

Tug Hill Operating, LLC

Yoder Well Pad

Proctor, West Virginia

G70-D General Permit Application

SLR Ref: 116.01631.00011

Yoder Well Pad G70-D General Permit Application

Prepared for:

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

This document has been prepared by SLR International Corporation. The material and data in this Permit application were prepared under the supervision and direction of the undersigned.

Alex Asbury Staff Engineer

Jesse Hanshaw, P.E. Principal Engineer

CONTENTS

Section

Section 1. TECHNICAL SUPPORT DOCUMENT

- 1.1 INTRODUCTION
- **1.2 DESCRIPTION OF FACILITY**
- **1.3 FEDERAL AND STATE REQUIREMENTS**

Section 2. APPLICATION FOR PERMIT

ATTACHMENTS

ATTACHMENT A	SINGLE SOURCE DETERMINATION FORM
ATTACHMENT B	
	BUSINESS CERTIFICATE
ATTACHMENT D	PROCESS FLOW DIAGRAM
	PROCESS DESCRIPTION
-	PLOT PLAN
ATTACHMENT G	AREA MAP
ATTACHMENT I	EMISSION UNITS/ERD TABLE
	FUGITIVE EMISSIONS SUMMARY SHEET(S)
ATTACHMENT K	GAS WELL AFFECTED FACILITY DATA SHEET(S)
ATTACHMENT L	STORAGE VESSEL(S) DATA SHEET(S)
	ATURAL GAS FIRED FUEL BURNING UNIT(S) DATA SHEET(S)
	INTERNAL COMBUSTION ENGINE DATA SHEET(S)
ATTACHMENT O	
	GLYCOL DEHYDRATION UNIT DATA SHEET(S) (SEE NOTES)
ATTACHMENT Q	PNEUMATIC CONTROLLERS DATA SHEET(S)
ATTACHMENT R	PNEUMATIC PUMP DATA SHEET(S)
ATTACHMENT S	APCD/ERD SHEET(S) EMISSION CALCULATIONS
	FACILITY-WIDE EMISSION SUMMARY SHEET(S)
ATTACHMENT V	CLASS I LEGAL ADVERTISEMENT

PERMIT APPLICATION FEE

Notes:

ATTACHMENT B – N/A – No dwellings or businesses located within 300' of the facility. ATTACHMENT P – N/A - No glycol dehydration unit in use at the facility.

SECTION 1. TECHNICAL SUPPORT DOCUMENT

General G70-D Permit Application

Yoder Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

1.1 INTRODUCTION

Tug Hill Operating, LLC has prepared this application to reflect the new construction of wells and equipment at the Yoder well pad, and is seeking coverage under the G70-D General Permit. This document contains all applicable permitting forms and fees in accordance with 45CSR13.

The site as evaluated has been classified as a minor NSR and Title V facility. The details of this evaluation are provided in section 2.0 with supporting documentation presented within the calculations section.

1.2 DESCRIPTION OF FACILITY

Tug Hill Operating, LLC is applying for a General Permit Registration under G70-D for the new construction and operation of equipment at the Yoder well pad. The site is planned to consist of (6) Marcellus wells, (6) 1 MMBtu/hr gas processing units, (3) 500 bbl produced water tanks, and (1) 1380 HP 4SLB compressor engine (G3516). Emissions from the tanks will be controlled by a 2 MMBtu/hr enclosed combustor.

DESCRIPTION OF PROCESS

Natural gas, condensate and produced water will be separated from six horizontal wells located onsite producing from the Marcellus formation. Each well stream will first pass through one of six (6) 1 MMBtu/hr gas processing units (GPU-1 through GPU-6).

The gas exiting the gas processing units will be routed into a sales pipeline after going through one final slug catcher separator. The water will be sent into one of three (3) 500 bbl produced water tanks. The condensate is sent to a condensate pipeline and is removed from the site. There will be no dedicated condensate storage tanks located at the Yoder site.

The emissions from the produced water storage tanks are directed to a 2 MMBtu/hr enclosed vapor combustor (VDU-1) for VOC and methane destruction. The produced water is hauled offsite by 140 bbl pump trucks. The displaced emissions from truck loading were accounted for as a point source on an uncontrolled basis.

The site has future plans to install a sales gas compressor at such time as the wells lack the necessary pressure to enter the sales line. The equipment will consist of a Caterpillar G3516 unit which is rated at 1380 HP.

1.3 FEDERAL AND STATE REQUIREMENT

APPLICABLE REGULATIONS

This facility is subject to the following applicable rules and regulations:

Federal and State:

45 CSR 2 – Particulate Matter Standards from Combustion of Fuel in Indirect Heat Exchangers

The indirect heat exchangers consisting of GPU heaters, which are subject to the visible emission standard of §45-2-3 as follows:

3.1. No person shall cause, suffer, allow or permit the emission of smoke and/or particulate matter into the open air from any fuel burning unit which is greater than ten (10) percent opacity based on a six-minute block average.

However, in accordance with the exemptions defined with §45-2-11 these sources have limited requirements as follows:

11.1. Any fuel burning unit(s) having a heat input less than ten (10) million B.T.U.'s per hour will be exempt from sections 4, 5, 6, 8 and 9. However, failure to attain acceptable air quality in parts of some urban areas may require the mandatory control of these sources at a later date.

Therefore, the GPU heaters at this site are exempt from the weight emission standards of section 4 and the control of fugitive particulate matter standards of section 5. The additionally exempt sections of this rule, section 6, 8, and 9 pertain to registration, testing, monitoring, recordkeeping, and reporting as well as startup, shutdown and malfunctions.

As a result, each combustion source will use Method 9 to determine compliance with the 10% opacity limitation, but periodic monitoring and testing would be required only upon request of the Director or his duly authorized representative.

45 CSR 6 - Open Burning Prohibited

This state rule is geared towards reducing particulate matter emissions from the combustion of refuse and is specific to burning solid waste such as trash, but also includes combustion of waste gas in flares. The rule sets PM limits and establishes a 20% visible emission limit, both of which shouldn't be any problem for the gas fired flare to meet. The Rule 6 PM limit is calculated on the Enclosed Combustor section of the supporting calculations.

45 CSR 10 - Emission of Sulfur Oxides

The facility evaluated within this application utilizes fuel burning units, but they are all below the exemption threshold of 10 MMBtu/hr as stated in 45CSR§10-10.1:

10.1 Any fuel burning units having a design heat input under ten (10) million BTU's per hour will be exempt from section 3 and sections 6 through 8. However, failure to attain acceptable air quality in parts of some urban areas may require the mandatory control of these sources at a later date.

40 CFR 60 Subpart JJJJ – Standards of Performance for Stationary Spark Ignition Internal Combustion Engines

The natural gas fired gas compressor (CE-1) is a 1380 HP Caterpillar 3516BLE and was manufactured on 4-16-2012. Since the engines mfg. date is after 7-1-2010 the corresponding emission limits for this unit are represented as follows:

g/Hp-hr			р	pmvd at 15% C)2
NOx	CO	VOC	NOx	CO	VOC
1	2	0.7	82	270	60

Table 1 Emission Limits – SI 4SLB HP ≥ 500 HP installed after 7-1-2010

40 CFR 60 Subpart OOOOa – Flow Back Requirements for Hydraulically Fractured Well(s)

The six (6) new gas wells to be completed by Tug Hill on this site will be subject to the flow back requirements and shall comply by conducting green completions. Therefore they are required to follow the standards of flow back dictated within 60.5375a (a)(1) through (4) for sources that commence construction after September 18, 2015.

40 CFR 60 Subpart OOOOa - Storage Vessel NSPS Requirements

The storage vessels located on the pad have been demonstrated to have a controlled PTEs for VOC < 6 tpy with the use of a permitted VDU enclosed combustor. Therefore, they are not considered affected sources under this regulation.

40 CFR 60 Subpart OOOOa – Fugitive Component Leak Monitoring

The site is classified as a well pad facility, which will be subject to the semiannual monitoring requirement. The site will develop a monitoring plan in accordance with the regulation in according to the specifications of this Regulation. Initial monitoring shall be conducted and documented within 60 days of startup.

40 CFR 63 Subpart ZZZZ - National Emission Standards for Hazardous Air Pollutants from Stationary Reciprocating Internal Combustion Engines

This facility is considered an area source of HAPs and therefore certain engines located at this facility would be considered subject to the rule, but they are all considered new sources so they are directed to comply with NSPS JJJJ. **40 CFR 61** - This facility is subject to the asbestos inspection and notification requirements related to construction activities containing asbestos.

45 CSR 4 - No Objectionable Odors

45 CSR 11 - Standby Plans for Emergency Episodes.

45 CSR 13 - Permits for Construction, Modification, Relocation, and Operation of Stationary Source of Air Pollutants

The company has applied to receive coverage under general permit G70-D for the construction and operations of a minor source.

WV Code § 22-5-4 (a) (14)

The Secretary can request any pertinent information such as annual emission inventory reporting.

45 CSR 17 - Fugitive Particulate Emissions

NON-APPLICABILITY DETERMINATIONS

The following requirements have been determined "not applicable" due to the following:

45 CSR 27 - To Prevent and Control the Emissions of Toxic Air Pollutants

This rule is not applicable because natural gas is included as a petroleum product and contains less than 5% benzene by weight. 45CSR § 27-2.4 exempts equipment "used in the production and distribution of petroleum products providing that such equipment does not produce or contact materials containing more than 5% benzene by weight."

45 CSR 30 – Requirements for Operating Permits – Title V of the Clean Air Act

This facility does not meet the emission threshold to trigger a 45CSR30, Title V Operating Permit nor is it subject to any Federal Standards that trigger the need for a Title V Permit.

40 CFR 60 Subpart OOOOa – Pneumatic Control Valve and Pumps NSPS

The site was evaluated and found to contain only intermittent venting pneumatic control valves rated at less than 6 SCF/hr. Therefore the site is not proposing to install or operate any affected continuous bleed pneumatic devices defined by this NSPS.

Additionally, the site design was evaluated and no natural gas driven pneumatic pumps are planned to operate for greater than 90 days at this site.

40 CFR 63 Subpart HH - National Emission Standards for Hazardous Air Pollutants from Oil and Natural Gas Production Facilities

There is no dehydration unit at this site.

40 CFR 63 HHH - National Emission Standards for Hazardous Air Pollutants from Natural Gas Transmission and Storage Facilities

This subpart is related to Natural Gas Transmission Facilities which are major sources of HAPs. This federal regulation is not applicable since this facility is neither a transmission facility nor is it a major source of HAPs.

40 CFR 60 Subpart KKK - Natural Gas Processing Plant NSPS

This subpart is not applicable because this station is not a processing site engaged in extracting natural gas liquids by fractionation from natural gas.

Natural gas processing plant (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas, fractionation of mixed natural gas liquids to natural gas products, or both.

40 CFR 60 Subpart K, Ka, Kb - Storage Vessel NSPS

The produced water storage tanks are exempt under 60.110b(d)(4) in accordance with the following: Vessels with a design capacity less than or equal to 1,589.874 m³ (approx 420,000 gallons) used for petroleum or condensate stored, processed, or treated prior to custody transfer.

40 CFR 63 Subpart DDDDD - Boilers & Process Heaters Located at Major Sources of HAPs

The requirements of this subpart is not applicable because this facility is not a major source of HAPs.

40 CFR 63 Subpart JJJJJJ - Boilers Located at Area Sources of HAPs

This subpart is not applicable because the process heaters are exempt from the definition of "boilers" under this area source GACT standard.

40 CFR 82 Subpart F - Ozone Depleting Substances

The purpose of this subpart is to reduce emissions of class I and class II refrigerants and their substitutes. The facility does not utilize class I and class II refrigerants and their substitutes.

Aggregation Discussion (Facility Determination)

The Yoder well pad is operated solely by Tug Hill Operating, LLC. This well pad facility has the ability to transfer its products via pipeline to midstream compression companies, which are located on non-contiguous sites over a mile away. Additionally, these sources are not under common control nor is there any support and/or dependency relationship between the midstream companies and Tug Hill Operating, LLC.

Tug Hill Operating, LLC operated other well pads in the area, the closes being the Greer Pad, which has a straight line distance of 1.54 miles away. Therefore, no other facilities operated by Tug Hill Operating, LLC are within a quarter-mile radius and as a result this pad should be considered a single facility as defined within this application.

SECTION 2.

APPLICATION FOR PERMIT

General G70-D Permit Application

Yoder Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

	*
0	lên
	Jeb

west virginia department of environmental protection

Division of Air Quality 601 57th Street SE Charleston, WV 25 4 Phone (304) 926-0475 Fax (304) 926-0479 www.dep.wv.gov

G70-D GENERAL PERMIT REGISTRATION APPLICATION

PREVENTION AND CONTROL OF AIR POLLUTION IN REGARD TO THE CONSTRUCTION, MODIFICATION, RELOCATION, ADMINISTRATIVE UPDATE AND OPERATION OF NATURAL GAS PRODUCTION FACILITIES LOCATED AT THE WELL SITE

⊠CONSTRUCTION □MODIFICATION □RELOCATION

□CLASS I ADMINISTRATIVE UPDATE □CLASS II ADMINISTRATIVE UPDATE

SECTION 1. GENERAL INFORMATION

Name of Applicant (as registered with the WV Secretary of State's Office): TH Exploration II, LLC

Federal Employer ID No. (FEIN): 26-2056245 Applicant's Mailing Address: 380 Southpointe Blvd., Suite 200 City: Canonsburg State: PA ZIP Code: 15317 Facility Name: Yoder Well Pad Operating Site Physical Address: Waynes Ridge If none available, list road, city or town and zip of facility. City: Proctor Zip Code: 26155 County: Marshall Latitude & Longitude Coordinates (NAD83, Decimal Degrees to 5 digits): Latitude: 39,78042 Longitude: -80.84016 SIC Code: 1311 DAQ Facility ID No. (For existing facilities) NAICS Code: 211111 CERTIFICATION OF INFORMATION This G70-D General Permit Registration Application shall be signed below by a Responsible Official. A Responsible Official is a President, Vice President, Secretary, Treasurer, General Partner, General Manager, a member of the Board of Directors, or Owner, depending on business structure. A business may certify an Authorized Representative who shall have authority to bind the Corporation, Partnership, Limited Liability Company, Association, Joint Venture or Sole Proprietorship. Required records of daily throughput, hours of operation and maintenance, general correspondence, compliance certifications and all required notifications must be signed by a Responsible Official or an Authorized Representative. If a business wishes to certify an Authorized Representative, the official agreement below shall be checked off and the appropriate names and signatures entered. Any administratively incomplete or improperly signed or unsigned G70-D Registration Application will be returned to the applicant. Furthermore, if the G70-D forms are not utilized, the application will be returned to the applicant. No substitution of forms is allowed. I hereby certify that is an Authorized Representative and in that capacity shall represent the interest of the business (e.g., Corporation, Partnership, Limited Liability Company, Association Joint Venture or Sole Proprietorship) and may obligate and legally bind the business. If the business changes its Authorized Representative, a Responsible Official shall notify the Director of the Division of Air Quality immediately. I hereby certify that all information contained in this G70-D General Permit Registration Application and any supporting documents appended hereto is, to the best of my knowledge, true, accurate and complete, and that all reasonable efforts have been made to provide the most comprehensive information possible. Responsible Official Signature: Name and Title: Sean Willis Vice President Phone: 817-632-5200 Fax: Email: swillis@tug-hillop.com Date: 11 03 2017

n'applicable.				
Authorized Representative Signatu	ure:			
Name and Title:	Phone:	Fax:		
Email:	Date:			
If applicable:			10	
Environmental Contact				
Name and Title: Jerry V. DeRosa	Director, EH&S Affairs	Phone: (412) 736-5767	Fax:	
Email: jderosa@tug-hillop.com	Date:	~ ~		

OPERATING SIT	E INFORMATION			
Briefly describe the proposed new operation and/or any change(s) to the facility: This site will encompass 10 new Marcellus wells and associated separation and gas compression equipment. The facility will also utilize a condensate stabilization system and liquid storage vessels.				
Directions to the facility: In Proctor travel southeast on Plum St. toward WV-2 S. Turn left onto WV-2 N and travel 1.5 miles. Turn right onto Wells Hill Rd. and travel 2.4 miles. Turn left onto Waynes Ridge and travel 3.4 miles. Turn right (East) onto the dirt access road and travel 0.18 miles. The well site will be located 0.35 miles down the hill (Northwest) from the access road.				
ATTACHMENTS AND SU	PPORTING DOCUMENTS			
I have enclosed the following required documen	ts:			
Check payable to WVDEP – Division of Air Quality with the	appropriate application fee (per 45CSR13 and 45CSR22).			
 Check attached to front of application. I wish to pay by electronic transfer. Contact for payment (I wish to pay by credit card. Contact for payment (incl. national sector) 				
⊠\$500 (Construction, Modification, and Relocation) ⊠\$1,000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ, OOOO a □\$2,500 NESHAP fee for 40 CFR63, Subpart ZZZZ and/or F				
¹ Only one NSPS fee will apply. ² Only one NESHAP fee will apply. The Subpart ZZZZ NESHAP fee will be waived for new engines that satisfy requirements by complying with NSPS, Subparts IIII and/or JJJJ. NSPS and NESHAP fees apply to new construction or if the source is being modified.				
□ Responsible Official or Authorized Representative Signatu	ıre (if applicable)			
Single Source Determination Form (must be completed) –	- Attachment A			
🖾 Siting Criteria Waiver (if applicable) – Attachment B	🖾 Current Business Certificate – Attachment C			
🖾 Process Flow Diagram – Attachment D	⊠ Process Description – Attachment E			
🛛 Plot Plan – Attachment F	🖾 Area Map – Attachment G			
⊠ G70-D Section Applicability Form – Attachment H	Emission Units/ERD Table – Attachment I			
I Fugitive Emissions Summary Sheet – Attachment J				
🖾 Gas Well Affected Facility Data Sheet (if applicable) – At	tachment K			
⊠ Storage Vessel(s) Data Sheet (include gas sample data, US HYSYS, etc.), etc. where applicable) – Attachment L	SEPA Tanks, simulation software (e.g. ProMax, E&P Tanks,			
⊠ Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, M	, Heater Treaters, In-Line Heaters if applicable) – Attachment			
\boxtimes Internal Combustion Engine Data Sheet(s) (include manufa N	acturer performance data sheet(s) if applicable) – Attachment			
Inter Truck/Rail Car Loading Data Sheet (if applicable)				
\Box Glycol Dehydration Unit Data Sheet(s) (include wet gas ar information on reboiler if applicable) – Attachment P	nalysis, GRI- $GLYCalc^{TM}$ input and output reports and			
\boxtimes Pneumatic Controllers Data Sheet – Attachment Q				
🛛 Pneumatic Pump Data Sheet – Attachment R				
⊠ Air Pollution Control Device/Emission Reduction Device(applicable) – Attachment S	s) Sheet(s) (include manufacturer performance data sheet(s) if			
\boxtimes Emission Calculations (please be specific and include all c	calculation methodologies used) – Attachment T			
⊠ Facility-wide Emission Summary Sheet(s) – Attachment U				
🖾 Class I Legal Advertisement – Attachment V				
\boxtimes One (1) paper copy and two (2) copies of CD or DVD with	n pdf copy of application and attachments			

All attachments must be identified by name, divided into sections, and submitted in order.

ATTACHMENT A

SINGLE SOURCE DETERMIATION FORM

General G70-D Permit Application

Yoder Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM	ATTACHMENT A ·	- SINGLE SOURCE	DETERMINATION	FORM
--	----------------	-----------------	---------------	------

Classifying multiple facilities as one "stationary source" under 45CSR13, 45CSR14, and 45CSR19 is based on the definition of Building, structure, facility, or installation as given in §45-14-2.13 and §45-19-2.12. The definition states:

"Building, Structure, Facility, or Installation" means all of the pollutant-emitting activities which belong to the same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the control of the same person (or persons under common control). Pollutant-emitting activities are a part of the same industrial grouping if they belong to the same "Major Group" (i.e., which have the same two (2)-digit code) as described in the Standard Industrial Classification Manual, 1987 (United States Government Printing Office stock number GPO 1987 0-185-718:QL 3).

The Source Determination Rule for the oil and gas industry was published in the Federal Register on June 3, 2016 and will become effective on August 2, 2016. EPA defined the term "adjacent" and stated that equipment and activities in the oil and gas sector that are under common control will be considered part of the same source if they are located on the same site or on sites that share equipment and are within ¹/₄ mile of each other.

Is there equipment	and activities	in the s	same	industrial	grouping	(defined
by SIC code)?						

Yes \Box No \boxtimes

Is there equipment and activities under the control of the same person/people?

Yes \Box No \boxtimes

Is there equipment and activities located on the same site or on sites that share equipment and are within ¹/₄ mile of each other?

Yes 🗆	No	\times
-------	----	----------

ATTACHMENT B

SITING CRITERIA WAIVER

NOT APPLICABLE - No dwellings or businesses located within 300' of the facility

General G70-D Permit Application

Yoder Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

ATTACHMENT C

BUSINESS CERTIFICATE

General G70-D Permit Application

Yoder Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

I, Natalie E. Tennant, Secretary of State of the State of West Virginia, hereby certify that

TH EXPLORATION II, LLC

Control Number: 9ADVD

a limited liability company, organized under the laws of the State of Texas

has filed its "Application for Certificate of Authority" in my office according to the provisions of West Virginia Code §31B-10-1002. I hereby declare the organization to be registered as a foreign limited liability company from its effective date of March 30, 2016, until a certificate of cancellation is filed with our office.

Therefore, I hereby issue this

CERTIFICATE OF AUTHORITY OF A FOREIGN LIMITED LIABILITY COMPANY

to the limited liability company authorizing it to transact business in West Virginia

Given under my hand and the Great Seal of the State of West Virginia on this day of March 30, 2016

Waterie Eyenna

Secretary of State

W 19 Bl Cł Fl (T	py returned to you.)) 2016 FICE OF EST VTF CERTIFI	REINIA APPLICATION I CATE OF AUTHORITY CD LIABILITY COMPAN	OF	Penney Barker, Manager Business & Licensing Division Tel: (304)558-8000 Fax: (304)558-8381 Website: <u>www.wvsos.com</u> E-mail: <u>business@wvsos.com</u> Office Hours: Monday - Friday 8:30 a.m 5:00 p.m. EST
FI	LING FEE: \$150 * Fee Waived for Veteran-o	wned orga	anization		Control # $\underline{940}VD$
**	* The undersigned, having authority to comply with the requirements o	transact b f West Vi	usiness on behalf of a foreign (o rginia Code §31B-10-1002 to ap	out-of-state	e) registered entity, agrees to *** ertificate of Authority.
1.	The name of the limited liability compared registered in its home state is:	nv as	TH Exploration II, LLC		
	and the State or Country of organizatio	n is:	Texas		
	X <u>CHECK HERE</u> to indicate you have on <u>STANDING</u> , dated during the current The certificate may be obtained by contained b	tax year, fr	om your home state of original for	mation as r	equired to process your application.
	The business name to be used in West Virginia will be: [The name must con- tain one of the required terms such as "limited liability company" or abbreviations such as "LLC" or "PLLC." See instructions for complete list of acceptable terms and re- quirements for use of Trade Name.] The company will be a : [See instructions for limitations on professions which may form	(If na in S DBA N (See this X regu	special instructions in Section 2. reg application. <u>Click here</u> to see a samp lar LLC	me box belo garding the L ple Letter of	w and follow special instructions
	P.L.L.C. in WV. All members must have WV professional license. See (*) note at the right.]	* In :	Tessional LLC* for the profession of most cases, a Letter of Authorization censing Board is required to process	on/Approva	I from the appropriate State ion. See attached instructions.
4.	The address of the principal office of the company will be:	Street:	1320 South University Dri	ive, Suite	500
		City:	Fort Worth S	State: Te	xas Zip Code: 76107
	Located in the County of (<u>required</u>):	County:	Tarrant 💌		
	The mailing address of the above location, if different, will be:	Street:			
	iocation, it anterent, will be.	City:	S	State:	Zip Code:
5.	The address of the initial designated (physical) office of the company in West Virginia, if any, will be:	Street:			
		City:	S	State:	Zip Code:
	Located in the County of: RECEIVED	County:	•		
ı LL	F-1 MAR 3 0 2016	Issued by	the Office of the Secretary of State		Rev. 6

H

Form LLF-1

WEST VIRGINIA APPLICATION FOR CERTIFICATE OF AUTHORITY OF LIMITED LIABILITY COMPANY

5. (Continued from previous page)

The mailing address of the above location, if different, will be:	Street:					
	City: State: Zip Code:					
6. Agent of Process: may be sent, if any, will be:	Name:Corporation Service CompanyStreet:209 West Washington Street					
	City: Charleston State: WV Zip Code: 25302					
7. E-mail address where business correspon	idence may be received:eradler@tug-hillop.com					
8. Website address of the business, if any (ex: yourdomainname.com):					
 Do you own or operate more than one business in West Virginia? If "Ves" a How many businesses? 	X Yes * Answer a. and b. below. Decline to answer					
10. The company is: X an AT-WILL control (required)						
1. The company is: (required) MEMBER-MANAGED [List the names and addresses of <u>all members</u> below.] X MANAGER-MANAGED [List the names and addresses of <u>all managers</u> below.]						
List the name(s) and address(es) of the N Name	Tember(s)/Manager(s) of the company (<u>required</u> ; attach additional pages if necessary):					
Tug Lill Luc	Iember(s)/Manager(s) of the company (required; attach additional pages if necessary):o. & Street AddressCityStateZip CodeUniversity Drive, Suite 500Fort WorthTX76107					
Tug Lill Luc	o. & Street Address <u>City</u> <u>State</u> <u>Zip Code</u>					
Name N Tug Hill, Inc. 1320 South 12. All or specified members of a limited liability company are liable in their capacity as members for all or specified debts, obligations or liabilities of the company (required): 13. The purpose(s) for which this limited lial [Describe the type(s) of business activity which buildings," "commercial painting," "profession"	o. & Street Address City State Zip Code University Drive, Suite 500 Fort Worth TX 76107 X No - All debts, obligations and liabilities are those of the company.					
Name N Tug Hill, Inc. 1320 South 12. All or specified members of a limited liability company are liable in their capacity as members for all or specified debts, obligations or liabilities of the company (required): 13. The purpose(s) for which this limited lial [Describe the type(s) of business activity which buildings," "commercial painting," "profession may conclude with words "including the traver Virginia."]	o. & Street Address City State Zip Code University Drive, Suite 500 Fort Worth TX 76107 X No - All debts, obligations and liabilities are those of the company. Yes - Those persons who are liable in their capacity as members for all debts, obligations or liability of the company have consented in writing to the adoption of the provision or to be bound by the provision. Dility company is formed is as follows: h will be conducted, for example, "real estate," "construction of residential and commercial nal practice of law" (see Section 2 for accentable "professional" business esticities and the provision.					
Name N Tug Hill, Inc. 1320 South 12. All or specified members of a limited liability company are liable in their capacity as members for all or specified debts, obligations or liabilities of the company (required): 13. The purpose(s) for which this limited lial [Describe the type(s) of business activity which buildings," "commercial painting," "profession may conclude with words "including the traver Virginia."]	o. & Street Address City State Zip Code University Drive, Suite 500 Fort Worth TX 76107 X No - All debts, obligations and liabilities are those of the company.					
Name N Tug Hill, Inc. 1320 South 12. All or specified members of a limited liability company are liable in their capacity as members for all or specified debts, obligations or liabilities of the company (required): 13. The purpose(s) for which this limited lial [Describe the type(s) of business activity which buildings," "commercial painting," "profession may conclude with words "including the traver Virginia."] Oil and gas extraction activities in limited liability companies may be	o. & Street Address City State Zip Code University Drive, Suite 500 Fort Worth TX 76107 X No - All debts, obligations and liabilities are those of the company.					
Name N Tug Hill, Inc. 1320 South 12. All or specified members of a limited liability company are liable in their capacity as members for all or specified debts, obligations or liabilities of the company (required): 13. The purpose(s) for which this limited lial [Describe the type(s) of business activity which buildings," "commercial painting," "profession may conclude with words "including the traver Virginia."] Oil and gas extraction activities in limited liability companies may b 14. Is the business a Scrap Metal Dealer?	o. & Street Address City State Zip Code University Drive, Suite 500 Fort Worth TX 76107 X No - All debts, obligations and liabilities are those of the company.					

