

G35-D General Permit Application

Goff Natural Gas Compressor Station

Clarksburg, West Virginia

Prepared By:

Environmental Resources Management, Inc. Hurricane, West Virginia

September 2017

People Powered. Asset Strong.

September 12, 2017

Mr. William F. Durham, Director West Virginia Department of Environmental Protection Division of Air Quality 601 57th Street, SE Charleston, West Virginia, 25304

RE: G35-D General Permit Registration Application Arsenal Midstream Goff Natural Gas Compression Station

Dear Director Durham:

Enclosed are one (1) original hard copy and two (2) complete PDFs included on CD-ROM of a G35-D General Permit Registration Application for the authority to construct the Goff natural gas compression station located in Harrison County, West Virginia.

A legal advertisement will be published in the next few days and proof of publication will be forwarded as soon as it is received. Please contact me for payment of the application fee by credit card.

If you have any questions concerning this permit application, please contact me at (724) 940-1112 or by email at myingling@arsenalresources.com.

Sincerely,

Meghan M.B. Yingling Environmental Compliance Manager Arsenal Midstream

Enclosures

Cc: Bill Veigel, Sr. Director of Production, Arsenal Midstream Stacey Lucas, V.P. HSE, Arsenal Resources Grant Morgan, ERM

1.0 INTRODUCTION NARRATIVE

Arsenal Midstream, LLC submits this G35-D Class II General Permit application to the West Virginia Department of Environmental Protection's Division of Air Quality (WVDAQ) for the Goff Compressor Station (Goff) located in Harrison County, West Virginia. This application addresses the operational activities associated with the compression of natural gas and produced water at the Goff Station.

Arsenal wishes to submit this G35-D to permit the following equipment currently at the Goff Station:

- Five (5) 1380 hp G3516ULB Compressor Engines;
- One (1) 107 hp Kohler 80REZGD Emergency Generator;
- One (1) 210 bbl Produced Water Tank;
- One (1) 100 bbl Produced Water Tank;
- One (1) 0.25 MMBtu/hr Line Heater; and
- Nine (9) 520 gal Oil Storage tanks.

This update is being made to correct issues with emission factors and fuel usage rates currently permitted under Permit No. G35-D107E. The original name permitted for this station was Goff West Compressor Station, which was an aggregation of this station and another compressor station. These stations will no longer share a permit, based on EPA Source Determination Guidance, and the name for this station will change to Goff Compressor Station. The other station will have a separate G35-D permit application submitted to become Cather Compressor Station.

Statement of aggregation

The Goff Compressor Station is located in Harrison County, WV and operated by Arsenal. Stationary sources of air pollutants may require aggregation of total emission levels if these sources share the same industrial grouping, are operating under common control, and are classified as contiguous or adjacent properties. Arsenal operates Goff with the same industrial grouping as nearby facilities, and some of these facilities are under common control. However, the Goff Station is not subject to the aggregation of stationary emission sources because these sites do not meet the definition of contiguous or adjacent facilities.

The Goff Station operates under SIC code 1311 (Crude Petroleum and Natural Gas Extraction). There are surrounding sites operated by Arsenal that share the same two digit major SIC code of 13 for Crude Petroleum and Natural Gas Extraction. Therefore, the Goff Station does share the same SIC codes as the surrounding wells and compressor stations.

Arsenal is the sole operator of the Goff Station. Arsenal is also the sole operator of other production sites and compressor stations in the area. Therefore, Arsenal does qualify as having nearby operations under common control.

Based on the EPA's Source Determination Guidance for Certain Emission Units in the Oil and Natural Gas Sector, effective on August 2, 2016, the term "adjacent" is defined as follows:

Equipment and activities in the oil and gas sector that are under common control will be considered part of the same source if they are located near each other – specifically, if they are located on the same site or on sites that share equipment and are within ¹/₄ mile of each other.

The Goff compressor station shares equipment with the surrounding wells and compressor stations. Specifically, the Goff Compressor Station and Cather Compressor Station can be operated such that gas flows from one station to the other, with each station acting as a stage of compression. It is important to note that bypass valves are installed and operated at each facility to allow for each station to operate independently of one another, as required by field and market conditions. Based upon the above, the Goff compressor station does share equipment with nearby facilities.

The additional consideration that the EPA put forth in the Source Determination Guidance is that the facilities must be within ¼ mile to be considered as adjacent facilities. Goff Compressor station does not fall within the ¼ mile rule and therefore, does not meet the definition of contiguous or adjacent properties.

Below are the GPS coordinates for the Goff Compressor station and nearby, Arsenal owned assets to show the ¹/₄ mile radius is valid.

Goff Compressor Station: 39.27737, -80.40417 (0.50 miles from Cather Compressor Station and 0.57 miles from Goff 3 & 4). Cather Compressor Station: 39.27944, -80.41333 Goff 3 & 4 Wellpad: 39.269845, -80.40031

Based on the above reasoning, Arsenal is not subject to the aggregation of stationary emission sources since the stationary sources are not considered contiguous or adjacent facilities.

2.0 REGULATORY DISCUSSION

This section outlines the State air quality regulations that could be reasonably expected to apply to the Goff Station and makes an applicability determination for each regulation based on activities conducted at the station and the emissions of regulated air pollutants. This review is presented to supplement and/or add clarification to the information provided in the WVDEP G35-D permit application forms. The West Virginia State Regulations address federal regulations, including Prevention of Significant Deterioration permitting, Title V permitting, New Source Performance Standards, and National Emission Standards for Hazardous Air Pollutants.

The regulatory requirements in reference to Goff are described in detail in the below section.

West Virginia State Air Regulations

45 CSR 02 – To Prevent and Control Particulate Air Pollution From Combustion of Fuel in Indirect Heat Exchangers

The line heater is an indirect heat exchanger that combusts natural gas but is exempt from this regulation since the heat input capacity is less than 10 MMBtu/hr.

45 CSR 04 – To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contributes to an Objectionable Odor

Operations conducted at the Goff Station are subject to this requirement. Based on the nature of the process at the compressor station, the presence of objectionable odors is unlikely.

45 CSR 06 – Control of Air Pollution from the Combustion of Refuse

The Goff Compressor Station does not have a combustion device and is therefore not subject to this rule.

45 CSR 10 – To Prevent and Control Air Pollution from the Emission of Sulfur Oxides

The Line Heater combusts natural gas but are exempt from this regulation since the heat input capacity is less than 10 MMBtu/hr.

45 CSR 13 – Permits for Construction, Modification, Relocation and Operation of Stationary Sources of Air Pollutants

This G35-D permit application is being submitted for the operational activities associated with Arsenal's compression of natural gas.

45 CSR 14 – Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution for the Prevention of Significant Deterioration

Federal construction permitting programs regulate new and modified sources of attainment pollutants under Prevention of Significant Deterioration (PSD). The G35-D applicability criterion excludes facilities that meet the definition of a major source as defined in 45 CSR 19 for being eligible for the general permit.

Operation of equipment at the Goff Station will not exceed emission thresholds established by this permitting program. Arsenal will monitor future construction and modification activities at the station closely and will compare any future increase in emissions with the PSD thresholds to ensure these activities will not trigger this program.

45 CSR 16 - Standards of Performance for New Stationary Sources (NSPS)

45 CSR 16 applies to all registrants that are subject to any of the NSPS requirements described in more detail in the Federal Regulations section.

45 CSR 19 – Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution which Cause or Contributed to Non-attainment

Federal construction permitting programs regulate new and modified sources of nonattainment pollutants under Non-Attainment New Source Review (NNSR). The G35-D applicability criterion excludes facilities that meet the definition of a major source as defined in 45 CSR 19 for being eligible for the general permit.

Harrison County, WV is in attainment for all pollutants with a National Ambient Air Quality Standard (NAAQS). Therefore, this regulation would not apply to the Goff Station.

45 CSR 25 – Control of Air Pollution from Hazardous Waste Treatment, Storage, and Disposal Facilities

No hazardous waste will be burned at this compressor station; therefore, it is not subject to this hazardous waste rule.

45 CSR 30 – Requirements for Operating Permits

45 CSR 30 applies to the requirements of the federal Title V operating permit program (40 CFR 70). The major source thresholds for the Title V operating permit program regulations are 10 tons per year (tpy) of a single hazardous air pollutant (HAP), 25 tpy of any combination of HAPs, or 100 tpy of all other regulated pollutants.

The potential emissions of all regulated pollutants at the proposed facility are below the corresponding major source threshold(s). Therefore, the Goff Station will not be a major source under the Title V program.

45 CSR 34 – National Emission Standards for Hazardous Air Pollutants (NESHAP)

45 CSR 34 applies to all registrants that are subject to any of the NESHAP requirements. The NESHAP Rules are discussed further in the Federal Regulation section of this document.

Federal Regulations

New Source Performance Standards

40 CFR 60, Subpart OOOO (Standards of Performance for Crude oil and Natural Gas Production, Transmission and Distribution)

Subpart OOOO establishes emission standards and compliance schedules for the control of volatile organic compounds (VOC) and sulfur dioxide (SO₂) emissions from affected facilities that commence construction, modification or reconstruction between August 23, 2011 and September 18, 2015. The applicable provisions and requirements of Subpart OOOO are included under the G35-D permit.

The Goff station is a reciprocating compressor engine affected facility under OOOO for compression engines CE-1R and CE-2R. As a reciprocating engine affected facility, Arsenal

must replace the compressor rod packing prior to three (3) years from the date of the most recent rod packing replacement.

There are several equipment types that have been installed at Goff that do not meet the affected facility definitions as specified by EPA. These include:

- Storage vessels: Emissions from Produced Water Tank TK-2 were determined to be below 6 tons per year (tpy) of VOC. Therefore, Produced Water Tank TK-2 is not an affected storage vessel.
- Pneumatic devices: All pneumatic devices installed at the Goff Station are either low-continuous bleed or intermittent bleed and do not qualify as affected sources.

Subpart OOOOa (Standards Of Performance For Crude Oil And Natural Gas Facilities For Which Construction, Modification, Or Reconstruction Commenced After September 18, 2015)

The Goff Station does have equipment that is an affected facility under OOOOa. The Goff Station will qualify as a collection of fugitive components affected facility. As a fugitive component affected facility, in order to comply, LDAR monitoring at the Goff Station must be conducted quarterly.

The Goff Station is a reciprocating compressor engine affected facility under OOOOa for compressor engines CE-7R, CE-8R, and CE-9R. As a reciprocating engine affected facility, Arsenal must replace the compressor rod packing on or before the compressor operates for 26,000 hours or prior to three (3) years from the date of the most recent rod packing replacement, whichever is earlier.

There are several equipment types that have been installed at the Goff Station that do not meet the affected facility definitions as specified by EPA. These include:

- Storage vessels: Emissions from Produced Water Tank TK-1 were determined to be below 6 tons per year (tpy) of VOC. Therefore, Produced Water Tank TK-1 is not an affected storage vessel.
- Pneumatic devices: All pneumatic devices installed at the Goff Station are either low-continuous bleed or intermittent bleed and do not qualify as affected sources.

40 CFR 60 Subpart JJJJ (Standards of Performance for Stationary Spark Ignition Internal Combustion Engines)

The Goff Station has compressor engines that were constructed after 6/12/2006, making them subject to JJJJ. All five (5) of these engines are non-emergency, spark-ignition, lean-burn reciprocating internal combustion engine with a horsepower rating of 1380 bhp and are subject to the following emission standards:

- NOx 1.0 g/bhp-hr;
- CO 2.0 g/bhp-hr; and
- VOCs 0.7 g/bhp-hr.

The Goff Station also has one (1) 107 hp emergency generator. This unit is JJJJ certified for the following standards and has an EPA Certificate of Conformity:

- NOx 2.0 g/bhp-hr;
- CO 4.0 g/bhp-hr; and
- VOC 1.0 g/bhp-hr.

No additional NSPS are expected to be applicable to this facility.

National Emissions Standards for Hazardous Air Pollutants

40 CFR 63, Subpart ZZZZ (National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines)

The CAT G3516B LE compressor engines comply with Subpart ZZZZ because they are subject to NSPS Subpart JJJJ regulations.

The Kohler 80REZGD Emergency Generator complies with Subpart ZZZZ because it is a NSPS Subpart JJJJ certified engine with an EPA Certificate of Conformity.

No additional NESHAP are expected to be applicable to this facility.

west virginia department of environmental protection

Division of Air Quality 601 57th Street SE Charleston, WV 25304 Phone (304) 926-0475 Fax (304) 926-0479 www.dep.wv.gov

G35-D GENERAL PERMIT REGISTRATION APPLICATION

PREVENTION AND CONTROL OF AIR POLLUTION IN REGARD TO THE CONSTRUCTION, MODIFICATION, RELOCATION, ADMINISTRATIVE UPDATE AND OPERATION OF NATURAL GAS COMPRESSOR AND/OR DEHYDRATION FACILITIES

□CONSTRUCTION ⊠MODIFICATION □RELOCATION ⊠ CLASS I ADMINISTRATIVE UPDATE □ CLASS II ADMINISTRATIVE UPDATE

SECTION 1. GENERAL INFORMATION

Name of Applicant (as registered with the WV Secretary of State's Office)	Arsenal Midstream, LLC
---	------------------------

Federal Employer ID No. (FEIN): 47-1919654						
Applicant's Mailing Address: 65 Professional Place Suite 200						
City: Bridgeport	State: WV ZIP Code: 26330					
Facility Name: Goff Compressor Station	ı					
Operating Site Physical Address: 50 E. Davisson Run Rd. Clarksburg, Harrison County, WV If none available, list road, city or town and zip of facility.						
City: Clarksburg	Zip Code: 26302 County: Harrison					
Latitude & Longitude Coordinates (NAD83, Decimal Degrees to 5 digits): Latitude: 39.27737 Longitude: -80.40417						
SIC Code: 1311 DAQ Facility ID No. (For existing facilities) NAICS Code: 211111 033-00187						
C	FRTIFICATION)F INFORMATION				

CERTIFICATION OF INFORMATION

This G35-D General Permit Registration Application shall be signed below by a Responsible Official. A Responsible Official is a President, Vice President, Secretary, Treasurer, General Partner, General Manager, a member of the Board of Directors, or Owner, depending on business structure. A business may certify an Authorized Representative who shall have authority to bind the Corporation, Partnership, Limited Liability Company, Association, Joint Venture or Sole Proprietorship. Required records of daily throughput, hours of operation and maintenance, general correspondence, compliance certifications and all required notifications must be signed by a Responsible Official or an Authorized Representative. If a business wishes to certify an Authorized Representative, the official agreement below shall be checked off and the appropriate names and signatures entered. Any administratively incomplete or improperly signed or unsigned G35-D Registration Application will be returned to the applicant. Furthermore, if the G35-D forms are not

utilized, the application will be returned to the applicant. No substitution of forms is allowed.

I hereby certify that is an Authorized Representative and in that capacity shall represent the interest of the business (e.g., Corporation, Partnership, Limited Liability Company, Association Joint Venture or Sole Proprietorship) and may obligate and legally bind the business. If the business changes its Authorized Representative, a Responsible Official shall notify the Director of the Division of Air Quality immediately.

I hereby certify that all information contained in this G35-D General Permit Registration Application and any supporting documents appended hereto is, to the best of my knowledge, true, accurate and complete, and that all reasonable efforts have been made to provide the most comprehensive information possible.

Responsible Official Signature:			
Name and Title:	Phone:	Fax:	
Email:	Date:		
If applicable:	ng		
Authorized Representative Signature: Name and Title: Meghan M.B. Yingling, Env	ironmontal Compliance Manager	Phone: 724-940-1112	– Fax:
8	•	Filone. 724-940-1112	rax.
Email: myingling@arsenalresources.com	Date: 9/12/17		
If applicable:			
Environmental Contact			
Name and Title: Meghan M.B. Yingling, Env	ironmental Compliance Manager	Phone: 724-940-1112	Fax:
Email: mvingling@arsenalresources.com	Date:		

OPERATING SITE INFORMATION Briefly describe the proposed new operation and/or any change(s) to the facility: Addition of compressor engine CE-9R. Directions to the facility: From I-79 South; (1.) At exit 119, take ramp right for US-50 West toward Clarksburg, Travel 7.0 miles (2.) Turn left onto WV-98/Old US 50 / Sun Valley Rd. travel 0.4 miles (3.) turn left to stay on WV-98 and travel 0.3 miles (4.) arrive at the Goff Compressor Station. ATTACHMENTS AND SUPPORTING DOCUMENTS I have enclosed the following required documents: Check payable to WVDEP - Division of Air Quality with the appropriate application fee (per 45CSR13 and 45CSR22). \Box Check attached to front of application. □ I wish to pay by electronic transfer. Contact for payment (incl. name and email address): I wish to pay by credit card. Contact for payment (incl. name and email address): Meghan Yingling myingling@arsenalresources.com ⊠\$500 (Construction, Modification, and Relocation) □\$300 (Class II Administrative Update) \boxtimes \$1,000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ and/or OOOO and/or OOOOa ¹ □\$2,500 NESHAP fee for 40 CFR63, Subpart ZZZZ and/or HH² ¹ Only one NSPS fee will apply. ² Only one NESHAP fee will apply. The Subpart ZZZZ NESHAP fee will be waived for new engines that satisfy requirements by complying with NSPS, Subparts IIII and/or JJJJ. NSPS and NESHAP fees apply to new construction or if the source is being modified. Responsible Official or Authorized Representative Signature (if applicable) □ Single Source Determination Form (must be completed in its entirety) – Attachment A Siting Criteria Waiver (if applicable) - Attachment B Current Business Certificate – Attachment C Process Flow Diagram - Attachment D ⊠ Process Description – Attachment E 🛛 Plot Plan – Attachment F 🖾 Area Map – Attachment G Emission Units/ERD Table - Attachment I G35-D Section Applicability Form – Attachment H ☑ Fugitive Emissions Summary Sheet – Attachment J Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable) - Attachment K 🛛 Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Heater Treaters, In-Line Heaters if applicable) – Attachment L 🖾 Internal Combustion Engine Data Sheet(s) (include manufacturer performance data sheet(s) if applicable) -Attachment M Inter Truck Loading Data Sheet (if applicable) - Attachment N ⊠ Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalc[™] input and output reports and information on reboiler if applicable) - Attachment O Pneumatic Controllers Data Sheet - Attachment P Centrifugal Compressor Data Sheet – Attachment Q Reciprocating Compressor Data Sheet – Attachment R Blowdown and Pigging Operations Data Sheet – Attachment S □ Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) - Attachment T Emission Calculations (please be specific and include all calculation methodologies used) – Attachment U ⊠ Facility-wide Emission Summary Sheet(s) – Attachment V 🛛 Class I Legal Advertisement – Attachment W I One (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments

All attachments must be identified by name, divided into sections, and submitted in order.

Attachment A

ATTACHMENT A ·	SINGLE	SOURCE	DETERMINA	ATION FORM
	DINGLL	DOCKCL		11101011 UMM

Classifying multiple facilities as one "stationary source" under 45CSR13, 45CSR14, and	
45CSR19 is based on the definition of Building, structure, facility, or installation as given in	n
§45-14-2.13 and §45-19-2.12. The definition states:	

"Building, Structure, Facility, or Installation" means all of the pollutant-emitting activities which belong to the same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the control of the same person (or persons under common control). Pollutant-emitting activities are a part of the same industrial grouping if they belong to the same "Major Group" (i.e., which have the same two (2)-digit code) as described in the Standard Industrial Classification Manual, 1987 (United States Government Printing Office stock number GPO 1987 0-185-718:QL 3).

The Source Determination Rule for the oil and gas industry was published in the Federal Register on June 3, 2016 and will become effective on August 2, 2016. EPA defined the term "adjacent" and stated that equipment and activities in the oil and gas sector that are under common control will be considered part of the same source if they are located on the same site or on sites that share equipment and are within ¹/₄ mile of each other.

Is there equipment and activities in the same industrial grouping (defined by SIC code)?
Yes \boxtimes No \square
res 🖾 No 🗆
Is there equipment and activities under the control of the same
person/people?

PUID	011/	people.	
Yes	\times	No	

Is there equipment and activities located on the same site or on sites that share equipment and are within ¹/₄ mile of each other?

 $Yes \square No \boxtimes$

Attachment B (Not Applicable)

Attachment C

WEST VIRGINIA STATE TAX DEPARTMENT

BUSINESS REGISTRATION CERTIFICATE

ISSUED TO: ARSENAL MIDSTREAM LLC 65 PROFESSIONAL PL 200 BRIDGEPORT, WV 26330-1889

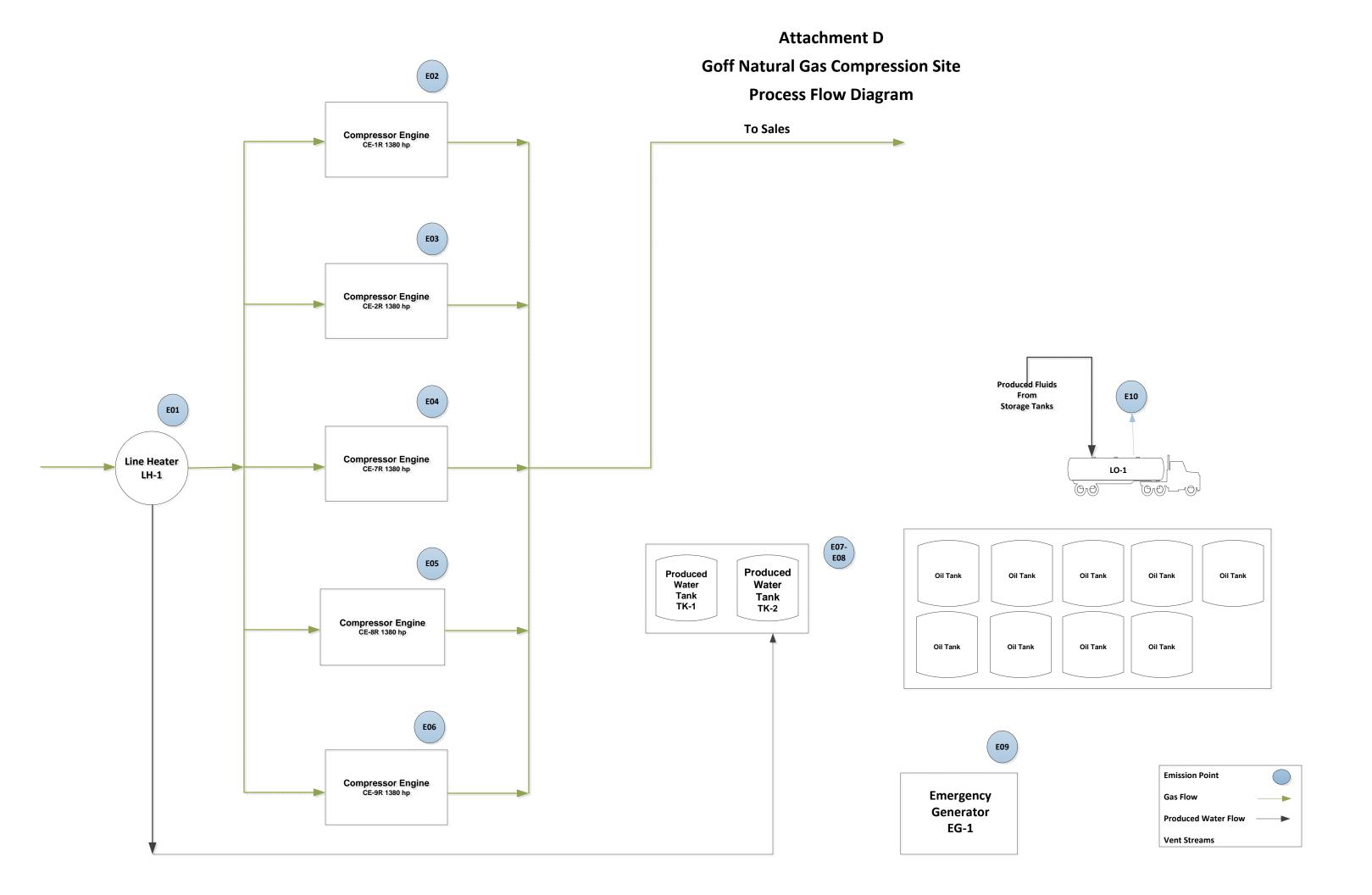
BUSINESS REGISTRATION ACCOUNT NUMBER:

2306-9776

This certificate is issued on: 05/17/2017

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.


This certificate is not transferrable and must be displayed at the location for which issued This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

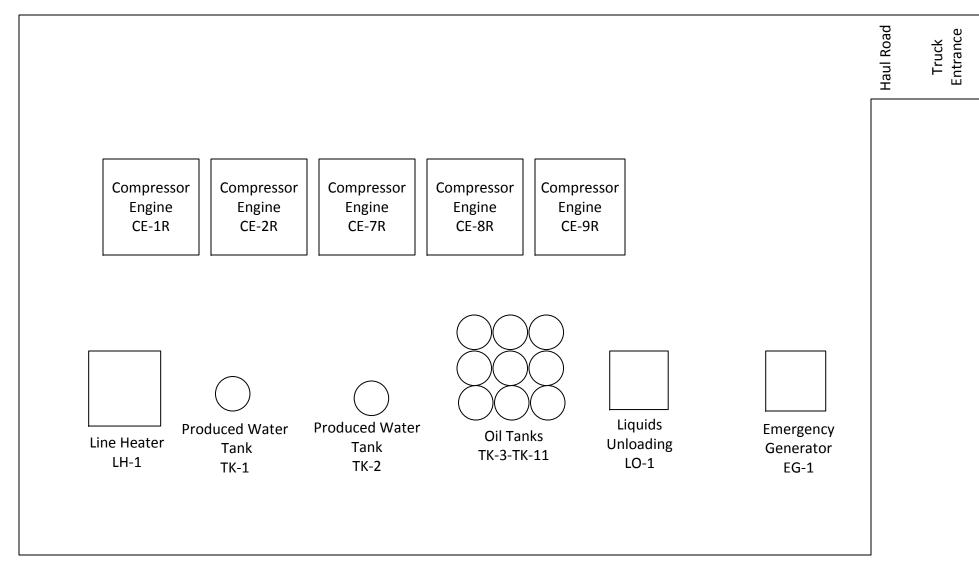
Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.4 L0904785088

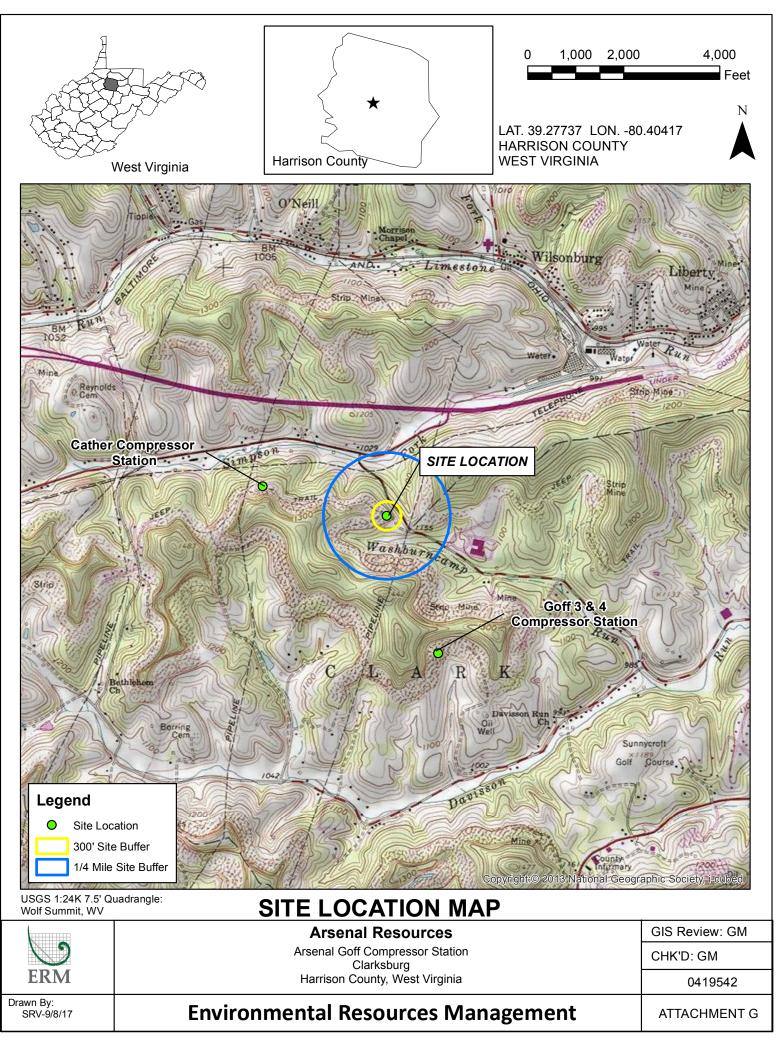
Attachment D

Attachment E


Attachment E – Process Description

Pipeline quality natural gas enters the site and is routed through a line heater. Fluids from the line heater are routed to the produced water tanks (TK-1 and TK-2). From there the gas flows through five (5) G3516 ULB Compressor Engines (CE-1R, CE-2R, CE-7R, CE-8R, and CE-9R). From the compressors, the gas enters the sales line.

