
Ne noble energy

Noble Energy, Inc.

G70-D Permit Application Moundsville 9 (MND 9) Natural Gas Production Site

Marshall County, West Virginia

Prepared By:

Environmental Resources Management, Inc. Hurricane, West Virginia

April 2017

1000 Noble Energy Drive
Canonsburg, PA 15317Tel:724-820-3000Fax:724-820-3098www.nobleenergyinc.com

April 27, 2017

Mr. William F. Durham, Director West Virginia Department of Environmental Protection Division of Air Quality 601 57th Street, SE Charleston, WV25304

RE: Noble Energy, Inc. Moundsville 9 (MND 9) Natural Gas Production Site G70-D General Permit Application Marshall County, West Virginia

Dear Director Durham:

Noble Energy, Inc respectfully submits the enclosed copies of a G70-D General Permit Application to conduct a modification to the Moundsville 9 (MND 9) natural gas production site that will trigger a substantive emission control rule, which requires permitting under WV45CSR13. We look forward to working towards a timely review and issuance of the permit.

The intention of this submittal is to permit the addition of a two hundred eleven (211) horsepower CAT G3306TAA engine that is subject to 40CFR60 JJJJ regulations.

Please note that the newspaper notification will be published and the original affidavit remitted to the Department. Enclosed are one (1) original hard copy and two (2) complete PDFs included on CD-ROM of the G70-D General Permit Application for the MND 9 natural gas production site.

Should you have any questions or require further information the application package, please do not hesitate to contact me at Phil.Schlagel@nblenergy.com or 724-820-3000.

We thank you in advance for your efforts in reviewing this submittal.

Sincerely,

Phil Schlagel Noble Energy, Inc

Enclosures:

1.0 INTRODUCTION NARRATIVE

Noble Energy Inc. (Noble) submits this G-70D General Permit Application to the West Virginia Department of Environmental Protection Division of Air Quality (WVDAQ) for the Moundsville 9 (MND 9) natural gas production site located in Marshal County, West Virginia. This application addresses the operational activities associated with the production of natural gas, condensate, and produced water at the MND 9 pad.

On December 19, 2016 WVDAQ issued a Permit Applicability Determination to Noble for the operations of the MND 9 pad. The evaluation concluded that a permit would not be required for the operation of the following equipment:

- Six (6) Natural Gas Wells;
- Six (6) Gas Production Units/Heaters each rated at 1.00 MMBtu/hr heat input;
- Four (4) 400 barrel (bbl) Produced Water Tanks; and
- Produced Water Truck Loadout;

With the submittal of this permit application, Noble seeks the authority to modify the site to include the addition of an engine which requires agency approval to construct due to NSPS JJJJ regulations. Noble now seeks the authority to operate the following equipment at the MND 9 pad:

- Six (6) Natural Gas Wells;
- Six (6) Gas Production Units/Heaters each rated at 1.00 MMBtu/hr heat input;
- Four (4) 400 bbl Produced Water Tanks;
- Produced Water Truck Loadout; and
- One (1) CAT G3306TAA engine rated at two hundred eleven (211) horsepower (hp) to pull gas off the sales gas pipeline to reinject natural gas into a single well to aide in unloading of fluids from the production well. The engine will also aide in routing gas to the sales pipeline.

Statement of aggregation

The MND 9 pad is located in Marshal County, WV and operated by Noble. Stationary sources of air pollutants may require aggregation of total emission levels if these sources share the same industrial grouping, are operating under common control, and are classified as contiguous or adjacent properties. Noble operates the MND 9 site with the same industrial grouping as nearby facilities, and some of these facilities are under common control. However, the MND 9 site is not subject to the aggregation of stationary emission sources because these sites do not meet the definition of contiguous or adjacent facilities.

Noble Energy, Inc. Moundsville 9 (MND 9) Natural Gas Production Site G-70D General Permit Application

The MND 9 site operates under SIC code 1311 (Crude Petroleum and Natural Gas Extraction). There are surrounding wells operated by Noble that share the same twodigit major SIC code of 13 for Crude Petroleum and Natural Gas Extraction. Therefore, the MND 9 site does share the same SIC codes as the surrounding wells.

Noble is the sole operator of the MND 9 site. Noble is also the sole operator of other production sites and compressor stations in the area. Therefore, Noble does qualify as having nearby operations under common control.

On August 18, 2016 the EPA Administrator signed the *Source Determination for Certain Emission Units in the Oil and Natural Gas Sector*. This notice clarified EPA's position regarding how properties in the oil and natural gas sector are determined to be adjacent in order to assist permitting authorities and permit applicants in making consistent source determinations. The following proposed regulatory text defines "adjacent" for the oil and gas sector in terms of proximity.

Pollutant emitting activities shall be considered adjacent if they are located on the same surface site, or on surface sites that are located within ¹/₄ mile of one another.

There are no Noble owned or operated sites within a ¹/₄ mile radius of the MND 9 pad. Nearby sites do not meet the definition of contiguous or adjacent properties since they are not in contact and do not share a common boundary. The operations conducted at the MND 9 site do not rely on or interact with other sites. Furthermore, operations separated by this distance do not meet the common sense notion of a "plant."

Based on the above reasoning, Noble is not subject to the aggregation of stationary emission sources since the stationary sources are not considered contiguous or adjacent facilities.

2.0 REGULATORY DISCUSSION

This section outlines the State air quality regulations that could be reasonably expected to apply to the MND 9 site and makes an applicability determination for each regulation based on activities conducted at the site and the emissions of regulated air pollutants.

West Virginia State Air Regulations

45 CSR 02 – To Prevent and Control Particulate Air Pollution From Combustion of Fuel in Indirect Heat Exchangers

The line heaters associated with gas production units are indirect heat exchangers that combust natural gas, but are exempt from this regulation since the heat input capacities are less than 10 MMBtu/hr.

Noble Energy, Inc. Moundsville 9 (MND 9) Natural Gas Production Site G-70D General Permit Application

45 CSR 04 – To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contributes to an Objectionable Odor

Operations conducted at the MND 9 site are subject to this requirement. Based on the nature of the process at the site, the presence of objectionable odors is unlikely.

45 CSR 06 – Control of Air Pollution from the Combustion of Refuse

This rule establishes emission standards for particulate matter and requirements for activities involving incineration of refuse. There will be no flaring or incineration activities at the MND 9 site; therefore, the site is not subject to this requirement.

45 CSR 10 – To Prevent and Control Air Pollution from the Emission of Sulfur Oxides

The GPU heaters are indirect heat exchangers that combust natural gas, but are exempt from this regulation since the heat input capacities are less than 10 MMBtu/hr.

45 CSR 13 – Permits for Construction, Modification, Relocation and Operation of Stationary Sources of Air Pollutants

This G-70D General Permit application is being submitted for the operational activities associated with Noble's production of natural gas.

45 CSR 14 – Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution for the Prevention of Significant Deterioration

Federal construction permitting programs regulate new and modified sources of attainment pollutants under Prevention of Significant Deterioration (PSD). Operation of equipment at the MND 9 site will not exceed emission thresholds established by this permitting program. Noble will monitor future construction and modification activities at the site closely and will compare any future increase in emissions with the PSD thresholds to ensure these activities will not trigger this program.

45 CSR 16 - Standards of Performance for New Stationary Sources (NSPS)

45 CSR 16 applies to all registrants that are subject to any of the NSPS requirements, which are described in more detail in the Federal Regulations section. Applicable requirements of NSPS, Subparts JJJJ and OOOO/OOOOa are included in the G70-D General Permit.

45 CSR 19 – Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution which Cause or Contributed to Non-attainment

Federal construction permitting programs regulate new and modified sources of nonattainment pollutants under Non-Attainment New Source Review (NNSR). Marshall County, WV is in full attainment for all nonattainment for the 2010 Sulfur Dioxide standard with a National Ambient Air Quality Standard (NAAQS). The sulfur dioxide potential to emit for the MND 9 site is 0.02 tpy. Noble will monitor future construction and modification activities at the site that would cause an increase in emissions.

45 CSR 25 – Control of Air Pollution from Hazardous Waste Treatment, Storage, and Disposal Facilities

No hazardous waste will be burned at this well site; therefore, it is not subject to this hazardous waste rule.

45 CSR 30 – Requirements for Operating Permits

45 CSR 30 applies to the requirements of the federal Title V operating permit program (40 CFR 70). The major source thresholds for the Title V operating permit program regulations are 10 tons per year (tpy) of a single hazardous air pollutant (HAP), 25 tpy of any combination of HAPs, or 100 tpy of all other regulated pollutants.

The potential emissions of all regulated pollutants at the proposed facility are below the corresponding major source threshold(s). Therefore, the MND 9 site will not be a major source under the Title V program.

45 CSR 34 – National Emission Standards for Hazardous Air Pollutants (NESHAP)

45 CSR 34 applies to all registrants that are subject to any of the NESHAP requirements. Additional discussion is provided in the federal discussion of this permit application.

Federal Regulations

New Source Performance Standards

40 CFR 60, Subpart OOOO (Standards of Performance for Crude oil and Natural Gas Production, Transmission and Distribution)

Subpart OOOO establishes emission standards and compliance schedules for the control of volatile organic compounds (VOC) and sulfur dioxide (SO₂) emissions from affected facilities that commence construction, modification or reconstruction between August 23, 2011 and September 18, 2015. The site commenced construction on 9/21/2014 and, therefore, will be subject to Subpart OOOO.

Noble will operate the following affected facilities under Subpart OOOO:

• Each gas well affected facility, which is a single natural gas well; and

The MND 9 site does not operate equipment that would qualify as an affected facility for the following:

Noble Energy, Inc. Moundsville 9 (MND 9) Natural Gas Production Site G-70D General Permit Application

- Storage vessels: Emissions from each storage vessel are expected to be below 6 tons per year (tpy) of VOC. Therefore, the produced water tanks are not affected storage vessels; and
- Pneumatic Controllers: All pneumatic controllers installed at the MND 9 site are low-continuous bleed or intermittent bleed and do not qualify as affected sources.

Subpart OOOOa (Standards Of Performance For Crude Oil And Natural Gas Facilities For Which Construction, Modification, Or Reconstruction Commenced After September 18, 2015)

The MND 9 commenced construction before September 18, 2015 and the addition of a compressor does not trigger collection of fugitive components affected facility status for a well pad. Therefore, the MND 9 site does not qualify as an affected facility under OOOOa. Furthermore, the addition of this compressor engine does not trigger compressor affected facility status because the compressor engine is located at a well pad.

40 CFR 60 Subpart JJJJ (Standards of Performance for Stationary Spark Ignition Internal Combustion Engines)

Subpart JJJJ sets forth nitrogen oxides (NOx), carbon monoxide (CO), and volatile organic compound (VOC) emission limits, fuel requirements, installation requirements, and monitoring requirements based on the year of manufacture of the subject internal combustion engine.

The MND 9 site operates a CAT G3306TAA engine rated at 211 hp. Based upon the engine rating and an engine manufacture date of September 8, 2008, this engine is subject to requirements under 40 CFR 60 JJJJ.

Noble must keep a maintenance plan and records of conducted maintenance as well as conduct an initial performance test to demonstrate compliance with NOx, CO, and VOC emission standards of 2.0, 4.0, and 1.0 g/hp-hr, respectively.

No additional NSPS are expected to be applicable to this facility.

National Emissions Standards for Hazardous Air Pollutants

40CFR63 Subpart ZZZZ (National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines)

Subpart ZZZZ establishes national emission limitations and operating limitations for hazardous air pollutants (HAPs) emitted from stationary reciprocating internal combustion engines (RICE) located at major and area sources of HAP emissions. This Subpart also establishes requirements to demonstrate initial and continuous compliance with the emission limitations and operating limitations.

The CAT G3306TAA engine meets the requirements of 40 CFR 60 Subpart JJJJ. Per 40CFR63.6590(c)(1), no further requirements apply for a new or reconstructed stationary RICE located at an area source subject to regulation under 40 CFR 60 Subpart JJJJ.

The following NESHAP are not applicable to the MND 9 site:

• 40 CFR 63 Subpart HH (National Emission Standards for Hazardous Air Pollutants from Oil and Natural Gas Production Facilities)

No additional NESHAP are expected to be applicable to this facility.

General Permit G70-D will establish an emission cap on the following regulated and hazardous air pollutants:

Pollutant	Maximum Annual Emission Limit (tons/year)	MND 9 Potential to Emit (PTE) (tons/year)
Nitrogen Oxides	50	3.17
Carbon Monoxide	80	2.83
Volatile Organic Compounds	80	3.84
Particulate Matter – 10/2.5	20	0.16
Sulfur Dioxide	20	0.02
Any Single Hazardous Air Pollutant	8	0.42 (as Formaldehyde)
Total Hazardous Air Pollutants	20	0.53

The fugitive emissions of a stationary source shall not be considered in determining whether it is a major stationary source for the purposes of 45CSR30-2.26.b or for eligibility of this General Permit.

west virginia department of environmental protection

Division of Air Quality 601 57th Street SE Charleston, WV 25 4 Phone (304) 926-0475 Fax (304) 926-0479 www.dep.wv.gov

ZIP Code: 15317

County: Marshall

G70-D GENERAL PERMIT REGISTRATION APPLICATION

PREVENTION AND CONTROL OF AIR POLLUTION IN REGARD TO THE CONSTRUCTION, MODIFICATION, **RELOCATION, ADMINISTRATIVE UPDATE AND OPERATION OF** NATURAL GAS PRODUCTION FACILITIES LOCATED AT THE WELL SITE

CONSTRUCTION ⊠MODIFICATION DRELOCATION

CLASS I ADMINISTRATIVE UPDATE CLASS II ADMINISTRATIVE UPDATE

DAQ Facility ID No. (For existing facilities)

SECTION 1. GENERAL INFORMATION

Name of Applicant (as registered with the WV Secretary of State's Office): Noble Energy, Inc.

State: PA

Federal Employer ID No. (FEIN): 73-0785597

Applicant's Mailing Address: 1000 Noble Energy Drive

City: Cannonsburg

Facility Name: Moundsville 9 (MND 9)

Operating Site Physical Address: 2795 Taylors Ridge Road

If none available, list road, city or town and zip of facility.

