss (lb/yr) 66.99 378 0.29	Estimation Method ¹		
41. Expected Emissio Material Name & CAS No. VOCs Ammonia Benzene Ethylbenzene Toluene Xylenes	n Rate (submit Test Da	ata or Calcula Working	ations here	Annual Loss (lb/yr) 66.99 378 0.29	Estimation Method ¹		

 $^{^1}$ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

 $[\]boxtimes$ Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

Pressurized Truck Loading	

Attachment L EMISSIONS UNIT DATA SHEET BULK LIQUID TRANSFER OPERATIONS

Furnish the following information for each new or modified bulk liquid transfer area or loading rack, as shown on the *Equipment List Form* and other parts of this application. This form is to be used for bulk liquid transfer operations such as to and from drums, marine vessels, rail tank cars, and tank trucks.

Identification Number (as assigned on E	quipment List Form): LD-GB				
1. Loading Area Name: Pressurized load	ing at the fuel skid from the gunbarrel				
2. Type of cargo vessels accommodated at this rack or transfer point (check as many as apply):					
□ Drums □ Marine Vessels	□ Rail Tank Cars X Tank Trucks				
3. Loading Rack or Transfer Point Data:					
Number of pumps:	1				
Number of liquids loaded:	1 – condensate/water				
Maximum number of marine vessels, tank trucks, tank cars, and/or drums loading at one time	One				
4. Does ballasting of marine vessels occur	cur at this loading area? X Does not apply				
5. Describe cleaning location, compounds and procedure for cargo vessels using this transfer point: N/A					
6. Are cargo vessels pressure tested for □ Yes If YES, describe:	leaks at this or any other location? X No				

7. Projected Maximum Operating Schedule (for rack or transfer point as a whole):							
Maximum	Jan Mar.	Jan Mar. Apr June July - Sept. Oct Dec.					
hours/day	24	24	24	24			
days/week	7	7	7	7			
weeks/quarter	all	all	all	all			

8. Bulk Liqu	id Data <i>(add pages as</i>	necessary,) <i>:</i>			
Pump ID No.		N/A				
Liquid Name		condensate				
Max. daily thro	oughput (1000 gal/day)	21				
Max. annual t	hroughput (1000 gal/yr)	7665				
Loading Meth	od ¹	pressur ized				
Max. Fill Rate	(gal/min)	TBD				
Average Fill T	ime (min/loading)	TBD				
Max. Bulk Liq	uid Temperature (°F)	80				
True Vapor Pr	ressure ²	~12				
Cargo Vessel	Condition ³	U				
Control Equip	ment or Method ⁴	None				
Minimum cont	trol efficiency (%)	0				
Maximum	Loading (lb/hr)	1.92				
Emission Rate	Annual (lb/yr)	3,500				
Estimation Me	ethod ⁵	МВ				
¹ BF = Bottom	n Fill SP = Splash Fill	SUB =	Submerç	ged Fill		

² At maximum bulk liquid temperature
³ B = Ballasted Vessel, C = Cleaned, U = Uncleaned (dedicated service), O = other (describe)
⁴ List as many as apply (complete and submit appropriate <i>Air Pollution Control Device Sheets</i>):CA = Carbon Adsorption LOA = Lean Oil AdsorptionCO = Condensation SC = Scrubber (Absorption)CRA = Compressor-Refrigeration-Absorption TO = Thermal Oxidation or Incineration CRC = Compression-Refrigeration-Condensation VB = Dedicated Vapor Balance (closed system) O = other (descibe)
⁵ EPA = EPA Emission Factor as stated in AP-42 MB = Material Balance TM = Test Measurement based upon test data submittal

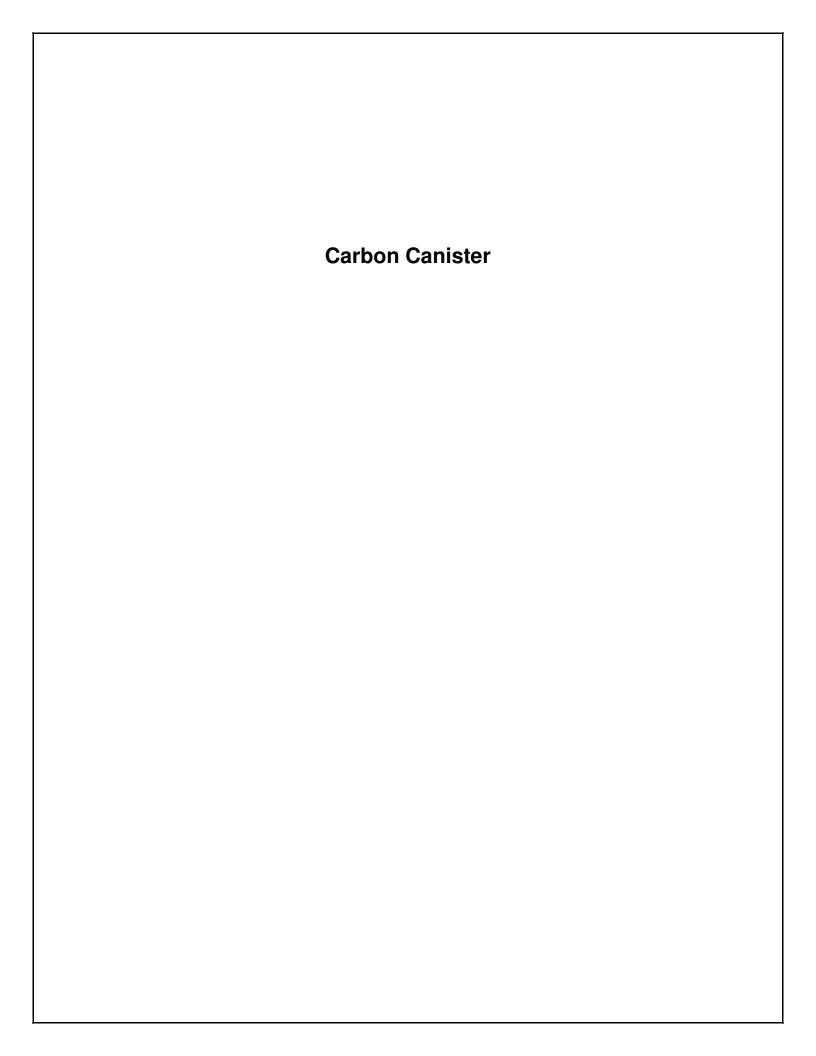
9. Proposed Monitoring, Recordkeeping, Reporting, and Testing

O = other (describe)

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING see Attachment O	RECORDKEEPING see Attachment O
REPORTING see Attachment O	TESTING see Attachment O

MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS


RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.

REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.

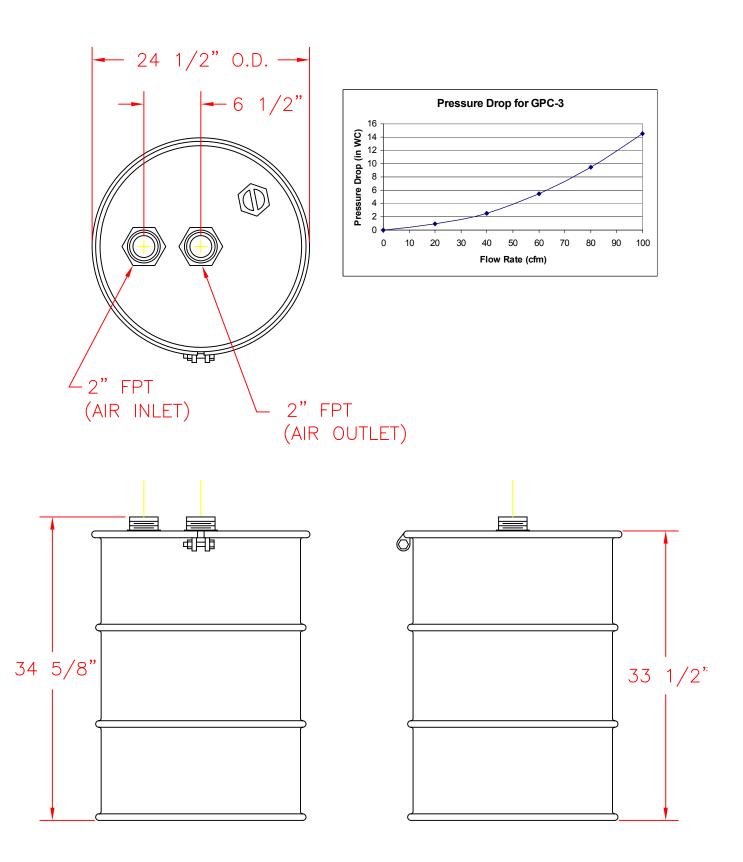
10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty

Attacl Air Pollution Co	hment M. ntrol Device Sh	eets	

Attachment M Air Pollution Control Device Sheet

(ADSORPTION SYSTEM)

Control Device ID No. (must match Emission Units Table): 2C (33E)


Equipment Information

1.		ontrol Device: ster (U-1130)				nufacturer: Ca del No. GPC3	rbonair	
3.	Provide diagram(s) of unit describing capture system with duct arrangement and size of duct, air volume capacity, horsepower of movers. If applicable, state hood face velocity and hood collection efficiency.							
			Gas	Stream C	haracte	ristics		
4.	Gas Flow R	ate into the Col ACFM 20 Relative Humic	@	9 80 PSIA		°F		
5.	Emission R	ate of each Poll	utant (Specify) i	into and ou	t of Coll	ector:		
	Pollutant	lb/hr	IN avaina/aaf		- l \	lle /le v	OUT	
	A VOC	0.43	grains/acf	ppm (v	oiume)	1 b/hr 0.0086	grains/acf	ppm (volume)
	B HAPs	0.43				0.000037		
	C	0.0018				0.000037		
	D							
	E							
6.		explosive limit)	for most volatile	pollutant:		Pollutant		PPM
	,	,		•				
	operating	pressure (mm temperature inlet stream:	for each A B C D				Temp	·
			Ads	orbent Ch	naracter	istics		
8.	Adsorbent:	Type: Manufacturer: Grade No.: Specifications:	TBD	ted carbon	9. Ma	ximum adsorbat	•	b of adsorbent
10.	Pressure dr	op across unit:			11. Nur	mber of beds pe	r unit:	
12	Meight of a	dsorbent materi	(in inches of	water)	13 Ada	corbent modic o	verage particle s	izo:
'2.	200	dsorbent maten	lb		io. Aus	sorbent media a	micro	
14.	Adsorber ge				15. Ter	nperature Range		
	Length:	N/A		ft	Min	. Temp.		°F
	Diameter:			ft		x. Temp.		°F
	Bed Depth: Bed Surface	o Aroo:		ft ft²		·		°F
	Ded Value	e Alea.		tr3		erage Temp.		
		for adsorption:	hr		17. Fre	quency of adsor	bent replacemen	nt:
18.	Cycle time f	for drying before	e adsorbing:	hr	eve	ry 28,816 hours o	r every 3.3 years	yr
			utant on adsorb	ent (supply	units):			
20.	20. Length of mass transfer zone: in							

Regenerative Systems

21.	Type of regeneration:	Replacement Stream			
		Other, specify:			
22.	Method of Regeneratio				
	Alternate use of	entire units		Source shut down	
	Alternate use of	beds in a single un	lit	Other (describe):	
23.	Cycle time for regenera	ation:	hr	24. Emission steam velocity th	_
				27 20 41	ft/min
				25. Steam flow rate:	lb/min
				Steam temp.:	°F
	<u> </u>			Steam pressure:	PSIA
26.	Disposition of vapors de	uring regeneration:			
27	Guaranteed minimum	efficiency	Ca	ptured Pollutant	Minimum Efficiency
	per pollutant captured:	A			%
		В			%
		C			%
		D			%
28.	Describe any air pollut	ion control device inlet ar	nd d	outlet gas conditioning processe	es (e.g., gas cooling, gas
	reheating, gas humidific			3 .	
29.	Describe the collection	material disposal system:			
30.	Have you included Ads	sorption Control Device in	n th	e Emissions Points Data Summ	arv Sheet?
٠.	jou moladou riac		,		, J

31. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with proposed operating parameters. Please propose testing in order to demonstrate compliance with proposed emissions limits.				
MONITORING:		RECORDKEEPING:		
See attachment O		See attachment O		
DEDODTING:		TESTING:		
REPORTING:				
See attachment O		See attachment O		
MONITORING: RECORDKEEPING: REPORTING:	monitored in order to demons equipment or air control device. Please describe the proposed re	ocess parameters and ranges that are proposed to be strate compliance with the operation of this process cordkeeping that will accompany the monitoring. I emissions testing for this process equipment on air		
TESTING:	pollution control device.	emissions testing for this process equipment on air		
32. Manufacturer's Gu	aranteed Capture Efficiency for ea	ch air pollutant.		
99% capture efficien replaced.	ncy for total hydrocarbons, however	98% assumed in emissions for time when the carbon is to be		
33 Manufacturer's Gu	aranteed Control Efficiency for eac	ch air pollutant		
N/A	arameted control Emolency for each	on an politicant.		
·		edures required by Manufacturer to maintain warranty. hours. Surges of 60 cfm for 10 minutes a day will not affect		

Call: 1.877.759.8143

Home Equipment Rentals

Equipment for Sale

Services

About Carbonair

Careers

Contact Us

Products For Sale: Vapor Phase Carbon Vessels

Carbonair's GPC Series vapor phase carbon vessels are designed to provide an efficient and economical means to reduce VOC concentrations, corrosive gases, toxic vapors, and to control odor. Carbonair's GPC Series Vapor Phase Carbon Vessels can be filled with several types of granular activated carbons and other specialty media for a variety of applications.

Carbonair's GPC Series vapor phase carbon vessels are constructed of high quality steel and treated with corrosion resistant paint inside and out. The GPC Series is designed to provide the most efficient use of the granular activated carbon in the bed and to provide the lowest pressure drop possible in order to minimize back pressure on blowers and other equipment. Some vessels use slotted plastic pipe to distribute the air flow across the carbon bed. This tends to create excessive back pressure and can cause channeling of the carbon bed, causing the waste of some of the carbon in the bed and premature breakthrough. Carbonair GPC vessels employ a carbon bed supported on a screened grate above a plenum. The air stream enters the vessel through the plenum where it is evenly distributed across the entire cross section of the carbon bed, providing the lowest pressure drop and most efficient use of the carbon. Click here for specifications for our GPC Drum Series, GPC Round Series, and GPC Series of vapor phase carbon filters.

