

G35-D General Permit Application

Cather Natural Gas Compressor Station

Clarksburg, West Virginia

Prepared By:

Environmental Resources Management, Inc.

invironmental Resources Management, Inc Hurricane, West Virginia

September 2017

People Powered. Asset Strong.

September 18, 2017

Mr. William F. Durham, Director West Virginia Department of Environmental Protection Division of Air Quality 601 57th Street, SE Charleston, West Virginia, 25304

RE: G35-D General Permit Registration Application Arsenal Midstream Cather Natural Gas Compression Station

Dear Director Durham:

Enclosed are one (1) original hard copy and two (2) complete PDFs included on CD-ROM of a G35-D General Permit Registration Application for the authority to construct the Cather/M&R natural gas compression site located in Harrison County, West Virginia.

A legal advertisement will be published in the next few days and proof of publication will be forwarded as soon as it is received. Please contact me for payment of the application fee by credit card.

If you have any questions concerning this permit application, please contact me at (724) 940-1112 or by email at myingling@arsenalresources.com.

Sincerely,

Meghan M.B. Yingling Environmental Compliance Manager Arsenal Midstream

Enclosures

Cc: Bill Veigel, Sr. Director of Production, Arsenal Resources Stacey Lucas, V.P. HSE, Arsenal Resources

1.0 INTRODUCTION NARRATIVE

Arsenal Midstream, LLC submits this G35-D Class II General Permit application to the West Virginia Department of Environmental Protection's Divison of Air Quality (WVDAQ) for the Cather Compressor Station (Cather) located in Harrison County, West Virginia. This application addresses the operational activities associated with the compression of natural gas and produced water at the Cather Station.

Arsenal wishes to submit this G35-D General Permit application to permit the following equipment currently at the Cather Station:

- One (1) CAT G3608 TALE Compressor Engine;
- One (1) CAT G3606 TALE Compressor Engine;
- One (1) Kohler 80REZGD Emergency Generator;
- Two (2) Exterran 67 mmscf/day Dehydration Units;
- Two (2) 50 bbl Produced Water Tanks;
- One (1) 100 bbl Regen Condensate Tank;
- Four (4) 520 gal Oil Storage tanks;
- One (1) 520 gal Glycol Storage tank; and
- One (1) Produced Fluid Loadout.

This update is being made to correct issues with emission factors and fuel usage rates currently permitted under Permit No. G35-D107E. The original name permitted for this station was Goff West Compressor Station, which was an aggregation of this station and another compressor station. These stations will no longer share a permit, based on EPA Source Determination Guidance, and the name for this station will change to Cather Compressor Station. The other station will have a separate G35-D permit application submitted to become Goff Compressor Station.

Statement of aggregation

The Cather Compressor Station is located in Harrison County, WV and operated by Arsenal. Stationary sources of air pollutants may require aggregation of total emission levels if these sources share the same industrial grouping, are operating under common control, and are classified as contiguous or adjacent properties. Arsenal operates Cather with the same industrial grouping as nearby facilities, and some of these facilities are under common control. However, the Cather Station is not subject to the aggregation of stationary emission sources because these sites do not meet the definition of contiguous or adjacent facilities.

The Cather Station operates under SIC code 1311 (Crude Petroleum and Natural Gas Extraction). There are surrounding sites operated by Arsenal that share the same two digit major SIC code of 13 for Crude Petroleum and Natural Gas Extraction. Therefore, the Cather Station does share the same SIC codes as the surrounding wells and compressor stations.

Arsenal is the sole operator of the Cather Station. Arsenal is also the sole operator of other production sites and compressor stations in the area. Therefore, Arsenal does qualify as having nearby operations under common control.

Based on the EPA's Source Determination Guidance for Certain Emission Units in the Oil and Natural Gas Sector, effective on August 2, 2016, the term "adjacent" is defined as follows:

Equipment and activities in the oil and gas sector that are under common control will be considered part of the same source if they are located near each other – specifically, if they are located on the same site or on sites that share equipment and are within ¹/₄ mile of each other.

The Cather Compressor Station shares equipment with the surrounding wells and compressor stations. Specifically, the Goff Compressor Station and Cather Compressor Station can be operated such that gas flows from one station to the other, with each station acting as a stage of compression. It is important to note that bypass valves are installed and operated at each facility to allow for each station to operate independently of one another, as required by field and market conditions. Based upon the above, the Cather compressor station does share equipment with nearby facilities.

The additional consideration that the EPA put forth in the Source Determination Guidance is that the facilities must be within ¼ mile to be considered as adjacent facilities. Cather Compressor station does not fall within the ¼ mile rule and therefore, does not meet the definition of contiguous or adjacent properties.

Below are the GPS coordinates for the Cather Compressor station and nearby, Arsenal owned assets to show the ¹/₄ mile radius is valid.

Cather Compressor Station: 39.27944, -80.41333 (0.50 miles from Goff Compressor Station and 0.96 miles from Goff 3 & 4) Goff Compressor Station: 39.27737, -80.40417 Goff 3 & 4 Wellpad: 39.269845, -80.40031

Based on the above reasoning, Arsenal is not subject to the aggregation of stationary emission sources since the stationary sources are not considered contiguous or adjacent facilities.

2.0 REGULATORY DISCUSSION

This section outlines the State air quality regulations that could be reasonably expected to apply to the Cather Station and makes an applicability determination for each regulation based on activities conducted at the station and the emissions of regulated air pollutants. This review is presented to supplement and/or add clarification to the information provided in the WVDEP G35-D permit application forms. The West Virginia State Regulations address federal regulations, including Prevention of Significant Deterioration permitting, Title V permitting, New Source Performance Standards, and National Emission Standards for Hazardous Air Pollutants.

The regulatory requirements in reference to Cather are described in detail in the below section.

West Virginia State Air Regulations

45 CSR 02 – To Prevent and Control Particulate Air Pollution From Combustion of Fuel in Indirect Heat Exchangers

The Dehydrator Reboilers are indirect heat exchangers that combust natural gas but are exempt from this regulation since the heat input capacities are less than 10 MMBtu/hr.

45 CSR 04 – To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contributes to an Objectionable Odor

Operations conducted at the Cather Station are subject to this requirement. Based on the nature of the process at the compressor station, the presence of objectionable odors is unlikely.

45 CSR 06 – Control of Air Pollution from the Combustion of Refuse

The Cather Compressor Station does not have a refuse combustion device and is therefore not subject to this rule.

45 CSR 10 – To Prevent and Control Air Pollution from the Emission of Sulfur Oxides

The Dehydrators Reboilers combust natural gas but are exempt from this regulation since the heat input capacities are less than 10 MMBtu/hr.

45 CSR 13 – Permits for Construction, Modification, Relocation and Operation of Stationary Sources of Air Pollutants

This G35-D permit application is being submitted for the operational activities associated with Arsenal's compression of natural gas.

45 CSR 14 – Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution for the Prevention of Significant Deterioration

Federal construction permitting programs regulate new and modified sources of attainment pollutants under Prevention of Significant Deterioration (PSD). The G35-D applicability criterion excludes facilities that meet the definition of a major source as defined in 45 CSR 19 for being eligible for the general permit.

Operation of equipment at the Cather Station will not exceed emission thresholds established by this permitting program. Arsenal will monitor future construction and modification activities at the station closely and will compare any future increase in emissions with the PSD thresholds to ensure these activities will not trigger this program.

45 CSR 16 - Standards of Performance for New Stationary Sources (NSPS)

45 CSR 16 applies to all registrants that are subject to any of the NSPS requirements described in more detail in the Federal Regulations section.

45 CSR 19 – Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution which Cause or Contributed to Non-attainment

Federal construction permitting programs regulate new and modified sources of nonattainment pollutants under Non-Attainment New Source Review (NNSR). The G35-D applicability criterion excludes facilities that meet the definition of a major source as defined in 45 CSR 19 for being eligible for the general permit.

Harrison County, WV is in attainment for all pollutants with a National Ambient Air Quality Standard (NAAQS). Therefore, this regulation would not apply to the Cather Station.

45 CSR 25 – Control of Air Pollution from Hazardous Waste Treatment, Storage, and Disposal Facilities

No hazardous waste will be burned at this compressor station; therefore, it is not subject to this hazardous waste rule.

45 CSR 30 – Requirements for Operating Permits

45 CSR 30 applies to the requirements of the federal Title V operating permit program (40 CFR 70). The major source thresholds for the Title V operating permit program regulations are 10 tons per year (tpy) of a single hazardous air pollutant (HAP), 25 tpy of any combination of HAPs, or 100 tpy of all other regulated pollutants.

The potential emissions of all regulated pollutants at the proposed facility are below the corresponding major source threshold(s). Therefore, the Cather Station will not be a major source under the Title V program.

45 CSR 34 – National Emission Standards for Hazardous Air Pollutants (NESHAP)

45 CSR 34 applies to all registrants that are subject to any of the NESHAP requirements. The NESHAP Rules are discussed further in the Federal Regulation section of this document.

Federal Regulations

New Source Performance Standards

40 CFR 60, Subpart OOOO (Standards of Performance for Crude oil and Natural Gas Production, Transmission and Distribution)

Subpart OOOO establishes emission standards and compliance schedules for the control of volatile organic compounds (VOC) and sulfur dioxide (SO₂) emissions from affected facilities that commence construction, modification or reconstruction between August 23, 2011 and September 18, 2015. The applicable provisions and requirements of Subpart OOOO are included under the G35-D permit.

Equipment types that have been installed at the Cather Station that do not meet the affected facility definitions as specified by EPA include:

• Pneumatic devices: All pneumatic devices installed at the Cather Station are either low-continuous bleed or intermittent bleed and do not qualify as affected sources.

Subpart OOOOa (Standards Of Performance For Crude Oil And Natural Gas Facilities For Which Construction, Modification, Or Reconstruction Commenced After September 18, 2015)

The Cather Station does have equipment that is an affected facility under OOOOa. The Cather Station will qualify as a collection of fugitive components affected facility. As a fugitive component affected facility, in order to comply, LDAR monitoring at the Cather Station must be conducted quarterly.

The Cather Station is a reciprocating compressor engine affected facility under OOOOa. As a reciprocating engine affected facility, Arsenal must replace the compressor rod packing on or before the compressor operating for 26,000 hours or prior to three (3) years from the date of the most recent rod packing replacement, whichever is earlier.

There are several equipment types that have been installed at the Cather Station that do not meet the affected facility definitions as specified by EPA. These include:

- Storage vessels: Emissions from each produced water tank was determined to be below 6 tons per year (tpy) of VOC. Therefore, Produced Water Tanks TK-1 and TK-2 are not affected storage vessels.
- Pneumatic devices: All pneumatic devices installed at the Cather Station are either low-continuous bleed or intermittent bleed and do not qualify as affected sources.

40 CFR 60 Subpart JJJJ (Standards of Performance for Stationary Spark Ignition Internal Combustion Engines)

The Cather Station has two (2) compressor engines that were constructed after 6/12/2006, making them subject to JJJJ. One (1) of these engines is a non-emergency, spark-ignition (SI) CAT G3608 TALE reciprocating internal combustion engine (RICE) with a horsepower rating of 2,370 bhp. The other engine is a non-emergency, SI CAT G3606 TALE RICE with a horsepower rating of 1,775 bhp. These units are subject to the following emissions standards:

- NOx 1.0 g/bhp-hr;
- CO 2.0 g/bhp-hr; and
- VOCs 0.7 g/bhp-hr.

The Cather Station also has one (1) 107 hp Kohler 80REZGD Emergency Generator. This unit is JJJJ certified for the following standards and has an EPA Certificate of Conformity:

- NOx 2.0 g/bhp-hr;
- CO 4.0 g/bhp-hr;
- VOC 1.0 g/bhp-hr.

No additional NSPS are expected to be applicable to this facility.

National Emissions Standards for Hazardous Air Pollutants

40 CFR 63, Subpart ZZZZ (National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines)

The CAT G3608 TALE and CAT G3606 TALE compressor engines comply with Subpart ZZZZ because they are subject to NSPS Subpart JJJJ regulations.

The Kohler 80REZGD Emergency Generator complies with Subpart ZZZZ because it is a NSPS Subpart JJJJ certified engine with an EPA Certificate of Conformity.

No additional NESHAP are expected to be applicable to this facility.

G35-D GENERAL P	ERMIT RE	EGISTRATION A	APPLICATION					
	ADMINISTRATIV	REGARD TO THE CONSTR VE UPDATE AND OPERATIC D/OR DEHYDRATION FACI	ON OF					
□CONSTRUCTION ⊠MODIFICATION □RELOCATION	☑ MODIFICATION □ CLASS II ADMINISTRATIVE UPDATE							
S	ECTION 1. GENE	RAL INFORMATION						
Name of Applicant (as registered with the	WV Secretary of S	tate's Office): Arsenal Midst	ream, LLC					
Federal Employer ID No. (FEIN): 47-1919	0654							
Applicant's Mailing Address: 65 Profess	ional Place Suit	e 200						
City: Bridgeport	State: WV		ZIP Code: 26330					
Facility Name: Cather Compressor Sta	ition							
Operating Site Physical Address: 50 E. Da If none available, list road, city or town as		larksburg, Harrison County, V	WV					
City: Clarksburg	Zip Code: 26302	2	County: Harrison					
Latitude & Longitude Coordinates (NAD8 Latitude: 39.27944 Longitude: -80.41333	3, Decimal Degrees	s to 5 digits):						
SIC Code: 1311	SIC Code: 1311 DAQ Facility ID No. (For existing facilities)							
NAICS Code: 211111		033-00187						
	CERTIFICATION	OF INFORMATION						
This G35-D General Permit Registration Application shall be signed below by a Responsible Official. A Responsible Official is a President, Vice President, Secretary, Treasurer, General Partner, General Manager, a member of the Board of Directors, or Owner, depending on business structure. A business may certify an Authorized Representative who shall have authority to bind the Corporation, Partnership, Limited Liability Company, Association, Joint Venture or Sole Proprietorship. Required records of daily throughput, hours of operation and maintenance, general correspondence, compliance certifications and all required notifications must be signed by a Responsible Official or an Authorized Representative. If a business wishes to certify an Authorized Representative, the official agreement below shall be checked off and the appropriate names and signatures entered. Any administratively incomplete or improperly signed or unsigned G35-D Registration Application will be returned to the applicant. Furthermore, if the G35-D forms are not utilized, the application will be returned to the applicant. No substitution of forms is allowed.								
I hereby certify that is an Authorize (e.g., Corporation, Partnership, Limited L obligate and legally bind the business. If t notify the Director of the Division of Air I hereby certify that all information conta- documents appended hereto is, to the best have been made to provide the most comp	iability Company, A he business change Quality immediatel ined in this G35-D of my knowledge,	s its Authorized Representative y. General Permit Registration Ap true, accurate and complete, and	le Proprietorship) and may , a Responsible Official shall plication and any supporting					
Responsible Official Signature: Name and Title: Email: If applicable:	Phone: Date:	Fax:						
Authorized Representative Signature: Name and Title: Meghan M.B. Yingling, Email: myingling@arsenalresources.com	Environmental Co	mpliance Manager Phone: 7. 9/18/17	24-940-1112 Fax:					
If applicable: Environmental Contact Name and Title: Meghan M.B. Yingling, Email: myingling@arsenalresources.com		mpliance Manager Phone: 724	4-940-1112 Fax:					

OPERATING SITE INFORMATION							
Briefly describe the proposed new operation and/or any change(s) to the facility: Addition of New emergency generator.							
Directions to the facility: From I-79 South; (1.) At exit 119, take ramp right for US-50 West toward Clarksburg, Travel 7.0 miles (2.) Turn left onto WV-98/Old US 50 / Sun Valley Rd. travel 0.4 miles (3.) turn left to stay on WV-98 and ravel 0.3 miles (4.) arrive at the Compressor Station on the right. Cather station is ~0.5 miles down the lease road on the right.							
ATTACHMENTS AND SU	IPPORTING DOCUMENTS						
I have enclosed the following required documen	ts:						
Check payable to WVDEP – Division of Air Quality with the	appropriate application fee (per 45CSR13 and 45CSR22).						
 □ Check attached to front of application. □ I wish to pay by electronic transfer. Contact for payment (⊠ I wish to pay by credit card. Contact for payment (incl. n myingling@arsenalresources.com 							
 S500 (Construction, Modification, and Relocation) S1,000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ and/or 0 \$2,500 NESHAP fee for 40 CFR63, Subpart ZZZZ and/or H 							
¹ Only one NSPS fee will apply. ² Only one NESHAP fee will apply. The Subpart ZZZZ NES requirements by complying with NSPS, Subparts IIII and/or J NSPS and NESHAP fees apply to new construction or if the s	1111.						
🖾 Responsible Official or Authorized Representative Signate	ure (if applicable)						
□ Single Source Determination Form (must be completed in	n its entirety) – Attachment A						
🛛 Siting Criteria Waiver (if applicable) – Attachment B	🖾 Current Business Certificate – Attachment C						
🛛 Process Flow Diagram – Attachment D	Process Description – Attachment E						
🛛 Plot Plan – Attachment F	🖾 Area Map – Attachment G						
🛛 G35-D Section Applicability Form – Attachment H	🖾 Emission Units/ERD Table – Attachment I						
🖾 Fugitive Emissions Summary Sheet – Attachment J							
Storage Vessel(s) Data Sheet (include gas sample data, US HYSYS, etc.), etc. where applicable) – Attachment K							
⊠ Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs Attachment L	, Heater Treaters, In-Line Heaters if applicable) –						
⊠ Internal Combustion Engine Data Sheet(s) (include manuf Attachment M	acturer performance data sheet(s) if applicable) –						
Tanker Truck Loading Data Sheet (if applicable) – Attach							
⊠ Glycol Dehydration Unit Data Sheet(s) (include wet gas as information on reboiler if applicable) – Attachment O	nalysis, GRI- GLYCalc [™] input and output reports and						
Ineumatic Controllers Data Sheet – Attachment P							
🛛 Centrifugal Compressor Data Sheet – Attachment Q							
🛛 Reciprocating Compressor Data Sheet – Attachment R							
Blowdown and Pigging Operations Data Sheet – Attachme	ent S						
□ Air Pollution Control Device/Emission Reduction Device(applicable) – Attachment T	s) Sheet(s) (include manufacturer performance data sheet(s) if						
Emission Calculations (please be specific and include all	calculation methodologies used) – Attachment U						
Security-wide Emission Summary Sheet(s) – Attachment V	,						
🛛 Class I Legal Advertisement – Attachment W							
\boxtimes One (1) paper copy and two (2) copies of CD or DVD with	n pdf copy of application and attachments						

All attachments must be identified by name, divided into sections, and submitted in order.

Attachment A

ATTACHMENT A ·	SINGLE	SOURCE	DETERMINA	ATION FORM
	DINGLL	DOCKCL		11101011 UMM

Classifying multiple facilities as one "stationary source" under 45CSR13, 45CSR14, and
45CSR19 is based on the definition of Building, structure, facility, or installation as given in
§45-14-2.13 and §45-19-2.12. The definition states:

"Building, Structure, Facility, or Installation" means all of the pollutant-emitting activities which belong to the same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the control of the same person (or persons under common control). Pollutant-emitting activities are a part of the same industrial grouping if they belong to the same "Major Group" (i.e., which have the same two (2)-digit code) as described in the Standard Industrial Classification Manual, 1987 (United States Government Printing Office stock number GPO 1987 0-185-718:QL 3).

The Source Determination Rule for the oil and gas industry was published in the Federal Register on June 3, 2016 and will become effective on August 2, 2016. EPA defined the term "adjacent" and stated that equipment and activities in the oil and gas sector that are under common control will be considered part of the same source if they are located on the same site or on sites that share equipment and are within ¹/₄ mile of each other.

Is there equipment and activities in the same industrial grouping (defined by SIC code)? Yes ⊠ No □
Is there equipment and activities under the control of the same person/people? Yes \boxtimes No \square
Is there equipment and activities located on the same site or on sites that share equipment and are within $\frac{1}{4}$ mile of each other? Yes \Box No \boxtimes

Attachment B (Not Applicable)

Attachment C

WEST VIRGINIA STATE TAX DEPARTMENT

BUSINESS REGISTRATION CERTIFICATE

ISSUED TO: ARSENAL MIDSTREAM LLC 65 PROFESSIONAL PL 200 BRIDGEPORT, WV 26330-1889

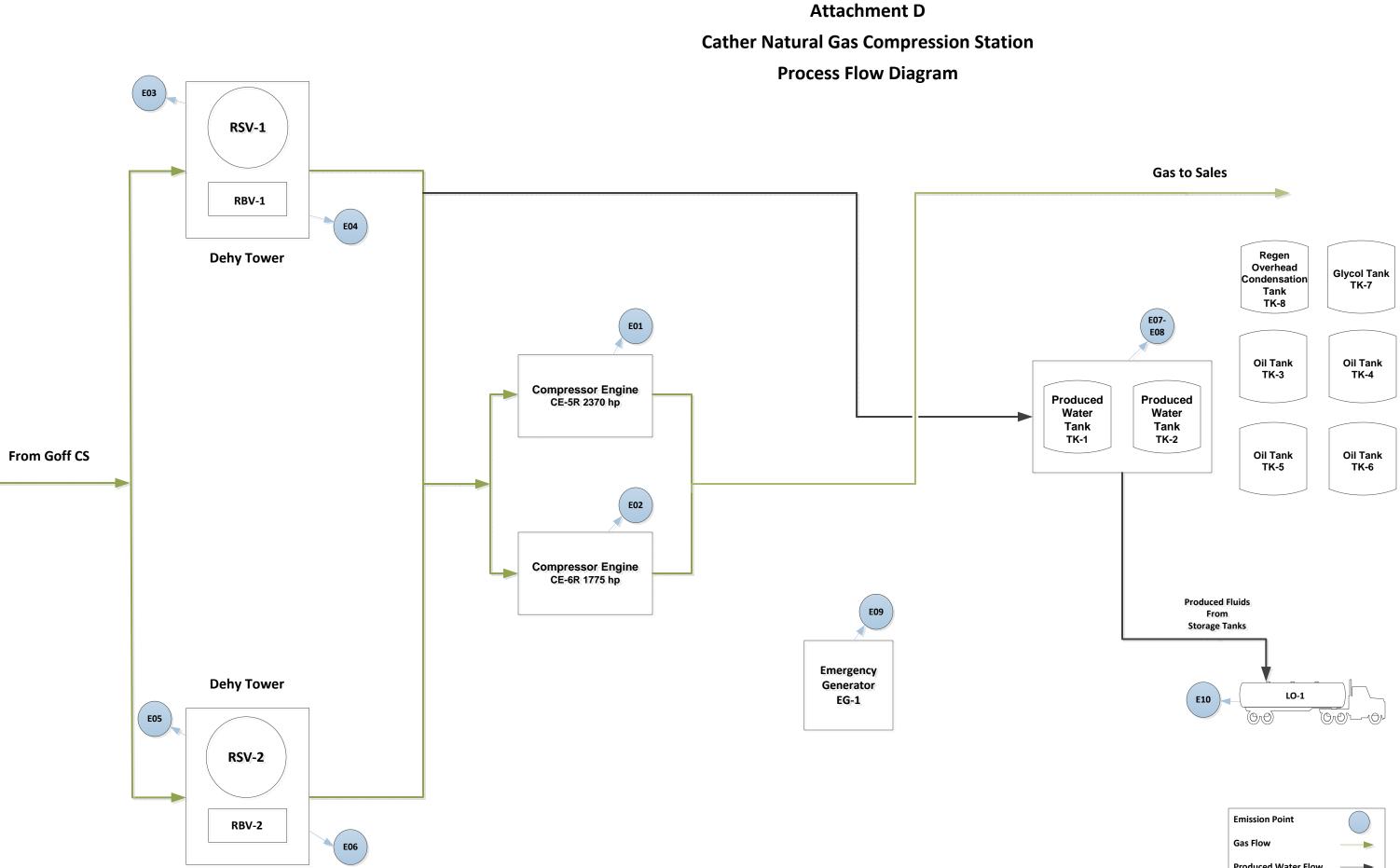
BUSINESS REGISTRATION ACCOUNT NUMBER:

2306-9776

This certificate is issued on: 05/17/2017

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.


This certificate is not transferrable and must be displayed at the location for which issued This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

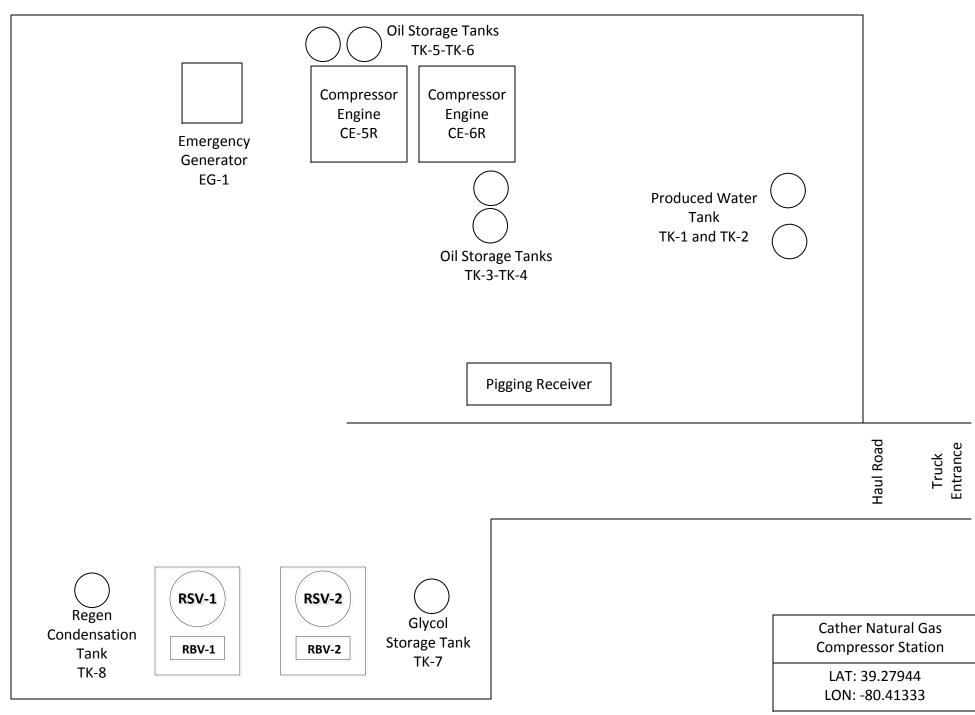
atL006 v.4 L0904785088

Attachment D

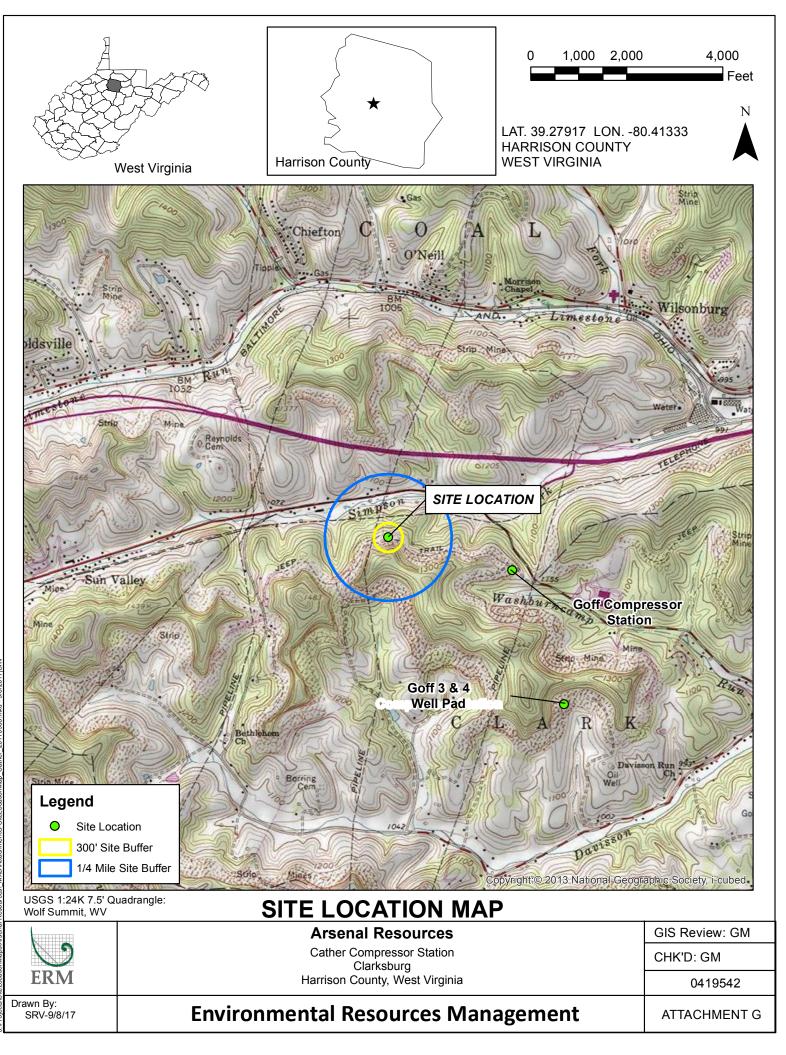
Emission Point	
Gas Flow	-
Produced Water Flow	>
Vent Gas Flow	

Attachment E

Attachment E – Process Description


Pipeline quality natural gas enters the site and is routed through two (2) 67 MMSCF/D Tri-Ethylene Glycol (TEG) Dehydration units (RSV-1 and RSV-2) to dry gas below 7.0 lbs/MMSCF/D of water content. From the dehydration units, the gas flows to one (1) 2,370 hp CAT G3608 TALE Compressor Engine (CE-5R) and one (1) 1,775 hp CAT G3606 TALE Compressor Engine (CE-6R). From the compressors, the gas enters the sales line.