City: Moundsville Latitude & Longitude Coordinates (NAD83, Decimal Degrees to 5 digits):

Zip Code: 26041

Latitude: 39.83150

Longitude: -80.78710

SIC Code: 1311

NAICS Code: 211111

CERTIFICATION OF INFORMATION

051-00233

This G70-D General Permit Registration Application shall be signed below by a Responsible Official. A Responsible Official is a President, Vice President, Secretary, Treasurer, General Partner, General Manager, a member of the Board of Directors, or Owner, depending on business structure. A business may certify an Authorized Representative who shall have authority to bind the Corporation, Partnership, Limited Liability Company, Association, Joint Venture or Sole Proprietorship. Required records of daily throughput, hours of operation and maintenance, general correspondence, compliance certifications and all required notifications must be signed by a Responsible Official or an Authorized Representative. If a business wishes to certify an Authorized Representative, the official agreement below shall be checked off and the appropriate names and signatures entered. Any administratively incomplete or improperly signed or unsigned G70-D Registration Application will be returned to the applicant. Furthermore, if the G70-D forms are not

utilized, the application will be returned to the applicant. No substitution of forms is allowed.

I hereby certify that is an Authorized Representative and in that capacity shall represent the interest of the business (e.g., Corporation, Partnership, Limited Liability Company, Association Joint Venture or Sole Proprietorship) and may obligate and legally bind the business. If the business changes its Authorized Representative, a Responsible Official shall notify the Director of the Division of Air Quality immediately.

I hereby certify that all information contained in this G70-D General Permit Registration Application and any supporting documents appended hereto is, to the best of my knowledge, true, accurate and complete, and that all reasonable efforts have been made to provide the most comprehensive information possible.

Responsible Official Signature:		VV	
Name and Title: RJ Moses - Operations	Manager	Phone: 724-820-3000	Fax: 724-820-3098
Email: rj.moses@nblenergy.com		Date: 4/28/17	
If applicable:			
Authorized Representative Signature:			
Name and Title:	Phone:	Fax:	
Email:	Date:		

west virginia department of environmental protection

Division of Air Quality 601 57th Street SE Charleston, WV 25 4 Phone (304) 926-0475 Fax (304) 926-0479 www.dep.wv.gov

G70-D GENERAL PERMIT REGISTRATION APPLICATION

PREVENTION AND CONTROL OF AIR POLLUTION IN REGARD TO THE CONSTRUCTION, MODIFICATION, RELOCATION, ADMINISTRATIVE UPDATE AND OPERATION OF NATURAL GAS PRODUCTION FACILITIES LOCATED AT THE WELL SITE

□CONSTRUCTION ⊠MODIFICATION □RELOCATION

□CLASS I ADMINISTRATIVE UPDATE □CLASS II ADMINISTRATIVE UPDATE

If applicable:

Environmental Contact Name and Title: Phil Schlagel – Air Quality Manager Phone: 281-872-3202 Fax: Email: phil.schlagel@nblenergy.com Date:

OPERATING SITE INFORMATION

Briefly describe the proposed new operation and/or any change(s) to the facility: Installation of 211 hp engine subject to 40CFR 60 Subpart JJJJ.

Directions to the facility: From WV Route 2 South at traffic signal, make a left turn onto WV Alternate 2 (Round Bottom Hill Road and travel 1.54 miles to CR 88/5 (Lindsey Lane), make a right onto Lindsey Lane and travel 1.77 miles to CR 21 (Roberts Ridge Road), make a right onto Roberts Ridge Road and travel 3.38 miles to CR 2/1 (Taylors Ridge/McFarland Run Road), make a right onto Taylors Ridge/McFarland Run Road and travel 1.26 miles to intersection, make a right and follow road until you reach a gate. Travel through the gate to the intersection, make a left and travel for 3000

ATTACHMENTS AND SUPPORTING DOCUMENTS

I have enclosed the following required documents:

Check payable to WVDEP - Division of Air Quality with the appropriate application fee (per 45CSR13 and 45CSR22).

 \Box Check attached to front of application.

□ I wish to pay by electronic transfer. Contact for payment (incl. name and email address):

\boxtimes I wish to pay by credit card.	Contact for payment (incl.	name and email address):	Phil Schlagel -
---	----------------------------	--------------------------	-----------------

phil.schlagel@nblenergy.com

≥ \$500 (Construction, Modification, and Relocation)
 □ \$300 (Class II Administrative Update)
 ≥ \$1,000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ, OOOO and/or OOOOa ¹
 □ \$2,500 NESHAP fee for 40 CFR63, Subpart ZZZZ and/or HH ²

¹ Only one NSPS fee will apply.

² Only one NESHAP fee will apply. The Subpart ZZZZ NESHAP fee will be waived for new engines that satisfy requirements by complying with NSPS, Subparts IIII and/or JJJJ.

NSPS and NESHAP fees apply to new construction or if the source is being modified.

⊠ Responsible Official or Authorized Representative Signature (if applicable)

\square	Single	Source	Determi	nation	Form	(must]	he comn	leted) _	Attachment	Δ

El Single Source Determination Form (must be compreted) Attachment A		
□ Siting Criteria Waiver (if applicable) – Attachment B	🖾 Current Business Certificate – Attachment C	
Diagram – Attachment D	⊠ Process Description – Attachment E	
🖾 Plot Plan – Attachment F	🖾 Area Map – Attachment G	
G70-D Section Applicability Form – Attachment H	⊠ Emission Units/ERD Table – Attachment I	

west virginia department of environmental protection

Division of Air Quality 601 57th Street SE Charleston, WV 25 4 Phone (304) 926-0475 Fax (304) 926-0479 www.dep.wv.gov

G70-D GENERAL PERMIT REGISTRATION APPLICATION

PREVENTION AND CONTROL OF AIR POLLUTION IN REGARD TO THE CONSTRUCTION, MODIFICATION, RELOCATION, ADMINISTRATIVE UPDATE AND OPERATION OF NATURAL GAS PRODUCTION FACILITIES LOCATED AT THE WELL SITE

□CONSTRUCTION ⊠MODIFICATION □RELOCATION

□CLASS I ADMINISTRATIVE UPDATE □CLASS II ADMINISTRATIVE UPDATE

Gas Well Affected Facility Data Sheet (if applicable) – Attachment K

 \boxtimes Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable) – Attachment L

⊠ Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Heater Treaters, In-Line Heaters if applicable) – Attachment M

⊠ Internal Combustion Engine Data Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment N

🛛 Tanker Truck/Rail Car Loading Data Sheet (if applicable) – Attachment O

 \Box Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalcTM input and output reports and information on reboiler if applicable) – Attachment P

🛛 Pneumatic Controllers Data Sheet – Attachment Q

Summary Sheet - Attachment J

⊠ Pneumatic Pump Data Sheet – Attachment R

 \Box Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment S

🛛 Emission Calculations (please be specific and include all calculation methodologies used) – Attachment T

⊠ Facility-wide Emission Summary Sheet(s) – Attachment U

🖾 Class I Legal Advertisement – Attachment V

🖾 One (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments

All attachments must be identified by name, divided into sections, and submitted in order.

Attachment A

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM	ATTACHMENT A ·	- SINGLE SOURCE	DETERMINATION	FORM
--	----------------	-----------------	---------------	------

Classifying multiple facilities as one "stationary source" under 45CSR13, 45CSR14, and 45CSR19 is based on the definition of Building, structure, facility, or installation as given in §45-14-2.13 and §45-19-2.12. The definition states:

"Building, Structure, Facility, or Installation" means all of the pollutant-emitting activities which belong to the same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the control of the same person (or persons under common control). Pollutant-emitting activities are a part of the same industrial grouping if they belong to the same "Major Group" (i.e., which have the same two (2)-digit code) as described in the Standard Industrial Classification Manual, 1987 (United States Government Printing Office stock number GPO 1987 0-185-718:QL 3).

The Source Determination Rule for the oil and gas industry was published in the Federal Register on June 3, 2016 and will become effective on August 2, 2016. EPA defined the term "adjacent" and stated that equipment and activities in the oil and gas sector that are under common control will be considered part of the same source if they are located on the same site or on sites that share equipment and are within ¹/₄ mile of each other.

Is there equipment	and activities	in the s	same	industrial	grouping	(defined
by SIC code)?						

Yes \Box No \boxtimes

Is there equipment and activities under the control of the same person/people?

Yes \Box No \boxtimes

Is there equipment and activities located on the same site or on sites that share equipment and are within ¹/₄ mile of each other?

Yes 🗆	No	\times
-------	----	----------

Attachment B - Not Applicable

Attachment C

I, Natalie E. Tennant, Secretary of State of the State of West Virginia, hereby certify that

by the provisions of the West Virginia Code, Articles of Merger were received and filed, MERGING NOBLE ENERGY MARKETING, INC., A QUALIFIED DE ORGANIZATION, WITH AND INTO NOBLE ENERGY, INC., A QUALIFIED DE ORGANIZATION.

Therefore, I hereby issue this

CERTIFICATE OF MERGER

Given ander my hand and the Great Seal of the State of West Virginia on this day of December 15, 2010

Waterie E Jerman

Secretary of State

Streenally'

State of Delaware Secretary of State Division of Corporations Delivered 06:59 FM 12/17/2009 FILED 06:59 FM 12/17/2009 SRV 091114165 - 0738126 FILE

CERTIFICATE OF MERGER OF NOBLE ENERGY MARKETING, INC. (a Delaware corporation) WITH AND INTO NOBLE ENERGY, INC. (a Delaware corporation)

Pursuant to Title 8, Section 251(c) of the Delaware General Corporation Law, the undersigned corporation hereby certifies the following:

- The name of the surviving corporation is Noble Energy, Inc., a Delaware corporation, and the name of the corporation being merged into the surviving corporation is Noble Energy Marketing, Inc., a Delaware corporation.
- The Agreement of Merger has been approved, adopted, certified, executed, and acknowledged by each of the constituent corporations.
- 3. The name of the surviving corporation is Noble Energy, Inc., a Delaware corporation.
- The Certificate of Incorporation of Noble Energy, Inc. shall be Incorporation of the surviving corporation.
- The merger is to become effective at 11:59 p.m. Eastern time on December 31, 2009.
- A copy of the Agreement of Merger is on file at the place of business of Noble Energy, Inc., which is located at 100 Glenborough Drive, Suite 100, Houston, Texas 77067.
- Upon request, a copy of the Agreement of Merger will be furnished by Noble Energy, Inc., without cost, to any stockholder of the constituent corporations.

IN WITNESS WHEREOF, the undersigned has caused this Certificate of Merger to be executed by its duly authorized officer as of the 16th day of December, 2009.

NOBLE ENERGY, INC.

By: <u>/s/ David L. Stover</u> Name: David L. Stover Title: Vice President

670715.2

PAGE 1

The First State

I, JEFFREY W. BULLOCK, SECRETARY OF STATE OF THE STATE OF DELAWARE, DO HEREBY CERTIFY THE ATTACHED IS A TRUE AND CORRECT COPY OF THE CERTIFICATE OF MERGER, WHICH MERGES:

"NOBLE ENERGY MARKETING, INC.", A DELAWARE CORPORATION,

WITH AND INTO "NOBLE ENERGY, INC." UNDER THE NAME OF "NOBLE ENERGY, INC.", A CORPORATION ORGANIZED AND EXISTING UNDER THE LAWS OF THE STATE OF DELAWARE, AS RECEIVED AND FILED IN THIS OFFICE THE SEVENTEENTH DAY OF DECEMBER, A.D. 2009, AT 6:59 O'CLOCK P.M.

AND I DO HEREBY FURTHER CERTIFY THAT THE EFFECTIVE DATE OF THE AFORESAID CERTIFICATE OF MERGER IS THE THIRTY-FIRST DAY OF DECEMBER, A.D. 2009, AT 11:59 O'CLOCK P.M.

IN THE OFFICE OF SECRETARY OF STATE

0738126 8100M 101192174 You may varify this certificate online at corp. delaware.gov/authvar.shtml

AUTHENTYCATION: 8430215 DATE: 12-15-10

I, Natalie E. Tennant, Secretary of State of the State of West Virginia, hereby certify that

NOBLE ENERGY MARKETING, INC.

Control Number: 99D1Z

a corporation formed under the laws of Delaware has filed its "Application for Certificate of Authority" to transact business in West Virginia as required by the provisions of the West Virginia Code. I hereby declare the organization to be registered as a foreign corporation from its effective date of January 29, 2009.

Therefore, I issue this

CERTIFICATE OF AUTHORITY

to the corporation authorizing it to transact business in West Virginia

Given under my hand and the Great Seal of the State of West Virginia on this day of January 29, 2009

Matelie E Yerma

Secretary of State

\$

	FILED Stamper
	JAN 2 9 2009
Chefeelan, WV 25,805	IN THE OFFICE OF SECRETARY OF STATE SECRETARY OF STATE COMPARISON Devices Division Tal (Doi) 558-8000 Par (Doi) 558-800 Par (Doi) 558-
1. BOME STATE INPORMATION:	
 The name of the corporation as it is registered in its home state is: 	Hobie Knergy Marketing, Inc.
 B. State of <u>Delements</u> Date of lacor c. NAIC 6 	planuary 18, 1994 Despeties of yes, or properties Warning: The apparting Topplements in West Ve. will out and and in withdressel is Steel. (If an insurance company)
2. FIGNCIPAL OFFICE INFORMATION:	
 Address of the principal office of the corporation; 	Houston, TX 77067
b. Mailing address; if different, from above address:	Op/#sk/7jp
3. WEST VIRGINIA INFORMATION:	
 Corporate mene to be used in W. VL: (duit can, blice introdom) 	Home state menor as listed on line 1.s. above, if available.
 Address of registand office is West Vaginie, if any 	No. & Breat Z07 Virginia Streat Faul Charleston, WV 25901 Cky/StateZp
c. Mailing address is WV, if different, from above	Sinet/TO Box
d. Proposed purpose(s) for transaction of bostness in WV	Oil & gas
 AGENT OF PROCESS: Property designated perion to whom notice of process may be set; if eary: 	Name Address 207 Virginia Bovel East, Charlesten, WV 25501

Poen OP-1

Res UCB

5. CORPORATE STATUS IMPORMATION:

	Corporation is organized as (check a		Per polit.		
			Non-profit		
b.	Directors and Officers: (Add entry page	C monuty; pla	aas liist all effiores)		
	Officer Name			Address	
Ple	ase see attached list.				_
The	number of some of land it holds or	expects to ha	id in West Virgin	is is: Mana	
	trumber of some of land it holds or		id in West Virgin	is is: ^{Mana}	
	stact and Signature Information.		id in West Virgin		
	nteret med Signatore Information. Junit Figue		id in West Virgin	281,472,3199	
Cm	starct and Signatore Tafornieties. Janit Fegan Confact Name				
Cm	utact and Signatore Information Junit Pages Conduct Name Kir L. A. H			Phone Number	1
C.	nteret med Signatore Information. Junit Figue	Mr 2.		281,472,3199	1

.

