

west virginia department of environmental protection

Division of Air Quality 601 57th Street SE Charleston, WV 25304 Phone (304) 926-0475 • FAX: (304) 926-0479 Jim Justice, Governor Austin Caperton, Cabinet Secretary www.dep.wv.gov

ENGINEERING EVALUATION / FACT SHEET

BACKGROUND INFORMATION

Application No.: R13-3216B Plant ID No.: 017-00131

Applicant: Antero Midstream LLC (Antero)
Facility Name: Tamela Compressor Station
Location: West Union, Doddridge County
NAICS Code: 221210 (Natural Gas Distribution)

Application Type: Modification Received Date: July 13, 2017

Engineer Assigned: Jerry Williams, P.E.

Fee Amount: \$4,500.00
Date Received: July 13, 2017
Complete Date: August 18, 2017
Due Date: November 16, 2017

Applicant Ad Date: July 28, 2017

Newspaper: The Doddridge Independent

UTM's: Easting: 513.556 km Northing: 4,352.966 km Zone: 17

Latitude: 39.3261 Longitude: -80.8428

Description: This application updates storage tank and loading emissions, new fuel

conditioning heater, increases glycol dehydration throughput, updates

fugitive counts and modifies blowdown and pigging events.

DESCRIPTION OF PROCESS

Permit R13-3216A was issued to Antero for this facility on May 24, 2016. This proposed permitting action results in the following:

- Updating storage tank and loading emissions using ProMax 4.0
- New installation of 0.5 MMBTU/hr fuel conditioning heater
- Increase glycol dehydration throughput to 110 million standard cubic feet per day (MMscfd) per dehydrator

Promoting a healthy environment

- Update fugitive counts based on current compressor counts at similar facilities
- Modify compressor blowdown and pigging events based on expected operations.

The following process description was taken from Permit Application R13-3216B:

The Tamela Compressor Station is located in Doddridge County, West Virginia. Gas from surrounding pipelines enters the facility through one (1) receiver and associated slug catcher. From there, the gas is metered and routed through a filter separator. Any produced liquids from the scrubber or separator are sent to the 500 barrel settling tank (TK-9000). Gas from the filter separator is sent to thirteen (13) 1,680 hp Waukesha compressor engines (C-2100 – C-2220). The thirteen (13) compressor engines are controlled with NSCR catalysts and air-fuel ratio controllers (1C – 11C, 15C & 16C). Fuel gas for the compressor engines will be treated prior to the engines by a fuel conditioning skid with a 0.5 MMBTU/hr heater (FUEL1) to allow more complete combustion. Produced fluids are routed to the settling tank and high pressure gas is sent to one of the two (2) TEG dehydrators.

Each TEG dehydrator (V-3110 & V-3210) contains a flash gas tank and 1.5 MMBtu/hr reboiler (F-3100 & F-3200). Each dehydrator has a design rate of 88 MMscf/day. Within the dehydrator unit, vent gas from the flash gas tank (V-3120 & V-3220) is routed to the reboiler (F-3100 & F-3200) and used as fuel. In the case where the flash tank gas cannot be used by the reboiler due to excess gas or the reboiler being offline, the gas will be sent to the VRUs (VRU-6000 and VRU-6100) via the storage tanks (TK-9000 –TK-9210) and thus controlled by 98%. Combustion emissions from each reboiler are routed to the atmosphere. The dehydrator still vents (V-3110 & V-3210) are controlled by a flare with at least 98% control efficiency (FL-1000). Produced fluids from the dehydrator are routed to the settling tank. The dry gas from the dehydration process is either routed to a fuel gas scrubber, metered, and routed to the compressors as fuel gas or metered and sent to the high pressure facility discharge pipeline.

All produced fluids enter one (1) 500 barrel settling tank (TK-9000) where the fluids settle out as either condensate or produced water. The produced water goes to two (2) 400 barrel produced water tanks (TK-9200 – TK-9210) and the condensate goes to two (2) 400 barrel condensate tanks (TK-9100 – TK-9110). Flashing only occurs at the settling tank as the fluids stabilize in the settling tank before going to the other storage tanks. All five (5) tanks are connected to a primary vapor recovery unit (VRU-6000) where tank vapors are collected and recycled back into the gas system right before the initial filter scrubber. A second vapor recovery unit (VRU-6100) is used as back-up to the primary vapor recovery unit. The produced fluids are trucked out via tanker trucks as needed (LDOUT1). The loading emissions are uncontrolled. The anticipated production is 150 barrels per day of condensate and 45 barrels per day of produced water. Two (2) natural gas microturbine generators, each rated at 200 kWe, will supply power to the facility (G-8000 & G-8100). Typically, no more than 200 kWe will be operational at any given time and the remaining 200 kWe unit will be on standby. G-8000 and G-8100 may switch between primary and standby status depending on their need for maintenance. Emissions were calculated as though each generator operates 8,760 hours per year as to not limit operations however. The fuel line for the generators will be heated by a small catalytic heater (CATHT1) with a burner rating of 24 Btu/hr.

