

CNX Gas Company LLC

Dry Fork Station

Camden, West Virginia

45CSR13 Permit Application

SLR Ref: 116.00894.00071

SL

Dry Fork Station 45CSR13 Permit Application

Prepared for:

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA 15317

This document has been prepared by SLR International Corporation. The material and data in this permit application were prepared under the supervision and direction of the undersigned.

Alex Asbury Staff Engineer

Jesse Hanshaw, P.E. Principal Engineer

CONTENTS

ATTACHMENTS

APPLICATION FOR PERMIT

ATTACHMENT A	BUSINESS CERTIFICATE
ATTACHMENT B	
ATTACHMENT C	INSTALLATION AND START UP SCHEDULE(SEE NOTES)
ATTACHMENT D	
ATTACHMENT E	
ATTACHMENT F	
ATTACHMENT G	PROCESS DESCRIPTION
ATTACHMENT H	SAFETY DATA SHEETS (SDS)(SEE NOTES)
ATTACHMENT I	EMISSION UNITS TABLE
ATTACHMENT J	EMISSION POINTS DATA SUMMARY SHEET
ATTACHMENT K	
ATTACHMENT L	EMISSION UNIT DATA SHEET(S)
ATTACHMENT M	AIR POLLUTION CONTROL DEVICE SHEET(S)(SEE NOTES)
ATTACHMENT N	SUPPORTING EMISSIONS CALCULATIONS
ATTACHMENT O	MONITORING/RECORDKEEPING/REPORTING/ TESTING PLANS
ATTACHMENT P	PUBLIC NOTICE
ATTACHMENT Q	BUSINESS CONFIDENTIAL CLAIMS (SEE NOTE)
ATTACHMENT R	AUTHORITY FORMS (SEE NOTE)
ATTACHMENT S	TITLE V PERMIT REVISION INFORMATION (SEE NOTE)

Notes:

ATTACHMENT C - Changes are after the fact

ATTACHMENT M - No APCD in use at facility

ATTACHMENT Q - No information contained within this application is claimed confidential

ATTACHMENT R - No delegation of authority

ATTACHMENT S - Not a Title V Permit Revision

APPLICATION FOR PERMIT

45CSR13 Permit Application

Dry Fork Station Camden, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA 15317

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALITY 601 57 th Street, SE Charleston, WV 25304 (304) 926-0475 WWW.dep.wv.gov/dag		TION FOR NSR PERMIT AND V PERMIT REVISION (OPTIONAL)			
		OF 45CSR30 (TITLE V) REVISION (IF ANY):			
□ CONSTRUCTION □ MODIFICATION □ RELOCATION □ CLASS I ADMINISTRATIVE UPDATE □ TEMPORARY	ADMINISTRATIVE AI SIGNIFICANT MODIF	—			
	IF ANY BOX ABOVE IS (CHECKED, INCLUDE TITLE V REVISION ACHMENT S TO THIS APPLICATION			
FOR TITLE V FACILITIES ONLY: Please refer to "Title V Revision (Appendix A, "Title V Permit Revision Flowchart") and ability to					
Section	General				
 Name of applicant (as registered with the WV Secretary of Sta CNX Gas C ompany LLC 	ate's Office): 2. Fo	ederal Employer ID No. <i>(FEIN):</i> 31-1782401			
3. Name of facility (if different from above):	4. The applicant is the:				
Dry Fork Station		WNER 🗌 OPERATOR 🖾 BOTH			
1000 Consol Energy Drive	1000 Consol Energy Drive Dry Fork Rd.				
 6. West Virginia Business Registration. Is the applicant a resident of the State of West Virginia? XES NO If YES, provide a copy of the Certificate of Incorporation/Organization/Limited Partnership (one page) including any name change amendments or other Business Registration Certificate as Attachment A. If NO, provide a copy of the Certificate of Authority/Authority of L.L.C./Registration (one page) including any name change amendments or other Business Certificate as Attachment A. 					
7. If applicant is a subsidiary corporation, please provide the nam	e of parent corporation:	:			
8. Does the applicant own, lease, have an option to buy or other	vise have control of the	proposed site? 🛛 YES 🗌 NO			
 If YES, please explain: The applicant leases the site. 					
 If NO, you are not eligible for a permit for this source. 					
 Type of plant or facility (stationary source) to be constructed administratively updated or temporarily permitted (e.g., o crusher, etc.): Natural Gas Compressor Station 	 9. Type of plant or facility (stationary source) to be constructed, modified, relocated, administratively updated or temporarily permitted (e.g., coal preparation plant, primary classification System (NAICS) code for the face 211111 				
		and 45CSR30 (Title V) permit numbers ess (for existing facilities only):			
041-0052	D072A				

12A.		
 For Modifications, Administrative Updates or T present location of the facility from the nearest state 		please provide directions to the
 For Construction or Relocation permits, please road. Include a MAP as Attachment B. 	provide directions to the proposed new	site location from the nearest state
From Weston, take Route 33-W/119-S (towards G	Glenville) for 5.1 miles and turn right onto	the dirt access road. Follow the
access road for 0.4 miles, the station will be located on	the right.	
12B. New site address (if applicable):	12C. Nearest city or town:	12D. County:
N/A	Camden	Lewis
12.E. UTM Northing (KM): 4,323.067	12F. UTM Easting (KM): 538.508	12G. UTM Zone: 17
13. Briefly describe the proposed change(s) at the faci 3306 NA (145 HP) compressors. The newest being ma		
 14A. Provide the date of anticipated installation or cha If this is an After-The-Fact permit application, prochange did happen: CE-4 (2012) & CE-5 (2014) 	•	14B. Date of anticipated Start-Up if a permit is granted:
14C. Provide a Schedule of the planned Installation of application as Attachment C (if more than one up	•	units proposed in this permit
15. Provide maximum projected Operating Schedule Hours Per Day 24 Days Per Week 7	of activity/activities outlined in this applic Weeks Per Year 52	ation:
16. Is demolition or physical renovation at an existing t	facility involved? 🗌 YES 🛛 🕅 NO	
17. Risk Management Plans. If this facility is subject	to 112(r) of the 1990 CAAA, or will becon	ne subject due to proposed
changes (for applicability help see www.epa.gov/ce	ppo), submit your Risk Management Pla	an (RMP) to U.S. EPA Region III.
18. Regulatory Discussion. List all Federal and State	e air pollution control regulations that you	believe are applicable to the
proposed process (if known). A list of possible appli	cable requirements is also included in Att	tachment S of this application
(Title) (Demoit Devision Information) Discuss applie		(according to a (if ly accura). Drawida thi

(Title V Permit Revision Information). Discuss applicability and proposed demonstration(s) of compliance *(if known)*. Provide this information as **Attachment D**.

Section II. Additional attachments and supporting documents.

19. Include a check payable to WVDEP – Division of Air Quality with the appropriate **application fee** (per 45CSR22 and

45CSR13). See attached check for \$1,000 which covers the Application.

20. Include a Table of Contents as the first page of your application package.

21. Provide a **Plot Plan**, e.g. scaled map(s) and/or sketch(es) showing the location of the property on which the stationary source(s) is or is to be located as **Attachment E** (Refer to *Plot Plan Guidance*).

- Indicate the location of the nearest occupied structure (e.g. church, school, business, residence).

22. Provide a **Detailed Process Flow Diagram(s)** showing each proposed or modified emissions unit, emission point and control device as **Attachment F.**

23. Provide a Process Description as Attachment G.

- Also describe and quantify to the extent possible all changes made to the facility since the last permit review (if applicable).

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

24. Pr	ovide Material Safety Data Sheets	(MSDS) for all materials proce	ssed, used or produ	ced as Attachment H.		
– For	chemical processes, provide a MSE	S for each compound emitted	to the air.			
25. Fi	ll out the Emission Units Table and	provide it as Attachment I.				
26. Fi	ll out the Emission Points Data Su	mmary Sheet (Table 1 and Ta	ble 2) and provide it	as Attachment J.		
27. Fi	Il out the Fugitive Emissions Data	Summary Sheet and provide i	t as Attachment K.			
28. CI	neck all applicable Emissions Unit	Data Sheets listed below:				
🗌 Bul	k Liquid Transfer Operations	Haul Road Emissions	Quarry			
Che	emical Processes	Hot Mix Asphalt Plant		ls Sizing, Handling and Storage		
🗌 Cor	ncrete Batch Plant	Incinerator	Facilities			
🗌 Gre	ey Iron and Steel Foundry	Indirect Heat Exchanger	🛛 Storage Tank	S		
🖾 Ge	neral Emission Unit, specify: Interna	Combustion Engine Data She	et, Tank Loading Da	ta Sheet		
Fill out	and provide the Emissions Unit Da	ata Sheet(s) as Attachment L				
29. CI	neck all applicable Air Pollution Co	ntrol Device Sheets listed bel	ow:			
🗌 Abs	sorption Systems	Baghouse		Flare		
🗌 Ads	sorption Systems	Condenser		Mechanical Collector		
🗌 Afte	erburner	Electrostatic Precipit	ator	Wet Collecting System		
🗌 Oth	er Collectors, specify – Non selectiv	e catalytic reduction (NSCR)				
Fill out	and provide the Air Pollution Cont	rol Device Sheet(s) as Attacl	nment M.			
	ovide all Supporting Emissions Ca ems 28 through 31.	alculations as Attachment N,	or attach the calcula	tions directly to the forms listed in		
te	31. Monitoring, Recordkeeping, Reporting and Testing Plans. Attach proposed monitoring, recordkeeping, reporting and testing plans in order to demonstrate compliance with the proposed emissions limits and operating parameters in this permit application. Provide this information as Attachment O.					
m	Please be aware that all permits must be practically enforceable whether or not the applicant chooses to propose such measures. Additionally, the DAQ may not be able to accept all measures proposed by the applicant. If none of these plans are proposed by the applicant, DAQ will develop such plans and include them in the permit.					
32. Public Notice. At the time that the application is submitted, place a Class I Legal Advertisement in a newspaper of general						
circulation in the area where the source is or will be located (See 45CSR§13-8.3 through 45CSR§13-8.5 and Example Legal						
A	Advertisement for details). Please submit the Affidavit of Publication as Attachment P immediately upon receipt.					
33 . B i	usiness Confidentiality Claims. D	oes this application include cor	nfidential information	(per 45CSR31)?		
se	If YES, identify each segment of information on each page that is submitted as confidential and provide justification for each segment claimed confidential, including the criteria under 45CSR§31-4.1, and in accordance with the DAQ's "Precautionary Notice – Claims of Confidentiality" guidance found in the General Instructions as Attachment Q.					
	Sec	ction III. Certification	of Information			
	uthority/Delegation of Authority. (other than the respon	sible official signs the application.		
🗌 Aut	hority of Corporation or Other Busin	ess Entity] Authority of Partnei	rship		
	hority of Governmental Agency	-] Authority of Limited	-		
	Submit completed and signed Authority Form as Attachment R.					
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.						
	,		<u>.</u>	,, p		

35A. **Certification of Information.** To certify this permit application, a Responsible Official (per 45CSR§13-2.22 and 45CSR§30-2.28) or Authorized Representative shall check the appropriate box and sign below.

Certification of Truth, Accuracy, and Completeness

I, the undersigned Responsible Official / Authorized Representative, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.

Compliance Certification

Except for requirements identified in the Title V Application for which compliance is not achieved, I, the undersigned hereby certify that, based on information and belief formed after reasonable inquiry, all air contaminant sources identified in this application are in compliance with all applicable requirements.

SIGNATURE Cloud UNeal Deal		
	35C. Title:	
-	Vice President Gas Operations	
36E. Phone:724-485-4000	36F. FAX	
ent from above): Jesse Hanshaw	36B. Title: Principal Engineer, SLR	
36D. Phone: 304-545-8563	36E. FAX: 681-205-8969	
	use blue ink) 36E. Phone:724-485-4000 ent from above): Jesse Hanshaw	

PLEASE CHECK ALL APPLICABLE ATTACHMENTS INCLUDE	D WITH THIS PERMIT APPLICATION:		
 Attachment A: Business Certificate Attachment B: Map(s) Attachment C: Installation and Start Up Schedule Attachment D: Regulatory Discussion Attachment E: Plot Plan Attachment F: Detailed Process Flow Diagram(s) Attachment G: Process Description Attachment H: Material Safety Data Sheets (MSDS) Attachment I: Emission Units Table Attachment J: Emission Points Data Summary Sheet 	 Attachment K: Fugitive Emissions Data Summary Sheet Attachment L: Emissions Unit Data Sheet(s) Attachment M: Air Pollution Control Device Sheet(s) Attachment N: Supporting Emissions Calculations Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans Attachment P: Public Notice Attachment Q: Business Confidential Claims Attachment R: Authority Forms Attachment S: Title V Permit Revision Information Application Fee 		
Please mail an original and three (3) copies of the complete permit application with the signature(s) to the DAQ, Permitting Section, at the address listed on the first page of this application. Please DO NOT fax permit applications.			

FOR AGENCY USE ONLY - IF THIS IS A TITLE V SOURCE:

Forward 1 copy of the application to the Title V Permitting Group and:
 For Title V Administrative Amendments:

 NSR permit writer should notify Title V permit writer of draft permit,
 For Title V Minor Modifications:

 Title V permit writer should send appropriate notification to EPA and affected states within 5 days of receipt,
 NSR permit writer should notify Title V permit writer of draft permit.
 For Title V Significant Modifications processed in parallel with NSR Permit revision:
 NSR permit writer should notify a Title V permit writer of draft permit,
 Public notice should reference both 45CSR13 and Title V permits,
 EPA has 45 day review period of a draft permit.

ATTACHMENT A

BUSINESS CERTIFICATE

45CSR13 Permit Application

Dry Fork Station Camden, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA 15317

I, Natalie E. Tennant, Secretary of State of the State of West Virginia, hereby certify that

CNX GAS COMPANY LLC

was duly authorized under the laws of this state to transact business in West Virginia as a foreign limited liability company on June 29, 2001.

The company is filed as a term company, for the term ending June 29, 2026.

I further certify that the company's most recent annual report, as required by West Virginia Code §31B-2-211, has been filed with our office and that a certificate of cancellation has not been filed.

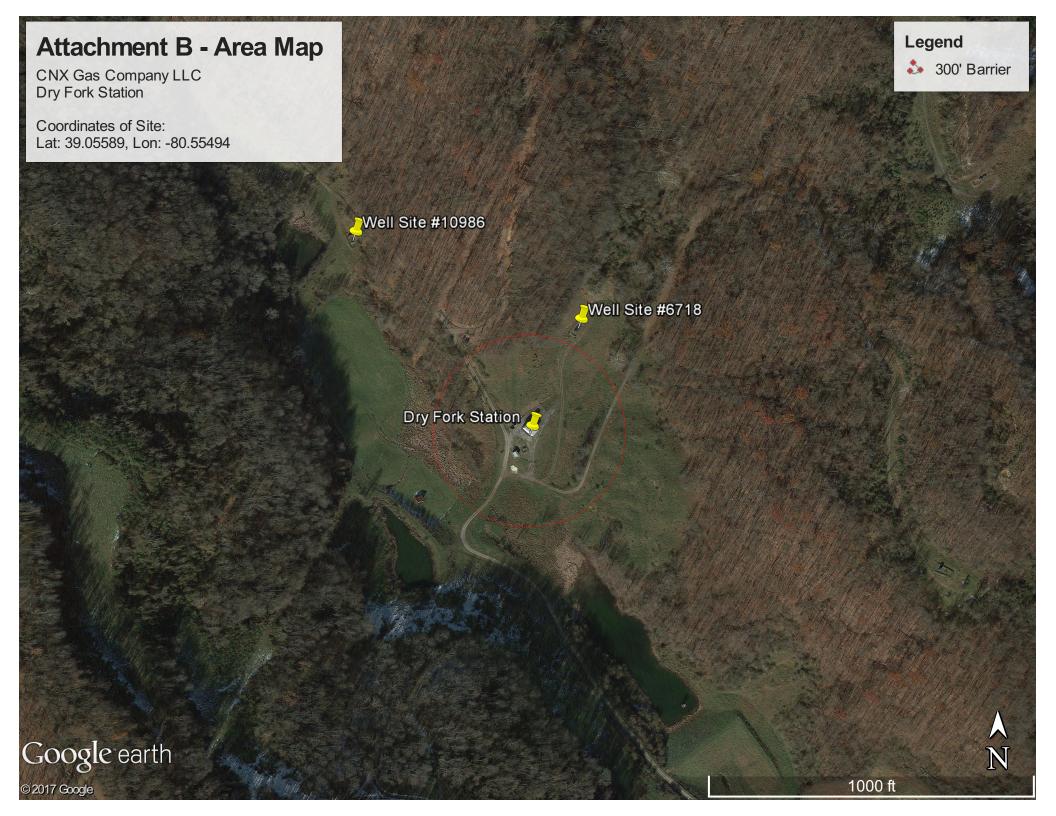
i(

CERTIFICATE OF AUTHORIZATION

Given under my hand and the Great Seal of the State of West Virginia on this day of October 28, 2011

Waterie E Jermienie

Secretary of State


ATTACHMENT B

MAP

45CSR13 Permit Application

Dry Fork Station Camden, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA 15317

ATTACHMENT C

INSTALLATION AND START UP SCHEDULE

NOT APPLICABLE – Changes are after the fact

45CSR13 Permit Application

Dry Fork Station Camden, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA 15317

ATTACHMENT D

REGULATORY DISCUSSION

45CSR13 Permit Application

Dry Fork Station Camden, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA 15317

REGULATORY DISCUSSION

APPLICABLE REGULATIONS

The equipment at this facility is subject to the following applicable rules and regulations:

45 CSR 4 – To Prevent and Control the Discharge of Air Pollutants into the Open Air Which Causes or Contributes to an Objectionable Odor or Odors

45 CSR 11 – Prevention of Air Pollution Emergency Episodes

45 CSR 13 – Permits for Construction, Modification, Relocation, and Operation of Stationary Source of Air Pollutants

The company is applying for a permit modification to assure all equipment changes are evaluated and properly incorporated within the site's minor source permit. CNX Gas has identified some after the fact compressor engine changes when comparing permit requirements under the site's current permit, G30-D072A. The referenced general permit was issued on 8-30-10 for a G3406 TA (276 hp) engine. As a result of an internal environmental audit CNX identified that the permitted engine had been replaced with two smaller G3306 NA compressor engines.

CNX would like to reflect these changes as a new R13 modification permit. Additionally, all area wells and tanks within a ¼ mile were added to the site equipment.

45 CSR 17 – To Prevent and Control Particulate Matter Air Pollution from Materials Handling, Preparation, Storage And Other Sources Of Particulate Matter

The site shall minimize fugitive PM so that emissions do not travel offsite.

40 CFR 63 Subpart ZZZZ – NESHAP for Stationary Reciprocating Internal Combustion Engines

The unit CE-4 was manufactured on December 10, 1998. Therefore per the definition in 40CFR63.6590(iii) this unit shall comply with the requirements of Subpart ZZZ.

NON-APPLICABILITY DETERMINATIONS

The following requirements have been determined "not applicable" due to the following:

45 CSR 2 – Particulate Matter Standards from Combustion of Fuel in Indirect Heat Exchangers

No heat exchangers are in use at Dry Fork Station or at the surrounding well pads.

45 CSR 10 - Emission of Sulfur Oxides

No fuel burning units are in use at Dry Fork Station or at the surrounding well pads.

45 CSR 21 – To Prevent and Control Air Pollution from the Emission of Volatile Organic Compounds

This site is located in Lewis County, which is not one of the designated VOC maintenance counties such as Cabell, Kanawha, Putnam, Wayne, and Wood counties.

45 CSR 27 – To Prevent and Control the Emissions of Toxic Air Pollutants

Natural Gas is included as a petroleum product and contains less than 5% benzene by weight. 45CSR§27-2.4 exempts equipment "used in the production and distribution of petroleum products providing that such equipment does not produce or contact materials containing more than 5% benzene by weight".

45 CSR 30 – Requirements for Operating Permits – Title V of the Clean Air Act

This facility does not meet the emission thresholds to trigger a 45 CSR 30 Title V Operating Permit nor is it subject to any Federal Standards that require a Title V Permit.

40 CFR 60 Subpart JJJJ – Standards of Performance for Stationary Spark Ignition Internal Combustion Engines

CE-4 is not applicable to JJJJ due to being manufactured on December 10, 1998. CE-5 is not applicable to JJJJ because it was manufactured on April 21, 2008, and although viewed as a new unit under ZZZZ, its mfg. date falls before the JJJJ applicability window for emission limits.

40 CFR 60 Subpart Kb – *Standards of Performance for Volatile Organic Liquid Storage Vessels.* This subpart does not apply because the storage vessels at the facility are below 75m³ (19,813 gallons) in capacity as specified in 60.11(b).

40 CFR 60 Subpart OOOO – Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution

The potentially affected sources at this facility were evaluated and a determination was made that there has been no construction, modification, or reconstruction of the listed sources after the NSPS applicability date of August 23, 2011 and before September 18, 2015.

40 CFR 60 Subpart OOOOa – Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification, or Reconstruction Commenced after September 18, 2015

The GHG and VOC requirements defined by this NSPS are not applicable to this site because all affected sources commenced construction, modification, or reconstruction prior to September 18, 2015 in accordance with [40CFR§60.5365a]

40 CFR 63 Subpart HH - National Emission Standards for Hazardous Air Pollutants from Oil and Natural Gas Production Facilities

There is no dehydration unit at this site.

40 CFR 63 HHH - National Emission Standards for Hazardous Air Pollutants from Natural Gas Transmission and Storage Facilities

This subpart is related to Natural Gas Transmission Facilities which are major sources of HAPs. This federal regulation is not applicable since this facility is neither a transmission facility nor is it a major source.

40 CFR 63 Subpart DDDDD - Boilers & Process Heaters Located at Major Sources of HAPs

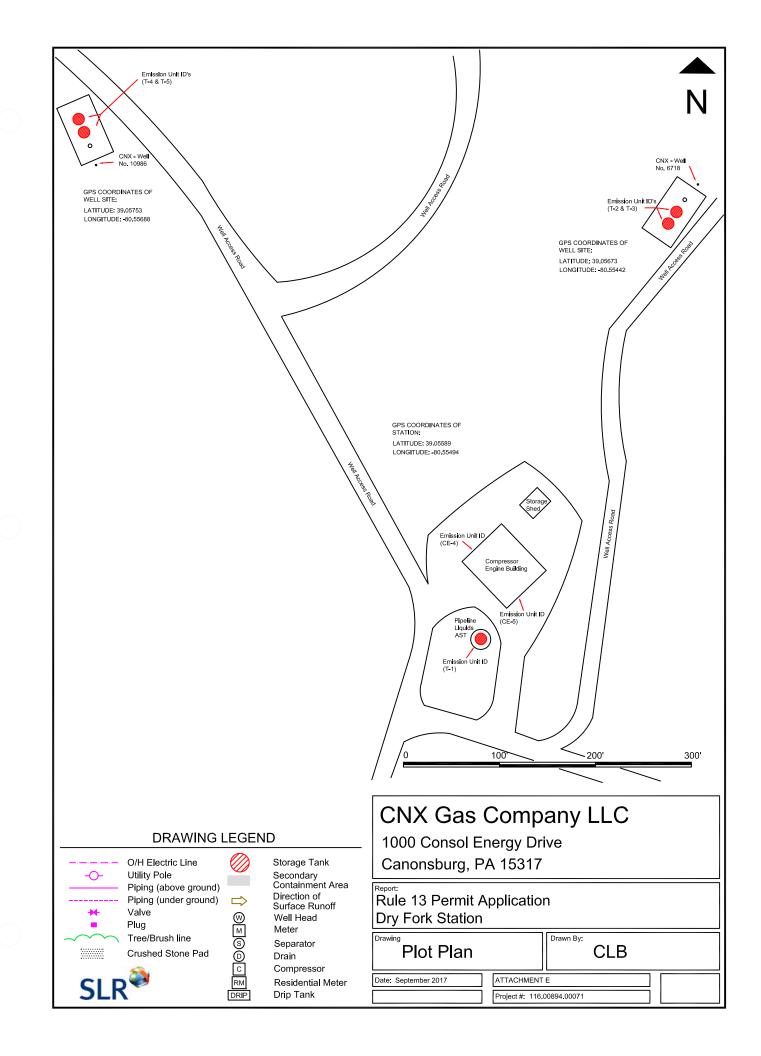
This subpart is not applicable because the facility is not a major source of HAPs.

40 CFR 63 Subpart JJJJJJ - Boilers Located at Area Sources of HAPs

This subpart is not applicable because there are no boilers located at the station or at the surrounding well pads.

40 CFR 82 Subpart F - Ozone Depleting Substances

The purpose of this subpart is to reduce emissions of class I and class II refrigerants and their substitutes. The facility does not utilize class I and class II refrigerants nor any substitutes.

