625 Liberty Ave. Suite 1700 Pittsburgh PA 15222 www.eqt.com

TEL: (412) 395-3699 FAX: (412) 395-2156

Alex Bosiljevac Environmental Coordinator

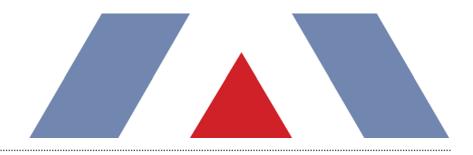
April 26, 2016

CERTIFIED MAIL # 7015 1660 0000 9399 6147

Mr. William F. Durham, Director West Virginia Department of Environmental Protection Division of Air Quality 601 57th Street, SE Charleston, West Virginia, 25304

RE: G70B Permit Application EQT Production Company WEU-8 Natural Gas Production Site Facility ID No. 017-00066

Dear Mr. Durham,


Enclosed are two electronic copies and one original hard copy of a proposed application for a G70-B General Air Permit for the WEU-8 Natural Gas Production Well Site. The site currently operates under a G70-A General Air Permit (G70-A137). Please note that this application satisfies a requirement in Consent Order CO-R13-E-2016-04, in which EQT Production Company is required to submit an application with the equipment specified in the consent order. A legal advertisement will be published in the next few days and proof of publication will be forwarded as soon as it is received. Please contact me for payment of the application fee by credit card.

If you have any questions concerning this permit application, please contact me at (412) 395-3699 or by email at abosiljevac@eqt.com.

Sincerely,

Alex Bosiljevad EQT Corporation

Enclosures

PROJECT REPORT

EQT Production WEU-8 Pad

G70-B Permit Application

TRINITY CONSULTANTS 4500 Brooktree Drive Suite 103 Wexford, PA 15090 (724) 935-2611

March 2016

Environmental solutions delivered uncommonly well

1. INTRODUCTION	4
1.1. FACILITY AND PROJECT DESCRIPTION	4
1.2. SOURCE STATUS	5
1.3. G70-B APPLICATION ORGANIZATION	5
2. SAMPLE EMISSION SOURCE CALCULATIONS	6
3. REGULATORY DISCUSSION	8
3.1. Prevention of Significant Deterioration Source Classification	8
3.2. Title V Operating Permit Program	8
3.3. New Source Performance Standards	8
3.3.1. NSPS Subparts D, Da, Db, and Dc – Steam Generating Units	9
3.3.2. NSPS Subparts K, Ka, and Kb – Storage Vessels for Petroleum Liquids/Volatile Organic Liquids	9
3.3.3. NSPS Subpart JJJJ – Stationary Spark Ignition Internal Combustion Engines	9
3.3.4. NSPS Subpart 0000 - Crude Oil and Natural Gas Production, Transmission, and Distribution	9
3.3.5. NSPS Subpart 0000a—Crude Oil and Natural Gas Facilities	10
3.3.6. Non-Applicability of All Other NSPS	11
3.4. National Emission Standards for Hazardous Air Pollutants	11
3.4.1. 40 CFR 63 Subpart HH – Oil and Natural Gas Production Facilities	11
3.4.2. 40 CFR 63 Subpart ZZZZ – Stationary Reciprocating Internal Engines	11
3.4.3. 40 CFR 63 Subpart JJJJJJ – Industrial, Commercial, and Institutional Boilers	11
3.5. West Virginia SIP Regulations	11
3.5.1. 45 CSR 2: To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat	
Exchangers	12
3.5.2. 45 CSR 4: To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contributo an Objectionable Odor	utes 12
3.5.3. 45 CSR 6: Control of Air Pollution from the Combustion of Refuse	12
3.5.4. 45 CSR 16: Standards of Performance for New Stationary Sources	12
3.5.5. 45 CSR 17: To Prevent and Control Particulate Matter Air Pollution from Materials Handling, Preparati	
Storage and Other Sources of Fugitive Particulate Matter	12
3.5.6. 45 CSR 21-28: Petroleum Liquid Storage in Fixed Roof Tanks	12
3.5.7. 45 CSR 34: Emissions Standards for Hazardous Air Pollutants	13
3.5.8. Non-Applicability of Other SIP Rules	13
4. G70-B APPLICATION FORMS	14
ATTACHMENT A: SINGLE SOURCE DETERMINATION	
ATTACHMENT B: SITING CRITERIA WAIVER (NOT APPLICABLE)	
ATTACHMENT C: BUSINESS CERTIFICATE	
ATTACHMENT D: PROCESS FLOW DIAGRAM	

ATTACHMENT E: PROCESS DESCRIPTION

ATTACHMENT F: PLOT PLAN
ATTACHMENT G: AREA MAP

ATTACHMENT H: APPLICABILITY FORM ATTACHMENT I: EMISSION UNITS TABLE

ATTACHMENT J: FUGITIVE EMISSIONS SUMMARY SHEET

ATTACHMENT K: GAS WELL DATA SHEET

ATTACHMENT L: STORAGE VESSEL DATA SHEET

ATTACHMENT M: HEATERS DATA SHEET ATTACHMENT N: ENGINES DATA SHEET

ATTACHMENT O: TRUCK LOADING DATA SHEET

ATTACHMENT P: GLYCOL DEHYDRATOR DATA SHEET (NOT APPLICABLE)
ATTACHMENT Q: PNEUMATIC CONTROLLER DATA SHEET (NOT APPLICABLE)

ATTACHMENT R: AIR POLLUTION CONTROL DEVICE DATA SHEET

ATTACHMENT S: EMISSION CALCULATIONS
ATTACHMENT T: EMISSION SUMMARY SHEET

ATTACHMENT U: CLASS I LEGAL ADVERTISEMENT

ATTACHMENT V: GENERAL PERMIT REGISTRATION APPLICATION FEE

EQT Production Company (EQT) is submitting this Class II General Permit (G70-B) application to the West Virginia Department of Environmental Protection (WVDEP) for the construction and operation of new equipment at an existing natural gas production well pad, WEU-8, located in Doddridge County, West Virginia. The WEU-8 pad is currently operating under G70-A permit number G70-A137.

1.1. FACILITY AND PROJECT DESCRIPTION

The WEU-8 pad is a natural gas production facility that consists of six (6) natural gas wells. Natural gas and liquids (including water and condensate) are extracted from deposits underneath the surface. Natural gas is transported from the well to a gas line for additional processing and compression, as necessary. The liquids produced are stored in storage vessels.

The WEU-8 pad currently consists of the following equipment:

- > Six (6) 400 barrel (bbl) storage tanks for condensate/water (produced fluids) controlled by one (1) existing combustor rated at 11.66 MMBtu/hr;
- > One (1) 140 bbl storage tank for sand and produced fluids from the sand separator (vapors from this tank may be controlled by combustors but are not represented as controlled in this application);
- > Six (6) line heaters rated at 1.54 MMBtu/hr each (heat input);
- > Two (2) thermoelectric generators (TEGs), each rated at 0.013 MMBtu/hr (heat input);
- > Produced fluid truck loading; and
- > Associated piping and components.

This application seeks to permit the following equipment at the WEU-8 pad:

- > One (1) low pressure separator and associated 1.15 MMbtu/hr line heater;
- > One (1) vapor recovery unit (VRU) powered by a natural gas fired 110 horsepower (hp) engine; and
- > One (1) new combustor rated at 11.66 MMBtu/hr.

A process flow diagram is included as Attachment D. A comparison of the potential emissions of the proposed and existing equipment at the wellpad in comparison with G70-B emission limits is provided in Table 1. Facility emissions are well below the permit limits. Note that in accordance with condition 1.1.1. of the G70-B permit, fugitive emissions are not considered in determining eligibility of the permit.

Table 1 - Comparison of Wellpad Potential Emissions to G70-B Permit Emission Limits

Pollutant	Wellpad Potential Annual Emissions (tpy)	G70-B Maximum Annual Emission Limits (tpy)
Nitrogen Oxides	15.46	50
Carbon Monoxide	14.22	80
Volatile Organic Compounds	4.26	80
Particulate Matter - 10/2.5	1.16	20
Sulfur Dioxide	0.09	20
Individual HAP (n-hexane)1	0.77	8
Total HAP ¹	1.81	20

^{1.} Includes fugitive emissions.

1.2. SOURCE STATUS

WVDEP must make stationary source determinations on a case-by-case basis using the guidance under the Clean Air Act (CAA) and EPA's and WVDEP's implementing regulations. The definition of stationary source in 40 CFR 51.166(b) includes the following:

"(6) Building, structure, facility, or installation means all of the pollutant emitting activities which belong to the same industrial grouping, are located on or more contiguous or adjacent properties, and are under control of the same person (or persons under common control)."

Other additional pollutant emitting facilities should be aggregated with the WEU-8 Pad for air permitting purposes if, and only if, all three elements of the "stationary source" definition above are fulfilled.

WVDEP determined that the WEU-8 pad is a separate stationary source when the current permit was issued. There are no Marcellus facilities within a quarter-mile radius of the WEU-8 Pad. The nearest wellpad, WEU-1, is located approximately 1.70 miles east of WEU-8. Therefore, the WEU-8 pad should continue to be considered a separate stationary source with respect to permitting programs, including Title V and Prevention of Significant Deterioration (PSD). As discussed in this application, the facility is a minor source of air emissions with respect to New Source Review (NSR) and Title V permitting.

1.3. G70-B APPLICATION ORGANIZATION

This West Virginia Code of State Regulations, Title 45 (CSR) Series 13 (45 CSR 13) G70-B permit application is organized as follows:

- > Section 2: Sample Emission Source Calculations;
- > Section 3: Regulatory Discussion;
- > Section 4: G70-B Application Form;
- > Attachment A: Single Source Determination;
- > Attachment B: Siting Criteria Waiver (Not Applicable);
- > Attachment C: Business Certificate:
- > Attachment D: Process Flow Diagram;
- > Attachment E: Process Description;
- > Attachment F: Plot Plan;
- > Attachment G: Area Map;
- > Attachment H: Applicability Form;
- > Attachment I: Emission Units Table;
- > Attachment J: Fugitive Emissions Summary Sheet;
- > Attachment K: Gas Well Data Sheet;
- > Attachment L: Storage Vessel Data Sheet;
- > Attachment M: Heaters Data Sheet;
- > Attachment N: Engines Data Sheet;
- > Attachment 0: Truck Loading Data Sheet:
- > Attachment P: Glycol Dehydrator Data Sheet (Not Applicable);
- > Attachment Q: Pneumatic Controller Data Sheet (Not Applicable);
- > Attachment R: Air Pollution Control Device Data Sheet;
- > Attachment S: Emission Calculations;
- > Attachment T: Emission Summary Sheet:
- > Attachment U: Class I Legal Advertisement; and
- > Attachment V: General Permit Registration Application Fee.

The characteristics of air emissions from the natural gas production operations, along with the methodology for calculating emissions, are briefly described in this section of the application. Detailed emission calculations are presented in Attachment S of this application.

Emissions from this project will result from natural gas combustion in the line heaters, combustors and TEGs, as well as storage of organic liquids in storage tanks and loading of organic liquids into tank trucks. In addition, fugitive emissions will result from component leaks from the operation of the station. The methods by which emissions from each of these source types, as well as the existing source types, are calculated are summarized below.

- > Line Heaters, Enclosed Combustors and TEGs: Potential emissions of criteria pollutants and hazardous air pollutants (HAPs) are calculated using U.S. EPA's AP-42 factors for natural gas external combustion. These calculations assume a site-specific heat content of natural gas. Greenhouse gas emissions are calculated according to 40 CFR 98 Subpart C.²
- > **VRU Engine:** Potential emissions of oxides of nitrogen (NO_X), carbon monoxide (CO), and volatile organic compounds (VOC) are calculated using vendor emission factors. Remaining criteria pollutants and HAPs are calculated using U.S. EPA's AP-42 factors for natural gas fired engines.³ These calculations assume a site-specific heat content of natural gas. Greenhouse gas emissions are calculated according to 40 CFR 98 Subpart C.
- > **Fugitive Equipment Leaks:** Emissions of VOC and HAPs from leaking equipment components have been estimated using facility estimated component counts and types along with emission factors from the *Protocol for Equipment Leak Emission Estimates, EPA 453/R-95-017, November 1995.* Emission factors used are based on average measured TOC from component types indicated. Greenhouse gas emissions from component leaks are calculated according to the procedures in 40 CFR 98 Subpart W.⁴ Pneumatic devices at the wellpad are intermittent bleed and are assumed to be in operation 1/3 of the year.
- > **Storage Tanks:** Working, breathing and flashing emissions of VOC and HAPs from the storage tanks at the facility are calculated using Bryan Research & Engineering ProMax® Software. Controlled calculations assume an overall control efficiency (capture and destruction) of 98%. The throughput for the produced fluids tanks are based on the maximum annualized monthly condensate and produced water at the WEU-8 well pad (i.e., the maximum monthly throughput for the pad times 12), and includes a safety factor of 1.3. The composition for the analysis was from a sample taken at WEU-8. Emissions of VOC and HAPs from the sand separator tank are calculated using E&P TANK v2.0. The produced fluids throughput is calculated as follows:

$$Throughput \left(\frac{bbl}{day}\right) = \left(Condensate \ Throughput \ \left(\frac{bbl}{month}\right) + \left(Produced \ Water \ Throughput \ \left(\frac{bbl}{month}\right)\right)\right) * \frac{12\left(\frac{months}{year}\right)}{365\left(\frac{days}{year}\right)} \times 1.3$$

> **Tank Truck Loading:** Uncontrolled emissions of VOC and HAPs from the loading of organic liquids from storage tanks to tank truck are calculated using Bryan Research Engineering ProMax® Software. Truck

¹U.S. EPA, AP 42, Fifth Edition, Volume I, Chapter 1.4, Natural Gas Combustion, Supplement D, July 1998.

² 40 CFR 98 Subpart C, General Stationary Fuel combustion Sources, Tables C-1 and C-2.

³ U.S. EPA, AP 42, Fifth Edition, Volume I, Chapter 3.2, Natural Gas-fired Reciprocating Engines, Supplement D, August 2000.

⁴⁴⁰ CFR 98 Subpart W, Petroleum and Natural Gas Systems, Section 98.233(r), Population Count and Emission Factors.

	loading is controlled by the enclosed combustors. U.S. EPA's AP-42 Chapter 5 Section 2 factors were used for capture efficiency. ⁵
>	Haul Roads: Fugitive dust emitted from facility roadways has been estimated using projected vehicle miles traveled along with U.S. EPA's AP-42 factors for unpaved haul roads. ⁶

⁵ U.S. EPA, AP 42, Fifth Edition, Volume I, Chapter 5.2, Transportation And Marketing Of Petroleum Liquids, June 2008. ⁶ U.S. EPA, AP 42, Fifth Edition, Volume I, Section 13.2.2, Unpaved Roads, November 2006.

This section documents the applicability determinations made for Federal and State air quality regulations. In this section, applicability or non-applicability of the following regulatory programs is addressed:

- > Prevention of Significant Deterioration permitting;
- > Title V of the 1990 Clean Air Act Amendments;
- > New Source Performance Standards (NSPS);
- > National Emission Standards for Hazardous Air Pollutants (NESHAP); and
- > West Virginia State Implementation Plan (SIP) regulations.

This review is presented to supplement and/or add clarification to the information provided in the WVDEP G70-B permit application forms.

In addition to providing a summary of applicable requirements, this section of the application also provides non-applicability determinations for certain regulations, allowing the WVDEP to confirm that identified regulations are not applicable to the wellpad. Note that explanations of non-applicability are limited to those regulations for which there may be some question of applicability specific to the operations at the wellpad. Regulations that are categorically non-applicable are not discussed (e.g., NSPS Subpart J, Standards of Performance for Petroleum Refineries).

3.1. PREVENTION OF SIGNIFICANT DETERIORATION SOURCE CLASSIFICATION

Federal construction permitting programs regulate new and modified sources of attainment pollutants under Prevention of Significant Deterioration. PSD regulations apply when a major source makes a change, such as installing new equipment or modifying existing equipment, and a significant increase in emissions results from the change. The wellpad is not a major source with respect to the PSD program since its potential emissions are below all the PSD thresholds. As such, PSD permitting is not triggered by this construction activity. EQT will monitor future construction activities at the site closely and will compare any future increase in emissions with the PSD thresholds to ensure these activities will not trigger this program.

3.2. TITLE V OPERATING PERMIT PROGRAM

Title 40 of the Code of Federal Regulations Part 70 (40 CFR 70) establishes the federal Title V operating permit program. West Virginia has incorporated the provisions of this federal program in its Title V operating permit program in West Virginia CSR 45-30. The major source thresholds with respect to the West Virginia Title V operating permit program regulations are 10 tons per year (tpy) of a single HAP, 25 tpy of any combination of HAP and 100 tpy of all other regulated pollutants. The potential emissions of all regulated pollutants are below the corresponding threshold(s) at this facility after the proposed project. Therefore, the wellpad is not a major source for Title V purposes.

3.3. NEW SOURCE PERFORMANCE STANDARDS

New Source Performance Standards, located in 40 CFR 60, require new, modified, or reconstructed sources to control emissions to the level achievable by the best demonstrated technology as specified in the applicable provisions.

⁷ On June 23, 2014, the U.S Supreme Court decision in the case of *Utility Air Regulatory Group v. EPA* effectively changed the permitting procedures for GHGs under the PSD and Title V programs.

Moreover, any source subject to an NSPS is also subject to the general provisions of NSPS Subpart A, except where expressly noted. The following is a summary of applicability and non-applicability determinations for NSPS regulations of relevance to the wellpad. The following NSPS could potentially apply to the wellpad:

- > 40 CFR Part 60 Subparts D/Da/Db/Dc Steam Generating Units
- > 40 CFR Part 60 Subpart K/Ka/Kb Storage Vessels for Petroleum Liquids/Volatile Organic Liquids
- > 40 CFR Part 60 Subpart JJJJ Stationary Spark Ignition Internal Combustion Engines
- > 40 CFR Part 60 Subpart 0000 Crude Oil and Natural Gas Production, Transmission, and Distribution
- > 40 CFR Part 60 Subpart 0000a Crude Oil and Natural Gas Facilities

3.3.1. NSPS Subparts D, Da, Db, and Dc - Steam Generating Units

These subparts apply to steam generating units of various sizes, all greater than 10 MMBtu/hr. The proposed project does not include any steam generating units with a heat input greater than 10 MMbtu/hr, therefore the requirements of these subparts do not apply.

3.3.2. NSPS Subparts K, Ka, and Kb - Storage Vessels for Petroleum Liquids/Volatile Organic Liquids

These subparts apply to storage tanks of certain sizes constructed, reconstructed, or modified during various time periods. Subpart K applies to storage tanks constructed, reconstructed, or modified prior to 1978, and Subpart Ka applies to those constructed, reconstructed, or modified prior to 1984. Both Subparts K and Ka apply to storage tanks with a capacity greater than 40,000 gallons. Subpart Kb applies to volatile organic liquid (VOL) storage tanks constructed, reconstructed, or modified after July 23, 1984 with a capacity equal to or greater than 75 m 3 (\sim 19,813 gallons). All of the tanks at the wellpad have a capacity of 19,813 gallons or less. As such, Subparts K, Ka, and Kb do not apply to the storage tanks at the wellpad.

3.3.3. NSPS Subpart JJJJ - Stationary Spark Ignition Internal Combustion Engines

New Source Performance Standards 40 CFR Part 60 Subpart JJJJ (NSPS JJJJ) affects owners and operators of stationary spark ignition internal combustion engines (SI ICE) that commence construction, reconstruction or modification after June 12, 2006. Applicability dates are based on the date the engine was ordered by the operator. The proposed engine (VRU engine) at the well pad is a 4-stroke rich burn, spark ignition engine manufactured after July 1, 2008, and is subject to this subpart. EQT will operate the engine according to the manufacturer's recommended practices and demonstrate compliance with the requirements specified in 40 CFR §60.4244 (testing methods) and 40 CFR§60.4243(b)(2) (maintenance plan/records and performance testing frequency) for noncertified affected SI ICE at the facility or by purchasing a certified engine. At this time, EQT intends to purchase a certified engine.

3.3.4. NSPS Subpart OOOO - Crude Oil and Natural Gas Production, Transmission, and Distribution

Subpart 0000, Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution, applies to affected facilities that commenced construction, reconstruction, or modification after August 23, 2011 (see clarification below regarding dates). This NSPS was published in the Federal Register on August 16, 2012, and subsequently amended. Although there are sources proposed to be installed that could potentially be subject to this regulation, due to the anticipated installation dates, they will not be subject to the rule. This is due to the most recent proposed developments related to the rule, which are the inclusion of an end date for applicability to Subpart 0000

(September 18, 2015) and the promulgation of 40 CFR 60 Subpart 0000a.⁸ The potential applicability of Subpart 0000a is discussed in the following section.

3.3.5. NSPS Subpart OOOOa—Crude Oil and Natural Gas Facilities

Subpart 0000a, Standards of Standards of Performance for Crude Oil and Natural Gas Facilities, will apply to affected facilities that commenced construction, reconstruction, or modification after September 18, 2015. This regulation has yet to be finalized. The currently proposed version of the rule includes provisions for the following facilities:

- > Hydraulically fractured wells;
- > Centrifugal compressors located between the wellhead and the point of custody transfer to the natural gas distribution segment;
- > Reciprocating compressors located between the wellhead and the point of custody transfer to the natural gas distribution segment;
- > Continuous bleed natural gas-driven pneumatic controllers with a bleed rate of > 6 scfh located in the production, gathering, processing, or transmission and storage segments (excluding natural gas processing plants);
- > Continuous bleed natural gas-driven pneumatic controllers located at natural gas processing plants;
- > Pneumatic pumps located in the production, gathering, processing, or transmission and storage segments;
- > Storage vessels located in the production, gathering, processing, or transmission and storage segments;
- > The collection of fugitive emissions components at a well site;
- > The collection of fugitive emissions components at a compressor station; and
- > Sweetening units located onshore that process natural gas produced from either onshore or offshore wells.

Based on the current version of the proposed rule, the following paragraphs describe the potential applicability of the facilities to be located at the proposed facility.

40 CFR 60.5385 requires owners and operators of affected reciprocating compressors to change the rod packing prior to operating 26,000 hours or prior to 36 months since start up or the last packing replacement. However, according to §60.5365a, compressors located at well sites are not affected facilities under Subpart 0000a.

There are six (6) produced fluid storage vessels and one (1) sand separator storage vessel at the wellpad. The storage vessels at the facility each have potential VOC emissions less than 6 tpy based on the permit application materials and enforceable limits to be included in the G70-B permit. As such, per 60.5365a(e), the tanks will not be storage vessel affected facilities under the rule.

Note that the proposed changes to the well pad do not meet the definition of modification under 60.5365a(i)(3)(i). Therefore, EQT will be not be subject to the leak detection and repair program under 0000a.

The pneumatic controllers will potentially subject to NSPS 0000a. Per 60.5365a(d)(1), a pneumatic controller affected facility is a single continuous bleed natural gas driven pneumatic controller operating at a natural gas bleed rate greater than 6 scfh. No pneumatic controllers installed will meet the definition of a pneumatic controller affected facility. Therefore, these units are not subject to the requirements of Subpart 0000a.

EQT Production, LLC | WEU-8 Pad Trinity Consultants

⁸ September 18, 2015 publication in Federal Register: https://www.federalregister.gov/articles/2015/09/18/2015-21023/oil-and-natural-gas-sector-emission-standards-for-new-and-modified-sources

3.3.6. Non-Applicability of All Other NSPS

NSPS are developed for particular industrial source categories. Other than NSPS developed for natural gas processing plants (Subparts 0000) and associated equipment (Subparts D-Dc and K-Kb), the applicability of a particular NSPS to the wellpad can be readily ascertained based on the industrial source category covered. All other NSPS are categorically not applicable to the proposed project.

3.4. NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS

Part 63 NESHAP allowable emission limits are established on the basis of a maximum achievable control technology (MACT) determination for a particular major source. A HAP major source is defined as having potential emissions in excess of 25 tpy for total HAP and/or potential emissions in excess of 10 tpy for any individual HAP. The wellpad is an Area (minor) source of HAP since its potential emissions of HAP are less than the 10/25 major source thresholds. NESHAP apply to sources in specifically regulated industrial source categories (Clean Air Act Section 112(d)) or on a case-by-case basis (Section 112(g)) for facilities not regulated as a specific industrial source type. Besides 40 CFR 63 Subpart A (NESHAP Subpart A), which is similar to 40 CFR 60 Subpart A (NSPS Subpart A), the following NESHAP could potentially apply to the wellpad:

- > 40 CFR Part 63 Subpart HH Oil and Natural Gas Production Facilities
- > 40 CFR Part 63 Subpart ZZZZ Stationary Reciprocating Internal Combustion Engines
- > 40 CFR Part 63 Subpart [[]][] Industrial, Commercial, and Institutional Boilers

The applicability of these NESHAP Subparts is discussed in the following sections.

3.4.1. 40 CFR 63 Subpart HH - Oil and Natural Gas Production Facilities

This standard contains requirements for both major and area sources of HAP. At area sources, the only affected source is a triethylene glycol dehydration unit (§63.760(b)(2)). The wellpad does not include a triethylene glycol dehydration unit; therefore the requirements of this subpart do not apply.

3.4.2. 40 CFR 63 Subpart ZZZZ - Stationary Reciprocating Internal Engines

This rule affects reciprocating internal combustion engines (RICE) located at a major and area sources of HAP. 40 CFR §63.6590(c) states that a new or reconstructed stationary RICE located at an area HAP source must meet the requirements of NESHAP Subpart ZZZZ by meeting the requirements of NSPS Subpart JJJJ. No further requirements apply for such engines under NESHAP Subpart ZZZZ. The WEU-8 well pad is a minor (area) source of hazardous air pollutants and the VRU engine is considered a new stationary RICE. Therefore, the requirements contained in §63.6590(c) are applicable. EQT will be in compliance with applicable requirements of 40 CFR 63 Subpart ZZZZ by meeting the applicable requirements of 40 CFR 60 Subpart JJJJ.

3.4.3. 40 CFR 63 Subpart JJJJJJ - Industrial, Commercial, and Institutional Boilers

This MACT standard applies to industrial, commercial, and institutional boilers of various sizes and fuel types at area sources. The proposed line heater will be natural gas-fired and are specifically exempt from this subpart. Therefore, no sources at the wellpad are subject to any requirements under 40 CFR 63 Subpart JJJJJJ.

3.5. WEST VIRGINIA SIP REGULATIONS

The wellpad is potentially subject to regulations contained in the West Virginia Code of State Regulations, Chapter 45 (Code of State Regulations). The Code of State Regulations fall under two main categories, those regulations that are generally applicable (e.g., permitting requirements), and those that have specific applicability (e.g., PM standards for manufacturing equipment).

3.5.1. 45 CSR 2: To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers

45 CSR 2 applies to fuel burning units, defined as equipment burning fuel "for the primary purpose of producing heat or power by indirect heat transfer". The TEGs and line heaters are fuel burning units and therefore must comply with this regulation. Per 45 CSR 2-3, opacity of emissions from units shall not exceed 10 percent.

3.5.2. 45 CSR 4: To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contributes to an Objectionable Odor

According to 45 CSR 4-3:

No person shall cause, suffer, allow or permit the discharge of air pollutants which cause or contribute to an objectionable odor at any location occupied by the public.

The wellpad is generally subject to this requirement. However, due to the nature of the process at the wellpad, production of objectionable odor from the wellpad during normal operation is unlikely.

