

SWN Production Company, LLC P O Box 12359 Spring, Texas 77391-2359 www.swn.com

ROY RIGGLE

Class I Administrative Update

REV	BY	DATE	DESCRIPTION	FACILITIES REVIEWED	DATE
6	CMM	4/26/2017	CLASS I ADMINISTRATIVE UPDATE - REM: COMPRESSION	JPH	4/27/2017
5	CHK	10/11/2013	R13-2950D	NA	NA
4	CHK		R13-2950C	NA	NA
3	СНК		R13-2950B	NA	NA
2	СНК		R13-2950A	NA	NA
	CHK		R13-2950	NA	NA

TABLE OF CONTENTS

TABLE OF CONTEN	тѕі
INTRODUCTION	1
Proposed Emissi	ons1
WVDEP APPLICATI	ON FOR NSR PERMIT
ATTACHMENT A:	BUSINESS REGISTRATION CERTIFICATE
ATTACHMENT B:	MAP10
ATTACHMENT C:	INSTALLATION/START-UP SCHEDULE12
ATTACHMENT D:	REGULATORY DISCUSSION
ATTACHMENT E:	PLOT PLAN
ATTACHMENT F:	PROCESS FLOW DIAGRAM
ATTACHMENT G:	PROCESS DESCRIPTION
ATTACHMENT I:	EMISSION UNITS TABLE
ATTACHMENT J:	EMISSION POINTS DATA SUMMARY SHEET23
ATTACHMENT K:	FUGITIVE EMISSIONS DATA SUMMARY SHEET
ATTACHMENT L:	EMISSION UNIT DATA SHEETS
ATTACHMENT M:	AIR POLLUTION CONTROL DEVICE SHEET
ATTACHMENT N:	SUPPORTING EMISSIONS CALCULATIONS
APPENDIX A: SUPP	ORT DOCUMENTS

INTRODUCTION

SWN Production Company, LLC (SWN) submits the enclosed application for a Class I Update to Permit No. R13-2950D dated October 11, 2012. With this application, SWN requests to remove two engines and one line heater and to revise tank emissions. As a result of these changes, truck loading, vapor combustor, fugitive, and haulroad emissions have also been updated. This application also includes changes to the Global Warming Potential (GWP) multipliers and other revisions of 40 CFR Part 98 – Greenhouse Gas Reporting rule which have occurred since the last application submittal for this facility. This project involves the removal of equipment and a decrease in emissions therefore it qualifies as a Class I Administrative Update.

Proposed Emissions

Emissions calculations for the project are presented in Attachment N. All other equipment will remain as permitted and are not addressed further in this application.

Condensate and produced water tank emissions and loading emissions were calculated using ProMax process simulation software. Tank emissions are routed to a vapor combustor with 100% capture efficiency and 98% destruction efficiency. Loading emissions are routed to a vapor combustor with 70% capture efficiency and 98% destruction efficiency.

Fugitive emissions were calculated with a component count by equipment type from a similar facility, and representative extended gas and liquids analyses. Fugitive haul road emissions were calculated using EPA/AP-42 methodologies.

Greenhouse gas emissions were calculated with the latest EPA factors and manufacturer data when available. Documents used as references for the emissions calculations, including AP-42 and EPA emission factor references and gas and liquids analyses, are included in Appendix A.

The following changes are included in this application:

- One (1) 145-hp Caterpillar G3306NA compressor engine that was previously authorized has been removed from the equipment representation.
- One (1) 17.6-kW Kubota DG972-E2 compressor engine that was previously authorized has been removed from the equipment representation.
- The condensate throughput estimate has been revised from 400 bbl/d to 39 bbl/d.
- The produced water throughput has been revised from 400 bbl/d to 5 bbl/d.
- The tank vapor capture efficiency has been revised from 98% to 100%.

- Truck loading emissions have been revised based on the change in condensate and produced water composition and throughput.
- Vapor combustor emissions have been revised based on the change in condensate and produced water composition and throughput.
- Fugitive component counts have been revised based on the equipment changes and updated analyses.
- Fugitive haulroad estimates have been revised based on the change in condensate throughput.

Note that other small storage tanks may be present on site (i.e., methanol, lube oil) but are considered de minimis sources per Table 45-13B and are not addressed further in this application.

WVDEP APPLICATION FOR NSR PERMIT

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALIT 601 57 th Street, SE Charleston, WV 25304 (304) 926-0475 WWW.dep.wv.gov/dag		APPLICATION FOR NSR PERMIT AND TITLE V PERMIT REVISION (OPTIONAL)						
PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF I CONSTRUCTION MODIFICATION RELOCATION CLASS I ADMINISTRATIVE UPDATE TEMPORAR CLASS II ADMINISTRATIVE UPDATE AFTER-THE	DN RY E-FACT	 PLEASE CHECK TYPE OF 45CSR30 (TITLE V) REVISION (IF ANY) ADMINISTRATIVE AMENDMENT IMINOR MODIFICATION SIGNIFICANT MODIFICATION IF ANY BOX ABOVE IS CHECKED, INCLUDE TITLE V REVISION INFORMATION AS ATTACHMENT S TO THIS APPLICATION 						
FOR TITLE V FACILITIES ONLY: Please refer to "Title (Appendix A, "Title V Permit Revision Flowchart") an	nd ability to	operate with the o						
Se	ection I.	General						
1. Name of applicant <i>(as registered with the WV Secre</i> SWN Production Company, LLC	etary of Stat	te's Office):	2. Federal 26-4388	Employer ID No. (FEIN): 727				
 Name of facility (if different from above): Roy Riggle Pad 			4. The applicant is the:					
5A. Applicant's mailing address: 10000 Energy Drive Spring, TX 77389		5B. Facility's present physical address: Ohio County, West Virginia – near the town of West Liberty						
 6. West Virginia Business Registration. Is the application of the Certificate of Incorporation of the Certificate of Incorporation of the Certificate of Incorporation of the Certificate of Authority amendments or other Business Certificate as Attace 	oration/Org n Certificate ty/Authorit	ganization/Limit e as Attachmen	ted Partners t A.	hip (one page) including any name				
7. If applicant is a subsidiary corporation, please provid	le the name	e of parent corpo	ration: Chesa	peake Energy Corporation				
 8. Does the applicant own, lease, have an option to buy If YES, please explain: SWN is leasing the la If NO, you are not eligible for a permit for this source 	and on whic			ed site? 🛛 YES 🗌 NO				
 9. Type of plant or facility (stationary source) to be co administratively updated or temporarily permitte crusher, etc.): Oil and natural gas production well pad 				10. North American Industry Classification System (NAICS) code for the facility: 211111				
11A. DAQ Plant ID No. (for existing facilities only): 11B. List all current 45CSR13 and 45CSR30 (Title V) permit numbers associated with this process (for existing facilities only): 069 - 00121 R13-2950D								

All of the required forms and additional information can be	e found under the Permitting Section of DA	AQ's website, or requested by phone.							
12A.									
 For Modifications, Administrative Updates or Temporary permits at an existing facility, please provide directions to the present location of the facility from the nearest state road; 									
For Construction or Relocation permits , please provide directions to the <i>proposed new site location</i> from the nearest state road. Include a MAP as Attachment B .									
From W Virginia 88 (Chatham Street) in West Liberty, W second right onto W Liberty Patomac Road/Co Hwy 53 a Road/Co Hwy 53 for 0.2 miles and turn right onto Long R Road/Co Hwy 53 and drive for 2.2 miles to Castleman Reright.	nd drive 1.4 miles. Stay to right to conti Run Road/Co Hwy 53/1 for 0.2 miles. Tu	nue on W Liberty Patomac rn right onto W Liberty Patomac							
12B. New site address (if applicable):	12C. Nearest city or town:	12D. County:							
See above	West Liberty	Ohio							
12.E. UTM Northing (KM): 4,444.67083	12F. UTM Easting (KM): 540.52600	12G. UTM Zone: 17T							
With this application, SWN requests to remove two engineration changes, truck loading, vapor combustor, fugitive, and has a second seco	13. Briefly describe the proposed change(s) at the facility: With this application, SWN requests to remove two engines and one line heater and to revise tank emissions. As a result of these changes, truck loading, vapor combustor, fugitive, and haulroad emissions have also been updated.								
 14A. Provide the date of anticipated installation or change If this is an After-The-Fact permit application, provide the provided happen: 	14B. Date of anticipated Start-Up if a permit is granted: N/A								
14C. Provide a Schedule of the planned Installation of/ Change to and Start-Up of each of the units proposed in this permit application as Attachment C (if more than one unit is involved).									
15. Provide maximum projected Operating Schedule of activity/activities outlined in this application: Hours Per Day 24 Days Per Week 7 Weeks Per Year 52									
16. Is demolition or physical renovation at an existing factor	cility involved? 🗌 YES 🛛 🕅 NO								
17. Risk Management Plans. If this facility is subject to	112(r) of the 1990 CAAA, or will becom	e subject due to proposed							
changes (for applicability help see www.epa.gov/cepp	oo), submit your Risk Management Pla	n (RMP) to U. S. EPA Region III.							
18. Regulatory Discussion. List all Federal and State a	air pollution control regulations that you	believe are applicable to the							
proposed process (if known). A list of possible application	able requirements is also included in Atta	achment S of this application							
(Title V Permit Revision Information). Discuss applica	bility and proposed demonstration(s) of	compliance (if known). Provide this							
information as Attachment D.									
Section II. Additional atta	achments and supporting d	ocuments.							
 Include a check payable to WVDEP – Division of Air 45CSR13). 	Quality with the appropriate applicatior	1 fee (per 45CSR22 and							
20. Include a Table of Contents as the first page of you	Ir application package.								
 Provide a Plot Plan, e.g. scaled map(s) and/or skete source(s) is or is to be located as Attachment E (Re 		rty on which the stationary							
 Indicate the location of the nearest occupied structure 	e (e.g. church, school, business, residen	ce).							
22. Provide a Detailed Process Flow Diagram(s) show device as Attachment F.	ving each proposed or modified emissio	ns unit, emission point and control							
23. Provide a Process Description as Attachment G.									
 Also describe and quantify to the extent possible and a state of the extent possible at the extent	all changes made to the facility since the	e last permit review (if applicable).							
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.									

24. Provide Material Safety Data Sheets (MSDS) for all materials processed, used or produced as Attachment H.										
 For chemical processes, provide a MSDS for each compound emitted to the air. 										
25. Fill out the Emission Units Table a	nd provide it as Attachment I.									
26. Fill out the Emission Points Data S	26. Fill out the Emission Points Data Summary Sheet (Table 1 and Table 2) and provide it as Attachment J.									
27. Fill out the Fugitive Emissions Data Summary Sheet and provide it as Attachment K.										
28. Check all applicable Emissions Uni	t Data Sheets listed below:									
Bulk Liquid Transfer Operations	Haul Road Emissions	Quarry								
Chemical Processes	Hot Mix Asphalt Plant	Solid Materials Sizing, Handling and Storage								
Concrete Batch Plant	Incinerator	Facilities								
Grey Iron and Steel Foundry	Indirect Heat Exchanger	🛛 Storage Tanks								
General Emission Unit, specify:										
Fill out and provide the Emissions Unit	Data Sheet(s) as Attachment L.									
29. Check all applicable Air Pollution C	ontrol Device Sheets listed belo	w:								
Absorption Systems	Baghouse	☐ Flare (VAPOR COMBUSTOR)								
Adsorption Systems	Condenser	Mechanical Collector								
Afterburner	Electrostatic Precipita	tor Uvet Collecting System								
Other Collectors, specify										
Fill out and provide the Air Pollution Co	ntrol Device Sheet(s) as Attach	ment M.								
30. Provide all Supporting Emissions Items 28 through 31.	Calculations as Attachment N, c	or attach the calculations directly to the forms listed in								
	e compliance with the proposed er	proposed monitoring, recordkeeping, reporting and nissions limits and operating parameters in this permit								
	ay not be able to accept all measu	her or not the applicant chooses to propose such ires proposed by the applicant. If none of these plans de them in the permit.								
32. Public Notice. At the time that the	application is submitted, place a	Class I Legal Advertisement in a newspaper of general								
circulation in the area where the sou	rce is or will be located (See 45C	SR§13-8.3 through 45CSR§13-8.5 and <i>Example Legal</i>								
Advertisement for details). Please	submit the Affidavit of Publication	on as Attachment P immediately upon receipt.								
33. Business Confidentiality Claims.	Does this application include conf	idential information (per 45CSR31)?								
🗌 YES	🖾 NO									
	ing the criteria under 45CSR§31-	mitted as confidential and provide justification for each 4.1, and in accordance with the DAQ's " <i>Precautionary</i> instructions as Attachment Q.								
S	ection III. Certification of	of Information								
34. Authority/Delegation of Authority. Check applicable Authority Form b		her than the responsible official signs the application.								
Authority of Corporation or Other Bus	iness Entity	Authority of Partnership								
Authority of Governmental Agency		Authority of Limited Partnership								
Submit completed and signed Authority		· ·								
· · ·		Permitting Section of DAQ's website, or requested by phone.								

35A. **Certification of Information.** To certify this permit application, a Responsible Official (per 45CSR§13-2.22 and 45CSR§30-2.28) or Authorized Representative shall check the appropriate box and sign below.

Certification of Truth, Accuracy, and Completeness

I, the undersigned Responsible Official / Authorized Representative, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.

Compliance Certification

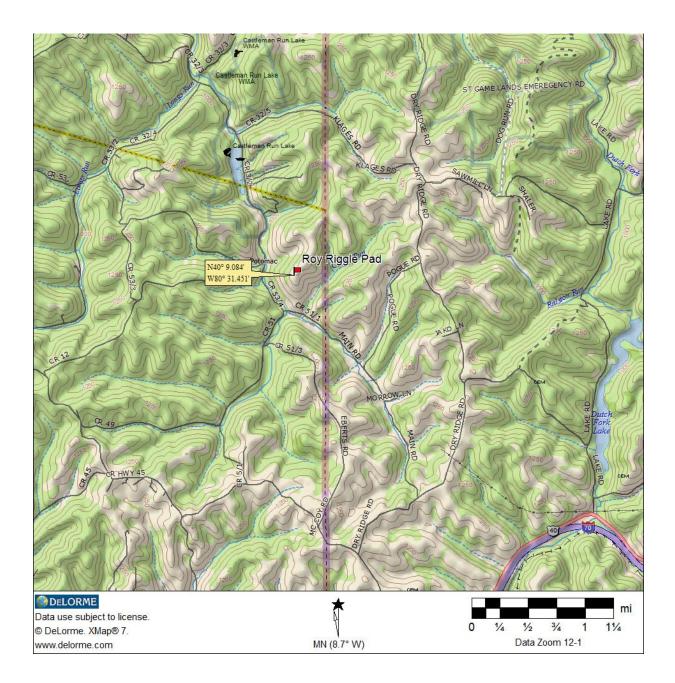
Except for requirements identified in the Title V Application for which compliance is not achieved, I, the undersigned hereby certify that, based on information and belief formed after reasonable inquiry, all air contaminant sources identified in this application are in compliance with all applicable requirements.

	se plue ink)	ATE: <u>5-1-17</u> (Please use blue ink)			
35B. Printed name of signee: Carla Suszkows	ki	35C. Title: P.E., Regulatory Manager – WV Division			
35D. E-mail: Carla_Suszkowski@SWN.com	36E. Phone: 832-796-1000	36F. FAX: 405-849-3102			
36A. Printed name of contact person (if differe	nt from above): Clay Murral	36B. Title:			
36C. E-mail: Clay_Murral@SWN.com	36D. Phone: 304-884-1715	36E. FAX:			

PLEASE CHECK ALL APPLICABLE ATTACHMENTS INCLUDED WIT	TH THIS PERMIT APPLICATION:
Attachment B: Map(s) Image: Constant of the second sec	 Attachment K: Fugitive Emissions Data Summary Sheet Attachment L: Emissions Unit Data Sheet(s) Attachment M: Air Pollution Control Device Sheet(s) Attachment N: Supporting Emissions Calculations Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans Attachment P: Public Notice Attachment Q: Business Confidential Claims Attachment R: Authority Forms Attachment S: Title V Permit Revision Information Application Fee At application with the signature(s) to the DAQ, Permitting Section, at the lication. Please DO NOT fax permit applications.
FOR AGENCY USE ONLY – IF THIS IS A TITLE V SOURCE:	
☐ Forward 1 copy of the application to the Title V Permitting Grou	up and:
For Title V Administrative Amendments:	
□ NSR permit writer should notify Title V permit writer of the should notify Title V permit writer of the should not sho	draft permit,
For Title V Minor Modifications:	
Title V permit writer should send appropriate notificatio	on to EPA and affected states within 5 days of receipt,
□ NSR permit writer should notify Title V permit writer of the state	draft permit.
East Title V Significant Modifications processed in parallel with	NSP Parmit revision:

□ For Title V Significant Modifications processed in parallel with NSR Permit revision:

□ NSR permit writer should notify a Title V permit writer of draft permit,


- Public notice should reference both 45CSR13 and Title V permits,
- EPA has 45 day review period of a draft permit.

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

ATTACHMENT A: BUSINESS REGISTRATION CERTIFICATE

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION SSUED TO SWN[®]PRODUCTION COMPANY, LLC 5400D BIG TYLER RD CHARLESTON, WV 25313-1103 RÉGISTRATION ACCOUNT NUMBE 2307-3731 is certificate is issued on: 12/8/2014 UNE This certificate, is issued by accordance:With Chapter: 11, Article 12, of the West Virginia Code in 51 -)|| 7451 The person of organization identified on this certificate is registered to conduct business in the State of West-Virginia at the location above. This certificate is not transferrable and must be displayed at the location for which issued This certificate shall be permanent until cessation of the business for, which the certificate of registratio was granted or until it is suspended, revoked or carrcelled by the Tax Commissioner. Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required. TRAVELING/STREET-VENDORS: Must carry a copy of this certificate in every Vehicle, operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia? atL006 v.4 L1180094016

ATTACHMENT B: MAP

SWN Production Company, LLC Roy Riggle Pad Area Map April 2017

ATTACHMENT C: INSTALLATION/START-UP SCHEDULE

No new installation is proposed in this application.

ATTACHMENT D: REGULATORY DISCUSSION

45 CSR 13 - PERMITS FOR CONSTRUCTION, MODIFICATION, RELOCATION AND OPERATION OF STATIONARY SOURCES OF AIR POLLUTANTS, NOTIFICATION REQUIREMENTS, ADMINISTRATIVE UPDATES, TEMPORARY PERMITS, GENERAL PERMITS, AND PROCEDURES FOR EVALUATION:

Potential emissions associated with the proposed project are less than the minor source construction or modification permit thresholds of 6 pounds per hour (pph) AND 10 tons per year (tpy) of any regulated air pollutant OR 144 pounds per day (ppd) of any regulated air pollutant OR 2 pph OR 5 tpy of aggregated hazardous air pollutants (HAP) OR 45 CSR 27 toxic air pollutant (TAP) (10% increase if above BAT triggers or increase to Best Available Technology (BAT) triggers). This project results in a decrease in emissions and removal of equipment therefore it qualifies as a Class I Administrative Amendment.

45 CSR 22 - AIR QUALITY MANAGEMENT FEE PROGRAM:

The facility is required to maintain a valid Certificate to Operate on the premises.

45 CSR 30 - REQUIREMENTS FOR OPERATING PERMITS:

Emissions from the facility do not exceed major source thresholds; therefore, this rule does not apply.

FEDERAL

40 CFR PART 60 SUBPART KB—STANDARDS OF PERFORMANCE FOR VOLATILE ORGANIC LIQUID STORAGE VESSELS (INCLUDING PETROLEUM LIQUID STORAGE VESSELS) FOR WHICH CONSTRUCTION, RECONSTRUCTION, OR MODIFICATION COMMENCED AFTER JULY 23, 1984

The affected facility to which this Subpart applies is each storage vessel with a capacity greater than or equal to 75 cubic meters (m³) that is used to store volatile organic liquids (VOL) for which construction, reconstruction, or modification is commenced after July 23, 1984. The tanks at this facility were constructed after the effective date of this Subpart but are less than 75 m³ (which equals approximately 471 bbl); therefore, this Subpart does not apply.

40 CFR PART 60 SUBPART KKK - STANDARDS OF PERFORMANCE FOR STATIONARY FOR EQUIPMENT LEAKS OF VOC FROM ONSHORE NATURAL GAS PROCESSING PLANTS:

The facility is not considered an affected source (natural gas processing plant) and is therefore not subject to this Subpart.

