. .

TITLE V PERMIT RENEWAL APPLICATION Guardian Fiberglass, Inc. > Inwood

Permit No. R30-00300012-2008

TRINITY CONSULTANTS

4500 Brooktree Dr, Suite 103 Wexford, PA 15090 (724) 935-2611

March 2013

Project 133901.0020

Environmental solutions delivered uncommonly well

TABLE OF CONTENTS

1. INTRODUCTION	1-1
1.1. Facility Description	
1.1.1. Combustion Sources	
1.1.2. Fugitive Sources	
1.1.3. Storage Tanks	
1.1.4. Melt Tank	
1.1.5. Miscellaneous Sources	
1.2. Facility Changes	
1.3. Title V Renewal Application Organization	
2. REGULATORY APPLICABILITY	2-1
2.1. Prevention of Significant Deterioration (PSD) Source Classification	
2.2. Title V Operating Permit Program	
2.3. New Source Performance Standards	
2.3.1. NSPS Subparts K, Ka, and Kb	
2.3.2. NSPS Subpart CC –Glass Manufacturing Plants	
2.3.3. NSPS Subpart IIII – Stationary Compression Ignition Internal Combustion Engines	
2.3.4. NSPS Subpart JJJJ – Stationary Spark Ignition Internal Combustion Engines	
2.3.5. NSPS Subpart PPP – Wool Fiberglass Insulation Manufacturing Plants	
2.3.6. Non-Applicability of All Other NSPS	
2.4. National Emission Standards For Hazardous Air Pollutants (NESHAP)	
2.4.1. 40 CFR 61 Subpart N –Inorganic Arsenic Emissions From Glass Manufacturing Plan	
2.4.2. 40 CFR 63 Subpart Q –Industrial Process Cooling Towers	
2.4.3. 40 CFR 63 Subpart NNN – Hazardous Air Pollutants for Wool Fiberglass Manufactur	
2.4.4. 40 CFR 63 Subpart HHHH -Hazardous Air Pollutants for Wet-Formed Fiberglass Mo	
2.4.5. 40 CFR 63 Subpart ZZZZ – Stationary Reciprocating Internal Combustion Engines	
2.4.6. 40 CFR 63 Subpart DDDDD – Industrial, Commercial, and Institutional Boilers and I 4	rocess Heaters2-
2.5. Compliance Assurance Monitoring	
2.6. West Virginia SIP Regulations	
2.6.1. 45 CSR 2: To Prevent and Control Particulate Air Pollution From Combustion of Fue	l in Indirect Heat
Exchangers	
2.6.2. 45 CSR 4: To Prevent and Control the Discharge of Air Pollutants into the Air Which	
Contributes to an Objectionable Odor	
2.6.3. 45 CSR 7: To Prevent and Control Particulate Matter Emissions from Manufacturing	,
2.6.4. 45 CSR 10: To Prevent and Control Air Pollution from the Emission of Sulfur Oxides.	
2.6.5. 45 CSR 17: To Prevent and Control Particulate Matter Air Pollution From Materials	0
Preparation, Storage and Other Sources of Fugitive Particulate Matter	
2.6.6. 45 CSR 27: To Prevent and Control Emissions of Toxic Air Pollutants	
2.6.7. 45 CSR 30: Requirements for Operating Permits	2-5
3. SAMPLE EMISSION SOURCE CALCULATIONS	3-1
3.1. Combustion Sources	
3.2. Fiberglass Production Process	
3.3. Fugitive Sources	
3.4. Storage Bins & Tanks	
3.5. Miscellanous Sources	

3.6. Greenhouse Gas (GHG) Emissions	
4. WVDEP APPLICATION FORMS	4-1
APPENDIX A: AREA MAP	А
APPENDIX B: PLOT PLAN	В
APPENDIX C: PROCESS FLOW DIAGRAM	C
APPENDIX D: WVDEP TITLE V EQUIPMENT TABLE	D
APPENDIX E: WVDEP EMISSION UNIT FORMS	E
APPENDIX F: SCHEDULE OF COMPLIANCE	F
APPENDIX G: WVDEP CONTROL DEVICE FORMS	G
APPENDIX H: COMPLIANCE ASSURANCE MONITORING PLAN	н
APPENDIX I: SITE-WIDE EMISSION CALCULATIONS	l. I

Guardian Fiberglass's Inwood Facility (Guardian) manufactures fiberglass roll and batt insulation in Inwood, West Virginia. This facility currently operates in accordance with West Virginia Depart of Environmental Protection (WVDEP) Division of Air Quality Title V operating permit R30-00300012-2008, last issued October 1, 2008.

The current Title V permit expires October 1, 2013. Guardian is submitting this timely and complete permit renewal application by the renewal submission deadline of April 1, 2013 (i.e., six months before the expiration of the current permit) in accordance with Series 30, Section 4.1.a.3 of the WVDEP Division of Air Quality (DAQ) Code of State Rules (C.S.R.) §45-30-4.1.a.3. Presuming WVDEP finds this application administratively complete, Guardian may continue to operate the Inwood facility under the terms of the existing Title V permit until the renewed permit is issued, even if this issuance would occur after the current permit's expiration date.

1.1. FACILITY DESCRIPTION

Guardian's Inwood facility is a wool fiberglass manufacturing facility covered under Standard Industrial Classification (SIC) Code 3296. The facility has the potential to operate 24 hours per day, 7 days per week. The facility consists of a raw materials receiving area and batch mixing point, electric melters, a series of natural gas fueled heaters, resin sprayers, curing ovens, and storage tanks. An area map and a plot plan of the facility is included as Appendix A and B, respectively.

The Inwood facility can produce two insulation types, a resinated product or a nonresinated product. The facility receives raw materials that are mixed into batch and the batch is then melted to form glass. The molten glass is separated into streams by use of a Forehearth and fiber is spun into strands by the means of fiberizers. In resinated fiberglass production, the fibers are collected to form a blanket, sprayed with a binder resin, and then cured in a three-zone oven. Upon exiting the curing oven the blanket is cooled via "cooling table". The cooled blanket is then cut to size in rolls and batts of insulation per customer demand. The nonresinated product is collected into a blanket and cut to size.

A description of each source is included below. Process flow diagrams are included in Appendix C.

1.1.1. Combustion Sources

There are numerous combustion sources at the site. A series of natural gas fueled heaters run in the forming area of the facility. These heaters are involved in keeping the glass flowing until it reaches the final step of formation. In the curing area there is a natural gas fueled oven. There are several natural gas fueled binder water heaters and several make-up air heaters. Additional combustion sources are the diesel-powered emergency generators and a fire pump engine.

1.1.2. Fugitive Sources

The fugitive sources at the Inwood facility include cooling towers, dust from roadways, resin binder wax, drift and off-gassing from sprayed adhesive and printing, and dust from raw materials handling and storage. The baghouse is responsible for controlling the emissions generated from raw materials handling and storage.

1.1.3. Storage Tanks

The tanks used the Inwood facility are mainly small tanks used for holding liquids associated with the resin portion of the process. The resin process involves formaldehyde, phenol, and methanol. Additional tanks are used for adhesive and printing liquids. Guardian has included all approved storage tanks in the application.

1.1.4. Melt Tank

The melt tank is an electric-powered steady-level melting tank for producing spun glass. While there are no combustion emissions associated with the melter, emissions are generated due to its nature of being a large and sustained high-temperature thermal source.

1.1.5. Miscellaneous Sources

The Inwood facility contains online and offline laminators. Emissions from these operations are insignificant as the VOC content in the laminate adhesive is negligible.

1.2. FACILITY CHANGES

There have been several minor changes since the most recent Title V permit was issued. These include:

- > An additional spinner has been added to Line 1 (ES13A). This additional spinner does not increase the maximum throughput of 8,000 lbs/hr for the line.
- There have been minor control device changes to the cold end of the facility, where the fiberglass product is collected, cut, and packaged. Units that were designed to be routed to a scrubber are now routed to a cyclone and screen room.
- > The natural gas boiler (ESSHB14) has been removed from service.

Note that Guardian has included condensable particulate matter emissions in this application. However, compliance is demonstrated using EPA Method 5, per Condition 3.3.8 of the current Title V permit. The most recent compliance testing demonstrated compliance with the PM emission limitations.

1.3. TITLE V RENEWAL APPLICATION ORGANIZATION

This Title V permit renewal application is organized as follows:

- > Section 2 contains an overview of regulatory applicability for the Inwood Facility;
- Section 3 contains sample emission source calculations;
- > Section 4 contains the required WVDEP application forms;
- > Attachment A contains an area map;
- > Attachment B contains a plot plan;
- > Attachment C contains a process flow diagram;
- > Attachment D contains the WVDEP Title V equipment table;
- > Attachment E contains a WVDEP emission unit form for each emission unit at the Inwood Facility; and
- > Attachment I contains site-wide emission calculations.

This section documents the applicability determinations made for Federal and State air quality regulations. Regulations potentially applicable to Guardian are detailed in the *"Applicable Requirements"* sections of forms provided by the WVDEP contained in Section 4 of this report.

Additional details on applicability for several regulations are presented in this section. Specifically, the remainder of this section summarizes the air permitting requirements and key air quality regulations that apply to the operation of the Inwood facility. This review is presented to supplement and/or add clarification to the information provided in the WVDEP Title V application forms, which fulfill the requirement to include citations and descriptions of applicable statutory and administrative code requirements.

In addition to providing a summary of applicable requirements, this section of the application also provides nonapplicability determinations for certain regulations, allowing the WVDEP to confirm that identified regulations are not applicable to the Inwood facility. Note that explanations of non-applicability are limited to those regulations for which there may be some question of applicability specific to the operations at the Inwood facility. Regulations that are categorically non-applicable are not discussed (e.g., NSPS Subpart J, *Standards of Performance for Petroleum Refineries*).

2.1. PREVENTION OF SIGNIFICANT DETERIORATION (PSD) SOURCE CLASSIFICATION

Federal construction permitting programs regulate new sources of attainment pollutants under Prevention of Significant Deterioration (PSD) and new sources of non-attainment pollutants under Non-Attainment New Source Review (NNSR). PSD and NNSR regulations apply when a major source makes a change, such as installing new equipment or modifying existing equipment, and a significant increase in emissions results from the change. The Inwood facility is located in Berkeley County, which is classified as attainment for all pollutants, except fine particulate (PM_{2.5}). Therefore, NNSR is potentially applicable only with respect to PM_{2.5}. The Inwood facility is a major source with respect to the PSD program. Because the Title V permit renewal process is not intended to accommodate any changes or modifications to the facility that are not currently permitted at the facility, NNSR/PSD permitting is not triggered by this activity but could be by future activities at the site.

2.2. TITLE V OPERATING PERMIT PROGRAM

Title 40 of the Code of Federal Regulations Part 70 (40 CFR 70) establishes the federal Title V operating permit program. West Virginia has incorporated the provisions of this federal program in its Title V operating permit program in CSR 45-30. The major source thresholds with respect to the West Virginia Title V operating permit program regulations are 10 tons per year (tpy) of a single HAP, 25 tpy of any combination of HAP, 100,000 tpy of greenhouse gases (as carbon dioxide equivalents [CO₂e]), and 100 tpy of other regulated pollutants. The potential emissions of at least one regulated pollutant exceed the corresponding threshold(s) at this facility. Therefore, the Inwood facility is classified as a major source for Title V purposes. The Inwood facility currently operates under Title V operating permit No. R30-00300012-2008. This renewal application is being submitted to meet the requirements of the Title V program.

2.3. NEW SOURCE PERFORMANCE STANDARDS

New Source Performance Standards (NSPS), located in 40 CFR 60, require new, modified, or reconstructed sources to control emissions to the level achievable by the best demonstrated technology as specified in the applicable provisions. Moreover, any source subject to an NSPS is also subject to the general provisions of NSPS

Subpart A, except where expressly noted. The following is a summary of applicability and non-applicability determinations for NSPS regulations of relevance to the Inwood facility.

2.3.1. NSPS Subparts K, Ka, and Kb

These subparts apply to storage tanks of certain sizes constructed, reconstructed, or modified during various time periods. Subpart K applies to storage tanks constructed, reconstructed, or modified prior to 1978, and Subpart Ka applies to those constructed, reconstructed, or modified prior to 1984. Both Subparts K and Ka apply to storage tanks with a capacity greater than 40,000 gallons. Subpart Kb applies to volatile organic liquid (VOL) storage tanks constructed, reconstructed, or modified after July 23, 1984 with a capacity equal to or greater than 75 m³ (~19,813 gallons). All storage tanks at the Inwood facility have a capacity less than 75 m³. Therefore, Subparts K, Ka, and Kb do not apply to the storage tanks at the Inwood facility.

2.3.2. NSPS Subpart CC -Glass Manufacturing Plants

These subparts apply to glass melting furnaces constructed after June 15, 1979. This subpart does not apply to furnaces that produce less than 4.55 Mg (5 tons) of glass per day and all-electric melters. An all-electric melter is a melting furnace in which all of the heat is provided by electric current, although some fossil fuel may be charged to the furnace as raw material only. The furnaces at the Inwood facility qualifies as all-electric melters and therefore Subpart CC does not apply.

2.3.3. NSPS Subpart IIII - Stationary Compression Ignition Internal Combustion Engines

This Subpart applies to manufacturers, owners, and operators of stationary compression ignition internal combustion engines (ICE) that have been constructed, reconstructed, or modified after various dates, the earliest of which is July 11, 2005. All three diesel fired engines at the facility were in use on site prior to 2004. Therefore, NSPS Subpart IIII does not apply to the ICE at the Inwood facility.

2.3.4. NSPS Subpart JJJJ - Stationary Spark Ignition Internal Combustion Engines

This subpart applies to manufacturers, owners, and operators of stationary spark ignition internal combustion engines (ICE) that have been constructed, reconstructed, or modified after various dates, the earliest of which is June 12, 2006. All of the engines at the Inwood facility, including emergency generators, are compression ignition IC engines, and therefore the requirements of this subpart do not apply.

2.3.5. NSPS Subpart PPP - Wool Fiberglass Insulation Manufacturing Plants

This subpart applies to each rotary spin wool fiberglass insulation manufacturing line constructed, modified, or reconstructed after February 7, 1984. Subpart PPP applies to the Inwood facility. Subpart PPP sets a particulate matter standard of 11.0 lbs/ton glass pulled. Facilities comply with the mass emission rate via monitoring operations and using control devices. Subpart PPP prescribes recordkeeping and reporting activities associated with maintaining the elected control device. The Inwood facility is currently in compliance with Subpart PPP, as incorporated into the current Title V permit.

2.3.6. Non-Applicability of All Other NSPS

NSPS are developed for particular industrial source categories. Other than NSPS developed for glass manufacturing plants (Subparts CC) and associated equipment (Subparts K-Kb), the applicability of a particular NSPS to the Inwood facility can be readily ascertained based on the industrial source category covered. All other NSPS are categorically not applicable to wool fiberglass insulation manufacturing facilities.

2.4. NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS (NESHAP)

40 CFR Part 61 NESHAP standards are defined for specific pollutants while Part 63 NESHAP are for Source Categories where allowable emission limits are established on the basis of a Maximum Achievable Control Technology (MACT) determination for a particular major source. A major source of HAP is defined as having potential emissions in excess of 25 tpy for total HAP and/or potential emissions in excess of 10 tpy for any individual HAP. Part 63 NESHAP apply to sources in specifically regulated industrial source categories (CAA Section 112(d)) or on a case-by-case basis (Section 112(g)) for facilities not regulated as a specific industrial source type. The Inwood facility is classified as a major source of HAP.

Besides 40 CFR 63 Subpart A (NESHAP Subpart A), which is similar to 40 CFR 60 Subpart A (NSPS Subpart A), the following NESHAP could potentially apply to the Inwood facility:

- > 40 CFR Part 61 Subpart N –Inorganic Arsenic Emissions From Glass Manufacturing Plants
- > 40 CFR Part 63 Subpart Q –Industrial Process Cooling Towers
- > 40 CFR Part 63 Subpart NNN –Hazardous Air Pollutants for Wool Fiberglass Manufacturing
- > 40 CFR Part 63 Subpart HHHH Hazardous Air Pollutants for Wet-Formed Fiberglass Mat Production
- > 40 CFR Part 63 Subpart ZZZZ Stationary Reciprocating Internal Combustion Engines (RICE)
- 40 CFR Part 63 Subpart DDDDD Major Source Industrial, Commercial, and Institutional Boilers and Process Heaters

The applicability of these NESHAP Subparts is discussed in the following sections.

2.4.1. 40 CFR 61 Subpart N -Inorganic Arsenic Emissions From Glass Manufacturing Plants

This NESHAP applies to glass melting furnaces that use commercial arsenic as a raw material. Since the Inwood facility does not use any arsenic as a raw material this subpart does not apply.

2.4.2. 40 CFR 63 Subpart Q -Industrial Process Cooling Towers

This NESHAP applies to industrial process cooling towers that remove heat from any chemical or industrial process as well as any combination of heating, ventilation, or cooling systems that uses chromium in the recirculating water as part of the system's water treatment. This requirement does not apply to the Inwood facility. If at any time Guardian become applicable to this requirement the proper notifications will be performed and records kept.

2.4.3. 40 CFR 63 Subpart NNN -Hazardous Air Pollutants for Wool Fiberglass Manufacturing

This NESHAP applies to equipment located at wool fiberglass manufacturing facilities, as defined as manufacturing wool fiberglass on a rotary spin manufacturing line or on a flame attenuation manufacturing line.

Guardian is subject to and in compliance with the emission limits, work practices, monitoring, recordkeeping, and reporting prescribed in Subpart NNN, as incorporated into the current Title V permit.

2.4.4. 40 CFR 63 Subpart HHHH - Hazardous Air Pollutants for Wet-Formed Fiberglass Mat Production

This NESHAP applies to drying and curing ovens at wet-formed fiberglass mat production facilities. Guardian's Inwood facility is a wool-fiberglass production facility that produces insulation whereas the wet-formed

fiberglass is a material used in the manufacture of asphalt roofing products (shingles and rolls). Therefore, Subpart HHHH does not apply to the Inwood facility.

2.4.5. 40 CFR 63 Subpart ZZZZ - Stationary Reciprocating Internal Combustion Engines

This NESHAP applies to stationary reciprocating combustion engines (RICE) at major and minor sources. The engines are classified as 4-stroke compression-ignition emergency units. The emergency engines are rated at greater than 500 horsepower (hp), with the fire engine is rated at less than 500 hp. The engines must meet the definition of emergency in §63.6675, which includes references to §63.6640(f).

The newest backup generator (ESDG13) is classified as a new emergency unit and, therefore, is only subject to initial notification requirements. The existing units, (ESDG12 and ESFW11) are classified as existing units. The generator is not subject to any RICE requirements, while the fire pump is subject to the requirements of Subpart ZZZZ. Per 40 CFR §63.6625(h), Guardian will minimize the fire pump engine's time spent at idle and minimize the engine's startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes. Additionally, Guardian is required to comply with the requirements in Table 2c of Subpart ZZZZ, which include changing the oil filter, air cleaner, and belts and hoses on a periodic basis. The compliance date for the fire pump is May 3, 2013.

2.4.6. 40 CFR 63 Subpart DDDDD - Industrial, Commercial, and Institutional Boilers and Process Heaters

This MACT standard applies to industrial, commercial, and institutional boilers and process heaters of various sizes and fuel types at major sources of HAP emissions. Guardian's Inwood facility is considered a major source for HAP. The recently finalized rule, effective April 1, 2013, includes exemptions for hot water heaters, which includes units heating water (not steam), rated at less than 1.6 MMbtu/hr. The water heaters (ESWH15) at the Inwood facility qualify for this exemption. The air makeup units are used to heat the manufacturing building and not used for process heat or steam and, therefore, are not subject to Subpart DDDDD. Based on these exemptions, there are no units at the Inwood facility subject to Subpart DDDDD.

2.5. COMPLIANCE ASSURANCE MONITORING

Under 40 CFR 64, the Compliance Assurance Monitoring (CAM) regulations, facilities are required to prepare and submit monitoring plans for certain emissions units with the initial or renewal Title V operating permit application. CAM Plans are intended to provide an on-going and reasonable assurance of compliance with emission limits for sources that utilize active control devices where existing Title V permit requirements may not be considered sufficient. CAM plans are required to be submitted in the initial Title V permit renewal, unless significant modifications have occurred at the facility. CAM applicability was addressed in the last renewal and applicability is addressed in the current Title V permit. As no significant modifications, as defined in Part 64, have occurred, CAM applicability has not changed.

2.6. WEST VIRGINIA SIP REGULATIONS

Guardian's Inwood facility is currently permitted under the regulations contained in West Virginia's Title 45 Legislative Rule Department of Environmental Protection Office of Air Quality (WVDEP regulations). A federal operating permit must be issued by the agency upon determination that the facility can reasonably be expected to comply with the WVDEP regulations and all applicable federal requirements. This section of the application highlights applicability of specific West Virginia State Implementation Plan (SIP) regulations that may apply to the Inwood facility.

2.6.1. 45 CSR 2: To Prevent and Control Particulate Air Pollution From Combustion of Fuel in Indirect Heat Exchangers

Compliance with this requirement shall be determined in keeping with 40 CFR Part 60, Appendix A, Method 9 or by using approved measurements from continuous opacity monitoring systems. Visible emissions are not expected since only natural gas is combusted in the applicable units, and emissions from sources that burn natural gas have low variability. Therefore, fuel recordkeeping will be adequate to demonstrate compliance. In addition, since the combustion units have maximum design heat inputs less than 10 MMBtu/hr, the units are exempted from the requirements of sections 4 through 6, 8 and 9 as specified in Section 11.

2.6.2. 45 CSR 4: To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contributes to an Objectionable Odor

The Inwood facility is subject to this requirement. In accordance with the Title V permit, Guardian maintains appropriate records and takes appropriate response measures of all odor complaints.

2.6.3. 45 CSR 7: To Prevent and Control Particulate Matter Emissions from Manufacturing Processes

The Inwood facility is generally subject to these requirements, which include particulate matter and opacity limitations for manufacturing operations, based on process weight rate. Except where more stringent, these limits are incorporated into the current Title V permit.

2.6.4. 45 CSR 10: To Prevent and Control Air Pollution from the Emission of Sulfur Oxides

This regulation is potentially applicable to the heaters at the Inwood facility as they produce heat or power by indirect heat transfer and are, by definition, "fuel burning units." However, the units are below the 10MMBtu/hr exemption per 45 CSR 10 Section 10.1. Additionally, the engines are not subject to this regulation as identified in the current Title V permit.

2.6.5. 45 CSR 17: To Prevent and Control Particulate Matter Air Pollution From Materials Handling, Preparation, Storage and Other Sources of Fugitive Particulate Matter

In accordance with the Title V permit, the Inwood facility will take appropriate response measures to control emissions of fugitive particulate matter.

2.6.6. 45 CSR 27: To Prevent and Control Emissions of Toxic Air Pollutants

The storage tanks at the Inwood facility are potentially subject to this regulation. Given the low level of emissions from these small storage tanks, no additional control measures are required. The remaining process operations that contain toxic air pollutants as defined in this regulation are subject to a Federal NESHAP rule (Subpart NNN), which exempts process equipment from this state regulation.

2.6.7. 45 CSR 30: Requirements for Operating Permits

The Inwood facility is subject to the requirement for an operating permit. The station's Title V permit (R30-00300012-2008) was issued under this rule and this renewal application satisfies the application requirements of 45 CSR 30. Also under this rule, the Inwood facility is subject to operating under the requirements set forth in the issued Title V permit. This application is being submitted to fulfill the permit renewal requirements.

This section contains a detailed description of the calculation methodology used to determine the proposed emission rates for all affected sources at the Inwood facility. Detailed emission calculations are included in Appendix I of this application. It should be noted that condensable PM emissions are included in the emission calculations. However, compliance with emission limitations in demonstrated through EPA Method 5, which does not include condensable PM.

3.1. COMBUSTION SOURCES

For the combustion sources (heaters, water heaters, emergency generators, and fire pump) appropriate EPA-published emission factors were chosen and were then multiplied by the heat input capacity of each unit (MMBtu/hr) in order to determine the tpy and lb/hr emissions of CO, PM, PM_{10} , $PM_{2.5}$, NO_x , SO_2 , VOC, and HAPs.

As an example, CO emissions for Binder Water Heaters (EP-20):

Rated Heat Input = 0.375 MMBtu/hr Permitted Hours per year = 8,760 hours CO Emission Factor: 20 lbs per million cubic feet of natural gas burned

Emissions = Heat Input * Emission Factor * Permitted Hours * 1 ton/2000 lbs = 1.44 tpy = (20 lbs CO/MMCF) x (375 MBtu/hr) x (1 CF/MBtu) x (1 MMCF/10⁶ CF) = 0.008 lbs CO/hr *or*

= 0.033 tons per year

3.2. FIBERGLASS PRODUCTION PROCESS

Calculations of pollutants are based on multiplying the process rate (lbs material/hr) by the emission factor (lbs/ton material processed). These calculations are based on a maximum production capacity of 8,000 lbs per hour per production line. Appropriate emission factors were taken from published data, stack test data, and permit limits. Note that the emission calculations include condensable particulate matter emissions based on stack test data taken from similar sources.

The wool fiberglass production operations on Line No. 2 can be operated as a resinated or nonresinated line. For emission calculation purposes, the worst-case operational mode was selected.

3.3. FUGITIVE SOURCES

Particulate matter emissions from raw materials handling were characterized by the USEPA in Section 11.13 Glass Fiber Manufacturing of AP-42 for unloading and conveying, storage bins, and mixing and weighing operations. Potential particulate matter emissions from these operations at Guardian Fiberglass are controlled with bag filter dust collectors and vented to the in-plant environment. Emission factors were taken from Table 11.13-2 of the AP-42. Particulate matter emissions are controlled with bag filter dust collectors as well as process enclosures. These controls reduce the emissions with a control efficiency of 99%. Emissions are calculated as follows: E_{PM} = (Production Rate, tons per unit time) x (PM Emission Factor) x (1-0.99)

Emissions associated with raw materials storage are VOC emissions originating from resin and binder storage. Simple working and breathing losses from the storage tanks are calculated as in section 3.4 of this document. Additional emissions are generated as the storage vessels are opened and the contents mixed in a pre-react mixing tank. Due to the vapor pressures of the VOCs in use it is estimated that only 2% of the available mass of VOCs in the ingredients used in the Pre-React Mixing tanks are lost to the indoor air as fugitive emissions. These emissions are calculated as follows:

E_{VOC} = (lbs VOC/ gal Mixed Binder) x (gal Binder/yr) x (2%)

3.4. STORAGE BINS & TANKS

Emissions from the storage tanks at the Inwood facility were estimated using EPA's AP-42 Section 7.1, *Organic Liquid Storage Tanks* emission calculations, along with physical parameters of the storage tanks, and physical properties, storage temperatures, and throughput volumes of the materials stored in the tank. Emissions from all other tanks at the Inwood facility are considered negligible. The storage tanks represented on this application are located inside the operations building and therefore, are kept near a constant temperature.

3.5. MISCELLANOUS SOURCES

The cooling tower PM emission calculations are based on cooling water circulation flow rates and drift eliminator efficiency. Calculations assume that all particulates are less than 1 μ m in diameter.

Particulate matter originating from the paved road on site was estimated using the calculations and tables from AP-42 13.2.1.3. It was decided that the Municipal Solid Waste Landfill was the best approximation for the Guardian facility from Table 13.2-1.3.

Additional coating emissions (e.g., inkjet identification, lamination, etc.) are calculated using a mass balance and assuming all VOC are emitted to atmosphere.

3.6. GREENHOUSE GAS (GHG) EMISSIONS

Greenhouse gases were calculated following 40 CFR 98 Subparts C and N. Subpart C covers GHGs from combustion sources which includes internal combustion engines and the facility's space and water heaters. Subpart C emissions are based on fuel usage rates and Subpart C provided emission factors. Subpart N covers the glass manufacturing industry as a whole. Raw materials used in glass manufacture have the potential to emit carbon dioxide as they are melted to make glass. Guardian obtained emission factors from their raw materials suppliers. These vendor specific emission factors, in combination with raw materials throughputs, provide the basis for the carbon dioxide emission calculations.

The WVDEP permit application forms contained in this renewal application include facility-wide and emission source specific forms for the renewal of the Inwood facility Title V permit. The completed Title V permit forms are included in this section.

.....

WEST IS	WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION
E ALLE	DIVISION OF AIR QUALITY
	601 57 th Street SE
Fring SEMPER Littende	Charleston, WV 25304
	Phone: (304) 926-0475
	www.wvdep.org/daq
TITL	E V PERMIT APPLICATION - GENERAL FORMS

Section 1: General Information

 Name of Applicant (As registered with the WV Secretary of State's Office): Guardian Fiberglass, Inc. 	2. Facility Name or Location: 4812 Tabler Station Road Inwood, WV 25428			
3. DAQ Plant ID No.: 4. Federal Employer ID No. (FEIN): 0003 - 00012 382560723				
5. Permit Application Type:				
	perations commence? 07/20/1998 expiration date of the existing permit? 10/1/2013			
6. Type of Business Entity:	7. Is the Applicant the:			
☑ Corporation □ Governmental Agency □ Partnership □ Limited Partnership	🗌 Owner 🖾 Operator 🔲 Both			
8. Number of onsite employees: 175	If the Applicant is not both the owner and operator, please provide the name and address of the other party. <u>Guardian Fiberglass, Inc.</u> <u>1000 E North Street</u> <u>Albion, MI 49224</u>			
9. Governmental Code:				
 Privately owned and operated; 0 Federally owned and operated; 1 State government owned and operated; 2 	County government owned and operated; 3 Municipality government owned and operated; 4 District government owned and operated; 5			
10. Business Confidentiality Claims				
Does this application include confidential informatio	n (per 45CSR31)? 🗌 Yes 🖾 No			
If yes, identify each segment of information on each justification for each segment claimed confidential, i accordance with the DAQ's " <i>PRECAUTIONARY NO</i>	ncluding the criteria under 45CSR§31-4.1, and in			

11. Mailing Address					
Street or P.O. Box: 4812 Tabler Stati	on Road				
City: Inwood		State: WV	Zip: 25428		
Telephone Number: (304) 267-6085		Fax Number: (304) 2	267-6885		
12. Facility Location					
Street: 4812 Tabler Station Road	City: Inwood		County: Berkeley		
UTM Easting: 756.55 km	UTM Northin	ng: 4365.50 km	Zone: 🛛 17 or 🗌 18		
Directions: From Martinsburg, take I-81 southwest to Tabler Station Road, Exit 8 (County Route 32). Site is located on the southeast corner of the I-81 and County Route 32 intersection.					
Portable Source? Yes	No				
Is facility located within a nonattainment area? Xes No If yes, for what air pollutants? Fine Particule (PM 2.5) Designations					
Is facility located within 50 miles of a	If yes, name the affected state(s). Virginia Maryland				
Is facility located within 100 km of a Class I Area ¹ ? Yes No If yes, name the area(s). If no, do emissions impact a Class I Area ¹ ? Yes No Shenandoah National Park					
¹ Class I areas include Dolly Sods and Otter C Face Wilderness Area in Virginia.	Ereek Wilderness A	Areas in West Virginia, and Sl	henandoah National Park and James River		
13. Contact Information					
Responsible Official: James Lankford Title: Plant Manager					
Street or P.O. Box: 4812 Tabler Stati	on Road				
City: Inwood State: WV			Zip: 25428		
Telephone Number: (304) 267-6085					
E-mail address: jameslankford@bp.g	uardian.com				
Environmental Contact: Jonathan Russell			Title: EHS Specialist		
Street or P.O. Box: 4812 Tabler Static	on Road		1		
City: Inwood	e: WV	Zip: 25428			
Telephone Number: (304) 267-6085 x	x 328 Fax	Number: (304) 267-68	85		
E-mail address: jonathanrussell@bp.g	uardian.com				
Application Preparer: Tom Muscenti Title: Managing Consultant					
Company: Trinity Consultants, Inc.					

Street or P.O. Box: 4500 Brooktree Rd., Suite 103					
City: Wexford	State: P	A	Zip: 150)90	
Telephone Number: (724) 935-2611	Fax Nu	mber: (724) 935-2622			
E-mail address: tmuscenti@trinitycor	nsultants.com				
14. Facility Description					
List all processes, products, NAICS and SIC codes for normal operation, in order of priority. Also list any process, products, NAICS and SIC codes associated with any alternative operating scenarios if different from those listed for normal operation.					
Process		Products		NAICS	SIC
Wool fiberglass manufacturing	Rolls and batts of	fiberglass insulation		327993	3296
Provide a general description of operations. Raw Materials are mixed into batch and the batch is then melted to form glass. The molten glass is separated into streams by use of a Forehearth and fiber is spun into strands by the means of fiberizers. The fibers are collected to form a blanket then cured in a three-zone oven. Upon exiting the curing oven the blanket is cooled via "cooling table". The cooled blanket is then cut to size in rolls and batts of insulation per customer demand.					
15. Provide an Area Map showing	plant location as A	TTACHMENT A.			
 16. Provide a Plot Plan(s), e.g. scaled map(s) and/or sketch(es) showing the location of the property on which the stationary source(s) is located as ATTACHMENT B. For instructions, refer to "Plot Plan - Guidelines." 17. Provide a detailed Process Flow Diagram(s) showing each process or emissions unit as ATTACHMENT C. Process Flow Diagrams should show all emission units, control equipment, emission points, and their 					
relationships.					
Section 2: Applicable Requirements	20197				
18. Applicable Requirements Summary Instructions: Mark all applicable requirements.					
		☐ FIP			
Minor source NSR (45CSR13)		\square PSD (45CSR14	.)		
□ NESHAP (45CSR15)		Nonattainment		~SR19)	
Section 111 NSPS		Section $112(d)$			
Section 112(g) Case-by-case MAG	רר רד	□ 112(r) RMP			
Section 112(i) Early reduction of 1			mercial n	rod reats sea	rtion 183(e)
				_	
Section 129 Standards/Reqts.		Stratospheric oz			
Tank vessel reqt., section 183(f)	(4	Emissions cap			
NAAQS, increments or visibility		45CSR27 State		-	
45CSR4 State enforceable only ru	le	Acid Rain (Tit			
Emissions Trading and Banking (4	Compliance As * Please see Attacht		aonitoring (4	JCFK64)	

\square NO _x Budget Trading Program Non-EGUs (45CSR1)	\square NO _x Budget Trading Program EGUs (45CSR26)
--	---

19. Non Applicability Determinations

List all requirements which the source has determined not applicable and for which a permit shield is requested. The listing shall also include the rule citation and the reason why the shield applies. N/A

Permit Shield

20. Facility-Wide Applicable Requirements

List all facility-wide applicable requirements. For each applicable requirement, include the rule citation and/or permit with the condition number.

Permit R14-0015H:

3.1.1 Open burning. The open burning of refuse by any person, firm, corporation, association or public agency is prohibited except as noted in 45 CSR §6-3.1.

3.1.2. Open burning exemptions. The exemptions listed in 45CSR§6-3.1 are subject to the following stipulation: Upon notification by the Secretary, no person shall cause, suffer, allow or permit any form of open burning during existing or predicated periods of atmospheric stagnation. Notification shall be made by such means as the Secretary may deem necessary and feasible.

3.1.3. Asbestos. The permittee is responsible for thoroughly inspecting the facility, or part of the facility, prior to commencement of demolition or renovation for the presence of asbestos and complying with 40 C.F.R. § 61.145, 40 CFR §61.148, and 40CFR§61.150. The permittee, owner or operator must notify the Secretary at least ten (10) working days prior to the commencement of any asbestos removal on the forms prescribed by the Secretary if the permittee is subject to the notification requirements of 40CFR§61.145(b)(3)(i). The USEPA, the Division of Waste Management and the Bureau for Public Health-Environmental Health require a copy of this notice to be sent to them.

3.1.4. Odor. No person shall cause, suffer, allow or permit the discharge of air pollutants which cause or contribute to an objectionable odor at any location occupied by the public.

3.1.5. Permanent shutdown. A source which has not operated at least 500 hours in one 12-month period within the previous five (5) year time period may be considered permanently shutdown, unless such source can provide to the Secretary, with reasonable specificity, information to the contrary. All permits may be modified or revoked and/or reapplication or application for new permits may be required for any source determined to be permanently shutdown.

3.1.6. Standby plan for reducing emissions. When requested by the Secretary, the permittee shall prepare standby plans for reducing the emission of air pollutants in accordance with the objectives set forth in Tables I, II and III of 45 CSR 11.

Permit Shield

For all facility-wide applicable requirements listed above, provide monitoring/testing / recordkeeping / reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number and/or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

Permit R14-0015H:

3.3.1. Stack Testing. As per provisions set forth in this permit or as otherwise required by the Secretary, in accordance with the West Virginia code, underlying regulations, permits and orders, the permittee shall conduct test(s) to determine compliance with the emission limitations set forth in this permit and/or established or set forth in underlying documents. The Secretary, or his duly authorized representative, may at his option witness or conduct such test(s). Should the Secretary exercise his option to conduct such test(s), the operator shall provide all necessary sampling connection and sampling ports to be located in such manner as the Secretary may require, power for test equipment and the required safety equipment, such as scaffolding, railing and ladders, to comply with generally accepted good safety practices. Such tests shall be conducted in accordance with the methods and

procedures set forth in this permit or as otherwise approved or specified by the Secretary in accordance with the following:

- a. The Secretary may on a source specific basis approve or specify additional testing or alternative testing to the test methods specified in the permit for demonstrating compliance with 40 CFR Parts 60, 61, and 63 in accordance with the Secretary's delegated authority and any established equivalency determinate methods which are applicable. If a testing method is specified or approved which effectively replaces a test method specified in the permit may be reviewed in accordance with 45CSR§13-4 or 45CSR§13-5.4 as applicable.
- b. The Secretary may on a source-specific basis approve or specify additional testing or alternative testing to the test methods specified in the permit for demonstrating compliance with applicable requirements which do not involve federal delegation. In specifying or approving such alternative testing to the test methods, the Secretary, to the extent possible, shall utilize the same equivalency criteria as would be used in approving such changes under Section 3.3.1.A of this permit. If a testing method is specified or approved which effectively replaces a test method specified in the permit, the permit may be revised in accordance with 45CSR§13-4 or 45CSR§13-5.4 as applicable.
- c. All periodic test to determine mass emissions limits from or air pollutant concentration in discharge stacks and such other tests as specified in this permit shall be conducted in accordance with an approved test protocol. Unless previously approved, such protocols shall be submitted to the Secretary in writing at least thirty (30) days prior to any testing and shall contain the information set forth by the Secretary. In addition, the permittee shall notify the Secretary at least fifteen (15) days prior to any testing so the Secretary man have the opportunity to observe such tests. This notification shall include the actual date and time during which the test will be conducted and, if appropriate, verification that the tests will fully conform to a referenced protocol previously approved by the Secretary.

3.4.1. Retention of records. The permittee shall maintain records of all information (including monitoring data, support information, reports and notifications) required by this permit recorded in a form suitable and readily available for expeditious inspection and review. Support information includes all calibration and maintenance records and all original strip-chart recordings for continuous monitoring or instrumentation. The files shall be maintained for at least five (5) years following the date of each occurrence, measurement, maintenance, corrective action, report, or records. At a minimum, the most recent two (2) years of data shall be maintained on site, the remaining three (3) years of data may be maintained off site, but must remain accessible within a reasonable time. Where appropriate, the permittee may maintain records electronically (on a computer, on computer floppy disks, CDs, DVDs, or magnetic tape disks), on microfilm, or on microfiche.

34.2. Odors. For the purposes of 45CSR4, the permittee shall maintain a record of all odor complaints received, any investigation performed in response to such a compliant, and any responsive action(s) taken.

3.5.1. Responsible official. Any application form, report, or compliance certification required by this permit to be submitted to the DAQ and/or USEPA shall contain a certification by the responsible official that states that, based on formation and belief formed after reasonable inquiry, the statements and information in the document are true, accurate and complete.

3.5.2. Confidential information. A permittee may request confidential treatment of the submission of reporting required by this permit pursuant to the limitations and procedures of W.Va. Code§22-5-10 and 45CSR31.

3.5.3. Correspondence. All notices, requests, demands, submissions and other communications required or permitted to be made to the Sectary of DEP and/or USEPA shall be made in writing and shall be deemed to have been duly given when delivered by and/or mailed first class with postage prepaid to the address(es) set forth below or to such other person or address as the Secretary of the Department of Environmental Protection may designate. 3.5.4.1 In accordance with 45 CSR30-Operating Permit Program, the permittee shall submit a Certified Emissions Statement (CES) and pay fees on an annual basis in accordance the submittal requirements of the Division of Air Quality. A receipt of the appropriate fee shall be maintained on the premises for with the receipt has been issued, and shall be made immediately available for inspection by the Secretary and his/her duly authorized representative.

3.5.5. Emission Inventory. At such times(s) as the Secretary may designate, the permittee herein shall prepare and submit an emission inventory for the previous year, addressing the emission from the facility and/or process(es) authorized herein, in accordance with the emission inventory submittal requirements of the Division of Air Quality. After initial submittal, the Secretary may, based upon the type and quantity of the pollutants emitted, establish a frequency other than on an annual basis.

Are you in compliance with all facility-wide applicable requirements? Xes	No No
If no, complete the Schedule of Compliance Form as ATTACHMENT F.	

22. Inactive Permits/Obsolete Permit Conditions					
Permit Condition Number					

Section 3: Facility-Wide Emissions

23. Facility-Wide Emissions Summary [Tons per Y	23. Facility-Wide Emissions Summary [Tons per Year]			
Criteria Pollutants	Potential Emissions			
Carbon Monoxide (CO)	256.5			
Nitrogen Oxides (NO _X)	158.1			
Lead (Pb)	0.003			
Particulate Matter $(PM_{10})^1$	162.2			
Total Particulate Matter (TSP)	165.2			
Sulfur Dioxide (SO ₂)	0.3 125.6			
Volatile Organic Compounds (VOC)				
Hazardous Air Pollutants ²	Potential Emissions			
Formaldehyde	28.1			
Methanol	82.5			
Phenol	54.3			
Chrome	0.032			
Regulated Pollutants other than Criteria and HAP	Potential Emissions			
Formic Acid	13.6			
Ammonia	163.9			
Carbon Dioxide Equivalents (CO ₂ e)	92,500			

24.	Insignificant Activities (Check all that apply)				
\square	1.	Air compressors and pneumatically operated equipment, including hand tools.			
	2.	Air contaminant detectors or recorders, combustion controllers or shutoffs.			
	3.	Any consumer product used in the same manner as in normal consumer use, provided the use results in a duration and frequency of exposure which are not greater than those experienced by consumer, and which may include, but not be limited to, personal use items; janitorial cleaning supplies, office supplies and supplies to maintain copying equipment.			
\square	4.	Bathroom/toilet vent emissions.			
\boxtimes	5.	Batteries and battery charging stations, except at battery manufacturing plants.			
\boxtimes	6.	Bench-scale laboratory equipment used for physical or chemical analysis, but not lab fume hoods or vents. Many lab fume hoods or vents might qualify for treatment as insignificant (depending on the applicable SIP) or be grouped together for purposes of description.			
	7.	Blacksmith forges.			
\boxtimes	8.	Boiler water treatment operations, not including cooling towers.			
\square	9.	Brazing, soldering or welding equipment used as an auxiliary to the principal equipment at the source.			
	10.	CO ₂ lasers, used only on metals and other materials which do not emit HAP in the process.			
	11.	Combustion emissions from propulsion of mobile sources, except for vessel emissions from Outer Continental Shelf sources.			
\square	12.	Combustion units designed and used exclusively for comfort heating that use liquid petroleum gas or natural gas as fuel.			
\square	13.	Comfort air conditioning or ventilation systems not used to remove air contaminants generated by or released from specific units of equipment.			
\square	14.	Demineralized water tanks and demineralizer vents.			
	15.	Drop hammers or hydraulic presses for forging or metalworking.			
	16.	Electric or steam-heated drying ovens and autoclaves, but not the emissions from the articles or substances being processed in the ovens or autoclaves or the boilers delivering the steam.			
	17.	Emergency (backup) electrical generators at residential locations.			
	18.	Emergency road flares.			
\boxtimes	19.	Emission units which do not have any applicable requirements and which emit criteria pollutants (CO, NO_x , SO ₂ , VOC and PM) into the atmosphere at a rate of less than 1 pound per hour and less than 10,000 pounds per year aggregate total for each criteria pollutant from all emission units.			
		Please specify all emission units for which this exemption applies along with the quantity of criteria pollutants emitted on an hourly and annual basis: Emissions from the following tanks are negligible: Diesel storage tank 500 gallons			
		Diesel Storage tank 300 gallons			
		Gasoline storage tank 250 gallons			
		Kerosene Storage tank 500 gallons			
	20.	Emission units which do not have any applicable requirements and which emit hazardous air pollutants into the atmosphere at a rate of less than 0.1 pounds per hour and less than 1,000 pounds per year aggregate total for all HAPs from all emission sources. This limitation cannot be used for any source which emits dioxin/furans nor for toxic air pollutants as per 45CSR27. Please specify all emission units for which this exemption applies along with the quantity of hazardous			
		air pollutants emitted on an hourly and annual basis:			
ЦЦ	21.	Environmental chambers not using hazardous air pollutant (HAP) gases.			
	22.	Equipment on the premises of industrial and manufacturing operations used solely for the purpose of preparing food for human consumption.			
	23.	Equipment used exclusively to slaughter animals, but not including other equipment at slaughterhouses, such as rendering cookers, boilers, heating plants, incinerators, and electrical power generating equipment.			
\boxtimes	24.	Equipment used for quality control/assurance or inspection purposes, including sampling equipment			

24.	Insign	ificant Activities (Check all that apply)
		used to withdraw materials for analysis.
\boxtimes	25.	Equipment used for surface coating, painting, dipping or spray operations, except those that will emit VOC or HAP.
\square	26.	Fire suppression systems.
	27.	Firefighting equipment and the equipment used to train firefighters.
	28.	Flares used solely to indicate danger to the public.
	29.	Fugitive emission related to movement of passenger vehicle provided the emissions are not counted for applicability purposes and any required fugitive dust control plan or its equivalent is submitted.
\square	30.	Hand-held applicator equipment for hot melt adhesives with no VOC in the adhesive formulation.
	31.	Hand-held equipment for buffing, polishing, cutting, drilling, sawing, grinding, turning or machining wood, metal or plastic.
	32.	Humidity chambers.
	33.	Hydraulic and hydrostatic testing equipment.
\boxtimes	34.	Indoor or outdoor kerosene heaters.
\boxtimes	35.	Internal combustion engines used for landscaping purposes.
	36.	Laser trimmers using dust collection to prevent fugitive emissions.
	37.	Laundry activities, except for dry-cleaning and steam boilers.
\square	38.	Natural gas pressure regulator vents, excluding venting at oil and gas production facilities.
	39.	Oxygen scavenging (de-aeration) of water.
	40.	Ozone generators.
\boxtimes	41.	Plant maintenance and upkeep activities (e.g., grounds-keeping, general repairs, cleaning, painting, welding, plumbing, re-tarring roofs, installing insulation, and paving parking lots) provided these activities are not conducted as part of a manufacturing process, are not related to the source's primary business activity, and not otherwise triggering a permit modification. (Cleaning and painting activities qualify if they are not subject to VOC or HAP control requirements. Asphalt batch plant owners/operators must still get a permit if otherwise requested.)
\boxtimes	42.	Portable electrical generators that can be moved by hand from one location to another. "Moved by Hand" means that it can be moved without the assistance of any motorized or non-motorized vehicle, conveyance, or device.
\square	43.	Process water filtration systems and demineralizers.
	44.	Repair or maintenance shop activities not related to the source's primary business activity, not including emissions from surface coating or de-greasing (solvent metal cleaning) activities, and not otherwise triggering a permit modification.
\boxtimes	45.	Repairs or maintenance where no structural repairs are made and where no new air pollutant emitting facilities are installed or modified.
	46.	Routing calibration and maintenance of laboratory equipment or other analytical instruments.
	47.	Salt baths using nonvolatile salts that do not result in emissions of any regulated air pollutants. Shock chambers.
	48.	Shock chambers.
	49.	Solar simulators.
\boxtimes	50.	Space heaters operating by direct heat transfer.
	51.	Steam cleaning operations.
	52.	Steam leaks.
	53.	Steam sterilizers.
	54.	Steam vents and safety relief valves.
\boxtimes	55.	Storage tanks, reservoirs, and pumping and handling equipment of any size containing soaps, vegetable oil, grease, animal fat, and nonvolatile aqueous salt solutions, provided appropriate lids and covers are utilized.
\boxtimes	56.	Storage tanks, vessels, and containers holding or storing liquid substances that will not emit any VOC or HAP. Exemptions for storage tanks containing petroleum liquids or other volatile organic liquids should be based on size limits such as storage tank capacity and vapor pressure of liquids stored and are

24. Insignificant Activities (Check all that apply)							
		not appropriate for this list.					
	57.	Such other sources or activities as the Director may determine.					
	58.	Tobacco smoking rooms and areas.					
\boxtimes	59.	Vents from continuous emissions monitors and other analyzers.					

