

E. I. du Pont de Nemours and Company Washington Works Mail: P.O. Box 2800 Washington, WV 26181-2800

CERTIFIED MAIL - 7007 1490 0001 6676 8354 RETURN RECEIPT REQUESTED

January 10, 2017

Mr. W. Fred Durham, Director Division of Air Quality WV Department of Environmental Protection 601 57th Street SE Charleston, WV 25304

RE: Renewal Application for the DuPont Washington Works Title V Permit R30-1070001-2011 Segment 3 of 14 – Acetal Resin Production

Dear Mr. Durham:

Enclosed, please find the renewal application for the Acetal Resin Production area (Part 3 of 14) for the Title V permitting program. We have included a signed paper copy of the application form and two (2) copies of the application including the attachment documents on Compact Disk [CD-ROM] per your current guidance.

In accordance with the Regulation 45CSR31 procedures, certain business confidential production/process information is enclosed in a separate envelope marked "Claimed Confidential" with a required cover document attached. As detailed in the cover document, the confidential information associated with this request needs to be kept separate and maintained as confidential material pursuant to Section 10, Article Five, Chapter Twenty-two of the West Virginia Code, as amended.

If you have any questions or concerns about the renewal application, please contact me at 304-863-2202, or Chris Shoop at 304-863-2133.

Very truly yours,

Charles R. Hill SHE Manager DuPont Washington Works

Enclosures

CRH:ces/kdf

E. I. du Pont de Nemours and Company Shipping: 8480 DuPont Rd – Bldg 24 Washington, WV 26181

ST WEST VA	WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION
	DIVISION OF AIR QUALITY
	601 57 th Street SE
	Charleston, WV 25304
	Phone: (304) 926-0475
	www.dep.wv.gov/daq

INITIAL/RENEWAL TITLE V PERMIT APPLICATION - GENERAL FORMS

 Name of Applicant (As registered with the WV Secretary of State's Office): E. I. du Pont de Nemours and Company 3. DAQ Plant ID No.: 	 2. Facility Name or Location: DuPont Washington Works Washington WV 4. Federal Employer ID No. (FEIN): 		
1 0 7 — 0 0 0 0 1	5 1 0 0 1 4 0 9 0		
5. Permit Application Type:			
☐ Initial Permit When did op	perations commence?		
Permit Renewal What is the	expiration date of the existing permit? 07/10/2017		
Update to Initial/Renewal Permit Application			
6. Type of Business Entity:	7. Is the Applicant the:		
Corporation Governmental Agency LLC Partnership Limited Partnership	Owner Operator Both		
8. Number of onsite employees:	If the Applicant is not both the owner and operator, please provide the name and address of the other party.		
9. Governmental Code:			
 Privately owned and operated; 0 Federally owned and operated; 1 State government owned and operated; 2 	County government owned and operated; 3 Municipality government owned and operated; 4 District government owned and operated; 5		
10. Business Confidentiality Claims			
Does this application include confidential informatio	n (per 45CSR31)? Xes No		
If yes, identify each segment of information on each page that is submitted as confidential, and provide justification for each segment claimed confidential, including the criteria under 45CSR§31-4.1, and in accordance with the DAQ's " <i>PRECAUTIONARY NOTICE-CLAIMS OF CONFIDENTIALITY</i> " guidance.			

Section 1: General Information

11. Mailing Address				
Street or P.O. Box: P. O. Box 2800				
City: Washington	State: WV	Zip: 26181-2800		
Telephone Number: (304) 863-4240 Gatehouse	Fax Number: () -			

12. Facility Location				
Street: 8480 DuPont Road	City: Washington	County: Wood		
UTM Easting: 442.368 km	UTM Northing: 4,346.679 km	Zone: 17 or 18		
Directions: From I-77 take the Route 50 bypass around Parkersburg towards Ohio. At the last exit prior to the bridge exit from the route 50 Bypass on to DuPont Road. At the light turn left on DuPont road. Approximately ¹ / ₂ mile from the turn you will see the Site on your right and be approaching the exit from the road for the main gate to the facility.				
Portable Source? Yes No				
Is facility located within a nonattain	nment area? 🛛 Yes 🗌 No	If yes, for what air pollutants? PM 2.5		
Is facility located within 50 miles of	If yes, name the affected state(s). Ohio			
Is facility located within 100 km of a	If yes, name the area(s).			
If no, do emissions impact a Class I				
¹ Class I areas include Dolly Sods and Otter Face Wilderness Area in Virginia.	Creek Wilderness Areas in West Virginia, and Sl	henandoah National Park and James River		

13. Contact Information			
Responsible Official: Jay Valvo		Title: Plant Manager	
Street or P.O. Box: P. O. Box 2800, Building	24		
City: Washington	State: WV	Zip: 26101-2800	
Telephone Number: (304) 863-2236	Fax Number: (304) 863-2290)	
E-mail address: Jay.Valvo@dupont.com	1		
Environmental Contact: Charles R. Hill		Title: SHE Manager	
Street or P.O. Box: P. O. Box 2800, Building	24		
City: Washington	State: WV	Zip: 26181-2800	
Telephone Number: (304) 863-2202	Fax Number: (304) 863-2290)	
E-mail address: Charles-R.F.Hill-1@dupont.com			
Application Preparer: Chris Shoop		Title: Sr. SHE Consultant	
Company: DuPont			
Street or P.O. Box: P. O. Box 2800, Building	24		
City: Washington	State: WV	Zip: 26181-2800	
Telephone Number: (304) 863-2133	Fax Number: (304) 863-2290)	
E-mail address: Chris.E.Shoop@dupont.com			

14. Facility Description

List all processes, products, NAICS and SIC codes for normal operation, in order of priority. Also list any process, products, NAICS and SIC codes associated with any alternative operating scenarios if different from those listed for normal operation.

Process Products		NAICS	SIC
Polyacetal Production	Polyacetal		2821

Provide a general description of operations.

The Delrin® is divided into three areas which work together to produce a finished acetal product. The first area is the **Formaldehyde Area** which produces the formaldehyde to be fed to the process. The formaldehyde is used in the **Chemical Area** which conditions the formaldehyde and converts it into raw polymer. The raw polymer is then sent to the **Finishing Area** where it extruded with additives into finished pellets which are then sold.

Formaldehyde Area

The Delrin® formaldehyde plant is designed to produce a nominal 53.5% by weight formaldehyde in water solution. Heat of reaction is recovered to produce 250 psig steam to the Delrin® Chemical Area.

The plant consists of three reactor loops each containing a reactor, blower, vaporizer, and a Dowtherm®A heat transfer fluid condenser/steam generator. Common equipment to the reactor loops includes two absorbers in series, a catalytic converter, a boiler feed water tank, a caustic tank, and a Dowtherm®A heater and storage tank. Support facilities include a cooling tower, two methanol storage tanks, and four formaldehyde tanks.

Methanol is normally received by barge and infrequently by tank truck. It is stored in two 1.77 MM gallon storage tanks equipped with internal floating roofs.

Formaldehyde is produced by air oxidation of methanol over a fixed bed catalyst packed in tubes in the reactors. The 7 - 9% methanol gas feed stream is converted to a gas stream containing formaldehyde, unreacted methanol, and reaction byproducts. The hot reactor gas passes through the vaporizer to provide heat to vaporize the liquid methanol feed. The gases then flow through the absorbers, where formaldehyde and water vapor are removed from the gas stream by countercurrent scrubbing with a small amount of demineralized water. Absorber pH is controlled by adding a small amount of caustic solution near the top of the second absorber.

The liquid product stream, a 53 - 55% percent by weight aqueous formaldehyde stream is adjusted to specified concentration after leaving the absorbers by mixing with a dilute formaldehyde stream generated from formaldehyde plant startup (usually 0 - 15% concentration). The aqueous formaldehyde product is stored in the formaldehyde tank farm for feed to the Delrin® Chemical Area.

The process gas which exits the absorbers is primarily nitrogen and oxygen, with small amounts of formaldehyde, water, methanol, carbon monoxide, and dimethyl ether. About two-thirds of the exit gas is mixed with air to bring the oxygen level up to 10 - 11% and returned to the reactor via the blower. The amount of recycle gas is controlled by a valve governed by oxygen analyzers to maintain the oxygen in the non-explosive region, less than 13% oxygen.

As the process gas is returned to the reactor, it passes through a vaporizer where fresh methanol is added by spraying into the gas stream. As previously noted, heat is supplied by the hot reactor gases.

Additional heat of reaction is removed from the reactor tubes by boiling Dowtherm®A in the reactor shell. The Dowtherm®A vapor passes to the Dowtherm®A condenser where it is condensed by boiler feed water, generating steam that is mixed with the steam from the catalytic converter(see below) and sent to the Delrin® Chemical Area.

The one-third of the process gas that is not recycled to the reactor loops flows through the catalytic converter system for air emissions control. Also, steam is generated from heat produced by the catalytic oxidation process that converts chemical compounds in the stream to CO_2 and water.

Chemical Area

The polymerization of Acetal resin homopolymer starts with the purification of the formaldehyde monomer stream. The general feedstock for the purification stream equivalent to commercial grade (54% strength) formaldehyde solution with a low methanol content that may be either manufactured on site or trucked into the facility after purchase on the open market. This liquid solution of formaldehyde is then treated in an extraction column where a C8-C11 aliphatic alcohol mixture is used to selectively extract the formaldehyde from the water by forming an alcohol mixture by forming an alcohol hemiformal. This alcohol hemiformal is then dried by distillation in two consecutive columns (DEU and DEP) to remove water and impurities that are found in almost all formaldehyde. After drying the material the purified hemiformal is then thermally decomposed to generate essentially pure formaldehyde vapor though the use of a pyrolyzer and partial condenser system. An independent scrubber system is used to absorb the monomer generated during the start up of the polymerization process, when the polymerization vessel is not ready to receive the monomer or when the monomer has not reached a sufficient purity to be sent forward into the polymerization vessel. The monomer sent to eh scrubber during these times is recovered and recycled in the process thorough a raw material concentration column (DEW)

The formaldehyde vapor exiting the partial condenser is sent to a polymerization vessel that contains a commercial heptane solvent blend as the carrier solvent for the forming homopolymer particles. This commercial solvent blend contains principally heptane and its isomers with small amounts of toluene (2-3%), n-hexane (0.25%) and a small concentration (max 100 ppmv) of benzene as the normal HAP constituents of the blend. This polymerization is cooled using a vacuum system that flashes portions of the solvent to remove the exothermic heat of reaction evolved in the polymerization. The vacuum system contains a series (2) of integral condensers prior to the vacuum producer (a two stage jet with an inter-stage and after condenser) to maximize solvent recovery and to prevent the overwhelming of the vacuum producer with solvent vapor. The polymerization vessel operates continuously with both formaldehyde and solvent feeds occurring continuously. A solvent and polymer slurry is constantly withdrawn from the polymerization vessel and sent to isolation to separate the polymer. The recovered solvent is recycled for further use in the process. Periodically the polymerization vessel must be shutdown to clear the vessel of polymer build up that occurs in the walls and head of the vessel during the polymerization. This clean out is performed through a condenser based emission control system with a different emission point since the off gas handling system usually used during production is a fuel rich system and will not tolerate air.