40 CFR PART 60 SUBPART IIII - STANDARDS OF PERFORMANCE FOR STATIONARY COMPRESSION IGNITION INTERNAL COMBUSTION ENGINES:

The facility does not contain the affected source (diesel-fired engine) and is therefore not subject to this Subpart.

40 CFR PART 60 SUBPART JJJJ - STANDARDS OF PERFORMANCE FOR STATIONARY SPARK IGNITION INTERNAL COMBUSTION ENGINES:

The facility does not contain the affected source (natural gas-fired engine) and is therefore not subject to this Subpart.

40 CFR PART 60 SUBPART OOOO - STANDARDS OF PERFORMANCE FOR CRUDE OIL AND NATURAL GAS PRODUCTION, TRANSMISSION AND DISTRIBUTION

The emission sources affected by this Subpart include well completions, pneumatic controllers, equipment leaks from natural gas processing plants, sweetening units at natural gas processing plants, reciprocating compressors, centrifugal compressors and storage vessels which are constructed, modified or reconstructed after August 23, 2011 and before September 18, 2015.

The one (1) existing well located at this production facility was not drilled principally to produce natural gas, therefore it is not an affected source subject to gas well completion requirements.

Pneumatic controllers affected by this Subpart include continuous bleed, natural gas-driven pneumatic controllers with a natural gas bleed rate greater than 6 SCFH. No pneumatic devices with a continuous bleed greater than 6 SCFH are installed or in service at this facility.

Storage vessels affected by this Subpart include those with VOC emissions greater than 6 TPY. Emissions from the storage vessels at this facility are less than 6 TPY each.

40 CFR PART 60 SUBPART OOOOA - STANDARDS OF PERFORMANCE FOR CRUDE OIL AND NATURAL GAS FACILITIES FOR WHICH CONSTRUCTION, MODIFICATION, OR RECONSTRUCTION COMMENCED AFTER SEPTEMBER 18, 2015:

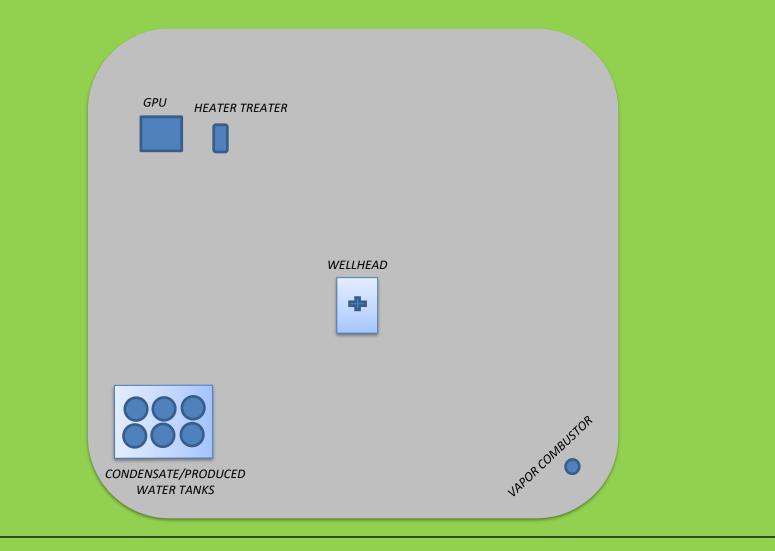
The emission sources affected by this Subpart include well completions, centrifugal compressors, reciprocating compressors, pneumatic controllers, storage vessels, fugitive

sources at well sites, fugitive sources at compressor stations, pneumatic pumps, equipment leaks from natural gas processing plants and sweetening units at natural gas processing plants which are constructed, modified or reconstructed after September 18, 2015. The emission sources at this facility were manufactured prior to the effective date of this Subpart and are not subject.

40 CFR PART 63 SUBPART HH - NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES FROM OIL AND NATURAL GAS PRODUCTION FACILITIES:

The site is a minor (area) source of hazardous air pollutants. This Subpart applies to affected emission points that are located at facilities that are major and area sources of HAP, and either process, upgrade, or store hydrocarbon liquids prior to custody transfer or that process, upgrade, or store natural gas prior to entering the natural gas transmission and storage source category. For purposes of this Subpart natural gas enters the natural gas transmission and storage source category after the natural gas processing plant, if present. The facility is a minor (area) source of HAP; however, there is no triethylene glycol (TEG) dehydration unit present at the facility and therefore this Subpart does not apply.

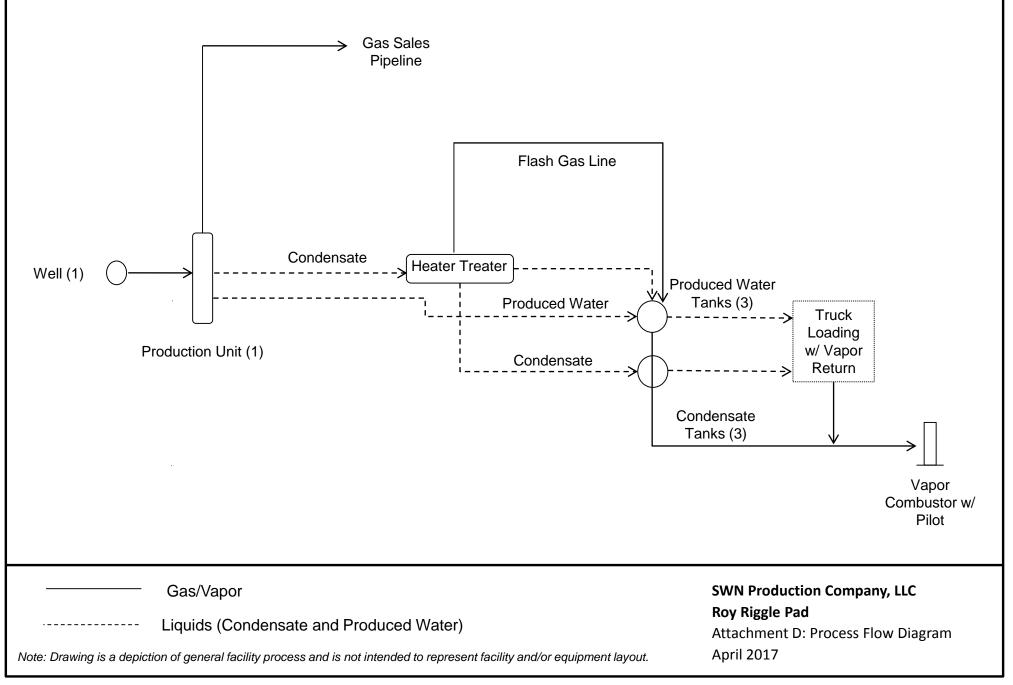
40 CFR PART 63 SUBPART HHH - NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES FROM NATURAL TRANSMISSION AND STORAGE FACILITIES:


The facility is not a natural gas transmission and storage facility and is therefore not subject to this Subpart.

40 CFR PART 63 SUBPART ZZZZ - NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES FROM STATIONARY RECIPROCATING INTERNAL COMBUSTION ENGINES - AREA SOURCE:

The facility does not contain the affected source (natural gas-fired engine) and is therefore not subject to this Subpart.

ATTACHMENT E: PLOT PLAN


Please note that the simple plot plan provided is only a representation of production/emissions equipment. Actual location specifications and equipment placement are not to scale.

<u>NOTE</u>: Image is only a representation of production/emissions equipment. Actual location specifications and equipment placement are not to scale.

SWN Production Company Roy Riggle Pad Attach E: Simple Plot Plan April 2017

ATTACHMENT F: PROCESS FLOW DIAGRAM

ATTACHMENT G: PROCESS DESCRIPTION

The facility is an oil and natural gas exploration and production facility, responsible for the production of condensate and natural gas. Storage of condensate and produced water will also occur on-site. A description of the facility process is as follows: Condensate, gas and water come from the one (1) wellhead to the production unit, where the first stage of separation occurs. Fluids (condensate and produced water) are sent to the heater treater. The flash from the heater treater is routed to the storage tanks. Produced water from the heater treater flows into the produced water storage tanks. Condensate flows into the condensate storage tanks.

The natural gas stream exits the facility for transmission via pipeline. Condensate and produced water are transported offsite via truck. Loading emissions are controlled with vapor return, which has at least 70% capture efficiency, and are routed to the vapor combustor for at least 98% destruction efficiency. Working, breathing and flashing vapors from the condensate and produced water storage tanks and flash gases from the heater treater are routed to the vapor combustor with a 100% capture efficiency to be burned with at least 98% combustion efficiency. The vapor combustor has one (1) natural gas-fired pilot to ensure a constant flame for combustion.

A process flow diagram reflecting facility operations is shown in Attachment F.

ATTACHMENT I: EMISSION UNITS TABLE

	that will	be part of this permit applica	tion review, rega	rdless of per	rmitting status)	1
Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
EU-MC4278	EP-MC4278	Caterpillar G3306 NA Engine	2013	145-hp	Removal	NSCR
EU-ENG2	EP-ENG2	Kubota DG972-E2 Engine	2013	17.6-kW	Removal	N/A
EU-GPU1	EP-GPU1	GPU Burner	10/13/2011	1.0- mmBtu/hr	N/A	N/A
EU-HT1	EP-HT1	Heater Treater	10/13/2011	0.5- mmBtu/hr	N/A	N/A
EU-LH1	EP-LH1	Line Heater	10/13/2011	1.5- mmBtu/hr	Removal	N/A
EU-TANKS- COND	EP-TANKS- COND	Three (3) Condensate Tanks	11/14/2011	400-bbl each	Modification	APC-COMB
EU-TANKS-PW	EP-TANKS-PW	Three (3) Produced Water Tanks	11/14/2011	400-bbl each	Modification	APC-COMB
EU-LOAD- COND	EP-LOAD- COND	Condensate Truck Loading	N/A	597,870 gal/yr	Modification	Vapor Return and APC-COME
EU-LOAD- PW	EP-LOAD- PW	Produced Water Truck Loading	N/A	76,650 gal/yr	Modification	Vapor Return and APC-COM
APC-COMB	APC-COMB	Vapor Combustor	2013	15.0- mmBtu/hr	Modification	N/A
EU-PILOT	EP-PILOT	Vapor Combustor Pilot	2013	50-SCFH	N/A	N/A
EU-FUG	EP-FUG	Fugitive Emissions	N/A	N/A	Modification	N/A
EU-HR	EP-HR	Fugitive Haul Road Emissions	N/A	N/A	Modification	N/A

² For <u>E</u>mission Points (or <u>S</u>ources) use the following numbering system: 18, 25, 35,... or other appropriate designation.
 ³ New, modification, removal
 ⁴ For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

ATTACHMENT J: EMISSION POINTS DATA SUMMARY SHEET

Attachment J EMISSION POINTS DATA SUMMARY SHEET

							Table	1: Emissions	Data						
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emissio n Point Type ¹			Air Pollution Control Device (Must match Emission Units Table & Plot Plan)		Vent Time for Emission Unit (chemical processes only) All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)		Maximum Potential Uncontrolled Emissions ⁴		I Maximum Potential Controlled Emissions ⁵		Emission Form or Phase (At exit condition s, Solid, Liquid or	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)	
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)		lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vap or)		
EP-GPU1	Upward vertical stack	EU- GPU1	GPU Burner	N/A	None	N/A	N/A	NOx CO VOC SO ₂ PM ₁₀ PM Total n-Hexane Formaldehyde Benzene Toluene Carbon Dioxide Methane Nitrous Oxide	$\begin{array}{c} 0.11\\ 0.09\\ 0.01\\ <0.01\\ 0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ 116.98\\ <0.01\\ <0.01\\ <0.01\\ \end{array}$	$\begin{array}{c} 0.48\\ 0.41\\ 0.03\\ <0.01\\ 0.03\\ 0.04\\ 0.01\\ <0.01\\ <0.01\\ <0.01\\ 512.36\\ 0.01\\ <0.01\\ <0.01\end{array}$	N/A	N/A	Gas/Vapor	O (AP-42)	N/A
EP-HT1	Upward vertical stack	EU- HT1	Heater Treater	N/A	None	N/A	N/A	NOx CO VOC SO ₂ PM ₁₀ PM Total n-Hexane Formaldehyde Benzene Toluene Carbon Dioxide Methane Nitrous Oxide	$\begin{array}{c} 0.06\\ 0.05\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ 58.49\\ <0.01\\ <0.01\\ <0.01\\ \end{array}$	$\begin{array}{c} 0.24\\ 0.20\\ 0.01\\ <0.01\\ 0.02\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ 256.18\\ <0.01\\ <0.01\\ <0.01\\ \end{array}$	N/A	N/A	Gas/Vapor	O (AP-42)	N/A
EP- LOAD- COND	Fugitive	EU- LOAD- COND	Condensate Truck Loading	-	Vapor Return and APC-COMB	N/A	N/A	VOC n-Hexane Benzene Toluene Ethylbenzene Xylenes Carbon Dioxide Methane 24	N/A	$\begin{array}{c} 1.18\\ 0.06\\ <0.01\\ <0.01\\ <0.01\\ 0.02\\ <0.01\\ 0.30\end{array}$	N/A	$\begin{array}{c} 0.35\\ 0.02\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ 0.09\end{array}$	Gas/Vapor	O (AP-42)	N/A

WVDEP-DAQ Revision 2/11

EP- LOAD- PW	Fugitive	EU- LOAD-PW	Produced Water Truck Loading	-	Vapor Return and APC-COMB	N/A	N/A	VOC n-Hexane Benzene Toluene Ethylbenzene Xylenes Carbon Dioxide Methane	N/A	$< 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ 0.04 $	N/A	$< 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ 0.01 $	Gas/Vapor	O (AP-42)	N/A
APC-COMB- TKLD	Upward vertical stack(s)	EU- TANKS- COND, EU- TANKS- PW, EU- LOAD- COND, EU- LOAD- PW, APC- COMB- TKLD, EU-PILOT	Vapor Combustor	-	None	N/A	N/A	NOx CO PM VOC n-Hexane Benzene Toluene Ethylbenzene Xylenes Carbon Dioxide Methane Nitrous Oxide	$\begin{array}{c} 2.08 \\ 4.14 \\ 0.05 \\ 44.27 \\ 2.17 \\ 0.03 \\ 0.15 \\ 0.18 \\ 0.57 \\ 1,759.95 \\ 0.03 \\ < 0.01 \end{array}$	9.09 18.12 0.21 193.92 9.52 0.12 0.67 0.80 2.49 7,708.58 0.14 0.01	$\begin{array}{c} 2.08\\ 4.14\\ 0.05\\ 0.89\\ 0.04\\ <\!\!0.01\\ <\!\!0.01\\ <\!\!0.01\\ 0.01\\ 1,759.95\\ 0.03\\ <\!\!0.01 \end{array}$	$\begin{array}{c} 9.09\\ 18.12\\ 0.21\\ 3.88\\ 0.19\\ <0.01\\ 0.02\\ 0.05\\ 7,708.58\\ 0.15\\ 0.01\\ \end{array}$	Gas/Vapor	O (AP-42, Mass Balance, ProMax)	N/A
EP-FUG	Fugitive	EU-FUG	Fugitive Components	-	None	N/A	N/A	VOC n-Hexane Benzene Toluene Ethylbenzene Xylenes Carbon Dioxide Methane	N/A	2.08 0.08 <0.01 0.01 0.01 0.02 <0.01 1.12	N/A	N/A	Gas/Vapor	O (EPA-453/ R-95-017)	N/A
EP-HR	Fugitive	EU-HR	Fugitive Haul Road Emissions	-	None	N/A	N/A	PM Total PM10 PM2.5	0.06 0.02 <0.01	0.20 0.05 <0.01	N/A	N/A	Gas/Vapor	O (AP-42)	N/A

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

² Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).

³ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

⁴ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁵ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁶ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

⁷ Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m³) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO₂, use units of ppmv (See 45CSR10).

Attachment J EMISSION POINTS DATA SUMMARY SHEET

	Table 2: Release Parameter Data											
Emission Point ID	Inner Diameter		Exit Gas		Emission Point El	evation (ft)	UTM Coordinates (km)					
No. (Must match Emission Units Table)	No. (ft.) (Must match Emission		Volumetric Flow ¹ (acfm) at operating conditions	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ² (Release height of emissions above ground level)	Northing	Easting				
EP-GPU1	1.0 (est.)	500 (est.)	~992.4	~21.1	~1,345	10.75	4,444.16030	536.13119				
EP-HT1	0.7	450 (est.)	~13,067	~277.3	~1,345	10	4,444.16030	536.13119				
EP-TANKS- COND	N/A	Ambient	N/A	N/A	~1,345	20	4,444.16030	536.13119				
EP-TANKS- PW	N/A	Ambient	N/A	N/A	~1,345	20	4,444.16030	536.13119				
EP-LOAD- COND	N/A	Ambient	N/A	N/A	~1,345	3 (est.)	4,444.16030	536.13119				
EP-LOAD-PW	N/A	Ambient	N/A	N/A	~1,345	3 (est.)	4,444.16030	536.13119				
APC-COMB	5.5	1,000 (est.)	Unknown	Unknown	~1,345	30	4,444.16030	536.13119				

Emission	Inner		Exit Gas		Emission Point El	evation (ft)	UTM Coordinates (km)		
Point ID No. (Must match Emission Units Table)	Diameter (ft.)	Temp. (°F)	Volumetric Flow ¹ Velocity (acfm) at operating conditions (fps)		Ground Level (Height above mean sea level)	Stack Height ² (Release height of emissions above ground level)	Northing	Easting	
EP-PILOT	N/A	N/A	Unknown	Unknown	~1,345	N/A	4,444.16030	536.13119	
EP-FUG	N/A	Ambient	N/A	N/A	~1,345	N/A	4,444.16030	536.13119	
EP-HR	N/A	Ambient	N/A	N/A	~1,345	N/A	4,444.16030	536.13119	
		Note:	In lieu of equipment UTM	coordinates, site U	TM coordinates provid	ed.			

¹ Give at operating conditions. Include inerts.
 ² Release height of emissions above ground level.

Notes:

*Stack parameters for GPU and heater treater are estimated based on typical equipment configurations but may vary.

ATTACHMENT K: FUGITIVE EMISSIONS DATA SUMMARY SHEET

Attachment K

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS				
1.)	Will there be haul road activities?				
	Yes 🗌 No				
	If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.				
2.)	Will there be Storage Piles?				
	□ Yes				
	☐ If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.				
3.)	Will there be Liquid Loading/Unloading Operations?				
	Yes No				
	If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.				
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?				
	□ Yes				
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.				
5.)	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?				
	⊠ Yes □ No				
	☑ If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.				
6.)	Will there be General Clean-up VOC Operations?				
	□ Yes				
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.				
7.)	Will there be any other activities that generate fugitive emissions?				
	□ Yes				
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.				
	ou answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions nmary."				

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants ⁻ Chemical Name/CAS ¹	Maximum Potential Uncontrolled Emissions ²		Maximum Potential Controlled Emissions ³		Est. Method
		lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
Haul Road/Road Dust Emissions Paved Haul Roads						
Unpaved Haul Roads	PM Total PM ₁₀ PM _{2.5}	0.06 0.02 <0.01	0.20 0.05 <0.01	N/A	N/A	0 – AP-42 13.2.2
Storage Pile Emissions						
Loading/Unloading Operations - Condensate	VOC n-Hexane Benzene Toluene Ethylbenzene Xylenes Carbon Dioxide Methane	Does not apply	1.18 0.06 <0.01 <0.01 <0.01 0.02 <0.01 0.30	Does not apply	0.35 0.02 <0.01 <0.01 <0.01 <0.01 <0.01 0.09	0 – AP-42 5.2-4 / API 5-12
Loading/Unloading Operations – Produced Water	VOC n-Hexane Benzene Toluene Ethylbenzene Xylenes Carbon Dioxide Methane	Does not apply	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.04	Does not apply	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01	0 – AP-42 5.2-4 / API 5-12
Wastewater Treatment Evaporation & Operations						

Equipment Leaks	VOC n-Hexane Benzene Toluene Ethylbenzene Xylenes Carbon Dioxide Methane	Does not apply	2.08 0.08 <0.01 0.01 0.02 <0.01 1.12	Does not apply	N/A	0 – EPA- 453/R- 95-017
General Clean-up VOC Emissions						
Other						

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

Note: Greenhouse Gas (GHG) emissions were calculated using EPA Mandatory Reporting Rule and 2009 API Compendium guidance. With the exception of fugitive emissions (which are calculated by mass balance), emissions calculation methodologies are intended to calculate metric tons (tonnes) for the purposes of emissions reporting to EPA. These values were converted to tons for consistency with other pollutants.

