

**CNX Gas Company LLC** 

**Bulltown Station** 

West Union, West Virginia

45CSR13 Permit Application

SLR Ref: 116.00894.00071





# **Bulltown Station 45CSR13 Permit Application**

Prepared for:

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA 15317

This document has been prepared by SLR International Corporation. The material and data in this permit application were prepared under the supervision and direction of the undersigned.

Chris Boggess

Associate Engineer

Jesse Hanshaw, P.E. Principal Engineer



# **CONTENTS**

#### **ATTACHMENTS**

| APPLICATION FO      | DR PERMIT                                         |
|---------------------|---------------------------------------------------|
| ATTACHMENT A        | BUSINESS CERTIFICATE                              |
| ATTACHMENT B        | MAP                                               |
| ATTACHMENT C        | INSTALLATION AND START UP SCHEDULE(SEE NOTES)     |
| ATTACHMENT D        | REGULATORY DISCUSSION                             |
| ATTACHMENT E        | PLOT PLAN                                         |
| ATTACHMENT F        | PROCESS FLOW DIAGRAM                              |
| ATTACHMENT G        | PROCESS DESCRIPTION                               |
| ATTACHMENT H        | SAFETY DATA SHEETS (SDS)(SEE NOTES)               |
| ATTACHMENT I        | EMISSION UNITS TABLE                              |
| ATTACHMENT J        | EMISSION POINTS DATA SUMMARY SHEET                |
| ATTACHMENT K        | FUGITIVE EMISSIONS DATA SHEET(S)(SEE NOTES)       |
| ATTACHMENT L        | EMISSION UNIT DATA SHEET(S)                       |
| ATTACHMENT M        | AIR POLLUTION CONTROL DEVICE SHEET(S)(SEE NOTES)  |
| ATTACHMENT N        | SUPPORTING EMISSIONS CALCULATIONS                 |
| ATTACHMENT O        | MONITORING/RECORDKEEPING/REPORTING/ TESTING PLANS |
| <u>ATTACHMENT P</u> | PUBLIC NOTICE                                     |
| ATTACHMENT Q        | BUSINESS CONFIDENTIAL CLAIMS (SEE NOTE)           |
| ATTACHMENT R        | AUTHORITY FORMS (SEE NOTE)                        |
| ATTACHMENT S        | TITLE V PERMIT REVISION INFORMATION (SEE NOTE)    |
|                     |                                                   |

#### Notes:

ATTACHMENT C - Changes are after the fact

ATTACHMENT M - No APCD in use at facility

ATTACHMENT Q - No information contained within this application is claimed confidential

ATTACHMENT R - No delegation of authority

ATTACHMENT S - Not a Title V Permit Revision

# **APPLICATION FOR PERMIT**

# **45CSR13 Permit Application**

Bulltown Station West Union, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA 15317

#### WEST VIRGINIA DEPARTMENT OF **ENVIRONMENTAL PROTECTION**

## **DIVISION OF AIR QUALITY**

# APPLICATION FOR NSR PERMIT AND

| 601 57 <sup>th</sup> Street, SE<br>Charleston, WV 25304<br>(304) 926-0475<br>www.dep.wv.gov/dag                                                                                                                                                                                                                                                                                                                                                                                                                                               | TITLE V PERMIT REVISION<br>(OPTIONAL)                     |                                                                                                                                                                                                                                       |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KNOWN)  CONSTRUCTION MODIFICATION RELOCATION  CLASS I ADMINISTRATIVE UPDATE TEMPORARY  CLASS II ADMINISTRATIVE UPDATE AFTER-THE-FACT                                                                                                                                                                                                                                                                                                                                                         | ☐ ADMINISTRAT ☐ SIGNIFICANT IF ANY BOX ABO                | PLEASE CHECK TYPE OF 45CSR30 (TITLE V) REVISION (IF ANY):  ADMINISTRATIVE AMENDMENT MINOR MODIFICATION SIGNIFICANT MODIFICATION IF ANY BOX ABOVE IS CHECKED, INCLUDE TITLE V REVISION INFORMATION AS ATTACHMENT S TO THIS APPLICATION |  |  |
| FOR TITLE V FACILITIES ONLY: Please refer to "Title V Revis (Appendix A, "Title V Permit Revision Flowchart") and ability                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |                                                                                                                                                                                                                                       |  |  |
| Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I. General                                                |                                                                                                                                                                                                                                       |  |  |
| Name of applicant (as registered with the WV Secretary of SCNX Gas Company LLC)                                                                                                                                                                                                                                                                                                                                                                                                                                                               | State's Office):                                          | ate's Office):  2. Federal Employer ID No. (FEIN): 31-1782401                                                                                                                                                                         |  |  |
| 3. Name of facility (if different from above):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           | 4. The applicant is the:                                                                                                                                                                                                              |  |  |
| Bulltown Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                           | ☐ OWNER ☐ OPERATOR ☐ BOTH                                                                                                                                                                                                             |  |  |
| 5A. Applicant's mailing address:<br>1000 Consol Energy Drive<br>Canonsburg, PA 15317                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5B. Facility's prese<br>Bull Town Rd.<br>West Union, WV 2 | ent physical address:<br>6456                                                                                                                                                                                                         |  |  |
| <ul> <li>6. West Virginia Business Registration. Is the applicant a resident of the State of West Virginia? YES NO</li> <li>If YES, provide a copy of the Certificate of Incorporation/Organization/Limited Partnership (one page) including any name change amendments or other Business Registration Certificate as Attachment A.</li> <li>If NO, provide a copy of the Certificate of Authority/Authority of L.L.C./Registration (one page) including any name change amendments or other Business Certificate as Attachment A.</li> </ul> |                                                           |                                                                                                                                                                                                                                       |  |  |
| 7. If applicant is a subsidiary corporation, please provide the name of parent corporation:                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                           |                                                                                                                                                                                                                                       |  |  |
| 8. Does the applicant own, lease, have an option to buy or otherwise have control of the <i>proposed site</i> ? 🛛 YES 🔲 NO                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                           |                                                                                                                                                                                                                                       |  |  |
| <ul> <li>If YES, please explain: The applicant leases the site.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                           |                                                                                                                                                                                                                                       |  |  |
| <ul> <li>If NO, you are not eligible for a permit for this source.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                           |                                                                                                                                                                                                                                       |  |  |

| 9.               | Type of plant or facility (stationary source) to be <b>cor administratively updated</b> or <b>temporarily permitte</b> crusher, etc.): <b>Natural Gas Compressor Station</b>                                                                        | North American Industry     Classification System     (NAICS) code for the facility:     211111 |                                                                        |  |  |  |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--|--|--|
| 11 <i>P</i>      | A. DAQ Plant ID No. (for existing facilities only):                                                                                                                                                                                                 | CSR30 (Title V) permit numbers existing facilities only):                                       |                                                                        |  |  |  |
| 12 <i>A</i>      | Λ.                                                                                                                                                                                                                                                  | <u> </u>                                                                                        |                                                                        |  |  |  |
| -                | For <b>Modifications</b> , <b>Administrative Updates</b> or <b>Te</b> present location of the facility from the nearest state                                                                                                                       |                                                                                                 | please provide directions to the                                       |  |  |  |
| -                | For <b>Construction</b> or <b>Relocation permits</b> , please proad. Include a <b>MAP</b> as <b>Attachment B</b> .                                                                                                                                  | provide directions to the proposed new s                                                        | ite location from the nearest state                                    |  |  |  |
| Tur<br>and       | aveling North on I-79 N, take exit 176 for US-50/7 <sup>th</sup> St<br>n left onto WV-18 N and travel 0.6 miles. Turn right o<br>I travel 2.8 miles. Turn left onto Nutter Fork and trave<br>e. The access road will be located on the right (South | nto Davis St./Smithton Rd. and travel 1.0<br>I 1.4 miles. Turn right onto Bull Town Rd          | O mile. Turn left onto Rock Run Rd.<br>I. and travel approximately 1.0 |  |  |  |
| 12E              | New site address (if applicable):                                                                                                                                                                                                                   | 12C. Nearest city or town:                                                                      | 12D. County:                                                           |  |  |  |
| N/A              | N.                                                                                                                                                                                                                                                  | West Union                                                                                      | Doddridge                                                              |  |  |  |
| 12.              | E. UTM Northing (KM): 4,354.859                                                                                                                                                                                                                     | 12F. UTM Easting (KM): 521.838                                                                  | 12G. UTM Zone: 17                                                      |  |  |  |
|                  | Briefly describe the proposed change(s) at the facilitation pression engine.                                                                                                                                                                        | ty: NSPS JJJJ permitting of a 4SRB Cor                                                          | tinental TM-27A (40 hp) booster                                        |  |  |  |
| 14 <i>A</i><br>– | A. Provide the date of anticipated installation or change of this is an <b>After-The-Fact</b> permit application, provided the change did happen: 5/1/2014                                                                                          | •                                                                                               | 14B. Date of anticipated Start-Up if a permit is granted:              |  |  |  |
| 140              | C. Provide a <b>Schedule</b> of the planned <b>Installation</b> of/application as <b>Attachment C</b> (if more than one uni                                                                                                                         |                                                                                                 | units proposed in this permit                                          |  |  |  |
| 15.              | Provide maximum projected <b>Operating Schedule</b> of Hours Per Day 24 Days Per Week 7                                                                                                                                                             | f activity/activities outlined in this applica<br>Weeks Per Year 52                             | ation:                                                                 |  |  |  |
| 16.              | Is demolition or physical renovation at an existing fa                                                                                                                                                                                              | cility involved?                                                                                |                                                                        |  |  |  |
| 17.              | Risk Management Plans. If this facility is subject to                                                                                                                                                                                               | 112(r) of the 1990 CAAA, or will becom                                                          | e subject due to proposed                                              |  |  |  |
| (                | changes (for applicability help see www.epa.gov/cepp                                                                                                                                                                                                | oo), submit your <b>Risk Management Pla</b>                                                     | n (RMP) to U.S. EPA Region III.                                        |  |  |  |
| 18.              | Regulatory Discussion. List all Federal and State a                                                                                                                                                                                                 | air pollution control regulations that you                                                      | pelieve are applicable to the                                          |  |  |  |
| ı                | proposed process (if known). A list of possible applica                                                                                                                                                                                             | able requirements is also included in Atta                                                      | achment S of this application                                          |  |  |  |
| (                | (Title V Permit Revision Information). Discuss applicability and proposed demonstration(s) of compliance (if known). Provide this                                                                                                                   |                                                                                                 |                                                                        |  |  |  |
| i                | information as <b>Attachment D.</b>                                                                                                                                                                                                                 |                                                                                                 |                                                                        |  |  |  |
|                  | <ol> <li>Type of plant or facility (stationary source) to<br/>administratively updated or temporarily per<br/>crusher, etc.): Natural Gas Compressor State</li> </ol>                                                                               | ermitted (e.g., coal preparation plant, pr                                                      |                                                                        |  |  |  |
|                  | Section II. Additional a                                                                                                                                                                                                                            | attachments and supporting                                                                      | documents.                                                             |  |  |  |
|                  | 19. Include a check payable to WVDEP – Division of                                                                                                                                                                                                  | Air Quality with the appropriate applicate                                                      | tion fee (per 45CSR22 and                                              |  |  |  |
| L                | 45CSR13). See attached check for \$2,000 whi                                                                                                                                                                                                        | ch covers the Application and NSPS fee                                                          | S                                                                      |  |  |  |
| L                | 20. Include a Table of Contents as the first page of                                                                                                                                                                                                | your application package.                                                                       |                                                                        |  |  |  |

| 21. Provide a <b>Plot Plan</b> , e.g. scaled map source(s) is or is to be located as <b>Att</b>                                                                                                                                                                                                                                                         |                                      | e location of the property on which the stationary <i>Guidance</i> ).                                     |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------|--|--|--|
| <ul> <li>Indicate the location of the nearest occ</li> </ul>                                                                                                                                                                                                                                                                                            | cupied structure (e.g. church, sch   | pol, business, residence).                                                                                |  |  |  |
| 22. Provide a <b>Detailed Process Flow Di</b> device as <b>Attachment F.</b>                                                                                                                                                                                                                                                                            | agram(s) showing each propose        | d or modified emissions unit, emission point and control                                                  |  |  |  |
| 23. Provide a Process Description as A                                                                                                                                                                                                                                                                                                                  | ttachment G.                         |                                                                                                           |  |  |  |
| <ul> <li>Also describe and quantify to the e</li> </ul>                                                                                                                                                                                                                                                                                                 | xtent possible all changes made      | to the facility since the last permit review (if applicable).                                             |  |  |  |
| All of the required forms and additional info                                                                                                                                                                                                                                                                                                           | ormation can be found under the P    | ermitting Section of DAQ's website, or requested by phone.                                                |  |  |  |
| 24. Provide Material Safety Data Sheets                                                                                                                                                                                                                                                                                                                 | ,                                    | · •                                                                                                       |  |  |  |
| <ul> <li>For chemical processes, provide a MS</li> </ul>                                                                                                                                                                                                                                                                                                | DS for each compound emitted to      | the air.                                                                                                  |  |  |  |
| 25. Fill out the <b>Emission Units Table</b> an                                                                                                                                                                                                                                                                                                         | d provide it as <b>Attachment I.</b> |                                                                                                           |  |  |  |
| 26. Fill out the Emission Points Data Su                                                                                                                                                                                                                                                                                                                | ımmary Sheet (Table 1 and Tak        | ole 2) and provide it as Attachment J.                                                                    |  |  |  |
| 27. Fill out the Fugitive Emissions Data                                                                                                                                                                                                                                                                                                                | Summary Sheet and provide it         | as Attachment K.                                                                                          |  |  |  |
| 28. Check all applicable Emissions Unit                                                                                                                                                                                                                                                                                                                 | Data Sheets listed below:            |                                                                                                           |  |  |  |
| ☐ Bulk Liquid Transfer Operations                                                                                                                                                                                                                                                                                                                       | ☐ Haul Road Emissions                | ☐ Quarry                                                                                                  |  |  |  |
| ☐ Chemical Processes                                                                                                                                                                                                                                                                                                                                    | ☐ Hot Mix Asphalt Plant              | ☐ Solid Materials Sizing, Handling and Storage                                                            |  |  |  |
| ☐ Concrete Batch Plant                                                                                                                                                                                                                                                                                                                                  | ☐ Incinerator                        | Facilities                                                                                                |  |  |  |
| ☐ Grey Iron and Steel Foundry                                                                                                                                                                                                                                                                                                                           | ☐ Indirect Heat Exchanger            | Storage Tanks     ■                                                                                       |  |  |  |
| ☐ General Emission Unit, specify: Interna                                                                                                                                                                                                                                                                                                               | al Combustion Engine Data Shee       | t, Tank Loading Data Sheet                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                         |                                      |                                                                                                           |  |  |  |
| Fill out and provide the Emissions Unit D                                                                                                                                                                                                                                                                                                               | Data Sheet(s) as Attachment L.       |                                                                                                           |  |  |  |
| 29. Check all applicable Air Pollution Co                                                                                                                                                                                                                                                                                                               | ontrol Device Sheets listed below    | N:                                                                                                        |  |  |  |
| ☐ Absorption Systems                                                                                                                                                                                                                                                                                                                                    | ☐ Baghouse                           | ☐ Flare                                                                                                   |  |  |  |
| ☐ Adsorption Systems                                                                                                                                                                                                                                                                                                                                    | Condenser                            | ☐ Mechanical Collector                                                                                    |  |  |  |
| ☐ Afterburner                                                                                                                                                                                                                                                                                                                                           | ☐ Electrostatic Precipitat           | or                                                                                                        |  |  |  |
| ☐ Other Collectors, specify – Non selecti                                                                                                                                                                                                                                                                                                               | ve catalytic reduction (NSCR)        |                                                                                                           |  |  |  |
| Fill out and provide the Air Pollution Con                                                                                                                                                                                                                                                                                                              | trol Device Sheet(s) as Attachr      | nent M.                                                                                                   |  |  |  |
| 30. Provide all <b>Supporting Emissions C</b> Items 28 through 31.                                                                                                                                                                                                                                                                                      | calculations as Attachment N, o      | r attach the calculations directly to the forms listed in                                                 |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                         | compliance with the proposed er      | proposed monitoring, recordkeeping, reporting and nissions limits and operating parameters in this permit |  |  |  |
| Please be aware that all permits must be practically enforceable whether or not the applicant chooses to propose such measures. Additionally, the DAQ may not be able to accept all measures proposed by the applicant. If none of these plans are proposed by the applicant, DAQ will develop such plans and include them in the permit.               |                                      |                                                                                                           |  |  |  |
| 32. <b>Public Notice.</b> At the time that the a                                                                                                                                                                                                                                                                                                        | application is submitted, place a (  | Class I Legal Advertisement in a newspaper of general                                                     |  |  |  |
| circulation in the area where the source is or will be located (See 45CSR§13-8.3 through 45CSR§13-8.5 and <i>Example Legal</i>                                                                                                                                                                                                                          |                                      |                                                                                                           |  |  |  |
| Advertisement for details). Please s                                                                                                                                                                                                                                                                                                                    | submit the Affidavit of Publication  | on as Attachment P immediately upon receipt.                                                              |  |  |  |
| 33. Business Confidentiality Claims.                                                                                                                                                                                                                                                                                                                    |                                      |                                                                                                           |  |  |  |
| ☐ YES                                                                                                                                                                                                                                                                                                                                                   |                                      |                                                                                                           |  |  |  |
| If YES, identify each segment of information on each page that is submitted as confidential and provide justification for each segment claimed confidential, including the criteria under 45CSR§31-4.1, and in accordance with the DAQ's "Precautionary Notice – Claims of Confidentiality" guidance found in the General Instructions as Attachment Q. |                                      |                                                                                                           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                         | ation III. Contitiontion o           |                                                                                                           |  |  |  |

#### Section III. Certification of Information

34. **Authority/Delegation of Authority.** Only required when someone other than the responsible official signs the application. Check applicable **Authority Form** below:

| ☐ Authority of Corporation or Other Business                                                                                                                                                                                                                                                                                                                                                                                                                                 | Entity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ☐ Authority of Pa                                                                                                                                                                          | artnership                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ☐ Authority of Governmental Agency                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ☐ Authority of Limited Partnership                                                                                                                                                         |                                                                                                                                                                                                                                    |
| Submit completed and signed Authority Form                                                                                                                                                                                                                                                                                                                                                                                                                                   | n as Attachment R.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                            |                                                                                                                                                                                                                                    |
| All of the required forms and additional informa                                                                                                                                                                                                                                                                                                                                                                                                                             | tion can be found under                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | the Permitting Section                                                                                                                                                                     | on of DAQ's website, or requested by phone.                                                                                                                                                                                        |
| 35A. <b>Certification of Information.</b> To certify 2.28) or Authorized Representative shall chec                                                                                                                                                                                                                                                                                                                                                                           | this permit application, a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Responsible Offici<br>d sign below.                                                                                                                                                        | ial (per 45CSR§13-2.22 and 45CSR§30-                                                                                                                                                                                               |
| Certification of Truth, Accuracy, and Comp                                                                                                                                                                                                                                                                                                                                                                                                                                   | leteness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                            |                                                                                                                                                                                                                                    |
| I, the undersigned Responsible Official / application and any supporting documents appreasonable inquiry I further agree to assume restationary source described herein in accordance Environmental Protection, Division of Air Qual and regulations of the West Virginia Division obusiness or agency changes its Responsible Contified in writing within 30 days of the official                                                                                           | pended hereto, is true, a<br>esponsibility for the cons<br>nce with this application<br>ity permit issued in acco<br>f Air Quality and W.Va.<br>Official or Authorized Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ccurate, and completruction, modification, and any amendment rdance with this appleced § 22-5-1 et se                                                                                      | ete based on information and belief after<br>on and/or relocation and operation of the<br>nts thereto, as well as the Department of<br>plication, along with all applicable rules<br>eq. (State Air Pollution Control Act). If the |
| Compliance Certification  Except for requirements identified in the Title V that, based on information and belief formed a compliance with all applicable requirements.  SIGNATURE                                                                                                                                                                                                                                                                                           | fter reasonable inquiry,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | all air contaminant s                                                                                                                                                                      | chieved, I, the undersigned hereby certify sources identified in this application are in DATE:                                                                                                                                     |
| 35B. Printed name of signee:                                                                                                                                                                                                                                                                                                                                                                                                                                                 | use blue ink)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                            | (Please use blue ink) 35C. Title:                                                                                                                                                                                                  |
| Craig Neal                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                            | Vice President Gas Operations                                                                                                                                                                                                      |
| 35D. E-mail: craigneal@consolenergy.com                                                                                                                                                                                                                                                                                                                                                                                                                                      | 36E. Phone: 724-485-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1000                                                                                                                                                                                       | ·                                                                                                                                                                                                                                  |
| 33D. E-Mail. <u>Craigheal@consolenergy.com</u>                                                                                                                                                                                                                                                                                                                                                                                                                               | 36E. Priorie. 724-465-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +000                                                                                                                                                                                       | 36F. FAX                                                                                                                                                                                                                           |
| 36A. Printed name of contact person (if differe                                                                                                                                                                                                                                                                                                                                                                                                                              | nt from above): Jesse l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hanshaw                                                                                                                                                                                    | 36B. Title: Principal Engineer, SLR                                                                                                                                                                                                |
| 36C. E-mail: jhanshaw@slrconsulting.com 36D. Phone: 304-545-8563                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                            | 36E. FAX: 681-205-8969                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                            |                                                                                                                                                                                                                                    |
| PLEASE CHECK ALL APPLICABLE ATTACHMEN  Attachment A: Business Certificate  Attachment B: Map(s)  Attachment C: Installation and Start Up Sche  Attachment D: Regulatory Discussion  Attachment E: Plot Plan  Attachment F: Detailed Process Flow Diagrar  Attachment G: Process Description  Attachment H: Material Safety Data Sheets (N  Attachment I: Emission Units Table  Attachment J: Emission Points Data Summar  Please mail an original and three (3) copies of th | MAttaci MATTA | nment K: Fugitive E hment L: Emissions hment M: Air Polluti hment N: Supportin hment O: Monitorin hment P: Public Not hment Q: Business hment R: Authority hment S: Title V Per cation Fee | missions Data Summary Sheet s Unit Data Sheet(s) ion Control Device Sheet(s) g Emissions Calculations g/Recordkeeping/Reporting/Testing Plans tice Confidential Claims Forms mit Revision Information                              |
| address listed on the first                                                                                                                                                                                                                                                                                                                                                                                                                                                  | page of this application.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Please DO NOT fax                                                                                                                                                                          | permit applications.                                                                                                                                                                                                               |

# ATTACHMENT A BUSINESS CERTIFICATE

# **45CSR13 Permit Application**

Bulltown Station West Union, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA 15317



## I, Natalie E. Tennant, Secretary of State of the State of West Virginia, hereby certify that

#### CNX GAS COMPANY LLC

was duly authorized under the laws of this state to transact business in West Virginia as a foreign limited liability company on June 29, 2001.

The company is filed as a term company, for the term ending June 29, 2026.

I further certify that the company's most recent annual report, as required by West Virginia Code §31B-2-211, has been filled with our office and that a certificate of cancellation has not been filled.