The homopolymer and solvent slurry mixture produced in the polymerizer during normal operation is fed to a separation device that isolates the solids and drops them into a conveyor/dryer system. The solids have most of the residual solvent removed in this system and they are then placed into a set of intermediate storage bins. These bins feed an air conveying system that transports the intermediate polymer (raw fluff) to a reactor processing vessel that "caps" the homopolymer chains with a w terminating agent to improve the stability of the polymer chains. In this capping operation a small, but significant portion of the raw homopolymer (raw fluff) will depolymerize to generate formaldehyde. The capping is done in a vapor phase reaction with excess of the required formaldehyde. The capping is don in a vapor phase reaction with excess of the required amount of capping agent present. The off gas stream from the capping reactor is sent through a series of condensers to recover the capping reagent and evolved formaldehyde for further purification and reuse. The formaldehyde recovered is sent to other parts fo the process for concentration and recycled back to the feed tank of the initial extraction process.

The capped polymer exits from the capping reactor and is sparged with inert gas to reduce the residual reactants present on the polymer. Upon exiting the sparger the finished product is ready for either conversion to another from or the direct sale or transfer to other processors. This is also the point of definition for the final product for the current Acetal MACT (40 CFR 63 Subpart YY).

Finishing Area

The capped fluff is loaded out into boxes for temporary storage or shipment; or into rail cars for temporary storage or shipment. It may also be loaded into sea-land boxes for shipment overseas, or fed to a set of conversion lines in which other materials and modifiers are added to the fluff to produce modified polymers in pellet form.

In the finishing area the pelletized polymer is produced by five extrusion lines that are used to alter the form of the product produced in the plant through the use of additives, heat, and pressure. These modified products exhibit improved characteristics that improve their market value. Raw materials for the extrusion system are received in boxes, bags, leverpaks, and by pneumatic transport from other portions of the facility. The materials are fed

directly to extruders through metering devices, or used to make blends for a similar incorporation into a final product.

Raw materials for the extrusion lines include modifiers, colors, and base plastic materials. Some finished material from the polymerization unit is packed out directly for shipment to other processors or for interim storage.

The extrusion feed material is fed to the extruders where the materials are thoroughly mixed and converted to another product form by extrusion. The product, usually in the form of pellets, is dried, screened, conveyed, and packaged into either shipping of storage containers. The material is then shipped to other users or to customers.

- 15. Provide an Area Map showing plant location as ATTACHMENT A.
- 16. Provide a **Plot Plan(s)**, e.g. scaled map(s) and/or sketch(es) showing the location of the property on which the stationary source(s) is located as **ATTACHMENT B**. For instructions, refer to "Plot Plan Guidelines."
- Provide a detailed Process Flow Diagram(s) showing each process or emissions unit as ATTACHMENT
 C. Process Flow Diagrams should show all emission units, control equipment, emission points, and their relationships.

18. Applicable Requirements Summary	
Instructions: Mark all applicable requirements.	
SIP	☐ FIP
Minor source NSR (45CSR13)	D PSD (45CSR14)
NESHAP (45CSR34)	Nonattainment NSR (45CSR19)
Section 111 NSPS	Section 112(d) MACT standards
Section 112(g) Case-by-case MACT	∑ 112(r) RMP
Section 112(i) Early reduction of HAP	Consumer/commercial prod. reqts., section 183(e)
Section 129 Standards/Reqts.	Stratospheric ozone (Title VI)
Tank vessel reqt., section 183(f)	Emissions cap 45CSR§30-2.6.1
NAAQS, increments or visibility (temp. sources)	45CSR27 State enforceable only rule
45CSR4 State enforceable only rule	Acid Rain (Title IV, 45CSR33)
Emissions Trading and Banking (45CSR28)	Compliance Assurance Monitoring (40CFR64)
CAIR NO _x Annual Trading Program (45CSR39)	CAIR NO _x Ozone Season Trading Program (45CSR40)
CAIR SO ₂ Trading Program (45CSR41)	

19. Non Applicability Determinations

List all requirements which the source has determined not applicable and for which a permit shield is requested. The listing shall also include the rule citation and the reason why the shield applies.

- a. 40 C.F.R. 60, Subpart K "Standards of Performance For Storage Vessels For Petroleum Liquids for Which Construction, Reconstruction, or Modification Commenced After June 11, 1973, and Prior to May 19, 1978." There are no petroleum liquid storage tanks in the Acetal Resin Production Area.
- b. 40 C.F.R. 60, Subpart Ka "Standards of Performance for Storage Vessels For Petroleum Liquids for Which Construction, Reconstruction, or Modification Commenced After May 18, 1978, and Prior to July 23, 1984." There are no petroleum liquid storage tanks in the Acetal Resin Production Area.
- c. 40 C.F.R. 60, Subpart Kb "Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984." Storage tanks DON, DOP, and DMH are subject to the requirements of 40 C.F.R. 60, Subpart Kb and 40 C.F.R. 63, Subpart YY, but in accordance with 40 C.F.R. §63.1100(g)(1)(ii), these tanks are now only required to comply with the provisions of 40 C.F.R. 60, Subpart YY.
- d. 40 C.F.R. 60, Subpart VV "Standards of Performance for Equipment Leaks of VOC in the Synthetic Organic Chemicals Manufacturing Industry." Sources in the Acetal Resin Production Area are subject to the provisions of 40 C.F.R. 60, Subpart VV but, in accordance with 40 C.F.R. §§63.160(c)(1) and 63.1100(g)(4),

are now only required to comply with the provisions of 40 C.F.R. 63, Subpart H and 40 C.F.R. 63, Subpart YY.

- e. 40 C.F.R. 60, Subpart DDD "Standards of Performance for Volatile Organic Compound (VOC) Emissions from the Polymer Manufacturing Industry." The Acetal Resin Production Area does not manufacture polypropylene, polyethylene, polystyrene, or poly(ethylene terephthalate) for which this rule applies.
- f. 40 C.F.R. 60, Subpart III "Standards of Performance for Volatile Organic Compound (VOC) Emissions From the Synthetic Organic Chemical Manufacturing Industry (SOCMI) Air Oxidation Unit Processes." In accordance with 40 C.F.R. §63.110(d)(1), Group 1 process vents subject to the provisions of both 40 C.F.R. 63, Subpart G and 40 C.F.R. 60, Subpart III are only required to comply with the provisions of 40 C.F.R. 63, Subpart G.
- g. 40 C.F.R. 61, Subpart V "National Emission Standards for Equipment Leaks (Fugitive Emissions Sources)." Applies to sources in VHAP service as defined in 40 C.F.R. §61.241. VHAP service involves chemicals that are not used in a manner that qualifies them under the rule in the Acetal Resin Production Area.
- h. 40 C.F.R. 63, Subpart DD "National Emission Standards for Hazardous Air Pollutants from Off-Site Waste and Recovery Operations." The Acetal Resin Production Area does not receive off-site materials as specified in paragraph 40 C.F.R. §63.680(b) and the operations are not one of the waste management operations or recovery operations as specified in 40 C.F.R. §§63.680(a)(2)(i) through (a)(2)(vi).
- 40 C.F.R. 63, Subpart EEE "National Emission Standards for Hazardous Air Pollutants from Hazardous Waste Combustors." DOM is not subject to the provisions of this subpart because, in accordance with 40 C.F.R. §63.1200(b)(3), it does not combust a hazardous waste as defined by 40 C.F.R. §§266.100(c) and 261.4(a)(16).
- j. 40 C.F.R. 63, Subpart JJJ "National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins." The Acetal Resin Production Area does not produce the materials listed in 40 C.F.R. §63.1310.
- k. 40 C.F.R. 63, Subpart PPPP "National Emission Standards for Hazardous Air Pollutants: Surface Coating of Plastic Parts and Products." The Acetal Resin Production Area does not produce an intermediate or final product that meets the definition of a "surface coated" plastic part.
- 40 C.F.R. 63, Subpart WWWW "National Emission Standards for Hazardous Air Pollutants: Reinforced Plastic Composites Production." The Acetal Resin Production Area does not engage in reinforced plastics composites production as defined in 40 C.F.R. §63.5785 and does not manufacture composite material as defined in 40 C.F.R. §63.5935.
- m. 40 C.F.R. 63, Subpart ZZZZ "National Emission Standards for Hazardous Air Pollutants: Reciprocating Internal Combustion Engines." The Acetal Resin Production Area does not have a stationary Reciprocating Internal Combustion Engine (RICE) as defined by 40 C.F.R. §63.6675.
- n. 40 C.F.R. 63, Subpart DDDDD "National Emission Standards for Hazardous Air Pollutants: Industrial/Commercial/Institutional Boilers and Process Heaters." The Acetal Resin Production Area does not own or operate an industrial, commercial, or institutional boiler or process heater as defined in 40 C.F.R. §63.7575.
- o. 40 C.F.R. 63, Subpart GGGGG "National Emission Standards for Hazardous Air Pollutants: Site Remediation." The Acetal Resin Production Area does not conduct site remediation as defined by 40 C.F.R. §63.7957 that meets all three of the conditions specified in 40 C.F.R. §§63.7881(a)(1) through (a)(3).

- p. 40 C.F.R. 63, Subpart HHHHH "National Emission Standards for Hazardous Air Pollutants: Miscellaneous Coating Manufacturing." The Acetal Resin Production Area does not produce, blend, or manufacture coatings as part of the manufacturing process.
- q. 40 C.F.R. 63, Subpart NNNNN "National Emission Standards for Hazardous Air Pollutants: Hydrochloric Acid Production." The Acetal Resin Production Area is not an HCl production facility as defined by 40 C.F.R. §63.9075.
- r. 40 C.F.R. 82, Subpart B "Protection of Stratospheric Ozone." Requires recycling of Chlorofluorocarbons (CFCs) from motor vehicles and that technicians servicing equipment need to be licensed. The Acetal Resin Production Area does not conduct motor vehicle maintenance involving CFCs on site.
- s. 40 C.F.R. 82, Subpart C "Protection of Stratospheric Ozone." Bans non-essential products containing Class I substances and bans non-essential products containing or manufactured with Class II substances. The Acetal Resin Production Area does not use, manufacture, nor distribute these materials.
- t. 45CSR15 "Emission Standards for Hazardous Air Pollutants Pursuant to 40 C.F.R. 61." The Acetal Resin Production Area is not subject to any requirements under 40 C.F.R. 61.
- u. 45CSR17 "To Prevent and Control Particulate Matter Air Pollution from Materials Handling, Preparation, Storage and Other Sources of Fugitive Particulate Matter." Per 45CSR§17-6.1, the Acetal Resin Production Area is not subject to 45CSR17 because it is subject to the fugitive particulate matter emission requirements of 45CSR7.
- 40 C.F.R. 63, Subpart EEEE "National Emission Standards for Hazardous Air Pollutants: Organic Liquids v. Distribution (Non-Gasoline)." Storage tanks DIN, DIR, and DIS are existing tanks with a design capacity greater than or equal to 18.9 cubic meters (5,000 gallons) and less than 189.3 cubic meters (50,000 gallons) storing an organic liquid with an annual average true vapor pressure of the total Table 1 organic HAP in the stored organic liquid less than 27.6 kilopascals (4.0 psia). Since the annual average true vapor pressure of the total Table 1 organic HAP is less than 4.0 psia, these tanks are not required to be controlled under 40 C.F.R. 63, Subpart EEEE and are only subject to the notification, recordkeeping, and reporting requirements of 40 C.F.R. §§63.2343(b)(1) through (3). The unloading systems for these tanks, DJZ, DJY, and DJX are used for unloading the storage tanks when maintenance or inspection is required and are not an affected source under 40 C.F.R. 63, Subpart EEEE as specified in 40 C.F.R. §63.2338(c)(3). Since the tanks do not require control and the unloading systems are not affected sources, 40 C.F.R. §63.2350(c) does not require DuPont to develop a written startup, shutdown, and malfunction (SSM) plan for the tanks or unloading systems. Also, since the equipment leak detection requirements of 40 C.F.R. §63.2346(c) only apply if the affected source has at least one storage tank or transfer rack that meets the applicability criteria for control in Table 2 of 40 C.F.R. 63, Subpart EEEE, and none of the tanks or transfer racks are required to be controlled, DuPont is not subject to the leak detection and repair requirements of 40 C.F.R. 63, Subpart EEEE.

