

SWN Production Company, LLC P O Box 12359 Spring, Texas 77391-2359 www.swn.com

JAMES SEABRIGHT PAD

G70-D REGISTRATION APPLICATION

	CM	5/11/2017	G70-D REGISTRATION	AL	5/15/2017
REV	BY	DATE	DESCRIPTION	FACILITIES	DATE
				REVIEWED	

TABLE OF CONTENTS

TABLE OF CONTEN	TSi
INTRODUCTION	
Proposed Emissi	ons1
Regulatory Discu	ission2
APPLICATION FOR	GENERAL PERMIT REGISTRATION
ATTACHMENT A:	SINGLE SOURCE DETERMINATION
ATTACHMENT C:	BUSINESS REGISTRATION CERTIFICATE12
ATTACHMENT D:	PROCESS FLOW DIAGRAM14
ATTACHMENT E:	PROCESS DESCRIPTION
ATTACHMENT F:	PLOT PLAN
ATTACHMENT G:	AREA MAPS
ATTACHMENT H:	G70-D SECTION APPLICABILITY FORM
ATTACHMENT I:	EMISSIONS UNITS/ERD TABLE
ATTACHMENT J:	FUGITIVE EMISSIONS SUMMARY SHEET
ATTACHMENT K:	GAS WELL AFFECTED FACILITY DATA SHEET
ATTACHMENT L:	STORAGE VESSELS DATA SHEET
ATTACHMENT M:	NATURAL GAS FIRED FUEL BURNING UNITS DATA SHEET
ATTACHMENT N:	INTERNAL COMBUSTION ENGINE DATA SHEETS
ATTACHMENT O:	TANKER TRUCK LOADING DATA SHEET
ATTACHMENT Q:	PNEUMATIC CONTROLLERS DATA SHEET62
ATTACHMENT R:	PNEUMATIC PUMP DATA SHEET64
ATTACHMENT S:	AIR POLLUTION CONTROL DEVICE/EMISSION REDUCTION DEVICES SHEETS

ATTACHMENT T:	EMISSIONS CALCULATIONS
ATTACHMENT U:	FACILITY-WIDE EMISSION SUMMARY SHEETS110
ATTACHMENT V:	LEGAL ADVERTISEMENT113

INTRODUCTION

SWN Production Company, LLC (SWN), submits this G70-D General Permit application for the James Seabright Pad, a proposed natural gas production facility in Brooke County. With this application, SWN requests authorization to operate under the General Permit G70-D for Oil and Natural Gas Production Facilities. Equipment to be authorized includes the following:

- Two (2) Caterpillar G3306 NA Compressor Engines
- Three (3) 1.0-mmBtu/hr Gas Production Units
- One (1) 1.5-mmBtu/hr Stabilizer Heater
- Six (6) 400-bbl Condensate Tanks
- Six (6) 400-bbl Produced Water Tanks
- Condensate Truck Loading
- Produced Water Truck Loading
- One (1) 15.0-mmBtu/hr Vapor Combustor with Pilot
- Fugitive Emissions
- Fugitive Haul Road Emissions

Note that other small storage tanks may be present on site (i.e., methanol, lube oil) but are considered de minimis sources per Table 45-13B and are listed on the application form.

Proposed Emissions

Emissions calculations for the facility are presented in Attachment T. A fuel heating value of 905 Btu/scf was used to calculate emissions from natural gas-fired equipment. Actual heating value may vary (generally 905 - 1,300) but using a lower heating value in the emissions calculations provides a more conservative (higher) estimate of fuel use.

Emissions from the Caterpillar engines were calculated with manufacturer data when available and AP-42/EPA emissions factors for the remaining pollutants.

Condensate and produced water tank emissions and loading emissions were calculated using ProMax process simulation software. Tank emissions are routed to a vapor combustor with 100% capture efficiency and 98% destruction efficiency. Loading emissions are routed to a vapor combustor with 70% capture efficiency and 98% destruction efficiency.

Fugitive emissions were calculated with a component count by equipment type from a similar facility, and representative extended gas and liquids analyses. Fugitive haul road emissions were calculated using EPA/AP-42 methodologies.

Greenhouse gas emissions were calculated with the latest EPA factors and manufacturer data when available. Documents used as references for the emissions calculations, including manufacturer data, AP-42 and EPA emission factor references, gas and liquids analyses, and process simulation results are attached.

Regulatory Discussion

<u>STATE</u>

45 CSR 13 - PERMITS FOR CONSTRUCTION, MODIFICATION, RELOCATION AND OPERATION OF STATIONARY SOURCES OF AIR POLLUTANTS, NOTIFICATION REQUIREMENTS, ADMINISTRATIVE UPDATES, TEMPORARY PERMITS, GENERAL PERMITS, AND PROCEDURES FOR EVALUATION:

The facility requests to operate under the General Permit G70-D. Emissions of carbon monoxide and volatile organic compounds are less than 80 tons per year (TPY). Oxides of nitrogen emissions are less than 50 TPY and particulate matter 10/2.5 and sulfur dioxide emissions are each less than 20 TPY. Also, the facility will have less than 8 TPY for each hazardous air pollutant and less than 20 tons for total hazardous air pollutants.

45 CSR 22 - AIR QUALITY MANAGEMENT FEE PROGRAM:

The facility will be required to maintain a valid Certificate to Operate on the premises.

45 CSR 30 - REQUIREMENTS FOR OPERATING PERMITS:

Emissions from the facility do not exceed major source thresholds; therefore, this rule does not apply.

FEDERAL

40 CFR PART 60 SUBPART KB—STANDARDS OF PERFORMANCE FOR VOLATILE ORGANIC LIQUID STORAGE VESSELS (INCLUDING PETROLEUM LIQUID STORAGE VESSELS) FOR WHICH CONSTRUCTION, RECONSTRUCTION, OR MODIFICATION COMMENCED AFTER JULY 23, 1984

The affected facility to which this Subpart applies is each storage vessel with a capacity greater than or equal to 75 cubic meters (m³) that is used to store volatile organic liquids (VOL) for which construction, reconstruction, or modification is commenced after July 23, 1984. The tanks at this facility were constructed after the effective date of this Subpart but are less than 75 m³ (which equals approximately 471 bbl); therefore, this Subpart does not apply.

40 CFR PART 60 SUBPART KKK - STANDARDS OF PERFORMANCE FOR STATIONARY FOR EQUIPMENT LEAKS OF VOC FROM ONSHORE NATURAL GAS PROCESSING PLANTS:

The facility is not considered an affected source (natural gas processing plant) and is therefore not subject to this Subpart.

40 CFR PART 60 SUBPART IIII - STANDARDS OF PERFORMANCE FOR STATIONARY COMPRESSION IGNITION INTERNAL COMBUSTION ENGINES:

The facility does not contain the affected source (diesel-fired engine) and is therefore not subject to this Subpart.

40 CFR PART 60 SUBPART JJJJ - STANDARDS OF PERFORMANCE FOR STATIONARY SPARK IGNITION INTERNAL COMBUSTION ENGINES:

The proposed 145-hp, four-stroke, rich-burn natural gas-fired flash gas compressor engines are assumed to have been constructed after the June 12, 2006 effective date and manufactured after July 1, 2008; therefore, they will be subject to this Subpart. Although final selection of EU-ENG1 and EU-ENG2 has not yet been made, it is presumed that the engines were manufactured after January 1, 2011 and therefore subject to Stage 2 emission limitations under this Subpart. SWN will comply with all applicable requirements.

40 CFR PART 60 SUBPART OOOO - STANDARDS OF PERFORMANCE FOR CRUDE OIL AND NATURAL GAS PRODUCTION, TRANSMISSION, AND DISTRIBUTION:

The emission sources affected by this Subpart include well completions, pneumatic controllers, equipment leaks from natural gas processing plants, sweetening units at natural gas processing plants, reciprocating compressors, centrifugal compressors and storage vessels which are constructed, modified or reconstructed after August 23, 2011 and before September 18, 2015.

The proposed wells and equipment at this production pad will be constructed after the effective date of this Subpart.

40 CFR PART 60 SUBPART OOOOA - STANDARDS OF PERFORMANCE FOR CRUDE OIL AND NATURAL GAS FACILITIES FOR WHICH CONSTRUCTION, MODIFICATION, OR RECONSTRUCTION COMMENCED AFTER SEPTEMBER 18, 2015:

The emission sources affected by this Subpart include well completions, centrifugal compressors, reciprocating compressors, pneumatic controllers, storage vessels, fugitive sources at well sites, fugitive sources at compressor stations, pneumatic pumps, equipment leaks from natural gas

processing plants and sweetening units at natural gas processing plants which are constructed, modified or reconstructed after September 18, 2015.

The wells at this location will be completed after the effective date of this Subpart and will be subject to the compliance requirements. There is no centrifugal compressor using wet gas seals at this facility. The pneumatic controllers utilized at the facility are considered low-bleed and are not subject to this Subpart. The storage vessel venting is controlled to less than six (6) TPY VOC and federally enforceable limits are requested; therefore, the storage vessels are not subject to this Subpart.

40 CFR PART 63 SUBPART HH - NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES FROM OIL AND NATURAL GAS PRODUCTION FACILITIES:

The site is a minor (area) source of hazardous air pollutants. This Subpart applies to affected emission points that are located at facilities that are major and area sources of HAP, and either process, upgrade, or store hydrocarbon liquids prior to custody transfer or that process, upgrade, or store natural gas prior to entering the natural gas transmission and storage source category. For purposes of this Subpart natural gas enters the natural gas transmission and storage source category after the natural gas processing plant, if present. The facility is a minor (area) source of HAP; however, there is no triethylene glycol (TEG) dehydration unit present at the facility and therefore this Subpart does not apply.

40 CFR PART 63 SUBPART HHH - NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES FROM NATURAL TRANSMISSION AND STORAGE FACILITIES:

The facility is not a natural gas transmission and storage facility and is therefore not subject to this Subpart.

40 CFR PART 63 SUBPART ZZZZ - NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES FROM STATIONARY RECIPROCATING INTERNAL COMBUSTION ENGINES - AREA SOURCE:

The original rule, published on February 26, 2004, initially affected new (constructed or reconstructed after December 19, 2002) reciprocating internal combustion engines (RICE) with a site-rating greater than 500 brake horsepower (HP) located at a major source of HAP emissions. On January 18, 2008, EPA published an amendment that promulgated standards for RICE constructed or reconstructed after June 12, 2006 with a site rating less than or equal to 500 HP located at major sources, and for engines constructed and reconstructed after June 12, 2006

located at area sources. On August 10, 2010, EPA published another amendment that promulgated standards for existing (constructed or reconstructed before June 12, 2006) RICE at area sources and existing RICE (constructed or reconstructed before June 12, 2006) with a site rating of less than or equal to 500 HP at major sources.

Owners and operators of new or reconstructed engines at area sources must meet the requirements of Subpart ZZZZ by complying with either 40 CFR Part 60 Subpart IIII (for CI engines) or 40 CFR Part 60 Subpart JJJJ (for SI engines). Based on emission calculations, this facility is a minor source of HAP. The 145-hp, four-stroke, rich-burn natural gas-fired flash gas compressor engines are considered new engines manufactured after July 1, 2010 and will meet the requirements of this Subpart by complying with requirements under NSPS Subpart JJJJ.

APPLICATION FOR GENERAL PERMIT REGISTRATION

dep	west virgini	a department of	environmental prote	ction	Division of Air Quality 601 57 th Street SE Charleston, WV 25 4 Phone (304) 926-0475 Fax (304) 926-0479 www.dep.wv.gov
G70-D GE	NERAL PI	ERMIT RE	EGISTRATIO	N AP	PLICATION
	RELOCATION,	ADMINISTRATIV	N REGARD TO THE CO VE UPDATE AND OPEI JITIES LOCATED AT T	RATION (TION, MODIFICATION,)F L SITE
⊠CONSTRU □MODIFIC. □RELOCAT	JCTION ATION		□CLASS I ADMINIS □CLASS II ADMINIS	TRATIVE	UPDATE
	S	ECTION 1. GENE	RAL INFORMATION		
Name of Applicant (as	registered with the	WV Secretary of S	tate's Office): SWN Pro	oduction (Company, LLC
Federal Employer ID N	No. (FEIN): 26-438	8727			
Applicant's Mailing A	ddress: 10000 Ene	ergy Drive			
City: Spring		State: TX		3	ZIP Code: 77389
Facility Name: James	Seabright Pad				
Operating Site Physica If none available, list r		U			
City: Wellsburg		Zip Code: 2607		(County: Brooke
Latitude & Longitude (Latitude: 40.220629 Longitude: -80.53202		3, Decimal Degrees	to 5 digits):		
SIC Code: 1311			DAQ Facility ID No. (I	For existing	g facilities)
NAICS Code: 211111					
		CERTIFICATION (OF INFORMATION		
Official is a President Directors, or Owner, d authority to bind Proprietorship. Red compliance certifi Representative. If a bu off and the approp unsigned G70-D Regis	, Vice President, See epending on busines I the Corporation, P- quired records of da cations and all requi siness wishes to cer- riate names and sign stration Application	cretary, Treasurer, ss structure. A busin artnership, Limited ily throughput, hou ired notifications m tify an Authorized in natures entered. An n will be returned	ness may certify an Author Liability Company, Asso rs of operation and maint sust be signed by a Respo Representative, the offici y administratively incom	Manager, prized Repro- prized Repro- ciation, Jo tenance, ge nsible Offi- al agreeme mplete or i ermore, if	a member of the Board of resentative who shall have ont Venture or Sole neral correspondence, icial or an Authorized ont below shall be checked improperly signed or the G70-D forms are not
the business (e.g., Corp	poration, Partnership egally bind the busin	o, Limited Liability ness. If the busines:	Company, Association J s changes its Authorized	oint Ventu	ll represent the interest of re or Sole Proprietorship) tive, a Responsible
I hereby certify that all documents appended he have been made to prov	ereto is, to the best o	of my knowledge, t	General Permit Registration rue, accurate and complete on possible	on Applica te, and that	tion and any supporting all reasonable efforts
Responsible Official Si Name and Title: Carla Email: Carla_Suszkov	Suszkowski	Phone: 832-7 Date: 5-0	Schousti 96-1000 15-17	Fax: 4	05-849-3102
If applicable: Authorized Representat Name and Title: Email:	ive Signature:	Phone: Date:	Fa	x:	
If applicable: Environmental Contact Name and Title: Clay I Email: Clay Murral@	Murral		one: 304-884-1715 Date:	ÿ	Fax:

OPERATING SITE INFORMATION

Briefly describe the proposed new operation and/or any change(s) to the facility: This application includes two (2) Caterpillar G3306 NA engines (EU-ENG1 – EU-ENG2), three (3) 1.0-mmBtu/hr natural gas-fired gas production units (GPU) burner (EU-GPU1 – EU-GPU3), one (1) 1.5-mmBtu/hr natural gas-fired stabilizer heater (EU-SH1), six (6) 400-bbl condensate tanks (EU-TANKS-COND), six (6) 400-bbl produced water tanks (EU-TANKS-PW), condensate and produced water truck loading (EU-LOAD-COND and EU-LOAD-PW), one (1) 15.0-mmBtu/hr vapor combustor (APC-COMB) with one (1) 50-SCFH pilot (EU-PILOT), fugitive emissions (EU-FUG), and fugitive haul road emissions (EU-HR).

Directions to the facility: From I-70, take PA state route 844 to WV state route 88. Travel down 88 for \sim 3.5 miles and access road on left.

ATTACHMENTS AND SUPPORTING DOCUMENTS

I have enclosed the following required documents:

Check payable to WVDEP – Division of Air Quality with the appropriate application fee (per 45CSR13 and 45CSR22).

 \boxtimes Check attached to front of application.

□ I wish to pay by electronic transfer. Contact for payment (incl. name and email address):

 \Box I wish to pay by credit card. Contact for payment (incl. name and email address):

≥ \$500 (Construction, Modification, and Relocation)
 □ \$300 (Class II Administrative Update)
 ≥ \$1,000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ, OOOO and/or OOOOa¹
 □ \$2,500 NESHAP fee for 40 CFR63, Subpart ZZZZ and/or HH²

¹ Only one NSPS fee will apply.

² Only one NESHAP fee will apply. The Subpart ZZZZ NESHAP fee will be waived for new engines that satisfy requirements by complying with NSPS, Subparts IIII and/or JJJJ.

NSPS and NESHAP fees apply to new construction or if the source is being modified.

 \boxtimes Responsible Official or Authorized Representative Signature (if applicable)

Single Source Determination Form (must be completed) – Attachment A

🗆 Siting Criteria Waiver (if applicable) – Attachment B	🛛 Current Business Certificate – Attachment C
⊠ Process Flow Diagram – Attachment D	Process Description – Attachment E

🖾 Plot Plan – Attachment F 🛛 🖾 Area Map – Attachment G

⊠ G70-D Section Applicability Form – Attachment H ⊠ Emission Units/ERD Table – Attachment I

⊠ Fugitive Emissions Summary Sheet – Attachment J

🖾 Gas Well Affected Facility Data Sheet (if applicable) – Attachment K

Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable) – Attachment L

⊠ Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Heater Treaters, In-Line Heaters if applicable) – Attachment M

⊠ Internal Combustion Engine Data Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment N

Inter Truck/Rail Car Loading Data Sheet (if applicable) - Attachment O

 \Box Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalcTM input and output reports and information on reboiler if applicable) – Attachment P

Pneumatic Controllers Data Sheet – Attachment Q

⊠ Pneumatic Pump Data Sheet – Attachment R

 \boxtimes Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment S

 \boxtimes Emission Calculations (please be specific and include all calculation methodologies used) – Attachment T

⊠ Facility-wide Emission Summary Sheet(s) – Attachment U

🛛 Class I Legal Advertisement – Attachment V

 \boxtimes One (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments

All attachments must be identified by name, divided into sections, and submitted in order.

ATTACHMENT A: SINGLE SOURCE DETERMINATION

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

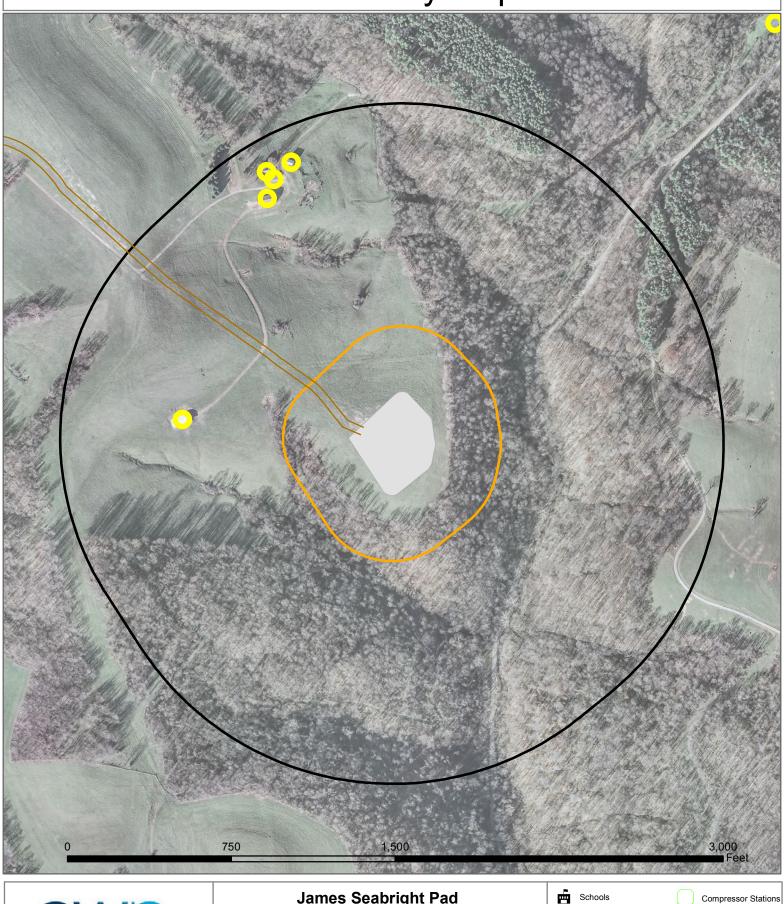
Classifying multiple facilities as one "stationary source" under 45CSR13, 45CSR14, and 45CSR19 is based on the definition of Building, structure, facility, or installation as given in §45-14-2.13 and §45-19-2.12. The definition states:

"Building, Structure, Facility, or Installation" means all of the pollutant-emitting activities which belong to the same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the control of the same person (or persons under common control). Pollutant-emitting activities are a part of the same industrial grouping if they belong to the same "Major Group" (i.e., which have the same two (2)-digit code) as described in the Standard Industrial Classification Manual, 1987 (United States Government Printing Office stock number GPO 1987 0-185-718:QL 3).

The Source Determination Rule for the oil and gas industry was published in the Federal Register on June 3, 2016 and will become effective on August 2, 2016. EPA defined the term "adjacent" and stated that equipment and activities in the oil and gas sector that are under common control will be considered part of the same source if they are located on the same site or on sites that share equipment and are within ¹/₄ mile of each other.

Is there equipment and activities in the same industrial grouping (defined by SIC code)?

Yes 🗆 No 🖂

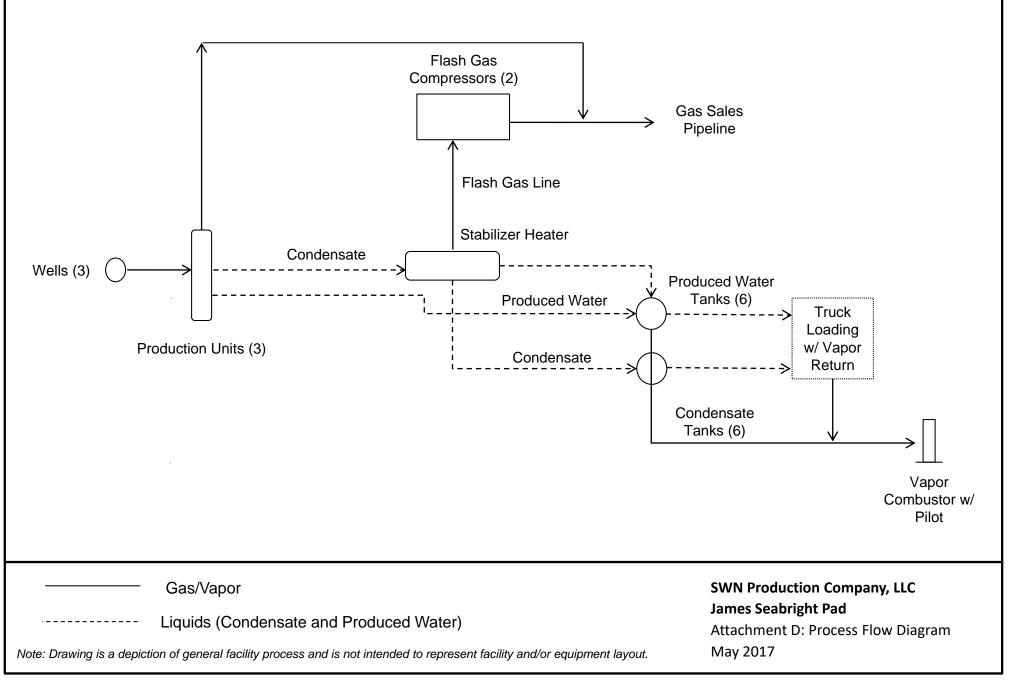

Is there equipment and activities under the control of the same person/people?