There will also be small storage tanks located at the facility. Their ID number, description, and exact size are listed in the table below.

Tank ID	Storage Tank Description	Storage Tank
		Capacity (gal)
TK-9300	Compressor Skid Oily Water Tank	500
TK-9320	Compressor Skid Oily Water Tank	500
TK-9310	Used Oil Tank	500
TK-9330	Used Oil Tank	500
TK-9410	TEG Makeup Tank	1,000
TK-9420	Compressor Coolant Tank	2,000
TK-9430	Engine Lube Oil Tank	2,000
TK-9440	Compressor Lube Oil Tank	2,000
TK-9400	Compressor Waste Oil Tank	4,200

SITE INSPECTION

A site inspection was conducted on January 20, 2016 by James Robertson of the DAQ Enforcement Section. According to Mr. Robertson, the facility has not been constructed and the site location is appropriate for the proposed facility. The closest residence is approximately 1,000 feet from the proposed facility.

Directions to the facility are as follows:

From Charleston: I-77 North to Exit 176. Turn right onto US-50 East and travel approximately 36 miles. Turn left onto Old US 50 E/Sunnyside Road. Take the first right toward Duckworth Road. Turn right onto Duckworth Road and travel approximately 1 mile. Take slight left onto Long Run and travel approximately 4 miles. Site entrance is on left.

ESTIMATE OF EMISSIONS BY REVIEWING ENGINEER

Emissions associated with this facility consist of the equipment listed in the following table and fugitive emissions. Fugitive emissions for the facility are based on calculation methodologies presented in EPA Protocol for Equipment Leak Emission Estimates. The following table indicates which methodology was used in the emissions determination:

Emission Unit ID#	Process Equipment	Calculation Methodology
C-2100 –	1,680 hp Waukesha 7044 GSI Reciprocating	Manufacturer's Data, EPA
C-2220	Internal Combustion Engine (RICE) w/ NSCR	AP-42 Emission Factors
G-8000,	200 kW Capstone C200 NG Microturbine	Manufacturer's Data, EPA
G-8100	Generators	AP-42 Emission Factors
CATHT1	0.024 MMBTU/hr Catalytic Heater	EPA AP-42 Emission Factors
V-3110,	110 MMscfd TEG Dehydrator Still Vent w/	GRI-GlyCalc 4.0
V-3210	Condenser/Recycle and Flare	
F-3100,	1.5 MMBtu/hr TEG Dehydrator Reboiler	EPA AP-42 Emission Factors
F-3200	·	
TK-9000	500 bbl (21,000 gal) Produced Water/Condensate	EPA Tanks 4.09d and E&P
	Settling Tank	Tanks (Flashing)
TK-9200,	400 bbl (16,800 gal) Condensate Storage Tanks	EPA Tanks 4.09d
TK-9210		
TK-9100,	400 bbl (16,800 gal) Produced Water Storage	EPA Tanks 4.09d
TK-9110	Tanks	
TK-9300,	Two (2) 500 gal Compressor Skid Oily Water	Negligible
TK-9320	Storage Tank	
TK-9310,	Two (2) 500 gal Used Oil Storage Tank	Negligible
TK-9330		
TK-9410	1,000 gal TEG Make-Up Storage Tank	Negligible
TK-9420	2,000 gal Compressor Coolant Storage Tank	Negligible
TK-9430	2,000 gal Engine Lube Oil Storage Tank	Negligible
TK-9440	2,000 gal Compressor Lube Oil Storage Tank	Negligible
TK-9400	4,200 gal Compressor Waste Oil Storage Tank	Negligible
	150 bbl (6,300 gal) / day Condensate	
LDOUT1	45 bbl (1,890 gal) / day Produced Water	EPA AP-42 Emission Factors
	Product Loadout Rack	
VRU-6000	Vapor Recovery Unit #1 (13C)	Electric Driven
VRU-6100	Vapor Recovery Unit #2 (14C)	Electric Driven
FL-1000	4.8 MMBTU/hr Flare Control Device	EPA AP-42 Emission Factors
FUEL1	0.5 MMBTU/hr Fuel Conditioning Heater	EPA AP-42 Emission Factors

The following table indicates the control device efficiencies that are required for this facility:

Emission Unit	Pollutant	Control Device	Control Efficiency
	Nitrogen Oxides		97.5 %
1,680 hp Waukesha 7044	Carbon Monoxide		97.5 %
GSI RICE w/ NSCR	Volatile Organic Compounds	NSCR	84 %
(C-2100 – C-2220)	Formaldehyde	NSCK	90 %
	Methane		70 %
110 mmscfd TEG	Volatile Organic Compounds		98 %
Dehydrator Still Vents (V-3110, V-3210)	Hazardous Air Pollutants	Flare	98 %
110 mmscfd TEG	Volatile Organic Compounds	Pagyalad Pahailar/	95 %
Dehydrator Flash Tanks	Hazardous Air Pollutants	Recycled Reboiler/ Condenser w VRU backup	95 %
Product Tanks (TK-9000,	Volatile Organic Compounds	Vanor Dagayany Units	98 %
9200, 9210, 9100, 9110)	Hazardous Air Pollutants	Vapor Recovery Units	98 %