Vapor Phase Carbon Vessel Specifications; <1000 cfm

Model	GPC 3	GPC 3H	GPC 5R	GPC 7R	GPC 13R
Dimensions	24.5" OD x 36.5" H	24.5" OD x 36.5" H	30" OD x 5'7" H	3'2" OD x 7' H	4′ OD x 7′ H
Bed Area (Square Feet)	2.7	2.7	4.91	7.07	12.57<
Nominal Flow Rate (cfm)	100	270	400	500	800
Carbon Capacity (pounds)	200	180	500	1,000	1,500
Fittings	2" NPT	4" NPT	4-1/2" nozzle	6-5/8" nozzle	8-5/8" nozzle
Empty Weight (pounds)	65	65	550	790	1,090
Operating Weight (pounds)	265	265	1,050	1,790	2,590<

Vapor Phase Carbon Vessel Specifications; >1000 cfm

Model	GPC 20R	GPC 28R	GPC 50R	GPC 70	GPC 120

Dimensions	5′ OD x 7′ H	6′ OD x 7'3″ H	8′ OD x 7′ H	16' L x 5' W x 8'6" H	16'6" L x 8' W x 8'6" H
Bed Area (Square Feet)	19.63	28.30	50.27	69.80	120.00
Nominal Flow Rate (cfm)	2,000	2,500	4,000	7,000	12,000
Carbon Capacity (pounds)	2,000	3,000	5,000	10,000	13,500
Fittings	8-5/8" nozzle	8-5/8" nozzle	12-3/4" nozzle	12-3/4" nozzle	12-3/4" nozzle
Empty Weight (pounds)	1,425	1,795	3,970	5,850	9,250
Operating Weight (pounds)	3,425	4,795	8,970	15,850	22,750

Applications

We offer full service application support, from equipment sizing, carbon usage modeling, activated carbon analysis, on-site carbon change-out, filter exchange and spent carbon recycling. Typical applications include:

- VOC control from SVE systems and air strippers
- NESHAPS emissions control
- $\circ~$ Wastewater, product storage tank and similar vents
- Odor and H2S control

Standard Features

- Galvanized steel drum (GPC 3, 3H)
- Two 4" PVC connections (GPC 3, 3H)
- Baked enamel exterior (GPC 3, 3H)
- PVC internals (GPC 3, 3H)
- · Welded steel construction.
- Forkliftable tubes
- Epoxy coated interior & exterior
- One condensation drain
- · FRP grate with screen
- Nozzle connections

Optional Components

- · Blowers Humidity control
- · Influent/effluent ducting
- · Discharge stack
- · Additional sampling ports and valves
- Vapor monitors

More Products:

STAT Low Profile Air Strippers for Rent STAT Low Profile Air Strippers for Sale Liquid Phase Carbon Vessels for Rent Liquid Phase Carbon Vessels for Sale Liquid Phase Carbon and Specialty Media Vapor Phase Carbon Vessels for Rent Vapor Phase Carbon and Specialty Media

Request A Quote

Water Treatment Equipment & Systems | Rentals · Sales · Services

SOUTHEAST 800.241.7833 SOUTHWEST 800.893.5937 MID-ATLANTIC 800.204.0324 NORTHEAST 877.426.1912

www.carbonair.com | sales@carbonair.com

Customer: Water Technologies

Site: Tank Venting – (Application # 2)

MIDWEST

800.526.4999

Design Basis: Flow rate: 20 cfm (2 hrs/day)

60 cfm (surges 10 minutes/day)

Air temperature: 80 °F (assumed) Relative humidity: 100 % (assumed)

Contaminant	Influent Conc. (ppmv)	Influent Conc. (μg/L)
TPHg (as benzene)	0.5	1.6

Note: Conc. in μ g/L = (Conc. in ppmv)(MW/22.4)(273/T) where MW = Molecular weight (gm/mole)

T = Temperature (Kelvin)

Recommendations: Vapor Phase Carbon Adsorbers

One GPC3 drum with 200 lbs of granular activated carbon

- At 20 cfm, the carbon usage rate is predicted to be 0.179 lbs/24 hrs (0.00746 lbs/hr) (see the
 modeling output below).
- The GPC3 drum is predicted to last 28,816 hrs of continuous operation or 13,407 days of 2 hrs/day operation at 20 cfm.
- The effect of surges at 60 cfm for 10 min/day is believed to have a minimal effect on the carbon bed lfie.

NOTICE

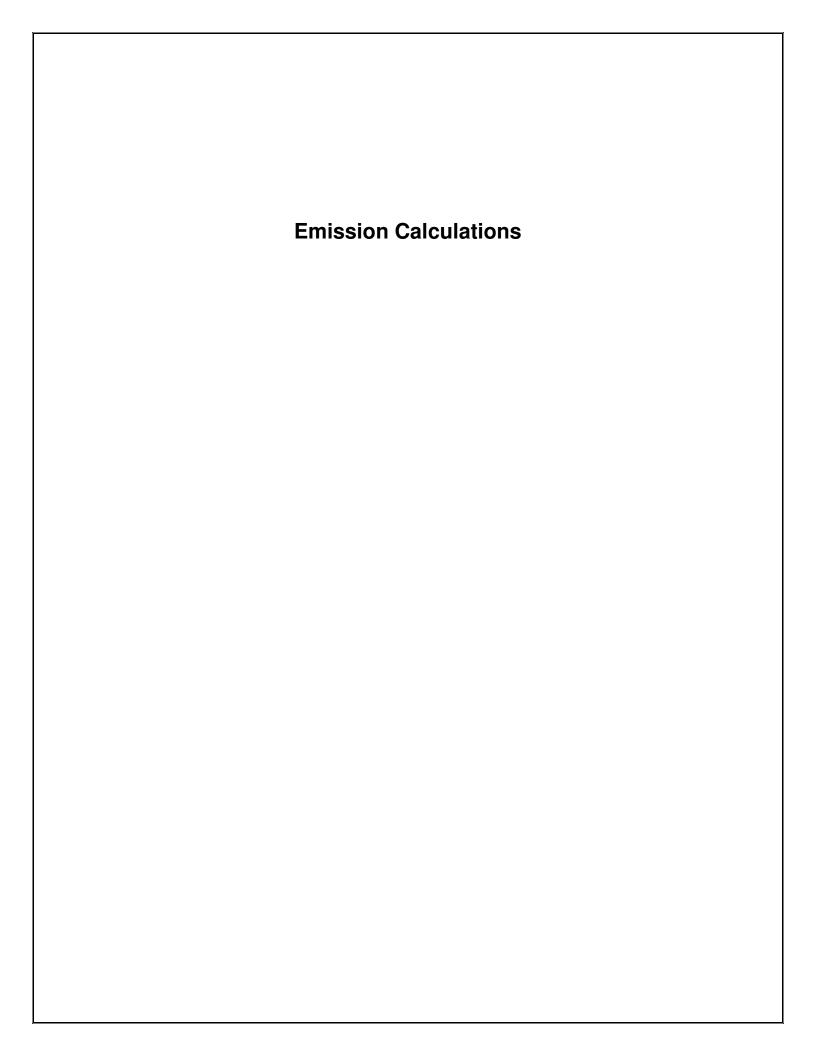
THIS DOCUMENT AND ITS CONTENTS ARE PROPRIETARY TO CARBONAIR ENVIRONMENTAL SYSTEMS, AND MAY NOT BE COPIED, DISTRIBUTED OR USED BY ANYONE, IN WHOLE OR IN PART, WITHOUT THE EXPRESS AUTHORIZATION OF CARBONAIR.

THE CONTENT OF THIS DOCUMENT HAS BEEN DEVELOPED BY CARBONAIR TO ADDRESS SPECIFIC FACTUAL INFORMATION. IT MAY BE BASED ON INFORMATION AND ASSUMPTIONS THAT ARE NOT DISCLOSED WITHIN THIS DOCUMENT, BUT REFLECT CARBONAIR'S KNOWLEDGE AND EXPERIENCE. THE INFORMATION IN THIS DOCUMENT SHOULD NOT BE USED OR RELIED UPON BY ANYONE WITHOUT THE COOPERATION OR ASSISTANCE OF CARBONAIR TO FULLY UNDERSTAND ITS INTENDED APPLICATION AND USE.

VAPOR-PHASE CARBON MODEL CALCULATIONS VERSION 1.2

CARBONAIR ENVIRONMENTAL SYSTEMS 1480 COUNTY ROAD C WEST

ROSEVILLE, MN 55113 PHONE: 800-526-4999 FAX: 651-202-2985


DESIGN COMPOUD:	ГРН	AS	GASOLINE
EXPECTED CONC. (UG/L):			1.600
MODEL CONC. (UG/L):			1.600
TEMPERATURE (F):			90.000
RELATIVE HUMIDITY (%):			50.000
OPERATING PRESS (MM MERCURY):			760.000
MOLECULAR WEIGHT (GM/MOLE):			78.000
VAPOR PRESS (MM MERCURY):			131.580
COMPOUND DENSITY (GM/ML):			0.880
SOLUBILITY LIMIT (PPM):			1780.000
K VALUE (LIQUID) (UMOLE/GM) (L/UMOLE) **1/1	N:		61.000
1/N VALUE (LIQUID) (DIMENSIONLESS):			0.470
K VALUE (VAPOR) (UMOLE/GM) (L/UMOLE) **1/N	:		1049.601
1/N VALUE (VAPOR) (DIMENSIONLESS):			0.423
CARBON ADSORPTIVE CAPACITY (%):			1.603
AIR FLOW RATE (CFM):			20.000
CARBON USAGE (LBS/DAY):			0.179

Note: The model concentration results from the impact of the other background compounds, which is determined by using a competitive adsorption model.

UG = microgram, UMOLE = micromole

DISCLAIMER: ACTUAL RESULTS MAY VARY SIGNIFICANTLY FROM THE MODEL. THE MODEL IS BASED ON THE ASSUMPTIONS THAT THE FLOW RATE AND INFLUENT CONCENTRATION ARE CONSTANT, AND ONLY THE CONTAMINANTS PROVIDED TO CARBONAIR ARE PRESENT IN THE AIR. VARYING OPERATING CONDITIONS CAN HAVE ADVERSE EFFECTS ON CARBON ADSORPTIVE CAPACITY. THE PREDICTED CARBON USAGE RATE IS NOT GUARANTEED.

Attachment N. Supporting Emissions Calculations	

Antero Treatment LLC - Antero Clearwater Facility Equipment Summary and Emissions

ACCESS ROADS	Equipment Summary and Emissions							
PROAD	Paved Facility Roads	AP-42 Section 13.2.1 Paved Roads, Final Section,	Paved roads to the facility and inside facility	Not modified				
	,	January 2011.	Paved roads to the facility and inside facility	INOT MODIFIED				
	RUCK OFF-LOADING STATION							
P-1051	Influent water unloading	AP-42 Section 5.2 Equation 1	Influent water is trucked in. Effluent oil is piped. Effluent water is piped and is treated.	Not modified				
TRUCK OIL LOADING								
OILLOAD	Oil Offloading	AP-42 Section 5.2 Equation 1	Oil from TK-1065 is trucked out of the facility	Not modified				
PRE-TREATMENT								
TK-1055A	Grit Clarifier Tank	WATER9 program. Material Balance Stream 102 as influent water.	Covered and controlled by thermal oxidizer. 75' D x 17' H - 560,000 gallons working volume	Not modified				
TK-1055B	Stage 1 Clarifier Tank	WATER9 program.	Covered and controlled by thermal oxidizer. 75' D x 17' H - 560,000 gallons working volume	Not modified				
TK-1060A/TK-1060B	Clarifier Pump Tank A and B	WATER9 program.	Covered and controlled by thermal oxidizer. 14' D x 20' H - 21,000 gallons working volume	Not modified				
TK-1070	Equalization Tank	WATER9 program.	Covered and controlled by thermal oxidizer. 56' D x 56' H - 900,000 gallons working volume	Not modified				
TK-1065	Oil Collection Tank	TANKS 4.0.9d. Assume all crude to be conservative.	Covered and controlled by thermal oxidizer. 12' D x 16' H - 12,000 gallons working volume	Not modified				
TK-2010	Solids Clarifier Tank	WATER9 program. Solids recycle added in.	Covered and controlled by thermal oxidizer. 66' D x 17' H 385,000 gallons working volume	Not modified				
TK-2015	Clarifier Effluent Tank	WATER9 program.	Covered and controlled by thermal oxidizer. 12' D x 14' H - 10,000 gallons working volume	Not modified				
TK-2040	Thermal Feed Tank	WATER9 program.	Covered and controlled by thermal oxidizer. 62' D x 62' H - 1,240,000 gallons working volume	Not modified				
TK-1120	Stage 1 Sludge Holding Tank	WATER9 program.	Covered and controlled by thermal oxidizer. 14' D x 24' H - 20,000 gallons working volume. Mixed Tank.	Not modified				
TK-1105A/TK-1105B	Stage 1 Reaction Tanks	WATER9 program. Solids recycle added in.	Covered and controlled by thermal oxidizer. 14' D x 28' H - 30,000 gallons working volume. Mixed Tank.	Not modified				
TK-1115	Stage 1 Clarifier Pump Tank	WATER9 program.	Covered and controlled by thermal oxidizer. 14' D x 15.5' H - 10,000 gallons working volume.	Not modified				
TK-1130	Stage 1 Filtrate Tank	WATER9 program.	Covered and controlled by carbon canister. 6' D x 8' H - 1,000 gallons working volume. Mixed Tank.	Modified to be removed from thermal oxidizer and carbon canister added				
TK-2020	Stage 2 Sludge Holding Tank	WATER9 program.	Covered and controlled by thermal oxidizer. 26' D x 26' H - 90,000 gallons working volume. Mixed Tank	Not modified				
	Stage 1 Sludge Dewatering	No emissions from the enclosed dewatering system. Emissions are calculated upon disposal however.		Not modified				
	Stage 2 Sludge Dewatering	No emissions from the enclosed dewatering system. Emissions are calculated upon disposal however.		Not modified				
DISP1	Dewatered Stage 2 Sludge Disposal	Mass Balance of Stream 126 and assumed short term storage. 10% volatilize based on EPA-453/R-94-080A Section 9		Not modified				
DISP3	Dewatered Stage 1 Sludge Disposal	Mass Balance of Stream 118 and assumed short term storage. 10% volatilize based on EPA-453/R-94-080A Section 9		Not modified				

Antero Treatment LLC - Antero Clearwater Facility Equipment Summary and Emissions

THERMAL PROCESS	SVSTEM	qa.p	mmary and Emissions	
		No emissions. Steam from the boiler is used as a heat		
	Thermal System	source. Also contains heat exchangers.		
TK-2320	CIP Tank	Flat cover tank. No emissions. Contains mild acid solution for descaling (dilute hydrochloric or citric)	1,950 gallons	Not modified
E-2076	Deaerator Vent Condenser	Mass Balance Stream 225	Vents to thermal oxidizer	Not modified
TK-2085	Steam Condensate Flash Tank	Incoming and outgoing streams show only water with no organics. No emissions.	4,800 gallons - non-pressurized bullet tank	Not modified
TK-2180	Boiler Feedwater Tank	Only water with no organics. No emissions.	17.5' D x 17.5' H - 54,200 gallons	Not modified
TK-2149	Brine Maker Tank	Based on surrounding material streams only water without organics. No emissions		Not modified
TK-2120	Process Distillate Level Tank	Influent - Material Balance Streams 226, 251, 261, 271. TANKS 4.0.9d	5,575 gallons - non-pressurized bullet tank	Not modified
	Barometric Condenser Hot Well	Due to change in process, VOCs are vented prior to this tank or condensed out and vented downstream in TK-2140. No Emissions	Size is 7,580 working gallon or 18,000 gallons design and vented to atmosphere. Was 100,000 gallon tank working volume and vented to thermal oxidizer	Not modified
TK-2160	4A Disposal Centrate Tank	Updated material balance shows no VOC vapor emissions from this tank.	Covered - 7,560 gallons working volume - 10' D x 13' 9" H Mixed tank	Not modified
DISP2	Salt Disposal	Mass Balance Stream 269 and 283. Assumed 100% of GROs volatilize.	Comprised of streams 4A and 4B	Not modified
TK-2140	Recovered Water Tank	Material Balance Stream 263	230,000 gallons - Vents to thermal oxidizer	Not modified
TK-2315	Boiler Deaerator Tank	Incoming stream shows only water and no organics. No emissions -pressurized.	Bullet type tank - 15 psi - 9,942 gallons	Not modified
TK-2450	Boiler Blowdown Flash Tank	Based on influent stream to tank, only water without organics. No emissions	1,000 gallons - 7' D x 8.5' H	Not modified
TK-2460	4B Disposal Centrate Tank	Updated material balance shows no VOC vapor emissions from this tank.	7,560 gallons working volume - 10' D x 13' 9" H	Not modified
CT-2335	Cooling Tower Basin	AP-42 Chapter 13.4 and manufacturer data	Three fans	Not modified
H-2185A/B	Boiler A/B	AP-42 Chapter 1.4 and manufacturer spec sheet		Not modified
	Boiler Chemical Treatment A/B	DeMinimis Source #9 from 45CSR13 Table 45-13B - Boiler water treatment operations		Not modified
POST TREATMENT S	YSTEM			
TK-2500	Post Treatment Tank 1	Material Balance Streams 402, 405. Material Balance. See notes on emission tab	Open top -726,500 gal - 64' D x 32'	Not modified
TK-2550 and TK-2555	Post Treatment Tank 2 and 3	Material Balance Stream 403. See notes on emission tab	open top - 726,500 gal - 64' D x 32'. Aerated tank open top - 363,300 gal - 48' D x 30' Aerated tank	Not modified
CF-2510	Post Treatment Clarifier	Mass Balance Streams 406. Open top tanks and mixed. See notes on emission tab		Not modified
TK-2515	Post Treatment Effulent Tank	Mass Balance Stream 407. WATER9	Closed top - 10,000 gal - 12' D x 14'	Not modified
TK-2520	Post Treatment Sludge Tank	Mass Balance Stream 408 - Mixed tank. WATER9	Open top - 750 gal - 6' D x 6'	Not modified
TK-2545	Product Water Storage Tank	DeMinimis Source #15 from 45CSR13 Table 45-13B - demineralized water tank	Covered 22' D x 24' H - 60,000 gallons	Not modified