Permit Shield

20. Facility-Wide Applicable Requirements

List all facility-wide applicable requirements. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*).

- 3.1. Limitations and Standards
 - 3.1.1. Open burning. The open burning of refuse by any person, firm, corporation, association or public agency is prohibited except as noted in 45CSR§6-3.1.
 [45CSR§6-3.1.]
 - 3.1.2. **Open burning exemptions.** The exemptions listed in 45CSR§6-3.1 are subject to the following stipulation: Upon notification by the Secretary, no person shall cause, suffer, allow or permit any form of open burning during existing or predicted periods of atmospheric stagnation. Notification shall be made by such means as the Secretary may deem necessary and feasible. **[45CSR§6-3.2.]**
 - 3.1.3. Asbestos. The permittee is responsible for thoroughly inspecting the facility, or part of the facility, prior to commencement of demolition or renovation for the presence of asbestos and complying with 40 C.F.R. § 61.145, 40 C.F.R. § 61.148, and 40 C.F.R. § 61.150. The permittee, owner, or operator must notify the Secretary at least ten (10) working days prior to the commencement of any asbestos removal on the forms prescribed by the Secretary if the permittee is subject to the notification requirements of 40 C.F.R. § 61.145(b)(3)(i). The USEPA, the Division of Waste Management and the Bureau for Public Health Environmental Health require a copy of this notice to be sent to them. [40 C.F.R. §61.145(b) and 45CSR15]
 - 3.1.4. Odor. No person shall cause, suffer, allow or permit the discharge of air pollutants which cause or contribute to an objectionable odor at any location occupied by the public.
 [45CSR§4-3.1 State-Enforceable only.]
 - 3.1.5. Standby plan for reducing emissions. When requested by the Secretary, the permittee shall prepare standby plans for reducing the emissions of air pollutants in accordance with the objectives set forth in Tables I, II, and III of 45CSR11.
 [45CSR\$11-5.2]
 - 3.1.6. Emission inventory. The permittee is responsible for submitting, on an annual basis, an emission inventory in accordance with the submittal requirements of the Division of Air Quality. [W.Va. Code § 22-5-4(a)(14)]
 - 3.1.7. **Ozone-depleting substances.** For those facilities performing maintenance, service, repair or disposal of appliances, the permittee shall comply with the standards for recycling and emissions reduction pursuant to 40 C.F.R. Part 82, Subpart F, except as provided for Motor Vehicle Air Conditioners (MVACs) in Subpart B:
 - a. Persons opening appliances for maintenance, service, repair, or disposal must comply with the prohibitions and required practices pursuant to 40 C.F.R. §§ 82.154 and 82.156.
 - b. Equipment used during the maintenance, service, repair, or disposal of appliances must comply with the standards for recycling and recovery equipment pursuant to 40 C.F.R. § 82.158.

c. Persons performing maintenance, service, repair, or disposal of appliances must be certified by an approved technician certification program pursuant to 40 C.F.R. § 82.161.

[40 C.F.R. 82, Subpart F]

- 3.1.8. Risk Management Plan. This stationary source, as defined in 40 C.F.R. § 68.3, is subject to Part 68. This stationary source shall submit a risk management plan (RMP) by the date specified in 40 C.F.R. Part 68.10. This stationary source shall certify compliance with the requirements of Part 68 as part of the annual compliance certification as required by 40 C.F.R. Part 70 or 71.
 [40 C.F.R. 68]
- 3.1.9. The permittee shall comply with all hourly and annual emission limits set forth by the affected 45CSR13 permits, for each of the sources and associated emission points identified in Attachment A of R13-2617.

Note: For the Acetal Resin Production Area, the affected permits are R13-1596, R13-1849, and R13-2381, the Attachment A listing only for those sources in the Acetal Resin Production Area is provided in APPENDIX A.1, and the hourly and annual emission limits for the affected sources are provided in 4.1.6 and APPENDIX B.1; 5.1.1 and 5.1.2; and 6.1.3, 6.1.4, 6.1.5, and APPENDIX D.2.

[45CSR13, R13-2617, 4.1.1]

- 3.1.10. The permitted sources identified in Attachment A of R13-2617 and recognized as being subject to 45CSR21 shall comply with all applicable requirements of 45CSR21 "Regulation to Prevent and Control Air Pollution from the Emission of Volatile Organic Compounds" provided, however, that compliance with any more stringent requirements under the affected 45CSR13 permit identified in Attachment A of R13-2617, are also demonstrated. The applicable requirements set forth by 45CSR21 shall include, but not be limited to, the following: **[45CSR13, R13-2617, 4.1.2]**
 - 3.1.10.1. The permittee shall maintain the aggregated hourly and annual VOC control efficiency of 90% or greater, on a site-wide basis, for all existing sources listed or required to be listed as part of the original facility-wide Reasonably Available Control Measures (RACM) plan, as identified in Attachment A of R13-2617. [45CSR13, R13-2617, 4.1.2.1; 45CSR\$21-40.3.a.1 (State-Enforceable only)]
 - 3.1.10.2. On or after May 1, 1996, construction or modification of any emission source resulting in a maximum theoretical emissions (MTE) of VOCs equaling or exceeding six (6) pounds per hour and not listed or required to be listed in the facility-wide RACM plan shall require the prior approval by the Director of an emission control plan that meets the definition of reasonable available control technology (RACT) on a case-by-case basis for both fugitive and non-fugitive VOC emissions from such source. All sources constructed or modified on or after May 1, 1996 shall be subject to the following: [45CSR13, R13-2617, 4.1.2.2; 45CSR§21-40.3.c (State-Enforceable only)]
 - a. The RACT control plan(s) shall be embodied in a permit in accordance to 45CSR13. [45CSR13, R13-2617, 4.1.2.2.a; 45CSR§21-40.4.e (State-Enforceable only)]

b. The MTE and associated emission reductions of the constructed or modified 2017 DuPont Segment 3 of 14 General Application Forms (general_forms.wpd) source will not be calculated into the site-wide aggregate hourly and annual emissions reduction requirements set forth in Section 3.1.10.1. [45CSR13, R13-2617, 4.1.2.2.b]

- 3.1.10.3. If a modification to an existing source with current MTE below the threshold of six (6) pounds per hour of VOCs causes an increase in the MTE that results in the source exceeding the six (6) pounds per hour threshold for the first time, the source shall be subject to RACT in accordance to Section 3.1.10.2. [45CSR13, R13-2617, 4.1.2.3; 45CSR\$21-40.3.c (State-Enforceable only)]
- 3.1.10.4. Physical changes to or changes in the method of operation of an existing emission source listed or required to be listed as part of the facility-wide RACM plan, that results in an increase in VOC emissions of any amount, shall require the prior approval by the Director of an emission control plan that meets the definition of RACT on a case-by-case basis for both fugitive and non-fugitive VOC emissions from the source. All sources modified on or after May 1, 1996 shall be subject to the following; [45CSR13, R13-2617, 4.1.2.4; 45CSR\$21-40.3.c (State-Enforceable only)]
 - a. The RACT control plan (s) shall be embodied in a permit in accordance to 45CSR13. [45CSR13, R13-2617, 4.1.2.4.a; 45CSR§21-40.4.e (State-Enforceable only)]
 - b. The facility-wide RACM plan shall be modified to include the RACT analysis conducted on the modified source(s). [45CSR13, R13-2617, 4.1.2.4.b]
 - c. The MTE and associated emission reductions of the modified source shall be recalculated as part of the site-wide aggregate hourly and annual emissions reduction requirements to demonstrate compliance with the minimum 90% reduction rate as set forth in 3.1.10.1 of this permit. [45CSR13, R13-2617, 4.1.2.4.c]
- 3.1.10.5. In the event the facility-wide RACM plan is modified to delete an existing emission source, and any associated pollution control equipment, due to the source being permanently removed from service or reassigned to service not subject to the requirements of 45CSR§21-40, the MTE shall be recalculated to demonstrate that the 90% facility-wide VOC reduction requirement set forth in Section 3.1.10.1 is still being met. In the event such a modification results in the site-wide aggregate hourly and annual emissions reduction being recalculated to a rate less than 90%, the RACM plan shall be revised to include all new and/or modified sources and their associated control technologies constructed on or after May 1, 1996, in order to meet the requirements set forth in 3.1.10.1. [45CSR13, R13-2617, 4.1.2.5]
- 3.1.10.6. In the event a source and associated emission point identified in Attachment A of R13-2617 is subject to the New Source Performance Standards (NSPS) of 40 C.F.R. 60, the National Emission Standards for Hazardous Air Pollutants (NESHAP) of 40 C.F.R. 61, or the Maximum Achievable Control Technology (MACT) standards of 40 C.F.R. 63, then compliance with such requirements as defined in the affected 45CSR13 permit shall demonstrate compliance with the RACT requirements set forth in R13-2617. [45CSR13, R13-2617, 4.1.2.6]

Note: For the Acetal Resin Production Area, the affected permits are R13-1596, R13-1849, and R13-2381, and the Attachment A only for those sources in the Acetal Resin Production Area is provided in APPENDIX A.1.

- 3.1.11. The permitted sources identified in Attachment A of R13-2617 and recognized as being subject to 45CSR27 shall comply with all applicable requirements of 45CSR27 "To Prevent and Control the Emissions of Toxic Air Pollutants" provided, however, that compliance with any more stringent requirements under the affected 45CSR13 permit identified in Attachment A of R13-2617 are also demonstrated. The applicable requirements set forth by 45CSR27 shall include, but not be limited to, the following: [45CSR13, R13-2617, 4.1.3]
 - 3.1.11.1.The permittee shall employ the best available technology (BAT) for the purpose of reducing toxic air pollutants (TAP) associated with the applicable sources and emission points identified in Attachment A of R13-2617. [45CSR13, R13-2617, 4.1.3.1; 45CSR\$27-3.1 (State-Enforceable only)]
 - 3.1.11.2. The permittee shall employ BAT for the purpose of preventing and controlling fugitive emissions of TAP to the atmosphere as a result of routing leakage from those sources and their associated equipment identified in Attachment A of R13-2617 as operating in TAP service. [45CSR13, R13-2617, 4.1.3.2; 45CSR§27-4.1 (State-Enforceable only)]

Note: For the Acetal Resin Production Area, the affected permits are R13-1596, R13-1849, and R13-2381, and the Attachment A listing only for those sources in the Acetal Resin Production Area is provided in APPENDIX A.1.