 $Yes \square \qquad No \boxtimes$

Is there equipment and activities located on the same site or on sites that share equipment and are within ¹/₄ mile of each other?

Yes \Box No \boxtimes

Proximity Map

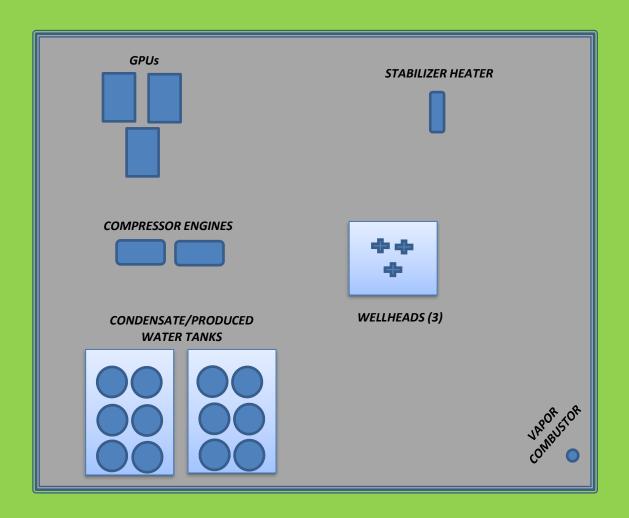

James Seabright Pad Lease Road: 4,448.059 Feet NAD83 UTM Zone 17N 539.867 4,452.334 Kilometers -80.532029 40.220629 Decimal Degrees

ATTACHMENT C: BUSINESS REGISTRATION CERTIFICATE

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION SSUED TO SWN PRODUCTION COMPANY, LLC 5400D BIG TYLER RD CHARLESTON, WV 25313-1103 GISTRATION ACCOUNT NUMBE 2307-3731 is certificate is issued on: 12/8/2014 UNE This certificate, is issued by accordance With Chapter 11, Article 12, of the West Virginia Code in ø <u>(</u> -)||)|51 The person of organization identified on this certificate is registered to conduct business in the State of West-Virginia at the location above. This certificate is not transferrable and must be displayed at the location for which issued This certificate shall be permanent until cessation of the business for, which the certificate of registratio was granted or until it is suspended, revoked or carrcelled by the Tax Commissioner. Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required. TRAVELING/STREET-VENDORS: Must carry a copy of this certificate in every Vehicle, operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia? atL006 v.4 L1180094016

ATTACHMENT D: PROCESS FLOW DIAGRAM

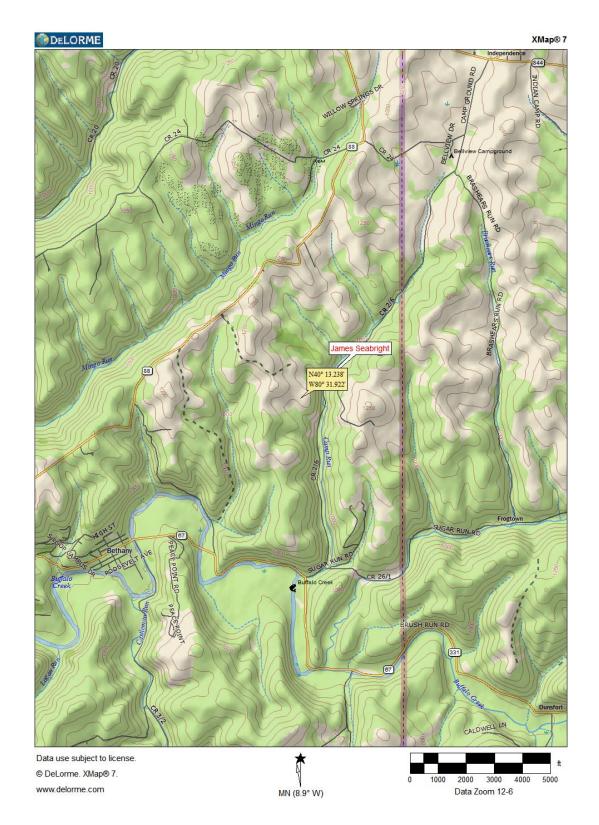
ATTACHMENT E: PROCESS DESCRIPTION

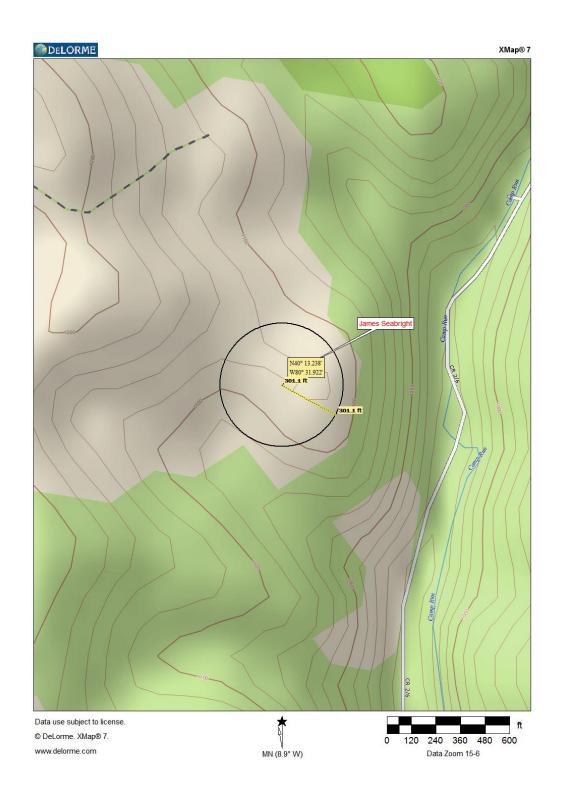

The facility is an oil and natural gas exploration and production facility, responsible for the production of condensate and natural gas. Storage of condensate and produced water also occurs on-site. A description of the facility process is as follows: Condensate, gas and water come from the wellheads to the production units, where the first stage of separation occurs. Produced water is sent from the production units to the produced water tanks. Condensate and residual water are sent to the stabilizer heater. The flash from the stabilizer heater is captured via natural gas-fired engine-driven flash gas compressors. Condensate and produced water flow into condensate and produced water tanks.

The natural gas stream exits the facility for transmission via pipeline. Condensate and produced water are transported offsite via truck. Working, breathing and flashing vapors from the condensate and produced water storage tanks are routed to the vapor combustor with 100% capture efficiency to be burned with at least 98% combustion efficiency. The vapor combustor has one (1) natural gas-fired pilot to ensure a constant flame for combustion.

A process flow diagram reflecting facility operations is shown in Attachment D.

ATTACHMENT F: PLOT PLAN


Please note that the simple plot plan provided is only a representation of production/emissions equipment to be installed. Actual location specifications and equipment placement are not to scale.


<u>NOTE</u>: Image is only a representation of production/emissions equipment. Actual location specifications and equipment placement are not to scale.

SWN Production Company, LLC James Seabright Pad Attachment F: Simple Plot Plan May 2017

ATTACHMENT G: AREA MAPS

SWN Production Company, LLC James Seabright Pad Attachment G: Area Map May 2017

SWN Production Company, LLC James Seabright Pad Attachment G: Area Map with 300' Radius May 2017 ATTACHMENT H: G70-D SECTION APPLICABILITY FORM

ATTACHMENT H – G70-D SECTION APPLICABILITY FORM

General Permit G70-D Registration Section Applicability Form

General Permit G70-D was developed to allow qualified applicants to seek registration for a variety of sources. These sources include gas well affected facilities, storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, pneumatic pumps, reciprocating internal combustion engines (RICEs), tank truck/rail car loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G70-D allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

GENERAL PERM	GENERAL PERMIT G70-D APPLICABLE SECTIONS				
⊠Section 5.0	Gas and Oil Well Affected Facility (NSPS, Subpart OOOO/OOOOa)				
⊠Section 6.0	Storage Vessels Containing Condensate and/or Produced Water ¹				
□Section 7.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO/OOOOa)				
⊠Section 8.0	Control Devices and Emission Reduction Devices not subject to NSPS Subpart OOOO/OOOOa and/or NESHAP Subpart HH				
⊠Section 9.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc				
□Section 10.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO/OOOOa)				
□Section 11.0	Pneumatic Pump Affected Facility (NSPS, Subpart OOOOa)				
□Section 12.0	Fugitive Emissions GHG and VOC Standards (NSPS, Subpart OOOOa)				
⊠Section 13.0	Reciprocating Internal Combustion Engines, Generator Engines				
⊠Section 14.0	Tanker Truck/Rail Car Loading ²				
□Section 15.0	Glycol Dehydration Units ³				

1 Applicants that are subject to Section 6 may also be subject to Section 7 if the applicant is subject to the NSPS, Subparts OOOO or OOOOa control requirements or the applicable control device requirements of Section 8.

2 Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 8.

3 Applicants that are subject to Section 15 may also be subject to the requirements of Section 9 (reboilers). Applicants that are subject to Section 15 may also be subject to control device and emission reduction device requirements of Section 8.

ATTACHMENT I: EMISSIONS UNITS/ERD TABLE

ATTACHMENT I - EMISSION UNITS/EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment L table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type ⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
				after				
EU-ENG1	EP-ENG1	145-hp Caterpillar G3306 NA Engine	TBD	1/1/2011	145-hp	New	NSCR	NSCR
EU-ENG2	EP-ENG2	145-hp Caterpillar G3306 NA Engine	TBD	after 1/1/2011	145-hp	New	NSCR	NSCR
EU-GPU1	EP-GPU1	1.0-mmBtu/hr GPU Burner	TBD	N/A	1.0-mmBtu/hr	New	N/A	N/A
EU-GPU2	EP-GPU2	1.0-mmBtu/hr GPU Burner	TBD	N/A	1.0-mmBtu/hr	New	N/A	N/A
EU-GPU3	EP-GPU3	1.0-mmBtu/hr GPU Burner	TBD	N/A	1.0-mmBtu/hr	New	N/A	N/A
EU-SH1	EP-SH1	1.5-mmBtu/hr Stabilizer Heater	TBD	N/A	1.5-mmBtu/hr	New	N/A	N/A
EU-TANKS- COND	APC-COMB	Six (6) 400-bbl Condensate Tanks Routed to Vapor Combustor	TBD	N/A	400-bbl	New	APC-COMB	APC-COMB
EU-TANKS- PW	APC-COMB	Six (6) 400-bbl Produced Water Tanks Routed to Vapor Combustor	TBD	N/A	400-bbl	New	APC-COMB	APC-COMB
EU-LOAD- COND	APC-COMB	Condensate Truck Loading w/ Vapor Return Routed to Combustor	TBD	N/A	17,445,540 gal/yr	New	Vapor Return and APC- COMB	Vapor Return and APC- COMB
EU-LOAD- PW	APC-COMB	Produced Water Truck Loading w/ Vapor Return Routed to Combustor	TBD	N/A	22,950,543	New	Vapor Return and APC- COMB	Vapor Return and APC- COMB
APC-COMB	APC-COMB	15.0-mmBtu/hr Vapor Combustor	TBD	N/A		New	N/A	N/A
EU-PILOT	APC-COMB	Vapor Combustor Pilot	TBD	N/A		New	N/A	N/A
EU-FUG	EP-FUG	Fugitive Emissions	TBD	N/A	N/A	New	N/A	N/A
EU-HR	EP-HR	Fugitive Haul Road Emissions	TBD	N/A	N/A	New	N/A	N/A

¹ For Emission Units (or Sources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation.

² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

³ When required by rule

⁴ New, modification, removal, existing

⁵ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

⁶ For ERDs use the following numbering system: 1D, 2D, 3D,... or other appropriate designation.

ATTACHMENT J: FUGITIVE EMISSIONS SUMMARY SHEET

Fugitive emissions at this site consist of haul road emissions, condensate and produced water loading operations, and equipment leaks.

			ATTACHMEN	T J – FUGITIVE EMIS	SSIONS SUM	MARY SHE	ET	
		Sources	of fugitive emissions may Use extra pages	y include loading operations for each associated sour				ons, etc.
Sou	rce/Equipm	ent: EU-F	UG					
	k Detection hod Used		☐ Audible, visual, and Dfactory (AVO) inspections	□ Infrared (FLIR) cameras	□ Other (plea	se describe)		⊠ None required
Component	Closed		Source of	Leak Factors	Stream type		Estimated Emi	ssions (tpy)
Туре	Vent System	Count		er (specify))	(gas, liquid, etc.)	VOC	HAP	GHG (methane, CO ₂ e
Pumps	□ Yes □ No				□ Gas □ Liquid □ Both			
Valves	□ Yes ⊠ No	57 – gas 72 – LL	EPA		□ Gas □ Liquid ⊠ Both	0.60 – gas 1.66 – LL	0.01 - gas 0.12 - LL	31.29 – gas 0.41 – LL
Safety Relief Valves	□ Yes ⊠ No	22	EPA		⊠ Gas □ Liquid □ Both	0.45	0.01	23.61
Open Ended Lines	□ Yes □ No				☐ Gas ☐ Liquid ☐ Both			
Sampling Connections	□ Yes □ No				☐ Gas ☐ Liquid ☐ Both			
Connections (Not sampling)	□ Yes ⊠ No	282	EPA		□ Gas ⊠ Liquid □ Both	0.55	0.04	0.13
Compressors	□ Yes ⊠ No	6	EPA		⊠ Gas □ Liquid □ Both	0.12	<0.01	6.44
Flanges	□ Yes ⊠ No	251	EPA		⊠ Gas □ Liquid □ Both	0.23	<0.01	11.94
Other ¹	□ Yes □ No				☐ Gas ☐ Liquid ☐ Both			

Please provide an explanation of the sources of fugitive emissions (e.g. pigging operations, equipment blowdowns, pneumatic controllers, etc.): Equipment leaks

Please indicate if there are any closed vent by passes (include component): $\rm N/A$

Specify all equipment used in the closed vent system (e.g. VRU, ERD, thief hatches, tanker truck/rail car loading, etc.) N/A

Equipment Type	Service ^a	Emission Factor (kg/hr/source) ^b
Valves	Gas Heavy Oil Light Oil Water/Oil	4.5E-03 8.4E-06 2.5E-03 9.8E-05
Pump seals	Gas Heavy Oil Light Oil Water/Oil	2.4E-03 NA 1.3E-02 2.4E-05
Others ^C	Gas Heavy Oil Light Oil Water/Oil	8.8E-03 3.2E-05 7.5E-03 1.4E-02
Connectors	Gas Heavy Oil Light Oil Water/Oil	2.0E-04 7.5E-06 2.1E-04 1.1E-04
Flanges	Gas Heavy Oil Light Oil Water/Oil	3.9E-04 3.9E-07 1.1E-04 2.9E-06
Open-ended lines	Gas Heavy Oil Light Oil Water/Oil	2.0E-03 1.4E-04 1.4E-03 2.5E-04

TABLE 2-4. OIL AND GAS PRODUCTION OPERATIONS AVERAGE EMISSION FACTORS (kg/hr/source)

^aWater/Oil emission factors apply to water streams in oil service with a water content greater than 50%, from the point of origin to the point where the water content reaches 99%. For water streams with a water content greater than 99%, the emission rate is considered negligible.

^bThese factors are for total organic compound emission rates (including non-VOC's such as methane and ethane) and apply to light crude, heavy crude, gas plant, gas production, and off shore facilities. "NA" indicates that not enough data were available to develop the indicated emission factor.

^CThe "other" equipment type was derived from compressors, diaphrams, drains, dump arms, hatches, instruments, meters, pressure relief valves, polished rods, relief valves, and vents. This "other" equipment type should be applied for any equipment type other than connectors, flanges, open-ended lines, pumps, or valves.

ATTACHMENT K: GAS WELL AFFECTED FACILITY DATA SHEET

ATTACHMENT K – GAS WELL AFFECTED FACILITY DATA SHEET

Complete this data sheet if you are the owner or operator of a gas well affected facility for which construction, modification or reconstruction commenced after August 23, 2011. This form must be completed for natural gas well affected facilities regardless of when flowback operations occur (or have occurred).

API Number	Date of Flowback	Date of Well Completion	Green Completion and/or Combustion Device	Subject to OOOO or OOOOa?
047-009-00176 (6H)	TBD	TBD	Green Completion	OOOOa
047-009-00177 (8H)	TBD	TBD	Green Completion	OOOOa
047-009-00175 (10H)	TBD	TBD	Green Completion	OOOOa

Note: If future wells are planned and no API number is available please list as PLANNED. If there are existing wells that commenced construction prior to August 23, 2011, please acknowledge as existing.

This is the same API (American Petroleum Institute) well number(s) provided in the well completion notification and as provided to the WVDEP, Office of Oil and Gas for the well permit. The API number may be provided on the application without the state code (047).

Every oil and gas well permitted in West Virginia since 1929 has been issued an API number. This API is used by agencies to identify and track oil and gas wells.

The API number has the following format: 047-001-00001

Where,

047 =	State code. The state code for WV is 047.
001 =	County Code. County codes are odd numbers, beginning with 001
	(Barbour) and continuing to 109 (Wyoming).
00001=	Well number. Each well will have a unique well number.

ATTACHMENT L: STORAGE VESSELS DATA SHEET

REPRESENTATIVE GAS ANALYSES PROMAX PROCESS SIMULATION RESULTS

ATTACHMENT L – STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water. (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). **Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.**

The following information is **REQUIRED**:

- ⊠ Composition of the representative sample used for the simulation
- ☑ For each stream that contributes to flashing emissions:
 - \boxtimes Temperature and pressure (inlet and outlet from separator(s))
 - ⊠ Simulation-predicted composition
 - ⊠ Molecular weight
 - \boxtimes Flow rate
- ⊠ Resulting flash emission factor or flashing emissions from simulation
- \boxtimes Working/breathing loss emissions from tanks and/or loading emissions if simulation is used to quantify those emissions

Additional information may be requested if necessary.

GENERAL INFORMATION (REQUIRED)

1. Bulk Storage Area Name	2. Tank Name				
Condensate Storage	Six (6) 400-bbl Condensate Storage Tanks				
3. Emission Unit ID number	4. Emission Point ID number				
EU-TANKS-COND	APC-COMB				
5. Date Installed , Modified or Relocated (for existing tanks)	6. Type of change:				
TBD	\boxtimes New construction \square New stored material \square Other				
Was the tank manufactured after August 23, 2011 and on or	□ Relocation				
before September 18, 2015?					
\Box Yes \boxtimes No					
Was the tank manufactured after September 18, 2015?					
\boxtimes Yes \square No					
7A. Description of Tank Modification (<i>if applicable</i>)					
7B. Will more than one material be stored in this tank? If so, a s	separate form must be completed for each material.				
\Box Yes \boxtimes No					
7C. Was USEPA Tanks simulation software utilized?					
\Box Yes \boxtimes No					
If Yes, please provide the appropriate documentation and items	8-42 below are not required.				

1. Bulk Storage Area Name	2. Tank Name
Produced Water Storage	Six (6) 400-bbl Produced Water Storage Tanks
3. Emission Unit ID number	4. Emission Point ID number
EU-TANKS-PW	APC-COMB
5. Date Installed, Modified or Relocated (for existing tanks)	6. Type of change:
TBD	\boxtimes New construction \square New stored material \square Other
Was the tank manufactured after August 23, 2011 and on or	□ Relocation
before September 18, 2015?	
\Box Yes \boxtimes No	
Was the tank manufactured after September 18, 2015?	
🛛 Yes 🗌 No	
7A. Description of Tank Modification (<i>if applicable</i>)	
7B. Will more than one material be stored in this tank? If so, a	separate form must be completed for each material.
\Box Yes \boxtimes No	
7C. Was USEPA Tanks simulation software utilized?	
\Box Yes \boxtimes No	
If Yes, please provide the appropriate documentation and items	8-42 below are not required.

STORAGE TANK DATA TABLE

List all deminimis storage tanks (i.e. lube oil, glycol, diesel etc.)

Source ID # ¹	Status ²	Content ³	Volume ⁴
EU-TANKS- LUBEOIL	NEW	Lube Oil	50 gal
EU-TANKS- LUBEOIL	NEW	Lube Oil	50 gal
EU-TANKS- METHANOL	NEW	Methanol	50 gal
EU-TANKS- METHANOL	NEW	Methanol	50 gal
EU-TANKS- METHANOL	NEW	Methanol	50 gal
EU-TANKS- METHANOL	NEW	Methanol	50 gal
EU-TANKS- METHANOL	NEW	Methanol	50 gal

1. Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the well site. Tanks should be designated T01, T02, T03, etc. 2.

- Enter storage tank Status using the following:

 - EXIST Existing Equipment NEW Installation of New Equipment
 - REM Equipment Removed
- Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, diesel, mercaptan etc. 3.
- Enter the maximum design storage tank volume in gallons. 4.