Antero Treatment LLC - Antero Clearwater Facility Equipment Summary and Emissions

CHEMICAL FEED		qu-p	illinary and Ellissions	
TK-2800	Breakpoint Chlorination Frac Tank	New Tank - Mobile unit. No emissions of VOC or ammonia.	17,850 gallon tank. 43' L x 8' W x 11'9" H	Not modified
TK-4036	Sodium Sulfate Silo	AP-42 8.12 for Sodium Carbonate	90 ton - 2,200 ft^3	Not modified
	Sodium Sulfate Bin Discharger and Feeder	AP-42 8.12 for Sodium Carbonate	200-2000 lbs/hr	Not modified
TK-4039	Sodium Sulfate Day Tank	Inorganic material and wet process - Insignificant emissions	2,200 gallons - was 1,500 gallons in previous version	Not modified
TK-4046A/TK-4046B	Lime Silo A/B	AP-42 11.17	160 ton - 9,000 ft^3	Not modified
U-4047A/U-4047B	Lime Bin Discharger A/B	AP-42 11.17	1,500 - 8,000 lb/hr	Not modified
TK-4049A/TK-4049B	Lime Slurry Tank A/B	Inorganic material and wet process - no emissions	5,000 gallons each - was 15,000 gallons in previous version	Not modified
TK-4011	Sodium Bicarbonate Silo	AP-42 8.12 for Sodium Carbonate		Not modified
	Sodium Bicarbonate Bin Discharger and Feeder	AP-42 8.12 for Sodium Carbonate		Not modified
TK-4017	Sodium Bicarbonate Day Tank	Mixed Tank - Inorganic material and wet process - no emissions	950 gallons - was 1,000 gallons in previous version	Not modified
TK-4170	Post Treatment Polymer System Aging Tank	Insignificant emissions - Polymer contains no volatiles or other components of concern.	Closed top - 75 gallons	Not modified
U-4075	CO2 Feeder System	CO2 is pressurized and dissolved in water. No emissions from the feeder system due to pressurizing.		Not modified
TK-4000	Ferric Chloride Storage Tank	Inorganic material and wet process - Insignificant emissions	Closed top - 6,000 gallons	Not modified
TK-4020	Caustic Bulk Storage Tank	Sodium hydroxide in dilute solution - Insignificant emissions	Closed top - 7,000 gallons	Not modified
TK-4115	Methanol Bulk Storage Tank	TANKS 4.0.9	Closed top - 8,000 gallons	Not modified
TK-4025	Hydrogen Peroxide Tank	Insignificant emissions- inorganic material	6,000 gallons - was 320 gallons in previous version	Not modified
TK-4080	Sodium Bisulfite Tank	Insignificant emissions- inorganic material	5,400 gallons - was 320 gallons in previous version	Not modified
TK-4054/4057/4120 /4155	Polymer Totes	Insignificant emissions - Polymer contains no volatiles or other components of concern.	320 gallons	Not modified
TK-4015	Antifoam Tote	Insignificant emissions - Antifoam contains no volatiles or other components of concern.	320 gallons	Not modified
TK-4125	Phosphoric Acid Tote	Insignificant emissions - small tank, inogranic, stable liquid, low vapor pressure	320 gallons	Not modified
TK-4150	Micronutrient Tote	Insignificant Emissions - Micro Stimulant blend of micronutrients, trace minerals, amio acids and vitamins	320 gallons	Not modified
TK-4065	Urea Tote	Insignificant Emissions - small tank, insignificant volatility, 50/50 mix water and urea	320 gallons	Not modified
TK-4185	Sodium Hypochlorite Tote	Insignificant emissions - small tank, inorganic material, < 15% solution	320 gallons	Not modified
TK-4190	Hydrex 2252 Tote	Insignificant emissions - small tank, no constituents of concern	320 gallons	Not modified
TK-4200	Calcium Chloride Bulk Tank	Inorganic material and wet process - Insignificant emissions	6,000 gallons	Not modified

Antero Treatment LLC - Antero Clearwater Facility Equipment Summary and Emissions

	Equipment Summary and Emissions					
TK-4210	Hydrex 2233 Totes	Insignificant emissions - small tank, no constituents of concern	320 gallons	Not modified		
TK-4220	Hydrex 1425 Totes	Insignificant emissions - small tank, no constituents of concern	320 gallons	Not modified		
TK-4230	Hydrex 1317 Totes	Insignificant emissions - small tank, no constituents of concern	320 gallons	Not modified		
TK-4240	Hydrex 1565 Totes	Insignificant emissions - small tank, no constituents of concern	320 gallons	Not modified		
TK-4250	Hydrex 1605 Totes	Insignificant emissions - small tank, no constituents of concern	320 gallons	Not modified		
TK-4260	Demulsifier Tote	Insignificant emissions - small tank, no constituents of concern	320 gallons	Not modified		
TK-4270	Crystallizer Antifoam Tote	Insignificant emissions - small tank, no constituents of concern	320 gallons	Not modified		
TK-4301	Calcium Carbonate Silo	AP-42 8.12 for Sodium Carbonate	36 ton - 1,200 ft^3	Not modified		
TK-4309	Calcium Carbonate Hopper	AP-42 8.12 for Sodium Carbonate	25 ft^3	Not modified		
TK-4310	Stage 1 Clarifier Polymer Tote	Insignificant emissions - small tank, no constituents of concern	320 gallons	Not modified		
TK-4255	Antiscalant Tote	Insignificant emissions - small tank, no constituents of concern	320 gallons	Not modified		
TK-4500	Breakpoint Chlorination Sodium Hypochlorite Tank	Insignificant emissions- inorganic material	4,000 gallons	Not modified		
TK-6001A	Calcium Chloride Storage Tank A	Stores brine byproduct - no emissions	200 barrels - 12' D x 10' H	New Tank		
TK-6001B	Calcium Chloride Storage Tank B	Stores brine byproduct - no emissions	200 barrels - 12' D x 10' H	New Tank		
TK-6001C	Calcium Chloride Storage Tank C	Stores brine byproduct - no emissions	200 barrels - 12' D x 10' H	New Tank		
GENERAL						
	Fugitive Component Leaks	DeMinimis emissions. Most processes are in liquid phase or have <1% VOCs. Once process is in vapor phase, volatiles and oils have been removed or get adsorbed by the solids or otherwise consumed in the		Not modified		
U-1080	Thermal Oxidizer	11 MMBtu/hr	Controls gas from waste gas header	Not modified		
GEN-1	Emergency Generator	EPA Tier 2 emission factors and AP-42 Section 3.3		Not modified		
U-1090	Emergency Flare	Meant to handle gas blanket bleed system while thermal oxidizer is down for maintenance		Not modified		
ENG-2	Fire Water Pump Engine	EPA certified. Will meet 40 CFR Part 60, Subpart IIII emission limits. AP-42 for HAPs		Not modified		
VENT1	Fuel Skid Pig Venting	6" receiver expected to operate at 1100 psi with 1025 cubic foot volume at standard conditions		Not modified		
TK-SLOP	Fuel Skid Slop Tank	No liquids stored in tank - just dry gas running through. No emissions as it is a closed system.	500 gallons	Not modified		
HTFUEL1	Fuel Skid Heater 1	2.4 MMBtu/hr natural gas heater - AP-42 Section 1.4 Emission Factors		Not modified		
HTFUEL2	Fuel Skid Heater 2	2.4 MMBtu/hr natural gas heater - AP-42 Section 1.4 Emission Factors		Not modified		
TK-GB	Gunbarrel Tank	Pressurized. Flash gas used as fuel in closed loop. Liquids are piped out. No Emissions.		New Tank		
LD-GB	Pressurized Truck Loading	Loading from gunbarrel tank at approximately 40 psig		New Source		
	Fuel Skid	Will also contain inlet separator, measurement skid, fuel gas scrubber, and pressure vessel - no emissions as closed loop		Not modified		

Company:	Antero Treatment LLC
Facility Name:	Antero Clearwater Facility
Facility Location:	Doddridge County, WV

UNCONTROLLED POTENTIAL EMISSION SUMMARY

Course	NO	Эx	С	0	VO	OC	S	O ₂	PM	I-10	PM	-2.5	H.A	\Ps	CO ₂ e
Source	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	tpy
<u>Engines</u>															
Emergency Generator	25.78	6.44	16.83	4.21	2.69	0.67	0.03	0.008	0.96	0.240	0.96	0.240	0.030	0.0075	900
Fire Pump Engine	0.85	0.21	1.11	0.28	0.045	0.011	0.27	0.069	0.066	0.016	0.066	0.016	0.0035	0.00087	38.7
<u>Boilers</u>															
Boiler A and Boiler B	20.05	78.42	20.34	79.57	2.20	8.61	0.32	1.27	5.51	21.54	5.51	21.54	1.02	3.97	252,786
<u>Thermal Oxidizer</u>															
Oxidizer, Pilot and Waste Gas- controlled Process Tanks															
Emergency Flare															
Carbon Canister															
Process Tank with Canister															
Truck Unloading															
Truck Unloading Influent Water					59.22	54.04							0.40	0.36	47,820
Truck Loading of Oil					16.70	8.72							0.28	0.15	1.80
Pressurized Loading at Fuel Skid					1.92	1.75									0.24
Cooling Tower															
Cooling Tower									0.94	4.12	0.94	4.12			
<u>Tanks</u>															
Process Tanks					222.62	787.11							0.49	1.39	758
Storage Tanks					0.067	0.25							0.067	0.25	
<u>Heaters</u>															
Fuel Skid Heaters	0.47	2.06	0.40	1.73	0.026	0.11	0.0028	0.012	0.036	0.16	0.036	0.16	0.0089	0.039	1,234
<u>Fugitive Emissions</u>															
Sludge and Salt Disposal					4.66	20.39							0.00077	0.0034	0.032
Bulk Transfer Points									2.65	5.64	0.75	1.59			
Fugitive Dust Emissions									1.41	5.55	0.35	1.36			
Fuel Skid Pig Venting					7.53	0.20							0.18	0.0047	18
Facility PTE =	47.15	87.14	38.68	85.79	317.67	881.86	0.63	1.36	11.57	37.26	8.60	29.03	2.47	6.18	303,556

Company:	Antero Treatment LLC
Facility Name:	Antero Clearwater Facility
Facility Location:	Doddridge County, WV

CONTROLLED POTENTIAL EMISSION SUMMARY

	N	Ох		0		OC .	L LIVIIO	0,		l-10	DM	-2.5	ш/	\Ps	CO₂e
Source			_	1											_
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	tpy
<u>Engines</u>															
Emergency Generator	25.78	6.44	16.83	4.21	2.69	0.67	0.03	0.008	0.96	0.240	0.96	0.240	0.030	0.0075	900
Fire Pump Engine	0.85	0.21	1.11	0.28	0.045	0.011	0.27	0.069	0.066	0.016	0.066	0.016	0.0035	0.00087	38.7
<u>Boilers</u>															
Boiler A and Boiler B	20.05	78.42	20.34	79.57	2.20	8.61	0.32	1.27	5.51	21.54	5.51	21.54	1.02	3.97	252,786
<u>Thermal Oxidizer</u>															
Oxidizer, Pilot and Waste Gas- controlled Process Tanks	1.08	4.74	0.93	4.08	4.40	15.55	1.06E-05	4.64E-05	1.34E-04	5.87E-04	1.34E-04	5.87E-04	9.46E-03	2.68E-02	5,939
Emergency Flare	0.16	0.057	0.69	0.141	1.25	0.21	4.38E-05	1.92E-04	5.54E-04	2.43E-03	5.54E-04	2.43E-03	1.37E-04	6.01E-04	82
Carbon Canister															
Process Tank with Canister					0.0086	0.033							3.68E-05	1.43E-04	0.36
Truck Unloading															
Truck Unloading Influent Water					18.59	16.86							0.12	0.11	15,015
Truck Loading of Oil					16.70	8.72							0.28	0.15	1.80
Pressurized Loading at Fuel Skid					1.92	1.75									0.24
Cooling Tower															
Cooling Tower									0.94	4.12	0.94	4.12			
<u>Tanks</u>															
Process Tanks					1.97	7.90							0.013	0.052	483
Storage Tanks					0.067	0.25							0.067	0.25	
<u>Heaters</u>															
Fuel Skid Heaters	0.47	2.06	0.40	1.73	0.026	0.11	0.0028	0.012	0.036	0.16	0.036	0.16	0.0089	0.039	1234
Fugitive Emissions															
Sludge and Salt Disposal					4.66	20.39							0.00077	0.0034	3.18E-02
Bulk Transfer Points									2.65	5.64	0.75	1.59			
Fugitive Dust Emissions									1.41	5.55	0.35	1.36			
Fuel Skid Pig Venting					7.53	0.20							0.18	0.0047	18
Facility PTE =	48.39	91.94	40.30	90.01	62.07	81.27	0.63	1.36	11.57	37.27	8.61	29.03	1.73	4.61	276,498

Company:	Antero Treatment LLC
Facility Name:	Antero Clearwater Facility
Facility Location:	Doddridge County, WV

SPECIATED HAPS UNCONTROLLED POTENTIAL EMISSION SUMMARY

0	BENZ	ENE	TOLU	IENE	ETHYLB	ENZENE	XYLI	NES	FORMAL	.DEHYDE	n-HE	XANE	METH	ANOL	AMM	ONIA*
Source	lb/hr	tpy	lb/hr	tpy												
<u>Engines</u>																
Emergency Generator	1.70E-02	4.26E-03	6.16E-03	1.54E-03			4.23E-03	1.06E-03	1.73E-03	4.33E-04						
Fire Pump Engine	8.82E-04	2.20E-04	3.86E-04	9.66E-05			2.69E-04	6.73E-05	1.12E-03	2.79E-04						
<u>Boilers</u>																
Boiler A and Boiler B	1.13E-03	4.43E-03	1.84E-03	7.18E-03					4.05E-02	1.58E-01	9.72E-01	3.80E+00				
Thermal Oxidizer																
Oxidizer, Pilot and Waste Gas-controlled																
Process Tanks																
Emergency Flare																
<u>Carbon Canister</u>																
Process Tank with Canister																
Truck Unloading																
Truck Unloading Influent Water	2.89E-01	2.64E-01	2.25E-02	2.05E-02	1.48E-02	1.35E-02	7.01E-02	6.40E-02			1.70E-04	1.55E-04				
Truck Loading of Oil	7.05E-03	3.68E-03	1.16E-02	6.04E-03	4.67E-03	2.44E-03	1.04E-02	5.45E-03			2.48E-01	1.29E-01				
Pressurized Loading at Fuel Skid																
<u>Cooling Tower</u>																
Cooling Tower																
<u>Tanks</u>																
Process Tanks	2.24E-01	5.86E-01	2.15E-01	6.40E-01	7.31E-03	2.35E-02	3.84E-02	1.36E-01							59.65	251.90
Storage Tanks													6.67E-02	2.46E-01	0.29	1.18
<u>Heaters</u>																
Fuel Skid Heaters									3.53E-04	1.55E-03						
Fugitive Emissions																
Sludge and Wetcake Disposal	3.94E-04	1.73E-03	2.27E-04	9.96E-04	1.10E-05	4.83E-05	1.38E-04	6.06E-04							0.071	0.31
Bulk Transfer Points																
Fugitive Dust Emissions																
Fuel Skid Pig Venting	5.37E-03	1.40E-04	1.51E-02	3.92E-04	3.22E-03	8.37E-05	2.79E-03	7.25E-05			1.53E-01	3.99E-03				
Facility PTE =	0.55	0.86	0.27	0.68	0.030	0.040	0.13	0.21	0.044	0.16	1.37	3.93	0.067	0.25	60.0	253.4