Section 5: Emission Units, Control Devices, and Emission Points

25. Emission Units Table

Fill out the Emission Units Table and provide it as ATTACHMENT D.

26. Emission Units Form(s)

For each emission unit listed in the **Emission Units Table**, fill out and provide an **Emission Unit Form** as **ATTACHMENT E**.

For each emission unit not in compliance with an applicable requirement, fill out a **Schedule of Compliance Form** as **ATTACHMENT F**.

27. Control Devices

For each control device listed in the **Emission Units Table**, fill out and provide an **Air Pollution Control Device Form** as **ATTACHMENT G**.

For any control device that is required on an emission unit in order to meet a standard or limitation for which the potential pre-control device emissions of an applicable regulated air pollutant is greater than or equal to the Title V Major Source Threshold Level, refer to the **Compliance Assurance Monitoring (CAM) Form(s)** for CAM applicability. Fill out and provide these forms, if applicable, for each Pollutant Specific Emission Unit (PSEU) as **ATTACHMENT H**.

28. Ce	rtification of Truth, Accuracy and C	ompleteness and Certification of Compliance		
Note:	This Certification must be signed by will be returned as incomplete.	responsible official. Applications without a signed certification		
I certify this sub I certify submitty response knowle false st	builts on behalf of the owners or open y under penalty of law that I have person ted in this document and all its attachm sibility for obtaining the information, I dge and belief true, accurate, and comp	npleteness ined at 45CSR§30-2.38) and am accordingly authorized to make rators of the source described in this document and its attachments. nally examined and am familiar with the statements and information ents. Based on my inquiry of those individuals with primary certify that the statements and information are to the best of my lete. I am aware that there are significant penalties for submitting quired statements and information, including the possibility of fine		
Except undersi	gned hereby certify that, based on info	V Application for which compliance is not achieved, I, the mation and belief formed after reasonable inquiry, all air on are in compliance with all applicable requirements.		
Respo	nsible official (type or print)			
Name:	James Lankford	Title: Plant Manager		
Respon	nsible official's signature:			
Signature:(Must b		Signature Date:		
Note: 1	Please check all applicable attachmer	ts included with this permit application:		
A	TTACHMENT A: Area Map			
A.	TTACHMENT B: Plot Plan(s)			
A	TACHMENT C: Process Flow Diagra	n(s)		
A	TACHMENT D: Emission Units Tabl			

ATTACHMENT E: Emission Unit Form(s)

 \square

ATTACHMENT F: Schedule of Compliance Form(s) N/A

ATTACHMENT G: Air Pollution Control Device Form(s)

ATTACHMENT H: Compliance Assurance Monitoring (CAM) Form(s) N/A

All of the required forms and additional information can be found and downloaded from, the DEP website at www.wydep.org/dag, requested by phone (304) 926-0475, and/or obtained through the mail.

.....

Appendix A. Area Map

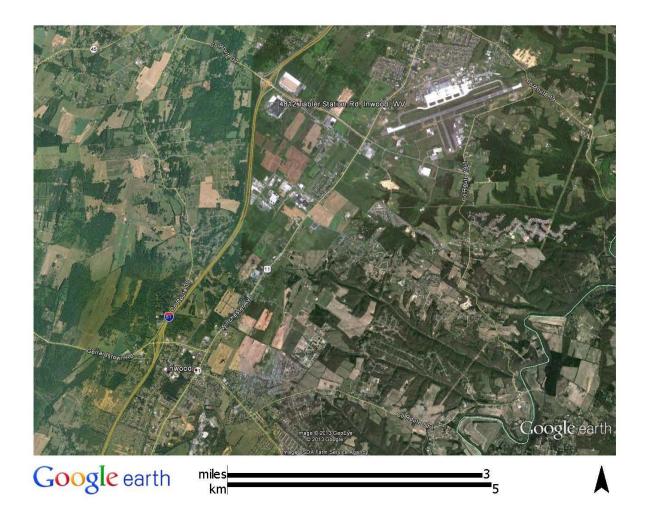
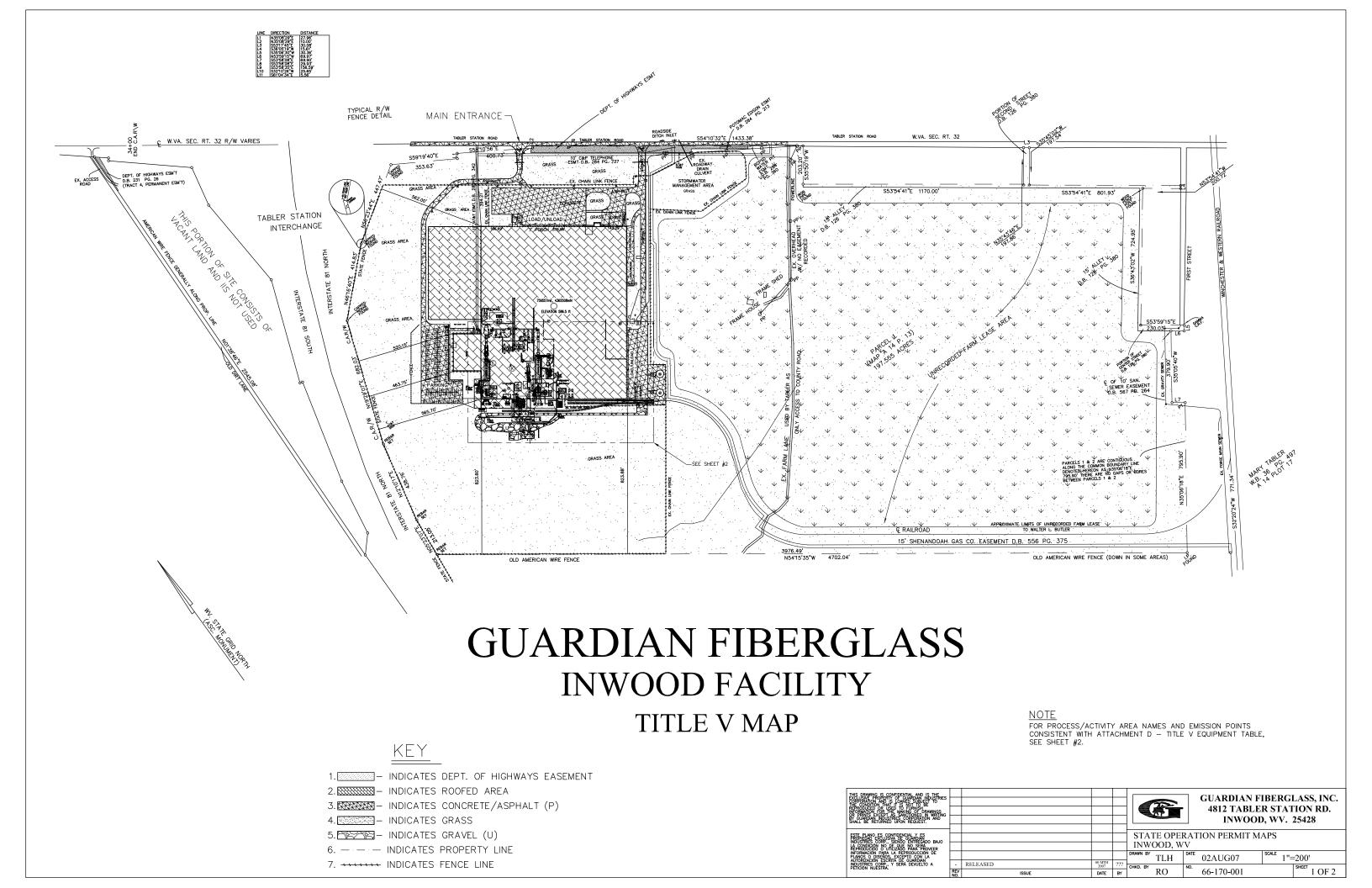
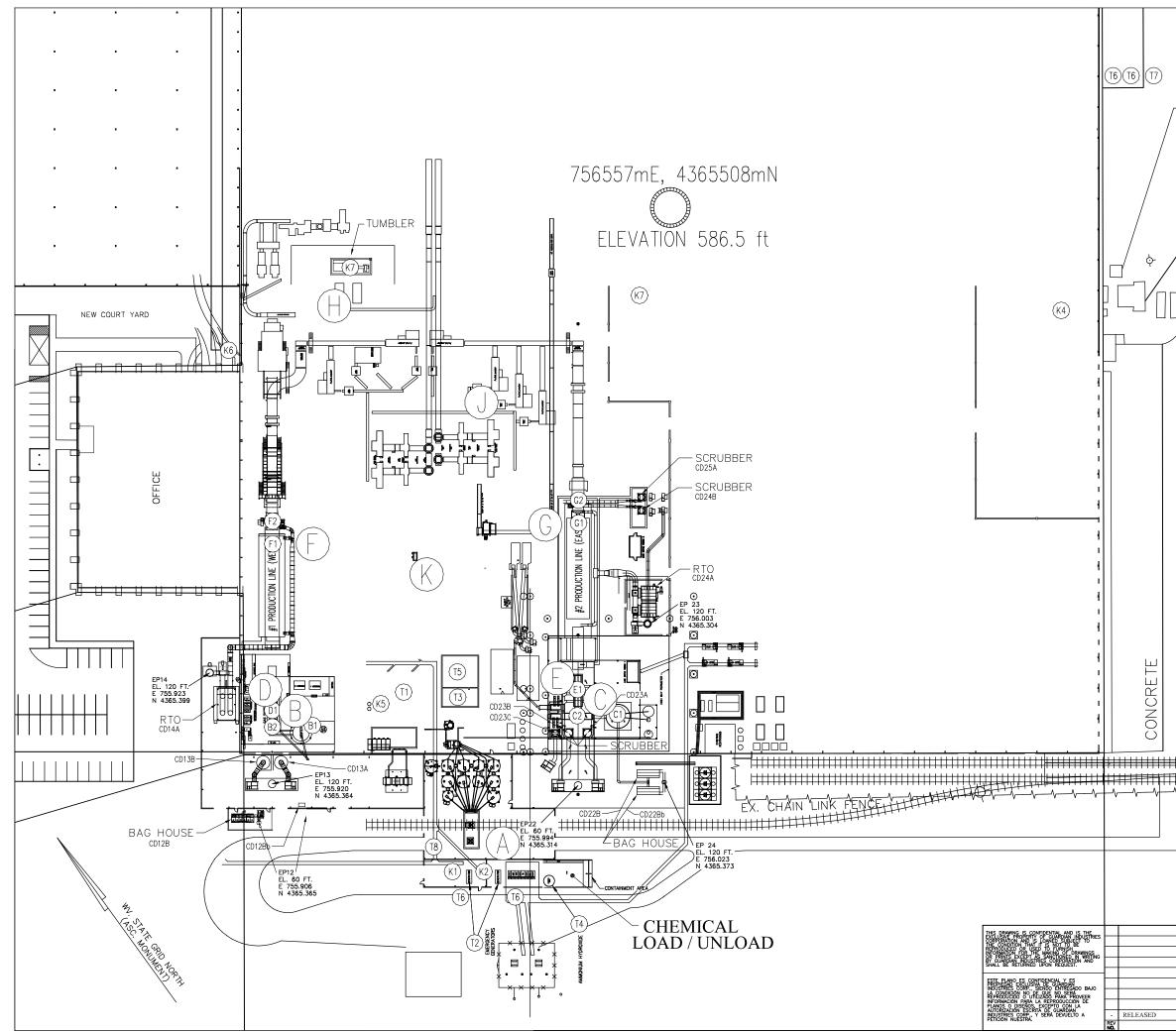




Figure 1. Area map showing the location of the Guardian facility in relation to nearby roads and towns. The arrow in the legend points north.

		GROUP	AREA	ID. NO.	NAME	EMISSION
		001	A	10. 110.	RAW MATERIAL HANDLING	POINTS FP11
	∥ }	002	В		MELTING & REFINING LINE 1	
			B1 B2	ES12C ES12E	MELTER FOREHEARTH	EP12
		003	C B2		MELTING & REFINING LINE 2	
/			C1	ES22C	MELTER	EP22
		004	C2 D	ES22E	FOREHEARTH FORMING & COLLECTION LINE 1	
			D1	ES13A	FIBERIZERS	EP13
		005	E E1	ES23A	FORMING & COLLECTION LINE 2 FIBERIZERS	EP23
		006	F	ESZJA	CURING & COOLING LINE 1	
	\backslash / \uparrow		F1	ES14A	OVEN	EP14
	$\lambda + $	007	F2 G	ES14B	COOLING TABLE CURING & COOLING LINE 2	
			G1	ES24A	OVEN	EP24
		008	G2	ES24B	COOLING TABLE	ED15
X		008	H J		FACING, SIZING & PACKAGING LINE 1 FACING, SIZING & PACKAGING LINE 2	FP15 FP15
/]		009	к		SUPPORT FACILITIES (MAINTENANCE)	
			K1 K2	ESDG12 ESDG13	EMERGENCY GENERATOR (LINE 1) EMERGENCY GENERATOR (LINE 2)	EP16 EP17
			KZ K3	ESFW11	2 EMERGENCY FIRE WATER TANKS	EP18
	01		K4	ESSHB14	INDUSTRIAL HEATING BOILER	EP21
/			К5 К6	ESHW15 ESSH15	5:0.75 MMBTU/HR WATER HEATERS 8.525 MMBTU/HR MAKEUP	EP20 EP19
/					AIR HANDLING UNIT	
			K7	ESSH16	7.875 MMBTU/HR MAKEUP AIR HANDLING UNIT	EP22
						1
			ŀ	AREA T1	STORAGE TANKS BINDER ROOM	
	1		F	T2	GENERATOR DIESEL	
			F	T3	HOT OIL OR WAX EMULSION	
			F	T4 T5	AMMONIUM HYDROXIDE RESIN STORAGE	
			F	T6	DIESEL FUEL	
				T7	GASOLINE STORAGE	
				T8	KEROSENE	
₹∰∰ ASPHALT	G			~	I FIBERGLA	SS
]	Ι	NW]	D FACILITY	
				TIT	LE V MAP	
				Į		
				Ē	GUARDIAN FIBERGLA 4812 TABLER STATI- INWOOD, WV. 25	ON RD.
				TATE OI NWOOD.	PERATION PERMIT MAPS	
			DRAW	N [™] TLH	DATE SCALE	00'
ISSUE		00 MTH 2007 DATE	??? ВҮ			EET 2 OF 2

APPENDIX C: PROCESS FLOW DIAGRAM

Guardian | Title V Renewal Application Trinity Consultants

.....

Guardian Fiberglass, Inc. Simplified Process Flow Diagram

Indoor Fugitives, FP11

ES1A/CD1A

Raw Materials Storage Bin (Sand) w/Whirl Air Bin Vent DC Model 195-42

ES1B/CD1B

Raw Materials Storage Bin (Borax) w/Whirl Air Bin Vent DC Model 195-42

ES1C/CD1B

Raw Materials Storage Bin (Borax) w/Whirl Air Bin Vent DC Model 195-42

ES1D/CD1D

Raw Materials Storage Bin (Soda Ash) w/Whirl Air Bin Vent DC Model 195-42

ES1E/CD1D

Raw Materials Storage Bin (Soda Ash) w/Whirl Air Bin Vent DC Model 195-42

ES1F/CD1F

Raw Materials Storage Bin (Aplite) w/Whirl Air Bin Vent DC Model 195-42

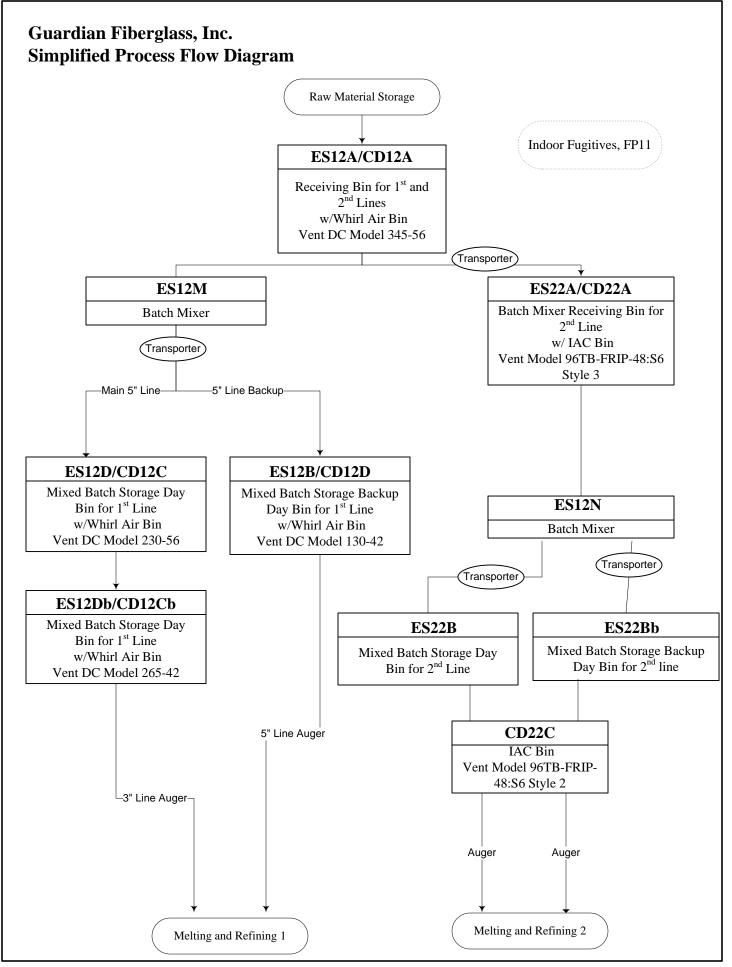
ES1G/CD1G

Raw Materials Storage Bin (Lime) w/Whirl Air Bin Vent DC Model 195-42

ES1H/CD1I

Raw Materials Storage Bin (Purchased Cullet) w/Whirl Air Bin Vent DC Model 195-42

ES1I/CD1I


Raw Materials Storage Bin (Purchased Cullet) w/Whirl Air Bin Vent DC Model 195-42

ES1J/CD1F

Raw Materials Storage Bin (Guardian Cullet) w/Whirl Air Bin Vent DC Model 195-42

ES1K/CD1K

Raw Materials Storage Bin (Baghouse Dust) w/Whirl Air Bin Vent DC Model 55-30

Guardian Fiberglass, Inc. Simplified Process Flow Diagram

T3

Resin Storage Tank 4500 gallons

T4

Resin Storage Tank 4500 gallons

T5

Resin Storage Tank 4500 gallons

T6

Resin Storage Tank 4500 gallons

T7A

Wax Emulsion Storage Tank 3800 gallons

T7B

Wax Emulsion Storage Tank 3800 gallons

T8

Ammonia (Aq) Storage Tank 6000 gallons

M8

City Water Tank 50 gallons Indoor Fugitives, FP11

M1

Pre-React Mix Tank 1200 gallons

M2

Pre-React Holding Tank 1700 gallons

M3

Pre-React Holding Tank 3200 gallons

M4

Additive Mix Tank 150 gallons

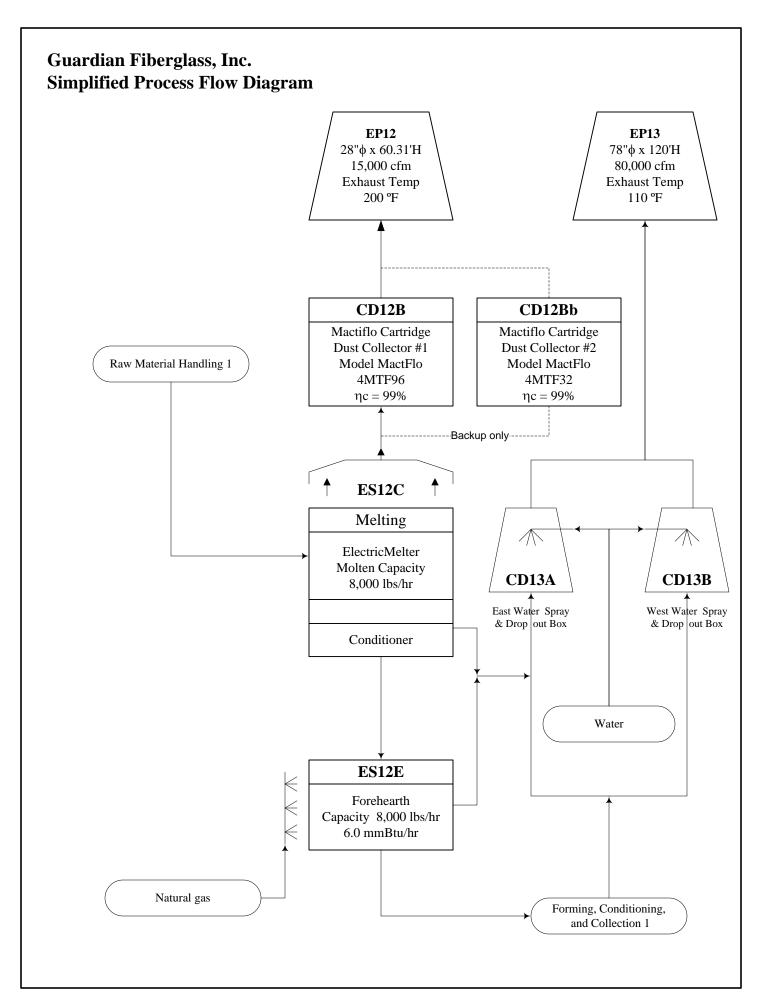
M5

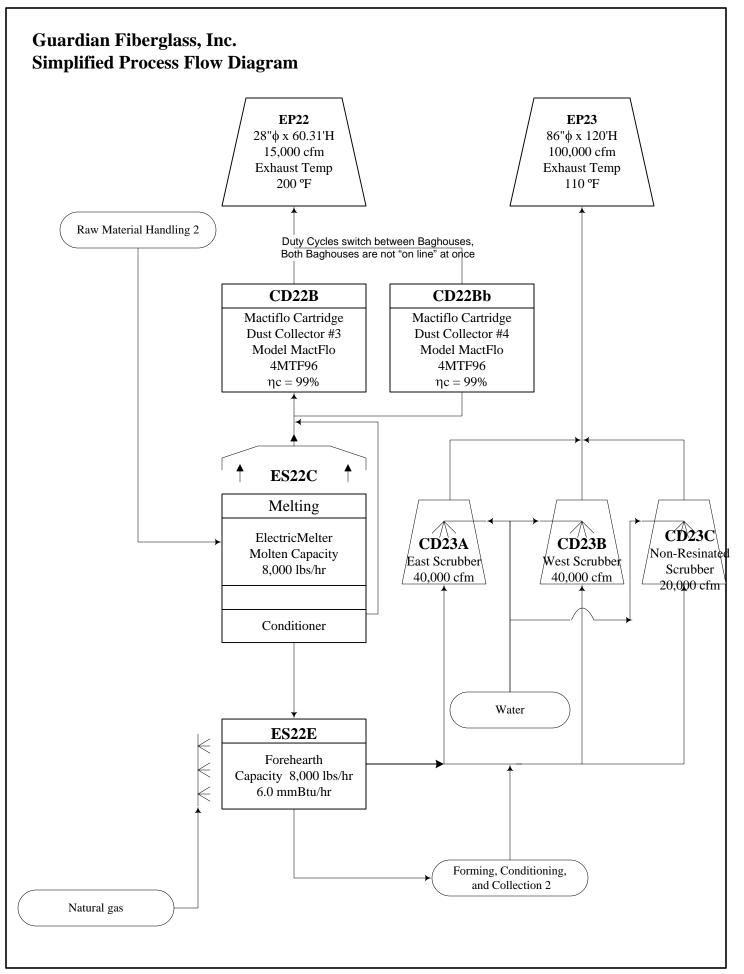
Mixed Binder Tank 1700 gallons

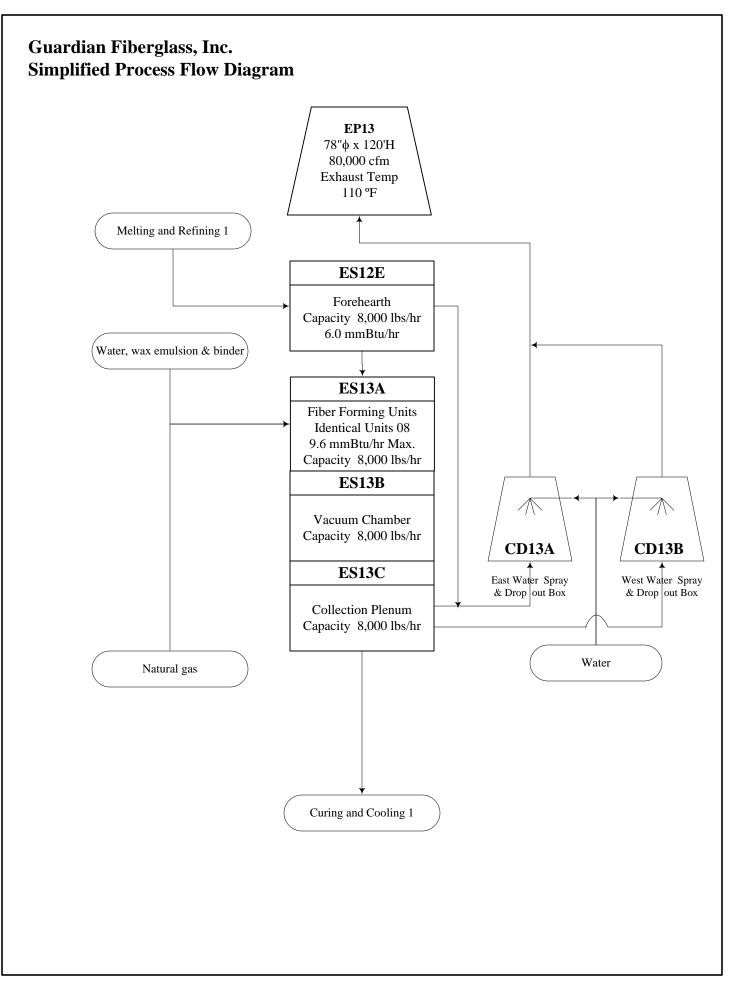
M6

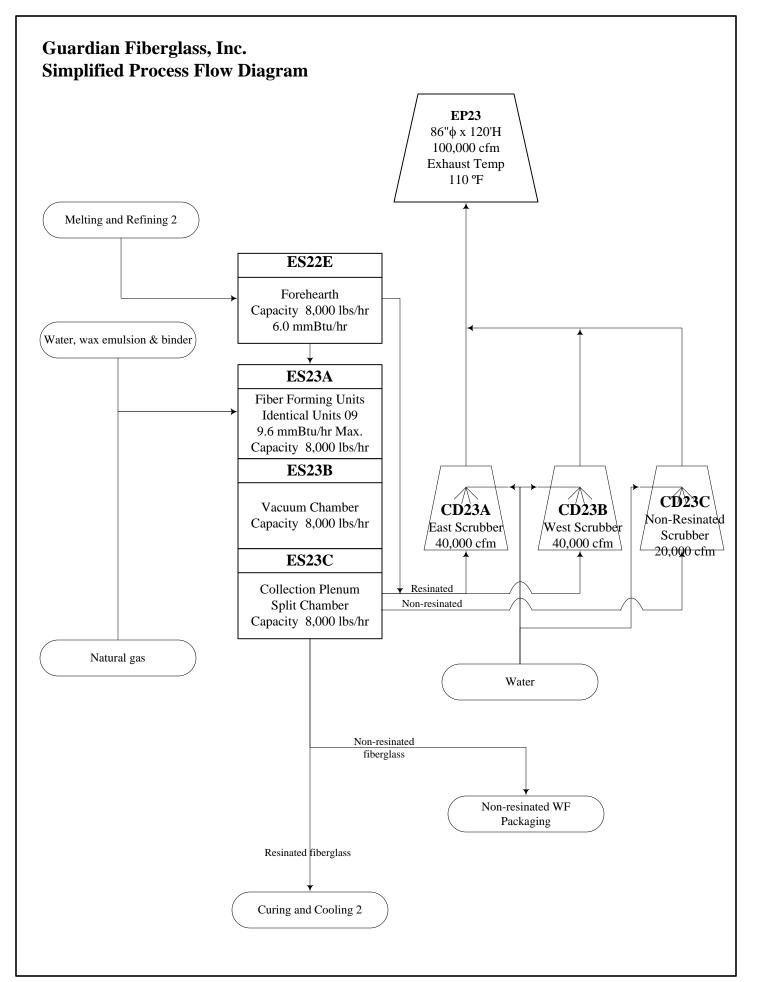
Pre-React Holding Tank 50 gallons

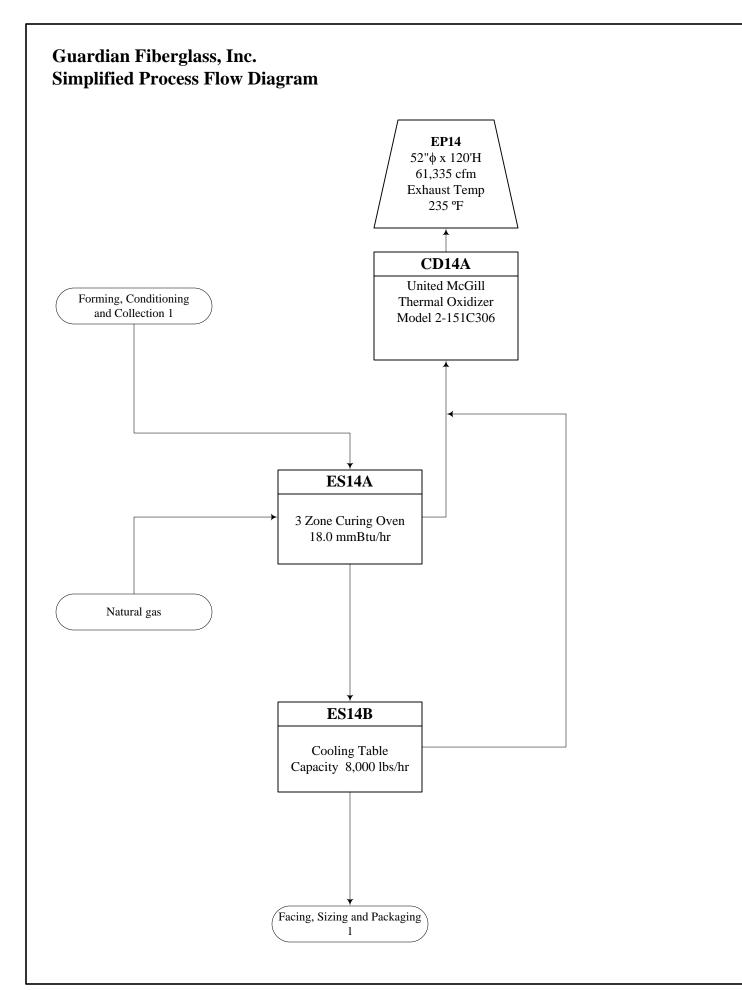
M7

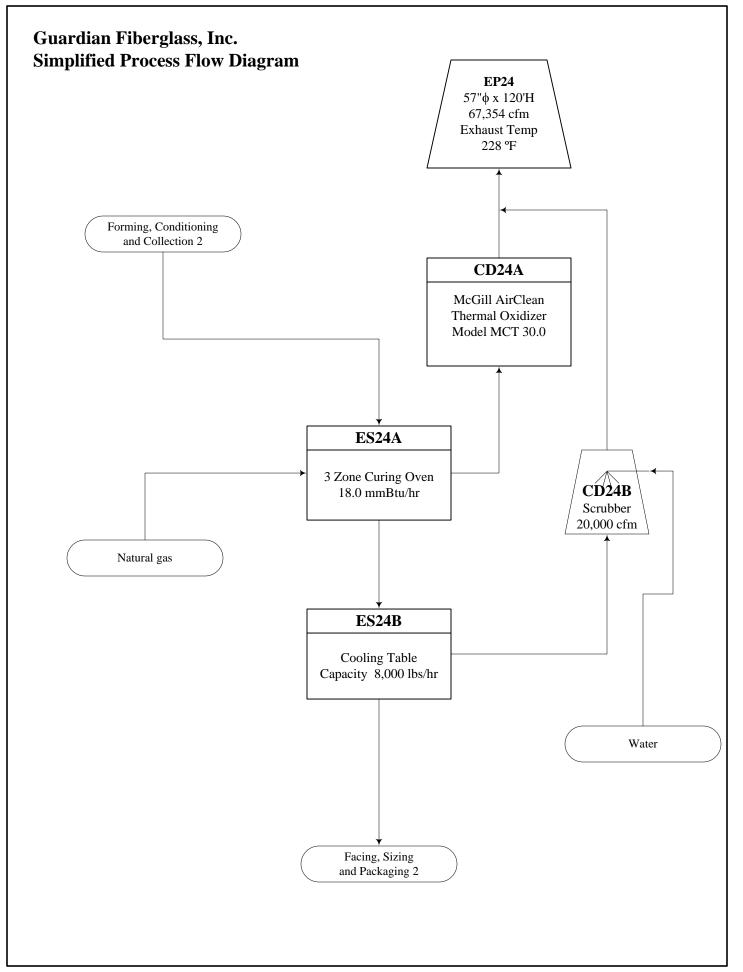

Ammonia (aq) Storage Tank 50 gallons

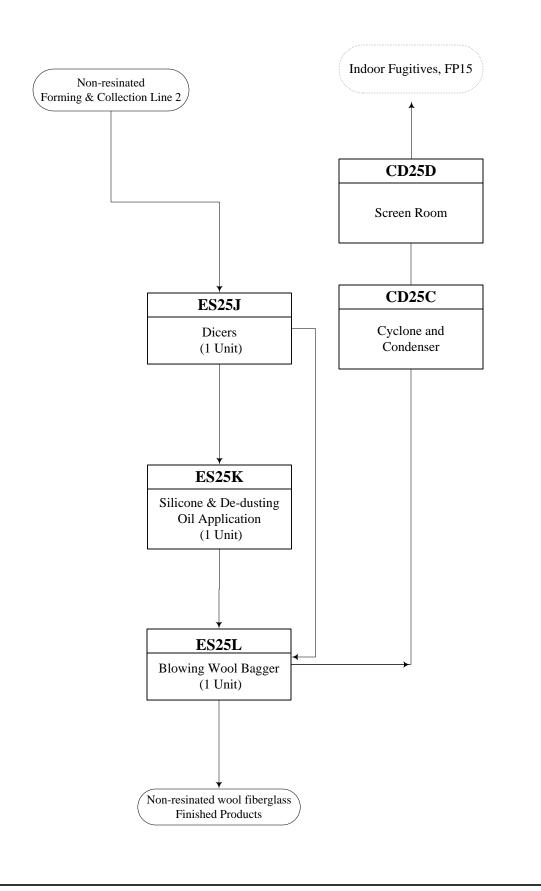

M9

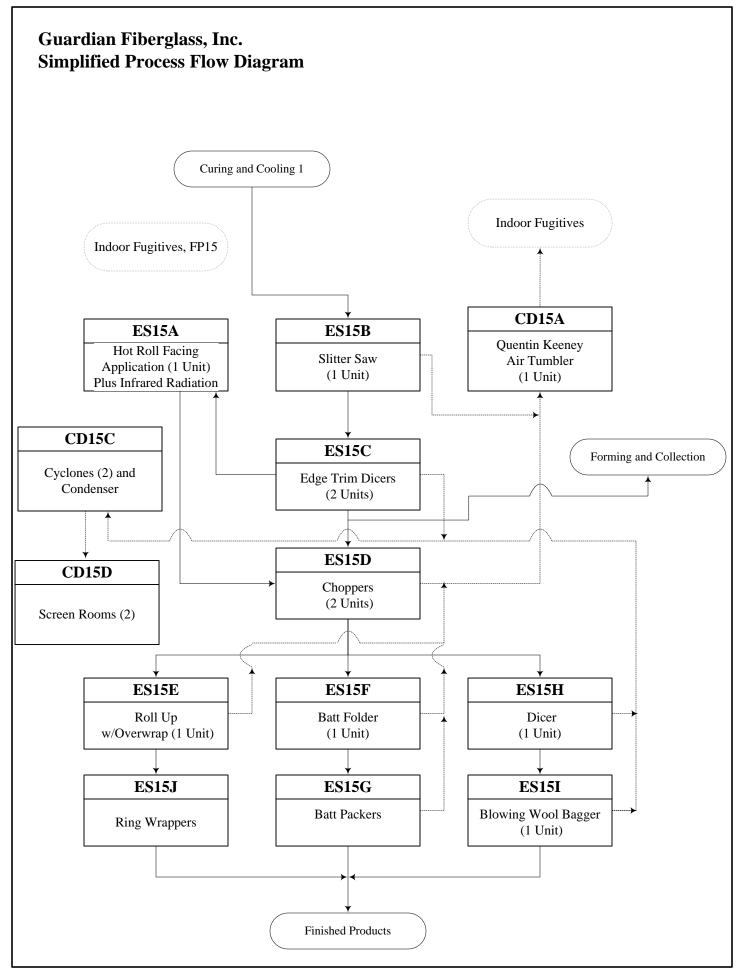

M10

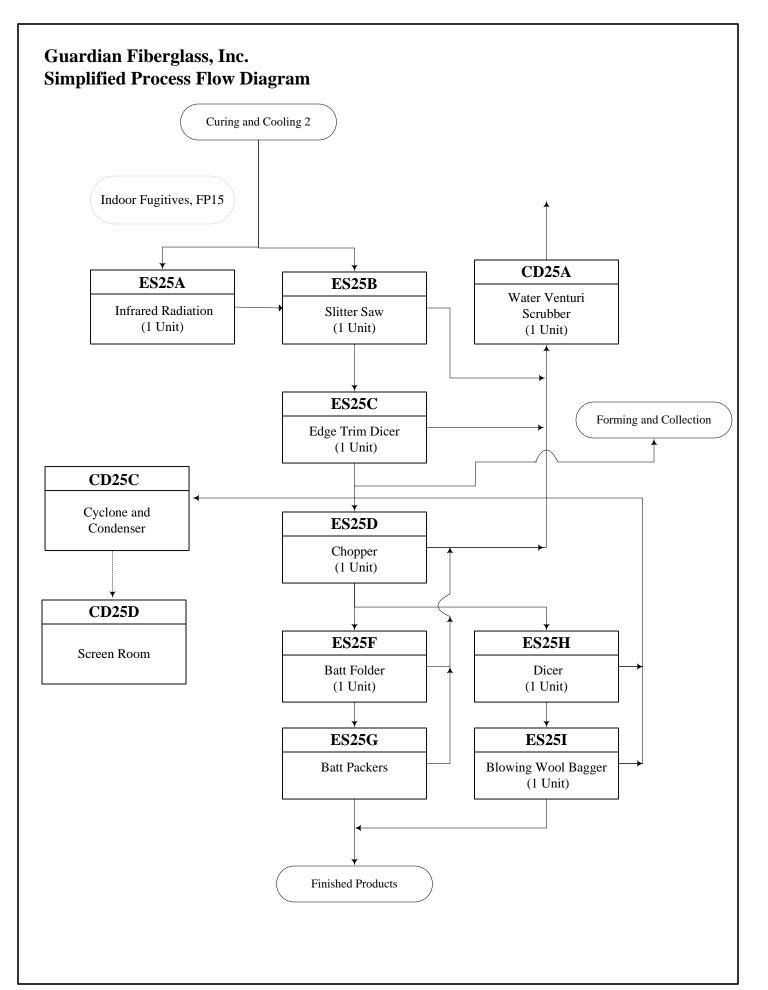

Additive Tank 50 gallons

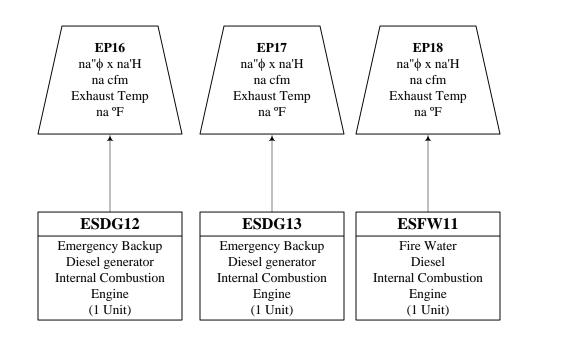

Binder Holding Tank

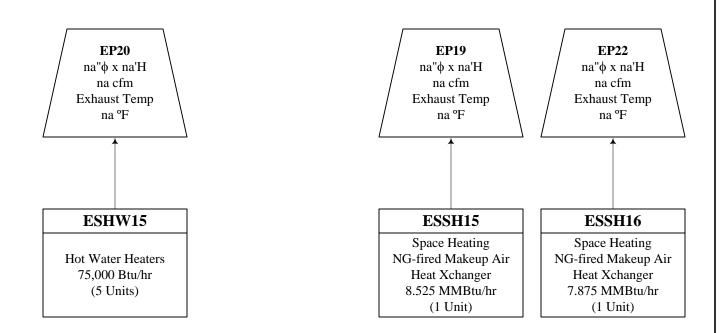









Guardian Fiberglass, Inc. Simplified Process Flow Diagram



Guardian Fiberglass, Inc. Simplified Process Flow Diagram

APPENDIX D: WVDEP TITLE V EQUIPMENT TABLE

Guardian | Title V Renewal Application Trinity Consultants

.....

