TITLE V PERMIT RENEWAL APPLICATION MARTINSBURG FACILITY PLANT ID NO. 003-00002

Prepared for:

Continental Brick Company

154 Charles Town Road Martinsburg, West Virginia 25405

Prepared by:

Potesta & Associates, Inc.

7012 MacCorkle Avenue, S.E. Charleston, West Virginia 25304 Phone: (304) 342-1400 Fax: (304) 343-9031

E-Mail: potesta@potesta.com

Project No. 0101-18-0025-002

February 2019

TABLE OF CONTENTS

General Forms	SECTION I - VI
Area Map	ATTACHMENT A
Plot Plan	ATTACHMENT B
Process Flow Diagram	ATTACHMENT C
Emission Units Table	ATTACHMENT D
Emission Unit Form(s)	ATTACHMENT E
Schedule of Compliance Form	ATTACHMENT F
Control Device Form(s)	ATTACHMENT G
Compliance Assurance Monitoring Form	ATTACHMENT H
Emission Calculations	APPENDIX

SECTION I - VI GENERAL FORMS

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION

DIVISION OF AIR QUALITY

601 57th Street SE Charleston, WV 25304 Phone: (304) 926-0475

www.dep.wv.gov/daq

INITIAL/RENEWAL TITLE V PERMIT APPLICATION - GENERAL FORMS

Section 1: General Information

1. Name of Applicant (As registered with the WV Secretary of State's Office):	2. Facility Name or Location:
Continental Brick Company	Martinsburg Facility
3. DAQ Plant ID No.:	4. Federal Employer ID No. (FEIN):
003-00002	54-1267012
5. Permit Application Type:	
☐ Initial Permit When did op	perations commence? 1984
□ Permit Renewal What is the order	expiration date of the existing permit? 05/18/2014
☐ Update to Initial/Renewal Permit Application	
6. Type of Business Entity:	7. Is the Applicant the:
☑ Corporation☐ Governmental Agency☐ LLC☐ Partnership☐ Limited Partnership	☐ Owner ☐ Operator ☒ Both
8. Number of onsite employees:	If the Applicant is not both the owner and operator, please provide the name and address of the other
	party.
50	
9. Governmental Code:	
□ Privately owned and operated; 0 □	County government owned and operated; 3
☐ Federally owned and operated; 1 ☐	Municipality government owned and operated; 4
\square State government owned and operated; 2 \square	District government owned and operated; 5
10. Business Confidentiality Claims	
Does this application include confidential information	n (per 45CSR31)? ☐ Yes ☐ No
If yes, identify each segment of information on each justification for each segment claimed confidential, is accordance with the DAQ's "PRECAUTIONARY NO	ncluding the criteria under 45CSR§31-4.1, and in

11. Mailing Address							
Street or P.O. Box: 154 Charles Tow	n Road						
City: Martinsburg		State: WV	Zip: 25405				
Telephone Number: (304) 263-6974		Fax Number: (304) 2	267-0793				
12. Facility Location							
Street: 154 Charles Town Road	City: Martinsb	ourg	County: Berkeley				
UTM Easting: 245.4 km	UTM Northin	ig: 4,368.7 km	Zone: □ 17 or ⊠ 18				
Directions: From Interstate 81 take Exit 12, travel east on State Route 9 approximately 1.5 miles. The facility is located on the right side of State Route 9. Portable Source? ☐ Yes ☐ No							
Is facility located within a nonattainment area? ☐ Yes ☒ No ☐ If yes, for what air pollutants?							
Is facility located within 50 miles of	If yes, name the affected state(s). Virginia, Pennsylvania, Maryland						
Is facility located within 100 km of			If yes, name the area(s). Shenandoah National Park				
It no, do emissions impact a Class I	If no, do emissions impact a Class I Area ¹ ? Yes No						

Class I areas include Dolly Sods and Otter Creek Wilderness Areas in West Virginia, and Shenandoah National Park and James River Face Wilderness Area in Virginia.

13. Contact Information		
Responsible Official: Donald B. Sult	Title: Vice President - Operations	
Street or P.O. Box: 154 Charles Town Road		
City: Martinsburg	State: WV	Zip: 25405
Telephone Number: (304) 263-6974	Fax Number: (304) 267-0793	
E-mail address: dbsult@gmail.com		
Environmental Contact: Same as Responsible	Official .	Title:
Street or P.O. Box:		
City:	State:	Zip: -
Telephone Number: () -		
E-mail address:		
Application Preparer: Patrick E. Ward		Title: Manager of Air Permitting
Company: Potesta & Associates, Inc.		
Street or P.O. Box: 7012 MacCorkle Avenue, S	S.E.	
City: Charleston	State: WV	Zip: 25304
Telephone Number: (304) 342-1400		
E-mail address: peward@potesta.com		

14.	Facility	Description	
-----	-----------------	--------------------	--

List all processes, products, NAICS and SIC codes for normal operation, in order of priority. Also list any process, products, NAICS and SIC codes associated with any alternative operating scenarios if different from those listed for normal operation.

Process	Products	NAICS	SIC
Manufacturing	Face Brick	327121	3251

Provide a general description of operations.

The Martinsburg Facility is a face brick manufacturing operation which includes quarry to final brick production and storage. The weathered Martinsburg Shale is quarried by the use of pans, crushed, screened, wetted, mixed in a pug mill, vacuum extruded, trimmed and cut to form the final shape of the green face bricks. Green face bricks then pass through the warming room, drying room, and kiln to remove the moisture in a controlled manner. Fired bricks are sorted and packaged for sale. Bricks not meeting the specifications (waste bricks) are disposed on property.

- 15. Provide an **Area Map** showing plant location as **ATTACHMENT A**.
- 16. Provide a **Plot Plan(s)**, e.g. scaled map(s) and/or sketch(es) showing the location of the property on which the stationary source(s) is located as **ATTACHMENT B**. For instructions, refer to "Plot Plan Guidelines."
- Provide a detailed Process Flow Diagram(s) showing each process or emissions unit as ATTACHMENT
 Process Flow Diagrams should show all emission units, control equipment, emission points, and their relationships.

Section 2: Applicable Requirements

18. Applicable Requirements Summary				
Instructions: Mark all applicable requirements.				
□ SIP	☐ FIP			
☑ Minor source NSR (45CSR13)	☐ PSD (45CSR14)			
☐ NESHAP (45CSR34)	☐ Nonattainment NSR (45CSR19)			
Section 111 NSPS (40CFR60 Subpart OOO)	⊠ Section 112(d) MACT standards (40CFR63 JJJJJ)			
Section 112(g) Case-by-case MACT	☐ 112(r) RMP			
Section 112(i) Early reduction of HAP	Consumer/commercial prod. reqts., section 183(e)			
Section 129 Standards/Reqts.	Stratospheric ozone (Title VI)			
☐ Tank vessel reqt., section 183(f)	☐ Emissions cap 45CSR§30-2.6.1			
☐ NAAQS, increments or visibility (temp. sources)	☐ 45CSR27 State enforceable only rule			
□ 45CSR4 State enforceable only rule	☐ Acid Rain (Title IV, 45CSR33)			
☐ Emissions Trading and Banking (45CSR28)	☐ Compliance Assurance Monitoring (40CFR64)			
☐ CAIR NO _x Annual Trading Program (45CSR39)	☐ CAIR NO _x Ozone Season Trading Program (45CSR40)			
☐ CAIR SO ₂ Trading Program (45CSR41)				
19. Non Applicability Determinations				
List all requirements which the source has determined not applicable and for which a permit shield is requested. The listing shall also include the rule citation and the reason why the shield applies. 3.7.2. The following requirements specifically identified are not applicable to the source based on the determinations set forth below. The permit shield shall apply to the following requirements provided the conditions of the determinations are met. 45CSR5 The coal handling Operations are regulated by 45CSR7 and therefore are exempt in accordance with 45CSR§\$5-2.4.b. & 2.14. 45CSR17 The facility is regulated by 45CSR7 and therefore exempt in accordance with 45 CSR§7-10.2 and 45CSR§17-6. 40 CFR Part 60, Subpart Y The coal handling facility processes less than 200 tons per day. 40 CFR Part 60, Subpart OOO Excluding existing Crusher No. 1, all the other shale processing equipment known as the grinding building commenced construction prior to August 31, 1983 and have not been reconstructed or modified.				
Permit Shield				

19. Non Applicability Determinations (Continued) - Attach additional pages as necessary.
List all requirements which the source has determined not applicable and for which a permit shield is requested. The listing shall also include the rule citation and the reason why the shield applies. 40 CFR Part 60, Subpart IIII The emergency generator commenced construction prior to July 11, 2005.
40 CFR Part 63, Subpart ZZZZ The emergency generator has a design capacity less than 500 HP.
40 C.F.R. Part 64 There are no pollutant specific emissions units (PSEU) at this facility that satisfy all of the applicability criteria requirements of 40 CFR §64.2(a), i.e., that: 1) have precontrol regulated pollutant potential emissions (PTE) equal to or greater than the "major" threshold limits to be classified as a major source; 2) are subject to an emission limitation or standard and; 3) have a control device to achieve compliance with such emission limitation or standard. Therefore, the facility is not subject to the Compliance Assurance Monitoring (CAM) rule.
Permit Shield

20. Facility-Wide Applicable Requirements

List all facility-wide applicable requirements. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*).

Ref No.	Rule/ Regulation/ R13 Permit	Existing R30 Permit Condition	Name	Requirement
1	45CSR§6-3.1.	3.1.1.	Open Burning	The open burning of refuse by any person is prohibited except as noted in 45CSR§6-3.1.
2	45CSR§6-3.2.	3.1.2.	Open Burning Exemptions	The exemptions listed in 45CSR§6-3.1 are subject to the following stipulation: Upon notification by the Secretary, no person shall cause, or allow any form of open burning during existing or predicted periods of atmospheric stagnation. Notification shall be made by such means as the Secretary may deem necessary and feasible.
3	40 C.F.R. §61.145(b) and 45CSR34	3.1.3.	Asbestos	The permittee is responsible for thoroughly inspecting the facility, or part of the facility, prior to commencement of demolition or renovation for the presence of asbestos and complying with 40 C.F.R. §61.145, 40 C.F.R. § 61.148, and 40 C.F.R. § 61.150. The permittee, owner, or operator must notify the Secretary at least ten (10) working days prior to the commencement of any asbestos removal on the forms prescribed by the Secretary if the permittee is subject to the notification requirements of 40 C.F.R. §61.145(b)(3)(i). The USEPA, the Division of Waste Management and the Bureau for Public Health - Environmental Health require a copy of this notice to be sent to them.
4	45CSR§4-3.1 State Enforceable only.	3.1.4.	Odor	No person shall cause, suffer, allow or permit the discharge of air pollutants which cause or contribute to an objectionable odor at any location occupied by the public.
5	45CSR§11-5.2.	3.1.5.	Standby Plan for Reducing Emissions	When requested by the Secretary, the permittee shall prepare standby plans for reducing the emissions of air pollutants in accordance with the objectives set forth in Tables I, II, and III of 45CSR11.
6	WV Code §22-5-4(a)(14)	3.1.6.	Emission Inventory	The permittee is responsible for submitting, on an annual basis, an emission inventory in accordance with the submittal requirements of the Division of Air Quality.
7	40CFR82 Subpart F	3.1.7.	Ozone-depleting Substances	For those facilities performing maintenance, service, repair or disposal of appliances, the permittee shall comply with the standards for recycling and emissions reduction pursuant to 40 C.F.R. Part 82, Subpart F, except as provided for Motor Vehicle Air Conditioners (MVACs) in Subpart B: a. Persons opening appliances for maintenance, service, repair, or disposal must comply with the prohibitions and required practices pursuant to 40 C.F.R. §§ 82.154 and 82.156. b. Equipment used during the maintenance, service, repair, or disposal of appliances must comply with the standards for recycling and recovery equipment pursuant to 40 C.F.R. § 82.158. c. Persons performing maintenance, service, repair, or disposal of appliances must be certified by an approved technician certification program pursuant to 40 C.F.R. § 82.161.
8	40CFR68	3.1.8.	Risk Management Plan	Should this stationary source, as defined in 40 C.F.R. § 68.3, become subject to Part 68, then the owner or operator shall submit a risk management plan (RMP) by the date specified in 40 C.F.R. § 68.10 and shall certify compliance with the requirements of Part 68 as part of the annual compliance certification as required by 40 C.F.R. Part 70 or 71.
9	45CSR§7-5.1.	3.1.9.	Fugitive Particulate Matter	No person shall cause, suffer, allow or permit any manufacturing process or storage structure generating fugitive particulate matter to operate that is not equipped with a system, which may include, but not be limited to, process equipment design, control equipment design or operation and maintenance procedures, to minimize the emissions of fugitive particulate matter. To minimize means such system shall be installed, maintained and operated to ensure the lowest fugitive particulate matter emissions reasonably achievable.
10	45CSR§7-5.2.	3.1.10.	Particulate Matter Control of Plant	The owner or operator of a plant shall maintain particulate matter control of the plant premises, and plant owned, leased or controlled access roads, by paving, application of asphalt, chemical dust suppressants or other suitable dust control measures. Good operating practices shall be implemented and when necessary particulate matter suppressants shall be applied in relation to stockpiling and general material handling to minimize particulate matter generation and atmospheric entrainment.

Permit Shield

List all facility-wide applicable requirements. For each applicable requirement, include the underlying rule/regulation citation and/or construction permit with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*).

Ref No.	Rule/ Regulation/ R13 Permit	Existing R30 Permit Condition	Name	Requirement
11	NA	3.2.1.	Monitoring Requirements	Reserved.
12	WV Code § 22-5-4(a)(14-15) and 45CSR13.	3.3.1.	Stack testing. Monitoring	As per provisions set forth in this permit or as otherwise required by the Secretary, in accordance with the West Virginia Code, underlying regulations, permits and orders, the permittee shall conduct test(s) to determine compliance with the emission limitations set forth in this permit and/or established or set forth in underlying documents. The Secretary, or his duly authorized representative, may at his option witness or conduct such test(s). Should the Secretary exercise his option to conduct such test(s). Should the Secretary exercise his option to conduct such test(s), the operator shall provide all necessary sampling connections and sampling ports to be located in such manner as the Secretary may require, power for test equipment and the required safety equipment, such as scaffolding, railings and ladders, to comply with generally accepted good safety practices. Such tests shall be conducted in accordance with the methods and procedures set forth in this permit or as otherwise approved or specified by the Secretary in accordance with the following: a. The Secretary may on a source-specific basis approve or specify additional testing or alternative testing to the test methods specified in the permit for demonstrating compliance with 40 C.F.R. Parts 60, 61, and 63, if applicable, in accordance with the Secretary's delegated authority and any established equivalency determination methods which are applicable. b. The Secretary may on a source-specific basis approve or specify additional testing or alternative testing to the test methods specified in the permit for demonstrating compliance with applicable requirements which do not involve federal delegation. In specifying or approving such alternative testing to the test methods, the Secretary, to the extent possible, shall utilize the same equivalency criteria as would be used in approving such changes under Section 3.3.1.a. of this permit. c. All periodic tests to determine mass emission limits from or air pollutant concentrations in discharge stacks and
	Permit No. R13-0682 (Condition 4.3.1)]		information.	following: a. The date, place as defined in this permit and time of sampling or measurements; b. The date(s) analyses were performed; c. The company or entity that performed the analyses; d. The analytical techniques or methods used; e. The results of the analyses; and f. The operating conditions existing at the time of sampling or measurement.
	Permit Shield	1		

List all facility-wide applicable requirements. For each applicable requirement, include the underlying rule/regulation citation and/or construction permit with the condition number. (Note: Title V permit condition numbers alone are not the underlying applicable requirements).

Ref No.	Rule/ Regulation/ R13 Permit	Existing R30 Permit Condition	Name	Requirement
14	45CSR§30-5.1.c.2.B.	3.4.2.	Retention of records.	The permittee shall retain records of all required monitoring data and support information for a period of at least five (5) years from the date of monitoring sample, measurement, report, application, or record creation date. Support information includes all calibration and maintenance records and all original strip-chart recordings for continuous monitoring instrumentation, and copies of all reports required by the permit. Where appropriate, records may be maintained in computerized form in lieu of the above records.
15	[45CSR§30-5.1.c.State- Enforceable only.]	3.4.3.	Odors	For the purposes of 45CSR4, the permittee shall maintain a record of all odor complaints received, any investigation performed in response to such a complaint, and any responsive action(s) taken.
16	[45CSR§30-5.1.c.]	3.4.4.	Dust Suppressant Usage Record	The permittee shall maintain records indicating the use of any dust suppressants or any other suitable dust control measures applied at the facility. The permittee shall also inspect all fugitive dust control systems monthly to ensure that they are operated and maintained in conformance with their designs. The permittee shall maintain records of all scheduled and non-scheduled maintenance and shall state any maintenance or corrective actions taken as a result of the monthly inspections, the times the fugitive dust control system(s) were inoperable and any corrective actions taken.
17	45CSR§\$30-4.4. and 5.1.c.3.D.	3.5.1.	Responsible Official	Any application form, report, or compliance certification required by this permit to be submitted to the DAQ and/or USEPA shall contain a certification by the responsible official that states that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate and complete.
18	45CSR§30-5.1.c.3.E.	3.5.2	Confidential Information	A permittee may request confidential treatment for the submission of reporting required under 45CSR§30-5.1.c.3. pursuant to the limitations and procedures of W.Va. Code § 22-5-10 and 45CSR31.
19	NA	3.5.3.	Addresses	Except for the electronic submittal of the annual certification to the USEPA as required in 3.5.5 below, all notices, requests, demands, submissions and other communications required or permitted to be made to the Secretary of DEP and/or USEPA shall be made in writing and shall be deemed to have been duly given when delivered by hand, mailed first class or by private carrier with postage prepaid to the address(es) set forth below or to such other person or address as the Secretary of the Department of Environmental Protection may designate: If to the DAQ: Director WVDEP Division of Air Quality 601 57th Street SE Charleston, WV 25304 Phone: 304/926-0475 FAX: 304/926-0475 If to the US EPA: Associate Director Office of Enforcement and Permits Review (3AP20) U. S. Environmental Protection Agency Region III 1650 Arch Street Philadelphia, PA 19103-2029
20	45CSR§30-8.	3.5.4.	Certified Emissions Statement	The permittee shall submit a certified emissions statement and pay fees on an annual basis in accordance with the submittal requirements of the Division of Air Quality.

\boxtimes	Permit	Shield

List all facility-wide applicable requirements. For each applicable requirement, include the underlying rule/regulation citation and/or $\underline{\text{construction permit}}$ with the condition number. (Note: Title V permit condition numbers alone are not the underlying applicable requirements).

Ref No.	Rule/ Regulation/ R13 Permit	Existing R30 Permit Condition	Name	Requirement
21	45CSR§30-5.3.e	3.5.5.	Compliance Certification	The permittee shall certify compliance with the conditions of this permit on the forms provided by the DAQ. In addition to the annual compliance certification, the permittee may be required to submit certifications more frequently under an applicable requirement of this permit. The annual certification shall be submitted to the DAQ and USEPA on or before March 15 of each year, and shall certify compliance for the period ending December 31. The annual certification to the USEPA shall be submitted in electronic format only. It shall be submitted by e-mail to the following address: R3_APD_Permits@epa.gov. The permittee shall maintain a copy of the certification on site for five (5) years from submittal of the certification.
22	45CSR§30-5.1.c.3.A.	3.5.6.	Semi Annual Monitoring Reports	The permittee shall submit reports of any required monitoring on or before September 15 for the reporting period January 1 to June 30 and on or before March 15 for the reporting period July 1 to December 31. All instances off deviation from permit requirements must be clearly identified in such reports. All required reports must be certified by a responsible official consistent with 45CSR§30-4.4.
23	NA	3.5.7.	Emergencies	For reporting emergency situations, refer to Section 2.17 of this permit.
24	45CSR§30-5.1.c.3.C. 45CSR§30-5.1.c.3.B.	3.5.8.	Deviations	a. In addition to monitoring reports required by this permit, the permittee shall promptly submit supplemental reports and notices in accordance with the following: 1. Any deviation resulting from an emergency or upset condition, as defined in 45CSR§30-5.7., shall be reported by telephone or telefax within one (1) working day of the date on which the permittee becomes aware of the deviation, if the permittee desires to assert the affirmative defense in accordance with 45CSR§30-5.7. A written report of such deviation, which shall include the probable cause of such deviations, and any corrective actions or preventative measures taken, shall be submitted and certified by a responsible official within ten (10) days of the deviation. 2. Any deviation that poses an imminent and substantial danger to public health, safety, or the environment shall be reported to the Secretary immediately by telephone or telefax. A written report of such deviation, which shall include the probable cause of such deviation, and any corrective actions or preventative measures taken, shall be submitted by the responsible official within ten (10) days of the deviation. 3. Deviations for which more frequent posting is required under this permit shall be reported on the more frequent basis. 4. All reports of deviations shall identify the probable cause of the deviation and any corrective actions or preventative measures taken. b. The permittee shall, in the reporting of deviations from permit requirements, including those attributable to upset conditions as defined in this permit, report the probable cause of such deviations and any corrective actions or preventive measures taken in accordance with any rules of the Secretary.
25	45CSR§30-4.3.h.1.B.	3.5.9.	New Applicable Requirements	If any applicable requirement is promulgated during the term of this permit, the permittee will meet such requirements on a timely basis, or in accordance with a more detailed schedule if required by the applicable requirement.
26	NA	3.6.1.	Compliance Plan	None
27	45CSR§30-5.6.	3.7.1.	Permit Shield	The permittee is hereby granted a permit shield in accordance with 45CSR§30-5.6. The permit shield applies provided the permittee operates in accordance with the information contained within this permit.

Permit Shield

List all facility-wide applicable requirements. For each applicable requirement, include the underlying rule/regulation citation and/or construction permit with the condition number. (Note: Title V permit condition numbers alone are not the underlying applicable requirements).

Ref No.	Rule/ Regulation/ R13 Permit	Existing R30 Permit Condition	Name	Requirement
28	45CSR§30-5.6.	3.7.2.	Permit Shield	The following requirements specifically identified are not applicable to the source based on the determinations set forth below. The permit shield shall apply to the following requirements provided the conditions of the determinations are met. a. 45CSR5 The coal handling Operations are regulated by 45CSR7 and therefore are exempt in accordance with 45CSR§\$5-2.4.b. & 2.14. b. 45CSR17 The facility is regulated by 45CSR7 and therefore exempt in accordance with 45CSR§7-10.2 and 45CSR§17-6. c. 40 CFR Part 60, Subpart Y The coal handling facility processes less than 200 tons per day. d. 40 CFR Part 60, Subpart OOO Excluding existing Crusher No. 1, all the other shale processing equipment known as the grinding building commenced construction prior to August 31, 1983 and have not been reconstructed or modified. Crusher No.1 was replaced with a crusher of equal size in 2006, therefore in accordance with 40 CFR §60.670(d)(1) it is exempt from the provisions of 40 CFR§\$60.672, 60.674, and 60.675. e. 40 C.F.R. Part 64 There are no pollutant specific emissions units (PSEU) at this facility that satisfy all of the applicability criteria requirements of 40 CFR §64.2(a), i.e., that: 1) have precontrol regulated pollutant potential emissions (PTE) equal to or greater than the "major" threshold limits to be classified as a major source; 2) are subject to an emission limitation or standard and; 3) have a control device to achieve compliance with such emission limitation or standard. Therefore, the facility is not subject to the Compliance Assurance Monitoring (CAM) rule.

\boxtimes	Permit Shield				
		Dago 11 of	21		

For all facility-wide applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number and/or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

Ref No.	Rule/ Regulation/ R13 Permit	Existing R30 Permit Condition	Name	Method of Compliance
1	45CSR§6-3.1.	3.1.1.	Open Burning	NA. Facility does not conduct open burning.
2	45CSR\$6-3.2.	3.1.2.	Open Burning Exemptions	NA
3	40 C.F.R. §61.145(b) and 45CSR34	3.1.3.	Asbestos	Inspection will occur as required.
4	45CSR§4-3.1 State Enforceable only.	3.1.4.	Odor	Recordkeeping of complaints.
5	45CSR§11-5.2.	3.1.5.	Standby Plan for Reducing Emissions	When requested.
6	WV Code §22-5-4(a)(14)	3.1.6.	Emission Inventory	Reporting.
7	40CFR82 Subpart F	3.1.7.	Ozone-depleting Substances	Requirement to follow: a. 40CFR §§ 82.154 & 82.156; b. 40CFR § 82.158; c. 40CFR § 82.161.
8	40CFR68	3.1.8.	Risk Management Plan	Submission if required.
9	45CSR§7-5.1.	3.1.9.	Fugitive Particulate Matter	Fugitive dust will be controlled in accordance with the information contained within the permit applications and required by the permit.
10	45CSR§7-5.2.	3.1.10.	Particulate Matter Control of Plant	Dust control will be maintained. Good operating practices will be followed.
11	NA	3.2.1.	Monitoring Requirements	Reserved
12	WV Code § 22-5-4(a)(14-15) and 45CSR13	3.3.1.	Stack testing.	Stack testing will be conducted as needed.
13	45CSR§30-5.1.c.2.A, 45CSR13, Permit No. R13-0682 (Condition 4.3.1)]	3.4.1.	Monitoring information.	Records of monitoring will include the required information.
14	45CSR§30-5.1.c.2.B.	3.4.2.	Retention of records.	Monitoring records and support information will be kept for 5 years.
15	[45CSR§30-5.1.c.State-Enforceable only.]	3.4.3.	Odors	A record of odor complaints, investigations, and responses will be kept.
16	[45CSR§30-5.1.c.]	3.4.4.	Dust Suppressant Usage Record	A record of dust suppressant use, maintenance, and corrective actions will be kept.
17	45CSR§§30-4.4. and 5.1.c.3.D.	3.5.1.	Responsible Official	Certifications will be by a Responsible Official.
18	45CSR\$30-5.1.c.3.E.	3.5.2	Confidential Information	Request will be made as needed.
19	NA	3.5.3.	Addresses	Appropriate address will be used for mailings.
20	45CSR§30-8.	3.5.4.	Certified Emissions Statement	Facility will submit a Certified Emissions Statement and pay fees.
21	45CSR§30-5.3.e	3.5.5.	Compliance Certification	Compliance certifications will be submitted.
22	45CSR§30-5.1.c.3.A.	3.5.6.	Semi Annual Monitoring Reports	Semi annual monitoring reports will be submitted.