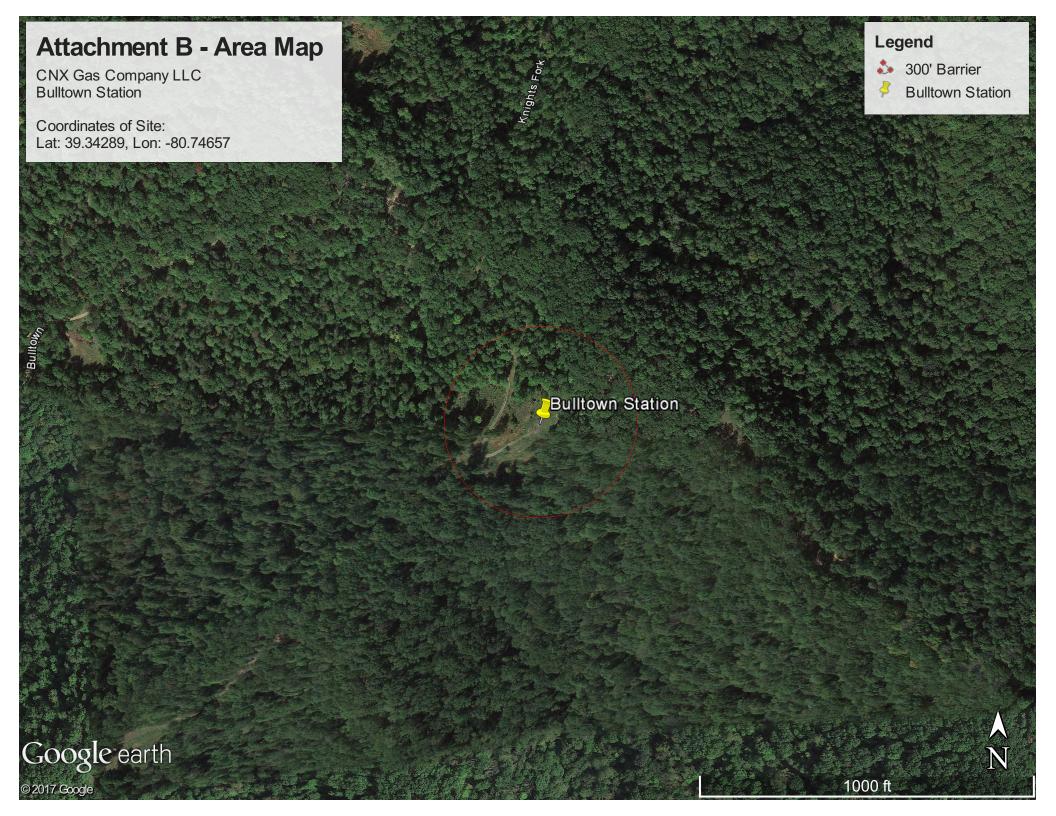
Therefore, I hereby issue this

## CERTIFICATE OF AUTHORIZATION



Given under my hand and the Great Seal of the State of West Virginia on this day of October 28, 2011

Matile E. Yesmant


# **ATTACHMENT B**

## **MAP**

# **45CSR13 Permit Application**

Bulltown Station West Union, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA 15317



# ATTACHMENT C INSTALLATION AND START UP SCHEDULE

NOT APPLICABLE - Changes are after the fact

# **45CSR13 Permit Application**

Bulltown Station West Union, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA 15317

# ATTACHMENT D REGULATORY DISCUSSION

# **45CSR13 Permit Application**

Bulltown Station West Union, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA 15317

#### **APPLICABLE REGULATIONS**

The equipment at this facility is subject to the following applicable rules and regulations:

**45 CSR 4** – To Prevent and Control the Discharge of Air Pollutants into the Open Air Which Causes or Contributes to an Objectionable Odor or Odors

**45 CSR 11 –** Prevention of Air Pollution Emergency Episodes

**45 CSR 13** – Permits for Construction, Modification, Relocation, and Operation of Stationary Source of Air Pollutants

The proposed application will address permit coverage for a previously non regulated 40 Hp., stationary RICE that was found to have a substantive requirement under 40 CFR 60, Subpart JJJJ due to its manufacture (mfg) is after July 1, 2008.

**45 CSR 17** – To Prevent and Control Particulate Matter Air Pollution from Materials Handling, Preparation, Storage And Other Sources Of Particulate Matter

Fugitive particulate emissions shall not leave the boundaries of the facility.

**40 CFR 60 Subpart JJJJ** – Standards of Performance for Stationary Spark Ignition Internal Combustion Engines

This natural gas fired RICE is considered a new unit subject to this NSPS since having been manufactured after July 1, 2008 as defined in 40CFR60.4230(4)(iii) for non-emergency units with maximum engine power less than 500 hp. However, since this engine's maximum rated engine power is less than 100 hp, this unit must comply with the emission standards for field testing found in 40CFR1048.101(c), which defines emissions limits for  $NO_X$  and CO not exceed 3.8 g/kW-hr and 6.5 g/kW-hr, respectively.

**40 CFR 63 Subpart ZZZZ** – NESHAP for Stationary Reciprocating Internal Combustion Engines

The unit was manufactured on November, 2012. Therefore per the definition in 40CFR63.6590(c)(1) this unit shall comply with the requirements of Subpart ZZZZ by complying with the requirements of 40 CFR 60, Subpart JJJJ.

#### NON-APPLICABILITY DETERMINATIONS

The following requirements have been determined "not applicable" due to the following:

**45 CSR 21** – To Prevent and Control Air Pollution from the Emission of Volatile Organic Compounds

This site is located in Doddridge County, which is not one of the designated VOC maintenance counties listed by the Rule as Cabell, Kanawha, Putnam, Wayne, and Wood counties.

**45 CSR 27 –** To Prevent and Control the Emissions of Toxic Air Pollutants

Natural Gas is included as a petroleum product and contains less than 5% benzene by weight. 45CSR§27-2.4 exempts equipment "used in the production and distribution of petroleum products providing that such equipment does not produce or contact materials containing more than 5% benzene by weight".

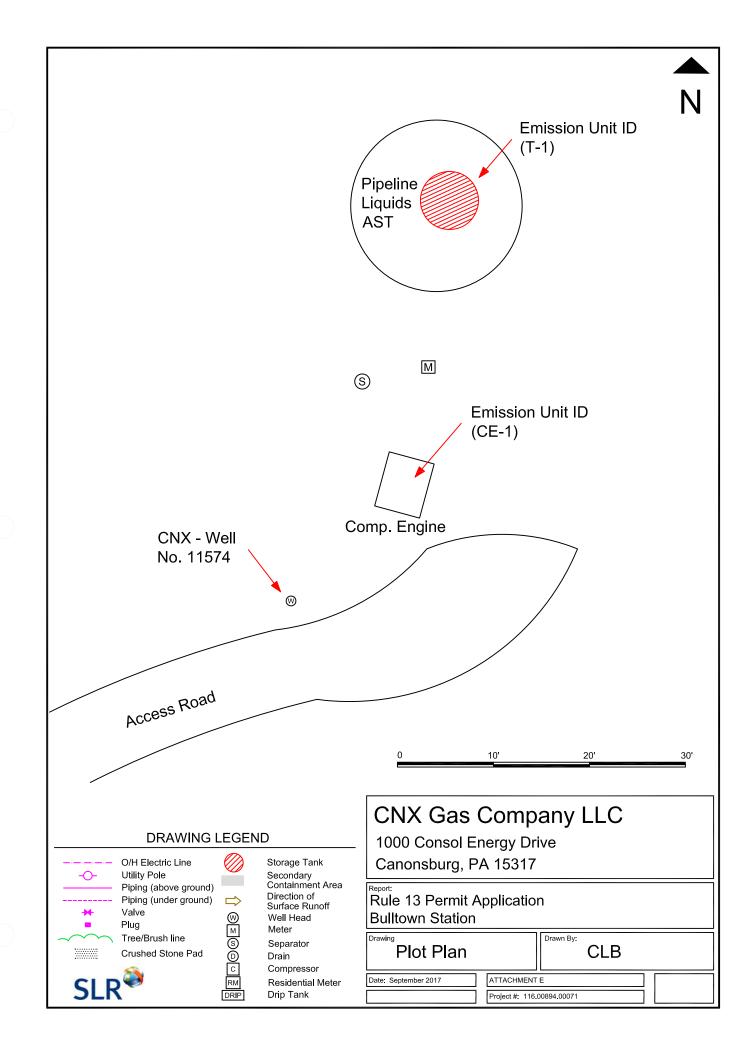
**40 CFR 60 Subpart Kb** – Standards of Performance for Volatile Organic Liquid Storage Vessels

This subpart does not apply because the storage vessel is below 75m<sup>3</sup> (19,813 gallons) in capacity as specified in 60.11(b).

**40 CFR 60 Subpart OOOO** – Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution

Emissions from T-1 do not exceed 6 tpy VOCs.

**40 CFR 60 Subpart OOOOa** – Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification, or Reconstruction Commenced after September 18, 2015

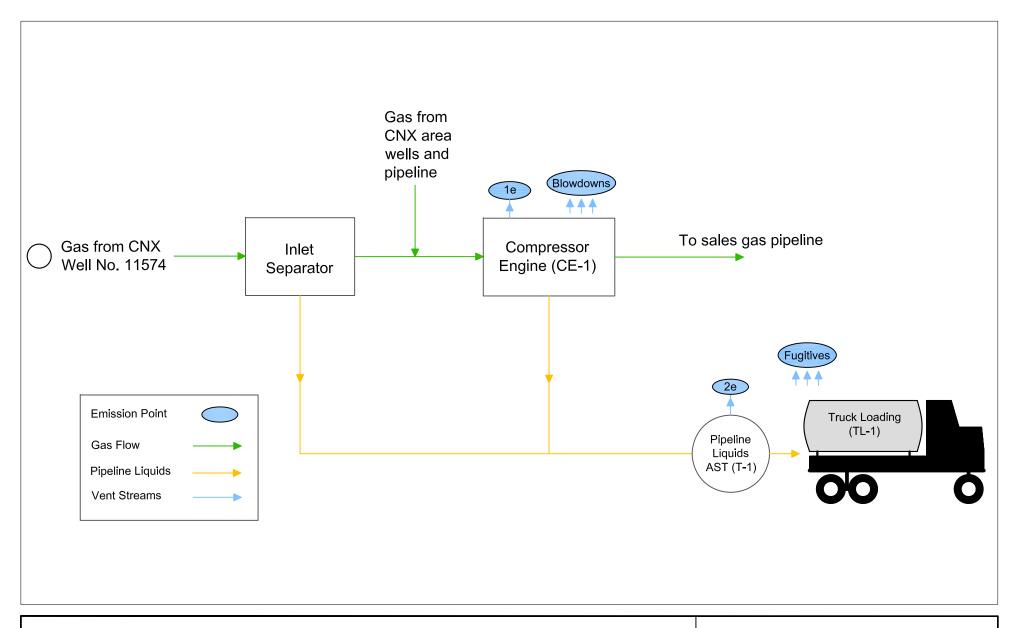

The GHG and VOC requirements defined by this NSPS are not applicable to this site because all affected sources commenced construction, modification, or reconstruction prior to September 18, 2015 in accordance with [40CFR§60.5365a]

# ATTACHMENT E

# **45CSR13 Permit Application**

Bulltown Station West Union, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA 15317




# ATTACHMENT F PROCESS FLOW DIAGRAM

# **45CSR13 Permit Application**

Bulltown Station West Union, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA 15317





# CNX Gas Company LLC

Attachment F - Process Flow Diagram

**Bulltown Station** 

Sept 2017

# ATTACHMENT G PROCESS DESCRIPTION

# **45CSR13 Permit Application**

Bulltown Station West Union, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA 15317

## PROCESS DESCRIPTION

The site will consist of (1) compressor, (1) 100 bbl produced liquid tank, and one conventional well. Bulltown Station collects gas from conventional wells and provides compression services. Any liquid removed in the inlet separator will be sent to the produced liquid tank prior to compression. Any liquids produced from the nearby well will be stored in the (1) 100 bbl produced liquid tank. All tank and engine emissions will be uncontrolled, at this site.

The source's storage vessel potential to emit was modeled using ProMax equation of state (EOS) software based on gas and condensate sampling taken from the Minnie Lee No.1 well pad. In accordance with DAQ guidance, emission potentials were evaluated and reported for truck loading, fugitive equipment leaks, and compressor blowdowns. The emission calculations summarized within this application show the facility's potential to emit to be no more than 1.10 tpy NOx, 1.87 tpy CO, and 1.03 tpy VOC.

#### PROCESS CHANGES

CNX is applying for a 45CSR13 permit to cover a NSPS JJJJ compressor, as well as emissions from an adjacent well.

# ATTACHMENT H SAFETY DATA SHEETS (SDS)

# **45CSR13 Permit Application**

Bulltown Station West Union, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA 15317



## **Safety Data Sheet (SDS)**

#### Section 1 – Identification

1(a) Product Identifier used on Label: Condensate

1(b) Other Means of Identification: Natural Gas Condensate, Produced Hydrocarbons, Drip Gas, Natural Gasoline, Petroleum Crude Oil Condensates

1(c) Recommended Use of the Chemical and Restrictions on Use: Used as a petrochemical feedstock, home heating fuel and refinery blending.

1(d) Name, Address, and Telephone Number:

CONSOL Energy Inc. General information: (724) 485-4000

1000 CONSOL Energy Drive Canonsburg, PA 15317

1(e) Emergency Phone Number: Chemtrec (800) 424-9300

#### Section 2 – Hazard(s) Identification

**2(a) Classification of the Chemical: Condensate** is considered a hazardous material according to the criteria specified in REACH [REGULATION (EC) No 1907/2006] and CLP [REGULATION (EC) No 1272/2008] and OSHA 29 CFR 1910.1200 Hazard Communication Standard. The categories of Health Hazards as defined in "GLOBALLY HARMONIZED SYSTEM OF CLASSIFICATION AND LABELLING OF CHEMICALS (GHS), Third revised edition ST/SG/AC.10/30/Rev. 3" United Nations, New York and Geneva, 2009 have been evaluated. Refer to Section 3, 8 and 11 for additional information.

2(b) Signal Word, Hazard Statement(s), Symbol(s) and Precautionary Statement(s):

| Hazard<br>Symbol | Hazard Classification                                                                                                                                                                            | Signal Word | Hazard Statement(s)                                                                                                                                                                                                                                                             |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | Flammable Liquid - 2                                                                                                                                                                             |             |                                                                                                                                                                                                                                                                                 |
|                  | Germ Cell Mutagenicity - 1B Carcinogenicity - 1A Toxic Reproduction - 1B Specific Target Organ Toxicity (STOT) Following Single Exposure - 2 STOT following Repeated Exposure - 1 Aspiration - 1 | Danger      | Highly Flammable liquid and vapor  Toxic if inhaled  Causes skin irritation and serious eye irritation  May cause genetic defects, cancer and damage fertility or the unborn child  May cause damage to central and peripheral nervous system, lungs, liver and red blood cells |
|                  | Acute Toxicity Hazard - 3                                                                                                                                                                        |             | Causes damage to the blood, spleen, and liver through prolonged or repeat exposures  May be fatal if swallowed and enters airways                                                                                                                                               |
|                  | Skin Corrosion/Irritation - 2<br>Eye Damage/ Irritation - 2A                                                                                                                                     |             |                                                                                                                                                                                                                                                                                 |

#### **Precautionary Statement(s)**

Keep away from heat/sparks/open flames/hot surfaces. No smoking. Keep container tightly closed.

Ground/Bond container and receiving equipment.

Use explosion-proof electrical/ventilating/lighting/equipment.

Use only non-sparking tools.

Take precautionary measures against static discharge.

Wear protective gloves/protective clothing/eye protection/face protection.

Do not breathe dust/fume/gas/mist/ vapors/spray.

If exposed, concerned or feel unwell: Get medical advice/attention.

If inhaled: Remove person to fresh air and keep comfortable for breathing. Call a poison center/doctor.

If in eyes: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. If eye irritation persists: Get medical advice/attention.

If on skin: Wash with plenty of water If skin irritation occurs: Get medical advice/attention. Take off contaminated clothing and wash it before reuse.

If swallowed: Immediately call a poison center/doctor/ Do NOT induce vomiting.

Obtain special instructions before use.

Do not handle until all safety precautions have been read and understood.

Wash thoroughly after handling.

Do not eat, drink or smoke when using this product.

If exposed or concerned: Call a poison center or doctor. Get medical attention if you feel unwell.

Store in well-ventilated place. Keep cool. Use only outdoors or in a well-ventilated area. Store locked up.

Dispose of contents in accordance with federal, state and local regulations.

### **Section 2 – Hazard(s) Identification (continued)**

2(c) Hazards not Otherwise Classified: None Known or Found

2(d) Unknown Acute Toxicity Statement (mixture): None Known or Found

#### **Section 3 – Composition/Information on Ingredients**

3(a-c) Chemical Name, Common Name (synonyms), CAS Number and Other Identifiers, and Concentration:

| Chemical Name                                                                                                                                                              | CAS Number | EC Number | % weight |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|----------|--|--|
| Natural Gas Condensate                                                                                                                                                     | 64741-47-5 | 265-047-3 | 100      |  |  |
| Natural Gas Condensate is a petroleum substance comprised of a complex mixture of hydrocarbons. Major classes of hydrocarbons contained in the substance are listed below: |            |           |          |  |  |
| Hydrocarbons Aromatic                                                                                                                                                      | Mixture    | Mixture   | ~ 5      |  |  |
| Hydrocarbons Naphthalenes                                                                                                                                                  | Mixture    | Mixture   | ~ 8      |  |  |
| Hydrocarbons (total Paraffin and isoparaffin)                                                                                                                              | Mixture    | Mixture   | ~ 65     |  |  |
| Benzene                                                                                                                                                                    | 71-43-2    | 200-753-7 | ~ 0.1    |  |  |

EC - European Community

CAS - Chemical Abstract Service

#### Section 4 – First-aid Measures

4(a) Description of Necessary Measures: If exposed, concerned or feel unwell: Get medical advice/attention.

- Inhalation: If inhaled: Remove person to fresh air and keep comfortable for breathing. Call a poison center/doctor.
- Eye Contact: If in eyes: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. If eye irritation persists: Get medical advice/attention.
- Skin Contact: If on skin: Wash with plenty of water. If skin irritation occurs: Get medical advice/attention. Take off contaminated clothing and wash it before reuse.
- Ingestion: If swallowed: Immediately call a poison center/doctor/ DO NOT induce vomiting.

#### 4(b) Most Important Symptoms/Effects, Acute and Delayed (chronic):

#### **Acute Effects:**

- Inhalation: Aspiration hazard, May be fatal if enters airways. May cause CNS and peripheral depression and damage to liver lungs and red blood cells.
- Eye: Causes irritation to eyes and mucous membranes.
- Skin: Causes irritation to skin.
- Ingestion: Aspiration hazard. May be fatal if swallowed.

#### **Delayed (chronic) Effects:**

- May cause genetic defects or cancer. May damage fertility or cause damage to the unborn child. Causes damage to the hematopoietic (blood) system, spleen, and liver through prolonged or repeat exposures.
- 4(c) Immediate Medical Attention and Special Treatment: If exposed, concerned or feel unwell: Get medical advice/attention.

#### **Additional Information:**

Primary Entry Routes: Inhalation, Ingestion, skin and eye contact.

**Target Organs:** Central nervous system, blood, eyes, skin lungs, and liver. Causes damage to the hematopoietic (blood) system, spleen, and liver. **Carcinogenicity:** IARC, NTP, ACGIH and OSHA list benzene as a carcinogen.

## **Section 5 – Fire-fighting Measures**

**5(a) Suitable (and unsuitable) Extinguishing Media:** In case of fire: Use foam, dry powder or carbon dioxide for extinction. Do not use a solid stream of water as it may scatter and spread the fire.

**5(b) Specific Hazards Arising from the Chemical:** Vapors are heavier than air and may accumulate in low areas. Fire will produce irritating, corrosive and toxic gasses.

**5(c) Special Protective Equipment and Precautions for Fire-Fighters:** Self-contained NIOSH approved respiratory protection and full protective clothing should be worn when fumes and/or smoke from fire are present. Heat and flames cause formation of acrid smoke and fumes. Do not release runoff from fire control methods to sewers or waterways. Firefighters should wear full face-piece self-contained breathing apparatus and chemical protective clothing with thermal protection. Direct water stream will scatter and spread flames and, therefore, should not be used. Evacuate area. Remove pressurized gas cylinders from the immediate vicinity. Cool containers exposed to flames with water until well after the fire is out. Close the valve if no risk is involved. Fight fire from a protected location. Prevent buildup of vapors or gases to explosive concentrations.



#### Section 6 - Accidental Release Measures

- **6(a) Personal Precautions, Protective Equipment and Emergency Procedures:** Spills of condensate will create a fire hazard and may form an explosive atmosphere. Stay up wind and away from the spill. Clean-up personnel should be protected against contact with eyes and skin. Collect material in appropriate, labeled containers for recovery or disposal in accordance with federal, state, and local regulations.
- **6(b) Methods and Materials for Containment and Clean Up:** Collect with sand or oil absorbing materials. Collect material in appropriate, labeled containers for recovery or disposal in accordance with federal, state, and local regulations. Follow applicable OSHA regulations (29 CFR 1910.120) and all other pertinent state and federal requirements.

### **Section 7 - Handling and Storage**

- **7(a) Precautions for Safe Handling:** Keep away from heat/sparks/open flames/hot surfaces. No smoking. Ground/Bond container and receiving equipment. Use explosion-proof electrical/ventilating/lighting/equipment. Use only non-sparking tools. Take precautionary measures against static discharge.
- **7(b) Conditions for Safe Storage, Including Any Incompatibilities:** Store in well-ventilated place. Keep cool. Take precautions to avoid static discharges around stored condensate. Ground storage tanks and transfer piping. Use only outdoors or in a well-ventilated area. If feasible, store locked up.

### **Section 8 - Exposure Controls / Personal Protection**

8(a) Occupational Exposure Limits (OELs): The following exposure limits are offered as reference, for an experience industrial hygienist to review.

| Ingredients | OSHA PEL <sup>1</sup> | ACGIH TLV <sup>2</sup>                 | NIOSH REL <sup>3</sup>                  | IDLH <sup>4</sup> |
|-------------|-----------------------|----------------------------------------|-----------------------------------------|-------------------|
| Benzene     | 1.0 ppm               | 0.5 ppm (1.6 mg/m <sup>3</sup> ), skin | 0.1 ppm (0.32 mg/m <sup>3</sup> )       | 500 ppm           |
|             | "STEL" 5.0 ppm        | "STEL" 2.5 ppm (8 mg/m <sup>3</sup> )  | "STEL" 1.0 ppm (3.2 mg/m <sup>3</sup> ) |                   |

- 1. OSHA PEL are 8-hour TWA concentrations unless otherwise noted. A Short Term Exposure Limit (STEL) is defined in the benzene standard as: The employer shall assure that no employee is exposed to an airborne concentration of benzene in excess of five (5) ppm as averaged over any 15 minute period.
- 2. TLVs established by the ACGIH are 8-hour TWA concentrations unless otherwise noted. ACGIH TLVs are for guideline purposes only and as such are not legal, regulatory limits for compliance purposes. A Short Term Exposure Limit (STEL) is defined as the maximum concentration to which workers can be exposed for a short period of time (15 minutes) for only four times throughout the day with at least one hour between exposures.
- 3. The NIOSH-REL- Compendium of Policy and Statements. NIOSH, Cincinnati, OH (1992). NIOSH is the federal agency designated to conduct research relative to occupational safety and health. As is the case with ACGIH TLVs, NIOSH RELs are for guideline purposes only and as such are not legal, regulatory limits for compliance purposes.
- 4. The IDLHs are used by NIOSH as part of the respirator selection criteria and were first developed in the mid 1970's by NIOSH. The Documentation for IDLHs is a compilation of the rationale and sources of information used by NIOSH during the original determination of 387 IDLHs and their subsequent review and revision in 1994.
- **8(b) Appropriate Engineering Controls:** Local exhaust ventilation should be used to control the emission of air contaminants. General dilution ventilation may assist with the reduction of air contaminant concentrations. Emergency eye wash stations and deluge safety showers should be available in the work area.

#### 8(c) Individual Protection Measures:

• Respiratory Protection: Seek professional advice prior to respirator selection and use. Follow OSHA respirator regulations (29 CFR 1910.134) and, if necessary, use only a NIOSH-approved respirator. Select respirator based on its suitability to provide adequate worker protection for given working conditions, level of airborne contamination, and presence of sufficient oxygen. Concentration in air of the various contaminants determines the extent of respiratory protection needed. Half-mask negative-pressure, air-purifying respirator equipped with organic vapor cartridge is acceptable for concentrations up to 10 times the exposure limit. Full-face negative-pressure air purifying respirator equipped with organic vapor cartridges is acceptable for concentrations up to 50 times the exposure limit. Protection by air purifying both negative-pressure and powered air respirators is limited. Use a positive-pressure-demand, full-face, supplied air respirator or self contained breathing apparatus (SCBA) for concentrations above 50 times the exposure limit. If exposure is above the IDLH (Immediately dangerous to life or health) for any of the constituents, or there is a possibility of an uncontrolled release or exposure levels are unknown, then use a positive-demand, full-face, supplied air respirator with escape bottle or SCBA.

Warning! Air-purifying respirators both negative-pressure, and powered-air do not protect workers in oxygen-deficient atmospheres.

- Eyes: Employees should be required to wear chemical safety glasses to prevent eye contact. A face shield should be used when appropriate to prevent contact with splashed materials. Chemical goggles, face shields or glasses should be worn to prevent eye contact. Contact lenses should not be worn where industrial exposure to this material is likely.
- **Skin**: Persons handling this product should wear appropriate clothing to prevent skin contact. Contaminated work clothing should not be allowed out of the workplace. Wash contaminated clothing before reuse. Wear protective gloves. Chemical goggles, face shields or glasses should be worn to prevent eye contact. Contact lenses should not be worn where industrial exposure to this material is likely. Wash skin that has been exposed with soap and water.
- Other Protective Equipment: An eyewash fountain and deluge shower should be readily available in the work area.

#### **Section 9 - Physical and Chemical Properties**

9(a) Appearance (physical state, color, etc.): Colorless to amber

9(j) Upper/lower Flammability or Explosive Limits:  $\,10\%\,/\,1\%$ 

liquid

9(b) Odor: gasoline - like 9(k) Vapor Pressure: 200-500 mmHg@68°F

## **Section 9 - Physical and Chemical Properties (continued)**

9(c) Odor Threshold: NA

9(d) pH: NA

9(e) Melting Point/Freezing Point: NA

9(f) Initial Boiling Point and Boiling Range: 96.8 -  $258\ ^{\circ}F$  (36

125.6 °C)

9(g) Flash Point: <-50°F (<-45.6 °C)

9(h) Evaporation Rate: NA

9(i) Flammability (liquid): Highly Flammable

NA - Not Applicable

ND - Not Determined for product as a whole

9(l) Vapor Density (Air = 1): ND

9(m) Relative Density: 6.25 lbs/gal (Bulk Density)

9(n) Solubility(ies): ND

9(o) Partition Coefficient n-octanol/water: ND

9(p) Auto-ignition Temperature: ND 9(q) Decomposition Temperature: ND

9(r) Viscosity: ND

## Section 10 - Stability and Reactivity

10(a) Reactivity: Not Determined (ND) for product as a whole.