WEST VIRGINIA APPLICATION FOR CERTIFICATE OF AUTHORITY OF LIMITED LIABILITY COMPANY

15. Other provisions which may be set forth in the operating agreement or matters not inconsistent with law: [See instructions for further information; use extra pages if necessary.]

	N/A	,				
16.	6. The number of pages attached and included in these Articles is: 3					
17.	7. The requested effective date is: [Requested date may not be earlier than filing nor later than 90 days after filing in our office.]					
	the following date and time					
18.	8. Is the organization a "veteran-owned" organization?					
	Effective JULY 1, 2015, to meet the requirements for a "veteran-owned" organization, the entity filing the registratio meet the following criteria per West Virginia Code §59-1-2a:	on must				
	 A "veteran" must be honorably discharged or under honorable conditions, and A "veteran-owned business" means a business that meets one of the following criteria: Is at least fifty-one percent (51%) unconditionally owned by one or more veterans; or In the case of a publicly owned business, at least fifty-one percent (51%) of the stock is unconditionally owned by one or more veterans. 					
	Yes (If "Yes," attach Form DD214) CHECK BOX indicating you have attached Veteran Affairs Form DD214					
X	You may obtain a copy of your Veterans AffairsNational Personnel Records Center Military Personnel RecordsImage: Stress					
01	Per WV Code <u>59-1-2(j)</u> effective July 1, 2015, the <u>registration fee is waived for entities that meet the requirements as a <u>"veteran organization</u>. See attached instructions to determine if the organization qualifies for this waiver. In addition, a <u>"veteran-owned"</u> entity four (4) consecutive years of Annual Report fees waived AFTER the organization's initial formation [see WV Code <u>59-1-2a(m)</u>].</u>	<u>-owned"</u> will have				
19.	9. Contact and Signature Information* (See below <i>Important Legal Notice Regarding Signature</i>):					
а	a. Contact person to reach in case there is a problem with filing: Courtney J. Roane Phone: 214-969-1312					
b	b. Print or type name of signer: <u>Michael Evan Radler, Vice President</u> Title/Capacity of signer:					
с	c. Signature: Date: March 24, 2016					

*Important Legal Notice Regarding Signature: Per West Virginia Code \$31B-2-209. Liability for false statement in filed record. If a record authorized or required to be filed under this chapter contains a false statement, one who suffers loss by reliance on the statement may recover damages for the loss from a person who signed the record or caused another to sign it on the person's behalf and knew the statement to be false at the time the record was signed.

Important Note: This form is a public document. Please do NOT provide any personal identifiable information on this form such as social security number, bank account numbers, credit card numbers, tax identification or driver's license numbers.

Reset Form

Print Form

Page 3

Corporations Section P.O.Box 13697 Austin, Texas 78711-3697

Office of the Secretary of State

Certificate of Fact

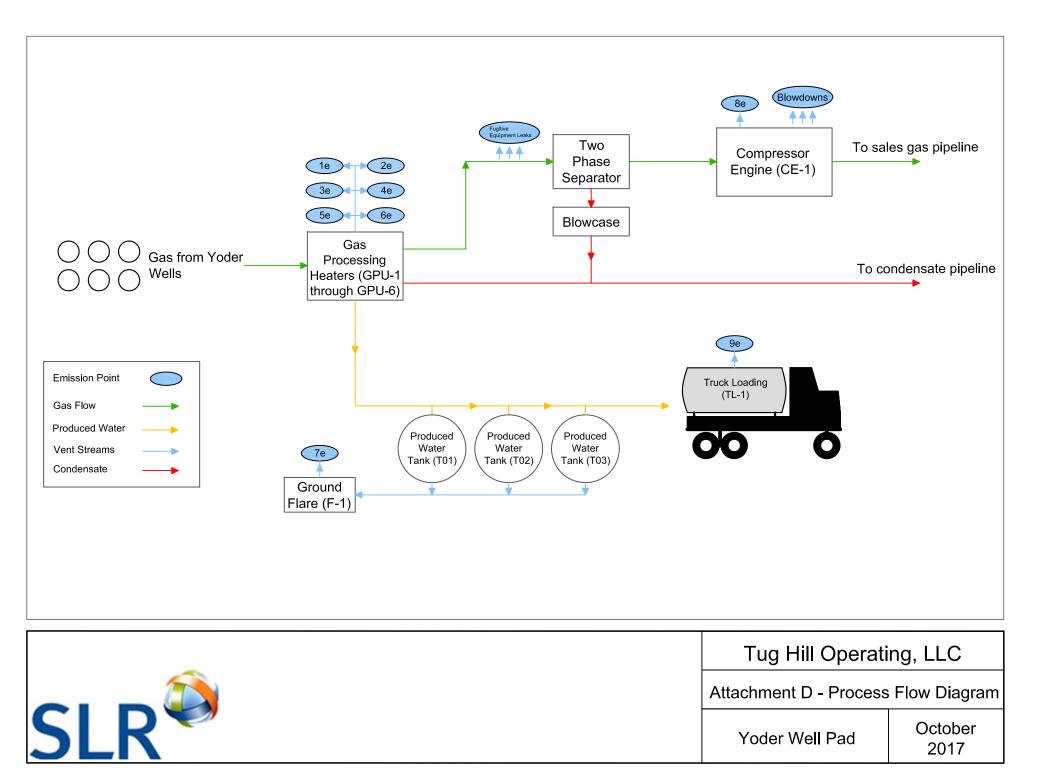
The undersigned, as Secretary of State of Texas, does hereby certify that the document, Certificate of Formation for TH Exploration II, LLC (file number 802423622), a Domestic Limited Liability Company (LLC), was filed in this office on March 28, 2016.

It is further certified that the entity status in Texas is in existence.

In testimony whereof, I have hereunto signed my name officially and caused to be impressed hereon the Seal of State at my office in Austin, Texas on March 29, 2016.

Culle

Carlos H. Cascos Secretary of State


ATTACHMENT D

PROCESS FLOW DIAGRAM

General G70-D Permit Application

Yoder Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

ATTACHMENT E

PROCESS DESCRIPTION

General G70-D Permit Application

Yoder Well Pad

Proctor, West Virginia Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

Tug Hill Operating, LLC is applying for a General Permit Registration under G70-D for the new construction and operation of equipment at the Yoder well pad. The site is planned to consist of (6) Marcellus wells, (6) 1 MMBtu/hr gas processing units, (3) 500 bbl produced water tanks, and (1) 1380 HP 4SLB compressor engine (G3516). Emissions from the tanks will be controlled by a 2 MMBtu/hr enclosed combustor.

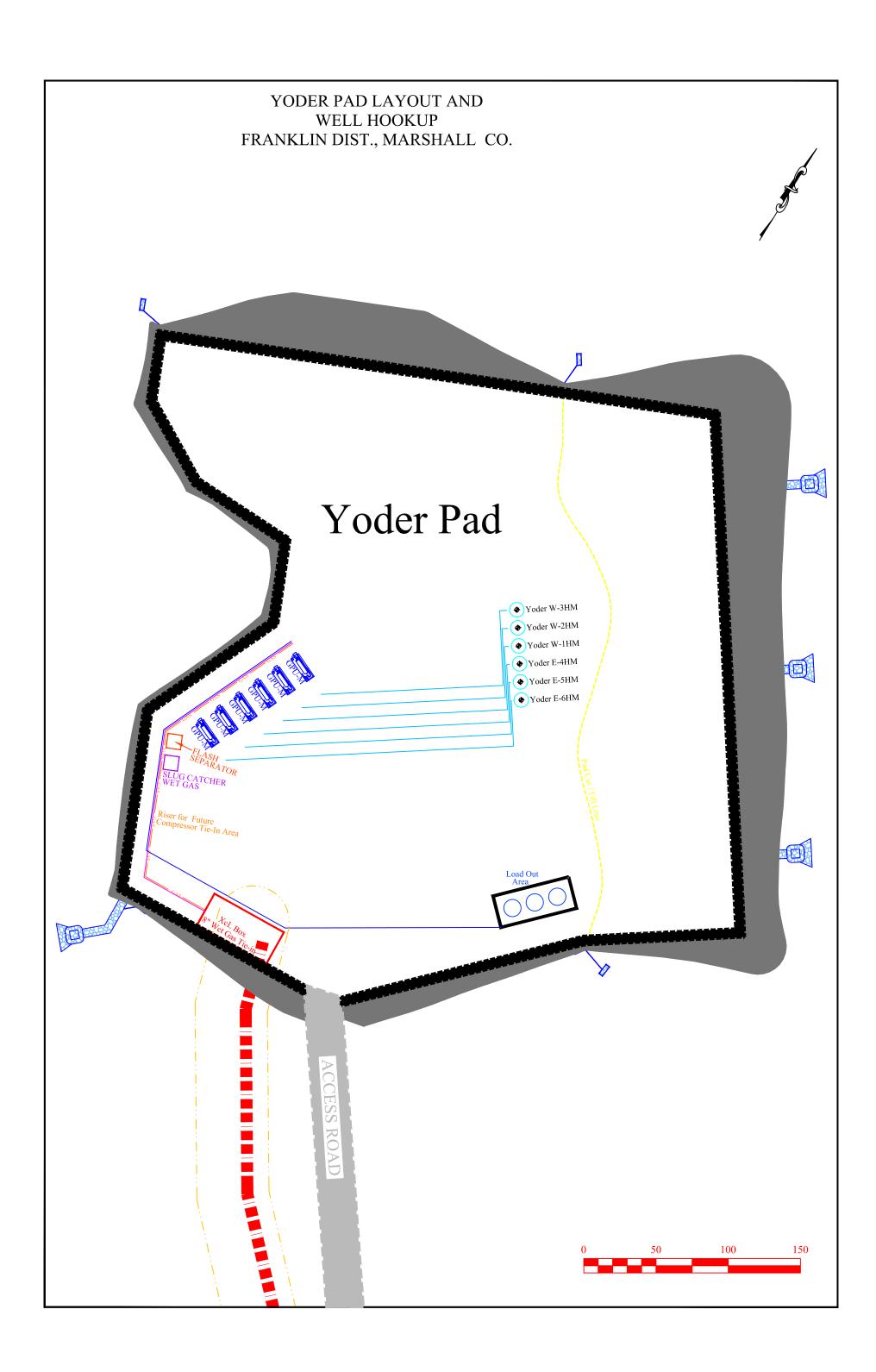
DESCRIPTION OF PROCESS

Natural gas, condensate and produced water will be separated from six horizontal wells located onsite producing from the Marcellus formation. Each well stream will first pass through one of six (6) 1 MMBtu/hr gas processing units (GPU-1 through GPU-6).

The gas exiting the gas processing units will be routed into a sales pipeline after going through one final slug catcher separator. The water will be sent into one of three (3) 500 bbl produced water tanks. The condensate is sent to a condensate pipeline and is removed from the site. There will be no dedicated condensate storage tanks located at the Yoder site.

The emissions from the produced water storage tanks are directed to a 2 MMBtu/hr enclosed vapor combustor (VDU-1) for VOC and methane destruction. The produced water is hauled offsite by 140 bbl pump trucks. The displaced emissions from truck loading were accounted for as a point source on an uncontrolled basis.

The site has future plans to install a sales gas compressor at such time as the wells lack the necessary pressure to enter the sales line. The equipment will consist of a Caterpillar G3516 unit which is rated at 1380 HP.

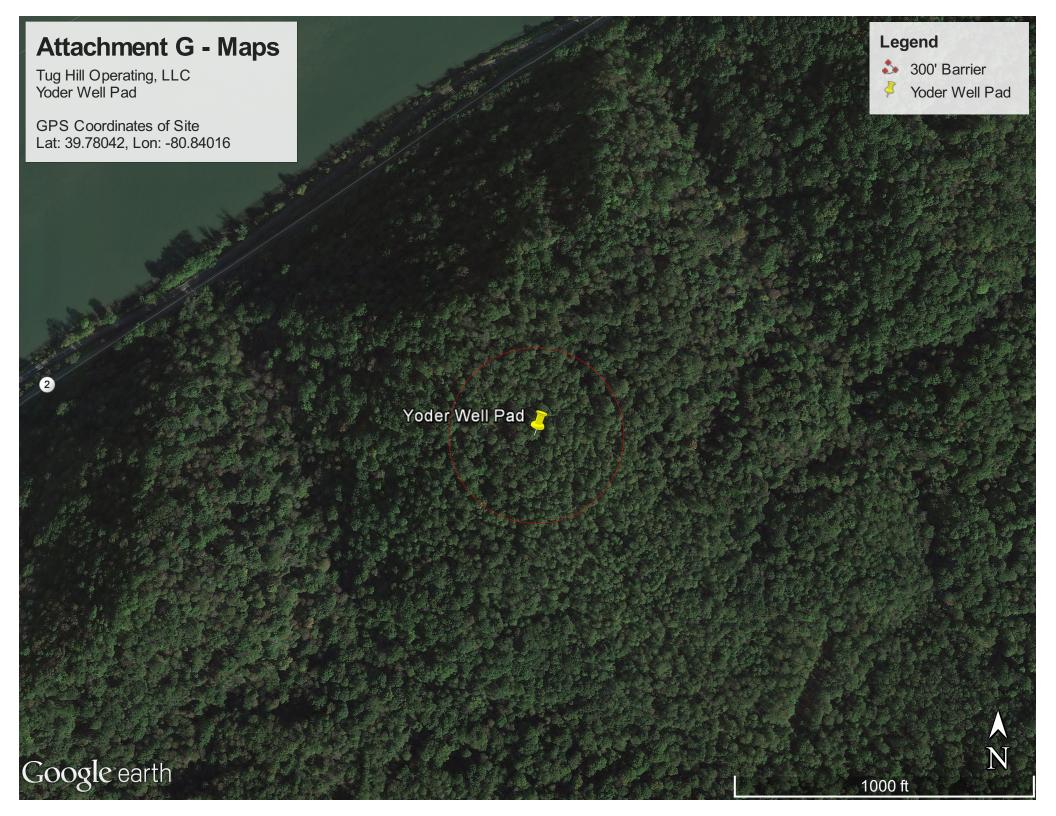

ATTACHMENT F

PLOT PLAN

General G70-D Permit Modification Application

Yoder Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317


ATTACHMENT G

AREA MAP

General G70-D Permit Application

Yoder Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

ATTACHMENT H

G70-D SECTION APPLICABILITY FORM

General G70-D Permit Application

Yoder Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

ATTACHMENT H – G70-D SECTION APPLICABILITY FORM

General Permit G70-D Registration Section Applicability Form

General Permit G70-D was developed to allow qualified applicants to seek registration for a variety of sources. These sources include gas well affected facilities, storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, pneumatic pumps, reciprocating internal combustion engines (RICEs), tank truck/rail car loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G70-D allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

GENERAL PER	MIT G70-D APPLICABLE SECTIONS
Section 5.0 Gas and Oil Well Affected Facility (NSPS, Subpart OOOO/OOOOa)	
Section 6.0	Storage Vessels Containing Condensate and/or Produced Water ¹
□Section 7.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO/OOOOa)
⊠Section 8.0	Control Devices and Emission Reduction Devices not subject to NSPS Subpart OOOO/OOOOa and/or NESHAP Subpart HH
Section 9.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc
□Section 10.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO/OOOOa)
□Section 11.0	Pneumatic Pump Affected Facility (NSPS, Subpart OOOOa)
Section 12.0	Fugitive Emissions GHG and VOC Standards (NSPS, Subpart OOOOa)
Section 13.0	Reciprocating Internal Combustion Engines, Generator Engines
Section 14.0	Tanker Truck/Rail Car Loading ²
□Section 15.0	Glycol Dehydration Units ³

1 Applicants that are subject to Section 6 may also be subject to Section 7 if the applicant is subject to the NSPS, Subparts OOOO or OOOOa control requirements or the applicable control device requirements of Section 8.

2 Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 8.

3 Applicants that are subject to Section 15 may also be subject to the requirements of Section 9 (reboilers). Applicants that are subject to Section 15 may also be subject to control device and emission reduction device requirements of Section 8.

ATTACHMENT I

EMISSION UNITS / ERD TABLE

General G70-D Permit Application

Yoder Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

ATTACHMENT I – EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment L table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type ⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
GPU-1	1e	GPU Heater	2017		1 MMBtu/hr	New	None	None
GPU-2	2e	GPU Heater	2017		1 MMBtu/hr	New	None	None
GPU-3	3e	GPU Heater	2017		1 MMBtu/hr	New	None	None
GPU-4	4e	GPU Heater	2017		1 MMBtu/hr	New	None	None
GPU-5	5e	GPU Heater	2017		1 MMBtu/hr	New	None	None
GPU-6	6e	GPU Heater	2017		1 MMBtu/hr	New	None	None
T01-T03	7e	Produced Water Tanks	2017		500 bbl each	New	F-1	None
F-1	7e	Ground Flare	2017		2 MMBtu/hr	New	None	None
CE-1	8e	Cat G3516TALE Compressor Engine	2017	11/17/2014	1380 Hp	New	C-1	None
TL-1	9e	Truck Loading	2017		14,016,219 gal/yr	New	None	None
BD	10e	Compressor CE-1 Blowdown Vent	2017		6,163 scf/event	New	None	None

¹ For Emission Units (or Sources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation.

² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

³ When required by rule

⁴ New, modification, removal, existing

⁵ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

⁶ For ERDs use the following numbering system: 1D, 2D, 3D,... or other appropriate designation.

ATTACHMENT J

FUGITIVE EMISSION SUMMARY SHEET(S)

General G70-D Permit Application

Yoder Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

	ATTACHMENT J – FUGITIVE EMISSIONS SUMMARY SHEET								
		Sources of	0	y include loading operation	· · ·			ions, etc.	
			10	s for each associated sour	ce or equipme	ent if necessa	ary.		
		ent: Fugitives							
	eak Detection ethod Used		Audible, visual, and actory (AVO) inspections		□ Other (please describe)			□ None required	
Component	Closed		Source of Leak Factors (EPA, other (specify))		Stream type (gas, liquid, etc.)	Estimated Emissions (tpy)			
Туре	Vent System	Count				VOC	НАР	GHG (methane, CO ₂ e)	
Pumps	□ Yes □ No				□ Gas □ Liquid □ Both				
Valves	□ Yes ⊠ No	222	1995 EPA Protocol for Equipment Leak Emission Estimates - Table 2-4, Oil & Gas Production Operations Average Emission Factors (kg/hr/source) (4.5E-03)		⊠ Gas □ Liquid □ Both	2.05	0.03	28.93	
Safety Relief Valves	□ Yes ⊠ No	6	1995 EPA Protocol for Equipment Leak Emission Estimates - Table 2-4, Oil & Gas Production Operations Average Emission Factors (kg/hr/source) (8.8E-03)		⊠ Gas □ Liquid □ Both	0.11	<0.01	1.53	
Open Ended Lines	□ Yes ⊠ No	15	1995 EPA Protocol for Equipment Leak Emission Estimates - Table 2-4, Oil & Gas Production Operations Average Emission Factors (kg/hr/source) (2.0E-03)		⊠ Gas □ Liquid □ Both	0.06	<0.01	0.87	
Sampling Connections	□ Yes □ No				□ Gas □ Liquid □ Both				
Connections (Not sampling)	□ Yes ⊠ No	981	1995 EPA Protocol for Equipment Leak Emission Estimates - Table 2-4, Oil & Gas Production Operations Average Emission Factors (kg/hr/source) (3.9E-03)		⊠ Gas □ Liquid □ Both	0.78	0.01	11.08	
Compressors	□ Yes ⊠ No	1	1995 EPA Protocol for Equipment Leak Emission Estimates - Table 2-4, Oil & Gas Production Operations Average Emission Factors (kg/hr/source) (8.8E-03)		☐ Gas ☐ Liquid ☐ Both	<0.01	<0.01	<0.01	
Flanges	□ Yes ⊠ No	See Notes Below (2)	See Notes Below (2)		□ Gas □ Liquid □ Both				
Other ¹	□ Yes □ No				□ Gas □ Liquid □ Both				

Please provide an explanation of the sources of fugitive emissions (e.g. pigging operations, equipment blowdowns, pneumatic controllers, etc.):

Please indicate if there are any closed vent bypasses (include component):

Specify all equipment used in the closed vent system (e.g. VRU, ERD, thief hatches, tanker truck/rail car loading, etc.)

ATTACHMENT K

GAS WELL AFFECTED FACILITY DATA SHEET(S)

General G70-D Permit Application

Yoder Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

ATTACHMENT K – GAS WELL AFFECTED FACILITY DATA SHEET

Complete this data sheet if you are the owner or operator of a gas well affected facility for which construction, modification or reconstruction commenced after August 23, 2011. This form must be completed for natural gas well affected facilities regardless of when flowback operations occur (or have occurred).

API Number	Date of Flowback	Date of Well Completion	Green Completion and/or Combustion Device	Subject to OOOO or OOOOa?
47-103-02910	1/1/2018	10/1/2017	Green	0000a
47-103-02911	1/1/2018	10/1/2017	Green	0000a
47-103-02912	1/1/2018	10/1/2017	Green	0000a
47-103-02913	1/1/2018	10/1/2017	Green	0000a
47-103-02914	1/1/2018	10/1/2017	Green	0000a
47-103-02915	1/1/2018	10/1/2017	Green	0000a

Note: If future wells are planned and no API number is available please list as PLANNED. If there are existing wells that commenced construction prior to August 23, 2011, please acknowledge as existing.

This is the same API (American Petroleum Institute) well number(s) provided in the well completion notification and as provided to the WVDEP, Office of Oil and Gas for the well permit. The API number may be provided on the application without the state code (047).

Every oil and gas well permitted in West Virginia since 1929 has been issued an API number. This API is used by agencies to identify and track oil and gas wells.

The API number has the following format: 047-001-00001

Where,

,	
047 =	State code. The state code for WV is 047.
001 =	County Code. County codes are odd numbers, beginning with 001
	(Barbour) and continuing to 109 (Wyoming).
00001=	Well number. Each well will have a unique well number.

ATTACHMENT L

STORAGE VESSEL(S) DATA SHEET(S)

General G70-D Permit Application

Yoder Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

ATTACHMENT L – STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water. (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). **Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.**

The following information is **REQUIRED**:

- ⊠ Composition of the representative sample used for the simulation
- ☑ For each stream that contributes to flashing emissions:
 - \boxtimes Temperature and pressure (inlet and outlet from separator(s))
 - ⊠ Simulation-predicted composition
 - ⊠ Molecular weight
 - \boxtimes Flow rate
- ⊠ Resulting flash emission factor or flashing emissions from simulation
- \boxtimes Working/breathing loss emissions from tanks and/or loading emissions if simulation is used to quantify those emissions

Additional information may be requested if necessary.

GENERAL INFORMATION (REQUIRED)

1. Bulk Storage Area Name:	2. Tank Name
Yoder Well Pad	Produced Water Tanks
2. Emission Unit ID number:	3.Emission Point ID number:
T01-T03	7e
5. Date Installed , Modified or Relocated (for existing tanks)	6. Type of change:
Was the tank manufactured after August 23, 2011 and on or	\boxtimes New construction \square New stored material \square Other
before September 18, 2015?	□ Relocation
\Box Yes \boxtimes No	
Was the tank manufactured after September 18, 2015?	
\boxtimes Yes \square No	
7A. Description of Tank Modification (<i>if applicable</i>)	
7B. Will more than one material be stored in this tank? If so, a	separate form must be completed for each material.
\Box Yes \boxtimes No	
7C. Was USEPA Tanks simulation software utilized?	
□ Yes	t Ran (See Calculations)
If Yes, please provide the appropriate documentation and items	8-42 below are not required.

TANK INFORMATION

Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height.				
500 bbl				
9A. Tank Internal Diameter (ft.) 12	9B. Tank Internal Height (ft.) 25			
10A. Maximum Liquid Height (ft.) 25	10B. Average Liquid Height (ft.) 12.5			
11A. Maximum Vapor Space Height (ft.) 25	11B. Average Vapor Space Height (ft.) 12.5			
12. Nominal Capacity (specify barrels or gallons). This is also	known as "working volume". 500 bbl			
13A. Maximum annual throughput (gal/yr) 4,672,073 - per	13B. Maximum daily throughput (gal/day) 12,800.20 per tank			
tank				
14. Number of tank turnovers per year 222.48 per tank	15. Maximum tank fill rate (gal/min) 8.89 per tank			
16. Tank fill method \square Submerged \square Splash	omerged 🗆 Splash 🗆 Bottom Loading			
17. Is the tank system a variable vapor space system? \Box Yes	🖾 No			
If yes, (A) What is the volume expansion capacity of the system	(gal)?			
(B) What are the number of transfers into the system per	year?			
18. Type of tank (check all that apply):				
\boxtimes Fixed Roof \square vertical \square horizontal \square flat root	f \boxtimes cone roof \square dome roof \square other (describe)			
\Box External Floating Roof \Box pontoon roof \Box double	deck roof			
Domed External (or Covered) Floating Roof				
□ Internal Floating Roof □ vertical column support	□ self-supporting			
\Box Variable Vapor Space \Box lifter roof \Box diaphragm				
\Box Pressurized \Box spherical \boxtimes cylindrical				
\Box Other (describe)				

PRESSURE/VACUUM CONTROL DATA

19. Check as many as appl	y:						
□ Does Not Apply			🗆 Rı	pture Disc (psig)			
□ Inert Gas Blanket of				arbon Adsorption ¹			
☑ Vent to Vapor Combus	tion Devic	ce ¹ (vapor c	ombustors, fla	ares, thermal oxidiz	zers, enclose	d combusto	rs)
⊠ Conservation Vent (psi	g)			ondenser ¹			
-0.03 Vacuum Setting	0.88 P	ressure Sett	ting				
Emergency Relief Valv	e (psig)						
-0.03 Vacuum Setting	0.88 Pı	ressure Sett	ing				
□ Thief Hatch Weighted	🗆 Yes 🗵] No					
¹ Complete appropriate Air	Pollution	Control De	evice Sheet				
20. Expected Emission Ra	te (submit	Test Data	or Calculation	is here or elsewhere	e in the appli	cation).	
Material Name	Flashin	g Loss	Working/ 1	Breathing Loss	Total En	nissions	Estimation Method ¹
					Loss		
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
VOC (Each Tank- controlled)	0.12	0.52	<0.00	0.00	0.12	0.52	O - ProMax

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

TANK CONSTRUCTION AND OPERATIO	N INFORMATION	
21. Tank Shell Construction:		
\Box Riveted \Box Gunite lined \Box Epox	y-coated rivets 🛛 Other (describe) Welded	1
21A. Shell Color: Green	21B. Roof Color: Green	21C. Year Last Painted: 2018
22. Shell Condition (if metal and unlined):		
\boxtimes No Rust \square Light Rust \square Dense	Rust \Box Not applicable	
22A. Is the tank heated? \Box Yes \boxtimes No	22B. If yes, operating temperature:	22C. If yes, how is heat provided to tank?