20	45CSR§30-8.	3.5.4.	Certified Emissions Statement	Facility will submit a Certified Emissions Statement and pay fees.		
21	45CSR§30-5.3.e	3.5.5.	Compliance Certification	Compliance certifications will be submitted.		
22	45CSR§30-5.1.c.3.A.	3.5.6.	Semi Annual Monitoring Reports	Semi annual monitoring reports will be submitted.		
	Are you in compliance with all facility-wide applicable requirements? ⊠ Yes □ No					
II no,	, complete the Schedule of Compliance	Form as A I I	ACHMENI F.			

20.	Facility-Wide Applicable Requirements (Continued) - Attach additional pages as necessary.
For	all facility-wide applicable requirements listed above, provide monitoring/testing/recordkeeping/

reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number and/or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

Ref No.	Rule/ Regulation/ R13 Permit	Existing R30 Permit Condition	Name	Method of Compliance	
23	NA	3.5.7.	Emergencies	The facility will refer to Section 2.17 for reporting emergencies.	
24	45CSR§30-5.1.c.3.C. 45CSR§30-5.1.c.3.B.	3.5.8.	Deviations	The facility will promptly submit supplemental reports and notices as required.	
25	45CSR§30-4.3.h.1.B.	3.5.9.	New Applicable Requirements	The facility will comply with new applicable requirements.	
26	NA	3.6.1.	Compliance Plan	None	
27	45CSR§30-5.6.	3.7.1.	Permit Shield	NA	
28	45CSR§30-5.6.	3.7.2.	Permit Shield	NA	
-					
Are y	you in compliance with all facility-v	vide applicable re	equirements? 🛭	Yes 🗌 No	
If no	complete the Schedule of Complian	nce Form as ATT.	ACHMENT F		
,	tomplete the Senedule of Compilar	I OIM 40 /II I			

Permit or Consent Order Number	Date of Issuance MM/DD/YYYY	List any Permit Determinations that Affect the Permit (if any)
R13-0682B	04/04/2014	None
R30-00300002-2014	08/21/2014	None
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	

Permit Number	Date of Issuance	Permit Condition Number
R13-682A	06/14/2010	Permit replaced by R13-0682B.
R30-00300002-2009 SM01	05/18/2009	Permit replaced by R30-00300002-2014
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	

Section 3: Facility-Wide Emissions

Potential Emissions 88.97 39.50 See Metal HAPS
39.50 See Metal HAPS
See Metal HAPS
74.23
121.73
161.85
122.19
1.91
Potential Emissions
0.69
0.02
Potential Emissions
166.30
12.29
68,760

 $^{^{1}}PM_{2.5}$ and PM_{10} are components of TSP.

 $^{^2}$ For HAPs that are also considered PM or VOCs, emissions should be included in both the HAPs section and the Criteria Pollutants section.

Section 4: Insignificant Activities

24.	Insign	ificant Activities (Check all that apply)
\boxtimes	1.	Air compressors and pneumatically operated equipment, including hand tools.
\boxtimes	2.	Air contaminant detectors or recorders, combustion controllers or shutoffs.
\boxtimes	3.	Any consumer product used in the same manner as in normal consumer use, provided the use results in a duration and frequency of exposure which are not greater than those experienced by consumer, and which may include, but not be limited to, personal use items; janitorial cleaning supplies, office supplies and supplies to maintain copying equipment.
\boxtimes	4.	Bathroom/toilet vent emissions.
\boxtimes	5.	Batteries and battery charging stations, except at battery manufacturing plants.
	6.	Bench-scale laboratory equipment used for physical or chemical analysis, but not lab fume hoods or vents. Many lab fume hoods or vents might qualify for treatment as insignificant (depending on the applicable SIP) or be grouped together for purposes of description.
	7.	Blacksmith forges.
	8.	Boiler water treatment operations, not including cooling towers.
\boxtimes	9.	Brazing, soldering or welding equipment used as an auxiliary to the principal equipment at the source.
	10.	CO ₂ lasers, used only on metals and other materials which do not emit HAP in the process.
	11.	Combustion emissions from propulsion of mobile sources, except for vessel emissions from Outer Continental Shelf sources.
\boxtimes	12.	Combustion units designed and used exclusively for comfort heating that use liquid petroleum gas or natural gas as fuel.
	13.	Comfort air conditioning or ventilation systems not used to remove air contaminants generated by or released from specific units of equipment.
	14.	Demineralized water tanks and demineralizer vents.
	15.	Drop hammers or hydraulic presses for forging or metalworking.
	16.	Electric or steam-heated drying ovens and autoclaves, but not the emissions from the articles or substances being processed in the ovens or autoclaves or the boilers delivering the steam.
	17.	Emergency (backup) electrical generators at residential locations.
	18.	Emergency road flares.
	19.	Emission units which do not have any applicable requirements and which emit criteria pollutants (CO, NO _x , SO ₂ , VOC and PM) into the atmosphere at a rate of less than 1 pound per hour and less than 10,000 pounds per year aggregate total for each criteria pollutant from all emission units.
		Please specify all emission units for which this exemption applies along with the quantity of criteria pollutants emitted on an hourly and annual basis:

24.	Insign	ificant Activities (Check all that apply)
	20.	Emission units which do not have any applicable requirements and which emit hazardous air pollutants into the atmosphere at a rate of less than 0.1 pounds per hour and less than 1,000 pounds per year aggregate total for all HAPs from all emission sources. This limitation cannot be used for any source which emits dioxin/furans nor for toxic air pollutants as per 45CSR27.
		Please specify all emission units for which this exemption applies along with the quantity of hazardous air pollutants emitted on an hourly and annual basis:
	21.	Environmental chambers not using hazardous air pollutant (HAP) gases.
\boxtimes	22.	Equipment on the premises of industrial and manufacturing operations used solely for the purpose of preparing food for human consumption.
	23.	Equipment used exclusively to slaughter animals, but not including other equipment at slaughterhouses, such as rendering cookers, boilers, heating plants, incinerators, and electrical power generating equipment.
	24.	Equipment used for quality control/assurance or inspection purposes, including sampling equipment used to withdraw materials for analysis.
	25.	Equipment used for surface coating, painting, dipping or spray operations, except those that will emit VOC or HAP.
\boxtimes	26.	Fire suppression systems.
\boxtimes	27.	Firefighting equipment and the equipment used to train firefighters.
\boxtimes	28.	Flares used solely to indicate danger to the public.
\boxtimes	29.	Fugitive emission related to movement of passenger vehicle provided the emissions are not counted for applicability purposes and any required fugitive dust control plan or its equivalent is submitted.
\boxtimes	30.	Hand-held applicator equipment for hot melt adhesives with no VOC in the adhesive formulation.
\boxtimes	31.	Hand-held equipment for buffing, polishing, cutting, drilling, sawing, grinding, turning or machining wood, metal or plastic.
	32.	Humidity chambers.
	33.	Hydraulic and hydrostatic testing equipment.
	34.	Indoor or outdoor kerosene heaters.
\boxtimes	35.	Internal combustion engines used for landscaping purposes.
	36.	Laser trimmers using dust collection to prevent fugitive emissions.
	37.	Laundry activities, except for dry-cleaning and steam boilers.
\boxtimes	38.	Natural gas pressure regulator vents, excluding venting at oil and gas production facilities.
	39.	Oxygen scavenging (de-aeration) of water.
	40.	Ozone generators.

24.	Insign	ificant Activities (Check all that apply)
\boxtimes	41.	Plant maintenance and upkeep activities (e.g., grounds-keeping, general repairs, cleaning, painting, welding, plumbing, re-tarring roofs, installing insulation, and paving parking lots) provided these activities are not conducted as part of a manufacturing process, are not related to the source's primary business activity, and not otherwise triggering a permit modification. (Cleaning and painting activities qualify if they are not subject to VOC or HAP control requirements. Asphalt batch plant owners/operators must still get a permit if otherwise requested.)
	42.	Portable electrical generators that can be moved by hand from one location to another. "Moved by Hand" means that it can be moved without the assistance of any motorized or non-motorized vehicle, conveyance, or device.
	43.	Process water filtration systems and demineralizers.
	44.	Repair or maintenance shop activities not related to the source's primary business activity, not including emissions from surface coating or de-greasing (solvent metal cleaning) activities, and not otherwise triggering a permit modification.
	45.	Repairs or maintenance where no structural repairs are made and where no new air pollutant emitting facilities are installed or modified.
\boxtimes	46.	Routing calibration and maintenance of laboratory equipment or other analytical instruments.
	47.	Salt baths using nonvolatile salts that do not result in emissions of any regulated air pollutants. Shock chambers.
	48.	Shock chambers.
	49.	Solar simulators.
\boxtimes	50.	Space heaters operating by direct heat transfer.
	51.	Steam cleaning operations.
	52.	Steam leaks.
	53.	Steam sterilizers.
	54.	Steam vents and safety relief valves.
	55.	Storage tanks, reservoirs, and pumping and handling equipment of any size containing soaps, vegetable oil, grease, animal fat, and nonvolatile aqueous salt solutions, provided appropriate lids and covers are utilized.
	56.	Storage tanks, vessels, and containers holding or storing liquid substances that will not emit any VOC or HAP. Exemptions for storage tanks containing petroleum liquids or other volatile organic liquids should be based on size limits such as storage tank capacity and vapor pressure of liquids stored and are not appropriate for this list.
	57.	Such other sources or activities as the Director may determine.
\boxtimes	58.	Tobacco smoking rooms and areas.
	59.	Vents from continuous emissions monitors and other analyzers.

25. Equipment Table

Fill out the **Title V Equipment Table** and provide it as **ATTACHMENT D**.

26. Emission Units

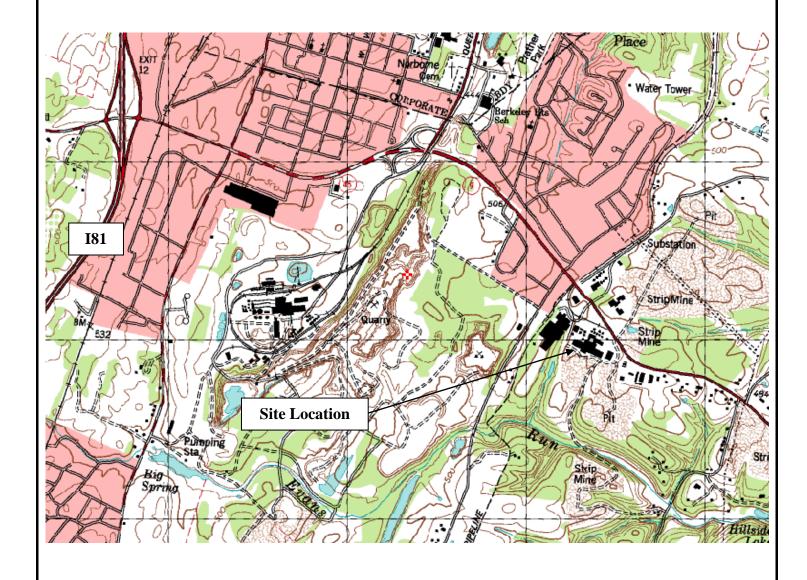
For each emission unit listed in the **Title V Equipment Table**, fill out and provide an **Emission Unit Form** as **ATTACHMENT E**.

For each emission unit not in compliance with an applicable requirement, fill out a **Schedule of Compliance** Form as ATTACHMENT F.

27. Control Devices

For each control device listed in the **Title V Equipment Table**, fill out and provide an **Air Pollution Control Device Form** as **ATTACHMENT G**.

For any control device that is required on an emission unit in order to meet a standard or limitation for which the potential pre-control device emissions of an applicable regulated air pollutant is greater than or equal to the Title V Major Source Threshold Level, refer to the **Compliance Assurance Monitoring (CAM) Form(s)** for CAM applicability. Fill out and provide these forms, if applicable, for each Pollutant Specific Emission Unit (PSEU) as **ATTACHMENT H**.


Section 6: Certification of Information 28. Certification of Truth, Accuracy and Completeness and Certification of Compliance Note: This Certification must be signed by a responsible official. The original, signed in blue ink, must be submitted with the application. Applications without an original signed certification will be considered as incomplete. a. Certification of Truth, Accuracy and Completeness I certify that I am a responsible official (as defined at 45CSR§30-2.38) and am accordingly authorized to make this submission on behalf of the owners or operators of the source described in this document and its attachments. I certify under penalty of law that I have personally examined and am familiar with the statements and information submitted in this document and all its attachments. Based on my inquiry of those individuals with primary responsibility for obtaining the information, I certify that the statements and information are to the best of my knowledge and belief true, accurate, and complete. I am aware that there are significant penalties for submitting false statements and information or omitting required statements and information, including the possibility of fine and/or imprisonment. b. Compliance Certification Except for requirements identified in the Title V Application for which compliance is not achieved, I, the undersigned hereby certify that, based on information and belief formed after reasonable inquiry, all air contaminant sources identified in this application are in compliance with all applicable requirements. Responsible official (type or print) Name: Donald B. Sult Title: Vice President - Operations Responsible official's signature: Signature Date: <u>Feb 12</u>, 2019 Signature: (Must be signed and dated in blue ink)

No	Note: Please check all applicable attachments included with this permit application:				
	ATTACHMENT A: Area Map				
	ATTACHMENT B: Plot Plan(s)				
×	ATTACHMENT C: Process Flow Diagram(s)				
×	ATTACHMENT D: Equipment Table				
\boxtimes	ATTACHMENT E: Emission Unit Form(s)				
\boxtimes	ATTACHMENT F: Schedule of Compliance Form(s)				
\boxtimes	ATTACHMENT G: Air Pollution Control Device Form(s)				
\boxtimes	ATTACHMENT H: Compliance Assurance Monitoring (CAM) Form(s)				

All of the required forms and additional Information can be found and downloaded from, the DEP website at www.dep.wv.gov/dag, requested by phone (304) 926-0475, and/or obtained through the mail.

ATTACHMENT A AREA MAP

Potesta & Associates, Inc.

7012 MacCorkle Avenue, SE, Charleston, WV 25304 Phone: (304) 342-1400 Fax: (304) 343-9031

E-Mail: potesta@potesta.com

Martinsburg Facility Continental Brick Company

Martinsburg, West Virginia Project No. 0101-18-0025-002

ATTACHMENT B PLOT PLAN

3E Files: N-V09-25.sid -YR\2013\13-0410 CONTI ov 04, 2013 - 1:35pm

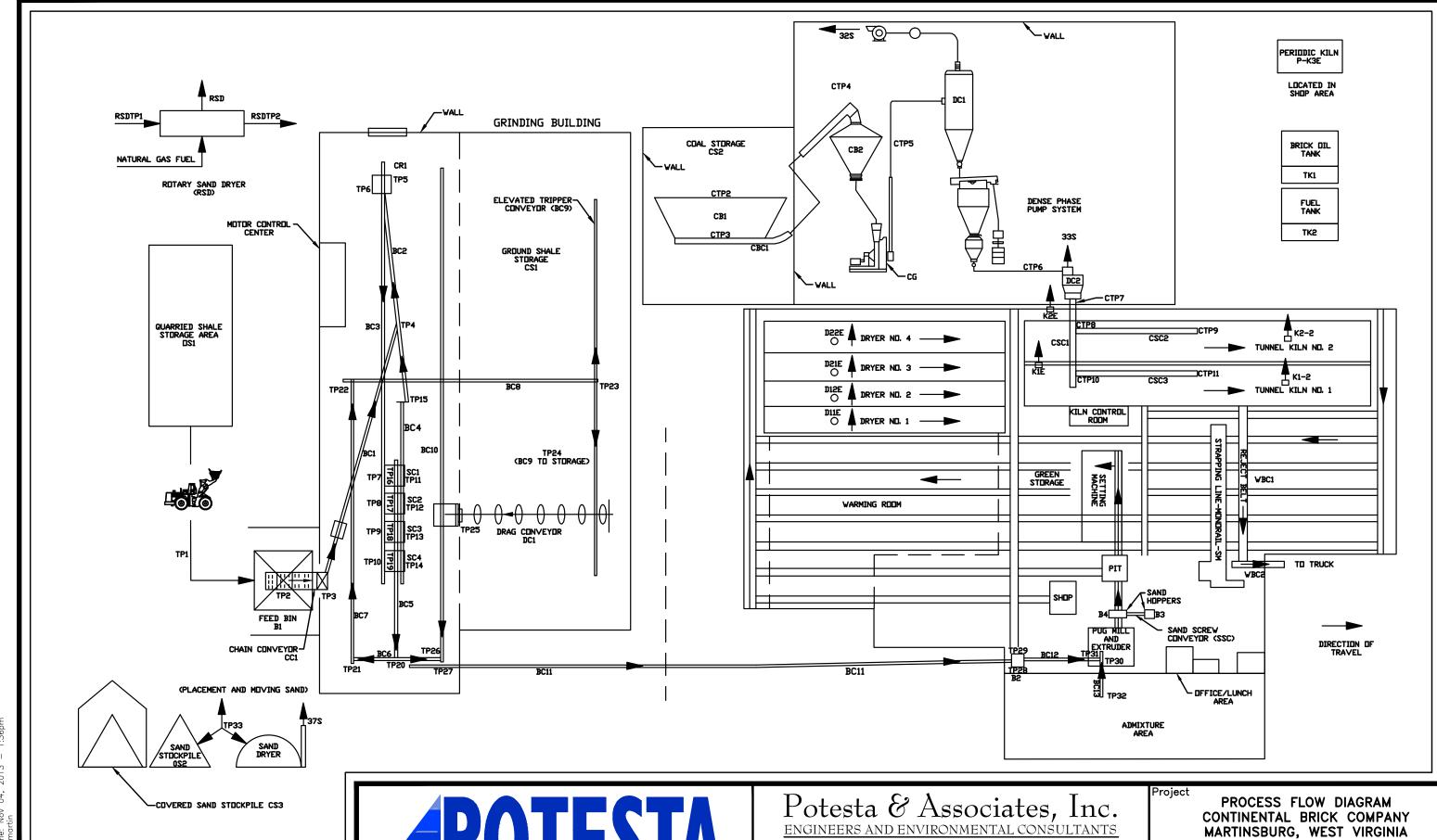
PROJECT #:13-0410

FILENAME: 13-0410-002

POTESTA

ENGINEERS AND ENVIRONMENTAL CONSULTANTS

7012 MacCorkle Ave. SE, Charleston, WV 25304 TEL: (304) 342-1400 FAX: (304) 343-9031 E-Mail Address: potesta@potesta.com


CONTINENTAL BRICK COMPANY MARTINSBURG, WEST VIRGINIA

^{Scale} 1"=125'

Dwg. No.

FIGURE 2 Date OCTOBER 2013

ATTACHMENT C PROCESS FLOW DIAGRAM

7012 MacCorkle Ave. SE, Charleston, WV 25304

TEL: (304) 342-1400 FAX: (304) 343-9031

E-Mail Address: potesta@potesta.com

Scale NO SCALE

Date OCTOBER 2013

Dwg. No.

FIGURE 1

XREF Files: IMACE Files: S1.jpg FiRe2.jpg\c3D-Proj-YR\2013\13-0410 CONTINENTAL\13-0410-001.dw Plot Date/Time: Nov 04, 2013 - 1:36pm Plotted By: jmartin

PROJECT #: 13-0410

FILENAME: 13-0410-001

ATTACHMENT D EMISSION UNITS TABLE

(includes all emission units at the facility except those designated as insignificant activities in Section 4, Item 24 of the General Forms)

		,					
Emission Unit ID ¹	Emission Point ID ¹	Emission Unit Description	Year Installed/ Modified	Design Capacity	Control Device ¹		
Raw Feed, Grinding Building, and Plant Feed System							
001	1S	Open Stockpile No. 1 - OS1	1981	75 tph/153,300 tpy	W		
002	2S	Truck-Endloader Fed Bin - B1	1981	75 tph/153,300 tpy	FE		
003	3S	Chain Conveyor No. 1 - CC1	1981	75 tph/153,300 tpy	FE		
004	4S	Belt Conveyor No. 1 - BC1	1981	75 tph/153,300 tpy	FE		
005	5S	Belt Conveyor No. 2 - BC2	1981	75 tph/153,300 tpy	FE		
006	6S	Crusher No. 1 - CR1	2006	75 tph/153,300 tpy	FE		
007	7S	Belt Conveyor No. 3 - BC3	1981	75 tph/153,300 tpy	FE		
008	8S	Screen No. 1 - SC1	1981	75 tph/153,300 tpy	FE		
009	9S	Screen No. 2 - SC2	1981	75 tph/153,300 tpy	FE		
010	10S	Screen No. 3 - SC3	1981	75 tph/153,300 tpy	FE		
011	11S	Screen No. 4 - SC4	1981	75 tph/153,300 tpy	FE		
012	12S	Belt Conveyor No. 4 - BC4	1981	75 tph/153,300 tpy	FE		
013	13S	Belt Conveyor No. 5 - BC5	1981	75 tph/153,300 tpy	FE		
014	14S	Belt Conveyor No. 6 - BC6	1981	75 tph/153,300 tpy	FE		
015	15S	Belt Conveyor No. 7 - BC7	1981	75 tph/153,300 tpy	FE		
016	16S	Belt Conveyor No. 8 - BC8	1981	75 tph/153,300 tpy	FE		
017	17S	Belt Conveyor No. 9 - BC9	1981	75 tph/153,300 tpy	FE		
018	18S	Covered Stockpile - CS1	1981	1,600 tons	FE		
019	19S	Drag Conveyor No. 1 - DC1	1981	75 tph/153,300 tpy	FE		
020	20S	Belt Conveyor No. 10 - BC10	1981	75 tph/153,300 tpy	FE		
021	21S	Belt Conveyor No. 11 - BC11	1981	75 tph/153,300 tpy	FE		
022	22S	Plant Bin - B2	1981	75 tph/153,300 tpy	FE		
023	23S	Belt Conveyor No. 12 - BC12	1981	75 tph/153,300 tpy	FE		
024	24S	Belt Conveyor No. 13 - BC13	1981	75 tph/153,300 tpy	FE		

(includes all emission units at the facility except those designated as insignificant activities in Section 4, Item 24 of the General Forms)

hisignificant activities in Section 4, item 24 of the General Pornis)							
Emission Unit ID ¹	Emission Point ID ¹	Emission Unit Description	Year Installed/ Modified	Design Capacity	Control Device ¹		
Brick Formi	ng						
		Pug Mill	1970	75 tph/153,300 tpy			
		Vacuum Extruder	1970	75 tph/153,300 tpy			
		Brick Trimming and Cutting	1970	75 tph/153,300 tpy	FE		
025	25S	Brick Setting Machine	1999	75 tph/153,300 tpy	(Located inside		
		Sand Hopper – B3	1970	75 tph/153,300 tpy	building)		
		Sand Hopper – B4	1970	75 tph/153,300 tpy			
		Sand Screw Conveyor - SSC	1970	75 tph/153,300 tpy			
Brick Warm	Brick Warming, Drying, and Firing						
The Warming Room is heated by warm air from the operations of the Kilns and is not an emission source.							
NA	NA	Warming Room	1966	NA	NA		
The Dryers an	re not sources	on their own and are heated by cooling a	air from the Ki	lns			
026	K1E	Kiln No. 1	1966	8.25 tph fired/72,270 tpy fired	NA		
	D11E	Dryer No. 1	1966	NA	NA		
	D12E	Dryer No. 2	1966	NA	NA		
027	K2E	Kiln No. 2	1971/1983	8.25 tph fired/72,270 tpy fired	NA		
	D21E	Dryer No. 3	1971/1983	NA	NA		
	D22E	Dryer No. 4	1971/1983	NA	NA		
P-Kiln	P-K3E	Periodic Kiln	2010	1 tpd fired/72 tpy fired	NA		
RSD	RSD	Rotary Sand Dryer	2013	1.0 tph/1,200 tpy 1.0 MMBtu/hr	NA		

(includes all emission units at the facility except those designated as insignificant activities in Section 4, Item 24 of the General Forms)

Emission Unit ID ¹	Emission Point ID ¹	Emission Unit Description	Year Installed/ Modified	Design Capacity	Control Device ¹			
Coal Handli	Coal Handling, Grinding and Firing System							
028	28S	Covered Stockpile No. 2 - CS2	1984	500 tons	PE			
029	298	Coal Bin No. 1 - CB1	1984	30 tons	PE			
030	30S	Coal Belt Conveyor No. 1 - CBC1	1984	100 tph/13,140 tpy	PE			
031	31S	Coal Bin No. 2 - CB2	1984	12 tons	FE			
032	32S	Coal Grinder/Pulverizer - CG	1984	1.5 tph/13,140 tpy	BAG			
033	33S	Dense Phase Pump System - DPPS	1984	1.5 tph/13,140 tpy	BAG			
034	34S	Coal Screw Conveyor No. 1 - CSC1	1984	1.5 tph/13,140 tpy	FE			
035	35S	Coal Screw Conveyor No. 2 – CSC2	1984	1.5 tph/13,140 tpy	FE			
036	36S	Coal Screw Conveyor No. 3 – CSC3	1984	1.5 tph/13,140 tpy	FE			

Finished Brick Area

The Finished Brick Area includes the cooling, manual unloading of the brick cars, strapping, and waste brick conveyors. These are all fired brick being manually stacked and or conveyed on the waste brick conveyors. These are not considered sources due to the nature of the material.

NA	SM	Brick Cube Strapping Machine	1991	50 tph/144,540 tpy	NA	
NA	WBC1	Waste Belt Conveyor No. 1	1991	50 tph/144,540 tpy	NA	
NA	WBC2	Waste Belt Conveyor No. 2	1991	50 tph/144,540 tpy	NA	
NA	VAC	Duovac PL52 Portable Vacuum	1991	850 ICFM	NA	
Sand Dryer						
Sand Dryer						
Sand Dryer 037	37S	Sand Dryer	NA	5 MM Btu/hr	N	
	37S 38S	Sand Dryer Sand Stockpile – OS2	NA NA	5 MM Btu/hr 150 tons	N W	

Sand is dried in an old round brick kiln with direct heat fired by natural gas.