^{*}Ammonia is not a HAP but is included in the speciated table

Company:	Antero Treatment LLC
Facility Name:	Antero Clearwater Facility
Facility Location:	Doddridge County, WV

SPECIATED HAPS CONTROLLED POTENTIAL EMISSION SUMMARY

0	BENZ	'ENE	TOLU	IENE	ETHYLB	ENZENE	XYLI	ENES	FORMAL	DEHYDE	n-HE	XANE	METH	IANOL	AMMO	ONIA*
Source	lb/hr	tpy														
<u>Engines</u>																
Emergency Generator	1.70E-02	4.26E-03	6.16E-03	1.54E-03			4.23E-03	1.06E-03	1.73E-03	4.33E-04						
Fire Pump Engine	8.82E-04	2.20E-04	3.86E-04	9.66E-05			2.69E-04	6.73E-05	1.12E-03	2.79E-04						
<u>Boilers</u>																
Boiler A and Boiler B	1.13E-03	4.43E-03	1.84E-03	7.18E-03					4.05E-02	1.58E-01	9.72E-01	3.80E+00				
Thermal Oxidizer																
Oxidizer, Pilot and Waste Gas-controlled Process Tanks	4.38E-03	1.13E-02	4.20E-03	1.24E-02	1.42E-04	4.52E-04	7.06E-04	2.48E-03	1.32E-06	5.80E-06	3.18E-05	1.39E-04			1.15	4.88
Emergency Flare	1.53E-07	6.71E-07	2.48E-07	1.09E-06					5.47E-06	2.40E-05	1.31E-04	5.75E-04				
Carbon Canister																
Process Tank with Canister	3.68E-05	1.43E-04	1.90E-25	4.59E-25	1.09E-25	4.59E-25	1.19E-26	5.17E-26							4.42E-02	1.89E-01
Truck Unloading																
Truck Unloading Influent Water	9.08E-02	8.24E-02	7.06E-03	6.40E-03	4.65E-03	4.22E-03	2.20E-02	2.00E-02			5.34E-05	4.85E-05				
Truck Loading of Oil	7.05E-03	3.68E-03	1.16E-02	6.04E-03	4.67E-03	2.44E-03	1.04E-02	5.45E-03			2.48E-01	1.29E-01				
Pressurized Loading at Fuel Skid																
Cooling Tower																ı
Cooling Tower																
<u>Tanks</u>																
Process Tanks	3.29E-03	1.32E-02	5.20E-03	2.08E-02	2.24E-04	8.98E-04	3.07E-03	1.23E-02							1.97	7.88
Storage Tanks													6.67E-02	2.46E-01	0.29	1.18
<u>Heaters</u>																ı
Fuel Skid Heaters									3.53E-04	1.55E-03						
<u>Fugitive Emissions</u>																
Sludge and Wetcake Disposal	3.94E-04	1.73E-03	2.27E-04	9.96E-04	1.10E-05	4.83E-05	1.38E-04	6.06E-04							0.071	0.31
Bulk Transfer Points																
Fugitive Dust Emissions																
Fuel Skid Pig Venting	5.37E-03	1.40E-04	1.51E-02	3.92E-04	3.22E-03	8.37E-05	2.79E-03	7.25E-05			1.53E-01	3.99E-03				
Facility PTE =	0.13	0.12	0.052	0.056	0.013	0.0081	0.044	0.042	0.044	0.16	1.37	3.93	0.067	0.25	3.53	14.43

^{*}Ammonia is not a HAP but is included in the speciated table

Emergency Generator Emission Calculations

Company:	Antero Treatment LLC
Facility Name:	Antero Clearwater Facility
Facility Location:	Doddridge County, WV
Source Description:	Emergency Generator
Emission Unit ID:	GEN-1

Source Information - Per Engine

Engine Make/Model	Mitsubishi S	16R-Y2PTAW2-1
Generator Make/Model	Kohler 2	000REOZMD
Generator Rating	2,000	kWe
Horsepower at Rated kW	2,923	bhp
Fuel Consumption	160.1	gallons/hr
Heating Value ¹	21.94	MMBtu/hr
Density of Fuel	7.10	lb/gal
Fuel Heating Value	19,300	Btu/lb
Operating Hours ²	500	hrs/yr

Notes:

- 1) Calculated
- 2) Generator will be used for emergency purposes only following the hourly limitation in NSPS Quad I for testing and maintenance of 100 hours/year. Other hours are for emergency use.
- 3) Generator will only be used for safe shut down of the facility during a power outage and not for normal operation.

Potential Emissions per Generator

Pollutant	Emissi	on Factor ⁴	Est	imated Emiss	ions	Source of Emissions Factors
Pollutarit	(lb/MMBtu)	(g/bhp-hr)	(lb/hr)	(lb/yr)	(tpy)	Source of Emissions Factors
NOx		4.0	25.78		6.44	EPA Certification data
CO		2.6	16.83		4.21	EPA Tier 2 Nonroad Diesel Engine Emission Factor per Quad I
VOC		0.42	2.69		0.67	EPA Certification data for Total Hydrocarbons
SO ₂	1.52E-03		0.033		0.0083	AP-42, Chapter 3.4, Table 3.4-1; 15 ppm sulfur
PM ₁₀		0.15	0.96		0.24	EPA Tier 2 Nonroad Diesel Engine Emission Factor per Quad I
PM _{2.5}		0.15	0.96		0.24	EPA Tier 2 Nonroad Diesel Engine Emission Factor per Quad I
Acetaldehyde	2.52E-05		5.53E-04	0.276	1.38E-04	AP-42, Chapter 3.4, Table 3.4-3
Acrolein	7.88E-06		1.73E-04	0.086	4.32E-05	AP-42, Chapter 3.4, Table 3.4-3
Benzene	7.76E-04		1.70E-02	8.51	4.26E-03	AP-42, Chapter 3.4, Table 3.4-3
Formaldehyde	7.89E-05		1.73E-03	0.87	4.33E-04	AP-42, Chapter 3.4, Table 3.4-3
Toluene	2.81E-04		6.16E-03	3.08	1.54E-03	AP-42, Chapter 3.4, Table 3.4-3
Xylenes	1.93E-04		4.23E-03	2.12	1.06E-03	AP-42, Chapter 3.4, Table 3.4-3
Total HAPS			0.030	14.94	0.0075	
Dellustenst	Emissi	on Factor	Est	imated Emiss	ions	Course of Fasinging Fasture
Pollutant	(kg/l	MMBtu)	(lb/hr)		(tpy)	Source of Emissions Factors
CO ₂	7:	3.96	3,586		896.5	40 CFR Part 98, Subpart C, Table C-1
CH₄	0.	.003	0.15		0.0364	40 CFR Part 98, Subpart C, Table C-2
N ₂ O	0.0	0006	0.029		0.0073	40 CFR Part 98, Subpart C, Table C-2
CO₂e			3,598		899.5	40 CFR Part 98, Subpart A, Table A-1

⁴⁾ CO and PM emissions factors are per the 40 CFR Part 60 Subpart IIII limits for an emergency engine of this size. The Tested Certification limits included on the spec sheet are within these limits.

The NOx and VOC emission factors are the tested certification limits as the total of NOx and HC fall within the 40 CFR Part 60 Subpart IIII limits.

Fire Water Pump Engine

Company:	Antero Treatment LLC
Facility Name:	Antero Clearwater Facility
Facility Location:	Doddridge County, WV
Source Description:	Fire Water Pump Engine
Emission Unit ID:	ENG-2

Source Information - Per Engine

Engine Make/Model	John Deere 4045HFC28E					
Fire Water Pump Model	Clarke JU	J4H-UFADR0				
Displacement	4.5	Liter				
Horsepower	136	bhp				
Fuel Consumption	6.9	gallons/hr				
Heating Value ¹	0.94	MMBtu/hr				
Density of Fuel	7.10	lb/gal				
Fuel Heating Value	19,300	Btu/lb				
Operating Hours ²	500	hrs/yr				

Notes:

- 1) Calculated
- 2) Fire pump engine will be used for emergency purposes only with 500 hours/year allotted for testing and maintenance.
- 3) Engine pump will be used to provide fire water from the fire loop to the cooling tower only in case of an emergency.

Potential Emissions per Engine

Pollutant	Emission Factor		Estimated Emissions		ions	Source of Emissions Factors	
Pollutarit	(lb/MMBtu)	(g/bhp-hr)	(lb/hr)	(lb/yr)	(tpy)	Source of Emissions Factors	
NOx		2.85	0.85		0.21	40CFR Part 60 Subpart IIII, Table 4 minus VOC emission factor	
CO		3.70	1.11		0.28	40CFR Part 60 Subpart IIII, Table 4	
VOC		0.15	0.045		0.011	EPA Certificate Data	
SO ₂	2.90E-01		0.27		0.069	AP-42, Chapter 3.3-1	
PM ₁₀		0.22	0.066		0.016	40CFR Part 60 Subpart IIII, Table 4	
PM _{2.5}		0.22	0.066		0.016	40CFR Part 60 Subpart IIII, Table 4	
Acetaldehyde	7.67E-04		7.25E-04	0.36	1.81E-04	AP-42, Chapter 3.3-2	
Acrolein	9.25E-05		8.74E-05	0.044	2.19E-05	AP-42, Chapter 3.3-2	
Benzene	9.33E-04		8.82E-04	0.44	2.20E-04	AP-42, Chapter 3.3-2	
Formaldehyde	1.18E-03		1.12E-03	0.56	2.79E-04	AP-42, Chapter 3.3-2	
Toluene	4.09E-04		3.86E-04	0.19	9.66E-05	AP-42, Chapter 3.3-2	
Xylenes	2.85E-04		2.69E-04	0.13	6.73E-05	AP-42, Chapter 3.3-2	
Total HAPS			0.0035	1.73	0.00087		
B. II	Emissi	on Factor	Estimated Emissions		ions	0	
Pollutant	(kg/l	MMBtu)	(lb/hr)		(tpy)	Source of Emissions Factors	
CO ₂	73	3.96	154.4		38.61	40 CFR Part 98, Subpart C, Table C-1	
CH₄	0.	.003	0.0063		0.0016	40 CFR Part 98, Subpart C, Table C-2	
N ₂ O	0.0	0006	0.0013		0.00031	40 CFR Part 98, Subpart C, Table C-2	
CO ₂ e			155.0		38.75	40 CFR Part 98, Subpart A, Table A-1	

Natural Gas Fired Boiler Emissions

Company:	Antero Treatment LLC
Facility Name:	Antero Clearwater Facility
Location:	Doddridge County, WV
Source Description:	Steam Boilers A and B
Emission Unit IDs:	H-2185A and H-2185B

Source Information

Source Description:	Boilers		
Hours of Operation	8,760	hr/yr	
Design Heat Rate per Boiler	275.3	MMBtu/hr	
Fuel Use Factor	0.89		
Number of Boilers	2		
Fuel Heat Value	1,200	Btu/scf	
Fuel Use for both Boilers	3,589.2	MMscf/yr	
Fuel Use for both Boilers	0.46	MMscf/hr	

Fuel Heat Value based on natural gas in the area of the Facility

Hourly fuel use is based on the maximum fuel for full operation of both boilers. Annual fuel use is based on an 89% fuel use limit for both boilers in total.

Potential Emissions for both Boilers 1

Potential Emissions for bo	Emission Factor	Emissions	Emissions	Emission Factor
Pollutant	(Ib/MMBtu)	(lb/hr)	(tpy)	Source
NO _x	0.036	20.05	78.42	Manufacturer Spec Sheet (converted from ppmw)
CO	0.037	20.34	79.57	Manufacturer Spec Sheet (converted from ppmw)
VOC	0.004	2.20	8.61	Manufacturer Spec Sheet
PM ₁₀	0.010	5.51	21.54	Manufacturer Spec Sheet
PM _{2.5}	0.010	5.51	21.54	Manufacturer Spec Sheet
Pollutant	Emission Factor	Emissions	Emissions	Emission Factor
	(lb/MMscf)	(lb/hr)	(tpy)	Source
SO ₂	0.6	0.32	1.27	AP-42 Ch. 1.4 Table 1.4-2
Lead	0.0005	0.00027	0.0011	AP-42 Ch. 1.4 Table 1.4-2
Pollutant	Emission Factor	Emissions	Emissions	Emission Factor
Poliutarit	(lb/MMscf)	(lb/hr)	(tpy)	Source
Benzene	2.10E-03	0.0011	0.0044	AP-42 Ch. 1.4 Table 1.4-3
Dichlorobenzene	1.20E-03	0.00065	0.0025	AP-42 Ch. 1.4 Table 1.4-3
Formaldehyde	7.50E-02	0.040	0.16	AP-42 Ch. 1.4 Table 1.4-3
n-Hexane	1.80E+00	0.97	3.80	AP-42 Ch. 1.4 Table 1.4-3
Naphthalene	6.10E-04	0.00033	0.0013	AP-42 Ch. 1.4 Table 1.4-3
Toluene	3.40E-03	0.0018	0.0072	AP-42 Ch. 1.4 Table 1.4-3
Other HAPs	8.82E-05	0.000048	0.00019	AP-42 Ch. 1.4 Table 1.4-3-sum of minor HAPs
Total HAPs	1.88E+00	1.02	3.97	AP-42 Ch. 1.4 Table 1.4-3
Pollutant	Emission Factor	Emissions	Emissions	Emission Factor
1 Ollutarit	(kg/MMBtu)	(lb/hr)	(tpy)	Source
Carbon Dioxide	53.06	64,565	252,525	40 CFR Part 98, Subpart C, Table C-1
Methane	0.001	1.22	4.76	40 CFR Part 98, Subpart C, Table C-2
Nitrous Oxide	0.0001	0.12	0.48	40 CFR Part 98, Subpart C, Table C-2
CO₂e		64,631	252,786	40 CFR Part 98, Subpart A, Table A-1

Notes

^{1.} In actual operations, one boiler may operate more than the other. Fuel usage is total for both boilers and may or may not be not be used equally between both boilers, however total boiler emissions and fuel usage will not be exceeded regardless of how the fuel is used in actual operations.