ATTACHMENT D - Emission Units Table (includes all emission units at the facility except those designated as insignificant activities in Section 4, Item 24 of the General Forms)										
Emission Unit ID ¹	Emission Point ID ¹			Design Capacity	Control Device ¹					
RAW MATERIAL HANDLING OPERATIONS (Group 001)										
ES1A	FP11	Raw Material Storage Bin for Sand	07/25/1998	178.35 tons	CD1A					
CD1A	FP11	Whirl-Air Flow Bin Vent DC Model 195-42	07/25/1998	585 acfm	None					
ES1B	FP11	Raw Material Storage Bin for Borax	07/25/1998	137.45 tons	CD1B					
CD1B	FP11	Whirl-Air Flow Bin Vent DC Model 195-42	07/25/1998	585 acfm	None					
ES1C	FP11	Raw Material Storage Bin for Borax	07/25/1998	137.45 tons	CD1B					
ES1D	FP11	Raw Material Storage Bin for Soda Ash	07/25/1998	137.45 tons	CD1D					
CD1D	FP11	Whirl-Air Flow Bin Vent DC Model 195-42	07/25/1998	585 acfm	None					
ES1E	FP11	Raw Material Storage Bin for Soda Ash	07/25/1998	137.45 tons	CD1D					
ES1F	FP11	Raw Material Storage Bin for Aplite	07/25/1998	137.45 tons	CD1F					
CD1F	FP11	Whirl-Air Flow Bin Vent DC Model 195-42	07/25/1998	585 acfm	None					
ES1G	FP11	Raw Material Storage Bin for Lime	07/25/1998	109.50 tons	CD1G					
CD1G	FP11	Whirl-Air Flow Bin Vent DC 2 Model 195-42	07/25/1998	585 acfm	None					
ES1H	FP11	Raw Material Storage Bin for Purchased Cullet	07/25/1998	108.50 tons	CD1I					
ES1I	FP11	Raw Material Storage Bin for Purchased Cullet	07/25/1998	108.50 tons	CD1I					
CD1I	FP11	Whirl-Air Flow Bin Vent DC 2 Model:195-42	07/25/1998	585 acfm	None					
ES1J	FP11	Raw Material Storage Bin for Guardian Cullet	07/25/1998	137.45 tons	CD1F					
ES1K	FP11	Raw Material Storage Bin for Baghouse Dust	07/25/1998	75.00 tons	CD1K					
CD1K	FP11	Whirl-Air Flow Bin Vent DC 2 Model: 55-30	07/25/1998	165 acfm	None					
ES12A	FP11	Batch Mixers' Receiving Bin For 1 st & 2 nd Lines	07/25/1998	8,000 lbs	CD12A					
CD12A	FP11	Whirl-Air Flow Bin Vent DC Model:345-56	07/25/1998	1,035 acfm	None					
ES22A	FP11	Batch Mixer Receiving Bin for 2 nd Line	2004	8,000 lbs	CD22A					
CD22A	FP11	IAC Bin-Vent Model:96TB-FRIP-48:S6, Style	2004	2,917 acfm	None					
ES12B	FP11	Mixed Batch Storage Backup Day Bin for 1 st Line (5" Line)	07/25/1998	21.72 tons	CD12D					
CD12D	FP11	Whirl-Air Flow Bin Vent DC Model:130-42	07/25/1998	390 acfm	None					
ES22B	FP11	Mixed Batch Storage Day Bin for 2 nd Line (1 Hour)	2004	6.675 tons	CD22C					

CD22C	FP11	IAC Bin-Vent Model:96TB-FRIP-48:S6. Style 2	2004	2917 acfm	None
ES22Bb	FP11	Mixed Batch Storage Backup Day Bin for 2 nd Line (8 Hour)	2004	42.2 tons	CD22C
ES12D	FP11	Mixed Batch Storage Day Bin for 1st Line	07/25/1998	39.0 tons	CD12C
CD12C	FP11	Whirl-Air Flow Bin Vent DC Model:230-56	07/25/1998	690 acfm	None
ES12Db	FP11	Mixed Batch Storage Day Bin for 1 st Line	07/25/1998	1.31 tons	CD12Cb
CD12Cb	FP11	Whirl-Air Flow Bin Vent DC Model:265-42	07/25/1998	795 acfm	None
		TANKS (Group 00	1)		
T3	FP11 Resin Storage Tank		07/25/1998	4,500 gallons	NA
T4	FP11	Resin Storage Tank	07/25/1998	4,500 gallons	NA
T5	FP11	Resin Storage Tank	07/25/1998	4,500 gallons	NA
T6	FP11	Resin Storage Tank	07/25/1998	4,500 gallons	NA
T7A	FP11	Dedusting Oil/ Wax Emulsion Storage Tank	07/25/1998	3,800 gallons	NA
T7B	FP11	Dedusting Oil/ Wax Emulsion Storage Tank	07/25/1998	3,800 gallons	NA
T8	FP11	Ammonia (aqueous) Storage Tank	07/25/1998	6,000 gallons	NA
	FP11	Pre-React Mix Tank			
M1		Tank Type: Fixed Covers, an access hatch with cover, and an opening for the Mixing Impeller Shaft.	07/25/1998	1,200 gallons	NA
		Pre-React Holding Tank			NA
M2	FP11	Tank Type: Fixed covers, an access hatch with cover, and an opening for the Mixing Impeller Shaft.	07/25/1998	1,700 gallons	
M3	FP11	Pre-React Holding Tank	07/25/1998	3,200 gallons	NA
M4	FP11	Additive Mix Tank	07/25/1998	150 gallons	NA
M5	FP11	Mix Binder Tank	07/25/1998	1,700 gallons	NA
M6	FP11	Pre-React Holding Tank	07/25/1998	50 gallons	NA
M7	FP11	Ammonia (aqueous) Storage Tank	07/25/1998	50 gallons	NA
M8	FP11	Process Water Tank	07/25/1998	50 gallons	NA
M9	FP11	Additive Tank	07/25/1998	50 gallons	NA
M10	FP11	Binder Holding Tank	TBD	750 gallons	NA
FP11		In-Plant Fugitive Emissions Released	07/25/1998		NA
	MEL	TING & REFINING LINE 1 Group(002) [8,000 ll	os/hr or 35,040 TPY	Production Rate]	
ES12C	EP12	Melter Hood for 1 st Line Custom Built by Guardian Fiberglass	07/25/1998	4.0 TPH	CD12B and CD12Bb
CD12B	EP12	Mactiflo Cartridge Dust Collector Filter Model: MactFlo 4MTF96 Configuration: Closed Pressure Filter Material: Polvester Cartridge Filter	07/25/1998	15,000 acfm	None
		Cleaning Method: Pulse Air Captured Efficiency: 99%			

		Filter Area: 10,560 ft ² .			
		Mactiflo Cartridge Dust Collector		1	
		Model: MactFlo 4MTF32 Filter	_		
		Configuration: Closed Pressure			
CD12Bb	EP12	Filter Material: Polyester Cartridge Filter	07/25/1998	10,000 acfm	None
(Backup)		Cleaning Method: Pulse Air			
		Captured Efficiency: 99%			
		Filter Area: 3,520 ft ² .			
		Forehearth for 1 st Line			
ES12E	EP12 and	Natural Gas Fired Brick Holding Process Heater Tank	4/11-26/07	8,000 lbs/hr of	CD13A and
	EP13	Max Heat Input Rate: 6.0 MMBtu/hr		Molten Glass	CD13B
		Custom Design by Guardian Fiberglass			
CD13A		Water Spray with Dropout Boxes			
(East Side)	EP13	Type: Wet Collecting System	07/25/1998	40,000 cfm	None
(East Side)		Captured Efficiency: 99%			
CD13B	EP13	Water Spray with Dropout Boxes			
(West Side)		Type: Wet Collecting System	07/25/1998	40,000 cfm	None
(west Side)		Captured Efficiency: 99%			
	MELI	ING & REFINING LINE 2 Group(003) [8,000) lbs/hr or 35,040 TPY	Production Rate]	
ES22C	EP22	Melter Hood for 2 nd Line Custom Built by Guardian Fiberglass	2004	4.0 TPH	CD22B and CD22Bb (Duty Cycled)
		Mactiflo Cartridge Dust Collector		15,000 acfm	
		Model: MactFlo 4MTF96			
CD33D		Configuration: Closed Pressure			
CD22B	EP22	Filter Material: Fabric Filter	2004		None
(Duty Cycled)		Cleaning Method: Pulse Air			
		Captured Efficiency: 99%			
		Filter Area: 10,560 ft ² .			
		Mactiflo Cartridge Dust Collector			
		Model: MactFlo 4MTF96			
CD22Bb		Configuration: Closed Pressure			
(Duty Cycled)	EP22	Filter Material: Fabric Filter	2004	15,000 acfm	None
(Dury Cyclou)		Cleaning Method: Pulse Air			
		Captured Efficiency: 99%			
		Filter Area: 10,560 ft ²			
ES22E	EP23	Forehearth for 2 nd Line	2004	8,000 lbs/hr of Molten Glass	CD23A, CD23B, CD23C

T						
		Natural Gas Fired Brick Holding Process Heater Tank				
		Max Heat Input Rate: 6.0 MMBtu/hr				
		Custom Design by Guardian Fiberglass				
		Water Venturi Scrubbers				
CD224		Manufacturer: Fisher-Klosterman, Inc.				
CD23A	EP23	Model: MS-850H	2004	40,000 cfm	None	
(East Side)		Captured Efficiency: 99%				
		Scrubbing Liquid: Water				
		Water Venturi Scrubbers				
		Manufacturer: Fisher-Klosterman, Inc.				
CD23B	EP23	Model: MS-850H	2004	40,000 cfm	None	
(West Side)		Captured Efficiency: 99%				
		Scrubbing Liquid: Water				
		Water Venturi Scrubbers				
CD23C	EP23	Manufacturer: Fisher-Klosterman, Inc.		20,000 cfm	None	
(Non-		Model: MS-650H	2004			
resinated)		Captured Efficiency: 99%				
		Scrubbing Liquid: Water				
		FORMING AND COLLECTING	G 1 Group (004)	1		
	EP13	Fiber Forming Units with Advanced Water-Jet Rings Forming Process Heater	07/25/1998	8,000 lbs/hr		
ES13A		Natural Gas Fired			CD13A and CD13B	
		Max Heat Input Rate: 9.60 MMBtu/hr			CD13B	
		Custom Design by Guardian Fiberglass				
	EDIA	Vacuum Chamber for 1 st Line	07/05/1000	0.000 11 . 4	CD13A and	
ES13B	EP13	Custom Design by Guardian Fiberglass	07/25/1998	8,000 lbs/hr	CD13B	
	EDIA	Collection Plenum for 1 st Line	07/05/1000	0.000 11 4	CD13A and	
ES13C	EP13	Custom Design by Guardian Fiberglass	07/25/1998	8,000 lbs/hr	CD13B	
		FORMING AND COLLECTING	G 2 Group (005)	·		
		Fiber Forming Units with Advanced Water-Jet Rings Forming Process Heaters				
ES23A	EP23	Natural Gas Fired	2004	8,000 lbs/hr	CD23A, CD23B, CD23C	
		Max Heat Input Rate: 9.60 MMBtu/hr			CD23C	
		Custom Design by Guardian Fiberglass				
FCOOD	EP23	Vacuum Chamber for 2 nd Line	2004	8,000 lbs/hr	CD23A, CD23B,	
ES23B	EF 23	Custom Design by Guardian Fiberglass	2004	0,000 105/11	CD23C	
ES23C	EP23	Collection Plenum for 2 nd Line	2004	8,000 lbs/hr	CD23A, CD23B, CD23C	

		Custom Design by Guardian Fiberglass			
		CURING AND COOLING LI	NE 1 Group (006)	· · ·	
		3 Zone Curing Oven for 1 st Line			
ES14A	EP14	Manufacturer: B&M Steel of New Castle Indiana	07/25/1998	8,000 lbs/hr	CD14A
		Natural Gas Fired			
		Max Heat Input Rate: 18.0 MMBtu/hr			
		Thermal Oxidizer	_		
CD14A	EP14	Manufacturer: United McGill Corp. Model No.: 2-151C306	07/25/1998	2.628 MMft ³ / hr at 150.0 °F	None
		Control Efficiency: 95% for VOC			
ES14B	EP14	Cooling Table for 1 st Line	07/25/1998	8,000 lbs/hr	CD14A
		CURING AND COOLING LI	NE 2 Group (007)		
		3 Zone Curing Oven for 2 nd Line			
ES24A	EP24	Manufacturer: B&M Steel of New Castle Indiana	2004	8,000 lbs/hr	CD24A
		Natural Gas Fired	_		
		Max Heat Input Rate: 18.0 MMBtu/hr			
		McGill AirClean RTO Thermal Oxidizer			
CD24A	EP24	Manufacturer: McGill AirClean	2004	1.785 MMft ³ / hr at	None
CD24A	EI 21	Model No.: MCT 30.0		250.0 °F	
		Captured Efficiency: 95% for VOC			
ES24B	EP24	Cooling Table for 2 nd Line	2004	8,000 lbs/hr	CD24B
		Water Venturi Scrubbers		20,000 cfm	None
		Manufacturer: Fisher-Klosterman, Inc.			
CD24B	EP24	Model: MS-650H	2004		
		Captured Efficiency: 99%			
		Scrubbing Liquid: Water			
		FACING SIZING & PACKAGING	for 1 st Line Group (00	8)	
		Hot Roll – Facing Application			
50151	FP15	Manufacturer: Budzar	07/25/1009	50-400 ^o F @ 180	Nterre
ES15A	FP15	Model No.: 10T-180180-G0L	07/25/1998	GPM	None
		Type: Electric Hot Oil Heater			
		Infrared Radiation – Facing Application			
7045	ED16	Manufacturer: SOLARONICS IRT	2004	50-400 ^o F @ 200 amps	
ES15Aa	FP15	Model No.: IRT-MiniFlex		umps	CD15A
		Type: Electric	7		
		Slitter Saw			
ES15B	FP15	Manufacturer: Guardian Fiberglass	07/25/1998	NA	CD15A

		Model No.: NA]		
		Type: NA			
		Wet Collection System (Dynamic Separator)			
		Manufacturer: Quentin Keeney			
CD15A	FP15	Type: Air Tumber	07/25/1998	20,000 cfm	None
		Model No.: 35-W-C			
		Captured Efficiency: 80 %			
		Edge Trimmer and Dicers (or Cubes)			
50150	FP15	Manufacturer: Guardian Fiberglass	07/25/1008	NIA	CD15C and
ES15C	FP15	Model No.: NA	- 07/25/1998	NA	CD15D
		Type: NA			
		Choppers			
	FP15	Manufacturer: United Tool	07/25/1998	NA	CD15A
ES15D	FP15	Model No.: UX-431	07/23/1998	NA	CDISA
		Type: NA			
		Roll Up		NA	
EQISE	FP15	Manufacturer: Kaibel & Sieber	07/25/1998		CD15A
ES15E		Model No.: WM87-3000	07/23/1998	NA	CDISA
		Type: NA			
	FP15	Batt Folder			
ES15F		Manufacturer: Guardian Fiberglass	07/25/1998	NA	CD15A
ESISF		Model No.: NA	07/23/1998	1111	CDISA
		Type: NA			
		Batt Packers		NA	
F8150	FP15	Manufacturer: Guardian Fiberglass	07/25/1998		CD15A
ES15G	1.1.13	Model No.: NA	07/23/1998		CDISA
		Type: NA			
		Dicers or Cubers			
ES15H	FP15	Manufacturer: Guardian Fiberglass	07/25/1998	NA	CD15C and
ESISH	1.1.13	Model No.: NA	07/23/1998	NA	CD15D
		Type: NA			
ES15I	FP15	Blowing Wool Bagger	07/25/1998	NA	CD15C and CD15D
		Manufacturer: Guardian Fiberglass			
		Model No.: NA			
		Type: NA			
EQ151	FP15	Ring Wrapper	- 07/25/1998	NI A	CD15A
ES15J	1.1.12	Manufacturer: Samuel Strapping Systems	01/25/1990	NA	CDIJA

		Model No.: SOA750			
		Type: NA			
		Dual Cyclone and Condenser			
CD15C	FP15	Manufacturer: OMNI S.P.A	2006	NA	CD15D
		Model No.: ARP 2400			
		Screen Rooms (2)			
00150	FP15	8' x 8' x 16'	0005/0010	Total 20,000 cfm	
CD15D	FF15	Woven Plyester	2007/2012	10tal 20,000 cmi	CD15D
		Capture Efficiency 95%			
		FACING SIZING & PACKAGING	for 2 nd Line Group (00	8)	
		Infrared Radiation – Facing Application			
Eggs A	FP15	Manufacturer: SOLARONICS IRT	2004	50-400 ^o F @ 200	None
ES25A	FF15	Model No.: IRT-MiniFlex	2004	amps	None
		Type: Electric			
		Slitter Saw		NA	
EGOSD	FP15	Manufacturer: Guardian Fiberglass	2004		CD25A
ES25B		Model No.: NA	2004	NA	CD25A
		Type: NA			
		Water Venturi Scrubbers			
		Manufacturer: Fisher-Klosterman, Inc.			None
CD25A		Model: MS-650H	2004	20,000 cfm	
		Captured Efficiency: 85%			
		Scrubbing Liquid: Water			
		Edge Trimmer and Dicers (or Cubes)		NA	CD25A
ES25C	FP15	Manufacturer: Guardian Fiberglass	2004		
ES23C	1115	Model No.: NA	2004	na	CD25A
		Type: NA			
		Choppers			
ES25D	FP15	Manufacturer: United Tool	2004	NA	CD25A
ESZJD	1115	Model No.: UX-431	2004	na	CD25A
		Type: NA			
		Batt Folder			
ES25F	FP15	Manufacturer: Guardian Fiberglass	2004	NA	CD25A
E973L	1115	Model No.: NA	2004	114	CDLJA
		Type: NA			
ES25G	FP15	Batt Packers	2004	NA	CD25A
E-572/1	FP15		2004	11/1	CD25A

Emission Units Table (equipment_table.doc) Revised 03/2007

		Model No.: NA				
		Type: NA				
		Dicers or Cubers				
DOOTU	FP15	Manufacturer: Guardian Fiberglass	2004	NA	CD25C	
ES25H	FF13	Model No.: NA	2004	NA	CD25C	
		Type: NA				
		Blowing Wool Bagger				
ES25I	FP15	Manufacturer: Guardian Fiberglass	2004	NA	CD25C	
L5251	1110	Model No.: NA			02200	
		Type: NA				
		Dual Cyclone and Condenser				
CD25C	FP15	Manufacturer: Van Dommele	2004	NA	CD25D	
		Screen Room				
CDASD	FP15	8' x 8' x 16'	2007/2012	10,000 cfm	CD25D	
CD25D	TF15	Woven Plyester	2007/2012		CD25D	
		Capture Efficiency 95%				
		Dicers				
ES25J	FP15	Manufacturer: Guardian Fiberglass	2004	NA	CD25A	
E3233	1115	Model No.: NA	2001	111	002011	
		Type: NA				
	FP15	Silicone & De-Dusting Oil Application				
ES25K		Manufacturer: Guardian Fiberglass	2004	NA	CD25B	
Eb25It		Model No.: NA				
		Type: NA				
		Blowing Wool Bagger		NA		
ES25L	FP15	Manufacturer: Guardian Fiberglass	2004		CD25B	
LSZJL	1115	Model No.: NA	2004		CD25D	
		Type: NA				
		SUPPORT FACILITIES G	roup (009)			
		Emergency Generator For Line #1		400.2 MMBtu/hr		
ESDG12	EP16	Manufacturer: Caterpillar Diesel Fired Internal Combustion Engine	07/25/1998	(Limited to 500 hours of operation)	None	
150012		Engine Model No.: 3406		(500 Gallon Fuel		
		Fuel: Diesel		Tank)		
		Emergency Generator For Line #2		400.2 MMBtu/hr		
ESDG13	EP17	Manufacturer: Caterpillar Diesel Fired Internal Combustion Engine	2004	(Limited to 500 hours of operation)	None	
		Engine Model No.: 3456		(250 Gallon Fuel		

Emission Units Table (equipment_table.doc) Revised 03/2007

		Fuel: Diesel		Tank)	
		Emergency Fire Water			
		Manufacturer: Cummins Diesel Fired Internal Combustion Engine		1000 gallons of Diesel Fuel	
ESFW11	EP18	Model No.: NT-855-F1	07/25/1998	(265 Gallon Fuel	None
		Horsepower: 255 HP		Tank)	
		Fuel: Diesel			
ECHW/15	EP20	5-0.075 MMBtu/hr Water Heater	07/25/1998	0.275 MM (Data data	
ESHW15		Fuel: Pipeline Quality Natural Gas	07/23/1998	0.375 MMBtu/hr	
ESSH15	EP19	Air Handling Unit: Rapid Engineering, Model: 4089	07/25/1998	8.525 MMBtu/hr	
		Fuel: Pipeline Quality Natural Gas			
ESSH16	EP22	Air Handling Unit; Rapid Engineering, Model: 4089	2004	7.875 MMBtu/hr	
		Fuel: Pipeline Quality Natural Gas			

¹For 45CSR13 permitted sources, the numbering system used for the emission points, control devices, and emission units should be consistent with the numbering system used in the 45CSR13 permit. For grandfathered sources, the numbering system should be consistent with registrations or emissions inventory previously submitted to DAQ. For emission points, control devices, and emissions units which have not been previously labeled, use the following 45CSR13 numbering system: 1S, 2S, 3S,... or other appropriate description for emission units; 1C, 2C, 3C,... or other appropriate designation for control devices; 1E, 2E, 3E, ... or other appropriate designation for emission points.

APPENDIX E: WVDEP EMISSION UNIT FORMS

Guardian | Title V Renewal Application Trinity Consultants

АТТ	ACHMENT E - Emission Uni	it Form		
Emission Unit Description				
Emission unit ID number:	Emission unit name:	List any control devices associate		
ES12C, ES12E	Melter Hood and Forehearth Line	with this emission u		
(Group 002)	1	CD12B, CD12Bb, CI	DI3A & CDI3B	
The melter hood covers a 8,000 lb/hr, batch. The hood contains a 15,000 cfi charging and operation of the melter. ambient air through Stack EP12. The holding tanks. The Forehearth for Lin The Forehearth splits the molten glass	n unit (type, method of operation, d electrically fired, water-cooled, brick n Mactiflo cartridge dust collector tha Emissions from the melter exhaust ver molten glass flows from the Melters to e 1 has natural gas burners with a max s flow and presents a consistent glass f ned with forming / collection system e ore being discharged into the air. Model number:	lined melting unit that is t controls particulate en- rtically from fabric filte o Forehearths, natural g timum rated heat input of low (pull rates) to each	is used to melt hissions from the rs to the outside as fired, brick of 6.0MMBtu/hr fiber forming	
Guardian Fiberglass	NA	NA		
Construction date: 1998	Installation date: 07/25/1998	Modification date(s): 04/26/2007		
Design Capacity (examples: furnac 4.00TpH- ES12C 8,000 lbs/hr- ES12E	es - tons/hr, tanks - gallons):			
Maximum Hourly Throughput: 4.00 TpH- ES12C 8,000 lbs/hr- ES12E	Maximum Annual Throughput: 35,040 TpY	Maximum Operating Schedule: Guardian operates 24 hours per day, 365 days a year.		
Fuel Usage Data (fill out all applica	ble fields)			
Does this emission unit combust fue	!? x_Yes No	If yes, is it?		
ES12E- Forehearth		<u>X</u> Indirect FiredDirect Fired		
Maximum design heat input and/or 8.6 MM Btu/Hr	maximum horsepower rating:	Type and Btu/hr rat Pre Mix Tunnel Burn 8.6 MM Btu/Hr		
List the primary fuel type(s) and if the maximum hourly and annual fu Max. 8,200 CFH & 71,750 CF/Yr	applicable, the secondary fuel type(s el usage for each.	s). For each fuel type	listed, provide	
Describe each fuel expected to be us	sed during the term of the permit.			
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value	
Natural Gas	NA	NA	1047.7	
Emissions Data				
Criteria Pollutants	Potenti	al Emissions		
	РРН	TPY	γ	

Nitrogen Oxides (NO _X)	0.12	0.53		
Lead (Pb)	0.00006	0.00028		
Particulate Matter (PM _{2.5})	0.54	2.38		
Particulate Matter (PM ₁₀)	0.54	2.38		
Total Particulate Matter (TSP)	0.54	2.38		
Sulfur Dioxide (SO ₂)	0.0005	0.002		
Volatile Organic Compounds (VOC)	0.88	3.85		
Hazardous Air Pollutants	Potential Emissions			
	РРН	ТРҮ		
Hexavalent Chromium	0.00029	0.00125		
Regulated Pollutants other than	Potentia	al Emissions		
Criteria and HAP	РРН	TPY		
CO ₂ e	2,800	12,400		

The emission factors and TPY listed above for CO NO_x , VOC and PM are from Permit R14-0015 emission limits. The emission factor for SO_2 was obtained for the January 1999 stack test and the emission factor for Hexavalent Chromium was obtained from the Albion, MI 2006 stack test. Lead is an impurity in the raw materials and is calculated based on raw material usage.

Applicable Requirements

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

Permit to Modify R14-0015K:

4.1.1. The permittee shall operate a resinated (bonded) fiberglass insulation line identified as 1st line with associated emission EP12 (melter stack), EP13 (collection stack), and EP14 (incinerator stack). This line shall be operated and maintained in accordance with the following operational and emission limitations:

- a. Production of fiberglass insulation from this line shall not exceed 8,000 pounds of glass pulled per hour or 35,040 TPY. Compliance with this limit shall be based on a 12-month rolling total;
- b. Emissions from the line shall not exceed the following limits with respect to the corresponding emission point and pollutant;

	,							
Emission	CO	NO _x	PM	PM_{10}	VOC*	HCOH	Phenol	NH ₃
Point	lb/TGP	lb/TGP	lb/TGP	lb/TGP	lb/TGP	lb/TGP	lb/TGP	lb/TGP
EP12	0.73	0.03	0.07	0.07				
EP13	5.28	0.32	3.47	3.47	2.86	0.80	1.55	3.77
EP14	1.13	3.75	0.46	0.46				0.87
*1100	1 11	1 1 /1	1.4					

*VOC emissions shall not include methane and ethane

c. Exhaust from the electric melter shall be vented into a closed loop system that routes this stream directly to either one of identified baghouses (CD12B or CD12Bb) at all times when the line is operating.

d. The fiberizers and Forehearth of the line shall be operated in such a manner the following air to fuel ratios are not exceeded:

Thermox Gas Ratio Setting for the fiberizers: 962 millvolts

Thermox Gas Ratio Setting for the forehearths: 823 millvolts

e. Exhaust from the Forehearth and fiberizers of this line shall be vented into a closed loop system that routs this

stream directly to either one of identified water sprays with drop-out boxes (CD13A or CD13B) at all times when the line is operating.

4.1.3 The following condition applies to both production lines.

a. A bag leak detection system (BLDS) shall be installed and operated on the fabric filter baghouses identified as CD12B, CD12Bb, CD22B, and CD22Bb. Each BLDS shall be installed, maintained, and operated in accordance with 40CFR63.13839(b)(1) and U.S. EPA guidance document, "Fabric Filter Bag Leak Detection Guidance" (EPA-454/R-98-015, September 1997);

4.1.4 The permitted shall, to the extent practicable, install maintain, and operate all pollution control equipment listed in Section 1.0 and associated monitoring equipment in a manner consistent with safety and good air pollution control practices for minimizing emissions, or comply with any more stringent limits set forth in this permit or as set forth by any State rule, Federal regulation, or alternative control plan approved by the Secretary. [45CSR§13-5.11.]

NSPS Subpart PPP and MACT Subpart NNN

_ Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

Permit to Modify R14-0015K:

- 4.2.2 The permittee shall maintain records of the recorded data from the stipulated devices in condition 4.1.3.b. through g. in accordance with condition 3.4.1 of this permit.
- 4.2.6 The permittee shall install, calibrate, maintain, and operated two Thermox premix (air to fuel) analyzers to measure and record the air to fuel ratio being fed to the fiberizers and forehearth for each production line. Each analyzer shall be maintain in such a way that the analyzer is available to analyze samples 90 percent of the time for greater. Each analyzer shall be calibrated once a month in accordance with the manufacturer's specifications and follow the Quality & Assurance guidelines recommended by the manufacturer. Readings shall be taken and recorded twice a day with a minimum of ten hours between readings. Records of such readings and calibrations shall be maintain in accordance with condition 3.4.1.

4.3.1 For the purposes of demonstrating initial compliance with operations and emission limitation in condition 4.1.1., 4.1.2., and 40 CFR §63.(a), the permittee shall conduct performance testing of the 1^{st} and 2^{nd} lines within 180 days after issuance of this permit. Such testing shall determine the VOC, formaldehyde, and phenol emission rates from the collection and incinerator stacks of the both production lines. This testing shall establish and/or verify the operating parameters for the respective control devices of the production line. This testing shall be conducted as outline in the following:

- a. General Testing Requirements:
 - i. This testing shall consist of three test runs. Each test run must last at least one hour;
 - ii. Each test run must be conducted with the production line operating at no less 90 percent capacity;

NSPS Subpart PPP and MACT Subpart NNN

Are you in compliance with all applicable requirements for this emission unit? <u>X</u> Yes <u>No</u>

If no, complete the Schedule of Compliance Form as ATTACHMENT F.

ATT	ACHMENT E - Emission Uni	it Form		
Emission Unit Description				
Emission unit ID number:	Emission unit name:	List any control dev		
ES14A, ES14B	3 Zone Curing Oven and Cooling	with this emission u	nit:	
(Group 006)	Table	CD14A		
Provide a description of the emission	n unit (type, method of operation, d	esign parameters, etc.):	
The collected fibers, coated with binder oven of Guardian Fiberglass design. We binder is cured by means of the recircu oven, where ambient plant air is drawn curing oven is 18.0 mmBtu/hr. Potenti fiberglass manufacturing line are colled McGill AirClean (formerly United Mc particulate emissions from the cooling	While the fiberglass blanket is in the o ulating heated air. A cooling section i in through the cured fiberglass blanket ial regulated air pollutant emissions fr ected and controlled with a thermal ox Gill) Thermal Oxidizer that exhausts	oven it is sized to thickn s provided downstream . The maximum rated h om the curing sections idizer. The curing table through Stack No. EP1	ess and the of the curing neat input of the of the wool e utilizes a	
Manufacturer: Guardian Fiberglass	Model number: NA	Serial number: NA		
Construction date: 1998	Installation date: 07/25/1998	Modification date(s): NA		
Design Capacity (examples: furnace	es - tons/hr, tanks - gallons): 8,000 1	bs/hr		
Maximum Hourly Throughput: 8,000 lbs/hr	Maximum Annual Throughput: 35,040 Tons per Year	Maximum Operatin The facility operates 365 days a year.		
Fuel Usage Data (fill out all applical	ble fields)			
Does this emission unit combust fue	l? _x_Yes No	If yes, is it?		
ES14A- Curing Oven		Indirect Firedx_Direct Fired		
Maximum design heat input and/or 18.0 MM Btu/Hr	maximum horsepower rating:	Type and Btu/hr rat Nozzle Mix Burner 18.0 mmBtu/hr nat'l	ing of burners:	
List the primary fuel type(s) and if a the maximum hourly and annual fue Natural Gas Max./Hr.: 17,150 CFH Nat. Gas Max/Yr : 150,234 CF		•		
Describe each fuel expected to be us	ed during the term of the permit.			
Fuel Type	Max. Sulfur Content Max. Ash Content BTU Value			
Natural Gas	NA	NA	1047.7	
Emissions Data				
Criteria Pollutants	Potenti	al Emissions		
	РРН	TPY	7	
Carbon Monoxide (CO)	4.52	19.8		

Nitrogen Oxides (NO _x)	15	65.7		
Lead (Pb)	0.0000212	0.000093		
Particulate Matter (PM _{2.5})	2.16	9.46		
Particulate Matter (PM ₁₀)	2.16	9.46		
Total Particulate Matter (TSP)	2.16	9.46		
Sulfur Dioxide (SO ₂)	0.0003	0.001		
Volatile Organic Compounds (VOC)	0.96	4.205		
Hazardous Air Pollutants	Potential Emissions			
	РРН	TPY		
Formaldehyde	0.68	2.99		
Methanol	0.24	1.03		
Phenol	1.2	5.23		
Regulated Pollutants other than	Potential Emissions			
Criteria and HAP	РРН	TPY		
Ammonia	3.48	15.24		
Formic Acid	0.160	0.701		
Carbon Dioxide Equivalent (CO ₂ e)	2,110	9,220		

The emission factors and TPY listed above for CO NO_x , PM, VOC Phenol, Ammonia and Formaldehyde are from Permit R14-0015H. The Lead is an impurity in the raw material and is calculated based on usage. Methanol emission factor was obtained from the October 2005 stack test, and Formic Acid was obtained from the October 2006 test. SO₂ was obtained form the January 1999 stack test. Condensable PM was calculated based on stack test data. CO2e was calculated according to 40 CFR 98 Subparts C and N as appropriate.

Applicable Requirements

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

Permit to Modify R14-0015K:

4.1.1. The permittee shall operate a resinated (bonded) fiberglass insulation line identified as 1st line with associated emission EP12 (melter stack), EP13 (collection stack), and EP14 (incinerator stack). This line shall be operated and maintained in accordance with the following operational and emission limitations:

- a. Production of fiberglass insulation from this line shall not exceed 8,000 pounds of glass pulled per hour or 35,040 TPY. Compliance with this limit shall be based on a 12-month rolling total;
- b. Emissions from the line shall not exceed the following limits with respect to the corresponding emission point and pollutant;

Emission Point	CO lb/TGP	NO _x lb/TGP	PM lb/TGP	PM ₁₀ lb/TGP	VOC* lb/TGP	HCOH lb/TGP	Phenol lb/TGP	NH ₃ lb/TGP
EP12	0.73	0.03	0.07	0.07	10/101	10/101	10/101	10/101
EP13	5.28	0.32	3.47	3.47	2.86	0.80	1.55	3.77

EP14	1.13	3.75	0.46	0.46				0.87
11 / TCD around a star star star star star star star st								

lb/TGP = pounds of pollutant per ton of glass pulled.

- *VOC emissions shall not include methane and ethane
- f. Exhaust from the curing oven shall be vented into a closed loop system that routes this stream directly to the United McGill Thermal Oxidizer identified as CD14A at all times when the line is operating. The oxidizer shall be operated and maintained in accordance with the following;
 - i. The temperature of combustion chamber shall not fall below 1,500°F or the average temperature recorded during the most recent performance testing that demonstrated compliance with the VOC, formaldehyde, and phenol emissions limits. Compliance with this limit shall be based on rolling three hour average.
 - ii. The oxidizer shall not consume more than 5,000 cubic feet of natural gas per hour or 43.8 MMscf per year.

4.1.3 The following conditions apply to both production lines.

g. A device that continuous measurers and records the temperature of the combustion chamber for each thermal oxidizer shall be installed, calibrated, maintained, and continuously operated. Such device shall be certified by the manufacturer to be accurate within \pm one (1) degrees Fahrenheit.

4.1.4 The permittee shall, to the extent practicable, install maintain, and operate all pollution control equipment listed in Section 1.0 and associated monitoring equipment in a manner consistent with safety and good air pollution control practices for minimizing emissions, or comply with any more stringent limits set forth in this permit or as set forth by any State rule, Federal regulation, or alternative control plan approved by the Secretary. **[45CSR§13-5.11.]**

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

- 4.2.1 The permittee shall monitor and record the hourly production on a daily basis for each line. These records shall include the monthly total and the 12-month rolling total for each line respectively. Such records shall be maintained in accordance with condition 3.4.1.
- 4.2.2 The permittee shall maintain records of the recorded data from the stipulated devices in condition 4.1.3.b. through g. in accordance with condition 3.4.1 of this permit.
- 4.3.1 For the purposes of demonstrating initial compliance with operational and emission limitation in condition 4.1.1., 4.1.2., and 40 CFR §63.(a), the permittee shall conduct performance testing of the 1st and 2nd lines within 180 days after issuance of this permit. Such testing shall determine the VOC, formaldehyde, and phenol emission rates from the collection and incinerator stacks of the both production lines. This testing shall establish and/or verify the operating parameters for the respective control devices of the production line. This testing shall be conducted as outline in the following:
- a. General Testing Requirements:
 - i. This testing shall consist of three test runs. Each test run must last at least one hour;
 - ii. Each test run must be conducted with the production line operating at no less 90 percent capacity;
 - iii. During each test run, sampling of the collection and incinerator must occur simultaneously to each other;
 - viii. During such testing, the permittee shall measure and record all of the operating parameters respective to the production line as noted in condition 4.3.1. in fifteen (15) minute intervals. The arithmetic average shall be calculated for each parameters using all of recorded measurements. Such measurements and arithmetic averages shall be included with the testing report;
- b. Demonstrating compliance with the VOC emission limit shall be conducted with a method(s) approved by the Director. The permittee may propose a testing method as part of the required protocol of condition 3.4.1.;
- c. Demonstrating compliance with the formaldehyde limits be conducted in accordance with U.S. EPA method 316 or Method 318;
- d. Demonstrating compliance with the phenol limits be conducted in accordance with U.S. EPA Method 318 or 320 or other method approved by the Director;
- e. Compliance with the VOC, formaldehyde, and phenol limits shall be determined by taking sum of the arithmetic average of the respective pollutant from the collection stack and incinerator stack. The reported emission rates shall be in terms of pounds per ton of glass pulled.

- f. Such testing shall be conducted in accordance with 3.3.1.
- 4.3.2. Within 180 days after completing modification of the 1st line to be capable of producing 8,000 pounds of glass pulled per hour, the permittee shall conduct performance testing to demonstrate compliance with the carbon dioxide PM, VOC, formaldehyde, and phenol emission limits. Stack testing shall be conducted as prescribe in condition 4.3.1. for VOC, formaldehyde, and phenol. For PM, such testing shall be conducted as outline in condition 4.3.4. This testing shall establish and/or verify the operating parameters for the respective control devices of the production line.
- 4.3.3 Once every five years, the permittee shall conduct emission testing to demonstrate compliance with the permitted CO and NO_x emission limits in 4.1.1.b and 4.1.2b for the collection stack (EP13 and EP23) and incinerator stack (EP14 and EP24) of each production line and to verify and/or establish maximum Thermox readings in millivolts for the fiberizers and Forehearth as stipulated in 4.1.1d. and 4.1.2.d. This testing shall be conducted as outline in 3.3.1., 4.3.1.a, and as follows:
- a. Demonstrating compliance with the carbon monoxide limits be conducted in accordance with U.S. EPA method 10;
- b. Demonstrating compliance with the oxides of nitrogen limits be conducted in accordance with U.S. EPA Method 7E.
- 4.3.4 Once every 5 years or within 180 days that when the production line will be producing a product with a LOI greater than the previous compliance test that demonstrated compliance with the permitted PM limits of this permit, the permittee shall conduct performance testing to determine the PM emission rate of the collection and incinerator stacks of the respective production line. Such testing shall be conducted as outlined in condition 4.3.1.a. and U.S.EPA Method 5E. This testing shall establish and/or verify the operating parameters for the respective control devices of the production line.
- 4.3.5 Should the permittee elect to change binder formula or produce a product with a LOI that is greater than the one that was produced during a compliance test that demonstrated compliance with the permitted VOC, formaldehyde, and phenol limits of this permit, the permittee shall conduct performance testing within 180 days of after making such change to demonstrate compliance with the VOC, formaldehyde, and phenol emission limits. Such testing shall be conducted as prescribed in conditions 3.3.1. and 4.3.1. for VOC, formaldehyde, and phenol of the respective line that the change is effecting. This testing shall establish and/or verify the operating parameters for the respective control devices of the production line.

4.4.1. Record of monitoring. The permittee shall keep records of monitoring information that include the following:

- a. The date, place as defined in this permit and time of sampling or measurements;
- b. The date(s) analyses were performed;
- c. The company or entity that performed the analyses;
- d. The analytical techniques or methods used;
- e. The results of the analyses; and
- f. The operating conditions existing at the time of sampling or measurement.

Are you in compliance with all applicable requirements for this emission unit? _x_Yes ___No

If no, complete the Schedule of Compliance Form as ATTACHMENT F.

ATTACHMENT E - Emission Unit Form

AII			t Form		
Emission Unit Description					
Emission unit ID numbers: ES1A, ES1B, ES1C, ES1D, ES1E, ES1F, ES1G, ES1H, ES1I, ES1J, ES1K, ES12A, ES12B, ES12D, ES12Db, ES22A, ES22B & ES22Bb	Sand, Boraz Guardian C (Purchased)	al Storage Silos for s, Soda Ash, Aplite, ullet, Soda Lime Cullet , Lime & Baghouse aw Material Storage	List any control devices associa with these emission units: CD1A, CD1B, CD1D, CD1F, CE CD1G, CD1K, CD12A, CD12C, CD12Cb, CD12D, CD22A & CD		
Provide a description of the emission Sand, Borax, Soda Ash, Aplite, Cullet to storage bins, where they are kept ur from the process and pneumatically co conveyed to storage bins until needed	and Lime is p ntil needed in onveyed into a	pneumatically conveyed the process. Baghouse du a silo for reuse. The mixe	from the delivery truch ust and Guardian Culle	ks or railroad cars	
Manufacturer: Whirl Air Flow	12-0X43-0,	abers: 0X43-0, 60-100 12 70-100 11-0X43-0, 0X43-0 & 70-100 12-	Serial numbers: I 15864-1, I 15867-3, I 15867-4, I 15867-1, I 15867-2, I 15867-5, I 15867-6, I 15866-1, I 15866-2, I 15865-1 & I 17227-1		
Construction date: 1997	Installation 07/25/1998	ı date:	Modification date(s): NA		
Design Capacity (examples: furnace	es - tons/hr, ta	anks - gallons): 178.35	Tons		
Maximum Hourly Throughput: 18,400 lbs	Maximum 80,592 tons	Annual Throughput:	Maximum Operating Schedule: The facility operates 24 hours a day 365 days a year.		
Fuel Usage Data (fill out all applical	ble fields)		I		
Does this emission unit combust fue	l?Yes	_ <u>X</u> _ No	If yes, is it?		
			Indirect Fired	Direct Fired	
Maximum design heat input and/or NA	maximum ho	orsepower rating:	Type and Btu/hr rating of burners: NA		
List the primary fuel type(s) and if a the maximum hourly and annual fu NA). For each fuel type	listed, provide	
Describe each fuel expected to be us	ed during the	e term of the permit.			
Fuel Type	Max	ax. Sulfur Content Max. Ash Content		BTU Value	
NA					
Emissions Data					
Criteria Pollutants		Potential Emissions			
		РРН		TPY	
Carbon Monoxide (CO)	NA		NA		
Nitrogen Oxides (NO _X)	NA		NA		

Lead (Pb)	NA	NA
Particulate Matter (PM _{2.5})	0.35	1.53
Particulate Matter (PM ₁₀)	0.35	1.53
Total Particulate Matter (TSP)	0.35	1.53
Sulfur Dioxide (SO ₂)	NA	NA
Volatile Organic Compounds (VOC)	NA	NA
Hazardous Air Pollutants	Potential Emissi	ons
	PPH	TPY
NA	NA	NA
Regulated Pollutants other than Criteria and HAP	Potential Emissions	
	PPH	TPY
NA	NA	NA

The above emission factor was obtained from AP-42 Table11.13-2 for Glass Fiber Manufacturing and computed with the maximum production capacity listed above.

Applicable Requirements

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

R14-0015, Condition 5.1.1 The following storage devices shall be equipped and operated with the corresponding control devices:

Equipment Number	Description	Control Equipment	Control Number
ES1A	Raw Material Storage Bin (Sand)	Whirl-Air Flow Bin-Vent Model 195-42	CD1A
ES1B	Raw Material Storage Bin (Borax)	Whirl-Air Flow Bin-Vent Model 195-42	CD1B
ES1C	Raw Material Storage Bin (Borax)	Whirl-Air Flow Bin-Vent Model 195-42	CD1B
ES1D	Raw Material Storage Bin (Soda Ash)	Whirl-Air Flow Bin-Vent Model 195-42	CD1D
ES1E	Raw Material Storage Bin (Soda Ash)	Whirl-Air Flow Bin-Vent Model 195-42	CD1D
ES1F	Raw Material Storage Bin (Aplite)	Whirl-Air Flow Bin-Vent Model 195-42	CD1F
ES1G	Raw Material Storage Bin (Lime)	Whirl-Air Flow Bin-Vent Model 195-42	CD1G
ES1H	Raw Material Storage Bin (Purchased Cullet)	Whirl-Air Flow Bin-Vent Model 195-42	CD1I
ES1I	Raw Material Storage Bin (Purchased Cullet)	Whirl-Air Flow Bin-Vent Model 195-42	CD1I
ES1J	Raw Material Storage Bin (Guardian Cullet)	Whirl-Air Flow Bin-Vent Model 195-42	CD1F

	ES1K	Raw Material Storage Bin (Baghouse Dust)	Whirl-Air Flow Bin-Vent Model 55-30	CD1K		
	Permit Shield					
For all analizable mentionents listed above mentide mentioning/testing/meaning/meaning/meanting which shall						

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.) NA

Are you in compliance with all applicable requirements for this emission unit? <u>X</u>Yes <u>No</u>

If no, complete the Schedule of Compliance Form as ATTACHMENT F.

ATT	ACHMENT E - Emission Un	it Form			
Emission Unit Description					
Emission unit ID number:	Emission unit name:	List any control devices associated with this emission unit: CD22B, CD22Bb, CD23A, CD23B CD23C			
ES22C, ES22E Group 003	Melter Hood and Forehearth for the 2 nd Line				
Provide a description of the emissio The melter hood covers a 8,000 lb/hr, batch. The hood discharges to a 15,00 the charging and operation of the mel- outside ambient air through Stack EP2 gas fired and brick lined holding tank input of 6.0 MMBtu/hr. The Foreheart to each fiber forming unit. Forehearth passed through a set of scrubbers before	electrically fired, water-cooled and b 00 cfm Mactiflo cartridge dust collector ter. Emissions from the melter exhaus 22. The molten glass flows from the N . The Forehearth for Line 2 has natura th splits the molten glass flow and pre- emissions are combined with forming	rick lined melting unit the or that controls particular t vertically from fabric f felter to the Forehearth l gas burners with a max esents a consistent glass	hat is used to mel te emissions from filters to the which is a natura kimum rated heat flow (pull rates)		
Manufacturer: Guardian Fiberglass	Model number: NA	Serial number: NA			
Construction date: 2004	Installation date: 2004	Modification date(s): NA			
Design Capacity (examples: furnace ES22C- 4.0 TPH ES22E- 8,000 lbs/hr	es - tons/hr, tanks - gallons):				
Maximum Hourly Throughput: ES22C- 4.0 TPH ES22E- 8,000 lbs/hr	Maximum Annual Throughput: 35,040 TpY	Maximum Operatin Guardian Fiberglass o a day, 365 days a yea	operates 24 hours		
Fuel Usage Data (fill out all applica	ble fields)	1			
Does this emission unit combust fue ES22E- Forehearth	91? <u>x</u> Yes <u>No</u>	If yes, is it? _x_ Indirect Fired	Direct Fired		
Maximum design heat input and/or 6.0 MM Btu/Hr	maximum horsepower rating:	Type and Btu/hr rat Pre Mix Tunnel Burn 8.6 MM Btu/Hr	0		
List the primary fuel type(s) and if the maximum hourly and annual fu Max. 8,200 CFH & 71,750 CF/Yr		s). For each fuel type	listed, provide		
Describe each fuel expected to be us	sed during the term of the permit.				
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value		
Natural Gas	NA	NA	1047.7		
Emissions Data					
Criteria Pollutants	Potential Emissions				
	РРН ТРҮ				
	PPH	TPY	7		

Nitrogen Oxides (NO _X)	0.12	0.53		
Lead (Pb)	0.00006	0.00028		
Particulate Matter (PM _{2.5})	0.54	2.38		
Particulate Matter (PM ₁₀)	0.54	2.38		
Total Particulate Matter (TSP)	0.54	2.38		
Sulfur Dioxide (SO ₂)	0.0005	0.002		
Volatile Organic Compounds (VOC)	0.88	3.9		
Hazardous Air Pollutants	Potential Emissions			
	РРН	TPY		
Hexavalent Chromium	0.00029	0.00125		
Regulated Pollutants other than	Potential Emissions			
Criteria and HAP	PPH	TPY		
Carbon Dioxide (CO ₂ e)	2,800	12,400		

The emission factors and TPY listed above for CO NO_x , and PM are from Permit R14-0015H. The emission factor for Hexavalent Chrome was obtained from the Albion, MI 2006 stack test and the Lead is an impurity in the raw material and is calculated based on usage. SO₂ was obtained form the January 1999 stack test while VOC was obtained from the May 2005 stack test. Condensable PM was calculated based on stack test data. CO₂e was calculated based on 40 CFR 98 Subparts C and N as appropriate.

Applicable Requirements

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

Permit to Modify R14-0015K:

4.1.2 The permittee shall operate a fiberglass insulation line identified as 2nd line with associated emission EP22 (melter stack), EP23 (collection stack), and EP24 (incinerator stack). This line shall be operated and maintained in accordance with the following operational and emission limitations:

a. Production fiberglass insulation from this line shall not exceed 8,000 pounds of glass pulled per hour and 35,040 TPY. Compliance with this limit shall be based on a 12-month rolling total;

b. Emissions from the line shall not exceed the following limits with respect to the corresponding emission point and pollutant:

Emission	СО	NO _x	PM	PM_{10}	VOC*	HCOH	Phenol	NH ₃
Point	lb/TGP	lb/TGP	lb/TGP	lb/TGP	lb/TGP	lb/TGP	lb/TGP	lb/TGP
EP22	0.73	0.03	0.07	0.07				
EP23	5.28	0.32	3.25	3.25	2.86	0.8	1.55	3.77
EP24	1.31	3.75	0.93	0.93				0.87

lb/TGP = pounds of pollutant per ton of glass pulled. *VOC emissions shall not include methane and ethane

c. Exhaust from the electric melter shall be vented into a closed loop system that routes this stream directly to either on of identified baghouses (CD12B or CD12Bb) at all times when the line is operating;

d. The fiberizers and forehearth of the line shall be operated in such a manner the following air to fuel ratios are not exceeded:

Thermox Gas Ratio Setting for the fiberizers: 962 millivolts Thermox Gas Ratio Setting for the forehearths: 823 millivolts

e. Exhaust from the Forehearth and fiberizers of this line shall be vented into a closed loop system that routes this stream directly to one of three venturi scrubbers (CD23A, CD23B, or CD23C). Scrubbers CD23A and CD23B shall be operated when resinated fiberglass is being produced. Scrubber CD23C shall be operated when non-resinated fiberglass is being produced;

4.1.3 The following condition applies to both production lines.

a. A bag leak detection system (BLDS) shall be installed and operated on the fabric filter baghouses identified as CD12B, CD12Bb, CD22B, and CD22Bb. Each BLDS shall be installed, maintained, and operated in accordance with 40CFR63.13839(b)(1) and U.S. EPA guidance document, "Fabric Filter Bag Leak Detection Guidance" (EPA-454/R-98-015, September 1997);

4.1.4 The permitted shall, to the extent practicable, install, maintain, and operate all pollution control equipment listed in Section 1.0 and associated monitoring equipment in a manner consistent with safety and good air pollution control practices for minimizing emissions, or comply with any more stringent limits set forth in this permit or as set forth by any State rule, Federal regulation, or alternative control plan approved by the Secretary. **[45CSR§13-5.11.]**

NSPS NNN and MACT PPP

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

Permit to Modify R14-0015K:

- 4.2.2 The permittee shall maintain records of the recorded data from the stipulated devices in condition 4.1.3.b. through g. in accordance with condition 3.4.1 of this permit.
- 4.2.6 The permittee shall install, calibrate, maintain, and operated two Thermox premix (air to fuel) analyzers to measure and record the air to fuel ratio being fed to the fiberizers and forehearth for each production line. Each analyzer shall be maintain in such a way that the analyzer is available to analyze samples 90 percent of the time for greater. Each analyzer shall be calibrated once a month in accordance with the manufacturer's specifications and follow the Quality & Assurance guidelines recommended by the manufacturer. Readings shall be taken and recorded twice a day with a minimum of ten hours between readings. Records of such readings and calibrations shall be maintain in accordance with condition 3.4.1.

