

April 18, 2017

Director WVDEP – Division of Air Quality 601 57th Street SE Charleston, WV 25304

Tracking No. 1Z642A3R0292108736

RE: M3 Appalachia Gathering, LLC Hamilton Compressor Station (Facility ID No. 061-00206, Permit No. R13-3292) G35-D Construction Application

To Whom It May Concern:

M3 Appalachia Gathering, LLC (M3) is submitting this G35-D Construction Application to convert the Hamilton Compressor Station's current R13 permit into a G35-D and install new sources at the facility.

Enclosed are one (1) original hard copy and two (2) CDs with PDFs of the application, along with a check for the application fee in the amount of \$4,000. The affidavit of publication for the Class I Legal Advertisement will be forwarded upon receipt.

M3 appreciates your review of this submittal. If you have any questions or comments about the attached information, please contact me at (724) 416-7262.

Respectfully,

the

Ryan Mathews Pipeline Engineer

Attachments

PROJECT REPORT M3 Appalachia Gathering, LLC Hamilton Compressor Station

G35-D Permit Application

TRINITY CONSULTANTS 4500 Brooktree Drive Suite 103 Wexford, PA 15090 (724) 935-2611

April 2017

Environmental solutions delivered uncommonly well

TABLE OF CONTENTS

1. INTRODUCTION	4
1.1. Facility and Project Description	4
1.2. Source Status	5
1.3. G35-D Application Organization	6
2. SAMPLE EMISSION SOURCE CALCULATIONS	7
3. REGULATORY DISCUSSION	9
3.1. PSD and NNSR Source Classification	9
3.2. Title V Operating Permit Program	9
3.3. New Source Performance Standards	10
3.3.1. NSPS Subparts D. Da. Db. and Dc – Steam Generating Units	10
3.3.2. NSPS Subparts K, Ka, and Kb – Storage Vessels for Petroleum Liquids/Volatile Organic Liquids	10
3.3.3. NSPS Subpart GG – Stationary Gas Turbines	10
3.3.4. NSPS Subpart JJJJ – Stationary Spark Ignition Internal Combustion Engines	10
3.3.5. NSPS Subpart KKKK – Stationary Combustion Turbines	11
3.3.6. NSPS Subpart 0000 — Crude Oil and Natural Gas Production, Transmission, and Distribution	11
3.3.7. NSPS Subpart 0000a — Crude Oil and Natural Gas Facilities	11
3.3.8. Non-Applicability of All Other NSPS	12
3.4. National Emission Standards for Hazardous Air Pollutants	12
3.4.1. NESHAP Subpart HH – Oil and Natural Gas Production Facilities	12
3.4.2. NESHAP Subpart ZZZZ – Stationary Reciprocating Internal Combustion Engines	12
3.4.3. NESHAP JJJJJJ – Industrial, Commercial, and Institutional Boilers	13
3.5. West Virginia SIP Regulations	13
3.5.1. 45 CSR 2: To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Hea	ıt
Exchangers	13
3.5.2. 45 CSR 4: To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Cont	ributes
to an Objectionable Odor	13
2.5.4.45 CSR 6: 10 Prevent and Control the Air Pollution from the Emission of Sulfur Ovides	13
3.5.4. 45 CSR 10: 10 Flevent and Control All Fondution from the Emission of Sunth Oxides	13
3.5.6. 45 CSR 17: To Prevent and Control Particulate Matter Air Pollution from Materials Handling Prena	ration
Storage and Other Sources of Fugitive Particulate Matter	14
3.5.7. 45 CSR 21-28: Petroleum Liquid Storage in Fixed Roof Tanks	14
3.5.8. 45 CSR 34: Emissions Standards for Hazardous Air Pollutants	14
3.5.9. Non-Applicability of Other SIP Rules	14
4. G35-D APPLICATION FORMS	15
ATTACHMENT A SINGLE SOURCE DETERMINATION FORM	
ATTACHMENT B SITING CRITERIA WAIVER (IF APPLICABLE)	
ATTACHMENT C CURRENT BUSINESS CERTIFICATE	

ATTACHMENT D	PROCESS FLOW DIAGRAM
ATTACHMENT E	PROCESS DESCRIPTION
ATTACHMENT F	PLOT PLAN
ATTACHMENT G	AREA MAP
ATTACHMENT H	G35-D SECTION APPLICABILITY FORM
ATTACHMENT I	EMISSION UNITS/ERD TABLE
ATTACHMENT J	FUGITIVE EMISSIONS SUMMARY
ATTACHMENT K	STORAGE VESSEL(S) DATA SHEET
ATTACHMENT L	NATURAL GAS FIRED FUEL BURNING UNIT(S) DATA SHEET
ATTACHMENT M	INTERNAL COMBUSTION ENGINE DATA SHEET(S)
ATTACHMENT N	TANKER TRUCK LOADING DATA SHEET (IF APPLICABLE)
ATTACHMENT O	GLYCOL DEHYDRATION UNIT DATA SHEET(S)
ATTACHMENT P	PNEUMATIC CONTROLLERS DATA SHEET(S)
ATTACHMENT Q	CENTRIFUGAL COMPRESSOR DATA SHEET(S)
ATTACHMENT R	RECIPROCATING COMPRESSOR DATA SHEET(S)
ATTACHMENT S	BLOWDOWN AND PIGGING OPERATIONS DATA SHEET(S)
ATTACHMENT T	AIR POLLUTION CONTROL DEVICE
ATTACHMENT U	EMISSION CALCULATIONS
ATTACHMENT V	FACILITY-WIDE EMISSION SUMMARY SHEET(S)
ATTACHMENT W	CLASS I LEGAL ADVERTISEMENT

M3 Appalachia Gathering, LLC (M3), which is owned by DTE Energy Company, is submitting this G35-D Permit application to the West Virginia Department of Environmental Protection (WVDEP) for an existing natural gas compressor station located in Monongalia County, West Virginia (Hamilton Compressor Station or 'Hamilton Station'). The Hamilton Station is currently operating under R13 permit number R13-3292. This general permit application seeks to add new compression, dehydration and ancillary equipment and replace the current R13 permit with a G-35D permit.

1.1. FACILITY AND PROJECT DESCRIPTION

The Hamilton Station is an existing natural gas compressor station covered under standard industrial code (SIC) 1311. The station compresses and dehydrates natural gas from nearby wells for transportation across the pipeline.

The station currently consists of the following equipment:

- One (1) 75 million standard cubic feet per day (MMscfd) triethylene glycol dehydration unit (TEG-1) with associated flash tank, and 1.5 MMBtu/hr reboiler (REB-1);
- > One (1) PSI generator engine (GE-2), rated at 85 bhp;
- > One (1) 16,800 gallon waste fluids tank (T11); and
- > One (1) 500 gallon triethylene glycol tank (T12).

Please note that there are multiple other sources included in the current R13 permit which have yet to be installed. As these source have yet to be installed, their source is denoted as 'New' for the purposes of this permit application. However, as they are authorized by the facility's current R13 permit, the applicant reserves the right to install them prior to the issuance of the requested G35-D.

With this submittal, the applicant specifically seeks to do the following:

- > Add three (3) Caterpillar G3606 compressor engines (CE-4 to CE-6), each rated at 1,775 bhp;
- > Add one (1) Generac 14.2 L emergency generator engine (GE-1), rated at 304 bhp;
- > Add one (1) 75 million standard cubic feet per day (MMscfd) triethylene glycol dehydration unit (TEG-2) with associated flash tank, and 1.5 MMBtu/hr reboiler (REB-2);
- > Add one (1) Flex Energy GT250S microturbine (MT-1);
- > Add several miscellaneous tanks (in place of those currently in the permit)¹;
- Correct the source names of the three (3) Caterpillar compressor engines (CE-1 to CE-3) currently in the permit²;
- > Clarify/revise other source names³; and

¹ The permit application forms include a complete listing of tanks; the applicant is requesting that the issued permit reflect the forms.

 $^{^{2}}$ These sources have yet to be installed. Although the horsepower rating and emissions profiles are accurate, the engines are currently listed in the permit as Caterpillar 'G3616', whereas the correct model is 'G3606'.

³ The permit application forms include a complete listing of all requested source names; the applicant is requesting that the issued permit reflect the forms. Some sources have yet to be installed (although they may be included in the current permit) and thus are designated as 'New' in the forms.

> Remove the condenser from the current dehydration unit (TEG-1)⁴.

A process flow diagram is included as Attachment D.

1.2. SOURCE STATUS

WVDEP must make stationary source determinations on a case-by-case basis using the guidance under the Clean Air Act (CAA) and EPA's and WVDEP's implementing regulations. The definition of stationary source in 40 CFR 51.166(b) includes the following:

"(6) Building, structure, facility, or installation means all of the pollutant emitting activities which belong to the same industrial grouping, are located on or more contiguous or adjacent properties, and are under control of the same person (or persons under common control)."

Other additional pollutant emitting facilities should be aggregated with the Hamilton Station for air permitting purposes if, and only if, all three elements of the "stationary source" definition above are fulfilled. WVDEP previously determined that the Hamilton Station is a separate stationary source when the current permit was issued. There are no facilities within a quarter-mile radius of the facility.

⁴ The existing dehydration unit (TEG-1) is permitted with a condenser. However, this control device has negligible impact on emissions, as there is no detectable level of heavy hydrocarbons (ex. benzene, toluene, etc.) in the gas. Therefore, the applicant is requesting the removal of this control device from the issued permit, as it provides minimal environmental benefit at high cost. A **GRI-GLYCalc run showing the ineffectiveness of the condenser is included for reference.**

1.3. G35-D APPLICATION ORGANIZATION

This West Virginia G35-D permit application is organized as follows:

- > Section 2: Sample Emission Source Calculations;
- > Section 3: Regulatory Discussion;
- > Section 4: G35-D Application Form;
- > Attachment A: Single Source Determination Form
- > Attachment B: Siting Criteria Waiver (not applicable)
- > Attachment C: Current Business Certificate
- > Attachment D: Process Flow Diagram
- > Attachment E: Process Description
- > Attachment F: Plot Plan
- > Attachment G: Area Map
- > Attachment H: G35-D Section Applicability Form
- > Attachment I: Emission Units/ERD Table
- > Attachment J: Fugitive Emission Summary Sheet(s)
- > Attachment K: Storage Vessels Data Sheet(s)
- > Attachment L: Natural Gas Fired Fuel Burning Unit Data Sheet(s)
- > Attachment M: Internal Combustion Engine Data Sheet(s)
- > Attachment N: Tanker Truck Loading Data Sheet
- > Attachment O: Glycol Dehydration Unit Data Sheet(s)
- > Attachment P: Pneumatic Controller Data Sheet(s)
- > Attachment Q: Centrifugal Compressor Data Sheet(s)
- > Attachment R: Reciprocating Compressor Data Sheet(s)
- > Attachment S: Blowdown and Pigging Operation Data Sheet(s)
- > Attachment T: Air Pollution Control Device Data Sheet(s)
- > Attachment U: Emission Calculations
- > Attachment V: Facility-wide Emission Summary Sheet(s)
- > Attachment W: Class I Legal Advertisement

The characteristics of air emissions from the facility, along with the methodology for calculating emissions, are briefly described in this section of the application. Detailed emission calculations are presented in Attachment U of this application.

Emissions at this facility will result from combustion of natural gas (in the engines, microturbine and reboilers), operation of the dehydration units and storage tanks, as well as piping blowdowns and fugitive emissions from components leaks and the facility roadway. The methods by which emissions from each of these source types is calculated are summarized below.

- Compressor Engines: Potential emissions of nitrogen oxides (NO_X), CO, VOC, formaldehyde are calculated using factors provided by the engine and catalyst manufacturer. Potential emissions of sulfur dioxide (SO₂), particulate matter (PM/PM₁₀/PM_{2.5}), and all other hazardous air pollutants (HAPs) are calculated using U.S. EPA's AP-42 factors for four-stroke lean-burn engines.
- Generator Engines: Potential emissions of nitrogen oxides (NO_X), CO and VOC are calculated using factors provided in the EPA Certificates of Conformity. Potential emissions of sulfur dioxide (SO₂), particulate matter (PM/PM₁₀/PM_{2.5}), and all other hazardous air pollutants (HAPs) are calculated using U.S. EPA's AP-42 factors for four-stroke rich-burn engines.
- Microturbine: Potential emissions of nitrogen oxides (NO_x), CO and VOC are calculated using factors provided by the manufacturer. Potential emissions of sulfur dioxide (SO₂), particulate matter (PM/PM₁₀/PM_{2.5}), and all other hazardous air pollutants (HAPs) are calculated using U.S. EPA's AP-42 factors for stationary gas turbines.
- TEG Dehydration Unit: Potential emissions of hazardous air pollutants (HAPs), volatile organic compounds (VOC), and methane from the dehydration unit are calculated using GRI-GLYCalc v4.0 and a site-specific gas analysis.
- Reboilers: Potential emissions of all criteria pollutants and HAPs are calculated using U.S. EPA's AP-42 factors for natural gas external combustion equipment.⁵ These calculations assume a site-specific heat content of natural gas.
- Storage Tanks and Liquid Loading: Working, breathing and flashing emissions of VOC and HAPs from the waste fluid tanks are calculated using E&P TANK v2.0 software. Working and breathing emissions from all other tanks, along with the waste fluid loading emissions, were calculated using EPA Tanks 4.0.9d and AP-42 methodology.
- Fugitive Emissions: Emissions from fugitive equipment leaks are calculated using published EPA emission factors and 40 CFR Part 98, Subpart W emission factors. Emissions from blowdown events are calculated using engineering estimates of the amount of gas vented. Site specific gas analyses were used to speciate VOC, HAP, and GHG emissions.
- > Haul Roads: Fugitive dust emitted from facility roadways has been estimated using projected vehicle miles traveled along with U.S. EPA's AP-42 factors for unpaved haul roads.⁶

⁵ U.S. EPA, AP 42, Fifth Edition, Volume I, Chapter 1.4, Natural Gas Combustion, July 1998. ⁶ U.S. EPA, AP 42, Fifth Edition, Volume I, Section 13.2.2, Unpaved Roads, November 2006.

Potential emissions of greenhouse gas pollutants (GHGs) are calculated using manufacturer's data as available (CO₂ and CH₄ in this case) and U.S. EPA's emission factors from 40 CFR Part 98, Subpart C for all others.

This section documents the applicability determinations made for Federal and State air quality regulations. In this section, applicability or non-applicability of the following regulatory programs is addressed:

- > Prevention of Significant Deterioration (PSD) permitting;
- > Non-attainment New Source Review (NNSR) permitting;
- > Title V of the 1990 Clean Air Act Amendments;
- > New Source Performance Standards (NSPS);
- > National Emission Standards for Hazardous Air Pollutants (NESHAP); and
- > West Virginia State Implementation Plan (SIP) regulations.

This review is presented to supplement and/or add clarification to the information provided in the WVDEP G35-D operating permit application forms.

In addition to providing a summary of applicable requirements, this section of the application also provides nonapplicability determinations for certain regulations, allowing the WVDEP to confirm that identified regulations are not applicable to the facility. Note that explanations of non-applicability are limited to those regulations for which there may be some question of applicability specific to the operations at the station. Regulations that are categorically nonapplicable are not discussed (e.g., NSPS Subpart J, Standards of Performance for Petroleum Refineries).

3.1. PSD AND NNSR SOURCE CLASSIFICATION

Federal construction permitting programs regulate new and modified sources of attainment pollutants under Prevention of Significant Deterioration and new and modified sources of non-attainment pollutants under Non-Attainment New Source Review. PSD regulations apply when a new source is constructed in which emissions exceed major source thresholds, an existing minor source undergoes a modification in which emission increases exceed PSD major source thresholds, or an existing major source undergoes a modification in which emission increases exceed PSD significant emission rates. The facility will remain a minor source with respect to the NSR program after the project since potential emissions are below all the PSD thresholds. As such, PSD permitting is not triggered by this construction activity. NNSR regulations only apply in areas designated as non-attainment. The facility is located in Monongalia County, which is designated as attainment/unclassifiable for all criteria pollutants.⁷ Therefore, NNSR regulations do not apply to the facility.

3.2. TITLE V OPERATING PERMIT PROGRAM

Title 40 of the Code of Federal Regulations Part 70 (40 CFR 70) establishes the federal Title V operating permit program. West Virginia has incorporated the provisions of this federal program in its Title V operating permit program in West Virginia Code of State Regulations (CSR) 45-30. The major source thresholds with respect to the West Virginia Title V operating permit program regulations are 10 tons per year (tpy) of a single HAP, 25 tpy of any combination of HAP, and 100 tpy of all other regulated pollutants. The potential emissions of all regulated pollutants are below the corresponding threshold(s) at this facility after the proposed project. Therefore, the facility is not a major source for Title V purposes.

⁷ U.S. EPA Green Book, <u>http://www.epa.gov/airquality/greenbook/anayo_wv.html</u>, as of February 13, 2017.

3.3. NEW SOURCE PERFORMANCE STANDARDS

New Source Performance Standards, located in 40 CFR 60, require new, modified, or reconstructed sources to control emissions to the level achievable by the best demonstrated technology as specified in the applicable provisions. Moreover, any source subject to an NSPS is also subject to the general provisions of NSPS Subpart A, except where expressly noted. The following is a summary of applicability and non-applicability determinations for NSPS regulations of relevance to the facility. Besides 40 CFR 60 Subpart A (NSPS Subpart A), which is similar to 40 CFR 63 Subpart A (NESHAP Subpart A), the following NSPS could potentially apply to the facility:

- > 40 CFR Part 60 Subparts D, Da, Db, and Dc Steam Generating Units
- > 40 CFR Part 60 Subparts K, Ka, and Kb Storage Vessels for Petroleum Liquids/Volatile Organic Liquids
- > 40 CFR Part 60 Subpart GG Stationary Gas Turbines
- > 40 CFR Part 60 Subpart JJJJ Stationary Spark Ignition Internal Combustion Engines
- > 40 CFR Part 60 Subpart KKKK Stationary Combustion Turbines
- > 40 CFR Part 60 Subpart 0000 Crude Oil and Natural Gas Production, Transmission, and Distribution
- > 40 CFR Part 60 Subpart 0000a Crude Oil and Natural Gas Facilities

3.3.1. NSPS Subparts D, Da, Db, and Dc - Steam Generating Units

These subparts apply to steam generating units of various sizes, all greater than 10 MMBtu/hr. The proposed project does not include any steam generating units with a heat input greater than 10 MMBtu/hr, therefore the requirements of these subparts do not apply.

3.3.2. NSPS Subparts K, Ka, and Kb - Storage Vessels for Petroleum Liquids/Volatile Organic Liquids

These subparts apply to storage tanks of certain sizes constructed, reconstructed, or modified during various time periods. Subpart K applies to storage tanks constructed, reconstructed, or modified prior to 1978, and Subpart Ka applies to those constructed, reconstructed, or modified prior to 1984. Both Subparts K and Ka apply to storage tanks with a capacity greater than 40,000 gallons. Subpart Kb applies to volatile organic liquid (VOL) storage tanks constructed, reconstructed, or modified after July 23, 1984 with a capacity equal to or greater than 75 m³ (~19,813 gallons). All of the tanks at the facility have a capacity of 19,813 gallons or less. As such, Subparts K, Ka, and Kb do not apply to the storage tanks at the facility.

3.3.3. NSPS Subpart GG - Stationary Gas Turbines

Subpart GG, Standards of Performance for Stationary Gas Turbines, applies to all gas turbines with a heat input at peak load greater than or equal to 10 MMBtu/hr based on the lower heating value of the fuel fired. This standard was promulgated in 1979. The applicability of Subpart KKKK, promulgated in 2006, is similar to that of Subpart GG and applies to stationary combustion turbines that commence construction after February 18, 2005. The proposed microturbine is not subject to the requirements of Subpart GG based on heat input.

3.3.4. NSPS Subpart JJJJ - Stationary Spark Ignition Internal Combustion Engines

Subpart JJJJ, Standards of Performance for Stationary Spark Ignition Internal Combustion Engines, applies to manufacturers, owners and operators of stationary spark ignition (SI) engines. The requirements for SI engines with a maximum power rating greater than or equal to 500 hp (except lean burn engines 500 hp \leq hp < 1,350) apply to owner/operators of such engines ordered on or after July 1, 2007. The proposed compressor engines will be a 4-stroke, lean burn spark ignition RICE rated at 1,775 hp each. As such, the engines will be subject to the emissions standards per Table 1 to NSPS Subpart JJJJ (for non-emergency use engines), as well as performance testing every 8,760 hours of operation or three (3) years, and associated notification and reporting requirements.

The generator engines (GE-1 and GE-2) are subject to Subpart JJJJ. However, as these are EPA Certified Units (see attached Certificates of Conformity), the applicant is not required to conduct performance testing. Instead, it is required to operate and maintain the certified stationary SI internal combustion engines and control device according to the manufacturer's emission-related written instructions.

3.3.5. NSPS Subpart KKKK - Stationary Combustion Turbines

Subpart KKKK, Standards of Performance for Stationary Combustion Turbines, applies to stationary combustion units with a heat input at peak load equal to or greater than 10 MMBtu/hr, based on the higher heating value of the fuel, commencing construction after February 18, 2005. The proposed microturbine will have a heat input less than 10 MMbtu/hr and is therefore not subject to this standard.

3.3.6. NSPS Subpart OOOO – Crude Oil and Natural Gas Production, Transmission, and Distribution

Subpart OOOO – *Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution,* applies to affected facilities that commenced construction, reconstruction, or modification after August 23, 2011 and before September 18, 2015. The facility does not include any existing sources that are affected sources under this regulation, nor will any new sources fall into this date range. Therefore, the facility has no applicable requirements under this regulation.

3.3.7. NSPS Subpart OOOOa - Crude Oil and Natural Gas Facilities

Subpart OOOOa, Standards of Standards of Performance for Crude Oil and Natural Gas Facilities, will apply to affected facilities that commenced construction, reconstruction, or modification after September 18, 2015. The regulation was published final in the Federal Register on June 3, 2016. The rule includes provisions for the following facilities:

- > Hydraulically fractured wells;
- Centrifugal compressors located between the wellhead and the point of custody transfer to the natural gas distribution segment;
- Reciprocating compressors located between the wellhead and the point of custody transfer to the natural gas distribution segment;
- Continuous bleed natural gas-driven pneumatic controllers with a bleed rate of > 6 scfh located in the production, gathering, processing, or transmission and storage segments (excluding natural gas processing plants);
- > Continuous bleed natural gas-driven pneumatic controllers located at natural gas processing plants;
- > Pneumatic pumps located in the production, gathering, processing, or transmission and storage segments;
- > Storage vessels located in the production, gathering, processing, or transmission and storage segments;
- > The collection of fugitive emissions components at a well site;
- > The collection of fugitive emissions components at a compressor station; and
- > Sweetening units located onshore that process natural gas produced from either onshore or offshore wells.

The new reciprocating compressors will be required to change rod packing every 26,000 hours of operation or every 36 months, or collect the methane and VOC emissions using a rod packing collection system which operates under negative pressure. The compressors will also be subject to the recordkeeping and annual reporting requirements of the rule.

The new waste fluid storage tank will be a 'storage vessel' as defined by the regulation, however, potential emissions of VOC will be less than six tons per year. Therefore, it will not be a storage vessel affected facility under the rule.

As a result of the proposed project (installation of new compressors), the applicant will be required to monitor all fugitive emission components (ex. connectors, flanges, etc.) with an optical gas imaging (OGI) device, and repair all sources of fugitive emissions in accordance with the rule. The applicant must also develop a monitoring plan, conduct

surveys on a quarterly basis, and will be subject to the applicable recordkeeping and reporting requirements of the rule.

All pneumatic controllers currently at or proposed to be located at the facility are intermittent or low-bleed. Therefore, they will not be subject to any pneumatic controller requirements under Subpart OOOOa. As currently proposed, there are no other affected source categories under the rule that will apply to the proposed equipment involved in this project.

3.3.8. Non-Applicability of All Other NSPS

NSPS are developed for particular industrial source categories. Other than NSPS developed for natural gas processing plants (Subparts 0000 and 0000a) and associated equipment (Subpart K-Kb), the applicability of a particular NSPS to the facility can be readily ascertained based on the industrial source category covered. All other NSPS are categorically not applicable to the proposed project.

3.4. NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS

Part 63 NESHAP allowable emission limits are established on the basis of a maximum achievable control technology (MACT) determination for a particular major source. A HAP major source is defined as having potential emissions in excess of 25 tpy for total HAP and/or potential emissions in excess of 10 tpy for any individual HAP. The facility is an area (minor) source of HAP since its potential emissions of HAP are less than the 10/25 major source thresholds. Besides 40 CFR 63 Subpart A (NESHAP Subpart A), which is similar to 40 CFR 60 Subpart A (NSPS Subpart A), the following NESHAP could potentially apply to the facility:

- > 40 CFR Part 63 Subpart HH Oil and Natural Gas Production Facilities
- > 40 CFR 63 Subpart ZZZZ Stationary Reciprocating Internal Combustion Engines
- > 40 CFR Part 63 Subpart JJJJJJ Industrial, Commercial, and Institutional Boilers

3.4.1. NESHAP Subpart HH - Oil and Natural Gas Production Facilities

This MACT standard contains requirements for both major and area sources of HAP. The benzene emissions from the existing and new glycol dehydrator vents will be less than 0.90 megagrams per year (1 tpy) each, therefore, the facility is exempt from the requirements of NESHAP Subpart HH pursuant to 40 CFR §63.764(e)(1)(ii), except for the requirement to keep records of the actual average natural gas flow rate or actual average benzene emissions from the dehydrators, per 40 CFR §63.774(d)(1). The applicant will continue to comply with the requirements of Subpart HH.

3.4.2. NESHAP Subpart ZZZZ - Stationary Reciprocating Internal Combustion Engines

Stationary reciprocating internal combustion engines (RICE) at both area and major sources of HAP emissions are potentially subject to Subpart ZZZZ – NESHAP for Stationary Reciprocating Internal Combustion Engines (RICE). Per §63.6590(a)(2)(iii), a stationary RICE located at an area source of HAP emissions is new if you commenced construction of the stationary reciprocating internal combustion engine (RICE) on or after 6/12/2006. The compressor engines and generator engines have or will have commenced construction after this date, and are therefore new RICE under Subpart ZZZZ. Per §63.6590(c), "[...] An affected source that meets any of the criteria in paragraphs (c)(1) through (7) of this section must meet the requirements of this part by meeting the requirements of 40 CFR part 60 subpart IIII, for compression ignition engines or 40 CFR part 60 Subpart JJJJ, for spark ignition engines. No further requirements apply for such engines under this part." Specifically, §63.6590(c)(1) includes "a new or reconstructed stationary RICE located at an area source"; the compressors engine and generator engines fall into this category. Therefore, the engines have no applicable Subpart ZZZZ requirements, other than to comply with any applicable 40 CFR 60 Subpart JJJJJ requirements.

3.4.3. NESHAP JJJJJJ - Industrial, Commercial, and Institutional Boilers

This MACT standard applies to industrial, commercial, and institutional boilers of various sizes and fuel types at area sources. The reboilers are natural gas-fired and thus specifically exempt from this subpart. Therefore, no sources at the facility are subject to any requirements under 40 CFR 63 Subpart JJJJJ.

3.5. WEST VIRGINIA SIP REGULATIONS

The facility is potentially subject to regulations contained in the West Virginia Code of State Regulations, Chapter 45 (Code of State Regulations). The Code of State Regulations fall under two main categories: those regulations that are generally applicable (e.g., permitting requirements), and those that have specific applicability (e.g., PM standards for manufacturing equipment).

3.5.1. 45 CSR 2: To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers

45 CSR 2 applies to fuel burning units, defined as equipment burning fuel "for the primary purpose of producing heat or power by indirect heat transfer". The reboilers are fuel burning units and therefore must comply with this regulation. Per 45 CSR 2-3, opacity of emissions from units shall not exceed 10 percent, based on a six-minute block average. Note that as the reboilers are less than 10 MMBtu/hr, they are exempt from PM emission limits.

3.5.2. 45 CSR 4: To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contributes to an Objectionable Odor

According to 45 CSR 4-3:

No person shall cause, suffer, allow or permit the discharge of air pollutants which cause or contribute to an objectionable odor at any location occupied by the public.

The facility is generally subject to this requirement. However, due to the nature of the process at the station, production of objectionable odor during normal operation is unlikely.

3.5.3. 45 CSR 6: To Prevent and Control the Air Pollution from the Combustion of Refuse

45 CSR 6 applies to activities involving incineration of refuse, defined as "the destruction of combustible refuse by burning in a furnace designed for that purpose. For the purposes of this rule, the destruction of any combustible liquid or gaseous material by burning in a flare or flare stack, thermal oxidizer or thermal catalytic oxidizer stack shall be considered incineration." There are no control devices at the facility that utilize 'incineration'.

3.5.4. 45 CSR **10:** To Prevent and Control Air Pollution from the Emission of Sulfur Oxides

This rule potentially applies to fuel burning units, including glycol dehydration unit reboilers. Per 45 CSR 10-10.1, units rated less than 10 MMBtu/hr are exempt from the SO₂ emission limitations and testing, monitoring, recordkeeping, and reporting requirements of this rule. The reboilers are rated less than 10 MMBtu/hr and as such are exempt from this rule.

3.5.5. 45 CSR 16: Standards of Performance for New Stationary Sources

45 CSR 16-1 incorporates the federal Clean Air Act (CAA) standards of performance for new stationary sources set forth in 40 CSR Part 60 by reference. As such, by complying with all applicable requirements of 40 CFR Part 60 at the facility, the applicant will be complying with 45 CSR 16.

3.5.6. 45 CSR **17**: To Prevent and Control Particulate Matter Air Pollution from Materials Handling, Preparation, Storage and Other Sources of Fugitive Particulate Matter

According to 45 CSR 17-3.1:

No person shall cause, suffer, allow or permit fugitive particulate matter to be discharged beyond the boundary lines of the property lines of the property on which the discharge originates or at any public or residential location, which causes or contributes to statutory air pollution.

Due to the nature of the activities at the facility, it is unlikely that fugitive particulate matter emissions will be emitted under normal operating conditions. However, the applicant will take measures to ensure any fugitive particulate matter emissions will not cross the property boundary should any such emissions occur.

3.5.7. 45 CSR 21-28: Petroleum Liquid Storage in Fixed Roof Tanks

45 CSR 21-28 applies to any fixed roof petroleum liquid storage tank with a capacity greater than 40,000 gallons located in Putnam County, Kanawha County, Cabell County, Wayne County, and Wood County. The capacity of each storage tank at the facility is less than 40,000 gallons and the facility is not located in the listed counties. Therefore, 45 CSR 21-28 does not apply to the storage tanks at this station.

3.5.8. 45 CSR 34: Emissions Standards for Hazardous Air Pollutants

45 CSR 34-1 incorporates the federal Clean Air Act (CAA) national emissions standards for hazardous air pollutants (NESHAPs) as set forth in 40 CPR Parts 61 and 63 by reference. As such, by complying with all applicable requirements of 40 CFR Parts 61 and 63 at the facility, the applicant will be complying with 45 CSR 34.

3.5.9. Non-Applicability of Other SIP Rules

A thorough examination of the West Virginia SIP rules with respect to applicability at the facility reveals many SIP regulations that do not apply or impose additional requirements on operations. Such SIP rules include those specific to a particular type of industrial operation that is categorically not applicable to the facility.

The WVDEP permit application forms contained in this application include all applicable G35-D application forms including the required attachments.

dep	west virginia department of environmental protection		protection	Division of Air Quality 601 57 th Street SE Charleston, WV 25304 Phone (304) 926-0475 Fax (304) 926-0479 www.dep.wv.gov	
G35-D GE	NERAL PERMI	IT REGISTRAT	TION AP	PLICATION	
PREVENTION AND	CONTROL OF AIR POLLU RELOCATION, ADMINI NATURAL GAS COMPRE	UTION IN REGARD TO TH STRATIVE UPDATE AND SSOR AND/OR DEHYDRA	IE CONSTRUC OPERATION TION FACILI	CTION, MODIFICATION, OF TIES	
⊠CONSTRUCTION □MODIFICATION □RELOCATION		□CLASS I ADM □CLASS II ADM	□CLASS I ADMINISTRATIVE UPDATE □CLASS II ADMINISTRATIVE UPDATE		
	SECTION	1. GENERAL INFORMATIO	ON	ana ana dipanapanya a mai kapana kana dan ana dan ana su juga data makala daga s	
Name of Applicant (as	s registered with the WV Secr	etary of State's Office): M3	Appalachia G	athering, LLC	
Federal Employer ID	No. (FEIN): 45-0718671				
Applicant's Mailing A	ddress: 333 Technology Dri	ve, Ste 109	hart eitheff harver air de ains I airs treas direichna aman airs an aite ar a' reachn an san airs ann	en men per e par en internet qui en qui participation and part annance and a some agent any participation and n	
City: Canonsburg	State:	PA		ZIP Code: 15317	
Facility Name: Hamil	ton Compressor Station				
Operating Site Physic If none available, list	al Address: See lat/long road, city or town and zip of	facility.			
City: Fairview	Zip Co	ode: 26570		County: Monongalia	
Latitude & Longitude Latitude: 39.64194 Longitude: -80.20528	Coordinates (NAD83, Decima	al Degrees to 5 digits):	i.		
SIC Code: 1311	Code: 1311 DAQ Facility ID No. (For existing facilities) 061-00206			ng facilities)	
NAICS Code: 211111			-		
	CERTIFI	CATION OF INFORMATION	N 1918 - I.		
This G35-D Gener Official is a Presiden Directors, or Owner, (authority to bir Proprietorship. Re compliance certif Representative. If a b off and the appro unsigned G35-D Reg utilized, t	al Permit Registration Applic: t, Vice President, Secretary, T depending on business structu id the Corporation, Partnershi equired records of daily throu, fications and all required notif usiness wishes to certify an A priate names and signatures en istration Application will be the application will be return	ation shall be signed below b Freasurer, General Partner, G re. A business may certify an p, Limited Liability Company ghput, hours of operation and fications must be signed by a uthorized Representative, the intered. Any administratively returned to the applicant. ned to the applicant. No sul	y a Responsible eneral Manager Authorized Re Association, a maintenance, g Responsible Of official agreen incomplete or Furthermore, bstitution of fo	official. A Responsible c, a member of the Board of presentative who shall have Joint Venture or Sole general correspondence, ficial or an Authorized hent below shall be checked improperly signed or if the G35-D forms are not rms is allowed.	
I hereby certify that (e.g., Corporation, Pa obligate and legally b notify the Director of	is an Authorized Repres rtnership, Limited Liability Co ind the business. If the busine the Division of Air Quality ir	entative and in that capacity ompany, Association Joint Vo ss changes its Authorized Re nmediately.	shall represent enture or Sole P presentative, a 1	the interest of the business roprietorship) and may Responsible Official shall	
I hereby certify that a documents appended have been made to pro-	Il information contained in thi hereto is, to the best of my knowide the most comprehensive	s G35-D General Permit Reg owledge, true, accurate and c information possible.	istration Applic omplete, and th	cation and any supporting at all reasonable efforts	
Responsible Official S Name and Title: Ken J Phone: (724) 416-726 Email: Kenneth.Magy	Signature: <u>KD/6</u> Magyar, VP, Project Developi 3 ar@dteenergy.com	nen) & Business Developmen Fax: n/a Date:	t 18 201	7	
If applicable: Authorized Represent Name and Title: Email:	ative Signature:	Phone: Date:	Fax:		
If applicable: Environmental Contac Name and Title: Ryan Email: ryan.mathews@	t Mathews, Gas Pipeline Engir Odteenergy.com	Phone: (724) 416-7 Date: APREL /	7262 Fax: 8, 2017		

OPERATING SITE INFORMATION

Briefly describe the proposed new operation and/or any change(s) to the facility: Addition of compression, dehydration and ancillary equipment to the facility.