TABLE 1-B

COMPOSITIONAL ANALYSIS OF THE SEPARATOR GAS, OIL AND MATHEMATICALLY RECOMBINED WELLSTREAM THROUGH $C_{\rm 11+}$

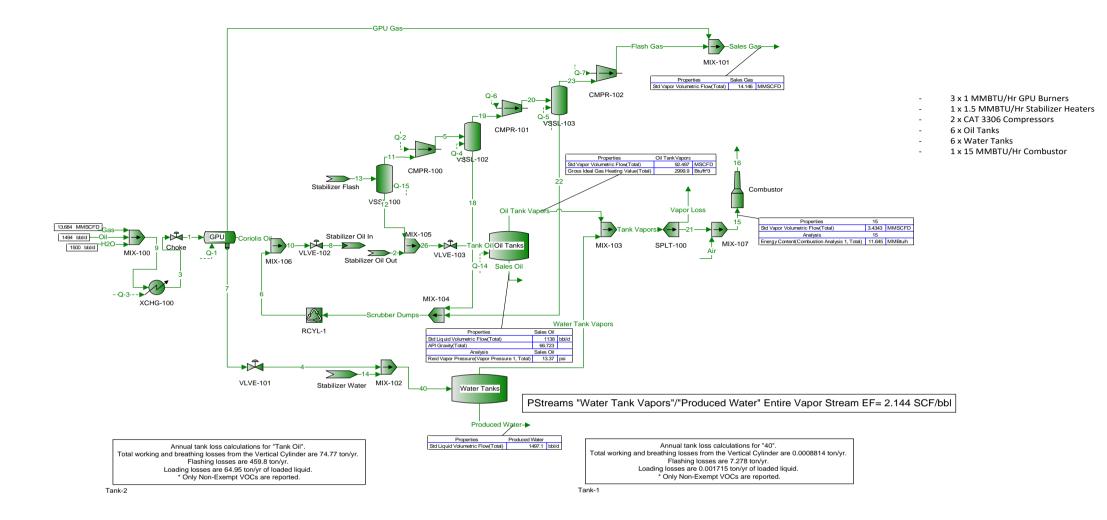
SEPARATOR GOR:	6008 Scf/Sep Bbl
SEPARATOR PRESSURE:	217 psig
SEPARATOR TEMPERATURE:	67 °F

	SEPARA	TOR GAS	SEPARA	TOR OIL	WELLS	TREAM
		*		Liquid		*
Component	Mole%	GPM	Mole %	Volume %	Mole %	GPM
Hydrogen Sulfide	0.000	0.000	0.000	0.000	0.000	0.000
Nitrogen	1.193	0.000	0.042	0.011	1.025	0.000
Carbon Dioxide	0.118	0.000	0.034	0.039	0.106	0.000
Methane	69.492	0.000	4.685	0.710	60.018	0.000
Ethane	18.455	4.975	9.157	5.963	17.096	4.608
Propane	7.401	2.055	13.098	8.786	8.234	2.286
Iso-butane	0.642	0.212	2.873	2.289	0.968	0.319
N-butane	1.867	0.593	11.239	8.627	3.237	1.029
2-2 Dimethylpropane	0.000	0.000	0.238	0.222	0.035	0.013
Iso-pentane	0.236	0.087	3.758	3.347	0.751	0.277
N-pentane	0.353	0.129	7.363	6.499	1.378	0.503
2-2 Dimethylbutane	0.003	0.001	0.096	0.097	0.017	0.007
Cyclopentane	0.004	0.001	0.000	0.000	0.003	0.001
2-3 Dimethylbutane	0.005	0.002	0.320	0.319	0.051	0.021
2 Methylpentane	0.044	0.018	2.229	2.252	0.363	0.152
3 Methylpentane	0.024	0.010	1.379	1.371	0.222	0.091
Other Hexanes	0.000	0.000	0.000	0.000	0.000	0.000
n-Hexane	0.075	0.031	5.275	5.282	0.835	0.346
Methylcyclopentane	0.006	0.002	0.660	0.569	0.102	0.036
Benzene	0.001	0.000	0.081	0.055	0.013	0.004
Cyclohexane	0.007	0.002	0.795	0.659	0.122	0.042
2-Methylhexane	0.008	0.004	1.565	1.772	0.236	0.110
3-Methylhexane	0.009	0.004	1.435	1.604	0.218	0.101
2,2,4 Trimethylpentane	0.000	0.000	0.000	0.000	0.000	0.000
Other Heptanes	0.009	0.004	0.691	0.751	0.109	0.049
n-Heptane	0.016	0.007	3.557	3.996	0.534	0.248
Methylcyclohexane	0.007	0.003	1.566	1.533	0.235	0.095
Toluene	0.001	0.000	0.307	0.251	0.046	0.015
Other C-8's	0.011	0.005	4.313	5.052	0.640	0.310
n-Octane	0.004	0.002	2.178	2.717	0.322	0.166
Ethylbenzene	0.000	0.000	0.273	0.256	0.040	0.016
M&P-Xylene	0.001	0.000	0.311	0.293	0.046	0.018
O-Xylene	0.000	0.000	0.133	0.123	0.019	0.007
Other C-9's	0.003	0.002	3.018	3.949	0.444	0.240
n-Nonane	0.001	0.001	1.361	1.865	0.200	0.113
Other C10's	0.004	0.002	2.773	3.987	0.409	0.243
n-Decane	0.000	0.000	0.826	1.235	0.121	0.075
Undecanes Plus	0.000	0.000	12.372	23.519	1.809	1.423
TOTAL	100.000	8.155	100.000	100.000	100.000	12.968

TABLE 1-B

COMPOSITIONAL ANALYSIS OF THE SEPARATOR GAS, OIL AND MATHEMATICALLY RECOMBINED WELLSTREAM THROUGH $C_{\rm 11+}$

SEPARATOR GOR......6008 Scf/Sep BblSEPARATOR PRESSURE......217 psigSEPARATOR TEMPERATURE......67 °F


UNDECANES PLUS (C11+) FRACTION CHARACTERISTICS					
	Molecular Vapor Gross Heating Value Specific Gravity Weight Volume				
COMPONENT	°API	**	lb/lb-mole	Scf/Gal	***
Gas	N/A	0.8250	156.000	16.558	8,400
Oil	43.689	0.8077	199.000	12.708	130,475
Wellstream	N/A	0.8077	199.000	12.708	N/A

TOTAL SAMPLE CHARACTERISTICS						
			Molecular	Vapor	Gross Hea	ting Value
	Specific	Gravity	Weight	Volume	Dry	Saturated
COMPONENT	°API	**	lb/lb-mole	Scf/Gal	***	***
Gas	N/A	0.7786	22.454	122.629	1,352	1,330
Oil	78.444	0.6740	87.356	24.157	N/A	114,436
Wellstream	N/A	1.1029	31.942	59.190	N/A	N/A

* GPM (gallons per Mscf) determined at 14.85 psia and 60 °F

** Gas specific gravity and wellstream specific gravity determined relative to air (SG=1.000). Oil specific gravity determined relative to water (SG=1.000).

*** Gross Heating Value units for gas (real basis) and oil are BTU/Scf and BTU/Gal, respectively.

ProMax AP-42 Emissions Report Condensate Annual Emissions Vertical Cylinder

Components	Working Losses (ton/yr)	Breathing Losses (ton/yr)	Total Losses (ton/yr)
Mixture	33.81	40.96	74.77
C3	15.85	19.2	35.06
iC4	2.797	3.389	6.186
nC4	8.978	10.88	19.86
2,2-Dimethylbutane	0.02601	0.03152	0.05753
iC5	1.647	1.996	3.643
nC5	2.481	3.006	5.487
2,2-Dimethylpropane	0.08393	0.1017	0.1856
Cyclopentane	0.005898	0.007146	0.01304
2,3-Dimethylbutane	0.05982	0.07248	0.1323
2-Methylpentane	0.3886	0.4708	0.8594
3-Methylpentane	0.2158	0.2614	0.4772
C6	0.6612	0.8011	1.462
Methylcyclopentane	0.07005	0.08488	0.1549
Benzene	0.00539	0.006531	0.01192
Cyclohexane	0.06046	0.07325	0.1337
2-Methylhexane	0.02538	0.03075	0.05614
3-Methylhexane	0.02338	0.09977	0.1821
	0.08234		0.1821
2,2,4-Trimethylpentane C7		0	
	0.1779	0.2156	0.3935
Methylcyclohexane	0.0653	0.07912	0.1444
Toluene	0.007022	0.008508	0.01553
C8	0.08781	0.1064	0.1942
Ethylbenzene	0.002316	0.002807	0.005123
m-Xylene	0.003261	0.003951	0.007212
o-Xylene	0.0007349	0.0008905	0.001625
C9	0.01865	0.02259	0.04124
C10	0.004849	0.005875	0.01072
C11	0.001107	0.001341	0.002448
C12	0.0002684	0.0003251	0.0005935
C13	6.73E-05	8.15E-05	0.0001487
C14	1.70E-05	2.06E-05	3.76E-05
C15	4.67E-06	5.66E-06	1.03E-05
C16	1.01E-06	1.23E-06	2.24E-06
C17	2.27E-07	2.76E-07	5.03E-07
C18	7.05E-08	8.54E-08	1.56E-07
C19	1.55E-08	1.87E-08	3.42E-08
C20	3.32E-09	4.02E-09	7.33E-09
C21	8.75E-10	1.06E-09	1.93E-09
C22	2.31E-10	2.80E-10	5.11E-10
C23	5.03E-11	6.09E-11	1.11E-10
C24	1.15E-11	1.39E-11	2.54E-11
C25	1.99E-12	2.41E-12	4.40E-12
C26	1.37E-12	1.66E-12	3.03E-12
C27	1.92E-13	2.32E-13	4.24E-13
C28	2.59E-14	3.14E-14	5.73E-14
C29	9.46E-15	1.15E-14	2.09E-14
C30	3.57E-15	4.32E-15	7.89E-15

ProMax Loading Losses Report Condensate Annual Emissions Tank Truck or Rail Tank Car with Submerged Loading: Dedicated Normal Service

Componente		w llowely looding loopoo (lb/br)
Components	Annual Loading Losses (ton/yr)	IX. Hourly Loading Losses (lb/hr)
Mixture	64.95	33.45
C3	30.45	15.68
iC4	5.373	2.767
nC4	17.25	8.883
2,2-Dimethylbutane	0.04997	0.02574
iC5	3.164	1.63
nC5	4.766	2.455
2,2-Dimethylpropane	0.1612	0.08305
Cyclopentane	0.01133	0.005836
2,3-Dimethylbutane	0.1149	0.05919
2-Methylpentane	0.7465	0.3845
3-Methylpentane	0.4145	0.2135
C6	1.27	0.6542
Methylcyclopentane	0.1346	0.06931
Benzene	0.01035	0.005333
Cyclohexane	0.1161	0.05982
2-Methylhexane	0.04876	0.02511
3-Methylhexane	0.1582	0.08147
2,2,4-Trimethylpentane	0	0
C7	0.3418	0.176
Methylcyclohexane	0.1254	0.06461
Toluene	0.01349	0.006948
C8	0.1687	0.08688
Ethylbenzene	0.00445	0.002292
m-Xylene	0.006265	0.003227
o-Xylene	0.001412	0.0007272
C9	0.03582	0.01845
C10	0.009315	0.004798
C11	0.002126	0.001095
C12	0.0005155	0.0002655
C13	1.29E-04	6.65E-05
C14	3.26E-05	1.68E-05
C15	8.97E-06	4.62E-06
C16	1.94E-06	1.00E-06
C10 C17	4.37E-07	2.25E-07
C17 C18	1.35E-07	6.98E-08
C18 C19	2.97E-08	1.53E-08
C19 C20	6.37E-08	3.28E-09
C20 C21		
	1.68E-09	8.65E-10
C22	4.44E-10	2.29E-10
C23	9.66E-11	4.97E-11
C24	2.21E-11	1.14E-11
C25	3.82E-12	1.97E-12
C26	2.63E-12	1.36E-12
C27	3.68E-13	1.90E-13
C28	4.98E-14	2.57E-14
C29	1.82E-14	9.36E-15
C30	6.85E-15	3.53E-15

Flashing Emissions Report Condensate Annual Emissions Tank flashed at the daily maximum surface temperature (56.81 °F) and the atmospheric pressure of Pittsburgh, Pennsylvania (14.11 psia)

Components	Flashing Losses (ton/yr)
Mixture	459.8
C3	206.1
iC4	38.6
nC4	123.6
2,2-Dimethylbutane	0.3586
iC5	23.59
nC5	36.21
2,2-Dimethylpropane	1.201
Cyclopentane	0.09783
2,3-Dimethylbutane	0.847
2-Methylpentane	5.699
3-Methylpentane	3.189
C6	9.376
Methylcyclopentane	1.179
Benzene	0.1336
Cyclohexane	1.084
2-Methylhexane	1.466
3-Methylhexane	1.228
2,2,4-Trimethylpentane	0
C7	2.742
Methylcyclohexane	1.023
Toluene	0.1698
C8	1.384
Ethylbenzene	0.05146
m-Xylene	0.0551
o-Xylene	0.01989
C9	0.2946
C10	0.08277
C11	0.01949
C12	0.005065
C13	0.001346
C14	0.0003669
C15	0.0001028
C16	2.84E-05
C17	7.83E-06
C18	2.82E-06
C19	8.34E-07
C20	1.52E-07
C21	4.18E-08
C22	1.63E-08
C23	4.05E-09
C24	6.54E-10
C25	1.20E-10
C26	6.22E-11
C27	7.03E-12
C28	5.06E-12
C29	1.83E-12
C30	3.85E-12

ProMax AP-42 Emissions Report Water Annual Emissions Vertical Cylinder

Components	Working Losses (ton/yr)	Breathing Losses (ton/yr)	Total Losses (ton/yr)
Mixture	0.0007998	8.17E-05	0.0008814
C3	0.000727	7.42E-05	0.0008013
iC4	1.83E-05	1.87E-06	2.02E-05
nC4	4.78E-05	4.89E-06	5.27E-05
2,2-Dimethylbutane	1.91E-09	1.95E-10	2.11E-09
iC5	1.67E-06	1.71E-07	1.84E-06
nC5	2.22E-07	2.27E-08	2.45E-07
2,2-Dimethylpropane	8.64E-08	8.83E-09	9.53E-08
Cyclopentane	7.56E-08	7.72E-09	8.33E-08
2,3-Dimethylbutane	2.35E-08	2.40E-09	2.59E-08
2-Methylpentane	2.87E-08	2.93E-09	3.16E-08
3-Methylpentane	8.88E-08	9.07E-09	9.79E-08
C6	7.62E-09	7.79E-10	8.40E-09
Methylcyclopentane	6.47E-08	6.61E-09	7.13E-08
Benzene	3.14E-06	3.21E-07	3.47E-06
Cyclohexane	2.06E-07	2.11E-08	2.27E-07
2-Methylhexane	3.83E-10	3.91E-11	4.22E-10
3-Methylhexane	1.70E-09	1.74E-10	1.88E-09
2,2,4-Trimethylpentane	0	0	0
C7	3.90E-10	3.99E-11	4.30E-10
Methylcyclohexane	1.89E-08	1.93E-09	2.08E-08
Toluene	8.05E-07	8.22E-08	8.87E-07
C8	8.91E-12	9.10E-13	9.82E-12
Ethylbenzene	7.43E-08	7.59E-09	8.19E-08
m-Xylene	5.40E-08	5.51E-09	5.95E-08
o-Xylene	2.81E-08	2.87E-09	3.10E-08
C9	9.18E-13	9.37E-14	1.01E-12
C10	5.64E-15	5.76E-16	6.22E-15
C11	5.82E-16	5.95E-17	6.42E-16
C12	8.18E-16	8.35E-17	9.01E-16
C13	4.57E-16	4.67E-17	5.04E-16
C14	1.61E-16	1.65E-17	1.78E-16
C15	6.19E-17	6.32E-18	6.82E-17
C16	3.36E-17	3.44E-18	3.71E-17
C17	1.64E-17	1.68E-18	1.81E-17
C18	6.98E-18	7.13E-19	7.69E-18
C19	1.85E-18	1.89E-19	2.04E-18
C20	3.67E-19	3.75E-20	4.05E-19
C21	9.39E-20	9.59E-21	1.04E-19
C22	3.25E-20	3.32E-21	3.59E-20
C23	9.63E-21	9.84E-22	1.06E-20
C24	2.17E-21	2.21E-22	2.39E-21
C25	4.97E-22	5.08E-23	5.48E-22
C26	4.29E-22	4.38E-23	4.73E-22
C27	7.32E-23	7.47E-24	8.07E-23
C28	1.47E-23	1.50E-24	1.62E-23
C29	4.80E-24	4.90E-25	5.29E-24
C30	2.46E-24	2.51E-25	2.71E-24

ProMax Loading Losses Report Water Annual Emissions Tank Truck or Rail Tank Car with Submerged Loading: Dedicated Normal Service

Components	Annual Loading Losses (ton/yra)	· Hourby Looding Loopoo (lb/br)
Mixture	0.001715	0.0006911
C3	0.001715	0.0006283
iC4		
	3.93E-05	1.58E-05
nC4	0.0001026	4.13E-05
2,2-Dimethylbutane	4.10E-09	1.65E-09
iC5	3.58E-06	1.44E-06
nC5	4.76E-07	1.92E-07
2,2-Dimethylpropane	1.85E-07	7.47E-08
Cyclopentane	1.62E-07	6.53E-08
2,3-Dimethylbutane	5.03E-08	2.03E-08
2-Methylpentane	6.15E-08	2.48E-08
3-Methylpentane	1.90E-07	7.68E-08
C6	1.63E-08	6.59E-09
Methylcyclopentane	1.39E-07	5.59E-08
Benzene	6.74E-06	2.72E-06
Cyclohexane	4.42E-07	1.78E-07
2-Methylhexane	8.21E-10	3.31E-10
3-Methylhexane	3.65E-09	1.47E-09
2,2,4-Trimethylpentane	0	0
C7	8.37E-10	3.37E-10
Methylcyclohexane	4.05E-08	1.63E-08
Toluene	1.73E-06	6.95E-07
C8	1.91E-11	7.70E-12
Ethylbenzene	1.59E-07	6.42E-08
m-Xylene	1.16E-07	4.67E-08
o-Xylene	6.03E-08	2.43E-08
C9	1.97E-12	7.93E-13
C10	1.21E-14	4.87E-15
C11	1.25E-15	5.03E-16
C12	1.75E-15	7.07E-16
C13	9.81E-16	3.95E-16
C14	3.46E-16	1.40E-16
C15	1.33E-16	5.35E-17
C16	7.21E-17	2.91E-17
C17	3.52E-17	1.42E-17
C18	1.50E-17	6.03E-18
C19	3.97E-18	1.60E-18
C20	7.87E-19	3.17E-19
C21	2.01E-19	8.11E-20
C22	6.98E-20	2.81E-20
C23	2.07E-20	8.32E-21
C24	4.65E-21	1.87E-21
C25	1.07E-21	4.30E-22
C25 C26	9.20E-22	4.30E-22 3.71E-22
C28 C27	9.20E-22 1.57E-22	6.32E-23
C27 C28	3.15E-23	0.32E-23 1.27E-23
C29	1.03E-23	4.15E-24
C30	5.27E-24	2.12E-24

Flashing Emissions Report Water Annual Emissions Tank flashed at the daily maximum surface temperature (56.81 °F) and the atmospheric pressure of Pittsburgh, Pennsylvania (14.11 psia)

Components	Flashing Losses (ton/yr)
Mixture	7.278
C3	4.838
iC4	0.4411
nC4	1.486
2,2-Dimethylbutane	0.001175
iC5	0.1893
nC5	0.1038
2,2-Dimethylpropane	0.007283
Cyclopentane	0.003371
2,3-Dimethylbutane	0.007219
2-Methylpentane	0.0229
3-Methylpentane	0.0309
C6	0.01835
Methylcyclopentane	0.01844
Benzene	0.01383
Cyclohexane	0.03477
2-Methylhexane	0.004783
3-Methylhexane	0.004925
2,2,4-Trimethylpentane	0
C7	0.004298
Methylcyclohexane	0.01667
Toluene	0.01729
C8	0.0008866
Ethylbenzene	0.005169
m-Xylene	0.005328
o-Xylene	0.00206
C9	0.0002397
C10	1.90E-05
C11	5.62E-06
C12	6.14E-06
C13	4.39E-06
C14	2.46E-06
C15	1.37E-06
C16	9.09E-07
C17	4.68E-07
C18	2.29E-07
C19	7.90E-08
C20	1.54E-08
C21	4.27E-09
C22	1.65E-09
C23	4.08E-10
C24	6.59E-11
C25	1.19E-11
C26	6.12E-12
C27	6.89E-13
C28	4.85E-13
C29	1.75E-13
C30	3.63E-13
000	3.03E-13

ATTACHMENT M: NATURAL GAS FIRED FUEL BURNING UNITS DATA SHEET

AP-42 EMISSION FACTORS

ATTACHMENT M – SMALL HEATERS AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART DC DATA SHEET

Complete this data sheet for each small heater and reboiler not subject to 40CFR60 Subpart Dc at the facility. *The Maximum Design Heat Input (MDHI) must be less than 10 MMBTU/hr.*

Emission Unit ID# ¹	Emission Point ID# ²	Emission Unit Description (manufacturer, model #)	Year Installed/ Modified	Type ³ and Date of Change	Maximum Design Heat Input (MMBTU/hr) ⁴	Fuel Heating Value (BTU/scf) ⁵
EU-GPU1	EP-GPU1	Gas Production Unit Burner	TBD	NEW	1.0	905
EU-GPU2	EP-GPU2	Gas Production Unit Burner	TBD	NEW	1.0	905
EU-GPU3	EP-GPU3	Gas Production Unit Burner	TBD	NEW	1.0	905
EU-SH1	EP-SH1	Stabilizer Heater	TBD	NEW	1.5	905

- ¹ Enter the appropriate Emission Unit (or Source) identification number for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.
- ² Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.
- ³ New, modification, removal
- ⁴ Enter design heat input capacity in MMBtu/hr.
- ⁵ Enter the fuel heating value in BTU/standard cubic foot.

	N	O _x ^b	СО		
Combustor Type (MMBtu/hr Heat Input) [SCC]	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating	
Large Wall-Fired Boilers (>100) [1-01-006-01, 1-02-006-01, 1-03-006-01]					
Uncontrolled (Pre-NSPS) ^c	280	А	84	В	
Uncontrolled (Post-NSPS) ^c	190	А	84	В	
Controlled - Low NO _x burners	140	А	84	В	
Controlled - Flue gas recirculation	100	D	84	В	
Small Boilers (<100) [1-01-006-02, 1-02-006-02, 1-03-006-02, 1-03-006-03]					
Uncontrolled	100	В	84	В	
Controlled - Low NO _x burners	50	D	84	В	
Controlled - Low NO _x burners/Flue gas recirculation	32	С	84	В	
Tangential-Fired Boilers (All Sizes) [1-01-006-04]					
Uncontrolled	170	А	24	С	
Controlled - Flue gas recirculation	76	D	98	D	
Residential Furnaces (<0.3) [No SCC]					
Uncontrolled	94	В	40	В	

Table 1.4-1. EMISSION FACTORS FOR NITROGEN OXIDES (NOx) AND CARBON MONOXIDE (CO)FROM NATURAL GAS COMBUSTIONa

Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. To convert from $lb/10^{6}$ scf to $kg/10^{6}$ m³, multiply by 16. Emission factors are based on an average natural gas higher heating value of 1,020 Btu/scf. To convert from $lb/10^{6}$ scf to lb/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. SCC = Source Classification Code. ND = no data. NA = not applicable.

^b Expressed as NO₂. For large and small wall fired boilers with SNCR control, apply a 24 percent reduction to the appropriate NO x emission factor. For tangential-fired boilers with SNCR control, apply a 13 percent reduction to the appropriate NO x emission factor.
 ^c NSPS=New Source Performance Standard as defined in 40 CFR 60 Subparts D and Db. Post-NSPS units are boilers with greater than 250 MMBtu/hr of

^c NSPS=New Source Performance Standard as defined in 40 CFR 60 Subparts D and Db. Post-NSPS units are boilers with greater than 250 MMBtu/hr of heat input that commenced construction modification, or reconstruction after August 17, 1971, and units with heat input capacities between 100 and 250 MMBtu/hr that commenced construction modification, or reconstruction after June 19, 1984.