Fluids are removed from the site via tanker truck on an as needed basis.


Attachment F

ATTACHMENT F – PLOT PLAN

Goff Natural Gas Compression Site	
LAT: 39.27737 LON: -80.40417	

Attachment G

Attachment H

ATTACHMENT H – G35-D SECTION APPLICABILITY FORM

General Permit G35-D Registration Section Applicability Form

General Permit G35-D was developed to allow qualified applicants to seek registration for a variety of sources. These sources include storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, centrifugal compressors, reciprocating compressors, reciprocating internal combustion engines (RICEs), tank truck loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G35-D allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

	GENERAL PERMIT G35-D APPLICABLE SECTIONS
Section 5.0	Storage Vessels Containing Condensate and/or Produced Water ¹
□Section 6.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO/OOOOa)
□Section 7.0	Control Devices and Emission Reduction Devices not subject to NSPS Subpart OOOO/OOOOa and/or NESHAP Subpart HH
Section 8.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc
□Section 9.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO/OOOOa)
□Section 10.0	Centrifugal Compressor Affected Facility (NSPS, Subpart OOOO/OOOOa) ²
Section 11.0	Reciprocating Compressor Affected Facility (NSPS, Subpart OOOO/OOOOa) ²
Section 12.0	Reciprocating Internal Combustion Engines, Generator Engines. Microturbine Generators
⊠Section 13.0	Tanker Truck Loading ³
□Section 14.0	Glycol Dehydration Units ⁴
Section 15.0	Blowdown and Pigging Operations
⊠Section 16.0	Fugitive Emission Components (NSPS, Subpart OOOOa)

1 Applicants that are subject to Section 5 may also be subject to Section 6 if the applicant is subject to the NSPS, Subpart OOOO/OOOOa control requirements or the applicable control device requirements of Section 7.

2 Applicants that are subject to Section 10 and 11 may also be subject to the applicable RICE requirements of Section 12.

3 Applicants that are subject to Section 13 may also be subject to control device and emission reduction device requirements of Section 7.

4 Applicants that are subject to Section 14 may also be subject to the requirements of Section 8 (reboilers). Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 7.

Attachment I

ATTACHMENT I - EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment K table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type ⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
LH-1	E01	Line Heater	2017	2017	0.25 MMBTU/hr	New	NA	
CE-1R	E02	Caterpillar G3516B LE Compressor Engine	2011	After 2010	1380 hp / 1,400 rpm	Existing	Oxidation Catalyst	1D
CE-2R	E03	Caterpillar G3516B LE Compressor Engine	2011	After 2010	1380 hp / 1,400 rpm	Existing	Oxidation Catalyst	2D
CE-7R	E04	Caterpillar G3516B LE Compressor Engine	2017	11/16/2012	1380 hp / 1,400 rpm	Existing	Oxidation Catalyst	3D
CE-8R	E05	Caterpillar G3516B LE Compressor Engine	2017	3/17/2013	1380 hp / 1,400 rpm	Existing	Oxidation Catalyst	4D
CE-9R	E06	Caterpillar G3516B LE Compressor Engine	2017	2013	1380 hp / 1,400 rpm	Existing	Oxidation Catalyst	7D
TK-1	E07	Produced Water Tank	2016	2016	210 bbl	Existing	NA	NA
TK-2	E08	Produced Water Tank	2010	2010	100 bbl	Existing	NA	NA
EG-1	E09	Kohler 80REZGD Emergency Generator	2017	2017	107.3 bhp	New	NA	NA
LO-1	E10	Produced Water Tank Truck Loading TK-1 and TK-2	2016	2016	1,200 gal/day	Existing	NA	NA

For Emission Units (or Sources) use the following numbering system: 1S, 2S, 3S,... or other appropriate designation.

² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

³ When required by rule

⁴ New, modification, removal, existing

⁵ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.
⁶ For ERDs use the following numbering system: 1D, 2D, 3D,... or other appropriate designation.

Attachment J

				ATTACHMENT J	- FUGITIVE EMISSIO	NS SUMMAF	RY SHEET		
	Sou	rces of f	fugitiv		lude loading operations,			n emissions	, etc.
				Use extra pages for	each associated source of	r equipment if	necessary.		
Source/Equipm	ent:								
Leak Detection	Method Us	sed		dible, visual, and ory (AVO) inspections	⊠ Infrared (FLIR) cameras	□ Other (pleas	se describe)		□ None required
Is the facility s	ubject to qu	arterly LI	DAR m	onitoring under 40CFR60 S	ubpart OOOOa? 🛛 Yes 🛛	No. If no, why?			
Component	Closed			Source	of Leak Factors	Stream type		Estimated Em	issions (tpy)
Туре	Vent System	Cour	nt		ther (specify))	(gas, liquid, etc.)	VOC	НАР	GHG (CO ₂ e)
Pumps	□ Yes □ No				□ Gas □ Liquid □ Both				
Valves	□ Yes ⊠ No	87		EPA	⊠ Gas □ Liquid □ Both	<0.01	<0.01	0.41, 10.24	
Safety Relief Valves	□ Yes ⊠ No	1		EPA	⊠ Gas □ Liquid □ Both	<0.01	<0.01	<0.01, 0.17	
Open Ended Lines	□ Yes ⊠ No	2		EPA		⊠ Gas □ Liquid □ Both	<0.01	<0.01	0.02, 0.53
Sampling Connections	□ Yes □ No					☐ Gas ☐ Liquid ☐ Both			
Connections (Not sampling)	□ Yes ⊠ No	401		EPA		⊠ Gas □ Liquid □ Both	<0.01	<0.01	0.21, 5.24
Compressors	□ Yes □ No					☐ Gas □ Liquid □ Both			
Flanges	□ Yes □ No					☐ Gas ☐ Liquid ☐ Both			
Other ¹	□ Yes □ No					☐ Gas ☐ Liquid ☐ Both			

¹ Other equipment types may include compressor seals, relief valves, diaphragms, drains, meters, etc.

Please indicate if there are any closed vent bypasses (include component):

Specify all equipment used in the closed vent system (e.g. VRU, ERD, thief hatches, tanker truck loading, etc.)

Attachment K

ATTACHMENT K – STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water. (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). **Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.**

The following information is **REQUIRED**:

 \Box Composition of the representative sample used for the simulation

- $\hfill\square$ For each stream that contributes to flashing emissions:
 - \Box Temperature and pressure (inlet and outlet from separator(s))
 - □ Simulation-predicted composition
 - □ Molecular weight
 - \Box Flow rate
- □ Resulting flash emission factor or flashing emissions from simulation

 \square Working/breathing loss emissions from tanks and/or loading emissions if simulation is used to quantify those emissions

Additional information may be requested if necessary.

GENERAL INFORMATION

1. Bulk Storage Area Name: Goff Compressor Station	2. Tank Name: Produced Water Tank					
3. Emission Unit ID number TK-1	4. Emission Point ID number E07					
5. Date Installed , Modified or Relocated (for existing	6. Type of change:					
tanks) 2016	\Box New construction \Box New stored material \boxtimes Other					
Was the tank manufactured after August 23, 2011?	\Box Relocation					
\boxtimes Yes \square No						
7A. Description of Tank Modification (<i>if applicable</i>)						
7B. Will more than one material be stored in this tank? If so	o, a separate form must be completed for each material.					
\Box Yes \boxtimes No						
7C. Was USEPA Tanks simulation software utilized?						
\Box Yes \boxtimes No						
If Yes, please provide the appropriate documentation and items 8-42 below are not required.						

TANK INFORMATION

8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height.					
210 bbl					
9A. Tank Internal Diameter (ft.) 12	9B. Tank Internal Height (ft.) 12				
10A. Maximum Liquid Height (ft.) 12	10B. Average Liquid Height (ft.) 6				
11A. Maximum Vapor Space Height (ft.) 1.5	11B. Average Vapor Space Height (ft.) 5				
12. Nominal Capacity (specify barrels or gallons). This is also known as "working volume". 210 bbl					
13A. Maximum annual throughput (gal/yr) 458,640	13B. Maximum daily throughput (gal/day) 1256.55				
14. Number of tank turnovers per year 52	15. Maximum tank fill rate (gal/min) 0.87				
16. Tank fill method ⊠ Submerged □ Splash □ Bottom Loading					
17. Is the tank system a variable vapor space system? Yes X No					
If yes, (A) What is the volume expansion capacity of the	system (gal)?				
(B) What are the number of transfers into the system per year?					
18. Type of tank (check all that apply):					
\boxtimes Fixed Roof \square vertical \square horizontal \square f	lat roof \Box cone roof \boxtimes dome roof \Box other (describe)				
 External Floating Roof pontoon roof double deck roof Domed External (or Covered) Floating Roof 					
□ Internal Floating Roof □ vertical column sup	port 🗆 self-supporting				
□ Variable Vapor Space □ lifter roof □ diap	hragm				
□ Pressurized □ spherical □ cylin	ndrical				
\Box Other (describe)					

PRESSURE/VACUUM CONTROL DATA

19. Check as many as apply:	:								
☑ Does Not Apply	\Box Rupture Disc (psig)								
□ Inert Gas Blanket of	\Box Carbon Adsorption ¹								
\Box Vent to Vapor Combustion Device ¹ (vapor combustors, flares, thermal oxidizers, enclosed combustors)									
□ Conservation Vent (psig)	(g) \Box Condenser ¹								
Vacuum Setting	Pressure Setting								
Emergency Relief Valve (psig)									
Vacuum Setting									
\Box Thief Hatch Weighted \Box Yes \Box No									
¹ Complete appropriate Air Pollution Control Device Sheet									
20. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application).									
Material Name	Flashir	ng Loss	Breathi	ng Loss	oss Working Loss		Total		Estimation Method ¹
							Emissions Loss		
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
Produced Water	See Attachment V								
				1	1	1			

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.

TANK CONSTRUCTION AND OPERATION INFORMATION								
21. Tank Shell Construction:								
\boxtimes Riveted \square Gunite lined \square Epoxy-coated rivets \square Other (describe)								
21A. Shell Color: Tan	21B. Roof Color: Ta	n		21C. Year Last Painted: 2015				
22. Shell Condition (if metal and unlined):								
⊠ No Rust □ Light Rust □ Dense Rust □ Not applicable								
22A. Is the tank heated? \Box Yes \boxtimes No	22B. If yes, operating	tempera	ature:	22C. If yes, how is heat provided to tank?				
23. Operating Pressure Range (psig): Must be listed for tanks using VRUs with closed vent system.								
24. Is the tank a Vertical Fixed Roof	24A. If yes, for dome roof provide radius 24B. If yes, for cone roof, provide							
Tank?	(ft):	r-		(ft/ft):	,, _F			
🛛 Yes 🗌 No	4							
25. Complete item 25 for Floating Roof Ta								
25A. Year Internal Floaters Installed:								
25B. Primary Seal Type (<i>check one</i>):	Metallic (mechanical)	shoe se	eal 🗌 Liqui	d mounted	l resilient seal			
	Vapor mounted resili			r (describe				
	*				<i>)</i> .			
25C. Is the Floating Roof equipped with a s	-	-		Cthan (a	lacariha).			
25D. If yes, how is the secondary seal mounted? (<i>check one</i>) Shoe Rim Other (describe):								
25E. Is the floating roof equipped with a we	eather shield? \Box Yes	5 L	□ No					
25F. Describe deck fittings:								
26. Complete the following section for Inte	rnal Floating Roof Ta	nks	⊠ Does not	apply				
26A. Deck Type: Deck T	26A. Deck Type: Bolted Welded 26B. For bolted decks, provide deck construction:							
26C. Deck seam. Continuous sheet constru-	ction:	l						
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. v	wide 🛛 5 x 7.5 ft. v	vide 🗆] 5 x 12 ft. wi	de 🗆 oth	ner (describe)			
26D. Deck seam length (ft.): 26E. Are	ea of deck (ft ²):	26F. I	For column sup	oorted	26G. For column supported			
		tanks,	# of columns:		tanks, diameter of column:			
27. Closed Vent System with VRU? \Box Ye	27. Closed Vent System with VRU? Yes No							
28. Closed Vent System with Enclosed Con	28. Closed Vent System with Enclosed Combustor? Yes No							
SITE INFORMATION								
29. Provide the city and state on which the c	data in this section are b	ased:						
30. Daily Avg. Ambient Temperature (°F):								
32. Annual Avg. Minimum Temperature (°F):			33. Avg. Wind Speed (mph):					
34. Annual Avg. Solar Insulation Factor (BTU/ft²-day):35. Atmospheric Pressure (psia):								
-	LIQUID INFORMATION							
36. Avg. daily temperature range of bulk	36A. Minimum (°F):		36B. Maximum (°F):					
liquid (°F):								
37. Avg. operating pressure range of tank	37A. Minimum (psig):			37B. Maximum (psig):				
(psig):								
38A. Minimum liquid surface temperature ((°F):	38B.	38B. Corresponding vapor pressure (psia):					
39A. Avg. liquid surface temperature (°F):			39B. Corresponding vapor pressure (psia):					
40A. Maximum liquid surface temperature (°F): 40B. Corresponding vapor pressure (psia):					-			
41. Provide the following for each liquid or gas to be stored in the tank. Add additional pages if necessary.								
41A. Material name and composition:								
41B. CAS number:								

41C. Liquid density (lb/gal):		
41D. Liquid molecular weight (lb/lb-		
mole):		
41E. Vapor molecular weight (lb/lb-		
mole):		
41F. Maximum true vapor pressure (psia):		
41G. Maximum Reid vapor pressure		
(psia):		
41H. Months Storage per year.		
From: To:		
42. Final maximum gauge pressure and		
temperature prior to transfer into tank used		
as inputs into flashing emission		
calculations.		

ATTACHMENT K – STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water. (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.

The following information is **REQUIRED**:

- \Box Composition of the representative sample used for the simulation
- □ For each stream that contributes to flashing emissions:
 - \Box Temperature and pressure (inlet and outlet from separator(s))
 - □ Simulation-predicted composition
 - □ Molecular weight
 - \Box Flow rate
- □ Resulting flash emission factor or flashing emissions from simulation

 \Box Working/breathing loss emissions from tanks and/or loading emissions if simulation is used to quantify those emissions

Additional information may be requested if necessary. GENERAL INFORMATION

1. Bulk Storage Area Name: Goff Compressor Station	2. Tank Name: Produced Water Tank					
3. Emission Unit ID number TK-2	4. Emission Point ID number E08					
5. Date Installed, Modified or Relocated (for existing	6. Type of change:					
tanks) 2010	\Box New construction \Box New stored material \boxtimes Other					
Was the tank manufactured after August 23, 2011?	□ Relocation					
\Box Yes \boxtimes No						
7A. Description of Tank Modification (<i>if applicable</i>)						
7B. Will more than one material be stored in this tank? If s	p, a separate form must be completed for each material.					
\Box Yes \boxtimes No						
7C. Was USEPA Tanks simulation software utilized?	7C. Was USEPA Tanks simulation software utilized?					
\Box Yes \boxtimes No	\Box Yes \boxtimes No					
If Yes, please provide the appropriate documentation and items 8-42 below are not required.						

TANK INFORMATION

8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height.					
100 bbl					
9A. Tank Internal Diameter (ft.) 8	9B. Tank Internal Height (ft.) 10				
10A. Maximum Liquid Height (ft.) 10	10B. Average Liquid Height (ft.) 5				
11A. Maximum Vapor Space Height (ft.) 11	11B. Average Vapor Space Height (ft.) 5				
12. Nominal Capacity (specify barrels or gallons). This is a	also known as "working volume". 100 bbl				
13A. Maximum annual throughput (gal/yr) 218,400	13B. Maximum daily throughput (gal/day) 598.36				
14. Number of tank turnovers per year 52	15. Maximum tank fill rate (gal/min) 0.42				
16. Tank fill method \boxtimes Submerged \square Splash	□ Bottom Loading				
17. Is the tank system a variable vapor space system? \Box	Yes 🛛 No				
If yes, (A) What is the volume expansion capacity of the sys	stem (gal)?				
(B) What are the number of transfers into the system	per year?				
18. Type of tank (check all that apply):					
\boxtimes Fixed Roof \square vertical \square horizontal \square flat	roof \Box cone roof \boxtimes dome roof \Box other (describe)				
\Box External Floating Roof \Box pontoon roof \Box do	uble deck roof				
Domed External (or Covered) Floating Roof					
□ Internal Floating Roof □ vertical column support □ self-supporting					
\Box Variable Vapor Space \Box lifter roof \Box diaphragm					
\Box Pressurized \Box spherical \Box cylindrical					
\Box Other (describe)					

PRESSURE/VACUUM CONTROL DATA

19. Check as many as app	oly:										
\boxtimes Does Not Apply \square Rupture Disc (psig)											
□ Inert Gas Blanket of _	Inert Gas Blanket of					\Box Carbon Adsorption ¹					
□ Vent to Vapor Combu	□ Vent to Vapor Combustion Device ¹ (vapor combustors, flares, thermal oxidizers, enclosed combustors)										
□ Conservation Vent (ps	sig)			□ Conde	enser ¹						
Vacuum Setting		Pressure	Setting								
□ Emergency Relief Val	□ Emergency Relief Valve (psig)										
Vacuum Setting		Pressure	Setting								
□ Thief Hatch Weighted	I 🗆 Yes 🗆	∃ No									
¹ Complete appropriate A	ir Pollution	n Control	Device S	heet							
20. Expected Emission R	ate (submi	t Test Da	ta or Calc	ulations he	ere or else	where in t	he applica	tion).			
Material Name	Flashir	ng Loss	Loss Breathing Loss		Working Loss		Total		Estimation Method ¹		
							Emissions Loss				
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy			
Produced Water	roduced Water				achment \	V		1			

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.

TANK CONSTRUCTION AND OPERAT	TION INFORMATIO	N				
21. Tank Shell Construction:						
\boxtimes Riveted \square Gunite lined \square Ep	oxy-coated rivets	□ Othe	r (describe)			
21A. Shell Color: Tan	21B. Roof Color: Ta	n		21C. Year	Last Painted: 2015	
22. Shell Condition (if metal and unlined):	•					
🛛 No Rust 🗆 Light Rust 🗆 Dense Rust 🗆 Not applicable						
22A. Is the tank heated? \Box Yes \boxtimes No	22B. If yes, operating	tempera	ature:	22C. If yes	, how is heat provided to tank?	
23. Operating Pressure Range (psig):						
Must be listed for tanks using VRUs				A (D) T (0 0 11 1	
24. Is the tank a Vertical Fixed Roof Tank ?	24A. If yes, for dome	e roof pr	ovide radius		for cone roof, provide slop	
	(ft): 4			(ft/ft):		
Yes No						
25. Complete item 25 for Floating Roof Ta	$nks \square$ Does not ap	oply 🛛				
25A. Year Internal Floaters Installed:						
25B. Primary Seal Type (check one):	Metallic (mechanical)	shoe se	eal 🗆 Liqui	d mounted i	esilient seal	
	Vapor mounted resili	ent seal	□ Othe	r (describe):		
25C. Is the Floating Roof equipped with a s	econdary seal?	s 🗆	No			
25D. If yes, how is the secondary seal mour	nted? (check one)	Shoe	□ Rim □	Other (de	scribe):	
25E. Is the floating roof equipped with a we	eather shield?	5 [□ No			
25F. Describe deck fittings:						
26. Complete the following section for Inter	rnal Floating Roof Ta	nks	\boxtimes Does not	apply		
26A. Deck Type: \Box Bolted \Box	Welded	26B. 1	For bolted decks	s, provide dec	k construction:	
26C. Deck seam. Continuous sheet constru-	ction:					
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. v	wide 🛛 5 x 7.5 ft. v	vide 🗆	5 x 12 ft. wi	de 🗆 othe	r (describe)	
26D. Deck seam length (ft.): 26E. Are	ea of deck (ft ²):	26F. I	For column supp	oorted	26G. For column supported	
					anks, diameter of column:	
27. Closed Vent System with VRU? \Box Ye	es 🛛 No					
28. Closed Vent System with Enclosed Con	nbustor? 🗆 Yes 🖂 N	lo				
SITE INFORMATION						
29. Provide the city and state on which the c	lata in this section are b	ased:				
30. Daily Avg. Ambient Temperature (°F):		31. Annual Avg. Maximum Temperature (°F):				
32. Annual Avg. Minimum Temperature (°I		33. Avg. Wind Speed (mph):				
34. Annual Avg. Solar Insulation Factor (B	$\Gamma U/ft^2$ -day):	35. A	tmospheric Pres	sure (psia):		
LIQUID INFORMATION			-			
36. Avg. daily temperature range of bulk liquid (°F):	36A. Minimum (°F):			36B. Maxin	num (°F):	
37. Avg. operating pressure range of tank	37A. Minimum (psig	<i>.</i>		37B. Maxin	num (nsig):	
(psig):	STA. Minimum (psig	<i></i>			num (porg).	
(P**8).	(poig).					
38A. Minimum liquid surface temperature (°F):	38B.	Corresponding	vapor pressure	e (psia):	
39A. Avg. liquid surface temperature (°F):		Corresponding				
40A. Maximum liquid surface temperature			Corresponding		-	
41. Provide the following for each liquid or	gas to be stored in the t	ank. Ad	ld additional pag	ges if necessa	ry.	
41A. Material name and composition:						
41B. CAS number:						

41C. Liquid density (lb/gal):		
41D. Liquid molecular weight (lb/lb-		
mole):		
41E. Vapor molecular weight (lb/lb-		
mole):		
41F. Maximum true vapor pressure (psia):		
41G. Maximum Reid vapor pressure		
(psia):		
41H. Months Storage per year.		
From: To:		
42. Final maximum gauge pressure and		
temperature prior to transfer into tank used		
as inputs into flashing emission		
calculations.		

STORAGE TANK DATA TABLE

List all deminimis storage tanks (i.e. lube oil, glycol, diesel etc.)

Source ID # ¹	Status ²	Content ³	Volume ⁴
Oil Storage TK3-TK11	Existing	Oil	520 gal each

Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the 1. compressor station. Tanks should be designated T01, T02, T03, etc. 2.

- Enter storage tank Status using the following:
 - EXIST Existing Equipment
 - NEW Installation of New Equipment
 - REM Equipment Removed
- 3. Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, diesel, mercaptan etc.
- 4. Enter the maximum design storage tank volume in gallons.

Attachment L (Not Applicable)

Attachment M

ATTACHMENT M - INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. *Generator(s) and microturbine generator(s) shall also use this form.*

shall also i	ise inis jorm	•						
Emission Unit I	D#1	CE	-1R	CE	-2R	CE-7R		
Engine Manufac	cturer/Model	CAT	G3516	CAT	G3516	CAT G3516		
Manufacturers F	Rated bhp/rpm	1380	/1400	1380	/1400	1380	/1400	
Source Status ²		E	S	E	ES	F	ES	
Date Installed/ Modified/Remov	ved/Relocated ³	20	11	20)11	20)17	
Engine Manufac /Reconstruction		After	2010	After	2010	11/16	5/2012	
Check all applic Rules for the en EPA Certificate if applicable) ⁵	gine (include	 ⋈ 40CFR60 S □ JJJJ Certifi □ 40CFR60 S □ IIII Certific □ 40CFR63 S □ NESHAP 2 JJJJ Window □ NESHAP 2 Sources 	ed? ubpart IIII ed? ubpart ZZZZ ZZZZ/ NSPS	 ⋈ 40CFR60 S □ JJJJ Certifi □ 40CFR60 S □ IIII Certific □ 40CFR63 S □ NESHAP 2 JJJJ Window □ NESHAP 2 Sources 	ed? ubpart IIII ed? ubpart ZZZZ	 ⋈ 40CFR60 Subpart JJJJ □ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? □ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS □ JJJJ Window □ NESHAP ZZZZ Remote Sources 		
Engine Type ⁶		4S	LB	45	LB	48	LB	
APCD Type ⁷		Ox	Cat	Ox	Cat	Ox	Cat	
Fuel Type ⁸		RG		R	.G	RG		
H ₂ S (gr/100 scf))	0.025		0.025		0.025		
Operating bhp/r	Operating bhp/rpm		1380/1400		1380/1400		1380/1400	
BSFC (BTU/bhg	BSFC (BTU/bhp-hr)		8,399		8,399		8,399	
Hourly Fuel Th	roughput	9,971 ft ³ /hr gal/hr		9,971 ft ³ /hr gal/hr		9,971 ft ³ /hr gal/hr		
Annual Fuel The (Must use 8,760) emergency gene	hrs/yr unless	t 87.34 MMft ³ /yr 87.34 MMft ³ /yr 87.34			MMft ³ /yr gal/yr			
Fuel Usage or H Operation Meter		Yes 🖂	No 🗆	Yes 🖂	No 🗆	Yes 🖂	No 🗆	
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	
Vendor Guarantee	NO _x	1.52	6.66	1.52	6.66	1.52	6.66	
Vendor Guarantee	СО	0.56	2.43	0.56	2.43	0.56	2.43	
Vendor Guarantee	VOC	0.32	1.39	0.32	1.39	0.32	1.39	
AP-42	SO ₂	< 0.01	0.03	< 0.01	0.03	< 0.01	0.03	
AP-42	PM10	0.10	0.45	0.10	0.45	0.10	0.45	
Vendor Guarantee	Formaldehyde	0.13	0.57	0.13	0.57	0.13	0.57	
AP-42	Total HAPs	0.15	0.67	0.15	0.67	0.15	0.67	
AP-42	GHG (CO ₂ e)	1,441.54	6,313.93	1,441.54	6,313.93	1,441.54	6,313.93	

ATTACHMENT M - INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. *Generator(s) and microturbine generator(s) shall also use this form.*

	ise inis joim	•						
Emission Unit ID# ¹ CE-8R			-8R	CE	-9R	EG-1		
Engine Manufacturer/Model CAT G3516B			CAT (G3516B	Kohler 80REZGD			
Manufacturers F	Rated bhp/rpm	1380	/1400	1380	/1400	107/	/1800	
Source Status ²		E	S	I	ES	N	IS	
Date Installed/ Modified/Remo	ved/Relocated ³	20)17	20)17	20)17	
Engine Manufac /Reconstruction		3/17/	/2013	20)13	06/09	9/2017	
Check all applic Rules for the en EPA Certificate if applicable) ⁵	gine (include	 ⋈ 40CFR60 S □ JJJJ Certifi □ 40CFR60 S □ IIII Certific □ 40CFR63 S □ NESHAP 2 JJJJ Window □ NESHAP 2 Sources 	ed? ubpart IIII ed? ubpart ZZZZ	□ NESHAP JJJJ Window	ied? Subpart IIII ed? Subpart ZZZZ	 ⋈ 40CFR60 Subpart JJJJ ⋈ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? □ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 		
Engine Type ⁶		45	LB	48	LB	48	SLB	
APCD Type ⁷		Ox	Cat	Ох	Cat	Ox	Cat	
Fuel Type ⁸		R	G	F	G	RG		
H ₂ S (gr/100 scf)		0.025		0.025		0.025		
Operating bhp/rpm		1380/1400		1380/1400		107/1800		
BSFC (BTU/bhp-hr)		8,3	399	8,	8,399		8,399	
Hourly Fuel Th	Fuel Throughput 9,971 ft ³ /hr gal/hr			9,971 ft ³ , ga	'hr l/hr	1,187 ft ³ /hr gal/hr		
Annual Fuel The (Must use 8,760) emergency gene	hrs/yr unless		lft³/yr l/yr		lft ³ /yr l/yr	/yr 0.59 MMft ³ /yr		
Fuel Usage or H Operation Meter		Yes 🖂	No 🗆	Yes 🖂	No 🗆	Yes 🖂	No 🗆	
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	
Vendor Guarantee	NO _x	1.52	6.66	1.52	6.66	0.47	0.12	
Vendor Guarantee	со	0.56	2.43	0.56	2.43	0.07	0.02	
Vendor Guarantee	VOC	0.32	1.39	0.32	1.39	0.05	0.01	
AP-42	SO_2	< 0.01	0.03	< 0.01	0.03	< 0.01	<0.01	
AP-42	PM10	0.10	0.45	0.10	0.45	< 0.01	<0.01	
Vendor Guarantee	Formaldehyde	0.13	0.57	0.13	0.57	0.05	0.01	
AP-42	Total HAPs	0.15	0.67	0.15	0.67	0.05	0.01	
AP-42	GHG (CO ₂ e)	1,441.54	6,313.93	1,441.54	6,313.93	99.24	434.68	

1 Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.