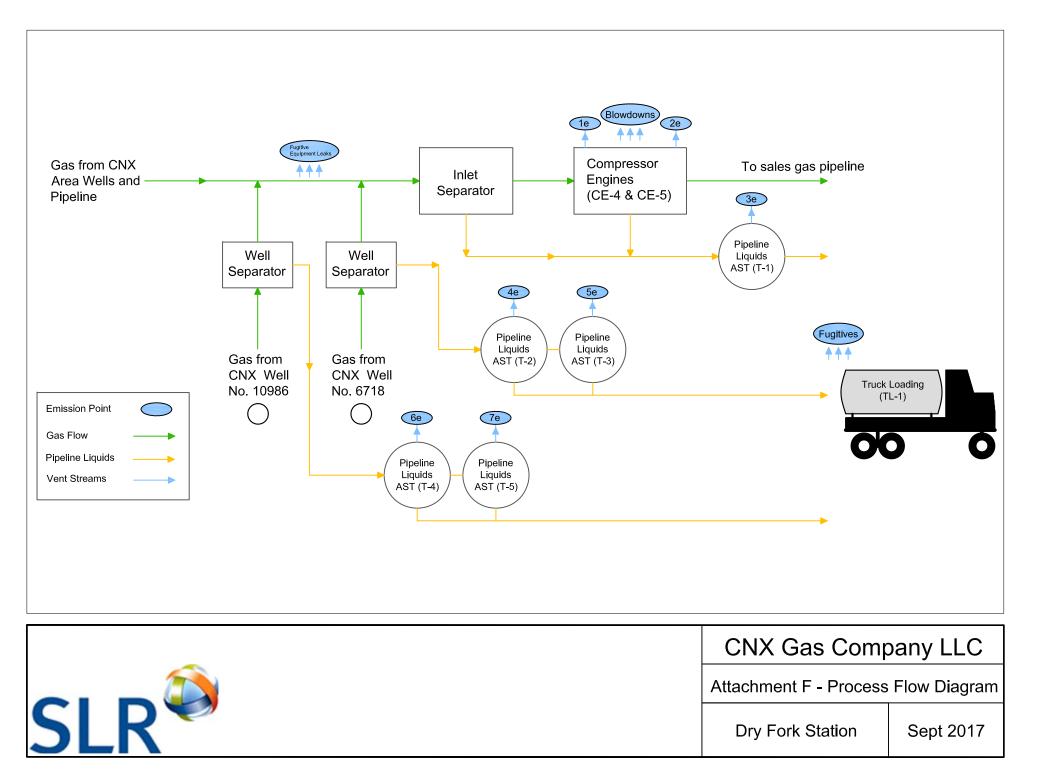

ATTACHMENT E

PLOT PLAN

45CSR13 Permit Application

Dry Fork Station Camden, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA 15317


ATTACHMENT F

PROCESS FLOW DIAGRAM

45CSR13 Permit Application

Dry Fork Station Camden, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA 15317

ATTACHMENT G

PROCESS DESCRIPTION

45CSR13 Permit Application

Dry Fork Station Camden, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA 15317

PROCESS DESCRIPTION

The site will consist of (2) 4SRB Cat 3306 NA compressors and (1) 50 bbl slop oil tank. The site also has De minimis tanks for new/used lube oil. There are (2) conventional well sites within a quarter of a mile of a facility. The first, well site #6718, utilizes two (2) additional 50 bbl produced liquid tanks and the second, well site #10986, incorporates two (2) 100 bbl produced liquid tanks.

The Dry Fork Station collects gas from conventional wells in the area and provides compression services. Any liquid removed within the inlet separator and/or the compressor suction pots will be sent to the slop oil tank. All tank and engine emissions will be uncontrolled at this site.

The source's potential to emit was modeled using ProMax equation of state (EOS) software based on gas and pressurized condensate sampling taken from the Minnie Lee No.1 well pad. In accordance with DAQ guidance, emission potentials were evaluated and reported for truck loading, fugitive equipment leaks, and compressor blowdowns. The emission calculations summarized within this application show the facility's potential to emit to be no more than 40.75 tpy NOx, 42.55 tpy CO, and 3.73 tpy VOC.

PROCESS CHANGES

CNX is applying for a 45CSR13 permit to account for the removal of the larger G3406 TA (276 Hp) compressor permitted by G30-D072A in 2010 and reflect the installation of two smaller G3306 NA (145 Hp) compressors. This application reflects updated compressor emissions, as well as emissions from two adjacent well sites within ¼ mile which are operated by CNX and due to the common booster compressor have shared equipment. This change will increase emissions permitted by the previous G30-D permit.

ATTACHMENT H

SAFETY DATA SHEETS (SDS)

45CSR13 Permit Application

Dry Fork Station Camden, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA 15317

Safety Data Sheet (SDS)

Section 1 – Identification

1(a) Product Identifier used on Label: Condensate

1(b) Other Means of Identification: Natural Gas Condensate, Produced Hydrocarbons, Drip Gas, Natural Gasoline, Petroleum Crude Oil Condensates

1(c) Recommended Use of the Chemical and Restrictions on Use: Used as a petrochemical feedstock, home heating fuel and refinery blending.

1(d) Name, Address, and Telephone Number:

CONSOL Energy Inc. 1000 CONSOL Energy Drive Canonsburg, PA 15317 General information: (724) 485-4000

1(e) Emergency Phone Number: Chemtrec (800) 424-9300

Section 2 – Hazard(s) Identification

2(a) Classification of the Chemical: Condensate is considered a hazardous material according to the criteria specified in REACH [REGULATION (EC) No 1907/2006] and CLP [REGULATION (EC) No 1272/2008] and OSHA 29 CFR 1910.1200 Hazard Communication Standard. The categories of Health Hazards as defined in <u>"GLOBALLY HARMONIZED SYSTEM OF CLASSIFICATION AND LABELLING OF CHEMICALS (GHS), Third revised edition ST/SG/AC.10/30/Rev. 3" United Nations, New York and Geneva, 2009 have been evaluated. Refer to Section 3, 8 and 11 for additional information.</u>

2(b) Signal Word, Hazard Statement(s), Symbol(s) and Precautionary Statement(s):

Hazard Symbol	Hazard Classification Signal Word		d Hazard Statement(s)			
	Flammable Liquid - 2					
\$	Germ Cell Mutagenicity - 1B Carcinogenicity - 1A Toxic Reproduction - 1B Specific Target Organ Toxicity (STOT) Following Single Exposure - 2 STOT following Repeated Exposure - 1 Aspiration - 1	Danger	Highly Flammable liquid and vapor Toxic if inhaled Causes skin irritation and serious eye irritation May cause genetic defects, cancer and damage fertility or the unborn child May cause damage to central and peripheral nervous system, lungs, liver and red blood cells			
	Acute Toxicity Hazard - 3		Causes damage to the blood, spleen, and liver through prolonged or repeat exposures May be fatal if swallowed and enters airways			
	Skin Corrosion/Irritation - 2 Eye Damage/ Irritation - 2A					
Precautionary	Statement(s)					
	om heat/sparks/open flames/hot surfaces Keep container tightly closed. and/Bond container and receiving equipr	0	If on skin: Wash with plenty of water If skin irritation occurs: Get medical advice/attention. Take off contaminated clothing and wash it before reuse.			
	Use explosion-proof electrical/ventilating/lighting/equipment. Use only non-sparking tools.		If swallowed: Immediately call a poison center/doctor/ Do NOT induce vomiting.			
Take p	precautionary measures against static disc	charge.	Obtain special instructions before use.			
Wear protective gloves/protective clothing/eye protection/face protection.		-	Do not handle until all safety precautions have been read and understood. Wash thoroughly after handling.			
Do not breathe dust/fume/gas/mist/ vapors/spray.			Do not eat, drink or smoke when using this product.			
•	If exposed, concerned or feel unwell: Get medical advice/attention. If inhaled: Remove person to fresh air and keep comfortable for		If exposed or concerned: Call a poison center or doctor. Get medical attention if you feel unwell.			
II IIIIaled: I	breathing. Call a poison center/doctor.		Store in well-ventilated place. Keep cool. Use only outdoors or in a well-			
	nse cautiously with water for several min		ventilated area. Store locked up.			
	es, if present and easy to do. Continue ritation persists: Get medical advice/attent		Dispose of contents in accordance with federal, state and local regulations.			
	Deer 1 af 9					

Section 2 – Hazard(s) Identification (continued)

2(c) Hazards not Otherwise Classified: None Known or Found

2(d) Unknown Acute Toxicity Statement (mixture): None Known or Found

Section 3 – Composition/Information on Ingredients

3(a-c) Chemical Name, Common Name (synonyms), CAS Number and Other Identifiers, and Concentration:

3(a-c) Unemical Name, Common Name (synonyms), CAS Number and Other Identifiers, and Concentration:						
Chemical Name	CAS Number EC Number		% weight			
Natural Gas Condensate	64741-47-5	265-047-3	100			
Natural Gas Condensate is a petroleum substance comprised of a complex mixture of hydrocarbons. Major classes of hydrocarbons contained in the substance are listed below:						
Hydrocarbons Aromatic	Mixture	Mixture	~ 5			
Hydrocarbons Naphthalenes	Mixture	Mixture	~ 8			
Hydrocarbons (total Paraffin and isoparaffin)	Mixture	Mixture	~ 65			
Benzene	71-43-2	200-753-7	~ 0.1			

EC - European Community

CAS - Chemical Abstract Service

Section 4 – First-aid Measures

4(a) Description of Necessary Measures: If exposed, concerned or feel unwell: Get medical advice/attention.

- Inhalation: If inhaled: Remove person to fresh air and keep comfortable for breathing. Call a poison center/doctor.
- Eye Contact: If in eyes: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. If eye irritation persists: Get medical advice/attention.
- Skin Contact: If on skin: Wash with plenty of water. If skin irritation occurs: Get medical advice/attention. Take off contaminated clothing and wash it before reuse.
- Ingestion: If swallowed: Immediately call a poison center/doctor/ DO NOT induce vomiting.

4(b) Most Important Symptoms/Effects, Acute and Delayed (chronic):

Acute Effects:

- Inhalation: Aspiration hazard, May be fatal if enters airways. May cause CNS and peripheral depression and damage to liver lungs and red blood cells.
- Eye: Causes irritation to eyes and mucous membranes.
- Skin: Causes irritation to skin.
- Ingestion: Aspiration hazard. May be fatal if swallowed.

Delayed (chronic) Effects:

• May cause genetic defects or cancer. May damage fertility or cause damage to the unborn child. Causes damage to the hematopoietic (blood) system, spleen, and liver through prolonged or repeat exposures.

4(c) Immediate Medical Attention and Special Treatment: If exposed, concerned or feel unwell: Get medical advice/attention.

Additional Information:

Primary Entry Routes: Inhalation, Ingestion, skin and eye contact.

Target Organs: Central nervous system, blood, eyes, skin lungs, and liver. Causes damage to the hematopoietic (blood) system, spleen, and liver. **Carcinogenicity:** IARC, NTP, ACGIH and OSHA list benzene as a carcinogen.

Section 5 – Fire-fighting Measures

5(a) Suitable (and unsuitable) Extinguishing Media: In case of fire: Use foam, dry powder or carbon dioxide for extinction. Do not use a solid stream of water as it may scatter and spread the fire.

5(b) Specific Hazards Arising from the Chemical: Vapors are heavier than air and may accumulate in low areas. Fire will produce irritating, corrosive and toxic gasses.

5(c) Special Protective Equipment and Precautions for Fire-Fighters: Self-contained NIOSH approved respiratory protection and full protective clothing should be worn when fumes and/or smoke from fire are present. Heat and flames cause formation of acrid smoke and fumes. Do not release runoff from fire control methods to sewers or waterways. Firefighters should wear full face-piece self-contained breathing apparatus and chemical protective clothing with thermal protection. Direct water stream will scatter and spread flames and, therefore, should not be used. Evacuate area. Remove pressurized gas cylinders from the immediate vicinity. Cool containers exposed to flames with water until well after the fire is out. Close the valve if no risk is involved. Fight fire from a protected location. Prevent buildup of vapors or gases to explosive concentrations.

Section 6 - Accidental Release Measures

6(a) Personal Precautions, Protective Equipment and Emergency Procedures: Spills of condensate will create a fire hazard and may form an explosive atmosphere. Stay up wind and away from the spill. Clean-up personnel should be protected against contact with eyes and skin. Collect material in appropriate, labeled containers for recovery or disposal in accordance with federal, state, and local regulations.

6(b) Methods and Materials for Containment and Clean Up: Collect with sand or oil absorbing materials. Collect material in appropriate, labeled containers for recovery or disposal in accordance with federal, state, and local regulations. Follow applicable OSHA regulations (29 CFR 1910.120) and all other pertinent state and federal requirements.

Section 7 - Handling and Storage

7(a) Precautions for Safe Handling: Keep away from heat/sparks/open flames/hot surfaces. No smoking. Ground/Bond container and receiving equipment. Use explosion-proof electrical/ventilating/lighting/equipment. Use only non-sparking tools. Take precautionary measures against static discharge.

7(b) Conditions for Safe Storage, Including Any Incompatibilities: Store in well-ventilated place. Keep cool. Take precautions to avoid static discharges around stored condensate. Ground storage tanks and transfer piping. Use only outdoors or in a well-ventilated area. If feasible, store locked up.

Section 8 - Exposure Controls / Personal Protection

8(a) Occupational Exposure Limits (OELs): The following exposure limits are offered as reference, for an experience industrial hygienist to review.

Ingredients	OSHA PEL ¹	ACGIH TLV ²	NIOSH REL ³	IDLH ⁴
Benzene	1.0 ppm	0.5 ppm (1.6 mg/m ³), skin	0.1 ppm (0.32 mg/m ³)	500 ppm
	"STEL" 5.0 ppm	"STEL" 2.5 ppm (8 mg/m ³)	"STEL" 1.0 ppm (3.2 mg/m ³)	

1. OSHA PEL are 8-hour TWA concentrations unless otherwise noted. A Short Term Exposure Limit (STEL) is defined in the benzene standard as: The employer shall assure that no employee is exposed to an airborne concentration of benzene in excess of five (5) ppm as averaged over any 15 minute period.

2. TLVs established by the ACGIH are 8-hour TWA concentrations unless otherwise noted. ACGIH TLVs are for guideline purposes only and as such are not legal, regulatory limits for compliance purposes. A Short Term Exposure Limit (STEL) is defined as the maximum concentration to which workers can be exposed for a short period of time (15 minutes) for only four times throughout the day with at least one hour between exposures.

- 3. The NIOSH-REL- Compendium of Policy and Statements. NIOSH, Cincinnati, OH (1992). NIOSH is the federal agency designated to conduct research relative to occupational safety and health. As is the case with ACGIH TLVs, NIOSH RELs are for guideline purposes only and as such are not legal, regulatory limits for compliance purposes.
- 4. The IDLHs are used by NIOSH as part of the respirator selection criteria and were first developed in the mid 1970's by NIOSH. The Documentation for IDLHs is a compilation of the rationale and sources of information used by NIOSH during the original determination of 387 IDLHs and their subsequent review and revision in 1994.

8(b) Appropriate Engineering Controls: Local exhaust ventilation should be used to control the emission of air contaminants. General dilution ventilation may assist with the reduction of air contaminant concentrations. Emergency eye wash stations and deluge safety showers should be available in the work area.

8(c) Individual Protection Measures:

• **Respiratory Protection:** Seek professional advice prior to respirator selection and use. Follow OSHA respirator regulations (29 CFR 1910.134) and, if necessary, use only a NIOSH-approved respirator. Select respirator based on its suitability to provide adequate worker protection for given working conditions, level of airborne contamination, and presence of sufficient oxygen. Concentration in air of the various contaminants determines the extent of respiratory protection needed. Half-mask negative-pressure, air-purifying respirator equipped with organic vapor cartridge is acceptable for concentrations up to 10 times the exposure limit. Full-face negative-pressure air purifying respirator equipped with organic vapor cartridges is acceptable for concentrations up to 50 times the exposure limit. Protection by air purifying both negative-pressure and powered air respirators is limited. Use a positive-pressure-demand, full-face, supplied air respirator or self contained breathing apparatus (SCBA) for concentrations above 50 times the exposure limit. If exposure is above the IDLH (Immediately dangerous to life or health) for any of the constituents, or there is a possibility of an uncontrolled release or exposure levels are unknown, then use a positive-demand, full-face, supplied air respirator with escape bottle or SCBA.

Warning! Air-purifying respirators both negative-pressure, and powered-air do not protect workers in oxygen-deficient atmospheres.

- Eyes: Employees should be required to wear chemical safety glasses to prevent eye contact. A face shield should be used when appropriate to prevent contact with splashed materials. Chemical goggles, face shields or glasses should be worn to prevent eye contact. Contact lenses should not be worn where industrial exposure to this material is likely.
- Skin: Persons handling this product should wear appropriate clothing to prevent skin contact. Contaminated work clothing should not be allowed out of the workplace. Wash contaminated clothing before reuse. Wear protective gloves. Chemical goggles, face shields or glasses should be worn to prevent eye contact. Contact lenses should not be worn where industrial exposure to this material is likely. Wash skin that has been exposed with soap and water.

• Other Protective Equipment: An eyewash fountain and deluge shower should be readily available in the work area.

Section 9 - Physical and Chemical Properties

9(a) Appearance (physical state, color, etc.): Colorless to amber	9(j) Upper/lower Flammability or Explosive Limits: 10% / 1%
liquid	
9(b) Odor: gasoline - like	9(k) Vapor Pressure: 200-500 mmHg@68°F

Section 9 - Physical and Chemical Properties (continued)

9(c) Odor Threshold: NA	9(1) Vapor Density (Air = 1): ND
9(d) pH: NA	9(m) Relative Density: 6.25 lbs/gal (Bulk Density)
9(e) Melting Point/Freezing Point: NA	9(n) Solubility(ies): ND
9(f) Initial Boiling Point and Boiling Range: 96.8 - 258 °F (36-125.6 °C)	9(o) Partition Coefficient n-octanol/water: ND
9(g) Flash Point: <-50°F (<-45.6 °C)	9(p) Auto-ignition Temperature: ND
9(h) Evaporation Rate: NA	9(q) Decomposition Temperature: ND
9(i) Flammability (liquid): Highly Flammable	9(r) Viscosity: ND
NA - Not Applicable	
ND - Not Determined for product as a whole	

Section 10 - Stability and Reactivity

10(a) Reactivity: Not Determined (ND) for product as a whole.

10(b) Chemical Stability: Stable under normal storage and handling conditions.

10(c) Possibility of Hazardous Reaction: No Data Found

10(d) Conditions to Avoid: Storage with incompatible materials. Avoid heat, flame, or ignition sources.

10(e) Incompatible Materials: Strong acids and oxidizing agents.

10(f) Hazardous Decomposition Products: Can produce carbon dioxide and carbon monoxide.

Section 11 - Toxicological Information

11(a-e) Information on Toxicological Effects: The following toxicity data have been determined using the information available for its components applied to the guidance on the preparation of an SDS under the GHS requirements of OSHA and the EU CPL:

Hazard Classification	Hazard Category		Hazard	Hazard City I West	Hazard Statement
Hazaru Classification	EU*	OSHA	Symbols	Signal Word	Hazaru Statement
Acute Toxicity Hazard (covers Categories 1-5)	NA**	3ª		Danger	Toxic if inhaled
Skin Corrosion/Irritation (covers Categories 1A, 1B, 1C and 2)	2	2 ^b	(!)	Warning	Causes skin irritation
Eye Damage/ Irritation (covers Categories 1, 2A and 2B)	NA**	2A ^c		Warning	Causes serious eye irritation
Skin/Dermal Sensitization (covers Category 1)	NA**	NA**	NA**	NA**	NA**
Germ Cell Mutagenicity (covers Categories 1A, 1B and 2)	1B	$1B^d$		Danger	May cause genetic defects
Carcinogenicity (covers Categories 1A, 1B and 2)	1B	1A ^e		Danger	May cause cancer
Toxic Reproduction (covers Categories 1A, 1B and 2)	NA**	$1B^{\rm f}$		Danger	May damage fertility or the unborn child
Specific Target Organ Toxicity (STOT) Following Single Exposure (covers Categories 1-3)	NA**	2 ^g		Warning	May cause CNS and Peripheral depression, and damage lung liver (vacuoled hepatocytes) and red blood cells
STOT following Repeated Exposure (covers Categories 1 and 2)	NA**	1 ^h		Warning	May cause damage to the Hematopoietic system, spleen, liver through prolonged or repeat exposures
Aspiration (covers category 1)	1	1		Danger	May be fatal if swallowed and enters the airway

*Natural Gas Condensate has been harmonized as - Base classification: High Benzene Naphtha, flashpoint $< 23^{\circ}$ C and initial boiling point $\ge 35^{\circ}$ C, benzene or 1,3-butadiene $\ge 0.1\%$, naphthalene < 25%.

** Not Applicable - Many categories have conclusive but not sufficient for classification information.

Section 11 - Toxicological Information (continued)				
11(a-e) Information on toxicological effects (continued):				
a. The following LC_{50} or LD_{50} has been established for Condensate as a mixture:				
• Rat (4 hr) $LC_{50} > 5.2 \text{ mg/L}$				
• Rat (4 hr) $LC_{50} > 5.81 \text{ mg/L}$				
• Rat (4 hr) LC ₅₀ >5.2 mg/L				
b. The following Skin Corrosion/Irritation information was found for Condensate as a mixture:				
• Rabbit – Slightly irritating.				
Rabbit - Irritating but not corrosive.				
 c. The following Eye Damage/Irritation information was found for Condensate as a mixture: Rabbit – Slightly irritating. 				
d. No Germ Cell Mutagenicity data available for Condensate as a mixture. The following Germ Cell Mutagenicity information was found for the components:				
Benzene - Positive with activation. Positive In vitro Clastogenicity.				
e. No Carcinogenicity data available for Condensate as a mixture. The following Carcinogenicity information was found for the components:				
Benzene - Listed as class 1 carcinogen by the NTP, IARC, EPA and ACGIH.				
f. No Reproductive Toxicity data available for Condensate as a mixture. The following Reproductive Toxicity information was found for the components:				
• Benzene - NOAEC for both adult and offspring toxicity and female fertility. 300ppm (960 mg/m ³). NOAEC for maternal toxicity as teratogenicity was 100 ppm (320 mg/m ³). The NOAEC for slight fetotoxicity was 40 ppm (128 mg/m ³).				
g. No Specific Target Organ Toxicity (STOT) following Single Exposure data available for Condensate as a mixture. The following STC following Single Exposure information was found for the components:				
• Benzene - CNS and peripheral Depression, lung liver (vacuoled hepatocytes) and red blood cells may be effected.				
h. No Specific Target Organ Toxicity (STOT) following Repeated Exposure data available for Condensate as a mixture. The following STOT following Repeated Exposure data is available for the components:				
 Benzene - Spleen hematopoiesis, Liver, lung kidney effects are specific to male Rat. Early signs and symptoms of chronic overexposure inclue effects on CNS & the GI tract (headache, loss of appetite, drowsiness, nervousness, & pallor) but the major manifestation of toxicity is aplass anemia. Bone marrow depression may occur resulting in leucopoenia, anemia, or thrombocytopenia (leukemogenic action). With continue exposure the disease states may progress to pancytopenia resulting from bone marrow aplasia. Evidence has linked benzene in the etiology leukemia. 				
The above toxicity information was determined from available scientific sources to illustrate the prevailing posture of the scientific community. The scientific resources includes: The American Conference of Governmental Industrial Hygienist (ACGIH) Documentation of the Threshold Limit Values (TLVs) and Biological Exposure indices (BEIs) with Other Worldwide Occupational Exposure Values 2009, The International Agency for Research on Cancer (IARC), The National Toxicology Program (NTP) updated documentation, the World Health Organization (WHO) and other available resources, the International Uniform Chemical Information Database (IUCLID), European Union Risk Assessment Report (EU-RAR), Concise International Chemical Assessment Documents (CICAD), European Union Scientific Committee for Occupational Exposure Limits (EU-SCOEL), Agency for Toxic Substances and Disease Registry (ATSDR), Hazardous Substance Data Bank (HSDB), and International Programme on Chemical Safety (IPCS).				
Section 12 - Ecological Information				
12(a) Ecotoxicity (aquatic & terrestrial): No Data Found				
12(b) Persistence & Degradability: Loss due to volatility. Not readily biodegradable but is inherently biodegradable by microorganisms.				
12(c) Bioaccumulative Potential: No Data Found				
12(d) Mobility (in soil): Will float on water and will volatilize in air.				
12(e) Other adverse effects: No Data Found				
Additional Information:				
Hazard Category: Not Reported Signal Word: No Signal Word				
Hazard Symbol:				
Hazard Statement: No Statement				
Section 13 - Disposal Considerations				
Disposal: Waste code D001: Waste Flammable material with a flash point <140°F. This material and its container must be disposed of a				
hazardous waste. Under RCRA, it is the responsibility of the user of the product to determine, at the time of disposal, whether the product mee RCRA criteria for hazardous waste. European Waste Catalogue (EWC): 05-01-99 (waste from petroleum refining).				

Container Cleaning and Disposal: Containers should be completely empty prior to discarding. Dispose of contents in accordance with federal, state and local regulations. Observe safe handling precautions.

Please note this information is for Condensate in its original form. Any alterations can void this information.