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
91-57-6	2-Methylnaphthalene ^{b, c}	2.4E-05	D
56-49-5	3-Methylchloranthrene ^{b, c}	<1.8E-06	Е
	7,12-Dimethylbenz(a)anthracene ^{b,c}	<1.6E-05	Е
83-32-9	Acenaphthene ^{b,c}	<1.8E-06	Е
203-96-8	Acenaphthylene ^{b,c}	<1.8E-06	Е
120-12-7	Anthracene ^{b,c}	<2.4E-06	Е
56-55-3	Benz(a)anthracene ^{b,c}	<1.8E-06	Е
71-43-2	Benzene ^b	2.1E-03	В
50-32-8	Benzo(a)pyrene ^{b,c}	<1.2E-06	Е
205-99-2	Benzo(b)fluoranthene ^{b,c}	<1.8E-06	Е
191-24-2	Benzo(g,h,i)perylene ^{b,c}	<1.2E-06	Е
205-82-3	Benzo(k)fluoranthene ^{b,c}	<1.8E-06	Е
106-97-8	Butane	2.1E+00	Е
218-01-9	Chrysene ^{b,c}	<1.8E-06	Е
53-70-3	Dibenzo(a,h)anthracene ^{b,c}	<1.2E-06	Е
25321-22-6	Dichlorobenzene ^b	1.2E-03	Е
74-84-0	Ethane	3.1E+00	Е
206-44-0	Fluoranthene ^{b,c}	3.0E-06	Е
86-73-7	Fluorene ^{b,c}	2.8E-06	Е
50-00-0	Formaldehyde ^b	7.5E-02	В
110-54-3	Hexane ^b	1.8E+00	Е
193-39-5	Indeno(1,2,3-cd)pyrene ^{b,c}	<1.8E-06	Е
91-20-3	Naphthalene ^b	6.1E-04	Е
109-66-0	Pentane	2.6E+00	Е
85-01-8	Phenanathrene ^{b,c}	1.7E-05	D

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM NATURAL GAS COMBUSTION^a

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM NATURAL GAS COMBUSTION (Continued)

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
74-98-6	Propane	1.6E+00	Е
129-00-0	Pyrene ^{b, c}	5.0E-06	Е
108-88-3	Toluene ^b	3.4E-03	С

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by 16. To convert from 1b/10⁶ scf to lb/MMBtu, divide by 1,020. Emission Factors preceeded with a less-than symbol are based on method detection limits.

^b Hazardous Air Pollutant (HAP) as defined by Section 112(b) of the Clean Air Act.

^c HAP because it is Polycyclic Organic Matter (POM). POM is a HAP as defined by Section 112(b) of the Clean Air Act.

^d The sum of individual organic compounds may exceed the VOC and TOC emission factors due to differences in test methods and the availability of test data for each pollutant.

ATTACHMENT N: INTERNAL COMBUSTION ENGINE DATA SHEETS

ENGINE SPECIFICATION SHEETS AP-42 AND EPA EMISSION FACTORS

ATTACHMENT N – INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. *Generator(s) and microturbine generator(s) shall also use this form.*

Emission Unit I	nission Unit ID#1 EU-ENG1		EU-l	ENG2				
Engine Manufac	cturer/Model	Caterpillar	G3306 NA	Caterpillar	G3306 NA			
Manufacturers H	Rated bhp/rpm	145-hp/1	,800-rpm	145-hp/1	,800-rpm			
Source Status ²		N	IS	N	15			
Date Installed/ Modified/Remo	ved/Relocated ³	TI	BD	T	BD			
Engine Manufac /Reconstruction	ctured Date ⁴	After 1	/1/2011	After 1	/1/2011			
Check all applicable Federal Rules for the engine (include EPA Certificate of Conformity if applicable) ⁵		 ⋈ 40CFR60 Subpart JJJJ □ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? ⋈ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 		 ⋈ 40CFR60 Subpart JJJJ □ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? ⋈ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 		40CFR60 Subpart JJJJ JJJJJ Certified? 40CFR60 Subpart IIII IIII Certified? 40CFR63 Subpart ZZZZ NESHAP ZZZZ/NSPS JJJJ Window NESHAP ZZZZ Remote Sources		
Engine Type ⁶		45	RB	45	RB			
APCD Type ⁷		NS	CR	NS	SCR			
Fuel Type ⁸		PQ		PQ				
H ₂ S (gr/100 scf))	Negli	igible	Negl	igible			
Operating bhp/r	pm	145-hp/1,800-rpm		145-hp/1	,800-rpm			
BSFC (BTU/bhg	p-hr)	8,625		8,0	625			
Hourly Fuel Th	roughput	1,382 ft ³ /hr gal/hr		1,382 ft ³ /hr gal/hr		ft ³ /hr gal/hr		
Annual Fuel The (Must use 8,760) emergency gene	hrs/yr unless	12.11 MMft ³ /yr gal/yr		12.11 MMft ³ /yr gal/yr		1MMft ³ /yr gal/yr		
Fuel Usage or H Operation Meter		Yes 🗆	No 🛛	Yes 🗆	No 🖂	Yes 🗆 No 🗆		
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year) ¹¹	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	
MD	NO _x	0.32	1.40	0.32	1.40			
MD	СО	0.64	2.80	0.64	2.80			
MD	VOC	0.22	0.98	0.22	0.98			
AP	SO ₂	< 0.01	< 0.01	< 0.01	< 0.01			
AP	PM10	0.01	0.05	0.01	0.05			
MD	Formaldehyde	0.09	0.38	0.09	0.38			
AP	Total HAPs	0.10	0.44	0.10	0.44			
MD and EPA	GHG (CO ₂ e)	155.19	679.73	155.19	679.73			

1 Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion engine/generator engine located at the well site. Multiple engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.

2 Enter the Source Status using the following codes:

NS	Construction of New Source (installation)	ES	Existing Source
MS	Modification of Existing Source	RS	Relocated Source
REM	Removal of Source		

- 3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.
- 4 Enter the date that the engine was manufactured, modified or reconstructed.
- 5 Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6 Enter the Engine Type designation(s) using the following codes:

2SLB	Two Stroke Lean Burn	4SRB	Four St	roke Rich Burn				
4SLB	Four Stroke Lean Burn							
Enter th	e Air Pollution Control Device (APCD) type designa	tion(s) ı	using the fo	ollowing codes:				
A/F	Air/Fuel Ratio		IR	Ignition Retard				
HEIS	High Energy Ignition System		SIPC	Screw-in Preco	mbustion Cha	mber	s	
PSC	Prestratified Charge		LEC	Low Emission	Combustion			
NSCR	Rich Burn & Non-Selective Catalytic Reduction		OxCat	Oxidation Cata	lyst			
SCR	Lean Burn & Selective Catalytic Reduction							
Enter th	e Fuel Type using the following codes:							
PQ	Pipeline Quality Natural Gas RO	G R	aw Natura	l Gas /Productio	n Gas	D	Diesel	
Entont	he Detential Emissions Date Deference design	otion 1	ing the f	allowing and	Attach all	fai	anaa data u	and
Entert	ne Potential Emissions Data Reference design	ation u	sing the f	onowing codes	s. Attach all	refei	ence data u	seu.
MD	Manufacturer's Data	A	AP AP	-42				
GR	GRI-HAPCalc TM	C	DT Oth	ner	(please list)			
	4SLB Enter th A/F HEIS PSC NSCR SCR Enter th PQ Enter t MD	4SLB Four Stroke Lean Burn Enter the Air Pollution Control Device (APCD) type designal A/F Air/Fuel Ratio HEIS High Energy Ignition System PSC Prestratified Charge NSCR Rich Burn & Non-Selective Catalytic Reduction SCR Lean Burn & Selective Catalytic Reduction Enter the Fuel Type using the following codes: PQ Pipeline Quality Natural Gas RO Enter the Potential Emissions Data Reference design MD MD Manufacturer's Data	4SLB Four Stroke Lean Burn Enter the Air Pollution Control Device (APCD) type designation(s) to A/F Air/Fuel Ratio HEIS High Energy Ignition System PSC Prestratified Charge NSCR Rich Burn & Non-Selective Catalytic Reduction SCR Lean Burn & Selective Catalytic Reduction Enter the Fuel Type using the following codes: PQ PQ Pipeline Quality Natural Gas RG Enter the Potential Emissions Data Reference designation using MD Manufacturer's Data	4SLB Four Stroke Lean Burn Enter the Air Pollution Control Device (APCD) type designation(s) using the for A/F Air/Fuel Ratio HEIS High Energy Ignition System SIPC PSC Prestratified Charge NSCR Rich Burn & Non-Selective Catalytic Reduction SCR Lean Burn & Selective Catalytic Reduction Enter the Fuel Type using the following codes: PQ Pipeline Quality Natural Gas RG Raw Natura Enter the Potential Emissions Data Reference designation using the following the following codes: PQ Manufacturer's Data	4SLB Four Stroke Lean Burn Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes: A/F Air/Fuel Ratio IR Ignition Retard HEIS High Energy Ignition System SIPC Screw-in Preco PSC Prestratified Charge LEC Low Emission NSCR Rich Burn & Non-Selective Catalytic Reduction OxCat Oxidation Cata SCR Lean Burn & Selective Catalytic Reduction OxCat Oxidation Cata PQ Pipeline Quality Natural Gas RG Raw Natural Gas /Productio Enter the Potential Emissions Data Reference designation using the following codes: MD Manufacturer's Data AP AP-42	4SLB Four Stroke Lean Burn Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes: A/F Air/Fuel Ratio HEIS High Energy Ignition System PSC Prestratified Charge NSCR Rich Burn & Non-Selective Catalytic Reduction SCR Lean Burn & Selective Catalytic Reduction Enter the Fuel Type using the following codes: PQ Pipeline Quality Natural Gas Riter the Potential Emissions Data Reference designation using the following codes. Attach all MD Manufacturer's Data	4SLB Four Stroke Lean Burn Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes: A/F Air/Fuel Ratio HEIS High Energy Ignition System PSC Prestratified Charge SCR Rich Burn & Non-Selective Catalytic Reduction NSCR Rich Burn & Selective Catalytic Reduction SCR Lean Burn & Selective Catalytic Reduction Enter the Fuel Type using the following codes: PQ PQ Pipeline Quality Natural Gas Reference designation using the following codes. Attach all reference MD Manufacturer's Data AP AP-42	4SLB Four Stroke Lean Burn Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes: A/F Air/Fuel Ratio HEIS High Energy Ignition System PSC Prestratified Charge SCR Rich Burn & Non-Selective Catalytic Reduction NSCR Rich Burn & Selective Catalytic Reduction SCR Lean Burn & Selective Catalytic Reduction Enter the Fuel Type using the following codes: PQ Pipeline Quality Natural Gas Reference designation using the following codes. Attach all reference data u MD Manufacturer's Data

10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

Engine Air Pollution Control Device (Emission Unit ID# APC-NSCR-ENG-1, ENG-2 use extra pages as necessary)

Air Pollution Control Device Manufacturer's Data Sheet included? Yes \boxtimes No \square

⊠ NSCR	\Box SCR	□ Oxidation Catalyst
Provide details of process control used for proper n	nixing/control of red	acing agent with gas stream:
Manufacturer: N/A	Model #	N/A
Design Operating Temperature: 1,101 °F	Design §	as volume: 678 scfm
Service life of catalyst:	Provide	manufacturer data? 🛛 Yes 🛛 No
Volume of gas handled: acfm at °F		g temperature range for NSCR/Ox Cat: 0 °F to 1,250 °F
Reducing agent used, if any:	Ammoni	a slip (ppm):
Pressure drop against catalyst bed (delta P):	inches of H ₂ O	
Provide description of warning/alarm system that p Is temperature and pressure drop of catalyst require □ Yes ⊠ No		
How often is catalyst recommended or required to b	be replaced (hours of	operation)?
How often is performance test required?		

NSPS/GACT,

G3306 NA

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA

CATERPILLAR

ENGINE SPEED (rpm):	1800	FUEL SYSTEM:	LPG IMPCO
COMPRESSION RATIO	10,5:1	WITH CUSTOMER SUPPLIED AIR F	UEL RATIO CONTROL
JACKET WATER OUTLET (°F):	210	SITE CONDITIONS:	
COOLING SYSTEM:	JW+OC	FUEL:	Nat Gas
IGNITION SYSTEM	MAG	FUEL PRESSURE RANGE(psig):	1.5-10.0
EXHAUST MANIFOLD:	WC	FUEL METHANE NUMBER:	84.8
COMBUSTION	Catalyst	FUEL LHV (Btu/scf):	905
EXHAUST O2 EMISSION LEVEL %:	0.5	ALTITUDE(ft):	500
SET POINT TIMING:	30.0	MAXIMUM INLET AIR TEMPERATURE(°F):	77
		NAMEPLATE RATING:	145 bhp@1800rpm

		MAXIMUM RATING	SITE RATING AT MAXIMUM INLET AIR TEMPERATURE			
RATING	NOTES LOAD	100%	100%	75%	50%	
ENGINE POWER	(1)	bhp	145	145	109	72
INLET AIR TEMPERATURE		°F	77	77	77	77

ENGINE DATA						
FUEL CONSUMPTION (LHV)	(2)	Btu/bhp-hr	7775	7775	8318	9509
FUEL CONSUMPTION (HHV)	(2)	Btu/bhp-hr	8625	8625	9227	10548
AIR FLOW	(3)(4)	lb/hr	922	922	739	556
AIR FLOW WET (77°F, 14.7 psia)	(3)(4)	scfm	208	208	167	125
INLET MANIFOLD PRESSURE	(5)	in Hg(abs)	26.2	26.2	21.8	17.6
EXHAUST STACK TEMPERATURE	(6)	°F	1101	1101	1067	1037
EXHAUST GAS FLOW (@ stack temp, 14.5 psia)	(7)(4)	ft3/min	678	678	532	393
EXHAUST GAS MASS FLOW	(7)(4)	lb/hr	978	978	784	590

EMISSIONS DATA						
NOx (as NO2)	(8)	g/bhp-hr	13.47	13.47	12.15	9.76
co	(8)	g/bhp-hr	13.47	13.47	11.44	9.56
THC (mol. wt. of 15.84)	(8)	g/bhp-hr	2.20	2.20	2.49	3.22
NMHC (mol. wt. of 15.84)	(8)	g/bhp-hr	0.33	0.33	0.37	0.48
NMNEHC (VOCs) (mol. wt. of 15.84)	(8)(9)	g/bhp-hr	0.22	0.22	0.25	0.32
HCHO (Formaldehyde)	(8)	g/bhp-hr	0.27	0.27	0.31	0.33
002	(8)	g/bhp-hr	485	485	525	601
EXHAUST OXYGEN	(10)	% DRY	0.5	0.5	0.5	0.5

HEAT REJECTION						
HEAT REJ. TO JACKET WATER (JW)	(11)	Btu/min	6049	6049	5237	4455
HEAT REJ. TO ATMOSPHERE	(11)	Btu/min	751	751	602	459
HEAT REJ. TO LUBE OIL (OC)	(11)	Btu/min	990	990	857	729

Btu/min

7842

(12)

HEAT EXCHANGER SIZING CRITERIA TOTAL JACKET WATER CIRCUIT (JW+OC)

CONDITIONS AND DEFINITIONS Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Max, rating is the maximum capability for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

For notes information consult page three.

772 Airfield Lane Sheridan, WY 82801 Office: 307.673.0883 EST@emittechnologies.com

Prepared For:

Jason Stinson MIDCON COMPRESSION, LP

MANUFACTURED ON OR AFTER 1/1/2011

INFORMATION PROVIDED BY CATERPILLAR

Engine:	G3306 NA
Horsepower	145
RPM:	1800
Compression Ratio:	10.5:1
Exhaust Flow Rate:	678 CFM
Exhaust Temperature:	1101 °F
Reference:	DM5053-07
Fuel:	Natural Gas
Annual Operating Hours:	8760

Uncontrolled Emissions

NOx:	13.47 g/bhp-hr
CO:	13.47 g/bhp-hr
THC:	2.20 g/bhp-hr
NMHC:	0.33 g/bhp-hr
NMNEHC:	0.22 g/bhp-hr
HCHO:	0.27 g/bhp-hr
Oxygen:	0.50 %

POST CATALYST EMISSIONS

NOx:	<1.0 g/bhp-hr
CO:	<2.0 g/bhp-hr
VOC:	<0.7 g/bhp-hr

CONTROL EQUIPMENT

Catalytic Converter

Model: Catalyst Type: Manufacturer: Element Size: Catalyst Elements: Housing Type: Catalyst Installation: Construction: Sample Ports: Inlet Connections: Outlet Connections: Configuration: Silencer: Silencer Grade: Insertion Loss:

EAH-1200T-0404F-21CEE

NSCR, Precious group metals EMIT Technologies, Inc. Round 12 x 3.5

1 2 Element Capacity Accessible Housing 10 gauge Carbon Steel 6 (0.5" NPT) 4" Flat Face Flange 4" Flat Face Flange End In / End Out Integrated Hospital 35-40 dBA

Air Fuel Ratio Controller

Model: ENG-S-075-T EMIT Technologies, Inc. Manufacturer: EDGE NG Air Fuel Ratio Controller Description: 4-Wire Narrowband O2 Sensor Digital Power Valve O2 Sensor Weldment Wiring Harness (2) 25' Type K Thermocouple Digital Power Valve Size: 0.75" NPT

Table 3.2-3. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE RICH-BURN ENGINES^a (SCC 2-02-002-53)

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating					
Criteria Pollutants and Greenhous	Criteria Pollutants and Greenhouse Gases						
NO _x ^c 90 - 105% Load	2.21 E+00	А					
NO _x ^c <90% Load	2.27 E+00	С					
CO ^c 90 - 105% Load	3.72 E+00	А					
CO ^c <90% Load	3.51 E+00	С					
CO ₂ ^d	1.10 E+02	А					
SO ₂ ^e	5.88 E-04	А					
TOC ^f	3.58 E-01	С					
Methane ^g	2.30 E-01	С					
VOC ^h	2.96 E-02	С					
PM10 (filterable) ^{i,j}	9.50 E-03	Е					
PM2.5 (filterable) ^j	9.50 E-03	Е					
PM Condensable ^k	9.91 E-03	Е					
Trace Organic Compounds							
1,1,2,2-Tetrachloroethane ¹	2.53 E-05	С					
1,1,2-Trichloroethane ¹	<1.53 E-05	Е					
1,1-Dichloroethane	<1.13 E-05	Е					
1,2-Dichloroethane	<1.13 E-05	Е					
1,2-Dichloropropane	<1.30 E-05	Е					
1,3-Butadiene ¹	6.63 E-04	D					
1,3-Dichloropropene ¹	<1.27 E-05	Е					
Acetaldehyde ^{l,m}	2.79 E-03	С					
Acrolein ^{l,m}	2.63 E-03	С					
Benzene ^l	1.58 E-03	В					
Butyr/isobutyraldehyde	4.86 E-05	D					
Carbon Tetrachloride ¹	<1.77 E-05	Е					

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating
Chlorobenzene ^l	<1.29 E-05	Е
Chloroform ¹	<1.37 E-05	Е
Ethane ⁿ	7.04 E-02	С
Ethylbenzene ¹	<2.48 E-05	Е
Ethylene Dibromide ¹	<2.13 E-05	Е
Formaldehyde ^{l,m}	2.05 E-02	А
Methanol ¹	3.06 E-03	D
Methylene Chloride ¹	4.12 E-05	С
Naphthalene ^l	<9.71 E-05	E
PAH ¹	1.41 E-04	D
Styrene ¹	<1.19 E-05	Е
Toluene ^l	5.58 E-04	А
Vinyl Chloride ¹	<7.18 E-06	E
Xylene ^l	1.95 E-04	А

Table 3.2-3. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE RICH-BURN ENGINES (Concluded)

^a Reference 7. Factors represent uncontrolled levels. For NO_x, CO, and PM-10, "uncontrolled" means no combustion or add-on controls; however, the factor may include turbocharged units. For all other pollutants, "uncontrolled" means no oxidation control; the data set may include units with control techniques used for NOx control, such as PCC and SCR for lean burn engines, and PSC for rich burn engines. Factors are based on large population of engines. Factors are for engines at all loads, except as indicated. SCC = Source Classification Code. TOC = Total Organic Compounds. PM10 = Particulate Matter \leq 10 microns (μ m) aerodynamic diameter. A "<" sign in front of a factor means that the corresponding emission factor is based on one-half of the method detection limit.

^b Emission factors were calculated in units of (lb/MMBtu) based on procedures in EPA Method 19. To convert from (lb/MMBtu) to (lb/ 10^6 scf), multiply by the heat content of the fuel. If the heat content is not available, use 1020 Btu/scf. To convert from (lb/MMBtu) to (lb/hp-hr) use the following equation:

lb/hp-hr = db/MMBtu, heat input, MMBtu/hr, d/operating HP, 1/hp

^c Emission tests with unreported load conditions were not included in the data set. ^d Based on 99.5% conversion of the fuel carbon to CO_2 . CO_2 [lb/MMBtu] =

(3.67)(% CON)(C)(D)(1/h), where $\% \text{CON} = \text{percent conversion of fuel carbon to CO}_2$,

C = carbon content of fuel by weight (0.75), D = density of fuel, 4.1 E+04 $lb/10^6$ scf, and h = heating value of natural gas (assume 1020 Btu/scf at 60°F).

- ^e Based on 100% conversion of fuel sulfur to SO₂. Assumes sulfur content in natural gas of 2,000 gr/10^6 scf.
- ^f Emission factor for TOC is based on measured emission levels from 6 source tests.
- ^g Emission factor for methane is determined by subtracting the VOC and ethane emission factors from the TOC emission factor.
- ^h VOC emission factor is based on the sum of the emission factors for all speciated organic compounds. Methane and ethane emissions were not measured for this engine category.
- ⁱ No data were available for uncontrolled engines. PM10 emissions are for engines equipped with a PCC.
- ^j Considered $\leq 1 \ \mu$ m in aerodynamic diameter. Therefore, for filterable PM emissions, PM10(filterable) = PM2.5(filterable).
- ^k No data were available for condensable emissions. The presented emission factor reflects emissions from 4SLB engines.
- ¹ Hazardous Air Pollutant as defined by Section 112(b) of the Clean Air Act.
- ^m For rich-burn engines, no interference is suspected in quantifying aldehyde emissions. The presented emission factors are based on FTIR and CARB 430 emissions data measurements.
- $^{\rm n}\,$ Ethane emission factor is determined by subtracting the VOC emission factor from the NMHC emission factor.

ATTACHMENT O: TANKER TRUCK LOADING DATA SHEET

ATTACHMENT O – TANKER TRUCK/RAIL CAR LOADING DATA SHEET

Complete this data sheet for each new or modified bulk liquid transfer area or loading rack at the facility. This is to be used for bulk liquid transfer operations to tanker trucks/rail cars. Use extra pages if necessary.