Thermal Oxidizer Combustion Emissions

Company:	Antero Treatment LLC
Facility Name:	Antero Clearwater Facility
Facility Location:	Doddridge County, WV
Source Description:	Thermal Oxidizer for Waste Gas Header
Emission Unit ID:	U-1080

Combustion Emissions

Thermal Oxidizer Rating¹: 11.00 MMBtu/hr
Gas Heating Value²: 1,200 Btu/scf
Hours of Operation: 8,760 hr/yr

Pollutant	Emission Factor (lb/MMBtu)	Emissions ³ (lbs/hr)	Emissions ³ (tons/yr)
Particulate Matter (PM/PM ₁₀ /PM _{2.5})	N/A - Smokeless Design		n
Sulfur Dioxide (SO ₂)	N/A - Combusted Gas has no Sulfur		
Nitrogen Oxides (NO _x)		1.08	4.73
Carbon Monoxide (CO)		0.93	4.07

¹ Maximum heat input is used to calculate emissions, so as to be conservative.

NOx Emissions from Combusting Ammonia

The thermal oxidizer is designed such that the vented waste gas goes through multiple stages of combustion allowing streams heavy in nitrogen (i.e. from ammonia) to convert to molecular nitrogen rather than NOx thus there are no extra emissions of NOx from ammonia combustion.

Pollutant	Emissions (lbs/hr)	Emissions (tons/yr)
Nitrogen Oxides (NO _x)	0.00	0.00

Pilot Emissions

Pilot Heating Value: 1,200 Btu/scf Hours of Operation: 8,760 hr/yr Total Pilot Natural Gas Usage ⁶: 1.50E-05 MMscf/hr

Pollutant	Emission Factor (lb/MMscf) ⁴	Emissions (lbs/hr)	Emissions (tons/yr)
Particulate Matter (PM/PM ₁₀ /PM _{2.5})	7.6	1.34E-04	5.87E-04
Nitrogen Oxides (NO _x)	100	1.76E-03	7.73E-03
Sulfur Dioxide (SO ₂)	0.6	1.06E-05	4.64E-05
Carbon Monoxide (CO)	84	1.48E-03	6.49E-03
Volatile Organic Compounds (VOC)	5.5	9.71E-05	4.25E-04
Benzene	2.10E-03	3.71E-08	1.62E-07
Toluene	3.40E-03	6.00E-08	2.63E-07
Formaldehyde	7.50E-02	1.32E-06	5.80E-06
n-Hexane	1.80E+00	3.18E-05	1.39E-04
Total HAPs ^{4,5}	1.88	3.32E-05	1.45E-04

⁴ Emission Factors from AP-42 Tables 1.4-1, 1.4-2, 1.4-3, and 1.4-4 (7/98).

Total Thermal Oxidizer Emissions

Total Tricillar Oxidizer Ellissions		
Pollutant	Total Potential Emission Rate (lbs/hr)	Total Potential Emission Rate (tons/year)
Particulate Matter (PM/PM ₁₀ /PM _{2.5})	1.34E-04	5.87E-04
Nitrogen Oxides (NO _x)	1.08	4.74
Sulfur Dioxide (SO ₂)	1.06E-05	4.64E-05
Carbon Monoxide (CO)	0.93	4.08
Volatile Organic Compounds (VOC)	9.71E-05	4.25E-04
Total HAPs	3.32E-05	1.45E-04

Greenhouse Gas Emissions

Pollutant	Emission Factor (kg/MMBtu)	Emissions (lb/hr)	Emissions (tpy)	Emission Factor Source
Carbon Dioxide	53.06	1,292.0	5,659.0	40 CFR Part 98, Subpart C, Table C-1
Methane	0.001	0.024	0.11	40 CFR Part 98, Subpart C, Table C-2
Nitrous Oxide	0.0001	0.0024	0.011	40 CFR Part 98, Subpart C, Table C-2
CO ₂ e		1,293.3	5,664.8	40 CFR Part 98, Subpart A, Table A-1

² Methane with a heating value of 1200 Btu/hr will be added to the thermal oxidizer to assist in combustion.

³ Emissions from manufacturer data.

⁵ Sum of Emissions Factors published for pollutants classified as "HAPS" under AP-42 Table 1.4-3.

⁶ Typical pilot gas usage

Emergency Flare Combustion Emissions

Company:	Antero Treatment LLC	
Facility Name:	Antero Clearwater Facility	
Facility Location:	Doddridge County, WV	
Source Description:	Emergency Gas Blanket Flare	
Emission Unit ID:	U-1090	

Combustion Emissions - Maintenance Use

Flare Rating¹: 2.20 MMBtu/hr
Gas Heating Value²: 1,200 Btu/scf
Hours of Operation¹: 336 hr/yr

Pollutant	Emission Factor ³ (lb/MMBtu)	Emissions (lbs/hr)	Emissions (tons/yr)
Particulate Matter (PM/PM ₁₀ /PM _{2.5})	N/A - Smokeless Design		
Sulfur Dioxide (SO ₂)	N/A - Combusted Gas has no Sulfur		
Nitrogen Oxides (NO _x)	0.068	0.15	0.025
Carbon Monoxide (CO)	0.31	0.68	0.11
Volatile Organic Compounds (VOC)	0.57	1.25	0.21

¹ Flare will be used for 336 hours per year of annual maintenance during shutdown for gas blanket bleed system. Bleed system is rated at 2.2 MMBtu/hr.

Pilot Emissions - Continuous Use

Pilot Heating Value: 1,200 Btu/scf
Hours of Operation⁶: 8,760 hr/yr
Total Pilot Natural Gas Usage ⁶: 6.20E-05 MMscf/hr

Pollutant	Emission Factor (lb/MMscf) ⁴	Emissions (lbs/hr)	Emissions (tons/yr)
Particulate Matter (PM/PM ₁₀ /PM _{2.5})	7.6	5.54E-04	2.43E-03
Nitrogen Oxides (NO _x)	100	7.29E-03	3.19E-02
Sulfur Dioxide (SO ₂)	0.6	4.38E-05	1.92E-04
Carbon Monoxide (CO)	84	6.13E-03	2.68E-02
Volatile Organic Compounds (VOC)	5.5	4.01E-04	1.76E-03
Benzene	2.10E-03	1.53E-07	6.71E-07
Toluene	3.40E-03	2.48E-07	1.09E-06
Formaldehyde	7.50E-02	5.47E-06	2.40E-05
n-Hexane	1.80E+00	1.31E-04	5.75E-04
Total HAPs ^{4,5}	1.88	1.37E-04	6.01E-04

⁴ Emission Factors from AP-42 Tables 1.4-1, 1.4-2, 1.4-3, and 1.4-4 (7/98).

Total Flare Emissions

Pollutant	Total Potential Emission Rate (lbs/hr)	Total Potential Emission Rate (tons/year)
Particulate Matter (PM/PM ₁₀ /PM _{2.5})	5.54E-04	2.43E-03
Nitrogen Oxides (NO _x)	0.16	0.057
Sulfur Dioxide (SO ₂)	4.38E-05	1.92E-04
Carbon Monoxide (CO)	0.69	0.14
Volatile Organic Compounds (VOC)	1.25	0.21
Total HAPs	1.37E-04	6.01E-04

Greenhouse Gas Emissions

Pollutant	Emission Factor	Emissions	Emissions	Emission Factor		
Foliatant	(kg/MMBtu)	(lb/hr)	(tpy)	Source		
Carbon Dioxide	53.06	266.7	81.55	40 CFR Part 98, Subpart C, Table C-1		
Methane	0.001	0.0050	0.0015	40 CFR Part 98, Subpart C, Table C-2		
Nitrous Oxide	0.0001	0.00050	0.00015	40 CFR Part 98, Subpart C, Table C-2		
CO ₂ e		18.6	81.64	40 CFR Part 98, Subpart A, Table A-1		

² Typical heating value of gas at facility

³ Emission Factors from Table 13.5-1 and 13.5-2 of AP-42 Section 13.5 (April 2015)

⁵ Sum of Emissions Factors published for pollutants classified as "HAPS" under AP-42 Table 1.4-3.

⁶ Pilot gas usage from manufacturer specification. Assumed the pilot would be used continuously.

Truck Unloading Emissions

Company:	Antero Treatment LLC	
Facility Name:	Antero Clearwater Facility	
Facility Location:	Doddridge County, WV	
Source Description:	Unloading Influent Water from Tr	rucks
Emission Unit ID:	P-1051	

AP - 42, Chapter 5.2 $L_L = 12.46 \times S \times P \times M / T$

L_L = Loading Loss Emission Factor (lbs VOC/1000 gal loaded)

S = Saturation Factor

P= True Vapor Pressure of the Loaded Liquid (psia)

M = Vapor Molecular Weight of the Loaded Liquid (lbs/lbmol)

T = Temperature of Loaded Liquid (°R)

VOC Emissions (tpy) = L_L (lbs VOC/1000 gal) * 42 gal/bbl * 365 days/year * production (bbl/day)

UNCONTROLLED

					LL	Unloading	VOC	Benzene	Toluene	E-benzene	Xylenes	n-Hexane	CO ₂ e
Source	S ¹	P (psia) ²	M ³	T (ºF)⁴	(lb/1000 gal)	(bbl/day)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
Influent Water	0.6	0.37	22.56	66.6	0.12	60,000	54.04	0.26	0.021	0.014	0.064	0.00016	47,820.03

					LL	Unloading	VOC	Benzene	Toluene	E-benzene	Xylenes	n-Hexane	CO ₂ e
Source	S ¹	P (psia) ²	M ³	T (ºF)⁴	(lb/1000 gal)	(bbl/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)
Influent Water	0.6	0.37	22.56	66.6	0.12	12,000	59.22	0.29	0.022	0.015	0.070	0.00017	52,405.52

CONTROLLED

					LL	Unloading	VOC	Benzene	Toluene	E-benzene	Xylenes	n-Hexane	CO₂e
Source	S ¹	P (psia) ²	M ³	T (ºF)⁴	(lb/1000 gal)	(bbl/day)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
Influent Water	0.6	0.37	22.56	66.6	0.12	60,000	16.86	0.082	0.0064	0.0042	0.020	0.000048	15,015.49

					LL	Unloading	VOC	Benzene	Toluene	E-benzene	Xylenes	n-Hexane	CO ₂ e
Source	S ¹	P (psia) ²	M ³	T (ºF)⁴	(lb/1000 gal)	(bbl/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)
Influent Water	0.6	0.37	22.56	66.6	0.12	12,000	18.59	0.091	0.0071	0.0047	0.022	0.000053	16,455.33

- Notes: 1. Saturation factor from AP-42, Table 5.2-1 (Submerged loading: dedicated normal service).
 - 2. Vapor pressure is referenced from ProMax runs for produced water from wells in the area of the facility.
 - 3. Molecular weight of the vapor is referenced from ProMax runs for produced water from wells in the area of the facility. A 20% buffer was added to account for variability in the produced water.
 - 4. Temperature based on the temperature used in the ProMax runs corresponding to the vapor pressure.
 - 5. HAPs and CO2e calculated using the relative weight percentages of the corresponding ProMax runs.
 - 6. Short term loading assumes the maximum rate of 8400 gallons per minute when all 16 bays are used.
 - 7. Influent water is unloaded into TK-1055A/B. This tank is controlled by the thermal oxidizer at 98%. Assume 70% of the unloading vapors are captured and controlled for a total of 68.6% control efficiency.
 - 8. Although the influent water can be a mix of produced water and water from drilling and completion activities, it was assumed for the calculation that the influent water will be 100% produced water as that has a higher percentage of VOCs than flowback water.

Truck Loading Emissions

Company:	Antero Treatment LLC
Facility Name:	Antero Clearwater Facility
Facility Location:	Doddridge County, WV
Source Description:	Loading Oil from TK-1065
Emission Unit ID:	OILLOAD

AP - 42, Chapter 5.2 $L_1 = 12.46 \times S \times P \times M / T$

L_L = Loading Loss Emission Factor (lbs VOC/1000 gal loaded)

S = Saturation Factor

P = True Vapor Pressure of the Loaded Liquid (psia)

M = Vapor Molecular Weight of the Loaded Liquid (lbs/lbmol)

 $T = Temperature of Loaded Liquid (<math>{}^{\circ}R$)

UNCONTROLLED

			ել	Loading	VOC	Benzene	Toluene	E-benzene	Xylenes	n-Hexane	CO ₂ e		
Source	S ¹	P (psia) ²	M ³	T (ºF)⁴	(lb/1000 gal)	(bbl/day)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
Oil from TK-1065	0.6	3.10	50.00	65.0	2.21	515	8.72	0.0037	0.0060	0.0024	0.0055	0.13	1.80

					LL	Loading ⁵	VOC	Benzene	Toluene	E-benzene	Xylenes	n-Hexane	CO ₂ e
Source	S ¹	P (psia) ²	M^3	T (ºF)⁴	(lb/1000 gal)	(bbl/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)
Oil from TK-1065	0.6	3.10	50.00	65.0	2.21	180	16.70	0.0071	0.012	0.0047	0.010	0.25	3.44

Notes:

- 1. Saturation factor from AP-42, Table 5.2-1 (Submerged loading: dedicated normal service).
- 2. Vapor pressure is referenced from AP-42 Table 7.1-2 for Crude Oil and 65 deg F.
- 3. Molecular weight of the vapor is referenced from AP-42 Table 7.1-2 for Crude Oil.
- 4. Temperature based referenced from average temperature in the area and oil temperature.
- 5. Short term loading assumes one truck per hour with an 180 bbl truck.
- 6. HAPs and CO2e calculated using relative weight % from an average oil vapor analysis from the area surrounding the facility.

Emissions From Pressurized Truck Loading Operations

Company:	Antero Treatment LLC
Facility Name:	Antero Clearwater Facility
Facility Location:	Doddridge County, WV
Source Description:	Pressurized Truck Loading from the Gunbarrel
Emission Unit ID:	LD-GB

A pressurized vapor recovery system will be utilized for truck loading. Potential emissions result from the equalization of the loading rack connection to atmospheric pressure after the loading operation is completed.

Barrels per day Loaded	500	bbl/day	
Truck Capacity	120	bbl/truck	(5000 gallons)
Trucks per day	5	trucks/dav	

Truck Loading Connection Configuration

Load Line Connection Diameter = _ Load Line Length between Valves = _	0.25 1.0	ft ft		
Connection Volume = _	0.049	ft ³	Per truck	
Liquid Density = _	41.25	lb/ft ³		
Liquid Mass Flow = _	2.02	lb/hr	Assume one truck	c per hour
Liquid Mass Flow =	10.12	lb/day		
Liquid Mass Flow =	1.85	ton/year		
VOC Weight Fraction of Liquid =	0.95			
VOC Liquid Mass Flow =	1.75	ton/year	1.92	lb/hr
Methane Weight Fraction = _ CO2 Weight Fraction =	0.0052 0.0002			
CO2e Mass Flow =	0.24	ton/year	0.26	lb/hr

Notes:

- 1. The load line will be 3 inches in diameter and the vapor return line will be 2 inches in diameter. The larger diameter is used.
- 2. The total length of the line may be as much as 10 feet; however, because the valves shut off almost instantaneously, the length that may contain any residual vapor is at most 1 foot.
- 3. Liquid density and weight fractions from attached aspentech simulation for Material Stream 14. Material Stream 14 is not speciated for individual HAPs.

Cooling Tower Emissions

	Antero Treatment LLC
Facility Name:	Antero Clearwater Facility
Location:	Doddridge County, WV
Source Description:	Cooling Tower Drift Loss
Emission Unit ID:	CT-2335

Circulation Rate: 34,500 gpm TDS: 5,450 ppm Drift Loss: 0.001 % Operating Hours: 8,760 hrs/yr

Emission Source	Circulation rate (gal/hr)	Circulating Water TDS content (ppm)	Liquid Drift Loss (%)	Water Density (lbs/gal)	Operating hours (hrs/yr)	PM10 (lb/hr)	PM10 (ton/yr)
Cooling Tower	2,070,000	5,450	0.001	8.34	8,760	0.94	4.12

Notes:

- 1. Circulation rate and drift loss based on design data.
- 2. Circulating water TDS from data on expected influent water streams.
- 3. Design data shows an evaporation rate of 472 gpm, however there are no volatile compounds in the water for evaproation emissions.
- 4. Emissions calculated using AP-42 Chapter 13.4 guidance. "Conservatively high PM-10 emissions can be obtained by multiplying the total drift factor by TDS and assume that upon evaporation all are PM-10".