Directions to the facility:

From 601 57th St SE, Charleston, WV 25304: head northeast on 57th St SE toward Washington Ave SE (travel 0.1 mi). Turn left onto MacCorkle Ave SE (travel 1.8 mi). Turn right onto 36th St SE (travel 0.2 mi). Continue onto 36th St Southeast Bridge (travel 0.2 mi). Use the right lane to take the ramp onto I-64 W/I-77 N (travel 0.1 mi). Merge onto I-64 W/I-77 N (travel 2.5 mi). Use the right 2 lanes to take the Interstate 77 N/Interstate 79 N exit toward Parkersburg (travel 0.5 mi). Continue onto I-77 N (travel 1.4 mi). Keep right at the fork to continue on I-79 N, follow signs for Clarksburg (travel 1.31 mi). Take exit 132 for US-250 toward S Fairmont (travel 0.9 mi). Turn right onto US-250 S/White Hall Blvd (signs for Grafton) (travel 0.2 mi). Turn right onto Industrial Park Rd (travel 1.4 mi). Turn left onto Manley Chapel Rd (travel 1.6 mi). Turn right onto Co Rd 27 (travel 1.0 mi). Continue onto Everson St (travel 341 ft). Everson St turns slightly left and becomes Co Rd 27 (travel 0.6 mi). Turn left onto US-19 S (travel 0.4 mi). Turn right onto WV-218 N (travel 4.4 mi). Turn right onto WV-218 N/Jefferson St and continue to follow WV-218 N (travel 3.4 mi). Make a sharp right onto Statler Run Rd and the facility entrance road will be on the left.

ATTACHMENTS AND SUPPORTING DOCUMENTS

I have enclosed the following required documents:

Check payable to WVDEP – Division of Air Quality with the appropriate application fee (per 45CSR13 and 45CSR22).

 \boxtimes Check attached to front of application.

 \Box I wish to pay by electronic transfer. Contact for payment (incl. name and email address):

□ I wish to pay by credit card. Contact for payment (incl. name and email address):

S500 (Construction, Modification, and Relocation)
 S300 (Class II Administrative Update)
 S1,000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ and/or OOOO and/or OOOOa ¹
 S2,500 NESHAP fee for 40 CFR63, Subpart ZZZZ and/or HH ²

¹ Only one NSPS fee will apply.

² Only one NESHAP fee will apply. The Subpart ZZZZ NESHAP fee will be waived for new engines that satisfy requirements by complying with NSPS, Subparts IIII and/or JJJJ.

NSPS and NESHAP fees apply to new construction or if the source is being modified.

Responsible Official or Authorized Representative Signature (if applicable)

Single Source Determination Form (must be completed in its entirety) – Attachment A Current Business Certificate – Attachment C □ Siting Criteria Waiver (if applicable) – Attachment B Process Flow Diagram – Attachment D ⊠ Process Description – Attachment E 🛛 Plot Plan – Attachment F 🖾 Area Map – Attachment G Emission Units/ERD Table - Attachment I G35-D Section Applicability Form – Attachment H Superior Fugitive Emissions Summary Sheet - Attachment J Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable) – Attachment K 🛛 Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Heater Treaters, In-Line Heaters if applic.) – Attachment L Internal Combustion Engine Data Sheet(s) (include manuf. performance data sheet(s) if applicable) – Attachment M Tanker Truck Loading Data Sheet (if applicable) – Attachment N ⊠ Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalc[™] input and output reports and information on reboiler if applicable) - Attachment O Pneumatic Controllers Data Sheet – Attachment P Centrifugal Compressor Data Sheet – Attachment Q Reciprocating Compressor Data Sheet – Attachment R

Blowdown and Pigging Operations Data Sheet - Attachment S

🖾 Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment T

🗵 Emission Calculations (please be specific and include all calculation methodologies used) – Attachment U

⊠ Facility-wide Emission Summary Sheet(s) – Attachment V

⊠ Class I Legal Advertisement – Attachment W

🖾 One (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments

All attachments must be identified by name, divided into sections, and submitted in order.

ATTACHMENT A

Single Source Determination Form

Classifying multiple facilities as one "stationary source" under 45CSR13, 45CSR14, and 45CSR19 is based on the definition of Building, structure, facility, or installation as given in §45-14-2.13 and §45-19-2.12. The definition states:

"Building, Structure, Facility, or Installation" means all of the pollutant-emitting activities which belong to the same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the control of the same person (or persons under common control). Pollutant-emitting activities are a part of the same industrial grouping if they belong to the same "Major Group" (i.e., which have the same two (2)-digit code) as described in the Standard Industrial Classification Manual, 1987 (United States Government Printing Office stock number GPO 1987 0-185-718:QL 3).

The Source Determination Rule for the oil and gas industry was published in the Federal Register on June 3, 2016 and will become effective on August 2, 2016. EPA defined the term "adjacent" and stated that equipment and activities in the oil and gas sector that are under common control will be considered part of the same source if they are located on the same site or on sites that share equipment and are within ¹/₄ mile of each other.

Is there equipment and activities in the same industrial grouping (defined by SIC code)?

Yes \Box No \boxtimes

Is there equipment and activities under the control of the same person/people?

 $Yes \square \qquad No \boxtimes$

Is there equipment and activities located on the same site or on sites that share equipment and are within ¹/₄ mile of each other?

Yes \Box No \boxtimes

ATTACHMENT A: SINGLE SOURCE DETERMINATION MAP

Figure 1 - Map of Location with 1 Mile Radius Circle

<u>Coordinates:</u> Latitude: 39° 38' 31" N, Longitude: 80° 12' 19" W

ATTACHMENT B

Siting Criteria Waiver (not applicable)

ATTACHMENT B – SITING CRITERIA WAIVER – NOT APPLICABLE

If applicable, please complete this form and it must be notarized.

G35-D General Permit Siting Criteria Waiver

WV Division of Air Quality 300' Waiver

I ______ hereby
Print Name
acknowledge and agree that ______ will
General Permit Applicant's Name

construct an emission unit(s) at a natural gas compressor and/or dehydration facility that will be located within 300' of my dwelling and/or business.

I hereby offer this waiver of siting criteria to the West Virginia Department of Environmental Protection Division of Air Quality as permission to construct, install and operate in such location.

•

Signed:

Signature	Date
Signature	Date
Taken, subscribed and sworn before me this	day of
, 20	
My commission expires:	
SEAL	
Notary Public	

ATTACHMENT C

Current Business Certificate

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO: M3 APPALACHIA GATHERING, LLC 600 TRAVIS ST 4910 HOUSTON, TX 77002-3025

BUSINESS REGISTRATION ACCOUNT NUMBER:

2252-1954

This certificate is issued on: 06/28/2011

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued

This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.4 L0630373504

ATTACHMENT D

Process Flow Diagram

ATTACHMENT E

Process Description

ATTACHMENT E: PROCESS DESCRIPTION

M3 Appalachia Gathering, LLC is proposing to install additional compression, dehydration and ancillary equipment at the existing Hamilton Compressor Station.

The Hamilton Compressor Station compresses and dehydrates natural gas from production wells prior to transmission along the pipeline system. Reciprocating compressors utilize the power created by reciprocating internal combustion engines (RICE) to compress (raise the pressure of) the incoming gas stream. Subsequently, the gas stream passes through triethylene glycol (TEG) dehydration units, which will introduce TEG to the stream in a contact tower to absorb water vapor from the gas to meet customer specifications. The TEG is then sent to the natural gas-fired reboiler, which uses heat to evaporate entrained water from the TEG. The TEG is then discharged back to the contact tower for reuse. The natural gas stream from the contact tower flows into the pipeline to be transported further along the pipeline system. The compressor engines' exhaust streams are controlled by oxidation catalysts. Electrical power is provided to the facility via a microturbine generator and generator engines.

A process flow diagram is included as Attachment D.

ATTACHMENT F

Plot Plan

ATTACHMENT G

Area Map

ATTACHMENT G: AREA MAP

Figure 1 - Map of Location

UTM Northing (KM): 4,388.319

UTM Easting (KM): 568.190

ATTACHMENT H

G35-D Section Applicability Form

ATTACHMENT H – G35-D SECTION APPLICABILITY FORM

General Permit G35-D Registration Section Applicability Form

General Permit G35-D was developed to allow qualified applicants to seek registration for a variety of sources. These sources include storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, centrifugal compressors, reciprocating compressors, reciprocating internal combustion engines (RICEs), tank truck loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G35-D allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

GENERAL PERMIT G35-D APPLICABLE SECTIONS			
Section 5.0	Storage Vessels Containing Condensate and/or Produced Water ¹		
Section 6.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO/OOOOa)		
Section 7.0	Control Devices and Emission Reduction Devices not subject to NSPS Subpart OOOO/OOOOa and/or NESHAP Subpart HH		
Section 8.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc		
Section 9.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO/OOOOa)		
□ Section 10.0	Centrifugal Compressor Affected Facility (NSPS, Subpart OOOO/OOOOa) ²		
Section 11.0	Reciprocating Compressor Affected Facility (NSPS, Subpart OOOO/OOOOa) ²		
Section 12.0	Reciprocating Internal Combustion Engines, Generator Engines. Microturbine Generators		
Section 13.0	Tanker Truck Loading ³		
Section 14.0	Glycol Dehydration Units ⁴		
Section 15.0	Blowdown and Pigging Operations		
Section 16.0	Fugitive Emission Components (NSPS, Subpart OOOOa)		

1 Applicants that are subject to Section 5 may also be subject to Section 6 if the applicant is subject to the NSPS, Subpart OOOO/OOOOa control requirements or the applicable control device requirements of Section 7.

- 2 Applicants that are subject to Section 10 and 11 may also be subject to the applicable RICE requirements of Section 12.
- 3 Applicants that are subject to Section 13 may also be subject to control device and emission reduction device requirements of Section 7.
- 4 Applicants that are subject to Section 14 may also be subject to the requirements of Section 8 (reboilers). Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 7.

ATTACHMENT I

Emission Units/ERD Table
ATTACHMENT I – EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment K table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type ⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
CE-1	CE-1	Caterpillar G3606 Compressor Engine	TBD	TBD	1,775 HP	New*	C1	
CE-2	CE-2	Caterpillar G3606 Compressor Engine	TBD	TBD	1,775 HP	New*	C2	
CE-3	CE-3	Caterpillar G3606 Compressor Engine	TBD	TBD	1,775 HP	New*	C3	
CE-4	CE-4	Caterpillar G3606 Compressor Engine	TBD	TBD	1,775 HP	New	C4	
CE-5	CE-5	Caterpillar G3606 Compressor Engine	TBD	TBD	1,775 HP	New	C5	
CE-6	CE-6	Caterpillar G3606 Compressor Engine	TBD	TBD	1,775 HP	New	C6	
GE-1	GE-1	Cummins 14.2 L Generator Engine	TBD	TBD	304 HP	New	None	
GE-2	GE-2	PSI 5.7 L Generator Engine	2014	2014-15	85 HP	Existing	None	
MT-1	MT-1	Flex Energy GT250S Microturbine	TBD	TBD	250 kW	New	None	
TEG-1	TEG-1	Dehydration Unit	2014		75 MMSCFD	Existing	None**	
TEG-2	TEG-2	Dehydration Unit	TBD		75 MMSCFD	New	None	
REB-1	REB-1	Reboiler	2014		1.5 MMbtu/hr	Existing	None	
REB-2	REB-2	Reboiler	TBD		1.5 MMbtu/hr	New	None	
T01	T01	Coolant (EG) Tank	TBD		1,260 Gallons	New	None	
T02	T02	Coolant (EG) Tank	TBD		1,260 Gallons	New	None	
Т03	Т03	Methanol Tank***	TBD		335 Gallons	New	None	
T04	T04	Methanol Tank	TBD		335 Gallons	New	None	
T05	T05	Methanol Tank	TBD		335 Gallons	New	None	
T06	T06	Methanol Tank	TBD		335 Gallons	New	None	
Т07	T07	Methanol Tank	TBD		335 Gallons	New	None	
Т08	Т08	Methanol Tank	TBD		335 Gallons	New	None	
T10	T10	Waste Fluids Tank	TBD		8,820 Gallons	New	None	
T11	T11	Waste Fluids Tank	2014		16,800 Gallons	Existing	None	
T12	T12	Triethylene Glycol Tank	2014		500 Gallon	Existing	None	
T13	T13	Triethylene Glycol Tank	TBD		500 Gallon	New	None	

T14	T14	Engine Oil Tank	TBD	 500 Gallon	New	None	
T15	T15	Engine Oil Tank	TBD	 500 Gallon	New	None	
T16	T16	Engine Oil Tank	TBD	 500 Gallon	New	None	
T17	T17	Engine Oil Tank	TBD	 500 Gallon	New	None	
T18	T18	Engine Oil Tank	TBD	 500 Gallon	New	None	
T19	T19	Engine Oil Tank	TBD	 500 Gallon	New	None	
T20	T20	Compressor Oil Tank	TBD	 500 Gallon	New	None	
T21	T21	Compressor Oil Tank	TBD	 500 Gallon	New	None	
T22	T22	Compressor Oil Tank	TBD	 500 Gallon	New	None	
T23	T23	Compressor Oil Tank	TBD	 500 Gallon	New	None	
T24	T24	Compressor Oil Tank	TBD	 500 Gallon	New	None	
T25	T25	Compressor Oil Tank	TBD	 500 Gallon	New	None	
L01	L01	Liquid Loading		 307,440 Gallons	Existing	None	
		Fugitives		 	Existing	None	
		Haul Roads		 	Existing	None	

¹ For Emission Units (or Sources) use the following numbering system: 1S, 2S, 3S,... or other appropriate designation.

² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

³ When required by rule

⁴ New, modification, removal, existing

⁵ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

⁶ For ERDs use the following numbering system: 1D, 2D, 3D,... or other appropriate designation.

* Several of the sources currently listed in the permit have yet to be installed. Therefore, since this application seeks a new permit, their status is noted as 'New'.

** The existing dehydration unit (TEG-1) is permitted with a condenser. However, this control device has negligible impact on emissions, as there is no detectable level of heavy hydrocarbons (ex. benzene, toluene, etc.) in the gas. Therefore, the applicant is requesting the removal of this control device from the issued permit, as it provides minimal environmental benefit at high cost. <u>A GRI-GLYCalc run</u> showing the ineffectiveness of the condenser is included for reference.

*** The current permit includes a source called 'Methanol Unloading'; this source should not be included in the issued permit as the 'methanol tanks' sources include all emissions associated with methanol.

ATTACHMENT J

Fugitive Emission Summary Sheet(s)

	ATTACHMENT J – FUGITIVE EMISSIONS SUMMARY SHEET							
	Sources of fugitive emissions may include loading operations, equipment leaks, blowdown emissions, etc. Use extra pages for each associated source or equipment if necessary.							
Source/Equipm	ent: Fugitiv	e Emissions						
Leak Detection Method Used Audible, visual, and olfactory (AVO) inspections Infrared (FLIR) cameras Other (please describe)								□ None required
Is the facility s	ubject to qua	arterly LDAR m	onitoring under 40CFR60 S	Subpart OOOOa? 🛛 🖾 Yes 🗆 N	No. If no, why?			
Component	Closed		Source	of Leak Factors	Stream type	Estin	ns (tpy)	
Туре	Vent System	Count	(EPA, c	other (specify))	(gas, liquid, etc.)	VOC	HAP	GHG (CO ₂ e)
Pumps	□ Yes ⊠ No	3	U.S. EPA. Office of Air (Protocol for Equipment Le (EPA-453/	Quality Planning and Standards. ak Emission Estimates. Table 2-1. 'R-95-017, 1995).	□ Gas ⊠ Liquid □ Both	0.58	<0.01	0.13
Valves	□ Yes ⊠ No	204	U.S. EPA. Office of Air (Protocol for Equipment Le (EPA-453/	U.S. EPA. Office of Air Quality Planning and Standards. otocol for Equipment Leak Emission Estimates. Table 2-1. (EPA-453/R-95-017, 1995).			<0.01	24.70
Safety Relief Valves	□ Yes ⊠ No	10	U.S. EPA. Office of Air (Protocol for Equipment Le (EPA-453/	U.S. EPA. Office of Air Quality Planning and Standards. Protocol for Equipment Leak Emission Estimates. Table 2-1. (EPA-453/R-95-017, 1995).			<0.01	1.79
Open Ended Lines	□ Yes ⊠ No	6	U.S. EPA. Office of Air (Protocol for Equipment Le (EPA-453/	U.S. EPA. Office of Air Quality Planning and Standards. Protocol for Equipment Leak Emission Estimates. Table 2-1. (EPA-453/R-95-017, 1995).			<0.01	1.64
Sampling Connections	□ Yes ⊠ No			N/A	□ Gas □ Liquid □ Both			
Connections (Not sampling)	□ Yes ⊠ No	887	U.S. EPA. Office of Air (Protocol for Equipment Le (EPA-453/	Quality Planning and Standards. ak Emission Estimates. Table 2-1. 'R-95-017, 1995).	□ Gas □ Liquid ⊠ Both	0.06	<0.01	11.92
Compressors	□ Yes ⊠ No	6	U.S. EPA. Office of Air (Protocol for Equipment Le (EPA-453/	Quality Planning and Standards. ak Emission Estimates. Table 2-1. 'R-95-017, 1995).	⊠ Gas □ Liquid □ Both	0.05	<0.01	112.19
Flanges	□ Yes □ No		(included	l in connections)	□ Gas □ Liquid □ Both			
Other ¹	□ Yes ⊠ No	40	40 CFR	40 CFR 98 Subpart W □ Liquid 0.39 <0.01 □ Both				
¹ Other equipm	ent types ma	ay include comp	ressor seals, relief valves, c	liaphragms, drains, meters, etc.				
Please indicate	if there are	any closed vent	bypasses (include compone	ent):				
Specify all equ	ipment used	in the closed ve	ent system (e.g. VRU, ERD,	, thief hatches, tanker truck loading	g, etc.)			

ATTACHMENT K

Storage Vessel Data Sheet(s)

ATTACHMENT K – STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water. (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.

The following information is **REQUIRED**:

- ⊠ Composition of the representative sample used for the simulation
- ☑ For each stream that contributes to flashing emissions:
 - \boxtimes Temperature and pressure (inlet and outlet from separator(s))
 - ☑ Simulation-predicted composition
 - ⊠ Molecular weight
 - \boxtimes Flow rate
- ⊠ Resulting flash emission factor or flashing emissions from simulation

 \boxtimes Working/breathing loss emissions from tanks and/or loading emissions if simulation is used to quantify those emissions

Additional information may be requested if necessary.

GENERAL INFORMATION

1. Bulk Storage Area Name	2. Tank Name
Hamilton Compressor Station	Waste Fluids Tank(s)
3. Emission Unit ID number	4. Emission Point ID number
T10 & T11	T10 & T11
5. Date Installed, Modified or Relocated (for existing tanks) 2014 (T011)	6. Type of change:
Was the tank manufactured after August 23, 2011?	\boxtimes New construction (T10)
\boxtimes Yes \square No	□ New stored material
	□ Other
	□ Relocation
7A. Description of Tank Modification (<i>if applicable</i>) N/A	
7B. Will more than one material be stored in this tank? If so, a separate form must be	e completed for each material.
□ Yes	
7C. Was USEPA Tanks simulation software utilized?	
\Box Yes \boxtimes No	
If Yes, please provide the appropriate documentation and items 8-42 below are not r	equired.

TANK INFORMATION

8. Design Capacity (specify barrels or gallons). Use the interna	l cross-sectional area multiplied by internal height.		
210 bbls & 400 bbls	1		
9A. Tank Internal Diameter (ft.) 10 & 12	9B. Tank Internal Height (ft.) 15 & 20		
10A. Maximum Liquid Height (ft.) 15 & 20	10B. Average Liquid Height (ft.) 7.5 & 10		
11A. Maximum Vapor Space Height (ft.) 15 & 20	11B. Average Vapor Space Height (ft.) 7.5 & 10		
12. Nominal Capacity (specify barrels or gallons). This is also	known as "working volume". 210 bbls & 400 bbls		
13A. Maximum annual throughput (gal/yr) See attached	13B. Maximum daily throughput (gal/day) See attached		
emissions calculations for all throughput values	emissions calculations for all throughput values		
14. Number of tank turnovers per year See attached	15. Maximum tank fill rate (gal/min) See attached emissions		
emissions calculations for all throughput values	calculations for all throughput values		
16. Tank fill method \Box Submerged \boxtimes Splash	Bottom Loading		
17. Is the tank system a variable vapor space system? \Box Yes	⊠ No		
If yes, (A) What is the volume expansion capacity of the system	(gal)?		
(B) What are the number of transfers into the system per	year?		
18. Type of tank (check all that apply):			
\boxtimes Fixed Roof \boxtimes vertical \square horizontal \square flat root	\boxtimes cone roof \square dome roof \square other (describe)		
□ External Floating Roof □ pontoon roof □ double	deck roof		
Domed External (or Covered) Floating Roof			
□ Internal Floating Roof □ vertical column support	□ self-supporting		
□ Variable Vapor Space □ lifter roof □ diaphragm			
\Box Pressurized \Box spherical \Box cylindrical			
\Box Other (describe)			

PRESSURE/VACUUM CONTROL DATA

19. Check as many as app	ly:								
□ Does Not Apply				🗆 Ruptu	re Disc (p	osig)			
□ Inert Gas Blanket of	\Box Inert Gas Blanket of \Box Carbon Adsorption ¹								
□ Vent to Vapor Combustion Device ¹ (vapor combustors, flares, thermal oxidizers, enclosed combustors)									
□ Conservation Vent (ps	\Box Conservation Vent (psig) \Box Condenser ¹								
Vacuum Setting	Vacuum Setting Pressure Setting								
□ Emergency Relief Val	ve (psig)								
Vacuum Setting	Vacuum Setting Pressure Setting								
☑ Thief Hatch Weighted	🛛 Yes 🛛] No							
¹ Complete appropriate Ai	r Pollutio	n Control	Device S	heet					
20. Expected Emission Ra	te (submi	t Test Da	ta or Calc	ulations he	ere or else	where in t	he applica	tion).	
Material Name	Flashir	ng Loss	Breath	ing Loss	Worki	ng Loss	Total		Estimation Method ¹
							Emissi	ons Loss	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
	G		15	••••		• •			
	See	e attach	ied Emi	ssions C	alculat	ion for a	all value	es	

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

TANK CONSTRUCTION AND OPERATIO	N INFORMATION				
21. Tank Shell Construction:					
\boxtimes Riveted \square Gunite lined \square Epox	y-coated rivets $\Box O$	ther (des	scribe)		
21A. Shell Color:	21B. Roof Color:			21C. Year	Last Painted:
22. Shell Condition (if metal and unlined):					
\Box No Rust \boxtimes Light Rust \Box Dense	Rust 🗌 Not applic	able			
22A. Is the tank heated? \Box Yes \boxtimes No	22B. If yes, operating t	temperatu	ire:	22C. If yes	, how is heat provided to tank?
23. Operating Pressure Range (psig): TBD					
Must be listed for tanks using VRUs wi	th closed vent system	ı.			
24. Is the tank a Vertical Fixed Roof Tank? \square Yes \square No	24A. If yes, for dome	roof prov	ide radius (ft):	24B. If yes	, for cone roof, provide slop (ft/ft):
25 Complete item 25 for Eleating Roof Tanks	$\square Does not apply$				
25. Complete Rein 25 for Floating Root Fails					
25A. Teal Internal Ploaters Instance.	-11:- (1			
25B. Primary Seal Type (check one):	anc (mechanical) sho	e sear		unted resilie	nt seal
	oor mounted resilient s	eal	□ Other (des	scribe):	
25C. Is the Floating Roof equipped with a seco	ndary seal? 🗌 Yes	□ No			
25D. If yes, how is the secondary seal mounted	? (check one) \Box Sho	e 🗆	Rim 🗆 Oth	ner (describe	e):
25E. Is the floating roof equipped with a weath	er shield? 🛛 Yes	□ N	0		
25F. Describe deck fittings:					
26. Complete the following section for Interna	l Floating Roof Tanks	\boxtimes	Does not apply	V	
26A Deck Type: Bolted W	/elded	26B. F	For bolted decks.	provide deck	construction:
26C Deck seem Continuous sheet construction	n:			r	
\square 5 ft wide \square 6 ft wide \square 7 ft wide	$\square \qquad \square \qquad 5 \times 7 5 \text{ ft wide}$		12 ft wide] other (dee	ariba
	$rac{1}{1}$ $rac{1}{2}$ $rac{$				
26D. Deck seam length (It.): 26E. Area	of deck (It-):	tanks, #	or column suppo # of columns:	orted	tanks, diameter of column:
27. Closed Vent System with VRU? \Box Yes	🛛 No				
28. Closed Vent System with Enclosed Combu	stor? 🗆 Yes 🖾 No				
SITE INFORMATION - Not Applicable:	Tank calculations pe	rforme	d using E&P '	TANK softv	vare
29. Provide the city and state on which the data	in this section are based	:			
30. Daily Avg. Ambient Temperature (°F):		31. An	nual Avg. Maxi	mum Temper	ature (°F):
32. Annual Avg. Minimum Temperature (°F):		33. Av	g. Wind Speed	(mph):	
34. Annual Avg. Solar Insulation Factor (BTU/	ft ² -day):	35. At	mospheric Press	ure (psia):	
LIQUID INFORMATION - Not Applicab	le: Tank calculations	perfor	med using E&	P TANK so	oftware
36. Avg. daily temperature range of bulk	36A. Minimum (°F):			36B. Maxii	num (°F):
liquid (°F):					
37. Avg. operating pressure range of tank (psig):	37A. Minimum (psig)	:		37B. Maxin	num (psig):
38A. Minimum liquid surface temperature (°F)	•	38B. C	Corresponding va	apor pressure	(psia):
39A. Avg. liquid surface temperature (°F):		39B. C	Corresponding va	apor pressure	(psia):
40A. Maximum liquid surface temperature (°F)	:	40B. C	Corresponding va	apor pressure	(psia):
41. Provide the following for each liquid or gas	to be stored in the tank.	Add add	itional pages if 1	necessary.	
41A. Material name and composition:					
41B. CAS number:					
41C. Liquid density (lb/gal):					
41D. Liquid molecular weight (lb/lb-mole):					
41E. Vapor molecular weight (lb/lb-mole):					
41F. Maximum true vapor pressure (psia):					
410. Maximum Kelu vapor pressure (psia): 41H. Months Storage per veer					
From To					
42. Final maximum gauge pressure and					
temperature prior to transfer into tank used as					
inputs into flashing emission calculations.					

STORAGE TANK DATA TABLE List all deminimis storage tanks (i.e. lube oil, glycol, diesel etc.)

Source ID #1	Status ²	Content ³	Volume ⁴
T01	New	Coolant (EG)	1,260 gallons
T02	New	Coolant (EG)	1,260 gallons
Т03	New	Methanol	335 gallons
T04	New	Methanol	335 gallons
T05	New	Methanol	335 gallons
T06	New	Methanol	335 gallons
T07	New	Methanol	335 gallons
T08	New	Methanol	335 gallons
T12	Existing	Triethylene Glycol	500 gallons
T13	New	Triethylene Glycol	500 gallons
T14	New	Engine Oil	500 gallons
T15	New	Engine Oil	500 gallons
T16	New	Engine Oil	500 gallons
T17	New	Engine Oil	500 gallons
T18	New	Engine Oil	500 gallons
T19	New	Engine Oil	500 gallons
T20	New	Compressor Oil	500 gallons
T21	New	Compressor Oil	500 gallons
T22	New	Compressor Oil	500 gallons
T23	New	Compressor Oil	500 gallons
T24	New	Compressor Oil	500 gallons
T25	New	Compressor Oil	500 gallons

1. Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the compressor station. Tanks should be designated T01, T02, T03, etc. 2.

Enter storage tank Status using the following:

- EXIST Existing Equipment NEW Installation of New Equipment
- REM Equipment Removed

Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, diesel, mercaptan etc. 3.

4. Enter the maximum design storage tank volume in gallons. Natural Gas Fired Fuel Burning Unit Data Sheet(s)

ATTACHMENT L – SMALL HEATERS AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART DC DATA SHEET

Complete this data sheet for each small heater and reboiler not subject to 40CFR60 Subpart Dc at the facility. *The Maximum Design Heat Input (MDHI) must be less than 10 MMBTU/hr.*

Emission Unit ID# ¹	Emission Point ID# ²	Emission Unit Description (manufacturer, model #)	Year Installed/ Modified	Type ³ and Date of Change	Maximum Design Heat Input (MMBTU/hr) ⁴	Fuel Heating Value (BTU/scf) ⁵
REB-1	REB-1	Reboiler	2014	Existing	1.5	1,031
REB-2	REB-2	Reboiler	TBD	New	1.5	1,031

- ¹ Enter the appropriate Emission Unit (or Source) identification number for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.
- ² Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.
- ³ New, modification, removal
- ⁴ Enter design heat input capacity in MMBtu/hr.
- ⁵ Enter the fuel heating value in BTU/standard cubic foot.

Internal Combustion Engine Data Sheet(s)

ATTACHMENT M - INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. *Generator(s) and microturbine generator(s) shall also use this form*.

10	5		()	-	0			-	5
Emission Unit I	D#1	CE-1 to	o CE-6	GE	-1	GE	-2	МТ	-1
Engine Manufac	turer/Model	Cater	pillar	Cum	mins	Power So Inc. (olutions, PSI)	Flex E	nergy
		G3606TALE		14.	14.2 L		5.7 L	GT2	50S
Manufacturers F	Rated bhp/rpm	1,775		30)4	8!	5	33	35
Source Status ²		Ne	w	Ne	ew	Exist	ing	Ne	ew
Date Installed/ Modified/Removed/Relocated ³		ТВ	D	TE	BD	20:	14	TE	3D
Engine Manufactured /Reconstruction Date ⁴		ТВ	D	TE	BD	2014	-15	TE	3D
Check all applicable Federal Rules for the engine (include EPA Certificate of Conformity if applicable) ⁵		⊠40CFR60 Subpart ⊠40CFR60 Subpart JJJJ JJJJ □JJJJ Certified? ⊠JJJJ Certified? □40CFR60 Subpart □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart □40CFR63 Subpart □40CFR63 Subpart □40CFR63 Subpart ZZZZ ZZZZ □ NESHAP ZZZZ/ □ NESHAP ZZZZ □ NESHAP ZZZZ □ NESHAP ZZZZ □ NESHAP ZZZZ □ NESHAP ZZZZ		0 Subpart tified? 0 Subpart ified? 3 Subpart P ZZZZ/ Window P ZZZZ urces	 ▲40CFR60 Subpart JJJJ △JJJJ Certified? △40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 		□ 40CFR60 Subpart JJJJ □ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? □ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Pameta Sources		
Engine Type ⁶		4S	LB	45	RB	4SRB		Turbine	
APCD Type ⁷		Ox0	OxCat		C	LEC		LEC	
Fuel Type ⁸		PQ		Р	Q	PQ		PQ	
H ₂ S (gr/100 scf)		Neg.		Ne	:g.	Ne	g.	Neg.	
Operating bhp/r	pm	1,7	1,775)4	8!	5	33	35
BSFC (BTU/bhp	o-hr)	7,6	09	N/A		N/A		N,	/Α
Hourly Fuel Th	oughput	13,101	ft ³ /hr	2,571	ft ³ /hr	720	ft ³ /hr	3,172	ft ³ /hr
Annual Fuel The (Must use 8,760) emergency gene	roughput hrs/yr unless rator)	114.8	MMft ³ /yr	1.3 N	/Mft ³ /yr	6.3 MMft ³ /yr		27.8	MMft ³ /yr
Fuel Usage or H Operation Meter	ours of ed	Yes 🖂	No 🗆	Yes 🖂	No 🗆	Yes 🖂	No 🗆	Yes 🖂	No 🗆
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tpy) ¹¹	Hourly PTE (lb/hr) ¹¹	Annual PTE (tpy) ¹¹	Hourly PTE (lb/hr) ¹¹	Annual PTE (tpy) ¹¹	Hourly PTE (lb/hr) ¹¹	0.49
See Emissions Calculations	NO _x	1.96	8.58	1.35	0.34	0.19	0.82	0.11	1.23
See Emissions Calculations	СО	0.54	2.37	2.70	0.67	0.37	1.64	0.28	0.27
See Emissions Calculations	VOC	0.99	4.34	0.70	0.18	0.15	0.64	0.06	4.87 E-02
See Emissions Calculations	SO ₂	0.01	0.03	1.56E- 03	3.90E- 04	4.36 E-04	1.91 E-03	1.11 E-02	0.09
See Emissions Calculations	PM_{10}	0.13	0.59	0.05	0.01	0.01	0.06	0.02	0.01
See Emissions Calculations	Formaldehyde	0.20	0.88	0.05	0.01	0.02	0.07	2.32 E-03	0.01
See Emissions Calculations	Total HAPs	0.46	2.02	0.09	0.02	0.02	0.11	3.36 E-03	1,677
See Emissions Calculations	GHG (CO ₂ e)	2,251	9,859	310	78	87	381	383	

- Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at 1 the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.
- 2 Enter the Source Status using the following codes:

NS	Construction of New Source (installation)	ES	Existing Source
MS	Modification of Existing Source	RS	Relocated Source
REM	Removal of Source		

- 3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.
- 4 Enter the date that the engine was manufactured, modified or reconstructed.
- Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device 5 must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6 Enter the Engine Type designation(s) using the following codes:

	2SLB	Two Stroke Lean Burn	4SRE	B Four S	troke Rich Burn		
	4SLB	Four Stroke Lean Burn					
7	Enter th	e Air Pollution Control Device (APCD) type design	ation(s)	using the f	ollowing codes:		
	A/F HEIS PSC NSCR SCR	Air/Fuel Ratio High Energy Ignition System Prestratified Charge Rich Burn & Non-Selective Catalytic Reduction Lean Burn & Selective Catalytic Reduction		IR SIPC LEC OxCat	Ignition Retard Screw-in Precombust: Low Emission Combu Oxidation Catalyst	ion Chambers astion	
8	Enter th	e Fuel Type using the following codes:					
	PQ	Pipeline Quality Natural Gas R	G I	Raw Natura	al Gas /Production Gas	D	Diesel
9	Enter t	he Potential Emissions Data Reference design	nation u	sing the f	following codes. Atta	ach all refere	ence data used.
	MD	Manufacturer's Data	A	AP AI	P-42		
	GR	GRI-HAPCalc TM	(DT Ot	her (pleas	e list)	

Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at 10 manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the Emissions Summary Sheet.