Truck/Rail Car Loadout Collection Efficiencies

The following applicable capture efficiencies of a truck/rail car loadout are allowed:

- For tanker trucks/rail cars passing the MACT level annual leak test 99.2%
- For tanker trucks/rail cars passing the NSPS level annual leak test 98.7%
- For tanker trucks/rail cars not passing one of the annual leak tests listed above 70%

Compliance with this requirement shall be demonstrated by keeping records of the applicable MACT or NSPS Annual Leak Test certification for *every* truck and railcar loaded/unloaded. This requirement can be satisfied if the trucking/rail car company provided certification that its entire fleet was compliant. This certification must be submitted in writing to the Director of the DAQ. These additional requirements must be noted in the Registration Application.

Emission Unit ID#: EU-LOAD-COND				Vear Installed/Modified: TBD				
Emission Unit Description: Condensate Truck Loading Emissions								
			Loading .	Area Data				
Number of Pumps: 1	Number of Pumps: 1Number of Liquids Loaded: 1Max number of trucks/rail cars loading at one (1) time: 1							Ų
Are tanker trucks/rail ca If Yes, Please describe:	ars pressure teste	d for leal	ks at this or	any other loc	ation?	□ Yes	🛛 No	□ Not Required
Provide description of c	losed vent system	n and any	y bypasses.	Vapors are co	ollected	and routed	to a vap	oor combustor.
Are any of the following Closed System to tan Closed System to tan Closed System to tan	nker truck/rail ca nker truck/rail ca	ır passing ır passing	g a MACT le g a NSPS lev	vel annual lea el annual leal	c test?	apor return	?	
Pro	jected Maximur	n Operat	ing Schedul	e (for rack o	r transf	er point as	a whol	le)
Time	Jan – Ma	r	Apr	- Jun	J	ul – Sept		Oct - Dec
Hours/day	24		2	24		24		24
Days/week	5			5 5			5	
	Bul	k Liquid	Data (use e	xtra pages a	s necess	ary)		
Liquid Name	Condens	ate						
Max. Daily Throughput (1000 gal/day)	47.8							
Max. Annual Throughpu (1000 gal/yr)	^{1t} 17,445.5	4						
Loading Method ¹	SUB							
Max. Fill Rate (gal/min)) 125							
Average Fill Time (min/loading) Approx. 60								
Max. Bulk Liquid Temperature (°F) Refer to ProMax								
True Vapor Pressure ² Refer to ProMax								
Cargo Vessel Condition ³ U								
Control Equipment or Method ⁴		or Return ion Contr						
Max. Collection Efficien (%)	ncy 70%							

Max. Control (%)	Efficiency	98%	
Max.VOC Emission	Loading (lb/hr)	10.04	
Rate	Annual (ton/yr)	19.49	
Max.HAP	Loading (lb/hr)	0.70	
Emission Rate	Annual (ton/yr)	1.37	
Estimation M	ethod ⁵	O = ProMax process simulation	

Emission Unit ID#: EU-LOAD-PW	Emission Point ID#: EP-LOAD-PW/APC-COMB	Year Installed/Modified: TBD				
Emission Unit Description: Produced Water Truck Loading Emissions						
Loading Area Data						

Number of Pumps: 1	Number of Liquids Loaded: 1		mber of tru 1) time: 1	cks/rail cars loading
Are tanker trucks/rail cars pressure tested for leaks at this or any other location? If Yes, Please describe:		□ Yes	🛛 No	□ Not Required

Provide description of closed vent system and any bypasses. Vapors are collected and routed to a vapor combustor.

Are any of the following truck/rail car loadout systems utilized?

□ Closed System to tanker truck/rail car passing a MACT level annual leak test?

□ Closed System to tanker truck/rail car passing a NSPS level annual leak test?

□ Closed System to tanker truck/rail car not passing an annual leak test and has vapor return?

		o <i>i i</i>		• •	e • ·	
Proj	jected Maximur	n Operating 3	Schedule (fo	or rack or tr	ansfer point as	a whole)

Time	Jan – Mar	Apr - Jun	Jul – Sept	Oct - Dec
Hours/day	24	24	24	24
Days/week	5	5	5	5

	Bulk Liquid Data (use	extra pages a	s necessary)	
	Produced Water			
oughput	62.88			
roughput	22,950.54			
1	SUB			
gal/min)	125			
ne	Approx. 60			
d)	Refer to ProMax			
sure ²	Refer to ProMax			
ondition ³	U			
ent or	O = Vapor Return/ Combustion Controls			
Efficiency	70%			
ficiency	98%			
Loading (lb/hr)	<0.01			
Annual (ton/yr)	<0.01			
Loading (lb/hr)	<0.01			
Annual (ton/yr)	<0.01			
od ⁵	O = ProMax process simulation			
	roughput roughput gal/min) ne d d) sure ² ndition ³ ent or Efficiency Loading lb/hr) Annual ton/yr) Loading lb/hr)	Produced Waterughput 62.88 roughput $22,950.54$ 1SUBgal/min) 125 neApprox. 60 dRefer to ProMaxsure ² Refer to ProMaxndition ³ Uent or $O = Vapor Return/Combustion Controls$ Efficiency 70% ficiency 98% coading lb/hr) <0.01 Annual ton/yr) <0.01 Annual ton/yr) <0.01 Annual ton/yr) <0.01	Produced Waterughput 62.88 roughput $22,950.54$ 1SUBgal/min) 125 neApprox. 60 dRefer to ProMaxsure ² Refer to ProMaxndition ³ Uent orO = Vapor Return/ Combustion ControlsEfficiency 70% ficiency 98% coading lb/hr) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	ughput 62.88 roughput $22,950.54$ 1SUBgal/min) 125 neApprox. 60 dRefer to ProMaxobservedRefer to ProMaxndition ³ Uent orO = Vapor Return/ Combustion ControlsEfficiency 70% ficiency 98% .oading $1b/hr)$ <0.01 .oading $1b/hr)$ <0.01 .oading $1b/hr)$ <0.01 .oading $1b/hr)$ <0.01 .oading $1b/hr)$ <0.01

1	BF	Bottom Fill	SP	Splash Fil	1		SUB	Submerged Fill
2	At maxim	um bulk liquid temperature						
3	В	Ballasted Vessel	С	Cleaned			U	Uncleaned (dedicated service)
	0	Other (describe)						
4	List as m	any as apply (complete and s	ubmit app	ropriate A	ir Polluti	on Contro	l Device S	Sheets)
	CA	Carbon Adsorption		VB	Dedicate	d Vapor H	Balance (c	losed system)
	ECD Enclosed Combustion Dev		e	F Flare		-		-
	ТО	Thermal Oxidization or Incin	neration					
5	EPA	EPA Emission Factor in AP-	42			MB	Material	Balance
	TM	Test Measurement based upon test data submittal			ıl	0	Other (des	scribe)

ATTACHMENT Q: PNEUMATIC CONTROLLERS DATA SHEET

ATTACHMENT Q – PNEUMATIC CONTROLLERS DATA SHEET							
Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?							
\Box Yes \boxtimes No							
Please list approximate number.							
Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after September 18, 2015?							
\Box Yes \boxtimes No							
Please list approximate number.							
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?							
\Box Yes \boxtimes No							
Please list approximate number.							
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after September 18, 2015?							
\Box Yes \boxtimes No							
Please list approximate number.							

ATTACHMENT R: PNEUMATIC PUMP DATA SHEET

ATTACHMENT R – PNEUMATIC PUMP DATA SHEET

Are there any natural gas-driven diaphragm pumps located at a well site that commenced construction, modification or reconstruction after September 18, 2015?

 \Box Yes \boxtimes No

Please list.

Source ID #	Date	Pump Make/Model	Pump Size
L		I	

ATTACHMENT S: AIR POLLUTION CONTROL DEVICE/EMISSION REDUCTION DEVICES SHEETS

VAPOR COMBUSTION

AP-42 EMISSION FACTORS

ATTACHMENT S – AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION DEVICE SHEETS

Complete the applicable air pollution control device sheets for each flare, vapor combustor, thermal oxidizer, condenser, adsorption system, vapor recovery unit, BTEX Eliminator, Reboiler with and without Glow Plug, etc. at the facility. Use extra pages if necessary.

Emissions calculations must be performed using the most conservative control device efficiency.

The following five (5) rows are only to be completed if registering an alternative air pollution control device.						
Emission Unit ID: Make/Model:						
Primary Control Device ID:	Make/Model:					
Control Efficiency (%):	APCD/ERD Data Sheet Completed: Yes No					
Secondary Control Device ID:	Make/Model:					
Control Efficiency (%):	APCD/ERD Data Sheet Completed: Yes No					

VAPOR COMBUSTION (Including Enclosed Combustors)								
General Information								
Control Device ID#: APC-COMB			Installation Date: TBD					
Maximum Rated Total Flow Capacity 6,125 scfh 147,000 scfd						n Heat Content BTU/scf		
Control Device Information								
Type of Vapor Combustion Control? Enclosed Combustion Device Elevated Flare Thermal Oxidizer								
Manufacturer: MRW Model: TBF-5.5-30-1		gies		Hours of operat	tion per y	ear? 8,760		
List the emission units whose emissions are controlled by this vapor control device (Emission Point ID# APC-COMB)								
Emission Unit ID#	Emissio	n Source	Description	Emission Unit ID# Emission		on Source Description		
EU-TANKS-COND	Condensate Tanks		EU-LOAD- COND	Conden	sate Truck Loading			
EU-TANKS-PW	EU-TANKS-PW Produced Water Tanks		EU-LOAD- PW	Produce	luced Water Truck Loading			
If this vapor con	mbustor co	ontrols em	issions from mo	re than six (6) em	nission un	iits, please	e attach additional pages.	
Assist Type (Flares of	Assist Type (Flares only) Flare Height			Tip D	iameter Was the design per §60.			
Steam Pressure			5.5 feet			☐ Yes ⊠ No Provide determination.		
			Waste	Gas Information	L			
			of Waste Gas Stream Exit Vel 450 BTU/ft ³		elocity of the Emissions Stream (ft/s)			
Provide an attachment with the characteristics of the waste gas stream to be burned.								
			Pilot (Gas Information				
Number of Pilot LightsFuel Flow Rate to Pilot1Flame per Pilot50 scfh		Heat Input per Pilot 45,250 BTU/hr		Will automatic re-ignition be used? ⊠ Yes □ No				
If automatic re-ignition is used, please describe the method. If the pilot flame is lost, the control system will automatically attempt to relight the pilot. If the re-ignition attempt fails, the pilot solenoid valve will automatically close and a local remote alarm signal will be generated to indicate loss of pilot flame.								
Is pilot flame equipped with a monitor to detect the presence of the flame?If Yes, what type?□ Thermocouple□ Infrared□ Ultraviolet□ Camera☑ Other: flame rod								
Describe all operating ranges and maintenance procedures required by the manufacturer to maintain the warranty. (If unavailable, please indicate).								
Additional information attached? 🛛 Yes 🔅 No Please attach copies of manufacturer's data sheets, drawings, flame demonstration per §60.18 or §63.11(b) and performance testing.								

Tank Battery Combustor Specification Sheet MRW Technologies, Inc. Combustor Model Number: TBF-5.5-30-147000

Expected Destruction Removal Efficiency (DRE):

98% or Greater of Non-Methane Hydrocarbons

5.5-foot Diameter 30-Foot Overall Height

MRW Electric Ignition

15 MMBTU/HR

147,000 SCFD

2450 BTU/SCF

2" Enardo

Continuous

Flame Rod

Included

Included

50 SCFH or Less

Design Heat Input:

Unit Size:

Design Flow Rates:

Design Heat Content:

Waste Gas Flame Arrestor:

Pilot Type:

Pilot Operation (Continuous/Intermittent):

Pilot Fuel Consumption:

Pilot Monitoring Device:

Automatic Re-Ignition:

Remote Alarm Indication:

Description of Control Scheme:

The Combustor pilot is monitored via flame rod. If the pilot flame is lost, the control system will automatically attempt to relight the pilot. If the reignition attempt fails, the pilot solenoid valve will automatically close and a local & remote alarm signal will be generated to indicate loss of pilot flame.

 C
 O
 M
 B
 U
 S
 T
 I
 O
 N
 S
 Y
 S
 T
 E
 M
 S

 1910 West C Street, Jenks, OK 74037
 • tel: 918.299.8877
 • fax: 918.299.8870
 • email: mrw@mrw-tech.com

Since flares do not lend themselves to conventional emission testing techniques, only a few attempts have been made to characterize flare emissions. Recent EPA tests using propylene as flare gas indicated that efficiencies of 98 percent can be achieved when burning an offgas with at least $11,200 \text{ kJ/m}^3$ (300 Btu/ft³). The tests conducted on steam-assisted flares at velocities as low as 39.6 meters per minute (m/min) (130 ft/min) to 1140 m/min (3750 ft/min), and on air-assisted flares at velocities of 180 m/min (617 ft/min) to 3960 m/min (13,087 ft/min) indicated that variations in incoming gas flow rates have no effect on the combustion efficiency. Flare gases with less than 16,770 kJ/m³ (450 Btu/ft³) do not smoke.

Table 13.5-1 presents flare emission factors, and Table 13.5-2 presents emission composition data obtained from the EPA tests.¹ Crude propylene was used as flare gas during the tests. Methane was a major fraction of hydrocarbons in the flare emissions, and acetylene was the dominant intermediate hydrocarbon species. Many other reports on flares indicate that acetylene is always formed as a stable intermediate product. The acetylene formed in the combustion reactions may react further with hydrocarbon radicals to form polyacetylenes followed by polycyclic hydrocarbons.²

In flaring waste gases containing no nitrogen compounds, NO is formed either by the fixation of atmospheric nitrogen (N) with oxygen (O) or by the reaction between the hydrocarbon radicals present in the combustion products and atmospheric nitrogen, by way of the intermediate stages, HCN, CN, and OCN.² Sulfur compounds contained in a flare gas stream are converted to SO₂ when burned. The amount of SO₂ emitted depends directly on the quantity of sulfur in the flared gases.

Table 13.5-1 (English Units). EMISSION FACTORS FOR FLARE OPERATIONS^a

Component	Emission Factor (lb/10 ⁶ Btu)
Total hydrocarbons ^b	0.14
Carbon monoxide	0.37
Nitrogen oxides	0.068
Soot ^c	0 - 274

EMISSION FACTOR RATING: B

^a Reference 1. Based on tests using crude propylene containing 80% propylene and 20% propane.
 ^b Measured as methane equivalent.

^c Soot in concentration values: nonsmoking flares, 0 micrograms per liter (μ g/L); lightly smoking flares, 40 μ g/L; average smoking flares, 177 μ g/L; and heavily smoking flares, 274 μ g/L.

ATTACHMENT T: EMISSIONS CALCULATIONS

SWN Production Company, LLC James Seabright Pad Summary of Criteria Air Pollutant Emissions

Equipment	Unit ID	Emission Point	N	Ox	C	0	Total	VOC ¹	S	02	PM Total	
Equipment	Unit ID	ID	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
145-hp Caterpillar G3306 NA Engine	EU-ENG1	EP-ENG1	0.32	1.40	0.64	2.80	0.31	1.36	<0.01	<0.01	0.02	0.11
145-hp Caterpillar G3306 NA Engine	EU-ENG2	EP-ENG2	0.32	1.40	0.64	2.80	0.31	1.36	<0.01	<0.01	0.02	0.11
1.0-mmBtu/hr GPU Burner	EU-GPU1	EP-GPU1	0.11	0.48	0.09	0.41	0.01	0.03	<0.01	<0.01	0.01	0.04
1.0-mmBtu/hr GPU Burner	EU-GPU2	EP-GPU2	0.11	0.48	0.09	0.41	0.01	0.03	<0.01	<0.01	0.01	0.04
1.0-mmBtu/hr GPU Burner	EU-GPU3	EP-GPU3	0.11	0.48	0.09	0.41	0.01	0.03	<0.01	<0.01	0.01	0.04
1.5-mmBtu/hr Stabilizer Heater	EU-SH1	EP-SH1	0.17	0.73	0.14	0.61	0.01	0.04	<0.01	<0.01	0.01	0.06
Six (6) 400-bbl Condensate Tanks Routed to Vapor Combustor	EU-TANKS- COND	APC-COMB	-	-	-	-	-	-	-	-	-	-
Six (6) 400-bbl Produced Water Tanks Routed to Vapor Combustor	EU-TANKS-PW	APC-COMB	-	-	-	-	-	-	-	-	-	-
Condensate Truck Loading w/ Vapor Return Routed to Combustor	EU-LOAD- COND	APC-COMB	-	-	-	-	4.45	19.49	-	-	-	-
Produced Water Truck Loading w/ Vapor Return Routed to Combustor	EU-LOAD-PW	APC-COMB	-	-	-	-	<0.01	<0.01	-	-	-	-
15.0-mmBtu/hr Vapor Combustor	APC-COMB	APC-COMB	2.07	9.07	4.13	18.10	2.68	11.75	-	-	0.05	0.20
Vapor Combustor Pilot	EU-PILOT	APC-COMB	<0.01	0.02	<0.01	0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fugitive Emissions	EU-FUG	EP-FUG	-	-	-	-	0.83	3.62	-	-	-	-
Fugitive Haul Road Emissions	EU-HR	EP-HR	-	-	-	-	-	-	-	-	4.99	16.38
		Total =	3.21	14.07	5.83	25.55	8.61	37.69	<0.01	0.02	5.12	16.97

Notes:

¹ Total VOC includes all constituents heavier than Propane (C3+), including hazardous air pollutants (HAP). Speciated HAP presented in following table.

SWN Production Company, LLC James Seabright Pad Summary of Hazardous Air Pollutants

		Estimated Emissions (lb/hr)									
Equipment	Unit ID	Acetalde- hyde	Acrolein	Benzene	Ethyl- benzene	Formalde- hyde	Methanol	n-Hexane	Toluene	Xylenes	Total HAP
145-hp Caterpillar G3306 NA Engine	EU-ENG1	<0.01	<0.01	<0.01	<0.01	0.09	<0.01	-	<0.01	<0.01	0.10
145-hp Caterpillar G3306 NA Engine	EU-ENG2	<0.01	<0.01	<0.01	<0.01	0.09	<0.01	-	<0.01	<0.01	0.10
1.0-mmBtu/hr GPU Burner	EU-GPU1	-	-	<0.01	-	<0.01	-	<0.01	<0.01	-	<0.01
1.0-mmBtu/hr GPU Burner	EU-GPU2	-	-	<0.01	-	<0.01	-	<0.01	<0.01	-	<0.01
1.0-mmBtu/hr GPU Burner	EU-GPU3	-	-	<0.01	-	<0.01	-	<0.01	<0.01	-	<0.01
1.5-mmBtu/hr Stabilizer Heater	EU-SH1	-	-	<0.01	-	<0.01	-	<0.01	<0.01	-	<0.01
Six (6) 400-bbl Condensate Tanks Routed to Vapor Combustor	EU-TANKS- COND	-	-	-	-	-	-	-	-	-	-
Six (6) 400-bbl Produced Water Tanks Routed to Vapor Combustor	EU-TANKS-PW	-	-	-	-	-	-	-	-	-	-
Condensate Truck Loading w/ Vapor Return Routed to Combustor	EU-LOAD- COND	-	-	<0.01	0.02	-	-	0.25	0.02	0.03	0.31
Produced Water Truck Loading w/ Vapor Return Routed to Combustor	EU-LOAD-PW	-	-	<0.01	<0.01	-	-	<0.01	<0.01	<0.01	<0.01
15.0-mmBtu/hr Vapor Combustor	APC-COMB	-	-	<0.01	0.01	-	-	0.15	0.01	0.02	0.19
Vapor Combustor Pilot	EU-PILOT	-	-	<0.01	-	<0.01	-	<0.01	<0.01	-	<0.01
Fugitive Emissions	EU-FUG	-	-	<0.01	<0.01	-	-	0.03	<0.01	<0.01	0.04
Fugitive Haul Road Emissions	EU-HR	-	-	-	-	-	-	-	-	-	-
	Total =	0.01	0.01	0.01	0.03	0.17	0.01	0.44	0.03	0.05	0.75

Continued on Next Page

SWN Production Company, LLC James Seabright Pad Summary of Hazardous Air Pollutants (Continued)

		Estimated Emissions (TPY)									
Equipment	Unit ID	Acetalde- hyde	Acrolein	Benzene	Ethyl- benzene	Formalde- hyde	Methanol	n-Hexane	Toluene	Xylenes	Total HAP
145-hp Caterpillar G3306 NA Engine	EU-ENG1	0.02	0.01	0.01	<0.01	0.38	0.02	-	<0.01	<0.01	0.44
145-hp Caterpillar G3306 NA Engine	EU-ENG2	0.02	0.01	0.01	<0.01	0.38	0.02	-	<0.01	<0.01	0.44
1.0-mmBtu/hr GPU Burner	EU-GPU1	-	-	<0.01	-	<0.01	-	0.01	<0.01	-	0.01
1.0-mmBtu/hr GPU Burner	EU-GPU2	-	-	<0.01	-	<0.01	-	0.01	<0.01	-	0.01
1.0-mmBtu/hr GPU Burner	EU-GPU3	-	-	<0.01	-	<0.01	-	0.01	<0.01	-	0.01
1.5-mmBtu/hr Stabilizer Heater	EU-SH1	-	-	<0.01	-	<0.01	-	0.01	<0.01	-	0.01
Six (6) 400-bbl Condensate Tanks Routed to Vapor Combustor	EU-TANKS- COND	-	-	-	-	-	-	-	-	-	-
Six (6) 400-bbl Produced Water Tanks Routed to Vapor Combustor	EU-TANKS-PW	-	-	-	-	-	-	-	-	-	-
Condensate Truck Loading w/ Vapor Return Routed to Combustor	EU-LOAD- COND	-	-	0.02	0.07	-	-	1.10	0.07	0.11	1.37
Produced Water Truck Loading w/ Vapor Return Routed to Combustor	EU-LOAD-PW	-	-	<0.01	<0.01	-	-	<0.01	<0.01	<0.01	<0.01
15.0-mmBtu/hr Vapor Combustor	APC-COMB	-	-	0.01	0.04	-	-	0.66	0.04	0.07	0.82
Vapor Combustor Pilot	EU-PILOT	-	-	<0.01	-	<0.01	-	<0.01	<0.01	-	<0.01
Fugitive Emissions	EU-FUG	-	-	<0.01	0.01	-	-	0.15	0.01	0.01	0.18
Fugitive Haul Road Emissions	EU-HR	-	-	-	-	-	-	-	-	-	-
	Total =	0.03	0.03	0.04	0.12	0.76	0.03	1.95	0.12	0.20	3.29

SWN Production Company, LLC James Seabright Pad Summary of Greenhouse Gas Emissions - Metric Tons per Year (Tonnes)

Equipment	Unit ID	Carbon Di	oxide (CO ₂)	Methar	ne (CH ₄)	Methane (C	CH ₄) as CO _{2 Eq.}	Nitrous C	Dxide (N ₂ O)	Nitrous Oxide	(N ₂ O) as CO _{2 Eq.}	Total $\text{CO}_2 + \text{CO}_{2 \text{ Eq.}}^1$	
Equipment	Unit ID	lb/hr	tonnes/yr	lb/hr	tonnes/yr	lb/hr	tonnes/yr	lb/hr	tonnes/yr	lb/hr	tonnes/yr	lb/hr	tonnes/yr
145-hp Caterpillar G3306 NA Engine	EU-ENG1	155.04	616.04	<0.01	0.01	0.07	0.27	<0.01	<0.01	0.08	0.33	155.19	616.64
145-hp Caterpillar G3306 NA Engine	EU-ENG2	155.04	616.04	<0.01	0.01	0.07	0.27	<0.01	<0.01	0.08	0.33	155.19	616.64
1.0-mmBtu/hr GPU Burner	EU-GPU1	116.98	464.80	<0.01	0.01	0.06	0.22	<0.01	<0.01	0.07	0.26	117.10	465.28
1.0-mmBtu/hr GPU Burner	EU-GPU2	116.98	464.80	<0.01	0.01	0.06	0.22	<0.01	<0.01	0.07	0.26	117.10	465.28
1.0-mmBtu/hr GPU Burner	EU-GPU3	116.98	464.80	<0.01	0.01	0.06	0.22	<0.01	<0.01	0.07	0.26	117.10	465.28
1.5-mmBtu/hr Stabilizer Heater	EU-SH1	175.47	697.21	<0.01	0.01	0.08	0.33	<0.01	<0.01	0.10	0.39	175.65	697.93
Six (6) 400-bbl Condensate Tanks Routed to Vapor Combustor	EU-TANKS- COND	-	-	-	-	-	-	-	-	-	-	-	-
Six (6) 400-bbl Produced Water Tanks Routed to Vapor Combustor	EU-TANKS-PW	-	-	-	-	-	-	-	-	-	-	-	-
Condensate Truck Loading w/ Vapor Return Routed to Combustor	EU-LOAD-COND	<0.01	0.01	0.60	2.36	14.88	59.11	-	-	-	-	14.88	59.12
Produced Water Truck Loading w/ Vapor Return Routed to Combustor	EU-LOAD-PW	<0.01	0.01	0.78	3.11	19.57	77.77	-	-	-	-	19.58	77.78
15.0-mmBtu/hr Vapor Combustor	APC-COMB	1,754.66	6,972.07	0.03	0.13	0.83	3.28	<0.01	0.01	0.99	3.92	1,756.47	6,979.27
Vapor Combustor Pilot	EU-PILOT	5.29	21.03	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	0.01	5.30	21.05
Fugitive Emissions	EU-FUG	<0.01	0.01	0.67	2.68	16.85	66.95	-	-	-	-	16.85	66.97
Fugitive Haul Road Emissions	EU-HR	-	-	-	-	-	-	-	-	-	-	-	-
	Total =	2,596.43	10,316.83	2.10	8.35	52.51	208.66	<0.01	0.02	1.45	5.76	2,650.39	10,531.25

Notes:

¹CO₂ Equivalent = Pollutant times GWP multiplier. 40 CFR 98 Table A-1, Global Warming Potential (GWP) multiplier (100-Year Time Horizon): CO₂ = 1, CH₄ = 25, N₂O = 298

² Per API Compendium (2009) Chapter 5: Because most of the CH₄ and CO₂ emissions from storage tanks occur as a result of flashing (which is controlled by the vapor combustor in this case), working and breathing loss emissions of these gases are very small in production and virtually nonexistent in the downstream segments. Vapors from the tanks are routed to the vapor combustor at this site. Therefore, GHG emissions from the condensate and produced water tanks are assumed to be negligible.