(includes all emission units at the facility except those designated as insignificant activities in Section 4, Item 24 of the General Forms)

Emission Unit ID ¹	Emission Point ID ¹	Emission Unit Description	Year Installed/ Modified	Design Capacity	Control Device ¹		
Vehicle Acti	Vehicle Activity						
041	41S	Vehicle Activity	NA	NA	W		
Tanks							
042	42S	Brick Oil Tank – TK1	NA	6,000 gallons	N		
043	438	Fuel Tank – TK2	NA	6,000 gallons	N		

ATTACHMENT E EMISSION UNIT FORM(S)

ATT	ACHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control d	
026	Kiln No. 1, Dryers Nos. 1 and 2	with this emission None	unit:
Provide a description of the emission Tunnel Kiln for firing brick. Kiln also			tc.):
Manufacturer: Constructed on Site	Model number: NA	Serial number: NA	
Construction date: 1966	Installation date: 1966	Modification date NA	e(s):
Design Capacity (examples: furnace	s - tons/hr, tanks - gallons): 8.25 to	ons per hour of fired b	rick (TPH-F)
Maximum Hourly Throughput: 8.25 TPH-F	Maximum Annual Throughput: 72,270 TPY-F	Maximum Opera 8,760 hours per ye	
Fuel Usage Data (fill out all applicate	ole fields)		
Does this emission unit combust fuel	1? <u>X</u> Yes No	If yes, is it?	
		Indirect Fired	X Direct Fired
Maximum design heat input and/or 23.0 MM BTU/HR	maximum horsepower rating:	4-A at 525,000 Btu	rating of burners: urners Model 4441- u/hr each for Natural 300,000 Btu/hr each
List the primary fuel type(s) and if a the maximum hourly and annual fue Primary fuels are natural gas and coal.	el usage for each.	(s). For each fuel typ	oe listed, provide
Describe each fuel expected to be us	ed during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
Natural Gas	trace	NA	~1,000 BTU/CF
Coal	1%	4%	~14,441 BTU/LB
			1

Emissions Data		
Criteria Pollutants	Potent	ial Emissions
	PPH	TPY
Carbon Monoxide (CO)	9.90	43.36
Nitrogen Oxides (NO _X)	4.21	18.43
Lead (Pb)	NA	NA
Particulate Matter (PM _{2.5})	7.18	31.44
Particulate Matter (PM ₁₀)	9.5	50.59
Total Particulate Matter (TSP)	9.5	65.04
Sulfur Dioxide (SO ₂)	13.93	61.07
Volatile Organic Compounds (VOC)	0.20	0.87
Hazardous Air Pollutants	Potent	ial Emissions
	PPH	TPY
HF	18.98	83.11
HCL	1.40	6.14
HAPS (See Appendix)		
Regulated Pollutants other than	Potent	ial Emissions
Criteria and HAP	PPH	TPY
CO2e	NA	32,799
*Note: These emissions are for one (1)	kiln (see page E4 for clarification).	

AP-42, Section 11.3, Brick and Structural Clay Product Manufacturing.

Applicable Requirements

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

Ref No.	Rule/ Regulation/ R13 Permit	Existing R30 Permit Condition	Name	Requirement
1	45CSR§7-3.1.	4.1.1.	Visible Emissions Limitation	Visible Emissions from each kiln stack shall not exceed twenty (20) percent opacity except as noted in 4.1.2. below.
2	45CSR§7-3.2.	4.1.2.	Visible Emissions Limitation Exclusion	The provisions of 4.1.1. above, shall not apply to smoke and/or particulate matter emitted from any process source operation which is less than forty (40) percent opacity for any period or periods aggregating no more than five (5) minutes in any sixty (60) minute period.
3	45CSR§7-4.3.	4.1.3	Prohibition Of Dilution of Stack Gases	The provisions of 45CSR7 shall not be circumvented by adding additional gas to any exhaust or group of exhausts for the purpose of reducing the stack gas concentration.
4	45CSR§7-4.7.	4.1.4	Allowance for Expansion	The increase of the operating process weight rate of any manufacturing process source operation or duplicate source operation by the operation of new, replacement, reactivated and/or altered source operation(s) shall be considered as an expansion and the allowable emission rates from the source operation(s) which resulted in the increase shall be determined as per 45CSR§7-4.4.
5	45CSR§7-4.12.	4.1.5.	Requirement for Proper Stack Testing	Any stack serving any process source operation or air pollution control equipment on any process source operation shall contain flow straightening devices or a vertical run of sufficient length to establish flow patterns consistent with acceptable stack sampling procedures.
6	45CSR§7-4.13.	4.1.6	Potential Hazardous Material Emissions	Persons responsible for manufacturing process source operations from which hazardous particulate matter material may be emitted such as, but not limited to, lead, arsenic, beryllium and other such materials shall give the utmost care and consideration to the potential harmful effects of the emissions resulting from such activities. Evaluations of these facilities as to adequacy, efficiency and emission potential will be made on an individual basis by the Director working in conjunction with other appropriate governmental agencies.
7	45CSR§10-4.1.	4.1.7.	Sulfur Dioxide Exhaust Limit	Sulfur Dioxide emissions from each Kiln shall not exceed an instack concentration of 2000 ppm by volume.
8	45CSR§10-4.2.	4.1.8.	Averaging Time	Compliance with the allowable sulfur dioxide concentration limitations shall be based on a block three (3) hour averaging time.
9	45CSR34, 40 CFR §63.52, 45CSR13, Permit No. R13- 0682 (Condition 4.1.8.)	4.1.9	NESHAP	This facility is subject to the re-issued Brick MACT and is required to be in compliance upon startup in 2019. Stack testing as required will then be conducted.

X Permit Shield

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

Ref No.	Rule/ Regulation/ R13 Permit	Existing R30 Permit Condition	Name				Requiren	nent			
10	45CSR13, Permit No. R13-	4.1.10.	Emissions	Emissions fro	om kilns s	shall not ex	ceed the	following			_
	0682 (Condition 4.1.1.)		Limitations		Tunnel K	iln 1 (K1E)	Tunnel K	iln 2 (K2E)	Periodic K	iln (P-K3E)	
					lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	†
				PM	9.5	65.04	9.5	65.04	0.1	0.03	Ī
				PM10	9.5	50.59	9.5	50.59	0.1	0.03	Ī
				PM2.5	7.18	31.44	7.18	31.44	0.1	0.03]
				SO2	13.93	61.07	13.93	61.07	1.34	0.02	1
				NOx	4.21	18.43	4.21	18.43	0.7	0.01	1
				СО	9.9	43.36	9.9	43.36	2.4	0.04	↓
				VOC	0.2	0.87	0.2	0.87 .	0.05	0.01	1
				Non HF/HCl HAPs	0.07	0.32	0.07	0.32	0.02	0.01	
				HF	18.98	83.11	18.98	83.11	4.6	0.08	†
				HCl	1.4	6.14	1.4	6.14	0.34	0.01]
				Compliance v	vith the p	articulate 1	natter lim	its given i	n 45CSR§	§7-4.1. an	
11	45CSR13, Permit No. R13-0682 (Condition 4.1.2.)	4.1.11.	Total Emissions Limitations	Total emission	ons from t	he facility	shall not	exceed the	e following	g:	
	K13-0082 (Collution 4.1.2.)		Limitations			lb/hr		tpy			
				PM		61.74		189.88			
				PM_{10}		38.30		130.33			
				PM _{2.5}		21.68		75.18			
				SO ₂		29.22		122.19			
				NO _x		10.37		39.66			
				СО		22.76	_	88.98			
				VOC	-	0.51	-	1.91			
				HF	-		-				
					-	42.56	-	166.30	-		
				HCl	_	3.14	_	12.29	_		
				Non HF/HC HAPs		0.23		0.72			
12	45CSR13, Permit No. R13- 0682 (Condition 4.1.3.)	4.1.12	Production Limitation	Production f 72,270 tons p		nel Kiln 1	(K1E) s	hall not o	exceed 8.2	25 tons po	er hour nor
13	45CSR13, Permit No. R13- 0682 (Condition 4.1.4.)	4.1.13.	Production Limitation	Production f 72,270 tons p		nel Kiln 2	2 (K2E) s	hall not o	exceed 8.2	25 tons po	er hour no
14	45CSR13, Permit No. R13- 0682 (Condition 4.1.5.)	4.1.14.	Production Limitation	Production fr nor 72 tons p		dic Kiln (I	P-K3E) sh	all not ex	ceed 2 tons	s per cycle	e (72 hours)
15	45CSR13, Permit No. R13- 0682 (Condition 4.1.6.)	4.1.15.	Sulfur Content Limitation – Coal Fuel	Sulfur conter	nt of the c	oal used as	s fuel in th	ne tunnel k	tilns shall	not exceed	11%.
16	[45CSR13, Permit No. R13-0682 (Condition 4.1.7.)	4.1.16.	HF Limitation	HF emission material fired fluoride con- after firing sl then be mult- emissions. C required tests	d. Complicentration nall be subjected by compliance of the complia	ance with of a bric otracted from (18.998) we with thi	this condi k both be om the con +1.008)/13 s condition	ition shall efore and ncentratio 8.998 in on shall b	be demon after firin n before fi order to go e determine	strated by g. The co ring. This et the equ ned by av	testing the encentration result shal rivalent HI

X Permit Shield

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

Ref	Rule/ Regulation/ R13 Permit	Existing	Name	neter, this information should also be included. Requirement
No.	Rule/ Regulation/ R13 Termit	R30 Permit Condition	Name	Requirement
17	45CSR§30-5.1.c.	4.4.1.	Recordkeeping	Records of all monitoring data required by condition 4.3.1 documenting the date and time of each visible emission check, the emission point or equipment/source identification number, the name or means of identification of the observer, the results of the check(s), whether the visible emissions are normal for the process, and, if applicable, all corrective measures taken or planned shall be maintained. The permittee shall also record the general weather conditions (e.g., sunny, approximately 80°F, 6 - 10 mph NE wind) during the visual emission check(s). Should a visible emission observation be required to be performed per the requirements specified in 45CSR7A, the data records of each observation shall be maintained per the requirements of 45CSR7A. For an emission unit out of service during the normal monthly evaluation, the record of observation may note "out of service" (O/S) or equivalent.
18	45CSR§10-8.3.a.	4.4.2.	Maintain Records	A record of all required monitoring data as established in the 45CSR10A monitoring plan shall be maintained on-site. Such records shall be made available to the Director or his duly authorized representative upon request and shall be retained on-site for a minimum of five years.
19	45CSR§\$10-8.3.c. & 8.3.d., 45CSR§30-5.1.c.	4.4.3.	Maintain Records	Records of the operating schedule and the quantity and quality of fuel consumed in each kiln shall be maintained on-site and made available to the Director or his duly authorized representative upon request. Such records may be maintained in electronic form and at a minimum for coal shall include but not limited to an ash, BTU, and sulfur analysis of each shipment.
20	45CSR13, Permit No. R13- 0682 (Condition 4.3.4.)	4.4.4.	Maintain Records	In order to determine compliance with Conditions 4.1.10 through 4.1.14, the Permittee shall monitor and record the production of each of the three kilns on a monthly basis.
21	45CSR13, Permit No. R13-0682 (Condition 4.3.7.)	4.4.7.	Maintain Records	The permittee shall maintain records of all monitoring data required by condition 4.3.5 documenting the date and time of each visible emission check, the emission point or equipment / source identification number, the name or means of identification of the observer, the results of the check(s), whether the visible emissions are normal for the process, and, if applicable, all corrective measures taken or planned. The permittee shall also record the general weather conditions (i.e. sunny, approximately 80°F, 6-10 mph NE wind) during the visual emissions check(s). Should a visible emission observation be required to be performed per the requirements specified in Method 9, the data records of each observation shall be maintained per the requirements of Method 9. For an emission unit out of service during the monthly evaluation, the record of observation may note "out of service" (O/S) or equivalent.
22	45CSR§30-5.1.c.	4.5.1.	VE Emissions	Any violation(s) of the allowable visible emission requirement for any emission source discovered during observations using 45CSR7A, must be reported in writing to the Director of the Division of Air Quality as soon as practicable but within ten (10) calendar days of the occurrence. The report shall include at a minimum, the following information: the results of the visible determination of opacity of emissions, the cause or suspected cause of the violation(s), and any corrective measures taken or planned.
23	45CSR§10-8.3.b.	4.5.2.	Periodic Exception Report	A periodic exception report shall be submitted to the Director, in a manner specified by the Director. Such an exception report shall provide details of all excursions outside the range of measured emissions or monitored parameters established in an approved monitoring plan and shall include, but not be limited to, the time of the excursion, the magnitude of the excursion, the duration of the excursion, the cause of the excursion and the corrective action taken.
24	45CSR13, Permit No. R13-0682 (Condition 4.4.1.)	4.5.3.	VE Emissions	Any violation(s) of the allowable visible emission requirement for any emission source discovered during observations using 40CFR Part 60, Appendix A (Method 22) or Method 9 must be reported in writing to the Director of the Division of Air Quality as soon as practicable, but within ten (10) calendar days, of the occurrence and shall include, at a minimum, the following information: the results of the visible determination of opacity of emissions, the cause or suspected cause of the violation(s), and any corrective measures taken or planned.

E5 of E49

or a	cable Requirements (Continued) Il applicable requirements listed above, pr nstrate compliance. If the method is base			
ach	requirement listed above must have an as red method in place, then a method must	sociated method		
Ref No.	Rule/ Regulation/ R13 Permit	Existing R30 Permit Condition	Name	Method of Compliance
1	45CSR\$7-3.1.	4.1.1.	Visible Emissions Limitation	4.3.1. –See Below
emiss relative from or from calend time if of non permittwo (" present	To demonstrate compliance with the opacity limits, ions. At a minimum, the observer must be trained and key to lighting, wind, and the presence of uncombined written materials found in the References 1 and 2 from method the trained and the lecture portion of the 40CFR Part 60, Appendix dar month with a maximum of forty-five (45) days between the training facility operation and appropriate weather conditionable training at that source(s) are shall conduct an opacity reading at that source(s) are of visible emissions. SR§7A-2.1., 45CSR§30-5.1.c.] (K1E, K2E, P-K3E)	cnowledgeable regard water (condensing water (condensing water (condensing water 60, Appe A, Method 9 certification consecutive reast fany visible emissions. If visible emissions using the procedures	ing the effects of backgrounder vapor) on the visibility of visibility of visibility of visibility of visibility of visi	and contrast, ambient lighting, observer position ity of emissions. This training may be obtained sion checks shall be conducted at least once pe be performed at each kiln stack for a sufficien ission checks shall be performed during period (s) for three (3) consecutive monthly checks, the SR7A as soon a practicable, but within seventy
2	45CSR§7-3.2.	4.1.2.	Visible Emissions Limitation Exclusion	4.3.1. –See Above
3	45CSR\$7-4.3.	4.1.3	Prohibition of Dilution of Stack Gases	NA
4	45CSR§7-4.7.	4.1.4	Allowance for Expansion	NA
5	45CSR\$7-4.12.	4.1.5.	Requirement for Proper Stack Testing	NA
6	45CSR§7-4.13.	4.1.6	Potential Hazardous Material Emissions	NA
7	45CSR§10-4.1.	4.1.7.	Sulfur Dioxide Exhaust Limit	4.2.1. Compliance with the sulfur dioxide limitations shall be determined by no exceeding the maximum sulfur conten percentages as listed in Table 2 of the DAC approved "45CSR10 Monitoring Plan attached in Appendix A of this permit and through fuel analysis as outlined in the aforementioned monitoring plan [45CSR§10-8.2.c.]
8	45CSR§10-4.2.	4.1.8.	Averaging Time	4.2.1 - See Above
9	45CSR34, 40 CFR §63.52, 45CSR13, Permit No. R13-0682 (Condition 4.1.8.)	4.1.9	NESHAP	Compliance upon startup with stack testing a required to then be conducted.
10	45CSR13, Permit No. R13-0682 (Condition 4.1.1.)	4.1.10.	Emissions Limitations	4.3.2. – See Below
emiss metho with s and co from	Tests to determine the compliance of Kiln No.1 (KIE ion standards (in lbs/hr) shall be conducted at least oncood set forth in 45CSR§7A-3. – "Mass Emission Test Prosection 3.3. of this permit. Unless tests have been completed within one hundred eighty (180) days of the conducting the stack testing. 5R§7-8.1., 45CSR§7A-3.1.] 45CSR13, Permit No. R13-0682 (Condition 4.1.2.)	e in every five (5) year occedures" or other equal leted within one (1) year	r period. Such tests shall livalent EPA testing methear prior to the issuance depermit. The results of suc	be conducted in accordance with the appropriate of approved by the Secretary and in accordance ate of this permit, initial tests shall be conducted
			Limitations	
		4 6 43 *		
	ou in compliance with all applicable requi complete the Schedule of Compliance Form			X Yes No

App	licable	Red	quirement	ts (Co	ntinued)	,
1 1 1 1 1				5 (00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

Ref	Rule/ Regulation/ R13 Permit	Existing R30	Name	Method of Compliance
No.		Permit Condition		
12	45CSR13, Permit No. R13-0682 (Condition 4.1.3.)]	4.1.12	Production Limitation	4.4.4. In order to determine compliance with Conditions 4.1.10 through 4.1.14, the Permittee shall monitor and record the production of each of the three kilns on a monthly basis. [45CSR13, Permit No. R13-0682 (Condition 4.3.4.)]
13	45CSR13, Permit No. R13-0682 (Condition 4.1.4.)	4.1.13.	Production Limitation	4.4.4. – See Above
14	45CSR13, Permit No. R13-0682 (Condition 4.1.5.)	4.1.14.	Production Limitation	4.4.4. – See Above
15	45CSR13, Permit No. R13-0682 (Condition 4.1.6.)	4.1.15.	Sulfur Content Limitation – Coal Fuel	4.3.4. In order to determine compliance with Condition 4.1.15 of this permit, the permittee shall maintain statements made by fuel suppliers guaranteeing that the sulfur content of the coal is less than or equal to 1%. [45CSR13, Permit No. R13-0682 (Condition 4.2.2.)]
16	[45CSR13, Permit No. R13-0682 (Condition 4.1.7.)	4.1.16.	HF Limitation	4.3.3. In order to determine compliance with Condition 4.1.16 of this permit, the permittee shall perform or have performed appropriate laboratory tests to determine the fluoride content of the bricks both before and after firing at least once for every 12,000 tons of production. [45CSR13, Permit No. R13-0682 (Condition 4.2.1.)]
17	45CSR§30-5.1.c.	4.4.1.	Recordkeeping	Maintain Records as Required
18	45CSR§10-8.3.a.	4.4.2.	Maintain Records	Maintain Records as Required
19	45CSR§\$10-8.3.c. & 8.3.d., 45CSR§30-5.1.c.	4.4.3.	Maintain Records	Maintain Records as Required
20	45CSR13, Permit No. R13-0682 (Condition 4.3.4.)	4.4.4.	Maintain Records	Maintain Records as Required
21	45CSR13, Permit No. R13-0682 (Condition 4.3.7.)	4.4.7.	Maintain Records	Maintain Records as Required
22	45CSR§30-5.1.c.	4.5.1.	VE Emissions	Report as Required
23	45CSR§10-8.3.b.	4.5.2.	Periodic Exception Report	Report as Required
24	45CSR13, Permit No. R13-0682 (Condition 4.4.1.)	4.5.3.	VE Emissions	Report as Required

Are you in compliance with all applicable requirements for this emission unit?	<u>X</u>	Yes	No
If no, complete the Schedule of Compliance Form as ATTACHMENT F .			

ATT	ACHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control d	
027	Kiln No. 2, Dryer Nos. 3 and 4	with this emission	unit:
		None	
Provide a description of the emission Tunnel Kiln for firing brick. Kiln also			tc.):
Manufacturer:	Model number:	Serial number:	
Constructed on Site	NA NA	NA	
Construction date: 1971	Installation date: 1971	Modification date 1983	e(s):
Design Capacity (examples: furnace	s - tons/hr, tanks - gallons): 8.25 to	ons per hour of fired b	orick (TPH-F)
Maximum Hourly Throughput: 8.25 TPH-F	Maximum Annual Throughput: 72,270 TPY-F	Maximum Opera 8,760 hours per ye	
Fuel Usage Data (fill out all applicat	ole fields)		
Does this emission unit combust fuel	!? <u>X</u> Yes No	If yes, is it?	
		Indirect Fired	X Direct Fired
Maximum design heat input and/or 23.0 MM BTU/HR	maximum horsepower rating:	North American B 4-A at 525,000 Btu	rating of burners: urners Model 4441- u/hr each for Natural 300,000 Btu/hr each
List the primary fuel type(s) and if a the maximum hourly and annual fuel Primary fuels are natural gas and coal.	el usage for each.	(s). For each fuel typ	oe listed, provide
Describe each fuel expected to be us	ed during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
Natural Gas	trace	NA	~1,000 BTU/CF
Coal	1%	4%	~14,441 BTU/LB

Emissions Data		
Criteria Pollutants	Potenti	al Emissions
	PPH	TPY
Carbon Monoxide (CO)	9.90	43.36
Nitrogen Oxides (NO _X)	4.21	18.43
Lead (Pb)	NA	NA
Particulate Matter (PM _{2.5})	7.18	31.44
Particulate Matter (PM ₁₀)	9.5	50.59
Total Particulate Matter (TSP)	9.5	65.04
Sulfur Dioxide (SO ₂)	13.93	61.07
Volatile Organic Compounds (VOC)	0.20	0.87
Hazardous Air Pollutants	Potenti	al Emissions
	PPH	TPY
HF	18.98	83.11
HCL	1.40	6.14
HAPS (See Appendix)		
Regulated Pollutants other than	Potenti	al Emissions
Criteria and HAP	РРН	TPY
CO2e	NA	32,799
*Note: These emissions are for one (1) kil	n (see page E4 for clarification).	

AP-42, Section 11.3, Brick and Structural Clay Product Manufacturing.

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or construction permit with the condition number. (Note: Title V permit condition numbers alone are not the underlying applicable requirements). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.
See Page E3 through E5.
X Permit Shield
For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall
be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)
See Page E6 through E7.
Are you in compliance with all applicable requirements for this emission unit? _X_ YesNo

ATTACHMENT E - Emission Unit Form							
Emission Unit Description							
Emission unit ID number: P-Kiln	Emission unit name: Periodic Kiln	List any control d with this emission					
r-Kiiii	Periodic Kiiii	None					
Provide a description of the emission unit (type, method of operation, design parameters, etc.): Periodic Kiln for firing brick.							
Manufacturer: No Manufacturer	Model number: NA	Serial number: NA					
Construction date: NA	Installation date: 2010	Modification date NA	e(s):				
Design Capacity (examples: furnace	s - tons/hr, tanks - gallons): 8.25 to	ons per hour of fired b	rick (TPH-F)				
Maximum Hourly Throughput: 1 TPD-F	Maximum Annual Throughput: 72 TPY-F	Maximum Operating Schedule: 8,760 hours per year					
Fuel Usage Data (fill out all applical	ole fields)						
Does this emission unit combust fuel	1? <u>X</u> Yes No	If yes, is it?					
	Indirect Fired X_ Direct Fired						
Maximum design heat input and/or 500,000 Btu/hr	maximum horsepower rating:	Type and Btu/hr 1 500,000 Btu/hr	rating of burners:				
List the primary fuel type(s) and if applicable, the secondary fuel type(s). For each fuel type listed, provide the maximum hourly and annual fuel usage for each. Natural Gas Only							
Describe each fuel expected to be used during the term of the permit.							
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value				
Natural Gas	trace	NA	~1,000 BTU/CF				

Potential Emissions
TPY
0.04
0.01
NA
0.03
0.03
0.03
0.02
0.01
Potential Emissions
TPY
0.08
0.01
Potential Emissions
TPY
2

AP-42, Section 11.3, Brick and Structural Clay Product Manufacturing.

Applicable Requirements				
List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or construction permit with the condition number. (Note: Title V permit condition numbers alone are not the underlying applicable requirements). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.				
See Page E3 through E5.				
X Permit Shield				
For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)				
compliance. If there is not already a required method in place, then a method must be proposed.)				
compliance. If there is not already a required method in place, then a method must be proposed.)				
compliance. If there is not already a required method in place, then a method must be proposed.)				
compliance. If there is not already a required method in place, then a method must be proposed.)				
compliance. If there is not already a required method in place, then a method must be proposed.)				
compliance. If there is not already a required method in place, then a method must be proposed.)				
compliance. If there is not already a required method in place, then a method must be proposed.)				
compliance. If there is not already a required method in place, then a method must be proposed.)				
compliance. If there is not already a required method in place, then a method must be proposed.)				
compliance. If there is not already a required method in place, then a method must be proposed.)				
compliance. If there is not already a required method in place, then a method must be proposed.)				
compliance. If there is not already a required method in place, then a method must be proposed.)				
compliance. If there is not already a required method in place, then a method must be proposed.)				

ATTACHMENT E - Emission Unit Form						
Emission Unit Description						
Emission unit ID number:	Emission unit name: Rotary Sand Dryer	List any control d with this emission				
KSD	Rotary Sand Dryer	None				
Provide a description of the emission unit (type, method of operation, design parameters, etc.): Rotary Sand Dryer for drying sand for sanded brick.						
Manufacturer: Constructed on Site	Model number: NA	Serial number: NA				
Construction date: 2013	Installation date: 2013	Modification date NA	e(s):			
Design Capacity (examples: furnace	s - tons/hr, tanks - gallons): 1.0 tpl	n/1,200 tpy and 1.0 M	MBtu/hr			
Maximum Hourly Throughput: 1.0 tph						
Fuel Usage Data (fill out all applicab	ole fields)	_				
Does this emission unit combust fuel	? <u>X</u> Yes No	If yes, is it?				
		Indirect Fired	X Direct Fired			
Maximum design heat input and/or 1.0 MMBTU/HR	maximum horsepower rating:	Type and Btu/hr u Utilizes burner from				
List the primary fuel type(s) and if applicable, the secondary fuel type(s). For each fuel type listed, provide the maximum hourly and annual fuel usage for each. Primary fuels are natural gas.						
Describe each fuel expected to be used during the term of the permit.						
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value			
Natural Gas	trace	NA	~1,000 BTU/CF			

Emissions Data			
Criteria Pollutants	Potential Emissions		
	РРН	TPY	
Carbon Monoxide (CO)	0.09	0.37	
Nitrogen Oxides (NO _X)	0.10	0.44	
Lead (Pb)	NA	NA	
Particulate Matter (PM _{2.5})	2.00	1.20	
Particulate Matter (PM ₁₀)	2.00	1.20	
Total Particulate Matter (TSP)	2.01	1.21	
Sulfur Dioxide (SO ₂)	0.01	0.01	
Volatile Organic Compounds (VOC)	0.01	0.03	
Hazardous Air Pollutants	Potenti	al Emissions	
	РРН	TPY	
HAPS (See Appendix)	0.02	0.02	
Regulated Pollutants other than	Potenti	al Emissions	
Criteria and HAP	РРН	TPY	
CO2e	NA	526	

AP-42, Section 11.19.1, Sand and Gravel Processing.