3.5.3. 45 CSR 6: Control of Air Pollution from the Combustion of Refuse

45 CSR 6 applies to activities involving incineration of refuse, defined as "the destruction of combustible refuse by burning in a furnace designed for that purpose. For the purposes of this rule, the destruction of any combustible liquid or gaseous material by burning in a flare or flare stack, thermal oxidizer or thermal catalytic oxidizer stack shall be considered incineration." The enclosed combustors are incinerators and therefore must comply with this regulation. Per 45 CSR 6-4.3, opacity of emissions from this unit shall not exceed 20 percent, except as provided by 4.4. PM emissions from this unit will not exceed the levels calculated in accordance with 6-4.1.

3.5.4. 45 CSR 16: Standards of Performance for New Stationary Sources

45 CSR 16-1 incorporates the federal Clean Air Act (CAA) standards of performance for new stationary sources set forth in 40 CPR Part 60 by reference. As such, by complying with all applicable requirements of 40 CFR Part 60 at the wellpad, EQT will be complying with 45 CSR 16.

3.5.5. 45 CSR 17: To Prevent and Control Particulate Matter Air Pollution from Materials Handling, Preparation, Storage and Other Sources of Fugitive Particulate Matter

According to 45 CSR 17-3.1:

No person shall cause, suffer, allow or permit fugitive particulate matter to be discharged beyond the boundary lines of the property lines of the property on which the discharge originates or at any public or residential location, which causes or contributes to statutory air pollution.

Due to the nature of the activities at the wellpad, it is unlikely that fugitive particulate matter emissions will be emitted under normal operating conditions. However, EQT will take measures to ensure any fugitive particulate matter emissions will not cross the property boundary should any such emissions occur.

3.5.6. 45 CSR 21-28: Petroleum Liquid Storage in Fixed Roof Tanks

45 CSR 21-28 applies to any fixed roof petroleum liquid storage tank with a capacity greater than 40,000 gallons. The capacity of each storage tank proposed for the wellpad is less than 40,000 gallons; therefore, 45 CSR 21-28 will not apply to the petroleum liquid storage tanks at this wellpad.

3.5.7. 45 CSR 34: Emissions Standards for Hazardous Air Pollutants

45 CSR 34-1 incorporates the federal Clean Air Act (CAA) national emissions standards for hazardous air pollutants (NESHAPs) as set forth in 40 CPR Parts 61 and 63 by reference. As such, by complying with all applicable requirements of 40 CFR Parts 61 and 63 at the wellpad, EQT will be complying with 45 CSR 34. Note that there are no applicable requirements under 40 CFR Parts 61 and 63 for the wellpad.

3.5.8. Non-Applicability of Other SIP Rules

A thorough examination of the West Virginia SIP rules with respect to applicability at the wellpad reveals many SIP regulations that do not apply or impose additional requirements on operations. Such SIP rules include those specific to a particular type of industrial operation that is categorically not applicable to the wellpad.

4. G70-B APPLICATION FORMS

The WVDEP permit application forms contained in this application include all applicable G70-B application forms including the required attachments.

Environmental Contact

Name and Title: Alex Bosiljevac, Environmental Coordinator Email ABosiljevac@eqt com Date:

West Virginia Department of Environmental Protection

Division of Air Quality 601 57th Street SE Charleston, WV 25304 Phone (304) 926-0475 Fax (304) 926-0479 www.dep.wv.gov

G70-B GENERAL PE	ERMIT RE	EGISTRATIO	ON APPLICA	TION
	ADMINISTRATIV	N REGARD TO THE C VE UPDATE AND OPI LITIES LOCATED AT	ERATION OF	DIFICATION,
□CONSTRUCTION		□CLASS I ADMINI	STRATIVE UPDATE	
⊠MODIFICATION		□CLASS II ADMIN	ISTRATIVE UPDATE	
□RELOCATION	20TION - ORNE			
		RAL INFORMATION	-,, <u>-</u>	
Name of Applicant (as registered with the	WV Secretary of S	tate's Office); EQT Pr	oduction Company	
Federal Employer ID No. (FEIN): 25-0724	1685			
Applicant's Mailing Address: 625 Liberty	Avenue, Suite 17	700		
City: Pittsburgh	State: PA		ZIP Code: 1	5222
Facility Name: WEU-8 Wellpad				
Operating Site Physical Address: C/R 11/3 If none available, list road, city or town an		V		
City: West Union	Zip Code: 2642	1	County Do	ddridge
Latitude & Longitude Coordinates (NAD83 Latitude: 39.27004 N Longitude: -80.80993 W	3, Decimal Degrees	s to 5 digits):		
SIC Code: 1311		DAO Facility ID No.	(For existing facilities)	017-00066
NAICS Code: 211111		, ==	(,	
	CERTIFICATION	OF INFORMATION		
This G70-B General Permit Registration Official is a President, Vice President, Set Directors, or Owner, depending on busines authority to bind the Corporation, Proprietorship. Required records of da compliance certifications and all requires representative. If a business wishes to certification of and the appropriate names and sign unsigned G70-B Registration Application utilized, the application will be	cretary, Treasurer, is structure. A busing the structure. A busing the structure of the str	General Partner, Gener ness may certify an Aut I Liability Company, As urs of operation and mai nust be signed by a Res Representative, the offi ny administratively inc to the applicant. Fur	al Manager, a member of thorized Representative ssociation, Joint Ventur- intenance, general corre ponsible Official or an icial agreement below sl omplete or improperly thermore, if the G70-B	of the Board of who shall have cor Sole spondence, Authorized hall be checked signed or forms are not
I hereby certify that <u>Kenneth Kirk</u> of the business (e.g., Corporation, Partners Proprietorship) and may obligate and legal Responsible Official shall notify the Direct	hip, Limited Liabi ly bind the busines	lity Company, Associaties. If the business chang	es its Authorized Repre	e
I hereby certify that all information contain documents appended hereto is, to the best of have been made to provide the most compr	of my knowledge,	rue, accurate and comp	tion Application and an lete, and that all reason	y supporting able efforts
Responsible Official Signature	181			
Name and Title Kenneth Kirk, Executive V Email: KKirk@eqt.com	Vice President Date	4-26-26	16 Fax	
If applicable:			71-	
Authorized Representative SignatureName and Title:		Phone	Fax	
Email.	Date			
If applicable				

Phone: 412-395-3699

Fax: 412-395-7027

Briefly describe the proposed new operation and/or any change(s) to the facility:					
General permit application for an existing natural gas production well pad.					
Directions to the facility: From West Union, take Old U.S. 50 W to US-50 W. Turn right onto US-50 W and continue for 30 miles. Then turn left onto C/R 11 (Arnolds Creek Road) and continue for 0.5 miles. Turn right onto C/R 11/3 and continue for 0.3 miles. Access road will be on the left.					
ATTACHMENTS AND SU	PPORTING DOCUMENTS				
I have enclosed the following required document	ts:				
Check payable to WVDEP - Division of Air Quality with the	appropriate application fee (per 45CSR13 and 45CSR22).				
 □ Check attached to front of application. □ I wish to pay by electronic transfer. Contact for payment (i ⋈ I wish to pay by credit card. Contact for payment (incl. na 					
⊠\$500 (Construction, Modification, and Relocation) ⊠\$1,000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ and/or Oc □\$2,500 NESHAP fee for 40 CFR63, Subpart ZZZZ and/or H	□\$300 (Class II Administrative Update)				
 Only one NSPS fee will apply. Only one NESHAP fee will apply. The Subpart ZZZZ NESF requirements by complying with NSPS, Subparts IIII and/or J. NSPS and NESHAP fees apply to new construction or if the so 	JJJ.				
⊠ Responsible Official or Authorized Representative Signatu	re (if applicable)				
⊠ Single Source Determination Form (must be completed in	its entirety) - Attachment A				
\square Siting Criteria Waiver (if applicable) – Attachment B	⊠ Current Business Certificate – Attachment C				
⊠ Process Flow Diagram – Attachment D	⊠ Process Description – Attachment E				
□ Plot Plan – Attachment F	☐ Area Map – Attachment G				
⊠ G70-B Section Applicability Form – Attachment H	⊠ Emission Units/ERD Table – Attachment I				
□ Fugitive Emissions Summary Sheet – Attachment J					
\boxtimes Gas Well Affected Facility Data Sheet (if applicable) – Att	achment K				
\boxtimes Storage Vessel(s) Data Sheet (include gas sample data, US HYSYS, etc.), etc. where applicable) – Attachment L	EPA Tanks, simulation software (e.g. ProMax, E&P Tanks,				
\boxtimes Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, M	Heater Treaters, In-Line Heaters if applicable) – Attachment				
\boxtimes Internal Combustion Engine Data Sheet(s) (include manufa N	acturer performance data sheet(s) if applicable) - Attachment				
☐ Tanker Truck Loading Data Sheet (if applicable) – Attachn					
\square Glycol Dehydration Unit Data Sheet(s) (include wet gas an information on reboiler if applicable) – Attachment P	alysis, GRI- GLYCalc™ input and output reports and				
\square Pneumatic Controllers Data Sheet – Attachment Q					
⊠ Air Pollution Control Device/Emission Reduction Device(sapplicable) – Attachment R	s) Sheet(s) (include manufacturer performance data sheet(s) if				
\boxtimes Emission Calculations (please be specific and include all c	alculation methodologies used) - Attachment S				
\boxtimes Facility-wide Emission Summary Sheet(s) – Attachment T					
□ Class I Legal Advertisement – Attachment U					
☑ One (1) paper copy and two (2) copies of CD or DVD with	pdf copy of application and attachments				

OPERATING SITE INFORMATION

All attachments must be identified by name, divided into sections, and submitted in order.

ATTACHMENT A

Single Source Determination

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

Classifying multiple facilities as one "stationary source" under 45CSR13, 45CSR14, and 45CSR19 is based on the definition of Building, structure, facility, or installation as given in §45-14-2.13 and §45-19-2.12. The definition states:

"Building, Structure, Facility, or Installation" means all of the pollutant-emitting activities which belong to the same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the control of the same person (or persons under common control). Pollutant-emitting activities are a part of the same industrial grouping if they belong to the same "Major Group" (i.e., which have the same two (2)-digit code) as described in the Standard Industrial Classification Manual, 1987 (United States Government Printing Office stock number GPO 1987 0-185-718:QL 3).
Is there a facility owned by or associated with the natural gas industry located within one (1) mile of the proposed facility? Yes \square No \boxtimes
If Yes, please complete the questionnaire on the following page (Attachment A).
Please provide a source aggregation analysis for the proposed facility below:
Please see discussion in the Application Report.

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM – $\frac{NOT}{APPLICABLE}$

Answer each question with a detailed explanation to determine contiguous or adjacent properties which are under a common control and any support facilities. This section must be completed in its entirety.

Provide a map of contiguous or adjacent facilities (production facilities, compressor stations, dehydration facilities, etc.) which are under common control and those facilities that are not under common control but are support facilities. Please indicate the SIC code, permit number (if applicable), and the distance between facilities in question on the map.

Are the facilities owned by the same parent company or a subsidiary of the parent company? Provide the owners identity and the percentage of ownership of each facility.	Yes 🗆	No □
Does an entity such as a corporation have decision making authority over the operation of a second entity through a contractual agreement or voting interest? Please explain.	Yes □	No □
Is there a contract for service relationship between the two (2) companies or, a support/dependency relationship that exists between the two (2) companies? Please explain.	Yes □	No □
Do the facilities share common workforces, plant managers, security forces, corporate executive officers or board executives?	Yes 🗆	No 🗆
Will managers or other workers frequently shuttle back and forth to be involved actively at both facilities?	Yes 🗆	No 🗆
Do the facilities share common payroll activities, employee benefits, health plans, retirement funds, insurance coverage, or other administrative functions? Please explain.	Yes 🗆	No 🗆
Does one (1) facility operation support the operation of the other facility?	Yes □	No □
Is one (1) facility dependent on the other? If one (1) facility shuts down, what are the limitations on the other to pursue outside business? Please explain.	Yes 🗆	No □
Are there any financial arrangements between the two (2) entities?	Yes 🗆	No 🗆
Are there any legal or lease agreements between the two (2) facilities?	Yes 🗆	No 🗆
Do the facilities share products, byproducts, equipment, or other manufacturing or air pollution control device equipment? Please explain.	Yes 🗆	No 🗆
Do all the pollutant-emitting activities at the facilities belong to the same SIC Code? Please provide the SIC Codes.	Yes 🗆	No □
Was the location of the new facility chosen primarily because of its proximity to the existing facility to integrate the operation of the two (2) facilities? Please explain.	Yes 🗆	No □
Will materials be routinely transferred between the two (2) facilities? Please explain the amount of transfer and how often the transfers take place and what percentages go to the various entities.	Yes □	No □
Does the facility influence production levels or compliance with environmental regulations at other facilities? Who accepts the responsibility for compliance with air quality requirements? Please explain.	Yes 🗆	No 🗆

ATTACHMENT B

Siting Criteria Waiver (Not Applicable)

ATTACHMENT B - SITING CRITERIA WAIVER - NOT APPLICABLE

If applicable, please complete this form and it must be notarized.

G70-B General Permit Siting Criteria Waiver

WV Division of Air Quality 300' Waiver

	IPrint Name	hereby
a	cknowledge and agree that	
	construct an emission unit(s) at a natural gas production that will be located within 300' of my dwelling and/or b	
	er this waiver of siting criteria to the West Virginia Department orision of Air Quality as permission to construct, install and opera	
	Signed:	
	Signature	Date
	<u> </u>	
	Signature	Date
	Taken, subscribed and sworn before me this	day of
	, 20	
	My commission expires:	
	SEAL	
	Notary Public	

ATTACHMENT C

Business Certificate

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO: EQT PRODUCTION COMPANY 625 LIBERTY AVE 1700 PITTSBURGH, PA 15222-3114

BUSINESS REGISTRATION ACCOUNT NUMBER:

1022-8081

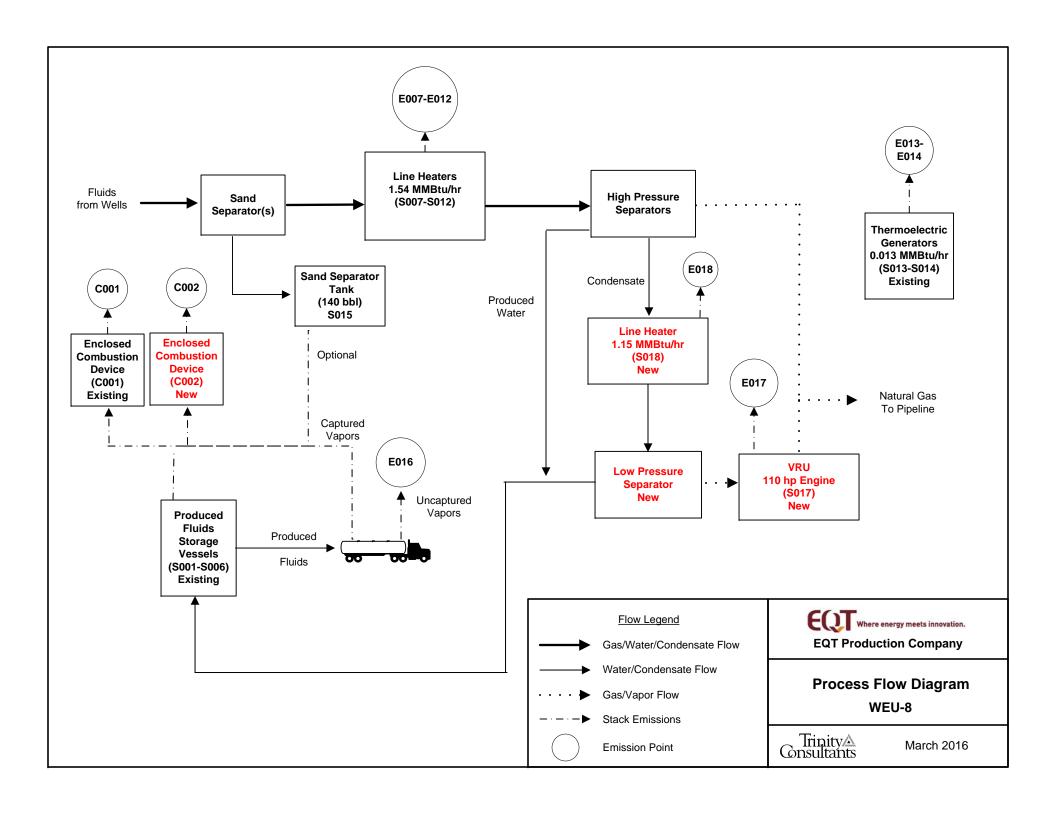
This certificate is issued on:

08/4/2010

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued. This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.


Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.3 L0553297664

ATTACHMENT D

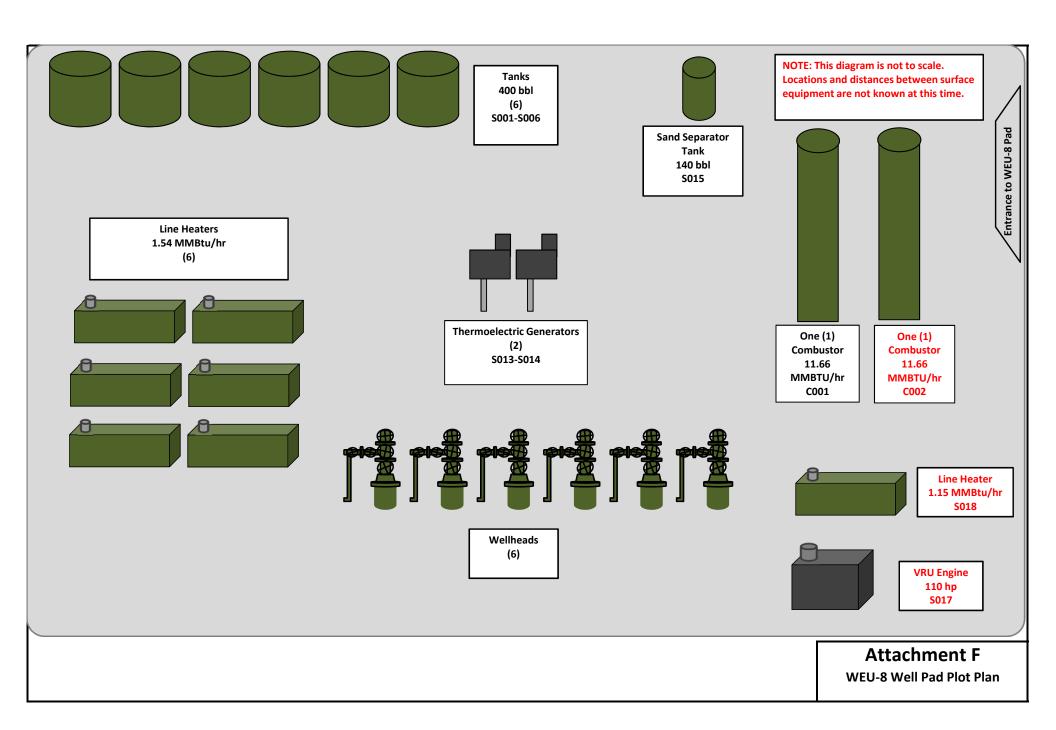
Process Flow Diagram

ATTACHMENT E

Process Description

ATTACHMENT E: PROCESS DESCRIPTION

This G70-B Permit Application involves the permitting of a low pressure separator and associated heater, vapor recovery unit (VRU), and combustor (C002) at an existing natural gas production wellpad (WEU-8). The wellpad consists of six (6) wells, each with the same basic operation.


The incoming gas/liquid stream from the underground well will pass through a sand separator, where sand, water, and residual solids are displaced and transferred to the sand separator tank (S015). The gas stream will then pass through a line heater (S007-S012) to raise/maintain temperature. The stream will then pass through a high pressure (3 phase) separator, which will separate gas (natural gas from the separator is sent to the sales line) from liquids (condensate and produced water). The produced water will be sent to the produced fluids tank and the condensate stream will then pass through a low pressure separator, where it is heated (S018) to volatilize (flash off) lighter hydrocarbons and separate condensate in the liquid stream. The flash gas from the condensate stream is recovered by the Vapor Recovery Unit (S017), which utilizes a natural gas-fired engine driven compressor to raise the pressure of the flash gas and route it back into the natural gas pipeline. The condensate is then transferred to the produced fluid storage vessels (S001-S006).

Emissions from the storage vessels are controlled by an enclosed combustor (C001-C002). Once the tanks are filled, the contents are loaded into trucks for transport. EQT utilizes vapor balancing in the truck loading operations, which means the vapors displaced by the filling of tanker trucks (S016) are routed back into the battery of tanks and ultimately to the combustor. Facility electricity is provided by thermoelectric generators (S013-S014).

A process flow diagram is included as Attachment D.

ATTACHMENT F

Plot Plan

ATTACHMENT G

Area Map

ATTACHMENT G: AREA MAP

Figure 1 - Map of WEU-8 Location

UTM Northing (KM): 4,346.760 UTM Easting (KM): 516.396 Elevation: ∼1,087 ft

ATTACHMENT H

Applicability Form

ATTACHMENT H - G70-B SECTION APPLICABILITY FORM

General Permit G70-B Registration Section Applicability Form

General Permit G70-B was developed to allow qualified applicants to seek registration for a variety of sources. These sources include gas well affected facilities, storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, centrifugal compressors, reciprocating compressors, reciprocating internal combustion engines (RICEs), tank truck loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G70-B allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

C	SENERAL PERMIT G70-B APPLICABLE SECTIONS
⊠ Section 5.0	Gas Well Affected Facility (NSPS, Subpart OOOO)
⊠ Section 6.0	Storage Vessels Containing Condensate and/or Produced Water ¹
☐ Section 7.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO)
⊠ Section 8.0	Control Devices and Emission Reduction Devices not subject to NSPS Subpart OOOO and/or NESHAP Subpart HH
⊠ Section 9.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc
☐ Section 10.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO)
☐ Section 11.0	Centrifugal Compressor Affected Facility (NSPS, Subpart OOOO) ²
☐ Section 12.0	Reciprocating Compressor Affected Facility (NSPS, Subpart OOOO) ²
⊠ Section 13.0	Reciprocating Internal Combustion Engines, Generator Engines, Microturbines
⊠ Section 14.0	Tanker Truck Loading ³
☐ Section 15.0	Glycol Dehydration Units ⁴

- 1 Applicants that are subject to Section 6 may also be subject to Section 7 if the applicant is subject to the NSPS, Subpart OOOO control requirements or the applicable control device requirements of Section 8.
- 2 Applicants that are subject to Section 11 and 12 may also be subject to the applicable RICE requirements of Section 13.
- 3 Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 8.
- 4 Applicants that are subject to Section 15 may also be subject to the requirements of Section 9 (reboilers). Applicants that are subject to Section 15 may also be subject to control device and emission reduction device requirements of Section 8.

ATTACHMENT I

Emission Units Table

ATTACHMENT I – EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment L table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type ⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
S001	C001 - C002	Produced Fluid Storage Tank	2013	2013	400 bbl	Existing; No change	C001 - C002	
S002	C001 - C002	Produced Fluid Storage Tank	2013	2013	400 bbl	Existing; No change	C001 - C002	
S003	C001 - C002	Produced Fluid Storage Tank	2013	2013	400 bbl	Existing; No change	C001 - C002	
S004	C001 - C002	Produced Fluid Storage Tank	2013	2013	400 bbl	Existing; No change	C001 - C002	
S005	C001 - C002	Produced Fluid Storage Tank	2013	2013	400 bbl	Existing; No change	C001 - C002	
S006	C001 - C002	Produced Fluid Storage Tank	2013	2013	400 bbl	Existing; No change	C001 - C002	
S007	E007	Line Heater	2013	2013	1.54 MMBtu/hr	Existing; No change	None	
S008	E008	Line Heater	2013	2013	1.54 MMBtu/hr	Existing; No change	None	
S009	E009	Line Heater	2013	2013	1.54 MMBtu/hr	Existing; No change	None	
S010	E010	Line Heater	2013	2013	1.54 MMBtu/hr	Existing; No change	None	
S011	E011	Line Heater	2013	2013	1.54 MMBtu/hr	Existing; No change	None	
S012	E012	Line Heater	2013	2013	1.54 MMBtu/hr	Existing; No change	None	
S013	E013	Thermoelectric Generator	2013	2013	0.013 MMBtu/hr	Existing; No change	None	
S014	E014	Thermoelectric Generator	2013	2013	0.013 MMBtu/hr	Existing; No change	None	
S015	E015	Sand Separator Storage Tank	2014	2014	140 bbl	Existing; No change	C001 - C002 (Optional)	
S016	E016 (Uncaptured) C001-C002 (Controlled, Captured)	Liquid Loading	2013	2013	16,771,020 gal/yr	Modified; Increase throughput	C001 - C002	
S017	E017	VRU Engine	TBD	TBD	110 hp	New	None	

S018	E018	Line Heater	TBD	TBD	1.15 MMBtu/hr	New	None	
C001	C001	Tank Combustor	2015	2015	11.66 MMBtu/hr	Existing; No change	NA	
C002	C002	Tank Combustor	TBD	TBD	11.66 MMBtu/hr	New	NA	

For Emission Units (or Sources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation.
 For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.
 When required by rule
 New, modification, removal, existing
 For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.
 For ERDs use the following numbering system: 1D, 2D, 3D,... or other appropriate designation.

ATTACHMENT J

Fugitive Emissions Summary Sheet

ATTACHMENT J – FUGITIVE EMISSIONS SUMMARY SHEET Sources of fugitive emissions may include loading operations, equipment leaks, blowdown emissions, etc. Use extra pages for each associated source or equipment if necessary. Source/Equipment: Fugitive Emissions Leak Detection ☐ Audible, visual, and ☑ Other (please describe) Will satisfy condition ☐ Infrared (FLIR) cameras ☐ None required Method Used olfactory (AVO) inspections 4.1.4. of the G70-B Closed Stream type Estimated Emissions (tpy) Component Source of Leak Factors Vent Count (gas, liquid, Type (EPA, other (specify)) VOC HAP GHG (CO₂e) System etc.) ☐ Gas U.S. EPA. Office of Air Quality Planning and Standards. ☐ Yes Pumps 11 Protocol for Equipment Leak Emission Estimates. Table 2-1. □ Liquid 2.02 0.08 0.39 ⊠ No (EPA-453/R-95-017, 1995). □ Both ⊠ Gas U.S. EPA. Office of Air Quality Planning and Standards. □ Yes Valves Protocol for Equipment Leak Emission Estimates. Table 2-1. ☐ Liquid 356 2.92 0.12 35.88 ⊠ No (EPA-453/R-95-017, 1995). □ Both ⊠ Gas U.S. EPA. Office of Air Quality Planning and Standards. Safety Relief ☐ Yes 25 Protocol for Equipment Leak Emission Estimates. Table 2-1. ☐ Liquid 0.15 3.66 3.51 Valves ⊠ No (EPA-453/R-95-017, 1995). □ Both ☐ Gas U.S. EPA. Office of Air Quality Planning and Standards. Open Ended ☐ Yes Protocol for Equipment Leak Emission Estimates. Table 2-1. ☐ Liquid 26 0.06 < 0.01 5.81 Lines ⊠ No (EPA-453/R-95-017, 1995). ⊠ Both ☐ Gas □ Yes Sampling 0 N/A ☐ Liquid ---Connections □ No □ Both ☐ Gas U.S. EPA. Office of Air Quality Planning and Standards. □ Yes Connections 1,578 Protocol for Equipment Leak Emission Estimates. Table 2-1. ☐ Liquid 3.98 0.16 17.69 ⊠ No (Not sampling) (EPA-453/R-95-017, 1995). ⊠ Both ⊠ Gas ☐ Yes ☐ Liquid 0.01 Compressors 1 (included in other component counts) 0.31 15.59 ⊠ No □ Both ☐ Gas ☐ Yes (included in connections) ☐ Liquid Flanges ------□ No □ Both ⊠ Gas ☐ Yes Other¹ 30 40 CFR 98 Subpart W ☐ Liquid 4.45 0.18 224.26 ⊠ No □ Both ¹ Other equipment types may include compressor seals, relief valves, diaphragms, drains, meters, etc. Please provide an explanation of the sources of fugitive emissions (e.g. pigging operations, equipment blowdowns, pneumatic controllers, etc.): Pneumatic Controller count is 'Other' category. An estimate of Miscellaneous Gas Venting emissions are included in the Emission Calculations and serve to include such sources as compressor venting, pigging, vessel blowdowns and other sources. Please indicate if there are any closed vent bypasses (include component): N/A

Specify all equipment used in the closed vent system (e.g. VRU, ERD, thief hatches, tanker truck loading, etc.) N/A

ATTACHMENT K

Gas Well Data Sheet

ATTACHMENT K – GAS WELL AFFECTED FACILITY DATA SHEET

Complete this data sheet if you are the owner or operator of a gas well affected facility for which construction, modification or reconstruction commenced after August 23, 2011. This form must be completed for natural gas well affected facilities regardless of when flowback operations occur (or have occurred).