2 Enter the Source Status using the following codes:

NS	Construction of New Source (installation)	ES	Existing Source
MS	Modification of Existing Source	RS	Relocated Source
REM	Removal of Source		

- 3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.
- 4 Enter the date that the engine was manufactured, modified or reconstructed.

5 Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintained in accordance with the manufacturer's emission-related written instructions is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6	5 Enter the Engine Type designation(s) using the following codes:					
	2SLB 4SLB	Two Stroke Lean Burn Four Stroke Lean Burn	4SRB	Four St	roke Rich Burn	
7	Enter th	e Air Pollution Control Device (APCD) type designa	tion(s) u	sing the fo	llowing codes:	
	A/F HEIS PSC NSCR SCR	Air/Fuel Ratio High Energy Ignition System Prestratified Charge Rich Burn & Non-Selective Catalytic Reduction Lean Burn & Selective Catalytic Reduction		IR SIPC LEC OxCat	Ignition Retard Screw-in Precombustion Chaml Low Emission Combustion Oxidation Catalyst	pers
8	Enter th	e Fuel Type using the following codes:				
	PQ	Pipeline Quality Natural Gas RC	G R	aw Natura	Gas /Production Gas	D Diesel
9	Enter t	he Potential Emissions Data Reference designation	ation us	sing the f	ollowing codes. Attach all re	ference data used.
	MD GR	Manufacturer's Data GRI-HAPCalc [™]	A O			

10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

Engine Air Pollution Control Device (Emission Unit ID# CE-1R, use extra pages as necessary)						
Air Pollution Control Device Manufacturer's Data Sheet included? Yes \boxtimes No \square						
□ NSCR □ SCR	🛛 Oxidation Catalyst					
Provide details of process control used for proper mixing/control of reducing agent with gas stream:						
Manufacturer: DCL Model #: DC65A-12						
Design Operating Temperature: °F	Design gas volume: scfm					
Service life of catalyst:	Provide manufacturer data? 🗆 Yes 🛛 No					
Volume of gas handled: acfm at ^o F	Operating temperature range for NSCR/Ox Cat: From °F to °F					
Reducing agent used, if any:	Ammonia slip (ppm):					
Pressure drop against catalyst bed (delta P): inches of	H ₂ O					
Provide description of warning/alarm system that protects unit when operation is not meeting design conditions:						
Is temperature and pressure drop of catalyst required to be monitored per 40CFR63 Subpart ZZZ? □ Yes □ No						
How often is catalyst recommended or required to be replaced (hours of operation)?						
How often is performance test required? Initial Annual Every 8,760 hours of operation Field Testing Required No performance test required. If so, why (please list any page)	maintenance required and the applicable sections in					

8	ion Control Device use extra pages as necessary)
Air Pollution Control Device Ma Yes 🛛	nufacturer's Data Sheet included? No 🗆
□ NSCR □ SCR	🛛 Oxidation Catalyst
Provide details of process control used for proper mixing/con	trol of reducing agent with gas stream:
Manufacturer: DCL	Model #: DC65A-12
Design Operating Temperature: °F	Design gas volume: scfm
Service life of catalyst:	Provide manufacturer data? 🗆 Yes 🛛 No
Volume of gas handled: acfm at ^o F	Operating temperature range for NSCR/Ox Cat: From °F to °F
Reducing agent used, if any:	Ammonia slip (ppm):
Pressure drop against catalyst bed (delta P): inches of	H ₂ O
Provide description of warning/alarm system that protects uni	t when operation is not meeting design conditions:
Is temperature and pressure drop of catalyst required to be mo	onitored per 40CFR63 Subpart ZZZZ?
How often is catalyst recommended or required to be replaced	1 (hours of operation)?
How often is performance test required? Initial Annual Every 8,760 hours of operation Field Testing Required No performance test required. If so, why (please list any results)	naintenance required and the applicable sections in

8	ion Control Device use extra pages as necessary)				
	nufacturer's Data Sheet included? No 🗆				
□ NSCR □ SCR	🛛 Oxidation Catalyst				
Provide details of process control used for proper mixing/con	trol of reducing agent with gas stream:				
Manufacturer: DCL	Model #: DC65A-12				
Design Operating Temperature: °F	Design gas volume: scfm				
Service life of catalyst: Provide manufacturer data? \Box Yes \Box No					
Volume of gas handled: acfm at ^o F	Operating temperature range for NSCR/Ox Cat: From °F to °F				
Reducing agent used, if any:	Ammonia slip (ppm):				
Pressure drop against catalyst bed (delta P): inches of	H ₂ O				
Provide description of warning/alarm system that protects uni					
Is temperature and pressure drop of catalyst required to be mo	onitored per 40CFR63 Subpart ZZZZ?				
How often is catalyst recommended or required to be replaced	1 (hours of operation)?				
How often is performance test required? Initial Annual Every 8,760 hours of operation Field Testing Required No performance test required. If so, why (please list any results)	naintenance required and the applicable sections in				

8	ion Control Device use extra pages as necessary)				
Air Pollution Control Device Ma Yes 🛛	nufacturer's Data Sheet included? No 🗆				
□ NSCR □ SCR	🛛 Oxidation Catalyst				
Provide details of process control used for proper mixing/con	trol of reducing agent with gas stream:				
Manufacturer: DCL	Model #: DC65A-12				
Design Operating Temperature: °F	Design gas volume: scfm				
Service life of catalyst: Provide manufacturer data? \Box Yes \Box No					
Volume of gas handled: acfm at ^o F	Operating temperature range for NSCR/Ox Cat: From °F to °F				
Reducing agent used, if any:	Ammonia slip (ppm):				
Pressure drop against catalyst bed (delta P): inches of	H ₂ O				
Provide description of warning/alarm system that protects uni	t when operation is not meeting design conditions:				
Is temperature and pressure drop of catalyst required to be mo	onitored per 40CFR63 Subpart ZZZZ?				
How often is catalyst recommended or required to be replaced	1 (hours of operation)?				
How often is performance test required? Initial Annual Every 8,760 hours of operation Field Testing Required No performance test required. If so, why (please list any results)	naintenance required and the applicable sections in				

8	Engine Air Pollution Control Device (Emission Unit ID# CE-9R, use extra pages as necessary)					
Air Pollution Control Device Ma Yes ⊠	nufacturer's Data Sheet included? No 🗆					
□ NSCR □ SCR	🛛 Oxidation Catalyst					
Provide details of process control used for proper mixing/con	trol of reducing agent with gas stream:					
Manufacturer: DCL	Model #: DC63Q-8					
Design Operating Temperature: °F	Design gas volume: scfm					
Service life of catalyst: Provide manufacturer data? \Box Yes \Box No						
Volume of gas handled: acfm at ^o F	Operating temperature range for NSCR/Ox Cat: From °F to °F					
Reducing agent used, if any:	Ammonia slip (ppm):					
Pressure drop against catalyst bed (delta P): inches of	H ₂ O					
Provide description of warning/alarm system that protects uni						
Is temperature and pressure drop of catalyst required to be mo	onitored per 40CFR63 Subpart ZZZZ?					
How often is catalyst recommended or required to be replaced	d (hours of operation)?					
How often is performance test required? Initial Annual Every 8,760 hours of operation Field Testing Required No performance test required. If so, why (please list any page)	maintenance required and the applicable sections in					

Attachment N

ATTACHMENT N – TANKER TRUCK LOADING DATA SHEET

Complete this data sheet for each new or modified bulk liquid transfer area or loading rack at the facility. This is to be used for bulk liquid transfer operations to tanker trucks. Use extra pages if necessary.

Truck Loadout Collection Efficiencies

The following applicable capture efficiencies of a truck loadout are allowed:

- For tanker trucks passing the MACT level annual leak test 99.2%
- For tanker trucks passing the NSPS level annual leak test 98.7%
- For tanker trucks not passing one of the annual leak tests listed above 70%

Compliance with this requirement shall be demonstrated by keeping records of the applicable MACT or NSPS Annual Leak Test certification for *every* truck and railcar loaded/unloaded. This requirement can be satisfied if the trucking company provided certification that its entire fleet was compliant. This certification must be submitted in writing to the Director of the DAQ. These additional requirements must be noted in the Registration Application and will be noted on the issued G35-D Registration.

Emission Unit ID#: LO-1	ion Unit ID#: LO-1 Emission Point ID					Year Installed	/Modified: N/A	
Emission Unit Description: Produced Water Tank Truck Loading TK-1 and TK-2								
			Loading	Area Data				
Number of Pumps: NANumber of Liquids Loaded: 1Max number of trucks loading at one (1) time: 1								
Are tanker trucks pressure tested for leaks at this or any other location? \Box Yes \Box No \boxtimes Not Required If Yes, Please describe:								
Provide description of clo	osed vent syste	m and an	y bypasses.	NA				
 Closed System to tank Closed System to tank 	 Are any of the following truck loadout systems utilized? Closed System to tanker truck passing a MACT level annual leak test? Closed System to tanker truck passing a NSPS level annual leak test? Closed System to tanker truck not passing an annual leak test and has vapor return? 							
Proje	ected Maximur	n Operat	ting Schedul	e (for rack o	r transf	er point as a w	hole)	
Time	Jan – Ma	r	Apr - Jun		J	ul – Sept	Oct - Dec	
Hours/day	24		24			24	24	
Days/week	7			7	7		7	
	Bul	k Liquid	Data (use e	xtra pages as	s necess	ary)		
Liquid Name	Produce	l Water						
Max. Daily Throughput (1000 gal/day)	1.86							
Max. Annual Throughput (1000 gal/yr)	Max. Annual Throughput (1000 gal/yr) 677.04							
Loading Method ¹	Loading Method ¹ SP							
Max. Fill Rate (gal/min)	1.29							
Average Fill Time (min/loading)	U NA							
Max. Bulk Liquid Temperature (°F)	70							

True Vapor P	ressure ²	NA	
Cargo Vessel	Condition ³	U	
Control Equip Method ⁴	pment or	None	
Max. Collection Efficiency (%)		NA	
Max. Control (%)	Efficiency	NA	
Max.VOC Emission	Loading (lb/hr)	<0.01	
Rate	Annual (ton/yr)	<0.01	
Max.HAP Emission	Loading (lb/hr)	<0.01	
Rate	Annual (ton/yr)	<0.01	
Estimation M	ethod ⁵	O - ProMax	

	1	BF	Bottom Fill	SP	Splash Fill	l		SUB	Submerged Fill
	2	At maxim	um bulk liquid temperature		1				C C
	3	В	Ballasted Vessel	С	Cleaned			U	Uncleaned (dedicated
service)									
		0	Other (describe)						
	4	List as m	any as apply (complete and s	ubmit app	ropriate A	ir Pollutio	on Contro	l Device S	Sheets)
		CA	Carbon Adsorption		VB	Dedicated	d Vapor B	alance (cl	osed system)
		ECD	Enclosed Combustion Device	e	F	Flare			
		ТО	Thermal Oxidization or Incin	neration					
	5	EPA	EPA Emission Factor in AP-	42			MB	Material	Balance
		ТМ	Test Measurement based upo	on test data	a submitta	1	0	Other (des	cribe)

Attachment O (Not Applicable)

Attachment P

ATTACHMENT P – PNEUMATIC CONTROLLERS DATA SHEET
Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?
🗌 Yes 🛛 No
Please list approximate number.
Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after September 18, 2015?
\Box Yes \boxtimes No
Please list approximate number.
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?
\Box Yes \boxtimes No
Please list approximate number.
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after September 18, 2015?
\Box Yes \boxtimes No
Please list approximate number.

Attachment Q

ATTACHMENT Q – CENTRIFUGAL COMPRESSOR DATA SHEET

Are there any centrifugal compressors at this facility that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?

🗌 Yes 🛛 🖾 No

Please list:

Emission Unit ID#	Compressor Description
	centrifugal compressors at this facility that commenced odification or reconstruction after September 18, 2015?
	\Box Yes \boxtimes No
	Please list:
Emission Unit ID#	Compressor Description

Attachment R

Α΄	ATTACHMENT R – RECIPROCATING COMPRESSOR DATA SHEET						
	Are there any reciprocating compressors at this facility that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?						
	\boxtimes Yes \square No						
	Please list:						
Emission Unit ID#	Compressor Description						
CE-1R	CAT G3516B LE Compressor Engine						
CE-2R	CAT G3516B LE Compressor Engine						
	Are there any reciprocating compressors at this facility that commenced construction, modification or reconstruction after September 18, 2015?						
	\square Yes \square No						
	Please list:						
Emission Unit ID#	Compressor Description						
CE-7R	CAT G3516B LE Compressor Engine						
CE-8R	CAT G3516B LE Compressor Engine						
CE-9R	CAT G3516B LE Compressor Engine						

Attachment S

ATTACHMENT S – BLOWDOWN AND PIGGING OPERATIONS DATA SHEET

Will there be any blowdown and pigging operations that occur at this facility? 🗆 No \boxtimes Yes Please list: MW of VOC weight voc Type of **# of Events** Amount Total Event (event/yr) Vented per vented gas Emissions fraction emissions event (lb/lb-mol) (ton/yr) (ton/yr) (scf/event) Compressor 100 377,600 0.01 16.65 353 2.66 Blowdown Compressor Startup Plant Shutdown Low Pressure Pig Venting High 168.82 0.01 < 0.01 Pressure Pig 20 16.65 0.1615 Venting Г Type of # of Events MW of Total HAD weight Amount UAD

Event	# of Events (event/yr)	Amount Vented per event (scf/event)	MW of vented gas (lb/lb-mol)	Total Emissions (ton/yr)	HAP weight fraction	HAP emissions (ton/yr)
Compressor Blowdown	100	377,600	16.65	353	< 0.01	< 0.01
Compressor Startup						
Plant Shutdown						
Low Pressure Pig Venting						
High Pressure Pig Venting	20	168.82	16.65	0.1615	< 0.01	<0.01

Attachment T (Not Applicable)

Attachment U

Attachment U - Emission Calculations Line Heaters LH-1

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Boiler Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions. (Ib/hr)	Max. Annual Emissions. (tpy)
VOC's	5.5	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.25	1,040	8,760	<0.01	<0.01
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.25	1,040	8,760	<0.01	<0.01
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.25	1,040	8,760	<0.01	<0.01
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.25	1,040	8,760	<0.01	<0.01
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.25	1,040	8,760	<0.01	<0.01
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.25	1,040	8,760	<0.01	<0.01
СО	84	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.25	1,040	8,760	0.02	0.09
NOx	100	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.25	1,040	8,760	0.02	0.11
PM _{Filterable}	1.9	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.25	1,040	8,760	<0.01	<0.01
PM _{Condensable}	5.7	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.25	1,040	8,760	<0.01	<0.01
PM _{Total}	7.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.25	1,040	8,760	<0.01	<0.01
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.25	1,040	8,760	<0.01	<0.01
CO ₂	53.06	kg CO ₂ / MMBtu	40 CFR Subpart C	0.25	1,040	8,760	29.24	128.09
CH ₄	0.001	kg CO ₂ / MMBtu	40 CFR Subpart C	0.25	1,040	8,760	<0.01	<0.01
N ₂ O	0.0001	kg CO ₂ / MMBtu	40 CFR Subpart C	0.25	1,040	8,760	<0.01	<0.01
Total HAPs			•				<0.01	<0.01
Total CO ₂ e							29.27	128.22

Notes:

-Emission rates displayed above represent the max. hourly and max. annual emissions for one line heater. Cumulative emission rates for all 4 line heaters are diplayed in the Total Site Emissions Table.

-Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

-AP-42, Chapter 1.4 references are from the July 1998 revision.

Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

-CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

Example Equations:

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr) Max Hourly Emission Rate (lb/hr) = Emission Factor (kg/MMBtu) x Boiler rating (MMBtu/hr) x 2.20462 (lb/kg)

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Engine Rating (bhp)	Engine Rating (kW)	Fuel Consumption (Btu/bhp-hr)	Heat Value of Natural Gas (Btu/scf)	Catalyst Effect	Annual Operating Hours	Hourly Emissions (Ib/hr)	Annual Emissions (tpy)
VOC's	0.52	g/bhp-hr	Vendor Guarantee	1,380.00	1,029.07	8,399.00	1,038.16	0.80	8,760.00	0.32	1.39
Formaldehyde	0.44	g/bhp-hr	Vendor Guarantee	1,380.00	1,029.07	8,399.00	1,038.16	0.90	8,760.00	0.13	0.59
Benzene	0.00	lb/MMBtu	AP-42 Chapter 3.2	1,380.00	1,029.07	8,399.00	1,038.16	0.00	8,760.00	<0.01	0.02
Toluene	0.00	lb/MMBtu	AP-42 Chapter 3.2	1,380.00	1,029.07	8,399.00	1,038.16	0.00	8,760.00	<0.01	0.02
Ethylbenzene	0.00	lb/MMBtu	AP-42 Chapter 3.2	1,380.00	1,029.07	8,399.00	1,038.16	0.00	8,760.00	<0.01	<0.01
Xylene	0.00	lb/MMBtu	AP-42 Chapter 3.2	1,380.00	1,029.07	8,399.00	1,038.16	0.00	8,760.00	<0.01	<0.01
СО	2.61	g/bhp-hr	Vendor Guarantee	1,380.00	1,029.07	8,399.00	1,038.16	0.93	8,760.00	0.56	2.43
NO _x	0.50	g/bhp-hr	Vendor Guarantee	1,380.00	1,029.07	8,399.00	1,038.16	0.00	8,760.00	1.52	6.66
PM _{Filterable}	0.00	lb/MMBtu	AP-42 Chapter 3.2	1,380.00	1,029.07	8,399.00	1,038.16	0.00	8,760.00	<0.01	<0.01
$PM_{Condensable}$	0.01	lb/MMBtu	AP-42 Chapter 3.2	1,380.00	1,029.07	8,399.00	1,038.16	0.00	8,760.00	0.11	0.50
PM _{Total}	0.01	lb/MMBtu	AP-42 Chapter 3.2	1,380.00	1,029.07	8,399.00	1,038.16	0.00	8,760.00	0.12	0.51
SO ₂	0.00	lb/MMBtu	AP-42 Chapter 3.2	1,380.00	1,029.07	8,399.00	1,038.16	0.00	8,760.00	<0.01	0.03
CO ₂	549.00	g/bhp-hr	Vendor Guarantee	1,380.00	1,029.07	8,399.00	1,038.16	0.00	8,760.00	1,670.27	7,315.77
CH ₄	0.00	kg CH ₄ / MMBtu	40 CFR Subpart C	1,380.00	1,029.07	8,399.00	1,038.16	0.00	8,760.00	0.03	0.11
N ₂ O	0.00	kg N ₂ O / MMBtu	40 CFR Subpart C	1,380.00	1,029.07	8,399.00	1,038.16	0.00	8,760.00	<0.01	0.01
Total HAPs										0.15	0.64
Total CO ₂ e										1,671.67	7,321.91

CE-1R, CE-2R, CE-7R, CE-8R, and CE-9R

Notes:

- Emission rates displayed above represent the max. hourly and max. annual emissions for one NG compressor.

- Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

- AP-42, Chapter 3.2, Table 3.2-2 - Uncontrolled Emission Factors for 4-Stroke Lean Burn Engines

- Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

- CO₂ equivalency solved for using Global Warming Potentials found in 40 CFR 98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

- Vendor Guarantee Emissions are listed in Attachment S

Example Equations:

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/MMBtu) x Fuel Consumption Rating (Btu/bhp-hr) x Engine Rating (bhp) x (1 MMBtu/10⁶ Btu)

Max. Hourly Emission Rate (lb/hr) = Emission Factor (g/bhp-hr) x Engine Rating (bhp) x (1 lb/453.6 g)

Max. Hourly Emission Rate (lb/hr) = Emission Factor (kg/MMBtu) x Engine Rating (bhp) x (2.205 lb/kg) x Fuel Consumption Rating (Btu/bhp-hr) x (1 MMBtu/10⁶ Btu)

Attachment U - Emission Calculations Produced Fluids Tanks TK-1 and TK-2

Pollutant	Max. Hourly Emissions using ProMax (Ib/hr)	Max. Annual Emissions using ProMax (tons/yr)
VOCs	0.02	0.09
Total HAPs	<0.01	<0.01
Hexane	<0.01	<0.01
Benzene	<0.01	<0.01
Toluene	<0.01	<0.01
Ethylbenzene	<0.01	<0.01
Xylene	<0.01	<0.01
CO ₂	0.03	0.13
CH ₄	0.54	2.35
Total CO ₂ e	13.42	58.77

Notes:

-Emission rates for Produced Fluid Tanks TK-1 and TK-2 were calculated using ProMax software. ProMax output sheets for the Goff Compressor Station are attached. -CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

-For emission calculation purposes, the total throughput for tanks TK-1 and TK-2 is modeled as being received through a single tank. Therefore, emission rates represent a total from all produced fluids tanks located on the compressor station. Actual throughput for each tank will vary based on operations.

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Engine Rating (bhp)	Engine Rating (kW)	Fuel Consumption (Btu/bhp-hr)	Heat Value of Natural Gas (Btu/scf)	Catalyst Effect	Annual Operating Hours	Hourly Emissions (Ib/hr)	Annual Emissions (tpy)
VOC's	1.00	g/bhp-hr	Vendor Guarantee	107.30	80.01	8,399.00	1,038.16	0.80	500.00	0.05	0.01
Formaldehyde	0.05	lb/MMBtu	AP-42 Chapter 3.2	107.30	80.01	8,399.00	1,038.16	0.90	500.00	0.05	0.01
Benzene	0.00	lb/MMBtu	AP-42 Chapter 3.2	107.30	80.01	8,399.00	1,038.16	0.00	500.00	<0.01	<0.01
Toluene	0.00	lb/MMBtu	AP-42 Chapter 3.2	107.30	80.01	8,399.00	1,038.16	0.00	500.00	<0.01	<0.01
Ethylbenzene	0.00	lb/MMBtu	AP-42 Chapter 3.2	107.30	80.01	8,399.00	1,038.16	0.00	500.00	<0.01	<0.01
Xylene	0.00	lb/MMBtu	AP-42 Chapter 3.2	107.30	80.01	8,399.00	1,038.16	0.00	500.00	<0.01	<0.01
СО	4.00	g/bhp-hr	Vendor Guarantee	107.30	80.01	8,399.00	1,038.16	0.93	500.00	0.07	0.02
NO _x	2.00	g/bhp-hr	Vendor Guarantee	107.30	80.01	8,399.00	1,038.16	0.00	500.00	0.47	0.12
PM _{Filterable}	0.00	lb/MMBtu	AP-42 Chapter 3.2	107.30	80.01	8,399.00	1,038.16	0.00	500.00	<0.01	<0.01
$PM_{Condensable}$	0.01	lb/MMBtu	AP-42 Chapter 3.2	107.30	80.01	8,399.00	1,038.16	0.00	500.00	<0.01	<0.01
PM _{Total}	0.01	lb/MMBtu	AP-42 Chapter 3.2	107.30	80.01	8,399.00	1,038.16	0.00	500.00	<0.01	<0.01
SO ₂	0.00	lb/MMBtu	AP-42 Chapter 3.2	107.30	80.01	8,399.00	1,038.16	0.00	500.00	<0.01	<0.01
CO ₂	110.00	lb/MMBtu	AP-42 Chapter 3.2	107.30	80.01	8,399.00	1,038.16	0.00	500.00	99.13	24.78
CH_4	0.00	kg CH ₄ / MMBtu	40 CFR Subpart C	107.30	80.01	8,399.00	1,038.16	0.00	500.00	<0.01	<0.01
N ₂ O	0.00	kg N ₂ O / MMBtu	40 CFR Subpart C	107.30	80.01	8,399.00	1,038.16	0.00	500.00	<0.01	<0.01
Total HAPs		L	1	1	<u>. </u>					0.05	0.01
Total CO ₂ e										99.24	24.81

Emergency Generator (EG-1)

Notes:

- Emission rates displayed above represent the max. hourly and max. annual emissions for one NG compressor.

- Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

- AP-42, Chapter 3.2, Table 3.2-2 - Uncontrolled Emission Factors for 4-Stroke Lean Burn Engines

- Max. Annual Emissions based upon Max. Hourly Emissions @ 500 hr/yr.

- CO₂ equivalency solved for using Global Warming Potentials found in 40 CFR 98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

- Vendor Guarantee Emissions are listed in Attachment S

Example Equations:

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/MMBtu) x Fuel Consumption Rating (Btu/bhp-hr) x Engine Rating (bhp) x (1 MMBtu/10⁶ Btu)

Max. Hourly Emission Rate (lb/hr) = Emission Factor (g/bhp-hr) x Engine Rating (bhp) x (1 lb/453.6 g)

Max. Hourly Emission Rate (lb/hr) = Emission Factor (kg/MMBtu) x Engine Rating (bhp) x (2.205 lb/kg) x Fuel Consumption Rating (Btu/bhp-hr) x (1 MMBtu/10⁶ Btu)

Attachment U - Emission Calculations Liquids Unloading (LO-1)

Pollutant	Max. Hourly Emissions using ProMax (Ib/hr)	Max. Annual Emissions using ProMax (tons/yr)
VOCs	<0.01	<0.01
Total HAPs	<0.01	<0.01
Hexane	<0.01	<0.01
Benzene	<0.01	<0.01
Toluene	<0.01	<0.01
Ethylbenzene	<0.01	<0.01
Xylene	<0.01	<0.01
CO ₂	<0.01	<0.01
CH ₄	<0.01	<0.01
Total CO ₂ e	0.02	0.08

Notes:

-Emission rates for Liquids Unloading was calculated using ProMax software. ProMax output sheets for the Goff CS are attached.

-CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014).