Section 14 - Transportation Information

14(a-g) Transportation Information:

US DOT under 49 CFR 172.101 regulates Condensate as a hazardous material. All federal, state, and local laws and regulations that apply to the transport of this type of material must be adhered to. Shipping Name: RQ, UN3295, Hydrocarbon, Liquid, N.O.S. **Packaging Authorizations Ouantity Limitations** a) Exceptions: 150 PGIII (Benzene) a) Passenger, Aircraft, or Railcar: 60L Shipping Symbols: Flammable Liquid b) Non-Bulk: 203 b) Cargo Aircraft Only: 220L Hazard Class: 3 c) Bulk: 242 **Vessel Stowage Requirements** UN No.: UN3295 a) Vessel Stowage: A Packing Group: III b) Other: NA DOT/ IMO Label: 3 DOT Reportable Quantities: 10 lbs. Special Provisions (172.102): 144, B1, IB3, T4, TP1, TP29 IMDG and RID classification, packaging and shipping requirements follow the US DOT Hazardous Materials Regulation. ADR regulates Condensate as a hazardous material. Shipping Name: Hydrocarbons, Liquid, N.O.S. Portable Tanks & Bulk Containers Packaging **Classification Code: 3** a) Packing Instructions: P001, LP01 a) Instructions: T4 UN No.: 3295 b) Special Packing Provisions: NA b) Special Provisions: TP1, TP29 Packing Group: III c) Mixed Packing Provisions: NA ADR Label: Flammable Liquid Special Provisions: 223 Limited Quantities: 5L Excepted Quantities (EQ): E1 IATA regulates Condensate as a hazardous material. Shipping Name: Hydrocarbons, Liquid, N.O.S. Cargo Aircraft Only **Special Provisions:** Passenger & Cargo Aircraft A3 Class/Division: 3 Limited Quantity (EQ) Pkg Inst: 303 ERG Code: 3H Hazard Label (s): Flammable Liquid Pkg Inst: Pkg Inst: 302 Max Net Qty/Pkg: 30 Forbidden Max Net Qty/Pkg: L UN No.: 3295 Max Net Otv/Pkg: 1L Packing Group: 1 Forbidden Excepted Quantities (EQ): E3 Pkg Inst - Packing Instructions Max Net Qty/Pkg - Maximum Net Quantity per Package ERG - Emergency Response Drill Code TDG Classification: Condensate does have a TDG classification. **Section 15 - Regulatory Information** Regulatory Information: The following listing of regulations relating to a CONSOL Energy Inc. product may not be complete and should not be solely relied upon for all regulatory compliance responsibilities. This product and/or its constituents are subject to the following regulations: OSHA Regulations: Air Contaminant (29 CFR 1910.1000, Table Z-1, Z-2, Z-3): The product, Condensate as a whole is not listed. However, individual components of the product are listed: Refer to Section 8, Exposure Controls and Personal Protection EPA Regulations: Condensate is not listed as a whole. However, individual components of the product are listed: Components Regulations SARA 313, CERCLA, RCRA, SDWA, CWA, CAA Benzene SARA Potential Hazard Categories: Immediate Acute Health Hazard, Delayed Chronic Health Hazard, Fire Hazard **Regulations Key:** CAA Clean Air Act (42 USC Sec. 7412; 40 CFR Part 61 [As of: 8/18/06]) CERCLA Comprehensive Environmental Response, Compensation and Liability Act (42 USC Secs. 9601(14), 9603(a); 40 CFR Sec. 302.4, Table 302.4, Table 302.4 and App. A) CWA Clean Water Act (33 USC Secs. 1311; 1314(b), (c), (e), (g); 136(b), (c); 137(b), (c) [as of 8/2/06]) RCRA Resource Conservation Recovery Act (42 USC Sec. 6921; 40 CFR Part 261 App VIII) SARA Superfund Amendments and Reauthorization Act of 1986 Title III Section 302 Extremely Hazardous Substances (42 USC Secs. 11023, 13106; 40 CFR Sec. 372.65) and Section 313 Toxic Chemicals (42 USC Secs. 11023, 13106; 40 CFR Sec. 372.65 [as of 6/30/05]) TSCA Toxic Substance Control Act (15 U.S.C. s/s 2601 et seq. [1976]) SDWA Safe Drinking Water Act (42 U.S.C. s/s 300f et seq. [1974])

Section 313 Supplier Notification: This product, Condensate contains the following toxic chemicals subject to the reporting requirements of section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 and 40 CFR part 372:

CAS #	Chemical Name	Percent by Weight
71-43-2	Benzene	0.1

Section 15 - Regulatory Information (continued)				
Regulato	ry Information (continued):			
State Regulations: The product, Condensate as a whole is not listed in any state regulations. However, individual components of the product are listed in various state regulations:				
	ania Right to Know: Contains regulated material in the follo	owing categor	ies:	
-	vironmental Hazards: Benzene	8		
• Spe	cial Hazardous Substance: Benzene			
California	a Prop. 65: This product contains materials known to the Sta	te of Californ	ia to cause cancer. Benzene	
New Jerse	ey: Contains regulated material in the following categories:	Hazardous Su	ibstance: Benzene	
Minnesot	a: Benzene			
Massachu	isetts: Benzene			
Other Regulations: WHMIS Classification (Canadian): Condensate is not listed as a whole. However individual components are listed.				
	redients WHMIS Classification			
	nzene D-2A, D-2B, B-2			
		Products Regulat	ions and the SDS contains all the information required by the Controlled Products	
Regulations.		_		
	Section 16 -	Other Info	ormation	
Prepared	By: CONSOL Energy Inc.	Issue	Date: 8/12/2013	
Addition	al Information:			
HMIS CI	assification	NFP	A	
Health H	Hazard 2		3	
Fire Haz	zard 3	2	1	
Physica	l Hazard 1		· ·	
	2, Temporary or minor injury may occur.	HEAL	TH = 2 , Intense or continued exposure could cause temporary incapacitation or	
	Atterials capable of ignition under almost all normal temperature cond		le residual injury unless prompt medical attention is given.	
Includes flan	mmable liquids with flash points below 73 °F and boiling points above 100	°F, as FIRE =	= 3, Liquids and solids that can be ignited under almost all ambient conditions.	
-	ds with flash points between 73 °F and 100 °F. (Classes IB & IC). HAZARD = 1 , Materials that are normally stable but can become unstable		ABILITY = 1, Normally stable, but can become unstable at elevated temperatures essures or may react with water with some release of energy, but not violently.	
react) at hig	gh temperatures and pressures. Materials may react non-violently with w			
	ardous polymerization in the absence of inhibitors.			
	IATIONS/ACRONYMS:			
ACGIH	American Conference of Governmental Industrial Hygienists	mg/m ³	milligram per cubic meter of air	
ADR	Regulations Concerning the International Carriage of Dangerous Goods by Road	NFPA	National Fire Protection Association	
CAS	Chemical Abstracts Service	NIOSH	National Institute for Occupational Safety and Health	
CERCLA	Comprehensive Environmental Response, Compensation, and	NOAEC	No Observed Adverse Effect Concentration	
CEP	Liability Act Code of Federal Regulations	NTP	National Toyigology Program	
CFR CNS	Code of Federal Regulations Central Nervous System	OSHA	National Toxicology Program Occupational Safety and Health Administration	
CPL	Classification, Labeling and Packaging	PEL	Permissible Exposure Limit	
DOT	Department of Transportation	ppm	parts per million	
EC	European Community	RCRA	Resource Conservation and Recovery Act	
EU	European Union	REACH	Registration, Evaluation, Authorization and Restriction of Chemical substances.	
EWC	European Waste Catalogue	RID	Regulations Concerning the International Carriage of Dangerous Goods by Rail	
GI, GIT	Gastro-Intestinal, Gastro-Intestinal Tract	REL	Recommended Exposure Limits	
GHS	Globally Harmonized System	SDS	Safety Data Sheet	
HMIS	Hazardous Materials Identification System	SARA	Superfund Amendment and Reauthorization Act	
IARC	International Agency for Research on Cancer	SCBA	Self-contained Breathing Apparatus	
IATA	International Air Transport Association	STEL	Short Term Exposure Limit	
IDLH	Immediately Dangerous to Life or Health	TDG	Transport Dangerous Goods	
IMDG	International Maritime Dangerous Goods	TLV	Threshold Limit Value	
LC50	Median Lethal Concentration	TWA	Time-weighted Average	

Section 16 - Other Information (continued)

ABBREVIATIONS/ACRONYMS (continued):

MSHA	Mine Safety and Health Administration
mg/L	milligram per liter
-	

WHMIS Workplace Hazardous Materials Information System

Disclaimer: This information is taken from sources or based upon data believed to be reliable. Our objective in sending this information is to help you protect the health and safety of your personnel and to comply with the OSHA Hazard Communication Standard and Title III of the Superfund Amendment and Reauthorization Act of 1986. CONSOL Energy Inc. makes no warranty as to the absolute correctness, completeness, or sufficiency of any of the foregoing, or any additional, or other measures that may be required under particular conditions. CONSOL Energy Inc. MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING THE IMPLIED WARRANTY OF MERCHANTABILITY, OR ANY IMPLIED WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE, AND ANY IMPLIED WARRANTIES OTHERWISE ARISING FROM COURSE OF DEALING OR TRADE.

Product Name:Processed Natural GasProduct Code:NonePage 1 of 8

1. CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

Product Name: Processed Natural Gas Product Code: None Synonyms: Dry Gas Generic Name: Natural Gas Chemical Family: Paraffin hydrocarbon

Responsible Party: Unocal Corporation Union Oil Company of California 14141 Southwest Freeway Sugar Land, Texas 77478

For further information contact MSDS Coordinator 8am - 4pm Central Time, Mon - Fri: 281-287-5310

EMERGENCY OVERVIEW

24 Hour Emergency Telephone Numbers:

For Chemical Emergencies: Spill, Leak, Fire or Accident Call CHEMTREC North America: (800)424-9300 Others: (703)527-3887(collect)

For Health Emergencies: California Poison Control System (800)356-3129

Health Hazards: Use with adequate ventilation.

Physical Hazards: Flammable gas. Can cause flash fire. Gas displaces oxygen available for breathing. Keep away from heat, sparks, flames, or other sources of ignition (e.g., static electricity, pilot lights, mechanical/electrical equipment). Do not enter storage areas or confined space unless adequately ventilated.

- < Physical Form: Gas
- < Appearance: Colorless
- < Odor: Odorless in the absence of H2S or mercaptans

NFPA HAZARD CLASS: Health: 1 (Slight) Flammability: 4 (Extreme) Reactivity: 0 (Least)

Issue Date: 03/18/03 Revised Sections: 1, 3

Status: Final Revised

UNOCAL			
Processed Natural Gas			
None	Page 2 of 8		
	Processed Natural Gas		

2. COMPOSITION/INFORMATION ON INGREDIENTS

HAZARDOUS COMPONENTS	% Weight	ht EXPOSURE GUIDELINE		
		Limits	Agency	Туре
Methane CAS# 74-82-8	98	1000 ppm	MSHA	TWA
Carbon Dioxide CAS# 124-38-9	0-5		ACGIH OSHA	
Nitrogen CAS# 7727-37-9	0-5	1000 ppm	MSHA	TWA
Ethane CAS# 74-84-0	1	1000 ppm	MSHA	TWA

Note: State, local or other agencies or advisory groups may have established more stringent limits. Consult an industrial hygienist or similar professional, or your local agencies, for further information.

3. HAZARDS IDENTIFICATION

POTENTIAL HEALTH EFFECTS:

Eye: Not expected to be an eye irritant.

Skin: Skin contact is unlikely. Skin absorption is unlikely.

- Inhalation (Breathing): Asphyxiant. High concentrations in confined spaces may limit oxygen available for breathing.
- Signs and Symptoms: Light hydrocarbon gases are simple asphyxiants which, at high enough concentrations, can reduce the amount of oxygen available for breathing. Symptoms of overexposure can include shortness of breath, drowsiness, headaches, confusion,

Issue Date: 03/18/03	Status: Final Revised
Revised Sections: 1, 3	

UNOCAL			
Product Name:	Processed Natural Gas		
Product Code:	None	Page 3 of 8	
riouact coue.	None		

decreased coordination, visual disturbances and vomiting, and are reversible if exposure is stopped. Continued exposure can lead to hypoxia (inadequate oxygen), cyanosis (bluish discoloration of the skin), numbness of the extremities, unconsciousness and death. High concentrations of carbon dioxide can increase heart rate and blood pressure.

Cancer: No data available.

Target Organs: No data available.

Developmental: Limited data - See Other Comments, below.

Other Comments: High concentrations may reduce the amount of oxygen available for breathing, especially in confined spaces. Hypoxia (inadequate oxygen) and respiratory acidosis (increased carbon dioxide in blood), during pregnancy may have adverse effects on the developing fetus. Exposure during pregnancy to high concentrations of carbon monoxide, which is produced during the combustion of hydrocarbon gases, can also cause harm to the developing fetus.

Pre-Existing Medical Conditions: None known.

4. FIRST AID MEASURES

Eye: If irritation or redness develops, move victim away from exposure and into fresh air. Flush eyes with clean water. If symptoms persist, seek medical attention.

Skin: First aid is not normally required. However, it is good practice to wash any chemical from the skin.

Inhalation (Breathing): If respiratory symptoms develop, move victim away from source of exposure and into fresh air. If symptoms persist, seek medical attention. If victim is not breathing, immediately begin artificial respiration. If breathing difficulties develop, oxygen should be administered by qualified personnel. Seek immediate medical attention.

Issue Date: 03/18/03	Status: Final Revise
Revised Sections: 1, 3	

UNOCAL	
ONOCAL	

Product Nam	me: Proc	essed Natura	al Gas
Product Cod	de: None		

Page 4 of 8

5. FIRE FIGHTING MEASURES

Flammable Properties: Flash Point: Not applicable (gas) OSHA Flammability Class: Flammable gas LEL / UEL: No data Autoignition Temperature: 800-1000°F

- Unusual Fire & Explosion Hazards: This material is flammable and may be ignited by heat, sparks, flames, or other sources of ignition (e.g., static electricity, pilot lights, or mechanical/electrical equipment). Vapors may travel considerable distances to a source of ignition where they can ignite, flashback, or explode. May create vapor/air explosion hazard indoors, outdoors, or in sewers. If container is not properly cooled, it can rupture in the heat of a fire. Closed containers exposed t extreme heat can rupture due to pressure buildup.
- **Extinguishing Media:** Dry chemical or carbon dioxide is recommended. Carbon dioxide can displace oxygen. Use caution when applying carbon dioxide in confined spaces.
- Fire Fighting Instructions: For fires beyond the incipient stage, emergency responders in the immediate hazard area should wear When the potential chemical hazard is unknown, in bunker gear. enclosed or confined spaces, or when explicitly required by DOT, a self-contained breathing apparatus should be worn. In addition, wear other appropriate protective equipment as conditions warrant (see Section 8). Isolate immediate hazard area, keep unauthorized personnel out. Stop spill/release if it can be done with minimal risk. If this cannot be done, allow fire to burn. Move undamaged containers from immediate hazard area if it can be done with minimal risk. Stay away from ends of container. Water spray may be useful in minimizing or dispersing vapors. Cool equipment exposed to fire with water, if it can be done with minimal risk.

6. ACCIDENTAL RELEASE MEASURES

Flammable. Keep all sources of ignition and hot metal surfaces away from spill/release. The use of explosion-proof equipment is recommended. Stay upwind and away from spill/release. Notify persons down wind of spill/release, isolate immediate hazard area and keep unauthorized personnel out. Stop spill/release if it can be done with

Issue Date: 03/18/03 Revised Sections: 1, 3 Status: Final Revised

UNOCAL								
rocessed Natural Gas			-					
one	Page	5	of	8				
	rocessed Natural Gas	rocessed Natural Gas	rocessed Natural Gas	rocessed Natural Gas				

minimal risk. Wear appropriate protective equipment including respiratory protection as conditions warrant (see Section 8). Notify fire authorities and appropriate federal, state, and local agencies. Water spray may be useful in minimizing or dispersing vapors (see Section 5).

7. HANDLING AND STORAGE

- Handling: The use of explosion-proof equipment is recommended and may be required (see appropriate fire codes). Do not enter confined spaces such as tanks or pits without following proper entry procedures such as ASTM D-4276 and 29CFR 1910.146. The use of appropriate respiratory protection is advised when concentrations exceed any established exposure limits (see Section 2 and 8). Use good personal hygiene practice.
- Storage: Keep container(s) tightly closed. Use and store this
 material in cool, dry, well-ventilated areas away from heat,
 direct sunlight, hot metal surfaces, and all sources of ignition.
 Post area "No Smoking or Open Flame." Store only in approved
 containers. Keep away from any incompatible material (see
 Section 10). Protect container(s) against physical damage.
 Outdoor or detached storage is preferred.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Engineering controls: If current ventilation practices are not adequate to maintain airborne concentrations below the established exposure limits (see Section 2), additional ventilation or exhaust systems may be required. Where explosive mixtures may be present, electrical systems safe for such locations must be used (see appropriate electrical codes).

Personal Protective Equipment (PPE):

- Respiratory: Wear a positive pressure air supplied respirator in oxygen deficient environments (oxygen content <19.5%). A respiratory protection program that meets OSHA's 29 CFR 1910.134 and ANSI Z88.2 requirements must be followed whenever workplace conditions warrant a respirator's use.
- Skin: Not required based on the hazards of the material. However, it is considered good practice to wear gloves when handling chemicals.

Issue Date: 03/18/03	Status: Final Revised
Revised Sections: 1, 3	

UNOCAL								
Product Name:	Processed Natural Gas							
Product Code:	None	Page 6 of 8						

Eye/Face: While contact with this material is not expected to cause irritation, the use of approved eye protection to safeguard against potential eye contact is considered good practice.

Other Protective Equipment: A source of clean water should be available in the work area for flushing eyes and skin. Impervious clothing should be worn as needed. Self-contained respirators should be available for non-routine and emergency situations.

9. PHYSICAL AND CHEMICAL PROPERTIES

Note: Unless otherwise stated, values are determined at 20°C (68°F) and 760 mm Hg (1 atm).

Flash Point: Not applicable (gas)
Flammable/Explosive Limits (%): No data
Autoignition Temperature: 800-1000°F
Appearance: Colorless
Physical State: Gas
Odor: Odorless in the absence of H2S or mercaptans
Vapor Pressure (mm Hg): No data
Vapor Density (air=1): <1
Boiling Point: -259°F
Freezing/Melting Point: No data
Solubility in Water: Slight
Specific Gravity: 0.30+ (Air=1)
Percent Volatile: 100 vol.%
Evaporation Rate (nBuAc=1): N/A (Gas)</pre>

10. STABILITY AND REACTIVITY

Chemical Stability: Stable under normal conditions of storage and
handling.
Conditions To Avoid: Avoid all possible sources of ignition (see
Sections 5 & 7).
Incompatible Materials, Anoid contest with
Incompatible Materials: Avoid contact with strong oxidizing agents.
Hazardous Decomposition Products: Combustion can yield carbon dioxide
i i i i i i i i i i i i i i i i i i i
and carbon monoxide.
Issue Date: 03/18/03 Status: Final Revised
Revised Sections: 1, 3

UNOCAL

Product 1	Name:	Processed	Natural	Gas
Product (Code:	None		

Page 7 of 8

Hazardous Polymerization: Will not occur.

11. TOXICOLOGICAL INFORMATION

No definitive information available on carcinogenicity, mutagenicity, target organs or developmental toxicity.

12. DISPOSAL CONSIDERATIONS

This material, if discarded as produced, would be a RCRA "characteristic" hazardous waste due to the characteristic(s) of ignitability (D001). If the material is spilled to soil or water, characteristic testing of the contaminated materials is recommended. Further, this material is subject to the land disposal restriction in 40 CFR 268.40 and may require treatment prior to disposal to meet specific standards. Consult state and local regulations to determine whether they are more stringent than the federal requirements.

Container contents should be completely used and containers should be emptied prior to discard. Container rinsate could be considered a RCRA hazardous waste and must be disposed of with care and in full compliance with federal, state and local regulations. Larger empty containers, such as drums, should be returned to the distributor or to a drum reconditioner. To assure proper disposal of smaller empty containers, consult with state and local regulations and disposal authorities.

13. TRANSPORT INFORMATION

DOT Proper Shipping Name / Technical Name: Hydrocarbon Gas, Liquified N.O.S. (Methane) Hazard Class or Division: 2.1 ID #: UN1965

14. REGULATORY INFORMATION

This material contains the following chemicals subject to the reporting requirements of **SARA 313** and 40 CFR 372:

--None--Warning: This material contains the following chemicals which are known to the State of California to cause cancer, birth defects or

Issue Da		03/18	3/03		
Revised	Sect:	ions:	1,	3	

Status: Final Revised

UNOCAL

Product Name:	Processed Natural Gas	
Product Code:	None	Page 8 of 8

other reproductive harm, and are subject to the requirements of **California Proposition 65** (CA Health & Safety Code Section 25249.5):

--None Known--

This material has not been identified as a carcinogen by NTP, IARC, or OSHA.

EPA (CERCLA) Reportable Quantity: -- None--

15. DOCUMENTARY INFORMATION

Issue Date: 03/18/03 Previous Issue Date: 11/29/99 Product Code: None Previous Product Code: None

16. DISCLAIMER OF EXPRESSED AND IMPLIED WARRANTIES

The information in this document is believed to be correct as of the date issued. HOWEVER, NO WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY OTHER WARRANTY IS EXPRESSED OR IS TO BE IMPLIED REGARDING THE ACCURACY OR COMPLETENESS OF THIS INFORMATION, THE RESULTS TO BE OBTAINED FROM THE USE OF THIS INFORMATION OR THE PRODUCT, THE SAFETY OF THIS PRODUCT, OR THE HAZARDS RELATED TO ITS USE. This information and product are furnished on the condition that the person receiving them shall make his own determination as to the suitability of the product for his particular purpose and on the condition that he assume the risk of his use thereof.

Issue Date: 03/18/03 Revised Sections: 1, 3

Status: Final Revised

ATTACHMENT I

EMISSION UNITS TABLE

45CSR13 Permit Application

Dry Fork Station Camden, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA 15317

October 2017

Attachment I

Emission Units Table

(includes all emission units and air pollution control devices

that will be part of this permit application review, regardless of permitting status)

				-		
Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
CE-4	E01	Reciprocating Engine/Integral Compressor; Caterpillar G3306 NA; 4SRB	2012 Mfg. 12-10-1998	145 hp	New	None
CE-5	E02	Reciprocating Engine/Integral Compressor; Caterpillar G3306 NA; 4SRB	2014 Mfg. 4-21-2008	145 hp	New	None
T-1	E03	Compressor Station Pipeline Liquids AST	1998	2,100 gal 50 bbl	Existing	NA
T-2	E04	Associated Well #6718 Pipeline Liquids AST	2005	2,100 gal 50 bbl	Existing	NA
T-3	E05	Associated Well #6718 Pipeline Liquids AST	2005	2,100 gal 50 bbl	Existing	NA
T-4	E06	Associated Well #10986 Pipeline Liquids AST	1968	4,200 gal 100 bbl	Existing	NA
T-5	E07	Associated Well #10986 Pipeline Liquids AST	1968	4,200 gal 100 bbl	Existing	NA
TL-1	Fugitive	Pipeline Liquids – Truck Loading	1998	383,250 gal/yr	Existing	NA
Comp. Blowdowns	Fugitive	Blowdowns from the two Caterpillar G3306 NA; 4SRB Compressor Engines	2012-2014	15.4 lb/event	Existing	NA
Equipment Leaks	Fugitive	Equipment Leaks	1998	NA	Existing	NA

¹ For Emission Units (or <u>Sources</u>) use the following numbering system:1S, 2S, 3S,... or other appropriate designation. ² For <u>E</u>mission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

³ New, modification, removal
 ⁴ For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

ATTACHMENT J

EMISSION POINTS DATA SUMMARY SHEET

45CSR13 Permit Application

Dry Fork Station Camden, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA 15317

October 2017

Attachment J EMISSION POINTS DATA SUMMARY SHEET

	Table 1: Emissions Data																																														
Emission Point ID No. (Must match Emission Units	Emission Point Type ¹	Throu <i>(Must ma</i>	on Unit Vented ugh This Point <i>tch Emission Units</i> e & Plot Plan)	Contro (Musi Emissi Table	Dilution I Device t match on Units & Plot lan)	Vent Time for Emission Unit (chemical processes only)		for Emission Unit (chemical processes		for Emission Unit (chemical processes		for Emission Unit (chemical processes		for Emission Unit (chemical processes		for Emission Unit <i>(chemical processes</i>		for Emission Unit <i>(chemical processes</i>		for Emission Unit (chemical processes		for Emission Unit <i>(chemical processes</i>		All Regulated Pollutants - Chemical Name/CAS ³ (<i>Speciate VOCs</i> & HAPS)	Pollutants - Poter Chemical Uncont Name/CAS ³ Emissi		- Potential I Uncontrolled S ³ Emissions ⁴		ntial Potential rolled Controlled		Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)														
Table-& Plot Plan)		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& NAF3)	lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)																																		
E01	Horizontal Stack	CE-4	4SRB RICE CAT G3306 NA	C1	NSCR	NA	NA	NO _X CO VOC SO ₂ PM ₁₀ CH2O HAPs CO2e	4.66 4.86 0.16 0.01 0.03 0.09 0.11 151.21	20.37 21.27 0.70 0.01 0.11 0.38 0.45 662.29			Gas/ Vapor	EE	Can Supply Upon Request																																
E02	Horizontal Stack	CE-5	4SRB RICE CAT G3306 NA	C2	NSCR	NA	NA	$\begin{array}{c} \text{NO}_{\text{X}}\\ \text{CO}\\ \text{VOC}\\ \text{SO}_2\\ \text{PM}_{10}\\ \text{CH2O}\\ \text{HAPs}\\ \text{CO2e} \end{array}$	4.66 4.86 0.16 0.01 0.03 0.09 0.11 151.21	20.37 21.27 0.70 0.01 0.11 0.38 0.45 662.29			Gas/ Vapor	EE	Can Supply Upon Request																																
E03	Vertical Stack	T-1	Pipeline Liquids AST	NA	-	-	-	VOC	0.03	0.12	-	-	Gas/ Vapor	EE	Can Supply Upon Request																																
E04	Vertical Stack	T-2	Pipeline Liquids AST	NA	-	-	-	VOC	0.03	0.12	-	-	Gas/ Vapor	EE	Can Supply Upon Request																																
E05	Vertical Stack	T-3	Pipeline Liquids AST	NA	-	-	-	VOC	0.03	0.12	-	-	Gas/ Vapor	EE	Can Supply Upon Request																																

E06	Vertical Stack	T-4	Pipeline Liquids AST	NA	-	-	-	VOC	0.04	0.15	-	-	Gas/ Vapor	EE	Can Supply Upon Request
E07	Vertical Stack	T-5	Pipeline Liquids AST	NA	-	-	-	VOC	0.04	0.15	-	-	Gas/ Vapor	EE	Can Supply Upon Request

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

² Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).

