Ne noble energy

Noble Energy, Inc.

R-13 Permit Application Moundsville 6 (MND 6) Natural Gas Production Site

Marshall County, West Virginia

Prepared By:

ENVIRONMENTAL RESOURCES MANAGEMENT, Inc. Hurricane, West Virginia

February 2017

1000 Noble Energy Drive
Canonsburg, PA 15317Tel:724-820-3000Fax:724-820-3098www.nobleenergyinc.com

February 27, 2017

Ms. Beverly McKeone NSR Permitting Program Manager West Virginia Department of Environmental Protection Division of Air Quality 601 57th Street, SE Charleston, WV 25304

RE: Noble Energy, Inc. Moundsville 6 (MND 6) Natural Gas Production Site 45CSR13 NSR Permit Application Marshall County, West Virginia

Dear Ms. McKeone:

Noble Energy, Inc respectfully submits the enclosed copies of a 45CSR13 NSR Permit Application for construction for the Moundsville 6 (MND 6) natural gas production facility. We look forward to working towards a timely review and issuance of the construction permit.

The intention of this submittal is to permit the construction of eight (8) production wellheads and associated well equipment at the MND 6 pad.

Please note that the newspaper notification will be published and the original affidavit remitted to the Department. Enclosed are one (1) original hard copy and two (2) complete PDFs included on CD-ROM of the 45CSR13 NSR Permit Registration Application for the MND 6 natural gas production site.

Should you have any questions or require further information the application package, please do not hesitate to contact me at Phil.Schlagel@nblenergy.com or 724-820-3000.

We thank you in advance for your efforts in reviewing this submittal.

Sincerely,

Phil Schlagel Noble Energy, Inc

Enclosures:

1.0 INTRODUCTION NARRATIVE

Noble Energy Inc. (Noble) submits this Rule 13 permit application to the West Virginia Department of Environmental Protection Division of Air Quality (WVDAQ) for the Moundsville 6 (MND 6) natural gas production site located in Marshal County, West Virginia. This application addresses the operational activities associated with the production of natural gas, condensate, and produced water at the MND 6 pad.

On December 16, 2016 WVDAQ issued a Permit Applicability Determination to Noble for the operations of the MND 6 Pad. The evaluation concluded that a permit would not be required for the operation of the following equipment:

- One (1) Natural Gas Well;
- Two (2) Gas Production Units/Heaters each rated at 4.00 MMBtu/hr heat input;
- Two (2) 400 barrel (bbl) Produced Water Tanks; and
- Produced Water Truck Loadout;

With the submittal of this permit application, Noble seeks the construction authority to further develop the pad. Based upon the flare sizing required for the MND 6 facility, Noble seeks the authority to improve the facility under a Rule 13 permit to include the following equipment:

- Eight (8) Natural Gas Wells;
- Seven (7) Gas Production Units/Heaters each rated at 2.00 MMBtu/hr heat input;
- Two (2) Gas Production Units/Heaters each rated at 4.00 MMBtu/hr heat input;
- Four (4) 400 bbl Produced Water Tanks;
- Produced Water Truck Loadout;
- One (1) Vapor Combustor rated at 10.8 MMBtu/hr;
- One (1) Well Unloading Flare rated at 78.0 MMBtu/hr;
- One (1) Fuel Cell for electrical generation rated at 2,156 Btu/hr;
- One (1) Well Unloading pneumatic pump; and
- Other pneumatic and fugitive components detailed with this application.

Statement of aggregation

The MND 6 pad is located in Marshal County, WV and operated by Noble. Stationary sources of air pollutants may require aggregation of total emission levels if these sources share the same industrial grouping, are operating under common control, and are classified as contiguous or adjacent properties. Noble operates the MND 6 pad with the same industrial grouping as nearby facilities, and some of these facilities are under common control. However, the MND 6 pad is not subject to the aggregation of stationary emission sources because these sites do not meet the definition of contiguous or adjacent facilities.

The MND 6 pad operates under SIC code 1311 (Crude Petroleum and Natural Gas Extraction). There are surrounding wells operated by Noble that share the same twodigit major SIC code of 13 for Crude Petroleum and Natural Gas Extraction. Therefore, the MND 6 pad does share the same SIC codes as the surrounding wells.

Noble is the sole operator of the MND 6 pad. Noble is also the sole operator of other production sites and compressor stations in the area. Therefore, Noble does qualify as having nearby operations under common control.

On August 18, 2016 the EPA Administrator signed the *Source Determination for Certain Emission Units in the Oil and Natural Gas Sector*. This notice clarified EPA's position regarding how properties in the oil and natural gas sector are determined to be adjacent in order to assist permitting authorities and permit applicants in making consistent source determinations. The following proposed regulatory text defines "adjacent" for the oil and gas sector in terms of proximity.

Pollutant emitting activities shall be considered adjacent if they are located on the same surface site, or on surface sites that are located within ¹/₄ mile of one another.

There are no Noble owned or operated sites with a ¹/₄ mile radius of the MND 6 pad. Nearby sites do not meet the definition of contiguous or adjacent properties since they are not in contact and do not share a common boundary. The operations conducted at the MND 6 site do not rely on or interact with other sites. Furthermore, operations separated by this distance do not meet the common sense notion of a "plant."

Based on the above reasoning, Noble is not subject to the aggregation of stationary emission sources since the stationary sources are not considered contiguous or adjacent facilities.

2.0 REGULATORY DISCUSSION

This section outlines the State air quality regulations that could be reasonably expected to apply to the MND 6 pad and makes an applicability determination for each regulation based on activities conducted at the site and the emissions of regulated air pollutants.

West Virginia State Air Regulations

45 CSR 02 – To Prevent and Control Particulate Air Pollution From Combustion of Fuel in Indirect Heat Exchangers

Noble Energy, Inc. Moundsville 6 (MND 6) Production Facility R13 Permit Application

The line heaters associated with gas production units are indirect heat exchangers that combust natural gas but are exempt from this regulation since the heat input capacities are less than 10 MMBtu/hr.

45 CSR 04 – To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contributes to an Objectionable Odor

Operations conducted at the MND 6 wellpad are subject to this requirement. Based on the nature of the process at the wellpad, the presence of objectionable odors is unlikely.

45 CSR 06 – Control of Air Pollution from the Combustion of Refuse

The vapor combustor and well unloading flare will be subject to this Rule. Per 45 CSR 6-4.3, opacity of emissions from the enclosed combustion device shall not exceed 20 percent, except as provided by 4.4. Particulate matter emissions from this unit will not exceed the levels calculated in accordance with 6-4.4.

§45-6-4.4 Determination for Maximum Allowable Particulate Emissions

Emissions (lb/hr) = F x Incinerator Capacity (tons/hr)

Vapor Combustor Emissions

Incinerator Capacity = 0.13 tons/hour or 252 lbs/hr

 $\rho NG = 0.042$ lb/scf – Density of NG from EPA AP42 – Sections 1.4 and 3.2 (NG combustion)

 $\frac{144,000 \, scf}{day} * \frac{1 \, day}{24 \, hours} * \frac{0.042 \, lb}{scf} = \frac{252 \, lb}{hr} = \frac{0.13 \, tons}{hr}$

If the Incinerator Capacity is less than 15,000 lbs/hr, then F = 5.43

F = 5.43 * (0.13 tons per hour)

F = 0.71 lbs/hr

Well Unloading Flare Emissions

Incinerator Capacity = 0.92 tons/hour or 1837.5 lbs/hr

 $\rho NG = 0.042$ lb/scf – Density of NG from EPA AP42 – Sections 1.4 and 3.2 (NG combustion)

 $\frac{1,050,000\,scf}{day} * \frac{1\,day}{24\,hours} * \frac{0.042\,lb}{scf} = \frac{1837.5\,lb}{hr} = \frac{0.92\,tons}{hr}$

If the Incinerator Capacity is less than 15,000 lbs/hr, then F = 5.43

F = 5.43 * (0.92 tons per hour)

F = 4.99 lbs/hr

The enclosed combustion devices utilize AP-42 Section 1.4 PM emission factors to determine emissions from the combustion of refuse natural gas. Based upon the type of fuel combusted and the emission factors utilized, the PM emissions from the enclosed combustion devices will be well below the maximum allowable particulate emissions mandated by 45 CSR 06.

45 CSR 10 – To Prevent and Control Air Pollution from the Emission of Sulfur Oxides

The line heaters are indirect heat exchangers that combust natural gas but are exempt from this regulation since the heat input capacities are less than 10 MMBtu/hr.

45 CSR 13 – Permits for Construction, Modification, Relocation and Operation of Stationary Sources of Air Pollutants

This R13 permit application is submitted for the operational activities associated with Noble's production of natural gas.

45 CSR 14 – Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution for the Prevention of Significant Deterioration

Federal construction permitting programs regulate new and modified sources of attainment pollutants under Prevention of Significant Deterioration (PSD). Operation of equipment at the MND 6 pad will not exceed emission thresholds established by this permitting program. Noble will monitor future construction and modification activities at the site closely and will compare any future increase in emissions with the PSD thresholds to ensure these activities will not trigger this program.

45 CSR 16 - Standards of Performance for New Stationary Sources (NSPS)

45 CSR 16 applies to all registrants that are subject to any of the NSPS requirements, which are described in more detail in the Federal Regulations section.

45 CSR 19 – Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution which Cause or Contributed to Non-attainment

Federal construction permitting programs regulate new and modified sources of nonattainment pollutants under Non-Attainment New Source Review (NNSR). Marshall County, WV is in full attainment for all nonattainment for the 2010 Sulfur Dioxide standard with a National Ambient Air Quality Standard (NAAQS). The sulfur dioxide potential to emit for the MND 6 site is 0.08 tpy. Noble will monitor future construction and modification activities at the site that would cause an increase in emissions.

45 CSR 25 – Control of Air Pollution from Hazardous Waste Treatment, Storage, and Disposal Facilities

No hazardous waste will be burned at this well site; therefore, it is not subject to this hazardous waste rule.

45 CSR 30 – Requirements for Operating Permits

45 CSR 30 applies to the requirements of the federal Title V operating permit program (40 CFR 70). The major source thresholds for the Title V operating permit program regulations are 10 tons per year (tpy) of a single hazardous air pollutant (HAP), 25 tpy of any combination of HAPs, or 100 tpy of all other regulated pollutants.

The potential emissions of all regulated pollutants at the proposed facility are below the corresponding major source threshold(s). Therefore, the wellpad will not be a major source under the Title V program.

45 CSR 34 – National Emission Standards for Hazardous Air Pollutants (NESHAP)

45 CSR 34 applies to all registrants that are subject to any of the NESHAP requirements. Additional discussion is provided in the federal discussion of this permit application.

Federal Regulations

New Source Performance Standards

40 CFR 60, Subpart OOOO (Standards of Performance for Crude oil and Natural Gas Production, Transmission and Distribution)

Subpart OOOO establishes emission standards and compliance schedules for the control of volatile organic compounds (VOC) and sulfur dioxide (SO_2) emissions from affected facilities that commence construction, modification or reconstruction between August 23, 2011 and September 18, 2015.

Based upon the construction date of MND 6, Noble is not subject to any of the requirements of NSPS OOOO.

Subpart OOOOa (Standards Of Performance For Crude Oil And Natural Gas Facilities For Which Construction, Modification, Or Reconstruction Commenced After September 18, 2015)

The MND 6 will commence construction after September 18, 2015 and qualifies as an affected facility under this OOOOa. Noble will operate the following affected facilities under the Rule:

Noble Energy, Inc. Moundsville 6 (MND 6) Production Facility R13 Permit Application

- Each gas well affected facility, which is a single natural gas well; and
- Pneumatic pump affected facility.

The MND 6 does not operate equipment that would qualify as an affected facility for the following:

- Storage vessels: Emissions from each storage vessel are expected to be below 6 tons per year (tpy) of VOC. Therefore, the produced water tanks are not affected storage vessels; and
- Pneumatic devices: All pneumatic devices installed at the MND 6 facility are either low-continuous bleed or intermittent bleed and do not qualify as affected sources.
- Fugitive Emissions: The MND pad will be subject to the LDAR requirements of this Rule. Noble will comply by conducting scans by 2017 or 60 days after the start of production, whichever is later.

40 CFR 60 Subpart JJJJ (Standards of Performance for Stationary Spark Ignition Internal Combustion Engines)

The MND 6 facility does not operate any engines.

No additional NSPS are expected to be applicable to this facility.

National Emissions Standards for Hazardous Air Pollutants

The following NESHAP are not applicable to the MND 6 facility:

- 40 CFR 63 Subpart HH (National Emission Standards for Hazardous Air Pollutants from Oil and Natural Gas Production Facilities).
- 40CFR63 Subpart ZZZZ (National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines)

No additional NESHAP are expected to be applicable to this facility.

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALITY 601 57 th Street, SE Charleston, WV 25304 (304) 926-0475 WWW.dep.wv.gov/dag	APP) TI	LICATION FO AN TLE V PERM (OPTIO	OR NSR PERMIT D IT REVISION DNAL)				
PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KNO	OWN): PLEASE CHECK	TYPE OF 45CSR	30 (TITLE V) REVISION (IF ANY):				
		TIVE AMENDMENT					
CLASS I ADMINISTRATIVE UPDATE TEMPORARY							
CLASS II ADMINISTRATIVE UPDATE AFTER-THE-FA	IF ANY BOX ABC INFORMATION A	IS ATTACHMENT S	TO THIS APPLICATION				
FOR TITLE V FACILITIES ONLY: Please refer to "Title V I (Appendix A, "Title V Permit Revision Flowchart") and a	Revision Guidance" in or bility to operate with the	der to determine yo changes requested	our Title V Revision options I in this Permit Application.				
Sect	tion I. General						
 Name of applicant (as registered with the WV Secretary Noble Energy, Inc. 	y of State's Office):	2. Federal Emp	oloyer ID No. (FEIN): 73-0785597				
3. Name of facility (if different from above):		4. The applicant is the:					
Moundsville 6 (MND 6)		OWNER OPERATOR BOTH					
5A. Applicant's mailing address: 1000 Noble Energy Drive Cannonsburg, PA 15317	5B. Facility's pres 1652 Fish Creek Ro Proctor, WV 26055	iB. Facility's present physical address: 652 Fish Creek Road ²roctor, WV 26055					
 6. West Virginia Business Registration. Is the applicant a If YES, provide a copy of the Certificate of Incorporation change amendments or other Business Registration C If NO, provide a copy of the Certificate of Authority/A amendments or other Business Certificate as Attachments 	 6. West Virginia Business Registration. Is the applicant a resident of the State of West Virginia? YES NO If YES, provide a copy of the Certificate of Incorporation/Organization/Limited Partnership (one page) including any name change amendments or other Business Registration Certificate as Attachment A. If NO, provide a copy of the Certificate of Authority/Authority of L.L.C./Registration (one page) including any name change amendments or other Business Certificate as Attachment A. 						
7. If applicant is a subsidiary corporation, please provide the	ne name of parent corpo	oration:					
 8. Does the applicant own, lease, have an option to buy or otherwise have control of the <i>proposed site</i>? XES NO If YES, please explain: Noble Energy, Inc. owns and operates the Moundsville 6 production facility. If NO, you are not eligible for a permit for this source. 							
 9. Type of plant or facility (stationary source) to be constructed, modified, relocated, administratively updated or temporarily permitted (e.g., coal preparation plant, primary classification System (NAICS) code for the facility: 211111 							
11A. DAQ Plant ID No. (for existing facilities only): 051-00232 11B. List all current 45CSR13 and 45CSR30 (Title V) permassociated with this process (for existing facilities on N/A							
All of the required forms and additional information can be fo	All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.						

12A.

 For Modifications, Administrative Updates or Temporary permits at an existing facility, please provide directions to the present location of the facility from the pearest state road; 						
 For Construction or Relocation permits, please provide directions to the <i>proposed new site location</i> from the nearest state road. Include a MAP as Attachment B. 						
From WV Route 2 south, make a left turn onto CR 74 (Fish Creek Road) and travel 1.67 miles to intersection. Make a left and follow lease road to site.						
12.B. New site address (if applicable):	12C. Nearest city or town:	12D. County:				
N/A	Proctor	Marshall				
12.E. UTM Northing (KM): 517.8223	12F. UTM Easting (KM): 4407.5363	12G. UTM Zone: 17N				
13. Briefly describe the proposed change(s) at the facilit Addition of 7 well heads, 7 line heaters, a process flare, a	y: and a VOC combustor to the site.					
 14A. Provide the date of anticipated installation or change If this is an After-The-Fact permit application, providence did happen: 	ge: 6/25/17 ide the date upon which the proposed	14B. Date of anticipated Start-Up if a permit is granted: 6/25/17				
14C. Provide a Schedule of the planned Installation of/ application as Attachment C (if more than one uni	Change to and Start-Up of each of the t is involved).	units proposed in this permit				
15. Provide maximum projected Operating Schedule of activity/activities outlined in this application: Hours Per Day: 24 Days Per Week: 7 Weeks Per Year: 52						
16. Is demolition or physical renovation at an existing facility involved? YES NO						
17. Risk Management Plans. If this facility is subject to 112(r) of the 1990 CAAA, or will become subject due to proposed						
changes (for applicability help see www.epa.gov/ceppo), submit your Risk Management Plan (RMP) to U. S. EPA Region III.						
18. Regulatory Discussion. List all Federal and State air pollution control regulations that you believe are applicable to the						
proposed process (if known). A list of possible applicable requirements is also included in Attachment S of this application						
(Title V Permit Revision Information). Discuss applica	bility and proposed demonstration(s) of	compliance (if known). Provide this				
information as Attachment D.						
Section II. Additional att	achments and supporting d	ocuments.				
19. Include a check payable to WVDEP – Division of Air	Quality with the appropriate application	n fee (per 45CSR22 and				
45CSR13).						
20. Include a Table of Contents as the first page of you	ir application package.					
21. Provide a Plot Plan , e.g. scaled map(s) and/or skete source(s) is or is to be located as Attachment E (Re	ch(es) showing the location of the prope efer to <i>Plot Plan Guidance</i>) .	rty on which the stationary				
 Indicate the location of the nearest occupied structure 	e (e.g. church, school, business, residen	ce).				
22. Provide a Detailed Process Flow Diagram(s) show device as Attachment F.	ving each proposed or modified emissio	ns unit, emission point and control				
23. Provide a Process Description as Attachment G.						
 Also describe and quantify to the extent possible and quantify the extent possible and quantify	all changes made to the facility since the	e last permit review (if applicable).				
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.						