API Number	Date of Flowback	Date of Well Completion	Green Completion and/or Combustion Device
047-017-06195	December 2013	December 2013	Green
047-017-06196	December 2013	December 2013	Green
047-017-06197	December 2013	December 2013	Green
047-017-06198	December 2013	December 2013	Green
047-017-06199	December 2013	December 2013	Green
047-017-06200	December 2013	December 2013	Green

Note: If future wells are planned and no API number is available please list as PLANNED.

If there are existing wells that commenced construction prior to August 23, 2011, please acknowledge as existing.

This is the same API (American Petroleum Institute) well number(s) provided in the well completion notification and as provided to the WVDEP, Office of Oil and Gas for the well permit. The API number may be provided on the application without the state code (047).

Every oil and gas well permitted in West Virginia since 1929 has been issued an API number. This API is used by agencies to identify and track oil and gas wells.

The API number has the following format: 047-001-00001

Where,

047 = State code. The state code for WV is 047.

001 = County Code. County codes are odd numbers, beginning with 001

(Barbour) and continuing to 109 (Wyoming).

00001= Well number. Each well will have a unique well number.

ATTACHMENT L

Storage Vessel Data Sheet

ATTACHMENT L - STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water. (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.

The following information is REQUIRED:

- □ Composition of the representative sample used for the simulation
- - \boxtimes Temperature and pressure (inlet and outlet from separator(s))
 - ⊠ Simulation-predicted composition
- ☑ Resulting flash emission factor or flashing emissions from simulation
- Working/breathing loss emissions from tanks and/or loading emissions if simulation is used to quantify those emissions

Additional information may be requested if necessary.

GENERAL INFORMATION (REQUIRED)

Bulk Storage Area Name	2. Tank Name					
WEU-8 Wellpad	Produced Fluid Tanks (water and condensate)					
3. Emission Unit ID number	4. Emission Point ID number					
S001-S006	C001-C002					
5. Date Installed, Modified or Relocated (for existing tanks)	6. Type of change: N/A					
Was the tank manufactured after August 23, 2011?	☐ New construction ☐ New stored material					
⊠ Yes □ No	☐ Other (Low Pressure Tower) ☐ Relocation					
7A. Description of Tank Modification (if applicable) N/A						
7B. Will more than one material be stored in this tank? If so, a s	separate form must be completed for each material.					
□ Yes ⊠ No						
7C. Was USEPA Tanks simulation software utilized?						
☐ Yes						
If Yes, please provide the appropriate documentation and items	8-42 below are not required.					

TANK INFORMATION

	8. Design Capacity (specify	y barrels	or gallon	s). Use the	e internal	cross-secti	ional area	multiplied	by intern	al height.	
	400 bbls 9A. Tank Internal Diameter (ft.) 12 9B. Tank Internal Height (ft.) 20										
	10A. Maximum Liquid Height (ft.) 20 10B. Average Liquid Height (ft.) 10										
	11A. Maximum Vapor Spa					11B. Average Vapor Space Height (ft.) 10 lso known as "working volume". 400 bbls					
	1	_		lons) This	s is also k					110	
	13A. Maximum annual thr						_			lay) See attached	
	emissions calculations for									hput values	
	14. Number of tank turnov									ee attached emissions	
	emissions calculations for	all thro	ughput v	alues		calculatio	ons for al	l through	put value	s	
	16. Tank fill method ☐ S	Submerg	ed [⊠ Splash		☐ Bottom	Loading				
	17. Is the tank system a var	riable va _l	por space	system?	□ Yes	⊠ No					
	If yes, (A) What is the volu	_	-	-	-	_					
	(B) What are the nur			nto the syst	tem per ye	ear?					
	18. Type of tank (check all		ly):								
	☐ Fixed Roof ☐ Vo	ertical	☐ horizo	ontal \square	flat roof	⊠ cone	roof \square	dome roo	f 🗆 oth	er (describe)	
		_	_		_						
	☐ External Floating Roof		□ pontoon		double d	leck roof					
	☐ Domed External (or Co	vered) F	loating Ro	oof							
	☐ Internal Floating Roof		☐ vertical	column su	ipport [☐ self-supp	porting				
	☐ Variable Vapor Space		lifter roo	of 🗆 dia	phragm						
	☐ Pressurized		spherica	ıl 🗆 cyl	indrical						
	☐ Other (describe)										
PI	RESSURE/VACUUM CO		L DATA	A							
	19. Check as many as appl	y:			_						
	☐ Does Not Apply					re Disc (ps					
	☐ Inert Gas Blanket of					n Adsorpti					
	□ Vent to Vapor Combust	tion Devi	ice1 (vapo	r combusto	ors, flares	, thermal o	xidizers, e	enclosed c	ombustors	s)	
	☐ Conservation Vent (psi	g)		[☐ Conde	nser1					
	0.5 oz Vacuum Setting		z Pressur	e Setting							
		e (psig)									
	Vacuum Setting		z Pressure	_							
	☐ Thief Hatch Weighted					tch					
	¹ Complete appropriate Air	Pollution	n Control	Device Sh	eet						
	20 E (IE : : D	. (1 :	'. T D.		1.4. 1	1	1 : 4	1	. ,		
	20. Expected Emission Rat Material Name							Total	10n).	Estimation Matheal	
	Material Name	Flashii	ig Loss	Breathi	ng Loss	Workin	g Loss	Emissio	ne I occ	Estimation Method ¹	
		lb/hr	tpy	lb/hr	tpy	lb/hr	tny	lb/hr	tpy		
		10/111					tpy		гру		
			See att	ached Em	issions C	alculation	for all v	alues			
]]	1]			Ì			

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

TANK CONSTRUCTION AND OPERATIO	ON INFORMATION				
21. Tank Shell Construction:					
\square Riveted \square Gunite lined \square Epox	-		scribe) Welded		
21A. Shell Color: Green	21B. Roof Color: Gre	en		21C. Year L	ast Painted: New
22. Shell Condition (if metal and unlined):	D (DN (P	.1.1			
⊠ No Rust ☐ Light Rust ☐ Dense				226 16	1 11 11 11
22A. Is the tank heated? \square Yes \boxtimes No	22B. If yes, operating t	temperatu	ire:	22C. If yes,	how is heat provided to tank?
23. Operating Pressure Range (psig):					
Must be listed for tanks using VRUs wi	· · · · · · · · · · · · · · · · · · ·				
24. Is the tank a Vertical Fixed Roof Tank ? ⊠ Yes □ No	24A. If yes, for dome	roof prov	ide radius (ft):	24B. If yes, 0.06	for cone roof, provide slop (ft/ft):
25. Complete item 25 for Floating Roof Tanks	s ☐ Does not apply	\boxtimes			
25A. Year Internal Floaters Installed:					
25B. Primary Seal Type (check one):	allic (mechanical) sho	e seal	☐ Liquid mo	unted resilien	nt seal
□ Va _I	or mounted resilient s	eal	☐ Other (des	cribe):	
25C. Is the Floating Roof equipped with a seco	ndary seal? Yes	□ No			
25D. If yes, how is the secondary seal mounted	? (check one)	е 🗆	Rim 🗆 Oth	ner (describe)):
25E. Is the floating roof equipped with a weath	er shield?	□ N	0		
25F. Describe deck fittings:					
26. Complete the following section for Interna	l Floating Roof Tanks		Does not apply	1	
26A. Deck Type: ☐ Bolted ☐ W	Velded	26B. F	For bolted decks,	provide deck	construction:
26C. Deck seam. Continuous sheet construction	n:				
\square 5 ft. wide \square 6 ft. wide \square 7 ft. wid	e \Box 5 x 7.5 ft. wide	□ 5 x	12 ft. wide □	other (desc	cribe)
26D. Deck seam length (ft.): 26E. Area	of deck (ft ²):		or column suppo	orted	26G. For column supported
		tanks, #	of columns:	1	tanks, diameter of column:
27. Closed Vent System with VRU? Yes					
28. Closed Vent System with Enclosed Combu					
SITE INFORMATION - Not Applicable:			d using ProM	ax software	
29. Provide the city and state on which the data 30. Daily Avg. Ambient Temperature (°F):	in this section are based:		nual Avg. Maxi	mum Tampara	ture (°E).
32. Annual Avg. Minimum Temperature (°F):			g. Wind Speed (tule (F).
34. Annual Avg. Solar Insulation Factor (BTU)	/ft²-day):		mospheric Press		
LIQUID INFORMATION - Not Applicabl					re
36. Avg. daily temperature range of bulk	36A. Minimum (°F):			36B. Maxim	
liquid (°F):					
37. Avg. operating pressure range of tank	37A. Minimum (psig):	:		37B. Maxim	num (psig):
(psig):		200 6			• .
38A. Minimum liquid surface temperature (°F) 39A. Avg. liquid surface temperature (°F):	:		Corresponding va Corresponding va		=
40A. Maximum liquid surface temperature (°F):	١٠		Corresponding va		
41. Provide the following for each liquid or gas					ροια).
41A. Material name and composition:					
41B. CAS number:					
41C. Liquid density (lb/gal):					
41D. Liquid molecular weight (lb/lb-mole):					
41E. Vapor molecular weight (lb/lb-mole):					
41F. Maximum true vapor pressure (psia):					
41G. Maximum Reid vapor pressure (psia):					
41H. Months Storage per year. From: To:					
42. Final maximum gauge pressure and					
temperature prior to transfer into tank used as					
inputs into flashing emission calculations.					

	ATION (REQUIRED)			
Bulk Storage Area Name	2. Tank Name			
WEU-8 Pad	Sand Separator Tank			
3. Emission Unit ID number	4. Emission Point ID number			
S015	E015			
5. Date Installed, Modified or Relocated (for existing tanks)	6. Type of change: N/A			
Was the tank manufactured after August 23, 2011?	☐ New construction ☐ New stored material			
⊠ Yes □ No	☐ Other (Low Pressure Tower) ☐ Relocation			
7A. Description of Tank Modification (if applicable) N/A				
7B. Will more than one material be stored in this tank? <i>If so, a s</i>	separate form must be completed for each material.			
☐ Yes ⊠ No				
7C. Was USEPA Tanks simulation software utilized?				
☐ Yes				
If Yes, please provide the appropriate documentation and items	8-42 below are not required.			
TANK INFO	ORMATION			
8. Design Capacity (specify barrels or gallons). Use the interna	l cross-sectional area multiplied by internal height.			
140 bbls	1			
9A. Tank Internal Diameter (ft.) 10	9B. Tank Internal Height (ft.) 10			
10A. Maximum Liquid Height (ft.) 10	10B. Average Liquid Height (ft.) 5			
11A. Maximum Vapor Space Height (ft.) 10	11B. Average Vapor Space Height (ft.) 5			
12. Nominal Capacity (specify barrels or gallons). This is also				
13A. Maximum annual throughput (gal/yr) See attached	13B. Maximum daily throughput (gal/day) See attached			
emissions calculations for all throughput values	emissions calculations for all throughput values			
14. Number of tank turnovers per year See attached	15. Maximum tank fill rate (gal/min) See attached emissions			
emissions calculations for all throughput values	calculations for all throughput values			
16. Tank fill method ☐ Submerged ☒ Splash	☐ Bottom Loading			
17. Is the tank system a variable vapor space system? Yes	⊠ No			
If yes, (A) What is the volume expansion capacity of the system	(gal)?			
(B) What are the number of transfers into the system per y	/ear?			
18. Type of tank (check all that apply):				
	\square cone roof \square dome roof \square other (describe)			
☐ External Floating Roof ☐ pontoon roof ☐ double	deck roof			
☐ Domed External (or Covered) Floating Roof				
	□ self-supporting			
☐ Variable Vapor Space ☐ lifter roof ☐ diaphragm	= sen supporting			
☐ Pressurized ☐ spherical ☐ cylindrical				
DDECCHDENACTUE	M CONTROL DATA			
PRESSURE/VACUU	WI CONTROL DATA			
19. Check as many as apply:	P: (·)			
	ure Disc (psig)			
	on Adsorption ¹			
☐ Vent to Vapor Combustion Device¹ (vapor combustors, flare	s, thermal oxidizers, enclosed combustors)			
☐ Conservation Vent (psig) ☐ Cond	enser ¹			
Vacuum Setting Pressure Setting				
☐ Emergency Relief Valve (psig)				
Vacuum Setting Pressure Setting				
☐ Thief Hatch Weighted ☐ Yes ☐ No				

¹ Complete appropriate	Air Pollution	n Control	Device Sh	neet					
20. Expected Emission	Rate (subm	it Test Da	ta or Calcı	ulations he	ere or else	where in t	he applicat	tion).	
Material Name	Flashing Loss		Breathi	Breathing Loss		Working Loss			Estimation Method ¹
							Emissio	ns Loss	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
		See att	ached En	nissions C	alculatio	n for all	values		

TANK CONSTRUCTION AND OPERATION INFORMATION									
21. Tank Shell Construction:									
\square Riveted \square Gunite lined \square Epoxy-coated rivets \boxtimes Other (describe) Welded									
21A. Shell Color: Gray	21B. Roof C	olor: Gray	21C. Year	r Last Painted: New					
22. Shell Condition (if metal and unli	ned):								
⊠ No Rust □ Light Rust □									
22A. Is the tank heated? ☐ Yes ⊠	No 22B. If yes, o	perating temperature:	22C. If ye	es, how is heat provided to tank?					
23. Operating Pressure Range (psig):	,								
Must be listed for tanks using V	RUs with closed ven	t system.							
24. Is the tank a Vertical Fixed Roof	Tank? 24A. If yes, f	for dome roof provide radius (ft):	24B. If ye	es, for cone roof, provide slop (ft/ft):					
□ Yes ⊠ No									
25. Complete item 25 for Floating Re	oof Tanks Does n	ot apply 🗵	•						
25A. Year Internal Floaters Installed:									
25B. Primary Seal Type (check one):	☐ Metallic (mechani	ical) shoe seal 🔲 Liquid m	ounted resili	ient seal					
	☐ Vapor mounted re	esilient seal	escribe):						
25C. Is the Floating Roof equipped w	rith a secondary seal?	l Yes □ No							
25D. If yes, how is the secondary sea	l mounted? (check one)	□ Shoe □ Rim □ O	ther (describ	pe):					
25E. Is the floating roof equipped wit	th a weather shield?	Yes							
25F. Describe deck fittings:									
26. Complete the following section for	or Internal Floating Room		-						
26A. Deck Type: ☐ Bolted	☐ Welded	26B. For bolted deck	s, provide dec	ck construction:					
26C. Deck seam. Continuous sheet c	onstruction:	•							
\square 5 ft. wide \square 6 ft. wide \square	7 ft. wide \Box 5 x 7.5	ft. wide \Box 5 x 12 ft. wide	□ other (de	escribe)					
26D. Deck seam length (ft.):	26E. Area of deck (ft ²):	26F. For column sup	ported	26G. For column supported					
		tanks, # of columns:		tanks, diameter of column:					
27. Closed Vent System with VRU?	☐ Yes ⊠ No								
28. Closed Vent System with Enclose	ed Combustor? Yes	⊠ No							
SITE INFORMATION - Not App	licable: Tank calcula	tions performed using E&I	Tank softv	ware					
29. Provide the city and state on which	th the data in this section a	are based:							
30. Daily Avg. Ambient Temperature		31. Annual Avg. Ma	kimum Tempe	erature (°F):					
32. Annual Avg. Minimum Temperat	ure (°F):	33. Avg. Wind Speed	l (mph):						
34. Annual Avg. Solar Insulation Fac		35. Atmospheric Pres							
LIQUID INFORMATION - Not Applicable: Tank calculations performed using E&P Tank software									

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.

36. Avg. daily temperature range of bulk	36A. Minimum (°F):			36B. Maximur	n (°F):
liquid (°F):					
37. Avg. operating pressure range of tank	37A. Minimum (psig):			37B. Maximur	n (psig):
(psig):					
38A. Minimum liquid surface temperature (°F):		38B. (Corresponding va	apor pressure (psi	ia):
39A. Avg. liquid surface temperature (°F):		39B. (Corresponding va	apor pressure (psi	ia):
40A. Maximum liquid surface temperature (°F)	:	40B. 0	Corresponding va	apor pressure (psi	ia):
41. Provide the following for each liquid or gas	to be stored in the tank.	Add add	litional pages if r	necessary.	
41A. Material name and composition:					
41B. CAS number:					
41C. Liquid density (lb/gal):					
41D. Liquid molecular weight (lb/lb-mole):					
41E. Vapor molecular weight (lb/lb-mole):					
41F. Maximum true vapor pressure (psia):					
41G. Maximum Reid vapor pressure (psia):					
41H. Months Storage per year.					
From: To:					
42. Final maximum gauge pressure and					
temperature prior to transfer into tank used as					
inputs into flashing emission calculations.					

STORAGE TANK DATA TABLE

List all deminimis storage tanks (i.e. lube oil, glycol, diesel etc.)

Source ID #1	Status ²	Content ³	Volume ⁴
		Not Applicable	

- Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the compressor station. Tanks should be designated T01, T02, T03, etc. Enter storage tank Status using the following: 1.
- 2.

EXIST

Existing Equipment
Installation of New Equipment NEW

Equipment Removed REM

- Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, diesel, mercaptan etc. 3.
- 4. Enter the maximum design storage tank volume in gallons.

ATTACHMENT M

Heaters Data Sheet

ATTACHMENT M – SMALL HEATERS AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART DC DATA SHEET

Complete this data sheet for each small heater and reboiler not subject to 40CFR60 Subpart Dc at the facility. The Maximum Design Heat Input (MDHI) must be less than 10 MMBTU/hr.

Emission Unit ID# ¹	Emission Point ID# ²	Emission Unit Description (manufacturer, model #)	Year Installed/ Modified	Type ³ and Date of Change	Maximum Design Heat Input (MMBTU/hr) ⁴	Fuel Heating Value (BTU/scf) ⁵
S007	E007	Line Heater	2013	Existing; No change	1.54	~1,216
S008	E008	Line Heater	2013	Existing; No change	1.54	~1,216
S009	E009	Line Heater	2013	Existing; No change	1.54	~1,216
S010	E010	Line Heater	2013	Existing; No change	1.54	~1,216
S011	E011	Line Heater	2013	Existing; No change	1.54	~1,216
S012	E012	Line Heater	2013	Existing; No change	1.54	~1,216
S014	E014	Thermoelectric Generator	2013	Existing; No change	0.013	~1,216
S015	E015	Thermoelectric Generator	2013	Existing; No change	0.013	~1,216
S018	E018	Line Heater	TBD	New	1.15	~1,216

- Enter the appropriate Emission Unit (or Source) identification number for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.
- Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.
- New, modification, removal
- Enter design heat input capacity in MMBtu/hr.
- 5 Enter the fuel heating value in BTU/standard cubic foot.

ATTACHMENT N

Engines Data Sheet

ATTACHMENT N - INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. *Generator(s) and microturbine generator(s) shall also use this form.*

	J						
Emission Unit I	D#1	SO	17				
Engine Manufacturer/Model		Ford C	SG-637				
Manufacturers I	Rated bhp/rpm	1	10				
Source Status ²		N	IS				
Date Installed/ Modified/Remo	ved/Relocated ³	TE	BD				
Engine Manufac		> J	uly 2010				
Check all applicable Federal Rules for the engine (include EPA Certificate of Conformity if applicable) ⁵				□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources		□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources	
Engine Type ⁶		4S	RB				
APCD Type ⁷		NS	CR				
Fuel Type ⁸		PQNG					
H ₂ S (gr/100 scf))	0					
Operating bhp/r	pm	110					
BSFC (BTU/bh	o-hr)	7,0	000				
Hourly Fuel Thi	roughput	733 ft³/hr NA gal/hi		ga	/hr l/hr		/hr l/hr
Annual Fuel The (Must use 8,760 emergency gene	hrs/yr unless	6.4 MMft NA gal/yı			Aft³/yr l/yr		Mft³/yr l/yr
Fuel Usage or H Operation Meter		Yes ⊠	No 🗆	Yes □	No □	Yes □	No 🗆
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) 11	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)
	NO _x	0.24	1.06				
	СО	0.49	2.12				
	VOC	0.17	0.74				
	SO ₂	<0.01	<0.01				
	PM ₁₀	0.01	0.07				
	Formaldehyde	0.02	0.07				
	Total HAPs	0.02	0.11				
	GHG (CO ₂ e)	90	395				

2 Enter the Source Status using the following codes:

NS Construction of New Source (installation) ES Existing Source
MS Modification of Existing Source RS Relocated Source

Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.

REM Removal of Source

- 3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.
- 4 Enter the date that the engine was manufactured, modified or reconstructed.
- Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6 Enter the Engine Type designation(s) using the following codes:

2SLB Two Stroke Lean Burn 4SRB Four Stroke Rich Burn

4SLB Four Stroke Lean Burn

7 Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:

A/F Air/Fuel Ratio IR Ignition Retard

HEISHigh Energy Ignition SystemSIPCScrew-in Precombustion ChambersPSCPrestratified ChargeLECLow Emission Combustion

NSCR Rich Burn & Non-Selective Catalytic Reduction OxCat Oxidation Catalyst

SCR Lean Burn & Selective Catalytic Reduction

8 Enter the Fuel Type using the following codes:

PQ Pipeline Quality Natural Gas RG Raw Natural Gas / Production Gas D Diesel

9 Enter the Potential Emissions Data Reference designation using the following codes. Attach all reference data used.

MD Manufacturer's Data AP AP-42

 $\hspace{1cm} GR \hspace{1cm} GRI\text{-}HAPCalc^{TM} \hspace{1cm} OT \hspace{1cm} Other \hspace{1cm} (please \ list)$

- Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.
- 11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

Engine Air Pollution Control Device (Emission Unit ID# S017, use extra pages as necessary)

Air Pollution Control De	ice Manufacturer's Data Sheet includ	ed?				
Yes ⊠ No □						
See	tached certification					
⊠ NSCR	SCR □ C	Oxidation Catalyst				
Provide details of process control used for proper mi fuel injection	ng/control of reducing agent with gas	s stream: Sequential multi-part				
Manufacturer: Ford	Model #: CSG-637					
Design Operating Temperature: 1,600 °F	Design gas volume: so	cfm				
Service life of catalyst: 5,000 hours	Provide manufacturer data?	□Yes □ No				
Volume of gas handled: 444.9 acfm at 1,600 °F	Operating temperature range From °F to °I					
Reducing agent used, if any: Ammonia slip (ppm):						
Pressure drop against catalyst bed (delta P): 6 inche	of H ₂ O					
Provide description of warning/alarm system that protects unit when operation is not meeting design conditions:						
Is temperature and pressure drop of catalyst required ☐ Yes ☒ No	be monitored per 40CFR63 Subpart	ZZZZ?				
How often is catalyst recommended or required to be 5,000 hours	eplaced (hours of operation)?					
How often is performance test required? Initial Annual Every 8,760 hours of operation Field Testing Required No performance test required. If so, why (please NSPS/GACT, Per 40 CFR \$60.4243(a)(1), EQT mus manufacturer's emission related written instructions compliance, but no performance testing is required.	naintain the certified engine and con-	trol device according to the				

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY 2015 MODEL YEAR CERTIFICATE OF CONFORMITY WITH THE CLEAN AIR ACT

OFFICE OF TRANSPORTATION AND AIR QUALITY ANN ARBOR, MICHIGAN 48105

Certificate Issued To: Engine Distributors, Inc.

(U.S. Manufacturer or Importer)

Certificate Number: FEDIB03.7CSG-006

Effective Date: 06/08/2015

Expiration Date: 12/31/2015

Issue Date: 06/08/2015

Revision Date: N/A

Manufacturer: Engine Distributors, Inc.

Engine Family: FEDIB03.7CSG

Mobile/Stationary Certification Type: Mobile and Stationary

Fuel: LPG/Propane

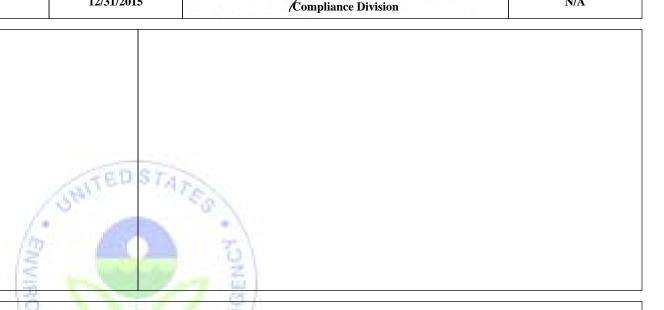
Gasoline (up to and including 10% Ethanol)

Natural Gas (CNG/LNG)

Emission Standards:

Mobile Part 1048

HC + NOx (g/kW-hr) : 0.8NMHC + NOx (g/kW-hr) : 0.8


CO (g/kW-hr) : 20.6 Part 60 Subpart JJJJ Table 1

NOx (g/kW-hr) : 1.3

HC + NOx (g/kW-hr) : 0.8

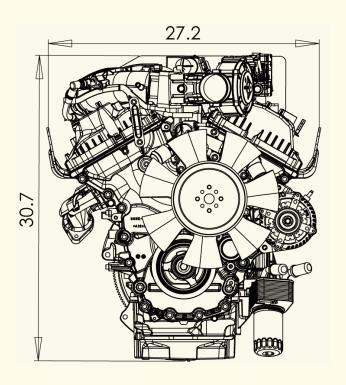
CO (g/kW-hr) : 2.7 CO (g/kW-hr) : 20.6 VOC (g/kW-hr) : 0.9

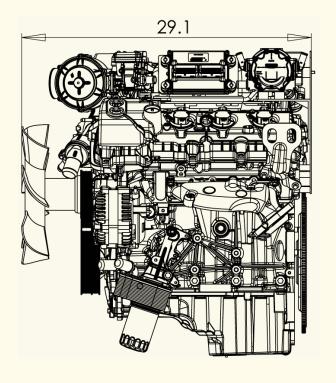
Emergency Use Only: N

Byron J. Bunker, Division Director

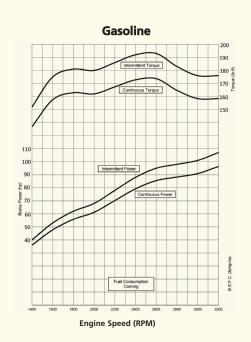
Pursuant to Section 213 of the Clean Air Act (42 U.S.C. section 7547) and 40 CFR Part 60, 40 CFR Part 1048, 1065, 1068, and 60 (stationary only and combined stationary and mobile) and subject to the terms and conditions prescribed in those provisions, this certificate of conformity is hereby issued with respect to the test engines which have been found to conform to applicable requirements and which represent the following nonroad engines, by engine family, more fully described in the documentation required by 40 CFR Part 60, 40 CFR Part 1048 and produced in the stated model year.