ATTACHMENT L: EMISSION UNIT DATA SHEETS

- EUDS STORAGE TANK(S): CONDENSATE
- EUDS STORAGE TANK(S): PRODUCED WATER
- EUDS BULK LIQUID TRANSFER OPERATIONS CONDENSATE
- EUDS BULK LIQUID TRANSFER OPERATIONS PRODUCED WATER
- EUDS CHEMICAL PROCESS (LEAK SOURCES)
- EUDS FUGITIVE EMISSIONS FROM HAUL ROADS

Attachment L EMISSIONS UNIT DATA SHEET STORAGE TANKS

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

I. GENERAL INFORMATION (required)

1. Bulk Storage Area Name	2. Tank Name			
Condensate Storage	Three (3) 400-bbl Condensate Storage Tanks			
3. Tank Equipment Identification No. (as assigned on Equipment List Form) EU-TANKS-COND	 Emission Point Identification No. (as assigned on Equipment List Form) EP-TANKS-COND 			
5. Date of Commencement of Construction (for existing	tanks) 11/14/2011			
6. Type of change 🗌 New Construction 🗌 N	Type of change 🗌 New Construction 🗌 New Stored Material 🛛 Other Tank Modification			
7. Description of Tank Modification (if applicable)				
Tank throughput and composition update.				
7A. Does the tank have more than one mode of operation? Yes No(e.g. Is there more than one product stored in the tank?)				
7B. If YES, explain and identify which mode is covered by this application (Note: A separate form must be completed for each mode).				
7C. Provide any limitations on source operation affecting emissions, any work practice standards (e.g. production variation, etc.):				
Not applicable				
II. TANK INFORM	ATION (required)			
8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal				
height.				
400 barrels (per tank)				
9A. Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)			
12	20			
10A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)			
19	10			
11A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)			
20	10			
12. Nominal Capacity (specify barrels or gallons). This is also known as "working volume" and considers design liquid levels and overflow valve heights.				
16,074.56 gallons				

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)			
597,870 (Total for all tanks)	1,638 (Total for all tanks)			
	*Rolling daily throughput total not to exceed maximum annual throughput.			
14. Number of Turnovers per year (annual net throughput/maximum tank liquid volume)				
35.59 (Total f	or all tanks)			
15. Maximum tank fill rate (gal/min) Unknown				
16. Tank fill method Submerged	Splash 🗌 Bottom Loading			
17. Complete 17A and 17B for Variable Vapor Space Tail	nk Systems 🛛 Does Not Apply			
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year			
 18. Type of tank (check all that apply): □ Fixed Roof □ vertical horizontal other (describe) 	flat roof 🛛 cone roof dome roof			
External Floating Roof pontoon roof	double deck roof			
Domed External (or Covered) Floating Roof				
Internal Floating Roof vertical column su				
Pressurizedsphericalcylindrical				
Underground				
Other (describe)				
III. TANK CONSTRUCTION & OPERATION INFORM Refer to enclosed Simulation Report.	ATION (optional if providing TANKS Summary Sheets)			
19. Tank Shell Construction:				
Riveted Gunite lined Epoxy-coated				
20A. Shell Color 20B. Roof Colo	r 20C. Year Last Painted			
21. Shell Condition (if metal and unlined): No Rust Light Rust Dense R	ust 🗌 Not applicable			
22A. Is the tank heated? YES NO				
22B. If YES, provide the operating temperature (°F)				
22C. If YES, please describe how heat is provided to ta	ank.			
23. Operating Pressure Range (psig):				
24. Complete the following section for Vertical Fixed Ro	of Tanks Does Not Apply			
24A. For dome roof, provide roof radius (ft)				
24B. For cone roof, provide slope (ft/ft)				
25. Complete the following section for Floating Roof Tai	nks 🗌 Does Not Apply			
25A. Year Internal Floaters Installed:				
25B.Primary Seal Type:Image: Metallic (Mechanical)(check one)Image: Vapor Mounted Resil				
25C. Is the Floating Roof equipped with a Secondary S	Seal? YES NO			

25D. If YES, how is the secondary seal mounted? (check one) Shoe Rim Other (describe):				
25E. Is the Floating Roof equipped with a weather shield?				
25F. Describe deck fittings; indicate the number of each type of fitting:				
ACCESS HATCH				
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:	
	AUTOMATIC GAUGE FLOAT WELL UNBOLTED COVER, GASKETED: UNBOLTED COVER, UNGASKETE			
BOLT COVER, GASKETED:		ER, GASKETED.	UNBOLTED COVER, UNGASKETED:	
		N WELL		
BUILT-UP COLUMN – SLIDING			PIPE COLUMN – FLEXIBLE	
COVER, GASKETED:	COVER, UNGASH		FABRIC SLEEVE SEAL:	
	LADDE	R WELL	·	
PIP COLUMN – SLIDING COVER, G	ASKETED:	PIPE COLUMN -	SLIDING COVER, UNGASKETED:	
	GAUGE-HATCH	/SAMPLE PORT		
SLIDING COVER, GASKETED:		SLIDING COVER,	UNGASKETED:	
ROOF LEG OR HANGER WELL				
WEIGHTED MECHANICAL		MECHANICAL SAMPLE WELL-SLIT FABRIC SEA		
ACTUATION, GASKETED:	ACTUATION, UNC	GASKETED:	(10% OPEN AREA)	
VACUUM BREAKER WEIGHTED MECHANICAL ACTUATION, GASKETED: WEIGHTED MECHANICAL ACTUATION, UNGASKETED:				
WEIGHTED MECHANICAL ACTUAT	ION, GASKETED:	WEIGHTED MECHA	ANICAL ACTUATION, UNGASKETED:	
		/ENT		
WEIGHTED MECHANICAL ACTUAT	ION GASKETED:	WEIGHTED MECHANICAL ACTUATION, UNGASKETED:		
DECK DRAIN (3-INCH DIAMETER)				
OPEN:		90% CLOSED:		
	STUB	DRAIN		
1-INCH DIAMETER:				
OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)				

26. Complete the following section for Internal Floating	Roof Tanks 🗌 Does Not Apply			
26A. Deck Type: Delted Welded				
26B. For Bolted decks, provide deck construction:				
26C Deck seam:				
 Continuous sheet construction 5 feet wide Continuous sheet construction 6 feet wide 				
Continuous sheet construction 7 feet wide				
Continuous sheet construction 5×7.5 feet wide Continuous sheet construction 5×12 feet wide				
\Box Other (describe)				
26D. Deck seam length (ft)	26E. Area of deck (ft ²)			
For column supported tanks:	26G. Diameter of each column:			
26F. Number of columns:	if are viding TANKO Overmony Choose)			
27. Provide the city and state on which the data in this s	if providing TANKS Summary Sheets)			
Refer to enclosed Simulation Report.				
28. Daily Average Ambient Temperature (°F)				
29. Annual Average Maximum Temperature (°F)				
30. Annual Average Minimum Temperature (°F)				
31. Average Wind Speed (miles/hr)				
32. Annual Average Solar Insulation Factor (BTU/(ft ² ·day))				
33. Atmospheric Pressure (psia)				
V. LIQUID INFORMATION (optional if providing TANKS Summary Sheets)				
34. Average daily temperature range of bulk liquid: Re				
34A. Minimum (°F)	34B. Maximum (°F)			
35. Average operating pressure range of tank:				
35A. Minimum (psig)	35B. Maximum (psig)			
36A. Minimum Liquid Surface Temperature (°F)	36B. Corresponding Vapor Pressure (psia)			
37A. Average Liquid Surface Temperature (°F)	37B. Corresponding Vapor Pressure (psia)			
38A. Maximum Liquid Surface Temperature (°F)	38B. Corresponding Vapor Pressure (psia)			
39. Provide the following for each liquid or gas to be sto	ured in tank. Add additional pages if necessary.			
39A. Material Name or Composition				
39B. CAS Number				
39C. Liquid Density (lb/gal)				
39D. Liquid Molecular Weight (lb/lb-mole)				
39E. Vapor Molecular Weight (lb/lb-mole)				

39F. True (psia)	sure					
<u>39G. Reid (psia)</u> Months Storage per Y	ear					
39H. From	Cui					
39I. To						
VI. EMISSIONS AND CONTROL DEVICE DATA (required)						
40. Emission Control	Devices (check as many	/ as apply):	Does No	ot Apply		
Carbon Adsorp	otion ¹					
Condenser ¹						
Conservation \	/ent (psig)					
Vacuum S			Pressure Se	etting		
	lief Valve (psig)			Ū		
Inert Gas Blan	u e ,					
Insulation of Ta						
Liquid Absorpti						
Refrigeration o	,					
Rupture Disc (
Vent to Inciner	,					
☐ Von to moment		r				
	, ,		Sheet			
 ¹ Complete appropriate Air Pollution Control Device Sheet. 41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application). 						
	n Rate (submit Test Dat	a or Calculation	ations here	or elsewhere in the ap	plication)	
41. Expected Emissio	I		1	-		
	n Rate (submit Test Dat Breathing Loss (lb/hr)		ations here g Loss Units	or elsewhere in the ap Annual Loss (Ib/yr)	plication).	
41. Expected Emissio Material Name & CAS No.	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹	
41. Expected Emissio Material Name & CAS No.	Breathing Loss	Workin Amount	g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹	
41. Expected Emissio Material Name & CAS No.	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹	
41. Expected Emissio Material Name & CAS No.	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹	
41. Expected Emissio Material Name & CAS No.	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹	
41. Expected Emissio Material Name & CAS No.	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹	
41. Expected Emissio Material Name & CAS No.	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹	
41. Expected Emissio Material Name & CAS No.	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹	
41. Expected Emissio Material Name & CAS No.	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹	
41. Expected Emissio Material Name & CAS No.	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹	

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

Attachment L EMISSIONS UNIT DATA SHEET STORAGE TANKS

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

I. GENERAL INFORMATION (required)

1. Bulk Storage Area Name	2. Tank Name			
Produced Water Storage	Three (3) 400-bbl Produced Water Storage Tanks			
3. Tank Equipment Identification No. (as assigned on Equipment List Form) EU-TANKS-PW				
5. Date of Commencement of Construction (for existing tanks) 11/14/2011				
6. Type of change 🔄 New Construction 🔄 New Stored Material 🛛 🖾 Other Tank Modification				
7. Description of Tank Modification (if applicable)				
Tank throughput and composition update.				
7A. Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tar	k?)			
7B. If YES, explain and identify which mode is covere completed for each mode).	ed by this application (Note: A separate form must be			
7C. Provide any limitations on source operation affecting emissions, any work practice standards (e.g. production variation, etc.):				
Not applicable				
II. TANK INFORM	IATION (required)			
height.	e the internal cross-sectional area multiplied by internal s (per tank)			
9A. Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)			
12	20			
10A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)			
19	10			
11A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)			
20	10			
liquid levels and overflow valve heights.	is also known as "working volume" and considers design			

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)
76,650 (Total for all tanks)	210 (Total for all tanks)
	*Rolling daily throughput total not to exceed maximum annual throughput.
14. Number of Turnovers per year (annual net throughput	t/maximum tank liquid volume)
4.56 (Total fo	or all tanks)
15. Maximum tank fill rate (gal/min) Unknown	
16. Tank fill method Submerged	Splash Bottom Loading
17. Complete 17A and 17B for Variable Vapor Space Tail	nk Systems 🛛 Does Not Apply
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year
 18. Type of tank (check all that apply): ☑ Fixed Roof ☑ vertical horizontal other (describe) 	flat roof 🛛 cone roof dome roof
External Floating Roof pontoon roof	double deck roof
Domed External (or Covered) Floating Roof	
Internal Floating Roof vertical column su	
Variable vapor space inter roor Pressurized spherical cylindrical	
Underground	
Other (describe)	
III. TANK CONSTRUCTION & OPERATION INFORM. Refer to enclosed Simulation Report.	ATION (optional if providing TANKS Summary Sheets)
19. Tank Shell Construction:	
Riveted Gunite lined Epoxy-coated	
20A. Shell Color 20B. Roof Colo	r 20C. Year Last Painted
21. Shell Condition (if metal and unlined): ☐ No Rust ☐ Light Rust ☐ Dense R	ust 🗌 Not applicable
22A. Is the tank heated? YES NO	
22B. If YES, provide the operating temperature (°F)	
22C. If YES, please describe how heat is provided to t	ank.
23. Operating Pressure Range (psig):	
24. Complete the following section for Vertical Fixed Ro	of Tanks Does Not Apply
24A. For dome roof, provide roof radius (ft)	
24B. For cone roof, provide slope (ft/ft)	
25. Complete the following section for Floating Roof Tail	nks Does Not Apply
25A. Year Internal Floaters Installed:	
25B.Primary Seal Type:Image: Metallic (Mechanical)(check one)Image: Vapor Mounted Resil	
25C. Is the Floating Roof equipped with a Secondary S	Seal? YES NO

25D. If YES, how is the secondary seal mounted? (check one) Shoe Rim Other (describe):				
25E. Is the Floating Roof equipped with a weather shield?				
25F. Describe deck fittings; indicate the number of each type of fitting:				
ACCESS HATCH				
BOLT COVER, GASKETED:	UNBOLTED COV	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:	
	AUTOMATIC GAUGE FLOAT WELL			
BOLT COVER, GASKETED:	UNBOLTED COV	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:	
		N WELL		
BUILT-UP COLUMN – SLIDING			PIPE COLUMN – FLEXIBLE	
COVER, GASKETED:	COVER, UNGASH	(ETED:	FABRIC SLEEVE SEAL:	
		RWELL		
PIP COLUMN – SLIDING COVER, G	ASKETED:	PIPE COLUMN -	SLIDING COVER, UNGASKETED:	
	GAUGE-HATCH	SAMPLE PORT		
SLIDING COVER, GASKETED:		SLIDING COVER, UNGASKETED:		
	ROOF LEG OR	HANGER WELL		
WEIGHTED MECHANICAL		MECHANICAL SAMPLE WELL-SLIT FABRIC SE		
ACTUATION, GASKETED:	ACTUATION, UNC	JASKETED:	(10% OPEN AREA)	
VACUUM BREAKER WEIGHTED MECHANICAL ACTUATION, GASKETED: WEIGHTED MECHANICAL ACTUATION, UNGASKETED:				
WEIGHTED MECHANICAL ACTOAT	ION, GASKETED.		ANICAL ACTUATION, UNGASKETED.	
RIM VENT WEIGHTED MECHANICAL ACTUATION GASKETED: WEIGHTED MECHANICAL ACTUATION, UNGASKETE				
WEIGHTED MECHANICAL ACTUAT	ION GASKETED:	WEIGHTED MECHANICAL ACTUATION, UNGASKETED:		
OPEN:		90% CLOSED:		
	STUB	DRAIN		
1-INCH DIAMETER:				
OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)				

26. Complete the following section for Internal Floating	Roof Tanks 🗌 Does Not Apply			
26A. Deck Type: Delted Welded				
26B. For Bolted decks, provide deck construction:				
26C Deck seam:				
 Continuous sheet construction 5 feet wide Continuous sheet construction 6 feet wide 				
Continuous sheet construction 7 feet wide				
Continuous sheet construction 5×7.5 feet wide Continuous sheet construction 5×12 feet wide				
\Box Other (describe)				
26D. Deck seam length (ft)	26E. Area of deck (ft ²)			
For column supported tanks:	26G. Diameter of each column:			
26F. Number of columns:	if are viding TANKO Overmony Choose)			
27. Provide the city and state on which the data in this s	if providing TANKS Summary Sheets)			
Refer to enclosed Simulation Report.				
28. Daily Average Ambient Temperature (°F)				
29. Annual Average Maximum Temperature (°F)				
30. Annual Average Minimum Temperature (°F)				
31. Average Wind Speed (miles/hr)				
32. Annual Average Solar Insulation Factor (BTU/(ft ² ·day))				
33. Atmospheric Pressure (psia)				
V. LIQUID INFORMATION (optional if providing TANKS Summary Sheets)				
34. Average daily temperature range of bulk liquid: Re				
34A. Minimum (°F)	34B. Maximum (°F)			
35. Average operating pressure range of tank:				
35A. Minimum (psig)	35B. Maximum (psig)			
36A. Minimum Liquid Surface Temperature (°F)	36B. Corresponding Vapor Pressure (psia)			
37A. Average Liquid Surface Temperature (°F)	37B. Corresponding Vapor Pressure (psia)			
38A. Maximum Liquid Surface Temperature (°F)	38B. Corresponding Vapor Pressure (psia)			
39. Provide the following for each liquid or gas to be sto	ured in tank. Add additional pages if necessary.			
39A. Material Name or Composition				
39B. CAS Number				
39C. Liquid Density (lb/gal)				
39D. Liquid Molecular Weight (lb/lb-mole)				
39E. Vapor Molecular Weight (lb/lb-mole)				

39F. True (psia) 39G. Reid (psia)	sure				
Months Storage per Y	ear				
39H. From					
39I. To					
VI. EMISSIONS AND CONTROL DEVICE DATA (required)					
40. Emission Control	Devices (check as many	/ as apply):	Does No	t Apply	
Carbon Adsorp	otion ¹				
Condenser ¹					
Conservation \	/ent (psig)				
Vacuum S	Setting		Pressure Se	etting	
Emergency Re	elief Valve (psig)				
Inert Gas Blan	ket of				
Insulation of Ta	ank with				
Liquid Absorpti	ion (scrubber) ¹				
Refrigeration o					
Rupture Disc (
Vent to Inciner	•				
☐ Other ¹ (describ		r			
	priate Air Pollution Contr		Sheet		
	n Rate (submit Test Dat			or elsewhere in the an	nlication)
Material Name &	i	Workin		-	
Material Name &	Breathing Loss				
CAS No.	(lb/hr)	Amount	Units	Annual Loss (lb/yr)	Estimation Method ¹
			Units	(lb/yr)	
	(Ib/hr)		Units	(lb/yr)	
			Units	(lb/yr)	
			Units	(lb/yr)	
			Units	(lb/yr)	
			Units	(lb/yr)	
			Units	(lb/yr)	
			Units	(lb/yr)	
			Units	(lb/yr)	
			Units	(lb/yr)	

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

Attachment L EMISSIONS UNIT DATA SHEET BULK LIQUID TRANSFER OPERATIONS

Furnish the following information for each new or modified bulk liquid transfer area or loading rack, as shown on the *Equipment List Form* and other parts of this application. This form is to be used for bulk liquid transfer operations such as to and from drums, marine vessels, rail tank cars, and tank trucks.

Identification Number (as assigned on Equipment List Form): EU-LOAD-COND			
1. Loading Area Name: Condensate Truck Loading			
2. Type of cargo vessels accommodated at this rack or transfer point (check as many as apply):			
Drums Marine Vessels	Rail Tank Cars Tank Trucks		
3. Loading Rack or Transfer Point Data:			
Number of pumps	One (1)		
Number of liquids loaded	One (1)		
Maximum number of marine vessels, tank trucks, tank cars, and/or drums loading at one time	One (1)		
4. Does ballasting of marine vessels occ	4. Does ballasting of marine vessels occur at this loading area?		
5. Describe cleaning location, compounds and procedure for cargo vessels using this transfer point:			
Point is kept clear. Scotches are provided. Lines kept in good working order and tested periodically.			
6. Are cargo vessels pressure tested for leaks at this or any other location?			
Vessel pressure tested in accordance with DOT requirements, if applicable.			