PTE for engines shall be calculated from manufacturer's data unless unavailable. 11

Engine Air Pollution Control Device (Emission Unit ID# CE-1 to CE-6, use extra pages as necessary)

Air Pollution Control	Device Man	ufacturer's	Data	Sheet included?
	Yes 🖂	No 🗌		

165 🖂					
□ NSCR □ SCR	🛛 Oxidation Catalyst				
Provide details of process control used for proper mixing/control of reducing agent with gas stream: N/A					
Manufacturer: DCL (or equivalent)	Model #: DC64AL2-16 (or equivalent)				
Design Operating Temperature: 847 °F	Design gas volume: 12,213 acfm				
Service life of catalyst: 1 year or 8,000 hours	Provide manufacturer data? 🛛 Yes 🛛 🖓 No				
Volume of gas handled: 12,213 acfm at 847 °F	Operating temperature range for NSCR/Ox Cat: From TBD °F to TBD °F				
Reducing agent used, if any: N/A	Ammonia slip (ppm): N/A				
Pressure drop against catalyst bed (delta P): TBD inches of H	I ₂ O				
Provide description of warning/alarm system that protects unit when operation is not meeting design conditions: TBD					
Is temperature and pressure drop of catalyst required to be monopole \Box Yes \boxtimes No	onitored per 40CFR63 Subpart ZZZZ?				
How often is catalyst recommended or required to be replaced TBD	(hours of operation)?				
How often is performance test required? Initial Annual Every 8,760 hours of operation Field Testing Required No performance test required. If so, why (please list any r NSPS/GACT,	naintenance required and the applicable sections in				

ATTACHMENT N

Tanker Truck Loading Data Sheet(s)

ATTACHMENT N – TANKER TRUCK LOADING DATA SHEET

Complete this data sheet for each new or modified bulk liquid transfer area or loading rack at the facility. This is to be used for bulk liquid transfer operations to tanker trucks. Use extra pages if necessary.

Truck Loadout Collection Efficiencies

The following applicable capture efficiencies of a truck loadout are allowed:

- For tanker trucks passing the MACT level annual leak test 99.2%
- For tanker trucks passing the NSPS level annual leak test 98.7%
- For tanker trucks not passing one of the annual leak tests listed above 70%

Compliance with this requirement shall be demonstrated by keeping records of the applicable MACT or NSPS Annual Leak Test certification for *every* truck and railcar loaded/unloaded. This requirement can be satisfied if the trucking company provided certification that its entire fleet was compliant. This certification must be submitted in writing to the Director of the DAQ. These additional requirements must be noted in the Registration Application and will be noted on the issued G35-D Registration.

Emission Unit ID#: L01		Emission Point ID#: L01 Year Installed/Modified: N/A					
Emission Unit Description: Liquid loading of waste fluids							
			Loading	Area Data			
Number of Pumps: 2		Numbe	er of Liquids	Loaded: 1		Max number of (1) time: 1	f trucks loading at one
Are tanker trucks pressu If Yes, Please describe:	re tested for le	aks at this	s or any other	location?	□ Yes	🛛 No 🖾	Not Required
Provide description of c	losed vent syst	em and an	y bypasses.	N/A			
Are any of the following Closed System to tan Closed System to tan Closed System to tan	g truck loadout hker truck pass hker truck pass hker truck not	systems u ing a MAC ing a NSP bassing an	tilized? CT level annu S level annua annual leak	ual leak test? ul leak test? test and has y	apor ret	urn?	
Pro	jected Maxim	ım Opera	ting Schedul	e (for rack o	r transf	er point as a wh	nole)
Time	Jan – M	lar	Apr	- Jun	Jul – Sept		Oct - Dec
Hours/day	2		:	2	2		2
Days/week	5		:	5		5	5
	В	ılk Liquid	l Data (use e	xtra pages a	s necess	ary)	
Liquid Name		Waste Flu	Waste Fluids				
Max. Daily Throughput (1000 gal/day)		0.84	0.84				
Max. Annual Throughpu (1000 gal/yr)	it	307.44					
Loading Method ¹			SP				
Max. Fill Rate (gal/min)		TBD	TBD				
Average Fill Time (min/loading)		TBD					
Max. Bulk Liquid Temperature (°F)	lk Liquid ture (°F) 52.14						
True Vapor Pressure ²		0.3240)				
Cargo Vessel Condition	3	U					
Control Equipment or Method ⁴		None					

Max. Collection Efficiency (%)		0	
Max. Control (%)	Efficiency	0	
Max.VOC	Loading (lb/hr)		
Rate	Annual (ton/yr)	See attached	
Max.HAP	Loading (lb/hr)	emissions calculations	
Rate	Annual (ton/yr)		
Estimation Me	ethod ⁵	EPA	

1	BF	Bottom Fill	SP	Splash Fill	SUB	Submerged Fill	
---	----	-------------	----	-------------	-----	----------------	--

At maximum bulk liquid temperature B Ballasted Vessel 2 3 С Cleaned U Uncleaned (dedicated service)

0 Other (describe)

4 List as many as apply (complete and submit appropriate Air Pollution Control Device Sheets)

Carbon Adsorption Dedicated Vapor Balance (closed system) CA VB

Enclosed Combustion Device Thermal Oxidization or Incineration ECD F Flare

ТО

5 EPA EPA Emission Factor in AP-42

MB Material Balance ТМ Test Measurement based upon test data submittal 0 Other (describe)

ATTACHMENT O

Glycol Dehydration Unit Data Sheet(s)

ATTACHMENT O – GLYCOL DEHYDRATION UNIT DATA SHEET

Complete this data sheet for each Glycol Dehydration Unit, Reboiler, Flash Tank and/or Regenerator at the facility. Include gas sample analysis and GRI-GLYCalc[™] input and aggregate report. Use extra pages if necessary.

Manufacturer: Source Designation TEG-1 & TEG-2	Model: 75 MMSCFD
Max. Dry Gas Flow Rate: 75 mmscf/day	Reboiler Design Heat Input: 1.5 MMBTU/hr
Design Type: 🛛 TEG 🛛 DEG 🔅 EG	Source Status ¹ : Existing & New
Date Installed/Modified/Removed ² : 2014 & TBD	Regenerator Still Vent APCD/ERD ³ : N/A (see notes below)
Control Device/ERD ID# ³ : N/A (see notes below)	Fuel HV (BTU/scf): 1,031
H ₂ S Content (gr/100 scf): neg.	Operation (hours/year): 8,760
Pump Rate (scfm): 15 gpm glycol	
Water Content (wt %) in: Wet Gas: Saturated Dr	ry Gas: 7.0 lbs/MMscf
Is the glycol dehydration unit exempt from 40CFR63 Section ⊠ Yes □ No: If Yes, answer the following:	764(d)?
The actual annual average flowrate of natural gas to the glyco meters per day, as determined by the procedures specified in § □ Yes ⊠ No	l dehydration unit is less than 85 thousand standard cubic \$63.772(b)(1) of this subpart.
The actual average emissions of benzene from the glycol dehy megagram per year (1 ton per year), as determined by the prod \boxtimes Yes \square No	dration unit process vent to the atmosphere are less than 0.90 cedures specified in §63.772(b)(2) of this subpart.
Is the glycol dehydration unit located within an Urbanized Ar □ Yes ⊠ No	ea (UA) or Urban Cluster (UC)?
Is a lean glycol pump optimization plan being utilized? □ Yes ⊠ No	
Recycling the glycol dehydration unit back to the flame zone \Box Yes \boxtimes No	of the reboiler.
If yes: Is the reboiler configured to accept flash drum vapors (straigh Is the reboiler configured to accept still vent vapors (after a c Is the reboiler configured to accept both in the same operation	at from the glycol dehydrator)? □ Yes □ No ondenser)? □ Yes □ No a? □ Yes □ No
Recycling the glycol dehydration unit back to the flame zone \Box Yes \boxtimes No	of the reboiler and mixed with fuel.
What happens when temperature controller shuts off fuel to th Still vent emissions to the atmosphere. Still vent emissions stopped with valve. Still vent emissions to glow plug.	e reboiler?
Please indicate if the following equipment is present. ☐ Flash Tank ☐ Burner management system that continuously burns conden	nser or flash tank vapors
Control Device	Technical Data
Pollutants Controlled	Manufacturer's Guaranteed Control Efficiency (%)
Both dehydration units will utilize flash tanks, whi use as fuel in the reboiler burner.	ch recover the gas entrained in the rich glycol for
The existing dehydration unit (TEG-1) is permitted has negligible impact on emissions, as there is no benzene, toluene, etc.) in the gas. Therefore, the device from the issued permit, as it provides minin	with a condenser. However, this control device detectable level of heavy hydrocarbons (ex. applicant is requesting the removal of this control nal environmental benefit at high cost. A GRI-

GLYCalc run showing the ineffectiveness of the condenser is included for reference.

	Emissions Data					
Emission Unit ID / Emission Point ID ⁴	Description	Calculation Methodology ⁵	PTE ⁶	Controlled Maximum Hourly Emissions (lb/hr)	Controlled Maximum Annual Emissions (tpy)	
		AP	NO _x	0.15	0.64	
		AP	СО	0.12	0.54	
	Pahailar Vant	AP	VOC	0.01	0.04	
KED-1 & KED-2	Reboller vent	AP	SO ₂	8.7E-04	3.8E-03	
		AP	PM ₁₀	0.01	0.05	
		40 CFR 98	GHG (CO ₂ e)	175.68	769.47	
		GRI-GlyCalc TM	VOC	0.25	1.11	
		GRI-GlyCalc TM	Benzene	<0.01	<0.01	
	Glycol	GRI-GlyCalc TM	Toluene	<0.01	<0.01	
IEG-I & IEG-2	Regenerator Still Vent	GRI-GlyCalc TM	Ethylbenzene	< 0.01	<0.01	
		GRI-GlyCalc TM	Xylenes	< 0.01	< 0.01	
		GRI-GlyCalc TM	n-Hexane	< 0.01	<0.01	
		GRI-GlyCalc [™]	VOC	0.57	2.50	
		GRI-GlyCalc TM	Benzene	< 0.01	< 0.01	
	Glycol Flash	GRI-GlyCalc TM	Toluene	< 0.01	<0.01	
	Tank	GRI-GlyCalc TM	Ethylbenzene	<0.01	<0.01	
		GRI-GlyCalc TM	Xylenes	< 0.01	<0.01	
		GRI-GlyCalc TM	n-Hexane	< 0.01	<0.01	

1 Enter the Source Status using the following codes:

2

Construction of New Source ES **Existing Source** NS MS Modification of Existing Source

Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source), modification or removal.

3 Enter the Air Pollution Control Device (APCD)/Emission Reduction Device (ERD) type designation using the following codes and the device ID number:

NA	None	CD	Condenser	FL	Flare	
CC	Condenser/Combustion Combination	ТО	Thermal Oxidizer	0	Other	(please list)

Enter the appropriate Emission Unit ID Numbers and Emission Point ID Numbers for the glycol dehydration unit reboiler vent 4 and glycol regenerator still vent. The glycol dehydration unit reboiler vent and glycol regenerator still vent should be designated RBV-1 and RSV-1, respectively. If the compressor station incorporates multiple glycol dehydration units, a Glycol Dehydration Emission Unit Data Sheet shall be completed for each, using Source Identification RBV-2 and RSV-2, RBV-3 and RSV-3, etc.

5 Enter the Potential Emissions Data Reference designation using the following codes:

		Ų	0
MD	Manufacturer's Data	AP	AP-42

GR **GRI-GLYCalc**TM OT Other

(please list) Enter the Reboiler Vent and Glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs 6 per hour and tons per year. The Glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalcTM (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalcTM Aggregate Calculations Report (shall include emissions reports, equipment reports, and stream reports) to this Glycol Dehydration Emission Unit Data Sheet(s). Backup pumps do not have to be considered as operating for purposes of PTE. This PTE data shall be incorporated in the Emissions Summary Sheet.

ATTACHMENT P

Pneumatic Controller Data Sheet(s)

ATTACHMENT P – PNEUMATIC CONTROLLERS DATA SHEET				
Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?				
\Box Yes \boxtimes No				
Please list approximate number.				
Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after September 18, 2015?				
\Box Yes \boxtimes No				
Please list approximate number.				
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18. 2015?				
\Box Yes \boxtimes No				
Please list approximate number.				
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after September 18, 2015?				
\Box Yes \boxtimes No				
Please list approximate number.				

ATTACHMENT Q

Centrifugal Compressor Data Sheet(s)

ATTACHMENT Q – CENTRIFUGAL COMPRESSOR
DATA SHEET

Are there any centrifugal compressors at this facility that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?

🗌 Yes 🛛 🖾 No

Please list:

Emission Unit ID#	Compressor Description
Are ther construct	e any centrifugal compressors at this facility that commenced tion, modification or reconstruction after September 18, 2015?
	🗌 Yes 🛛 No
	Please list:
Emission Unit ID#	Compressor Description

ATTACHMENT R

Reciprocating Compressor Data Sheet(s)

ATTACHMENT R – RECIPROCATING COMPRESSOR DATA SHEET

Are there any reciprocating compressors at this facility that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?

🗌 Yes 🛛 🖾 No

Please list:

Emission Unit ID#	Compressor Description

Are there any reciprocating compressors at this facility that commenced construction, modification or reconstruction after September 18, 2015?

Yes No

Please list:

Emission Unit ID#	Compressor Description
CE-1	Reciprocating Compressor #1
CE-2	Reciprocating Compressor #2
CE-3	Reciprocating Compressor #3
CE-4	Reciprocating Compressor #4
CE-5	Reciprocating Compressor #5
CE-6	Reciprocating Compressor #6

Blowdown and Pigging Operation Data Sheet(s)

ATTACHMENT S – BLOWDOWN AND PIGGING OPERATIONS DATA SHEET

Yes No Please list:							
Compressor Blowdown							
Compressor Startup	These emissions are accounted for in the emissions calculations in the						
Plant Shutdown							
Low Pressure Pig Venting	blowdowns and pigging operations.						
High Pressure Pig Venting							
· enting							
			r			HAD	
Type of Event	# of Events (event/yr)	Amount Vented per event (scf/event)	MW of vented gas (lb/lb-mol)	Total Emissions (ton/yr)	HAP weight fraction	emissions (ton/yr)	
Type of Event Compressor Blowdown	# of Events (event/yr)	Amount Vented per event (scf/event)	MW of vented gas (lb/lb-mol)	Total Emissions (ton/yr)	HAP weight fraction	emissions (ton/yr)	
Type of Event Compressor Blowdown Compressor Startup	# of Events (event/yr)	Amount Vented per event (scf/event)	MW of vented gas (lb/lb-mol)	Total Emissions (ton/yr)	HAP weight fraction	emissions (ton/yr)	
Type of Event Compressor Blowdown Compressor Startup Plant Shutdown	# of Events (event/yr) These em	Amount Vented per event (scf/event) issions are ac	MW of vented gas (lb/lb-mol) ccounted for	Total Emissions (ton/yr) in the emissi	HAP weight fraction	emissions (ton/yr)	
Type of Event Compressor Blowdown Compressor Startup Plant Shutdown Low Pressure Pig Venting	# of Events (event/yr) These em 'Miscella	Amount Vented per event (scf/event) issions are ac aneous Gas V blow	MW of vented gas (lb/lb-mol) ccounted for /enting' calcu downs and pi	Total Emissions (ton/yr) in the emissi ilations, whi gging opera	HAP weight fraction	emissions (ton/yr)	

Air Pollution Control Device Data Sheet(s)

ATTACHMENT T – AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION DEVICE SHEETS

Complete the applicable air pollution control device sheets for each flare, vapor combustor, thermal oxidizer, condenser, adsorption system, vapor recovery unit, BTEX Eliminator, Reboiler with and without Glow Plug, etc. at the facility. Use extra pages if necessary.

Emissions calculations must be performed using the most conservative control device efficiency.

The following five (5) rows are only to be completed if registering an alternative air pollution control device.				
Emission Unit ID: N/A	Make/Model:			
Primary Control Device ID:	Make/Model:			
Control Efficiency (%):	APCD/ERD Data Sheet Completed: Yes No			
Secondary Control Device ID:	Make/Model:			
Control Efficiency (%):	APCD/ERD Data Sheet Completed: Yes No			

VAPOR COMBUSTION (Including Enclosed Combustors)							
General Information							
Control Device ID#: N/A				Installation Date:			
Maximum Rated Total Flow Capacity scfh scfd				Maximum Design Heat Input (from mfg. spec sheet) Design MMBTU/hr		Heat Content 3TU/scf	
Control Device Information							
Type of Vapor Combustion Control? Enclosed Combustion Device Elevated Flare Thermal Oxidizer						Ground Flare	
Manufacturer: Model:			Hours of o	peration	per year?		
List the emission units who	e emission	s are controlled by this	vapor contr	ol device	(Emission	Point ID#)	
Emission Unit ID# Emission Sourc	Emission Unit ID# Emission Source Description			Emissio	n Source Description		
If this vapor combusto	controls e	emissions from more the	ın six (6) en	ission un	its, please	attach additional pages.	
Assist Type (Flares only)		Flare Height	Tip Diameter		er	Was the design per §60.18?	
Steam Ai	r on	feet	feet			☐ Yes ☐ No Provide determination.	
		Waste Gas 1	Information				
Maximum Waste Gas Flow Rate Heat Value of W (scfm) Heat Value of W			aste Gas Stream Exit Vele 3TU/ft ³		Exit Vel	ocity of the Emissions Stream (ft/s)	
Provide	an attachm	ent with the characteri	stics of the v	vaste gas	stream to	be burned.	
		Pilot Gas I	nformation				
Number of Pilot Lights Fue		Flow Rate to Pilot Flame per Pilot scfh	Heat Input per Pilot BTU/hr		Pilot hr	Will automatic re-ignition be used? □ Yes □ No	
If automatic re-ignition is u	If automatic re-ignition is used, please describe the method.						
Is pilot flame equipped with presence of the flame?	If Yes, what type? Thermocouple Infrared Itraviolet Camera Other:						
Describe all operating ranges and maintenance procedures required by the manufacturer to maintain the warranty. (If unavailable, please indicate).							
Additional information attached? Please attach copies of manufacturer's data sheets, drawings, flame demonstration per §60.18 or §63.11(b) and performance testing.							

CONDENSER					
General Information					
Control Device ID#: N/A Installation Date:					
Manufacturer:	Model:	Control Device Name:			
Control Efficiency (%):					
Manufacturer's required temperature range for control efficie	ncy. °F				
Describe the warning and/or alarm system that protects against operation when unit is not meeting the design requirements:					
Describe all operating ranges and maintenance procedures required by the manufacturer to maintain the warranty.					
Additional information attached? Yes No Please attach copies of manufacturer's data sheets.					
Is condenser routed to a secondary APCD or ERD?					

ADSORPTION SYSTEM					
General Information					
Control Device ID#: N/A	Installation Date:				
Manufacturer:	Model: Control Device Name:				
Design Inlet Volume: scfm	Adsorbent charge per adsorber vessel and number of adsorber vessels:				
Length of Mass Transfer Zone supplied by the manufacturer:Adsorber diameter:ftAdsorber area:ft²					
Adsorbent type and physical properties:	Overall Control Efficiency (%):				
Working Capacity of Adsorbent (%):					
Operating	Parameters				
Inlet volume: scfm @ °F					
Adsorption time per adsorption bed (life expectancy):	Breakthrough Capacity (lbs of VOC/100 lbs of adsorbent):				
Temperature range of carbon bed adsorber. °F - °F	·				
Control Device	Technical Data				
Pollutants Controlled	Manufacturer's Guaranteed Control Efficiency (%)				
Describe the warning and/or alarm system that protects against operation when unit is not meeting the design requirements:					
Has the control device been tested by the manufacturer and certified?					
Describe all operating ranges and maintenance procedures required by the manufacturer to maintain the warranty.					
Additional information attached? Please attach copies of manufacturer's data sheets, drawings, and performance testing.					

VAPOR RECOVERY UNIT							
General Information							
Emission U	Jnit ID#: N/A	Installation Date:					
	Device Information						
Manufactu Model:	rer:						
List the en	nission units whose emissions are controlled by this	vapor recov	very unit (Emission Po	int ID#)			
Emission Unit ID#	Emission Source Description	Emission Unit ID#	on D# Emission Source Description				
If this	vapor recovery unit controls emissions from more t	han six (6) e	emission units, please o	attach additional pages.			
Additional information attached? Yes No Please attach copies of manufacturer's data sheets, drawings, and performance testing. The registrant may claim a capture and control efficiency of 95 % (which accounts for 5% downtime) for the vapor							
recovery unit.							
The registrant may claim a capture and control efficiency of 98% if the VRU has a backup flare that meet the requirements of Section 8.1.2 of this general permit.							
The registrant may claim a capture and control efficiency of 98% if the VRU has a backup VRU.							

ATTACHMENT U

Emission Calculations
Company Name: Facility Name:

<u>M3 Appalachia Gathering, LLC</u> <u>Hamilton Compressor Station</u> <u>G35D Application</u>

Project Description:

Facility-Wide Emission Summary - Controlled

Storage Tanks:	2	per site
Line Heaters:	0	per site
TEGs:	0	per site
Dehy Reboilers:	2	per site
Glycol Dehydrators:	2	per site
Dehy Drip Tanks:	0	per site
Dehy Combustors:	0	per site
Compressors:	6	per site
High Pressure Separators:	4	per site
Length of lease road:	6,100	feet

Emission	Emission	Emission	N	0 _x	(:0	VC	C	S	02	P	M ₁₀	PN	A _{2.5}	C	H ₄	C	0 ₂ e
Point ID #	Source ID#s	Source Description	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
CE-1	CE-1	Caterpillar G3606 Comp. Engine	1.96	8.58	0.54	2.37	0.99	4.34	0.01	0.03	0.13	0.59	0.13	0.59	20.97	91.87	2,250.99	9,859.35
CE-2	CE-2	Caterpillar G3606 Comp. Engine	1.96	8.58	0.54	2.37	0.99	4.34	0.01	0.03	0.13	0.59	0.13	0.59	20.97	91.87	2,250.99	9,859.35
CE-3	CE-3	Caterpillar G3606 Comp. Engine	1.96	8.58	0.54	2.37	0.99	4.34	0.01	0.03	0.13	0.59	0.13	0.59	20.97	91.87	2,250.99	9,859.35
CE-4	CE-4	Caterpillar G3606 Comp. Engine	1.96	8.58	0.54	2.37	0.99	4.34	0.01	0.03	0.13	0.59	0.13	0.59	20.97	91.87	2,250.99	9,859.35
CE-5	CE-5	Caterpillar G3606 Comp. Engine	1.96	8.58	0.54	2.37	0.99	4.34	0.01	0.03	0.13	0.59	0.13	0.59	20.97	91.87	2,250.99	9,859.35
CE-6	CE-6	Caterpillar G3606 Comp. Engine	1.96	8.58	0.54	2.37	0.99	4.34	0.01	0.03	0.13	0.59	0.13	0.59	20.97	91.87	2,250.99	9,859.35
GE-1	GE-1	Generac 14.2 L Generator Engine	1.35	0.34	2.70	0.67	0.70	0.18	1.6E-03	3.9E-04	0.05	0.01	0.05	0.01	0.01	0.00	310.42	77.61
GE-2	GE-2	PSI 5.7 L Generator Engine	0.19	0.82	0.37	1.64	0.15	0.64	4.4E-04	1.9E-03	0.01	0.06	0.01	0.06	0.00	0.01	86.93	380.77
MT-1	MT-1	Flex Energy GT250S Microturbine	0.11	0.49	0.28	1.23	0.06	0.27	0.01	0.05	0.02	0.09	0.02	0.09	0.01	0.03	382.98	1,677.44
TEG-1	TEG-1	75 MMSCFD Dehydration Unit					0.99	4.34							176.97	775.12	4,424.21	19,378.05
TEG-2	TEG-2	75 MMSCFD Dehydration Unit					0.99	4.34							176.97	775.12	4,424.21	19,378.05
REB-1	REB-1	1.5 MMbtu/hr Reboiler	0.15	0.64	0.12	0.54	0.01	0.04	8.7E-04	3.8E-03	0.01	0.05	0.01	0.05	3.3E-03	0.01	175.68	769.47
REB-2	REB-2	1.5 MMbtu/hr Reboiler	0.15	0.64	0.12	0.54	0.01	0.04	8.7E-04	3.8E-03	0.01	0.05	0.01	0.05	3.3E-03	0.01	175.68	769.47
T10	T10	Waste Fluids Tank					0.05	0.23							1.4E-03	0.01	0.03	0.15
T11	T11	Waste Fluids Tank					0.05	0.23							1.4E-03	0.01	0.03	0.15
		De minimis storage tanks					2.5E-03	0.01										
L01	L01	Liquid Loading					0.05	0.01										
		Fugitives						1.57								122.78		3,069.47
		Haul Roads										0.19		0.02				
Facility Total			13.70	54.43	6.84	18.80	9.01	37.91	0.06	0.27	0.92	4.00	0.92	3.83	479.81	2,224.32	23,486.13	104,656.68
Facility Total (excluding	g fugitive emissions)		13.70	54.43	6.84	18.80	9.01	36.34	0.06	0.27	0.92	3.81	0.92	3.81	479.81	2,101.55	23,486.13	101,587.21

Emission	Emission	Emission	Formal	dehyde	Ben	zene	Tolu	iene	Ethylb	enzene	Xyle	enes	n-Hey	kane	Total	BTEX	Tota	HAP
Point ID #	Source ID#s	Source Description	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy								
CE-1	CE-1	Caterpillar G3606 Comp. Engine	0.20	0.88	5.9E-03	2.6E-02	5.5E-03	2.4E-02	5.4E-04	2.3E-03	2.5E-03	1.1E-02	0.01	0.07	0.01	0.06	0.46	2.02
CE-2	CE-2	Caterpillar G3606 Comp. Engine	0.20	0.88	5.9E-03	2.6E-02	5.5E-03	2.4E-02	5.4E-04	2.3E-03	2.5E-03	1.1E-02	0.01	0.07	0.01	0.06	0.46	2.02
CE-3	CE-3	Caterpillar G3606 Comp. Engine	0.20	0.88	5.9E-03	2.6E-02	5.5E-03	2.4E-02	5.4E-04	2.3E-03	2.5E-03	1.1E-02	0.01	0.07	0.01	0.06	0.46	2.02
CE-4	CE-4	Caterpillar G3606 Comp. Engine	0.20	0.88	5.9E-03	2.6E-02	5.5E-03	2.4E-02	5.4E-04	2.3E-03	2.5E-03	1.1E-02	0.01	0.07	0.01	0.06	0.46	2.02
CE-5	CE-5	Caterpillar G3606 Comp. Engine	0.20	0.88	5.9E-03	2.6E-02	5.5E-03	2.4E-02	5.4E-04	2.3E-03	2.5E-03	1.1E-02	0.01	0.07	0.01	0.06	0.46	2.02
CE-6	CE-6	Caterpillar G3606 Comp. Engine	0.20	0.88	5.9E-03	2.6E-02	5.5E-03	2.4E-02	5.4E-04	2.3E-03	2.5E-03	1.1E-02	0.01	0.07	0.01	0.06	0.46	2.02
GE-1	GE-1	Generac 14.2 L Generator Engine	0.05	0.01	6.6E-05	1.6E-05	3.4E-05	1.5E-04	5.2E-04	1.3E-04	< 0.01	< 0.01	< 0.01	< 0.01	6.2E-04	3.0E-04	0.09	0.02
GE-2	GE-2	PSI 5.7 L Generator Engine	0.02	0.07	1.8E-05	8.1E-05	9.6E-06	4.2E-05	1.4E-04	6.3E-04	< 0.01	< 0.01	< 0.01	< 0.01	1.7E-04	7.6E-04	0.02	0.11
MT-1	MT-1	Flex Energy GT250S Microturbine	2.3E-03	0.01	3.9E-05	1.7E-04	4.3E-04	1.9E-03	1.0E-04	4.6E-04	2.1E-04	9.2E-04			7.8E-04	3.4E-03	3.4E-03	0.01
TEG-1	TEG-1	75 MMSCFD Dehydration Unit			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
TEG-2	TEG-2	75 MMSCFD Dehydration Unit			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
REB-1	REB-1	1.5 MMbtu/hr Reboiler	1.1E-04	4.8E-04	3.1E-06	1.3E-05	4.9E-06	2.2E-05					2.6E-03	0.01	8.0E-06	3.5E-05	2.7E-03	0.01
REB-2	REB-2	1.5 MMbtu/hr Reboiler	1.1E-04	4.8E-04	3.1E-06	1.3E-05	4.9E-06	2.2E-05					2.6E-03	0.01	8.0E-06	3.5E-05	2.7E-03	0.01
T10	T10	Waste Fluids Tank			4.6E-04	2.0E-03	2.3E-04	1.0E-03	< 0.01	< 0.01	< 0.01	< 0.01	3.0E-03	0.01	6.8E-04	3.0E-03	4.6E-03	0.02
T11	T11	Waste Fluids Tank			4.6E-04	2.0E-03	2.3E-04	1.0E-03	< 0.01	< 0.01	< 0.01	< 0.01	3.0E-03	0.01	6.8E-04	3.0E-03	4.6E-03	0.02
		De minimis storage tanks															2.5E-03	0.01
L01	L01	Liquid Loading															0.01	1.4E-03
		Fugitives																
		Haul Roads																
Facility Total			1.27	5.35	0.04	0.16	0.03	0.15	4.0E-03	0.02	0.02	0.07	0.10	0.44	0.09	0.39	2.91	12.36
Facility Total (excluding f	fugitive emissions)		1.27	5.35	0.04	0.16	0.03	0.15	4.0E-03	0.02	0.02	0.07	0.10	0.44	0.09	0.39	2.91	12.36

<u>M3 Appalachia Gathering, LLC</u> <u>Hamilton Compressor Station</u> <u>G35D Application</u>

Compressor Engines

Engine Information:

Source Designation:	CE-1 to CE-6
Manufacturer:	Caterpillar
Model No.:	G3606TALE
Stroke Cycle:	4-stroke
Type of Burn:	Lean
Rated Horsepower (bhp):	1,775

Engine Fuel Information:

Fuel Type:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,031
Specific Fuel Consumption (Btu/bhp-hr):	7,609
Maximum Fuel Consumption at 100% Load (scf/hr):	13,101
Heat Input (MMBtu/hr):	13.51
Potential Fuel Consumption (MMBtu/yr):	118,312
Max. Fuel Consumption at 100% (MMscf/hr):	0.0131
Max. Fuel Consumption (MMscf/yr):	114.8
Max. Annual Hours of Operation (hr/yr):	8,760

Engine Emissions Data:

N N + + +		** **	Maximum Pote	ntial Emissions	Estimation Basis / Emission	
Ponutant	Emission Factor	Units	lbs/hr	tpy	Factor Source	
NO _x	1.96	lb/hr	1.96	8.58	Manufacturer	
VOC (excludes HCHO)	0.79	lb/hr	0.79	3.46	Manufacturer	
VOC (includes HCHO)			0.99	4.34	VOC + HCHO	
со	0.54	lb/hr	0.54	2.37	Manufacturer	
SO _x	0.001	lb/MMBtu	0.01	0.03	AP-42, Table 3.2-2 (Jul-2000)	
PM ₁₀	0.01	lb/MMBtu	0.13	0.59	AP-42, Table 3.2-2 (Jul-2000)	
PM _{2.5}	0.01	lb/MMBtu	0.13	0.59	AP-42, Table 3.2-2 (Jul-2000)	
Formaldehyde (HCHO)	0.20	lb/hr	0.20	0.88	Manufacturer	
GHG (CO ₂ e)	See Tab	le Below	2,251	9,859	40 CFR 98, Tables C-1 & C-2	
Other (Total HAP)	See Tab	le Below	0.46	2.02	AP-42, Table 3.2-2 (Jul-2000)	

Notes:

1. PM₁₀ and PM_{2.5} are total values (filterable + condensable).

2. GHG (CO_2e) is carbon dioxide equivalent, which is the summation of CO_2 (GWP = 1) + CH₄ (GWP = 25) + N₂O (GWP = 298).

3. Total HAP is the summation of all hazardous air pollutants for which there is a published emission factor for this source type.