3.1.12. In the event a source and associated emission point identified in Attachment A of R13-2617 are subject to the MACT standards of 40 C.F.R. 63, then compliance with the applicable MACT requirements identified in the affected 45CSR13 permit shall demonstrate compliance with the BAT requirements set forth in 3.1.11.

Note: For the Acetal Resin Production Area, the affected permits are R13-1596, R13-1849, and R13-2381, and the Attachment A listing only for those sources in the Acetal Resin Production Area is provided in APPENDIX A.1.

[45CSR13, R13-2617, 4.1.4; 45CSR§27-3.1 (State-Enforceable only)]

- 3.1.13. The permittee shall not cause, suffer, allow or permit any manufacturing process or storage structure generating fugitive particulate matter to operate that is not equipped with a system, which may include, but not be limited to, process equipment design, control equipment design or operations and maintenance procedures, to minimize the emission of fugitive particulate matter. To minimize means such system shall be installed, maintained and operated to ensure the lowest fugitive particulate emissions reasonably achievable. [45CSR§7-5.1; 45CSR13, R13-1596, 4.1.7; 45CSR13, R13-1849, 4.1.3.4]
- 3.1.14. The owner or operator of a plant shall maintain particulate matter control of the plant premises, and plant owned, leased or controlled access roads, by paving, application of asphalt, chemical dust suppressants or other suitable dust control measures. Good operating practices shall be implemented and when necessary particulate matter suppressants shall be applied in relation to stockpiling and general material handling to minimize particulate matter generation and atmospheric entrainment. [45CSR§7-5.2; 45CSR13, R13-1849, 4.1.3.5]
- 3.1.15. **Operation and Maintenance of Air Pollution Control Equipment.** The permittee shall, to the extent practicable, install, maintain, and operate all pollution control equipment listed in Appendix A.1 and associated monitoring equipment in a manner consistent with safety and good air pollution control practices for minimizing emissions, or comply with any more stringent

limits set forth in this permit or as set forth by any State rule, Federal regulation, or alternative control plan approved by the Secretary. **[45CSR13, R13-2617, 4.1.5]**

3.2. Monitoring Requirements

3.2.1. The permittee shall implement and maintain leak detection and repair (LDAR) programs for the reduction of fugitive VOC emissions in all manufacturing process units subject to 45CSR§21-40 producing a product or products intermediate or final, in excess of 1,000 megagrams (1,100 tons) per year in accordance with the applicable methods and criteria of 45CSR§21-37 or alternate procedures approved by the Director. Procedures approved by the Director, 40 C.F.R. 60, Subpart VV, 40 C.F.R. 61, Subpart V, 40 C.F.R. 63, Subpart H, 40 C.F.R. 63, Subpart TT, 40 C.F.R. 63, Subpart UU, 40 C.F.R. 65, Subpart F, and 40 C.F.R. 265, Subpart CC. This requirement shall apply to all units identified in Attachment A of R13-2617 irrespective of whether or not such units produce as intermediates or final products, substances on the lists contained with 40 C.F.R. 60, 40 C.F.R. 61, or 40 C.F.R. 63.

Note: The Attachment A listing only for those sources in the Acetal Resin Production Area is provided in APPENDIX A.1.

[45CSR13, R13-2617, 4.2.1; 45CSR§21-40.3.a.2 (State-Enforceable only)]

3.2.2. The permittee shall implement and maintain a LDAR program for the applicable sources and emission points identified in Attachment A of R13-2617 in order to reduce the emissions of TAP in accordance with the requirements of 40 C.F.R. 63, Subpart H – "National Emission Standards for Organic Hazardous Air Pollutants for Equipment Leaks." Compliance with 40 C.F.R. 63, Subpart H shall be considered demonstration of compliance with the provisions of 45CSR§27-4 – "Fugitive Emissions of Toxic Air Pollutants."

Note: The Attachment A listing only for those sources in the Acetal Resin Production Area is provided in APPENDIX A.1.

[45CSR13, R13-2617, 4.2.2; 45CSR§27-4.1 (State-Enforceable only)]

3.2.3. In the event a source and associated emission point identified in Attachment A of R13-2617 are subject to the MACT standards of 40 C.F.R. 63, then compliance with any applicable LDAR program set forth by the MACT and identified in the affected 45CSR13 permit shall demonstrate compliance with the monitoring requirements set forth in this permit.

Note: For the Acetal Resin Production Area, the affected permits are R13-1596, R13-1849, and R13-2381, and the Attachment A listing only for those sources in the Acetal Resin Production Area is provided in APPENDIX A.1.

[45CSR13, R13-2617, 4.2.3; 45CSR§21-37.1.c (State-Enforceable only); 45CSR§27-4.1 (State-Enforceable only)]

3.3. Testing Requirements

3.3.1. **Stack testing.** As per provisions set forth in this permit or as otherwise required by the Secretary, in accordance with the West Virginia Code, underlying regulations, permits and orders, the permittee shall conduct test(s) to determine compliance with the emission limitations set forth in this permit and/or established or set forth in underlying documents. The Secretary, or his duly authorized representative, may at his option witness or conduct such test(s). Should the Secretary exercise his option to conduct such test(s), the operator shall provide all necessary

sampling connections and sampling ports to be located in such manner as the Secretary may require, power for test equipment and the required safety equipment, such as scaffolding, railings and ladders, to comply with generally accepted good safety practices. Such tests shall be conducted in accordance with the methods and procedures set forth in this permit or as otherwise approved or specified by the Secretary in accordance with the following:

- a. The Secretary may on a source-specific basis approve or specify additional testing or alternative testing to the test methods specified in the permit for demonstrating compliance with 40 C.F.R. Parts 60, 61, and 63, if applicable, in accordance with the Secretary's delegated authority and any established equivalency determination methods which are applicable.
- b. The Secretary may on a source-specific basis approve or specify additional testing or alternative testing to the test methods specified in the permit for demonstrating compliance with applicable requirements which do not involve federal delegation. In specifying or approving such alternative testing to the test methods, the Secretary, to the extent possible, shall utilize the same equivalency criteria as would be used in approving such changes under Section 3.3.1.a. of this permit.
- c. All periodic tests to determine mass emission limits from or air pollutant concentrations in discharge stacks and such other tests as specified in this permit shall be conducted in accordance with an approved test protocol. Unless previously approved, such protocols shall be submitted to the Secretary in writing at least thirty (30) days prior to any testing and shall contain the information set forth by the Secretary. In addition, the permittee shall notify the Secretary at least fifteen (15) days prior to any testing so the Secretary may have the opportunity to observe such tests. This notification shall include the actual date and time during which the test will be conducted and, if appropriate, verification that the tests will fully conform to a referenced protocol previously approved by the Secretary.

[WV Code § 22-5-4(a)(15) and 45CSR13]

- 3.3.2. Manufacturing process units may be exempted upon written request of the permittee to the Director. Exempted units are exempted from the frequency of testing as described in 45CSR §21-37, however, LDAR testing of this unit or certification of emission using approved fugitive emission factors will be required every three years, or upon request by the Director or his duly authorized representative. Waiver or scheduling of LDAR testing every three years may be granted by the Director if written request and justification are submitted by the permittee. Units exempted from testing are not exempted from testing which may be required under any other applicable State or Federal regulations, orders, or permits. The Director may periodically require verifications by the permittee that maintenance and repair procedures associated with approved exemptions are continued and practiced. [45CSR13, R13-2617, 4.3.1; 45CSR§21-40.3.a.2 (State-Enforceable only)]
- 3.3.2. In the event a source and associated emission point identified in Attachment A of R13-2617 are subject to the MACT standards of 40 C.F.R. 63, then compliance with the applicable LDAR testing requirements set forth by the MACT and identified in the affected 45CSR13 permit shall demonstrate compliance with the LDAR testing requirements set forth in this permit.

Note: For the Acetal Resin Production Area, the affected permits are R13-1596, R13-1849, and R13-2381, and the Attachment A listing only for those sources in the Acetal Resin Production Area is provided in APPENDIX A.1.

[45CSR13, R13-2617, 4.3.2; 45CSR§21-37.1.c (State-Enforceable only); 45CSR§27-4.1 2017 DuPont Segment 3 of 14 PUBLIC General Application Forms (general_forms.wpd)

(State-Enforceable only)]

3.4. Recordkeeping Requirements

- 3.4.1. **Monitoring information.** The permittee shall keep records of monitoring information that include the following:
 - a. The date, place as defined in this permit and time of sampling or measurements;
 - b. The date(s) analyses were performed;
 - c. The company or entity that performed the analyses;
 - d. The analytical techniques or methods used;
 - e. The results of the analyses; and
 - f. The operating conditions existing at the time of sampling or measurement.

[45CSR§30-5.1.c.2.A.; 45CSR13, R13-2617, 4.4.1; 45CSR13, R13-1596, 4.4.1; 45CSR13, R13-1849, 4.4.1; 45CSR13, R13-2381, 4.4.1]

- 3.4.2. Retention of records. The permittee shall retain records of all required monitoring data and support information for a period of at least five (5) years from the date of monitoring sample, measurement, report, application, or record creation date. Support information includes all calibration and maintenance records and all original strip-chart recordings for continuous monitoring instrumentation, and copies of all reports required by the permit. Where appropriate, records may be maintained in computerized form in lieu of the above records. [45CSR§30-5.1.c.2.B.]
- 3.4.3. Odors. For the purposes of 45CSR4, the permittee shall maintain a record of all odor complaints received. Such record shall contain an assessment of the validity of the complaints as well as any corrective actions taken.
 [45CSR§30-5.1.c. State-Enforceable only.]
- 3.4.4. **Record of Maintenance of Air Pollution Control Equipment.** For all pollution control equipment listed in Section 1.0, the permittee shall maintain accurate records of all required pollution control equipment inspection and/or preventative maintenance procedures. [45CSR13, R13-2617, 4.4.2; 45CSR13, R13-1596, 4.4.2; 45CSR13, R13-2381, 4.4.2]
- 3.4.5. **Record of Malfunctions of Air Pollution Control Equipment.** For all air pollution control equipment listed in Section 1.0, the permittee shall maintain records of the occurrence and duration of any malfunction or operational shutdown of the air pollution control equipment during which excess emissions occur. For each such case, the following information shall be recorded:
 - a. The equipment involved.
 - b. Steps taken to minimize emissions during the event.
 - c. The duration of the event.
 - d. The estimated increase in emissions during the event.

For each such case associated with an equipment malfunction, the additional information shall also be recorded:

- e. The cause of the malfunction.
- f. Steps taken to correct the malfunction.
- g. Any changes or modifications to equipment or procedures that would help prevent future recurrences of the malfunction.