7. Projected Maximum Operating Schedule (for rack or transfer point as a whole):				
Maximum	Jan Mar.	Apr June	July - Sept.	Oct Dec.
hours/day	24	24	24	24
days/week	5	5	5	5
weeks/quarter	13	13	13	13

8. Bulk Liquid Data (add pages as necessary):			
Pump ID No.		N/A	
Liquid Name		Condensate	
Max. daily throug	ghput (1000 gal/day)	1.638	
Max. annual throughput (1000 gal/yr)		597.87	
Loading Method ¹		SUB	
Max. Fill Rate (gal/min)		125	
Average Fill Time (min/loading)		~60	
Max. Bulk Liquid Temperature (°F)		Refer to Promax	
True Vapor Pressure ²		Refer to Promax	
Cargo Vessel Condition ³		U	
Control Equipment or Method ⁴		O = Vapor Return w/ Combustion Controls	
Minimum control efficiency (%)		70% Capture / 98% Combustion / 69% Overall	
Maximum Emission Rate	Loading (lb/hr)	6.80	
	Annual (lb/yr)	705.6 (based on 0.35tons/year)	
Estimation Meth	od ⁵	EPA	

¹ BF = Bottom Fill SP = Splash Fill SUB = Submerged Fill ² At maximum bulk liquid temperature 3 B = Ballasted Vessel, C = Cleaned, U = Uncleaned (dedicated service), O = other (describe) ⁴ List as many as apply (complete and submit appropriate *Air Pollution Control Device* Sheets):CA = Carbon Adsorption LOA = Lean Oil AdsorptionCO = SC = Scrubber (Absorption)CRA = Compressor-Condensation TO = Thermal Oxidation or Incineration Refrigeration-Absorption CRC = Compression-Refrigeration-Condensation VB = Dedicated Vapor Balance (closed system) O = other (describe)⁵ EPA = EPA Emission Factor as stated in AP-42 MB = Material Balance TM = Test Measurement based upon test data submittal

O = other (describe)

9. Proposed Monitoring, Recordkeep Please propose monitoring, recordkeepi demonstrate compliance with the propos propose testing in order to demonstrat emissions limits.	ng, and reporting in order to ed operating parameters. Please
MONITORING Captured loading emissions shall be routed to the vapor combustor. The combustor shall be operated in accordance with the existing permit requirements.	RECORDKEEPING None proposed
REPORTING None proposed	TESTING None proposed

MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION/AIR POLLUTION CONTROL DEVICE.

RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.

REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.

10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty Not applicable

Attachment L EMISSIONS UNIT DATA SHEET BULK LIQUID TRANSFER OPERATIONS

Furnish the following information for each new or modified bulk liquid transfer area or loading rack, as shown on the *Equipment List Form* and other parts of this application. This form is to be used for bulk liquid transfer operations such as to and from drums, marine vessels, rail tank cars, and tank trucks.

Identification Number (as assigned on E	quipment List Form): EU-LOAD-PW
1. Loading Area Name: Produced Water T	ruck Loading
2. Type of cargo vessels accommodated as apply):	at this rack or transfer point (check as many
Drums Marine Vessels	Rail Tank Cars Tank Trucks
3. Loading Rack or Transfer Point Data:	
Number of pumps	One (1)
Number of liquids loaded	One (1)
Maximum number of marine vessels, tank trucks, tank cars, and/or drums loading at one time	One (1)
4. Does ballasting of marine vessels occ	cur at this loading area?
5. Describe cleaning location, compoun transfer point:	ds and procedure for cargo vessels using this
Point is kept clear. Scotches are provided. I periodically.	ines kept in good working order and tested
 Are cargo vessels pressure tested for Xes If YES, describe: 	r leaks at this or any other location?
Vessel pressure tested in accordance with DO	OT requirements, if applicable.

7. Projected Maximum Operating Schedule (for rack or transfer point as a whole):								
Maximum	Maximum Jan Mar. Apr June July - Sept. Oct Dec.							
hours/day	24	24	24	24				
days/week	5	5	5	5				
weeks/quarter	13	13	13	13				

8. Bulk Liquid	Data <i>(add pages as l</i>	necessary):	
Pump ID No.		N/A	
Liquid Name		Produced Water	
Max. daily throug	ghput (1000 gal/day)	0.21	
Max. annual thro	oughput (1000 gal/yr)	76.65	
Loading Method	1	SUB	
Max. Fill Rate (g	al/min)	125	
Average Fill Time (min/loading)		~60	
Max. Bulk Liquid Temperature (°F)		Refer to Promax	
True Vapor Pressure ²		Refer to Promax	
Cargo Vessel Condition ³		U	
Control Equipment or Method ⁴		O = Vapor Return w/ Combustion Controls	
Minimum control efficiency (%)		70% Capture / 98% Combustion / 69% Overall	
Maximum Emission Rate	Loading (lb/hr)	<0.01	
Annual (lb/yr)		1.16 (based on 0.000058 tons/year)	
Estimation Meth	od ⁵	EPA	

¹ BF = Bottom Fill SP = Splash Fill SUB = Submerged Fill ² At maximum bulk liquid temperature 3 B = Ballasted Vessel, C = Cleaned, U = Uncleaned (dedicated service), O = other (describe) ⁴ List as many as apply (complete and submit appropriate *Air Pollution Control Device* Sheets):CA = Carbon Adsorption LOA = Lean Oil AdsorptionCO = SC = Scrubber (Absorption)CRA = Compressor-Condensation TO = Thermal Oxidation or Incineration Refrigeration-Absorption CRC = Compression-Refrigeration-Condensation VB = Dedicated Vapor Balance (closed system) O = other (describe)⁵ EPA = EPA Emission Factor as stated in AP-42 MB = Material Balance TM = Test Measurement based upon test data submittal

O = other (describe)

9. Proposed Monitoring, Recordkeeping, Reporting, and Testing

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING Captured loading emissions shall be routed to the vapor combustor. The combustor shall be operated in accordance with the existing permit requirements.	RECORDKEEPING None proposed
REPORTING	TESTING
None proposed	None proposed

MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION/AIR POLLUTION CONTROL DEVICE.

RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.

REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.

 Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty Not applicable

Attachment L EMISSIONS UNIT DATA SHEET CHEMICAL PROCESS

		this sheet and all supplementary forms ((see below) that apply. Please check all			
	 upplementary forms that have been completed. <i>Emergency Vent Summary Sheet</i> <i>Leak Sources Data Sheet</i> <i>Toxicology Data Sheet</i> <i>Reactor Data Sheet</i> <i>Distillation Column Data Sheet</i> 					
1.	Chemical process area name and Components in natural gas and lig	l equipment ID number (as shown in <i>Ec</i> ht liquid service (EU-FUG)	quipment List Form)			
2.	Standard Industrial Classification 1311	Codes (SICs) for process(es)				
3.	List raw materials and Natural gas and condensate	ISDSs Previously submitted				
	List Products and Maximum Produ		1			
	scription and CAS Number	Maximum Hourly (lb/hr)	Maximum Annual (ton/year)			
Not	t applicable					
5.		ummary Sheet for all emergency relief o				
6.	maintenance program to minimize planned inspection frequency, ar requirement (e.g. 40CFR60, Subp The facility is not a natural gas pro- Standards (NSPS) Subpart KKK requ	cessing plant (SIC 1321) and is therefore airements for a leak detection and repair (L	truments, calibration gases or methods, ent information. If subject to a rule not subject to New Source Performance DAR) monitoring program.			
7.	Clearly describe below or attach to spill or release.	o application Accident Procedures to be	followed in the event of an accidental			
	In the event of an accidental spill or re immediate steps to stop the spill or re	elease, personnel will be protected, emergen elease will be implemented.	cy response personnel will be notified and			

sheets (MSDS) chemical entity sheet is not re teratogenicity, i unknown, and p 8B. Describe any h conducted by th	 8A. Complete the <i>Toxicology Data Sheet</i> or attach to application a toxicology report (an up-to-date material safety data sheets (MSDS) may be used) outlining the currently known acute and chronic health effects of each compound or chemical entity emitted to the air. If these compounds have already been listed in Item 3, then a duplicate MSDS sheet is not required. Include data such as the OSHA time weighted average (TWA) or mutagenicity, teratogenicity, irritation, and other known or suspected effects should be addressed. Indicate where these are unknown, and provide references. 8B. Describe any health effects testing or epidemiological studies on these compounds that are being or may be conducted by the company or required under TSCA, RCRA or other federal regulations. Discuss the persistence in the environment of any emission (e.g. pesticides, etc.). 				
	ets - Waste products status ste Section of WVDEP, OAC		source is subject to RCRA or 450 304) 926-3647.)	CSR25, please contact the	
9A. Types and amo	ounts of wastes to be dispos	ed:			
9B. Method of dispo Carrier:	osal and location of waste di	ispos	al facilities: Phone:		
9C. Check here if a	pproved USEPA/State Haza	ardou	s Waste Landfill will be used 🗌		
10. Maximum and I	Projected Typical Operating	Sche	dule for process or project as a who	ble (circle appropriate units).	
circle units:	(hrs/day) (hr/batch)	(day	/s), (batches/day), (batches/week)	(days/yr), (weeks/year)	
10A. Maximum					
10B. Typical					
11. Complete a Re	actor Data Sheet for each re	eactor	r in this chemical process.		
12. Complete a Dis	stillation Column Data Sheet	for e	ach distillation column in this chem	ical process.	
Please propose					
None proposed			None proposed		
REPORTING			TESTING		
None proposed None proposed					
MONITORING. Please list and describe the process parameters and ranges that are proposed to be monitored in order to demonstrate compliance with the operation of this process equipment operation or air pollution control device.					
RECORDKEEPING. Please describe the proposed recordkeeping that will accompany the monitoring.					
REPORTING. Please describe the proposed frequency of reporting of the recordkeeping.					
TESTING. Please c	lescribe any proposed emiss	sions	testing for this process equipment o	r air pollution control device.	
14. Describe all op	erating ranges and maintena	ance	procedures required by Manufactur	er to maintain warranty	
Not applicable					

LEAK SOURCE DATA SHEET

Source Category	Pollutant	Number of Source Components ¹	Number of Components Monitored by Frequency ²	Average Time to Repair (days) ³	Estimated Annual Emission Rate (Ib/yr) ⁴	
Pumps⁵	light liquid VOC ^{6,7}	0	N/A	N/A	0	
	heavy liquid VOC ⁸					
	Non-VOC ⁹					
Valves ¹⁰	Gas VOC	22	N/A	N/A	491	
	Light Liquid VOC	50	N/A	N/A	2,296	
	Heavy Liquid VOC					
	Non-VOC					
Safety Relief Valves ¹¹	Gas VOC	10	N/A	N/A	436	
	Non VOC					
Open-ended Lines ¹²	VOC	0	N/A	N/A	0	
	Non-VOC					
Sampling Connections ¹³	VOC					
	Non-VOC					
Compressors	VOC	0	N/A	N/A	0	
	Non-VOC					
Flanges	VOC	96 (Gas), 194 (LL)	N/A	N/A	186 (Gas), 748 (LL)	
	Non-VOC					
Other	VOC	0	N/A	N/A	0	
	Non-VOC					

¹⁻¹³ See notes on the following page.

Note: Component counts taken by equipment type at representative facility and made site-specific according to the number of each equipment type at this site.

Notes for Leak Source Data Sheet

- 1. For VOC sources include components on streams and equipment that contain greater than 10% w/w VOC, including feed streams, reaction/separation facilities, and product/by-product delivery lines. Do not include certain leakless equipment as defined below by category.
- By monitoring frequency, give the number of sources routinely monitored for leaks, using a portable detection device that measures concentration in ppm. Do not include monitoring by visual or soap-bubble leak detection methods. "M/Q(M)/Q/SA/A/O" means the time period between inspections as follows:

Monthly/Quarterly, with Monthly follow-up of repaired leakers/Quarterly/Semi-annual/Annually/Other (specify time period)

If source category is not monitored, a single zero in the space will suffice. For example, if 50 gas-service valves are monitored quarterly, with monthly follow-up of those repaired, 75 are monitored semi-annually, and 50 are checked bimonthly (alternate months), with non checked at any other frequency, you would put in the category "valves, gas service:" 0/50/0/75/0/50 (bimonthly).

- 3. Give the average number of days, after a leak is discovered, that an attempt will be made to repair the leak.
- 4. Note the method used: MB material balance; EE engineering estimate; EPA emission factors established by EPA (cite document used); O other method, such as in-house emission factor (specify).
- 5. Do not include in the equipment count sealless pumps (canned motor or diaphragm) or those with enclosed venting to a control device. (Emissions from vented equipment should be included in the estimates given in the Emission Points Data Sheet.)
- 6. Volatile organic compounds (VOC) means the term as defined in 40 CFR 51.100 (s).
- 7. A light liquid is defined as a fluid with vapor pressure equal to or greater than 0.04 psi (0.3 Kpa) at 20°C. For mixtures, if 20% w/w or more of the stream is composed of fluids with vapor pressures greater than 0.04 psi (0.3 Kpa) at 20 °C, then the fluid is defined as a light liquid.
- 8. A heavy liquid is defined as a fluid with a vapor pressure less than 0.04 psi (0.3 Kpa) at 20°C. For mixtures, if less than 20% w/w of the stream is composed of fluids with vapor pressures greater than 0.04 psi (0.3 Kpa) at 20 °C, then the fluid is defined as a heavy liquid.
- 9. LIST CO, H₂S, mineral acids, NO, NO₂, SO₃, etc. DO NOT LIST CO₂, H₂, H₂O, N₂, O₂, and Noble Gases.
- 10. Include all process valves whether in-line or on an open-ended line such as sample, drain and purge valves. Do not include safety-relief valves, or leakless valves such as check, diaphragm, and bellows seal valves.
- 11. Do not include a safety-relief valve if there is a rupture disk in place upstream of the valve, or if the valve vents to a control device.
- 12 Open-ended lines include purge, drain and vent lines. Do not include sampling connections, or lines sealed by plugs, caps, blinds or second valves.
- 13. Do not include closed-purge sampling connections.

Attachment L FUGITIVE EMISSIONS FROM UNPAVED HAULROADS

UNFF	UNPAVED HAULRUADS (including all equipment traffic involved in process, naul trucks, endloaders, etc.)									
k =	Particle size multiplier4.901.5			1.50						
s =	Silt content of road surface mate	erial (%)				3.9			3.9	
p =	Number of days per year with p	recipitatio	on >0.01 i	in.		150			150	
Item Number Description Number of Weight Speed Wheels (tons) (mph)			Miles per Trip	Maximum Trips per Hour	Maxin Trips Yea	per	Control Device ID Number	Control Efficiency (%)		
1	Light Vehicles	4	2	10	0.98	2	1,78	89	N/A	N/A
2	Medium Trucks	10	15	10	0.98	1	76	7	N/A	N/A
3	Heavy Trucks	18	23.5	10	0.98	1	85	5	N/A	N/A
4										
5										
6										
7										
8										

UNPAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

Source: AP-42 Fifth Edition – 13.2.2 Unpaved Roads

 $E = k \times 5.9 \times (s \div 12) \times (S \div 30) \times (W \div 3)^{0.7} \times (w \div 4)^{0.5} \times ((365 - p) \div 365) =$ Ib/Vehicle Mile Traveled (VMT)

Where:

k =	Particle size multiplier	4.90	1.50
s =	Silt content of road surface material (%)	3.9	3.9
S =	Mean vehicle speed (mph)	10	10
W =	Mean vehicle weight (tons)	16.1	16.1
w =	Mean number of wheels per vehicle	13	13
p =	Number of days per year with precipitation >0.01 in.	150	150

For lb/hr: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$

For TPY: [Ib ÷ VMT] × [VMT ÷ trip] × [Trips ÷ Hour] × [Ton ÷ 2000 lb] = Tons/year

SUMMARY OF UNPAVED HAULROAD EMISSIONS

	PM PM-10							
Item No.	Uncor	trolled	Cont	rolled	Uncor	trolled	Cont	rolled
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
1	0.02	0.06	-	-	<0.01	0.01	-	-
2	0.01	0.03	-	-	<0.01	0.01	-	-
3	0.04	0.12	-	-	0.01	0.03	-	-
4								
5								
6								
7								
8								
TOTALS	0.06	0.20	-	-	0.02	0.05	-	-

Note: Minimum one-per-day average pick-up trucks and service trucks even if tanker truck not required every day. Per EPA BID calculations, all emissions based on average trips. Estimated maximum hourly, daily and yearly trips provided for information only.

FUGITIVE EMISSIONS FROM PAVED HAULROADS – Not Applicable

n = Number of traffic lanes s = Surface material silt content (%) L = Surface dust loading (lb/mile)	l =	Industrial augmentation factor (dimensionless)	
	n =	Number of traffic lanes	
L = Surface dust loading (lb/mile)	s =	Surface material silt content (%)	
	L =	Surface dust loading (lb/mile)	

INDUSTRIAL PAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

Item Number	Description	Mean Vehicle Weight (tons)	Miles per Trip	Maximum Trips per Hour	Maximum Trips per Year	Control Device ID Number	Control Efficiency (%)
1							
2							
3							
4							
5							
6							
7							
8							

Source: AP-42 Fifth Edition – 11.2.6 Industrial Paved Roads

$$\mathsf{E} = 0.077 \times \mathsf{I} \times (4 \div \mathsf{n}) \times (\mathsf{s} \div 10) \times (\mathsf{L} \div 1000) \times (\mathsf{W} \div 3)^{0.7} =$$

lb/Vehicle Mile Traveled (VMT)

Where:

l =	Industrial augmentation factor (dimensionless)	
n =	Number of traffic lanes	
s =	Surface meterial silt content (%)	
L =	Surface dust loading (lb/mile)	
W =	Average vehicle weight (tons)	

For lb/hr: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$

For TPY: [Ib ÷ VMT] × [VMT ÷ trip] × [Trips ÷ Hour] × [Ton ÷ 2000 lb] = Tons/year

SUMMARY OF PAVED HAULROAD EMISSIONS

line of Nie	Uncon	trolled	Cont	rolled
Item No.	lb/hr	TPY	lb/hr	TPY
1				
2				
3				
4				
5				
6				
7				
8				
TOTALS				

ATTACHMENT M: AIR POLLUTION CONTROL DEVICE SHEET

APCDS – COMBUSTOR

VAPOR COMBUSTOR SPECIFICATION SHEET

Attachment M Air Pollution Control Device Sheet (FLARE VAPOR COMBUSTOR SYSTEM*)

Control Device ID No. (must match Emission Units Table): APC-COMB

	Equipment	Information
1.	Manufacturer: MRW Technologies, Inc. Model No. TBF-5.5-30-147000	 Method: Elevated flare Ground flare Other Describe: Vapor Combustor
3.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state l	em with duct arrangement and size of duct, air volume, hood face velocity and hood collection efficiency.
4.	Method of system used: Not applicable	Pressure-assisted Non-assisted
5. *B	Maximum capacity of flare -vapor combustor: ~102 scf/min ~6,125 scf/hr Based on 147,000 scfd	6. Dimensions of stack:Diameter5.5Height30ft.
7.	Estimated combustion efficiency: (Waste gas destruction efficiency) Estimated: ≥98% Minimum guaranteed: 98%	 8. Fuel used in burners: Natural Gas Fuel Oil, Number Other, Specify:
9. 10.	Number of burners: Rating: 15 mmBTU/hr . Will preheat be used? Yes No	11. Describe method of controlling flame: The pilot is monitored via flame rod.
	. Flare Vapor Combustor height: 30 ft . Flare tip inside diameter: N/A ft	14. Natural gas flow rate to flare pilot flame per pilotlight: ~ 0.83 scf/min ≤ 50 scf/hr
	. Number of pilot lights: Total $1 \leq 45,250$ ** BTU/hr	16. Will automatic re-ignition be used? ⊠ Yes □ No
17.		automatically attempt to relight the pilot. If the re- ve will automatically close and a local and remote
	Other, Describe: Flame rod	☐ No -Red era with monitoring control room
19.	. Hours of unit operation per year: 8,760	

Steam Injection										
20. Will steam injection be used?]Yes 🛛 No	21. Steam pressure Minimum Expected: Design Maximum:	PSIG							
22. Total Steam flow rate:	LB/hr	23. Temperature:	°F							
24. Velocity	ft/sec	25. Number of jet streams								
26. Diameter of steam jets:	in	27. Design basis for steam injected: LB steam/LB	hydrocarbon							
28. How will steam flow be controlled i	f steam injection is									

Characteristics of the Waste Gas Stream to be Burned 29. Quantity Quantity Source of Material Name Grains of H₂S/100 ft³ (LB/hr, ft³/hr, etc) See Vapor Combustor Calculations in Attachment N 30. Estimate total combustible to flare vapor combustor: 44.27 lb/hr VOC LB/hr or ACF/hr ~102 (Maximum mass flow rate of waste gas) scfm 31. Estimated total flow rate to flare vapor combustor including materials to be burned, carrier gases, auxiliary fuel, etc.: 44.27 lb/hr VOC LB/hr or ACF/hr 32. Give composition of carrier gases: 34. Identify and describe all auxiliary fuels to be burned. 33. Temperature of emission stream: BTU/scf ~1.000 °F Not applicable BTU/scf Heating value of emission stream: 2.450 BTU/ft³ BTU/scf Mean molecular weight of emission stream: BTU/scf

 MW =
 Ib/Ib-mole
 BTU/scf

 35. Temperature of flare vapor combustor gas: ~1,000 °F
 36. Flare Vapor combustor gas flow rate: ~102 scf/min

 37. Flare-Vapor combustor gas heat content: 2,450 BTU/ft³
 38. Flare Vapor combustor gas exit velocity: scf/min

 39. Maximum rate during emergency for one major piece of equipment or process unit:
 scf/min

 40. Maximum rate during emergency for one major piece of equipment or process unit:
 BTU/min

41. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification):

42. Describe the collection material disposal system: $N\!/\!A$

43. Have you included *Flare Vapor Combustor Control Device* in the Emissions Points Data Summary Sheet? Yes

Please propose n	g parameters. Please propose	and Testing eporting in order to demonstrate compliance with the testing in order to demonstrate compliance with the
MONITORING:		RECORDKEEPING:
As currently permitted		As currently permitted
REPORTING:		TESTING:
As currently permitted		As currently permitted
MONITORING:		ocess parameters and ranges that are proposed to be strate compliance with the operation of this process
RECORDKEEPING: REPORTING:	Please describe the proposed replease describe any proposed	cordkeeping that will accompany the monitoring. emissions testing for this process equipment on air
TESTING:	pollution control device. Please describe any proposed pollution control device.	emissions testing for this process equipment on air
45. Manufacturer's Gua 100%	aranteed Capture Efficiency for each	ch air pollutant.
46. Manufacturer's Gua ≥98%	aranteed Control Efficiency for eac	h air pollutant.
47. Describe all operat	ing ranges and maintenance proce	edures required by Manufacturer to maintain warranty.