24. Provide Material Safety Data Sheets (MSDS) for all materials processed, used or produced as Attachment H.						
 For chemical processes, provide a MSDS for each compound emitted to the air. 						
25. Fill out the Emission Units Table and provide it as Attachment I.						
26. Fill out the Emissi	on Points Data Su	nmary Sheet (Table	1 and Table	e 2) and provide it	t as Attachment J.	
27. Fill out the Fugitiv	e Emissions Data	Summary Sheet and	provide it a	s Attachment K.		
28. Check all applicab	le Emissions Unit I	Data Sheets listed be	low:			
Bulk Liquid Transfe	r Operations	🛛 Haul Road Emiss	sions	Quarry		
Chemical Processe	S	Hot Mix Asphalt I	Plant	Solid Materia	Is Sizing, Handling and Storage	
Concrete Batch Pla	nt	Incinerator				
Grey Iron and Steel	Foundry	Indirect Heat Exc	changer	Storage Tank	(S	
General Emission L	Init, specify Pne	umatic Controllers, Fu	iel Cell Gen	erator, and Line H	leaters	
Fill out and provide the	Emissions Unit Da	ata Sheet(s) as Attac	hment L.			
29. Check all applicab	le Air Pollution Co	ntrol Device Sheets	listed below	:		
Absorption Systems	3	Baghouse			⊠ Flare	
Adsorption Systems	3	Condenser			Mechanical Collector	
Afterburner		Electrostation	Precipitato	r	Wet Collecting System	
Other Collectors, sp	pecify					
			•			
Fill out and provide the	Air Pollution Cont	rol Device Sheet(s)	as Attachm	ent M.		
30. Provide all Suppo Items 28 through 3	rting Emissions Ca 31.	alculations as Attach	iment N, or	attach the calcula	ations directly to the forms listed in	
31. Monitoring, Reco testing plans in ord application. Provid	rdkeeping, Reporti der to demonstrate o de this information a	ing and Testing Plan compliance with the pr s Attachment O.	s. Attach proposed emi	roposed monitorir issions limits and	ng, recordkeeping, reporting and operating parameters in this permit	
 Please be aware to measures. Addition are proposed by the 	hat all permits must onally, the DAQ may ne applicant, DAQ w	be practically enforce not be able to accept ill develop such plans	able whether all measure and include	er or not the applic es proposed by th e them in the perm	cant chooses to propose such le applicant. If none of these plans nit.	
32. Public Notice. A	t the time that the ap	plication is submitted	l, place a Cl	ass I Legal Adve	ertisement in a newspaper of general	
circulation in the a	rea where the sourc	e is or will be located	(See 45CSI	R§13-8.3 through	45CSR§13-8.5 and <i>Example Legal</i>	
Advertisement fo	r details). Please su	Ibmit the Affidavit of	Publicatior	n as Attachment	P immediately upon receipt.	
33. Business Confide	entiality Claims. Do	pes this application in	clude confid	lential information	(per 45CSR31)?	
	🗌 YES	⊠ NO				
If YES, identify each segment claimed of Notice – Claims of Notice	ch segment of inforn confidential, includin of Confidentiality" (nation on each page t g the criteria under 45 guidance found in the	hat is subm 5CSR§31-4. <i>General In</i>	itted as confidenti 1, and in accorda structions as Att	al and provide justification for each nce with the DAQ's <i>"Precautionary</i> achment Q.	
	Sec	ction III. Certifie	cation of	f Information	1	
34. Authority/Delegat Check applicable	tion of Authority.(Authority Form belo	Dnly required when so ow:	omeone othe	er than the respor	nsible official signs the application.	
Authority of Corpora	ation or Other Busine	ess Entity	□ A	uthority of Partne	rship	
Authority of Govern	mental Agency		□ A	uthority of Limited	d Partnership	
Submit completed and	signed Authoritv F	orm as Attachment F	ર.	-		
All of the required form	s and additional info	rmation can be found u	under the Pe	rmitting Section of	DAQ's website, or requested by phone.	

35A. Certification of Information. To certify this permit application, a Responsible Official (per 45CSR§13-2.22 and 45CSR§30-2.28) or Authorized Representative shall check the appropriate box and sign below.

Certification of Truth, Accuracy, and Completeness

I, the undersigned Responsible Official / Authorized Representative, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.

Compliance Certification

Except for requirements identified in the Title V Application for which compliance is not achieved, I, the undersigned hereby certify that, based on information and belief formed after reasonable inquiry, all air contaminant sources identified in this application are in compliance with all applicable requirements.

SIGNATURE(Please	DATE: 2/27/17 (Please use blue ink)			
35B. Printed name of signee:		35C. Title:		
RJ Moses		Operations Manager		
35D. E-mail:	36E. Phone:	36F. FAX:		
rj.moses@nblenergy.com	724-820-3000	724-820-3098		
36A. Printed name of contact person (if differe	36B. Title:			
Phil Schlagel		Air Quality Manager		
	l			
36C. E-mail:	36D. Phone:	36E. FAX:		
phil.schlagel@nblenergy.com	281-872-3202			

PLEASE CHECK ALL APPLICABLE ATTACHMENTS INCLUDED	DWITH THIS PERMIT APPLICATION:					
 Attachment A: Business Certificate Attachment B: Map(s) Attachment C: Installation and Start Up Schedule Attachment D: Regulatory Discussion Attachment E: Plot Plan Attachment F: Detailed Process Flow Diagram(s) Attachment G: Process Description Attachment H: Material Safety Data Sheets (MSDS) Attachment I: Emission Units Table 	 Attachment K: Fugitive Emissions Data Summary Sheet Attachment L: Emissions Unit Data Sheet(s) Attachment M: Air Pollution Control Device Sheet(s) Attachment N: Supporting Emissions Calculations Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans Attachment P: Public Notice Attachment Q: Business Confidential Claims Attachment R: Authority Forms Attachment S: Title V Permit Revision Information 					
Attachment J: Emission Points Data Summary Sheet	🛛 Application Fee					
Please mail an original and three (3) copies of the complete permit application with the signature(s) to the DAQ, Permitting Section, at the address listed on the first page of this application. Please DO NOT fax permit applications.						

FOR AGENCY USE ONLY - IF THIS IS A TITLE V SOURCE:

Forward 1 copy of the application to the Title V Permitting Group and:

☐ For Title V Administrative Amendments:

□ NSR permit writer should notify Title V permit writer of draft permit,

For Title V Minor Modifications:

□ Title V permit writer should send appropriate notification to EPA and affected states within 5 days of receipt,

□ NSR permit writer should notify Title V permit writer of draft permit.

□ For Title V Significant Modifications processed in parallel with NSR Permit revision:

□ NSR permit writer should notify a Title V permit writer of draft permit,

Device a public notice should reference both 45CSR13 and Title V permits,

EPA has 45 day review period of a draft permit.

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

Table of Contents

- ATTACHMENT A BUSINESS CERTIFICATE
- ATTACHMENT B FACILITY MAP
- ATTACHMENT C INSTALLATION AND START-UP SCHEDULE
- ATTACHMENT D REGULATORY DISCUSSION
- ATTACHMENT E PLOT PLAN
- ATTACHMENT F DETAILED PROCESS FLOW DIAGRAMS
- ATTACHMENT G PROCESS DESCRIPTION
- ATTACHMENT H SAFETY DATA SHEETS (NOT INCLUDED)
- ATTACHMENT I EMISSION UNITS TABLE
- ATTACHMENT J EMISSION POINTS DATA SUMMARY SHEET
- ATTACHMENT K FUGITIVE EMISSION DATA SUMMARY SHEET
- ATTACHMENT L EMISSION UNIT DATA SHEETS
- ATTACHMENT M AIR POLLUTION CONTROL DEVICE SHEETS
- ATTACHMENT N SUPPORTING EMISSION CALCULATIONS
- ATTACHMENT O MONITORING/RECORDKEEPING/REPORTING/TESTING PLANS
- ATTACHMENT P PUBLIC NOTICE
- ATTACHMENT Q BUSINESS CONFIDENTIALITY CLAIMS (NOT INCLUDED)
- ATTACHMENT R AUTHORITY FORMS (NOT INCLUDED)
- ATTACHMENT S TITLE V PERMIT REVISION INFORMATION (NOT INCLUDED)

OTHER SUPPORTING DOCUMENTS NOT DESCRIBED ABOVE

Attachment A

I, Natalie E. Tennant, Secretary of State of the State of West Virginia, hereby certify that

by the provisions of the West Virginia Code, Articles of Merger were received and filed, MERGING NOBLE ENERGY MARKETING, INC., A QUALIFIED DE ORGANIZATION, WITH AND INTO NOBLE ENERGY, INC., A QUALIFIED DE ORGANIZATION.

Therefore, I hereby issue this

CERTIFICATE OF MERGER

Given under my hand and the Great Seal of the State of West Virginia on this day of December 15, 2010

atelik Eyenman

Secretary of State

State of Delaware Secretary of State Division of Corporations Delivered 06:59 FM 12/17/2009 FILED 06:59 PM 12/17/2009 SRV 091114165 - 0738126 FILE

CERTIFICATE OF MERGER OF NOBLE ENERGY MARKETING, INC. (a Delaware corporation) WITH AND INTO NOBLE ENERGY, INC. (a Delaware corporation)

Pursuant to Title 8, Section 251(c) of the Delaware General Corporation Law, the undersigned corporation hereby certifies the following:

- 1. The name of the surviving corporation is Noble Energy, Inc., a Delaware corporation, and the name of the corporation being merged into the surviving corporation is Noble Energy Marketing, Inc., a Delaware corporation.
- 2. The Agreement of Merger has been approved, adopted, certified, executed, and acknowledged by each of the constituent corporations.
- 3. The name of the surviving corporation is Noble Energy, Inc., a Delaware corporation.
- The Certificate of Incorporation of Noble Energy, Inc. shall be the Certificate of Incorporation of the surviving corporation.
- 5. The merger is to become effective at 11:59 p.m. Eastern time on December 31, 2009.
- A copy of the Agreement of Merger is on file at the place of business of Noble Energy, Inc., which is located at 100 Glenborough Drive, Suite 100, Houston, Texas 77067.
- Upon request, a copy of the Agreement of Merger will be furnished by Noble Energy, Inc., without cost, to any stockholder of the constituent corporations.

IN WITNESS WHEREOF, the undersigned has caused this Certificate of Merger to be executed by its duly authorized officer as of the 16th day of December, 2009.

NOBLE ENERGY, INC.

By: <u>/s/ David L. Stover</u> Name: David L. Stover Title: Vice President

670715.2

Delaware

PAGE 1

The First State

I, JEFFREY W. BULLOCK, SECRETARY OF STATE OF THE STATE OF DELAWARE, DO HEREBY CERTIFY THE ATTACHED IS A TRUE AND CORRECT COPY OF THE CERTIFICATE OF MERGER, WHICH MERGES:

"NOBLE ENERGY MARKETING, INC.", A DELAWARE CORPORATION,

WITH AND INTO "NOBLE ENERGY, INC." UNDER THE NAME OF "NOBLE ENERGY, INC.", A CORPORATION ORGANIZED AND EXISTING UNDER THE LAWS OF THE STATE OF DELAWARE, AS RECEIVED AND FILED IN THIS OFFICE THE SEVENTEENTH DAY OF DECEMBER, A.D. 2009, AT 6:59 O'CLOCK P.M.

AND I DO HEREBY FURTHER CERTIFY THAT THE EFFECTIVE DATE OF THE AFORESAID CERTIFICATE OF MERGER IS THE THIRTY-FIRST DAY OF DECEMBER, A.D. 2009, AT 11:59 O'CLOCK P.M.

DEC 1 5 2010

IN THE OFFICE OF SECRETARY OF STATE

AUTHENTICATION: 8430215

DATE: 12-15-10

0738126 8100M

101192174 You may verify this certificate online at corp.delaware.gov/authver.shtml

I, Natalie E. Tennant, Secretary of State of the State of West Virginia, hereby certify that

NOBLE ENERGY MARKETING, INC.

Control Number: 99D1Z

a corporation formed under the laws of Delaware has filed its "Application for Certificate of Authority" to transact business in West Virginia as required by the provisions of the West Virginia Code. I hereby declare the organization to be registered as a foreign corporation from its effective date of January 29, 2009.

Therefore, I issue this

CERTIFICATE OF AUTHORITY

to the corporation authorizing it to transact business in West Virginia

Given under my hand and the Great Seal of the State of West Virginia on this day of January 29, 2009

Vlatetil E. Yerma

Secretary of State

Natalia Seconta State Ci 1900 & Clarge FiL2:0	E. Transmit y of State upitol norwisk Bivel. E. fon, WV 25305 ME ORIGINAL	FILED JAN 2 9 2009 IN THE OFFICE OF SECRETARY OF STATE SECRETARY OF STATE CONSTRUCTION DIVISION TOL (304) 558-3381 WEST VIRGINIA Promy Bullor, Manager CONSTRUCTION TOL (304) 558-3381 WWW.WWW.CON HOUS: BJORN SCIENCE HOUS: BJORN SCIENCE HOUS: BJORN SCIENCE
FRES F	ER SCHEDULE	CTRL#
н. В.	The name of the corporation as it is regionred in its home state is:	Noble Energy Marketing, Inc.
b .	State of _Delanare Date of	Incorpylanuary 18, 1904Duspices (6 yes, or perpetual) Perpetual Warning: The reporting Versionsents in Wist Vs. will not and used a withdowned in Sind.
с.	NAIC#	(If an insurance company)
2. 1	FRINCIPAL OFFICE INFORMATIC	M:
•	Address of the principal office of the corporation:	No. & Binnet 100 Gienborough Drive. Suite 100 Houston, TX 77067
b.	Mailing address; if different, from above address:	Resultio Bax
3 .	WEST VIRGINIA INFORMATION:	
•	Corporate terms to be used in W. Vi.: (chick one, fiblics instructions)	Home state maste as listed on line 1.a. showe, if available.
b .	Address of registand office in West Virginie, if any	No. & Streat 707 Virginia Streat Fait Charleston, WV 25301
C.	Mailing address is WV, if different, from above	Sinet/PO Ber
đ	Proposed purpose(s) for transaction of business in WV	
٩	AGENT OF PROCESS: Properly designated petcon to whom notice of percess may be sent, if eny:	Namo C T Corporation System Address 707 Virginia Bruel East, Charlesten, WV 25901

Form OF-1

Rex 1/08

5	CORPORATE STATUS INFORMATION:
	a. Corporation is organized as (check one):
	Non-profit
	b. Directors and Officers: (Add antra page if necessary; places list all efficers)
	Offer Namo Address
	The term bet of even of least it holds or expects to hold in West Virginia is
•	Contact and Signature Information.
	Constanct and Signature Information. Jacob Fagan Zett. 872.0100 Zett. 872.0100 Zett. 872.0100 Zett. 872.0100
•	7. Constact and Signature Information. a. Janat Fagan Contact Name b. <u>Kirk A. Moora</u> This or Connective of Signate

.

.

.

NOBLE ENERGY MARKETING, INC. s Delaware corporation

Directory

Charles D. Davidson 100 Gienborough Drive, Suits 100 Houston, Texas 77067

Chris Tong 100 Glenborough Drive, Suite 100 Houston, Texas 77067

Arnold J. Johnson 100 Gienborough Drive, Suite 100 Houston, Texas 77067

Officert

Name	Title(s)	Address
Charles D. Davidson	Chief Excoutive Officer	100 Gleaborough Daive, Suite 100 Houston, Texas 77057
David L. Stover	Vice President	100 Glenborough Drive, Suite 100 Houston, Taxas 77067
Arnold J. Johnson	Vice President, General Counsel, and Secretary	100 Glenberough Drive, Suite 100 Houston, Texas 77067
Chris Tong	Vice President - Pinance and Treasurer	100 Gienborough Drive, Suite 100 Houston, Texas 77067
Kirk A. Moore	Assistant Secretary	100 Glenborough Drive, Suite 100 Houston, Texas 77067

060152 003224 HOURTON 566443-3

Delaware PAGE 1

The First State

I, JEFFREY W. BULLOCK, SECRETARY OF STATE OF THE STATE OF DELAWARE, DO HEREBY CERTIFY "NOBLE ENERGY MARKETING, INC." IS DULY INCORPORATED UNDER THE LAWS OF THE STATE OF DELAWARE AND IS IN GOOD STANDING AND HAS A LEGAL CORPORATE EXISTENCE SO FAR AS THE RECORDS OF THIS OFFICE SHOW, AS OF THE TWENTY-NINTH DAY OF JANUARY, A.D. 2009.

AND I DO HEREBY FURTHER CERTIFY THAT THE SAID "NOBLE ENERGY MARKETING, INC. " WAS INCORPORATED ON THE EIGHTEENTH DAY OF JANUARY, A.D. 1994.

AND I DO HEREBY FURTHER CERTIFY THAT THE ANNUAL REPORTS HAVE BEEN FILED TO DATE.

AND I DO HEREBY FURTHER CERTIFY THAT THE FRANCHISE TAXES HAVE BEEN PAID TO DATE.

7106879 AUTHENTYC TTON:

DATE: 01-29-09

2372438 8300

090081032 You may verify this certificate onlin

Attachment B

MND6 Pad Marcellus Business Unit

Attachment C

Attachment C Schedule of Installation

The natural gas production facility detailed within this permit application will commence construction on permit issuance.

Attachment D

Attachment D Regulatory Discussion

A state and federal regulatory discussion is included within the introduction document submitted with the permit application forms.

Attachment E

REV. BY DATE

DESCRIPTION

CONTRACTOR APPROVED

DATE

n Unit ID	Emission Unit Description
TK1	400 BBL PROD WATER STORAGE TANK
TK2	400 BBL PROD WATER STORAGE TANK
ТКЗ	400 BBL PROD WATER STORAGE TANK
TK4	400 BBL PROD WATER STORAGE TANK
·LH1	4.0 MMBTU/HR LINE HEATER
·LH2	4.0 MMBTU/HR LINE HEATER
-TL1	PRODUCED WATER TRUCK LOADING
E GEN	THERMO ELECRIC GENERATOR
1 THRU 7	2.0 MMBTU/HR HEATER
COMB	VAPOR COMBUSTOR - Leed Fab EC48
PILOT	COMBUSTOR PILOT
-FL	PROCESS FLARE - NOV
PILOT	FLARE PILOT
PUMP	SANDPIPER G20 DIAPHRAGM PUMP
1 THRU 9	GPU FLOW VALVE CONTROLLER
THRU 18	GPU LEVEL CONTROLLERS
S-BP	BACKPRESSURE VALVE CONTROLLER
UG	EQUIPT COMPONENT FUGITIVE ESTIMATE

			n	e not	ole hergy		SHEET
		- N	MARCELLUS SHALE DEVELOPMENT				1
		MOUNDSVILLE 6 PLOT PLAN				OF	
-	-			AQ PERMIT	TING		1
NOBLE ENERGY	DATE	DATE DRAWN:	04/14/2015				I
APPROVED	DATE	DRAWN BY:	NB	DVVG. NO.		B	

Attachment F

e and Path: G:\App ed By: Justinholmes ed Date: Tuesday, I

REV.	BY	DATE	DESCRIPTION	CONTRACTOR APPROVED

E AND PATH: G:\APPA ED BY: JUSTINHOLMES ED DATE: TUESDAΥ, Ν

Attachment G

Attachment G Process Description

This permit application is being filed for Noble Energy Inc. for the production of condensate, gas, and produced water from eight (8) production wellheads and associated well equipment at the Moundsville 6 (MND 6) natural gas production facility.

Natural gas, condensate, and produced water flows from wellheads QAY 0101-0107 through seven (7) gas production units (GPU) and heaters (5S-GPU1-7) where three phase separation occurs. The natural gas and condensate from the GPUs will exit the facility via a sales gas pipeline. Produced water from the separators flows into four (4) Produced Water Tanks (1S-TK1-4). Produced water is transported off-site via tanker trucks. Emissions from the Produced Water Tanks and tanker truck loading activities are routed to a 10.8 MMBtu/hr VOC Combustor (6S-COMB).

Natural gas, condensate, and produced water flows from wellhead QAY-0801 through two (2) sand separators, GPU heaters (2S-LH1-2), and three phase separators. The gas and condensate will exit the facility via a sales gas pipeline and condensate pipeline, respectively. Produced water is sent to Produced Water Tanks (1S-TK1-4) and transported off-site via tanker trucks.

