Attachment M
Air Pollution Control Device Sheet
(OTHER COLLECTORS)

Control Device ID No. (must match Emission Units Table):

Equipment Information

1. Manufacturer:
 Model No.:

2. Control Device Name:
 Type:

3. Provide diagram(s) of unit describing capture system with duct arrangement and size of duct, air volume, capacity, horsepower of movers. If applicable, state hood face velocity and hood collection efficiency.

4. On a separate sheet(s) supply all data and calculations used in selecting or designing this collection device.

5. Provide a scale diagram of the control device showing internal construction.

6. Submit a schematic and diagram with dimensions and flow rates.

7. Guaranteed minimum collection efficiency for each pollutant collected:

8. Attached efficiency curve and/or other efficiency information.

9. Design inlet volume: SCFM
 10. Capacity:

11. Indicate the liquid flow rate and describe equipment provided to measure pressure drop and flow rate, if any.

12. Attach any additional data including auxiliary equipment and operation details to thoroughly evaluate the control equipment.

13. Description of method of handling the collected material(s) for reuse or disposal.

Gas Stream Characteristics

14. Are halogenated organics present?
 Are particulates present?
 Are metals present?
 Yes
 No

15. Inlet Emission stream parameters:
 Pressure (mmHg):
 Heat Content (BTU/scf):
 Oxygen Content (%):
 Moisture Content (%):
 Relative Humidity (%):

 Maximum
 Typical
16. Type of pollutant(s) controlled: □ SO\textsubscript{x} □ Odor □ Particulate (type): □ Other

17. Inlet gas velocity: ft/sec

18. Pollutant specific gravity:

19. Gas flow into the collector:
 ACF @ °F and PSIA

20. Gas stream temperature:
 Inlet: °F
 Outlet: °F

21. Gas flow rate:
 Design Maximum: ACFM
 Average Expected: ACFM

22. Particulate Grain Loading in grains/scf:
 Inlet:
 Outlet:

23. Emission rate of each pollutant (specify) into and out of collector:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>IN Pollutant</th>
<th>Emission Capture Efficiency %</th>
<th>OUT Pollutant</th>
<th>Control Efficiency %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lb/hr</td>
<td>grains/acf</td>
<td></td>
<td>lb/hr</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

25. Supply a curve showing proposed collection efficiency versus gas volume from 25 to 130 percent of design rating of collector.

26. Complete the table:

<table>
<thead>
<tr>
<th>Particulate Size Range (microns)</th>
<th>Weight % for Size Range</th>
<th>Particle Size Distribution at Inlet to Collector</th>
<th>Fraction Efficiency of Collector</th>
<th>Weight % for Size Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 – 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 – 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 – 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 – 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 – 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 – 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 – 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 – 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 – 40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 – 50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 – 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 – 70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70 – 80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80 – 90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90 – 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
27. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification):

28. Describe the collection material disposal system:

29. Have you included Other Collectores Control Device in the Emissions Points Data Summary Sheet?

30. **Proposed Monitoring, Recordkeeping, Reporting, and Testing**

 Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

 MONITORING:

 RECORDKEEPING:

 REPORTING:

 TESTING:

 MONITORING: Please list and describe the process parameters and ranges that are proposed to be monitored in order to demonstrate compliance with the operation of this process equipment or air control device.

 RECORDKEEPING: Please describe the proposed recordkeeping that will accompany the monitoring.

 REPORTING: Please describe any proposed emissions testing for this process equipment on air pollution control device.

 TESTING: Please describe any proposed emissions testing for this process equipment on air pollution control device.

31. Manufacturer’s Guaranteed Control Efficiency for each air pollutant.

32. Manufacturer’s Guaranteed Control Efficiency for each air pollutant.

33. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.