Notes:

*Although a vapor combustor is not considered a flare by design, the function is consistent in that it combusts a waste stream for the purpose controlling emissions. Since there is not APCDS specifically for this device, the APCDS for Flare Systems most accurately reflects the characteristics of this control device.

**Assuming <50 SCFH pilot fuel consumption and 905 Btu/scf fuel heating value.

Tank Battery Flare Specification Sheet MRW Technologies, Inc. Flare Model Number: TBF-5.5-30-147000

Expected Destruction Removal Efficiency (DRE):

98% or Greater of Non-Methane Hydrocarbons

5.5-foot Diameter 30-Foot Overall Height

15 MMBTU/HR

147,000 SCFD

2450 BTU/SCF

MRW Electric Ignition

2" Enardo

Continuous

50 SCFH or Less

Design Heat Input:

Unit Size:

Design Flow Rates:

Design Heat Content:

Waste Gas Flame Arrestor:

Pilot Type:

Pilot Operation (Continuous/Intermittent):

Pilot Fuel Consumption:

Pilot Monitoring Device:

Automatic Re-Ignition:

Remote Alarm Indication:

Included

Flame Rod

Included

Description of Control Scheme:

The flare pilot is monitored via flame rod. If the pilot flame is lost, the control system will automatically attempt to relight the pilot. If the reignition attempt fails, the pilot solenoid valve will automatically close and a local & remote alarm signal will be generated to indicate loss of pilot flame.

COMBUSTIONSSTEMS 1910 West C Street, Jenks, OK 74037 • tel: 918.299.8877 • fax: 918.299.8870 • email: mrw@mrw-tech.com

ATTACHMENT N: SUPPORTING EMISSIONS CALCULATIONS

EXAMPLE CALCULATIONS

g/hp-hr Emission Factors:

Emission Factor (g/hp-hr) * Engine Rating (hp) * 1 lb/453.6 g = lb/hr

lb/mmBtu Emission Factors:

Emission Factor (lb/mmBtu) * Engine Rating (hp) * Fuel Use (Btu/hp-hr) * 1 mmBtu/1000000 Btu = lb/hr

Emission Factor (lb/mmBtu) * Combustor Rating (mmBtu/hr) = lb/hr

Ib/mmscf Emission Factors:

Emission Factor (lb/mmscf) * Heater Rating (mmBtu/hr) * 1/Fuel Heating Value (Btu/scf) = lb/hr

kg/mmBtu Emission Factors:

Emission Factor (kg/mmBtu) * Engine Rating (hp) * Fuel Use (Btu/hp-hr) * 2.20462 lb/kg * 1 mmBtu/1000000 Btu = lb/hr

Emission Factor (kg/mmBtu) * Heater Rating (mmBtu/hr) * 2.20462 lb/kg = lb/hr

Emissions with Capture and Control Systems:

Uncontrolled Emissions = Potential to Emit without Capture and/or Control

Uncaptured Emissions = Uncontrolled Emissions * (1 – Capture Efficiency %)

Controlled Emissions = Captured Emissions * (1 – Control Efficiency %)

Fugitives:

TOC Emission Factor (lb/hr/source) * Number of Sources * VOC wt% = lb/hr VOC

Tons per Year (TPY) Conversion:

lb/hr * Hours/Year * 1 ton/2000 lb = TPY

Tonnes/Year * 1.10231131 = TPY

SWN Production Company, LLC Roy Riggle Pad Summary of Criteria Air Pollutant Emissions

Equipment	Unit ID	N	Ox	C	0	Total	VOC ¹	S	0 ₂	PM Total	
Equipment	Unit ID	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
145-hp Caterpillar G3306 NA Engine w/ Catalytic Converter - Remove	EU-MC4278	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
17.6-kW Kubota DG972-E2 Engine - Remove	EU-ENG2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1.0-mmBtu/hr GPU Burner	EU-GPU1	0.11	0.48	0.09	0.41	0.01	0.03	<0.01	<0.01	0.01	0.04
0.5-mmBtu/hr Heater Treater	EU-HT1	0.06	0.24	0.05	0.20	<0.01	0.01	<0.01	<0.01	<0.01	0.02
1.5-mmBtu/hr Line Heater -Remove	EU-LH1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Three (3) 400-bbl Condensate Tanks Routed to Vapor Combustor - Revise	EU-TANKS- COND	-	-	-	-	-	-	-	-	-	-
Three (3) 400-bbl Produced Water Tanks Routed to Vapor Combustor - Revise	EU-TANKS-PW	-	-	-	-	-	-	-	-	-	-
Condensate Truck Loading w/ Vapor Return Routed to Combustor - Revise	EU-LOAD- COND	-	-	-	-	0.08	0.35	-	-	-	-
Produced Water Truck Loading w/ Vapor Return Routed to Combustor - Revise	EU-LOAD-PW	-	-	-	-	<0.01	<0.01	-	-	-	-
One (1) 15.0-mmBtu/hr Vapor Combustor - Tank/Loading Stream - Revise	APC-COMB	2.07	9.07	4.13	18.10	0.82	3.58	-	-	0.05	0.20
Vapor Combustor Pilot	EU-PILOT	<0.01	0.02	<0.01	0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fugitive Emissions - Revise	EU-FUG	-	-	-	-	0.47	2.08	-	-	-	-
Fugitive Haul Road Emissions - Revise	EU-HR	-	-	-	-	-	-	-	-	0.06	0.20
Post-Update Allowa	ble Emissions =	2.24	9.81	4.28	18.73	1.38	6.05	<0.01	<0.01	0.12	0.46
Current Permit Allowa	ble Emissions =	3.05	13.35	10.60	46.44	4.44	19.45	<0.01	0.01	1.45	4.88
Net Allowa	ble Emissions =	(0.81)	(3.54)	(6.33)	(27.71)	(3.06)	(13.40)	(0.00)	(0.01)	(1.33)	(4.41)

Notes:

¹ Total VOC includes all constituents heavier than Propane (C3+), including hazardous air pollutants (HAP). Speciated HAP presented in following table.

SWN Production Company, LLC Roy Riggle Pad Summary of Hazardous Air Pollutants

						Estimated Em	issions (lb/hr)				
Equipment	Unit ID	Acetalde- hyde	Acrolein	Benzene	Ethyl- benzene	Formalde- hyde	Methanol	n-Hexane	Toluene	Xylenes	Total HAPs
145-hp Caterpillar G3306 NA Engine w/ Catalytic Converter - Remove	EU-MC4278	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00
17.6-kW Kubota DG972-E2 Engine - Remove	EU-ENG2	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00
1.0-mmBtu/hr GPU Burner	EU-GPU1	-	-	<0.01	-	<0.01	-	<0.01	<0.01	-	<0.01
0.5-mmBtu/hr Heater Treater	EU-HT1	-	-	<0.01	-	<0.01	-	<0.01	<0.01	-	<0.01
1.5-mmBtu/hr Line Heater -Remove	EU-LH1	-	-	0.00	-	0.00	-	0.00	0.00	-	0.00
Three (3) 400-bbl Condensate Tanks Routed to Vapor Combustor - Revise	EU-TANKS- COND	-	-	-	-	-	-	-	-	-	-
Three (3) 400-bbl Produced Water Tanks Routed to Vapor Combustor - Revise	EU-TANKS-PW	-	-	-	-	-	-	-	-	-	-
Condensate Truck Loading w/ Vapor Return Routed to Combustor - Revise	EU-LOAD- COND	-	-	<0.01	<0.01	-	-	<0.01	<0.01	<0.01	0.01
Produced Water Truck Loading w/ Vapor Return Routed to Combustor - Revise	EU-LOAD-PW	-	-	<0.01	<0.01	-	-	<0.01	<0.01	<0.01	<0.01
One (1) 15.0-mmBtu/hr Vapor Combustor - Tank/Loading Stream - Revise	APC-COMB	-	-	<0.01	<0.01	-	-	0.04	<0.01	0.01	0.06
Vapor Combustor Pilot	EU-PILOT	-	-	<0.01	-	<0.01	-	<0.01	<0.01	-	<0.01
Fugitive Emissions - Revise	EU-FUG	-	-	<0.01	<0.01	-	-	0.02	<0.01	<0.01	0.03
Fugitive Haul Road Emissions - Revise	EU-HR	-	-	-	-	-	-	-	-	-	-
Post-Update Allowal	ble Emissions =	0.00	0.00	<0.01	0.01	<0.01	0.00	0.07	<0.01	0.02	0.09
Current Permit Allowal	ble Emissions =	<0.01	<0.01	<0.01	0.02	0.02	<0.01	0.22	0.02	0.06	0.35
Net Allowa	ble Emissions =	(0.00)	(0.00)	(0.00)	(0.01)	(0.02)	(0.00)	(0.15)	(0.01)	(0.04)	(0.26)

Continued on Next Page

SWN Production Company, LLC Roy Riggle Pad Summary of Hazardous Air Pollutants (Continued)

						Estimated Err	nissions (TPY)				
Equipment	Unit ID	Acetalde- hyde	Acrolein	Benzene	Ethyl- benzene	Formalde- hyde	Methanol	n-Hexane	Toluene	Xylenes	Total HAPs
145-hp Caterpillar G3306 NA Engine w/ Catalytic Converter - Remove	EU-MC4278	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00
17.6-kW Kubota DG972-E2 Engine - Remove	EU-ENG2	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00
1.0-mmBtu/hr GPU Burner	EU-GPU1	-	-	<0.01	-	<0.01	-	0.01	<0.01	-	0.01
0.5-mmBtu/hr Heater Treater	EU-HT1	-	-	<0.01	-	<0.01	-	<0.01	<0.01	-	<0.01
1.5-mmBtu/hr Line Heater -Remove	EU-LH1	-	-	0.00	-	0.00	-	0.00	0.00	-	0.00
Three (3) 400-bbl Condensate Tanks Routed to Vapor Combustor - Revise	EU-TANKS- COND	-	-	-	-	-	-	-	-	-	-
Three (3) 400-bbl Produced Water Tanks Routed to Vapor Combustor - Revise	EU-TANKS-PW	-	-	-	-	-	-	-	-	-	-
Condensate Truck Loading w/ Vapor Return Routed to Combustor - Revise	EU-LOAD- COND	-	-	<0.01	<0.01	-	-	0.02	<0.01	<0.01	0.02
Produced Water Truck Loading w/ Vapor Return Routed to Combustor - Revise	EU-LOAD-PW	-	-	<0.01	<0.01	-	-	<0.01	<0.01	<0.01	<0.01
One (1) 15.0-mmBtu/hr Vapor Combustor - Tank/Loading Stream - Revise	APC-COMB	-	-	<0.01	0.01	-	-	0.18	0.01	0.05	0.25
Vapor Combustor Pilot	EU-PILOT	-	-	<0.01	-	<0.01	-	<0.01	<0.01	-	<0.01
Fugitive Emissions - Revise	EU-FUG	-	-	<0.01	0.01	-	-	0.08	0.01	0.02	0.12
Fugitive Haul Road Emissions - Revise	EU-HR	-	-	-	-	-	-	-	-	-	-
Post-Update Allowa	ble Emissions =	0.00	0.00	<0.01	0.02	<0.01	0.00	0.29	0.02	0.07	0.41
Current Permit Allowa	ble Emissions =	0.02	0.02	0.02	0.07	0.11	0.02	0.96	0.07	0.25	1.53
Net Allowa	ble Emissions =	(0.02)	(0.02)	(0.02)	(0.05)	(0.11)	(0.02)	(0.67)	(0.05)	(0.18)	(1.12)

SWN Production Company, LLC Roy Riggle Pad Summary of Greenhouse Gas Emissions - Metric Tons per Year (Tonnes)

Equipment	Unit ID	Carbon Di	oxide (CO ₂)	Metha	ne (CH ₄)	Methane (C	H₄) as CO _{2 Eq.}	Nitrous C	xide (N ₂ O)	Nitrous Oxide	(N ₂ O) as CO _{2 Eq.}	Total CO	2 + CO _{2 Eq.} ¹
Equipment	Unit ID	lb/hr	tonnes/yr	lb/hr	tonnes/yr	lb/hr	tonnes/yr	lb/hr	tonnes/yr	lb/hr	tonnes/yr	lb/hr	tonnes/yr
145-hp Caterpillar G3306 NA Engine w/ Catalytic Converter - Remove	EU-MC4278	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
17.6-kW Kubota DG972-E2 Engine - Remove	EU-ENG2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1.0-mmBtu/hr GPU Burner	EU-GPU1	116.98	464.80	<0.01	0.01	0.06	0.22	<0.01	<0.01	0.07	0.26	117.10	465.28
0.5-mmBtu/hr Heater Treater	EU-HT1	58.49	232.40	<0.01	<0.01	0.03	0.11	<0.01	<0.01	0.03	0.13	58.55	232.64
1.5-mmBtu/hr Line Heater -Remove	EU-LH1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Three (3) 400-bbl Condensate Tanks Routed to Vapor Combustor - Modify ²	EU-TANKS- COND	-	-	-	-	-	-	-	-	-	-	-	-
Three (3) 400-bbl Produced Water Tanks Routed to Vapor Combustor - Modify ²	EU-TANKS-PW	-	-	-	-	-	-	-	-	-	-	-	-
Condensate Truck Loading w/ Vapor Return Routed to Combustor - Revise	EU-LOAD-COND	<0.01	<0.01	0.02	0.08	0.52	2.06	-	-	-	-	0.52	2.06
Produced Water Truck Loading w/ Vapor Return Routed to Combustor - Revise	EU-LOAD-PW	<0.01	<0.01	<0.01	0.01	0.07	0.26	-	-	-	-	0.07	0.26
One (1) 15.0-mmBtu/hr Vapor Combustor - Tank/Loading Stream - Revise	APC-COMB	1,754.66	6,972.07	0.03	0.13	0.83	3.28	<0.01	0.01	0.99	3.92	1,756.47	6,979.27
Vapor Combustor Pilot	EU-PILOT	5.29	21.03	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	0.01	5.30	21.05
Fugitive Emissions - Revise	EU-FUG	<0.01	<0.01	0.26	1.02	6.40	25.43	-	-	-	-	6.40	25.44
Fugitive Haul Road Emissions - Revise	EU-HR	-	-	-	-	-	-	-	-	-	-	-	-
Post-Update Allow	able Emissions =	1,935.42	7,690.31	0.32	1.26	7.90	31.38	<0.01	0.01	1.09	4.32	1,944.40	7,726.01
Current Permit Allow	able Emissions =	2,290.92	9,102.91	0.67	2.65	14.05	55.57	<0.01	0.02	1.33	5.30	2,306.29	9,163.78
Net Allow	able Emissions =	(355.50)	(1,412.60)	(0.35)	(1.39)	(6.15)	(24.19)	(0.00)	(0.01)	(0.24)	(0.98)	(361.89)	(1,437.77)

Notes:

¹ CO₂ Equivalent = Pollutant times GWP multiplier. 40 CFR 98 Table A-1, Global Warming Potential (GWP) multiplier (100-Year Time Horizon): CO₂ = 1, CH₄ = 25, N₂O = 298

² Per API Compendium (2009) Chapter 5: Because most of the CH₄ and CO₂ emissions from storage tanks occur as a result of flashing (which is controlled by the vapor combustor in this case), working and breathing loss emissions of these gases are very small in production and virtually non-existent in the downstream segments. Vapors from the tanks are routed to the vapor combustor at this site. Therefore, GHG emissions from the condensate and produced water tanks are assumed to be negligible.

SWN Production Company, LLC Roy Riggle Pad Summary of Greenhouse Gas Emissions - Short Tons per Year (Tons)

Equipment	Unit ID	Carbon Di	oxide (CO ₂)	Methar	ne (CH ₄)	Methane (C	H ₄) as CO _{2 Eq.}	Nitrous O	xide (N ₂ O)	Nitrous Oxide	(N ₂ O) as CO _{2 Eq.}	Total CO	2 + CO _{2 Eq.} ¹
Equipment	Unit ID	lb/hr	tons/yr ²	lb/hr	tons/yr ²	lb/hr	tons/yr	lb/hr	tons/yr ²	lb/hr	tons/yr	lb/hr	tons/yr
145-hp Caterpillar G3306 NA Engine w/ Catalytic Converter - Remove	EU-MC4278	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
17.6-kW Kubota DG972-E2 Engine - Remove	EU-ENG2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1.0-mmBtu/hr GPU Burner	EU-GPU1	116.98	512.36	<0.01	0.01	0.06	0.24	<0.01	<0.01	0.07	0.29	117.10	512.89
0.5-mmBtu/hr Heater Treater	EU-HT1	58.49	256.18	<0.01	<0.01	0.03	0.12	<0.01	<0.01	0.03	0.14	58.55	256.44
1.5-mmBtu/hr Line Heater -Remove	EU-LH1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Three (3) 400-bbl Condensate Tanks Routed to Vapor Combustor - Modify ³	EU-TANKS- COND	-	-	-	-	-	-	-	-	-	-	-	-
Three (3) 400-bbl Produced Water Tanks Routed to Vapor Combustor - Modify ³	EU-TANKS-PW	-	-	-	-	-	-	-	-	-	-	-	-
Condensate Truck Loading w/ Vapor Return Routed to Combustor - Revise	EU-LOAD-COND	<0.01	<0.01	0.02	0.09	0.52	2.27	-	-	-	-	0.52	2.27
Produced Water Truck Loading w/ Vapor Return Routed to Combustor - Revise	EU-LOAD-PW	<0.01	<0.01	<0.01	0.01	0.07	0.29	-	-	-	-	0.07	0.29
One (1) 15.0-mmBtu/hr Vapor Combustor - Tank/Loading Stream - Revise	APC-COMB	1,754.66	7,685.39	0.03	0.14	0.83	3.62	<0.01	0.01	0.99	4.32	1,756.47	7,693.33
Vapor Combustor Pilot	EU-PILOT	5.29	23.18	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	0.01	5.30	23.21
Fugitive Emissions - Revise	EU-FUG	<0.01	<0.01	0.26	1.12	6.40	28.04	-	-	-	-	6.40	28.04
Fugitive Haul Road Emissions - Revise	EU-HR	-	-	-	-	-	-	-	-	-	-	-	-
Post-Update Allow	able Emissions =	1,935.42	8,477.12	0.32	1.38	7.90	34.59	<0.01	0.02	1.09	4.76	1,944.40	8,516.47
Current Permit Allow	able Emissions =	2,290.92	10,034.24	0.67	2.92	14.05	61.26	<0.01	0.02	1.33	5.84	2,306.29	10,101.34
Net Allow	able Emissions =	(355.50)	(1,557.12)	(0.35)	(1.54)	(6.15)	(26.67)	(0.00)	(0.00)	(0.24)	(1.08)	(361.89)	(1,584.87)

Notes:

¹CO₂ Equivalent = Pollutant times GWP multiplier. 40 CFR 98 Table A-1, Global Warming Potential (GWP) multiplier (100-Year Time Horizon): CO₂ = 1, CH₄ = 25, N₂O = 298

² EPA and API GHG calculation methodologies calculate emissions in metric tons (tonnes). These values have been converted to short tons for consistency with permitting threshold units.