NOBLE ENERGY MARKETING, INC. s Deleware corporation

Directary

Charles D. Davidson 100 Gienborough Drive, Suits 100 Houston, Texas 77067

Chris Tong 100 Glenborough Drive, Suite 100 Hoution, Texas 77067

Amold J. Johnson 100 Gienborough Drive, Suito 100 Houston, Texas 77067

Officent

Name	Title(s)	Address
Charles D. Davidson	Chief Executive Officer	100 Gleaborough Drive, Suite 100 Houston, Texas 77057
David L. Stover	Vice President	100 Gienborough Drive, Suite 100 Houston, Taxas 77067
Amold J. Johnson	Vice President, General Counsel, and Secretary	100 Gleeberough Drive, Suite 100 Houston, Texas 77067
Chris Tong	Vice President - Pinance and Treasurer	100 Gienborough Drive, Suite 100 Houston, Texas 77067
Kirk A. Moore	Assistant Secretary	100 Glanborough Drive, Suite 100 Houston, Texas 77067

060132 003224 HOURTON \$66443-3

i

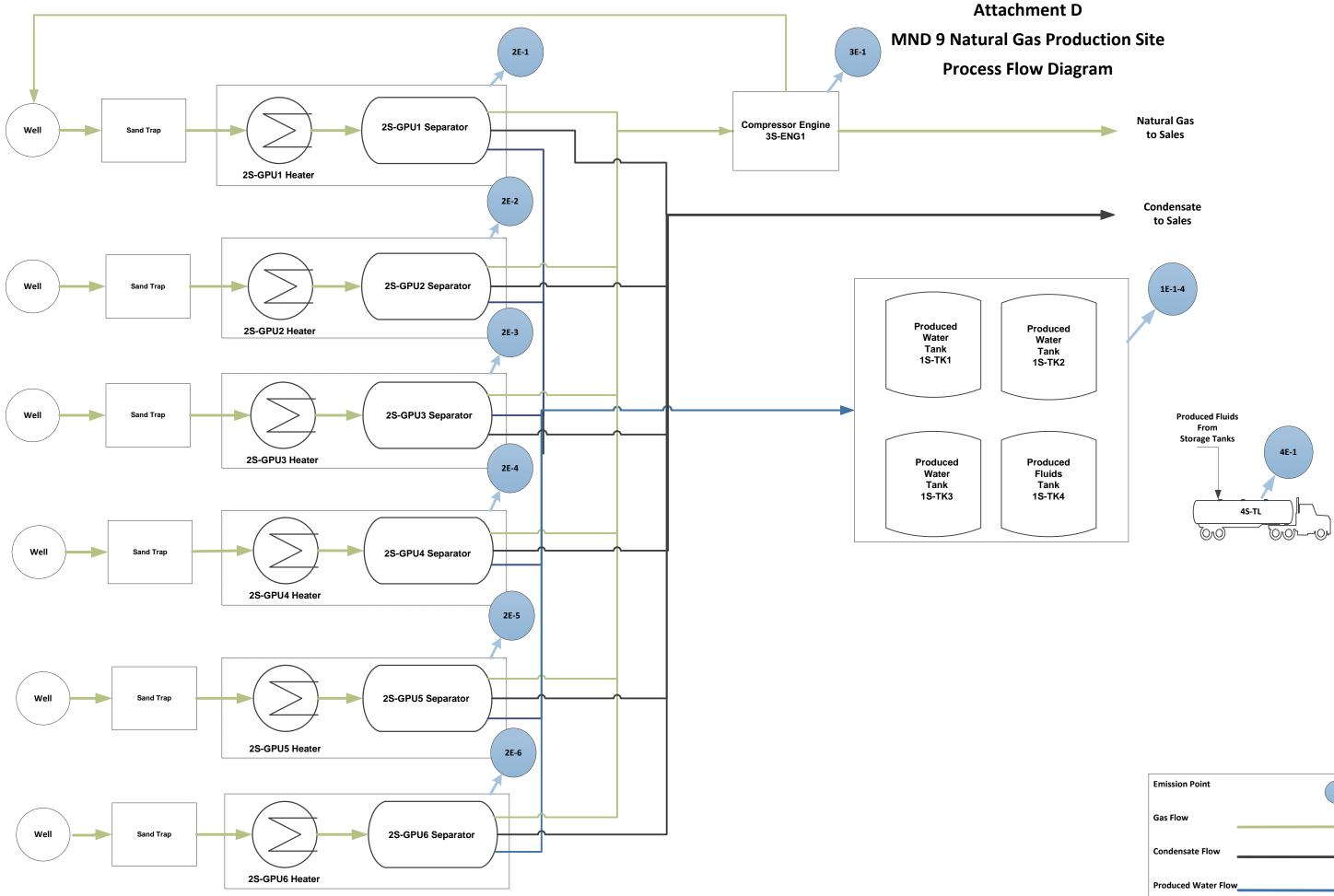
The First State

I, JEFFREY W. BULLOCK, SECRETARY OF STATE OF THE STATE OF DELAWARE, DO HEREBY CERTIFY "NOBLE ENERGY MARKETING, INC." IS DULY INCORPORATED UNDER THE LANS OF THE STATE OF DELAMARE AND IS IN GOOD STANDING AND HAS A LEGAL CORPORATE EXISTENCE SO FAR AS THE RECORDS OF THIS OFFICE SHOW, AS OF THE TWENTY-NINTH DAY OF JANUARY, A.D. 2009.

AND I DO HEREBY FURTHER CERTIFY THAT THE SAID "NOBLE ENERGY MARKETING, INC. " WAS INCORPORATED ON THE EIGHTEENTH DAY OF JANUARY, A.D. 1994.

AND I DO HEREBY FURTHER CERTIFY THAT THE ANNUAL REPORTS HAVE BEEN FILED TO DATE.

AND I DO HEREBY FURTHER CERTIFY THAT THE FRANCHISE TAXES HAVE BEEN PAID TO DATE.


AUTHENTYC 71068 TTON:

DATE: 01-29-09

2372438 8300

090081032 You may verify this certificate only at corp.delaware.gov/authver.shtal

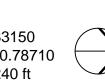
Attachment D

Emission Point	
Gas Flow	
Condensate Flow	\longrightarrow
Produced Water Flow	·

Attachment E

Attachment E Process Description

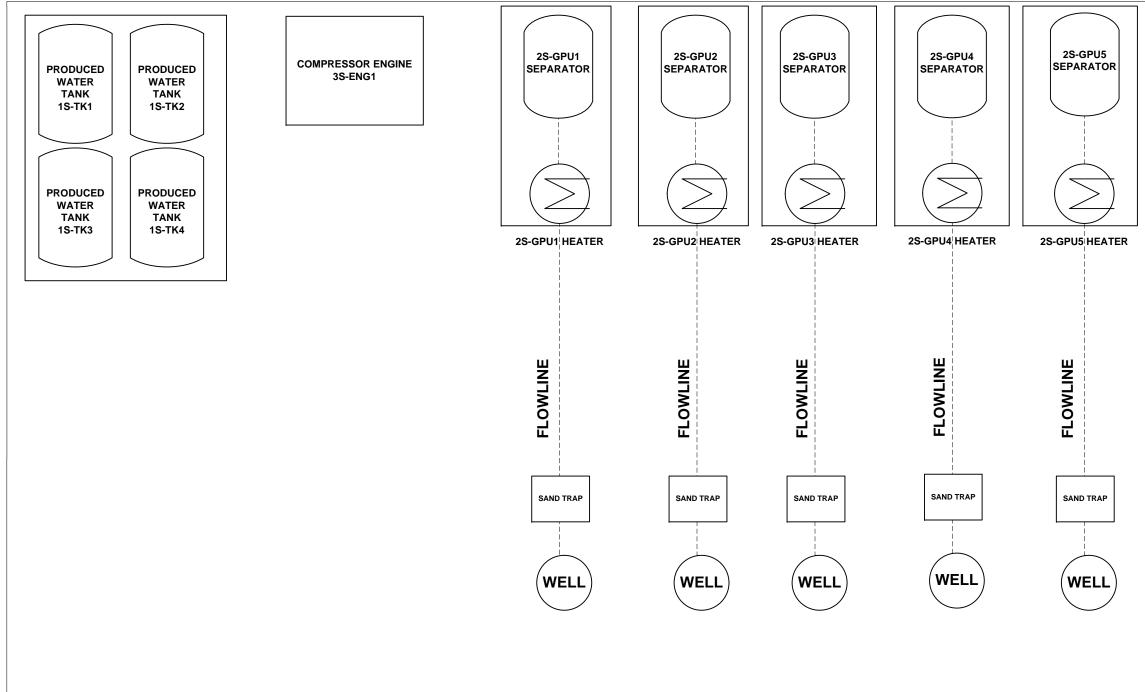
This permit application is being filed for Noble Energy Inc. for the production of condensate, gas, and produced water from six (6) production wellheads and associated well equipment at the Moundsville 9 (MND 9) natural gas production site.

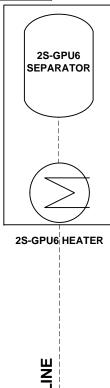

Natural gas, condensate, and produced water flows from six (6) wellheads through six (6) gas production units (GPU) and heaters (2S-GPU1-6) where three phase separation occurs. The natural gas and condensate from the GPUs will exit the site via a sales gas pipeline. Produced water from the separators flows into four (4) Produced Water Tanks (1S-TK1-4). Produced water is transported off-site via tanker trucks. Emissions from the Produced Water Tanks and tanker truck loading activities are vented to the atmosphere.

A two hundred eleven (211) horsepower CAT G3306TAA engine (3S-ENG1) will be used to pull gas off the sales gas pipeline to reinject natural gas into a single well to aide in unloading fluids from the production well. The engine will also aide in routing gas to the sales pipeline.

A process flow diagram is included as Attachment D.

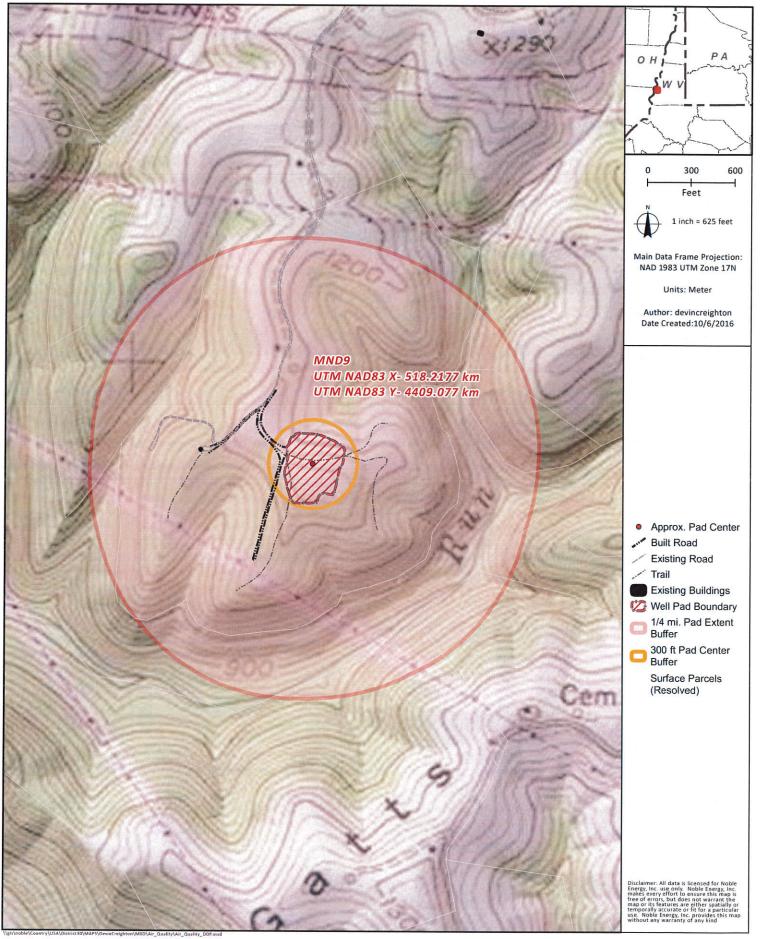
Attachment F


Coordinates Latitude: 39.83150 Longitude: -80.78710 Elevation: 1,240 ft Drawn: 4/10/2017


Attachment F

Plot Plan

MND 9 Natural Gas Production Site



Attachment G

MND9 Pad Marcellus Business Unit

Attachment H

ATTACHMENT H – G70-D SECTION APPLICABILITY FORM

General Permit G70-D Registration Section Applicability Form

General Permit G70-D was developed to allow qualified applicants to seek registration for a variety of sources. These sources include gas well affected facilities, storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, pneumatic pumps, reciprocating internal combustion engines (RICEs), tank truck/rail car loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G70-D allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

GENERAL PERMIT G70-D APPLICABLE SECTIONS					
Section 5.0	Gas and Oil Well Affected Facility (NSPS, Subpart OOOO/OOOOa)				
Section 6.0	Storage Vessels Containing Condensate and/or Produced Water ¹				
□Section 7.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO/OOOOa)				
□Section 8.0	Control Devices and Emission Reduction Devices not subject to NSPS Subpart OOOO/OOOOa and/or NESHAP Subpart HH				
Section 9.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc				
□Section 10.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO/OOOOa)				
□Section 11.0	Pneumatic Pump Affected Facility (NSPS, Subpart OOOOa)				
□Section 12.0	Fugitive Emissions GHG and VOC Standards (NSPS, Subpart OOOOa)				
Section 13.0	Reciprocating Internal Combustion Engines, Generator Engines				
Section 14.0	Tanker Truck/Rail Car Loading ²				
□Section 15.0	Glycol Dehydration Units ³				

1 Applicants that are subject to Section 6 may also be subject to Section 7 if the applicant is subject to the NSPS, Subparts OOOO or OOOOa control requirements or the applicable control device requirements of Section 8.

- 2 Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 8.
- 3 Applicants that are subject to Section 15 may also be subject to the requirements of Section 9 (reboilers). Applicants that are subject to Section 15 may also be subject to control device and emission reduction device requirements of Section 8.