23. Operating Pressure Range (psig): 0.88				
Must be listed for tanks using VRUs wi				
24. Is the tank a Vertical Fixed Roof Tank ?	24A. If yes, for dome	roof provide radius (ft):	-	s, for cone roof, provide slop (ft/ft):
⊠ Yes □ No			0.17	
25. Complete item 25 for Floating Roof Tanks	\square Does not apply	\boxtimes		
25A. Year Internal Floaters Installed:				
25B. Primary Seal Type (check one):	allic (mechanical) sho	e seal 🛛 🗆 Liquid mo	unted resili	ent seal
🗆 Vap	oor mounted resilient s	eal \Box Other (des	scribe):	
25C. Is the Floating Roof equipped with a seco	ndary seal? 🛛 Yes	□ No		
25D. If yes, how is the secondary seal mounted	? (check one) \Box Sho	e 🗆 Rim 🗆 Oth	ner (describ	e):
25E. Is the floating roof equipped with a weath	er shield? 🛛 Yes	□ No		
25F. Describe deck fittings:				
26. Complete the following section for Interna	l Floating Roof Tanks	⊠ Does not apply	v	
	/elded	26B. For bolted decks,		k construction:
	01000		1	
26C. Deck seam. Continuous sheet construction				
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide			-	
26D. Deck seam length (ft.): 26E. Area	t of deck (ft ²):	26F. For column suppo	orted	26G. For column supported
		tanks, # of columns:		tanks, diameter of column:
27. Closed Vent System with VRU? \Box Yes	🛛 No			
28. Closed Vent System with Enclosed Combu				
SITE INFORMATION				
29. Provide the city and state on which the data	in this section are based	· Elkins WV		
30. Daily Avg. Ambient Temperature (°F): 49.		31. Annual Avg. Maxi	mum Tempe	rature (°F): 61.15
32. Annual Avg. Minimum Temperature (°F): 3		33. Avg. Wind Speed	-	
34. Annual Avg. Solar Insulation Factor (BTU/		35. Atmospheric Press	-	3.73
LIQUID INFORMATION	• *		· · ·	
36. Avg. daily temperature range of bulk	36A. Minimum (°F):		36B. Max	imum (°F):
liquid (°F): 52.14	39.97		61.15	
37. Avg. operating pressure range of tank	37A. Minimum (psig)	:		imum (psig):
(psig):	-0.03		0.88	
0.88 38A. Minimum liquid surface temperature (°F)	. 47 17	38B. Corresponding va	por produir	(psia): 0.17
39A. Avg. liquid surface temperature (°F): 57.2		39B. Corresponding va		-
40A. Maximum liquid surface temperature (°F)		40B. Corresponding va		-
41. Provide the following for each liquid or gas				-
CALCULATIONS.		I B	, ,	
41A. Material name and composition:				
41B. CAS number:				
41C. Liquid density (lb/gal):				
41D. Liquid molecular weight (lb/lb-mole):				
41E. Vapor molecular weight (lb/lb-mole):				
41F. Maximum true vapor pressure (psia):				
41G. Maximum Reid vapor pressure (psia):				
41H. Months Storage per year. From: To:				
42. Final maximum gauge pressure and				
temperature prior to transfer into tank used as				
inputs into flashing emission calculations.				

ATTACHMENT M

NATURAL GAS FIRED FUEL BURNING UNIT(S) DATA SHEET(S)

General G70-D Permit Application

Yoder Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

SMALL HEATERS AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART DC DATA SHEET

Complete this data sheet for each small heater and reboiler not subject to 40CFR60 Subpart Dc at the facility. *The Maximum Design Heat Input (MDHI) must be less than 10 MMBTU/hr.*

Emission Unit ID# ¹	Emission Point ID# ²	Emission Unit Description (manufacturer, model #)	Year Installed/ Modified	Type ³ and Date of Change	Maximum Design Heat Input (MMBTU/hr) ⁴	Fuel Heating Value (BTU/scf) ⁵
GPU-1	1e	GPU Heater	2017	New	1 MMBtu/hr	1,253
GPU-2	2e	GPU Heater	2017	New	1 MMBtu/hr	1,253
GPU-3	3e	GPU Heater	2017	New	1 MMBtu/hr	1,253
GPU-4	4e	GPU Heater	2017	New	1 MMBtu/hr	1,253
GPU-5	5e	GPU Heater	2017	New	1 MMBtu/hr	1,253
GPU-6	6e	GPU Heater	2017	New	1 MMBtu/hr	1,253

- ¹ Enter the appropriate Emission Unit (or Source) identification number for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.
- ² Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.
- ³ New, modification, removal
- ⁴ Enter design heat input capacity in MMBtu/hr.
- ⁵ Enter the fuel heating value in BTU/standard cubic foot.

ATTACHMENT N

INTERNAL COMBUSTION ENGINE DATA SHEET(S)

General G70-D Permit Application

Yoder Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. Generator(s) and microturbine generator(s) shall also use this form.

	ise this form	1		1		1	
Emission Unit I	D#1		-1				
Engine Manufac	cturer/Model	Caterpillar	/G3516BLE				
Manufacturers I	Rated bhp/rpm	1380/	/ 1400				
Source Status ²		N	IS				
Date Installed/ Modified/Remo	ved/Relocated ³	20	17				
Engine Manufac /Reconstruction		11/17	/2014				
Check all applic Rules for the en EPA Certificate if applicable) ⁵	gine (include	□ NESHAP 2 JJJJ Window	ed? ubpart IIII ed? ubpart ZZZZ	□ NESHAP JJJJ Window	ied? Subpart IIII ed? Subpart ZZZZ ZZZZ/ NSPS	□ NESHAP JJJJ Window	ed? Subpart IIII ed? Subpart ZZZZ ZZZZ/ NSPS
Engine Type ⁶		45	LB				
APCD Type ⁷		OxCa	tA/F				
Fuel Type ⁸		R	G				
H ₂ S (gr/100 scf)	0.	25				
Operating bhp/r	pm	1380	/1400				
BSFC (BTU/bhj	p-hr)	8,200) HHV				
Hourly Fuel Th	roughput	9,035 f	t ³ /hr	ft ³ /hr			/hr l/hr
Annual Fuel Th (Must use 8,760 emergency gene	hrs/yr unless	79.15 N	/Mft ³ /yr	MMft ³ /yı	r		Aft ³ /yr l/yr
Fuel Usage or H Operation Mete		Yes 🖂	No 🗆	Yes 🖂	No 🗆	Yes 🗆	No 🗆
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)
MD	NO _x	1.52	6.66				
MD	СО	6.08	26.65				
MD	VOC	2.13	9.33				
AP	SO ₂	0.01	0.03				
AP	PM ₁₀	0.11	0.49				
MD	Formaldehyde	1.19	5.20				
AP	Total HAPs	1.43	6.24				
MD	GHG (CO ₂ e)	1745.52	6950.63				

1 Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion engine/generator engine located at the well site. Multiple engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.

2 Enter the Source Status using the following codes:

NS	Construction of New Source (installation)	ES	Existing Source
MS	Modification of Existing Source	RS	Relocated Source
REM	Removal of Source		

- 3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.
- 4 Enter the date that the engine was manufactured, modified or reconstructed.
- 5 Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6 Enter the Engine Type designation(s) using the following codes:

	2SLB 4SLB	Two Stroke Lean Burn Four Stroke Lean Burn	4SRB	Four Str	roke Rich Burn				
7	Enter th	e Air Pollution Control Device (APCD) type designat	tion(s) u	ising the fo	llowing codes:				
	A/F HEIS PSC NSCR SCR	Air/Fuel Ratio High Energy Ignition System Prestratified Charge Rich Burn & Non-Selective Catalytic Reduction Lean Burn & Selective Catalytic Reduction		IR SIPC LEC OxCat	Ignition Retard Screw-in Precombu Low Emission Con Oxidation Catalyst		mbers	3	
8	Enter th	e Fuel Type using the following codes:							
	PQ	Pipeline Quality Natural Gas RC	B R	aw Natural	l Gas /Production Ga	IS	D	Diesel	
9	Enter t	he Potential Emissions Data Reference designa	ation us	sing the f	ollowing codes. A	ttach all	refer	ence data use	d.
	MD	Manufacturer's Data	А	P AP	-42				
	GR	GRI-HAPCalc TM	0	T Oth	ner (ple	ease list)			

10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

Engine Air Pollution Control Device (Emission Unit ID# <u>CE-1</u>, use extra pages as necessary)

Air Pollution Control Device Manufacturer's Data Sheet included? Yes \boxtimes No \square

\Box NSCR	\Box SCR	🛛 Oxidation Catalyst
Provide details of process control used for proper ma	ixing/control of redu	cing agent with gas stream: NA
Manufacturer: Catalytic Combustion	Model #:	
Design Operating Temperature: 450°F- 1350F	Design ga	s volume: 9,151 acfm
Service life of catalyst: 8760 hr.	Provide m	anufacturer data? 🛛 Yes 🛛 No
Volume of gas handled: 9,193 acfm at 1004°F		temperature range for NSCR/ <u>Ox Cat</u> : °F to 1350 °F
Reducing agent used, if any: NA	Ammonia	slip (ppm): NA
Pressure drop against catalyst bed (delta P):	inches of H ₂ O	
Provide description of warning/alarm system that provide description of warning/alarm system that provide description of the pro		
How often is catalyst recommended or required to be	e replaced (hours of a	operation)?

□No performance test required. If so, why (please list any maintenance required and the applicable sections in NSPS/GACT, EPA Certified Engine – See Certificate of Conformity Attached

Date of Manufacture	4/16/2012	Engine Serial Number		JEF01670	Date Modified/	Reconstructed	Not Any
Driver Rated HP	1380	Rated Speed in RPM		1400	Combustion Ty	pe	Spark Ignited 4 Stroke
Number of Cylinders	16	Compression Ratio		8:1	Combustion Se	tting	Ultra Lean Burn
Total Displacement (in ³)	4211	Fuel Delivery Method		Carburetor	Combustion Air	Treatment	T.C./Aftercooled
Raw Engine Emissions (Customer Supplied F	uel Gas with H2S <	10 PPM)					
Fuel Consumption 7417	7 LHV BTU/bhp-hr	or	8174 HHV	/ BTU/bhp-hr			
Altitude 1200) ft						
Maximum Air Inlet Temp 90) F						
			g/bhp-hr ¹	lb/MMBTU ²	lb/hr	ТРҮ	
Nitrogen Oxides (NOx)			0.5		1.52	6.66	
Carbon Monoxide (CO)			3.00		9.13	39.98	
Volatile Organic Compounds (VOC or NMNEH	C excluding CH2O)		0.98		2.98	13.06	
Formaldehyde (CH2O)			0.39		1.19	5.20	
Particulate Matter (PM) Filterable+Condensable				9.99E-03	1.13E-01	4.93E-01	
Sulfur Dioxide (SO2)				5.88E-04	6.63E-03	2.91E-02	
			g/bhp-hr ¹		lb/hr	Metric Tonne/yr	
			<u> </u>		i		
Carbon Dioxide (CO2)			513		1561	6200	
Methane (CH4)			513 2.41) ft elevation, and 90		1561 7.33	6200 29.13	
Methane (CH4)	Fifth Edition, Volun	is recommended to add	513 2.41) ft elevation, and 90 a safety margin to CC), VOC, and Formaldehyde to	1561 7.33 account for		
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Specificati Note that g/bhp-hr values are based on 100% variations in fuel gas composition and load. ² Emission Factor obtained from EPA's AP-42,	Fifth Edition, Volun	is recommended to add	513 2.41) ft elevation, and 90 a safety margin to CC), VOC, and Formaldehyde to	1561 7.33 account for		
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Specificati Note that g/bhp-hr values are based on 100% variations in fuel gas composition and load. ² Emission Factor obtained from EPA's AP-42, Gas-Fired Reciprocating Engines, Table 3.2-2; Catalytic Converter Emissions Catalytic Converter Make amd Model:	Fifth Edition, Volun	is recommended to add	513 2.41) ft elevation, and 90 a safety margin to CC), VOC, and Formaldehyde to	1561 7.33 account for		
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Specificati Note that g/bhp-hr values are based on 100% variations in fuel gas composition and load. ² Emission Factor obtained from EPA's AP-42, Gas-Fired Reciprocating Engines, Table 3.2-2 Catalytic Converter Emissions <i>Catalytic Converter Make amd Model:</i> <i>Element Type:</i>	i Load Operation. It	is recommended to add	513 2.41) ft elevation, and 90 a safety margin to CC), VOC, and Formaldehyde to	1561 7.33 account for		
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Specificati Note that g/bhp-hr values are based on 100% variations in fuel gas composition and load. ² Emission Factor obtained from EPA's AP-42, Gas-Fired Reciprocating Engines, Table 3.2-2] Catalytic Converter Emissions <i>Catalytic Converter Make amd Model:</i> <i>Element Type:</i> <i>Number of Elements in Housing:</i>	i Load Operation. It Fifth Edition, Volun <i>Oxidati</i> 2	is recommended to add	513 2.41 9 ft elevation, and 90 a safety margin to CC y Internal Combution), VOC, and Formaldehyde to	1561 7.33 account for		
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Specificati Note that g/bhp-hr values are based on 100% variations in fuel gas composition and load. ² Emission Factor obtained from EPA's AP-42, Gas-Fired Reciprocating Engines, Table 3.2-2 Catalytic Converter Emissions <i>Catalytic Converter Make amd Model:</i> <i>Element Type:</i>	i Load Operation. It Fifth Edition, Volun <i>Oxidati</i> 2	is recommended to add	513 2.41 9 ft elevation, and 90 a safety margin to CC y Internal Combution), VOC, and Formaldehyde to	1561 7.33 account for		
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Specificati Note that g/bhp-hr values are based on 100% variations in fuel gas composition and load. ² Emission Factor obtained from EPA's AP-42, Gas-Fired Reciprocating Engines, Table 3.2-2] Catalytic Converter Emissions <i>Catalytic Converter Make amd Model:</i> <i>Element Type:</i> <i>Number of Elements in Housing:</i>	i Load Operation. It Fifth Edition, Volun <i>Oxidati</i> 2	is recommended to add	513 2.41 9 ft elevation, and 90 a safety margin to CC y Internal Combution), VOC, and Formaldehyde to	1561 7.33 account for		
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Specificati Note that g/bhp-hr values are based on 100% variations in fuel gas composition and load. ² Emission Factor obtained from EPA's AP-42, Gas-Fired Reciprocating Engines, Table 3.2-2] Catalytic Converter Emissions <i>Catalytic Converter Make amd Model:</i> <i>Element Type:</i> <i>Number of Elements in Housing:</i>	i Load Operation. It Fifth Edition, Volun <i>Oxidati</i> 2	is recommended to add	513 2.41) ft elevation, and 90 a safety margin to CC y Internal Combution), VOC, and Formaldehyde to	1561 7.33 e account for	29.13	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Specificati Note that g/bhp-hr values are based on 100% variations in fuel gas composition and load. ² Emission Factor obtained from EPA's AP-42, Gas-Fired Reciprocating Engines, Table 3.2-22 Catalytic Converter Emissions Catalytic Converter Make amd Model: Element Type: Number of Elements in Housing: Air/Fuel Ratio Control	i Load Operation. It Fifth Edition, Volun <i>Oxidati</i> 2	is recommended to add	513 2.41) ft elevation, and 90 a safety margin to CC y Internal Combution k <u>% Reduction</u>), VOC, and Formaldehyde to Sources (Section 3.2 Natura g/bhp-hr	1561 7.33 • account for	29.13 	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Specificati Note that g/bhp-hr values are based on 100% variations in fuel gas composition and load. ² Emission Factor obtained from EPA's AP-42, Gas-Fired Reciprocating Engines, Table 3.2-2] Catalytic Converter Emissions Catalytic Converter Make amd Model: Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx)	5 Load Operation. It Fifth Edition, Volum). Oxidati 2 Caterpin	is recommended to add	513 2.41 0 ft elevation, and 90 a safety margin to CC y Internal Combution k k <u>% Reduction</u> 0), VOC, and Formaldehyde to Sources (Section 3.2 Natura 	1561 7.33 account for	29.13 6.66	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Specificati Note that g/bhp-hr values are based on 100% variations in fuel gas composition and load. ² Emission Factor obtained from EPA's AP-42, Gas-Fired Reciprocating Engines, Table 3.2-2] Catalytic Converter Emissions Catalytic Converter Make amd Model: Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx) Carbon Monoxide (CO)	5 Load Operation. It Fifth Edition, Volum). Oxidati 2 Caterpin	is recommended to add	513 2.41 0 ft elevation, and 90 a safety margin to CC y Internal Combution k <u>% Reduction</u> 0 33	0, VOC, and Formaldehyde to Sources (Section 3.2 Natura <u>g/bhp-hr</u> <1.00 2.00	1561 7.33 • account for	29.13 	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Specificati Note that g/bhp-hr values are based on 100% variations in fuel gas composition and load. ² Emission Factor obtained from EPA's AP-42, Gas-Fired Reciprocating Engines, Table 3.2-2] Catalytic Converter Emissions Catalytic Converter Make amd Model: Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC or NMNEH	5 Load Operation. It Fifth Edition, Volum). Oxidati 2 Caterpin	is recommended to add	513 2.41 0 ft elevation, and 90 a safety margin to CC y Internal Combution k <u>% Reduction</u> 0 33 29	0, VOC, and Formaldehyde to Sources (Section 3.2 Natura <u>g/bhp-hr</u> <1.00 2.00 0.70	1561 7.33 • account for • • • • • • • • • • • • •	29.13 <u>TPY</u> 6.66 26.66 9.27	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Specificati Note that g/bhp-hr values are based on 100% variations in fuel gas composition and load. ² Emission Factor obtained from EPA's AP-42, Gas-Fired Reciprocating Engines, Table 3.2-27 Catalytic Converter Emissions <i>Catalytic Converter Make amd Model:</i> <i>Element Type:</i> <i>Number of Elements in Housing:</i> <i>Air/Fuel Ratio Control</i> Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC or NMNEH Formaldehyde (CH2O)	5 Load Operation. It Fifth Edition, Volum). Oxidati 2 Caterpin	is recommended to add	513 2.41 0 ft elevation, and 90 a safety margin to CC y Internal Combution k <u>% Reduction</u> 0 33 29 0	0, VOC, and Formaldehyde to Sources (Section 3.2 Natura <u>g/bhp-hr</u> <1.00 2.00 0.70	1561 7.33	29.13 	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Specificati Note that g/bhp-hr values are based on 100% variations in fuel gas composition and load. ² Emission Factor obtained from EPA's AP-42, Gas-Fired Reciprocating Engines, Table 3.2-27 Catalytic Converter Emissions <i>Catalytic Converter Make amd Model:</i> <i>Element Type:</i> <i>Number of Elements in Housing:</i> <i>Air/Fuel Ratio Control</i> Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC or NMNEH Formaldehyde (CH2O) Particulate Matter (PM)	5 Load Operation. It Fifth Edition, Volum). Oxidati 2 Caterpin	is recommended to add	513 2.41 0 ft elevation, and 90 a safety margin to CC y Internal Combution k <u>% Reduction</u> 0 33 29 0 0 0	0, VOC, and Formaldehyde to Sources (Section 3.2 Natura <u>g/bhp-hr</u> <1.00 2.00 0.70	1561 7.33 o account for d <u>lb/hr</u> 1.52 6.09 2.12 1.19 1.13E-01	29.13 <u>TPY</u> 6.66 26.66 9.27 5.20 4.93E-01	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Specificati Note that g/bhp-hr values are based on 100% variations in fuel gas composition and load. ² Emission Factor obtained from EPA's AP-42, Gas-Fired Reciprocating Engines, Table 3.2-27 Catalytic Converter Emissions <i>Catalytic Converter Make amd Model:</i> <i>Element Type:</i> <i>Number of Elements in Housing:</i> <i>Air/Fuel Ratio Control</i> Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC or NMNEH Formaldehyde (CH2O) Particulate Matter (PM)	5 Load Operation. It Fifth Edition, Volum). Oxidati 2 Caterpin	is recommended to add	513 2.41 2.41 2.41 2.41 3 a safety margin to CC y Internal Combution y Internal Combution y Internal Combution y Internal Combution y Internal Combution 0 33 29 0 0 0 0 0 0 0	0, VOC, and Formaldehyde to Sources (Section 3.2 Natura <u>g/bhp-hr</u> <1.00 2.00 0.70	1561 7.33	29.13 TPY 6.66 26.66 9.27 5.20 4.93E-01 2.91E-02	

Catalyst Group 709 21st Ave, Bloomer, WI 54724 Tel: (715) 568-2882 • Fax: (715)568-2884 E-mail : bweninger@catalyticcombustion.com

EMISSION TECHNOLOGIES

To USA Compr	ession			(Our Ref. QT-116-2511-2
Attn Chris Mage	e				Date: 17 November, 2016
Via E-mail					Page: 1 of 1
		PERFOR	MANCE EXPECTATION		
For :			Location :		
ne Parameters					
Engine Manufacturer	Cate	erpillar		R	aw Exhaust
Engine Model	G35	16	NOx	0.50	g/bhp-hr
Horsepower	1	1380 bhp	CO	3.00	g/bhp-hr
Speed	1	1400 rpm	NMHC	1.93	g/bhp-hr
Exhaust Flowrate	9	9193 acfm	NMNEHC (VOC)	0.98	g/bhp-hr
Exhaust Temperature	1	1004 ° F	нсно	0.39	g/bhp-hr
Fuel	Nati	ural Gas	Oxygen	9.10	%
lyst Description and P	-	-			
Substrate Type	Fold	led Metal Foil	Catalyst Dimensions	35.8	875 x 14.875 x 3.50"
Cell Pattern	320	cpsi Herringbone	Quantity Required	2 pe	er Unit
Banding	CCC	C-Channel Design	Formulation	HFX	4
		c.			
		erformance			
NOx	< 1.00	g/bhp-hr			
СО	2.00	g/bhp-hr			
NMHC					
NMNEHC (VOC)	0.70	g/bhp-hr			
НСНО					

General Terms and Conditions of Sale and Manufacturers Warranty documents are available upon request.

This catalyst is to be installed into a converter housing produced by another manufacturer. CCC cannot verify that the housing is structurally sound and permits proper catalyst sealing. Therefore, should the catalyst not reach the catalyst outlet targets with the engine operating as listed above, then all efforts must be made to ensure that a proper catalyst seal has been obtained before questioning the performance of the catalyst.

Best regards,

Bieldungen

Brian Weninger Mechanical Engineer, Catalyst Group

ENGINE SPEED (rpm):

COMPRESSION RATIO:

AFTERCOOLER TYPE:

ASPIRATION: COOLING SYSTEM: CONTROL SYSTEM: EXHAUST MANIFOLD:

SET POINT TIMING:

COMBUSTION:

GAS COMPRESSION APPLICATION

AFTERCOOLER - STAGE 2 INLET (°F):

AFTERCOOLER - STAGE 1 INLET (°F): JACKET WATER OUTLET (°F):

NOx EMISSION LEVEL (g/bhp-hr NOx):

GAS ENGINE SITE SPECIFIC TECHNICAL DATA CNX Oxford 11 Engine Quote 4/19/16

FUEL:

1400

SCAC

130

201

210

TA

ADEM3

DRY

0.5

28

JW+OC+1AC, 2AC

LOW EMISSION

8

RATING STRATEGY:

SITE CONDITIONS:

FUEL PRESSURE RANGE(psig): FUEL METHANE NUMBER: FUEL LHV (Btu/scf): ALTITUDE(ft):

STANDARD RATED POWER:

MAXIMUM INLET AIR TEMPERATURE(°F):

RATING LEVEL:

FUEL SYSTEM:

STANDARD CONTINUOUS CAT WIDE RANGE WITH AIR FUEL RATIO CONTROL

CNX Oxford 1-12-15 7.0-40.0 52.0

1171 1200 90

1380 bhp@1400rpm

			MAXIMUM RATING		TING AT N IR TEMPE	
RATING	NOTES	LOAD	100%	100%	75%	50%
ENGINE POWER (WITHOUT FAN)	(1)	bhp	1380	1380	1035	690
INLET AIR TEMPERATURE		°F	90	90	90	90
ENGINE DATA						
FUEL CONSUMPTION (LHV)	(2)	Btu/bhp-hr	7417	7417	7944	8533
FUEL CONSUMPTION (HHV)	(2)	Btu/bhp-hr	8174	8174	8755	9403
AIR FLOW (@inlet air temp, 14.7 psia) (WET)	(3)(4)	ft3/min	3224	3224	2529	1768
AIR FLOW (WET)	(3)(4)	lb/hr	13956	13956	10948	7654
FUEL FLOW (60°F, 14.7 psia)		scfm	146	146	117	84
INLET MANIFOLD PRESSURE	(5)	in Hg(abs)	92.9	92.9	75.4	53.0
EXHAUST TEMPERATURE - ENGINE OUTLET	(6)	°F	1004	1004	989	998
EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (WET)	(7)(4)	ft3/min	9193	9193	7149	5036
EXHAUST GAS MASS FLOW (WET)	(7)(4)	lb/hr	14447	14447	11342	7936
EMISSIONS DATA - ENGINE OUT						
NOx (as NO2)	(8)(9)	g/bhp-hr	0.50	0.50	0.50	0.50
со	(8)(9)	g/bhp-hr	3.00	3.00	3.22	3.16
THC (mol. wt. of 15.84)	(8)(9)	g/bhp-hr	4.34	4.34	4.65	4.72
NMHC (mol. wt. of 15.84)	(8)(9)	g/bhp-hr	1.93	1.93	2.06	2.09
NMNEHC (VOCs) (mol. wt. of 15.84)	(8)(9)(10)	g/bhp-hr	0.98	0.98	1.05	1.07
HCHO (Formaldehyde)	(8)(9)	g/bhp-hr	0.39	0.39	0.38	0.37
CO2	(8)(9)	g/bhp-hr	513	513	548	595
EXHAUST OXYGEN	(8)(11)	% DRY	9.1	9.1	8.8	8.4
HEAT REJECTION						
HEAT REJ. TO JACKET WATER (JW)	(12)	Btu/min	22670	22670	21482	20250
HEAT REJ. TO ATMOSPHERE	(12)	Btu/min	6110	6110	5092	4074
HEAT REJ. TO LUBE OIL (OC)	(12)	Btu/min	4475	4475	3978	3363
HEAT REJ. TO A/C - STAGE 1 (1AC)	(12)(13)	Btu/min	11152	11152	9217	3134
HEAT REJ. TO A/C - STAGE 2 (2AC)	(12)(13)	Btu/min	5501	5501	5179	3381
COOLING SYSTEM SIZING CRITERIA						
TOTAL JACKET WATER CIRCUIT (JW+OC+1AC)	(13)(14)	Btu/min	42017			
TOTAL AFTERCOOLER CIRCUIT (2AC)	(13)(14)	Btu/min	5776			
A cooling system safety factor of 0% has been added to the cooling system sizing criteria.	<u> </u>					

CONDITIONS AND DEFINITIONS Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

For notes information consult page three

ATTACHMENT O

TANKER TRUCK/ RAIL CAR LOADING DATA SHEET(S)

General G70-D Permit Application

Yoder Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

ATTACHMENT O – TANKER TRUCK/RAIL CAR LOADING DATA SHEET

Complete this data sheet for each new or modified bulk liquid transfer area or loading rack at the facility. This is to be used for bulk liquid transfer operations to tanker trucks/rail cars. Use extra pages if necessary.

Truck/Rail Car Loadout Collection Efficiencies

The following applicable capture efficiencies of a truck/rail car loadout are allowed:

- For tanker trucks/rail cars passing the MACT level annual leak test 99.2%
- For tanker trucks/rail cars passing the NSPS level annual leak test 98.7%
- For tanker trucks/rail cars not passing one of the annual leak tests listed above 70%

Compliance with this requirement shall be demonstrated by keeping records of the applicable MACT or NSPS Annual Leak Test certification for *every* truck and railcar loaded/unloaded. This requirement can be satisfied if the trucking/rail car company provided certification that its entire fleet was compliant. This certification must be submitted in writing to the Director of the DAQ. These additional requirements must be noted in the Registration Application.