The total facility PTE for the Tamela Compressor Station is shown in the following table:

Pollutant	R13-3216A PTE (tons/year)	R13-3216B PTE (tons/year)	PTE Change (tons/year)
Nitrogen Oxides	75.46	75.35	-0.11
Carbon Monoxide	78.56	78.47	-0.09
Volatile Organic Compounds	54.92	79.41	24.49
Particulate Matter-10/2.5	15.96	15.95	-0.01
Sulfur Dioxide	0.54	0.54	0
Formaldehyde	1.07	1.07	0
Total HAPs	13.01	13.02	0.01
Carbon Dioxide Equivalent	121,318	123,033	1,715

Maximum detailed controlled point source emissions were calculated by Antero and checked for accuracy by the writer and are summarized in the table on the next page.

Antero Midstream LLC – Tamela Compressor Station (R13-3216B)

Emission	Source	N	O x	С	:0	V(OC	PN	I-10	S	02	Formal	ldehyde	Total	HAPs	CO2e
Point ID#		lb/hr	ton/year	lb/hr	ton/year	lb/hr	ton/year	lb/hr	ton/year	lb/hr	ton/year	lb/hr	ton/year	lb/hr	ton/year	ton/year
1E	Compressor Engine #1	1.26	5.52	1.19	5.19	0.24	1.06	0.27	1.18	0.01	0.04	0.02	0.08	0.18	0.81	8725
2E	Compressor Engine #2	1.26	5.52	1.19	5.19	0.24	1.06	0.27	1.18	0.01	0.04	0.02	0.08	0.18	0.81	8725
3E	Compressor Engine #3	1.26	5.52	1.19	5.19	0.24	1.06	0.27	1.18	0.01	0.04	0.02	0.08	0.18	0.81	8725
4E	Compressor Engine #4	1.26	5.52	1.19	5.19	0.24	1.06	0.27	1.18	0.01	0.04	0.02	0.08	0.18	0.81	8725
5E	Compressor Engine #5	1.26	5.52	1.19	5.19	0.24	1.06	0.27	1.18	0.01	0.04	0.02	0.08	0.18	0.81	8725
6E	Compressor Engine #6	1.26	5.52	1.19	5.19	0.24	1.06	0.27	1.18	0.01	0.04	0.02	0.08	0.18	0.81	8725
7E	Compressor Engine #7	1.26	5.52	1.19	5.19	0.24	1.06	0.27	1.18	0.01	0.04	0.02	0.08	0.18	0.81	8725
8E	Compressor Engine #8	1.26	5.52	1.19	5.19	0.24	1.06	0.27	1.18	0.01	0.04	0.02	0.08	0.18	0.81	8725
9E	Compressor Engine #9	1.26	5.52	1.19	5.19	0.24	1.06	0.27	1.18	0.01	0.04	0.02	0.08	0.18	0.81	8725
10E	Compressor Engine #10	1.26	5.52	1.19	5.19	0.24	1.06	0.27	1.18	0.01	0.04	0.02	0.08	0.18	0.81	8725
11E	Compressor Engine #11	1.26	5.52	1.19	5.19	0.24	1.06	0.27	1.18	0.01	0.04	0.02	0.08	0.18	0.81	8725
28E	Compressor Engine #12	1.26	5.52	1.19	5.19	0.24	1.06	0.27	1.18	0.01	0.04	0.02	0.08	0.18	0.81	8725
29E	Compressor Engine #13	1.26	5.52	1.19	5.19	0.24	1.06	0.27	1.18	0.01	0.04	0.02	0.08	0.18	0.81	8725
12E	Microturbine Generator	0.08	0.35	0.22	0.96	0.02	0.09	0.01	0.06	0.01	0.03	0.00	0.01	0.00	0.01	1166
13E	Microturbine Generator	0.08	0.35	0.22	0.96	0.02	0.09	0.01	0.06	0.01	0.03	0.00	0.01	0.00	0.01	1166
31E	Fuel Conditioning Heater	0.049	0.21	0.041	0.18	0.0027	0.012	0.0037	0.016	0.00029	0.0013	0.00004	0.00002	0.0009	0.004	257
16E	Dehydrator Reboiler	0.15	0.64	0.12	0.54	0.01	0.04	0.01	0.05	0.001	0.004	0.0001	0.0005	0.03	0.01	771
19E	Dehydrator Reboiler	0.15	0.64	0.12	0.54	0.01	0.04	0.01	0.05	0.001	0.004	0.0001	0.0005	0.03	0.01	771
26E	Flare Combustion	0.33	1.43	1.78	7.78	2.62	11.52	0.0001	0.001	0.00001	0.00005	0	0	0.26	1.12	3082
20E	Settling Storage Tank	0	0	0	0	3.15	13.81	0	0	0	0	0	0	0.09	0.41	51
21E, 22E	Condensate Storage Tanks	0	0	0	0	0.06	0.28	0	0	0	0	0	0	0.004	0.02	1
23E, 24E	Produced Water Storage Tanks	0	0	0	0	0.000	0.00	0	0	0	0	0	0	0.0003	0.001	0
30E	Product Loadout Rack	0	0	0	0	72.85	7.66	0	0	0	0	0	0	2.19	0.23	28
27E	Catalytic Heater	0.002	0.01	0.002	0.01	0.0001	0.001	0.0002	0.001	0.00001	0.0001	0.00000	0.00001	0.00004	0.00002	12
32E	Venting	0	0	0	0	NA	22.50	0	0	0	0	0	0	NA	0.46	2107
Total Point	Source	17.20	75.35	17.92	78.47	81.86	69.81	3.56	15.62	0.12	0.54	0.24	1.07	4.95	12.80	122835
Fugitive	Component Leaks	0	0	0	0	NA	9.54	0	0	0	0	0	0	NA	0.22	198
Fugitive	Dust	0	0	0	0	0	0	NA	0.33	0	0	0	0	0	0	0
				-								-				
Total Fugiti	ve	0	0	0	0	0	9.54	0	0.33	0	0	0	0	0	0.22	198
Total Sitewi	de	17.20	75.35	17.92	78.47	81.86	79.41	3.56	15.95	0.12	0.54	0.24	1.07	4.95	13.02	123033