Attachment I

ATTACHMENT I – EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment L table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type ⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
1S-TK1	1E-1	Produced Water Tank 1	2016	2016	400 bbl	Existing	N/A	N/A
1S-TK2	1E-2	Produced Water Tank 2	2016	2016	400 bbl	Existing	N/A	N/A
1S-TK3	1E-3	Produced Water Tank 3	2016	2016	400 bbl	Existing	N/A	N/A
1S-TK4	1E-4	Produced Water Tank 4	2016	2016	400 bbl	Existing	N/A	N/A
2S-GPU1	2E-1	GPU Heater 1	2016	2016	1.0 MMBtu/hr	Existing	N/A	N/A
2S-GPU2	2E-2	GPU Heater 2	2016	2016	1.0 MMBtu/hr	Existing	N/A	N/A
2S-GPU3	2E-3	GPU Heater 3	2016	2016	1.0 MMBtu/hr	Existing	N/A	N/A
2S-GPU4	2E-4	GPU Heater 4	2016	2016	1.0 MMBtu/hr	Existing	N/A	N/A
2S-GPU5	2E-5	GPU Heater 5	2016	2016	1.0 MMBtu/hr	Existing	N/A	N/A
2S-GPU6	2E-6	GPU Heater 6	2016	2016	1.0 MMBtu/hr	Existing	N/A	N/A
3S-ENG1	3E-1	CAT G3306TAA Engine	2017	2008	211 hp	New	NSCR	N/A'
4S-TL	4E-1	Tanker Truck Loading	2016	2016	221,524 bbl Produced Water/yr	Existing	N/A	N/A

¹ For Emission Units (or Sources) use the following numbering system: 1S, 2S, 3S,... or other appropriate designation.

² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

³ When required by rule

⁴ New, modification, removal, existing

⁵ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

⁶ For ERDs use the following numbering system: 1D, 2D, 3D,... or other appropriate designation.

Attachment J

			ATTACHME	NT J – FUGITIVE EMIS	SIONS SUM	MARY SHE	CET			
		Source		ay include loading operations for each associated sour				sions, etc.		
	Source/Equipr	nent: MN	D 9 Natural Gas Production Faci	lity						
	Leak Detection Method Used	n	□ Audible, visual, and olfactory (AVO) inspections	⊠ Infrared (FLIR) cameras	□ Other (pleas	se describe)		□ None required		
Compone	closed		Source o	of Leak Factors	Stream type		Estimated Em	issions (tpy)		
Туре	Vent System	Count		ther (specify))	(gas, liquid, etc.)	VOC	HAP	GHG (methane, CO ₂ e		
Pumps	□ Yes ⊠ No	2	EPA		□ Gas □ Liquid ⊠ Both	<0.01	<0.01	<0.01		
Valves	□ Yes ⊠ No	154	EPA		☐ Gas □ Liquid ⊠ Both	1.32	0.10	18.17		
Safety Reli Valves	ief □ Yes ⊠ No	0	EPA		Gas Liquid Both	<0.01	<0.01	<0.01		
Open Ende Lines	ed □ Yes ⊠ No	10	EPA		Gas Liquid Both	0.05	<0.01	2.25		
Sampling Connection	ns Yes No	0	EPA		□ Gas □ Liquid □ Both	<0.01	<0.01	<0.01		
Connection (Not sampli		700	EPA		□ Gas □ Liquid ⊠ Both	0.82	0.07	4.31		
Compresso	ors \square Yes \boxtimes No	0	EPA		Gas Liquid Both	<0.01	<0.01	<0.01		
Flanges	□ Yes ⊠ No	140	EPA		□ Gas □ Liquid ⊠ Both	0.07	<0.01	1.55		
Other ¹	□ Yes ⊠ No	30	EPA		□ Gas □ Liquid ⊠ Both	2.30	0.21	10.96		

Please provide an explanation of the sources of fugitive emissions (e.g. pigging operations, equipment blowdowns, pneumatic controllers, etc.): **N/A**

Please indicate if there are any closed vent bypasses (include component): **N/A**

Specify all equipment used in the closed vent system (e.g. VRU, ERD, thief hatches, tanker truck/rail car loading, etc.) N/A

Attachment K

ATTACHMENT K - GAS WELL AFFECTED FACILITY DATA SHEET

Complete this data sheet if you are the owner or operator of a gas well affected facility for which construction, modification or reconstruction commenced after August 23, 2011. This form must be completed for natural gas well affected facilities regardless of when flowback operations occur (or have occurred).

API Number	Date of Flowback	Date of Well Completion	Green Completion and/or Combustion Device	Subject to OOOO or OOOOa?
47-051-01625	9/22/2014	10/13/2014	Green Completion	0000
47-051-01626	9/22/2014	10/13/2014	Green Completion	0000
47-051-01627	10/9/2014	10/13/2014	Green Completion	0000
47-051-01676	9/21/2014	10/9/2014	Green Completion	0000
47-051-01628	10/8/2014	10/8/2014	Green Completion	0000
47-051-01629	9/23/2014	10/9/2014	Green Completion	0000

Note: If future wells are planned and no API number is available please list as PLANNED. If there are existing wells that commenced construction prior to August 23, 2011, please acknowledge as existing.

This is the same API (American Petroleum Institute) well number(s) provided in the well completion notification and as provided to the WVDEP, Office of Oil and Gas for the well permit. The API number may be provided on the application without the state code (047).

Every oil and gas well permitted in West Virginia since 1929 has been issued an API number. This API is used by agencies to identify and track oil and gas wells.

The API number has the following format: 047-001-00001

Where,

047 =	State code. The state code for WV is 047.
001 =	County Code. County codes are odd numbers, beginning with 001
	(Barbour) and continuing to 109 (Wyoming).
00001=	Well number. Each well will have a unique well number.

Attachment L

ATTACHMENT L – STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water. (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). **Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.**

The following information is **REQUIRED**:

- □ Composition of the representative sample used for the simulation
- □ For each stream that contributes to flashing emissions:
 - \Box Temperature and pressure (inlet and outlet from separator(s))
 - □ Simulation-predicted composition
 - □ Molecular weight
 - \Box Flow rate
- □ Resulting flash emission factor or flashing emissions from simulation
- □ Working/breathing loss emissions from tanks and/or loading emissions if

simulation is used to quantify those emissions

Additional information may be requested if necessary.

GENERAL INFORMATION (REQUIRED)

1. Bulk Storage Area Name	2. Tank Name Produced Water Tank 1-4
Produced Water Storage	
3. Emission Unit ID number 1S-TK1-4	4. Emission Point ID number 1E-1-4
5. Date Installed , Modified or Relocated (for existing	6. Type of change:
tanks) 2016	\Box New construction \Box New stored material \Box Other
Was the tank manufactured after August 23, 2011 and on	□ Relocation
or before September 18, 2015?	
□ Yes □ No	
Was the tank manufactured after September 18, 2015?	
🖾 Yes 🛛 No	
7A. Description of Tank Modification (<i>if applicable</i>) N/A	
7B. Will more than one material be stored in this tank? If set	o, a separate form must be completed for each material.
\Box Yes \boxtimes No	
7C. Was USEPA Tanks simulation software utilized?	
\boxtimes Yes \Box No	
If Yes, please provide the appropriate documentation and i	tems 8-42 below are not required.

TANK INFORMATION

8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height.									
9A. Tank Internal Diameter (ft.)	9B. Tank Internal Height (ft.)								
10A. Maximum Liquid Height (ft.)	10B. Average Liquid Height (ft.)								
11A. Maximum Vapor Space Height (ft.)	11B. Average Vapor Space Height (ft.)								
12. Nominal Capacity (specify barrels or gallons). This is	s also known as "working volume".								
13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)								
14. Number of tank turnovers per year	15. Maximum tank fill rate (gal/min)								
16. Tank fill method □ Submerged □ Splash	□ Bottom Loading								
17. Is the tank system a variable vapor space system? \Box	Yes 🗆 No								
If yes, (A) What is the volume expansion capacity of the s	ystem (gal)?								
(B) What are the number of transfers into the system	n per year?								
18. Type of tank (check all that apply):									
\Box Fixed Roof \Box vertical \Box horizontal \Box fla	at roof \Box cone roof \Box dome roof \Box other (describe)								
\Box External Floating Roof \Box pontoon roof \Box d	ouble deck roof								
Domed External (or Covered) Floating Roof									
□ Internal Floating Roof □ vertical column supp	oort \Box self-supporting								
□ Variable Vapor Space □ lifter roof □ diaphragm									
□ Pressurized □ spherical □ cylindrical									
□ Other (describe)									

PRESSURE/VACUUM CONTROL DATA

19. Check as many as ap	ply:								
☑ Does Not Apply				🗆 Ruptu	re Disc (p	osig)			
□ Inert Gas Blanket of				🗆 Carbo	n Adsorp	tion ¹			
□ Vent to Vapor Combu	ustion Devi	ice ¹ (vapo	or combust	ors, flares	, thermal	oxidizers,	enclosed of	combustor	s)
□ Conservation Vent (p		-		□ Conde					
Vacuum Setting	0.	Pressure	e Setting						
□ Emergency Relief Va	lve (psig)		U						
Vacuum Setting		Pressure	Setting						
□ Thief Hatch Weighter	d 🗆 Yes 🛛	∃ No	U U						
¹ Complete appropriate A	ir Pollution	n Control	Device Sh	leet					
20. Expected Emission R	Rate (submi	it Test Da	ta or Calcu	lations he	ere or else	where in t	he applica	tion).	
Material Name	Flashi	ng Loss	Breathi	ng Loss	Worki	ng Loss	Total		Estimation Method ¹
							Emissi	ons Loss	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
Produced Water	0.47	2.04	0.01	0.05	0.05	0.23	0.53	2.32	FESCO Flash
									Study/TANKS
									4.09d

 1 EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.

TANK CONSTRUCTION AND OPERAT	FION INFORMATIO	N										
21. Tank Shell Construction:												
□ Riveted □ Gunite lined □ Epoxy-coated rivets □ Other (describe)												
21A. Shell Color:21B. Roof Color:21C. Year Last Painted:												
22. Shell Condition (if metal and unlined):												
□ No Rust □ Light Rust □ Dense Rust □ Not applicable												
22A. Is the tank heated? \Box Yes \Box No 22B. If yes, operating temperature: 22C. If yes, how is heat provided to tank												
23. Operating Pressure Range (psig):												
Must be listed for tanks using VRUs with closed vent system.												
24. Is the tank a Vertical Fixed Roof	24A. If yes, for dome	e roof provide radius	24B. If y	es, for cone roof, provide slop								
Tank?	(ft):		(ft/ft):									
🗆 Yes 🗆 No												
25. Complete item 25 for Floating Roof Ta	nks 🗌 Does not ap	oply 🗆										
25A. Year Internal Floaters Installed:												
25B. Primary Seal Type (check one):	Metallic (mechanical)	shoe seal 🛛 Liqui	id mounted	d resilient seal								
	\Box Vapor mounted resilient seal \Box Other (describe):											
25C. Is the Floating Roof equipped with a s				·								
25D. If yes, how is the secondary seal mour	nted? (check one)	Shoe 🗆 Rim 🗆	Other (describe):								
25E. Is the floating roof equipped with a we	25E. Is the floating roof equipped with a weather shield? □ Yes □ No											
25F. Describe deck fittings:												
26. Complete the following section for Inte	rnal Floating Roof Ta	nks 🗌 Does not	apply									
26A. Deck Type: Bolted	Welded	26B. For bolted deck	s, provide d	eck construction:								
26C. Deck seam. Continuous sheet constru-	ction:											
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. v	vide 🛛 5 x 7.5 ft. v	vide 🛛 5 x 12 ft. wi	de 🗆 ot	her (describe)								
26D. Deck seam length (ft.): 26E. Are	a of deck (ft ²):	26F. For column supp	ported	26G. For column supported								
		tanks, # of columns:		tanks, diameter of column:								
27. Closed Vent System with VRU? \Box Ye	es 🗆 No											
28. Closed Vent System with Enclosed Con	nbustor? 🗆 Yes 🗆 N	lo										
SITE INFORMATION												
29. Provide the city and state on which the c	lata in this section are b	ased:										
30. Daily Avg. Ambient Temperature (°F):		31. Annual Avg. Max	kimum Tem	perature (°F):								
32. Annual Avg. Minimum Temperature (°H	F):	33. Avg. Wind Speed	l (mph):									
34. Annual Avg. Solar Insulation Factor (B'	ΓU/ft ² -day):	35. Atmospheric Pres	ssure (psia):									
LIQUID INFORMATION		_										
36. Avg. daily temperature range of bulk liquid (°F):	36A. Minimum (°F):		36B. Ma	ximum (°F):								

37. Avg. operating pressure range of tank (psig):	37A. Minimum (psig):		37B. Maximu	ım (psig):
38A. Minimum liquid surface temperature (°F):	38B.	Corresponding v	vapor pressure (psia):
39A. Avg. liquid surface temperature (°F):		39B.	Corresponding v	vapor pressure (psia):
40A. Maximum liquid surface temperature ((°F):	40B.	Corresponding v	vapor pressure (psia):
41. Provide the following for each liquid or	gas to be stored in the t	ank. Ad	d additional pag	ges if necessary.	
41A. Material name and composition:					
41B. CAS number:					
41C. Liquid density (lb/gal):					
41D. Liquid molecular weight (lb/lb-					
mole):					
41E. Vapor molecular weight (lb/lb-					
mole):					
41F. Maximum true vapor pressure (psia):					
41G. Maximum Reid vapor pressure					
(psia):					
41H. Months Storage per year.					
From: To:					
42. Final maximum gauge pressure and					
temperature prior to transfer into tank used					
as inputs into flashing emission					
calculations.					

STORAGE TANK DATA TABLE

List all deminimis storage tanks (i.e. lube oil, glycol, diesel etc.)

Source ID # ¹	Status ²	Content ³	Volume ⁴

1. Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the well site. Tanks should be designated T01, T02, T03, etc.

2. Enter storage tank Status using the following:

- EXIST Existing Equipment
- NEW Installation of New Equipment
- REM Equipment Removed
- 3. Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, diesel, mercaptan etc.
- 4. Enter the maximum design storage tank volume in gallons.