<u>M3 Appalachia Gathering, LLC</u> <u>Hamilton Compressor Station</u> <u>G35D Application</u>

Compressor Engines							
Greenhouse Gas (GHG) & Hazardous Air Pollutant (HAP) Emissions Calculations:							
Dellesterst	Provincian Parton	No.ite	Maximum Pote	ntial Emissions	Estimation Basis / Emission		
Pollutant	Emission Factor	Units	lbs/hr	tpy	Factor Source		
<u>GHGs:</u>							
CO ₂	441	g/bhp-hr	1,725.73	7,558.71	Manufacturer		
CH ₄	5.36	g/bhp-hr	20.97	91.87	Manufacturer (THC - NMHC)		
N ₂ O	0.0001	kg/MMBtu	0.00	0.01	40 CFR 98, Table C-2		
GHG (CO ₂ e)			2,251	9,859			
Organic HAPs:							
1,1,2,2-Tetrachloroethane	4.00E-05	lb/MMBtu	5.4E-04	2.4E-03	AP-42, Table 3.2-2 (Jul-2000)		
1,1,2-Trichloroethane	3.18E-05	lb/MMBtu	4.3E-04	1.9E-03	AP-42, Table 3.2-2 (Jul-2000)		
1,3-Butadiene	2.67E-04	lb/MMBtu	3.6E-03	1.6E-02	AP-42, Table 3.2-2 (Jul-2000)		
1,3-Dichloropropene	2.64E-05	lb/MMBtu	3.6E-04	1.6E-03	AP-42, Table 3.2-2 (Jul-2000)		
2-Methylnapthalene	3.32E-05	lb/MMBtu	4.5E-04	2.0E-03	AP-42, Table 3.2-2 (Jul-2000)		
2,2,4-Trimethylpentane	2.50E-04	lb/MMBtu	3.4E-03	1.5E-02	AP-42, Table 3.2-2 (Jul-2000)		
Acenaphthene	1.25E-06	lb/MMBtu	1.7E-05	7.4E-05	AP-42, Table 3.2-2 (Jul-2000)		
Acenaphthylene	5.53E-06	lb/MMBtu	7.5E-05	3.3E-04	AP-42, Table 3.2-2 (Jul-2000)		
Acetaldehyde	8.36E-03	lb/MMBtu	1.1E-01	4.9E-01	AP-42, Table 3.2-2 (Jul-2000)		
Acrolein	5.14E-03	lb/MMBtu	6.9E-02	3.0E-01	AP-42, Table 3.2-2 (Jul-2000)		
Benzene	4.40E-04	lb/MMBtu	5.9E-03	2.6E-02	AP-42, Table 3.2-2 (Jul-2000)		
Benzo(b)fluoranthene	1.66E-07	lb/MMBtu	2.2E-06	9.8E-06	AP-42, Table 3.2-2 (Jul-2000)		
Benzo(e)pyrene	4.15E-07	lb/MMBtu	5.6E-06	2.5E-05	AP-42, Table 3.2-2 (Jul-2000)		
Benzo(g.h.i)pervlene	4.14E-07	lb/MMBtu	5.6E-06	2.4E-05	AP-42, Table 3.2-2 (Jul-2000)		
Biphenyl	2.12E-04	lb/MMBtu	2.9E-03	1.3E-02	AP-42, Table 3.2-2 (Jul-2000)		
Carbon Tetrachloride	3.67E-05	lb/MMBtu	5.0E-04	2.2E-03	AP-42, Table 3.2-2 (Jul-2000)		
Chlorobenzene	3.04E-05	lb/MMBtu	4.1E-04	1.8E-03	AP-42, Table 3.2-2 (Jul-2000)		
Chloroform	2.85E-05	lb/MMBtu	3.8E-04	1.7E-03	AP-42, Table 3.2-2 (Jul-2000)		
Chrysene	6.93E-07	lb/MMBtu	9.4E-06	4.1E-05	AP-42, Table 3.2-2 (Jul-2000)		
Ethylbenzene	3.97E-05	lb/MMBtu	5.4E-04	2.3E-03	AP-42, Table 3.2-2 (Jul-2000)		
Ethylene Dibromide	4.43E-05	lb/MMBtu	6.0E-04	2.6E-03	AP-42, Table 3.2-2 (Jul-2000)		
Fluoranthene	1.11E-06	lb/MMBtu	1.5E-05	6.6E-05	AP-42, Table 3.2-2 (Jul-2000)		
Fluorene	5.67E-06	lb/MMBtu	7.7E-05	3.4E-04	AP-42, Table 3.2-2 (Jul-2000)		
Methanol	2.50E-03	lb/MMBtu	3.4E-02	1.5E-01	AP-42, Table 3.2-2 (Jul-2000)		
Methylene Chloride	2.00E-05	lb/MMBtu	2.7E-04	1.2E-03	AP-42, Table 3.2-2 (Jul-2000)		
n-Hexane	1.11E-03	lb/MMBtu	1.5E-02	6.6E-02	AP-42, Table 3.2-2 (Jul-2000)		
Naphthalene	7.44E-05	lb/MMBtu	1.0E-03	4.4E-03	AP-42, Table 3.2-2 (Jul-2000)		
РАН	2.69E-05	lb/MMBtu	3.6E-04	1.6E-03	AP-42. Table 3.2-2 (Jul-2000)		
Phenanthrene	1.04E-05	lb/MMBtu	1.4E-04	6.2E-04	AP-42, Table 3.2-2 (Jul-2000)		
Phenol	2.40E-05	lb/MMBtu	3.2E-04	1.4E-03	AP-42, Table 3.2-2 (Jul-2000)		
Pyrene	1.36E-06	lb/MMBtu	1.8E-05	8.0E-05	AP-42, Table 3.2-2 (Jul-2000)		
Styrene	2.36E-05	lb/MMBtu	3.2E-04	1.4E-03	AP-42, Table 3.2-2 (Jul-2000)		
Tetrachloroethane	2.48E-06	lb/MMBtu	3.3E-05	1.5E-04	AP-42, Table 3.2-2 (Jul-2000)		
Toluene	4.08E-04	lb/MMBtu	5.5E-03	2.4E-02	AP-42, Table 3.2-2 (Jul-2000)		
Vinvl Chloride	1.49E-05	lb/MMBtu	2.0E-04	8.8E-04	AP-42. Table 3.2-2 (Jul-2000)		
Xylene	1.84E-04	lb/MMBtu	2.5E-03	1.1E-02	AP-42, Table 3.2-2 (Jul-2000)		
Total HAP (including HCHO)	I		0.46	2.02	· · · · ·		

<u>M3 Appalachia Gathering, LLC</u> <u>Hamilton Compressor Station</u> <u>G35D Application</u>

Emergency Generator Engine

Engine Information:

Source Designation:	GE-1
Manufacturer:	Generac
Model No.:	14.2 L
Stroke Cycle:	4-stroke
Type of Burn:	Rich
Rated Horsepower (bhp):	304
Rated Power (kW):	227

Engine Fuel Information:

Fuel Type:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,031
Maximum Fuel Consumption at 100% Load (scf/hr):	2,571
Heat Input (MMBtu/hr):	2.65
Potential Fuel Consumption (MMBtu/yr):	1,325
Max. Fuel Consumption at 100% (MMscf/hr):	0.0026
Max. Fuel Consumption (MMscf/yr):	1.3
Max. Annual Hours of Operation (hr/yr):	500

Engine Emissions Data:

Delladard	Paulanian Pastan	I	Maximum Pote	ential Emissions	Estimation Basis / Emission	
Ponutant	Emission Factor	Units	lbs/hr	tpy	Factor Source	
NO _x	2.7	g/kW-hr	1.35	0.34	EPA Certificate of Conformity	
VOC (excludes HCHO)	1.3	g/kW-hr	0.65	0.16	EPA Certificate of Conformity	
VOC (includes HCHO)			0.70	0.18	VOC + HCHO	
со	5.4	g/kW-hr	2.70	0.67	EPA Certificate of Conformity	
SO _x	0.001	lb/MMBtu	1.56E-03	3.90E-04	AP-42, Table 3.2-3 (Aug-2000)	
PM ₁₀	0.02	lb/MMBtu	0.05	0.01	AP-42, Table 3.2-3 (Aug-2000)	
PM _{2.5}	0.02	lb/MMBtu	0.05	0.01	AP-42, Table 3.2-3 (Aug-2000)	
Formaldehyde (HCHO)	0.02	lb/MMBtu	0.05	0.01	AP-42, Table 3.2-3 (Aug-2000)	
GHG (CO ₂ e)	See Tab	le Below	310	78	40 CFR 98, Tables C-1 & C-2	
Other (Total HAP)	See Tab	le Below	0.09	0.02	AP-42, Table 3.2-3 (Aug-2000)	

Notes:

1. PM_{10} and $PM_{2.5}$ are total values (filterable + condensable).

2. GHG (CO_2e) is carbon dioxide equivalent, which is the summation of CO_2 (GWP = 1) + CH₄ (GWP = 25) + N₂O (GWP = 298).

3. Total HAP is the summation of all hazardous air pollutants for which there is a published emission factor for this source type.

<u>M3 Appalachia Gathering, LLC</u> <u>Hamilton Compressor Station</u> <u>G35D Application</u>

Emergency Generator Engine								
Greenhouse Gas (GHG) & Hazardous Air Pollutant (HAP) Emissions Calculations:								
Dollutout	Emission Easton	Unito	Maximum Pote	ntial Emissions	Estimation Basis / Emission			
Ponutant	Emission Factor	Units	lbs/hr	tpy	Factor Source			
GHGs:								
CO ₂	53.06	kg/MMBtu	310.10	77.53	40 CFR 98, Table C-1			
CH ₄	0.001	kg/MMBtu	5.8E-03	1.5E-03	40 CFR 98, Table C-2			
N ₂ O	0.0001	kg/MMBtu	5.8E-04	1.5E-04	40 CFR 98, Table C-2			
GHG (CO ₂ e)	•		310	78				
Organic HAPs:								
1,1,2,2-Tetrachloroethane	2.53E-05	lb/MMBtu	6.7E-05	1.7E-05	AP-42, Table 3.2-3 (Aug-2000)			
1,1,2-Trichloroethane	1.53E-05	lb/MMBtu	4.1E-05	1.0E-05	AP-42, Table 3.2-3 (Aug-2000)			
1,3-Butadiene	6.63E-04	lb/MMBtu	1.8E-03	4.4E-04	AP-42, Table 3.2-3 (Aug-2000)			
1,3-Dichloropropene	1.27E-05	lb/MMBtu	3.4E-05	8.4E-06	AP-42, Table 3.2-3 (Aug-2000)			
Acetaldehyde	2.79E-03	lb/MMBtu	7.4E-03	1.8E-03	AP-42, Table 3.2-3 (Aug-2000)			
Acrolein	2.63E-03	lb/MMBtu	7.0E-03	1.7E-03	AP-42, Table 3.2-3 (Aug-2000)			
Benzene	1.58E-03	lb/MMBtu	4.2E-03	1.0E-03	AP-42, Table 3.2-3 (Aug-2000)			
Carbon Tetrachloride	1.77E-05	lb/MMBtu	4.7E-05	1.2E-05	AP-42, Table 3.2-3 (Aug-2000)			
Chlorobenzene	1.29E-05	lb/MMBtu	3.4E-05	8.5E-06	AP-42, Table 3.2-3 (Aug-2000)			
Chloroform	1.37E-05	lb/MMBtu	3.6E-05	9.1E-06	AP-42, Table 3.2-3 (Aug-2000)			
Ethylbenzene	2.48E-05	lb/MMBtu	6.6E-05	1.6E-05	AP-42, Table 3.2-3 (Aug-2000)			
Ethylene Dibromide	2.13E-05	lb/MMBtu	5.6E-05	1.4E-05	AP-42, Table 3.2-3 (Aug-2000)			
Methanol	3.06E-03	lb/MMBtu	8.1E-03	2.0E-03	AP-42, Table 3.2-3 (Aug-2000)			
Methylene Chloride	4.12E-05	lb/MMBtu	1.1E-04	2.7E-05	AP-42, Table 3.2-3 (Aug-2000)			
Naphthalene	9.71E-05	lb/MMBtu	2.6E-04	6.4E-05	AP-42, Table 3.2-3 (Aug-2000)			
РАН	1.41E-04	lb/MMBtu	3.7E-04	9.3E-05	AP-42, Table 3.2-3 (Aug-2000)			
Styrene	1.19E-05	lb/MMBtu	3.2E-05	7.9E-06	AP-42, Table 3.2-3 (Aug-2000)			
Toluene	5.58E-04	lb/MMBtu	1.5E-03	3.7E-04	AP-42, Table 3.2-3 (Aug-2000)			
Vinyl Chloride	7.18E-06	lb/MMBtu	1.9E-05	4.8E-06	AP-42, Table 3.2-3 (Aug-2000)			
Xylene	1.95E-04	lb/MMBtu	5.2E-04	1.3E-04	AP-42, Table 3.2-3 (Aug-2000)			
Total HAP (including HCHO)	ı		0.09	0.02				

<u>M3 Appalachia Gathering, LLC</u> <u>Hamilton Compressor Station</u> <u>G35D Application</u>

Generator Engine

Engine Information:

Source Designation:	GE-2
Manufacturer:	Power Solutions, Inc. (PSI)
Model No.:	Vortec 5.7L
Stroke Cycle:	4-stroke
Type of Burn:	Rich
Rated Horsepower (bhp):	85

Engine Fuel Information:

Fuel Type:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,031
Maximum Fuel Consumption at 100% Load (scf/hr):	720
Heat Input (MMBtu/hr):	0.74
Potential Fuel Consumption (MMBtu/yr):	6,502
Max. Fuel Consumption at 100% (MMscf/hr):	0.0007
Max. Fuel Consumption (MMscf/yr):	6.3
Max. Annual Hours of Operation (hr/yr):	8,760

Engine Emissions Data:

Delladant	Paulanian Pantan	I.I.	Maximum Pote	ntial Emissions	Estimation Basis / Emission
Pollutant	Emission Factor	Units	lbs/hr	tpy	Factor Source
NO _x	1.00	g/bhp-hr	0.19	0.82	EPA Certificate of Conformity
VOC (excludes HCHO)	0.70	g/bhp-hr	0.13	0.57	EPA Certificate of Conformity
VOC (includes HCHO)			0.15	0.64	VOC + HCHO
СО	2.00	g/bhp-hr	0.37	1.64	EPA Certificate of Conformity
SO _x	0.001	lb/MMBtu	4.36E-04	1.91E-03	AP-42, Table 3.2-3 (Aug-2000)
PM ₁₀	0.02	lb/MMBtu	0.01	0.06	AP-42, Table 3.2-3 (Aug-2000)
PM _{2.5}	0.02	lb/MMBtu	0.01	0.06	AP-42, Table 3.2-3 (Aug-2000)
Formaldehyde (HCHO)	0.02	lb/MMBtu	0.02	0.07	AP-42, Table 3.2-3 (Aug-2000)
GHG (CO ₂ e)	See Tabl	e Below	87	381	40 CFR 98, Tables C-1 & C-2
Other (Total HAP)	See Tabl	e Below	0.02	0.11	AP-42, Table 3.2-3 (Aug-2000)

Notes:

1. PM₁₀ and PM_{2.5} are total values (filterable + condensable).

2. GHG (CO_2e) is carbon dioxide equivalent, which is the summation of CO_2 (GWP = 1) + CH₄ (GWP = 25) + N₂O (GWP = 298).

3. Total HAP is the summation of all hazardous air pollutants for which there is a published emission factor for this source type.

<u>M3 Appalachia Gathering, LLC</u> <u>Hamilton Compressor Station</u> <u>G35D Application</u>

	Gener	ator Engine			
Greenhouse Gas (GHG) & Hazardous Air Pollutant (HAP) Em	issions Calculation	<u>1S:</u>			
Dollutout	Emission Easton	Unito	Maximum Pote	ntial Emissions	Estimation Basis / Emission
Ponutant	Emission Factor	Units	lbs/hr	tpy	Factor Source
<u>GHGs:</u>					
CO ₂	53.06	kg/MMBtu	86.84	380.37	40 CFR 98, Table C-1
CH ₄	0.001	kg/MMBtu	1.6E-03	7.2E-03	40 CFR 98, Table C-2
N ₂ O	0.0001	kg/MMBtu	1.6E-04	7.2E-04	40 CFR 98, Table C-2
GHG (CO ₂ e)			87	381	
Organic HAPs:					
1,1,2,2-Tetrachloroethane	2.53E-05	lb/MMBtu	1.9E-05	8.2E-05	AP-42, Table 3.2-3 (Aug-2000)
1,1,2-Trichloroethane	1.53E-05	lb/MMBtu	1.1E-05	5.0E-05	AP-42, Table 3.2-3 (Aug-2000)
1,3-Butadiene	6.63E-04	lb/MMBtu	4.9E-04	2.2E-03	AP-42, Table 3.2-3 (Aug-2000)
1,3-Dichloropropene	1.27E-05	lb/MMBtu	9.4E-06	4.1E-05	AP-42, Table 3.2-3 (Aug-2000)
Acetaldehyde	2.79E-03	lb/MMBtu	2.1E-03	9.1E-03	AP-42, Table 3.2-3 (Aug-2000)
Acrolein	2.63E-03	lb/MMBtu	2.0E-03	8.6E-03	AP-42, Table 3.2-3 (Aug-2000)
Benzene	1.58E-03	lb/MMBtu	1.2E-03	5.1E-03	AP-42, Table 3.2-3 (Aug-2000)
Carbon Tetrachloride	1.77E-05	lb/MMBtu	1.3E-05	5.8E-05	AP-42, Table 3.2-3 (Aug-2000)
Chlorobenzene	1.29E-05	lb/MMBtu	9.6E-06	4.2E-05	AP-42, Table 3.2-3 (Aug-2000)
Chloroform	1.37E-05	lb/MMBtu	1.0E-05	4.5E-05	AP-42, Table 3.2-3 (Aug-2000)
Ethylbenzene	2.48E-05	lb/MMBtu	1.8E-05	8.1E-05	AP-42, Table 3.2-3 (Aug-2000)
Ethylene Dibromide	2.13E-05	lb/MMBtu	1.6E-05	6.9E-05	AP-42, Table 3.2-3 (Aug-2000)
Methanol	3.06E-03	lb/MMBtu	2.3E-03	9.9E-03	AP-42, Table 3.2-3 (Aug-2000)
Methylene Chloride	4.12E-05	lb/MMBtu	3.1E-05	1.3E-04	AP-42, Table 3.2-3 (Aug-2000)
Naphthalene	9.71E-05	lb/MMBtu	7.2E-05	3.2E-04	AP-42, Table 3.2-3 (Aug-2000)
РАН	1.41E-04	lb/MMBtu	1.0E-04	4.6E-04	AP-42, Table 3.2-3 (Aug-2000)
Styrene	1.19E-05	lb/MMBtu	8.8E-06	3.9E-05	AP-42, Table 3.2-3 (Aug-2000)
Toluene	5.58E-04	lb/MMBtu	4.1E-04	1.8E-03	AP-42, Table 3.2-3 (Aug-2000)
Vinyl Chloride	7.18E-06	lb/MMBtu	5.3E-06	2.3E-05	AP-42, Table 3.2-3 (Aug-2000)
Xylene	1.95E-04	lb/MMBtu	1.4E-04	6.3E-04	AP-42, Table 3.2-3 (Aug-2000)
Total HAP (including HCHO)	•		0.02	0.11	

<u>M3 Appalachia Gathering, LLC</u> <u>Hamilton Compressor Station</u> <u>G35D Application</u>

Microturbine Generator

Engine Information:

Source Designation:	MT-1
Manufacturer:	Flex Energy
Model No.:	GT250S
Engine Type:	Microturbine
Rated Horsepower (bhp):	335
Rated Electrical Power Output (kW):	250
Rated Electrical Power Output (MW):	0.3
Number of Units:	1

Engine Fuel Information:

Fuel Type:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,031
Maximum Fuel Consumption at 100% Load (scf/hr):	3,172
Heat Input (MMBtu/hr):	3.27
Potential Fuel Consumption (MMBtu/yr):	28,645
Max. Fuel Consumption at 100% (MMscf/hr):	0.0032
Max. Fuel Consumption (MMscf/yr):	27.8
Max. Annual Hours of Operation (hr/yr):	8,760
	1

Engine Emissions Data:

Delladaad	Factoria Factor	II.	Maximum Pote	ntial Emissions	Estimation Basis / Emission
Ponutant	Emission Factor	Units	lbs/hr	tpy	Factor Source
NO _X	0.45	lb/MWhe	0.11	0.49	Manufacturer's Specifications
VOC	0.25	lb/MWhe	0.06	0.27	Manufacturer's Specifications
со	1.12	lb/MWhe	0.28	1.23	Manufacturer's Specifications
SO _X	0.003	lb/MMBtu	1.11E-02	4.87E-02	AP-42, Table 3.1-2a (Apr-2000)
PM ₁₀	0.01	lb/MMBtu	0.02	0.09	AP-42, Table 3.1-2a (Apr-2000)
PM _{2.5}	0.01	lb/MMBtu	0.02	0.09	AP-42, Table 3.1-2a (Apr-2000)
Formaldehyde (HCHO)	0.001	lb/MMBtu	2.32E-03	0.01	AP-42, Table 3.1-3 (Apr-2000)
GHG (CO ₂ e)	See Tab	le Below	383	1,677	40 CFR 98, Tables C-1 & C-2
Other (Total HAP)	See Tab	le Below	3.36E-03	0.01	AP-42, Table 3.1-3 (Apr-2000)

Notes:

1. PM₁₀ and PM_{2.5} are total values (filterable + condensable).

2. GHG (CO_2e) is carbon dioxide equivalent, which is the summation of CO_2 (GWP = 1) + CH₄ (GWP = 25) + N₂O (GWP = 298).

3. Total HAP is the summation of all hazardous air pollutants for which there is a published emission factor for this source type.

<u>M3 Appalachia Gathering, LLC</u> <u>Hamilton Compressor Station</u> <u>G35D Application</u>

	Microtur	bine Genera	itor		
Greenhouse Gas (GHG) & Hazardous Air Pollutant (HAP) En	nissions Calculatio	ns:			
Dellusteret	Paulanian Pastan	No. ite	Maximum Pote	ential Emissions	Estimation Basis / Emission
Pollutant	Emission Factor	Units	lbs/hr	tpy	Factor Source
<u>GHGs:</u>					
CO ₂	53.06	kg/MMBtu	383	1,676	40 CFR 98, Table C-1
CH ₄	0.001	kg/MMBtu	7.2E-03	3.2E-02	40 CFR 98, Table C-2
N ₂ O	0.0001	kg/MMBtu	7.2E-04	3.2E-03	40 CFR 98, Table C-2
GHG (CO ₂ e)			383	1,677	
Organic HAPs:					
1,3-Butadiene	4.30E-07	lb/MMBtu	1.4E-06	6.2E-06	AP-42, Table 3.1-3 (Apr-2000)
Acetaldehyde	4.00E-05	lb/MMBtu	1.3E-04	5.7E-04	AP-42, Table 3.1-3 (Apr-2000)
Acrolein	6.40E-06	lb/MMBtu	2.1E-05	9.2E-05	AP-42, Table 3.1-3 (Apr-2000)
Benzene	1.20E-05	lb/MMBtu	3.9E-05	1.7E-04	AP-42, Table 3.1-3 (Apr-2000)
Ethylbenzene	3.20E-05	lb/MMBtu	1.0E-04	4.6E-04	AP-42, Table 3.1-3 (Apr-2000)
Naphthalene	1.30E-06	lb/MMBtu	4.3E-06	1.9E-05	AP-42, Table 3.1-3 (Apr-2000)
РАН	2.20E-06	lb/MMBtu	7.2E-06	3.2E-05	AP-42, Table 3.1-3 (Apr-2000)
Propylene oxide	2.90E-05	lb/MMBtu	9.5E-05	4.2E-04	AP-42, Table 3.1-3 (Apr-2000)
Toluene	1.30E-04	lb/MMBtu	4.3E-04	1.9E-03	AP-42, Table 3.1-3 (Apr-2000)
Xylene	6.40E-05	lb/MMBtu	2.1E-04	9.2E-04	AP-42, Table 3.1-3 (Apr-2000)
Total HAP (including HCHO)			0.00	0.01	

M3 Appalachia Gathering, LLC Hamilton Compressor Station G35D Application

Glycol Dehydrators

(lbs/day)

2616.943

2790.778

2790.778

(tons/yr)

477.5921

29.2232

2.1555

0.0686

0.2451

0.0155

0.0170

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

509.3170

509.3170

2.5017

0.0000

Source Designation:	TEG-1 to TEG-2
Throughput Rating (MMSCFD):	75
Tower Temperature (deg F):	80
Tower Pressure (psig):	1,250
Glycol Pump Rate (gpm):	15
Flash Tank Temperature (deg F):	80
Flash Tank Pressure (psig):	40
Potential Annual Hours of Operation (hr/yr):	8,760

GRI-GLYCalc Version 4.0 - E	EMISSIONS S	UMMARY ¹		GRI-GLYCalc Version 4.0 -	EMISSIONS SU	JMMARY ¹
Uncontrolled Regenerator H Pollutant	Emissions (lbs/hr)	(lbs/day)	(tons/yr)	Flash Gas Emissions Pollutant	(lbs/hr)	(lbs/day)
Methane	38.4344	922.426	168.3428	Methane	109.0393	2616.943
Ethane	2.3194	55.665	10.1588	Ethane	6.6720	160.127
Propane	0.2064	4.954	0.9041	Propane	0.4921	11.811
Isobutane	0.0081	0.194	0.0355	Isobutane	0.0157	0.376
n-Butane	0.0337	0.809	0.1477	n-Butane	0.0560	1.343
Isopentane	0.0025	0.061	0.0111	Isopentane	0.0035	0.085
n-Pentane	0.0033	0.079	0.0143	n-Pentane	0.0039	0.093
n-Hexane*	0.0000	0.000	0.0000	n-Hexane*	0.0000	0.000
Heptanes	0.0000	0.000	0.0000	Heptanes	0.0000	0.000
Benzene*	0.0000	0.000	0.0000	Benzene*	0.0000	0.000
Toluene*	0.0000	0.000	0.0000	Toluene*	0.0000	0.000
Ethylbenzene*	0.0000	0.000	0.0000	Ethylbenzene*	0.0000	0.000
Xylenes*	0.0000	0.000	0.0000	Xylenes*	0.0000	0.000
C8 + Heavier Hydrocarbons	0.0000	0.000	0.0000	C8 + Heavier Hydrocarbons	0.0000	0.000
Total Emissions	41.0078	984.188	179.6144	Total Emissions	116.2824	2790.778
Total Hydrocarbon Emissions	41.0078	984.188	179.6144	Total Hydrocarbon Emissions	116.2824	2790.778
Total VOC Emissions	0.2540	6.097	1.1127	Total VOC Emissions	0.5712	13.708
Total HAP Emissions	0.0000	0.000	0.0000	Total HAP Emissions	0.0000	0.000

Total Emission Rate ² Regenerator + Flash Tank Pollutant	(lbs/hr)	(lbs/day)	(tons/yr)
Methane	176.9684	4247.243	775.1219
Ethane	10.7897	258.950	47.2584
Propane	0.8382	20.118	3.6715
Isobutane	0.0286	0.684	0.1249
n-Butane	0.1076	2.582	0.4714
Isopentane	0.0072	0.175	0.0319
n-Pentane	0.0086	0.206	0.0376
n-Hexane*	0.0000	0.000	0.0000
Heptanes	0.0000	0.000	0.0000
Benzene*	0.0000	0.000	0.0000
Toluene*	0.0000	0.000	0.0000
Ethylbenzene*	0.0000	0.000	0.0000
Xylenes*	0.0000	0.000	0.0000
C8 + Heavier Hydrocarbons	0.0000	0.000	0.0000
Total Emissions	188.7482	4529.959	826.7177
Total Hydrocarbon Emissions	188.7482	4529.959	826.7177
Total VOC Emissions	0.9902	23.766	4.3373
Total HAP Emissions	0.0000	0.000	0.0000

* HAPs

1. Based on GRI-GLYCalc 4.0 run at maximum operating conditions. The unit utilizes energy-exchange glycol pumps and sparging (stripping) gas.

2. Totals conservatively include a 20% compliance margin to account for minor variations in inlet gas composition that may occur periodically.

3. The existing dehydration unit (TEG-1) is permitted with a condenser. However, this control device has negligible impact on emissions, as there is no detectable level of heavy hydrocarbons (ex. benzene, toluene, etc.) in the gas. Therefore, the applicant is requesting the removal of this control device from the issued permit, as it provides minimal environmental benefit at high cost. A GRI-GLYCalc run showing the ineffectiveness of the condenser is included for reference.

Company Name:	M3 Appalachia Gathering, LLC
Facility Name:	Hamilton Compressor Station
Project Description:	G35D Application

	Reboilers
Source Designation:	REB-1 to REB-2
Fuel Used:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,031
Heat Input (MMBtu/hr):	1.50
Fuel Consumption (MMscf/hr):	1.45E-03
Potential Annual Hours of Operation (hr/yr):	8,760

-

Criteria and Manufacturer Specific Pollutant Emission Rates:

	Emission Factor	Potential	Emissions
Pollutant	(lb/MMscf) ¹	(lb/hr) ²	(tons/yr) ³
NO _x	100	0.15	0.64
CO	84	0.12	0.54
VOC	5.5	8.0E-03	0.04
SO ₂	0.6	8.7E-04	3.8E-03
PM Total	7.6	0.01	0.05
PM Condensable	5.7	8.3E-03	0.04
PM ₁₀ (Filterable)	1.9	2.8E-03	0.01
PM _{2.5} (Filterable)	1.9	2.8E-03	0.01
Lead	5.00E-04	7.3E-07	3.2E-06
CO_2^4	117.0	175.50	768.67
CH_4^4	2.21E-03	3.3E-03	1.4E-02
N ₂ O ⁴	2.21E-04	3.3E-04	1.4E-03

M3 Appalachia Gathering, LLC Hamilton Compressor Station G35D Application

Reboilers

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential	Emissions
Pollutant	(lb/MMscf) ¹	(lb/hr) ²	(tons/yr) ³
HAPs:			
Methylnaphthalene (2-)	2.4E-05	3.5E-08	1.5E-07
3-Methylchloranthrene	1.8E-06	2.6E-09	1.1E-08
7,12-Dimethylbenz(a)anthracene	1.6E-05	2.3E-08	1.0E-07
Acenaphthene	1.8E-06	2.6E-09	1.1E-08
Acenaphthylene	1.8E-06	2.6E-09	1.1E-08
Anthracene	2.4E-06	3.5E-09	1.5E-08
Benz(a)anthracene	1.8E-06	2.6E-09	1.1E-08
Benzene	2.1E-03	3.1E-06	1.3E-05
Benzo(a)pyrene	1.2E-06	1.7E-09	7.6E-09
Benzo(b)fluoranthene	1.8E-06	2.6E-09	1.1E-08
Benzo(g,h,i)perylene	1.2E-06	1.7E-09	7.6E-09
Benzo(k)fluoranthene	1.8E-06	2.6E-09	1.1E-08
Chrysene	1.8E-06	2.6E-09	1.1E-08
Dibenzo(a,h) anthracene	1.2E-06	1.7E-09	7.6E-09
Dichlorobenzene	1.2E-03	1.7E-06	7.6E-06
Fluoranthene	3.0E-06	4.4E-09	1.9E-08
Fluorene	2.8E-06	4.1E-09	1.8E-08
Formaldehyde	7.5E-02	1.1E-04	4.8E-04
Hexane	1.8E+00	2.6E-03	1.1E-02
Indo(1,2,3-cd)pyrene	1.8E-06	2.6E-09	1.1E-08
Naphthalene	6.1E-04	8.9E-07	3.9E-06
Phenanthrene	1.7E-05	2.5E-08	1.1E-07
Pyrene	5.0E-06	7.3E-09	3.2E-08
Toluene	3.4E-03	4.9E-06	2.2E-05
Arsenic	2.0E-04	2.9E-07	1.3E-06
Beryllium	1.2E-05	1.7E-08	7.6E-08
Cadmium	1.1E-03	1.6E-06	7.0E-06
Chromium	1.4E-03	2.0E-06	8.9E-06
Cobalt	8.4E-05	1.2E-07	5.4E-07
Manganese	3.8E-04	5.5E-07	2.4E-06
Mercury	2.6E-04	3.8E-07	1.7E-06
Nickel	2.1E-03	3.1E-06	1.3E-05
Selenium	2.4E-05	3.5E-08	1.5E-07
Total HAP		2.7E-03	1.2E-02

¹ Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, & 1.4-3

² Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) × Emission Factor (lb/MMscf).

³ Annual Emissions (tons/yr)_{Potential} = (lb/hr)_{Emissions} × (Maximum Allowable Operating Hours, 8760 hr/yr) × (1 ton/2000 lb).

 $^{\rm 4}$ GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

M3 Appalachia Gathering, LLC Hamilton Compressor Station G35D Application

8,760 hrs/yr

Storage Vessels

Operational Hours

Storage Tanks - Uncontrolled 1,2,3

Source Designation: Contents: Number: Capacity: Throughput: Condensate Throughput:	T01 t Coolant (Eth) 2 1,260 15,120	o TO2 ylene Glycol) tank(s) gal (each) gal (each)	T03 t Meth 6 335 4,020	o T08 hanol tank(s) gal (each) gal (each)	T: Waste 1 8,820 105,840 0.1	10 Fluids tank(s) gal (each) gal (each) bbl/day (each	T: Waste 1 16,800 201,600 0.1	11 Fluids tank(s) gal (each) gal (each) bbl/day (each	T12 t Triethyle 2 500 6,000	o T13 ne Glycol tank(s) gal (each) gal (each)	T14 t Engin 6 500 6,000	o T19 ne Oil tank(s) gal (each) gal (each)	T20 t Compre 6 500 6,000	o T25 ssor Oil tank(s) gal (each) gal (each)
Emissions (per tank)	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
VOC HAP Benzene Toluene Ethylbenzene Xylene n-Hexane	6.8E-06 6.8E-06 	3.0E-05 3.0E-05 	0.002 0.002 	0.010 0.010 	0.052 0.005 4.6E-04 2.3E-04 <0.001 <0.001 0.003	0.229 0.020 0.002 0.001 <0.001 <0.001 0.013	0.052 0.005 4.6E-04 2.3E-04 <0.001 <0.001 0.003	0.229 0.020 0.002 0.001 <0.001 <0.001 0.013	6.8E-06 6.8E-06 	3.0E-05 3.0E-05 	4.5E-05 4.5E-05 	2.0E-04 2.0E-04 	4.5E-05 4.5E-05 	2.0E-04 2.0E-04
Methane					0.001	0.006	0.001	0.006						

¹ Uncontrolled emissions calculation using E&P TANK v2.0 for tanks with flashing; emissions include working, breathing and flashing losses. Conservatively assumes 1% condensate in waste fluids. ² Uncontrolled emissions calculation using EPA Tanks 4.0.9d for tanks without flashing; emissions include working and breathing losses.