List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. **LIST** Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. **DO NOT LIST** H₂O, N₂, O₂, and Noble Gases.

⁴ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁵ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch). 6

Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

⁷ Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m³) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO₂, use units of ppmv (See 45CSR10).

ATTACHMENT K

FUGITIVE EMISSIONS DATA SHEET

45CSR13 Permit Application

Dry Fork Station Camden, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA 15317

October 2017

Attachment K

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS
1.)	Will there be haul road activities?
	□ Yes
	If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.
2.)	Will there be Storage Piles?
	□ Yes
	☐ If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.
3.)	Will there be Liquid Loading/Unloading Operations?
	🖾 Yes 🗌 No
	If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
5.)	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?
	⊠ Yes □ No
	☑ If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET. Note: Component count and emission totals are included within site calculations. No monitoring or LDAR required at this site.
6.)	Will there be General Clean-up VOC Operations?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
7.)	Will there be any other activities that generate fugitive emissions?
	□ Yes
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.
	bu answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions nmary."

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants ⁻ Chemical Name/CAS ¹	Maximum Uncontrolled	Maximum Potential Uncontrolled Emissions 2Maximum Potential Controlled Emissions 3Ib/hrton/yrIb/hrton/yrton/yr		otential hissions ³	Est. Method
	Chemical Name/CAS	lb/hr			ton/yr	Used ⁴
Haul Road/Road Dust Emissions Paved Haul Roads	-	-	-	-	-	EE
Unpaved Haul Roads	-	-	-	-	-	EE
Storage Pile Emissions	-	-	-	-	-	EE
Loading/Unloading Operations	VOC	0.05	0.21	-	-	EE
Wastewater Treatment Evaporation & Operations	-	-	-	-	-	EE
Equipment Leaks	VOC	0.23	1.00	-	-	EE
General Clean-up VOC Emissions	-	-	-	-	-	EE
Other	-	-	-	-	-	EE

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch). ³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

ATTACHMENT L

EMISSION UNIT DATA SHEET

45CSR13 Permit Application

Dry Fork Station Camden, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA 15317

October 2017

INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. *Generator(s) and microturbine generator(s) shall also use this form*.

Emission Unit I	D#1	CH	5-4	C	E-5		
Engine Manufac	cturer/Model	Caterpilla	/ 3306 NA	Caterpilla	r/ 3306 NA		
Manufacturers I	Rated bhp/rpm	145/	1800	145/	1800		
Source Status ²		N	S	N	IS		
Date Installed/ Modified/Remo	ved/Relocated ³	20	12	20)14		
Engine Manufac /Reconstruction	ctured Date ⁴	12/10	/1998	4/21	/2008		
Check all applicable Federal Rules for the engine (include EPA Certificate of Conformity if applicable) ⁵		□40CFR60 S □JJJJ Certifi □40CFR60 S □IIII Certifie ⊠40CFR63 S □ NESHAP 2 JJJJ Window □ NESHAP 2 Sources	ed? ubpart IIII ed? ubpart ZZZZ ZZZZ/ NSPS	□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ ☑ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources		□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources	
Engine Type ⁶		48	RB	4SRB			
APCD Type ⁷		No	one	None			
Fuel Type ⁸		RG RG		G			
H_2S (gr/100 scf)	0.	0.25 0.25		25		
Operating bhp/r	pm	145/	1800	145/	1800		
BSFC (BTU/bhj	p-hr)	7,7	175	7,	775		
Hourly Fuel Th	roughput	1,010.20 ft	³ /hr	1,010.20 f	t ³ /hr		
Annual Fuel Th (Must use 8,760 emergency gene) hrs/yr unless		Mft ³ /yr ll/yr		Mft ³ /yr al/yr		
Fuel Usage or H Operation Mete		Yes 🗆	No 🖾	Yes 🗆	No 🖂	Yes 🗆	No 🗆
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)
MD	NO _x	4.66	20.37	4.66	20.37		
AP	СО	4.86	21.27	4.86	21.27		
MD	VOC	0.16	0.70	0.16	0.70		
AP	SO ₂	<0.01	0.01	<0.01	0.01		
AP	PM ₁₀	0.03	0.11	0.03	0.11		
MD	Formaldehyde	0.09	0.38	0.09	0.38		
AP	Total HAPs	0.11	0.0.45	0.11	0.0.45		
AP	GHG (CO ₂ e)	151.21	662.29	151.21	662.29		

1 Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.

2 Enter the Source Status using the following codes:

NS	Construction of New Source (installation)	ES	Existing Source
MS	Modification of Existing Source	RS	Relocated Source
REM	Removal of Source		

- 3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.
- 4 Enter the date that the engine was manufactured, modified or reconstructed.

5 Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintained to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6	Enter th	he Engine Type designation(s) using the following cod	es:						
	2SLB	Two Stroke Lean Burn	4SRB	Four St	roke Rich Burn				
	4SLB	Four Stroke Lean Burn							
7	Enter th	he Air Pollution Control Device (APCD) type designat	ion(s) u	sing the fo	ollowing codes:				
	A/F	Air/Fuel Ratio		IR	Ignition Retard	1			
	HEIS	High Energy Ignition System		SIPC	Screw-in Preco	ombustion Cha	mber	8	
	PSC	Prestratified Charge		LEC	Low Emission	Combustion			
	NSCR	· · · · · · · · · · · · · · · · · · ·		OxCat	Oxidation Cata	ılyst			
	SCR	Lean Burn & Selective Catalytic Reduction							
8	Enter th	he Fuel Type using the following codes:							
	PQ	Pipeline Quality Natural Gas RC	8 R	aw Natura	l Gas /Productio	n Gas	D	Diesel	
9	Entont	he Detential Emissions Date Deference designs	tion w	ing the f		a Attach all	nofor	anaa data ya	ad
9	Enter t	he Potential Emissions Data Reference designation	ution us	sing the i	onowing code	s. Attach an	refer	ence data us	eu.
	MD	Manufacturer's Data	A	P AP	-42				
	GR	GRI-HAPCalc TM	0	T Otl	ner	(please list)			

10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

	Cate	erpillar G3306NA Eng	ine Emissions				
Date of Manufacture	December 10, 1998	Engine Serial Number	G6X08155	Date Modified,	Reconstructed	N	
Driver Rated HP	145	Rated Speed in RPM	1800	Combustion Ty	pe	Spark Ignited 4 Stro	
Number of Cylinders	6	Compression Ratio	10.5:1	Combustion Se	tting	Rich Burn	
Displacement, in ³	640	Fuel Delivery Method	Carburetor	Combustion Ai	Treatment	Naturally Aspirate	
Raw Engine Emissions							
uel Consumption Ntitude Maximum Air Inlet Temp	8180 LHV BTU/bhp-hr 1200 ft 90 F	or 9004 HHV	/ BTU/bhp-hr				
		g/bhp-hr ¹	lb/MMBTU ²	lb/hr	ТРҮ		
itrogen Oxides (NOx)		14.55		4.651	20.372		
arbon Monoxide (CO)		14.55		4.651	20.372		
olatile Organic Compounds	(VOC or NMNEHC)	0.5		0.160	0.700		
ormaldehyde (CH2O)	ala+Condensable	0.27		0.086	0.378		
Particulate Matter (PM) Filterab	ile+condensable		1.94E-02	0.025	0.111		
ulfur Dioxide (SO2)			5.88E-04	0.001	0.003		
		g/bhp-hr ¹	lb/MMBTU ²	lb/hr	Metric Tonne/yr		
Carbon Dioxide (CO2) Methane (CH4)		552 0.9	110.0 0.23	144 0.300	571 1.193		
is recommended to add a s	afety margin to emissions to a	at g/bhp-hr values are based of allow for operational flexibility	and fuel gas composition	on variability.	Natural		
	om EPA's AP-42, Fifth Edition,	, Volume I, Chapter 3: Stationa	• .	•	Natural		

ATTACHMENT L – STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water. (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). **Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.**

The following information is **REQUIRED**:

- ⊠ Composition of the representative sample used for the simulation
- ☑ For each stream that contributes to flashing emissions:
 - \boxtimes Temperature and pressure (inlet and outlet from separator(s))
 - ⊠ Simulation-predicted composition
 - ⊠ Molecular weight
 - \boxtimes Flow rate
- ⊠ Resulting flash emission factor or flashing emissions from simulation
- \boxtimes Working/breathing loss emissions from tanks and/or loading emissions if simulation is used to quantify those emissions

Additional information may be requested if necessary.

GENERAL INFORMATION (REQUIRED)

1. Bulk Storage Area Name:	2. Tank Name					
Dry Fork Station	Pipeline Liquids AST					
2. Emission Unit ID number:	3. Emission Point ID number:					
T-1 through T-3	E03-E07					
5. Date Installed , Modified or Relocated (for existing tanks)	6. Type of change:					
T-1 (1998), T-2/T-3(2005)	\Box New construction \Box New stored material \boxtimes Other					
Was the tank manufactured after August 23, 2011 and on or	\Box Relocation					
before September 18, 2015?						
\Box Yes \boxtimes No						
Was the tank manufactured after September 18, 2015?						
\Box Yes \boxtimes No						
7A. Description of Tank Modification (<i>if applicable</i>)						
7B. Will more than one material be stored in this tank? If so, a s	separate form must be completed for each material.					
\Box Yes \boxtimes No	\Box Yes \boxtimes No					
7C. Was USEPA Tanks simulation software utilized?						
□ Yes	Ran (See Calculations)					
If Yes, please provide the appropriate documentation and items	8-42 below are not required.					

TANK INFORMATION

8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height.						
50 bbl/ 2,100 gal						
9A. Tank Internal Diameter (ft.) 8.459B. Tank Internal Height (ft.) 5						
10A. Maximum Liquid Height (ft.) 5	10B. Average Liquid Height (ft.) 2.5					
11A. Maximum Vapor Space Height (ft.)511B. Average Vapor Space Height (ft.)2.5						
12. Nominal Capacity (specify barrels or gallons). This is also	known as "working volume". 50 bbl/ 2,100 gal					
13A. Maximum annual throughput (gal/yr) 76,650 per tank	13B. Maximum daily throughput (gal/day) 210 per tank					
14. Number of tank turnovers per year 1	15. Maximum tank fill rate (gal/min) 0.15 per tank					
16. Tank fill method \Box Submerged \boxtimes Splash	□ Bottom Loading					
17. Is the tank system a variable vapor space system? \Box Yes	🖾 No					
If yes, (A) What is the volume expansion capacity of the system	(gal)?					
(B) What are the number of transfers into the system per	year?					
18. Type of tank (check all that apply):						
\boxtimes Fixed Roof \boxtimes vertical \square horizontal \boxtimes flat roo	f \Box cone roof \Box dome roof \Box other (describe)					
\Box External Floating Roof \Box pontoon roof \Box double	e deck roof					
Domed External (or Covered) Floating Roof						
□ Internal Floating Roof □ vertical column support □ self-supporting						
□ Variable Vapor Space □ lifter roof □ diaphragm						
□ Pressurized □ spherical □ cylindrical						
□ Other (describe)						

PRESSURE/VACUUM CONTROL DATA

VOCs Combined Tanks	lb/hrtpylb/hrtpylb/hrtpy							
Material Name	Material Name Flashing Loss Working/ Breathing Loss Total Emissions Estimation Method ¹ Loss Loss							
20. Expected Emission Rat	te (submit	Test Dat	a or Calculat	ions here or elsewhe	ere in the appl	ication).		
¹ Complete appropriate Air	Pollution	Control	Device Sheet					
Thief Hatch Weighted								
Vacuum Setting Pre	essure Sett	ing						
□ Emergency Relief Valv	□ Emergency Relief Valve (psig)							
-0.03 Vacuum Setting	0.03 Pr	essure Se	etting					
\square Conservation Vent (psig) \square Condenser ¹								
□ Vent to Vapor Combust	□ Vent to Vapor Combustion Device ¹ (vapor combustors, flares, thermal oxidizers, enclosed combustors)							
□ Inert Gas Blanket of								
□ Does Not Apply □ Rupture Disc (psig)								
19. Check as many as apply:								

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

TANK CONSTRUCTION AND OPERATION INFORMATION							
21. Tank Shell Construction:							
\Box Riveted \Box Gunite lined \Box Epoxy-coated rivets \boxtimes Other (describe) Welded							
21A. Shell Color: Green	21A. Shell Color: Green21B. Roof Color: Green21C. Year Last Painted: NA						
22. Shell Condition (if metal and unlined):							
□ No Rust □ Light Rust □ Dense	Rust 🛛 Not applicable						
22A. Is the tank heated? \Box Yes \boxtimes No	22A. Is the tank heated? \Box Yes \boxtimes No 22B. If yes, operating temperature: 22C. If yes, how is heat provided to tank?						
23. Operating Pressure Range (psig):							
Must be listed for tanks using VRUs with	th closed vent system.						

STORAGE TANK DATA TABLE List all deminimis storage tanks (i.e. lube oil, glycol, diesel etc.)

Source ID # ¹	Status ²	Content ³	Volume ⁴
T-6	EXIST	Used Oil Tank	1,000 gal
T-7	EXIST	Lube Oil Tank	15 gal
T-8	EXIST	Lube Oil Tank	30 gal
T-9	EXIST	Lube Oil Tank	1,000 gal

Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the well site. Tanks should 1. be designated T01, T02, T03, etc. Enter storage tank Status using the following: EXIST Existing Equipment NEW Installation of New Equipment

2.

REM Equipment Removed Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, diesel, mercaptan etc. 3.

Enter the maximum design storage tank volume in gallons. 4.

ATTACHMENT L – STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water. (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). **Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.**

The following information is **REQUIRED**:

- ⊠ Composition of the representative sample used for the simulation
- ☑ For each stream that contributes to flashing emissions:
 - \boxtimes Temperature and pressure (inlet and outlet from separator(s))
 - ⊠ Simulation-predicted composition
 - ⊠ Molecular weight
 - \boxtimes Flow rate
- ⊠ Resulting flash emission factor or flashing emissions from simulation
- \boxtimes Working/breathing loss emissions from tanks and/or loading emissions if simulation is used to quantify those emissions

Additional information may be requested if necessary.

GENERAL INFORMATION (REQUIRED)

1. Bulk Storage Area Name:	2. Tank Name					
Dry Fork Station	Pipeline Liquids AST					
2. Emission Unit ID number:	3. Emission Point ID number:					
T-4 through T-5	E06-E07					
5. Date Installed , Modified or Relocated (for existing tanks)	6. Type of change:					
T-4/T-5(1968)	\Box New construction \Box New stored material \boxtimes Other					
Was the tank manufactured after August 23, 2011 and on or	□ Relocation					
before September 18, 2015?						
\Box Yes \boxtimes No						
Was the tank manufactured after September 18, 2015?						
\Box Yes \boxtimes No						
7A. Description of Tank Modification (<i>if applicable</i>)						
7B. Will more than one material be stored in this tank? If so, a	separate form must be completed for each material.					
\Box Yes \boxtimes No						
7C. Was USEPA Tanks simulation software utilized?						
□ Yes	Ran (See Calculations)					
If Yes, please provide the appropriate documentation and items 8-42 below are not required.						

TANK INFORMATION

8. Design Capacity (specify barrels or gallons). Use the international statements of the second	l cross-sectional area multiplied by internal height.					
100 bbl/ 4,200 gal						
9A. Tank Internal Diameter (ft.) 8.459B. Tank Internal Height (ft.) 10						
10A. Maximum Liquid Height (ft.) 10	10B. Average Liquid Height (ft.) 5					
11A. Maximum Vapor Space Height (ft.) 10	11B. Average Vapor Space Height (ft.) 5					
12. Nominal Capacity (specify barrels or gallons). This is also	known as "working volume". 100 bbl/ 4,200 gal					
13A. Maximum annual throughput (gal/yr) 76,650 per tank	13B. Maximum daily throughput (gal/day) 210 per tank					
14. Number of tank turnovers per year 1	15. Maximum tank fill rate (gal/min) 0.15 per tank					
16. Tank fill method \Box Submerged \boxtimes Splash	Bottom Loading					
17. Is the tank system a variable vapor space system? \Box Yes	🗵 No					
If yes, (A) What is the volume expansion capacity of the system	(gal)?					
(B) What are the number of transfers into the system per	year?					
18. Type of tank (check all that apply):						
\boxtimes Fixed Roof \boxtimes vertical \square horizontal \boxtimes flat roof	\Box cone roof \Box dome roof \Box other (describe)					
\Box External Floating Roof \Box pontoon roof \Box double	deck roof					
Domed External (or Covered) Floating Roof						
□ Internal Floating Roof □ vertical column support	□ self-supporting					
□ Variable Vapor Space □ lifter roof □ diaphragm						
□ Pressurized □ spherical □ cylindrical						
\Box Other (describe)						

PRESSURE/VACUUM CONTROL DATA

VOCs Combined Tanks	< 0.01	0.02	0.07	0.27	0.07	0.29	O - ProMax			
	lb/hr	tpy	lb/hr tpy		Loss lb/hr	tpy	-			
	r tastititiş	5 11088	Working/ Breathing Loss			1115510115	Esumation Method			
Material Name	Flashing		1		Total Er		Estimation Method ¹			
20. Expected Emission Rat	te (submit	Test Dat	a or Calculatio	ons here or elsewhe	ere in the appl	ication)				
comprete appropriate rai	1 on ation	control	2 c lice blicet							
¹ Complete appropriate Air			Device Sheet							
□ Thief Hatch Weighted	□ Yes □	No								
Vacuum Setting Pre	ssure Sett	ing								
Emergency Relief Valv	e (psig)									
-0.03 Vacuum Setting	0.03 Pr	essure Se	etting							
Conservation Vent (psig	g)			Condenser ¹						
□ Vent to Vapor Combust	tion Devic	e ¹ (vapor	r combustors,	flares, thermal oxic	lizers, enclose	d combust	ors)			
□ Inert Gas Blanket of				Carbon Adsorption						
\Box Does Not Apply	\Box Rupture Disc (psig)									
19. Check us many us upp	. Check as many as appry:									

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

TANK CONSTRUCTION AND OPERATION INFORMATION										
21. Tank Shell Construction:										
\Box Riveted \Box Gunite lined \Box Epoxy-coated rivets \boxtimes Other (describe) Welded										
21A. Shell Color: Green	21A. Shell Color: Green21B. Roof Color: Green21C. Year Last Painted: NA									
22. Shell Condition (if metal and unlined):										
□ No Rust □ Light Rust □ Dense	Rust 🛛 Not applicable									
22A. Is the tank heated? \Box Yes \boxtimes No	22B. If yes, operating temperature:	22C. If yes, how is heat provided to tank?								
23. Operating Pressure Range (psig):										
Must be listed for tanks using VRUs with	th closed vent system.									

24. Is the tank a Vertical Fixed Ro \boxtimes Yes \square No	of Tank?	24A. If yes, for dome	roof prov	vide radius (ft):	24B. If yes	s, for cone roof, provide slop (ft/ft):					
	Doof Toply	Doos not opply									
25. Complete item 25 for Floating Roof Tanks □ Does not apply ⊠ 25A. Year Internal Floaters Installed:											
25B. Primary Seal Type (<i>check one</i>): □ Metallic (mechanical) shoe seal □ Liquid mounted resilient seal □ Other (describe):											
25C. Is the Floating Roof equipped with a secondary seal? □ Yes □ No											
25D. If yes, how is the secondary seal mounted? (<i>check one</i>) \Box Shoe \Box Rim \Box Other (describe):											
25E. Is the floating roof equipped w	25E. Is the floating roof equipped with a weather shield? Yes No										
25F. Describe deck fittings:											
26. Complete the following section for Internal Floating Roof Tanks 🛛 Does not apply											
26A. Deck Type: 🗌 Bolted	🗆 V	Velded	26B. 1	For bolted decks,	provide dec	k construction:					
26C. Deck seam. Continuous sheet	t constructio	on:									
\Box 5 ft. wide \Box 6 ft. wide \Box	7 ft. wid	e \Box 5 x 7.5 ft. wide	□ 5 x	12 ft. wide \Box	other (de	scribe)					
26D. Deck seam length (ft.):	26E. Area	a of deck (ft ²):	26F. I	For column suppo	orted	26G. For column supported					
			tanks,	# of columns:		tanks, diameter of column:					
27. Closed Vent System with VRU	? 🗆 Yes	🛛 No									
28. Closed Vent System with Enclo	osed Combu	stor? 🗆 Yes 🖾 No									
SITE INFORMATION											
29. Provide the city and state on wh											
30. Daily Avg. Ambient Temperatu				-	-	rature (°F): 61.15					
32. Annual Avg. Minimum Temper					vg. Wind Speed (mph): 6.17						
34. Annual Avg. Solar Insulation Fa	actor (BTU/	/ft ² -day): 1,193.70	35. A	tmospheric Press	ure (psia): 13	3.73					
LIQUID INFORMATION		1									
36. Avg. daily temperature range of	f bulk	36A. Minimum (°F): 3	86.97		36B. Maxi	imum (°F): 61.15					
liquid (°F): 49.07	£ 4 1-	27.4 Minimum (a.i.)	0.02		37B. Maximum (psig): 0.03						
37. Avg. operating pressure range of (psig): 0.0	oi tank	37A. Minimum (psig)	-0.03		5/B. Maxi	imum (psig): 0.03					
(paig). 0.0											
38A. Minimum liquid surface temp	erature (°F)	: 36.97	38B. (Corresponding va	apor pressure	e (psia): 6.37					
39A. Avg. liquid surface temperatu				Corresponding va		-					
40A. Maximum liquid surface temp				Corresponding va		-					
41. Provide the following for each l	liquid or gas	s to be stored in the tank.	Add add	litional pages if r	necessary. SE	EE PROMAX MODEL IN					
CALCULATIONS.											
41A. Material name and composition	on:										
41B. CAS number:											
41C. Liquid density (lb/gal):											
41D. Liquid molecular weight (lb/lb-mole):											
41E. Vapor molecular weight (lb/lb-mole):											
41F. Maximum true vapor pressure (psia):											
41G. Maximum Keid vapor pressure (psia): 41H. Months Storage per year.											
From: To:											
42. Final maximum gauge pressure a	and										
temperature prior to transfer into tan											
inputs into flashing emission calculations.											

TANKER TRUCK LOADING DATA SHEET

Complete this data sheet for each new or modified bulk liquid transfer area or loading rack at the facility. This is to be used for bulk liquid transfer operations to tanker trucks. Use extra pages if necessary.

Truck Loadout Collection Efficiencies

The following applicable capture efficiencies of a truck loadout are allowed:

- For tanker trucks passing the MACT level annual leak test 99.2%
- For tanker trucks passing the NSPS level annual leak test 98.7%
- For tanker trucks not passing one of the annual leak tests listed above 70%

Compliance with this requirement shall be demonstrated by keeping records of the applicable MACT or NSPS Annual Leak Test certification for *every* truck and railcar loaded/unloaded. This requirement can be satisfied if the trucking company provided certification that its entire fleet was compliant. This certification must be submitted in writing to the Director of the DAQ. These additional requirements must be noted in the Registration Application and will be noted on the issued G35-C Registration.