Emission Unit ID#: TL-	1	Emissi	on Point ID#	#: 9e Year In			alled/N	Iodified:2017
Emission Unit Descripti	ion: Tank Truc	k Loading	(Water & C	ondensate)				
			Loading	Area Data				
Number of Pumps: 1		Numbe	er of Liquids	Loaded: 1		Max num at one (1)		trucks/rail cars loading 1
Are tanker trucks/rail ca If Yes, Please describe:		ed for lea	ks at this or	any other loc	ation?	□ Yes	🗆 No	⊠ Not Required
Provide description of c	closed vent syst	em and an	y bypasses.					
Are any of the following Closed System to ta Closed System to ta Closed System to ta	nker truck/rail (nker truck/rail (nker truck/rail (ar passing ar passing ar not pas	g a MACT le g a NSPS lev ssing an annu	vel annual le el annual lea 1al leak test a	k test? nd has v	•		
Pro	jected Maximu	m Operat	ting Schedul	e (for rack o	r transf	er point as	a who	ole)
Time	Jan – M	ar	Apr	- Jun	J	Jul – Sept		Oct - Dec
Hours/day	24		2	24		24		24
Days/week	7			7		7		7
	Bu	lk Liquid	Data (use e	xtra pages a	s necess	ary)		
Liquid Name	Produc	d Water						
Max. Daily Throughput (1000 gal/day)	38.40							
Max. Annual Throughpu (1000 gal/yr)	ut 14,016.	22						
Loading Method ¹	SUB							
Max. Fill Rate (gal/min) 26.67							
Average Fill Time (min/loading)	60							
Max. Bulk Liquid Temperature (°F)	52.14							
True Vapor Pressure ²	0.25							
Cargo Vessel Condition	³ C							
Control Equipment or Method ⁴	NA							
Max. Collection Efficie (%)	ncy 0							

Max. Control (%)	Efficiency	0	
Max.VOC Emission	Loading (lb/hr)	<0.01	
Rate	Annual (ton/yr)	0.01	
Max.HAP Emission	Loading (lb/hr)	0	
Rate	Annual (ton/yr)	0	
Estimation M	ethod ⁵	O - ProMax	

1	BF	Bottom Fill	SP	Splash Fill	SUB	Submerged Fill	
2	At max	ximum bulk liquid temperature					

С U 3 В Ballasted Vessel Uncleaned (dedicated service) Cleaned 0 Other (describe)

MB

Material Balance

4 List as many as apply (complete and submit appropriate Air Pollution Control Device Sheets)

Dedicated Vapor Balance (closed system) CAVB

Carbon Adsorption Enclosed Combustion Device F Flare ECD

то Thermal Oxidization or Incineration

5

EPA EPA Emission Factor in AP-42

ТМ Test Measurement based upon test data submittal 0 Other (describe)

ATTACHMENT P

GLYCOL DEHYDRATION UNIT DATA SHEET(S)

NOT APPLICABLE- No glycol dehydration unit in use at the facility.

General G70-D Permit Application

Yoder Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

ATTACHMENT Q

PNEUMATIC CONTROLLERS DATA SHEET(S)

General G70-D Permit Application

Yoder Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

ATTACHMENT Q – PNEUMATIC CONTROLLERS DATA SHEET

Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015? \Box Yes \boxtimes No Please list approximate number. Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after September 18, 2015? Yes 🛛 🖂 No Please list approximate number. Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015? \Box Yes \Box No Please list approximate number. Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after September 18, 2015? \Box Yes \boxtimes No Please list approximate number.

ATTACHMENT R

PNEUMATIC PUMP DATA SHEET(S)

General G70-D Permit Application

Yoder Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

ATTACHMENT R – PNEUMATIC PUMP DATA SHEET

Are there any natural gas-driven diaphragm pumps located at a well site that commenced construction, modification or reconstruction after September 18, 2015?

 \Box Yes \boxtimes No

Please list.

Source ID #	Date	Pump Make/Model	Pump Size

ATTACHMENT S

AIR POLLUTION CONTROL DEVICE/ EMISSION REDUCTION DEVICE SHEET(S)

General G70-D Permit Application

Yoder Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

ATTACHMENT S – AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION DEVICE SHEETS

Complete the applicable air pollution control device sheets for each flare, vapor combustor, thermal oxidizer, condenser, adsorption system, vapor recovery unit, BTEX Eliminator, Reboiler with and without Glow Plug, etc. at the facility. Use extra pages if necessary.

Emissions calculations must be performed using the most conservative control device efficiency.

The following five (5) rows are only to be completed if	registering an alternative air pollution control device.
Emission Unit ID: T01-T03	Make/Model:
Primary Control Device ID: F-1	Make/Model: The Frederick Logan Company, Inc
Control Efficiency (%): 98	APCD/ERD Data Sheet Completed: ×Yes □ No
Secondary Control Device ID:	Make/Model:
Control Efficiency (%):	APCD/ERD Data Sheet Completed: Yes No

		VAPOR CO	MBUST	ION		
	(Ir	ncluding Enclo	sed Con	ibusto	rs)	
		General Ir	nformation			
Control Device ID#: F-1			Installation		017 Aodified	Relocated
Maximum Rated Total Flow C 2,000 scfh 48,000 sc			Maximum Heat Input mfg. spec 2 MMBTU	(from sheet)	Design H 1,000 BT	leat Content 'U/scf
		Control Devic	e Informati	on		
Enclosed Combustion Dev	ice	Type of Vapor Co		ontrol?		Ground Flare
Manufacturer: The Frederick Model:	Logan Con	npany, Inc	Hours of o	peration	per year? 8	3760
List the emission units whose	emissions	are controlled by this	vapor conti	ol device	e (Emission	n Point ID# 7e)
Emission Unit ID# Emission Source	Descriptio	on	Emission Unit ID#	Emissio	on Source I	Description
T01-T03 Produced Water	anks					
If this vapor combustor	controls en	nissions from more the	an six (6) en	nission un	iits, please	attach additional pages.
Assist Type (Flares only)		Flare Height	Tiŗ	o Diamete	er	Was the design per §60.18?
SteamAirPressureNor	L	20 feet		TBD		⊠ Yes □ No Provide determination.
		Waste Gas 1	Information	ı		
Maximum Waste Gas Flow R (scfm)	ate 19.85	Heat Value of W 200 BTU/ft	aste Gas Sti ³ or greater	ream	Exit Vel	ocity of the Emissions Stream < 60 (ft/s)
Provide an	ı attachme	ent with the characteri	stics of the w	waste gas	stream to	be burned.
		Pilot Gas I	nformation			
Number of Pilot Lights 1		Flow Rate to Pilot lame per Pilot 5 scfh		nput per 00 BTU/l		Will automatic re-ignition be used? ⊠ Yes □ No
If automatic re-ignition is use proof of pilot flame through f			Electronic re-	-ignition	will be ins	
Is pilot flame equipped with a presence of the flame?	monitor t	to detect the		olet sends a s	□ Camera ignal to co	couple □ Infrared ⊠ Other: Ionization ntroller as long as it is in
Describe all operating ranges <i>unavailable, please indicate)</i> .			uired by the	manufac	turer to ma	aintain the warranty. (If
Additional information attach Please attach copies of manuf performance testing.			flame demo	nstration	per §60.18	or §63.11(b) and

Equipment Description

ITEM QTY DESCRIPTION

1

1

DVC-36 Skid Mounted, Valve Train Enclosed Flare complete with:

- > 36" Dia. Combustion Chamber
- 36" x 20' Tall Exhaust Stack
- (3) 24" Adjustable Flame Cell Air Inlets (one Hinged)
- > (2) Dual Type K thermocouples with Thermowell
- ➤ (2) 4" Flanged Sample Ports
- Stack Lined with 4" 2300 deg. Folded Blanket Flue Liners
- Lower stack lined with 4" Castable Refractory
- ➤ (1) Sight Glass
- Stack Material –A-36
- Surface prep and paint:
 - o Standard 2 coat paint
 - Color to be determined
- 4" Dehy Overhead Still Column Vapor Inlet. To be mounted on top of the Heated Enclosure. Block & Vent valves to be installed. Vent line to extend 6' above roof. (vent line to be removed for shipping)
- Install low point drains on bottom of vent line, run SS tubing with hand valve to + 1' above grade.
- Install low point drain upstream of the 3" Flame arrestor. Install SS tubing and hand valve.
- > (1) 1" NPT for Flash Gas and Vessel Relief Vapors Inlet.
- > (2) Lifting lug mounted on top stack section.
- Valve Train C/W: Pneumatic Shutoff Valve, Pilot Solenoid, Manual Block Valve, Strain, and Regulator.
- 2 1 2 MMBTU/HR Burner
 - Natural Draft Gas induced Burner

3 1 MR-1000 Pilot

- Self-inspirited pilot.
- Direct Spark Ignition
- Flame Ionization Detection Rod.

4 1 Burner Control Panel

- > 24 VDC Solar power Option
 - Solar Panel and mounting bracket
 - Solar Charging Module

- (2) 12 VDC deep cycle batteries
- (1) Battery enclosure
- Mounting pole
- ProFire 2100 Ignition System with Modbus Communications card.
- > NEMA 4 Main Enclosure
- Assist heat burner is on when temperature drops below 1450 deg F.
- Continuous pilot operation.
- System shut down for the following events:
 - Loss of Flame
 - High Stack Temp
 - Customer contacts for the following signals
 - ➤ Fault
 - ➢ At Temp

5 1 Process Valve Train

- ➤ 4" Pneumatic Block Valve for Dehy Stream Vapors.
- 1/2" ASCO Solenoid Low draw Valve for burner gas
- > 1" Pneumatic block Valve for flash Gas inlet.
- ½" ASCO Next Generation low draw solenoid valve for pilot gas
- ¼" 3-way Solenoid valve for Pneumatic valve operation.
- Manual block valve for pilot gas
- ➢ fuel gas regulator
- Instrument gas regulator for pneumatic controls
- Fuel Gas Strainer

6 2 Flame Arrestor

- 3" 150#, CS/AL construction, for Low Pressure Overhead Dehy Inlet.
- 1" NPT Threaded, CS/AL construction, for High Pressure Flash Gas Vapors.

7 3 Documentation

Operation and Maintenance Manual

8 1 FAT – Factory Acceptance Test

- Complete test of system at Fort Worth, TX location
- 9 1 Heated Enclosure for Vessels and Skid mounted Valve train

- 1" thick lined insulation on roof and walls
- ➢ 6,000 BTU/HR Catco Heater
- Access door
- Louvered Vent ports

10124" Dia. Knockout/Blow Pot Vessel with complete
instrumentation

- ASME Pressure Vessel
- 150 PSIG @250 deg F
- ➢ 4" NPT inlet
- ➢ 4" NPT Outlet
- > 1" NPT Liquid Drain
- 2" NPT Level Controller Connection
- > 1" NPT Level Gauge Connections
- Kimray Gen II Level controller
- Kimray dump valve
- 1" Check valve
- 3-way pneumatic valve

Technical Summary

Process inlet stream: Based on GRI-Gly calc output (attached)

	Overhead Still Inlet	
	Inlet Temperature:	212 °F
	Inlet Pressure:	≥ 2″ WC
	Flash Gas Inlet	
	Inlet Temperature:	100 °F
	Inlet Pressure:	20-50 PSIG
	Combustion Chamber Temp:	1450 – 1600 deg F
	Destruction Efficiency:	≥98.0%
Site Cor	nditions:	
	Wind Speed	90 MPH
	Seismic Zone	1
	Elevation	1,000 ft.
	Humidity	High
Utilities	:	
	Gas Service Required for Burner	400 SCFH – Natural Gas Intermittent use, Only on when temp <1450 deg F
	Electrical Service Required	Solar Powered 24 VDC, 5 amps
	Gas Consumption at Start-up	400,000 Btu/hr
	Gas Consumption under load	≤ 400 SCFH, Dependent on BTU value of waste stream

Z

ATTACHMENT T

EMISSION CALULATIONS

General G70-D Permit Application

Yoder Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

Table 1. Annual Potential To Emit (PTE) Summary Tug Hill Operating, LLC Yoder Pad

	-	-	Criteri	ia PTE			-	
Source	РМ	PM10	PM2.5	SO2	NOx	со	VOC	CO2e
Line Heaters (tpy)	0.196	0.196	0.196	0.015	2.576	2.164	0.142	3075
Compressor (tpy)**	0.495	0.495	0.495	0.029	6.663	26.651	14.525	6951
Tanks (tpy)*							1.539	
Ground Flare (tpy)				0.004	0.598	2.726	6.025	1024
Truck Loading (tpy)							0.004	
Compressor Blowdowns (tpy)							1.396	158
Component Fugitives (tpy)							3.002	42
Total Emissions (tpy)	0.691	0.691	0.691	0.048	9.837	31.542	25.094	11250
Total Emissions (lb/hr)	0.158	0.158	0.158	0.011	2.246	7.201	5.729	2568

*VOC emissions from tanks accounted for within VOC emissions from ground flare

**VOC emissions from compressor includes formaldehyde emissions

HAP PTE **Total HAPs** Source Benzene Toluene Ethylbenzene Xylene n-Hexane Formaldehyde (tpy) 0.000 0.000 Line Heaters (tpy) ------0.046 0.002 0.049 0.005 0.020 0.002 0.055 6.240 Compressor (tpy) 0.009 5.197 Fugitives (tpy) 0.000 0.000 0.000 0.039 0.000 0.039 ---Total Emissions (tpy) 0.005 0.020 0.002 0.009 0.140 5.199 6.328 Total Emissions (lb/hr) 0.001 0.005 0.000 0.002 0.032 1.187 1.445

Table 1 Compressor Engine Emissions (CE-1) Caterpillar G3516BLE

Pollutant	Emiss	ion Factor		PTE (Ib/h		PTE (tons/	
Criteria Delluterte							
Criteria Pollutants PM/PM10/PM2.5**	9.98E-03 lb/	MMBtu	(1)	0.11	(a)	0.49	(c)
SO ₂	5.88E-04 lb/		(1)	0.01	(a)	0.03	(c)
NOx	5.00E-01 g/ł		(2)	1.52	(b)	6.66	(d)
CO	2.00E+00 g/t	•	(2)	6.08	(b)	26.65	(d)
VOC*	7.00E-01 g/h		(2)	2.13	(b)	9.33	(d)
"VO'C's does not include formaldehude	-						
Hazardous Air Pollutants							
1,1,2,2-Tetrachloroethane	4.00E-05 lb/		(1)	0.000	(a)	0.002	(c)
1,1,2-Trichloroethane	3.18E-05 lb/ 2.67E-04 lb/		(1) (1)	0.000 0.003	(a)	0.002 0.013	(c)
1,3-Butadiene 1,3-Dichloropropene	2.64E-05 lb/		(1)	0.003	(a) (a)	0.013	(c) (c)
2-Methylnapthalene	3.32E-05 lb/		(1)	0.000	(a)	0.002	(c)
2,2,4-Trimethylpentane	2.50E-05 lb/		(1)	0.000	(a)	0.001	(c)
Acetaldehyde	8.36E-03 lb/	MMBtu	(1)	0.095	(a)	0.415	(c)
Acrolein	5.14E-03 lb/	MMBtu	(1)	0.058	(a)	0.255	(c)
Benzene	4.40E-04 lb/		(1)	0.005	(a)	0.022	(c)
Biphenyl	2.12E-03 lb/		(1)	0.024	(a)	0.105	(c)
Carbon Tetrachloride	3.67E-05 lb/		(1)	0.000	(a)	0.002	(c)
Chlorobenzene	3.04E-05 lb/		(1)	0.000	(a)	0.002	(c)
Chloroform Ethylbenzene	2.85E-05 lb/ 3.97E-05 lb/		(1) (1)	0.000 0.000	(a) (a)	0.001 0.002	(c) (c)
Ethylene Dibromide	4.43E-05 lb/		(1)	0.000	(a)	0.002	(c) (c)
Formaldehyde	3.90E-01 g/ł		(2)	1.187	(b)	5.197	(d)
Methanol	2.50E-03 lb/		(1)	0.028	(a)	0.124	(c)
Methylene Chloride	2.00E-05 lb/		(1)	0.000	(a)	0.001	(c)
n-Hexane	1.11E-03 lb/	MMBtu	(1)	0.013	(a)	0.055	(c)
Naphthalene	7.44E-05 lb/		(1)	0.001	(a)	0.004	(c)
PAH (POM)	2.69E-05 lb/		(1)	0.000	(a)	0.001	(c)
Phenol	1.04E-05 lb/		(1)	0.000	(a)	0.001	(c)
Styrene Toluene	2.36E-05 lb/ 4.08E-04 lb/		(1) (1)	0.000 0.005	(a) (a)	0.001 0.020	(c) (c)
Vinyl Chloride	1.49E-05 lb/		(1)	0.005	(a) (a)	0.020	(c) (c)
Xylenes	1.84E-04 lb/		(1)	0.002	(a)	0.009	(c)
,							
Total HAP				1.425		6.240	
Greenhouse Gas Emissions						Metric Tonr	ie/yr
CO ₂	4.99E+02 g/ł	ոթ-hr	(2)	1518.12	(b)	6044.88	(d)
CH ₄	2.98E+00 g/ł	וp-hr	(2)	9.07	(b)	36.10	(d)
N ₂ O	2.2E-04 lb/	MMBtu	(3)	0.00	(a)	0.01	(c)
CO ₂ e ^(e)	-	-		1745.52		6950.63	
** includes condensible PM							
** includes condensible PM Calculations:							
	1 is used, use calcu	ilation (a). If e	mission fac	tor note 2 is u	sed, use o	calculation (b).	
Calculations: Hourly Emissions - If emission factor note		.,					
Calculations:		.,					
Calculations: Hourly Emissions - If emission factor note	(lb/MMBtu) * (1MMB	tu/1000000 Btu	ı) * Engine P	ower Output (hp			
Calculations: Hourly Emissions - If emission factor note (a) Hourly Emissions (lb/hr) = Emission factor (b) Hourly Emissions (lb/hr) = Emission factor	(lb/MMBtu) * (1MMB (g/hp-hr) * Engine Pc	tu/1000000 Btu ower Output (hp	ı) * Engine P o) * (lb/453.6	ower Output (hj g)) * BSFC	(Btu/hp-hr)	
Calculations: Hourly Emissions - If emission factor note (a) Hourly Emissions (lb/hr) = Emission factor (b) Hourly Emissions (lb/hr) = Emission factor Annual Emissions - If emission factor note	(lb/MMBtu) * (1MMB (g/hp-hr) * Engine Pc 1 is used, use calcu	tu/1000000 Btu ower Output (hp ulation (c). If e	u) * Engine P b) * (lb/453.6 mission fac	ower Output (hp g) tor note 2 is u	sed, use	(Btu/hp-hr)	Appual
Calculations: Hourly Emissions - If emission factor note (a) Hourly Emissions (lb/hr) = Emission factor (b) Hourly Emissions (lb/hr) = Emission factor	(lb/MMBtu) * (1MMB (g/hp-hr) * Engine Pc 1 is used, use calcu	tu/1000000 Btu ower Output (hp ulation (c). If e	u) * Engine P b) * (lb/453.6 mission fac	ower Output (hp g) tor note 2 is u	sed, use	(Btu/hp-hr)	Annual
Calculations: Hourly Emissions - If emission factor note (a) Hourly Emissions (lb/hr) = Emission factor (b) Hourly Emissions (lb/hr) = Emission factor Annual Emissions - If emission factor note (c) Annual emissions (tons/yr) = Emission factor	(lb/MMBtu) * (1MMB (g/hp-hr) * Engine Pc 1 is used, use calcu tor (lb/MMBtu) * (1M	tu/1000000 Btu ower Output (hp ulation (c). If e MBtu/1000000	i) * Engine P b) * (lb/453.6 mission fac Btu) * Engine	ower Output (hj g) tor note 2 is u Power Output	o) * BSFC sed, use ((hp) * BSF	(Btu/hp-hr) calculation (d). FC (Btu/hp-hr) * /	
Calculations: Hourly Emissions - If emission factor note (a) Hourly Emissions (lb/hr) = Emission factor (b) Hourly Emissions (lb/hr) = Emission factor Annual Emissions - If emission factor note (c) Annual emissions (tons/yr) = Emission fac Hours of operation (hr/yr) * (11on/2000lbs) (d) Annual emissions (tons/yr) = Emission fac	(lb/MMBtu) * (1MMB (g/hp-hr) * Engine Pc 1 is used, use calco tor (lb/MMBtu) * (1Mf tor (g/hp-hr) * Engine	tu/1000000 Btu ower Output (hp ulation (c). If e MBtu/1000000	i) * Engine P b) * (lb/453.6 mission fac Btu) * Engine	ower Output (hj g) tor note 2 is u Power Output	o) * BSFC sed, use ((hp) * BSF	(Btu/hp-hr) calculation (d). FC (Btu/hp-hr) * /	
Calculations: Hourly Emissions - If emission factor note (a) Hourly Emissions (lb/hr) = Emission factor (b) Hourly Emissions (lb/hr) = Emission factor Annual Emissions - If emission factor note (c) Annual emissions (tons/yr) = Emission factor Hours of operation (hr/yr) * (1tor/2000lbs) (d) Annual emissions (tons/yr) = Emission factor (lb/453.6g)	(lb/MMBtu) * (1MMB (g/hp-hr) * Engine Pc 1 is used, use calco tor (lb/MMBtu) * (1Mf tor (g/hp-hr) * Engine	tu/1000000 Btu ower Output (hp ulation (c). If e MBtu/1000000	i) * Engine P b) * (lb/453.6 mission fac Btu) * Engine	ower Output (hj g) tor note 2 is u Power Output	o) * BSFC sed, use ((hp) * BSF	(Btu/hp-hr) calculation (d). FC (Btu/hp-hr) * /	
Calculations: Hourly Emissions - If emission factor note (a) Hourly Emissions (lb/hr) = Emission factor (b) Hourly Emissions (lb/hr) = Emission factor Annual Emissions - If emission factor note (c) Annual emissions (tons/yr) = Emission fac Hours of operation (hr/yr) * (1ton/2000lbs) (d) Annual emissions (tons/yr) = Emission fac (lb/453.6g) MAXIMUM HOURLY EMISSION IN	(lb/MMBtu) * (1MMB (g/hp-hr) * Engine Po 1 is used, use calcu tor (lb/MMBtu) * (1Mf tor (g/hp-hr) * Engine	tu/1000000 Btu ower Output (hp ulation (c). If e MBtu/1000000	i) * Engine P b) * (lb/453.6 mission fac Btu) * Engine	ower Output (hj g) tor note 2 is u Power Output	o) * BSFC sed, use ((hp) * BSF	(Btu/hp-hr) calculation (d). FC (Btu/hp-hr) * /	
Calculations: Hourly Emissions - If emission factor note (a) Hourly Emissions (lb/hr) = Emission factor (b) Hourly Emissions (lb/hr) = Emission factor Annual Emissions - If emission factor note (c) Annual emissions (tons/yr) = Emission fac Hours of operation (hr/yr) * (1ton/2000lbs) (d) Annual emissions (tons/yr) = Emission fac (lb/453.6g) MAXIMUM HOURLY EMISSION IN Engine Power Output (kW) = Engine Power Output (kW) = Number of Engines =	(lb/MMBtu) * (1MMB (g/hp-hr) * Engine Pc 1 is used, use calcu tor (lb/MMBtu) * (1M tor (g/hp-hr) * Engine 1029 1,380 1	tu/1000000 Btu ower Output (hp ulation (c). If e MBtu/10000000 Power Output	i) * Engine P b) * (lb/453.6 mission fac Btu) * Engine	ower Output (hj g) tor note 2 is u Power Output	o) * BSFC sed, use ((hp) * BSF	(Btu/hp-hr) calculation (d). FC (Btu/hp-hr) * /	
Calculations: Hourly Emissions - If emission factor note (a) Hourly Emissions (lb/hr) = Emission factor (b) Hourly Emissions (lb/hr) = Emission factor Annual Emissions - If emission factor note (c) Annual emissions (tons/yr) = Emission factor Hours of operation (hr/yr) - (tonv/2000lbs) (d) Annual emissions (tons/yr) = Emission factor (lb/453.6g) MAXIMUM HOURLY EMISSION IN Engine Power Output (hW) = Engine Power Output (hW) = BSFC (BTU/HP-hr) =	(lb/MMBtu) * (1MMB (g/hp-hr) * Engine Po 1 is used, use calcu tor (lb/MMBtu) * (1M tor (g/hp-hr) * Engine 1029 1,380 1 8,203	tu/1000000 Btu ower Output (hp ulation (c). If e MBtu/10000000 Power Output (4)	i) * Engine P b) * (lb/453.6 mission fac Btu) * Engine	ower Output (hj g) tor note 2 is u Power Output	o) * BSFC sed, use ((hp) * BSF	(Btu/hp-hr) calculation (d). FC (Btu/hp-hr) * /	
Calculations: Hourly Emissions - If emission factor note (a) Hourly Emissions (lb/hr) = Emission factor (b) Hourly Emissions (lb/hr) = Emission factor Annual Emissions (lons/yr) = Emission fac Hours of operation (hr/yr) * (1ton/2000lbs) (d) Annual emissions (tons/yr) = Emission fac (lb/453.6g) MAXIMUM HOURLY EMISSION IN Engine Power Output (kW) = Engine Power Output (kW) = BSFC (8TU/HP-hr) = Heat Content Natural Gas(Btu/scf) =	(lb/MMBtu) * (1MMB (g/hp-hr) * Engine Pc 1 is used, use calcu tor (lb/MMBtu) * (1MM tor (g/hp-hr) * Engine IPUTS 1029 1,380 1 8,203 1,253.0	tu/1000000 Bit. wer Output (hp ulation (c). If e WBtu/10000000 Power Output (4) (5)	i) * Engine P b) * (lb/453.6 mission fac Btu) * Engine	ower Output (hj g) tor note 2 is u Power Output	o) * BSFC sed, use ((hp) * BSF	(Btu/hp-hr) calculation (d). FC (Btu/hp-hr) * /	
Calculations: Hourly Emissions - If emission factor note (a) Hourly Emissions (lb/hr) = Emission factor (b) Hourly Emissions (lb/hr) = Emission factor Annual Emissions (lons/yr) = Emission factor Hours of operation (hr/yr) * (1ton/2000lbs) (d) Annual emissions (tons/yr) = Emission fac (lb/453.6g) MAXIMUM HOURLY EMISSION IN Engine Power Output (hW) = Engine Power Output (hW) = Number of Engines = BSFC (BTU/HP-hr) = Heat Content Natural Gas(Btu/scf) = Fuel Throughput (ft3/hr) =	(lb/MMBtu) * (1MMB (g/hp-hr) * Engine Pc 1 is used, use calcu tor (lb/MMBtu) * (1MI tor (g/hp-hr) * Engine 1029 1,380 1 8,203 1,253.0 9,034.4	tu/1000000 Btu ower Output (hp ulation (c). If e MBtu/10000000 Power Output (4)	i) * Engine P b) * (lb/453.6 mission fac Btu) * Engine	ower Output (hj g) tor note 2 is u Power Output	o) * BSFC sed, use ((hp) * BSF	(Btu/hp-hr) calculation (d). FC (Btu/hp-hr) * /	
Calculations: Hourly Emissions - If emission factor note (a) Hourly Emissions (lb/hr) = Emission factor (b) Hourly Emissions (lb/hr) = Emission factor Annual Emissions (lons/yr) = Emission fac Hours of operation (hr/yr) * (1ton/2000lbs) (d) Annual emissions (tons/yr) = Emission fac (lb/453.6g) MAXIMUM HOURLY EMISSION IN Engine Power Output (kW) = Engine Power Output (kW) = BSFC (8TU/HP-hr) = Heat Content Natural Gas(Btu/scf) =	(lb/MMBtu) * (1MMB (g/hp-hr) * Engine Pc 1 is used, use calcu tor (lb/MMBtu) * (1MM tor (g/hp-hr) * Engine IPUTS 1029 1,380 1 8,203 1,253.0	tu/1000000 Bit. wer Output (hp ulation (c). If e WBtu/10000000 Power Output (4) (5)	i) * Engine P b) * (lb/453.6 mission fac Btu) * Engine	ower Output (hj g) tor note 2 is u Power Output	o) * BSFC sed, use ((hp) * BSF	(Btu/hp-hr) calculation (d). FC (Btu/hp-hr) * /	
Calculations: Hourly Emissions - If emission factor note (a) Hourly Emissions (lb/hr) = Emission factor (b) Hourly Emissions (lb/hr) = Emission factor Annual Emissions (lons/yr) = Emission factor Hours of operation (hr/yr) * (1ton/2000lbs) (d) Annual emissions (tons/yr) = Emission fac (lb/453.6g) MAXIMUM HOURLY EMISSION IN Engine Power Output (hW) = Engine Power Output (hW) = Number of Engines = BSFC (BTU/HP-hr) = Heat Content Natural Gas(Btu/scf) = Fuel Throughput (ft3/hr) =	(lb/MMBtu) * (1MMB (g/hp-hr) * Engine Pc 1 is used, use calce tor (lb/MMBtu) * (1M tor (g/hp-hr) * Engine 1029 1,380 1 8,203 1,253.0 9,034.4 8,760	(4) (6) (6) (6) (6) (7) (7) (6) (6)	ii) * Engine P ii) * (lb/453.6 mission fac Btu) * Engine (hp) * Annua	ower Output (hj g) tor note 2 is u Power Output al Hours of oper	sed, use (hp) * BSFC	(Btu/hp-hr) calculation (d). FC (Btu/hp-hr) * /	
Calculations: Hourly Emissions - If emission factor note (a) Hourly Emissions (lb/hr) = Emission factor (b) Hourly Emissions (lb/hr) = Emission factor Annual Emissions (lons/yr) = Emission fac Hours of operation (hr/yr) * (1ton/2000lbs) (d) Annual emissions (tons/yr) = Emission fac (lb/453.6g) MAXIMUM HOURLY EMISSION IN Engine Power Output (kW) = Engine Power Output (kW) = BSFC (BTU/H-hr) = Heat Content Natural Gas(Btu/scf) = Fuel Throughput (tt3/hr) = PTE Hours of Operation = (e) CO ₂ equivalent = [(CO ₂ emissions)*(GWP)	(lb/MMBtu) * (1MMB (g/hp-hr) * Engine Pc 1 is used, use calce tor (lb/MMBtu) * (1M tor (g/hp-hr) * Engine 1029 1,380 1 8,203 1,253.0 9,034.4 8,760	(4) (6) (6) (6) (6) (7) (7) (6) (6)	ii) * Engine P ii) * (lb/453.6 mission fac Btu) * Engine (hp) * Annua	ower Output (hj g) tor note 2 is u Power Output al Hours of oper	sed, use (hp) * BSFC	(Btu/hp-hr) calculation (d). FC (Btu/hp-hr) * /	
Calculations: Hourly Emissions - If emission factor note (a) Hourly Emissions (lb/hr) = Emission factor (b) Hourly Emissions (lb/hr) = Emission factor Annual Emissions (lons/yr) = Emission fac Hours of operation (hr/yr) * (1ton/2000lbs) (d) Annual emissions (tons/yr) = Emission fac (lb/453.6g) MAXIMUM HOURLY EMISSION IN Engine Power Output (kW) = Engine Power Output (kW) = BSFC (BTU/H-hr) = Heat Content Natural Gas(Btu/scf) = Fuel Throughput (tt3/hr) = PTE Hours of Operation = (e) CO ₂ equivalent = [(CO ₂ emissions)*(GWP)	(lb/MMBtu) * (1MMB (g/hp-hr) * Engine Pc 1 is used, use calcu tor (lb/MMBtu) * (1Mf tor (g/hp-hr) * Engine 1029 1,380 1 8,203 1,253.0 9,034.4 8,760 ccc)]+[(CH ₄ emission	(4) (5) (6) (6) (6) (6)	i) * Engine P i) * (lb/453.6 mission fac Btu) * Engine (hp) * Annua (hp) * Annua	ower Output (hj g) tor note 2 is u Power Output al Hours of oper	sed, use (hp) * BSFC	(Btu/hp-hr) calculation (d). FC (Btu/hp-hr) * /	
Calculations: Hourly Emissions - If emission factor note (a) Hourly Emissions (lb/hr) = Emission factor (b) Hourly Emissions (lb/hr) = Emission factor Annual Emissions (lons/yr) = Emission fac Hours of operation (hr/yr) * (1ton/2000lbs) (d) Annual emissions (tons/yr) = Emission fac (lb/453.6g) MAXIMUM HOURLY EMISSION IN Engine Power Output (kW) = Engine Power Output (kW) = Number of Engines = BSFC (BTU/H-hr) = Heat Content Natural Gas(Btu/scf) = Fuel Throughput (tt3/hr) = PTE Hours of Operation = (e) CO ₂ equivalent = [(CO ₂ emissions)*(GWP)	(lb/MMBtu) * (1MMB (g/hp-hr) * Engine Pc 1 is used, use calcu tor (lb/MMBtu) * (1MI tor (g/hp-hr) * Engine 1029 1,380 1 8,203 1,253.0 9,034.4 8,760 cco ₂)+((CH ₄ emission	(4) (5) (6) (6) (6) (7) (6) (6) (6)	i) * Engine P i) * (lb/453.6 mission fac Btu) * Engine (hp) * Annua (hp) * Annua (hp) * Annua (hp) 7 Annua (hp) 7 Annua	ower Output (hj g) tor note 2 is u Power Output al Hours of oper	sed, use (hp) * BSFC	(Btu/hp-hr) calculation (d). FC (Btu/hp-hr) * /	
Calculations: Hourly Emissions - If emission factor note (a) Hourly Emissions (lb/hr) = Emission factor (b) Hourly Emissions (lb/hr) = Emission factor Annual Emissions (lons/yr) = Emission fac Hours of operation (hr/yr) * (1ton/2000lbs) (d) Annual emissions (tons/yr) = Emission fac (lb/453.6g) MAXIMUM HOURLY EMISSION IN Engine Power Output (kW) = Engine Power Output (kW) = Number of Engines = BSFC (BTU/H-hr) = Heat Content Natural Gas(Btu/scf) = Fuel Throughput (lt3/hr) = PTE Hours of Operation = (e) CO ₂ equivalent = [(CO ₂ emissions)*(GWP)	(lb/MMBtu) * (1MMB (g/hp-hr) * Engine Pc 1 is used, use calce tor (lb/MMBtu) * (1M tor (g/hp-hr) * Engine 1029 1,380 1 8,203 1,253.0 9,034.4 8,760 cco ₂ CH ₄	(4) (4) (5) (6) (6) (6) (7) (6) (6) (7) (6) (7) (6) (7) (6) (7) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	 i) * Engine P i) * (lb/453.6 mission fac Bitu) * Engine (hp) * Annua (hp) * Annua ((N₂O emiss (7) (7) 	ower Output (hj g) tor note 2 is u Power Output al Hours of oper	sed, use (hp) * BSFC	(Btu/hp-hr) calculation (d). FC (Btu/hp-hr) * /	