REGULATORY APPLICABILITY

The following rules apply to this modification:

45CSR2 (Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers)

The purpose of 45CSR2 is to establish emission limitations for smoke and particulate matter which are discharged from fuel burning units. 45CSR2 states that any fuel burning unit that has a heat input under ten (10) million B.T.U.'s per hour is exempt from sections 4 (weight emission standard), 5 (control of fugitive particulate matter), 6 (registration), 8 (testing, monitoring, recordkeeping, reporting) and 9 (startups, shutdowns, malfunctions). However, failure to attain acceptable air quality in parts of some urban areas may require the mandatory control of these sources at a later date.

The individual heat input of the fuel conditioning heater (FUEL 1) is below 10 MMBTU/hr. Therefore, this unit is exempt from the aforementioned sections of 45CSR2.

Antero would also be subject to the opacity requirements in 45CSR2, which is 10% opacity based on a six minute block average.

45CSR6 (To Prevent and Control Air Pollution from the Combustion of Refuse)

The purpose of this rule is to prevent and control air pollution from combustion of refuse.

Antero has one (1) flare (FL-1000) at the facility. It is subject to section 4, emission standards for incinerators. The flare has negligible hourly particulate matter emissions. Therefore, it should demonstrate compliance with this section. The facility will demonstrate compliance by maintaining records of the amount of natural gas consumed by the flare and the hours of operation. The facility will also monitor the flame of the flare and record any malfunctions that may cause no flame to be present during operation.

45CSR10 (To Prevent and Control Air Pollution from the Emissions of Sulfur Oxides)

The purpose of 45CSR10 is to establish emission limitations for sulfur dioxide which are discharged from fuel burning units. 45CSR10 states that any fuel burning unit that has a heat input under ten (10) million B.T.U.'s per hour is exempt from sections 3 (weight emission standard), 6 (registration), 7 (permits), and 8 (testing, monitoring, recordkeeping, reporting). However, failure to attain acceptable air quality in parts of some urban areas may require the mandatory control of these sources at a later date.

The individual heat input of the fuel conditioning heater (FUEL 1) is below 10 MMBTU/hr. Therefore, this unit is exempt from the aforementioned sections of 45CSR10.

45CSR13 (Permits for Construction, Modification, Relocation and Operation of Stationary Sources of Air Pollutants, Notification Requirements, Administrative Updates, Temporary Permits, General Permits, and Procedures for Evaluation)

A 45CSR13 modification permit applies to this source because Antero exceeded the modification threshold for volatile organic compounds and is subject to a substantive requirement under 40CFR63 Subpart HH.

Antero paid the appropriate application fee and published the required legal advertisement for a construction permit application.

45CSR16 (Standards of Performance for New Stationary Sources Pursuant to 40 CFR Part 60)

45CSR16 applies to this source by reference of 40CFR60, Subparts JJJJ and OOOOa. These requirements are discussed under that rule below.

45CSR22 (Air Quality Management Fee Program)

Antero is not subject to 45CSR30. The Tamela Compressor Station is subject to 40CFR60 Subparts JJJJ and OOOOa, however they are exempt from the obligation to obtain a permit under 40 CFR part 70 or 40 CFR part 71, provided they are not required to obtain a permit for a reason other than their status as an area source.