² Conservatively assumes one turnover per month, per tank.

M3 Appalachia Gathering, LLC Hamilton Compressor Station G35D Application

Liquid Loading

Throughput Capture Efficiency Control Efficiency 307,440 gal/yr 0% non-tested tanker trucks 0% Combustor destruction efficiency

Liquid Loading Emissions

Source ID:

Uncontrolled Loading Losses: L_L (lb/10³ gal) = 12.46 (SPM)/T * Controlled Loading Losses: L_L (lb/10³ gal) = 12.46 (SPM)/T * (1 - Capture Efficiency * Control Efficiency)

L01

Parameter	Value	Description
S	0.60	Saturation factor for "Submerged Loading: dedicated normal service" (AP-42 Table 5.2-1)
Capture Efficiency	0%	Capture Efficiency
Control Efficiency	0%	Control Efficiency
Р	0.3240	true vapor pressure of liquid loaded (psia) - from EPA TANKS run
М	19.3610	molecular weight of vapors (lb/lb-mol) - from EPA TANKS run
Т	511.81	bulk liquid temperature of liquids loaded (deg R) - from EPA TANKS run

Description	Uncontrolled Loading Losses	Maximum Throughput ¹	VOC EI	nissions	HAP Emissions		
	(lb/10 ³ gal)	(gal/yr)	(tpy)	(lb/hr) ²	(tpy)	(lb/hr) ²	
Truck Loading of Produced Fluids	0.09	307,440	0.01	0.05	0.00	0.01	

¹ Total estimated maximum annual throughput for the waste fluid tanks.

¹ Lb/hr values assume two (2) hours of loading per day, five (5) days per week.

Fugitive Emissions

Fugitive Emissions from Component Leaks

Facility Equipment Type ¹	Valves	Connectors	Open-Ended Lines	Pressure Relief Devices
Wellhead	8	38	0.5	0
Separators	1	6	0	0
Meters/Piping	12	45	0	0
Compressors	12	57	0	0
In-line heaters	14	65	2	1
Dehydrators	24	90	2	2

¹ Table W-1B to Subpart W of Part 98 —Default Average Component Counts for Major Onshore Natural Gas Production

Fugitive VOC/Total Emissions from Component Leaks

Equipment Type	Service	Emission Factors ¹ (kg/hr/source)	Facility Equipment Count ² (units)	TOC Annual Fugitive Emissions (tpy)	Weight Fraction VOC	Weight Fraction HAP	VOC Emissions ³ (tpy)	HAP Emissions ³ (tpy)
Pumps	Light Liquid	0.01990	3	0.58	1.00	0.0E+00	0.58	0.0E+00
Compressor	Gas	0.22800	6	13	0.00	0.0E+00	0.05	0.0E+00
Valves	Gas	0.00597	204	11.76	0.00	0.0E+00	0.04	0.0E+00
Pressure Relief Valves	Gas	0.10400	10	10.04	0.00	0.0E+00	0.04	0.0E+00
Open-Ended Lines	All	0.00170	6	0.10	0.00	0.0E+00	3.7E-04	0.0E+00
Connectors	All	0.00183	887	15.67	0.00	0.0E+00	0.06	0.0E+00
Intermittent Pneumatic Devices ⁴	Gas	13.5	40				0.39	0.0E+00
			Emission Totals:	51.35			1.16	0.0E+00

¹ U.S. EPA. Office of Air Quality Planning and Standards. *Protocol for Equipment Leak Emission Estimates*. Table 2-1. (Research Triangle Park, NC: U.S. EPA EPA-453/R-95-017, 1995). SOCMI factors were used as it was representative of natural gas extraction. The pneumatic controller value is from 40 CFR 98 Subpart W, Table W-1A (units of scf/hr-component).

² Assumes one pump for each tank and one meter. Pressure relief valves count includes two for each storage tank. Pneumatic controllers operate on air (no gas emissions). A 50% compliance margin is added to the component counts based on Subpart W coun ³ Potential emissions VOC/HAP (tpy) = Emission factor (kg/hr/source) * Number of Sources * Weight % VOC/HAP x 2.2046 (lb/kg) x 8,760 (hr/yr) ÷ 2,000 (lb/ton)

⁴ Potential emissions VOC/HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % VOC/HAP + 100 + 379 (scf/lb-mol) + 2,000 (lb/ton)

Fugitive Emissions

Fugitive Specific HAP Emissions from Component Leaks

Equipment Type	Service	Emission Factors ¹ (kg/hr/source)	Facility Equipment Count ² (units)	TOC Annual Fugitive Emissions (tpy)	Benzene Emissions ³ (tpy)	Toluene Emissions ³ (tpy)	Ethylbenzene Emissions ³ (tpy)	Xylene Emissions ³ (tpy)	n-Hexane Emissions ⁴ (tpy)
Pumps	Light Liquid	0.01990	3	0.58	< 0.01	< 0.01	<0.01	< 0.01	< 0.01
Compressor	Gas	0.22800	6	13.21	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Valves	Gas	0.00597	204	11.76	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pressure Relief Valves	Gas	0.10400	10	10.04	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Open-Ended Lines	All	0.00170	6	0.10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Connectors	All	0.00183	887	15.67	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Intermittent Pneumatic Devices ⁴	Gas	13.5	40		<0.01	<0.01	< 0.01	<0.01	<0.01
			Emission Totals:	51.35	<0.01	<0.01	<0.01	<0.01	<0.01

¹ U.S. EPA. Office of Air Quality Planning and Standards. Protocol for Equipment Leak Emission Estimates. Table 2-1. (Research Triangle Park, NC: U.S. EPA EPA-453/R-95-017, 1995). SOCMI factors were used as it was representative of natural gas liquids extraction. Pneumatic controllers operate on air (no gas emissions).

² Assumes one pump for each tank. Pressure relief valves count includes one Emergency Pressure Relief valve and one lock-down hatch for each storage tank. Pneumatic controllers operate on air (no gas emissions). A 50% compliance margin is added to the component counts based on Subpart W counts.

³ Potential emissions HAP (tpy) = Emission factor (kg/hr/source) * Number of Sources * Weight % HAP x 2.2046 (lb/kg) x 8,760 (hr/yr) ÷ 2,000 (lb/ton)

⁴ Potential emissions HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % HAP + 100 + 379 (scf/lb-mol) + 2,000 (lb/ton)

GHG Fugitive Emissions from Component Leaks

		GHG Emission			
	Component	Factor	CH ₄ Emissions ^{2,3}	CO ₂ Emissions ^{2,3}	CO ₂ e Emissions ⁴
Component	Count	scf/hr/component	(tpy)	(tpy)	(tpy)
Pumps	3	0.01	0.01	4.0E-05	0.13
Compressor	6	4.17	4.49	0.03	112.19
Valves	204	0.027	0.99	0.01	24.70
Pressure Relief Devices	10	0.04	0.07	5.3E-04	1.79
Open-Ended Lines	6	0.061	0.07	4.9E-04	1.64
Connectors	887	0.003	0.48	3.6E-03	11.92
Intermittent Pneumatic Devices	40	6	14.34	0.11	358.71
	Total		20.44	0.15	511.09

¹ Population emission factors for gas service in the Eastern U.S. from Table W-1A of Subpart W - Default Whole Gas Emission Factors for Onshore Production , 40 CFR 98, Subpart W (table W-6 for compressor).

² Calculated in accordance with Equations W-32a, W-35 and W-36 in Subpart W of 40 CFR 98. See footnote 4 above for sample calculation.

³ Potential emissions VOC/HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % VOC/HAP ÷ 100 ÷ 379 (scf/lb-mol) ÷ 2,000 (lb/ton) Mole fractions of CH₄ and CO₂ based on gas analysis:

0.26% CO₂:

⁴ Carbon equivalent emissions (CO₂e) are based on the following Global Warming Potentials (GWP) from 40 CFR Part 98, Table A-1:

Carbon Dioxide (CO₂): 1 Methane (CH₄):

25

M3 Appalachia Gathering, LLC Hamilton Compressor Station G35D Application

Fugitive Emissions

Fugitive Emissions from Venting

	Volume	VOC Emissions	Benzene Emissions	Toluene Emissions	Ethylbenzene Emissions	Xylene Emissions	n-Hexane Emissions	HAP Emissions	CH ₄ Emissions	CO ₂ Emissions	CO ₂ e Emissions
Source	(scf/yr)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
Miscellaneous Gas Venting	5,000,000	0.41	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	102.34	0.76	2559.30
Total		0.41	<0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	102.34	0.76	2,559.30

¹ VOC and HAP emissions are based on sum of the fractions of the pollutants in the site-specific gas analysis in those classifications, and are calculated in accordance with standard conversion methodology and factors.

² CH₄ and CO₂ emissions are based on fractions of these pollutants in the site-specific gas analysis, and are calculated in accordance with Equations W-35 and W-36 in Subpart W of 40 CFR 98.

 3 GHG (CO₂e) is carbon dioxide equivalent, which is the summation of CO₂ (GWP = 1) + CH₄ (GWP = 25) + N₂O (GWP = 298).

⁴ Total gas volume emitted (and thus subsequent emissions values) is estimated based on engineering judgement and is conservative.

⁵ Total gas volume emitted includes blowdowns and other venting activities, such as pigging.

⁶ Potential emissions VOC/HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % VOC/HAP + 100 + 379 (scf/lb-mol) + 2,000 (lb/ton)

⁷ Potential emissions CH₄/CO₂ (tpy) = Gas volume vented (scf/yr) * Mole % CH₄/CO₂ ÷ 100 * Density CH₄/CO₂ (kg/scf) * 1,000 (g/kg) ÷ 453.6 (g/lb) ÷ 2,000 (lb/ton)

 Company Name:
 M3 /

 Facility Name:
 Ham

 Project Description:
 G351

M3 Appalachia Gathering, LLC Hamilton Compressor Station G35D Application

Haul Roads

Estimated Potential Road Fugitive Emissions

Unpaved Road Emissions

iveu Koau Elliissiolis				
Unpaved Roads	E (lb/VMT)	$= k(s/12)^{a}(W/3)^{b}$)*[(365-p)/3	65]
	PM	PM ₁₀	PM _{2.5}	
k Factor (lb/VMT)	4.9	1.5	0.15	AP-42 Table 13.2.2-2 (Final, 11/06)
Silt content, s	4.8	%		AP-42 Table 13.2.2-1 (11/06), for Sand and Gravel Processing
Number of Rain Days, p	150			AP-42 Figure 13.2.1-2
а	0.7	0.9	0.9	AP-42 Table 13.2.2-2 (Final, 11/06)
b	0.45	0.45	0.45	AP-42 Table 13.2.2-2 (Final, 11/06)

Description	Weight of Empty Truck (tons)	Weight of Truck w/ Max Load (tons)	Mean Vehicle Weight (tons)	Length of Unpaved Road Traveled (mile)	Trips Per Year	Mileage Per Year	Control (%)	PM	Emissions (tpy PM ₁₀	7) PM _{2.5}
Liquids Hauling Employee Vehicles	20 3	40 3	30 3	1.16 1.16	77 200	178 462	0 0	0.38 0.35	0.10 0.09	0.01 0.01
Total Potential Emissions								0.73	0.19	0.02

M3 Appalachia Gathering, LLC Hamilton Compressor Station G35D Application

Gas Analysis

Sample Location: HHV (Btu/scf):	Hamilton Compressor 1,031	Station			
Constituent	Natural Gas Stream Speciation (Mole %)	Molecular Weight	Molar Weight	Average Weight Fraction	Natural Gas Stream Speciation (Wt. %)
Carbon Dioxide	0.2633	44.01	0.12	0.01	0.700
Nitrogen	0.2418	28.01	0.07	0.00	0.409
Methane	96.7125	16.04	15.51	0.94	93.709
Ethane	2.6452	30.07	0.80	0.05	4.805
Propane	0.1242	44.10	0.05	0.00	0.331
Isobutane	0.0028	58.12	0.00	0.00	0.010
n-Butane	0.0092	58.12	0.01	0.00	0.032
Isopentane	0.0005	72.15	0.00	0.00	0.002
n-Pentane	0.0005	72.15	0.00	0.00	0.002
Cyclopentane	< 0.001	70.1	0.0	0.0	0.000
n-Hexane	< 0.001	86.18	0.00	0.00	0.000
Cyclohexane	< 0.001	84.16	0.00	0.00	0.000
Other Hexanes	< 0.001	86.18	0.00	0.00	0.000
Heptanes	< 0.001	100.21	0.00	0.00	0.000
Methylcyclohexane	< 0.001	98.19	0.00	0.00	0.000
2,2,4-Trimethylpentane	< 0.001	114.23	0.00	0.00	0.000
Benzene*	< 0.001	78.11	0.00	0.00	0.000
Toluene*	< 0.001	92.14	0.00	0.00	0.000
Ethylbenzene*	< 0.001	106.17	0.00	0.00	0.000
Xylenes*	< 0.001	106.16	0.00	0.00	0.000
C8 + Heavies	< 0.001	130.80	0.00	0.00	0.000
Totals	100.000		16.55	1.00	100

TOC (Total)	99.49	98.89
VOC (Total)	0.14	0.38
HAP (Total)	0.00	0.00

GLYCalc Run Page: 1 GRI-GLYCalc VERSION 4.0 - SUMMARY OF INPUT VALUES (Input Report) Case Name: Hamilton Compressor Station: TEG-1 & TEG-2 File Name: Z:\Client\DTE\West Virginia\Hamilton\Projects\173901.0082 Hamilton Permit Mod\04 Draft\2017-0306 Draft G35D Application\Attach R - Emission Calcs\02 GRI-GLYCalc\2017-0308 M3 Hamilton G35D DehyEmissions.ddf Date: March 08, 2017 DESCRIPTION: _____ Description: Potential-to-emit calculations. Annual Hours of Operation: 8760.0 hours/yr WET GAS: _____ Temperature: 80.00 40.5 1250.00 psig 80.00 deg. F Wet Gas Water Content: Saturated Component Conc. (vol 응) ----- -----Carbon Dioxide0.2633Nitrogen0.2418Methane96.7125Ethane2.6452Propane0.1242
 Isobutane
 0.0028

 n-Butane
 0.0092

 Isopentane
 0.0005

 n-Pentane
 0.0005
 DRY GAS: _____ Flow Rate: 75.0 MMSCF/day Water Content: 7.0 lbs. H2O/MMSCF LEAN GLYCOL: _____ Glycol Type: TEG Water Content: 1.5 wt% H2O Flow Rate: 15.0 gpm PUMP: Glycol Pump Type: Gas Injection Gas Injection Pump Volume Ratio: 0.080 acfm gas/gpm glycol FLASH TANK: _____ Flash Control: Combustion device Flash Control Efficiency: 65.00 % Temperature: 80.0 deg. F Pressure: 40.0 psig

Potential-to-Emit

STRIPPING GAS:

Source of Gas: Dry Gas Gas Flow Rate: 15.000 scfm

Potential-to-Emit GLYCalc Run (Aggregate Report)

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: Hamilton Compressor Station: TEG-1 & TEG-2 File Name: Z:\Client\DTE\West Virginia\Hamilton\Projects\173901.0082 Hamilton Permit Mod\04 Draft\2017-0306 Draft G35D Application\Attach R - Emission Calcs\02 GRI-GLYCalc\2017-0308 M3 Hamilton_G35D_DehyEmissions.ddf Date: March 08, 2017

DESCRIPTION:

Description: Potential-to-emit calculations.

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

UNCONTROLLED REGENERATOR EMISSIONS	;		
Component	lbs/hr	lbs/day	tons/yr
Methane Ethane Propane Isobutane n-Butane	38.4344 2.3194 0.2064 0.0081 0.0337	922.426 55.665 4.954 0.194 0.809	168.3428 10.1588 0.9041 0.0355 0.1477
Isopentane n-Pentane	0.0025	0.061 0.079	0.0111 0.0143
Total Emissions	41.0078	984.188	179.6144
Total H <u>ydrocarbon Emissions</u>	41.0078	984.188	179.6144
Total VOC Emissions	0.2540	6.097	1.1127

FLASH GAS EMISSIONS			
Component	lbs/hr	lbs/day	tons/yr
Methane Ethane Propane Isobutane n-Butane	109.0393 6.6720 0.4921 0.0157 0.0560	2616.943 160.127 11.811 0.376 1.343	477.5921 29.2232 2.1555 0.0686 0.2451
Isopentane n-Pentane	0.0035 0.0039	0.085 0.093	0.0155 0.0170
Total Emissions	116.2824	2790.778	509.3170
Total Hydrocarbon Emissions	116.2824	2790.778	509.3170
ICCAL VOC EMISSIONS	0.3712	13.700	2.301/

FLASH TANK OFF GAS

Compo	nent	lbs/hr	lbs/day	tons/yr
	Methane Ethane Propane Isobutane n-Butane	311.5409 19.0627 1.4061 0.0448 0.1599	7476.981 457.505 33.746 1.075 3.837	1364.5490 83.4947 6.1586 0.1961 0.7002

Isopen	tane 0.0101	0.242	0.0443
n-Pen	tane 0.0111	0.266	0.0485
Total Emiss	ions 332.2355	7973.651	1455.1914
Total Hydrocarbon Emiss	ions 332.2355	7973.651	1455.1914
Total VOC Emiss	ions 1.6319	39.165	7.1477

EQUIPMENT REPORTS:

ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

MMSCF
MMSCF
0

Component	Remaining in Dry Gas	Absorbed in Glycol
Water	3.89%	96.11%
Carbon Dioxide	99.62%	0.38%
Nitrogen	99.97%	0.03%
Methane	99.97%	0.03%
Ethane	99.92%	0.08%
Propane	99.89%	0.11%
Isobutane	99.85%	0.15%
n-Butane	99.81%	0.19%
Isopentane	99.82%	0.18%
n-Pentane	99.77%	0.23%

FLASH TANK

Flash Control: Combustion device Flash Control Efficiency: 65.00 % Flash Temperature: 80.0 deg. F Flash Pressure: 40.0 psig Left in Removed in

Component	Glycol	Flash Gas
Water	99.91%	0.09%
Carbon Dioxide	8.42%	91.58%
Nitrogen	0.51%	99.49%
Methane	0.52%	99.48%
Ethane	2.22%	97.78%

Propane	5.17%	94.83%
Isobutane	8.66%	91.34%
n-Butane	11.64%	88.36%
Isopentane	14.40%	85.60%
n-Pentane	18.17%	81.83%

REGENERATOR

Regenerator Stripping Gas: Dry Product Gas

Stripping Gas Flow Rate: 15.0000 scf

15.	0000	SCIM
-----	------	------

Component	Remaining in Glycol	Distilled Overhead
Water	60.45%	39.55%
Carbon Dioxide	0.00%	100.00%
Nitrogen	0.00%	100.00%
Methane	0.00%	100.00%
Ethane	0.00%	100.00%
Propane	0.00%	100.00%
Isobutane	0.00%	100.00%
n-Butane	0.00%	100.00%
Isopentane	1.56%	98.44%
n-Pentane	1.43%	98.57%

STREAM REPORTS:

WET GAS STREAM

Temperature: Pressure: Flow Rate:	80.00 1264.70 3.13e+006	deg. psia scfh	F			
	Component	;		Conc. (vol%)	Loading (lb/hr)	

Water	5.81e-002	8.62e+001
Carbon Dioxide	2.63e-001	9.55e+002
Nitrogen	2.42e-001	5.58e+002
Methane	9.67e+001	1.28e+005
Ethane	2.64e+000	6.55e+003
Propane	1.24e-001	4.51e+002
Isobutane	2.80e-003	1.34e+001
n-Butane	9.19e-003	4.40e+001
Isopentane	5.00e-004	2.97e+000
n-Pentane	5.00e-004	2.97e+000
Total Components	100.00	1.36e+005

DRY GAS STREAM

Temperature: Pressure: Flow Rate:	80.00 1264.70 3.13e+006	deg. psia scfh	F			
	Component	2		Conc.	Loading	

(vol%) (lb/hr) _____ ____ Water 2.26e-003 3.36e+000 Carbon Dioxide 2.62e-001 9.51e+002 Nitrogen 2.42e-001 5.58e+002 Methane 9.67e+001 1.28e+005 Ethane 2.64e+000 6.55e+003 Propane 1.24e-001 4.51e+002 Isobutane 2.80e-003 1.34e+001 n-Butane 9.18e-003 4.40e+001 Isopentane 4.99e-004 2.97e+000 n-Pentane 4.99e-004 2.96e+000 Total Components 100.00 1.36e+005 LEAN GLYCOL STREAM _____ Temperature: 80.00 deg. F Flow Rate: 1.50e+001 gpm Conc. Loading (wt%) (lb/hr) Component (wt%) (lb/hr) TEG 9.85e+001 8.32e+003 Water 1.50e+000 1.27e+002 Carbon Dioxide 4.29e-012 3.63e-010 Nitrogen 2.03e-013 1.72e-011 Methane 1.31e-017 1.10e-015 Ethane 2.86e-008 2.42e-006 Propane 2.38e-010 2.01e-008 Isobutane 6.97e-012 5.89e-010 n-Butane 2.48e-011 2.09e-009 Isopentane 3.13e-007 2.65e-005 n-Pentane 4.15e-007 3.51e-005 _____ Total Components 100.00 8.45e+003 RICH GLYCOL AND PUMP GAS STREAM _____ Temperature: 80.00 deg. F Pressure: 1264.70 psia Pressure: 1264.70 psia Flow Rate: 1.59e+001 gpm NOTE: Stream has more than one phase. Component Conc. Loading (wt%) (lb/hr) TEG 9.38e+001 8.32e+003 Water 2.36e+000 2.10e+002 Carbon Dioxide 6.45e-002 5.72e+000 Nitrogen 1.57e-002 1.40e+000 Methane 3.53e+000 3.13e+002 Ethane 2.20e-001 1.95e+001 Propane 1.67e-002 1.48e+000 Isobutane 5.53e-004 4.90e-002 n-Butane 2.04e-003 1.81e-001 Isopentane 1.33e-004 1.18e-002 n-Pentane 1.52e-004 1.35e-002 ----- -----_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . Total Components 100.00 8.87e+003

FLASH TANK OFF GAS STREAM _____ Temperature:80.00 deg. FPressure:54.70 psiaFlow Rate:7.69e+003 scfh Component Conc. Loading (vol%) (lb/hr) Water 4.90e-002 1.79e-001 Carbon Dioxide 5.87e-001 5.24e+000 Nitrogen 2.45e-001 1.39e+000 Methane 9.58e+001 3.12e+002 Ethane 3.13e+000 1.91e+001 Propane 1.57e-001 1.41e+000 Isobutane 3.80e-003 4.48e-002 n-Butane 1.36e-002 1.60e-001 Isopentane 6.91e-004 1.01e-002 n-Pentane 7.57e-004 1.11e-002 _____ _____ Total Components 100.00 3.39e+002

FLASH TANK GLYCOL STREAM ------Temperature: 80.00 deg. F Flow Rate: 1.52e+001 gpm Component Conc. Loading (wt%) (lb/hr) TEG 9.75e+001 8.32e+003 Water 2.46e+000 2.10e+002 Carbon Dioxide 5.65e-003 4.82e-001 Nitrogen 8.33e-005 7.10e-003 Methane 1.92e-002 1.64e+000 Ethane 5.08e-003 4.34e-001 Propane 8.98e-004 7.66e-002 Isobutane 4.98e-005 4.25e-003 n-Butane 2.47e-004 2.11e-002 Isopentane 1.99e-005 1.70e-003 n-Pentane 2.88e-005 2.46e-003 _____ ____ Total Components 100.00 8.53e+003

FLASH GAS EMISSIONS _____

Flow Rate: 1.80e+004 scfh Control Method: Combustion Device Control Efficiency: 65.00

Conc. Loading (vol%) (lb/hr) Component ----- -----Water 5.62e+001 4.79e+002 Carbon Dioxide 2.88e+001 6.00e+002 Nitrogen 1.05e-001 1.39e+000 Methane 1.44e+001 1.09e+002 Ethane 4.69e-001 6.67e+000 Propane 2.36e-002 4.92e-001

Isobutane 5.70e-004 1.57e-002

n-Butane 2.03e-003 5.60e-002 Isopentane 1.04e-004 3.54e-003 n-Pentane 1.13e-004 3.87e-003 Total Components 100.00 1.20e+003

REGENERATOR OVERHEADS STREAM

_

 Temperature: Pressure: Flow Rate:	212.00 de 14.70 ps 2.70e+003 sc	g. F ia fh			
	Component		Conc. (vol%)	Loading (lb/hr)	
	Carbon D Ni M	Water ioxide trogen ethane Ethane	6.48e+001 2.42e-001 8.43e-002 3.37e+001 1.09e+000	8.29e+001 7.56e-001 1.68e-001 3.84e+001 2.32e+000	
	P: Isol n-I Isop n-P	ropane butane Butane entane entane	6.59e-002 1.96e-003 8.17e-003 4.93e-004 6.39e-004	2.06e-001 8.10e-003 3.37e-002 2.53e-003 3.28e-003	
	Total Comp	onents	100.00	1.25e+002	

Potential-to-Emit GLYCalc Run:

WITH CONDENSER

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: Hamilton Compressor Station: TEG-1 & TEG-2 File Name: Z:\Client\DTE\West Virginia\Hamilton\Projects\173901.0082 H Mod\04 Draft\2017-0306 Draft G35D Application\Attach R - Emission Calcs\02 GRI-GLYCalc\2017-0308 M3 Hamilton_G35D_DehyEmissions.ddf Date: March 08, 2017

DESCRIPTION:

Description: Potential-to-emit calculations.

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

CONTROLLED	REGENERATOR EMISSIONS			
	Component	lbs/hr	lbs/day	tons/yr
	Methane	38.4333	922.398	168.3377
	Ethane	2.3193	55.663	10.1585
	Propane	0.2064	4.954	0.9040
	Isobutane	0.0081	0.194	0.0355
	n-Butane	0.0337	0.809	0.1477
	Isopentane	0.0025	0.061	0.0111
	n-Pentane	0.0033	0.079	0.0143
	Total Emissions	41.0066	984.158	179.6089
Total 1	Hydrocarbon Emissions	41.0066	984.158	179.6089
	Total VOC Emissions	0.2540	6.097	1.1126

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
M P Isol n-1	athane 38.43 Sthane 2.31 ropane 0.20 putane 0.00 Butane 0.03	44 922.426 94 55.665 64 4.954 81 0.194 37 0.809	168.3428 10.1588 0.9041 0.0355 0.1477
Isop n-Pe	entane 0.00 entane 0.00	25 0.061 33 0.079	0.0111 0.0143
Total Emi	ssions 41.00	78 984.188	179.6144
Total Hydrocarbon Emi Total VOC Emi	ssions 41.00 ssions 0.25	7 <u>8 984 188</u> 40 6.097	<u>179.6144</u> 1.1127

FLASH GAS EMISSIONS

С	Component	lbs/hr	lbs/day	tons/yr
	Methane Ethane Propane Isobutane n-Butane	109.0393 6.6720 0.4921 0.0157 0.0560	2616.943 160.127 11.811 0.376 1.343	477.5921 29.2232 2.1555 0.0686 0.2451

Isopentane	0.0035	0.085	0.0155
n-Pentane	0.0039	0.093	0.0170
Total Emissions	116.2824	2790.778	509.3170
Total Hydrocarbon Emissions	116.2824	2790.778	509.3170
Total VOC Emissions	0.5712	13.708	2.5017

FLASH TANK OFF GAS

Component	lbs/hr	lbs/day	tons/yr
Methane	311.5409	7476.981	1364.5490
Ethane	19.0627	457.505	83.4947
Propane	1.4061	33.746	6.1586
Isobutane	0.0448	1.075	0.1961
n-Butane	0.1599	3.837	0.7002
Isopentane	0.0101	0.242	0.0443
n-Pentane	0.0111	0.266	0.0485
Total Emissions	332.2355	7973.651	1455.1914
Total Hydrocarbon Emissions	332.2355	7973.651	1455.1914
Total VOC Emissions	1.6319	39.165	7.1477

EQUIPMENT REPORTS:

CONDENSER

_____ Condenser Outlet Temperature: 110.00 deg. F Condenser Pressure: 14.70 psia Condenser Duty: 5.57e-002 MM BTU/hr Produced Water: 5.38 bbls/day VOC Control Efficiency: 0.00 % HAP Control Efficiency: 0.00 % BTEX Control Efficiency: 0.00 % Dissolved Hydrocarbons in Water: 15.99 mg/L Emitted Condensed Component
 Water
 5.23%
 94.77%