Fluids are removed from Produced Water Tanks (TK-1 and TK-2) via Produced Fluids Loadout (LO-1) to tanker trucks on an as needed basis.


Emergency Generator EG-1 will provide backup power to the site on an as needed basis.

Attachment F

ATTACHMENT F – PLOT PLAN

Attachment G

Attachment H

ATTACHMENT H – G35-D SECTION APPLICABILITY FORM

General Permit G35-D Registration Section Applicability Form

General Permit G35-D was developed to allow qualified applicants to seek registration for a variety of sources. These sources include storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, centrifugal compressors, reciprocating compressors, reciprocating internal combustion engines (RICEs), tank truck loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G35-D allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

	GENERAL PERMIT G35-D APPLICABLE SECTIONS
Section 5.0	Storage Vessels Containing Condensate and/or Produced Water ¹
□Section 6.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO/OOOOa)
□Section 7.0	Control Devices and Emission Reduction Devices not subject to NSPS Subpart OOOO/OOOOa and/or NESHAP Subpart HH
Section 8.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc
□Section 9.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO/OOOOa)
□Section 10.0	Centrifugal Compressor Affected Facility (NSPS, Subpart OOOO/OOOOa) ²
Section 11.0	Reciprocating Compressor Affected Facility (NSPS, Subpart OOOO/OOOOa) ²
Section 12.0	Reciprocating Internal Combustion Engines, Generator Engines. Microturbine Generators
Section 13.0	Tanker Truck Loading ³
Section 14.0	Glycol Dehydration Units ⁴
Section 15.0	Blowdown and Pigging Operations
Section 16.0	Fugitive Emission Components (NSPS, Subpart OOOOa)

1 Applicants that are subject to Section 5 may also be subject to Section 6 if the applicant is subject to the NSPS, Subpart OOOO/OOOOa control requirements or the applicable control device requirements of Section 7.

2 Applicants that are subject to Section 10 and 11 may also be subject to the applicable RICE requirements of Section 12.

3 Applicants that are subject to Section 13 may also be subject to control device and emission reduction device requirements of Section 7.

4 Applicants that are subject to Section 14 may also be subject to the requirements of Section 8 (reboilers). Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 7.

Attachment I

ATTACHMENT I – EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment K table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type ⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
CE-5R E01		CAT G3608 TALE Compressor Engine	After 11/17/2015	4/11/2011	2,370 hp/1,000 rpm	Existing	Oxidation Catalyst	N/A
CE-6R	E02	CAT G3606 TALE Compressor Engine	After 11/17/2015	12/12/2014	1,775 hp/1,000 rpm	Existing	Oxidation Catalyst	N/A
RSV-1	E03	TEG Dehydration Still Vent	2012	2012	67 mmscf/day	Existing	N/A	N/A
RBV-1	E04	TEG Dehydration Reboiler	2012	2012	1.0 mmBtu/hr	Existing	N/A	N/A
RSV-2	E05	TEG Dehydration Still Vent	2013	2013	67 mmscf/day	Existing	N/A	N/A
RBV-2	E06	TEG Dehydration Reboiler	2013	2013	1.0 mmscf/day	Existing	N/A	N/A
TK-1	E07	Produced Water Tank	2015	2015	50 bbl	Existing	N/A	N/A
TK-2	E08	Produced Water Tank	2015	2015	50 bbl	Existing	N/A	N/A
EG-1	E09	Kohler 80REZGD Emergency Generator	2015	2015	107 bhp	Existing	N/A	N/A
LO-1	E10	Produced Fluids Loadout	2016	2016	200 bbl	Existing	N/A	N/A

² For Emission Points use the following numbering system: 1E, 2E, 3E, ... or other appropriate designation.

³ When required by rule

⁴ New, modification, removal, existing

⁵ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

⁶ For ERDs use the following numbering system: 1D, 2D, 3D,... or other appropriate designation.

Attachment J

				ATTACHMENT J	- FUGITIVE EMISSIO	NS SUMMAR	RY SHEET		
	Sou	rces of	fugiti		lude loading operations,			n emissions	, etc.
				Use extra pages for	each associated source o	r equipment if	necessary.		
Source/Equipm	ent:								
Leak Detection	Method Us	sed		dible, visual, and ory (AVO) inspections	⊠ Infrared (FLIR) cameras	\Box Other (please	se describe)		□ None required
Is the facility s	ubject to qu	arterly L	DAR m	onitoring under 40CFR60 S	ubpart OOOOa? 🛛 🖾 Yes 🗆	No. If no, why?			
Component	Closed			Source	of Leak Factors	Stream type		Estimated Em	issions (tpy)
Туре	Vent System	Cou	int		ther (specify))	(gas, liquid, etc.)	VOC	HAP	GHG (CO ₂ e)
Pumps	□ Yes □ No					□ Gas □ Liquid □ Both			
Valves	□ Yes ⊠ No	136		EPA		⊠ Gas □ Liquid □ Both	0.01	<0.01	0.64 (16.00)
Safety Relief Valves	□ Yes ⊠ No	6		EPA		⊠ Gas □ Liquid □ Both	<0.01	<0.01	0.04 (1.05)
Open Ended Lines	□ Yes ⊠ No	8		EPA	⊠ Gas □ Liquid □ Both	<0.01	<0.01	0.09 (2.13)	
Sampling Connections	□ Yes □ No					☐ Gas ☐ Liquid ☐ Both			
Connections (Not sampling)	□ Yes ⊠ No	583		EPA		⊠ Gas □ Liquid □ Both	<0.01	<0.01	0.30 (7.62)
Compressors	□ Yes □ No					□ Gas □ Liquid □ Both			
Flanges	□ Yes □ No					☐ Gas ☐ Liquid ☐ Both			
Other ¹ (Pigging)	□ Yes ⊠ No	1		EPA		⊠ Gas □ Liquid □ Both	<0.01	<0.01	<0.01 (<0.01)

¹ Other equipment types may include compressor seals, relief valves, diaphragms, drains, meters, etc.

Please indicate if there are any closed vent by passes (include component): $N\!/\!A$

Specify all equipment used in the closed vent system (e.g. VRU, ERD, thief hatches, tanker truck loading, etc.) N/A

Attachment K

ATTACHMENT K – STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water. (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). **Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.**

The following information is **REQUIRED**:

 \Box Composition of the representative sample used for the simulation

- □ For each stream that contributes to flashing emissions:
 - □ Temperature and pressure (inlet and outlet from separator(s))
 - □ Simulation-predicted composition
 - □ Molecular weight
 - \Box Flow rate
- □ Resulting flash emission factor or flashing emissions from simulation

 \square Working/breathing loss emissions from tanks and/or loading emissions if simulation is used to quantify those emissions

Additional information may be requested if necessary.

GENERAL INFORMATION

1. Bulk Storage Area Name: Cather Compressor	2. Tank Name: Produced Water Tank						
Station							
3. Emission Unit ID number TK-1, TK-2	4. Emission Point ID number E07 and E08						
5. Date Installed, Modified or Relocated (for existing	6. Type of change:						
tanks) 2016	\Box New construction \Box New stored material \boxtimes Other						
Was the tank manufactured after August 23, 2011?	\Box Relocation						
\boxtimes Yes \Box No							
7A. Description of Tank Modification (<i>if applicable</i>)							
7B. Will more than one material be stored in this tank? If set	o, a separate form must be completed for each material.						
\Box Yes \boxtimes No							
7C. Was USEPA Tanks simulation software utilized?							
\Box Yes \boxtimes No							
If Yes, please provide the appropriate documentation and items 8-42 below are not required.							

TANK INFORMATION

	e internal cross-sectional area multiplied by internal height.						
50 bbl							
9A. Tank Internal Diameter (ft.) 8	9B. Tank Internal Height (ft.) 10						
10A. Maximum Liquid Height (ft.) 8.5	10B. Average Liquid Height (ft.) 5						
11A. Maximum Vapor Space Height (ft.) 1.5	11B. Average Vapor Space Height (ft.) 5						
12. Nominal Capacity (specify barrels or gallons). Thi	s is also known as "working volume". 50 bbl						
13A. Maximum annual throughput (gal/yr) 218,400	13B. Maximum daily throughput (gal/day) 598.36						
14. Number of tank turnovers per year 52	15. Maximum tank fill rate (gal/min) 0.42						
16. Tank fill method \boxtimes Submerged \square Splash	Bottom Loading						
17. Is the tank system a variable vapor space system?	\Box Yes \boxtimes No						
If yes, (A) What is the volume expansion capacity of the	e system (gal)?						
(B) What are the number of transfers into the syst	tem per year?						
18. Type of tank (check all that apply):							
\boxtimes Fixed Roof \square vertical \square horizontal \square	flat roof \Box cone roof \boxtimes dome roof \Box other (describe)						
□ External Floating Roof □ pontoon roof □	double deck roof						
Domed External (or Covered) Floating Roof							
□ Internal Floating Roof □ vertical column support □ self-supporting							
□ Variable Vapor Space □ lifter roof □ diaphragm							
\square Pressurized \square spherical \square cylindrical							
□ Other (describe)							

PRESSURE/VACUUM CONTROL DATA

19. Check as many as app	ly:										
☑ Does Not Apply		\Box Rupture Disc (psig)									
□ Inert Gas Blanket of		\Box Carbon Adsorption ¹									
□ Vent to Vapor Combus	\Box Vent to Vapor Combustion Device ¹ (vapor combustors, flares, thermal oxidizers, enclosed combustors)										
□ Conservation Vent (psi	g)										
Vacuum Setting		Pressure	Setting								
Emergency Relief Value	ve (psig)										
Vacuum Setting		Pressure	Setting								
□ Thief Hatch Weighted	□ Yes □	∃ No									
¹ Complete appropriate Air	Pollution	n Control	Device SI	neet							
20. Expected Emission Ra	ite (submi	it Test Da	ta or Calc	ulations he	ere or else	where in t	he applica	tion).			
Material Name	Flashi	ng Loss	Breath	ing Loss	Workir	ng Loss	Total		Estimation Method ¹		
							Emissio	ons Loss			
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy			
Produced Water				See Atta	chment V	7	1				

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.

TANK CONSTRUCTION AND OPERATION INFORMATION					
21. Tank Shell Construction:					
\boxtimes Riveted \square Gunite lined \square Epoxy-coated rivets \square Other (describe)					
21A. Shell Color: Tan	21B. Roof Color: Ta	oof Color: Tan		21C. Year Last Painted: 2015	
22. Shell Condition (if metal and unlined):					
\boxtimes No Rust \square Light Rust \square Dense Rust \square Not applicable					
22A. Is the tank heated? \Box Yes \boxtimes No 22B. If yes, operating temperature:		; temperature:	22C. If yes, how is heat provided to tank?		
23. Operating Pressure Range (psig):					
Must be listed for tanks using VRUs with closed vent system.					
24. Is the tank a Vertical Fixed Roof	24A. If yes, for dome roof provide radius		24B. If yes, for cone roof, provide slop		
Tank?	(ft):			(ft/ft):	
⊠ Yes □ No	4				
25. Complete item 25 for Floating Roof Tanks \Box Does not apply \boxtimes					
25A. Year Internal Floaters Installed:					
25B. Primary Seal Type (check one): Metallic (mechanical) shoe seal Liquid mounted resilient seal					
\Box Vapor mounted resilient seal \Box Other (describe):					
25C. Is the Floating Roof equipped with a secondary seal? Yes No					
25D. If yes, how is the secondary seal mounted? (<i>check one</i>) \Box Shoe \Box Rim \Box Other (describe):					
25E. Is the floating roof equipped with a weather shield? \Box Yes \Box No					
25F. Describe deck fittings:					
251. Describe deck numgs.					
26. Complete the following section for Internal Floating Roof Tanks 🛛 Does not apply					
26A. Deck Type:	26B. For bolted decks, provide deck construction:				
26C. Deck seam. Continuous sheet construction:					
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide \Box 5 x 7.5 ft. wide \Box 5 x 12 ft. wide \Box other (describe)					
26D. Deck seam length (ft.): 26E. Area of deck (ft ²):		26F. For column supported 26G. For colum		26G. For column supported	
		tanks, # of columns:		tanks, diameter of column:	
27. Closed Vent System with VRU? Yes No					
28. Closed Vent System with Enclosed Combustor? Yes No					
SITE INFORMATION					
29. Provide the city and state on which the data in this section are based:					
30. Daily Avg. Ambient Temperature (°F):		31. Annual Avg. Maximum Temperature (°F):			
32. Annual Avg. Minimum Temperature (°F):		33. Avg. Wind Speed (mph):			
34. Annual Avg. Solar Insulation Factor (BTU/ft²-day): 35. Atmospheric Pressure (psia):					
LIQUID INFORMATION	1		1		
36. Avg. daily temperature range of bulk 36A. Minimum (°F):			36B. Max	ximum (°F):	
liquid (°F): 37. Avg. operating pressure range of tank	37A. Minimum (psig		37B. Maximum (psig):		
(psig):		. 5/B. Maximum (psig).			
(pug).					
38A. Minimum liquid surface temperature (°F):		38B. Corresponding vapor pressure (psia):			
39A. Avg. liquid surface temperature (°F):		39B. Corresponding vapor pressure (psia):			
40A. Maximum liquid surface temperature (°F): 40B. Corresponding vapor pressure (psia):					
41. Provide the following for each liquid or gas to be stored in the tank. Add additional pages if necessary.					
41A. Material name and composition:					
41B. CAS number:					
41C. Liquid density (lb/gal):41D. Liquid molecular weight (lb/lb-					
mole):					
41E. Vapor molecular weight (lb/lb-					

mole):		
41F. Maximum true vapor pressure (psia):		
41G. Maximum Reid vapor pressure		
(psia):		
41H. Months Storage per year.		
From: To:		
42. Final maximum gauge pressure and		
temperature prior to transfer into tank used		
as inputs into flashing emission		
calculations.		

STORAGE TANK DATA TABLE

List all deminimis storage tanks (i.e. lube oil, glycol, diesel etc.)

Source ID # ¹	Status ²	Content ³	Volume ⁴
Oil Storage TK3- TK6	Existing	Oil	520 gal each
Glycol Storage TK7	Existing	Glycol	520 gal
Regen Overhead Condensation Tank TK8	Existing	Dehydrator Regenerator Condensate	100 БЫ
1			

1. Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the compressor station. Tanks should be designated T01, T02, T03, etc.

- 2. Enter storage tank Status using the following:
 - EXIST Existing Equipment
 - NEW Installation of New Equipment
 - REM Equipment Removed
- 3. Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, diesel, mercaptan etc.
- 4. Enter the maximum design storage tank volume in gallons.

Attachment L (Not Applicable)

Attachment M

ATTACHMENT M – INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. *Generator(s) and microturbine generator(s) shall also use this form.*

snatt also i	ise inis jorm	•					
Emission Unit I	D#1	CE	CE-5R CE-6R		EC	G-1	
Engine Manufac	cturer/Model	CAT G36	08 TALE	CAT G36	506 TALE	Kohler 80REZGD	
Manufacturers H	Rated bhp/rpm	2370/1000		1775/1000		107/1800	
Source Status ²		E	S	ES		NS	
Date Installed/ Modified/Removed/Relocated ³		20	15	2015		2017	
Engine Manufactured /Reconstruction Date ⁴		4/11,	/2011	12/12/2014		06/09/2017	
Check all applicable Federal Rules for the engine (include EPA Certificate of Conformity if applicable) ⁵		 ⋈ 40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 		 ⋈ 40CFR60 Subpart JJJJ □ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? □ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 		 ⋈ 40CFR60 Subpart JJJJ ⋈ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? □ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 	
Engine Type ⁶		45	EB	45	SLB	45	SLB
APCD Type ⁷		Ох	Cat	Ох	Cat	Ox	Cat
Fuel Type ⁸		R	G	R	RG	F	?G
H ₂ S (gr/100 scf)	0.0)25	0.0	025	0.025	
Operating bhp/r	pm	2370	/1000	1775/1000		107/1800	
BSFC (BTU/bhp	p-hr)	6,6	577	6,697			
Hourly Fuel Th	roughput		3/hr l/hr	13,440 ft ³ /hr gal/hr		1,187 ft ³ /hr gal/hr	
Annual Fuel Th (Must use 8,760 emergency gene	hrs/yr unless		(fft³/yr l/yr	117.7 MMft ³ /yr gal/yr		0.59 MMft ³ /yr gal/yr	
Fuel Usage or H Operation Meter		Yes 🖂	No 🗆	Yes 🖂	No 🗆	Yes 🖂	No 🗆
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)
Vendor Guarantee	NO _x	2.61	11.44	1.96	8.57	0.47	0.12
Vendor Guarantee	СО	1.00	4.39	0.75	3.29	0.07	0.02
Vendor Guarantee	VOC	1.65	7.21	1.23	5.40	0.05	0.01
AP-42	SO ₂	0.01	0.05	<0.01	0.03	<0.01	<0.01
AP-42	PM ₁₀	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Vendor Guarantee	Formaldehyde	0.68	2.98	0.51	2.23	0.05	0.01
AP-42	Total HAPs	0.70	3.06	0.52	2.29	0.05	0.01
AP-42	GHG (CO ₂ e)	3,000.31	13,141.35	1,986.84	8,702.36	99.24	434.68

1 Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.

Enter the Source Status using the following codes: 2

GR

NS	Construction of New Source (installation)	ES	Existing Source
MS	Modification of Existing Source	RS	Relocated Source
REM	Removal of Source		

- 3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.
- Enter the date that the engine was manufactured, modified or reconstructed. 4

5 Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You and control device must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6 Enter the Engine Type designation(s) using the following codes: 2SLB Two Stroke Lean Burn 4SRB Four Stroke Rich Burn 4SLB Four Stroke Lean Burn Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes: 7 A/F Air/Fuel Ratio IR Ignition Retard HEIS High Energy Ignition System SIPC Screw-in Precombustion Chambers Prestratified Charge PSC LEC Low Emission Combustion NSCR Rich Burn & Non-Selective Catalytic Reduction OxCat Oxidation Catalyst Lean Burn & Selective Catalytic Reduction SCR Enter the Fuel Type using the following codes: 8 PQ Pipeline Quality Natural Gas RG Raw Natural Gas /Production Gas D Diesel 9 Enter the Potential Emissions Data Reference designation using the following codes. Attach all reference data used. MD Manufacturer's Data AP AP-42 GRI-HAPCalcTM OT Other (please list)

10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the Emissions Summary Sheet.

11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

8	lution Control Device R, use extra pages as necessary)					
Air Pollution Control Device Yes	Manufacturer's Data Sheet included?					
□ NSCR □ SCR ⊠ Oxidation Catalyst						
Provide details of process control used for proper mixing/	/control of reducing agent with gas stream:					
Manufacturer: EMIT	Model #: ELX-6200-2022F-6CE0-362					
Design Operating Temperature: °F	Design gas volume: scfm					
Service life of catalyst:	Provide manufacturer data? 🗆 Yes 🛛 No					
Volume of gas handled: acfm at °F Operating temperature range for NSCR/Ox Cat: From °F to °F						
Reducing agent used, if any:	Ammonia slip (ppm):					
Pressure drop against catalyst bed (delta P): inche	s of H ₂ O					
Provide description of warning/alarm system that protects Is temperature and pressure drop of catalyst required to b						
How often is catalyst recommended or required to be repl	aced (hours of operation)?					
How often is performance test required? Initial Annual Every 8,760 hours of operation Field Testing Required No performance test required. If so, why (please list a	any maintenance required and the applicable sections in					

NSPS/GACT,

8	ution Control Device R, use extra pages as necessary)					
Air Pollution Control Device Yes [Manufacturer's Data Sheet included? ⊠ No □					
□ NSCR □ SCR ⊠ Oxidation Catalyst						
Provide details of process control used for proper mixing/	control of reducing agent with gas stream:					
Manufacturer: DCL	Model #: DC64L2					
Design Operating Temperature: °F Design gas volume: scfm						
Service life of catalyst:	Provide manufacturer data? 🗆 Yes 🛛 No					
Volume of gas handled: acfm at °F Operating temperature range for NSCR/Ox OF From °F to °F						
Reducing agent used, if any:	Ammonia slip (ppm):					
Pressure drop against catalyst bed (delta P): inches	s of H ₂ O					
Provide description of warning/alarm system that protects Is temperature and pressure drop of catalyst required to be						
How often is catalyst recommended or required to be repla	aced (hours of operation)?					
How often is performance test required? Initial Annual Every 8,760 hours of operation Field Testing Required No performance test required. If so, why (please list as	ny maintenance required and the applicable sections in					

NSPS/GACT,

Attachment N

ATTACHMENT N – TANKER TRUCK LOADING DATA SHEET

Complete this data sheet for each new or modified bulk liquid transfer area or loading rack at the facility. This is to be used for bulk liquid transfer operations to tanker trucks. Use extra pages if necessary.

Truck Loadout Collection Efficiencies

The following applicable capture efficiencies of a truck loadout are allowed:

- For tanker trucks passing the MACT level annual leak test 99.2%
- For tanker trucks passing the NSPS level annual leak test 98.7%
- For tanker trucks not passing one of the annual leak tests listed above -70%

Compliance with this requirement shall be demonstrated by keeping records of the applicable MACT or NSPS Annual Leak Test certification for *every* truck and railcar loaded/unloaded. This requirement can be satisfied if the trucking company provided certification that its entire fleet was compliant. This certification must be submitted in writing to the Director of the DAQ. These additional requirements must be noted in the Registration Application and will be noted on the issued G35-D Registration.

Emission Unit ID#: LO-1	1	Emission Point ID			#: E10 Year Installed/Modified: N/A			Modified: N/A
Emission Unit Description: Produced Water Tank Truck Loading TK-1 and TK-2								
Loading Area Data								
Number of Pumps: NA	er of Liquids	Loaded: 1		Max number of trucks loading at one (1) time: 1				
Are tanker trucks pressure tested for leaks at this or any other location? \Box Yes \Box No \boxtimes Not Required If Yes, Please describe:								
Provide description of cl	osed vent syste	m and an	y bypasses.	NA				
 Are any of the following truck loadout systems utilized? Closed System to tanker truck passing a MACT level annual leak test? Closed System to tanker truck passing a NSPS level annual leak test? Closed System to tanker truck not passing an annual leak test and has vapor return? 								
Proj	ected Maximu	m Operat	ting Schedul	e (for rack o	r transf	er point as	a wh	ole)
Time	Jan – M	ar	Apr - Jun		Jul – Sept			Oct - Dec
Hours/day	24		24			24		24
Days/week	7		,	7	7			7
	Bu	lk Liquid	Data (use e	xtra pages a	s necess	ary)		
Liquid Name	Produce	d Water						
Max. Daily Throughput (1000 gal/day)								
Max. Annual Throughput (1000 gal/yr) 218.4								
Loading Method ¹	oading Method ¹ SP							
Max. Fill Rate (gal/min) 0.42								
Average Fill Time (min/loading)	NA	NA						
Max. Bulk Liquid Temperature (°F)	70							

True Vapor Pressure ²		NA	
Cargo Vessel Condition ³		U	
Control Equipment or Method ⁴		None	
Max. Collection Efficiency (%)		NA	
Max. Control (%)	Efficiency	NA	
Max.VOC Emission	Loading (lb/hr)	<0.01	
Rate	Annual (ton/yr)	<0.01	
Max.HAP Emission	Loading (lb/hr)	<0.01	
Rate	Annual (ton/yr)	<0.01	
Estimation M	lethod ⁵	O - ProMax	

	1	BF	Bottom Fill	SP	Splash Fill			SUB	Submerged Fill
	2	At maxim	um bulk liquid temperature		•				-
	3	В	Ballasted Vessel	С	Cleaned			U	Uncleaned (dedicated
service)									
		0	Other (describe)						
	4	List as m	any as apply (complete and su	ıbmit appı	ropriate A	ir Pollutio	on Contro	l Device S	sheets)
		CA	Carbon Adsorption		VB	Dedicated	l Vapor E	alance (cl	osed system)
		ECD	Enclosed Combustion Device	;	F	Flare	-		
		ТО	Thermal Oxidization or Incin	eration					
	5	EPA	EPA Emission Factor in AP-4	42			MB	Material	Balance
		ТМ	Test Measurement based upor	n test data	a submitta	1	0	Other (des	cribe)

Attachment O (Not Applicable)

Attachment P

ATTACHMENT P – PNEUMATIC CONTROLLERS DATA SHEET
Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?
\Box Yes \boxtimes No
Please list approximate number.
Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after September 18, 2015?
\Box Yes \boxtimes No
Please list approximate number.
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?
🗌 Yes 🛛 No
Please list approximate number.
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after September 18, 2015?
\Box Yes \boxtimes No
Please list approximate number.

Attachment Q

ATTACHMENT Q – CENTRIFUGAL COMPRESSOR DATA SHEET

Are there any centrifugal compressors at this facility that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?

🗌 Yes 🛛 No

Please list:

Emission Unit ID#	Compressor Description
	e any centrifugal compressors at this facility that commenced tion, modification or reconstruction after September 18, 2015?
	\Box Yes \boxtimes No
	☐ Yes ⊠ No Please list:
Emission Unit ID#	
	Please list:
	Please list:

Attachment R

ATTACHMENT R – RECIPROCATING COMPRESSOR DATA SHEET						
	Are there any reciprocating compressors at this facility that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?					
	\Box Yes \boxtimes No					
	Please list:					
Emission Unit ID#	Compressor Description					
	e any reciprocating compressors at this facility that commenced ction, modification or reconstruction after September 18, 2015?					
	Please list:					
Emission Unit ID#	Compressor Description					
CE-5R	CAT G3608 TALE Compressor Engine					
CE-6R	CAT G3606 TALE Compressor Engine					
	1					

Attachment S

ATTACHMENT S – BLOWDOWN AND PIGGING OPERATIONS DATA SHEET

Will there be any blowdown and pigging operations that occur at this facility?