10(b) Chemical Stability: Stable under normal storage and handling conditions.

10(c) Possibility of Hazardous Reaction: No Data Found

10(d) Conditions to Avoid: Storage with incompatible materials. Avoid heat, flame, or ignition sources.

10(e) Incompatible Materials: Strong acids and oxidizing agents.

10(f) Hazardous Decomposition Products: Can produce carbon dioxide and carbon monoxide.

#### **Section 11 - Toxicological Information**

11(a-e) Information on Toxicological Effects: The following toxicity data have been determined using the information available for its components applied to the guidance on the preparation of an SDS under the GHS requirements of OSHA and the EU CPL:

| Hazard Classification                                                                         | Hazard EU* | Category<br>OSHA | Hazard<br>Symbols | Signal Word | Hazard Statement                                                                                          |
|-----------------------------------------------------------------------------------------------|------------|------------------|-------------------|-------------|-----------------------------------------------------------------------------------------------------------|
| Acute Toxicity Hazard (covers<br>Categories 1-5)                                              | NA**       | 3ª               |                   | Danger      | Toxic if inhaled                                                                                          |
| Skin Corrosion/Irritation<br>(covers Categories 1A, 1B, 1C and 2)                             | 2          | 2 <sup>b</sup>   | <b>(1)</b>        | Warning     | Causes skin irritation                                                                                    |
| Eye Damage/ Irritation (covers<br>Categories 1, 2A and 2B)                                    | NA**       | 2A <sup>c</sup>  | <b>(1)</b>        | Warning     | Causes serious eye irritation                                                                             |
| Skin/Dermal Sensitization<br>(covers Category 1)                                              | NA**       | NA**             | NA**              | NA**        | NA**                                                                                                      |
| Germ Cell Mutagenicity (covers<br>Categories 1A, 1B and 2)                                    | 1B         | 1B <sup>d</sup>  |                   | Danger      | May cause genetic defects                                                                                 |
| Carcinogenicity (covers<br>Categories 1A, 1B and 2)                                           | 1B         | 1A <sup>e</sup>  | <b>\$</b>         | Danger      | May cause cancer                                                                                          |
| Toxic Reproduction (covers<br>Categories 1A, 1B and 2)                                        | NA**       | 1B <sup>f</sup>  |                   | Danger      | May damage fertility or the unborn child                                                                  |
| Specific Target Organ Toxicity<br>(STOT) Following Single<br>Exposure (covers Categories 1-3) | NA**       | 2 <sup>g</sup>   | <b>\$</b>         | Warning     | May cause CNS and Peripheral depression, and damage lung liver (vacuoled hepatocytes) and red blood cells |
| STOT following Repeated<br>Exposure (covers Categories 1<br>and 2)                            | NA**       | 1 <sup>h</sup>   | <b>&amp;</b>      | Warning     | May cause damage to the Hematopoietic system, spleen, liver through prolonged or repeat exposures         |
| Aspiration (covers category 1)                                                                | 1          | 1                | <b>&amp;</b>      | Danger      | May be fatal if swallowed and enters the airway                                                           |

<sup>\*</sup>Natural Gas Condensate has been harmonized as - Base classification: High Benzene Naphtha, flashpoint < 23°C and initial boiling point ≥ 35°C, benzene or 1,3-butadiene ≥ 0.1%, naphthalene < 25%.

<sup>\*\*</sup> Not Applicable - Many categories have conclusive but not sufficient for classification information.



## **Section 11 - Toxicological Information (continued)**

#### 11(a-e) Information on toxicological effects (continued):

- a. The following LC<sub>50</sub> or LD<sub>50</sub> has been established for Condensate as a mixture:
  - Rat (4 hr) LC<sub>50</sub> >5.2 mg/L
  - Rat (4 hr) LC<sub>50</sub> >5.81 mg/L
  - Rat (4 hr) LC<sub>50</sub> >5.2 mg/L
- b. The following **Skin Corrosion/Irritation** information was found for **Condensate** as a mixture:
  - Rabbit Slightly irritating.
  - Rabbit Irritating but not corrosive.
- c. The following **Eve Damage/Irritation** information was found for **Condensate** as a mixture:
  - Rabbit Slightly irritating.
- d. No **Germ Cell Mutagenicity** data available for **Condensate** as a mixture. The following **Germ Cell Mutagenicity** information was found for the components:
  - Benzene Positive with activation. Positive In vitro Clastogenicity.
- e. No Carcinogenicity data available for Condensate as a mixture. The following Carcinogenicity information was found for the components:
  - Benzene Listed as class 1 carcinogen by the NTP, IARC, EPA and ACGIH.
- f. No Reproductive Toxicity data available for Condensate as a mixture. The following Reproductive Toxicity information was found for the components:
  - Benzene NOAEC for both adult and offspring toxicity and female fertility. 300ppm (960 mg/m³). NOAEC for maternal toxicity and teratogenicity was 100 ppm (320 mg/m³). The NOAEC for slight fetotoxicity was 40 ppm (128 mg/m³).
- g. No **Specific Target Organ Toxicity (STOT) following Single Exposure** data available for **Condensate** as a mixture. The following STOT following Single Exposure information was found for the components:
  - Benzene CNS and peripheral Depression, lung liver (vacuoled hepatocytes) and red blood cells may be effected.
- h. No **Specific Target Organ Toxicity (STOT) following Repeated Exposure** data available for **Condensate** as a mixture. The following STOT following Repeated Exposure data is available for the components:
  - Benzene Spleen hematopoiesis, Liver, lung kidney effects are specific to male Rat. Early signs and symptoms of chronic overexposure include
    effects on CNS & the GI tract (headache, loss of appetite, drowsiness, nervousness, & pallor) but the major manifestation of toxicity is aplastic
    anemia. Bone marrow depression may occur resulting in leucopoenia, anemia, or thrombocytopenia (leukemogenic action). With continued
    exposure the disease states may progress to pancytopenia resulting from bone marrow aplasia. Evidence has linked benzene in the etiology of
    leukemia.

The above toxicity information was determined from available scientific sources to illustrate the prevailing posture of the scientific community. The scientific resources includes: The American Conference of Governmental Industrial Hygienist (ACGIH) Documentation of the Threshold Limit Values (TLVs) and Biological Exposure indices (BEIs) with Other Worldwide Occupational Exposure Values 2009, The International Agency for Research on Cancer (IARC), The National Toxicology Program (NTP) updated documentation, the World Health Organization (WHO) and other available resources, the International Uniform Chemical Information Database (IUCLID), European Union Risk Assessment Report (EU-RAR), Concise International Chemical Assessment Documents (CICAD), European Union Scientific Committee for Occupational Exposure Limits (EU-SCOEL), Agency for Toxic Substances and Disease Registry (ATSDR), Hazardous Substance Data Bank (HSDB), and International Programme on Chemical Safety (IPCS).

#### **Section 12 - Ecological Information**

12(a) Ecotoxicity (aquatic & terrestrial): No Data Found

12(b) Persistence & Degradability: Loss due to volatility. Not readily biodegradable but is inherently biodegradable by microorganisms.

12(c) Bioaccumulative Potential: No Data Found

12(d) Mobility (in soil): Will float on water and will volatilize in air.

12(e) Other adverse effects: No Data Found

**Additional Information:** 

Hazard Category: Not Reported Signal Word: No Signal Word

Hazard Symbol:

No Symbol

Hazard Statement: No Statement

#### **Section 13 - Disposal Considerations**

**Disposal:** Waste code D001: Waste Flammable material with a flash point <140°F. This material and its container must be disposed of as hazardous waste. Under RCRA, it is the responsibility of the user of the product to determine, at the time of disposal, whether the product meets RCRA criteria for hazardous waste. **European Waste Catalogue (EWC):** 05-01-99 (waste from petroleum refining).

**Container Cleaning and Disposal:** Containers should be completely empty prior to discarding. Dispose of contents in accordance with federal, state and local regulations. Observe safe handling precautions.

Please note this information is for Condensate in its original form. Any alterations can void this information.



## **Section 14 - Transportation Information**

#### 14(a-g) Transportation Information:

US DOT under 49 CFR 172.101 regulates Condensate as a hazardous material. All federal, state, and local laws and regulations that apply to the transport of this type of material must be adhered to.

Shipping Name: RQ, UN3295, Hydrocarbon, Liquid, N.O.S.

PGIII (Benzene)

Shipping Symbols: Flammable Liquid

Hazard Class: 3 UN No.: UN3295 Packing Group: III DOT/ IMO Label: 3

Special Provisions (172.102): 144,B1,IB3,T4,TP1,TP29

**Packaging Authorizations** a) Exceptions: 150

**b) Non-Bulk: 203** c) Bulk: 242

**Quantity Limitations** 

a) Passenger, Aircraft, or Railcar: 60L

b) Cargo Aircraft Only: 220L **Vessel Stowage Requirements** 

a) Vessel Stowage: A b) Other: NA

DOT Reportable Quantities: 10 lbs.

IMDG and RID classification, packaging and shipping requirements follow the US DOT Hazardous Materials Regulation.

ADR regulates Condensate as a hazardous material.

Shipping Name: Hydrocarbons, Liquid, N.O.S.

**Classification Code:** 3 UN No.: 3295 Packing Group: III

ADR Label: Flammable Liquid **Special Provisions: 223** Limited Quantities: 5L Excepted Quantities (EQ): E1

**Packaging** 

a) Packing Instructions: P001, LP01 b) Special Packing Provisions: NA

c) Mixed Packing Provisions: NA

Portable Tanks & Bulk Containers

a) Instructions: T4

b) Special Provisions: TP1, TP29

IATA regulates Condensate as a hazardous material.

Shipping Name: Hydrocarbons, Liquid, N.O.S.

Class/Division: 3 Hazard Label (s): Flammable Liquid

UN No.: 3295 Packing Group: 1 Excepted Quantities (EQ): E3

Pkg Inst - Packing Instructions

Passenger & Cargo Aircraft Limited Quantity (EQ)

Pkg Inst: Pkg Inst: 302 Forbidden Max Net Qty/Pkg: Max Net Otv/Pkg: 1L Forbidden

Cargo Aircraft Only **Special Provisions:** Pkg Inst: 303

ERG Code: 3H Max Net Qty/Pkg: 30

ERG - Emergency Response Drill Code

TDG Classification: Condensate does have a TDG classification.

#### **Section 15 - Regulatory Information**

Max Net Qty/Pkg - Maximum Net Quantity per Package

Regulatory Information: The following listing of regulations relating to a CONSOL Energy Inc. product may not be complete and should not be solely relied upon for all regulatory compliance responsibilities.

This product and/or its constituents are subject to the following regulations:

OSHA Regulations: Air Contaminant (29 CFR 1910.1000, Table Z-1, Z-2, Z-3): The product, Condensate as a whole is not listed. However, individual components of the product are listed: Refer to Section 8, Exposure Controls and Personal Protection

**EPA Regulations:** Condensate is not listed as a whole. However, individual components of the product are listed:

| Components | Regulations                            |
|------------|----------------------------------------|
| Benzene    | SARA 313, CERCLA, RCRA, SDWA, CWA, CAA |

#### SARA Potential Hazard Categories: Immediate Acute Health Hazard, Delayed Chronic Health Hazard, Fire Hazard

#### Regulations Key:

CAA Clean Air Act (42 USC Sec. 7412; 40 CFR Part 61 [As of: 8/18/06])

CERCLA Comprehensive Environmental Response, Compensation and Liability Act (42 USC Secs. 9601(14), 9603(a); 40 CFR Sec. 302.4, Table 302.4, Table 302.4 and App. A)

CWA Clean Water Act (33 USC Secs. 1311; 1314(b), (c), (e), (g); 136(b), (c); 137(b), (c) [as of 8/2/06])

RCRA Resource Conservation Recovery Act (42 USC Sec. 6921; 40 CFR Part 261 App VIII)

SARA Superfund Amendments and Reauthorization Act of 1986 Title III Section 302 Extremely Hazardous Substances (42 USC Secs. 11023, 13106; 40 CFR Sec. 372.65) and Section 313 Toxic Chemicals (42 USC Secs. 11023, 13106; 40 CFR Sec. 372.65 [as of 6/30/05])

TSCA Toxic Substance Control Act (15 U.S.C. s/s 2601 et seq. [1976])

SDWA Safe Drinking Water Act (42 U.S.C. s/s 300f et seq. [1974])

Section 313 Supplier Notification: This product, Condensate contains the following toxic chemicals subject to the reporting requirements of section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 and 40 CFR part 372:

| CAS#    | Chemical Name | Percent by Weight |
|---------|---------------|-------------------|
| 71-43-2 | Benzene       | 0.1               |



## **Section 15 - Regulatory Information (continued)**

#### **Regulatory Information (continued):**

**State Regulations:** The product, **Condensate** as a whole is not listed in any state regulations. However, individual components of the product are listed in various state regulations:

Pennsylvania Right to Know: Contains regulated material in the following categories:

Environmental Hazards: BenzeneSpecial Hazardous Substance: Benzene

California Prop. 65: This product contains materials known to the State of California to cause cancer. Benzene

New Jersey: Contains regulated material in the following categories: Hazardous Substance: Benzene

Minnesota: Benzene Massachusetts: Benzene

#### Other Regulations:

WHMIS Classification (Canadian): Condensate is not listed as a whole. However individual components are listed.

| Ingredients | WHMIS Classification |  |  |
|-------------|----------------------|--|--|
| Benzene     | D-2A, D-2B, B-2      |  |  |

This product has been classified in accordance with the hazard criteria of the Controlled Products Regulations and the SDS contains all the information required by the Controlled Products Regulations.

#### **Section 16 - Other Information**

Prepared By: CONSOL Energy Inc.

#### **Additional Information:**

#### **HMIS Classification**

| Health Hazard   | 2 |
|-----------------|---|
| Fire Hazard     | 3 |
| Physical Hazard | 1 |

HEALTH = 2, Temporary or minor injury may occur.

FIRE = 3, Materials capable of ignition under almost all normal temperature conditions. Includes flammable liquids with flash points below 73 °F and boiling points above 100 °F, as well as liquids with flash points between 73 °F and 100 °F. (Classes IB & IC).

PHYSICAL HAZARD = 1, Materials that are normally stable but can become unstable (self-react) at high temperatures and pressures. Materials may react non-violently with water or undergo hazardous polymerization in the absence of inhibitors.

#### **NFPA**



**Issue Date:** 8/12/2013

HEALTH = 2, Intense or continued exposure could cause temporary incapacitation or possible residual injury unless prompt medical attention is given.

FIRE = 3, Liquids and solids that can be ignited under almost all ambient conditions. INSTABILITY = 1, Normally stable, but can become unstable at elevated temperatures

INSTABILITY = 1, Normally stable, but can become unstable at elevated temperature and pressures or may react with water with some release of energy, but not violently.

#### ABBREVIATIONS/ACRONYMS:

| ACGIH   | American Conference of Governmental Industrial Hygienists                       |  |  |
|---------|---------------------------------------------------------------------------------|--|--|
| ADR     | Regulations Concerning the International Carriage of<br>Dangerous Goods by Road |  |  |
| CAS     | Chemical Abstracts Service                                                      |  |  |
| CERCLA  | Comprehensive Environmental Response, Compensation, and Liability Act           |  |  |
| CFR     | Code of Federal Regulations                                                     |  |  |
| CNS     | Central Nervous System                                                          |  |  |
| CPL     | Classification, Labeling and Packaging                                          |  |  |
| DOT     | Department of Transportation                                                    |  |  |
| EC      | European Community                                                              |  |  |
| EU      | European Union                                                                  |  |  |
| EWC     | European Waste Catalogue                                                        |  |  |
| GI, GIT | Gastro-Intestinal, Gastro-Intestinal Tract                                      |  |  |
| GHS     | Globally Harmonized System                                                      |  |  |
| HMIS    | Hazardous Materials Identification System                                       |  |  |
| IARC    | International Agency for Research on Cancer                                     |  |  |
| IATA    | ATA International Air Transport Association                                     |  |  |
| IDLH    | Immediately Dangerous to Life or Health                                         |  |  |
| IMDG    | International Maritime Dangerous Goods                                          |  |  |
| LC50    | Median Lethal Concentration                                                     |  |  |

| mg/m <sup>3</sup> | milligram per cubic meter of air                                    |  |  |  |  |
|-------------------|---------------------------------------------------------------------|--|--|--|--|
| NFPA              | National Fire Protection Association                                |  |  |  |  |
|                   |                                                                     |  |  |  |  |
| NIOSH             | National Institute for Occupational Safety and Health               |  |  |  |  |
| NOAEC             | AEC No Observed Adverse Effect Concentration                        |  |  |  |  |
|                   |                                                                     |  |  |  |  |
| NTP               | National Toxicology Program                                         |  |  |  |  |
| OSHA              | Occupational Safety and Health Administration                       |  |  |  |  |
| PEL               | Permissible Exposure Limit                                          |  |  |  |  |
| ppm               | parts per million                                                   |  |  |  |  |
| RCRA              | Resource Conservation and Recovery Act                              |  |  |  |  |
| REACH             | Registration, Evaluation, Authorization and Restriction of Chemical |  |  |  |  |
|                   | substances.                                                         |  |  |  |  |
| RID               | Regulations Concerning the International Carriage of Dangerous      |  |  |  |  |
|                   | Goods by Rail                                                       |  |  |  |  |
| REL               | Recommended Exposure Limits                                         |  |  |  |  |
| SDS               | Safety Data Sheet                                                   |  |  |  |  |
| SARA              | Superfund Amendment and Reauthorization Act                         |  |  |  |  |
| SCBA              | Self-contained Breathing Apparatus                                  |  |  |  |  |
| STEL              | Short Term Exposure Limit                                           |  |  |  |  |
| TDG               | Transport Dangerous Goods                                           |  |  |  |  |
| TLV               | Threshold Limit Value                                               |  |  |  |  |
| TWA               | Time-weighted Average                                               |  |  |  |  |



|                                               | Section 16 - Other Ir                                                                                                                                                                                                                                                                                                                                                | formati                                                 | on (continued)                                                                                                                                                                                                                                                     |  |  |  |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| ABBREV                                        | /IATIONS/ACRONYMS (continued):                                                                                                                                                                                                                                                                                                                                       |                                                         |                                                                                                                                                                                                                                                                    |  |  |  |
| MSHA                                          | Mine Safety and Health Administration                                                                                                                                                                                                                                                                                                                                | WHMIS                                                   | Workplace Hazardous Materials Information System                                                                                                                                                                                                                   |  |  |  |
| mg/L                                          | milligram per liter                                                                                                                                                                                                                                                                                                                                                  |                                                         |                                                                                                                                                                                                                                                                    |  |  |  |
| help you<br>Superfund<br>or suffic<br>Inc. MA | mer: This information is taken from sources or based upon date out protect the health and safety of your personnel and to compute defendent and Reauthorization Act of 1986. CONSOL Entiency of any of the foregoing, or any additional, or other meas AKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUTIMPLIED WARRANTY OF FITNESS FOR A PARTICULA ARISING FROM COURSE | ly with the Gergy Inc. mures that made of THI AR PURPOS | OSHA Hazard Communication Standard and Title III of the akes no warranty as to the absolute correctness, completeness, by be required under particular conditions. CONSOL Energy EIMPLIED WARRANTY OF MERCHANTABILITY, OR SE, AND ANY IMPLIED WARRANTIES OTHERWISE |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                      |                                                         |                                                                                                                                                                                                                                                                    |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                      |                                                         |                                                                                                                                                                                                                                                                    |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                      |                                                         |                                                                                                                                                                                                                                                                    |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                      |                                                         |                                                                                                                                                                                                                                                                    |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                      |                                                         |                                                                                                                                                                                                                                                                    |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                      |                                                         |                                                                                                                                                                                                                                                                    |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                      |                                                         |                                                                                                                                                                                                                                                                    |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                      |                                                         |                                                                                                                                                                                                                                                                    |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                      |                                                         |                                                                                                                                                                                                                                                                    |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                      |                                                         |                                                                                                                                                                                                                                                                    |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                      |                                                         |                                                                                                                                                                                                                                                                    |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                      |                                                         |                                                                                                                                                                                                                                                                    |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                      |                                                         |                                                                                                                                                                                                                                                                    |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                      |                                                         |                                                                                                                                                                                                                                                                    |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                      |                                                         |                                                                                                                                                                                                                                                                    |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                      |                                                         |                                                                                                                                                                                                                                                                    |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                      |                                                         |                                                                                                                                                                                                                                                                    |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                      |                                                         |                                                                                                                                                                                                                                                                    |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                      |                                                         |                                                                                                                                                                                                                                                                    |  |  |  |

# UNOCAL MATERIAL SAFETY DATA SHEET

Product Name:

Processed Natural Gas

Product Code:

None

Page 1 of 8

## 1. CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

Product Name: Processed Natural Gas

Product Code: None Synonyms:

Dry Gas

Generic Name: Natural Gas

Chemical Family: Paraffin hydrocarbon

Responsible Party: Unocal Corporation

Union Oil Company of California

14141 Southwest Freeway

Sugar Land, Texas

77478

For further information contact MSDS Coordinator

8am - 4pm Central Time, Mon - Fri: 281-287-5310

#### EMERGENCY OVERVIEW

#### 24 Hour Emergency Telephone Numbers:

For Chemical Emergencies:

Spill, Leak, Fire or Accident

Call CHEMTREC

North America: (800)424-9300

Others: (703)527-3887(collect)

For Health Emergencies:

California Poison Control System

(800)356-3129

Health Hazards: Use with adequate ventilation.

Physical Hazards: Flammable gas. Can cause flash fire. Gas displaces oxygen available for breathing. Keep away from heat, sparks, flames, or other sources of ignition (e.g., static electricity, pilot lights, mechanical/electrical equipment). Do not enter storage areas or confined space unless adequately ventilated.

Physical Form: Gas <

Appearance: Colorless

< Odor: Odorless in the absence of H2S or mercaptans

NFPA HAZARD CLASS: Health:

1 (Slight)

Flammability:

4 (Extreme)

Reactivity:

0 (Least)

Issue Date: 03/18/03

Revised Sections: 1, 3 Status: Final Revised

#### UNOCAL

Product Name: Pro

Processed Natural Gas

Product Code:

None

Page 2 of 8

## 2. COMPOSITION/INFORMATION ON INGREDIENTS

| HAZARDOUS COMPONENTS            | % Weight | EXPOSURE GUIDELINE |               |                           |
|---------------------------------|----------|--------------------|---------------|---------------------------|
|                                 |          | <u>Limits</u>      | Agency        | Туре                      |
| Methane<br>CAS# 74-82-8         | 98       | 1000 ppm           | MSHA          | TWA                       |
| Carbon Dioxide<br>CAS# 124-38-9 | 0-5      |                    | ACGIH<br>OSHA | TWA STEL TWA TWA TWA STEL |
| Nitrogen<br>CAS# 7727-37-9      | 0-5      | 1000 ppm           | MSHA          | TWA                       |
| Ethane<br>CAS# 74-84-0          | 1        | 1000 ppm           | MSHA          | TWA                       |

Note: State, local or other agencies or advisory groups may have established more stringent limits. Consult an industrial hygienist or similar professional, or your local agencies, for further information.

#### 3. HAZARDS IDENTIFICATION

### POTENTIAL HEALTH EFFECTS:

Eye: Not expected to be an eye irritant.

Skin: Skin contact is unlikely. Skin absorption is unlikely.

Inhalation (Breathing): Asphyxiant. High concentrations in confined
 spaces may limit oxygen available for breathing.

Ingestion (Swallowing): This material is a gas under normal
 atmospheric conditions and ingestion is unlikely.

Signs and Symptoms: Light hydrocarbon gases are simple asphyxiants which, at high enough concentrations, can reduce the amount of oxygen available for breathing. Symptoms of overexposure can include shortness of breath, drowsiness, headaches, confusion,

Issue Date: 03/18/03
Revised Sections: 1, 3

Status: Final Revised

#### UNOCAL

Product Name: Processed Natural Gas

Product Code: None Page 3 of 8

decreased coordination, visual disturbances and vomiting, and are reversible if exposure is stopped. Continued exposure can lead to hypoxia (inadequate oxygen), cyanosis (bluish discoloration of the skin), numbness of the extremities, unconsciousness and death. High concentrations of carbon dioxide can increase heart rate and blood pressure.

Cancer: No data available.

Target Organs: No data available.

Developmental: Limited data - See Other Comments, below.