Liquids from well blowdown activities are routed to a well unloading knockout pot. The liquids are then pumped via the Well Unloading Pump (10S-PUMP) to Produced Water Tanks (1S-TK1-4) and transported off-site via tanker trucks. The pneumatically driven well unloading pump is controlled by the Well Unloading process flare. Emissions from the well unloading knockout pot and Well Unloading Pump are routed to the 78.0 MMBtu/hr Well Unloading process flare (8S-FL).

A process flow diagram is included as Attachment F.
Attachment I

ATTACHMENT I – EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment L table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type ⁴ and Date of Change	Control Device(s) ⁵	$ERD(s)^{6}$
1S-TK1-4	6E-COMB	Produced Water Tanks	2017	2017	400 bbl each	New	N/A	6S-COMB
2S-LH1	2E-LH1	GPU Heater	2016	2016	4.0 MMBtu/hr	Existing	N/A	N/A
2S-LH2	2E-LH2	GPU Heater	2016	2016	4.0 MMBtu/hr	Existing	N/A	N/A
3S-TL	3E-TL	Tank Loading Rack	2016	2016	1,168,000 bbl/yr	Modified	Loading Rack	6S-COMB
5S-GPU1	5E-GPU1	GPU Heater	2017	2015	2.0 MMBtu/hr	New	N/A	N/A
5S-GPU2	5E-GPU2	GPU Heater	2017	2015	2.0 MMBtu/hr	New	N/A	N/A
5S-GPU3	5E-GPU3	GPU Heater	2017	2015	2.0 MMBtu/hr	New	N/A	N/A
5S-GPU4	5E-GPU4	GPU Heater	2017	2015	2.0 MMBtu/hr	New	N/A	N/A
5S-GPU5	5E-GPU5	GPU Heater	2017	2015	2.0 MMBtu/hr	New	N/A	N/A
5S-GPU6	5E-GPU6	GPU Heater	2017	2017	2.0 MMBtu/hr	New	N/A	N/A
5S-GPU7	5E-GPU7	GPU Heater	2017	2017	2.0 MMBtu/hr	New	N/A	N/A
6S-COMB	6E-COMB	Flare - VOC Combustor	2017	2017	10.8 MMBtu/hr	New	N/A	N/A
7S-FC	7E-FC	Fuel Cell	2017	2017	0.0022 MMBtu/hr	New	N/A	N/A
8S-FL	8E-FL	Process Flare - Well Unloading	2017	2017	78.0 MMBtu/hr	New	N/A	N/A

10S-PUMP	8E-FL	Well Unloading Pump	2017	2017	20.00 scf/min	New	N/A	8S-FL
11S-FC1-9	11E-FC1-9	Pneumatic Flow Control Valves	2017	2017	6.00 scf/hr	New	N/A	N/A
12S-LC1- 18	12E-LC1- 18	Pneumatic Level Control	2017	2017	0.02 scf/hr	New	N/A	N/A
13S-BP	13E-BP	Pneumatic Back Pressure Control Valve	2017	2017	6.00 scf/hr	New	N/A	N/A
¹ For Emission Units (or Sources) use the following numbering system:1S, 2S, 3S, or other appropriate designation. ² For Emission Points use the following numbering system:1E, 2E, 3E, or other appropriate designation. ³ When required by rule								

⁴ New, modification, removal, existing
 ⁵ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.
 ⁶ For ERDs use the following numbering system: 1D, 2D, 3D,... or other appropriate designation.

Attachment J

Attachment J EMISSION POINTS DATA SUMMARY SHEET

							Table 1	: Emissions D	ata						
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emiss Ve Through <i>(Mus Emission</i> & Pla	ion Unit nted This Point <i>t match</i> Units Table of Plan)	Air Po Control (Must Emissio Table Pl	ollution Device match on Units & Plot an)	Vent T Emiss (che process	nt Time for ission Unit chemical cesses only) All Regula Pollutan Chemic Name/C.		Maximum Uncon Emiss	Potential trolled sions ⁴	Maxi Pote Contr Emiss	mum ential rolled sions ⁵	Emission Form or Phase (At exit conditions,	Est. Method Used ⁶	Emission Concentrati on ⁷ (ppmv or mg/m ⁴)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Liquid or Gas/Vapor)		
6E-COMB	Vent	1S-TK1-4	Produced Water Tanks - Liquids Unloading	6S- COMB	Flare	N/A	N/A	HAPs CO ₂ CO ₂ e CH ₄ VOCs	0.01 0.07 26.22 1.04 0.27	0.10 0.33 114.84 4.58 1.21	0.01 0.02 8.24 0.32 0.08	0.03 0.10 36.06 1.43 0.38	Gas/Vapor	AP-42	
2E-LH1	Heater	2S-LH1	GPU Heater	N/A	N/A	N/A	N/A	HAPs Hexane CO $PM_{10/2.5}$ CO_2 CO_2e NO_x CH_4 VOCs	<0.01 <0.01 0.32 <0.01 467.91 468.39 0.38 <0.01 0.02	0.03 0.03 1.40 0.03 2049.44 2051.56 1.67 0.04 0.09	<0.01 <0.01 0.32 <0.01 467.91 468.39 0.38 <0.01 0.02	0.03 0.03 1.40 0.03 2049.44 2051.56 1.67 0.04 0.09	Gas/Vapor	AP-42	
2E-LH2	Heater	2S-LH2	GPU Heater	N/A	N/A	N/A	N/A	HAPs Hexane CO PM _{10/2.5} CO ₂ CO ₂ e NO _x CH ₄ VOCs	<0.01 <0.01 0.32 <0.01 467.91 468.39 0.38 <0.01 0.02	0.03 0.03 1.40 0.03 2049.44 2051.56 1.67 0.04 0.09	<0.01 <0.01 0.32 <0.01 467.91 468.39 0.38 <0.01 0.02	0.03 0.03 1.40 0.03 2049.44 2051.56 1.67 0.04 0.09	Gas/Vapor	AP-42	
5E-GPU1	Heater	5S-GPU1	GPU Heater	N/A	N/A	N/A	N/A	HAPs Hexane CO PM _{10/2.5} CO ₂ CO ₂ e NO _x CH ₄ VOCs	<0.01 <0.01 0.16 <0.01 233.95 234.20 0.19 <0.01 0.01	0.02 0.02 0.70 0.02 1024.72 1025.78 0.83 0.02 0.05	<0.01 <0.01 0.16 <0.01 233.95 234.20 0.19 <0.01 0.01	0.02 0.02 0.70 0.02 1024.72 1025.78 0.83 0.02 0.05	Gas/Vapor	AP-42	
5E-GPU2	Heater	5S-GPU2	GPU Heater	N/A	N/A	N/A	N/A	HAPs Hexane CO PM _{10/2.5} CO ₂ CO ₂ e NO _x CH ₄ VOCs	<0.01 <0.01 0.16 <0.01 233.95 234.20 0.19 <0.01 0.01	0.02 0.02 0.70 0.02 1024.72 1025.78 0.83 0.02 0.05	<0.01 <0.01 0.16 <0.01 233.95 234.20 0.19 <0.01 0.01	0.02 0.02 0.70 0.02 1024.72 1025.78 0.83 0.02 0.05	Gas/Vapor	AP-42	

							Table 1	: Emissions D	ata						
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	n Emission Unit Vented Through This Point <i>(Must match Emission Units Table & Plot Plan)</i>		Air Pollution Control Device t (Must match Emission Units Table & Plot Plan)		Vent Time for Emission Unit (chemical processes only)		All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Maximum Potential Uncontrolled Emissions ⁴		al Maximum Potential Controlled Emissions ⁵		Emission Form or Phase (At exit conditions,	Est. Method Used ⁶	Emission Concentrati on ⁷ (ppmv or mg/m ⁴)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Liquid or Gas/Vapor)		
5E-GPU3	Heater	5S-GPU3	GPU Heater	N/A	N/A	N/A	N/A	HAPs Hexane CO PM _{10/2.5} CO ₂ CO ₂ e NO _x CH ₄ VOCs	<0.01 <0.01 0.16 <0.01 233.95 234.20 0.19 <0.01 0.01	0.02 0.02 0.70 0.02 1024.72 1025.78 0.83 0.02 0.05	<0.01 <0.01 0.16 <0.01 233.95 234.20 0.19 <0.01 0.01	0.02 0.02 0.70 0.02 1024.72 1025.78 0.83 0.02 0.05	Gas/Vapor	AP-42	
5E-GPU4	Heater	5S-GPU4	GPU Heater	N/A	N/A	N/A	N/A	HAPs Hexane CO PM _{10/2.5} CO ₂ CO ₂ e NO _x CH ₄ VOCs	<0.01 <0.01 0.16 <0.01 233.95 234.20 0.19 <0.01 0.01	0.02 0.02 0.70 0.02 1024.72 1025.78 0.83 0.02 0.05	<0.01 <0.01 0.16 <0.01 233.95 234.20 0.19 <0.01 0.01	0.02 0.02 0.70 0.02 1024.72 1025.78 0.83 0.02 0.05	Gas/Vapor	AP-42	
5E-GPU5	Heater	5S-GPU5	GPU Heater	N/A	N/A	N/A	N/A	HAPs Hexane CO PM _{10/2.5} CO ₂ CO ₂ e NO _x CH ₄ VOCs	<0.01 <0.01 0.16 <0.01 233.95 234.20 0.19 <0.01 0.01	0.02 0.02 0.70 0.02 1024.72 1025.78 0.83 0.02 0.05	<0.01 <0.01 0.16 <0.01 233.95 234.20 0.19 <0.01 0.01	0.02 0.02 0.70 0.02 1024.72 1025.78 0.83 0.02 0.05	Gas/Vapor	AP-42	
5E-GPU6	Heater	5S-GPU6	GPU Heater	N/A	N/A	N/A	N/A	HAPs Hexane CO PM _{10/2.5} CO ₂ CO ₂ e NO _x CH ₄ VOCs	<0.01 <0.01 0.16 <0.01 233.95 234.20 0.19 <0.01 0.01	0.02 0.02 0.70 0.02 1024.72 1025.78 0.83 0.02 0.05	<0.01 <0.01 0.16 <0.01 233.95 234.20 0.19 <0.01 0.01	0.02 0.02 0.70 0.02 1024.72 1025.78 0.83 0.02 0.05	Gas/Vapor	AP-42	
5E-GPU7	Heater	5S-GPU7	GPU Heater	N/A	N/A	N/A	N/A	HAPs Hexane CO PM _{10/2.5} CO ₂ CO ₂ e NO _x CH ₄ VOCs	<0.01 <0.01 0.16 <0.01 233.95 234.20 0.19 <0.01 0.01	0.02 0.02 0.70 0.02 1024.72 1025.78 0.83 0.02 0.05	<0.01 <0.01 0.16 <0.01 233.95 234.20 0.19 <0.01 0.01	0.02 0.02 0.70 0.02 1024.72 1025.78 0.83 0.02 0.05	Gas/Vapor	AP-42	

							Table 1	: Emissions D	ata						
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emiss Ve Through <i>(Mus Emission</i> & Pla	ion Unit nted This Point <i>t match</i> Units Table of Plan)	Air Po Control (Must Emissio Table Pl	Illution Device match on Units & Plot an)	Vent T Emiss (che proces	Time for ion Unit emical ses only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Maximum Potential Uncontrolled Emissions ⁴		Maxi Pote Cont Emiss	mum ential rolled sions ⁵	Emission Form or Phase (At exit conditions,	Est. Method Used ⁶	Emission Concentrati on ⁷ (ppmv or mg/m ⁴)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Liquid or Gas/Vapor)		
6E-COMB	Stack	6S-COMB	Flare – VOC Combustor	N/A	N/A	N/A	N/A	$\begin{array}{l} \text{HAPs} \\ \text{CO} \\ \text{PM}_{10/2.5} \\ \text{CO}_2 \\ \text{CO}_2 e \\ \text{NO}_x \\ \text{CH}_4 \\ \text{N}_2 O \\ \text{SO}_2 \\ \text{VOCs} \end{array}$	0.23 4.00 0.04 1272.28 1280.69 0.74 10.51 0.01 <0.01 2.79	$\begin{array}{c} 1.02\\ 17.51\\ 0.18\\ 5572.57\\ 5609.42\\ 3.22\\ 46.03\\ 0.05\\ 0.01\\ 12.21\\ \end{array}$	0.01 4.00 0.04 1272.28 1280.69 0.74 0.21 0.01 <0.01 0.06	0.02 17.51 0.18 5572.57 5609.42 3.22 0.92 0.05 0.01 0.24	Gas/Vapor	AP-42	
7E-FC	Fuel Cell	7S-FC	Fuel Cell	N/A	N/A	N/A	N/A	CO PM _{10/2.5} CO ₂ CO ₂ e NO _x CH ₄ SO ₂ VOCS	<0.01 <0.01 1.25 1.25 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 5.48 5.48 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 1.25 1.25 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 5.48 5.48 <0.01 <0.01 <0.01 <0.01	Gas/Vapor	AP-42	
8E-FL	Stack	8S-FL	Process Flare - Well Unloading	N/A	N/A	N/A	N/A	HAPs CO PM _{10/2.5} CO ₂ CO ₂ e NO _x CH ₄ N ₂ O SO ₂ VOCs	18.60 28.88 0.52 6973.78 12184.76 5.32 10387.41 0.06 0.04 14829.37	6.79 5.35 0.10 2636.55 3590.94 2.02 1895.70 0.02 0.01 2706.36	0.38 28.88 0.52 6973.78 12184.76 5.32 207.75 0.06 0.04 296.59	0.07 5.35 0.10 2636.55 3590.94 2.02 37.91 0.02 0.01 54.13	Gas/Vapor	AP-42	
8E-FL	Pump	10S-Pump	Diaphragm Pump	8S-FL	Flare	N/A	N/A	HAPs Hexane CO ₂ CO ₂ e CH ₄ VOCs	0.01 0.01 <0.01 53.02 2.12 0.38	<0.01 <0.01 <0.01 19.35 0.77 0.14	<0.01 <0.01 <0.01 1.06 0.04 0.01	<0.01 <0.01 <0.01 0.39 0.02 <0.01	Gas/Vapor	Manufacturer HYSYS Run, AP-42	
11E-FC1-9	Fugitive	11S-FC1- 9	Pneumatic Flow Control Valves	N/A	N/A	N/A	N/A	HAPs Hexane CO ₂ CO ₂ e CH ₄ VOCs	0.01 0.01 <0.01 55.14 2.21 0.39	0.03 0.03 0.02 241.49 9.66 1.72	0.01 0.01 <0.01 55.14 2.21 0.39	0.03 0.03 0.02 241.49 9.66 1.72	Gas/Vapor	Manufacturer	
12E-LC1-18	Fugitive	12S-LC1- 18	Pneumatic Level Control	N/A	N/A	N/A	N/A	HAPs Hexane CO ₂ CO ₂ e CH ₄ VOCs	<0.01 <0.01 <0.01 0.31 0.01 <0.01	<0.01 <0.01 <0.01 1.34 0.05 0.01	<0.01 <0.01 <0.01 0.31 0.01 <0.01	<0.01 <0.01 <0.01 1.34 0.05 0.01	Gas/Vapor	Manufacturer	

							Table 1	: Emissions D	ata						
Emission Er Point ID No. (Must match T Emission Units Table & Plot Plan)	Emission Point Type ¹	Emission Unit Vented Through This Point (Must match Emission Units Table & Plot Plan)		Air Po Control (Must Emissio Table Pl	Air Pollution Control Device (Must match Emission Units Table & Plot Plan)		Time for fon Unit mical ses only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Maximum Potential Uncontrolled Emissions ⁴		Maximum Potential Controlled Emissions ⁵		Emission Form or Phase (At exit conditions,	Est. Method Used ⁶	Emission Concentrati on ⁷ (ppmv or mg/m ⁴)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Liquid or Gas/Vapor)		
13E-BP	Fugitive	13S-BP	Pneumatic Back Pressure Control Valve	N/A	N/A	N/A	N/A	$\begin{array}{l} HAPs \\ Hexane \\ CO_2 \\ CO_2 e \\ CH_4 \\ VOCs \end{array}$	<0.01 <0.01 <0.01 6.13 0.25 0.04	<0.01 <0.01 <0.01 26.83 1.07 0.19	<0.01 <0.01 <0.01 6.13 0.25 0.04	<0.01 <0.01 <0.01 26.83 1.07 0.19	Gas/Vapor	Manufacturer	

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

² Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).

³ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. **LIST** Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. **DO NOT LIST** H₂O, N₂O, O₂, and Noble Gases.

⁴ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁵ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

⁷ Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m³) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO₂, use units of ppmv (See 45CSR10).

Attachment K

Attachment K

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS
1.)	Will there be haul road activities?
	Yes No
	If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.
2.)	Will there be Storage Piles?
	□ Yes
	☐ If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.
3.)	Will there be Liquid Loading/Unloading Operations?
	🖾 Yes 🗌 No
	☐ If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
5.)	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?
	⊠ Yes □ No
	☐ If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.
6.)	Will there be General Clean-up VOC Operations?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
7.)	Will there be any other activities that generate fugitive emissions?
	□ Yes
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.
lf yo Sur	bu answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions nmary."

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants	Maximum Uncontrolled	Potential Emissions ²	Maximum Pe Controlled Em	Est. Method	
	Chemical Name/CAS	lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
Haul Road/Road Dust Emissions Paved Haul Roads						
Unpaved Haul Roads	PM _{Total}	1.45	6.29	1.45	6.29	EE
Storage Pile Emissions						
Loading/Unloading Operations	VOCs	0.27	1.21	0.08	0.38	EE
	HAPs	0.01	0.10	0.01	0.03	EE
Wastewater Treatment Evaporation & Operations						
Equipment Leaks	VOCs	Does not apply	1.47	Does not apply	1.47	
	HAPs	Does not apply	0.10	Does not apply	0.10	
General Clean-up VOC Emissions						
Other						

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

Attachment L

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): 12S-LC1-18

1. Name or type and model of proposed affected source:
Kimray
GEN II Level Controllers Intermitent Bleed
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
N7/A
N/A
4. Name(s) and maximum amount of proposed material(s) produced per hour:
N/A
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
N/A

6. C	6. Combustion Data (if applicable):							
(a	a) Type and amount in ap	propriate units of fuel	(s) to be bu	rned:				
N/A								
(b) Chemical analysis of pr	oposed fuel(s), exclu	ding coal, in	cluding maxim	um percent sulfur			
(and ash:							
N/A								
(c) Theoretical combustion	air requirement (ACI	F/unit of fue	l):				
, ,	, Ø	· · ·	°F and	,	nsia			
					poid.			
(c	 Percent excess air: 							
(e	e) Type and BTU/hr of bu	rners and all other firi	ng equipme	nt planned to b	be used:			
N/A								
(f`) If coal is proposed as a	source of fuel, identi	fv supplier a	ind seams and	give sizing of the			
(-)	coal as it will be fired:		.)		ge e. <u>_</u> g ee			
N/A								
	<u> </u>							
(g) Proposed maximum design heat input: × 10° BTU/hr.								
7. P	rojected operating sched	ule:						
Hours	s/Day 24	Days/Week	7	Weeks/Year	52			

 Projected amount of pollutants that would be emitted from this affected source if no control devices were used: 							
@		°F and		psia			
a.	NO _X		lb/hr	grains/ACF			
b.	SO ₂		lb/hr	grains/ACF			
C.	СО		lb/hr	grains/ACF			
d.	PM ₁₀		lb/hr	grains/ACF			
e.	Hydrocarbons		lb/hr	grains/ACF			
f.	VOCs	<0.01	lb/hr	grains/ACF			
g.	Pb		lb/hr	grains/ACF			
h.	Specify other(s)	l					
	HAPs	<0.01	lb/hr	grains/ACF			
			lb/hr	grains/ACF			
			lb/hr	grains/ACF			
			lb/hr	grains/ACF			

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

 Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. 						
MONITORING	RECORDKEEPING					
REPORTING	TESTING					
MONITORING. PLEASE LIST AND DESCRIBE TH	F PROCESS PARAMETERS AND RANGES THAT ARE					
PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS						
PROCESS EQUIPMENT OPERATION/AIR POLLUTION	JUNTRUL DEVICE.					

RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.

REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.

10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on *Equipment List Form*): 11S-FC1-9

1. Name or type and model of proposed affected source:	
Fischer Control	
DVC 6200	
Continuous Low Bleed Pneumatic Controllers	
2. On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to	be
made to this source, clearly indicated the change(s). Provide a narrative description of	all
features of the affected source which may affect the production of air pollutants.	
3. Name(s) and maximum amount of proposed process material(s) charged per hour:	
N/A	
4. Name(s) and maximum amount of proposed material(s) produced per hour:	
N/A	
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutan	nts:
N/A	

6. C	5. Combustion Data (if applicable):				
(a)Type and amount in ap	propriate units of fuel(s) to be bu	rned:	
N/A					
(b) Chemical analysis of pr	oposed fuel(s), exclud	ling coal, in	cluding maxim	um percent sulfur
(and ash:		ing coal,		
N/A					
(c) Theoretical combustion	air requirement (ACF	/unit of fue	l):	
, ,	, 	· · ·	°F and		nsia
					poid.
(d) Percent excess air:				
(e) Type and BTU/hr of bu	rners and all other firir	ig equipme	nt planned to b	e used:
N/A					
(f)	If coal is proposed as a	source of fuel, identif	v supplier a	ind seams and	give sizing of the
(-)	coal as it will be fired:		,		g. e eg ee
N/A					
· · ·					
(g	(g) Proposed maximum design heat input: x 10° BTU/hr.				
7. Pi	rojected operating sched	ule:		l	
Hours	b/Day 24	Days/Week	7	Weeks/Year	52

8.	 Projected amount of pollutants that would be emitted from this affected source if no control devices were used: 		
@		°F and	psia
a.	NO _X	lb/hr	grains/ACF
b.	SO ₂	lb/hr	grains/ACF
C.	СО	lb/hr	grains/ACF
d.	PM ₁₀	lb/hr	grains/ACF
e.	Hydrocarbons	lb/hr	grains/ACF
f.	VOCs	0.39 lb/hr	grains/ACF
g.	Pb	lb/hr	grains/ACF
h.	Specify other(s)	I	1
	HAPs	0.01 lb/hr	grains/ACF
		lb/hr	grains/ACF
		lb/hr	grains/ACF
		lb/hr	grains/ACF

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, Please propose testing in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed operating parameters. MONITORING RECORDKEEPING REPORTING TESTING MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION/AIR TOLUTION CONTROL DEVICE. REPORTING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING OF THE MONITORING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE MONITORING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE MONITORING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE MONITORING. REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE MONITORING. SUBJECT THE PROPOSED FREQUENCY OF REPORTING OF THE POLLUTION CONTROL DEVICE. SECORDKEEPING. TESTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE POLLUTION CONTROL DEVICE. SUBJECT ON THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING. TESTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE POLLUTION CONTROL DEVICE. SUBJECT ON THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING. SUBJECT ON THE PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE. SUBJECTIVE AND PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE. SUBJECT ON THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING. SUBJECTIVE AND PROPOSED EMISSIONS TESTING FOR THIS					
MONITORING RECORDKEEPING REPORTING TESTING MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION/AIR POLLUTION CONTROL DEVICE. REPORTING. PLEASE DESCRIBE THE PROPOSED RECORDEREDING THAT WILL ACCOMPANY THE MONITORING. REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING. TESTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING. TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE. 10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty < 6 scfhr	 Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. 				
REPORTING TESTING MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION/AIR POLLUTION CONTROL DEVICE. RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE. 10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty < 6 scf/hr	MONITORING	RECORDKEEPING			
MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION/AIR POLLUTION CONTROL DEVICE. RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING. REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING. TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE. 10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty < 6 scf/hr	REPORTING	TESTING			
REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING. TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE. 10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty < 6 scf/hr	MONITORING. PLEASE LIST AND DESCRIBE TH PROPOSED TO BE MONITORED IN ORDER TO DEMON PROCESS EQUIPMENT OPERATION/AIR POLLUTION RECORDKEEPING. PLEASE DESCRIBE THE PROF	E PROCESS PARAMETERS AND RANGES THAT ARE ISTRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE. POSED RECORDKEEPING THAT WILL ACCOMPANY THE			
TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE. 10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty < 6 scf/hr	REPORTING. PLEASE DESCRIBE THE PRORECORDING.	DPOSED FREQUENCY OF REPORTING OF THE			
10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty	TESTING. PLEASE DESCRIBE ANY PROPOSED EMI POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR			
< 6 scf/hr	10. Describe all operating ranges and mainter maintain warranty	nance procedures required by Manufacturer to			
	< 6 scf/hr				

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): 13S-BP

1. Name or type and model of proposed affected source:
Fischer Control
Continuous Low Bleed Pneumatic Controllers
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
N/A
4. Name(s) and maximum amount of proposed material(s) produced per hour:
N/A
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
N/A

6. Co	5. Combustion Data (if applicable):				
(a)Type and amount in ap	propriate units of fuel(s) to be bu	rned:	
N/A					
(b) Chemical analysis of pr	oposed fuel(s), exclud	ling coal, in	cluding maxim	um percent sulfur
\~	and ash:		ing coal,		
N/A					
(c)) Theoretical combustion	air requirement (ACF	/unit of fue	I)·	
				·)·	
	W		°F and		psia.
(d) Percent excess air:				
(e) Type and BTU/hr of bu	rners and all other firir	ig equipme	nt planned to b	e used:
N/A					
(f)					
(1)	coal as it will be fired:	source of fuel, identif	y supplier a	ind seams and	give sizing of the
N/A					
1011					
(g	(g) Proposed maximum design heat input: $\times 10^6$ BTU/hr.				
7. Pr	ojected operating sched	ule:			
Hours	;/Day 24	Days/Week	7	Weeks/Year	52

8.	 Projected amount of pollutants that would be emitted from this affected source if no control devices were used: 		
@		°F and	psia
a.	NO _X	lb/hr	grains/ACF
b.	SO ₂	lb/hr	grains/ACF
C.	СО	lb/hr	grains/ACF
d.	PM ₁₀	lb/hr	grains/ACF
e.	Hydrocarbons	lb/hr	grains/ACF
f.	VOCs	0.04 lb/hr	grains/ACF
g.	Pb	lb/hr	grains/ACF
h.	Specify other(s)		
	HAPs	<0.01 lb/hr	grains/ACF
		lb/hr	grains/ACF
		lb/hr	grains/ACF
		lb/hr	grains/ACF

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, Please propose testing in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed operating parameters. MONITORING RECORDKEEPING REPORTING TESTING MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROCESS EQUIPMENT OF DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION/AIR POLLUTION CONTROL DEVICE. REPORTING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING OF THE MONITORING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE MONITORING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE MONITORING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE MONITORING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE MONITORING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE POLLUTION CONTROL DEVICE. SECORDKEEPING. TESTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE MONITORING. SECORDKEEPING. SUMMERT OF DEMONSTRATE COMPLIANCE WITH THE OPERATION AIR POLLUTION CONTROL DEVICE. SECORDKEEPING. SUMMERT OF THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING. SUMMERT OF DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE MONITORING. SECORDKEEPING. SUMMERT OF THE PROPOSED FREQUENCY OF REPORTING OF THE SUMMERTAL POLLUTION CONTROL DEVICE. SUMMERTAL POLLOTION CONTROL DEVICE. SOURCE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE. SUMMERTAL POLLOTION CONTROL DEVICE. SUMMERTAL POLLOTION CONTROL DEVICE. SUMMERTAL POLLOTION CONTROL DEVICE.					
MONITORING RECORD KEEPING REPORTING TESTING MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION/AIR POLLUTION CONTROL DEVICE. RECORD KEEPING. PLEASE DESCRIBE THE PROPOSED RECORD KEEPING THAT WILL ACCOMPANY THE MONITORING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORD KEEPING. TESTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORD KEEPING. TESTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORD KEEPING. STRUCTURE OF THE PROPOSED FREQUENCY OF REPORTING OF THE RECORD KEEPING. STRUCTURE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE. 10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty <	 Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. 				
REPORTING TESTING MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION/AIR POLLUTION CONTROL DEVICE. RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING. REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING. TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE. 10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty <6 scf/hr	MONITORING	RECORDKEEPING			
MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION/AIR POLLUTION CONTROL DEVICE. RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING. REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING. TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE. 10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty < 6 scf/hr	REPORTING	TESTING			
REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING. TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE. 10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty < 6 scf/hr	MONITORING. PLEASE LIST AND DESCRIBE TH PROPOSED TO BE MONITORED IN ORDER TO DEMON PROCESS EQUIPMENT OPERATION/AIR POLLUTION RECORDKEEPING. PLEASE DESCRIBE THE PROF	E PROCESS PARAMETERS AND RANGES THAT ARE ISTRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE. POSED RECORDKEEPING THAT WILL ACCOMPANY THE			
TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE. 10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty < 6 scf/hr	REPORTING. PLEASE DESCRIBE THE PRORECORDING.	DPOSED FREQUENCY OF REPORTING OF THE			
10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty	TESTING. PLEASE DESCRIBE ANY PROPOSED EMI POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR			
< 6 scf/hr	10. Describe all operating ranges and mainter maintain warranty	nance procedures required by Manufacturer to			
	< 6 scf/hr				

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on *Equipment List Form*): 10S-PUMP

1. Name or type and model of proposed affected source:
Sandpiper G-20 Diaphragm Pump
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to b made to this source, clearly indicated the change(s). Provide a narrative description of a features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
N/A
4. Name(s) and maximum amount of proposed material(s) produced per hour:
N/A
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants
N/A

6. (Cor	nbustion Data	a (if applica	able):			
(a)	Type and am	ount in ap	propriate units of fue	el(s) to be bu	irned:	
N/A	ł						
	<u>لم)</u>						
((U)	and ash:	alysis of pr	oposed fuei(s), excl	uding coal, ir	icluding maxim	um percent sullur
N//	、						
11/7	1						
((c)	Theoretical c	ombustion	air requirement (AC	CF/unit of fue	el):	
			@		°F and		psia.
((d)	Percent exce	ss air:				
(e)	Type and BT	U/hr of bui	ners and all other fi	ring equipme	ent planned to b	be used:
					••••		
NI//							
1 N / <i>F</i>	1						
(f)	If coal is prop	osed as a	source of fuel, iden	tify supplier a	and seams and	give sizing of the
			be meu.				
N/A	A						
((g) Proposed maximum design heat input: × 10 ⁶ BTU/hr.						
7. F	⊃r∩	iected operati	ina schedu	lle:			
	/ ·		1		7	MaakaMaar	50
нои	rs/L	Jay	1	Days/week	/	vveeks/year	52

8.	 Projected amount of pollutants that would be emitted from this affected source if no control devices were used: 		
@		°F and	psia
a.	NO _X	lb/hr	grains/ACF
b.	SO ₂	lb/hr	grains/ACF
C.	СО	lb/hr	grains/ACF
d.	PM ₁₀	lb/hr	grains/ACF
e.	Hydrocarbons	lb/hr	grains/ACF
f.	VOCs	0.38 lb/hr	grains/ACF
g.	Pb	lb/hr	grains/ACF
h.	Specify other(s)	I	1
	HAPs	0.01 lb/hr	grains/ACF
		lb/hr	grains/ACF
		lb/hr	grains/ACF
		lb/hr	grains/ACF

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

 Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. 			
MONITORING	RECORDKEEPING		
DEDODTINO	TEOTINO		
REPORTING TESTING			
MONITORING. PLEASE LIST AND DESCRIBE TH	E PROCESS PARAMETERS AND RANGES THAT ARE		
PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION/AIR POLLUTION CONTROL DEVICE.			

RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.

REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.

10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty

Maximum 100 psi, exhaust routed to control device if/when driven by natural gas.

ATTACHMENT L – STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water. (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). **Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.**

The following information is **REQUIRED**:

- □ Composition of the representative sample used for the simulation
- □ For each stream that contributes to flashing emissions:
 - \Box Temperature and pressure (inlet and outlet from separator(s))
 - □ Simulation-predicted composition
 - □ Molecular weight
 - \Box Flow rate
- □ Resulting flash emission factor or flashing emissions from simulation
- □ Working/breathing loss emissions from tanks and/or loading emissions if

simulation is used to quantify those emissions

Additional information may be requested if necessary.

GENERAL INFORMATION (REQUIRED)

1. Bulk Storage Area Name:	2. Tank Name
MND 6 Produced Water Tanks Battery	400 bbl Produced Water Tanks
3. Emission Unit ID number	4. Emission Point ID number
1S-TK1-4	1E-TK1-4
5. Date Installed , Modified or Relocated (for	6. Type of change:
existing tanks)	\boxtimes New construction \square New stored material \square Other
2016	□ Relocation
Was the tank manufactured after August 23, 2011 and on	
or before September 18, 2015?	
\Box Yes \boxtimes No	
Was the tank manufactured after September 18, 2015?	
\boxtimes Yes \square No	
7A. Description of Tank Modification (<i>if applicable</i>)	1
7B. Will more than one material be stored in this tank? If so	o, a separate form must be completed for each material.
\Box Yes \boxtimes No	
7C. Was USEPA Tanks simulation software utilized?	
\boxtimes Yes \square No	
If Yes, please provide the appropriate documentation and it	tems 8-42 below are not required.

TANK INFORMATION

8. Design Capacity (specify barrels or gallons). Use the in	8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height.				
400 bbls					
9A. Tank Internal Diameter (ft.) 12	9B. Tank Internal Height (ft.) 20				
10A. Maximum Liquid Height (ft.) 20	10B. Average Liquid Height (ft.) 10				
11A. Maximum Vapor Space Height (ft.)	11B. Average Vapor Space Height (ft.)				
12. Nominal Capacity (specify barrels or gallons). This is	also known as "working volume". 400 bbls				
13A. Maximum annual throughput (gal/yr) 49,056,000	13B. Maximum daily throughput (gal/day) 134,400				
14. Number of tank turnovers per year 2,920	15. Maximum tank fill rate (gal/min) 93.33				
16. Tank fill method \boxtimes Submerged \square Splash	□ Bottom Loading				
17. Is the tank system a variable vapor space system? \Box	Yes 🛛 No				
If yes, (A) What is the volume expansion capacity of the sy	stem (gal)?				
(B) What are the number of transfers into the system	per year?				
18. Type of tank (check all that apply):					
\Box Fixed Roof \boxtimes vertical \Box horizontal \Box flat	t roof \Box cone roof \Box dome roof \Box other (describe)				
\Box External Floating Roof \Box pontoon roof \Box do	buble deck roof				
Domed External (or Covered) Floating Roof					
□ Internal Floating Roof □ vertical column suppo	ort \Box self-supporting				
□ Variable Vapor Space □ lifter roof □ diaphragm					
\Box Pressurized \Box spherical \Box cylind	rical				
\Box Other (describe)					

PRESSURE/VACUUM CONTROL DATA

19. Check as many as appl	y:									
□ Does Not Apply □ Rupture Disc (psig)										
\Box Inert Gas Blanket of \Box Carbon Adsorption ¹										
□ Vent to Vapor Combus	tion Devi	ice ¹ (vapor	r combust	ors, flares	, thermal o	oxidizers,	enclosed c	ombustors)		
□ Conservation Vent (psi	g)			□ Conde	enser ¹					
Vacuum Setting Pressure Setting										
□ Emergency Relief Valv	e (psig)									
Vacuum Setting		Pressure	Setting							
□ Thief Hatch Weighted	□ Yes □	∃ No								
¹ Complete appropriate Air	Pollution	n Control	Device Sł	neet						
20. Expected Emission Ra	te (submi	it Test Dat	a or Calc	ulations he	ere or else	where in th	he applicat	ion).		
20. Expected Emission Ra Material Name	te (submi	it Test Dat ng Loss	a or Calco Breathi	ulations he i ng Loss	ere or else Workir	where in the second sec	he applicat	ion). missions	Estimation	·
20. Expected Emission Ra Material Name	te (submi Flashi	it Test Dat ng Loss	a or Calco Breathi	ulations he	ere or else Workir	where in the second sec	he applicat Total En Loss	ion). missions	Estimation Method ¹	
20. Expected Emission Ra Material Name	te (submi Flashin lb/hr	it Test Dat ng Loss tpy	a or Calco Breathi lb/hr	ulations he	ere or else Workir lb/hr	where in the second sec	he applicat Total En Loss Ib/hr	ion). missions tpy	Estimation Method ¹	
20. Expected Emission Ra Material Name VOCs	te (submi Flashin lb/hr 2.47	it Test Dat ng Loss tpy 10.82	a or Calco Breathi lb/hr <0.01	ulations he ing Loss tpy 0.01	Workin	where in the second sec	he applicat Total En Loss Ib/hr 2.59	ion). missions tpy 11.35	Estimation Method ¹ EPA/HYSYS	
20. Expected Emission Ra Material Name VOCs HAPs	te (submi Flashin Ib/hr 2.47 0.21	t Test Dat ng Loss tpy 10.82 0.90	a or Calco Breathi lb/hr <0.01 <0.01	tpy 0.01 0.01	Workin lb/hr 0.12 0.01	where in the second sec	Total En Loss lb/hr 2.59 0.22	ion). missions tpy 11.35 0.94	Estimation Method ¹ EPA/HYSYS EPA/HYSYS	
20. Expected Emission Ra Material Name VOCs HAPs CO2	te (submi Flashin 1b/hr 2.47 0.21 0.68	t Test Dat ng Loss tpy 10.82 0.90 2.97	a or Calco Breathi b/hr <0.01 <0.01 <0.01	tpy 0.01 <0.01	Workin Ib/hr 0.12 0.01 0.03	where in the tpy 0.52 0.04 0.14	Total En Loss Ib/hr 2.59 0.22 0.71	ion). missions tpy 11.35 0.94 3.11	Estimation Method ¹ EPA/HYSYS EPA/HYSYS EPA/HYSYS	
20. Expected Emission Ra Material Name VOCs HAPs CO2 CH4	te (submi Flashin 1b/hr 2.47 0.21 0.68 9.32	it Test Dat ng Loss tpy 10.82 0.90 2.97 40.82	a or Calco Breathin <0.01 <0.01 <0.01	tpy 0.01 <0.01	Workin Ib/hr 0.12 0.01 0.03 0.45	tpy 0.52 0.04 0.14 1.96 0.14	he applicat Total En Loss Ib/hr 2.59 0.22 0.71 9.78	ion). missions 11.35 0.94 3.11 42.83	Estimation Method ¹ EPA/HYSYS EPA/HYSYS EPA/HYSYS EPA/HYSYS	

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.