Engines. (2) Emission limits supplied from manufacturer's specification sheet (3) Emission limits supplied from 40 CFR 98, Subpart C, Table C-1 and C-2. (4) Fuel consumption from manufacturer's specification sheet. (5) Value obtained from AP-42, Chapter 3.2, Table 3.2-1, footnote b (6) Fuel throughput = BSFC (BTU/HP-hr) x Power (HP) / Heat Content (BTU/scf) (7) Global Warming Potentials obtained from 40 CFR 98, Subpart A, Table A-1

Table 2 GPU Heater (GPU-1 through GPU-6) Rates and Emissions
Tug Hill Operating, LLC Yoder Pad

Pollutant	Emission Factor	1.00 MBtu/hr GPU Emissions (Ib/hr)	1.00 MMBtu/hr GPU Emissions (ton/yr)	1.00 MMBtu/hr GPU Emissions x 6 (lb/hr)	1.00 MMBtu/hr GPU Emissions x 6 (ton/yr)
Criteria Pollutants					
PM/PM10/PM2.5	7.6 lb/MMcf (1)	0.007	0.033	0.045	0.196
SO ₂	0.6 lb/MMcf (1)	0.001	0.003	0.004	0.015
NOx	100 lb/MMcf (2)	0.098	0.429	0.588	2.576
CO	84 lb/MMcf (2)	0.082	0.361	0.494	2.164
VOC	5.5 lb/MMcf (1)	0.005	0.024	0.032	0.142
Hazardous Air Pollutants					
Arsenic	2.0E-04 lb/MMcf (3)	0.000	0.000	0.000	0.000
Benzene	2.1E-03 lb/MMcf (4)	0.000	0.000	0.000	0.000
Beryllium	1.2E-05 lb/MMcf (3)	0.000	0.000	0.000	0.000
Cadmium	1.1E-03 lb/MMcf (3)	0.000	0.000	0.000	0.000
Chromium	1.4E-03 lb/MMcf (3)	0.000	0.000	0.000	0.000
Cobalt	8.4E-05 lb/MMcf (3)	0.000	0.000	0.000	0.000
Dichlorobenzene	1.2E-03 lb/MMcf (4)	0.000	0.000	0.000	0.000
Formaldehyde	7.5E-02 lb/MMcf (4)	0.000	0.000	0.000	0.002
Hexane	1.8E+00 lb/MMcf (4)	0.002	0.008	0.011	0.046
Lead	5.0E-04 lb/MMcf (3)	0.000	0.000	0.000	0.000
Manganese	3.8E-04 lb/MMcf (3)	0.000	0.000	0.000	0.000
Mercury	2.6E-04 lb/MMcf (3)	0.000	0.000	0.000	0.000
Naphthalene	6.1E-04 lb/MMcf (4)	0.000	0.000	0.000	0.000
Nickel	2.1E-03 lb/MMcf (3)	0.000	0.000	0.000	0.000
PAH/POM	1.3E-03 lb/MMcf (4)	0.000	0.000	0.000	0.000
Selenium	2.4E-05 lb/MMcf (3)	0.000	0.000	0.000	0.000
Toluene	3.4E-03 lb/MMcf (4)	0.000	0.000	0.000	0.000
Total HAP	1.9E+00 Ib/MMCF	0.002	0.008	0.011	0.049
Greenhouse Gas Emissions					
CO ₂	116.89 lb/MMBtu (5)	116.889	511.974	701.335	3071.845
CH ₄	2.2E-03 lb/MMBtu (5)	0.002	0.010	0.013	0.058
N ₂ O	0.0 lb/MMBtu (5)	0.000	0.001	0.001	0.006
CO ₂ e ^(b)		117.010	512.503	702.059	3075.020

Calculations:

(a) Annual emissions (tons/yr) = [Annual Usage (MMBtu/yr or MMCF/yr)]x [Number of Identical Heaters]x [Emission Factor (Ib/MMBtu or Ib/MMCF)] / [2,000 lb/ton]

Number of Line Heaters= 6 Fuel Use (MMBtu/hr) = 1 Hours of Operation (hr/yr)= 8760 PTE Fuel Use (MMcf/yr) = 8.6

(b) CO₂ equivalent = [(CO₂ emissions)*(GWP_{CO2})]+[(CH₄ emissions)*(GWP_{CH4})]+[(N₂O emissions)*(GWP_{N2O})] Global Warming Potential (GWP)

CO_2	1	(6)
CH_4	25	(6)
N ₂ O	298	(6)

Notes:

(1) AP-42, Chapter 1.4, Table 1.4-2. Emission Factors For Criteria Pollutants and Greenhouse Gases From Natural Gas Combustion, July 1998.

(2) AP-42, Chapter 1.4, Table 1.4-1. Emission Factors For Nitrogen Oxides (Nox) and Carbon Monoxide(CO) From Natural Gas Combustion, July 1998.

(3) AP-42, Chapter 1.4, Table 1.4-4. Emission Factors For Metals From Natural Gas Combustion, July 1998.

(4) AP-42, Chapter 1.4, Table 1.4-3. Emission Factors for Speciated Organic Compounds from Natural Gas Combustion, July 1998.

(5) Emission factors are from 40 CFR 98, Subpart C, Table C-1 and C-2.

(6) Global Warming Potentials obtained from 40 CFR 98, Subpart A, Table A-1

(7) MMBtu to MMcf conversion factor is 1020. AP-42, Chapter 1.4

Table 3 Tank Emissions Tug Hill Operating, LLC Yoder Pad

Emission Unit	Tank Contents	Control Devices	Tank Throughput (bbls/day)	Flashing (lbs/bbls		Flashing Emissions (lbs/day) (a)	Working and Breathing Emissions (lbs/day) (b)	VOC Emissions (lb/hr)	VOC Emissions (tons/yr)
T01	Produced Water	F-1	304.8	0.461	(1)	140.55	1.56E-03	5.856	25.650
T02	Produced Water	F-1	304.8	0.461	(1)	140.55	1.56E-03	5.856	25.650
T03	Produced Water	F-1	304.8	0.461	(1)	140.55	1.56E-03	5.856	25.650
Total			914.30			421.64	0.00	17.569	76.951
						Controlled	Emissions	0.35	1.54

Calculations:

(a) Flashing Emissions

PTE emissions (lbs/day) from ProMax.

(b) Working and Breathing Emissions PTE emissions (lbs/day) from ProMax.

(c) Emissions routed to combustion device with conservative 98% destruction efficiency

Notes:

(1) ProMax Simulation based on representative inputs and worst case operating parameters

Table 4 Truck Loading (TL-1) VOC Emissions Tug Hill Operating, LLC Yoder Pad

Contents	Volume Transferred		PTE VOC Emissions (lb/hr)	PTE VOC Emissions ^(a) (tons/yr)
Produced Water	14,016,219	gal/yr	9.46E-04	4.15E-03
Total	14,016,219	gal/yr	9.46E-04	4.15E-03

Notes:

(a) Annual Emissions(tons/yr) from ProMax loading losses

(b) 70% Capture efficiency for tanker trucks/rail cars not passing a MACT or NSPS level annual leak test.

(c) 2.02 tpy of VOC Point Source Emissions are added to VDU-1's potential to emit.

Table 5 Ground Flare Emissions Tug Hill Operating, LLC Yoder Pad

Pollutant	Emission Factor (Ib/MMBtu)	Volume (scf/hr)	Gas Heat Value (Btu/scf)	(MMBtu/ 1000000Btu)	Emissions (lbs/hr)	Emissions (ton/yr)
CO	0.31	1,191	1,679	(1/1,000,000)	0.62	2.72
NOx	0.068	1,191	1,679	(1/1,000,000)	0.14	0.60
VOC ^a	0.14	1,191	1,679	(1/1,000,000)	0.28	6.02
CO2e	116.89	1,191	1,679	(1/1,000,000)	233.74	1023.77

^a - Measured as methane equivalent, assumed worst case Example Formula:

$$emissions\left(\frac{ton}{yr}\right) = emission factor\left(\frac{lb}{MMBtu}\right) \times Volume\left(\frac{sof}{hr}\right) \times gas heat value\left(\frac{Btu}{sof}\right) \times \frac{MMBtu}{1,000,000 Btu} \times \frac{8760 hrs}{1 yr} \times \frac{1 ton}{2,000 lbs}$$

Emission Factor = AP-42 Tables 13.5-1 and 2 emission factor for specific pollutantVolume = 2000 scf/hrset to equate to 2 MMBtu/hr Ground Flare ratingHours of operation calculated at 8760

Pollutant	Volume (scf/hr)	grain H2S/ 100 scf	Mol Fraction	Mol weight (g/mol)	(lb-mol /scf)	Emissions (lbs/hr)	Emissions (ton/yr)
SO2	1,191	0.25	0.0000040	64.00	1/379.4	0.0008	0.0035

Example Formula:

 $emissions\left(\frac{ton}{yr}\right) = Volume\left(\frac{sof}{hr}\right) \times mol\ fraction\left(\frac{H2S}{100\ sof} \times 0.00001588\right) \times molecular\ weight \ \times \frac{lb \cdot mol}{sof} \times \frac{876\ hrs}{1\ yr} \times \frac{1\ ton}{2,000\ lbs}$

 $\frac{1 \text{ grain H2S}}{100 \text{ scf}} = 15.26 \text{ ppm of H2S}$ H2S conversion taken from supporting Sulfur Measurement Handbook grain H2S/100 scf = 0.25 Volume = 2000 scf/hr Hours of operation calculated at 8760 1 lb mol = 379.4 cubic feet

For Pilot Light

Pollutant	Emission Factor (Ib/MMBtu)	Volume (scf/hr)	Gas Heat Value (Btu/scf)	(MMBtu/ 1000000Btu)	Emissions (lbs/hr)	Emissions (ton/yr)
CO	0.31	5	1,679	(1/1,000,000)	0.0026	0.0114
NOx	0.068	5	1,679	(1/1,000,000)	0.0006	0.0025
VOC ^a	0.14	5	1,679	(1/1,000,000)	0.0012	0.0051

^a - Measured as methane equivalent, assumed worst case

Example Formula:

$$emissions\left(\frac{ton}{yr}\right) = emission factor\left(\frac{lb}{MMBtu}\right) \times Volume\left(\frac{sof}{hr}\right) \times gas heat value\left(\frac{Btu}{sof}\right) \times \frac{MMBtu}{1,000,000 Btu} \times \frac{8760 hrs}{1 yr} \times \frac{1 ton}{2,000 lbs}$$

Emission Factor = AP-42 Tables 13.5-1 and 2 emission factor for specific pollutant

Pollutant	Volume (scf/hr)	grain H2S/ 100 scf	Mol Fraction	Mol weight (g/mol)	(lb-mol /scf)	Emissions (lbs/hr)	Emissions (ton/yr)
SO2	5.00	0.25	0.0000040	64.00	1/379.4	0.0000	0.0000

Example Formula:

$$emissions\left(\frac{ton}{yr}\right) = Volume\left(\frac{sof}{hr}\right) \times mol \ fraction\left(\frac{H2S}{100 \ sof} \times 0.00001588\right) \times molecular \ weight \ \times \ \frac{lb \cdot mol}{sof} \times \frac{8760 \ hrs}{1 \ yr} \times \frac{1 \ ton}{2,000 \ lbs}$$

 $\frac{1 \text{ grain } H2S}{100 \text{ scf}} = 15.26 \text{ ppm of } H2S$

H2S conversion taken from supporting Sulfur Measurement Handbook grain H2S/100 scf = 15.26

1 lb mol = 379.4 cubic feet

Ground Flare and Pilot Combined							
Pollutant lb/hr ton/yr							
CO	0.622	2.726					
Nox	0.137	0.598					
VOC	1.376	6.025					
SO2	0.001	0.004					

Rule 6 - Weight Rate Determination							
Waste Gas Waste Gas Gas Wt. 45CSR6-4.1							
Volume	Density	Rate	PM Limit				
(scf/hr)	(lb/scf)	(tons/hr)	(lb/hr)				
1191.00	1191.00 0.0769 0.05 0.25						
Gas Density Taken from Promax Tank Emission Stream							

Table 6 Fugitive Leaks Tug Hill Operating, LLC Yoder Pad

Pollutant	Emission Factor	PTE ^{(a) Gas Service} (tons/yr)	PTE VOC emissions (ton/yr)	PTE CO ₂ e emissions (ton/yr)	PTE Total HAPs emissions (ton/yr)
Valves Pressure Relief Valves Connectors (2) Open Ended Lines Compressors	9.9E-03 lb/hr/source 1.9E-02 lb/hr/source 8.6E-04 lb/hr/source 4.4E-03 lb/hr/source 1.9E-02 lb/hr/source	9.64 0.51 3.69 0.29 0.08	2.05 0.11 0.78 0.06 0.00	28.93 1.53 11.08 0.87 0.00	0.03 0.00 0.01 0.00 0.00
Total		14.21	3.00	42.41	0.04

Pollutant	PTE Benzene emissions (ton/yr)	PTE Toluene emissions (ton/yr)	PTE Ethylbenzene emissions (ton/yr)	PTE Xylenes emissions (ton/yr)	PTE n-Hexane emissions (ton/yr)
Valves	9.64E-05	9.64E-05	9.64E-05	9.64E-05	2.61E-02
Pressure Relief Valves	5.09E-06	5.09E-06	5.09E-06	5.09E-06	1.38E-03
Connectors (2)	3.69E-05	3.69E-05	3.69E-05	3.69E-05	1.00E-02
Open Ended Lines	2.89E-06	2.89E-06	2.89E-06	2.89E-06	7.85E-04
Compressors	8.49E-07	8.49E-07	8.49E-07	8.49E-07	2.30E-04
Total	0.00	0.00	0.00	0.00	0.04

Calculations:

(a) Annual emissions (tons/yr) = [Emission Factor (lb/hr/source)] x [Number of Sources] x [Hours of Operation per Year] x [ton/2000lb]

WET GAS INPUTS TABLE					
Gas Stream Components	Wt Percent				
Methane	56.50%				
Ethane	22.25%				
VOC	21.25%				
Benzene	0.00%				
Toluene	0.00%				
Ethylbenzene	0.00%				
Xylenes	0.00%				
n-Hexane	0.27%				

Number of Components in Gas Service

	Valves =	222
Pressure Re	elief Valves =	6
	Connectors =	981
Open E	nded Lines =	15
Co	ompressors =	1.000
Maximum Hour of	of Operation =	8,760
Global Warming Potential (GWP)		
	CO ₂	1
	CH_4	25
	N ₂ O	298

(1) Emission factors from 1995 EPA Protocol for Equipment Leak Emission Estimates, Table 2-4 Oil and Gas Production

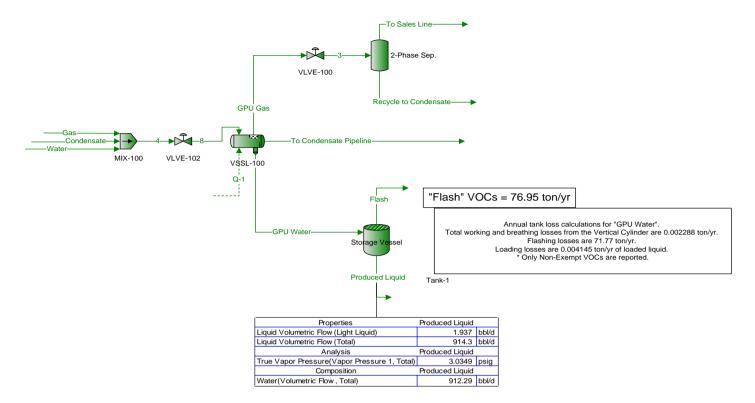
(2) Connectors is assumed to include flange connections in the total count

(3) Worst case VOC wt % assumption for station based on gas sample analysis from facility

(4) Default Average Component Counts for Major Onshore Natural Gas Production Equipment from 40 CFR 98, Subpart W, Table W-1B

(5) Global Warming Potentials obtained from 40 CFR 98, Subpart A, Table A-1

Table 7 Compressor Blowdown Venting Emissions Caterpillar G3516BLE; 4SLB Tug Hill Operating, LLC Yoder Pad


Pollutant	Volume (scf/event)	Moles	Molecular Weight of Gas	lbs VOC/event	Events per Year	Emissions (lbs/hr)	Emissions (ton/yr)
VOC ^a	6,163	16.01	19.90	47	60	46.53	1.40
CO2e						36.30	157.75

Measured VOC content of GPU Gas GPU outlet gas.

Bryan Research & Engineering, Inc. ProMax [®] 4.0 Copyright © 2002-2016 BRE Group, Ltd. All Rights Reserved.
Simulation Report
Project: TugHill_Yoder_WellPad.pmx
Licensed to SLR International Corporation and Affiliates
Client Name: Tug Hill
Location: Yoder
Job: G70-D Permit
ProMax Filename: N:\West Virginia\Tug Hill\Projects\Air Permits\General Permit G70\Yoder\ProMax\TugHill_Yoder_Wel ProMax Version: 4.0.16071.0
Simulation Initiated: 11/2/2017 12:55:57 PM
Bryan Research & Engineering, Inc. Chemical Engineering Consultants P.O. Box 4747 Bryan, Texas 77805 Office: (979) 776-5220 FAX: (979) 776-4818 <u>mailto:sales@bre.com</u> <u>http://www.bre.com/</u>

Report Navigator can be activated via the ProMax Navigator Toolbar. An asterisk (*), throughout the report, denotes a user specified value. A question mark (?) after a value, throughout the report, denotes an extrapolated or approximate value.