Other Comments: High concentrations may reduce the amount of oxygen available for breathing, especially in confined spaces. Hypoxia (inadequate oxygen) and respiratory acidosis (increased carbon dioxide in blood), during pregnancy may have adverse effects on the developing fetus. Exposure during pregnancy to high concentrations of carbon monoxide, which is produced during the combustion of hydrocarbon gases, can also cause harm to the developing fetus.

Pre-Existing Medical Conditions: None known.

#### 4. FIRST AID MEASURES

Eye: If irritation or redness develops, move victim away from exposure and into fresh air. Flush eyes with clean water. If symptoms persist, seek medical attention.

Skin: First aid is not normally required. However, it is good practice to wash any chemical from the skin.

Inhalation (Breathing): If respiratory symptoms develop, move victim away from source of exposure and into fresh air. If symptoms persist, seek medical attention. If victim is not breathing, immediately begin artificial respiration. If breathing difficulties develop, oxygen should be administered by qualified personnel. Seek immediate medical attention.

Ingestion (Swallowing): This material is a gas under normal atmospheric conditions and ingestion is unlikely.

Issue Date: 03/18/03 Status: Final Revised

Revised Sections: 1, 3

Product Name: Processed Natural Gas

Product Code: None Page 4 of 8

#### 5. FIRE FIGHTING MEASURES

Flammable Properties: Flash Point: Not applicable (gas)

OSHA Flammability Class: Flammable gas

LEL / UEL: No data

Autoignition Temperature: 800-1000°F

Unusual Fire & Explosion Hazards: This material is flammable and may be ignited by heat, sparks, flames, or other sources of ignition (e.g., static electricity, pilot lights, or mechanical/electrical equipment). Vapors may travel considerable distances to a source of ignition where they can ignite, flashback, or explode. May create vapor/air explosion hazard indoors, outdoors, or in sewers. If container is not properly cooled, it can rupture in the heat of a fire. Closed containers exposed t extreme heat can rupture due to pressure buildup.

Extinguishing Media: Dry chemical or carbon dioxide is recommended. Carbon dioxide can displace oxygen. Use caution when applying carbon dioxide in confined spaces.

Fire Fighting Instructions: For fires beyond the incipient stage, emergency responders in the immediate hazard area should wear bunker gear. When the potential chemical hazard is unknown, in enclosed or confined spaces, or when explicitly required by DOT, a self-contained breathing apparatus should be worn. In addition, wear other appropriate protective equipment as conditions warrant (see Section 8). Isolate immediate hazard area, keep unauthorized personnel out. Stop spill/release if it can be done with minimal risk. If this cannot be done, allow fire to burn. Move undamaged containers from immediate hazard area if it can be done with minimal risk. Stay away from ends of container. Water spray may be useful in minimizing or dispersing vapors. Cool equipment exposed to fire with water, if it can be done with minimal risk.

#### 6. ACCIDENTAL RELEASE MEASURES

Flammable. Keep all sources of ignition and hot metal surfaces away from spill/release. The use of explosion-proof equipment is recommended. Stay upwind and away from spill/release. Notify persons down wind of spill/release, isolate immediate hazard area and keep unauthorized personnel out. Stop spill/release if it can be done with

Issue Date: 03/18/03 Status: Final Revised

Revised Sections: 1, 3

Product Name: Processed Natural Gas

Product Code: None Page 5 of 8

minimal risk. Wear appropriate protective equipment including respiratory protection as conditions warrant (see Section 8). Notify fire authorities and appropriate federal, state, and local agencies. Water spray may be useful in minimizing or dispersing vapors (see Section 5).

## 7. HANDLING AND STORAGE

Handling: The use of explosion-proof equipment is recommended and may be required (see appropriate fire codes). Do not enter confined spaces such as tanks or pits without following proper entry procedures such as ASTM D-4276 and 29CFR 1910.146. The use of appropriate respiratory protection is advised when concentrations exceed any established exposure limits (see Section 2 and 8). Use good personal hygiene practice.

Storage: Keep container(s) tightly closed. Use and store this material in cool, dry, well-ventilated areas away from heat, direct sunlight, hot metal surfaces, and all sources of ignition. Post area "No Smoking or Open Flame." Store only in approved containers. Keep away from any incompatible material (see Section 10). Protect container(s) against physical damage. Outdoor or detached storage is preferred.

## 8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Engineering controls: If current ventilation practices are not adequate to maintain airborne concentrations below the established exposure limits (see Section 2), additional ventilation or exhaust systems may be required. Where explosive mixtures may be present, electrical systems safe for such locations must be used (see appropriate electrical codes).

### Personal Protective Equipment (PPE):

Respiratory: Wear a positive pressure air supplied respirator in oxygen deficient environments (oxygen content <19.5%). A respiratory protection program that meets OSHA's 29 CFR 1910.134 and ANSI Z88.2 requirements must be followed whenever workplace conditions warrant a respirator's use.

Skin: Not required based on the hazards of the material.

However, it is considered good practice to wear gloves when handling chemicals.

Issue Date: 03/18/03 Status: Final Revised Revised Sections: 1, 3

Product Name: Processed Natural Gas

Product Code: None Page 6 of 8

Eye/Face: While contact with this material is not expected to cause irritation, the use of approved eye protection to safeguard against potential eye contact is considered good practice.

Other Protective Equipment: A source of clean water should be available in the work area for flushing eyes and skin. Impervious clothing should be worn as needed. Self-contained respirators should be available for non-routine and emergency situations.

## 9. PHYSICAL AND CHEMICAL PROPERTIES

Note: Unless otherwise stated, values are determined at 20°C (68°F) and 760 mm Hg (1 atm).

Flash Point: Not applicable (gas)

Flammable/Explosive Limits (%): No data Autoignition Temperature:  $800-1000^{\circ}F$ 

Appearance: Colorless Physical State: Gas

Odor: Odorless in the absence of H2S or mercaptans

Vapor Pressure (mm Hg): No data

Vapor Density (air=1): <1

Boiling Point: -259°F

Freezing/Melting Point: No data Solubility in Water: Slight Specific Gravity: 0.30+ (Air=1) Percent Volatile: 100 vol.%

Evaporation Rate (nBuAc=1): N/A (Gas)

### 10. STABILITY AND REACTIVITY

Chemical Stability: Stable under normal conditions of storage and handling.

Conditions To Avoid: Avoid all possible sources of ignition (see Sections 5 & 7).

Incompatible Materials: Avoid contact with strong oxidizing agents.

Hazardous Decomposition Products: Combustion can yield carbon dioxide and carbon monoxide.

Issue Date: 03/18/03 Status: Final Revised

Revised Sections: 1, 3

Product Name:

Processed Natural Gas

Product Code:

None

Page 7 of 8

Hazardous Polymerization: Will not occur.

## 11. TOXICOLOGICAL INFORMATION

No definitive information available on carcinogenicity, mutagenicity, target organs or developmental toxicity.

### 12. DISPOSAL CONSIDERATIONS

This material, if discarded as produced, would be a RCRA "characteristic" hazardous waste due to the characteristic(s) of ignitability (D001). If the material is spilled to soil or water, characteristic testing of the contaminated materials is recommended. Further, this material is subject to the land disposal restriction in 40 CFR 268.40 and may require treatment prior to disposal to meet specific standards. Consult state and local regulations to determine whether they are more stringent than the federal requirements.

Container contents should be completely used and containers should be emptied prior to discard. Container rinsate could be considered a RCRA hazardous waste and must be disposed of with care and in full compliance with federal, state and local regulations. Larger empty containers, such as drums, should be returned to the distributor or to a drum reconditioner. To assure proper disposal of smaller empty containers, consult with state and local regulations and disposal authorities.

## 13. TRANSPORT INFORMATION

DOT Proper Shipping Name / Technical Name: Hydrocarbon Gas, Liquified N.O.S. (Methane)

Hazard Class or Division: 2.1

ID #: UN1965

## 14. REGULATORY INFORMATION

This material contains the following chemicals subject to the reporting requirements of SARA 313 and 40 CFR 372:

--None--

Warning: This material contains the following chemicals which are known to the State of California to cause cancer, birth defects or

Issue Date: 03/18/03
Revised Sections: 1, 3

Status: Final Revised

Product Name: Processed Natural Gas

Product Code: None Page 8 of 8

other reproductive harm, and are subject to the requirements of California Proposition 65 (CA Health & Safety Code Section 25249.5):

--None Known--

This material has not been identified as a carcinogen by NTP, IARC, or OSHA.

EPA (CERCLA) Reportable Quantity: --None--

## 15. DOCUMENTARY INFORMATION

Issue Date: 03/18/03

Previous Issue Date: 11/29/99

Product Code: None

Previous Product Code: None

## 16. DISCLAIMER OF EXPRESSED AND IMPLIED WARRANTIES

The information in this document is believed to be correct as of the date issued. HOWEVER, NO WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY OTHER WARRANTY IS EXPRESSED OR IS TO BE IMPLIED REGARDING THE ACCURACY OR COMPLETENESS OF THIS INFORMATION, THE RESULTS TO BE OBTAINED FROM THE USE OF THIS INFORMATION OR THE PRODUCT, THE SAFETY OF THIS PRODUCT, OR THE HAZARDS RELATED TO ITS USE. This information and product are furnished on the condition that the person receiving them shall make his own determination as to the suitability of the product for his particular purpose and on the condition that he assume the risk of his use thereof.

Issue Date: 03/18/03 Status: Final Revised Revised Sections: 1, 3

# ATTACHMENT I EMISSION UNITS TABLE

## **45CSR13 Permit Application**

Bulltown Station West Union, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA 15317

## Attachment I

## **Emission Units Table**

## (includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

| Emission<br>Unit ID <sup>1</sup> | Emission<br>Point ID <sup>2</sup> | Emission Unit Description                                             | Year Installed/<br>Modified | Design<br>Capacity  | Type <sup>3</sup> and Date of Change | Control<br>Device <sup>4</sup> |
|----------------------------------|-----------------------------------|-----------------------------------------------------------------------|-----------------------------|---------------------|--------------------------------------|--------------------------------|
| CE-1                             | E01                               | Reciprocating Engine/Integral<br>Compressor; Continental TM-27A ;4SRB | 5-1-2014<br>Mfg. 11-1-2012  | 40 hp               | Existing                             | None                           |
| T01                              | E02                               | Pipeline Liquids AST                                                  | 5-1-2014                    | 4,200 gal<br>50 bbl | Existing                             | NA                             |
| TL-1                             | Fugitive                          | Pipeline Liquids – Truck Loading                                      | 5-1-2014                    | 76,650 gal/yr       | Existing                             | NA                             |
| Comp.<br>Blowdowns               | Fugitive                          | Blowdowns from the Continental TM-<br>27A; 4SRB Compressor            | 5-1-2014                    | 7.7 lb/event        | Existing                             | NA                             |
| Equipment<br>Leaks               | Fugitive                          | Equipment Leaks                                                       | 5-1-2014                    | NA                  | Existing                             | NA                             |

<sup>&</sup>lt;sup>1</sup> For Emission Units (or <u>S</u>ources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation.
<sup>2</sup> For <u>E</u>mission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.
<sup>3</sup> New, modification, removal
<sup>4</sup> For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

# ATTACHMENT J EMISSION POINTS DATA SUMMARY SHEET

## **45CSR13 Permit Application**

Bulltown Station West Union, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA 15317

## Attachment J EMISSION POINTS DATA SUMMARY SHEET

|                                                  | Table 1: Emissions Data                |                   |                                                                          |                                      |                                                              |                             |                                                   |                                                                                             |                                                                |                                                                |              |                                               |                                                                          |                                     |                                                                           |
|--------------------------------------------------|----------------------------------------|-------------------|--------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------|-----------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|--------------|-----------------------------------------------|--------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------------|
| Emission Point ID No. (Must match Emission Units | Emission<br>Point<br>Type <sup>1</sup> | Throu<br>(Must ma | on Unit Vented<br>igh This Point<br>tch Emission Units<br>e & Plot Plan) | Control<br>(Must<br>Emissie<br>Table | ollution<br>I Device<br>I match<br>on Units<br>& Plot<br>an) | for En<br>U<br>(che<br>proc | Time<br>nission<br>nit<br>emical<br>esses<br>nly) | All Regulated<br>Pollutants -<br>Chemical<br>Name/CAS <sup>3</sup>                          | Pote                                                           | mum<br>ential<br>atrolled<br>sions <sup>4</sup>                | Pote<br>Cont | mum<br>ential<br>rolled<br>sions <sup>5</sup> | Emission<br>Form or<br>Phase<br>(At exit<br>conditions,<br>Solid, Liquid | Est.<br>Method<br>Used <sup>6</sup> | Emission<br>Concentration <sup>7</sup><br>(ppmv or<br>mg/m <sup>4</sup> ) |
| Table-&<br>Plot Plan)                            |                                        | ID No.            | Source                                                                   | ID No.                               | Device<br>Type                                               | Short<br>Term <sup>2</sup>  | Max<br>(hr/yr)                                    | & HAPS)                                                                                     | lb/hr                                                          | ton/yr                                                         | lb/hr        | ton/yr                                        | or<br>Gas/Vapor)                                                         |                                     |                                                                           |
| E01                                              | Horizontal<br>Stack                    | CE-1              | 4SRB RICE Continental TM- 27A                                            | NA                                   | NA                                                           | NA                          | NA                                                | NO <sub>X</sub><br>CO<br>VOC<br>SO <sub>2</sub><br>PM <sub>10</sub><br>CH2O<br>HAPs<br>CO2e | 0.25<br>0.43<br>0.01<br><0.01<br>0.01<br>0.01<br>0.02<br>42.01 | 1.09<br>1.87<br>0.05<br>0.01<br>0.03<br>0.04<br>0.06<br>184.01 |              |                                               | Gas/<br>Vapor                                                            | EE                                  | Can Supply<br>Upon Request                                                |
| E02                                              | Vertical<br>Stack                      | T01               | Pipeline Liquids<br>AST                                                  | NA                                   | -                                                            | -                           | 1                                                 | VOC                                                                                         | 0.04                                                           | 0.14                                                           | -            | -                                             | Gas/<br>Vapor                                                            | EE                                  | Can Supply<br>Upon Request                                                |

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).

List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. **LIST** Acids, CO, CS<sub>2</sub>, VOCs, H<sub>2</sub>S, Inorganics, Lead, Organics, O<sub>3</sub>, NO, NO<sub>2</sub>, SO<sub>2</sub>, SO<sub>3</sub>, all applicable Greenhouse Gases (including CO<sub>2</sub> and methane), etc. **DO NOT LIST** H<sub>2</sub>O, N<sub>2</sub>O<sub>2</sub>, and Noble Gases.

<sup>&</sup>lt;sup>4</sup> Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

<sup>&</sup>lt;sup>5</sup> Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m³) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO<sub>2</sub>, use units of ppmv (See 45CSR10).

# ATTACHMENT K FUGITIVE EMISSIONS DATA SHEET

## **45CSR13 Permit Application**

Bulltown Station West Union, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA 15317

## Attachment K

## **FUGITIVE EMISSIONS DATA SUMMARY SHEET**

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

|     | APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS                                                                                                                                                                                         |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.) | Will there be haul road activities?                                                                                                                                                                                                      |
|     | ☐ Yes           No                                                                                                                                                                                                                       |
|     | ☐ If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.                                                                                                                                                                         |
| 2.) | Will there be Storage Piles?                                                                                                                                                                                                             |
|     | ☐ Yes           No                                                                                                                                                                                                                       |
|     | $\hfill \square$ If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.                                                                                                                              |
| 3.) | Will there be Liquid Loading/Unloading Operations?                                                                                                                                                                                       |
|     | ⊠ Yes □ No                                                                                                                                                                                                                               |
|     | $oxed{oxed}$ If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.                                                                                                                                             |
| 4.) | Will there be emissions of air pollutants from Wastewater Treatment Evaporation?                                                                                                                                                         |
|     | ☐ Yes ☐ No                                                                                                                                                                                                                               |
|     | ☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.                                                                                                                                                                                |
| 5.) | Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?                                  |
|     | ⊠ Yes □ No                                                                                                                                                                                                                               |
|     | ☑ If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET. Note: Component count and emission totals are included within site calculations. No monitoring or LDAR required at this site. |
| 6.) | Will there be General Clean-up VOC Operations?                                                                                                                                                                                           |
|     | ☐ Yes ☐ No                                                                                                                                                                                                                               |
|     | ☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.                                                                                                                                                                                |
| 7.) | Will there be any other activities that generate fugitive emissions?                                                                                                                                                                     |
|     | ☐ Yes ☐ No                                                                                                                                                                                                                               |
|     | ☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.                                                                                                                                                   |
|     | ou answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions mmary."                                                                                                             |

| FUGITIVE EMISSIONS SUMMARY                        | All Regulated Pollutants -<br>Chemical Name/CAS 1 | Maximum<br>Uncontrolled | Potential<br>Emissions <sup>2</sup> | Maximum P<br>Controlled Em | otential<br>nissions <sup>3</sup> | Est.<br>Method    |
|---------------------------------------------------|---------------------------------------------------|-------------------------|-------------------------------------|----------------------------|-----------------------------------|-------------------|
|                                                   | Chemical Name/CAS                                 | lb/hr                   | ton/yr                              | lb/hr                      | ton/yr                            | Used <sup>4</sup> |
| Haul Road/Road Dust Emissions<br>Paved Haul Roads | -                                                 | -                       | -                                   | -                          | -                                 | EE                |
| Unpaved Haul Roads                                | -                                                 | -                       | -                                   | -                          | -                                 | EE                |
| Storage Pile Emissions                            | •                                                 | -                       | -                                   | -                          | -                                 | EE                |
| Loading/Unloading Operations                      | VOC                                               | 0.01                    | 0.05                                | -                          | -                                 | EE                |
| Wastewater Treatment Evaporation & Operations     | -                                                 | -                       | -                                   | -                          | -                                 | EE                |
| Equipment Leaks                                   | VOC                                               | 0.13                    | 0.57                                | -                          | -                                 | EE                |
| General Clean-up VOC Emissions                    | -                                                 | -                       | -                                   | -                          | -                                 | EE                |
| Other                                             | -                                                 | -                       | -                                   | -                          | -                                 | EE                |

<sup>&</sup>lt;sup>1</sup> List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS<sub>2</sub>, VOCs, H<sub>2</sub>S, Inorganics, Lead, Organics, O<sub>3</sub>, NO, NO<sub>2</sub>, SO<sub>2</sub>, SO<sub>3</sub>, all applicable Greenhouse Gases (including CO<sub>2</sub> and methane), etc. DO NOT LIST H<sub>2</sub>, H<sub>2</sub>O, N<sub>2</sub>, O<sub>2</sub>, and Noble Gases.

Page 2 of 2 Revision 2/11

O<sub>2</sub>, and Noble Gases.

<sup>2</sup> Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

<sup>3</sup> Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

<sup>&</sup>lt;sup>4</sup> Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

# ATTACHMENT L EMISSION UNIT DATA SHEET

## **45CSR13 Permit Application**

Bulltown Station West Union, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA 15317

## INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. *Generator(s) and microturbine generator(s) shall also use this form.* 

| Emission Unit ID#1                                                                                                            |                            | CI                                                                                                           | E-1                                                    |                             |                                          |                                                                                                                                                                  |                              |  |
|-------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|
| Engine Manufac                                                                                                                | turer/Model                | Continenta                                                                                                   | al/TM-27A                                              |                             |                                          |                                                                                                                                                                  |                              |  |
| Manufacturers F                                                                                                               | Rated bhp/rpm              | 40/1                                                                                                         | 800                                                    |                             |                                          |                                                                                                                                                                  |                              |  |
| Source Status <sup>2</sup>                                                                                                    |                            | N                                                                                                            | S                                                      |                             |                                          |                                                                                                                                                                  |                              |  |
| Date Installed/<br>Modified/Remov                                                                                             | ved/Relocated <sup>3</sup> | 5-1-                                                                                                         | 2014                                                   |                             |                                          |                                                                                                                                                                  |                              |  |
| Engine Manufactured /Reconstruction Date <sup>4</sup>                                                                         |                            | 11/1/                                                                                                        | 2012                                                   |                             |                                          |                                                                                                                                                                  |                              |  |
| Check all applicable Federal<br>Rules for the engine (include<br>EPA Certificate of Conformity<br>if applicable) <sup>5</sup> |                            | □ 40CFR60 S □ JJJJ Certifi □ 40CFR60 S □ IIII Certifie □ 40CFR63 S □ NESHAP 2 JJJJ Window □ NESHAP 2 Sources | ed?<br>ubpart IIII<br>ed?<br>ubpart ZZZZ<br>ZZZZ/ NSPS | □ NESHAP 2<br>JJJJ Window   | ed?<br>ubpart IIII<br>ed?<br>ubpart ZZZZ | □40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources |                              |  |
| Engine Type <sup>6</sup>                                                                                                      |                            | 4S                                                                                                           | RB                                                     |                             |                                          |                                                                                                                                                                  |                              |  |
| APCD Type <sup>7</sup>                                                                                                        |                            | No                                                                                                           | one                                                    |                             |                                          |                                                                                                                                                                  |                              |  |
| Fuel Type <sup>8</sup>                                                                                                        |                            | R                                                                                                            | G                                                      |                             |                                          |                                                                                                                                                                  |                              |  |
| H <sub>2</sub> S (gr/100 scf)                                                                                                 | )                          | 0.25                                                                                                         |                                                        |                             |                                          |                                                                                                                                                                  |                              |  |
| Operating bhp/r                                                                                                               | pm                         | 40/1                                                                                                         | 800                                                    |                             |                                          |                                                                                                                                                                  |                              |  |
| BSFC (BTU/bhr                                                                                                                 | o-hr)                      | 8,9                                                                                                          | 976                                                    |                             |                                          |                                                                                                                                                                  |                              |  |
| Hourly Fuel Thr                                                                                                               | oughput                    | 321.70 ft <sup>3</sup> /hr                                                                                   |                                                        |                             |                                          |                                                                                                                                                                  |                              |  |
| Annual Fuel The<br>(Must use 8,760<br>emergency gene                                                                          | hrs/yr unless              | 2.82 MMft <sup>3</sup> /yr                                                                                   |                                                        |                             |                                          |                                                                                                                                                                  |                              |  |
| Fuel Usage or H<br>Operation Meter                                                                                            |                            | Yes □                                                                                                        | No ⊠                                                   | Yes □                       | No 🗆                                     | Yes □                                                                                                                                                            | No 🗆                         |  |
| Calculation<br>Methodology <sup>9</sup>                                                                                       | Pollutant <sup>10</sup>    | Hourly<br>PTE<br>(lb/hr) <sup>11</sup>                                                                       | Annual<br>PTE<br>(tons/year)                           | Hourly<br>PTE<br>(lb/hr) 11 | Annual<br>PTE<br>(tons/year)             | Hourly<br>PTE<br>(lb/hr) 11                                                                                                                                      | Annual<br>PTE<br>(tons/year) |  |
| AP                                                                                                                            | NO <sub>x</sub>            | 0.25                                                                                                         | 1.09                                                   |                             |                                          |                                                                                                                                                                  |                              |  |
| AP                                                                                                                            | СО                         | 0.43                                                                                                         | 1.87                                                   |                             |                                          |                                                                                                                                                                  |                              |  |
| AP                                                                                                                            | VOC                        | 0.01                                                                                                         | 0.05                                                   |                             |                                          |                                                                                                                                                                  |                              |  |
| AP                                                                                                                            | SO <sub>2</sub>            | <0.01                                                                                                        | 0.01                                                   |                             |                                          |                                                                                                                                                                  |                              |  |
| AP                                                                                                                            | PM <sub>10</sub>           | 0.01                                                                                                         | 0.03                                                   |                             |                                          |                                                                                                                                                                  |                              |  |
| AP                                                                                                                            | Formaldehyde               | 0.01                                                                                                         | 0.04                                                   |                             |                                          |                                                                                                                                                                  |                              |  |
| AP                                                                                                                            | Total HAPs                 | 0.02                                                                                                         | 0.06                                                   |                             |                                          |                                                                                                                                                                  |                              |  |
| AP                                                                                                                            | GHG (CO <sub>2</sub> e)    | 42.01                                                                                                        | 184.01                                                 |                             |                                          |                                                                                                                                                                  |                              |  |

- 1 Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.
- 2 Enter the Source Status using the following codes:

 NS
 Construction of New Source (installation)
 ES
 Existing Source

 MS
 Modification of Existing Source
 RS
 Relocated Source

REM Removal of Source

- 3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.
- 4 Enter the date that the engine was manufactured, modified or reconstructed.
- 5 Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

#### Provide a manufacturer's data sheet for all engines being registered.

Enter the Engine Type designation(s) using the following codes:

2SLB Two Stroke Lean Burn 4SRB Four Stroke Rich Burn

4SLB Four Stroke Lean Burn

7 Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:

A/F Air/Fuel Ratio IR Ignition Retard

HEISHigh Energy Ignition SystemSIPCScrew-in Precombustion ChambersPSCPrestratified ChargeLECLow Emission CombustionNSCRRich Burn & Non-Selective Catalytic ReductionOxCatOxidation Catalyst

SCR Lean Burn & Selective Catalytic Reduction

8 Enter the Fuel Type using the following codes:

PQ Pipeline Quality Natural Gas RG Raw Natural Gas / Production Gas D Diesel

9 Enter the Potential Emissions Data Reference designation using the following codes. Attach all reference data used.

MD Manufacturer's Data AP AP-42

 $\hspace{1cm} GR \hspace{1cm} GRI\text{-}HAPCalc^{TM} \hspace{1cm} OT \hspace{1cm} Other \hspace{1cm} (please \ list)$ 

- 10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.
- 11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

## ATTACHMENT L – STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water. (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.