[45CSR13, R13-2617, 4.4.3; 45CSR13, R13-1596, 4.4.3; 45CSR13, R13-1849, 4.4.3; 45CSR13, R13-2381, 4.4.3]

3.4.6. Unless granted a variance pursuant to 45CSR§21-9.3, or as approved by the Director as part of a required Start-up, Shutdown, and Malfunction (SSM) Plan mandated under 40 C.F.R. §63.6(e) or another applicable Section of 40 C.F.R. 63, the owner or operator of the facility shall operate all emission control equipment listed in Attachment A of R13-2617 as part of the facility-wide control efficiency plan at all times the facilities are in operation or VOC emissions are occurring from these sources or activities. In the event of a malfunction, and a variance has not been granted, the production unit shall be shutdown or the activity discontinued as expeditiously as possible. The permittee shall comply with 45CSR§21-9.3 with respect to all periods of non-compliance with the emission limitations set forth in the affected 45CSR13 permits and the emissions reduction requests set forth in the facility-wide control efficiency plan resulting from unavoidable malfunctions of equipment.

Note: For the Acetal Resin Production Area, the affected permits are R13-1596, R13-1849, and R13-2381, and the Attachment A listing only for those sources in the Acetal Resin Production Area is provided in APPENDIX A.1. [45CSR13, R13-2617, 4.4.4]

3.4.7. The permittee shall maintain records of the results of all monitoring and inspections, emission control measures applied, and the nature, timing, and results of repair efforts conducted in accordance to 45CSR§27-10 and set forth in the affected 45CSR13 permits as identified in Attachment A of R13-2617.

Note: For the Acetal Resin Production Area, the affected permits are R13-1596, R13-1849, and R13-2381, and the Attachment A listing only for those sources in the Acetal Resin Production Area is provided in APPENDIX A.1. [45CSR13, R13-2617, 4.4.5]

- 3.4.8. The permittee shall monitor all fugitive particulate emission sources as required by 3.1.13. to ensure that a system to minimize fugitive emissions has been installed or implemented. Records shall be maintained on site for a period of no less than five (5) years stating the types of fugitive particulate capture and/or suppression systems used, the times these systems were inoperable, and the corrective actions taken to repair these systems. **[45CSR§30-5.1.c.]**
- 3.4.9. The permittee shall maintain records indicating the use of any dust suppressants or any other suitable dust control measures as required by 3.1.14 applied at the facility. These records shall be maintained on site for a period of no less than five (5) years. **[45CSR§30-5.1.c.]**
- 3.4.10. Your site remediation activities are not subject to the requirements of 40 C.F.R. 63, Subpart GGGGG, except for the recordkeeping requirements in this paragraph, provided that you meet the requirements specified in paragraphs (c)(1) through (c)(3) of this section.

- 3.4.10.1. You determine that the total quantity of the HAP listed in Table 1 of 40 C.F.R. 63, Subpart GGGGG that is contained in the remediation material excavated, extracted, pumped, or otherwise removed during all of the site remediations conducted at your facility is less than 1 mega gram (Mg) annual. This exemption applies the 1 Mg limit on a facility-wide, annual basis, and there is no restriction to the number of site remediations that can be conducted during this period.
- 3.4.10.2. You must prepare and maintain at your facility written documentation to support your determination that the total HAP quantity in your remediation materials for the year is less than 1 Mg. The documentation must include a description of your methodology and data used for determining the total HAP content of the remediation material.
- 3.4.10.3. Your Title V permit does not have to be reopened or revised solely to include the recordkeeping requirement specified in 3.4.10.2. However, the requirement must be included in your permit the next time the permit is renewed, reopened, or revised for another reason.

[45CSR34; 40 C.F.R. §63.7881(c)]

3.5. Reporting Requirements

- 3.5.1. **Responsible official.** Any application form, report, or compliance certification required by this permit to be submitted to the DAQ and/or USEPA shall contain a certification by the responsible official that states that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate and complete. **[45CSR§§30-4.4.** *and* **5.1.c.3.D.]**
- 3.5.2. A permittee may request confidential treatment for the submission of reporting required under 45CSR§30-5.1.c.3. pursuant to the limitations and procedures of W.Va. Code § 22-5-10 and 45CSR31.
 [45CSR§30-5.1.c.3.E.]
- 3.5.3. All notices, requests, demands, submissions and other communications required or permitted to be made to the Secretary of DEP and/or USEPA shall be made in writing and shall be deemed to have been duly given when delivered by hand, mailed first class or by private carrier with postage prepaid to the address(es) set forth below or to such other person or address as the Secretary of the Department of Environmental Protection may designate:

If to the DAQ:

Director WVDEP Division of Air Quality 601 57th Street SE Charleston, WV 25304

Phone: 304/926-0475 FAX: 304/926-0478

If to the US EPA:

Associate Director

Office of Enforcement and Permits Review (3AP12)

U. S. Environmental Protection Agency Region III 1650 Arch Street Philadelphia, PA 19103-2029

- 3.5.4. **Certified emissions statement.** The permittee shall submit a certified emissions statement and pay fees on an annual basis in accordance with the submittal requirements of the Division of Air Quality.
 - [45CSR§30-8.]
- 3.5.5. Compliance certification. The permittee shall certify compliance with the conditions of this permit on the forms provided by the DAQ. In addition to the annual compliance certification, the permittee may be required to submit certifications more frequently under an applicable requirement of this permit. The annual certification shall be submitted to the DAQ and USEPA on or before March 15 of each year, and shall certify compliance for the period ending December 31. The permittee shall maintain a copy of the certification on site for five (5) years from submittal of the certification.
 [45CSR§30-5.3.e.]
- 3.5.6. Semi-annual monitoring reports. The permittee shall submit reports of any required monitoring on or before September 15 for the reporting period January 1 to June 30 and on or before March 15 for the reporting period July 1 to December 31. All instances of deviation from permit requirements must be clearly identified in such reports. All required reports must be certified by a responsible official consistent with 45CSR§30-4.4. [45CSR§30-5.1.c.3.A.]
- 3.5.7. Emergencies. For reporting emergency situations, refer to Section 2.17 of this permit.
- 3.5.8. **Deviations.**
 - a. In addition to monitoring reports required by this permit, the permittee shall promptly submit supplemental reports and notices in accordance with the following:
 - 1. Any deviation resulting from an emergency or upset condition, as defined in 45CSR§30-5.7., shall be reported by telephone or telefax within one (1) working day of the date on which the permittee becomes aware of the deviation, if the permittee desires to assert the affirmative defense in accordance with 45CSR§30-5.7. A written report of such deviation, which shall include the probable cause of such deviations, and any corrective actions or preventative measures taken, shall be submitted and certified by a responsible official within ten (10) days of the deviation.
 - 2. Any deviation that poses an imminent and substantial danger to public health, safety, or the environment shall be reported to the Secretary immediately by telephone or telefax. A written report of such deviation, which shall include the probable cause of such deviation, and any corrective actions or preventative measures taken, shall be submitted by the responsible official within ten (10) days of the deviation.
 - 3. Deviations for which more frequent reporting is required under this permit shall be reported on the more frequent basis.
 - 4. All reports of deviations shall identify the probable cause of the deviation and any corrective actions or preventative measures taken.

[45CSR§30-5.1.c.3.C.]

b. The permittee shall, in the reporting of deviations from permit requirements, including those attributable to upset conditions as defined in this permit, report the probable cause of such deviations and any corrective actions or preventive measures taken in accordance with

any rules of the Secretary. [45CSR§30-5.1.c.3.B.]

- 3.5.9. New applicable requirements. If any applicable requirement is promulgated during the term of this permit, the permittee will meet such requirements on a timely basis, or in accordance with a more detailed schedule if required by the applicable requirement.
 [45CSR\$30-4.3.h.1.B.]
- 3.5.10. The permittee shall submit to the DAQ a plan for complete, facility-wide implementation of RACT requirements within one hundred eighty (180) days of notification by the Director that a violation of the National Ambient Air Quality Standards (NAAQS) for ozone (that were in effect on or before May 1, 1996) has occurred. Such plan shall include those sources listed in Attachment A of R13-2617 as part of the site-wide control efficiency requirement and may contain an update of existing RACT analyses. Full implementation of such plan shall be completed within two (2) years of approval of the RACT plan by the Director.

Note: The Attachment A listing only for those sources in the Acetal Resin Production Area is provided in APPENDIX A.1.

[45CSR13, R13-2617, 4.5.1; 45CSR§40.4.c.1]

Permit Shield

For all facility-wide applicable requirements listed above, provide monitoring/testing / recordkeeping / reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number and/or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

Included in previous section

Are you in compliance with	l facility-wide applicable requirement	s? 🖂	Yes	🗌 No
----------------------------	--	------	-----	------

If no, complete the **Schedule of Compliance Form** as **ATTACHMENT F**.

21. Active Permits/Consent Orders			
Permit or Consent Order Number	Date of Issuance MM/DD/YYYY	List any Permit Determinations that Affect the Permit (<i>if any</i>)	
R13-1596E	03/15/2011		
R13-1849N	08/28/2014		
R13-2381H	01/06/2015	Application for 13-2381I submitted 1/10/17	
R13-2617I	12/08/2014		
CO-R34-E-2015-08	03/30/2015		

22. Inactive Permits/Obsolete Permit Conditions			
Permit Number	Date of Issuance	Permit Condition Number	
	MM/DD/YYYY		
	/ /		

23. Facility-Wide Emissions Summary [Tons per Y	Year]
Criteria Pollutants	Potential Emissions
Carbon Monoxide (CO)	67.87
Nitrogen Oxides (NO _X)	48.30
Lead (Pb)	
Particulate Matter (PM _{2.5}) ¹	14.84
Particulate Matter (PM ₁₀) ¹	14.84
Total Particulate Matter (TSP)	14.84
Sulfur Dioxide (SO ₂)	11.30
Volatile Organic Compounds (VOC)	237.84
Hazardous Air Pollutants ²	Potential Emissions
Total HAP ³	30.83
Formaldehyde	19.05
Methylene Chloride	0.28
Methanol	2.40
Toluene	8.79
Hexane	1.05
Styrene	0.00
Benzene	0.04
BiPhenyl/Diphenyl Ether	0.16
Regulated Pollutants other than Criteria and HAP	Potential Emissions
¹ $PM_{2.5}$ and PM_{10} are components of TSP.	
² For HAPs that are also considered PM or VOCs, emissions should the Criteria Pollutants section.	l be included in both the HAPs section
³ Total HAP includes specific HAPs listed below.	