Yoder Well Pad Worst Case

Process Streams		Condensate	Flash	Gas	GPU Gas	GPU Water	Produced Liquid R	ecycle to Condensate	To Condensate Pipeline	To Sales Line	Water
Composition	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block:		Storage Vessel		VSSL-100	VSSL-100	Storage Vessel	2-Phase Sep.	VSSL-100	2-Phase Sep.	
	To Block:	MIX-100		MIX-100	VLVE-100	Storage Vessel					MIX-100
Mass Fraction		%	%	%	%	%	%	%	%	%	%
C1		2.34727*	27.8776	56.5081*	56.6088	0.0748203	0.00113342	2.46025	3.97448	56.7952	
C2		5.27925*	17.2999	22.2497*	22.0522	0.0468756	0.00114931	5.40303	6.52437	22.1096	
C3 iC4		9.11945*	13.8299 2.89419	11.9336* 1.46099*	11.8165 1.44759	0.0375944	0.00104025	9.54185 2.78009	9.58323	11.8243	
nC4		2.40579* 8.90203*	2.89419	3.94878*	3.90603	0.00798659 0.0292169	0.000337165 0.00171145	2.78009	2.40969 8.84039	1.44301 3.88201	-
iC5		3.88150*	3.73708	0.722039*	0.781254	0.0112166	0.00134181	4.96512	3.56369	0.766854	
nC5		6.49969*	6.04502	0.959329*	1.04177	0.0186938	0.00272201	8.65421	6.01305	1.01557	
N2		0.0102111*	0.211273	0.781816*	0.786928	0.000562584	4.13079E-06	0.0106860	0.0216640	0.789600	
CO2		0.0231715*	2.56888	0.450770*	0.439629	0.00875880	0.00197360	0.0495505	0.0700704	0.440971	0*
Benzene		0.0622174*		0.00367003*	0.00369854	0.000369109	0.000261017	0.0933145	0.0597284	0.00339010	
Ethylbenzene		0.325349*	0.0450390	0*	0.00295519	0.000995555	0.000878825	0.397366	0.303012	0.00159772	
Toluene		0.298535*		0.00432905*	0.00658995	0.00106085	0.000818243	0.438650	0.279584	0.00510291	
o-Xylene		0*	0	0*	0	0	0	0	0	0	-
C6		4.39529*	3.15308	0.271275*	0.267060	0.0131424	0.00482053	7.06602	4.24826	0.243659	
C7		4.21248*	1.70743	0.117698*	0.109424	0.0126110	0.00811912	6.97219	4.08015	0.0858038	
C8 C9		7.61806*	1.26987 0.293346	0.0751372* 0.0120519*	0.0793634	0.0225911	0.0192854	10.4975	7.31097 4.82229	0.0435068	
C9 C10		5.04380* 4.96922*	0.293346	0.0120519-	0.0199894 0.00880222	0.0149006 0.0146689	0.0141626 0.0144505	4.25452 2.25237	4.82229	0.00541516 0.00108043	
C10		4.90922 4.12756*	0.0256599	0*	0.00880222	0.0122287	0.0121931	0.814056	3.95761	0.000130050	
C12		3.32977*	0.00699971	0	0.000292177	0.00987879	0.00988642	0.286080	3.19711	1.62027E-05	
C12		2.80254*	0.00195383		0.000382629	0.00831919	0.00833606	0.110851	2.69237	2.42462E-06	
2,2-Dimethylpropane		0.150000*		0.00338986*	0.0256687	0.000226006	1.56847E-05	0.0889915	0.0714894	0.0254508	-
2,2-Dimethylbutane		0.110522*	0.0977939	0.0121467*	0.0122726	0.000329413	7.10990E-05	0.159604	0.106263	0.0117655	
Cyclopentane		0*	0	0*	0	0	0	0	0	0	
2,3-Dimethylbutane		0.110522*	0.141066	0.0323911*	0.0149012	0.000511298	0.000138781	0.256063	0.164575	0.0140712	0*
2-Methylpentane		2.15111*	1.71911	0.170053*	0.172788	0.00640190	0.00186266	3.28459	2.06484	0.162078	0*
3-Methylpentane		1.31231*	1.02146	0.0971732*	0.0968336	0.00394154	0.00124477	2.02317	1.26599	0.0902036	
Methylcyclopentane		0.649893*	0.451184	0.0276792*	0.0370781	0.00185825	0.000667388	0.951627	0.594932	0.0339304	
Cyclohexane		0.704429*	0.447708	0.0316334*	0.0343603	0.00210890	0.000927907	1.06945	0.669285	0.0307978	
2-Methylhexane		1.68553*	0.824715	0.0423712*	0.0560479	0.00487612	0.00270326	2.69662	1.57690	0.0469597	
3-Methylhexane		1.50426*	0.710523	0.0423712*	0.0467243	0.00443188	0.00256050	2.45615	1.43314	0.0384316	
2,2,4-Trimethylpentane		0*	0	*0	0	0	0	0	0	0	-
Methylcyclohexane		1.79478* 0*	0.739232	0.0415188* 0*	0.0438837 0	0.00532945	0.00338436	2.87025	1.71882 0	0.0341561	-
m-Xylene p-Xylene		0*	0	0*	0	0	0	0	0	0	
Water		0*	2,16156	0*	0.0762430	99.5814	99.8396	6.14020	0.0128540	0.0553723	-
Tetradecane		2.40779*	0.000578927		0.000149889	0.00714920	0.00716661	0.0435928	2.31372	3.69179E-07	
Pentadecane		2.07045*	0.000173496		5.79167E-05	0.00614829	0.00616413	0.0168694	1,98980	5.58985E-08	
Hexadecane		1.51322*	4.60447E-05		2.03826E-05	0.00449381	0.00450560	0.00594018	1.45435	8.16408E-09	
Heptadecane		1.35049*	1.59465E-05	0*	9.47936E-06	0.00401064	0.00402123	0.00276320	1.29798	1.73585E-09	0*
Octadecane		1.26435*	5.91829E-06	0*	4.48812E-06	0.00375487	0.00376481	0.00130841	1.21520	3.62016E-10	0*
Nonadecane		1.10566*	1.84072E-06	0*	1.86040E-06	0.00328360	0.00329229	0.000542380	1.06268	6.10184E-11	0*
Eicosane		0.854441*	3.66152E-07		5.18464E-07	0.00253754	0.00254426	0.000151157	0.821234	4.90189E-12	
Heneicosane		0.660632*	1.22669E-07		2.25339E-07	0.00196196	0.00196716	6.56972E-05	0.634958	1.07519E-12	
Docosane		0.637366*	5.01038E-08		1.20734E-07	0.00189287	0.00189788	3.51997E-05	0.612596	2.87311E-13	
Tricosane		0.433873*	9.83559E-09		3.27988E-08	0.00128853	0.00129194	9.56247E-06	0.417012	2.57274E-14	
Tetracosane		0.347466*	2.62759E-09		1.19897E-08	0.00103191	0.00103465	3.49560E-06	0.333963	3.69591E-15	
Pentacosane		0.247587*	7.12419E-10		4.29275E-09 1.89800E-09	0.000735290	0.000737239	1.25155E-06	0.237965	5.86111E-16	
Hexacosane Heptacosane		0.247532* 0.292980*	2.25263E-10 6.78812E-11		8.10084E-10	0.000735129 0.000870102	0.000737077 0.000872408	5.53362E-07 2.36180E-07	0.237913 0.281595	9.77053E-17 1.22737E-17	-
Octacosane		0.292980	2.87078E-11		4.40558E-10	0.000743885	0.000745856	1.28445E-07	0.240746	3.90700E-18	
Nonacosane		0.0607061*	3.09981E-12		6.13865E-11	0.000180287	0.000180765	1.78972E-08	0.0583469	2.84124E-19	
Triacontane		0.0627891*	1.09835E-12		2.97343E-11	0.000186473	0.000186967	8.66903E-09	0.0603490	5.60043E-20	
Hentriacontane		0.365642*	1.54617E-11		3.29759E-10	0.00108590	0.00108877	9.61412E-08	0.351433	7.40659E-19	
Other C10s		0*	0	0*	0	0	0	0.011122.00	0	0	
Other C7s		0*	0	0*	0	0	0	0	0	0	
Other C8s		0*	0	0*	0	0	0	0	0	0	
		0*	0	0*	0	0	0	0	0	0	

G1 61 61132 61136 6.9860 6.15523 5.9783 680.207 4.0777 C2 1100.27 4.3716 8.0824 15133 5.0039 6.155236 131330 1412.00 1513.30 C4 1100.27 4.3716 8.00324 1513.30 1274.12 1593.43 C4 1105.37 7.277.87 1315.20 120.42 1493.33 2744.40 1593.43 1493.53 2744.40 C5 1105.40 7.1377 131.52 174.47 732.520 140.44 171.178 140.527 171.87 141.48 171.178 140.87 140.	Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h
110 100 6 1958.45 1528.55 6.2689 0.1328/47 133.30 1412.09 1951.35 100 1900.67 4.3710 557.78 377.35 1.5080.30 0.022471 52.491.57 27.14.60 191.35 27.14.60 191.35 27.14.60 191.35 27.14.60 191.35 27.14.60 191.35 27.14.60 191.35 27.14.60 191.35 27.14.60 191.35 27.14.60 191.35	C1	489.211*	9.81887	40494.6*	40113.6	9.96950	0.150624	5.97963	860.207	40107.7	0*
C3 1990.65* 4.871.06 9551.72* 9373.30 5.09390 0.13243 23.1915 2071.12 1514.30	C2										0*
nC4 1865.34" 386807 2828.76" 2707.86 380303 0.27414 28.463 1913.53 2771.80 CG 1384.05" 1.31605 0.174218 2.1840 1.3142.4 771.26" 571.66" CG 1.384.05" 0.11470 771.26" 571.66" 1.5165 571.46" CG 4.80337 0.39479 52.000 1.1607 0.044783 0.228051 1.5165 571.46" Berome 67.0440 0.016863 0.28000 0.11670 0.0228051 1.2277 2.34402 Berome 67.0440 0.016863 0.11070 0.02873 0.01183 0.11700 0.96576 5.516 1.2372 2.3440 Tommo 0.016863 0.11086 4.6407 19.211 0.06478 0.0578 0.6578 0.01738 0.01743 0.06479 0.0578 0.0578 0.0578 0.01728 0.01728 0.01728 0.01728 0.01728 0.01728 0.01728 0.01728 0.01728 0.01081 0.01081		1900.65*	4.87106	8551.78*	8373.30	5.00930	0.138243	23.1915	2074.12	8350.11	0*
CG MBB 972" 13.1425 617.452 637.467 1.78316 12.0407 77.173 4.741737 CG 2.1387" 0.04433 568.747 7.5258 0.074807 0.0361365 0.1232723 4.6879 5.77401 CG 1.39572 0.014443 568.760 5.77508 0.0046857 0.02287123 4.6879 5.77401 Barvane 1.39572 0.014493 50007 2.63000 2.63000 2.6300 0.647187 0.056458 0.056788 6.5516 1.12327 2.29402 Churen 6.21107 0.018933 0.02 2.06408 0.167808 1.069578 6.5516 1.13233 Churen 6.21107 0.01427 0.84147 1.59846 1.62631 1.0468 9.833,077 0.64739 0.64739 1.04569 1.03257 0.051736 0.53254 1.08523 0.01420 0.71740 1.0456 1.02234 0.024718 0.024718 Co 1.05173 0.044728 0.53478 3.01018 1.38264	iC4	501.407*	1.01937	1046.97*	1025.78	1.06418	0.0448071	6.75701	521.534	1019.02	0*
ncb 135.465 2.12141 667.47 738.209 2.46957 0.231738 2.10340 134.42 9.77.75 CD 4.20237 0.034475 321.027 0.0054490 0.0054490 0.123427 1.555 31.469 CD 67.80497 0.022145 31.1255 0.114734 0.116779 0.123427 1.556 1.449 Enlydenzame 67.80497 0.015830 0.147354 0.116779 0.12647 0.05619 0.35037 Os/Mene 9 0 1.0 0 0.00 0 0.00 0 0.00 <td>nC4</td> <td>1855.34*</td> <td>3.66559</td> <td>2829.76*</td> <td>2767.85</td> <td>3.89303</td> <td>0.227441</td> <td>26.4543</td> <td>1913.35</td> <td>2741.40</td> <td>0*</td>	nC4	1855.34*	3.66559	2829.76*	2767.85	3.89303	0.227441	26.4543	1913.35	2741.40	0*
N2 C. 212917 O. 7149130 S60.282 S57.863 O. 7749620 O. 0269723 4.8697 S57.800 CO2 4.82833 0.9419132 0.0449123 0.0449123 0.0249737 0.1258101 11.9127 2.134021 Banuame name 12.9527 0.0149442 2.60031 0.0449123 0.044973 0.0258141 10.2288101 11.91272 2.134021 Dolylene 0.0 0.0 0.0 0 0 0 0 0 0.0 0	iC5	808.972*	1.31625	517.425*	553.605	1.49457	0.178318	12.0677	771.297	541.537	0*
CO2 4 48333 0.094795 32.1626 1.1707 0.282279 0.120422 15.1655 33.1436 Barzene 67.884 0.013863 0.07 2.08081 0.038075 0.223801 0.29482 0.53564 0.11670 0.36578 65.886 1.1322 Drivene 0.038161 0.038078 0.044018 1.0707 0.44024 1.8231 0.044018 0.03458 0.037868 0.03786 0.037868 0.038078 0.037868 0.03808 0.017833 0.03458 0.03458 0.017833 0.02842 0.038786 0.007725 0.07722 0.03808 0.017833 0.03867 0.02843 0.02843 0.02843 0.02843 0.02843 0.017833 0.03876	nC5	1354.65*	2.12914	687.471*	738.209	2.49087	0.361738	21.0340	1301.42	717.175	0*
Bancene 12.9672 0.0144948 2.8008 0.0494875 0.0248675 0.0228614 15.22 2.83402 Toluene 0.0288145 3.1027 4.66971 0.044875 0.0248675 0.0285788 0.655788 0.007777 C3 0.055778 0.447548 0.737735 1.16505 1.10788 0.656318 0.6918977 0.0071722 C1 0.0564878 0.00034878 0.00034878 0.000348789 0.000204848 0.0264923 0.066492 0.07777 0.07772 0.07772 0.07772 0.07772 0.07772 0.07772 0.07777 0.07777 0.07	N2	2.12817*	0.0744130	560.262*	557.626	0.0749620	0.000548956	0.0259723	4.68879	557.600	0*
Einylancame 67.2084* 0.015083 0" 2.04000 0.118790 0.068078 66.5816 1.12828 C-lytene 0" 0 0" 0 0" 0 0" 0 <t< td=""><td>CO2</td><td>4.82933*</td><td>0.904795</td><td>323.029*</td><td>311.526</td><td>1.16707</td><td>0.262279</td><td>0.120432</td><td>15.1655</td><td>311.405</td><td>0*</td></t<>	CO2	4.82933*	0.904795	323.029*	311.526	1.16707	0.262279	0.120432	15.1655	311.405	0*
Towers 62:21° 0.3326146 3.1022'7 4.66971 0.141354 0.16739 1.06614 60.5108 3.60357 CA 915.054* 1.1105 144.60* 148.244 1.73118 0.246158 17.1740 913.462 17.2565 CA 915.054* 1.1105 144.640* 148.241 1.73118 0.246158 17.1740 913.462 17.2565 CA 1051.21* 0.103330 0.65661* 1.41647 1.96547 1.95239 5.474.37 102.3 0.03287 C1 0.056375 0.0341062 0° 0.37750 1.31631 1.31531 1.31531 0.31626 665.558 0.0011430 C1 0.036816 0.037930 0.23797 0.037843 0.049883 0.00014480 0.0387946 2.5988 8.30858 C1 0.0368303 0.24992 0.136324 0.013843 0.248343 2.45893 2.45843 4.45864 1.01758 2.2-Omethyburne 2.31287* 0.0368303 2.3292* 0.0369844	Benzene	12.9672*	0.0144948	2.63000*	2.62083	0.0491823	0.0346875	0.226801	12.9272	2.39402	0*
o-Xylene 0° 0 0 0 0 0 0 0 C6 915.05% 1.108 194.40% 17.738 0.40516 17.7140 918.422 12.268 C7 167.7352 0.40178 83.3447 0.62378 1.60038 1.07888 16.8449 98.80.77 40.728 C10 1005.67 0.00341892 0.0041892 0.76778 1.95457 1.95457 1.95457 1.95457 1.95457 1.95457 1.95457 1.95457 1.95457 1.95457 1.95457 1.95457 1.95457 1.95457 1.95457 1.95422 1.60308 1.97656 9.101142 2.950818 9.1999 0.011442 0.603916 2.17740 1.9542 1.95232 9.261831 9.1999 0.011442 0.15731 0.245631 9.1978 0.250818 9.1998 0.011442 0.15731 0.245631 9.17722 0.006124 0.11761 0.268414 9.1732 1.9755 7.98520 9.268124 1.97556 7.98520 9.268124	Ethylbenzene	67.8084*	0.0158633	0*	2.09408	0.132654	0.116790	0.965798	65.5816	1.12828	0*
Col 916.064* 1.1106 19.4.007 189.241 1.7.176 0.4.0618 17.1740 919.422 17.228 C7 1587.72* 0.0.47284 53.8445* 16.8036 1.0.0788 15.6423 126.5142 186.33 3.0.228 C3 105.71* 0.0.0323 8.3367* 1.1.8545 1.82133 1.3.4402 1.82.33 3.0.208 C1 106.22* 0.00000775 0* 2.2.7044 1.62038 1.97856 1.99556 0.0011420 C12 638.382* 0.000088166 0* 0.2.7135 1.10581 1.13841 0.0268423 62.717 0.0011420 C12 0.00088166 0* 0.2.7135 1.10581 0.0028423 0.2.17924 1.4847 2.2-0imethydurane 2.0.0044448 8.66849 0.0328716 0.2.3297 6.5.300 4.8.388 1.1447 2.4-00449/programe 2.3.02477 0.6.5214 0.165421 4.9.377 0.6.3307 6.5.3701 4.5.3818 1.3.447 4.8.337 0.6.3300	Toluene	62.2197*	0.0326145	3.10227*	4.66971	0.141354	0.108739	1.06614	60.5109	3.60357	0*
Cr B77.8C2 0.601379 B.3.441* 77.538 1.0788 1.0786 15.849 B83.077 B.0.300 C6 155.27* 0.4742 53.846* 56.237 0.01018 2.52821 2.55142 158.23 0.3066 108.70 3.32486 C1 105.27* 0.047812 0* 2.07140 1.5842 1.62038 5.47477 10.473 3.32486 C1 660.35* 0.00033775 0* 2.07140 1.5842 1.62038 1.37556 656.555 0.0785977 C13 680.35* 0.00033775 0* 2.071135 1.10850 0.107172 2.2388 8.30585 C13 1.3227* 0.0289305 2.42322* 1.10850 0.0034869 0.02804480 0.038714 0.21524 0.071722 2.23684 8.30585 Cyclopentane 2.07497 0.53827 0.028124 0.0014423 0.41333 0.22534 3.3387 3.3164 0.22534 3.3327 3.3164 0.35247 0.358247 0.358247 <td>o-Xylene</td> <td>0*</td> <td>0</td> <td>0*</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0*</td>	o-Xylene	0*	0	0*	0	0	0	0	0	0	0*
Ch 1957.73* 0.44724 53.8445* 56.278 3.0.018 2.5.642 1952.42 1953.45 13.278 C0 105.57* 0.0341802 0.7367* 1.98545* 1.50238 5.47437 1027.48 0.078377 C1 860.582* 0.00024638 0* 0.74678 1.31631 1.31384 0.685318 681.982 0.001171222 C13 0.0024638 0.0024638 0* 0.74678 1.31631 1.13184 0.685318 681.989 0.001171222 C13 0.0024649 0.27135 1.10805 1.10711 0.685318 681.989 0.00171222 C23 0.0024649 0.27135 1.0850 0.0184441 0.41623 1.5893 C43 0.023477 0.68537 0.68337 0.224755 0.788320 446.88 9.93882 C448 2.3507 0.58577 6.8359 6.8637 0.224755 0.788320 446.885 2.23.9810 Cyclosetane 1.3647 0.35377 8.8359 8.813	C6	916.054*	1.11056	194.400*	189.241	1.75118	0.640618	17.1740	919.462	172.068	0*
Ch 1051:21* 0.10320 8.636f* 14.167 1.9855 1.9203 5.47437 102340 104370 3.2208 C11 680.254 0.00963775 0* 2.07040 1.525457 1.32038 1.78568 886.555 0.0018391 C12 683.264 0.00068165 2.07040 1.51631 1.31384 0.085318 881.555 0.00111222 C13 684.06* 0.00068165 2.0*0 0.71135 1.10691 1.10731 0.28433 882.171 0.00171222 C2-20methylteropane 2.0007*0 0		877.952*	0.601379	84.3441*	77.5388	1.68036	1.07898	16.9459	883.077	60.5930	0*
C10 1035.67" 0.0341602 0" 6.23735 1.9.5472 1.0.2039 5.47437 1027.48 507.62977 C11 862.342 0.00246539 0" 0.70670 1.31341 1.32034 0.665318 686.555 0.00114220 C13 56.066 0.006686 0" 0.77150 1.10850 1.10781 0.242432 55.217 0.0011722 2.2 Dimetrybunca 23.3627 0.0230302 2.42322 18.182 0.0038024 0.0044803 0.241624 15.4725 17.9729 2.2 Dimetrybunca 2.30.477 0.0468531 12.244 0.043823 0.0044803 0.247535 7.93820 46.888 14.457 2.4 Metrybertane 23.047 0.0468531 2.2.1231 0.247505 0.0868016 2.31233 12.844 3.14457 2.2.1383 2.4 Metrybertane 31.3.514 0.2.27680 3.3.044 0.247605 0.3682671 0.359271 6.57414 3.1328 2.4 Metrybertane 31.5.514 0.2.26089 3.9.776 0.42770	C8	1587.73*	0.447264	53.8445*	56.2378	3.01018	2.56291	25.5142	1582.33	30.7236	0*
C11 B80.254* 0.00903775 0* 2.07040 15.842 1.5238 1.57866 685.555 0.0018391 C12 693.892* 0.00264539 0* 0.777155 1.13851 1.13784 0.069518 685.555 0.00171222 2.2-Dimethylputane 23.3047* 0.034443 8.7044* 8.69649 0.00204430 0.261234 1.57384 0.261824 1.57384 2.2-Dimethylputane 23.0347* 0.034443 8.7044* 8.69649 0.00204430 0.261824 0.53127 2.2488 8.30658 2.3-Dimethylputane 23.0347* 0.0488153 12.2410 0.155312 0.247355 7.43833 44.68 11.447 Vehthylputane 23.546* 0.158131 19.853* 22.4795 0.247355 2.4381 3.164 3.5144 3.5144 3.5184* 0.2291702 0.168915 2.31233 12.783 2.23810 Vehthylputane 35.494* 0.250256 3.0389* 3.91462 0.247355 0.243937 2.51233 12.783 2.31		1051.21*	0.103320			1.98545					0*
C12 693.882* 0.00246539 0* 0.706700 1.1681 1.1384 0.069186 691.959 0.0114420 C13 54.066* 0.00688166 0* 0.27115 1.10860 1.107810 0.268423 552.77 0.0017222 2.2-Omentlyburgene 23.047* 0.0280300 2.4292* 18.1892 0.00144 0.00284480 0.216294 15.4726 17.9729 2.2-Omentlyburgene 0* 0.0084480 0.0084480 0.0084480 0.0084480 0.0084480 0.0084480 0.0084480 0.0084480 0.0084480 0.0084444 0.0084444 0.0084514		1035.67*	0.0341802	0*	6.23735		1.92039	5.47437	1027.48	0.762977	0*
C13 584.086 0.00088166 0" 0.271135 1.10781 0.28423 582.77 0.00171222 2.2-Dimethylptarae 23.0371 0.0328000 2.42222 18.8089 0.0004480 0.21624 15.4726 17.9729 2.2-Dimethylptarae 23.0371 0.032800 2.428221 18.80892 0.0004480 0.379716 2.2988 8.30858 Cyclopentane 23.0371 0.0496882 23.3120 10.5592 0.088124 0.0184431 0.622361 35.814 9.39882 Adhthylochopentane 13.447 0.059812 13.3531 26.3731 0.247855 7.98820 14.457 Adhthylochopentane 31.244" 0.038397 33.152 0.648722 0.038916 2.31283 12.783 2.27.157 Adhthylochopentane 31.244" 0.23829* 33.178 0.246772 0.35927 2.5514 0.41672 2.31281 12.2783 2.27.1597 Adhthylochomane 31.244" 0.23037 31.168 0.25526 0.332397 31.084 0.20007<					2.07040			1.97856		0.0918391	0*
22-Demethylkopane 31 2827 0.028030 2.42822* 18.182 0.00208439 0.0208439 0.24294 15.4726 17.5726 2-Demethylkopane 0'' 0''' 0'''' 0'''''' 0''''''''''''''''''''''''''''''''''''	C12	693.982*	0.00246539	0*	0.706760	1.31631	1.31384	0.695318	691.959	0.0114420	0*
22-Omethybutane 23.0347 0.034443 8.7044* 8.69649 0.0049829 0.0044860 0.03716 22.9988 8.30858 Cyclopentane 23.0347* 0.046853 23.2120* 10.5592 0.068124 0.0184431 0.622361 35.6194 9.39382 Cyclopentane 23.3347* 0.0665421 12.653* 12.240 0.85327* 0.74755 7.89320 446.88 14.447 SMethylopentane 135.449* 0.35877 68.6173 0.252164 0.165421 4.91731 274.000 83.7004 Cyclobexane 146.815* 0.158913 13.853* 22.6900 24.3481 0.690530 0.340274 5.596968 310.178 27.1387 Cyclobexane 0* 0 0* 0	C13	584.096*	0.000688166	0*	0.271135	1.10850	1.10781	0.269423	582.717	0.00171222	0*
Cyclopentaine 0 0 0 0 0 0 0 0 0 2-Jonnerty/lutarine 23.0377 0.046853 21.210 10.5529 0.068124 0.217535 7.98320 446.838 9.63682 2-Metry/partane 135.449 0.168539 12.16853 12.2440 0.0853027 0.247535 7.98320 144.85 0.23700 Metry/cyclopentane 135.449 0.156783 26.8539* 68.617 0.247605 0.0886916 2.31223 122.8506 23.31820 0.247605 0.238233 124.855 21.7488 23.9610 Cyclopexane 315.144 0.290076 33.6393* 33.1104 0.649722 0.359247 6.55614 310.178 21.313 2.4.Firmethylpentane 315.144 0.290057 33.6393* 33.1040 0.500530 0.40274 5.96668 310.178 21.313 2.4.Firmethylpentane 0 0 0 0 0 0 0 0 0 0 0 0	2,2-Dimethylpropane	31.2627*	0.0280300	2.42922*	18.1892	0.0301144	0.00208439	0.216294	15.4726	17.9729	0*
22-brimelrybutane 23-brimelrybutane 23-brimelrybutane 36-6194 9.3982 24-brivpentane 271-857 0.605492 2.247535 7.98320 446.888 11.4457 3-Methylopictane 273-557 0.38377 66.8597 0.257194 0.156413 274.000 63.7000 Cyclohexane 146.815 0.157893 22.6705 0.086916 2.2133 22.9930 144.825 22.17488 Cyclohexane 146.815 0.157893 22.6807 2.4.3481 0.290072 0.380247 6.55144 311.22 33.1620 2.4-frimethylexane 33.514* 0.290076 2.9.6903 3.40274 6.55414 311.22 33.1620 2.4-frimethylexane 37.4.062* 0.260367 29.7530* 3.1.0965 0.710127 0.449760 6.97614 372.009 24.1203 2.4-frimethylexane 07 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2,2-Dimethylbutane	23.0347*	0.0344443	8.70448*	8.69649	0.0438929	0.00944860	0.387916	22.9988	8.30858	0*
2+Metry/pertane 4+8.328' 0.06492 12.4.63' 12.2.40 0.65302' 0.247355 7.9820 448.689 11.4.67' Metry/cyclopentane 135.44' 0.158913 19.833' 26.279 0.247605 0.0868016 2.31233 128.763 23.8070 Cyclohexane 135.44' 0.24076 30.3639' 33.104' 0.05050 0.340274 6.55144 414.252 23.1620 3.Metry/hexane 313.54' 0.220076 30.3639' 33.104' 0.5050 0.340274 6.55144 414.252 23.1620 3.Metry/hexane 313.54' 0.220076 0.340274 5.95968 30.1078 27.1397 2.4 - Trimetry/bentane 0'''' 0'''' 0'''' 0''''' 0'''''' 0''''''''''''''''''''''''''''''''''''	Cyclopentane	0*	0	0*	0	0	0	0	0	0	0*
3MetHy(vipontane 273.607* 0.539773 69.6379* 0.525194 0.16521* 4.91731 274.000 63.7000 Methy(vipontane 135.44* 0.15680* 28.2739 0.247065 0.08880* 2.31233 2.5330 144.855 2.17488 Valenty/hexane 351.294* 0.250256 30.3639* 33.104* 0.250256 30.3639* 33.104* 0.590530 0.340274 5.96868 310.178 27.133 2.4-Trimethy/pertane 0* 0	2,3-Dimethylbutane	23.0347*	0.0496853	23.2120*	10.5592	0.0681284	0.0184431	0.622361	35.6194	9.93682	0*
Methylicyclopentane 133.449" 0.158913 19.833" 26.279 0.247605 0.088916 2.3123 128.783 23.9610 2/Methylmxane 351.294" 0.290476 30.3639" 33.1612 0.152313 2.69903 0.359247 6.55144 341.292 33.1620 2.4.4Trimethylpentane 0" 0.0" 0 0.0" 0<	2-Methylpentane	448.328*	0.605492	121.863*	122.440	0.853027	0.247535	7.98320	446.898	114.457	0*
Cyclonwane 146.815' 0.157689 22.8690' 24.341 0.22102 0.12331 2.5930 144.855 21.7488 2-Methylhexane 351.24' 0.29005 30.3639' 33.104' 0.260472 0.55614 31.252 31.820 3-Methylhexane 31.514' 0.250256 30.3639' 33.104' 0.590530 0.340274 5.96968 310.178 27.1397 2.2.4.Timethylperatine 0''' 0''' 0''' 0'''' 0'''''' 0.449760 6.57614 372.09''''''''''''''''''''''''''''''''''''	3-Methylpentane	273.507*	0.359773	69.6359*	68.6173	0.525194	0.165421	4.91731	274.000	63.7000	0*
2 ¹ Metryhnexane 33:51:294* 0.290/476 30:36:39* 93:1762 0.696722 0.356247 6.55414 341:292 33:16:39 2.4-frimetryhpentane 0' 0 0' 0 </td <td>Methylcyclopentane</td> <td>135.449*</td> <td>0.158913</td> <td>19.8353*</td> <td>26.2739</td> <td>0.247605</td> <td>0.0886916</td> <td>2.31293</td> <td>128.763</td> <td>23.9610</td> <td>0*</td>	Methylcyclopentane	135.449*	0.158913	19.8353*	26.2739	0.247605	0.0886916	2.31293	128.763	23.9610	0*
3-MetryInscance 31.5.14" 0.25026 30.3839" 31.3.94 0.590530 0.340274 5.96988 310.178 27.1397 2.4-Trimethylpertane 374.063" 0.260367 29.7530" 31.9965 0.710127 0.449760 6.97614 372.009 24.1203 m:Xylene 0" 0 0" 0<	Cyclohexane	146.815*	0.157689	22.6690*	24.3481	0.281002	0.123313	2.59930	144.855	21.7488	0*
22.4-Timethylpentane 0° 0	2-Methylhexane	351.294*	0.290476	30.3639*	39.7162	0.649722	0.359247	6.55414	341.292	33.1620	0*
Nethylcyclohexane 374.063* 0.260367 29.7530* 31.0965 0.710127 0.449760 6.97614 372.009 24.1203 m-Xylene 0* 0<	3-Methylhexane	313.514*	0.250256	30.3639*	33.1094	0.590530	0.340274	5.96968	310.178	27.1397	0*
m. X/inne 0 0 0 0 0 0 0 0 p-X/lene 0	2,2,4-Trimethylpentane	0*	0	0*	0	0	0	0	0	0	0*
p-Xylene 0 0 0 0 0 0 0 0 Water 0 0.761332 0 54.0266 13268.6 13268.0 14.9238 2.782.3 39.1028 1332 Tetradecane 501.824 0.000203966 0.016213 0.952601 0.952397 0.105952 50.0765 0.000260707 Pentadecane 431.517 6.11078E-05 0 0.041404 0.819234 0.819173 0.0410010 430.656 3.94744E-05 Heptadecane 281.466* 5.61658E-06 0* 0.00871718 0.539402 0.530319 0.00018008 280.250 1.2582E-06 Octadecane 230.438* 6.46328E-07 0* 0.0031803 0.500319 0.00318008 280.01 2.55649E-07 Nonadecane 137.687* 4.32068E-06 0* 0.000367390 0.338117 0.338116 0.000367386 177.742 3.46162E-09 Heneicosane 137.687* 4.32068E-08 0* 0.000367390 0.338117 0.338116 <		374.063*	0.260367	29.7530*	31.0965	0.710127	0.449760	6.97614	372.009	24.1203	0*
Water 0 0.761332 0 54.0266 13268.8 13268.0 14.9238 2.78203 33.1028 1332 Tetradecane 501.824* 0.000203906 0 0.16213 0.952397 0.105952 500.765 0.0020077 Hexadecane 431.517* 6.11078E-05 0* 0.0144434 0.589766 0.0144376 31.4769 5.76532E-06 Hexadecane 281.466* 5.61658E-06 0* 0.00671718 0.534402 0.534396 0.00671596 280.925 1.2282E-06 Octadecane 283.513* 2.08450E-06 0 0.0031803 0.50321 0.50319 0.00318008 263.010 2.55649E-07 Nonadecane 230.438* 6.48328E-07 0* 0.0037530 0.437526 0.00318008 263.010 2.55649E-07 Nonadecane 137.687* 4.32058E-08 0* 0.00159678 0.261423 0.00159677 137.426 7.59282E-10 Decosane 137.687* 4.32058E-08 0* 0.000159678 0.25217 0.255	m-Xylene		0		0	0	0	0	0	0	0*
Tetradecane 501.824* 0.000203006 0* 0.106213 0.952601 0.952397 0.105952 500.765 0.000260707 Pentadecane 431.517* 6.11078E-05 0* 0.0414044 0.819234 0.819173 0.0410010 430.666 3.94744E-05 Heptadecane 281.466* 5.61658E-06 0* 0.0007118 0.534402 0.534396 0.00671596 280.925 1.22582E-06 Octadecane 283.613* 2.04450E-06 0* 0.00131803 0.500321 0.500319 0.00318038 283.010 2.55428E-06 Octadecane 230.438* 6.48328E-07 0* 0.00131803 0.437526 0.437525 0.00131825 229.999 4.30900E-08 Eicosane 178.080* 1.28964E-07 0* 0.000357390 0.338117 0.338116 0.000367366 177.742 3.46162E-09 Heneicosane 132.838* 1.76472E-08 0* 8.55531E-05 0.25217 0.25217 8.55591E-05 132.58 2.02893E-10 Tricosane 192.4548 <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td>0</td> <td>-</td> <td></td> <td></td> <td>•</td> <td>0*</td>			-		-	0	-			•	0*
Pentadecane431.517*6.11078E-050*0.04104040.8192340.8191730.0410010430.6563.94744E-05Hexadecane315.382*1.62176E-050*0.004144340.5987820.5987660.0144376314.7695.76532E-06Otadecane283.513*2.08450E-060*0.006717180.53434020.5343960.00671596280.9251.22582E-06Otadecane283.513*2.08450E-060*0.003180330.5003210.5003190.00318008263.0102.55649E-07Nonadecane178.080*1.28964E-070*0.0001373090.3381160.000367366177.7423.46162E-09Heneicosane173.687*4.32058E-080*0.0001596780.2614230.2614230.000159677137.4267.59282E-10Docosane132.838*1.76472E-090*2.32416E-050.1716910.1716912.12416E-059.025491.81682E-11Teircosane9.04266*3.46423E-090*2.32416E-050.1716910.1716912.12416E-059.025491.81682E-11Teircosane15.013*2.592473E-100*8.49605E-060.1374988.49605E-067.2.28042.69989E-12Pentacosane51.5900*7.93406E-110*1.34494E-060.09795290.9975291.34494E-0651.49206.89975E-14Heytacosane51.5900*7.93406E-110*1.34494E-060.09919553.12144E-0752.0548.66746E-15Nonacosane12.6522*1.09180											
Hexaclcane315.382*1.62176E-050*0.01443430.5987820.9897660.0144376314.7695.76532E-06Heptadecane281.466*5.61658E-060*0.000717180.5344020.5343960.00671596280.9251.22582E-06Octadecane230.438*6.48328E-070*0.00318030.5003210.5003190.000130008253.0102.56649E-07Nonadecane230.438*6.48328E-070*0.003178030.4375250.0131825229.9994.30900E-08Eicosane176.080*1.28964E-070*0.0003673900.3381170.338160.00037386177.7423.46162E-09Heneicosane137.687*4.32058E-080*0.0001596780.2614230.2614230.000159677137.4667.59282E-10Docosane132.838*1.76472E-080*0.5252170.2522178.55529E-059.25491.81682E-11Tricosane90.4266*3.46423E-090*2.32416E-050.1716910.1716912.32416E-059.25491.81682E-11Tetracosane72.4179*9.25473E-100*8.49605E-060.1374988.49605E-0672.28042.60998E-12Pentacosane51.6013*2.50924E-100*3.41498E-060.9797443.04189E-0651.50334.13900E-13Hexacosane51.6013*2.50924E-110*3.44494E-060.99795291.34494E-0651.49206.89975E-14Heptacosane51.2004*7.39406E-110*3.44942E-07 <td< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0*</td></td<>				-							0*
Heptadecane281.466*5.61658E-060*0.006717180.5344020.5343960.00671596280.9251.22582E-06Octadecane230.513*2.08450E-060*0.003180330.5003210.5003190.00318008263.0102.55649E-07Nonadecane230.438*6.48328E-070*0.003180300.4375260.4375260.0031825229.9994.30900E-08Eicosane177.6474.32058E-080*0.003673900.3381170.3381160.000367386177.7423.46162E-09Heneicosane132.838*1.76472E-080*8.55531E-050.2522178.55529E-05132.5862.02832E-10Docosane132.838*1.76472E-080*8.55531E-050.2522170.25229E-05132.5862.02849E-11Tricosane90.4266*3.46423E-090*2.32416E-050.1716912.32416E-0590.25491.81682E-11Tetracosane51.5003*2.50924E-100*3.04189E-060.09797443.04189E-0651.50334.13900E-13Hexacosane51.5900*7.33406E-110*3.4494E-070.097975290.09795291.34494E-0752.10532.75905E-15Nonacosane52.2044*1.01113E-110*3.12184E-070.0991953.12144E-0752.10532.75905E-15Nonacosane52.2044*1.01113E-110*3.12184E-070.02484672.10701E-0813.66153.5492E-17Nonacosane12.6522*1.09180E-120*4.34992E-080.02402											
Octadecane 263.513* 2.08450E-06 0* 0.00318033 0.500321 0.500319 0.00318008 263.010 2.55649E-07 Nonadecane 230.438* 6.48328E-07 0* 0.00031803 0.437525 0.00131825 229.99 4.30900E-08 Eicosane 178.080* 1.28964E-07 0* 0.000367390 0.338117 0.338116 0.000057386 177.742 3.46162E-09 Heneicosane 137.687* 4.32058E-08 0* 0.000159677 137.426 7.5928E-10 Docosane 132.838* 1.76472E-08 0* 8.55531E-05 0.252217 0.252217 8.55529E-05 132.586 2.02938E-10 Tricosane 90.4266* 3.46423E-09 0* 2.32416E-05 0.171691 0.137498 8.49605E-06 9.02549 1.81682E-11 Teircosane 72.4179* 9.25473E-10 0* 3.449606 0.0979744 0.0979744 3.04189E-06 51.5033 4.13300E-13 Hexacosane 51.5900* 7.93406E-11 0* 1.34494E-06 0.0979529 0.343494E-06 51.4920 6.89975E-14 Heyacosane <td></td> <td>0*</td>											0*
Nonadecane 230.438* 6.48328E-07 0* 0.00131830 0.437526 0.437525 0.00131825 229.999 4.30900E-08 Eicosane 178.080* 1.28964E-07 0* 0.00015967390 0.338116 0.000367366 177.742 3.46162E-09 Heneicosane 137.687* 4.32058E-08 0* 0.000159678 0.261423 0.261423 0.000159677 137.426 7.52928E-10 Docosane 132.838* 1.76472E-08 0* 8.55531E-05 0.252217 0.252217 8.55529E-05 132.586 2.02893E-10 Tricosane 90.4266* 3.46423E-09 0* 2.32416E-05 0.171691 2.32416E-05 90.2549 1.81682E-11 Tetracosane 72.4179* 9.25473E-10 0* 8.4660E-06 0.137498 0.3079529 1.34494E-06 51.5033 4.13900E-13 Hexacosane 51.6013* 2.50924E-10 0* 3.04189E-06 0.0979529 1.34494E-06 51.5033 4.13900E-13 Hexacosane 51.6003* 2.39087E-11 0* <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0*</td></t<>											0*
Eicosane 178.080* 1.28964E-07 0* 0.000367390 0.338117 0.338116 0.000367386 177.742 3.46162E-09 Heneicosane 137.687* 4.32058E-08 0* 0.000159678 0.261423 0.261423 0.000156677 137.42 7.5922E-10 Docosane 132.838* 1.76472E-08 0* 8.55531E-05 0.25217 0.252217 8.55529E-05 132.586 2.02893E-10 Tricosane 90.4266* 3.46423E-09 0* 2.32416E-05 0.171691 2.32416E-05 90.2549 1.81682E-11 Teicosane 72.4179* 9.25473E-10 0* 8.49606E-06 0.017498 0.137498 8.49605E-06 7.2804 2.6098E-12 Pentacosane 51.5900* 7.33406E-11 0* 3.4494E-06 0.0979529 0.34494E-06 51.4920 6.89975E-14 Heptacosane 52.2044* 1.01113E-11 0* 3.12184E-07 0.5991195 3.12144E-07 52.1053 2.75905E-15 Nonacosane 12.6522* 1.09180E-12 0* 3.4				-							0*
Heneicosane 137.687* 4.32058E-08 0* 0.00159678 0.261423 0.261423 0.000159677 137.426 7.59282E-10 Docosane 132.838* 1.76472E-08 0* 8.55531E-05 0.252217 0.252217 8.55529E-05 132.846 2.02893E-10 Tricosane 90.4266* 3.46423E-09 0* 2.32416E-05 0.171691 0.174691 2.32416E-05 90.2549 1.81682E-11 Tetracosane 72.4179* 9.25473E-10 0* 8.49606E-06 0.137498 0.137498 8.49606E-06 72.2804 2.60998E-12 Pentacosane 51.6900* 7.39406E-11 0* 1.34494E-06 0.0979744 0.0979744 3.04189E-06 51.4920 6.8997E-14 Heytacosane 51.5900* 7.93406E-11 0* 1.34494E-06 0.0979529 0.0378529 1.34494E-06 61.4920 6.8997E-14 Heytacosane 51.5900* 7.93406E-11 0* 1.34494E-07 0.099195 3.12184E-07 52.054 8.6746E-15 Octacosane 52.2044* 1.01113E-11 0* 3.12148E-07 0.099195 3.12184E-07											0*
Docosane 132.838* 1.76472E-08 0* 8.55531E-05 0.252217 0.252217 8.55529E-05 132.586 2.02893E-10 Tricosane 90.4266* 3.46423E-09 0* 2.32416E-05 0.171691 2.32416E-05 90.2549 1.81682E-11 Tetracosane 72.4179* 9.25473E-10 0* 8.4606E-06 0.137488 0.137498 8.4606E-06 7.2804 2.6098E-12 Pentacosane 72.4179* 9.25473E-10 0* 3.04189E-06 0.0979744 3.04189E-06 51.5033 4.13900E-13 Hexacosane 51.6013* 2.50924E-10 0* 3.04189E-06 0.0979529 1.34494E-06 51.6903 4.13900E-13 Heytacosane 61.0622* 2.39087E-11 0* 5.74034E-07 0.0979529 0.3979529 3.34248E-07 60.9462 8.66746E-15 Octacosane 52.2044* 1.01113E-11 0* 3.12184E-07 0.0991195 3.12184E-07 52.1053 2.75905E-15 Nonacosane 12.6522* 1.09180E-12 0* 3.02482E-08											0*
Tricosane 90.4266* 3.4423E-09 0* 2.32416E-05 0.171691 2.32416E-05 90.2549 1.81682E-11 Tetracosane 72.4179* 9.25473E-10 0* 8.49606E-06 0.137498 0.137498 8.49605E-06 72.2804 2.6998E-12 Pentacosane 51.6013* 2.50924E-10 0* 3.04198E-06 0.0979744 3.04199E-06 51.5033 4.13900E-13 Hexacosane 51.5900* 7.93406E-11 0* 1.34494E-06 0.0979529 0.0979529 1.34494E-06 51.4920 6.89975E-14 Heptacosane 52.2044* 1.01113E-11 0* 3.12184E-07 0.099195 3.12184E-07 52.1053 2.75905E-15 Nonacosane 52.2044* 1.01113E-11 0* 3.12184E-07 2.099195 3.12184E-07 52.1053 2.75905E-15 Nonacosane 12.6522* 1.09180E-12 0* 3.4992E-08 0.0240225 4.34992E-08 12.6282 2.00643E-16 Triacontane 12.6522* 1.09180E-12 0* 2.33671E-07 0.144691											0*
Tetracosane 72.4179* 9.25473E-10 0* 8.49606E-06 0.137498 0.137498 0.137498 8.49606E-06 72.2804 2.60998E-12 Pentacosane 51.6013* 2.50924E-10 0* 3.04189E-06 0.0979744 0.0979744 3.04189E-06 51.5033 4.13900E-13 Hexacosane 51.5900* 7.39406E-11 0* 3.14494E-06 0.0979529 0.0979529 1.34494E-06 51.4920 6.89975E-14 Heptacosane 61.0622* 2.39087E-11 0* 5.74034E-07 0.091955 3.12184E-07 60.9462 8.66746E-15 Octacosane 52.2044* 1.01113E-11 0* 3.12184E-07 0.0991195 0.024025 0.242025 3.12184E-07 52.1053 2.75905E-15 Nonacosane 12.6522* 1.09180E-12 0* 3.12184E-07 0.0248467 2.10701E-08 3.2671E-07 76.0615 3.95492E-17 Nonacosane 12.6522* 1.09188E-12 0* 2.10701E-08 0.0248467 0.248467 2.10701E-08 3.3671E-07 76.0615 5.3											0*
Pentacosane 51.6013* 2.50924E-10 0* 3.04189E-06 0.0979744 3.04189E-06 51.5033 4.13900E-13 Hexacosane 51.5000* 7.93406E-11 0* 1.34494E-06 0.0979529 0.979529 1.34494E-06 51.6903 6.14920 6.89975E-14 Heptacosane 61.0622* 2.39087E-11 0* 5.74034E-07 0.015938 5.74034E-07 60.942 8.6674EE-15 Octacosane 52.2044* 1.01113E-11 0* 3.12184E-07 0.0991195 3.12184E-07 52.1053 2.75905E-15 Nonacosane 12.6522* 1.09180E-12 0* 3.43492E-08 0.0240225 0.0240225 4.34992E-08 13.0615 3.95492E-17 Triacontane 13.0663* 3.86856E-13 0* 2.10701E-08 0.0244025 4.34992E-08 13.0615 3.95492E-17 Hentriacontane 13.0663* 3.86856E-13 0* 2.07041E-08 0.02440467 2.10701E-08 13.0615 3.95492E-17 Hentriacontane 76.2062* 5.44581E-12 0* 2.336											0*
Hexacosane 51.5900* 7.93406E-11 0* 1.34494E-06 0.0979529 1.34494E-06 51.4920 6.89975E-14 Heptacosane 61.0622* 2.39087E-11 0* 5.74034E-07 0.115938 5.74034E-07 60.9462 8.66746E-15 Octacosane 52.2044* 1.01113E-11 0* 3.12148E-07 0.0991195 0.099195 3.12148E-07 52.1053 2.75905E-15 Nonacosane 12.6522* 1.09180E-12 0* 4.34992E-08 0.0240225 4.34992E-08 12.6282 2.00643E-16 Triacontane 13.0663* 3.86855E-13 0* 2.10701E-08 0.0248467 0.0248467 2.10701E-08 13.0615 3.95492E-17 Hentriacontane 76.2062* 5.44581E-2 0* 2.33671E-07 0.144691 2.33671E-07 76.0615 5.3958E-16 Other C10s 0* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		-									0*
Heptacosane 61.0622* 2.39087E-11 0* 5.74034E-07 0.115938 0.115938 5.74034E-07 60.9462 8.66746E-15 Octacosane 52.2044* 1.01113E-11 0* 3.12184E-07 0.0991195 3.12184E-07 52.1053 2.75905E-15 Nonacosane 12.6522* 1.09180E-12 0* 4.34992E-08 0.0240225 4.34992E-08 12.6282 2.0643E-16 Triacontane 13.0863* 3.86855E-13 0* 2.10701E-08 0.0248467 0.0248467 2.10701E-08 13.0615 3.95492E-17 Hentriacontane 76.2062* 5.44581E-12 0* 2.33671E-07 0.14691 2.33671E-07 76.0615 5.23039E-16 Other C10s 0* 0											0*
Octacosane 52.2044* 1.01113E-11 0* 3.12184E-07 0.0991195 3.12184E-07 52.1053 2.75905E-15 Nonacosane 12.6522* 1.09180E-12 0* 4.34992E-08 0.0240225 0.0240225 4.34992E-08 12.66282 2.00643E-16 Triacontane 13.0663* 3.86855E-13 0* 2.10701E-08 0.024467 0.024467 2.10701E-08 13.0615 3.95492E-17 Hentriacontane 76.2062* 5.44581E-12 0* 2.33671E-07 0.144691 0.144691 2.33671E-07 76.0615 5.23039E-16 Other C10s 0* 0 <td></td> <td>0*</td>											0*
Nonacosane 12.6522* 1.09180E-12 0* 4.34992E-08 0.0240225 0.0240225 4.34992E-08 12.6282 2.00643E-16 Triacontane 13.0663* 3.86855E-13 0* 2.10701E-08 0.0240425 2.10701E-08 13.0615 3.95492E-17 Hentriacontane 76.2062* 5.4581E-12 0* 2.33671E-07 0.144691 2.33671E-07 76.015 5.23039E-16 Other C10s 0* 0* 0 </td <td></td> <td>0*</td>											0*
Triacontane 13.0863* 3.86855E-13 0* 2.10701E-08 0.0248467 0.0248467 2.10701E-08 13.0615 3.95492E-17 Hentriacontane 76.2062* 5.44581E-12 0* 2.33671E-07 0.144691 0.144691 2.33671E-07 76.0615 5.23039E-16 Other C10s 0* 0 <td></td> <td>0*</td>											0*
Hentriacontane 76.2062* 5.44581E-12 0* 2.33671E-07 0.144691 2.33671E-07 76.0615 5.23039E-16 Other C10s 0* 0 0* 0											0*
Other C10s 0* 0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0*</td></th<>											0*
Other C7s 0* 0				-							0*
Other C8s 0* 0 0* 0 0 0 0 0 0 0			-	0	-	-	-	•	-	•	0*
			-		-	•	-	•	-	-	0*
Uther C9S 0 0 0 0 0 0 0			-		-	•	-		•	-	0*
	Other C9s	0*	0	0*	0	0	0	0	0	0	0*