Emission Unit ID#: TL-	1	Emissi	on Point ID#	: Fugitive	Fugitive Year Installed/Modified: 199					
Emission Unit Description: Emissions from Truck Loading are vented to Atmosphere										
Loading Area Data										
Number of Pumps: 1 / On TruckNumber of Liquids Loaded: 1Max number of trucks loading at one (1) time: 1										
Are tanker trucks pressu If Yes, Please describe:	Are tanker trucks pressure tested for leaks at this or any other location? \Box Yes \Box No \boxtimes Not Required If Yes, Please describe:									
Provide description of c	Provide description of closed vent system and any bypasses.									
 Are any of the following truck loadout systems utilized? Closed System to tanker truck passing a MACT level annual leak test? Closed System to tanker truck passing a NSPS level annual leak test? Closed System to tanker truck not passing an annual leak test and has vapor return? 										
Proj	jected Maximu	m Operat	ting Schedul	e (for rack o	r transf	er point as a w	10le)			
Time	Jan – M	ar	Apr	- Jun	J	ul – Sept	Oct - Dec			
Hours/day	24		2	4		24	24			
Days/week	7			7		7	7			
	Bu	lk Liquid	Data (use e	xtra pages a	s necess:	ary)	·			
Liquid Name	P	peline Li	quids							
Max. Daily Throughput (1000 gal/day)		1.05								
Max. Annual Throughpu (1000 gal/yr)	Max. Annual Throughput (1000 gal/yr) 383.25									
Loading Method ¹		SUB								
Max. Fill Rate (gal/min))	0.73								
Average Fill Time (min/loading)		60								
Max. Bulk Liquid Temperature (°F)		49.1								

True Vapor I	'rue Vapor Pressure ² 6.77		
Cargo Vesse	l Condition ³	С	
Control Equi Method ⁴	pment or	None	
Max. Collection Efficiency (%)		0	
Max. Control Efficiency (%)		0	
Max.VOC	Loading (lb/hr)	0.05	
Emission Rate	Annual (ton/yr)	0.21	
Max.HAP Emission	Loading (lb/hr)	0.00	
Rate	Annual (ton/yr)	0.00	
Estimation M	1ethod ⁵	O - ProMax	

1	BF	Bottom Fill	SP	Splash Fill	l	SUB	Submerged Fill
2	At maxii	num bulk liquid temperature		-			-
3	В	Ballasted Vessel	С	Cleaned	U	Uncleane	ed (dedicated service)
	0	Other (describe)					
4	List as a	many as apply (complete and	submit app	propriate A	ir Pollution Cont	rol Device	Sheets)
	CA	Carbon Adsorption		VB	Dedicated Vapor	Balance (closed system)
	ECD	Enclosed Combustion Devi	ce	F	Flare		
	ТО	Thermal Oxidization or Inc	ineration				
5	EPA	EPA Emission Factor in AF	P -42		MB	Materia	l Balance
	ТМ	Test Measurement based up	oon test da	ta submitta	l O	Other (de	escribe)

ATTACHMENT M

AIR POLLUTION CONTROL DEVICE SHEET(S)

NOT APPLICABLE - No APCD in use at the facility

45CSR13 Permit Application

Goosepen Station Roanoke, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA 15317

October 2017

ATTACHMENT N

SUPPORTING EMISSIONS CALCULATIONS

45CSR13 Permit Application

Goosepen Station Roanoke, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA 15317

October 2017

Table 1. Annual Potential To Emit (PTE) Summary CNX Gas Company - Dry Fork Station

Criteria Pollutants

roposed Facility Wide PTE - Criteria Pollutants									
Source	PM	PM10	PM2.5	SO2	NOx	со	voc	CO2e	
Engines (ton/yr)	0.222	0.222	0.222	0.015	40.744	42.545	1.400	1324.570	
Tanks (ton/yr)	-	-	-	-	-	-	0.659	-	
Truck Loading (ton/yr)	-	-	-	-	-	-	0.207	-	
Compressor Blowdowns (ton/yr)	-	-	-	-	-	-	0.462	-	
Fugitives (ton/yr)	-	-	-	-	-	-	0.996	23.162	
Total Emissions (ton/yr)	0.222	0.222	0.222	0.015	40.744	42.545	3.725	1347.732	
Total Emissions (lb/hr)	0.051	0.051	0.051	0.003	9.302	9.714	0.850	307.701	

Proposed Facility Wide PTE - HAPs

Hazardous Air Pollutants (HAPs)

Source	Acetaldehyde	Benzene	Toluene	Ethylbenzene	Xylene	n-Hexane	Formaldehyde	Total HAPs
Engines (ton/yr)	0.0319	0.0181	0.0064	0.0003	0.0022	-	0.756	0.892
Tanks (ton/yr)	-	-	-	-	-	-	-	-
Truck Loading (ton/yr)	-	-	-	-	-	-	-	-
Compressor Blowdowns (ton/yr)	-	-	-	-	-	-	-	-
Fugitives (ton/yr)	-	-	-	-	-	-	-	-
Total Emissions (ton/yr)	0.032	0.018	0.006	0.000	0.002	0.000	0.756	0.892
Total Emissions (lb/hr)	0.007	0.004	0.001	0.000	0.001	0.000	0.173	0.204

Emission Limitations from Old Permit - G30-D072A

Source	NOx	со	voc
Engines (ton/yr)	5.330	5.330	0.750
Total Emissions (ton/yr)	5.330	5.330	0.750
Total Emissions (Ib/hr)	1.217	1.217	0.171

Difference in Site Wide Emissions

Source	NOx	со	voc
Engines (ton/yr)	35.414	37.215	2.975
Total Emissions (ton/yr)	35.414	37.215	2.975
Total Emissions (lb/hr)	8.085	8.497	0.679

Table 2. Reciprocating Engine / Integral Compressor Emissions (CE-4 and CE-5) Cat 3306 NA **CNX Gas Company - Dry Fork Station**

	Maximum Hourly	/ Emi	ssions		Annual En	nissio	ns	
Pollutant	Emission Factor		PTE p Engii (lb/h	ne	Emission Factor	or PTE per Engin (tons/yr)		•
Criteria Pollutants								
PM/PM10/PM2.5**	1.94E-02 lb/MMBtu	(1)	0.025	(a)	1.94E-02 lb/MMBtu	(1)	0.11	(c)
SO ₂	0.25 grains S / 100 ft ³	(2)	0.002	(e)	0.25 grains S / 100 ft ³	(2)	0.007	(f)
NOx	1.46E+01 g/hp-hr	(3)	4.651	(b)	1.46E+01 g/hp-hr	(3)	20.37	(d)
CO	3.72E+00 lb/MMBtu	(1)	4.857	(a)	3.72E+00 lb/MMBtu	(1)	21.27	(c)
VOC*	5.00E-01 g/hp-hr	(3)	0.160	(b)	5.00E-01 g/hp-hr	(1)	0.70	(d)
*VOCs do not include formaldehyde								
Hazardous Air Pollutants								
1,1,2,2-Tetrachloroethane	2.53E-05 lb/MMBtu	(1)	0.000	(a)	2.53E-05 lb/MMBtu	(1)	0.000	(c)
1,1,2-Trichloroethane	1.53E-05 lb/MMBtu	(1)	0.000	(a)	1.53E-05 lb/MMBtu	(1)	0.000	(c)
1,3-Butadiene	6.63E-04 lb/MMBtu	(1)	0.001	(a)	6.63E-04 lb/MMBtu	(1)	0.004	(c)
1,3-Dichloropropene	1.27E-05 lb/MMBtu	(1)	0.000	(a)	1.27E-05 lb/MMBtu	(1)	0.000	(c)
Acetaldehyde	2.79E-03 lb/MMBtu	(1)	0.004	(a)	2.79E-03 lb/MMBtu	(1)	0.016	(c)
Acrolein	2.63E-03 lb/MMBtu	(1)	0.003	(a)	2.63E-03 lb/MMBtu	(1)	0.015	(c)
Benzene	1.58E-03 lb/MMBtu	(1)	0.002	(a)	1.58E-03 lb/MMBtu	(1)	0.009	(c)
Carbon Tetrachloride	1.77E-05 lb/MMBtu	(1)	0.000	(a)	1.77E-05 lb/MMBtu	(1)	0.000	(c)
Chlorobenzene	1.29E-05 lb/MMBtu	(1)	0.000	(a)	1.29E-05 lb/MMBtu	(1)	0.000	(c)
Chloroform	1.37E-05 lb/MMBtu	(1)	0.000	(a)	1.37E-05 lb/MMBtu	(1)	0.000	(c)
Ethylbenzene	2.48E-05 lb/MMBtu	(1)	0.000	(a)	2.48E-05 lb/MMBtu	(1)	0.000	(c)
Ethylene Dibromide	2.13E-05 lb/MMBtu	(1)	0.000	(a)	2.13E-05 lb/MMBtu	(1)	0.000	(c)
Formaldehyde	2.70E-01 g/hp-hr	(3)	0.086	(b)	2.70E-01 g/hp-hr	(3)	0.378	(d)
Methanol	3.06E-03 lb/MMBtu	(1)	0.004	(a)	3.06E-03 lb/MMBtu	(1)	0.017	(c)
Methylene Chloride	4.12E-05 lb/MMBtu	(1)	0.000	(a)	4.12E-05 lb/MMBtu	(1)	0.000	(c)
Naphthalene	9.71E-05 lb/MMBtu	(1)	0.000	(a)	9.71E-05 lb/MMBtu	(1)	0.001	(c)
PAH (POM)	1.41E-04 lb/MMBtu	(1)	0.000	(a)	1.41E-04 lb/MMBtu	(1)	0.001	(c)
Styrene	1.19E-05 lb/MMBtu	(1)	0.000	(a)	1.19E-05 lb/MMBtu	(1)	0.000	(c)
Toluene	5.58E-04 lb/MMBtu	(1)	0.001	(a)	5.58E-04 lb/MMBtu	(1)	0.003	(c)
Vinyl Chloride	7.16E-06 lb/MMBtu	(1)	0.000	(a)	7.16E-06 lb/MMBtu	(1)	0.000	(c)
Xylenes	1.95E-04 lb/MMBtu	(1)	0.000	(a)	1.95E-04 lb/MMBtu	(1)	0.001	(c)
Total HAP			0.102				0.446	
Greenhouse Gas Emissions								
CO ₂	110.00 lb/MMBtu	(1)	143.61	(a)	110.00 lb/MMBtu	(1)	629.03	(c)
CH₄	2.3E-01 lb/MMBtu	(1)	0.30	(a)	2.3E-01 lb/MMBtu	(1)	1.32	(c)
N ₂ O						. ,		
	2.2E-04 lb/MMBtu	(4)	0.00	(a)	2.2E-04 lb/MMBtu	(4)	0.00	(c)

** PM emission factor includes condensables and filterables

Calculations:

Maximum Hourly Emissions - If emission factor note 1 or 4 is used, use calculation (a). If emission factor note 3 is used, use calculation (b).

(a) Maximum Hourly Emissions (lb/hr) = Emission factor (lb/MMBtu) * (1MMBtu/1000000 Btu) * Engine Power Output (hp) * Average BSFC (Btu/hp-hr)

(b) Maximum Hourly Emissions (lb/hr) = Emission factor (g/hp-hr) * Engine Power Output (hp) * (1 lb/453.6 g)

Annual Emissions - If emission factor note 1 or 4 is used, use calculation (c). If emission factor note 3 is used, use calculation (d).

(c) Annual emissions (tons/yr) = Emission factor (lb/MMBtu) * (1MMBtu/100000Btu) * Engine Power Output (hp) * Average BSFC (Btu/hp-hr) * Annual Hours of operation (hr/yr) * (1ton/2000lbs)

(d) Annual emissions (tons/yr) = Emission factor (g/hp-hr) * Engine Power Output (hp) * (1 lb/453.6 g) * Annual Hours of operation (hr/yr) * (1ton/2000lbs)

SO2 Emissions - If emission factor note 2 is used, use calculations (e) and (f) for hourly and annual emissions, respectively.

(e) Maximum Hourly Emissions SO2 Caclulation (lb/hr) = (0.25 grain S/100ft3) * Fuel throughput (ft3/hr) * (1lb/7000 grains) * (lbmol S/32.06 lb S) * (lbmol SO2/ lbmol S) * (64.07 lb SO2/lbmol SO2)

(f) Annual Emissions SO2 Caclulation (ton/yr) = (0.25 grain S/100ft3) * Fuel throughput (ft3/hr) * (1b/7000 grains) * (lbmol S/32.06 lb S) * (lbmol SO2/ lbmol S) * (64.07 lb SO2/lbmol SO2) * Annual hours of operation (hr/yr) * (1ton/2000lbs)

MAXIMUM HOURLY EMISSION IN	PUTS	
Engine Power Output (kW) =	108	
Engine Power Output (hp) =	145	
Number of Engines =	2	
Average BSFC (BTU/HP-hr) =	9,004	
Heat Content Natural Gas(Btu/scf) =	1,116.0	
Fuel Throughput (ft3/hr) =	1,169.9	
PTE Hours of Operation =	8,760	

(g) CO_2 equivalent = [(CO_2 emissions)*(GWP_{CO2})]+[(CH_4 emissions)*(GWP_{CH4})]+[(N_2O emissions)*(GWP_{N2O})]

CO ₂	1	(8)
CH_4	25	(8)
N ₂ O	298	(8)

Notes:

(1) AP-42, Chapter 3.2, Table 3.2-3. Natural Gas-fired Reciprocating Engines (7/00). Uncontrolled Emission Factors for 4-Stroke Rich-Burn Engines.

(2) AP-42, Chapter 5.3, Section 5.3,1

(3) Emission Factors supplied from manufacturer's specification sheets

(4) Emission factors are from 40 CFR 98, Subpart C, Table C-1 and C-2, (5) Fuel consumption from manufacturer's specification sheet.

Global Warming Potential (GWP)

(6) Value supplied from client based on gas composition in area field (7) Fuel throughput = BSFC (BTU/HP-hr) x Power (HP) / Heat Content (BTU/scf)

(8) Global Warming Potentials obtained from 40 CFR 98, Subpart A, Table A-1

Table 3. Tank Emissions CNX Gas Company - Dry Fork Station

Emission Unit ID	Tank Capacity (gal)	Tank Contents	Control Devices	Tank Throughput (bbls/day)	VOC Emis Factor (lbs/		VOC Emissions (lbs/yr) ^(a)	VOC Emissions (lb/hr) ^(b)	VOC Emissions (tons/yr) ^(c)
T-1	2100	Pipeline Liquids	None	5.00	1.36E-01	(1)	247.78	0.028	0.124
T-2	2100	Pipeline Liquids	None	5.00	1.36E-01	(1)	247.78	0.028	0.124
T-3	2100	Pipeline Liquids	None	5.00	1.36E-01	(1)	247.78	0.028	0.124
T-4	4200	Pipeline Liquids	None	5.00	1.57E-01	(1)	287.37	0.033	0.144
T-5	4200	Pipeline Liquids	None	5.00	1.57E-01	(1)	287.37	0.033	0.144
Totals							1318.08	0.150	0.659

Calculations:

(a) VOC Emissions (lb/yr) = Tank Throughput (bbls/day) * VOC Emission Factor (lbs/bbls) * (365days/yr)

(b) VOC Emissions (lb/hr) = VOC Emissions (lbs/yr) * (yr/8760hr)

(c) VOC Emissions (ton/yr) = VOC Emissions (lbs/yr) * (1ton/2000lbs)

Notes:

(1) VOC emission factor includes Flashing/Working/Breathing losses as calculated from the Promax Model Simulation report

Table 4. Truck Loading (TL-1) VOC Emissions CNX Gas Company - Dry Fork Station

Contents	Volume Transferred	PTE VOC Emissions (lb/hr)	PTE VOC Emissions (ton/yr) ^(a)
Pipeline Liquids	383,250 gal/yr	0.05	0.21
Total		0.05	0.21

Calculations:

(a) PTE VOC Emissions (ton/yr) given as calculated in the Promax Model simulation report

	Pipeline liquids	
Saturation factor	0.60	Note (1)
Pvap (psia)	6.77	Note (2)
Molecular Weight Vap (lb/lbmol)	25.35	Note (2)
Bulk Liquid Tempurature (F)	49.08	Note (2)

Notes:

(1) AP-42 Section 5.2, Table 5.2-1 Saturation Factors for Calculating Petroleum Liquid Loading Losses, Submerged loading - dedicated normal service

(2) Input parameters as defined by the Promax Model simulation report

(3) Annual rates based on maximum throughput of 5 bbls/day per tank

Table 5. Fugitive Leak Emissions CNX Gas Company - Sims Run Station

Pollutant	Emission Factor			PTE ^{(a) Gas} Service (tons/yr)
Valves	9.9E-03	lb/hr/source	(1)	3.43
Connectors	8.6E-04	lb/hr/source	(1)	1.29
Open-Ended Lines	4.4E-03	lb/hr/source	(1)	0.02
Pressure Relief Valves	1.9E-02	lb/hr/source	(1)	0.00
Compressors	1.9E-02	lb/hr/source	(1)	0.17
Total Gas Released	-	-		4.74
Total VOC Released (gas service)			(b)	1.00
Calculations:			CO2e	23.16

(a) Annual emissions (tons/yr) = [Emission Factor (lb/hr/source)] x [Number of Sources] x [Hours of Operation per Year] x [0.0005 tons/ lb]

(b) Gas sample from station's gas analysis assumed to be worst case at **21** wt % VOC from 2012 fractional gas analysis measurements

Number of Components in Gas Service

	Valves=	79	(2)
	Pressure Relief Valves=	0	(2)
	Connectors=	343	(2)
	Open-Ended Lines=	1	(2)
	Compressors=	2.000	(2)
Global Warming Potential (GWP)	Maximum Hour of Operation =	8,760	
	CO ₂	1	(3)
	CH ₄	25	(3)
	N ₂ O	298	(3)

(1) Emission factors from 1995 EPA Protocol for Equipment Leak Emission Estimates, Table 2-4 Oil and Gas Production

(2) Default Average Component Counts for Major Onshore Natural Gas Production Equipment from 40 CFR 98, Subpart W, Table W-1B

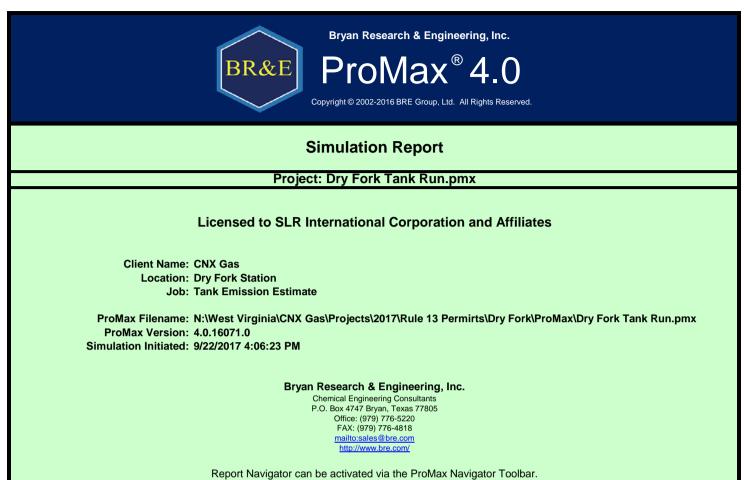
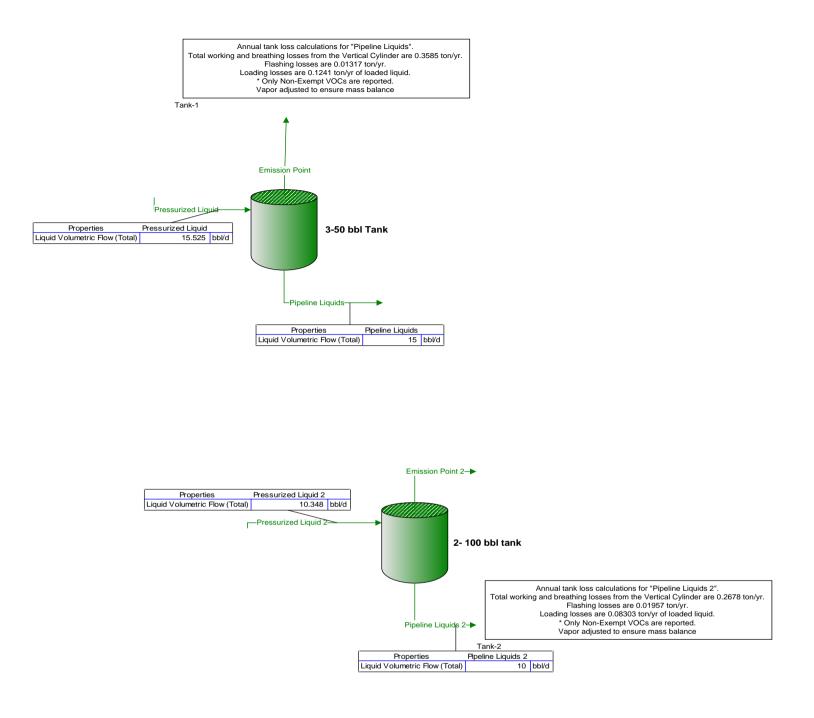

(3) Global Warming Potentials obtained from 40 CFR 98, Subpart A, Table A-1

Table 8. Reciprocating Engine / Integral Compressor Emissions (CE-4 and CE-5) Blowdown Venting Cat 3306 NA CNX Gas Company - Dry Fork Station

	Maximum Hourly Emissions				Annual Emissions				
Pollutant	Emission Factor		PTE p Engine (lb/h	Event	t Emission Factor			Annual PTE (tons/yr)	
Criteria Pollutants									
VOC	7.7 lb/Event	(1)	7.70	(a)	7.70E+00 lb/Event	(1)	0.23	(a)	


(1) - 7.7 lbs VOC/ Engine blowdown event; based on 717 scf/event of 20.45 MW gas with 20.2 wt % VOC

(a) - Worst case blowdowns per year equal normal rate 6 times 10 = 60 Events/yr

An asterisk (*), throughout the report, denotes a user specified value.

A question mark (?) after a value, throughout the report, denotes an extrapolated or approximate value.