🛛 Yes 🗌 No

Please list:

Type of Event	# of Events (event/yr)	Amount Vented per event (scf/event)	MW of vented gas (lb/lb-mol)	Total Emissions (ton/yr)	VOC weight fraction	VOC emissions (ton/yr)
Compressor Blowdown	100	3,776	16.45	290.23	< 0.01	0.50
Compressor Startup						
Plant Shutdown						
Low Pressure Pig Venting						
High Pressure Pig Venting	20	437.34	16.45	0.3462	<0.01	<0.01

Type of Event	# of Events (event/yr)	Amount Vented per event (scf/event)	MW of vented gas (lb/lb-mol)	Total Emissions (ton/yr)	HAP weight fraction	HAP emissions (ton/yr)
Compressor Blowdown	100	3,776	16.45	290.23	< 0.01	< 0.01
Compressor Startup						
Plant Shutdown						
Low Pressure Pig Venting						
High Pressure Pig Venting	20	437.34	16.45	0.3462	<0.01	<0.01

Attachment T (Not Applicable)

Attachment U

Attachment U CAT G3608TALE Compressor Engine (CE-5R)

						<u> </u>					
Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Engine Rating (bhp)	Engine Rating (kW)	Fuel Consumption (Btu/bhp-hr)	Heat Value of Natural Gas (Btu/scf)	Catalyst Reduction (%)	Annual Operating Hours	Hourly Emissions (lb/hr)	Annual Emissions (tpy)
VOCs	0.63	g/bhp-hr	Vendor Guarantee	2,370.00	1,767.31	7,589.00	1,038	50%	8,760.00	1.65	7.21
Formaldehyde	0.26	g/bhp-hr	Vendor Guarantee	2,370.00	1,767.31	7,589.00	1,038	50%	8,760.00	0.68	2.98
Benzene	0.00	lb/MMBtu	AP-42 Chapter 3.2	2,370.00	1,767.31	7,589.00	1,038	0%	8,760.00	<0.01	0.03
Toluene	0.00	lb/MMBtu	AP-42 Chapter 3.2	2,370.00	1,767.31	7,589.00	1,038	0%	8,760.00	<0.01	0.03
Ethylbenzene	0.00	lb/MMBtu	AP-42 Chapter 3.2	2,370.00	1,767.31	7,589.00	1,038	0%	8,760.00	<0.01	<0.01
Xylene	0.00	lb/MMBtu	AP-42 Chapter 3.2	2,370.00	1,767.31	7,589.00	1,038	0%	8,760.00	<0.01	0.01
СО	2.74	g/bhp-hr	Vendor Guarantee	2,370.00	1,767.31	7,589.00	1,038	93%	8,760.00	1.00	4.39
NO _x	0.50	g/bhp-hr	Vendor Guarantee	2,370.00	1,767.31	7,589.00	1,038	0%	8,760.00	2.61	11.44
PM _{Filterable}	0.00	lb/MMBtu	AP-42 Chapter 3.2	2,370.00	1,767.31	7,589.00	1,038	0%	8,760.00	<0.01	<0.01
PM _{Condensable}	0.01	lb/MMBtu	AP-42 Chapter 3.2	2,370.00	1,767.31	7,589.00	1,038	0%	8,760.00	0.18	0.78
PM _{Total}	0.01	lb/MMBtu	AP-42 Chapter 3.2	2,370.00	1,767.31	7,589.00	1,038	0%	8,760.00	0.18	0.79
SO ₂	0.00	lb/MMBtu	AP-42 Chapter 3.2	2,370.00	1,767.31	7,589.00	1,038	0%	8,760.00	0.01	0.05
CO ₂	440.00	g/bhp-hr	Vendor Guarantee	2,370.00	1,767.31	7,589.00	1,038	0%	8,760.00	2,298.98	10,069.54
CH₄	5.36	g/bhp-hr	Vendor Guarantee	2,370.00	1,767.31	7,589.00	1,038	0%	8,760.00	28.01	122.67
N ₂ O	0.00	kg N ₂ O / MMBtu	40 CFR Subpart C	2,370.00	1,767.31	7,589.00	1,038	0%	8,760.00	<0.01	0.02
Total HAPs			•							0.70	3.06
Total CO ₂ e										3,000.31	13,141.35

Notes:

- Emission rates displayed above represent the max. hourly and max. annual emissions for one CAT G3608TALE NG compressor.

- Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

- AP-42, Chapter 3.2, Table 3.2-2 - Uncontrolled Emission Factors for 4-Stroke Lean Burn Engines

- Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

- CO₂ equivalency solved for using Global Warming Potentials found in 40 CFR 98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

- Vendor Guarantee Emissions Specification Sheet is attached.

Example Equations:

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/MMBtu) x Fuel Consumption Rating (Btu/bhp-hr) x Engine Rating (bhp) x (1 MMBtu/10⁶ Btu)

Max. Hourly Emission Rate (lb/hr) = Emission Factor (g/bhp-hr) x Engine Rating (bhp) x (1 lb/453.6 g)

Max. Hourly Emission Rate (lb/hr) = Emission Factor (kg/MMBtu) x Engine Rating (bhp) x (2.205 lb/kg) x Fuel Consumption Rating (Btu/bhp-hr) x (1 MMBtu/10⁶ Btu)

Attachment U CAT G3606TALE Compressor Engine (CE-6R)

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Engine Rating (bhp)	Engine Rating (kW)	Fuel Consumption (Btu/bhp-hr)	Heat Value of Natural Gas (Btu/scf)	Catalyst Reduction (%)	Annual Operating Hours	Hourly Emissions (Ib/hr)	Annual Emissions (tpy)
VOCs	0.63	g/bhp-hr	Vendor Guarantee	1,775.00	1,323.62	7,611.00	1,038	50%	8,760.00	1.23	5.40
Formaldehyde	0.26	g/bhp-hr	Vendor Guarantee	1,775.00	1,323.62	7,611.00	1,038	50%	8,760.00	0.51	2.23
Benzene	0.00	lb/MMBtu	AP-42 Chapter 3.2	1,775.00	1,323.62	7,611.00	1,038	0%	8,760.00	<0.01	0.03
Toluene	0.00	lb/MMBtu	AP-42 Chapter 3.2	1,775.00	1,323.62	7,611.00	1,038	0%	8,760.00	<0.01	0.02
Ethylbenzene	0.00	lb/MMBtu	AP-42 Chapter 3.2	1,775.00	1,323.62	7,611.00	1,038	0%	8,760.00	<0.01	<0.01
Xylene	0.00	lb/MMBtu	AP-42 Chapter 3.2	1,775.00	1,323.62	7,611.00	1,038	0%	8,760.00	<0.01	0.01
СО	2.74	g/bhp-hr	Vendor Guarantee	1,775.00	1,323.62	7,611.00	1,038	93%	8,760.00	0.75	3.29
NO _x	0.50	g/bhp-hr	Vendor Guarantee	1,775.00	1,323.62	7,611.00	1,038	0%	8,760.00	1.96	8.57
PM _{Filterable}	0.00	lb/MMBtu	AP-42 Chapter 3.2	1,775.00	1,323.62	7,611.00	1,038	0%	8,760.00	<0.01	<0.01
PM _{Condensable}	0.01	lb/MMBtu	AP-42 Chapter 3.2	1,775.00	1,323.62	7,611.00	1,038	0%	8,760.00	0.13	0.59
PM _{Total}	0.01	lb/MMBtu	AP-42 Chapter 3.2	1,775.00	1,323.62	7,611.00	1,038	0%	8,760.00	0.13	0.59
SO ₂	0.00	lb/MMBtu	AP-42 Chapter 3.2	1,775.00	1,323.62	7,611.00	1,038	0%	8,760.00	<0.01	0.03
CO ₂	441.00	g/bhp-hr	Vendor Guarantee	1,775.00	1,323.62	7,611.00	1,038	0%	8,760.00	1,725.72	7,558.67
CH ₄	2.66	g/bhp-hr	Vendor Guarantee	1,775.00	1,323.62	7,611.00	1,038	0%	8,760.00	10.41	45.59
N ₂ O	0.00	kg N ₂ O / MMBtu	40 CFR Subpart C	1,775.00	1,323.62	7,611.00	1,038	0%	8,760.00	<0.01	0.01
Total HAPs		-	••		-			•		0.52	2.29
Total CO ₂ e										1,986.84	8,702.36

Notes:

- Emission rates displayed above represent the max. hourly and max. annual emissions for one CAT G3606TALE NG compressor.

- Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

- AP-42, Chapter 3.2, Table 3.2-2 - Uncontrolled Emission Factors for 4-Stroke Lean Burn Engines

- Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

- CO₂ equivalency solved for using Global Warming Potentials found in 40 CFR 98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

- Vendor Guarantee Emissions Specification Sheet is attached.

Example Equations:

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/MMBtu) x Fuel Consumption Rating (Btu/bhp-hr) x Engine Rating (bhp) x (1 MMBtu/10⁶ Btu)

Max. Hourly Emission Rate (lb/hr) = Emission Factor (g/bhp-hr) x Engine Rating (bhp) x (1 lb/453.6 g)

Max. Hourly Emission Rate (lb/hr) = Emission Factor (kg/MMBtu) x Engine Rating (bhp) x (2.205 lb/kg) x Fuel Consumption Rating (Btu/bhp-hr) x (1 MMBtu/10⁶ Btu)

Attachment U Dehydrator Reboilers (RBV-1 and RBV-2)

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis/Source	Heater Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating hours	Max Hourly Emissions (lb/hr)	Max Annual Emissions (tpy)
VOCs	5.5	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.0	1038	8760	<0.01	0.02
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.0	1038	8760	<0.01	<0.01
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.0	1038	8760	<0.01	<0.01
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.0	1038	8760	<0.01	<0.01
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.0	1038	8760	<0.01	<0.01
со	84	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.0	1038	8760	0.08	0.35
NO _x	100	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.0	1038	8760	0.10	0.42
PM _{Filterable}	1.9	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.0	1038	8760	<0.01	<0.01
PM _{Condensable}	5.7	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.0	1038	8760	<0.01	0.02
PM _{Total}	7.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.0	1038	8760	<0.01	0.03
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.0	1038	8760	<0.01	<0.01
CO ₂	53.06	kg CO ₂ /MMBtu	40 CFR Subpart C	1.0	1038	8760	116.98	512.36
CH ₄	0.001	kg CO ₂ /MMBtu	40 CFR Subpart C	1.0	1038	8760	<0.01	<0.01
N ₂ O	0.0001	kg CO ₂ /MMBtu	40 CFR Subpart C	1.0	1038	8760	<0.01	<0.01
Total HAPs							<0.01	<0.01
Total CO ₂ e							117.10	512.89

Notes:

Emission rates displayed above represent the max hourly and max annual emissions for one Reboiler

Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors

AP-42, Chapter 1.4 references are from the July 1998 revision

Max Annual Emissions based upon Max hourly Emissions @ 8760 hr/yr

CO2 equivalency solved for using Global Warning Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO2=1, GWP CH4=25, GWP N2O=298

Example equations:

Max hourly Emission Rate (**lb/hr**) = Emission Factor (**lb/10⁶ scf**) / Heating Value of Natural Gas (**Btu/scf**) x Boiler Rating (**MMBtu/hr**) Max hourly Emission Rate (**lb/hr**) = Emission Factor (**kg/MMBtu**) x Heater Boiler Rating (**MMBtu/hr**) x 2.20462 (**lb/kg**)

Attachment U Regenerator Overhead Vent (RSV-1 and RSV-2)

Pollutant	Max Hourly Uncontrolled Emissions (lb/hr)	Max Annual Uncontrolled Emissions (tons/yr)
VOCs	0.60	2.62
HAPs	0.36	1.58
Benzene	0.03	0.13
Toluene	0.06	0.26
Ethylbenzene	0.10	0.45
Xylenes	0.15	0.66
n-Hexane	0.02	0.08
CH ₄	2.59	11.34
CO ₂ e	64.72	283.45

Note:

- Emission rates from GRI-GLYCalc 4.0. Input sheets and aggregate GRI-GLYCalc 4.0 reports are attached.

-CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

				liergeney e						
Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Engine Rating (bhp)	Engine Rating (kW)	Fuel Consumption (Btu/bhp-hr)	Catalyst Effect	Annual Operating Hours	Hourly Emissions (Ib/hr)	Annual Emissions (tpy)
VOC's	1.00	g/bhp-hr	Vendor Guarantee	107.30	80.01	8,399.00	0.80	500.00	0.05	0.01
Formaldehyde	0.05	lb/MMBtu	AP-42 Chapter 3.2	107.30	80.01	8,399.00	0.90	500.00	0.05	0.01
Benzene	0.00	lb/MMBtu	AP-42 Chapter 3.2	107.30	80.01	8,399.00	0.00	500.00	<0.01	<0.01
Toluene	0.00	lb/MMBtu	AP-42 Chapter 3.2	107.30	80.01	8,399.00	0.00	500.00	<0.01	<0.01
Ethylbenzene	0.00	lb/MMBtu	AP-42 Chapter 3.2	107.30	80.01	8,399.00	0.00	500.00	<0.01	<0.01
Xylene	0.00	lb/MMBtu	AP-42 Chapter 3.2	107.30	80.01	8,399.00	0.00	500.00	<0.01	<0.01
со	4.00	g/bhp-hr	Vendor Guarantee	107.30	80.01	8,399.00	0.93	500.00	0.07	0.02
NO _x	2.00	g/bhp-hr	Vendor Guarantee	107.30	80.01	8,399.00 0.00		500.00	0.47	0.12
PM _{Filterable}	0.00	lb/MMBtu	AP-42 Chapter 3.2	107.30	80.01	8,399.00	0.00	500.00	<0.01	<0.01
PM _{Condensable}	0.01	lb/MMBtu	AP-42 Chapter 3.2	107.30	80.01	8,399.00	0.00	500.00	<0.01	<0.01
PM _{Total}	0.01	lb/MMBtu	AP-42 Chapter 3.2	107.30	80.01	8,399.00	0.00	500.00	<0.01	<0.01
SO ₂	0.00	lb/MMBtu	AP-42 Chapter 3.2	107.30	80.01	8,399.00	0.00	500.00	<0.01	<0.01
CO ₂	110.00	lb/MMBtu	AP-42 Chapter 3.2	107.30	80.01	8,399.00	0.00	500.00	99.13	24.78
CH ₄	0.00	kg CH ₄ / MMBtu	40 CFR Subpart C	107.30	80.01	8,399.00	0.00	500.00	<0.01	<0.01
N ₂ O	0.00	kg N ₂ O / MMBtu	40 CFR Subpart C	107.30	80.01	8,399.00	0.00	500.00	<0.01	<0.01
Total HAPs				·					0.05	0.01
Total CO ₂ e									99.24	24.81

Attachment U Emergency Generator (EG-1)

Notes:

- Emission rates displayed above represent the max. hourly and max. annual emissions for one NG compressor.

- Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

- AP-42, Chapter 3.2, Table 3.2-2 - Uncontrolled Emission Factors for 4-Stroke Lean Burn Engines

- Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

- CO₂ equivalency solved for using Global Warming Potentials found in 40 CFR 98 Table A-1 (Updated January 2014). GWP CO 2=1, GWP CH4=25, GWP N2O=298

Example Equations:

Max. Hourly Emission Rate (Ib/hr) = Emission Factor (Ib/MMBtu) x Fuel Consumption Rating (Btu/bhp-hr) x Engine Rating (bhp) x (1 MMBtu/10⁶ Btu)

Max. Hourly Emission Rate (lb/hr) = Emission Factor (g/bhp-hr) x Engine Rating (bhp) x (1 lb/453.6 g)

Max. Hourly Emission Rate (lb/hr) = Emission Factor (kg/MMBtu) x Engine Rating (bhp) x (2.205 lb/kg) x Fuel Consumption Rating (Btu/bhp-hr) x (1 MMBtu/10⁶ Btu)

Attachment U Tank Emissions

Pollutant	Max. Hourly Emissions using ProMax (Ib/hr)	Max. Annual Emissions using ProMax (tons/yr)
VOCs	<0.01	0.03
Total HAPs	<0.01	<0.01
Hexane	<0.01	<0.01
Benzene	<0.01	<0.01
Toluene	<0.01	<0.01
Ethylbenzene	<0.01	<0.01
Xylene	<0.01	<0.01
CO ₂	0.01	0.04
CH ₄	0.18	0.77
Total CO ₂ e	4.43	19.41

Notes:

-Emission rates for Produced Fluid Tanks TK-1 and TK-2 were calculated using ProMax software. ProMax output sheets for the Cather Pad are attached.

-CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

-For emission calculation purposes, the total throughput for tanks TK-1 and TK-2 is modeled as being received through a single tank. The throughput value represents the total throughput for both tanks. Therefore, emission rates represent a total from all produced fluids tanks located on the compressor station. Actual throughput for each tank will vary based on operations.

Attachment U - Emissions Calculations

Pigging Operations

Ţ	ype (Launch or Receiving)	Latitude Decimal Degrees	Longitude Decimal Degrees	Chamber Length (Ft.)	Chamber Diam. (Ft .)	Volume of Chamber (ft3)	PSIG of Chamber	Volume of Pressurized Gas (ft3)
	Receiving	39.27944	-80.41333	11	1	8.64	625	375.96
Те	mp. of Chamber (R®)	Molecular Weight of gas mixture (Ib/Ib- mole)	Compressibility Factor	Pressurized Density (lb/ft3)	Atmospheric Density (lb/ft3)	Delta Density (lb/ft3)	Amount Gas Vented (Ibs) Per Event	
	539.67	16.49	0.99793	1.82572249	0.04195423	1.783768264	15.41065151	
	# of Events	# of Purges Per Event	Total Amount of Gas Vented (Ibs)					
	20	1	308.2130301					_
	ethane/Ethane /eight Fraction	Total VOC Weight Fraction	Total CO2 Weight Fraction	Tons of Total Amount of Gas Vented	Tons of CH4/C2H6	Tons of VOC	Tons of CO2	
	0.9857	0.0074	0.0047	0.1541	0.0001	0.00	0.00	

Example Calc

Volume of Pressurized Gas (ft3)= (Volume of Chamber (ft3) x (PSIG of Chamber 14.7)) / 14.7

Pressurized Density (lb/ft3) = (Moecular Weight (lb/lb-mole) x (PSIG of Chamber + 14.7)) / Compressibility Factor x 10.73 x Temp of Chamber (R))

Atmospheric Density (lb/ft3) = (14.7 x Molecular Weight (lb/lb-mole)) / (10.73 x Temp of Chamber (R) x Compressibility Factor)

Amount of gas vented (lbs) = Delta Density (lb/ft3) x Volume of chamber (ft3)

Total Gas vented (lbs) = Number of events x Number of purges per event x Amount of gas vented (lbs)

Tons of Total Gas Vented = Amount of gas vented (lbs) / 2000

Tons of VOC = Tons of total gas vented x Total VOC weight frac / 2000

Tons of CO2 = Tons of total gas vented x CO2 weight frac / 2000

Attachment U - Emissions Calculations Blowdowns

Blowdown Volume (scf)	Number of Events	Average length of event (hrs)	Average blowdown rate (scf/hr)	Amount of gas vented (scf)	Pressure of chamber (PSIG)
3,776	100	0.167	22,610.78	377,600.00	625
Temp of Gas (R)	Molecular weight of mixture (lb/lb- mol)	Compressibility Factor	Pressurized Density (lb/ft3)	Atmospheric Density (Ib/ft3)	Delta Density (lb/ft3)
539.67	16.64	0.9979	1.842548139	0.042340875	1.800207264
Amount of Gas vented (lbs)	VOC weight fraction	CO2 Weight fraction	Me/Et frac	Gas vented (tons)	Tons of CH4/C2H6
679,758.26	0.007432189	0.004680229	0.985680419	339.88	335.01
Tons of VOC 2.53	Tons of CO2 1.57				

Example Calc

Amount of gas vented (scf) = Blowdown volume (scf) x Number of events

Pressurized Density (lb/ft3) = (Moecular Weight (lb/lb-mole) x (PSIG of Chamber + 14.7)) / Compressibility Factor x 10.73 x Temp of Chamber (R))

Atmospheric Density (lb/ft3) = (14.7 x Molecular Weight (lb/lb-mole)) / (10.73 x Temp of Chamber (R) x Compressibility Factor)

Amount of gas vented (lbs) = Delta Density (lb/ft3) x Volume of chamber (ft3)

Total Gas vented (lbs) = Amount of gas vented (scf) x Delta Density (lb/ft3)

Tons of Total Gas Vented = Amount of gas vented (lbs) / 2000

Tons of VOC = Tons of total gas vented x Total VOC weight frac

Tons of CO2 = Tons of total gas vented x CO2 weight frac

Arsenal Midstream, LLC Cather Compressor Station Fugitive Emissions From Haul Roads Attachment U

Constant	Industrial Roads								
Constant	PM	PM-10	PM-2.5						
k (lb/VMT)	4.9	1.5	0.15						
а	0.7	0.9	0.9						
b	0.45	0.45	0.45						

where

k s

р

Patricle size multiplier¹

4.8 Silt content of road surface material (%)

150 Number of days per year with precipitation

Item Number	Description	Number of Wheels	W Mean Vehicle Weight (tons)	Miles per Trip	Maximum Trips per Hour	Maximum Trips per Year	Control Device ID Number	Control Efficiency (%)		PM Emissions (tons/yr)	PM-10 Emissions (Ibs/hr)	PM-10 Emissions (tons/yr)	PM-2.5 Emissions (Ibs/hr)	PM-2.5 Emissions (tons/yr)
1	Liquids Hauling	14	30	0.75	1	52	NA	NA	3.21	0.08	0.82	0.02	0.08	0.00
2	Employee Vehicles	4	3	0.75	1	200	NA	NA	1.14	0.11	0.29	0.03	0.03	0.003
								Totals:	4.35	0.20	1.11	0.05	0.11	0.01

Notes:

¹ - Particle Size Multiplier used from AP-42 13.2.2 - Final Version 11/2006

² - Silt Content of Road Surface uses Sand and Gravel Processing Plant Road from AP-42 13.2.2 - Final Version 11/2006

³ - Number of days per year with precipitation >0.01 in3 found using AP-42 13.2.2 Figure 13.2.2-1 - Final Version 11/2006

Example Calculations:

Emissions (lb/Vehicle Mile Traveled) - E = k × $(s/12)^{a}$ x $(W/3)^{b}$

Equation 1a from AP-42 13.2.2 - Final Version 11/2006

Size Specific Emissions (lb/VMT) - E_{ext} = E[(365-p)/365]

Equation 2 from AP-42 13.2.2 - Final Version 11/2006

Arsenal Midstream, LLC Cather Compressor Station Fugitive Emissions From Equipment Leaks Attachment U

Default Average Com	ponent Cou	unts for Major Onshore N Equipment	Natural Gas Pro	oduction
Facility Equipment Type	Valves	Connectors	Open-ended Lines	Pressure Relief Valves
Wellheads	8	38	0.5	0
Separators	1	6	0	0
Meters/Piping	12	45	0	0
Compressors	12	57	0	0
In-line Heaters	14	65	2	1
Dehydrators	24	90	2	2

Well Specific Equip	oment Counts
Facility Equipment Type	Count on Site
Wellheads	0
Separators	0
Meters/Piping	1
Compressors	2
In-line Heaters	2
Dehydrators	2

- Table W-1B to 40CFR98 Subpart W

	Gas Composition													
	Propane	Butane	Pentanes	Heptane	Octanes	Nonanes	Decanes	Hexane	Benzene	Toluene	Ethylbenzene	Xylene	CO ₂	CH ₄
Mole %	0.22	0.03	0.007	<0.01	<0.001	<0.001	<0.001	0.0046	<0.001	<0.001	<0.001	<0.001	0.18	95.88
MW	44	58	72	100	114	128	142	86.00	78.00	92.00	106.00	106.00	44.00	16.00

					Fug	itive Emissions							
Facility Equipment Type	Total Count	Emission Rate (scf/hr/component) ²	Hours of Operation	VOCs (Ibs/hr)	VOCs (tons/yr)	HAPs (Ibs/hr)	HAPs (tons/yr)	CO ₂ (lbs/hr)	CO ₂ (tons/yr)	CH ₄ (Ibs/hr)	CH ₄ (tons/yr)	Total CO ₂ e (lbs/hr)	Total CO ₂ e (tons/yr)
Valves	136	0.027	8760	0.00	0.01	<0.001	<0.001	<0.001	0.003	0.15	0.64	3.65	16.00
Connectors	583	0.003	8760	<0.001	0.00	<0.001	<0.001	<0.001	0.002	0.07	0.30	1.74	7.62
Open-ended Lines	8	0.06	8760	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.02	0.09	0.49	2.13
Pressure Relief Valves	6	0.04	8760	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.01	0.04	0.24	1.05
		Tot	al Emissions:	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.24	1.07	6.12	26.80

- Table W-1A to 40CFR98 Subpart W

Example Equations:

Fugitive Emissions (lb/hr) = Count x Emission Rate x Hours of Operation ÷ 385.5 scf/lbmol x mol VOCs

Attachment U - Emission Calculations Cather Compressor Station - Site Emission Levels

	VOC	Cs	H	APs	C	;O	N	IO _x	PM -	Total	PM -	10/2.5	PM -	CON	S	02	C	O ₂	С	H₄	N	2 0	C	O₂e
Emission Sources	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Compressor Engine (CE-5R)	1.65	7.21	0.70	3.06	1.00	4.39	2.61	11.44	0.18	0.79	<0.01	<0.01	0.18	0.78	0.01	0.05	2298.98	10069.54	28.01	122.67	<0.01	0.02	3000.31	13141.35
Compressor Engine (CE-6R)	1.23	5.40	0.52	2.29	0.75	3.29	1.96	8.57	0.13	0.59	<0.01	<0.01	0.13	0.59	<0.01	0.03	1725.72	7558.67	10.41	45.59	<0.01	0.01	1986.84	8702.36
Reboiler (RBV-1)	<0.01	0.02	<0.01	<0.01	0.08	0.35	0.10	0.42	<0.01	0.03	<0.01	<0.01	<0.01	0.02	<0.01	<0.01	116.98	512.36	<0.01	<0.01	<0.01	<0.01	117.10	512.89
Reboiler (RBV-2)	<0.01	0.02	<0.01	<0.01	0.08	0.35	0.10	0.42	<0.01	0.03	<0.01	<0.01	<0.01	0.02	<0.01	<0.01	116.98	512.36	<0.01	<0.01	<0.01	<0.01	117.10	512.89
Dehydrator Regenerator Overhead Vent (RSV-1)	0.60	2.62	0.36	1.58															2.59	11.34			64.72	283.45
Dehydrator Regenerator Overhead Vent (RSV-2)	0.60	2.62	0.36	1.58															2.59	11.34			64.72	283.45
Produced Water Tank (TK-1, TK-2)	<0.01	0.03	<0.01	<0.01													0.01	0.04	0.18	0.77			4.43	19.41
Emergency Generator (EG-1)	0.05	0.01	0.05	0.01	0.07	0.02	0.47	0.12	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	99.13	24.78	<0.01	<0.01	<0.01	<0.01	99.24	24.81
Blowdown	0.58	2.53	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.36	1.57	<0.01	<0.01	<0.01	<0.01	0.36	1.57
Fugitives - Pigging Operations	<0.01	<0.01	<0.01	<0.01													<0.01	<0.01	<0.01	<0.01			<0.01	<0.01
Fugitives - Haul Roads									4.35	0.20	1.22	0.06												
Fugitives - Equipment Leaks	<0.01	<0.01	<0.01	<0.01													<0.01	<0.01	0.24	1.07			6.12	26.80
Totals	4.71	20.45	1.99	8.53	1.98	8.40	5.23	20.97	4.69	1.64	1.23	0.08	0.33	1.42	0.02	0.09	4358.16	18679.34	44.02	192.80	0.01	0.03	5460.93	23532.22

Attachment U

Cather Compressor Station - Site HAP Emission Levels

	Total	HAPs	Forma	ldehyde	n-He	exane	Ben	zene	Tol	uene	Ethylb	enzene	Xy	lene
Emission Sources	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr								
Compressor Engine (CE-5R)	0.70	3.06	0.68	2.98	<0.01	<0.01	<0.01	0.03	<0.01	0.03	<0.01	<0.01	<0.01	0.01
Compressor Engine (CE-6R)	0.52	2.29	0.51	2.23	<0.01	<0.01	<0.01	0.03	<0.01	0.02	<0.01	<0.01	<0.01	0.01
Reboiler (RBV-1)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Reboiler (RBV-2)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Dehydrator Regenerator Overhead Vent (RSV-1)	0.36	1.58	<0.01	<0.01	0.02	0.08	0.03	0.13	0.06	0.26	0.10	0.45	0.15	0.66
Dehydrator Regenerator Overhead Vent (RSV-2)	0.36	1.58	<0.01	<0.01	0.02	0.08	0.03	0.13	0.06	0.26	0.10	0.45	0.15	0.66
Produced Water Tank (TK-1, TK-2)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Thermoelectric Generator	0.05	0.01	0.05	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Blowdown	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fugitives - Pigging Operations	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fugitives - Haul Roads														
Fugitives - Equipment Leaks	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Totals	1.99	8.52	1.24	5.23	0.04	0.17	0.08	0.33	0.13	0.58	0.21	0.91	0.30	1.34

			Flowsheet1 Plant Schematic			
Client Name:	Arsenal - Cather Comp	ressor Station			Job: Produced Water Ta	nk
Location:						
Flowsheet:	Flowsheet1					
		Temperature 60° 1°F Pressure 50° 3° paig Sid Vapor Volumetric Flow 1200 MiSCPD —Measured Sales Gas Temperature 60° 1°F Pessure 50° 3° paig Sid Liquid Volumetric Flow 1288 bbl/d —Measured Condensate	Arsenal – Cather Compressor Station Produced Water Tank	"Tank Vent Gas" VOCs = 0.03	12 tor/yr	
		Tenperature 60° F Pressure 507.37 pág Stá Liquid Volumetric Pow 23.385# bb/d	Properties Temperature Pressure Pressure Std Lepid Volumetric Flow Composition Water(Sta Lepid Volumetric Fraction Water(Sta Lepid Volumetric Fraction Total working and breatting losses from the Vertical Originate rate Loading torses are 00,2005 km/yr of loaded input Annual tank loss calculations for "Produced Liquid: Total working and breatting losses from the Vertical Originate rate Loading torses are 00,2005 km/yr of loaded input All components are reported.	003075 tonvr. WB-		
			Tank-1 <u>Note</u> Working, Breathing and Loading losses	include non-VOC components		