24.	24. Insignificant Activities (Check all that apply)		
\square	1.	Air compressors and pneumatically operated equipment, including hand tools.	
\square	2.	Air contaminant detectors or recorders, combustion controllers or shutoffs.	
	3.	Any consumer product used in the same manner as in normal consumer use, provided the use results in a duration and frequency of exposure which are not greater than those experienced by consumer, and which may include, but not be limited to, personal use items; janitorial cleaning supplies, office supplies and supplies to maintain copying equipment.	
\square	4.	Bathroom/toilet vent emissions.	
\square	5.	Batteries and battery charging stations, except at battery manufacturing plants.	
	6.	Bench-scale laboratory equipment used for physical or chemical analysis, but not lab fume hoods or vents. Many lab fume hoods or vents might qualify for treatment as insignificant (depending on the applicable SIP) or be grouped together for purposes of description.	
	7.	Blacksmith forges.	
	8.	Boiler water treatment operations, not including cooling towers.	
\square	9.	Brazing, soldering or welding equipment used as an auxiliary to the principal equipment at the source.	
	10.	CO ₂ lasers, used only on metals and other materials which do not emit HAP in the process.	
\boxtimes	11.	Combustion emissions from propulsion of mobile sources, except for vessel emissions from Outer Continental Shelf sources.	
\boxtimes	12.	Combustion units designed and used exclusively for comfort heating that use liquid petroleum gas or natural gas as fuel.	
\boxtimes	13.	Comfort air conditioning or ventilation systems not used to remove air contaminants generated by or released from specific units of equipment.	
\square	14.	Demineralized water tanks and demineralizer vents.	
	15.	Drop hammers or hydraulic presses for forging or metalworking.	
\boxtimes	16.	Electric or steam-heated drying ovens and autoclaves, but not the emissions from the articles or substances being processed in the ovens or autoclaves or the boilers delivering the steam.	
	17.	Emergency (backup) electrical generators at residential locations.	
	18.	Emergency road flares.	
	19.	Emission units which do not have any applicable requirements and which emit criteria pollutants (CO, NO_x , SO ₂ , VOC and PM) into the atmosphere at a rate of less than 1 pound per hour and less than 10,000 pounds per year aggregate total for each criteria pollutant from all emission units.	
		Please specify all emission units for which this exemption applies along with the quantity of criteria pollutants emitted on an hourly and annual basis:	
	20.	Emission units which do not have any applicable requirements and which emit hazardous air pollutants into the atmosphere at a rate of less than 0.1 pounds per hour and less than 1,000 pounds per year aggregate total for all HAPs from all emission sources. This limitation cannot be used for any source which emits dioxin/furans nor for toxic air pollutants as per 45CSR27.	
		Please specify all emission units for which this exemption applies along with the quantity of hazardous air pollutants emitted on an hourly and annual basis:	
	21.	Environmental chambers not using hazardous air pollutant (HAP) gases.	
	22.	Equipment on the premises of industrial and manufacturing operations used solely for the purpose of preparing food for human consumption.	
	23.	Equipment used exclusively to slaughter animals, but not including other equipment at slaughterhouses, such as rendering cookers, boilers, heating plants, incinerators, and electrical power generating equipment.	
\boxtimes	24.	Equipment used for quality control/assurance or inspection purposes, including sampling equipment	

24.	4. Insignificant Activities (Check all that apply)		
	used to withdraw materials for analysis.		
	25.	Equipment used for surface coating, painting, dipping or spray operations, except those that will emit VOC or HAP.	
\square	26.	Fire suppression systems.	
\boxtimes	27.	Firefighting equipment and the equipment used to train firefighters.	
	28.	Flares used solely to indicate danger to the public.	
	29. Fugitive emission related to movement of passenger vehicle provided the emissions are not counted for applicability purposes and any required fugitive dust control plan or its equivalent is submitted.		
	30.	Hand-held applicator equipment for hot melt adhesives with no VOC in the adhesive formulation.	
\boxtimes	31.	Hand-held equipment for buffing, polishing, cutting, drilling, sawing, grinding, turning or machining wood, metal or plastic.	
	32.	Humidity chambers.	
	33.	Hydraulic and hydrostatic testing equipment.	
	34.	Indoor or outdoor kerosene heaters.	
\boxtimes	35.	Internal combustion engines used for landscaping purposes.	
	36.	Laser trimmers using dust collection to prevent fugitive emissions.	
	37.	Laundry activities, except for dry-cleaning and steam boilers.	
\boxtimes	38.	Natural gas pressure regulator vents, excluding venting at oil and gas production facilities.	
\square	39.	Oxygen scavenging (de-aeration) of water.	
	40.	Ozone generators.	
	41.	Plant maintenance and upkeep activities (e.g., grounds-keeping, general repairs, cleaning, painting, welding, plumbing, re-tarring roofs, installing insulation, and paving parking lots) provided these activities are not conducted as part of a manufacturing process, are not related to the source's primary business activity, and not otherwise triggering a permit modification. (Cleaning and painting activities qualify if they are not subject to VOC or HAP control requirements. Asphalt batch plant owners/operators must still get a permit if otherwise requested.)	
\boxtimes	42.	Portable electrical generators that can be moved by hand from one location to another. "Moved by Hand" means that it can be moved without the assistance of any motorized or non-motorized vehicle, conveyance, or device.	
\boxtimes	43.	Process water filtration systems and demineralizers.	
	44.	Repair or maintenance shop activities not related to the source's primary business activity, not including emissions from surface coating or de-greasing (solvent metal cleaning) activities, and not otherwise triggering a permit modification.	
\square	45.	Repairs or maintenance where no structural repairs are made and where no new air pollutant emitting facilities are installed or modified.	
\boxtimes	46.	Routing calibration and maintenance of laboratory equipment or other analytical instruments.	
	47.	Salt baths using nonvolatile salts that do not result in emissions of any regulated air pollutants. Shock chambers.	
	48.	Shock chambers.	
	49.	Solar simulators.	
\square	50.	Space heaters operating by direct heat transfer.	
\square	51.	Steam cleaning operations.	
\square	52.	Steam leaks.	

24.	4. Insignificant Activities (Check all that apply)	
	53.	Steam sterilizers.
	54.	Steam vents and safety relief valves.
	55.	Storage tanks, reservoirs, and pumping and handling equipment of any size containing soaps, vegetable oil, grease, animal fat, and nonvolatile aqueous salt solutions, provided appropriate lids and covers are utilized.
	56.	Storage tanks, vessels, and containers holding or storing liquid substances that will not emit any VOC or HAP. Exemptions for storage tanks containing petroleum liquids or other volatile organic liquids should be based on size limits such as storage tank capacity and vapor pressure of liquids stored and are not appropriate for this list.
	57.	Such other sources or activities as the Director may determine.
\square	58.	Tobacco smoking rooms and areas.
\square	59.	Vents from continuous emissions monitors and other analyzers.

25. Equipment Table

Fill out the Title V Equipment Table and provide it as ATTACHMENT D.

26. Emission Units

For each emission unit listed in the **Title V Equipment Table**, fill out and provide an **Emission Unit Form** as **ATTACHMENT E**.

For each emission unit not in compliance with an applicable requirement, fill out a **Schedule of Compliance Form** as **ATTACHMENT F**.

27. Control Devices

For each control device listed in the **Title V Equipment Table**, fill out and provide an **Air Pollution Control Device Form** as **ATTACHMENT G**.

For any control device that is required on an emission unit in order to meet a standard or limitation for which the potential pre-control device emissions of an applicable regulated air pollutant is greater than or equal to the Title V Major Source Threshold Level, refer to the **Compliance Assurance Monitoring (CAM) Form(s)** for CAM applicability. Fill out and provide these forms, if applicable, for each Pollutant Specific Emission Unit (PSEU) as **ATTACHMENT H**.

PUBLIC General Application Forms (general_forms.wpd) Page 26 of 27 Revised – 10/1/2014

28. Certification of Truth, Accuracy and Completeness and Certification of Compliance

Note: This Certification must be signed by a responsible official. The **original**, signed in **blue ink**, must be submitted with the application. Applications without an **original** signed certification will be considered as incomplete.

a. Certification of Truth, Accuracy and Completeness

I certify that I am a responsible official (as defined at 45CSR§30-2.38) and am accordingly authorized to make this submission on behalf of the owners or operators of the source described in this document and its attachments. I certify under penalty of law that I have personally examined and am familiar with the statements and information submitted in this document and all its attachments. Based on my inquiry of those individuals with primary responsibility for obtaining the information, I certify that the statements and information are to the best of my knowledge and belief true, accurate, and complete. I am aware that there are significant penalties for submitting false statements and information or omitting required statements and information, including the possibility of fine and/or imprisonment.

b. Compliance Certification

Except for requirements identified in the Title V Application for which compliance is not achieved, I, the undersigned hereby certify that, based on information and belief formed after reasonable inquiry, all air contaminant sources identified in this application are in compliance with all applicable requirements.

Responsible official (type or print)

Name: Jay Valvo

Title: Plant Manager

Responsible official's signature:

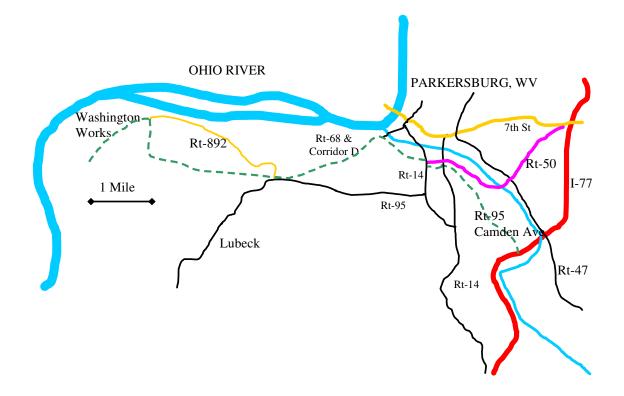
Signature:

(Must be signed and dated in blue ink)

Signature Date: ///0/17

Note: Please check all applicable attachments included with this permit application:			
\boxtimes	ATTACHMENT A: Area Map		
\boxtimes	ATTACHMENT B: Plot Plan(s)		
\boxtimes	ATTACHMENT C: Process Flow Diagram(s)		
\boxtimes	ATTACHMENT D: Equipment Table		
\boxtimes	ATTACHMENT E: Emission Unit Form(s)		
	ATTACHMENT F: Schedule of Compliance Form(s)		
\boxtimes	ATTACHMENT G: Air Pollution Control Device Form(s)		
\boxtimes	ATTACHMENT H: Compliance Assurance Monitoring (CAM) Form(s)		