Composition Status:	Emission Point E	Emission Point 2	Pipeline Liquids	Pipeline Liquids 2	Pressurized Liquid	Pressurized Liquid 2
	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Total From Block:	3-50 bbl Tank	2- 100 bbl tank	3-50 bbl Tank	2-100 bbl tank	-	-
To Block: Mole Fraction	 %			 %	3-50 bbl Tank %	2- 100 bbl tank %
Carbon Dioxide	70			70	70 ()*	70 ()*
Nitrogen	1.15424	1.21079	0.00213663	0.00239359	0.0160002*	0.0160002*
Methane	58.7391	60.2598	0.297773	0.326155	1.00101*	1.00101*
Ethane	24.6112	23.8920	0.747858	0.774710	1.03501*	1.03501*
Propane	9.51729	9.01908	1.13616	1.14839	1.23701*	1.23701*
Isobutane	1.40471	1.32220	0.469754	0.471425	0.481005*	0.481005* 1.15001*
n-Butane Isopentane	2.34122 0.703333	2.20101 0.660219	1.13550 0.992489	1.13804 0.992754	1.15001* 0.989010*	0.989010*
n-Pentane	0.568989	0.533984	1.08725	1.08724	1.08101*	1.08101*
Benzene	0.0100047	0.00938549	0.0768046	0.0767594	0.0760008*	0.0760008*
Toluene	0.0163253	0.0153197	0.489701	0.489342	0.484005*	0.484005*
Ethylbenzene	0.00415519	0.00390107	0.426081	0.425754	0.421004*	0.421004*
p-Xylene	0.0124147	0.0116558 0.190654	1.36529 1.49860	1.36424 1.49773	1.34901* 1.48301*	1.34901* 1.48301*
n-Hexane 2,2,4-Trimethylpentane	0.203179 0	0.190634	1.49660	1.49773	1.40301	1.46301
Other C6's	0.311067	0.291886	1.73313	1.73224	1.71602*	1.71602*
Heptanes	0.261420	0.245361	5.60030	5.59631	5.53606*	5.53606*
Octanes	0.119034	0.111762	8.14263	8.13644	8.04608*	8.04608*
Nonanes	0.0223659	0.0210084	5.07384	5.06990	5.01305*	5.01305*
Decanes + Molar Flow	3.96089E-07 Ibmol/h	3.74018E-07 Ibmol/h	69.7247 Ibmol/h	69.6702 Ibmol/h	68.8857* Ibmol/h	68.8857* Ibmol/h
Carbon Dioxide	0	0	0	0	*0	1/10/11dl *0
Nitrogen	0.000111314	7.28307E-05	1.69177E-05	1.26427E-05	0.000128231*	8.54734E-05*
Methane	0.00566473	0.00362472	0.00235775	0.00172271	0.00802248*	0.00534743*
Ethane	0.00237347	0.00143714	0.00592149	0.00409193	0.00829497*	0.00552906*
Propane	0.000917836	0.000542511	0.00899605	0.00606565	0.00991389*	0.00660816*
Isobutane n-Butane	0.000135468 0.000225785	7.95324E-05 0.000132394	0.00371949 0.00899085	0.00249001 0.00601101	0.00385496* 0.00921663*	0.00256954* 0.00614340*
Isopentane	6.78286E-05	3.97131E-05	0.00785847	0.00524361	0.00921883	0.00528333*
n-Pentane	5.48726E-05	3.21199E-05	0.00860876	0.00574268	0.00866363*	0.00577480*
Benzene	9.64840E-07	5.64551E-07	0.000608134	0.000405434	0.000609099*	0.000405999*
Toluene	1.57439E-06	9.21504E-07	0.00387742	0.00258465	0.00387900*	0.00258557*
Ethylbenzene	4.00722E-07	2.34655E-07	0.00337369	0.00224878	0.00337409*	0.00224902*
p-Xylene n-Hexane	1.19726E-06 1.95944E-05	7.01112E-07 1.14681E-05	0.0108103 0.0118659	0.00720578 0.00791085	0.0108115* 0.0118854*	0.00720648* 0.00792232*
2,2,4-Trimethylpentane	0	0	0.0110035	0.00731003	0.0110004	0.007 32232
Other C6's	2.99989E-05	1.75574E-05	0.0137228	0.00914947	0.0137528*	0.00916702*
Heptanes	2.52110E-05	1.47588E-05	0.0443428	0.0295590	0.0443681*	0.0295738*
Octanes	1.14795E-05	6.72267E-06	0.0644729	0.0429757	0.0644844*	0.0429824*
Nonanes	2.15694E-06	1.26369E-06	0.0401743	0.0267786	0.0401765*	0.0267799*
Decanes + Mass Fraction	3.81984E-11 %	2.24977E-11 %	0.552076 %	0.367990 %	0.552076* %	0.367990* %
Carbon Dioxide	0	0	0	0	0*	,. 0*
Nitrogen	1.27576	1.36069	0.000262596	0.000294376	0.00198772*	0.00198772*
Methane	37.1797	38.7813	0.0209580	0.0229711	0.0712154*	0.0712154*
Ethane	29.1984	28.8201	0.0986582	0.102269	0.138016*	0.138016*
Propane	16.5583	15.9544	0.219801	0.222316	0.241899*	0.241899*
Isobutane	3.22133					0 400004*
n-Butane		3.08293	0.119786	0.120293	0.123981*	0.123981*
n-Butane Isopentane	5.36899	5.13202	0.289551	0.290394	0.123981* 0.296421*	0.296421*
n-Butane Isopentane n-Pentane					0.123981*	
Isopentane n-Pentane Benzene	5.36899 2.00215 1.61972 0.0308338	5.13202 1.91091 1.54554 0.0294102	0.289551 0.314159 0.344153 0.0263208	0.290394 0.314455 0.344383 0.0263230	0.123981* 0.296421* 0.316442* 0.345878* 0.0263269*	0.296421* 0.316442* 0.345878* 0.0263269*
Isopentane n-Pentane Benzene Toluene	5.36899 2.00215 1.61972 0.0308338 0.0593483	5.13202 1.91091 1.54554 0.0294102 0.0566260	0.289551 0.314159 0.344153 0.0263208 0.197955	0.290394 0.314455 0.344383 0.0263230 0.197943	0.123981* 0.296421* 0.316442* 0.345878* 0.0263269* 0.197767*	0.296421* 0.316442* 0.345878* 0.0263269* 0.197767*
Isopentane n-Pentane Benzene Toluene Ethylbenzene	5.36899 2.00215 1.61972 0.0308338 0.0593483 0.0174052	5.13202 1.91091 1.54554 0.0294102 0.0566260 0.0166145	0.289551 0.314159 0.344153 0.0263208 0.197955 0.198458	0.290394 0.314455 0.344383 0.0263230 0.197943 0.198439	0.123981* 0.296421* 0.316442* 0.345878* 0.0263269* 0.197767* 0.198213*	0.296421* 0.316442* 0.345878* 0.0263269* 0.197767* 0.198213*
Isopentane n-Pentane Benzene Toluene Ethylbenzene p-Xylene	5.36899 2.00215 1.61972 0.0308338 0.0593483 0.0174052 0.0520026	5.13202 1.91091 1.54554 0.0294102 0.0566260 0.0166145 0.0496417	0.289551 0.314159 0.344153 0.0263208 0.197955 0.198458 0.635919	0.290394 0.314455 0.344383 0.0263230 0.197943 0.198439 0.635859	0.123981* 0.296421* 0.316442* 0.345878* 0.0263269* 0.197767* 0.198213* 0.635129*	0.296421* 0.316442* 0.345878* 0.0263269* 0.197767* 0.198213* 0.635129*
Isopentane n-Pentane Benzene Toluene Ethylbenzene	5.36899 2.00215 1.61972 0.0308338 0.0593483 0.0174052	5.13202 1.91091 1.54554 0.0294102 0.0566260 0.0166145	0.289551 0.314159 0.344153 0.0263208 0.197955 0.198458	0.290394 0.314455 0.344383 0.0263230 0.197943 0.198439	0.123981* 0.296421* 0.316442* 0.345878* 0.0263269* 0.197767* 0.198213*	0.296421* 0.316442* 0.345878* 0.0263269* 0.197767* 0.198213*
Isopentane n-Pentane Benzene Toluene Ethylbenzene p-Xylene n-Hexane 2,2,4-Trimethylpentane Other C6's	5.36899 2.00215 1.61972 0.0308338 0.0593483 0.0174052 0.0520026 0.690828 0 1.04323	5.13202 1.91091 1.54554 0.0294102 0.0566260 0.0166145 0.0496417 0.659104 0 0	0.289551 0.314159 0.344153 0.0263208 0.197955 0.198458 0.635919 0.566584 0 0	0.290394 0.314455 0.344383 0.0263230 0.197943 0.198439 0.635859 0.566637 0 0 0.646418	0.123981* 0.296421* 0.316442* 0.0363269* 0.197767* 0.198213* 0.635129* 0.566752* 0* 0.646852*	0.296421* 0.316442* 0.345878* 0.0263269* 0.197767* 0.198213* 0.635129* 0.566752* 0* 0*
Isopentane n-Pentane Benzene Toluene Ethylbenzene p-Xylene n-Hexane 2,2,4-Trimethylpentane Other C6's Heptanes	5.36899 2.00215 1.61972 0.0308338 0.0593483 0.0174052 0.052026 0.690828 0 1.04323 1.03361	5.13202 1.91091 1.54554 0.0294102 0.0566260 0.0166145 0.0496417 0.659104 0 0.995304 0.986371	0.289551 0.314159 0.344153 0.0263208 0.197955 0.198458 0.635919 0.566584 0 0.646315 2.46216	0.290394 0.314455 0.344383 0.0263230 0.197943 0.635859 0.566637 0 0.666481 2.46207	0.123981* 0.296421* 0.316442* 0.345878* 0.0263269* 0.197767* 0.198213* 0.635129* 0.566752* 0* 0.646652* 2.46023*	0.296421* 0.316442* 0.345878* 0.0263269* 0.197767* 0.198213* 0.635129* 0.566752* 0* 0.64652* 2.46023*
Isopentane n-Pentane Benzene Toluene Ethylbenzene p-Xylene n-Hexane 2,2,4-Trimethylpentane Other C6's Heptanes Octanes	5.36899 2.00215 1.61972 0.0308338 0.0593483 0.0174052 0.6520026 0.690828 0 1.04323 1.03361 0.535405	5.13202 1.91091 1.54554 0.0294102 0.0566260 0.0166145 0.0496417 0.659104 0 995304 0.996371 0.511122	0.289551 0.314159 0.263208 0.197955 0.198458 0.635919 0.566584 0 0 0.646315 2.46216 4.07253	0.290394 0.314455 0.344383 0.0263230 0.197943 0.635859 0.566637 0 0.646418 2.46207 4.07218	0.123981* 0.296421* 0.316442* 0.345878* 0.0263269* 0.197767* 0.198213* 0.635129* 0.566752* 0* 0.6646852* 2.46023* 4.06774*	0.296421* 0.316442* 0.345878* 0.263269* 0.197767* 0.198213* 0.635129* 0.566752* 0* 0.646852* 2.46023* 4.06774*
Isopentane n-Pentane Benzene Toluene Ethylbenzene p-Xylene n-Hexane 2,2,4-Trimethylpentane Other C6's Heptanes Octanes Nonanes	5.36899 2.00215 1.61972 0.0308338 0.0593483 0.0174052 0.0520026 0.690828 0 1.04323 1.03361 0.535405 0.112955	5.13202 1.91091 1.54554 0.0294102 0.0566260 0.0166145 0.0496417 0.659104 0 0.995304 0.986371 0.511122 0.107877	0.289551 0.314159 0.344153 0.0263208 0.197955 0.189458 0.635919 0.566584 0 0.646315 2.46216 4.07253 2.84932	0.290394 0.314455 0.344383 0.0263230 0.197943 0.198439 0.635859 0.566637 0 0.646418 2.46207 4.07218 2.84903	0.123981* 0.296421* 0.316442* 0.345878* 0.0263269* 0.197767* 0.198213* 0.635129* 0.566752* 0* 0.646852* 2.46023* 4.06774* 2.84562*	0.296421* 0.316442* 0.345878* 0.0263269* 0.197767* 0.198213* 0.635129* 0.566752* 0.646852* 2.46023* 4.06774* 2.84562*
Isopentane n-Pentane Benzene Toluene Ethylbenzene p-Xylene n-Hexane 2,2,4-Trimethylpentane Other C6's Heptanes Octanes Nonanes Decanes +	5.36899 2.00215 1.61972 0.0308338 0.0593483 0.0174052 0.6520026 0.690828 0 1.04323 1.03361 0.535405	5.13202 1.91091 1.54554 0.0294102 0.0566260 0.0166145 0.0496417 0.659104 0 995304 0.996371 0.511122	0.289551 0.314159 0.263208 0.197955 0.198458 0.635919 0.566584 0 0 0.646315 2.46216 4.07253	0.290394 0.314455 0.344383 0.0263230 0.197943 0.635859 0.566637 0 0.646418 2.46207 4.07218	0.123981* 0.296421* 0.316442* 0.345878* 0.0263269* 0.197767* 0.198213* 0.635129* 0.566752* 0* 0.6646852* 2.46023* 4.06774*	0.296421* 0.316442* 0.345878* 0.263269* 0.197767* 0.198213* 0.635129* 0.566752* 0* 0.646852* 2.46023* 4.06774*
Isopentane n-Pentane Benzene Toluene Ethylbenzene p-Xylene n-Hexane 2,2,4-Trimethylpentane Other C6's Heptanes Octanes Nonanes	5.36899 2.00215 1.61972 0.0308338 0.0593483 0.0174052 0.0520026 0.690828 0 1.04323 1.03361 0.535405 0.112955 4.44145E-06	5.13202 1.91091 1.54554 0.0294102 0.0566260 0.0166145 0.0496417 0.659104 0 0.995304 0.995304 0.986371 0.511122 0.107877 4.26423E-06	0.289551 0.314159 0.344153 0.0263208 0.197955 0.198458 0.635919 0.566584 0 0.646315 2.46216 4.07253 2.84932 86.9371	0.290394 0.314455 0.344383 0.0263230 0.197943 0.198439 0.638569 0.566637 0 0.646418 2.46207 4.07218 2.84903 86.9277	0.123981* 0.296421* 0.316442* 0.345878* 0.0263269* 0.197767* 0.198213* 0.635129* 0.566752* 0.646652* 2.46023* 4.06774* 2.84562* 86.8195*	0.296421* 0.316442* 0.0263263* 0.197767* 0.198213* 0.635129* 0.566752* 0.566752* 2.46023* 4.06774* 2.84562* 86.8195*
Isopentane n-Pentane Benzene Toluene Ethylbenzene p-Xylene n-Hexane 2,2,4-Trimethylpentane Other C6's Heptanes Octanes Nonanes Decanes + Mass Flow Carbon Dioxide Nitrogen	5.36899 2.00215 1.61972 0.0308338 0.0593483 0.0174052 0.0520026 0.690828 0 1.04323 1.03361 0.535405 0.112955 4.44145E-06 ib/h 0 0.00311828	5.13202 1.91091 1.54554 0.0294102 0.0566260 0.0166145 0.0496417 0.659104 0 0.995304 0.995304 0.986371 0.511122 0.107877 4.26423E-06 Ib/h 0 0.00204024	0.289551 0.314159 0.344153 0.0263208 0.197955 0.198458 0.635919 0.566584 0 0.646315 2.46216 4.07253 2.84932 86.9371 Ib/h 0 0.000473922	0.290394 0.314455 0.344383 0.0263230 0.197943 0.198439 0.6365859 0.536637 0 0.646418 2.46207 4.07218 2.84903 86.9277 ib/h 0 0.000354164	0.123981* 0.296421* 0.316442* 0.345878* 0.0263269* 0.197767* 0.198213* 0.635129* 0.566752* 0* 0.666752* 0* 0.646852* 2.46023* 4.06774* 2.84562* 86.8195* Ib/h	0.296421* 0.316442* 0.263263* 0.197767* 0.198213* 0.566752* 0.566752* 2.46023* 4.06774* 2.84562* 86.8195* ib/h 0*
Isopentane n-Pentane Benzene Toluene Ethylbenzene p-Xylene n-Hexane 2,2,4-Trimethylpentane Other C6's Heptanes Octanes Nonanes Decanes + Mass Flow Carbon Dioxide Nitrogen Methane	5.36899 2.00215 1.61972 0.0308338 0.0593483 0.0174052 0.0520026 0.690828 0 1.04323 1.03361 0.535405 0.112955 4.44145E-06 ib/h 0 0.00311828 0.0908761	5.13202 1.91091 1.54554 0.0294102 0.0566260 0.0166145 0.0496417 0.659104 0 0.995304 0.986371 0.511122 0.107877 4.26423E-06 ib/h 0 0.00204024 0.0581494	0.289551 0.314159 0.344153 0.0263208 0.197955 0.198458 0.635919 0.566584 0 0 0.646315 2.46216 4.07253 2.84932 86.9371 ib/h 0 0.000473922 0.0378241	0.290394 0.314455 0.344383 0.0263230 0.197943 0.198439 0.635859 0.636637 0 0.646418 2.46207 4.07218 2.84903 86.9277 ib/h 0 0.000354164 0.0276366	0.123981* 0.296421* 0.316442* 0.345878* 0.0263269* 0.197767* 0.198213* 0.635129* 0.566752* 0.566752* 0.646852* 2.46023* 4.06774* 2.84562* 86.8195* Ib/h 0* 0.00359220* 0.128700*	0.296421* 0.31642* 0.345878* 0.0263269* 0.197767* 0.198213* 0.535129* 0.566752* 0.566752* 0.566752* 2.46023* 4.06774* 2.84562* 8.8195* Ib/h 0** 0.00239440* 0.0857859*
Isopentane n-Pentane Benzene Toluene Ethylbenzene p-Xylene n-Hexane 2,2,4-Trimethylpentane Other C6's Heptanes Octanes Nonanes Decanes + Mass Flow Carbon Dioxide Nitrogen Methane Ethane	5.36899 2.00215 1.61972 0.0308338 0.0593483 0.0174052 0.052026 0.690828 0 1.04323 1.03361 0.535405 0.112955 4.44145E-06 ib/n 0 0.00311828 0.0908761 0.0713681	5.13202 1.91091 1.54554 0.0294102 0.0566260 0.0166145 0.0496417 0.659104 0 0.995304 0.995304 0.986371 0.511122 0.107877 4.26423E-06 ib/h 0 0.00204024 0.0581494 0.0581494 0.0581494 0.0581493	0.289551 0.314159 0.344153 0.0263208 0.197955 0.198458 0.635919 0.566584 0 0.646315 2.46216 4.07253 2.84932 86.9371 ib/h 0 0.000473922 0.0378241 0.178054	0.290394 0.314455 0.344383 0.0263230 0.197943 0.198439 0.635859 0.566637 0 0.646418 2.46207 4.07218 2.84203 86.9277 ib/h 0 0.000354164 0.0276366 0.123040	0.123981* 0.296421* 0.316442* 0.345878* 0.0263269* 0.197767* 0.198213* 0.635129* 0.566752* 0.566752* 0.646452* 2.46023* 4.06774* 2.84562* 86.8195* Ib/h 0* 0.00359220* 0.128700* 0.249422*	0.296421* 0.316442* 0.345878* 0.0263269* 0.197767* 0.198213* 0.635129* 0.566752* 0* 0.646852* 2.46023* 4.06774* 2.84562* 86.8195* Ib/h 0* 0.00239440* 0.0023940* 0.00250* 0.0050* 0.0050* 0.0050* 0.0050* 0.0050* 0.0050* 0.0050* 0.0050* 0.00
Isopentane n-Pentane Benzene Toluene Ethylbenzene p-Xylene n-Hexane 2,2,4-Trimethylpentane Qther C6's Heptanes Octanes Nonanes Decanes + Mass Flow Carbon Dioxide Nitrogen Methane Ethane Propane	5.36899 2.00215 1.61972 0.0308338 0.0593483 0.0174052 0.650026 0.690828 0 1.04323 1.03361 0.535405 0.112955 4.44145E-06 1b/h 0 0.00311828 0.0908761 0.0713681 0.0713681 0.0404726	5.13202 1.91091 1.54554 0.0294102 0.0566260 0.0166145 0.0496417 0.659104 0.995304 0.996371 0.511122 0.107877 4.26423E-06 ib/h 0 0.00204024 0.0581494 0.0432133 0.0239223	0.289551 0.314159 0.344153 0.0263208 0.197955 0.198458 0.635919 0.566584 0 0 0.646315 2.46216 4.07253 2.84932 86.9371 ib/h 0 0.000473922 0.0378241 0.178054 0.396686	0.290394 0.314455 0.344383 0.0263230 0.197943 0.198439 0.635859 0.566637 0 0 0.646418 2.46207 4.07218 2.84903 86.9277 Ib/h 0 0.000354164 0.0276366 0.123040 0.267469	0.123981* 0.296421* 0.316442* 0.345878* 0.0263269* 0.197767* 0.198213* 0.635129* 0.566752* 0* 0.666752* 0* 0.6646852* 4.06774* 2.84562* 86.8195* 0* 0.00359220* 0.128700* 0.294422* 0.437159*	0.296421* 0.316442* 0.345878* 0.0263269* 0.197767* 0.198213* 0.665752* 0.566752* 0.566752* 0.566752* 0.646852* 2.46023* 4.06774* 2.84562* 8.8195* Ib/h 0* 0.00239440* 0.0857859* 0.166254* 0.291391*
Isopentane n-Pentane Benzene Toluene Ethylbenzene p-Xylene n-Hexane 2,2,4-Trimethylpentane Other C6's Heptanes Octanes Nonanes Decanes + Mass Flow Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane	5.36899 2.00215 1.61972 0.0308338 0.0593483 0.0174052 0.0520026 0.690828 0 1.04323 1.03361 0.535405 0.112955 4.44145E-06 ib/h 0 0.00311828 0.0908761 0.0713681 0.0404726 0.00787372	5.13202 1.91091 1.54554 0.0294102 0.0566260 0.0166145 0.0496417 0.659104 0 0.995304 0.995304 0.986371 0.511122 0.107877 4.26423E-06 ib/h 0 0.00204024 0.0581494 0.0581494 0.0581494 0.0581493	0.289551 0.314159 0.344153 0.0263208 0.197955 0.198458 0.635919 0.566584 0 0 0.646315 2.46216 4.07253 2.84932 86.9371 Ib/h 0 0.000473922 0.0378241 0.178054 0.3966866 0.216185	0.290394 0.314455 0.344383 0.0263230 0.197943 0.198439 0.635859 0.635859 0 0.646418 2.46207 4.07218 2.84903 86.9277 ib/h 0 0.000354164 0.0276366 0.123040 0.267469 0.144725	0.123981* 0.296421* 0.316442* 0.345878* 0.0263269* 0.197767* 0.198213* 0.635129* 0.566752* 2.46023* 4.06774* 2.84562* 86.8195* 1b/h 0* 0.00359220* 0.128700* 0.249422* 0.437159* 0.224059*	0.296421* 0.316442* 0.263263* 0.197767* 0.198213* 0.635129* 0.566752* 0.566752* 2.46023* 4.06774* 2.84562* 86.8195* 1b/h 0.00239440* 0.0857859* 0.166254* 0.291391* 0.291391*
Isopentane n-Pentane Benzene Toluene Ethylbenzene p-Xylene n-Hexane 2,2,4-Trimethylpentane Qther C6's Heptanes Octanes Nonanes Decanes + Mass Flow Carbon Dioxide Nitrogen Methane Ethane Propane	5.36899 2.00215 1.61972 0.0308338 0.0593483 0.0174052 0.650026 0.690828 0 1.04323 1.03361 0.535405 0.112955 4.44145E-06 1b/h 0 0.00311828 0.0908761 0.0713681 0.0713681 0.0404726	5.13202 1.91091 1.54554 0.0294102 0.0566260 0.0166145 0.0496417 0.659104 0 0.995304 0.986371 0.511122 0.107877 4.26423E-06 Ib/h 0 0 0.00204024 0.0581494 0.04581494 0.0429223 0.002462260	0.289551 0.314159 0.344153 0.0263208 0.197955 0.198458 0.635919 0.566584 0 0 0.646315 2.46216 4.07253 2.84932 86.9371 ib/h 0 0.000473922 0.0378241 0.178054 0.396686	0.290394 0.314455 0.344383 0.0263230 0.197943 0.198439 0.635859 0.566637 0 0 0.646418 2.46207 4.07218 2.84903 86.9277 Ib/h 0 0.000354164 0.0276366 0.123040 0.267469	0.123981* 0.296421* 0.316442* 0.345878* 0.0263269* 0.197767* 0.198213* 0.635129* 0.566752* 0* 0.666752* 0* 0.6646852* 4.06774* 2.84562* 86.8195* 0* 0.00359220* 0.128700* 0.294422* 0.437159*	0.296421* 0.316442* 0.345878* 0.0263269* 0.197767* 0.198213* 0.665752* 0.566752* 0.566752* 0.566752* 0.646852* 2.46023* 4.06774* 2.84562* 8.8195* Ib/h 0* 0.00239440* 0.0857859* 0.166254* 0.291391*
Isopentane n-Pentane Benzene Toluene Ethylbenzene p-Xylene n-Hexane 2,2,4-Trimethylpentane Other C6's Heptanes Octanes Nonanes Decanes + Mass Flow Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane N-	5.36899 2.00215 1.61972 0.0308338 0.0593483 0.0174052 0.650026 0.690828 0 1.04323 1.03361 0.535405 0.112955 4.44145E-06 1b/h 0 0.00311828 0.0908761 0.0713681 0.0713681 0.0713681 0.0713682 0.00787372 0.0131231 0.00489375 0.00395899	5.13202 1.91091 1.54554 0.0294102 0.0566260 0.0166145 0.0496417 0.659104 0.995304 0.995304 0.9963371 0.511122 0.107877 4.26423E-06 1b/h 0 0 0.00204024 0.0581494 0.0432133 0.0239223 0.00462260 0.00769503 0.0026525 0.00231741	0.289551 0.314159 0.344153 0.0263208 0.197955 0.198458 0.635919 0.566584 0 0 0.646315 2.46216 4.07253 2.84932 86.9371 ib/h 0 0.000473922 0.0378241 0.178054 0.396686 0.216185 0.522568 0.522568 0.522568	0.290394 0.314455 0.344383 0.0263230 0.197943 0.198439 0.635859 0.566637 0 0 0.646418 2.46207 4.07218 2.84903 86.9277 Ib/h 0 0.000354164 0.0276366 0.123040 0.267469 0.123040 0.267469 0.124725 0.349373 0.378320 0.414327	0.123981* 0.296421* 0.316442* 0.345878* 0.0263269* 0.198213* 0.635129* 0.566752* 2.46023* 4.06774* 2.84562* 86.8195* ib/h 0* 0.00359220* 0.128700* 0.224059* 0.57157* 0.571873* 0.625070*	0.296421* 0.316442* 0.345878* 0.0263269* 0.197767* 0.635129* 0.566752* 0.566752* 0.566752* 2.646852* 2.64023* 4.06774* 2.84562* 8.8195* 0.00239440* 0.00239440* 0.0857859* 0.166254* 0.291391* 0.149348* 0.357068* 0.381185* 0.416645*
Isopentane n-Pentane Benzene Toluene Ethylbenzene p-Xylene n-Hexane 2,2,4-Trimethylpentane Other C6's Heptanes Octanes Nonanes Decanes + Mass Flow Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane Benzene	5.36899 2.00215 1.61972 0.0308338 0.0593483 0.0174052 0.0520026 0.690828 0 1.04323 1.03361 0.535405 0.112955 4.44145E-06 ib/h 0 0.00311828 0.0908761 0.0713681 0.0404726 0.00787372 0.0131231 0.00489375 0.00395899 7.53654E-05	5.13202 1.91091 1.54554 0.0294102 0.0566260 0.0166145 0.0496417 0.659104 0 0.995304 0.995304 0.986371 0.511122 0.107877 4.26423E-06 Ib/h 0 0.00204024 0.0581494 0.0432133 0.0239223 0.00462260 0.00769503 0.00286525 0.00281741 4.40981E-05	0.289551 0.314159 0.344153 0.0263208 0.197955 0.198458 0.635919 0.566584 0 0 0.646315 2.46216 4.07253 2.84932 86.9371 Ib/h 0 0.000473922 0.0378241 0.178054 0.396686 0.216185 0.522568 0.566979 0.621112 0.0475025	0.290394 0.314455 0.344383 0.0263230 0.197943 0.198439 0.635859 0.566637 0 0.0.666418 2.46207 4.07218 2.46207 4.07218 2.84903 86.9277 Ib/h 0 0.000354164 0.0276366 0.123040 0.267469 0.144725 0.349373 0.378320 0.414327 0.0316692	0.123981* 0.296421* 0.316442* 0.345878* 0.0263269* 0.197767* 0.198213* 0.635129* 0.566752* 0.646852* 2.46023* 4.06774* 2.84562* 86.8195* 1b/h 0* 0.00359220* 0.128700* 0.249422* 0.437159* 0.224059* 0.535691* 0.535691* 0.535070* 0.625070* 0.0475778*	0.296421* 0.316422* 0.345878* 0.0263269* 0.192767* 0.635129* 0.566752* 0.566752* 0.566752* 0.646852* 2.46023* 4.06774* 2.84562* 86.8195* 1b/h 0* 0.00239440* 0.00239440* 0.00239440* 0.00239440* 0.00239440* 0.00239440* 0.149348* 0.149348* 0.357068* 0.341185* 0.416645* 0.416645*
Isopentane n-Pentane Benzene Toluene Ethylbenzene p-Xylene n-Hexane 2,2,4-Trimethylpentane Other C6's Heptanes Octanes Nonanes Decanes + Mass Flow Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Bettane Isopentane Isopentane Benzene Toluene	5.36899 2.00215 1.61972 0.0308338 0.0593483 0.0174052 0.052026 0.690828 0 1.04323 1.03361 0.535405 0.112955 4.44145E-06 1b/h 0 0.00311828 0.0908761 0.0713681 0.0713681 0.0404726 0.00787372 0.0131231 0.00489375 0.00395899 7.53654E-05 0.000145062	5.13202 1.91091 1.54554 0.0294102 0.0566260 0.0166145 0.0496417 0.659104 0 0.995304 0.995304 0.986371 0.511122 0.107877 4.26423E-06 Ib/h 0 0.00204024 0.0581494 0.0432133 0.0239223 0.00462260 0.00769503 0.00286525 0.00231741 4.40981E-05 8.49059E-05	0.289551 0.314159 0.344153 0.0263208 0.197955 0.198458 0.635919 0.566584 0 0.646315 2.46216 4.07253 2.84932 86.9371 1b/h 0 0.000473922 0.0378241 0.178054 0.396686 0.216185 0.522568 0.566979 0.621112 0.0475025 0.357260	0.290394 0.314455 0.344383 0.0263230 0.197943 0.198439 0.635859 0.566637 0 0.646418 2.46207 4.07218 2.84203 86.9277 b/h 0 0.000354164 0.0276366 0.123040 0.267469 0.1423040 0.267469 0.343373 0.378320 0.414327 0.3316692 0.238145	0.123981* 0.296421* 0.316442* 0.316442* 0.345878* 0.0263269* 0.197767* 0.198213* 0.635129* 0.566752* 0* 0.646452* 2.46023* 4.06774* 2.84562* 86.8195* Ib/h 0* 0.00359220* 0.128700* 0.249422* 0.437159* 0.224059* 0.525070* 0.535691* 0.5571873* 0.625070* 0.0475778* 0.357405*	0.296421* 0.316442* 0.345878* 0.0263269* 0.197767* 0.198213* 0.635129* 0.566752* 0.566752* 0.566752* 2.46023* 4.06774* 2.84562* 86.8195* 0.00239440* 0.00239440* 0.00239440* 0.00239441* 0.166254* 0.166254* 0.291391* 0.149348* 0.357068* 0.381185* 0.416645* 0.0317133* 0.238230*
Isopentane n-Pentane Benzene Toluene Ethylbenzene p-Xylene n-Hexane 2,2,4-Trimethylpentane Other C6's Heptanes Octanes Nonanes Decanes + Mass Flow Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane Benzene Toluene Ethylbenzene	5.36899 2.00215 1.61972 0.0308338 0.0593483 0.0174052 0.652026 0.690828 0 0 1.04323 1.03361 0.535405 0.112955 4.44145-006 1b/h 0 0.00311828 0.0908761 0.0713681 0.0404726 0.00787372 0.0131231 0.00489375 0.0038548-05 0.000345062 4.25426E-05	5.13202 1.91091 1.54554 0.0294102 0.0566260 0.0166145 0.0496417 0.659104 0 0.995304 0.996371 0.511122 0.107877 4.26423E-06 Ib/h 0 0.00204024 0.0581494 0.0432133 0.0239223 0.00462260 0.00769503 0.00286525 0.00231741 4.40981E-05 8.4905E-05 2.49121E-05	0.289551 0.314159 0.344153 0.0263208 0.197955 0.198458 0.635919 0.566584 0.566584 0.646315 2.46216 4.07253 2.84932 86.9371 b/h 0 0.000473922 0.0378241 0.178054 0.396686 0.216185 0.522568 0.566979 0.621112 0.0475025 0.357260 0.357260 0.357260	0.290394 0.314455 0.344383 0.0263230 0.197943 0.198439 0.635859 0.566637 0 0 0.646418 2.46207 4.07218 2.84903 86.9277 Ib/h 0 0.000354164 0.0276366 0.123040 0.267469 0.144725 0.349373 0.378320 0.414327 0.0316692 0.238145 0.238145 0.238145	0.123981* 0.296421* 0.316442* 0.345878* 0.0263269* 0.197767* 0.198213* 0.635129* 0.566752* 0* 0.646852* 2.46023* 4.06774* 2.84562* 86.8195* 0* 0.00359220* 0.128700* 0.249422* 0.437159* 0.224059* 0.535691* 0.571873* 0.625070* 0.0475778* 0.357405* 0.358210*	0.296421* 0.316442* 0.326326* 0.197767* 0.198213* 0.6635129* 0.566752* 0.566752* 0.566752* 2.46023* 4.06774* 2.84562* 86.8195* 0.00239440* 0.00239440* 0.00239440* 0.0857859* 0.166254* 0.291391* 0.149348* 0.381185* 0.416645* 0.0317133* 0.238767*
Isopentane n-Pentane Benzene Toluene Ethylbenzene p-Xylene n-Hexane 2,2,4-Trimethylpentane Other C6's Heptanes Octanes Nonanes Decanes + Mass Flow Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane Benzene Toluene Ethylbenzene p-Xylene	5.36899 2.00215 1.61972 0.0308338 0.0593483 0.0174052 0.650026 0.690828 0 1.04323 1.03361 0.535405 0.112955 4.44145E-06 1b/h 0 0.000311828 0.0908761 0.0713681 0.0713681 0.0404726 0.00787372 0.0131231 0.00489375 0.00395899 7.53654E-05 0.000145062 4.25426E-05 0.000127107	5.13202 1.91091 1.54554 0.0294102 0.0566260 0.0166145 0.0496417 0.659104 0.995304 0.995304 0.9963371 0.511122 0.107877 4.26423E-06 1b/h 0 0 0.00204024 0.0581494 0.0432133 0.0259223 0.00462260 0.00769503 0.0026525 0.00231741 4.40981E-05 8.49059E-05 2.49121E-05 8.49059E-05 2.49121E-05 8.49059E-05 2.49121E-05	0.289551 0.314159 0.344153 0.0263208 0.197955 0.198458 0.635919 0.566584 0 0 0.646315 2.46216 4.07253 2.84932 86.9371 1b/h 0 0.000473922 0.0378241 0.178054 0.396686 0.216185 0.522568 0.522568 0.566979 0.621112 0.0475025 0.357260 0.358168 1.14768	0.290394 0.314455 0.344383 0.0263230 0.197943 0.198439 0.635859 0.566637 0 0 0.646418 2.46207 4.07218 2.84903 86.9277 Ib/h 0 0.000354164 0.0276366 0.123040 0.267469 0.123040 0.267469 0.144725 0.349373 0.378320 0.414327 0.0316692 0.238145 0.238742 0.238742 0.238742 0.238742	0.123981* 0.296421* 0.316442* 0.345878* 0.0263269* 0.197767* 0.198213* 0.635129* 0.566752* 2.46023* 4.06774* 2.84562* 86.8195* 1b/h 0* 0.00359220* 0.128700* 0.249422* 0.325691* 0.535691* 0.535691* 0.525070* 0.357405* 0.357405* 0.3585210* 1.14780*	0.296421* 0.316442" 0.326326* 0.197767* 0.198213* 0.666752* 0.666752* 0.6646852* 2.46023* 4.06774* 2.84562* 86.8195* 0.00239440* 0.00239440* 0.00239440* 0.00239440* 0.00239440* 0.00239440* 0.00239440* 0.166254* 0.21391* 0.149348* 0.381185* 0.416645* 0.0317133* 0.23820* 0.238267* 0.238267*
Isopentane n-Pentane Benzene Toluene Ethylbenzene p-Xylene n-Hexane 2,2,4-Trimethylpentane Other C6's Heptanes Octanes Nonanes Decanes + Mass Flow Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane Benzene Toluene Ethylbenzene	5.36899 2.00215 1.61972 0.0308338 0.0593483 0.0174052 0.652026 0.690828 0 0 1.04323 1.03361 0.535405 0.112955 4.44145-006 1b/h 0 0.00311828 0.0908761 0.0713681 0.0404726 0.00787372 0.0131231 0.00489375 0.0038548-05 0.000345062 4.25426E-05	5.13202 1.91091 1.54554 0.0294102 0.0566260 0.0166145 0.0496417 0.659104 0 0.995304 0.996371 0.511122 0.107877 4.26423E-06 Ib/h 0 0.00204024 0.0581494 0.0432133 0.0239223 0.00462260 0.00769503 0.00286525 0.00231741 4.40981E-05 8.4905E-05 2.49121E-05	0.289551 0.314159 0.344153 0.0263208 0.197955 0.198458 0.635919 0.566584 0.566584 0.646315 2.46216 4.07253 2.84932 86.9371 b/h 0 0.000473922 0.0378241 0.178054 0.396686 0.216185 0.522568 0.566979 0.621112 0.0475025 0.357260 0.357260 0.357260	0.290394 0.314455 0.344383 0.0263230 0.197943 0.198439 0.635859 0.566637 0 0 0.646418 2.46207 4.07218 2.84903 86.9277 Ib/h 0 0.000354164 0.0276366 0.123040 0.267469 0.144725 0.349373 0.378320 0.414327 0.0316692 0.238145 0.238145 0.238145	0.123981* 0.296421* 0.316442* 0.345878* 0.0263269* 0.197767* 0.198213* 0.635129* 0.566752* 0* 0.646852* 2.46023* 4.06774* 2.84562* 86.8195* 0* 0.00359220* 0.128700* 0.249422* 0.437159* 0.224059* 0.535691* 0.571873* 0.625070* 0.0475778* 0.357405* 0.358210*	0.296421* 0.316442* 0.326326* 0.197767* 0.198213* 0.6635129* 0.566752* 0.566752* 0.566752* 2.46023* 4.06774* 2.84562* 86.8195* 0.00239440* 0.00239440* 0.00239440* 0.0857859* 0.166254* 0.291391* 0.149348* 0.381185* 0.416645* 0.0317133* 0.238767*
Isopentane n-Pentane Benzene Toluene Ethylbenzene p-Xylene Attack Carbon Dioxide Carbon Dioxide Nitrogen Isobutane n-Butane Isopentane N-Pentane Benzene Toluene Ethylbenzene p-Xylene n-Hexane	5.36899 2.00215 1.61972 0.0308338 0.0593483 0.0174052 0.052026 0.690828 0 1.04323 1.03361 0.535405 0.112955 4.44145E-06 1b/h 0 0.00311828 0.0908761 0.0713681 0.0703681 0.0713681 0.0713681 0.070787372 0.0131231 0.00489375 0.00395899 7.53654E-05 0.000145062 4.25426E-05 0.000127107 0.000127107	5.13202 1.91091 1.54554 0.0294102 0.0566260 0.0166145 0.0496417 0.659104 0 0.995304 0.995304 0.995304 0.986371 0.511122 0.107877 4.26423E-06 1b/h 0 0.00204024 0.0581494 0.0432133 0.0239223 0.00246225 0.00231741 4.40981E-05 8.49059E-05 2.49121E-05 7.44335E-05 0.000988271	0.289551 0.314159 0.344153 0.0263208 0.197955 0.198458 0.635919 0.566584 0 0.646315 2.46216 4.07253 2.84932 86.9371 Ib/h 0 0.000473922 0.0378241 0.178054 0.336686 0.216185 0.522568 0.522568 0.522568 0.522568 0.566799 0.621112 0.0475025 0.357260 0.338168 1.14768	0.290394 0.314455 0.344383 0.0263230 0.197943 0.198439 0.635859 0.566637 0 0 0.646418 2.46207 4.07218 2.84903 86.9277 Ib/h 0 0.000354164 0.0276366 0.0123040 0.267469 0.144725 0.349373 0.378320 0.414327 0.0316692 0.238145 0.238145 0.238742 0.238145 0.238742 0.238742 0.765001 0.681720 0 0 0.777705	0.123981* 0.296421* 0.316442* 0.345878* 0.0263269* 0.197767* 0.198213* 0.635129* 0.566752* 0.646652* 2.46023* 4.06774* 2.84562* 86.8195* 1b/h 0* 0.00359220* 0.128700* 0.224059* 0.535691* 0.535691* 0.535691* 0.5357405* 0.357405* 0.357405* 0.358210* 1.14780* 1.02423*	0.296421* 0.316442* 0.326326* 0.197767* 0.198213* 0.666752* 0.666752* 0.6646852* 2.46023* 4.06774* 2.84562* 86.8195* 0.00239440* 0.00239440* 0.00239440* 0.00857859* 0.166254* 0.291391* 0.149348* 0.381185* 0.416645* 0.0317133* 0.238230* 0.238767* 0.238267* 0.765076* 0.682708* 0*
Isopentane n-Pentane Benzene Toluene Ethylbenzene p-Xylene n-Hexane 2,2,4-Trimethylpentane Other C6's Heptanes Octanes Nonanes Decanes + Mass Flow Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Bettane Benzene Toluene Ethylbenzene p-Xylene n-Hexane 2,2,4-Trimethylpentane Other C6's Heptanes	5.36899 2.00215 1.61972 0.0308338 0.0593483 0.0174052 0.052026 0.690828 0 1.04323 1.03361 0.535405 0.112955 4.44145E-06 1b/h 0 0.00311828 0.0908761 0.0713681 0.0404726 0.00787372 0.0131231 0.00489375 0.00048595 0.000145062 4.25426E-05 0.000127107 0.00168855 0 0.0025640	5.13202 1.91091 1.54554 0.0294102 0.0566260 0.0166145 0.0496417 0.659104 0 0.995304 0.995304 0.995304 0.986371 0.511122 0.107877 4.26423E-06 1b/h 0 0.0024024 0.0581494 0.0432133 0.0239223 0.00462260 0.00769503 0.00266255 0.00281741 4.40981E-05 8.49059E-05 2.49121E-05 7.44335E-05 2.49121E-05 7.44335E-05 0.000988271 0 0.00149238 0.00147898	0.289551 0.314159 0.344153 0.0263208 0.197955 0.198458 0.635919 0.566584 0 0.664315 2.46216 4.07253 2.84932 86.9371 ib/h 0 0.000473922 0.0378241 0.178054 0.396686 0.216185 0.522568 0.566979 0.621112 0.0475025 0.357260 0.358168 1.14768 1.02254 0 0 1.14644	0.290394 0.314455 0.344383 0.0263230 0.197943 0.198439 0.635859 0.566637 0 0.0.646418 2.46207 4.07218 2.84903 86.9277 Ib/h 0 0.000354164 0.0276366 0.123040 0.267469 0.144725 0.349373 0.378320 0.144725 0.349373 0.378320 0.414327 0.0316692 0.238145 0.238742 0.238742 0.238745 0.238742 0.238745 0.238745 0.238742 0.7765001 0.681720 0 0 0.777705 2.96211	0.123981* 0.296421* 0.316442* 0.345878* 0.0263269* 0.197767* 0.198213* 0.635129* 0.666752* 0.646852* 2.46023* 4.06774* 2.84562* 86.8195* 1b/h 0* 0.00359220* 0.128700* 0.249422* 0.437159* 0.224059* 0.535691* 0.535691* 0.535691* 0.535405* 0.357405* 0.357405* 0.357405* 0.357405* 0.357405* 0.357405* 0.357405* 0.357405* 0.357405* 0.357405* 0.357405* 0.357405* 0.357405* 0.357405* 0.357405* 0.357405* 0.357405* 0.357405* 0.358210* 1.14780* 1.02423* 0*	0.296421* 0.316442* 0.345878* 0.0263269* 0.198713* 0.635129* 0.566752* 0.566752* 0.566752* 0.566752* 0.566752* 0.566752* 0.566752* 0.568195* 0.00239440* 0.0023940* 0.0023940* 0.0023940* 0.0023940* 0.0023940* 0.0023940* 0.0023940* 0.0023940* 0.0023940* 0.002394* 0
Isopentane n-Pentane Benzene Toluene Ethylbenzene p-Xylene n-Hexane 2,2,4-Trimethylpentane Other C6's Heptanes Octanes Nonanes Decanes + Mass Flow Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Bettane Isopentane n-Pentane Benzene Toluene Ethylbenzene p-Xylene n-Hexane 2,2,4-Trimethylpentane Other C6's Heptanes Other C6's	5.36899 2.00215 1.61972 0.0308338 0.0593483 0.0174052 0.052026 0.690828 0 1.04323 1.03361 0.535405 0.112955 4.44145E-06 0 0.00311828 0.0908761 0.0713681 0.0404726 0.073681 0.0404726 0.07372 0.0131231 0.00489375 0.0039599 7.53654E-05 0.000145062 4.25426E-05 0.000145062 4.25426E-05 0.000127107 0.00168855 0 0.00254991 0.00252640 0.00130866	5.13202 1.91091 1.54554 0.0294102 0.0566260 0.0166145 0.0496417 0.659104 0 0.995304 0.995304 0.986371 0.511122 0.107877 4.26423E-06 ib/h 0 0.00204024 0.0581494 0.0432133 0.0239223 0.00462260 0.00286525 0.000286525 0.000882711 0.00149238 0.00149238 0.000766384	0.289551 0.314159 0.344153 0.0263208 0.197955 0.198458 0.635919 0.566584 0 0.646315 2.46216 4.07253 2.84932 86.9371 Ib/h 0 0.000473922 0.0378241 0.178054 0.336686 0.216185 0.522568 0.566979 0.621112 0.0475025 0.357260	0.290394 0.314455 0.344383 0.0263230 0.197943 0.198439 0.635859 0.566637 0 0 0.666418 2.46207 4.07218 2.46207 4.07218 2.46207 4.07218 2.46207 0.0646418 0.0646418 0.0646418 0.00354164 0.02776366 0.123040 0.267469 0.144725 0.349373 0.378320 0.414327 0.378320 0.414327 0.378320 0.414327 0.3378320 0.414327 0.3378320 0.414327 0.3378320 0.414327 0.3378320 0.414327 0.3378320 0.414327 0.0316692 0.238145 0.238742 0	0.123981* 0.296421* 0.316442* 0.345878* 0.0263269* 0.197767* 0.198213* 0.635129* 0.636752* 0* 0.646852* 2.46023* 4.06774* 2.84562* 86.8195* 1b/h 0* 0.00359220* 0.128700* 0.2249422* 0.437159* 0.535691* 0.535691* 0.535691* 0.5357405* 0.357405* 0.357405* 0.357405* 0.357405* 0.357405* 0.357405* 0.357405* 0.357405* 0.357405* 0.357405* 0.357405* 0.357405* 0.357405* 0.358210* 1.14780* 1.14780* 1.16899* 4.44612* 7.35122*	0.296421* 0.316442* 0.345878* 0.026326* 0.197767* 0.198213* 0.635129* 0.566752* 0.566752* 0.566752* 2.46023* 4.06774* 2.84562* 86.8195* 0.00239440* 0.00239440* 0.00239440* 0.00239440* 0.00239441* 0.166254* 0.166254* 0.291391* 0.149348* 0.357068* 0.381185* 0.416645* 0.317133* 0.238230* 0.238230* 0.238767* 0.765076* 0.682708* 0.765076* 0.682708* 0.759179* 2.96359* 2.96359* 2.96359* 2.96359* 2.96359* 0.0000*
Isopentane n-Pentane Benzene Toluene Ethylbenzene p-Xylene n-Hexane 2,2,4-Trimethylpentane Other C6's Heptanes Octanes Nonanes Decanes + Mass Flow Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Bettane Benzene Toluene Ethylbenzene p-Xylene n-Hexane 2,2,4-Trimethylpentane Other C6's Heptanes	5.36899 2.00215 1.61972 0.0308338 0.0593483 0.0174052 0.052026 0.690828 0 1.04323 1.03361 0.535405 0.112955 4.44145E-06 1b/h 0 0.00311828 0.0908761 0.0713681 0.0404726 0.00787372 0.0131231 0.00489375 0.00048595 0.000145062 4.25426E-05 0.000127107 0.00168855 0 0.0025640	5.13202 1.91091 1.54554 0.0294102 0.0566260 0.0166145 0.0496417 0.659104 0 0.995304 0.995304 0.995304 0.986371 0.511122 0.107877 4.26423E-06 1b/h 0 0.0024024 0.0581494 0.0432133 0.0239223 0.00462260 0.00769503 0.00266255 0.00281741 4.40981E-05 8.49059E-05 2.49121E-05 7.44335E-05 2.49121E-05 7.44335E-05 0.000988271 0 0.00149238 0.00147898	0.289551 0.314159 0.344153 0.0263208 0.197955 0.198458 0.635919 0.566584 0 0.664315 2.46216 4.07253 2.84932 86.9371 ib/h 0 0.000473922 0.0378241 0.178054 0.396686 0.216185 0.522568 0.566979 0.621112 0.0475025 0.357260 0.358168 1.14768 1.02254 0 0 1.14644	0.290394 0.314455 0.344383 0.0263230 0.197943 0.198439 0.635859 0.566637 0 0.0.646418 2.46207 4.07218 2.84903 86.9277 Ib/h 0 0.000354164 0.0276366 0.123040 0.267469 0.144725 0.349373 0.378320 0.144725 0.349373 0.378320 0.414327 0.0316692 0.238145 0.238742 0.238742 0.238745 0.238742 0.238745 0.238745 0.238742 0.7765001 0.681720 0 0 0.777705 2.96211	0.123981* 0.296421* 0.316442* 0.345878* 0.0263269* 0.197767* 0.198213* 0.635129* 0.666752* 0.646852* 2.46023* 4.06774* 2.84562* 86.8195* 1b/h 0* 0.00359220* 0.128700* 0.249422* 0.437159* 0.224059* 0.535691* 0.535691* 0.535691* 0.535405* 0.357405* 0.357405* 0.357405* 0.357405* 0.357405* 0.357405* 0.357405* 0.357405* 0.357405* 0.357405* 0.357405* 0.357405* 0.357405* 0.357405* 0.357405* 0.357405* 0.357405* 0.357405* 0.358210* 1.14780* 1.02423* 0*	0.296421* 0.316442* 0.345878* 0.0263269* 0.198713* 0.635129* 0.566752* 0.566752* 0.566752* 0.566752* 0.566752* 0.566752* 0.566752* 0.568195* 0.00239440* 0.0023940* 0.0023940* 0.0023940* 0.0023940* 0.0023940* 0.0023940* 0.0023940* 0.0023940* 0.0023940* 0.002394* 0