Page 1 of 6

Onnulation mitiated on t	5/22/2011 0.00.00 1 M		Cattler_F W Tai	· · · ·			<u> </u>
			All St Tabulated b	reams Report t reams by Total Phase			
Client Name:	Arsenal - Cather	Compressor Sta	ation		Job: Produc	ced Water Tank	
Location:							
Flowsheet:	Flowsheet1						
			Conn	ections			
			Gas to		Meesured	Maggurad	Dreduced
			Separators	Loading	Measured Condensate	Measured Sales Gas	Produced Fluids
From Block			Separator		Condensate	Sales Gas	Separator
To Block					 MIX-100	 MIX-100	Produced Water
TO DIOCK					WIIX-100	WIX-100	Tank
							rank
			Stream C				
				omposition	· · · · · · · · · · · · · · · · · · ·		<u> </u>
Mole Fraction			Gas to Separators %	Loading %	Measured Condensate %	Measured Sales Gas %	Produced Fluids %
Nitrogen			0.25373	0.00257284	0 *	0.2539 *	0.000135784
Methane			95.831	5.50737	10.674 *	95.894 *	0.0986793
Carbon Dioxide			0.157599	2.42896	0.065 *	0.1577 *	0.00285563
Ethane			3.44532	0.656132	5.377 *	3.4471 *	0.0070673
Propane			0.218522	0.0346825	3.736 *	0.2183 *	0.00086768
Isobutane			0.0118262	0.00286207	1.359 *	0.0117 *	9.98425E-05
n-Butane			0.01756	0.00550929	2.754 *	0.0173 *	0.000210602
Isopentane			0.000247453	0.000105329	2.508 *	0 *	6.49927E-06
n-Pentane			0.000221996	0.000104698	2.25 *	0 *	7.67781E-06
i-Hexane			0.000467851	0.000269596	4.742 *	0 *	3.69001E-05
n-Hexane			0.000268153	0.000169868	2.718 *	0 *	3.04649E-05
2,2,4-Trimethylpe	ntane		1.77557E-06	1.01736E-06	0.018 *	0 *	5.16907E-07
Benzene			1.07528E-05	8.36521E-06	0.109 *	0 *	2.26371E-06
Heptane			0.00130398	0.000860103	13.22 *	0 *	0.000475764
Toluene			0.000108194	5.77527E-05	1.097 *	0 *	5.15922E-05
Octane			0.00154048	0.000818965	15.626 *	0 *	0.00150032
Ethylbenzene			1.9712E-05	9.44778E-06	0.2 *	0 *	2.4809E-05
o-Xylene			3.62585E-05	1.4782E-05	0.368 *	0 *	5.89776E-05
Nonane			0.0011416	0.000527935	11.599 *	0 *	0.00327414
Decane Water			0.0570232	91.3583	0 *	0 *	0
Oxygen			0.0570232	91.3363	0 *	0 *	99.6022
Decanes Plus			0.0020576	0.000703116	21.58 *	0 *	0.0824619
Hexanes+			0.0020570	0.000703110	0 *	0 *	0.0024013
Поланевт				0		0	
			Gas to Separators	Loading	Measured Condensate	Measured Sales Gas	Produced Fluids
Molar Flow			Gas to Separators Ibmol/h	lbmol/h	Condensate Ibmol/h	Sales Gas Ibmol/h	Fluids Ibmol/h
Nitrogen			Gas to Separators Ibmol/h 33.431	Ibmol/h 6.51032E-09	Condensate Ibmol/h	Sales Gas Ibmol/h 33.431 *	Fluids Ibmol/h 1.55447E-05
Nitrogen Methane			Gas to Separators Ibmol/h 33.431 12626.5	Ibmol/h 6.51032E-09 1.39358E-05	Condensate Ibmol/h 0.138765 *	Sales Gas Ibmol/h 33.431 * 12626.4 *	Fluids Ibmol/h 1.55447E-05 0.011297
Nitrogen Methane Carbon Dioxide			Gas to Separators Ibmol/h 33.431 12626.5 20.7649	Ibmol/h 6.51032E-09 1.39358E-05 6.14623E-06	Condensate Ibmol/h 0.138765 * 0.00084502 *	Sales Gas Ibmol/h 33.431 12626.4 20.7644	Fluids Ibmol/h 1.55447E-05 0.011297 0.000326917
Nitrogen Methane Carbon Dioxide Ethane			Gas to Separators Ibmol/h 33.431 12626.5 20.7649 453.949	Ibmol/h 6.51032E-09 1.39358E-05 6.14623E-06 1.66027E-06	Condensate Ibmol/h 0.138765 * 0.00084502 * 0.0699026 *	Sales Gas Ibmol/h 33.431 12626.4 20.7644 453.88	Fluids Ibmol/h 1.55447E-05 0.011297 0.000326917 0.000809077
Nitrogen Methane Carbon Dioxide Ethane Propane			Gas to Separators Ibmol/h 33.431 12626.5 20.7649 453.949 28.792	Ibmol/h 6.51032E-09 1.39358E-05 6.14623E-06 1.66027E-06 8.77604E-08	Condensate Ibmol/h 0.138765 * 0.00084502 * 0.0699026 * 0.0485691 *	Sales Gas Ibmol/h 33.431 12626.4 20.7644 453.88 28.7436	Fluids Ibmol/h 1.55447E-05 0.011297 0.000326917 0.000809077 9.93336E-05
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane			Gas to Separators Ibmol/h 33.431 12626.5 20.7649 453.949 28.792 1.55819	Ibmol/h 6.51032E-09 1.39358E-05 6.14623E-06 1.66027E-06 8.77604E-08 7.24216E-09	Condensate Ibmol/h 0 * 0.138765 * 0.00084502 * 0.0699026 * 0.0485691 * 0.0176674 *	Sales Gas Ibmol/h 33.431 12626.4 20.7644 453.88 28.7436 1.54054	Fluids Ibmol/h 1.55447E-05 0.011297 0.000326917 0.000809077 9.93336E-05 1.14301E-05
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane			Gas to Separators Ibmol/h 33.431 12626.5 20.7649 453.949 28.792 1.55819 2.31367	Ibmol/h 6.51032E-09 1.39358E-05 6.14623E-06 1.66027E-06 8.77604E-08 7.24216E-09 1.39407E-08	Condensate Ibmol/h 0 * 0.138765 * 0.00084502 * 0.0699026 * 0.0485691 * 0.0176674 * 0.0358028 *	Sales Gas Ibmol/h 33.431 12626.4 20.7644 453.88 28.7436 1.54054 2.27789	Fluids Ibmol/h 1.55447E-05 0.011297 0.000326917 0.000809077 9.93336E-05 1.14301E-05 2.41101E-05
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane			Gas to Separators Ibmol/h 33.431 12626.5 20.7649 453.949 28.792 1.55819 2.31367 0.0326039	Ibmol/h 6.51032E-09 1.39358E-05 6.14623E-06 1.66027E-06 8.77604E-08 7.24216E-09 1.39407E-08 2.66523E-10	Condensate Ibmol/h 0 * 0.138765 * 0.00084502 * 0.0699026 * 0.0485691 * 0.0176674 * 0.0358028 * 0.0326048 *	Sales Gas Ibmol/h 33.431 12626.4 20.7644 453.88 28.7436 1.54054 2.27789 0	Fluids Ibmol/h 1.55447E-05 0.011297 0.000326917 0.000809077 9.93336E-05 1.14301E-05 2.41101E-05 7.44048E-07
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane			Gas to Separators Ibmol/h 33.431 12626.5 20.7649 453.949 28.792 1.55819 2.31367 0.0326039 0.0292497	Ibmol/h 6.51032E-09 1.39358E-05 6.14623E-06 1.66027E-06 8.77604E-08 7.24216E-09 1.39407E-08 2.66523E-10 2.64927E-10	Condensate Ibmol/h 0 * 0.138765 * 0.00084502 * 0.0699026 * 0.0485691 * 0.0176674 * 0.0358028 * 0.0326048 * 0.0292507 *	Sales Gas Ibmol/h 33.431 12626.4 20.7644 453.88 28.7436 1.54054 2.27789 0 0 0	Fluids Ibmol/h 1.55447E-05 0.011297 0.000326917 0.000809077 9.93336E-05 1.14301E-05 2.41101E-05 7.44048E-07 8.78969E-07
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane			Gas to Separators Ibmol/h 33.431 12626.5 20.7649 453.949 28.792 1.55819 2.31367 0.0326039 0.0292497 0.061643	Ibmol/h 6.51032E-09 1.39358E-05 6.14623E-06 1.66027E-06 8.77604E-08 7.24216E-09 1.39407E-08 2.66523E-10 2.64927E-10 6.82185E-10	Condensate Ibmol/h 0 * 0.138765 * 0.00084502 * 0.0699026 * 0.0485691 * 0.0176674 * 0.0358028 * 0.0326048 * 0.0292507 * 0.0616474 *	Sales Gas Ibmol/h 33.431 12626.4 20.7644 453.88 28.7436 1.54054 2.27789 0	Fluids Ibmol/h 1.55447E-05 0.011297 0.000326917 0.000809077 9.93336E-05 1.14301E-05 2.41101E-05 2.41101E-05 7.44048E-07 8.78969E-07 4.22439E-06
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane n-Hexane	ntane		Gas to Separators Ibmol/h 33.431 12626.5 20.7649 453.949 28.792 1.55819 2.31367 0.0326039 0.0292497 0.061643 0.0353312	Ibmol/h 6.51032E-09 1.39358E-05 6.14623E-06 1.66027E-06 8.77604E-08 7.24216E-09 1.39407E-08 2.66523E-10 2.64927E-10 6.82185E-10 4.29833E-10	Condensate Ibmol/h 0 * 0.138765 * 0.00084502 * 0.0699026 * 0.0485691 * 0.0176674 * 0.0358028 * 0.0326048 * 0.0292507 * 0.0616474 * 0.0353348 *	Sales Gas Ibmol/h 33.431 * 12626.4 * 20.7644 * 453.88 * 28.7436 * 1.54054 * 2.27789 * 0 * 0 * 0 * 0 *	Fluids Ibmol/h 1.55447E-05 0.011297 0.000326917 0.000809077 9.93336E-05 1.14301E-05 2.41101E-05 2.41101E-05 7.44048E-07 8.78969E-07 4.22439E-06 3.48768E-06
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane	ntane		Gas to Separators Ibmol/h 33.431 12626.5 20.7649 453.949 28.792 1.55819 2.31367 0.0326039 0.0292497 0.061643 0.0353312 0.000233946	Ibmol/h 6.51032E-09 1.39358E-05 6.14623E-06 1.66027E-06 8.77604E-08 7.24216E-09 1.39407E-08 2.66523E-10 2.66523E-10 2.64927E-10 6.82185E-10 4.29833E-10 2.57433E-12	Condensate Ibmol/h 0 * 0.138765 * 0.00084502 * 0.0699026 * 0.0485691 * 0.0176674 * 0.0358028 * 0.0326048 * 0.0292507 * 0.0616474 *	Sales Gas Ibmol/h 33.431 * 12626.4 * 20.7644 * 453.88 * 28.7436 * 1.54054 * 2.27789 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	Fluids Ibmol/h 1.55447E-05 0.011297 0.000326917 0.000809077 9.93336E-05 1.14301E-05 2.41101E-05 2.41101E-05 7.44048E-07 8.78969E-07 4.22439E-06
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane 2,2,4-Trimethylpe	ntane		Gas to Separators Ibmol/h 33.431 12626.5 20.7649 453.949 28.792 1.55819 2.31367 0.0326039 0.0292497 0.061643 0.0353312	Ibmol/h 6.51032E-09 1.39358E-05 6.14623E-06 1.66027E-06 8.77604E-08 7.24216E-09 1.39407E-08 2.66523E-10 2.64927E-10 6.82185E-10 4.29833E-10	Condensate Ibmol/h 0 * 0.138765 * 0.00084502 * 0.0699026 * 0.0485691 * 0.0176674 * 0.0358028 * 0.0326048 * 0.0292507 * 0.0616474 * 0.0353348 * 0.000234005 *	Sales Gas Ibmol/h 33.431 * 12626.4 * 20.7644 * 453.88 * 28.7436 * 2.27789 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	Fluids Ibmol/h 1.55447E-05 0.011297 0.000326917 0.000809077 9.93336E-05 1.14301E-05 2.41101E-05 7.44048E-07 8.78969E-07 4.22439E-06 3.48768E-06 5.91764E-08
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane n-Hexane 2,2,4-Trimethylpe Benzene	ntane		Gas to Separators Ibmol/h 33.431 12626.5 20.7649 453.949 28.792 1.55819 2.31367 0.0326039 0.0292497 0.061643 0.0353312 0.000233946 0.00141677	Ibmol/h 6.51032E-09 1.39358E-05 6.14623E-06 1.66027E-06 8.77604E-08 7.24216E-09 1.39407E-08 2.66523E-10 2.64927E-10 6.82185E-10 4.29833E-10 2.57433E-12 2.11673E-11	Condensate Ibmol/h 0 * 0.138765 * 0.00084502 * 0.0699026 * 0.0485691 * 0.0176674 * 0.0358028 * 0.0326048 * 0.0292507 * 0.0616474 * 0.0353348 * 0.000234005 * 0.00141703 *	Sales Gas Ibmol/h 33.431 * 12626.4 * 20.7644 * 453.88 * 28.7436 * 1.54054 * 2.27789 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	Fluids Ibmol/h 1.55447E-05 0.011297 0.000326917 0.000809077 9.93336E-05 1.14301E-05 7.44048E-07 8.78969E-07 4.22439E-06 3.48768E-06 5.91764E-08 2.59153E-07
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane 2,2,4-Trimethylpe Benzene Heptane	ntane		Gas to Separators Ibmol/h 33.431 12626.5 20.7649 453.949 28.792 1.55819 2.31367 0.0326039 0.0292497 0.061643 0.00233946 0.000233946 0.00141677 0.171809 0.0142554 0.20297	Ibmol/h 6.51032E-09 1.39358E-05 6.14623E-06 1.66027E-06 8.77604E-08 7.24216E-09 1.39407E-08 2.66523E-10 2.64927E-10 6.82185E-10 4.29833E-10 2.57433E-12 2.11673E-11 2.1764E-09 1.46137E-10 2.07231E-09	Condensate Ibmol/h 0 * 0.138765 * 0.00084502 * 0.0699026 * 0.0485691 * 0.0176674 * 0.0358028 * 0.0326048 * 0.0292507 * 0.0616474 * 0.0353348 * 0.000234005 * 0.000141703 * 0.0112613 * 0.203143 *	Sales Gas Ibmol/h 33.431 * 12626.4 * 20.7644 * 453.88 * 28.7436 * 1.54054 * 2.27789 * 0 *	Fluids Ibmol/h 1.55447E-05 0.011297 0.000326917 0.000809077 9.93336E-05 1.14301E-05 2.41101E-05 7.44048E-07 8.78969E-07 4.22439E-06 3.48768E-06 5.91764E-08 2.59153E-07 5.44663E-05 5.90637E-06 0.00017176
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene	ntane		Gas to Separators Ibmol/h 33.431 12626.5 20.7649 453.949 28.792 1.55819 2.31367 0.0326039 0.0292497 0.061643 0.00233946 0.00141677 0.171809 0.0142554 0.20297 0.00259721	Ibmol/h 6.51032E-09 1.39358E-05 6.14623E-06 1.66027E-06 8.77604E-08 7.24216E-09 1.39407E-08 2.66523E-10 2.64927E-10 6.82185E-10 4.29833E-10 2.57433E-12 2.11673E-11 2.1764E-09 1.46137E-10 2.07231E-09 2.39066E-11	Condensate Ibmol/h 0 * 0.138765 * 0.00084502 * 0.0699026 * 0.0485691 * 0.0176674 * 0.0358028 * 0.0326048 * 0.0292507 * 0.0616474 * 0.0353348 * 0.000234005 * 0.00141703 * 0.171864 * 0.0142613 * 0.203143 * 0.00260006 *	Sales Gas Ibmol/h 33.431 12626.4 20.7644 453.88 28.7436 1.54054 2.27789 0	Fluids Ibmol/h 1.55447E-05 0.011297 0.000326917 0.000809077 9.93336E-05 1.14301E-05 2.41101E-05 7.44048E-07 8.78969E-07 4.22439E-06 3.48768E-06 5.91764E-08 2.59153E-07 5.44663E-05 5.90637E-06 0.00017176 2.84017E-06
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene	ntane		Gas to Separators Ibmol/h 33.431 12626.5 20.7649 453.949 28.792 1.55819 2.31367 0.0326039 0.0292497 0.061643 0.00233946 0.00141677 0.171809 0.0142554 0.20297 0.00259721 0.00477734	Ibmol/h 6.51032E-09 1.39358E-05 6.14623E-06 1.66027E-06 8.77604E-08 7.24216E-09 1.39407E-08 2.66523E-10 2.64927E-10 6.82185E-10 4.29833E-10 2.57433E-12 2.11673E-11 2.1764E-09 1.46137E-10 2.07231E-09 2.39066E-11 3.74045E-11	Condensate Ibmol/h 0 * 0.138765 * 0.00084502 * 0.0699026 * 0.0485691 * 0.0176674 * 0.0358028 * 0.0326048 * 0.0292507 * 0.0616474 * 0.0353348 * 0.000234005 * 0.00141703 * 0.171864 * 0.0142613 * 0.203143 * 0.00260006 * 0.00478411 *	Sales Gas Ibmol/h 33.431 12626.4 20.7644 453.88 28.7436 1.54054 2.27789 0 * 0 0 * 0 0 * 0 0 * 0 0 * 0 0 * 0 0 * 0 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0	Fluids Ibmol/h 1.55447E-05 0.011297 0.000326917 0.000809077 9.93336E-05 1.14301E-05 2.41101E-05 7.44048E-07 8.78969E-07 4.22439E-06 3.48768E-06 5.91764E-08 2.59153E-07 5.44663E-05 5.90637E-06 0.00017176 2.84017E-06 6.75186E-06
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane	ntane		Gas to Separators Ibmol/h 33.431 12626.5 20.7649 453.949 28.792 1.55819 2.31367 0.0326039 0.0292497 0.061643 0.00233946 0.00141677 0.171809 0.0142554 0.20297 0.00259721	Ibmol/h 6.51032E-09 1.39358E-05 6.14623E-06 1.66027E-06 8.77604E-08 7.24216E-09 1.39407E-08 2.66523E-10 2.64927E-10 6.82185E-10 4.29833E-10 2.57433E-12 2.11673E-11 2.1764E-09 1.46137E-10 2.07231E-09 2.39066E-11	Condensate Ibmol/h 0 * 0.138765 * 0.00084502 * 0.0699026 * 0.0485691 * 0.0176674 * 0.0358028 * 0.0358028 * 0.0326048 * 0.0292507 * 0.0616474 * 0.001234005 * 0.00141703 * 0.0117864 * 0.0142613 * 0.203143 * 0.00260006 * 0.00478411 * 0.150791 *	Sales Gas Ibmol/h 33.431 12626.4 20.7644 453.88 28.7436 1.54054 2.27789 0 * 0 0 * 0 0 * 0 0 * 0 0 * 0 0 * 0 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	Fluids Ibmol/h 1.55447E-05 0.011297 0.000326917 0.000809077 9.93336E-05 1.14301E-05 2.41101E-05 7.44048E-07 8.78969E-07 4.22439E-06 3.48768E-06 5.91764E-08 2.59153E-07 5.44663E-05 5.90637E-06 0.00017176 2.84017E-06
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane	ntane		Gas to Separators Ibmol/h 33.431 12626.5 20.7649 453.949 28.792 1.55819 2.31367 0.0326039 0.0292497 0.061643 0.00141677 0.171809 0.0142554 0.2029721 0.00477734 0.150415 0	Ibmol/h 6.51032E-09 1.39358E-05 6.14623E-06 1.66027E-06 8.77604E-08 7.24216E-09 1.39407E-08 2.66523E-10 2.64927E-10 6.82185E-10 4.29833E-10 2.57433E-12 2.11673E-11 2.1764E-09 1.46137E-10 2.07231E-09 2.39066E-11 3.74045E-11 1.33589E-09 0	Condensate Ibmol/h 0 * 0.138765 * 0.00084502 * 0.0699026 * 0.0485691 * 0.0176674 * 0.0358028 * 0.0326048 * 0.0292507 * 0.0616474 * 0.00234005 * 0.00141703 * 0.00142613 * 0.00260006 * 0.00478411 * 0.150791 * 0 *	Sales Gas Ibmol/h 33.431 * 12626.4 * 20.7644 * 453.88 * 28.7436 * 1.54054 * 2.27789 * 0 *	Fluids Ibmol/h 1.55447E-05 0.011297 0.000326917 0.000809077 9.93336E-05 1.14301E-05 2.41101E-05 7.44048E-07 8.78969E-07 4.22439E-06 3.48768E-06 5.91764E-08 2.59153E-07 5.44663E-05 5.90637E-06 0.00017176 2.84017E-06 6.75186E-06 0.00037483 0
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water	ntane		Gas to Separators Ibmol/h 33.431 12626.5 20.7649 453.949 28.792 1.55819 2.31367 0.0326039 0.0292497 0.061643 0.00141677 0.171809 0.0142554 0.2029721 0.00477734 0.150415 0 0	Ibmol/h 6.51032E-09 1.39358E-05 6.14623E-06 1.66027E-06 8.77604E-08 7.24216E-09 1.39407E-08 2.66523E-10 2.64927E-10 6.82185E-10 4.29833E-10 2.57433E-12 2.11673E-11 2.1764E-09 1.46137E-10 2.07231E-09 2.39066E-11 3.374045E-11 1.33589E-09 0 0.000231173	Condensate Ibmol/h 0 * 0.138765 * 0.00084502 * 0.0699026 * 0.0485691 * 0.0176674 * 0.0358028 * 0.0326048 * 0.0292507 * 0.0616474 * 0.00234005 * 0.00141703 * 0.00142613 * 0.00142613 * 0.00142613 * 0.00142613 * 0.00142613 * 0.00260006 * 0.00478411 * 0.150791 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0	Sales Gas Ibmol/h 33.431 * 12626.4 * 20.7644 * 453.88 * 28.7436 * 1.54054 * 2.27789 * 0 *	Fluids Ibmol/h 1.55447E-05 0.011297 0.000326917 0.000809077 9.93336E-05 1.14301E-05 2.41101E-05 7.44048E-07 8.78969E-07 4.22439E-06 3.48768E-06 5.91764E-08 2.59153E-07 5.44663E-05 5.90637E-06 0.00017176 2.84017E-06 6.75186E-06 0.00037483 0 11.4255
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane	ntane		Gas to Separators Ibmol/h 33.431 12626.5 20.7649 453.949 28.792 1.55819 2.31367 0.0326039 0.0292497 0.061643 0.00141677 0.171809 0.0142554 0.2029721 0.00477734 0.150415 0	Ibmol/h 6.51032E-09 1.39358E-05 6.14623E-06 1.66027E-06 8.77604E-08 7.24216E-09 1.39407E-08 2.66523E-10 2.64927E-10 6.82185E-10 4.29833E-10 2.57433E-12 2.11673E-11 2.1764E-09 1.46137E-10 2.07231E-09 2.39066E-11 3.74045E-11 1.33589E-09 0	Condensate Ibmol/h 0 * 0.138765 * 0.00084502 * 0.0699026 * 0.0485691 * 0.0176674 * 0.0358028 * 0.0326048 * 0.0292507 * 0.0616474 * 0.00234005 * 0.00141703 * 0.00142613 * 0.00260006 * 0.00478411 * 0.150791 * 0 *	Sales Gas Ibmol/h 33.431 * 12626.4 * 20.7644 * 453.88 * 28.7436 * 1.54054 * 2.27789 * 0 *	Fluids Ibmol/h 1.55447E-05 0.011297 0.00036917 0.000809077 9.93336E-05 1.14301E-05 2.41101E-05 7.44048E-07 8.78969E-07 4.22439E-06 3.48768E-06 5.91764E-08 2.59153E-07 5.44663E-05 5.90637E-06 0.00017176 2.84017E-06 6.75186E-06 0.00037483 0