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	Noble Energy - MND 9 Moundsville West Virginia Noble Energy Vertical Fixed Roof Tank
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	18.00 12.00 18.00 9.00 16,000.00 138.45 2,326,002.00 N
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Gray/Medium Good Gray/Medium Good
Roof Characteristics Type: Height (ft) Slope (ft/ft) (Cone Roof)	Cone 0.00 0.06
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

Meterological Data used in Emissions Calculations: Pittsburgh, Pennsylvania (Avg Atmospheric Pressure = 14.11 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Noble Energy - MND 9 - Vertical Fixed Roof Tank Moundsville, West Virginia

	Daily Liquid Surf. Bulk			Liquid Bulk Temp	Vapor Pressure (psia)			Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure	
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Produced Water	All	58.50	49.32	67.67	53.39	0.2565	0.1850	0.3514	20.7276			18.23	
Gasoline (RVP 10)						5.0362	4.1975	6.0042	66.0000	0.0145	0.1797	92.00	Option 4: RVP=10, ASTM Slope=3
Water						0.2427	0.1734	0.3351	18.0200	0.9855	0.8203	18.02	Option 2: A=8.10765, B=1750.286, C=235

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Noble Energy - MND 9 - Vertical Fixed Roof Tank Moundsville, West Virginia

Annual Emission Calcaulations	
Standing Losses (Ib):	25.1360
Vapor Space Volume (cu ft):	1,031.4477
Vapor Density (lb/cu ft):	0.0010
Vapor Space Expansion Factor:	0.0785
Vented Vapor Saturation Factor:	0.8897
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	1,031.4477
Tank Diameter (ft):	12.0000
Vapor Space Outage (ft):	9.1200
Tank Shell Height (ft):	18.0000
Average Liquid Height (ft):	9.0000
Roof Outage (ft):	0.1200
Roof Outage (Cone Roof)	0.4000
Roof Outage (ft):	0.1200
Roof Height (ft):	0.0000
Roof Slope (ft/ft):	0.0600
Shell Radius (ft):	6.0000
Vapor Density Vapor Density (lb/cu ft):	0.0010
Vapor Density (ib/cu it). Vapor Molecular Weight (ib/lb-mole):	20.7276
Vapor Pressure at Daily Average Liquid	20.7270
Surface Temperature (psia):	0.2565
Daily Avg. Liquid Surface Temp. (deg. R):	518.1654
Daily Average Ambient Temp. (deg. F):	50.3083
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	513.0583
Tank Paint Solar Absorptance (Shell):	0.6800
Tank Paint Solar Absorptance (Roof):	0.6800
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,202.9556
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0785
Daily Vapor Temperature Range (deg. R):	36.6923
Daily Vapor Pressure Range (psia):	0.1665
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	0.2565
Surface Temperature (psia): Vapor Pressure at Daily Minimum Liquid	0.2505
Surface Temperature (psia):	0.1850
Vapor Pressure at Daily Maximum Liquid	0.1000
Surface Temperature (psia):	0.3514
Daily Avg. Liquid Surface Temp. (deg R):	518,1654
Daily Min. Liquid Surface Temp. (deg R):	508.9923
Daily Max. Liquid Surface Temp. (deg R):	527.3385
Daily Ambient Temp. Range (deg. R):	19.1500
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.8897
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	0.2565
Vapor Space Outage (ft):	9.1200

Working Losses (Ib):	112.8524
Vapor Molecular Weight (lb/lb-mole):	20.7276
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.2565
Annual Net Throughput (gal/yr.):	2,326,002.0000
Annual Turnovers:	138.4525
Turnover Factor:	0.3833
Maximum Liquid Volume (gal):	16,000.0000
Maximum Liquid Height (ft):	18.0000
Tank Diameter (ft):	12.0000
Working Loss Product Factor:	1.0000
Total Losses (Ib):	137.9884

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Noble Energy - MND 9 - Vertical Fixed Roof Tank Moundsville, West Virginia

	Losses(lbs)							
Components	Working Loss	Breathing Loss	Total Emissions					
Produced Water	112.85	25.14	137.99					
Water	92.57	20.62	113.19					
Gasoline (RVP 10)	20.28	4.52	24.79					

Attachment M

ATTACHMENT M – SMALL HEATERS AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART DC DATA SHEET

Complete this data sheet for each small heater and reboiler not subject to 40CFR60 Subpart Dc at the facility. *The Maximum Design Heat Input (MDHI) must be less than 10 MMBTU/hr.*

Emission Unit ID# ¹	Emission Point ID# ²	Emission Unit Description (manufacturer, model #)	Year Installed/ Modified	Type ³ and Date of Change	Maximum Design Heat Input (MMBTU/hr) ⁴	Fuel Heating Value (BTU/scf) ⁵
2S-GPU1	2E-1	GPU Heater 1	2016	Existing	1.00	1220
2S-GPU2	2E-2	GPU Heater 2	2016	Existing	1.00	1220
2S-GPU3	2E-3	GPU Heater 3	2016	Existing	1.00	1220
2S-GPU4	2E-4	GPU Heater 4	2016	Existing	1.00	1220
2S-GPU5	2E-5	GPU Heater 5	2016	Existing	1.00	1220
2S-GPU6	2E-6	GPU Heater 6	2016	Existing	1.00	1220

- ¹ Enter the appropriate Emission Unit (or Source) identification number for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.
- ² Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.
- ³ New, modification, removal
- ⁴ Enter design heat input capacity in MMBtu/hr.
- ⁵ Enter the fuel heating value in BTU/standard cubic foot.

Attachment N

ATTACHMENT N - INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. *Generator(s) and microturbine generator(s) shall also use this form.*

Emission Unit I	$D#^1$	3S-E	NG1				
Engine Manufac	cturer/Model	CAT G3	306TAA				
Manufacturers H	Rated bhp/rpm	211	L hp				
Source Status ²		N	IS				
Date Installed/ Modified/Remo	ved/Relocated ³	20	17				
Engine Manufac /Reconstruction	ctured Date ⁴	20	08				
Check all applicable Federal Rules for the engine (include EPA Certificate of Conformity if applicable) ⁵		 ⋈40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 		□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources		□ 40CFR60 Subpart JJJJ □ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? □ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources	
Engine Type ⁶		45	LB				
APCD Type ⁷		NS	SCR				
Fuel Type ⁸		RG					
H ₂ S (gr/100 scf))						
Operating bhp/r	pm	211	l hp				
BSFC (BTU/bhj	p-hr)	8622					
Hourly Fuel Th	urly Fuel Throughput		1491.18 ft ³ /hr gal/hr				³ /hr l/hr
Annual Fuel Th (Must use 8,760 emergency gene	hrs/yr unless		Mft ³ /yr l/yr	MMft ³ /yr gal/yr		MMft ³ /yr gal/yr	
Fuel Usage or H Operation Meter		Yes 🖂	No 🗆	Yes 🗆	No 🗆	Yes 🗆	No 🗆
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)
MD	NO _x	0.23	1.02				
MD	СО	0.23	1.02				
MD	VOC	0.23	1.02				
АР	SO ₂	<0.01	<0.01				
АР	PM ₁₀	<0.01	<0.01				
АР	Formaldehyde	0.10	0.42				
AP	Total HAPs	0.10	0.44				
API/MD/AP	GHG (CO ₂ e)	249.56	1093.08			1	1

1 Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion engine/generator engine located at the well site. Multiple engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.

2 Enter the Source Status using the following codes:

NS	Construction of New Source (installation)	ES	Existing Source
MS	Modification of Existing Source	RS	Relocated Source
REM	Removal of Source		

- Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal. 3
- Enter the date that the engine was manufactured, modified or reconstructed. 4
- 5 Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

Enter the Engine Type designation(s) using the following codes: 6

	2SLB 4SLB	Two Stroke Lean Burn Four Stroke Lean Burn	4SR	B Four St	roke Rich Burn		
7	Enter the Ai	r Pollution Control Device (APCD) type designation	n(s) usin	g the follow	ving codes:		
	A/F HEIS PSC NSCR SCR	Air/Fuel Ratio High Energy Ignition System Prestratified Charge Rich Burn & Non-Selective Catalytic Reduction Lean Burn & Selective Catalytic Reduction		IR SIPC LEC OxCat	Ignition Retard Screw-in Precombustion Chan Low Emission Combustion Oxidation Catalyst	nbers	s
8	Enter the Fu	el Type using the following codes:					
	PQ	Pipeline Quality Natural Gas	G	Raw Natura	l Gas /Production Gas	D	Diesel
9	Enter the F	Potential Emissions Data Reference designation	on usin	g the follo	wing codes. Attach all refer	ence	e data used
	MD	Manufacturer's Data			2-42		

- GRI-HAPCalc[™] GR OT Other (please list)
- Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated 10 at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the Emissions Summary Sheet.
- 11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

Engine A (Emission Unit ID)		on Control Device e extra pages as necessary)				
Air Pollution Control Device Manufacturer's Data Sheet included? Yes ⊠ No □						
⊠ NSCR	□ SCR	□ Oxidation Catalyst				
Provide details of process control used for prope	r mixing/conti	ol of reducing agent with gas stream:				
Manufacturer: EMIT Technologies		Model #: EAS-1450T-0505F-D1SEE				
Design Operating Temperature: °F		Design gas volume: scfm				
Service life of catalyst:		Provide manufacturer data? 🛛 Yes 🛛 🗍 No				
Volume of gas handled: acfm at °F		Operating temperature range for NSCR/Ox Cat: From °F to °F				
Reducing agent used, if any:		Ammonia slip (ppm):				
Pressure drop against catalyst bed (delta P):	inches of H	I ₂ O				
Provide description of warning/alarm system tha Is temperature and pressure drop of catalyst requ Yes No	-	when operation is not meeting design conditions: nitored per 40CFR63 Subpart ZZZZ?				
How often is catalyst recommended or required t	to be replaced	(hours of operation)?				
How often is performance test required? Initial Annual Every 8,760 hours of operation Field Testing Required NSPS/GACT	ease list any m	aintenance required and the applicable sections in				

NSPS/GACT,

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA **G3306TAA Information**

ENGINE SPEED (rpm):	1800	FUEL SYSTEM:	HPG IMPCO
COMPRESSION RATÍO:	8.0:1	SITE CONDITIONS:	
AFTERCOOLER WATER INLET (°F):	90	FUEL:	Field Gas
JACKET WATER OUTLET (°F):	210	FUEL PRESSURE RANGE(psig):	12.0-24.9
COOLING SYSTEM:	JW+OC, AC	FUEL METHANE NUMBER:	62.2
IGNITION SYSTEM:	MAG	FUEL LHV (Btu/scf):	1027
EXHAUST MANIFOLD:	WC	ALTITUDE(ft):	1000
COMBUSTION:	Standard	MAXIMUM INLET AIR TEMPERATURE(°F):	100
EXHAUST O2 EMISSION LEVEL %:	2.0	NAMEPLATE RATING:	211 bhp@1800rpm
SET POINT TIMING:	29.9		

		MAXIMUM SITE RATING AT MAXIMUM INLET RATING TEMPERATURE				
RATING	NOTES	LOAD	100%	100%	75%	51%
ENGINE POWER	(1)	bhp	211	206	154	105
INLET AIR TEMPERATURE		°F	87	100	100	100
ENGINE DATA						
FUEL CONSUMPTION (LHV)	(2)	Btu/bhp-hr	7803	7855	8433	9344
FUEL CONSUMPTION (HHV)	(2)	Btu/bhp-hr	8622	8680	9319	10325
AIR FLOW	(3)(4)	lb/hr	1464	1437	1159	881
AIR FLOW WET (77°F, 14.7 psia)	(3)(4)	scfm	330	324	261	199

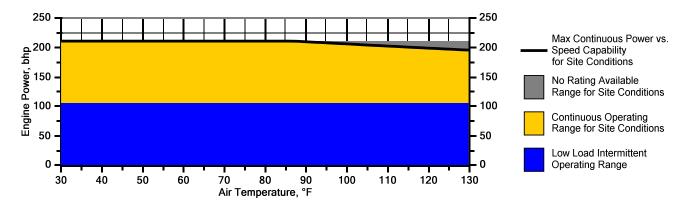
AIIII = OVV VVEI (771, 14.7 psia)	(3)(4)	50111	330	324	201	199
INLET MANIFOLD PRESSURE	(5)	in Hg(abs)	39.0	38.3	31.1	23.4
EXHAUST STACK TEMPERATURE	(6)	۴	1068	1066	1041	995
EXHAUST GAS FLOW (@ stack temp, 14.5 psia)	(7)(4)	ft3/min	1040	1020	809	596
EXHAUST GAS MASS FLOW	(7)(4)	lb/hr	1542	1515	1222	929
EMISSIONS DATA			-			
NOx (as NO2)	(8)	g/bhp-hr	27.28	26.98	23.85	20.70
CO	(8)	g/bhp-hr	2.00	2.01	2.08	1.99
THC (mol. wt. of 15.84)	(8)	g/bhp-hr	0.98	0.98	1.01	1.21
NMHC (mol. wt. of 15.84)	(8)	g/bhp-hr	0.25	0.25	0.26	0.31
NMNEHC (VOCs) (mol. wt. of 15.84)	(8)(9)	g/bhp-hr	0.17	0.17	0.18	0.21
HCHO (Formaldehyde)	(8)	g/bhp-hr	0.15	0.15	0.15	0.16
CO2	(8)	g/bhp-hr	514	516	552	610
EXHAUST OXYGEN	(10)	% DRY	2.0	2.0	2.0	2.4

HEAT REJECTION						
HEAT REJ. TO JACKET WATER (JW)	(11)	Btu/min	8105	8062	7199	6146
HEAT REJ. TO ATMOSPHERE	(11)	Btu/min	1095	1077	867	656
HEAT REJ. TO LUBE OIL (OC)	(11)	Btu/min	1282	1275	1138	972
HEAT REJ. TO AFTERCOOLER (AC)	(11)(12)	Btu/min	1067	1067	564	234

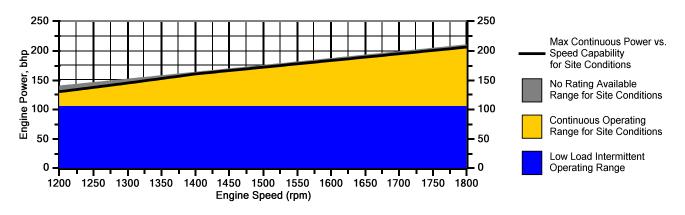
HEAT EXCHANGER SIZING CRITERIA			
TOTAL JACKET WATER CIRCUIT (JW+OC)	(12)	Btu/min	10454
TOTAL AFTERCOOLER CIRCUIT (AC)	(12)(13)	Btu/min	1120
A cooling system safety factor of 0% has been added to the heat	at exchance	er sizing criteria	a.

CONDITIONS AND DEFINITIONS Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Max. rating is the maximum capability for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

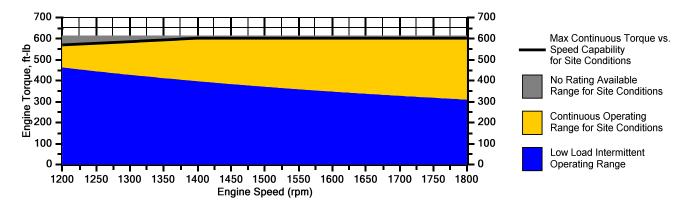
For notes information consult page three.