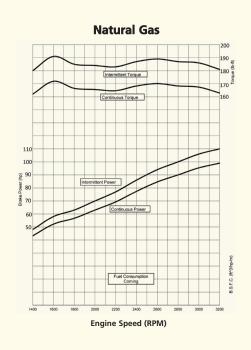
This certificate of conformity covers only those new nonroad spark-ignition engines which conform in all material respects to the design specifications that applied to those engines described in the documentation required by 40 CFR Part 60, 40 CFR Part 1048 and which are produced during the model year stated on this certificate of the said manufacturer, as defined in 40 CFR Part 60, 40 CFR Part 1048. This certificate of conformity does not cover nonroad engines imported prior to the effective date of the certificate.

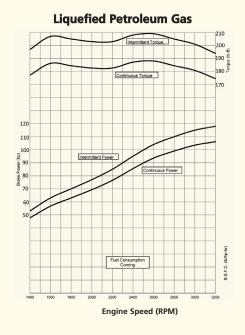

It is a term of this certificate that the manufacturer shall consent to all inspections described in 40 CFR 1068.20 and authorized in a warrant or court order. Failure to comply with the requirements of such a warrant or court order may lead to revocation or suspension of this certificate for reasons specified in 40 CFR Part 60, 40 CFR Part 1048. It is also a term of this certificate that this certificate may be revoked or suspended or rendered void *ab initio* for other reasons specified in 40 CFR Part 1048.


This certificate does not cover large nonroad engines sold, offered for sale, or introduced, or delivered for introduction, into commerce in the U.S. prior to the effective date of the certificate.

Installation Drawings


Front End View


Left Side View



Power Curves (corrected per SAE J1349)

For additional information Contact:

Powertrain Assemblies & Components Provided By Ford Component Sales

400 University Ct • Blackwood NJ 08012 856/228-7298 • Fax:856/228-5531 www.edi-dist.com

CSG-637 EFI

3.7 Liter 6-Cylinder

Options

Engine Cooling Fans

- 14" (355mm) diameter suction
- 14" (355mm) diameter pusher

Flywheels

- 11.5" (292mm) SAE over-center clutch
- flat face flywheel

Flywheel Housings

• SAE #3

Exhaust Manifold

• rear dump down

Power Steering Pump
Air Conditioning
Wiring Harnesses
Discrete Speed Switch
Variable Speed Hand Throttle
Variable Speed Foot Pedal
Engine Mounts

- Automotive with insulators
- Open power unit

Electronic Instrument Panel, Gauges Three Way Catalyst / Muffler Standard

Transmissions

6R80 electronic shift

Emissions Information

California Air Resources Board (CARB) Environmental Protection Agency (EPA) Emission Certified Packages

Warranty

Contact Engine Distributors, Inc for warranty details.

Power Products

Powertrain Assemblies & Components Provided By Ford Component Sales

Specifications

Engine Type	V-6	
Bore and Stroke	3.7" x 3.4" (94mm x 86mm)	
Displacement	3.7L Liter (225.7 CID)	
Compression Ratio	10.5:1	
Oil Capacity	6 qts. including filter	
	355 Lbs. with accessories (161 Kgs.)	
	L 25.4" x W 29.5" x H 29.4"	
	(646 mm x 751 mm x 748 mm)	

Gasoline (corrected per SAE J1349)

Unleaded 87 or 89 octane		
Intermittent Power	107 [HP] @ 3200rpm	(80 [kW] @ 3200rpm)
Continuous Power	96 [HP] @ 3200rpm	(72 [kW] @ 3200rpm)
Intermittent Torque	193 [ft-lbs] @ 2600rpm	(261 [N-m] @ 2600rpm)
Continuous Torque	173 [ft-lbs] @ 2600rpm	(235 [N-m] @ 3200rpm)

Natural Gas (corrected per SAE J1349)

Fuel Specification	1050 BTU/FT3	
Intermittent Power	110 [HP] @ 3200rpm	(82 [kW] @ 3200rpm)
Continuous Power	99 [HP] @ 3200rpm	(74 [kW] @ 3200rpm)
Intermittent Torque	191 [ft-lbs] @1600rpm	(259 [N-m] @ 1600rpm)
Continuous Torque	172 [ft-lbs] @1600rpm	(233 [N-m] @ 1600rpm)

Liquefied Petroleum Gas (corrected per SAE J1349)

Fuel Specification	HD-5	
Intermittent Power	118 [HP] @ 3200rpm	(88 [kW] @ 3200rpm)
Continuous Power	106 [HP] @ 3200rpm	(79 [kW] @ 3200rpm)
Intermittent Torque	209 [ft-lbs] @ 2600rpm	(284 [N-m] @ 2600rpm)
Continuous Torque	188 [ft-lbs] @ 2600rpm	(255 [N-m] @ 2600rpm)

Standard Features / Benefits

Set-for-life valvetrain

Deep skirted, ribbed cylinder block casting for rigidity

150 AMP Alternator

Aluminum cylinder block and heads.

Chain driven dual camshafts with automatic tensioning system

Structural front cover and deep sump oil pan

Alternate fuel ready valvetrain components

Individual coil on plug electronic ignition

Four main bolts with side bolts through block for strength and durability

Gasoline Sequential Port Fuel Injection

Closed loop fuel control for all fuels

Electronic engine management system with built-in engine protection against detonation, high coolant temperature, low oil pressure, over speed shutdown and starter lockout

Next generation governing – discrete speeds, variable speeds, drive by wire – using the highest quality components.

Variable CAM Timing for intake camshafts - advances or retards timing to maximize engine power and fuel efficiency

Forged steel crankshaft

ATTACHMENT O

Truck Loading Data Sheet

ATTACHMENT O - TANKER TRUCK LOADING DATA SHEET

Complete this data sheet for each new or modified bulk liquid transfer area or loading rack at the facility. This is to be used for bulk liquid transfer operations to tanker trucks. Use extra pages if necessary.

Truck Loadout Collection Efficiencies

The following applicable capture efficiencies of a truck loadout are allowed:

- For tanker trucks passing the MACT level annual leak test 99.2%
- For tanker trucks passing the NSPS level annual leak test 98.7%
- For tanker trucks not passing one of the annual leak tests listed above 70%

Compliance with this requirement shall be demonstrated by keeping records of the applicable MACT or NSPS Annual Leak Test certification for *every* truck and railcar loaded/unloaded. This requirement can be satisfied if the trucking company provided certification that its entire fleet was compliant. This certification must be submitted in writing to the Director of the DAQ. These additional requirements must be noted in the Registration Application.

Emission Unit ID#: S01	6	Emission Point ID#:		: C001-C002, E016 Year Installed/Modified: N/A			ed: N/A	
Emission Unit Description: Uncaptured losses from loading of produced fluids into tanker trucks								
			Loading A	Area Data				
Number of Pumps: 1 Number of Liquids Loaded: 1 Max number of trucks loading at on (1) time: 1					loading at one			
Are tanker trucks pressure tested for leaks at this or any other location? \square Yes \square No \square Not Required If Yes, Please describe:								
Provide description of closed vent system and any bypasses. Trucks utilize vapor recovery lines to route displaced vapors back into battery of tanks.								
☐ Closed System to tan☐ Closed System to tan☐ Closed System to tan☐ ☐ Closed System Closed Displace ☐ Closed System Closed Displace ☐ Closed System Closed Displace ☐ Closed Displa	Are any of the following truck loadout systems utilized? □ Closed System to tanker truck passing a MACT level annual leak test? □ Closed System to tanker truck passing a NSPS level annual leak test? ⊠ Closed System to tanker truck not passing an annual leak test and has vapor return?							
Pro	jected Maximun	n Operat	ing Schedul	e (for rack o	r transf	er point as a	whole)	
Time	Jan – Ma	ır	Apr	- Jun	J	ul – Sept		Oct - Dec
Hours/day	Varies		Vai	ries		Varies		Varies
Days/week	7			7		7		7
	Bul	k Liquid	Data (use e	xtra pages as	necess	ary)		
Liquid Name	Pre	oduced F	luids					
Max. Daily Throughput (1000 gal/day)	calc	See attached emissions calculations for all throughput values						
Max. Annual Throughpu (1000 gal/yr)	calc	See attached emissions calculations for all throughput values						
Loading Method ¹		SP						
Max. Fill Rate (gal/min))	Varies						
Average Fill Time (min/loading)		Varies						
Max. Bulk Liquid Temperature (°F)	See	ProMax	results					
True Vapor Pressure ²	See	ProMax	results					
Cargo Vessel Condition	3	U						
Control Equipment or Method ⁴	(captur	VB, EC ed loadir	D ng losses)					

Max. Collect	ion Efficiency	70	
Max. Control Efficiency (%)		98	
Max.VOC Emission	Loading (lb/hr)	See attached emission calculations for breakdown	
Rate	Annual (ton/yr)	See attached emission calculations for breakdown	
Max.HAP Emission	Loading (lb/hr)	See attached emission calculations for breakdown	
Rate	Annual (ton/yr)	See attached emission calculations for breakdown	
Estimation Method ⁵		AP-42 Section 5.2 Methodology (via ProMax)	

1	BF	Bottom Fill	SP Splash Fill			SUB	Submerged Fill	
2	At maxin	num bulk liquid temperature						
3	В	Ballasted Vessel	C	Cleaned			U	Uncleaned (dedicated service)
	O	Other (describe)						
4	List as many as apply (complete and submit appropriate Air Pollution Control Device Sheets)				Sheets)			
	CA	Carbon Adsorption VB		Dedicate	ed Vapor	Balance (d	closed system)	
	ECD	Enclosed Combustion Device	on Device F Flare		Flare	•		•
	TO	Thermal Oxidization or Incineration						
5	EPA	EPA Emission Factor in AP	-42			MB	Material	Balance
	TM	Test Measurement based upon test data submittal			al	O	Other (de	scribe)

ATTACHMENT P

Glycol Dehydrator Data Sheet (Not Applicable)

ATTACHMENT P – GLYCOL DEHYDRATION UNIT DATA SHEET – NOT APPLICABLE

Complete this data sheet for each Glycol Dehydration Unit, Reboiler, Flash Tank and/or Regenerator at the facility. Include gas sample analysis and GRI-GLYCalcTM input and aggregate report. Use extra pages if necessary.

Manufacturer:			Model:			
Max. Dry Gas Flow	Rate:		Reboiler Design He	at Input		
Design Type: ☐ TE	G □ DEG	□ EG	Source Status ¹ :			
Date Installed/Modi	fied/Removed2:		Regenerator Still Vent APCD/ERD ³ :			
Control Device/ERI	O ID# ³ :		Fuel HV (BTU/scf):			
H ₂ S Content (gr/100) scf):		Operation (hours/ye	ear):		
Pump Rate (gpm):						
Water Content (wt	%) in: Wet Gas: Dry	Gas:				
Is the glycol dehydi	ation unit exempt fro	om 40CFR63 Section	764(d)? □ Yes	☐ No: If Yes, answ	wer the following:	
The actual annual average flowrate of natural gas to the glycol dehydration unit is less than 85 thousand standard cubic meters per day, as determined by the procedures specified in §63.772(b)(1) of this subpart. Yes No The actual average emissions of benzene from the glycol dehydration unit process vent to the atmosphere are less than 0.90 megagram per year (1 ton per year), as determined by the procedures specified in §63.772(b)(2) of this subpart. Yes						
Is the glycol dehydi	ration unit located wi	thin an Urbanized Arc	ea (UA) or Urban Clu	ıster (UC)? 🗆 Yes	□ No	
Is a lean glycol pun	np optimization plan	being utilized? Ve	s 🗆 No			
Recycling the glycol dehydration unit back to the flame zone of the reboiler. □ Yes □ No						
Recycling the glycol dehydration unit back to the flame zone of the reboiler and mixed with fuel. \Box Yes \Box No						
What happens when temperature controller shuts off fuel to the reboiler? Still vent emissions to the atmosphere. Still vent emissions stopped with valve. Still vent emissions to glow plug. None of the above: Still vent emissions are controlled by an enclosed combustor						
☐ Flash Tank	e following equipme tent system that conti	nt is present. inuously burns conder	nser or flash tank vap	ors		
		Control Device	Technical Data			
	Pollutants Controlled	1	Manufacturer'	s Guaranteed Control	Efficiency (%)	
		Emissio	ns Data			
Emission Unit ID / Emission Point ID ⁴	Description	Calculation Methodology ⁵	PTE ⁶ Controlled Maximum Hourly Emissions (lb/hr) Controlled Maximum Annual Emissions (tpy			

1	Enter t	he Source Status using the following	codes:	
	NS	Construction of New Source	ES	Existing Source
	MS	Modification of Existing Source		_

NA

- 2 Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source), modification or removal.
- 3 Enter the Air Pollution Control Device (APCD)/Emission Reduction Device (ERD) type designation using the following codes and the device ID number:

Condenser

FL

Flare

CC Condenser/Combustion Combination TO Thermal Oxidizer O Other (please list)

Enter the appropriate Emission Unit ID Numbers and Emission Point ID Numbers for the glycol dehydration unit reboiler vent and glycol regenerator still vent. The glycol dehydration unit reboiler vent and glycol regenerator still vent should be designated RBV-1 and RSV-1, respectively. If the compressor station incorporates multiple glycol dehydration units, a Glycol Dehydration Emission Unit Data Sheet shall be completed for each, using Source Identification RBV-2 and RSV-3, etc.

5 Enter the Potential Emissions Data Reference designation using the following codes:

Enter the Reboiler Vent and Glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs per hour and tons per year. The Glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalcTM (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalcTM Aggregate Calculations Report (shall include emissions reports, equipment reports, and stream reports) to this Glycol Dehydration Emission Unit Data Sheet(s). Backup pumps do not have to be considered as operating for purposes of PTE. This PTE data shall be incorporated in the Emissions Summary Sheet.

ATTACHMENT Q

Pneumatic Controller Data Sheet (Not Applicable)

ATTACHMENT Q – PNEUMATIC CONTROLLERS DATA SHEET
Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after August 23, 2011?
☐ Yes No
Please list approximate number.
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after August 23, 2011?
☐ Yes No
Please list approximate number.

ATTACHMENT R

Air Pollution Control Device Data Sheet

ATTACHMENT R – AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION DEVICE SHEETS

Complete the applicable air pollution control device sheets for each flare, vapor combustor, thermal oxidizer, condenser, adsorption system, vapor recovery unit, BTEX Eliminator, Reboiler with and without Glow Plug, etc. at the facility. Use extra pages if necessary.

Emissions calculations must be performed using the most conservative control device efficiency.

The following five (5) rows are only to be completed if registering an alternative air pollution control device.			
Emission Unit ID: Not Applicable	Make/Model:		
Primary Control Device ID:	Make/Model:		
Control Efficiency (%):	APCD/ERD Data Sheet Completed: ☐ Yes ☐ No		
Secondary Control Device ID:	Make/Model:		
Control Efficiency (%):	APCD/ERD Data Sheet Completed: ☐ Yes ☐ No		

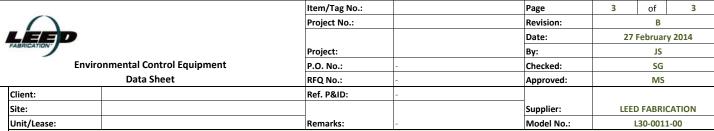
VAPOR COMBUSTION						
(Including Enclosed Combustors)						
General Information						
Control Device ID#: C001		Installation Date: C001 - 2013; ☐ New ☐ Modified ☐ Relocated				
Maximum Rated Total Flow Capacity ~7,850 scfh 188,000 scfd			Maximum Design Heat Input (from mfg. spec sheet) 11.66 MMBTU/hr	Design Heat Content 1,500 BTU/scf		
			Control Devic	e Information		
Type of Vapor Combustion Control? Enclosed Combustion Device						
Manufacturer: LEED Fabrication Model: Enclosed Combustor 48"			Hours of operation per year? 8,760			
List the emission un	its whose e	missions	are controlled by this	vapor control device	(Emission	Point ID# S001-S006, S016)
Emission Unit ID#	Emission Source Description		Emission Unit ID#	Emissi	on Source Description	
S001-S006	Produced Fluid Tanks					
S016	Liquid Loading					
If this vapor combustor controls emissions from more than six (6) emission units, please attach additional pages.						
Assist Type (Flares	only) Flare Height			Tip Diameter Was the design pe		Was the design per §60.18?
Steam Pressure	☐ Air ⊠ Non			4 feet		☐ Yes ☐ No ☒ N/A Provide determination.
Waste Gas Information						
		aste Gas Stream BTU/ft ³	Exit Velocity of the Emissions Strea Varies (ft/s)			
Provide an attachment with the characteristics of the waste gas stream to be burned.						
Pilot Gas Information						
1 Flame per l		Flow Rate to Pilot ame per Pilot ~50 scfh	Heat Input per Pilot 0.05 MMBTU/hr		Will automatic re-ignition be used? ☐ Yes ⊠ No	
If automatic re-ignition is used, please describe the method.						
			If Yes, what type? ⊠ Thermocouple ☐ Infrared ☐ Ultraviolet ☐ Camera ☐ Other:			
Describe all operating ranges and maintenance procedures required by the manufacturer to maintain the warranty. (If unavailable, please indicate). See attached information on unit						
Additional information attached? Yes No Please attach copies of manufacturer's data sheets, drawings, flame demonstration per \$60.18 or \$63.11(b) and performance testing.						

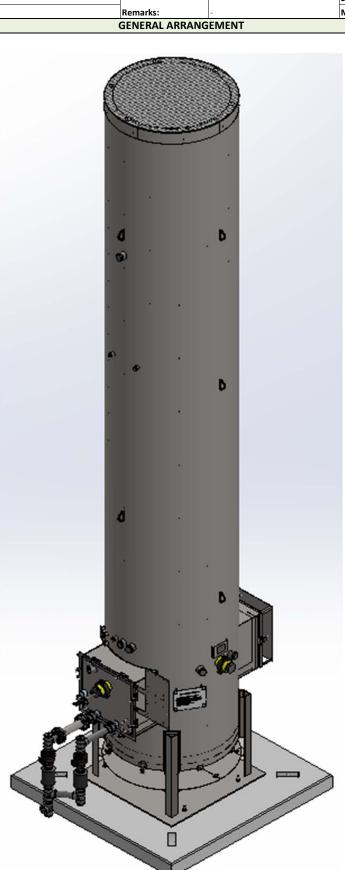
VAPOR COMBUSTION						
(Including Enclosed Combustors)						
General Information						
Control Device ID#: C002 (new)		Installation Date: C002 - TBD New ☐ Modified ☐ Relocated				
Maximum Rated Total Flow Capacity ~7,850 scfh 188,000 scfd			Maximum Design Heat Input (from mfg. spec sheet) 11.66 MMBTU/hr	Design Heat Content 1,500 BTU/scf		
Control Device Information						
Type of Vapor Combustion Control? Enclosed Combustion Device						
Manufacturer: LEED Fabrication Model: Enclosed Combustor 48"			Hours of operation per year? 8,760			
List the emission un	its whose er	nissions	are controlled by this	vapor control device	(Emission	Point ID# S001-S006, S016)
Emission Unit ID#	Emission Source Description		Emission Unit ID#	Emission Unit ID# Emission Source Description		
S001-S006	Produced Fluid Tanks					
S016	Liquid Loading					
If this vapor combustor controls emissions from more than six (6) emission units, please attach additional pages.						
Assist Type (Flares	only) Flare Height		Tip Diameter		Was the design per §60.18?	
Steam Pressure	☐ Air ~25 feet Non		4 feet		☐ Yes ☐ No ☒ N/A Provide determination.	
Waste Gas Information						
Maximum Waste Gas Flow Rate 130 Heat Value of W		Vaste Gas Stream BTU/ft ³	,			
Provide an attachment with the characteristics of the waste gas stream to be burned.					be burned.	
Pilot Gas Information						
Number of Pilot Lights 1 Fuel Flow Rate to Pilot Flame per Pilot ~50 scfh		Heat Input per Pilot 0.05 MMBTU/hr		Will automatic re-ignition be used? □ Yes ⊠ No		
If automatic re-ignition is used, please describe the method.						
			If Yes, what type? ⊠ Thermocouple ☐ Infrared ☐ Ultraviolet ☐ Camera ☐ Other:			
Describe all operating ranges and maintenance procedures required by the manufacturer to maintain the warranty. (If unavailable, please indicate). See attached information on unit						
Additional information attached? Yes No Please attach copies of manufacturer's data sheets, drawings, flame demonstration per §60.18 or §63.11(b) and performance testing.						

CONDENSER – Not Applicable				
General Information				
Control Device ID#:	Installation Date: ☐ New ☐ Modified ☐ Relocated			
Manufacturer:	Model:	Control Device Name:		
Control Efficiency (%):				
Manufacturer's required temperature range for control efficiency.				
Describe the warning and/or alarm system that protects against operation when unit is not meeting the design requirements:				
Describe all operating ranges and maintenance procedures required by the manufacturer to maintain the warranty.				
Additional information attached? \(\subseteq \text{Yes} \) No Please attach copies of manufacturer's data sheets.				
Is condenser routed to a secondary APCD or ERD? ☐ Yes ☐ No				

ADSORPTION SYSTEM – Not Applicable				
General Information				
Control Device ID#:	Installation Date: ☐ New ☐ Modified ☐ Relocated			
Manufacturer:	Model: Control Device Name:			
Design Inlet Volume: scfm	Adsorbent charge per adsorber vessel and number of adsorber vessels:			
Length of Mass Transfer Zone supplied by the manufacturer:	Adsorber diameter: ft Adsorber area: ft²			
Adsorbent type and physical properties:	Overall Control Efficiency (%):			
Working Capacity of Adsorbent (%):				
Operating Parameters				
Inlet volume: scfm @ °F				
Adsorption time per adsorption bed (life expectancy): Breakthrough Capacity (lbs of VOC/100 lbs of adso				
Temperature range of carbon bed adsorber. °F - °F				
Control Device Technical Data				
Pollutants Controlled	Manufacturer's Guaranteed Control Efficiency (%)			
Describe the warning and/or alarm system that protects against operation when unit is not meeting the design requirements:				
Has the control device been tested by the manufacturer and certified?				
Describe all operating ranges and maintenance procedures required by the manufacturer to maintain the warranty.				
Additional information attached? Yes No Please attach copies of manufacturer's data sheets, drawings, and performance testing.				

	VAPOR REC	OVERY	UNIT	
	General In	formation		
Emission U	Jnit ID#: S017	Installation New	n Date: TBD Modified	Relocated
	Device In	formation		
Manufactu Model:	rer: Ford CSG-637			
List the en	nission units whose emissions are controlled by this	vapor recov	very unit (Emission Po	int ID# NA)
Emission Unit ID#	Emission Source Description	Emission Unit ID#	Emission Source Des	scription
NA	Low Pressure Separator			
If this	vapor recovery unit controls emissions from more t	han six (6) e	mission units, please a	uttach additional pages.
	information attached? ⊠ Yes □ No ch copies of manufacturer's data sheets, drawings,	and perform	ance testing.	
The regists recovery u	ant may claim a capture and control efficiency of 9 nit.	95 % (which	accounts for 5% down	time) for the vapor
	ant may claim a capture and control efficiency of 9 8.1.2 of this general permit.	98% if the V	RU has a backup flare	that meet the requirements
The regists	ant may claim a capture and control efficiency of 9	8% if the V	RU has a backup VRU.	