SWN Production Company, LLC James Seabright Pad Summary of Greenhouse Gas Emissions - Short Tons per Year (Tons)

Equipment	Unit ID	Carbon Die	oxide (CO ₂)	Methar	ne (CH ₄)	Methane (C	H ₄) as CO _{2 Eq.}	Nitrous O	xide (N ₂ O)	Nitrous Oxide	(N ₂ O) as CO _{2 Eq.}	Total CO	+ CO _{2 Eq.} ¹
Equipment	Onit ID	lb/hr	tons/yr ²	lb/hr	tons/yr ²	lb/hr	tons/yr	lb/hr	tons/yr ²	lb/hr	tons/yr	lb/hr	tons/yr
145-hp Caterpillar G3306 NA Engine	EU-ENG1	155.04	679.06	<0.01	0.01	0.07	0.30	<0.01	<0.01	0.08	0.36	155.19	679.73
145-hp Caterpillar G3306 NA Engine	EU-ENG2	155.04	679.06	<0.01	0.01	0.07	0.30	<0.01	<0.01	0.08	0.36	155.19	679.73
1.0-mmBtu/hr GPU Burner	EU-GPU1	116.98	512.36	<0.01	0.01	0.06	0.24	<0.01	<0.01	0.07	0.29	117.10	512.89
1.0-mmBtu/hr GPU Burner	EU-GPU2	116.98	512.36	<0.01	0.01	0.06	0.24	<0.01	<0.01	0.07	0.29	117.10	512.89
1.0-mmBtu/hr GPU Burner	EU-GPU3	116.98	512.36	<0.01	0.01	0.06	0.24	<0.01	<0.01	0.07	0.29	117.10	512.89
1.5-mmBtu/hr Stabilizer Heater	EU-SH1	175.47	768.54	<0.01	0.01	0.08	0.36	<0.01	<0.01	0.10	0.43	175.65	769.33
Six (6) 400-bbl Condensate Tanks Routed to Vapor Combustor	EU-TANKS- COND	-	-	-	-	-	-	-	-	-	-	-	-
Six (6) 400-bbl Produced Water Tanks Routed to Vapor Combustor	EU-TANKS-PW	-	-	-	-	-	-	-	-	-	-	-	-
Condensate Truck Loading w/ Vapor Return Routed to Combustor	EU-LOAD-COND	<0.01	0.01	0.60	2.61	14.88	65.16	-	-	-	-	14.88	65.17
Produced Water Truck Loading w/ Vapor Return Routed to Combustor	EU-LOAD-PW	<0.01	0.02	0.78	3.43	19.57	85.72	-	-	-	-	19.58	85.74
15.0-mmBtu/hr Vapor Combustor	APC-COMB	1,754.66	7,685.39	0.03	0.14	0.83	3.62	<0.01	0.01	0.99	4.32	1,756.47	7,693.33
Vapor Combustor Pilot	EU-PILOT	5.29	23.18	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	0.01	5.30	23.21
Fugitive Emissions	EU-FUG	<0.01	0.01	0.67	2.95	16.85	73.80	-	-	-	-	16.85	73.82
Fugitive Haul Road Emissions	EU-HR	-	-	-	-	-	-	-	-	-	-	-	-
	Total =	2,596.43	11,372.36	2.10	9.20	52.51	230.01	<0.01	0.02	1.45	6.34	2,650.39	11,608.72

Notes:

¹CO₂ Equivalent = Pollutant times GWP multiplier. 40 CFR 98 Table A-1, Global Warming Potential (GWP) multiplier (100-Year Time Horizon): CO₂ = 1, CH₄ = 25, N₂O = 298

² EPA and API GHG calculation methodologies calculate emissions in metric tons (tonnes). These values have been converted to short tons for consistency with permitting threshold units.

³ Per API Compendium (2009) Chapter 5: Because most of the CH₄ and CO₂ emissions from storage tanks occur as a result of flashing (which is controlled by the vapor combustor in this case), working and breathing loss emissions of these gases are very small in production and virtually nonexistent in the downstream segments. Vapors from the tanks are routed to the vapor combustor at this site. Therefore, GHG emissions from the condensate and produced water tanks are assumed to be negligible.

SWN Production Company, LLC James Seabright Pad Engine Emissions Calculations - Criteria Air Pollutants

Equipment Information

Unit ID:	EU-ENG1	EU-ENG2
Emission Point ID:	EP-ENG1	EP-ENG2
Make:	Caterpillar	Caterpillar
Model:	G3306 NA	G3306 NA
Design Class:	4S-RB	4S-RB
Controls:	NSCR	NSCR
Horsepower (hp):	145	145
Fuel Use (Btu/hp-hr):	8,625	8,625
Fuel Use (scfh):	1,382	1,382
Annual Fuel Use (mmscf):	12.11	12.11
Fuel Use (mmBtu/hr):	1.25	1.25
Exhaust Flow (acfm):	678	678
Exhaust Temp (°F):	1,101	1,101
Manufacture Date:	after 1/1/2011	after 1/1/2011
Operating Hours:	8,760	8,760
Fuel Heating Value (Btu/scf):	905	905
Uncontrolled Manufacturer Emission Factors	<u>5 1</u>	
NOx (g/hp-hr):	13.47	13.47
CO (g/hp-hr):	13.47	13.47
NMNEHC/VOC (g/hp-hr):	0.22	0.22
Total VOC = NMNEHC + HCHO (g/hp-hr):	0.49	0.49
Post-Catalyst Emission Factors		
NOx Control Eff. %	92.58%	92.58%
CO Control Eff. %	85.15%	85.15%
VOC Control Eff. %	0.00%	0.00%
	0.0070	0.0070
NOx (g/hp-hr):	1.00	1.00
CO (g/hp-hr):	2.00	2.00
NMNEHC/VOC (g/hp-hr):	0.70	0.70
Total VOC = NMNEHC + HCHO (g/hp-hr):	0.97	0.97

Uncontrolled Criteria Air Pollutant Emissions

Unit ID:	<u>EU-E</u>	ENG1	EU-ENG2		
Pollutant	lb/hr	TPY	lb/hr	TPY	
NOx	4.31	18.86	4.31	18.86	
CO	4.31	18.86	4.31	18.86	
NMNEHC/VOC (does not include HCHO)	0.07	0.31	0.07	0.31	
Total VOC (includes HCHO)	0.16	0.69	0.16	0.69	
SO ₂	<0.01	<0.01	<0.01	<0.01	
PM _{10/2.5}	0.01	0.05	0.01	0.05	
PM _{COND}	0.01	0.05	0.01	0.05	
РМ _{тот}	0.02	0.11	0.02	0.11	

SWN Production Company, LLC James Seabright Pad Engine Emissions Calculations - Criteria Air Pollutants (Continued)

Proposed Criteria Air Pollutant Emissions²

Pollutant	lb/hr	TPY	lb/hr	TPY
NOx	0.32	1.40	0.32	1.40
CO	0.64	2.80	0.64	2.80
NMNEHC/VOC (does not include HCHO)	0.22	0.98	0.22	0.98
Total VOC (includes HCHO)	0.31	1.36	0.31	1.36
SO ₂	<0.01	<0.01	<0.01	<0.01
PM _{10/2.5}	0.01	0.05	0.01	0.05
PM _{COND}	0.01	0.05	0.01	0.05
PM _{TOT}	0.02	0.11	0.02	0.11

AP-42 Emission Factors (lb/mmBtu)³

<u>4S-RB</u>

Pollutant	3.2-3 (7/00)
SO ₂	5.88E-04
PM _{10/2.5}	9.50E-03
PM _{COND}	9.91E-03
PM _{TOT}	1.94E-02

Notes:

¹ Uncontrolled emission factors based on engine manufacturer data. Per Caterpillar, NMNEHC emission factor does not include formaldehyde (HCHO); therefore, NMNEHC and HCHO factors have been added to demonstrate total uncontrolled VOC.

² Post-catalyst emission factors for the Caterpillar engines are based on catalyst manufacturer data and/or NSPS Subpart JJJJ limits, if applicable. Per NSPS Subpart JJJJ, VOC limit does not include HCHO; therefore, HCHO emissions have been added to the NSPS JJJJ VOC emission rates for demonstration purposes only.

³ Per AP-42, all particulate matter (PM) from combustion of natural gas (total, condensable and filterable PM) is presumed <1 micrometer in diameter.

SWN Production Company, LLC James Seabright Pad Engine Emissions Calculations - Hazardous Air Pollutants

Equipment Information

Unit ID:	EU-ENG1	EU-ENG2
Emission Point ID:	EP-ENG1	EP-ENG2
Make:	Caterpillar	Caterpillar
Model:	G3306 NA	G3306 NA
Design Class:	4S-RB	4S-RB
Controls:	NSCR	NSCR
Horsepower (hp):	145	145
Fuel Use (Btu/hp-hr):	8,625	8,625
Fuel Use (scfh):	1,382	1,382
Annual Fuel Use (mmscf):	12.11	12.11
Euel Use (mmBtu/hr);	1.25	1.25
· · · · · · · · · · · · · · · · · · ·	,	,
Exhaust Flow (acfm):	678	678
Exhaust Temp (°F):	1,101	1,101
Operating Hours:	8,760	8,760

Proposed HAP Emissions^{1,2}

Unit ID:

EU-ENG2

Pollutant	lb/hr	TPY	lb/hr	TPY
Acetaldehyde	<0.01	0.02	<0.01	0.02
Acrolein	<0.01	0.01	<0.01	0.01
Benzene	<0.01	0.01	<0.01	0.01
Ethylbenzene	<0.01	<0.01	<0.01	<0.01
Formaldehyde	0.09	0.38	0.09	0.38
Methanol	<0.01	0.02	<0.01	0.02
Toluene	<0.01	<0.01	<0.01	<0.01
Xylenes	<0.01	<0.01	<0.01	<0.01
Total HAP =	0.10	0.44	0.10	0.44

EU-ENG1

AP-42 Emission Factors (lb/mmBtu)

<u>4S-RB</u>

Pollutant	3.2-3 (7/00)
Acetaldehyde	2.79E-03
Acrolein	2.63E-03
Benzene	1.58E-03
Ethylbenzene	2.18E-05
Methanol	3.06E-03
Toluene	5.58E-04
Xylenes	1.95E-04

Notes:

¹ Manuf. data for uncontrolled Caterpillar G3306 HCHO emissions (g/hp-hr): 0.27

 $^{2}\,\mathrm{For}$ conservative estimate, no reduction taken for any HAP .

SWN Production Company, LLC James Seabright Pad Engine Emissions Calculations - Greenhouse Gases

Equipment Information

Unit ID:	EU-ENG1	EU-ENG2
Emission Point ID:	EP-ENG1	EP-ENG2
Make:	Caterpillar	Caterpillar
Model:	G3306 NA	G3306 NA
Design Class:	4S-RB	4S-RB
Horsepower (hp):	145	145
Fuel Use (Btu/hp-hr):	8,625	8,625
Fuel Use (scfh):	1,382	1,382
Fuel Use (mmBtu/hr):	1.25	1.25
Exhaust Flow (acfm):	678	678
Exhaust Temp (°F):	1,101	1,101
Operating Hours:	8,760	8,760
Manufacturer Emission Factors (g/hp-hr) ¹		
$CO_2 =$	485	485

Greenhouse Gas (GHG) Emissions¹

Pollutant	lb/hr	tonnes/yr	lb/hr	tonnes/yr
CO ₂	155.04	616.04	155.04	616.04
CH ₄	<0.01	0.01	<0.01	0.01
N ₂ O	<0.01	<0.01	<0.01	<0.01
CH_4 as CO_2e	0.07	0.27	0.07	0.27
N ₂ O as CO ₂ e	0.08	0.33	0.08	0.33
Total CO ₂ + CO ₂ e =	155.19	616.64	155.19	616.64

40 CFR 98 Tables ENG-1 and ENG-2 Emission Factors (kg/mmBtu)²

Carbon Dioxide (CO ₂)	53.06
Methane (CH ₄)	1.00E-03
Nitrous Oxide (N ₂ O)	1.00E-04

Notes:

¹ Manufacturer data used to estimate CO₂ emissions for the Caterpillar engines. All other emissions estimated using EPA data. Conversion to short tons (tons) found in site-wide Summary of Greenhouse Gases - Short Tons per Year (tons) table.

 2 CO₂e = CO₂ equivalent (Pollutant times GWP multiplier):

40 CFR 98 Table A-1, Global Warming Potential (GWP) multiplier: $CO_2 = 1$, $CH_4 = 25$, $N_2O = 298$

SWN Production Company, LLC James Seabright Pad Gas Production Unit Burner Emissions Calculations - Criteria Air Pollutants

Equipment Information

Unit ID:	<u>EU-GPU1 - EU-GPU3 (EACH</u>	
Emission Point ID:	EP-GPU1 - EP-GPU3	
Description:	Gas Production Unit Burner	
Number of Units:	3	
Burner Design (mmBtu/hr):	1.0	
Fuel HHV (Btu/scf):	905	
Annual Fuel Use (mmscf):	9.68	
Annual Operating Hours:	8,760	

Criteria Air Pollutant Emissions

Unit ID:

EU-GPU1 - EU-GPU3 (EACH)

Pollutant	lb/hr	TPY
NOx	0.11	0.48
CO	0.09	0.41
VOC	0.01	0.03
SO ₂	<0.01	<0.01
PM _{10/2.5}	0.01	0.03
PM _{COND}	<0.01	0.01
PM _{TOT}	0.01	0.04

AP-42 Emission Factors for Units <100 mmBtu/hr (lb/mmscf)¹

Pollutant	1.4-1, -2 (7/98)
NOx	100.0
CO	84.0
VOC	5.5
SO ₂	0.6
PM _{10/2.5}	5.7
PM _{COND}	1.9
PM _{TOT}	7.6

Notes:

¹ All PM (total, condensable and filterable) is assumed to be <1 micrometer in diameter. Total PM is the sum of filterable PM and condensable PM.

SWN Production Company, LLC James Seabright Pad Gas Production Unit Burner Emissions Calculations - Hazardous Air Pollutants

Equipment Information

<u>EU-GPU1 - EU-GPU3 (EACH</u>	
EP-GPU1 - EP-GPU3	
Gas Production Unit Burner	
3	
1.0	
905	
9.68	
8,760	

Hazardous Air Pollutant Emissions

Unit ID:

EU-GPU1 - EU-GPU3 (EACH)

Pollutant	lb/hr	TPY
n-Hexane	<0.01	0.01
Formaldehyde	<0.01	<0.01
Benzene	<0.01	<0.01
Toluene	<0.01	<0.01
Total HAP =	<0.01	0.01

AP-42 Emission Factors (lb/mmscf)

Pollutant	1.4-3 (7/98)
n-Hexane	1.80E+00
Formaldehyde	7.50E-02
Benzene	2.10E-03
Toluene	3.40E-03

SWN Production Company, LLC James Seabright Pad Gas Production Unit Burner Emissions Calculations - Greenhouse Gases

Equipment Information

Unit ID:	<u>EU-GPU1 - EU-GPU3 (EACH</u>	
Emission Point ID:	EP-GPU1 - EP-GPU3	
Description:	Gas Production Unit Burner	
Number of Units:	3	
Burner Design (mmBtu/hr):	1.0	
Fuel HHV (Btu/scf):	905	
Annual Fuel Use (mmscf):	9.68	
Annual Operating Hours:	8,760	

Greenhouse Gas (GHG) Emissions¹

Unit ID:

EU-GPU1 - EU-GPU3 (EACH)

Pollutant	lb/hr	tonnes/yr
CO ₂	116.98	464.80
CH ₄	<0.01	0.01
N ₂ O	<0.01	<0.01
CH ₄ as CO ₂ e	0.06	0.22
N ₂ O as CO ₂ e	0.07	0.26
Total CO ₂ + CO ₂ e =	117.10	465.28

40 CFR 98 Tables C-1 and C-2 Emission Factors (kg/mmBtu)²

Carbon Dioxide (CO ₂)	53.06
Methane (CH ₄)	1.00E-03
Nitrous Oxide (N ₂ O)	1.00E-04

Notes:

¹ Conversion to short tons (tons) found in site-wide Summary of Greenhouse Gases - Short Tons per Year (tons) table.

 2 CO₂e = CO₂ equivalent (Pollutant times GWP multiplier):

40 CFR 98 Table A-1, Global Warming Potential (GWP) multiplier: CO₂ = 1, CH₄ = 25, N₂O = 298

SWN Production Company, LLC James Seabright Pad Stabilizer Heater Emissions Calculations - Criteria Air Pollutants

Equipment Information

Unit ID:	EU-SH1
Emission Point ID:	EP-SH1
Description:	Stabilizer Heater
Number of Units:	1
Burner Design (mmBtu/hr):	1.5
Fuel HHV (Btu/scf):	905
Annual Fuel Use (mmscf):	14.52
Annual Operating Hours:	8,760

Criteria Air Pollutant Emissions

Unit ID:

EU-SH1

Pollutant	lb/hr	TPY
NOx	0.17	0.73
CO	0.14	0.61
VOC	0.01	0.04
SO ₂	<0.01	<0.01
PM _{10/2.5}	0.01	0.04
PM _{COND}	<0.01	0.01
PM _{TOT}	0.01	0.06

AP-42 Emission Factors for Units <100 mmBtu/hr (lb/mmscf)¹

Pollutant	1.4-1, -2 (7/98)
NOx	100.0
CO	84.0
VOC	5.5
SO ₂	0.6
PM _{10/2.5}	5.7
PM _{COND}	1.9
PM _{TOT}	7.6

Notes:

¹ All PM (total, condensable and filterable) is assumed to be <1 micrometer in diameter. Total PM is the sum of filterable PM and condensable PM.

SWN Production Company, LLC James Seabright Pad Stabilizer Heater Emissions Calculations - Hazardous Air Pollutants

Equipment Information

Unit ID:	EU-SH1
Emission Point ID:	EP-SH1
Description:	Stabilizer Heater
Number of Units:	1
Burner Design (mmBtu/hr):	1.5
Fuel HHV (Btu/scf):	905
Annual Fuel Use (mmscf):	14.52
Annual Operating Hours:	8,760

Hazardous Air Pollutant Emissions

Unit ID:

EU-SH1

Pollutant	lb/hr	ТРҮ
n-Hexane	<0.01	0.01
Formaldehyde	<0.01	<0.01
Benzene	<0.01	<0.01
Toluene	<0.01	<0.01
Total HAP =	<0.01	0.01

AP-42 Emission Factors (lb/mmscf)

Pollutant	1.4-3 (7/98)
n-Hexane	1.80E+00
Formaldehyde	7.50E-02
Benzene	2.10E-03
Toluene	3.40E-03

SWN Production Company, LLC James Seabright Pad Stabilizer Heater Emissions Calculations - Greenhouse Gases

Equipment Information

Unit ID:	EU-SH1
Emission Point ID:	EP-SH1
Description:	Stabilizer Heater
Number of Units:	1
Burner Design (mmBtu/hr):	1.5
Fuel HHV (Btu/scf):	905
Annual Fuel Use (mmscf):	14.52
Annual Operating Hours:	8,760

Greenhouse Gas (GHG) Emissions¹

Unit ID:

EU-SH1

Pollutant	lb/hr	tonnes/yr
CO ₂	175.47	697.21
CH ₄	<0.01	0.01
N ₂ O	<0.01	<0.01
CH_4 as CO_2e	0.08	0.33
N ₂ O as CO ₂ e	0.10	0.39
Total CO ₂ + CO ₂ e =	175.65	697.93

40 CFR 98 Tables C-1 and C-2 Emission Factors (kg/mmBtu)²

Carbon Dioxide (CO ₂)	53.06
Methane (CH ₄)	1.00E-03
Nitrous Oxide (N ₂ O)	1.00E-04

Notes:

¹ Conversion to short tons (tons) found in site-wide Summary of Greenhouse Gases - Short Tons per Year (tons) table.