* User Specified Values ? Extrapolated or Approximate Values

Licensed to The ERM Group, Inc. and Affiliates

Page	2	of	6
------	---	----	---

			All St Tabulated b	reams Report reams y Total Phase			
Client Name:	Arsenal - Cather	Compressor Sta	tion		Job: Produc	ed Water Tank	
Location:							
Flowsheet:	Flowsheet1						
			Gas to	Loading	Measured	Measured	Produced
Molar Flow			Separators	lle une a 1/le	Condensate	Sales Gas	Fluids
Hexanes+			Ibmol/h	lbmol/h 0	Ibmol/h	Ibmol/h	lbmol/h 0
nexalles+			0	0	0	0	0
Mass Fraction			Gas to Separators %	Loading %	Measured Condensate %	Measured Sales Gas %	Produced Fluids %
Nitrogen			0.426059	0.00386802	0 *	0.426571 *	0.000209686
Methane			92.1527	4.74159	1.71125 *	92.2624 *	0.0872678
Carbon Dioxide			0.415748	5.73688	0.0285875 *	0.416237 *	0.00692796
Ethane			6.20985	1.05881	1.61576 *	6.21636 *	0.0117147
Propane			0.577593	0.0820757	1.64634 *	0.577313 *	0.00210917
Isobutane n-Butane			0.041202 0.0611784	0.00892752	0.789365 * 1.59964 *	0.0407841 *	0.0003199
Isopentane			0.00107017	0.000407835	1.80831 *	0.0603046	2.58494E-05
n-Pentane			0.000960075	0.000405393	1.62229 *	0 *	3.05368E-05
i-Hexane			0.00241669	0.00124683	4.08377 *	0 *	0.000175294
n-Hexane			0.00138515	0.000785604	2.34072 *	0 *	0.000144724
2,2,4-Trimethylper	ntane		1.21575E-05	6.23676E-06	0.0205477 *	0 *	3.25495E-06
Benzene			5.03467E-05	3.50674E-05	0.0850863 *	0 *	9.74752E-06
Heptane			0.00783207	0.00462526	13.238 *	0 *	0.002628
Toluene			0.00059755	0.000285576	1.0101 *	0 *	0.000262049
Octane Ethylhonzono			0.0105478	0.00502052	17.8377 *	0 *	0.0094475
Ethylbenzene o-Xylene			0.000125442 0.00023074	5.38295E-05 8.42219E-05	0.212191 * 0.390432 *	0 *	0.000145193 0.000345164
Nonane			0.00877649	0.00363383	14.8666 *	0 *	0.0231488
Decane			0.00077049	0.00303303	0 *	0 *	0.0231400
Water			0.0615778	88.3279	0 *	0 *	99.1147
Oxygen			0	0	0 *	0 *	0
Decanes Plus			0.0200701	0.00614035	35.0933 *	0 *	0.73972
Hexanes+			0	0	0 *	0 *	0
			Gas to	Loading	Measured	Measured	Produced
Mass Flow			Separators Ib/h	lb/h	Condensate Ib/h	Sales Gas Ib/h	Fluids lb/h
Nitrogen			936.516	1.82376E-07	n/di * 0	936.516 *	
Methane			202560	0.000223565	2.22614 *	202558 *	0.181231
Carbon Dioxide			913.852	0.000220000	0.0371889 *	913.829 *	0.0143875
Ethane			13649.8	4.99229E-05	2.10191 *	13647.7 *	0.0243282
		·	1000.0	3.86985E-06	2.14169 *	1267.46 *	0.00438017
Propane			1269.6				0.000664345
Propane Isobutane			90.5657	4.20931E-07	1.02687 *	89.5395 *	
Propane Isobutane n-Butane			90.5657 134.476	4.20931E-07 8.10263E-07	1.02687 * 2.08094 *	132.396 *	0.00140133
Propane Isobutane n-Butane Isopentane			90.5657 134.476 2.35233	4.20931E-07 8.10263E-07 1.92293E-08	1.02687 * 2.08094 * 2.35239 *	132.396 * 0 *	0.00140133 5.36822E-05
Propane Isobutane n-Butane Isopentane n-Pentane			90.5657 134.476 2.35233 2.11033	4.20931E-07 8.10263E-07 1.92293E-08 1.91142E-08	1.02687 * 2.08094 * 2.35239 * 2.1104 *	132.396 * 0 * 0 *	0.00140133 5.36822E-05 6.34166E-05
Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane			90.5657 134.476 2.35233 2.11033 5.31211	4.20931E-07 8.10263E-07 1.92293E-08 1.91142E-08 5.87876E-08	1.02687 * 2.08094 * 2.35239 * 2.1104 * 5.31249 *	132.396 * 0 * 0 * 0 *	0.00140133 5.36822E-05 6.34166E-05 0.000364039
Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane n-Hexane	ntane		90.5657 134.476 2.35233 2.11033 5.31211 3.04468	4.20931E-07 8.10263E-07 1.92293E-08 1.91142E-08	1.02687 * 2.08094 * 2.35239 * 2.1104 * 5.31249 * 3.04499 *	132.396 * 0 * 0 *	0.00140133 5.36822E-05 6.34166E-05 0.000364039 0.000300552
Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane n-Hexane 2,2,4-Trimethylper	ntane		90.5657 134.476 2.35233 2.11033 5.31211	4.20931E-07 8.10263E-07 1.92293E-08 1.91142E-08 5.87876E-08 3.70411E-08	1.02687 * 2.08094 * 2.35239 * 2.1104 * 5.31249 *	132.396 * 0 * 0 * 0 * 0 *	0.00140133 5.36822E-05 6.34166E-05 0.000364039
Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane n-Hexane 2,2,4-Trimethylper Benzene Heptane	ntane		90.5657 134.476 2.35233 2.11033 5.31211 3.04468 0.0267233 0.110666 17.2156	4.20931E-07 8.10263E-07 1.92293E-08 1.91142E-08 5.87876E-08 3.70411E-08 2.94062E-10 1.65342E-09 2.1808E-07	1.02687 * 2.08094 * 2.35239 * 2.1104 * 5.31249 * 3.04499 * 0.0267301 * 0.110687 * 17.2211 *	132.396 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.00140133 5.36822E-05 6.34166E-05 0.000364039 0.000300552 6.75964E-06 2.02429E-05 0.00545763
Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane n-Hexane 2,2,4-Trimethylper Benzene Heptane Toluene	ntane		90.5657 134.476 2.35233 2.11033 5.31211 3.04468 0.0267233 0.110666 17.2156 1.31347	4.20931E-07 8.10263E-07 1.92293E-08 1.91142E-08 5.87876E-08 3.70411E-08 2.94062E-10 1.65342E-09 2.1808E-07 1.34649E-08	1.02687 * 2.08094 * 2.35239 * 2.1104 * 5.31249 * 3.04499 * 0.0267301 * 0.110687 * 17.2211 * 1.31402 *	132.396 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.00140133 5.36822E-05 6.34166E-05 0.000364039 0.000300552 6.75964E-06 2.02429E-05 0.00545763 0.000544204
Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane 2,2,4-Trimethylper Benzene Heptane Toluene Octane	ntane		90.5657 134.476 2.35233 2.11033 5.31211 3.04468 0.0267233 0.110666 17.2156 1.31347 23.185	4.20931E-07 8.10263E-07 1.92293E-08 1.91142E-08 5.87876E-08 3.70411E-08 2.94062E-10 1.65342E-09 2.1808E-07 1.34649E-08 2.36717E-07	1.02687 * 2.08094 * 2.35239 * 2.1104 * 5.31249 * 3.04499 * 0.0267301 * 0.110687 * 17.2211 * 1.31402 * 23.2047 *	132.396 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0	0.00140133 5.36822E-05 6.34166E-05 0.000364039 0.000300552 6.75964E-06 2.02429E-05 0.00545763 0.000544204 0.0196199
Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane 2,2,4-Trimethylper Benzene Heptane Toluene Octane Ethylbenzene	ntane		90.5657 134.476 2.35233 2.11033 5.31211 3.04468 0.0267233 0.110666 17.2156 1.31347 23.185 0.275733	4.20931E-07 8.10263E-07 1.92293E-08 1.91142E-08 5.87876E-08 3.70411E-08 2.94062E-10 1.65342E-09 2.1808E-07 1.34649E-08 2.36717E-07 2.53805E-09	1.02687 * 2.08094 * 2.35239 * 2.1104 * 5.31249 * 3.04499 * 0.0267301 * 0.110687 * 17.2211 * 1.31402 * 23.2047 * 0.276035 *	132.396 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0	0.00140133 5.36822E-05 6.34166E-05 0.000364039 0.000300552 6.75964E-06 2.02429E-05 0.00545763 0.000544204 0.0196199 0.000301527
Propane Isobutane Isopentane n-Pentane i-Hexane 2,2,4-Trimethylper Benzene Heptane Toluene Octane Ethylbenzene o-Xylene	ntane		90.5657 134.476 2.35233 2.11033 5.31211 3.04468 0.0267233 0.110666 17.2156 1.31347 23.185 0.275733 0.507187	4.20931E-07 8.10263E-07 1.92293E-08 1.91142E-08 5.87876E-08 3.70411E-08 2.94062E-10 1.65342E-09 2.1808E-07 1.34649E-08 2.36717E-07 2.53805E-09 3.97104E-09	1.02687 * 2.08094 * 2.35239 * 2.1104 * 5.31249 * 3.04499 * 0.0267301 * 0.110687 * 17.2211 * 1.31402 * 23.2047 * 0.276035 *	132.396 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0	0.00140133 5.36822E-05 6.34166E-05 0.000364039 0.000300552 6.75964E-06 2.02429E-05 0.00545763 0.000544204 0.0196199 0.000301527 0.000716811
Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane 2,2,4-Trimethylper Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane	ntane		90.5657 134.476 2.35233 2.11033 5.31211 3.04468 0.0267233 0.110666 17.2156 1.31347 23.185 0.275733 0.507187 19.2915	4.20931E-07 8.10263E-07 1.92293E-08 1.91142E-08 5.87876E-08 3.70411E-08 2.94062E-10 1.65342E-09 2.1808E-07 1.34649E-08 2.36717E-07 2.53805E-09 3.97104E-09 1.71334E-07	1.02687 * 2.08094 * 2.35239 * 2.1104 * 5.31249 * 3.04499 * 0.0267301 * 0.110687 * 1.31402 * 2.3.2047 * 0.276035 * 0.507905 * 19.3397 *	132.396 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0	0.00140133 5.36822E-05 6.34166E-05 0.000364039 0.000300552 6.75964E-06 2.02429E-05 0.00545763 0.000544204 0.0196199 0.000301527 0.000716811 0.0480738
Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane 2,2,4-Trimethylper Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane	ntane		90.5657 134.476 2.35233 2.11033 5.31211 3.04468 0.0267233 0.110666 17.2156 1.31347 23.185 0.275733 0.507187 19.2915 0	4.20931E-07 8.10263E-07 1.92293E-08 1.91142E-08 5.87876E-08 3.70411E-08 2.94062E-10 1.65342E-09 2.1808E-07 1.34649E-08 2.36717E-07 2.53805E-09 3.97104E-09 1.71334E-07 0	1.02687 * 2.08094 * 2.35239 * 2.1104 * 5.31249 * 3.04499 * 0.0267301 * 0.110687 * 1.72211 * 1.31402 * 2.3.2047 * 0.276035 * 0.507905 * 19.3397 * 0 *	132.396 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0	0.00140133 5.36822E-05 6.34166E-05 0.000364039 0.000300552 6.75964E-06 2.02429E-05 0.00545763 0.000544204 0.0196199 0.000301527 0.000716811 0.0480738 0
Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane 2,2,4-Trimethylper Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water	ntane		90.5657 134.476 2.35233 2.11033 5.31211 3.04468 0.0267233 0.110666 17.2156 1.31347 23.185 0.275733 0.507187 19.2915 0 135.353	4.20931E-07 8.10263E-07 1.92293E-08 1.91142E-08 5.87876E-08 3.70411E-08 2.94062E-10 1.65342E-09 2.1808E-07 1.34649E-08 2.53805E-09 3.97104E-09 1.71334E-07 0 0.000416464	1.02687 * 2.08094 * 2.35239 * 2.1104 * 5.31249 * 3.04499 * 0.0267301 * 0.110687 * 1.31402 * 23.2047 * 0.276035 * 0.507905 * 19.3397 * 0 * 0 *	132.396 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0	0.00140133 5.36822E-05 6.34166E-05 0.000364039 0.000300552 6.75964E-06 2.02429E-05 0.00545763 0.000544204 0.0196199 0.000301527 0.000716811 0.0480738 0 205.834
Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane 2,2,4-Trimethylper Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water Oxygen	ntane		90.5657 134.476 2.35233 2.11033 5.31211 3.04468 0.0267233 0.110666 17.2156 1.31347 23.185 0.275733 0.507187 19.2915 0 135.353 0	4.20931E-07 8.10263E-07 1.92293E-08 1.91142E-08 5.87876E-08 3.70411E-08 2.94062E-10 1.65342E-09 2.1808E-07 1.34649E-08 2.36717E-07 2.53805E-09 3.97104E-09 1.71334E-07 0 0.00416464 0	1.02687 * 2.08094 * 2.35239 * 2.1104 * 5.31249 * 3.04499 * 0.0267301 * 0.110687 * 1.31402 * 23.2047 * 0.276035 * 0.507905 * 19.3397 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0	132.396 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0	0.00140133 5.36822E-05 6.34166E-05 0.000364039 0.000300552 6.75964E-06 2.02429E-05 0.00545763 0.000544204 0.0196199 0.000301527 0.000716811 0.0480738 0 205.834 0
Propane Isobutane Isopentane Isopentane I-Pentane I-Hexane 2,2,4-Trimethylper Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water	ntane		90.5657 134.476 2.35233 2.11033 5.31211 3.04468 0.0267233 0.110666 17.2156 1.31347 23.185 0.275733 0.507187 19.2915 0 135.353	4.20931E-07 8.10263E-07 1.92293E-08 1.91142E-08 5.87876E-08 3.70411E-08 2.94062E-10 1.65342E-09 2.1808E-07 1.34649E-08 2.53805E-09 3.97104E-09 1.71334E-07 0 0.000416464	1.02687 * 2.08094 * 2.35239 * 2.1104 * 5.31249 * 3.04499 * 0.0267301 * 0.110687 * 1.31402 * 23.2047 * 0.276035 * 0.507905 * 19.3397 * 0 * 0 *	132.396 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0	0.00140133 5.36822E-05 6.34166E-05 0.000364039 0.000300552 6.75964E-06 2.02429E-05 0.00545763 0.000544204 0.0196199 0.000301527 0.000716811 0.0480738 0 205.834

			All St	eams Report reams y Total Phase			
Client Name:	Arsenal - Cathe	r Compressor Sta	ation		Job: Pro	duced Water Tank	
Location:							
Flowsheet:	Flowsheet1						
	+				ŧ		
			Stream F	Properties			
Property		Units	Gas to Separators	Loading	Measured Condensate	Measured Sales Gas	Produced Fluids
Temperature		°F	60 *	72.1381	60	* 60 *	60
Pressure		psia	522	0.429042	522	* 522 *	522
Mole Fraction Vapor		%	100	100	0	100	0
Mole Fraction Light L	_iquid	%	0	0	100	0	0.107728
Mole Fraction Heavy	/ Liquid	%	0	0	0	0	99.8923
Molecular Weight	•	lb/lbmol	16.6828	18.6333	100.065	16.6739	18.1402
Mass Density		lb/ft^3	1.68479	0.00140133	44.4326	1.68371	62.1844
Molar Flow		lbmol/h	13175.8	0.00025304	1.30003	13167	11.4482
Mass Flow		lb/h	219809	0.00471498	130.088	219545	207.673
Vapor Volumetric Flo	w	ft^3/h	130467	3.36463	2.92776	130394	3.33963
Liquid Volumetric Flo	w	gpm	16266	0.419487	0.36502	16256.9	0.416369
Std Vapor Volumetri	c Flow	MMSCFD	120	2.30459E-06	0.0118402	119.92 *	0.104266
Std Liquid Volumetri	c Flow	sgpm	1437.93	1.07806E-05	0.375591	* 1437.28	0.41699
Compressibility			0.926834	0.999611	0.210796	0.926934	0.0273049
Specific Gravity			0.576012	0.643359	0.712414	0.575705	0.99704
API Gravity					67.1204		10.4201
Enthalpy		Btu/h	-4.32994E+08	-25.5971	-118093	-4.32109E+08	-1.40843E+06
Mass Enthalpy		Btu/lb	-1969.86	-5428.9	-907.793	-1968.2	-6781.95
Mass Cp		Btu/(lb*°F)	0.583998	0.437951	0.499086	0.584094	0.970591
Ideal Gas CpCv Rati	o		1.30077	1.32176	1.05593	1.30088	1.32398
Dynamic Viscosity		cP	0.0114786	0.0103575	0.469083	0.0114771	1.1308
Kinematic Viscosity		cSt	0.425325	461.414	0.659063	0.425543	1.13523
Thermal Conductivity	y	Btu/(h*ft*°F)	0.0202824	0.0123555	0.07	0.0202851	0.338244
Surface Tension		lbf/ft			0.00120642		0.00506516 ?
Net Ideal Gas Heatin	ng Value	Btu/ft^3	933.664	61.9751	5056.69	933.796	8.04316
Net Liquid Heating V	'alue	Btu/lb	21226.7	320.029	19022.3	21241.7	-883.346
Gross Ideal Gas Hea		Btu/ft^3	1035.84	114.574	5439.14	1035.97	58.8461
Gross Liquid Heating		Btu/lb	23550.8	1391.24	20472.7	23567.1	179.424
Remarks							

		All S Tabulated	treams Report Streams by Total Phase			
Client Name:	Arsenal - Cather	Compressor Station		Job: Produ	ced Water Tank	
Location: Flowsheet:	Flowsheet1					
Tiowsneet.	Tiowsheett					
		Conr	nections			
		Produced Liquids	Produced Water Flow	Tank Vent Gas	W/B	1
From Block		Produced Water		Produced Water		MIX-100
To Block		Tank	MIX-100	Tank 		Separator
		Stream C	Composition			
Mole Fraction		Produced Liquids %	Produced Water Flow %	Tank Vent Gas %	W/B %	1 %
Nitrogen		1.7332E-06	0 *	0.123357	0.00257284	0.25351
Methane		0.00257368	0 *	88.4404	5.50737	95.7479
Carbon Dioxide Ethane		0.000938453	0 *	1.76515 6.14229	2.42896 0.656132	0.157464 3.44234
Propane		9.37482E-05	0 *	0.712277	0.0346825	0.218333
Isobutane		2.15318E-05	0 *	0.0720841	0.00286207	0.011816
n-Butane		6.07297E-05	0 *	0.137975 0.00304102	0.00550929	0.0175449 0.000247244
Isopentane n-Pentane		3.19806E-06 4.33204E-06	0 *	0.00304102	0.000105329	0.000247244
i-Hexane		2.81642E-05	0 *	0.0080671	0.000269596	0.000467477
n-Hexane		2.51845E-05	0 *	0.0048843	0.000169868	0.000267946
2,2,4-Trimethylpenta Benzene	ane	4.83029E-07 2.02746E-06	0 *	3.1658E-05 0.000219421	1.01736E-06 8.36521E-06	1.77448E-06 1.07455E-05
Heptane		0.000450251	0 *	0.0239276	0.000860103	0.00130326
Toluene		4.93086E-05	0 *	0.00215079	5.77527E-05	0.000108145
Octane Ethylbenzene		0.00147328 2.44283E-05	0 *	0.026362 0.000374692	0.000818965 9.44778E-06	0.00154044 1.97164E-05
o-Xylene		5.82982E-05	0 *	0.000683486	1.4782E-05	3.62782E-05
Nonane		0.00325856	0 *	0.0175949	0.000527935	0.00114345
Decane Water		0 99.908	0 *	0 2.49096	0 91.3583	0.143615
Oxygen		0	0 *	2.49090	91.3383	0.143013
Decanes Plus		0.0825243	0 *	0.0251173	0.000703116	0.0021274
Hexanes+		0	0 *	0	0	0
Malas Elaus		Produced Liquids	Produced Water Flow	Tank Vent Gas	W/B	1
Molar Flow Nitrogen		lbmol/h 1.98204E-07	Ibmol/h	lbmol/h 1.53465E-05	lbmol/h 9.69461E-09	lbmol/h 33.431
Methane		0.000294319	0 *	0.0110027	2.07521E-05	12626.5
Carbon Dioxide		0.000107319	0 *	0.000219598	9.15243E-06	20.7652
Ethane Propane		4.49299E-05 1.07208E-05	0 *	0.000764147 8.86128E-05	2.47234E-06 1.30685E-07	453.949 28.7921
Isobutane		2.46233E-06	0 *	8.96782E-06	1.07844E-08	1.55821
n-Butane		6.94489E-06	0 *	1.71652E-05	2.07593E-08	2.31369
Isopentane n-Pentane		3.65722E-07 4.954E-07	0 *	3.78326E-07 3.83569E-07	3.96884E-10 3.94507E-10	0.0326047 0.0292506
i-Hexane		3.22079E-06	0 *	1.00361E-06	1.01585E-09	0.0292506
n-Hexane		2.88003E-06	0 *	6.07645E-07	6.40071E-10	0.0353347
2,2,4-Trimethylpenta Benzene	ane	5.52379E-08 2.31856E-07	0 *	3.9385E-09 2.72976E-08	3.83347E-12 3.15206E-11	0.000234005 0.00141703
Heptane		5.14895E-05	0 *	2.97677E-06	3.24091E-09	0.171863
		5.6388E-06	0 *	2.67575E-07	2.17615E-10	0.0142613
Toluene		0.00016848	0 *	3.27963E-06	3.0859E-09	0.203142
Toluene Octane			∩ *			
Toluene		2.79356E-06 6.66683E-06	0 *	4.66145E-08 8.50309E-08	3.55997E-11 5.56995E-11	0.00260005 0.0047841
Toluene Octane Ethylbenzene o-Xylene Nonane		2.79356E-06 6.66683E-06 0.000372641	0 *	8.50309E-08 2.18894E-06	5.56995E-11 1.98929E-09	0.0047841 0.15079
Toluene Octane Ethylbenzene o-Xylene Nonane Decane		2.79356E-06 6.66683E-06 0.000372641 0	0 * 0 * 0 *	8.50309E-08 2.18894E-06 0	5.56995E-11 1.98929E-09 0	0.0047841 0.15079 0
Toluene Octane Ethylbenzene o-Xylene Nonane		2.79356E-06 6.66683E-06 0.000372641	0 *	8.50309E-08 2.18894E-06	5.56995E-11 1.98929E-09	0.0047841 0.15079

* User Specified Values ? Extrapolated or Approximate Values ProMax 4.0.16308.0 Copyright © 2002-2016 BRE Group, Ltd.

Page	5	of	6
------	---	----	---

			All St	reams Report Treams by Total Phase			
Client Name: Ars	enal - Cather	Compressor Station			Job: Produ	uced Water Tank	
Location:		· · · ·					
Flowsheet: Flow	wsheet1						
					•		
		Prod		Produced	Tank Vent	W/B	1
Molar Flow		Liqu		Water Flow Ibmol/h	Gas Ibmol/h	lbmol/h	lbmol/h
Hexanes+			0	* 0	0	0	0
Tiexanes T			0	Ŭ	0	Ŭ	Ŭ
Mass Fraction		Produ Liqu %	ids	Produced Water Flow %	Tank Vent Gas %	W/B %	1 %
Nitrogen			49E-06	0 *	0.193402	0.00386802	0.425657
Methane		0.00	227602	0 *	79.406	4.74159	92.0658
Carbon Dioxide			227672	0 *	4.34771	5.73688	0.415362
Ethane			651239	0 *	10.3367	1.05881	6.204
Propane			227881	0 *	1.75783	0.0820757	0.57705
Isobutane			88E-05	0 *	0.234484	0.00892752	0.0411634
n-Butane			194578	0 *	0.448823	0.0171849	0.0611213
Isopentane			94E-05	0 *	0.0122795	0.000407835	0.00106919
n-Pentane			94E-05	0 *	0.0124497	0.000405393	0.000959198
i-Hexane			133792	0 *	0.0389074	0.00124683	0.00241458
n-Hexane			119637	0 *	0.0235569	0.000785604	0.00138398
2,2,4-Trimethylpentane			57E-06 12E-06	0 *	0.000202391 0.000959238	6.23676E-06	1.21491E-05
Benzene Heptane			248703	0 *	0.134186	3.50674E-05 0.00462526	5.03083E-05 0.00782716
Toluene			250445	0 *	0.134186	0.00462526	0.000597233
Octane			230443 927704	0 *	0.168533	0.00502052	0.0105468
Ethylbenzene			142963	0 *	0.00222632	5.38295E-05	0.000125461
o-Xylene			341182	0 *	0.00406109	8.42219E-05	0.000230848
Nonane			230383	0 *	0.126297	0.00363383	0.00879006
Decane		0.0	0	0 *	0.120201	0	0
Water		ę	9.2182	100 *	2.51154	88.3279	0.155074
Oxygen			0	0 *	0	0	0
Decanes Plus		0.	740268	0 *	0.22875	0.00614035	0.0207494
Hexanes+			0	0 *	0	0	0
				,	,	· · ·	· · ·
Mass Flow		Produ Liqu Ib/	iids	Produced Water Flow Ib/h	Tank Vent Gas Ib/h	W/B Ib/h	1 Ib/h
Nitrogen			38E-06	0 *		2.71579E-07	936.516
Methane		0.00	472161	0 *	0.17651	0.000332914	202560
Carbon Dioxide			472306	0 *	0.00966441	0.000402794	913.866
Ethane		0.	001351	0 *	0.0229772	7.43409E-05	13649.8
Propane		0.00	047274	0 *	0.00390743	5.76265E-06	1269.61
Isobutane		0.000	143116	0 *	0.000521229	6.26814E-07	90.5664
n-Butane			403652	0 *	0.000997677	1.20657E-06	134.477
Isopentane			64E-05	0 *	2.72958E-05	2.86347E-08	2.35239
n-Pentane			25E-05	0 *	2.7674E-05	2.84632E-08	2.11039
i-Hexane			277552	0 *	8.64863E-05	8.75414E-08	5.31247
n-Hexane			248188	0 *	5.2364E-05	5.51584E-08	3.04498
2,2,4-Trimethylpentane			75E-06	0 *	4.4989E-07	4.37892E-10	0.02673
Benzene			07E-05 515935	0 *	2.13227E-06	2.46213E-09	0.110687
Heptane Toluene			515935 051955	0 *	0.000298278 2.4654E-05	3.24746E-07 2.00507E-08	17.2211 1.31401
Octane			192453	0 *	0.000374627	3.52498E-07	23.2046
Ethylbenzene			296578	0 *	4.94883E-06	3.77944E-09	0.276035
o-Xylene			707784	0 *	9.02731E-06	5.91334E-09	0.507904
Nonane			477931	0 *	0.000280743	2.55136E-07	19.3396
Decane		0.0	0	0 *	0	0	0
Water		2	205.829	341.188 *	0.00558285	0.00620163	341.188
Oxygen			0	0 *	0	0	0
Decanes Plus		1	.53569	0 *	0.000508484	4.31122E-07	45.6521
				•			
Hexanes+			0	0 *	0	0	0

			All St	reams Report treams by Total Phase			
Client Name:	Arsenal - Cathe	er Compressor Sta	ation		Job: Produ	Iced Water Tank	
Location:							
Flowsheet:	Flowsheet1						
			Stream	Properties			
Property		Units	Produced Liquids	Produced Water Flow	Tank Vent Gas	W/B	1
Temperature		°F	. 70 *	60 *	70	72.1381	58.8295
Pressure		psia	14.6959 *	522 *	14.6959	0.429042	522
Mole Fraction Vapor		%	0	0	100	100	99.9108
Mole Fraction Light		%	0.088633	100	0	0	0.000217836
Mole Fraction Heavy		%	99.9114	0	0	0	0.0890059
Molecular Weight	•	lb/lbmol	18.1405	18.0153	17.8677	18.6333	16.6841
Mass Density		lb/ft^3	62.145	62.3966	0.0463004	0.00140133	1.69137
Molar Flow		lbmol/h	11.4357	18.9388	0.0124408	0.000376805	13187.2
Mass Flow		lb/h	207.45	341.188	0.222288	0.00702114	220017
Vapor Volumetric Flo	w	ft^3/h	3.33817	5.46805	4.80099	5.01033	130082
Liquid Volumetric Flo	w	gpm	0.416187	0.681731	0.598565	0.624664	16218
Std Vapor Volumetri	c Flow	MMSCFD	0.104152	0.172487	0.000113306	3.4318E-06	120.104
Std Liquid Volumetri	c Flow	sgpm	0.415623	0.682059 *	0.00136687	1.60536E-05	1438.34
Compressibility		0.	0.000754697	0.0270246	0.997729	0.999611	0.925384
Specific Gravity			0.996408	1.00044	0.616922	0.643359	
API Gravity			10.3058	9.93743			
Enthalpy		Btu/h	-1.40623E+06	-2.3317E+06	-457.374	-38.1171	-4.34559E+08
Mass Enthalpy		Btu/lb	-6778.63	-6834.08	-2057.58	-5428.9	-1975.12
Mass Cp		Btu/(lb*°F)	0.968638	0.973398	0.497166	0.437951	0.584521
Ideal Gas CpCv Rat	io	· · ·	1.3235	1.32632	1.28911	1.32176	1.30106
Dynamic Viscosity		cP	0.998504	1.14219	0.0110224	0.0103575	
Kinematic Viscosity		cSt	1.00305	1.14276	14.8617	461.414	
Thermal Conductivit	у	Btu/(h*ft*°F)	0.344284	0.342316	0.0182092	0.0123555	
Surface Tension		lbf/ft	0.0050005 ?	0.00510743			
Net Ideal Gas Heatir	ng Value	Btu/ft^3	7.03648	0	933.4	61.9751	932.861
Net Liquid Heating \	/alue	Btu/lb	-905.481	-1059.76	19773.6	320.029	21205.8
Gross Ideal Gas Hea		Btu/ft^3	57.7838	50.3101	1035.36	114.574	1034.99
Gross Liquid Heating	n Value	Btu/lb	156.108	0	21939	1391.24	23528.8

		E	inergy Stream	·			
			0,	•	1		
Client Name:	Arsenal - Cathe	r Compressor Station			Job: Produc	iced Water Tank	
Location:							
Flowsheet:	Flowsheet1						
			Energy Stre	eams			
Energy Stream		Energy Rate	Power	F	rom Block	To Block	
Q-1		1738.69 Btu/h	0.683331	hp		Produced Water Tank	
Q-2		156406 Btu/h	61.4699	hp		Separator	
						· · ·	
Remarks							
L							

Page	1	of	1

			IK_00222011.pmx		i ago i
		Blowdo	ocks wn Tank or Report		
lient Name:	Arsenal - Cather Compres	sor Station		Job: Produced Water Tar	nk
ocation:				Modified: 12:02 PM, 7/26	
lowsheet:	Flowsheet1			Status: Solved 3:57 PM,	8/22/2017
		Conn	ections		
Stream	Connection Type	Other Block	Stream	Connection Type	Other Block
Produced Fluids	Inlet	Separator	Tank Vent Gas	Vapor Outlet	
Produced Liquids	Heavy Liquid Outlet	•	Q-1	Energy	
		Block Pa	arameters		
Pressure Drop		507.304 psi	Main Liquid Phase	Light L	iquid
Mole Fraction Vap	or	0.10867 %	Heat Duty	173	38.69 Btu/h
Mole Fraction Ligh	t Liquid 0.0	0885367 %	Heat Release Curve	Type Plug	Flow
Mole Fraction Hea	vy Liquid	99.8028 %	Heat Release Curve Increments		10
Remarks					

		MD	ocks (-100 litter Report		
Client Name:	Arsenal - Cather Compresso	or Station		Job: Produced Water Tar	nk
Location:				Modified: 11:59 AM, 6/20	/2017
Flowsheet:	Flowsheet1			Status: Solved 3:57 PM,	8/22/2017
		Conn	ections		
Stream	Connection Type	Other Block	Stream	Connection Type	Other Block
Produced Water Flo	ow Inlet		Measured Condensate	Inlet	
Measured Sales Ga	as Inlet		1	Outlet	Separator
		Block P	arameters		
Pressure Drop		0 psi	Fraction to PStream 1		100 %
Remarks					