TANK CONSTRUCTION AND OPERAT	TION INFORMATION	N					
21. Tank Shell Construction:							
□ Riveted □ Gunite lined □ Epoxy-coated rivets □ Other (describe)							
21A. Shell Color:	21B. Roof Color:		21C. Yea	ar Last Painted:			
Gray/Medium	Gray/Medium Gray/Medium						
22. Shell Condition (if metal and unlined):	·		•				
No Rust Light Rust Der	nse Rust 🗌 Not ap	plicable					
22A. Is the tank heated? \Box Yes \boxtimes No	22B. If yes, operating	g temperature:	22C. If y	es, how is heat provided to tank?			
23. Operating Pressure Range (psig): 0.2	2521						
Must be listed for tanks using VRUs	with closed vent sys	stem.					
24. Is the tank a Vertical Fixed Roof	24A. If yes, for dome	e roof provide radius	24B. If y	es, for cone roof, provide slope			
Tank?	(ft):		(ft/ft):				
🛛 Yes 🗌 No	6.00		0.06				
25. Complete item 25 for Floating Roof Ta	nks 🗌 Does not ap	oply 🖂					
25A. Year Internal Floaters Installed:							
25B. Primary Seal Type (check one): \Box N	Aetallic (mechanical)	shoe seal 🛛 Liqu	id mountee	d resilient seal			
	apor mounted resilie	ent seal \Box Othe	er (describ	e):			
25C. Is the Floating Roof equipped with a set	econdary seal? 🗆 Yes	s 🗆 No					
25D. If yes, how is the secondary seal moun	ited? (check one) \Box	Shoe 🗆 Rim 🛛	Other (describe):			
25E. Is the floating roof equipped with a we	ather shield? 🗌 Yes	s 🗆 No					
25F. Describe deck fittings:							
26. Complete the following section for Inter	rnal Floating Roof Tai	nks 🛛 Does not	t apply				
26A. Deck Type: \Box Bolted \Box	Welded	26B. For bolted deck	s, provide c	leck construction:			
26C. Deck seam. Continuous sheet construct	ction:						
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. v	vide 🛛 5 x 7.5 ft. w	vide \Box 5 x 12 ft. wi	de 🗆 ot	her (describe)			
26D. Deck seam length (ft.): 26E. Are	a of deck (ft ²):	26F. For column sup	ported	26G. For column supported			
		tanks, # of columns:		tanks, diameter of column:			
27. Closed Vent System with VRU? \Box Ye	es 🗆 No						
28. Closed Vent System with Enclosed Con	ibustor? 🗆 Yes 🗆 N	lo					
SITE INFORMATION							
29. Provide the city and state on which the c	lata in this section are b	ased: Pittsburgh,	PA				
30. Daily Avg. Ambient Temperature (°F):	50.31	31. Annual Avg. Ma	ximum Ten	nperature (°F): 59.88			
32. Annual Avg. Minimum Temperature (°H	F): 40.73	33. Avg. Wind Speed	d (mph):	9.075			
34. Annual Avg. Solar Insulation Factor (B	ΓU/ft ² -day): 1202.96	35. Atmospheric Pre	ssure (psia)	: 14.1085			
LIQUID INFORMATION	•		1				
36. Avg. daily temperature range of bulk	36A. Minimum (°F):		36B. Ma	B. Maximum (°F):			
liquid (°F): 58.50	49.32	67.67		vinum (noia):			
37. Avg. operating pressure range of tank	37A. Minimum (psig	g):	3/B. Ma	ximum (psig):			
(heig):							
38A. Minimum liquid surface temperature (°F):	38B. Corresponding	vapor press	ure (psia):			
39A. Avg. liquid surface temperature (°F):		39B. Corresponding	vapor press	ure (psia):			
40A. Maximum liquid surface temperature ((°F):	40B. Corresponding	vapor press	ure (psia):			
41. Provide the following for each liquid or gas to be stored in the tank. Add additional pages if necessary.							

41A. Material name and composition:	Produced Water	
41B. CAS number:		
41C. Liquid density (lb/gal):		
41D. Liquid molecular weight (lb/lb-mole):	18.17	
41E. Vapor molecular weight (lb/lb-mole):	19.91	
41F. Maximum true vapor pressure (psia):	0.2521	
41G. Maximum Reid vapor pressure (psia):		
41H. Months Storage per year.From: JanTo: Dec	12	
42. Final maximum gauge pressure and temperature prior to transfer into tank used as inputs into flashing emission calculations.		

STORAGE TANK DATA TABLE

List all deminimis storage tanks (i.e. lube oil, glycol, diesel etc.)

Source ID # ¹	Status ²	Content ³	Volume ⁴

Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the well site. 1. Tanks should be designated T01, T02, T03, etc. 2.

Enter storage tank Status using the following:

EXIST Existing Equipment

Installation of New Equipment NEW

REM Equipment Removed

Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, diesel, 3.

mercaptan etc. 4.

Enter the maximum design storage tank volume in gallons.

Attachment L EMISSIONS UNIT DATA SHEET BULK LIQUID TRANSFER OPERATIONS

Furnish the following information for each new or modified bulk liquid transfer area or loading rack, as shown on the *Equipment List Form* and other parts of this application. This form is to be used for bulk liquid transfer operations such as to and from drums, marine vessels, rail tank cars, and tank trucks.

Identification Number (as assigned on Equipment ListForm):							
1. Loading Area Name: Tank Loading							
2. Type of cargo	2. Type of cargo vessels accommodated at this rack or transfer point (check as many						
Drums Marine Vessels Rail Tank Cars ATank Trucks							
3. Loading Rack	or Transfer Point	Data:					
Number of pu	mps			1			
Number of liqu	uids loaded			1 – Produced Wa	ater		
Maximum nun vessels, tank and/or drums	nber of marine trucks, tank cars, loading at one tim	ie		1			
4. Does ballastin	ng of marine vess	els occ	ur at this lo D	oadingarea? oes not apply			
5. Describe clea transfer point:	ning location, com	pound	s and proce	edure for cargo ve	essels using this		
 6. Are cargo vessels pressure tested for leaks at this or any other location? Yes No If YES, describe: 							
7. Projected Ma	ximum Operating	Sched	ule (for rac	k or transfer point	as a whole):		
Maximum	Jan Mar.	Apr	r June	July - Sept.	Oct Dec.		
hours/day	24		24	24	24		
days/week	7		7	7	7		

weeks/quarte	weeks/quarter 13		13	13	8		13		
8 Bulk Liqui	8 Bulk Liquid Data (add pages as necessary):								
Bump ID No		ala (auti pages as	35-TI						
			Broducod Wate)r					
				:1					
Max. daily three	ougr	nput (1000 gal/day)	134.4						
Max. annual t	hrou	ighput (1000 gal/yr)	49056						
Loading Meth	od ¹		SUB						
Max. Fill Rate	(ga	l/min)	93.33						
Average Fill T	ime	(min/loading)	45						
Max. Bulk Liq	uid T	Temperature (°F)	53.39						
True Vapor Pi	ress	ure ²	0.2521						
Cargo Vessel	Cor	ndition ³	U						
Control Equip	men	t or Method ⁴	O – Loading Rad	ck					
Minimum cont	trol e	efficiency (%)	70						
Maximum	Lo	ading (lb/hr)	0.27						
Rate	Ar	nnual (lb/yr)	2420						
Estimation Me	etho	d ⁵	EPA						
¹ BF = Bottom	n Fill	SP = Splash F	ill SUB = Subr	nerged Fill					
² At maximum	bul	k liquid temperature	;						
³ B = Ballaste	d Ve	essel, C = Cleaned,	U = Uncleaned (de	dicated se	rvice), O	= othe	er (desc	ribe)	
 ⁴ List as many as apply (complete and submit appropriate <i>Air Pollution Control Device</i> <i>Sheets</i>):CA = Carbon Adsorption LOA = Lean Oil Adsorption CO = Condensation SC=Scrubber(Absorption) CRA = Compressor- Refrigeration-Absorption TO = Thermal Oxidation or Incineration CRC = Compression-Refrigeration-Condensation VB = Dedicated Vapor Balance (closed system) 									
⁵ EPA = EPA MB = Mater	Émi ial B	ssion Factor as stat alance	ed in AP-42						

TM = Test Measurement based upon test data submittal	
O = other (describe)	

9. Proposed Monitoring, Recordkeeping, Reporting, and Testing

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING	RECORDKEEPING
Follow all applicable regulations.	Keep records of produced water throughputs to tanker trucks.
REPORTING	TESTING
Follow all applicable regulations.	

MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION/AIR POLLUTION CONTROL DEVICE.

RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.

REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.

10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty

ATTACHMENT L – SMALL HEATERS AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART DC DATA SHEET

Complete this data sheet for each small heater and reboiler not subject to 40CFR60 Subpart Dc at the facility. *The Maximum Design Heat Input (MDHI) must be less than 10 MMBTU/hr.*

Emission Unit ID# ¹	Emission Point ID# ²	Emission Unit Description (manufacturer, model #)	Year Installed/ Modified	Type ³ and Date of Change	Maximum Design Heat Input (MMBTU/hr) ⁴	Fuel Heating Value (BTU/scf) ⁵
2S-LH1	2E-LH1	GPU Heater	2016	Existing	4.00	1050
2S-LH2	2E-LH2	GPU Heater	2016	Existing	4.00	1050
5S-GPU1	5E-GPU1	GPU Heater	2017	New	2.00	1050
5S-GPU2	5E-GPU2	GPU Heater	2017	New	2.00	1050
5S-GPU3	5E-GPU3	GPU Heater	2017	New	2.00	1050
5S-GPU4	5E-GPU4	GPU Heater	2017	New	2.00	1050
5S-GPU5	5E-GPU5	GPU Heater	2017	New	2.00	1050
5S-GPU6	5E-GPU6	GPU Heater	2017	New	2.00	1050
5S-GPU7	5E-GPU7	GPU Heater	2017	New	2.00	1050
1 5						

Enter the appropriate Emission Unit (or Source) identification number for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.

² Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.

³ New, modification, removal.

⁴ Enter design heat input capacity in MMBtu/hr.

⁵ Enter the fuel heating value in BTU/standard cubic foot.
Attachment L FUGITIVE EMISSIONS FROM UNPAVED HAULROADS

UNPAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

						PM		PM-1	0	
k =	Particle size multiplier				0.80			0.36		
s =	Silt content of road surface ma	aterial (%)				4.8		4.8		
p =	Number of days per year with	precipitati	on >0.01	in.		150		150		
Item Numbe	r Description	Number of Wheels	Mean Vehicle Weight (tons)	Mean Vehicle Speed (mph)	Miles per Trip	Maximum Trips per Hour	Maximu Trips p Year	um Control er Device ID Number	Control Efficiency (%)	
1	Liquids Hauling	14	30	10	0.25	1	11680	0 N/A	N/A	
2	Employee Vehicles	4	3	10	0.25	1	200	N/A	N/A	
3										
4										
5										
6										
7										
8										

Source: AP-42 Fifth Edition - 13.2.2 Unpaved Roads

 $E = k \times 5.9 \times (s \div 12) \times (S \div 30) \times (W \div 3)^{0.7} \times (w \div 4)^{0.5} \times ((365 - p) \div 365) =$ lb/Vehicle Mile Traveled (VMT) Where:

		PM	PM-10
k =	Particle size multiplier	0.80	0.36
s =	Silt content of road surface material (%)	4.8	4.8
S =	Mean vehicle speed (mph)	10	10
W =	Mean vehicle weight (tons)	30,3	30,3
w =	Mean number of wheels per vehicle	14,4	14,4
p =	Number of days per year with precipitation >0.01 in.	150	150

For lb/hr: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$

For TPY: [lb ÷ VMT] × [VMT ÷ trip] × [Trips ÷ Hour] × [Ton ÷ 2000 lb] = Tons/year

SUMMARY OF UNPAVED HAULROAD EMISSIONS

	PM				PM-10			
Item No.	Uncontrolled		Controlled		Uncontrolled		Controlled	
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
1	1.07	6.25			0.27	1.59		
2	0.38	0.04			0.10	0.01		
3								
4								
5								
6								
7								
8								
TOTALS								

FUGITIVE EMISSIONS FROM PAVED HAULROADS

l =	Industrial augmentation factor						
n =	Number of traffic lanes						
s =	Surface material silt content (%)						
L =	Surface dust loading (lb/mile)						
Item Numbe	Item Number Description Mean Vehicle Weight (tons) Miles per Trip				Maximum Trips per Year	Control Device ID Number	Control Efficiency (%)

INDUSTRIAL PAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

Source: AP-42 Fifth Edition – 11.2.6 Industrial Paved Roads

$$E = 0.077 \times I \times (4 \div n) \times (s \div 10) \times (L \div 1000) \times (W \div 3)^{0.7} =$$

lb/Vehicle Mile Traveled (VMT)

Where:

=	Industrial augmentation factor (dimensionless)	
n =	Number of traffic lanes	
s =	Surface meterial silt content (%)	
L =	Surface dust loading (lb/mile)	
W =	Average vehicle weight (tons)	

For lb/hr: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$

For TPY: [lb ÷ VMT] × [VMT ÷ trip] × [Trips ÷ Hour] × [Ton ÷ 2000 lb] = Tons/year

SUMMARY OF PAVED HAULROAD EMISSIONS

	Uncor	trolled	Controlled		
Item No.	lb/hr	TPY	lb/hr	TPY	
1					
2					
3					
4					
5					
6					
7					
8					
TOTALS					

Attachment L EMISSIONS UNIT DATA SHEET GENERAL

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): 7S-FC

1. Name or type and model of proposed affected source:					
Acumentrics ARP500 Remote Power System - Fuel Cell					
Keniole i ower System - i der een					
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants. 					
3. Name(s) and maximum amount of proposed process material(s) charged per hour:					
N/A					
4. Name(s) and maximum amount of proposed material(s) produced per hour:					
N/A					
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:					
Combustion of propane.					

* The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6. Co	6. Combustion Data (if applicable):						
(a)	(a) Type and amount in appropriate units of fuel(s) to be burned:						
2.4 ga	l/day of propan	e.					
(b)	(b) Chemical analysis of proposed fuel(s), excluding coal, including maximum percent sulfur and ash:						
(c)	Theoretical	combustior	air requirement (ACF/unit of fue	el):		
		@		°F and		psia.	
(d)	Percent exc	ess air:					
(e)	Type and B	TU/hr of bu	rners and all othe	r firing equipme	ent planned to l	be used:	
(f)	(f) If coal is proposed as a source of fuel, identify supplier and seams and give sizing of the coal as it will be fired:						
(g)	(g) Proposed maximum design heat input: $\times 10^6$ BTU/hr.						
7. Pro	jected opera	ating schedu	ıle:		1		
Hours/	Day	24	Days/Week	7	Weeks/Year	52	

8.	 Projected amount of pollutants that would be emitted from this affected source if no control devices were used: 						
@		°F and	psia				
a.	NO _X	lb/hr	grains/ACF				
b.	SO ₂	lb/hr	grains/ACF				
C.	СО	lb/hr	grains/ACF				
d.	PM ₁₀	lb/hr	grains/ACF				
e.	Hydrocarbons	lb/hr	grains/ACF				
f.	VOCs	<0.01 lb/hr	grains/ACF				
g.	Pb	lb/hr	grains/ACF				
h.	Specify other(s)						
	HAPs	<0.01 lb/hr	grains/ACF				
		lb/hr	grains/ACF				
		lb/hr	grains/ACF				
		lb/hr	grains/ACF				

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

 Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. 						
MONITORING						
REPORTING						
MONITORING. PLEASE LIST AND DESCRIBE TH PROPOSED TO BE MONITORED IN ORDER TO DEMON PROCESS FOUIPMENT OPERATION/AIR POLI UTION	E PROCESS PARAMETERS AND RANGES THAT ARE ISTRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE					
RECORDKEEPING. PLEASE DESCRIBE THE PROF						
MONITORING.						
REPORTING. PLEASE DESCRIBE THE PRORECORDKEEPING.	OPOSED FREQUENCY OF REPORTING OF THE					
TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.						
10. Describe all operating ranges and mainter	10. Describe all operating ranges and maintenance procedures required by Manufacturer to					
maintain warranty						
Max power output is 0.5 kW.						

Attachment M

Attachment M Air Pollution Control Device Sheet (FLARE SYSTEM)

Control Device ID No. (must match Emission Units Table): $8S\mathchar`FL$

	Equipment Information						
1.	Manufacturer:National Oilwell VarcoModel No.Process Flare - Well Unloading	2. Method: 🛛 Elevated flare Ground flare Other Describe					
3.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state	em with duct arrangement and size of duct, air volume, hood face velocity and hood collection efficiency.					
4.	Method of system used:	Pressure-assisted Non-assisted					
5.	Maximum capacity of flare: 729.17 scf/min 43,750 scf/hr	6. Dimensions of stack: Diameter 0.25 ft. Height 20.17 ft.					
7.	Estimated combustion efficiency: (Waste gas destruction efficiency) Estimated: 98 % Minimum guaranteed: 98 %	 8. Fuel used in burners: Natural Gas Fuel Oil, Number Other, Specify: 					
9. 10.	Number of burners: Rating: 1 @ 78.0MM BTU/hr Will preheat be used? Yes No	11. Describe method of controlling flame: Adjust manual choke upstream of unloading vessel to regulate pressure.					
12. 13.	Flare height:22.67ftFlare tip inside diameter:0.33ft	14. Natural gas flow rate to flare pilot flame per pilotlight:NSCR240scf/mr					
15.	Number of pilot lights: Total BTU/hr	16. Will automatic re-ignition be used? □ Yes □ No					
17.	 17. If automatic re-ignition will be used, describe the method: N/A - Flare is only operational while personnel are present and routing stream to vessel. 18. Is pilot flame equipped with a monitor? Yes No If yes, what type? Thermocouple Infra-Red Ultra Violet Camera with monitoring control room Other, Describe: 						
19.	Hours of unit operation per year: 730						

	Steam Injection							
20.	Will steam injection be used?	Yes	🛛 No	21. Steam pressure Minimum Expected:	PSIG			
22.	2. Total Steam flow rate: LB/hr			23. Temperature: °F				
24.	4. Velocity ft/sec			25. Number of jet strear	ns			
26.	26. Diameter of steam jets: in			27. Design basis for ste	am injected: LB steam/LB hvdrocarbon			
28.	How will steam flow be control	olled if steam	injection is	used?				
	Characteristics of the Waste Gas Stream to be Burned							
29.	Name	Quar Grains of H	ntity I₂S/100 ft ³	Quantity (LB/hr, ft ³ /hr, etc)	Source of Material			
	Well Unloading Gas	N/	A	62,013 lb/hr	Wellhead			
30.	Estimate total combustible to	flare:			LB/hr or ACF/hr			
	(Maximum mass flow rate of	waste das)		9	scfm			
31.	Estimated total flow rate to fla	are including	materials to	be burned, carrier gase	s, auxiliary fuel, etc.:			

62,013 lb/hr LB/hr or ACF/hr

32. Give composition of carrier gases:

33. Temperature of emission stream:	34. Identify and describe all auxiliary fuels to be burned.
°F	BTU/scf
Heating value of emission stream:	BTU/scf
1350 BTU/ft ³	BTU/scf
Man molecular weight of emission stream:	BTU/scf
= vvv	
35. Temperature of flare gas: °F	36. Flare gas flow rate: 729.17 scf/min
37. Flare gas heat content: BTU/ft ³	38. Flare gas exit velocity: scf/min
39. Maximum rate during emergency for one major piece	e of equipment or process unit: N/A scf/min
40. Maximum rate during emergency for one major piece	e of equipment or process unit: N/A BTU/min

41. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification):

42. Describe the collection material disposal system:

43. Have you included Flare Control Device in the Emissions Points Data Summary Sheet?

44. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.						
MONITORING:	RE	RECORDKEEPING:				
Personnel monitoring at all times operating.	when flare is Tra	ack volume of gas flowed to flare.				
REPORTING:	TE	STING:				
In accordance with regulations.	In	accordance with regulations.				
MONITORING: Please list and monitored in o equipment or air RECORDKEEPING: Please describe REPORTING: Please describe	describe the proces rder to demonstrate control device. the proposed record any proposed em	s parameters and ranges that are proposed to be compliance with the operation of this process keeping that will accompany the monitoring. issions testing for this process equipment on air				
TESTING: pollution control pollution control	device. e any proposed em device.	issions testing for this process equipment on air				
45. Manufacturer's Guaranteed Capture 100%	Efficiency for each a	ir pollutant.				
46. Manufacturer's Guaranteed Control 98%	Efficiency for each ai	[·] pollutant.				
47. Describe all operating ranges and m 125 psig maximum inlet pressure	aintenance procedur	es required by Manufacturer to maintain warranty.				