4.3.1 For the purposes of demonstrating initial compliance with operations and emission limitation in condition 4.1.1., 4.1.2., and 40 CFR 63.(a), the permittee shall conduct performance testing of the 1st and 2nd lines within 180 days after issuance of this permit. Such testing shall determine the VOC, formaldehyde, and phenol emission rates from the collection and incinerator stacks of the both production lines. This testing shall establish and/or verify the operating parameters for the respective control devices of the production line. This testing shall be conducted as outline in the following:

a. General Testing Requirements:

i.

- This testing shall consist of three test runs. Each test run must last at least one hour;
- ii. Each test run must be conducted with the production line operating at no less 90 percent capacity;

Are you in compliance with all applicable requirements for this emission unit? <u>X</u> Yes <u>No</u>

If no, complete the **Schedule of Compliance Form** as **ATTACHMENT F**.

ATT	ACHMENT E - Emission Uni	t Form			
Emission Unit Description					
Emission unit ID number:	Emission unit name:	List any control dev			
ES23A, ES23B and ES23 C	Fiberizers, Vacuum Chamber and	with this emission up			
Group 005	Collection Plenum for 2 nd Line	CD23A, CD23B and	CD23C		
Provide a description of the emission	n unit (type, method of operation, d	esign parameters, etc.)):		
Fiber forming units (or fiberizers) are glass stream, and "spin" it into glass fi total material throughput capacity of 8 centrifugal force, natural gas heat, and will have a maximum rated heat input the collection chain in the vacuum cha plenum is a box where the vacuum cha exiting exhaust on the 2 nd production 1	bers. For the 2 nd production line, ther ,000 pounds per hour of wool fibergla compressed air blast to form the fiber of 9.6 mmBtu/hr. Conditioned fiber fi mber, by fans located downstream of amber exhaust is impinged with a wate	e are nine (9) or more f ass production. The fibers. The natural gas fired rom the fiberizers is put the collection plenum. er spray to control parti	iberizers with a erizers use d process heater lled down onto The collection culates. The		
Manufacturer: Guardian Fiberglass	Model number: NA	Serial number: NA			
Construction date: 2004	Installation date: 2004	ate: Modification date(s): NA			
Design Capacity (examples: furnace	s - tons/hr, tanks - gallons): 8,000 1	bs/hr			
Maximum Hourly Throughput: 8,000 lbs/hr	Maximum Annual Throughput: 35,040 Tons per Year	Maximum Operatin The facility operates 3 365 days a year.			
Fuel Usage Data (fill out all applical	ole fields)				
Does this emission unit combust fue	!? x_Yes No	If yes, is it?			
		Indirect Fired	x_Direct Fired		
Maximum design heat input and/or 9.6 mmBtu/hr	maximum horsepower rating:	Type and Btu/hr rat Pre Mix Tunnel Burn 9.6 mmBtu/hr			
List the primary fuel type(s) and if a the maximum hourly and annual fue Natural Gas Max. Nat. Gas Usage Per Max. Nat. Gas Usage Per Year: 70.08	el usage for each. Hour: 8,000 CFH MM CF	s). For each fuel type	listed, provide		
Describe each fuel expected to be us	ed during the term of the permit.				
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value		
Natural Gas	NA	NA	1047.7		
Emissions Data	[
Criteria Pollutants	Potentia	al Emissions			
	PPH	TPY	7		
Carbon Monoxide (CO)	21.12	92.5	1		

Nitrogen Oxides (NO _X)	1.28	5.61		
Lead (Pb)	0.00022	0.00095		
Particulate Matter (PM _{2.5})	13.96	61.14		
Particulate Matter (PM ₁₀)	13.96	61.14		
Total Particulate Matter (TSP)	13.96	61.14		
Sulfur Dioxide (SO ₂)	0.004	0.018		
Volatile Organic Compounds (VOC)	10.48	45.9		
Hazardous Air Pollutants	Potential Emissions			
	PPH	TPY		
Chromium	0.003	0.015		
Formaldehyde	2.52	11.04		
Methanol	9.12	19.95		
Phenol	5	21.9		
Regulated Pollutants other than	Potential Emissions			
Criteria and HAP	PPH	TPY		
Formic Acid	1.39	6.1		
Ammonia	15.08	66.05		
Carbon Dioxide Equivalent (CO ₂ e)	1,100	4,900		

The emission factors and TPY listed above for CO NO_x , PM, VOC Phenol, Ammonia and Formaldehyde are from Permit R14-0015H. The emission factor for Chrome was obtained from the Mineral Wells, MS 2000 stack test and the Lead is an impurity in the raw material and is calculated based on usage. Methanol emission factor was obtained from the October 2006 stack test, along with Formic Acid. SO₂ was obtained form the January 1999 stack test. Condensable PM was calculated based on stack test data. Carbon dioxide equivalents were calculated based on 40 CFR 98 Subpart C and N as appropriate.

* These emissions are a combined limit with EP24.

Applicable Requirements

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

Permit to Modify R14-0015K:

4.1.2 The permittee shall operate a fiberglass insulation line identified as 2^{nd} line with associated emission EP22 (melter stack), EP23 (collection stack), and EP24 (incinerator stack). This line shall be operated and maintained in accordance with the following operational and emission limitations: a. 4.1.2. Production fiberglass insulation from this line shall not exceed 8,000 pounds of glass pulled per hour and 35,040 TPY. Compliance with this limit shall be based on a 12-month rolling total; b. Emissions from the line shall not exceed the following limits with respect to the corresponding emission point and pollutant: Emission CO NO, PM PM_{10} VOC* HCOH Phenol NH_3

Point	lb/TGP							
EP22	0.73	0.03	0.07	0.07				
EP23	5.28	0.32	3.25	3.25	2.86	0.8	1.55	3.77
EP24	1.31	3.75	0.93	0.93				0.87

lb/TGP = pounds of pollutant per ton of glass pulled.

*VOC emissions shall not include methane and ethane

d. The fiberizers and forehearth of the line shall be operated in such a manner the following air to fuel ratios are not exceeded:

Thermox Gas Ratio Setting for the fiberizers: 962 millivolts Thermox Gas Ratio Setting for the forehearths: 823 millivolts

- e. Exhaust from the Forehearth and fiberizers of this line shall be vented into a closed loop system that routes this stream directly to one of three venturi scrubbers (CD23A, CD23B, or CD23C). Scrubbers CD23A and CD23B shall be operated when resinated fiberglass is being produced. Scrubber CD23C shall be operated when non-resinated fiberglass is being produced;
- g. A continuous pull rate monitor shall be install, calibrate, and maintain that measured and records the glass pull rate of the line on an hourly basis. [40CFR§63.1383.(k)]

4.1.3 The following conditions apply to both production lines.

- b. Each fiberizer that produces resinated (bonded) fiberglass shall be equipped, maintained, and operated with a advance water-jet ring to minimize formaldehyde emissions from the fiber forming process;
- c. A device that continuous measures and records the pressure drop across the scrubber shall be installed, calibrated, maintained, and operated for each venturi scrubber (CD23A,CD23B, CD23C, and CD24B). Such device is to be certified by its manufacture to be accurate within ± 250 Pascal's (± 1 inch water gauge) over its operating range.
- d. A device that continuous measures and records the scrubbing liquid flow to each scrubber and drop-out box shall be installed, calibrate, maintain, and operated for each venturi scrubber and drop-out box (CD13A, CD13B, CD23A, CD23B, CD23C, and CD24B). Such device is to be certified by its manufacturer to be accurate within ± 5 percent over its operating range; and
- f. A device that continuous measures and records the amount of binder applied to the product shall be installed, maintained, calibrated, and operated for each production line. Such device is to be certified by its manufacturer to be accurate within \pm 5 percent over its operating range.
- 4.1.4 The permitted shall, to the extent practicable, install maintain, and operate all pollution control equipment listed in Section 1.0 and associated monitoring equipment in a manner consistent with safety and good air pollution control practices for minimizing emissions, or comply with any more stringent limits set forth in this permit or as set forth by any State rule, Federal regulation, or alternative control plan approved by the Secretary. **[45CSR§13-5.11.]**
 - Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

- 4.2.1 The permittee shall monitor and record the hourly production on a daily basis for each line. These records shall include the monthly total and the 12-month rolling total for each line respectively. Such records shall be maintained in accordance with condition 3.4.1.
- 4.2.2 The permittee shall maintain records of the recorded data from the stipulated devices in condition 4.1.3.b. through g. in accordance with condition 3.4.1 of this permit.

4.3.1 For the purposes of demonstrating initial compliance with operations and emission limitation in condition 4.1.1., 4.1.2., and 40 CFR §63.(a), the permittee shall conduct performance testing of the 1^{st} and 2^{nd} lines within 180 days after issuance of this permit. Such testing shall determine the VOC, formaldehyde, and phenol emission rates from the collection and incinerator stacks of the both production lines. This testing shall establish and/or verify the operating parameters for the respective control devices of the production line. This testing shall be conducted as outline in the following:

a. General Testing Requirements:

This testing shall consist of three test runs. Each test run must last at least one hour;

- ii. Each test run must be conducted with the production line operating at no less 90 percent capacity;
- iii. During each test run, sampling of the collection and incinerator must occur simultaneously to each other;
- viii. During such testing, the permittee shall measure and record all of the operating parameters respective to the production line as noted in condition 4.3.1. in fifteen (15) minute intervals. The arithmetic average shall be calculated for each parameters using all of recorded measurements. Such measurements and arithmetic averages shall be included with the testing report;
- b. Demonstrating compliance with the VOC emission limit shall be conducted with a method(s) approved by the Director. The permittee may propose a testing method as part of the required protocol of condition 3.4.1.;
- c. Demonstrating compliance with the formaldehyde limits be conducted in accordance with U.S. EPA method 316 or Method 318;
- d. Demonstrating compliance with the phenol limits be conducted in accordance with U.S. EPA Method 318 or 320 or other method approved by the Director;
- e. Compliance with the VOC, formaldehyde, and phenol limits shall be determined by taking sum of the arithmetic average of the respective pollutant from the collection stack and incinerator stack. The reported emission rates shall be in terms of pounds per ton of glass pulled.
- f. Such testing shall be conducted in accordance with 3.3.1.

i.

- 4.3.3 Once every five years, the permittee shall conduct emission testing to demonstrate compliance with the permitted CO and NO_x emission limits in 4.1.1.b and 4.1.2b for the collection stack (EP13 and EP23) and incinerator stack (EP14 and EP24) of each production line and to verify and/or establish maximum Thermox readings in millivolts for the fiberizers and Forehearth as stipulated in 4.1.1d. and 4.1.2.d. This testing shall be conducted as outline in 3.3.1., 4.3.1.a, and as follows:
- a. Demonstrating compliance with the carbon monoxide limits be conducted in accordance with U.S. EPA method 10;
- b. Demonstrating compliance with the oxides of nitrogen limits be conducted in accordance with U.S. EPA Method 7E.

4.3.4 Once every 5 years or within 180 days that when the production line will be producing a product with a LOI greater than the previous compliance test that demonstrated compliance with the permitted PM limits of this permit, the permittee shall conduct performance testing to determine the PM emission rate of the collection and incinerator stacks of the respective production line. Such testing shall be conducted as outlined in condition 4.3.1.a. and USEPA Method 5E. This testing shall establish and/or verify the operating parameters for the respective control devices of the production line.

4.3.5 Should the permittee elect to change binder formula or produce a product with a LOI that is greater than the one that was produced during a compliance test that demonstrated compliance with the permitted VOC, formaldehyde, and phenol limits of this permit, the permittee shall conduct performance testing within 180 days of after making such change to demonstrate compliance with the VOC, formaldehyde, and phenol emission limits. Such testing shall be conducted as prescribed in conditions 3.3.1. and 4.3.1. for VOC, formaldehyde, and phenol of the respective line that the change is effecting. This testing shall establish and/or verify the operating parameters for the respective control devices of the production line.

- 4.4.1. Record of monitoring. The permittee shall keep records of monitoring information that include the following:
 - a. The date, place as defined in this permit and time of sampling or measurements;
 - b. The date(s) analyses were performed;
 - c. The company or entity that performed the analyses;
 - d. The analytical techniques or methods used;
 - e. The results of the analyses; and
 - f. The operating conditions existing at the time of sampling or measurement.

Are you in compliance with all applicable requirements for this emission unit? <u>X</u>Yes ____No

If no, complete the Schedule of Compliance Form as ATTACHMENT F.

ATTACHMENT E - Emission Unit Form						
Emission Unit Description						
Emission unit ID number:	Emission unit name:	List any control devices associated				
ES24A, ES24B	3 Zone Curing Oven and Cooling	with this emission unit: CD24A, CD24B				
(Group 007)	Table					
Provide a description of the emission unit (type, method of operation, design parameters, etc.):						
The collected fibers, coated with binder, are conveyed to a three (3) natural gas-fired, recalculating heated air oven of Guardian Fiberglass design. While the fiberglass blanket is in the oven it is sized to thickness and the binder is cured by means of the recirculating heated air. A cooling section is provided downstream of the curing oven, where ambient plant air is drawn through the cured fiberglass blanket. The maximum rated heat input of the curing oven is 18.0 mmBtu/hr. Potential regulated air pollutant emissions from the curing section of the wool fiberglass manufacturing line are collected and controlled with a thermal oxidizer. The curing line utilizes a McGill AirClean Thermal Oxidizer that exhausts through Stack No. EP24. Potential particulate emissions from the cooling section exhaust are controlled with a scrubber system, and exhausted to Stack No. EP24, which vertically discharges to the outside ambient air.						
Manufacturer: Guardian Fiberglass	Model number: NASerial number: NA					
Construction date: 2004	Installation date: 2004	Modification date(s): NA				
Design Capacity (examples: furnaces - tons/hr, tanks - gallons): 8,000 lbs/hr						
Maximum Hourly Throughput: 8,000 lbs/hr	Maximum Annual Throughput: 35,040 Tons per Year	Maximum Operating Schedule: The facility operates 24 hours a day, 365 days a year.				
Fuel Usage Data (fill out all applicab	ble fields)	•				
Does this emission unit combust fuel? _x Yes No If yes, is it?						
		Indirect FiredxDirect Fired				
Maximum design heat input and/or 18.0 MM Btu/Hr	Type and Btu/hr rating of burners: Nozzle Mix Burner 18.0 mmBtu/hr					
List the primary fuel type(s) and if applicable, the secondary fuel type(s). For each fuel type listed, provide the maximum hourly and annual fuel usage for each. Natural Gas Max./Hr.: 17,150 CFH Nat. Gas Max/Yr : 150,234 CF						
Describe each fuel expected to be used during the term of the permit.						
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value			
Natural Gas	NA	NA 1047.7				
Emissions Data						
Criteria Pollutants	Potentia	al Emissions				
	PPH	ТРҮ				
Carbon Monoxide (CO)	5.24	22.9	5			

Nitrogen Oxides (NO _X)	15	65.7		
Lead (Pb)	0.000038	0.000165		
Particulate Matter (PM _{2.5})	4.04	17.70		
Particulate Matter (PM ₁₀)	4.04	17.70		
Total Particulate Matter (TSP)	4.04	17.70		
Sulfur Dioxide (SO ₂)	0.0003	0.001		
Volatile Organic Compounds (VOC)	0.96	4.21		
Hazardous Air Pollutants	Potential Emissions			
	РРН	TPY		
Formaldehyde	0.68	2.98		
Methanol	0.235	1.03		
Phenol	1.2	5.26		
Regulated Pollutants other than	Potential Emissions			
Criteria and HAP	PPH	TPY		
Ammonia	3.48	15.24		
Formic Acid	0.16	0.701		
Carbon Dioxide (CO ₂ e)	2,200	9,700		
		·		

The emission factors and TPY listed above for CO NO_x , PM, VOC Phenol, Ammonia and Formaldehyde are from Permit R14-0015H. The Lead is an impurity in the raw material and is calculated based on usage. Methanol emission factor was obtained from the October 2006 stack test, while Formic Acid was obtained from the May 2005 test. SO₂ was obtained form the January 1999 stack test. Condensable PM was calculated based on stack test data. Carbon dioxide equivalents were calculated following 40 CFR 98 Subpart C and N as appropriate.

Applicable Requirements

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

Permit to Modify R14-0015K:

4.1.2 The permittee shall operate a fiberglass insulation line identified as 2nd line with associated emission EP22 (melter stack), EP23 (collection stack), and EP24 (incinerator stack). This line shall be operated and maintained in accordance with the following operational and emission limitations:

a. Production fiberglass insulation from this line shall not exceed 8,000 pounds of glass pulled per hour and 35,040 TPY. Compliance with this limit shall be based on a 12-month rolling total;

b. Emissions from the line shall not exceed the following limits with respect to the corresponding emission point and pollutant:

Emission Point	CO lb/TGP	NO _x lb/TGP	PM lb/TGP	PM ₁₀ lb/TGP	VOC* lb/TGP	HCOH lb/TGP	Phenol lb/TGP	NH ₃ lb/TGP
EP22	0.73	0.03	0.07	0.07				
EP23	5.28	0.32	3.25	3.25	2.86	0.8	1.55	3.77
EP24	1.31	3.75	0.93	0.93				0.87

lb/TGP = pounds of pollutant per ton of glass pulled.

*VOC emissions shall not include methane and ethane

f. exhaust from the curing oven shall be vented into a closed loop system that routes this stream directly to the McGill AirClean Thermal Oxidizer identified as CD24A at all times when the line is operating. The oxidizer shall be operated and maintained in accordance with the following:

i. The temperature of combustion chamber shall not fall below 1,500°F or the average temperature recorded during the most recent performance testing that demonstrated compliance with the VOC, formaldehyde, and phenol emissions limits. Compliance with this limit shall be based on rolling three hour average.

ii. The oxidizer shall not consume more than 5,000 cubic feet of natural gas per hour or 43.8 MMscf per year.

h. Exhaust from the cooling table of this line shall be vented into a closed loop system that routes this stream directly to a venturi scrubber (CD24B) at all times when the line is operating.

4.1.3 The following conditions apply to both production lines.

- c. A device that continuous measures and records the pressure drop across the scrubber shall be installed, calibrated, maintained, and operated for each venturi scrubber (CD23A,CD23B, CD23C, and CD24B). Such device is to be certified by its manufacture to be accurate within \pm 250 Pascal's (\pm 1 inch water gauge) over its operating range.
- d. A device that continuous measures and records the scrubbing liquid flow to each scrubber and drop-out box shall be installed, calibrated, maintained, and operated for teach venture scrubber and drop-out box (CD13A, CD13B, CD23A, CD23B, Cd23C, and CD24B). Such device is to be certified by its manufacturer to be accurate within ± 5 percent over its operating range; and
- g. a device that continuous measurers and records the temperature of the combustion chamber for each thermal oxidizer shall be installed, calibrated, maintained, and continuously operated. Such device shall be certified by the manufacturer to be accurate within \pm one (1) degrees Fahrenheit.

4.1.4 The permittee shall, to the extent practicable, install maintain, and operate all pollution control equipment listed in Section 1.0 and associated monitoring equipment in a manner consistent with safety and good air pollution control practices for minimizing emissions, or comply with any more stringent limits set forth in this permit or as set forth by any State rule, Federal regulation, or alternative control plan approved by the Secretary. [45CSR§13-5.11.]

_ Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

4.2.2 The permittee shall maintain records of the recorded data from the stipulated devices in condition 4.1.3.b. through g. in accordance with condition 3.4.1 of this permit.

4.2.5. The permittee shall monitor and record the product LOI and density of the each resinated product manufactured. The frequency of such monitoring shall not be no less than once every eight hours. The LOI and density shall be determined using the methods prescribed in Appendix A and C of 40 CFR 63, Subpart NNN respectively. [40CFR§631383.(1)]

4.3.1 For the purposes of demonstrating initial compliance with operational and emission limitation in condition 4.1.1., 4.1.2., and 40 CFR §63.(a), the permittee shall conduct performance testing of the 1^{st} and 2^{nd} lines within 180 days after issuance of this permit. Such testing shall determine the VOC, formaldehyde, and phenol emission rates from the collection and incinerator stacks of the both production lines. This testing shall establish and/or verify the operating parameters for the respective control devices of the production line. This testing shall be conducted as outline in the following:

a. General Testing Requirements:

- i. This testing shall consist of three test runs. Each test run must last at least one hour;
- ii. Each test run must be conducted with the production line operating at no less 90 percent capacity;
- iii. During each test run, sampling of the collection and incinerator must occur simultaneously to each other;

The line must be producing a product with the highest LOI expected to be produce by this line;

- v. vii. During such testing, the permittee shall measure and record the free-formaldehyde content of the resin, the binder formulation used, and the product LOI, and density;
- viii. During such testing, the permittee shall measure and record all of the operating parameters respective to the production line as noted in condition 4.3.1. in fifteen (15) minute intervals. The arithmetic average shall be calculated for each parameters using all of recorded measurements. Such measurements and arithmetic averages shall be included with the testing report;
- b. Demonstrating compliance with the VOC emission limit shall be conducted with a method(s) approved by the Director. The permittee may propose a testing method as part of the required protocol of condition 3.4.1.;
- Demonstrating compliance with the formaldehyde limits be conducted in accordance with U.S. EPA method c. 316 or Method 318;
- Demonstrating compliance with the phenol limits be conducted in accordance with U.S. EPA Method 318 or d. 320 or other method approved by the Director;
- Compliance with the VOC, formaldehyde, and phenol limits shall be determined by taking sum of the e. arithmetic average of the respective pollutant from the collection stack and incinerator stack. The reported emission rates shall be in terms of pounds per ton of glass pulled.
- Such testing shall be conducted in accordance with 3.3.1. f.
- 4.3.3 Once every five years, the permittee shall conduct emission testing to demonstrate compliance with the permitted CO and NO_x emission limits in 4.1.1.b and 4.1.2b for the collection stack (EP13 and EP23) and incinerator stack (EP14 and EP24) of each production line and to verify and/or establish maximum Thermox readings in millivolts for the fiberizers and Forehearth as stipulated in 4.1.1d. and 4.1.2.d. This testing shall be conducted as outline in 3.3.1., 4.3.1.a, and as follows:
 - a. Demonstrating compliance with the carbon monoxide limits be conducted in accordance with U.S. EPA method 10;
 - Demonstrating compliance with the oxides of nitrogen limits be conducted in accordance with U.S. EPA b. Method 7E.

4.3.4 Once every 5 years or within 180 days that when the production line will be producing a product with a LOI greater than the previous compliance test that demonstrated compliance with the permitted PM limits of this permit, the permittee shall conduct performance testing to determine the PM emission rate of the collection and incinerator stacks of the respective production line. Such testing shall be conducted as outlined in condition 4.3.1.a. and USEPA Method 5E. This testing shall establish and/or verify the operating parameters for the respective control devices of the production line.

4.3.5 Should the permittee elect to change binder formula or produce a product with a LOI that is greater than the one that was produced during a compliance test that demonstrated compliance with the permitted VOC, formaldehyde, and phenol limits of this permit, the permittee shall conduct performance testing within 180 days of after making such change to demonstrate compliance with the VOC, formaldehyde, and phenol emission limits. Such testing shall be conducted as prescribe in conditions 3.3.1. and 4.3.1. for VOC, formaldehyde, and phenol of the respective line that the change is effecting. This testing shall establish and/or verify the operating parameters for the respective control devices of the production line.

- 4.4.1. Record of monitoring. The permittee shall keep records of monitoring information that include the following:
 - a. The date, place as defined in this permit and time of sampling or measurements;
 - b. The date(s) analyses were performed;
 - c. The company or entity that performed the analyses;
 - d. The analytical techniques or methods used;
 - e. The results of the analyses; and
 - f. The operating conditions existing at the time of sampling or measurement.

Are you in compliance with all applicable requirements for this emission unit? _X_Yes ___No

Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices associate	
ESDG12 ESDG13	Emergency Backup Generator For Line #1 Melter	with this emission under the second s	Init:
ESDC15	Emergency Backup Generator For Line #2 Melter		
Provide a description of the emission Diesel-fired internal combustion engi	on unit (type, method of operation, d ines.	esign parameters, etc):
Manufacturer: Caterpillar Line #1 Caterpiller Line #2	Model number: Gen. Set: SR4B,Engine: 3406 Gen. Set:SR4, Engine: 3456	Serial number: Line #1: 9DR02112 Line #2: CERO.0702	2
Construction date:	Installation date: Line #1 07/25/1998 Line #2 2004	Modification date(s):
Design Capacity (examples: furnac	es - tons/hr, tanks - gallons): Line #1 Line #2	1 Diesel Fuel Tank: 500 2 Diesel Fuel Tank: 250	
Maximum Hourly Throughput: NA	Maximum Annual Throughput: 500 hrs/yr	Maximum Operating Schedule: Guardian Fiberglass operates 24 hour a day and 365 days a year.	
Fuel Usage Data (fill out all applica	ble fields)		
	· · · · · · · · · · · · · · · · · · ·	If yes, is it?	
	· · · · · · · · · · · · · · · · · · ·		_x_Direct Fired
Does this emission unit combust fue Maximum design heat input and/or Line #1, Engine Model 3406: 587 Bra	el? _X_Yes No r maximum horsepower rating: ake Horsepower		
Does this emission unit combust fue Maximum design heat input and/or Line #1, Engine Model 3406: 587 Bra Line #2, Engine Model 3456: 610 Bra List the primary fuel type(s) and if the maximum hourly and annual fu Diesel is the primary fuel type and ha Line #1, Engine Model 3406, 587 Bra Line #2, Engine Model 3456: 610 Bra	el? _X_Yes No r maximum horsepower rating: ake Horsepower ake Horsepower applicable, the secondary fuel type(s nel usage for each. as an annual limit of 500 hours of opera ake Horsepower: 29.2 gph for 14,600 g ake Horsepower: 27.6 gph for 13,800 g	 Indirect Fired Type and Btu/hr ra NA s). For each fuel type ation per year. gallons annually 	ting of burners:
Does this emission unit combust fue Maximum design heat input and/or Line #1, Engine Model 3406: 587 Bra Line #2, Engine Model 3456: 610 Bra List the primary fuel type(s) and if the maximum hourly and annual fu Diesel is the primary fuel type and ha Line #1, Engine Model 3406, 587 Bra Line #2, Engine Model 3456: 610 Bra	el? _X_Yes No r maximum horsepower rating: ake Horsepower ake Horsepower applicable, the secondary fuel type(s nel usage for each. as an annual limit of 500 hours of opera ake Horsepower: 29.2 gph for 14,600 g ake Horsepower: 27.6 gph for 13,800 g	 Indirect Fired Type and Btu/hr ra NA s). For each fuel type ation per year. gallons annually 	ting of burners:
Does this emission unit combust fue Maximum design heat input and/or Line #1, Engine Model 3406: 587 Bra Line #2, Engine Model 3456: 610 Bra List the primary fuel type(s) and if the maximum hourly and annual fu Diesel is the primary fuel type and ha Line #1, Engine Model 3406, 587 Bra Line #2, Engine Model 3456: 610 Bra	el? _X_Yes No r maximum horsepower rating: ake Horsepower ake Horsepower applicable, the secondary fuel type(s nel usage for each. as an annual limit of 500 hours of opera ake Horsepower: 29.2 gph for 14,600 g ake Horsepower: 27.6 gph for 13,800 g sed during the term of the permit.	Indirect Fired Type and Btu/hr ra NA s). For each fuel type ation per year. gallons annually gallons annually	listed, provide
Does this emission unit combust fue Maximum design heat input and/or Line #1, Engine Model 3406: 587 Brack Line #2, Engine Model 3456: 610 Brack List the primary fuel type(s) and if the maximum hourly and annual fue Diesel is the primary fuel type and has Line #1, Engine Model 3406, 587 Brack Line #2, Engine Model 3456: 610 Brack Describe each fuel expected to be u Fuel Type Diesel	el? _X_Yes No r maximum horsepower rating: ake Horsepower ake Horsepower applicable, the secondary fuel type(s nel usage for each. Is an annual limit of 500 hours of opera ake Horsepower: 29.2 gph for 14,600 g ake Horsepower: 27.6 gph for 13,800 g sed during the term of the permit. Max. Sulfur Content	Indirect Fired Type and Btu/hr ra NA s). For each fuel type ation per year. gallons annually gallons annually Max. Ash Content	ting of burners: listed, provide BTU Value
Does this emission unit combust fue Maximum design heat input and/or Line #1, Engine Model 3406: 587 Bra- Line #2, Engine Model 3456: 610 Bra- List the primary fuel type(s) and if the maximum hourly and annual fue Diesel is the primary fuel type and has Line #1, Engine Model 3406, 587 Bra- Line #2, Engine Model 3406, 587 Bra- Line #2, Engine Model 3456: 610 Bra- Diesel ach fuel expected to be u Fuel Type Diesel Emissions Data	el? _X_Yes No r maximum horsepower rating: ake Horsepower ake Horsepower applicable, the secondary fuel type(s tel usage for each. as an annual limit of 500 hours of opera ake Horsepower: 29.2 gph for 14,600 g ake Horsepower: 27.6 gph for 13,800 g sed during the term of the permit. Max. Sulfur Content < 500 ppm	Indirect Fired Type and Btu/hr ra NA s). For each fuel type ation per year. gallons annually gallons annually Max. Ash Content	ting of burners: listed, provide BTU Value
Does this emission unit combust fue Maximum design heat input and/or Line #1, Engine Model 3406: 587 Bra- Line #2, Engine Model 3456: 610 Bra- List the primary fuel type(s) and if the maximum hourly and annual fue Diesel is the primary fuel type and has Line #1, Engine Model 3406, 587 Bra- Line #2, Engine Model 3406, 587 Bra- Line #2, Engine Model 3456: 610 Bra- Diesel ach fuel expected to be u Fuel Type Diesel Emissions Data	el? _X_Yes No r maximum horsepower rating: ake Horsepower ake Horsepower applicable, the secondary fuel type(s tel usage for each. as an annual limit of 500 hours of opera ake Horsepower: 29.2 gph for 14,600 g ake Horsepower: 27.6 gph for 13,800 g sed during the term of the permit. Max. Sulfur Content < 500 ppm	Indirect Fired Type and Btu/hr ra NA s). For each fuel type ation per year. gallons annually gallons annually Max. Ash Content < 0.01%	ting of burners: listed, provide BTU Value 139,000
Does this emission unit combust fue Maximum design heat input and/or Line #1, Engine Model 3406: 587 Bra Line #2, Engine Model 3456: 610 Bra List the primary fuel type(s) and if the maximum hourly and annual fu Diesel is the primary fuel type and ha Line #1, Engine Model 3406, 587 Bra Line #2, Engine Model 3456: 610 Bra Describe each fuel expected to be u Fuel Type Diesel Emissions Data Criteria Pollutants	el? _X_Yes No r maximum horsepower rating: ake Horsepower ake Horsepower applicable, the secondary fuel type(s pel usage for each. as an annual limit of 500 hours of opera ake Horsepower: 29.2 gph for 14,600 g ake Horsepower: 27.6 gph for 13,800 g sed during the term of the permit. Max. Sulfur Content	Indirect Fired Type and Btu/hr ra NA s). For each fuel type ation per year. gallons annually gallons annually Max. Ash Content < 0.01% Emissions- Each	ting of burners: listed, provide BTU Value 139,000
the maximum hourly and annual fu Diesel is the primary fuel type and ha Line #1, Engine Model 3406, 587 Bra Line #2, Engine Model 3456: 610 Bra Describe each fuel expected to be u Fuel Type	el? _X_Yes No r maximum horsepower rating: ake Horsepower applicable, the secondary fuel type(s applicable, the secondary fuel type(s applicable, the secondary fuel type(s all usage for each. as an annual limit of 500 hours of opera ake Horsepower: 29.2 gph for 14,600 g ake Horsepower: 27.6 gph for 13,800 g sed during the term of the permit. Max. Sulfur Content	Indirect Fired Type and Btu/hr ra NA s). For each fuel type ation per year. gallons annually gallons annually Max. Ash Content < 0.01% Emissions- Each TP	ting of burners: listed, provide BTU Value 139,000

Particulate Matter (PM _{2.5})	0.7	0.2
Particulate Matter (PM ₁₀)	0.7	0.2
Total Particulate Matter (TSP)	0.7	0.2
Sulfur Dioxide (SO ₂)	0.4	0.1
Volatile Organic Compounds (VOC)	0.2	0.1
Hazardous Air Pollutants	Potential Emissions	
	lb/hr	TPY
NA	NA	NA
Regulated Pollutants other than	Potentia	ll Emissions
Criteria and HAP	lb/hr	TPY
Carbon Dioxide Equivalent (CO ₂ e)	1,300	320

Emissions for PM, NO_{x} , CO, SO₂ and VOC's came from the Permit to Modify R14-0015H. Carbon dioxide equivalents were calculated following 40 CFR 98 Subpart C as appropriate.

Applicable Requirements

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

Permit to Modify R14-0015K:

5.1.3 Emissions of the following pollutants to the atmosphere from the associated emission points shall not exceed the following:

Caterpillar 3406 (Emission Point EP16)			
Pollutant	Maximum Allowable Emission Rate		
	lb/hr TP		
Particulate Matter 0.52 0.1		0.1	
Sulfur Dioxide 3.8		0.9	
Nitrogen Oxides	17.35	4.3	
Carbon Monoxide	3.24	0.8	
Volatile Organic Compounds	0.60	0.2	

Caterpillar 3456 (Emission Point EP17)			
Pollutant	Maximum Allowable Emission Rate Ib/hr TPY		
Particulate Matter	0.52	0.1	
Sulfur Dioxide	3.8	0.9	

Nitrogen Oxides	17.35	4.3	
Carbon Monoxide	3.24	0.8	
Volatile Organic Compounds	0.9	0.2	

- 5.1.3 The two Caterpillar 3406 (ID. No. ESDG12 and ESDG13) and Cummins NT-855-F1 (ID. No. ESFW11) internal combustion engines shall not operate more than 500 hours per year, calculated as the sum during a consecutive 12-month period.
- 5.1.4. The two Caterpillar 3406 and Cummins NT-855-F1 internal combustion engines shall not consume a fuel with a sulfur content of greater than 0.5 percent by weight.

RICE MACT is not applicable outside of compliance with emergency provisions.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting, which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

Permit to Modify R14-0015K:

5.2.3. The permittee shall monitor and record the hours of operation of the engines for the generators and fire water pumps. Such records shall be maintain in accordance with 3.4.1.

5.4.4. The permittee shall maintain records of sulfur content of the fuel oil received and/or vendors contractual sulfur specifications for the fuel oil.

Are you in compliance with all applicable requirements for this emission unit? <u>X</u> Yes <u>No</u>

АТТ	CACHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number: ESFW11	Emission unit name: Emergency Backup Fire Water Diesel Engine Driven Pump	List any control devices associated with this emission unit: None	
Provide a description of the emission The emergency backup fire water pump e and consumes a maximum of 14 gals/hr o maintenance.	n unit (type, method of operation, d ngine is a Cummins diesel Model NT-855	esign parameters, etc. -F1 with an estimated eng	ine rating of 255 hp
Manufacturer: Cummins Engine Co. Columbus, Indiana	Model number: NT-855-F1	Serial number: Engine No.:1047281	5
Construction date: NA	Installation date: 1977	Modification date(s NA):
Design Capacity (examples: furnace	es - tons/hr, tanks - gallons): Diesel	Fuel Storage Tank: 265	5 Gallons
Maximum Hourly Throughput: 14 gals	Maximum Annual Throughput: 500 hours/year 7,000 gallons diesel	Maximum Operating Schedule: Guardian operates 24 hours a day and 365 days a year.	
Fuel Usage Data (fill out all applica	ble fields)		
Does this emission unit combust fue	el?X_Yes No	If yes, is it?	
		Indirect Fired	<u>X</u> Direct Fired
Maximum design heat input and/or This unit has horsepower of 255 HP.	maximum horsepower rating:	Type and Btu/hr ra NA	ting of burners:
List the primary fuel type(s) and if the maximum hourly and annual fu Diesel is the only fuel used in the eng usage is 7,000 gallons, based on 14 ga	Hel usage for each. ine. The maximum hourly usage is 14	gallons/hour and the m	
Describe each fuel expected to be us	sed during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
Diesel	< 500 ppm	<0.01%	139,000
Emissions Data			
Criteria Pollutants	Potenti	al Emissions	
	РРН	TPY	
Carbon Monoxide (CO)	1.8	0.4	6
Nitrogen Oxides (NO _X)	8.5	2.1	
Lead (Pb)	(Pb) 0 0		
Particulate Matter (PM _{2.5})	0.59	0.15	

Particulate Matter (PM ₁₀)	0.59	0.15
Total Particulate Matter (TSP)	0.59	0.15
Sulfur Dioxide (SO ₂)	0.56	0.14
Volatile Organic Compounds (VOC)	0.69	0.17
Hazardous Air Pollutants	Potential Emissions	
	РРН	TPY
NA	NA	NA
Regulated Pollutants other than	Potentia	l Emissions
Criteria and HAP	РРН	TPY
Carbon Dioxide Equivalent (CO ₂ e)	320	80

The above emission factors were obtained from Permit to Modify R14-0015H. Carbon dioxide equivalents were calculated following 40 CFR 98 Subpart C and N as appropriate.

Applicable Requirements

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

Permit to Modify R14-0015K:

5.1.3 Emissions of the following pollutants to the atmosphere from the associated emission points shall not exceed the following:

Cummins NT-855-F1 (Emission Point EP18)			
Pollutant	Maximum Allowable Emission Rate		
	lb/hr TPY		
Particulate Matter	0.59	0.15	
Sulfur Dioxide	0.56	0.14	
Nitrogen Oxides	8.5	2.1	
Carbon Monoxide	1.8	0.46	
Volatile Organic Compounds	0.69	0.17	

5.1.3. The two Caterpillar 3406 (ID. No. ESDG12 and ESDG13) and Cummins NT-855-F1 (ID. No. ESFW11) internal combustion engines shall not operate more than 500 hours per year, calculated as the sum during a consecutive 12 month period.

5.1.4. The two Caterpillar 3406 and Cummins NT-855-F1 internal combustion engines shall not consume a fuel with a sulfur content of greater than 0.5 percent by weight.

Work practice requirements in RICE MACT for emergency engines.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

Permit to Modify R14-0015K:

5.2.3. The permittee shall monitor and record the hours of operation of the engines for the generators and fire water pumps. Such records shall be maintain in accordance with 3.4.1.

5.4.4. The permittee shall maintain records of sulfur content of the fuel oil received and/or vendors contractual sulfur specifications for the fuel oil.

Are you in compliance with all applicable requirements for this emission unit? <u>X</u>Yes <u>No</u>

ATTACHMENT E - Emission Unit Form				
Emission Unit Description				
Emission unit ID number:	Emission unit name: Line #1	List any control devices associate with this emission unit: None		
ESSH15	Makeup Air Handling Unit	with this emission u	init: None	
Makeup air handling unit provides ex	on unit (type, method of operation, d atterior ambient air to the interior of the ng unit component to heat the incomin	plant year around. Th	e MHU has a	
Manufacturer: Rapid Engineering, Inc.	Model number: 4089 MUA	Serial number: 009598		
Construction date: NA	Installation date: 07/25/1998	Modification date(s):	
Design Capacity (examples: furnad	ces - tons/hr, tanks - gallons): 8.525 N	MMBtu/hr		
Maximum Hourly Throughput: 0	Maximum Annual Throughput: NA	t: Maximum Operating Schedule: Guardian Fiberglass operates 24 hours a day and 365 days a year.		
Fuel Usage Data (fill out all application	able fields)			
Does this emission unit combust fu	el? _X_Yes No	If yes, is it?		
		Indirect Fired	<u>X</u> Direct Fired	
Maximum design heat input and/o 8,525,000 BTU/HR	Maximum design heat input and/or maximum horsepower rating: Type and Btu/hr rating of burne		FLOW LOW	
the maximum hourly and annual f	um rate of 8,136.9 cu. Ft. per hour for 1		_	
Describe each fuel expected to be u	used during the term of the permit.			
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value	
Natural Gas	NA	NA	1047.7/cu. Ft.	
Emissions Data				
Criteria Pollutants	Potenti	al Emissions		
	РРН	TP	Y	
Carbon Monoxide (CO)	0.17	0.75		
Nitrogen Oxides (NO _X)	0.85	3.73		
Lead (Pb)	0	0		
Particulate Matter (PM _{2.5})	0.03	0.1	1	
Particulate Matter (PM ₁₀)	0.03	0.11		
Total Particulate Matter (TSP)	0.03	0.11		

Sulfur Dioxide (SO ₂)	0.005	0.02	
Volatile Organic Compounds (VOC)	0.05	0.20	
Hazardous Air Pollutants	Potential Emissions		
	РРН	TPY	
NA	NA	NA	
Regulated Pollutants other than	Potentia	l Emissions	
Criteria and HAP	РРН	TPY	
Ammonia	0.153	0.67	
Carbon Dioxide Eqivalent (CO ₂ e)	1000	4400	

Seasonal emissions occur from the combustion of natural gas in the 8.525 MMBtu/hr make up air handling units. Using the EPA's FIRE database, SCC Code No. 1-05-002-06 for space heaters in industrial use presents an emission factor of 20 lbs CO, 5.3 lbs VOC's, 100 lbs Nox, 0.6 lbsSO2, 18 lbs NH3 and 3 lbs PM per million cubic feet (MMCF) of natural gas burned. The above emissions are calculated with the unit operating 8,760 hrs per year. Carbon dioxide equivalents were calculated following 40 CFR 98 Subparts C as appropriate.

Applicable Requirements

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

Permit to Modify R14-0015K:

5.1.5. the 14.6 MMBtu/hr boiler (ID No. ESSHB14), 8.5 MMBTU/hr makeup air handling unit (ID. No. ESSH15), 7.875 MMBtu/hr air handling unit (ID No. ESSH16), and five (5) 75 Mbtu/hr binder water heaters (ID No. ESHW15) shall only be fired with pipeline quality natural gas.

5.1.7. Emissions of the following pollutants to the atmosphere from the 8.5 MMBTU/hr makeup air handling unit (ID. No. ESSH15) shall not exceed the following:

Dellatent	Hourly Emission Rate	Annual Emission Rate
Pollutant	lb/hr	TPY
Particulate Matter	0.03	0.11
Particulate Matter-10	0.03	0.11
Nitrogen Oxides	0.85	3.7
Carbon Monoxide	0.17	0.75
Volatile Organic Compounds	0.05	0.20

____ Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.) NA

Are you in compliance with all applicable requirements for this emission unit? X Yes No

ATTACHMENT E - Emission Unit Form			
Emission Unit Description			
Emission unit ID number: ESSH16	Emission unit name: Line #2 Makeup Air Handling Unit	List any control devices associated with this emission unit: None	
Makeup air handling unit provides ex	on unit (type, method of operation, d xterior ambient air to the interior of the ng unit component to heat the incomin	plant year around. The	e MHU has a
Manufacturer: Rapid Engineering, Inc.	Model number: 4089 MUA	Serial number: 049138	
Construction date: NA	Installation date: 2004	Modification date(s):
Design Capacity (examples: furnad	ces - tons/hr, tanks - gallons): 7.875 l	MMBtu/hr	
Maximum Hourly Throughput: 0	Maximum Annual Throughput: NA	Maximum Operating Schedule: Guardian Fiberglass operates 24 hours a day and 365 days a year.	
Fuel Usage Data (fill out all application	able fields)		
Does this emission unit combust fu	el? _X_Yes No	If yes, is it?	
		Indirect Fired	<u>X</u> Direct Fired
Maximum design heat input and/o 7,875,000 BTU/HR	r maximum horsepower rating:	Type and Btu/hr ra Maxon NP-LE AIRF EMISSIONS Line B MMBtu/hr	LOW LOW
the maximum hourly and annual f	um rate of 7,516.5 cu. Ft. per hour for 1		
Describe each fuel expected to be u	used during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
Natural Gas	NA	NA	1047.7/cu. Ft.
Emissions Data			
Criteria Pollutants	Potenti	al Emissions	
	РРН	TP	Y
Carbon Monoxide (CO)	0.16	0.6	9
Nitrogen Oxides (NO _X)	0.79	3.4	5
Lead (Pb)	0 0		
Particulate Matter (PM _{2.5})	0.02	0.10	

Particulate Matter (PM ₁₀)	0.02	0.10	
Total Particulate Matter (TSP)	0.02	0.10	
Sulfur Dioxide (SO ₂)	0.005	0.02	
Volatile Organic Compounds (VOC)	0.05	0.2	
Hazardous Air Pollutants	Potential Emissions		
	РРН	TPY	
NA	NA	NA	
Regulated Pollutants other than	Potential Emissions		
Criteria and HAP	РРН	TPY	
Ammonia	0.142	0.62	
Carbon dioxide equivalents (CO ₂ e)	920	4,000	

Seasonal emissions occur from the combustion of natural gas in the 7.875 MMBtu/hr make up air handling units. Using the EPA's FIRE database, SCC Code No. 1-05-002-06 for space heaters in industrial use presents an emission factor of 20 lbs CO, 5.3 lbs VOC's, 100 lbs Nox, 0.6 lbsSO2, 18 lbs NH3 and 3 lbs PM per million cubic feet (MMCF) of natural gas burned. The emissions from the make up air handling units, as fugitive point F29, to the in-plant environment. The above emissions are calculated with the unit operating 8,760 hrs per year. Carbon dioxide equivalents were calculated following 40 CFR 98 Subparts C as appropriate.

Applicable Requirements

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

Permit to Modify R14-0015K:

5.1.5. the 14.6 MMBtu/hr boiler (ID No. ESSHB14), 8.5 MMBTU/hr makeup air handling unit (ID. No. ESSH15), 7.875 MMBtu/hr air handling unit (ID No. ESSH16), and five (5) 75 Mbtu/hr binder water heaters (ID No. ESHW15) shall only be fired with pipeline quality natural gas.

____ Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.) NA

Are you in compliance with all applicable requirements for this emission unit? X Yes ____No

ATT	ACHMENT E - Emission Uni	it Form		
Emission Unit Description				
Emission unit ID number:	Emission unit name:			vices associated
ES15A, ES15Aa ES15B, ES15C, ES15D, ES15E, ES15F, ES15G, ES15H, ES15I, ES15J (Group 008)	Facing, Sizing and Packaging for Line 1	cD15A	is emission ι	init:
Provide a description of the emission After the cured fiberglass blanket com- size and width per customer demand.	nes out of the oven, facing paper is app	plied (if d	esired) then the	he blanket is cut to
Manufacturer: ES15A- Budzar ES15Aa- SOLARONICS IRT ES15B, ES15C, ES15F, ES15G,	Model number: ES15A- 10T-180180-G0L ES15Aa- IRT-MiniFlex ES15B, ES15C, ES15F, ES15G,	NA NA NA	number:	
ES15H, ES15I- Guardian Fiberglass ES15D- United Tool ES15E- Kaibel & Sieber ES15J- Samuel Strapping Systems	ES15H, ES15I- NA ES15D- UX-431 ES15E- WM2000 (Roller) & PSL- 3000 (Film Applicator) ES15J- SOA750	NA NA 116 &1 NA	74	
Construction date: 1998	Installation date: 07/25/1998	Modification date(s): NA		
Design Capacity (examples: furnace	es - tons/hr, tanks - gallons): 8,0001	bs/hr		
Maximum Hourly Throughput: 8,000 lbs/hr	Maximum Annual Throughput: 35,040 TPY	Maximum Operating Schedule: The facility operates 24 hours a day 365 days a year.		
Fuel Usage Data (fill out all applical	ble fields)			
Does this emission unit combust fue	l? Yes _ X No	If yes,	is it?	
		Inc	lirect Fired	Direct Fired
Maximum design heat input and/or	maximum horsepower rating:	Type a	nd Btu/hr ra	ting of burners:
List the primary fuel type(s) and if a the maximum hourly and annual fu NA		s). For ea	ach fuel type	listed, provide
Describe each fuel expected to be us	ed during the term of the permit.			
Fuel Type	Max. Sulfur Content Max. Ash C		Ash Content	BTU Value
NA	NA		NA	NA
Emissions Data				
Criteria Pollutants	Pote	ential Em	issions	
РРН ТРҮ		TPY		
Carbon Monoxide (CO)	0			0
Nitro con Onidea (NO)	0	0 0		
Nitrogen Oxides (NO _X)	0			0

Lead (Pb)

0

0

0.11	0.49	
0.11	0.49	
0.11	0.49	
0	0	
1.21	5.34	
Potential Emissions		
РРН	TPY	
NA	NA	
Potential Emi	issions	
РРН	TPY	
NA	NA	
	0.11 0.11 0 1.21 Potential Emi PPH NA Potential Emi PPH	

A PM emission factor of 0.05 lbs PM per ton of wool processed is presented on page C-65 of "Wool Fiberglass Insulation Manufacturing - Background Information for Proposed Standards" USEPA-450-3-83-002A. A representative (or conservative) VOC emission factor of 1.86 lbs VOC per ton of asphalt blowing coating produced, which is used by the asphalt manufacturing industry, was obtained from the USEPA FIRE database to obtain emission numbers for the facing application.

Guardian uses an ink printing system to print product codes on the finished product. The emissions from the ink printing system are uncontrolled and released, as fugitive emissions, to the in-plant environment. Emission rates are based on actual 2006 yearly ink usage in Inwood and actual 2001 solvent usage in Kingman. Therefore, the actual maximum annual VOC emission rate is estimated using a 1.7 variation factor based on actual data.

Determination of fugitive VOC emissions for spray adhesive based on a material balance is as follows: Emission rates are calculated using the Inwood, WV 2005 adhesive usage of 595 gallons. Total glass production rate was 50,614 tons or 0.0118 per TGP.

Potential particulate matter (PM) emissions from the sizing and packaging area are collected and controlled by two Air Tumbler control devices. The sizing and packaging area consists of trimming and rolling, the K&S Roll Machine, the blowing wool bagger, and packaging machinery. The Air Tumblers use cyclonic flow and wet impingement control techniques for the removal of particulates from the exhaust gas stream. The particulate matter removal efficiency for the Air Tumbler and scrubber are assumed to be 50% or greater. The PM exhaust concentration is assumed to be less than 0.005 lbs PM per 1000 lbs of exhaust air.

Potential PM emissions for the sizing and packaging area are estimated by multiplying the PM exhaust outlet concentration by the control devices rated volumetric air flowrate and by the control efficiency of 90% for the building as a process enclosure, as follows:

E = (0.005 lbs PM per 1000 lbs Air) x (Total Air Flowrate of control devices, cfm) x (units of conversion) x (1 - 90%)

Applicable Requirements

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

Permit to Modify, R14-0015K 5.1.2 The permittee shall install, maintain, and operate the Quentin Keeney Air Tumblers (CD15A), the Fisher Klosterman Scrubber (CD25A) and the bag filter dust collector (CD25B) in such a way that the PM and PM-10 emission from FP15 do not exceed 0.25 pounds per hour and/or 1.1 tons per year.

- 5.1.14 The permitted shall, to the extent practicable, install maintain, and operate all pollution control equipment listed in Section 1.0 and associated monitoring equipment in a manner consistent with safety and good air pollution control practices for minimizing emissions, or comply with any more stringent limits set forth in this permit or as set forth by any State rule, Federal regulation, or alternative control plan approved by the Secretary. **[45CSR§13-5.11.]**
 - Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

Permit to Modify, R14-0015K

- 5.4.2. Record of maintenance of Air Pollution Control Equipment. For all pollution control equipment listed in Section 1.0, the permittee shall maintain accurate records of all required pollution control equipment inspection and/or preventative maintenance procedures.
- 5.4.3 Record of Malfunctions of Air Pollution control Equipment. For all air pollution control equipment listed in Section 1.0, the permittee shall maintain records of the occurrence and duration of any malfunction or operational shutdown of the air pollution control equipment during which excess emissions occur. For each such case, the following information shall be recorded:
 - a. The equipment involved.
 - b. Steps taken to minimize emissions during the event.
 - c. The duration of the event.
 - d. The estimated increase in emissions during the event.

For each such case associated with an equipment malfunction, the additional information shall also be recorded:

- e. The cause of the malfunction
- f. Steps taken to correct the malfunction

Any changes or modifications to equipment or procedures that would help prevent future recurrences of the malfunction.

Are you in compliance with all applicable requirements for this emission unit? <u>X</u> Yes <u>No</u>

ATTACHMENT E - Emission Unit Form

Emission	Unit Description	
----------	------------------	--

Emission Unit Description				
Emission unit ID number: ES25A, ES25B, ES25C, ES25D, ES25F, ES25G, ES25H, ES25I (Group 008)	Facin	sion unit name: g, Sizing and Packaging for 2 Resinated	List any control devices associated with this emission unit: CD25A	
Provide a description of the emissio After the cured fiberglass blanket com- size and width per customer demand.	nes out c	of the oven, facing paper is app	olied (if desired) then th	e blanket is cut t
Manufacturer: ES25A- SOLARONICS ES25B, ES25C, ES25F, ES25G, ES25H, ES25I-Guardian Fiberglass ES25D- United Tool	ES25. ES25. ES25.	e l number: A- IRT MiniFlex B, ES25C, ES25F, ES25G, H, ES25I- NA D- UX-431	Serial number: NA	
Construction date: 2004	Instal 2004	lation date:	Modification date(s): NA	
Design Capacity (examples: furnace	es - tons	/hr, tanks - gallons): 8,000 1	bs/hr	
Maximum Hourly Throughput: 8,000 lbs/hr		mum Annual Throughput: 0 TPY	Maximum Operating Schedule: The facility operates 24 hours a day 365 days a year.	
Fuel Usage Data (fill out all applica	ble field	ls)	1	
Does this emission unit combust fue	el?	Yes _ <u>X</u> _ No	If yes, is it?	
			Indirect Fired	Direct Fired
Maximum design heat input and/or maximum horsepower rating: NAType and Btu/hr rating of burn NA			ing of burners:	
List the primary fuel type(s) and if a the maximum hourly and annual fu NA			s). For each fuel type	listed, provide
Describe each fuel expected to be us	sed duri	ng the term of the permit.		
Fuel Type		Max. Sulfur Content	Max. Ash Content	BTU Value
NA		NA	NA	NA
Emissions Data				
Criteria Pollutants		Potential Emissions		

Criteria Pollutants	Potential Emissions			
	РРН	TPY		
Carbon Monoxide (CO)	0	0		
Nitrogen Oxides (NO _X)	0	0		
Lead (Pb)	0	0		
Particulate Matter (PM _{2.5})	0.11	0.49		
Particulate Matter (PM ₁₀)	0.11	0.49		
Total Particulate Matter (TSP)	0.11	0.49		

Sulfur Dioxide (SO ₂)	0	0
Volatile Organic Compounds (VOC)	1.21	5.34
Hazardous Air Pollutants	Potential Emissions	
	РРН	TPY
NA	NA	NA
Regulated Pollutants other than Criteria and	Potential Emi	issions
НАР	РРН	TPY
NA	NA	NA

A PM emission factor of 0.05 lbs PM per ton of wool processed is presented on page C-65 of "Wool Fiberglass Insulation Manufacturing - Background Information for Proposed Standards" USEPA-450-3-83-002A. A representative (or conservative) VOC emission factor of 1.86 lbs VOC per ton of asphalt blowing coating produced, which is used by the asphalt manufacturing industry, was obtained from the USEPA FIRE database to obtain emission numbers for the facing application.

Guardian uses an ink printing system to print product codes on the finished product. The emissions from the ink printing system are uncontrolled and released, as fugitive emissions, to the in-plant environment. Emission rates are based on actual 2006 yearly ink usage in Inwood and actual 2001 solvent usage in Kingman. Therefore, the actual maximum annual VOC emission rate is estimated using a 1.7 variation factor based on actual data.

Determination of fugitive VOC emissions for spray adhesive based on a material balance is as follows: Emission rates are calculated using the Inwood, WV 2005 adhesive usage of 595 gallons. Total glass production rate was 50,614 tons or 0.0118 per TGP.

Potential particulate matter (PM) emissions from the sizing and packaging area are collected and controlled by two Air Tumbler control devices. The sizing and packaging area consists of trimming and rolling, the K&S Roll Machine, the blowing wool bagger, and packaging machinery. The Air Tumblers use cyclonic flow and wet impingement control techniques for the removal of particulates from the exhaust gas stream. The particulate matter removal efficiency for the Air Tumbler and scrubber are assumed to be 50% or greater. The PM exhaust concentration is assumed to be less than 0.005 lbs PM per 1000 lbs of exhaust air.

Potential PM emissions for the sizing and packaging area are estimated by multiplying the PM exhaust outlet concentration by the control devices rated volumetric air flowrate and by the control efficiency of 90% for the building as a process enclosure, as follows:

E = (0.005 lbs PM per 1000 lbs Air) x (Total Air Flowrate of control devices, cfm) x (units of conversion) x (1 - 90%)

Applicable Requirements

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

Permit to Modify, R14-0015K

- 5.1.2 The permittee shall install, maintain, and operate the Quentin Keeney Air Tumblers (CD15A), the Fisher Klosterman Scrubber (CD25A) and the bag filter dust collector (CD25B) in such a way that the PM and PM-10 emission from FP15 do not exceed 0.25 pounds per hour and/or 1.1 tons per year.
- 5.1.14 The permitted shall, to the extent practicable, install maintain, and operate all pollution control equipment listed in Section 1.0 and associated monitoring equipment in a manner consistent with safety and good air pollution control practices for minimizing emissions, or comply with any more stringent limits set forth in this

permit or as set forth by any State rule, Federal regulation, or alternative control plan approved by the Secretary. [45CSR\$13-5.11.]

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

Permit to Modify, R14-0015K

- 5.4.2. Record of maintenance of Air Pollution Control Equipment. For all pollution control equipment listed in Section 1.0, the permittee shall maintain accurate records of all required pollution control equipment inspection and/or preventative maintenance procedures.
- 5.4.3 Record of Malfunctions of Air Pollution control Equipment. For all air pollution control equipment listed in Section 1.0, the permittee shall maintain records of the occurrence and duration of any malfunction or operational shutdown of the air pollution control equipment during which excess emissions occur. For each such case, the following information shall be recorded:
 - a. The equipment involved.
 - b. Steps taken to minimize emissions during the event.
 - c. The duration of the event.
 - d. The estimated increase in emissions during the event.

For each such case associated with an equipment malfunction, the additional information shall also be recorded:

- e. The cause of the malfunction
- f. Steps taken to correct the malfunction
- g. Any changes or modifications to equipment or procedures that would help prevent future recurrences of the malfunction.

Are you in compliance with all applicable requirements for this emission unit? <u>X</u>Yes <u>No</u>

	TACHMENT E - Emission Uni	t Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices associated with this emission unit: CD25B	
ES25J, ES25K, ES25L	Line 2 Facing Sizing Packaging operating as a Non-Resinated Line		
	ion unit (type, method of operation, d s is diced and silicone and de-dusting oi d packaged accordingly.		
Manufacturer: Guardian Fiberglass	Model number: NA	Serial number: NA	
Construction date: 2004	Installation date: 2004	Modification date(s) NA):
Design Capacity (examples: furna	ces - tons/hr, tanks - gallons): 8,000 ll	bs/hr	
Maximum Hourly Throughput: 8,000 lbs/hr	Maximum Annual Throughput: 35,040 TPY	Maximum Operatin The facility operates 365 days a year.	
Fuel Usage Data (fill out all applic	able fields)		
Does this emission unit combust fu	uel?Yes _x No	If yes, is it?	
		Indirect Fired	Direct Fired
Maximum design heat input and/o NA	r maximum horsepower rating:	Type and Btu/hr rat NA	ting of burners:
List the primary fuel type(s) and it the maximum hourly and annual f	f applicable, the secondary fuel type(s fuel usage for each.	s). For each fuel type	listed, provide
1 14 A			
	used during the term of the permit.		
	Max. Sulfur Content	Max. Ash Content	BTU Value
Describe each fuel expected to be		Max. Ash Content NA	BTU Value NA
Describe each fuel expected to be Fuel Type NA	Max. Sulfur Content		
Describe each fuel expected to be Fuel Type NA Emissions Data	Max. Sulfur Content NA		
Describe each fuel expected to be Fuel Type NA Emissions Data	Max. Sulfur Content NA	NA	NA
Describe each fuel expected to be a Fuel Type NA Emissions Data Criteria Pollutants	Max. Sulfur Content NA Potentia	NA al Emissions	NA
Describe each fuel expected to be a Fuel Type NA Emissions Data Criteria Pollutants Carbon Monoxide (CO)	Max. Sulfur Content NA Potentia PPH	NA al Emissions TPY	NA K
Describe each fuel expected to be a Fuel Type NA Emissions Data Criteria Pollutants Carbon Monoxide (CO) Nitrogen Oxides (NO _X)	Max. Sulfur Content NA Potentia PPH NA	NA al Emissions TPY NA	NA K
Describe each fuel expected to be a Fuel Type NA Emissions Data Criteria Pollutants Carbon Monoxide (CO) Nitrogen Oxides (NO _X) Lead (Pb)	Max. Sulfur Content NA Potentia PPH NA NA NA	NA al Emissions TPY NA NA	NA K
Describe each fuel expected to be Fuel Type	Max. Sulfur Content NA Potentia PPH NA NA NA NA	NA al Emissions TPY NA NA	NA Z
Describe each fuel expected to be a Fuel Type NA Emissions Data Criteria Pollutants Carbon Monoxide (CO) Nitrogen Oxides (NO _X) Lead (Pb) Particulate Matter (PM _{2.5})	Max. Sulfur Content NA Potentia PPH NA NA NA NA 0.11	NA al Emissions TPY NA NA NA 0.49	NA 7 4 4 4 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7

Volatile Organic Compounds (VOC)	1.25	5.48	
Hazardous Air Pollutants	Potential Emissions		
	РРН	TPY	
NA	NA	NA	
Regulated Pollutants other than	Potentia	l Emissions	
Criteria and HAP	РРН	TPY	
NA	NA	NA	

Potential particulate matter (PM) emissions from the non-resinated packaging area are collected and controlled by"tube sock filters" and subsequently exhausted, as fugitive emissions to the in-plant environment. The estimated allowable PM exhaust concentration will be less than 0.005 lbs PM per 1000 lbs of exhaust air. Potential PM emissions for the sizing and packaging area are estimated by multiplying the PM exhaust outlet concentration by the control devices rated volumetric air flowrate and by the control efficiency provided by the enclosure, as follows:

E = (0.005 lbs PM per 1000 lbs Air) x (Total Air Flowrate of control devices, cfm) x (units of conversion) x (1 - 90 %)

Guardian uses an ink printing system to print product codes on the finished product. The emissions from the ink printing system are uncontrolled and released, as fugitive emissions, to the in-plant environment. Emission rates are based on actual 2004 yearly ink usage in Albion and actual 2001 solvent usage in Kingman. Therefore, the actual maximum annual VOC emission rate is estimated using a 1.25 variation factor based on actual data.

The annual VOC emissions from the application of de-dusting oil, anti-stat and silicone are estimated using the assumption that all VOC in the de-dusting oil, anti-stat and silicone used are released as fugitive emissions within the facility and a 1.50 variability factor, based on maximum usage data.

Applicable Requirements

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

Permit to Modify, R14-0015K

- 5.1.2 The permittee shall install, maintain, and operate the Quentin Keeney Air Tumblers (CD15A), the Fisher Klosterman Scrubber (CD25A) and the bag filter dust collector (CD25B) in such a way that the PM and PM-10 emission from FP15 do not exceed 0.25 pounds per hour and/or 1.1 tons per year.
- 5.1.14 The permitted shall, to the extent practicable, install maintain, and operate all pollution control equipment listed in Section 1.0 and associated monitoring equipment in a manner consistent with safety and good air pollution control practices for minimizing emissions, or comply with any more stringent limits set forth in this permit or as set forth by any State rule, Federal regulation, or alternative control plan approved by the Secretary. [45CSR\$13-5.11.]
 - _ Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

Permit to Modify, R14-0015K

5.4.2. Record of maintenance of Air Pollution Control Equipment. For all pollution control equipment listed in

Section 1.0, the permittee shall maintain accurate records of all required pollution control equipment inspection and/or preventative maintenance procedures.

- 5.4.3 Record of Malfunctions of Air Pollution control Equipment. For all air pollution control equipment listed in Section 1.0, the permittee shall maintain records of the occurrence and duration of any malfunction or operational shutdown of the air pollution control equipment during which excess emissions occur. For each such case, the following information shall be recorded:
 - a. The equipment involved.
 - b. Steps taken to minimize emissions during the event.
 - c. The duration of the event.
 - d. The estimated increase in emissions during the event.

For each such case associated with an equipment malfunction, the additional information shall also be recorded:

- e. The cause of the malfunction
- f. Steps taken to correct the malfunction

Any changes or modifications to equipment or procedures that would help prevent future recurrences of the malfunction.

Are you in compliance with all applicable requirements for this emission unit? ____Yes ____No

ATTACHMENT E - Emission Unit Form						
Emission Unit Description						
Emission unit ID number: M1, M2, M3, M4, M5, M6, M7, M8,	Emission unit name: Binder Mix Tanks	List any control devices associated with this emission unit:				
M9, M10 None Provide a description of the emission unit (type, method of operation, design parameters, etc.): Eight day tanks positioned to feed raw binder materials to a calibrated mixing pump to keep one "mixed binder" tank stocked with mixed binder for distribution to production lines.						
Manufacturer: Guradian Fiberglass Installed	Model number: NA	Serial number: NA				
Construction date: NA	Installation date: 07/25/1998	Modification date(s): September 2005 Converted M-3 Process Water Tank into a Pre-React Holding Tank, TBD – M10 addition				
Design Capacity (examples: furnace gallons; M4-150 gallons; M5-1,700 ga			gallons; M3-3,200			
Maximum Hourly Throughput: 901 gallons	Maximum Annual Throughput: 7,888,866 gallons	Maximum Operating Schedule: Guardian Fiberglass operates 24 hours a day and 365 days a year.				
<i>Fuel Usage Data</i> (fill out all applicat	ble fields)	1				
Does this emission unit combust fue	Does this emission unit combust fuel? Yes X No If yes, is it?					
		Indirect Fired	Direct Fired			
Maximum design heat input and/or NA	Maximum design heat input and/or maximum horsepower rating: Type and Btu/hr rating of burners: NA NA					
List the primary fuel type(s) and if a the maximum hourly and annual fue NA		s). For each fuel type	listed, provide			
Describe each fuel expected to be us	ed during the term of the permit.					
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value			
NA						
Emissions Data						
Criteria Pollutants	Potenti	al Emissions				
	PPH	TP	Y			
Carbon Monoxide (CO)	0	0				
Nitrogen Oxides (NO _X)	0	0				
Lead (Pb)	0	0				
Particulate Matter (PM _{2.5}) 0 0						
Particulate Matter (PM ₁₀)	0	0				
Total Particulate Matter (TSP)	0	0				

0	0	
1.45	6.34	
Potential Emissions		
РРН	TPY	
0.004	0.018	
0.0004	0.002	
0.12	0.52	
Potential Emissions		
РРН	ТРҮ	
NA	NA	
	1.45 Potentia PPH 0.004 0.0004 0.12 Potentia PPH	

The batch mixing process for the Pre-React tanks is similar to the batch mixing processes that occur in the paint manufacturing industry. Under Section 6.4 Paint and Varnish of AP-42, it is estimated that 1 to 2% of the solvents (or VOCs) are lost from paint mixing operations. The solvents used in paint manufacturing are typically high vapor pressure solvents that are designed to flash off during the application of the paint. The VOCs (e.g. formaldehyde, phenol) found in Pre-Act Mixing Tanks have a strong affinity towards water, which results in a lower mixed vapor pressure than those of common paint solvents. Therefore, it is estimated that only 2% of the available mass of VOCs in the ingredients used in the Pre-React Mixing Tanks are lost to the indoor air as fugitive emissions.

Applicable Requirements

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

Permit to Modify R14-0015K:

- 5.1.11. The pre-react tanks (mixing tank M1 and holding tanks M2 and M3)) shall not be operated in such a manner where the combined total potential to emit of VOC from these source exceed over 11.8 tons of VOCs per year.
- 5.1.12. Fugitive emissions from equipment (e.g. pipes, pumps, flanges, etc.), which is placed in toxic air pollutant service, as defined by 45CSR27-2.11, shall be integrated into the existing Leak Detection And Repair program. This Leak Detection and Repair program shall comply with the provision of 40 CFR 61 Subpart V. All reports and notification required by Subpart V shall be submitted to the Director instead of the U.S. EPA Administrator. All records required under Subpart V shall be maintain in accordance with 3.4.1. [45CSR§27-10.3.]
 - Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.) Permit to Modify R14-0015K:

4.2.4. The permittee shall monitor and record the formulation of each batch of binder used.

Are you in compliance with all applicable requirements for this emission unit? <u>X</u> Yes <u>No</u>

ATTACHMENT E - Emission Unit Form					
Emission Unit Description					
Emission unit ID number: T3, T4, T5, T6	Emission unit name: Resin Storage Tanks	List any control devices associated with this emission unit: None			
Provide a description of the emission unit (type, method of operation, design parameters, etc.): Storage tanks for the raw Resin that is used in the formulation of binder. The tanks are installed in a refrigerated /secondary containment room and are interconnected to prevent overflow.					
Manufacturer: Guardian Fiberglass, Inc.	Model number: NA	Serial number: NA			
Construction date: NA	Installation date: 07/25/1998	Modification date(s): NA			
Design Capacity (examples: furnace	e <mark>s - tons/hr, tanks - gallons):</mark> 4,500 g	allons per tank			
Maximum Hourly Throughput: 130.4 gallons	Maximum Annual Throughput: 1,692,850 gallons	Maximum Operating Schedule: Guardian Fiberglass operates 24 hours a day and 365 days a year.			
Fuel Usage Data (fill out all applica	ble fields)				
Does this emission unit combust fue	1?Yes _x No	If yes, is it?			
		Indirect Fired	Direct Fired		
Maximum design heat input and/or maximum horsepower rating: NAType and Btu/hr rating of burne NA			ting of burners:		
List the primary fuel type(s) and if the maximum hourly and annual fu NA	applicable, the secondary fuel type(s el usage for each.	s). For each fuel type	listed, provide		
Describe each fuel expected to be us	sed during the term of the permit.				
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value		
NA					
Emissions Data					
Criteria Pollutants	Potenti	al Emissions			
	РРН	TP	ľ		
Carbon Monoxide (CO)	0	0			
Nitrogen Oxides (NO _x)	0	0			
Lead (Pb)	0	0			
Particulate Matter (PM _{2.5})	0	0			
Particulate Matter (PM ₁₀)					
Total Particulate Matter (TSP)					
Sulfur Dioxide (SO ₂)	0	0			

Volatile Organic Compounds (VOC)	0.0036	0.016	
Hazardous Air Pollutants	Potential Emissions		
	РРН	TPY	
Formaldehyde	0.0021	0.009	
Phenol	0	0	
Methanol	0.015	0.006	
Regulated Pollutants other than	Potential Emissions		
Criteria and HAP	РРН	TPY	
NA	NA	NA	

U.S.EPA tanks program equations (U.S.EPA "Compilation of Air Pollutant Emission Factors" (AP-42), February, 1995, Section 7.1.3.1).

Applicable Requirements

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

Permit to Modify R14-0015K:

- 5.1.8. The amount of resin consumed shall not exceed over 1,692,850 gallons per year, calculated as the sum during a consecutive 12-month period.
- 5.1.10. The four resin (T3, T4, T5, and T6) and two de-dusting oil/wax emulsion (T7a and T7b) storage tanks shall not be operated in such a manner where the combine total potential to emit of VOCs exceed over 1,695 pounds of VOCs per year.
 - _ Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.) Permit to Modify R14-0015K:

- 5.2.1. The permittee shall monitor and record on a monthly basis the amount of resin consumed at the permitted facility. Such records shall be maintain in accordance with 3.4.1.
- 5.5.1. The permittee shall report to the Director or his/her authorized representative of any abnormal release and/or spill of fifty pounds or more of formaldehyde within twenty-four (24) hours of knowledge of the incident. Within seven (7) days after knowledge of the incident, the permittee shall submit a written report to the Director stating the details of the incident. Record of such report shall be maintained in accordance with condition 3.4.1. [45CSR§27-10.4.]

Are you in compliance with all applicable requirements for this emission unit? <u>X</u>Yes <u>No</u>

ATTACHMENT E - Emission Unit Form							
Emission Unit Description							
Emission unit ID number:	Emission unit name:	List any control dev with this emission u					
T7A, T7B	Dedusting Oil/Emulsion Wax Storage Tanks	None					
Provide a description of the emission unit (type, method of operation, design parameters, etc.): Storage tanks for the Dedusting Oil/Wax that is used in the binder or applied to the product after the binder.							
Manufacturer: Guardian Fiberglass, Inc.	Model number: NA	Serial number: NA					
Construction date: NA	Installation date: 07/25/1998	Modification date(s Converted from dedu emulsion wax June 2	usting oil to				
Design Capacity (examples: furnace	es - tons/hr, tanks - gallons): 3,800 ga	allons per tank					
Maximum Hourly Throughput: 166 pounds	Maximum Annual Throughput: 1,144,095 pounds	Maximum Operatin Guardian Fiberglass a day and 365 days a	operates 24 hours				
Fuel Usage Data (fill out all applical	ble fields)						
Does this emission unit combust fue	!? Yes _ X No	If yes, is it?					
		Indirect Fired	Direct Fired				
Maximum design heat input and/or NA	maximum horsepower rating:	Type and Btu/hr ra NA	ting of burners:				
List the primary fuel type(s) and if a the maximum hourly and annual fu NA). For each fuel type	listed, provide				
Describe each fuel expected to be us	ed during the term of the permit.						
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value				
NA							
Emissions Data	-						
Criteria Pollutants	Potentia	al Emissions					
	РРН	TPY					
Carbon Monoxide (CO)	0	0					
Nitrogen Oxides (NO _X)	0	0					
Lead (Pb)	0 0						
Particulate Matter (PM _{2.5})	0 0						
Particulate Matter (PM ₁₀)	0	0					
Total Particulate Matter (TSP)	0	0					
Sulfur Dioxide (SO ₂)	0	0					

Volatile Organic Compounds (VOC)	0.0000041	0.00002	
Hazardous Air Pollutants	Potential Emissions		
	РРН	TPY	
NA	NA	NA	
Regulated Pollutants other than	Potential Emissions		
Criteria and HAP	РРН	TPY	
NA	NA	NA	

U.S.EPA tanks program equations (U.S.EPA "Compilation of Air Pollutant Emission Factors" (AP-42), February, 1995, Section 7.1.3.1).

Applicable Requirements

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

Permit to Modify R14-0015K:

- 5.1.9. The amount of de-dusting oil consumed shall not exceed 1,144,095 gallons per year, calculated as the sum during a consecutive 12-month period.
- 5.1.10. The four resin (T3, T4, T5, and T6) and two de-dusting oil/wax emulsion (T7a and T7b) storage tanks shall not be operated in such a manner where the combine total potential to emit of VOCs exceed over 1,695 pounds of VOCs per year.

____ Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.) Permit to Modify R14-0015K:

5.2.2. The Permittee shall monitor and record on a monthly basis the amount of de-dusting oil and wax emulsion consumed at the permitted facility.

Are you in compliance with all applicable requirements for this emission unit? X Yes ____No

ATTACHMENT E - Emission Unit Form								
Emission Unit Description								
Emission unit ID number: T8	Emission unit name: Aqueous Ammonia Storage Tank	List any control devices associated with this emission unit: None						
Provide a description of the emission unit (type, method of operation, design parameters, etc.): Fiberglass, reinforced, storage tank for the Aqua Ammonia that is used in the binder.								
Manufacturer: Iatec Process Storage Systems	Model number: CVF-108-6153-5	Serial number: 113808						
Construction date: 06/03	Installation date: 07/25/1998	Modification date(s Tank Replaced 2003):					
Design Capacity (examples: furnace	es - tons/hr, tanks - gallons): 6,153 ga	allons per tank						
Maximum Hourly Throughput: 21.5 Gallons	Maximum Annual Throughput: 188,024 Gallons	Maximum Operatin Guardian Fiberglass a day and 365 days a	operates 24 hours					
Fuel Usage Data (fill out all applical	ble fields)	·						
Does this emission unit combust fue	!? Yes _ X No	If yes, is it?						
		Indirect FiredDirect Fired						
Maximum design heat input and/or NA	maximum horsepower rating:	Type and Btu/hr ra NA	ting of burners:					
List the primary fuel type(s) and if a the maximum hourly and annual fu NA). For each fuel type	listed, provide					
Describe each fuel expected to be us	ed during the term of the permit.							
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value					
NA								
Emissions Data								
Criteria Pollutants	Potentia	al Emissions						
	РРН	TPY						
Carbon Monoxide (CO)	NA	NA						
Nitrogen Oxides (NO _X)	NA NA							
Lead (Pb)	NA	NA						
Particulate Matter (PM _{2.5})	NA	NA						
Particulate Matter (PM ₁₀)	NA	NA	<u> </u>					
Total Particulate Matter (TSP)	NA	NA						
Sulfur Dioxide (SO ₂)	NA	NA						

Volatile Organic Compounds (VOC)	NA	NA	
Hazardous Air Pollutants	Potential Emissions		
	РРН	TPY	
NA	NA	NA	
Regulated Pollutants other than	Potential Emissions		
Criteria and HAP	РРН	TPY	
NA	NA	NA	

NA

Applicable Requirements

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

Permit to Modify R14-0015K:

5.1.12. Fugitive emissions from equipment (e.g. pipes, pumps, flanges, etc.), which is placed in toxic air pollutant service, as defined by 45CSR27-2.11, shall be integrated into the existing Leak Detection And Repair program. This Leak Detection and Repair program shall comply with the provision of 40 CFR 61 Subpart V. All reports and notification required by Subpart V shall be submitted to the Director instead of the U.S. EPA Administrator. All records required under Subpart V shall be maintain in accordance with 3.4.1. [45CSR§27-10.3.]

____ Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.) NA

Are you in compliance with all applicable requirements for this emission unit? <u>X</u> Yes <u>No</u>

ATT	ACHMENT E - Emission Uni	t Form					
Emission Unit Description							
Emission unit ID number:	Emission unit name:	List any control dev					
ES13A, ES13B and ES13C (Group 004)	Fiberizers, Vacuum Chamber and Collection Plenum	with this emission unit: CD13A and CD13B					
Provide a description of the emission unit (type, method of operation, design parameters, etc.):							
Fiber forming units (or fiberizers) are and "spun" into glass fibers. There are per hour. Cooling water, de-dusting w fiberizer is configured with an advance regulated air pollutants. Conditioned f chamber, by fans located downstream chamber exhaust is impinged with a w through a transition duct and drop-out finally to the discharge (collection) sta	e eight (8) fiberizers with a total mater ax or oil and binder is applied to the fi ed water-jet ring, a process modificati- iber from the fiberizers is pulled dowr of the collection plenum. The collect rater spray to control particulates. The box (where it is subjected to additional	ial throughput capacity iber just below the fibe on that reduces volatili a onto the collection ch ion plenum is a box wh e exiting exhaust is the	v of 8,000 pounds rizers. Each zation of potential ain in the vacuum here the vacuum n accelerated				
Manufacturer: Guardian Fiberglass	Model number: NA	Serial number: NA					
Construction date: NA	Installation date: 07/25/1998	Modification date(s): NA					
Design Capacity (examples: furnace	s - tons/hr, tanks - gallons): 8,000 ll	os/hr					
Maximum Hourly Throughput: 8,000 lbs/hr	Maximum Annual Throughput: 35,040 Tons per Year	Maximum Operatin The facility operates 365 days a year.					
Fuel Usage Data (fill out all applical	ble fields)	I					
Does this emission unit combust fue	!? <u>x</u> Yes <u>No</u>	If yes, is it?					
		Indirect Firedx_Direct Fired					
Maximum design heat input and/or 8.4MM BTU/Hr	maximum horsepower rating:	Type and Btu/hr rating of burners: Pre Mix Tunnel Burner 8.4 mmBtu/hr nat'l gas-fired					
List the primary fuel type(s) and if a the maximum hourly and annual fu Natural Gas Max. Nat. Gas Usage Per Max. Nat. Gas Usage Per Year: 70.08	el usage for each. Hour: 8,000 CFH). For each fuel type	listed, provide				
Describe each fuel expected to be us	ed during the term of the permit.	,					
Fuel Type	Max. Sulfur Content Max. Ash Content		BTU Value				
Natural Gas	NA NA 10		1047.7				
Emissions Data							
Criteria Pollutants	Potentia	al Emissions					
	РРН	РРН ТРУ					
Carbon Monoxide (CO)	21.12	92.5	1				
Nitrogen Oxides (NO _X)	1.28	5.61					

Lead (Pb)	0.00022	0.00095	
Particulate Matter (PM _{2.5})	14.84	65.00	
Particulate Matter (PM ₁₀)	14.84	65.00	
Total Particulate Matter (TSP)	14.84	65.00	
Sulfur Dioxide (SO ₂)	0.004	0.018	
Volatile Organic Compounds (VOC)	10.48	45.90	
Hazardous Air Pollutants	Potential Emissions		
	РРН	TPY	
Chromium	0.003	0.015	
Formaldehyde	2.52	11.04	
Methanol	9.12	39.95	
Phenol	5	21.9	
Regulated Pollutants other than	Potential Emissions		
Criteria and HAP	PPH	TPY	
Ammonia	15.08	66.05	
Formic Acid	1.392	6.096	
Carbon Dioxide Equivalent (CO ₂ e)	980	4,300	

The emission factors and TPY listed above for CO, NO_x , PM, VOC, SO_2 Phenol, Ammonia and Formaldehyde are from Permit R14-0015 emission limits. The emission factor for Chrome was obtained from the Mineral Wells, MS 2000 stack test and the Lead is an impurity in the raw material and is calculated based on usage. Methanol emission factor was obtained from the stack test, along with Formic Acid. Condensable PM speciation is based on stack test data. CO_2e was calculated following 40 CFR 98 Subparts C and N as appropriate.

Applicable Requirements

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

Permit to Modify R14-0015K:

4.1.1. The permittee shall operate a resinated (bonded) fiberglass insulation line identified as 1st line with associated emission EP12 (melter stack), EP13 (collection stack), and EP14 (incinerator stack). This line shall be operated and maintained in accordance with the following operational and emission limitations:

- a. Production of fiberglass insulation from this line shall not exceed 8,000 pounds of glass pulled per hour or 35,040 TPY. Compliance with this limit shall be based on a 12-month rolling total;
- b. Emissions from the line shall not exceed the following limits with respect to the corresponding emission point and pollutant;

Emission	СО	NO _x	PM	PM_{10}	VOC*	HCOH	Phenol	NH ₃
Point	lb/TGP	lb/TGP	lb/TGP	lb/TGP	lb/TGP	lb/TGP	lb/TGP	lb/TGP
EP12	0.73	0.03	0.07	0.07				
EP13	5.28	0.32	3.47	3.47	2.86	0.80	1.55	3.77

EP14	1.13	3.75	0.46	0.46		0.87
lb/TGP = pou	nds of pollutant	per ton of glass	pulled.			

*VOC emissions shall not include methane and ethane

d. The fiberizers and Forehearth of the line shall be operated in such a manner the following air to fuel ratios are not exceeded:

Thermox Gas Ratio Setting for the fiberizers: 962 millvolts Thermox Gas Ratio Setting for the forehearths: 823 millvolts

e. Exhaust from the Forehearth and fiberizers of this line shall be vented into a closed loop system that routs this stream directly to either one of identified water sprays with drop-out boxes (CD13A or CD13B) at all times when the line is operating.

4.1.3 The following conditions apply to both production lines.

- b. Each fiberizer that produces resinated (bonded) fiberglass shall be equipped, maintained, and operated with a advance water-jet ring to minimize formaldehyde emissions from the fiber forming process;
- d. A device that continuous measures and records the scrubbing liquid flow to each scrubber and drop-out box shall be installed, calibrate, maintain, and operated for each venturi scrubber and drop-out box (CD13A, CD13B, CD23A, CD23B, CD23C, and CD24B). Such device is to be certified by its manufacturer to be accurate within ± 5 percent over its operating range; and
- e. A device that continuous measures and records the scrubbing liquid pressure at delivery to each drop-out box shall be installed, calibrated, maintained, and operated for each drop-out box (CD13A and CD13B). Such device is to be certified by its manufacturer to be accurate within ± 5 percent over its operating range;
- f. A device that continuous measures and records the amount of binder applied to the product shall be installed, maintained, calibrated, and operated for each production line. Such device is to be certified by its manufacturer to be accurate within \pm 5 percent over its operating range.

4.1.4 The permitted shall, to the extent practicable, install maintain, and operate all pollution control equipment listed in Section 1.0 and associated monitoring equipment in a manner consistent with safety and good air pollution control practices for minimizing emissions, or comply with any more stringent limits set forth in this permit or as set forth by any State rule, Federal regulation, or alternative control plan approved by the Secretary. **[45CSR§13-5.11.]**

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

- 4.2.1 The permittee shall monitor and record the hourly production on a daily basis for each line. These records shall include the monthly total and the 12-month rolling total for each line respectively. Such records shall be maintained in accordance with condition 3.4.1.
- 4.2.2 The permittee shall maintain records of the recorded data from the stipulated devices in condition 4.1.3.b. through g. in accordance with condition 3.4.1 of this permit.

4.3.1 For the purposes of demonstrating initial compliance with operations and emission limitation in condition 4.1.1., 4.1.2., and 40 CFR §63.(a), the permittee shall conduct performance testing of the 1^{st} and 2^{nd} lines within 180 days after issuance of this permit. Such testing shall determine the VOC, formaldehyde, and phenol emission rates from the collection and incinerator stacks of the both production lines. This testing shall establish and/or verify the operating parameters for the respective control devices of the production line. This testing shall be conducted as outline in the following:

- a. General Testing Requirements:
 - i. This testing shall consist of three test runs. Each test run must last at least one hour;
 - ii. Each test run must be conducted with the production line operating at no less 90 percent capacity;
 - iii. During each test run, sampling of the collection and incinerator must occur simultaneously to each other;
 - viii. During such testing, the permittee shall measure and record all of the operating parameters respective to the production line as noted in condition 4.3.1. in fifteen (15) minute intervals. The

arithmetic average shall be calculated for each parameters using all of recorded measurements. Such measurements and arithmetic averages shall be included with the testing report;

- b. Demonstrating compliance with the VOC emission limit shall be conducted with a method(s) approved by the Director. The permittee may propose a testing method as part of the required protocol of condition 3.4.1.;
- c. Demonstrating compliance with the formaldehyde limits be conducted in accordance with U.S. EA method 316 or Method 318;
- d. Demonstrating compliance with the phenol limits be conducted in accordance with U.S. EPA Method 318 or 320 or other method approved by the Director;
- e. Compliance with the VOC, formaldehyde, and phenol limits shall be determined by taking sum of the arithmetic average of the respective pollutant from the collection stack and incinerator stack. The reported emission rates shall be in terms of pounds per ton of glass pulled.
- f. Such testing shall be conducted in accordance with 3.3.1.
- 4.3.2. Within 180 days after completing modification of the 1st line to be capable of producing 8,000 pounds of glass pulled per hour, the permittee shall conduct performance testing to demonstrate compliance with the carbon dioxide PM, VOC, formaldehyde, and phenol emission limits. Stack testing shall be conducted as prescribe in condition 4.3.1. for VOC, formaldehyde, and phenol. For PM, such testing shall be conducted as outline in condition 4.3.4. For carbon monoxide, such testing shall be conducted in accordance with U.S.EPA Method 10. This testing shall establish and/or verify the operating parameters for the respective control devices of the production line.
- 4.3.3 Once every five years, the permittee shall conduct emission testing to demonstrate compliance with the permitted CO and NO_x emission limits in 4.1.1.b and 4.1.2b for the collection stack (EP13 and EP23) and incinerator stack (EP14 and EP24) of each production line and to verify and/or establish maximum Thermox readings in millivolts for the fiberizers and Forehearth as stipulated in 4.1.1d. and 4.1.2.d. This testing shall be conducted as outline in 3.3.1., 4.3.1.a, and as follows:
- a. Demonstrating compliance with the carbon monoxide limits be conducted in accordance with U.S. EPA method 10;
- b. Demonstrating compliance with the oxides of nitrogen limits be conducted in accordance with U.S. EPA Method 7E.

4.3.4 Once every 5 years or within 180 days that when the production line will be producing a product with a LOI greater than the previous compliance test that demonstrated compliance with the permitted PM limits of this permit, the permittee shall conduct performance testing to determine the PM emission rate of the collection and incinerator stacks of the respective production line. Such testing shall be conducted as outlined in condition 4.3.1.a. and USEPA Method 5E. This testing shall establish and/or verify the operating parameters for the respective control devices of the production line.

4.3.5 Should the permittee elect to change binder formula or produce a product with a LOI that is greater than the one that was produced during a compliance test that demonstrated compliance with the permitted VOC, formaldehyde, and phenol limits of this permit, the permittee shall conduct performance testing within 180 days of after making such change to demonstrate compliance with the VOC, formaldehyde, and phenol emission limits. Such testing shall be conducted as prescribed in conditions 3.3.1. and 4.3.1. for VOC, formaldehyde, and phenol of the respective line that the change is effecting. This testing shall establish and/or verify the operating parameters for the respective control devices of the production line.

4.4.1. Record of monitoring. The permittee shall keep records of monitoring information that include the following:

- a. The date, place as defined in this permit and time of sampling or measurements;
- b. The date(s) analyses were performed;
- c. The company or entity that performed the analyses;
- d. The analytical techniques or methods used;
- e. The results of the analyses; and

f. The operating conditions existing at the time of sampling or measurement.