Circulation Water Quality (based on 10 COC)

	Units	Average Concentration
Cations:		
Calcium	mg/L as Ca	< 250
Magnesium	mg/L as Mg	< 0.2
Sodium	mg/L	< 1,269
Potassium	mg/L	< 0.5
Barium	mg/L	< 0.5
Strontium	mg/L	< 0.5
Total Iron	mg/L	< 0.1
Ammonium	mg/L	< 37.5
Manganese	mg/L	< 0.1
Lithium	mg/L	< 0.5
Anions:		
Bicarbonate	mg/L	< 1,460
Carbonate	mg/L	< 3.1
Hydroxide	mg/L	< 0.1
Sulfate	mg/L	< 10
Bromide	mg/L	< 0.2
Chloride	mg/L	< 950
Nitrate	mg/L	< 1,328

	Units	Average Concentration
Other Constituents:		
pН	S.U.	7.5 – 8.5
Water Temperature	deg F	80 - 90
Silica	mg/L	< 0.5
Total Dissolved Solids (calculated)	mg/L	< 5,450
Total Alkalinity	mg/L as CaCO₃	< 1,205
Total Suspended Solids	mg/L	< 25
Free Oil & Grease (> 20 µm)	mg/L	< 0.5

Waste Gas Header Emission Sources

Company:	Antero Treatment LLC
Facility Name:	Antero Clearwater Facility
Facility Location:	Doddridge County, WV
Source Description:	Tanks going to the Waste Gas Header

Uncontrolled Emissions

	mached Emissions															
Pollutant	TK-1	055A	TK-10	60A/B	TK-	1070	TK-11	05A/B	TK-1	055B	TK-1	1115	TK-2	2010	TK-2	2015
	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
VOCs	33.38	52.14	8.25	7.72	8.62	9.32	1.05	4.39	15.37	53.85	2.19	7.66	14.71	53.33	2.29	8.13
Ammonia	6.18	23.54	0.24	0.22	0.25	0.26	0.34	1.43	5.63	22.92	0.057	0.20	4.03	17.11	0.058	0.21
Benzene	0.062	0.12	0.019	0.017	0.020	0.023	0.0084	0.034	0.036	0.12	0.0045	0.016	0.025	0.094	0.0046	0.016
Ethylbenzene	0.0024	0.0061	0.00025	0.00023	0.00028	0.00039	0.00018	0.00074	0.0016	0.0062	0.000058	0.00022	0.0012	0.0047	0.000061	0.00022
Toluene	0.070	0.15	0.011	0.010	0.012	0.014	0.0063	0.027	0.042	0.16	0.0026	0.0095	0.029	0.12	0.0027	0.010
Xylene	0.010	0.036	0.0028	0.0026	0.0030	0.0037	0.00026	0.0011	0.0089	0.037	0.00065	0.0025	0.0064	0.028	0.00069	0.0026
Manganese																
Selenium																
TOTAL HAPs	0.14	0.32	0.033	0.030	0.035	0.040	0.015	0.063	0.088	0.32	0.0078	0.028	0.062	0.25	0.0081	0.028
Carbon Dioxide	15.76	26.62	59.34	53.81	52.64	53.60	2.62	10.84	5.29	18.49	9.44	33.48	2.81	10.85	6.92	25.45

Pollutant	TK-	2040	TK-1	1065	TK-	1120	TK-	2020	TK-	2140	E-2	076	TOT	ALS
	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
VOCs	2.78	10.30	0.91	2.18	1.13	4.14	3.84	13.80	38.80	169.94	86.90	380.62	220.21	777.53
Ammonia	0.071	0.27			0.34	1.33	1.47	5.67	5.37	23.52	33.60	147.17	57.63	243.84
Benzene	0.0060	0.022			0.0081	0.024	0.025	0.073					0.22	0.57
Ethylbenzene	0.00011	0.00041			0.00019	0.00070	0.00074	0.0027					0.0071	0.023
Toluene	0.0036	0.014			0.0067	0.023	0.024	0.081					0.21	0.62
Xylene	0.0010	0.0039			0.00030	0.0012	0.0014	0.0058					0.035	0.12
Manganese														
Selenium														
TOTAL HAPs	0.011	0.040			0.015	0.049	0.051	0.16					0.47	1.33
Carbon Dioxide	6.95	26.45			2.36	5.60	3.44	8.84					167.57	274.04

Waste Gas Header Emission Sources

Company:	Antero Treatment LLC
Facility Name:	Antero Clearwater Facility
Facility Location:	Doddridge County, WV
Source Description:	Tanks going to the Waste Gas Header

Controlled Emissions

Pollutant	TK-1	055A	TK-10	60A/B	TK-	1070	TK-11	05A/B	TK-1	055B	TK-	1115	TK-2	2010	TK-	2015
	(lb/hr)	(tpy)														
VOCs	0.67	1.04	0.17	0.15	0.17	0.19	0.021	0.088	0.31	1.08	0.044	0.15	0.29	1.07	0.046	0.16
Ammonia	0.12	0.47	0.0048	0.0043	0.0050	0.0053	0.0068	0.029	0.11	0.46	0.0011	0.0041	0.081	0.34	0.0012	0.0041
Benzene	1.2E-03	2.5E-03	3.8E-04	3.5E-04	4.0E-04	4.5E-04	1.7E-04	6.8E-04	7.2E-04	2.5E-03	9.0E-05	3.2E-04	5.0E-04	1.9E-03	9.2E-05	3.2E-04
Ethylbenzene	4.8E-05	1.2E-04	4.9E-06	4.5E-06	5.7E-06	7.9E-06	3.5E-06	1.5E-05	3.3E-05	1.2E-04	1.2E-06	4.3E-06	2.3E-05	9.4E-05	1.2E-06	4.4E-06
Toluene	1.4E-03	3.1E-03	2.3E-04	2.1E-04	2.4E-04	2.8E-04	1.3E-04	5.4E-04	8.4E-04	3.1E-03	5.1E-05	1.9E-04	5.9E-04	2.4E-03	5.4E-05	1.9E-04
Xylene	2.0E-04	7.3E-04	5.5E-05	5.1E-05	6.0E-05	7.4E-05	5.2E-06	2.3E-05	1.8E-04	7.4E-04	1.3E-05	5.0E-05	1.3E-04	5.5E-04	1.4E-05	5.1E-05
Manganese																
Selenium																
TOTAL HAPs	0.0029	0.0064	0.00067	0.00061	0.00071	0.00081	0.00030	0.0013	0.0018	0.0065	0.00016	0.00056	0.0012	0.0049	0.00016	0.00057
Carbon Dioxide	15.76	26.62	59.34	53.81	52.64	53.60	2.62	10.84	5.29	18.49	9.44	33.48	2.81	10.85	6.92	25.45

Pollutant	TK-	2040	TK-	1065	TK-	1120	TK-	2020	TK-	2140	E-2	076	TOT	ALS
	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
VOCs	0.056	0.21	0.018	0.044	0.023	0.083	0.077	0.28	0.78	3.40	1.74	7.61	4.40	15.55
Ammonia	0.0014	0.0053			0.0069	0.027	0.029	0.11	0.11	0.47	0.67	2.94	1.15	4.88
Benzene	1.2E-04	4.4E-04			1.6E-04	4.7E-04	5.0E-04	1.5E-03					4.38E-03	1.13E-02
Ethylbenzene	2.1E-06	8.3E-06			3.8E-06	1.4E-05	1.5E-05	5.4E-05					1.42E-04	4.52E-04
Toluene	7.2E-05	2.8E-04			1.3E-04	4.6E-04	4.7E-04	1.6E-03					4.20E-03	1.24E-02
Xylene	2.0E-05	7.9E-05			5.9E-06	2.4E-05	2.7E-05	1.2E-04					7.06E-04	2.48E-03
Manganese														
Selenium														
TOTAL HAPs	0.00021	0.00080			0.00030	0.0010	0.0010	0.0032					0.0094	0.027
Carbon Dioxide	6.95	26.45			2.36	5.60	3.44	8.84					167.57	274.04

Notes:

- 1. Waste Gas Header is controlled by a thermal oxidizer with a control efficiency of at least 98
- 2. EPA's WATER9 program was used to calculate the emissions of all the emission points shown except for TK-1065, E-2076, and TK-2140. TK-1065 was assumed all crude to be conservative and emissions were calculated using TANKS 4.09d. E-2076 emissions were from Material Balance Stream 225. TK-2140 emissions were calculated using Stream 263.
- 3. Emissions from TK-1055A/B and TK-2010 are likely less than shown. WATER9 does not allow for covered clarifiers so more emissions are likely generated in the model due to air flow over the tanks.
- 4. Influent stream into TK-1055A/B is Material Balance Stream 102. Pound per hour emissions are calculated using peak flow and annual emissions use the average flow.
- 5. Metal HAPs are shown for completeness but stay in solution so there are no air emissions.
- 6. Only those compounds above the detection limit are shown as otherwise emissions are not quantifiable.
- 7. TK-1130 has been removed from the thermal oxidizer stream and is now connected to a carbon canister

Carbon Canister Emission Source

Company:	Antero Treatment LLC
Facility Name:	Antero Clearwater Facility
Facility Location:	Doddridge County, WV
Source Description:	Tank going to the Carbon Canister

Uncontrolled Emissions

Pollutant	TK-1130				
	(lb/hr)	(tpy)			
VOCs	0.43	1.67			
Ammonia	0.044	0.19			
Benzene	0.0018	0.0072			
Ethylbenzene	5.43E-24	2.30E-23			
Toluene	9.49E-24	3.91E-23			
Xylene	5.93E-25	2.59E-24			
Manganese					
Selenium					
TOTAL HAPs	0.0018	0.0072			
Carbon Dioxide	0.11	0.36			

Controlled Emissions

Pollutant	TK-	1130
	(lb/hr)	(tpy)
VOCs	0.0086	0.033
Ammonia	0.044	0.19
Benzene	3.7E-05	1.4E-04
Ethylbenzene	1.1E-25	4.6E-25
Toluene	1.9E-25	7.8E-25
Xylene	1.2E-26	5.2E-26
Manganese		
Selenium		
TOTAL HAPs	0.000037	0.00014
Carbon Dioxide	0.11	0.36

Notes:

- TK-1130 off-gas is captured by a carbon canister with a capture efficiency of at least
 Manufacturer estimates a 99% capture efficiency for total hydrocarbons inluding VOCs, but capture efficiency is reduced to 98% to account for times when the activated carbon is being replaced.
- 2. EPA's WATER9 program was used to calculate the emissions from TK-1130.
- 3. Metal HAPs are shown for completeness but stay in solution so there are no air emissions.
- 4. Only those compounds above the detection limit are shown as otherwise emissions are not quantifiable.

Post Treatment System Tanks

Company:	Antero Treatment LLC
Facility Name:	Antero Clearwater Facility
Facility Location:	Doddridge County, WV
Source Description:	Post Treatment System Tanks
Emission Unit ID:	TK-2500, TK-2550, TK-2555, CF-2510, TK-2520, and TK-2515

	TK-2500 ^{1,2,3,4,5}					TK-255	0 and TK-2	2555 ^{1,6,7}		CF-2510 ^{1,3,8}					
	2034833	L/hr Peak	1860242	L/hr Average	Э	2044577 L/hr Peak 1858789 L/hr Average		515346	515346 L/hr Peak 468558		L/hr Average)			
	In	Out	Delta	Emiss	sions ^{4,5}	ln	Out	Delta	Emis	sions	ln	Out	Delta	Emis	sions
	mg/L	mg/L	mg/L	(lb/hr)	(tpy)	mg/L	mg/L	mg/L	(lb/hr)	(tpy)	mg/L	mg/L	mg/L	(lb/hr)	(tpy)
VOCs as oil	6.41	1.13	5.28	1.18	4.74	1.13	1.13	0.0	0.00	0.00	1.13	1.13	0.0	0.00	0.00
Ammonia	24.90	3.00	21.90	1.96	7.87	3.00	3.00	0.0	0.00	0.00	3.00	3.00	0.0	0.00	0.00
Benzene	0.017	0.003	0.01	0.0031	0.013	0.003	0.003	0.0	0.00	0.00	0.003	0.003	0.0	0.00	0.00
3&4 Methylbenzene	0.005	0.001	0.004	0.00090	0.0036	0.001	0.001	0.0	0.00	0.00	0.001	0.001	0.0	0.00	0.00
Cumene	0.0005	0.0	0.0005	0.00011	0.00044										
Ethylbenzene	0.0010	0.0	0.0010	0.00022	0.00090										
Phenol	0.0005	0.00	0.0005	0.00011	0.00044										
Toluene	0.03	0.005	0.02	0.0049	0.020	0.01	0.01	0.0	0.00	0.00	0.005	0.005	0.0	0.00	0.00
Xylene	0.016	0.003	0.01	0.0029	0.012	0.003	0.003	0.0	0.00	0.00	0.0030	0.0030	0.0	0.00	0.00
TOTAL HAPs	0.067	0.012	0.05	0.012	0.049	0.012	0.012	0.0	0.00	0.00	0.012	0.012	0.0	0.00	0.00
Carbon Dioxide	8.40	32.00	-23.60			32.00	5.30	26.70	120.35	479.24	5.00	5.30	-0.30		

Post Treatment System Tanks

Company:	Antero Treatment LLC
Facility Name:	Antero Clearwater Facility
Facility Location:	Doddridge County, WV
Source Description:	Post Treatment System Tanks
Emission Unit ID:	TK-2500, TK-2550, TK-2555, CF-2510, TK-2520, and TK-2515

	TK-2	515 ⁹	TK-2520 ⁹			
	Emis	sions	Emis	sions		
	(lb/hr)	(tpy)	oy) (lb/hr) (
VOCs as oil	0.77	3.10	0.015	0.064		
Ammonia	0.0014	0.0057	0.00089	0.0039		
Benzene	1.2E-04	5.0E-04	2.1E-05	9.1E-05		
3&4 Methylbenzene	7.5E-09	3.0E-08	3.8E-09	1.7E-08		
Cumene						
Ethylbenzene						
Phenol						
Toluene	2.4E-04	9.6E-04	3.0E-05	1.3E-04		
Xylene	1.6E-04	6.2E-04	1.6E-06	7.2E-06		
TOTAL HAPs	0.00052	0.0021	0.00005	0.00023		
Carbon Dioxide	0.95	3.81	0.027	0.12		

Notes

- 1. Due to the nature of the processes for the Post Treatment tanks, emissions will be calculated by mass balance based on Material Balance Stream data. In and out concentrations shown are based on material balance in the liquid phase and it is assumed the difference in concentration is due to volatilization unless denoted otherwise by the process.
- 2. Influent Streams to TK-2500 are 298, 402, and 405 and the sum of the streams is shown above.
- 3. Negative delta concentrations in the liquid phase in this case means added to the system.
- 4. Due to the nature of the process, the volatile components in TK-2500 are expected to adsorb onto the biosolids that are formed or otherwise consumed in the process based on experience with the process from the design firm. Its is expected that 95% of the organics will be adsorbed or consumed.
- 5. It is assumed most all of the ammonia (98%) will be reduced in TK-2500 as explained in Attachment G.
- 6. The rest of the process train (TK-2550 to CF-2510) only has changes regarding air emissions in CO2.
- 7. Influent Stream to TK-2550 and TK-2555 is 403 and is shown above.
- 8. Influent Stream to CF-2510 is 406 and is shown above.
- 9. Influent Streams to TK-2520 and TK-2515 are 407 and 408. Emissions are calculated from these tanks by WATER9 as there was not enough data on the effluent streams to perform material balance.