G3306 TA GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA G3306TAA Information


Engine Power vs. Inlet Air Temperature

Data represents temperature sweep at 1000 ft and 1800 rpm


Engine Power vs. Engine Speed

Data represents speed sweep at 1000 ft and 100 °F

Engine Torque vs. Engine Speed

Data represents speed sweep at 1000 ft and 100 °F

Note: At site conditions of 1000 ft and 100°F inlet air temp., constant torque can be maintained down to 1400 rpm. The minimum speed for loading at these conditions is 1200 rpm.

PREPARED BY: Keith Roberts, Natural Gas Services Group Data generated by Gas Engine Rating Pro Version 3.03.01 Ref. Data Set DM5779-01-000, Printed 24Feb2010

G3306 TA

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA G3306TAA Information

NOTES

1. Engine rating is with two engine driven water pumps. Tolerance is ± 3% of full load.

2. Fuel consumption tolerance is \pm 4.0% of full load data.

3. Undried air. Flow is a nominal value with a tolerance of \pm 5 %.

4. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.

5. Inlet manifold pressure is a nominal value with a tolerance of \pm 5 %.

6. Exhaust stack temperature is a nominal value with a tolerance of (+)63 °F, (-)54 °F.

7. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of ± 6 %.

8. Emission levels are at engine exhaust flange prior to any after treatment. Values are based on engine operating at steady state conditions. Fuel methane number cannot vary more than ± 3. Values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate "Not to Exceed" values. THC, NMHC, and NMNEHC do not include aldehydes. Part load data may require engine adjustment.

9. VOCs - Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ

10. Exhaust Oxygen tolerance is \pm 0.5.

11. Heat rejection values are nominal. Tolerances, based on treated water, are \pm 10% for jacket water circuit, \pm 50% for radiation, \pm 20% for lube oil circuit, and \pm 5% for aftercooler circuit.

12. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.

13. Heat exchanger sizing criteria are maximum circuit heat rejection for the site, with applied tolerances.

Constituent	Abbrev	Mole %	Norm		
Water Vapor	H2O	2.5211	2.5211		
Methane	CH4	86.6340	86.6340	Fuel Makeup:	Field Gas
Ethane	C2H6	4.9767	4.9767	Unit of Measure:	English
Propane	C3H8	3.5670	3.5670		g
Isobutane	iso-C4H1O	0.0000	0.0000		
Norbutane	nor-C4H1O	1.8211	1.8211	Calculated Fuel Properties	
Isopentane	iso-C5H12	0.0000	0.0000	Caterpillar Methane Number:	62.2
Norpentane	nor-C5H12	0.4802	0.4802		
Hexane	C6H14	0.0000	0.0000	Lower Heating Value (Btu/scf):	1027
Heptane	C7H16	0.0000	0.0000	5 ()	
Nitrogen	N2	0.0000	0.0000	Higher Heating Value (Btu/scf):	1135
Carbon Dioxide	CO2	0.0000	0.0000	WOBBE Index (Btu/scf):	1274
Hydrogen Sulfide	H2S	0.0000	0.0000		
Carbon Monoxide	CO	0.0000	0.0000	THC: Free Inert Ratio:	0
Hydrogen	H2	0.0000	0.0000	RPC (%) (To 905 Btu/scf Fuel):	100%
Oxygen	02	0.0000	0.0000		100 /6
Helium	HE	0.0000	0.0000		
Neopentane	neo-C5H12	0.0000	0.0000	Compressibility Factor:	0.997
Octane	C8H18	0.0000	0.0000	Stoich A/F Ratio (Vol/Vol):	10.68
Nonane	C9H20	0.0000	0.0000	Stoich A/F Ratio (Mass/Mass):	16.43
Ethylene	C2H4	0.0000	0.0000	(, , , , , , , , , , , , , , , , , , ,	0.650
Propylene	C3H6	0.0000	0.0000	Specific Gravity (Relative to Air):	
TOTAL (Volume %)		100.0000	100.0000	Specific Heat Constant (K):	1.297

CONDITIONS AND DEFINITIONS

Caterpillar Methane Number represents the knock resistance of a gaseous fuel. It should be used with the Caterpillar Fuel Usage Guide for the engine and rating to determine the rating for the fuel specified. A Fuel Usage Guide for each rating is included on page 2 of its standard technical data sheet.

RPC always applies to naturally aspirated (NA) engines, and turbocharged (TA or LE) engines only when they are derated for altitude and ambient site conditions.

Project specific technical data sheets generated by the Caterpillar Gas Engine Rating Pro program take the Caterpillar Methane Number and RPC into account when generating a site rating.

Fuel properties for Btu/scf calculations are at 60F and 14.696 psia.

Caterpillar shall have no liability in law or equity, for damages, consequently or otherwise, arising from use of program and related material or any part thereof.

FUEL LIQUIDS Field gases, well head gases, and associated gases typically contain liquid water and heavy hydrocarbons entrained in the gas. To prevent detonation and severe damage to the engine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid separator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground in accordance with local codes and standards.

To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel operating temperature.

EMIT Technologies, Inc 772 Airfield Lane Sheridan, WY 82801 307.673.0883 Office 307.673.0886 Fax cdosborn@emittechnologies.com

PREPARED FOR:

Natural Gas Services Group

A. INFORMATION PROVIDED BY CATERPILLAR

Engine:	G3306TAA	
DIM Sheet:	DM5779	
Compression Ratio:	8.0:1	
RPM:	1800	
Horsepower:	211	
Fuel:	Natural Gas	
Piping size:	5"	
Annual Operating Hours:	8760	
Exhaust Flow:	1026 CFM	
Exhaust Temperature:	1041 °F	
Allowable Engine Backpressure:	27" WC	
Emission Data		
NO _x :	27.52	g/bhp-hr
CO:	1.52	g/bhp-hr
THC:	1.11	g/bhp-hr
NMHC:	0.34	g/bhp-hr
HCHO:	N/A	g/bhp-hr
Oxygen:	2.00	%

B. POST CATALYST EMISSIONS TO BE ACHIEVED BY EMISSION CONTROL EQUIPMENT

NO _x :	<0.5 g/bhp-hr
CO:	<0.5 g/bhp-hr
VOC:	<0.5 g/bhp-hr

C. CONTROL EQUIPMENT

CATALYTIC CONVERTER/SILENCER UNIT

Model Catalyst Type Manufacturer Element Size Catalyst Elements Housing Type Catalyst Installation Construction Sample Ports Inlet Connections Outlet Connections Configuration Silencer Silencer Grade Insertion Loss

AIR FUEL RATIO CONTROLLER

Part Number Manufacturer Description

EAS-1450T-0505F-D1SEE

NSCR, Precious group metals EMIT Technologies, Inc. 14.5" x 3.5" 1 Dual Bed Accessible Housing 10 ga 304 Stainless Steel 6 (0.5" NPT) 5" flat face flange 5" flat face flange Assume End In / End Out Integrated Critical 20-25 dBA

ENG-S-075

EMIT Technologies, Inc.

MODEL EDGE NG CSA certified AFR controller kit complete with: EDGE NG Air Fuel Ratio Controller enclosure featuring: graphical display of oxygen sensor voltage, position of the digital power valve and thermocouple temperatures. Multiscreen digital display of controller and engine parameters. Integrated high temperature shutdown, Modbus enabled, 4 wire heated O2 sensor, O2 weldment, 25' Wiring harnesses, Digital power valve, Operations manual

SINGLE BANK ENGINE

Digital Power Valve Size

0.75" NPT

D. WARRANTY

EMIT Technologies, Inc. warrants that the goods supplied will be free from defects in workmanship by EMIT Technologies, Inc. for a period of one (1) year from date of shipment. EMIT Technologies, Inc. will not be responsible for any defects which result from improper use, neglect, failure to properly maintain or which are attributable to defects, errors or omissions in any drawings, specifications, plans or descriptions, whether written or oral, supplied to EMIT Technologies, Inc. by Buyer.

Catalyst performance will be guaranteed for a period of 1 year from installation, or 8760 operating hours, whichever comes first. The catalyst shall be operated with an automatic air/fuel ratio controller. The performance guarantee shall not cover the effects of excessive ash masking due to operation at low load, improper engine maintenance, or inappropriate lubrication oil. The performance guarantee shall not cover the effects of continuous engine misfires (cylinder or ignition) exposing the catalyst to excessive exothermic reaction temperatures.

The exhaust temperature operating range at the converter inlet is 600°F minimum for oxidation catalyst and 750°F for NSCR catalyst and 1250°F maximum.

If a high temperature shut down switch is not installed, thermal deactivation of catalyst at temperatures above 1300°F is not covered.

The catalyst conversion efficiencies (% reduction) will be guaranteed for engine loads of 50 to 100 percent.

Engine lubrication oil shall contain less than 0.6% ash (by weight) with a maximum allowable specific oil consumption of 0.01 gal/bhp-hr. The maximum ash loading on the catalyst shall be limited to 350 g/m3. Phosphorous and zinc additives are limited to 0.03% (by weight).

The catalyst must not be exposed to the following know poisoning agents, including: iron, nickel, sodium, chromium, arsenic, zinc, lead, phosphorous, silicon, potassium, magnesium, copper, tin, and mercury. Total poison concentrations in the gas are limited to 0.3 ppm.

Attachment O

ATTACHMENT O – TANKER TRUCK/RAIL CAR LOADING DATA SHEET

Complete this data sheet for each new or modified bulk liquid transfer area or loading rack at the facility. This is to be used for bulk liquid transfer operations to tanker trucks/rail cars. Use extra pages if necessary.

Truck/Rail Car Loadout Collection Efficiencies

The following applicable capture efficiencies of a truck/rail car loadout are allowed:

- For tanker trucks/rail cars passing the MACT level annual leak test 99.2%
- For tanker trucks/rail cars passing the NSPS level annual leak test 98.7%
- For tanker trucks/rail cars not passing one of the annual leak tests listed above 70%

Compliance with this requirement shall be demonstrated by keeping records of the applicable MACT or NSPS Annual Leak Test certification for *every* truck and railcar loaded/unloaded. This requirement can be satisfied if the trucking/rail car company provided certification that its entire fleet was compliant. This certification must be submitted in writing to the Director of the DAQ. These additional requirements must be noted in the Registration Application.

Emission Unit ID#: 4S-	it ID#: 4S-TL		Emission Point ID#: 4E-1		Year Installed/Modified: 2016			
Emission Unit Descripti	on: Tanker Tr	uck Loa	ading			·		
			Loading	Area Data				
Number of Pumps: 1		Numbe	er of Liquids	Loaded: 1		Max number of at one (1) time	f trucks/rail cars loa e: 1	ading
Are tanker trucks/rail cars pressure tested for leaks at this or any other location? \Box Yes \boxtimes No \Box Not Required If Yes, Please describe:								
Provide description of c	losed vent syste	m and an	y bypasses.					
Are any of the following Closed System to tai Closed System to tai Closed System to tai	nker truck/rail ca nker truck/rail ca nker truck/rail ca	ar passing ar passing ar not pas	g a MACT le g a NSPS lev ssing an annu	vel annual lea el annual lea ial leak test a	k test? nd has v			
	jected Maximur	•				•	,	
Time	Jan – Ma	ır	Apr	- Jun		ful – Sept	Oct - Dec	
Hours/day	24		2	4		24	24	
Days/week	Days/week 7			7		7	7	
	Bul	k Liquid	Data (use e	xtra pages a	s necess	ary)		
Liquid Name	Pro	duced \	Nater					
Max. Daily Throughput (1000 gal/day) 25.44		25.48	}					
Max. Annual Throughput (1000 gal/yr) 9300.9		9300.9	8					
Loading Method ¹		SP						
Max. Fill Rate (gal/min))	93.33						
Average Fill Time (min/loading)		180						
Max. Bulk Liquid Temperature (°F)		53.39)					
True Vapor Pressure ²		0.26						

Cargo Vesse	1 Condition ³	U	
Control Equi Method ⁴	ipment or	N/A	
Max. Collect (%)	tion Efficiency	N/A	
Max. Contro (%)	l Efficiency	N/A	
Max.VOC	Loading (lb/hr)	0.09	
Emission Rate	Annual (ton/yr)	0.38	
Max.HAP	Loading (lb/hr)	0.02	
Emission Rate	Annual (ton/yr)	0.08	
Estimation N	1ethod ⁵	EPA	

1	BF	Bottom Fill	SP	Splash Fi	11	SUB	Submerged Fill
2	At max	imum bulk liquid temperature					
3	В	Ballasted Vessel	С	Cleaned		U	Uncleaned (dedicated service)
	0	Other (describe)					
4	List as	many as apply (complete an	nd submit ap	propriate	Air Pollution Co	ontrol Devic	e Sheets)
	CA	Carbon Adsorption		VB	Dedicated Va	por Balance	(closed system)
	ECD	Enclosed Combustion De	vice	F	Flare	•	· · · ·
	ТО	Thermal Oxidization or I	ncineration				
5	EPA	EPA Emission Factor in	AP-42		MB	Materi	al Balance

EPA Emission Factor in AP-42 Test Measurement based upon test data submittal Material Balance EPA MB ТМ 0 Other (describe)

Attachment P - Not Applicable

Attachment Q

ATTACHMENT Q – PNEUMATIC CONTROLLERS
DATA SHEET

Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?

Please list approximate number.

Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after September 18, 2015?

Yes	🔀 No
-----	------

Please list approximate number.

Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?

Yes No

Please list approximate number.

Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after September 18, 2015?

Yes	🖂 No
-----	------

Please list approximate number.

Attachment R

ATTACHMENT R – PNEUMATIC PUMP DATA SHEET

Are there any natural gas-driven diaphragm pumps located at a well site that commenced construction, modification or reconstruction after September 18, 2015?

🗌 Yes 🛛 🖾 No

Please list.