 2 CO₂e = CO₂ equivalent (Pollutant times GWP multiplier):

40 CFR 98 Table A-1, Global Warming Potential (GWP) multiplier: CO₂ = 1, CH₄ = 25, N₂O = 298

SWN Production Company, LLC James Seabright Pad Storage Tank Emissions - Criteria Air Pollutants

Tank Information

Unit ID:	EU-TANKS-COND	EU-TANKS-PW
Emission Point ID:	APC-COMB	APC-COMB
Contents: ^{1,3}	Condensate	Produced Water
Number of Tanks:	6	6
Capacity (bbl) - Per Tank:	400	400
Capacity (gal) - Per Tank:	16,800	16,800
Total:		
Total Throughput (bbl/yr):	415,370	546,442
Total Throughput (gal/yr):	17,445,540	22,950,543
Total Throughput (bbl/d):	1,138	1,497
Per Tank:		
Throughput (bbl/yr):	69,228	91,074
Throughput (gal/yr):	2,907,590	3,825,091
Throughput (bbl/d):	190	250
Turnovers:	1,038.43	1,366.10
Tank Vapor Capture Efficiency:	100%	100%
Captured Vapors Routed to:	VRU/Vapor Combustor	VRU/Vapor Combustor

Uncontrolled Storage Tank Emissions

EU-TANKS-COND

EU-TANKS-PW

Emissions	lb/hr	ТРҮ	lb/hr	ТРҮ
Working Losses	7.72	33.81	<0.01	<0.01
Breathing Losses	9.35	40.96	<0.01	<0.01
Flashing Losses ²	104.98	459.80	1.66	7.28
Total VOC =	122.05	534.57	1.66	7.28

Controlled Storage Tank Emissions³

Unit ID:

Unit ID:

EU-TANKS-COND

EU-TANKS-PW

Emissions	lb/hr	ТРҮ	lb/hr	TPY
Working Losses	0.15	0.68	<0.01	<0.01
Breathing Losses	0.19	0.82	<0.01	<0.01
Flashing Losses	2.10	9.20	0.03	0.15
Total VOC =	2.44	10.69	0.03	0.15
Per Tank =	0.41	1.78	0.01	0.02

Notes:

¹ Produced water tanks assumed to contain 99% produced water and 1% condensate.

² Flashing calculated using Promax process simulation. Reports located in Attachment L. Uncontrolled tank working/breathing/flashing emissions will be controlled by VRU or routed to a vapor combustor with 100% capture efficiency. Emissions were calculated assuming no VRU as a conservative estimate.

³ Controlled tank emissions are shown for reference only.

SWN Production Company, LLC James Seabright Pad Storage Tank Emissions - Hazardous Air Pollutants

Uncontrolled Storage Tank Emissions

Unit ID:	EU-TANKS-COND		EU-TANKS-PW	
Pollutant	lb/hr	ТРҮ	lb/hr	TPY
Total VOC = ^{1,2}	122.05	534.57	1.66	7.28
n-Hexane	6.88	30.13	0.09	0.41
Benzene	0.10	0.42	<0.01	0.01
Toluene	0.43	1.88	0.01	0.03
Ethylbenzene	0.44	1.92	0.01	0.03
Xylenes	0.71	3.12	0.01	0.04
Total HAP =	8.56	37.48	0.12	0.51

Controlled Storage Tank Emissions³

Unit ID: EU-TANKS-COND

EU-TANKS-PW

Pollutant	lb/hr	TPY	lb/hr	TPY
Total VOC = ¹	2.44	10.69	0.03	0.15
n-Hexane	0.14	0.60	<0.01	0.01
Benzene	<0.01	0.01	<0.01	<0.01
Toluene	0.01	0.04	<0.01	<0.01
Ethylbenzene	0.01	0.04	<0.01	<0.01
Xylenes	0.01	0.06	<0.01	<0.01
Total HAP =	0.17	0.75	<0.01	0.01

Estimated HAP Composition (% by Weight)⁴

Pollutant	Wt%
n-Hexane	5.637%
Benzene	0.078%
Toluene	0.351%
Ethylbenzene	0.359%
Xylenes	0.585%
Total HAP =	7.010%

Notes:

¹ VOC emissions calculated in Criteria Air Pollutant calculations.

² Uncontrolled tank working/breathing/flashing emissions are routed to a VRU or a vapor combustor with 100% capture efficiency. Emissions were calculated assuming no VRU as a conservative estimate.

³Controlled tank emissions are shown for reference only.

⁴ Speciated liquids analysis located in Fugitive Emissions Calculations. HAP weight % calculated as % of total hydrocarbons in the sample. All HAP assumed to volatilize from liquids for most conservative emissions estimate.

SWN Production Company, LLC James Seabright Pad Condensate Truck Loading Emissions - Criteria and Hazardous Air Pollutants

Loading Information

Unit ID:	EU-LOAD-COND
Emission Point ID:	APC-COMB
Fill Method:	Submerged
Type of Service:	Dedicated
Mode of Operation:	Normal
Saturation Factor:	0.6
Throughput (1000 gal):	17,445.54
Control Type:	Vapor Return/Combustion
Vapor Capture Efficiency: 1	70%
Average Fill Rate (gal/hr):	7,500
Captured Vapors Routed to:	Vapor Combustor

Uncontrolled Loading Emissions²

Pollutant	Max. Ib/hr	Avg. lb/hr	ТРҮ
VOC =	33.45	14.83	64.95
n-Hexane	1.89	0.84	3.66
Benzene	0.03	0.01	0.05
Toluene	0.12	0.05	0.23
Ethylbenzene	0.12	0.05	0.23
Xylenes	0.20	0.09	0.38
Total HAP =	2.34	1.04	4.55

Uncaptured Loading Emissions²

Pollutant	Max. lb/hr	Avg. lb/hr	ТРҮ
VOC =	10.04	4.45	19.49
n-Hexane	0.57	0.25	1.10
Benzene	0.01	<0.01	0.02
Toluene	0.04	0.02	0.07
Ethylbenzene	0.04	0.02	0.07
Xylenes	0.06	0.03	0.11
Total HAP =	0.70	0.31	1.37

SWN Production Company, LLC James Seabright Pad Condensate Truck Loading Emissions - Criteria and Hazardous Air Pollutants (Continued)

Pollutant	Wt%
n-Hexane	5.637%
Benzene	0.078%
Toluene	0.351%
Ethylbenzene	0.359%
Xylenes	0.585%
Total HAP =	7.010%

Estimated HAP Composition (% by Weight)³

Notes:

¹ Uncontrolled emissions that are captured by the collection system are routed to a vapor combustor. Per AP-42 5.2-6, 70% capture efficiency can be assumed for trucks not subject to NSPS. Uncaptured emissions shown represent those not captured by the collection system or controlled by the vapor combustor.

² Maximum lb/hr based on average hourly truck loading rate. Average lb/hr based on TPY conversion assuming continuous operation.

³ Speciated liquids analysis located in Fugitive Emissions Calculations. HAP weight % calculated as % of total hydrocarbons in the sample. All HAP assumed to volatilize from liquids for most conservative emissions estimate.

SWN Production Company, LLC James Seabright Pad Condensate Truck Loading Emissions - Greenhouse Gases

Loading Information

Unit ID:	EU-LOAD-COND
Emission Point ID:	APC-COMB
Fill Method:	Submerged
Type of Service:	Dedicated
Mode of Operation:	Normal
TOC Em. Factor (tonne/10 ⁶ gal): ¹	0.91
Throughput (10 ⁶ gal):	17.44554
Control Type:	Vapor Return/Combustion
Vapor Capture Efficiency: ²	70.00%
Average Fill Rate (gal/hr):	7,500
Captured Vapors Routed to:	Vapor Combustor

Analysis CH ₄ wt% =	49.64756%
Analysis CO ₂ wt% =	0.23128%

Uncontrolled Loading Emissions^{3, 4}

Pollutant	Max. lb/hr	Avg. lb/hr	tonnes/yr	tons/yr
CH ₄	7.47	1.98	7.88	8.69
CH ₄ as CO ₂ e	186.76	49.59	197.04	217.20
CO ₂	0.03	0.01	0.04	0.04
Total CO ₂ + CO ₂ e =	186.79	49.60	197.08	217.24

Uncaptured Loading Emissions^{3, 4}

Pollutant	Max. lb/hr	Avg. lb/hr	tonnes/yr	tons/yr
CH ₄	2.24	0.60	2.36	2.61
CH ₄ as CO ₂ e	56.03	14.88	59.11	65.16
CO ₂	0.01	<0.01	0.01	0.01
Total CO ₂ + CO ₂ e =	56.04	14.88	59.12	65.17

SWN Production Company, LLC James Seabright Pad Condensate Truck Loading Emissions - Greenhouse Gases (Continued)

API Compendium Table 5-12

Loading Type	Emission Factor (tonne TOC/10 ⁶ gal)
Rail/Truck - Submerged Loading - Dedicated Normal Service	0.91
Rail/Truck - Submerged Loading - Vapor Balance Service	1.51
Rail/Truck - Splash Loading - Dedicated Normal Service	
Rail/Truck - Splash Loading - Vapor Balance Service	1.01
Marine Loading - Ships/Ocean Barges	0.28
Marine Loading - Barges	0.45

Notes:

¹ API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Gas Industry, Table 5-12.

² Uncontrolled emissions that are captured by the collection system are routed to a vapor combustor. Per AP-42 5.2-6, 70% capture efficiency can be assumed for trucks not subject to NSPS. Uncaptured emissions shown represent those not captured by the collection system or controlled by the vapor combustor.

³ Maximum lb/hr based on average hourly truck loading rate. Average lb/hr based on TPY conversion assuming continuous operation.

 4 CO₂e = CO₂ equivalent (Pollutant times GWP multiplier):

40 CFR 98 Table A-1, Global Warming Potential (GWP) multiplier: $CO_2 = 1$, $CH_4 = 25$

SWN Production Company, LLC James Seabright Pad Produced Water Truck Loading Emissions - Criteria and Hazardous Air Pollutants

Loading Information

Unit ID:	EU-LOAD-PW
Emission Point ID:	APC-COMB
Fill Method:	Submerged
Type of Service:	Dedicated
Mode of Operation:	Normal
Saturation Factor:	0.6
Throughput (1000 gal):	22,950.54
Control Type:	Vapor Return/Combustion
Vapor Capture Efficiency: 1	70%
Average Fill Rate (gal/hr):	7,500
Captured Vapors Routed to:	Vapor Combustor

Uncontrolled Loading Emissions²

Pollutant	Max. Ib/hr	Avg. lb/hr	ТРҮ
VOC =	<0.01	<0.01	<0.01
n-Hexane	<0.01	<0.01	<0.01
Benzene	<0.01	<0.01	<0.01
Toluene	<0.01	<0.01	<0.01
Ethylbenzene	<0.01	<0.01	<0.01
Xylenes	<0.01	<0.01	<0.01
Total HAP =	<0.01	<0.01	<0.01

Uncaptured Loading Emissions²

Pollutant	Max. Ib/hr	Avg. lb/hr	ТРҮ
VOC =	<0.01	<0.01	<0.01
n-Hexane	<0.01	<0.01	<0.01
Benzene	<0.01	<0.01	<0.01
Toluene	<0.01	<0.01	<0.01
Ethylbenzene	<0.01	<0.01	<0.01
Xylenes	<0.01	<0.01	<0.01
Total HAP =	<0.01	<0.01	<0.01

SWN Production Company, LLC James Seabright Pad Produced Water Truck Loading Emissions - Criteria and Hazardous Air Pollutants (Continued)

Estimated HAP Composition (% by Weight)³

Pollutant	Wt%
n-Hexane	5.637%
Benzene	0.078%
Toluene	0.351%
Ethylbenzene	0.359%
Xylenes	0.585%
Total HAP =	7.010%

Notes:

¹ Uncontrolled emissions that are captured by the collection system are routed to a vapor combustor. Per AP-42 5.2-6, 70% capture efficiency can be assumed for trucks not subject to NSPS. Uncaptured emissions shown represent those not captured by the collection system or controlled by the vapor combustor.

² Maximum lb/hr based on average hourly truck loading rate. Average lb/hr based on TPY conversion assuming continuous operation.

³ Speciated liquids analysis located in Fugitive Emissions Calculations. HAP weight % calculated as % of total hydrocarbons in the sample. All HAP assumed to volatilize from liquids for most conservative emissions estimate.

SWN Production Company, LLC James Seabright Pad Produced Water Truck Loading Emissions - Greenhouse Gases

Loading Information

Unit ID:	EU-LOAD-PW
Emission Point ID:	APC-COMB
Fill Method:	Submerged
Type of Service:	Dedicated
Mode of Operation:	Normal
TOC Em. Factor (tonne/10 ⁶ gal): ¹	0.91
Throughput (10 ⁶ gal):	22.9505
Control Type:	Vapor Return/Combustion
Vapor Capture Efficiency: ²	70.00%
Average Fill Rate (gal/hr):	7,500
Captured Vapors Routed to:	Vapor Combustor
Analysis CH_4 wt% =	49.64756%

Analysis Ci $_4$ wt /0 –	49.047.50 %
Analysis CO ₂ wt% =	0.23128%

Uncontrolled Loading Emissions^{3, 4}

Pollutant	Max. Ib/hr	Avg. lb/hr	tonnes/yr	tons/yr
CH ₄	7.47	2.61	10.37	11.43
CH ₄ as CO ₂ e	186.76	65.24	259.22	285.74
CO ₂	0.03	0.01	0.05	0.05
Total CO ₂ + CO ₂ e =	186.79	65.25	259.27	285.80

Uncaptured Loading Emissions^{3, 4}

Pollutant	Max. lb/hr	Avg. lb/hr	tonnes/yr	tons/yr
CH ₄	2.24	0.78	3.11	3.43
CH ₄ as CO ₂ e	56.03	19.57	77.77	85.72
CO ₂	0.01	<0.01	0.01	0.02
Total CO ₂ + CO ₂ e =	56.04	19.58	77.78	85.74

SWN Production Company, LLC James Seabright Pad Produced Water Truck Loading Emissions - Greenhouse Gases (Continued)

API Compendium Table 5-12

Loading Type	Emission Factor (tonne TOC/10 ⁶ gal)
Rail/Truck - Submerged Loading - Dedicated Normal Service	0.91
Rail/Truck - Submerged Loading - Vapor Balance Service	1.51
Rail/Truck - Splash Loading - Dedicated Normal Service	
Rail/Truck - Splash Loading - Vapor Balance Service	1.01
Marine Loading - Ships/Ocean Barges	0.28
Marine Loading - Barges	0.45

Notes:

¹ API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Gas Industry, Table 5-12.

² Uncontrolled emissions that are captured by the collection system are routed to a vapor combustor. Per AP-42 5.2-6, 70% capture efficiency can be assumed for trucks not subject to NSPS. Uncaptured emissions shown represent those not captured by the collection system or controlled by the vapor combustor.

³ Maximum lb/hr based on average hourly truck loading rate. Average lb/hr based on TPY conversion assuming continuous operation.

 4 CO₂e = CO₂ equivalent (Pollutant times GWP multiplier):

40 CFR 98 Table A-1, Global Warming Potential (GWP) multiplier: $CO_2 = 1$, $CH_4 = 25$

SWN Production Company, LLC James Seabright Pad Vapor Combustor Emissions Calculations - Criteria and Hazardous Air Pollutants

Criteria and Hazardous Air Pollutant Emissions

		Emission	Total Captured Emissions ²		Combustor Destruction Efficiency		Emissions (Post- Combustion)
Unit ID	Pollutant	Factors ¹	lb/hr	TPY	%	lb/hr	TPY
	NOx	0.138	-	-	-	2.07	9.07
APC-COMB	со	0.2755	-		-	4.13	18.10
	PM	7.6	-		-	0.05	0.20
	VOC	Mass Balance	134.09	587.32	98.00%	2.68	11.75
	n-Hexane	Mass Balance	7.56	33.11	98.00%	0.15	0.66
	Benzene	Mass Balance	0.11	0.46	98.00%	<0.01	0.01
	Toluene	Mass Balance	0.47	2.06	98.00%	0.01	0.04
	Ethylbenzene	Mass Balance	0.48	2.11	98.00%	0.01	0.04
	Xylenes	Mass Balance	0.78	3.43	98.00%	0.02	0.07

Notes:

¹ Although a vapor combustor is not considered a flare by design, the function is consistent in that it combusts a waste stream for the purpose of reducing emissions; therefore, flare emission factors for NOx and CO were used to provide the most accurate emissions estimates. Although the combustor is designed to be smokeless, PM emissions have been estimated using AP-42 Table 1.4-1 factor (lb/mmscf) for a conservative estimate.

Hours per Year:	8,760
Number of Combustors:	1
NOx and CO emission factors (lb/mmBtu): TCEQ Air Permit Technical Guidance for Chemical	15.0 mmBtu/hr per Combustor
Sources: Flares and Vapor Oxidizers: High Btu waste streams (>1,000 Btu/scf) based on heat	
input to each combustor =	15.0 mmBtu/hr Total Heat Input

² Total captured emissions are based on 100% capture efficiency from storage tanks and 70% capture efficiency from truck loading with 98% destruction efficiency from the vapor combustor based on 8,760 hours of operation per year. Captured emissions from sources controlled by VOC combustor shown in following tables.

SWN Production Company, LLC James Seabright Pad Vapor Combustor Emissions Calculations - Criteria and Hazardous Air Pollutants (Continued)

	Captured VOC Emissions	
Source	lb/hr	ТРҮ
Condensate Storage Tanks	122.05	534.57
Produced Water Storage Tanks	1.66	7.28
Condensate Truck Loading	10.38	45.47
Produced Water Truck Loading	<0.01	<0.01
Total VOC =	134.09	587.32

	Captured HAP Emissions (lb/hr)				
Source	n-Hexane	Benzene	Toluene	Ethylbenzene	Xylenes
Condensate Storage Tanks	6.88	0.10	0.43	0.44	0.71
Produced Water Storage Tanks	0.09	<0.01	0.01	0.01	0.01
Condensate Truck Loading	0.59	0.01	0.04	0.04	0.06
Produced Water Truck Loading	<0.01	<0.01	<0.01	<0.01	<0.01
Total HAP =	7.56	0.11	0.47	0.48	0.78

	Captured HAP Emissions (TPY)				
Source	n-Hexane	Benzene	Toluene	Ethylbenzene	Xylenes
Condensate Storage Tanks	30.13	0.42	1.88	1.92	3.12
Produced Water Storage Tanks	0.41	0.01	0.03	0.03	0.04
Condensate Truck Loading	2.56	0.04	0.16	0.16	0.27
Produced Water Truck Loading	<0.01	<0.01	<0.01	<0.01	<0.01
Total HAP =	33.11	0.46	2.06	2.11	3.43

SWN Production Company, LLC James Seabright Pad Vapor Combustor Emissions Calculations - Greenhouse Gases

Equipment Information

Unit ID:	APC-COMB
Description:	Vapor Combustor
Number of Combustors:	1
Burner Design Capacity (mmBtu/hr):	15.0
Stream HHV (Btu/scf):	2,450
Annual Throughput (mmscf):	53.63
Annual Operating Hours:	8,760

Greenhouse Gas (GHG) Emissions

Pollutant	lb/hr	tonnes/yr	tons/yr
CO ₂	1,754.66	6,972.07	7,685.39
CH ₄	0.03	0.13	0.14
N ₂ O	<0.01	0.01	0.01
CH ₄ as CO ₂ e	0.83	3.28	3.62
N ₂ O as CO ₂ e	0.99	3.92	4.32
Total CO ₂ + CO ₂ e =	1,756.47	6,979.27	7,693.33

40 CFR 98 Tables C-1 and C-2 Emission Factors (kg/mmBtu)¹

Carbon Dioxide (CO ₂)	53.06
Methane (CH ₄)	1.00E-03
Nitrous Oxide (N ₂ O)	1.00E-04

Notes:

¹ $CO_2e = CO_2$ equivalent (Pollutant times GWP multiplier):

40 CFR 98 Table A-1, Global Warming Potential (GWP) multiplier: $CO_2 = 1$, $CH_4 = 25$, $N_2O = 298$

SWN Production Company, LLC James Seabright Pad Vapor Combustor Pilot Emissions Calculations - Criteria Air Pollutants

Criteria Air Pollutant Emissions

		Emission Factors ¹	Emissio	ns
Unit ID	Pollutant	(lb/mmscf)	lb/hr	ТРҮ
EU-PILOT	NOx	100	<0.01	0.02
APC-COMB	CO	84	<0.01	0.02
	VOC	5.5	<0.01	<0.01
	SO ₂	0.6	<0.01	<0.01
	PM	7.6	<0.01	<0.01

905	Pilot Stream Heat Content (Btu/SCF)
8,760	Pilot Hours/Yr
50	Total Pilot Gas Flow Rate (SCFH)
45,250	Total Pilot Gas Fuel Use (Btu/hr)
0.44	Total Annual Fuel Use (MMSCF)

Notes:

¹ AP-42 Table 1.4-1, -2 (7/98)

SWN Production Company, LLC James Seabright Pad Vapor Combustor Pilot Emissions Calculations - Hazardous Air Pollutants

Hazardous Air Pollutant Emissions

		Emission		
		Factors ¹	Emis	sions
Unit ID	Pollutant	(lb/mmscf)	lb/hr	ТРҮ
EU-PILOT	n-Hexane	1.8	<0.01	<0.01
APC-COMB	Formaldehyde	0.075	<0.01	<0.01
	Benzene	0.0021	<0.01	<0.01
	Toluene	0.0034	<0.01	<0.01
		Total HAP =	<0.01	<0.01

905	Pilot Stream Heat Content (Btu/SCF)
8,760	Pilot Hours/Yr
50	Total Pilot Gas Flow Rate (SCFH)
45,250	Total Pilot Gas Fuel Use (Btu/hr)
0.44	Total Annual Fuel Use (MMSCF)

Notes:

¹ AP-42 Table 1.4-3 (7/98)

SWN Production Company, LLC James Seabright Pad Vapor Combustor Pilot Emissions Calculations - Greenhouse Gases

Greenhouse Gas (GHG) Emissions

			Emissions	
Unit ID	Pollutant	lb/hr	tonnes/yr	tons/yr
EU-PILOT	CO ₂	5.29	21.03	23.18
APC-COMB	CH ₄	<0.01	<0.01	<0.01
	N ₂ O	<0.01	<0.01	<0.01
	CH ₄ as CO ₂ e	<0.01	0.01	0.01
	N ₂ O as CO ₂ e	<0.01	0.01	0.01
	Total $CO_2 + CO_2e =$	5.30	21.05	23.21