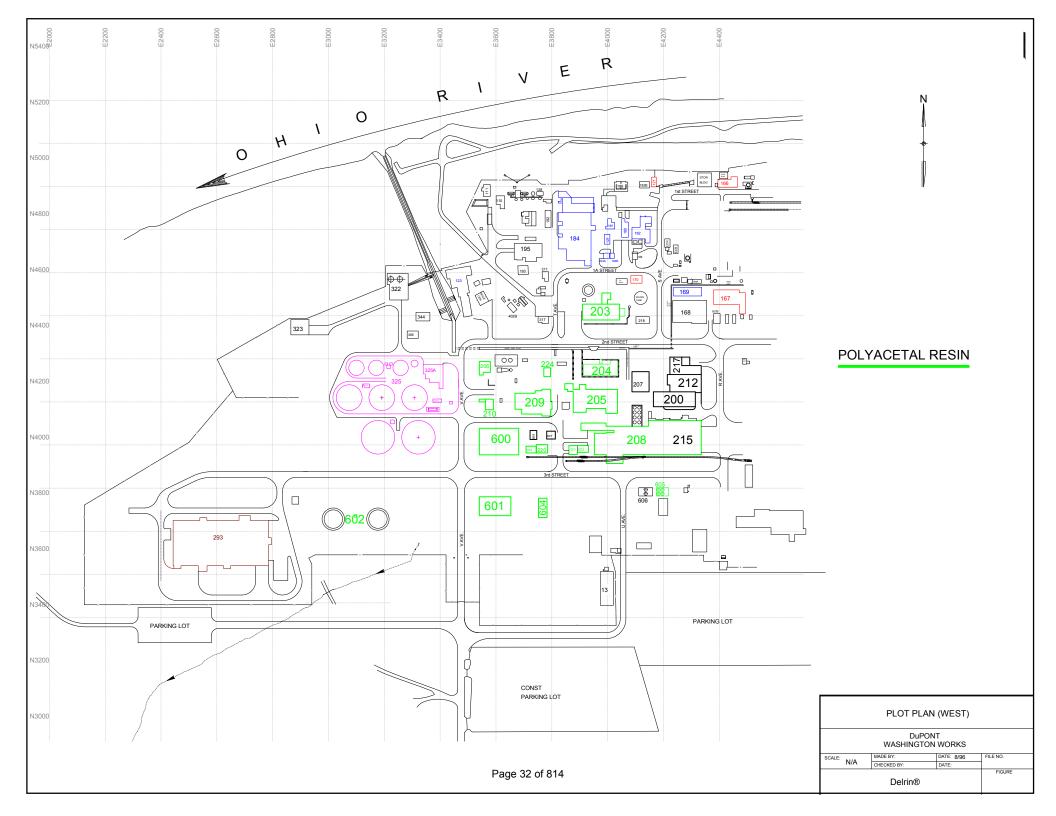
All of the required forms and additional information can be found and downloaded from, the DEP website at www.dep.wv.gov/dag, requested by phone (304) 926-0475, and/or obtained through the mail.

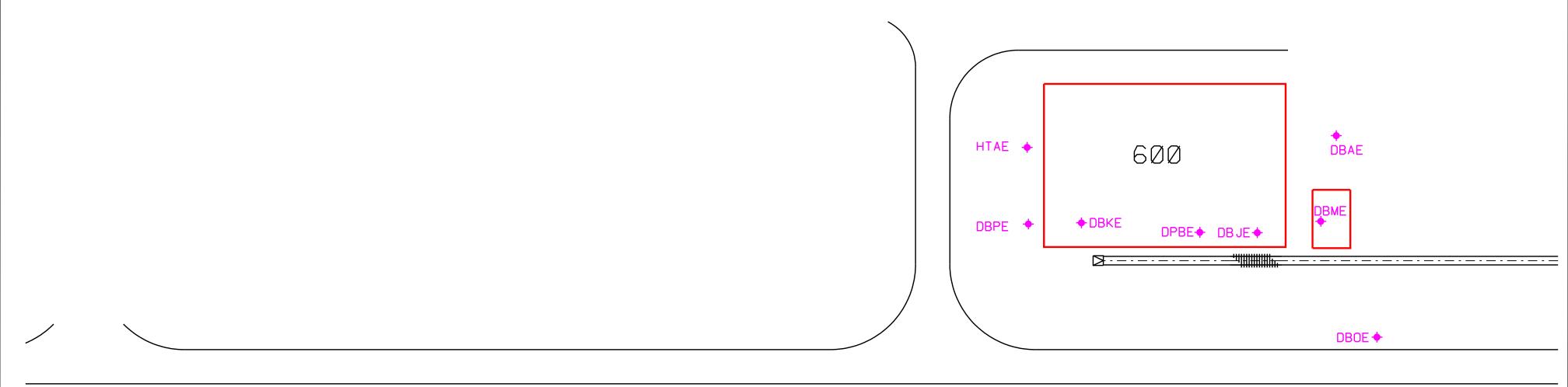

TABLE OF CONTENTS

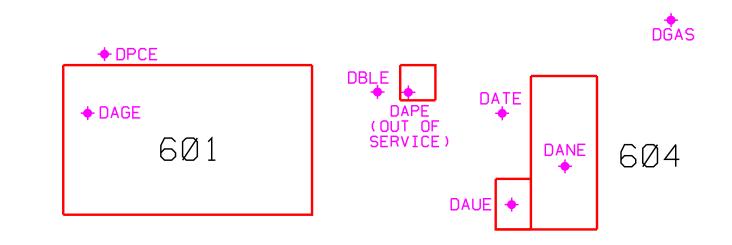
General Application Form	1
Table of Contents	28
Attachment A – Map	29
Attachment B – Site Location Maps	31
Attachment C – Process Flow Diagrams	36
Attachment D – Equipment Table	47
Attachment E – Emission Unit Data Sheets	58
Attachment G – Air Pollution Control Device Sheets	755
Attachment H – Compliance Assurance Monitoring Form	810