## The following information is REQUIRED:

- □ Composition of the representative sample used for the simulation
- - $\boxtimes$  Temperature and pressure (inlet and outlet from separator(s))
- ☑ Resulting flash emission factor or flashing emissions from simulation
- ⊠ Working/breathing loss emissions from tanks and/or loading emissions if simulation is used to quantify those emissions

Additional information may be requested if necessary.

## GENERAL INFORMATION (REQUIRED)

| 1. Bulk Storage Area Name:                                         | 2. Tank Name                                                               |  |  |  |  |
|--------------------------------------------------------------------|----------------------------------------------------------------------------|--|--|--|--|
| Bulltown Station                                                   | Pipeline Liquids AST                                                       |  |  |  |  |
| 2. Emission Unit ID number:                                        | 3. Emission Point ID number:                                               |  |  |  |  |
| T-1                                                                | E01                                                                        |  |  |  |  |
| 5. Date Installed , Modified or Relocated (for existing tanks)     | 6. Type of change:                                                         |  |  |  |  |
| T-1 (5-1-2014)                                                     | $\square$ New construction $\square$ New stored material $\boxtimes$ Other |  |  |  |  |
| Was the tank manufactured after August 23, 2011 and on or          | ☐ Relocation                                                               |  |  |  |  |
| before October 18, 2015?                                           |                                                                            |  |  |  |  |
| □ Yes ⊠ No                                                         |                                                                            |  |  |  |  |
| Was the tank manufactured after September 18, 2015?                |                                                                            |  |  |  |  |
| □ Yes ⊠ No                                                         |                                                                            |  |  |  |  |
|                                                                    |                                                                            |  |  |  |  |
| 7A. Description of Tank Modification (if applicable)               |                                                                            |  |  |  |  |
| 7B. Will more than one material be stored in this tank? If so, a s | separate form must be completed for each material.                         |  |  |  |  |
| ☐ Yes ⊠ No                                                         |                                                                            |  |  |  |  |
| 7C. Was USEPA Tanks simulation software utilized?                  |                                                                            |  |  |  |  |
| ☐ Yes ☐ No ProMax Model Simulation Report                          | Ran (See Calculations)                                                     |  |  |  |  |
| If Yes, please provide the appropriate documentation and items     | 8-42 below are not required.                                               |  |  |  |  |

## TANK INFORMATION

| 18. Type of tank (check all                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                                                                                               |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|--|--|--|
| ☐ Fixed Roof ☐ ☑ ve                                                                                                                                                                                                                                                                                                                                                                                                                         | ertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ontal 🛛 flat roof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\Box$ cone roof $\Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ☐ dome roof ☐ d                                                                                           | other (describe)                                                                              |  |  |  |  |
| ☐ External Floating Roof                                                                                                                                                                                                                                                                                                                                                                                                                    | $\square$ pontoon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | roof $\Box$ double                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | deck roof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                           |                                                                                               |  |  |  |  |
| ☐ Domed External (or Co                                                                                                                                                                                                                                                                                                                                                                                                                     | vered) Floating Ro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                                                                                               |  |  |  |  |
| ☐ Internal Floating Roof                                                                                                                                                                                                                                                                                                                                                                                                                    | □ vertical o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | column support                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\square$ self-supporting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                           |                                                                                               |  |  |  |  |
| ☐ Variable Vapor Space                                                                                                                                                                                                                                                                                                                                                                                                                      | ☐ lifter roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | of □ diaphragm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                                                                                               |  |  |  |  |
| ☐ Pressurized                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | l □ cylindrical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                                                                                               |  |  |  |  |
| ☐ Other (describe)                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                                                                                               |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                                                                                               |  |  |  |  |
| PRESSURE/VACUUM C                                                                                                                                                                                                                                                                                                                                                                                                                           | CONTROL DAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ' <b>A</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                                                                                               |  |  |  |  |
| 19. Check as many as appl                                                                                                                                                                                                                                                                                                                                                                                                                   | y:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                                                                                               |  |  |  |  |
| ☐ Does Not Apply                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ☐ Does Not Apply ☐ Rupture Disc (psig)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                           |                                                                                               |  |  |  |  |
| ☐ Inert Gas Blanket of ☐ Carbon Adsorption <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                                                                                               |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                           |                                                                                               |  |  |  |  |
| ☐ Vent to Vapor Combust                                                                                                                                                                                                                                                                                                                                                                                                                     | tion Device <sup>1</sup> (vapor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | combustors, flare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | es, thermal oxidizers,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | enclosed combust                                                                                          | ors)                                                                                          |  |  |  |  |
| ☐ Vent to Vapor Combust ☐ Conservation Vent (psignature)                                                                                                                                                                                                                                                                                                                                                                                    | tion Device <sup>1</sup> (vapor<br>g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | combustors, flare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | es, thermal oxidizers,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | enclosed combust                                                                                          | ors)                                                                                          |  |  |  |  |
| ☐ Vent to Vapor Combust ☐ Conservation Vent (psignum -0.03 Vacuum Setting                                                                                                                                                                                                                                                                                                                                                                   | tion Device <sup>1</sup> (vapor<br>g)<br>0.03 Pressure Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | combustors, flare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | es, thermal oxidizers,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | enclosed combust                                                                                          | ors)                                                                                          |  |  |  |  |
| <ul> <li>□ Vent to Vapor Combust</li> <li>☑ Conservation Vent (psignormal of the conservation of the conservation)</li> <li>□ Emergency Relief Valve</li> </ul>                                                                                                                                                                                                                                                                             | tion Device <sup>1</sup> (vapor<br>g)<br>0.03 Pressure Se<br>e (psig)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | combustors, flare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | es, thermal oxidizers,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | enclosed combust                                                                                          | ors)                                                                                          |  |  |  |  |
| ☐ Vent to Vapor Combust ☐ Conservation Vent (psignormal) ☐ Conservation Vent (psignormal) ☐ Emergency Relief Valve Vacuum Setting ☐ Preservation                                                                                                                                                                                                                                                                                            | tion Device <sup>1</sup> (vapor<br>g)<br>0.03 Pressure Se<br>e (psig)<br>essure Setting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | combustors, flare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | es, thermal oxidizers,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | enclosed combust                                                                                          | ors)                                                                                          |  |  |  |  |
| <ul> <li>□ Vent to Vapor Combust</li> <li>☑ Conservation Vent (psignormal of the conservation of the conservation)</li> <li>□ Emergency Relief Valve</li> </ul>                                                                                                                                                                                                                                                                             | tion Device <sup>1</sup> (vapor<br>g) 0.03 Pressure Se<br>e (psig) cssure Setting Yes \( \square\) No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | combustors, flare  Conducting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | es, thermal oxidizers,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | enclosed combust                                                                                          | ors)                                                                                          |  |  |  |  |
| ☐ Vent to Vapor Combust ☐ Conservation Vent (psignormal) ☐ Conservation Vent (psignormal) ☐ Complete appropriate Air                                                                                                                                                                                                                                                                                                                        | tion Device <sup>1</sup> (vapor<br>g)  0.03 Pressure Se<br>e (psig) essure Setting  Yes  No Pollution Control I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | combustors, flare  Concerting  Device Sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | es, thermal oxidizers,<br>denser <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                           | ors)                                                                                          |  |  |  |  |
| ☐ Vent to Vapor Combust ☐ Conservation Vent (psignormal) ☐ Conservation Vent (psignormal) ☐ Emergency Relief Valve ☐ Vacuum Setting Pre ☐ Thief Hatch Weighted ☐ ☐ Complete appropriate Air ☐ 20. Expected Emission Rate                                                                                                                                                                                                                    | tion Device <sup>1</sup> (vapor<br>g) 0.03 Pressure Se<br>e (psig) essure Setting Yes \square No Pollution Control I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | combustors, flare Concetting  Device Sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | es, thermal oxidizers,<br>denser <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | the application).                                                                                         |                                                                                               |  |  |  |  |
| <ul> <li>□ Vent to Vapor Combust</li> <li>□ Conservation Vent (psignormal)</li> <li>□ -0.03 Vacuum Setting</li> <li>□ Emergency Relief Valvoucuum Setting</li> <li>□ Thief Hatch Weighted</li> <li>□ Tomplete appropriate Air</li> </ul>                                                                                                                                                                                                    | tion Device <sup>1</sup> (vapor<br>g)  0.03 Pressure Se<br>e (psig) essure Setting  Yes  No Pollution Control I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | combustors, flare  Concerting  Device Sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | es, thermal oxidizers, denser¹  here or elsewhere in thing Loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the application). <b>Fotal Emissions</b>                                                                  | Estimation Method <sup>1</sup>                                                                |  |  |  |  |
| ☐ Vent to Vapor Combust ☐ Conservation Vent (psignormal) ☐ Conservation Vent (psignormal) ☐ Emergency Relief Valve ☐ Vacuum Setting Pre ☐ Thief Hatch Weighted ☐ ☐ Complete appropriate Air ☐ 20. Expected Emission Rate                                                                                                                                                                                                                    | tion Device <sup>1</sup> (vaporing)  0.03 Pressure Service (psig)  essure Setting  Yes  No  Pollution Control Interpretation Loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | combustors, flare Concerting  Device Sheet a or Calculations b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | es, thermal oxidizers, denser¹  here or elsewhere in the ching Loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | the application).  Fotal Emissions  Loss                                                                  |                                                                                               |  |  |  |  |
| ☐ Vent to Vapor Combust ☐ Conservation Vent (psignormal) ☐ Conservation Vent (psignormal) ☐ Emergency Relief Valve ☐ Vacuum Setting Pre ☐ Thief Hatch Weighted ☐ ☐ Complete appropriate Air ☐ 20. Expected Emission Rate                                                                                                                                                                                                                    | tion Device <sup>1</sup> (vapor<br>g) 0.03 Pressure Se<br>e (psig) essure Setting Yes \square No Pollution Control I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | combustors, flare Concetting  Device Sheet a or Calculations h  Working/ Breat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | thing Loss  Ity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the application). <b>Fotal Emissions</b>                                                                  |                                                                                               |  |  |  |  |
| ☐ Vent to Vapor Combust ☐ Conservation Vent (psig ☐-0.03 Vacuum Setting ☐ Emergency Relief Valve ☐ Vacuum Setting ☐ Pre ☐ Thief Hatch Weighted ☐ Complete appropriate Air ☐ 20. Expected Emission Rate ☐ Material Name                                                                                                                                                                                                                      | tion Device <sup>1</sup> (vaporing)  0.03 Pressure Sete (psig)  essure Setting  Yes No Pollution Control Inte (submit Test Date  Flashing Loss    Ib/hr   tpy     < 0.01   0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | combustors, flare Concetting  Device Sheet  a or Calculations I  Working/ Breat  Ib/hr  0.03  c, SS = Similar Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | thing Loss  I tpy  0.14  Ce, ST = Similar Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | the application).  Fotal Emissions  Loss b/hr tpy  0.04 0.14  e Test, Throughput D                        | Estimation Method <sup>1</sup> O - ProMax  ata, O = Other (specify)                           |  |  |  |  |
| □ Vent to Vapor Combust □ Conservation Vent (psig -0.03 Vacuum Setting □ Emergency Relief Valve Vacuum Setting □ Thief Hatch Weighted ¹ Complete appropriate Air  20. Expected Emission Rate Material Name  VOCs Combined Tanks                                                                                                                                                                                                             | tion Device <sup>1</sup> (vaporage)  0.03 Pressure Sete (psig)  essure Setting  Yes No Pollution Control Inte (submit Test Date  Flashing Loss    Ib/hr   tpy     < 0.01   0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | combustors, flare Concerting  Device Sheet  a or Calculations by Working/ Breat    Ib/hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | thing Loss  I tpy  0.14  Ce, ST = Similar Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | the application).  Fotal Emissions  Loss b/hr tpy  0.04 0.14  e Test, Throughput D                        | Estimation Method <sup>1</sup> O - ProMax  ata, O = Other (specify)                           |  |  |  |  |
| □ Vent to Vapor Combust □ Conservation Vent (psig -0.03 Vacuum Setting □ Emergency Relief Valve Vacuum Setting □ Thief Hatch Weighted ¹ Complete appropriate Air  20. Expected Emission Rate Material Name  VOCs Combined Tanks  ¹ EPA = EPA Emission Factor, Material Name  TANK CONSTRUCTION A 21. Tank Shell Construction:                                                                                                               | tion Device <sup>1</sup> (vaporing)  0.03 Pressure Setting (vaporing)  Sessure Setting No Pollution Control Interpretation (vaporing)  The (submit Test Data (vaporing) (vaporing)  Ib/hr tpy (vaporing) (vaporing)  Ib/hr tpy (vaporing) (vaporing)  B = Material Balance (vaporing) (vaporing) (vaporing)  ND OPERATION II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | combustors, flare Conditing  Device Sheet a or Calculations b  Working/ Breat  Ib/hr 0.03 c, SS = Similar Source TANKS Summary Sh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nere or elsewhere in the ching Loss To the control of the control  | the application).  Fotal Emissions  Loss b/hr tpy  0.04 0.14  e Test, Throughput D  g summary sheets if a | Estimation Method <sup>1</sup> O - ProMax  ata, O = Other (specify)                           |  |  |  |  |
| □ Vent to Vapor Combust □ Conservation Vent (psig -0.03 Vacuum Setting □ Emergency Relief Valve Vacuum Setting □ Thief Hatch Weighted ¹ Complete appropriate Air  20. Expected Emission Rate Material Name  VOCs Combined Tanks  ¹ EPA = EPA Emission Factor, Mace Remember to attach emissions can  TANK CONSTRUCTION A  21. Tank Shell Construction: □ Riveted □ Gunite Is                                                                | tion Device <sup>1</sup> (vaporing)  0.03 Pressure Setting  (submit Test Date (submit Test Dat | combustors, flare Concetting  Device Sheet  a or Calculations h  Working/ Breat  Ib/hr  0.03  c, SS = Similar Source TANKS Summary Sh  NFORMATION  Dated rivets  O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | thing Loss  typ  0.14  ce, ST = Similar Source eets and other modeling there (describe) Weld                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | the application).  Fotal Emissions  Loss b/hr tpy 0.04 0.14  e Test, Throughput D g summary sheets if a   | Estimation Method <sup>1</sup> O - ProMax  ata, O = Other (specify)  applicable.              |  |  |  |  |
| Uvent to Vapor Combust  Conservation Vent (psig -0.03 Vacuum Setting  Emergency Relief Valve Vacuum Setting  Thief Hatch Weighted  Complete appropriate Air  20. Expected Emission Rate  Material Name  VOCs Combined Tanks  VOCs Combined Tanks  TANK CONSTRUCTION A  21. Tank Shell Construction:  Riveted ☐ Gunite In 21A. Shell Color: Green                                                                                            | tion Device <sup>1</sup> (vaporing)  0.03 Pressure Sete (psig)  essure Setting  Yes  No Pollution Control Inte (submit Test Date  Flashing Loss  Ib/hr tpy  <0.01 0.01  B = Material Balance Iculations, including inclu | combustors, flare Conditing  Device Sheet a or Calculations b  Working/ Breat  Ib/hr 0.03 c, SS = Similar Source TANKS Summary Sh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | thing Loss  typ  0.14  ce, ST = Similar Source eets and other modeling there (describe) Weld                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | the application).  Fotal Emissions  Loss b/hr tpy  0.04 0.14  e Test, Throughput D  g summary sheets if a | Estimation Method <sup>1</sup> O - ProMax  ata, O = Other (specify)  applicable.              |  |  |  |  |
| □ Vent to Vapor Combust     □ Conservation Vent (psig-0.03 Vacuum Setting     □ Emergency Relief Valve Vacuum Setting     □ Thief Hatch Weighted I Complete appropriate Air  20. Expected Emission Rate     ■ Material Name  VOCs Combined Tanks  VOCs Combined Tanks  TANK CONSTRUCTION A  21. Tank Shell Construction:     □ Riveted □ Gunite Is                                                                                          | tion Device <sup>1</sup> (vaporage)  0.03 Pressure Sete (psig)  essure Setting  Yes No Pollution Control Inte (submit Test Date  Flashing Loss  Ib/hr tpy  <0.01 0.01  B = Material Balance Iculations, including includ | combustors, flare Concepting  Device Sheet  a or Calculations by Calculations | rere or elsewhere in the ching Loss Turner of the control of the c | the application).  Fotal Emissions  Loss b/hr tpy 0.04 0.14  e Test, Throughput D g summary sheets if a   | Estimation Method <sup>1</sup> O - ProMax  ata, O = Other (specify)  applicable.              |  |  |  |  |
| □ Vent to Vapor Combust  □ Conservation Vent (psig-0.03 Vacuum Setting □ Emergency Relief Valve Vacuum Setting □ Thief Hatch Weighted □ Thief Hatch Weighted □ Complete appropriate Air  20. Expected Emission Rate  Material Name  VOCs Combined Tanks □ EPA = EPA Emission Factor, Mace Material Name  TANK CONSTRUCTION A  21. Tank Shell Construction: □ Riveted □ Gunite In  21A. Shell Color: Green  22. Shell Condition (if metal a) | tion Device <sup>1</sup> (vaporage)  0.03 Pressure Sete (psig)  cssure Setting  Yes No Pollution Control I  te (submit Test Data  Flashing Loss    Ib/hr   tpy     < 0.01   0.01  B = Material Balance     Collection of the control I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | combustors, flare Concepting  Device Sheet  a or Calculations by Calculations | there or elsewhere in thing Loss  Typy  1.1  1.2  1.3  1.4  1.5  1.6  1.6  1.7  1.7  1.7  1.7  1.7  1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | the application).  Fotal Emissions Loss b/hr tpy 0.04 0.14  Test, Throughput D g summary sheets if a      | Estimation Method <sup>1</sup> O - ProMax  ata, O = Other (specify)  applicable.              |  |  |  |  |
| □ Vent to Vapor Combust     □ Conservation Vent (psig-0.03 Vacuum Setting     □ Emergency Relief Valve Vacuum Setting     □ Thief Hatch Weighted I Complete appropriate Air  20. Expected Emission Rate  Material Name  VOCs Combined Tanks  TANK CONSTRUCTION A 21. Tank Shell Construction:     □ Riveted □ Gunite Ii 21A. Shell Color: Green 22. Shell Condition (if metal a □ No Rust □ Light Ru                                        | tion Device <sup>1</sup> (vaporage)  0.03 Pressure Sete (psig)  essure Setting  Yes  No Pollution Control I  te (submit Test Data  Flashing Loss  Ib/hr tpy  <0.01 0.01  B = Material Balance Iculations, including incl | combustors, flare Conditing  Device Sheet  a or Calculations h  Working/ Breat  Ib/hr 0.03  c, SS = Similar Source TANKS Summary Sh  NFORMATION  Dated rivets  OB. Roof Color: Great  St  Not applic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | there or elsewhere in thing Loss  Typy  1.1  1.2  1.3  1.4  1.5  1.6  1.6  1.7  1.7  1.7  1.7  1.7  1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | the application).  Fotal Emissions Loss b/hr tpy 0.04 0.14  Test, Throughput D g summary sheets if a      | Estimation Method <sup>1</sup> O - ProMax  ata, O = Other (specify)  applicable.  Painted: NA |  |  |  |  |

| 24. Is the tank a <b>Vertical Fixed Ro</b>                              | of Tank?       | 24A. If yes, for dome 4.23                        | roof pro    | vide radius (ft):                 | 24B. If ye     | s, for cone roof, provide slop (ft/ft): |  |
|-------------------------------------------------------------------------|----------------|---------------------------------------------------|-------------|-----------------------------------|----------------|-----------------------------------------|--|
| ⊠ Yes □ No                                                              |                |                                                   |             |                                   |                |                                         |  |
| 25. Complete item 25 for <b>Floating</b>                                |                | s ☐ Does not apply                                | $\boxtimes$ |                                   |                |                                         |  |
| 25A. Year Internal Floaters Installe                                    |                |                                                   |             |                                   |                |                                         |  |
| 25B. Primary Seal Type (check one                                       |                | allic (mechanical) sho<br>oor mounted resilient s |             | ☐ Liquid mo☐ Other (des           |                | ent seal                                |  |
| 25C. Is the Floating Roof equipped                                      | with a seco    | ndary seal?   Yes                                 | □ No        |                                   |                |                                         |  |
| 25D. If yes, how is the secondary s                                     | eal mounted    | ? (check one)                                     | е 🗆         | Rim 🗆 Otl                         | ner (describ   | e):                                     |  |
| 25E. Is the floating roof equipped v                                    | with a weath   | er shield?                                        | □ N         | Го                                |                |                                         |  |
| 25F. Describe deck fittings:                                            |                |                                                   |             |                                   |                |                                         |  |
| 26. Complete the following section                                      | for Interna    | l Floating Roof Tanks                             | $\boxtimes$ | Does not apply                    | У              |                                         |  |
| 26A. Deck Type: ☐ Bolted                                                | □ W            | Velded                                            | 26B.        | For bolted decks,                 | provide dec    | k construction:                         |  |
| 26C. Deck seam. Continuous shee                                         |                |                                                   |             |                                   |                |                                         |  |
| $\Box$ 5 ft. wide $\Box$ 6 ft. wide $\Box$                              |                |                                                   |             |                                   |                |                                         |  |
| 26D. Deck seam length (ft.):                                            | 26E. Area      | of deck (ft <sup>2</sup> ):                       |             | For column suppo<br># of columns: | orted          | 26G. For column supported               |  |
|                                                                         |                |                                                   | taiks,      | # Of Columns.                     |                | tanks, diameter of column:              |  |
| 27. Closed Vent System with VRU? ☐ Yes ☒ No                             |                |                                                   |             |                                   |                |                                         |  |
| 28. Closed Vent System with Enclo                                       | osed Combu     | stor? □ Yes ⊠ No                                  |             |                                   |                |                                         |  |
| SITE INFORMATION                                                        |                |                                                   |             |                                   |                |                                         |  |
| 29. Provide the city and state on wl                                    | nich the data  | in this section are based                         |             |                                   |                |                                         |  |
| 30. Daily Avg. Ambient Temperatu                                        | ıre (°F): 49.0 | 06                                                | 31. A       | nnual Avg. Maxi                   | mum Tempe      | rature (°F): 61.15                      |  |
| 32. Annual Avg. Minimum Temper                                          | rature (°F): 3 | 36.97                                             | 33. A       | vg. Wind Speed                    | (mph): 6.17    |                                         |  |
| 34. Annual Avg. Solar Insulation F                                      | actor (BTU/    | /ft <sup>2</sup> -day): 1,193.70                  | 35. A       | tmospheric Press                  | ure (psia): 13 | 3.73                                    |  |
| LIQUID INFORMATION                                                      |                |                                                   |             |                                   |                |                                         |  |
| 36. Avg. daily temperature range o liquid (°F): 49.07                   | f bulk         | 36A. Minimum (°F): 3                              | 36.97       |                                   | 36B. Max       | 6B. Maximum (°F): 61.15                 |  |
| 37. Avg. operating pressure range of                                    | of tank        | 37A. Minimum (psig)                               | : -0.03     |                                   | 37B. Max       | imum (psig): 0.03                       |  |
| (psig): 0.0                                                             |                |                                                   |             |                                   |                |                                         |  |
| 38A. Minimum liquid surface temp                                        | erature (°F)   | : 36.97                                           | 38B.        | Corresponding va                  | apor pressure  | e (psia): 6.37                          |  |
| 39A. Avg. liquid surface temperatu                                      | re (°F): 50.6  | 57                                                | 39B.        | Corresponding va                  | apor pressure  | e (psia): 6.77                          |  |
| 40A. Maximum liquid surface temp                                        | perature (°F)  | ): 56.45                                          | 40B.        | Corresponding va                  | apor pressure  | e (psia): 7.19                          |  |
| 41. Provide the following for each CALCULATIONS.                        | -              | to be stored in the tank.                         | Add add     | litional pages if r               | necessary. SI  | EE PROMAX MODEL IN                      |  |
| 41A. Material name and composition                                      | on:            |                                                   |             |                                   |                |                                         |  |
| 41B. CAS number:                                                        |                |                                                   |             |                                   |                |                                         |  |
| 41C. Liquid density (lb/gal):                                           |                |                                                   |             |                                   |                |                                         |  |
| 41D. Liquid molecular weight (lb/l                                      |                |                                                   |             |                                   |                |                                         |  |
| 41E. Vapor molecular weight (lb/lt                                      |                |                                                   |             |                                   |                |                                         |  |
| 41F. Maximum true vapor pressure                                        |                |                                                   |             |                                   |                |                                         |  |
| 41G. Maximum Reid vapor pressu                                          | re (psia):     |                                                   |             |                                   |                |                                         |  |
| 41H. Months Storage per year.                                           |                |                                                   |             |                                   |                |                                         |  |
| From: To:                                                               | and            |                                                   |             |                                   |                |                                         |  |
| 42. Final maximum gauge pressure temperature prior to transfer into tar |                |                                                   |             |                                   |                |                                         |  |
| inputs into flashing emission calcula                                   |                |                                                   |             |                                   |                |                                         |  |
| 1 diediedie                                                             |                | l .                                               |             | l .                               |                |                                         |  |

## TANKER TRUCK LOADING DATA SHEET

Complete this data sheet for each new or modified bulk liquid transfer area or loading rack at the facility. This is to be used for bulk liquid transfer operations to tanker trucks. Use extra pages if necessary.