Atmospheric Storage Tank Working and Breathing Emissions

Company:	Antero Treatment LLC
Facility Name:	Antero Clearwater Facility
Facility Location:	Doddridge County, WV
Source Description:	Atmospheric Storage Tanks
Emission Unit IDs:	TK-2120 and TK-4115

TANK	Peak Flow Avg Flow		VO	Cs	Meth	anol	Ammonia	
DESCRIPTION	(gph)	(gph)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
Process Distillate Level Tank (TK-2120)	74,580	68,400					0.29	1.18
Methanol Bulk Storage Tank (TK-4115)	85.6	31.3	0.067	0.25	0.067	0.25		
TOTAL			0.067	0.25	0.067	0.25	0.29	1.18

Notes:

- 1. EPA Tanks 4.0.9d used to calculate standing, working, and breathing emissions.
- 2. Pounds per hour emissions calculated using the peak flow rate from the Material Balance Sheet and tons per year emissions calculated using the average flow rate from the Material Balance Sheet.
- 3. Process Distillate Level Tank uses Material Balance streams 226, 251, 261, and 271. Only stream 226 contained ammonia so the concentration was adjusted for total flow.
- 4. Methanol is both a HAP and VOC.

Sludge and Salt Disposal Emissions

Company:	Antero Treatment LLC
Facility Name:	Antero Clearwater Facility
Facility Location:	Doddridge County, WV
Source Description:	Sludge and Wetcake Disposal Emissions
Emission Unit ID:	DISP1, DISP2, and DISP3

	Stage 1 Sludge Disposal			Stage 2	Sludge D	Disposal	Salt Disposal						
		DISP3			DISP1			SP2 - 4A S	Salt	DISP2 - 4B Salt			
	1,136	L/hr Averaç	ge	7,949	L/hr Averag	ge	69,412	lb/hr Avera	ge	107,624 lb/hr Average			
	ln	Emissi	ons ^{1,3,4}	In	Emissi	ions ^{2,3,4}	In	Emiss	sions ⁵	ln	Emiss	sions ⁵	
	mg/L	(lb/hr)	(tpy)	mg/L	(lb/hr)	(tpy)	ppmw	(lb/hr)	(tpy)	ppmw	(lb/hr)	(tpy)	
VOCs	280	0.070	0.31	2,580	4.52	19.80	0.10	0.0051	0.022	0.50	0.059	0.26	
Ammonia	151	0.038	0.17	132	0.033	0.14							
Benzene	1.00	2.5E-04	1.1E-03	0.575	1.4E-04	6.3E-04							
Ethylbenzene	0.00	0.0E+00	0.0E+00	0.044	1.1E-05	4.8E-05							
Toluene	0.00	0.0E+00	0.0E+00	0.908	2.3E-04	1.0E-03							
Xylene	0.00	0.0E+00	0.0E+00	0.553	1.4E-04	6.1E-04							
TOTAL HAPs	1.00	0.00025	0.0011	2.08	0.00052	0.0023							
Carbon Dioxide ³	29	0.0073	0.032	0.002	5.01E-07	2.19E-06							

Notes

- 1. Influent Stream for the Stage 1 dewatered sludge is 118.
- 2. Influent Stream for the Stage 2 dewatered sludge is 126.
- 3. DISP1 and DISP3 transferred to appropriate disposal containers to be taken to a landfill. Based on short term on-site storage from Section 9 of EPA-453/R-94-080A Air Emissions Models for Waste and Wastewater, the fraction volatilized to the air is estimated to be less than 10%.
- 4. Although Streams 118 and 126 have solids present, both DISP1 and DISP3 are wet processes so none of the particulates and associated HAPs bound to the particulates are expected to be released into the air. DISP1 has approximately 30-35% wet solids and DISP3 has approximately 60-75% wet solids. Additionally, DISP1 is via a covered disposal process and DISP3 disposal process is in a building.
- 5. Assumes 100% of the VOCs present in the salt are volatilized at the Antero Clearwater Facility.

Process Feeder System Particulate Matter Emissions

Company:	Antero Treatment LLC
Facility Name:	Antero Clearwater Facility
Facility Location:	Doddridge County, WV

Feed Rates into the Water Treatment System

DrySodium Sulfate - Max Process Rate:	120	lb/hr
Dry Sodium Sulfate - Avg Process Rate:	49.5	lb/hr
Dry Lime Feeder System A - Max Process Rate:	600	lb/hr
Dry Lime Feeder System A - Avg Process Rate:	250	lb/hr
Dry Lime Feeder System B - Max Process Rate:	600	lb/hr
Dry Lime Feeder System B - Avg Process Rate:	250	lb/hr
Dry Sodium Bicarbonate Feeder System - Max Process Rate:	25	lb/hr
Dry Sodium Bicarbonate Feeder System - Avg Process Rate:	11.7	lb/hr
Dry Calcium Carbonate Feeder System - Max Process Rate:	380	lb/hr
Dry Calcium Carbonate Feeder System - Avg Process Rate:	230	lb/hr

Emissions Multiplier Ratio

 lb PM2.5/ton
 1.30E-05
 Table 11.19.2-2 (controlled)

 lb PM10/ton
 4.60E-05
 Table 11.19.2-2 (controlled)

 lb PM/ton
 1.40E-04
 Table 11.19.2-2 (controlled)

Sodium Sulfate Feeder System

Source ID	Emission Source	Emissis	Emission Factor		Emission Easter		Emission Factor		М	PM	110 ³	PM	2.5 ⁴	Emission Factor Source
Source ID	Emission source	Lillissic			(ton/yr) ²	(lb/hr) ¹	(ton/yr) ²	(lb/hr) ¹	(ton/yr) ²					
TK-4036	Sodium Sulfate Silo ⁵	5.2	lb/ton product	0.31	0.56	0.10	0.19	0.029	0.05	AP-42 Table 8.12-3 for Sodium Carbonate				
U-4037	Sodium Sulfate Bin Discharger5	5.2	lb/ton product	0.31	0.56	0.10	0.19	0.029	0.05	AP-42 Table 8.12-3 for Sodium Carbonate				
U-4038	Sodium Sulfate Bin Feeder5	5.2	lb/ton product	0.31	0.56	0.10	0.19	0.029	0.05	AP-42 Table 8.12-3 for Sodium Carbonate				
	System Total Max Hourly Emissions:			0.94	lb/hr	0.31	lb/hr	0.087	lb/hr					
	System Total Average Annual Emissions:			1.69	ton/yr	0.56	ton/yr	0.16	ton/yr					

¹⁾ The hourly emissions (lb/hr) are determined using the max hourly production rate for the system.

²⁾ The annual emissions (ton/yr) are determined using the average hourly production rate for the system.

³⁾ Emission factors for PM10 are not provided in AP-42 Table 8.12-3. Therefore, the PM10 emissions are based on AP-42 11.19.2 Crushed Stone and Pulverized Mineral Processing and the particule size multiplier ratio PM10/PM of 4.6E-05/1.4E-04, shown in AP-42, Table 11.19.2-2.

⁴⁾ Emission factors for PM2.5 are not provided in AP-42 Table 8.12-3. Therefore, the PM2.5 emissions are based on AP-42 11.19.2 Crushed Stone and Pulverized Mineral Processing and the particule size multiplier ratio PM2.5/PM10 of 1.3E-05/4.6E-05, shown in AP-42, Table 11.19.2-2.

⁵⁾ Emission calculations for each source assume that the process feed rate is equal to the system production rates. Additionally, it is assumed that each emission source accounts for a single drop point.

Process Feeder System Particulate Matter Emissions

Company:	Antero Treatment LLC
Facility Name:	Antero Clearwater Facility
Facility Location:	Doddridge County, WV

Bulk Lime Feeder System A

Source ID	Emission Source	Emission Factor		Francisco Courses Francisco Francisco Francisco		P	М	PM	110 ³	PM	2.5 ⁴	Emission Factor Source
Source ID	Ellission Source			(lb/hr) ¹	(ton/yr) ²	(lb/hr) ¹	(ton/yr) ²	(lb/hr) ¹	(ton/yr) ²			
TK-4046A	Lime Silo A ⁵	2.2	lb/ton product	0.66	1.20	0.22	0.40	0.061	0.11	AP-42 Table 11.17-4 for Lime Processing		
U-4047A	Lime Bin Discharger A ⁵	2.2	lb/ton product	0.66	1.20	0.22	0.40	0.061	0.11	AP-42 Table 11.17-4 for Lime Processing		
U-4048A	Lime Bin Feeder A ⁵	2.2	lb/ton product	0.66	1.20	0.22	0.40	0.061	0.11	AP-42 Table 11.17-4 for Lime Processing		
System Total Max Hourly Emissions:			1.98	lb/hr	0.65	lb/hr	0.18	lb/hr				
	System Total Average Annual Emissions:			3.61	ton/yr	1.19	ton/yr	0.34	ton/yr			

¹⁾ The hourly emissions (lb/hr) are determined using the max hourly production rate for the system.

- 3) Emission factors for PM10 are not provided in AP-42 Table 11.17-4. Therefore, the PM10 emissions are based on AP-42 11.19.2 Crushed Stone and Pulverized Mineral Processing and the particule size multiplier ratio PM10/PM of 4.6E-05/1.4E-04, shown in AP-42, Table 11.19.2-2.
- 4) Emission factors for PM2.5 are not provided in AP-42 Table 11.17-4. Therefore, the PM2.5 emissions are based on AP-42 11.19.2 Crushed Stone and Pulverized Mineral Processing and the particule size multiplier ratio PM2.5/PM10 of 1.3E-05/4.6E-05, shown in AP-42, Table 11.19.2-2.
- 5) Emission calculations for each source assume that the process feed rate is equal to the system production rates. Additionally, it is assumed that each emission source accounts for a single drop point.

Bulk Lime Feeder System B

Source ID	Emission Source	Emission Factor		Francisco Foster		F	M	PM	110 ³	PM	12.5 ⁴	Emission Factor Source
Source ID	Emission source			(lb/hr) ¹	(ton/yr) ²	(lb/hr) ¹	(ton/yr) ²	(lb/hr) ¹	(ton/yr) ²			
TK-4046B	Lime Silo B ⁵	2.2	lb/ton product	0.66	1.20	0.22	0.40	0.061	0.11	AP-42 Table 11.17-4 for Lime Processing		
U-4047B	Lime Bin Discharger B ⁵	2.2	lb/ton product	0.66	1.20	0.22	0.40	0.061	0.11	AP-42 Table 11.17-4 for Lime Processing		
U-4048B	Lime Bin Feeder B ⁵	2.2	lb/ton product	0.66	1.20	0.22	0.40	0.061	0.11	AP-42 Table 11.17-4 for Lime Processing		
System Total Max Hourly Emissions:			1.98	lb/hr	0.65	lb/hr	0.18	lb/hr				
	System Total Average Annual Emissions:			3.61	ton/yr	1.19	ton/yr	0.34	ton/yr			

¹⁾ The hourly emissions (lb/hr) are determined using the max hourly production rate for the system.

- 3) Emission factors for PM10 are not provided in AP-42 Table 11.17-4. Therefore, the PM10 emissions are based on AP-42 11.19.2 Crushed Stone and Pulverized Mineral Processing and the particule size multiplier ratio PM10/PM of 4.6E-05/1.4E-04, shown in AP-42, Table 11.19.2-2.
- 4) Emission factors for PM2.5 are not provided in AP-42 Table 11.17-4. Therefore, the PM2.5 emissions are based on AP-42 11.19.2 Crushed Stone and Pulverized Mineral Processing and the particule size multiplier ratio PM2.5/PM10 of 1.3E-05/4.6E-05, shown in AP-42, Table 11.19.2-2.
- 5) Emission calculations for each source assume that the process feed rate is equal to the system production rates. Additionally, it is assumed that each emission source accounts for a single drop point.

²⁾ The annual emissions (ton/yr) are determined using the average hourly production rate for the system.

²⁾ The annual emissions (ton/yr) are determined using the average hourly production rate for the system.

Process Feeder System Particulate Matter Emissions

Company:	Antero Treatment LLC
Facility Name:	Antero Clearwater Facility
Facility Location:	Doddridge County, WV

Sodium Bicarbonate Feeder System

Source ID	Emission Source	Emission Source Emission Factor		F	М	PM	110 ³	PM	2.5 ⁴	Emission Factor Source
Source ID	Linission Source	Lillissi	Emission Factor		(ton/yr) ²	(lb/hr) ¹	(ton/yr) ²	(lb/hr) ¹	(ton/yr) ²	
TK-4012	Sodium Bicarbonate Silo ⁵	5.2	lb/ton product	0.065	0.13	0.021	0.044	0.0060	0.012	AP-42 Table 8.12-3 for Sodium Carbonate
U-4012	Sodium Bicarbonate Bin Discharger ⁵	5.2	lb/ton product	0.065	0.13	0.021	0.044	0.0060	0.012	AP-42 Table 8.12-3 for Sodium Carbonate
U-4013	Sodium Bicarbonate Volumentric Feeder ⁵	5.2	lb/ton product	0.065	0.13	0.021	0.044	0.0060	0.012	AP-42 Table 8.12-3 for Sodium Carbonate
	System Total Max Hourly Emissions:			0.20	lb/hr	0.064	lb/hr	0.018	lb/hr	
	System Total Average Annual Emissions:			0.40	ton/yr	0.13	ton/yr	0.037	ton/yr	

¹⁾ The hourly emissions (lb/hr) are determined using the max hourly production rate for the system.

- 3) Emission factors for PM10 are not provided in AP-42 Table 8.12-3. Therefore, the PM10 emissions are based on AP-42 11.19.2 Crushed Stone and Pulverized Mineral Processing and the particule size multiplier ratio PM10/PM of 4.6E-05/1.4E-04, shown in AP-42, Table 11.19.2-2.
- 4) Emission factors for PM2.5 are not provided in AP-42 Table 8.12-3. Therefore, the PM2.5 emissions are based on AP-42 11.19.2 Crushed Stone and Pulverized Mineral Processing and the particule size multiplier ratio PM2.5/PM10 of 1.3E-05/4.6E-05, shown in AP-42, Table 11.19.2-2.
- 5) Emission calculations for each source assume that the process feed rate is equal to the system production rates. Additionally, it is assumed that each emission source accounts for a single drop point.

Calcium Carbonate Feeder System

Source ID	Emission Source	Emission Factor		P	М	PM	110 ³	PM	2.5 ⁴	Emission Factor Source
Source ID	Ellission Source	EIIIISSIC	Emission Factor		(ton/yr) ²	(lb/hr) ¹	(ton/yr) ²	(lb/hr) ¹	(ton/yr) ²	
TK-4301	Calcium Carbonate Silo ⁵	5.2	lb/ton product	0.99	2.62	0.32	0.86	0.092	0.24	AP-42 Table 8.12-3 for Sodium Carbonate
U-4302	Calcium Carbonate Bin Discharger ⁵	5.2	lb/ton product	0.99	2.62	0.32	0.86	0.092	0.24	AP-42 Table 8.12-3 for Sodium Carbonate
U-4303	Calcium Carbonate Volumentric Feeder ⁵	5.2	lb/ton product	0.99	2.62	0.32	0.86	0.092	0.24	AP-42 Table 8.12-3 for Sodium Carbonate
	System Total Max Hourly Emissions:			2.96	lb/hr	0.97	lb/hr	0.28	lb/hr	
	System Total Average Annual Emissions:			7.86	ton/yr	2.58	ton/yr	0.73	ton/yr	

¹⁾ The hourly emissions (lb/hr) are determined using the max hourly production rate for the system.

²⁾ The annual emissions (ton/yr) are determined using the average hourly production rate for the system.