³ Per API Compendium (2009) Chapter 5: Because most of the CH₄ and CO₂ emissions from storage tanks occur as a result of flashing (which is controlled by the vapor combustor in this case), working and breathing loss emissions of these gases are very small in production and virtually nonexistent in the downstream segments. Vapors from the tanks are routed to the vapor combustor at this site. Therefore, GHG emissions from the condensate and produced water tanks are assumed to be negligible.

SWN Production Company, LLC Roy Riggle Pad Storage Tank Emissions - Criteria Air Pollutants

Tank Information

Unit ID:	EU-TANKS-COND	EU-TANKS-PW
Contents: ¹	Condensate	Produced Water
Number of Tanks: ²	3	3
Capacity (bbl) - Per Tank:	400	400
Capacity (gal) - Per Tank:	16,800	16,800
Total:		
Total Throughput (bbl/yr):	14,235	1,825
Total Throughput (gal/yr):	597,870	76,650
Total Throughput (bbl/d):	39	5
Per Tank:		
Throughput (bbl/yr):	4,745	608
Total Throughput (gal/yr):	199,290	25,550
Total Throughput (bbl/d):	13	2
Turnovers:	35.59	4.56
Tank Vapor Capture Efficiency:	100%	100%
Captured Vapors Routed to:	Vapor Combustor	Vapor Combustor

Uncontrolled Storage Tank Emissions

Unit ID:

EU-TANKS-COND

EU-TANKS-PW

Emissions	lb/hr	TPY	lb/hr	TPY
Working Losses	0.52	2.30	<0.01	<0.01
Breathing Losses	1.15	5.05	<0.01	<0.01
Flashing Losses	38.97	170.70	<0.01	0.02
Total VOC =	40.65	178.05	<0.01	0.02

SWN Production Company, LLC Roy Riggle Pad Storage Tank Emissions - Criteria Air Pollutants (Continued)

Controlled Storage Tank Emissions

Unit ID:	EU-TANKS-COND		EU-TANKS-PW	
Emissions	lb/hr	TPY	lb/hr	ТРҮ
Working Losses	0.01	0.05	<0.01	<0.01
Breathing Losses	0.02	0.10	<0.01	<0.01
Flashing Losses	0.78	3.41	<0.01	<0.01
Total VOC =	0.81	3.56	<0.01	<0.01

Notes:

¹ Produced water tanks assumed to contain 99% produced water and 1% condensate.

² SWN requests to combine working, breathing and flashing emissions from each tank type to be combined into one emissions point with a total throughput limit rather than an individual tank limit.

³ Tank working, breathing, and flashing emissions were calculated using ProMax process simulation. Reports located in Appendix A. Uncontrolled tank working/breathing/flashing emissions are routed to a vapor combustor with 100% capture efficiency.

SWN Production Company, LLC Roy Riggle Pad Storage Tank Emissions - Hazardous Air Pollutants

Uncontrolled Storage Tank Emissions

EU-TANKS-COND

EU-TANKS-PW

Pollutant	lb/hr	TPY	lb/hr	TPY
Total VOC = ¹	40.65	178.05	<0.01	0.02
n-Hexane	2.00	8.74	<0.01	<0.01
Benzene	0.03	0.11	<0.01	<0.01
Toluene	0.14	0.62	<0.01	<0.01
Ethylbenzene	0.17	0.73	<0.01	<0.01
Xylenes	0.52	2.29	<0.01	<0.01
Total HAPs =	2.85	12.49	<0.01	<0.01

Controlled Storage Tank Emissions²

Unit	ID.	
Critic		

Unit ID:

EU-TANKS-COND

EU-TANKS-PW

Pollutant	lb/hr	ТРҮ	lb/hr	TPY
Total VOC = ¹	0.81	3.56	<0.01	<0.01
n-Hexane	0.04	0.17	<0.01	<0.01
Benzene	<0.01	<0.01	<0.01	<0.01
Toluene	<0.01	0.01	<0.01	<0.01
Ethylbenzene	<0.01	0.01	<0.01	<0.01
Xylenes	0.01	0.05	<0.01	<0.01
Total HAPs =	0.06	0.25	<0.01	<0.01

SWN Production Company, LLC Roy Riggle Pad Storage Tank Emissions - Hazardous Air Pollutants (Continued)

Estimated HAP Composition (% by Weight)³

Pollutant	Wt%
n-Hexane	4.908%
Benzene	0.064%
Toluene	0.348%
Ethylbenzene	0.411%
Xylenes	1.285%
Total HAPs =	7.016%

Notes:

¹ VOC emissions calculated in Criteria Air Pollutant calculations.

² Uncontrolled tank working/breathing/flashing emissions are routed to a vapor combustor with 98% capture efficiency. Uncaptured emissions shown represent those not captured by the collection system or controlled by the vapor combustor.

³ Speciated liquids analysis located in Fugitive Emissions Calculations. HAP weight % calculated as % of total hydrocarbons in the sample. All HAP assumed to volatilize from liquids for most conservative emissions estimate.

SWN Production Company, LLC Roy Riggle Pad Condensate Truck Loading Emissions - Criteria and Hazardous Air Pollutants

Loading Information

Unit ID:	EU-LOAD-COND
Fill Method:	Submerged
Type of Service:	Dedicated
Mode of Operation:	Normal
Saturation Factor:	0.6
Throughput (1000 gal):	597.87
Control Type:	Vapor Return/Combustion
Vapor Capture Efficiency: ²	70%
Average Fill Rate (gal/hr):	7,500
Captured Vapors Routed to:	Vapor Combustor

Uncontrolled Loading Emissions⁴

Pollutant	Max. lb/hr	Avg. Ib/hr	TPY
VOC =	22.65	0.27	1.18
n-Hexane	1.11	0.01	0.06
Benzene	0.01	<0.01	<0.01
Toluene	0.08	<0.01	<0.01
Ethylbenzene	0.09	<0.01	<0.01
Xylenes	0.29	<0.01	0.02
Total HAPs ⁵ =	1.59	0.02	0.08

SWN Production Company, LLC Roy Riggle Pad Condensate Truck Loading Emissions - Criteria and Hazardous Air Pollutants (Continued)

Uncaptured Loading Emissions⁴

Pollutant	Max. Ib/hr	Avg. lb/hr	TPY
VOC =	6.80	0.08	0.35
n-Hexane	0.33	<0.01	0.02
Benzene	<0.01	<0.01	<0.01
Toluene	0.02	<0.01	<0.01
Ethylbenzene	0.03	<0.01	<0.01
Xylenes	0.09	<0.01	<0.01
Total HAPs ⁵ =	0.48	0.01	0.02

Notes:

¹ AP-42 5.2-4 Eq.1: Loading Loss (lb/1000 gal) = 12.46 *S*P*M/T.

² Uncontrolled emissions that are captured by the collection system are routed to a vapor combustor. Per AP-42 5.2-6, 70% capture efficiency can be assumed for trucks not subject to NSPS. Uncaptured emissions shown represent those not captured by the collection system or controlled by the vapor combustor.

³AP-42 Section 7.1 - Properties of Selected Petroleum Liquids correlation with RVP obtained from representative loading ticket.

⁴ Maximum lb/hr based on average hourly truck loading rate. Average lb/hr based on TPY conversion assuming continuous operation.

⁵ Speciated liquids analysis located in Fugitive Emissions Calculations. HAP weight % calculated as % of total hydrocarbons in the sample. All HAP assumed to volatilize from liquids for most conservative emissions estimate.

Pollutant	Wt%
n-Hexane	4.908%
Benzene	0.064%
Toluene	0.348%
Ethylbenzene	0.411%
Xylenes	1.285%
Total HAPs =	7.016%

SWN Production Company, LLC Roy Riggle Pad Condensate Truck Loading Emissions - Greenhouse Gases

Loading Information

Unit ID:	EU-LOAD-COND
Fill Method:	Submerged
Type of Service:	Dedicated
Mode of Operation:	Normal
TOC Em. Factor (tonne/10 ⁶ gal): ¹	0.91
Throughput (10 ⁶ gal):	0.598
Control Type:	Vapor Return/Combustion
Vapor Capture Efficiency: ²	70.00%
Average Fill Rate (gal/hr):	7,500
Captured Vapors Routed to:	Vapor Combustor
Input CH_4 wt% from analysis =	50.3658%
Input CO ₂ wt% from analysis =	0.2142%

Uncontrolled Loading Emissions^{3, 4}

Pollutant	Max. Ib/hr	Avg. lb/hr	tonnes/yr	tons/yr
CH ₄	7.58	0.07	0.27	0.30
CH ₄ as CO ₂ e	189.46	14.83	58.91	64.94
CO ₂	0.03	<0.01	<0.01	<0.01
Total CO ₂ + CO ₂ e =	189.49	14.83	58.92	64.94

SWN Production Company, LLC Roy Riggle Pad Condensate Truck Loading Emissions - Greenhouse Gases (Continued)

Uncaptured Loading Emissions^{3, 4}

Pollutant	Max. Ib/hr	Avg. lb/hr	tonnes/yr	tons/yr
CH ₄	2.27	0.02	0.08	0.09
CH ₄ as CO ₂ e	56.84	0.52	2.06	2.27
CO ₂	0.01	<0.01	<0.01	<0.01
Total $CO_2 + CO_2e =$	56.85	0.52	2.06	2.27

API Compendium Table 5-12

Loading Type	Emission Factor (tonne TOC/10 ⁶ gal)
Rail/Truck - Submerged Loading - Dedicated Normal Service	0.91
Rail/Truck - Submerged Loading - Vapor Balance Service	1.51
Rail/Truck - Splash Loading - Dedicated Normal Service	2.20
Rail/Truck - Splash Loading - Vapor Balance Service	1.51
Marine Loading - Ships/Ocean Barges	0.28
Marine Loading - Barges	0.45

Notes:

¹ API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Gas Industry, Table 5-12.

² Uncontrolled emissions that are captured by the collection system are routed to a vapor combustor. Per AP-42 5.2-6, 70% capture efficiency can be assumed for trucks not subject to NSPS. Uncaptured emissions shown represent those not captured by the collection system or controlled by the vapor combustor.

³ Maximum lb/hr based on average hourly truck loading rate. Average lb/hr based on TPY conversion assuming continuous operation.

 4 CO₂e = CO₂ equivalent (Pollutant times GWP multiplier):

40 CFR 98 Table A-1, Global Warming Potential (GWP) multiplier: $CO_2 = 1$, $CH_4 = 25$, $N_2O = 298$

SWN Production Company, LLC Roy Riggle Pad Produced Water Truck Loading Emissions - Criteria and Hazardous Air Pollutants

Loading Information

Unit ID:	EU-LOAD-PW
Fill Method:	Submerged
Type of Service:	Dedicated
Mode of Operation:	Normal
Saturation Factor:	0.6
Throughput (1000 gal):	76.65
Control Type:	Vapor Return/Combustion
Vapor Capture Efficiency: ²	70%
Average Fill Rate (gal/hr):	7,500
Captured Vapors Routed to:	Vapor Combustor

Uncontrolled Loading Emissions³

Pollutant	Max. Ib/hr	Avg. lb/hr	TPY
VOC =	<0.01	<0.01	<0.01
n-Hexane	<0.01	<0.01	<0.01
Benzene	<0.01	<0.01	<0.01
Toluene	<0.01	<0.01	<0.01
Ethylbenzene	<0.01	<0.01	<0.01
Xylenes	<0.01	<0.01	<0.01
Total HAPs ⁴ =	<0.01	<0.01	<0.01

SWN Production Company, LLC Roy Riggle Pad Produced Water Truck Loading Emissions - Criteria and Hazardous Air Pollutants (Continued)

Uncaptured Loading Emissions³

Pollutant	Max. Ib/hr	Avg. Ib/hr	TPY
VOC =	<0.01	<0.01	<0.01
n-Hexane	<0.01	<0.01	<0.01
Benzene	<0.01	<0.01	<0.01
Toluene	<0.01	<0.01	<0.01
Ethylbenzene	<0.01	<0.01	<0.01
Xylenes	<0.01	<0.01	<0.01
Total HAPs ⁴ =	<0.01	<0.01	<0.01

Notes:

¹ AP-42 5.2-4 Eq.1: Loading Loss (lb/1000 gal) = 12.46 *S*P*M/T. Properties based on mixture of 99% water and 1% condensate.

² Uncontrolled emissions that are captured by the collection system are routed to a vapor combustor. Per AP-42 5.2-6, 70% capture efficiency can be assumed for trucks not subject to NSPS. Uncaptured emissions shown represent those not captured by the collection system or controlled by the vapor combustor.

³ Maximum lb/hr based on average hourly truck loading rate. Average lb/hr based on TPY conversion assuming continuous operation.

⁴ Speciated liquids analysis located in Fugitive Emissions Calculations. HAP weight % calculated as % of total hydrocarbons in the sample. All HAP assumed to volatilize from liquids for most conservative emissions estimate.

Pollutant	Wt%
n-Hexane	4.908%
Benzene	0.064%
Toluene	0.348%
Ethylbenzene	0.411%
Xylenes	1.285%
Total HAPs =	7.016%

SWN Production Company, LLC Roy Riggle Pad Produced Water Truck Loading Emissions - Greenhouse Gases

Loading Information

Unit ID:	EU-LOAD-PW
Fill Method:	Submerged
Type of Service:	Dedicated
Mode of Operation:	Normal
TOC Em. Factor (tonne/10 ⁶ gal): ¹	0.91
Throughput (10 ⁶ gal):	0.077
Control Type:	Vapor Return/Combustion
Vapor Capture Efficiency: ²	70.00%
Average Fill Rate (gal/hr):	7,500
Captured Vapors Routed to:	Vapor Combustor
Input CH_4 wt% from analysis =	50.3658%
Input CO ₂ wt% from analysis =	0.2142%

Uncontrolled Loading Emissions^{3, 4}

Pollutant	Max. Ib/hr	Avg. lb/hr	tonnes/yr	tons/yr
CH ₄	7.58	0.01	0.04	0.04
CH ₄ as CO ₂ e	189.46	0.22	0.88	0.97
CO ₂	0.03	<0.01	<0.01	<0.01
Total CO ₂ + CO ₂ e =	189.49	0.22	0.88	0.97

SWN Production Company, LLC Roy Riggle Pad Produced Water Truck Loading Emissions - Greenhouse Gases (Continued)

Uncaptured Loading Emissions^{3, 4}

Pollutant	Max. Ib/hr	Avg. lb/hr	tonnes/yr	tons/yr
CH ₄	2.27	<0.01	0.01	0.01
CH ₄ as CO ₂ e	56.84	0.07	0.26	0.29
CO ₂	0.01	<0.01	<0.01	<0.01
Total CO ₂ + CO ₂ e =	56.85	0.07	0.26	0.29

API Compendium Table 5-12

Loading Type	Emission Factor (tonne TOC/10 ⁶ gal)
Rail/Truck - Submerged Loading - Dedicated Normal Service	0.91
Rail/Truck - Submerged Loading - Vapor Balance Service	1.51
Rail/Truck - Splash Loading - Dedicated Normal Service	2.20
Rail/Truck - Splash Loading - Vapor Balance Service	1.51
Marine Loading - Ships/Ocean Barges	0.28
Marine Loading - Barges	0.45

Notes:

¹ API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Gas Industry, Table 5-12.

² Uncontrolled emissions that are captured by the collection system are routed to a vapor combustor. Per AP-42 5.2-6, 70% capture efficiency can be assumed for trucks not subject to NSPS. Uncaptured emissions shown represent those not captured by the collection system or controlled by the vapor combustor.

³ Maximum lb/hr based on average hourly truck loading rate. Average lb/hr based on TPY conversion assuming continuous operation.

 4 CO₂e = CO₂ equivalent (Pollutant times GWP multiplier):

40 CFR 98 Table A-1, Global Warming Potential (GWP) multiplier: $CO_2 = 1$, $CH_4 = 25$, $N_2O = 298$

SWN Production Company, LLC Roy Riggle Pad Tanks/Loading Vapor Combustor Emissions Calculations - Criteria and Hazardous Air Pollutants

Criteria and Hazardous Air Pollutant Emissions

		Emission	Total Captured Emissions ²		Combustor Destruction Efficiency		Emissions (Post- Combustion)
Unit ID	Pollutant	Factors ¹	lb/hr	TPY	%	lb/hr	TPY
	NOx	0.138	-	-	-	2.07	9.07
APC-COMB	со	0.2755	-		-	4.13	18.10
	PM	7.6	-		-	0.05	0.20
	VOC	Mass Balance	40.84	178.89	98.00%	0.82	3.58
	n-Hexane	Mass Balance	2.00	8.78	98.00%	0.04	0.18
	Benzene	Mass Balance	0.03	0.11	98.00%	<0.01	<0.01
	Toluene	Mass Balance	0.14	0.62	98.00%	<0.01	0.01
	Ethylbenzene	Mass Balance	0.17	0.74	98.00%	<0.01	0.01
	Xylenes	Mass Balance	0.52	2.30	98.00%	0.01	0.05

Notes:

¹ Although a vapor combustor is not considered a flare by design, the function is consistent in that it combusts a waste stream for the purpose of reducing emissions; therefore, flare emission factors for NOx and CO were used to provide the most accurate emissions estimates. Although the combustor is designed to be smokeless, PM emissions have been estimated using AP-42 Table 1.4-1 factor (lb/mmscf) for a conservative estimate.

Hours per Year: Number of Combustors: 8,760 1 15.0 mmBtu/hr per Combustor

NOx and CO emission factors (lb/mmBtu): *TCEQ Air Permit Technical Guidance for Chemical Sources: Flares and Vapor Oxidizers:* High Btu waste streams (>1,000 Btu/scf) based on heat input to each combustor =

15.0 mmBtu/hr Total Heat Input

² Total captured emissions are based on 100% capture efficiency from storage tanks and 70% capture efficiency from truck loading with 98% destruction efficiency from the vapor combustor based on 8,760 hours of operation per year. Uncaptured vapors reported at tanks and loading emission units. Captured emissions from sources controlled by VOC combustor shown in following tables.