 Carbon Dioxide
 99.94%
 0.06%

 Nitrogen
 100.00%
 0.00%

 Methane
 100.00%
 0.00%

 Ethane
 100.00%
 0.00%
 Ethane 100.00% 0.00%
 Propane
 100.00%

 Isobutane
 100.00%

 n-Butane
 100.00%

 Isopentane
 100.00%

 n-Pentane
 100.00%
 0.00% 0.00% 0.00% 0.00% 0.00%

ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25

and has calculat	ed a revised Dry Gas	Dew Point.	10.901	5
	1			
Cal	lculated Absorber Stag	es: 1.2	5	
Calcu	lated Dry Gas Dew Poi	nt: 1.0	7 lbs. H2O/MMSCF	
	Tomporatu	ro. 90	0 dog E	
	Pressu	10: 00.	0 dey. r O psia	
	Dry Gas Flow Ra	te: 75.000	0 MMSCF/day	
Gly	col Losses with Dry G	as: 0.782	0 lb/hr	
	Wet Gas Water Conte	nt: Saturate	d	
Calculate	ed Wet Gas Water Conte	nt: 27.5	7 lbs. H2O/MMSCF	
Calculated Le	ean Glycol Recirc. Rat	io: 10.8	7 gal/lb H2O	
		Pomaining	Abcorbod	
	Component	in Dry Gas	in Glycol	
	Water	3.89%	96.11%	
	Carbon Dioxide	99.62%	0.38%	
	Nitrogen	99.97%	0.03%	
	Methane	99.97%	0.03%	
	Ethane	99.92%	0.08%	
	Propane	99 89%	0 11%	
	Isobutane	99.85%	0.15%	
	n-Butane	99.81%	0.19%	
	Isopentane	99.82%	0.18%	
	n-Pentane	99.77%	0.23%	
FLASH TANK				
FLASH IANK				
FLASH IANK	Flash Cont	rol: Combust	ion device	
FLASH IANK	Flash Cont Flash Control Efficie	rol: Combust ncy: 65.00	ion device	
FLASH IANK	Flash Cont Flash Control Efficie Flash Temperat	rol: Combust ncy: 65.00 ure: 80	ion device % .0 deg. F	
FLASH IANK	Flash Cont Flash Control Efficie Flash Temperat Flash Press	rol: Combust ncy: 65.00 ure: 80 ure: 40	ion device % .0 deg. F .0 psig	
FLASH IANK	Flash Cont Flash Control Efficie Flash Temperat Flash Press	rol: Combust ncy: 65.00 ure: 80 ure: 40	ion device % .0 deg. F .0 psig Removed in	
FLASH IANK	Flash Cont Flash Control Efficie Flash Temperat Flash Press Component	rol: Combust ncy: 65.00 ure: 80 ure: 40 Left in Glycol	ion device % .0 deg. F .0 psig Removed in Flash Gas	
FLASH IANK	Flash Cont Flash Control Efficie Flash Temperat Flash Press Component	rol: Combust ncy: 65.00 ure: 80 ure: 40 Left in Glycol	ion device % .0 deg. F .0 psig Removed in Flash Gas	
FLASH IANK	Flash Cont Flash Control Efficie Flash Temperat Flash Press Component Water	rol: Combust ncy: 65.00 ure: 80 ure: 40 Left in Glycol 	ion device % .0 deg. F .0 psig Removed in Flash Gas 0.09%	
FLASH IANK	Flash Cont Flash Control Efficie Flash Temperat Flash Press Component Water Carbon Dioxide	rol: Combust ncy: 65.00 ure: 80 ure: 40 Left in Glycol 99.91% 8.42%	ion device % .0 deg. F .0 psig Removed in Flash Gas 0.09% 91.58%	
FLASH IANK	Flash Cont Flash Control Efficie Flash Temperat Flash Press Component Water Carbon Dioxide Nitrogen	rol: Combust ncy: 65.00 ure: 80 ure: 40 Left in Glycol 99.91% 8.42% 0.51%	ion device % .0 deg. F .0 psig Removed in Flash Gas 0.09% 91.58% 99.49%	
FLASH IANK	Flash Cont Flash Control Efficie Flash Temperat Flash Press Component Water Carbon Dioxide Nitrogen Methane	rol: Combust ncy: 65.00 ure: 80 ure: 40 Left in Glycol 99.91% 8.42% 0.51% 0.52%	ion device % .0 deg. F .0 psig Removed in Flash Gas 0.09% 91.58% 99.49% 99.48%	
FLASH TANK	Flash Cont Flash Control Efficie Flash Temperat Flash Press Component Water Carbon Dioxide Nitrogen Methane Ethane	rol: Combust ncy: 65.00 ure: 80 ure: 40 Left in Glycol 	ion device % .0 deg. F .0 psig Removed in Flash Gas 0.09% 91.58% 99.49% 99.48% 97.78%	
FLASH TANK	Flash Cont Flash Control Efficie Flash Temperat Flash Press Component Water Carbon Dioxide Nitrogen Methane Ethane	rol: Combust ncy: 65.00 ure: 80 ure: 40 Left in Glycol 	ion device % .0 deg. F .0 psig Removed in Flash Gas 0.09% 91.58% 99.49% 99.48% 97.78% 94 83%	
FLASH TANK	Flash Cont Flash Control Efficie Flash Temperat Flash Press Component Water Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane	rol: Combust ncy: 65.00 ure: 80 ure: 40 Left in Glycol 99.91% 8.42% 0.51% 0.52% 2.22% 5.17% 8.66%	ion device % .0 deg. F .0 psig Removed in Flash Gas 0.09% 91.58% 99.49% 99.48% 97.78% 94.83% 91.34%	
FLASH TANK	Flash Cont Flash Control Efficie Flash Temperat Flash Press Component Water Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane	rol: Combust ncy: 65.00 ure: 80 ure: 40 Left in Glycol 	ion device % .0 deg. F .0 psig Removed in Flash Gas 0.09% 91.58% 99.49% 99.48% 97.78% 94.83% 91.34% 88.36%	
FLASH TANK	Flash Cont Flash Control Efficie Flash Temperat Flash Press Component Water Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane	rol: Combust ncy: 65.00 ure: 80 ure: 40 Left in Glycol 99.91% 8.42% 0.51% 0.52% 2.22% 5.17% 8.66% 11.64% 14.40%	ion device % .0 deg. F .0 psig Removed in Flash Gas 0.09% 91.58% 99.49% 99.49% 99.48% 97.78% 94.83% 91.34% 88.36% 85.60%	
FLASH TANK	Flash Cont Flash Control Efficie Flash Temperat Flash Press Component Water Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane n-Butane n-Pentane	rol: Combust ncy: 65.00 ure: 80 ure: 40 Left in Glycol 99.91% 8.42% 0.51% 0.52% 2.22% 5.17% 8.66% 11.64% 14.40% 18.17%	ion device % .0 deg. F .0 psig Removed in Flash Gas 0.09% 91.58% 99.49% 99.48% 97.78% 94.83% 91.34% 88.36% 85.60% 81.83%	
FLASH TANK	Flash Cont Flash Control Efficie Flash Temperat Flash Press Component Water Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane n-Pentane	rol: Combust ncy: 65.00 ure: 80 ure: 40 Left in Glycol 99.91% 8.42% 0.51% 0.52% 2.22% 5.17% 8.66% 11.64% 14.40% 18.17%	ion device % .0 deg. F .0 psig Removed in Flash Gas 0.09% 91.58% 99.49% 99.48% 97.78% 94.83% 91.34% 88.36% 85.60% 81.83%	
FLASH TANK	Flash Cont Flash Control Efficie Flash Temperat Flash Press Component Water Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane n-Pentane	rol: Combust ncy: 65.00 ure: 80 ure: 40 Left in Glycol 99.91% 8.42% 0.51% 0.52% 2.22% 5.17% 8.66% 11.64% 14.40% 18.17%	ion device % .0 deg. F .0 psig Removed in Flash Gas 0.09% 91.58% 99.49% 99.48% 97.78% 94.83% 91.34% 88.36% 85.60% 81.83%	
REGENERATOR	Flash Cont Flash Control Efficie Flash Temperat Flash Press Component Water Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane	rol: Combust ncy: 65.00 ure: 80 ure: 40 Left in Glycol 99.91% 8.42% 0.51% 0.52% 2.22% 5.17% 8.66% 11.64% 14.40% 18.17%	ion device % .0 deg. F .0 psig Removed in Flash Gas 	
REGENERATOR	Flash Cont Flash Control Efficie Flash Temperat Flash Press Component Water Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane n-Pentane	rol: Combust ncy: 65.00 ure: 80 ure: 40 Left in Glycol 	ion device % .0 deg. F .0 psig Removed in Flash Gas 0.09% 91.58% 99.49% 99.48% 97.78% 94.83% 91.34% 88.36% 85.60% 81.83%	
REGENERATOR	Flash Cont Flash Control Efficie Flash Temperat Flash Press Component Water Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane n-Pentane	rol: Combust ncy: 65.00 ure: 80 ure: 40 Left in Glycol 	ion device % .0 deg. F .0 psig Removed in Flash Gas 0.09% 91.58% 99.49% 99.48% 97.78% 94.83% 91.34% 88.36% 85.60% 81.83%	
REGENERATOR	Flash Cont Flash Control Efficie Flash Temperat Flash Press Component Water Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane n-Pentane	rol: Combust ncy: 65.00 ure: 80 ure: 40 Left in Glycol 	ion device % .0 deg. F .0 psig Removed in Flash Gas 0.09% 91.58% 99.49% 99.48% 97.78% 94.83% 91.34% 88.36% 85.60% 81.83%	
REGENERATOR Dry Product Gas	Flash Cont Flash Control Efficie Flash Temperat Flash Press Component Water Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane	rol: Combust ncy: 65.00 ure: 80 ure: 40 Left in Glycol 	<pre>ion device % .0 deg. F .0 psig Removed in Flash Gas 0.09% 91.58% 99.49% 99.48% 97.78% 94.83% 91.34% 88.36% 85.60% 81.83%</pre>	

Component	Remaining in Glycol	Distilled Overhead
Water	60.45%	39.55%
Carbon Dioxide	0.00%	100.00%
Nitrogen	0.00%	100.00%
Methane	0.00%	100.00%
Ethane	0.00%	100.00%

Propane	0.00%	100.00%
Isobutane	0.00%	100.00%
n-Butane	0.00%	100.00%
Isopentane	1.56%	98.44%
n-Pentane	1.43%	98.57%

STREAM REPORTS: WET GAS STREAM _____ Temperature: 80.00 deg. F Pressure: 1264.70 psia Flow Rate: 3.13e+006 scfh Loading Component Conc. (vol%) (lb/hr) ----- ------Water 5.81e-002 8.62e+001 Carbon Dioxide 2.63e-001 9.55e+002 Nitrogen 2.42e-001 5.58e+002 Methane 9.67e+001 1.28e+005 Ethane 2.64e+000 6.55e+003 Propane 1.24e-001 4.51e+002 Isobutane 2.80e-003 1.34e+001 n-Butane 9.19e-003 4.40e+001 Isopentane 5.00e-004 2.97e+000 n-Pentane 5.00e-004 2.97e+000 ----- -----Total Components 100.00 1.36e+005 DRY GAS STREAM _____ Temperature: 80.00 deg. F Pressure: 1264.70 psia Flow Rate: 3.13e+006 scfh Component Conc. Loading (vol%) (lb/hr) Water 2.26e-003 3.36e+000 Carbon Dioxide 2.62e-001 9.51e+002 Nitrogen 2.42e-001 5.58e+002 Methane 9.67e+001 1.28e+005 Ethane 2.64e+000 6.55e+003 Propane 1.24e-001 4.51e+002 Isobutane 2.80e-003 1.34e+001 n-Butane 9.18e-003 4.40e+001 Isopentane 4.99e-004 2.97e+000 n-Pentane 4.99e-004 2.96e+000 _____ ____ Total Components 100.00 1.36e+005

LEAN GLYCOL STREAM

Temperature: 80.00 deg. F Flow Rate: 1.50e+001 gpm

Conc. Loading (wt%) (lb/hr) Component Conc. TEG 9.85e+001 8.32e+003 Water 1.50e+000 1.27e+002 Carbon Dioxide 4.29e-012 3.63e-010 Nitrogen 2.03e-013 1.72e-011 Methane 1.31e-017 1.10e-015 Ethane 2.86e-008 2.42e-006 Propane 2.38e-010 2.01e-008 Isobutane 6.97e-012 5.89e-010 n-Butane 2.48e-011 2.09e-009 Isopentane 3.13e-007 2.65e-005 n-Pentane 4.15e-007 3.51e-005 ----- -----Total Components 100.00 8.45e+003 RICH GLYCOL AND PUMP GAS STREAM _____ Temperature:80.00 deg. FPressure:1264.70 psiaFlow Rate:1.59e+001 gpm NOTE: Stream has more than one phase. Component Conc. Loading (wt%) (lb/hr) TEG 9.38e+001 8.32e+003 Water 2.36e+000 2.10e+002 Carbon Dioxide 6.45e-002 5.72e+000 Nitrogen 1.57e-002 1.40e+000 Methane 3.53e+000 3.13e+002 Ethane 2.20e-001 1.95e+001 Propane 1.67e-002 1.48e+000 Isobutane 5.53e-004 4.90e-002 n-Butane 2.04e-003 1.81e-001 Isopentane 1.33e-004 1.18e-002 n-Pentane 1.52e-004 1.35e-002 _____ ____ Total Components 100.00 8.87e+003

FLASH TANK OFF GAS STREAM

_ _ _

Temperature: Pressure: Flow Rate:	80.00 deg. F 54.70 psia 7.69e+003 scfh			
	Component	Conc. (vol%)	Loading (lb/hr)	
	Water Carbon Dioxide Nitrogen Methane Ethane	4.90e-002 5.87e-001 2.45e-001 9.58e+001 3.13e+000	1.79e-001 5.24e+000 1.39e+000 3.12e+002 1.91e+001	
	Propane Isobutane n-Butane Isopentane n-Pentane	1.57e-001 3.80e-003 1.36e-002 6.91e-004 7.57e-004	1.41e+000 4.48e-002 1.60e-001 1.01e-002 1.11e-002	

FLASH TANK GLYCOL STREAM Temperature: 80.00 deg. F Flow Rate: 1.52e+001 gpm Component Conc. Loading (wt%) (lb/hr) TEG 9.75e+001 8.32e+003 Water 2.46e+000 2.10e+002 Carbon Dioxide 5.65e-003 4.82e-001 Nitrogen 8.33e-005 7.10e-003 Methane 1.92e-002 1.64e+000 Ethane 5.08e-003 4.34e-001 Propane 8.98e-004 7.66e-002 Isobutane 4.98e-005 4.25e-003 n-Butane 2.47e-004 2.11e-002 Isopentane 1.99e-005 1.70e-003 n-Pentane 2.88e-005 2.46e-003 Total Components 100.00 8.53e+003 FLASH GAS EMISSIONS _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _____ Flow Rate: 1.80e+004 scfh Control Method: Combustion Device Control Efficiency: 65.00 Conc. Loading (vol%) (lb/hr) Component Water 5.62e+001 4.79e+002 Carbon Dioxide 2.88e+001 6.00e+002 Nitrogen 1.05e-001 1.39e+000 Methane 1.44e+001 1.09e+002 Ethane 4.69e-001 6.67e+000 Propane 2.36e-002 4.92e-001 Isobutane 5.70e-004 1.57e-002 n-Butane 2.03e-003 5.60e-002 Isopentane 1.04e-004 3.54e-003 n-Pentane 1.13e-004 3.87e-003 _____ ____ Total Components 100.00 1.20e+003 REGENERATOR OVERHEADS STREAM Temperature: 212.00 deg. F Pressure: 14.70 psia Flow Rate: 2.70e+003 scfh Conc. Loading Component (vol%) (lb/hr) Water 6.48e+001 8.29e+001 Carbon Dioxide 2.42e-001 7.56e-001 Nitrogen 8.43e-002 1.68e-001 Methane 3.37e+001 3.84e+001 Ethane 1.09e+000 2.32e+000

_ _ _

Propane 6.59e-002 2.06e-001 Isobutane 1.96e-003 8.10e-003 n-Butane 8.17e-003 3.37e-002 Isopentane 4.93e-004 2.53e-003 n-Pentane 6.39e-004 3.28e-003 _____ ____ Total Components 100.00 1.25e+002

CONDENSER VENT GAS STREAM

 Temperature: Pressure: Flow Rate:	110.00 14.70 1.04e+003	deg. F psia scfh		
	Component	-	Conc. (vol%)	Loading (lb/hr)
	Carbor	Water n Dioxide Nitrogen Methane Ethane	8.77e+000 6.26e-001 2.18e-001 8.74e+001 2.81e+000	4.33e+000 7.55e-001 1.68e-001 3.84e+001 2.32e+000
] Is r	Propane Isobutane n-Butane sopentane n-Pentane	1.71e-001 5.08e-003 2.12e-002 1.28e-003 1.66e-003	2.06e-001 8.10e-003 3.37e-002 2.53e-003 3.28e-003
	Total Co	omponents	100.00	4.63e+001

CONDENSER PRODUCED WATER STREAM _ _ _

			DENSER FRODUCED WATER STREAM
			Temperature: 110.00 deg. F Flow Rate: 1.57e-001 gpm
(ppm)	Loading (lb/hr)	Conc. (wt%)	Component
999978. 6. 0. 15. 1.	7.85e+001 4.77e-004 2.57e-006 1.17e-003 8.24e-005	1.00e+002 6.07e-004 3.27e-006 1.48e-003 1.05e-004	Water Carbon Dioxide Nitrogen Methane Ethane
0. 0. 0. 0.	6.98e-006 1.51e-007 8.45e-007 4.54e-008 6.38e-008	8.89e-006 1.93e-007 1.08e-006 5.78e-008 8.12e-008	Propane Isobutane n-Butane Isopentane n-Pentane

_____ ____

Total	Components	100.00	7.85e+001	1000000.

CONDENSER RECOVERED OIL STREAM

_____ Temperature: 110.00 deg. F

The calculated flow rate is less than 0.000001 #mol/hr. The stream flow rate and composition are not reported.

2017-0308_M3_Hamilton_G35D_WasteTanks

***** * Project Setup Information ***** Project File : Z:\Client\DTE\West Virginia\Hamilton\Projects\173901.0082 Hamilton Permit Mod\04 Draft\2017-0306 Draft G35D Application\Attach R - Emission Calcs\2017-0308_M3_Hamilton_G35D_WasteTanks.ept G35D Application (Attach R - Emission Calcs(2017-030)Flowsheet Selection: Oil Tank with SeparatorCalculation Method: RVP DistillationControl Efficiency: 100.0%Known Separator Stream: Geographical RegionGeographical Region: All Regions in USEntering Air Composition: No Filed Name : Hamilton Compressor Station Well Name : Waste Fluid Tanks (T01 & T02) Date 2016. 10. 31 ***** Data Input ***** Separator Pressure: 50.00[psig]Separator Temperature: 125.00[F]Ambi ent Pressure: 14.70[psia]Ambi ent Temperature: 125.00[F]C10+ SG: 0.8420 C10+ MW : 287.00 -- Low Pressure Oil _____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . mol % 1.2800 Component No. H2S 1 0.0000 2 02 3 C02 0.0300 4 N2 0.0000 5 C1 1.2700 6 C2 2.0800 7 С3 4.5700 8 1.8900 i -C4 9 n-C4 6.4800 10 i - C5 3.8800 11 n-C5 7.0400 12 C6 3.0500 6.8200 13 C7 14 C8 7.7800 C9 15 7.2300 C10+ 37.9300 16 0.8300 17 Benzene 18 Tol uene 1.0200 19 0.0700 E-Benzene 20 Xyl enes 0.6500 6.1000 21 n-C6 22 224Trimethylp 0.0000

-- Sales Oil

2017-0308_M3_Hamilton_G35D_WasteTanks				
Production Rate : 0.1[bbl/day] Days of Annual Operation : 365 [days/year] API Gravity : 49.0 Reid Vapor Pressure : 8.90[psia]				
****** * **** * Cal cul ati on F	**************************************	******		
* * * * * *				
Emission Summary	ý			
ltem Page 1	Uncontrolled [ton/yr]	Uncontrolled [lb/hr] E&P TANK		
Total HAPs Total HC VOCs, C2+ VOCs, C3+	0. 020 0. 254 0. 247 0. 229	0.005 0.058 0.056 0.052		
Uncontrolled Recove	ery Info.			
Vapor HC Vapor GOR	10.6600 x1E-3 9.9100 x1E-3 106.60	[MSCFD] [MSCFD] [SCF/bbl]		
Emission Composi	tion			
No Component 1 H2S 2 02 3 C02 4 N2 5 C1 6 C2 7 C3 8 i -C4 9 n-C4 10 i -C5 11 n-C5 12 C6 13 C7 14 C8 15 C9 16 C10+ 17 Benzene 18 Tol uene 19 E-Benzene 20 Xyl enes 21 n-C6 22 224Tri methyl p Total	Uncontrolled [ton/yr] 0.012 0.000 0.000 0.000 0.000 0.006 0.018 0.049 0.020 0.059 0.026 0.039 0.026 0.039 0.008 0.008 0.008 0.008 0.008 0.004 0.002 0.000 0.002 0.001 0.000 0.001 0.000 0.013 0.000 0.267	Uncontrolled [lb/hr] 0.003 0.000 0.000 0.000 0.001 0.004 0.011 0.005 0.013 0.006 0.009 0.002 0.002 0.002 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.000 0.000 0.000 0.000 0.005 0.005 0.002 0.002 0.002 0.002 0.002 0.000 0.000 0.000 0.000 0.005 0.005 0.005 0.002 0.002 0.002 0.002 0.002 0.000 0.000 0.000 0.000 0.005 0.003 0.005 0.002 0.002 0.002 0.002 0.000 0.000 0.000 0.002 0.002 0.002 0.002 0.001 0.002 0.000 0.002 0.002 0.002 0.000 0.000 0.002 0.002 0.002 0.002 0.000 0.002 0.002 0.002 0.000 0.000 0.002 0.002 0.002 0.001 0.000 0.002 0.002 0.002 0.002 0.000 0.000 0.000 0.002 0.002 0.002 0.000 0.000 0.000 0.000 0.000 0.002 0.0000 0.0000 0.0000 0.000000		
Stream Data				
No. Component Total Emissions	MW	LP UII Flash Oil Sale Oil Flash Gas W&S Gas		

Page 2
	Spec. Gravity @ 100F		0. 690 Page 3	0. 698 3	0. 698		
F	RVF @ 100F	[psi a]	27.72	8.66	8.66		
Page	2					E&H	PIANK
ł D.	300F @ 100F	[psi a]	/6. 98	12.70	12.70	Far	
1.79		[Gas/AFr]	7/ 00	10 70	10 70	1. 79	0.00
2822,	40					2022.40	0.00
0.159	96 Joating Value		1.0000	0.0404	0.0404	0.1070	0.0000
51.88	8 Stream Mole Patio		1 0000	0 8404	0 8404	0 1506	0 0000
N	/W		159. 21	179.60	179. 60	51.88	0.00
2.952 22 2 0.000	24 224Trimethylp 30	114.24	0.0000	0.0000	0.0000	0.0000	0.0000
0. 034 21 r	41 1-C6	86. 18	6. 1000	6.6977	6.6977	2.9524	0.0000
20	xyl enes	106. 17	0.6500	0. 7670	0. 7670	0. 0341	0.0000
19 E	E-Benzene	106. 17	0.0700	0. 0825	0.0825	0.0041	0.0000
18	Tol uene	92.13	1.0200	1. 1834	1. 1834	0. 1596	0.0000
17 E	Benzene	78. 11	0.8300	0. 9150	0. 9150	0. 3821	0.0000
16 (0.000	C10+ D0	166.00	37.9300	45. 1329	45. 1329	0.0000	0.0000
15 (0. 246	C9 66	128. 28	7.2300	8. 5561	8. 5561	0. 2466	0.0000
14 (0.672	24	114.23	7. 7800	9. 1297	9. 1297	0.6724	0.0000
1.600	27 04	100.20	0.8200	7.0112	7.8112	1.0004	0.0000
1.788	36	100.20	4 9200	7 0110	7 0110	1.7000	0.0000
10.45	595 26	86 16	3 0500	3 2895	3 2895	1 7886	0,0000
6.943 11 r	31 1-C5	72 15	7 0400	6 3906	6 3906	10 4595	0 0000
19.9 [°] 10 i	192 i -C5	72. 15	3.8800	3. 2983	3. 2983	6. 9431	0.0000
6.708 9 r	35 n-C4	58. 12	6. 4800	3. 9279	3. 9279	19. 9192	0.0000
21.55 8 i	554 i -C4	58. 12	1.8900	0. 9750	0. 9750	6. 7085	0.0000
11.73 7 (345 23	44.10	4.5700	1. 3445	1. 3445	21. 5554	0.0000
6 (22 24	30. 07	2.0800	0. 2466	0. 2466	11. 7345	0.0000
5 (21 25	16.04	1.2700	0. 0369	0. 0369	7.7635	0.0000
4	N2	28.01	0.0000	0.0000	0.0000	0.0000	0.0000
3 (CO2	44.01	0.0300	0.0021	0.0021	0. 1768	0.0000
2 ()2)0	32.00	0.0000	0.0000	0.0000	0.0000	0.0000
1 H	" H2S 90	34.80	1. 2800	0. 2130	0. 2130	6.8990	0.0000
mol ⁰	2	017-0308_M	3_Hamilton mol %	_G35D_Wast mol %	eTanks mol %	mol %	mol %

2017-0308_M3_Hamilton_G35D_WasteTanks

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification				
User Identification:	Hamilton Station (Liquid Loading)			
City:				
State:	West Virginia			
Company:				
Type of Tank:	Vertical Fixed Roof Tank			
Description:	Liquid loading parameter calculations for truck loading of produced fluids			
Tank Dimensions				
Shell Height (ft):	14.00			
Diameter (ft):	10.00			
Liquid Height (ft) :	14.00			
Avg. Liquid Height (ft):	7.00			
Volume (gallons):	8.820.00			
Turnovers:	34.86			
Net Throughput(gal/yr):	307,440.00			
Is Tank Heated (y/n):	Ν			
Paint Characteristics				
Shell Color/Shade:	Gray/Medium			
Shell Condition	Good			
Roof Color/Shade:	Gray/Medium			
Roof Condition:	Good			
Roof Characteristics				
Type:	Cone			
Height (ft)	0.00			
Slope (ft/ft) (Cone Roof)	0.00			
Breather Vent Settings				
Vacuum Settings (psig):	-0.03			
Pressure Settings (psig)	0.03			

Meterological Data used in Emissions Calculations: Elkins, West Virginia (Avg Atmospheric Pressure = 13.73 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Hamilton Station (Liquid Loading) - Vertical Fixed Roof Tank

Mixture/Component	Month	Da Terr Avg.	aily Liquid Su perature (de Min.	urf. eg F) Max.	Liquid Bulk Temp (deg F)	Vapo Avg.	r Pressure Min.	(psia) Max.	Vapor Mol. Weight.	Liquid Mass Fract.	Vapor Mass Fract.	Mol. Weight	Basis for Vapor Pressure Calculations
Produced Water	All	57.20	47.16	67.23	52.14	0.2365	0.1708	0.3240	19.3610			18.17	
Benzene						1.0800	0.8090	1.4225	78.1100	0.0001	0.0004	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Butane (-n)						0.4772	0.3937	0.5736	58.1200	0.0005	0.0009	58.12	Option 2: A=5.09536, B=935.86, C=238.73
Decane (-n)						0.0313	0.0249	0.0394	142.2900	0.0045	0.0006	142.29	Option 1: VP50 = .026411 VP60 = .033211
Ethylbenzene						0.0984	0.0684	0.1390	106.1700	0.0000	0.0000	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Heptane (-n)						0.5620	0.4123	0.7572	100.2000	0.0008	0.0017	100.20	Option 3: A=37358, B=8.2585
Hexane (-n)						1.7780	1.3561	2.3024	86.1700	0.0010	0.0071	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Isopentane						9.4118	7.3180	11.8312	72.1500	0.0003	0.0123	72.15	Option 1: VP50 = 7.889 VP60 = 10.005
Nonane (-n)						0.0614	0.0482	0.0782	128.2600	0.0009	0.0002	128.26	Option 1: VP50 = .051285 VP60 = .065278
Octane (-n)						0.1362	0.1051	0.1764	114.2300	0.0009	0.0005	114.23	Option 1: VP50 = .112388 VP60 = .145444
Pentane (-n)						6.4211	5.1036	8.0084	72.1500	0.0006	0.0163	72.15	Option 3: A=27691, B=7.558
Propane (-n)						103.5663	88.7398	120.2028	44.0956	0.0002	0.0657	44.10	Option 2: A=7.340862493, B=1104.2267744, C=291.70993941
Toluene						0.3024	0.2186	0.4120	92.1300	0.0001	0.0001	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Water						0.2277	0.1634	0.3135	18.0150	0.9900	0.8941	18.02	Option 1: VP50 = .178 VP60 = .247
Xylene (-m)						0.0818	0.0567	0.1160	106.1700	0.0001	0.0000	106.17	Option 2: A=7.009, B=1462.266, C=215.11

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Hamilton Station (Liquid Loading) - Vertical Fixed Roof Tank

TANKS 4.0 Report

Annual Emission Calcaulations	
Standing Losses (Ib):	12.8805
Vapor Space Volume (cu ft):	549.7787
Vapor Density (lb/cu ft):	0.0008
Vapor Space Expansion Factor:	0.0846
Vented Vapor Saturation Factor:	0.9193
Tank Vapor Space Volume:	5 40 3303
Vapor Space Volume (cu ft):	549.7787
Tank Diameter (ft):	10.0000
Tank Shell Height (ft):	14 0000
Average Liquid Height (ft):	7 0000
Roof Outage (ft):	0.0000
Roof Outage (Cone Roof)	
Roof Outage (ft):	0.0000
Roof Height (ft):	0.0000
Roof Slope (ft/ft):	0.0000
Shell Radius (ft):	5.0000
Vapor Density	
Vapor Density (Ib/culit):	0.0008
Vapor Molecular Weight (Ib/Ib-mole):	19.3610
Surface Temperature (psia):	0 2365
Daily Avg. Liquid Surface Temp. (deg. R):	516 8667
Daily Average Ambient Temp. (deg. F):	49.0583
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	511.8083
Tank Paint Solar Absorptance (Shell):	0.6800
Tank Paint Solar Absorptance (Roof): Daily Total Solar Insulation	0.6800
Factor (Btu/sqft day):	1,193.8870
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0846
Daily Vapor Temperature Range (deg. R):	40.1436
Daily Vapor Pressure Range (psia):	0.1531
Breather Vent Press. Setting Range(psia):	0.0600
Surface Temperature (psia):	0 2365
Vapor Pressure at Daily Minimum Liquid	0.2000
Surface Temperature (psia):	0.1708
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	0.3240
Daily Avg. Liquid Surface Temp. (deg R):	516.8667
Daily Min. Liquid Surface Temp. (deg R):	506.8308
Daily Max. Liquid Surface Temp. (deg R):	526.9026
Daily Ambient Temp. Range (deg. R):	24.1033
Vented Vapor Saturation Factor	0.9103
Vapor Pressure at Daily Average Liquid	0.0193
Surface Temperature (psia):	0.2365
Vapor Space Outage (ft):	7.0000
Working Losses (lb):	33.5192
Vapor Molecular Weight (lb/lb-mole):	19.3610
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.2365
Annual Net Throughput (gal/yr.):	307,440.0000
Annual Lurnovers:	34.8571
Maximum Liquid Volume (gal):	8 820 0000
Maximum Liquid Volume (gal).	14 0000
Tank Diameter (ft):	10.0000
Working Loss Product Factor:	1.0000
Total Losses (Ib):	46.3997

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Hamilton Station (Liquid Loading) - Vertical Fixed Roof Tank

Losses(lbs)					
Components	Working Loss	Breathing Loss	Total Emissions		
Produced Water	33.52	12.88	46.40		
Decane (-n)	0.02	0.01	0.03		
Nonane (-n)	0.01	0.00	0.01		
Ethylbenzene	0.00	0.00	0.00		
Octane (-n)	0.02	0.01	0.02		
Toluene	0.00	0.00	0.01		
Heptane (-n)	0.06	0.02	0.08		
Benzene	0.01	0.00	0.02		

TANKS 4.0 Report

Hexane (-n)	0.24	0.09	0.33
Isopentane	0.41	0.16	0.57
Pentane (-n)	0.55	0.21	0.76
Water	29.97	11.52	41.49
Propane (-n)	2.20	0.85	3.05
Butane (-n)	0.03	0.01	0.04
Xylene (-m)	0.00	0.00	0.00

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification					
User Identification:	Hamilton Station (Glycol Tanks)				
City:					
State:	West Virginia				
Company:					
Type of Tank:	Horizontal Tank				
Description:	Triethylene Glycol and Coolant (Monoethylene Glycol) Tanks				
Tank Dimensions					
Shell Length (ft):	8.00				
Diameter (ft):	6.00				
Volume (gallons):	1,260.00				
Turnovers:	12.00				
Net Throughput(gal/yr):	15,120.00				
Is Tank Heated (y/n):	Ν				
Is Tank Underground (y/n):	Ν				
Paint Characteristics					
Shell Color/Shade:	Gray/Medium				
Shell Condition	Good				
Breather Vent Settings					
Vacuum Settings (psig):	-0.03				
Pressure Settings (psig)	0.03				

Meterological Data used in Emissions Calculations: Elkins, West Virginia (Avg Atmospheric Pressure = 13.73 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Hamilton Station (Glycol Tanks) - Horizontal Tank

		Dail Temp	y Liquid Su erature (de	ırf. g F)	Liquid Bulk Temp	Vapor Pressure (psia)		Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure	
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Propylene glycol	All	57.20	47.16	67.23	52.14	0.0008	0.0005	0.0014	76.1100			76.11	Option 2: A=8.2082, B=2085.9, C=203.54

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Hamilton Station (Glycol Tanks) - Horizontal Tank

Annual Emission Calcaulations	
Standing Losses (lb):	0.0426
Vapor Space Volume (cu ft):	144.0730
Vapor Density (lb/cu ft):	0.0000
Vapor Space Expansion Factor:	0.0734
Vented Vapor Saturation Factor:	0.9999
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	144.0730
Tank Diameter (ft):	6.0000
Effective Diameter (ft):	7.8196
Vapor Space Outage (ft):	3.0000
Tank Shell Length (ft):	8.0000
Vapor Density	
Vapor Density (lb/cu ft):	0.0000
Vapor Molecular Weight (lb/lb-mole):	76.1100
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0008
Daily Avg. Liquid Surface Temp. (deg. R):	516.8667
Daily Average Ambient Temp. (deg. F):	49.0583
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	511.8083
Tank Paint Solar Absorptance (Shell):	0.6800
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,193.8870

Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0734
Daily Vapor Temperature Range (deg. R):	40.1436
Daily Vapor Pressure Range (psia):	0.0009
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0008
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	0.0005
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	0.0014
Daily Avg. Liquid Surface Temp. (deg R):	516.8667
Daily Min. Liquid Surface Temp. (deg R):	506.8308
Daily Max. Liquid Surface Temp. (deg R):	526.9026
Daily Ambient Temp. Range (deg. R):	24.1833
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.9999
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	0.0008
Vapor Space Outage (ft):	3.0000
Working Losses (lb):	0.0221
Vapor Molecular Weight (lb/lb-mole):	76.1100
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0008
Annual Net Throughput (gal/yr.):	15,120.0000
Annual Turnovers:	12.0000
Turnover Factor:	1.0000
Tank Diameter (ft):	6.0000
Working Loss Product Factor:	1.0000
Total Losses (Ib):	0.0647
	0.0047

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Hamilton Station (Glycol Tanks) - Horizontal Tank

	Losses(lbs)					
Components	Working Loss	Breathing Loss	Total Emissions			
Propylene glycol	0.02	0.04	0.06			

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification					
User Identification:	Hamilton Station (Methanol Tanks)				
City:					
State:	West Virginia				
Company:					
Type of Tank:	Horizontal Tank				
Description:	Methanol Tanks				
Tank Dimensions					
Shell Length (ft):	6.00				
Diameter (ft):	4.00				
Volume (gallons):	335.00				
Turnovers:	12.00				
Net Throughput(gal/yr):	4,020.00				
Is Tank Heated (y/n):	Ν				
Is Tank Underground (y/n):	Ν				
Paint Characteristics					
Shell Color/Shade:	Gray/Medium				
Shell Condition	Good				
Breather Vent Settings					
Vacuum Settings (psig):	-0.03				
Pressure Settings (psig)	0.03				

Meterological Data used in Emissions Calculations: Elkins, West Virginia (Avg Atmospheric Pressure = 13.73 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Hamilton Station (Methanol Tanks) - Horizontal Tank

		Daily Tempe	/ Liquid Sur	rf. g F)	Liquid Bulk Temp	Vapor	Pressure (osia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Methyl alcohol	All	57.20	47.16	67.23	52.14	1.3195	0.9508	1.8044	32.0400			32.04	Option 2: A=7.897, B=1474.08, C=229.13

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Hamilton Station (Methanol Tanks) - Horizontal Tank

Annual Emission Calcaulations	
Standing Losses (lb):	16.5979
Vapor Space Volume (cu ft):	48.0243
Vapor Density (lb/cu ft):	0.0076
Vapor Space Expansion Factor:	0.1416
Vented Vapor Saturation Factor:	0.8773
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	48.0243
Tank Diameter (ft):	4.0000
Effective Diameter (ft):	5.5293
Vapor Space Outage (ft):	2.0000
Tank Shell Length (ft):	6.0000
Vapor Density	
Vapor Density (lb/cu ft):	0.0076
Vapor Molecular Weight (lb/lb-mole):	32.0400
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	1.3195
Daily Avg. Liquid Surface Temp. (deg. R):	516.8667
Daily Average Ambient Temp. (deg. F):	49.0583
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	511.8083
Tank Paint Solar Absorptance (Shell):	0.6800
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,193.8870

Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.1416
Daily Vapor Temperature Range (deg. R):	40,1436
Daily Vapor Pressure Range (psia):	0.8536
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	1.3195
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	0.9508
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	1.8044
Daily Avg. Liquid Surface Temp. (deg R):	516.8667
Daily Min. Liquid Surface Temp. (deg R):	506.8308
Daily Max. Liquid Surface Temp. (deg R):	526.9026
Daily Ambient Temp. Range (deg. R):	24.1833
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.8773
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	1.3195
Vapor Space Outage (ft):	2.0000
Working Losses (lb):	4.0465
Vapor Molecular Weight (lb/lb-mole):	32.0400
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	1.3195
Annual Net Throughput (gal/yr.):	4,020.0000
Annual Turnovers:	12.0000
Turnover Factor:	1.0000
Tank Diameter (ft):	4.0000
Working Loss Product Factor:	1.0000
Total Losses (Ib):	20.6444