Process Streams		Emission Point	Emission Point 2	Pipeline Liquids	Pipeline Liquids 2	Pressurized Liquid	Pressurized Liquid 2
Properties	Status:	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block:	3-50 bbl Tank	2- 100 bbl tank	3-50 bbl Tank	2- 100 bbl tank		
	To Block:					3-50 bbl Tank	2- 100 bbl tank
Property	Units						
Temperature	°F	57.7653	57.7930	57.7653	57.7930	58*	58*
Pressure	psig	0	1	0	1	21*	21*
Molecular Weight	lb/lbmol	25.3450	24.9274	227.932	227.778	225.494	225.494
Mass Density	lb/ft^3	0.0674859	0.0709004	51.4304	51.4275	49.7590	49.7590
Molar Flow	lbmol/h	0.00964388	0.00601515	0.791794	0.528188	0.801438	0.534203
Mass Flow	lb/h	0.244424	0.149942	180.475	120.310	180.720	120.460
Vapor Volumetric Flow	ft^3/h	3.62186	2.11482	3.50911	2.33941	3.63190	2.42087
Liquid Volumetric Flow	gpm	0.451556	0.263666	0.437500	0.291667	0.452809	0.301822
API Gravity				40.2833	40.2909		
Net Ideal Gas Heating Value	Btu/ft^3	1358.11	1336.39	11167.2	11159.7	11049.1	11049.1
Net Liquid Heating Value	Btu/lb	20239.2	20251.8	18439.8	18439.9	18442.2	18442.2

			Enviro	nments Report		
Environments Report						
Client Name:	Tank Emission Estima	ite		Job:	N:\West Virginia\CNX Gas\Projects\2017\Rule 1	3 Permirts\Dry Fork\ProMax\Dry Fork Tank Run.p
-ocation:	0					
Flowsheet:	tanks					
Project-Wide Constants						
tmospheric Pressure	14.695		Ideal Gas Reference Volum		I84 ft^3/lbmol	
deal Gas Reference Pressure	14.695		Liquid Reference Temperat	ure	60 °F	
deal Gas Reference Temperature	6)°F				
				vironment1		
				nment Settings		
lumber of Poynting Intervals		0	Phase Tolerance		1 %	
Gibbs Excess Model Evaluation Temperature		7°F	Emulsion Enabled	FAL	SE	
reeze Out Temperature Threshold Difference	1)°F				
				omponents		
Component	Henry's Law Comp.			Henry's Law Com		e Initiator
Carbon Dioxide	FALSE	FALSE	Nitrogen	FALSE		ALSE
Methane	FALSE	FALSE	Ethane	FALSE		ALSE
Propane	FALSE	FALSE	Isobutane	FALSE		ALSE
-Butane	FALSE	FALSE	Isopentane	FALSE		ALSE
n-Pentane	FALSE	FALSE	Benzene	FALSE		ALSE
Foluene	FALSE	FALSE	Ethylbenzene	FALSE		ALSE
-Xylene	FALSE	FALSE	n-Hexane	FALSE		ALSE
2,2,4-Trimethylpentane	FALSE	FALSE	Other C6's	FALSE		ALSE
leptanes	FALSE	FALSE	Octanes	FALSE		ALSE
Nonanes	FALSE	FALSE	Decanes +	FALSE	F	ALSE
			Dhycical D	operty Method Set	~	
	000741.0				3	
iquid Molar Volume	COSTALD		Vapor Package	Peng-Robinson		
Overall Package	Peng-Robinson		Light Liquid Package	Peng-Robinson		
Stability Calculation	Peng-Robinson		Heavy Liquid Package	Peng-Robinson		

Single Oil Report Decanes +					
Client Name:	Tank Emission Estim	ate	Job:	N:\West Virginia\CNX Gas\Projects\2017\Rule 13 Permirts\Dry Fork\ProMax\Dry Fork Tank Run.pmx	
Location:	0		•		
Flowsheet:	tanks				
			Prop	erties	
Volume Average Boiling Point	661.659 °F	Low Temperature Viscosity	6.79714	cP	
Molecular Weight	284.2* lb/lbmol	Temperature of High T Viscosity	210	°F	
Specific Gravity	0.8465*	High Temperature Viscosity	1.82072	cP	
API Gravity	35.6589	Watson K	12.2730		
Critical Temperature	951.235 °F	ASTM D86 10-90% Slope	0	°F/%	
Critical Pressure	170.611 psig	ASTM D93 Flash Point	338.345	°F	
Critical Volume	17.6652 ft^3/lbmol	Pour Point	61.4934	°F	
Acentric Factor	0.880769	Paraffinic Fraction	71.7542	%	
Carbon to Hydrogen Ratio	6.33114?	Naphthenic Fraction	22.5066	%	
Refractive Index	1.46817	Aromatic Fraction	5.73929	%	
Temperature of Low T Viscosity	100 °F	Ideal Gas Heat Capacity	103 423	Btu/(Ibmol*°F)	