Applicable Requirements

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

Ref No.	Rule/ Regulation/ R13 Permit	Existing R30 Permit Condition	Name		Requir	ement	
1	45CSR§7-4.7.	4.1.4.	Allowance for Expansion	The increase of manufacturing pr operation by the o altered source oper the allowable emi resulted in the incr	ocess source peration of new ration(s) shall be ssion rates from	operation or r, replacement, e considered as n the source of	duplicate source reactivated and/or an expansion and operation(s) which
2	45CSR§7-4.13.	4.1.6	Potential Hazardous Material Emissions	Persons responsible from which hazard such as, but not limited as the potential harmful activities. Evaluati and emission poter Director working governmental agen	le for manufact dous particulate mited to, lead, a ve the utmost effects of the ons of these fac ntial will be ma g in conjunc	turing process matter materia arsenic, berylliu care and con emissions res cilities as to add ade on an indiv	source operations al may be emitted am and other such asideration to the aulting from such equacy, efficiency idual basis by the
3	45CSR13, Permit No. R13- 0682 (Condition 4.1.1.)	4.1.10.	Emissions Limitations	Emissions from kil	Rotary S	eed the followi and Dryer SD)	ng:
					lbs/hr	tpy	
				PM	2.01	1.21	
				PM10	2	1.2	
				PM2.5	2	1.2	
				SO2	0.01	0.01	
				NOx	0.1	0.44	
				CO	0.09	0.37	
				VOC·	0.01	0.03	
				Non HF/HCl HAPs	0.02	0.02	
				HF	n/a	n/a	
				HCl	n/a	n/a	
					ow compliance		3-0682 (Condition culate matter limits

X Permit Shield

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

Ref No.	Rule/ Regulation/ R13 Permit	Existing R30 Permit Condition	Name	R	equirement			
4	45CSR13, Permit No. R13-	4.1.11.	Total Emissions	Total emissions i	from the facility sha	ll not exceed the fol	llowing:	
	0682 (Condition 4.1.2.)	tion 4.1.2.)	Limitations		lb/hr	tpy		
				PM	61.74	189.88		
				PM ₁₀	38.30	130.33		
				PM _{2.5}	21.68	75.18		
				SO_2	29.22	122.19		
				NO _x	10.37	39.66		
				СО	22.76	88.98		
				VOC	0.51	1.91		
				HF	42.56	166.30		
				HCl	3.14	12.29		
				Non HF/HCl HAPs	0.23	0.72		
5	45CSR13, Permit No. R13- 0682 (Condition 4.1.9.)	4.1.17.	Fuel Use	The permittee sh [RSD].	nall use only natural	gas as a fuel for t	he Rotary Sand Dryer	
6	45CSR §2-3.1; 45CSR13, Permit No. R13-0682 (Condition 4.1.10.)	4.1.18.	Visual Emissions		s from the Rotary city based on a six n		shall not exceed ten	
7	45CSR§30-5.1.c.	4.4.1.	Recordkeeping	Records of all monitoring data required by condition 4.3.1 documenting the date and time of each visible emission check, the emission point or equipment/source identification number, the name or means of identification of the observer, the results of the check(s), whether the visible emissions are normal for the process, and, if applicable, all corrective measures taken or planned shall be maintained. The permittee shall also record the general weather conditions (e.g., sunny, approximately 80°F, 6 - 10 mph NE wind) during the visual emission check(s). Should a visible emission observation be required to be performed per the requirements specified in 45CSR7A, the data records of each observation shall be maintained per the requirements of 45CSR7A. For an emission unit out of service during the normal monthly evaluation, the record of observation may note "out of service" (O/S) or equivalent.				
8	45CSR13, Permit No. R13- 0682 (Condition 4.3.5.)	4.4.5	Maintain Records					
9	45CSR13, Permit No. R13- 0682 (Condition 4.3.6.)	4.4.6	Maintain Records	In order to determine compliance with the fuel type limitation in condition 4.1.17, the permittee shall maintain records of the fuel usage for the RSD. At a minimum, the record shall indicate the type of fuel used.				
10	45CSR13, Permit No. R13- 0682 (Condition 4.3.7.)	4.4.7.	Maintain Records					

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

Ref No.	Rule/ Regulation/ R13 Permit	Existing R30 Permit Condition	Name	Requirement
11	45CSR§30-5.1.c.	4.5.1.	VE Emissions	Any violation(s) of the allowable visible emission requirement for any emission source discovered during observations using 45CSR7A, must be reported in writing to the Director of the Division of Air Quality as soon as practicable but within ten (10) calendar days of the occurrence. The report shall include at a minimum, the following information: the results of the visible determination of opacity of emissions, the cause or suspected cause of the violation(s), and any corrective measures taken or planned.
12	45CSR§10-8.3.b.	4.5.2.	Periodic Exception Report	A periodic exception report shall be submitted to the Director, in a manner specified by the Director. Such an exception report shall provide details of all excursions outside the range of measured emissions or monitored parameters established in an approved monitoring plan and shall include, but not be limited to, the time of the excursion, the magnitude of the excursion, the duration of the excursion, the cause of the excursion and the corrective action taken.
13	45CSR13, Permit No. R13- 0682 (Condition 4.4.1.)	4.5.3.	VE Emissions	Any violation(s) of the allowable visible emission requirement for any emission source discovered during observations using 40CFR Part 60, Appendix A (Method 22) or Method 9 must be reported in writing to the Director of the Division of Air Quality as soon as practicable, but within ten (10) calendar days, of the occurrence and shall include, at a minimum, the following information: the results of the visible determination of opacity of emissions, the cause or suspected cause of the violation(s), and any corrective measures taken or planned.

X	Permit S	Shield

Annlicable	Reauirements	(Continued)
ADDIICUDIE	neuunemenn	(Commuea)

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

Ref No.	Rule/ Regulation/ R13 Permit	Existing R30 Permit Condition	Name	Method of Compliance
1	45CSR§7-4.7.	4.1.4.	Allowance for Expansion	NA
2	45CSR§7-4.13.	4.1.6	Potential Hazardous Material Emissions	NA
3	45CSR13, Permit No. R13-0682 (Condition 4.1.1.)	4.1.10.	Emissions Limitations	NA
4	45CSR13, Permit No. R13-0682 (Condition 4.1.2.)	4.1.11.	Total Emissions Limitations	NA

4.3.5. For the purpose of determining compliance with the opacity limits of 45CSR2, the permittee shall conduct visual emission checks and / or opacity monitoring and recordkeeping for all emission sources subject to an opacity limit.

NA

4.3.5. -See Below

Fuel Use

Visual Emissions

4.1.17.

4.1.18.

- a. The visible emission check shall determine the presence or absence of visible emissions. At a minimum, the observer must be trained and knowledgeable regarding the effects of background contrast, ambient lighting, observer position relative to lighting, wind, and the presence of uncombined water (condensing water vapor) on the visibility of emissions. This training may be obtained from written material found in the Reference 1 and 2 from 40CFR Part 60, Appendix A, Method 22 or from the lecture portion of 40CFR Part 60, Appendix A, Method 9 certification course.
- b. Visible emission checks shall be conducted at least once per calendar month with a maximum of forty-five (45) days between consecutive readings. These checks shall be performed at the rotary sand dryer [RSD] for a sufficient time interval, but no less than one (1) minute, to determine if any visible emissions are present. Visible emission checks shall be performed during periods of facility operation and appropriate weather conditions.
- c. If visible emissions are present at a source(s) for three (3) consecutive monthly checks, the permittee shall conduct an opacity reading at the source(s) using procedures and requirements of Method 9 as soon as practicable, but within seventy-two (72) hours of the final visual emission check. A Method 9 observation at a source(s) restarts the count of the number of consecutive readings with the presence of visible emissions.

[45CSR§2-3.2; 45CSR13, Permit No. R13-0682 (Condition 4.2.3)] (RSD)

45CSR13, Permit No. R13-0682 (Condition 4.1.9.)

45CSR §2-3.1; 45CSR13, Permit No. R13-0682

(Condition 4.1.10.)

6

7	45CSR§30-5.1.c.	4.4.1.	Recordkeeping	Maintain Records as Required
8	45CSR13, Permit No. R13-0682 (Condition 4.3.5.)	4.4.5.	Maintain Records	Maintain Records as Required
9	45CSR13, Permit No. R13-0682 (Condition 4.3.6.)	4.4.6.	Maintain Records	Maintain Records as Required
10	45CSR13, Permit No. R13-0682 (Condition 4.3.7.)	4.4.7.	Maintain Records	Maintain Records as Required
11	45CSR§30-5.1.c.	4.5.1.	VE Emissions	Report as Required
12	45CSR§10-8.3.b.	4.5.2.	Periodic Exception Report	Report as Required
13	45CSR13, Permit No. R13-0682 (Condition 4.4.1.)	4.5.3.	VE Emissions	Report as Required

Are you in compliance with all applicable requirements for this emission unit? X	esN	О
If no, complete the Schedule of Compliance Form as ATTACHMENT F .		

ATTACHMENT E - Emission Unit Form			
Emission Unit Description Brick For	ming		
Emission unit ID number:	Emission unit name:	List any control dev	
025	Brick Forming	with this emission u None	nit:
Provide a description of the emission unit (type, method of operation, design parameters, etc.): Brick forming includes the pug mill, vacuum extruder, brick trimming and cutting (including scrap brick belt conveyors returning wet trimmings to pug mill), Sand Hopper (B3), Sand Hopper (B4), Sand Screw Conveyor (SSC), and brick setting machine.			
Manufacturer: NA	Model number: NA	Serial number: NA	
Construction date: 1970	Installation date: 1970	Modification date(s):
1999 for brick setting machine	1999 for brick setting machine		
Design Capacity (examples: furnace	s - tons/hr, tanks - gallons): 75 tph		
Maximum Hourly Throughput: 75 tph	Maximum Annual Throughput: 153,300 tpy	Maximum Operatin 8,760 hours per year	ng Schedule:
Fuel Usage Data (fill out all applicat	ole fields)	,	
Does this emission unit combust fuel?Yes X No If yes, is it?			
		Indirect Fired	Direct Fired
Maximum design heat input and/or maximum horsepower rating:		Type and Btu/hr ra	ting of burners:
List the primary fuel type(s) and if applicable, the secondary fuel type(s). For each fuel type listed, provide the maximum hourly and annual fuel usage for each.			
Describe each fuel expected to be used during the term of the permit.			
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
		1	

Emissions Data		
Criteria Pollutants	Potentia	al Emissions
	PPH	TPY
Carbon Monoxide (CO)		
Nitrogen Oxides (NO _X)		
Lead (Pb)		
Particulate Matter (PM _{2.5})	0.18	0.77
Particulate Matter (PM ₁₀)	1.26	5.52
Total Particulate Matter (TSP)	2.52	11.04
Sulfur Dioxide (SO ₂)		
Volatile Organic Compounds (VOC)		
Hazardous Air Pollutants	Potentia	al Emissions
	РРН	TPY
Regulated Pollutants other than Criteria and HAP	Potential Emissions	
Citetia and IIAI	PPH	TPY
List the method(s) used to calculate the poversions of software used, source and date		es of any stack tests conducted,
AP-42, Section 11.3, Table 11.3.1.		

Applicable Requirements
List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or construction permit with the condition number. (Note: Title V permit condition numbers alone are not the underlying applicable requirements). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.
None – Compliance with limitations on kilns proves compliance on remaining portions of the facility.
X Permit Shield
For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number
or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)
compliance. If there is not already a required method in place, then a method must be proposed.)
compliance. If there is not already a required method in place, then a method must be proposed.)
compliance. If there is not already a required method in place, then a method must be proposed.)
compliance. If there is not already a required method in place, then a method must be proposed.)
compliance. If there is not already a required method in place, then a method must be proposed.)
compliance. If there is not already a required method in place, then a method must be proposed.)
compliance. If there is not already a required method in place, then a method must be proposed.)
compliance. If there is not already a required method in place, then a method must be proposed.)
compliance. If there is not already a required method in place, then a method must be proposed.)
compliance. If there is not already a required method in place, then a method must be proposed.)
compliance. If there is not already a required method in place, then a method must be proposed.)
compliance. If there is not already a required method in place, then a method must be proposed.)
compliance. If there is not already a required method in place, then a method must be proposed.)

ATTACHMENT E - Emission Unit Form			
Emission Unit Description Sand Dryer			
Emission unit ID number:	Emission unit name:	List any control dev	
037	Sand Dryer	with this emission u	init:
		Trone	
Provide a description of the emission unit (type, method of operation, design parameters, etc.): Sand is dried in an old round brick kiln to remove excess moisture prior to being utilized in the brick making operation.			
Manufacturer: NA	Model number: NA	Serial number: NA	
Construction date: Early 1900's	Installation date: Early 1900's	Modification date(s	s):
Design Capacity (examples: furnace	s - tons/hr, tanks - gallons): NA		
Maximum Hourly Throughput: NA	Maximum Annual Throughput: 120 tons	Maximum Operation 8,760 hrs/yr	ng Schedule:
Fuel Usage Data (fill out all applicat	ole fields)		
Does this emission unit combust fuel? X Yes No If yes, is it?			
		Indirect Fired	X Direct Fired
Maximum design heat input and/or maximum horsepower rating: 5 MM Btu/hr, 43,800 MMBtu/year		Type and Btu/hr ra 5 burners 1 MM Btu/hr each	ting of burners:
List the primary fuel type(s) and if applicable, the secondary fuel type(s). For each fuel type listed, provide the maximum hourly and annual fuel usage for each.			
Natural Gas			
Describe each fuel expected to be used during the term of the permit.			
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
Natural Gas	Trace	NA	~1,000 Btu/cf

Emissions Data		
Criteria Pollutants	Potenti	al Emissions
	PPH	TPY
Carbon Monoxide (CO)	0.42	1.84
Nitrogen Oxides (NO _X)	0.50	2.19
Lead (Pb)	NA	NA
Particulate Matter (PM _{2.5})	0.04	0.17
Particulate Matter (PM ₁₀)	0.04	0.17
Total Particulate Matter (TSP)	0.04	0.17
Sulfur Dioxide (SO ₂)	0.01	0.02
Volatile Organic Compounds (VOC)	0.03	0.13
Hazardous Air Pollutants	Potenti	al Emissions
	PPH	TPY
VOC HAPS	0.01	0.05
Metal HAPS	0.01	0.01
Formaldehyde	0.01	0.01
Regulated Pollutants other than	Potential Emissions	
Criteria and HAP	РРН	TPY

AP-42, Section 1.4, Table 1.4-1 and 1.4-2.

Applicable Requirements
List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or construction permit with the condition number. (Note: Title V permit condition numbers alone are not the underlying applicable requirements). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.
None – Compliance with limitations on kilns proves compliance on remaining portions of the facility.
X Permit Shield
For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)
None – Compliance with limitations on kilns proves compliance on remaining portions of the facility.
Are you in compliance with all applicable requirements for this emission unit? X YesNo
If no, complete the Schedule of Compliance Form as ATTACHMENT F .

ATTACHMENT E - Emission Unit Form			
Emission Unit Description Shale Gri	nding and Screening		
Emission unit ID number:	Emission unit name:	List any control de	
006, 008 to 011	Various	with this emission t	ınit:
	(See Attachment D)	Enclosures	
Provide a description of the emission unit (type, method of operation, design parameters, etc.): Crusher and screens (4 screens) located in the grinding building which reduces the shale to approximately -6 mesh material size. Crusher is a Steadman Grand Slam Impact Crusher, Model GS 4860-AR/HC-T-H-A-X, Serial No. 89075. The screens are fine screens.			
Manufacturer: Various, See Above	Model number: Various, See Above	Serial number: Various, See Above	
Construction date: 006 was replaced in 2006	Installation date: 006 was replaced in 2006	Modification date(s	s):
008 to 011 - 1981	008 to 011 - 1981		
Design Capacity (examples: furnaces - tons/hr, tanks - gallons): 75 tph			
Maximum Hourly Throughput: 75 tph	Maximum Annual Throughput: 153,300 tpy	Maximum Operation 4,160 hours per year	
Fuel Usage Data (fill out all applicat	ole fields)		
Does this emission unit combust fuel	?Yes <u>X</u> No	If yes, is it?	
		Indirect FiredDirect Fired	
Maximum design heat input and/or maximum horsepower rating:		Type and Btu/hr ra	nting of burners:
List the primary fuel type(s) and if applicable, the secondary fuel type(s). For each fuel type listed, provide the maximum hourly and annual fuel usage for each.			
Describe each fuel expected to be used during the term of the permit.			
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value

riteria Pollutants arbon Monoxide (CO) (itrogen Oxides (NO _X) ead (Pb) articulate Matter (PM _{2.5})	Potential PPH	l Emissions TPY
Fitrogen Oxides (NO _X) ead (Pb)	PPH	TPY
Fitrogen Oxides (NO _X) ead (Pb)		
ead (Pb)		
articulate Matter (PM _{2.5})		
	0.60	0.61
articulate Matter (PM ₁₀)	4.80	4.91
otal Particulate Matter (TSP)	9.30	9.50
ulfur Dioxide (SO ₂)		
olatile Organic Compounds (VOC)		
Hazardous Air Pollutants	Potential	l Emissions
	PPH	TPY
Regulated Pollutants other than	Potential Emissions	
Criteria and HAP	РРН	TPY
ist the method(s) used to calculate the pot	ential emissions (include date	s of any stack tests conducted
ersions of software used, source and dates		of any stack tests conducted,
P-42, Section 11.3, Table 11.3.1.		
,		

Applicable Requirements
List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or construction permit with the condition number. (Note: Title V permit condition numbers alone are not the underlying applicable requirements). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.
None – Compliance with limitations on kilns proves compliance on remaining portions of the facility.
X Permit Shield
For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)
None – Compliance with limitations on kilns proves compliance on remaining portions of the facility.
Are you in compliance with all applicable requirements for this emission unit? X YesNo
If no, complete the Schedule of Compliance Form as ATTACHMENT F .

ATTACHMENT E - Emission Unit Form			
Emission Unit Description Conveyor and Equipment Transfer Points			
Emission unit ID number: 003 to 005, 007, 012 to 017, 019 to 021, 023, and 024	Emission unit name: Various Conveyors (See Attachment D)	List any control dewith this emission under the Enclosures	
Provide a description of the emission unit (type, method of operation, design parameters, etc.): Conveyors on the raw feed, grinding building, and plant feed system and equipment transfer points for shale transfers.			
Manufacturer: NA	Model number: NA	Serial number: NA	
Construction date: 1981	Installation date: 1981	Modification date(s	s):
Design Capacity (examples: furnace	s - tons/hr, tanks - gallons): 75 tph		
Maximum Hourly Throughput: 75 tph	Maximum Annual Throughput: 153,300 tpy	Maximum Operation 8,760 hours per year	-
Fuel Usage Data (fill out all applicat	ole fields)		
Does this emission unit combust fuel?Yes X No If yes, is it?			
		Indirect FiredDirect Fired	
Maximum design heat input and/or maximum horsepower rating:		Type and Btu/hr ra	ting of burners:
List the primary fuel type(s) and if applicable, the secondary fuel type(s). For each fuel type listed, provide the maximum hourly and annual fuel usage for each.			
Describe each fuel expected to be used during the term of the permit.			
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value

Emissions Data			
Criteria Pollutants	Potential Emissions		
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})	0.02	0.02	
Particulate Matter (PM ₁₀)	0.16	0.16	
Total Particulate Matter (TSP)	0.34	0.34	
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)			
Hazardous Air Pollutants	Potentia	al Emissions	
	РРН	TPY	
Regulated Pollutants other than Criteria and HAP	Potentia	al Emissions	
	PPH	TPY	
List the method(s) used to calculate the potential emissions (include dates of any stack tests conducted, versions of software used, source and dates of emission factors, etc.).			
AP-42, Section 13.2.4.			

Applicable Requirements
List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or construction permit with the condition number. (Note: Title V permit condition numbers alone are not the underlying applicable requirements). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.
None – Compliance with limitations on kilns proves compliance on remaining portions of the facility.
X Permit Shield
For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)
None – Compliance with limitations on kilns proves compliance on remaining portions of the facility.
Are you in compliance with all applicable requirements for this emission unit? X YesNo

A	TTACHMENT E - Emission Ur	nit Form	
Emission Unit Description Shale	Storage		
Emission unit ID number: 001, 002, 018, 022	Emission unit name: Various	List any control de with this emission u None	
	ssion unit (type, method of operation, cried shale storage; 002 Truck-Endloade Bin.		
Manufacturer: NA	Model number: NA	Serial number: NA	
Construction date: 1981	Installation date: 1981	Modification date(s	s):
Design Capacity (examples: furn 001 - 9 Acres, 002 - 30 tons, 018 -	, ,		
Maximum Hourly Throughput: 75 tph	Maximum Annual Throughput: 153,300	Maximum Operation 8,760	ng Schedule:
Fuel Usage Data (fill out all appl	icable fields)	1	
Does this emission unit combust	fuel?Yes _X No	If yes, is it?	
		Indirect Fired	Direct Fired
Maximum design heat input and	or maximum horsepower rating:	Type and Btu/hr ra	ating of burners:
List the primary fuel type(s) and the maximum hourly and annua	if applicable, the secondary fuel type I fuel usage for each.	(s). For each fuel type	listed, provide
Describe each fuel expected to be	e used during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value

Emissions Data		
Criteria Pollutants	Potential Emissions	
	РРН	TPY
Carbon Monoxide (CO)		
Nitrogen Oxides (NO _X)		
Lead (Pb)		
Particulate Matter (PM _{2.5})	0.05	0.23
Particulate Matter (PM ₁₀)	0.34	1.50
Total Particulate Matter (TSP)	0.72	3.18
Sulfur Dioxide (SO ₂)		
Volatile Organic Compounds (VOC)		
Hazardous Air Pollutants	Potenti	al Emissions
	PPH	TPY
Regulated Pollutants other than	Potential Emissions	
Criteria and HAP	PPH	TPY
	1111	
List the method(s) used to calculate the poversions of software used, source and date		es of any stack tests conducted,
AP-42, Stockpile Equation, See attached cal	culations.	

Applicable Requirements
List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or construction permit with the condition number. (Note: Title V permit condition numbers alone are not the underlying applicable requirements). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.
None – Compliance with limitations on kilns proves compliance on remaining portions of the facility.
X Permit Shield
For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)
None – Compliance with limitations on kilns proves compliance on remaining portions of the facility.
Are you in compliance with all applicable requirements for this emission unit? X YesNo
If no, complete the Schedule of Compliance Form as ATTACHMENT F .

ATTACHMENT E - Emission Unit Form			
Emission Unit Description Coal Crus	shing		
Emission unit ID number: 032	Emission unit name:	List any control dev	
Provide a description of the emission Coal crusher	n unit (type, method of operation, do	DC1 esign parameters, etc.):
Manufacturer: Atritor	Model number: NA	Serial number: NA	
Construction date: 1984	Installation date: 1984	Modification date(s):
Design Capacity (examples: furnace	s - tons/hr, tanks - gallons): 100 tph		
Maximum Hourly Throughput: 1.5 tph	Maximum Annual Throughput: 13,140 tpy	Maximum Operation 8,760 hours per year	ng Schedule:
Fuel Usage Data (fill out all applical	ole fields)		
Does this emission unit combust fue	Yes <u>X</u> No	If yes, is it?	Direct Fined
Maximum design heat input and/or	mayimum harsanawar rating	Indirect Fired Type and Btu/hr ra	Direct Fired
Maximum design near input und/or	maximum norsepower runnig	Type and Deam Ta	ting of burners.
List the primary fuel type(s) and if a the maximum hourly and annual fue). For each fuel type	listed, provide
Describe each fuel expected to be us	ed during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value

Emissions Data		
Criteria Pollutants	Potenti	al Emissions
	РРН	TPY
Carbon Monoxide (CO)		
Nitrogen Oxides (NO _X)		
Lead (Pb)		
Particulate Matter (PM _{2.5})	1.95	8.54
Particulate Matter (PM ₁₀)	1.95	8.54
Total Particulate Matter (TSP)	2.16	9.46
Sulfur Dioxide (SO ₂)		
Volatile Organic Compounds (VOC)		
Hazardous Air Pollutants	Potential Emissions	
	PPH	TPY
Regulated Pollutants other than	Potential Emissions	
Criteria and HAP	РРН	TPY
List the method(s) used to calculate the poversions of software used, source and date		es of any stack tests conducted,
AP-42, Section, Table 11.24-2		

Applicable Requirements
List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or construction permit with the condition number. (Note: Title V permit condition numbers alone are not the underlying applicable requirements). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.
None – Compliance with limitations on kilns proves compliance on remaining portions of the facility.
X Permit Shield
For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)
None – Compliance with limitations on kilns proves compliance on remaining portions of the facility.
Are you in compliance with all applicable requirements for this emission unit? X Yes No
If no, complete the Schedule of Compliance Form as ATTACHMENT F .

ATTACHMENT E - Emission Unit Form			
Emission Unit Description Coal Conveying and Equipment Transfer Points			
Emission unit ID number:	nission unit ID number: Emission unit name: 0, 034, 035, 036 Various	List any control devices associated with this emission unit:	
030, 034, 033, 030		None	
Provide a description of the emission unit (type, method of operation, design parameters, etc.): Coal drag conveyor that feeds the coal bin and transfer points for the coal equipment.			
Manufacturer: NA	Model number: NA	Serial number:	
Construction date: 1984	Installation date: 1984	Modification date(s):
Design Capacity (examples: furnace	s - tons/hr, tanks - gallons): 100 tph	ı	
Maximum Hourly Throughput: 1.5 to 100 tph	Maximum Annual Throughput: 13,140 tpy	Maximum Operating Schedule: 8,760 hours per year	
Fuel Usage Data (fill out all applicab	ole fields)		
Does this emission unit combust fuel?Yes _X_ No		If yes, is it?	
		Indirect Fired	Direct Fired
Maximum design heat input and/or maximum horsepower rating:		Type and Btu/hr ra	ting of burners:
List the primary fuel type(s) and if applicable, the secondary fuel type(s). For each fuel type listed, provide the maximum hourly and annual fuel usage for each.			
Describe each fuel expected to be used during the term of the permit.			
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value

Emissions Data		
Criteria Pollutants	Potential Emissions	
	PPH	TPY
Carbon Monoxide (CO)		
Nitrogen Oxides (NO _X)		
Lead (Pb)		
Particulate Matter (PM _{2.5})	0.016	0.002
Particulate Matter (PM ₁₀)	0.10	0.01
Total Particulate Matter (TSP)	0.22	0.02
Sulfur Dioxide (SO ₂)		
Volatile Organic Compounds (VOC)		
Hazardous Air Pollutants	Potentia	al Emissions
	PPH	TPY
Regulated Pollutants other than	Potentia	al Emissions
Criteria and HAP	РРН	TPY
List the method(s) used to calculate t versions of software used, source and	he potential emissions (include date dates of emission factors, etc.).	es of any stack tests conducted,
AP-42, Section 13.2.4.		