Simulation Initiated on 8/22/	2017 3:59:33 PM		Cather_PW Tan	<_08222017.pmx			Page 1 of
			Sand	cks Trap ^{or Report}			
Client Name:	Arsenal - Cather	Compressor Statio	on		Job: Produc	ced Water Tank	
Location:		•			Modified: 12	2:21 PM, 6/20/2017	7
Flowsheet:	Flowsheet1				Status: Solv	ved 3:57 PM, 8/22/2	2017
			Conne	ctions			
Stream	Connectio	on Type	Other Block	Stream	Connect	ion Type	Other Block
1	Inle	et	MIX-100	Gas to Separators	Vapor	Outlet	
Produced Fluids	Light Liqui	id Outlet Prod	uced Water Tank	Q-2	Ene	rgy	
			Block Pa	rameters			
* Pressure Drop		0	psi	Main Liquid Phase		Light Liquid	
Mole Fraction Vapo	or	99.9132	%	Heat Duty		156406	Btu/h
Mole Fraction Ligh	t Liquid	9.35212E-05	%	Heat Release Curve Ty	/pe	Plug Flow	
Mole Fraction Heav	vy Liquid	0.0867191	%	Heat Release Curve		10	
				Increments			
Remarks							

		F		Environment onment1			
Client Name:	Arsenal - Cathe	er Compressor Station			Job: Produc	ced Water Tank	
_ocation:							
Flowsheet:	Flowsheet1						
			Environm	ent Settings			
Number of Poynt		0		* Phase Tolerance		1 %	
Gibbs Excess Mo	del	77 °F		Emulsion Enabled		False	
Evaluation Temp							
Freeze Out Temp		10 °F					
Threshold Differe	nce						
			Comp	onents			
Component Name		Henry's Law Component	Phase Initiator	Component Name		Henry's Law Component	Phase Initiator
Nitrogen		False	False	Benzene		False	False
/lethane		False	False	Heptane		False	False
Carbon Dioxide		False	False	Toluene		False	False
Ethane		False	False	Octane		False	False
Propane		False	False	Ethylbenzene		False	False
sobutane		False	False	o-Xylene		False	False
n-Butane		False	False	Nonane		False	False
sopentane		False	False	Decane		False	False
n-Pentane		False	False	Water		False	True
-Hexane		False	False	Oxygen		False	False
n-Hexane		False	False	Decanes Plus		False	False
2,2,4-Trimethylpent	ane	False	False	Hexanes+		False	False
		Phys	ical Pron	erty Method Sets			
iquid Molar Volum	e	COSTALD		Overall Package		SRK	
Stability Calculation		SRK		Vapor Package		SRK	
Light Liquid Packag		SRK		Heavy Liquid Package		SRK	
Remarks							

		E	nvironm	ents Report			
Client Name:	Arsenal - Cather	Compressor Station			Job: Prod	uced Water Tank	
Location:							
				de Constants			
Atmospheric Pressure		14.6959		Ideal Gas Reference Pre		14.6959	
deal Gas Reference T	Temperature	60		Ideal Gas Reference Vo	lume	379.484	ft^3/lbmol
Liquid Reference Tem	perature	60	*F				
		F	inoprovi	[Environment4]			
				[Environment1]			
			Environm	ent Settings			
Number of Poynting		0		* Phase Tolerance		1 %	
Gibbs Excess Mode		77 °F		Emulsion Enabled		False	
Evaluation Tempera		10 °F					
Freeze Out Tempera Threshold Difference	ature	10 °F					
Freeze Out Tempera	ature	10 °F					
Freeze Out Tempera	ature	10 °F	Com	oonents			
Freeze Out Tempera Threshold Difference	ature	Henry's Law	Phase	Donents Component Name		Henry's Law	Phase
Freeze Out Tempera Threshold Difference Component Name	ature	Henry's Law Component	Phase Initiator	Component Name		Component	Initiato
Freeze Out Tempera Threshold Difference Component Name Nitrogen	ature	Henry's Law Component False	Phase Initiator False	Component Name Benzene		Component False	Initiato False
Freeze Out Tempera Threshold Difference Component Name Nitrogen Methane	ature	Henry's Law Component False False	Phase Initiator False False	Component Name Benzene Heptane		Component False False	Initiato False False
Freeze Out Tempera Threshold Difference Component Name Nitrogen Methane Carbon Dioxide	ature	Henry's Law Component False False False	Phase Initiator False False False	Component Name Benzene Heptane Toluene		Component False False False False	Initiato False False False
Freeze Out Tempera Threshold Difference Component Name Nitrogen Methane Carbon Dioxide Ethane	ature	Henry's Law Component False False False False False	Phase Initiator False False False False	Component Name Benzene Heptane Toluene Octane		Component False False False False False	Initiato False False False False
Freeze Out Tempera Threshold Difference Component Name Nitrogen Methane Carbon Dioxide Ethane Propane	ature	Henry's Law Component False False False False False False	Phase Initiator False False False False False	Component Name Benzene Heptane Toluene Octane Ethylbenzene		Component False False False False False False	Initiato False False False False False
Freeze Out Tempera Threshold Difference Component Name Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane	ature	Henry's Law Component False False False False False False False	Phase Initiator False False False False False False	Component Name Benzene Heptane Toluene Octane Ethylbenzene o-Xylene		Component False False False False False False False	Initiato False False False False False False
Freeze Out Tempera Threshold Difference Component Name Nitrogen Methane Carbon Dioxide Ethane Propane sobutane n-Butane	ature	Henry's Law Component False False False False False False False False	Phase Initiator False False False False False False False	Component Name Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane		Component False False False False False False False False	Initiato False False False False False False False
Freeze Out Tempera Threshold Difference Component Name Nitrogen Methane Carbon Dioxide Ethane Propane sobutane n-Butane sopentane	ature	Henry's Law Component False False False False False False False False False False	Phase Initiator False False False False False False False False	Component Name Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane		Component False False False False False False False False False	Initiato False False False False False False False False
Freeze Out Tempera Threshold Difference Component Name Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane	ature	Henry's Law Component False False False False False False False False False False False	Phase Initiator False False False False False False False False False	Component Name Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water		Component False False False False False False False False False False	Initiato False False False False False False False False True
Freeze Out Tempera Threshold Difference Component Name Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane	ature	Henry's Law Component False False False False False False False False False False False False	Phase Initiator False False False False False False False False False False	Component Name Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water Oxygen		Component False False False False False False False False False False False	Initiato False False False False False False False True False
Freeze Out Tempera Threshold Difference Component Name Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane -Pentane -Hexane n-Hexane	ature e	Henry's Law Component False False False False False False False False False False False False False False	Phase Initiator False False False False False False False False False False	Component Name Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water Oxygen Decanes Plus		Component False False False False False False False False False False False False	Initiato False False False False False False False True False False
Freeze Out Tempera Threshold Difference Component Name Nitrogen Methane Carbon Dioxide Ethane Propane sobutane n-Butane sopentane -Pentane -Pentane -Hexane n-Hexane	ature e	Henry's Law Component False False False False False False False False False False False False	Phase Initiator False False False False False False False False False False	Component Name Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water Oxygen		Component False False False False False False False False False False False	Initiato False False False False False False False True False
Freeze Out Tempera Threshold Difference Component Name Nitrogen Methane Carbon Dioxide Ethane Propane sobutane n-Butane sopentane -Pentane -Pentane -Hexane n-Hexane	ature e	Henry's Law Component False False False False False False False False False False False False False False	Phase Initiator False False False False False False False False False False False False	Component Name Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water Oxygen Decanes Plus Hexanes+		Component False False False False False False False False False False False False	Initiato False False False False False False False True False False
Freeze Out Tempera Threshold Difference Component Name Nitrogen Methane Carbon Dioxide Ethane Propane sobutane n-Butane sopentane n-Pentane -Hexane 1-Hexane 2,2,4-Trimethylpentane	ature e	Henry's Law Component False False False False False False False False False False False False False False False False	Phase Initiator False False False False False False False False False False False False	Component Name Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water Oxygen Decanes Plus Hexanes+ erty Method Sets		Component False False False False False False False False False False False False False	Initiato False False False False False False False True False False
Freeze Out Tempera Threshold Difference Component Name Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane n-Pentane i-Hexane 2,2,4-Trimethylpentane	ature e	Henry's Law Component False False False False False False False False False False False False False False False False False False	Phase Initiator False False False False False False False False False False False False	Component Name Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water Oxygen Decanes Plus Hexanes+ erty Method Sets Overall Package		Component False False False False False False False False False False False False	Initiato False False False False False False False True False False
Freeze Out Tempera	ature e	Henry's Law Component False False False False False False False False False False False False False False False False	Phase Initiator False False False False False False False False False False False False	Component Name Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water Oxygen Decanes Plus Hexanes+ erty Method Sets		Component False False False False False False False False False False False False False	Initiato False False False False False False False True False False

		-	Oil Report nes Plus			
Client Name: Arsen	al - Cather Compressor Static	n		Job: Prod	luced Water Tank	
ocation:	•					
		Pro	operties			
Volume Average Boiling	399.878	°F	Low Temperature Visco	osity	1.05288	cP
Point						
Molecular Weight	162.726	lb/lbmol	Temperature of High T		210	°F
			Viscosity			
Specific Gravity	0.788		High Temperature Visc	osity	0.503332	cP
API Gravity	48.0685		Watson K		12.066	
Critical Temperature	720.653		ASTM D86 10-90% Slo		0	1770
Critical Pressure	307.278		ASTM D93 Flash Point		157.716	
Critical Volume	10.2876	ft^3/lbmol	? Pour Point		-12.6777	
Acentric Factor	0.527304		Paraffinic Fraction		51.9393	%
Carbon to Hydrogen Rati	io 6.00643		Naphthenic Fraction		27.7089	%
Refractive Index	1.43922		Aromatic Fraction		20.3518	%
Temperature of Low T	100	°F	Ideal Gas Heat Capaci	у	57.9027	Btu/(lbmol*°F)
Viscosity						
Varnings						

Remarks

Client Name:	Arsenal - Cathe	er Compressor Station		Job: Proc	duced Water Tank	
ocation:		· ·				
			Properties			
Volume Average E Point	Boiling	-173.182 °F	Low Temperature Vis	cosity	3.0532E+30	cP
* Molecular Weight		16.662 lb/lbmol	Temperature of High Viscosity	Т	210	°F
 Specific Gravity 		0.5763	High Temperature Vis	scosity	1370.85	cP
API Gravity		114.032	Watson K		11.439	
Critical Temperatu	ire	-2.89417 °F	ASTM D86 10-90% S			°F/%
Critical Pressure		1116.36 psia	? ASTM D93 Flash Poi	nt	-237.696	
Critical Volume		1.64547 ft^3/lbmol	? Pour Point		2.40106E+29	
Acentric Factor		0.333018	? Paraffinic Fraction		100	
	en Ratio	8.6229	? Naphthenic Fraction			%
? Carbon to Hydrog	ciritatio				0	%
? Carbon to Hydroge ? Refractive Index		1.31682	? Aromatic Fraction			
? Carbon to Hydrog. ? Refractive Index Temperature of Lover Viscosity Warnings ProMax:ProMax!ProMax!ProMax:ProMax:ProMax:ProMax:ProMax:ProMax!ProMax:ProMax!ProMax!ProMax:ProMax!ProP	ject!Oils!Hexane Carbon to Hydr ject!Oils!Hexane	100 °F s+!Properties!Carbon to Hydroge ogen Ratio calculation: The valu s+!Properties!Refractive Index	? Ideal Gas Heat Capa en Ratio ue of -173.182 °F for Volume A	verage Boili	5.55252	Btu/(lbmol*°F)
? Carbon to Hydrog. ? Refractive Index Temperature of Loc Viscosity Warnings ProMax:ProMax!Pro 650 °F. ProMax:ProMax!Pro Warning: ProMax:ProMax!Pro Warning: ProMax:ProMax!Pro Warning:	ject!Oils!Hexane Carbon to Hydr ject!Oils!Hexane Refractive Inde ject!Oils!Hexane	100 °F s+!Properties!Carbon to Hydroge ogen Ratio calculation: The valu	? Ideal Gas Heat Capa en Ratio le of -173.182 °F for Volume A 182 °F for Volume Average Bo Point	verage Boili	5.55252 ing Point should be be should be between 80	Btu/(lbmol*°F) tween 80 °F ar °F and 1500 °F
? Carbon to Hydrog. ? Refractive Index Temperature of Loc Viscosity Warnings ProMax:ProMax!Pro Warning: 650 °F. ProMax:ProMax!Pro Warning: 850 °F. ProMax:ProMax!Pro Warning:	ject!Oils!Hexane Carbon to Hydr ject!Oils!Hexane Refractive Inde ject!Oils!Hexane ASTM D93 Flas ject!Oils!Hexane	100 °F s+!Properties!Carbon to Hydroge ogen Ratio calculation: The valu s+!Properties!Refractive Index x calculation: The value of -173 s+!Properties!ASTM D93 Flash F sh Point calculation: The value of s+!Properties!Pour Point	? Ideal Gas Heat Capa en Ratio ue of -173.182 °F for Volume A 182 °F for Volume Average Bo Point of -173.182 °F for Volume Aver	verage Boili biling Point s age Boiling	5.55252 ing Point should be be should be between 80 Point should be betwe	Btu/(lbmol*°F) tween 80 °F an °F and 1500 °F een 150 °F and
 Carbon to Hydrog. Refractive Index Temperature of Loc Viscosity Warnings ProMax:ProMax!Pro Warning: 650 °F. ProMax:ProMax!Pro Warning: ProMax:ProMax!Pro Warning: ProMax:ProMax!Pro Warning: ProMax:ProMax!Pro Warning: ProMax:ProMax!Pro Warning: 	ject!Oils!Hexane Carbon to Hydr ject!Oils!Hexane Refractive Inde ject!Oils!Hexane ASTM D93 Flas ject!Oils!Hexane Pour Point calc ject!Oils!Hexane	100 °F s+!Properties!Carbon to Hydroge ogen Ratio calculation: The valu s+!Properties!Refractive Index x calculation: The value of -173 s+!Properties!ASTM D93 Flash F sh Point calculation: The value of s+!Properties!Pour Point ulation: The value of -173.182 ° s+!Properties!Paraffinic Fraction	? Ideal Gas Heat Capa en Ratio ue of -173.182 °F for Volume A 182 °F for Volume Average Bo Point of -173.182 °F for Volume Aver F for Volume Average Boiling F	verage Boili verage Boiling age Boiling Point should	5.55252 ing Point should be be should be between 80 Point should be betwe be between 340.33 °	Btu/(lbmol*°F) tween 80 °F ar °F and 1500 °F een 150 °F and F and 1040.33 °
? Carbon to Hydrog. ? Refractive Index Temperature of Loc Viscosity Warnings ProMax:ProMax!Pro Warning: 650 °F. ProMax:ProMax!Pro Warning: ProMax:ProMax!Pro Warning: 850 °F. ProMax:ProMax!Pro Warning: 850 °F. ProMax:ProMax!Pro Warning: 850 °F. ProMax:ProMax!Pro Warning: ProMax:ProMax!Pro Warning: Warning: ProMax:ProMax!Pro Warning: Warning: Warning: ProMax:ProMax!Pro Warning:	ject!Oils!Hexane Carbon to Hydr ject!Oils!Hexane Refractive Inde ject!Oils!Hexane ASTM D93 Flas ject!Oils!Hexane Pour Point calc ject!Oils!Hexane	100 °F s+!Properties!Carbon to Hydroge ogen Ratio calculation: The valu s+!Properties!Refractive Index x calculation: The value of -173 s+!Properties!ASTM D93 Flash f sh Point calculation: The value of s+!Properties!Pour Point ulation: The value of -173.182 °	? Ideal Gas Heat Capa en Ratio ue of -173.182 °F for Volume A 182 °F for Volume Average Bo Point of -173.182 °F for Volume Aver F for Volume Average Boiling F	verage Boili verage Boiling age Boiling Point should	5.55252 ing Point should be be should be between 80 Point should be betwe be between 340.33 °	Btu/(lbmol*°F) tween 80 °F ar °F and 1500 °F een 150 °F and F and 1040.33
 <u>Carbon to Hydrog</u> <u>Refractive Index</u> <u>Temperature of Lo</u> <u>Viscosity</u> <u>Warnings</u> ProMax:ProMax!Pro Warning: ProMax:ProMax!Pro Warning: ProMax:ProMax!Pro Warning: ProMax:ProMax!Pro Warning: ProMax:ProMax!Pro Warning: ProMax:ProMax!Pro Warning: B50 °F. ProMax:ProMax!Pro Warning: B50 °F. ProMax:ProMax!Pro Warning: B50 °F. ProMax:ProMax!Pro Warning: ProMax:ProMax!Pro Warning: ProMax:ProMax!Pro Warning: ProMax:ProMax!Pro Warning: 	ject!Oils!Hexane Carbon to Hydr ject!Oils!Hexane Refractive Inde ject!Oils!Hexane ASTM D93 Flas ject!Oils!Hexane Pour Point calc ject!Oils!Hexane Paraffinic Fract ject!Oils!Hexane	100 °F s+!Properties!Carbon to Hydroge ogen Ratio calculation: The valu s+!Properties!Refractive Index x calculation: The value of -173 s+!Properties!ASTM D93 Flash F sh Point calculation: The value of s+!Properties!Pour Point ulation: The value of -173.182 ° s+!Properties!Paraffinic Fraction	? Ideal Gas Heat Capa en Ratio ue of -173.182 °F for Volume A Point of -173.182 °F for Volume Average Bo Point F for Volume Average Boiling F 662 lb/lbmol for Molecular Wei	verage Boili biling Point s age Boiling Point should ght should b	5.55252 ing Point should be be should be between 80 Point should be betwe be between 340.33 ° be between 70 lb/lbmc	Btu/(lbmol*°F) tween 80 °F ar °F and 1500 °F een 150 °F and F and 1040.33 ° I and 600
 Carbon to Hydrog. Refractive Index Temperature of Lo Viscosity Warnings ProMax:ProMax!Pro Warning: 650 °F. ProMax:ProMax!Pro Warning: 	ject!Oils!Hexane Carbon to Hydr ject!Oils!Hexane Refractive Inde ject!Oils!Hexane ASTM D93 Flas ject!Oils!Hexane Pour Point calc ject!Oils!Hexane Paraffinic Fract ject!Oils!Hexane Naphthenic Fra ject!Oils!Hexane	100 °F s+!Properties!Carbon to Hydroge ogen Ratio calculation: The value s+!Properties!Refractive Index x calculation: The value of -173 s+!Properties!ASTM D93 Flash I sh Point calculation: The value of s+!Properties!Pour Point ulation: The value of -173.182 ° s+!Properties!Paraffinic Fraction ion calculation: The value of 16 s+!Properties!Naphthenic Fraction ction calculation: The value of 1 s+!Properties!Aromatic Fraction	? Ideal Gas Heat Capa en Ratio le of -173.182 °F for Volume A 182 °F for Volume Average Bo Point of -173.182 °F for Volume Aver F for Volume Average Boiling F 662 lb/lbmol for Molecular Wei in 6.662 lb/lbmol for Molecular W	verage Boili biling Point s age Boiling Point should ght should t feight should	5.55252 ing Point should be be should be between 80 Point should be betwee be between 340.33 ° be between 70 lb/lbmc d be between 70 lb/lbm	Btu/(lbmol*°F) etween 80 °F ar °F and 1500 °F een 150 °F and F and 1040.33 of and 600 nol and 600
? Carbon to Hydrog. ? Refractive Index Temperature of Loc Viscosity Warnings ProMax:ProMax!Pro Warning: 650 °F. ProMax:ProMax!Pro Warning: B50 °F. ProMax:ProMax!Pro Warning: B50 °F. ProMax:ProMax!Pro Warning: ProMax:ProMax!Pro Warning: ProMax:ProMax!Pro Warning: ProMax:ProMax!Pro Warning: b/lbmol.	ject!Oils!Hexane Carbon to Hydr ject!Oils!Hexane Refractive Inde ject!Oils!Hexane ASTM D93 Flas ject!Oils!Hexane Pour Point calc ject!Oils!Hexane Paraffinic Fract ject!Oils!Hexane Naphthenic Fra ject!Oils!Hexane	100 °F s+!Properties!Carbon to Hydroge ogen Ratio calculation: The value s+!Properties!Refractive Index x calculation: The value of -173 s+!Properties!ASTM D93 Flash f sh Point calculation: The value of s+!Properties!Pour Point ulation: The value of -173.182 ° s+!Properties!Paraffinic Fraction ion calculation: The value of 16. s+!Properties!Naphthenic Fraction ction calculation: The value of 1	? Ideal Gas Heat Capa en Ratio le of -173.182 °F for Volume A 182 °F for Volume Average Bo Point of -173.182 °F for Volume Aver F for Volume Average Boiling F 662 lb/lbmol for Molecular Wei in 6.662 lb/lbmol for Molecular W	verage Boili biling Point s age Boiling Point should ght should t feight should	5.55252 ing Point should be be should be between 80 Point should be betwee be between 340.33 ° be between 70 lb/lbmc d be between 70 lb/lbm	Btu/(lbmol*°F) etween 80 °F and °F and 1500 °F een 150 °F and F and 1040.33 ° I and 600 nol and 600
? Carbon to Hydrog. ? Refractive Index Temperature of Loviscosity Warnings ProMax:ProMax!Pro Warning: 650 °F. ProMax:ProMax!Pro Warning: Ib/Ibmol.	ject!Oils!Hexane Carbon to Hydr ject!Oils!Hexane Refractive Inde ject!Oils!Hexane ASTM D93 Flas ject!Oils!Hexane Pour Point calc ject!Oils!Hexane Paraffinic Fract ject!Oils!Hexane Naphthenic Fra ject!Oils!Hexane Aromatic Fracti ject!Oils!Hexane deal Gas Heat	100 °F s+!Properties!Carbon to Hydroge ogen Ratio calculation: The value s+!Properties!Refractive Index x calculation: The value of -173 s+!Properties!ASTM D93 Flash f sh Point calculation: The value of s+!Properties!Pour Point ulation: The value of -173.182 ° s+!Properties!Paraffinic Fraction ion calculation: The value of 16. s+!Properties!Aromatic Fraction ction calculation: The value of 16. s+!Properties!Aromatic Fraction on calculation: The value of 16. s+!Properties!Ideal Gas Heat Ca Capacity calculation: The value	? Ideal Gas Heat Capa en Ratio le of -173.182 °F for Volume A Point of -173.182 °F for Volume Average Bo Point of -173.182 °F for Volume Aver F for Volume Average Boiling F 662 lb/lbmol for Molecular Wei 662 lb/lbmol for Molecular Wei 662 lb/lbmol for Molecular Wei pacity	verage Boili biling Point s age Boiling Point should ght should b (eight should b	5.55252 ing Point should be be should be between 80 Point should be betwee be between 340.33 ° be between 70 lb/lbmc d be between 70 lb/lbmc e between 70 lb/lbmo	Btu/(Ibmol*°F) tween 80 °F ar °F and 1500 °F een 150 °F and F and 1040.33 I and 600 nol and 600

			Calculat	or Report		
Client Name:	Arsenal - Cathe	r Compressor Statio	n		Job: Produ	ced Water Tank
Location:						
			Produce	ed Water		
			Sourc	e Code		
Residual Error (for C	CV1) = Water_flow	v - 14.25				
			Coloulated			
Source Moniker	ProMax:ProMa Flow	ax!Project!Flowshee		Variable [CV1] treams!Produced Water Fl	ow!Phases!1	Total!Properties!Std Liquid Volumetric
Value	23.3849					
Unit						
		M		hle [Weter flow]		
Source Moniker	ProMax ProM			ble [Water_flow]	PhasesITotal	IProperties!Std Liquid Volumetric
	Flow					
Value	14.2499					
Unit						
			Solver D	reportion		Status: Solved
Error		-0.000555989	Solver P	roperties Iterations		2
Calculated Value		0.682059	sapm	Max Iterations		20
Lower Bound		0.002000	sgpm	* Weighting		10
Upper Bound			sgpm	Priority		0
Step Size		F -1	sgpm	Solver Active		Active
Is Minimizer Algorithm		False Default		Group * Skip Dependency Che	ck	False
7 ugonum		Doldali		Chip Dependency one		1 4100
Warnings ProMax:ProMax!Pro Warning:				CV1!PropertySolver ble to the Measured Varia	ble(s).	
Remarks						
				Flow		
			Sourc	e Code		
Residual Error (for C	V1) = SGflow-12	0				
O	Das Maria Das M			ariable [CV1]		
Source Moniker	ProMax:ProMa Flow	ax!Project!Flowshee	ts!Flowsheet1!PS	treams!Measured Sales G	as!Phases! I	otal!Properties!Std Vapor Volumetric
Value	119920					
Unit						
				riable [SGflow]		
Source Moniker Value	Source Moniker ProMax:ProJect!Flowsheets!Flowsheet1!PStreams!Gas to Separators!Phases!Total!Properties!Std Vapor Volumetric Flow					
Unit	120					
			Solver P	roperties		Status: Solved
Error		5.1825E-07		Iterations		2
Calculated Value		119.92	MMSCFD	Max Iterations		20
Lower Bound Upper Bound			MMSCFD MMSCFD	* Weighting Priority		<u> </u>
Step Size						
			MMSCFD	 * Solver Active 		Active

? Extrapolated or Approximate Values

ised to oup, I

Copyright © 2002-2016 BRE Group, Ltd.

		Calcu	lator Report		
			later repert		
Client Name:	Arsenal - Cathe	r Compressor Station		Job: Produ	Led Water Tank
Location:		Compresser Clauser		000	
				1	
		Solve	er Properties		Status: Solved
Algorithm		Default	Skip Dependency Che	ck	False
7 (190-11.1.1.1		201000			
Remarks					
			Water %		
		So	ource Code		
Residual Error (for C	V1) = water - 99				
, , , , , , , , , , , , , , , , , , ,					
		Calculate	ed Variable [CV1]		
Source Moniker	ProMax ProMa	ax!Project!Flowsheets!Flowsheet1	1PStreams/Measured Condens	eatelPhases	TotallProperties Std Liquid
	Volumetric Flo			<u></u>	
Value	12.8774				
Unit					
		Measurec	d Variable [water]		
Source Moniker	ProMax:ProMa	ax!Project!Flowsheets!Flowsheet1	1!PStreams!Produced Liquids!F	hases!Total	Composition Std Liquid Volumetric
	Fraction!Water	ſ	•		
Value	98.9998				
Unit					
		Solve	er Properties		Status: Solved
Error		-0.00022356	Algorithm		Default
Calculated Value		0.375591 sgpm	Iterations		1
Lower Bound		sgpm	Max Iterations		20
Upper Bound		sgpm	Weighting		1
Step Size		sgpm	* Solver Active		Active
Is Minimizer		False	* Skip Dependency Chee	ck	True
Remarks					

				ue Sets Report	
Client Name:	Arsenal - Cather Co	mpressor Statio	n		Job: Produced Water Tank
Location:					
				Tank-1	
				ue [BlockReady]	
* Parameter		1		Upper Bound	
Lower Bound				* Enforce Bounds	False
			User Valu	ue [ShellLength]	
* Parameter		20	ft	Upper Bound	ft
Lower Bound			ft	* Enforce Bounds	False
				lue [ShellDiam]	
* Parameter		12		Upper Bound	ft
Lower Bound			ft	* Enforce Bounds	False
			lleen \/r		
* Parameter		0.03		ue [BreatherVP] Upper Bound	psig
Lower Bound		0.03	psig	* Enforce Bounds	False
Lonor Bound			polg	Enforce Bounde	1 4100
			User Valu	e [BreatherVacP]	
* Parameter		-0.03		Upper Bound	psig
Lower Bound			psig	* Enforce Bounds	False
			User Valu	e [DomeRadius]	
* Parameter		0		Upper Bound	ft
Lower Bound			ft	* Enforce Bounds	False
				alue [OpPress]	
* Parameter Lower Bound		0	psig psig	Upper Bound * Enforce Bounds	psig False
Lower Bound			psig	Efforce Bounds	1 0156
			llsor Value	e [AvgPercentLiq]	
* Parameter			%	Upper Bound	%
Lower Bound			%	* Enforce Bounds	False
			User Value	e [MaxPercentLiq]	
* Parameter		90	%	Upper Bound	%
Lower Bound			%	* Enforce Bounds	False
				lue [AnnNetTP]	
* Parameter		14.2509		Upper Bound	bbl/day
Lower Bound			bbl/day	* Enforce Bounds	False
* Parameter		0	User V %	Value [OREff] Upper Bound	%
Lower Bound		0	%	* Enforce Bounds	False
_one bound					
			User Va	lue [MaxAvgT]	
* Parameter		59.8833		Upper Bound	°F
Lower Bound			°F	* Enforce Bounds	False
			User Va	alue [MinAvgT]	
* Parameter		40.7333	°F	Upper Bound	°F
Lower Bound			°F	* Enforce Bounds	False
* 5			User Va	alue [BulkLiqT]	
* Parameter		54.6483		Upper Bound	°F
* User Specified Values			°F	* Enforce Bounds	False

* User Specified Values ? Extrapolated or Approximate Values

ProMax 4.0.16308.0 Copyright © 2002-2016 BRE Group, Ltd.