SWN Production Company, LLC

Roy Riggle Pad Tanks/Loading Vapor Combustor Emissions Calculations - Criteria and Hazardous Air Pollutants (Continued)

	Captured VOC Emissions		
Source	lb/hr TPY		
Condensate Storage Tanks	40.65	178.05	
Produced Water Storage Tanks	<0.01	0.02	
Condensate Truck Loading	0.19	0.82	
Produced Water Truck Loading	<0.01	<0.01	
Total VOC =	40.84	178.89	

	Captured HAP Emissions (lb/hr)				
Source	n-Hexane	Benzene	Toluene	Ethylbenzene	Xylenes
Condensate Storage Tanks	2.00	0.03	0.14	0.17	0.52
Produced Water Storage Tanks	<0.01	<0.01	<0.01	<0.01	<0.01
Condensate Truck Loading	0.01	<0.01	<0.01	<0.01	<0.01
Produced Water Truck Loading	<0.01	<0.01	<0.01	<0.01	<0.01
Total HAP =	2.00	0.03	0.14	0.17	0.52

	Captured HAP Emissions (TPY)							
Source	n-Hexane	Benzene	Toluene	Ethylbenzene	Xylenes			
Condensate Storage Tanks	8.74	0.11	0.62	0.73	2.29			
Produced Water Storage Tanks	<0.01	<0.01	<0.01	<0.01	<0.01			
Condensate Truck Loading	0.04	<0.01	<0.01	<0.01	0.01			
Produced Water Truck Loading	<0.01	<0.01	<0.01	<0.01	<0.01			
Total HAP =	8.78	0.11	0.62	0.74	2.30			

SWN Production Company, LLC Roy Riggle Pad Tanks/Loading Vapor Combustor Emissions Calculations - Greenhouse Gases

Equipment Information

Unit ID:	APC-COMB
Description:	Vapor Combustor
Number of Combustors:	1
Burner Design Capacity (mmBtu/hr):	15.00
Stream HHV (Btu/scf):	2,450
Annual Throughput (mmscf):	53.63
Annual Operating Hours:	8,760

Greenhouse Gas (GHG) Emissions

Pollutant	lb/hr	tonnes/yr	tons/yr
CO ₂	1,754.66	6,972.07	7,685.39
CH ₄	0.03	0.13	0.14
N ₂ O	<0.01	0.01	0.01
CH ₄ as CO ₂ e	0.83	3.28	3.62
N ₂ O as CO ₂ e	0.99	3.92	4.32
Total CO ₂ + CO ₂ e =	1,756.47	6,979.27	7,693.33

40 CFR 98 Tables C-1 and C-2 Emission Factors (kg/mmBtu)¹

Carbon Dioxide (CO ₂)	53.06
Methane (CH ₄)	1.00E-03
Nitrous Oxide (N ₂ O)	1.00E-04

Notes:

¹ $CO_2e = CO_2$ equivalent (Pollutant times GWP multiplier):

40 CFR 98 Table A-1, Global Warming Potential (GWP) multiplier: $CO_2 = 1$, $CH_4 = 25$, $N_2O = 298$

SWN Production Company, LLC Roy Riggle Pad Fugitive Emissions Calculations - Criteria and Hazardous Air Pollutants and Greenhouse Gases

Equipment Information

Source Type/Service	Number of Sources ¹	Em. Factor (lb/hr/source) ²	Control Efficiency	TOC lb/hr	TOC TPY	VOC Wt %
Valves - Gas	22	9.92E-03	0.00%	0.22	0.96	25.68%
Flanges - Gas	96	8.60E-04	0.00%	0.08	0.36	25.68%
Relief Valves - Gas	10	1.94E-02	0.00%	0.19	0.85	25.68%
		Total TOC (Gas	Components) =	0.49	2.17	-
Valves - Light Oil	50	5.51E-03	0.00%	0.28	1.21	95.13%
Connectors - Light Oil	194	4.63E-04	0.00%	0.09	0.39	95.13%
	Te	otal TOC (Liquid	Components) =	0.37	1.60	-

VOC and Greenhouse Gas Emissions

Source Type/Service	VOC		C	H ₄	CO ₂	
Source Type/Service	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
Valves - Gas	0.06	0.25	0.11	0.49	<0.01	<0.01
Flanges - Gas	0.02	0.09	0.04	0.18	<0.01	<0.01
Relief Valves - Gas	0.05	0.22	0.10	0.43	<0.01	<0.01
Components in Gas Service =	0.13	0.56	0.25	1.10	<0.01	<0.01
Valves - Light Oil	0.26	1.15	<0.01	0.02	<0.01	<0.01
Connectors - Light Oil	0.09	0.37	<0.01	0.01	<0.01	<0.01
Components in Liquid Service =	0.35	1.52	<0.01	0.02	<0.01	<0.01
Total (Gas + Liquid Components) =	0.47	2.08	0.26	1.12	<0.01	<0.01

Hazardous Air Pollutant (HAP) Emissions (lb/hr)

Source Type/Service	n-Hexane	Benzene	Toluene	Ethylbenzene	Xylenes	2,2,4-Tri.	Total
Valves - Gas	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Flanges - Gas	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Relief Valves - Gas	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Components in Gas Service =	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Valves - Light Oil	0.01	<0.01	<0.01	<0.01	<0.01	0.00	0.02
Connectors - Light Oil	<0.01	<0.01	<0.01	<0.01	<0.01	0.00	0.01
Components in Liquid Service =	0.02	<0.01	<0.01	<0.01	<0.01	0.00	0.03
Total (Gas + Liquid Components) =	0.02	<0.01	<0.01	<0.01	<0.01	<0.01	0.03

Hazardous Air Pollutant (HAP) Emissions (TPY)

Source Type/Service	n-Hexane	Benzene	Toluene	Ethylbenzene	Xylenes	2,2,4-Tri.	Total
Valves - Gas	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Flanges - Gas	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Relief Valves - Gas	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Components in Gas Service =	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
Valves - Light Oil	0.06	<0.01	<0.01	<0.01	0.02	0.00	0.08
Connectors - Light Oil	0.02	<0.01	<0.01	<0.01	0.01	0.00	0.03
Components in Liquid Service =	0.08	<0.01	0.01	0.01	0.02	0.00	0.11
Total (Gas + Liquid Components) =	0.08	<0.01	0.01	0.01	0.02	<0.01	0.12

Typical Component Count per Equipment Type based on Representative Facility³

Source Type/Service	WH	GPU	HT	LPT	FGC	ОТ	TT-O
Valves - Gas	12	3	2	5	5	0	0
Flanges - Gas	37	15	9	24	33	3	2
Compressor Seals - Gas	0	0	0	0	3	0	0
Relief Valves - Gas	1	3	1	1	1	1	1
Open-Ended Lines - Gas	0	0	0	0	0	0	0
Valves - Light Oil	0	5	6	12	3	6	9
Connectors - Light Oil	0	20	24	48	12	24	30
Pump Seals - Light Oil	0	0	0	0	0	0	0
Other - Light Oil	0	0	0	0	0	0	0
Equipment Type	WH	GPU	HT	LPT	FGC	ОТ	TT-O
Number of Each Type On Pad =	1	1	1	1	0	3	1

Speciated Gas Analysis⁴

Component	Molecular Weight	Mole %	Equiv. Wt. Basis	Weight %	HC Weight %	lb/hr	ТРҮ
Hydrogen Sulfide	34.082	0.000%	0.000	0.000%	-	0.00	0.00
Carbon Dioxide	44.010	0.110%	0.048	0.214%	-	<0.01	<0.01
Nitrogen	28.013	0.461%	0.129	0.573%	-	<0.01	0.01
Methane	16.042	70.694%	11.341	50.366%	50.766%	0.25	1.10
Ethane	30.069	17.500%	5.262	23.370%	23.556%	0.12	0.51
Propane	44.096	7.210%	3.179	14.120%	14.232%	0.07	0.31
i-Butane	58.122	0.737%	0.429	1.903%	1.919%	0.01	0.04
n-Butane	58.122	2.133%	1.240	5.505%	5.549%	0.03	0.12
i-Pentane	72.149	0.353%	0.255	1.132%	1.141%	0.01	0.02
n-Pentane	72.149	0.476%	0.343	1.525%	1.537%	0.01	0.03
n-Hexane	86.175	0.048%	0.041	0.184%	0.186%	<0.01	<0.01
Other Hexanes	86.175	0.208%	0.179	0.795%	0.802%	<0.01	0.02
Heptanes (as n-Heptane)	100.202	0.022%	0.022	0.100%	0.100%	<0.01	<0.01
Benzene	78.114	0.011%	0.008	0.037%	0.038%	<0.01	<0.01
Toluene	92.141	0.009%	0.009	0.038%	0.038%	<0.01	<0.01
Ethylbenzene	106.167	0.000%	0.000	0.002%	0.002%	<0.01	<0.01
Xylenes	106.167	0.002%	0.002	0.011%	0.011%	<0.01	<0.01
2,2,4-Trimethylpentane	114.230	0.009%	0.010	0.044%	0.044%	<0.01	<0.01
Octanes (as n-Octane)	114.229	0.016%	0.018	0.079%	0.080%	<0.01	<0.01
Nonanes (as n-Nonane)	128.255	0.000%	0.000	0.000%	0.000%	0.00	0.00
Decanes (as n-Decane)	142.282	0.000%	0.000	0.000%	0.000%	0.00	0.00
	TOTAL =	100.00%	22.52	100.00%	100.00%	0.50	2.18
		TOTAL HC =	22.34	TOTAL VOC =	25.68%	0.13	0.56
				TOTAL HAP =	0.32%	<0.01	0.01

Speciated Liquids Analysis⁴

Component	Molecular Weight	Mole %	Equiv. Wt. Basis	Weight %	HC Weight %	lb/hr	ТРҮ
Hydrogen Sulfide	34.082	0.000%	0.000	0.000%	-	0.00	0.00
Carbon Dioxide	44.010	0.017%	0.007	0.009%	-	<0.01	<0.01
Nitrogen	28.013	0.019%	0.005	0.007%	-	<0.01	<0.01
Methane	16.042	6.628%	1.063	1.325%	1.325%	<0.01	0.02
Ethane	30.069	9.468%	2.847	3.547%	3.548%	0.01	0.06
Propane	44.096	12.466%	5.497	6.849%	6.851%	0.03	0.11
i-Butane	58.122	2.695%	1.566	1.952%	1.952%	0.01	0.03
n-Butane	58.122	10.642%	6.185	7.707%	7.708%	0.03	0.12
i-Pentane	72.149	3.929%	2.835	3.532%	3.533%	0.01	0.06
n-Pentane	72.149	7.293%	5.262	6.556%	6.558%	0.02	0.10
n-Hexane	86.175	4.570%	3.938	4.907%	4.908%	0.02	0.08
Other Hexanes	86.175	3.560%	3.068	3.823%	3.823%	0.01	0.06
Heptanes (as n-Heptane)	100.202	8.337%	8.354	10.409%	10.411%	0.04	0.17
Benzene	78.114	0.066%	0.052	0.064%	0.064%	<0.01	<0.01
Toluene	92.141	0.303%	0.279	0.348%	0.348%	<0.01	0.01
Ethylbenzene	106.167	0.311%	0.330	0.411%	0.411%	<0.01	0.01
Xylenes	106.167	0.971%	1.031	1.285%	1.285%	<0.01	0.02
2,2,4-Trimethylpentane	114.230	0.000%	0.000	0.000%	0.000%	0.00	0.00
Octanes (as n-Octane)	114.229	8.385%	9.578	11.935%	11.937%	0.04	0.19
Nonanes (as n-Nonane)	128.255	4.164%	5.341	6.655%	6.656%	0.02	0.11
Decanes (as n-Decane)	142.282	16.176%	23.016	28.678%	28.683%	0.10	0.46
	TOTAL =	100.00%	80.25	100.00%	100.00%	0.37	1.60
		TOTAL HC =	80.24	TOTAL VOC =	95.13%	0.35	1.52
				TOTAL HAP =	7.02%	0.03	0.11

Notes:

¹ Component counts taken by equipment type at representative facility and made site-specific according to the number of each equipment type at this site.

² Emission Factor Source: EPA-453/R-95-017. TOC multiplied by pollutant content of streams (weight %) to obtain pollutant emissions.

³ Equipment Type Key: WH = Well Head, GPU = Gas Production Unit, HT = Heater Treater, LPT = Low-Pressure Tower, FGC = Flash Gas Compressor, OT = Oil Tank, TT-O = Tank Truck - Oil

⁴ Analyses located in Appendix A. The gas analysis did not speciate C6+; therefore, those components were estimated using the methodology outlined by the GRI-GLYCalc 4.0 Technical Manual.

SWN Production Company, LLC Roy Riggle Pad Estimated Extended Gas Analysis

Enter C6+ Value from Gas Analysis = 0.3255% mole%

Component	Production					
Component	GRI Fraction	Estimate Mole%				
Other Hexanes	0.6385	0.2078%				
n-Hexane	0.1479	0.0481%				
Heptane	0.0687	0.0224%				
2,2,4-Trimethylpentane	0.0267	0.0087%				
Octanes+	0.0480	0.0156%				
Benzene	0.0331	0.0108%				
Toluene	0.0285	0.0093%				
Ethylbenzene	0.0014	0.0005%				
Xylenes	0.0072	0.0023%				
	Total =	0.3255%				

Notes:

1) GRI-GLYCalc Version 4.0 Technical Reference Manual: When an extended gas analysis is not available, the C6+ composition may be estimated. To convert a C6+ analysis for use in GRI-GLYCalc, multiply the total C6+ concentration by the fraction of each component from the appropriate industry segment.

SWN Production Company, LLC Roy Riggle Pad Fugitive Unpaved Haul Road Emissions Calculations

Facility Data¹

Vehicle Type	Light Vehicles (Pick-ups and Cars)	Medium Trucks (Service Trucks)	Heavy Trucks (Tanker Trucks) ²
Average vehicle weight ((empty + full)/2) (tons)	2	15	23.5
Number of wheels per vehicle type (w)	4	10	18
Average number of round trips/day/vehicle type	0	0	0
Distance per round trip (miles/trip)	0.98	0.98	0.98
Vehicle miles travelled (miles/day)	0.11	0.06	0.23
Number of days operational (days/yr)	365	365	365
Vehicle miles travelled VMT (miles/yr)	41.62	20.81	83.25
Average vehicle speed S (mph)	10	10	10
Average number of round trips/hour/vehicle type	0.01	0.00	0.01
Average number of round trips/year/vehicle type	42	21	85
Estimated maximum number of round trips/hour/vehicle type	2	1	1
Estimated maximum number of round trips/day/vehicle type	5	2	2
Estimated maximum number of round trips/year/vehicle type	1,789	767	855

190 Average Tanker Volume (bbl)
7,980 Gallons Tanker Volume
5 bwpd
39 bopd
0.23 Tanker Trucks per Day
2,100 Length Leased Access Road (ft)
500 Longest Pad Side (ft)
5,200 Total Round Trip Feet

Formula & Calculation Inputs

E=k(s/12) ^a * (W/3) ^b * ((365-P) / 365)	Reference : Al	P-42, Section	13.2.2 (11/06), Equation 1a and 2	
where:	Rate	Units	Comment	
Days per year	365	_		
Annual average hours per day of road operations	18	_		
k = PM Particle Size Multiplier	4.90	lb/VMT	AP-42 Section 13.2.2 (11/06), Table 13.2.2-2 (PM)	
k = PM10 Particle Size Multiplier	1.50	lb/VMT	AP-42 Section 13.2.2 (11/06), Table 13.2.2-2 (PM ₁₀)	
k = PM2.5 Particle Size Multiplier	0.15	lb/VMT	AP-42 Section 13.2.2 (11/06), Table 13.2.2-2 (PM _{2.5})	
s = Surface Material Silt Content	3.9	%	State Default Data from AP-42 Data (1999 NEI Data)	
P = Number of days > 0.01 inch of rain	150	days/year	AP-42 Section 13.2.2 (11/06), Figure 13.2.2-1	
a = PM Constant	0.70	unitless	AP-42 Section 13.2.2 (11/06), Table 13.2.2-2 (PM)	
a = PM10 & PM2.5 Constant	0.90	unitless	AP-42 Section 13.2.2 (11/06), Table 13.2.2-2 (PM ₁₀ & PM _{2.5})	
b = PM, PM10, & PM2.5 Constant	0.45	unitless	AP-42 Section 13.2.2 (11/06), Table 13.2.2-2	
Total hourly fleet vehicle miles travelled (miles/hr)	0.02	VMT/hr		
Total annual fleet vehicle miles travelled (miles/yr) ³	145.68	VMT/yr		
Average wheels ⁴	13	_		
Average vehicle weight of the fleet (W) ⁵	16.1	tons		
Moisture Ratio	1.00	_	Estimated based on 0.2% uncontrolled surface water content assuming no watering	EPA - BID Document 13.2.2 - 1998
Control Efficiency (CF)	0.00	%	Based on Moisture Ratio and Figure 13.2.2-2 Control	

Continued on Next Page

Emission Calculations

	Emission	Factors		Control	Total Veh	icle Miles		Emission Rates	5		Emission Rates	6
	PM	PM ₁₀	PM _{2.5}	Efficiency	Trav	elled	Total PM	Total PM ₁₀	PM _{2.5}	Total PM	Total PM ₁₀	PM _{2.5}
Vehicle Type	(Ibs/VMT)	(lbs/VMT)	(lbs/VMT)	(%)	(VMT/hr)	(VMT/yr)	(lb/hr)	(lb/hr)	(lb/hr)	(tons/yr)	(tons/yr)	(tons/yr)
Light Vehicles	2.80	0.69	0.07	0.00	0.01	41.62	0.02	<0.01	<0.01	0.06	0.01	<0.01
Medium Trucks	2.80	0.69	0.07	0.00	0.00	20.81	0.01	<0.01	<0.01	0.03	0.01	<0.01
Heavy Trucks	2.80	0.69	0.07	0.00	0.01	83.25	0.04	0.01	<0.01	0.12	0.03	<0.01
			Total =	0.00	0.02	145.68	0.06	0.02	<0.01	0.20	0.05	<0.01

Notes:

1) Facility vehicle data based on estimates, GP5.1 and AP-42 13.2.2-2 defaults for industrial unpaved roads

2) Tank trucker average vehicle weight as $(W_{(empty)}+W_{(full)})/2 = (7 + 40)/2 = 23.7$ tons

3) Average vehicle miles travelled (VMT/yr) as (No. of round trip/vehicle * No. of vehicles/type * Roundtrip miles/trip)* 365 days/yr * No. of vehicle type)

4) Average wheels calculated as average of (No. of wheels per vehicle type * No. of vehicle/type)

5) Average vehicle fleet calculated as (Average weight of vehicle type * Percentage of each vehicle type on unpaved surface). Percentage of each vehicle type= VMT vehicle type/VMT

6) Minimum one-per-day average pick-up trucks and service trucks even if tanker not required every day.

7) Per EPA BID calculations, all emissions based on average trips. Estimated maximum hourly, daily and yearly trips provided for information only.

Calculation of Emission Factors (AP-42, 13.2.2)

Equation 1a: $EF = k(s/12)^{a} (W/3)^{b}$ where k, a, and b are empirical constants and

EF = size-specific emission factor (lb/VMT)

s = surface material silt content %

W = mean vehicle weight (tons)

Equation 2: $EF_{ext} = EF^*((365-P)/365)$ where:

 EF_{ext} = annual size-specific emission factor extrapolated for natural mitigation, lb/VMT EF = emission factor from Equation 1a P = number of days in a year with at least 0.01 inches of precipitation

Calculation of Emissions

 $E = EF_{ext} * VMT/yr * ((1-CF)/100) * 1 ton/2000 lbs where:$

E = annual emissions (tons/yr) EF_{ext} = annual size-specific emission factor extrapolated for natural mitigation, lb/VMT CF = control efficiency (%)

APPENDIX A: SUPPORT DOCUMENTS

REPRESENTATIVE GAS AND LIQUIDS ANALYSES

PROMAX PROCESS SIMULATION RESULTS

C6+ Gas Analysis Report

Gas Analytical

Washington, Pennsylvania 954 Manifold Road Washington, PA 15301

Report Date: Apr 19, 2017 2:12p

Client:	SOUTHWESTERN ENERGY	Date Sampled:	Sep 13, 2016
Client Code:	2437	Analysis Date:	Sep 27, 2016 12:00a
Site:	ROY RIGGLE 8H 833123 CTALL	Collected By:	LP
Field:	940-WEST VIRGINIA	Date Effective:	Oct 1, 2016 12:00a
Meter:	1183312301	Sample Pressure (PSI):	185.0
Source Laboratory	Washington, PA	Sample Temp (°F):	75
Lab File No:	516578106	Field H2O (lb/MMSCFD):	
Cylinder No:	67		
Analysis Status:	good		
Sample Type:	Spot		
Measurement Analyst:	Shellyking		

Component	Mol %	GPM @Contract PSIA
H2S		
Methane	70.6940	0.0000
Ethane	17.5004	4.6991
Propane	7.2099	1.9943
I-Butane	0.7374	0.2423
N-Butane	2.1326	0.6750
I-Pentane	0.3534	0.1298
N-Pentane	0.4760	0.1732
Nitrogen	0.4608	0.0000
Oxygen	0.0004	0.0000
Carbon Dioxide	0.1096	0.0000
Hexanes+	0.3255	0.1418
TOTAL	100.0000	8.0555

Analytical Results at Base Conditions (Real)				
BTU/SCF (Dry):	1,354.3486 BTU/ft ³			
BTU/SCF (Saturated):	1,331.2940 BTU/ft ³			
PSIA:	14.696 PSI			
Temperature (°F):	60.0 °F			
Z Factor (Dry):	0.99575			
Z Factor (Saturated):	0.99532			

Analytical Results at Contract Conditions (Real)				
BTU/SCF (Dry):	1,357.4954 BTU/ft ³			
BTU/SCF (Saturated):	1,334.4419 BTU/ft ³			
PSIA:	14.730 PSI			
Temperature (°F):	60.0 °F			
Z Factor (Dry):	0.99574			
Z Factor (Saturated):	0.99532			

Calculated Specific Gravities					
Ideal Gravity: 0.7779 Real Gravity: 0.7809					
Molecular Wt:	22.5298 lb/lbmol				

Methods, standards, and uncertainties based on GPA 2261-13. Analytical Calculations performed in accordance with GPA 2172-09.