905	Pilot Stream Heat Content (Btu/SCF)
8,760	Pilot Hours/Yr
50	Total Pilot Gas Flow Rate (SCFH)
45,250	Total Pilot Gas Fuel Use (Btu/hr)
0.44	Total Annual Fuel Use (MMSCF)

40 CFR 98 Tables C-1 and C-2 Emission Factors (kg/mmBtu)¹

Carbon Dioxide (CO ₂)	53.06
Methane (CH ₄)	1.00E-03
Nitrous Oxide (N ₂ O)	1.00E-04

Notes:

 1 CO₂e = CO₂ equivalent (Pollutant times GWP multiplier):

40 CFR 98 Table A-1, Global Warming Potential (GWP) multiplier: CO₂ = 1, CH₄ = 25, N₂O = 298

SWN Production Company, LLC James Seabright Pad Fugitive Emissions Calculations - Criteria and Hazardous Air Pollutants and Greenhouse Gases

Equipment Information

Source Type/Service	Number of Sources ¹	Em. Factor (lb/hr/source) ²	Control Efficiency	TOC lb/hr	ТОС ТРҮ	VOC Wt %
Valves - Gas	57	9.92E-03	0.00%	0.57	2.48	24.34%
Flanges - Gas	251	8.60E-04	0.00%	0.22	0.95	24.34%
Compressor Seals - Gas	6	1.94E-02	0.00%	0.12	0.51	24.34%
Relief Valves - Gas	22	1.94E-02	0.00%	0.43	1.87	24.34%
		Total TOC (Gas	Components) =	1.32	5.80	-
Valves - Light Oil	72	5.51E-03	0.00%	0.40	1.74	95.65%
Connectors - Light Oil	282	4.63E-04	0.00%	0.13	0.57	95.65%
	T	otal TOC (Liquid	Components) =	0.53	2.31	-

VOC and Greenhouse Gas Emissions

Source Type/Service	V	DC	C	H ₄	CO ₂	
Source Type/Service	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
Valves - Gas	0.14	0.60	0.29	1.25	<0.01	0.01
Flanges - Gas	0.05	0.23	0.11	0.48	<0.01	<0.01
Compressor Seals - Gas	0.03	0.12	0.06	0.26	<0.01	<0.01
Relief Valves - Gas	0.10	0.45	0.22	0.94	<0.01	<0.01
Components in Gas Service =	0.32	1.41	0.67	2.93	<0.01	0.01
Valves - Light Oil	0.38	1.66	<0.01	0.02	<0.01	<0.01
Connectors - Light Oil	0.12	0.55	<0.01	0.01	<0.01	<0.01
Components in Liquid Service =	0.50	2.21	<0.01	0.02	<0.01	<0.01
Total (Gas + Liquid Components) =	0.83	3.62	0.67	2.95	<0.01	0.01

Hazardous Air Pollutant (HAP) Emissions (lb/hr)

Source Type/Service	n-Hexane	Benzene	Toluene	Ethylbenzene	Xylenes	2,2,4-Tri.	Total
Valves - Gas	<0.01	<0.01	<0.01	0.00	<0.01	0.00	<0.01
Flanges - Gas	<0.01	<0.01	<0.01	0.00	<0.01	0.00	<0.01
Compressor Seals - Gas	<0.01	<0.01	<0.01	0.00	<0.01	0.00	<0.01
Relief Valves - Gas	<0.01	<0.01	<0.01	0.00	<0.01	0.00	<0.01
Components in Gas Service =	<0.01	<0.01	<0.01	0.00	<0.01	0.00	<0.01
Valves - Light Oil	0.02	<0.01	<0.01	<0.01	<0.01	0.00	0.03
Connectors - Light Oil	0.01	<0.01	<0.01	<0.01	<0.01	0.00	0.01
Components in Liquid Service =	0.03	<0.01	<0.01	<0.01	<0.01	0.00	0.04
Total (Gas + Liquid Components) =	0.03	<0.01	<0.01	<0.01	<0.01	0.00	0.04

Hazardous Air Pollutant (HAP) Emissions (TPY)

Source Type/Service	n-Hexane	Benzene	Toluene	Ethylbenzene	Xylenes	2,2,4-Tri.	Total
Valves - Gas	0.01	<0.01	<0.01	0.00	<0.01	0.00	0.01
Flanges - Gas	<0.01	<0.01	<0.01	0.00	<0.01	0.00	<0.01
Compressor Seals - Gas	<0.01	<0.01	<0.01	0.00	<0.01	0.00	<0.01
Relief Valves - Gas	0.01	<0.01	<0.01	0.00	<0.01	0.00	0.01
Components in Gas Service =	0.02	<0.01	<0.01	0.00	<0.01	0.00	0.02
Valves - Light Oil	0.10	<0.01	0.01	0.01	0.01	0.00	0.12
Connectors - Light Oil	0.03	<0.01	<0.01	<0.01	<0.01	0.00	0.04
Components in Liquid Service =	0.13	<0.01	0.01	0.01	0.01	0.00	0.16
Total (Gas + Liquid Components) =	0.15	<0.01	0.01	0.01	0.01	0.00	0.18

Source Type/Service	WH	GPU	HT	LPT	FGC	ОТ	TT-O
Valves - Gas	12	3	2	5	5	0	0
Flanges - Gas	37	15	9	24	33	3	2
Compressor Seals - Gas	0	0	0	0	3	0	0
Relief Valves - Gas	1	3	1	1	1	1	1
Open-Ended Lines - Gas	0	0	0	0	0	0	0
Valves - Light Oil	0	5	6	12	3	6	9
Connectors - Light Oil	0	20	24	48	12	24	30
Pump Seals - Light Oil	0	0	0	0	0	0	0
Other - Light Oil	0	0	0	0	0	0	0
Equipment Type	WH	GPU	HT HT	LPT	FGC	ОТ	TT-O
Number of Each Type On Pad =	3	3	1	0	2	6	1

Typical Component Count per Equipment Type based on Representative Facility³

Speciated Gas Analysis⁴

Component	Molecular Weight	Mole %	Equiv. Wt. Basis	Weight %	HC Weight %	lb/hr	ТРҮ
Hydrogen Sulfide	34.082	0.000%	0.000	0.000%	-	0.00	0.00
Carbon Dioxide	44.010	0.118%	0.052	0.231%	-	<0.01	0.01
Nitrogen	28.013	1.193%	0.334	1.488%	-	0.02	0.09
Methane	16.042	69.492%	11.148	49.648%	50.516%	0.67	2.93
Ethane	30.069	18.455%	5.549	24.714%	25.146%	0.33	1.46
Propane	44.096	7.401%	3.264	14.534%	14.789%	0.20	0.86
i-Butane	58.122	0.642%	0.373	1.662%	1.691%	0.02	0.10
n-Butane	58.122	1.867%	1.085	4.833%	4.917%	0.07	0.29
i-Pentane	72.149	0.240%	0.173	0.771%	0.785%	0.01	0.05
n-Pentane	72.149	0.353%	0.255	1.134%	1.154%	0.02	0.07
n-Hexane	86.175	0.075%	0.065	0.288%	0.293%	<0.01	0.02
Other Hexanes	86.175	0.089%	0.077	0.342%	0.348%	<0.01	0.02
Heptanes (as n-Heptane)	100.202	0.049%	0.049	0.219%	0.222%	<0.01	0.01
Benzene	78.114	0.001%	0.001	0.003%	0.004%	<0.01	<0.01
Toluene	92.141	0.001%	0.001	0.004%	0.004%	<0.01	<0.01
Ethylbenzene	106.167	0.000%	0.000	0.000%	0.000%	0.00	0.00
Xylenes	106.167	0.001%	0.001	0.005%	0.005%	<0.01	<0.01
2,2,4-Trimethylpentane	114.230	0.000%	0.000	0.000%	0.000%	0.00	0.00
Octanes (as n-Octane)	114.229	0.015%	0.017	0.076%	0.078%	<0.01	<0.01
Nonanes (as n-Nonane)	128.255	0.004%	0.005	0.023%	0.023%	<0.01	<0.01
Decanes (as n-Decane)	142.282	0.004%	0.006	0.025%	0.026%	<0.01	<0.01
· · · · · · · · · · · · · · · · · · ·	TOTAL =	100.00%	22.45	100.00%	100.00%	1.35	5.90
		TOTAL HC =	22.07	TOTAL VOC =	24.34%	0.32	1.41
				TOTAL HAP =	0.31%	<0.01	0.02

Speciated Liquids Analysis⁴

Component	Molecular Weight	Mole %	Equiv. Wt. Basis	Weight %	HC Weight %	lb/hr	ТРҮ
Hydrogen Sulfide	34.082	0.000%	0.000	0.000%	-	0.00	0.00
Carbon Dioxide	44.010	0.034%	0.015	0.019%	-	<0.01	<0.01
Nitrogen	28.013	0.042%	0.012	0.015%	-	<0.01	<0.01
Methane	16.042	4.685%	0.752	0.932%	0.932%	<0.01	0.02
Ethane	30.069	9.157%	2.753	3.413%	3.414%	0.02	0.08
Propane	44.096	13.098%	5.776	7.160%	7.162%	0.04	0.17
i-Butane	58.122	2.873%	1.670	2.070%	2.071%	0.01	0.05
n-Butane	58.122	11.239%	6.532	8.098%	8.101%	0.04	0.19
i-Pentane	72.149	3.996%	2.883	3.574%	3.575%	0.02	0.08
n-Pentane	72.149	7.363%	5.312	6.586%	6.588%	0.03	0.15
n-Hexane	86.175	5.275%	4.546	5.635%	5.637%	0.03	0.13
Other Hexanes	86.175	5.479%	4.722	5.853%	5.855%	0.03	0.14
Heptanes (as n-Heptane)	100.202	8.814%	8.832	10.949%	10.952%	0.06	0.25
Benzene	78.114	0.081%	0.063	0.078%	0.078%	<0.01	<0.01
Toluene	92.141	0.307%	0.283	0.351%	0.351%	<0.01	0.01
Ethylbenzene	106.167	0.273%	0.290	0.359%	0.359%	<0.01	0.01
Xylenes	106.167	0.444%	0.471	0.584%	0.585%	<0.01	0.01
2,2,4-Trimethylpentane	114.230	0.000%	0.000	0.000%	0.000%	0.00	0.00
Octanes (as n-Octane)	114.229	6.491%	7.415	9.192%	9.195%	0.05	0.21
Nonanes (as n-Nonane)	128.255	4.379%	5.616	6.962%	6.965%	0.04	0.16
Decanes (as n-Decane)	142.282	15.971%	22.724	28.170%	28.180%	0.15	0.65
	TOTAL =	100.00%	80.67	100.00%	100.00%	0.53	2.31
		TOTAL HC =	80.64	TOTAL VOC =	95.65%	0.50	2.21
				TOTAL HAP =	7.01%	0.04	0.16

Notes:

¹ Component counts taken by equipment type at representative facility and made site-specific according to the number of each equipment type at this site.

² Emission Factor Source: EPA-453/R-95-017. TOC multiplied by pollutant content of streams (weight %) to obtain pollutant emissions.

³ Equipment Type Key: WH = Well Head, GPU = Gas Production Unit, HT = Heater, LPT = Low-Pressure Tower, FGC = Flash Gas Compressor, OT = Oil Tank, TT-O = Tank Truck - Oil

⁴ Gas and liquids analyses located in Attachment L.

SWN Production Company, LLC James Seabright Pad Fugitive Haul Road Emissions

Facility Data¹

Vehicle Type	Light Vehicles (Pick-ups and Cars)	Medium Trucks (Service Trucks)	Heavy Trucks (Tanker Trucks) ²
Average vehicle weight ((empty + full)/2) (tons)	2	15	23.5
Number of wheels per vehicle type (w)	4	10	18
Average number of round trips/day/vehicle type	1	1	14
Distance per round trip (miles/trip)	1.77	1.77	1.77
Vehicle miles travelled (miles/day)	1.77	1.77	24.55
Number of days operational (days/yr)	365	365	365
Vehicle miles travelled VMT (miles/yr)	646	646	8,961
Average vehicle speed S (mph)	10	10	10
Average number of round trips/hour/vehicle type	0.06	0.06	0.77
Average number of round trips/year/vehicle type	365	365	5,062
Estimated maximum number of round trips/hour/vehicle type	3	3	2
Estimated maximum number of round trips/day/vehicle type	6	4	16
Estimated maximum number of round trips/year/vehicle type	2,300	1,533	6,082

190 Average Tanker Volume (bbl) 7,980 Gallons Tanker Volume 1,497 bwpd 1,138 bopd 13.87 Tanker Trucks per Day 4,448 Length Leased Access Road (ft) 225 Longest Pad Side (ft) 9,346 Total Round Trip Feet

Formula & Calculation Inputs

E=k(s/12) ^a * (W/3) ^b * ((365-P) / 365)
where:
Days per year
Annual average hours per day of road operations
k = PM Particle Size Multiplier
k = PM10 Particle Size Multiplier
k = PM2.5 Particle Size Multiplier
s = Surface Material Silt Content
P = Number of days > 0.01 inch of rain
a = PM Constant
a = PM10 & PM2.5 Constant
b = PM, PM10, & PM2.5 Constant
Total hourly fleet vehicle miles travelled (miles/hr)
Total annual fleet vehicle miles travelled (miles/yr) ³
Average wheels ⁴
Average vehicle weight of the fleet (W) ⁵
Moisture Ratio
Control Efficiency (CF)

Rate	Units	Comment
365		
18		
4.90	lb/VMT	AP-42 Section 13.2.2 (11/06), Table 13.2.2-2 (PM)
1.50	lb/VMT	AP-42 Section 13.2.2 (11/06), Table 13.2.2-2 (PM ₁₀)
0.15	lb/VMT	AP-42 Section 13.2.2 (11/06), Table 13.2.2-2 (PM _{2.5})
3.9	%	State Default Data from AP-42 Data (1999 NEI Data)
150	days/year	AP-42 Section 13.2.2 (11/06), Figure 13.2.2-1
0.70	unitless	AP-42 Section 13.2.2 (11/06), Table 13.2.2-2 (PM)
0.90	unitless	AP-42 Section 13.2.2 (11/06), Table 13.2.2-2 (PM ₁₀ & PM _{2.5})
0.45	unitless	AP-42 Section 13.2.2 (11/06), Table 13.2.2-2
1.56	VMT/hr	
10,252.70	VMT/yr	
17		
21.6	tons	
1.00		Estimated based on 0.2% uncontrolled surface water content assuming no waterir
0.00	%	Based on Moisture Ratio and Figure 13.2.2-2 Control

EPA - BID Document 13.2.2 - 1998

SWN Production Company, LLC James Seabright Pad Fugitive Haul Road Emissions (Continued)

	Emission	Factors		Control Total Vehicle Mile		tal Vehicle Miles Emission Rates				Emission Rates				
	PM	PM ₁₀	PM _{2.5}	Efficiency		Travelled		Travelled		Total PM ₁₀	PM _{2.5}	Total PM	Total PM ₁₀	PM _{2.5}
Vehicle Type	(lbs/VMT)	(Ibs/VMT)	(lbs/VMT)	(%)	(VMT/hr)	(VMT/yr)	(lb/hr)	(lb/hr)	(lb/hr)	(tons/yr)	(tons/yr)	(tons/yr)		
Light Vehicles	3.20	0.78	0.08	0.00	0.10	646.09	0.31	0.08	0.01	1.03	0.25	0.03		
Medium Trucks	3.20	0.78	0.08	0.00	0.10	646.09	0.31	0.08	0.01	1.03	0.25	0.03		
Heavy Trucks	3.20	0.78	0.08	0.00	1.36	8,960.53	4.36	1.07	0.11	14.32	3.50	0.35		
			Total =	0.00	1.56	10,252.70	4.99	1.22	0.12	16.38	4.01	0.40		

Notes:

1) Facility vehicle data based on estimates, GP5.1 and AP-42 13.2.2-2 defaults for industrial unpaved roads

2) Tank trucker average vehicle weight as $(W_{(empty)}+W_{(full)})/2 = (7 + 40)/2 = 23.7$ tons

3) Average vehicle miles travelled (VMT/yr) as (No. of round trip/vehicle * No. of vehicles/type * Roundtrip miles/trip)* 365 days/yr * No. of vehicle type)

4) Average wheels calculated as average of (No. of wheels per vehicle type * No. of vehicle/type)

5) Average vehicle fleet calculated as (Average weight of vehicle type * Percentage of each vehicle type on unpaved surface). Percentage of each vehicle type= VMT_{vehicle type}/VMT

6) Minimum one-per-day average pick-up trucks and service trucks even if tanker not required every day.

7) Per EPA BID calculations, all emissions based on average trips. Estimated maximum hourly, daily and yearly trips provided for information only.

Calculation of Emission Factors (AP-42, 13.2.2)

Equation 1a: $EF = k(s/12)^{a} (W/3)^{b}$ where k, a, and b are empirical constants and

EF = size-specific emission factor (lb/VMT)

s = surface material silt content %

W = mean vehicle weight (tons)

Equation 2: $EF_{ext} = EF^{*}((365-P)/365)$ where:

 EF_{ext} = annual size-specific emission factor extrapolated for natural mitigation, Ib/VMT

EF = emission factor from Equation 1a

P = number of days in a year with at least 0.01 inches of precipitation

Calculation of Emissions

 $E = EF_{ext} * VMT/yr * ((1-CF)/100) * 1 ton/2000 lbs where:$

E = annual emissions (tons/yr)

 EF_{ext} = annual size-specific emission factor extrapolated for natural mitigation, Ib/VMT

CF = control efficiency (%)

ATTACHMENT U: FACILITY-WIDE EMISSION SUMMARY SHEETS

List all sources of en	missions	in this ta	ble. Use	e extra pa	iges if ne	ecessary.										
Emission Point ID #	NO _X		CO		VOC		SO ₂		PM ₁₀		PM _{2.5}		CH4		GHG (CO ₂ e)	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
EP-ENG1	0.32	1.40	0.64	2.80	0.31	1.36	< 0.01	< 0.01	0.02	0.11	0.02	0.11	< 0.01	0.01	155.19	679.73
EP-ENG2	0.32	1.40	0.64	2.80	0.31	1.36	< 0.01	< 0.01	0.02	0.11	0.02	0.11	< 0.01	0.01	155.19	679.73
EP-GPU1	0.11	0.48	0.09	0.41	0.01	0.03	< 0.01	< 0.01	0.01	0.04	0.01	0.04	< 0.01	0.01	117.10	512.89
EP-GPU2	0.11	0.48	0.09	0.41	0.01	0.03	< 0.01	< 0.01	0.01	0.04	0.01	0.04	< 0.01	0.01	117.10	512.89
EP-GPU3	0.11	0.48	0.09	0.41	0.01	0.03	< 0.01	< 0.01	0.01	0.04	0.01	0.04	< 0.01	0.01	117.10	512.89
EP-SH1	0.17	0.73	0.14	0.61	0.01	0.04	< 0.01	< 0.01	0.01	0.06	0.01	0.06	< 0.01	0.01	175.65	769.33
EP-LOAD-COND	-	-	-	-	4.45	19.49	-	-	-	-	-	-	0.60	2.61	14.88	65.17
EP-LOAD-PW	-	-	-	-	< 0.01	< 0.01	-	-	-	-	-	-	0.78	3.43	19.58	85.74
APC-COMB	2.08	9.09	4.14	18.12	2.68	11.75	< 0.01	< 0.01	0.05	0.21	0.05	0.21	0.03	0.15	1,761.77	7,716.54
TOTAL	3.21	14.07	5.83	25.55	7.78	34.07	< 0.01	0.02	0.13	0.58	0.13	0.58	1.43	6.25	2,633.54	11,534.90

ATTACHMENT U - FACILITY-WIDE CONTROLLED EMISSIONS SUMMARY SHEET

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators.

According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

Note that the emissions from the APC-COMB includes uncombusted emissions from the uncombusted emissions from the tanks and loading operations, as well as combustor pilot emissions.

ATTACHMENT U – FACILITY-WIDE HAP CONTROLLED EMISSIONS SUMMARY SHEET														
List all sources of emissions in this table. Use extra pages if necessary.														
Emission Point ID #	Formaldehyde		Benzene		Toluene		Ethylbenzene		Xylenes		Hexane		Total HAPs	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
EP-ENG1	0.09	0.38	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	-	-	0.10	0.44
EP-ENG2	0.09	0.38	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	-	-	0.10	0.44
EP-GPU1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	-	-	-	-	< 0.01	0.01	< 0.01	0.01
EP-GPU2	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	-	-	-	-	< 0.01	0.01	< 0.01	0.01
EP-GPU3	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	-	-	-	-	< 0.01	0.01	< 0.01	0.01
EP-SH1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	-	-	-	-	< 0.01	0.01	< 0.01	0.01
EP-LOAD-COND	-	-	< 0.01	0.02	0.02	0.07	0.02	0.07	0.03	0.11	0.25	1.10	0.31	1.37
EP-LOAD-PW	-	-	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
APC-COMB	< 0.01	< 0.01	0.01	0.02	0.03	0.11	0.03	0.11	0.04	0.18	0.40	1.76	0.50	2.19
TOTAL	0.17	0.76	0.01	0.04	0.03	0.12	0.03	0.11	0.04	0.18	0.41	1.80	0.71	3.11

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators.

According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

Note that the emissions from the APC-COMB includes uncombusted emissions from the uncombusted emissions from the tanks and loading operations, as well as combustor pilot emissions.

ATTACHMENT V: LEGAL ADVERTISEMENT

Note: Affidavit of Publication will be submitted upon receipt by SWN from the publisher.

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that SWN Production Company, LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a G70-D General Permit Registration for a natural gas production facility (James Seabright Pad) located in Brooke County, West Virginia. From I-70, take PA state route 844 to WV state route 88. Travel down 88 for ~3.5 miles and access road on left. Latitude/longitude coordinates are: 40.220629, -80. 532029.

The applicant estimates the potential to discharge the following Regulated Air Pollutants will be:

Nitrogen Oxides (NOx)	14.07 tons/yr
Carbon Monoxide (CO)	25.55 tons/yr
Volatile Organic Compounds (VOC)	37.69 tons/yr
Sulfur Dioxide (SO ₂)	0.02 tons/yr
Particulate Matter (PM)	16.97 tons/yr
Acetaldehyde	0.03 tons/yr
Acrolein	0.03 tons/yr
Benzene	0.04 tons/yr
Ethylbenzene	0.12 tons/yr
Formaldehyde	0.76 tons/yr
Methanol	0.03 tons/yr
n-Hexane	1.95 tons/yr
Toluene	0.12 tons/yr
Xylenes	0.20 tons/yr
Carbon Dioxide	11,372.36 tons/yr
Methane	9.20 tons/yr
Nitrous Oxide	0.02 tons/yr
CO ₂ Equivalent	11,608.72 tons/yr

Operations is planned to begin on or about June 15, 2017. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice. Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the XXth of May 2017

By: SWN Production Company, LLC Carla Suszkowski, P.E. Regulatory Manager – West Virginia Division 10000 Energy Drive Spring, TX 77389