## Truck Loadout Collection Efficiencies

The following applicable capture efficiencies of a truck loadout are allowed:

- For tanker trucks passing the MACT level annual leak test 99.2%
- For tanker trucks passing the NSPS level annual leak test 98.7%
- For tanker trucks not passing one of the annual leak tests listed above 70%

Compliance with this requirement shall be demonstrated by keeping records of the applicable MACT or NSPS Annual Leak Test certification for *every* truck and railcar loaded/unloaded. This requirement can be satisfied if the trucking company provided certification that its entire fleet was compliant. This certification must be submitted in writing to the Director of the DAQ. These additional requirements must be noted in the Registration Application and will be noted on the issued G35-C Registration.

| Emission Unit ID#: TL-                                                                                                                                                                                                                                                                    | 1                                                                                                                             | Emissi    | Emission Point ID#: Fugitive |                |          |                           | Year Installed/Modified: 2014 |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------|----------------|----------|---------------------------|-------------------------------|--|--|--|
| Emission Unit Descripti                                                                                                                                                                                                                                                                   | on: Emissions                                                                                                                 | from Truc | k Loading a                  | re vented to A | Atmosph  | ere                       |                               |  |  |  |
|                                                                                                                                                                                                                                                                                           |                                                                                                                               |           | Loading A                    | Area Data      |          |                           |                               |  |  |  |
| Number of Pumps: 1 / C                                                                                                                                                                                                                                                                    | n Truck                                                                                                                       | Numbe     | er of Liquids                | Loaded: 1      |          | Max number of (1) time: 1 | of trucks loading at one      |  |  |  |
| Are tanker trucks pressu<br>If Yes, Please describe:                                                                                                                                                                                                                                      | Are tanker trucks pressure tested for leaks at this or any other location? ☐ Yes ☐ No ☒ Not Required If Yes, Please describe: |           |                              |                |          |                           |                               |  |  |  |
| Provide description of c                                                                                                                                                                                                                                                                  | Provide description of closed vent system and any bypasses.                                                                   |           |                              |                |          |                           |                               |  |  |  |
| Are any of the following truck loadout systems utilized?  Closed System to tanker truck passing a MACT level annual leak test?  Closed System to tanker truck passing a NSPS level annual leak test?  Closed System to tanker truck not passing an annual leak test and has vapor return? |                                                                                                                               |           |                              |                |          |                           |                               |  |  |  |
| Pro                                                                                                                                                                                                                                                                                       | jected Maximu                                                                                                                 | n Operat  | ing Schedul                  | e (for rack o  | r transf | er point as a w           | hole)                         |  |  |  |
| Time                                                                                                                                                                                                                                                                                      | Jan – M                                                                                                                       | ar        | Apr                          | Apr - Jun      |          | Jul – Sept                | Oct - Dec                     |  |  |  |
| Hours/day                                                                                                                                                                                                                                                                                 | 24                                                                                                                            |           | 2                            | 4              | 24       |                           | 24                            |  |  |  |
| Days/week                                                                                                                                                                                                                                                                                 | 7                                                                                                                             |           | ,                            | 7              |          | 7                         | 7                             |  |  |  |
|                                                                                                                                                                                                                                                                                           | Bul                                                                                                                           | k Liquid  | Data (use e                  | xtra pages a   | s necess | ary)                      | ·                             |  |  |  |
| Liquid Name                                                                                                                                                                                                                                                                               | Pi                                                                                                                            | peline Li | quids                        |                |          |                           |                               |  |  |  |
| Max. Daily Throughput<br>(1000 gal/day)                                                                                                                                                                                                                                                   |                                                                                                                               | 0.21      |                              |                |          |                           |                               |  |  |  |
| Max. Annual Throughpu<br>(1000 gal/yr)                                                                                                                                                                                                                                                    | ıt                                                                                                                            | 76.65     |                              |                |          |                           |                               |  |  |  |
| Loading Method <sup>1</sup>                                                                                                                                                                                                                                                               |                                                                                                                               | SUB       |                              |                |          |                           |                               |  |  |  |
| Max. Fill Rate (gal/min)                                                                                                                                                                                                                                                                  | )                                                                                                                             | 0.15      |                              |                |          |                           |                               |  |  |  |
| Average Fill Time (min/loading)                                                                                                                                                                                                                                                           |                                                                                                                               | 60        |                              |                |          |                           |                               |  |  |  |
| Max. Bulk Liquid<br>Temperature (°F)                                                                                                                                                                                                                                                      |                                                                                                                               | 49.1      |                              |                |          |                           |                               |  |  |  |

| True Vapor Pressure <sup>2</sup>            |                        | 6.77       |  |
|---------------------------------------------|------------------------|------------|--|
| Cargo Vessel                                | Condition <sup>3</sup> | С          |  |
| Control Equipment or<br>Method <sup>4</sup> |                        | None       |  |
| Max. Collection Efficiency (%)              |                        | 0          |  |
| Max. Control Efficiency (%)                 |                        | 0          |  |
| Max.VOC<br>Emission                         | Loading (lb/hr)        | 0.01       |  |
| Rate                                        | Annual (ton/yr)        | 0.04       |  |
| Max.HAP<br>Emission                         | Loading (lb/hr)        | 0.00       |  |
| Rate                                        | Annual (ton/yr)        | 0.00       |  |
| Estimation M                                | ethod <sup>5</sup>     | O - ProMax |  |

| 1 | BF        | Bottom Fill                       | SP         | Splash Fil | 1           |           | SUB        | Submerged Fill      |
|---|-----------|-----------------------------------|------------|------------|-------------|-----------|------------|---------------------|
| 2 | At maxim  | um bulk liquid temperature        |            | _          |             |           |            | _                   |
| 3 | В         | Ballasted Vessel                  | C          | Cleaned    |             | U         | Uncleaned  | (dedicated service) |
|   | O         | Other (describe)                  |            |            |             |           |            |                     |
| 4 | List as m | any as apply (complete and s      | ubmit app  | ropriate A | Air Polluti | on Contro | 1 Device S | Sheets)             |
|   | CA        | Carbon Adsorption                 |            | VΒ         | Dedicate    | d Vapor B | alance (cl | osed system)        |
|   | ECD       | <b>Enclosed Combustion Device</b> | e          | F          | Flare       | _         |            | •                   |
|   | TO        | Thermal Oxidization or Incir      | neration   |            |             |           |            |                     |
| 5 | EPA       | EPA Emission Factor in AP-        | 42         |            |             | MB        | Material   | Balance             |
|   | TM        | Test Measurement based upo        | n test dat | a submitta | al          | О         | Other (des | cribe)              |

# ATTACHMENT M AIR POLLUTION CONTROL DEVICE SHEET(S)

NOT APPLICABLE - No APCD in use at the facility

## **45CSR13 Permit Application**

Bulltown Station West Union, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA 15317

# ATTACHMENT N SUPPORTING EMISSIONS CALCULATIONS

## **45CSR13 Permit Application**

Bulltown Station West Union, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA 15317

## Table 1. Annual Potential To Emit (PTE) Summary CNX Gas Company - Bulltown

## Criteria Pollutants

## Proposed Facility Wide PTE - Criteria Pollutants

| Source                        | PM    | PM10  | PM2.5 | SO2   | NOx   | со    | voc   | CO2e    |
|-------------------------------|-------|-------|-------|-------|-------|-------|-------|---------|
| Engines (ton/yr)              | 0.031 | 0.031 | 0.031 | 0.001 | 1.093 | 1.869 | 0.046 | 184.009 |
| Tanks (ton/yr)                | -     | -     | -     | -     | -     | -     | 0.137 | -       |
| Truck Loading (ton/yr)        | -     | -     | -     | -     | -     | -     | 0.041 | -       |
| Compressor Blowdowns (ton/yr) | -     | -     | -     | -     | -     | -     | 0.231 | -       |
| Fugitives (ton/yr)            | -     | -     | -     | -     | -     | -     | 0.573 | 13.327  |
| Total Emissions (ton/yr)      | 0.031 | 0.031 | 0.031 | 0.001 | 1.093 | 1.869 | 1.029 | 197.336 |
| Total Emissions (lb/hr)       | 0.007 | 0.007 | 0.007 | 0.000 | 0.250 | 0.427 | 0.235 | 45.054  |

## Hazardous Air Pollutants (HAPs)

### Proposed Facility Wide PTE - HAPs

| · · · · · · · · · · · · · · · · · · · |              |         |         |              |        |          |              |            |
|---------------------------------------|--------------|---------|---------|--------------|--------|----------|--------------|------------|
| Source                                | Acetaldehyde | Benzene | Toluene | Ethylbenzene | Xylene | n-Hexane | Formaldehyde | Total HAPs |
| Engines (ton/yr)                      | 0.0044       | 0.0025  | 0.0009  | 0.0000       | 0.0003 | -        | 0.032        | 0.051      |
| Tanks (ton/yr)                        | -            | -       | -       | -            | -      | -        | -            | -          |
| Truck Loading (ton/yr)                | -            | -       | -       | -            | -      | -        | -            | -          |
| Compressor Blowdowns (ton/yr)         | -            | -       | -       | -            | -      | -        | -            | -          |
| Fugitives (ton/yr)                    | -            | -       | -       | -            | -      | -        | -            | -          |
| Total Emissions (ton/yr)              | 0.004        | 0.002   | 0.001   | 0.000        | 0.000  | 0.000    | 0.032        | 0.051      |
| Total Emissions (lb/hr)               | 0.001        | 0.001   | 0.000   | 0.000        | 0.000  | 0.000    | 0.007        | 0.012      |

#### Table 2. Reciprocating Engine / Integral Compressor Emissions (CE-1) Continental TM-27A CNX Gas Company - Bulltown

|                                     | Maximum Hourly Emissions            |     |                        |     | Annual Emissions                    |            |        |              |
|-------------------------------------|-------------------------------------|-----|------------------------|-----|-------------------------------------|------------|--------|--------------|
| Pollutant                           | Emission Factor                     |     | PTE ¡<br>Engi<br>(lb/h | ne  | Emission Factor                     | ion Factor |        | ngine<br>/r) |
|                                     |                                     |     |                        |     |                                     |            |        |              |
| Criteria Pollutants                 |                                     |     |                        |     |                                     |            |        |              |
| PM/PM10/PM2.5**                     | 1.94E-02 lb/MMBtu                   | (1) | 0.007                  | (a) | 1.94E-02 lb/MMBtu                   | (1)        | 0.03   | (c)          |
| SO <sub>2</sub>                     | 0.25 grains S / 100 ft <sup>3</sup> | (2) | 0.000                  | (e) | 0.25 grains S / 100 ft <sup>3</sup> | (2)        | 0.001  | (f)          |
| NOx                                 | 2.83E+00 g/hp-hr                    | (3) | 0.25                   | (b) | 2.83E+00 g/hp-hr                    | (3)        | 1.09   | (d)          |
| CO                                  | 4.84E+00 g/hp-hr                    | (3) | 0.43                   | (b) | 4.84E+00 g/hp-hr                    | (3)        | 1.87   | (d)          |
| VOC*                                | 1.20E-01 g/hp-hr                    | (1) | 0.01                   | (b) | 1.20E-01 g/hp-hr                    | (1)        | 0.05   | (d)          |
| *VOCs does not include formaldehyde |                                     |     |                        |     |                                     |            |        |              |
| Hazardous Air Pollutants            |                                     |     |                        |     |                                     |            |        |              |
| 1,1,2,2-Tetrachloroethane           | 2.53E-05 lb/MMBtu                   | (1) | 0.000                  | (a) | 2.53E-05 lb/MMBtu                   | (1)        | 0.000  | (c)          |
| 1,1,2-Trichloroethane               | 1.53E-05 lb/MMBtu                   | (1) | 0.000                  | (a) | 1.53E-05 lb/MMBtu                   | (1)        | 0.000  | (c)          |
| 1,3-Butadiene                       | 6.63E-04 lb/MMBtu                   | (1) | 0.000                  | (a) | 6.63E-04 lb/MMBtu                   | (1)        | 0.001  | (c)          |
| 1,3-Dichloropropene                 | 1.27E-05 lb/MMBtu                   | (1) | 0.000                  | (a) | 1.27E-05 lb/MMBtu                   | (1)        | 0.000  | (c)          |
| Acetaldehyde                        | 2.79E-03 lb/MMBtu                   | (1) | 0.001                  | (a) | 2.79E-03 lb/MMBtu                   | (1)        | 0.004  | (c)          |
| Acrolein                            | 2.63E-03 lb/MMBtu                   | (1) | 0.001                  | (a) | 2.63E-03 lb/MMBtu                   | (1)        | 0.004  | (c)          |
| Benzene                             | 1.58E-03 lb/MMBtu                   | (1) | 0.001                  | (a) | 1.58E-03 lb/MMBtu                   | (1)        | 0.002  | (c)          |
| Carbon Tetrachloride                | 1.77E-05 lb/MMBtu                   | (1) | 0.000                  | (a) | 1.77E-05 lb/MMBtu                   | (1)        | 0.000  | (c)          |
| Chlorobenzene                       | 1.29E-05 lb/MMBtu                   | (1) | 0.000                  | (a) | 1.29E-05 lb/MMBtu                   | (1)        | 0.000  | (c)          |
| Chloroform                          | 1.37E-05 lb/MMBtu                   | (1) | 0.000                  | (a) | 1.37E-05 lb/MMBtu                   | (1)        | 0.000  | (c)          |
| Ethylbenzene                        | 2.48E-05 lb/MMBtu                   | (1) | 0.000                  | (a) | 2.48E-05 lb/MMBtu                   | (1)        | 0.000  | (c)          |
| Ethylene Dibromide                  | 2.13E-05 lb/MMBtu                   | (1) | 0.000                  | (a) | 2.13E-05 lb/MMBtu                   | (1)        | 0.000  | (c)          |
| Formaldehyde                        | 2.05E-02 lb/MMBtu                   | (1) | 0.007                  | (a) | 2.05E-02 lb/MMBtu                   | (1)        | 0.032  | (c)          |
| Methanol                            | 3.06E-03 lb/MMBtu                   | (1) | 0.001                  | (a) | 3.06E-03 lb/MMBtu                   | (1)        | 0.005  | (c)          |
| Methylene Chloride                  | 4.12E-05 lb/MMBtu                   | (1) | 0.000                  | (a) | 4.12E-05 lb/MMBtu                   | (1)        | 0.000  | (c)          |
| Naphthalene                         | 9.71E-05 lb/MMBtu                   | (1) | 0.000                  | (a) | 9.71E-05 lb/MMBtu                   | (1)        | 0.000  | (c)          |
| PAH (POM)                           | 1.41E-04 lb/MMBtu                   | (1) | 0.000                  | (a) | 1.41E-04 lb/MMBtu                   | (1)        | 0.000  | (c)          |
| Styrene                             | 1.19E-05 lb/MMBtu                   | (1) | 0.000                  | (a) | 1.19E-05 lb/MMBtu                   | (1)        | 0.000  | (c)          |
| Toluene                             | 5.58E-04 lb/MMBtu                   | (1) | 0.000                  | (a) | 5.58E-04 lb/MMBtu                   | (1)        | 0.001  | (c)          |
| Vinyl Chloride                      | 7.16E-06 lb/MMBtu                   | (1) | 0.000                  | (a) | 7.16E-06 lb/MMBtu                   | (1)        | 0.000  | (c)          |
| Xylenes                             | 1.95E-04 lb/MMBtu                   | (1) | 0.000                  | (a) | 1.95E-04 lb/MMBtu                   | (1)        | 0.000  | (c)          |
| Total HAP                           |                                     |     | 0.012                  |     |                                     |            | 0.051  |              |
| Greenhouse Gas Emissions            |                                     |     |                        |     |                                     |            |        |              |
| CO <sub>2</sub>                     | 116.89 lb/MMBtu                     | (4) | 41.97                  | (a) | 116.89 lb/MMBtu                     | (4)        | 183.82 | (c)          |
| CH₄                                 | 2.2E-03 lb/MMBtu                    | (4) | 0.00                   | (a) | 2.2E-03 lb/MMBtu                    | (4)        | 0.00   | (c)          |
| N₂O                                 | 2.2E-04 lb/MMBtu                    | (4) | 0.00                   | (a) | 2.2E-04 lb/MMBtu                    | (4)        | 0.00   | (c)          |
| CO <sub>2</sub> e <sup>(g)</sup>    |                                     |     | 42.01                  |     |                                     |            | 184.01 |              |

<sup>\*\*</sup> PM emission factor includes condensables and filterables

### Calculations:

Maximum Hourly Emissions - If emission factor note 1 or 4 is used, use calculation (a). If emission factor note 3 is used, use calculation (b).

(a) Maximum Hourly Emissions (lb/hr) = Emission factor (lb/MMBtu) \* (1MMBtu/1000000 Btu) \* Engine Power Output (hp) \* Average BSFC (Btu/hp-hr)

(b) Maximum Hourly Emissions (lb/hr) = Emission factor (g/hp-hr) \* Engine Power Output (hp) \* (1 lb/453.6 g)

Annual Emissions - If emission factor note 1 or 4 is used, use calculation (c). If emission factor note 3 is used, use calculation (d).

(c) Annual emissions (tons/yr) = Emission factor (lb/MMBtu) \* (1MMBtu/1000000Btu) \* Engine Power Output (hp) \* Average BSFC (Btu/hp-hr) \* Annual Hours of operation (hr/yr) \* (1ton/2000lbs)

(d) Annual emissions (tons/yr) = Emission factor (g/hp-hr) \* Engine Power Output (hp) \* (1 lb/453.6 g) \* Annual Hours of operation (hr/yr) \* (1ton/2000lbs)

SO<sub>2</sub> Emissions - If emission factor note 2 is used, use calculations (e) and (f) for hourly and annual emissions, respectively.

(e) Maximum Hourly Emissions SO2 Caclulation (lb/hr) = (0.25 grain S/100ft3) \* Fuel throughput (ft3/hr) \* (1lb/7000 grains) \* (lbmol S/32.06 lb S) \* (lbmol SO2/ lbmol S) \* (64.07 lb SO2/lbmol SO2)

(f) Annual Emissions SO2 Caclulation (ton/yr) = (0.25 grain S/100ft3) \* Fuel throughput (ft3/hr) \* (1b/7000 grains) \* (lbmol S/32.06 lb S) \* (lbmol SO2/ lbmol SO2/ lbmol SO2/ honol SO2) \* Annual hours of operation (hr/yr) \* (1ton/2000lbs)

| MAXIMUM HOURLY EMISSION INPUTS      |         |  |  |  |  |
|-------------------------------------|---------|--|--|--|--|
| Engine Power Output (kW) =          | 30      |  |  |  |  |
| Engine Power Output (hp) =          | 40      |  |  |  |  |
| Number of Engines =                 | 1       |  |  |  |  |
| Average BSFC (BTU/HP-hr) =          | 8,976   |  |  |  |  |
| Heat Content Natural Gas(Btu/scf) = | 1,116.0 |  |  |  |  |
| Fuel Throughput (ft3/hr) =          | 321.7   |  |  |  |  |
| PTE Hours of Operation =            | 8,760   |  |  |  |  |

 $(g) \ CO_2 \ equivalent = [(CO_2 \ emissions)^*(GWP_{CO2})] + [(CH_4 \ emissions)^*(GWP_{CH4})] + [(N_2O \ emissions)^*(GWP_{N2O})] + [$ Global Warming Potential (GWP)

| CO <sub>2</sub>  | 1   | (8) |
|------------------|-----|-----|
| CH <sub>4</sub>  | 25  | (8) |
| N <sub>2</sub> O | 298 | (8) |

(5) (6) (7)

#### Notes:

- (1) AP-42, Chapter 3.2, Table 3.2-3. Natural Gas-fired Reciprocating Engines (7/00). Uncontrolled Emission Factors for 4-Stroke Rich-Burn Engines.
- (2) AP-42. Chapter 5.3. Section 5.3.1
- (3) Emission Factors from 40CFR1048.101(c), referenced by 40CFR60.4233(d).
- (4) Emission factors are from 40 CFR 98, Subpart C, Table C-1 and C-2,
- (5) Fuel consumption from manufacturer's specification sheet.
- (6) Value supplied from client based on gas composition in area field (7) Fuel throughput = BSFC (BTU/HP-hr) x Power (HP) / Heat Content (BTU/scf)
- (8) Global Warming Potentials obtained from 40 CFR 98, Subpart A, Table A-1

### Table 3. Tank Emissions CNX Gas Company - Bulltown

| Emission Unit<br>ID | Tank<br>Capacity<br>(gal) | Tank Contents    | Control<br>Devices | Tank<br>Throughput<br>(bbls/day) | VOC Emis<br>Factor (lbs/ |     | VOC<br>Emissions<br>(lbs/yr) <sup>(a)</sup> | VOC<br>Emissions<br>(lb/hr) <sup>(b)</sup> | VOC<br>Emissions<br>(tons/yr) <sup>(c)</sup> |
|---------------------|---------------------------|------------------|--------------------|----------------------------------|--------------------------|-----|---------------------------------------------|--------------------------------------------|----------------------------------------------|
| T-1                 | 4200                      | Pipeline Liquids | None               | 5.00                             | 1.50E-01                 | (1) | 274.58                                      | 0.031                                      | 0.137                                        |
| Totals              |                           | <u> </u>         |                    |                                  |                          |     | 274.58                                      | 0.03                                       | 0.14                                         |

#### Calculations:

- (a) VOC Emissions (lb/yr) = Tank Throughput (bbls/day) \* VOC Emission Factor (lbs/bbls) \* (365days/yr)
- (b) VOC Emissions (lb/hr) = VOC Emissions (lbs/yr) \* (yr/8760hr)
- (c) VOC Emissions (ton/yr) = VOC Emissions (lbs/yr) \* (1ton/2000lbs)

### Notes:

(1) VOC emission factor includes Flashing/Working/Breathing losses as calculated from the Promax Model Simulation report

## Table 4. Truck Loading (TL-1) VOC Emissions CNX Gas Company - Bulltown

| Contents         | Volume Transferred | PTE VOC<br>Emissions (lb/hr) | PTE VOC Emissions (ton/yr) (a) |
|------------------|--------------------|------------------------------|--------------------------------|
| Pipeline Liquids | 76,650 gal/yr      | 9.44E-03                     | 4.14E-02                       |
| Total            |                    | 9.44E-03                     | 4.14E-02                       |

### Calculations:

(a) PTE VOC Emissions (ton/yr) given as calculated in the Promax Model simulation report

|                                 | Pipeline liquids |          |  |
|---------------------------------|------------------|----------|--|
| Saturation factor               | 0.60             | Note (1) |  |
| Pvap (psia)                     | 4.89             | Note (2) |  |
| Molecular Weight Vap (lb/lbmol) | 25.35            | Note (2) |  |
| Bulk Liquid Tempurature (F)     | 49.08            | Note (2) |  |

#### Notes:

- (1) AP-42 Section 5.2, Table 5.2-1 Saturation Factors for Calculating Petroleum Liquid Loading Losses, Submerged loading dedicated normal service
- (2) Input parameters as defined by the Promax Model simulation report
- (3) Annual rates based on maximum throughput of 5 bbl/day per tank

## Table 5. Fugitive Leak Emissions CNX Gas Company - Bulltown

| Pollutant                               | Emission Factor      |      | PTE <sup>(a) Gas</sup><br>Service<br>(tons/yr) |
|-----------------------------------------|----------------------|------|------------------------------------------------|
| Valves                                  | 9.9E-03 lb/hr/source | (1)  | 1.96                                           |
| Connectors                              | 8.6E-04 lb/hr/source | (1)  | 0.76                                           |
| Open-Ended Lines                        | 4.4E-03 lb/hr/source | (1)  | 0.01                                           |
| Pressure Relief Valves                  | 1.9E-02 lb/hr/source | (1)  | 0.00                                           |
| Compressors                             | 1.9E-02 lb/hr/source | (1)  | 0.17                                           |
| Total Gas Released                      |                      |      | 2.73                                           |
| Total <b>VOC</b> Released (gas service) |                      | (b)  | 0.57                                           |
| Calculations:                           |                      | CO2e | 13.33                                          |

- (a) Annual emissions (tons/yr) = [Emission Factor (lb/hr/source)] x [Number of Sources] x [Hours of Operation per Year] x [0.0005 tons/ lb]
- (b) Gas sample from station's gas analysis assumed to be worst case at 21 wt % VOC from 2012 fractional gas analysis measurements

Number of Components in Gas Service

|                                | Valves=                     | 45    | (2) |
|--------------------------------|-----------------------------|-------|-----|
|                                | Pressure Relief Valves=     | 0     | (2) |
|                                | Connectors=                 | 203   | (2) |
|                                | Open-Ended Lines=           | 1     | (2) |
|                                | Compressors=                | 2.000 | (2) |
| Global Warming Potential (GWP) | Maximum Hour of Operation = | 8,760 |     |
|                                | $CO_2$                      | 1     | (3) |
|                                | CH <sub>4</sub>             | 25    | (3) |
|                                | $N_2O$                      | 298   | (3) |

- (1) Emission factors from 1995 EPA Protocol for Equipment Leak Emission Estimates, Table 2-4 Oil and Gas Production
- (2) Default Average Component Counts for Major Onshore Natural Gas Production Equipment from 40 CFR 98, Subpart W, Table W-1B
- (3) Global Warming Potentials obtained from 40 CFR 98, Subpart A, Table A-1

## Table 8. Reciprocating Engine / Integral Compressor Emissions (E01) Blowdown Venting Continental TM-27A CNX Gas Company - Bulltown

|                     | Maximum Hourly Emissions |     |                                    |     | Annual Emissions      |                         |     |  |
|---------------------|--------------------------|-----|------------------------------------|-----|-----------------------|-------------------------|-----|--|
| Pollutant           | Emission Factor          |     | PTE per<br>Engine Event<br>(lb/hr) |     | Emission Factor       | Annual PTE<br>(tons/yr) |     |  |
| Criteria Pollutants |                          |     |                                    |     |                       |                         |     |  |
| VOC                 | 7.70E+00 lb/Event        | (1) | 7.70                               | (a) | 7.70E+00 lb/Event (1) | 0.23                    | (a) |  |

<sup>(1) - 7.7</sup> lbs VOC/ Engine blowdown event; based on 717 scf/event of 20.45 MW gas with 20.2 wt % VOC

<sup>(</sup>a) - Worst case blowdowns per year equal normal rate 6 times 10 = 60 Events/yr



## **Simulation Report**

## Project: Bulltown Tank Run.pmx

## **Licensed to SLR International Corporation and Affiliates**

Client Name: CNX Gas

**Location: Bulltown Station** 

Job: Tank Emission Estimate

ProMax Filename: N:\West Virginia\CNX Gas\Projects\2017\Rule 13 Permirts\Bulltown\ProMax\Bulltown Tank Run.pmx

**ProMax Version: 4.0.16071.0** 

Simulation Initiated: 9/22/2017 2:29:12 PM

#### Bryan Research & Engineering, Inc.

Chemical Engineering Consultants P.O. Box 4747 Bryan, Texas 77805 Office: (979) 776-5220 FAX: (979) 776-4818 mailto:sales@bre.com http://www.bre.com/

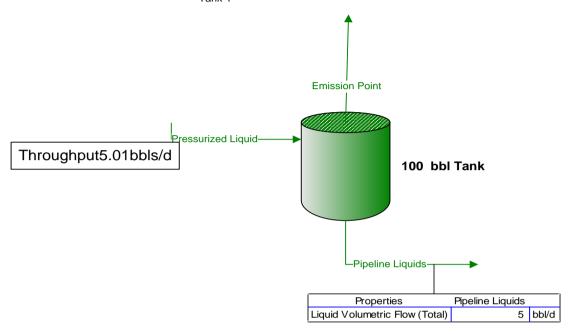
Report Navigator can be activated via the ProMax Navigator Toolbar.