Antero is required to pay the appropriate annual fees and keep their Certificate to Operate current.

40CFR60 Subpart OOOOa (Standards of Performance for Crude Oil and Natural Gas Production, Transmission and Distribution for which Construction, Modification or Reconstruction Commenced after September 18, 2015)

EPA published its New Source Performance Standards (NSPS) and air toxics rules for the oil and gas sector on August 16, 2012. EPA published amendments to the Subpart on September 23, 2013 and June 3, 2016. 40CFR60 Subpart OOOOa establishes emission standards and compliance schedules for the control of the pollutant greenhouse gases (GHG). The greenhouse gas standard in this subpart is in the form of a limitation on emissions of methane from affected facilities in the crude oil and natural gas source category that commence construction, modification or reconstruction after September 18, 2015. This subpart also establishes emission standards and compliance schedules for the control of volatile organic compounds (VOC) and sulfur dioxide (SO₂) emissions from affected facilities that commence construction, modification or reconstruction after September 18, 2015. The effective date of this rule is August 2, 2016.

a. Each well affected facility, which is a single natural gas well.

There are no wells at this facility. Therefore, all requirements regarding gas well affected facilities under 40 CFR 60 Subpart OOOOa would not apply.

b. Each centrifugal compressor affected facility, which is a single centrifugal

compressor using wet seals that is located between the wellhead and the point of custody transfer to the natural gas transmission and storage segment. For the purposes of this subpart, your centrifugal compressor is considered to have commenced construction on the date the compressor is installed (excluding relocation) at the facility. A centrifugal compressor located at a well site, or an adjacent well site and servicing more than one well site, is not an affected facility under this subpart.

There are no centrifugal compressors at the Tamela Compressor Station. Therefore, all requirements regarding centrifugal compressors under 40 CFR 60 Subpart OOOOa would not apply.

c. Each reciprocating compressor affected facility, which is a single reciprocating compressor located between the wellhead and the point of custody transfer to the natural gas transmission and storage segment. For the purposes of this subpart, your reciprocating compressor is considered to have commenced construction on the date the compressor is installed (excluding relocation) at the facility. A reciprocating compressor located at a well site, or an adjacent well site and servicing more than one well site, is not an affected facility under this subpart.

There are reciprocating internal combustion engines located at the Tamela Compressor Station that were constructed after September 18, 2015. Therefore, the requirements regarding reciprocating compressors under 40 CFR 60 Subpart 0000a will apply. Antero will be required to perform the following:

- Replace the reciprocating compressor rod packing at least every 26,000 hours of operation or 36 months or installation of a rod packing emissions collection system.
- Demonstrate initial compliance by continuously monitoring the number of hours of operation or track the number of months since the last rod packing replacement.
- Submit the appropriate start up notifications.
- Submit the initial annual report for the reciprocating compressors.
- Maintain records of hours of operation since last rod packing replacement, records of the date and time of each rod packing replacement, and records of deviations in cases where the reciprocating compressor was not operated in compliance.

d. Pneumatic Controllers

• Each pneumatic controller affected facility, which is a single continuous bleed natural gas-driven pneumatic controller operating at a natural gas bleed rate greater than 6 scfh which commenced construction after August 23, 2011, and is located between the wellhead and the point of custody

transfer to the natural gas transmission and storage segment and not located at a natural gas processing plant.

• Each pneumatic controller affected facility, which is a single continuous bleed natural gas-driven pneumatic controller which commenced construction after August 23, 2011, and is located at a natural gas processing plant.

All pneumatic controllers at the facility will be air driven. Therefore, there are no applicable pneumatic controllers which commenced construction after September 18, 2015. Therefore, all requirements regarding pneumatic controllers under 40 CFR 60 Subpart OOOOa would not apply.

e. Each storage vessel affected facility, which is a single storage vessel, located in the oil and natural gas production segment, natural gas processing segment or natural gas transmission and storage segment.

40CFR60 Subpart OOOOa defines a storage vessel as a unit that is constructed primarily of non-earthen materials (such as wood, concrete, steel, fiberglass, or plastic) which provides structural support and is designed to contain an accumulation of liquids or other materials. The following are not considered storage vessels:

- Vessels that are skid-mounted or permanently attached to something that is mobile (such as trucks, railcars, barges or ships), and are intended to be located at a site for less than 180 consecutive days. If the source does not keep or are not able to produce records, as required by \$60.5420(c)(5)(iv), showing that the vessel has been located at a site for less than 180 consecutive days, the vessel described herein is considered to be a storage vessel since the original vessel was first located at the site.
- Process vessels such as surge control vessels, bottoms receivers or knockout vessels.
- Pressure vessels designed to operate in excess of 204.9 kilopascals and without emissions to the atmosphere.