Process Streams		Condensate	Flash	Gas	GPU Gas	GPU Water	Produced Liquid	Recycle to Condensate	To Condensate Pipeline	To Sales Line	Water
Properties	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block:		Storage Vessel		VSSL-100	VSSL-100	Storage Vessel	2-Phase Sep.	VSSL-100	2-Phase Sep.	
	To Block:	MIX-100		MIX-100	VLVE-100	Storage Vessel					MIX-100
Property	Units										
Temperature	°F	100*	81.3435	100*	80.0000	80.0000	81.3435	55.0544	80.0000	55.0544	100*
Pressure	psig	1900*	0	1900*	648	648	0	348	648	348	1900*
Molecular Weight	lb/lbmol	74.7294	30.1555	21.2842	21.2714	18.0592	18.0400	55.6182	68.4112	21.2263	18.0153
Mass Density	lb/ft^3	39.9254	0.0768871	9.69144	2.91347	62.0317	62.1312	39.6480	38.5261	1.56189	62.0610
Molar Flow	lbmol/h	278.896	1.16799	3366.90	3331.28	737.830	736.662	4.36997	316.370	3326.91	739.684
Mass Flow	lb/h	20841.7	35.2213	71661.6	70861.1	13324.6	13289.4	243.050	21643.2	70618.1	13325.6
Std Vapor Volumetric Flow	MMSCFD	2.54007	0.0106376	30.6644*	30.3400	6.71987	6.70923	0.0398000	2.88138	30.3002	6.73676
Std Liquid Volumetric Flow	sgpm	67.0149*	0.163101	414.610	409.739	26.7460	26.5829	0.794265	71.7792	408.945	26.6389*
Gross Ideal Gas Heating Value	Btu/ft^3	4135.19	1678.69	1276.79	1275.19	54.4290	51.8537	2912.74	3796.59	1273.04	50.3101
Gross Liquid Heating Value	Btu/lb	20832.1	20988.3	22698.2	22682.8	87.8430	32.4497	19642.4	20896.5	22693.2	0

Environments Report							
lient Name:	G70-D Permit			•	N:\West Virginia\Tug Hill\Projects\Air Permits\General Permit G70\Yoder\ProMax\TugHill Yoder WellPad		
ocation:	0			J00.			
	Flowsheet1						
			Proje	ct-Wide Constants			
tmospheric Pressure	14.6959	psia	Ideal Gas Reference Volume	379.484	ft^3/lbmol		
eal Gas Reference Pressure	14.6959		Liquid Reference Temperature	e 60	°F		
eal Gas Reference Temperature		°F					
			E	Environment1			
			Envi	ronment Settings			
umber of Poynting Intervals	(Phase Tolerance	1	%		
ibbs Excess Model Evaluation Temperature		°F	Emulsion Enabled	FALSE			
reeze Out Temperature Threshold Difference		°F					
				Components			
omponent	Henry's Law Comp.	Phase Initiator	Component	Henry's Law Comp.	Phase Initiator		
1	FALSE	FALSE	C2	FALSE	FALSE		
3	FALSE	FALSE	iC4	FALSE	FALSE		
C4	FALSE	FALSE	iC5	FALSE	FALSE		
C5	FALSE	FALSE	N2	FALSE	FALSE		
O2	FALSE	FALSE	Benzene	FALSE	FALSE		
thylbenzene	FALSE	FALSE	Toluene	FALSE	FALSE		
-Xylene	FALSE	FALSE	C6	FALSE	FALSE		
7	FALSE	FALSE	C8	FALSE	FALSE		
9	FALSE	FALSE	C10	FALSE	FALSE		
:11	FALSE	FALSE	C12	FALSE	FALSE		
13	FALSE	FALSE	2,2-Dimethylpropane	FALSE	FALSE		
,2-Dimethylbutane	FALSE	FALSE	Cyclopentane	FALSE	FALSE		
,3-Dimethylbutane	FALSE	FALSE	2-Methylpentane	FALSE	FALSE		
-Methylpentane	FALSE	FALSE	Methylcyclopentane	FALSE	FALSE		
cyclohexane	FALSE	FALSE	2-Methylhexane	FALSE	FALSE		
Methylhexane	FALSE	FALSE FALSE	2,2,4-Trimethylpentane	FALSE	FALSE		
lethylcyclohexane	FALSE FALSE		m-Xylene Water	FALSE	FALSE TRUE		
-Xylene	FALSE	FALSE		FALSE			
etradecane exadecane	FALSE	FALSE FALSE	Pentadecane Heptadecane	FALSE FALSE	FALSE FALSE		
Ictadecane	FALSE	FALSE	Nonadecane	FALSE	FALSE		
icosane	FALSE	FALSE	Heneicosane	FALSE	FALSE		
ocosane	FALSE	FALSE	Tricosane	FALSE	FALSE		
etracosane	FALSE	FALSE	Pentacosane	FALSE	FALSE		
exacosane	FALSE	FALSE	Heptacosane	FALSE	FALSE		
ctacosane	FALSE	FALSE	Nonacosane	FALSE	FALSE		
riacontane	FALSE	FALSE	Hentriacontane	FALSE	FALSE		
ther C10s	FALSE	FALSE	Other C7s	FALSE	FALSE		
ther C8s	FALSE	FALSE	Other C9s	FALSE	FALSE		
			Physical	Property Method Se	ets		
quid Molar Volume	COSTALD		Vapor Package	Peng-Robinson			
Iverall Package	Peng-Robinson		Light Liquid Package	Peng-Robinson			
tability Calculation	Peng-Robinson		Heavy Liquid Package	Peng-Robinson			

	Calculator	rs Poport	
	Calculator		
Client Name:	G70-D Permit		Job: N:\W
Location:	0		
Flowsheet:	Flowsheet1		
	Simple S	Solver 1	
	Simple S Source		
Residual Error (fo	r CV1) = Temp-80	Code	
	Calculated Va	ariable [CV1]	
SourceMoniker	ProMax:ProMax!Project!Flowsheets!Flowsheet1!QStreams!Q-1!		
Value	2.11302		
Units	MMBtu/h		
	Measured Vari	ishle [Temn]	
SourceMoniker	ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!GPU		
Value	80.0000		
Units	°F		
Status: Solved	Solver Pro	opertieS	
Error	-1.92247E-06 Itera	ations	10
Calculated Value	2.11302E+06 Btu/h Max	terations	20
Lower Bound		ghting	1
Upper Bound	Btu/h Priot		0
Step Size Is Minimizer	Btu/h Solv FALSE Grou	ver Active	Active
Algorithm		Dependency Check	FALSE
		· ·	
Notes:			
	Simple S	Solver 2	
	Source		
Residual Error (fo	r CV1) = GPU_Gas-30.34		
	Calculated Va		
SourceMoniker	ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!Gas!	Phases!Total!Properties!Std Vapor Volumetric Flow	
Value Units	30.6644 MMSCFD		
Offics			
	Measured Variab	ble [GPU_Gas]	
SourceMoniker	ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!GPU	J Gas!Phases!Total!Properties!Std Vapor Volumetric Flow	
Value	30.3400		
Units	MMSCFD		
	Solver Pro	operties	
Status: Solved		•	
Error		ations	10
Calculated Value		(Iterations	20
Lower Bound Upper Bound	MMSCFD Weig MMSCFD Prior	ighting ritv	1 0
Step Size		/er Active	Active
Is Minimizer	FALSE Grou	up	
Algorithm	Default Skip	Dependency Check	FALSE
Notes:			
	Simple S		
	Source	Code	

Residual Error (fo	Residual Error (for CV1) = CondPipeline-2461						
	Calculate	ed Variable [CV1]					
SourceMoniker	ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams	s!Condensate!Phases!Total!Properties!Std Liquid Volumetric Flow					
Value	2297.65						
Units	bbl/d						
	Measured V	ariable [CondPipeline]					
SourceMoniker	ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams	s!To Condensate Pipeline!Phases!Light Liquid!Properties!Std Liquid Volur	netric Flow				
Value	2461.00						
Units	bbl/d						
	Solv	ver Properties					
Status: Solved							
Error	-0.000122836	Iterations	10				
Calculated Value	67.0149 sgpm	Max Iterations	20				
Lower Bound	sgpm	Weighting	1				
Upper Bound	sgpm	Priority	0				
Step Size	sgpm	Solver Active	Active				
İs Minimizer	FALSE	Group					
Algorithm	Default	Skip Dependency Check	FALSE				
Notes:							
	Sim	ple Solver 4					
	So	urce Code					
Residual Error (fo	r CV1) = WatertoTank-912.3231						
	,						
	Calculate	ed Variable [CV1]					
SourceMoniker		s!Water!Phases!Total!Properties!Std Liquid Volumetric Flow					
Value	913.333	stvateri hases fotari foperites ota Elquia volumente filow					
Units	bbl/d						
Office							
	Measured V	ariable [WatertoTank]					
SourceMoniker		s!GPU Water!Phases!Heavy Liquid!Properties!Std Liquid Volumetric Flow					
Value	912.323						
Units	bbl/d						
011110	55/10						
	Solu	/er Properties					
Status: Solved							
Error	9.71403E-07	Iterations	10				
Calculated Value	26.6389 sgpm	Max Iterations	20				
Lower Bound	sgpm	Weighting	1				
Upper Bound	sgpm	Priority	0				
Step Size	sgpm	Solver Active	Active				
Is Minimizer	FALSE	Group	ACTIVE				
Algorithm	Default	Skip Dependency Check	FALSE				
			FALSE				
Notes:							
10163.							