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Hamilton Station (Methanol Tanks) - Horizontal Tank

	Losses(lbs)							
Components	Working Loss	Breathing Loss	Total Emissions					
Methyl alcohol	4.05	16.60	20.64					

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification	
User Identification:	Hamilton Station (Oil Tanks)
City:	
State:	West Virginia
Company:	
Type of Tank:	Horizontal Tank
Description:	Compressor and Engine Lube Oil Tanks
Tank Dimensions	
Shell Length (ft):	8.00
Diameter (ft):	4.00
Volume (gallons):	500.00
Turnovers:	12.00
Net Throughput(gal/yr):	6,000.00
Is Tank Heated (y/n):	Ν
Is Tank Underground (y/n):	Ν
Paint Characteristics	
Shell Color/Shade:	Gray/Medium
Shell Condition	Good
Breather Vent Settings	
Vacuum Settings (psig):	-0.03
Pressure Settings (psig)	0.03

Meterological Data used in Emissions Calculations: Elkins, West Virginia (Avg Atmospheric Pressure = 13.73 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Hamilton Station (Oil Tanks) - Horizontal Tank

		Daily Tempe	/ Liquid Su erature (deg	rf. g F)	Liquid Bulk Temp	Vapor	Pressure (j	osia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Distillate fuel oil no. 2	All	57.20	47.16	67.23	52.14	0.0066	0.0041	0.0086	130.0000			188.00	Option 1: VP50 = .0045 VP60 = .0074

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Hamilton Station (Oil Tanks) - Horizontal Tank

Annual Emission Calcaulations	
Standing Losses (lb):	0.2655
Vapor Space Volume (cu ft):	64.0325
Vapor Density (lb/cu ft):	0.0002
Vapor Space Expansion Factor:	0.0736
Vented Vapor Saturation Factor:	0.9993
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	64.0325
Tank Diameter (ft):	4.0000
Effective Diameter (ft):	6.3847
Vapor Space Outage (ft):	2.0000
Tank Shell Length (ft):	8.0000
Vapor Density	
Vapor Density (lb/cu ft):	0.0002
Vapor Molecular Weight (lb/lb-mole):	130.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0066
Daily Avg. Liquid Surface Temp. (deg. R):	516.8667
Daily Average Ambient Temp. (deg. F):	49.0583
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	511.8083
Tank Paint Solar Absorptance (Shell):	0.6800
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,193.8870

Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0736
Daily Vapor Temperature Range (deg. R):	40.1436
Daily Vapor Pressure Range (psia):	0.0045
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0066
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	0.0041
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	0.0086
Daily Avg. Liquid Surface Temp. (deg R):	516.8667
Daily Min. Liquid Surface Temp. (deg R):	506.8308
Daily Max. Liquid Surface Temp. (deg R):	526.9026
Daily Ambient Temp. Range (deg. R):	24.1833
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.9993
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	0.0066
Vapor Space Outage (ft):	2.0000
Working Losses (Ib):	0.1223
Vapor Molecular Weight (lb/lb-mole):	130.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0066
Annual Net Throughput (gal/yr.):	6,000.0000
Annual Turnovers:	12.0000
Turnover Factor:	1.0000
Tank Diameter (ft):	4.0000
Working Loss Product Factor:	1.0000
Total Losses (Ib):	0.3878

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Hamilton Station (Oil Tanks) - Horizontal Tank

	Losses(lbs)							
Components	Working Loss	Breathing Loss	Total Emissions					
Distillate fuel oil no. 2	0.12	0.27	0.39					

	USA Compress	ion Unit TBD Caterp	oillar G3606TALE	Engine Emiss	sions	
Date of Manufacture	TBD	Engine Serial Number	TBD	Date Modified/	Reconstructed	Not Any
Driver Rated HP	1775	Rated Speed in RPM	1000	Combustion Ty	pe	Spark Ignited 4 Stroke
Number of Cylinders	6	Compression Ratio	9:1	Combustion Se	tting	Ultra Lean Burn
Total Displacement, in ³	7762	Fuel Delivery Method	Fuel Injection	Combustion Air	Treatment	T.C./Aftercooled
Raw Engine Emissions (905 LHV BT	U/SCF Fuel Gas with little to	no H2S)				
Fuel Consumption Altitude Maximum Air Inlet Temp	6860 LHV BTU/bhp-hr 1200 ft 90 F	or 7609 HH\	/ BTU/bhp-hr			
		g/bhp-hr ¹	lb/MMBTU ²	lb/hr	ТРҮ	
Nitrogen Oxides (NOx)		0.5		1.96	8.57	
Carbon Monoxide (CO)		2.74		10.72	46.96	
Volatile Organic Compounds (VOC	or NMNEHC excluding CH2O)	0.63		2.47	10.80	
Formaldehyde (CH2O)		0.26		1.02	4.46	
Particulate Matter (PM) Filterable+Cond	lensable		9.99E-03	1.35E-01	5.91E-01	
Sulfur Dioxide (SO2)			5.88E-04	7.94E-03	3.48E-02	
		g/bhp-hr ¹		lb/hr	Metric Tonne/yr	
Carbon Dioxide (CO2)		441		1726	6856	
Methane (CH4)		5.36		20.97	83.33	
¹ g/bhp-hr are based on Caterpillar Note that g/bhp-hr values are base for CO, VOC and other organic con ² Emission Factor obtained from EP Gas-Fired Reciprocating Engines, T Catalytic Converter Emissions	Specifications (GERP) Custom d on 100% Load Operation. F npounds to allow for variation A's AP-42, Fifth Edition, Volur able 3.2-2).	her Supplied fuel gas, 1200 ft e for air permitting, it is recomn in operating parameters and me I, Chapter 3: Stationary Int	elevation, and 90 F Max . nended to use a 20% saf fuel gas quality. ernal Combution Source	Air Inlet Temperatur ety margin 25 (Section 3.2 Natu	ral	
Catalytic Converter Make amd Mod	del: DCL, D	0C64				
Element Type:	DC-24	.23" Round				
Number of Elements in Housing:	2 Catorr	villar ADEM A2 Durn Timo				
All/Fuel Rulio Control	Cuterp	nnur Adeivi As, burn Time				
		% Reduction		lb/hr	ТРҮ	
Nitrogen Oxides (NOx)		0		1.96	8.57	
Carbon Monoxide (CO)		95		0.54	2.35	
Volatile Organic Compounds (VOC	or NMNEHC excluding CH2O)	68		0.79	3.46	
Formaldehyde (CH2O)		80		0.20	0.89	
Particulate Matter (PM)		0		1.35E-01	5.91E-01	
Sultur Dioxide (SO2)		U		7.94E-03	3.48E-02	
		% Reduction		lb/hr	Metric Tonne/yr	
Carbon Dioxide (CO2)				1720	COT C	
		0		1726	6856	

12620 FM 1960 W, Ste A4 Box # 560, Houston, TX 77065 Tel.: 877-897-9759 Fax: 281-605-5858 E-mail: info@dclamerica.com

.....

То	Chris Magee	Phone	
	USA Compression	Fax	
Date	October 31, 2014	Email	cmagee@usacompression.com

RE: EMISSIONS GUARANTEE

Chris,

We hereby guarantee that our QUICK-LIDTM **Model** DC64AL2-16 Hospital+ Grade Catalytic Silencer described below:

Catalyst model	DC64AL2
Catalyst coating	Oxidation (A coating)
Outside Diameter of catalyst substrate	24.23"
No. Of Catalyst Layers	1
No. of catalyst substrates	2
Cell Density	300 cpsi
Approx. Attenuation	40-52 dBA

and sized for the following engine:

Engine model	CAT G3606LE
Power	1775 hp @ 1000 rpm
Fuel	Pipeline Quality Natural Gas

will perform as follows:

Emissions	After Catalyst
	(% destruction)
Carbon Monoxide (CO)	95%
Formaldehyde (HCHO)	80%
VOC (NMNEHC)	68%

for a period of 1 year (after invoice date) or 8000 hours, whichever comes first, subject to all terms and conditions contained in the attached warranty document being respected and met.

Best regards, DCL America

Sam Kirk Regional Account Manager

Confidential Communication

GAS COMPRESSION APPLICATION

GAS ENGINE SITE	SPECIFIC TECHNICAL DAT	Α
DTE	HAMILTON CS	

ENGINE SPEED (rpm): COMPRESSION RATIO: AFTERCOOLER TYPE: JACKET WATER INLET (°F): JACKET WATER OUTLET (°F): ASPIRATION: COOLING SYSTEM: CONTROL SYSTEM: EXHAUST MANIFOLD: COMBUSTION: NOX EMISSION LEVEL (g/bhp-hr NOX):	1000 9.2 SCAC 130 190 TA JW, OC+AC CIS/ADEM3 DRY LOW EMISSION 0.5	RATING RATING FUEL S ^V FUEL: FUEL PF FUEL LF FUEL LF ALTITUE MAXIMU STANDA	RATING STRATEGY: RATING LEVEL: FUEL SYSTEM: SITE CONDITIONS: FUEL: FUEL PRESSURE RANGE(psig): FUEL METHANE NUMBER: FUEL LHV (Btu/scf): ALTITUDE(tt): MAXIMUM INLET AIR TEMPERATURI STANDARD RATED POWER:			WITH AII D ⁻	C R FUEL RATI TE HAMILTO 1775 b FING AT M	STANDARD ONTINUOUS GAV O CONTROL N CS 2-22-17 42.8-47.0 92.0 928 1200 90 hp@1000rpm
					RATING	INLET A	R TEMPE	RATURE
RA	TING		NOTES	LOAD	100%	100%	75%	50%
		(WITHOUT FAN)	(1)	bhp °E	1775	1775	1331	888
INLET AIR TEMPERATURE				°F	90	90	90	90
ENGIN								
FUEL CONSUMPTION (LHV)			(2)	Btu/bhp-hr	6860	6860	7102	7619
FUEL CONSUMPTION (HHV)			(2)	Btu/bhp-hr	7609	7609	7878	8452
AIR FLOW (@inlet air temp, 14.7 psia)		(WET)	(3)(4)	ft3/min	4833	4833	3738	2518
AIR FLOW		(WET)	(3)(4)	lb/hr	20924	20924	16181	10900
FUEL FLOW (60°F, 14.7 psia)				scfm	219	219	170	121
INLET MANIFOLD PRESSURE			(5)	in Hg(abs)	74.3	74.3	57.9	41.2
EXHAUST TEMPERATURE - ENGINE OUTL	ET		(6)	°F	847	847	870	937
EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (WET			(7)(4)	ft3/min	12213	12213	9613	6821
EXHAUST GAS MASS FLOW	(7)(4)	lb/hr	21495	21495	16625	11218		
EMISSIONS DA								
NOx (as NO2)			(8)(9)	a/bhn-hr	0.50	0.50	0.50	0.50
CO			(8)(9)	g/bhp-hr	2.74	2.74	2.74	2.74
THC (mol. wt. of 15.84)			(8)(9)	a/bhp-hr	6.30	6.30	6.50	6.77
NMHC (mol. wt. of 15.84)			(8)(9)	g/bhp-hr	0.94	0.94	0.98	1.01
NMNEHC (VOCs) (mol. wt. of 15.84)			(8)(9)(10)	g/bhp-hr	0.63	0.63	0.65	0.68
HCHO (Formaldehyde)			(8)(9)	g/bhp-hr	0.26	0.26	0.28	0.31
CO2			(8)(9)	g/bhp-hr	441	441	460	494
EXHAUST OXYGEN			(8)(11)	% DRY	12.8	12.8	12.1	11.1
ΗΕΔΤ Β	FIECTION							
HEAT REL TO JACKET WATER (IW)			(12)	Btu/min	18751	18751	15595	13025
HEAT REJ. TO ATMOSPHERE			(12)	Btu/min	7103	7103	6619	6199
HEAT REJ. TO LUBE OIL (OC)				Btu/min	9132	9132	8667	8453
HEAT REJ. TO AFTERCOOLER (AC)				Btu/min	16170	16170	8805	1713
	WI SIZING CRITERIA		(12)	Dtu /mair	20626			
TOTAL AFTERCOOLER CIRCUIT (OC+AC)			(13)	Btu/min	27937			

A cooling system safety factor of 0% has been added to the cooling system sizing criteria.

CONDITIONS AND DEFINITIONS Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

For notes information consult page three.

CATERPILLAR®

2000

GAS ENGINE SITE SPECIFIC TECHNICAL DATA DTE HAMILTON CS

Engine Power vs. Inlet Air Temperature

Data represents temperature sweep at 1200 ft and 1000 rpm

Engine Power vs. Engine Speed Data represents speed sweep at 1200 ft and 90 °F

2000 1500

No Rating Available Range for Site Conditions Continuous Operating Range for Site Conditions Low Load Intermittent **Operating Range**

Engine Torque vs. Engine Speed

Data represents speed sweep at 1200 ft and 90 °F

Note: At site conditions of 1200 ft and 90°F inlet air temp., constant torque can be maintained down to 760 rpm. The minimum speed for loading at these conditions is 750 rpm.

G3606

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA DTE HAMILTON CS

CATERPILLAR®

NOTES

1. Engine rating is with two engine driven water pumps. Tolerance is ± 3% of full load.

2. Fuel consumption tolerance is ± 2.5% of full load data.

3. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of \pm 5 %.

4. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.

5. Inlet manifold pressure is a nominal value with a tolerance of \pm 5 %.

6. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.

7. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of \pm 6 %.

8. Emissions data is at engine exhaust flange prior to any after treatment.

9. Emission values are based on engine operating at steady state conditions. Fuel methane number cannot vary more than ± 3. Values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate "Not to Exceed" values. THC, NMHC, and NMNEHC do not include aldehydes. An oxidation catalyst may be required to meet Federal, State or local CO or HC requirements.

10. VOCs - Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ

11. Exhaust Oxygen level is the result of adjusting the engine to operate at the specified NOx level. Tolerance is ± 0.5 .

12. Heat rejection values are nominal. Tolerances, based on treated water, are ± 10% for jacket water circuit, ± 50% for radiation, ± 20% for lube oil circuit, and ± 5% for aftercooler circuit.

13. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.

14. Cooling system sizing criteria are maximum circuit heat rejection for the site, with applied tolerances.

Abbrev	Mole %	Norm		
H2O	0.0000	0.0000		
CH4	96.7125	96.7125	Fuel Makeup:	DTE HAMILTON CS
C2H6	2.6452	2.6452	Unit of Measure:	English
C3H8	0.1242	0.1242		-
iso-C4H1O	0.0028	0.0028	Calculated Fuel Properties	
nor-C4H1O	0.0092	0.0092	Catarnillar Mathana Numberi	02.0
iso-C5H12	0.0005	0.0005	Caterpliar Methane Number.	92.0
nor-C5H12	0.0005	0.0005		
C6H14	0.0000	0.0000	Lower Heating Value (Btu/scf):	928
C7H16	0.0000	0.0000	Higher Heating Value (Btu/scf):	1029
N2	0.2418	0.2418	WOBBE Index (Btu/scf):	1227
CO2	0.2633	0.2633		
H2S	0.0000	0.0000	THC: Free Inert Ratio	196 98
CO	0.0000	0.0000	Tetel % Inorte (% N2 CO2 He);	0 51%
H2	0.0000	0.0000		0.51%
O2	0.0000	0.0000	RPC (%) (To 905 Btu/sct Fuel):	100%
HE	0.0000	0.0000		
neo-C5H12	0.0000	0.0000	Compressibility Factor:	0.998
C8H18	0.0000	0.0000	Stoich A/F Ratio (Vol/Vol):	9.69
C9H20	0.0000	0.0000	Stoich A/F Ratio (Mass/Mass):	16.95
C2H4	0.0000	0.0000	Specific Gravity (Relative to Air)	0 572
C3H6	0.0000	0.0000	Evol Specific Heat Patia (K):	1 211
	100.0000	100.0000	ruei Specific field Ralio (K).	1.311
	Abbrev H2O CH4 C2H6 C3H8 iso-C4H1O iso-C5H12 nor-C5H12 C6H14 C7H16 N2 CO2 H2S CO H2 O2 HE neo-C5H12 C8H18 C9H20 C2H4 C3H6	Abbrev Mole % H2O 0.0000 CH4 96.7125 C2H6 2.6452 C3H8 0.1242 iso-C4H1O 0.0092 iso-C5H12 0.0005 nor-C5H12 0.0005 C6H14 0.0000 C7H16 0.0000 N2 0.2418 CO2 0.2633 H2S 0.0000 CO 0.0000 H2 0.0000 CQ 0.0000 H2 0.0000 CO2 0.0000 CO2 0.0000 CO2 0.0000 CO2 0.0000 CO2 0.0000 CSH18 0.0000 C9H20 0.0000 C2H4 0.0000 C3H6 0.0000	AbbrevMole %NormH2O0.00000.0000CH496.712596.7125C2H62.64522.6452C3H80.12420.1242iso-C4H1O0.00280.0028nor-C4H1O0.00920.0092iso-C5H120.00050.0005nor-C5H120.00050.0000C7H160.00000.0000N20.24180.2418CO20.26330.2633H2S0.00000.0000CO0.00000.0000H20.00000.0000D20.00000.0000CO0.00000.0000CO0.00000.0000CO0.00000.0000CO0.00000.0000CO0.00000.0000CO0.00000.0000CO0.00000.0000CO0.00000.0000CO0.00000.0000CO0.00000.0000C2H40.00000.0000C3H60.00000.0000	Abbrev Mole % Norm H2O 0.0000 0.0000 CH4 96.7125 96.7125 C2H6 2.6452 2.6452 C3H8 0.1242 0.1242 iso-C4H10 0.0028 0.0028 nor-C4H10 0.0092 0.0092 iso-C5H12 0.0005 0.0005 nor-C5H12 0.0005 0.0005 C6H14 0.0000 0.0000 C7H16 0.0000 0.0000 N2 0.2418 0.2418 CO2 0.2633 0.2633 H2S 0.0000 0.0000 CO 0.0000 0.0000 H2 0.0000 0.0000 CO2 0.2633 0.2633 H2S 0.0000 0.0000 CA 0.0000 0.0000 HE 0.0000 0.0000 NPC (%) (To 905 Btu/scf Fuel): HE HE 0.0000 0.0000 CA 0.0000 0.0000 <

CONDITIONS AND DEFINITIONS

Caterpillar Nethane Number represents the knock resistance of a gaseous fuel. It should be used with the Caterpillar Fuel Usage Guide for the engine and rating to determine the rating for the fuel specified. A Fuel Usage Guide for each rating is included on page 2 of its standard technical data sheet.

RPC always applies to naturally aspirated (NA) engines, and turbocharged (TA or LE) engines only when they are derated for altitude and ambient site conditions.

Project specific technical data sheets generated by the Caterpillar Gas Engine Rating Pro program take the Caterpillar Methane Number and RPC into account when generating a site rating.

Fuel properties for Btu/scf calculations are at 60F and 14.696 psia.

Caterpillar shall have no liability in law or equity, for damages, consequently or otherwise, arising from use of program and related material or any part thereof.

FUEL LIQUIDS Field gases, well head gases, and associated gases typically contain liquid water and heavy hydrocarbons entrained in the gas. To prevent detonation and severe damage to the engine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid separator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground in accordance with local codes and standards.

To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel operating temperature.

14.2L | 200 kW SG200 INDUSTRIAL SPARK-IGNITED GENERATOR SET

EPA Certified Stationary Emergency

GE-1 Generator Engine **Specifications**

STANDBY POWER RATING

200 kW, 250 kVA, 60 Hz

PRIME POWER RATING* 180 kW, 225 kVA, 60 Hz

*EPA Certified Prime ratings are not available in the U.S. or its Territories.

Image used for illustration purposes only

INDUSTRIAL

CODES AND STANDARDS

*Built in the USA using domestic and foreign parts

Generac products are designed to the following standards:

UL2200, UL508, UL142, UL498

NFPA70, 99, 110, 37

NEC700, 701, 702, 708

ISO9001, 8528, 3046, 7637, Pluses #2b, 4

49.46

NEMA ICS10, MG1, 250, ICS6, AB1

ANSI C62.41

os Dpd IBC 2009, CBC 2010, IBC 2012, ASCE 7-05, ASCE 7-10, ICC-ES AC-156 (2012)

POWERING AHEAD

For over 50 years, Generac has led the industry with innovative design and superior manufacturing.

Generac ensures superior quality by designing and manufacturing most of its generator components, including alternators, enclosures and base tanks, control systems and communications software.

GENERAC

Generac's gensets utilize a wide variety of options, configurations and arrangements, allowing us to meet the standby power needs of practically every application.

Generac searched globally to ensure the most reliable engines power our generators. We choose only engines that have already been proven in heavy-duty industrial application under adverse conditions.

Generac is committed to ensuring our customers' service support continues after their generator purchase.

1 OF 6

INDUSTRIAL SPARK-IGNITED GENERATOR SET

EPA Certified Stationary Emergency

GENERAC[®] | INDUSTRIAL

STANDARD FEATURES

ENGINE SYSTEM

General

- Oil Drain Extension
- Air Cleaner
- Fan Guard
- Stainless Steel flexible exhaust connection
- Factory Filled Oil & Coolant
- Radiator Duct Adapter (open set only)
- Critical Exhaust Silencer

Fuel System

- Flexible fuel line NPT Connection
- Primary and secondary fuel shutoff

Cooling System

- Closed Coolant Recovery System
- UV/Ozone resistant hoses
- Factory-Installed Radiator
- 50/50 Ethylene glycol antifreeze
- Radiator drain extension

Engine Electrical System

- · Battery charging alternator
- Battery cables
- Battery tray
- Rubber-booted engine electrical connections
- Solenoid activated starter motor

ALTERNATOR SYSTEM

- UL2200 Genprotect ™
- Class H insulation material
- 2/3 Pitch
- Skewed Stator
- Permanent Magnet Excitation
- Sealed Bearings
- Amortisseur winding
- · Full load capacity alternator

GENERATOR SET

- Internal Genset Vibration Isolation
- Separation of circuits high/low voltage
- Separation of circuits multiple breakers
- Wrapped Exhaust Piping
- Standard Factory Testing
- 2 Year Limited Warranty (Standby rated Units)
- 1 Year Warranty (Prime rated units)
- Silencer mounted in the discharge hood (enclosed only)

ENCLOSURE (IF SELECTED)

- Rust-proof fasteners with nylon washers to protect finish
- High performance sound-absorbing material (L1 & L2)
- · Gasketed doors
- · Stamped air-intake louvers
- Air discharge hoods for radiator-upward pointing
- · Stainless steel lift off door hinges
- Stainless steel lockable handles
- Rhino Coat[™] Textured polyester powder coat

CONTROL SYSTEM

Control Panel

- Digital H Control Panel Dual 4x20 Display
- Programmable Crank Limiter
- 7-Day Programmable Exerciser
- Special Applications Programmable PLC
- RS-232/485
- · All-Phase Sensing DVR
- Full System Status
- Utility Monitoring
- Low Fuel Pressure Indication
- 2-Wire Start Compatible
- Power Output (kW)
- Power Factor
- kW Hours, Total & Last Run

- Real/Reactive/Apparent Power
- All Phase AC Voltage
- All Phase Currents
- Oil Pressure
- Coolant Temperature
- Coolant Level
- Engine Speed
- Battery Voltage
- Frequency
- Date/Time Fault History (Event Log)
- Isochronous Governor Control
- Waterproof/sealed Connectors
- · Audible Alarms and Shutdowns
- Not in Auto (Flashing Light)
- Auto/Off/Manual Switch
- E-Stop (Red Mushroom-Type)
- NFPA110 Level I and II (Programmable)
- · Customizable Alarms, Warnings, and Events
- Modbus protocol
- Predictive Maintenance algorithm
- Sealed Boards
- · Password parameter adjustment protection

- Single point ground
- 15 channel data logging

High Temp Shutdown)

Low Fuel Pressure Alarm

Battery Voltage Warning

during alarms & warnings

speed Shutdown)

state conditions

codes)

Shutdown)

- 0.2 msec high speed data logging
 Alarm information automatically comes up
- Alarm information automatically comes up on the display

Alarms

•

•

.

 Oil Pressure (Pre-programmable Low Pressure Shutdown)
 Coolant Temperature (Pre-programmed

Coolant Level (Pre-programmed Low Level

Alarms & warnings time and date stamped

Alarms & warnings for transient and steady

Alarms and warnings spelled out (no alarm

SPEC SHEET

2 OF 6

Snap shots of key operation parameters

Engine Speed (Pre-programmed Over

INDUSTRIAL SPARK-IGNITED GENERATOR SET

EPA Certified Stationary Emergency

CONFIGURABLE OPTIONS

ENGINE SYSTEM

General

- O Engine Block Heater
- O Oil Heater
- O Air Filter Restriction Indicator
- O Stone Guard (Open Set Only)

Fuel Electrical System

O 10A & 2.5A UL battery charger O Battery Warmer

ALTERNATOR SYSTEM

- O Alternator Upsizing
- O Anti-Condensation Heater
- O Tropical Coating

CIRCUIT BREAKER OPTIONS

- O Main Line Circuit Breaker
- O 2nd Main Line Circuit Breaker
- O Shunt Trip and Auxiliary Contact
- O Electronic Trip Breaker

ENGINEERED OPTIONS

ENGINE SYSTEM

- O Fluid containment Pans
- O Coolant heater ball valves

ALTERNATOR SYSTEM

RATING DEFINITIONS

O 3rd Breaker Systems

CONTROL SYSTEM

O Spare inputs (x4) / outputs (x4) - H Panel Only O Battery Disconnect Switch

GENERATOR SET

- O Gen-Link Communications Software (English Only)
- O Extended Factory Testing (3 Phase Only)
- O 8 Position Load Center
- O 2 Year Extended Warranty
- O 5 Year Warranty
- O 5 Year Extended Warranty

ENCLOSURE

- O Standard Enclosure
- O Level 1 Sound Attenuation
- O Level 2 Sound Attenuation
- O Steel Enclosure
- O Aluminum Enclosure
- O 150 MPH Wind Kit
- O 12 VDC Enclosure Lighting Kit
- O 120 VAC Enclosure Lighting Kit
- O AC/DC Enclosure Lighting Kit
- O Door Alarm Switch

CONTROL SYSTEM

- O 21-Light Remote Annunciator
- O Remote Relay Board (8 or 16)
- O Oil Temperature Sender with Indication Alarm
- O Remote E-Stop (Break Glass-Type, Surface Mount)
- O Remote E-Stop (Red Mushroom-Type, Surface Mount)
- O Remote E-Stop (Red Mushroom-Type, Flush Mount)
- O Remote Communication Bridge
- O Remote Communication Ethernet
- O 10A Run Relay
- O Ground Fault Indication and Protection Functions

GENERATOR SET

O Special Testing O Battery Box

ENCLOSURE

Standby - Applicable for a varying emergency load for the duration of a utility power outage with no overload capability.

O Motorized Dampers O Enclosure Ambient Heaters

Prime - Applicable for supplying power to a varying load in lieu of utility for an unlimited amount of running time. A 10% overload capacity is available for 1 out of

every 12 hours. The Prime Power option is only available on International applications. Power ratings in accordance with ISO 8528-1, Second Edition

SPEC SHEET

SG200 | **14.2L** | 200 kW INDUSTRIAL SPARK-IGNITED GENERATOR SET

EPA Certified Stationary Emergency

APPLICATION AND ENGINEERING DATA

ENGINE SPECIFICATIONS

General		Cooling System	
Make	Generac	Cooling System Type	Pressurized Closed Recovery
Cylinder #	6	Water Pump Flow -gal/min (l/min)	94 (356)
Туре	In-line	Fan Type	Pusher
Displacement - L (cu In)	14.17 (864.71)	Fan Speed (rpm)	1894
Bore - mm (in)	135 (5.31)	Fan Diameter mm (in)	762 (30)
Stroke - mm (in)	165 (6.50)	Coolant Heater Wattage	2000
Compression Ratio	9.5:1	Coolant Heater Standard Voltage	240 V
Intake Air Method	Turbocharged/Aftercooled		
Number of Main Bearings	7		
Connecting Rods	Carbon Steel	Fuel System	
Cylinder Head Type	Cast Iron GT250, OHV	Fuel Type	Natural Gas
Cylinder Head	Ductile Iron	Carburetor	Down Draft
Cylinder Liners	Altronic CD1	Secondary Fuel Regulator	Standard
Piston Type	Aluminum	Fuel Shut Off Solenoid	Standard
Crankshaft Type	Ductile Iron	Operating Fuel Pressure (Standard)	7" - 11" H₂0
Lifter Type	Solid		L
Intake Valve Material	Special Heat-Resistant Steel		
Exhaust Valve Material	Alloy Steel, High Temp	Engine Electrical System	
Hardened Valve Seats	Alloy Steel, High Temp	System Voltage	24 VDC
Engine Governing		Battery Charging Alternator	Standard
Governor	Electronic	Battery Size	See Battery Index 0161970SBY
Frequency Regulation (Steady State)	+/- 0.25%	Battery Voltage	(2)12 VDC
Lubrication System		Ground Polarity	Negative
Oil Pump Type	Gear		
Oil Filter Type	Full-Flow Cartridge		
Crankcase Capacity - L (qts)	34.3 (36.2)		

ALTERNATOR SPECIFICATIONS

Standard Model	520
Poles	4
Field Type	Revolving
Insulation Class - Rotor	Н
Insulation Class - Stator	Н
Total Harmonic Distortion	<5%
Telephone Interference Factor (TIF)	<50

Standard Excitation	Permanent Magnet
Bearings	Sealed Ball
Coupling	Direct, Flexible Disc
Prototype Short Circuit Test	Yes
Voltage Regulator Type	Full Digital
Number of Sensed Phases	3
Regulation Accuracy (Steady State)	±0.25%

SPEC SHEET

OPERATING DATA

POWER RATINGS

Natural Gas
200 kW Amps: 833
200 kW Amps: 694
200 kW Amps: 601
200 kW Amps: 301
200 kW Amps: 241
-

STARTING CAPABILITIES (sKVA)

STANTING	skva vs.							Voltage Dip					
				480	VAC					208/2	40 VAC		
Alternator	kW	10%	15%	20%	25%	30%	35%	10%	15%	20%	25%	30%	35%
Standard	200	187	280	373	467	560	653	140	210	280	350	420	490
Upsize 1	250	263	395	527	658	790	922	197	296	395	494	593	692
Upsize 2	300	303	454	605	757	908	1059	227	341	454	568	681	794

FUEL CONSUMPTION RATES*

Natural Gas - ft 3/hr (m 3/hr)					
Percent Load	Standby				
25%	900 (25.5)				
50%	1543 (43.7)				
75%	2083 (59.0)				
100%	2571 (72.8)				
* Evel events installation must approximate for					

* Fuel supply installation must accommodate fuel consumption rates at 100% load.

COOLING

	Stanuby
ft³/min (m ³/in)	9432 (267)
gal/min (l/min)	6.1 (32.1)
BTU/hr	670,280
°F (°C)	122 (50)
°F (°C)	104 (40.0)
in H ₂ 0	0.5
	ft³/min (m ³/in) gal/min (l/min) BTU/hr °F (°C) °F (°C) in H₂O

COMBUSTION AIR REQUIREMENT

	Standby	
Flow at Rated Power cfm (m ³ /min)	432 (12.2)	

ENGINE

EXHAUST

		Standby			Standby
Rated Engine Speed	rpm	1800	Exhaust Flow (Rated Output)	cfm (m ³ /min)	1499 (42.4)
Horsepower at Rated kW**	hp	304	Max. Backpressure (Post Silencer)	inHg (Kpa)	0.75
Piston Speed	ft/min	1949 (594)	Exhaust Temp (Rated Output - post silencer)	°F (°C)	1384 (751)
BMEP	psi	179	Exhaust Outlet Size (Open Set)	mm (in)	3.5" I.D. Flex (No Silencer)

** Refer to "Emissions Data Sheet" for maximum bHP for EPA and SCAQMD permitting purposes.

Deration – Operational characteristics consider maximum ambient conditions. Derate factors may apply under atypical site conditions. Please consult a Generac Power Systems Industrial Dealer for additional details. All performance ratings in accordance with ISO3046, BS5514, ISO8528. and DIN6271 standards.

SG200 | **14.2L** | 200 kW

INDUSTRIAL SPARK-IGNITED GENERATOR SET

EPA Certified Stationary Emergency

DIMENSIONS AND WEIGHTS*

W

OPEN SET (Includes Exhaust Flex)

L x W x H in (mm)	127.95 (3250) x 52.93 (1344.5) x 67.37 (1711.2)
Weight Ibs (kg)	5460 (2477)

STANDARD ENCLOSURE

L x W x H in (mm)	153.89 (3909) x 52.73 (1339.3) x 69.67 (1769.6)
Weight Ibs (kg)	Steel: 6440 (2921) Aluminum: 5974 (2710)

LEVEL 1 ACOUSTIC ENCLOSURE

L x W x H in (mm)	180.11 (4574.7) x 52.73 (1339.3) x 69.67 (1769.6)
	Stool: 6744 (2050)

Weight lbs (kg)

Н

Ĥ

Steel: 6744 (3059) Aluminum: 6104 (2769)

LEVEL 2 ACOUSTIC ENCLOSURE

L x W x H in (mm)	154.45 (3922.9) x 53.96 (1370.6) x 93.40 (2372.3)
Weight Ibs (kg)	Steel: 6980 (3166) Aluminum: 6206 (2815)

*All measurements are approximate and for estimation purposes only.

YOUR FACTORY RECOGNIZED GENERAC INDUSTRIAL DEALER

6 OF 6

Specification characteristics may change without notice. Please consult a Generac Power Systems Industrial Dealer for detailed installation drawings.