The potential for VOC emissions must be calculated using a generally accepted model or calculation methodology, based on the maximum average daily throughput for a 30-day period of production prior to the applicable emission determination deadline specified in this subsection. The determination may take into account requirements under a legally and practically enforceable limit in an operating permit or other requirement established under a federal or state authority. For each storage vessel affected facility that emits more than 6 tpy of VOC, the permittee must reduce VOC emissions by 95% or greater within 60 days of startup.

The storage vessels located at the Tamela Compressor Station are controlled by a VRU which will reduce the potential to emit to less than 6 tpy of VOC. Therefore, Antero is not required by this section to further reduce VOC emissions by 95%. Antero is claiming a control efficiency of 98% for the VRU. In able to claim a control efficiency greater than 95%, Antero is required to meet additional design/function requirements. Antero will be required to perform three (3) of the following additional requirements:

- *Additional sensing equipment.*
- Properly designed bypass system.
- *Appropriate gas blanket.*
- A compressor that is suitable and has the ability to vary the drive speed.
- f. The group of all equipment, except compressors, within a process unit is an affected facility.
 - Addition or replacement of equipment for the purpose of process improvement that is accomplished without a capital expenditure shall not by itself be considered a modification under this subpart.
 - Equipment associated with a compressor station, dehydration unit, sweetening unit, underground storage vessel, field gas gathering system, or liquefied natural gas unit is covered by §§60.5400a, 60.5401a, 60.5402a, 60.5421a and 60.5422a of this subpart if it is located at an onshore natural gas processing plant. Equipment not located at the onshore natural gas processing plant site is exempt from the provisions of §§60.5400a, 60.5401a, 60.5402a, 60.5421a and 60.5422a of this subpart.
 - The equipment within a process unit of an affected facility located at onshore natural gas processing plants and described in paragraph (f) of this section are exempt from this subpart if they are subject to and controlled according to subparts VVa, GGG or GGGa of this part.

The Tamela Compressor Station is not a natural gas processing plant. Therefore, Leak Detection and Repair (LDAR) requirements for onshore natural gas processing plants would not apply.

- g. Sweetening units located at onshore natural gas processing plants that process natural gas produced from either onshore or offshore wells.
 - Each sweetening unit that processes natural gas is an affected facility; and
 - Each sweetening unit that processes natural gas followed by a sulfur recovery unit is an affected facility.
 - Facilities that have a design capacity less than 2 long tons per day (LT/D) of hydrogen sulfide (H₂S) in the acid gas (expressed as sulfur) are required to comply with recordkeeping and reporting requirements specified in

§60.5423a(c) but are not required to comply with §60.5405a through 60.5407a and paragraphs 60.5410a(g) and 60.5415a(g) of this subpart.

• Sweetening facilities producing acid gas that is completely reinjected into oil-or-gas-bearing geologic strata or that is otherwise not released to the atmosphere are not subject to §§60.5405a through 60.5407a, 60.5410a(g), 60.5415a(g), and 60.5423a of this subpart.

There are no sweetening units at the Tamela Compressor Station. Therefore, all requirements regarding sweetening units under 40 CFR 60 Subpart OOOOa would not apply.

h. Pneumatic Pumps

The pneumatic pump requirements apply only to natural gas processing facilities and well sites. Therefore, all requirements regarding pneumatic pumps under 40 CFR 60 Subpart OOOOa would not apply to the Tamela Compressor Station.

i. Collection of fugitive emission components.

The rule requires quarterly leak monitoring at natural gas compressor stations. In addition to optical gas imaging (OGI), the rule allows owners/operators to use Method 21 with a repair threshold of 500 ppm as an alternative for finding and repairing leaks. Method 21 is an EPA method for determining VOC emissions from process equipment. The method utilizes a portable VOC monitoring instrument.

40CFR63 Subpart HH (National Emission Standards for Hazardous Air Pollutants for Oil and Natural Gas Production Facilities)

Subpart HH establishes national emission limitations and operating limitations for HAPs emitted from oil and natural gas production facilities located at major and area sources of HAP emissions. The glycol dehydration units at the Tamela Compressor Station are subject to the area source requirements for glycol dehydration units. However, because the facility is an area source of HAP emissions and the actual average benzene emissions from the glycol dehydration units are below 0.90 megagram per year (1.0 tons/year) it is exempt from all requirements of Subpart HH except to maintain records of actual average flowrate of natural gas to demonstrate a continuous exemption status.

The following rules do not apply to the facility:

45CSR14 (Permits for Construction and Major Modification of Major Stationary Sources of Air Pollutants)

45CSR19 (Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution which Cause or Contribute to Nonattainment)

The Tamela Compressor Station is located in Doddridge County, which is an unclassified county for all criteria pollutants, therefore the Tamela Compressor Station is not applicable to 45CSR19.

As shown in the following table, Antero is not a major source subject to 45CSR14 or 45CSR19 review. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, the fugitive emissions are not included in the PTE below.