Battery Pack


Item/Tag No.:		Page	1	of	2
Project No.:		Revision:		В	
		Date:	27 1	ebruar	y 2014
Project:		Ву:		JS	
P.O. No.:	-	Checked:		SG	

-	FABRICATION"			Drainate			D	JS
				Project:			By:	
	Enviro	mental Control Equipment		P.O. No.:	-		Checked:	SG
		Data Sheet		RFQ No.:	-		Approved:	MS
	Client:			Ref. P&ID:	-			
	Site:						Supplier:	LEED FABRICATION
				4 _				
	Unit/Lease:			Remarks:	-		Model No.:	L30-0011-00
				GENERAI				
1	Design Code:				NDE:			LEED Fabrication Standards
2	Service:				Custo	mer Specs:		Yes
		Standard Dual	C+ 40 III:-b Eff:	-! Cbt	Custo	mer spees.		_=
3	Description:	Standard Dua	Stage 48 High Effi					✓ No
				PROCESS DA	ATA			
	00			Proces	ss Conditions:			
	Gas Composition:			mol %	Variable	Valu	e Un	its
	Mathaus							
4	Methane				Flow Rate	Up to	+	cfd
5	Ethane				Pressure	Up to	12 oz/	in2
6	Propane				Temperature		0	F
7	I-Butane				Nolecular Weight			
					cess/Waste Stream	✓ Gas		7 .::
8	n-Butane							Liquid
9	I-Pentane			Detail	ed Process Descripti	on / Process N	otes:	
10	n-Pentane			1. Tur	ndown 10:1. Based	on an expected	l normal operat	ing rate indicated above.
11	n-Hexane			2. DRI	: 98 % operating at	design conditi	ons	
12	CO2			3. Bur	ner Pressure Drop: I	Vin. 0.10 oz/in	2	
13	N2							
14	Helium							
15	H₂O							
16	C7							
17	C8							
18	C9							
19	C10							
20	C11+							
21		TOTAL						
21		TOTAL						
	Other Components:			PPMV Availa	ble Utilities:			
22	H2S				Fuel / Pilot Gas		Min. 30psi	g Natural Gas /Propane 40-50 SCFF
23	Benzene				Instrument Air		NA	
24	Toluene				Power		120 V / 60	Hz or Solar Power
								112 01 30101 1 01101
25	E-Benzene				Steam		NA	
26	Xylene				Purge Gas			
				DESIGN DA	TA			
27	Ambient Temperatures:			Noise	Performance Requi	rements:		Under 85 dBA
28		Low, °F	-20	Struct	ural Design Code:			
			120		_			ACCE
29		High, ⁰F	120	wina	Design Code:			ASCE
	Design Conditions:	Pressure/Temperature						
31	Max. Relative Humidity,	%	90		Press	ure/Speed		100 mph
32	Elevation (ASL), ft				Categ	ory		
	Area Classification:		Class I I	Div 2 Saism	ic Design Code:	· •	+	
								
34	Electrical Design Code:		NEC		Locat	ION		
		_		QUIPMENT SPEC	FICATION			
35	Туре:	☐ Elevated ✓	Enclosed	Equip	ment Design:			
36		Above Ground			Compo	nent	N	Naterial / Size / Rating / Other
37			Multiple Stack	Burne				
	 		p.:= = 146K	Burne		+ C- : 5	+	204.00
38		Portable / Trailer			Burner Tip / Assi			304 SS
39					Burner	Body		Carbon Steel
40	Smokeless By:	Steam .	Assist Air	Pilot				
41		Gas Assist 🗸	Staging		Pilot 1	Tip .		304 SS
42			J J					
	Cha also	C-15 C			Pilot Lir	10(3)	+	Carbon Steel
	Stack:	✓ Self Supporting			x / Stack			
44	Flare Burner:	□ Non-Smokeless ✓	Smokeless	Gas Assist	She	<u> </u>		Carbon Steel
45	Pilot:	✓ Intermittent	Continuous		Pipir	ng		Carbon Steel
		[] Land	Remote		Nozz			Carbon Steel
46	Pilot Air Inspirator:	✓ Local					 	Carbon Steel
	Pilot Air Inspirator:	✓ Local _	Vos /Thormosou	(مام		C)	1	Carpon Steel
47	Pilot Air Inspirator: Pilot Flame Control:	No v	Yes (Thermocou	ple)	Flang			
47	·		Yes (Thermocou	ple)	Insulat			Blanket
46 47 48 49	·		Yes (Thermocou			ion		
47 48	Pilot Flame Control:	□ No □	Inspirating Ignito		Insulat Insulatio	ion n Pins		Blanket
47 48 49 50	Pilot Flame Control:	No V	Inspirating Ignito	or	Insulat Insulatio Refrac	ion n Pins tory		Blanket 304 SS NA
47 48 49 50 51	Pilot Flame Control:	No V Flamefront Generator V Electronic V With Pilot Flame Control	Inspirating Ignito	or	Insulat Insulatio Refrac Refractory	cion n Pins tory Anchors		Blanket 304 SS NA NA
47 48 49 50 51	Pilot Flame Control:	No V	Inspirating Ignito	or	Insulat Insulatio Refrac	cion n Pins tory Anchors		Blanket 304 SS NA
47 48 49	Pilot Flame Control:	No V Flamefront Generator V Electronic V With Pilot Flame Control	Inspirating Ignito	or	Insulat Insulatio Refrac Refractory	cion n Pins tory Anchors Platforms		Blanket 304 SS NA NA

Other

					Item/Tag No	.:		Page		2	of	3
					Project No.:			Revision	1:		В	
	LEED							Date:		27 Fel	bruary 20:	14
	FABRICATION .				Project:			Ву:			JS	
	Environ	mental	Control Equipm	ent	P.O. No.:		-	Checked	d:		SG	
			a Sheet		RFQ No.:		-	Approve			MS	-
	Client:				Ref. P&ID:		-	търгот				
	Site:				ilen i Gizi			Supplier		LEED E	ABRICATION	ON
	Unit/Lease:				Remarks:			Model N				
	Offic/ Lease.				EQUIPMENT	SDECIE	ICATION	Wiodel	No.: L30-0011-00			
= 6	Flame Detection:	Пты	ormoogunlo	✓ Ionization Ro		1						
	Flame Detection:	=	ermocouple	V TOTIIZATIOTI RC	ou	Auxiliai	ry Equipment					
57	C	UV	Scanner				Valves			NA		
	General Configuration:						Blowers			NA		
59			Comme				Dampers			NA	k .	
60							Inlet KO / Liquid Seal			NA	l .	
61							Flame / Detonation Arrestor			Yes	;	
62						Instrum	nentation & Controls					
63							Solenoids / Shut-Off Valves		Check	with Sales for	available	e config.
64							Flow Meters			NA		
65				0			Calorimeter			NA		
66							Pressure Switches/Transmitters			NA		
67							Thermocouples		Check	with Sales for		e config.
68			0: :-			—	Temperature Switches/Transmitte	ers	J	NA		
69			2 3	4		 	BMS		Chack	with Sales for		a config
70				*		-			CHECK			. comig.
70 71			1000	1			CEMS Other			NA NA		
				, m			Other			NA	-	
72			FIFT.									
73												
74			0									
75												
					FABRICATION	AND IN						
76	Special requirements	<u> </u>		✓ Concrete Pad			Eq	uipment	Info			
77			Other				Component			Weight / Dir	mensions	
78			-			Burner						
79	Inspection		Vendor Standard				Burner Assembly					
80			Other. Specify:			Stack						
81	Material Certification	✓	Vendor Standard				Stack Assembly			48 " OD x	25 ' H	
82			MTR				Pilot Tip					
83			Certificate of Cor	npliance			Pilot Line(s)					
84			Other (Specify):				Stack Assembly					
85	NDE	✓	Vendor Standard			Auxilia	ry Equipment					
86			Radiography. Spe	cify:			Blowers					
87			Ultrasonic. Speci	fy:			Inlet KO / Liquid Seal					
88			Liquid Penetrant.				Flame / Detonation Arrestor					
89			Magnetic Particles	S.			Skid					-
90			PMI. Specify:			Instrum	nentation & Controls					
91			Other. Specify:				BMS					
92	Surface Preparation	<u> </u>	Vendor Standard				Control Panel					
93	<u> </u>	$\overline{\Box}$	Other. Specify:									
94	Paint System		Vendor Standard									
95	·		Other. Specify:									
96	Finished Color		Vendor Standard									
97			Other. Specify:									
98			zanzar opoury.									
99												
	Additional Notes:								<u> </u>			
	Additional Notes.											
	i											

§ MMBTU/hr values are calculated based on 1500 BTU/scf gas

		Pressure			
Flare Size	# of Orifices (N)	(OZ/in²)	m³/s	mSCFD	MMBTU/hr
18	2	1	0.0021	6.34	0.39
18	2	2	0.0029	8.97	0.56
18	2	3	0.0036	10.99	0.68
18	2	4	0.0042	12.69	0.78
18	2	5	0.0046	14.18	0.88
18	2	6	0.0051	15.54	0.96
18	2	7	0.0055	16.78	1.04
18	2	8	0.0059	17.94	1.11
18	2	9	0.0062	19.03	1.18
18	2	10	0.0066	20.06	1.24
18	2	11	0.0069	21.04	1.30
18	2	12	0.0072	21.97	1.36
18	2	13	0.0075	22.87	1.42
18	2	14	0.0078	23.73	1.47
18	2	15	0.0081	24.57	1.52
18	2	16	0.0083	25.37	1.57
18	2	17	0.0086	26.15	1.62
18	2	18	0.0088	26.91	1.67
24	4	1	0.0042	12.69	0.78
24	4	2	0.0059	17.94	1.11
24	4	3	0.0072	21.97	1.36
24	4	4	0.0083	25.37	1.57
24	4	5	0.0093	28.37	1.76
24	4	6	0.0102	31.08	1.92
24	4	7	0.0110	33.56	2.08
24	4	8	0.0118	35.88	2.22
24	4	9	0.0125	38.06	2.35
24	4	10	0.0131	40.12	2.48
24	4	11	0.0138	42.08	2.60
24	4	12	0.0144	43.95	2.72
24	4	13	0.0150	45.74	2.83
24	4	14	0.0156	47.47	2.94
24	4	15	0.0161	49.13	3.04
24	4	16	0.0166	50.75	3.14
24	4	17	0.0171	52.31	3.24
24	4	18	0.0176	53.82	3.33
36	10	1	0.0104	31.72	1.96
36	10	2	0.0147	44.85	2.78
36	10	3	0.0180	54.93	3.40

36	10	4	0.0208	63.43	3.92
36	10	5	0.0232	70.92	4.39
36	10	6	0.0255	77.69	4.81
36	10	7	0.0275	83.91	5.19
36	10	8	0.0294	89.71	5.55
36	10	9	0.0312	95.15	5.89
36	10	10	0.0329	100.29	6.21
36	10	11	0.0345	105.19	6.51
36	10	12	0.0360	109.87	6.80
36	10	13	0.0375	114.35	7.08
36	10	14	0.0389	118.67	7.34
36	10	15	0.0403	122.83	7.60
36	10	16	0.0416	126.86	7.85
36	10	17	0.0429	130.77	8.09
36	10	18	0.0441	134.56	8.33
48	14	1	0.0146	44.40	2.75
48	14	2	0.0206	62.79	3.89
48	14	3	0.0252	76.91	4.76
48	14	4	0.0291	88.80	5.49
48	14	5	0.0325	99.29	6.14
48	14	6	0.0356	108.76	6.73
48	14	7	0.0385	117.48	7.27
48	14	8	0.0412	125.59	7.77
48	14	9	0.0437	133.21	8.24
48	14	10	0.0460	140.41	8.69
48	14	11	0.0483	147.27	9.11
48	14	12	0.0504	153.81	9.52
48	14	13	0.0525	160.09	9.91
48	14	14	0.0545	166.14	10.28
48	14	15	0.0564	171.97	10.64
48	14	16	0.0582	177.61	10.99
48	14	17	0.0600	183.07	11.33
48	14	18	0.0617	188.38	11.66

ATTACHMENT S

Emission Calculations

EQT Production, LLC WEU 8 Wellpad Company Name: Facility Name: **Project Description:** G70-B Application

Facility-Wide Emission Summary - Controlled

 N_2O

25

298

Wells	6	per pad
Storage Tanks	6	per pad
Sand Separator Tank	1	per pad
Line Heaters	7	per pad
TEGs	2	per pad
Dehy Reboiler	0	per pad
Glycol Dehy	0	per pad
Dehy Drip Tank	0	per pad
Dehy Combustor	0	per pad
Compressor	1	per pad
High Pressure Separator	6	per pad
Low Pressure Separator	1	per pad
Vapor Recovery Unit	1	per pad
Tank Combustor	2	per pad
Length of lease road	2,080	feet

Carbon equivalent emissions (CO2e) are based on the following Global Warming Potentials (GWP) from 40 CFR Part 98, Table A-1: CO₂ CH₄

T	NO _x	co	VOC	SO ₂	PM ₁₀
	feet				
	per pad				
	per pad				
	per pad				
	per pad				
	per pad				
1	per pad				
	per pad				
1	per pad				
	per pad				
	per pad				

Emission	Emission	Emission	N	O _X	C	0	V	OC	S	O_2	PN	И ₁₀	PM	I _{2.5}	CC	O_2e
Point ID #	Source ID#s	Source Description	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
C001-C002	S001-S006	Storage Vessels					0.39	1.72							3.28	14.36
C001-C002	S016	Captured Liquid Loading					2.79	0.72								
C001	C001	Tank Combustor	1.15	5.03	0.96	4.22	2.8E-04	1.2E-03	0.01	0.03	0.09	0.38	0.09	0.38	1,371.10	6,005.43
C002	C002	Tank Combustor	1.15	5.03	0.96	4.22	2.8E-04	1.2E-03	0.01	0.03	0.09	0.38	0.09	0.38	1,371.10	6,005.43
C001	S001-S006, S016, C001		1.15	5.03	0.96	4.22	1.59	1.22	0.01	0.03	0.09	0.38	0.09	0.38	1,372.74	6,012.61
C002	S001-S006, S016, C002		1.15	5.03	0.96	4.22	1.59	1.22	0.01	0.03	0.09	0.38	0.09	0.38	1,372.74	6,012.61
E007	S007	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E008	S008	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E009	S009	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E010	S010	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E011	S011	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E012	S012	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E018	S018	Line Heater	0.11	0.48	0.09	0.40	0.01	0.03	6.6E-04	2.9E-03	0.01	0.04	0.01	0.04	135.14	591.90
E013	S013	TEG	1.2E-03	5.4E-03	1.0E-03	4.5E-03	6.8E-05	3.0E-04	7.4E-06	3.2E-05	9.4E-05	4.1E-04	9.4E-05	4.1E-04	1.52	6.64
E014	S014	TEG	1.2E-03	5.4E-03	1.0E-03	4.5E-03	6.8E-05	3.0E-04	7.4E-06	3.2E-05	9.4E-05	4.1E-04	9.4E-05	4.1E-04	1.52	6.64
E015	S015	Sand Separator Tank					0.17	0.76							1.08	4.70
E017	S017	VRU Engine	0.24	1.06	0.49	2.12	0.19	0.81	4.5E-04	2.0E-03	0.01	0.07	0.01	0.07	90.18	394.99
E016	S016	Uncaptured Liquid Loading					59.75	15.54								
		Fugitives						17.25								303.29
		Haul Roads										1.83		0.18		
Facility Total			3.53	15.46	3.25	14.22	63.35	37.04	0.02	0.09	0.26	2.99	0.26	1.34	4,056.00	18,068.56
Facility Total (excluding fugitive	ve emissions)		3.53	15.46	3.25	14.22	3.59	4.26	0.02	0.09	0.26	1.16	0.26	1.16	4,056.00	17,765.28

^{1.} Emissions routed to combustors are divided evenly by the total number of combustors (i.e., Combustor Point Emissions = [storage tanks emissions + captured loading emissions] / [number of combustors] + combustor emissions). However, emissions can be routed to either combustor.

Facility-Wide Emission Summary - Controlled

Emission	Emission	Emission	Forma	ldehyde	Ben	zene	Tolu	iene	Ethylb	enzene	Xyle	enes	n-He	xane	Tota	l HAP
Point ID #	Source ID#s	Source Description	lb/hr	tpy												
C001-C002	S001-S006	Storage Vessels			4.9E-04	2.1E-03	7.7E-04	3.4E-03	3.3E-05	1.5E-04	3.4E-04	1.5E-03	0.01	0.04	0.02	0.09
C001-C002	S016	Captured Liquid Loading			2.1E-03	5.4E-04	2.6E-03	6.8E-04	1.2E-04	3.1E-05	1.2E-03	3.1E-04	0.07	0.02	0.14	0.04
C001	C001	Tank Combustor														
C002	C002	Tank Combustor														
C001	S001-S006, S016, C001				1.3E-03	1.3E-03	1.7E-03	2.0E-03	7.5E-05	8.8E-05	7.6E-04	9.1E-04	0.04	0.03	0.08	0.07
C002	S001-S006, S016, C002				1.3E-03	1.3E-03	1.7E-03	2.0E-03	7.5E-05	8.8E-05	7.6E-04	9.1E-04	0.04	0.03	0.08	0.07
E007	S007	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E008	S008	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E009	S009	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E010	S010	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E011	S011	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E012	S012	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E018	S018	Line Heater	8.2E-05	3.6E-04	2.3E-06	1.0E-05	3.7E-06	1.6E-05					2.0E-03	0.01	2.1E-03	0.01
E013	S013	TEG	9.3E-07	4.1E-06	2.6E-08	1.1E-07	4.2E-08	1.8E-07					2.2E-05	9.7E-05	2.3E-05	1.0E-04
E014	S014	TEG	9.3E-07	4.1E-06	2.6E-08	1.1E-07	4.2E-08	1.8E-07					2.2E-05	9.7E-05	2.3E-05	1.0E-04
E015	S015	Sand Separator Tank			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0E-03	< 0.01	2.0E-03	1.0E-02
E017	S017	VRU Engine	0.02	0.07	1.2E-03	5.3E-03	4.3E-04	1.9E-03	1.9E-05	8.4E-05	1.5E-04	6.6E-04			0.02	0.11
E016	S016	Uncaptured Liquid Loading			0.04	0.01	0.06	0.01	2.5E-03	6.5E-04	2.5E-02	6.6E-03	1.44	0.38	2.95	0.77
		Fugitives				0.01		0.03		< 0.01		0.03		0.26		0.72
		Haul Roads														
Facility Total			0.02	0.07	0.05	0.03	0.06	0.05	2.7E-03	9.1E-04	0.03	0.04	1.54	0.77	3.16	1.81
Facility Total (excluding fu	igitive emissions)		0.02	0.07	3.8E-03	0.01	3.9E-03	6.1E-03	1.7E-04	2.6E-04	1.7E-03	2.5E-03	0.10	0.14	0.21	0.33

^{1.} Emissions routed to combustors are divided evenly by the total number of combustors (i.e., Combustor Point Emissions = [storage tanks emissions + captured loading emissions] / [number of combustors] + combustor emissions). However, emissions can be routed to either combustor.

Produced Fluids Storage Vessels

Potential Throughput Operational Hours 8,760 hrs/yr Maximum Condensate Throughput¹ 7,969 bbl/month Maximum Produced Water Throughput¹ 25,306 bbl/month

Overall Control Efficiency of Combustor 98%

Storage Tanks - Uncontrolled

	Brea	thing		rking	Flas	hing	Total Emissions		
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
Methane	< 0.001	< 0.001	< 0.001	< 0.001	6.557	28.720	6.557	28.720	
Ethane	< 0.001	< 0.001	< 0.001	< 0.001	7.916	34.674	7.916	34.674	
Propane	0.070	0.308	0.904	3.958	7.271	31.848	8.245	36.113	
Isobutane	0.016	0.072	0.197	0.865	1.721	7.536	1.934	8.472	
n-Butane	0.033	0.143	0.394	1.726	3.508	15.366	3.935	17.235	
Isopentane	0.013	0.055	0.151	0.663	1.369	5.997	1.533	6.715	
n-Pentane	0.011	0.050	0.138	0.603	1.262	5.527	1.411	6.180	
n-Hexane	0.004	0.017	0.048	0.210	0.448	1.962	0.500	2.190	
Cyclohexane	0.001	0.002	0.006	0.028	0.077	0.338	0.084	0.368	
Methylcyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
n-Heptane	0.004	0.016	0.044	0.192	0.438	1.918	0.485	2.126	
n-Octane	2.9E-04	0.001	0.003	0.015	0.035	0.155	0.039	0.171	
n-Nonane	2.3E-04	0.001	0.003	0.012	0.030	0.131	0.033	0.145	
n-Decane	1.2E-04	0.001	0.001	0.007	0.017	0.073	0.018	0.080	
n-Undecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Dodecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Triethylene Glycol	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Cyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Isohexane	0.007	0.030	0.081	0.355	0.746	3.267	0.834	3.652	
3-Methylpentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Neohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
2,3-Dimethylbutane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Methylcyclohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Decane, 2-Methyl-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Benzene	8.7E-05	3.8E-04	0.002	0.009	0.022	0.098	0.024	0.107	
Toluene	1.4E-04	0.001	0.002	0.009	0.036	0.159	0.039	0.169	
Ethylbenzene	6.8E-06	3.0E-05	8.7E-05	3.8E-04	0.002	0.007	0.002	0.007	
m-Xylene	6.8E-05	3.0E-04	0.001	0.004	0.016	0.071	0.017	0.075	
Isooctane	0.004	0.017	0.046	0.201	0.452	1.980	0.502	2.197	
Total VOC Emissions:	0.16	0.71	2.02	8.86	17.45	76.43	19.64	86.00	
Total HAP Emissions:	8.1E-03	0.04	0.10	0.43	0.98	4.28	1.08	4.75	

¹ Uncontrolled emissions calculation using Promax (sum of produced water and condensate). Non-methane emissions are taken from the tank emissions stencil. Methane emissions are taken from the flash stream composition.

² Composition of condensate from WEU-8 sample from 07/22/2014.

¹ Based on the highest monthly throughput recorded at the site (January 2015). Includes a safety factor of 30%.

Produced Fluids Storage Vessels

Storage Tanks - Controlled

		thing	Wor	king	Flas	U	Total Emissions	
	lb/hr	tpy			lb/hr	tpy	lb/hr	tpy
Methane	<0.001	< 0.001	<0.001	< 0.001	0.131	0.574	0.131	0.574
Ethane	< 0.001	< 0.001	< 0.001	< 0.001	0.158	0.693	0.158	0.693
Propane	0.001	0.006	0.018	0.079	0.145	0.637	0.165	0.722
sobutane	3.3E-04	0.001	0.004	0.017	0.034	0.151	0.039	0.169
-Butane	0.001	0.003	0.008	0.035	0.070	0.307	0.079	0.345
sopentane	2.5E-04	0.001	0.003	0.013	0.027	0.120	0.031	0.134
-Pentane	2.3E-04	0.001	0.003	0.012	0.025	0.111	0.028	0.124
-Hexane	8.0E-05	3.5E-04	0.001	0.004	0.009	0.039	0.010	0.044
yclohexane	1.1E-05	4.6E-05	1.3E-04	0.001	0.002	0.007	0.002	0.007
Methylcyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
-Heptane	7.3E-05	3.2E-04	0.001	0.004	0.009	0.038	0.010	0.043
-Octane	5.8E-06	2.5E-05	6.9E-05	3.0E-04	0.001	0.003	0.001	0.003
-Nonane	4.7E-06	2.1E-05	5.6E-05	2.5E-04	0.001	0.003	0.001	0.003
ı-Decane	2.5E-06	1.1E-05	3.0E-05	1.3E-04	3.3E-04	0.001	3.7E-04	0.002
-Undecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Oodecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
riethylene Glycol	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Cyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
sohexane	1.3E-04	0.001	0.002	0.007	0.015	0.065	0.017	0.073
-Methylpentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
leohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
,3-Dimethylbutane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
lethylcyclohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Decane, 2-Methyl-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Senzene	1.7E-06	7.6E-06	4.1E-05	1.8E-04	4.5E-04	0.002	4.9E-04	0.002
Coluene	2.8E-06	1.2E-05	4.2E-05	1.8E-04	0.001	0.003	0.001	0.003
thylbenzene	1.4E-07	5.9E-07	1.7E-06	7.6E-06	3.2E-05	1.4E-04	3.3E-05	1.5E-04
n-Xylene	1.4E-06	6.0E-06	1.7E-05	7.6E-05	3.3E-04	0.001	3.4E-04	0.002
sooctane	7.6E-05	3.3E-04	0.001	0.004	0.009	0.040	0.010	0.044
Total VOC Emissions:	3.3E-03	0.01	0.04	0.18	0.35	1.53	0.39	1.72
otal HAP Emissions:	1.6E-04	7.1E-04	2.0E-03	8.7E-03	2.0E-02	0.09	0.02	0.09

Company Name: <u>EOT Production, LLC</u>
Facility Name: <u>WEU 8 Wellpad</u>
Project Description: <u>G70-B Application</u>

VRU Engine

Engine Information:

Manufacturer:	Ford
Model No.:	CSG-637
Engine ID	S017
Stroke Cycle:	4-stroke
Type of Burn:	Rich
Rated Horsepower (bhp):	110

Engine Fuel Information:

Natural Gas
1,050
7,000
733
0.77
6,745
0.0007
6.4
8,760

Engine Emissions Data:

Pollutant	Emission Factor Units		Maximum Potential Emissions		Estimation Basis / Emission	
ronutant			lbs/hr	tpy	Factor Source	
NO_X	1.00	g/bhp-hr	0.24	1.06	Manufacturer	
VOC (excludes HCHO)	0.70	g/bhp-hr	0.17	0.74	Manufacturer	
VOC (includes HCHO)			0.19	0.81	VOC + HCHO	
CO	2.00	g/bhp-hr	0.49	2.12	Manufacturer	
SO_X	0.001	lb/MMBtu	< 0.01	< 0.01	AP-42, Table 3.2-3 (Aug-2000)	
PM_{10}	0.02	lb/MMBtu	0.01	0.07	AP-42, Table 3.2-3 (Aug-2000)	
PM _{2.5}	0.02	lb/MMBtu	0.01	0.07	AP-42, Table 3.2-3 (Aug-2000)	
Formaldehyde (HCHO)	0.02	lb/MMBtu	0.02	0.07	AP-42, Table 3.2-3 (Aug-2000)	
GHG (CO ₂ e)	See Table Below		90	395	40 CFR 98, Tables C-1 & C-2	
Other (Total HAP)	See Table Below		0.02	0.11	AP-42, Table 3.2-3 (Aug-2000)	

Notes:

- 1. \mbox{PM}_{10} and $\mbox{PM}_{2.5}$ are total values (filterable + condensable).
- 2. GHG (CO_2e) is carbon dioxide equivalent, which is the summation of CO_2 (GWP = 1) + CH_4 (GWP = 25) + N_2O (GWP = 298).
- $3. \, Total \, HAP \, is \, the \, summation \, of \, all \, hazardous \, air \, pollutants \, for \, which \, there \, is \, a \, published \, emission \, factor \, for \, this \, source \, type.$

VRU Engine

Greenhouse Gas (GHG) & Hazardous Air Pollutant (HAP) Emissions Calculations:

Pollutant	Emission	Units	Maximum Potential Emissions		Estimation Basis / Emission	
	Factor		lbs/hr	tpy	Factor Source	
GHGs:						
$\overline{\text{CO}_2}$	53.06	kg/MMBtu	90.09	394.59	40 CFR 98, Table C-1	
CH ₄	0.001	kg/MMBtu	1.7E-03	7.4E-03	40 CFR 98, Table C-2	
N_2O	0.0001	kg/MMBtu	1.7E-04	7.4E-04	40 CFR 98, Table C-2	
GHG (CO ₂ e)			90	395		
Organic HAPs:						
1,1,2,2-Tetrachloroethane	2.53E-05	lb/MMBtu	1.9E-05	8.5E-05	AP-42, Table 3.2-3 (Aug-2000)	
1,1,2-Trichloroethane	1.53E-05	lb/MMBtu	1.2E-05	5.2E-05	AP-42, Table 3.2-3 (Aug-2000)	
1,3-Butadiene	6.63E-04	lb/MMBtu	5.1E-04	2.2E-03	AP-42, Table 3.2-3 (Aug-2000)	
1,3-Dichloropropene	1.27E-05	lb/MMBtu	9.8E-06	4.3E-05	AP-42, Table 3.2-3 (Aug-2000)	
Acetaldehyde	2.79E-03	lb/MMBtu	2.1E-03	9.4E-03	AP-42, Table 3.2-3 (Aug-2000)	
Acrolein	2.63E-03	lb/MMBtu	2.0E-03	8.9E-03	AP-42, Table 3.2-3 (Aug-2000)	
Benzene	1.58E-03	lb/MMBtu	1.2E-03	5.3E-03	AP-42, Table 3.2-3 (Aug-2000)	
Carbon Tetrachloride	1.77E-05	lb/MMBtu	1.4E-05	6.0E-05	AP-42, Table 3.2-3 (Aug-2000)	
Chlorobenzene	1.29E-05	lb/MMBtu	9.9E-06	4.4E-05	AP-42, Table 3.2-3 (Aug-2000)	
Chloroform	1.37E-05	lb/MMBtu	1.1E-05	4.6E-05	AP-42, Table 3.2-3 (Aug-2000)	
Ethylbenzene	2.48E-05	lb/MMBtu	1.9E-05	8.4E-05	AP-42, Table 3.2-3 (Aug-2000)	
Ethylene Dibromide	2.13E-05	lb/MMBtu	1.6E-05	7.2E-05	AP-42, Table 3.2-3 (Aug-2000)	
Methanol	3.06E-03	lb/MMBtu	2.4E-03	1.0E-02	AP-42, Table 3.2-3 (Aug-2000)	
Methylene Chloride	4.12E-05	lb/MMBtu	3.2E-05	1.4E-04	AP-42, Table 3.2-3 (Aug-2000)	
Naphthalene	9.71E-05	lb/MMBtu	7.5E-05	3.3E-04	AP-42, Table 3.2-3 (Aug-2000)	
PAH	1.41E-04	lb/MMBtu	1.1E-04	4.8E-04	AP-42, Table 3.2-3 (Aug-2000)	
Styrene	1.19E-05	lb/MMBtu	9.2E-06	4.0E-05	AP-42, Table 3.2-3 (Aug-2000)	
Toluene	5.58E-04	lb/MMBtu	4.3E-04	1.9E-03	AP-42, Table 3.2-3 (Aug-2000)	
Vinyl Chloride	7.18E-06	lb/MMBtu	5.5E-06	2.4E-05	AP-42, Table 3.2-3 (Aug-2000)	
Xylene	1.95E-04	lb/MMBtu	1.5E-04	6.6E-04	AP-42, Table 3.2-3 (Aug-2000)	
Total HAP	•		0.02	0.11		

1
on
000)
(000) (000)
000) 000)
000)
00) 00)
000)
00) 00)
00)
000) 000)
000)
000) 000)
00)
00)

Sand Separator Tank

Throughput Parameter	Value	Units
Tank Capacity	5,880	gallons
Operational Hours	8,760	hrs/yr
Throughput	280	bbl/month
Percent Produced Water	50%	
Total Produced Water Throughput	140	bbl/month

 $^{^{1}}$ Conservatively assumes 2 turnovers/month of sand and produced water.