Attachment U - Emission Calculations Fugitive Emissions from Unpaved Haul Roads

Constant	Industrial Roads					
Constant	PM	PM-10	PM-2.5			
k (lb/VMT)	4.9	1.5	0.15			
а	0.7	0.9	0.9			
b	0.45	0.45	0.45			

where

k

s

р

Patricle size multiplier¹

4.8 Silt content of road surface material (%)

150 Number of days per year with precipitation

Item Number	Description	Number of Wheels	W Mean Vehicle Weight (tons)	Mean Vehicle Speed (mph)	Miles per Trip	Maximum Trips per Hour		Control Device ID Number	Control Efficiency (%)	PM Emissions (lbs/hr)	PM Emissions (tons/yr)	PM-10 Emissions (Ibs/hr)	PM-10 Emissions (tons/yr)	PM-2.5 Emissions (Ibs/hr)
1	Liquids Hauling	14	30	10	0.16	1	161	NA	NA	0.69	0.06	0.17	0.01	0.02
2	Employee Vehicles	4	3	10	0.16	1	200	NA	NA	0.24	0.02	0.06	0.01	0.01
									Totals:	0.93	0.08	0.24	0.02	0.02

Notes:

- ¹ Particle Size Multiplier used from AP-42 13.2.2 Final Version 11/2006
- ² Silt Content of Road Surface uses Sand and Gravel Processing Plant Road from AP-42 13.2.2 Final Version 11/2006
- ³ Number of days per year with precipitation >0.01 in3 found using AP-42 13.2.2 Figure 13.2.2-1 Final Version 11/2006

Example Calculations:

Emissions (lb/Vehicle Mile Traveled) - $E = k \times (s/12)^a \times (W/3)^b$	Equation 1a from AP-42 13.2.2 - Final Version 11/2006
Size Specific Emissions (lb/VMT) - $E_{ext} = E[(365-p)/365]$	Equation 2 from AP-42 13.2.2 - Final Version 11/2006

PM-2.5 Emissions (tons/yr)
0.00
<0.001
0.00

Attachment U - Emissions Calculations Pigging Operations

Type (Launch or Receiving)	Latitude Decimal Degrees	Longitude Decimal Degrees	Chamber Length (Ft.)	Chamber Diam. (Ft .)	Volume of Chamber (ft3)	PSIG of Chamber	Volume of Pressurized Gas (ft3)
Receiving	39.25854	-80.38052	11	1	8.64	625	375.96
Temp. of Chamber (R®)	Molecular Weight of gas mixture (Ib/Ib- mole)	• •	Pressurized Density (lb/ft3)	Atmospheric Density (lb/ft3)	Delta Density (Ib/ft3)	Amount Gas Vented (lbs) Per Event	
519.67	16.65	0.9979	1.91	0.04	1.87	16.15	
# of Events	# of Purges Per Event	Total Amount of Gas Vented (lbs)					-
20	1	323.06					-
Methane/Ethane Weight Fraction	Total VOC Weight Fraction	Total CO2 Weight Fraction	Tons of Total Amount of Gas Vented	Tons of CH4/C2H6	Tons of VOC	Tons of CO2	
0.9857	0.0074	0.0047	0.16	0.16	0.00	0.00	

Example Calc

Volume of Pressurized Gas (ft3)= (Volume of Chamber (ft3) x (PSIG of Chamber 14.7)) / 14.7

Pressurized Density (lb/ft3) = (Moecular Weight (lb/lb-mole) x (PSIG of Chamber + 14.7)) / Compressibility Factor x 10.73 x Temp of Chamber (R))

Atmospheric Density (lb/ft3) = (14.7 x Molecular Weight (lb/lb-mole)) / (10.73 x Temp of Chamber (R) x Compressibility Factor)

Amount of gas vented (lbs) = Delta Density (lb/ft3) x Volume of chamber (ft3)

Total Gas vented (lbs) = Number of events x Number of purges per event x Amount of gas vented (lbs)

Tons of Total Gas Vented = Amount of gas vented (lbs) / 2000

Tons of VOC = Tons of total gas vented x Total VOC weight frac

Tons of CO2 = Tons of total gas vented x CO2 weight frac

Attachment U - Emissions Calculations Blowdowns

Blowdown Volume (scf)	Number of Events	Average length of event	Average blowdown	Amount of gas	Pressure of
Biowdown volume (scr)	Number of Events	(hrs)	rate (scf/hr)	vented (scf)	chamber (PSIG)
3,776	100	0.167	22,610.78	377,600.00	625
Temp of Gas (R)	Molecular weight of mixture	Compressibility Factor	Pressurized Density	Atmospheric Density	Delta Density
Temp of Gas (K)	(lb/lb-mol)	compressionity ractor	(lb/ft3)	(lb/ft3)	(lb/ft3)
519.67	16.65	0.9979	1.913658529	0.043974958	1.869683571
Amount of Gas vented	VOC weight fraction	CO2 Weight fraction	Me/Et frac	Gas vented (tons)	Tons of CH4/C2H6
(lbs)	voc weight fraction	CO2 Weight fraction	Ivie/Et Irac	Gas vented (tons)	
705,992.52	0.007534966	0.004679745	0.985578356	353.00	347.91
Tons of VOC	Tons of CO2				
2.66	1.63				

Example Calc

Amount of gas vented (scf) = Blowdown volume (scf) x Number of events

Pressurized Density (lb/ft3) = (Moecular Weight (lb/lb-mole) x (PSIG of Chamber + 14.7)) / Compressibility Factor x 10.73 x Temp of Chamber (R))

Atmospheric Density (lb/ft3) = (14.7 x Molecular Weight (lb/lb-mole)) / (10.73 x Temp of Chamber (R) x Compressibility Factor)

Amount of gas vented (lbs) = Delta Density (lb/ft3) x Volume of chamber (ft3)

Total Gas vented (lbs) = Amount of gas vented (scf) x Delta Density (lb/ft3)

Tons of Total Gas Vented = Amount of gas vented (lbs) / 2000

Tons of VOC = Tons of total gas vented x Total VOC weight frac

Tons of CO2 = Tons of total gas vented x CO2 weight frac

Fugitive Leaks

Default Average Component	Counts for	Major Onshore Natural G	as Productic	on Equipment ¹
Facility Equipment Type	Valves	Connectors	Open- ended Lines	Pressure Relief Valves
Wellheads	8	38	0.5	0
Separators	1	6	0	0
Meters/Piping	12	45	0	0
Compressors	12	57	0	0
In-line Heaters	14	65	2	1
Dehydrators	24	90	2	2

¹- Table W-1B to 40CFR98 Subpart W

		Gas Composition				
Emissions from Flaring Operations	Propane	Butane	Pentanes	Hexanes+	CO ₂	CH ₄
Mole %	0.22	0.03	0.01	0.00	0.18	95.88
MW	44	58	72	86.00	44.00	16.00

Well Specific Equipment Counts										
Facility Equipment Type	Count on Site									
Wellheads	0									
Separators	1									
Meters/Piping	1									
Compressors	5									
In-line Heaters	1									
Dehydrators	0									

	Fugitive Emissions														
Facility Equipment Type	Total Count	Emission Rate (scf/hr/component) ²	Hours of Operation	VOCs (Ibs/hr)	VOCs (tons/yr)	Hexane (Ibs/hr)	Hexane (tons/yr)	HAPs (Ibs/hr)	HAPs (tons/yr)	CO ₂ (lbs/hr)	CO ₂ (tons/yr)	CH ₄ (lbs/hr)	CH ₄ (tons/yr)	Total CO ₂ e (Ibs/hr)	Total CO ₂ e (tons/yr)
Valves	87	0.027	8760	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.09	0.41	2.34	10.24
Connectors	401	0.003	8760	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.05	0.21	1.20	5.24
Open-ended Lines	2	0.061	8760	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.02	0.12	0.53
Pressure Relief Valves	1	0.040	8760	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.04	0.17
		Tota	I Emissions:	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.15	0.65	3.70	16.19

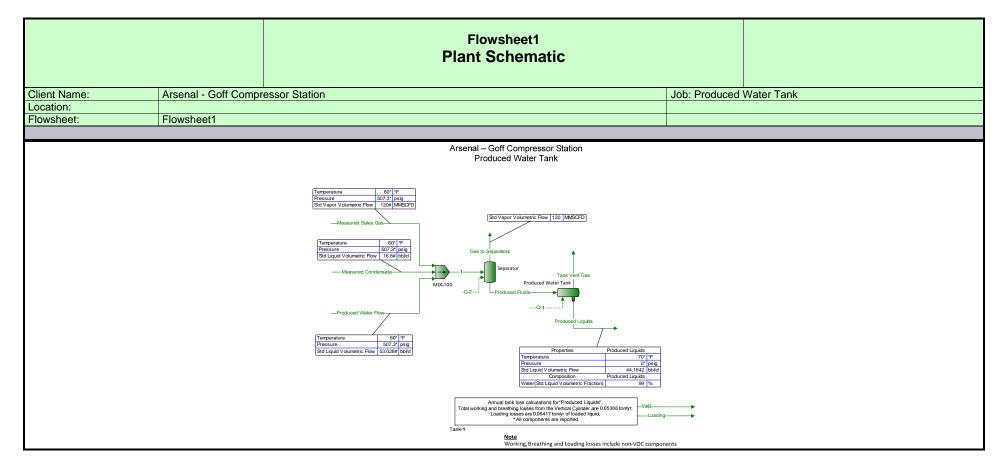
²- Table W-1A to 40CFR98 Subpart W

Notes:

Gas composition for Goff was used

Example Equations:

Fugitive Emissions (lb/hr) = Count x Emission Rate x Hours of Operation ÷ 385.5 scf/lbmol x mol VOC's


Attachment U - Emission Calculations Goff CS Site Emission Levels

											r.				1		7				1			
	VC	Cs	HA	Ps	C	0	N	O _x	PM ·	- Total	PM -	10/2.5	PM ·	CON	S	0 ₂	C	CO ₂	C	H ₄	N	2 0	C	CO₂e
Emission Sources	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Line Heater LH-1	<0.01	0.01	<0.01	<0.01	0.02	0.09	0.02	0.11	0.01	0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	29.24	128.09	<0.01	<0.01	<0.01	<0.01	29.27	128.22
Compressor Engine CE-1R	0.32	1.39	0.15	0.64	0.56	2.43	1.52	6.66	0.12	0.51	<0.01	<0.01	0.11	0.50	0.01	0.03	1670.27	7315.77	0.03	0.11	<0.01	0.01	1671.67	7321.91
Compressor Engine CE-2R	0.32	1.39	0.15	0.64	0.56	2.43	1.52	6.66	0.12	0.51	<0.01	<0.01	0.11	0.50	0.01	0.03	1670.27	7315.77	0.03	0.11	<0.01	0.01	1671.67	7321.91
Compressor Engine CE-7R	0.32	1.39	0.15	0.64	0.56	2.43	1.52	6.66	0.12	0.51	<0.01	<0.01	0.11	0.50	0.01	0.03	1670.27	7315.77	0.03	0.11	<0.01	0.01	1671.67	7321.91
Compressor Engine CE-8R	0.32	1.39	0.15	0.64	0.56	2.43	1.52	6.66	0.12	0.51	<0.01	<0.01	0.11	0.50	0.01	0.03	1670.27	7315.77	0.03	0.11	<0.01	0.01	1671.67	7321.91
Compressor Engine CE-9R	0.32	1.39	0.15	0.64	0.56	2.43	1.52	6.66	0.12	0.51	<0.01	<0.01	0.11	0.50	0.01	0.03	1670.27	7315.77	0.03	0.11	<0.01	0.01	1671.67	7321.91
Produced Fluid Tank TK-1 and TK-2	0.02	0.09	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.03	0.13	0.54	2.35	<0.01	<0.01	13.42	58.77
Emergency Generator EG-1	0.05	0.01	0.05	0.01	0.07	0.02	0.47	0.12	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	99.13	24.78	<0.01	<0.01	<0.01	<0.01	99.24	24.81
Tank Loading LO-1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.02	0.08
Pigging Operations	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Blowdown	0.61	2.66	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.37	1.63	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fugitive Emissions	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.15	0.65	<0.01	<0.01	3.70	16.19
Haul Roads									0.93	0.08	0.26	0.02						-						
Totals	2.26	9.70	0.78	3.22	2.87	12.28	8.10	33.54	1.52	2.62	0.26	0.04	0.58	2.52	0.03	0.15	8,479.75	36,731.87	0.81	3.56	0.01	0.06	8,503.97	36,837.52

	Total	HAPs	Forma	dehyde	Hex	kane	Ben	zene	Tol	uene	Ethylb	enzene	Ху	lene
Emission Sources	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr								
Line Heater LH-1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Compressor Engine CE-1R	0.17	0.64	0.13	0.59	<0.01	<0.01	<0.01	0.02	<0.01	0.02	<0.01	<0.01	<0.01	<0.01
Compressor Engine CE-2R	0.17	0.64	0.13	0.59	<0.01	<0.01	<0.01	0.02	<0.01	0.02	<0.01	<0.01	<0.01	<0.01
Compressor Engine CE-7R	0.17	0.64	0.13	0.59	<0.01	<0.01	<0.01	0.02	<0.01	0.02	<0.01	<0.01	<0.01	<0.01
Compressor Engine CE-8R	0.17	0.64	0.13	0.59	<0.01	<0.01	<0.01	0.02	<0.01	0.02	<0.01	<0.01	<0.01	<0.01
Compressor Engine CE-9R	0.17	0.64	0.13	0.59	<0.01	<0.01	<0.01	0.02	<0.01	0.02	<0.01	<0.01	<0.01	<0.01
Produced Fluid Tank TK-1 and TK-2	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Emergency Generator S09	0.05	0.01	0.05	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Liquids Unloading LO-1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Pigging Operations	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Blowdown	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fugitive Emissions	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Haul Roads	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Totals	0.88	3.22	0.72	2.94	<0.01	<0.01	0.03	0.11	0.02	0.10	<0.01	0.01	0.01	0.05

Total Goff CS Site Emission Levels - HAP Speciation

Page	1	of	1	
------	---	----	---	--

			All St Tabulated b	reams Report reams by Total Phase			
Client Name: Location:	Arsenal - Goff C	ompressor Statior	1		Job: Produ	ced Water Tank	
Flowsheet:	Flowsheet1						
			Conn	ections			
			Gas to	Loading	Measured	Measured	Produced
			Separators		Condensate	Sales Gas	Fluids
From Block To Block			Separator 		 MIX-100	 MIX-100	Separator Produced Water Tank
			Stream C	omposition			
			Gas to	Loading	Measured	Measured	Produced
Mole Fraction			Separators %	%	Condensate %	Sales Gas %	Fluids %
Nitrogen			0.253723	0.00278102	0 *	0.2539 *	0.00013162
Methane Carbon Dioxide			95.8284 0.157591	5.81454 2.38512	10.674 * 0.065 *	<u>95.894</u> * 0.1577 *	0.09654
Ethane			3.44538	0.686636	5.377 *	3.4471 *	0.0027669
Propane			0.218627	0.0355857	3.736 *	0.2183 *	0.000856741
Isobutane			0.0118665	0.00282363	1.359 *	0.0117 *	9.64698E-05
n-Butane			0.0176419	0.00537069	2.754 *	0.0173 *	0.000203686
Isopentane			0.000322829	0.000125031	2.508 *	0 *	7.71831E-06
n-Pentane i-Hexane			0.000289613 0.000610307	0.000127646 0.000326485	2.25 * 4.742 *	0 *	9.37731E-06 4.49637E-05
n-Hexane			0.000349784	0.000320465	2.718 *	0 *	3.6666E-05
2,2,4-Trimethylpe	entane		2.31535E-06	1.28185E-06	0.018 *	0 *	6.52143E-07
Benzene			1.40233E-05	1.11579E-05	0.109 *	0 *	3.0054E-06
Heptane			0.00170029	0.00099922	13.22 *	0 *	0.000555721
Toluene			0.000141014	8.36034E-05	1.097 *	0 *	7.44506E-05
Octane Ethylbenzene			0.00200653 2.56484E-05	0.00100637 1.37441E-05	15.626 * 0.2 *	0 *	0.00184879 3.60905E-05
o-Xylene			4.71431E-05	2.12796E-05	0.368 *	0 *	8.49734E-05
Nonane			0.00148246	0.000636322	11.599 *	0 *	0.00395861
Decane			0	0	0 *	0 *	0
Water			0.0571757	91.0629	0 *	0 *	99.8043
Oxygen Decanes Plus			0.00255852	0.000692518	0 * 21.58 *	<u> </u>	0 0.0814884
Hexanes+			0.00255652	0.000692518	21.38	0 *	0.0814664
Пехапезт			0	0	0	0	0
			Gas to Separators	Loading	Measured Condensate	Measured Sales Gas	Produced Fluids
Molar Flow			lbmol/h	10005E 08	Ibmol/h 0 *	lbmol/h 33.43 *	1bmol/h
Nitrogen Methane			33.4299 12626.1	2.18805E-08 4.57476E-05	0.181041 *	<u> </u>	4.66992E-05 0.0342526
Carbon Dioxide			20.7638	1.87656E-05	0.00110246 *	20.7637 *	0.000981703
Ethane			453.955	5.40231E-06	0.0911987 *	453.866 *	0.00248506
Propane			28.8057	2.79981E-07	0.0633659 *	28.7427 *	0.000303974
Isobutane n-Butane			1.56351	2.22157E-08	0.0230499 *	1.54049 *	3.42277E-05
n-Butane Isopentane			2.32446 0.0425352	4.22555E-08 9.83714E-10	0.0467103 * 0.0425379 *	2.27782 *	7.22682E-05 2.73847E-06
				1.00429E-09	0.038162 *	0 *	3.32709E-06
n-Pentane			0.0381587				
			0.0804126	2.56872E-09	0.0804286 *	0 *	1.59532E-05
n-Pentane i-Hexane n-Hexane			0.0804126 0.0460867	2.56872E-09 1.59846E-09	0.0804286 * 0.0460997 *	0 *	1.30092E-05
n-Pentane i-Hexane n-Hexane 2,2,4-Trimethylpe	ntane		0.0804126 0.0460867 0.000305065	2.56872E-09 1.59846E-09 1.00854E-11	0.0804286 * 0.0460997 * 0.000305296 *	0 *	1.30092E-05 2.31382E-07
n-Pentane i-Hexane n-Hexane 2,2,4-Trimethylpe Benzene	entane		0.0804126 0.0460867 0.000305065 0.00184767	2.56872E-09 1.59846E-09 1.00854E-11 8.77882E-11	0.0804286 * 0.0460997 * 0.000305296 * 0.00184874 *	0 * 0 * 0 *	1.30092E-05 2.31382E-07 1.06632E-06
n-Pentane i-Hexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane	intane		0.0804126 0.0460867 0.000305065 0.00184767 0.224026	2.56872E-09 1.59846E-09 1.00854E-11 8.77882E-11 7.86165E-09	0.0804286 * 0.0460997 * 0.000305296 * 0.00184874 * 0.224223 *	0 * 0 * 0 *	1.30092E-05 2.31382E-07 1.06632E-06 0.000197171
n-Pentane i-Hexane n-Hexane 2,2,4-Trimethylpe Benzene	ntane		0.0804126 0.0460867 0.000305065 0.00184767	2.56872E-09 1.59846E-09 1.00854E-11 8.77882E-11	0.0804286 * 0.0460997 * 0.000305296 * 0.00184874 *	0 * 0 * 0 *	1.30092E-05 2.31382E-07 1.06632E-06
n-Pentane i-Hexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene	intane		0.0804126 0.0460867 0.000305065 0.00184767 0.224026 0.0185797	2.56872E-09 1.59846E-09 1.00854E-11 8.77882E-11 7.86165E-09 6.57774E-10	0.0804286 * 0.0460997 * 0.000305296 * 0.00184874 * 0.224223 * 0.0186061 *	0 * 0 * 0 * 0 * 0 * 0 *	1.30092E-05 2.31382E-07 1.06632E-06 0.000197171 2.64152E-05
n-Pentane i-Hexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene	intane		0.0804126 0.0460867 0.000305065 0.00184767 0.224026 0.0185797 0.264375 0.00337937 0.00621146	2.56872E-09 1.59846E-09 1.00854E-11 8.77882E-11 7.86165E-09 6.57774E-10 7.9179E-09 1.08135E-10 1.67424E-10	0.0804286 * 0.0460997 * 0.000305296 * 0.00184874 * 0.224223 * 0.0186061 * 0.265031 * 0.00339218 * 0.00624161 *	0 * 0 * 0 * 0 * 0 * 0 * 0 *	1.30092E-05 2.31382E-07 1.06632E-06 0.000197171 2.64152E-05 0.000655954 1.2805E-05 3.01487E-05
n-Pentane i-Hexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane	ntane		0.0804126 0.0460867 0.000305065 0.00184767 0.224026 0.0185797 0.264375 0.00337937 0.00621146 0.195325	2.56872E-09 1.59846E-09 1.00854E-11 8.77882E-11 7.86165E-09 6.57774E-10 7.9179E-09 1.08135E-10 1.67424E-10 5.00645E-09	0.0804286 * 0.0460997 * 0.000305296 * 0.00184874 * 0.224223 * 0.0186061 * 0.265031 * 0.00339218 * 0.00624161 * 0.196729 *	0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	1.30092E-05 2.31382E-07 1.06632E-06 0.000197171 2.64152E-05 0.000655954 1.2805E-05 3.01487E-05 0.00140452
n-Pentane i-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane	ntane		0.0804126 0.0460867 0.000305065 0.00184767 0.224026 0.0185797 0.264375 0.00337937 0.00621146 0.195325 0	2.56872E-09 1.59846E-09 1.00854E-11 8.77882E-11 7.86165E-09 6.57774E-10 7.9179E-09 1.08135E-10 1.67424E-10 5.00645E-09 0	0.0804286 * 0.0460997 * 0.000305296 * 0.00184874 * 0.224223 * 0.0186061 * 0.265031 * 0.00339218 * 0.00624161 * 0.196729 * 0 *	0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	1.30092E-05 2.31382E-07 1.06632E-06 0.000197171 2.64152E-05 0.000655954 1.2805E-05 3.01487E-05 0.00140452 0
n-Pentane i-Hexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane	intane		0.0804126 0.0460867 0.000305065 0.00184767 0.224026 0.0185797 0.264375 0.00337937 0.00621146 0.195325	2.56872E-09 1.59846E-09 1.00854E-11 8.77882E-11 7.86165E-09 6.57774E-10 7.9179E-09 1.08135E-10 1.67424E-10 5.00645E-09	0.0804286 * 0.0460997 * 0.000305296 * 0.00184874 * 0.224223 * 0.0186061 * 0.265031 * 0.00339218 * 0.00624161 * 0.196729 *	0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	1.30092E-05 2.31382E-07 1.06632E-06 0.000197171 2.64152E-05 0.000655954 1.2805E-05 3.01487E-05 0.00140452