An asterisk (\*), throughout the report, denotes a user specified value.

A question mark (?) after a value, throughout the report, denotes an extrapolated or approximate value.

Annual tank loss calculations for "Pipeline Liquids".

Total working and breathing losses from the Vertical Cylinder are 0.1329 ton/yr.


Flashing losses are 0.004388 ton/yr.

Loading losses are 0.04136 ton/yr of loaded liquid.

\* Only Non-Exempt VOCs are reported.

Vapor adjusted to ensure mass balance

Tank-1



| Process Streams                      |             | Emission Point            | Pineline Liquide           | Pressurized Liquid          |
|--------------------------------------|-------------|---------------------------|----------------------------|-----------------------------|
| Composition                          | Status:     | Solved                    | Solved                     | Solved                      |
| Phase: Total                         | From Block: | 100 bbl Tank              | 100 bbl Tank               | Solveu                      |
| Filase. I Otal                       | To Block:   |                           |                            | 100 bbl Tank                |
| Mole Fraction                        | TO BIOOK.   | %                         | %                          | %                           |
| Carbon Dioxide                       |             | 0                         | 0                          | 0*                          |
| Nitrogen                             |             | 1.15424                   | 0.00213663                 | 0.0160002*                  |
| Methane                              |             | 58.7391                   | 0.297773                   | 1.00101*                    |
| Ethane                               |             | 24.6112                   | 0.747858                   | 1.03501*                    |
| Propane                              |             | 9.51729                   | 1.13616                    | 1.23701*                    |
| Isobutane                            |             | 1.40471                   | 0.469754                   | 0.481005*                   |
| n-Butane                             |             | 2.34122                   | 1.13550                    | 1.15001*                    |
| Isopentane                           |             | 0.703333                  | 0.992489                   | 0.989010*                   |
| n-Pentane<br>Benzene                 |             | 0.568989<br>0.0100047     | 1.08725<br>0.0768046       | 1.08101*<br>0.0760008*      |
| Toluene                              |             | 0.0163253                 | 0.489701                   | 0.484005                    |
| Ethylbenzene                         |             | 0.00415519                | 0.426081                   | 0.421004*                   |
| p-Xylene                             |             | 0.0124147                 | 1.36529                    | 1.34901*                    |
| n-Hexane                             |             | 0.203179                  | 1.49860                    | 1.48301*                    |
| 2,2,4-Trimethylpentane               |             | 0                         | 0                          | 0*                          |
| Other C6's                           |             | 0.311067                  | 1.73313                    | 1.71602                     |
| Heptanes                             |             | 0.261420                  | 5.60030                    | 5.53606*                    |
| Octanes                              |             | 0.119034                  | 8.14263                    | 8.04608*                    |
| Nonanes                              |             | 0.0223659                 | 5.07384                    | 5.01305*                    |
| Decanes +                            |             | 3.96089E-07               | 69.7247                    | 68.8857*                    |
| Molar Flow                           |             | lbmol/h                   | lbmol/h                    | lbmol/h                     |
| Carbon Dioxide                       |             | 0 710465 05               | 0<br>5 63033E 06           | 0*<br>4.27429E.05*          |
| Nitrogen<br>Methane                  |             | 3.71046E-05<br>0.00188824 | 5.63923E-06<br>0.000785916 | 4.27438E-05*<br>0.00267416* |
| Ethane                               |             | 0.00788824                | 0.00197383                 | 0.00207410                  |
| Propane                              |             | 0.000731130               | 0.00197363                 | 0.00330463*                 |
| Isobutane                            |             | 4.51561E-05               | 0.00123983                 | 0.00128499*                 |
| n-Butane                             |             | 7.52616E-05               | 0.00299695                 | 0.00307221*                 |
| Isopentane                           |             | 2.26095E-05               | 0.00261949                 | 0.00264210*                 |
| n-Pentane                            |             | 1.82909E-05               | 0.00286959                 | 0.00288788*                 |
| Benzene                              |             | 3.21613E-07               | 0.000202711                | 0.000203033*                |
| Toluene                              |             | 5.24796E-07               | 0.00129247                 | 0.00129300*                 |
| Ethylbenzene                         |             | 1.33574E-07               | 0.00112456                 | 0.00112470*                 |
| p-Xylene                             |             | 3.99086E-07               | 0.00360344                 | 0.00360384*                 |
| n-Hexane                             |             | 6.53145E-06               | 0.00395528                 | 0.00396182*                 |
| 2,2,4-Trimethylpentane<br>Other C6's |             | 0<br>9.99963E-06          | 0.00457427                 | 0°<br>0.00458427            |
| Heptanes                             |             | 8.40367E-06               | 0.0147809                  | 0.0147894*                  |
| Octanes                              |             | 3.82649E-06               | 0.0214910                  | 0.0214948*                  |
| Nonanes                              |             | 7.18981E-07               | 0.0133914                  | 0.0133922*                  |
| Decanes +                            |             | 1.27328E-11               | 0.184025                   | 0.184025*                   |
| Mass Fraction                        |             | %                         | %                          | %                           |
| Carbon Dioxide                       |             | 0                         | 0                          | 0*                          |
| Nitrogen                             |             | 1.27576                   | 0.000262596                | 0.00198772*                 |
| Methane                              |             | 37.1797                   | 0.0209580                  | 0.0712154*                  |
| Ethane<br>Propane                    |             | 29.1984                   | 0.0986582                  | 0.138016*<br>0.241800*      |
| Propane<br>Isobutane                 |             | 16.5583<br>3.22133        | 0.219801<br>0.119786       | 0.241899*<br>0.123981*      |
| n-Butane                             |             | 5.36899                   | 0.289551                   | 0.123981                    |
| Isopentane                           |             | 2.00215                   | 0.314159                   | 0.316442*                   |
| n-Pentane                            |             | 1.61972                   | 0.344153                   | 0.345878*                   |
| Benzene                              |             | 0.0308338                 | 0.0263208                  | 0.0263269*                  |
| Toluene                              |             | 0.0593483                 | 0.197955                   | 0.197767                    |
| Ethylbenzene                         |             | 0.0174052                 | 0.198458                   | 0.198213                    |
| p-Xylene                             |             | 0.0520026                 | 0.635919                   | 0.635129                    |
| n-Hexane                             |             | 0.690828                  | 0.566584                   | 0.566752*                   |
| 2,2,4-Trimethylpentane               |             | 0                         | 0                          | 0*                          |
| Other C6's                           |             | 1.04323                   | 0.646315                   | 0.646852*                   |
| Heptanes<br>Octanes                  |             | 1.03361<br>0.535405       | 2.46216<br>4.07253         | 2.46023*<br>4.06774*        |
| Octanies                             |             | 0.000405                  | 4.07233                    | 4.00774                     |

| Nonanes                | 0.112955    | 2.84932     | 2.84562*    |
|------------------------|-------------|-------------|-------------|
| Decanes +              | 4.44145E-06 | 86.9371     | 86.8195*    |
| Mass Flow              | lb/h        | lb/h        | lb/h        |
| Carbon Dioxide         | 0           | 0           | 0*          |
| Nitrogen               | 0.00103943  | 0.000157974 | 0.00119740* |
| Methane                | 0.0302920   | 0.0126080   | 0.0429001*  |
| Ethane                 | 0.0237894   | 0.0593512   | 0.0831406*  |
| Propane                | 0.0134909   | 0.132229    | 0.145720*   |
| Isobutane              | 0.00262457  | 0.0720616   | 0.0746862*  |
| n-Butane               | 0.00437437  | 0.174189    | 0.178564*   |
| Isopentane             | 0.00163125  | 0.188993    | 0.190624*   |
| n-Pentane              | 0.00131966  | 0.207037    | 0.208357*   |
| Benzene                | 2.51218E-05 | 0.0158342   | 0.0158593*  |
| Toluene                | 4.83539E-05 | 0.119087    | 0.119135*   |
| Ethylbenzene           | 1.41809E-05 | 0.119389    | 0.119403*   |
| p-Xylene               | 4.23690E-05 | 0.382559    | 0.382601*   |
| n-Hexane               | 0.000562850 | 0.340848    | 0.341411*   |
| 2,2,4-Trimethylpentane | 0           | 0           | 0*          |
| Other C6's             | 0.000849969 | 0.388813    | 0.389663*   |
| Heptanes               | 0.000842132 | 1.48120     | 1.48204*    |
| Octanes                | 0.000436220 | 2.44997     | 2.45041*    |
| Nonanes                | 9.20296E-05 | 1.71410     | 1.71420*    |
| Decanes +              | 3.61866E-09 | 52.3000     | 52.3000*    |

| Process Streams             |             | <b>Emission Point</b> | <b>Pipeline Liquids</b> | <b>Pressurized Liquid</b> |
|-----------------------------|-------------|-----------------------|-------------------------|---------------------------|
| Properties                  | Status:     | Solved                | Solved                  | Solved                    |
| Phase: <b>Total</b>         | From Block: | 100 bbl Tank          | 100 bbl Tank            | -                         |
|                             | To Block:   | -                     |                         | 100 bbl Tank              |
| Property                    | Units       |                       |                         |                           |
| Temperature                 | °F          | 57.7653               | 57.7653                 | 58*                       |
| Pressure                    | psig        | 0                     | 0                       | 21*                       |
| Mole Fraction Vapor         | %           | 100                   | 0                       | 0.0938779                 |
| Mole Fraction Light Liquid  | %           | 0                     | 100                     | 99.9061                   |
| Mole Fraction Heavy Liquid  | %           | 0                     | 0                       | 0                         |
| Molecular Weight            | lb/lbmol    | 25.3450               | 227.932                 | 225.494                   |
| Mass Density                | lb/ft^3     | 0.0674859             | 51.4304                 | 49.7590                   |
| Molar Flow                  | lbmol/h     | 0.00321463            | 0.263931                | 0.267146                  |
| Mass Flow                   | lb/h        | 0.0814748             | 60.1584                 | 60.2399                   |
| Vapor Volumetric Flow       | ft^3/h      | 1.20729               | 1.16970                 | 1.21063                   |
| Liquid Volumetric Flow      | gpm         | 0.150519              | 0.145833                | 0.150936                  |
| API Gravity                 |             |                       | 40.2833                 |                           |
| Net Ideal Gas Heating Value | Btu/ft^3    | 1358.11               | 11167.2                 | 11049.1                   |
| Net Liquid Heating Value    | Btu/lb      | 20239.2               | 18439.8                 | 18442.2                   |

| Environments Report                         |                      |                 |                            |                    |                                                                                          |  |
|---------------------------------------------|----------------------|-----------------|----------------------------|--------------------|------------------------------------------------------------------------------------------|--|
| Client Name:                                | Tank Emission Estima | ate             |                            | Job:               | N:\West Virginia\CNX Gas\Projects\2017\Rule 13 Permirts\Bulltown\ProMax\Bulltown Tank Ru |  |
| Location:                                   | 0                    |                 |                            |                    |                                                                                          |  |
| Flowsheet:                                  | Flowsheet1           |                 |                            |                    |                                                                                          |  |
|                                             |                      |                 |                            |                    |                                                                                          |  |
|                                             |                      |                 | Project-                   | -Wide Constants    |                                                                                          |  |
| Atmospheric Pressure                        | 14.6959              | 9 psia          | Ideal Gas Reference Volum  | e 379.4            | .484 ft^3/lbmol                                                                          |  |
| Ideal Gas Reference Pressure                | 14.6959              | 9 psia          | Liquid Reference Temperatu | ure                | 60 °F                                                                                    |  |
| Ideal Gas Reference Temperature             | 60                   | 0 °F            |                            |                    |                                                                                          |  |
| ·                                           |                      |                 |                            |                    |                                                                                          |  |
|                                             |                      |                 | En                         | vironment1         |                                                                                          |  |
|                                             |                      |                 | Enviro                     | nment Settings     |                                                                                          |  |
| Number of Poynting Intervals                | (                    | 0               | Phase Tolerance            |                    | 1 %                                                                                      |  |
| Gibbs Excess Model Evaluation Temperature   | 77                   | 7 °F            | Emulsion Enabled           | FAL                | LSE                                                                                      |  |
| Freeze Out Temperature Threshold Difference | 10                   | 0 °F            |                            |                    |                                                                                          |  |
| ,                                           |                      |                 |                            |                    |                                                                                          |  |
|                                             |                      |                 | Co                         | omponents          |                                                                                          |  |
| Component                                   | Henry's Law Comp.    | Phase Initiator | Component                  | Henry's Law Com    | mp. Phase Initiator                                                                      |  |
| Carbon Dioxide                              | FALSE                | FALSE           | Nitrogen                   | FALSE              | FALSE                                                                                    |  |
| Methane                                     | FALSE                | FALSE           | Ethane                     | FALSE              | FALSE                                                                                    |  |
| Propane                                     | FALSE                | FALSE           | Isobutane                  | FALSE              | FALSE                                                                                    |  |
| n-Butane                                    | FALSE                | FALSE           | Isopentane                 | FALSE              | FALSE                                                                                    |  |
| n-Pentane                                   | FALSE                | FALSE           | Benzene                    | FALSE              | FALSE                                                                                    |  |
| Toluene                                     | FALSE                | FALSE           | Ethylbenzene               | FALSE              | FALSE                                                                                    |  |
| p-Xylene                                    | FALSE                | FALSE           | n-Hexane                   | FALSE              | FALSE                                                                                    |  |
| 2,2,4-Trimethylpentane                      | FALSE                |                 | Other C6's                 | FALSE              | FALSE                                                                                    |  |
| Heptanes                                    | FALSE                | FALSE           | Octanes                    | FALSE              | FALSE                                                                                    |  |
| Nonanes                                     | FALSE                | FALSE           | Decanes +                  | FALSE              | FALSE                                                                                    |  |
|                                             |                      |                 |                            |                    |                                                                                          |  |
|                                             |                      |                 | Physical Pr                | roperty Method Set | ets                                                                                      |  |
| Liquid Molar Volume                         | COSTALD              | ·               | Vapor Package              | Peng-Robinson      |                                                                                          |  |
| Overall Package                             | Peng-Robinson        |                 | Light Liquid Package       | Peng-Robinson      |                                                                                          |  |
| ■L                                          | Peng-Robinson        |                 | Heavy Liquid Package       | Peng-Robinson      |                                                                                          |  |
| Stability Calculation                       |                      |                 |                            |                    |                                                                                          |  |
| Stability Calculation                       | T CHIS TODHISON      |                 | ,, , ,                     |                    |                                                                                          |  |
| Stability Calculation  Notes:               | T eng Robinson       |                 | 1 22 7 12 2 2 2 3          | Ţ,                 |                                                                                          |  |

| Single Oil Report  Decanes +   |                      |                                 |         |                                                                                               |  |
|--------------------------------|----------------------|---------------------------------|---------|-----------------------------------------------------------------------------------------------|--|
| Client Name:                   | Tank Emission Estima | ate                             | Job:    | N:\West Virginia\CNX Gas\Projects\2017\Rule 13 Permirts\Bulltown\ProMax\Bulltown Tank Run.pmx |  |
| Location:                      | 0                    |                                 | •       |                                                                                               |  |
| Flowsheet:                     | Flowsheet1           |                                 |         |                                                                                               |  |
|                                |                      |                                 |         |                                                                                               |  |
|                                |                      |                                 | Prop    | perties                                                                                       |  |
| Volume Average Boiling Point   | 661.659 °F           | Low Temperature Viscosity       | 6.79714 | · cP                                                                                          |  |
| Molecular Weight               | 284.2* lb/lbmol      | Temperature of High T Viscosity | 210     | , °F                                                                                          |  |
| Specific Gravity               | 0.8465*              | High Temperature Viscosity      | 1.82072 | cP                                                                                            |  |
| API Gravity                    | 35.6589              | Watson K                        | 12.2730 | ı                                                                                             |  |
| Critical Temperature           | 951.235 °F           | ASTM D86 10-90% Slope           | 0       | ) °F/%                                                                                        |  |
| Critical Pressure              | 170.611 psig         | ASTM D93 Flash Point            | 338.345 | , °F                                                                                          |  |
| Critical Volume                | 17.6652 ft^3/lbmol   | Pour Point                      | 61.4934 | , °F                                                                                          |  |
| Acentric Factor                | 0.880769             | Paraffinic Fraction             | 71.7542 | . <b>%</b>                                                                                    |  |
| Carbon to Hydrogen Ratio       | 6.33114?             | Naphthenic Fraction             | 22.5066 | %                                                                                             |  |
| Refractive Index               | 1.46817              | Aromatic Fraction               | 5.73929 | <b>%</b>                                                                                      |  |
| Temperature of Low T Viscosity | 100 °F               | Ideal Gas Heat Capacity         | 103.423 | B Btu/(lbmol*°F)                                                                              |  |
|                                |                      |                                 |         |                                                                                               |  |
| Notes:                         |                      |                                 |         |                                                                                               |  |

| Single Oil Report Heptanes     |                      |                                 |           |                                                                                               |  |
|--------------------------------|----------------------|---------------------------------|-----------|-----------------------------------------------------------------------------------------------|--|
| Client Name:                   | Tank Emission Estima | ate                             | Job:      | N:\West Virginia\CNX Gas\Projects\2017\Rule 13 Permirts\Bulltown\ProMax\Bulltown Tank Run.pmx |  |
| Location:                      | 0                    |                                 | · ·       |                                                                                               |  |
| Flowsheet:                     | Flowsheet1           |                                 |           |                                                                                               |  |
|                                |                      |                                 |           |                                                                                               |  |
|                                |                      |                                 | Prop      | perties                                                                                       |  |
| Volume Average Boiling Point   | 204.170 °F           | Low Temperature Viscosity       | 0.347616  | сР                                                                                            |  |
| Molecular Weight               | 100.21* lb/lbmol     | Temperature of High T Viscosity | 210       | °F                                                                                            |  |
| Specific Gravity               | 0.7016*              | High Temperature Viscosity      | 0.211224  | cP                                                                                            |  |
| API Gravity                    | 70.1819              | Watson K                        | 12.4336   |                                                                                               |  |
| Critical Temperature           | 512.987 °F           | ASTM D86 10-90% Slope           | 0         | °F/%                                                                                          |  |
| Critical Pressure              | 396.167 psig         | ASTM D93 Flash Point            | 22.6774   | °F                                                                                            |  |
| Critical Volume                | 6.61841 ft^3/lbmol   | Pour Point                      | -5.66945? | °F                                                                                            |  |
| Acentric Factor                | 0.328178             | Paraffinic Fraction             | 72.8431   | %                                                                                             |  |
| Carbon to Hydrogen Ratio       | 5.34609              | Naphthenic Fraction             | 21.4149   | %                                                                                             |  |
| Refractive Index               | 1.39189              | Aromatic Fraction               | 5.74200   | %                                                                                             |  |
| Temperature of Low T Viscosity | 100 °F               | Ideal Gas Heat Capacity         | 37.1664   | Btu/(lbmol*°F)                                                                                |  |
|                                |                      |                                 |           |                                                                                               |  |
| Notes:                         |                      | _                               |           |                                                                                               |  |

|                                |                     |                                 | Single C  | Dil Report                                                                                    |  |  |
|--------------------------------|---------------------|---------------------------------|-----------|-----------------------------------------------------------------------------------------------|--|--|
| Nonanes                        |                     |                                 |           |                                                                                               |  |  |
| Client Name:                   | Tank Emission Estim | ate                             | Job:      | N:\West Virginia\CNX Gas\Projects\2017\Rule 13 Permirts\Bulltown\ProMax\Bulltown Tank Run.pmx |  |  |
| Location:                      | 0                   |                                 |           |                                                                                               |  |  |
| Flowsheet:                     | Flowsheet1          |                                 |           |                                                                                               |  |  |
|                                |                     |                                 |           |                                                                                               |  |  |
|                                |                     |                                 | Prop      | erties                                                                                        |  |  |
| Volume Average Boiling Point   | 296.600 °F          | Low Temperature Viscosity       | 0.569789  | cP                                                                                            |  |  |
| Molecular Weight               | 128* lb/lbmol       | Temperature of High T Viscosity | 210       | °F                                                                                            |  |  |
| Specific Gravity               | 0.7424*             | High Temperature Viscosity      | 0.313911  | cP                                                                                            |  |  |
| API Gravity                    | 59.0981             | Watson K                        | 12.2722   |                                                                                               |  |  |
| Critical Temperature           | 612.483 °F          | ASTM D86 10-90% Slope           | 0         | °F/%                                                                                          |  |  |
| Critical Pressure              | 339.966 psig        | ASTM D93 Flash Point            | 86.4541   | °F                                                                                            |  |  |
| Critical Volume                | 8.28440 ft^3/lbmol  | Pour Point                      | -11.0241? | °F                                                                                            |  |  |
| Acentric Factor                | 0.420394            | Paraffinic Fraction             | 62.4060   | %                                                                                             |  |  |
| Carbon to Hydrogen Ratio       | 5.62062             | Naphthenic Fraction             | 24.7656   | %                                                                                             |  |  |
| Refractive Index               | 1.41424             | Aromatic Fraction               | 12.8284   | %                                                                                             |  |  |
| Temperature of Low T Viscosity | 100 °F              | Ideal Gas Heat Capacity         | 46.6471   | Btu/(lbmol*°F)                                                                                |  |  |
|                                |                     |                                 |           |                                                                                               |  |  |
| Notes:                         |                     |                                 |           |                                                                                               |  |  |