Description	Potential Throughput (gal/yr)
Produced Water and Sand	141,120

Sand Separator Tank (140 bbl) - Uncontrolled (Per tank) 2,3

Constituent	Total Em lb/hr	nissions ¹ tpy
Methane	0.043	0.188
Ethane	0.068	0.296
Propane	0.090	0.396
Isobutane	0.022	0.098
n-Butane	0.037	0.164
Isopentane	0.009	0.038
n-Pentane	0.007	0.030
Hexanes	0.003	0.011
Heptanes	0.001	0.005
Octane	< 0.001	< 0.001
Nonane	< 0.001	< 0.001
Decane	0.001	0.003
Benzene	< 0.001	< 0.001
Toluene	< 0.001	< 0.001
Ethylbenzene	< 0.001	< 0.001
Xylenes	< 0.001	< 0.001
n-Hexane	0.001	0.006
2,2,4-Trimethylpentane	0.001	0.004
Total HC Emissions:	0.284	1.242
Total VOC Emissions:	0.173	0.758
Total HAP Emissions:	0.002	0.010

² E&P TANK 2.0 calculates working, breathing and flashing losses and reports the sum as one total.

³ E&P TANK v2.0 emission calculations are based on WEU-8 sample from 07/22/2014.

Sand Separator Tank

Sand Separator Tank (140 bbl) - Controlled (Per tank)

	Total Emissions			
Constituent	lb/hr	tpy		
Methane	0.043	0.188		
Ethane	0.068	0.296		
Propane	0.090	0.396		
Isobutane	0.022	0.098		
n-Butane	0.037	0.164		
Isopentane	0.009	0.038		
n-Pentane	0.007	0.030		
Hexanes	0.003	0.011		
Heptanes	0.001	0.005		
Octane	< 0.001	< 0.001		
Nonane	< 0.001	< 0.001		
Decane	0.001	0.003		
Benzene	< 0.001	< 0.001		
Toluene	< 0.001	< 0.001		
Ethylbenzene	< 0.001	< 0.001		
Xylenes	< 0.001	< 0.001		
n-Hexane	0.001	0.006		
2,2,4-Trimethylpentane	0.001	0.004		
Total Emissions:	0.283	1.241		
Total VOC Emissions:	0.173	0.758		
Total HAP Emissions:	0.002	0.010		

Tank Combustor

Source Designation:	C001 & C002
Pilot Fuel Used:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,050
Pilot Rating (MMBtu/hr)	0.05
Combustor Rating (MMBtu/hr) ¹	11.66
Combustor Rating (Mscfd) ¹	188.38
Combustor Rating (scf/hr)	7849.17
Pilot Fuel Consumption (scf/hr):	50.00
Potential Annual Hours of Operation (hr/yr):	8,760

¹ Maximum heat input for 48" model from Leed Enclosed Combustor Operations Manual

Enclosed Combustor Emissions

	Emission	Comb	oustor	Di	lot	То	tal
Pollutant	Factors ² (lb/MMBtu)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
NO_x	0.10	1.14	5.01	5.1E-03	0.02	1.15	5.03
CO	0.08	0.96	4.21	4.3E-03	0.02	0.96	4.22
VOC	5.4E-03			2.8E-04	1.2E-03	0.00	0.00
SO ₂	5.9E-04	0.01	0.03	3.1E-05	1.4E-04	0.01	0.03
PM/PM ₁₀	0.01	0.09	0.38	3.9E-04	1.7E-03	0.09	0.38
CO ₂	117.00	1364.189	5975.146	6.14	26.90	1370.33	6002.05
CH ₄	2.2E-03			1.2E-04	5.1E-04	0.00	0.00
N_2O	2.2E-04	2.6E-03	0.01	1.2E-05	5.1E-05	2.6E-03	0.01

² Emission factors from AP-42 Ch. 1.4 for natural gas combustion were used as they were determined to be most representative of the process. Ch. 5.3 (Natural Gas Processing) was consulted, however, factors contained there are appropriate for amine gas sweetening processes, which is not the case at the wellpad. Also, Ch. 13.5 (Industrial Flares) was consulted, but since the control device in this case is an enclosed combustor vs. an elevated flare, these factors were also determined to be inappropriate.

Combustor Maximum Loading:

7849.17 scf	lb-mol	20.01 lb	_=	413.81 lb/hr
hr	379 5 ccf	lh-mol	_	

Line Heaters

Source Designation:	S007-S012
Fuel Used:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,050
Heat Input (MMBtu/hr)	1.54
Fuel Consumption (MMscf/hr):	1.47E-03
Potential Annual Hours of Operation (hr/yr):	8,760

Criteria and Manufacturer Specific Pollutant Emission Rates:

	Emission Factor	Potential	Emissions	
Pollutant	(lb/MMscf) ^{1, 4}	(lb/hr) ²	(tons/yr) ³	
NO _x	100	0.15	0.64	
СО	84	0.12	0.54	
VOC	5.5	0.01	0.04	
SO ₂	0.6	8.8E-04	3.9E-03	
PM Total	7.6	0.01	0.05	
PM Condensable	5.7	0.01	0.04	
PM ₁₀ (Filterable)	1.9	2.8E-03	0.01	
PM _{2.5} (Filterable)	1.9	2.8E-03	0.01	
Lead	5.00E-04	7.3E-07	3.2E-06	
CO ₂	117.0	180.00	788.38	
CH ₄	2.21E-03	3.4E-03	1.5E-02	
N ₂ O	2.21E-04	3.4E-04	1.5E-03	

EQT Production, LLC Company Name: Facility Name: WEU 8 Wellpad **Project Description:** G70-B Application

Line Heaters

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential 1	Emissions	
Pollutant	(lb/MMscf) ¹	(lb/hr) ²	(tons/yr) ³	
HAPs:				
2-Methylnaphthalene	2.4E-05	3.5E-08	1.5E-07	
3-Methylchloranthrene	1.8E-06	2.6E-09	1.2E-08	
7,12-Dimethylbenz(a)anthracene	1.6E-05	2.3E-08	1.0E-07	
Acenaphthene	1.8E-06	2.6E-09	1.2E-08	
Acenaphthylene	1.8E-06	2.6E-09	1.2E-08	
Anthracene	2.4E-06	3.5E-09	1.5E-08	
Benz(a)anthracene	1.8E-06	2.6E-09	1.2E-08	
Benzene	2.1E-03	3.1E-06	1.3E-05	
Benzo(a)pyrene	1.2E-06	1.8E-09	7.7E-09	
Benzo(b)fluoranthene	1.8E-06	2.6E-09	1.2E-08	
Benzo(g,h,i)perylene	1.2E-06	1.8E-09	7.7E-09	
Benzo(k)fluoranthene	1.8E-06	2.6E-09	1.2E-08	
Chrysene	1.8E-06	2.6E-09	1.2E-08	
Dibenzo(a,h) anthracene	1.2E-06	1.8E-09	7.7E-09	
Dichlorobenzene	1.2E-03	1.8E-06	7.7E-06	
Fluoranthene	3.0E-06	4.4E-09	1.9E-08	
Fluorene	2.8E-06	4.1E-09	1.8E-08	
Formaldehyde	7.5E-02	1.1E-04	4.8E-04	
Hexane	1.8E+00	2.6E-03	1.2E-02	
Indo(1,2,3-cd)pyrene	1.8E-06	2.6E-09	1.2E-08	
Naphthalene	6.1E-04	8.9E-07	3.9E-06	
Phenanthrene	1.7E-05	2.5E-08	1.1E-07	
Pyrene	5.0E-06	7.3E-09	3.2E-08	
Toluene	3.4E-03	5.0E-06	2.2E-05	
Arsenic	2.0E-04	2.9E-07	1.3E-06	
Beryllium	1.2E-05	1.8E-08	7.7E-08	
Cadmium	1.1E-03	1.6E-06	7.1E-06	
Chromium	1.4E-03	2.1E-06	9.0E-06	
Cobalt	8.4E-05	1.2E-07	5.4E-07	
Manganese	3.8E-04	5.6E-07	2.4E-06	
Mercury	2.6E-04	3.8E-07	1.7E-06	
Nickel	2.1E-03	3.1E-06	1.3E-05	
Selenium	2.4E-05	3.5E-08	1.5E-07	
Total HAP		2.8E-03	1.2E-02	

 $^{^{\}rm 1}$ Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, & 1.4-3

² Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) × Emission Factor (lb/MMscf).

³ Annual Emissions (tons/yr)_{Potential} = (lb/hr)_{Emissions} × (Maximum Allowable Operating Hours, 8760 hr/yr) × (1 ton/2000 lb). ⁴ GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

Line Heater

Source Designation:	S018
Fuel Used:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,050
Heat Input (MMBtu/hr)	1.15
Fuel Consumption (MMscf/hr):	1.10E-03
Potential Annual Hours of Operation (hr/yr):	8,760

Criteria and Manufacturer Specific Pollutant Emission Rates:

	Emission Factor	Potential	Emissions	
Pollutant	(lb/MMscf) ^{1, 4}	(lb/hr) ²	(tons/yr) ³	
NO _x	100	0.11	0.48	
со	84	0.09	0.40	
VOC	5.5	0.01	0.03	
SO ₂	0.6	6.6E-04	2.9E-03	
PM Total	7.6	0.01	0.04	
PM Condensable	5.7	0.01	0.03	
PM ₁₀ (Filterable)	1.9	2.1E-03	0.01	
PM _{2.5} (Filterable)	1.9	2.1E-03	0.01	
Lead	5.00E-04	5.5E-07	2.4E-06	
CO ₂	117.0	135.00	591.29	
CH ₄	2.21E-03	2.5E-03	1.1E-02	
N_2O	2.21E-04	2.5E-04	1.1E-03	

Line Heater

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential I	Emissions
Pollutant	(lb/MMscf) ¹	(lb/hr) ²	(tons/yr) ³
HAPs:			
2-Methylnaphthalene	2.4E-05	2.6E-08	1.2E-07
3-Methylchloranthrene	1.8E-06	2.0E-09	8.7E-09
7,12-Dimethylbenz(a)anthracene	1.6E-05	1.8E-08	7.7E-08
Acenaphthene	1.8E-06	2.0E-09	8.7E-09
Acenaphthylene	1.8E-06	2.0E-09	8.7E-09
Anthracene	2.4E-06	2.6E-09	1.2E-08
Benz(a)anthracene	1.8E-06	2.0E-09	8.7E-09
Benzene	2.1E-03	2.3E-06	1.0E-05
Benzo(a)pyrene	1.2E-06	1.3E-09	5.8E-09
Benzo(b)fluoranthene	1.8E-06	2.0E-09	8.7E-09
Benzo(g,h,i)perylene	1.2E-06	1.3E-09	5.8E-09
Benzo(k)fluoranthene	1.8E-06	2.0E-09	8.7E-09
Chrysene	1.8E-06	2.0E-09	8.7E-09
Dibenzo(a,h) anthracene	1.2E-06	1.3E-09	5.8E-09
Dichlorobenzene	1.2E-03	1.3E-06	5.8E-06
Fluoranthene	3.0E-06	3.3E-09	1.4E-08
Fluorene	2.8E-06	3.1E-09	1.3E-08
Formaldehyde	7.5E-02	8.2E-05	3.6E-04
Hexane	1.8E+00	2.0E-03	8.7E-03
Indo(1,2,3-cd)pyrene	1.8E-06	2.0E-09	8.7E-09
Naphthalene	6.1E-04	6.7E-07	2.9E-06
Phenanthrene	1.7E-05	1.9E-08	8.2E-08
Pyrene	5.0E-06	5.5E-09	2.4E-08
Toluene	3.4E-03	3.7E-06	1.6E-05
Arsenic	2.0E-04	2.2E-07	9.6E-07
Beryllium	1.2E-05	1.3E-08	5.8E-08
Cadmium	1.1E-03	1.2E-06	5.3E-06
Chromium	1.4E-03	1.5E-06	6.7E-06
Cobalt	8.4E-05	9.2E-08	4.0E-07
Manganese	3.8E-04	4.2E-07	1.8E-06
Mercury	2.6E-04	2.9E-07	1.3E-06
Nickel	2.1E-03	2.3E-06	1.0E-05
Selenium	2.4E-05	2.6E-08	1.2E-07
Total HAP		2.1E-03	9.1E-03

 $^{^{\}rm 1}$ Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, & 1.4-3

² Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) × Emission Factor (lb/MMscf).

³ Annual Emissions (tons/yr)_{Potential} = (lb/hr)_{Emissions} × (Maximum Allowable Operating Hours, 8760 hr/yr) × (1 ton/2000 lb). ⁴ GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

Thermoelectric Generators

Source Designation:	S013-S014
Fuel Used:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,050
Heat Input (MMBtu/hr) ¹	0.013
Fuel Consumption (MMscf/hr):	1.23E-05
Potential Annual Hours of Operation (hr/yr):	8,760

¹ Global Themorelectric specification sheet states 311 ft³/day at 1000 BTU/ft³.

Criteria and Manufacturer Specific Pollutant Emission Rates:

·	Emission Factor	Potential Emissions		
Pollutant	(lb/MMscf) ^{2, 5}	(lb/hr) ³	(tons/yr) ⁴	
NO_x	100	1.2E-03	0.01	
со	84	1.0E-03	4.5E-03	
VOC	5.5	6.8E-05	3.0E-04	
SO_2	0.6	7.4E-06	3.2E-05	
PM Total	7.6	9.4E-05	4.1E-04	
PM Condensable	5.7	7.0E-05	3.1E-04	
PM ₁₀ (Filterable)	1.9	2.3E-05	1.0E-04	
PM _{2.5} (Filterable)	1.9	2.3E-05	1.0E-04	
Lead	5.00E-04	6.2E-09	2.7E-08	
CO ₂	116.9	1.51	6.64	
CH ₄	2.21E-03	2.9E-05	1.3E-04	
N_2O	2.21E-04	2.9E-06	1.3E-05	


EQT Production, LLC Company Name: Facility Name: WEU 8 Wellpad **Project Description:** G70-B Application

Thermoelectric Generators

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential	Emissions	
Pollutant	(lb/MMscf) ²	(lb/hr) ³	(tons/yr) ⁴	
HAPs:				
2-Methylnaphthalene	2.4E-05	3.0E-10	1.3E-09	
3-Methylchloranthrene	1.8E-06	2.2E-11	9.7E-11	
7,12-Dimethylbenz(a)anthracene	1.6E-05	2.0E-10	8.6E-10	
Acenaphthene	1.8E-06	2.2E-11	9.7E-11	
Acenaphthylene	1.8E-06	2.2E-11	9.7E-11	
Anthracene	2.4E-06	3.0E-11	1.3E-10	
Benz(a)anthracene	1.8E-06	2.2E-11	9.7E-11	
Benzene	2.1E-03	2.6E-08	1.1E-07	
Benzo(a)pyrene	1.2E-06	1.5E-11	6.5E-11	
Benzo(b)fluoranthene	1.8E-06	2.2E-11	9.7E-11	
Benzo(g,h,i)perylene	1.2E-06	1.5E-11	6.5E-11	
Benzo(k)fluoranthene	1.8E-06	2.2E-11	9.7E-11	
Chrysene	1.8E-06	2.2E-11	9.7E-11	
Dibenzo(a,h) anthracene	1.2E-06	1.5E-11	6.5E-11	
Dichlorobenzene	1.2E-03	1.5E-08	6.5E-08	
Fluoranthene	3.0E-06	3.7E-11	1.6E-10	
Fluorene	2.8E-06	3.5E-11	1.5E-10	
Formaldehyde	7.5E-02	9.3E-07	4.1E-06	
Hexane	1.8E+00	2.2E-05	9.7E-05	
Indo(1,2,3-cd)pyrene	1.8E-06	2.2E-11	9.7E-11	
Naphthalene	6.1E-04	7.5E-09	3.3E-08	
Phenanthrene	1.7E-05	2.1E-10	9.2E-10	
Pyrene	5.0E-06	6.2E-11	2.7E-10	
Toluene	3.4E-03	4.2E-08	1.8E-07	
Arsenic	2.0E-04	2.5E-09	1.1E-08	
Beryllium	1.2E-05	1.5E-10	6.5E-10	
Cadmium	1.1E-03	1.4E-08	5.9E-08	
Chromium	1.4E-03	1.7E-08	7.6E-08	
Cobalt	8.4E-05	1.0E-09	4.5E-09	
Manganese	3.8E-04	4.7E-09	2.1E-08	
Mercury	2.6E-04	3.2E-09	1.4E-08	
Nickel	2.1E-03	2.6E-08	1.1E-07	
Selenium	2.4E-05	3.0E-10	1.3E-09	
Total HAP		2.3E-05	1.0E-04	

² Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, & 1.4-3

³ Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) × Emission Factor (lb/MMscf).

⁴ Annual Emissions (tons/yr)_{Potential} = (lb/hr)_{Emissions} × (Maximum Allowable Operating Hours, 8760 hr/yr) × (1 ton/2000 lb).
⁵ GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

EQT Production, LLC **Company Name:** Facility Name: WEU 8 Wellpad **Project Description:** G70-B Application

Liquid Loading

Throughput Capture Efficiency Control Efficiency 16,771,020 gal/yr 70% non-tested tanker trucks 98% Combustor destruction efficiency

Liquid Loading Emissions

	Uncontrolle	Uncontrolled Emissions		Uncaptured Emissions		Controlled Emissions	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
Propane	87.288	22.695	26.186	6.808	1.222	0.318	
Isobutane	19.774	5.141	5.932	1.542	0.277	0.072	
n-Butane	39.365	10.235	11.810	3.070	0.551	0.143	
Isopentane	15.180	3.947	4.554	1.184	0.213	0.055	
n-Pentane	13.797	3.587	4.139	1.076	0.193	0.050	
n-Hexane	4.812	1.251	1.443	0.375	0.067	0.018	
Cyclohexane	0.638	0.166	0.191	0.050	0.009	0.002	
Methylcyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
n-Heptane	4.392	1.142	1.318	0.343	0.061	0.016	
n-Octane	0.347	0.090	0.104	0.027	0.005	0.001	
n-Nonane	0.282	0.073	0.085	0.022	0.004	0.001	
n-Decane	0.149	0.039	0.045	0.012	0.002	0.001	
n-Undecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Dodecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Triethylene Glycol	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Cyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Isohexane	8.123	2.112	2.437	0.634	0.114	0.030	
3-Methylpentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Neohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
2,3-Dimethylbutane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Methylcyclohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Decane, 2-Methyl-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Benzene	0.149	0.039	0.045	0.012	0.002	0.001	
Toluene	0.188	0.049	0.056	0.015	0.003	0.001	
Ethylbenzene	0.008	0.002	0.003	0.001	1.2E-04	3.1E-05	
m-Xylene	0.084	0.022	0.025	0.007	0.001	3.1E-04	
Isooctane	4.596	1.195	1.379	0.359	0.064	0.017	
Total VOC Emissions:	199.173	51.785	59.752	15.536	2.788	0.725	
Total HAP Emissions:	9.837	2.558	2.951	0.767	0.138	0.036	

 $^{^{\}rm 1}$ Uncontrolled emissions calculation using Promax (sum of produced water and condensate). $^{\rm 2}$ Hourly emissions assume two hours of loading per day, five days per week.

Fugitive Emissions

Fugitive Emissions from Component Leaks

Facility Equipment Type ¹	Valves	Connectors	Open-Ended Lines	Pressure Relief Devices
Wellhead	8	38	0.5	0
Separators	1	6	0	0
Meters/Piping	12	45	0	0
Compressors	12	57	0	0
In-line heaters	14	65	2	1
Dehydrators	24	90	2	2

¹ Table W-1B to Subpart W of Part 98 —Default Average Component Counts for Major Onshore Natural Gas Production

Fugitive VOC/Total Emissions from Component Leaks

Equipment Type	Service	Emission Factors ¹ (kg/hr/source)	Facility Equipment Count ² (units)	TOC Annual Fugitive Emissions (tpy)	Weight Fraction VOC	Weight Fraction HAP	VOC Emissions ³ (tpy)	HAP Emissions ³ (tpy)
Pumps	Light Liquid	0.01990	11	2.02	1.00	0.04	2.02	0.08
Compressor	Gas	0.22800	1	2.20	0.14	0.01	0.31	0.01
Valves	Gas	0.00597	356	20.49	0.14	0.01	2.92	0.12
Pressure Relief Valves	Gas	0.10400	25	24.60	0.14	0.01	3.51	0.15
Open-Ended Lines	All	0.00170	26	0.42	0.14	0.01	0.06	2.5E-03
Connectors	All	0.00183	1,578	27.88	0.14	0.01	3.98	0.16
Intermittent Pneumatic Devices ⁴	Gas	13.5	30				4.45	0.18
			Emission Totals:	77.62			17.25	0.72

¹ U.S. EPA. Office of Air Quality Planning and Standards. *Protocol for Equipment Leak Emission Estimates*. Table 2-1. (Research Triangle Park, NC: U.S. EPA EPA-453/R-95-017, 1995). SOCMI factors were used as it was representative of natural gas liquids extraction. The pneumatic controller value is from 40 CFR 98 Subpart W, Table W-1A. Pneumatic assumes operation 1/3 of the year.

² Assumes one pump for each tank and one meter per wellhead. Pressure relief valves count includes one Emergency Pressure Relief valve and one lock-down hatch for each storage tank. Pneumatic devices assume 5 per well. A 50% compliance margin is added to the component counts based on Subpart W counts.

³ Potential emissions VOC/HAP (tpy) = Emission factor (kg/hr/source) * Number of Sources * Weight % VOC/HAP x 2.2046 (lb/kg) x 8,760 (hr/yr) ÷ 2,000 (lb/ton)

⁴ Potential emissions VOC/HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % VOC/HAP ÷ 100 ÷ 379 (scf/lb-mol) + 2,000 (lb/ton)

Fugitive Emissions

Fugitive Specific HAP Emissions from Component Leaks

Equipment Type	Service	Emission Factors ¹ (kg/hr/source)	Facility Equipment Count ² (units)	TOC Annual Fugitive Emissions (tpy)	Benzene Emissions ³ (tpy)	Toluene Emissions ³ (tpy)	Ethylbenzene Emissions ³ (tpy)	Xylene Emissions ³ (tpy)	n-Hexane Emissions ⁴ (tpy)
Pumps	Light Liquid	0.01990	11	2.02	1.6E-04	4.6E-04	0.0E+00	5.4E-04	4.8E-03
Compressor	Gas	0.22800	1	2.20	1.7E-04	5.1E-04	0.0E+00	5.8E-04	0.01
Valves	Gas	0.00597	356	20.49	1.6E-03	4.7E-03	0.0E+00	0.01	0.05
Pressure Relief Valves	Gas	0.10400	25	24.60	1.9E-03	0.01	0.0E+00	0.01	0.06
Open-Ended Lines	All	0.00170	26	0.42	3.3E-05	9.6E-05	0.0E+00	1.1E-04	9.9E-04
Connectors	All	0.00183	1,578	27.88	2.2E-03	0.01	0.0E+00	0.01	0.07
Intermittent Pneumatic Devices ⁴	Gas	13.5	30		2.4E-03	0.01	0.0E+00	0.01	0.07
			Emission Totals:	77.62	0.01	0.03	0.0E+00	0.03	0.26

¹ U.S. EPA. Office of Air Quality Planning and Standards. *Protocol for Equipment Leak Emission Estimates*. Table 2-1. (Research Triangle Park, NC: U.S. EPA EPA-453/R-95-017, 1995). SOCMI factors were used as it was representative of natural gas liquids extraction. The pneumatic controller value is from 40 CFR 98 Subpart W, Table W-1A. Pneumatic assumes operation 1/3 of the year.

GHG Fugitive Emissions from Component Leaks

		GHG Emission			
		Factor ¹	CH ₄ Emissions ^{2,3}	CO ₂ Emissions ^{2,3}	CO ₂ e Emissions ⁴
Component	Component Count	(scf/hr/component)	(tpy)	(tpy)	(tpy)
Pumps	11	0.01	0.02	1.3E-04	0.39
Compressor	1	4.17	0.62	0.01	15.59
Valves	356	0.027	1.43	0.01	35.88
Pressure Relief Devices	25	0.04	0.15	1.2E-03	3.66
Open-Ended Lines	26	0.061	0.23	1.9E-03	5.81
Connectors	1,578	0.003	0.71	0.01	17.69
Intermittent Pneumatic Devices	30	6	8.97	0.07	224.26
	12.13	0.10	303.29		

¹ Population emission factors for gas service in the Eastern U.S. from Table W-1A of Subpart W - Default Whole Gas Emission Factors for Onshore Production , 40 CFR 98, Subpart W (Table W-6 for compressor). Pneumatic assumes operation 1/3 of the year.

CH₄: 81% CO₂: 0.24%

Carbon Dioxide (CO_2): 1 Methane (CH_4): 25

² Assumes one pump for each tank and one meter per wellhead. Pressure relief valves count includes one Emergency Pressure Relief valve and one lock-down hatch for each storage tank. Pneumatic devices assume 5 per well. A 50% compliance margin is added to the component counts based on Subpart W counts.

³ Potential emissions HAP (tpy) = Emission factor (kg/hr/source) * Number of Sources * Weight % HAPx 2.2046 (lb/kg) x 8,760 (hr/yr) ÷ 2,000 (lb/ton)

⁴ Potential emissions HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % HAP ÷ 100 ÷ 379 (scf/lb-mol) ÷ 2,000 (lb/ton)

² Calculated in accordance with Equations W-32a, W-35 and W-36 in Subpart W of 40 CFR 98. See footnote 4 above for sample calculation.