* User Specified Values ? Extrapolated or Approximate Values

Licensed to The ERM Group, Inc. and Affiliates

			All St	reams Report Treams by Total Phase			
Client Name:	Arsenal - Goff C	Compressor Station	า		Job: Produc	ed Water Tank	
Location:		•					
Flowsheet:	Flowsheet1						
Molar Flow			Gas to Separators Ibmol/h	Loading Ibmol/h	Measured Condensate Ibmol/h	Measured Sales Gas Ibmol/h	Produced Fluids Ibmol/h
Hexanes+			0	0	0 *	0 *	0
						- 1	· · ·
Mass Fraction			Gas to Separators %	Loading %	Measured Condensate %	Measured Sales Gas %	Produced Fluids %
Nitrogen			0.425988	0.00418393	0 *	0.426571 *	0.000203259
Methane			92.1377	5.00957	1.71125 *	92.2624 *	0.0853768
Carbon Dioxide			0.415672	5.6373	0.0285875 *	0.416237 *	0.00671277
Ethane			6.20909	1.10882	1.61576 *	6.21636 *	0.01161
Propane			0.577791	0.0842724	1.64634 *	0.577313 *	0.0020826
Isobutane			0.0413369	0.00881382 0.0167643	0.789365 *	0.0407841 *	0.000309097
n-Butane Isopentane			0.0614554 0.00139596	0.000484461	1.59964 * 1.80831 *	0.0603046 *	0.000652626 3.06982E-05
n-Pentane			0.00139596	0.000484461	1.62229 *	0 *	3.72966E-05
i-Hexane			0.00315213	0.00151099	4.08377 *	0 *	0.000213603
n-Hexane			0.00180657	0.000940256	2.34072 *	0 *	0.000174184
2,2,4-Trimethylpen	ntane		1.58512E-05	7.86371E-06	0.0205477 *	0 *	4.10657E-06
Benzene			6.56505E-05	4.68074E-05	0.0850863 *	0 *	1.29414E-05
Heptane			0.0102111	0.00537714	13.238 *	0 *	0.00306969
Toluene			0.00077871	0.000413694	1.0101 *	0 *	0.000378156
Octane			0.013737	0.00617371	17.8377 *	0 *	0.0116419
Ethylbenzene			0.000163198	7.83629E-05	0.212191 *	0 *	0.00021122
o-Xylene			0.000299966	0.000121328	0.390432 *	0 *	0.000497308
Nonane			0.0113954	0.00438294	14.8666 *	0 *	0.0279884
Decane			0	0	0 *	0 *	0 1179
Water Oxygen			0.061734	88.1042 0	0 *	0 *	<u>99.1178</u> 0
Decanes Plus			0.0249527	0.00605204	35.0933 *	0 *	0.730995
- 3001100 T 100			0.0249327	0.00003204	0 *	0 *	0.730333
Hexanes+				5	5	0	0
Hexanes+							
Hexanes+			Gas to Separators	Loading	Measured Condensate	Measured Sales Gas	Produced Fluids
Mass Flow			Gas to Separators Ib/h	lb/h	Condensate Ib/h	Sales Gas Ib/h	Fluids Ib/h
Mass Flow Nitrogen			Gas to Separators Ib/h 936.487	Ib/h 6.12947E-07	Condensate Ib/h	Sales Gas Ib/h 936.488 *	Fluids lb/h 0.0013082
Mass Flow Nitrogen Methane			Gas to Separators Ib/h 936.487 202554	Ib/h 6.12947E-07 0.000733904	Condensate Ib/h 0 * 2.90434 *	Sales Gas Ib/h 936.488 * 202552 *	Fluids lb/h 0.0013082 0.549496
Mass Flow Nitrogen Methane Carbon Dioxide			Gas to Separators Ib/h 936.487 202554 913.807	Ib/h 6.12947E-07 0.000733904 0.000825866	Condensate Ib/h 0 * 2.90434 * 0.0485186 *	Sales Gas Ib/h 936.488 * 202552 * 913.801 *	Fluids lb/h 0.0013082 0.549496 0.0432043
Mass Flow Nitrogen Methane Carbon Dioxide Ethane			Gas to Separators Ib/h 936.487 202554 913.807 13650	Ib/h 6.12947E-07 0.000733904 0.000825866 0.000162442	Condensate lb/h * 2.90434 * 0.0485186 * 2.74226 *	Sales Gas Ib/h 936.488 * 202552 * 913.801 * 13647.3 *	Fluids lb/h 0.0013082 0.549496 0.0432043 0.0747234
Mass Flow Nitrogen			Gas to Separators Ib/h 936.487 202554 913.807 13650 1270.21	Ib/h 6.12947E-07 0.000733904 0.000825866 0.000162442 1.23459E-05	Condensate Ib/h 0 * 2.90434 * 0.0485186 * 2.74226 * 2.79416 *	Sales Gas Ib/h 936.488 * 202552 * 913.801 * 13647.3 * 1267.43 *	Fluids 1b/h 0.0013082 0.549496 0.0432043 0.0747234 0.0134039
Mass Flow Nitrogen Methane Carbon Dioxide Ethane Propane			Gas to Separators Ib/h 936.487 202554 913.807 13650	Ib/h 6.12947E-07 0.000733904 0.000825866 0.000162442	Condensate lb/h * 2.90434 * 0.0485186 * 2.74226 *	Sales Gas Ib/h 936.488 * 202552 * 913.801 * 13647.3 *	Fluids lb/h 0.0013082 0.549496 0.0432043 0.0747234
Mass Flow Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane			Gas to Separators Ib/h 936.487 202554 913.807 13650 1270.21 90.8745	Ib/h 6.12947E-07 0.000733904 0.000825866 0.000162442 1.23459E-05 1.29123E-06	Condensate Ib/h 0 * 2.90434 * 0.0485186 * 2.74226 * 2.79416 * 1.33971 *	Sales Gas Ib/h 936.488 202552 913.801 13647.3 1267.43 89.5368	Fluids 1b/h 0.0013082 0.549496 0.0432043 0.0747234 0.0134039 0.00198939
Mass Flow Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane			Gas to Separators Ib/h 936.487 202554 913.807 13650 1270.21 90.8745 135.103	Ib/h 6.12947E-07 0.000733904 0.000825866 0.000162442 1.23459E-05 1.29123E-06 2.45598E-06	Condensate Ib/h 0 * 2.90434 * 0.0485186 * 2.74226 * 2.79416 * 1.33971 * 2.71491 *	Sales Gas Ib/h 936.488 202552 913.801 13647.3 1267.43 89.5368 132.392	Fluids 1b/h 0.0013082 0.549496 0.0432043 0.0747234 0.0134039 0.00198939 0.00420038
Mass Flow Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane			Gas to Separators Ib/h 936.487 202554 913.807 13650 1270.21 90.8745 135.103 3.06886 2.7531 6.92959	Ib/h 6.12947E-07 0.000733904 0.000825866 0.000162442 1.23459E-05 1.29123E-06 2.45598E-06 7.09738E-08 7.24583E-08 2.2136E-07	Condensate lb/h 0 * 2.90434 * 0.0485186 * 2.74226 * 2.79416 * 1.33971 * 2.71491 * 3.06906 * 2.75334 * 6.93096 *	Sales Gas Ib/h 936.488 202552 913.801 13647.3 1267.43 89.5368 132.392 0 * 0 * 0 * 0 * 0	Fluids Ib/h 0.0013082 0.549496 0.0432043 0.0747234 0.0134039 0.00198939 0.00420038 0.000197578 0.000240046 0.00137477
Mass Flow Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane n-Hexane			Gas to Separators Ib/h 936.487 202554 913.807 13650 1270.21 90.8745 135.103 3.06886 2.7531 6.92959 3.97154	Ib/h 6.12947E-07 0.000733904 0.000825866 0.000162442 1.23459E-05 1.29123E-06 2.45598E-06 7.09738E-08 7.24583E-08 2.2136E-07 1.37748E-07	Condensate Ib/h 0 * 2.90434 * 0.0485186 * 2.74226 * 2.79416 * 1.33971 * 2.71491 * 3.06906 * 2.75334 * 6.93096 * 3.97266 *	Sales Gas Ib/h 936.488 202552 913.801 13647.3 1267.43 132.392 0 0 0 0 0 0 0 0 0	Fluids Ib/h 0.0013082 0.549496 0.0432043 0.0747234 0.0134039 0.00198939 0.00420038 0.000197578 0.000197578 0.000240046 0.00137477 0.00112107
Mass Flow Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane n-Hexane 2,2,4-Trimethylpen	Itane		Gas to Separators Ib/h 936.487 202554 913.807 13650 1270.21 90.8745 135.103 3.06886 2.7531 6.92959 3.97154 0.0348471	Ib/h 6.12947E-07 0.000733904 0.000825866 0.000162442 1.23459E-05 1.29123E-06 2.45598E-06 7.09738E-08 7.24583E-08 2.2136E-07 1.37748E-07 1.15204E-09	Condensate Ib/h	Sales Gas Ib/h 936.488 202552 913.801 13647.3 1267.43 1267.43 132.392 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Fluids Ib/h 0.0013082 0.549496 0.0432043 0.0747234 0.0134039 0.00198939 0.00420038 0.000197578 0.000240046 0.00137477 0.00112107 2.64304E-05
Mass Flow Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane n-Butane n-Pentane i-Hexane n-Hexane 2,2,4-Trimethylpen Benzene	Itane		Gas to Separators Ib/h 936.487 202554 913.807 13650 1270.21 90.8745 135.103 3.06886 2.7531 6.92959 3.97154 0.0348471 0.144325	Ib/h 6.12947E-07 0.000733904 0.000825866 0.000162442 1.23459E-05 1.29123E-06 2.45598E-06 7.09738E-08 7.24583E-08 2.2136E-07 1.37748E-07 1.15204E-09 6.8573E-09	Condensate Ib/h	Sales Gas Ib/h 936.488 202552 913.801 13647.3 1267.43 89.5368 132.392 0	Fluids Ib/h 0.0013082 0.549496 0.0432043 0.0747234 0.0134039 0.00198939 0.00420038 0.000197578 0.000240046 0.00137477 0.00112107 2.64304E-05 8.32925E-05
Mass Flow Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane n-Hexane 2,2,4-Trimethylpen Benzene Heptane	Itane		Gas to Separators Ib/h 936.487 202554 913.807 13650 1270.21 90.8745 135.103 3.06886 2.7531 6.92959 3.97154 0.0348471 0.144325 22.4478	Ib/h 6.12947E-07 0.000733904 0.000825866 0.000162442 1.23459E-05 1.29123E-06 2.45598E-06 7.09738E-08 7.24583E-08 2.2136E-07 1.37748E-07 1.15204E-09 6.8573E-09 7.87753E-07	Condensate Ib/h	Sales Gas Ib/h 936.488 * 202552 * 913.801 * 13647.3 * 1267.43 * 89.5368 * 132.392 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	Fluids Ib/h 0.0013082 0.549496 0.0432043 0.0747234 0.0134039 0.00198939 0.00420038 0.000197578 0.000240046 0.00137477 0.00112107 2.64304E-05 8.32925E-05 0.0197569
Mass Flow Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane 2,2,4-Trimethylpen Benzene Heptane Toluene	Itane		Gas to Separators Ib/h 936.487 202554 913.807 13650 1270.21 90.8745 135.103 3.06886 2.7531 6.92959 3.97154 0.0348471 0.144325 22.4478 1.7119	Ib/h 6.12947E-07 0.000733904 0.000825866 0.000162442 1.23459E-05 1.29123E-06 2.45598E-06 7.09738E-08 2.2136E-07 1.37748E-07 1.5204E-09 6.8573E-09 7.87753E-07 6.06063E-08	Condensate Ib/h	Sales Gas Ib/h 936.488 * 202552 * 913.801 * 13647.3 * 1267.43 * 89.5368 * 132.392 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0	Fluids Ib/h 0.0013082 0.549496 0.0432043 0.0747234 0.0134039 0.00198939 0.00420038 0.000197578 0.000240046 0.00137477 0.00112107 2.64304E-05 8.32925E-05 0.0197569 0.00243386
Mass Flow Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane 2,2,4-Trimethylpen Benzene Heptane Toluene Octane	Itane		Gas to Separators Ib/h 936.487 202554 913.807 13650 1270.21 90.8745 135.103 3.06886 2.7531 6.92959 3.97154 0.0348471 0.144325 22.4478 1.7119 30.1992	Ib/h 6.12947E-07 0.000733904 0.000825866 0.000162442 1.23459E-05 1.29123E-06 2.45598E-06 7.09738E-08 2.2136E-07 1.37748E-07 1.15204E-09 6.8573E-09 7.87753E-07 6.06063E-08 9.0445E-07	Condensate Ib/h	Sales Gas Ib/h 936.488 202552 913.801 13647.3 1267.43 89.5368 132.392 0	Fluids Ib/h 0.0013082 0.549496 0.0432043 0.0747234 0.0134039 0.00198939 0.00420038 0.000197578 0.000240046 0.00137477 0.00112107 2.64304E-05 8.32925E-05 0.0197569 0.00243386 0.0749287
Mass Flow Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane n-Hexane 2,2,4-Trimethylpen Benzene Heptane Toluene Octane Ethylbenzene	Itane		Gas to Separators Ib/h 936.487 202554 913.807 13650 1270.21 90.8745 135.103 3.06886 2.7531 6.92959 3.97154 0.0348471 0.144325 22.4478 1.7119 30.1992 0.358771	Ib/h 6.12947E-07 0.000733904 0.000825866 0.000162442 1.23459E-05 1.29123E-06 2.45598E-06 7.09738E-08 2.2136E-07 1.37748E-07 1.15204E-09 6.8573E-09 7.87753E-07 6.06063E-08 9.0445E-07 1.14802E-08	Condensate Ib/h 0 * 2.90434 * 0.0485186 * 2.74226 * 2.79416 * 1.33971 * 2.71491 * 3.06906 * 2.75334 * 6.93096 * 3.97266 * 0.0348735 * 0.144408 * 22.4676 * 1.71434 * 30.2741 * 0.360131 *	Sales Gas Ib/h 936.488 * 202552 * 913.801 * 13647.3 * 1267.43 * 89.5368 * 132.392 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0	Fluids Ib/h 0.0013082 0.549496 0.0432043 0.0747234 0.0134039 0.00198939 0.00420038 0.000197578 0.000240046 0.00137477 0.00112107 2.64304E-05 8.32925E-05 8.32925E-05 0.0197569 0.00243386 0.0749287 0.00135944
Mass Flow Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane 2,2,4-Trimethylpen Benzene Heptane Toluene Octane Ethylbenzene o-Xylene	Itane		Gas to Separators Ib/h 936.487 202554 913.807 13650 1270.21 90.8745 135.103 3.06886 2.7531 6.92959 3.97154 0.0348471 0.144325 22.4478 1.7119 30.1992 0.358771 0.65944	Ib/h 6.12947E-07 0.000733904 0.000825866 0.000162442 1.23459E-05 1.29123E-06 2.45598E-06 7.09738E-08 7.24583E-08 2.2136E-07 1.37748E-07 1.15204E-09 6.8573E-09 7.87753E-07 6.06063E-08 9.0445E-07 1.14802E-08 1.77745E-08	Condensate Ib/h 0 * 0.0485186 * 0.0485186 * 2.74226 * 2.79416 * 1.33971 * 2.71491 * 3.06906 * 3.97266 * 0.0348735 * 0.144408 * 22.4676 * 1.71434 * 30.2741 * 0.360131 * 0.66264 *	Sales Gas Ib/h 936.488 * 202552 * 913.801 * 13647.3 * 1267.43 * 89.5368 * 132.392 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0	Fluids Ib/h 0.0013082 0.549496 0.0432043 0.0747234 0.0134039 0.00198939 0.00420038 0.000197578 0.000240046 0.00137477 0.00112107 2.64304E-05 8.32925E-05 8.32925E-05 0.0197569 0.00243386 0.0749287 0.00135944 0.00320074
Mass Flow Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane 2,2,4-Trimethylpen Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane	Itane		Gas to Separators Ib/h 936.487 202554 913.807 13650 1270.21 90.8745 135.103 3.06886 2.7531 6.92959 3.97154 0.0348471 0.144325 22.4478 1.7119 30.1992 0.358771	Ib/h 6.12947E-07 0.000733904 0.000825866 0.000162442 1.23459E-05 1.29123E-06 2.45598E-06 7.09738E-08 2.2136E-07 1.37748E-07 1.15204E-09 6.8573E-09 7.87753E-07 6.06063E-08 9.0445E-07 1.14802E-08	Condensate Ib/h 0 * 2.90434 * 0.0485186 * 2.74226 * 2.79416 * 1.33971 * 2.71491 * 3.06906 * 2.75334 * 6.93096 * 3.97266 * 0.0348735 * 0.144408 * 22.4676 * 1.71434 * 30.2741 * 0.360131 *	Sales Gas Ib/h 936.488 * 202552 * 913.801 * 13647.3 * 1267.43 * 89.5368 * 132.392 * 0 *	Fluids Ib/h 0.0013082 0.549496 0.0432043 0.0747234 0.0134039 0.00198939 0.00420038 0.000197578 0.000240046 0.00137477 0.00112107 2.64304E-05 8.32925E-05 8.32925E-05 0.0197569 0.00243386 0.0749287 0.00135944
Mass Flow Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane 2,2,4-Trimethylpen Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane	Itane		Gas to Separators Ib/h 936.487 202554 913.807 13650 1270.21 90.8745 135.103 3.06886 2.7531 6.92959 3.97154 0.0348471 0.0348471 0.0348471 0.144325 22.4478 1.7119 30.1992 0.358771 0.65944 25.0514 0	Ib/h 6.12947E-07 0.000733904 0.000825866 0.000162442 1.23459E-05 1.29123E-06 2.45598E-06 7.09738E-08 7.24583E-08 2.2136E-07 1.37748E-07 1.15204E-09 6.8573E-09 7.87753E-07 6.06063E-08 9.0445E-07 1.14802E-08 1.77745E-08 6.42102E-07	Condensate Ib/h 0 * 2.90434 * 0.0485186 * 2.74226 * 2.79416 * 1.33971 * 2.71491 * 3.06906 * 2.75334 * 6.93096 * 3.97266 * 0.0348735 * 0.144408 * 22.4676 * 1.71434 * 30.2741 * 0.360131 * 0.66264 * 25.2315 *	Sales Gas Ib/h 936.488 * 202552 * 913.801 * 13647.3 * 1267.43 * 89.5368 * 132.392 * 0 *	Fluids Ib/h 0.0013082 0.549496 0.0432043 0.0747234 0.0134039 0.00198939 0.00420038 0.000197578 0.000240046 0.00137477 0.00112107 2.64304E-05 8.32925E-05 0.0197569 0.00243386 0.0749287 0.00135944 0.00320074 0.180137 0
Mass Flow Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane	Itane		Gas to Separators Ib/h 936.487 202554 913.807 13650 1270.21 90.8745 135.103 3.06886 2.7531 6.92959 3.97154 0.0348471 0.144325 22.4478 1.7119 30.1992 0.358771 0.65944 25.0514	Ib/h 6.12947E-07 0.000733904 0.000825866 0.00162442 1.23459E-05 1.29123E-06 2.45598E-06 7.09738E-08 7.24583E-08 2.2136E-07 1.37748E-07 1.15204E-09 6.8573E-09 7.87753E-07 6.06063E-08 9.0445E-07 1.14802E-08 1.77745E-08 6.42102E-07 0	Condensate Ib/h 0	Sales Gas Ib/h 936.488 * 202552 * 913.801 * 13647.3 * 1267.43 * 89.5368 * 132.392 * 0 *	Fluids Ib/h 0.0013082 0.549496 0.0432043 0.0747234 0.0134039 0.00198939 0.00420038 0.000197578 0.000240046 0.00137477 0.00112107 2.64304E-05 8.32925E-05 8.32925E-05 0.0197569 0.00243386 0.0749287 0.00135944 0.00320074 0.180137
Mass Flow Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane 2,2,4-Trimethylpen Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water	Itane		Gas to Separators Ib/h 936.487 202554 913.807 13650 1270.21 90.8745 135.103 3.06886 2.7531 6.92959 3.97154 0.0348471 0.144325 22.4478 1.7119 30.1992 0.358771 0.65944 25.0514 0 135.715	Ib/h 6.12947E-07 0.000733904 0.000825866 0.000162442 1.23459E-05 1.29123E-06 2.45598E-06 7.09738E-08 7.24583E-08 2.2136E-07 1.37748E-07 1.15204E-09 6.8573E-09 7.87753E-07 6.06063E-08 9.0445E-07 1.14802E-08 1.77745E-08 6.42102E-07 0 0.0129073	Condensate Ib/h 0 * 2.90434 * 0.0485186 * 2.74226 * 2.79416 * 1.33971 * 2.71491 * 3.06906 * 2.75334 * 6.93096 * 3.97266 * 0.0348735 * 0.144408 * 22.4676 * 1.71434 * 30.2741 * 0.360131 * 0.66264 * 25.2315 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0	Sales Gas Ib/h 936.488 202552 913.801 13647.3 1267.43 1267.43 132.392 0 132.392 0	Fluids Ib/h 0.0013082 0.549496 0.0432043 0.0747234 0.0134039 0.00198939 0.00420038 0.000197578 0.000240046 0.00137477 0.00137477 0.00112107 2.64304E-05 8.32925E-05 0.0197569 0.00243386 0.0749287 0.00135944 0.00320074 0.180137 0 0 637.935

			All St	eams Report reams y Total Phase			
Client Name:	Arsenal - Goff Com	pressor Statio	on		Job: Produ	uced Water Tank	
Location:							
Flowsheet:	Flowsheet1						
•					•		
			Stream F	Properties			
Property	Un	iits	Gas to Separators	Loading	Measured Condensate	Measured Sales Gas	Produced Fluids
Temperature	°F		60 *	72.1381	60 *	60 *	60
Pressure	psi	a	522	0.429201	522 *	522 *	522
Mole Fraction Vapor	%		100	100	0	100	0
Mole Fraction Light Li			0	0	100	0	0.107439
Mole Fraction Heavy	Liquid %		0	0	0	0	99.8926
Molecular Weight	lb/l	lbmol	16.6851	18.6203	100.065	16.6739	18.14
Mass Density	lb/t	ft^3	1.70968	0.00140088	44.4326	1.7083	62.1857
Molar Flow	lbn	nol/h	13175.8	0.000786779	1.69609	13166.6	35.4802
Mass Flow	lb/l	h	219838	0.01465	169.72	219539	643.613
Vapor Volumetric Flov	w ft^:	3/h	128584	10.4577	3.81972	128513	10.3499
Liquid Volumetric Flov			16031.3	1.30382	0.476224	16022.4	1.29037
Std Vapor Volumetric		//SCFD	120	7.16568E-06	0.0154473	119.916 *	0.32314
Std Liquid Volumetric	Flow sg	pm	1437.99	3.37009E-05	0.490016 *	1437.24	1.29227
Compressibility			0.913465	0.999602	0.210796	0.913591	0.0273041
Specific Gravity			0.57609	0.642907	0.712414	0.575705	0.99706
API Gravity					67.1204		10.4172
Enthalpy	Btu		-4.33541E+08	-79.3763	-153898	-4.32625E+08	-4.36656E+06
Mass Enthalpy		u/lb	-1972.09	-5418.16	-906.779	-1970.61	-6784.45
Mass Cp		u/(lb*°F)	0.583476	0.438394	0.495788	0.583584	0.978747
deal Gas CpCv Ratio			1.30073	1.32163	1.05593	1.30088	1.32399
Dynamic Viscosity	cP		0.0114909	0.0103659	0.469083	0.0114895	1.13101
Kinematic Viscosity	cS		0.419583	461.938	0.659063	0.419871	1.13542
Thermal Conductivity		u/(h*ft*°F)	0.0203121	0.0123958	0.07	0.0203152	0.338273
Surface Tension	lbf/				0.00120131		0.00506523
Net Ideal Gas Heating		u/ft^3	933.776	65.3094	5056.69	933.796	8.01571
Net Liquid Heating Va		u/lb	21226.3	391.232	19022.3	21241.7	-883.95
Gross Ideal Gas Heat		u/ft^3	1035.96	118.118	5439.14	1035.97	58.8176
Gross Liquid Heating	Value Btu	J/Ib	23550.3	1467.48	20472.7	23567.1	178.809

Г

			All St Tabulated b	reams Report Treams by Total Phase			
Client Name:	Arsenal - Goff C	ompressor Statio	n		Job: Produ	ced Water Tank	
Location: Flowsheet:	Flowsheet1						
riowsneet.	riowsneeti						
			Conn	ections			
			Produced	Produced	Tank Vent	W/B	1
			Liquids	Water Flow	Gas	VV/D	ľ
From Block			Produced Water		Produced Water		MIX-100
			Tank		Tank		-
To Block				MIX-100			Separator
				omposition	-		
			Produced Liquids	Produced Water Flow	Tank Vent Gas	W/B	1
Mole Fraction			%	%	%	%	%
Nitrogen			1.655E-06	0 *	0.12222	0.00278102	0.253042
Methane			0.00255814	0 *	88.3828	5.81454	95.5713
Carbon Dioxide			0.00092115	0 *	1.73666	2.38512	0.157175
Ethane			0.000400441	0 *	6.21043	0.686636	3.43614
Propane			9.51043E-05	0 *	0.716335	0.0355857	0.218042
Isobutane n-Butane			2.11736E-05 5.9132E-05	0 *	0.0708294 0.135997	0.00282363 0.00537069	0.0118349 0.0175951
Isopentane			3.80148E-06	0 *	0.00368717	0.000125031	0.000321983
n-Pentane			5.29126E-06	0 *	0.0038478	0.000127646	0.00028886
i-Hexane			3.41986E-05	0 *	0.0101577	0.000326485	0.000608789
n-Hexane			3.02071E-05	0 *	0.00610416	0.000203165	0.000348943
2,2,4-Trimethylpent	ane		6.105E-07	0 *	3.9771E-05	1.28185E-06	2.31088E-06
Benzene Heptane			2.71252E-06 0.000524716	0 *	0.000278139 0.0296809	1.11579E-05 0.00099922	1.39937E-05 0.00169721
Toluene			7.16047E-05	0 *	0.00274786	8.36034E-05	0.000140835
Octane			0.00181621	0 *	0.0324495	0.00100637	0.0020061
Ethylbenzene			3.56509E-05	0 *	0.000448972	1.37441E-05	2.56765E-05
o-Xylene			8.41938E-05	0 *	0.00081726	2.12796E-05	4.72447E-05
Nonane			0.00394024	0 *	0.0212068	0.000636322	0.00148911
Decane Water			0 99.9078	100 *	0 2.48393	0 91.0629	0.325057
Oxygen			0	0 *	0	0	0.020007
Decanes Plus			0.0815439	0 *	0.0293728	0.000692518	0.00277049
Hexanes+			0	0 *	0	0	0
			1				
Molar Flow			Produced Liquids Ibmol/h	Produced Water Flow Ibmol/h	Tank Vent Gas Ibmol/h	W/B Ibmol/h	1 Ibmol/h
Nitrogen			5.86573E-07	0 *	4.61126E-05	1.83028E-08	33.43
Methane			0.000906669	0 *	0.033346	3.82673E-05	12626.2
Carbon Dioxide			0.000326479	0 *	0.000655225	1.56972E-05	20.7648
Ethane Propane			0.000141926 3.37074E-05	0 *	0.00234313	4.51897E-06 2.34201E-07	453.957 28.8061
Isobutane			7.50444E-06	0 *	2.67233E-05	1.85832E-08	1.56354
n-Butane			2.09579E-05	0 *	5.13103E-05	3.53462E-08	2.32453
Isopentane			1.34734E-06	0 *	1.39113E-06	8.22865E-10	0.0425379
n-Pentane			1.87536E-06	0 *	1.45174E-06	8.40077E-10	0.038162
i-Hexane			1.21208E-05	0 *	3.83239E-06	2.1487E-09	0.0804286
n-Hexane 2,2,4-Trimethylpent	200		1.07062E-05 2.16377E-07	0 *	2.30304E-06 1.50052E-08	1.33709E-09 8.43629E-12	0.0460997 0.000305296
2,2,4-1 rimethylpent			9.61384E-07	0 *	1.04939E-07	7.34338E-11	0.000305296
Heptane			0.000185973	0 *	1.11983E-05	6.57618E-09	0.224223
Toluene			2.53785E-05	0 *	1.03674E-06	5.5022E-10	0.0186061
Octane			0.000643712	0 *	1.22429E-05	6.62323E-09	0.265031
Ethylbenzene			1.26356E-05	0 *	1.69393E-07	9.04539E-11	0.00339218
o-Xylene			2.98404E-05	0 *	3.08344E-07	1.40048E-10	0.00624161
Nonane Decane			0.00139652	0 *	8.0011E-06 0	4.18783E-09 0	0.196729
Water			35.4098	42.9441 *	0.000937164	0.000599314	42.9441
Oxygen			0	0 *	0	0	0
Decanes Plus			0.0289012	0 *	1.10821E-05	4.55768E-09	0.366016
* User Specified Values			ProMax	4.0.16308.0		Licensed to The ERM	Crown Inc. and Affiliaton

* User Specified Values ? Extrapolated or Approximate Values ProMax 4.0.16308.0 Copyright © 2002-2016 BRE Group, Ltd.