Applicable Requirements
List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or construction permit with the condition number. (Note: Title V permit condition numbers alone are not the underlying applicable requirements). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.
None – Compliance with limitations on kilns proves compliance on remaining portions of the facility.
X Permit Shield
For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)
None – Compliance with limitations on kilns proves compliance on remaining portions of the facility.
Are you in compliance with all applicable requirements for this emission unit? X Yes No
If no complete the Schedule of Compliance Form as ATTACHMENT F

ATTACHMENT E - Emission Unit Form				
Emission Unit Description Coal Storage				
Emission unit ID number: 028, 029, 031	Emission unit name: Coal Storage	List any control dewith this emission under None		
Provide a description of the emission unit (type, method of operation, design parameters, etc.): Coal stockpile and coal bins.				
Manufacturer: NA	Model number: NA	Serial number: NA		
Construction date: 1984	Installation date: 1984	Modification date(s):	
Design Capacity (examples: furnace	s - tons/hr, tanks - gallons): 1.5 to 1	00 tph		
Maximum Hourly Throughput: 1.5 to 100 tph	Maximum Annual Throughput: 13,140 tpy	Maximum Operation 8,760 hours per year	-	
Fuel Usage Data (fill out all applicab	ole fields)			
Does this emission unit combust fuel? Yes X No If yes, is it? Indirect Fired Direct F		Direct Fired		
Maximum design heat input and/or maximum horsepower rating: Type and Btu/hr rating of burners.				
List the primary fuel type(s) and if applicable, the secondary fuel type(s). For each fuel type listed, provide the maximum hourly and annual fuel usage for each.				
Describe each fuel expected to be used during the term of the permit.				
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value	

Emissions Data				
Criteria Pollutants	Potential Emissions			
	РРН	TPY		
Carbon Monoxide (CO)				
Nitrogen Oxides (NO _X)				
Lead (Pb)				
Particulate Matter (PM _{2.5})	See Convey	ing and Transfer		
Particulate Matter (PM ₁₀)				
Total Particulate Matter (TSP)				
Sulfur Dioxide (SO ₂)				
Volatile Organic Compounds (VOC)				
Hazardous Air Pollutants	Potentia	al Emissions		
	РРН	TPY		
Regulated Pollutants other than	Potential Emissions			
Criteria and HAP	РРН	TPY		
List the method(s) used to calculate the potential emissions (include dates of any stack tests conducted, versions of software used, source and dates of emission factors, etc.).				

Applicable Requirements
List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or construction permit with the condition number. (Note: Title V permit condition numbers alone are not the underlying applicable requirements). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.
None – Compliance with limitations on kilns proves compliance on remaining portions of the facility.
X Permit Shield
For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)
None – Compliance with limitations on kilns proves compliance on remaining portions of the facility.
Are you in compliance with all applicable requirements for this emission unit? X Yes No
If no, complete the Schedule of Compliance Form as ATTACHMENT F .

ATTACHMENT E - Emission Unit Form			
Emission Unit Description Vehicle Activity			
Emission unit ID number:	Emission unit name: Vehicle Activity	List any control dev	
041	Vehicle Activity	Water Roadways	
Provide a description of the emission unit (type, method of operation, design parameters, etc.): Roadways at the site for quarry to stockpile (pit road), delivery of materials, shipment/sales of brick, and the endloader activity to feed the shale to the grinding building.			
Manufacturer: NA	Model number: NA	Serial number: NA	
Construction date: NA	Installation date: NA	Modification date(s	·):
Design Capacity (examples: furnace	s - tons/hr, tanks - gallons): NA	,	
Maximum Hourly Throughput: See Calculations	Maximum Annual Throughput: See Calculations	Maximum Operation 8,760 hours per year	-
Fuel Usage Data (fill out all applicat	ole fields)		
Does this emission unit combust fuel?YesX No		If yes, is it?	D: . F: 1
Markana Jaka Ladan da 14		Indirect Fired	Direct Fired
Maximum design heat input and/or maximum horsepower rating:		Type and Btu/hr ra	ting of burners:
List the primary fuel type(s) and if applicable, the secondary fuel type(s). For each fuel type listed, provide the maximum hourly and annual fuel usage for each.			
Describe each fuel expected to be used during the term of the permit.			
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
	1		

Criteria Pollutants P Carbon Monoxide (CO)	Potential Emis	ssions
		3510115
Carbon Monoxide (CO)	PH	TPY
Nitrogen Oxides (NO _X)		
Lead (Pb)		
Particulate Matter (PM _{2.5}) 0	.65	0.73
Particulate Matter (PM ₁₀) 6	.45	7.11
Total Particulate Matter (TSP) 22	2.54	24.84
Sulfur Dioxide (SO ₂)		
Volatile Organic Compounds (VOC)		
Hazardous Air Pollutants	Potential Emis	ssions
P	PH	TPY
Regulated Pollutants other than	Potential Emissions	
Criteria and HAP	PH	TPY
List the method(s) used to calculate the potential emis		ny stack tests conducto
versions of software used, source and dates of emissio	n factors, etc.).	
AP-42, 13.2.2, Unpaved Roads.		
AP-42, 13.2.2, Unpaved Roads.		

Applicable Requirements
List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or construction permit with the condition number. (Note: Title V permit condition numbers alone are not the underlying applicable requirements). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.
None – Compliance with limitations on kilns proves compliance on remaining portions of the facility.
X Permit Shield
For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)
None – Compliance with limitations on kilns proves compliance on remaining portions of the facility.
Are you in compliance with all applicable requirements for this emission unit? X Yes No

ATTACHMENT E - Emission Unit Form				
Emission Unit Description Sand Storage				
Emission unit ID number: 038 and 039	Emission unit name: Sand Storage (OS2 and CS3)	List any control devices associated with this emission unit: OS2-W, CS3-PE		
Provide a description of the emission unit (type, method of operation, design parameters, etc.): Sand stockpiles				
Manufacturer: NA	Model number: NA	Serial number: NA		
Construction date: NA	Installation date: NA	Modification date(s NA):	
Design Capacity (examples: furnace	s - tons/hr, tanks - gallons): OS2 –	150 tons, CS3 – 200 to	ns	
Maximum Hourly Throughput: 100	Maximum Annual Throughput: 200	Maximum Operation 8,760 hours per year	ng Schedule:	
Fuel Usage Data (fill out all applicat	ole fields)			
Does this emission unit combust fuel	?YesX No	If yes, is it?		
		Indirect Fired	Direct Fired	
Maximum design heat input and/or maximum horsepower rating: Type and Btu/hr rating of burne		ting of burners:		
List the primary fuel type(s) and if applicable, the secondary fuel type(s). For each fuel type listed, provide the maximum hourly and annual fuel usage for each.				
Describe each fuel expected to be used during the term of the permit.				
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value	
••				

Emissions Data			
Criteria Pollutants	Potential Emissions		
	РРН	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})	Covered stockpiles and sand stockp	piles are assumed to have no emissions.	
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)			
Hazardous Air Pollutants	Potentia	al Emissions	
	РРН	TPY	
Regulated Pollutants other than	Potentia	al Emissions	
Criteria and HAP	РРН	TPY	
List the method(s) used to calculate to versions of software used, source and		es of any stack tests conducted,	
NA			

Applicable Requirements
List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or construction permit with the condition number. (Note: Title V permit condition numbers alone are not the underlying applicable requirements). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.
None – Compliance with limitations on kilns proves compliance on remaining portions of the facility.
X Permit Shield
For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.) None – Compliance with limitations on kilns proves compliance on remaining portions of the facility.
Are you in compliance with all applicable requirements for this emission unit? X YesNo
If no, complete the Schedule of Compliance Form as ATTACHMENT F .

ATTACHMENT F SCHEDULE OF COMPLIANCE FORM

permit application. For each emis reason(s) for noncompliance, a de	ssion unit which is not i scription of how the so	th any of the applicable requirements identified in the n compliance, identify the applicable requirement, the urce will achieve compliance, and a detailed schedule of s requirement, attach a copy to this form.
Applicable Requirement	NA	
Unit(s):	Applicable Requiren	nent:
1. Reason for Noncompliance	:	
2. How will Compliance be A	chieved?	
3. Consent Order Number (if None	applicable):	
		medial measures, including an enforceable sequence of cluding a date for final compliance.
Remedial Measure o	or Action	Date to be Achieved
5. Submittal of Progress Repo	orts.	
Content of Progress Report:		Report starting date: MM/DD/YYYY
		Submittal frequency:

ATTACHMENT F - Schedule of Compliance Form

ATTACHMENT G CONTROL DEVICE FORM(S)

ATTACHMEN	NT G - Air Pollution Control	Device Form
Control device ID number: DC1	List all emission units associated Coal Crusher and Separator	with this control device.
Control device ID number: DC1 Manufacturer: (installed by) Wagester, Walker, Throton & Co, Inc Type of Air Pollution Control Device X Baghouse/Fabric Filter Carbon Bed Adsorber Carbon Drum(s) Catalytic Incinerator Wet Plate Electrostatic Precipitate List the pollutants for which this de Pollutant Particulate Matter (Coal Dust) Explain the characteristic design particulate Matter (Coal Dust) Explain the characteristic design particulate Matter (Vacuum), and 20 ounces of pressure (vacuum), and 20 ounces of pressure (vacuum). Is this device subject to the CAM real of Yes, Complete ATTACHMENT If No, Provide justification. Describe the parameters monitored	Model number: NA	Installation date: 1986
Type of Air Pollution Control Device:		
_X_Baghouse/Fabric Filter	Venturi Scrubber	Multiclone
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank
Catalytic Incinerator	Condenser	Settling Chamber
Control device ID number: DC1 Manufacturer: (installed by) Wagester, Walker, Throton & Co, Inc Type of Air Pollution Control Device X Baghouse/Fabric Filter Carbon Bed Adsorber Carbon Drum(s) Catalytic Incinerator Wet Plate Electrostatic Precipitat List the pollutants for which this device subject to the CAM reference of pressure (vacuum), and 20 ounces of pressure (vacuum), and 20 ounces of pressure (vacuum). Bescribe the parameters monitored	Flare	Other (describe)
Wet Plate Electrostatic Precipitator	_	Dry Plate Electrostatic Precipitator
List the pollutants for which this device	ce is intended to control and the ca	pture and control efficiencies.
Pollutant	Capture Efficiency	Control Efficiency
Particulate Matter (Coal Dust)	100%	95%
Explain the characteristic design parabags, size, temperatures, etc.). 9 Bags 39 Inches in length insulated sing and 20 ounces of pressure (vacuum), 4:1	ged polyester bags, approximately 2,	
Is this device subject to the CAM required If Yes, Complete ATTACHMENT H If No, Provide justification.	nirements of 40 C.F.R. 64? Ye	s <u>X</u> No
Describe the parameters monitored and Visual monitoring to check for holes in b	_	formance of this control device.

ATTACHMEN	NT G - Air Pollution Cont	rol Device Form
Control device ID number: DC2	List all emission units associat Dense Phase System	ted with this control device.
Manufacturer: (installed by) Wagester, Walker, Throton & Co, Inc.	Model number: NA	Installation date: 1986
Type of Air Pollution Control Device:		
X Baghouse/Fabric Filter	Venturi Scrubber	Multiclone
Carbon Bed Adsorber	Packed Tower Scrubber _	Single Cyclone
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank
Catalytic Incinerator	Condenser	Settling Chamber
Thermal Incinerator	Flare _	Other (describe)
Wet Plate Electrostatic Precipitator	_	Dry Plate Electrostatic Precipitator
List the pollutants for which this device	ce is intended to control and the	e capture and control efficiencies.
Pollutant	Capture Efficiency	Control Efficiency
Particulate Matter (Coal Dust)	100%	95%
Explain the characteristic design parabags, size, temperatures, etc.). 42 Bags 96 Inches	l nmeters of this control device (fl	low rates, pressure drops, number of
Is this device subject to the CAM requ	nirements of 40 C.F.R. 64?	Yes X No
If Yes, Complete ATTACHMENT H If No, Provide justification.		
Describe the parameters monitored and Visual monitoring to check for holes in		performance of this control device.

ATTACHMENT H COMPLIANCE ASSURANCE MONITORING FORM

ATTACHMENT H - Compliance Assurance Monitoring (CAM) Plan Form

For definitions and information about the CAM rule, please refer to 40 CFR Part 64. Additional information (including guidance documents) may also be found at http://www.epa.gov/ttn/emc/cam.html

	CAM APPLICABILITY DETERMINATION
sep CF app	oes the facility have a PSEU (Pollutant-Specific Emissions Unit considered parately with respect to EACH regulated air pollutant) that is subject to CAM (40 R Part 64), which must be addressed in this CAM plan submittal? To determine olicability, a PSEU must meet all of the following criteria (If No, then the mainder of this form need not be completed):
a.	The PSEU is located at a major source that is required to obtain a Title V permit;
b.	The PSEU is subject to an emission limitation or standard for the applicable regulated air pollutant that is $\underline{\text{NOT}}$ exempt;
	LIST OF EXEMPT EMISSION LIMITATIONS OR STANDARDS:
	• NSPS (40 CFR Part 60) or NESHAP (40 CFR Parts 61 and 63) proposed after 11/15/1990.
	• Stratospheric Ozone Protection Requirements.
	Acid Rain Program Requirements.
	• Emission Limitations or Standards for which a WVDEP Division of Air Quality Title V permit specifies a continuous compliance determination method, as defined in 40 CFR §64.1.
	 An emission cap that meets the requirements specified in 40 CFR §70.4(b)(12).
c.	The PSEU uses an add-on control device (as defined in 40 CFR §64.1) to achieve compliance with an emission limitation or standard;
d.	The PSEU has potential pre-control device emissions of the applicable regulated air pollutant that are equal to or greater than the Title V Major Source Threshold Levels; AND
e.	The PSEU is NOT an exempt backup utility power emissions unit that is municipally-owned.
	BASIS OF CAM SUBMITTAL
	ark the appropriate box below as to why this CAM plan is being submitted as part of an application for a Title V mit:
	<u>RENEWAL APPLICATION</u> . <u>ALL</u> PSEUs for which a CAM plan has <u>NOT</u> yet been approved need to be addressed in this CAM plan submittal.
	<u>INITIAL APPLICATION</u> (submitted after 4/20/98). <u>ONLY</u> large PSEUs (i. e., PSEUs with potential post-control device emissions of an applicable regulated air pollutant that are equal to or greater than Major Source Threshold Levels) need to be addressed in this CAM plan submittal.
	SIGNIFICANT MODIFICATION TO LARGE PSEUs. ONLY large PSEUs being modified after 4/20/98 need to be addressed in this cam plan submittal. For large PSEUs with an approved CAM plan, Only address the appropriate monitoring requirements affected by the significant modification.

3) ^a BACKGROUND DATA AND INFORMATION

Complete the following table for <u>all</u> PSEUs that need to be addressed in this CAM plan submittal. This section is to be used to provide background data and information for each PSEU In order to supplement the submittal requirements specified in 40 CFR §64.4. If additional space is needed, attach and label accordingly.

requirements specified in 4	40 CFR §64.4. If additional space is	s needed, attach and lat			
PSEU DESIGNATION	DESCRIPTION	POLLUTANT	CONTROL DEVICE	^b EMISSION LIMITATION or STANDARD	° MONITORING REQUIREMENT
DESIGNATION			DEVICE	01 STANDARD	
<u>EXAMPLE</u>					
Boiler No. 1	Wood-Fired Boiler	PM	Multiclone	45CSR§2-4.1.c.; 9.0 lb/hr	Monitor pressure drop across multiclone: Weekly inspection of multiclone

^a If a control device is common to more than one PSEU, one monitoring plan may be submitted for the control device with the affected PSEUs identified and any conditions that must be maintained or monitored in accordance with 40 CFR §64.3(a). If a single PSEU is controlled by more than one control device similar in design and operation, one monitoring plan for the applicable control devices may be submitted with the applicable control devices identified and any conditions that must be maintained or monitored in accordance with 40 CFR §64.3(a).

b Indicate the emission limitation or standard for any applicable requirement that constitutes an emission limitation, emission standard, or standard of performance (as defined in 40 CFR §64.1).

^c Indicate the monitoring requirements for the PSEU that are required by an applicable regulation or permit condition.

CAM MONITORING APPROACH CRITERIA

Complete this section for <u>EACH</u> PSEU that needs to be addressed in this CAM plan submittal. This section may be copied as needed for each PSEU. This section is to be used to provide monitoring data and information for <u>EACH</u> indicator selected for <u>EACH</u> PSEU in order to meet the monitoring design criteria specified in 40 CFR §64.3 and §64.4. if more than two indicators are being selected for a PSEU or if additional space is needed, attach and label accordingly with the appropriate PSEU designation, pollutant, and indicator numbers.

4a) PSEU Designation:	4b) Pollutant:	4c) ^a Indicator No. 1:	4d) ^a Indicator No. 2:
5a) GENERAL CRITER Describe the MONITO used to measure the i	RING APPROACH		
^b Establish the appropring RANGE or the proceduthe indicator range wreasonable assurance	ures for establishing hich provides a		
5b) PERFORMANCE C Provide the SPECIFICA OBTAINING REPRESEN as detector location, s specifications, and m accuracy:	ATIONS FOR ITATIVE DATA, such installation		
^c For new or modified equipment, provide <u>V</u> <u>PROCEDURES</u> , includi recommendations, <u>TC</u> <u>OPERATIONAL STATUS</u>	<u>/ERIFICATION</u> ng manufacturer's D CONFIRM THE		
Provide <u>QUALITY ASS</u> <u>QUALITY CONTROL (C</u> that are adequate to e continuing validity o daily calibrations, vis routine maintenance,	DA/QC) PRACTICES ensure the f the data, (i.e., sual inspections,		
^d Provide the <u>MONITOR</u>	ING FREQUENCY:		
Provide the <u>DATA CO</u> <u>PROCEDURES</u> that wil			
Provide the <u>DATA AV</u> the purpose of detern excursion or exceeda	nining whether an		

^a Describe all indicators to be monitored which satisfies 40 CFR §64.3(a). Indicators of emission control performance for the control device and associated capture system may include measured or predicted emissions (including visible emissions or opacity), process and control device operating parameters that affect control device (and capture system) efficiency or emission rates, or recorded findings of inspection and maintenance activities.

^b Indicator Ranges may be based on a single maximum or minimum value or at multiple levels that are relevant to distinctly different operating conditions, expressed as a function of process variables, expressed as maintaining the applicable indicator in a particular operational status or designated condition, or established as interdependent between more than one indicator. For CEMS, COMS, or PEMS, include the most recent certification test for the monitor.

^c The verification for operational status should include procedures for installation, calibration, and operation of the monitoring equipment, conducted in accordance with the manufacturer's recommendations, necessary to confirm the monitoring equipment is operational prior to the commencement of the required monitoring.

d Emission units with post-control PTE \geq 100 percent of the amount classifying the source as a major source (i.e., Large PSEU) must collect four or more values per hour to be averaged. A reduced data collection frequency may be approved in limited circumstances. Other emission units must collect data at least once per 24 hour period.

	AND JUSTIFICATION
	this CAM plan submittal. This section may be copied as needed for each PSEU. the selection of EACH indicator and monitoring approach and EACH indicator range 4.
6a) PSEU Designation:	6b) Regulated Air Pollutant:
indicators and the monitoring approach used to measure the indi the reasons for any differences between the verification of ope	PROACH: Provide the rationale and justification for the selection of the icators. Also provide any data supporting the rationale and justification. Explain erational status or the quality assurance and control practices proposed, and the ded, attach and label accordingly with the appropriate PSEU designation and
shall indicate how EACH indicator range was selected by either a ENGINEERING ASSESSMENTS. Depending on which method is bei for that specific indicator range. (If additional space is needed, a pollutant): • COMPLIANCE OR PERFORMANCE TEST (Indicator range compliance or performance test conducted under regulatory semissions under anticipated operating conditions. Such data recommendations). The rationale and justification shall INCI determine the indicator range, and documentation indicating control system performance or the selected indicator ranges see TEST PLAN AND SCHEDULE (Indicator ranges will be detaind performing any other appropriate activities prior to use of implementation plan and schedule that will provide for use of except that in no case shall the schedule for completing instate the Indicator Ranges or the passessments and other data, such as manufacturers' design or	termined from a proposed implementation plan and schedule for installing, testing, of the monitoring). The rationale and justification shall MINCLUDE the proposed of the monitoring as expeditiously as practicable after approval of this CAM plan, allation and beginning operation of the monitoring exceed 180 days after approval. Procedures for establishing indicator ranges are determined from engineering riteria and historical monitoring data, because factors specific to the type of reformance testing unnecessary). The rationale and justification shall MINCLUDE

APPENDIX EMISSION CALCULATIONS

By: LMM Date: 02/08/2019

PTE

Checked By: AM Date: 02/08/2019

Source	Demoleted	Summary of Emi			
Description	Regulated		Uncontrolled)		
Description	Air Pollutant	Emissions lb/hour tpy			
Shale Transfer Points	PM	0.96	0.96		
Jame Hander Folks	PM10	0.45	0.45		
	PM2.5	0.07	0.43		
Grinding and Screening	PM	46.50	47.52		
g and servering	PM10	24.00	24.53		
	PM2.5	3.00	3.07		
Brick Forming	PM	12.60	55.19		
January 1 or many	PM10	6.30	27.59		
100 100	PM2.5	0.88	3.83		
Kilns	PM	20.92			
Kinis	PM10		130.11		
For Speciated VOC/VOC	PM2.5	20.74	101.21		
HAPS See Next Page		16.10	62.91		Potential (Controlled) Emissions lb/hour
HAT'S SEE NEXT Page	SO2	29.20	122.16	Emissions 1b/hour	
	NOx	9.12	36.87		Sions tpy 0.34 0.16 0.02 0.50 0.61 11.04 10.21 10.21 10.21 10.22 10.63 10.65 10.
	CO	22.20	86.76		
	VOC	0.45	1.75		
	HF	42.56	166.30		
	HCL	3.14	12.29		
	HAP VOCS	0.1788	0.6344	0.1788	0.6344
Coal Fuel System	PM	43.61	189.29	2.38	9.48
	PM10	39.19	170.85	2.05	8.55
	PM2.5	39.03	170.83	1.97	
Sand Transfer	PM	0.9700	0.0060		
	PM10	0.4588	0.0028		
	PM2.5	0.0695	0.0004		
Sand Dryer	PM	0.04	0.17		
	PM10	0.04	0.17		
	PM2.5	0.04	0.17		
	SO2	0.01	0.02		
	NOx	0.50	2.19		
	CO	0.42	1.84		
	VOC	0.03	0.13		
	HAP VOCS	0.01	0.05		
	HAP METALS	0.01	0.03		
Rotary Sand Dryer (with	PM	2.01			
ransfers)	PM10		1.21		
ransiers)		2.00	1.20		
	PM2.5	2.00	1.20		
	SO2	0.01	0.01		101.21 62.91 122.16 36.87 86.76 1.75 166.30 12.29 0.6344 9.48 8.55 8.54 0.0060 0.0028 0.0004 0.17 0.17 0.17 0.17 0.19 1.84 0.13 0.05 0.01 1.21 1.20 0.01 0.44 0.37 0.03 0.01 0.01 526 161.85 121.73 74.23 122.19 39.50 88.97 1.91 166.30 12.29 0.69
	NOx	0.10	0.44		
	CO	0.09	0.37		
	VOC	0.01	0.03		
	HAP VOCS	0.01	0.01		0.01
	HAP METALS	0.01	0.01		0.01
	CO2e	NA	526	NA	526
oint Sources	PM	127.61	424.45	38.48	161.85
	PM10	93.19	326.01	31.51	
	PM2.5	61.19	242.08		
	SO2	29.22	122.19		
	NOx	9.72	39.50		
	CO	22.71	88.97		
	VOC	0.49	1.91		
100 TO 10	HF	42.56	166.30		
	HCL	3.14	12.29		
	HAP VOCS	0.20	0.69		
	HAP METALS	0.02	0.02		
				0.02	0.02
Stockpile	PM	0.72	3.18	0.72	2 10
	PM10	0.72	1.50		
	PM2.5	0.05	0.23		
Haulroads	PM		99.31		
Haunvaus		90.12			
	PM10	25.73	28.42		
-10. 6	PM2.5	2.60	2.87		
ugitive Sources	PM	90.84	102.49	23.26	28.02
	PM10	26.07	29.92	6.79	8.61
	PM2.5	2.65	3.10	0.70	0.96
acility Total	Total PM =	218.45	526.94	61.74	189.87
	Total PM10 =	119.26	355.93	38.30	130.34
	10101 1.1110				