³ Potential emissions VOC/HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % VOC/HAP÷ 100 ÷ 379 (scf/lb-mol) ÷ 2,000 (lb/ton) Mole fractions of CH₄ and CO₂ based on gas analysis:

⁴ Carbon equivalent emissions (CO₂e) are based on the following Global Warming Potentials (GWP) from 40 CFR Part 98, Table A-1:

Haul Roads

Estimated Potential Road Fugitive Emissions

Unpaved Road Emissions

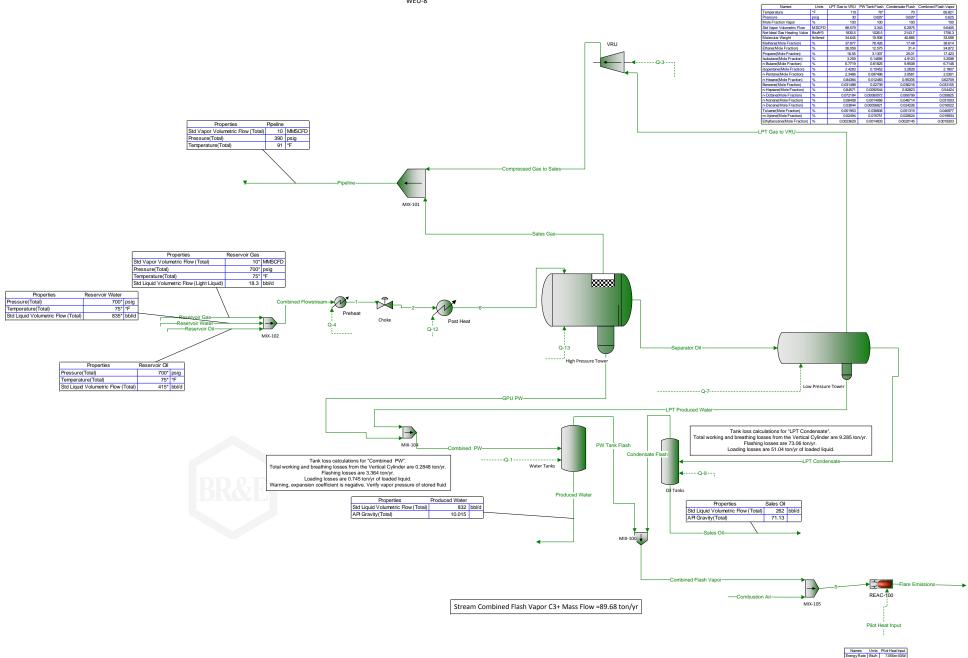
Unpaved Roads: E (lb/VMT) = $k(s/12)^a(W/3)^b$)*[(365-p)/365]

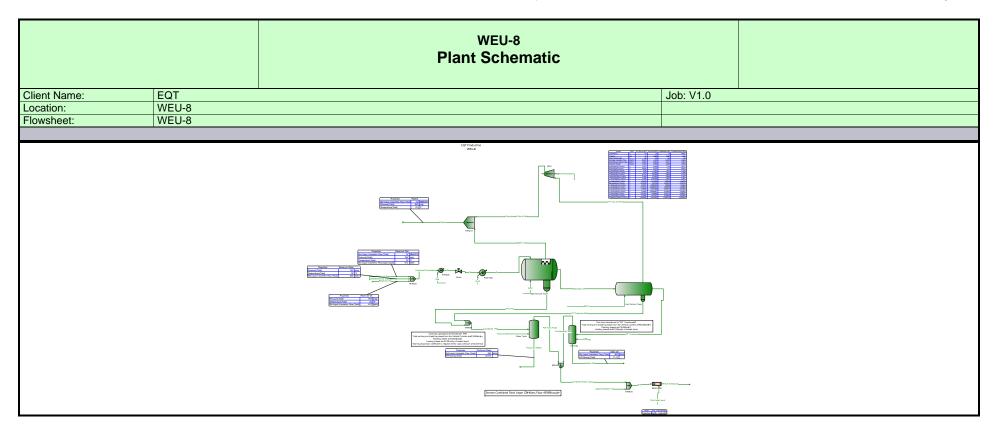
	PM	PM_{10}	$PM_{2.5}$	
k Factor (lb/VMT)	4.9	1.5	0.15	AP-42 Table 13.2.2-2 (Final, 11/06)
Silt content, s	4.8	%		AP-42 Table 13.2.2-1 (11/06), for Sand and Gravel Processing
Number of Rain Days, p	150			AP-42 Figure 13.2.1-2
a	0.7	0.9	0.9	AP-42 Table 13.2.2-2 (Final, 11/06)
b	0.45	0.45	0.45	AP-42 Table 13.2.2-2 (Final, 11/06)

Description	Weight of Empty Truck (tons)	Weight of Truck w/ Max Load (tons)	Mean Vehicle Weight (tons)	Length of Unpaved Road Traveled (mile)	Trips Per Year	Mileage Per Year	Control (%)	PM	Emissions (tpy)	PM _{2.5}
Liquids Hauling Employee Vehicles	20 3	40 3	30 3	0.39 0.39	4,193 200	3,303 158	0	7.07 0.12	1.80 0.03	0.18 0.00
Total Potential Emissions	-							7.19	1.83	0.18

EQT Production, LLC **Company Name:** Facility Name: WEU 8 Wellpad **Project Description:** G70-B Application

Gas Analysis


WEU 1 Gas Analysis - 512507 5/29/2013


Sample Location: Sample Date: HHV (Btu/scf):

1,216 Note: A conservatively low BTU content of 1,050 was used for calculations.

Constituent	Natural Gas Stream Speciation (Mole %)	Molecular Weight	Molar Weight	Average Weight Fraction	Natural Gas Stream Speciation (Wt. %)
Carbon Dioxide	0.240	44.01	0.11	0.01	0.528
Nitrogen	0.428	28.01	0.12	0.01	0.599
Methane	80.616	16.04	12.93	0.65	64.630
Ethane	13.296	30.07	4.00	0.20	19.983
Propane	3.541	44.10	1.56	0.08	7.805
Isobutane	0.426	58.12	0.25	0.01	1.237
n-Butane	0.746	58.12	0.43	0.02	2.167
Isopentane	0.191	72.15	0.14	0.01	0.689
n-Pentane	0.164	72.15	0.12	0.01	0.591
Cyclopentane	< 0.001	70.1	0.0	0.0	0.000
n-Hexane	0.055	86.18	0.05	0.00	0.237
Cyclohexane	0.009	84.16	0.01	0.00	0.038
Other Hexanes	0.091	86.18	0.08	0.00	0.392
Heptanes	0.079	100.21	0.08	0.00	0.396
Methylcyclohexane	< 0.001	98.19	0.00	0.00	0.000
2,2,4-Trimethylpentane	0.052	114.23	0.06	0.00	0.297
Benzene*	0.002	78.11	0.00	0.00	0.008
Toluene*	0.005	92.14	0.00	0.00	0.023
Ethylbenzene*	< 0.001	106.17	0.00	0.00	0.000
Xylenes*	0.005	106.16	0.01	0.00	0.027
C8 + Heavies	0.054	130.80	0.07	0.00	0.353
Totals	100.000		20.01	1.00	100

TOC (Total)	99.33	98.87
VOC (Total)	5.42	14.26
HAP (Total)	0.12	0.59

Process Streams Report All Streams

Tabulated by Total Phase

Client Name: EQT Job: V1.0 WEU-8 WEU-8 Location: Flowsheet:

Connections Combined Combined Pipeline Produced Reservoir Gas **PW** MIX-104 Flash Vapor MIX-100 Water From Block MIX-101 Water Tanks MIX-105 MIX-102 To Block Water Tanks

Stream Composition									
Mass Flow	Combined PW Ib/h	Combined Flash Vapor Ib/h	Pipeline lb/h	Produced Water Ib/h	Reservoir Gas				
Nitrogen	0.0239935	0.0259912	131.618	0.000554782	131.645 *				
Methane	4.84009	6.55708	14308.6	0.22204	14200 *				
CO2	0.688892	0.408285	116.469	0.343857	115.972 *				
Ethane	1.46611	7.91645	4555.3	0.0782274	4389.7 *				
Propane	0.539298	8.13228	1918	0.0325867	1714.42 *				
Isobutane	0.0320525	2.00551	342.551	0.000722849	271.861 *				
n-Butane	0.139085	4.13103	642.903	0.00718733	476.075 *				
Isopentane	0.0286435	1.66537	245.318	0.000964032	151.306 *				
n-Pentane	0.0266972	1.55041	229.775	0.00087778	129.917 *				
n-Hexane	0.0040043	0.572017	93.2484	5.58744E-05	52.0404 *				
Methylcyclopentane	0	0	0	0	0 *				
Benzene	0.0648697	0.0274136	3.09425	0.0570165	1.71531 *				
Cyclohexane	0.00893343	0.0964967	14.4717	0.00152484	8.31649 *				
n-Heptane	0.00345974	0.577243	111.846	5.60077E-05	86.9156 *				
n-Octane	0.00025452	0.0482735	11.2014	2.64881E-06	13.7963 *				
n-Nonane	0.000684712	0.042089	11.474	2.25546E-05	42.2465 *				
n-Decane	0.000304337	0.0241308	8.12949	7.59005E-06	20.3089 *				
n-Undecane	0	0	0	0	0 *				
Dodecane	0	0	0	0	0 *				
Water	12144	0.181617	38.6997	12143.8	0 *				
Triethylene Glycol	0	0	0	0	0 *				
Oxygen	0	0	0	0	0 *				
Argon	0	0	0	0	0 *				
Carbon Monoxide	0	0	0	0	0 *				
Cyclopentane	0	0	0	0	0 *				
Isohexane	0.007246	0.94188	147.689	0.000109966	86.1032 *				
3-Methylpentane	0	0	0	0	0 *				
Neohexane	0	0	0	0	0 *				
2,3-Dimethylbutane	0	0	0	0	0 *				
Methylcyclohexane	0	0	0	0	0 *				
Isooctane	0.000587872	0.591202	112.808	1.02065E-06	65.2188 *				
Decane, 2-Methyl-	0	0	0	0	0 *				
Toluene	0.0944624	0.0458166	6.11861	0.0813384	5.05831 *				
m-Xylene	0.0443975	0.0212776	3.48489	0.0382595	5.82836 *				
Ethylbenzene	0.00396652	0.0020568	0.329808	0.00338852	0 *				

	Combined PW	Combined Flash Vapor	Pipeline	Produced Water	Reservoir Gas
Volumetric Flow	gpm	ft^3/h	ft^3/h	gpm	ft^3/h
Nitrogen	6.5182E-05	0.345976	71.1815	1.48173E-06	40.7439
Methane	0.0240118	151.714	12554.7	0.0010852	6614.47
CO2	0.00109224	3.4315	34.8712	0.000537865	16.9697
Ethane	0.00495881	96.8342	1816.73	0.000261497	755.475
Propane	0.00155838	67.3184	450.135	9.32029E-05	131.791
Isobutane	8.46364E-05	12.517	53.9791	1.89059E-06	10.005
n-Butane	0.000362574	25.7399	95.4482	1.85624E-05	12.636
Isopentane	6.94861E-05	8.30695	24.8332	2.31806E-06	0.388671
n-Pentane	6.48843E-05	7.72351	22.5073	2.11477E-06	-0.0727567
n-Hexane	9.24662E-06	2.3657	5.87404	1.2795E-07	-0.855979
Methylcyclopentane	0	0	0	0	0
Benzene	0.000121885	0.125916	0.253801	0.000106332	-0.0138208
Cyclohexane	1.81866E-05	0.410036	1.00432	3.08064E-06	-0.10248

Process Streams Report All Streams Tabulated by Total Phase

Client Name: Job: V1.0 EQT Location: Flowsheet: WEU-8

	Combined	Combined	Pipeline	Produced	Reservoir Gas
Volumetric Flow	PW gpm	Flash Vapor ft^3/h	ft^3/h	Water gpm	ft^3/h
n-Heptane	7.72734E-06	2.03789	4.21146	1.24084E-07	-1.93395
n-Octane	5.50457E-07	0.148305	0.231281	5.68341E-09	-0.207445
n-Nonane	1.44563E-06	0.114134	0.0717069	4.7249E-08	-0.129596
n-Decane	6.3232E-07	0.0585211	-0.0173361	1.56484E-08	0.140401
n-Undecane	0	0	0	0	0
Dodecane	0	0	0	0	0
Water	24.3852	3.73523	28.9781	24.3117	0
Triethylene Glycol	0	0	0	0	0
Oxygen	0	0	0	0	0
Argon	0	0	0	0	0
Carbon Monoxide	0	0	0	0	0
Cyclopentane	0	0	0	0	0
Isohexane	1.67578E-05	3.9018	9.94996	2.52178E-07	-1.13602
3-Methylpentane	0	0	0	0	0
Neohexane	0	0	0	0	0
2,3-Dimethylbutane	0	0	0	0	0
Methylcyclohexane	0	0	0	0	0
Isooctane	1.25855E-06	1.82866	3.72164	2.16742E-09	-1.2577
Decane, 2-Methyl-	0	0	0	0	0
Toluene	0.000175654	0.176895	0.31284	0.000150161	-0.0813615
m-Xylene	8.18786E-05	0.0707276	0.105976	7.00598E-05	-0.0555046
Ethylbenzene	7.27606E-06	0.00684437	0.010677	6.17197E-06	0

	Combined PW	Combined Flash Vapor	Pipeline	Produced Water	Reservoir Gas
Mole Fraction					2 22 422 4
Nitrogen	1.26987E-06	0.000876529	0.00417487	2.93782E-08	0.00428 *
Methane	0.000447315	0.38614	0.792534	2.05318E-05	0.80616 *
CO2	2.32079E-05	0.0087644	0.00235156	1.15904E-05	0.0024 *
Ethane	7.22898E-05	0.248723	0.134614	3.85929E-06	0.13296 *
Propane	1.81328E-05	0.17423	0.0386497	1.09626E-06	0.03541 *
Isobutane	8.17618E-07	0.0325978	0.00523692	1.8449E-08	0.00426 *
n-Butane	3.54789E-06	0.0671463	0.0098287	1.83439E-07	0.00746 *
Isopentane	5.88611E-07	0.0218066	0.00302129	1.98212E-08	0.00191 *
n-Pentane	5.48615E-07	0.0203013	0.00282987	1.80478E-08	0.00164 *
n-Hexane	6.88929E-08	0.00627092	0.000961504	9.61828E-10	0.00055 *
Methylcyclopentane	0	0	0	0	0 *
Benzene	1.23128E-06	0.000331554	3.5199E-05	1.08281E-06	2E-05 *
Cyclohexane	1.57379E-07	0.00108322	0.000152795	2.68775E-08	9E-05 *
n-Heptane	5.11916E-08	0.00544237	0.000991827	8.29162E-10	0.00079 *
n-Octane	3.30354E-09	0.000399245	8.71346E-05	3.43988E-11	0.00011 *
n-Nonane	7.91525E-09	0.000310027	7.94939E-05	2.60872E-10	0.0003 *
n-Decane	3.17129E-09	0.000160224	5.077E-05	7.91341E-11	0.00013 *
n-Undecane	0	0	0	0	0 *
Dodecane	0	0	0	0	0 *
Water	0.999428	0.00952406	0.00190879	0.99996	0 *
Triethylene Glycol	0	0	0	0	0 *
Oxygen	0	0	0	0	0 *
Argon	0	0	0	0	0 *
Carbon Monoxide	0	0	0	0	0 *
Cyclopentane	0	0	0	0	0 *
Isohexane	1.24665E-07	0.0103257	0.00152285	1.89297E-09	0.00091 *
3-Methylpentane	0	0	0	0	0 *
Neohexane	0	0	0	0	0 *
2,3-Dimethylbutane	0	0	0	0	0 *
Methylcyclohexane	0	0	0	0	0 *
Isooctane	7.63026E-09	0.00488952	0.000877525	1.32547E-11	0.00052 *
Decane, 2-Methyl-	0	0	0	0	0 *
Toluene	1.52002E-06	0.000469773	5.90072E-05	1.30955E-06	5E-05 *
m-Xylene	6.20023E-07	0.000189342	2.91676E-05	5.34596E-07	5E-05 *

Process Streams Report All Streams Tabulated by Total Phase Job: V1.0 Client Name: EQT Location: Flowsheet: WEU-8

Mole Fraction	Combined PW	Combined Flash Vapor	Pipeline	Produced Water	Reservoir Gas
Ethylbenzene	5.53936E-08	1.83028E-05	2.7604E-06	4.73473E-08	0 *

		Stream I	Properties			
Property	Units	Combined PW	Combined Flash Vapor	Pipeline	Produced Water	Reservoir Gas
Temperature	°F	90	69.8207	90.9806	70	75 *
Pressure	psig	390	0.625	390	0.625	700 *
Mole Fraction Vapor		0	1	0.999919	0	0.99782
Mole Fraction Light Liquid		1	0	8.05029E-05	1	0.00218033
Mole Fraction Heavy Liquid		0	0	0	0	0
Molecular Weight	lb/lbmol	18.0169	33.5981	20.4843	18.0158	20.008
Mass Density	lb/ft^3	62.0468	0.0914446	1.51874	62.2746	2.89944
Mass Flow	lb/h	12152	35.5639	23053.1	12144.7	21968.4
Vapor Volumetric Flow	ft^3/h	195.852	388.912	15179.1	195.019	7576.77
Liquid Volumetric Flow	gpm	24.4179	48.4877	1892.46	24.314	944.636
Std Liquid Volumetric Flow	sgpm	24.3224	0.161854	135.658	24.2797	131.273
Specific Gravity		0.994835	1.16005		0.998487	
API Gravity		10.0576			10.0151	
Net Ideal Gas Heating Value	Btu/ft^3	0.599323	1756.32	1118.73	0.0407069	1096.63
Net Liquid Heating Value	Btu/lb	-1046.47	19706.1	20666.5	-1058.83	20746.3
Std Vapor Volumetric Flow	MMSCFD	6.14291	0.00964051	10.2497	6.13957	10 *

Remarks

			Process Sti All St Tabulated b				
Client Name:	EQT	· 			Job: V1.0	•	
Location:	WEU-8						
Flowsheet:	WEU-8						
				<u> </u>			
				ections			
			Reservoir Oil	Sales Oil			
From Block				Oil Tanks			
To Block			MIX-102				
				omposition			
M Fl			Reservoir Oil	Sales Oil			
Mass Flow			lb/h	lb/h			
Nitrogen Methane			0 * 115.795 *	0.00015395 0.396073			
CO2			1.28534 *	0.0360571			-
Ethane			181.974 *	8.38349			
Propane			249.154 *	37.4005			
Isobutane			98.001 *	25.3042			
n-Butane			245.321 *	74.3551			
Isopentane			177.303 *	81.6258			
n-Pentane			203.455 *	102.046			
n-Hexane			173.661 *	131.881			
Methylcyclopentane Benzene			0 * 6.02923 *	0 4.56585			
Cyclohexane			32.3923 *	26.1391			
n-Heptane			454.076 *	428.569			
n-Octane		117.957 *	120.503				
n-Nonane		306.287 *	337.017				
n-Decane		605.585 *	617.741				
n-Undecane		0 *	0				
Dodecane			0 *	0			
Water			0 *	0.0146117			
Triethylene Glycol		0 *	0				
Oxygen		0 *	0				
Argon Carbon Monoxide		0 *	0				
Cyclopentane			0 *	0			
Isohexane			217.616 *	155.089			
3-Methylpentane			0 *	0			
Neohexane			0 *	0			
2,3-Dimethylbutane			0 *	U			
Methylcyclohexane		0 *					
Isooctane		455.623 *	407.442 0				
Decane, 2-Methyl- Toluene		0 * 29.2645 *	28.077			+	
m-Xylene			48.8352 *	51.1191			
Ethylbenzene		4.48486 *	4.14961				
			Reservoir Oil	Sales Oil			
Volumetric Flow			gpm	gpm			
Nitrogen			0	4.91682E-07			
Methane			0.820325	0.00229086			
CO2			0.00218969	4.28645E-05			
Ethane Propane		0.824596	0.0339901				
Isobutane		0.959386 0.346626	0.136293 0.0875427			+	
n-Butane		0.84047	0.249599				
Isopentane		0.564669	0.260098				
n-Pentane		0.642831	0.322578				
n-Hexane		0.51739	0.398268				
Methylcyclopentane		0	0				
Benzene		0.0131377	0.0101298				
Cyclohexane		0.080484	0.066771				
n-Heptane		1.30038 0.325054	1.25573 0.34185				
n-Octane			0.325054	0.932608			-
n-Nonane		0.01000	0.002000	1			

Process Streams Report All Streams Tabulated by Total Phase Job: V1.0

Location: WEU-8				
Flowsheet: WEU-8				
	Reservoir Oil	Sales Oil		
Volumetric Flow	gpm	gpm		
n-Decane	1.5894	1.68193		
n-Undecane	0	0		
Dodecane	0	0		
Water	0	-2.09134E-05		
Triethylene Glycol	0	0		
Oxygen	0	0		
Argon	0	0		
Carbon Monoxide	0	0		
Cyclopentane	0	0		
Isohexane	0.65554	0.47347		
3-Methylpentane	0	0		
Neohexane	0	0		
2,3-Dimethylbutane	0	0		
Methylcyclohexane	0	0		
Isooctane	1.27246	1.17324		
Decane, 2-Methyl-	0	0		
Toluene	0.0639699	0.0634237		
m-Xylene	0.106651	0.11624		
Ethylbenzene	0.00975743	0.00942096		
	Reservoir Oil	Sales Oil	·	
Mole Fraction				
Nitrogen	0 *	2.12955E-07		
Methane	0.1384 *	0.000956702		
CO2	0.00056 *	3.1748E-05		
Ethane	0.11604 *	0.0108038		
Propane	0.10834 *	0.0328666		
Isobutane	0.03233 *	0.0168703		
n-Butane	0.08093 *	0.0495726		
Isopentane	0.04712 *	0.0438401		
n-Pentane	0.05407 *	0.0548076		

	Reservoir Oil	Sales Oil		
Mole Fraction		<u>_</u>		
Nitrogen	0 *	2.12955E-07		
Methane	0.1384 *	0.000956702		
CO2	0.00056 *	3.1748E-05		
Ethane	0.11604 *	0.0108038		
Propane	0.10834 *	0.0328666		
Isobutane	0.03233 *	0.0168703		
n-Butane	0.08093 *	0.0495726		
Isopentane	0.04712 *	0.0438401		
n-Pentane	0.05407 *	0.0548076		
n-Hexane	0.03864 *	0.0593024		
Methylcyclopentane	0 *	0		
Benzene	0.00148 *	0.00226505		
Cyclohexane	0.00738 *	0.0120354		
n-Heptane	0.08689 *	0.165736		
n-Octane	0.0198 *	0.0408787		
n-Nonane	0.04579 *	0.101824		
n-Decane	0.08161 *	0.16824		
n-Undecane	0 *	0		
Dodecane	0 *	0		
Water	0 *	3.1429E-05		
Triethylene Glycol	0 *	0		
Oxygen	0 *	0		
Argon	0 *	0		
Carbon Monoxide	0 *	0		
Cyclopentane	0 *	0		
Isohexane	0.04842 *	0.069738		
3-Methylpentane	0 *	0		
Neohexane	0 *	0		
2,3-Dimethylbutane	0 *	0		
Methylcyclohexane	0 *	0		
Isooctane	0.07648 *	0.138218		
Decane, 2-Methyl-	0 *	0.100210		
Toluene	0.00609 *	0.0118082		
m-Xylene	0.00882 *	0.0186584		
Ethylbenzene	0.00081 *	0.0015146		
,	1.30001	0.00.0.10	_	

Client Name:

EQT

		Process Streams Report All Streams Tabulated by Total Phase			
Client Name:	EQT	Job: V1.0			
Location:	WEU-8				
Flowsheet:	WEU-8				
		·			
Civago Proporting					

Stream Properties						
Property	Units	Reservoir Oil	Sales Oil			
Temperature	°F	75 *	70 *			
Pressure	psig	700 *	0.625			
Mole Fraction Vapor		0	0			
Mole Fraction Light Liquid		1	1			
Mole Fraction Heavy Liquid		0	0			
Molecular Weight	lb/lbmol	71.4066	102.372			
Mass Density	lb/ft^3	39.4984	43.2505			
Mass Flow	lb/h	3724.1	2641.85			
Vapor Volumetric Flow	ft^3/h	94.2849	61.0826			
Liquid Volumetric Flow	gpm	11.755	7.61549			
Std Liquid Volumetric Flow	sgpm	12.1042 *	7.63225			
Specific Gravity		0.633301	0.693462			
API Gravity		88.8576	71.1298			
Net Ideal Gas Heating Value	Btu/ft^3	3656.81	5187.95			
Net Liquid Heating Value	Btu/lb	19283.1	19076.1			
Std Vapor Volumetric Flow	MMSCFD	0.474994	0.235035			

Remarks

277.268 * hp

Remarks

REAC-100

Simulation initiated on 2/4/2	2010 2.13.33 FW	20160119_EQ1_WEO 8.pmx		raye i 0i 4
		20160119_EQT_WEU 8.pmx Project Warnings Report		
Client Name:	EQT		Job: V1.0	
Location:	WEU-8			
ProMax:ProMax!Pro	ject!Flowsheets!\	VEU-8!Blocks!VRU		
Warning:	The change in e	ntropy is negative.		

		l	Jser Val	lue Sets Report		
Client Name:	EQT				Job: V1.0	
Location:	WEU-8					
			Tan	k Losses.53		
* Parameter		20		ue [ShellLength] Upper Bound		ft
* Lower Bound		0		* Enforce Bounds		False
Lower Board		<u> </u>	10	Emerce Bearing		1 4.00
			User Va	alue [ShellDiam]		
* Parameter		12		Upper Bound		ft
* Lower Bound		0	ft	* Enforce Bounds		False
			User Va	lue [BreatherVP]		
* Parameter		0.875	psig	Upper Bound		psig
Lower Bound			psig	* Enforce Bounds		False
				ue [BreatherVacP]		
* Parameter		-0.0375		Upper Bound		psig
Lower Bound			psig	* Enforce Bounds		False
Danasatan				ue [DomeRadius]		
Parameter Lower Bound			ft ft	Upper Bound * Enforce Bounds		ft False
Lower Bouria			ıı	Efficice Boulius		i dise
			Hear V	alue [OpPress]		
* Parameter		0	psig	Upper Bound		psig
Lower Bound			psig psig	* Enforce Bounds		False
			<u>, </u>			
		l	Jser Valu	e [AvgPercentLiq]		
* Parameter		50		Upper Bound		%
Lower Bound			%	* Enforce Bounds		False
		J	Jser Valu	e [MaxPercentLiq]		
* Parameter		90		Upper Bound		%
Lower Bound			%	* Enforce Bounds		False
				alue [AnnNetTP]		
* Parameter		272.472		Upper Bound		bbl/day
* Lower Bound		0	bbl/day	* Enforce Bounds		False
			Heer	Value [ODE#1		
* Parameter		0		Value [OREff] Upper Bound		%
Lower Bound			<u>% </u>	* Enforce Bounds		False
Lond Bound			, · ·	Lineido Bourido		1 000
			User Val	ue [AtmPressure]		
* Parameter			psia	Upper Bound		psia
Lower Bound			psia	* Enforce Bounds		False
* User Specified Values			Pro	oMax 3.2.15289.0 2002-2015 BRE Group, Ltd		Licensed to Trinity Consultants, Inc. and Affiliates

			0.4.54		
		User Val	ue Sets Report		
Client Name:	EQT			Job: V1.0	
ocation:	WEU-8				
		Hear Value	[MaxLiqSurfaceT]		
Parameter		61.4758 °F	Upper Bound		°F
Lower Bound		°F	* Enforce Bounds		False
			ie [TotalLosses]		
Parameter		9.28538 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
		Hear Value	[WorkingLosses]		
Parameter		2.85735 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
		·			
		User Value	[StandingLosses]		
Parameter		0.237782 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
			rp: 0 !! 1		
Danamatan			[RimSealLosses]		40 m/s m
Parameter Lower Bound		0 ton/yr ton/yr	Upper Bound * Enforce Bounds		ton/yr False
Lower Bound		torn yr	Elliotoc Bourido		T dioc
		User Value	[WithdrawalLoss]		
Parameter		0 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False_
			[LoadingLosses]		
Parameter		51.0391 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
		Hoor Volue I	Dook Eitting Looped		
Parameter		0 ton/yr	DeckFittingLosses] Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
		,.			
		User Value I	DeckSeamLosses]		
Parameter		0 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
			[FlashingLosses]		
Parameter Lower Bound		73.064 ton/yr	Upper Bound * Enforce Bounds		ton/yr False
LOWEI DOUIIU		ton/yr	Emorce bounds		raise
		Hear Value	[GasMoleWeight]		
Parameter		0.0547111 kg/mol	Upper Bound		kg/mol
Lower Bound		kg/mol	* Enforce Bounds		False
Remarks Fhis User Value Se	et was programmat	ically generated. GUID={5524AB	88C-40B1-4354-9DD7-EED6	5770BF87}	
			1 004		
			Losses.331		
Description			ue [ShellLength]		
Parameter		20 ft 0 ft	Upper Bound * Enforce Bounds		ft
* Lower Bound					False