			All St	reams Report reams ny Total Phase			
Client Name:	Arsenal - Goff C	L Compressor Statio	n		Job: Produ	L Iced Water Tank	
Location:							
Flowsheet:	Flowsheet1						
	•				-		
			Produced Liquids	Produced Water Flow	Tank Vent Gas	W/B	1
Molar Flow			lbmol/h	lbmol/h	lbmol/h	Ibmol/h	lbmol/h
Hexanes+			0	0 *	0	0	0
			Produced Liquids	Produced Water Flow	Tank Vent Gas	W/B	1
Mass Fraction			% 2.555755.00	%	<u>%</u>	%	%
Nitrogen Methane			2.55575E-06 0.0022623	0 *	0.191342 79.239	0.00418393 5.00957	0.424746 91.869
Carbon Dioxide			0.00223477	0 *	4.27131	5.6373	0.414478
Ethane			0.000223477	0 *	10.4362	1.10882	6.191
Propane			0.00023118	0 *	1.76527	0.0842724	0.576111
Isobutane			6.78409E-05	0 *	0.230068	0.00881382	0.0412172
n-Butane			0.000189461	0 *	0.441745	0.0167643	0.061278
Isopentane			1.51195E-05	0 *	0.014867	0.000484461	0.00139198
n-Pentane			2.10447E-05	0 *	0.0155146	0.000494594	0.00124878
i-Hexane			0.00016246	0 *	0.048919	0.00151099	0.00314355
n-Hexane	222		0.000143499	0 *	0.0293974	0.000940256	0.00180181 1.58169E-05
2,2,4-Trimethylpent Benzene	ane		3.84429E-06 1.168E-05	0 *	0.000253888 0.00121417	7.86371E-06 4.68074E-05	1.58169E-05 6.54966E-05
Heptane			0.00289839	0 *	0.166209	0.00537714	0.0101902
Toluene			0.00289839	0 *	0.0141493	0.000413694	0.00077754
Octane			0.0114366	0 *	0.207149	0.00617371	0.0137309
Ethylbenzene			0.000208645	0 *	0.0026638	7.83629E-05	0.000163338
o-Xylene			0.000492739	0 *	0.00484889	0.000121328	0.000300542
Nonane			0.0278582	0 *	0.152002	0.00438294	0.0114438
Decane			0	0 *	0	0	0
Water			99.2193	100 *	2.50081	88.1042	0.35089
Oxygen Decanes Plus			0.731482	0 *	0.267118	0.00605204	0.0270137
Hexanes+			0.731482	0 *	0.267118	0.00605204	0.0270137
			0	0	0	0	0
			Produced	Produced	Tank Vent	W/B	1
			i i vuuuuu		Gas		•
			Liquids	Water Flow			
Mass Flow			Liquids Ib/h	Water Flow lb/h	lb/h	lb/h	lb/h
			Ib/h 1.64319E-05	lb/h	0.00129177	5.12723E-07	936.488
Nitrogen Methane			Ib/h 1.64319E-05 0.0145452	Ib/h 0 * 0 *	0.00129177 0.534951	5.12723E-07 0.000613902	936.488 202555
Nitrogen Methane Carbon Dioxide			Ib/h 1.64319E-05 0.0145452 0.0143682	Ib/h 0 * 0 * 0 *	0.00129177 0.534951 0.0288361	5.12723E-07 0.000613902 0.000690828	936.488 202555 913.85
Nitrogen Methane Carbon Dioxide Ethane			Ib/h 1.64319E-05 0.0145452 0.0143682 0.00426758	Ib/h 0 * 0 * 0 * 0 * 0 * 0 *	0.00129177 0.534951 0.0288361 0.0704558	5.12723E-07 0.000613902 0.000690828 0.000135881	936.488 202555 913.85 13650.1
Nitrogen Methane Carbon Dioxide Ethane Propane			ib/h 1.64319E-05 0.0145452 0.0143682 0.00426758 0.00148635	Ib/h 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.00129177 0.534951 0.0288361 0.0704558 0.0119176	5.12723E-07 0.000613902 0.000690828 0.000135881 1.03272E-05	936.488 202555 913.85 13650.1 1270.22
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane			Ib/h 1.64319E-05 0.0145452 0.0143682 0.00426758 0.00148635 0.000436175	Ib/h 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.00129177 0.534951 0.0288361 0.0704558 0.0119176 0.00155321	5.12723E-07 0.000613902 0.000690828 0.000135881 1.03272E-05 1.0801E-06	936.488 202555 913.85 13650.1 1270.22 90.8765
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane			Ib/h 1.64319E-05 0.0145452 0.0143682 0.00426758 0.00148635 0.000436175 0.00121812	Ib/h 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.00129177 0.534951 0.0288361 0.0704558 0.0119176 0.00155321 0.00298227	5.12723E-07 0.000613902 0.000690828 0.000135881 1.03272E-05 1.0801E-06 2.0544E-06	936.488 202555 913.85 13650.1 1270.22 90.8765 135.107
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane			Ib/h 1.64319E-05 0.0145452 0.0143682 0.00426758 0.00148635 0.000436175	Ib/h 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.00129177 0.534951 0.0288361 0.0704558 0.0119176 0.00155321	5.12723E-07 0.000613902 0.000690828 0.000135881 1.03272E-05 1.0801E-06 2.0544E-06 5.93687E-08	936.488 202555 913.85 13650.1 1270.22 90.8765 135.107 3.06906
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane			Ib/h 1.64319E-05 0.0145452 0.0143682 0.00426758 0.00148635 0.000436175 0.00121812 9.7209E-05 0.000135305 0.00104452	Ib/h 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.00129177 0.534951 0.0288361 0.0704558 0.0119176 0.00155321 0.00298227 0.000100368	5.12723E-07 0.000613902 0.000690828 0.000135881 1.03272E-05 1.0801E-06 2.0544E-06 5.93687E-08 6.06105E-08 1.85165E-07	936.488 202555 913.85 13650.1 1270.22 90.8765 135.107 3.06906 2.75334 6.93096
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane n-Hexane			Ib/h 1.64319E-05 0.0145452 0.0143682 0.00426758 0.00148635 0.000436175 0.00121812 9.7209E-05 0.000135305 0.00104452 0.00104452	Ib/h 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.00129177 0.534951 0.0288361 0.0704558 0.0119176 0.00155321 0.00298227 0.000100368 0.000104741 0.000330258 0.000198465	5.12723E-07 0.000613902 0.000690828 0.000135881 1.03272E-05 1.0801E-06 2.0544E-06 5.93687E-08 6.06105E-08 1.85165E-07 1.15224E-07	936.488 202555 913.85 13650.1 1270.22 90.8765 135.107 3.06906 2.75334 6.93096 3.97266
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane 2,2,4-Trimethylpent	ane		Ib/h 1.64319E-05 0.0145452 0.0143682 0.00426758 0.00148635 0.000436175 0.00121812 9.7209E-05 0.0013305 0.00104452 0.0014452	Ib/h 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.00129177 0.534951 0.0288361 0.0704558 0.0119176 0.00155321 0.00298227 0.000100368 0.000104741 0.000330258 0.000198465 1.71402E-06	5.12723E-07 0.000613902 0.000690828 0.000135881 1.03272E-05 1.0801E-06 2.0544E-06 5.93687E-08 6.06105E-08 1.85165E-07 1.15224E-07 9.63665E-10	936.488 202555 913.85 13650.1 1270.22 90.8765 135.107 3.06906 2.75334 6.93096 3.97266 0.0348735
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane n-Hexane 2,2,4-Trimethylpent Benzene	ane		Ib/h 1.64319E-05 0.0145452 0.0143682 0.00426758 0.00148635 0.000436175 0.00121812 9.7209E-05 0.00135305 0.00104452 0.0014452 7.50955E-05	Ib/h 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.00129177 0.534951 0.0288361 0.0704558 0.0119176 0.00155321 0.00298227 0.000100368 0.000104741 0.000330258 0.000198465 1.71402E-06 8.19699E-06	5.12723E-07 0.000613902 0.000690828 0.000135881 1.03272E-05 1.0801E-06 2.0544E-06 5.93687E-08 6.06105E-08 1.85165E-07 1.15224E-07 9.63665E-10 5.73605E-09	936.488 202555 913.85 13650.1 1270.22 90.8765 135.107 3.06906 2.75334 6.93096 3.97266 0.0348735 0.144408
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane n-Hexane 2,2,4-Trimethylpent Benzene Heptane	ane		Ib/h 1.64319E-05 0.0145452 0.0143682 0.00426758 0.00148635 0.000436175 0.00121812 9.7209E-05 0.00135305 0.001922606 2.47164E-05 7.50955E-05 0.0186348	Ib/h 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.00129177 0.534951 0.0288361 0.0704558 0.0119176 0.00155321 0.00298227 0.000100368 0.000104741 0.000330258 0.000198465 1.71402E-06 8.19699E-06 0.00112209	5.12723E-07 0.000613902 0.000690828 0.000135881 1.03272E-05 1.0801E-06 2.0544E-06 5.93687E-08 6.06105E-08 1.85165E-07 1.15224E-07 9.63665E-10 5.73605E-09 6.58946E-07	936.488 202555 913.85 13650.1 1270.22 90.8765 135.107 3.06906 2.75334 6.93096 3.97266 0.0348735 0.144408 22.4676
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane 2,2,4-Trimethylpent Benzene Heptane Toluene	ane		Ib/h 1.64319E-05 0.0145452 0.0143682 0.00426758 0.00148635 0.000436175 0.00121812 9.7209E-05 0.00135305 0.00104452 0.000922606 2.47164E-05 7.50955E-05 0.0186348 0.00233834	Ib/h 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.00129177 0.534951 0.0288361 0.0704558 0.0119176 0.00155321 0.00298227 0.000100368 0.000104741 0.000330258 0.000198465 1.71402E-06 8.19699E-06 0.00112209 9.55238E-05	5.12723E-07 0.000613902 0.000690828 0.000135881 1.03272E-05 1.0801E-06 2.0544E-06 5.93687E-08 6.06105E-08 1.85165E-07 1.15224E-07 9.63665E-10 5.73605E-09 6.58946E-07 5.06964E-08	936.488 202555 913.85 13650.1 1270.22 90.8765 135.107 3.06906 2.75334 6.93096 3.97266 0.0348735 0.144408 22.4676 1.71434
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane 2,2,4-Trimethylpent Benzene Heptane Toluene Octane	ane		Ib/h 1.64319E-05 0.0145452 0.0143682 0.00426758 0.00148635 0.00148635 0.00121812 9.7209E-05 0.00135305 0.00104452 0.000922606 2.47164E-05 7.50955E-05 0.0186348 0.00233834 0.0735302	Ib/h 0 *	0.00129177 0.534951 0.0288361 0.0704558 0.0119176 0.00155321 0.00298227 0.000100368 0.000104741 0.000330258 0.000198465 1.71402E-06 8.19699E-06 0.00112209 9.55238E-05 0.00139849	5.12723E-07 0.000613902 0.000690828 0.000135881 1.03272E-05 1.0801E-06 2.0544E-06 5.93687E-08 6.06105E-08 1.85165E-07 1.15224E-07 9.63665E-10 5.73605E-09 6.58946E-07 5.06964E-08 7.56562E-07	936.488 202555 913.85 13650.1 1270.22 90.8765 135.107 3.06906 2.75334 6.93096 3.97266 0.0348735 0.144408 22.4676 1.71434 30.2741
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane 2,2,4-Trimethylpent Benzene Heptane Toluene Octane Ethylbenzene	ane		Ib/h 1.64319E-05 0.0145452 0.0143682 0.00426758 0.00148635 0.001436175 0.00121812 9.7209E-05 0.000135305 0.00104452 0.000922606 2.47164E-05 7.50955E-05 0.0186348 0.00233834 0.0735302 0.00134146	Ib/h 0 * 0 *	0.00129177 0.534951 0.0288361 0.0704558 0.0119176 0.00155321 0.00298227 0.000100368 0.000104741 0.00030258 0.000198465 1.71402E-06 8.19699E-06 0.00112209 9.55238E-05 0.00139849 1.79836E-05	5.12723E-07 0.000613902 0.000690828 0.000135881 1.03272E-05 1.0801E-06 2.0544E-06 5.93687E-08 6.06105E-08 1.85165E-07 1.15224E-07 9.63665E-10 5.73605E-09 6.58946E-07 5.06964E-08 7.56562E-07 9.60304E-09	936.488 202555 913.85 13650.1 1270.22 90.8765 135.107 3.06906 2.75334 6.93096 3.97266 0.0348735 0.144408 22.4676 1.71434 30.2741 0.360131
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane 2,2,4-Trimethylpent Benzene Heptane Toluene Octane Ethylbenzene o-Xylene	ane		Ib/h 1.64319E-05 0.0145452 0.0143682 0.00426758 0.00148635 0.001436175 0.00121812 9.7209E-05 0.00135305 0.00104452 0.000922606 2.47164E-05 7.50955E-05 0.0186348 0.00233834 0.0735302	Ib/h 0 *	0.00129177 0.534951 0.0288361 0.0704558 0.0119176 0.00155321 0.00298227 0.000100368 0.000104741 0.000330258 0.000198465 1.71402E-06 8.19699E-06 0.00112209 9.55238E-05 0.00139849	5.12723E-07 0.000613902 0.000690828 0.000135881 1.03272E-05 1.0801E-06 2.0544E-06 5.93687E-08 6.06105E-08 1.85165E-07 1.15224E-07 9.63665E-10 5.73605E-09 6.58946E-07 5.06964E-08 7.56562E-07	936.488 202555 913.85 13650.1 1270.22 90.8765 135.107 3.06906 2.75334 6.93096 3.97266 0.0348735 0.144408 22.4676 1.71434 30.2741
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane 2,2,4-Trimethylpent Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane	ane		Ib/h 1.64319E-05 0.0145452 0.0143682 0.00426758 0.00148635 0.001436175 0.00121812 9.7209E-05 0.001043635 0.00121812 9.7209E-05 0.00104452 0.00104452 0.00104452 0.00104452 0.00104452 0.00104452 0.00104452 0.00134144 0.00233834 0.00735302 0.00134146 0.00316801	Ib/h 0 * 0 * 0 *	0.00129177 0.534951 0.0288361 0.0704558 0.0119176 0.00155321 0.00298227 0.000100368 0.000104741 0.00030258 0.000198465 1.71402E-06 8.19699E-06 0.00112209 9.55238E-05 0.00139849 1.79836E-05 3.27354E-05	5.12723E-07 0.000613902 0.000690828 0.000135881 1.03272E-05 1.0801E-06 2.0544E-06 5.93687E-08 6.06105E-08 1.85165E-07 1.15224E-07 9.63665E-10 5.73605E-09 6.58946E-07 5.06964E-08 7.56562E-07 9.60304E-09 1.48682E-08	936.488 202555 913.85 13650.1 1270.22 90.8765 135.107 3.06906 2.75334 6.93096 3.97266 0.0348735 0.144408 22.4676 1.71434 30.2741 0.360131 0.662641
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane 2,2,4-Trimethylpent Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane	ane		Ib/h 1.64319E-05 0.0145452 0.0143682 0.00426758 0.00148635 0.00148635 0.00121812 9.7209E-05 0.0010135305 0.001014522 0.000135305 0.00104452 0.00104452 0.00104452 0.00104452 0.00104452 0.00104452 0.00134348 0.00233834 0.00735302 0.00134146 0.00316801 0.179111	Ib/h 0 *	0.00129177 0.534951 0.0288361 0.0704558 0.0119176 0.00155321 0.00298227 0.000100368 0.000104741 0.00030258 0.000198465 1.71402E-06 8.19699E-06 0.00112209 9.55238E-05 0.00139849 1.79836E-05 3.27354E-05 0.00102618	5.12723E-07 0.000613902 0.000690828 0.000135881 1.03272E-05 1.0801E-06 2.0544E-06 5.93687E-08 6.06105E-08 1.85165E-07 1.15224E-07 9.63665E-10 5.73605E-09 6.58946E-07 5.06964E-08 7.56562E-07 9.60304E-09 1.48682E-08 5.37111E-07	936.488 202555 913.85 13650.1 1270.22 90.8765 135.107 3.06906 2.75334 6.93096 3.97266 0.0348735 0.144408 22.4676 1.71434 30.2741 0.360131 0.662641 25.2316
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane 2,2,4-Trimethylpent Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water Oxygen	ane		Ib/h 1.64319E-05 0.0145452 0.0143682 0.00426758 0.00148635 0.00148635 0.00148635 0.00148635 0.00148635 0.00148635 0.00121812 9.7209E-05 0.00135305 0.00104452 0.000922606 2.47164E-05 7.50955E-05 0.0186348 0.00233834 0.00316801 0.179111 0 637.918 0	Ib/h 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.00129177 0.534951 0.0288361 0.0704558 0.0119176 0.00155321 0.00298227 0.000100368 0.000104741 0.000330258 0.000198465 1.71402E-06 8.19699E-06 0.00112209 9.55238E-05 0.00139849 1.79836E-05 3.27354E-05 0.00102618 0 0.0168833 0	5.12723E-07 0.000613902 0.000690828 0.000135881 1.03272E-05 1.0801E-06 2.0544E-06 5.93687E-08 6.06105E-08 1.85165E-07 1.15224E-07 9.63665E-10 5.73605E-09 6.58946E-07 5.06964E-08 7.56562E-07 9.60304E-09 1.48682E-08 5.37111E-07 0 0.0107968 0	936.488 202555 913.85 13650.1 1270.22 90.8765 135.107 3.06906 2.75334 6.93096 3.97266 0.0348735 0.144408 22.4676 1.71434 30.2741 0.360131 0.662641 25.2316 0 7773.65
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane 2,2,4-Trimethylpent Benzene Heptane Toluene	ane		Ib/h 1.64319E-05 0.0145452 0.0143682 0.00426758 0.00148635 0.00148635 0.00148635 0.00148635 0.00148635 0.00121812 9.7209E-05 0.00135305 0.00104452 0.00104452 0.000922606 2.47164E-05 7.50955E-05 0.0186348 0.00238834 0.00735302 0.00134146 0.00316801 0.179111 0 637.918	Ib/h 0 *	0.00129177 0.534951 0.0288361 0.0704558 0.0119176 0.00155321 0.00298227 0.000100368 0.000104741 0.000330258 0.000198465 1.71402E-06 8.19699E-06 0.00112209 9.55238E-05 0.00139849 1.79836E-05 3.27354E-05 0.00102618 0 0.0168833	5.12723E-07 0.000613902 0.000690828 0.000135881 1.03272E-05 1.0801E-06 2.0544E-06 5.93687E-08 6.06105E-08 1.85165E-07 1.15224E-07 9.63665E-10 5.73605E-09 6.58946E-07 5.06964E-08 7.56562E-07 9.60304E-09 1.48682E-08 5.37111E-07 0 0.0107968	936.488 202555 913.85 13650.1 1270.22 90.8765 135.107 3.06906 2.75334 6.93096 3.97266 0.0348735 0.144408 22.4676 1.71434 30.2741 0.360131 0.662641 25.2316 0 773.65

			All St	reams Report treams by Total Phase			
Client Name:	Arsenal - Goff	Compressor Statio	on		Job: Produ	ced Water Tank	
Location:		•					
Flowsheet:	Flowsheet1						
			Stream	Properties			
Property		Units	Produced Liquids	Produced Water Flow	Tank Vent Gas	W/B	1
Temperature		°F	70 *	60 *	70	72.1381	58.7987
Pressure		psia	14.6959 *	522 *	14.6959	0.429201	522
Mole Fraction Vapor		%	0	0	100	100	99.7289
Mole Fraction Light L	iquid	%	0.0888185	100	0	0	0.000444548
Mole Fraction Heavy	Liquid	%	99.9112	0	0	0	0.270624
Nolecular Weight	•	lb/lbmol	18.1403	18.0153	17.8937	18.6203	16.689
Aass Density		lb/ft^3	62.1446	62.3966	0.0463885	0.00140088	1.71997
Volar Flow		lbmol/h	35.4425	42.9441	0.037729	0.000658132	13211.2
Mass Flow		lb/h	642.938	773.65	0.675111	0.0122546	220482
/apor Volumetric Flo	W	ft^3/h	10.3458	12.3989	14.5534	8.74777	128189
iquid Volumetric Flo	W	gpm	1.28987	1.54584	1.81445	1.09063	15982
Std Vapor Volumetric	: Flow	MMSCFD	0.322797	0.391118	0.000343621	5.99401E-06	120.323
Std Liquid Volumetric	Flow	sgpm	1.28812	1.54658 *	0.00414909	2.81904E-05	1439.28
Compressibility			0.000754693	0.0270246	0.997283	0.999602	0.910317
Specific Gravity			0.996402	1.00044	0.61782	0.642907	
API Gravity			10.3066	9.93743			
Enthalpy		Btu/h	-4.35965E+06	-5.28906E+06	-1386.05	-66.3974	-4.38068E+08
lass Enthalpy		Btu/lb	-6780.82	-6836.5	-2053.07	-5418.16	-1986.86
Aass Cp		Btu/(lb*°F)	0.97814	0.98225	0.497067	0.438394	0.584731
deal Gas CpCv Ratio)		1.3235	1.32632	1.28863	1.32163	1.30107
Dynamic Viscosity		cP	0.998378	1.14219	0.0110164	0.0103659	
Kinematic Viscosity		cSt	1.00293	1.14276	14.8255	461.938	
Thermal Conductivity		Btu/(h*ft*°F)	0.344286	0.342316	0.0182012	0.0123958	
Surface Tension		lbf/ft	0.00500046 ?	0.00510743			
let Ideal Gas Heating		Btu/ft^3	7.02846	0	935.437	65.3094	931.289
Net Liquid Heating Va		Btu/lb	-905.657	-1059.76	19787.8	391.232	21161.7
Gross Ideal Gas Hea		Btu/ft^3	57.7757	50.3101	1037.54	118.118	1033.33
Gross Liquid Heating	Value	Btu/lb	155.945	0	21953.3	1467.48	23482.1

Er	nergy Stream F	Report		
ompressor Station			Job: Produc	ed Water Tank
	Energy Stream	ns		
Energy Rate	Power	F	rom Block	To Block
5526.78 Btu/h	2.17211 hp)		Produced Water Tank
160984 Btu/h	63.2692 hp	0		Separator
E	Energy Rate 5526.78 Btu/h	Energy Strear Energy Rate Power 5526.78 Btu/h 2.17211 ht	Energy Streams Energy Rate Power F 5526.78 Btu/h 2.17211 hp	Energy Streams Energy Rate Power From Block 5526.78 Btu/h 2.17211 hp

Page	1	of	1

		Blowdo	ocks own Tank tor Report		
Client Name:	Arsenal - Goff Compressor	Station		Job: Produced Water Tai	nk
Location:				Modified: 12:02 PM, 7/26	5/2017
Flowsheet:	Flowsheet1			Status: Solved 5:59 PM,	8/21/2017
		Conn	ections		
Stream	Connection Type	Other Block	Stream	Connection Type	Other Block
Produced Fluids	Inlet	Separator	Tank Vent Gas	Vapor Outlet	
Produced Liquids	Heavy Liquid Outlet	•	Q-1	Energy	
		Block P	arameters		
Pressure Drop	5	07.304 psi	Main Liquid Phase	Light L	_iquid
Mole Fraction Vap	or 0.1	06338 %	Heat Duty	552	26.78 Btu/h
Mole Fraction Ligh	t Liquid 0.0	88724 %	Heat Release Curve	Type Plug	Flow
Mole Fraction Hear	vy Liquid 9	9.8049 %	Heat Release Curve		10
			Increments		
Remarks					

Simulation Initiated on 8/21/2	2017 6:06:39 PM		Goff_PW Tank	<_08212017.pmx			Page 1 of
			MIX	ocks A-100 itter Report			
Client Name:	Arsenal - Goff C	ompressor Sta	tion		Job: Produc	ced Water Tan	k
Location:					Modified: 1	1:59 AM, 6/20/	2017
Flowsheet:	Flowsheet1				Status: Solv	ved 6:00 PM, 8	/21/2017
			Conne	ections			
Stream	Connect	ion Type	Other Block	Stream	Connect	ion Type	Other Block
Produced Water Flo	w Inl	et		Measured Condensate	In	et	
Measured Sales Ga	is Inl	et		1	Ou	tlet	Separator
			Block Pa	arameters			
Pressure Drop			0 psi	Fraction to PStream 1			100 %
			·	·			
Remarks							

Simulation Initiated on 8/21/2	2017 6:06:39 PM	Goff_PW Tank_	_08212017.pmx			Page 1 c
		Blo Sand _{Separato}	Trap			
Client Name:	Arsenal - Goff Compressor S	Station		Job: Produc	ced Water Tank	
_ocation:	·			Modified: 12	2:21 PM, 6/20/2017	7
Flowsheet:	Flowsheet1			Status: Solv	/ed 5:59 PM, 8/21/2	2017
		Conne	ctions			
Stream	Connection Type	Other Block	Stream	Connect	ion Type	Other Block
1	Inlet	MIX-100	Gas to Separators	Vapor	Outlet	
Produced Fluids	Light Liquid Outlet	Produced Water Tank	Q-2	Ene	ergy	
		Block Pa	rameters			
* Pressure Drop		0 psi	Main Liquid Phase		Light Liquid	
Mole Fraction Vapo	r 99	9.7314 %	Heat Duty		160984	Btu/h
Mole Fraction Light	Liquid 0.0002	88539 %	Heat Release Curve T	уре	Plug Flow	
Mole Fraction Heav	/y Liquid 0.2	68272 %	Heat Release Curve		10	
			Increments			
Remarks						

F

		F		Environment onment1			
Client Name:	Arsenal - Goff C	Compressor Station			Job: Produc	ced Water Tank	
Location:		•					
Flowsheet:	Flowsheet1						
			Environm	ent Settings			
Number of Poynt	ting Intervals	0		Phase Tolerance		1 %	
Gibbs Excess Mo		77 °F		Emulsion Enabled		False	
Evaluation Temp	erature						
Freeze Out Tem	perature	10 °F					
Threshold Differe	ence						
			Com	oonents			
Component Name	;	Henry's Law Component	Phase Initiator	Component Name		Henry's Law Component	Phase Initiator
Nitrogen		False	False	Benzene		False	False
Vethane		False	False	Heptane		False	False
Carbon Dioxide		False	False	Toluene		False	False
Ethane		False	False	Octane		False	False
Propane		False	False	Ethylbenzene		False	False
sobutane		False	False	o-Xylene		False	False
n-Butane		False	False	Nonane		False	False
sopentane		False	False	Decane		False	False
n-Pentane		False	False	Water		False	True
-Hexane		False	False	Oxygen		False	False
n-Hexane		False	False	Decanes Plus		False	False
2,2,4-Trimethylpen	tane	False	False	Hexanes+		False	False
		Phys	ical Prope	erty Method Sets			
iquid Molar Volur	ne	COSTALD		Overall Package		Peng-Robins	on
Stability Calculation		Peng-Robins		Vapor Package		Peng-Robins	
Light Liquid Packa	ge	Peng-Robins	on	Heavy Liquid Package		Peng-Robins	on
Remarks							

Client Name: A	rsenal - Goff Compr			ents Report	Job: Produc	ed Water Tank	
Location:							
		P	roject-Wi	de Constants			
Atmospheric Pressure		14.6959		Ideal Gas Reference Pre	essure	14.6959	osia
Ideal Gas Reference T	emperature	60		Ideal Gas Reference Vo		379.484	
Liquid Reference Temp		60	°F				
				[Environment1]			
			Environm	ent Settings			
Number of Poynting		0		Phase Tolerance		1 %	
Gibbs Excess Model Evaluation Temperat		77 °F		Emulsion Enabled		False	
Freeze Out Temperat		10 °F					
Threshold Difference		10 1					
			Comp	oonents			
Component Name		Henry's Law	Phase	Component Name		Henry's Law	Phase
		Component False	Initiator False	Benzene		Component False	Initiato False
Nitrogen			1 0130			1 0130	1 0130
			False			False	False
Methane		False	False False	Heptane		False	False False
Methane Carbon Dioxide		False False	False	Heptane Toluene		False	False
Methane Carbon Dioxide Ethane		False False False	False False	Heptane Toluene Octane		False False	False False
Methane Carbon Dioxide Ethane Propane		False False	False	Heptane Toluene Octane Ethylbenzene		False	False
Methane Carbon Dioxide Ethane Propane Isobutane		False False False False False	False False False	Heptane Toluene Octane		False False False	False False False
Methane Carbon Dioxide Ethane Propane Isobutane n-Butane		False False False False False False	False False False False	Heptane Toluene Octane Ethylbenzene o-Xylene		False False False False	False False False False
Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane		False False False False False False	False False False False False	Heptane Toluene Octane Ethylbenzene o-Xylene Nonane		False False False False False False	False False False False False
Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane		False False False False False False False	False False False False False False	Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane		False False False False False False	False False False False False False
Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane		False False False False False False False False	False False False False False False False	Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water		False False False False False False False	False False False False False False True
Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane n-Hexane	3	False False False False False False False False False	False False False False False False False False	Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water Oxygen		False False False False False False False False	False False False False False False True False
Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane n-Hexane	9	False False False False False False False False False False False	False False False False False False False False False	Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water Oxygen Decanes Plus		False False False False False False False False False	False False False False False False True False False
Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane n-Hexane 2,2,4-Trimethylpentane	3	False False False False False False False False False False False False	False False False False False False False False False False	Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water Oxygen Decanes Plus Hexanes+ erty Method Sets		False False False False False False False False False False	False False False False False False False False False
Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane n-Hexane 2,2,4-Trimethylpentane	3	False False False False False False False False False False False False False False	False False False False False False False False False False	Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water Oxygen Decanes Plus Hexanes+		False False False False False False False False False False False	False False False False False False False False False
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane 2,2,4-Trimethylpentane Liquid Molar Volume Stability Calculation Light Liquid Package)	False False False False False False False False False False False False	False False False False False False False False False False False	Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water Oxygen Decanes Plus Hexanes+ erty Method Sets		False False False False False False False False False False	False False False False False False False False False False

		-	e Oil Report anes Plus			
Client Name: Arsenal - 0	Goff Compressor Station		J	ob: Prod	luced Water Tank	
Location:	<u> </u>					
		Pr	operties			
Volume Average Boiling Point	399.878	°F	Low Temperature Viscos	ity	1.05288	сP
* Molecular Weight	162.726	lb/lbmol	Temperature of High T Viscosity		210	°F
* Specific Gravity	0.788		High Temperature Viscos	sity	0.503332	cP
API Gravity	48.0685		Watson K		12.066	
Critical Temperature	720.653	°F	ASTM D86 10-90% Slope	e	0	1770
Critical Pressure	307.278	psia	ASTM D93 Flash Point		157.716	
Critical Volume	10.2876	ft^3/lbmol	? Pour Point		-12.6777	
Acentric Factor	0.527304		Paraffinic Fraction		51.9393	
Carbon to Hydrogen Ratio	6.00643		Naphthenic Fraction		27.7089	
Refractive Index	1.43922	_	Aromatic Fraction		20.3518	
Temperature of Low T Viscosity	100	°F	Ideal Gas Heat Capacity		57.9027	Btu/(lbmol*°F)
Warnings						
ProMax:ProMax!Project!Oils!De	canes Plus!Properties!Po	our Point				