Attachment M Air Pollution Control Device Sheet (FLARE SYSTEM)

Control Device ID No. (must match Emission Units Table): 6S-COMB

	Equipment	Information				
	1. Manufacturer: LEED Fabrication	 Method: □ Elevated flare ⊠ Ground flare 				
	Model No. L30-0011-00	Other Describe				
3.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state	em with duct arrangement and size of duct, air volume, hood face velocity and hood collection efficiency.				
4.	Method of system used:					
	Steam-assisted	Pressure-assisted Non-assisted				
5.	Maximum capacity of flare:	6. Dimensions of stack:				
	100 scf/min	Diameter 4 ft.				
	6,000 scf/hr	Height 25 ft.				
7.	Estimated combustion efficiency:	8. Fuel used in burners:				
	(Waste gas destruction efficiency)	⊠ Natural Gas				
	Estimated: 98 %	☐ Fuel Oil, Number				
	Minimum guaranteed: 98 %	Uther, Specify:				
9.	Number of burners:	11. Describe method of controlling flame: N/A				
	Rating: 10.8 BTU/hr	1 1/2 1				
10.	Will preheat be used? Yes No					
12.	Flare height:25ft	14. Natural gas flow rate to flare pilot flame per pilot light: scf/min				
13.	Flare tip inside diameter: ft	scf/hr				
15.	Number of pilot lights:	16. Will automatic re-ignition be used?				
	Total 1 @ 15,000 BTU/hr	🛛 Yes 🗌 No				
17.	If automatic re-ignition will be used, describe the met	hod:				
	Piezoelectric igniter					
18.	Is pilot flame equipped with a monitor?	□ No				
	If yes, what type? 🛛 Thermocouple 🗌 Infra	-Red				
	🗌 Ultra Violet 🛛 🗌 Cam	era with monitoring control room				
	Other, Describe:					
19.	Hours of unit operation per year: 8760					

			Steam II	njection	
20.	Will steam injection be used	? 🗌 Yes	🛛 No	21. Steam pressure Minimum Expected:	PSIG
22.	Total Steam flow rate:		LB/hr	23. Temperature:	°F
24.	Velocity		ft/sec	25. Number of jet streams	
26.	Diameter of steam jets:		in	27. Design basis for steam	injected: LB steam/LB hvdrocarbon
28.	How will steam flow be contr	rolled if steam	i injection is	used?	
	Cha	racteristics o	of the Wast	e Gas Stream to be Burne	d
29.	Cha Name	racteristics o Quai Grains of H	of the Wast ntity H ₂ S/100 ft ³	e Gas Stream to be Burne Quantity (LB/hr, ft ³ /hr, etc)	d Source of Material
29.	Cha Name Produced Water Vapor	racteristics o Quai Grains of H N/	of the Wast ntity H ₂ S/100 ft ³ /A	e Gas Stream to be Burne Quantity (LB/hr, ft ³ /hr, etc) 6000 scf/hr	d Source of Material Tanks/Loading Losses
29.	Cha Name Produced Water Vapor	racteristics o Quai Grains of F N/	of the Wast ntity H ₂ S/100 ft ³ /A	e Gas Stream to be Burne Quantity (LB/hr, ft ³ /hr, etc) 6000 scf/hr	d Source of Material Tanks/Loading Losses
29.	Cha Name Produced Water Vapor	racteristics o Quai Grains of H N/	of the Wast ntity ⊣₂S/100 ft ³ /A	e Gas Stream to be Burner Quantity (LB/hr, ft ³ /hr, etc) 6000 scf/hr	d Source of Material Tanks/Loading Losses
29.	Cha Name Produced Water Vapor	racteristics o Quar Grains of H N/	of the Wast ntity H ₂ S/100 ft ³ /A	e Gas Stream to be Burner Quantity (LB/hr, ft ³ /hr, etc) 6000 scf/hr	d Source of Material Tanks/Loading Losses

30. Estimate total combustible to flare:

LB/hr or ACF/hr

(Maximum mass flow rate of waste gas) scfm 31. Estimated total flow rate to flare including materials to be burned, carrier gases, auxiliary fuel, etc.:

LB/hr or ACF/hr

32. Give composition of carrier gases:

33. Temperature of emission stream:	34. Identify and describe all auxiliary fuels to be burned.				
°F	BTU/scf				
Heating value of emission stream:	BTU/scf				
1950 BTU/ft°	BTU/scf				
MW = 19.91 lb/lb-mole	BTU/scf				
35. Temperature of flare gas: 70 °F	36. Flare gas flow rate: 6000 scf/min				
37. Flare gas heat content: 1950 BTU/ft ³	38. Flare gas exit velocity: scf/min				
39. Maximum rate during emergency for one major piece	of equipment or process unit: scf/min				
40. Maximum rate during emergency for one major piece	of equipment or process unit: BTU/min				

41. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification):

42. Describe the collection material disposal system:

43. Have you included Flare Control Device in the Emissions Points Data Summary Sheet?

44. Proposed Monitor	ring, Recordkeeping, Reporting,	and Testing					
Please propose m proposed operatin proposed emission	nonitoring, recordkeeping, and re g parameters. Please propose s limits.	porting in order to demonstrate compliance with the testing in order to demonstrate compliance with the					
MONITORING:		RECORDKEEPING:					
Periodic visible emiss	sion monitoring per regulation	Pilot records					
REPORTING:		TESTING:					
In accordance with re	gulations.	In accordance with regulations.					
MONITORING:	Please list and describe the pro	ocess parameters and ranges that are proposed to be					
RECORDKEEPING: REPORTING:	monitored in order to demons equipment or air control device. Please describe the proposed red Please describe any proposed pollution control device.	trate compliance with the operation of this process cordkeeping that will accompany the monitoring. emissions testing for this process equipment on air					
TESTING:	Please describe any proposed pollution control device.	emissions testing for this process equipment on air					
45. Manufacturer's Gua 100%	aranteed Capture Efficiency for eac	ch air pollutant.					
46. Manufacturer's Gua 98%	aranteed Control Efficiency for eac	h air pollutant.					
47. Describe all operati	ing ranges and maintenance proce	dures required by Manufacturer to maintain warranty.					

Attachment L EMISSIONS UNIT DATA SHEET BULK LIQUID TRANSFER OPERATIONS

Furnish the following information for each new or modified bulk liquid transfer area or loading rack, as shown on the *Equipment List Form* and other parts of this application. This form is to be used for bulk liquid transfer operations such as to and from drums, marine vessels, rail tank cars, and tank trucks.

Identification Number (as assigned on Equipment ListForm):						
1. Loading Area	Name: Tank Loa	ding				
2. Type of cargo	vessels accommo	odated	at this rack	or transfer point	(check as many	
	Marine Vesse	els	□Ra	il Tank Cars	Tank Trucks	
3. Loading Rack	or Transfer Point	Data:				
Number of pu	mps			1		
Number of liquids loaded 1 – Produced Water						
Maximum number of marine vessels, tank trucks, tank cars, 1 and/or drums loading at one time						
4. Does ballastin	ng of marine vess	els occ	ur at this lo	oadingarea? oes not apply		
5. Describe clea transfer point:	ning location, com	pound	s and proce	edure for cargo ve	essels using this	
 6. Are cargo vessels pressure tested for leaks at this or any other location? ☐Yes ☐No If YES, describe: 						
7. Projected Ma	ximum Operating	Sched	ule (for rac	k or transfer point	as a whole):	
Maximum	Jan Mar.	Apr	June	July - Sept.	Oct Dec.	
hours/day	24		24	24	24	
days/week	7		7	7	7	

weeks/quarter 13		13	13	8	13			
8 Bulk Liqui	id D	ata (add nages as	specessary):					
Bump ID No		ala (auti pages as	35-TI					
			Broducod Wate)r				
				:1				
Max. daily three	ougr	nput (1000 gal/day)	134.4					
Max. annual t	hrou	ighput (1000 gal/yr)	49056					
Loading Meth	od ¹		SUB					
Max. Fill Rate	(ga	l/min)	93.33					
Average Fill T	ime	(min/loading)	45					
Max. Bulk Liquid Temperature (°F)			53.39					
True Vapor Pressure ²			0.2521					
Cargo Vessel	Cor	ndition ³	U					
Control Equip	men	t or Method ⁴	O – Loading Rad	ck				
Minimum cont	trol e	efficiency (%)	70					
Maximum	Lo	ading (lb/hr)	0.27					
Rate	Ar	nual (lb/yr)	2420					
Estimation Me	etho	d ⁵	EPA					
¹ BF = Bottom	n Fill	SP = Splash F	ill SUB = Subr	nerged Fill				
² At maximum	bul	k liquid temperature	;					
³ B = Ballaste	d Ve	essel, C = Cleaned,	U = Uncleaned (de	dicated se	rvice), O	= othe	er (desc	ribe)
 ⁴ List as many as apply (complete and submit appropriate <i>Air Pollution Control Device Sheets</i>):CA = Carbon Adsorption CO = Condensation CRA = Compressor- Refrigeration-Absorption CRA = Compression-Refrigeration-Condensation CB = Dedicated Voice Voice								
⁵ EPA = EPA MB = Mater	Émi ial B	ssion Factor as stat alance	ed in AP-42					

TM = Test Measurement based upon test data submittal	
O = other (describe)	

9. Proposed Monitoring, Recordkeeping, Reporting, and Testing

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING	RECORDKEEPING
Follow all applicable regulations.	Keep records of produced water throughputs to tanker trucks.
REPORTING	TESTING
Follow all applicable regulations.	

MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION/AIR POLLUTION CONTROL DEVICE.

RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.

REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.

10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty

Attachment N

Moundsville (MND) 6 Production Site 2.0 MMBtu/hr Line Heaters

Line Heaters BAP0101-BAP0701

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Boiler Rating (MMBtu/hr)	Heat Value of Natural Gas	Annual Operating	Max. Hourly Emissions.	Max. Annual Emissions.
VOC's	5.5	lb/10 ⁶ scf	AP-42 Chapter 1.4	2.00	1,050	8,760	0.01	0.05
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	2.00	1,050	8,760	<0.01	0.02
Formaldehyde	0.1	lb/106 scf	AP-42 Chapter 1.4	2.00	1,050	8,760	<0.01	<0.01
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	2.00	1,050	8,760	<0.01	<0.01
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	2.00	1,050	8,760	<0.01	<0.01
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	2.00	1,050	8,760	<0.01	<0.01
со	84	lb/10 ⁶ scf	AP-42 Chapter 1.4	2.00	1,050	8,760	0.16	0.70
NOx	100	lb/10 ⁶ scf	AP-42 Chapter 1.4	2.00	1,050	8,760	0.19	0.83
PM _{Filterable}	1.9	lb/10 ⁶ scf	AP-42 Chapter 1.4	2.00	1,050	8,760	<0.01	0.02
PM _{Condensable}	5.7	lb/10 ⁶ scf	AP-42 Chapter 1.4	2.00	1,050	8,760	0.01	0.05
PM _{Total}	7.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	2.00	1,050	8,760	0.01	0.06
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	2.00	1,050	8,760	<0.01	<0.01
CO ₂	53.06	kg CO ₂ / MMBtu	40 CFR Subpart C	2.00	1,050	8,760	233.95	1024.72
CH ₄	0.001	kg CO ₂ / MMBtu	40 CFR Subpart C	2.00	1,050	8,760	<0.01	0.02
N ₂ O	0.0001	kg CO ₂ / MMBtu	40 CFR Subpart C	2.00	1,050	8,760	<0.01	<0.01
Total HAPs							<0.01	0.02
I otal CO ₂ e							234.20	1025.78

Notes:

-Emission rates displayed above represent the max. hourly and max. annual emissions for one line heater. Cumulative emission rates for all 7 line heaters are diplayed in the Total Site Emissions Table.

-Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

-AP-42, Chapter 1.4 references are from the July 1998 revision.

Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

-CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

Example Equations:

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr)

Moundsville (MND) 6 Production Site 4.0 MMBtu/hr Line Heaters

Line Heaters BAP0801, BAP0802

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Boiler Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions. (lb/hr)	Max. Annual Emissions. (tpy)
VOC's	5.5	lb/10 ⁶ scf	AP-42 Chapter 1.4	4.00	1,050	8,760	0.02	0.09
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	4.00	1,050	8,760	<0.01	0.03
Formaldehyde	0.1	lb/106 scf	AP-42 Chapter 1.4	4.00	1,050	8,760	<0.01	<0.01
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	4.00	1,050	8,760	<0.01	<0.01
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	4.00	1,050	8,760	<0.01	<0.01
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	4.00	1,050	8,760	<0.01	<0.01
со	84	lb/10 ⁶ scf	AP-42 Chapter 1.4	4.00	1,050	8,760	0.32	1.40
NOx	100	lb/10 ⁶ scf	AP-42 Chapter 1.4	4.00	1,050	8,760	0.38	1.67
PM _{Filterable}	1.9	lb/10 ⁶ scf	AP-42 Chapter 1.4	4.00	1,050	8,760	<0.01	0.03
PM _{Condensable}	5.7	lb/10 ⁶ scf	AP-42 Chapter 1.4	4.00	1,050	8,760	0.02	0.10
PM _{Total}	7.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	4.00	1,050	8,760	0.03	0.13
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	4.00	1,050	8,760	<0.01	0.01
CO ₂	53.06	kg CO ₂ / MMBtu	40 CFR Subpart C	4.00	1,050	8,760	467.91	2049.44
CH4	0.001	kg CO ₂ / MMBtu	40 CFR Subpart C	4.00	1,050	8,760	<0.01	0.04
N ₂ O	0.0001	kg CO ₂ / MMBtu	40 CFR Subpart C	4.00	1,050	8,760	<0.01	<0.01
Total HAPs							<0.01	0.03
Total CO ₂ e							468.39	2051.56

Notes:

-Emission rates displayed above represent the max. hourly and max. annual emissions for one line heater. Cumulative emission rates for both line heaters are diplayed in the Total Site Emissions Table.

-Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

-AP-42, Chapter 1.4 references are from the July 1998 revision.

⁻Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

-CO2 equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO2=1, GWP CH4=25, GWP N2O=298

Example Equations:

Max. Hourly Emission Rate (Ib/hr) = Emission Factor (Ib/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr)

Moundsville (MND) 6 Production Site Fuel Cell

Source ID Number	7S-FC	
Equipment ID	ARP500	
Equipment Usage	Remote Powe	er System
Equipment Make	Acumentrics	
Equipment Model	Propane	
Serial Number	TBD	
Installation Date	NEW CONST	Г.
Emission Controls	None	
Fuel Heating Value	21564	Btu/gal
Design Heat Rate*	2156.4	Btu/gai Btu/hr
Site Heat Rate*	0.0022	MMBtu/hr
Potential Operation	8760	hr/yr
Potential Fuel Usage	2.4	gal/day

Potential Emissions

	Emission	Emission Hrs of Estimated Emissions		Emissions	Source of
Pollutant	Factor (lb/10 ³ gal)	Operation (hrs/yr)	(lb/hr)	(tpy)	Emission Factor
NOx	13.00	8760	<0.01	<0.01	AP-42 ¹
СО	7.50	8760	<0.01	<0.01	AP-42 ¹
VOC	1.00	8760	<0.01	<0.01	AP-42 ¹
SO2	0.10	8760	<0.01	<0.01	AP-42 ¹
PM _{Total}	0.70	8760	<0.01	<0.01	AP-42 ¹
PM _{Con}	0.50	8760	<0.01	<0.01	AP-42 ¹
PM _{Filt}	0.20	8760	<0.01	<0.01	AP-42 ¹
CO ₂	12500.00	8760	1.25	5.48	AP-42 ¹
CH ₄	0.20	8760	<0.01	<0.01	AP-42 ¹
CO ₂ e			1.25	5.48	

¹ EPA AP-42, Volume I, Fifth Edition - July 2008, Table 1.5-1, Emission Factors for LPG Combustion

Noble Energy, Inc; MND 6 Production Site

Pump Detail Sheet

Source ID Number	10S-PUMP		
Equipment ID	P-0001		
Equipment Usage	Well Unload	ling Pump	
Equipment Make Equipment Model Serial Number Installation Date	Sandpiper G20 Unknown 06/25/17		
Pump Design Rate Potential Operation Control Efficiency	20.00 730 98.00%	scf/min hours/yr %	

Potential Emissions

Pollutant		Estimated Uncon	Source of		
				Emission Factor	Control
	wt frac	(lb/hr)	(tpy)		
VOC	1.20E-01	0.38	0.14	HYSYS	8S-FL
Benzene	7.90E-06	0.00	0.00	HYSYS	8S-FL
Toluene	1.38E-05	0.00	0.00	HYSYS	8S-FL
Ethylbenzene	1.02E-06	0.00	0.00	HYSYS	8S-FL
Xylene	6.95E-06	0.00	0.00	HYSYS	8S-FL
n-Hexane	2.37E-03	0.01	0.00	HYSYS	8S-FL
Total HAPs	2.40E-03	0.01	0.00	HYSYS	8S-FL
CH ₄	6.70E-01	2.12	0.774	HYSYS	8S-FL
CO ₂	1.09E-03	0.00	0.001	HYSYS	8S-FL
CO ₂ e		53.02	19.351	40CFR98	

Controlled Emissions

Pollutant		Estimated Uncon	Source of		
				Emission Factor	Control
	wt frac	(lb/hr)	(tpy)		
VOC		0.01	0.00	HYSYS	8S-FL
Benzene		0.00	0.00	HYSYS	8S-FL
Toluene		0.00	0.00	HYSYS	8S-FL
Ethylbenzene		0.00	0.00	HYSYS	8S-FL
Xylene		0.00	0.00	HYSYS	8S-FL
n-Hexane		0.00	0.00	HYSYS	8S-FL
Total HAPs		0.00	0.00	HYSYS	8S-FL
CH ₄		0.04	0.015	HYSYS	8S-FL
CO ₂		0.00	0.000	HYSYS	8S-FL
CO ₂ e		1.06	0.387	40CFR98	

Noble Energy, Inc; MND 6 Production Site

Well Unloading Sheet

Source ID Number	MBD-0001	
Equipment ID	Well Unloading	g Knockout
Equipment Usage	Well Blowdown	าร
Equipment Make		
Equipment Model		
Serial Number		
Installation Date	06/25/17	
Number of Wells	8	
Potential Operation	730	hours/yr
Control Efficiency	98.00%	%