-	

Attachment S - Not Applicable

Attachment T

MND-9 Emission Summary Sheet

Emission Unit	Source							Potent	ial Emissio	ns (tpy)								
ID Number	Description	NOx	CO	VOC	SOx	PM	PM10	Formaldehyde	n-Hexane	Benzene	Toluene	Ethylbenzene	Xylene	224-TMP	Total HAPS	CH_4	CO ₂	CO ₂ e
40 TK4 4	4 400 kkl Dred Wester Oterre ve Terrier			0.00					0.0044	0.0000	0.0000	0.0004	0.0000	0.0000	0.0000	0.0005		0.0100
1S-TK1-4	4 - 400 bbl Prod Water Storage Tanks			2.32					0.0044	0.0000	0.0000	0.0001	0.0002	0.0022	0.0003	0.0005		0.0123
2S-GPU1-6	6 - 1.0 MMBtu/hr Heaters	2.15	1.81	0.12	0.01	0.16	0.16	0.0016	0.0388	0.0000	0.0001	0.0000	0.0000	0.0000	0.0407	0.0495	2584.92	2586.16
3S-ENG1	1 - 211 hp CATG3306TAA Engine	1.02	1.02	1.02	0.00	0.00	0.00	0.4207	0.0088	0.0035	0.0033	0.0003	0.0015	0.0020	0.4401	1.8327	1047.26	1093.08
TL	Produced Water Truck Loading Detail Sheet			0.38					0.0723	0.0000	0.0016	0.0000	0.0032	0.0032	0.0803	0.0011		0.03
FUG	Equipt Component Fugitives Estimate			4.56					0.26	0.00	0.02	0.01	0.04	0.02	0.35	1.48		37.24
Total Facility E	Emissions	3.17	2.83	8.40	0.02	0.16	0.16	0.42	0.39	0.01	0.03	0.01	0.04	0.02	0.91	3.37	3632.18	3716.52

							P	otential En	nissions (II	o/hr)						
NOx	CO	VOC	SOx	PM	PM10	Formaldehyde	n-Hexane	Benzene	Toluene	Ethylbenzene	Xylene	224-TMP	Total HAPS	CH_4	CO ₂	CO ₂ e
0.7244	0.6457	1.9183	0.0040	0.0375	0.0375	0.0964	0.0885	0.0017	0.0059	0.0013	0.0101	0.0053	0.2078	0.7685	829.2641	848.5195

								Po	tential Emi	ssions (lb/	/day)						
N	10x	CO	VOC	SOx	PM	PM10	Formaldehyde	n-Hexane	Benzene	Toluene	Ethylbenzene	Xylene	224-TMP	Total HAPS	CH_4	CO ₂	CO ₂ e
17.	.3854	15.4969	46.0403	0.0965	0.9004	0.9004	2.3142	2.1245	0.0413	0.1423	0.0302	0.2427	0.1266	4.9866	18.4431	19902.3375	20364.4686

	lb/hr	tpy	lb/day
WV air permit exemption criteria - any criteria pollutant	6	10.00	144.0

MND-9 Heater Detail Sheet

* These are heat release rates and not the duty for the heater

Potential Emissions

Pollutant	Emission	Nominal	Hrs of	Estimated	Emissions	Source of
	Factor	Rating	Operation			Emission
	(lb/MMscf)	(MMBtu/hr)	(hrs/yr)	(lb/hr)	(tpy)	Factor
NOx	100.00	6.000	8760	0.49	2.15	AP-42 ¹
СО	84.00	6.000	8760	0.41	1.81	AP-42 ¹
VOC	5.50	6.000	8760	0.03	0.12	AP-42 ²
SO2	0.60	6.000	8760	0.00	0.01	AP-42 ²
PM10	7.60	6.000	8760	0.04	0.16	AP-42 ²
Benzene	0.002	6.000	8760	0.00	0.0000	AP-42 ³
Ethylbenzene	0.000	6.000	8760	0.00	0.0000	
Toluene	0.003	6.000	8760	0.00	0.0001	AP-42 ³
Xylenes	0.000	6.000	8760	0.00	0.0000	
N-Hexane	1.80	6.000	8760	0.01	0.0388	AP-42 ³
224-TMP	0.00	6.000	8760	0.00	0.0000	
Formaldehyde	0.08	6.000	8760	0.00	0.0016	AP-42 ³
Total HAPs	1.89	6.000	8760	0.01	0.0407	AP-42 ³
CO ₂	120000.00	6.000	8760	590.16	2584.92	AP-42 ²
CH ₄	2.30	6.000	8760	0.01	0.05	AP-42 ²
CO ₂ e				590.45	2586.16	

¹ EPA AP-42, Volume I, Fifth Edition - July 1998, Table 1.4-1, Emission Factors for Nitrogen Oxides (NOx) and Carbon Monoxide (CO) from Natural Gas Combustion

² EPA AP-42, Volume I, Fifth Edition - July 1998, Table 1.4-2, Emission Factors for Criteria Pollutants and Greenhouse Gases from Natural Gas Combustion

³ EPA AP-42, Volume I, Fifth Edition - July 1998, Table 1.4-3, Emission Factors for Speciated Organic Compounds from Natural Gas Combustion

MND-9 Engine Detail Sheet

Emission Unit Number Equipment ID Source Description Engine Usage	3S-ENG1 ENG1 1 - 211 hp CATG3306TAA Engine	9	Source Location Zone:	Horizontal: Vertical:	
Engine Make	CAT		Potential operation		8760 hr/yr
Engine Model Serial Number	G3306TAA				
Manufacture Date	2008				
NSPS Applicability	Subject to JJJJ		Potential fuel usage		13.06 MMscf/yr
Engine Configuration Emission Controls	4 cycle, lean burn NSCR				
ISO Rating	NOCK	211 BHP	Stack ID		
Site Rating		BHP			
Fuel Heating Value		1220 Btu/scf			
Heat Rate		1.82 MMBtu/hr			
Engine Heat Rate	De mait De redia a	8622 Btu/hp-hr			
Permit Status	Permit Pending				

Potential Emissions

Pollutant	Emissior	n Factor	Nominal Rating	Hrs of Operation	Estimated	Emissions	Source of Emission Factor
	(lb/MMBtu)	(g/hp-hr)	(hp)	(hrs/yr)	(lb/hr)	(tpy)	
NOx		0.50	211	8760	0.23	1.02	Mfr Factors
CO		0.50	211	8760	0.23	1.02	Mfr Factors
VOC ²		0.50	211	8760	0.23	1.02	Mfr Factors
CO ₂		514.00	211	8760	239.10	1047.26	Mfr Factors
SOx	5.88E-04		211	8760	0.00	0.00	AP-42 Ch. 3.2, table 3.2-2
PM	7.71E-05		211	8760	0.00	0.00	AP-42 Ch. 3.2, table 3.2-2
PM10	7.71E-05		211	8760	0.00	0.00	AP-42 Ch. 3.2, table 3.2-2
Formaldehyde	5.28E-02		211	8760	0.10	0.42	AP-42 Ch. 3.2, table 3.2-2
n-Hexane	1.11E-03		211	8760	0.00	0.01	AP-42 Ch. 3.2, table 3.2-2
Benzene	4.40E-04		211	8760	0.00	0.00	AP-42 Ch. 3.2, table 3.2-2
Toluene	4.08E-04		211	8760	0.00	0.00	AP-42 Ch. 3.2, table 3.2-2
Ethylbenzene	3.97E-05		211	8760	0.00	0.00	AP-42 Ch. 3.2, table 3.2-2
Xylene	1.84E-04		211	8760	0.00	0.00	AP-42 Ch. 3.2, table 3.2-2
2,2,4-Trimethylpentane	2.50E-04		211	8760	0.00	0.00	AP-42 Ch. 3.2, table 3.2-2
CH ₄	0.23		211	8760	0.42	1.83	API
Total HAPs					0.10	0.44	
CO ₂ e					249.56	1093.08	

¹API Compendium of Greenhouse Gas Emissions Methodoligies for the Oil and Natural Gas Industry, Table 4-9

²Includes total hydrocarbons

Notes

MND-9 Tank Detail Sheet

Source ID Nur	mber	1S-TK1-4					
Equipment ID			Source Location	Zone:			
Tank Descript	ion	4 - 400 bbl Prod Water Storage	Fanks I	Horizontal:			
Tank Usage		Produced Water Storage		Vertical:			
Tank Make		0	Potential operation	n	8760 hi	r/yr	
Tank Capacity	/	400 bbl				,	
Serial Number			Maximum water p	roduction	221,524 bl	bl/yr	HYSYS Run, Water Out
Date in Servic	e				1.45 %	Óil	Based on SHL17 Sample
Tank Contents	S	Produced Water			3212.1 bl	bl/yr Oil	•
Emission Con	trols						m FESCO Flash Study
							om FESCO Flash Study
Tank Orientati	ion	Vertical, above ground	Tank Construction	1	Welded		(Welded, Bolted, Fiberglass)
Shell Height /	Lenath	18 ft	Roof color & cond	ition	Gray/Medium, g	ood	(eg. light brown, good)
Shell Diamete	0	12 ft	shell color & cond	ition	Gray/Medium, g		(eq. white, fair)
Roof Slope		0.06	FR Primary Seal		N/A		
Roof Type (Cone, Dome,	Cone	FR Seconday Sea	d	N/A		
IFR, EF	R, None)		,				
Permit Status			Vent pressure set	ting	0.03 +/	/- psig	
			VOC Control Effic	iency	%	5	
Potential Emi	issions			-			
Pollutant							
		CAS	Hrs of	Estimated	d Uncontrolled Err	nissions ¹	Source of
i onutant		CAS		Estimated	d Uncontrolled Err	nissions ¹	Source of Emission Factor
		CAS	Operation	Estimated			
VOC	Flash	CAS			(tpy)	(lb/yr)	Emission Factor
	Flash W&B	CAS	Operation (hrs/yr)	(lb/hr)	(tpy) 2.04	(lb/yr) 4089.34	
VOC		CAS	Operation (hrs/yr) 8760	(lb/hr) 0.47	(tpy) 2.04 5 0.28	(lb/yr) 4089.34 551.96	Emission Factor FESCO Flash Study
VOC VOC		CAS	Operation (hrs/yr) 8760 8760	(lb/hr) 0.47 0.06	(tpy) 2.04 5 0.28	(lb/yr) 4089.34 551.96	Emission Factor FESCO Flash Study TANKS 4.09d
VOC VOC Total BTEX	W&B	CAS	Operation (hrs/yr) 8760 8760	(lb/hr) 0.47 0.06	(tpy) 2.04 0.28 0.06 2.38	(lb/yr) 4089.34 551.96	Emission Factor FESCO Flash Study TANKS 4.09d
VOC VOC Total BTEX		CAS	Operation (hrs/yr) 8760 8760	(lb/hr) 0.47 0.06	(tpy) 2.04 6 0.28 0.06	(lb/yr) 4089.34 551.96	Emission Factor FESCO Flash Study TANKS 4.09d
VOC VOC Total BTEX Total	W&B Weight %	CAS	Operation (hrs/yr) 8760 8760	(lb/hr) 0.47 0.06	(tpy) 2.04 6 0.28 0.06 2.38 tpy	(lb/yr) 4089.34 551.96	Emission Factor FESCO Flash Study TANKS 4.09d
VOC VOC Total BTEX Total Benzene	W&B Weight % 0.06%	CAS	Operation (hrs/yr) 8760 8760	(lb/hr) 0.47 0.06	(tpy) 2.04 0.28 0.06 2.38 tpy 0.0000	(lb/yr) 4089.34 551.96	Emission Factor FESCO Flash Study TANKS 4.09d
VOC VOC Total BTEX Total Benzene Ethybenzene	W&B Weight % 0.06% 0.36%	CAS	Operation (hrs/yr) 8760 8760	(lb/hr) 0.47 0.06	(tpy) 2.04 0.28 0.06 2.38 tpy 0.0000 0.0001	(lb/yr) 4089.34 551.96	Emission Factor FESCO Flash Study TANKS 4.09d FESCO Flash Study
VOC VOC Total BTEX Total Benzene Ethybenzene Toluene	W&B Weight % 0.06% 0.36% 0.09%	CAS	Operation (hrs/yr) 8760 8760	(lb/hr) 0.47 0.06	(tpy) 2.04 0.28 0.06 2.38 tpy 0.0000 0.0001 0.0000	(lb/yr) 4089.34 551.96 124.05	Emission Factor FESCO Flash Study TANKS 4.09d FESCO Flash Study
VOC VOC Total BTEX Total Benzene Ethybenzene Toluene Xylenes	W&B Weight % 0.06% 0.36% 0.09% 0.73%	CAS	Operation (hrs/yr) 8760 8760	(lb/hr) 0.47 0.06	(tpy) 2.04 3.0.06 2.38 tpy 0.0000 0.0001 0.0000 0.0002	(lb/yr) 4089.34 551.96 124.05	Emission Factor FESCO Flash Study TANKS 4.09d FESCO Flash Study
VOC VOC Total BTEX Total Benzene Ethybenzene Toluene Xylenes N-Hexane	W&B Weight % 0.06% 0.36% 0.09% 0.73% 18.58%	CAS	Operation (hrs/yr) 8760 8760	(lb/hr) 0.47 0.06	(tpy) 2.04 0.28 0.06 2.38 tpy 0.0000 0.0001 0.0000 0.0002 0.0044	(lb/yr) 4089.34 551.96 124.05	Emission Factor FESCO Flash Study TANKS 4.09d FESCO Flash Study
VOC VOC Total BTEX Total Benzene Ethybenzene Toluene Xylenes N-Hexane 224-TMP	W&B Weight % 0.06% 0.36% 0.73% 0.73% 18.58% 9.32%	CAS	Operation (hrs/yr) 8760 8760	(lb/hr) 0.47 0.06	(tpy) 2.04 0.28 0.06 2.38 tpy 0.0000 0.0001 0.0000 0.0002 0.0044 0.0022	(lb/yr) 4089.34 551.96 124.05	Emission Factor FESCO Flash Study TANKS 4.09d FESCO Flash Study
VOC VOC Total BTEX Total Benzene Ethybenzene Toluene Xylenes N-Hexane 224-TMP CH4	W&B Weight % 0.06% 0.36% 0.73% 0.73% 18.58% 9.32%	CAS	Operation (hrs/yr) 8760 8760	(lb/hr) 0.47 0.06	(tpy) 2.04 3.0.28 0.06 2.38 tpy 0.0000 0.0001 0.0000 0.0002 0.0044 0.0022 0.0005	(lb/yr) 4089.34 551.96 124.05	Emission Factor FESCO Flash Study TANKS 4.09d FESCO Flash Study

MND-9

Produced Water 1	Fruck Loading	Detail Sheet	
TL			
Select Model Liqui	d> Gas	oline RVP 10	
or Enter These Fa	ctors Directly B	elow	
P=	psia	true vapor pr	essure
M=	lb/lb·	-mol molecular we	ight of vapors
S=	0.6	saturation fac	ctor
P=	6.2 psia	true vapor pr	essure
M=	66 lb/lb	-mol molecular we	ight of vapors
T=	70 °F	temperature	Use liquid bulk temperature from TANKs run.
L_=	5.77 lb/10	000 gallo = 12.46*S*P*	M/(T+460)
L _L =	0.242 lb/bb	Loading Loss	ses
Production:			
Production:		ear Produced Water	N/ all in the Deadward Mintee