Are you in compliance with all applicable requirements for this emission unit? <u>X</u> Yes <u>No</u>

	FACHMENT E - Emission U	int Form		
Emission Unit Description				
Emission unit ID number: ESHW15	Emission unit name: 5 Binder Room Water Heaters	List any control devices associated with this emission unit:		
		NA		
	on unit (type, method of operation, ers plumbed in parallel to supply hot v			
Manufacturer: Unit 1: State Unit 2: Bradford White Unit 3 Bradford White Unit 4: Vaguard Unit 5: Bradford White	Model number: Unit 1: SBS10076NE Unit 2: MI75S6BN Unit 3 MI75S6BN Unit 4: 2LAC9 Unit 5: MI75S6BN	Serial number: Unit #1: J06M002319 Unit #2: GD13356259 Unit #3: HB14527179 Unit #4: VGLN0808104786 Unit #5: GE13396971		
Construction date: NA	Installation date: Unit 1 07/25/1998	Modification date(s Units 2 - 5 2011):	
Design Capacity (examples: furnac	ces - tons/hr, tanks - gallons): 98 Ga	allon Tank Capacity X 5	= 490 Gallons	
Maximum Hourly Throughput: 125 Gallons Per Hour	Guardian Fiberglass	Maximum Operating Schedule: Guardian Fiberglass operates 24 hours a day and 365 days a year.		
Fuel Usage Data (fill out all applica	able fields)			
		If yes, is it?		
			X Direct Fired	
<i>Fuel Usage Data</i> (fill out all applica Does this emission unit combust fu Maximum design heat input and/or 75,100 BTU/HR	el? <u>X</u> Yes <u>No</u>	If yes, is it? Indirect Fired Type and Btu/hr ra Standing Pilot Mode Vented, Light Duty 0 GAMA Rated 80% 7 Efficiency @ 75,100	ting of burners: l, Atmospheric Commercial, Fhermal	
Does this emission unit combust fu Maximum design heat input and/or 75,100 BTU/HR	el? <u>X</u> Yes <u>No</u> r maximum horsepower rating: r applicable, the secondary fuel type uel usage for each.	Indirect Fired	ting of burners: l, Atmospheric Commercial, Thermal btu/hr	
Does this emission unit combust fu Maximum design heat input and/or 75,100 BTU/HR List the primary fuel type(s) and if the maximum hourly and annual for Fuel Type: Natural Gas Maximum Hourly Usage For Five Un Maximum Annual Usage For Five U	el? <u>X</u> Yes <u>No</u> r maximum horsepower rating: ^c applicable, the secondary fuel type uel usage for each. nits: 358.4 cu. Ft. nits: 3,139,620.1 cu. Ft.	Indirect Fired	ting of burners: l, Atmospheric Commercial, Thermal btu/hr	
Does this emission unit combust fu Maximum design heat input and/or 75,100 BTU/HR List the primary fuel type(s) and if the maximum hourly and annual fr Fuel Type: Natural Gas Maximum Hourly Usage For Five Un	el? <u>X</u> Yes <u>No</u> r maximum horsepower rating: ^c applicable, the secondary fuel type uel usage for each. nits: 358.4 cu. Ft. nits: 3,139,620.1 cu. Ft.	Indirect Fired	ting of burners: l, Atmospheric Commercial, Thermal btu/hr	
Does this emission unit combust fu Maximum design heat input and/or 75,100 BTU/HR List the primary fuel type(s) and if the maximum hourly and annual fu Fuel Type: Natural Gas Maximum Hourly Usage For Five Un Maximum Annual Usage For Five U Describe each fuel expected to be u	el? <u>X</u> Yes <u>No</u> r maximum horsepower rating: r applicable, the secondary fuel type uel usage for each. nits: 358.4 cu. Ft. nits: 3,139,620.1 cu. Ft. used during the term of the permit.	Indirect Fired	ting of burners: l, Atmospheric Commercial, Fhermal btu/hr listed, provide	
Does this emission unit combust fu Maximum design heat input and/or 75,100 BTU/HR List the primary fuel type(s) and if the maximum hourly and annual fu Fuel Type: Natural Gas Maximum Hourly Usage For Five Un Maximum Annual Usage For Five U Describe each fuel expected to be u Fuel Type Natural Gas	el? <u>X</u> Yes <u>No</u> r maximum horsepower rating: r applicable, the secondary fuel type uel usage for each. nits: 358.4 cu. Ft. nits: 3,139,620.1 cu. Ft. Ised during the term of the permit. Max. Sulfur Content	Indirect Fired	ting of burners: l, Atmospheric Commercial, Thermal btu/hr listed, provide BTU Value	
Does this emission unit combust fu Maximum design heat input and/or 75,100 BTU/HR List the primary fuel type(s) and if the maximum hourly and annual fu Fuel Type: Natural Gas Maximum Hourly Usage For Five Un Maximum Annual Usage For Five U Describe each fuel expected to be u Fuel Type	el? <u>X</u> Yes No r maximum horsepower rating: r applicable, the secondary fuel type uel usage for each. nits: 358.4 cu. Ft. nits: 3,139,620.1 cu. Ft. Ised during the term of the permit. Max. Sulfur Content NA	Indirect Fired	ting of burners: l, Atmospheric Commercial, Thermal btu/hr listed, provide BTU Value	
Does this emission unit combust fu Maximum design heat input and/or 75,100 BTU/HR List the primary fuel type(s) and if the maximum hourly and annual fe Fuel Type: Natural Gas Maximum Annual Usage For Five Un Maximum Annual Usage For Five U Describe each fuel expected to be u Fuel Type Natural Gas Emissions Data	el? <u>X</u> Yes No r maximum horsepower rating: r applicable, the secondary fuel type uel usage for each. nits: 358.4 cu. Ft. nits: 3,139,620.1 cu. Ft. Ised during the term of the permit. Max. Sulfur Content NA	Indirect Fired	ting of burners: 1, Atmospheric Commercial, Thermal btu/hr listed, provide BTU Value 1047.7/cu. Ft.	
Does this emission unit combust fu Maximum design heat input and/or 75,100 BTU/HR List the primary fuel type(s) and if the maximum hourly and annual for Fuel Type: Natural Gas Maximum Annual Usage For Five Un Maximum Annual Usage For Five U Describe each fuel expected to be u Fuel Type Natural Gas Emissions Data Criteria Pollutants	el? <u>X</u> Yes No r maximum horsepower rating: r applicable, the secondary fuel type uel usage for each. nits: 358.4 cu. Ft. nits: 3,139,620.1 cu. Ft. Ised during the term of the permit. Max. Sulfur Content NA Poten	Indirect Fired	ting of burners: 1, Atmospheric Commercial, Thermal btu/hr listed, provide BTU Value 1047.7/cu. Ft.	
Does this emission unit combust fu Maximum design heat input and/or 75,100 BTU/HR List the primary fuel type(s) and if the maximum hourly and annual fe Fuel Type: Natural Gas Maximum Annual Usage For Five Un Maximum Annual Usage For Five U Describe each fuel expected to be u Fuel Type Natural Gas Emissions Data	el? <u>X</u> Yes No r maximum horsepower rating: r applicable, the secondary fuel type uel usage for each. nits: 358.4 cu. Ft. nits: 3,139,620.1 cu. Ft. Ised during the term of the permit. Max. Sulfur Content NA Poten PPH	Indirect Fired	ting of burners: 1, Atmospheric Commercial, Thermal btu/hr listed, provide BTU Value 1047.7/cu. Ft. Y 3	

Particulate Matter (PM _{2.5})	0.001	0.0049		
Particulate Matter (PM ₁₀)	0.001	0.0049		
Total Particulate Matter (TSP)	0.001	0.0049		
Sulfur Dioxide (SO ₂)	0.0002	0.00099		
Volatile Organic Compounds (VOC)	0.002	0.0087		
Hazardous Air Pollutants	Potential Emissions			
	РРН	TPY		
NA	NA	NA		
Regulated Pollutants other than	Potentia	al Emissions		
Criteria and HAP	РРН	TPY		
Ammonia	0.0068	0.02957		
Carbon Dioxide Equivalents (CO ₂ e)	40	190		

Fugitive emissions occur from the combustion of natural gas in each water heater. Using the EPA's FIRE database, SCC Code No. 1-05-002-06 for external boilers in industrial use presents an emission factor of 20 lbs CO, 5.3 lbs VOC's, 100 lbs NO_x , 0.6 lbs SO2, 18 lbs NH_3 and 3 lbs of PM per million cubic feet (MMCF) of natural gas burned. Carbon dioxide equivalents were calculated following 40 CFR 98 Subpart C and N as appropriate.

Applicable Requirements

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

Permit to Modify R14-0015K:

5.1.5. The 14.6 MMBtu/hr boiler (ID No. ESSHB14), 8.5 MMBTU/hr makeup air handling unit (ID. No. ESSH15), 7.875 MMBtu/hr air handling unit (ID No. ESSH16), and five (5) 75 Mbtu/hr binder water heaters (ID No. ESHW15) shall only be fired with pipeline quality natural gas.

____ Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.) NA

Are you in compliance with all applicable requirements for this emission unit? <u>X</u> Yes <u>No</u>

APPENDIX F: SCHEDULE OF COMPLIANCE

This section is not applicable.

.....

.....

ATTACHMENT G - Air Pollution Control Device Form			
Control device ID number: CD12A	List all emission units associated with this control device. ES12A (Batch Mixer's Receiving Bin For 1 st & 2 nd Lines)		
Manufacturer:	Model number:	Installation date:	
Whirl-Air Flow	Bin Vent DC Model 345-56	07/25/1998	
Type of Air Pollution Control De	evice:		
<u>X</u> Baghouse/Fabric Filter	Venturi Scrubber	Multiclone	
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone	
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank	
Catalytic Incinerator	Condenser	Settling Chamber	
Thermal Incinerator	Flare	Other (describe)	
Wet Plate Electrostatic Precipi	tator	Dry Plate Electrostatic Precipitator	
List the pollutants for which this	device is intended to control and	the capture and control efficiencies.	
Pollutant	Capture Efficiency	Control Efficiency	
Particulate Matter	99%	99%	
		e (flow rates, pressure drops, number of et of filter cloth media with an air to cloth	
Is this device subject to the CAM	requirements of 40 C.F.R. 64? _	YesXNo	
If Yes, Complete ATTACHMEN	ТН		
If No, Provide justification. T atmosphere as the unit is enclosed.		sion point and does not discharge to the	
Describe the parameters monitor	ed and/or methods used to indica	te performance of this control device.	
NA			

ATTACHMENT G - Air Pollution Control Device Form			
Control device ID number: CD12B	List all emission units associated with this control device. ES12C (Melter Hood For 1^{st} Line)		
Manufacturer: MAC Equipment Co.	Model number: MactFlo 4MTF96	Installation date: 07/25/1998	
Type of Air Pollution Control Device:			
<u>X</u> Baghouse/Fabric Filter	Venturi Scrubber	Multiclone	
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone	
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank	
Catalytic Incinerator	Condenser	Settling Chamber	
Thermal Incinerator	Flare	Other (describe)	
Wet Plate Electrostatic Precipitator		Dry Plate Electrostatic Precipitator	
List the pollutants for which this devi	ce is intended to control and the ca	apture and control efficiencies.	
Pollutant	Capture Efficiency	Control Efficiency	
Particulate Matter	99%	99%	
Chromium	99%	99%	
 Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.). 1. 15,000 acfm 2. Closed Pressure Configuration 3. 96 Polyester Cartridge Filters 4. 10,560 ft² of filter area 5. Cartridges Cleaned By Pulse Air 			
Is this device subject to the CAM requirements of 40 C.F.R. 64? Yes _X No			
If Yes, Complete ATTACHMENT H			
 If No, Provide justification. 1. Facility is subject to MACT under the NESHAP 40CFR Parts 61 & 63 CAM APPLICABILITY DETERMINATION (1.b. bullet 1) 2. Emission Limitations or Standards for which a WVDEP Division of Air Quality Title V permit specifies a continuous compliance determination method, as defined in 40 CFR Section 64.1 CAM APPLICABILITY DETERMINATION (1.b. bullet 4) 			
Describe the parameters monitored and/or methods used to indicate performance of this control device. Differential Pressure, Incoming air temperature and Discharge Air pico Amps are all monitored. A bag leak detection system is installed and monitored accordingly.			

	ENT G - Air Pollution C		
Control device ID number: CD12Bb (Backup To CD12B)	List all emission units associated with this control device. ES12C (Melter Hood For 1 st Line)		
Manufacturer: MAC Equipment Co.	Model number: MactFlo 4MTF32	Installation date: 07/25/1998	
Type of Air Pollution Control Devi	ce:		
X Baghouse/Fabric Filter	Venturi Scrubber	Multiclone	
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone	
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank	
Catalytic Incinerator	Condenser	Settling Chamber	
Thermal Incinerator	Flare	Other (describe)	
Wet Plate Electrostatic Precipita	tor	Dry Plate Electrostatic Precipita	tor
Pollutant Particulate Matter	Capture Efficiency	Control Efficiency 99%	
List the pollutants for which this d	evice is intended to control an	d the capture and control efficiencies.	•
Particulate Matter	99%	99%	
Chromium	99%	99%	
 bags, size, temperatures, etc.). 1, 10,000 acfm 2. Closed Pressure Configurati 3. 32 Polyester Cartridge Filter 4. 3,530 ft² of filter area 5. Cartridges Cleaned By Pulse 	rs		
Is this device subject to the CAM r	equirements of 40 C.F.R. 64?	YesXNo	
If Yes, Complete ATTACHMENT	Н		
If No, Provide justification. 1. Facility is subject to MACT under DETERMINATION (1.b. bullet 1)			
		of Air Quality Title V permit specifies a Section 64.1 CAM APPLICABILITY	ı
DETERMINATION (1.b. bullet 4)			

ATTACHMENT G - Air Pollution Control Device Form			
List all emission units associated with this control device. ES12D (Mixed Batch Storage Day Bin For 1 st Line (3" Line)			
Model number: Bin Vent DC Model 230-56	Installation date: 07/25/1998		
ice:			
Venturi Scrubber	Multiclone		
Packed Tower Scrubber	Single Cyclone		
Other Wet Scrubber	Cyclone Bank		
Condenser	Settling Chamber		
Flare	Other (describe)		
itor	Dry Plate Electrostatic Precipitator		
levice is intended to control and t	he capture and control efficiencies.		
Capture Efficiency	Control Efficiency		
99%	99%		
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.). Control device utilizes 230 square feet of filter cloth media with an air to cloth ratio of 3:1 for an acfm of 690.			
requirements of 40 C.F.R. 64?	Yes <u>X</u> _No		
If Yes, Complete ATTACHMENT H If No, Provide justification . The control device is a fugitive emission point and does not discharge to the atmosphere as the unit is enclosed.			
Describe the parameters monitored and/or methods used to indicate performance of this control device.			
NA			
	List all emission units associ ES12D (Mixed Batch S Model number: Bin Vent DC Model 230-56 ice: Venturi Scrubber Packed Tower Scrubber Other Wet Scrubber Condenser Flare tor Revice is intended to control and t Capture Efficiency 99% Darameters of this control device Itrol device utilizes 230 square feet		

ATTACHMENT G - Air Pollution Control Device Form			
Control device ID number: CD12Cb	List all emission units associated with this control device. ES12Db (Mixed Batch Storage Day Bin For 1 st Line (3" Line)		
Manufacturer: Whirl-Air Flow	Model number: Bin Vent DC Model 265-42	Installation date: 07/25/1998	
Type of Air Pollution Control Devi	ce:		
<u>_X</u> Baghouse/Fabric Filter _	Venturi Scrubber	Multiclone	
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone	
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank	
Catalytic Incinerator	Condenser	Settling Chamber	
Thermal Incinerator	Flare	Other (describe)	
Wet Plate Electrostatic Precipitat	for	Dry Plate Electrostatic Precipitator	
List the pollutants for which this de	evice is intended to control and t	he capture and control efficiencies.	
Pollutant	Capture Efficiency	Control Efficiency	
Particulate Matter	99%	99%	
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.). Control device utilizes 265 square feet of filter cloth media with an air to cloth ratio of 3:1 for an acfm of 795.			
Is this device subject to the CAM re	equirements of 40 C.F.R. 64?	_Yes _ <u>X</u> _No	
If Yes, Complete ATTACHMENT H If No, Provide justification. The control device is a fugitive emission point and does not discharge to the atmosphere as the unit is enclosed.			
Describe the parameters monitored and/or methods used to indicate performance of this control device.			
NA			

ATTACHMENT G - Air Pollution Control Device Form			
Control device ID number: CD12D	List all emission units associated with this control device. ES12B (Mixed Batch Storage Backup Day Bin For 1 st Line (5" Line)		
Manufacturer: Whirl-Air-Flow.	Model number: Bin Vent DC Model 130-42	Installation date: 07/25/1998	
Type of Air Pollution Control Device	:		
X Baghouse/Fabric Filter	Venturi Scrubber	Multiclone	
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone	
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank	
Catalytic Incinerator	Condenser	Settling Chamber	
Thermal Incinerator	Flare	Other (describe)	
Wet Plate Electrostatic Precipitator		Dry Plate Electrostatic Precipitator	
List the pollutants for which this devi	ice is intended to control and t	he capture and control efficiencies.	
Pollutant	Capture Efficiency	Control Efficiency	
Particulate Matter	99%	99%	
		(flow rates, pressure drops, number of to filter cloth media with an air to cloth	
Is this device subject to the CAM req	uirements of 40 C.F.R. 64?	Yes <u>X</u> No	
If Yes, Complete ATTACHMENT H			
If No, Provide justification. The control device is a fugitive emission point and does not discharge to the atmosphere as the unit is enclosed.			
Describe the parameters monitored a	nd/or methods used to indicat	e performance of this control device.	
NA			

Control device ID number: CD13A (East Side)	List all emission units associated with this control device. ES12E (Forehearth For 1 st Line); ES12A (8 Fiber Forming Units);ES12B (Vacuum Chamber) & ES13C (Collection Plenum)		
Manufacturer:	Model number:	Installation date:	
Guardian Fiberglass, Inc	NA	07/25/1998	
Type of Air Pollution Control Device:			
Baghouse/Fabric Filter	Venturi Scrubber	Multiclone	
Carbon Bed Adsorber I	Packed Tower Scrubber	Single Cyclone	
Carbon Drum(s) C	Other Wet Scrubber	Cyclone Bank	
Catalytic Incinerator (Condenser	Settling Chamber	
Thermal Incinerator I		X_ Other (describe) <u>Water Spray with</u> Dropout Boxes	
Wet Plate Electrostatic Precipitator	_	Dry Plate Electrostatic Precipitator	
List the pollutants for which this devic	e is intended to control and the	e capture and control efficiencies.	
Pollutant	Capture Efficiency	Control Efficiency	
Particulate Matter	99%	30%	
bags, size, temperatures, etc.). 40,000 acfm or air from the plenums to the iquid flow rate has a design maximum of The pressure drop through the drop out b Is this device subject to the CAM requires If Yes, Complete ATTACHMENT H If No, Provide justification. 1. Facility is subject to MACT under the	f 680 gal/min, however the avera ox is 3-13 inches of water. irements of 40 C.F.R. 64?	age expected flow rate is 350 gal/min. Yes <u>X</u> No	
DETERMINATION (1.b. bullet 1) 2. Emission Limitations or Standards for continuous compliance determination me DETERMINATION (1.b. bullet 4)			
 Describe the parameters monitored an The pressure drop across the scr indicate performance. 		performance of this control device.	

ATTACHMENT G - Air Pollution Control Device Form			
Control device ID number: CD13B (West Side)			
Manufacturer:	Model number:	Installation date:	
Guardian Fiberglass, Inc	NA	07/25/1998	
Type of Air Pollution Control Device:			
Baghouse/Fabric Filter	Venturi Scrubber	Multiclone	
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone	
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank	
Catalytic Incinerator	Condenser	Settling Chamber	
Thermal Incinerator	Flare	<u>X</u> Other (describe) <u>Water Spray with</u> <u>Dropout Boxes</u>	
Wet Plate Electrostatic Precipitator		Dry Plate Electrostatic Precipitator	
List the pollutants for which this devi	ce is intended to control and t	he capture and control efficiencies.	
Pollutant	Capture Efficiency	Control Efficiency	
Particulate Matter	99%	30%	
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.). 40,000 acfm or air from the plenums to the drop out box and the liquid pressure to drop out box is 7-60 psig. The liquid flow rate has a design maximum of 680 gal/min, however the average expected flow rate is 350 gal/min. The pressure drop through the drop out box is 3-13 inches of water.			
Is this device subject to the CAM requ	irements of 40 C.F.R. 64?	Yes X No	
If Yes, Complete ATTACHMENT H			
If No, Provide justification. 1. Facility is subject to MACT under the NESHAP 40CFR Parts 61 & 63 CAM APPLICABILITY DETERMINATION (1.b. bullet 1)			
2. Emission Limitations or Standards for which a WVDEP Division of Air Quality Title V permit specifies a continuous compliance determination method, as defined in 40 CFR Section 64.1 CAM APPLICABILITY DETERMINATION (1.b. bullet 4)			
Describe the parameters monitored and/or methods used to indicate performance of this control device. The pressure drop across the scrubber in inches water and the liquid flow rate in GPM are recorded to indicate performance.			

ATTACHMENT G - Air Pollution Control Device Form			
Control device ID number: CD14A	List all emission units associated with this control device. ES14A (3 Zone Curing Oven For 1 st Line), ES14B (Cooling Table for 1 st Line)		
Manufacturer:	Model number:	Installation date:	
United McGill Corp.	2-151C306	07/25/1998	
Type of Air Pollution Control Device:			
Baghouse/Fabric Filter	Venturi Scrubber	_ Multiclone	
Carbon Bed Adsorber	Packed Tower Scrubber	_Single Cyclone	
Carbon Drum(s)	Other Wet Scrubber	_Cyclone Bank	
Catalytic Incinerator	Condenser	_ Settling Chamber	
<u>X</u> Thermal Incinerator	Flare	_ Other (describe)	
Wet Plate Electrostatic Precipitator		_ Dry Plate Electrostatic Precipitator	

List the pollutants for which this device is intended to control and the capture and control efficiencies.

Pollutant	Capture Efficiency	Control Efficiency
VOC	99%	95%
Phenol	99%	94%
Formaldehyde	99%	94%
Ammonia	99%	91%
Carbon Monoxide	99%	53%
Methanol	99%	94%

Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.).

2.628 MMft³/hr @ 250.0°F with a minimum operating temperature set by stack testing. There are 4 poppet type dampers and 2 Maxon burners controlled by a PLC system with temperature indicator. The RTO also has an auto shutoff for flow, flame loss or over temperature.

Is this device subject to the CAM requirements of 40 C.F.R. 64? ____ Yes ____ No

If Yes, Complete ATTACHMENT H

If No, **Provide justification.** 1. Facility is subject to MACT under the NESHAP 40CFR Parts 61 & 63 CAM APPLICABILITY DETERMINATION (1.b. bullet 1)

2. Emission Limitations or Standards for which a WVDEP Division of Air Quality Title V permit specifies a continuous compliance determination method, as defined in 40 CFR Section 64.1 CAM APPLICABILITY DETERMINATION (1.b. bullet 4)

Describe the parameters monitored and/or methods used to indicate performance of this control device.

A 3 Hour Average Combustion Chamber Temperature is recorded.

List all emission units associated with this control device. ES15B (Slitter Saw; ES 15C (Edge Trimmer & Dicers); ES15D (Choppers); ES15E (Roll Up); ES15F (Batt Folder);ES15G (Batt Packers); ES15H (Dicers) & ES15I (Blowing Wool Bagger)			
Model number:		Installation date:	
35-W-C		07/25/1998	
1			
Venturi Scrubber		Multiclone	
Packed Tower Scrubber		Single Cyclone	
Other Wet Scrubber		Cyclone Bank	
Condenser		Settling Chamber	
Flare		Other (describe) _ Wet Collection stem (Dynamic Separator)	
		Dry Plate Electrostatic Precipitator	
ce is intended to control and t	he ca	pture and control efficiencies.	
Capture Efficiency		Control Efficiency	
80%		90%	
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.).The air tumbler is a dynamic wet dust collector. Its action depends on the energy of the air flowing through it and the use of water to trap the particulate matter.			
nd/or methods used to indicat	e per	formance of this control device.	
	ES15B (Slitter Saw; ES 15C ((Choppers); ES15E (Roll Up) Packers); ES15H (Dicers) & H Model number: 35-W-C : Venturi Scrubber Packed Tower Scrubber Other Wet Scrubber Other Wet Scrubber Condenser Flare ce is intended to control and t Capture Efficiency 80% ameters of this control device ollector. Its action depends on thatter.	ES15B (Slitter Saw; ES 15C (Edge (Choppers); ES15E (Roll Up); ES1 Packers); ES15H (Dicers) & ES151 Model number: 35-W-C : Venturi Scrubber Packed Tower Scrubber Other Wet Scrubber Other Wet Scrubber Condenser FlareX Sy: ce is intended to control and the ca Capture Efficiency 80% ameters of this control device (flow ollector. Its action depends on the en	

ATTACHMENT G - Air Pollution Control Device Form				
Control device ID number: CD15C	List all emission units associated with this control device. ES15H (Dicers) & ES15I (Blowing Wool Bagger)			
Manufacturer:	Model number:	Installation date:		
OMNI S.P.A	ARP 2400	2006		
Type of Air Pollution Control Device:				
Baghouse/Fabric Filter	Venturi Scrubber	Multiclone		
Carbon Bed Adsorber	Packed Tower ScrubberX	_ Single Cyclone		
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank		
Catalytic IncineratorX_	_ Condenser	Settling Chamber		
Thermal Incinerator	Flare	Other (describe)		
Wet Plate Electrostatic Precipitator	Wet Plate Electrostatic Precipitator Dry Plate Electrostatic Precipitator			
List the pollutants for which this devie	e is intended to control and the ca	pture and control efficiencies.		
Pollutant	Capture Efficiency	Control Efficiency		
Particulate Matter	80%	90%		
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.).The unit separates out any airborne fiberglass particles and send the collected material to the screen room.				
Is this device subject to the CAM requirements of 40 C.F.R. 64? Yes _X_ No If Yes, Complete ATTACHMENT H If No, Provide justification . The control device is a fugitive emission point and does not discharge to the				
atmosphere as the unit is enclosed.				
Describe the parameters monitored and/or methods used to indicate performance of this control device.				

ATTACHMENT G - Air Pollution Control Device Form			
Control device ID number: CD15D	List all emission units associated with this control device. ES15H (Dicers) & ES15I (Blowing Wool Bagger)		
Manufacturer:	Model number:	Installation date:	
Guardian Fiberglass	NA	2007/2012	
Type of Air Pollution Control Device	:		
Baghouse/Fabric Filter	Venturi Scrubber	Multiclone	
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone	
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank	
Catalytic Incinerator	Condenser	Settling Chamber	
Thermal Incinerator	Flare	<u>X</u> Other (describe) Screen Room	
Wet Plate Electrostatic Precipitator		Dry Plate Electrostatic Precipitator	
List the pollutants for which this dev	ice is intended to control and t	he capture and control efficiencies.	
Pollutant	Capture Efficiency	Control Efficiency	
Particulate Matter	95%	90%	
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.). The screen room is a woven polyester capture device.			
Is this device subject to the CAM requirements of 40 C.F.R. 64?YesXNo If Yes, Complete ATTACHMENT H If No, Provide justification. The control device is a fugitive emission point and does not discharge to the atmosphere as the unit is enclosed.			
Describe the parameters monitored and/or methods used to indicate performance of this control device.			
NA			

ATTACHMENT G - Air Pollution Control Device Form		
Control device ID number: CD1A For ES1A; CD1B For ES1B & ES1C; CD1D For ES1D & ES1E; CD1F For ES1F & ES1J; CD1G For ES1G; & CD1I For ES1H & ES1I	List all emission units associated with this control device. ES1A (Sand); ES1B & ES1C (Borax); ES1D & ES1E (Soda Ash); ES1f (Aplite) & ES1J (Guardian Cullet); ES1G (Lime) & ES1H & ES1I (Purchased Cullet)	
Manufacturer: Whirl-Air Flow Bin Vent	Model number: Bin Vent DC 195-42	Installation date: 07/25/1998
Type of Air Pollution Control Device:		
<u>X</u> Baghouse/Fabric Filter	Venturi Scrubber	Multiclone
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank
Catalytic Incinerator	Condenser	Settling Chamber
Thermal Incinerator	Flare	Other (describe)
Wet Plate Electrostatic Precipitator		Dry Plate Electrostatic Precipitator
List the pollutants for which this devi	ce is intended to control and t	the capture and control efficiencies.
Pollutant	Capture Efficiency	Control Efficiency
Particulate Matter	99%	99%
		(flow rates, pressure drops, number of t of filter cloth media with an air to cloth
Is this device subject to the CAM requ	uirements of 40 C.F.R. 64?	Yes X No
If Yes, Complete ATTACHMENT H If No, Provide justification. The co atmosphere as the unit is enclosed.	ntrol device is a fugitive emissi	ion point and does not discharge to the
Describe the parameters monitored a	nd/or methods used to indicat	te performance of this control device.
NA		
L		

ATTACHMENT G - Air Pollution Control Device Form		
Control device ID number: CD1K	List all emission units associated with this control device. ES1K (Baghouse Dust)	
Manufacturer: Whirl-Air Flow	Model number: Bin Vent DC Model 55-30	Installation date: 07/25/1998
Type of Air Pollution Control Devic	e:	
<u>X</u> Baghouse/Fabric Filter	_ Venturi Scrubber	Multiclone
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank
Catalytic Incinerator	_ Condenser	Settling Chamber
Thermal Incinerator	_ Flare	Other (describe)
Wet Plate Electrostatic Precipitate	r	Dry Plate Electrostatic Precipitator
List the pollutants for which this dev	vice is intended to control and	the capture and control efficiencies.
Pollutant	Capture Efficiency	Control Efficiency
Particulate Matter	99%	99%
		(flow rates, pressure drops, number of of filter cloth media with an air to cloth
Is this device subject to the CAM re	quirements of 40 C.F.R. 64? _	Yes X No
If Yes, Complete ATTACHMENT H	I	
		ion point and does not discharge to the
If No, Provide justification. The atmosphere as the unit is enclosed.	control device is a fugitive emiss	
atmosphere as the unit is enclosed.		te performance of this control device.
atmosphere as the unit is enclosed. Describe the parameters monitored		
atmosphere as the unit is enclosed. Describe the parameters monitored		

ATTACHMENT G - Air Pollution Control Device Form		
Control device ID number: CD22A	List all emission units associated with this control device. ES22A (Batch Mixer Receiving Bin For 2 nd Line)	
Manufacturer:	Model number:	Installation date:
IAC	Bin Vent Model 96TB-FRIP	2004
Type of Air Pollution Control Device	:	
<u>_X</u> Baghouse/Fabric Filter	Venturi Scrubber	_ Multiclone
Carbon Bed Adsorber	Packed Tower Scrubber	_Single Cyclone
Carbon Drum(s)	Other Wet Scrubber	_Cyclone Bank
Catalytic Incinerator	Condenser	_ Settling Chamber
Thermal Incinerator	Flare	_ Other (describe)
Wet Plate Electrostatic Precipitator		_ Dry Plate Electrostatic Precipitator
List the pollutants for which this dev	ice is intended to control and the	capture and control efficiencies.
Pollutant	Capture Efficiency	Control Efficiency
Particulate Matter	99%	99%
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.). Control device utilizes 623 square feet of filter cloth media with an air to cloth ratio of 4.6 for an acfm of 2,917.		
Is this device subject to the CAM req	uirements of 40 C.F.R. 64?	Yes <u>X</u> No
If Yes, Complete ATTACHMENT H		
If No, Provide justification. The coatmosphere as the unit is enclosed.	ontrol device is a fugitive emission	point and does not discharge to the
Describe the parameters monitored a	nd/or methods used to indicate p	erformance of this control device.
NA		

ATTACHMENT G - Air Pollution Control Device Form			
Control device ID number: CD22B (Duty Cycled With CD22Bb)	List all emission units associated with this control device. ES22C (Melter Hood for 2 nd Line)		
Manufacturer: MAC Equipment Co.	Model number: MactFlo 4MTF96	Installation date: 2004	
Type of Air Pollution Control Device:	Type of Air Pollution Control Device:		
<u>X</u> Baghouse/Fabric Filter	Venturi Scrubber	Multiclone	
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone	
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank	
Catalytic Incinerator	Condenser	Settling Chamber	
Thermal Incinerator	Flare	Other (describe)	
Wet Plate Electrostatic Precipitator	1	Dry Plate Electrostatic Precipitator	
List the pollutants for which this device	ce is intended to control and the ca	pture and control efficiencies.	
Pollutant	Capture Efficiency	Control Efficiency	
Particulate Matter (TSP)	99%	99%	
Chromium	99%	99%	
 Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.). 1. 15,000 acfm 2. Closed Pressure Configuration 3. 96 Polyester Cartridge Filters 4. 10,560 ft² of filter area 5. Cartridges Cleaned By Pulse Air 			
Is this device subject to the CAM requirements of 40 C.F.R. 64?Yes _XNo If Yes, Complete ATTACHMENT H If No, Provide justification. 1. Facility is subject to MACT under the NESHAP 40CFR Parts 61 & 63 CAM APPLICABILITY DETERMINATION (1.b. bullet 1) 2. Emission Limitations or Standards for which a WVDEP Division of Air Quality Title V permit specifies a continuous compliance determination method, as defined in 40 CFR Section 64.1 CAM APPLICABILITY DETERMINATION (1.b. bullet 4)			
Describe the parameters monitored an Differential Pressure, Incoming air temp			

detection system is installed and monitored accordingly.

ATTACHMENT G - Air Pollution Control Device Form			
Control device ID number: CD22Bb (Duty Cycled With CD22B)	List all emission units associated with this control device. ES22C (Melter Hood For 2 nd Line)		
Manufacturer: MAC Equipment Co.	Model number: MactFlo 4MTF96	Installation date: 2004	
Type of Air Pollution Control Device:	Type of Air Pollution Control Device:		
<u>X</u> Baghouse/Fabric Filter	Venturi Scrubber	Multiclone	
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone	
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank	
Catalytic Incinerator	Condenser	Settling Chamber	
Thermal Incinerator	Flare	Other (describe)	
Wet Plate Electrostatic Precipitator	!	Dry Plate Electrostatic Precipitator	
List the pollutants for which this devic	ce is intended to control and the ca	pture and control efficiencies.	
Pollutant	Capture Efficiency	Control Efficiency	
Particulate Matter (TSP)	99%	99%	
Chromium	99%	99%	
 Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.). 1. 15,000 acfm 2. Closed Pressure Configuration 3. 96 Polyester Cartridge Filters 4. 10,560 ft² of filter area 5. Cartridges Cleaned By Pulse Air 			
Is this device subject to the CAM requirements of 40 C.F.R. 64?Yes _XNo If Yes, Complete ATTACHMENT H If No, Provide justification. 1. Facility is subject to MACT under the NESHAP 40CFR Parts 61 & 63 CAM APPLICABILITY DETERMINATION (1.b. bullet 1) 2. Emission Limitations or Standards for which a WVDEP Division of Air Quality Title V permit specifies a continuous compliance determination method, as defined in 40 CFR Section 64.1 CAM APPLICABILITY DETERMINATION (1.b. bullet 4)			
Describe the parameters monitored ar Differential Pressure, Incoming air temp			

detection system is installed and monitored accordingly.

ATTACHMENT G - Air Pollution Control Device Form			
Control device ID number: CD22C	List all emission units associated with this control device. ES22B (Mixed Batch Storage Day Bin For 2 nd Line [1 Hour]); ES22Bb (Mixed Batch Storage Backup Day Bin for 2 nd Line [8 hour])		
Manufacturer:	Model number:	Installation date:	
IAC	Bin Vent Model 96TB-FRIP	2004	
Type of Air Pollution Control Device:			
<u>X</u> Baghouse/Fabric Filter	Venturi Scrubber	Multiclone	
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone	
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank	
Catalytic Incinerator	Condenser	Settling Chamber	
Thermal Incinerator	Flare	Other (describe)	
Wet Plate Electrostatic Precipitator		Dry Plate Electrostatic Precipitator	
List the pollutants for which this device is intended to control and the capture and control efficiencies.			
Pollutant	Capture Efficiency	Control Efficiency	
Particulate Matter	99%	99%	
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.). Control device utilizes 623 square feet of filter cloth media with an air to cloth ratio of 4.6 for an acfm of 2,917.			
Is this device subject to the CAM requ	uirements of 40 C.F.R. 64? _ Ye	s _ X _ No	
If Yes, Complete ATTACHMENT H			
If No, Provide justification . The control device is a fugitive emission point and does not discharge to the atmosphere as the unit is enclosed.			
Describe the parameters monitored a	nd/or methods used to indicate per	formance of this control device.	
NA			

ATTACHMENT G - Air Pollution Control Device Form Control device ID number: List all emission units associated with this control device.		
Control device ID number: CD23A (East Side)	ES22E (Forehearth For 2nd Line); ES23A (Fiber Forming Units); ES23B (Vacuum Chamber) & ES23C (Collection Plenum)	
Manufacturer:	Model number:	Installation date:
Fisher-Klosterman, Inc.	MS-850H	2004
Type of Air Pollution Control Devic	e:	
Baghouse/Fabric Filter	<u> Venturi Scrubber</u>	Multiclone
Carbon Bed Adsorber	_ Packed Tower Scrubber	Single Cyclone
Carbon Drum(s)	_ Other Wet Scrubber	Cyclone Bank
Catalytic Incinerator	_ Condenser	Settling Chamber
Thermal Incinerator	_ Flare	Other (describe)
Wet Plate Electrostatic Precipitato	r	Dry Plate Electrostatic Precipitator
List the pollutants for which this dev	vice is intended to control and	l the capture and control efficiencies.
Pollutant	Capture Efficiency	Control Efficiency
Particulate Matter	99%	58%
	he pressure drop is 5-15 in H ₂ O xpected flow rate is 175-600 ga	
1. Facility is subject to MACT under the DETERMINATION (1.b. bullet 1)		
2. Emission Limitations or Standards f continuous compliance determination DETERMINATION (1.b. bullet 4)		of Air Quality Title V permit specifies a Section 64.1 CAM APPLICABILITY
		ate performance of this control device. M are recorded to indicate performance.

	MENT G - Air Pollution C	ontrol Device Form
Control device ID number: CD23B (West Side)		
Manufacturer:	Model number:	Installation date:
Fisher-Klosterman, Inc.	MS-850H	2004
Type of Air Pollution Control De	vice:	
Baghouse/Fabric Filter	<u>X</u> Venturi Scrubber	Multiclone
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank
Catalytic Incinerator	Condenser	Settling Chamber
Thermal Incinerator	Flare	Other (describe)
Wet Plate Electrostatic Precipit	ator	Dry Plate Electrostatic Precipitator
List the pollutants for which this	device is intended to control an	d the capture and control efficiencies.
Pollutant	Capture Efficiency	Control Efficiency
Particulate Matter	99%	58%
bags, size, temperatures, etc.). 40, The liquid pressure is 30-70 psig an	000 acfm of air is directed from t ad the pressure drop is 5-15 in H_2	ce (flow rates, pressure drops, number of the plenums to the scrubber by a 350 hp fan. O. The liquid flow rate has a design maximu
bags, size, temperatures, etc.). 40, The liquid pressure is 30-70 psig an of 600 gal/min, however the averag	000 acfm of air is directed from t id the pressure drop is 5-15 in $H_{2'}$ e expected flow rate range is 175	ce (flow rates, pressure drops, number of the plenums to the scrubber by a 350 hp fan. O. The liquid flow rate has a design maximu -600 gal/min.
bags, size, temperatures, etc.). 40, The liquid pressure is 30-70 psig an of 600 gal/min, however the averag Is this device subject to the CAM	000 acfm of air is directed from t id the pressure drop is 5-15 in H_2 e expected flow rate range is 175 requirements of 40 C.F.R. 64?	ce (flow rates, pressure drops, number of the plenums to the scrubber by a 350 hp fan. O. The liquid flow rate has a design maximu -600 gal/min.
 bags, size, temperatures, etc.). 40, The liquid pressure is 30-70 psig an of 600 gal/min, however the averag Is this device subject to the CAM If Yes, Complete ATTACHMENT If No, Provide justification. 	000 acfm of air is directed from t ad the pressure drop is 5-15 in H ₂ e expected flow rate range is 175 requirements of 40 C.F.R. 64? Γ H	ce (flow rates, pressure drops, number of the plenums to the scrubber by a 350 hp fan. O. The liquid flow rate has a design maximu -600 gal/min.
 bags, size, temperatures, etc.). 40, The liquid pressure is 30-70 psig an of 600 gal/min, however the averag Is this device subject to the CAM If Yes, Complete ATTACHMENT If No, Provide justification. 1. Facility is subject to MACT under 	000 acfm of air is directed from t ad the pressure drop is 5-15 in H ₂ e expected flow rate range is 175 requirements of 40 C.F.R. 64? Γ H	ce (flow rates, pressure drops, number of the plenums to the scrubber by a 350 hp fan. O. The liquid flow rate has a design maximu -600 gal/min.
 bags, size, temperatures, etc.). 40, The liquid pressure is 30-70 psig an of 600 gal/min, however the averag Is this device subject to the CAM If Yes, Complete ATTACHMENT If No, Provide justification. 1. Facility is subject to MACT under DETERMINATION (1.b. bullet 1) 	000 acfm of air is directed from to d the pressure drop is 5-15 in H ₂ e expected flow rate range is 175 requirements of 40 C.F.R. 64? F H er the NESHAP 40CFR Parts 61	ce (flow rates, pressure drops, number of the plenums to the scrubber by a 350 hp fan. O. The liquid flow rate has a design maximu -600 gal/min. Yes <u>X</u> No & 63 CAM APPLICABILITY
 bags, size, temperatures, etc.). 40, The liquid pressure is 30-70 psig an of 600 gal/min, however the averag Is this device subject to the CAM If Yes, Complete ATTACHMENT If No, Provide justification. 1. Facility is subject to MACT under DETERMINATION (1.b. bullet 1) 2. Emission Limitations or Standard 	000 acfm of air is directed from to d the pressure drop is 5-15 in H ₂ / e expected flow rate range is 175 requirements of 40 C.F.R. 64? F H er the NESHAP 40CFR Parts 61 ds for which a WVDEP Division	ce (flow rates, pressure drops, number of the plenums to the scrubber by a 350 hp fan. O. The liquid flow rate has a design maximu -600 gal/min. YesX_No & 63 CAM APPLICABILITY of Air Quality Title V permit specifies a
 bags, size, temperatures, etc.). 40, The liquid pressure is 30-70 psig an of 600 gal/min, however the averag Is this device subject to the CAM If Yes, Complete ATTACHMENT If No, Provide justification. 1. Facility is subject to MACT under DETERMINATION (1.b. bullet 1) 2. Emission Limitations or Standard continuous compliance determination 	000 acfm of air is directed from t id the pressure drop is 5-15 in H ₂ / e expected flow rate range is 175 requirements of 40 C.F.R. 64? F H er the NESHAP 40CFR Parts 61 d ds for which a WVDEP Division on method, as defined in 40 CFR	 ce (flow rates, pressure drops, number of the plenums to the scrubber by a 350 hp fan. O. The liquid flow rate has a design maximu -600 gal/min. Yes <u>X</u> No & 63 CAM APPLICABILITY of Air Quality Title V permit specifies a Section 64.1 CAM APPLICABILITY
 bags, size, temperatures, etc.). 40, The liquid pressure is 30-70 psig an of 600 gal/min, however the averag Is this device subject to the CAM If Yes, Complete ATTACHMENT If No, Provide justification. 1. Facility is subject to MACT under DETERMINATION (1.b. bullet 1) 2. Emission Limitations or Standard continuous compliance determination DETERMINATION (1.b. bullet 4) Describe the parameters monitor 	000 acfm of air is directed from to id the pressure drop is 5-15 in H ₂ / e expected flow rate range is 175 requirements of 40 C.F.R. 64? F H er the NESHAP 40CFR Parts 61 of the for which a WVDEP Division for method, as defined in 40 CFR ed and/or methods used to indic	ce (flow rates, pressure drops, number of the plenums to the scrubber by a 350 hp fan. O. The liquid flow rate has a design maximu -600 gal/min. Yes _X_ No & 63 CAM APPLICABILITY of Air Quality Title V permit specifies a Section 64.1 CAM APPLICABILITY
 bags, size, temperatures, etc.). 40, The liquid pressure is 30-70 psig an of 600 gal/min, however the averag Is this device subject to the CAM If Yes, Complete ATTACHMENT If No, Provide justification. 1. Facility is subject to MACT under DETERMINATION (1.b. bullet 1) 2. Emission Limitations or Standard continuous compliance determination DETERMINATION (1.b. bullet 4) Describe the parameters monitor 	000 acfm of air is directed from to id the pressure drop is 5-15 in H ₂ / e expected flow rate range is 175 requirements of 40 C.F.R. 64? F H er the NESHAP 40CFR Parts 61 of the for which a WVDEP Division for method, as defined in 40 CFR ed and/or methods used to indic	 ce (flow rates, pressure drops, number of the plenums to the scrubber by a 350 hp fan. O. The liquid flow rate has a design maximum -600 gal/min. Yes <u>X</u> No & 63 CAM APPLICABILITY of Air Quality Title V permit specifies a Section 64.1 CAM APPLICABILITY
 bags, size, temperatures, etc.). 40, The liquid pressure is 30-70 psig an of 600 gal/min, however the averag Is this device subject to the CAM If Yes, Complete ATTACHMENT If No, Provide justification. 1. Facility is subject to MACT under DETERMINATION (1.b. bullet 1) 2. Emission Limitations or Standard continuous compliance determination DETERMINATION (1.b. bullet 4) Describe the parameters monitor 	000 acfm of air is directed from to id the pressure drop is 5-15 in H ₂ / e expected flow rate range is 175 requirements of 40 C.F.R. 64? F H er the NESHAP 40CFR Parts 61 of the for which a WVDEP Division for method, as defined in 40 CFR ed and/or methods used to indic	ce (flow rates, pressure drops, number of the plenums to the scrubber by a 350 hp fan. O. The liquid flow rate has a design maximus -600 gal/min. Yes <u>X</u> No & 63 CAM APPLICABILITY of Air Quality Title V permit specifies a Section 64.1 CAM APPLICABILITY cate performance of this control device.
 bags, size, temperatures, etc.). 40, The liquid pressure is 30-70 psig an of 600 gal/min, however the averag Is this device subject to the CAM If Yes, Complete ATTACHMENT If No, Provide justification. 1. Facility is subject to MACT under DETERMINATION (1.b. bullet 1) 2. Emission Limitations or Standard continuous compliance determination DETERMINATION (1.b. bullet 4) Describe the parameters monitor 	000 acfm of air is directed from to id the pressure drop is 5-15 in H ₂ / e expected flow rate range is 175 requirements of 40 C.F.R. 64? F H er the NESHAP 40CFR Parts 61 of the for which a WVDEP Division for method, as defined in 40 CFR ed and/or methods used to indic	ce (flow rates, pressure drops, number of the plenums to the scrubber by a 350 hp fan. O. The liquid flow rate has a design maximu -600 gal/min. Yes _X_ No & 63 CAM APPLICABILITY of Air Quality Title V permit specifies a Section 64.1 CAM APPLICABILITY
 bags, size, temperatures, etc.). 40, The liquid pressure is 30-70 psig an of 600 gal/min, however the averag Is this device subject to the CAM If Yes, Complete ATTACHMENT If No, Provide justification. 1. Facility is subject to MACT under DETERMINATION (1.b. bullet 1) 2. Emission Limitations or Standard continuous compliance determination DETERMINATION (1.b. bullet 4) Describe the parameters monitor 	000 acfm of air is directed from to id the pressure drop is 5-15 in H ₂ / e expected flow rate range is 175 requirements of 40 C.F.R. 64? F H er the NESHAP 40CFR Parts 61 of the for which a WVDEP Division for method, as defined in 40 CFR ed and/or methods used to indic	ce (flow rates, pressure drops, number of the plenums to the scrubber by a 350 hp fan. O. The liquid flow rate has a design maximu -600 gal/min. Yes _X_ No & 63 CAM APPLICABILITY of Air Quality Title V permit specifies a Section 64.1 CAM APPLICABILITY
 bags, size, temperatures, etc.). 40, The liquid pressure is 30-70 psig an of 600 gal/min, however the averag Is this device subject to the CAM If Yes, Complete ATTACHMENT If No, Provide justification. 1. Facility is subject to MACT under DETERMINATION (1.b. bullet 1) 2. Emission Limitations or Standard continuous compliance determination DETERMINATION (1.b. bullet 4) Describe the parameters monitor 	000 acfm of air is directed from to id the pressure drop is 5-15 in H ₂ / e expected flow rate range is 175 requirements of 40 C.F.R. 64? F H er the NESHAP 40CFR Parts 61 of the for which a WVDEP Division for method, as defined in 40 CFR ed and/or methods used to indic	ce (flow rates, pressure drops, number of the plenums to the scrubber by a 350 hp fan. O. The liquid flow rate has a design maximu -600 gal/min. YesX_No & 63 CAM APPLICABILITY of Air Quality Title V permit specifies a Section 64.1 CAM APPLICABILITY cate performance of this control device.