| Single Oil Report Octanes      |                      |                                 |           |                                                                                               |  |
|--------------------------------|----------------------|---------------------------------|-----------|-----------------------------------------------------------------------------------------------|--|
| Client Name:                   | Tank Emission Estima | ate                             | Job:      | N:\West Virginia\CNX Gas\Projects\2017\Rule 13 Permirts\Bulltown\ProMax\Bulltown Tank Run.pmx |  |
| Location:                      | 0                    |                                 |           |                                                                                               |  |
| Flowsheet:                     | Flowsheet1           |                                 |           |                                                                                               |  |
|                                |                      |                                 |           |                                                                                               |  |
|                                |                      |                                 | Prope     | erties                                                                                        |  |
| Volume Average Boiling Point   | 251.542 °F           | Low Temperature Viscosity       | 0.446533  | CP CP                                                                                         |  |
| Molecular Weight               | 114* lb/lbmol        | Temperature of High T Viscosity | 210       | °F                                                                                            |  |
| Specific Gravity               | 0.724*               | High Temperature Viscosity      | 0.258447  | cP                                                                                            |  |
| API Gravity                    | 63.9420              | Watson K                        | 12.3290   |                                                                                               |  |
| Critical Temperature           | 565.037 °F           | ASTM D86 10-90% Slope           | 0 '       | °F/%                                                                                          |  |
| Critical Pressure              | 367.393 psig         | ASTM D93 Flash Point            | 55.3642   | PF                                                                                            |  |
| Critical Volume                | 7.43719 ft^3/lbmol   | Pour Point                      | -9.58266? | PF                                                                                            |  |
| Acentric Factor                | 0.374061             | Paraffinic Fraction             | 66.6140   | %                                                                                             |  |
| Carbon to Hydrogen Ratio       | 5.49569              | Naphthenic Fraction             | 23.6971   | %                                                                                             |  |
| Refractive Index               | 1.40406              | Aromatic Fraction               | 9.68898   | %                                                                                             |  |
| Temperature of Low T Viscosity | 100 °F               | Ideal Gas Heat Capacity         | 41.8093   | Btu/(lbmol*°F)                                                                                |  |
|                                |                      |                                 |           |                                                                                               |  |
| Notes:                         | •                    |                                 | •         |                                                                                               |  |

|                                |                      |                                 | •         | il Report<br>r C6's                                                                           |
|--------------------------------|----------------------|---------------------------------|-----------|-----------------------------------------------------------------------------------------------|
| Client Name:                   | Tank Emission Estima | ate                             | Job:      | N:\West Virginia\CNX Gas\Projects\2017\Rule 13 Permirts\Bulltown\ProMax\Bulltown Tank Run.pmx |
| Location:                      | 0                    |                                 |           |                                                                                               |
| Flowsheet:                     | Flowsheet1           |                                 |           |                                                                                               |
|                                |                      |                                 |           |                                                                                               |
|                                |                      |                                 | Prop      | erties                                                                                        |
| Volume Average Boiling Point   | 147.291 °F           | Low Temperature Viscosity       | 0.256680  | сР                                                                                            |
| Molecular Weight               | 85* lb/lbmol         | Temperature of High T Viscosity | 210       | °F                                                                                            |
| Specific Gravity               | 0.664*               | High Temperature Viscosity      | 0.164743  | сР                                                                                            |
| API Gravity                    | 81.6024              | Watson K                        | 12.7512   |                                                                                               |
| Critical Temperature           | 445.480 °F           | ASTM D86 10-90% Slope           | 0         | °F/%                                                                                          |
| Critical Pressure              | 420.214 psig         | ASTM D93 Flash Point            | -16.5692? | °F                                                                                            |
| Critical Volume                | 5.75172 ft^3/lbmol   | Pour Point                      | 5.82321?  | °F                                                                                            |
| Acentric Factor                | 0.277116             | Paraffinic Fraction             | 86.4939?  | %                                                                                             |
| Carbon to Hydrogen Ratio       | 5.07336              | Naphthenic Fraction             | 13.5061?  | %                                                                                             |
| Refractive Index               | 1.37271              | Aromatic Fraction               | 0?        | %                                                                                             |
| Temperature of Low T Viscosity | 100 °F               | Ideal Gas Heat Capacity         | 32.5709   | Btu/(lbmol*°F)                                                                                |
|                                |                      |                                 |           |                                                                                               |
| Notes:                         | <u> </u>             |                                 |           |                                                                                               |

| Calculators Report                                                                                              |                                                                                                                |                                                                                     |                                           |  |  |  |
|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------|--|--|--|
| Client Name:                                                                                                    | Tank Emission Estimate                                                                                         |                                                                                     | Job: N:\\                                 |  |  |  |
| Location:                                                                                                       | 0                                                                                                              |                                                                                     |                                           |  |  |  |
| Flowsheet:                                                                                                      | Flowsheet1                                                                                                     |                                                                                     |                                           |  |  |  |
|                                                                                                                 |                                                                                                                |                                                                                     |                                           |  |  |  |
|                                                                                                                 |                                                                                                                | Simple Solver 1                                                                     |                                           |  |  |  |
|                                                                                                                 |                                                                                                                | Source Code                                                                         |                                           |  |  |  |
| Residual Error (fo                                                                                              | r CV1) = PipelineLiquids-5                                                                                     |                                                                                     |                                           |  |  |  |
|                                                                                                                 |                                                                                                                |                                                                                     |                                           |  |  |  |
|                                                                                                                 |                                                                                                                | alculated Variable [CV1]                                                            |                                           |  |  |  |
| SourceMoniker                                                                                                   |                                                                                                                | heet1!PStreams!Pressurized Liquid!Phases!To                                         | tal!Properties!Std Liquid Volumetric Flow |  |  |  |
| Value                                                                                                           | 0.146254                                                                                                       |                                                                                     |                                           |  |  |  |
| Units sgpm                                                                                                      |                                                                                                                |                                                                                     |                                           |  |  |  |
| Units                                                                                                           | sgpm                                                                                                           |                                                                                     |                                           |  |  |  |
| Units                                                                                                           |                                                                                                                | Wasiahia (Dinalina) india                                                           |                                           |  |  |  |
|                                                                                                                 | Meas                                                                                                           | sured Variable [PipelineLiquids]                                                    | December 1 in the latest the files        |  |  |  |
| SourceMoniker                                                                                                   | Meas   ProMax:ProMax!Project!Flowsheets!Flows                                                                  | sured Variable [PipelineLiquids] heet1!PStreams!Pipeline Liquids!Phases!Total!      | Properties!Liquid Volumetric Flow         |  |  |  |
| SourceMoniker<br>Value                                                                                          | Meas ProMax:ProMax!Project!Flowsheets!Flows 5.00000                                                            |                                                                                     | Properties!Liquid Volumetric Flow         |  |  |  |
| SourceMoniker                                                                                                   | Meas   ProMax:ProMax!Project!Flowsheets!Flows                                                                  |                                                                                     | Properties!Liquid Volumetric Flow         |  |  |  |
| SourceMoniker<br>Value                                                                                          | Meas ProMax:ProMax!Project!Flowsheets!Flows 5.00000                                                            | heet1!PStreams!Pipeline Liquids!Phases!Total!                                       | Properties!Liquid Volumetric Flow         |  |  |  |
| SourceMoniker<br>Value                                                                                          | Meas ProMax:ProMax!Project!Flowsheets!Flows 5.00000                                                            |                                                                                     | Properties!Liquid Volumetric Flow         |  |  |  |
| SourceMoniker<br>Value<br>Units                                                                                 | Meas ProMax:ProMax!Project!Flowsheets!Flows 5.00000                                                            | heet1!PStreams!Pipeline Liquids!Phases!Total!                                       | Properties!Liquid Volumetric Flow         |  |  |  |
| SourceMoniker<br>Value<br>Units<br>Status: Solved                                                               | Meas   ProMax:ProMax!Project!Flowsheets!Flows   5.00000                                                        | heet1!PStreams!Pipeline Liquids!Phases!Total!  Solver Properties                    |                                           |  |  |  |
| SourceMoniker Value Units Status: Solved Error                                                                  | Meas ProMax:ProMax!Project!Flowsheets!Flows 5.00000 bbl/d 3.97993E-12                                          | heet1!PStreams!Pipeline Liquids!Phases!Total!  Solver Properties  Iterations        | 2                                         |  |  |  |
| SourceMoniker Value Units  Status: Solved Error Calculated Value Lower Bound Upper Bound                        | Meas ProMax:ProMax!Project!Flowsheets!Flows 5.00000 bbl/d  3.97993E-12 0.146254 sgpm                           | Solver Properties  Iterations Max Iterations Weighting Priority                     | 2                                         |  |  |  |
| SourceMoniker Value Units  Status: Solved Error Calculated Value Lower Bound Upper Bound Step Size              | ProMax:ProMax!Project!Flowsheets!Flows 5.00000 bbl/d  3.97993E-12 0.146254 sgpm sgpm sgpm sgpm sgpm            | Solver Properties  Iterations Max Iterations Weighting Priority Solver Active       | 2<br>20<br>1                              |  |  |  |
| SourceMoniker Value Units  Status: Solved Error Calculated Value Lower Bound Upper Bound Step Size Is Minimizer | ProMax:ProMax!Project!Flowsheets!Flows 5.00000 bbl/d  3.97993E-12 0.146254 sgpm sgpm sgpm sgpm sgpm sgpm FALSE | Solver Properties  Iterations Max Iterations Weighting Priority Solver Active Group | 2<br>20<br>1<br>0<br>Active               |  |  |  |
| SourceMoniker Value Units  Status: Solved Error Calculated Value Lower Bound Upper Bound Step Size              | ProMax:ProMax!Project!Flowsheets!Flows 5.00000 bbl/d  3.97993E-12 0.146254 sgpm sgpm sgpm sgpm sgpm            | Solver Properties  Iterations Max Iterations Weighting Priority Solver Active       | 2<br>20<br>1<br>0                         |  |  |  |

|            | User Value Sets Report |
|------------|------------------------|
| ient Name: | Tank Emission Estimate |
| cation:    | 0                      |
| owsheet:   | Flowsheet1             |
|            |                        |
|            |                        |

36.9667\* °F

°F

Parameter Lower Bound

| Location:   | 0                       | •              |         |  |  |  |  |  |
|-------------|-------------------------|----------------|---------|--|--|--|--|--|
| Flowsheet:  | Flowsheet1              |                |         |  |  |  |  |  |
|             |                         |                |         |  |  |  |  |  |
|             | Ta                      | ank-1          |         |  |  |  |  |  |
|             | User Value [BlockReady] |                |         |  |  |  |  |  |
| Parameter   | 1*                      | Upper Boun     |         |  |  |  |  |  |
| Lower Bound | •                       | Enforce Bou    | FALSE   |  |  |  |  |  |
| Lower Board |                         | Ellielde Bot   | TAEGE   |  |  |  |  |  |
|             | Hear Value              | [ShellLength]  |         |  |  |  |  |  |
| Daramatar   | 10* ft                  |                | ft      |  |  |  |  |  |
| Parameter   |                         | Upper Boun     | FALSE   |  |  |  |  |  |
| Lower Bound | 0* ft                   | Enforce Bou    | FALSE   |  |  |  |  |  |
|             | Hoor Volum              | a [ChallDiam]  |         |  |  |  |  |  |
|             |                         | e [ShellDiam]  |         |  |  |  |  |  |
| Parameter   | 8.45* ft                | Upper Boun     | ft      |  |  |  |  |  |
| Lower Bound | 0* ft                   | Enforce Bou    | FALSE   |  |  |  |  |  |
|             |                         |                |         |  |  |  |  |  |
|             |                         | [BreatherVP]   |         |  |  |  |  |  |
| Parameter   | 0.0300000* psig         | Upper Boun     | psig    |  |  |  |  |  |
| Lower Bound | psig                    | Enforce Bou    | FALSE   |  |  |  |  |  |
|             |                         |                |         |  |  |  |  |  |
|             | User Value              | [BreatherVacP] |         |  |  |  |  |  |
| Parameter   | -0.0300000* psig        | Upper Boun     | psig    |  |  |  |  |  |
| Lower Bound | psig                    | Enforce Box    | FALSE   |  |  |  |  |  |
|             | T 3                     |                |         |  |  |  |  |  |
|             | User Value              | [DomeRadius]   |         |  |  |  |  |  |
| Parameter   | 4.23* ft                | Upper Boun     | ft      |  |  |  |  |  |
| Lower Bound | 4.23 ft                 | Enforce Bou    | FALSE   |  |  |  |  |  |
| Lower Board | it                      | Efficice Box   | TALSE   |  |  |  |  |  |
|             | Hear Valu               | ie [OpPress]   |         |  |  |  |  |  |
| D           |                         |                |         |  |  |  |  |  |
| Parameter   | 0* psig                 | Upper Boun     | psig    |  |  |  |  |  |
| Lower Bound | psig                    | Enforce Bou    | FALSE   |  |  |  |  |  |
|             | Heer Velve I            | AvaDersentliel |         |  |  |  |  |  |
|             |                         | AvgPercentLiq] |         |  |  |  |  |  |
| Parameter   | 50* %                   | Upper Boun     | %       |  |  |  |  |  |
| Lower Bound | %                       | Enforce Bou    | FALSE   |  |  |  |  |  |
|             |                         |                |         |  |  |  |  |  |
|             | User Value [l           | MaxPercentLiq] |         |  |  |  |  |  |
| Parameter   | 90* %                   | Upper Boun     | %       |  |  |  |  |  |
| Lower Bound | %                       | Enforce Bou    | FALSE   |  |  |  |  |  |
|             |                         |                |         |  |  |  |  |  |
|             | User Value              | e [AnnNetTP]   |         |  |  |  |  |  |
| Parameter   | 4.98235* bbl/day        | Upper Boun     | bbl/day |  |  |  |  |  |
| Lower Bound | 0* bbl/day              | Enforce Bou    | FALSE   |  |  |  |  |  |
|             |                         | <u></u>        |         |  |  |  |  |  |
|             | User Va                 | lue [OREff]    |         |  |  |  |  |  |
| Parameter   | 0* %                    | Upper Boun     | %       |  |  |  |  |  |
| Lower Bound | %                       | Enforce Box    | FALSE   |  |  |  |  |  |
|             | 75                      |                |         |  |  |  |  |  |
|             | Hear Valu               | e [MaxAvgT]    |         |  |  |  |  |  |
| Doromotor   | 61.15* °F               |                | °F      |  |  |  |  |  |
| Parameter   |                         | Upper Boun     | •       |  |  |  |  |  |
| Lower Bound | °F                      | Enforce Bou    | FALSE   |  |  |  |  |  |
|             | Hear Val-               | o [Min AveT]   |         |  |  |  |  |  |
|             |                         | ie [MinAvgT]   |         |  |  |  |  |  |
| Doromotor   | 26 0667* °F             | Hanar Daum     | ۰.      |  |  |  |  |  |

Upper Boun Enforce Bou

FALSE

Job:

N:\West Virginia\

|             |                       | e [BulkLiqT]       |              |
|-------------|-----------------------|--------------------|--------------|
| Parameter   | 49.0783* °F           | Upper Boun         | °F           |
| Lower Bound | °F                    | Enforce Bou        | FALSE        |
|             | User Val              | ue [AvgP]          |              |
| Parameter   | 13.7315* psia         | Upper Boun         | psia         |
| Lower Bound | psia                  | Enforce Bot        | FALSE .      |
|             |                       |                    |              |
|             |                       | ie [Therml]        |              |
| Parameter   | 1193.89* Btu/ft^2/day | Upper Boun         | Btu/ft^2/day |
| Lower Bound | Btu/ft^2/day          | Enforce Bou        | FALSE        |
|             | User Value [A         | vgWindSpeed]       |              |
| Parameter   | 6.16667* mi/h         | Upper Boun         | mi/h         |
| Lower Bound | mi/h                  | Enforce Bot        | FALSE        |
|             |                       |                    |              |
|             |                       | lourlyLoadingRate] |              |
| Parameter   | 0.207598* bbl/hr      | Upper Boun         | bbl/hr       |
| Lower Bound | 0* bbl/hr             | Enforce Bou        | FALSE        |
|             | User Value [Er        | ntrainedOilFrac]   |              |
| Parameter   | 1* %                  | Upper Boun         | %            |
| Lower Bound | %                     | Enforce Bot        | FALSE        |
|             |                       |                    |              |
|             | <u>_</u>              | TurnoverRate]      |              |
| Parameter   | 20.2280*              | Upper Boun         |              |
| Lower Bound |                       | Enforce Bou        | FALSE        |
|             | Hsar Value [I         | LossSatFactor]     |              |
| Parameter   | 0.5*                  | Upper Boun         |              |
| Lower Bound | 0.5                   | Enforce Bou        | FALSE        |
|             |                       |                    |              |
|             |                       | AtmPressure]       |              |
| Parameter   | 13.7315* psia         | Upper Boun         | psia         |
| Lower Bound | psia                  | Enforce Bou        | FALSE        |
|             | User Va               | lue [TVP]          |              |
| Parameter   | 6.77054* psia         | Upper Boun         | psia         |
| Lower Bound | psia                  | Enforce Box        | FALSE        |
|             |                       |                    |              |
|             |                       | ie [MaxVP]         |              |
| Parameter   | 7.19440* psia         | Upper Boun         | psia         |
| Lower Bound | psia                  | Enforce Bou        | FALSE        |
|             | User Valu             | ue [MinVP]         |              |
| Parameter   | 6.37364* psia         | Upper Boun         | psia         |
| Lower Bound | psia                  | Enforce Box        | FALSE        |
|             | ·                     | •                  |              |
|             |                       | vgLiqSurfaceT]     |              |
| Parameter   | 50.6729* °F           | Upper Boun         | °F           |
| Lower Bound | °F                    | Enforce Bou        | FALSE        |
|             | Hear Value IM         | axLiqSurfaceT]     |              |
| Parameter   | 56.4466* °F           | Upper Boun         | °F           |
| Lower Bound | 00.4400 °F<br>°F      | Enforce Bot        | FALSE        |
|             |                       | 21110100 000       | 17.202       |
|             | User Value            | [TotalLosses]      |              |
| Parameter   | 0.132943* ton/yr      | Upper Boun         | ton/yr       |
| Lower Bound | ton/yr                | Enforce Bou        | FALSE        |
|             |                       |                    |              |

|                          | User Value [V               | VorkingLosses]            |                 |
|--------------------------|-----------------------------|---------------------------|-----------------|
| Parameter                | 0.0806644* ton/yr           | Upper Boun                | ton/yr          |
| Lower Bound              | ton/yr                      | Enforce Box               | FALSE           |
|                          | User Value [S               | tandingLosses]            |                 |
| Parameter                | 0.0522789* ton/yr           | Upper Boun                | ton/yr          |
| Lower Bound              | ton/yr                      | Enforce Bol               | FALSE           |
|                          | Hear Value IR               | timSealLosses]            |                 |
| Parameter                | 0* ton/yr                   | Upper Boun                | ton/yr          |
| Lower Bound              | ton/yr                      | Enforce Box               | FALSE           |
|                          | Hear Value IV               | /ithdrawalLoss]           |                 |
| Parameter                | 0* ton/yr                   | Upper Boun                | ton/yr          |
| Lower Bound              | ton/yr                      | Enforce Box               | FALSE           |
|                          |                             |                           |                 |
| D                        |                             | oadingLosses]             |                 |
| Parameter<br>Lower Bound | 0.0413578* ton/yr<br>ton/yr | Upper Boun<br>Enforce Bou | ton/yr<br>FALSE |
| Edwer Bearia             | torn yr                     | Elliotoc Box              | TALOL           |
|                          | User Value [MaxH            | lourlyLoadingLoss]        |                 |
| Parameter                | 0.00944242* lb/hr           | Upper Boun                | lb/hr           |
| Lower Bound              | lb/hr                       | Enforce Bou               | FALSE           |
|                          | User Val                    | ue [PStar]                |                 |
| Parameter                |                             | Upper Boun                |                 |
| Lower Bound              |                             | Enforce Bou               | FALSE           |
|                          | Hear Value IA               | IICTotalLosses]           |                 |
| Parameter                | 0.318462* ton/yr            | Upper Boun                | ton/yr          |
| Lower Bound              | ton/yr                      | Enforce Box               | FALSE           |
|                          |                             |                           |                 |
|                          |                             | CLoadingLosses]           |                 |
| Parameter<br>Lower Bound | 0.0990715* ton/yr<br>ton/yr | Upper Boun<br>Enforce Bou | ton/yr<br>FALSE |
| Edwer Bearia             | torn yr                     | Elliotoc Box              | TALOE           |
|                          | User Value [AllCl           | MaxHLoadingLoss]          |                 |
| Parameter                | 0.0226191* lb/hr            | Upper Boun                | lb/hr           |
| Lower Bound              | lb/hr                       | Enforce Bou               | FALSE           |
|                          | User Value [All(            | CFlashingLosses]          |                 |
| Parameter                | 0.0131886* ton/yr           | Upper Boun                | ton/yr          |
| Lower Bound              | ton/yr                      | Enforce Bol               | FALSE           |
|                          | Hear Value IDo              | ckFittingLosses]          |                 |
| Parameter                | 0* ton/yr                   | Upper Boun                | ton/yr          |
| Lower Bound              | ton/yr                      | Enforce Bou               | FALSE           |
|                          |                             |                           |                 |
|                          |                             | eckSeamLosses]            |                 |
| Parameter<br>Lower Bound | 0* ton/yr<br>ton/yr         | Upper Boun<br>Enforce Bou | ton/yr<br>FALSE |
| LOWER BOURIU             | tor#yr                      | Injure por                | TALOL           |
|                          |                             | lashingLosses]            |                 |
| Parameter                | 0.00438846* ton/yr          | Upper Boun                | ton/yr          |
| Lower Bound              | ton/yr                      | Enforce Bou               | FALSE           |
|                          | User Value I                | TotalResidual]            |                 |
| Parameter                | 263.162* ton/yr             | Upper Boun                | ton/yr          |
| Lower Bound              | ton/yr                      | Enforce Bou               | FALSE           |
|                          | Hear Value 10               | PagMalaWaissh41           |                 |
|                          | User value [G               | asMoleWeight]             |                 |

| Parameter                      | 0.0318968* kg/mol | Upper Boun            | kg/mol |  |
|--------------------------------|-------------------|-----------------------|--------|--|
| Lower Bound                    | kg/mol            | Enforce Boı           | FALSE  |  |
|                                |                   |                       |        |  |
| User Value [VapReportableFrac] |                   |                       |        |  |
| Parameter                      | 41.7454* %        | Upper Boun            | %      |  |
| Lower Bound                    | %                 | Enforce Bou           | FALSE  |  |
|                                |                   |                       |        |  |
| User Value [LiqReportableFrac] |                   |                       |        |  |
| Parameter                      | 99.8835* %        | Upper Boun            | %      |  |
| Lower Bound                    | %                 | Enforce Bou           | FALSE  |  |
|                                |                   |                       |        |  |
|                                | User Value        | [FlashReportableFrac] |        |  |
| Parameter                      | 33.2747* %        | Upper Boun            | %      |  |
| Lower Bound                    | %                 | Enforce Bou           | FALSE  |  |
| 20                             | ,,                | Zimoroo Box           |        |  |

## **ATTACHMENT O**

## MONITORING/RECORDKEEPING/REPORTING/ TESTING PLANS

## **45CSR13 Permit Application**

Bulltown Station West Union, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA 15317

## Monitoring

CNX will at a minimum monitor hours of operation, site production throughputs, malfunctions of equipment, as well as planned and unplanned maintenance of permitted equipment comprising the facility.

## Recordkeeping

The company will retain records of the following for five (5) years, certified by a company official at such time as the DAQ may request said records

In addition to those mentioned above, the company will keep records of the items monitored, such as station throughput, hours of operation, planned maintenance activities, unplanned maintenance activities, and complaints regarding the facility.

Records of maintenance conducted shall be kept in accordance with Subpart JJJJ (40CFR60.4243(b)(2)(i)).

## Reporting

CNX will submit results of initial performance test to the EPA Regional Office and WV DAQ within sixty (60) days of completion of such tests. In addition, the company will report any emission limit deviations.

## **Testing**

The company will demonstrate initial compliance by conducting a performance demonstration as specified according to 40CFR60.4244 showing the emission limitations in 40CFR1048.101(c) are being met.

# ATTACHMENT P PUBLIC NOTICE

## **45CSR13 Permit Application**

Bulltown Station West Union, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA 15317

## AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that CNX Gas Company LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a Rule 13 Permit, for a natural compressor station located off Bull Town Rd. near West Union, in Doddridge County, West Virginia. The latitude and longitude coordinates are 39.34289 and -80.74657.

The applicant estimates the increased potential to discharge of the following Regulated Air Pollutants will be:

| Pollutant       | Tons/yr |  |
|-----------------|---------|--|
| PM/PM10/PM2.5   | 0.04    |  |
| SO <sub>2</sub> | 0.01    |  |
| NO <sub>X</sub> | 1.10    |  |
| СО              | 1.87    |  |
| VOCs            | 1.03    |  |
| Total HAPs      | 0.06    |  |

Modifications of operations are after the fact. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57<sup>th</sup> Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the XXth day of August, 2017.

By: CNX Gas Company LLC
Craig Neal
Vice President Gas Operations
1000 Consol Energy Drive
Canonsburg, PA 15317