By: LMM Date: 02/08/2019

PTE

Checked By: AM

	Speciated VOC	and VOC HAPS fr	om Kilns	Date: 02/08/201		
Regulated		Incontrolled)		Controlled)		
Air Pollutant		ssions	Emissions			
	lb/hour	tpy	lb/hour	tpy		
1,1-dichloroethane	8.00E-05	3.60E-04	8.00E-05	3.60E-04		
1,1,1-trichloroethane	2.90E-04	1.22E-03	2.90E-04	1.22E-03		
1,4-dichlorobenzene	9.00E-04	3.46E-03	9.00E-04	3.46E-03		
2-butanone	4.56E-03	1.81E-02	4.56E-03	1.81E-02		
2-hexanone (1)	1.57E-03	6.14E-03	1.57E-03	6.14E-03		
2-methylnaphthalene	1.05E-03	4.12E-03	1.05E-03	4.12E-03		
2-methylphenol	4.00E-05	1.60E-04	4.00E-05	1,60E-04		
Acetone	3.15E-02	1.23E-01	3.15E-02	1.23E-01		
Acrylonitrile	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Benzene	5.37E-02	2.10E-01	5.37E-02	2.10E-01		
Benzoic acid	4.12E-03	1.81E-02	4.12E-03	1.81E-02		
Bis(2-ethylhexy)phthalate	3.70E-02	1.45E-01	3.70E-02	1.45E-01		
Bromomethane	4.00E-04	1.74E-03	4.00E-04	1.74E-03		
Butylbenzylphthalate	3.40E-04	1.30E-03	3.40E-04	1.30E-03		
Carbon disulfide	7.90E-04	3.10E-03	7.90E-04	3.10E-03		
Carbon tetrachloride	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Chlorine	2.41E-02	9.40E-02	2.41E-02	9.40E-02		
Chlorobenzene	3.40E-04	1.52E-03	3.40E-04	1.52E-03		
Chloroethane	1.05E-02	4.12E-02	1.05E-02	4.12E-02		
Chloroform	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Chloromethane	1.24E-02	4.84E-02	1.24E-02	4.84E-02		
Dibenzofuran	0.00E+00	2.00E-05	0.00E+00	2.00E-05		
Di-n-butylphthalate	2.60E-03	1.01E-02	2.60E-03	1.01E-02		
Di-n-octylphthalate	2.00E-04	8.60E-04	2.00E-04	8.60E-04		
Diethylphthalate	4.44E-03	1.74E-02	4.44E-03	1.74E-02		
Dimethylphthalate	2.00E-05	6.00E-05	2.00E-05	6.00E-05		
Ethylbenzene	8.10E-04	3.18E-03	8.10E-04	3.18E-03		
Iodomethane (2)	1.73E-03	6.72E-03	1.73E-03	6.72E-03		
Isophorone	5.00E-04	2.16E-03	5.00E-04	2.16E-03		
M-/p-xylene	2.27E-03	9.40E-03	2.27E-03	9.40E-03		
Methylene chloride	2.00E-05	6.00E-05	2.00E-05	6.00E-05		
Naphthalene	1.21E-03	4.70E-03	1.21E-03	4.70E-03		
O-xylene	1.08E-03	4.20E-03	1.08E-03	4.70E-03 4.20E-03		
Phenol	1.59E-03	6.22E-03	1.59E-03			
Styrene	3.80E-04	1.44E-03	3.80E-04	6.22E-03 1.44E-03		
Tetrachloroethane	5.00E-05	2.00E-04	5.00E-05	2.00E-04		
Trichloroethane	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Toluene	4.44E-03	1.81E-02	4.44E-03			
Vinyl acetate	0.00E+00	0.00E+00	0.00E+00	1.81E-02		
Trichlorofluoromethane	2.40E-04	1.02E-03	2.40E-04	0.00E+00		
Total VOC	2.05E-01	8.06E-01		1.02E-03		
Non-HAP	4.34E-02		2.05E-01	8.06E-01		
HAP	1.62E-01	1.72E-01 6.34E-01	4.34E-02 1.62E-01	1.72E-01 6.34E-01		

⁽¹⁾ METHYL N-BUTYL KETONE (2) METHYL IODIDE

 TPH
 TPY

 Tons Fired
 8.25
 72,270

Natural Gas Firing

Rounding to =

2

Pollutant	EF		Emis	sions		EF	7
		Uncon	trolled		trolled	Reference	
	lb/T	(lb/hr)	(tpy)	(lb/hr)	(tpy)	0 12,7400,710740	
PM	0.96	7.92	34.69	7.92	34.69	Table 11.3-2	
PM10	0.87	7.18	31.44	7.18	31.44	Table 11.3-2	
PM2.5	ND					Table 11.3-2	
SO2	0.67	5.53	24.21	5.53	24.21	Table 11.3-3	
NOx	0.35	2.89	12.65	2.89	12.65	Table 11.3-3	1
CO	1.2	9.90	43.36	9.90	43.36	Table 11.3-3	
VOC	0.024	0.20	0.87	0.20	0.87	Table 11.3-5	1
HF (1)	2.3	18.98	83.11	18.98	83.11	100000	
HCL	0.17	1.40	6.14	1.40	6.14	Table 11.3-4	
Volatile Organics	Rounded to	5	5				CAS No.
1,1-dichloroethane	ND						
1,1,1-trichloroethane	4.70E-06	0.00004	0.00017	0.00004	0.00017	Table 11.3-6	71-55-6
1,4-dichlorobenzene	4.80E-05	0.00040	0.00173	0.00040	0.00173	Table 11.3-6	106-46-
2-butanone	2.20E-04	0.00182	0.00795	0.00182	0.00795	Table 11.3-6	78-93-3
2-hexanone	8.50E-05	0.00070	0.00307	0.00070	0.00307	Table 11.3-6	591-78-
2-methylnaphthalene	5.70E-05	0.00047	0.00206	0.00047	0.00206	Table 11.3-6	91-57-6
2-methylphenol	ND						
Acetone	1.70E-03	0.01403	0.06143	0.01403	0.06143	Table 11.3-6	67-64-1
Acrylonitrile	ND						
Benzene	2.90E-03	0.02393	0.10479	0.02393	0.10479	Table 11.3-6	71-43-2
Benzoic acid	ND						
Bis(2-ethylhexy)phthalate	2.00E-03	0.01650	0.07227	0.01650	0.07227	Table 11.3-6	117-81-
Bromomethane	ND					Take I I I I	11.01
Butylbenzylphthalate	1.80E-05	0.00015	0.00065	0.00015	0.00065	Table 11.3-6	85-68-7
Carbon disulfide	4.30E-05	0.00035	0.00155	0.00035	0.00155	Table 11.3-6	75-15-0
Carbon tetrachloride	ND					14010 1110 0	10 10 0
Chlorine	1.30E-03	0.01073	0.04698	0.01073	0.04698	Table 11.3-6	7782-50-
Chlorobenzene	ND						.,,,,
Chloroethane	5.70E-04	0.00470	0.02060	0.00470	0.02060	Table 11.3-6	75-00-3
Chloroform	ND				0.0000	THOIC TIES O	15 00-5
Chloromethane	6.70E-04	0.00553	0.02421	0.00553	0.02421	Table 11.3-6	74-87-3
Dibenzofuran	ND					Tuble 11.5 c	11013
Di-n-butylphthalate	1.40E-04	0.00116	0.00506	0.00116	0.00506	Table 11.3-6	84-74-2
Di-n-octylphthalate	ND					14010 1110 0	01712
Diethylphthalate	2.40E-04	0.00198	0.00867	0.00198	0.00867	Table 11.3-6	84-66-2
Dimethylphthalate	ND						0.002
Ethylbenzene	4.40E-05	0.00036	0.00159	0.00036	0.00159	Table 11.3-6	100-41-4
odomethane	9.30E-05	0.00077	0.00336	0.00077	0.00336	Table 11.3-6	74-88-4
sophorone	ND					140.0	74 00 4
M-/p-xylene	6.70E-05	0.00055	0.00242	0.00055	0.00242	Table 11.3-6	1330-20-
Methylene chloride	ND			0.0000	0.00212	Tubic 11.5 0	1550-20-
Naphthalene	6.50E-05	0.00054	0.00235	0.00054	0.00235	Table 11.3-6	91-20-3
D-xylene	5.80E-05	0.00048	0.00210	0.00048	0.00210	Table 11.3-6	95-47-6
Phenol	8.60E-05	0.00071	0.00311	0.00071	0.00311	Table 11.3-6	108-95-2
Styrene	2,00E-05	0.00017	0.00072	0.00017	0.00072	Table 11.3-6	100-42-5
Tetrachloroethane	2.80E-06	0.00002	0.00010	0.00002	0.00010	Table 11.3-6	127-18-4
Crichloroethane	ND	0.00002	5.00010	3,00002	0.00010	14016 11.3-0	12/-18-4
Toluene	1.60E-04	0.00132	0.00578	0.00132	0.00578	Table 11.3-6	108-88-3
Vinyl acetate	ND ND	0.00132	5.00576	0.00132	0,00378	1 able 11.3-0	108-88-3
Frichlorofluoromethane	ND						
IAP	1,10	1					

By: LMM Date: 02/08/2019 Kiln No. 1

Checked By: AM Date: 02/08/2019

Coal Firing

Rounding to =

Pollutant	EF	SO2 Stack Test Result (lb/hr) = EF Emissions					
2 011411111		Uncontrolled Controlled				EF Reference	Į.
	lb/T	(lb/hr)	(tpy)	(lb/hr)	(tpy)	Reference	1
M	1.8	14.85	65.04	14.85	65.04	Table 11.3-2	1
M10	1.40	11.55	50.59	11.55	50.59	Table 11.3-2	+
M2.5	0.87	7.18	31.44	7.18	31.44	Table 11.3-2	1
02 (2)	1.69	13.93	61.07	13.93	61.07	Table 11.3-3	1
Ox	0.51	4.21	18.43	4.21	18.43	Table 11.3-3	1
0	0.8	6.60	28.91	6.60	28.91	Table 11.3-3	1
oc	0.024	0.20	0.87	0.20	0.87	Table 11.3-5	1
F(1)	2.3	18.98	83.11	18.98	83.11		1
CL	0.17	1.40	6.14	1.40	6.14	Table 11.3-4	1
olatile Organics	Rounded to	5					1
I-dichloroethane	5.00E-06	0.00004	0.00018	0.00004	0.00018	Table 11.3-6	+
1,1-trichloroethane	1.70E-05	0.00014	0.00061	0.00014	0.00061	Table 11.3-6	t
4-dichlorobenzene	3.20E-06	0.00003	0.00012	0.00003	0.00012	Table 11.3-6	t
butanone	2.50E-04	0.00206	0.00903	0.00206	0.00903	Table 11.3-6	+
hexanone	9.40E-07	0.00001	0.00003	0.00001	0.00003	Table 11.3-6	T
methylnaphthalene	1.70E-06	0.00001	0.00006	0.00001	0.00006	Table 11.3-6	t
nethylphenol	2.20E-06	0.00002	0.00008	0.00002	0.00008	Table 11.3-6	+
etone	6.80E-04	0.00561	0.02457	0.00561	0.02457	Table 11.3-6	T
rylonitrile	ND					4-1	T
enzene	2.90E-04	0.00239	0.01048	0.00239	0.01048	Table 11.3-6	T
enzoic acid	2.50E-04	0.00206	0.00903	0.00206	0.00903	Table 11.3-6	T
s(2-ethylhexy)phthalate	7.30E-05	0.00060	0.00264	0.00060	0.00264	Table 11.3-6	t
omomethane	2.40E-05	0.00020	0.00087	0.00020	0.00087	Table 11.3-6	T
tylbenzylphthalate	1.20E-06	0.00001	0.00004	0.00001	0.00004	Table 11.3-6	T
rbon disulfide	2.30E-06	0.00002	0.00008	0.00002	0.00008	Table 11.3-6	T
rbon tetrachloride	1.00E-07	0.00000	0.00000	0.00000	0.00000	Table 11.3-6	T
lorine	ND						T
orobenzene	2.10E-05	0.00017	0.00076	0.00017	0.00076	Table 11.3-6	T
loroethane	1.10E-05	0.00009	0.00040	0.00009	0.00040	Table 11.3-6	T
loroform	1.00E-07	0.00000	0.00000	0.00000	0.00000	Table 11.3-6	Т
loromethane	1.10E-04	0.00091	0.00397	0.00091	0.00397	Table 11.3-6	Т
penzofuran	3.60E-07	0.00000	0.00001	0.00000	0.00001	Table 11.3-6	Τ
-n-butylphthalate	ND						
-n-octylphthalate	1.20E-05	0.00010	0.00043	0.00010	0.00043	Table 11.3-6	Γ
ethylphthalate	1.40E-06	0.00001	0.00005	0.00001	0.00005	Table 11.3-6	Γ
methylphthalate	7.80E-07	0.00001	0.00003	0.00001	0.00003	Table 11.3-6	Г
hylbenzene	2.10E-05	0.00017	0.00076	0.00017	0.00076	Table 11.3-6	Γ
lomethane	ND	-					Г
phorone	3.00E-05	0.00025	0.00108	0.00025	0.00108	Table 11.3-6	
-/p-xylene	1.30E-04	0.00107	0.00470	0.00107	0.00470	Table 11.3-6	
thylene chloride	8.00E-07	0.00001	0.00003	0.00001	0.00003	Table 11.3-6	
phthalene	6.90E-06	0.00006	0.00025	0.00006	0.00025	Table 11.3-6	
cylene	4.70E-05	0.00039	0.00170	0.00039	0.00170	Table 11.3-6	Ĺ
enol	3.50E-05	0.00029	0.00126	0.00029	0.00126	Table 11.3-6	
rene	1.00E-07	0.00000	0.00000	0.00000	0.00000	Table 11.3-6	
trachloroethane	1.00E-07	0.00000	0.00000	0.00000	0.00000	Table 11.3-6	
chloroethane	1.00E-07	0.00000	0.00000	0.00000	0.00000	Table 11.3-6	
luene	2.50E-04	0.00206	0.00903	0.00206	0.00903	Table 11.3-6	
nyl acetate ichlorofluoromethane	1.00E-07 1.40E-05	0.00000 0.00012	0.00000	0.00000	0.00000	Table 11.3-6	
			0.00051	0.00012	0.00051	Table 11.3-6	

⁽¹⁾ HF emissions factor from material testing and is material specific instead of fuel specific.

⁽²⁾ SO2 stack test results indicate 11.61 pounds per hour as the highest actual emission value. Emission factor above based on stack test result plus 20%. The emission factor is back calculated from the factored emissions testing and the operating rate per hour.

Checked By: AM Date: 02/08/2019

By: LMM Date: 02/08/2019 Kiln No. 1 Maximum Emissions

Pollutant		Emissions		
	Uncontroll	ed	Controlled	
	(lb/hr)	(tpy)	(lb/hr)	(tpy)
PM*	9.50	65.04	9.50	65.04
PM10*	9.50	50.59	9.50	50.59
PM2.5	7.18	31.44	7.18	31.44
SO2	13.93	61.07	13.93	61.07
NOx	4.21	18.43	4.21	18.43
CO	9.90	43.36	9.90	43.36
VOC	0.20	0.87	0.20	0.87
HF	18.98	83.11	18.98	83.11
HCL	1.40	6.14	1.40	6.14
Volatile Organics				
1,1-dichloroethane	0.00004	0.00018	0.00004	0.0001
1,1,1-trichloroethane	0.00014	0.00061	0.00014	0.0006
1,4-dichlorobenzene	0.00040	0.00173	0.00040	0.0017
2-butanone	0.00206	0.00903	0.00206	0.00903
2-hexanone	0.00070	0.00307	0.00070	0.0030
2-methylnaphthalene	0.00047	0.00206	0.00047	0.0020
2-methylphenol	0.00002	0.00008	0.00002	0.00008
Acetone	0.01403	0.06143	0.01403	0.06143
Acrylonitrile	0.00000	0.00000	0.00000	0.00000
Benzene	0.02393	0.10479	0.02393	0.10479
Benzoic acid	0.00206	0.00903	0.00206	0.00903
Bis(2-ethylhexy)phthalate	0.01650	0.07227	0.01650	0.0722
Bromomethane	0.00020	0.00087	0.00020	0.00087
Butylbenzylphthalate	0.00015	0.00065	0.00015	0.00065
Carbon disulfide	0.00035	0.00155	0.00035	0.00155
Carbon tetrachloride	0.00000	0.00000	0.00000	0.00000
Chlorine	0.01073	0.04698	0.01073	0.04698
Chlorobenzene	0.00017	0.00076	0.00017	0.00076
Chloroethane	0.00470	0.02060	0.00470	0.02060
Chloroform	0.00000	0.00000	0.00000	0.00000
Chloromethane	0.00553	0.02421	0.00553	0.02421
Dibenzofuran	0.00000	0.00001	0.00000	0.00001
Di-n-butylphthalate	0.00116	0.00506	0.00116	0.00506
Di-n-octylphthalate	0,00010	0.00043	0.00010	0.00043
Diethylphthalate	0.00198	0.00867	0.00198	0.00867
Dimethylphthalate	0.00001	0.00003	0.00001	0.00003
Ethylbenzene	0,00036	0.00159	0.00036	0.00159
Iodomethane	0.00077	0.00336	0.00077	0.00336
Isophorone	0.00025	0.00108	0.00025	0.00108
M-/p-xylene	0.00107	0.00470	0.00107	0.00470
Methylene chloride	0.00001	0.00003	0.00001	0.00003
Naphthalene	0.00054	0.00235	0.00054	0.00035
O-xvlene	0.00048	0.00210	0.00034	0.00210
Phenol	0.00071	0.00311	0.00071	0.00311
Styrene	0.00071	0.00072	0.00071	0.00072
Tetrachloroethane	0.00002	0.00010	0.000017	0.00010
Trichloroethane	0.00002	0.00000	0.00002	0.00000
Foluene	0.00206	0.00903	0.00006	0.00000
Vinyl acetate	0.00208	0.00000	0.00206	0.00903
Trichlorofluoromethane	0.00012	0.00051	0.00012	0.00051
HAP Total (not HF or HCL)	0.0012	0.00031	0.00012	0.00031

^{*} Regulation 7 Limit

By: LMM Date: 02/08/2019 Kiln No. 2

Checked By: AM Date: 02/08/2019

	TPH	TPY
Tons Fired	8.25	72,270

Natural Gas Firing

Rounding to =

2

Pollutant	EF		Emis	sions		EF	7
	315000	Uncon	trolled	Controlled		Reference	
	lb/T	(lb/hr)	(tpy)	(lb/hr)	(tpy)		i i
PM	0.96	7.92	34.69	7.92	34.69	Table 11.3-2	
PM10	0.87	7.18	31.44	7.18	31.44	Table 11.3-2	1
PM2.5	ND					Table 11.3-2	
SO2	0.67	5.53	24.21	5.53	24.21	Table 11.3-3	1
NOx	0.35	2.89	12.65	2.89	12.65	Table 11.3-3	
CO	1.2	9.90	43.36	9.90	43.36	Table 11.3-3	1
VOC	0.024	0.20	0.87	0.20	0.87	Table 11.3-5	1
HF (1)	2.3	18.98	83.11	18.98	83.11		
HCL	0.17	1.40	6.14	1.40	6.14	Table 11.3-4	1
Volatile Organics	Rounded to	5					CAS N
1,1-dichloroethane	ND						01101
1,1,1-trichloroethane	4.70E-06	0.00004	0.00017	0.00004	0.00017	Table 11.3-6	71-5:
1,4-dichlorobenzene	4.80E-05	0.00040	0.00173	0.00040	0.00173	Table 11.3-6	106-4
2-butanone	2.20E-04	0.00182	0.00795	0.00182	0.00795	Table 11.3-6	78-9
2-hexanone	8.50E-05	0.00070	0.00307	0.00070	0.00307	Table 11.3-6	591-7
2-methylnaphthalene	5.70E-05	0.00047	0.00206	0.00047	0.00206	Table 11.3-6	91-5
2-methylphenol	ND			*******	0,00200	24010 11.5-0	71-3
Acetone	1.70E-03	0.01403	0.06143	0.01403	0.06143	Table 11.3-6	67-64
Acrylonitrile	ND		0.001.0	3.01403	5.001-75	2 doi: 11,5*0	0,20
Benzene	2.90E-03	0.02393	0.10479	0.02393	0.10479	Table 11.3-6	71-43
Benzoic acid	ND	0.02373	0.10477	0.02393	0.10479	1 able 11.3-6	/1-43
Bis(2-ethylhexy)phthalate	2.00E-03	0.01650	0.07227	0.01650	0.07227	Table 11.3-6	117-8
Bromomethane	ND	0.01030	0.01221	0.01030	0.07227	Table 11.3-0	11/-8
Butylbenzylphthalate	1.80E-05	0.00015	0.00065	0.00015	0.00065	T-11-112 (00.00
Carbon disulfide	4.30E-05	0.00015	0.00055	0.00013	0.00063	Table 11.3-6	85-68 75-15
Carbon tetrachloride	ND ND	0.00033	0.00133	0.00033	0.00133	Table 11.3-6	/5-13
Chlorine	1.30E-03	0.01073	0.04698	0.01073	0.04600	T-11-11-2-6	7702.6
Chlorobenzene	ND	0.01073	0.04698	0.01073	0.04698	Table 11.3-6	7782-5
Chloroethane	5.70E-04	0.00470	0.02060	0.00470	0.02070	T. 11 11 2 2	
Chloroform	ND	0.00470	0,02060	0.00470	0.02060	Table 11.3-6	75-00
Chloromethane	6.70E-04	0.00553	0.02421	0.00552	0.02421	T 11 11 2 6	
Dibenzofuran	ND	0.00333	0.02421	0.00553	0.02421	Table 11.3-6	74-87
Di-n-butylphthalate		0.00116	0.00506	0.00116	0.00504		
Di-n-octylphthalate	1.40E-04	0.00116	0.00506	0.00116	0.00506	Table 11.3-6	84-74
Diethylphthalate	ND 2.40E-04	0.00100	0.00047	0.00100			
Dimethylphthalate	2.40E-04 ND	0.00198	0,00867	0.00198	0.00867	Table 11.3-6	84-66
thylbenzene		0.00006					
odomethane	4.40E-05	0.00036	0.00159	0.00036	0.00159	Table 11.3-6	100-4
	9.30E-05	0.00077	0.00336	0.00077	0.00336	Table 11.3-6	74-88
sophorone	ND						
1-/p-xylene	6.70E-05	0.00055	0.00242	0.00055	0.00242	Table 11.3-6	1330-2
Methylene chloride	ND .						
laphthalene	6.50E-05	0.00054	0.00235	0.00054	0.00235	Table 11.3-6	91-20
-xylene	5.80E-05	0.00048	0.00210	0.00048	0.00210	Table 11.3-6	95-47
henol	8.60E-05	0.00071	0.00311	0.00071	0.00311	Table 11.3-6	108-9
tyrene	2.00E-05	0.00017	0.00072	0.00017	0.00072	Table 11.3-6	100-42
etrachloroethane	2.80E-06	0.00002	0.00010	0.00002	0.00010	Table 11.3-6	127-1
richloroethane	ND			100			
oluene	1.60E-04	0.00132	0.00578	0.00132	0.00578	Table 11.3-6	108-88
inyl acetate	ND						
richlorofluoromethane	ND						

[HAP]
(1) HF emissions factor from material testing and is material specific instead of fuel specific.