Remarks

		Hexanes+	
Client Name: Arsenal - Goff	Compressor Station	Job: Pro	duced Water Tank
_ocation:			
		Properties	
Volume Average Boiling Point	-173.182 °F	Low Temperature Viscosity	3.0532E+30 cP
* Molecular Weight	16.662 lb/lbmol	Temperature of High T Viscosity	210 °F
* Specific Gravity	0.5763	High Temperature Viscosity	1370.85 cP
API Gravity	114.032	Watson K	11.439
Critical Temperature	-2.89417 °F	ASTM D86 10-90% Slope	0 °F/%
Critical Pressure Critical Volume	1116.36 psia 1.64547 ft^3/lbmol	? ASTM D93 Flash Point ? Pour Point	-237.696 °F 2.40106E+29 °F
Acentric Factor	0.333018	? Pour Point ? Paraffinic Fraction	100 %
? Carbon to Hydrogen Ratio	8.6229	? Naphthenic Fraction	0 %
	1.31682	? Aromatic Fraction	0 %
Refractive Index			5.55252 Btu/(lbmol*°F)
Temperature of Low T Viscosity Varnings ProMax:ProMax!Project!Oils!Hexan Warning: Carbon to Hyd 50 °F. ProMax:ProMax!Project!Oils!Hexan Warning: Refractive Inde	rogen Ratio calculation: The va es+!Properties!Refractive Index ex calculation: The value of -173	ue of -173.182 °F for Volume Average Boil	ing Point should be between 80 °F an
Temperature of Low T Viscosity Varnings ProMax:ProMax!Project!Oils!Hexand Warning: Carbon to Hyd \$50 °F. ProMax:ProMax!Project!Oils!Hexand Warning: ASTM D93 Fla \$50 °F. ProMax:ProMax!Project!Oils!Hexand Warning: Pour Point cald ProMax:ProMax!Project!Oils!Hexand Warning: Pour Point cald ProMax:ProMax!Project!Oils!Hexand Warning: Pour Point cald ProMax:ProMax!Project!Oils!Hexand Warning: Paraffinic Frac	es+!Properties!Carbon to Hydrog rogen Ratio calculation: The value es+!Properties!Refractive Index ex calculation: The value of -173 es+!Properties!ASTM D93 Flash ush Point calculation: The value es+!Properties!Pour Point culation: The value of -173.182 es+!Properties!Paraffinic Fraction tion calculation: The value of 16	en Ratio lue of -173.182 °F for Volume Average Boiling Point Point of -173.182 °F for Volume Average Boiling °F for Volume Average Boiling Point should S.662 lb/lbmol for Molecular Weight should	ling Point should be between 80 °F an should be between 80 °F and 1500 °F Point should be between 150 °F and d be between 340.33 °F and 1040.33 °
Temperature of Low T Viscosity Varnings ProMax:ProMax!Project!Oils!Hexand Warning: Carbon to Hyd 50 °F. ProMax:ProMax!Project!Oils!Hexand Warning: ASTM D93 Fla 50 °F. ProMax:ProMax!Project!Oils!Hexand Warning: Pour Point cald ProMax:ProMax!Project!Oils!Hexand Warning: Paraffinic Frac b/lbmol. ProMax:ProMax!Project!Oils!Hexand Warning: Naphthenic Frac	es+!Properties!Carbon to Hydrog rogen Ratio calculation: The va es+!Properties!Refractive Index ex calculation: The value of -173 es+!Properties!ASTM D93 Flash ish Point calculation: The value es+!Properties!Pour Point culation: The value of -173.182 es+!Properties!Paraffinic Fraction tion calculation: The value of 16 es+!Properties!Naphthenic Fract	en Ratio lue of -173.182 °F for Volume Average Boiling Point Point of -173.182 °F for Volume Average Boiling °F for Volume Average Boiling Point should S.662 lb/lbmol for Molecular Weight should	ling Point should be between 80 °F an should be between 80 °F and 1500 °F Point should be between 150 °F and d be between 340.33 °F and 1040.33 ° be between 70 lb/lbmol and 600
Temperature of Low T Viscosity Varnings ProMax:ProMax!Project!Oils!Hexand Warning: Carbon to Hyd 50 °F. ProMax:ProMax!Project!Oils!Hexand Warning: ASTM D93 Fla 50 °F. ProMax:ProMax!Project!Oils!Hexand Warning: Pour Point cald ProMax:ProMax!Project!Oils!Hexand Warning: Paraffinic Frac b/lbmol. ProMax:ProMax!Project!Oils!Hexand Warning: Naphthenic Frac b/lbmol. ProMax:ProMax!Project!Oils!Hexand Warning: Naphthenic Frac b/lbmol. ProMax:ProMax!Project!Oils!Hexand Warning: Naphthenic Frac b/lbmol. ProMax:ProMax!Project!Oils!Hexand Warning: Aromatic Fract	es+!Properties!Carbon to Hydrog rogen Ratio calculation: The val es+!Properties!Refractive Index ex calculation: The value of -173 es+!Properties!ASTM D93 Flash ish Point calculation: The value es+!Properties!Pour Point culation: The value of -173.182 es+!Properties!Paraffinic Fraction tion calculation: The value of 16 es+!Properties!Naphthenic Fracti action calculation: The value of es+!Properties!Aromatic Fraction	gen Ratio lue of -173.182 °F for Volume Average Boil 8.182 °F for Volume Average Boiling Point Point of -173.182 °F for Volume Average Boiling °F for Volume Average Boiling Point should 5.662 lb/lbmol for Molecular Weight should fon 16.662 lb/lbmol for Molecular Weight should	ling Point should be between 80 °F an should be between 80 °F and 1500 °F Point should be between 150 °F and d be between 340.33 °F and 1040.33 ° be between 70 lb/lbmol and 600 d be between 70 lb/lbmol and 600
Temperature of Low T Viscosity Warnings ProMax:ProMax!Project!Oils!Hexand Warning: Carbon to Hyd 550 °F. ProMax:ProMax!Project!Oils!Hexand Warning: ASTM D93 Fla 350 °F. ProMax:ProMax!Project!Oils!Hexand Warning: Pour Point cald ProMax:ProMax!Project!Oils!Hexand Warning: Paraffinic Frac b/lbmol. ProMax:ProMax!Project!Oils!Hexand Warning: Naphthenic Frac b/lbmol. ProMax:ProMax!Project!Oils!Hexand Warning: Naphthenic Frac b/lbmol. ProMax:ProMax!Project!Oils!Hexand Warning: Aromatic Fract b/lbmol. ProMax:ProMax!Project!Oils!Hexand Warning: Aromatic Fract b/lbmol.	es+!Properties!Carbon to Hydrog rogen Ratio calculation: The va es+!Properties!Refractive Index ex calculation: The value of -173 es+!Properties!ASTM D93 Flash ush Point calculation: The value es+!Properties!Pour Point culation: The value of -173.182 es+!Properties!Paraffinic Fraction tion calculation: The value of 16 es+!Properties!Aromatic Fraction ion calculation: The value of 16 es+!Properties!Ideal Gas Heat C t Capacity calculation: The value	en Ratio lue of -173.182 °F for Volume Average Boil 3.182 °F for Volume Average Boiling Point of -173.182 °F for Volume Average Boiling °F for Volume Average Boiling Point should 5.662 lb/lbmol for Molecular Weight should ion 16.662 lb/lbmol for Molecular Weight should b	ling Point should be between 80 °F an should be between 80 °F and 1500 °F Point should be between 150 °F and d be between 340.33 °F and 1040.33 ° be between 70 lb/lbmol and 600 d be between 70 lb/lbmol and 600
Viscosity Warnings ProMax:ProMax!Project!Oils!Hexand Warning: Carbon to Hyd 550 °F. ProMax:ProMax!Project!Oils!Hexand Warning: ASTM D93 Fla 350 °F. ProMax:ProMax!Project!Oils!Hexand Warning: Pour Point cald ProMax:ProMax!Project!Oils!Hexand Warning: Paraffinic Frac b/lbmol. ProMax:ProMax!Project!Oils!Hexand Warning: Naphthenic Frac b/lbmol. ProMax:ProMax!Project!Oils!Hexand Warning: Naphthenic Frac b/lbmol. ProMax:ProMax!Project!Oils!Hexand Warning: Aromatic Fract b/lbmol. ProMax:ProMax!Project!Oils!Hexand Warning: Ideal Gas Hear ProMax:ProMax!Project!Oils!Hexand ProMax:ProMax!Project!Oils!Hexand Warning: Ideal Gas Hear ProMax:ProMax!Project!Oils!Hexand ProMax:ProMax!Project!Oils!Hexand ProMax:ProMax!Project!Oils!Hexand Warning: Ideal Gas Hear ProMax:ProMax!Project!Oils!Hexand ProMax:ProMax!Project!Oils!Hexand ProMax:ProMax!Project!Oils!Hexand ProMax:ProMax!Project!Oils!Hexand Warning: Ideal Gas Hear ProMax:ProMax!Project!Oils!Hexand ProMax:ProMax!Project!Oils!Hexand ProMax:ProMax!Project!Oils!Hexand ProMax:ProMax!Project!Oils!Hexand ProMax:ProMax!Project!Oils!Hexand ProMax:ProMax!Project!Oils!Hexand ProMax:ProMax!Project!Oils!Hexand ProMax:ProMax!Project!Oils!Hexand ProMax:ProMax!Project	es+!Properties!Carbon to Hydrog rogen Ratio calculation: The val es+!Properties!Refractive Index ex calculation: The value of -173 es+!Properties!ASTM D93 Flash ush Point calculation: The value es+!Properties!Pour Point culation: The value of -173.182 es+!Properties!Paraffinic Fraction tion calculation: The value of 16 es+!Properties!Aromatic Fraction ion calculation: The value of 16 es+!Properties!Ideal Gas Heat C t Capacity calculation: The value es+!	Igen Ratio lue of -173.182 °F for Volume Average Boiling Point of -173.182 °F for Volume Average Boiling °F for Volume Average Boiling Point should 5.662 lb/lbmol for Molecular Weight should fon 16.662 lb/lbmol for Molecular Weight should b .662 lb/lbmol for Molecular Weight should b	ling Point should be between 80 °F an should be between 80 °F and 1500 °F Point should be between 150 °F and d be between 340.33 °F and 1040.33 ° be between 70 lb/lbmol and 600 d be between 70 lb/lbmol and 600

Simulation Initiated on 8/21	2017 0.00.001 WI					
		Calcul	ator Report			
				<u>.</u>		
Client Name:	Arsenal - Goff Compressor	Station		Job: Produ	uced Water Tank	
ocation:						
		Conden	sate Produced			
			Irce Code			
Residual Error (for C	CV1) = Water_frac - 99					
		Calculated	d Variable [CV1]			
Source Moniker	ProMax:ProMax!Project!F Volumetric Flow	-lowsheets!Flowsheet1!	PStreams!Measured Conden	sate!Phases	s!Total!Properties!Std Liquic	ł
/alue	16.8005					
Jnit	10.8003					
		Measured Va	riable [Water_frac]			
Source Moniker	ProMax:ProMax!Project!F	Flowsheets!Flowsheet1!	PStreams!Produced Liquids!	Phases!Tota	I!Composition!Std Liquid Vo	olumetric
	Fraction!Water					
/alue	99.0002					
Jnit						_
		0-1			Status: Solved	
Freeze	0.000		r Properties			
Error Calculated Value	0.000	0199189 0.490016 sgpm	Algorithm Iterations		Default 2	
Lower Bound	0.	sgpm	Max Iterations		20	
					1	
Linner Bound			Weighting			
Upper Bound Step Size		sgpm	Weighting Solver Active			
Step Size Is Minimizer		sgpm sgpm False	Veighting Solver Active * Skip Dependency Che	eck	Active True	
Step Size		sgpm False	Solver Active * Skip Dependency Che	eck	Active	
Step Size Is Minimizer		sgpm False Produ	Solver Active * Skip Dependency Che	eck	Active	
Step Size Is Minimizer Remarks		sgpm False Produ	Solver Active * Skip Dependency Che	eck	Active	
Step Size Is Minimizer Remarks	2V1) = Water_flow - 677040/	sgpm False Produ	Solver Active * Skip Dependency Che	eck	Active	
Step Size Is Minimizer Remarks		sgpm False Produ Sou /42/365	Solver Active * Skip Dependency Che uced Water Irce Code	eck	Active	
Step Size Is Minimizer Remarks		sgpm False Produ (42/365 Calculated	Solver Active * Skip Dependency Che		Active True	Volumet
Step Size Is Minimizer Remarks Residual Error (for C Source Moniker	ProMax:ProMax!Project!F Flow	sgpm False Produ (42/365 Calculated	Solver Active * Skip Dependency Che uced Water uce Code d Variable [CV1]		Active True	Volumet
Step Size Is Minimizer	ProMax:ProMax!Project!F	sgpm False Produ (42/365 Calculated	Solver Active * Skip Dependency Che uced Water uce Code d Variable [CV1]		Active True	Volumet
Step Size Is Minimizer	ProMax:ProMax!Project!F Flow	sgpm False Produ (42/365 Calculated	Solver Active * Skip Dependency Che uced Water uce Code d Variable [CV1]		Active True	Volumet
Step Size Is Minimizer Remarks Residual Error (for C Source Moniker /alue	ProMax:ProMax!Project!F Flow	sgpm False Produ Sou /42/365 Calculated Flowsheets!Flowsheet1!	Solver Active * Skip Dependency Che uced Water uced Water uce Code d Variable [CV1] PStreams!Produced Water F		Active True	Volumet
Step Size Is Minimizer Remarks Residual Error (for C Source Moniker falue Jnit	ProMax:ProMax!Project!F Flow 53.0257	sgpm False Produ Sou /42/365 Calculated Flowsheets!Flowsheet1! Measured Va	Solver Active * Skip Dependency Che uced Water urce Code d Variable [CV1] PStreams!Produced Water F riable [Water_flow]	iow!Phases!	Active True True	_
Step Size Is Minimizer Remarks Residual Error (for C Source Moniker falue Jnit	ProMax:ProMax!Project!F Flow 53.0257 ProMax:ProMax!Project!F	sgpm False Produ Sou /42/365 Calculated Flowsheets!Flowsheet1! Measured Va	Solver Active * Skip Dependency Che uced Water uced Water uce Code d Variable [CV1] PStreams!Produced Water F	iow!Phases!	Active True True	_
Step Size Is Minimizer Remarks Residual Error (for C Gource Moniker Yalue Init Source Moniker	ProMax:ProMax!Project!F Flow 53.0257	sgpm False Produ Sou /42/365 Calculated Flowsheets!Flowsheet1! Measured Va	Solver Active * Skip Dependency Che uced Water urce Code d Variable [CV1] PStreams!Produced Water F riable [Water_flow]	iow!Phases!	Active True True	_
Step Size Is Minimizer Remarks Residual Error (for C Source Moniker falue Jnit Source Moniker falue	ProMax:ProMax!Project!F Flow 53.0257 ProMax:ProMax!Project!F Flow	sgpm False Produ Sou /42/365 Calculated Flowsheets!Flowsheet1! Measured Va	Solver Active * Skip Dependency Che uced Water urce Code d Variable [CV1] PStreams!Produced Water F riable [Water_flow]	iow!Phases!	Active True True	_
Step Size Is Minimizer Remarks Residual Error (for C C Cource Moniker falue Init Cource Moniker falue Init Cource Moniker falue	ProMax:ProMax!Project!F Flow 53.0257 ProMax:ProMax!Project!F Flow	sgpm False Produce Sou /42/365 Calculated Flowsheets!Flowsheet1! Measured Va Flowsheets!Flowsheet1!	Solver Active * Skip Dependency Che uced Water rce Code Variable [CV1] PStreams!Produced Water F riable [Water_flow] PStreams!Produced Liquids!	iow!Phases!	Active True True	_
Step Size Is Minimizer Remarks Residual Error (for C Source Moniker Gource Moniker Gource Moniker Gource Moniker	ProMax:ProMax!Project!F Flow 53.0257 ProMax:ProMax!Project!F Flow 44.1642	sgpm False Produ Sou /42/365 Calculated Flowsheets!Flowsheet1! Flowsheets!Flowsheet1! Flowsheets!Flowsheet1!	Solver Active * Skip Dependency Che uced Water rce Code Variable [CV1] PStreams!Produced Water F riable [Water_flow] PStreams!Produced Liquids! r Properties	iow!Phases!	Active True True	_
Step Size Is Minimizer Semarks Remarks Residual Error (for C Source Moniker falue Unit Cource Moniker falue Unit Cource Moniker falue Error	ProMax:ProMax!Project!F Flow 53.0257 ProMax:ProMax!Project!F Flow 44.1642 -0.000	sgpm False Produce Sour /42/365 Calculated Flowsheets!Flowsheet1! Measured Va Flowsheets!Flowsheet1! Flowsheets!Flowsheet1!	Solver Active * Skip Dependency Che * Skip Dependency Che uced Water rce Code d Variable [CV1] PStreams!Produced Water F riable [Water_flow] PStreams!Produced Liquids! r Properties Algorithm	iow!Phases!	Active True True Total!Properties!Std Liquid I!Properties!Std Liquid Volu Status: Solved Default	_
Step Size Is Minimizer Semarks Remarks Residual Error (for C C Cource Moniker Calue Init Cource Moniker Calue Init Cource Moniker Calue Calculated Value C Calculated Value C Calculated Value	ProMax:ProMax!Project!F Flow 53.0257 ProMax:ProMax!Project!F Flow 44.1642 -0.000	sgpm False Produce Source /42/365 Calculated Flowsheets!Flowsheet1! Measured Va Flowsheets!Flowsheet1! Solve 0152079 1.54658 sgpm	Solver Active Solver Active Skip Dependency Che Code Code Code	iow!Phases!	Active True True Total!Properties!Std Liquid I!Properties!Std Liquid Volu Status: Solved Default 2	_
Step Size Is Minimizer Semarks Cesidual Error (for C Cesidual Erro	ProMax:ProMax!Project!F Flow 53.0257 ProMax:ProMax!Project!F Flow 44.1642 -0.000	sgpm False Produce Souv /42/365 Calculated Flowsheets!Flowsheet1! Measured Va Flowsheets!Flowsheet1! Solve 0152079 1.54658 sgpm sgpm	Solver Active Solver Active Skip Dependency Che Code Code Code	iow!Phases!	Active True True Total!Properties!Std Liquid I!Properties!Std Liquid Volu Status: Solved Default 2 20	_
Step Size Is Minimizer Remarks Remarks Residual Error (for C Source Moniker /alue Jnit Source Moniker /alue Jnit Error Calculated Value Lower Bound Upper Bound	ProMax:ProMax!Project!F Flow 53.0257 ProMax:ProMax!Project!F Flow 44.1642 -0.000	sgpm False Produ Sou /42/365 Calculated Flowsheets!Flowsheet1! Measured Va Flowsheets!Flowsheet1! Solve 0152079 1.54658 sgpm sgpm	Solver Active * Skip Dependency Che * Skip Dependency Che uced Water rce Code d Variable [CV1] PStreams!Produced Water F riable [Water_flow] PStreams!Produced Liquids! r Properties Algorithm Iterations Max Iterations Weighting	iow!Phases!	Active True True Total!Properties!Std Liquid	_
Step Size Is Minimizer Remarks Remarks Residual Error (for C Source Moniker 'alue Jnit Source Moniker 'alue Jnit Error Calculated Value Lower Bound Upper Bound Step Size	ProMax:ProMax!Project!F Flow 53.0257 ProMax:ProMax!Project!F Flow 44.1642 -0.000	sgpm False Produ Sou /42/365 Calculated Flowsheets!Flowsheet1! Measured Va Flowsheets!Flowsheet1! Solve 0152079 1.54658 sgpm sgpm sgpm	Solver Active * Skip Dependency Che # Skip Dependency Che uced Water Irce Code d Variable [CV1] PStreams!Produced Water F riable [Water_flow] PStreams!Produced Liquids! r Properties Algorithm Iterations Max Iterations Weighting Solver Active	low!Phases! Phases!Tota	Active True True Total!Properties!Std Liquid I!Properties!Std Liquid Volu Status: Solved Default 2 20 1 Active	_
Step Size Is Minimizer Remarks Remarks Residual Error (for C Source Moniker /alue Jnit Source Moniker /alue Jnit Error Calculated Value Lower Bound Upper Bound	ProMax:ProMax!Project!F Flow 53.0257 ProMax:ProMax!Project!F Flow 44.1642 -0.000	sgpm False Produ Sou /42/365 Calculated Flowsheets!Flowsheet1! Measured Va Flowsheets!Flowsheet1! Solve 0152079 1.54658 sgpm sgpm	Solver Active * Skip Dependency Che * Skip Dependency Che uced Water rce Code d Variable [CV1] PStreams!Produced Water F riable [Water_flow] PStreams!Produced Liquids! r Properties Algorithm Iterations Max Iterations Weighting	low!Phases! Phases!Tota	Active True True Total!Properties!Std Liquid	_
Step Size Is Minimizer Remarks Remarks Residual Error (for C Source Moniker /alue Jnit Source Moniker /alue Jnit Error Calculated Value Lower Bound Upper Bound Step Size	ProMax:ProMax!Project!F Flow 53.0257 ProMax:ProMax!Project!F Flow 44.1642 -0.000	sgpm False Produ Sou /42/365 Calculated Flowsheets!Flowsheet1! Measured Va Flowsheets!Flowsheet1! Solve 0152079 1.54658 sgpm sgpm sgpm	Solver Active * Skip Dependency Che # Skip Dependency Che uced Water Irce Code d Variable [CV1] PStreams!Produced Water F riable [Water_flow] PStreams!Produced Liquids! r Properties Algorithm Iterations Max Iterations Weighting Solver Active	low!Phases! Phases!Tota	Active True True Total!Properties!Std Liquid I!Properties!Std Liquid Volu Status: Solved Default 2 20 1 Active	_
Step Size Is Minimizer Remarks Remarks Residual Error (for C Source Moniker /alue Jnit Source Moniker /alue Jnit Error Calculated Value Lower Bound Upper Bound Step Size Is Minimizer	ProMax:ProMax!Project!F Flow 53.0257 ProMax:ProMax!Project!F Flow 44.1642 -0.000	sgpm False Produ Sou /42/365 Calculated Flowsheets!Flowsheet1! Measured Va Flowsheets!Flowsheet1! Solve 0152079 1.54658 sgpm sgpm sgpm	Solver Active * Skip Dependency Che # Skip Dependency Che uced Water Irce Code d Variable [CV1] PStreams!Produced Water F riable [Water_flow] PStreams!Produced Liquids! r Properties Algorithm Iterations Max Iterations Weighting Solver Active	low!Phases! Phases!Tota	Active True True Total!Properties!Std Liquid I!Properties!Std Liquid Volu Status: Solved Default 2 20 1 Active	_
Step Size Is Minimizer Remarks Remarks Residual Error (for C Source Moniker /alue Jnit Source Moniker /alue Jnit Error Calculated Value Lower Bound Upper Bound Step Size Is Minimizer	ProMax:ProMax!Project!F Flow 53.0257 ProMax:ProMax!Project!F Flow 44.1642 -0.000	sgpm False Produ Sou /42/365 Calculated Flowsheets!Flowsheet1! Measured Va Flowsheets!Flowsheet1! Solve 0152079 1.54658 sgpm sgpm sgpm	Solver Active * Skip Dependency Che # Skip Dependency Che uced Water Irce Code d Variable [CV1] PStreams!Produced Water F riable [Water_flow] PStreams!Produced Liquids! r Properties Algorithm Iterations Max Iterations Weighting Solver Active	low!Phases! Phases!Tota	Active True True Total!Properties!Std Liquid I!Properties!Std Liquid Volu Status: Solved Default 2 20 1 Active	_

			Calculat	or Report			
Client Name:	Arsenal - Goff Co	mpressor Station			Job: Produc	ced Water Tank	
Location:		· · · · · · · · · · · · · · · · · · ·					
	•				-		
			SG	Flow			
			Sourc	e Code			
Residual Error (for C	CV1) = SGflow-120						
			Calculated V	/ariable [CV1]			
Source Moniker							
Value	119916	119916					
Unit							
		Ν	leasured Va	riable [SGflow]			
Source Moniker	Flow	!Project!Flowsheet	s!Flowsheet1!PS	streams!Gas to Separators!	Phases!Total	I!Properties!Std Vapor Volumetric	
Value	120						
Unit							
			Solver F	Properties		Status: Solved	
Error		-0.000256845		Iterations		1	
Calculated Value		119.916		Max Iterations		20	
Lower Bound			MMSCFD	Weighting		1	
Upper Bound			MMSCFD	Priority		0	
Step Size			MMSCFD	Solver Active		Active	
Is Minimizer		False		Group			
Algorithm		Default		Skip Dependency Che	ck	False	
Remarks							

		User Val	ue Sets Report	
Client Name:	Arsenal - Goff Compressor Station			Job: Produced Water Tank
Location:				
			Tank-1	
			ue [BlockReady]	
* Parameter	1		Upper Bound * Enforce Bounds	Falsa
Lower Bound			Enforce Bounds	False
		Llear Val	ue [ShellLength]	
Parameter	20	ft	Upper Bound	ft
Lower Bound	20	ft	* Enforce Bounds	False
		-		
		User Va	lue [ShellDiam]	
Parameter	12	ft	Upper Bound	ft
Lower Bound		ft	* Enforce Bounds	False
		User Val	ue [BreatherVP]	
Parameter	0.03	psig	Upper Bound	psig
Lower Bound		psig	* Enforce Bounds	False
			e [BreatherVacP]	
Parameter	-0.03	psig	Upper Bound	psig
Lower Bound		psig	* Enforce Bounds	False
			e [DomeRadius]	
Parameter Lower Bound	0	ft ft	Upper Bound * Enforce Bounds	ft False
Lower Bound			Enlorce Bounds	T dise
⁷ Parameter	0	psig	alue [OpPress] Upper Bound	psig
Lower Bound	0	psig	* Enforce Bounds	False
201101 200110		polg		
		User Value	e [AvgPercentLiq]	
Parameter	50		Upper Bound	%
Lower Bound		%	* Enforce Bounds	False
		User Value	e [MaxPercentLiq]	
Parameter	90	%	Upper Bound	%
Lower Bound		%	* Enforce Bounds	False
			lue [AnnNetTP]	
Parameter	44.1674	bbl/day	Upper Bound	bbl/day
Lower Bound		bbl/day	* Enforce Bounds	False
			Value [OREff]	
Parameter	0	%	Upper Bound	%
Lower Bound		%	* Enforce Bounds	False
			lue [MaxAvgT]	
Parameter	59.8833		Upper Bound	°F
Lower Bound		°F	* Enforce Bounds	False
	10		alue [MinAvgT]	
* Parameter Lower Bound	40.7333	°F	Upper Bound * Enforce Bounds	°F False
			Eniorce Dounus	Faise
* Parameter	54.6483		alue [BulkLiqT] Upper Bound	°F
Lower Bound	54.0483	°F	* Enforce Bounds	False
* User Specified Values			Max 4 0 16308 0	Licensed to The ERM Group, Inc. and Affilia

* User Specified Values ? Extrapolated or Approximate Values

ProMax 4.0.16308.0 Copyright © 2002-2016 BRE Group, Ltd.

Licensed to The ERM Group, Inc. and Affiliates

				_		
			User Value S	Sets Report		
Client Name: Location:	Arsenal - Goff C	ompressor Station			Job: Produc	ced Water Tank
			User Valu			
* Parameter Lower Bound		14.1085	psia j	Upper Bound * Enforce Bounds		psia False
* Parameter		1202.96	User Value Btu/ft^2/day	[Therm]] Upper Bound		Btu/ft^2/day
Lower Bound			Btu/ft^2/day	* Enforce Bounds		False
* Parameter		9.075	<mark>Jser Value [Av</mark> mi/h	Upper Bound		mi/h
Lower Bound			mi/h	* Enforce Bounds		False
		lleor		urlyLoadingRate]		
* Parameter		16.62		Upper Bound		gpm
Lower Bound			gpm	* Enforce Bounds	_	False
		U	ser Value [Ent	rainedOilFrac1		
* Parameter		1	%	Upper Bound		%
Lower Bound			%	* Enforce Bounds		False
			User Value [Tu	urnoverRate]		
* Parameter		44.4572		Upper Bound		Falas
Lower Bound				* Enforce Bounds		False
		L	Jser Value [LLo			
* Parameter Lower Bound		1.45		Upper Bound * Enforce Bounds		False
Lower Board				Enloree Bounds		T disc
			User Value [A			
* Parameter Lower Bound		14.1085	psia psia	Upper Bound * Enforce Bounds		psia False
* Dana sa stan		0.000.400	User Valu			
* Parameter Lower Bound		0.293463	psia	Upper Bound * Enforce Bounds		psia False
* Parameter		0.418012	User Value	E [MaxVP] Upper Bound		psia
Lower Bound			psia	* Enforce Bounds		False
* Parameter		0.20454	User Value	Upper Bound		psia
Lower Bound			psia	* Enforce Bounds		False
			Jser Value [Avg			
* Parameter		61.1967	°F	Upper Bound		°F
Lower Bound			°F	* Enforce Bounds		False
			Jser Value [Ma:	xLigSurfaceT1		
* Parameter		72.1381	°F	Upper Bound		°F
Lower Bound			°F	* Enforce Bounds		False
			User Value [T	otalLosses]		
* Parameter		0.0536751	ton/yr	Upper Bound		ton/yr

* User Specified Values ? Extrapolated or Approximate Values

ProMax 4.0.16308.0 Copyright © 2002-2016 BRE Group, Ltd.