STATES - DUBY	UNITED STATES ENVIRON 2017 M CERTIFICATI WITH THE	OFFICE OF TRANS AND AIR QU ANN ARBOR, MICI	PORTATION ALITY HIGAN 48105		
Certificate Issued To: Gen (U.S.) Certificate Number: HGNX	erac Power Systems, Inc. Manufacturer or Importer) (B14.22C1-041	Effective Date: 11/09/2016 Expiration Date: 12/31/2017	Byron J, Bunke Complia	r, Division Director nce Division	Issue Date: 11/09/2016 Revision Date: N/A
Manufacturer: Generac Pow Engine Family: HGNXB14. Mobile/Stationary Certifica Fuel : Natural Gas (CNG/LN Emission Standards : Part 60 Subpart JJJJ Table CO (g/kW-hr) : 5.4 NOx (g/kW-hr) : 2.7 VOC (g/kW-hr) : 1.3	ver Systems, Inc. 22C1 ition Type: Stationary IG)				
Emergency Use Only : Y		SED STA			

Pursuant to Section 213 of the Clean Air Act (42 U.S.C. section 7547) and 40 CFR Part 60, 1065, 1068, and 60 (stationary only and combined stationary and mobile) and subject to the terms and conditions prescribed in those provisions, this certificate of conformity is hereby issued with respect to the test engines which have been found to conform to applicable requirements and which represent the following nonroad engines, by engine family, more fully described in the documentation required by 40 CFR Part 60 and produced in the stated model year.

This certificate of conformity covers only those new nonroad spark-ignition engines which conform in all material respects to the design specifications that applied to those engines described in the documentation required by 40 CFR Part 60 and which are produced during the model year stated on this certificate of the said manufacturer, as defined in 40 CFR Part 60. This certificate of conformity does not cover nonroad engines imported prior to the effective date of the certificate.

It is a term of this certificate that the manufacturer shall consent to all inspections described in 40 CFR 1068.20 and authorized in a warrant or court order. Failure to comply with the requirements of such a warrant or court order may lead to revocation or suspension of this certificate for reasons specified in 40 CFR Part 60. It is also a term of this certificate that this certificate may be revoked or suspended or rendered void *ab initio* for other reasons specified in 40 CFR Part 60.

This certificate does not cover large nonroad engines sold, offered for sale, or introduced, or delivered for introduction, into commerce in the U.S. prior to the effective date of the certificate.

PRIME POWER SYSTEMS

By Gillette Generators, Inc.

LIQUID COOLED NG ENGINE GENERATOR SET

KW POWER RATINGS RANGE FOR 60 HZ

Model		PRIME 105°C RISE
	HZ	N.G.
PR-550-60 HERTZ	60	55

STANDARD FEATURES

- All generator sets are USA prototype built and thoroughly tested. Production models are USA factory built and 100% load tested.
- Mastertrak telematics remote monitoring equipment with 2 year service subscription. Required for all prime powered generators.
- All generators are UL-1446 certified.
- Solid state, frequency compensated voltage regulation is standard on all gen-sets.
- Electronic engine governor incorporates a throttle body actuator, which allows precise isochronous frequency regulation.
- A brushless rotating field generator design with shunt wound excitation system and connectable at 1 phase or a broad range of 3 phase voltages.
- SENTINEL "ULTIMATE" digital controller allows programming to basic engine functions in the field. Controller has stop-manual-auto mode and engine shutdowns, signaled by full text LCD indicators.
- Heavy Duty 100%-125% rated Circuit Breaker is standard on all gen-sets.
- All generator set control systems components and accessories provide a 1-year limited warranty at time of initial start-up. Generators and engines are governed by separate warranties.
- "OPEN" Generator Sets: There is no enclosure, so gen-set must be placed within a weather protected area, un-inhabited by humans or animals, with proper ventilation. Muffler and flexible exhaust hose are not supplied, as installation requirements are not known. However, these two items are available as optional equipment.
- "LEVEL 2" Aluminum Housing: Full weather protection and superior sound attenuation for specific low noise applications. <u>Critical grade muffler is standard.</u>

GENE	RATOR	RATING	S		NATURAL GAS FUEL		
	VOLTAGE		H7	105°C RISE PRIME RATING		POWER LEAD CONNECTIONS	
	L-N	L-L	1		KW/KVA	AMP	
PR-550-1-1	120	240	1	60	55/55	229	4 LEAD DEDICATED 1 PH.
PR-550-3-2	120	208	3	60	55/69	191	12 LEAD LOW WYE
PR-550-3-3	120	240	3	60	55/69	166	12 LEAD HIGH DELTA
PR-550-3-4	277	480	3	60	55/69	83	12 LEAD HIGH WYE
PR-550-3-5	127	220	3	60	55/69	181	12 LEAD LOW WYE
PR-550-3-16	346	600	3	60	55/69	66	4 LEAD DEDICATED 3 PH.

RATINGS: All single phase gen-sets are dedicated 4 lead windings, rated at unity (1.0) power factor. All three phase gen-sets are 12 lead windings, rated at (.8) power factor. 105°C "PRIME RATINGS" are strictly for gen-sets provide the prime source of electric power, where normal utility power is unavailable or unreliable. A 10% overload is allowed for a total of 1 hour, within every 12 hours of operation of PRIME RATED systems. All gen-set power ratings are based on temperature rise measured by resistance method as defined by MIL-STD 705C and IEEE STD 115, METHOD 6.4.4. All generators have class H (180°C) insulation system on both rotor and stator windings. All factory tests and KW/KVA charts shown above are based on 105°C (prime) R/R winding temperature, within a maximum 40°C ambient condition. Specifications & ratings are subject to change without prior notice.

"OPEN" GEN-SET

"LEVEL 2" HOUSED GEN-SET

APPLICATION AND ENGINEERING DATA FOR MODEL PR-550-60 HZ

GENERATOR SPECIFICATIONS

Manufacturer Marathon Electric Ger	nerators
Model & Type361CSL1613, 4 Pole, 4 Lead, Single	e Phase
361CSL1602, 4 Pole, 12 Lead re-connectable, Three	e Phase
	e Phase
ExciterBrushless, shunt e	excited
Voltage RegulatorSolid State, HZ	Z/Volts
Voltage Regulation ¹ /2%, No load to fu	ull load
FrequencyField convertible, 60 HZ to	50 HZ
Frequency Regulation1/2% (1/2 cycle, no load to fu	ill load)
Unbalanced Load Capability 100% of prime	e amps
Total Stator and Load InsulationClass H,	, 180°C
Temperature Rise105°C R/R, prime rating @ 40°C	C amb.
1 Ø Motor Staring @ 30% Voltage Dip (240V)13	30 kVA
3 Ø Motor Staring @ 30% Voltage Dip (208-240V)20	00 kVA
3 Ø Motor Staring @ 30% Voltage Dip (480V)26	50 kVA
Bearing 1, Pre-lubed and	sealed
CouplingDirect flexib	ole disc
Total Harmonic Distortion Max 31/2% (MIL-STI	D705B)
Telephone Interference Factor Max 50 (NEMA M	G1-22)
Deviation Factor Max 5% (MIL-STD	405B)
Ltd. Warranty Period 24 Months from date of star	t-up or
	occur.

GENERATOR FEATURES

- World Renown Marathon Electric Generator having UL-1446 certification.
- Full generator protection with **SENTINEL** "ULTIMATE" controller, having UL-508 certification.
- Automatic voltage regulator with over-excitation, underfrequency compensation, under-speed protection, and EMI filtering. Entire solid-state board is encapsulated for moisture protection.
- Generator power ratings are based on temperature rise, measured by resistance method, as defined in MIL-STD 705C and IEEE STD 115, Method 6.4.4.
- Power ratings will not exceed temperature rise limitation for class H insulation as per NEMA MG1-22.40.
- Insulation resistance to ground, exceeds 1.5 meg-ohm.
- Stator receives 2000 V. hi-potential test on main windings, and rotor windings receive a 1500 V. hi-potential test, as per MIL-STD 705B.
- Full amortisseur windings with UL-1446 certification.
- Complete engine-generator torsional acceptance, confirmed during initial prototype testing.
- Full load testing on all engine-generator sets, before shipping.
- Self ventilating and drip-proof & revolving field design

ENGINE SPECIFICATIONS AND APPLICATIONS DATA

ENGINE

Anufacturer General Motors
Aodel and TypeInd. Power Train, Vortec, 5.7L, 4 cycle
Aspiration Natural
Cylinder Arrangement8 Cylinders, V-8
Displacement Cu. In. (Liters)
Bore & Stroke In. (Cm.)4 x 3.48 (10.2 x 8.84)
Compression Ratio9.1:1
Aain Bearings & Style 5M 400 Copper Lead
Cylinder Head Hardened Cast Iron
PistonsHigh, Silicon Aluminum
CrankshaftNodular Iron
Exhaust Valve Forged Steel
GovernorElectronic
Frequency Reg. (no load-full load)Isochronous
Frequency Reg. (steady state) $\pm 1/4\%$
Air CleanerDry, Replaceable Cartridge
Engine Speed
Piston Speed, ft/min (m./min)1044 (318)
Aax Power, bhp (kwm) Prime/NG
td. Warranty Period12 Months or 2000 hrs., first to occur

FUEL SYSTEM

Туре	NAT. GAS, Vapor Withdrawal
Fuel Pressure (kpa), in. H ₂ O*	
Secondary Fuel Regulator	NG Vapor System
Auto Fuel Lock-Off Solenoid	Standard on all sets
Fuel Supply Inlet Line	
* Measured at gen-set fuel inlet,	downstream of any dry fuel
accessories.	

FUEL CONSUMPTION

NAT. GAS: FT ³ /HR (M ³ /HR)	PRIME		
100% LOAD	720 (20.3)		
75% LOAD	626 (17.7)		
50% LOAD	450 (12.7)		
NG = 1000 BTU X FT ³ /HR = Total BTU/HR			

OIL SYSTEM

Туре	Full Pressure
Oil Pan Capacity qt. (L)	
Oil Pan Cap. W/ filter qt. (L)	
Oil Filter	

ELECTRICAL SYSTEM

Ignition System	Electronic
Eng. Alternator and Starter:	
Ground	Negative
Volts DC	
Max. Amp Output of Alternator	
Recommended Battery to -18°C (0°F): 12 VDC	, Size BCI# 24F
Max Dimensions: 10 3/4" lo X 6 3/4" wi X 9" h	i with standard

Max Dimensions: ..10 3/4" lg X 6 3/4" wi X 9" hi, with standard round posts. Min. output at 600 CCA. Battery tray (max. dim. at 12"lg x 7"wi), hold down straps, battery cables, and battery charger, is furnished. Installation of (1) starting battery is required, with possible higher AMP/HR rating, as described above, if normal environment averages -13°F (-25°C) or cooler.

APPLICATION AND ENGINEERING DATA FOR MODEL PR-550-60 HZ

COOLING SYSTEM

Type of System	Pressurized, closed recovery
Coolant Pump	Pre-lubricated, self-sealing
Cooling Fan Type (no. of blades)	Pusher (10)
Fan Diameter inches (cm)	
Ambient Capacity of Radiator °F (°C	C)125 (51.6)
Engine Jacket Coolant Capacity Gal	(L)1.8 (6.8)
Radiator Coolant Capacity Gal. (L).	
Maximum Restriction of Cooling Ai	r Intake
and discharge side of radiator in. H ₂ (0 (kpa)5 (.125)
Water Pump Capacity gpm (L/min).	
Heat Reject Coolant: Btu/min (kw)	
Low Radiator Coolant Level Shutdo	wnStandard
Note: Coolant temp. shut-down switch setting (water/antifreeze) mix.	at 212°F (100°C) with 50/50

COOLING AIR REQUIREMENTS

Combustion Air, cfm (m ³ /min)	
Radiator Air Flow cfm (m ³ /min)	
Heat Rejected to Ambient:	
Engine: kw (btu/min)	
Alternator: kw (btu/min)	7.5 (430)

EXHAUST SYSTEM

Exhaust Outlet Size	2.5"
Max. Back Pressure in. hg (KPA)	3.0 (10.2)
Exhaust Flow, at rated kw: cfm (m ³ /min)	
Exhaust Temp., at rated kw: °F (°C)	1200 (649)
Engines are EPA certified for Natural Gas.	

SOUND LEVELS MEASURED IN dB(A)

				Open	Level 2
				Set	Encl.
Level	2,	Critical	Silencer		74.
			••••••		67
Level	3,	Hospital	Silencer		72.
		-			65

Note: Open sets (no enclosure) has (3) optional silencer system choices due to unknown job-site applications. Level 2 enclosure has installed critical silencer with upgrade to hospital silencer. Sound tests are averaged from several test points and taken at 23 ft. (7 m) from source of noise at normal operation.

DERATE GENERATOR FOR ALTITUDE

3% per 1000 ft. (305m) above 3000 ft.(914m) from sea level

DERATE GENERATOR FOR TEMPERATURE

2% per 10°F (5.6°C) above 85°F (29.4°C)

DIMENSIONS AND WEIGHTS

	Open Set	Level 2 Enclosure
Length in (cm)		102 (258)
Width in (cm)		
Height in (cm)		53 (134)
1 Ø Net Weight lbs (kg)		2471 (1121)
1 Ø Ship Weight lbs (kg)	2031 (921)	2571 (1166)
3 Ø Net Weight lbs (kg)		2431 (1103)
3 Ø Ship Weight lbs (kg).	1991 (903)	

SENTINEL ULTIMATE DIGITAL MICROPROCESSOR CONTROLLER

SENTINEL ULTIMATE

The "**Ultimate**" controller is an auto start mains (utility) failure module for single gen-set applications. This controller includes a backlit LCD display which <u>continuously</u> displays the status of the engine and generator at all times.

The "**Ultimate**" controller will also monitor speed, frequency, voltage, current, oil pressure, coolant temp., and fuel levels. These modules have been designed to display warning and shut down status. It also includes: (11) configurable inputs • (8) configurable outputs • voltage monitoring • mains (utility) failure detection • (250) event logs • configurable timers • automatic shutdown or warning during fault detection • remote start (on load) • engine preheat • advanced metering capability • hour meter • text LCD displays • protected solid state outputs • test buttons for: stop/reset • manual mode • auto mode • lamp test • start button • power monitoring (kWh, kVAr, kVAh, kVArh)

This controller includes the "**Ultimate**" in expansion features including RS232, RS484 (using MODBUS-RTU/TCP), direct USB connection with PC, expansion optioned using DSENet for remote annunciation and remote relay interfacing for a distance of up to 3300FT. The controller software is freely downloadable from the internet and allows monitoring with direct USB cable, LAN, or by internet via the built in web interface.

Further expansion is available by adding the optional "WebNet" gateway interface module. This device will allow comprehensive monitoring of the generator via the cloud including identification, location, and status. Some advantages of this module include: reduced site visits and maintenance costs • remote fuel management • fault analysis • asset tracking • automatic system alerts • maximized system up-time.

STANDARD AND OPTIONAL FEATURES FOR MODEL PR-550-60HZ

STANDARD FEATURES

CONTROL PANEL:

SENTINEL "ULTIMATE" digital microprocessor with logic allows programming in the field. Controller has:

- STOP-MANUAL-AUTO modes and automatic engine shutdowns, signaled by full text LCD indicators:
- · Low oil pressure
- □ Engine fail to start • High engine temp □ Engine over speed
- Low Radiator Level □ Engine under speed
- □Three auxiliary alarms □ Over & under voltage

Battery fail alarm

Also included is tamper-proof engine hour meter

ENGINE:

Full flow oil filter • Air filter • Oil pump • Solenoid type starter motor • Hi-temp radiator • Jacket water pump

- Thermostat Pusher fan and guard Exhaust manifold
- Residential Silencer 12 VDC battery charging alternator

• Flexible exhaust connector • "Isochronous" duty, electronic governor • Secondary dry fuel regulator • Dry fuel lock-off solenoid • Vibration isolators • Closed coolant recovery system with 50/50 water to anti-freeze mixture

AC GENERATOR SYSTEM:

AC generator • Shunt excited • Brushless design • Circuit Breaker installed and wired to gen-set • Direct connection to engine with flex disc • Class H, 180°C insulation • Self ventilated • Drip proof construction • UL Certified

VOLTAGE REGULATOR:

1/2% Voltage regulation • EMI filter • Under-speed protection • Over-excitation protection • total encapsulation

DC ELECTRICAL SYSTEM:

Battery tray • Battery cables • Battery hold down straps • 2-stage battery float charger with maintaining & recharging automatic charge stages

WEATHER/SOUND PROOF ALUMINUM HOUSING CORROSION RESISTANT PROTECTION CONSISTING OF:

- 9 Heated And Agitated Wash Stages.
- Zinc Phosphate Etching-coating Stage
- Final Baked On Enamel Powder Coat
- 18/8 Stainless Steel Hardware

ACCESSORY ITEMS

- Engine Coolant Heater with automatic 80°F on, 100°F \square off, thermostat
- Starting Battery Heater Blanket with automatic 60°F on, 80°F off, thermostat
- Battery Charger Upgrade, float type, 12 VDC at max. \square charge, with ammeter on charger.
- External Permanent Magnet Generator (PMG) for \square increased induction motor starting capacity on $1\emptyset$ or $3 \oslash$ sets, and short circuit protection.
- Exhaust Silencer Hospital Grade \square

- All brushed type 304 stainless steel weather and sound deadening housing for coastal areas.
- DSE WebNet Gateway expansion module will allow \square communications with a host server via Ethernet and the DSE cloud connection for mapping static locations, real time instrumentation, control event log tables, and automatic system alerts via email.
- Remote Annunciator for up to (10) reporting functions. An additional relay expansion module, plus a second Annunciator adds another (10) reporting functions.

approximate. Contact Gillette for certified NOT USE DIMENSIONS FOR INSTALLATION PURPOSES.

4

OFFICE OF TRANSPORTATION AND AIR QUALITY ANN ARBOR, MICHIGAN 48105	er, Division Director Issue Date: Revision Date: Revision Date: N/A		why and combined stationory and mobile) and subject to the	only and computed stationary and mobile) and subject to the sen found to conform to applicable requirements and which t 1048 and produced in the stated model year.	cations that applied to those engines described in the d manufacturer, as defined in 40 CFR Part 60, 40 CFR Part	ourt order. Failure to comply with the requirements of such a ulso a term of this certificate that this certificate may be revoked	S. prior to the effective date of the certificate.
MENTAL PROTECTION AGENCY IODEL YEAR E OF CONFORMITY CLEAN AIR ACT	Effective Date:10/20/2014Expiration Date:12/31/2015Byron J Bunk	A PASSA	Dont 60 10 CED Dont 1048 1065 1068 and 60 (stationary s	Fart ov, 40 CFK Fart 1046, 1000, 1000, and 00 (stauonary c s hereby issued with respect to the test engines which have be the documentation required by 40 CFR Part 60, 40 CFR Part	s: which conform in all material respects to the design specifi- aced during the model year stated on this certificate of the sai to the effective date of the certificate.	lescribed in 40 CFR 1068.20 and authorized in a warrant or c assons specified in 40 CFR Part 60, 40 CFR Part 1048. It is a 60, 40 CFR Part 1048.	duced, or delivered for introduction, into commerce in the U.
UNITED STATES ENVIRON 2015 M CERTIFICAT	ower Solutions International, Inc. S. Manufacturer or Importer) SIB5.70NGP-006	olutions International, Inc. 70NGP ile and Stationary LNG) DC (g/Hp-hr) : 0.7 DC (g/Hp-hr) : 0.7 HL + NOX (g/kW-hr) : 2.7 A kW-hr) : 2.7	the Class Air Act (12 II S.C. saction 75/17) and 10 CED	the Clean All Act (42 U.S.C. section 7247) and 40 CFR ribed in those provisions, this certificate of conformity is moad engines, by engine family, more fully described in	ity covers only those new nonroad spark-ignition engine: 40 CFR Part 60, 40 CFR Part 1048 and which are produ nformity does not cover nonroad engines imported prior	the that the manufacturer shall consent to all inspections d lead to revocation or suspension of this certificate for re oid <i>ab initio</i> for other reasons specified in 40 CFR Part (ver large nonroad engines sold, offered for sale, or intro
AND ROUTING AND	Certificate Issued To: 1 (U Certificate Number: FP	Manufacturer: Power Sc Engine Family: FPSIB5: Certification Type: Mob Fuel : Natural Gas (CNG, LPG/Propane Emission Standards : V(CO (g/Hp-hr) : 1 CO (g/Hp-hr) : 1 CO (g/KW-hr) : 4 NOMHC + NOX (g/ Emergency Use Only : N	Duren and to Cartion 212 of	represent the following nor	This certificate of conform documentation required by 1048. This certificate of co	It is a term of this certifical warrant or court order may or suspended or rendered v	This certificate does not cc

Flex Energy GT250S Microturbine Specifications

FLEX TURBINE[™] GT250S

Ultra-clean electricity and useful thermal energy from a rugged and efficient gas turbine.

250 kW Continuous Onsite Electrical Power with Integrated Heat Recovery

KEY FEATURES

- High system efficiency
- Synchronous generator ideal for off-grid oil & gas applications
- Grid-parallel, Grid isolated, or Dual-mode operation
- Low emissions exceed stringent environmental standards
- Integrated, variable-output, waste-heat recovery unit available
- Over two million hours of fleet operating experience

ELECTRICAL PERFORMANCE*

CHARACTERISTIC	SPECIFICATION
Electrical efficiency (± 2 pts)	30% LHV without gas booster
Electrical power** (±15 kW)	250 kW nominal

ELECTRICAL OUTPUT GRAPH SHOWS CHANGE IN POWER AND EFFICIENCY WITH TEMPERATURE

Note: kWe is electrical output at terminals corrected for parasitics, but not including gas booster power

Nominal best rate (HHV)	12,645 Btu/kWh (13.3 MJ/kWh) without gas booster			
Nominal field fate (HHV)	13,080 Btu/kWh (13.8 MJ/kWh) with gas booster			
Nominal heat rate (I HV)	11,380 Btu/kWh (12.0 MJ/kWh) without gas booster			
Nominal field fale (LHV)	11,770 Btu/kWh (12.4 MJ/kWh) with gas booster			
Voltage	480 VAC/400 VAC			
Frequency	60 Hz/50 Hz			
Type of service	3 phase, wye, 4 wire			
Grid-isolated regulation	± 0.50% nominal voltage			
(steady state)	± 0.30 Hz nominal frequency			
Transient handling (linear loads) (recovery within 5 seconds)	± 10% nominal voltage max			
	± 5 Hz frequency max			

* At ISO Conditions (59°F [15°C] @ sea level, 60% RH) unless otherwise noted, pipeline natural gas only.

** Elevation derate of approximately 8.80 kW per 1000 ft (305 m)

Synchronous Generator

CARB CERTIFICATION

 The GT250S is the first microturbine to be certified to the California Air Resource Board's 2007 emissions standards

RUGGED GAS TURBINE

- Back-to-back rotating components
- Proven oil-lubricated bearings
- High H₂S tolerance up to 6500 ppmv

SYNCHRONOUS GENERATOR

- Same technology utilities use to power the grid
- High load starting capability up to 100 hp DOL

PATENTED RECUPERATOR

- Critical to high system efficiency
- Compact rugged design

PATENTED COMBUSTOR

- Dry low NO_x
- Meets stringent environmental regulations

SOPHISTICATED CONTROLS

- Closed transition dual-mode functionality
- Remote monitoring capability

COMBINED HEAT AND POWER

- Controllable output level
 Integral heat recovery unit contained within turbine enclosure
- No ducting

HEAT OUTPUT RECOVERABLE TO WATER

Note: Heat Recovery Unit (HRU) at ISO conditions, damper fully open, $\pm\,15\%$

PHYSICAL SPECIFICATIONS

	DIMENSIONS		WIDTH	LENGTH	HEIGHT	WEIGHT Est.
Stee up to	Indoor Unit	(in)	77.2	167.6	91.9	14,500 lb
	Outdoor Unit	(cm)	196.0	425.8	229.9	6,577 kg
		(in)	77.2	167.6	158.1	14,500 lb
I.		(cm)	196.0	425.8	401.6	6,577 kg

	MINIMUM CLEARANCE REQUIREMENTS CHARACTERISTIC	SPECIFICATION
	Vertical clearance	
	- Indoor Unit	102 in (259 cm)
	- Outdoor Unit	No overhead obstruction
	Horizontal front, rear and left side	48 in (122 cm)
	Horizontal right side	72 in (183 cm)
	GENERATOR BRAKING RESISTOR	
2	CHARACTERISTIC	SPECIFICATION

Europe: +44 (0)7710 827141

CONTACT INFORMATION

INFO@FLEXENERGY.COM

PHONE USA: +1.877.477.6937

ADDRESS 30 New Hampshire Avenue Portsmouth, NH 03801 United States

HEAT RECOVERY*

CHARACTERISTIC	SPECIFICATION
Recuperator exhaust temp. w/o HRU	493°F (256°C)
Engine air flow	4.7 lb/s (2.13 kg/s)
	3700 scfm (5950 Nm ³ /h)
Max water flow	100 gpm (379 lpm)
Max inlet water pressure	125 psig (862 kPa)
Max inlet water temp.	185°F (85°C)
* at ISO Conditions (50%E [15°C] @ soa loval 60% PH) uplass otherwise

* at ISO Conditions (59°F [15°C] @ sea level, 60% RH) unless otherwise noted.

FUEL REQUIREMENTS

CHARACTER	RISTIC	SPECIFICATION						
Inlet pressur -with gas -without g	re booster gas booster	4" (100 mm) WC to 1 psig (6.9 kP 80 to 140 psig (551 to 965 kP						
Min tempera	ature*	33°F (1°C)						
Max temp.	-with gas booster	115°F (46°C)						
	-without gas booste	r 175°F (79°C)						
250SW Mod	el**	325 to 600 WI Btu/ft ³						
low caloric v	alue gas, level 1	12.1 to 22.3 $WI MJ/m^3$						
250ST Mode	a]**	500 to 970 WI Btu/ft ³						
low caloric v	alue gas, level 2	18.6 to 36.1 WI MJ/m^3						
250SM Mod	el**	800 to 1900 WI Btu/ft ³						
medium / hi	gh caloric value gas	29.8 to 70.7 WI MJ/m ³						
* Or 18°F dew	point suppression, whicheve	r is greater						

** Wobbe Index. Lower heating value (LHV), dry basis, at 14.7 psi (101 kPa) and 59°F (15°C)

EMISSIONS AT 100% LOAD*

	IVIISSIONS AT TOU% LOAD	
(HARACTERISTIC	SPECIFICATION
١	Юx	<5 ppmv @ 15% O ₂
(0	<5 ppmv @ 15% O ₂
\	/OC	<5 ppmv @ 15% O ₂
*	Pipeline natural gas only at ISO conditions	

AMBIENT TEMPERATURE LIMIT

CHARACTERISTIC	SPECIFICATION
Standard	-10° to 115°F (-23° to 46°C)
Cold Weather Option*	-20° to 115°F (-29° to 46°C)

* Some configurations may require additional cold-weather options

GT250S GAS TURBINE CYCLE

©2015 FlexEnergy Inc. and/or its affiliates ("FlexEnergy"). This document comprises a general overview of the products or services described herein. It is solely for informational purposes, does not represent a warranty of the information constrained herein and is not to be construed as an offer to sell or solicitation to buy. Contact FlexEnergy for detailed product, design, and engineering information suitable to your specific applications. FlexEnergy reserves the right to modify its products and related product information at any time without prior notice.

	Innt	and and
		at 112
		-

Weatherproof Outdoor Enclosure

Generator Braking Resistor

March 20, 2017

Subject: DTE, West Virginia – GT250S Emissions Data

Below are the expected emissions of a single Flex Turbine[®] GT250S operating on natural gas. The assumed site conditions are 1602 ft. asl., with an ambient temperature range of 0°F to 100°F. For permitting purposes, it is always recommended to permit for the maximum acceptable limits.

Constituent	Percent Power	ppmv @ 15% O ₂	lb/MWh	
	70%	12	0.45	
NOx	85%	9	0.35	
	100%	5	0.20	
	70%	50	1.12	
со	85%	11	0.26	
	100%	5	0.12	
	70%	20	0.25	
VOCs	85%	10	0.13	
	100%	5	0.07	

Let us know if you have any additional questions.

Regards,

Joe Skuza Applications Engineer FlexEnergy Inc. Phone: +1 603-957-8835 joe.skuza@flexenergy.com

ATTACHMENT V

Facility-Wide Emission Summary

ATTACHMENT V – FACILITY-WIDE CONTROLLED EMISSIONS SUMMARY SHEET															
List all sources of emissions in this table. Use extra pages if necessary.															
Emission Doint ID#	N	NO _x		СО		VOC		SO ₂		PM ₁₀		PM _{2.5}		GHG (CO ₂ e)	
Emission Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
CE-1	1.96	8.58	0.54	2.37	0.99	4.34	0.01	0.03	0.13	0.59	0.13	0.59	2,250.99	9,859.35	
CE-2	1.96	8.58	0.54	2.37	0.99	4.34	0.01	0.03	0.13	0.59	0.13	0.59	2,250.99	9,859.35	
CE-3	1.96	8.58	0.54	2.37	0.99	4.34	0.01	0.03	0.13	0.59	0.13	0.59	2,250.99	9,859.35	
CE-4	1.96	8.58	0.54	2.37	0.99	4.34	0.01	0.03	0.13	0.59	0.13	0.59	2,250.99	9,859.35	
CE-5	1.96	8.58	0.54	2.37	0.99	4.34	0.01	0.03	0.13	0.59	0.13	0.59	2,250.99	9,859.35	
CE-6	1.96	8.58	0.54	2.37	0.99	4.34	0.01	0.03	0.13	0.59	0.13	0.59	2,250.99	9,859.35	
GE-1	1.35	0.34	2.70	0.67	0.70	0.18	1.6E-03	3.9E-04	0.05	0.01	0.05	0.01	310.42	77.61	
GE-2	0.19	0.82	0.37	1.64	0.15	0.64	4.4E-04	1.9E-03	0.01	0.06	0.01	0.06	86.93	380.77	
MT-1	0.11	0.49	0.28	1.23	0.06	0.27	0.01	0.05	0.02	0.09	0.02	0.09	382.98	1,677.44	
TEG-1					0.99	4.34							4,424.21	19,378.05	
TEG-2					0.99	4.34							4,424.21	19,378.05	
REB-1	0.15	0.64	0.12	0.54	0.01	0.04	8.7E-04	3.8E-03	0.01	0.05	0.01	0.05	175.68	769.47	
REB-2	0.15	0.64	0.12	0.54	0.01	0.04	8.7E-04	3.8E-03	0.01	0.05	0.01	0.05	175.68	769.47	
T10					0.05	0.23							0.03	0.15	
T11					0.05	0.23							0.03	0.15	
De minimis storage tanks					0.00	0.01									
L01					0.05	0.01									
Fugitives						1.57								3,069.47	
Haul Roads										0.12		0.01			
FACILITY TOTAL	13.70	54.43	6.84	18.80	9.01	37.91	0.06	0.27	0.92	4.00	0.92	3.83	23,486.13	104,656.68	
FACILITY TOTAL (Excluding fugitives)	13.70	54.43	6.84	18.80	9.01	36.34	0.06	0.27	0.92	3.81	0.92	3.81	23,486.13	101,587.21	

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT V – FACILITY-WIDE HAP CONTROLLED EMISSIONS SUMMARY SHEET															
List all sources of emissions in this table. Use extra pages if necessary.															
Emission Point	Forma	ldehyde	Benzene		Tol	Toluene		Ethylbenzene		Xylenes		Hexane		Total HAPs	
ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
CE-1	0.20	0.88	5.9E-03	2.6E-02	5.5E-03	2.4E-02	5.4E-04	2.3E-03	2.5E-03	1.1E-02	0.01	0.07	0.46	2.02	
CE-2	0.20	0.88	5.9E-03	2.6E-02	5.5E-03	2.4E-02	5.4E-04	2.3E-03	2.5E-03	1.1E-02	0.01	0.07	0.46	2.02	
CE-3	0.20	0.88	5.9E-03	2.6E-02	5.5E-03	2.4E-02	5.4E-04	2.3E-03	2.5E-03	1.1E-02	0.01	0.07	0.46	2.02	
CE-4	0.20	0.88	5.9E-03	2.6E-02	5.5E-03	2.4E-02	5.4E-04	2.3E-03	2.5E-03	1.1E-02	0.01	0.07	0.46	2.02	
CE-5	0.20	0.88	5.9E-03	2.6E-02	5.5E-03	2.4E-02	5.4E-04	2.3E-03	2.5E-03	1.1E-02	0.01	0.07	0.46	2.02	
CE-6	0.20	0.88	5.9E-03	2.6E-02	5.5E-03	2.4E-02	5.4E-04	2.3E-03	2.5E-03	1.1E-02	0.01	0.07	0.46	2.02	
GE-1	0.05	0.01	6.6E-05	1.6E-05	3.4E-05	1.5E-04	5.2E-04	1.3E-04	<0.01	<0.01	<0.01	<0.01	0.09	0.02	
GE-2	0.02	0.07	1.8E-05	8.1E-05	9.6E-06	4.2E-05	1.4E-04	6.3E-04	<0.01	<0.01	<0.01	<0.01	0.02	0.11	
MT-1	2.3E-03	0.01	3.9E-05	1.7E-04	4.3E-04	1.9E-03	1.0E-04	4.6E-04	2.1E-04	9.2E-04			3.4E-03	0.01	
TEG-1			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
TEG-2			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
REB-1	1.1E-04	4.8E-04	3.1E-06	1.3E-05	4.9E-06	2.2E-05					2.6E-03	0.01	2.7E-03	0.01	
REB-2	1.1E-04	4.8E-04	3.1E-06	1.3E-05	4.9E-06	2.2E-05					2.6E-03	0.01	2.7E-03	0.01	
T10			4.6E-04	2.0E-03	2.3E-04	1.0E-03	<0.01	<0.01	<0.01	<0.01	3.0E-03	0.01	4.6E-03	0.02	
T11			4.6E-04	2.0E-03	2.3E-04	1.0E-03	<0.01	<0.01	<0.01	<0.01	3.0E-03	0.01	4.6E-03	0.02	
De minimis storage tanks													2.5E-03	0.01	
L01													0.01	1.4E-03	
Fugitives															
Haul Roads															
FACILITY TOTAL	1.27	5.35	0.04	0.16	0.03	0.15	4.0E-03	0.02	0.02	0.07	0.10	0.44	2.91	12.36	
FACILITY TOTAL (Excl. fugitives)	1.27	5.35	0.04	0.16	0.03	0.15	4.0E-03	0.02	0.02	0.07	0.10	0.44	2.91	12.36	

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.
ATTACHMENT W

Class I Legal Advertisement