Pollutant	PSD (45CSR14) Threshold (tpy)	NANSR (45CSR19) Threshold (tpy)	Tamela PTE (tpy)	45CSR14 or 45CSR19 Review Required?
Carbon Monoxide	250	NA	78.47	No
Nitrogen Oxides	250	NA	75.35	No
Sulfur Dioxide	250	NA	0.54	No
Particulate Matter 2.5	250	NA	15.62	No
Ozone (VOC)	250	NA	69.81	No

45CSR30 (Requirements for Operating Permits)

Antero is not subject to 45CSR30. The Tamela Compressor Station is subject to 40CFR60 Subparts JJJJ and OOOO, however they are exempt from the obligation to obtain a permit under 40 CFR part 70 or 40 CFR part 71, provided they are not required to obtain a permit for a reason other than their status as an area source.

40CFR60 Subpart Kb (Standards of Performance for VOC Liquid Storage Vessels)

40CFR60 Subpart Kb does not apply to storage vessels with a capacity less than 75 cubic meters. The largest tanks that Antero has proposed to install are 63.60 cubic meters each. Therefore, Antero would not be subject to this rule.

40CFR60 Subpart KKK (Standards of Performance for Equipment Leaks of VOC from Onshore Natural Gas Processing Plants)

40CFR60 Subpart KKK applies to onshore natural gas processing plants that commenced construction after January 20, 1984, and on or Before August 23, 2011. The Tamela Compressor Station is not a natural gas processing facility, therefore, Antero is not subject to this rule.

40CFR60 Subpart KKKK (Standards of Performance for Stationary Combustion Turbines)

40CFR60 Subpart KKKK does not apply because there are no stationary combustion turbines at the facility with a heat input at peak load equal to or greater than 10 MMBTU/hr, based on the higher heating value of the fuel (§60.4305).

TOXICITY OF NON-CRITERIA REGULATED POLLUTANTS

The majority of non-criteria regulated pollutants fall under the definition of HAPs which, with some revision since, were 188 compounds identified under Section 112(b) of the Clean Air Act (CAA) as pollutants or groups of pollutants that EPA knows or suspects may cause cancer or other serious human health effects. The Tamela Compressor Station is classified as an area source of hazardous air pollutants. Listed below is a description of the primary hazardous air pollutants for this facility.

Acetaldehyde

Acetaldehyde is mainly used as an intermediate in the synthesis of other chemicals. It is common in the environment and may be formed in the body from the breakdown of ethanol. Acute (short-term) exposure to acetaldehyde results in effects including irritation of the eyes, skin, and respiratory tract. Symptoms of chronic (long-term) intoxication of acetaldehyde resemble those of alcoholism. Acetaldehyde is considered a probable human carcinogen (Group B2) based on human cancer studies and animal studies that have shown nasal tumors in rats and laryngeal tumors in hamsters.

Acrolein

Acrolein is primarily used as an intermediate in the synthesis of acrylic acid and as a biocide. It may be formed from the breakdown of certain pollutants in outdoor air or from the burning of organic matter including tobacco, or fuels such as gasoline or oil. It is toxic to humans following inhalation, oral or dermal exposures. Acute (short-term) inhalation exposure may result in upper respiratory tract irritation and congestion. No information is available on its reproductive, developmental, or carcinogenic effects in humans, and the existing animal cancer data are considered inadequate to make a determination that acrolein is carcinogenic to humans.

Benzene

Benzene is found in the air from emissions from burning coal and oil, gasoline service stations, and motor vehicle exhaust. Acute (short-term) inhalation exposure of humans to benzene may cause drowsiness, dizziness, headaches, as well as eye, skin, and respiratory tract irritation, and, at high levels, unconsciousness. Chronic (long-term) inhalation exposure has caused various disorders in the blood, including reduced numbers of red blood cells and aplastic anemia, in occupational settings. Reproductive effects have been reported for women exposed by inhalation to high levels, and adverse effects on the developing fetus have been observed in animal tests. Increased incidence of leukemia (cancer of the tissues that form white blood cells) have been observed in humans occupationally exposed to benzene. EPA has classified benzene as a Group A, human carcinogen.

Formaldehyde

Formaldehyde is used mainly to produce resins used in particle board products and as an intermediate in the synthesis of other chemicals. Exposure to formaldehyde may occur by breathing contaminated indoor air, tobacco smoke, or ambient urban air. Acute (short-term) and chronic (long-term) inhalation exposure to formaldehyde in humans can result in respiratory symptoms, and eye, nose, and throat irritation. Limited human studies have reported an association between formaldehyde exposure and lung and nasopharyngeal cancer. Animal inhalation studies have reported an increased incidence of nasal squamous cell cancer. EPA considers formaldehyde a probable human carcinogen (Group B1).