ATTACHIVIE	ATTACHMENT G - Air Pollution Control Device Form		
Control device ID number: CD23C (Non-resinated)	List all emission units associated with this control device. ES22E (Forehearth For 2nd Line); ES23A (Fiber Forming Units); ES23B (Vacuum Chamber) & ES23C (Collection Plenum)		
Manufacturer:	Model number:	Installation date:	
Fisher-Klosterman, Inc.	MS-650H	2004	
Type of Air Pollution Control Device			
Baghouse/Fabric Filter	_ Venturi Scrubber	Multiclone	
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone	
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank	
Catalytic Incinerator	Condenser	Settling Chamber	
Thermal Incinerator	Flare	Other (describe)	
Wet Plate Electrostatic Precipitator	_	Dry Plate Electrostatic Precipitator	
List the pollutants for which this devi		-	
Pollutant Particulate Matter	Capture Efficiency 99%	Control Efficiency 58%	
Explain the characteristic design part bags, size, temperatures, etc.). 40,000 The liquid pressure is 30-70 psig and th of 300 gal/min, however the expected fi	acfm of air is directed from the pl e pressure drop is $4-15$ in H ₂ O. The	enums to the scrubber by a 350 hp fan.	
Is this device subject to the CAM req If Yes, Complete ATTACHMENT H If No, Provide justification.	uirements of 40 C.F.R. 64?	Yes <u>X</u> No	

ATTACHM	IENT G - Air Pollution Con	trol Device Form
Control device ID number:List all emission units associated with this control device.CD24AES24A (3 Zone Curing Oven For 2 nd Line)		
Manufacturer: McGill AirClean	Model number: MCT 30.0	Installation date: 2004
Type of Air Pollution Control Dev	ice:	
Baghouse/Fabric Filter	Venturi Scrubber	Multiclone
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank
Catalytic Incinerator	Condenser	Settling Chamber
<u>X</u> Thermal Incinerator	Flare	Other (describe)
Wet Plate Electrostatic Precipita	tor	Dry Plate Electrostatic Precipitator
List the pollutants for which this c	levice is intended to control and t	he capture and control efficiencies.
Pollutant	Capture Efficiency	Control Efficiency
VOC	99%	95%
Carbon Monoxide	99%	53%
Formaldehyde	99%	94%
Methanol	99%	94%
Phenol	99%	94%
bags, size, temperatures, etc.). 1.785 MMft ³ /hr @ 250.0°F. There as controlled with temperature indicato temperature.	re 4 poppet type dampers and 1 Ma r. The RTO has an auto-shutoff fea	ature for flow, flame loss or over
Is this device subject to the CAM	•	_Yes <u>X</u> No
If Yes, Complete ATTACHMENT	H	
If No, Provide justification. 1. Facility is subject to MACT under DETERMINATION (1.b. bullet 1)	the NESHAP 40CFR Parts 61 & 6	3 CAM APPLICABILITY
2. Emission Limitations or Standard continuous compliance determinatio DETERMINATION (1.b. bullet 4)		Air Quality Title V permit specifies a ction 64.1 CAM APPLICABILITY
Describe the parameters monitore A 3 Hour Average Combustion Cha		e performance of this control device.

ATTACHMENT G - Air Pollution Control Device Form		
Control device ID number: CD24B	List all emission units associated with this control device. ES24B (Cooling Table For 2 nd Line)	
Manufacturer: Fisher-Klosterman, Inc.	Model number: MS-650H	Installation date: 2004
Type of Air Pollution Control Device:		
Baghouse/Fabric FilterX_	Venturi Scrubber	Multiclone
Carbon Bed Adsorber	Packed Tower Scrubber	_ Single Cyclone
Carbon Drum(s)	Other Wet Scrubber	_ Cyclone Bank
Catalytic Incinerator	Condenser	_ Settling Chamber
Thermal Incinerator	Flare	_ Other (describe)
Wet Plate Electrostatic Precipitator	_	_ Dry Plate Electrostatic Precipitator
List the pollutants for which this devi	ce is intended to control and the	capture and control efficiencies.
Pollutant	Capture Efficiency	Control Efficiency
Particulate Matter	99%	77%
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.). 20,000 cfm airflow from the plenums to the drop out box, the liquid pressure to drop out box is 30-70 psig and the pressure drop is 4-15 in H ₂ O. The liquid flow rate has a design maximum of 300 gal/min, however the expected flow rate range is 70-300 gal/min.		
Is this device subject to the CAM requ	uirements of 40 C.F.R. 64?	Yes _ X _ No
If Yes, Complete ATTACHMENT H		
If No, Provide justification. 1. Facility is subject to MACT under the DETERMINATION (1.b. bullet 1)	NESHAP 40CFR Parts 61 & 63	CAM APPLICABILITY
2. Emission Limitations or Standards for which a WVDEP Division of Air Quality Title V permit specifies a continuous compliance determination method, as defined in 40 CFR Section 64.1 CAM APPLICABILITY DETERMINATION (1.b. bullet 4)		
Describe the parameters monitored and/or methods used to indicate performance of this control device. The liquid pressure and differential pressure are monitored to indicate performance.		

ATTACHMENT G - Air Pollution Control Device Form					
Control device ID number: CD25A	List all emission units associated with this control device. ES25B (Slitter Saw; ES25C (Edge Trimmer & Dicers); ES25D (Choppers); ES25F (Batt Folder);ES25G (Batt Packers); ES25H (Dicers or Cubers); ES25I (Blowing Wool Bagger) & ES25J (Dicers				
Manufacturer: Fisher-Klosterman, Inc.	Model number: MS-650H	Installation date: 2004			
Type of Air Pollution Control Device:					
Baghouse/Fabric Filter _X	Venturi Scrubber	_ Multiclone			
Carbon Bed Adsorber	Packed Tower Scrubber	_ Single Cyclone			
Carbon Drum(s)	Other Wet Scrubber	_ Cyclone Bank			
Catalytic Incinerator	Condenser	_Settling Chamber			
Thermal Incinerator	Flare	Other (describe)			
Wet Plate Electrostatic Precipitator	_	Dry Plate Electrostatic Precipitator			
List the pollutants for which this devi	ce is intended to control and the o	capture and control efficiencies.			
Pollutant	Capture Efficiency	Control Efficiency			
Particulate Matter	99%	58%			
Explain the characteristic design para bags, size, temperatures, etc.). 20,000 cfm air flow from the plenums to the pressure drop is 4-15 inches water. T expected flow rate range is 70-300 gal/n	the drop out box and the liquid protection of the liquid flow rate has a design matching the liquid flow rate h	essure to drop out box is 30-70 psig and			
Is this device subject to the CAM requ	uirements of 40 C.F.R. 64? Y	Tes <u>X</u> No			
If Yes, Complete ATTACHMENT H If No, Provide justification The control atmosphere as the unit discharges to the	0 1	t and does not discharge to the			
Describe the parameters monitored a	nd/or methods used to indicate pe	erformance of this control device.			
NA					

ATTACHMENT G - Air Pollution Control Device Form					
Control device ID number: CD25C	List all emission units associated with this control device. ES25H (Dicers) & ES25I (Blowing Wool Bagger)				
Manufacturer:	Model number:	Installation date:			
Van Dommele		2004			
Type of Air Pollution Control Device:					
Baghouse/Fabric Filter	Venturi Scrubber	Multiclone			
Carbon Bed Adsorber	Packed Tower Scrubber>	K_Single Cyclone			
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank			
Catalytic IncineratorX_	_ Condenser	Settling Chamber			
Thermal Incinerator	Flare	Other (describe)			
Wet Plate Electrostatic Precipitator		Dry Plate Electrostatic Precipitator			
List the pollutants for which this devi	ce is intended to control and the c	apture and control efficiencies.			
Pollutant	Capture Efficiency	Control Efficiency			
Particulate Matter	80%	90%			
Explain the characteristic design para bags, size, temperatures, etc.). The unit separates out any airborne fiber					
Is this device subject to the CAM requ If Yes, Complete ATTACHMENT H If No, Provide justification . The con atmosphere as the unit is enclosed.	ntrol device is a fugitive emission p	_			
Describe the parameters monitored an	nd/or methods used to indicate pe	rformance of this control device.			

ATTACHMENT G - Air Pollution Control Device Form					
Control device ID number: CD25D	List all emission units associated with this control device. ES25H (Dicers) & ES25I (Blowing Wool Bagger)				
Manufacturer:	Model number:	Installation date:			
Guardian Fiberglass	NA	2007/2012			
Type of Air Pollution Control Device:					
Baghouse/Fabric Filter	Venturi Scrubber	Multiclone			
Carbon Bed Adsorber	Packed Tower Scrubber	_ Single Cyclone			
Carbon Drum(s)	Other Wet Scrubber	_Cyclone Bank			
Catalytic Incinerator	Condenser	_ Settling Chamber			
Thermal Incinerator	Flare	<u>K</u> Other (describe) _ Screen Room			
Wet Plate Electrostatic Precipitator	_	_ Dry Plate Electrostatic Precipitator			
List the pollutants for which this devi	ce is intended to control and the	capture and control efficiencies.			
Pollutant	Capture Efficiency	Control Efficiency			
Particulate Matter	95%	90%			
Explain the characteristic design para bags, size, temperatures, etc.). The screen room is a woven polyester ca		ow rates, pressure drops, number of			
Is this device subject to the CAM requ If Yes, Complete ATTACHMENT H If No, Provide justification. The cor atmosphere as the unit is enclosed.		Yes <u>X</u> No point and does not discharge to the			
Describe the parameters monitored a	nd/or methods used to indicate p	performance of this control device.			
NA					

APPENDIX H: COMPLIANCE ASSURANCE MONITORING PLAN

This section is not applicable

APPENDIX I: SITE-WIDE EMISSION CALCULATIONS

Guardian | Title V Renewal Application Trinity Consultants

.....

Emission Unit Summary

	Liı	ne 1		
	Emissions Sum	mary by Source		
	Operating As	Resinated Line		
ID No.				
of		Resinated	Resinated	
Emission.	Pollutant	Emissions	Emissions	
Point	Name	lb/hr	TpY	
FP11	PM	0.17	0.77	
Raw Materials	PM10	0.17	0.77	
Handling	PM2.5	0.17	0.77	
FP11	Formaldehyde	0.00	0.00	
Raw Material	Phenol	0.00	0.00	
	Methanol	0.00	0.00	
Storage	VOC	0.00	0.00	
FP12		0.00	0.01	
	Formaldehyde			
Binder Mix	Phenol	0.00	0.00	
-	Methanol	0.06	0.26	
	VOC	0.72	3.17	
EP12	PM	0.54	2.38	
Melting &	PM10	0.54	2.38	
Refining	PM2.5	0.54	2.38	
Baghouse Stack	Lead	0.00	0.00	
·	Chrome	0.00	0.00	
	SO ₂	0.00	0.00	
-	NO _X	0.12	0.53	
-	CO	2.92		
-	VOC		12.79	
		0.88 14.84	3.85	
EP13	PM	14.84	65.00	
Forming &	PM10 PM2.5	14.84	65.00 65.00	
Collection Drop-	Lead	0.00	0.00	
out Boxes &	Chrome	0.00	0.00	
Water Spray	SO ₂	0.00	0.02	
ł	NO _X	1.28	5.61	
-		21.12	5.61 92.51	
-	CO VOC	21.12 10.48	92.51 45.90	
-	Formic Acid	1.39	6.10	
ł	Phenol	5.00	21.90	
-	Formaldehyde	2.52	11.04	
-	Methanol	9.12	39.95	
-	Ammonia	15.08	66.05	
EP14	PM	2.16	9.46	
Curing &	PM10	2.16	9.46	
Cooling Stack	PM10 PM2.5	2.16	9.46	
RTO				
RIO	SO ₂	0.00	0.00	
	Lead	0.00	0.00	
	NOx	15.00	65.70	
	CO	4.52	19.80	
	VOC	0.96	4.20	
	Formic Acid	0.16	0.70	
-	Phenol	1.20	5.26	
-	Formaldehyde	0.68	2.98	
-	Methanol Ammonia	0.23 3.48	1.03 15.24	
FP13	PM			
		0.02	0.09	
Facing Paper	PM10	0.02	0.09	
	PM2.5	0.02	0.09	
	VOC	0.23	1.02	
FP14 Ink Printing	VOC	0.62	2.73	
FP15		0.36	1.59	
Adhesive VOC's	VOC			
			0.40	
FP16	PM	0.09	0.40	
			0.40 0.40 0.40	

	Lin Emissions Sumi		
	Emissions Sum	nary by Source Resinated Line	
ID No	Operating As A	Resiliated Line	
of		Resinated	Resinated
Emission.	Pollutant	Emissions	Emissions
Point	Name	lb/hr	TpY
FP11	PM	0.17	0.77
Raw Materials	PM10	0.17	0.77
Handling	PM2.5	0.17	0.77
FP11	Formaldehyde	0.00	0.00
Raw Material	Phenol	0.00	0.00
Storage	Methanol	0.00	0.00
bioluge	VOC	0.00	0.01
FP12	Formaldehyde	0.00	0.01
Binder Mix	Phenol	0.00	0.00
	Methanol	0.06	0.26
	VOC	0.72	3.17
EP22	PM	0.54	2.38
Melting &	PM10	0.54	2.38
Refining	PM2.5	0.54	2.38
Baghouse Stack	Lead	0.00	0.00
	Chrome	0.00	0.00
	SO ₂	0.00	0.00
	NO _X	0.12	0.53
	CO	2.92	12.79
	VOC	0.88	3.85
EP23	PM	13.96	61.14
Forming &	PM10	13.96	61.14
Collection	PM2.5	13.96	61.14
Scrubber(s)	Lead	0.00	0.00
Scrubber(s)	Chrome	0.00	0.01
	SO ₂	0.00	0.02
	NO _X	1.28	5.61
	CO	21.12	92.51
	VOC	10.48	45.90
	Formic Acid Phenol	1.39 5.00	6.10 21.90
	Formaldehyde	2.52	21.90
	Methanol	9.12	39.95
	Ammonia	15.08	66.05
EP24	PM	4.04	17.70
Curing &	PM10	4.04	17.70
Cooling Stack	PM2.5	4.04	17.70
RTO	SO ₂	0.00	0.00
	Lead	0.00	0.00
	NO _X	15.00	65.70
	CO	5.24	22.95
	VOC	0.96	4.20
	Formic Acid	0.16	0.70
	Phenol	1.20	5.26
	Formaldehyde	0.68	2.98
	Methanol Ammonia	0.23 3.48	1.03
FP13	PM	0.02	0.09
FP15 Facing Paper	PM PM10	0.02	0.09
Pacing Paper	PM10 PM2.5	0.02	0.09
	VOC	0.02	
	100	0.23	1.02
ED14			0.70
FP14 Ink Printing	VOC	0.62	2.73
	VOC VOC	0.62	1.59
Ink Printing FP15 Adhesive VOC's	VOC	0.36	1.59
Ink Printing FP15			

	missions Sur	ine 2 mmary by Sour A Non-Resina	
ID No.	perating As	A Non-Resina	ieu
of		Non-resinated	Non-resinated
Emission.	Pollutant	Emissions	Emissions
Point	Name	lb/hr	TpY
FP11	PM	0.17	0.77
Raw Materials	PM10	0.17	0.77
Handling	PM2.5	0.17	0.77
EP22	PM	0.54	2.38
Melting &	PM10	0.54	2.38
Refining	PM2.5	0.54	2.38
Baghouse Stack	Lead	0.00	0.00
	Chrome	0.00	0.00
	SO ₂	0.00	0.00
	NO _X	0.12	0.53
	CO	2.92	12.79
	VOC	0.88	3.85
EP23	PM	13.96	61.14
Forming &	PM10 PM2.5	13.96 13.96	61.14 61.14
Collection	Lead	0.00	0.00
Scrubber(s)	Chrome	0.00	0.00
	SO ₂	0.00	0.02
	NO _X	1.28	5.61
	CO	21.12	92.51
	VOC	10.48	45.90
FP17		1.19	5.22
Dedust/ Silicone	1100		
	VOC		
FP18			
Ink Printing	VOC	0.06	0.26
FP19	PM	0.11	0.49
FP19 Particulate Dust	PM PM10	0.11	0.49

Line 1 & 2 Emisions Total Emissions Summary by Source Operating As Resinated Lines						
ID No.	Operating its I					
of		Resinated	Resinated			
Emission.	Pollutant	Emissions	Emissions			
Point FP11	Name	lb/hr	TpY			
FP11 Raw Materials	PM PM10	0.35	1.53 1.53			
Handling	PM10 PM2.5	0.35	1.53			
FP11	Formaldehyde	0.00	0.01			
Raw Material	Phenol	0.00	0.00			
Storage	Methanol	0.00	0.01			
-	VOC	0.00	0.02			
FP11	Formaldehyde	0.00	0.02			
Binder Mix	Phenol	0.00	0.00			
	Methanol VOC	0.12 1.45	0.52 6.34			
EP12 & EP22	PM	1.45				
Melting &	PM10	1.09	4.77 4.77			
Refining	PM2.5	1.09	4.77			
Baghouse Stack	Lead	0.00	0.00			
	Chrome	0.00	0.00			
	SO ₂	0.00	0.00			
	NO _X	0.24	1.05			
	CO	5.84	25.58 7.71			
	VOC	1.76				
EP13 & EP-23	PM	28.80	126.14			
Forming &	PM10 PM2.5	28.80 28.80	126.14			
Collection	Lead	0.00	126.14 126.14 0.00			
	Chrome	0.01	0.03			
	SO_2	0.01	0.04			
	NO _X	2.56	11.21			
	CO	42.24	185.01			
	VOC Formic Acid	20.96 2.78	91.80 12.19			
	Phenol	10.00	43.80			
	Formaldehyde	5.04	22.08			
	Methanol	18.24	79.89			
	Ammonia	30.16	132.10			
EP14 & EP-24	PM	6.20	27.16			
Curing & Cooling	PM10	6.20 6.20	27.16			
Stack RTO	PM2.5	6.20	27.16			
	SO ₂	0.00	0.00			
	Lead	0.00	0.00			
	NO _X	30.00 9.76	131.40			
	VOC	1.92	8.41			
	Formic Acid	0.32	1.40			
	Phenol	2.40 1.36	10.51 5.96			
	Formaldehyde Methanol	1.36 0.47	5.96			
	Ammonia	6.96	30.48			
FP13	PM	0.04	0.18			
Facing Paper	PM10	0.04	0.18			
· ·	PM2.5 VOC	0.04	0.18			
	VOC	0.47	2.04			
FP14	VOC	1.24	5.45			
Ink Printing	voc	1.24	5.45			
FP15 Adhesive VOC's	VOC	0.73	3.19			
FP16	PM	0.18	0.79			
Particulate Dust	PM10	0.18	0.79			
Control	PM2.5	0.18	0.79			
EP16, 17 & 18	PM	1.27	0.32			
Internal	PM10	1.27	0.32			
Combustion	PM2.5	1.27	0.32			
Engines ^a	SO ₂	0.95	0.24			
	NO _X	28.55	7.14			
	CO	6.60	1.65			
	VOC	0.90	0.23			
EP19,20, & 22	PM	0.05	0.22			
Heaters	PM10	0.05				
	PM2.5 SO ₂	0.05 0.01	0.22 0.04			
	NO _X	1.68	7.35			
	CO	0.34	1.47			
	VOC	0.34	0.40			
	NH ₃	0.30	1.32			
	PM	0.30	3.66			
Roads	PM PM10	0.84	0.73			
roaus	PM10 PM2.5	0.04	0.18			
	PM		0.42			
Cooling Towers	PM PM10 PM2.5	0.10	0.42			

Total emissions from Internal Combustion Engines (ICEs), Roads, and Cooling Towers are calculated facility-wide.

GHG Emission Factors - Natural Gas Combustion

Greenhouse Gas	Global Warming	Natural Gas Emission Factor ²	Diesel Emission Factor ²
	Potential ¹	(lb/MMBtu)	(lb CO2/gal)
CO ₂	1	116.89	22.23
CH_4	21	2.2E-03	6.6E-03
N ₂ O	310	2.2E-04	1.3E-03

¹ Per 40 CFR Part 98 dated July 12, 2010, Table A-1 of Subpart A - Global Warming Potentials (100-year time horizon) ; used to convert emissions of each GHG to a CO 2 equivalent basis.

² Per 40 CFR Part 98 dated December 17, 2010, Table C-1 of Subpart C - Default CO ₂ Emission Factors and High Heat Values for Various Types of Fuel and Table C-2 of Subpart C - Default CH ₄ and N ₂ O Emission Factors for Various Types of Fuel .

GHG Emission Rates from Combustion

Source Name	Source ID	Heat	Input	Maximum Annual Operation	CO ₂ E	missions ¹	CH ₄ Em	issions ¹	N ₂ O Emi	ssions ¹	Total CO ₂	e Emissions
				(hr/yr)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lbs/hr)	(tpy)
Emer Gen	EP16	29.2	(Gal/hr)	500	649	162	0.193	0.05	0.039	0.01	665	166
Emer Gen	EP17	27.6	(Gal/hr)	500	614	153	0.183	0.05	0.037	0.01	629	157
Fire Pump	EP18	14	(Gal/hr)	500	311	78	0.093	0.02	0.019	0.00	319	80
Forehearth	EP12	6	(MMBtu/hr)	8,760	701	3,072	0.019	0.08	0.002	0.01	702	3,076
Forehearth	EP22	6	(MMBtu/hr)	8,760	701	3,072	0.019	0.08	0.002	0.01	702	3,076
Forming and Collecting	EP13	8.4	(MMBtu/hr)	8,760	982	4,301	0.019	0.08	0.002	0.01	983	4,305
Forming and Collecting	EP23	9.6	(MMBtu/hr)	8,760	1122	4,915	0.021	0.09	0.002	0.01	1,123	4,920
Curing and Cooling RTO	EP14	18	(MMBtu/hr)	8,760	2104	9,215	0.040	0.17	0.004	0.02	2,106	9,224
Curing and Cooling RTO	EP24	18	(MMBtu/hr)	8,761	2104	9,216	0.040	0.17	0.004	0.02	2,106	9,226
Makeup Air Units	EP21	8.525	(MMBtu/hr)	8,760	996	4,365	0.019	0.08	0.002	0.01	997	4,369
Makeup Air Units	EP22	7.875	(MMBtu/hr)	8,760	920	4,032	0.017	0.08	0.002	0.01	921	4,036
Binder water heaters	EP20	0.375	(MMBtu/hr)	8,760	44	192	0.001	0.00	0.000	0.00	44	192
		Total Sitewide Annual CO ₂ e (tpy)					67,643					

GHG Emission Rates from Raw Material Processing

Raw Material Input	s	
Throughput	18,400	lbs/hr
	80,592	tpy
Limestone	5	lbs CO ₂ /ton melted ¹
	0.260	Fraction of total throughput that is limestone ²
Soda Ash	830	lbs CO ₂ /ton melted ¹
	0.740	Fraction of total throughput that is soda ash ²

GHG PTE Melting Raw	Raw Material	Potential CO ₂ Emission				
Materials	(tons)	(lbs/yr)	(tpy)			
Limestone	20,919	104,596	52.3			
Soda Ash	59,673	49,528,429	24,764.2			

¹ Emission factors supplied by raw materials supplier to Guardian as per 40 CFR 98 Subpart N.

² Fraction based on September 2008 EI data.

						PM	PM	PM ₁₀	PM ₁₀	PM _{2.5}	PM _{2.5}
			Drift		Calculated	Emission	Emission	Emission	Emission	Emission	Emission
	Recire	c. Rate	Loss ¹	TDS	EF	Rate ²	Rate ²	Rate ²	Rate ²	Rate ³	Rate ³
	(gpm)	(gph)		(ppm)	(lb/Mgal)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
Cooling Tower #1	2,532	151,920	0.0050%	750	0.0003	0.048	0.208	0.048	0.208	0.048	0.208
Cooling Tower #2	2,532	151,920	0.0050%	750	0.0003	0.048	0.208	0.048	0.208	0.048	0.208

¹http://www.surplus-used-equipment.com/media/4491/3000-iii_prodcat_ca1997.pdf

²Conservatively assumes that all dissolved solids lost from the cooling water (all PM) are emitted as PM₁₀, following AP-42 Chapter 13.4.1.

³Conservatively assumes that all dissolved solids lost from the cooling water (all PM) are emitted as PM_{2.5}.

Estimation of Emissions from Paved Roads

AP-42 13.2.1.3 E= [k(sL)^0.91 x (W)^1.02] x (1-P/4N)

k (PM) k (PM10) k (PM2.5) P sL W W N	0.011 lb/VMT 0.0022 lb/VMT 0.00054 lb/VMT 140 days 7.4 g/m2 80,000 lbs 40.00 tons 365 days/yr	Reference Table 13.2-1.1 Table 13.2-1.1 Table 13.2-1.1 Figure 13.2.1-2 Table 13.2-1.3 Municipal Solid Waste Landfill legal weight for an 18 wheeler (http://www.thetruckersreport.com/truck_facts.shtml)
E (PM) E (PM10) E (PM2.5) VMT	2.65 lb/VMT 0.53 lb/VMT 0.13 lb/VMT 2,000 ft/trip 20 trucks/day 2,765 miles/yr	

PN	110	PN	110	PM2.5		
lb/yr	tpy	lb/yr	tpy	lb/yr	tpy	
7318.7	3.659	1463.7	0.732	359.3	0.180	

Estimation of Emissions from Support Facility Operations

Diesel-fired Internal Combustion Engines for Emergency Electricity and Emergency Fire Water

Emissions occur from the combustion of diesel fuel in two internal combustion engines used for emergency electricity

and one internal combustion engine used for emergency fire water. The emergency generators are Caterpillar,

model #3406 & 3456 diesel engines with the following rated speed "Not to exceed emission data" in lbs/hr and estimated fuel usage:

	Mo	del 3406 Elec	el 3406 Electrical Generator EP16 Model 3456 Electrical Generator EP17					Fuel Usage (gal/hr)			
% Load	CO	NOx	PM	HC	CO	NOx	PM	HC		Model #:	3406	3456
100%	4.16	9.13	0.58	0.1	0.62	10.96	0.09	0.11		100%load:	29.2	27.6
10%	0.53	1.5	0.09	0.1	0.64	2.76	0.05	0.14		10% load:	5	5.2
For emission ca	or emission calculations, the load is estimated to be 10% when the generators are tested weekly and estimated load during emergency use is 100%.											
The fuel usage	e fuel usage is calculated estimated on the amount of time and load on each generator. Generator usage hours are estimated as follows for 2010:											
	Model 3406: Total hours usage:			500		Hours at	100% load:	500	Hour	s at 10% load:	0	
	Model 3456: Total hours usage:			500.000		Hours at	100% load:	500	Hour	s at 10% load:	0	
This gives an estimated fuel usage of: 14600			gal/yr for Mod	del 3406 and an a	average hourly fu	uel usage of:			29.20	gal/hr		
	13800			gal/yr for Moo	del 3456 and an	average hourly fu	uel usage of:			27.60	gal/hr	

Determination of SO2 emissions for the emergency generators were estimated using Table 3.4-1 of AP-42, where S EQUALS 0.05% w sulfur content. Sulfur dioxide emissions for the each generator are calculated as follows:

F = (Avera	ge fuel usage in gal/hr) x (0.137 MMBtu/gal) x 1.01S			
$\mathbf{F} =$	29.20 gal/hr for Model 3406 x (0.137 MMBtu/gal) x 1.01S =	0.20	lbs SO2/hr for 3406 engine, or	0.05 TPY for EP16
$\mathbf{F} =$	27.60 gal/hr for Model 3456 x (0.137 MMBtu/gal) x 1.01S =	0.19	lbs SO2/hr for 3456 engine, or	0.05 TPY for EP17

The emergency fire water pump engine is a Cummins diesel Model NT-855-F1 with an estimated engine rating of 255 hp and consumes a maximum of 14 gals/hr of diesel fuel. Using the EPA's FIRE database, SCC Code No. 2-03-001-01 for reciprocating internal combustion engines in industrial use presents an emission factor of 130 lbs of CO, 49.3 lbs of VOCs, 604 lbs of NOx, 39.7 lbs of SO2 and 42.5 lbs of PM10 per 1000 gallons of diesel fuel burned. The exhaust from the engines is discharged horizontally through the side of the building, as emission points EP16, EP17 & EP18. These engines only run in emergency situations and during maintenance. For permitting purposes 500 hr/yr was used.

The following is a summary of the calculated emissions emitted by the diesel engines:

	M3406	Electrical Generator EP16	M3456	Electrical Generator EP17	Fire Water Pump EP18		
Pollutant	Emissions (lb/hr)	Emissions (TpY)	Emissions (lb/hr)	Emissions (TpY)	Emissions (lb/hr)	Emissions (TpY)	
Carbon Monoxide (CO)	4.16	1.04000	0.62	0.15500	1.82	0.4550	
Nitrous Oxide (NOx)	9.13	2.28250	10.96	2.74000	8.46	2.1140	
Particulate (PM)	0.58	0.14500	0.09	0.02250	0.60	0.1488	
Hydrocarbons (HC)	0.10	0.02500	0.11	0.02750	0.69	0.1726	
Sulfur Oxide (SO2)	0.20	0.05051	0.19	0.04774	0.56	0.1390	

	Emission						
	Factor ¹	Electrical Ge	nerator EP16	Electrical Ge	enerator EP17	Fire Water	Pump EP18
	lb/Mmbtu	lb/hr	TpY	lb/hr	TpY	lb/hr	TpY
Benzene	9.33E-04	3.76E-03	9.40E-04	3.55E-03	8.88E-04	1.80E-03	4.51E-04
Toluene	4.09E-04	1.65E-03	4.12E-04	1.56E-03	3.89E-04	7.90E-04	1.98E-04
Xylene	2.85E-04	1.15E-03	2.87E-04	1.09E-03	2.71E-04	5.51E-04	1.38E-04
Propylene	2.58E-03	1.04E-02	2.60E-03	9.83E-03	2.46E-03	4.98E-03	1.25E-03
1,3 Butadiene	3.91E-05	1.58E-04	3.94E-05	1.49E-04	3.72E-05	7.55E-05	1.89E-05
Formaldehyde	1.18E-03	4.75E-03	1.19E-03	4.49E-03	1.12E-03	2.28E-03	5.70E-04
Acetaldehyde	7.67E-04	3.09E-03	7.73E-04	2.92E-03	7.30E-04	1.48E-03	3.70E-04
Acrolein	9.25E-05	3.73E-04	9.32E-05	3.52E-04	8.81E-05	1.79E-04	4.47E-05
Benzo(a)pyrene	1.88E-07	7.58E-07	1.89E-07	7.16E-07	1.79E-07	3.63E-07	9.08E-08
PAH	1.68E-04	6.77E-04	1.69E-04	6.40E-04	1.60E-04	3.25E-04	8.11E-05

1. Unless otherwise noted, emission factors taken from AP-42, Fifth Edition, Section 3.3, Gasoline & Diesel Industrial Engines (10/96), Tables 3.3-1 and 3.3-2. Diesel fuel heat content assumed to be 138000 Btu/gal

Make-up Air	pace Heaters, EP-19 & EP -22	
Seasonal emissions	ccur from the combustion of natural gas in space heaters which include	
8.525 MMBtu/hr ar	7.875 MMBtu/hr makeup air handling units. Using the EPA's FIRE database, SCC Code No. 1-05-002-06	
for space heaters in	ommercial/industrial use presents an emission factor of 20 lbs of CO, 5.3 lbs of VOCs, 100 lbs of NOx, 0.6 lbs SC	52
18 lbs NH ₃ , and 3.0	os of PM10 per million cubic feet (MMCF) of natural gas burned. Therefore, the regulated air pollutant emission	s
are estimated, as fol	WS:	
8.525 MMBTU/hr	fake-up Air Handling Unit, EP-19	
F = (20 l)	CO/MMCF) x (8.525 Mbtu/hr) x (1 CF/MBtu) x (1 MMCF/106 CF)	
$\mathbf{F} =$	0.17 lbs CO/hr, or	
	0.75 TpY based 8,760 hrs/yr	
F = (5.3	s VOC/MMCF) x (8.525 Mbtu/hr) x (1 CF/MBtu) x (1 MMCF/10 ⁶ CF)	
$\mathbf{F} =$	0.05 lbs VOC/hr, or	
	0.20 TpY based 8,760 hrs/yr	
F = (3.0	s PM10/MMCF) x (8.525 Mbtu/hr) x (1 CF/MBtu) x (1 MMCF/10 ⁶ CF)	
$\mathbf{F} =$	0.03 lbs PM/hr, or	
	0.11 TpY based 8,760 hrs/yr	
F = (100	lbs NOX/MMCF) x (8.525 Mbtu/hr) x (1 CF/MBtu) x (1 MMCF/10 ⁶ CF)	
F =	0.85 lbs NOX/hr, or	
	3.73 TpY based 8,760 hrs/yr	
F = (0.60	bs SO ₂ /MMCF) x (8.525 Mbtu/hr) x (1 CF/MBtu) x (1 MMCF/10 ⁶ CF)	
$\mathbf{F} =$	0.005 lbs SO ₂ /hr, or	
	0.02 TpY based 8,760 hrs/yr	
F = (18 l	NH ₃ /MMCF) x (8.525 Mbtu/hr) x (1 CF/MBtu) x (1 MMCF/10 ⁶ CF)	
$\mathbf{F} =$	0.153 lbs NH ₃ /hr, or	
	0.67 TpY based 8,760 hrs/yr	

		<u>Air Handling Unit, EP-22</u>
		MCF) x (7.875 Mbtu/hr) x (1 CF/MBtu) x (1 MMCF/10 ⁶ CF)
F		lbs CO/hr, or TpY based 8,760 hrs/yr
-	(5.2 lbs VOC/	MMCF) x (7.875 Mbtu/hr) x (1 CF/MBtu) x (1 MMCF/10 ⁶ CF)
		lbs VOC/hr, or
F		TpY based 8,760 hrs/yr
F	F = (3.0 lbs PM10)	MMCF) x (7.875 Mbtu/hr) x (1 CF/MBtu) x (1 MMCF/10 ⁶ CF)
		lbs PM/hr, or
		TpY based 8,760 hrs/yr
F	F = (100.0 lbs NO2	X/MMCF) x (7.875 Mbtu/hr) x (1 CF/MBtu) x (1 MMCF/10 ⁶ CF)
		lbs NOX/hr, or
	3.45	TpY based 8,760 hrs/yr
F	$F = (0.60 \text{ lbs } SO_2/M)$	MMCF) x (7.875 Mbtu/hr) x (1 CF/MBtu) x (1 MMCF/10 ⁶ CF)
F	7 = 0.005	lbs SO ₂ /hr, or
	0.02	TpY based 8,760 hrs/yr
F	7 = (18 lbs NH ₃ /M	MCF) x (7.875 Mbtu/hr) x (1 CF/MBtu) x (1 MMCF/10 ⁶ CF)
F	7 = 0.142	lbs NH ₃ /hr, or
	0.62	TpY based 8,760 hrs/yr
Grand Tot	al Emissions, EP-	-19, & EP -22
F	F = (20 lbs CO/MM)	ACF) x (16.4 Mbtu/hr) x (1 CF/MBtu) x (1 MMCF/10 ⁶ CF)
F	7 = 0.33	lbs CO/hr, or
	1.44	TpY based 8,760 hrs/yr
F	F = (5.3 lbs VOC/M	MMCF) x (16.4 Mbtu/hr) x (1 CF/MBtu) x (1 MMCF/10 ⁶ CF)
F	7 = 0.09	lbs VOC/hr, or
	0.40	TpY based 8,760 hrs/yr
		MMCF) x (16.4 Mbtu/hr) x (1 CF/MBtu) x (1 MMCF/106 CF)
F		lbs PM/hr, or
	0.22	TpY based 8,760 hrs/yr
		X/MMCF) x (16.4 Mbtu/hr) x (1 CF/MBtu) x (1 MMCF/10 ⁶ CF)
F		lbs NOX/hr, or
	7.18	TpY based 8,760 hrs/yr
		MMCF) x (16.4 Mbtu/hr) x (1 CF/MBtu) x (1 MMCF/10 ⁶ CF)
F		lbs SO ₂ /hr, or
	0.04	TpY based 8,760 hrs/yr
F	$F = (18 \text{ lbs } \text{NH}_3/\text{M})$	MCF) x (16.4 Mbtu/hr) x (1 CF/MBtu) x (1 MMCF/10 ⁶ CF)
F	7 = 0.295	lbs NH ₃ /hr, or
	1.29	TpY based 8,760 hrs/yr

Binder Water Heaters, EP-20
Emissions occur from the combustion of natural gas in five water heaters used in the binder room. 5 units are rated
75 Mbtu/hr for a total maximum rated heat input of 0.375 MMBtu/hr.
Using the EPA's FIRE database, SCC Code No. 1-05-002-06 for external boilers in commercial/industrial use presents an
emission factor of 20 lbs of CO, 5.3 lbs of VOCs, 100 lbs of NOx, 0.6 lbs SO2 and 3.0 lbs of PM10 per million cubic feet
(MMCF) of natural gas burned. Therefore, the fugitive regulated air pollutant emissions are estimated, as follows:
$F = (20 \text{ lbs CO/MMCF}) \times (375 \text{ Mbtu/hr}) \times (1 \text{ CF/MBtu}) \times (1 \text{ MMCF/10}^{6} \text{ CF})$
F = 0.008 lbs CO/hr, or
0.033 TpY based 8,760 hrs/yr
F = (5.3 lbs VOC/MMCF) x (375 Mbtu/hr) x (1 CF/MBtu) x (1 MMCF/10 ⁶ CF)
F = 0.002 lbs VOC/hr, or
0.0087 TpY based 8,760 hrs/yr
F = (3.0 lbs PM10/MMCF) x (375 Mbtu/hr) x (1 CF/MBtu) x (1 MMCF/10 ⁶ CF)
F = 0.001 lbs PM/hr, or
0.005 TpY based 8,760 hrs/yr
$F = (100.0 \text{ lbs NOX/MMCF}) \times (375 \text{ Mbtu/hr}) \times (1 \text{ CF/MBtu}) \times (1 \text{ MMCF/}10^{6} \text{ CF})$
F = 0.04 lbs NOX/hr, or
0.16 TpY based 8,760 hrs/vr
F = (0.60 lbs SO ₂ /MMCF) x (375 Mbtu/hr) x (1 CF/MBtu) x (1 MMCF/10 ⁶ CF)
F = 0.0002 lbs SO ₂ /hr, or
0.0010 TpY based 8.760 hrs/vr
0.0010 TPT based 6,700 ms/yr
$F = (18 \text{ lbs NH}_3/\text{MMCF}) \times (375 \text{ Mbtu/hr}) \times (1 \text{ CF/MBtu}) \times (1 \text{ MMCF}/10^6 \text{ CF})$
F = 0.007 lbs NH ₂ /hr, or
0.03 TpY based 8,760 hrs/yr

Raw Materials Handling Emission Calculations, FP-11

Particulate matter emissions from raw materials handling were characterized by the USEPA in Section 11.13 Glass Fiber Manufacturing of AP-42 for unloading and conveying, storage bins, and mixing and weighing operations. Potential particulate matter emissions from these operations at Guardian Fiberglass are controlled with bag filter dust collectors and vented to the in-plant environment. Table 11.13-2 of AP-42 presents the particulate matter emission factors for glass fiber manufacturing. Summarized in following table are the AP-42 emission factors that were used to determine potential uncontrolled particulate matter emissions for the raw material handling operations.

	PM Emission Factor
	(lbs/ton of material
Source	processed)
Unloading and conveying (SCC 3-05-012-21)	3.0
Storage bins (SCC 3-05-012-22)	0.2
Mixing and weighing (SCC 3-05-012-24)	0.6

The tons of raw material processed is equivalent to 115% of the maximum production capacity specified for Guardian Fiberglass facility. The maximum production capacity is 16,000 lbs per hour or,

 70,080
 tons per year (TpY) based on 8,760 operational hours per year. Therefore, the maximum raw material processed is equivalent to

 18,400
 lbs per hour or,
 80,592
 tons per year (TpY) based on 8,760 operational hours per year.

The particulate matter emissions from raw material handling are controlled with bag filter dust collectors, as well as process enclosures. The use of process enclosures and bag filter dust collectors were detemined to have a minimum overall control device efficiency of 99%. Therefore, the maximum hourly and annual controlled PM emissions released to the in-plant environment from raw material handling operations may be estimated with the following relationship:

E_{PM} = (Production Rate, tons per unit time) x (PM Emission Factor) x (1 - 0.99)

Presented in the following table are the estimated maximum hourly and annual controlled PM emission rates for raw material handling operations at the proposed Guardian Fiberglass facility.

CONTROLLED EMISSIONS	PM Emissions		PM10 Emissions ¹		PM2.5 Emissions ¹	
Source	lbs/hr	TpY	lbs/hr	TpY	lbs/hr	TpY
Unloading and conveying (SCC 3-05-012-21)	0.28	1.21	0.28	1.21	0.28	1.21
Storage bins (SCC 3-05-012-22)	0.02	0.08	0.02	0.08	0.02	0.08
Mixing and weighing (SCC 3-05-012-24)	0.06	0.24	0.06	0.24	0.06	0.24
Total	0.35	1.53	0.35	1.53	0.35	1.53

1. Assumes all PM is PM2.5

Historical Resin/Binder/De-dusting oil/Production Data, FP-12 Historical usage data from GF Inwood, WV wool fiberglass production facility

Thistorieur usuge dutu nom a	or mirood, if i ii	oor moergiuss pro	duction identity.		
	De-dusting				
	oil	Resin/Binder	Resin/glass	Binder/glass	

	oil	Resin/Binder	Resin/glass	Binder/glass	Wax/glass		
	Use	Ratio	pulled	pulled	pulled		
	(gal/yr)	(%w)	(lbs/ton)	(lbs/ton)	(gal/ton)		
Usage ^A	51,497	22.5%	180	829	31.0		
A - Maximum of last three calendar years or previous Title V renewal application							

Actual Resin, Binder & De-dusting oil Use Determinations

Actual Kesin, binder & De-dusting of Use Determinations The maximum resinated production rate of each production line is 8,000 lbs/hr or 4.0 TpH of glass pulled, or an annual production rate of 35,040 TpY. The historical usage of resin of 180 lb/ton is assumed for Line 2 (batt line) to produce products at normal LOI's (5.0%) and a resin usage of 304 lb/ton is assumed for Line 1 (roll line) to produce products at high LOI's (8.4%). The resin usage rate of 304 lb/ton was determined during the 2006 compliance tests. Therefore, the maximum annual usage of resin and mixed binder is estimated, as follows:

	Bii Pu Bii Bii	nder Rate to A nder Rate Il Rate nder Rate nder Rate sin/TGP	6.6 gal/min 6.6 gal/min 3.4 tons/hr 116 gal/ton 1,052 lbs/ton 303.4 lbs/ton			
Line 1 (Roll Line)						
	$U_1 = 35$,040 TpY x 30	4 lbs resin/ton glass pulled			
	$U_1 =$	10,630,407	lbs resin/yr, or	resin density =	10.01	lbs/gal
	$U_1 =$	1,062,191	gals resin/yr			
Line 2 Batt Line)						
,	U 2= 35.	.040 TpY x 18	0 lbs resin/ton glass pulled			
	U 2=	-	lbs resin/yr, or	resin density =	10.01	lbs/gal
	U 2=	630,216	gals resin/yr			
Grand Total Line 1 p	$U = U_1$	+ U ₂ 16,937,607	esin Usage lbs resin/yr, or gals resin/yr total			
Grand Total Binder	Usage					
	As	062,191 gal/yr 71,254,412 7,886,190	ses 22% solids formula and Line 2 uses 14 of resin x 11b binder / 0.2883 lb resin + 63 lbs binder/yr, or gals binder/yr gals binder/hr		ler / 0.1835 ll 9.04	b resin lbs/gal
Resin Tank Through There are 4 - 4,500 g throughput of resin p	allon abov		ge tanks in use for resin storage. Therefor		als resin/yr	
Dedusting Oil Tank	0.	080 TpY x 2.4 193,421 1,451,817	gals de-dusting oil/ton glass pulled gals de-dusting oil/yr, or Ibs de-dusting oil/yr Ibs de-dusting oil/hr	de-dusting oil density =	7.51	lbs/gal

- de-dusting oil density = 7.51 lbs/gal

VOC Resin and Oil Storage Emissions

Estimation of fugitive VOC emissions from Storage Tanks (Old Method)

Breathing Loss from fixed roof tanks

$L_B = 2.26 \ x \ 10^{-2} \ M_V \ (P/(PA-P))^{0.68} \ D^{1.73} \ H^{0.51} \ \Delta T^{0.50} \ F_P \ CK_C$

Working Loss from fixed roof tanks

 $L_W = 2.40 \text{ x } 10^{-5} \text{ M}_V \text{ PVNK}_N \text{K}_C$

Tank		Q	MW	PA	Р	D	Н
No.	Product	gal/yr	lb/lbmole	psia	psia	ft	ft
T3	Resin ¹	423,102	30.03	14.7	1.8	7.4	14
T4	Resin	423,102	30.03	14.7	1.8	7.4	14
T5	Resin	423,102	30.03	14.7	1.8	7.4	14
T6	Resin	423,102	30.03	14.7	1.8	7.4	14
T7A	De-dust Oil ²	96,710	190	14.7	0.0002	9	8
T7B	De-dust Oil ²	96,710	190	14.7	0.0002	9	8
Tank	V			ΔT			
No.	gal	N	K _N	°F	Fp	С	K _C
T3	4500	94.02	1	19.9	1	0.55	1
T4	4500	94.02	1	19.9	1	0.55	1
T5	4500	94.02	1	19.9	1	0.55	1
T6	4500	94.02	1	19.9	1	0.55	1
T6	9000	47.01	1	19.9	1	0.55	1
T7A	9000	10.75	1	19.9	1	0.55	1
T7B	9000	10.75	1	19.9	1	0.55	1
Tank			Total Emission Loss				
No.	L _B	Lw	(lbs/yr)				
T3	53.47	549	602				
T4	53.47	549	602				
T5	53.47	549	602				
T6	53.47	549	602				
T7A	0.67	0.09	0.76				
T7B	0.67	0.09	0.76				
	Total Storage	Tank Losses	2,410	lbs/yr	0.28	lbs/hr	

1.21

ТрҮ

Notes: ¹Assumed vapor pressure and MW equivalent to 37% w aqueous solution of formaldehyde. ¹Assumed vapor pressure and MW equivalent to Residual Oil No. 6

Estimation of fugitive VOC emissions from Storage Tanks (New Method)

		Density	Thro	ughput
	Usage	lb/gal	lbs	gal
Resin	242 lb/ton glass	10.01	16,937,607	1,692,407
Oil	2.4 gal/ton glass	7.51	1,451,817	193,421
Binder	1017 lb/ton glass	9.04	71,254,412	7,886,190

There are 4 - 4500 gallon above ground storage tanks in use for resin storage. Therefore, 423,102 gals resin. throughput of resin per tank is estimated to be

Estimation of fugitive VOC emissions from Storage Tanks

Calculated in accordance with U.S EPA equations (U.S. EPA, "Compilation of Air Pollutant Emission Factors" (AP-42), February, 1996, section 7.1.3.1)

Tank	Volume		Throughput (Q)	Diameter	Height
No.	gal	Product	gal	ft	ft
T3	4,500	Resin	423,102	7.4	14
T4	4,500	Resin	423,102	7.4	14
T5	4,500	Resin	423,102	7.4	14
T6	4,500	Resin	423,102	7.4	14
T7A	4,500	Oil	96,710	9	8
T7B	4,500	Oil	96,710	9	8

Ambient Parameters				
Ambient Pressure (psia) ¹	14.66			
Minimum Ambient				
Temperature (°F) ²	58			
Maximum Ambient				
Temperature (°F) 3	77			

² Minimum ambient temperature representative of refrigerated enclosure provided by Grover Thomas, Guardian.

³ Maximum ambient temperature assumes a maximum daily temperature fluctuation of 19F, as recommended by Grover Thomas, Guardian.