By: LMM Date: 02/08/2019 Kiln No. 2 Checked By: AM Date: 02/08/2019

Kiln No. 2 Coal Firing

Rounding to =

PM PM10 PM2.5 SO2 (2) NOx CO VOC HF (1) HCL Volatile Organics 1,1-dichloroethane 1,1,1-trichloroethane 2-butanone 2-bexanone 2-methylnaphthalene 2-methylphenol Acetone	Ib/T 1.8 1.40 0.87 1.69 0.51 0.8 0.024 2.3 0.17 Rounded to 5.00E-06 1.70E-05 3.20E-06 2.50E-04 9.40E-07 1.70E-06 2.20E-06	Unconi (lb/hr) 14.85 11.55 7.18 13.93 4.21 6.60 0.20 18.98 1.40 5 0.00004 0.00014 0.00003	(tpy) 65.04 50.59 31.44 61.07 118.43 28.91 0.87 83.11 6.14	Coni (lb/hr) 14.85 11.55 7.18 13.93 4.21 6.60 0.20 18.98 1.40	(tpy) 65.04 50.59 31.44 61.07 18.43 28.91 0.87 83.11 6.14	Table 11.3-2 Table 11.3-2 Table 11.3-2 Table 11.3-3 Table 11.3-3 Table 11.3-3 Table 11.3-5 Table 11.3-4	CASIN
PM10 PM2.5 SO2 (2) NOx CO VOC HF (1) HCL Volatile Organics 1,1-dichloroethane 1,1-dichloroethane 2-hetanone 2-hexanone 2-methylnaphthalene 2-methylphenol Acetone	1.8 1.40 0.87 1.69 0.51 0.8 0.024 2.3 0.17 Rounded to 5.00E-06 1.70E-05 3.20E-06 2.50E-04 9.40E-07 1.70E-06	14.85 11.55 7.18 13.93 4.21 6.60 0.20 18.98 1.40 5 0.00004 0.00014 0.00003	65.04 50.59 31.44 61.07 18.43 28.91 0.87 83.11 6.14 0.00018 0.00061	(lb/hr) 14.85 11.55 7.18 13.93 4.21 6.60 0.20 18.98 1.40 0.00004 0.00014	(tpy) 65.04 50.59 31.44 61.07 18.43 28.91 0.87 83.11 6.14	Table 11.3-2 Table 11.3-2 Table 11.3-2 Table 11.3-3 Table 11.3-3 Table 11.3-3 Table 11.3-5 Table 11.3-4	CAS N
PM10 PM2 5 SO2 (2) NOx CO VOC HF (1) HCL Volatile Organics 1,1-dichloroethane 1,1,1-trichloroethane 2-hexanone 2-hexanone 2-methylnaphthalene 2-methylphenol Acetone	1.40 0.87 1.69 0.51 0.8 0.024 2.3 0.17 Rounded to 1.70E-05 3.20E-06 2.50E-04 9.40E-07 1.70E-06	11.55 7.18 13.93 4.21 6.60 0.20 18.98 1.40 5 0.00004 0.00014 0.00003 0.00206	65.04 50.59 31.44 61.07 18.43 28.91 0.87 83.11 6.14 0.00018 0.00061	14.85 11.55 7.18 13.93 4.21 6.60 0.20 18.98 1.40	65.04 50.59 31.44 61.07 18.43 28.91 0.87 83.11 6.14	Table 11.3-2 Table 11.3-2 Table 11.3-3 Table 11.3-3 Table 11.3-3 Table 11.3-5 Table 11.3-4	CAS N
PM2.5 SO2 (2) NOx CO VOC HF (1) HCL Volatile Organics 1,1-dichloroethane 1,1,1-trichloroethane 2-betanone 2-betanone 2-methylnaphthalene 2-methylphenol Acetone	0.87 1.69 0.51 0.8 0.024 2.3 0.17 Rounded to 5.00E-06 1.70E-05 3.20E-06 2.50E-04 9.40E-07 1.70E-06	7.18 13.93 4.21 6.60 0.20 18.98 1.40 5 0.00004 0.00014 0.00003 0.00206	31.44 61.07 18.43 28.91 0.87 83.11 6.14 0.00018 0.00061 0.00012	11.55 7.18 13.93 4.21 6.60 0.20 18.98 1.40 0.00004 0.00014	50.59 31.44 61.07 18.43 28.91 0.87 83.11 6.14	Table 11.3-2 Table 11.3-2 Table 11.3-3 Table 11.3-3 Table 11.3-3 Table 11.3-5 Table 11.3-4	CAS N
SO2 (2) NOx CO VOC HF (1) HCL Volatile Organics 1,1-dichloroethane 1,1,1-trichloroethane 2-butanone 2-betanone 2-methylnaphthalene 2-methylphenol cectone	1.69 0.51 0.8 0.024 2.3 0.17 Rounded to 5.00E-06 1.70E-05 3.20E-06 2.50E-04 9.40E-07 1.70E-06	13.93 4.21 6.60 0.20 18.98 1.40 5 0.00004 0.00014 0.00003 0.00206	61.07 18.43 28.91 0.87 83.11 6.14 0.00018 0.00061 0.00012	13.93 4.21 6.60 0.20 18.98 1.40 0.00004 0.00014	31.44 61.07 18.43 28.91 0.87 83.11 6.14	Table 11.3-2 Table 11.3-3 Table 11.3-3 Table 11.3-3 Table 11.3-5 Table 11.3-4	CAS N
NOx CO VOC HF (1) HCL Volatile Organics 1,1-dichloroethane 1,1,1-trichloroethane 1,4-dichlorobenzene 2-butanone 2-hexanone 2-methylnaphthalene 2-methylphenol Acetone	0.51 0.8 0.024 2.3 0.17 Rounded to 5.00E-06 1.70E-05 3.20E-06 2.50E-04 9.40E-07 1.70E-06	4.21 6.60 0.20 18.98 1.40 5 0.00004 0.00014 0.00003 0.00206	61.07 18.43 28.91 0.87 83.11 6.14 0.00018 0.00061 0.00012	13.93 4.21 6.60 0.20 18.98 1.40 0.00004 0.00014	61.07 18.43 28.91 0.87 83.11 6.14	Table 11.3-3 Table 11.3-3 Table 11.3-3 Table 11.3-5 Table 11.3-4	CAS N
CO VOC HF (1) HCL Volatile Organics 1,1-dichloroethane 1,1,1-trichloroethane 1,4-dichlorobenzene 2-butanone 2-betanone 2-methylnaphthalene 2-methylphenol Acetone	0.51 0.8 0.024 2.3 0.17 Rounded to 5.00E-06 1.70E-05 3.20E-06 2.50E-04 9.40E-07 1.70E-06	4.21 6.60 0.20 18.98 1.40 5 0.00004 0.00014 0.00003 0.00206	18.43 28.91 0.87 83.11 6.14 0.00018 0.00061 0.00012	4.21 6.60 0.20 18.98 1.40 0.00004 0.00014	18.43 28.91 0.87 83.11 6.14	Table 11.3-3 Table 11.3-3 Table 11.3-5 Table 11.3-4	CAS N
VOC HF (1) HCL Volatile Organics 1,1-dichloroethane 1,1,1-trichloroethane 1,4-dichlorobenzene 2-butanone 2-hexanone 2-methylnaphthalene 2-methylphenol Acetone	0.8 0.024 2.3 0.17 Rounded to 5.00E-06 1.70E-05 3.20E-06 2.50E-04 9.40E-07 1.70E-06	6.60 0.20 18.98 1.40 5 0.00004 0.00014 0.00003 0.00206	28.91 0.87 83.11 6.14 0.00018 0.00061 0.00012	6.60 0.20 18.98 1.40 0.00004 0.00014	28.91 0.87 83.11 6.14	Table 11.3-3 Table 11.3-5 Table 11.3-4	CAS N
HF (1) HCL Volatile Organics , J-dichloroethane , J-dichloroethane , 4-dichlorobenzene -bebranone -hexanone -methylnaphthalene -methylphenol ccetone	2.3 0.17 Rounded to 5.00E-06 1.70E-05 3.20E-06 2.50E-04 9.40E-07 1.70E-06	0.20 18.98 1.40 5 0.00004 0.00014 0.00003 0.00206	0.87 83.11 6.14 0.00018 0.00061 0.00012	0.20 18.98 1.40 0.00004 0.00014	0.87 83.11 6.14	Table 11.3-5 Table 11.3-4	CAS N
HCL Volatile Organics 1,1,1-trichloroethane 1,1,1-trichloroethane 2,4-dichlorobenzene 2-beuranone 2-hexanone 2-methylnaphthalene 2-methylphenol 4-cetone	2.3 0.17 Rounded to 5.00E-06 1.70E-05 3.20E-06 2.50E-04 9.40E-07 1.70E-06	18.98 1.40 5 0.00004 0.00014 0.00003 0.00206	83.11 6.14 0.00018 0.00061 0.00012	18.98 1.40 0.00004 0.00014	83.11 6.14 0.00018	Table 11.3-4	CAS N
Volatile Organics	0.17 Rounded to 5.00E-06 1.70E-05 3.20E-06 2.50E-04 9.40E-07 1.70E-06	1.40 5 0.00004 0.00014 0.00003 0.00206	0.00018 0.00061 0.00012	0.00004 0.00014	6.14 0.00018		CAS N
,1-dichloroethane ,1,1-trichloroethane ,4-dichlorobenzene -butanone -hexanone -methylnaphthalene -methylphenol	5.00E-06 1.70E-05 3.20E-06 2.50E-04 9.40E-07 1.70E-06	5 0.00004 0.00014 0.00003 0.00206	0.00018 0.00061 0.00012	0.00004 0.00014	0.00018		CAS N
l-trichloroethane 4-dichlorobenzene -butanone -hexanone -methylnaphthalene -methylphenol	1.70E-05 3.20E-06 2.50E-04 9.40E-07 1.70E-06	0.00014 0.00003 0.00206	0.00061 0.00012	0.00014		Table 11.3-6	CASIN
I, I, I-trichloroethane I, 4-dichlorobenzene 2-butanone 2-hexanone 2-methylnaphthalene 2-methylphenol Acetone	1.70E-05 3.20E-06 2.50E-04 9.40E-07 1.70E-06	0.00014 0.00003 0.00206	0.00061 0.00012	0.00014			75-34
2-butanone 2-hexanone 2-methylnaphthalene 2-methylphenol Acetone	3.20E-06 2.50E-04 9.40E-07 1.70E-06	0.00003 0.00206	0.00012		0.00061	Table 11.3-6	71-55
2-butanone 2-hexanone 2-methylnaphthalene 2-methylphenol Acetone	2.50E-04 9.40E-07 1.70E-06	0.00206		0.00003	0.00001	Table 11.3-6	106-4
2-hexanone 2-methylnaphthalene 2-methylphenol Acetone	9.40E-07 1.70E-06		0.00903	0.00206	0.00012	Table 11.3-6	78-93
e-methylnaphthalene e-methylphenol Acetone	1.70E-06		0.00003	0.00001	0.00003	Table 11.3-6	591-7
2-methylphenol Acetone		0.00001	0.00003	0.00001	0.00003	Table 11.3-6	91-57
Acetone		0.00001	0.00008	0.00001	0.00008	Table 11.3-6	91-37
	6.80E-04	0.00561	0.02457	0.00561	0.00008	Table 11.3-6	
Acrylonitrile	ND	0.00361	0.02437	0.00361	0.02457	Table 11.3-6	67-64
Benzene	2.90E-04	0.00239	0.01048	0.00220	0.01040	T-11-11-2-6	71 43
Benzoic acid	2.50E-04	0.00239	0.00903	0.00239	0.01048	Table 11.3-6	71-43
Bis(2-ethylhexy)phthalate	7.30E-05	0.00206		0.00206	0.00903	Table 11.3-6	65-85
Bromomethane	2.40E-05		0.00264	0.00060	0.00264	Table 11.3-6	117-8
Butylbenzylphthalate	1.20E-06	0.00020	0.00087	0.00020	0.00087	Table 11.3-6	74-83
Carbon disulfide		0.00001	0.00004	0.00001	0.00004	Table 11.3-6	85-68
Carbon tetrachloride	2.30E-06	0.00002	0.00008	0.00002	0.00008	Table 11.3-6	75-15
Chlorine	1.00E-07	0.00000	0.00000	0.00000	0.00000	Table 11.3-6	56-23
Thlorobenzene	ND						
	2.10E-05	0.00017	0.00076	0.00017	0.00076	Table 11.3-6	108-90
Chloroethane Chloroform	1.10E-05	0.00009	0.00040	0.00009	0.00040	Table 11.3-6	75-00
	1.00E-07	0.00000	0.00000	0.00000	0.00000	Table 11.3-6	67-66
Chloromethane	1.10E-04	0.00091	0.00397	0.00091	0.00397	Table 11.3-6	74-87
Dibenzofuran	3.60E-07	0.00000	0.00001	0.00000	0.00001	Table 11.3-6	132-64
Di-n-butylphthalate	ND		- V				
Di-n-octylphthalate	1.20E-05	0.00010	0.00043	0.00010	0.00043	Table 11.3-6	NA
Diethylphthalate	1.40E-06	0.00001	0.00005	0.00001	0.00005	Table 11.3-6	84-66
Dimethylphthalate	7.80E-07	0.00001	0.00003	0.00001	0.00003	Table 11.3-6	131-11
thylbenzene	2.10E-05	0.00017	0.00076	0.00017	0.00076	Table 11.3-6	100-41
odomethane	ND						
sophorone	3.00E-05	0.00025	0.00108	0.00025	0.00108	Table 11.3-6	78-59
1-/p-xylene	1.30E-04	0.00107	0.00470	0.00107	0.00470	Table 11.3-6	1330-2
Methylene chloride	8.00E-07	0.00001	0.00003	0.00001	0.00003	Table 11.3-6	75-09
laphthalene	6.90E-06	0.00006	0.00025	0.00006	0.00025	Table 11.3-6	91-20-
-xylene	4.70E-05	0.00039	0.00170	0.00039	0.00170	Table 11.3-6	95-47
nenol	3.50E-05	0.00029	0.00126	0.00029	0.00126	Table 11.3-6	108-95
tyrene	1.00E-07	0.00000	0.00000	0.00000	0.00000	Table 11.3-6	100-42
etrachloroethane	1.00E-07	0.00000	0.00000	0.00000	0.00000	Table 11.3-6	127-18
richloroethane	1.00E-07	0.00000	0.00000	0.00000	0.00000	Table 11.3-6	71-55
oluene	2.50E-04	0.00206	0.00903	0.00206	0.00903	Table 11.3-6	108-88
inyl acetate	1.00E-07	0.00000	0.00000	0.00000	0.00000	Table 11.3-6	108-05
richlorofluoromethane	1.40E-05	0.00012	0.00051	0.00000	0.00051	Table 11.3-6	75-69

⁽¹⁾ HF emissions factor from material testing and is material specific instead of fuel specific.

⁽²⁾ SO2 stack test results indicate 11.61 pounds per hour as the highest actual emission value. Emission factor above based on stack test result plus 20%. The emission factor is back calculated from the factored emissions testing and the operating rate per hour.

Checked By: AM Date: 02/08/2019

By: LMM
Date: 02/08/2019
Kiln No. 2
Maximum Emissions

Pollutant		Emissions		
	Uncontroll		Contr	olled
	(lb/hr)	(tpy)	(lb/hr)	(tpy)
PM*	9.50	65.04	9.50	65.04
PM10*	9.50	50.59	9.50	50.59
PM2.5	7.18	31.44	7.18	31,44
SO2	13.93	61.07	13.93	61.07
NOx	4.21	18.43	4.21	18.43
CO	9.90	43.36	9.90	43,36
VOC	0.20	0.87	0.20	0.87
HF	18.98	83.11	18.98	83.11
HCL	1.40	6.14	1.40	6.14
Volatile Organics				
1,1-dichloroethane	0.00004	0.00018	0.00004	0.0001
1,1,1-trichloroethane	0.00014	0.00061	0.00014	0.0006
1,4-dichlorobenzene	0.00040	0.00173	0.00040	0.0017
2-butanone	0.00206	0.00903	0.00206	0.0090
2-hexanone	0.00070	0.00307	0.00070	0.0030
2-methylnaphthalene	0.00047	0.00206	0.00047	0.0020
2-methylphenol	0.00002	0.00008	0.00002	0.0000
Acetone	0.01403	0.06143	0.01403	0.0614
Acrylonitrile	0.00000	0.00000	0.00000	0.0000
Benzene	0.02393	0.10479	0.02393	0.1047
Benzoic acid	0.00206	0.00903	0.00206	0.0090
Bis(2-ethylhexy)phthalate	0.01650	0.07227	0.01650	0.0722
Bromomethane	0.00020	0.00087	0.00020	0.0008
Butylbenzylphthalate	0.00015	0.00065	0.00015	0.0006
Carbon disulfide	0.00035	0.00155	0.00035	0.0015
Carbon tetrachloride	0.00000	0.00000	0.00000	0.0000
Chlorine	0.01073	0.04698	0.01073	0.0469
Chlorobenzene	0.00017	0.00076	0.00017	0.0007
Chloroethane	0.00470	0.02060	0.00470	0.0206
Chloroform	0.00000	0.00000	0.00000	0.0000
Chloromethane	0.00553	0.02421	0.00553	0.0242
Dibenzofuran	0.00000	0.00001	0.00000	0.0000
Di-n-butylphthalate	0.00116	0.00506	0.00116	0.0050
Di-n-octylphthalate	0.00010	0.00043	0.00010	0.0004
Diethylphthalate	0.00198	0.00867	0.00198	0.0086
Dimethylphthalate	0.00001	0.00003	0.00001	0.0000
Ethylbenzene	0.00036	0.00159	0.00036	0.0015
odomethane	0.00077	0.00336	0.00077	0.0033
sophorone	0.00025	0.00108	0.00025	0.0010
M-/p-xylene	0.00107	0.00470	0,00107	0.0047
Methylene chloride	0.00001	0.00003	0.00001	0.0000
Vaphthalene	0.00054	0.00235	0.00054	0.0023
)-xylene	0.00048	0.00210	0.00048	0.0021
henol	0.00071	0.00311	0.00071	0.0031
tyrene	0.00017	0.00072	0.00017	0.0007
etrachloroethane	0.00002	0.00010	0.00002	0.00010
richloroethane	0.00000	0.00000	0.00000	0.0000
oluene	0.00206	0.00903	0.00206	0.0090
'inyl acetate	0.00000	0.00000	0.00000	0.00000
richlorofluoromethane	0.00012	0.00051	0.00012	0.0005
IAP Total (not HF or HCL)	0.07	0.32	0.07	0.32

^{*} Regulation 7 Limit

By: LMM Date: 02/08/2019 Periodic Kiln

Checked By: AM Date: 02/08/2019

Tons Fired

TPY(1) 72 TPH(1)

Natural Gas Firing

Rounding to =

2

Pollutant	EF (3)		Emis	ssions		EF	1
		Uncon			rolled	Reference	
	lb/T	(lb/hr)	(tpy)	(lb/hr)	(tpy)	1	
PM	0.96	1.92	0.03	1.92	0.03	Table 11.3-2	1
PM10	0.87	1.74	0.03	1.74	0.03	Table 11.3-2	1
PM2.5(=PM10)	ND	1.74	0.03	1.74	0.03	Table 11.3-2	1
SO2	0.67	1.34	0.02	1.34	0.02	Table 11.3-3	1
NOx	0.35	0.70	0.01	0.70	0.01	Table 11.3-3	1
CO	1.2	2.40	0.04	2.40	0.04	Table 11.3-3	1
VOC	0.024	0.05	0.01	0.05	0.01	Table 11.3-5	1
HF (2)	2.3	4.60	0.08	4.60	0.08	Table 11.5 5	1
HCL	0.17	0.34	0.01	0.34	0.01	Table 11.3-4	1
Volitaile Organics	Rounded to	5		0.54	0.01	Table 11.5-4	CAS No.
l, I-dichloroethane	ND						CAS NO.
1,1,1-trichloroethane	4.70E-06	0.00001	0.00000	0.00001	0.00000	Table 11.3-6	71-55-6
1,4-dichlorobenzene	4.80E-05	0.00010	0.00000	0.00010	0.00000	Table 11.3-6	106-46-
2-butanone	2.20E-04	0.00044	0.00001	0.00044	0.00001	Table 11.3-6	78-93-3
2-hexanone	8.50E-05	0.00017	0.00000	0.00017	0.00000	Table 11.3-6	591-78-
2-methylnaphthalene	5.70E-05	0.00017	0.00000	0.00017	0.00000	Table 11.3-6	91-57-6
2-methylphenol	ND	0.00011	3.00000	0.00011	0.00000	1 aute 11.3-0	91-3/-0
Acetone	1.70E-03	0.00340	0.00006	0.00340	0.00006	Table 11.3-6	67-64-1
Acrylonitrile	ND	0.00340	0.00000	0,00340	0.00000	1 able 11.3-0	07-04-1
Benzene	2.90E-03	0.00580	0.00010	0.00580	0.00010	Table 11.3-6	71 42 0
Benzoic acid	ND	0.00380	0.00010	0.00380	0.00010	1 able 11.3-6	71-43-2
Bis(2-ethylhexy)phthalate	2.00E-03	0.00400	0.00007	0.00400	0.00007	T.11. 11.2.6	117.01
Bromomethane	ND	0.00400	0.00007	0.00400	0.00007	Table 11.3-6	117-81-
Butylbenzylphthalate	1.80E-05	0.00004	0.00000	0.00004	0.00000	T-11-11-2-6	05.60.5
Carbon disulfide	4.30E-05	0.00009	0.00000	0.00004	0.00000	Table 11.3-6	85-68-7
Carbon tetrachloride	ND	0.00003	0.00000	0.00009	0.00000	Table 11.3-6	75-15-0
Chlorine	1.30E-03	0.00260	0.00005	0.00260	0.00005	T-bl. 11.2.6	7702 60
Chlorobenzene	ND ND	0.00200	0.00003	0.00260	0.00003	Table 11.3-6	7782-50-
Chloroethane	5.70E-04	0.00114	0.00002	0.00114	0.00002	T.11. 11.2.6	75.00.0
Chloroform	ND ND	0.00114	0.00002	0.00114	0.00002	Table 11.3-6	75-00-3
Chloromethane	6.70E-04	0.00134	0.00002	0.00124	0.00002	T 11 11 2 6	
Dibenzofuran	0.70E-04 ND	0.00134	0.00002	0.00134	0.00002	Table 11.3-6	74-87-3
Di-n-butylphthalate	1.40E-04	0.00028	0.00001	0.00020	0.00001	T.11 11 2 4	01.51.5
Di-n-octylphthalate	ND	0.00028	0.00001	0.00028	0.00001	Table 11.3-6	84-74-2
Diethylphthalate	2.40E-04	0.00048	0.00001	0.00040	0.00001	m 11 11 4 4	
Dimethylphthalate	2.40E-04 ND	0.00048	0.00001	0.00048	0.00001	Table 11.3-6	84-66-2
Ethylbenzene	4.40E-05	0.00009	0.00000	0.00000	0.00000	m 11 11 11 1	
odomethane	9.30E-05	0.00009	0.00000	0.00009	0.00000	Table 11.3-6	100-41-4
sophorone	9.30E-03 ND	0.00019	0.00000	0.00019	0.00000	Table 11.3-6	74-88-4
M-/p-xylene	6.70E-05	0.00012	0.00000	0.00012			
Methylene chloride	0.70E-05 ND	0.00013	0.00000	0.00013	0.00000	Table 11.3-6	1330-20-
Vaphthalene		0.00013					
Naphthalene D-xylene	6.50E-05	0.00013	0.00000	0.00013	0.00000	Table 11.3-6	91-20-3
henol henol	5.80E-05	0.00012	0.00000	0.00012	0.00000	Table 11.3-6	95-47-6
tyrene	8.60E-05	0.00017	0.00000	0.00017	0.00000	Table 11.3-6	108-95-2
	2.00E-05	0.00004	0.00000	0.00004	0.00000	Table 11.3-6	100-42-5
etrachloroethane	2.80E-06	0.00001	0.00000	0.00001	0.00000	Table 11.3-6	127-18-4
richloroethane	ND						1 100
oluene	1.60E-04	0.00032	0.00001	0.00032	0.00001	Table 11.3-6	108-88-3
/inyl acetate	ND			0.00			
richlorofluoromethane	ND						
HAP Total (not HF or HCL)		0.0170	0.0003	0.0170	0.0003		

⁽¹⁾ The periodic kiln operates in a batch mode with up to two (2) tons per batch. Yearly estimated production is based on 36 batches per year. It is assumed that the emissions occur in one hour of the 24 hour emissions cycle.

(2) HF emissions factor from material testing and is material specific instead of fuel specific.

(3) Unless noted the emission factors are from AP-42.

Continental Brick
Martinsburg Facility

By: LMM	Checked By: AM
Date: 02/08/2019 Periodic Kiln	Date: 02/08/2019

Natural Gas Emissions Based on Combustion

Heat Content of Fuel =	1,000	BTU/scf	Standard
BTU of Total System =	500,000	Btu/hr	Estimated
No. of Burners =	2		Counted
Burner Rating =	250,000	MM Btu/hr	Estimated
Firing Time for Batch =	2	Days	
	48	Hours	
Number of Batches per Year =	36		
Hours of Operation =	72	hrs/year	
Fuel Usage =	0.0005	106 scf per h	nour
	0.04	106 scf/year	

Note: the flames do not have any controls for emissions: therefore, uncontrolled is equal to potential maximum emissions.

			Rounding to =	2
Emission	EF	Emi	ssions	EF
Type	lb/10 ⁶ scf	lb/hr	tons/year	Reference
PM	7.6	0.01	0.01	Table 1.4-2
PM10 ⁽¹⁾	7.6	0.01	0.01	See Note 1
PM2.5 ⁽¹⁾	7.6	0.01	0.01	See Note 1
SO ₂	0.6	0.01	0.01	Table 1.4-2
NOx	100	0.05	0.01	Table 1.4-1
СО	84	0.05	0.01	Table 1.4-1
VOC	5.5	0.01	0.01	Table 1.4-2
Hazardous Air Pollutants				
HAPS- VOC(2)	1.88	0.01	0.01	Table 1,4-3
HAPS - METAL(3)	0.00556	0.01	0.01	Table 1.4-4

Rounding to =

2

Notes:

1 - It is assumed that PM10 and PM2.5 are equal to TSP (PM).
2 - Total VOC HAPS as listed in Table 1.4-3 (AP-42).
3 - Total METAL HAPS as listed in Table 1.4-4 (AP-42).

NOTE: Emissions from Kiln emissions factors result in higher emissions so the requested limits are based on the kiln emission values.

By: LMM Date: 02/08/2019

Checked By: AM Date: 02/08/2019

Rotary Sand Dryer (RSD)

Sand Dryer Emissions Factor (AP-42, Section 11.19.1)

Dryer (Capacity
tons/hour	tons/year
1	1,200

			Rounding to	= 2
Emission	EF	Em	issions	EF
Туре	lb/ton	lb/hr	tons/vear	Reference
PM	2.0	2.00	1.20	Table 11.19.1-1
PM10	2.0	2.00	1.20	See Note 1
PM2.5	2.0	2.00	1.20	See Note 1
NOx	0.031	0.03	0.02	Table 11.19.1-1

Natural Gas Combustion (AP-42, Section 1.4)

Note: the flames do not have any controls for emissions: therefore, uncontrolled is equal to potential

BTU of Total System =	1,000,000	Btu/hr	Estimated
Burner Rating =	1	MM Btu/hr	Estimated
Hours of Operation =	8,760	hrs/year	Estimated
Heat Content of Fuel =	1,000	BTU/scf	Standard
Fuel Usage =	0.0010	106 sef per hour	
	8 76	106 scf/year	

Emission	EF	Em	issions	EF
Туре	lb/10 ⁶ scf	lb/hr	tons/year	Reference
PM	7.6	0.01	0.04	Table 1.4-2
PM10 ⁽¹⁾	7.6	0.01	0.04	See Note 1
PM2.5 ⁽¹⁾	7.6	0.01	0.04	See Note 1
SO ₂	0.6	0.01	0.01	Table 1.4-2
NOx	100	0.10	0.44	Table 1.4-1
C0	84	0.09	0.37	Table 1.4-1
VOC	5.5	0.01	0.03	Table 1.4-2
Hazardous Air Pollutants			A	
HAPS- VOC(2)	1.88	0.01	0.01	Table 1.4-3
HAPS - METAL(3)	0.00556	0.01	0.01	Table 1.4-4

Notes:

- 1 Emission factor from AP-42, Table 11.19.1-1 and is is in lb/ton. It is assumed that PM10 and PM2.5 are equal to PM.
 2 Total VOC HAPS as listed in Table 1.4-3 (AP-42).
 3 Total METAL HAPS as listed in Table 1.4-4 (AP-42).