Licensed to The ERM Group, Inc. and Affiliates

		llsor	Valuo S	ets Report		
			value J			
lient Name: ocation:	Arsenal - Cather	Compressor Station			Job: Produ	ced Water Tank
			lser Value			
Parameter		14.1085 psia		Upper Bound		psia
Lower Bound		psia	*	Enforce Bounds		False
			ser Value			
Parameter		1202.96 Btu/ft^2		Upper Bound		Btu/ft^2/day
Lower Bound		Btu/ft^2	2/day *	Enforce Bounds		False
			alue [Avg	WindSpeed]		
Parameter Lower Bound		<u>9.075 mi/h</u> mi/h	*	Upper Bound Enforce Bounds		mi/h False
Lower Bound		111/11		Enlorce Bounds		Faise
Demonster			e [MaxHo	urlyLoadingRate]		
Parameter Lower Bound		<u>16.62 gpm</u> gpm	*	Upper Bound Enforce Bounds		gpm False
Lower Dound		gpm		Enlorce Bounds		T dise
Demonster			alue [Entr	ainedOilFrac]		<u> </u>
Parameter Lower Bound		<u> </u>	*	Upper Bound Enforce Bounds		% False
		70		Enloree Bounds		1 8130
_			Value [Tu	rnoverRate]		
Parameter Lower Bound		14.3444	*	Upper Bound Enforce Bounds		False
Lower Bound				Enlorce Bounds		raise
-			alue [LLc	ssSatFactor]		
Parameter Lower Bound		1.45	*	Upper Bound Enforce Bounds		False
Lower Dound				Enlorce Bounds		
_			Value [At	mPressure]		
Parameter Lower Bound		14.1085 psia	*	Upper Bound Enforce Bounds		psia False
		psia		Enlorce Bounds		Faise
			Jser Valu			
Parameter		0.292515 psia	*	Upper Bound Enforce Bounds		psia
Lower Bound		psia		Enforce Bounds		False
			ser Value			
Parameter		0.417067 psia		Upper Bound Enforce Bounds		psia Falaa
Lower Bound		psia		Enforce Bounds		False
			ser Value			
Parameter		0.20359 psia		Upper Bound		psia
Lower Bound		psia	^	Enforce Bounds		False
			alue [Avg	LiqSurfaceT]		
Parameter Lower Bound		61.1967 °F °F	*	Upper Bound Enforce Bounds		°F False
		Г				
_			alue [Max	LiqSurfaceT]		
Parameter		72.1381 °F °F		Upper Bound		°F
Lower Bound		۲ <u>۲</u>		Enforce Bounds		False
		User	Value [T	otalLosses]		
Parameter		0.0307526 ton/yr		Upper Bound		ton/yr

* User Specified Values ? Extrapolated or Approximate Values

ProMax 4.0.16308.0 Copyright © 2002-2016 BRE Group, Ltd.

Licensed to The ERM Group, Inc. and Affiliates

			alua Sata Danant	
		User v	alue Sets Report	
Client Name:	Arsenal - Cathe	r Compressor Station		Job: Produced Water Tank
Location:				
		Lloor V		
Lower Bound		ton/yr	alue [TotalLosses] * Enforce Bounds	False
		User Va	lue [WorkingLosses]	
* Parameter		0.0141757 ton/yr	Upper Bound * Enforce Bounds	ton/yr
Lower Bound		ton/yr	Enforce Bounds	False
* Doromotor		User Val 0.0165769 ton/yr	ue [StandingLosses]	toplar
* Parameter Lower Bound		ton/yr	Upper Bound * Enforce Bounds	ton/yr False
		llear Va	lue [RimSealLosses]	
* Parameter		0 ton/yr	Upper Bound	ton/yr
Lower Bound		ton/yr	* Enforce Bounds	False
			ue [WithdrawalLoss]	
* Parameter Lower Bound		0 ton/yr ton/yr	Upper Bound * Enforce Bounds	ton/yr False
Lower Bound		toniyyi	Enlorce Bounds	
* Parameter		User Va 0.0206516 ton/yr	lue [LoadingLosses] Upper Bound	ton/yr
Lower Bound		ton/yr	* Enforce Bounds	False
		Llear Value [MaxHourlyLoadingLoss	1
* Parameter		0.18853 lb/hr	Upper Bound	lb/hr
Lower Bound		lb/hr	* Enforce Bounds	False
		Use	er Value [PStar]	
Parameter Lower Bound			Upper Bound * Enforce Bounds	False
* Parameter		User Val 0.0307526 ton/yr	ue [AllCTotalLosses] Upper Bound	ton/yr
Lower Bound		ton/yr	* Enforce Bounds	False
		User Value	e [AllCLoadingLosses]	
* Parameter		0.0206516 ton/yr	Upper Bound	ton/yr
Lower Bound		ton/yr	* Enforce Bounds	False
* Deman			[AllCMaxHLoadingLoss]	
* Parameter Lower Bound		0.18853 lb/hr lb/hr	Upper Bound * Enforce Bounds	lb/hr False
* Parameter		User Value 0.00162562 ton/yr	E [AIICFlashingLosses] Upper Bound	ton/yr
Lower Bound		ton/yr	* Enforce Bounds	False
		User Valu	e [DeckFittingLosses]	
* Parameter Lower Bound		0 ton/yr ton/yr	Upper Bound * Enforce Bounds	ton/yr False
				Faise
* Parameter			IE [DeckSeamLosses]	toolog
* Parameter Lower Bound		0 ton/yr ton/yr	Upper Bound * Enforce Bounds	ton/yr False

* User Specified Values ? Extrapolated or Approximate Values

		lue Sets Report	
lient Name:	Arsenal - Cather Compressor Station	Job: Pr	oduced Water Tank
ocation:		000.11	
		e [FlashingLosses]	
Parameter	0.00162562 ton/yr	Upper Bound * Enforce Bounds	ton/yr
Lower Bound	ton/yr	Enforce Bounds	False
	User Valu	ue [TotalResidual]	
Parameter	908.6 ton/yr	Upper Bound	ton/yr
Lower Bound	ton/yr	* Enforce Bounds	False
		e [GasMoleWeight]	
Parameter	0.0186333 kg/mol	Upper Bound	kg/mol
Lower Bound	kg/mol	* Enforce Bounds	False
_	User Value	[VapReportableFrac]	
Parameter Lower Bound	100 %	Upper Bound * Enforce Bounds	<u>%</u>
Lower Bound	70	Enforce Bounds	False
	Liser Value	[LiqReportableFrac]	
Parameter	100 %	Upper Bound	<u>%</u>
Lower Bound	%	* Enforce Bounds	False
	User Value [l	FlashReportableFrac]	
Parameter	100 %	Upper Bound	%
Lower Bound	%	* Enforce Bounds	False
R emarks his User Value Set	was programmatically generated. GUID={8F670	00DA-E196-4418-8000-F476C212C378}	
		ponent Flow/Frac	
		alue [CompSum]	
Parameter	0.031201 ton/yr	Upper Bound	ton/yr
Lower Bound	ton/yr	* Enforce Bounds	False

Gas Analytical Services

CHARLESTON, WV 304-677-9926

mpled	: 12/13/2016
	10/10/0010

Gas Analysis performed in	accordance with GPA 2286		Sample Count : 2200	00003
Comments:				
Real BTU Sat	1,017.14	1,020.40	1,022.81	1,043.70
Real BTU Dry	1,034.91	1,038.16	1,040.57	1,061.46
Real GPM	0.985	0.989	0.991	1.011
Ideal BTU Sat	1,014.62	1,017.86	1,020.26	1,041.05
Ideal BTU Dry	1,032.69	1,035.94	1,038.33	1,059.13
Ideal GPM	0.983	0.986	0.989	1.008
BTU @ (PSIA)	@14.65	@14.696	@14.73	@15.025
Ideal Gravity: 0.5761	Real Gravity: 0.577		C5+ Mole % : 0.01	
	2) @ 14.73 @ 60 Deg. F = 0.9979		C5+ GPM : 0.00	
TOTAL		100.0000	0.990	
C12's		0.0000	0.000	
C11's		0.0000	0.000	
C10's		0.0000	0.000	
C7's		0.0016	0.001	
C9's		0.0000	0.000	
C8's		0.00020	0.000	
C6's		0.0026	0.000	
	INE ENE/P-XYLENE	0.0000	0.000	
TOLUE		0.0000	0.000	
	NE BENZENE	0.0000	0.000	
Oxygen BENZE		0.0020	0.000	
	-Dioxide	0.1770 0.0020	0.000 0.000	
Nitroger		0.2624	0.000	
	Pentane	0.0022	0.001	
Iso-Pen		0.0038	0.001	
Neo-Pe		0.0006	0.000	
Normal-		0.0198	0.006	
Iso-Buta		0.0133	0.004	
Propane	e	0.2210	0.061	
Ethane		3.4142	0.915	
Methan	e	95.8791	0.000	
COMPO	DNENT	<u>MOL%</u>	<u>GPM@14.73(PSIA)</u>	
State : WV		San	n ple By : HT	
Area : 190 - U	JNKNOWN	Cyl	inder Type : Spot	
Lease : GOFF	WEST	Ten	n p : 60	
Producer :		Cyl	Pressure : 625	
Cylinder ID : 0280		Effe	ective Date : 01/0	1/2017
Station ID : 2601		Dat	e Analyzed : 12/1	9/2016
Customer : 0034 -	MK MIDSTREAM	Dat	e Sampled : 12/1	3/2016

Analytical Calculations performed in accordance with GPA 2172

Measurement Analyst: ____

___ Ashley Free

COC :

04049

LELAP Certification #

Date of Manufacture	April 11, 2011	Engine Serial Number	BEN00694	Date Modified,	Reconstructed	Not An
Driver Rated HP	2370	Rated Speed in RPM	1000	Combustion Type		Spark Ignited 4 Stroke
Number of Cylinders	8	Compression Ratio	9:1	Combustion Se	tting	Ultra Lean Bur
Total Displacement, in ³ 10350		Fuel Delivery Method	Fuel Injection	Combustion Air Treatment		T.C./Aftercooled
Raw Engine Emissions (customer su	polied fuel gas with little to p	H2S)				
raw Engine Emissions (customer suj	oplied foergas with little to h	J H23)				
Fuel Consumption	6840 LHV BTU/bhp-hr	or 7589 HHV	V BTU/bhp-hr			
Altitude	1200 ft					
Maximum Air Inlet Temp	90 F					
		g/bhp-hr ¹	Ib/MMBTU ²	lb/hr	TPY	
Nitrogen Oxides (NOx)		0.5		2.61	11.44	
Carbon Monoxide (CO)		2.74		14.32	62.70	
Volatile Organic Compounds (VOC or	NMNEHC excluding CH2O)	0.63		3.29	14.42	
Formaldehyde (CH2O)		0.26		1.36	5.95	
Particulate Matter (PM) Filterable+Condens	sable		9.99E-03	1.80E-01	7.87E-01	
Sulfur Dioxide (SO2)			5.88E-04	1.06E-02	4.63E-02	
Sullar Dioxide (502)			5.002-04	1.002-02	4.052-02	
		g/bhp-hr ¹		lb/hr	Metric Tonne/yr	
		440		2299	9133	
Carbon Dioxide (CO2)		110				
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp		5.36 mer supplied fuel gas, 1200		28.01 lax Air Inlet Tempera	111.26	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp	on 100% Load Operation. For ounds to allow for variation in s AP-42, Fifth Edition, Volume	5.36 omer supplied fuel gas, 1200 air permitting, it is recomme operating parameters and fi	ended to use a 20% safet uel gas quality.	28.01 Iax Air Inlet Tempera ty margin	111.26 iture.	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp Note that g/bhp-hr values are based for CO, VOC and other organic comp ² Emission Factor obtained from EPA' Gas-Fired Reciprocating Engines, Tab	on 100% Load Operation. For ounds to allow for variation in s AP-42, Fifth Edition, Volume	5.36 omer supplied fuel gas, 1200 air permitting, it is recomme operating parameters and fi	ended to use a 20% safet uel gas quality.	28.01 Iax Air Inlet Tempera ty margin	111.26 iture.	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp Note that g/bhp-hr values are based for CO, VOC and other organic comp ² Emission Factor obtained from EPA' Gas-Fired Reciprocating Englnes, Tab Catalytic Converter Emissions	on 100% Load Operation. For ounds to allow for variation in s AP-42, Fifth Edition, Volume le 3.2-2).	5.36 omer supplied fuel gas, 1200 air permitting, it is recomme operating parameters and fi I, Chapter 3: Stationary Inter	ended to use a 20% safet uel gas quality.	28.01 Iax Air Inlet Tempera ty margin	111.26 iture.	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp Note that g/bhp-hr values are based for CO, VOC and other organic comp ² Emission Factor obtained from EPA' Gas-Fired Reciprocating Englnes, Tab Catalytic Converter Emissions Catalytic Converter Make and Model:	on 100% Load Operation. For ounds to allow for variation in s AP-42, Fifth Edition, Volume ole 3.2-2). <i>Emit, E</i>	5.36 omer supplied fuel gas, 1200 air permitting, it is recomme operating parameters and fi I, Chapter 3: Stationary Inter 2007-2022F	ended to use a 20% safet uel gas quality.	28.01 Iax Air Inlet Tempera ty margin	111.26 iture.	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp Note that g/bhp-hr values are based for CO, VOC and other organic comp ² Emission Factor obtained from EPA' Gas-Fired Reciprocating Englnes, Tab Catalytic Converter Emissions Catalytic Converter Make and Model: Element Type:	on 100% Load Operation. For ounds to allow for variation in s AP-42, Fifth Edition, Volume ole 3.2-2). <i>Emit, E</i> Oxidat	5.36 omer supplied fuel gas, 1200 air permitting, it is recomme operating parameters and fi I, Chapter 3: Stationary Inter 2007-2022F	ended to use a 20% safet uel gas quality.	28.01 Iax Air Inlet Tempera ty margin	111.26 iture.	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp Note that g/bhp-hr values are based for CO, VOC and other organic comp ² Emission Factor obtained from EPA' Gas-Fired Reciprocating Englnes, Tab Catalytic Converter Emissions Catalytic Converter Make and Model: Element Type: Number of Elements in Housing:	on 100% Load Operation. For ounds to allow for variation in s AP-42, Fifth Edition, Volume ole 3.2-2). <i>Emit, E</i> <i>Oxidat</i> 3	5.36 omer supplied fuel gas, 1200 air permitting, it is recomme operating parameters and fi I, Chapter 3: Stationary Inter 2007-2022F	ended to use a 20% safet uel gas quality.	28.01 Iax Air Inlet Tempera ty margin	111.26 iture.	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp Note that g/bhp-hr values are based for CO, VOC and other organic comp ² Emission Factor obtained from EPA' Gas-Fired Reciprocating Englnes, Tab Catalytic Converter Emissions Catalytic Converter Make and Model: Element Type: Number of Elements in Housing:	on 100% Load Operation. For ounds to allow for variation in s AP-42, Fifth Edition, Volume ole 3.2-2). <i>Emit, E</i> <i>Oxidat</i> 3	5.36 omer supplied fuel gas, 1200 air permitting, it is recomme operating parameters and fi 1, Chapter 3: Stationary Inter 1, Chapter 3: Stationary Inter 1	ended to use a 20% safet uel gas quality.	28.01 lax Air Inlet Tempera ty margin (Section 3.2 Natura	111.26 Iture.	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp Note that g/bhp-hr values are based for CO, VOC and other organic comp ² Emission Factor obtained from EPA' Gas-Fired Reciprocating Englnes, Tab Catalytic Converter Emissions Catalytic Converter Make and Model: Element Type: Number of Elements in Housing: Air/Fuel Ratio Control	on 100% Load Operation. For ounds to allow for variation in s AP-42, Fifth Edition, Volume ole 3.2-2). <i>Emit, E</i> <i>Oxidat</i> 3	5.36 omer supplied fuel gas, 1200 air permitting, it is recomme operating parameters and fi 1, Chapter 3: Stationary Inter (1X6200Z-2022F ion illor ADEM3 <u>% Reduction</u>	ended to use a 20% safet uel gas quality.	28.01 lax Air Inlet Tempera ty margin (Section 3.2 Natura Ib/hr	111.26 Iture.	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp Note that g/bhp-hr values are based of for CO, VOC and other organic comp ² Emission Factor obtained from EPA' Gas-Fired Reciprocating Englnes, Tab Catalytic Converter Emissions Catalytic Converter Make and Model: Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx)	on 100% Load Operation. For ounds to allow for variation in s AP-42, Fifth Edition, Volume ole 3.2-2). <i>Emit, E</i> <i>Oxidat</i> 3	5.36 omer supplied fuel gas, 1200 air permitting, it is recomme operating parameters and fi 1, Chapter 3: Stationary Inter (LX6200Z-2022F ion illar ADEM3 <u>% Reduction</u> 0	ended to use a 20% safet uel gas quality.	28.01 lax Air Inlet Tempera ty margin (Section 3.2 Natura 	111.26 Inture.	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp Note that g/bhp-hr values are based of for CO, VOC and other organic comp ² Emission Factor obtained from EPA' Gas-Fired Reciprocating Englnes, Tab Catalytic Converter Emissions Catalytic Converter Make and Model: Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx) Carbon Monoxide (CO)	on 100% Load Operation. For ounds to allow for variation in s AP-42, Fifth Edition, Volume ole 3.2-2). <i>Emit, E</i> <i>Oxidat</i> <i>3</i> <i>Caterp</i>	5.36 omer supplied fuel gas, 1200 air permitting, it is recomme operating parameters and fi 1, Chapter 3: Stationary Inter (1X6200Z-2022F ion illor ADEM3 <u>% Reduction</u>	ended to use a 20% safet uel gas quality.	28.01 lax Air Inlet Tempera ty margin (Section 3.2 Natura Ib/hr	111.26 Iture.	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp Note that g/bhp-hr values are based for CO, VOC and other organic comp ² Emission Factor obtained from EPA' Gas-Fired Reciprocating Engines, Tab Catalytic Converter Make and Model: Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC or	on 100% Load Operation. For ounds to allow for variation in s AP-42, Fifth Edition, Volume ole 3.2-2). <i>Emit, E</i> <i>Oxidat</i> <i>3</i> <i>Caterp</i>	5.36 omer supplied fuel gas, 1200 air permitting, it is recomme operating parameters and fi I, Chapter 3: Stationary Inter UX6200Z-2022F ion illar ADEM3 <u>% Reduction</u> 0 93	ended to use a 20% safet uel gas quality.	28.01 lax Air Inlet Tempera ty margin (Section 3.2 Natura <u>Ib/hr</u> 2.61 1.00	111.26 hture. ht <u>TPY</u> 11.44 4.39	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp Note that g/bhp-hr values are based for CO, VOC and other organic comp ² Emission Factor obtained from EPA' Gas-Fired Reciprocating Englnes, Tab Catalytic Converter Emissions Catalytic Converter Make and Model: Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC or Formaldehyde (CH2O)	on 100% Load Operation. For ounds to allow for variation in s AP-42, Fifth Edition, Volume ole 3.2-2). <i>Emit, E</i> <i>Oxidat</i> <i>3</i> <i>Caterp</i>	5.36 omer supplied fuel gas, 1200 air permitting, it is recomme operating parameters and fi I, Chapter 3: Stationary Inter (IX6200Z-2022F ion illar ADEM3 <u>% Reduction</u> 0 93 50	ended to use a 20% safet uel gas quality.	28.01 lax Air Inlet Tempera ty margin (Section 3.2 Natura (Section 3.2 Natura 2.61 1.00 1.65	111.26 ature. d <u>TPY</u> 11.44 4.39 7.21	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp Note that g/bhp-hr values are based for CO, VOC and other organic comp ² Emission Factor obtained from EPA' Gas-Fired Reciprocating Englnes, Tab Catalytic Converter Emissions Catalytic Converter Make and Model:	on 100% Load Operation. For ounds to allow for variation in s AP-42, Fifth Edition, Volume ole 3.2-2). <i>Emit, E</i> <i>Oxidat</i> <i>3</i> <i>Caterp</i>	5.36 omer supplied fuel gas, 1200 air permitting, it is recomme operating parameters and fi I, Chapter 3: Stationary Inter (IX62002-2022F fon illar ADEM3 <u>% Reduction</u> 0 93 50 50	ended to use a 20% safet uel gas quality.	28.01 lax Air Inlet Tempera ty margin (Section 3.2 Natura (Section 3.2 Natura 2.61 1.00 1.65 0.68	111.26 ature. d <u>TPY</u> 11.44 4.39 7.21 2.98	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp Note that g/bhp-hr values are based for CO, VOC and other organic comp ² Emission Factor obtained from EPA' Gas-Fired Reciprocating Englnes, Tab Catalytic Converter Emissions Catalytic Converter Make and Model: Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC or Formaldehyde (CH2O) Particulate Matter (PM)	on 100% Load Operation. For ounds to allow for variation in s AP-42, Fifth Edition, Volume ole 3.2-2). <i>Emit, E</i> <i>Oxidat</i> <i>3</i> <i>Caterp</i>	5.36 omer supplied fuel gas, 1200 air permitting, it is recomme operating parameters and fi I, Chapter 3: Stationary Inter (IX6200Z-2022F for illar ADEM3 <u>% Reduction</u> 0 93 50 50 50 0	ended to use a 20% safet uel gas quality.	28.01 lax Air Inlet Tempera ty margin (Section 3.2 Natura (Section 3.2 Natura 2.61 1.00 1.65 0.68 1.80E-01	111.26 ature. d <u>TPY</u> 11.44 4.39 7.21 2.98 7.87E-01	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp Note that g/bhp-hr values are based of for CO, VOC and other organic comp ² Emission Factor obtained from EPA' Gas-Fired Reciprocating Englnes, Tab Catalytic Converter Emissions Catalytic Converter Make and Model: Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC or Formaldehyde (CH2O) Particulate Matter (PM)	on 100% Load Operation. For ounds to allow for variation in s AP-42, Fifth Edition, Volume ole 3.2-2). <i>Emit, E</i> <i>Oxidat</i> <i>3</i> <i>Caterp</i>	5.36 omer supplied fuel gas, 1200 air permitting, it is recomme operating parameters and fi I, Chapter 3: Stationary Inter (XC6200Z-2022F ion illor ADEM3 <u>% Reduction</u> 0 93 50 50 50 0 0 0	ended to use a 20% safet uel gas quality.	28.01 lax Air Inlet Tempera ty margin (Section 3.2 Natura 	111.26 ature. I I I I I I I I I I I I I I I I I I I	

Prepared For:

Chris Magee USA COMPRESSION

INFORMATION PROVIDED BY CATERPILLAR

Engine:	G3608
Horsepower:	2370
RPM:	1000
Compression Ratio:	9.2
Exhaust Flow Rate:	16228 CFM
Exhaust Temperature:	858 °F
Reference:	DM8606-06-001
Fuel:	Natural Gas
Annual Operating Hours:	8760

Uncontrolled Emissions

	g/bhp-hr	Lb/Hr	Tons/Year
NOx:	0.50	2.61	11.44
CO:	2.74	14.32	62.71
THC:	6.30	32.92	144.18
NMHC	0.94	4.91	21.51
NMNEHC:	0.63	3.29	14.42
HCHO:	0.26	1.36	5.95
02:	12.00 %		

POST CATALYST EMISSIONS

	% Reduction	g/bhp-hr	Lb/Hr	Tons/Year
NOx:	Unaffected by	Oxidation Ca	atalyst	
CO:	>93 %	<0.19	<1.00	<4.39
VOC:	>50 %	<0.32	<1.65	<7.21
HCHO:	>50 %	<0.13	<0.68	<2.98

2585 Heartland Drive Sheridan, WY 82801 Office: | Direct: +1 (307) 675.5310 kdunham@emittechnologies.com

QUOTE: QUO-16705-Z2F9

CONTROL EQUIPMENT

Catalyst Housing

Model: Manufacturer: Element Size: Housing Type: Catalyst Installation: Construction: Sample Ports: Inlet Connections: Outlet Connections: Configuration: Silencer: Silencer Grade: Insertion Loss: ELX-6200-2022F-6CE0-362 EMIT Technologies, Inc Rectangle 36" x 15" x 3.5" 6 Element Capacity Accessible Housing 3/16" Carbon Steel 9 (0.5" NPT) 20" Flat Face Flange 22" Flat Face Flange End In / Side Out Integrated Hospital Enhanced 35-50 dBA

Catalyst Element

Model: Catalyst Type: Substrate Type: Manufacturer: Element Quantity: Element Size: RT-3615-Z Oxidation, Standard Precious Group Metals BRAZED EMIT Technologies, Inc 3 Rectangle 36" x 15" x 3.5"

CE-5R

The Information in this quotation, and any files transmitted with it, is confidential and may be legally privileged. It is intended only for the use of individual(s) within the company named above. If you are the intended recipient, be aware that your use of any confidential or personal information may be restricted by state and federal privacy laws