Licensed to The ERM Group, Inc. and Affiliates

	User Va	lue Sets Report	
Client Name:	Arsenal - Goff Compressor Station		Job: Produced Water Tank
Location:			
			-
Lower Bound	ton/yr	Ilue [TotalLosses] * Enforce Bounds	False
	User Valu	e [WorkingLosses]	
* Parameter Lower Bound	0.0370633 ton/yr ton/yr	Upper Bound * Enforce Bounds	ton/yr False
	· · · · ·		Taise
* Parameter	0.0166118 ton/yr	e [StandingLosses]	ton/yr
Lower Bound	ton/yr	* Enforce Bounds	False
		e [RimSealLosses]	
* Parameter Lower Bound	0 ton/yr ton/yr	Upper Bound * Enforce Bounds	ton/yr False
	·		
* Parameter	O ton/yr	e [WithdrawalLoss]	ton/yr
Lower Bound	ton/yr	* Enforce Bounds	False
		e [LoadingLosses]	
* Parameter Lower Bound	0.0641671 ton/yr ton/yr	Upper Bound * Enforce Bounds	ton/yr False
		loxHourbyLoadingLoad	1
* Parameter	0.189008 lb/hr	laxHourlyLoadingLoss Upper Bound	lb/hr
Lower Bound	lb/hr	* Enforce Bounds	False
	User	r Value [PStar]	
Parameter Lower Bound		Upper Bound * Enforce Bounds	False
	Liser Valu	e [AllCTotalLosses]	
* Parameter	0.0536751 ton/yr	Upper Bound	ton/yr
Lower Bound	ton/yr	* Enforce Bounds	False
* Deservator		[AllCLoadingLosses]	han lun
* Parameter Lower Bound	0.0641671 ton/yr ton/yr	Upper Bound * Enforce Bounds	ton/yr False
	User Value 14	AllCMaxHLoadingLoss]	
* Parameter	0.189008 lb/hr	Upper Bound	lb/hr
Lower Bound	lb/hr	* Enforce Bounds	False
* Parameter	User Value 0 ton/yr	[AllCFlashingLosses] Upper Bound	ton/yr
Lower Bound	ton/yr	* Enforce Bounds	False
	User Value	[DeckFittingLosses]	
* Parameter	0 ton/yr	Upper Bound	ton/yr
Lower Bound	ton/yr	* Enforce Bounds	False
* Daramatar		[DeckSeamLosses]	too log
* Parameter Lower Bound	0 ton/yr ton/yr	Upper Bound * Enforce Bounds	ton/yr False

	User Va	alue Sets Report	
lient Name:	Arsenal - Goff Compressor Station		Job: Produced Water Tank
ocation:			
	Llsor Val	ue [FlashingLosses]	
Parameter	0 ton/yr	Upper Bound	ton/yr
Lower Bound	ton/yr	* Enforce Bounds	False
	User Va	lue [TotalResidual]	
Parameter	2816.01 ton/yr	Upper Bound	ton/yr
Lower Bound	ton/yr	* Enforce Bounds	False
	User Val	ue [GasMoleWeight]	
Parameter	0.0186203 kg/mol	Upper Bound	kg/mol
Lower Bound	kg/mol	* Enforce Bounds	False
	User Value	[VapReportableFrac]	
Parameter	100 %	Upper Bound	%
Lower Bound	%	* Enforce Bounds	False
		e [LiqReportableFrac]	
Parameter	100 %	Upper Bound	%
Lower Bound	%	* Enforce Bounds	False
Description		[FlashReportableFrac]	N/
Parameter	0%	Upper Bound * Enforce Bounds	<u>%</u>
Lower Bound	%	Enforce Bounds	False

G3516B

GAS ENGINE TECHNICAL DATA

CATERPILLAR®

ENGINE SPEED (rpm): COMPRESSION RATIO: AFTERCOOLER TYPE: AFTERCOOLER - STAGE 2 INLET (°F): AFTERCOOLER - STAGE 1 INLET (°F): JACKET WATER OUTLET (°F): ASPIRATION: COOLING SYSTEM: CONTROL SYSTEM: EXHAUST MANIFOLD: COMBUSTION: NOX EMISSION LEVEL (g/bhp-hr NOX):	8APPLICATIOSCACRATING LEV130FUEL:201FUEL SYSTI210TATAFUEL PRESJW+OC+1AC, 2ACFUEL METHADEM3FUEL LHV (I	G LEVEL: CONTINUOUS NAT GAS					
RATING	6	NOTES	LOAD	100%	75%	50%	
ENGINE POWER	(WITHOUT FAN)	(2)	bhp	1380	1035	690	
ENGINE EFFICIENCY	(ISO 3046/1)	(3)	%	34.8	32.5	30.3	
ENGINE EFFICIENCY	(NOMINAL)	(3)	%	34.2	31.9	29.7	
ENGINE D	ATA						
FUEL CONSUMPTION	(ISO 3046/1)	(4)	Btu/bhp-hr	7301	7820	8399	
FUEL CONSUMPTION	(NOMINAL)	(4)	Btu/bhp-hr	7443	7972	8562	
AIR FLOW (77°F, 14.7 psia)	(WET)	(5) (6)	ft3/min	3126	2452	1715	
AIR FLOW	(WET)	(5) (6)	lb/hr	13862	10874	7602	
FUEL FLOW (60°F, 14.7 psia)	, , , , , , , , , , , , , , , , , , ,	(0)(0)	scfm	189	152	109	
COMPRESSOR OUT PRESSURE			in Hg(abs)	103.8	91.8	69.4	
COMPRESSOR OUT TEMPERATURE			°F	381	354	274	
AFTERCOOLER AIR OUT TEMPERATURE			°F	133	133	131	
INLET MAN. PRESSURE		(7)	in Hg(abs)	94.6	76.8	54.0	
INLET MAN. TEMPERATURE	(MEASURED IN PLENUM)	(8)	°F	146	146	143	
TIMING	((9)	°BTDC	30	29	24	
EXHAUST TEMPERATURE - ENGINE OUTLET		(10)	°F	992	986	1006	
EXHAUST GAS FLOW (@engine outlet temp, 14.5	psia) (WET)	(11) (6)	ft3/min	9126	7138	5065	
EXHAUST GAS MASS FLOW	(WET)	(11) (6)	lb/hr	14380	11290	7900	
EMISSIONS DATA -					4		
NOx (as NO2)		(12)(13)	g/bhp-hr	0.50	0.50	0.50	
CO		(12)(13)	g/bhp-hr	2.43	2.61	2.56	
THC (mol. wt. of 15.84)		(12)(14)	g/bhp-hr	4.77	5.11	5.19	
NMHC (mol. wt. of 15.84)		(12)(14)	g/bhp-hr	0.72	0.77	0.78	
NMNEHC (VOCs) (mol. wt. of 15.84)		(12)(14)(15)	g/bhp-hr	0.48	0.51	0.52	
HCHO (Formaldehyde)		(12)(14)	g/bhp-hr	0.40	0.43	0.42	
CO2		(12)(14)	g/bhp-hr	474	506	549	
EXHAUST OXYGEN		(12)(14)	% DRY	9.0	8.7	8.3	
LAMBDA		(12)(16)	, BILL	1.68	1.64	1.60	
ENERGY BALAN				•	•	I	
		(17)	Btu/min	171179	137505	98460	
HEAT REJECTION TO JACKET WATER (JW)		(18)(26)	Btu/min	23412	21533	19930	
HEAT REJECTION TO ATMOSPHERE		(19)	Btu/min	6110	5092	4074	
HEAT REJECTION TO LUBE OIL (OC)		(20)(26)	Btu/min	4475	3978	3363	
HEAT REJECTION TO EXHAUST (LHV TO 77°F)		(21)(22)	Btu/min	62427	48810	34853	
HEAT REJECTION TO EXHAUST (LHV TO 350°F)		(21)	Btu/min	41619	32383	23415	
HEAT REJECTION TO A/C - STAGE 1 (1AC)		(23)(26)	Btu/min	10046	8308	2813	
HEAT REJECTION TO A/C - STAGE 2 (2AC)		(24)(27)	Btu/min	5358	5063	3334	
PUMP POWER		(25)	Btu/min	833	833	833	

CONDITIONS AND DEFINITIONS

Engine rating obtained and presented in accordance with ISO 3046/1. (Standard reference conditions of 77°F, 29.60 in Hg barometric pressure.) No overload permitted at rating shown. Consult the altitude deration factor chart for applications that exceed the rated altitude or temperature.

Emission levels are at engine exhaust flange prior to any after treatment. Values are based on engine operating at steady state conditions, adjusted to the specified NOx level at 100% load. Tolerances specified are dependent upon fuel quality. Fuel methane number cannot vary more than ± 3.

For notes information consult page three.

Mailing uddress: P.O. Box 90, Concord, Ontario, Canada, L4K 1B2 Tall free: 1-800-872-1968 Phone: 905-660-6450 Fax: 905-660-6435 E-mail: infu@dcl-Inc.com

То	Mark Davis	Plione		
	J-W Power	Fax		
Date	January 4, 2010	Email	mdavis@jwenergy.com	

RE: EMISSIONS GUARANTEE

Mark,

We hereby guarantee that our QUICK-LIDTM Model DC65A-12 catalytic converter described below:

Catalyst model	DC65
Catalyst coating	Oxidation (A coating)
Outside Diameter of catalyst substrate	30.75"
No. of catalyst substrates	1
Cell Density	300 cpsi

and sized for the following engine:

Engine model	CAT G3516 ULB
Power	1380 hp @ 1400 rpm
Fuel	Pipeline Quality Natural Gas

will perform as follows:

Emissions	After Catalyst (% destruction)
Carbon Monoxide (CO)	93%
Formaldehyde (CH2O)	90%
Volatile Organic Compounds	80%

for a period of 1 year or 8000 hours, whichever comes first, subject to all terms and conditions contained in the attached warranty document being respected and met.

Best regards, DCL, International, Inc.

Taurya WarGusninger

Tuwnya VanGroningen Account Manager North American Industrial Catalyst Division

Quote#16-1558

SNOHOM INTED STATES - DUBBN	UNITED STATES ENVIRONMENTAL PROTECTION AGENCY 2017 MODEL YEAR CERTIFICATE OF CONFORMITY WITH THE CLEAN AIR ACT			OFFICE OF TRANS AND AIR QUA ANN ARBOR, MICH	ALITY
	er Solutions International, Inc. Manufacturer or Importer) 5.70EMT-022	Effective Date: 01/25/2017 Expiration Date: 12/31/2017		r, Division Director nce Division	Issue Date: 01/25/2017 Revision Date: N/A
Manufacturer: Power Soluti Engine Family: HPSIB5.70E Mobile/Stationary Certifica Fuel : LPG/Propane Natural Gas (CNG/LN Emission Standards : Part 60 Subpart JJJJ Table I VOC (g/Hp-hr) : 1.0 CO (g/Hp-hr) : 4.0 NOx (g/Hp-hr) : 2.0 Stationary Part 1048 CO (g/kW-hr) : 4.4 HC + NOx (g/kW-hr) NMHC + NOx (g/kW	EMT tion Type: Stationary G)	D UNITED STA	755 . 7		

Pursuant to Section 213 of the Clean Air Act (42 U.S.C. section 7547) and 40 CFR Part 60, 1065, 1068, and 60 (stationary only and combined stationary and mobile) and subject to the terms and conditions prescribed in those provisions, this certificate of conformity is hereby issued with respect to the test engines which have been found to conform to applicable requirements and which represent the following nonroad engines, by engine family, more fully described in the documentation required by 40 CFR Part 60 and produced in the stated model year.

This certificate of conformity covers only those new nonroad spark-ignition engines which conform in all material respects to the design specifications that applied to those engines described in the documentation required by 40 CFR Part 60 and which are produced during the model year stated on this certificate of the said manufacturer, as defined in 40 CFR Part 60. This certificate of conformity does not cover nonroad engines imported prior to the effective date of the certificate.

It is a term of this certificate that the manufacturer shall consent to all inspections described in 40 CFR 1068.20 and authorized in a warrant or court order. Failure to comply with the requirements of such a warrant or court order may lead to revocation or suspension of this certificate for reasons specified in 40 CFR Part 60. It is also a term of this certificate that this certificate may be revoked or suspended or rendered void *ab initio* for other reasons specified in 40 CFR Part 60.

This certificate does not cover large nonroad engines sold, offered for sale, or introduced, or delivered for introduction, into commerce in the U.S. prior to the effective date of the certificate.

Model: 80ERESD

KOHLER. Power Systems

208-480 V

Gas

Ratings Range

Standby:	kW kVA	60 63-8 63-1	80		
•		· · · · ·	•	;	•
		Ð	۲		
		•: :	•	$\overline{\bigcirc}$	

Standard Features

- Kohler Co. provides one-source responsibility for the generating system and accessories.
- The generator set and its components are prototype-tested, factory-built, and production-tested.
- UL 2200 listing is available. (60 Hz only)
- CSA approval is available.
- The generator set accepts rated load in one step.
- The 60 Hz generator set engine is certified by the Environmental Protection Agency (EPA) to conform to the New Source Performance Standard (NSPS) for stationary spark-ignited emissions.
- A one-year limited warranty covers all systems and components. Two- and five-year extended limited warranties are also available.
- Alternator features:
 - The unique Fast-Response [™] X excitation system delivers excellent voltage response and short-circuit capability using a rare-earth permanent magnet (PM)-excited alternator.
 - The brushless, rotating-field alternator has broadrange reconnectability.
- Other features:
 - Kohler[®] Decision-Maker[®] 3000 controller. See controller features on page 3.
 - The electronic, isochronous governor incorporates an integrated drive-by-wire throttle body actuator delivering precise frequency regulation.
- Quick-ship (QS) models with selected features and a five-year basic limited warranty are available. See your Kohler distributor for details.

Generator Set Ratings

				Natural Gas 130°C Rise Standby Rating		
Alternator	Voltage	Ph	Hz	kW/kVA	Amps	
	120/208	3	60	77/96	267	
	127/220	3	60	80/100	262	
	120/240	3	60	77/96	231	
4P10X	120/240	1	60	63/63	262	
	139/240 *	3	60	80/100	240	
	220/380 *	3	60	70/87	132	
	277/480	3	60	80/100	120	
	120/208	3	60	80/100	277	
	127/220	3	60	80/100	262	
	120/240	3	60	80/100	240	
4R9X	120/240	1	60	77/77	320	
	139/240 *	3	60	80/100	240	
	220/380 *	3	60	80/100	151	
	277/480	3	60	80/100	120	
4T9X	120/240	1	60	80/80	333	

* Voltage configuration not available from the factory. Field-adjustable by an authorized service technician.

RATINGS: All three-phase units are rated at 0.8 power factor. All single-phase units are rated at 1.0 power factor. Standby Ratings: Standby ratings apply to installations served by a reliable utility source. The standby rating is applicable to varying loads for the duration of a power outage. There is no overload capability for this rating. Ratings are in accordance with ISO-3046/1, BS 5514, AS 2789, and DIN 6271. For limited running time and base load ratings, consult the factory. Obtain the technical information bulletin (TIB-101) on ratings guidelines for the complete ratings definitions. The generator set manufacturer reserves the right to change the design or specifications without notice and without any obligation or liability whatsoever. GENERAL GUIDELINES FOR DERATING: Altitude: Derate 1.3% per 100 m (328 ft.) elevation above 200 m (656 ft.). Temperature: Derate 6.0% per 10°C (18°F) temperature above 25°C (77°F). For units having enclosures with enclosed silencers, add 10°C (18°F) to the ambient temperature.

Alternator Specifications

Specifications		Alternator
Manufacturer		Kohler
Туре		4-Pole, Rotating-Field
Exciter type		Brushless, Rare-Earth
		Permanent- Magnet
Leads: quantity,	type	
4PX, 4RX		12, Reconnectable
4TX		4, 120/240
Voltage regulato	r	Solid State, Volts/Hz
Insulation:		NEMA MG1
Material		Class H
Temperature rise		130°C, Standby
Bearing: quantity, type		1, Sealed
Coupling		Flexible Disc
Amortisseur windings		Full
Voltage regulation, no-load to full-load		$\pm 0.5\%$
Unbalanced load capability		100% of Rated Standby
		Current
One-step load acceptance		100% of Rating
Peak motor start	ting kVA:	(35% dip for voltages below)
480 V	4P10X (12 lead)	275 (60 Hz)
480 V	4R9X (12 lead)	385 (60 Hz)
240 V	4T9X (4 lead)	237 (60 Hz)

- NEMA MG1, IEEE, and ANSI standards compliance for temperature rise and motor starting.
- Sustained short-circuit current of up to 300% of the rated current for up to 10 seconds.
- Sustained short-circuit current enabling downstream circuit breakers to trip without collapsing the alternator field.
- Self-ventilated and dripproof construction.
- Windings are vacuum-impregnated with epoxy varnish for dependability and long life.
- Superior voltage waveform from a two-thirds pitch stator and skewed rotor.
- Total harmonic distortion (THD) from no load to full load with a linear load is less than 3.2%.

Application Data

Engine Electrical

Engine Specifications	
Manufacturer	General Motors
Engine: model, type	Industrial Powertrain
	Vortec 5.7 L, 4-Cycle
	Turbocharged
Cylinder arrangement	V-8
Displacement, L (cu. in.)	5.7 (350)
Bore and stroke, mm (in.)	101.6 x 88.4 (4.00 x 3.48)
Compression ratio	9.1:1
Piston speed, m/min. (ft./min.)	318 (1044)
Main bearings: quantity, type	5, M400 Copper lead
Rated rpm	1800
Max. power at rated rpm, kW (HP)	99 (133)
Cylinder head material	Cast Iron
Piston type and material	Strutless Flat Top,
	Hypereutectic Cast Alum.
Crankshaft material	Cast Nodular Undercut Rolled Fillet
Valve (exhaust) material	IntA193 Exh. Inconel
Governor type	Electronic
Frequency regulation, no-load to full-load	Isochronous
Frequency regulation, steady state	±0.5%
Frequency	Fixed
Air cleaner type, all models	Dry
Exhaust	
Exhaust System	

Engine

Exhaust System	
Exhaust manifold type	Dry
Exhaust flow at rated kW, m ³ /min. (cfm)	18.9 (670)
Exhaust temperature at rated kW, dry exhaust, °C (°F)	649 (1200)
Maximum allowable back pressure,	
kPa (in. Hg)	10.2 (3.0)
Exhaust outlet size at engine hookup, mm (in.)	See ADV drawing

Engine Electrical System	
Ignition system	Individual Coil
	Near Plug Ignition
Battery charging alternator:	
Ground (negative/positive)	Negative
Volts (DC)	12
Ampere rating	70
Starter motor rated voltage (DC)	12
Battery, recommended cold cranking amps (CCA):	
Qty., rating for -18°C (0°F)	One, 630
Battery voltage (DC)	12
Fuel	

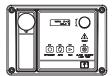
Fuel System	
Fuel type	Natural Gas
Fuel supply line inlet	1 1/4 NPT
Gas fuel supply pressure, measured at the generator set fuel inlet downstream of any fuel system equipment	
accessories, kPa (in. H ₂ O)	1.74-2.74 (7-11)
Fuel Composition Limits *	Nat. Gas
Methane, % by volume	90 min.
Ethane, % by volume	4.0 max.
Propane, % by volume	1.0 max.
Propene, % by volume	0.1 max.
C ₄ and higher, % by volume	0.3 max.
Sulfur, ppm mass Lower heating value,	25 max.
MJ/m ³ (Btu/ft ³), min.	33.2 (890)

* Fuels with other compositions may be acceptable. If your fuel is outside the listed specifications, contact your local distributor for further analysis and advice.

Lubrication

Lubricating System	
Туре	Full Pressure
Oil pan capacity, L (qt.)	4.7 (5.0)
Oil pan capacity with filter, L (qt.)	6.2 (6.5)
Oil filter: quantity, type	1, Cartridge

Cooling

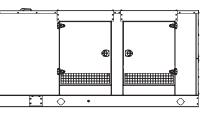

Radiator System	
Ambient temperature, °C (°F)	40 (104)
Engine jacket water capacity, L (gal.)	6.8 (1.8)
Radiator system capacity, including	
engine, L (gal.)	22.5 (6.0)
Engine jacket water flow, Lpm (gpm)	144 (38)
Heat rejected to cooling water at rated	
kW, dry exhaust, kW (Btu/min.)	62 (3540)
Water pump type	Centrifugal
Fan diameter, including blades, mm (in.)	599 (23.6)
Fan, kWm (HP)	6.7 (9.0)
Max. restriction of cooling air, intake and	
discharge side of radiator, kPa (in. H ₂ O)	0.125 (0.5)

Operation Requirements

Air Requirements	
Radiator-cooled cooling air,	
m ³ /min. (scfm)†	156 (5500)
Combustion air, m ³ /min. (cfm)	6.8 (237)
Heat rejected to ambient air:	
Engine, kW (Btu/min.)	47 (2700)
Alternator, kW (Btu/min.)	14.5 (825)
† Air density = 1.20 kg/m ³ (0.075 lbm/ft ³)	

Fuel Consumption‡	Standby Rating
Natural Gas, m ³ /hr. (cfl	n) at % load
100%	33.6 (1185)
75%	27.8 (981)
50%	22.0 (777)
25%	16.2 (573)
0%	10.4 (369)
‡ Nominal fuel rating:	Natural gas, 37 MJ/m ³ (1000 Btu/ft ³)

Controller


Decision-Maker® 3000 Controller

Provides advanced control, system monitoring, and system diagnostics for optimum performance and compatibility.

- Digital display and menu control provide easy local data access
- Measurements are selectable in metric or English units
- Remote communication through a PC via network or serial configuration
- Integrated hybrid voltage regulator with ±0.5% regulation
- Built-in alternator thermal overload protection

Refer to G6-100 for additional controller features and accessories.

Sound Enclosure

- Sound level (8 point logarithmic average) at 7 m (23 ft.) with full load: 71 dB(A).
- Sound level compared to competitor ratings with no load: 70 dB(A).*
- Sound attenuating enclosure uses acoustic insulation that meets UL 94 HF1 flammability classification and repels moisture absorption.
- Vertical air inlet and outlet discharge with 90 degree bends to redirect air and reduce noise.
- Internal-mounted critical silencer and flexible exhaust connector.
- Skid-mounted, steel (standard) or aluminum (optional) construction with hinged doors.
- Fade-, scratch-, and corrosion-resistant Kohler[®] Cashmere Power Armor[™] textured e-coat paint.
- Lockable, flush-mounted door latches.
- Certified to withstand 241 kph (150 mph) wind load rating (aluminum enclosures only).
- * Lowest of 8 points measured around the generator. Sound levels at other points around generator may be higher depending on installation parameters.

Additional Standard Features

- Alternator Protection
- Battery Rack and Cables
- Electronic, Isochronous Governor
- Gas Fuel System (includes fuel mixer, electronic secondary gas regulator, gas solenoid valve, and flexible fuel line between the engine and the skid-mounted fuel system components)
- Integral Vibration Isolation
- Local Emergency Stop Switch
- Oil Drain Extension
- Operation and Installation Literature
- Steel Sound Enclosure
- Three-Way Exhaust Catalyst

Available Options

Approvals and Listings

- CSA Approval
- UL 2200 Listing (60 Hz only)

Enclosure

Aluminum Sound Enclosure

Fuel System

- Flexible Fuel Line
- (required when the generator set skid is spring mounted)
- Gas Filter
 Additional Gas Solenoid Valve

Controller

- Common Fault Relay
- Communication Products and PC Software
- Input/Output Module
- Remote Annunciator Panel
- Remote Emergency Stop
- 🗋 Run Relay

Cooling System

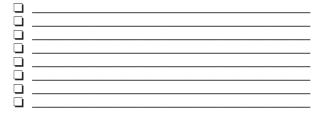
- Block Heater, 1500 W, 110-120 V
- Block Heater, 1500 W, 190-240 V
 - [recommended for ambient temperatures below 10°C (50°F)]

Electrical System

- Alternator Strip Heater
- Battery
- Battery Charger, Equalize/Float Type
- Battery Heater
- Line Circuit Breaker (NEMA1 enclosure)
- Line Circuit Breaker with Shunt Trip (NEMA1 enclosure)

Miscellaneous

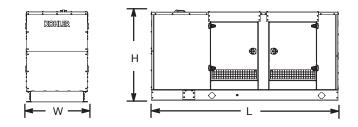
- Air Cleaner Restrictor Indicator
- Engine Fluids Added
- Rated Power Factor Testing
- Rodent Guards


Literature

- General Maintenance
- Overhaul
 - Production

Extended Limited Warranties

- 2-Year Basic
- 5-Year Basic
- 5-Year Comprehensive


Other Options

Dimensions and Weights

Overall Size, L x W x H, mm (in.) :	3526 x 1153 x 1664 (138.8 x 45.4 x 65.5)
Weight, wet, kg (lb.):	,
With steel sound enclosure	1412 (3117)
With aluminum sound enclosure	1350 (2976)

Weight includes generator set with engine fluids, sound enclosure, and silencer.

NOTE: This drawing is provided for reference only and should not be used for planning installation. Contact your local distributor for more detailed information.

DISTRIBUTED BY:

© 2011, 2012, 2013, 2014 by Kohler Co. All rights reserved.

Gas Analytical Services

CHARLESTON, WV 304-677-9926

: 0034 - MK MIDSTREAM

: 2601

Customer

Station ID

Date Sampled

Date Analyzed

Good

04049

LELAP Certification #

: 12/13/2016

: 12/19/2016

Ideal GPM		0.983	0.986	0.989	1.008
BTU @ (PSIA)		@14.65	@14.696	@14.73	@15.02
	vity: 0.5761	Real Gravity: 0.577		C5+ Mole % : 0.01	06
Compressibil	ity Factor (Z) @ 14.	73 @ 60 Deg. F = 0.997	9	C5+ GPM : 0.00	200
	TOTAL		100.0000	0.990	
	C12's		0.0000	0.000	
	C11's		0.0000	0.000	
	C10's		0.0000	0.000	
	C7's		0.0016	0.001	
	C9's		0.0000	0.000	
	C8's		0.0004	0.000	
	C6's		0.0026	0.001	
	M-XYLENE/P-X	YLENE	0.0000	0.000	
	TOLUENE		0.0000	0.000	
	ETHYLBENZEN	IE	0.0000	0.000	
	BENZENE		0.0000	0.000	
	Oxygen		0.0020	0.000	
	Carbon-Dioxide		0.2824	0.000	
	Normal-Pentane Nitrogen)	0.0022 0.2624	0.001 0.000	
	Iso-Pentane		0.0038	0.001	
	Neo-Pentane		0.0006	0.000	
	Normal-Butane		0.0198	0.006	
	Iso-Butane		0.0133	0.004	
	Propane		0.2210	0.061	
	Ethane		3.4142	0.915	
	Methane		95.8791	0.000	
	<u>COMPONENT</u>		<u>MOL%</u>	<u>GPM@14.73(PSIA)</u>	
State	: WV		Sar	mple By : HT	
Area	: 190 - UNKNO\	VN	Cyl	linder Type : Spot	
Lease	: GOFF WEST		Ter	mp : 60	
Producer	:		Cyl	Pressure : 625	
Cylinder ID	: 0280		Effe	ective Date : 01/0	1/2017
Station ID	: 2601		Dat	te Analyzed : 12/1	9/2016

Attachment V

ATTACHMENT V – FACILITY-WIDE CONTROLLED EMISSIONS SUMMARY SHEET														
List all sources of emissions in this table. Use extra pages if necessary.														
Emission Point ID#	NO _x		СО		VOC		SO ₂		PM ₁₀		PM _{2.5}		GHG (CO ₂ e)	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Line Heater LH-1	0.02	0.11	0.02	0.09	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	29.27	128.22
Compressor Engine CE-1R	1.52	6.66	0.56	2.43	0.32	1.39	0.01	0.03	<0.01	<0.01	<0.01	< 0.01	1,671.67	7,321.91
Compressor Engine CE-2R	1.52	6.66	0.56	2.43	0.32	1.39	0.01	0.03	<0.01	<0.01	<0.01	<0.01	1,671.67	7,321.91
Compressor Engine CE-7R	1.52	6.66	0.56	2.43	0.32	1.39	0.01	0.03	<0.01	<0.01	<0.01	<0.01	1,671.67	7,321.91
Compressor Engine CE-8R	1.52	6.66	0.56	2.43	0.32	1.39	0.01	0.03	<0.01	<0.01	<0.01	<0.01	1,671.67	7,321.91
Compressor Engine CE-9R	1.52	6.66	0.56	2.43	0.32	1.39	0.01	0.03	<0.01	<0.01	<0.01	< 0.01	1,671.67	7,321.91
Produced Fluid Tank TK-1 and TK-2	<0.01	<0.01	<0.01	<0.01	0.02	0.09	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	13.42	58.77
Emergency Generator EG-1	0.02	0.47	0.07	0.02	0.05	0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	99.24	24.81
Tank Loading LO-1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	0.02	0.08
TOTAL	8.10	33.54	2.87	12.28	1.65	7.04	0.03	0.15	<0.01	<0.01	<0.01	<0.01	8,500.30	36,821.42

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1.

Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT V – FACILITY-WIDE HAP CONTROLLED EMISSIONS SUMMARY SHEET

List all sources of emissions in this table. Ose extra pages if necessary.														
Emission Point ID#	Formaldehyde		Benzene		Toluene		Ethylbenzene		Xylenes		Hexane		Total HAPs	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Line Heater LH-1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Compressor Engine CE-1R	0.13	0.59	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.17	0.64
Compressor Engine CE-2R	0.13	0.59	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.17	0.64
Compressor Engine CE-7R	0.13	0.59	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.17	0.64
Compressor Engine CE-8R	0.13	0.59	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.17	0.64
Compressor Engine CE-9R	0.13	0.59	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.17	0.64
Produced Fluid Tank TK-1 and TK-2	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Emergency Generator EG-1	0.05	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.05	0.01
Tank Loading LO-1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
TOTAL	0.72	2.94	0.03	0.11	0.02	0.10	<0.01	0.01	0.01	0.05	<0.01	<0.01	0.88	3.22

List all sources of emissions in this table. Use extra pages if necessary.

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators.

According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

Attachment W

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Arsenal Resources, LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a G35-D General Permit for a natural gas compressor stations located in Taylor County, West Virginia. The latitude and longitude coordinates are: 39.27737 and -80.40417.

The applicant estimates the maximum potential to discharge the following regulated air pollutants on a facility-wide basis will be:

Particulate Matter (PM) = 3.13 tpy Sulfur Dioxide (SO₂) = 0.15 tpy Volatile Organic Compounds (VOC) = 9.70 tpy Carbon Monoxide (CO) = 12.28 tpy Nitrogen Oxides (NO_x) = 33.54 tpy Total Hazardous Air Pollutants (HAPs) = 3.22 tpy Formaldehyde (HCHO) = 2.94 tpy Hexane (C₈H₁₄) = <0.01 tpy Carbon Dioxide Equivalents (CO₂e) = 36,837.33 tpy

Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the 12th day of September 2017.

By: Arsenal Resources Meghan M.B. Yingling Environmental Compliance Manager 6031 Wallace Road Ext. Suite 300 Wexford, PA 15090