Total Dryer Emissions (Maximum Emissions between Combustion and Sand Dryer Emissions Above)

Maximu	m Emissions fro	m RSD	
Emission	Emissions		
Type	lb/hr	tons/year	
PM	2.00	1.20	
PM10	2.00	1.20	
PM2.5	2.00	1.20	
SO ₂	0.01	0.01	
NOx	0.10	0.44	
CO	0.09	0.37	
VOC	0.01	0.03	
Hazardous Air Polluta	ints		
HAPS- VOC(2)	0.01	0.01	
HAPS - METAL(3)	0.01	0.01	

By: LMM Date: 02/08/2019 Checked By: AM Date: 02/08/2019

Batch or Continuous Drops: Sand transfer into and out of rotary sand dryer

Defining transfer point empirical expression variables, where: $\begin{array}{ccc} c &= & ? & lb/ton \\ k &= & 0.74 & dimensionless \end{array}$ c = k = U = M =

 $\begin{array}{ccc} U = & 7 & mph \\ M = & 1 & \% \\ Calculating transfer point emission factor using Equation 1: \\ E = & 0.0097 & lb/ton \end{array}$

Transfer Capacities
tons/hour tons/year

Rounding to =

ID	Co	ntrol		Emis	ssions	
	Device		Uncontrolled		Controlled	
	Type	Effic(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
RSDTP1	N	0	0.010	0.006	0.010	0.006
RSDTP2	N	0	0.010	0,006	0.010	0.006
		PM	0.010	0.006	0.010	0.006
		PM10	0.005	0.003	0.005	0.003
		PM2.5	0.001	0.0004	0.001	0.000-

Reference: AP-42 13.2.4, Aggregate Handling and Storage Piles K factor for equation:

PM (<30 micons) = PM10 (<10 micons) = PM2.5 (<2.5 micons) =

0.74 0.35 0.053

Total Emis	ssions for RSD (Operation	
Emission	Emissions		
Type	lb/hr	tons/year	
PM	2.01	1.21	
PM10	2.00	1.20	
PM2.5	2.00	1.20	
SO ₂	0.01	0.01	
NOx	0.10	0.44	
CO	0.09	0.37	
VOC	0.01	0.03	
Hazardous Air Polluta	ints		
HAPS- VOC(2)	0.01	0.01	
HAPS - METAL(3)	0.01	0.01	

By: LMM
Date: 02/08/2019

Checked By: AM
Date: 02/08/2019

			Shale Testing					
Reference	Date Sampled	Date Analyzed	Fluorid	Fluoride Concentration (ug/g)				
No./Location			Dried	Fired	Released (Dried - Fired)	HF Release (ug/g)		
Original Shale Testi	ing							
Pile 1, Front	NA	10/21/2009	888.8	396.6	492.2	518.3		
Pile 1, Back	NA	10/21/2009	1,012.0	188.3	823.7	867.4		
Pile 2	NA	10/21/2009	904.1	210.3	693.8	730.6		
Pile 3, Front	NA	10/21/2009	1,037.3	258.9	778.4	819.7		
Pile 3, Back	NA	10/21/2009	986.8	295.9	690.9	727.6		
Cont. Brick	NA	10/27/2008	1,199.0	525.9	673.1	708.8		
Cont. Brick	NA	10/27/2008	1,220.3	363.1	857.2	902.7		
Production Brick Te						902.1		
1*	8/5/2010	8/5/2010	1,200.0	263.0	937.0	986.7		
2*	9/1/2010	9/1/2010	1,136.1	374.9	761.2	801.6		
3*	10/14/2010	10/14/2010	961.9	177.4	784.5	826.1		
4*	11/4/2010	11/4/2010	1,147.0	233.0	914.0	962.5		
5*	11/30/2010	11/30/2010	1,037.4	274.9	762.5	803.0		
6	6/24/2011	7/13/2011	895.9	264.1	631.8	665.3		
7	8/18/2011	8/29/2011	1,058.9	177.1	881.8	928.6		
8	9/6/2011	9/16/2011	1,066.6	182.7	883.9	930.8		
9	10/13/2011	10/26/2011	1,055.0	309.8	745.2	784.7		
10	10/17/2011	10/26/2011	1,056.7	362.6	694.1	730.9		
11	10/31/2011	11/9/2011	1,114.8	348.9	765.9	806.5		
12	11/7/2011	11/10/2011	1,064.3	272.5	791.8	833.8		
13	6/1/2012	6/21/2012	618.1	122.2	495.9	522.2		
14	8/1/2012	8/8/2012	1,256.5	164.4	1,092.1			
15	9/5/2012	9/17/2012	1,016.3	161.5	854.8	1,150.0		
16	10/6/2012	11/12/2012	957.0	80.2	876.8	900.2		
17	5/1/2013	5/17/2013	886.7	145.4	741.3	923.3		
18	7/2/2013	7/3/2013	1,157.9	200.4		780.6		
19	8/5/2013	8/23/2013	997.2	126.1	957.5	1,008.3		
20	8/29/2013	9/4/2013	969.6	157.9	871.1	917.3		
21	10/8/2013	10/14/2013	959.2	201.2	811.7 758.0	854.8 798.2		

^{*} Sample date not provided on report so test date shown as sample date also.

Previou	is Limit
902.7	ug/g
0.0009027	g/g
1.81	lbs per ton

Request	ted Limit
1,150.0	ug/g
0.00115	g/g
2.30	lbs per ton

POTESTA & ASSOCIATES, INC. Project No.: 0101-18-0025-002

By: LMM

Checked By: AM Date: 02/08/2019

Date: 02/08/2019

Batch or Continuous Drops: Shale Transfers

Defining transfer point empirical expression variables, where:

e = k = U = ? 0.74 7 10 lb/ton dimensionless mph %

Calculating transfer point emission factor using Equation 1: E = 0.0004 lb/ton

Transfer	Capacities
tons/hour	tons/year
75	153,300

ID	(Control		Emissions	ounding to =	
		Device	Uncontro		Contr	olled
	Type	Effic(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
TPI	MD	0	0.03	0.03	0.03	0.03
TP2	FE	80	0.03	0.03	0.01	0.01
TP3	FE	80	0.03	0.03	0.01	0.01
TP4	FE	80	0.03	0.03	0.01	0.01
TP5	FE	80	0.03	0.03	0.01	0.01
TP6	FE	80	0.03	0.03	0.01	0.01
TP7	FE	80	0.03	0.03	0.01	0.01
TP8	FE	80	0.03	0.03	0.01	0.01
TP9	FE	80	0.03	0.03	0.01	0.01
TP10	FE	80	0.03	0.03	0.01	0.01
TP11	FE	80	0.03	0.03	0.01	0.01
TP12	FE	80	0.03	0.03	0.01	0.01
TP13	FE	80	0.03	0.03	0.01	0.01
TP14	FE	80	0.03	0.03	0.01	0.01
TP15	FE	80	0.03	0.03	0.01	0.01
TP16	FE	80	0.03	0.03	0.01	0.01
TP17	FE	80	0.03	0.03	0.01	0.01
TP18	FE	80	0.03	0.03	0.01	0.01
TP19	FE	80	0.03	0.03	0.01	0.01
TP20	FE	80	0.03	0.03	0.01	0.01
TP21	FE	80	0.03	0.03	0.01	0.01
TP22	FE	80	0.03	0.03	0.01	0.01
TP23	FE	80	0.03	0.03	0.01	0.01
TP24	FE	80	0.03	0.03	0.01	0.01
TP25	FE	80	0.03	0.03	0.01	0.01
TP26	FE	80	0.03	0.03	0.01	0.01
TP27	FE	80	0.03	0.03	0.01	0.01
TP28	FE	80	0.03	0.03	0.01	0.01
TP29	FE	80	0.03	0.03	0.01	0.01
TP30	FE	80	0.03	0.03	0.01	0.01
TP31	FE	80	0.03	0.03	0.01	0.01
TP32	FE	80	0.03	0.03	0.01	0.01
		PM	0.96	0.96	0.34	0.34
		PM10	0.45	0.45	0.16	0.16
		PM2.5	0.07	0.07	0.02	0.02

0.74

0.35

0.053

POTESTA & ASSOCIATES, INC. Project No.: 0101-18-0025-002

By: LMM	Checked By: AM
Date: 02/08/2019	Date: 02/08/201

PM Grinding and Screening (CR1 and SC1-4)

Rounding to =

2

ID	Transfe	r Capacities	e	C	ontrol	Emissions			
to				Device		Uncontrolled		Controlled	
	tons/hour	tons/year	lb/T	Type	Effic(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
PM	75.00	153,300	0.62	FE	80	46.50	47.52	9.30	9.50
PM10	75.00	153,300	0.32	FE	80	24.00	24.53	4.80	4.91
PM2.5	75.00	153,300	0.04	FE	80	3.00	3.07	0.60	0.61

Emission Factor Reference and Determination

The emission factor is based on AP-42, Table 11.3-1, for Grinding and Screening Operations with Fabric Filter. The reference states this is for material with a 6.5 percent moisture content. The estimated fabric filter control is deducted out of the stated emissions factor.

	PM	PM10	PM2.5
Grinding and Screening Operations with Fabric Filter	0.0062	0.0032	NA
Assumed Control Percentage for Fabric Filter		99	
Estimated Grinding and Screening Operations without Fabric Filter	0.62	0.32	0.04

POTESTA & ASSOCIATES, INC. Project No.: 0101-18-0025-002

By: LMM	Checked By: AM
Date: 02/08/2019	Date: 02/08/2019

Brick Forming

Rounding to =

)

ID	Transfe	r Capacities	e	C	ontrol	Emissions			
				Device		Uncontrolled		Controlled	
	tons/hour	tons/year	lb/T	Type	Effic(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
PM	17.50	153,300	0.72	FE	80	12.60	55.19	2.52	11.04
PM10	17.50	153,300	0.36	FE	80	6.30	27.59	1.26	5.52
PM2.5	17.50	153,300	0.05	FE	80	0.88	3.83	0.18	0.77

Emission Factor Reference and Determination

The emission factor is based on AP-42, Table 11.3-1, for Extrusion Line with Fabric Filter. The estimated fabric filter control is deducted out of the stated emissions factor.

	PM*	PM10	PM2.5
Extrusion Line with Fabric Filter	NA	0.0036	NA
Assumed Control Percentage for Fabric Filter		99	
Estimated Grinding and Screening Operations without Fabric Filter	0.72	0.36	0.05

^{*}PM estimated at two times the PM10 value.

POTESTA & ASSOCIATES, INC. Project No.: 0101-18-0025-002

By: LMM

Date: 02/08/2019

Checked By: AM Date: 02/08/2019

Batch or Continuous Drops: Coal Fuel System

Defining transfer point empirical expression variables, where:

Max Hours = 8760 hrs/yr

e = ? lb/ton k = 0.74 dimensionless

 $U = 7 \quad mph$

M = 5 %

Calculating transfer point emission factor using Equation 1:

E = 0.0010 lb/ton

ID	Transfer	Capacities		Control		Emi	Rounding to = ssions	
				Device	Uncor	trolled	Controlled	
	tons/hour	tons/year	Type	Effic(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
CTP1	1 100 13,14	13,140	MD	0	0.1000	0.0066	0.1000	0.0066
CTP2	100	13,140	PE	50	0.1000	0.0066	0.0500	0.0033
CTP3	100	13,140	PE	50	0.1000	0.0066	0.0500	0.0033
CTP4	100	13,140	FE	80	0.1000	0.0066	0.0200	0.0013
CTP5	1.5	13,140	BAG	95	0.0015	0.0066	0.00008	0.0003
CTP6	1.5	13,140	BAG	95	0.0015	0.0066	0.00008	0.0003
CTP7	1.5	13,140	FE	80	0.0015	0.0066	0.0003	0.0013
CTP8	1.5	13,140	FE	80	0.0015	0.0066	0.0003	0.0013
CTP9	1.5	13,140	FE	80	0.0015	0.0066	0.0003	0.0013
CTP10	1.5	13,140	FE	80	0.0015	0.0066	0.0003	0.0013
CTP11	1.5	13,140	FE	80	0.0015	0.0066	0.0003	0.0013
				PM	0.41050	0.07227	0.22166	0.02167
				PM10	0.19416	0.03418	0.10484	0.01025
				PM2.5	0.02940	0.00518	0.01588	0.00155

Reference: AP-42 13.2.4, Aggregate Handling and Storage Piles

K factor for equation:

PM (<30 micons) = 0.74

PM10 (<10 micons) = 0.35

PM2.5 (<2.5 micons) = 0.053

Coal Dry Grinding

Rounding to =

2

ID Transfe		Transfer Capacities		Con	trol		Emiss	ions	
				Device		Uncontrolled		Controlled	
	tons/hour	tons/year	lb/T	Туре	Effic(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
PM	1.50	13,140	28.80	BAG	95	43.20	189.22	2.16	9.46
PM10	1.50	13,140	26.00	BAG	95	39.00	170.82	1.95	8.54
PM2.5	1.50	13,140	26.00	BAG	95	39.00	170.82	1.95	8.54

Emission Factor Reference

The emission factor is based on AP-42, Table 11.24-2, Dry Grinding with Air Conveying and/or Classification.

	PM	PM10	PM2.5*
Dry Grinding with Air Conveying and/or Classification	28.8	26	26

^{*} PM2.5 assumed to be equal to PM10.

Coal Fuel System Total Emissions

	Emissions						
	Uncon	trolled	Contro	lled			
	(lb/hr)	(tpy)	(lb/hr)	(tpy)			
PM	43.61	189.29	2.38	9.48			
PM10	39.19	170.85	2.05	8.55			
PM2.5	39.03	170.83	1.97	8.54			

POTESTA & ASSOCIATES, INC. Project No.: 0101-18-0025-002

By: LMM Date: 02/08/2019

Checked By: AM Date: 02/08/2019

Sand Dryer (Natural Gas Fueled)

Fuel Use =	5,000	cf/hr	Estimated
Heat Content of Fuel =	1,000	BTU/scf	Standard
BTU of Total System =	5,000,000	Btu/hr	Estimated
No. of Burners =	5		Counted
Burner Rating =	1,000,000	MM Btu/hr	Estimated
Hours of Operation =	8,760	hrs/year	
Fuel Usage =	0.0050	106 scf per hour	
	43.80	10 ⁶ scf/year	

Note: the flames do not have any controls for emissions: therefore, uncontrolled is equal to potential maximum emissions.

			Rounding to =	2
Emission	EF ^(a)	Em	issions	EF
Type	lb/10 ⁶ scf	lb/hr	tons/year	Reference
PM	7.6	0.04	0.17	Table 1.4-2
PM10 ⁽¹⁾	7.6	0.04	0.17	See Note 1
PM2.5 ⁽¹⁾	7.6	0.04	0.17	See Note 1
SO ₂	0.6	0.01	0.02	Table 1.4-2
NOx	100	0.50	2.19	Table 1.4-1
CO	84	0.42	1.84	Table 1.4-1
VOC	5.5	0.03	0.13	Table 1.4-2
Hazardous Air Pollutants				
HAPS- VOC ⁽²⁾	1.88	0.01	0.05	Table 1.4-3
HAPS - METAL ⁽³⁾	0.00556	0.01	0.01	Table 1.4-4

Notes

- 1 It is assumed that PM10 and PM2.5 are equal to TSP (PM).
- 2 Total VOC HAPS as listed in Table 1.4-3 (AP-42).
- 3 Total METAL HAPS as listed in Table 1.4-4 (AP-42).

Batch or Continuous Drops: Sand into Stockpiles and Moved Around Site (i.e. to dryer or into plant)

Defining transfer point empirical expression variables, where:

e = ? lb/ton k = 0.74 dimensionless U = 7 mph M = 1 %

 $\begin{array}{ccc} \mbox{Calculating transfer point emission factor using Equation 1:} \\ E = & 0.0097 & \mbox{Ib/ton} \end{array}$

Transfer Capacities				
tons/hour	tons/year			
100	1,200			

ID	Co	ntrol		Emis	Rounding to =	
	Device		Uncontrolled		Controlled	
	Type	Effic(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
TP33	MD	0	0.970	0.006	0.970	0.006
		PM	0.970	0.006	0.970	0.006
		PM10	0.46	0.0028	0.46	0.002
		PM2.5	0.069	0.0004	0.069	0.0004

Reference: AP-42 13.2.4, Aggregate Handling and Storage Piles

K factor for equation:

PM (<30 micons) = 0.74 PM10 (<10 micons) = 0.35 PM2.5 (<2.5 micons) = 0.053

1 W12.5 (~2.5 IIIICOIIS) =

POTESTA & ASSOCIATES, INC. Project No.: 0101-18-0025-002

 By: LMM
 Checked By: AM

 Date: 02/08/2019
 Date: 02/08/2019

Stockpiles

Defining open stockpile empirical expression variables, where:

Shale/Sand

e = ? lb/day/acre s = 1 %

p = 148 days f = 25 %

Calculating open stockpile emission factor using Equation 2:

e = 1.74 lb/day/acre

Rounding to =

2

Stockpile		Stockpile Contr			Emi	ssions	
ID Area (square fee		Device		Uncontrolled		Contr	rolled
		Type	Effic(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
OS1	392,040	N	0	0.65	2.86	0.65	2.86
OS2	43,560	N	0	0.07	0.32	0.07	0.32
					Totals		
			PM	0.72	3.18	0.72	3.18
			PM10	0.34	1.50	0.34	1.50
			PM2.5	0.05	0.23	0.05	0.23

OS1 estimated at 9 acres and OS2 estimated at 1 acre max. Covered coal and sand stockpiles are assumed to not have emissions.

By: LMM Date: 02/08/2019

Checked By: AM Date: 02/08/2019

Vehicle Activity

Vehicle Roadway	of Vehicles		Miles	Control			Rounding to =			
·						Emissi		ions		
			Per Trip	p Device			Uncont	rolled	Controlled	
	Per Hour	Per Year	(mi)	Type	Effic(%)		(lb/hr)	(tpy)	(lb/hr)	(tpy)
1	5	10,220	1	RWMW	75	PM	39.90	40.78	9.98	10.20
			3000		75	PM10	11.35	11.60	2.84	2.90
			19900		75	PM2.5	1.15	1.18	0.29	0.30
2	1	365	0.5	RWMW	75	PM	4.12	0.75	1.03	0.19
					75	PM10	1.22	0.22	0.31	0.06
					75	PM2.5	0.12	0.02	0.03	0.01
3	1	7,227	0.5	RWMW	75	PM	4.12	14.87	1.03	3.72
					75	PM10	1.22	4.39	0.31	1.10
					75	PM2.5	0.12	0.43	0.03	0.11
4	21	43,013	0.25	RWMW	75	PM	41.98	42.91	10.50	10.73
					75	PM10	11.94	12.21	2.99	3.05
			A		75	PM2.5	1.21	1.24	0.30	0.31

Estimated Vehicle Travel Per Year									
Roadway	1	2	3	4					
	Pit Road	Delivery Road	Sales Exit	Endloader					
Trips per Hour	5	1	1	21.0					
Load Weight	15	20	20	4					
Total Weight/Yr	153,300	7,300	144,540	153,300					
Total Trips	10,220	365	7,227	43,013					

Totals									
PM	90.12	99.31	22.54	24.84					
PM10	25.73	28.42	6.45	7.11					
PM2.5	2.60	2.87	0.65	0.73					

AP-42, 13.2.2, Unpaved Roads

E=k(s/12)a(W	V/3) ^b [(365-P)/365)]		P	Rounding to =							
PM											
	1	2	3	4							
Input	Pit Road	Delivery Road	Sales Exit	Endloader	Reference						
k	4.9	4.9	4.9	4.9	Table 13.2.2-2						
S	8.3	10	10		Table 13.2.2-1						
a	0.7	0.7	0.7	0.7	Table 13.2.2-2						
W	50	40	40	50	Estimate						
b	0.45	0.45	0.45	0.45	Table 13.2.2-2						
P	148	148	148	148	DAQ (GP Ref)						
E =	7.98	8.23	8.23		Calc.						

PM10							
	1	2	3	4	ľ		
Input	Pit Road	Delivery Road	Sales Exit	Endloader			
k	1.5	1.5	1.5	1.5	Table 13.2.2-2		
S	8.3	10	10	8.3	Table 13.2.2-1		
a	0.9	0.9	0.9	0.9	Table 13.2.2-2		
W	50	40	40		Estimate		
b	0.45	0.45	0.45	0.45	Table 13.2.2-2		
P	148	148	148		DAQ (GP Ref)		
E =	2.27	2.43	2.43		Calc.		

PM2.5							
	1	2	3	4			
Input	Pit Road	Delivery Road	Sales Exit	Endloader			
k	0.15	0.15	0.15	0.15	Table 13.2.2-2		
S	8.3	10	10	8.3	Table 13.2.2-1		
a	0.9	0.9	0.9	0.9	Table 13.2.2-2		
W	50	40	40	50	Estimate		
b	0.45	0.45	0.45		Table 13.2.2-2		
P	148	148	148	148	DAQ (GP Ref)		
E =	0.23	0.24	0.24		Calc.		

POTESTA & ASSOCIATES, INC. Project No.: 0101-18-0025-002

 By: LMM
 Checked By: AM

 Date: 02/08/2019
 Date: 02/08/2019

Summary of CO2e Emissions

Facility Emissions

Emission Unit	CO2e (metric tons)	CO2 (short tons)	Exceed 100,000 metric tons CO2e?
Tunnel Kiln 1	29,755	32,799	
Tunnel Kiln 2	29,755	32,799	
Periodic Kiln	2	2	
Sand Dryer	2,390	2,634	
Rotary Sand Dryer	477	526	
Total	62,379	68,760	NO

Metric to Short Ton Conversion Divide By = 0.9072

POTESTA & ASSOCIATES, INC. Project No.: 0101-18-0025-002

By: LMM
Date: 02/08/2019

Checked By: AM
Date: 02/08/2019

Tunnel Kiln - CO2e Emissions from Natural Gas/Coal Combustion

	Per Each Kiln				
Potenti	ial Emissions	(Metric Ton	s)	1	
Fuel Type	CO2	CH4	N2O		
PNG/Coal	29,621.79	2.07	0.29	1	
100 yr GWP*	1	21	310	Total CO2e	
CO2e	29,621.79	43.51	89.61	29,755	
		One Kiln	Short Tons	32,799	

	Kiln Burners
30,000,000	btu/hr
1,000	btu/scf N.G.
8,760	hrs/yr
262,800,000	scf of natural gas burned per year per kiln
6,570	tons coal burned per year per kiln

Maximum yearly tons of fuel coal for both tunnel kilns = 13,140

 $CO2 = 1 \times 10^{-3}$ *mass of fuel*HHV*EF (Eq. C-2a) CH4 or N2O = 1×10^{-3} *mass of fuel*HHV*EF (Eq. C-9a)

Natural Gas Combustion

1.00E-03 conversion factor from kilograms to metric tons	
262,800,000 cubic feet of natural gas burned annually	
1.028E-03 HHV MMBtu/scf natural gas high heating value (HHV) from	Table C-1
53.02 kg CO2/MMBtu natural gas emission factor from Table C-1	
1.00E-03 kg CH4/MMBtu natural gas emission factor from Table C-2	
1.00E-04 kg N2O/MMBtu natural gas emission factor from Table C-2	

Coal Combustion

1.00E-03	conversion factor from ki	lograms to metric tons
6,570	tons of coal burned annua	
24.93	HHV MMBtu/short ton	bitunimous coal high heating value (HHV) from Table C-1
93.4	kg CO2/MMBtu	bituminous coal emission factor from Table C-1
1.10E-02	kg CH4/MMBtu	bituminous coal emission factor from Table C-2
1.60E-03	kg N2O/MMBtu	bituminous coal emission factor from Table C-2

^{*}Global Warming Potentials (GWP) Referenced from 40CFR§98 Subpart A Table A-1

POTESTA & ASSOCIATES, INC. Project No.: 0101-18-0025-002

By: LMM
Date: 02/08/2019

Checked By: AM
Date: 02/08/2019

Periodic Kiln - CO2e Emissions from Natural Gas

Potentia				
Fuel Type	CO2	CH4	N2O	
Natural Gas	1.96	3.70E-05	3.70E-06	
100 yr GWP*	1	21	310	Total CO2e
CO2e	1.96	0.001	0.001	2
			Short Tons	2

	AP1 Burner
36,000	scf of natural gas burned per year
500,000	btu/hr
300,000	burner
72	hrs/yr
1,000	btu/scf
1,000	N.G.

^{*}Global Warming Potentials (GWP) Referenced from 40CFR§98 Subpart A Table A-1

CO2 = 1×10^{-3} *mass of fuel*HHV*EF (Eq. C-2a) CH4 or N2O = 1×10^{-3} *mass of fuel*HHV*EF (Eq. C-9a)

Natural Gas Combustion

conversion factor from	n kilograms to metric tons
cubic feet of natural g	gas burned annually
HHV MMBtu/scf	natural gas high heating value (HHV) from Table C-1
kg CO2/MMBtu	natural gas emission factor from Table C-1
kg CH4/MMBtu	natural gas emission factor from Table C-2
kg N2O/MMBtu	natural gas emission factor from Table C-2
	cubic feet of natural g HHV MMBtu/scf kg CO2/MMBtu kg CH4/MMBtu

POTESTA & ASSOCIATES, INC. Project No.: 0101-18-0025-002

By: LMM Date: 02/08/2019

Checked By: AM Date: 02/08/2019

Sand Dryer - CO2e Emissions from Natural Gas

Poten				
Fuel Type	CO2	СН4	N2O	
Natural Gas	2,387.30	0.05	0.005	
00 yr GWP*	1	21	310	Total CO2e
CO2e	2,387.30	0.95	1.40	2,390
			Short Tons	2,634

AP1 Burner

43,800,000 scf of natural gas burned per year

5,000,000 btu/hr
burner

8,760 hrs/yr

1,000 btu/scf
N.G.

 $CO2 = 1 \times 10^{-3}$ *mass of fuel*HHV*EF (Eq. C-2a)

CH4 or N2O = 1×10^{-3} mass of fuel*HHV*EF (Eq. C-9a)

Natural Gas Combustion

1.00E-03 conversion factor from kilograms to metric tons

43,800,000 cubic feet of natural gas burned annually

1.028E-03 HHV MMBtu/scf

natural gas high heating value (HHV) from Table C-1

53.02 kg CO2/MMBtu

natural gas emission factor from Table C-1

1.00E-03 kg CH4/MMBtu

natural gas emission factor from Table C-2

1.00E-04 kg N2O/MMBtu

natural gas emission factor from Table C-2

^{*}Global Warming Potentials (GWP) Referenced from 40CFR§98 Subpart A Table A-1

POTESTA & ASSOCIATES, INC.

Project No.: 0101-18-0025-002

By: LMM

Date: 02/08/2019

Checked By: AM Date: 02/08/2019

Rotary Sand Dryer - CO2e Emissions from Natural Gas

Poten	tial Emissions	(Metric Tor	ıs)	
Fuel Type	CO2	СН4	N2O	
Natural Gas	476.89	0.01	0.001	
100 yr GWP*	1	25	298	Total CO2e
CO2e	476.89	0.22	0.27	477
			Short Tons	526

Burner Information 8,760,000 scf of natural gas burned per year 1,000,000 btu/hr burner 8,760 hrs/yr 1,000 btu/scf N.G.

 $CO2 = 1 \times 10^{-3}$ *mass of fuel*HHV*EF (Eq. C-2a) CH4 or N2O = 1×10^{-3} mass of fuel*HHV*EF (Eq. C-9a)

Natural Gas Combustion

1.00E-03	conversion factor from kilograms to metric tons	
8,760,000	cubic feet of natural gas burned annually	
1.026E-03	HHV MMBtu/scf	natural gas high heating value (HHV) from Table C-1
53.06	kg CO2/MMBtu	natural gas emission factor from Table C-1
1.00E-03	kg CH4/MMBtu	natural gas emission factor from Table C-2
1.00E-04	kg N2O/MMBtu	natural gas emission factor from Table C-2

^{*}Global Warming Potentials (GWP) Referenced from 40CFR§98 Subpart A Table A-1 Note: to convert from metric tons to short tons divide by =