			User Valu	ie Sets Report		
					1	
Client Name: Location:	WEU-8				Job: V1.0	
Location.	WEO-8					
	·				,	
* Doromotor		40		ue [ShellDiam]		4
* Parameter * Lower Bound		12	ft	Upper Bound * Enforce Bounds		ft False
				ue [BreatherVP]		
* Parameter Lower Bound		0.875	psig psig	Upper Bound * Enforce Bounds		psig False
Lower Bound			psig	Efficice Bourius		i dise
			User Value	e [BreatherVacP]		
* Parameter		-0.0375	psig	Upper Bound		psig
Lower Bound			psig	* Enforce Bounds		False
			User Valu	e [DomeRadius]		
Parameter			ft	Upper Bound		ft
Lower Bound			ft	* Enforce Bounds		False
			Haan Va	lue [OnDress]		
* Parameter		0	psig	lue [OpPress] Upper Bound		psig
Lower Bound			psig	* Enforce Bounds		False
* Develope				[AvgPercentLiq]		0/
* Parameter Lower Bound		50	%	Upper Bound * Enforce Bounds		% False
				[MaxPercentLiq]		
* Parameter Lower Bound		90	<u>%</u> %	Upper Bound * Enforce Bounds		% False
Lower Board			70	Efficied Bodings		T disc
			User Val	ue [AnnNetTP]		
* Parameter		837.186		Upper Bound * Enforce Bounds		bbl/day
* Lower Bound		U	bbl/day	Enforce Bounds		False
			User V	alue [OREff]		
* Parameter		0	%	Upper Bound		%
Lower Bound			%	* Enforce Bounds		False
			Hear Value	e [AtmPressure]		
* Parameter		14.2535		Upper Bound		psia
Lower Bound			psia	* Enforce Bounds		False
			la an Malus	[Massl::::OsurfaceT]		
* Parameter		61.4758		[MaxLiqSurfaceT] Upper Bound		°F
Lower Bound		01.4700	°F	* Enforce Bounds		False
* Develope		0.004702		e [TotalLosses]		to a line
* Parameter Lower Bound		0.284783	ton/yr ton/yr	Upper Bound * Enforce Bounds		ton/yr False
				[WorkingLosses]		
* Parameter Lower Bound		0.0949277	ton/yr ton/yr	Upper Bound * Enforce Bounds		ton/yr False
Lower Bound			iOH/yi	Lillord Dourius		i dist
		· ·	Jser Value	[StandingLosses]		
* Parameter			ton/yr	Upper Bound		ton/yr
Lower Bound			ton/yr	* Enforce Bounds		False

		User Valu	ue Sets Report			
Client Name:	EQT			Job: V1.0		
Location:	WEU-8					
		User Value	[RimSealLosses]			
* Parameter		0 ton/yr	Upper Bound			ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False	
			[WithdrawalLoss]			
* Parameter		0 ton/yr	Upper Bound			ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False	
			[LoadingLosses]			
* Parameter		0.745004 ton/yr	Upper Bound			ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False	
		Heer Volue D	Deal-Fitting access			
* Danamatan			DeckFittingLosses]			4 a m / m
* Parameter Lower Bound		0 ton/yr ton/yr	Upper Bound * Enforce Bounds		False	ton/yr
Lower Bouria		tonyi	Efficice Bourius		raise	
		User Value [DeckSeamLosses]			
* Parameter		0 ton/yr	Upper Bound			ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False	
		į				
		User Value	[FlashingLosses]			
* Parameter		3.36381 ton/yr	Upper Bound			ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False	
			[GasMoleWeight]			
* Parameter		0.0452315 kg/mol	Upper Bound			kg/mol
Lower Bound		kg/mol	* Enforce Bounds		False	
Remarks		Castle as a same of OURD (00.4470	40 0005 4004 0000 0545	25054040)		
This User value Set	was programma	tically generated. GUID={234170	19-6BCF-4B6A-8C2C-C51E	3F95TUA8}		

20160131_EQT_WEU 8 _Sand Separator Tank. txt

```
Project Setup Information
*******************
Project File : Z: \Client\EQT Corporation\West Virginia\WV Wells\153901.0056 WV Wells 2015\WEU 8\2016-0131 Draft G70-B Application\Att S
Emission Calcs\01 E&P TANK\20160131_EQT_WEU 8 _Sand Separator Tank.ept
Flowsheet Selection : Oil Tank with Separator Calculation Method : RVP Distillation Control Efficiency : 0.0%
Known Separator Stream : Low Pressure Oil Entering Air Composition : No
Filed Name
                             : WEU 8 Wellpad
Well Name
                            : WEU 8 Wellpad
                             : WEU 8 Wellpad Sample 07/22/2014
Well ID
Date
                             : 2016.02.01
      Data Input
*************************
Separator Pressure : 380.00[psig]
Separator Temperature : 60.00[F]
Ambient Pressure : 14.70[psia]
Ambient Temperature : 55.00[F]
C10+ SG : 0.7299
C10+ MW
                            : 111. 126
-- Low Pressure Oil
           Component mol % 0.0000
   No.
   1
                                    0.0000
   2
           02
   3
           C02
                                   0.0560
   4
           N2
                                   0.0000
   5
           C1
                                   13.8400
   6
           C2
                                   11.6040
   7
           C3
                                   10.8340
   8
           i -C4
                                    3. 2330
           n-C4
   9
                                    8.0930
   10
           i -C5
                                    4.7120
                                    5.4070
   11
           n-C5
   12
           C6
                                    5.5800
   13
           C7
                                    8.6890
   14
           C8
                                    1.9800
           С9
   15
                                    4.5790
                                    8. 1610
           C10+
   16
                                    0.1480
   17
           Benzene
   18
           Tol uene
                                    0.6090
   19
                                    0.0810
           E-Benzene
   20
                                    0.8820
           Xyl enes
   21
           n-C6
                                    3.8640
           224Tri methyl p
                                    7.6480
```

-- Sales Oil

20160131_EQT_WEU 8 _Sand Separator Tank.txt

Production Rate : 0.1[bbl/day]
Days of Annual Operation : 365 [days/year]
API Gravity : 59.11
Reid Vapor Pressure : 10.60[psia]

Calculation Results

-- Emission Summary

I tem Page	1	Uncontrolled [ton/yr]	Uncontrolled [Ib/hr]	Controlled [ton/yr]	Controlled [Ib/hr] E&P TANK
Total Total VOCs, VOCs,	HC C2+	0. 010 1. 242 1. 054 0. 758	0. 002 0. 284 0. 241 0. 173	0. 010 1. 242 1. 054 0. 758	0. 002 0. 284 0. 241 0. 173

Uncontrolled Recovery Info.

Vapor	75. 6400 x1E-3	[MSCFD]
HC'Vapor	75. 5400 x1E-3	[MSCFD]
GOR	756. 40	[SCF/bbl]

-- Emission Composition

No	Component	Uncontrolled	Uncontrolled [lb/hr]	Controlled [ton/yr]	Controlled
1	H2S	[ton/yr] 0.000	0.000	0. 000	0.000
2	02	0. 000	0. 000	0. 000	0.000
3	CO2	0. 002	0. 000	0. 002	0.000
4	N2	0. 000	0. 000	0. 000	0.000
5	C1	0. 188	0. 043	0. 188	0. 043
6	C2	0. 296	0. 068	0. 296	0. 068
7	C3	0. 396	0. 090	0. 396	0. 090
8	i -C4	0. 098	0. 022	0. 098	0. 022
9	n-C4	0. 164	0. 037	0. 164	0. 037
10	i -C5	0. 038	0. 009	0. 038	0. 009
11	n-C5	0. 030	0. 007	0. 030	0. 007
12	C6	0. 011	0. 003	0. 011	0.003
13	C7	0. 005	0. 001	0. 005	0. 001
14	C8	0.000	0.000	0.000	0.000
15	C9	0.000	0.000	0.000	0.000
16 17	C10+	0.003	0.001	0.003	0.001
17 18	Benzene Tol uene	0. 000 0. 000	0. 000 0. 000	0. 000 0. 000	0. 000 0. 000
19	E-Benzene	0.000	0.000	0.000	0. 000
20	Xyl enes	0.000	0.000	0.000	0.000
21	n-C6	0.006	0. 000	0. 006	0. 000
22	224Trimethylp	0. 004	0. 001	0. 004	0. 001
	Total	1. 241	0. 283	1. 241	0. 283
		-		-	

-- Stream Data

MW LP Oil Flash Oil Sale Oil Flash Gas W&S Gas No. Component Total Emissions

	50131_EQT_W	/EU 8 _Sand mol %	d Separator mol %	Tank.txt	mol %	mol %
mol % 1 H2S	34. 80	0.0000	0.0000	0.0000	0.0000	0. 0000
0. 0000 2 02	32.00	0.0000	0.0000	0.0000	0.0000	0. 0000
0. 0000 3 C02	44. 01	0. 0560	0. 0055	0.0000	0. 1596	0. 0363
0. 1305 4 N2	28. 01	0. 0000	0. 0000	0. 0000	0. 0000	0. 0000
0. 0000 5 C1	16. 04	13. 8400	0. 3481	0. 0000	41. 5142	2. 3102
32. 2599 6 C2	30. 07	11. 6040	2. 3928	0. 0012	30. 4978	15. 8754
27. 0461 7 C3	44. 10	10. 8340	7. 2575	0. 4400	18. 1699	45. 6963
24. 6676 8 i -C4	58. 12	3. 2330	3. 4972	2. 1774	2. 6911	10. 9386
4. 6379 9 n-C4	58. 12	8. 0930	9. 7466	8. 3628	4. 7011	17. 5504
7. 7342 10 i -C5	72. 15	4. 7120	6. 5360	7. 1566	0. 9706	3. 0373
1. 4585 11 n-C5	72. 15	5. 4070	7. 6762	8. 6077	0. 7524	2. 4244
1. 1471 12 C6	86. 16	5. 5800	8. 1894	9. 4982	0. 2277	0. 8101
0. 3652 13 C7	100. 20	8. 6890	12. 8822	15. 1007	0. 0881	0. 3737
0. 1555 14 C8	114. 23	1. 9800	2. 9430	3. 4608	0. 0046	0. 0240
0. 0092 15 C9	128. 28	4. 5790	6. 8101	8. 0146	0. 0027	0. 0184
0. 0064 16 C10+	111. 13	8. 1610	12. 1214	14. 2383	0. 0376	0. 1856
0. 0725 17 Benzene	78. 11	0. 1480	0. 2181	0. 2541	0. 0042	0. 0154
0. 0068 18 Tol uene	92. 13	0. 6090	0. 9042	1. 0618	0. 0035	0. 0157
0. 0063 19 E-Benzene	106. 17	0. 0810	0. 1204	0. 1417	0. 0001	0. 0006
0. 0002 20 Xyl enes	106. 17	0. 8820	1. 3115	1. 5431	0. 0010	0. 0058
0. 0021 21 n-C6	86. 18	3. 8640	5. 6930	6. 6277	0. 1125	0. 4226
0.1857 22 224Trimethylp	114. 24	7. 6480	11. 3468	13. 3133	0. 0612	0. 2592
0. 1079						
MW 34.17		68. 17	86. 79	93. 71	29. 95	47. 80
Stream Mole Ratio		1. 0000	0. 6723	0. 5710	0. 3277	0. 1013
0. 4290 Heating Value 1980. 70	[BTU/SCF]				1754. 88	2711. 52
Gas Gravi ty 1. 18	[Gas/Air]				1. 03	1. 65
Bubble Pt. @ 100F	[psi a]	517. 29	47. 28	11. 11		
Page 2					E&	P TANK
RVP @ 100F	[psi a]	163. 87	31. 35	10. 59		
Spec. Gravity @ 100F		0. 610 Page	0. 660 3	0. 673		

Number: 2030-14070266-001A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

July 31, 2014

Gary Vermillion Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Field: EQT Station Name: 513764 Sample Point: Submeter

Cylinder No: GAS

Analyzed:

07/30/2014 08:31:58 by CC

Sampled By:

RM-GAS

Sample Of:

Liquid Spot

Sample Date: 07/22/2014 Sample Conditions: 380 psig

Method:

GPA 2186

Analytical Data

Components	Mol. %	Wt. %	L.V. %
Nitrogen	NIL	NIL	NIL
Methane	13.840	3.113	6.497
Carbon Dioxide	0.056	0.035	0.027
Ethane	11.604	4.893	8.595
Propane	10.834	6.699	8.267
Iso-Butane	3.233	2.635	2.930
n-Butane	8.093	6.596	7.066
Iso-Pentane	4.712	4.767	4.773
n-Pentane	5.407	5.470	5.428
i-Hexanes	4.842	5.784	5.428
n-Hexane	3.864	4.673	4.407
Benzene	0.148	0.162	0.113
Cyclohexane	0.738	0.870	0.693
i-Heptanes	5,670	7.847	7.003
n-Heptane	3.019	4.242	3.858
Toluene	0.609	0.787	0.563
i-Octanes	7.648	11.620	9.856
n-Octane	1.980	3.172	2.808
Ethylbenzene	0.081	0.121	0.086
Xylenes	0.882	1.313	0.947
i-Nonanes	3.369	5.896	4.861
n-Nonane	1.210	2.176	1.885
i-Decanes	4.357	8.333	6.598
n-Decane	0.790	1.577	1.342
Undecanes	1.371	2.995	2.495
Dodecanes	0.834	1.991	1.651
Tridecanes	0.255	0.660	0.542
Tetradecanes Plus	0.554	1.573	1.281
	100.000	100.000	100.000
	100.000	100.000	100.000

Hydrocarbon Laboratory Manager

Certificate of Analysis Number: 2030-14070266-001A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Gary Vermillion Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

July 31, 2014

Field:

EQT Station Name: 513764

Sample Point: Submeter Cylinder No: GAS

Analyzed:

07/30/2014 08:31:58 by CC

Sampled By:

RM-GAS

Sample Of:

Liquid

Sample Date:

Spot

Sample Conditions: 380 psig

07/22/2014

Method:

GPA 2186

Analytical Data

Components	Mol. %	Wt. %	L.V. %		
Nitrogen	NIL	NIL	NIL		
Carbon Dioxide	0.056	0.035	0.027		
Methane	13.840	3.113	6.497		
Ethane	11.604	4.893	8.595		
Propane	10.834	6.699	8.267		
Iso-Butane	3.233	2.635	2.930		
n-Butane	8.093	6.596	7.066		
Iso-Pentane	4.712	4.767	4.773		
n-Pentane	5.407	5.470	5.428		
Hexanes Plus	42.221	65.792	56.417		
	100.000	100.000	100.000		
Physical Properties	3		Total	C6+	
Molecular Weight			71.314	111.126	
BTU / Cu. Ft. @ 14.7	'3 psia DRY		3927.0	5996.3	
BTU / LB.			20847.0	20426.0	
BTU / GAL.			108847.0	124418.0	
Cu. Ft. Vapor per Ga		3 psia	27.705	20.734	
Pounds per Gallon (i			5.218	6.086	
Pounds per Gallon (i			5.213	6.079	
Specific Gravity at 60)°F		0.6259	0.7299	
API Gravity at 60°F			94.57	62.35	
Specific Gravity as a	vapor		2.4620	3.8370	

Hydrocarbon Laboratory Manager

Quality Assurance:

Certificate of Analysis Number: 2030-14070266-001A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Gary Vermillion Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

July 31, 2014

Field:

EQT Station Name: 513764 Sample Point: Submeter

Analyzed:

Cylinder No: GAS

07/30/2014 08:31:58 by CC

Sampled By:

RM-GAS

Sample Of:

Liquid

Spot

Sample Date: Sample Conditions: 380 psig

07/22/2014

Method:

GPA 2186

Analytical Data

Componer	ts Mol. %	Wt. %	L.V. %		*	
Nitrogen	NIL	NIL	NIL			
Carbon Dioxide		0.035	0.027			
Methane	13.840	3.113	6.497			
Ethane	11.604	4.893	8.595			
Propane	10.834	6.699	8.267			
Iso-Butane	3.233	2.635	2.930			
n-Butane	8.093	6.596	7.066			
Iso-Pentane	4.712	4.767	4.773			
n-Pentane	5.407	5.470	5.428			
Hexanes	8.706	10.457	9.835			
Heptanes Plus	33.515	55.335	46.582			
	100.000	100.000	100.000			
Physical Prop	erties		Total	C7+		
Molecular Weig			71.314	117.749		
) 14.73 psia DRY		3927.0	6325.4		
BTU / LB.			20847.0	20338.6		
BTU / GAL.			108847.0	126192.2		
Cu. Ft. Vapor p	Cu. Ft. Vapor per Gallon @ 14.73 psia			19.929		
	Pounds per Gallon (in Vacuum)			6.198		
Pounds per Ga			5.213	6.191		
	Specific Gravity at 60°F		0.6259	0.7434		
API Gravity at 6			94.57	58.83		
Specific Gravity	as a vapor		2.4620	4.0655		

Hydrocarbon Laboratory Manager

Quality Assurance:

Number: 2030-13050229-001A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Alan Ball Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

May 29, 2013

Station Name: 512507

Station Location: EQT Production

Cylinder No: GAS

Analyzed:

05/29/2013 11:21:20 by CC

Sampled By: Sample Of:

GR-GAS

Gas

Sample Date:

Spot 05/20/2013 12:00

Sample Conditions: 313 psig Method: GPA 2286

Analytical Data

_							
_	Components	Mol. %	Wt. %	GPM at 14.73 psia			
	Nitrogen	0.428	0.599		GPM TOTAL C2+	5.207	
	Carbon Dioxide	0.240	0.528				
	Methane	80.616	64.659				
	Ethane	13.296	19.989	3.567			
	Propane	3.541	7.807	0.978			
	Iso-Butane	0.426	1.238	0.140			
	n-Butane	0.746	2.168	0.236			
	Iso-Pentane	0.191	0.689	0.070			
	n-Pentane	0.164	0.592	0.060			
	i-Hexanes	0.091	0.381	0.037			
	n-Hexane	0.055	0.232	0.022			
	Benzene	0.002	0.009	0.001			
	Cyclohexane	0.009	0.038	0.003			
	i-Heptanes	0.056	0.267	0.024			
	n-Heptane	0.023	0.114	0.011			
	Toluene	0.005	0.023	0.002			
	i-Octanes	0.052	0.284	0.024			
	n-Octane	0.011	0.063	0.006			
	Ethylbenzene	NIL	NIL	NIL			
	Xylenes	0.005	0.026	0.002			
	i-Nonanes	0.024	0.149	0.012			
	n-Nonane	0.006	0.037	0.003			
	Decane Plus	0.013	0.108	0.009			
		100.000	100.000	5.207			

Number: 2030-13050229-001A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Alan Ball Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

May 29, 2013

Station Name: 512507

Relative Density Real Gas

Compressibility Factor

Sampled By:

GR-GAS

Station Location: EQT Production

Sample Of:

Spot Gas

Cylinder No: GAS

Sample Date:

05/20/2013 12:00

Analyzed:

05/29/2013 11:21:20 by CC

Sample Conditions: 313 psig Method:

4.8910

GPA 2286

Physical Properties	Total	C10+
Calculated Molecular Weight	20.00	141.68
GPA 2172-09 Calculation:		
Calculated Gross BTU per ft ³ @	14.73 psia & 60°F	
Real Gas Dry BTU	1216.5	7479.1
Water Sat. Gas Base BTU	1195.9	7349.0

0.6926

0.9967

Hydrocarbon Laboratory Manager

Quality Assurance:

Number: 2030-13050229-001A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

May 29, 2013

Alan Ball Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Station Name: 512507

Station Location: EQT Production

Cylinder No:

GAS

Analyzed:

05/29/2013 11:21:20 by CC

Sampled By:

GR-GAS

Sample Of:

Gas

Sample Date:

Spot 05/20/2013 12:00

Sample Conditions: 313 psig Method: GPA 2286

Analytical Data

Components	Mol. %	Wt. %	GPM at 14.73 psia			
Nitrogen	0.428	0.599		GPM TOTAL C2+	5.208	
Carbon Dioxide	0.240	0.528		GPM TOTAL C3+	1.641	
Methane	80.616	64.659		GPM TOTAL iC5+	0.286	
Ethane	13.296	19.989	3.567			
Propane	3.541	7.807	0.979			
Iso-butane	0.426	1.238	0.140			
n-Butane	0.746	2.168	0.236			
Iso-pentane	0.191	0.689	0.070			
n-Pentane	0.164	0.592	0.060			
Hexanes Plus	0.352	1:731	0.156			
	100.000	100.000	5.208			
Physical Properties	1		Total	C6+		
Relative Density Rea	al Gas		0.6926	3.3957		
Calculated Molecular	r Weight		20.00	98.35		
Compressibility Factor	or		0.9967			
GPA 2172-09 Calcul	lation:					
Calculated Gross B	TU per ft³ @	14.73 psia	& 60°F			
Real Gas Dry BTU		•	1216.6	5333.2		
Water Sat. Gas Base	BTU		1195.9	5240.3		
Comments: H2O M	101% : 1.740	; Wt% : 1.5	70			

Hydrocarbon Laboratory Manager

Quality Assurance:

Number: 2030-13050229-001A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Alan Ball Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

May 29, 2013

Station Name: 512507

Station Location: EQT Production

Cylinder No: GAS

Analyzed:

05/29/2013 11:21:20 by CC

Sampled By:

GR-GAS

Sample Of:

Gas

Spot

Sample Date:

05/20/2013 12:00

Sample Conditions: 313 psig

Method:

GPA 2286

Analytical Data

Components	Mol. %	Wt. %	GPM at 14.73 psia			
Nitrogen	0.428	0.599		GPM TOTAL C2+	5.207	
Carbon Dioxide	0.240	0.528		GPM TOTAL C3+	1.640	
Methane	80.616	64.659		GPM TOTAL iC5+	0.286	
Ethane	13.296	19.989	3.567			
Propane	3.541	7.807	0.978			
Iso-Butane	0.426	1.238	0.140			
n-Butane	0.746	2.168	0.236			
Iso-Pentane	0.191	0.689	0.070			
n-Pentane	0.164	0.592	0.060			
Hexanes	0.146	0.613	0.059			
Heptanes Plus	0.206	1.118	0.097			
	100.000	100.000	5.207			
Physical Properties			Total	C7+		
Relative Density Real			0.6926	3.7086		
Calculated Molecular	Weight		20.00	107.41		
Compressibility Facto	r		0.9967			
GPA 2172-09 Calcula	ation:					
Calculated Gross B1	TU per ft³ @	14.73 psia	& 60°F			
Real Gas Dry BTU			1216.6	5765.9		
Water Sat. Gas Base	BTU		1195.9	5665.5		

Hydrocarbon Laboratory Manager

Quality Assurance:

ATTACHMENT T

Emission Summary Sheet

ATTACHMENT T – FACILITY-WIDE CONTROLLED EMISSIONS SUMMARY SHEET

List all sources of emissions in this table. Use extra pages if necessary.

Zise an sources of companies in this table. One citera pages if necessary.														
Emission Point ID# (Emission Source	NO) _x	СО		V	VOC		SO_2		110	$PM_{2.5}$		GHG (CO ₂ e)	
ID)	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
C001 (S001-S006, S016, C001)	1.15	5.03	0.96	4.22	1.59	1.22	0.01	0.03	0.09	0.38	0.09	0.38	1,372.74	6,012.61
C002 (S001-S006, S016, C002)	1.15	5.03	0.96	4.22	1.59	1.22	0.01	0.03	0.09	0.38	0.09	0.38	1,372.74	6,012.61
E007 (S007)	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E008 (S008)	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E009 (S009)	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E010 (S010)	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E011 (S011)	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E012 (S012)	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E018 (S018)	0.11	0.48	0.09	0.40	0.01	0.03	6.6E-04	2.9E-03	0.01	0.04	0.01	0.04	135.14	591.90
E013 (S013)	1.2E-03	5.4E- 03	1.0E- 03	4.5E- 03	6.8E-05	3.0E-04	7.4E-06	3.2E-05	9.4E- 05	4.1E- 04	9.4E- 05	4.1E- 04	1.52	6.64
E014 (S014)	1.2E-03	5.4E- 03	1.0E- 03	4.5E- 03	6.8E-05	3.0E-04	7.4E-06	3.2E-05	9.4E- 05	4.1E- 04	9.4E- 05	4.1E- 04	1.52	6.64
E015 (S015)					0.17	0.76							1.08	4.70
E017 (S017)	0.24	1.06	0.49	2.12	0.19	0.81	4.5E-04	2.0E-03	0.01	0.07	0.01	0.07	90.18	394.99
E016 (S016)					59.75	15.54								
Fugitives						17.25								303.29
Haul Roads										1.83		0.18		
Facility Total	3.53	15.46	3.25	14.22	63.35	37.04	0.02	0.09	0.26	2.99	0.26	1.34	4,056.00	18,068.56
Facility Total (excl. fugitives)	3.53	15.46	3.25	14.22	3.59	4.26	0.02	0.09	0.26	1.16	0.26	1.16	4,056.00	17,765.28

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators.

According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT T – FACILITY-WIDE HAP CONTROLLED EMISSIONS SUMMARY SHEET

List all sources of emissions in this table. Use extra pages if necessary.

Emission Point	Formal	dehyde	Ben	zene	Tol	uene	Ethylb	enzene	Xyle	enes	Hex	ane	Total H	IAPs
ID#	lb/hr	tpy	lb/hr	tpy										
C001 (S001- S006, S016, C001)			1.3E-03	1.3E-03	1.7E-03	2.0E-03	7.5E-05	8.8E-05	7.6E-04	9.1E-04	0.04	0.03	0.08	0.07
C002 (S001- S006, S016, C002)			1.3E-03	1.3E-03	1.7E-03	2.0E-03	7.5E-05	8.8E-05	7.6E-04	9.1E-04	0.04	0.03	0.08	0.07
E007 (S007)	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E008 (S008)	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E009 (S009)	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E010 (S010)	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E011 (S011)	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E012 (S012)	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E018 (S018)	8.2E-05	3.6E-04	2.3E-06	1.0E-05	3.7E-06	1.6E-05					2.0E-03	0.01	2.1E-03	0.01
E013 (S013)	9.3E-07	4.1E-06	2.6E-08	1.1E-07	4.2E-08	1.8E-07					2.2E-05	9.7E- 05	2.3E-05	1.0E- 04
E014 (S014)	9.3E-07	4.1E-06	2.6E-08	1.1E-07	4.2E-08	1.8E-07					2.2E-05	9.7E- 05	2.3E-05	1.0E- 04
E015 (S015)			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0E-03	< 0.01	2.0E-03	1.0E- 02
E017 (S017)	0.02	0.07	1.2E-03	5.3E-03	4.3E-04	1.9E-03	1.9E-05	8.4E-05	1.5E-04	6.6E-04			0.02	0.11
E016 (S016)			0.04	0.01	0.06	0.01	2.5E-03	6.5E-04	2.5E-02	6.6E-03	1.44	0.38	2.95	0.77
Fugitives				0.01		0.03		< 0.01		0.03		0.26		0.84
Haul Roads														
Facility Total	0.02	0.07	0.05	0.03	0.06	0.05	2.7E03	9.1E-04	0.03	0.04	1.54	0.77	3.16	1.81

Facility Total														
(excl.	0.02	0.07	3.8E-03	0.01	3.9E-03	6.1E-03	1.7E-04	2.6E-04	1.7E-03	2.5E-03	0.10	0.14	0.21	0.33
fugitives)														

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators.

According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT U

Class I Legal Advertisement

RECOMMENDED PUBLIC NOTICE TEMPLATE

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that EQT Production Company has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a G70-B General Permit Registration for a modification to an existing natural gas production facility WEU-8 located on C/R 11/3 road, near West Union, in Doddridge County, West Virginia. The latitude and longitude coordinates are: 39.27004 N, -80.80993 W.

The applicant estimates the potential to discharge the following Regulated Air Pollutants will be:

Pollutant	Emissions in tpy (tons per year)
NOx	15.46
CO	14.22
VOC	4.26
SO ₂	0.09
PM	1.16
Total HAPs	1.81
Carbon Dioxide Equivalents (CO ₂ e)	17,765.28

Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours. Dated this the (Day) day of (Month), 2016.

By: EQT Production Company Kenneth Kirk, Executive Vice President 625 Liberty Ave Suite 1700 Pittsburgh, PA 15222

ATTACHMENT V

General Permit Registration Application Fee