Source

Date Notes

FESCO, Ltd. 1100 FESCO Avenue - Alice, Texas 78332

For: Southwestern Energy Production Co. 181 W. Tioga Street, Suite 2 Tunkannock, Pennsylvania 18657

Sample: Gary Kestner

Separator Hydrocarbon Liquid Sampled @ 265 psig & 54 °F

Date Sampled: 12/21/16

Job Number: 71011.002

COMPONENT	MOL %	LIQ VOL %	WT %
Nitrogen	0.019	0.005	0.006
Carbon Dioxide	0.017	0.007	0.009
Methane	6.628	2.719	1.231
Ethane	9.468	6.130	3.295
Propane	12.466	8.315	6.363
Isobutane	2.695	2.135	1.813
n-Butane	10.581	8.076	7.119
2,2 Dimethylpropane	0.061	0.057	0.051
Isopentane	3.929	3.479	3.282
n-Pentane	7.293	6.400	6.091
2,2 Dimethylbutane	0.098	0.099	0.098
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.261	0.259	0.261
2 Methylpentane	1.967	1.977	1.963
3 Methylpentane	1.233	1.219	1.230
n-Hexane	4.570	4.550	4.559
Heptanes Plus	<u>38.713</u>	<u>54.574</u>	<u>62.630</u>
Totals:	100.000	100.000	100.000

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2186-M

Characteristics of Heptanes Plus:

Specific Gravity	0.7605	(Water=1)
°API Gravity	54.55	@ 60°F
Molecular Weight	139.8	
Vapor Volume	17.27	CF/Gal
Weight	6.34	Lbs/Gal

Characteristics of Total Sample:

Specific Gravity	0.6627	(Water=1)
°API Gravity	82.01	@ 60°F
Molecular Weight	86.4	
Vapor Volume	24.35	CF/Gal
Weight	5.52	Lbs/Gal

Base Conditions: 14.650 PSI & 60 °F

Sampled By: (20) Mayle Analyst: XG Processor: XGdjv Cylinder ID: T-631

David Dannhaus 361-661-7015

TANKS DATA INPUT REPORT - GPA 2186-M

COMPONENT	Mol %	LiqVol %	Wt %
Carbon Dioxide	0.017	0.007	0.009
Nitrogen	0.019	0.005	0.006
Methane	6.628	2.719	1.231
Ethane	9.468	6.130	3.295
Propane	12.466	8.315	6.363
Isobutane	2.695	2.135	1.813
n-Butane	10.642	8.133	7.170
Isopentane	3.929	3.479	3.282
n-Pentane	7.293	6.400	6.091
Other C-6's	3.560	3.554	3.551
Heptanes	8.337	8.941	9.423
Octanes	8.385	9.663	10.576
Nonanes	4.164	5.534	6.120
Decanes Plus	16.176	28.954	34.552
Benzene	0.066	0.045	0.060
Toluene	0.303	0.246	0.323
E-Benzene	0.311	0.290	0.382
Xylenes	0.971	0.901	1.194
n-Hexane	4.570	4.550	4.559
2,2,4 Trimethylpentane	<u>0.000</u>	<u>0.000</u>	0.000
Totals:	100.000	100.000	100.000

Characteristics of Total Sample:

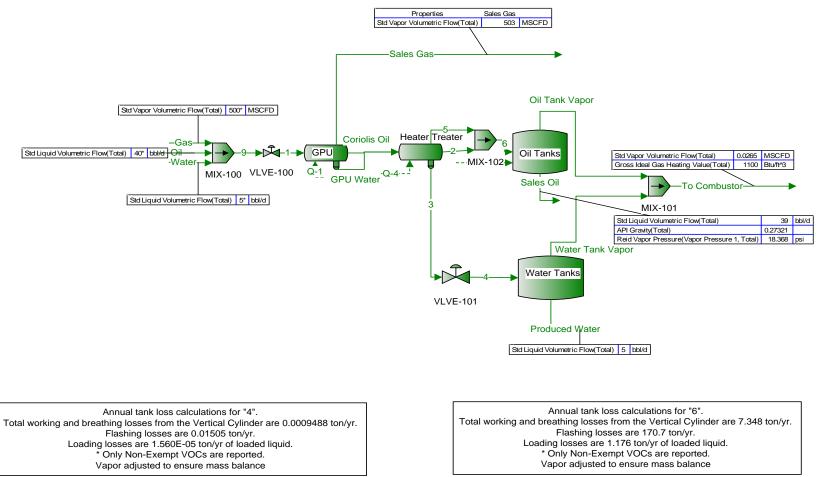
Specific Gravity	0.6627	(Water=1)
°API Gravity	82.01	@ 60°F
Molecular Weight	86.4	
Vapor Volume	24.35	CF/Gal
Weight	5.52	Lbs/Gal

Characteristics of Decanes (C10) Plus:

Specific Gravity	0.7908	(Water=1)
Molecular Weight	184.5	

Characteristics of Atmospheric Sample:

°API Gravity	64.44	@ 60°F
Reid Vapor Pressure Equivalent (D-5191)	9.12	psi


QUALITY CONTROL CHECK			
	Sampling Conditions	Test S	amples
Cylinder Number		T-631*	W-1011
Pressure, PSIG	265	254	233
Temperature, °F	54	76	76

* Sample used for analysis

FESCO, Ltd.

TOTAL EXTENDED REPORT - GPA 2186-M

COMPONENT	Mol %	LiqVol %	Wt %
Nitrogen	0.019	0.005	0.006
Carbon Dioxide	0.017	0.007	0.009
Methane	6.628	2.719	1.231
Ethane	9.468	6.130	3.295
Propane	12.466	8.315	6.363
Isobutane	2.695	2.135	1.813
n-Butane	10.581	8.076	7.119
2,2 Dimethylpropane	0.061	0.057	0.051
Isopentane	3.929	3.479	3.282
n-Pentane	7.293	6.400	6.091
2,2 Dimethylbutane	0.098	0.099	0.098
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.261	0.259	0.261
2 Methylpentane	1.967	1.977	1.963
3 Methylpentane	1.233	1.219	1.230
n-Hexane	4.570	4.550	4.559
Methylcyclopentane	0.584	0.500	0.569
Benzene	0.066	0.045	0.060
Cyclohexane	0.706	0.582	0.688
2-Methylhexane	1.547	1.741	1.794
3-Methylhexane	1.385	1.539	1.606
2,2,4 Trimethylpentane	0.000	0.000	0.000
Other C-7's	0.666	0.726	0.765
n-Heptane	3.449	3.852	4.000
Methylcyclohexane	1.634	1.591	1.858
Toluene	0.303	0.246	0.323
Other C-8's	4.473	5.249	5.707
n-Octane	2.277	2.824	3.011
E-Benzene	0.311	0.290	0.382
M & P Xylenes	0.347	0.326	0.427
O-Xylene	0.624	0.574	0.767
Other C-9's	2.682	3.515	3.919
n-Nonane	1.483	2.020	2.201
Other C-10's	2.821	4.063	4.614
n-decane	0.899	1.335	1.480
Undecanes(11)	2.895	4.277	4.926
Dodecanes(12)	2.160	3.448	4.026
Tridecanes(13)	1.645	2.816	3.333
Tetradecanes(14)	1.297	2.377	2.852
Pentadecanes(15)	1.022	2.006	2.436
Hexadecanes(16)	0.726	1.525	1.867
Heptadecanes(17)	0.539	1.196	1.478
Octadecanes(18)	0.483	1.128	1.402
Nonadecanes(19)	0.393	0.956	1.196
Eicosanes(20)	0.277	0.700	0.881
Heneicosanes(21)	0.225	0.599	0.758
Docosanes(22)	0.181	0.501	0.638
Tricosanes(23)	0.132	0.380	0.486
Tetracosanes(24)	0.109	0.325	0.418
Pentacosanes(25)	0.056	0.173	0.223
Hexacosanes(26)	0.079	0.252	0.327
Heptacosanes(27)	0.036	0.120	0.157
Octacosanes(28)	0.034	0.117	0.153
Nonacosanes(29)	0.025	0.090	0.117
Triacontanes(30)	0.024	0.087	0.115
Hentriacontanes Plus(31+)	<u>0.119</u>	<u>0.482</u>	<u>0.667</u>
Total	100.000	100.000	100.000

Tank-2

Tank-1

ProMax AP-42 Emissions Report Condensate Tank Annual Emissions Vertical Cylinder

Components	Working Losses (ton/yr)	Breathing Losses (ton/yr)	Total Losses (ton/yr)
Mixture	2.299	5.049	7.348
C3	0.9133	2.006	2.919
iC4	0.1967	0.432	0.6288
nC4	0.6579	1.445	2.102
2,2-Dimethylbutane	0.001465	0.003217	0.004681
iC5	0.1518	0.3334	0.4852
nC5	0.2109	0.4632	0.6741
2,2-Dimethylpropane	0.001237	0.002717	0.003955
Cyclopentane	0	0	0
2,3-Dimethylbutane	0.003115	0.00684	0.009955
2-Methylpentane	0.02132	0.04681	0.06813
3-Methylpentane	0.01232	0.02705	0.03937
C6	0.07357	0.1615	0.2351
Methylcyclopentane	0.004296	0.009435	0.01373
Benzene	0.0002985	0.0006555	0.0009541
Cyclohexane	0.003795	0.008334	0.01213
2-Methylhexane	0.001875	0.004116	0.005991
3-Methylhexane	0.005899	0.01295	0.01885
2,2,4-Trimethylpentane	0	0	0
C7	0.02379	0.05224	0.07603
Methylcyclohexane	0.005182	0.01138	0.01656
Toluene	0.0005348	0.001174	0.001709
C8	0.007233	0.01588	0.02312
Ethylbenzene	0.0002137	0.0004693	0.000683
m-Xylene	0.0002864	0.0006288	0.0009152
o-Xylene	0.0002799	0.0006146	0.0008945
C9	0.001435	0.003151	0.004585
C10	0.0004058	0.000891	0.001297
C11	9.55E-05	0.0002096	0.0003051
C12	2.27E-05	4.98E-05	7.25E-05
C13	5.42E-06	1.19E-05	1.73E-05
C14	1.37E-06	3.02E-06	4.39E-06
C15	3.79E-07	8.31E-07	1.21E-06
C16	7.72E-08	1.70E-07	2.47E-07
C17	1.86E-08	4.08E-08	5.93E-08
C18	5.68E-09	1.25E-08	1.82E-08
C19	1.21E-09	2.67E-09	3.88E-09
C20	2.46E-10	5.40E-10	7.86E-10
C21	8.53E-11	1.87E-10	2.73E-10
C22	2.00E-11	4.40E-11	6.40E-11
C23	3.53E-12	7.75E-12	1.13E-11
C24	1.37E-12	3.01E-12	4.38E-12
C25	2.54E-13	5.57E-13	8.10E-13
C26	1.48E-13	3.24E-13	4.72E-13
C27	2.02E-14	4.44E-14	6.46E-14
C28	1.81E-15	3.96E-15	5.77E-15
C29	6.06E-16	1.33E-15	1.94E-15
C30	2.10E-16	4.61E-16	6.71E-16

ProMax Loading Losses Report Condensate Tank Annual Emissions Tank Truck or Rail Tank Car with Submerged Loading of a Clean Cargo Tank

Components	Annual Loading Losses (ton/yr)	Max. Hourly Loading Losses (lb/hr)
Mixture	1.176	22.65
C3	0.4671	8.996
iC4	0.1006	1.938
nC4	0.3365	6.48
2,2-Dimethylbutane	0.0007492	0.01443
iC5		1.495
	0.07764	
nC5	0.1079	2.077
2,2-Dimethylpropane	0.0006329	0.01219
Cyclopentane	0	0
2,3-Dimethylbutane	0.001593	0.03068
2-Methylpentane	0.0109	0.21
3-Methylpentane	0.0063	0.1213
C6	0.03763	0.7246
Methylcyclopentane	0.002197	0.04232
Benzene	0.0001527	0.00294
Cyclohexane	0.001941	0.03738
2-Methylhexane	0.0009588	0.01846
3-Methylhexane	0.003017	0.0581
2,2,4-Trimethylpentane	0	0
C7	0.01217	0.2343
Methylcyclohexane	0.00265	0.05104
Toluene	0.0002735	0.005267
C8	0.003699	0.07125
Ethylbenzene	0.0001093	0.002105
m-Xylene	0.0001465	0.002821
o-Xylene	0.0001432	0.002757
C9	0.0007338	0.01413
C10	0.0002075	0.003997
C11	4.88E-05	0.0009402
C12	1.16E-05	0.0002233
C13	2.77E-06	5.34E-05
C14	7.02E-07	1.35E-05
C15	1.94E-07	3.73E-06
C16	3.95E-08	7.60E-07
C17	9.49E-09	1.83E-07
C18	2.91E-09	5.60E-08
C19	6.21E-10	1.20E-08
C20	1.26E-10	2.42E-09
C21	4.36E-11	8.40E-10
C22	1.02E-11	1.97E-10
C23	1.81E-12	3.48E-11
C24	7.00E-13	1.35E-11
C25	1.30E-13	2.50E-12
C25	7.55E-14	1.46E-12
C20 C27	1.03E-14	1.99E-13
C28		
C28 C29	9.23E-16	1.78E-14
	3.10E-16	5.96E-15
C30	1.07E-16	2.07E-15

Flashing Emissions Report Condensate Tank Annual Emissions Tank flashed at the daily maximum surface temperature (56.81 °F) and the atmospheric pressure of Pittsburgh, Pennsylvania (14.11 psia)

Components	Flashing Losses (ton/yr)
Mixture	170.7
C3	64.69
iC4	14.7
nC4	48.96
2,2-Dimethylbutane	0.1089
iC5	
	11.78
nC5	16.61
2,2-Dimethylpropane	0.09612
Cyclopentane	0
2,3-Dimethylbutane	0.2376
2-Methylpentane	1.684
3-Methylpentane	0.9802
C6	5.639
Methylcyclopentane	0.3923
Benzene	0.03971
Cyclohexane	0.3673
2-Methylhexane	0.5831
3-Methylhexane	0.4736
2,2,4-Trimethylpentane	0
C7	1.975
Methylcyclohexane	0.436
Toluene	0.06939
C8	0.6119
Ethylbenzene	0.02558
m-Xylene	0.02605
o-Xylene	0.04067
C9	0.1222
C10	0.03712
C11	0.009005
C12	0.002289
C12	
	0.0005796
C14	0.0001583
C15	4.43E-05
C16	1.15E-05
C17	3.40E-06
C18	1.20E-06
C19	3.46E-07
C20	5.96E-08
C21	2.15E-08
C22	7.45E-09
C23	1.50E-09
C24	4.10E-10
C25	8.05E-11
C26	
	3.54E-11
C27	3.90E-12
C28	1.86E-12
C29	6.19E-13
C30	1.20E-12

ProMax AP-42 Emissions Report Water Tank Annual Emissions Vertical Cylinder

Components	Working Losses (ton/yr)	Breathing Losses (ton/yr)	Total Losses (ton/yr)
Mixture	3.05E-05	0.0009183	0.0009488
C3	1.69E-05	0.0005072	0.000524
iC4	6.75E-07	2.03E-05	2.10E-05
nC4	2.66E-06	8.01E-05	8.27E-05
2,2-Dimethylbutane	1.29E-10	3.89E-09	4.02E-09
iC5	1.55E-07	4.68E-06	4.83E-06
nC5	2.36E-08	7.12E-07	7.35E-07
2,2-Dimethylpropane	7.41E-10	2.23E-08	2.31E-08
Cyclopentane	0	0	0
2,3-Dimethylbutane	2.03E-09	6.10E-08	6.31E-08
2-Methylpentane	2.77E-09	8.35E-08	8.63E-08
3-Methylpentane	1.10E-08	3.30E-07	3.41E-07
C6	1.85E-09	5.58E-08	5.76E-08
Methylcyclopentane	1.78E-08	5.37E-07	5.55E-07
Benzene	4.72E-06	0.000142	0.0001467
Cyclohexane	1.01E-07	3.04E-06	3.14E-06
2-Methylhexane	2.95E-10	8.89E-09	9.18E-09
3-Methylhexane	3.83E-10	1.15E-08	1.19E-08
2,2,4-Trimethylpentane	0	0	0
C7	2.05E-10	6.16E-09	6.36E-09
Methylcyclohexane	1.22E-08	3.66E-07	3.78E-07
Toluene	3.01E-06	9.06E-05	9.36E-05
C8	5.12E-12	1.54E-10	1.59E-10
Ethylbenzene	5.53E-07	1.67E-05	1.72E-05
m-Xylene	2.87E-07	8.63E-06	8.92E-06
o-Xylene	1.43E-06	4.30E-05	4.44E-05
C9	7.72E-13	2.33E-11	2.40E-11
C10	8.71E-15	2.62E-13	2.71E-13
C11	1.46E-15	4.38E-14	4.53E-14
C12	3.38E-15	1.02E-13	1.05E-13
C13	2.84E-15	8.55E-14	8.83E-14
C14	1.59E-15	4.78E-14	4.94E-14
C15	0	0	0
C16	0	0	0
C17	0	0	0
C18	0	0	0
C19	0	0	0
C20	0	0	0
C21	0	0	0
C22	0	0	0
C23	0	0	0
C24	0	0	0
C25	0	0	0
C26	0	0	0
C27	0	0	0
C28	0	0	0
C29	0	0	0
C30	0	0	0

ProMax Loading Losses Report Water Tank Annual Emissions Tank Truck or Rail Tank Car with Submerged Loading of a Clean Cargo Tank

Components		Max. Hourly Loading Losses (lb/hr)
Mixture	1.56E-05	0.001929
C3	8.62E-06	0.001066
C4	3.45E-07	4.27E-05
nC4	1.36E-06	0.0001682
2,2-Dimethylbutane	6.61E-11	8.17E-09
C5	7.95E-08	9.83E-06
nC5	1.21E-08	1.50E-06
2,2-Dimethylpropane	3.79E-10	4.69E-08
Cyclopentane	0	0
2,3-Dimethylbutane	1.04E-09	1.28E-07
2-Methylpentane	1.42E-09	1.76E-07
3-Methylpentane	5.60E-09	6.93E-07
C6	9.48E-10	1.17E-07
Methylcyclopentane	9.13E-09	1.13E-06
Benzene	2.41E-06	0.0002984
Cyclohexane	5.16E-08	6.38E-06
2-Methylhexane	1.51E-10	1.87E-08
3-Methylhexane	1.96E-10	2.42E-08
2,2,4-Trimethylpentane	0	0
C7	1.05E-10	1.29E-08
Methylcyclohexane	6.22E-09	7.69E-07
Toluene	1.54E-06	0.0001902
C8	2.62E-12	3.24E-10
Ethylbenzene	2.83E-07	3.50E-05
m-Xylene	1.47E-07	1.81E-05
o-Xylene	7.30E-07	9.03E-05
C9	3.95E-13	4.89E-11
C10	4.46E-15	5.51E-13
C11	7.44E-16	9.20E-14
C12	1.73E-15	2.14E-13
C13	1.45E-15	1.80E-13
C14	8.12E-16	1.00E-13
C15	0	0
C16	0	0
C17	0	0
C18	0	0
C19	0	0
C20	0	0
C21	0	0
C22	0	0
C23	0	0
C24	0	0
C25	0	0
C26	0	0
C27	0	0
C28	0	0
C29	0	0
C30	0	0

Flashing Emissions Report Water Tank Annual Emissions Tank flashed at the daily maximum surface temperature (56.81 °F) and the atmospheric pressure of Pittsburgh, Pennsylvania (14.11 psia)

Components	Flashing Losses (ton/yr)
Components	
Mixture	0.01505
C3	0.01202
iC4	0.0006082
nC4	0.00208
2,2-Dimethylbutane	3.13E-07
iC5	0.0001567
nC5	7.14E-05
2,2-Dimethylpropane	1.09E-06
Cyclopentane	0
2,3-Dimethylbutane	1.76E-06
2-Methylpentane	5.52E-06
3-Methylpentane	8.48E-06
C6	7.74E-06
Methylcyclopentane	8.07E-06
Benzene	2.17E-05
Cyclohexane	1.85E-05
2-Methylhexane	6.99E-07
3-Methylhexane	7.29E-07
2,2,4-Trimethylpentane	0
C7	1.07E-06
Methylcyclohexane	5.22E-06
Toluene	1.86E-05
C8	6.76E-08
Ethylbenzene	3.52E-06
m-Xylene	3.10E-06
o-Xylene	6.20E-06
C9	7.49E-09
C10	3.09E-10
C11	4.05E-11
C12	2.14E-11
C13	6.65E-12
C14	1.76E-12
C15	0
C16	0
C17	0
C18	0
C19	0
C20	0
C21	0
C22	0
C23	0
C24	0
C25	0
C26	0
C27	0
C28	0
C29	0
C30	0