3,212 bbl/year oil based on 1.45% oil in the Produced Water 8.80 bbl/day

Potential Emissions

	Component	Component	EUncontrolled	(Controlled		
Pollutant	Wt%	lb/bbl	lb/yr tpy	· (lb/yr)	(tpy)	
VOC	98%	0.237	761	0.3806	761	C	.3806
TOTAL HAPS	20.6%	0.050	161	0.0803	161	C	0.0803
n-hexane	18.6%	0.045	145	0.0723	145	C	0.0723
224-TMP	0.8%	0.002	6	0.0032	6	C	0.0032
Benzene	0.1%	0.000	0	0.0000	0	C	0000.
Toluene	0.4%	0.001	3	0.0016	3	C	0.0016
Ethylbenzene	0.1%	0.000	0	0.0000	0	C	0.0000
Xylene	0.7%	0.002	6	0.0032	6	C	0.0032

Pollutant	Emission Factor (Ibs TOC/gal)	gal/bbl	bbl/yr	lbs CH4/lbs TOC	lbs/yr ¹	tpy	CO ₂ e	E	Source of Emission Factor
CH4	0.002	42	500	0.0528		2.22	0.00	0.03	API ²

Notes

¹ EPA AP-42, Volume I, Fifth Edition - January 1995, Table 5.2-1, Saturation (S) Factors for Calculating Petroleum Liquid Loading Losses

²API Compendium of Greenhouse Gas Emissions Methodoligies for the Oil and Natural Gas Industry, Table 5-12

Table 5.2-1. SATURATION (S) FACTORS FOR CALCULATING PETROLEUM LIQUID LOADING LOSSES

Cargo Carrier	Mode Of Operation	S Factor
	Submerged loading of a clean cargo tank	0.50
	Submerged loading: dedicated normal service	0.60
Tank trucks and rail tank	Submerged loading: dedicated vapor balance service	1.00
cars	Splash loading of a clean cargo tank	1.45
	Splash loading: dedicated normal service	1.45
	Splash loading: dedicated vapor balance service	1.00

Table 7.1-2. PROPERTIES (MV, PVA, WL) OF SELECTED PETROLEUM LIQUIDS

	Vapor MW	Liquid		True va	oor pressure	(psi) at variou	s temperature	es in °F	
	lb/lbmole	lb/gal	40	50	60	70	80	90	100
Crude oil RVP 5	50	7.1	1.8	2.3	2.8	3.4	4	4.8	5.7
Distillate fuel oil No.2	130	7.1	0.0031	0.0045	0.0065	0.009	0.012	0.016	0.022
Gasoline RVP 7	68	5.6	2.3	2.9	3.5	4.3	5.2	6.2	7.4
Gasoline RVP 7.8	68	5.6	2.5929	3.2079	3.9363	4.793	5.7937	6.9552	8.2952
Gasoline RVP 8.3	68	5.6	2.7888	3.444	4.2188	5.1284	6.1891	7.4184	8.8344
Gasoline RVP 10	66	5.6	3.4	4.2	5.2	6.2	7.4	8.8	10.5
Gasoline RVP 11.5	65	5.6	4.087	4.9997	6.069	7.3132	8.7519	10.4053	12.2949
Gasoline RVP 13	62	5.6	4.7	5.7	6.9	8.3	9.9	11.7	13.8
Gasoline RVP	62	5.6	4.932	6.0054	7.2573	8.7076	10.3774	12.2888	14.4646
Gasoline RVP	60	5.6	5.5802	6.774	8.1621	9.7656	11.6067	13.7085	16.0948
Jet kerosene	130	7	0.0041	0.006	0.0085	0.011	0.015	0.021	0.029
Jet naphtha (JP-4)	80	6.4	0.8	1	1.3	1.6	1.9	2.4	2.7
Residual oil No. 6	190	7.9	0.00002	0.00003	0.00004	0.00006	0.00009	0.00013	0.00019

MND-9

Equipt Component Fugitives Estimate

\mathbf{F}	П	2

	Counts			VOC E	nissions	Benzene	Toluene	E-benzene	Xylene	n-Hexane	224-TMP	Total HAP Emissions	%CH4	CH4 Em	issions	CO ₂ e	
		lb/hr/compon ent			lb/hr	tpy	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	tpy		lb/hr	tpy	tpy
Valve						1.32							0.10				18.17
Gas/Vapor	35	0.00992	0	26.26	0.09	0.40	0.07	0.15	0.02	0.24	5.08	0.00	0.00	46.54	0.16	0.71	17.70
Light Liquid ¹	35	0.00551	0	100	0.19	0.84	1.94	10.39	2.53	19.51	128.56	13.51	0.09	2.07	0.00	0.02	0.44
Water/Oil	84	0.000216	0	100	0.02	0.08	0.18	0.98	0.24	1.84	12.10	0.00	0.01	2.07	0.00	0.00	0.04
Pumps Seals						0.00							0.00				0.00
Light Liquid	0	0.02866	0	100	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.07	0.00	0.00	0.00
Water/Oil	2	0.0000529	0	100	0.00	0.00	0.00	0.01	0.00	0.01	0.07	0.00	0.00	2.07	0.00	0.00	0.00
Flanges						0.07							0.00				1.55
Gas/Vapor	35	0.00086	0	26.26	0.01	0.03	0.01	0.01	0.00	0.02	0.44	0.00	0.00	46.54	0.01	0.06	1.53
Light Liquid	35	0.000243	0	100	0.01	0.04	0.09	0.46	0.11	0.86	5.67	0.60	0.00	2.07	0.00	0.00	0.02
Water/Oil	70	0.00000617		100	0.00	0.00	0.00	0.02	0.01	0.04	0.29	0.00	0.00	2.07	0.00	0.00	0.00
Open-Ended Lines	3					0.05							0.00				2.25
Gas/Vapor	10	0.00441	0	26.26	0.01	0.05	0.01	0.02	0.00	0.03	0.65	0.00	0.00	46.54	0.02	0.09	2.25
Light Liquid		0.00309	0	100	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.07	0.00	0.00	0.00
Water/Oil		0.0006	0	100	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.07	0.00	0.00	0.00
Other						2.30							0.21				10.96
Gas/Vapor	10	0.0194	0	26.26	0.05	0.22	0.04	0.08	0.01	0.13	2.84	0.00	0.00	46.54	0.09	0.40	9.89
Light Liquid1	10	010100	0	100	0.17	0.72	1.66	8.89	2.17	16.69	109.99	11.56	0.08	2.07	0.00	0.01	0.37
Water/Oil	10	0.0309	0	100	0.31	1.35	3.11	16.65	4.06	31.26	205.99	0.00	0.13	2.07	0.01	0.03	0.70
Connectors						0.82							0.07				4.31
Gas/Vapor	175	0.000441	0	26.26	0.02	0.09	0.02	0.03	0.00	0.05	1.13	0.00	0.00	46.54	0.04	0.16	3.93
Light Liquid	175	0.000463	0	100	0.08	0.35	0.82	4.37	1.06	8.20	54.01	5.68	0.04	2.07	0.00	0.01	0.18
Water/Oil	350	0.000243	0	100	0.09	0.37	0.86	4.58	1.12	8.61	56.70	0.00	0.04	2.07	0.00	0.01	0.19
	Tota	al Emissions			0.96	4.56	7.95	42.05	10.22	78.89	526.82	31.35	0.38		0.34	1.48	37.24

Note

1. Heavy liquids are defined as having vapor pressure 0.044 psia or less at 68 °F. Light Liquids are defined as having vapor pressure higher

than 0.044 psia at 68 ° F.

2. Factors from EPA Document EPA-453/R-95-017, November 1995.

MND-9 HYSYS Analysis

606.92 bpd condensate from GPU 18.822 MMSCFD sales gas from GPU No on-site condensate processing

GPU Streams				
	Inlet	Gas Out	Condensate Out	Water Out
			To Pipeline	
Vapor Frac	0.0000	1	0	0
Temperature (F)	82.11	70.00	70.00	70.00
Pressure (psig)	2000	300	300	300
Vapor Flow (MMSCFD)	19.26	18.82	-	-
Mass Flow (lb/hr)	64053.43	47818.40	7389.34	8845.69
Liquid Flow (bbl/day)	1141.13	-	855.99	606.92
Composition:				
Methane	0.52140	0.66978	0.08248	0
Ethane	0.16375	0.20477	0.12566	0
Propane	0.06655	0.07738	0.15564	0
i-Butane	0.00836	0.00856	0.04040	0
n-Butane	0.02416	0.02289	0.14966	0
i-Pentane	0.00506	0.00354	0.05377	0
n-Pentane	0.00683	0.00418	0.08341	0
n-Hexane	0.00779	0.00237	0.13816	0
n-Heptane	0.00285	0.00036	0.05960	0
n-Octane	0.00254	0.00012	0.05659	0
n-Nonane	0.00097	0.00002	0.02201	0
n-Decane	0.00038	0.00000	0.00866	0
C10+*	0.00049	0.00000	0.01135	0
Nitrogen	0.00275	0.00355	0.00014	0.000001
CO2	0.00087	0.00110	0.00031	0.000011
Oxygen	0.00004	0.00005	0.00000	0
H2O	0.18465	0.00124	0.00039	0.999988
Benzene	0.00003	0.00001	0.00048	0
Toluene	0.00012	0.00001	0.00252	0
E-Benzene	0.00002	0.000001	0.00055	0
o-Xylene	0.00020	0.00001	0.00440	0
Cyclohexane	0.00021	0.00005	0.00382	0

	Gas	Condensate	Water
Manage Free	0	0	1
Vapor Frac	80	80	80
Temperature (F)			
Pressure (psig)	2000	2000	2000
Vapor Flow (MMSCFD)	-	-	19.25528
Mass Flow (lb/hr)	4853.88	8892.35	50307.2
Liquid Flow (bbl/day)	531.02	610.11	-
Composition:			
Methane	0.05400	0.00000	0.6575
Ethane	0.09469	0.00000	0.2041
Propane	0.12269	0.00000	0.0803
i-Butane	0.03430	0.00000	0.0095
n-Butane	0.10949	0.00000	0.0271
i-Pentane	0.05480	0.00000	0.0047
n-Pentane	0.07729	0.00000	0.0062
n-Hexane	0.13339	0.00000	0.00574
n-Heptane	0.11689	0.00000	0.0000
n-Octane	0.10399	0.00000	0.0000
n-Nonane	0.03950	0.00000	0.0000
n-Decane	0.01540	0.00000	0.0000
C10+*	0.02020	0.00000	0.0000
Nitrogen	0.00000	0.00000	0.0034
CO2	0.00000	0.00000	0.0010
Oxygen	0.00000	0.00000	0.0000
H2O	0.00000	1.00000	0.0000
Benzene	0.00110	0.00000	0.0000
Toluene	0.00490	0.00000	0.0000
E-Benzene	0.00100	0.00000	0.0000
o-Xylene	0.00800	0.00000	0.0000
Cyclohexane	0.00840	0.00000	0.0000

Attachment U

	ATTA	CHM	ENT U	– FAC	CILITY	Y-WID	E CON	TROI	LED	EMISS	IONS	SUMM	IARY	SHEE	Г	
List all sour	List all sources of emissions in this table. Use extra pages if necessary.															
	NC	D _x	C	0	v	C	S	O_2	PN	M ₁₀	PM	I _{2.5}	C	H_4	GHG	(CO ₂ e)
Emission Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
1S-TK1-4					0.53	2.32							< 0.01	< 0.01	< 0.01	0.01
2S-GPU1	0.08	0.36	0.07	0.30	< 0.01	0.02	< 0.01	< 0.01	0.01	0.03	0.01	0.03	< 0.01	0.01	98.41	431.03
2S-GPU2	0.08	0.36	0.07	0.30	< 0.01	0.02	< 0.01	< 0.01	0.01	0.03	0.01	0.03	< 0.01	0.01	98.41	431.03
2S-GPU3	0.08	0.36	0.07	0.30	< 0.01	0.02	< 0.01	< 0.01	0.01	0.03	0.01	0.03	< 0.01	0.01	98.41	431.03
2S-GPU4	0.08	0.36	0.07	0.30	< 0.01	0.02	< 0.01	< 0.01	0.01	0.03	0.01	0.03	< 0.01	0.01	98.41	431.03
2S-GPU5	0.08	0.36	0.07	0.30	< 0.01	0.02	< 0.01	< 0.01	0.01	0.03	0.01	0.03	< 0.01	0.01	98.41	431.03
2S-GPU6	0.08	0.36	0.07	0.30	< 0.01	0.02	< 0.01	< 0.01	0.01	0.03	0.01	0.03	< 0.01	0.01	98.41	431.03
3S-ENG1	0.23	1.02	0.23	1.02	0.23	1.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.42	1.83	429.56	1093.08
4S-TL					0.09	0.38							< 0.01	< 0.01	< 0.01	0.03
TOTAL	0.72	3.17	0.65	2.83	0.88	3.84	< 0.01	0.02	0.04	0.16	0.04	0.16	0.43	1.88	840.01	3679.28

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators.

According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ist all sources of	t emissic	ons in t	nis table	e. Use e	extra p	ages if	necessa	ary.						
	Formald	lehyde	Ben	zene	Tolu	iene	Ethylb	enzene	Xylenes		Hexane		Total HAPs	
Emission Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
1S-TK1-4			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01
2S-GPU1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2S-GPU2	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2S-GPU3	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2S-GPU4	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2S-GPU5	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01
2S-GPU6	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
3S-ENG1	0.10	0.42	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	0.10	0.44
4S-TL			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	0.02	0.07	0.02	0.08
TOTAL	0.10	0.42	< 0.01	0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.03	0.10	0.13	0.53

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators.

According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT U – FACILITY-WIDE HAP CONTROLLED EMISSIONS SUMMARY SHEET

Attachment V

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Noble Energy, Inc. has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a G-70D General Permit for construction of a natural gas production site located in Moundsville, Marshall, West Virginia. The latitude and longitude coordinates are: 39.83150 and -80.78710.

The applicant estimates the potential to discharge the following regulated air pollutants on a facility-wide basis will be:

Carbon Monoxide (CO) = 2.83 tpy Nitrogen Oxides (NO_x) = 3.17 tpy Particulate Matter – Total = 0.16 tpy Sulfur Dioxide (SO₂) = 0.02 tpy Volatile Organic Compounds (VOC) = 8.40 tpy Hexane = 0.39 tpy Hazardous Air Pollutants (HAPs) = 0.91 tpy Carbon Dioxide Equivalents (CO₂e) = 3,716.52 tpy

Startup of operation is planned to begin on or about the 27th day of August, 2017. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the 27th day of April, 2017.

By: Noble Energy, Inc. RJ Moses Operations Manager 1000 Noble Energy Drive Cannonsburg, PA 15317