CE-GR

Date of Manufacture	December 12, 2014	Engine Serial Number	42502061	Date Modified/	Reconstructed	Not An
Driver Rated HP	1775	Rated Speed in RPM	1000	Combustion Type		Spark Ignited 4 Stroke
Number of Cylinders	6	Compression Ratio	9:1	Combustion Se		Ultra Lean Burr
Total Displacement, in ³	7762	Fuel Delivery Method	Fuel Injection	Combustion Ai		
Total Displacement, in		ruer beinery method	- ruer injection	combastion All	-	1.c./Atteressie
Raw Engine Emissions (Customer	Supplied Fuel Gas with littl	le to no H2S)				
Fuel Consumption	6860 LHV BTU/bhp-l	hr or 7611 HHV	/ BTU/bhp-hr			
Altitude	1200 ft					
Maximum Air Inlet Temp	90 F					
		g/bhp-hr ¹	Ib/MMBTU ²	lb/hr	ТРҮ	
Nitrogen Oxides (NOx)		0.5		1.96	8.57	
Carbon Monoxide (CO)		2.74		10.72	46.96	
Volatile Organic Compounds (VOC	or NMNEHC excluding CH2	O) 0.63		2.47	10.80	
Formaldehyde (CH2O)		0.26		1.02	4.46	
Particulate Matter (PM) Filterable+Con	densable		9.99E-03	1.35E-01	5.91E-01	
Sulfur Dioxide (SO2)			5.88E-04	7.94E-03	3.48E-02	
		g/bhp-hr ¹		lb/hr	Metric Tonne/yr	
		441		1726	6856	
Carbon Dioxide (CO2)		441				
Carbon Dioxide (CO2) Methane (CH4) ¹ g/bhp-hr are based on Caterpillar	r Specifications (GERP) Cust	2.66	elevation, and 90 F Max	10.41	41.35 e.	
Methane (CH4)	ed on 100% Load Operation mpounds to allow for variat PA's AP-42, Fifth Edition, Vo	2.66 omer supplied fuel gas, 1200 ft e . For air permitting, it is recomm ion in operating parameters and	nended to use a 20% saf fuel gas quality.	10.41 Air Inlet Temperatur ety margin	e.	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Note that g/bhp-hr values are base for CO, VOC and other organic cor ² Emission Factor obtained from El	ed on 100% Load Operation mpounds to allow for variat PA's AP-42, Fifth Edition, Vo	2.66 omer supplied fuel gas, 1200 ft e . For air permitting, it is recomm ion in operating parameters and	nended to use a 20% saf fuel gas quality.	10.41 Air Inlet Temperatur ety margin	e.	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillan Note that g/bhp-hr values are base for CO, VOC and other organic cor ² Emission Factor obtained from El Gas-Fired Reciprocating Engines, ¹ Catalytic Converter Emissions	ed on 100% Load Operation mpounds to allow for variat PA's AP-42, Fifth Edition, Vo Table 3.2-2).	2.66 omer supplied fuel gas, 1200 ft e . For air permitting, it is recomm ion in operating parameters and	nended to use a 20% saf fuel gas quality.	10.41 Air Inlet Temperatur ety margin	e.	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillan Note that g/bhp-hr values are base for CO, VOC and other organic cor ² Emission Factor obtained from El Gas-Fired Reciprocating Engines, T Catalytic Converter Emissions Cotalytic Converter Make amd Mo	ed on 100% Load Operation mpounds to allow for variat PA's AP-42, Fifth Edition, Vo Table 3.2-2). del: DCL	2.66 omer supplied fuel gas, 1200 ft e . For air permitting, it is recomm ion in operating parameters and lume I, Chapter 3: Stationary Int	nended to use a 20% saf fuel gas quality.	10.41 Air Inlet Temperatur ety margin	e.	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillai Note that g/bhp-hr values are base for CO, VOC and other organic cor ² Emission Factor obtained from El Gas-Fired Reciprocating Engines, T	ed on 100% Load Operation mpounds to allow for variat PA's AP-42, Fifth Edition, Vo Table 3.2-2). del: DCL	2.66 omer supplied fuel gas, 1200 ft e . For air permitting, it is recomm ion in operating parameters and lume I, Chapter 3: Stationary Int	nended to use a 20% saf fuel gas quality.	10.41 Air Inlet Temperatur ety margin	e.	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillan Note that g/bhp-hr values are base for CO, VOC and other organic con ² Emission Factor obtained from El Gas-Fired Reciprocating Engines, T Catalytic Converter Emissions Cotalytic Converter Make amd Mo Element Type:	ed on 100% Load Operation mpounds to allow for variat PA's AP-42, Fifth Edition, Vo Table 3.2-2). del: DCL DC- 2	2.66 omer supplied fuel gas, 1200 ft e . For air permitting, it is recomm ion in operating parameters and lume I, Chapter 3: Stationary Int	nended to use a 20% saf fuel gas quality.	10.41 Air Inlet Temperatur ety margin	e.	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillan Note that g/bhp-hr values are base for CO, VOC and other organic con ² Emission Factor obtained from El Gas-Fired Reciprocating Engines, T Catalytic Converter Emissions Cotalytic Converter Make amd Mo Element Type: Number of Elements in Housing:	ed on 100% Load Operation mpounds to allow for variat PA's AP-42, Fifth Edition, Vo Table 3.2-2). del: DCL DC- 2	2.66 omer supplied fuel gas, 1200 ft e . For air permitting, it is recomm ion in operating parameters and lume I, Chapter 3: Stationary Int , DC64-L2 24.23" Round	nended to use a 20% saf fuel gas quality.	10.41 Air Inlet Temperatur ety margin	e.	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillan Note that g/bhp-hr values are base for CO, VOC and other organic con ² Emission Factor obtained from El Gas-Fired Reciprocating Engines, T Catalytic Converter Emissions Cotalytic Converter Make amd Mo Element Type: Number of Elements in Housing:	ed on 100% Load Operation mpounds to allow for variat PA's AP-42, Fifth Edition, Vo Table 3.2-2). del: DCL DC- 2	2.66 omer supplied fuel gas, 1200 ft e . For air permitting, it is recomm ion in operating parameters and lume I, Chapter 3: Stationary Int , DC64-L2 24.23" Round erpillar ADEM A3, Burn Time	nended to use a 20% saf fuel gas quality.	10.41 Air Inlet Temperatur ety margin es (Section 3.2 Natur	e. al	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillan Note that g/bhp-hr values are base for CO, VOC and other organic con ² Emission Factor obtained from El Gas-Fired Reciprocating Engines, T Catalytic Converter Emissions Cotalytic Converter Make amd Mo Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx) Carbon Monoxide (CO)	ed on 100% Load Operation mpounds to allow for variat PA's AP-42, Fifth Edition, Vo Table 3.2-2). del: DCL DC- 2 Cata	2.66 omer supplied fuel gas, 1200 ft e . For air permitting, it is recomm ion in operating parameters and lume I, Chapter 3: Stationary Int , DC64-L2 24.23" Round erpillor ADEM A3, Burn Time <u>% Reduction</u> 0 93	nended to use a 20% saf fuel gas quality.	10.41 Air Inlet Temperatur ety margin es (Section 3.2 Natur Ib/hr	e. al TPY	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillan Note that g/bhp-hr values are base for CO, VOC and other organic con ² Emission Factor obtained from El Gas-Fired Reciprocating Engines, T Catalytic Converter Emissions Cotalytic Converter Make amd Mo Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx) Carbon Monoxide (CO)	ed on 100% Load Operation mpounds to allow for variat PA's AP-42, Fifth Edition, Vo Table 3.2-2). del: DCL DC- 2 Cata	2.66 omer supplied fuel gas, 1200 ft e . For air permitting, it is recomm ion in operating parameters and lume I, Chapter 3: Stationary Int , DC64-L2 24.23" Round erpillor ADEM A3, Burn Time <u>% Reduction</u> 0 93	nended to use a 20% saf fuel gas quality.	10.41 Air Inlet Temperatur ety margin es (Section 3.2 Natur section 3.2 Natur <u>Ib/hr</u> 1.96	e. ral TPY 8.57	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillan Note that g/bhp-hr values are base for CO, VOC and other organic con ² Emission Factor obtained from El Gas-Fired Reciprocating Engines, T Catalytic Converter Make amd Mo Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC	ed on 100% Load Operation mpounds to allow for variat PA's AP-42, Fifth Edition, Vo Table 3.2-2). del: DCL DC- 2 Cata	2.66 omer supplied fuel gas, 1200 ft e . For air permitting, it is recomm ion in operating parameters and lume I, Chapter 3: Stationary Int , DC64-L2 24.23" Round erpillor ADEM A3, Burn Time <u>% Reduction</u> 0 93	nended to use a 20% saf fuel gas quality.	10.41 Air Inlet Temperatur ety margin es (Section 3.2 Natur section 3.2 Natur b/hr 1.96 0.75	e. ral TPY 8.57 3.29	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillan Note that g/bhp-hr values are base for CO, VOC and other organic con ² Emission Factor obtained from El Gas-Fired Reciprocating Engines, T Catalytic Converter Emissions Cotalytic Converter Make amd Mod Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx)	ed on 100% Load Operation mpounds to allow for variat PA's AP-42, Fifth Edition, Vo Table 3.2-2). del: DCL DC- 2 Cata	2.66 omer supplied fuel gas, 1200 ft e . For air permitting, it is recomm ion in operating parameters and lume I, Chapter 3: Stationary Int , DC64-L2 24.23" Round erpillor ADEM A3, Burn Time <u>% Reduction</u> 0 93 O) 50	nended to use a 20% saf fuel gas quality.	10.41 Air Inlet Temperatur ety margin es (Section 3.2 Natur section 3.2 Natur b/hr 1.96 0.75 1.23	e. TPY 8.57 3.29 5.40	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillan Note that g/bhp-hr values are base for CO, VOC and other organic con ² Emission Factor obtained from El Gas-Fired Reciprocating Engines, Catalytic Converter Emissions Cotalytic Converter Make amd Mo Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC Formaldehyde (CH2O) Particulate Matter (PM)	ed on 100% Load Operation mpounds to allow for variat PA's AP-42, Fifth Edition, Vo Table 3.2-2). del: DCL DC- 2 Cata	2.66 omer supplied fuel gas, 1200 ft e . For air permitting, it is recomm ion in operating parameters and lume I, Chapter 3: Stationary Int . DC64-L2 24.23" Round erpillor ADEM A3, Burn Time <u>% Reduction</u> 0 93 O) 50 50	nended to use a 20% saf fuel gas quality.	10.41 Air Inlet Temperatur ety margin es (Section 3.2 Natur section 3.2 Natur b/hr 1.96 0.75 1.23 0.51	e. TPY 8.57 3.29 5.40 2.23	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillan Note that g/bhp-hr values are base for CO, VOC and other organic con ² Emission Factor obtained from El Gas-Fired Reciprocating Engines, T Catalytic Converter Emissions Cotalytic Converter Make amd Mo Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC Formaldehyde (CH2O)	ed on 100% Load Operation mpounds to allow for variat PA's AP-42, Fifth Edition, Vo Table 3.2-2). del: DCL DC- 2 Cata	2.66 omer supplied fuel gas, 1200 ft e . For air permitting, it is recomm ion in operating parameters and lume I, Chapter 3: Stationary Int . DC64-L2 24.23" Round erpillar ADEM A3, Burn Time <u>% Reduction</u> 0 93 O) 50 50 0	nended to use a 20% saf fuel gas quality.	10.41 Air Inlet Temperatur ety margin es (Section 3.2 Natur section 3.2 Natur 1.96 0.75 1.23 0.51 1.35E-01	e. al <u>TPY</u> 8.57 3.29 5.40 2.23 5.91E-01	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillan Note that g/bhp-hr values are base for CO, VOC and other organic con ² Emission Factor obtained from El Gas-Fired Reciprocating Engines, Catalytic Converter Emissions Cotalytic Converter Make amd Mo Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC Formaldehyde (CH2O) Particulate Matter (PM)	ed on 100% Load Operation mpounds to allow for variat PA's AP-42, Fifth Edition, Vo Table 3.2-2). del: DCL DC- 2 Cata	2.66 omer supplied fuel gas, 1200 ft e . For air permitting, it is recomm ion in operating parameters and lume I, Chapter 3: Stationary Int <i>pC64-L2</i> 24.23" Round erpillar ADEM A3, Burn Time $\frac{\frac{\% Reduction}{0}}{93}$ O) 50 0 0	nended to use a 20% saf fuel gas quality.	10.41 Air Inlet Temperatur ety margin es (Section 3.2 Natur 1.96 0.75 1.23 0.51 1.35E-01 7.94E-03	e. al <u>TPY</u> 8.57 3.29 5.40 2.23 5.91E-01 3.48E-02	

CE-GR

1610 Woodstead Ct, Suite 245, The Woodlands, Texas 77380 USA Tel: 877-965-8989 Fax: 281-605-5858 info@dcl-inc.com wvw.dcl-inc.com

GLOBAL LEADER IN EMISSION CONTROL SOLUTIONS

То:	Chris Magee	Phone:	
Company:	USA Compression	Email	
Date:	September 21, 2015	No. Pages:	1

Dear Chris,

We hereby guarantee that our Model DC64L2 specified below with two (2) elements installed as described below, and sized for the following engine:

Engine Data	
Engine Model	Caterpillar G3606
Power	1775HP
Fuel	High Methane NG
Exhaust Flow Rate	12, 211 acfm
Exhaust Temperature	847°F

Catalyst Data	
Catalyst Model	DC64L2
Туре	Oxidation- A
# of Elements	2
Cell Density	300 cpsi
Approx Dimensions	See attached drawing
Approx Pressure Drop	4.1" w.c

will perform as follows:

Exhaust Component	Engine Output (g-bhp/hr)	Converter Output % reduction
со	2.74	93%
VOC	0.63	50%
CH20	0.26	50%

for a period of 1 year or 8000 hours, whichever comes first, subject to all terms and conditions contained in the attached warranty document being respected and met.

Best Regards,

On behalf of DCL America Inc.

Lisa Barber

416-788-8021 lbarber@dcl-inc.com

SNOHOM INTED STATES - DUBBN	CERTIFIC	ONMENTAL PROTECT 7 MODEL YEAR ATE OF CONFORMITY HE CLEAN AIR ACT		OFFICE OF TRANS AND AIR QUA ANN ARBOR, MICH	ALITY
	er Solutions International, Inc. Manufacturer or Importer) 5.70EMT-022	Effective Date: 01/25/2017 Expiration Date: 12/31/2017		r, Division Director nce Division	Issue Date: 01/25/2017 Revision Date: N/A
Manufacturer: Power Soluti Engine Family: HPSIB5.70E Mobile/Stationary Certifica Fuel : LPG/Propane Natural Gas (CNG/LN Emission Standards : Part 60 Subpart JJJJ Table I VOC (g/Hp-hr) : 1.0 CO (g/Hp-hr) : 4.0 NOx (g/Hp-hr) : 2.0 Stationary Part 1048 CO (g/kW-hr) : 4.4 HC + NOx (g/kW-hr) NMHC + NOx (g/kW	EMT tion Type: Stationary G)	D UNITED STA	755 . 7		

Pursuant to Section 213 of the Clean Air Act (42 U.S.C. section 7547) and 40 CFR Part 60, 1065, 1068, and 60 (stationary only and combined stationary and mobile) and subject to the terms and conditions prescribed in those provisions, this certificate of conformity is hereby issued with respect to the test engines which have been found to conform to applicable requirements and which represent the following nonroad engines, by engine family, more fully described in the documentation required by 40 CFR Part 60 and produced in the stated model year.

This certificate of conformity covers only those new nonroad spark-ignition engines which conform in all material respects to the design specifications that applied to those engines described in the documentation required by 40 CFR Part 60 and which are produced during the model year stated on this certificate of the said manufacturer, as defined in 40 CFR Part 60. This certificate of conformity does not cover nonroad engines imported prior to the effective date of the certificate.

It is a term of this certificate that the manufacturer shall consent to all inspections described in 40 CFR 1068.20 and authorized in a warrant or court order. Failure to comply with the requirements of such a warrant or court order may lead to revocation or suspension of this certificate for reasons specified in 40 CFR Part 60. It is also a term of this certificate that this certificate may be revoked or suspended or rendered void *ab initio* for other reasons specified in 40 CFR Part 60.

This certificate does not cover large nonroad engines sold, offered for sale, or introduced, or delivered for introduction, into commerce in the U.S. prior to the effective date of the certificate.

GRI-GLYCalc VERSION 4.0 - SUMMARY OF INPUT VALUES Case Name: Arsenal - Cather Compressor Station File Name: P:\Projects\0419542 Arsenal G35-D Compressor Station.GM\Cather and Goff\Cather.M&R\Calculations\Cather RSV-1 and RSV-2 Dehydration Units.ddf Date: August 04, 2017 DESCRIPTION: _____ Description: Dehydrators RSV-1 and RSV-2 with 67.00 MMscf/day throughput at Cather M&R Annual Hours of Operation: 8760.0 hours/yr WET GAS: _____ Temperature: 60.00 405 625.00 psig 60.00 deg. F Wet Gas Water Content: Saturated Component Conc. (vol 응) ----- -----Carbon Dioxide0.1770Nitrogen0.2624Methane95.8791Ethane3.4142Propane0.2210 Isobutane 0.0133 n-Butane 0.0198 Isopentane 0.0038 n-Pentane 0.0022 n-Hexane 0.0026 n-Hexane 0.0026
 Heptanes
 0.0016

 Benzene
 0.0001

 Toluene
 0.0001

 Ethylbenzene
 0.0001

 Xylenes
 0.0001
 C8+ Heavies 0.0004 DRY GAS: _____ Flow Rate: 67.0 MMSCF/day Water Content: 7.0 lbs. H2O/MMSCF LEAN GLYCOL: Glycol Type: TEG Water Content:1.5 wt% H20Recirculation Ratio:3.0 gal/lb H20 PUMP:

Page: 1

Glycol Pump Type: Electric/Pneumatic

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: Arsenal - Cather Compressor Station
File Name: P:\Projects\0419542 Arsenal G35-D Compressor Station.GM\Cather and
Goff\Cather.M&R\Calculations\Cather RSV-1 and RSV-2 Dehydration Units.ddf
Date: August 04, 2017

DESCRIPTION:

Description: Dehydrators RSV-1 and RSV-2 with 67.00 MMscf/day throughput at Cather M&R

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	2.5886	62.125	11.3379
Ethane	0.6565	15.755	2.8753
Propane	0.1259	3.023	0.5517
Isobutane	0.0158	0.378	0.0690
n-Butane	0.0325	0.779	0.1423
Isopentane	0.0085	0.205	0.0373
n-Pentane	0.0067	0.160	0.0292
n-Hexane	0.0177	0.426	0.0777
Heptanes	0.0265	0.636	0.1161
Benzene	0.0306	0.733	0.1338
Toluene	0.0596	1.430	0.2609
Ethylbenzene	0.1028	2.467	0.4503
Xylenes	0.1495	3.589	0.6550
C8+ Heavies	0.0213	0.510	0.0931
Total Emissions	3.8424	92.216	16.8295
Total Hydrocarbon Emissions	3.8424	92.216	16.8295
Total VOC Emissions	0.5973	14.336	2.6163
Total HAP Emissions	0.3602	8.645	1.5777
Total BTEX Emissions	0.3425	8.219	1.5000

EQUIPMENT REPORTS:

ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages: Calculated Dry Gas Dew Point:	1.25 1.89	lbs.	H2O/MMSCF
Temperature:	60.0	deg.	F
Pressure:	625.0	psig	

Page: 1

		rage.
Dry Gas Flow Rate:	67.0000 MMSCF/d	lay
Glycol Losses with Dry Gas:	0.0602 lb/hr	
Wet Gas Water Content:	Saturated	
Calculated Wet Gas Water Content:	23.39 lbs. H2	O/MMSCF
Specified Lean Glycol Recirc. Ratio:	3.00 gal/lb	H2O

Component	Remaining in Dry Gas	Absorbed in Glycol
Water	8.07%	91.93%
Carbon Dioxide	99.95%	0.05%
Nitrogen	100.00%	0.00%
Methane	100.00%	0.00%
Ethane	99.99%	0.01%
Propane	99.98%	0.02%
Isobutane	99.97%	0.03%
n-Butane	99.96%	0.04%
Isopentane	99.96%	0.04%
n-Pentane	99.94%	0.06%
n-Hexane	99.89%	0.11%
Heptanes	99.78%	0.22%
Benzene	94.68%	5.32%
Toluene	91.21%	8.79%
Ethylbenzene	86.84%	13.16%
Xylenes	80.84%	19.16%
C8+ Heavies	99.58%	0.42%

REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	Distilled Overhead
Water	24.34%	75.66%
Carbon Dioxide	0.00%	100.00%
Nitrogen	0.00%	100.00%
Methane	0.00%	100.00%
Ethane	0.00%	100.00%
Propane	0.00%	100.00%
Isobutane	0.00%	100.00%
n-Butane	0.00%	100.00%
Isopentane	0.50%	99.50%
n-Pentane	0.50%	99.50%
n-Hexane	0.50%	99.50%
Heptanes	0.50%	99.50%
Benzene	5.00%	95.00%
Toluene	7.91%	92.09%
Ethylbenzene	10.43%	89.57%
Xylenes	12.96%	87.04%
C8+ Heavies	12.10%	87.90%

STREAM REPORTS:

Temperature: 60.00 deg. F Pressure: 639.70 psia Flow Rate: 2.79e+006 scfh Component Conc. Loading (vol%) (lb/hr) Water 4.93e-002 6.53e+001 Carbon Dioxide 1.77e-001 5.73e+002 Nitrogen 2.62e-001 5.41e+002 Methane 9.58e+001 1.13e+005 Ethane 3.41e+000 7.55e+003 Propane 2.21e-001 7.17e+002 Isobutane 1.33e-002 5.69e+001 n-Butane 1.98e-002 8.47e+001 Isopentane 3.80e-003 2.02e+001 n-Pentane 2.20e-003 1.17e+001 n-Hexane 2.60e-003 1.65e+001 Heptanes 1.60e-003 1.18e+001 Benzene 1.00e-004 5.75e-001 Toluene 1.00e-004 6.78e-001 Ethylbenzene 1.00e-004 7.81e-001 Xylenes 1.00e-004 7.81e-001 C8+ Heavies 4.00e-004 5.01e+000 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Total Components 100.00 1.23e+005 DRY GAS STREAM _____ Temperature:60.00 deg. FPressure:639.70 psiaFlow Rate:2.79e+006 scfh Component Conc. Loading (vol%) (lb/hr) _____ ____ Water 3.98e-003 5.27e+000 Carbon Dioxide 1.77e-001 5.73e+002 Nitrogen 2.62e-001 5.41e+002 Methane 9.59e+001 1.13e+005 Ethane 3.41e+000 7.55e+003 Propane 2.21e-001 7.17e+002 Isobutane 1.33e-002 5.69e+001 n-Butane 1.98e-002 8.46e+001 Isopentane 3.80e-003 2.02e+001 n-Pentane 2.20e-003 1.17e+001 n-Hexane 2.60e-003 1.65e+001 Heptanes 1.60e-003 1.18e+001 Benzene 9.47e-005 5.44e-001 Toluene 9.12e-005 6.18e-001 Ethylbenzene 8.68e-005 6.78e-001 Xylenes 8.08e-005 6.32e-001 C8+ Heavies 3.98e-004 4.99e+000 Total Components 100.00 1.23e+005

LEAN GLYCOL STREAM

Temperature: 60.00 deg. F

Component	Conc. (wt%)	Loading (lb/hr)							
Water Carbon Dioxide Nitrogen	9.85e+001 1.50e+000 2.01e-012 1.02e-013 6.75e-018	1.93e+001 2.59e-011 1.32e-012							
Propane Isobutane	2.41e-008 3.98e-010 3.67e-011 6.25e-011 3.32e-006	5.13e-009 4.73e-010 8.05e-010							
n-Hexane Heptanes Benzene	2.60e-006 6.92e-006 1.03e-005 1.25e-004 3.97e-004	8.92e-005 1.33e-004 1.61e-003							
Ethylbenzene Xylenes C8+ Heavies	9.29e-004 1.73e-003 2.27e-004	2.23e-002 2.93e-003							
Total Components									
RICH GLYCOL STREAM									
Temperature: 60.00 deg. F Pressure: 639.70 psia Flow Rate: 2.42e+000 gpm NOTE: Stream has more than one p	phase.								
Component	Component Conc. Loadi (wt%) (lb/h								
Water Carbon Dioxide Nitrogen Methane	9.72e-004 1.91e-001	7.94e+001 2.59e-001 1.31e-002 2.59e+000							
Ethane	4.86e-002	6.56e-001							

Ethane 4.86e-002 6.56e-001 Propane 9.32e-003 1.26e-001 Isobutane 1.17e-003 1.58e-002 n-Butane 2.40e-003 3.25e-002 Isopentane 6.33e-004 8.57e-003 n-Pentane 4.96e-004 6.71e-003 n-Hexane 1.32e-003 1.78e-002 Heptanes 1.97e-003 2.66e-002 Benzene 2.38e-003 3.22e-002 Toluene 4.78e-003 6.47e-002 Ethylbenzene 8.49e-003 1.15e-001 Xylenes 1.27e-002 1.72e-001 C8+ Heavies 1.79e-003 2.42e-002 Total Components 100.00 1.35e+003

REGENERATOR OVERHEADS STREAM

Temperature: 212.00 deg. F

Pressure: 14.70 psia Flow Rate: 1.34e+003 scfh

Component		Loading (lb/hr)
Carbon Dioxide Nitrogen Methane	9.44e+001 1.66e-001 1.33e-002 4.57e+000 6.18e-001	2.59e-001 1.31e-002 2.59e+000
Isobutane n-Butane Isopentane	8.09e-002 7.68e-003 1.58e-002 3.34e-003 2.62e-003	1.58e-002 3.25e-002 8.52e-003
Heptanes Benzene	5.83e-003 7.49e-003 1.11e-002 1.83e-002 2.74e-002	2.65e-002 3.06e-002 5.96e-002
Xylenes C8+ Heavies Total Components		

Attachment V

ATTACHMENT V – FACILITY-WIDE CONTROLLED EMISSIONS SUMMARY SHEET														
List all sources of emissions in this table. Use extra pages if necessary.														
	NO _x		СО		VOC		SO ₂		PM ₁₀		PM _{2.5}		GHG (CO ₂ e)	
Emission Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Compressor Engine (CE-5R)	2.61	11.44	1.00	4.39	1.65	7.21	0.01	0.05	<0.01	<0.01	<0.01	<0.01	3,000.31	13,141.35
Compressor Engine (CE-6R)	1.96	8.57	0.75	3.29	1.23	5.40	<0.01	0.03	<0.01	<0.01	<0.01	<0.01	1,986.84	8,702.36
Reboiler (RBV-1)	0.10	0.42	0.08	0.35	<0.01	0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	117.10	512.89
Reboiler (RBV-2)	0.10	0.42	0.08	0.35	<0.01	0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	117.10	512.89
Dehydrator Regenerator Overhead Vent (RSV-1)	<0.01	<0.01	<0.01	<0.01	0.60	2.62	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	64.72	283.45
Dehydrator Regenerator Overhead Vent (RSV-2)	<0.01	<0.01	<0.01	<0.01	0.60	2.62	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	64.72	283.45
Produced Water (TK-1 and TK-2)	<0.01	< 0.01	<0.01	<0.01	<0.01	0.03	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	4.43	19.41
Emergency Generator (EG-1)	0.47	0.12	0.07	0.02	0.05	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	99.24	24.81
TOTAL	5.23	20.97	1.98	8.40	4.71	20.45	0.02	0.09	<0.01	<0.01	<0.01	<0.01	5,454.45	23,480.61

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT V – FACILITY-WIDE HAP CONTROLLED EMISSIONS SUMMARY SHEET

List all sources of emissions in this table. Ose exita pages if necessary.														
Emission Point ID#	Formaldehyde		Benzene		Toluene		Ethylbenzene		Xylenes		Hexane		Total HAPs	
Emission Foint ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Compressor Engine (CE-5R)	0.68	2.98	<0.01	0.03	< 0.01	0.03	<0.01	<0.01	< 0.01	<0.01	<0.01	< 0.01	0.70	3.06
Compressor Engine (CE-6R)	0.51	2.23	<0.01	0.03	<0.01	0.02	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	0.52	2.29
Reboiler (RBV-1)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01
Reboiler (RBV-2)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Dehydrator Regenerator Overhead Vent (RSV-1)	< 0.01	< 0.01	0.03	0.13	0.06	0.26	0.10	0.45	0.15	0.66	0.02	0.08	0.36	1.58
Dehydrator Regenerator Overhead Vent (RSV-2)	<0.01	<0.01	0.03	0.13	0.06	0.26	0.10	0.45	0.15	0.66	0.02	0.08	0.36	1.58
Produced Water (TK-1 and TK-2)	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Emergency Generator (EG-1)	0.05	0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	0.05	0.01
TOTAL	1.24	5.22	0.08	0.33	0.13	0.58	0.21	0.91	0.30	1.34	0.04	0.17	1.99	8.53

List all sources of emissions in this table. Use extra pages if necessary.

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators.

According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

Attachment W

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Arsenal Resources, LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a G35-D General Permit for a natural gas compressor station located in Harrison County, West Virginia. The latitude and longitude coordinates are: 39.27944 and -80.41333

The applicant estimates the maximum potential to discharge the following regulated air pollutants on a facility-wide basis will be:

Particulate Matter (PM) = 1.64 tpy Sulfur Dioxide (SO₂) = 0.09 tpy Volatile Organic Compounds (VOC) = 20.45 tpy Carbon Monoxide (CO) = 8.40 tpy Nitrogen Oxides (NO_x) = 20.97 tpy Total Hazardous Air Pollutants (HAPs) = 8.53 tpy Formaldehyde (HCHO) = 5.22 tpy Hexane (C₈H₁₄) = 0.17 tpy Benzene (C₆C₆) = 0.33 tpy Toluene (C₇H₈) = 0.58 tpy Ethylbenzene (C₈H₁₀) = 0.91 tpy Xylene (C₈H₁₀) = 1.34 tpy Carbon Dioxide Equivalents (CO₂e) = 23,532.22 tpy

Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the 8th day of September 2017.

By: Arsenal Resources Meghan M.B. Yingling Environmental Compliance Manager 6031 Wallace Road Ext. Suite 300 Wexford, PA 15090

Attachment R AUTHORITY OF CORPORATION OR OTHER BUSINESS ENTITY (DOMESTIC OR FOREIGN)

TO: The West Virginia Department of Environmental Protection, Division of Air Quality

DATE: July 6, 2017

ATTN.: Director

Corporation's / other business entity's Federal Employer I.D. Number 47-1919654

The undersigned hereby files with the West Virginia Department of Environmental Protection, Division of Air Quality, a permit application and hereby certifies that the said name is a trade name which is used in the conduct of an incorporated business or other business entity.

Further, the corporation or the business entity certifies as follows:

(1) <u>Stacey Lucas, William Veigel, Meghan Yingling</u> (is/are) the authorized representative(s) and in that capacity may represent the interest of the corporation or the business entity and may obligate and legally bind the corporation or the business entity.

(2) The corporation or the business entity is authorized to do business in the State of West Virginia.

(3) If the corporation or the business entity changes its authorized representative(s), the corporation or the business entity shall notify the Director of the West Virginia Department of Environmental Protection, Division of Air Quality, immediately upon such change.

Stephen A. Bishop, President and Chief Financial Officer, Arsenal Midstream, LLC

President or Other Authorized Officer (Vice President, Secretary, Treasurer or other official in charge of a principal business function of the corporation or the business entity)

(If not the President, then the corporation or the business entity must submit certified minutes or bylaws stating legal authority of other authorized officer to bind the corporation or the business entity).

Secretary

Arsenal Midstream, LLC

Name of Corporation or business entity