Potential Emissions

Pollutant		Estimated Uncon	Source of		
				Emission Factor	Control
	wt frac	(lb/hr)	(tpy)		
VOC	1.20E-01	7414.31	2706.22	HYSYS	8S-FL
Benzene	7.90E-06	0.06	0.02	HYSYS	8S-FL
Toluene	1.38E-05	0.11	0.04	HYSYS	8S-FL
Ethylbenzene	1.02E-06	0.01	0.00	HYSYS	8S-FL
Xylene	6.95E-06	0.05	0.02	HYSYS	8S-FL
n-Hexane	2.37E-03	18.36	6.70	HYSYS	8S-FL
Total HAPs	2.40E-03	18.59	6.79	HYSYS	8S-FL
CH ₄	6.70E-01	5191.58	1894.93	HYSYS	8S-FL
CO ₂	1.09E-03	8.49	3.10	HYSYS	8S-FL
CO ₂ e		129798.09	47376.30	40CFR98	

Controlled Emissions

Pollutant	Estimated Con	trolled Emissions	Source of	
			Emission Factor	Control
	(lb/hr)	(tpy)		
VOC	148.29	54.12	HYSYS	8S-FL
Benzene	0.00	0.00	HYSYS	8S-FL
Toluene	0.00	0.00	HYSYS	8S-FL
Ethylbenzene	0.00	0.00	HYSYS	8S-FL
Xylene	0.00	0.00	HYSYS	8S-FL
n-Hexane	0.37	0.13	HYSYS	8S-FL
Total HAPs	0.37	0.14	HYSYS	8S-FL
CH ₄	103.83	37.899	HYSYS	8S-FL
CO ₂ e	2595.96	947.526	40CFR98	

Moundsville (MND) 6 Production Site Tanks ABJ-0011 - ABJ-0014 Tank Flashing Emissions

Potential Produced Water Production (bbl/day)	3200
Potential Produced Water Production (bbl/yr)	1,168,000
Gas to Oil Ratio (GOR)	2.35

Potential Emissions

			Estimated Uncontrolled Emissions			
	Emission Factor	Hours of				Source of Emission
Pollutant	(lb/bbl)	Operation (hrs/yr)	(lb/hr)	(tpy)	(lb/yr)	Factor
VOCs	1.85E-02	8760	2.47	10.82	21646.25	Flash Gas Analysis
Benzene	1.20E-04	8760	0.02	0.07	140.72	Flash Gas Analysis
Ethylbenzene	1.35E-05	8760	0.00	0.01	15.81	Flash Gas Analysis
Toluene	2.40E-04	8760	0.03	0.14	279.87	Flash Gas Analysis
Xylene	1.91E-04	8760	0.03	0.11	222.95	Flash Gas Analysis
n-Hexane	9.77E-04	8760	0.13	0.57	1141.61	Flash Gas Analysis
Total HAPs	1.54E-03	8760	0.21	0.90	1800.96	Flash Gas Analysis
CO ₂	5.09E-03	8760	0.68	2.97	5948.37	Flash Gas Analysis
CH ₄	6.99E-02	8760	9.32	40.82	81639.11	Flash Gas Analysis
CO ₂ e	N/A	8760	233.67	1023.46	2046926.08	N/A

	Emission Factor	Hours of	Estima	ted Controll	ed Emissions	Source of Emission
Pollutant	(lb/bbl)	Operation (hrs/yr)	(lb/hr)	(tpy)	(lb/yr)	Factor
VOCs	1.85E-02	8760	0.05	0.22	432.93	Flash Gas Analysis
Benzene	1.20E-04	8760	0.00	0.00	2.81	Flash Gas Analysis
Ethylbenzene	1.35E-05	8760	0.00	0.00	0.32	Flash Gas Analysis
Toluene	2.40E-04	8760	0.00	0.00	5.60	Flash Gas Analysis
Xylene	1.91E-04	8760	0.00	0.00	4.46	Flash Gas Analysis
n-Hexane	9.77E-04	8760	0.00	0.01	22.83	Flash Gas Analysis
Total HAPs	1.54E-03	8760	0.00	0.02	36.02	Flash Gas Analysis
CO ₂	5.09E-03	8760	0.01	0.06	118.97	Flash Gas Analysis
CH ₄	6.99E-02	8760	0.19	0.82	1632.78	Flash Gas Analysis
CO ₂ e	N/A	8760	4.67	20.47	40938.52	N/A

¹Emissions only from tank flashing losses

²Emission Factor Calculation: **(lb/bbl)** = GOR **(scf/bbl)** * Ideal Gas Law Conversion Factor **(1 lbmol/379.3 scf)** * MW of gas **(lb gas/lbmol)** * Pollutant **(lb pollutant/lb gas)** ³CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298 ⁴GOR from Sand Hill 8J - Flash Liberation of Separator Water FESCO Analysis

Noble Energy, Inc; MND 6 Production Facility Tank Working and Breathing Emissions Detail Sheet

Potential Produced Water Production (bbl/yr)

1,168,000

HAP Speciation			
BTEX	3.05% wt% of VOC	Based on FESCO PW study; ratio of lb BTEX/bbl to lb VOC/bbl of PW	
Total HAPs	8.32% wt% of VOC	·····	
GHG Speciation			
Methane	377.15% Based on FESC	D PW study; ratio of lb GHG/bbl to lb VOC/bbl of PW	
Carbon Dioxide	27.48% Based on FESC	D PW study; ratio of lb GHG/bbl to lb VOC/bbl of PW	

Pollutant		Losses (lbs/yr) ¹		Losses (tpy)			
	Working Loss	Breathing Loss	Total Emissions	Working Loss	Breathing Loss	Total Emissions	
VOCs	1037.62	26.05	1063.67	0.52	0.01	0.53	
HAPs	86.33	2.17	88.50	0.04	0.00	0.04	
CH ₄	3913.40	98.25	4011.64	1.96	0.05	2.01	
CO ₂	285.14	7.16	292.30	0.14	0.00	0.15	
CO ₂ e	98120.05	2463.36	100583.40	49.06	1.23	50.29	

¹Losses calculated in MND 6 EPA TANKS 4.0.9d report

Source Description	Produced W	ater Truck Loa	adout							
Source Usage	Produced W	ater Truck Loa	adout							
Potential operation	8,760									
Capture Efficiency	70%								-	
Control Efficiency	98%								-	
HAP Speciation										
BTEX	3.05%	3.05% wt% of VOC Based on FESCO PW study; ratio of Ib BTEX/bbl to Ib VOC/bbl of PW								
Total HAPs	8.32%	wt% of VOC							1	
GHG Speciation										
Methane	377.15%	Based on FES	CO PW study;	ratio of lb C	GHG/bbl to lb	VOC/bbl of PW				
Carbon Dioxide	27.48%	Based on FES	CO PW study;	ratio of lb G	SHG/bbl to lb	VOC/bbl of PW				
Potential Emissions	EDA		Mol W/	Tof		Eotin	noted Emissi	0 00	Source of	
Fonutant						ESUI				
	SFactor	of Liquid	of vapors	Liquid	Volume		<i></i>		Emission	Notes
		(psia)	(lb/lb-mol)	(R)	(bbl/yr) ⁻	(lb/1000 gal)	(lb/hr)	(tpy)	Factor	
VOC	0.6	5.20	66.00	518	11,680	4.95	0.08	0.36	AP-42 ¹	ATMOSPHE
HAPs							0.01	0.03	AP-42 ¹	ATMOSPHE
CH ₄							0.31	1.37	AP-42 ¹	ATMOSPHE
CO ₂							0.02	0.10	AP-42 ¹	ATMOSPHE
CO2e							7.87	34.45	AP-42 ¹	ATMOSPHE
VOC	0.6	5.20	66.00	518	11,680	4.95	0.19	0.85	AP-42 ¹	To VDU
HAPs							0.00	0.07	AP-42 ¹	To VDU
CH ₄							0.73	3.21	AP-42 ¹	To VDU
CO ₂							0.05	0.23	AP-42 ¹	To VDU
CO2e							18.35	80.39	AP-42 ¹	To VDU
VOC	0.6	5.20	66.00	518	11,680	4.95	0.00	0.02	AP-42 ¹	Controllec
HAPs							0.00	0.00	AP-42 ¹	Controllec
CH ₄							0.01	0.06	AP-42 ¹	Controllec
CO ₂							0.00	0.00	AP-42 ¹	Controllec
CO2e							0.37	1.61	AP-42 ¹	Controllec

¹ EPA AP-42, Volume I, Fifth Edition - January 1995, Table 5.2-1, Saturation (S) Factors for Calculating Petroleum Liquid Loading Losses

²The oil volume for this calculation assumes that 1.0% of the produced water volume is oil.

³EPA AP-42, Volume I, Fifth Edition - January 1995, Section 5.2.2.1.1. Assumes a minimum collection efficiency of 70%.

⁴Molecular Weight of Vapors and True VP of Liquid comes from TANKS4.0.9 Gasoline RVP 10 properties

⁵Temperature comes from TANKS 4.0.9d Emission Report

Noble Energy, Inc; MND 6 Production Site Enclosed Flare Detail Sheet

1.													
Source ID Number	6S-COMB												
Equipment ID	EAW-0002			Truck Loading Emissions & Tank Emissions									
Equipment Usage	Vapor Combu	istor		VC	C	HA	APs	C	H ₄	C	0 ₂	CC	D ₂ e
			Produced Water Tanks - Flashing	10.82	tpy VOC	0.90	tpy HAPs	40.82	tpy CH4	2.97	tpy CO2	1023.46	tpy CO2e
			Produced Water Tanks - W&B	0.53	tpy VOC	0.04	tpy HAPs	2.01	tpy CH4	0.15	tpy CO2	50.29	tpy C02e
Equipment Make	Leed		Liquids Unloading	0.85	tpy VOC	0.07	tpy HAPs	3.21	tpy CH4	0.23	tpy C02	80.39	tpy C02e
Equipment Model													
Serial Number	Unknown		Total Uncontrolled Emissions	12.21	tpy VOC	1.02	tpy HAPs	46.03	tpy CH4	3.35	tpy C02	1154.15	tpy C02e
Installation Date	06/25/17												
Emission Controls	None		Control Efficiency	0.98		0.98		0.98					
			Controlled Emissions	0.24	tpy VOC	0.02	tpy HAPs	0.92	tpy CH4				
			Combustion										
Pilot			Molecular Weight of Vapors		lb/lb-mol								
Fuel Heating Value	1950	Btu/scf	Fuel Heating Value	1950	Btu/scf								
Design Heat Rate	0.02	MMBtu/hr	Potential Heat Output	10.8	MMBtu/hr								
Site Heat Rate	0.02	MMBtu/hr	VOC Vapors sent to flare	24410.3	lbs/yr								
Potential Operation	365	days/yr	Potential Operation	365	days/yr								
Potential Fuel Usage	0.18	Mscf/day	Ave. Gas Flared	144.000	Mscf/day								

9S-PILOT1 Combustor Pilot Emissions

Combastor Fliot Emissions								
Pollutant	Emission	Annual gas	Hrs of	Estimated	Emissions	Source of		
	Factor	Usage	Operation		Pilot	Emission		
	Ib/MMSCF	MMSCF/yr	(hrs/yr)	(lb/hr)	tpy	Factor		
NOx	100	0.07	8760	0.00	0.00	AP-42 ²		
со	84	0.07	8760	0.00	0.00	AP-42 ²		
PM10	8	0.07	8760	0.00	0.00	AP-42 ²		
VOC	6	0.07	8760	0.00	0.00	AP-42 ²		
N ₂ O	1.0	0.07	8760	0.00	0.00	API		
SO ₂	0.6	0.07	8760	0.00	0.00	AP-42 ²		
Hexane	1.8	0.07	8760	0.00	0.00	AP-42 ²		
Formaldehyde	0.1	0.07	8760	0.00	0.00	AP-42 ²		
CO ₂	120,000	0.07	8760	0.92	4.04	AP-42 ²		

Potential Combustion Emissions								
Pollutant	Emission	Annual gas	Estimated	Emission				
	Factor	Usage	Emissions	Factor				
	lb/MMBtu	MMBtu/yr	tpy	Source				
NOx	0.068	94608	3.22	AP-421				
со	0.370	94608	17.50	AP-421				
PM10	0.004	94608	0.18	AP-42 ²				
N ₂ O	0.001	94608	0.05	API				
SO ₂	0.000	94608	0.01	AP-42 ²				
Formaldehyde	0.000	94608	0.00	AP-42 ²				
CO2	117.6	94608	5565.18	AP-421				

Total Potential Vapor Combustor Emissions

Pollutant	tpy	lb/hr	
NOx	3.22	0.74	
CO	17.51	4.00	
PM10	0.18	0.04	
VOC	0.24	0.06	
HAPs	0.02	0.01	
N ₂ O	0.05	0.01	
SO ₂	0.01	0.003	
CH ₄	0.92	0.210	
CO ₂	5572.57	1272.28	
CO ₂ e	5609.42	1280.69	

¹ EPA AP-42, Volume I, Fifth Edition - April 2015, Table 13.5-1, Emission Factors for Flare Operations.
 ² EPA AP-42, Volume I, Fifth Edition - September 1991, Table 1.4, Emission Factors for Natural Gas Combustion

$E_{a,CN}\left\{an-combusted \right\}=V_{a}^{-n}(1-\eta)^{-n}X_{CN}$	(Eq.	M-19
$E_{a,coz}\left(un-combusted\right)=V_{a}*X_{coz}$	(Eq.	₩-20
$E_{\alpha,COD}$ (combusted) = $\sum_{i=1}^{5} (\eta * V_{\alpha} * Y_{j} * R_{j})$	(Eq.	₩-21

Noble Energy, Inc; MND 6 Production Site Flare Detail Sheet

Source ID Number	8S-FL					Well Blowdown I	Emissions					
Equipment ID	EAW-0001		VOC	н	APs	(CH4		CO ₂		CO ₂ e	
Equipment Usage	Well Unloading Control	Unloading Vessel	2706.22 tpy	6.79 tpy		1894.93 tpy		3.10	tpy	47376.30	0 tpy	
	Well Unloading Pump Control	Diaphragm Pump	0.14 tpy	0.00 tpy		0.77 tpy		0.00	tpy	19.3	5 tpy	
Equipment Make	NOV	Total Emissions	2706.36 tpy UNCONTROLLED	6.79 tpy	UNCONTROLLED	1895.70 tpy	UNCONTROLLED	3.10	tpy UNCONTROLLE	47395.66	6 tpy	UNCONTROLLED
Equipment Model	Produced Gas Flare		14829.37 lb/hr UNCONTROLLED	37.20 lb/hr	UNCONTROLLED	10387.41 lb/hr	UNCONTROLLED	16.98	lb/hr UNCONTROLLE	259702.22	2 lb/hr	UNCONTROLLED
Serial Number	Unknown	Control Efficiency	98%	98%		98%						
Installation Date	06/25/17	Controlled Emissions	54.13 tpy CONTROLLED	0.14 tpy	CONTROLLED	37.91 tpy	CONTROLLED					
			296.59 lb/hr CONTROLLED	0.74 lb/hr	CONTROLLED	207.75 lb/hr	CONTROLLED					
Pilot												
Fuel Heating Value	1350 Btu/scf	Fuel Heating Value	1350.000 Btu/scf									
Design Heat Rate	0.26 MMBtu/hr	Potential Heat Output	78.000 MMBtu/hr									
Site Heat Rate	0.26 MMBtu/hr	VOC Vapors sent to flare	5412721.9 lbs/yr									
Potential Operation	365 days/yr	Potential Operation	30.4 days/yr									
Potential Fuel Usage	4.693 Mscf/day	MAX. Gas Flared	1050.000 Mscf/day									

Pollutant	Emission	Annual gas	Hrs of	Est	timated Emissions	Source of
	Factor Ib/MMSCF	Usage MMSCF/yr	Operation (hrs/yr)	(lb/hr)	Pilot tpy	Emission Factor
NOx	100.0	1.71	8760	0.02	0.09	AP-42 ²
со	84.0	1.71	8760	0.02	0.07	AP-42 ²
PM ₁₀	7.6	1.71	8760	0.00	0.01	AP-42 ²
VOC	5.5	1.71	8760	0.00	0.00	AP-42 ²
N ₂ O	1.0	1.71	8760	0.00	0.00	API
SO ₂	0.6	1.71	8760	0.00	0.00	AP-42 ²
Hexane	1.8	1.71	8760	0.00	0.00	AP-42 ²
Formaldehyde	0.1	1.71	8760	0.00	0.00	AP-42 ²
CO ₂	120000.0	1.71	8760	23.47	102.78	AP-42 ²

Pollutant	Emission Factor Ib/MMBtu	Usage MMBtu/hr	Hrs of Operation (hrs/yr)	Estimated Emissions Ib/hr	Estimated Emissions tpy	Emission Factor Source
NOx	0.068	78.00	730	5.30	1.94	AP-421
со	0.370	78.00	730	28.86	10.53	AP-42 ¹
PM ₁₀	0.006	78.00	730	0.44	0.16	AP-42 ²
SO ₂	0.000	78.00	730	0.03	0.01	AP-42 ²
N ₂ O	0.001	78.00	730	0.06	0.02	API
Formaldehyde	0.000	78.00	730	0.00	0.00	AP-42 ²
CO ₂	88.889	78.00	730	6933.33	2530.67	AP-421

Total Potential Vapor Combustor Emissions						
Pollutant	tpy	lb/hr				
NOx	2.02	5.32				
CO	10.61	28.88				
PM10	0.17	0.44				
SO ₂	0.01	0.04				
VOC	54.13	296.59				
HAPs	0.14	0.75				
N ₂ O	0.02	0.06				
CH ₄	37.91	207.75				
CO ₂	2636.55	6973.78				
CO ₂ e	3590.94	12184.76				

¹ EPA AP-42, Volume I, Fifth Edition - April 2015, Table 13.5-1, Emission Factors for Flare Operations.