Notes:

Single Oil Report Heptanes Job: N:\West Virginia\CNX Gas\Projects\2017\Rule 13 Permirts\Dry Fork\ProMax\Dry Fork Tank Run.pmx Client Name: Tank Emission Estimate Location: 0 tanks Flowsheet: Properties 0.347616 cP Volume Average Boiling Point Molecular Weight Specific Gravity API Gravity Critical Temperature Low Temperature Viscosity Temperature of High T Viscosity 204.170 °F 100.21* lb/lbmol 210 °F 0.211224 cP 0.7016* High Temperature Viscosity 70.1819 12.4336 Watson K ASTM D86 10-90% Slope 512.987 °F 0 °F/% Critical Pressure Critical Volume 396.167 psig 6.61841 ft^3/lbmol 22.6774 °F -5.66945? °F ASTM D93 Flash Point Pour Point 72.8431 % Acentric Factor 0.328178 Paraffinic Fraction Naphthenic Fraction Aromatic Fraction Ideal Gas Heat Capacity 21.4149 % Carbon to Hydrogen Ratio 5.34609 1.39189 5.74200 % Refractive Index Temperature of Low T Viscosity 100 °F 37.1664 Btu/(lbmol*°F) Notes:

Single Oil Report Nonanes					
Client Name:	Tank Emission Estimation	ate	Job:	N:\West Virginia\CNX Gas\Projects\2017\Rule 13 Permirts\Dry Fork\ProMax\Dry Fork Tank Run.pm	
Location:	0			• • • • • • • • • • • • • • • • • • • •	
Flowsheet:	tanks				
	•				
			Prop	perties	
Volume Average Boiling Point	296.600 °F	Low Temperature Viscosity	0.569789) cP	
Molecular Weight	128* lb/lbmol	Temperature of High T Viscosity	210) °F	
Specific Gravity	0.7424*	High Temperature Viscosity	0.313911	cP	
API Gravity	59.0981	Watson K	12.2722		
Critical Temperature	612.483 °F	ASTM D86 10-90% Slope	0) °F/%	
Critical Pressure	339.966 psig	ASTM D93 Flash Point	86.4541	°F	
Critical Volume	8.28440 ft^3/lbmol	Pour Point	-11.0241?	°F	
Acentric Factor	0.420394	Paraffinic Fraction	62.4060) %	
Carbon to Hydrogen Ratio	5.62062	Naphthenic Fraction	24.7656	5 %	
Refractive Index	1.41424	Aromatic Fraction	12.8284	ł %	
Temperature of Low T Viscosity	100 °F	Ideal Gas Heat Capacity	46.6471	Btu/(lbmol*°F)	
· ·					

				Oil Report
			00	tanes
Client Name:	Tank Emission Estima	ate	Job:	N:\West Virginia\CNX Gas\Projects\2017\Rule 13 Permirts\Dry Fork\ProMax\Dry Fork Tank Run.pmx
Location:	0			
Flowsheet:	tanks			
			Pro	perties
Volume Average Boiling Point	251.542 °F	Low Temperature Viscosity	0.44653	33 cP
Molecular Weight	114* lb/lbmol	Temperature of High T Viscosity	2	10 °F
Specific Gravity	0.724*	High Temperature Viscosity	0.25844	17 cP
API Gravity	63.9420	Watson K	12.329	00
Critical Temperature	565.037 °F	ASTM D86 10-90% Slope		0 °F/%
Critical Pressure	367.393 psig	ASTM D93 Flash Point	55.364	12 °F
Critical Volume	7.43719 ft^3/lbmol		-9.58266	S? °F
Acentric Factor		Paraffinic Fraction	66.614	40 %
Carbon to Hydrogen Ratio		Naphthenic Fraction	23.69	
Refractive Index	1.40406	Aromatic Fraction	9.6889	
Temperature of Low T Viscosity	100 °F	Ideal Gas Heat Capacity	41.809	03 Btu/(Ibmol*°F)
Notes:				
			Single	Oil Report
			•	er C6's
			Our	
Client Name:	Tank Emission Estima	ate	Job:	N:\West Virginia\CNX Gas\Projects\2017\Rule 13 Permirts\Dry Fork\ProMax\Dry Fork Tank Run.pmx
Location:	0			
Flowsheet:	tanks			
			Pro	perties
Volume Average Boiling Point	147.291 °F	Low Temperature Viscosity	0.25668	30 cP
Molecular Weight	85* lb/lbmol	Temperature of High T Viscosity	2	10 °F
Specific Gravity	0.664*	High Temperature Viscosity	0.16474	13 cP
API Gravity		Watson K	12.75	2
Critical Temperature	445.480 °F	ASTM D86 10-90% Slope		0 °F/%
Critical Pressure	420.214 psig	ASTM D93 Flash Point	-16.5692	?? °F
Critical Volume	5.75172 ft^3/lbmol	Pour Point	5.8232	? °F
Acentric Factor	0.277116	Paraffinic Fraction	86.493)? %
Carbon to Hvdrogen Ratio	5.07336	Naphthenic Fraction	13.506 ⁻	? %

12.7512 0 °F/% -16.5692? °F 5.82321? °F 86.4939? % 13.5061? %

0? %

32.5709 Btu/(lbmol*°F)

5.07336

1.37271

Carbon to Hydrogen Ratio Refractive Index

Notes:

Temperature of Low T Viscosity

100 °F

Naphthenic Fraction

Ideal Gas Heat Capacity

Aromatic Fraction

		Cale	culators Report	
Client Name:	Tank Emission Estimate			Job: N:\V
Location:	0			
Flowsheet:	tanks			
			Simple Solver 1	
			Source Code	
Residual Error (fo	r CV1) = PipelineLiquids-15			
		Calcu	lated Variable [CV1]	
SourceMoniker	ProMax:ProMax!Project!Flowsh	neets!tanks!PS	Streams!Pressurized Liquid!Phases!Total!Properties!Std Lie	quid Volumetric Flow
Value	0.438761			
Units	sgpm			
		Magazina	Veriekle (Dineline) invide)	
SourceMoniker	ProMax:ProMaxIProject Flows		I Variable [PipelineLiquids] Streams!Pipeline Liquids!Phases!Total!Properties!Liquid Vo	Jumetric Flow
Value	15.0000			
Units	bbl/d			
Status: Solved			Solver Properties	
Error	1.90070E-12		Iterations	2
Calculated Value	0.438761	sapm	Max Iterations	20
Lower Bound		sgpm	Weighting	1
Upper Bound		sgpm	Priority	0
Step Size		sgpm	Solver Active	Active
Is Minimizer	FALSE	ogpin	Group	7101110
Algorithm	Default		Skip Dependency Check	FALSE
Notes:				
		S	Simple Solver 2	
			Source Code	
Residual Error (fo	r CV1) = Pipeline_Liquids_2-10			
			lated Variable [CV1]	
		neets!tanks!PS	Streams!Pressurized Liquid 2!Phases!Total!Properties!Std	Liquid Volumetric Flow
Value	10.0272			
Units	bbl/d			
		Measured V	/ariable [Pipeline_Liquids_2]	
SourceMoniker	ProMax:ProMax!Project!Flowsh		Streams!Pipeline Liquids 2!Phases!Total!Properties!Liquid	Volumetric Flow
Value	10			
Units	bbl/d			
Status: Solved			Solver Properties	
Error	0		Iterations	2
Calculated Value	0.292459	sapm	Max Iterations	20
Lower Bound	0.202 100	sgpm	Weighting	1
Upper Bound		sgpm	Priority	0
Step Size		sgpm	Solver Active	Active
Is Minimizer	FALSE	- 3 F · · ·	Group	
Algorithm	Default		Skip Dependency Check	FALSE
Notes:				

		
	User Value	Sets Report	
Client Name:	Tank Emission Estimate	Job:	N:\West Virginia
Location:	0		
Flowsheet:	tanks		
	Та	n k-1	
		BlockReady]	
Parameter	1*	Upper Boun	
Lower Bound		Enforce Bou	FALSE
	User Value I	ShellLength]	
Parameter	5* ft	Upper Boun	ft
Lower Bound	O* ft	Enforce Bou	FALSE
Parameter	8.45* ft	[ShellDiam] Upper Boun	ft
Lower Bound	0* ft	Enforce Bou	FALSE
		[BreatherVP]	
Parameter	0.0300000* psig	Upper Boun Enforce Bou	psig FALSE
Lower Bound	psig	Enforce Bol	FALSE
	User Value [F	BreatherVacP]	
Parameter	-0.0300000* psig	Upper Boun	psig
Lower Bound	psig	Enforce Bou	FALSE
	User Value [DomeRadius]	
Parameter	4.23* ft	Upper Boun	ft
Lower Bound	ft	Enforce Bou	FALSE
	Llsor Value	[OnBross]	
Parameter	05er Value 0* psig	[OpPress] Upper Boun	psig
Lower Bound	psig	Enforce Bou	FALSE
	· · ·		
		vgPercentLiq]	
Parameter Lower Bound	50* % %	Upper Boun Enforce Bou	% FALSE
	70	Enlorce Bol	FALSE
	User Value [N	laxPercentLiq]	
Parameter	90* %	Upper Boun	%
Lower Bound	%	Enforce Bou	FALSE
	User Value	[AnnNetTP]	
Parameter	14.9471* bbl/day	Upper Boun	bbl/day
Lower Bound	0* bbl/day	Enforce Bou	FALSE
Parameter	0* %	ue [OREff] Upper Boun	%
Lower Bound	%	Enforce Bou	FALSE
		[MaxAvgT]	
Parameter Lower Bound	61.15* °F °F	Upper Boun Enforce Bou	°F FALSE
	<u> </u>		
	User Value	e [MinAvgT]	
Parameter	36.9667* °F	Upper Boun	°F
Lower Bound	°F	Enforce Bou	FALSE

	User Value	[BulkLiqT]	
Parameter	49.0783* °F	Upper Boun	°F
Lower Bound	°F	Enforce Bou	FALSE
	User Valu		
Parameter	13.7315* psia	Upper Boun	paia
Lower Bound	psia	Enforce Bou	psia FALSE
Lottor Bound	pola	Enioroo Box	
	User Value	[Therml]	
Parameter	1193.89* Btu/ft^2/day	Upper Boun	Btu/ft^2/day
Lower Bound	Btu/ft^2/day	Enforce Bou	FALSE
		aWindSnood]	
Parameter	User Value [Av 6.16667* mi/h	Upper Boun	mi/h
Lower Bound	mi/h	Enforce Bou	FALSE
	User Value [MaxHo	ourlyLoadingRate]	
Parameter	0.622794* bbl/hr	Upper Boun	bbl/hr
Lower Bound	0* bbl/hr	Enforce Bou	FALSE
	User Value [Ent	rainedOilErael	
Parameter	User Value [Ent	Upper Boun	%
Lower Bound	%	Enforce Bou	FALSE
	<i>70</i>		
	User Value [T	urnoverRate]	
Parameter	40.4561*	Upper Boun	
Lower Bound		Enforce Bou	FALSE
	User Value [LL	oseSatEactorl	
Parameter	0.5*	Upper Boun	
Lower Bound	0.5	Enforce Bou	FALSE
			-
	User Value [A		
Parameter	13.7315* psia	Upper Boun	psia
Lower Bound	psia	Enforce Bou	FALSE
	User Valu	ie [TVP]	
Parameter	6.77054* psia	Upper Boun	psia
Lower Bound	psia	Enforce Bou	FALSE
	User Value		
Parameter	7.19440* psia	Upper Boun	psia FALSE
Lower Bound	psia	Enforce Bou	
	User Value	e [MinVP]	
Parameter	6.37364* psia	Upper Boun	psia
Lower Bound	psia	Enforce Bou	FALSE
-	User Value [Av		
Parameter Lower Bound	50.6729* °F °F	Upper Boun Enforce Bou	°F FALSE
	Г		
	User Value [Ma	xLigSurfaceT]	
Parameter	56.4466* °F	Upper Boun	°F
Lower Bound	°F	Enforce Bou	FALSE
	User Value [T		
Parameter Lower Bound	0.358486* ton/yr	Upper Boun Enforce Bou	ton/yr FALSE
	ton/yr		

	User Value [V	VorkingLosses]	
Parameter	0.0732604* ton/yr	Upper Boun	ton/yr
Lower Bound	ton/yr	Enforce Bou	FALSE
	User Value [S	tandingLosses]	
Parameter	0.0462348* ton/yr	Upper Boun	ton/yr
Lower Bound	ton/yr	Enforce Bou	FALSE
		RimSealLosses]	
Parameter	0* ton/yr	Upper Boun	ton/yr
Lower Bound	ton/yr	Enforce Bou	FALSE
	User Value [W	VithdrawalLoss]	
Parameter	0* ton/yr	Upper Boun	ton/yr
Lower Bound	ton/yr	Enforce Bou	FALSE
		a a din ni a a a a 1	
Parameter		.oadingLosses]	teelu
	0.124073* ton/yr	Upper Boun Enforce Bou	ton/yr FALSE
Lower Bound	ton/yr	Enlorce Bot	FALSE
	User Value [MaxH	lourlyLoadingLoss]	
Parameter	0.0283272* lb/hr	Upper Boun	lb/hr
Lower Bound	lb/hr	Enforce Bou	FALSE
	User Va	lue [PStar]	
Parameter		Upper Boun	
Lower Bound		Enforce Bou	FALSE
		IICTotalLosses]	
Parameter	0.867429* ton/yr	Upper Boun Enforce Bou	ton/yr FALSE
Lower Bound	ton/yr	Enlorce Bot	FALSE
	User Value [All	CLoadingLosses]	
Parameter	0.300221* ton/yr	Upper Boun	ton/yr
Lower Bound	ton/yr	Enforce Bou	FALSE
	User Value [AllCl	MaxHLoadingLoss]	
Parameter	0.0685436* lb/hr	Upper Boun	lb/hr
Lower Bound	lb/hr	Enforce Bou	FALSE
Doromotor		CFlashingLosses]	taalu
Parameter Lower Bound	0.0395657* ton/yr	Upper Boun Enforce Bou	ton/yr FALSE
	ton/yr		TALOL
	User Value [De	ckFittingLosses]	
Parameter	0* ton/yr	Upper Boun	ton/yr
Lower Bound	ton/yr	Enforce Bou	FALSE
	User Value [De	eckSeamLosses]	
Parameter	0* ton/yr	Upper Boun	ton/yr
Lower Bound	ton/yr	Enforce Bou	FALSE
		looping coocel	
Doromotor		lashingLosses]	taalu
Parameter	0.0131654* ton/yr	Upper Boun Enforce Bou	ton/yr
Lower Bound	ton/yr	Enforce Bol	FALSE
	User Value [TotalResidual]	
Parameter	789.575* ton/yr	Upper Boun	ton/yr
Lower Bound	ton/yr	Enforce Bou	FALSE
	User Value IG	GasMoleWeight]	

Devenenter	0.0040000*	Line on Dours	
Parameter Lower Bound	0.0318968* kg/mol kg/mol	Upper Boun Enforce Bou	kg/mol FALSE
	Kg/III0I	LINOICE BOL	TALGL
	User Value (Var	ReportableFrac]	
Parameter	41.3274* %	Upper Boun	%
Lower Bound	%	Enforce Bou	FALSE
	User Value [Liq	ReportableFrac]	
Parameter	99.8835* %	Upper Boun	%
Lower Bound	%	Enforce Bou	FALSE
		hReportableFrac]	
Parameter	33.2747* %	Upper Boun	% 541.05
Lower Bound	%	Enforce Bou	FALSE
Notes:			
	was programmatically generated. GL	JID={0658807B-16DE-46C9-	972E-43AD43311EF6}
	Tai	n k-2	
	User Value	[BlockReady]	
Parameter	1*	Upper Boun	
Lower Bound		Enforce Bou	FALSE
		[ShellLength]	
Parameter	10* ft	Upper Boun	ft
Lower Bound	0* ft	Enforce Bou	FALSE
		[ShellDiam]	
Parameter	8.45* ft	Upper Boun	ft
Lower Bound	0* ft	Enforce Bou	FALSE
	Liser Value	[BreatherVP]	
Parameter	0.0300000* psig	Upper Boun	psig
Lower Bound	psig	Enforce Bou	FALSE
Lonor Bound	polg	Enioreo Box	THEOL
	User Value [BreatherVacP]	
Parameter	-0.0300000* psig	Upper Boun	psig
Lower Bound	psig	Enforce Bou	FALSE
	User Value [DomeRadius]	
Parameter	4.23* ft	Upper Boun	ft
Lower Bound	ft	Enforce Bou	FALSE
		e [OpPress]	
Parameter	0* psig	Upper Boun	psig
Lower Bound	psig	Enforce Bou	FALSE
		vgPercentLiq]	
Doromotor			0/
Parameter Lower Bound	50* % %	Upper Boun Enforce Bou	% FALSE
	70		TALOL
	User Value IN	laxPercentLiq]	
Parameter	90* %	Upper Boun	%
Lower Bound	%	Enforce Bou	FALSE
			-
	User Value	[AnnNetTP]	
Parameter	9.96368* bbl/day	Upper Boun	bbl/day
Lower Bound	0* bbl/day	Enforce Bou	FALSE
	User Valu	ue [OREff]	
Parameter	0* %	Upper Boun	%

Lower Bound	%	Enforce Bou	FALSE
		e [MaxAvgT]	
Parameter	61.15* °F	Upper Boun	°F
Lower Bound	°F	Enforce Bou	FALSE
	User Valu	e [MinAvgT]	
Parameter	36.9667* °F	Upper Boun	°F
Lower Bound	°F	Enforce Bou	FALSE
	User Valu	e [BulkLiqT]	
Parameter	49.0783* °F	Upper Boun	°F
Lower Bound	°F	Enforce Bou	FALSE
	User Va	llue [AvgP]	
Parameter	13.7315* psia	Upper Boun	psia
Lower Bound	psia	Enforce Bou	FALSE
	User Val	ue [Therml]	
Parameter	1193.89* Btu/ft^2/day	Upper Boun	Btu/ft^2/day
Lower Bound	Btu/ft^2/day	Enforce Bou	FALSE
	User Value I	AvgWindSpeed]	
Parameter	6.16667* mi/h	Upper Boun	mi/h
Lower Bound	mi/h	Enforce Bou	FALSE
Parameter	0.415153* bbl/hr	HourlyLoadingRate]	bbl/hr
Lower Bound	0* bbl/hr	Enforce Bou	FALSE
		ntrainedOilFrac]	~
Parameter Lower Bound	1* % %	Upper Boun Enforce Bou	% FALSE
Parameter	20.2260*	[TurnoverRate] Upper Boun	
Lower Bound	20.2260	Enforce Bou	FALSE
		LossSatFactor]	
Parameter	0.5*	Upper Boun	
Lower Bound		Enforce Bou	FALSE
	User Value	[AtmPressure]	
Parameter	13.7315* psia	Upper Boun	psia
Lower Bound	psia	Enforce Bou	FALSE
	User Va	alue [TVP]	
Parameter	6.82125* psia	Upper Boun	psia
Lower Bound	psia	Enforce Bou	FALSE
	User Val	ue [MaxVP]	
Parameter	7.25012* psia	Upper Boun	psia
Lower Bound	psia	Enforce Bou	FALSE
	User Val	lue [MinVP]	
Parameter	6.41960* psia	Upper Boun	psia
Lower Bound	psia	Enforce Bou	FALSE
		val inSurfaceT1	
Parameter	<u>User Value [/</u> 50.6729* °F	AvgLiqSurfaceT] Upper Boun	°F
Lower Bound	°F	Enforce Bou	FALSE
		•	

	User Value [N	laxLiqSurfaceT]	
Parameter	56.4466* °F	Upper Boun	°F
Lower Bound	°F	Enforce Bou	FALSE
		[TotalLosses]	
Parameter	0.267845* ton/yr	Upper Boun	ton/yr
Lower Bound	ton/yr	Enforce Bou	FALSE
Parameter	0.0809753* ton/yr	VorkingLosses] Upper Boun	ton/yr
Lower Bound	ton/yr	Enforce Bou	FALSE
Lower Dound	ton/yi	Enloice Bot	TALOL
	User Value [S	tandingLosses]	
Parameter	0.0529473* ton/yr	Upper Boun	ton/yr
Lower Bound	ton/yr	Enforce Bou	FALSE
	User Value [F	RimSealLosses]	
Parameter	0* ton/yr	Upper Boun	ton/yr
Lower Bound	ton/yr	Enforce Bou	FALSE
Lower Dound	tony	Enlore Bet	TALOL
	User Value [V	VithdrawalLoss]	
Parameter	0* ton/yr	Upper Boun	ton/yr
Lower Bound	ton/yr	Enforce Bou	FALSE
		_oadingLosses]	
Parameter	0.0830344* ton/yr	Upper Boun	ton/yr
Lower Bound	ton/yr	Enforce Bou	FALSE
	User Value [MaxH	lourlyLoadingLoss]	
Parameter	0.0189576* lb/hr	Upper Boun	lb/hr
Lower Bound	lb/hr	Enforce Bou	FALSE
	<u> </u>		
	User Va	lue [PStar]	
Parameter		Upper Boun	
Lower Bound		Enforce Bou	FALSE
	User Value [A	IICTotalLosses]	
Parameter	0.644486* ton/yr	Upper Boun	ton/yr
Lower Bound	ton/yr	Enforce Bou	FALSE
	•		
		CLoadingLosses]	
Parameter	0.199796* ton/yr	Upper Boun	ton/yr
Lower Bound	ton/yr	Enforce Bou	FALSE
	User Value [AllC	MaxHLoadingLoss]	
Parameter	0.0456156* lb/hr	Upper Boun	lb/hr
Lower Bound	lb/hr	Enforce Bou	FALSE
	User Value [All	CFlashingLosses]	
Parameter	0.0587426* ton/yr	Upper Boun	ton/yr
Lower Bound	ton/yr	Enforce Bou	FALSE
Denementer		ckFittingLosses]	Le - L
Parameter	0* ton/yr	Upper Boun	ton/yr
Lower Bound	ton/yr	Enforce Bou	FALSE
	User Value [De	eckSeamLosses]	
Parameter	0* ton/yr	Upper Boun	ton/yr
Lower Bound	ton/yr	Enforce Bou	FALSE
	User Value [F	lashingLosses]	

Parameter	0.0195673* ton/yr	Upper Boun	ton/yr
Lower Bound	ton/yr	Enforce Bou	FALSE
	User Value [TotalResidual]	
Parameter	526.254* ton/yr	Upper Boun	ton/yr
Lower Bound	ton/yr	Enforce Bou	FALSE
	User Value [G	asMoleWeight]	
Parameter	0.0319284* kg/mol	Upper Boun	kg/mol
Lower Bound	kg/mol	Enforce Bou	FALSE
	User Value [Va	pReportableFrac]	
Parameter	41.5595* %	Upper Boun	%
Lower Bound	%	Enforce Bou	FALSE
	User Value [Lid	ReportableFrac]	
Parameter	99.8819* %	Upper Boun	%
Lower Bound	%	Enforce Bou	FALSE
	Liser Value (Flag	shReportableFrac]	
Parameter	33.3102* %	Upper Boun	%
Lower Bound	33.3102 % %	Enforce Bou	FALSE
Lower Bound	70	Ellipice Bot	TALOL
Notes:			
	was programmatically generated. G	UID={F5CF85E9-4310-4AEB	-9008-EEC20CB8B39F}

ATTACHMENT O

MONITORING/RECORDKEEPING/REPORTING/ TESTING PLANS

45CSR13 Permit Application

Dry Fork Station Camden, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA 15317

October 2017

MONITORING, RECORD KEEPING, REPORTING, TESTING PLANS

Monitoring

CNX will at a minimum monitor tank throughput.

Recordkeeping

The company will retain records of the following for five (5) years, certified by a company official at such time that the DAQ may request said records

In addition to those mentioned above, the company will keep records of the items monitored, such as station throughput, hours of operation, planned maintenance activities, unplanned maintenance activities, and complaints regarding the facility.

Reporting

The company will report any emission limit deviations.

Testing

Testing will be conducted upon request

ATTACHMENT P

PUBLIC NOTICE

45CSR13 Permit Application

Dry Fork Station Camden, West Virginia

CNX Gas Company LLC 1000 Consol Energy Drive Canonsburg, PA 15317

October 2017

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that CNX Gas Company LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a Rule 13 Permit, for a natural compressor station located off Route 33-W/119-S near Camden, in Lewis County, West Virginia. The latitude and longitude coordinates are 39.05589 and -80.55494.

The applicant estimates the increased potential to discharge of the following Regulated Air Pollutants will be:

Pollutant	Tons/yr	
PM/PM10/PM2.5	0.23	
SO ₂	0.02	
NO _x	35.42	
CO	37.22	
VOCs	2.98	
Total HAPs	0.90	

Modifications of operations are after the fact. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the XXth day of August, 2017.

By: CNX Gas Company LLC Craig Neal Vice President Gas Operations 1000 Consol Energy Drive Canonsburg, PA 15317