	User Value S	Sets Renort	
Client Name:	G70-D Permit	Job:	N:\West Virginia
Location:	0		
Flowsheet:	Flowsheet1		
	Tan		
	User Value [E		
Parameter	1*	Upper Bour	
Lower Bound	l l	Enforce Boi	FALSE
	User Value [S		
Parameter	25* ft	Upper Bour	ft
Lower Bound	0* ft	Enforce Boi	FALSE
	User Value	ShellDiam1	
Parameter	12* ft	Upper Bour	ft
Lower Bound	0* ft	Enforce Boi	FALSE
	User Value [l	BreatherVP]	
Parameter	0.0300000* psig	Upper Bour	psig
Lower Bound	psig	Enforce Boi	FALSE
		reather\/eeDl	
Devenueter	User Value [B		
Parameter Lower Bound	-0.0300000* psig psig	Upper Bour Enforce Bou	psig FALSE
Lower Dound	paig	Enloree Bot	TALOL
	User Value [D	omeRadius]	
Parameter	0.17* ft	Upper Bour	ft
Lower Bound	ft	Enforce Boi	FALSE
	Heren Melere	[0. D]	
	User Value		
Parameter Lower Bound	0* psig psig	Upper Bour Enforce Bou	psig FALSE
Lower Dound	paig	Ellioice Boi	TALGE
	User Value [Av	/qPercentLig]	
Parameter	50* %	Upper Bour	%
Lower Bound	%	Enforce Boi	FALSE
	User Value [Ma		~
Parameter Lower Bound	90* % %	Upper Bour Enforce Bou	% FALSE
Lower Dound	/0	Ellioice Boi	TALOL
	User Value	AnnNetTP]	
Parameter	911.142* bbl/day	Upper Bour	bbl/day
Lower Bound	0* bbl/day	Enforce Boi	FALSE
	User Valu		<u> </u>
Parameter Lower Bound	0* % %	Upper Bour Enforce Bou	% FALSE
	/0		
	User Value	[MaxAvgT]	
Parameter	61.15* °F	Upper Bour	°F
Lower Bound	°F	Enforce Boi	FALSE
	User Value		
Parameter	36.9667* °F	Upper Bour	°F
Lower Bound	°F	Enforce Boi	FALSE

	User Value [I	BulkLiqT]	
Parameter	52.1383* °F	Upper Bour	°F
Lower Bound	°F	Enforce Boi	FALSE
Parameter	User Value 13.7315* psia	Upper Bour	paia
Lower Bound	psia	Enforce Bou	psia FALSE
	pold	Enioroo Bot	
	User Value	[Therml]	
Parameter	1193.89* Btu/ft^2/day	Upper Bour	Btu/ft^2/day
Lower Bound	Btu/ft^2/day	Enforce Boi	FALSE
	User Value [Avg	WindSnood	
Parameter	6.16667* mi/h	Upper Bour	mi/h
Lower Bound	mi/h	Enforce Boi	FALSE
	User Value [MaxHou	urlyLoadingRate]	
Parameter	37.9642* bbl/hr	Upper Bour	bbl/hr
Lower Bound	0* bbl/hr	Enforce Boi	FALSE
	User Value [Entra	ainodOilEraal	
Parameter		Upper Bour	%
Lower Bound	× ×	Enforce Bou	FALSE
	User Value [Tu		
Parameter	244.565*	Upper Bour	
Lower Bound		Enforce Boi	FALSE
	User Value [LLo	ssSatFactor]	
Parameter	0.5*	Upper Bour	
Lower Bound	0.0	Enforce Boi	FALSE
	User Value [At		
Parameter	13.7315* psia	Upper Bour	psia
Lower Bound	psia	Enforce Boi	FALSE
	User Value		
Parameter	0.251741* psia	Upper Bour	psia
Lower Bound	psia	Enforce Boi	FALSE
-	User Value		
Parameter Lower Bound	0.351897* psia psia	Upper Bour Enforce Bou	psia FALSE
Lower Bound	psia		TALSE
	User Value	[MinVP]	
Parameter	0.178574* psia	Upper Bour	psia
Lower Bound	, psia	Enforce Boi	FALSE
	User Value [Avg		
Parameter Lower Bound	57.1967* °F °F	Upper Bour Enforce Bou	°F FALSE
	•		
	User Value [Max	LiqSurfaceT]	
Parameter	67.2326* °F	Upper Bour	°F
Lower Bound	°F	Enforce Boi	FALSE
Doromotor	User Value [To		to a low
Parameter Lower Bound	0.00228813* ton/yr ton/yr	Upper Bour Enforce Bou	ton/yr FALSE

	User Value [W	orkingLosses]	
Parameter	0.000592299* ton/yr	Upper Bour	ton/yr
Lower Bound	ton/yr	Enforce Box	FALSE
	User Value [Sta	andingLosses]	
Parameter	0.000170409* ton/yr	Upper Bour	ton/yr
Lower Bound	ton/yr	Enforce Boi	FALSE
	User Value [Ri		
Parameter	0* ton/yr	Upper Bour	ton/yr
Lower Bound	ton/yr	Enforce Boi	FALSE
		th drawell a sol	
	User Value [Wi		- /
Parameter Lower Bound	0* ton/yr	Upper Bour	ton/yr FALSE
Lower Bound	ton/yr	Enforce Boi	FALSE
	User Value [Lo	adinal osses]	
Parameter	0.00414535* ton/yr	Upper Bour	ton/yr
Lower Bound	ton/yr	Enforce Boi	FALSE
Lower Dound	torinyi	Enioree Box	THEOL
	User Value [MaxHo	ourlyLoadingLoss1	
Parameter	0.000946428* lb/hr	Upper Bour	lb/hr
Lower Bound	lb/hr	Enforce Boi	FALSE
	User Valu	ie [PStar]	
Parameter		Upper Bour	
Lower Bound		Enforce Boi	FALSE
	User Value [All		
Parameter	0.221246* ton/yr	Upper Bour	ton/yr
Lower Bound	ton/yr	Enforce Boi	FALSE
	User Value [AllC		
Parameter	0.400826* ton/yr	Upper Bour	ton/yr
Lower Bound	ton/yr	Enforce Boi	FALSE
		avul anding and	
	User Value [AIICM		
Parameter	0.0915129* lb/hr	Upper Bour	lb/hr
Lower Bound	lb/hr	Enforce Boi	FALSE
	User Value [AllC	Flashingl osses]	
Parameter	147.693* ton/yr	Upper Bour	ton/yr
Lower Bound	ton/yr	Enforce Bou	FALSE
		2	···· ·································
	User Value [Dec	kFittingLosses]	
Parameter	0* ton/yr	Upper Bour	ton/yr
Lower Bound	ton/yr	Enforce Bo	FALSE
	User Value [Dec	kSeamLosses]	
Parameter	0* ton/yr	Upper Bour	ton/yr
Lower Bound	ton/yr	Enforce Boi	FALSE
	User Value [Fla		
Parameter	71.7736* ton/yr	Upper Bour	ton/yr
Lower Bound	ton/yr	Enforce Boi	FALSE
		etelDeeteluell	
	User Value [T		
Parameter	58213.8* ton/yr	Upper Bour	ton/yr
Lower Bound	ton/yr	Enforce Boi	FALSE
	User Value [Ga	sMoleWeight1	

Parameter	0.0189145* kg/mol	Upper Bour	kg/mol				
Lower Bound	kg/mol	Enforce Bou	FALSE				
	User Value [Vap	ReportableFrac]					
Parameter	1.03420* %	Upper Bour	%				
Lower Bound	%	Enforce Boi	FALSE				
	User Value [Liq	ReportableFrac]					
Parameter	0.165017* %	Upper Bour	%				
Lower Bound	%	Enforce Bou	FALSE				
	User Value [Flas	hReportableFrac]					
Parameter	48.5966* %	Upper Bour	%				
Lower Bound	%	Enforce Boi	FALSE				
N							
Notes: This User Value Set v	vas programmatically generated. GU	D={1EDE36BA-2D5D-4876-	9370-5B5F79CCFF0E}				
		`					
	Sum Compon	ent Flow/Frac					
Sum Component Flow/Frac User Value [CompSum]							
Parameter	76.9508* ton/yr	Upper Bour	ton/yr				
Lower Bound	ton/yr	Enforce Bou	FALSE				
Notes:							
This User Value Set v	vas programmatically generated. GU	D={06B303CE-D6A3-4C69-/	ABCE-29F0C05F34E0}				
		-	-				

FESCO, Ltd. 104 FESCO Run - Bridgeport, West Virginia 26330

For: Tug Hill Operating, LLC 1320 S. University Drive, Suite 500 Fort Worth, Texas 76107

Sample: Goudy No. 9H Orifice Plate Holder Spot Gas Sampled @ 388 psig & 64 °F

Date Sampled: 01/17/17

Job Number: 01929.001

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286

COMPONENT	MOL%	GPM
COMPONENT Nitrogen Carbon Dioxide Methane Ethane Propane Isobutane n-Butane 2-2 Dimethylpropane Isopentane	MOL% 0.594 0.218 74.970 15.749 5.760 0.535 1.446 0.001 0.213	GPM 4.261 1.605 0.177 0.461 0.000 0.079
n-Pentane Hexanes Heptanes Plus Totals	0.213 0.283 0.144 <u>0.087</u> 100.000	0.079 0.104 0.060 <u>0.038</u> 6.786

Computed Real Charac	teristics Of Heptanes Plus:
-----------------------------	-----------------------------

Specific Gravity	3.450	(Air=1)
Molecular Weight	99.56	
Gross Heating Value	5321	BTU/CF

Computed Real Characteristics Of Total Sample:

Specific Gravity	0.738	(Air=1)
Compressibility (Z)	0.9962	
Molecular Weight	21.29	
Gross Heating Value		
Dry Basis	1295	BTU/CF
Saturated Basis	1273	BTU/CF

Base Conditions: 14.850 PSI & 60 Deg F

Sampled By: (20) C. Gherke Analyst: AC Certified: Fesco, Ltd. - Bridgeport, West Virginia

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286
TOTAL REPORT

COMPONENT	MOL %	GPM		WT %
Nitrogen	0.594			0.782
Carbon Dioxide	0.218			0.451
Methane	74.970			56.505
Ethane	15.749	4.261		22.248
Propane	5.760	1.605		11.932
Isobutane	0.535	0.177		1.461
n-Butane	1.446	0.461		3.948
2,2 Dimethylpropane	0.001	0.000		0.003
Isopentane	0.213	0.079		0.722
n-Pentane	0.283	0.104		0.959
2,2 Dimethylbutane	0.003	0.001		0.000
Cyclopentane	0.000	0.000		0.000
2,3 Dimethylbutane	0.008	0.003		0.032
2 Methylpentane	0.042	0.018		0.170
3 Methylpentane	0.024	0.010		0.097
n-Hexane	0.067	0.028		0.271
Methylcyclopentane	0.007	0.002		0.028
Benzene	0.001	0.002		0.004
Cyclohexane	0.008	0.003		0.032
2-Methylhexane	0.009	0.000		0.002
3-Methylhexane	0.009	0.004		0.042
2,2,4 Trimethylpentane	0.000	0.000		0.000
Other C7's	0.009	0.004		0.000
n-Heptane	0.016	0.007		0.075
Methylcyclohexane	0.009	0.004		0.042
Toluene	0.001	0.000		0.004
Other C8's	0.010	0.005		0.052
n-Octane	0.004	0.002		0.002
Ethylbenzene	0.000	0.000		0.000
M & P Xylenes	0.001	0.000		0.005
O-Xylene	0.000	0.000		0.000
Other C9's	0.002	0.000		0.000
n-Nonane	0.001	0.001		0.006
Other C10's	0.000	0.000		0.000
n-Decane	0.000	0.000		0.000
Undecanes (11)	<u>0.000</u>	0.000		<u>0.000</u>
Totals	100.000	<u>6.786</u>		100.000
101813	100.000	0.700		100.000
Computed Real Charac				
		0.738	(Air=1)	
		0.9962		
5		21.29		
Gross Heating Value				
		1295	BTU/CF	
Saturated Basis		1273	BTU/CF	

FESCO, Ltd. 104 FESCO Run - Bridgeport, West Virginia 26330

Sample: Goudy No. 9H

Orifice Plate Holder Spot Gas Sampled @ 388 psig & 64 °F

Date Sampled: 01/17/17

Job Number: 01929.001

GLYCALC FORMAT COMPONENT MOL% GPM Wt % Carbon Dioxide 0.218 0.451 Hydrogen Sulfide --------0.594 Nitrogen 0.782 Methane 74.970 56.505 Ethane 15.749 4.261 22.248 Propane 1.605 5.760 11.932 Isobutane 0.535 0.177 1.461 n-Butane 1.447 0.462 3.951 Isopentane 0.213 0.079 0.722 n-Pentane 0.283 0.104 0.959 Cyclopentane 0.000 0.000 0.000 n-Hexane 0.067 0.028 0.271 Cyclohexane 0.003 0.008 0.032 Other C6's 0.032 0.077 0.311 Heptanes 0.050 0.022 0.229 0.004 0.042 Methylcyclohexane 0.009 2,2,4 Trimethylpentane 0.000 0.000 0.000 Benzene 0.001 0.000 0.004 Toluene 0.000 0.001 0.004 Ethylbenzene 0.000 0.000 0.000 **Xylenes** 0.000 0.005 0.001 **Octanes** Plus 0.017 0.008 0.091 Totals 100.000 6.786 100.000

Real Characteristics Of Octanes Plus:

Specific Gravity	3.955	(Air=1)
Molecular Weight	114.11	
Gross Heating Value	5929	BTU/CF

Real Characteristics Of Total Sample:

Specific Gravity	0.738	(Air=1)
Compressibility (Z)	0.9962	
Molecular Weight	21.29	
Gross Heating Value		
Dry Basis	1295	BTU/CF
Saturated Basis	1273	BTU/CF

FESCO, Ltd. 1100 FESCO Avenue - Alice, Texas 78332

For: Tug Hill Operating, LLC 1320 S. University Drive, Suite 500 Fort Worth, Texas 76107

Sample: Goudy No. 9H

Separator Hydrocarbon Liquid Sampled @ 388 psig & 58 °F

Date Sampled: 01/17/17

Job Number: 71212.002

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2186-M

COMPONENT	MOL %	LIQ VOL %	WT %
Nitrogen	0.027	0.008	0.010
Carbon Dioxide	0.039	0.018	0.023
Methane	10.838	4.942	2.345
Ethane	13.005	9.359	5.275
Propane	15.319	11.357	9.113
Isobutane	3.066	2.700	2.404
n-Butane	11.345	9.625	8.895
2,2 Dimethylpropane	0.154	0.159	0.150
Isopentane	3.985	3.922	3.879
n-Pentane	6.673	6.509	6.495
2,2 Dimethylbutane	0.095	0.107	0.111
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.260	0.287	0.302
2 Methylpentane	1.849	2.066	2.150
3 Methylpentane	1.128	1.239	1.312
n-Hexane	3.778	4.180	4.392
Heptanes Plus	28.437	43.524	53.144
Totals:	100.000	100.000	100.000

Characteristics of Heptanes Plus:

Specific Gravity	0.7718	(Water=1)
°API Gravity	51.84	@ 60°F
Molecular Weight	138.5	
Vapor Volume	17.68	CF/Gal
Weight	6.43	Lbs/Gal

Characteristics of Total Sample:

Specific Gravity	0.6321	(Water=1)
°API Gravity	92.36	@ 60°F
Molecular Weight	74.1	
Vapor Volume	27.06	CF/Gal
Weight	5.27	Lbs/Gal

Base Conditions: 14.850 PSI & 60 °F

Certified: F

FESCO, Ltd. - Alice, Texas

Sampled By: (20) Gherke Analyst: XG Processor: XGdjv Cylinder ID: W-0489

David Dannhaus 361-661-7015

TANKS DATA INPUT REPORT - GPA 2186-M

COMPONENT	Mol %	LiqVol %	Wt %
Carbon Dioxide	0.039	0.018	0.023
Nitrogen	0.027	0.008	0.010
Methane	10.838	4.942	2.345
Ethane	13.005	9.359	5.275
Propane	15.319	11.357	9.113
Isobutane	3.066	2.700	2.404
n-Butane	11.500	9.784	9.046
Isopentane	3.985	3.922	3.879
n-Pentane	6.673	6.509	6.495
Other C-6's	3.333	3.699	3.875
Heptanes	6.663	7.875	8.740
Octanes	6.294	7.923	9.221
Nonanes	2.913	4.235	4.987
Decanes Plus	11.331	22.262	28.492
Benzene	0.059	0.044	0.062
Toluene	0.240	0.217	0.299
E-Benzene	0.227	0.236	0.325
Xylenes	0.711	0.733	1.018
n-Hexane	3.778	4.180	4.392
2,2,4 Trimethylpentane	0.000	0.000	<u>0.000</u>
Totals:	100.000	100.000	100.000
Characteristics of Total Sample:			
Specific Gravity		0.6321	(Water=1)
°API Gravity		92.36	@ 60°F

°API Gravity	92.36	@ 60°F	
Molecular Weight	74.1		
Vapor Volume	27.06	CF/Gal	
Weight	5.27	Lbs/Gal	
Characteristics of Decanes (C10) Plus:			

Specific Gravity	0.8090	(Water=1)
Molecular Weight	186.4	

Characteristics of Atmospheric Sample:

°API Gravity	65.36	@ 60°F
Reid Vapor Pressure Equivalent (D-6377)	10.29	psi

QUALITY CONTROL CHECK								
	Sampling Conditions	Test S	amples					
Cylinder Number		W-0489						
Pressure, PSIG	388	375						
Temperature, °F	58	58						

* Sample used for analysis

COMPONENT	Mol %	LiqVol %	Wt %
Nitrogen	0.027	0.008	0.010
Carbon Dioxide	0.039	0.018	0.023
Methane	10.838	4.942	2.345
Ethane	13.005	9.359	5.275
Propane	15.319	11.357	9.113
Isobutane			
	3.066	2.700	2.404
n-Butane 2,2 Dimethylpropane	11.345	9.625	8.895
	0.154	0.159	0.150
Isopentane n-Pentane	3.985	3.922	3.879 6.495
	6.673	6.509	
2,2 Dimethylbutane	0.095	0.107	0.111
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.260	0.287	0.302
2 Methylpentane	1.849	2.066	2.150
3 Methylpentane	1.128	1.239	1.312
n-Hexane	3.778	4.180	4.392
Methylcyclopentane	0.572	0.544	0.649
Benzene	0.059	0.044	0.062
Cyclohexane	0.620	0.568	0.704
2-Methylhexane	1.246	1.558	1.684
3-Methylhexane	1.112	1.373	1.503
2,2,4 Trimethylpentane	0.000	0.000	0.000
Other C-7's	0.610	0.722	0.816
n-Heptane	2.504	3.108	3.385
Methylcyclohexane	1.354	1.464	1.793
Toluene	0.240	0.217	0.299
Other C-8's	3.406	4.344	5.064
n-Octane	1.534	2.114	2.363
E-Benzene	0.227	0.236	0.325
M & P Xylenes	0.276	0.288	0.396
O-Xylene	0.435	0.445	0.623
Other C-9's	1.958	2.789	3.334
n-Nonane	0.955	1.446	1.653
Other C-10's	2.028	3.175	3.866
n-decane	0.559	0.924	1.073
Undecanes(11)	1.956	3.142	3.879
Dodecanes(12)	1.448	2.512	3.145
Tridecanes(13)	1.126	2.094	2.658
Tetradecanes(14)	0.899	1.791	2.304
Pentadecanes(15)	0.722	1.542	2.008
Hexadecanes(16)	0.495	1.130	1.483
Heptadecanes(17)	0.416	1.004	1.331
Octadecanes(18)	0.368	0.933	1.244
Nonadecanes(19)	0.305	0.807	1.083
Eicosanes(20)	0.224	0.617	0.832
Heneicosanes(21)	0.165	0.477	0.647
Docosanes(22)	0.152	0.459	0.626
Tricosanes(23)	0.099	0.310	0.425
Tetracosanes(24)	0.076	0.247	0.340
Pentacosanes(25)	0.052	0.175	0.242
Hexacosanes(26)	0.050	0.174	0.242
Heptacosanes(27)	0.057	0.206	0.288
Octacosanes(28)	0.047	0.175	0.245
Nonacosanes(29)	0.011	0.043	0.061
Triacontanes(30)	0.011	0.044	0.062
Hentriacontanes Plus(31+)	<u>0.062</u>	<u>0.280</u>	0.406
Total	100.000	100.000	100.000

Page 3 of 3

ATTACHMENT U

FACILITY-WIDE EMISSION SUMMARY SHEET(S)

General G70-D Permit Application

Yoder Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

October 2017

		ATTAC	HMENT	U - FAC	ILITY WI	DE CON	TROLLED) EMISSI	ONS SUI	MMARY	SHEET			
ist all sources of emiss	sions in this	table. Use	extra pages	if necessary	/									
Emission Point ID#	N	O _x	CO		VOC		SO ₂		PM ₁₀		PM _{2.5}		GHG (CO ₂ e)	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
1e	0.10	0.43	0.08	0.36	0.01	0.02	0.00	0.00	0.01	0.03	0.01	0.03	117.01	512.50
2e	0.10	0.43	0.08	0.36	0.01	0.02	0.00	0.00	0.01	0.03	0.01	0.03	117.01	512.50
3e	0.10	0.43	0.08	0.36	0.01	0.02	0.00	0.00	0.01	0.03	0.01	0.03	117.01	512.50
4e	0.10	0.43	0.08	0.36	0.01	0.02	0.00	0.00	0.01	0.03	0.01	0.03	117.01	512.50
5e	0.10	0.43	0.08	0.36	0.01	0.02	0.00	0.00	0.01	0.03	0.01	0.03	117.01	512.50
6e	0.10	0.43	0.08	0.36	0.01	0.02	0.00	0.00	0.01	0.03	0.01	0.03	117.01	512.50
7e	0.14	0.60	0.62	2.73	1.38	6.03	0.00	0.00					233.74	1023.77
8e	1.52	6.66	6.08	26.65	2.13	9.33	0.01	0.03	0.11	0.49	0.11	0.49	1745.52	6950.63
9e					0.00	0.00								
10e					46.53	1.40							36.30	157.75
TOTAL	2.25	0.04	7.20	24 5 4	50.07	16.00	0.01	0.05	0.16	0.60	0.10	0.00	2747.62	11207.1
TOTAL	2.25	9.84	7.20	31.54	50.07	16.89	0.01	0.05	0.16	0.69	0.16	0.69	2717.62	11207.1

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except for emergency generators.

According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source catergories in Table 1.

Therefore fugitive emissions shall not be included in the PTE above.

all sources of emiss	ions in this	table Lise			U IAC			ONTROLLE		113 30101				
		dehyde	Benze		Tolu	uene	Ethylb	enzene	Xyle	nes	Неха	ne	Total	HAPs
Emission Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
1e	0.00	0.00	0.00	0.00	0.00	0.00					0.00	0.01	0.00	0.01
2e	0.00	0.00	0.00	0.00	0.00	0.00					0.00	0.01	0.00	0.01
Зе	0.00	0.00	0.00	0.00	0.00	0.00					0.00	0.01	0.00	0.01
4e	0.00	0.00	0.00	0.00	0.00	0.00					0.00	0.01	0.00	0.01
5e	0.00	0.00	0.00	0.00	0.00	0.00					0.00	0.01	0.00	0.01
6e	0.00	0.00	0.00	0.00	0.00	0.00					0.00	0.01	0.00	0.01
7e														
8e	1.19	5.20	0.00	0.02	0.00	0.02	0.00	0.00	0.00	0.01	0.01	0.06	1.42	6.24
9e	0.00	0.00.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
10e	0.00	0.00.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	1.19	5.20	0.00	0.02	0.00	0.02	0.00	0.00	0.00	0.01	0.02	0.10	1.44	6.29

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except for emergency generators.

According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source catergories in Table 1. Therefore fugitive emissions shall not be included in the PTE above.

ATTACHMENT V

CLASS I LEGAL ADVERTISEMENT

General G70-D Permit Modification Application

Yoder Well Pad Proctor, West Virginia

Tug Hill Operating, LLC 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317

October 2017

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Tug Hill Operating, LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a G70-D General Permit Registration, for a natural gas well pad located off Waynes Ridge, North of Proctor, in Marshall County, West Virginia. The latitude and longitude coordinates are 39.78042 and -80.84016.

The applicant estimates the potential to discharge of the following Regulated Air Pollutants will be:

Pollutant	Tons/yr
PM/PM10/PM2.5	0.70
NO _x	9.84
СО	31.55
VOCs	25.10
Benzene	0.01
Toluene	0.02
Xylenes	0.01
n-Hexane	0.14
Formaldehyde	5.20
Total HAPs	6.33

Startup of operation is planned to begin in the 4th quarter of 2017. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the 10th day of November, 2017.

By: Tug Hill Operating, LLC Sean Willis Vice President 380 Southpointe Blvd., Suite 200 Canonsburg, PA 15317