²⁾ The annual emissions (ton/yr) are determined using the average hourly production rate for the system.

³⁾ Emission factors for PM10 are not provided in AP-42 Table 8.12-3. Therefore, the PM10 emissions are based on AP-42 11.19.2 Crushed Stone and Pulverized Mineral Processing and the particule size multiplier ratio PM10/PM of 4.6E-05/1.4E-04, shown in AP-42, Table 11.19.2-2.

⁴⁾ Emission factors for PM2.5 are not provided in AP-42 Table 8.12-3. Therefore, the PM2.5 emissions are based on AP-42 11.19.2 Crushed Stone and Pulverized Mineral Processing and the particule size multiplier ratio PM2.5/PM10 of 1.3E-05/4.6E-05, shown in AP-42, Table 11.19.2-2.

⁵⁾ Emission calculations for each source assume that the process feed rate is equal to the system production rates. Additionally, it is assumed that each emission source accounts for a single drop point.

Natural Gas Fueled Fuel Conditioning Skid Heater Emissions

Company:	Antero Treatment LLC
Facility Name:	Antero Clearwater Facility
Location:	Doddridge County, WV
Source Description:	Fuel Conditioning Heater

Source Information

Emission Unit ID:	HTFUEL1 and HTFUEL2				
Source Description:	Fuel Conditioning Heaters				
Hours of Operation	8,760	hr/yr			
Design Heat Rate	2.40 MMBtu/hr				
Number of Heaters	2				
Fuel Heat Value	1,020	Btu/scf			
Fuel Use- all heaters	41.22 MMscf/yr				

Emission Calculations for all Heaters

Pollutant	Emission Factor	Emissions	Emissions	Emission Factor
Foliutalit	(lb/MMscf)	(lb/hr)	(tpy)	Source
NO_X	100	0.47	2.06	AP-42 Ch. 1.4 Table 1.4-1
CO	84	0.40	1.73	AP-42 Ch. 1.4 Table 1.4-1
VOC	5.5	0.026	0.11	AP-42 Ch. 1.4 Table 1.4-2
PM ₁₀ /PM _{2.5}	7.6	0.036	0.16	AP-42 Ch. 1.4 Table 1.4-2
SO ₂	0.6	0.0028	0.012	AP-42 Ch. 1.4 Table 1.4-2
Formaldehyde	0.075	0.00035	0.0015	AP-42 Ch. 1.4 Table 1.4-3
Total HAPs (including HCHO) ¹	1.9	0.0089	0.039	AP-42 Ch. 1.4 Table 1.4-3
Pollutant	Emission Factor	Emissions	Emissions	Emission Factor
Pollutalit	(kg/MMBtu)	(lb/hr)	(tpy)	Source
Carbon Dioxide	53.06	281.43	1,232.7	40 CFR Part 98, Subpart C, Table C-1
Methane	0.001	0.0053	0.023	40 CFR Part 98, Subpart C, Table C-2
Nitrous Oxide	0.0001	0.00053	0.0023	40 CFR Part 98, Subpart C, Table C-2
CO ₂ e		281.72	1,233.9	40 CFR Part 98, Subpart A, Table A-1

^{1.} Only those HAP pollutants above detection thresholds were included.

Sample Calculations:

2,000 (lbs/ton)

Fugitive Emissions From Venting Episodes

Company:	Antero Treatment LLC
Facility Name:	Antero Clearwater Facility
Facility Location:	Doddridge County, WV
Source Description:	Fugitive Emissions-Venting Episodes

VOC Venting Emissions						
Type of Event ¹	Number Of Events (event/yr)	Amount Vented per Event (scf/event)	Molecular Weight of Vented Gas (lb/lb-mol)	Total Emissions (ton/yr)	VOC Weight Fraction ³	VOC Emissions (ton/yr)
Pigging Venting (VENT1)	52	767	19.17	1.01	0.19	0.20
Total Emissions (tons/yr)						0.20

HAPs Venting Emissions										
Type of Event ¹	Benzene Weight Fraction ³	Benzene Emissions (tpy)	Toluene Weight Fraction ³	Toluene Emissions (tpy)	Ethylbenzene Weight Fraction ³	Ethylbenzene Emissions (tpy)	Xylene Weight Fraction ³	Xylene Emissions (tpy)	n-Hexane Weight Fraction ³	n-Hexane Emissions (tpy)
Pigging Venting (VENT1)	1.39E-04	1.40E-04	3.89E-04	3.92E-04	8.31E-05	8.37E-05	7.20E-05	7.25E-05	3.96E-03	3.99E-03
Total Emissions (tons/yr)	1.002 01	1.40E-04	0.002 01	3.92E-04	0.012 00	8.37E-05	7.202 00	7.25E-05	0.002 00	3.99E-03

GHG Venting Emissions								
	Number	Amount	Molecular					
Type of Event ¹	Of	Vented per	Weight of	CH₄	CO ₂	CH₄	CO ₂	CO₂e
	Events	Event	Vented Gas	Weight	Weight	Emissions	Emissions	Emissions
	(event/yr)	(scf/event)	(lb/lb-mol)	Fraction ³	Fraction ³	(ton/yr)	(ton/yr)	(tpy)
Pigging Venting (VENT1)	52	767	19.17	0.73	0.0056	0.74	0.0056	18.47
Total Emissions (tons/yr)						0.74	0.0056	18.47

¹⁾ Estimated number of events from engineering based on other facilities

²⁾ Amount vented is based on the 10.25 cubic foot cylinder adjusted from standard conditions to 1100 psia expected operating condition

³⁾ Weight Fraction is from a gas analysis that will be typical for the facility

Fugitive Dust Emissions

Company:	Antero Treatment LLC
Facility Name:	Antero Clearwater Facility
Facility Location:	Doddridge County, WV
Source Description:	Fugitive Dust from Travel on the Facility Roads
Emission Unit ID:	PROAD

Vehicles	Truck Weight ¹	Trips per year	Trips per day ²	Distance per round trip (truck in and out) ³		VMT per year
	tons			feet	miles	miles
Influent Water Trucks	40	219,000	600	4,400	0.83	182,500
Oil Trucks	40	1,095	3	4,400	0.83	913
Chemical Delivery Trucks	40	1,825	5	5,600	1.06	1,936
Sludge/Salt Trucks	60	27,375	75	2,000	0.38	10,369
Worker Vehicles	2	3,650	10	5,600	1.06	3,871

Equation Parameter	Value
Eext, annual size-specific emission factor for PM ₁₀ & PM _{2.5} (paved roads) extrapolated for natural mitigation	see table below
k , Particle size multiplier for particle size range (PM ₁₀), (lb/VMT) (Source: AP-42 Table 13.2.1-1)	0.0022
k , Particle size multiplier for particle size range (PM _{2.5}), (lb/VMT) (Source: AP-42 Table 13.2.2-2)	0.00054
sL , surface material silt content, (g/m²) (Source: AP-42 Table 13.2.1-2) ⁴	0.6
W, mean weight (tons) of the vehicles traveling the road	41.62
P , number of "wet" days with at least 0.254 mm (0.01 in) of precipitation during the averaging period, based on AP-42 Figure 13.2.1-2.	150

Annual:

$$E_{ext} = [k (sL)^{0.91} \times (W)^{1.02}] (1 - P/4N)$$

 $E = k (sL)^{0.91} \times (W)^{1.02}$

Source of Equations: AP-42 Section 13.2.1

PM₁₀ Emissions

Emission Factor	Vehicle miles traveled		PM ₁₀ Em	issions
(Ib/VMT)	(VMT/hr)	(VMT/yr)	(lb/hr)	(tons/yr)
0.062	23		1.41	
0.056		199,589		5.55

PM_{2.5} Emissions

Emission Factor	Vehicle miles traveled		Vehicle miles traveled		PM ₁₀ Em	issions
(Ib/VMT)	(VMT/hr)	(VMT/yr)	(lb/hr)	(tons/yr)		
0.015	23		0.35			
0.014		199,589		1.36		

Table Notes:

- 1. Truck weights are assumed to be empty on one leg and loaded on the other.
- 2. Influent trucks are based on 100 bbl trucks at 60,000 bbl/day. Chemical trucks are based on at most 24,000 gallons of chemicals per day needed at the facility in 5,000 gallon trucks. Sludge and salt disposal trucks are based on expected number of trucks. Worker vehicles are based on 2 shifts per day with a maximum of 5 workers per shift.
 Oil trucks are based on 447 bbl/day of oil loaded out with 180 bbl trucks.
- 3. Distance per round trip is based on the proposed site layout and the various truck bays.
- 4. The silt loading value of 0.6 g/m² is for public roads. Although the facility is industrial, the facility will not be a source of particlate matter generation as would a mining facility, so the public road silt loading was deemed appropriate.

Attachment O. Monitoring, Recordkeeping, Reporting, and Testing Plans	
cg, recording, reporting, and recting rians	

Monitoring, Recordkeeping, Reporting, and Testing Plans

The following is a summary of the methods to comply with the requirements of West Virginia Division of Air Quality (WVDAQ) 45CSR13 rules and regulations for the Clearwater Facility, including federal and state regulatory requirements.

1. Summary of Key Operational Throughput Limits

- a. Maximum liquids loaded: 21,900,000 barrels per year (919,800,000 gallons per year).
- b. Maximum fuel use for both boilers is 3589.2 MMscf/year.
- c. Maximum oil loaded out: 188,048 barrels per year (7,898,016 gallons per year).

2. Operational Requirements

- a. Generator engine will meet Tier II emission standards and will be fueled by diesel only. Fire water pump engine will be fueled by diesel only.
- b. Boilers will be fueled by natural gas only at a heater rating no more than 275.3 MMBtu/hr.
- No fuel-burning unit of any kind will have opacity greater than 10 percent based on a six minute block average observation.
- d. Boilers will meet applicable requirements of 40 CFR Part 60 Subpart Db.
- e. The thermal oxidizer capacity will not exceed 11.0 MMBtu/hr, will achieve 98 percent destruction efficiency, will operate at all times that gas is vented to it, will have a flame present at all times, and will have no visible emissions other than for periods not to exceed a total of 5 minutes during any 2 consecutive hours.
- f. The thermal oxidizer will be operated per manufacturer instructions.
- g. Waste gas header storage tanks potential emissions shall be routed to the thermal oxidizer with destruction efficiency greater than 98 percent at all times.
- h. The Stage 1 Filtrate Tank will be routed to the Carbon Canister at all times.
- i. The Carbon Canister will be operated per manufacturer instructions and the granular activated carbon replaced when necessary.
- j. Liquid loadout trucks will use the submerged-fill method.
- k. Facility roads and driveways will be gravel until they can be paved.

3. Monitoring

- a. Hours of operation for the emergency engine and fire water pump will be monitored; including emergency, maintenance and testing, and non-emergency hours.
- b. An initial Method 22 observation will be conducted of the thermal oxidizer for a minimum of 2 hours.
- c. Monthly Method 22 observations will be conducted of the thermal oxidizer for a minimum of 10 minutes each.
- d. Monthly olfactory, visual, and auditory inspections will be conducted of the tanks closed vent and control system (thermal oxidizer) for leaks or defects that could result in emissions. Leaks will be repaired as soon as practicable (no later than 5 days for first attempt).

- e. The presence of thermal oxidizer flame will be continuously monitored.
- f. The daily and rolling twelve-month average amount of liquids unloaded and loaded will be monitored.
- g. The daily and rolling twelve-month average amount of sludge disposed of will be monitored.
- The daily and rolling twelve-month average amount of salt disposed of will be monitored.
- i. Hours of operation of the granular activated carbon will be monitored.

4. Recordkeeping

- a. Records will be kept in company records (on or off-site) for a minimum of 5 years.
- b. Records will be kept of inspections, observations, preventive maintenance, malfunctions, and shutdowns of all onsite equipment.
- c. Records will be kept of the date, time, and duration of each time that a thermal oxidizer flame is not present at the thermal oxidizer as well as startup, shutdown, and malfunctions of the thermal oxidizer.
- d. Records will be kept of generator engine and fire water pump maintenance and run time.
- e. Records will be kept of the fuel combusted in the boilers including the sulfur content, the actual run time of each boiler, and all opacity inspections.
- f. The daily and rolling twelve-month average amount of liquids unloaded and loaded will be recorded.
- g. The daily and rolling twelve-month average amount of sludge disposed of will be recorded.
- h. The daily and rolling twelve-month average amount of salt disposed of will be recorded.
- i. Hours of operation of the granular activated carbon will be recorded.

5. Notifications and Reports

- a. Notify WVDAQ within 30 calendar days of commencement of construction.
- b. Notify WVDAQ within 30 calendar days of startup.
- c. Upon startup, file a Certificate to Operate (CTO) application and pay fees to WVDAQ for the period from startup to the following June 30 and then annually renew the CTO and pay fees. Maintain CTO on-site.
- d. For stack testing, file protocol at least 30 days prior to test and notify WVDAQ and EPA of the test at least 15 days prior to test. Report results within 60 days of test.
- e. If operations are suspended for 60 days or more, notify WVDAQ within 2 weeks after the 60th day.

Attachment P. Public Notice	

AIR QUALITY PERMIT NOTICE Notice of Class II Administrative Update – Antero Clearwater Facility

Notice is given that Antero Treatment LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a Class II Administrative Update to a 45CSR13 Construction Permit for a water treatment facility located south of US-50 near Greenwood, in Doddridge County, West Virginia. The latitude and longitude coordinates are: 39.26923N, 80.89309W.

The applicant estimates the following changes in potential to discharge the following Regulated Air Pollutants will be:

Pollutant	Emission Rate (tons per year)
Nitrogen Oxides (NOx)	0.0
Carbon Monoxide (CO)	0.0
Volatile Organic Compounds (VOCs)	1.75
Particulate Matter less than 10 μm (PM ₁₀)	0.0
Particulate Matter less than 2.5 μm (PM _{2.5})	0.0
Sulfur Dioxide (SO ₂)	0.0
Total Hazardous Air Pollutants (HAPs)	0.0
Carbon Dioxide Equivalent (CO₂e)	0.24

Startup of operation for the updates is planned to begin on or about September 1, 2017, with construction already started for the currently permitted equipment. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the 28th day of February 2017.

By: Antero Resources Corporation
Barry Schatz
Senior Environmental and Regulatory Manager
1615 Wynkoop Street
Denver, CO 80202

	Attachment	R.	
A	authority/Delegation	of Authority	

Attachment R AUTHORITY OF CORPORATION OR OTHER BUSINESS ENTITY (DOMESTIC OR FOREIGN)

TO: The West Virginia Department of Environmental Protection, Division of Air Quality
DATE: June 13 2016
ATTN.: Director
Corporation's / other business entity's Federal Employer I.D. Number 30-0882879
The undersigned hereby files with the West Virginia Department of Environmental Protection, Division of Air Quality, a permit application and hereby certifies that the said name is a trade name which is used in the conduct of an incorporated business or other business entity.
Further, the corporation or the business entity certifies as follows:
(1) Barry Schatz (is/are) the authorized representative(s) and in that capacity may represent the interest of the corporation or the business entity and may obligate and legally bind the corporation or the business entity.
(2) The corporation or the business entity is authorized to do business in the State of West Virginia.
(3) If the corporation or the business entity changes its authorized representative(s), the corporation or the business entity shall notify the Director of the West Virginia Department of Environmental Protection, Privision of Air Quality, immediately upon such change. Al Schopp, Regional Senior Vice President and Clair Administrative Officer
President or Other Authorized Officer (Vice President, Secretary, Treasurer or other official in charge of a principal business function of the corporation or the business entity)
(If not the President, then the corporation or the business entity must submit certified minutes or bylaws stating legal authority of other authorized officer to bind the corporation or the business entity).
Secretary
Antero Treatment LLC
Name of Corporation or business entity