Resin Specifications						
				Vapor		
	Molecular	Vapor Pressure		Pressure at		
	Weight	at 58°F (mm Hg)	Vapor Pressure	77°F (mm	Vapor Pressure	
Component	(lb/lbmol)	1	at 58°F (psia)	Hg) ¹	at 77°F (psia)	
Formaldehyde	30.0262	0.36	0.00696	0.83	0.01605	
Methanol	32.042	0.28	0.00541	0.49	0.00948	
Phenol ²	94.1128	0.00	0.00000	0.00	0.00000	
Water	18.0152	10.41	0.20130	20.12	0.38906	
Total Liquid		11.05	0.21367	21.44	0.41458	

¹ Partial vapor pressures provided by Kim Tutin, Technology Manager of Insulation Resins at Georgia-Pacific Resins, Inc, in 1/26/2006 email to Grover Thomas, Guardian, and in 2/2/2006 email to ² Due to the low vapor pressure of phenol, it's contribution to total VOCs is negligible.

De-dust Oil Specifications ¹						
	Vapor Molecular					
	Weight	Vapor Pressure	Vapor Pressure			
Component	(lb/lbmol)	at 58°F (psia) 2	at 77°F (psia) 3			
VOC	190	0.00004	0.00009			

¹ Assumed vapor phase molecular weight and vapor pressures equivalent to Residual Oil No. 6; parameters from AP-42 Table 7.1-2

² For conservatism, vapor pressure from AP-42 Table 7.1-2 at 60F 3 For conservatism, vapor pressure from AP-42 Table 7.1-2 at 80F

Tank No.	L _B (lbs)	Lw (lbs)	Total Emission Loss (lbs)
T3	0.48	7.32	7.81
T4	0.48	7.32	7.81
T5	0.48	7.32	7.81
T6	0.48	7.32	7.81
T7A	0.01	0.04	0.05
T7B	0.01	0.04	0.05

Storage Tank VOC & HAP Emissions

	Resin	Tank	Oil Tank	
	lb/yr	tpy	lb/yr	tpy
VOC losses	31.22	0.01561	0.101	0.00005
	Content in		Emissions	
Pollutant	Resin (wt%)	lb/hr	lb/yr	tpy
Formaldehyde	9.00%	0.00210	18	0.009
Phenol	0.65%	0.00000	0	0.000
Methanol	0.25%	0.00146	13	0.006
Total Haps	9.90%	0.00356	31	0.016
· · · · · · · · · · · · · · · · · · ·			1	r
De-dust Oil		0.000012	0.10128	0.0000506

Mixed Binder Batch Formulation (22% Solids.)

	010	Vol.	Batch	VOC	VOC	
Material	Qty. (lbs)				(lbs)	Comments
		(gal)	(wt %)	(wt%)	(IDS)	
Urea	488.37	40.10	6.5%			Water soluble solid
Resin	2162.15	216.0	28.8%	3.0%	65.7	<2.14% formaldehyde;
						<0.65% phenol. , 0.25% methanol
Aqua Ammonia	25	3.4	0.3%			
Sulf-N-45	123.75	6.9	1.7%			Water soluble solid
Silane	2.5	0.3	0.03%	41%	1.0	Ethanol
Hot water	1292.82	155	17.2%			
Cold water	3405.41	408	45.4%			
Total	7500	830	100%		66.8	

Time elapsed (Minutes)	%FF Reduction
0	9.00
80	2.81
140	1.27
200	0.80
260	0.47
410	0.33
470	0.28
Average	2.14

Mixed Binder Density
VOC Content
VOC Mass fraction

 Mixed Binder Est. Physical & Chemical Properties

 Mixed Binder Density
 9.04
 lbs/gal

 VOC Content
 0.080
 lbs VOC/gal Mixed Binder

 VOC Mass fraction
 0.89%
 lbs VOC/lb Mixed Binder

 Binder Throughput
 71,254,412
 lbs Binder

Estimation of fugitive VOC emissions from Pre-Act Mixing Tanks

Fugitive VOC emissions occur from the batch mixing of binder resin in the Pre-react mix tanks. There is 1-1200 & 1-1700 gallon Pre-React Mix tanks, with fixed covers, an acess hatch w/cover, and an opening for the mixing impellor shaft. The primary ingredients that contain VOCs are fed directly from resin storage tanks, while other ingredients are added by hand from small containers.

The batch mixing process for the Pre-React tanks is similar to the batch mixing processes that occur in the paint manufacturing industry. Under Section 6.4 Paint and Varnish of AP-42, it is estimated that 1 to 2% of the solvents (or VOCs) are lost from paint mixing operations. The solvents used in paint manufacturing are typically high vapor pressure solvents that are designed to flash off during the application of the paint. The VOCs (e.g. formaldehyde, phenol) found in Pre-Act Mixing Tanks have a strong affinity towards water which results in a lower mixed vapor pressure than those of common paint solvents. Therefore, it is estimated that only 2% of the available mass of VOCs in the ingredients used in the Pre-React Mixing Tanks are lost to the indoor air as fugitive emissions.

$\begin{array}{l} F=(0.080\ lbs\ VOC/gal\ Mixed\ Binder)\ x\ (7,888,866\ gal\ Binder/yr)\ x\ 2\%\\ F=\ 12,684\ \ lbs\ VOC/yr,\ or\ \ 6.34\ \ TpY\ of\ VOCs \end{array}$

1.45 lb/hr VOC

Formaldehyde and Phenol emissions are calculated from emission factors determined from a December 2001 source test on the Inwood, WV facility binder mix room. A variability factor of 2 is included to account for process variability, the limited source test data available, and possible changes in the resin manufacturer. An hour-long source test was conducted in Inwood, WV in October 2001 during preparation of binder in the Binder Mix Room. The source tests determined that 1b/hr of formaldehyde and 1b/hr of phenol are lost to the indoor air as fugitive emissions from the Pre-Reat Mixing Tanks. The annual emission rates presented in the source test summary table below are determined assuming continous operation.

Pre-React Mixing Tank Source Test Summary

	Variability Factor	Source Test Emission	Source Test Emission Factor (tpy)	Adjusted Emission	Adjusted Emission Factor
Formaldehyde	2.0	0.002	0.01	0.004	0.02
Phenol	2.0	0.0002	0.001	0.0004	0.002

Assuming Methanol is present in the binder pre-act as shown in the Mixed Binder Batch Formulation above, emissions are calculated as follows:

Method 1 - using 2001 Emission Results

	Content in Binder	Content in VOC	Emis	sions		
	(wt%)	(wt%)	lb/yr	tpy	g/hr	lb/hr
Formaldehyde ^a	0.616%	-	35.0	0.018	1.81	0.00
Phenol ^a	0.187%	-	3.50	0.0018	0.18	0.00
Methanol ^b	0.072%	8.23%	1,044	0.522	54.06	0.12
Total	0.876%					

facility.

^b Assumes that VOC is mostly comprised of formaldehyde, phenol, and methanol and ethanol is negligable.

Melting and Refining Emission Calculations, EP-12 & EP-22

Regulated air pollutant emissions from melting and refining were characterized by the USEPA in Section 11.13 Glass Fiber Manufacturing of AP-42 for wool fiberglass electric furnaces used for melting operations. Emissions from exhaust system serving the melting and refining processes, are exhausted for the first production line to stack No. EP12, and for the second production line to stack No. EP22, which are vertically discharged to the outside ambient air.

Regulated air pollutant emissions from the melting and refining operation were based on Potential to Emit established by the emission limits found in Guardian's Inwood Permit to Modify R14-015 or based source test data where no emission limits were established. For comparison, emission factors for all pollutants established in source testing have been noted if available.

Presented in the following table is the measured data used to develop emission factors for determining potential regulated air pollutant emissions for the proposed forming and collection operations.

Regulated Air Pollutants	Emission Rate	Measured Process Rate	Guardian's Emission Factor	Air Permit Emission Factor
Melting and Refining	(lbs/hr)	(lbs material/hr)	(lbs/ton of material processed)	(lbs/ton)
Particulate matter	0.16	6,414	0.050	0.136
PM10				0.136
PM2.5				0.136
Lead	0.000049	6,287	0.00002	0.00002
Chrome	0.0006	16,814	0.00007	0.00007
Sulfur dioxides	0.00026	5,804	0.00009	0.0001344
Nitrogen oxides	0.047	6,060	0.016	0.030
Carbon monoxide	1.47	6,060	0.485	0.73
Volatile organic compounds	0.42	5,841	0.144	0.22

The tons of raw material processed is equivalent to the maximum production capacity specified for Guardian Fiberglass facility, which is 8,000 lbs per hour or, 35,040 tons per year (TpY) based 8,760 operational hours per year for the existing line, and new line is 8,000 lbs per hour or, 35,040 TpY.

Emissions of SO_x , NO_x , CO and VOC from the electric furnaces are uncontrolled by the bag filter dust collectors and will be released to the outside ambient air. Therefore, the maximum hourly and annual uncontrolled emissions of SO_x , NO_x , CO and VOC from the melting operations may be estimated with the following relationship:

 E_i = (Production Rate, tons per unit time) x (Emission Factor) x 1.0

A 1.0 variability factor is applied in order to compensate for emissions due to normal process variations.

For PM, the emission rate reflects negotiated State allowable limits. Assumes all PM is PM2.5

Condensable PM emissions from source testing conducted in February 2012 is added to the permit limits.

 E_{PM} = (Production Rate, tons per unit time) x (Emission Factor) x 1.0

Presented in the following table are the estimated maximum hourly and annual controlled emissions of PM, and uncontrolled emissions of Chrome, SQ_x , NO_x , CO and VOC from the melting operations for 8,000 roll line, EP-12.

Regulated Air Pollutants from	Maximum Allow	able Emission Rates
Electric glass furnace - wool (SCC 3-05-012-03)	lbs/hr	ТрҮ
Particulate matter (PM)	0.544	2.383
PM10	0.544	2.383
PM2.5	0.544	2.383
Lead	0.00006	0.00028
Chrome	0.00029	0.00125
Sulfur oxides (SO _x)	0.0005	0.002
Nitrogen oxides (NO _x)	0.120	0.526
Carbon monoxide (CO)	2.920	12.790
Volatile organic compounds (VOC)	0.880	3.854

Melting and Refining Emission Calculations (cont.)

Presented in the following table are the estimated maximum hourly and annual controlled emissions of PM, and uncontrolled emissions of SO_x , NO_x , CO and VOC from the melting operations for 8,000 batt line, EP-22

Regulated Air Pollutants from	Maximum Allowable Emission Rates		
Electric glass furnace - wool (SCC 3-05-012-03)	lbs/hr	TpY	
Particulate matter (PM)	0.544	2.383	
PM10	0.544	2.383	
PM2.5	0.544	2.383	
Lead	0.00006	0.00028	
Chrome	0.00029	0.00125	
Sulfur oxides (SO _x)	0.0005	0.002	
Nitrogen oxides (NO _x)	0.120	0.526	
Carbon monoxide (CO)	2.920	12.790	
Volatile organic compounds (VOC)	0.880	3.854	

Forming and Collection Emission Calculations, EP-13 & EP-23

Molten glass from the electric furnaces is drawn off to the forehearth or refining unit, which maintains the molten glass at a uniform temperature with a natural gas fired process heater. Emissions occurring from the combustion of natural gas in the forehearth process heater are released to the exhaust serving the forming and collection system.

Guardian Fiberglass uses a rotary spin process which consists of fiberizers, natural gas heat, and compressed air for fiber forming. Natural gas heated air is provided by the blowers. Subsequent to forming, the wool fibers enter a vacuum chamber (or collection) process. Emissions occurring from the forming and collection processes are exhausted via a common stack to the outside ambient air. The combustion of natural gas in the forming process heaters produce regulated air pollutants of SO₂, NO_x, and CO.

Regulated air pollutant emissions from the melting and refining operation were based on Potential to Emit established by the emission limits found in Guardian's Inwood Permit to Modify R14-015 or based source test data where no emission limits were established. For comparison, emission factors for all pollutants established in source testing have been noted if available.

Presented infollowing table is the measured data used to develop emission factors for determining potential regulated air pollutant emissions for the proposed forming and collection operations.

Regulated Air Pollutants	Emission Rate	Measured Process Rate	Guardian's Emission Factor	Air Permit Emission Factor	Air Permit Emission Factor
Forming and collection	(lbs/hr)	(lbs material/hr)	(lbs/ton of material processed)	(lbs/ton)	(lbs/ton) Line #2
Particulate matter	9.66	6,310	3.06	3.71	3.49
PM10				3.71	3.49
PM2.5				3.71	3.49
Lead	0.0002	6,287	0.0001	0.0001	
Chrome	0.0029	6,825	0.0008	0.0008	
Sulfur dioxides	0.0024	5,960	0.0008	0.001007	
Nitrogen oxides	0.493	6,060	0.16	0.32	
Carbon monoxide ^a			5.28	5.28	
Volatile organic compounds	4.80	5,640	1.70	2.62	
Formic Acid ^a	-	-	0.35	0.35	
Phenol ^a	0.180	6,231	0.06	1.25	
Formaldehyde	0.88	6,101	0.29	0.630	
Methanol			2.28	2.280	
Ammonia	7.38	6,099	2.42	3.77	

^a Emission factors developed by Guardian based on expected improvements in product quality or potential emissions as a result of the

Cannizzaro reaction.

The tons of raw material processed is equivalent to the maximum production capacity specified

for Guardian Fiberglass facility, which is 8,000 lbs per hour 8,760 operational hours per year for the existing line, and new line is 8,000 lbs per hour or, 35,040 tons per year (TpY) based 35,040

8,000 lbs per hour or,

TpY for resinated wool fiberglass, and 8,000 lbs per hour or, 35,040 TpY for resinated and non-resinated wool fiberglass. Therefore, the maximum hourly and annual emissions of combustion gases, phenol, formaldehyde,

and ammonia from the forming and collection operations may be estimated with the following relationship:

E = (Production Rate, tons per unit time) x (Emission Factor) x 1.0

For PM, the emission rate reflects negotiated State allowable limits. Condensable emissions from the December 2012 stack test are added to the permit limit. Assumes all PM is PM2.5.

Presented in the following table are the estimated maximum hourly and annual controlled emissions of PM, and and uncontrolle emissions of Chrome, SQ, NO_x, CO, VOC, formic acid, phenol, formaldehyde, methanol, and ammonia from the forming and collection operations for existing 8,000 roll line, EP-13.

Regulated Air Pollutants from	Maximum All	owable Emission Rates
Forming and collection operations	lbs/hr	TpY
Particulate matter	14.840	64.999
PM10	14.840	64.999
PM2.5	14.840	64.999
Lead	0.00022	0.00095
Chrome	0.003	0.015
Sulfur dioxides	0.004	0.018
Nitrogen oxides	1.280	5.606
Carbon monoxide	21.120	92.506
Volatile organic compounds	10.480	45.902
Formic Acid ^a	1.392	6.096
Phenol	5.000	21.900
Formaldehyde	2.520	11.038
Methanol	9.120	39.946
Ammonia	15.080	66.050

Presented in the following table are the estimated maximum hourly and annual controlled emissions of PM, and and uncontrolle emissions of Chrome, SQ, NO_x, CO, VOC, formic acid, phenol, formaldehyde, methanol, and ammonia from the forming and collection operations for existing 8,000 roll line, EP-23.

Regulated Air Pollutants from	Maximum Allowable Emission Rates		
Forming and collection operations	lbs/hr	TpY	
Particulate matter	13.960	61.145	
PM10	13.960	61.145	
PM2.5	13.960	61.145	
Lead	0.00022	0.00095	
Chrome	0.003	0.015	
Sulfur dioxides	0.004	0.018	
Nitrogen oxides	1.280	5.606	
Carbon monoxide	21.120	92.506	
Volatile organic compounds	10.480	45.902	
Formic Acid ^a	1.392	6.096	
Phenol	5.000	21.900	
Formaldehyde	2.520	11.038	
Methanol	9.120	39.946	
Ammonia	15.080	66.050	

Curing and Cooling Emission Calculations, EP-14 & EP-24

A continuous blanket of wool fiberglass from the forming and collection operations is conveyed through a natural gas fired curing oven. Emissions occurring from the curing and cooling of wool fiberglass are are exhausted via a common stack to the outside ambient air. The combustion of natural gas in the curing oven will produce regulated air pollutants of SO_2 , NO_x , and CO.

Regulated air pollutant emissions from the melting and refining operation were based on Potential to Emit established by the emission limits found in Guardian's Inwood Permit to Modify R14-015 or based source test data where no emission limits were established. For comparison, emission factors for all pollutants established in source testing have been noted if available.

Regulated Air Pollutants	Emission Rate	Measured Process Rate	Guardian's Emission Factor	Air Permit Emission Factor	Air Permit Emission Factor
Forming and collection	(lbs/hr)	(lbs material/hr)	(lbs/ton of material processed)	(lbs/ton)	(lbs/ton) Line #2
Particulate matter	0.74	6,414	0.23	0.54	1.01
PM10				0.54	1.01
PM2.5				0.54	1.01
Sulfur dioxides	0.00023	5,960	0.00008	0.00008	
Lead	0.00002	6,287	0.00001	0.00001	
Nitrogen oxides	6.70	5,559	2.41	3.75	
Carbon monoxide	2.50	5,559	0.90	1.13	1.31
Volatile organic compounds	0.17	5,559	0.06	0.24	
Formic Acid ^a	-	-	0.04	0.04	
Phenol ^a	-	-	0.30	0.300	
Formaldehyde	0.06	6,101	0.02	0.170	
Methanol	0.20	6,822	0.059	0.059	
Ammonia	0.37	5,757	0.13	0.87	

^a Emission factors developed by Guardian based on expected improvements in product quality or potential emissions as a result of the

Cannizzaro reaction.

The tons of raw material processed is equivalent to the maximum production capacity specified

for Guardian Fiberglass facility, which is 8,000 lbs per hour or, 35,040 tons per year (TpY) based

8,760 operational hours per year for the existing line, and new line is 8,000 lbs per hour or, 35,040

TpY. Therefore, the maximum hourly and annual emissions of SO₂, NO_x, CO, VOC, phenol,

formaldehyde, and ammonia from the curing and cooling operations may be estimated with the following

relationship:

E = (Production Rate, tons per unit time) x (Emission Factor) x 1.0

For PM, the emission rate reflects negotiated State allowable limits. Condensable emissions from the December 2012 stack test are added to the permit limit. Assumes all PM is PM2.5.

Presented in the following table are the estimated maximum hourly and annual controlled emissions of PM, and and uncontrolle emissions of SO₂, NO_x, CO, VOC, formic acid, phenol, formaldehyde, methanol, and ammonia from the forming and collection operations for existing 8,000 roll line, EP-14.

Regulated Air Pollutants from	Maximum Allov	vable Emission Rates
Curing and cooling operations	lbs/hr	ТрҮ
Particulate matter	2.160	9.461
PM10	2.160	9.461
PM2.5	2.160	9.461
Sulfur dioxides	0.0003	0.001
Lead	0.00003	0.0001
Nitrogen oxides	15.000	65.700
Carbon monoxide	4.520	19.798
Volatile organic compounds	0.960	4.205
Formic Acid ^a	0.160	0.701
Phenol	1.200	5.256
Formaldehyde	0.680	2.978
Methanol	0.235	1.027
Ammonia	3.480	15.242

Presented in the following table are the estimated maximum hourly and annual controlled emissions of PM, and and uncontrolle emissions of Chrome, SO₂, NO_x, CO, VOC, formic acid, phenol, formaldehyde, methanol, and ammonia from the forming and collection operations for existing 8,000 roll line, EP-24.

Regulated Air Pollutants from	Maximum Allow	able Emission Rates
Curing and cooling operations	lbs/hr	TpY
Particulate matter	4.040	17.695
PM10	4.040	17.695
PM2.5	4.040	17.695
Sulfur dioxides	0.0003	0.001
Lead	0.00003	0.0001
Nitrogen oxides	15.000	65.700
Carbon monoxide	5.240	22.951
Volatile organic compounds	0.960	4.205
Formic Acid ^a	0.160	0.701
Phenol	1.200	5.256
Formaldehyde	0.680	2.978
Methanol	0.235	1.027
Ammonia	3.480	15.242

Facing, Sizing and Packaging Emission Calculations, Resinated

Facing Paper Application, FP13

Potential particulate matter (PM) and volatile organic compound (VOC) emissions from the application of facing material to the wool fiberglass material were not characterized in AP-42. A PM emission factor of 0.05 lbs PM per ton of wool processed is presented on page C-65 of "Wool Fiberglass Insulation Manufacturing - Background Information for Proposed Standards" USEPA-450-3-83-002A. A representative (or conservative) VOC emission factor of 1.86 lbs VOC per ton of asphalt blowing coating produced, which is used by the asphalt manufacturing industry, was obtained from the USEPA FIRE database. Summarized in the following are the emission factors that were used to determine potential regulated air pollutant emissions from the facing application.

Regulated Air Pollutants from	Emission Factors
Facing application (SCC 3-05-012-99)	(lbs/ton of material processed)
Particulate Matter (PM)	0.05
Volatile organic compounds (VOC)	1.86

The tons of raw material processed is equivalent to the maximum production capacity specifiedfor Guardian Fiberglass facility, which is16,000 lbs per hour or,70,080 tons per year (TpY) based8,760 operational hours per year. The maximum application rate for asphalt based facing materialis 1 lb of facing material per 32 lbs of wool fiberglass, or2,190 TpY of facing material processed.

The emissions from the facing application are uncontrolled and released to the in-plant environment. Therefore, the maximum hourly and annual emissions released to the in-plant environment from the facing application may be estimated with the following relationship:

E = (Material Rate, tons per unit time) x (Emission Factor) x (1 - PM Control Efficiency,0.9)

Presented in the following table are the estimated maximum hourly and annual controlled PM emission rates for facing application operation at the proposed Guardian Fiberglass facility.

Regulated Air Pollutants from	Maximum Allowable Emission Rates		
Facing application (SCC 3-05-012-99)	lbs/hr	ТрҮ	
Particulate Matter (PM)	0.04	0.18	
Volatile organic compounds (VOC)	0.47	2.04	

Determination of fugitive VOC emissions from the Ink-jet Identification, FP-14

Guardian uses an ink printing system to print product codes on the finished product. The emissions from the ink printing system are uncontrolled and released, as fugitive emissions, to the in-plant environment. Emission rates are based on actual 2006 yearly ink usage in Inwood and actual 2001 solvent usage in Kingman. Therefore, the actual maximum annual VOC emission rate is estimated using a 1.70 variation factor based on actual data:

	Usage	Density			Usage	VOC Content	VOC E	missions
				Two				
	gal/yr	lbs/gal	Variability Factor	Lines	lb/yr	lb VOC/lb	lb/hr	tpy
Ink	338	6.66	1.7	2	7,637	0.93	0.8090	3.54
Solvent	170	6.60	1.7	2	3,813	1.00	0.4353	1.91
Total							1.2443	5.4501

Ink Speciation

Constituent	Weight Percent	Emissions	
	lb/lb ink	lb/yr	tpy
Ethanol	80	6,110	3.05
Isopropyl alcohol	20	1,527	0.76
Propanol	5	382	0.19
Butoxy Diglycol	2	153	0.08
Methanol	31	2,367	1.18

Solvent Speciation

Constituent	Weight Percent	Emissions	
	lb/lb solvent	lb/yr	tpy
Ethanol	100	3,813	1.91
Isopropyl alcohol	20	763	0.38
Monohydroxymethane	5	191	0.10
2 Pentatone, 4 Methyl	2	76	0.04
Methanol	50	1,907	0.95

Guardian Fiber	glass pressurized spray adhesive, FP-15
Determination of fugi	tive VOC emissions for spray adhesive based on a material balance is as follows:
Emission rates are c	alculated using the Inwood, WV 2005 adhesive usage of 595 gallons.
Total glass producti	on rate was 50,614 tons or 0.0118 per TGP.
Therefore, the annu	al 2005 VOC emissions from adhesive application is calculated as follows:
Adhesive Usage	
U = 0.011	76 gal spray adhes/TGP x 70,080 tons of glass
U =	824 gals/yr x 9.90 lbs/gal Adhesive density = 9.90 lbs/gal
U = 8	,159 lbs spray adhesive used/yr VOC = 7.740 lbs VOC/ gal adhesive
Estimated VOC Em	ission Rate
F =	824 gal adhesive used/yr x 7.7400 lbs VOC/gal adhesive
F = 6	,379 lbs VOC/yr, or
	3.19 TpY of VOCs
	0.73 lbs VOC/hr

Particulate dust control, FP-16

Potential particulate matter (PM) emissions from the sizing and packaging area are collected and controlled by two Air Tumbler control devices. The sizing and packaging area consists of trimming and rolling, the K&S Roll Machine, the blowing wool bagger, and packaging machinery. The Air Tumblers use cyclonic flow and wet impingement control techniques for the removal of particulates from the exhaust gas stream. The particulate matter removal efficiency for the Air Tumbler and scrubber are assumed to be 50% or greater. The PM exhaust concentration is assumed to be less than 0.01 lbs PM per 1000 lbs of exhaust air.

Potential PM emissions for the sizing and packaging area are estimated by multiplying the PM exhaust outlet concentration by the control devices rated volumetric air flowrate and by the control efficiency of 90% for the building as a process enclosure, as follows:

E = (0.01 lbs PM per 1000 lbs Air) x (Total Air Flowrate of control devices, cfm) x (units of conversion) x (1 - 90%)

Facing, Sizing and Packaging Emission Calculations (cont.)

Sizing & Packaging PM Control Devices	Maximum Rate Air Flowrate, cfm
Air Tumbler No. 1	20,000
Cyclone/screen rooms	20,000
Total Air Flowrate	40,000

Presented in the following table are the estimated maximum hourly and annual uncontrolled emissions of PM from the facing, sizing and packaging operations at the proposed Guardian Fiberglass facility for both produciton lines.

Selected units of conversion are: 60 min/hr; 8760 hr/yr; 29 lbs/lbmole air; 1 lbmol /385.5 cf air; and 2000 lbs/ton.

Regulated Air Pollutants from Sizing and packaging (SCC 3-05-012-99)		Maximum Allowable Emission Rates		
		lbs/hr	ТрҮ	
Particulate Matter (PM)		0.18	0.79	
Efficiency	50 %			
Bldg Effici	90 %			

Non-Resinated Emission Calculations, Line 2

Non-resinated	i De-dusting	, one one one			C Detter minati				
The estimated tons of non-resinated glass pulled is				8,000 lbs per hour or,			35,040 tons per year (TpY) based on		
8,760	operational ho	ours per year. The	refore, the annual VOC e	missions from	n the application of	f			
de-dusting oil, an	ti-stat and silic	one are estimated	using the assumption tha	t all VOC in	the de-dusting oil,	anti-stat			
			ns within the facility and						
The estimated an	nount of dedus	ting oil (Anneal 33	30) used at dicer	0.50	gal/TGP		(Engr Est - 1	0/12/07))	
The estimated amount of silicone used at the dicer				0.25 gal/TGP (Engr Est - 10/12/07))					
The estimated an	nount of silicor	ne used at the towe	er	0.35	gal/TGP		(Engr Est - 1	0/12/07))	
	Usage	Production			Density	Usag	e	voc	VOC Emissions
	gal/TGP	TGP/yr	Variability Factor		(lb/gal)	gal/yr	lb/yr	Content	tpy
Dedusting Oil	0.50	35,040	1.50		7.34	26,280	192,874	2.9%	2.8
Silicone - Dicer	0.25	35,040	1.50		8.34	13,140	109,588	3.00%	1.6
Silicone - Tower	0.35	35,040	1.50		8.46	18,396	155,575	1.00%	0.7
Therefore, presen	ted in the follo		Fower and Silicone - estimated maximum hou			nmary			
Therefore, presen VOC from the no	ted in the follo	wing table are the	estimated maximum hou	rly and annu		nmary			
Therefore, presen	ted in the follo	wing table are the ckaging operations (lb/h	estimated maximum hous.	(TpY)		nmary			
Therefore, presen VOC from the no Material Applied	ted in the follo	wing table are the ckaging operations (lb/hi lb/hi	estimated maximum hous. r) r	rrly and annua (TpY) tpy		nmary			
Therefore, presen VOC from the no Material Applied De-dusting Oil	ted in the follo	wing table are the ckaging operations (lb/hi lb/hi 0.64	estimated maximum hous. r) r i	rly and annua (TpY) tpy 2.80		nmary			
Therefore, presen VOC from the no Material Applied De-dusting Oil Silicone - Dicer	ted in the follo	wing table are the ckaging operations (lb/hi lb/hi 0.64 0.38	estimated maximum hous. r) r 4 3	(TpY) (Tpy) 2.80 1.64		nmary			
Therefore, presen VOC from the no Material Applied De-dusting Oil	ted in the follo	wing table are the ckaging operations (lb/hi lb/hi 0.64	estimated maximum hou r) r 	rly and annua (TpY) tpy 2.80		nmary			
Therefore, presen VOC from the no Material Applied De-dusting Oil Silicone - Dicer Silicone - Tower Total VOCs TpY Speciation	ted in the follo	wing table are the ekaging operations (Ib/hi 1b/hi 0.64 0.38 0.18	estimated maximum hou r) r - - - - - - - - - - - - -	(TpY) (TpY) (t py 2.80 1.64 0.78 5.22				_	
Therefore, presen VOC from the no Material Applied De-dusting Oil Silicone - Dicer Silicone - Tower Total VOCs TpY	ted in the follo	wing table are the ekaging operations (Ib/hi 1b/hi 0.64 0.38 0.18	estimated maximum hou s. r) r 4 3 3 9 0 Weight Per	(TpY) (TpY) (tpy 2.80 1.64 0.78 5.22 rcent		Emiss		1	
Therefore, presen VOC from the no Material Applied De-dusting Oil Silicone - Dicer Silicone - Tower Total VOCs TpY Speciation Constituent	nted in the follo	wing table are the ekaging operations (Ib/hi 1b/hi 0.64 0.38 0.18	estimated maximum hou s. r) r 4 3 3 9 Weight Per 1b/1b mate	(TpY) (TpY) (tpy 2.80 1.64 0.78 5.22 rcent		Emiss lb/hr	tpy]	
Therefore, presen VOC from the no Material Applied De-dusting Oil Silicone - Dicer Silicone - Tower Total VOCs TpY Speciation Constituent Petroleum Hydrod	ated in the follo	wing table are the ekaging operations (Ib/hi 1b/hi 0.64 0.38 0.18	estimated maximum hou s. r) r 4 3 3 3 5 5 6 7 8 8 3 9 7 8 8 9 9 7 8 8 9 9 7 8 8 9 9 8 9 9 9 9	(TpY) (TpY) (tpy 2.80 1.64 0.78 5.22 rcent		Emiss 1b/hr 0.64	tpy 2.80		
Therefore, presen VOC from the no Material Applied De-dusting Oil Silicone - Dicer Silicone - Tower Total VOCs TpY Speciation Constituent Petroleum Hydroo Methylhydrogen s	carbon siloxane	wing table are the ekaging operations (Ib/hi 1b/hi 0.64 0.38 0.18	estimated maximum houses. r) r Weight Per Ib/Ib mate 100 60	(TpY) (TpY) (tpy 2.80 1.64 0.78 5.22 rcent		Emiss 1b/hr 0.64 0.00	tpy 2.80 0.00		
Therefore, presen VOC from the no Material Applied De-dusting Oil Silicone - Dicer Silicone - Tower Total VOCs TpY Speciation Constituent Petroleum Hydroo Methylhydrogen = Octamethylcyclot	carbon siloxane tetrasiloxane	wing table are the ekaging operations (Ib/hi 1b/hi 0.64 0.38 0.18	estimated maximum houses	(TpY) (TpY) (tpy 2.80 1.64 0.78 5.22 rcent		Emiss 1b/hr 0.64 0.00 0.00	tpy 2.80 0.00 0.00		
Therefore, presen VOC from the no Material Applied De-dusting Oil Silicone - Dicer Silicone - Tower Total VOCs TpY Speciation Constituent Petroleum Hydroo Methylhydrogen s Octamethylcyclot N-Octyltriethoxys	carbon siloxane silane	wing table are the ekaging operations (Ib/hi 1b/hi 0.64 0.38 0.18	estimated maximum houses	(TpY) (TpY) (tpy 2.80 1.64 0.78 5.22 rcent		Emiss 1b/hr 0.64 0.00 0.00 0.00	tpy 2.80 0.00 0.00 0.00		
Therefore, presen VOC from the no Material Applied De-dusting Oil Silicone - Dicer Silicone - Tower Total VOCs TpY Speciation Constituent Petroleum Hydroo Methylhydrogen = Octamethylcyclot N-Octyltriethoxys Trimethylated sili	carbon siloxane silane	wing table are the ekaging operations (Ib/hi 1b/hi 0.64 0.38 0.18	estimated maximum hou s. r) r Weight Per Ib/Ib mate 100 60 30 7 7 7	(TpY) (TpY) (tpy 2.80 1.64 0.78 5.22 rcent		Emiss 1b/hr 0.64 0.00 0.00 0.00 0.00 0.00	tpy 2.80 0.00 0.00 0.00 0.00		
Therefore, presen VOC from the no Material Applied De-dusting Oil Silicone - Dicer Silicone - Tower Total VOCs TpY Speciation	carbon siloxane silane ica	wing table are the ekaging operations (Ib/hi 1b/hi 0.64 0.38 0.18	estimated maximum houses	(TpY) (TpY) (tpy 2.80 1.64 0.78 5.22 rcent		Emiss 1b/hr 0.64 0.00 0.00 0.00	tpy 2.80 0.00 0.00 0.00		

Determination of fugitive VOC emissions from the Ink-jet Identification, FP-17

Guardian uses an ink printing system to print product codes on the finished product. The emissions from the ink printing system are uncontrolled and released, as fugitive emissions, to the in-plant environment. Emission rates are based on actual 2004 yearly ink usage in Albion and actual 2001 solvent usage in Kingman. Therefore, the actual maximum annual VOC emission rate is estimated using a 1.25 variation factor based on actual data.

	Usage	Density		Usage	VOC Content		VOC Emissi	ions
	gal/yr	lbs/gal	Variability Factor	lb/yr	lb VOC/lb	lb/yr	lb/hr	tpy
Ink	2.1	7.51	1.25	20	0.70	14	0.0016	0.01
Solvent	57	7.09	1.25	503	1	503	0.0575	0.25
Total						517	0.0590	0.26

Ink Speciation

Constituent	Weight Percent	Emissions	
	lb/lb ink	lb/yr	tpy
Acetone	60	0.00	0
Dye (Chromium (III) - Azo Complex)	10	0.00	0
Solvent Speciation Constituent	Weight Percent	Emis	sions
*	Weight Percent lb/lb solvent	Emis lb/yr	sions tpy

Particulate dust control, FP18

Potential particulate matter (PM) emissions from the non-resinated packaging area are collected and controlled by "tube sock filters" and subsequently exhausted, as fugitive emisions to the in-plant environment. The estimated allowable PM exhaust concentration will be less than 0.005 lbs PM per 1000 lbs of exhaust air.

Potential PM emissions for the sizing and packaging area are estimated by multiplying the PM exhaust outlet concentration by the control devices rated volumetric air flowrate and by the control efficiency provided by the enclosure, as follows:

E = (0.005 lbs PM per 1000 lbs Air) x (Total Air Flowrate of control devices, cfm) x (units of conversion) x (1 - 90 %)

Facing, Sizing and Packaging Emission Calculations (cont.)

90 %

Sizing & Packaging PM Control Devices	Maximum Rate Air Flowrate, cfm
Total Air Flowrate	50,000
Selected units of conversion and 60 min/hrs 8760 hr/um 20 lhs/lh mole sim 1 ll	male /295 5 of aim and 2000 lbs/ton

Selected units of conversion are: 60 min/hr; 8760 hr/yr; 29 lbs/lb mole air; 1 lb mole /385.5 cf air; and 2000 lbs/ton.

Presented in the following table are the estimated maximum hourly and annual uncontrolled emissions of PM from the facing, sizing and packaging operations.

Regulated Air Pollutants from	Emission Rate	2S
Sizing and packaging (SCC 3-05-012-99)	lbs/hr	ТрҮ
Particulate Matter (PM)	0.11	0.4937

Bldg Efficiency

Particulate dust control

"tube sock filters" and subsequently exhausted, as fugitive emisions to	1	
estimated allowable PM exhaust concentration will be less than 0.01 lb	s PM per 1000 lbs of exhaust air.	
Potential PM emissions for the sizing and packaging area are estimated	by multiplying the PM exhaust	
outlet concentration by the control devices rated volumetric air flowrate		
provided by the enclosure, as follows:	e and by the control efficiency	
E = (0.01 lbs PM per 1000 lbs Air) x (Tota)	al Air Flowrate of control devices, cfm)	
x (units of conversion) x (1 - 90 %)		
Facing, Sizing and Packaging Emission Calculations (cont.)		
Sizing & Packaging PM Control Devices	Maximum Rate Air Flowrate,	
Total Air Flowrate		50,000
Selected units of conversion are: 60 min/hr; 8760 hr/yr; 29 lbs/lb mole	air; 1 lb mole /385.5 cf air; and 2000 lbs/ton.	
Selected units of conversion are: 60 min/hr; 8760 hr/yr; 29 lbs/lb mole Presented in the following table are the estimated maximum hourly and		
Presented in the following table are the estimated maximum hourly and		
		es
Presented in the following table are the estimated maximum hourly and PM from the facing, sizing and packaging operations.	annual uncontrolled emissions of	es TpY

Resin Tank Formaldehyde Emissions^{1,2}

Tank Parameter	Value ³
Tank Identification	Resin Tank 1 (T1)
Contents of Tank	Phenol-Formaldehyde Resin
Location	Inwood, WV
Tank Type (Vertical or Horizontal)	Vertical
Diameter, ft	14.0
Effective Diameter, ft	14.0
Shell Height or Length, ft	7.4
Nominal Capacity, gal	4,500
Geometric Capacity, gal	8,521
Throughput, gallons/yr	1,692,407
Average Liquid Height, ft (def. = Shell Height/2)	3.70
Maximum Liquid Height, ft	7.4
Roof Type (Cone or Dome)	Cone
Tank Roof Cone Slope, ft/ft (def. = 0.0625)	0.0625
Dome Tank Roof Radius, ft (def. = shell diameter)	N/A
Dome Tank Roof Height, ft	N/A
Roof Outage, ft	0.146
Vapor Space Outage, ft	3.85
Vapor Space Volume, ft ³	592
Average Daily Minimum Ambient Temperature, F	58.0
Average Daily Maximum Ambient Temperature, F	77.0
Daily Total Solar Insolation Factor, Btu/ft^2/day ⁴	0
Daily Average Ambient Temperature, F	67.5
Tank Paint Solar Absorbance, dimensionless ⁴	0.000
Daily Vapor Temperature Range, R	13.7
Daily Average Liquid Surf. Temperature, F	66.9
Daily Minimum Liquid Surf. Temperature, F	63.5
Daily Maximum Liquid Surf. Temperature, F	70.4
Liquid Bulk Temperature	66.5
Type of Substance (Organic or Petroleum)	Organic
Vapor Molecular Weight, lb/lbmol	30.0
Vapor Pressure at Daily Av. Liquid Surf. Temp., psia	0.0112
Vapor Pressure at Daily Min. Liquid Surf. Temp., psia	0.0096
Vapor Pressure at Daily Max. Liquid Surf. Temp., psia	0.0129
Vapor Density, lb/ft^3	0.0001
Daily Vapor Pressure range, psi	0.003
Breather Vent Pressure Setting, psig (def. $= 0.03$)	0.0300
Breather Vent Vacuum Setting, psig (def. = -0.03)	-0.0300
Breather Vent Pressure Setting Range, psi	0.0600
Ambient Pressure, psia (def. $= 14.7$)	14.66
Vapor Space Expansion Factor	0.0221
Vented Vapor Saturation Factor	0.998
Annual Turnovers	198.6
Turnover Factor	0.32
Working Loss Product Factor (Crude Oil = 0.75, Else=1)	1.00
Standing Storage Loss, lb/yr	0.28
Working Loss, lb/yr	4.32
Total Losses, lb/yr	4.60

¹ Calculated in accordance with U.S EPA equations (U.S. EPA, "Compilation of Air Pollutant Emission Factors" (AP-42), February, 1996, section 7.1.3.1)

² Because of identical tank parameters and throughputs, Tank No.'s T2, T3, and T4 are assumed to have equivalent emissions to Tank No. T1

³ Red values are user inputs, blue values are recommended defaults, and black values are calculated in accordance with AP-42 equations.

⁴ Tanks are indoors and not exposed to direct sunlight therefore 'Daily Total Solar Insolation Factor' and 'Tank Paint Solar Absorbance' are each set equal to 0.

Resin Tank Methanol Emissions^{1,2}

Tank Parameter	Value ³
Tank Identification	Resin Tank 1 (T1)
Contents of Tank	Phenol-Formaldehyde Resin
Location	Inwood, WV
Tank Type (Vertical or Horizontal)	Vertical
Diameter, ft	14.0
Effective Diameter, ft	14.0
Shell Height or Length, ft	7.4
Nominal Capacity, gal	4,500
Geometric Capacity, gal	8,521
Throughput, gallons/yr	1,692,407
Average Liquid Height, ft (def. = Shell Height/2)	3.70
Maximum Liquid Height, ft	7.4
Roof Type (Cone or Dome)	Cone
Tank Roof Cone Slope, ft/ft (def. = 0.0625)	0.0625
Dome Tank Roof Radius, ft (def. = 5.0025)	N/A
Dome Tank Roof Height, ft	N/A N/A
Roof Outage, ft	0.146
Vapor Space Outage, ft	3.85
Vapor Space Volume, ft^3	592
Average Daily Minimum Ambient Temperature, F	592
Average Daily Maximum Ambient Temperature, F	77.0
Daily Total Solar Insolation Factor, Btu/ft^2/day ⁴	0
Daily Average Ambient Temperature, F	67.5
Tank Paint Solar Absorbance, dimensionless ⁴	0.000
Daily Vapor Temperature Range, R	13.7
Daily Average Liquid Surf. Temperature, F	66.9
Daily Minimum Liquid Surf. Temperature, F	63.5
Daily Maximum Liquid Surf. Temperature, F	70.4
Liquid Bulk Temperature	66.5
Type of Substance (Organic or Petroleum)	Organic
Vapor Molecular Weight, lb/lbmol	32.0
Vapor Pressure at Daily Av. Liquid Surf. Temp., psia	0.0073
Vapor Pressure at Daily Min. Liquid Surf. Temp., psia	0.0066
Vapor Pressure at Daily Max. Liquid Surf. Temp., psia	0.0081
Vapor Density, lb/ft^3	0.0000
Daily Vapor Pressure range, psi	0.001
Breather Vent Pressure Setting, $psig$ (def. = 0.03)	0.0300
Breather Vent Vacuum Setting, psig (def. = -0.03)	-0.0300
Breather Vent Pressure Setting Range, psi	0.0600
Ambient Pressure, psia (def. $= 14.7$)	14.66
Vapor Space Expansion Factor	0.0220
Vented Vapor Saturation Factor	0.999
Annual Turnovers	198.6
Turnover Factor	0.32
Working Loss Product Factor (Crude Oil = 0.75, Else=1)	1.00
Standing Storage Loss, lb/yr	0.20
Working Loss, lb/yr	3.00
Total Losses, lb/yr	3.20

¹Calculated in accordance with U.S EPA equations (U.S. EPA, "Compilation of Air Pollutant Emission Factors" (AP-42), February, 1996, section 7.1.3.1)

 2 Because of identical tank parameters and throughputs, Tank No.'s T2, T3, and T4 are assumed to have equivalent emissions to Tank No. T1

³Red values are user inputs, blue values are recommended defaults, and black values are calculated in accordance with AP-42 equations.

⁴ Tanks are indoors and not exposed to direct sunlight therefore 'Daily Total Solar Insolation Factor' and 'Tank Paint Solar Absorbance' are each set equal to 0.

Wax/De-dust Oil Tank VOC Emissions ^{1,2}

Tank Parameter	Value ³
Tank Identification	Wax/De-dust Oil Tanks 1 (T7A & T7B)
Contents of Tank	Wax/De-dust Oil
Location	Inwood, WV
Tank Type (Vertical or Horizontal)	Vertical
Diameter, ft	8.0
Effective Diameter, ft	8.0
Shell Height or Length, ft	9.0
Nominal Capacity, gal	6,000
Geometric Capacity, gal	3,384
Throughput, gallons/yr	193,421
Average Liquid Height, ft (def. = Shell Height/2)	4.50
Maximum Liquid Height, ft	9.0
Roof Type (Cone or Dome)	Cone
Tank Roof Cone Slope, ft/ft (def. = 0.0625)	0.0625
Dome Tank Roof Radius, ft (def. = shell diameter)	N/A
Dome Tank Roof Height, ft	N/A
Roof Outage, ft	0.146
Vapor Space Outage, ft	4.65
Vapor Space Volume, ft^3	715
Average Daily Minimum Ambient Temperature, F	58.0
Average Daily Maximum Ambient Temperature, F	77.0
Daily Total Solar Insolation Factor, Btu/ft^2/day ⁴	0
Daily Average Ambient Temperature, F	67.5
Tank Paint Solar Absorbance, dimensionless ⁴	0.000
Daily Vapor Temperature Range, R	13.7
Daily Average Liquid Surf. Temperature, F	66.9
Daily Minimum Liquid Surf. Temperature, F	63.5
Daily Maximum Liquid Surf. Temperature, F	70.4
Liquid Bulk Temperature	66.5
Type of Substance (Organic or Petroleum)	Petroleum
Vapor Molecular Weight, lb/lbmol	190.0
Vapor Pressure at Daily Av. Liquid Surf. Temp., psia	0.00006
Vapor Pressure at Daily Min. Liquid Surf. Temp., psia	0.00005
Vapor Pressure at Daily Max. Liquid Surf. Temp., psia	0.00007
Vapor Density, lb/ft^3	0.0000
Daily Vapor Pressure range, psi	0.000
Breather Vent Pressure Setting, $psig$ (def. = 0.03)	0.0300
Breather Vent Vacuum Setting, psig (def. = -0.03)	-0.0300
Breather Vent Pressure Setting Range, psi	0.0600
Ambient Pressure, psia (def. = 14.7)	14.66
Vapor Space Expansion Factor	0.0219
Vented Vapor Saturation Factor	1.000
Annual Turnovers	57.2
Turnover Factor	0.69
Working Loss Product Factor (Crude Oil = 0.75 , Else=1)	1.00
Standing Storage Loss, lb/yr	0.01
Working Loss, lb/yr	0.04
Total Losses, lb/yr	0.05

¹Calculated in accordance with U.S EPA equations (U.S. EPA, "Compilation of Air Pollutant Emission Factors" (AP-42), February, 1996, section 7.1.3.1)

² Because of identical tank parameters and throughputs, Tank No.'s T2, T3, and T4 are assumed to have equivalent emissions to Tank No. T1

³ Red values are user inputs, blue values are recommended defaults, and black values are calculated in accordance with AP-42 equations.

⁴ Tanks are indoors and not exposed to direct sunlight therefore 'Daily Total Solar Insolation Factor' and 'Tank Paint Solar Absorbance' are each set equal to 0.