Methanol

Methanol is released to the environment during industrial uses and naturally from volcanic gases, vegetation, and microbes. Exposure may occur from ambient air and during the use of solvents. Acute (short-term) or chronic (long-term) exposure of humans to methanol by inhalation or ingestion may result in blurred vision, headache, dizziness, and nausea. No information is available on the reproductive, developmental, or carcinogenic effects of methanol in humans. Birth defects have been observed in the offspring of rats and mice exposed to methanol by inhalation. EPA has not classified methanol with respect to carcinogenicity.

Methanol is primarily used as an industrial solvent for inks, resins, adhesives, and dyes. It is also used as a solvent in the manufacture of cholesterol, streptomycin, vitamins, hormones, and other pharmaceuticals. Methanol is also used as an antifreeze for automotive radiators, an ingredient of gasoline (as an antifreezing agent and octane booster), and as fuel for picnic stoves. Methanol is also an ingredient in paint and varnish removers. Methanol is also used as an alternative motor fuel.

All HAPs have other non-carcinogenic chronic and acute effects. These adverse health effects may be associated with a wide range of ambient concentrations and exposure times and are influenced by source-specific characteristics such as emission rates and local meteorological conditions. Health impacts are also dependent on multiple factors that affect variability in humans such as genetics, age, health status (e.g., the presence of pre-existing disease) and lifestyle. As stated previously, there are no federal or state ambient air quality standards for these specific chemicals. For a complete discussion of the known health effects of each compound refer to the IRIS database located at www.epa.gov/iris.

AIR QUALITY IMPACT ANALYSIS

Modeling was not required of this source due to the fact that the facility is not subject to 45CSR14 (Permits for Construction and Major Modification of Major Stationary Sources of Air Pollutants) as seen in the table listed in the Regulatory Discussion Section.

SOURCE AGGREGATION

"Building, structure, facility, or installation" is defined as all the pollutant emitting activities which belong to the same industrial grouping, are located on one or more contiguous and adjacent properties, and are under the control of the same person.

The Source Determination Rule for the oil and gas industry was published in the Federal Register on June 3, 2016 and became effective on August 2, 2016. EPA defined the term "adjacent" and stated that equipment and activities in the oil and gas sector that are under common control will be considered part of the same source if they are located on the same site or on sites that share equipment and are within ¼ mile of each other.

The Tamela Compressor Station will operate under SIC code 4923 (Natural Gas Distribution). There are other compressor stations operated by Antero that share the same two-digit major SIC code of 49 for natural gas distribution. However, this compressor station is not located on "contiguous or adjacent" property.

Because there are no facilities that are under common control, located on contiguous or adjacent properties and operating under the same standard industrial classification code, the emissions from the Tamela Compressor Station should not be aggregated with other facilities in determining major source or PSD status.

MONITORING OF OPERATIONS

Antero will be required to perform the following monitoring:

- Monitor and record quantity of natural gas consumed for all engines and combustion sources
- Monitor all applicable requirements of 40CFR60 Subparts JJJJ and OOOOa and 40CFR63 Subpart HH.
- Monitor the presence of the flare pilot flame with a thermocouple or equivalent.

Antero will be required to perform the following recordkeeping:

- Maintain records of the amount of natural gas consumed and hours of operation for all engines and combustion sources.
- Maintain records of testing conducted in accordance with the permit. Said records shall be maintained on-site or in a readily accessible off-site location
- Maintain the corresponding records specified by the on-going monitoring requirements of and testing requirements of the permit.
- Maintain records of the visible emission opacity tests conducted per the permit.
- Maintain a record of all potential to emit (PTE) HAP calculations for the entire facility.
 These records shall include the natural gas compressor engines and ancillary equipment.
- Maintain records of all applicable requirements of 40CFR60 Subparts JJJJ and OOOOa and 40CFR63 Subpart HH.
- Maintain records of the flare design evaluation.

• The records shall be maintained on site or in a readily available off-site location maintained by Antero for a period of five (5) years.

CHANGES TO PERMIT R13-3216A

- Section 1.0 (Emission Units) Changed installation dates of equipment, increased throughput to glycol dehydration units and added fuel conditioning heater
- Section 1.1 (Control Devices) Increased throughput to glycol dehydration units
- Deleted permit condition 4.1.7 which pertained to fugitive emissions and replaced it with Section 12.0 which establishes leak detection and repair for fugitive emissions (40CFR60 Subpart OOOOa)
- Section 7.0 Added requirements for fuel conditioning heater
- Section 11.0 Changed the applicability of the compressors from 40CFR60 Subpart OOOO to 40CFR60 Subpart OOOOa
- Section 14.0 New section which establishes requirements for blowdown and pigging operations

RECOMMENDATION TO DIRECTOR

The information provided in the permit application indicates that Antero meets all the requirements of applicable regulations. Therefore, it is recommended the Tamela Compressor Station should be granted a 45CSR13 modification permit for their facility.

Jerry Williams, P.E.	
Engineer	