² EPA AP-42, Volume I, Fifth Edition - September 1991, Table 1.4, Emission Factors for Natural Gas Combustion

 $E_{z,C^{1}}(m-combusted) = V_{z}^{-k}(1-\eta)^{k} X_{C^{1}} \qquad (\text{Eq. W-19})$

$$\begin{split} E_{alle} & \left[m\text{-contrasted} = I_{a}^{*} X_{OB} \right. & (Eq. \ \text{W-20}) \\ \\ & E_{aller} & (contrasted) = \sum_{j=1}^{2} \int_{0}^{a} I_{a}^{*} I_{j}^{*} * R_{j} \right) & (Eq. \ \text{W-21}) \end{split}$$

Noble Energy, Inc; MND 6 Production Site Pneumatic Controllers

Equipment ID	11S-FC1-9, 13	3S-BP	
Equipment Usage	Flow Control / Back Pressure		
Equipment Make	Fischer Control		
Equipment Model	DVC 6200		
Emission Controls	None		
Equipment Count	10		
Design Flow*	6.00	SCFH	
Potential Operation	8760	hr/yr	
Service	NG		

Equipment ID	12S-LC1-1	8					
Equipment Usage	Separator Level Control						
Equipment Make	KIMRAY						
Equipment Model	GEN II leve	el Controllers					
Emission Controls	None						
Equipment Count	18						
Design Flow*	0.02	SCFH					
Potential Operation	8760	hr/yr					
Service	NG						

Potential Emissions 11S-FC1-9

Pollutant		Emission	Hrs of	Estimated Emis	ssions	Source of
		Factor	Operation			Emission
	% of Gas	(Ib/SCF)	(hrs/yr)	(lb/hr)	(tpy)	Factor
VOC	1.20E-01	0.06	8760	0.39	1.72	Manufacturer Factor
n-Hexane	2.37E-03			0.01	0.03	Manufacturer Factor
Benzene	7.90E-06			0.00	0.00	Manufacturer Factor
Toluene	1.38E-05			0.00	0.00	Manufacturer Factor
Ethylbenzene	1.02E-06			0.00	0.00	Manufacturer Factor
Xylenes	6.95E-06			0.00	0.00	Manufacturer Factor
Total HAPs	2.40E-03		8760	0.01	0.03	Manufacturer Factor
CH4	6.70E-01			2.21	9.66	Manufacturer Factor
CO ₂	1.09E-03			0.00	0.02	Manufacturer Factor
CO _{2e}				55.14	241.49	40CFR98

Potential Emissions	13S-BP					
Pollutant		Emission Factor	Hrs of Operation	Estimated Emis	sions	Source of Emission
	% of Gas	(Ib/SCF)	(hrs/yr)	(lb/hr)	(tpy)	Factor
VOC	1.20E-01	0.06	8760	0.04	0.19	Manufacturer Factor
n-Hexane	2.37E-03			0.00	0.00	Manufacturer Factor
Benzene	7.90E-06			0.00	0.00	Manufacturer Factor
Toluene	1.38E-05			0.00	0.00	Manufacturer Factor
Ethylbenzene	1.02E-06			0.00	0.00	Manufacturer Factor
Xylenes	6.95E-06			0.00	0.00	Manufacturer Factor
Total HAPs	2.40E-03		8760	0.00	0.00	Manufacturer Factor
CH ₄	6.70E-01			0.25	1.07	Manufacturer Factor
CO ₂	1.09E-03			0.00	0.00	Manufacturer Factor
CO ₂ e				6.13	26.83	40CFR98

Potential Emissions 12

12S-LC1-18

Pollutant		Emission	Hrs of	Estimated Emis	sions	Source of
		Factor	Operation			Emission
	% of VOC	(Ib/SCF)	(hrs/yr)	(lb/hr)	(tpy)	Factor
VOC	1.20E-01	0.06	8760	0.00	0.01	Manufacturer Factor
n-Hexane	2.37E-03			0.00	0.00	Manufacturer Factor
Benzene	7.90E-06			0.00	0.00	Manufacturer Factor
Toluene	1.38E-05			0.00	0.00	Manufacturer Factor
Ethylbenzene	1.02E-06			0.00	0.00	Manufacturer Factor
Xylenes	6.95E-06			0.00	0.00	Manufacturer Factor
Total HAPs	2.40E-03		8760	0.00	0.00	Manufacturer Factor
CH ₄	6.70E-01			0.01	0.05	Manufacturer Factor
CO ₂	1.09E-03			0.00	0.00	Manufacturer Factor
CO ₂ e				0.31	1.34	40CFR98

Total Pneumatic Potential Emiss	ions
---------------------------------	------

	Estimat	ed Emissions
Pollutant	(lb/hr)	(tpy)
VOC	0.44	1.93
n-Hexane	<0.01	0.04
Benzene	<0.01	<0.01
Toluene	<0.01	<0.01
Ethylbenzene	<0.01	<0.01
Xylenes	<0.01	<0.01
Total HAPs	<0.01	0.04
CH ₄	2.46	10.79
CO ₂	<0.01	0.02
CO ₂ e	61.57	269.67

Fugitive Emissions from Unpaved Haul Roads

Constant	Industrial Roads									
Constant	PM	PM-10	PM-2.5							
k (lb/VMT)	4.9	1.5	0.15							
а	0.7	0.9	0.9							
b	0.45	0.45	0.45							
where										

Patricle size multiplier¹

s р

k

4.8 Silt content of road surface material (%)

150 Number of days per year with precipitation

Item Number	Description	Number of Wheels	W Mean Vehicle Weight (tons)	Mean Vehicle Speed (mph)	Miles per Trip	Maximum Trips per Hour	Maximum Trips per Year	Control Device ID Number	Control Efficiency (%)	PM Emissions (Ibs/hr)	PM Emissions (tons/yr)	PM-10 Emissions (Ibs/hr)	PM-10 Emissions (tons/yr)	PM-2.5 Emissions (Ibs/hr)	PM-2.5 Emissions (tons/yr)
1	Liquids Hauling	14	30	10	0.25	1	11,680	NA	NA	1.07	6.25	0.27	1.59	0.03	0.16
2	Employee Vehicles	4	3	10	0.25	1	200	NA	NA	0.38	0.04	0.10	0.01	0.01	<0.001
									Totals:	1.45	6.29	0.37	1.60	0.04	0.16

Notes:

¹ - Particle Size Multiplier used from AP-42 13.2.2 - Final Version 11/2006

² - Silt Content of Road Surface uses Sand and Gravel Processing Plant Road from AP-42 13.2.2 - Final Version 11/2006

³ - Number of days per year with precipitation >0.01 in3 found using AP-42 13.2.2 Figure 13.2.2-1 - Final Version 11/2006

Example Calculations:

Emissions (lb/Vehicle Mile Traveled) - E = $k \times (s/12)^a \times (W/3)^b$

Size Specific Emissions (Ib/VMT) - E_{ext} = E[(365-p)/365]

Equation 1a from AP-42 13.2.2 - Final Version 11/2006

Equation 2 from AP-42 13.2.2 - Final Version 11/2006

Fugitive Leaks

Default Average Co	Default Average Component Counts for Major Onshore Natural Gas Production Equipment ¹											
Facility Equipment Type	Valves	Connectors	Open-ended Lines	Pressure Relief Valves								
Wellheads	8	38	0.5	0								
Separators	1	6	0	0								
Meters/Piping	12	45	0	0								
Compressors	12	57	0	0								
In-line Heaters	14	65	0	0								
Dehydrators	24	90	0	0								

Well Specific Equipment Counts									
Facility Equipment									
Туре	Count on Site								
Wellheads	8								
Separators	7								
Meters/Piping	8								
Compressors	0								
In-line Heaters	9								
Dehydrators	0								

¹- Table W-1B to 40CFR98 Subpart W

Gas Composition														
Emissions from Flaring Operations	Propane	Butane	Pentanes	Heptane	Octanes	Nonanes	Decanes	Hexane	Benzene	Toluene	Ethylbenzene	Xylene	CO ₂	CH ₄
Weight %	5.44	2.66	0.97	0.23	0.21	0.08	0.030	0.63	0.00	0.010	0.002	0.016	0.07	42.61

Fugitive Emissions													
Facility Equipment Type	Total Count	Emission Rate (scf/hr/component) ²	Hours of Operation	VOCs (lbs/hr)	VOCs (tons/yr)	HAPs (Ibs/hr)	HAPs (tons/yr)	CO ₂ (lbs/hr)	CO ₂ (tons/yr)	CH ₄ (Ibs/hr)	CH ₄ (tons/yr)	Total CO ₂ e (Ibs/hr)	Total CO ₂ e (tons/yr)
Valves	293	0.027	8760	0.21	0.94	0.014	0.06	0.001	0.006	0.89	3.90	22.24	97.40
Connectors	1291	0.003	8760	0.10	0.46	0.007	0.03	<0.001	0.003	0.44	1.91	10.89	47.68
Open-ended Lines	4	0.06	8760	0.01	0.03	<0.001	0.002	<0.001	<0.001	0.03	0.12	0.69	3.00
Pressure Relief Valves	9	0.04	8760	0.010	0.04	<0.001	0.003	<0.001	<0.001	0.04	0.18	1.01	4.43
			Total Emissions:	0.34	1.47	0.02	0.10	<0.01	0.01	1.39	6.10	34.82	152.52

²- Table W-1A to 40CFR98 Subpart W

Notes: -Gas Composition data taken from attached HYSYS run

Example Equations: Fugitive Emissions (lb/hr) = Count x Emission Rate x Hours of Operation ÷ 379 scf/lb x Weight % pollutant

										Tota	I MND 6 Sit	e Emission L	evels											
	vo	VOCs HAP		iPs CO		со	NOx		PM (Total)		PM (Filterable)		PM (Condensable)		SO ₂		CO ₂		CH ₄		N ₂ O		CO2e	
Emission Sources	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Line Heater BAP-0101	0.01	0.05	< 0.01	0.02	0.16	0.70	0.19	0.83	0.01	0.06	< 0.01	0.02	0.01	0.05	< 0.01	< 0.01	233.95	1024.72	< 0.01	0.02	< 0.01	< 0.01	234.20	1025.78
Line Heater BAP-0201	0.01	0.05	< 0.01	0.02	0.16	0.70	0.19	0.83	0.01	0.06	< 0.01	0.02	0.01	0.05	< 0.01	< 0.01	233.95	1024.72	< 0.01	0.02	< 0.01	< 0.01	234.20	1025.78
Line Heater BAP-0301	0.01	0.05	< 0.01	0.02	0.16	0.70	0.19	0.83	0.01	0.06	< 0.01	0.02	0.01	0.05	< 0.01	< 0.01	233.95	1024.72	< 0.01	0.02	< 0.01	< 0.01	234.20	1025.78
Line Heater BAP-0401	0.01	0.05	< 0.01	0.02	0.16	0.70	0.19	0.83	0.01	0.06	< 0.01	0.02	0.01	0.05	< 0.01	< 0.01	233.95	1024.72	< 0.01	0.02	< 0.01	< 0.01	234.20	1025.78
Line Heater BAP-0501	0.01	0.05	< 0.01	0.02	0.16	0.70	0.19	0.83	0.01	0.06	< 0.01	0.02	0.01	0.05	< 0.01	< 0.01	233.95	1024.72	< 0.01	0.02	< 0.01	< 0.01	234.20	1025.78
Line Heater BAP-0601	0.01	0.05	< 0.01	0.02	0.16	0.70	0.19	0.83	0.01	0.06	< 0.01	0.02	0.01	0.05	< 0.01	< 0.01	233.95	1024.72	< 0.01	0.02	< 0.01	< 0.01	234.20	1025.78
Line Heater BAP-0701	0.01	0.05	< 0.01	0.02	0.16	0.70	0.19	0.83	0.01	0.06	< 0.01	0.02	0.01	0.05	< 0.01	< 0.01	233.95	1024.72	< 0.01	0.02	< 0.01	< 0.01	234.20	1025.78
Line Heater BAP-0801	0.02	0.09	< 0.01	0.03	0.32	1.40	0.38	1.67	0.03	0.13	< 0.01	0.03	0.02	0.10	< 0.01	0.01	467.91	2049.44	< 0.01	0.04	< 0.01	< 0.01	468.39	2051.56
Line Heater BAP-0802	0.02	0.09	< 0.01	0.03	0.32	1.40	0.38	1.67	0.03	0.13	< 0.01	0.03	0.02	0.10	< 0.01	0.01	467.91	2049.44	< 0.01	0.04	< 0.01	< 0.01	468.39	2051.56
Fuel Cell	< 0.01	< 0.01			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.25	5.48	< 0.01	< 0.01			1.25	5.48
Flare EAW-0002 (10.8 MMBtu/hr)	0.06	0.24	< 0.01	0.02	4.00	17.51	0.74	3.22	0.04	0.18	0.04	0.18			0.00	0.01	1272.28	5572.57	0.21	0.92	0.01	0.05	1280.69	5609.42
Flare EAW-0001 (78.0 MMBtu/hr)	296.59	54.13	0.75	0.14	28.88	10.61	5.32	2.02	0.44	0.17	0.44	0.17			0.04	0.01	6973.78	2636.55	207.75	37.91	0.06	0.02	12184.76	3590.94
Tank Truck Loading Activities	0.08	0.36	0.01	0.03													0.02	0.10	0.31	1.37			7.87	34.45
Pneumatic Devices	0.44	1.93	< 0.01	0.04													< 0.01	0.02	2.46	10.79			61.57	269.67
Haul Roads									1.45	6.29	1.45	6.29												
Fugitives Leaks	0.34	1.47	0.02	0.10													<0.01	0.01	1.39	6.10			34.82	152.52
Totals	297.62	58.64	0.83	0.50	34.63	35.82	8.16	14.42	2.09	7.34	1.97	6.82	0.12	0.52	0.05	0.08	10820.84	19486.64	212.18	57.31	0.07	0.09	16147.12	20946.04

	Total HAPs		Formaldehyde		Hexane		Benzene		Toluene		Ethylbenzene		Xylene	
Emission Sources	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Line Heater BAP-0101	< 0.01	0.02	< 0.01	< 0.01	<0.01	0.02	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01
Line Heater BAP-0201	< 0.01	0.02	< 0.01	< 0.01	<0.01	0.02	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01
Line Heater BAP-0301	<0.01	0.02	< 0.01	< 0.01	<0.01	0.02	<0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Line Heater BAP-0401	<0.01	0.02	< 0.01	< 0.01	<0.01	0.02	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Line Heater BAP-0501	< 0.01	0.02	< 0.01	<0.01	<0.01	0.02	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01
Line Heater BAP-0601	<0.01	0.02	< 0.01	< 0.01	< 0.01	0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Line Heater BAP-0701	<0.01	0.02	< 0.01	<0.01	< 0.01	0.02	<0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Line Heater BAP-0801	<0.01	0.03	< 0.01	<0.01	<0.01	0.03	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01
Line Heater BAP-0802	<0.01	0.03	< 0.01	<0.01	<0.01	0.03	<0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.01	<0.01	<0.01
Fuel Cell			< 0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01
Flare EAW-0002 (10.8 MMBtu/hr)	< 0.01	0.02	<0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01
Flare EAW-0001 (78.0 MMBtu/hr)	0.75	0.14	< 0.01	< 0.01	0.37	0.13	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Tank Truck Loading Activities	0.01	0.03	< 0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pneumatic Devices	<0.01	0.04	< 0.01	< 0.01	<0.01	0.04	<0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Haul Roads														
Fugitives Leaks	0.02	0.10	<0.01	<0.01	0.02	0.09	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Totals	0.83	0.50	<0.01	<0.01	0.43	0.43	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

Total MND 6 Site Emission Levels - HAP Speciation

TANKS 4.0.9d

Emissions Report - Detail Format

Tank Indentification and Physical Characteristics

User Identification: City: State: Company: Type of Tank: Description:	MND-6 PW Tanks ABJ-0011 - ABJ-0014 Charleston West Virginia Noble Energy Vertical Fixed Roof Tank PW Water Emissions from Noble Energy's Moundsville 6 (MND-6) production site.
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	20.00 12.00 20.00 10.00 16.800.00 2.920.00 49,056,000.00 N
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Gray/Medium Good Gray/Medium Good
Roof Characteristics Type: Height (ft) Slope (ft/ft) (Cone Roof)	Cone 0.00 0.06
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

Meterological Data used in Emissions Calculations: Pittsburgh, Pennsylvania (Avg Atmospheric Pressure = 14.11 psia)
TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

MND-6 PW Tanks ABJ-0011 - ABJ-0014 - Vertical Fixed Roof Tank Charleston, West Virginia

		Daily Liquid Surf. Temperature (deg F)			Liquid Bulk Temp	Vapor Pressure (psia)			Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Produced Water	All	58.50	49.32	67.67	53.39	0.2521	0.1813	0.3463	19.9123			18.17	
Gasoline (RVP 10)						5.0362	4.1975	6.0042	66.0000	0.0100	0.1307	92.00	Option 4: RVP=10, ASTM Slope=3
Water						0.2427	0.1734	0.3351	18.0200	0.9900	0.8693	18.02	Option 2: A=8.10765, B=1750.286, C=235

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

MND-6 PW Tanks ABJ-0011 - ABJ-0014 - Vertical Fixed Roof Tank Charleston, West Virginia

Annual Emission Calcaulations	
Standing Losses (lb):	26.0467
Vapor Space Volume (cu ft):	1,144.5450
Vapor Density (lb/cu ft):	0.0009
Vapor Space Expansion Factor:	0.0784
venieu vapor Saturation Factor.	0.0009
Fank Vapor Space Volume:	
Vapor Space Volume (cu ft):	1,144.5450
Tank Diameter (π):	12.0000
Tank Shell Height (ft):	20.0000
Average Liquid Height (ft):	10 0000
Roof Outage (ft):	0.1200
Roof Outage (Cone Roof)	
Roof Outage (ft):	0.1200
Roof Height (ft):	0.0000
Roof Slope (ft/ft):	0.0600
Shell Radius (ft):	6.0000
/apor Density	
Vapor Density (lb/cu ft):	0.0009
Vapor Molecular Weight (lb/lb-mole):	19.9123
Vapor Pressure at Daily Average Liquid	·
Surface Temperature (psia):	0.2521
Daily Avg. Liquid Surface Temp. (deg. R):	518.1654
Ideal Gas Constant P	50.3083
(nsia cuff / (lb-mol-deg R));	10 731
Liquid Bulk Temperature (deg. R):	513.0583
Tank Paint Solar Absorptance (Shell):	0.6800
Tank Paint Solar Absorptance (Roof):	0.6800
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,202.9556
apor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0784
Daily Vapor Temperature Range (deg. R):	36.6923
Daily Vapor Pressure Range (psia):	0.1650
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	0.0504
Surrace Temperature (psia):	0.2521
Vapor Pressure at Daily Minimum Liquid	0 1012
Vapor Pressure at Daily Maximum Liquid	0.1013
Surface Temperature (psia):	0 3463
Daily Avg. Liquid Surface Temp. (deg R):	518 1654
Daily Min, Liquid Surface Temp. (deg R):	508,9923
Daily Max. Liquid Surface Temp. (deg R):	527.3385
Daily Ambient Temp. Range (deg. R):	19.1500
/ented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.8809
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	0.2521
Vapor Space Outage (ft):	10.1200
Vorking Losses (Ib):	1,037.6248
Vapor Molecular Weight (lb/lb-mole):	19.9123
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.2521
Annual Net Throughput (gal/yr.):	49,056,000.0000
Annual Turnovers:	2,920.0000
I urnover Factor: Maximum Liquid Volume (apl):	0.1769
Maximum Liquid Holaht (#):	20,000
Tank Diameter (ff):	20.0000
Working Loss Product Factor:	1.0000
otal Losses (Ib):	1,063.6715

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

MND-6 PW Tanks ABJ-0011 - ABJ-0014 - Vertical Fixed Roof Tank Charleston, West Virginia

	Losses(lbs)							
Components	Working Loss	Breathing Loss	Total Emissions					
Gasoline (RVP 10)	135.64	3.40	139.05					
Water	901.98	22.64	924.63					
Produced Water	1,037.62	26.05	1,063.67					

Attachment O

Attachment O

Monitoring, Recording, Reporting, and Testing Plans

Noble will comply with all Monitoring, Recording, Reporting, and Testing Requirements reflected in the final Rule 13 permit.

Attachment P

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Noble Energy, Inc. has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a 45CSR13 NSR Construction Permit for the Moundsville 6 (MND 6) natural gas production site located in Proctor, Marshall, West Virginia. The latitude and longitude coordinates are: 39.81750 and -80.79194.

The applicant estimates the potential to discharge the following regulated air pollutants on a facility-wide basis will be:

Carbon Monoxide (CO) = 35.82 tpy Nitrogen Oxides (NO_x) = 14.42 tpy Particulate Matter – Total = 7.34 tpy Sulfur Dioxide (SO₂) = 0.08 tpy Volatile Organic Compounds (VOC) = 58.64 tpy Hexane = 0.43 tpy Hazardous Air Pollutants (HAPs) = 0.50 tpy Carbon Dioxide Equivalents (CO₂e) = 20,946.04 tpy

Startup of operation is planned to begin on or about the 25th day of June, 2017. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the 27th day of February, 2017.

By: Noble Energy, Inc. RJ Moses Operations Manager 1000 Noble Energy Drive Cannonsburg, PA 15317