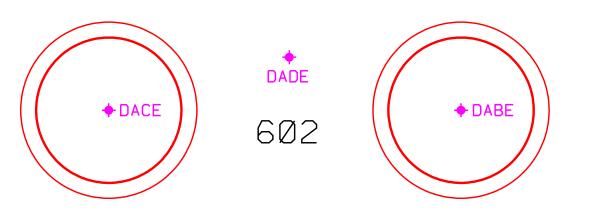
ATTACHMENT A

Area Map

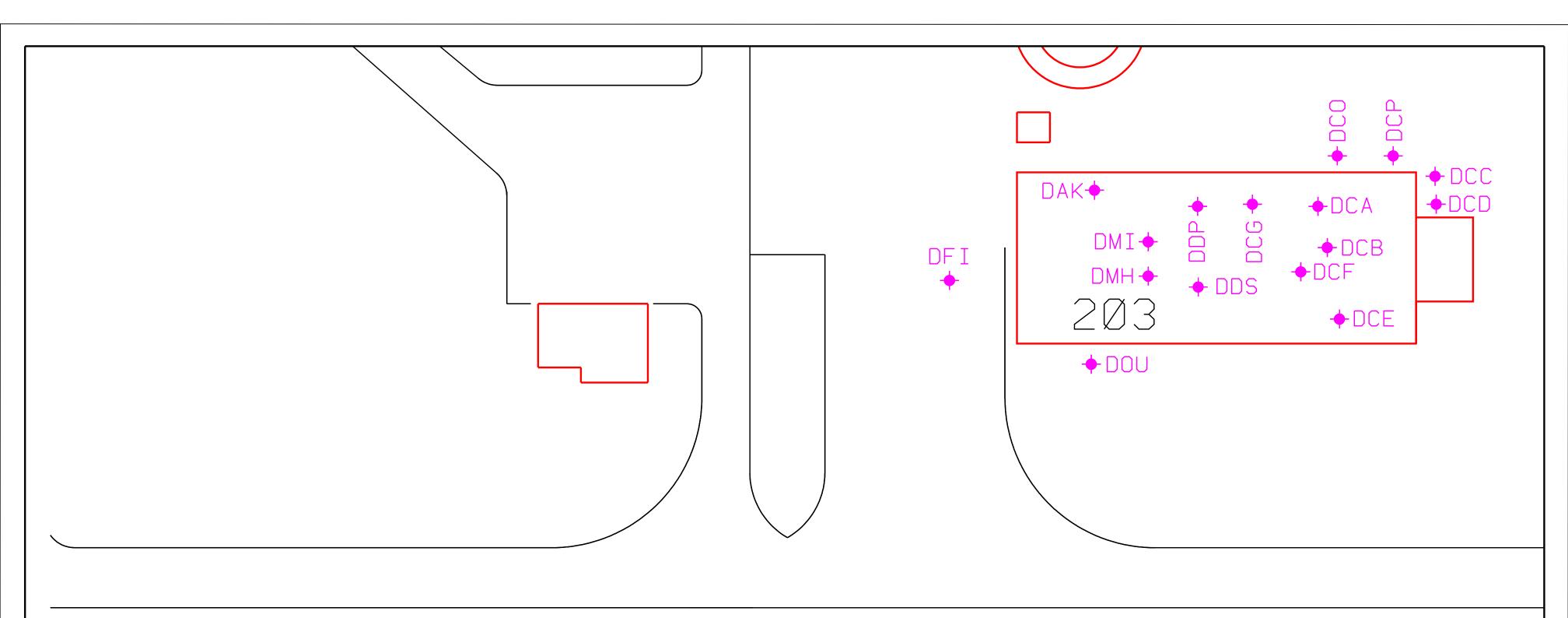

Attachment A – Area Map

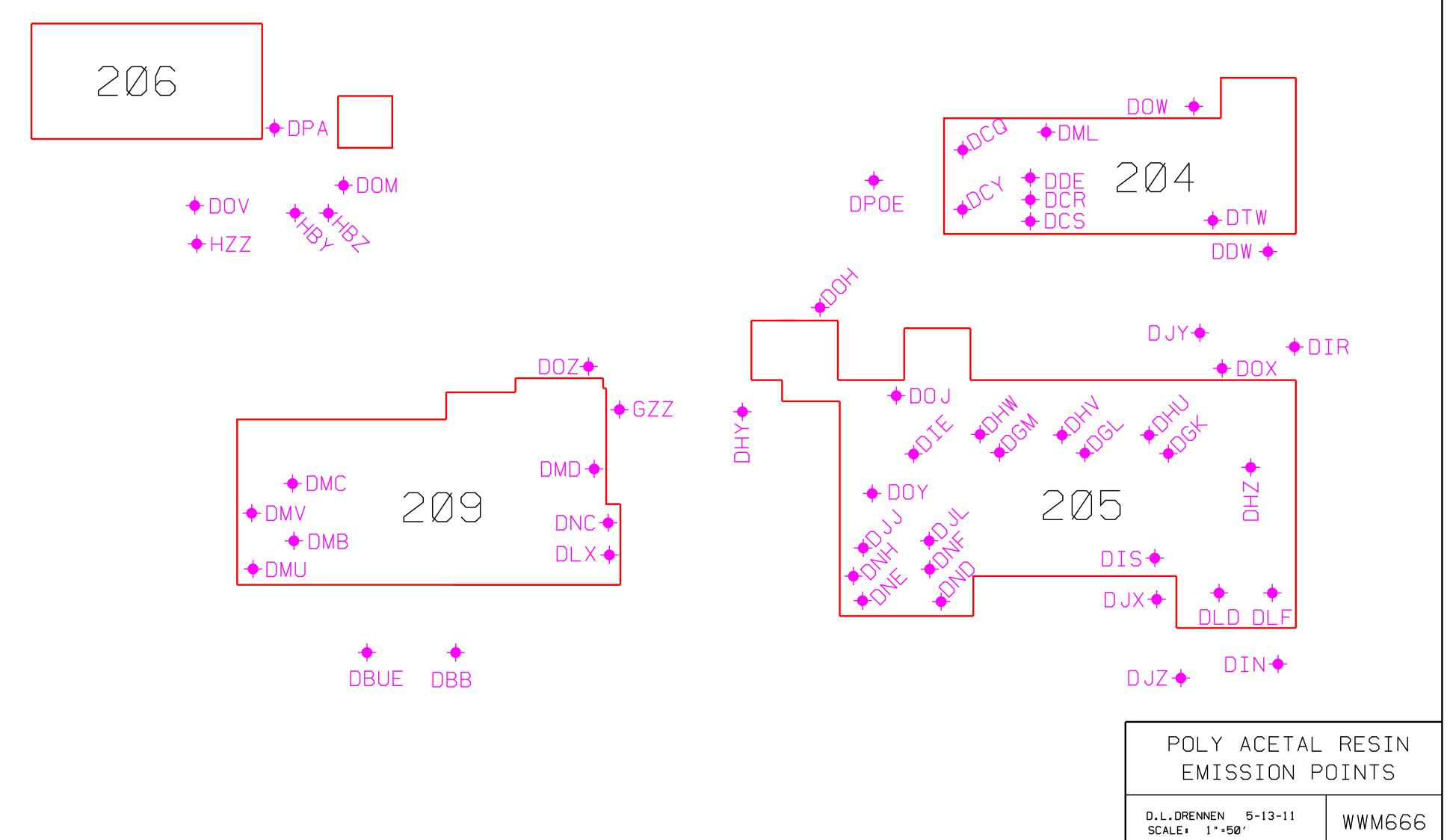


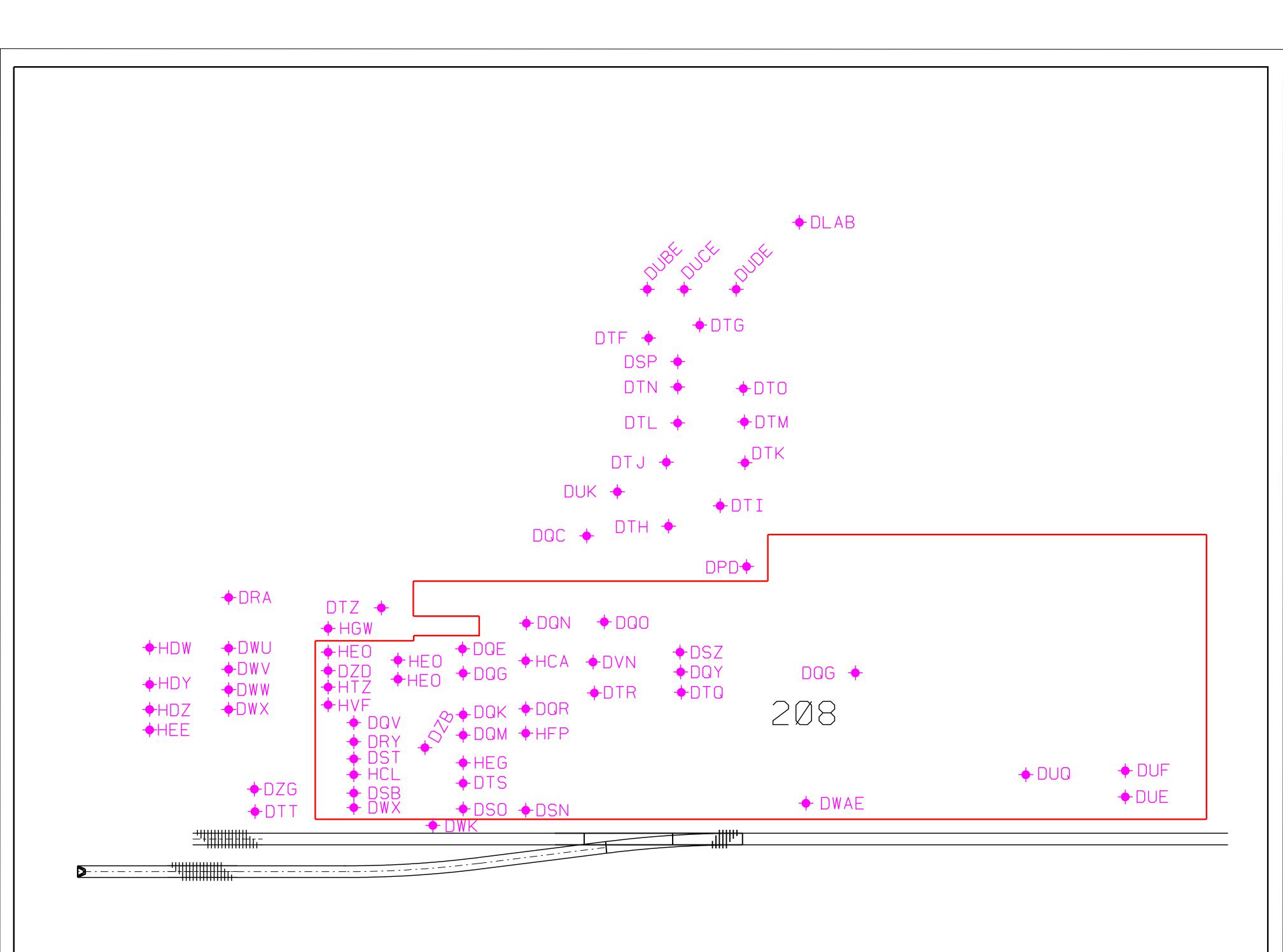

From Interstate 77, take exit for Rt-95/Camden Avenue. Proceed west until intersection with Rt-14 then turn right (north). After about 1/4 mile turn left onto Corridor D Bypass entrance. Follow the bypass to the exit just before the bridge. Turn left (south) onto DuPont Rd, Rt-892. Proceed approx. 1 mile to facility on right.

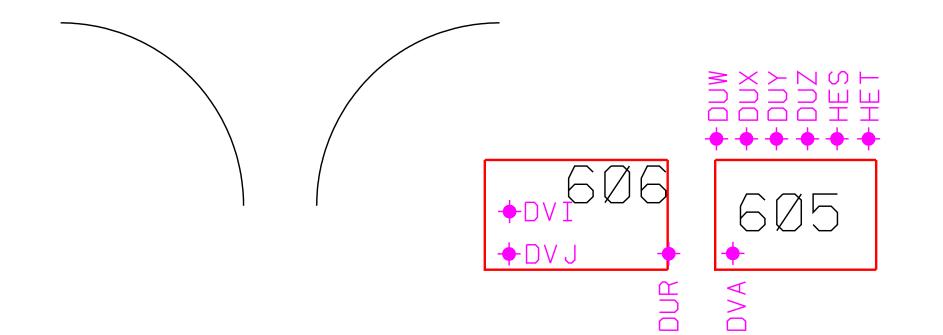

ATTACHMENT B

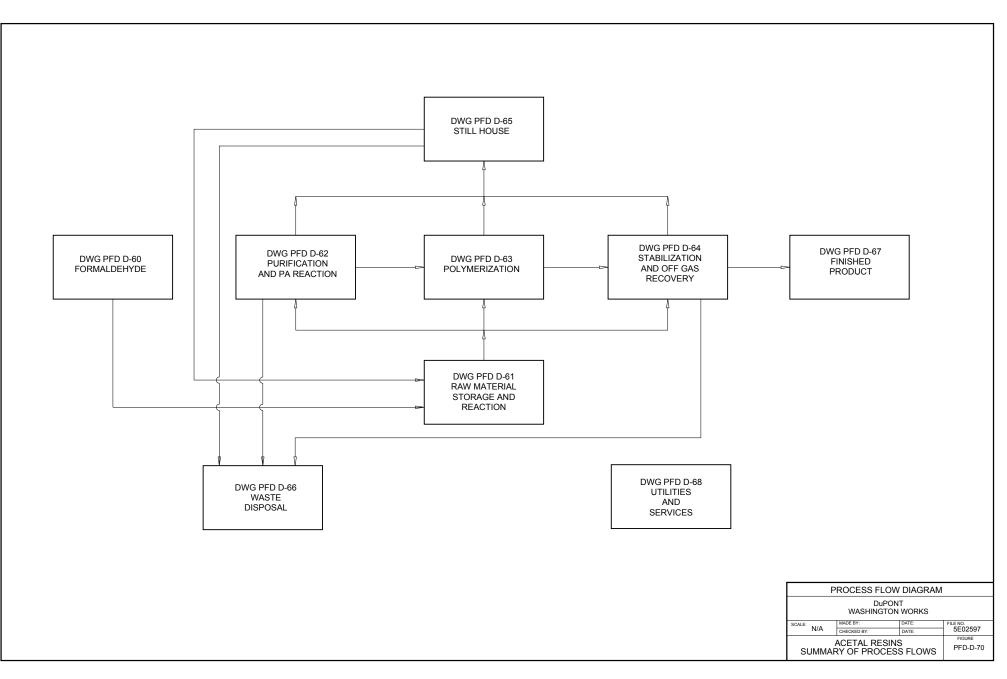
Plot Plans

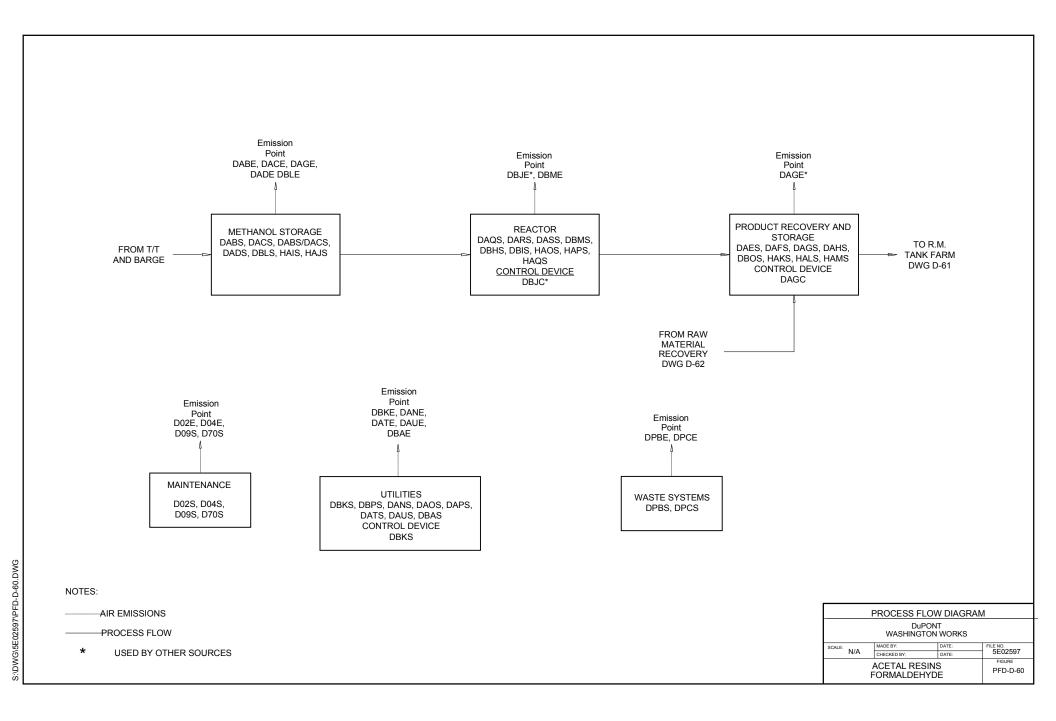


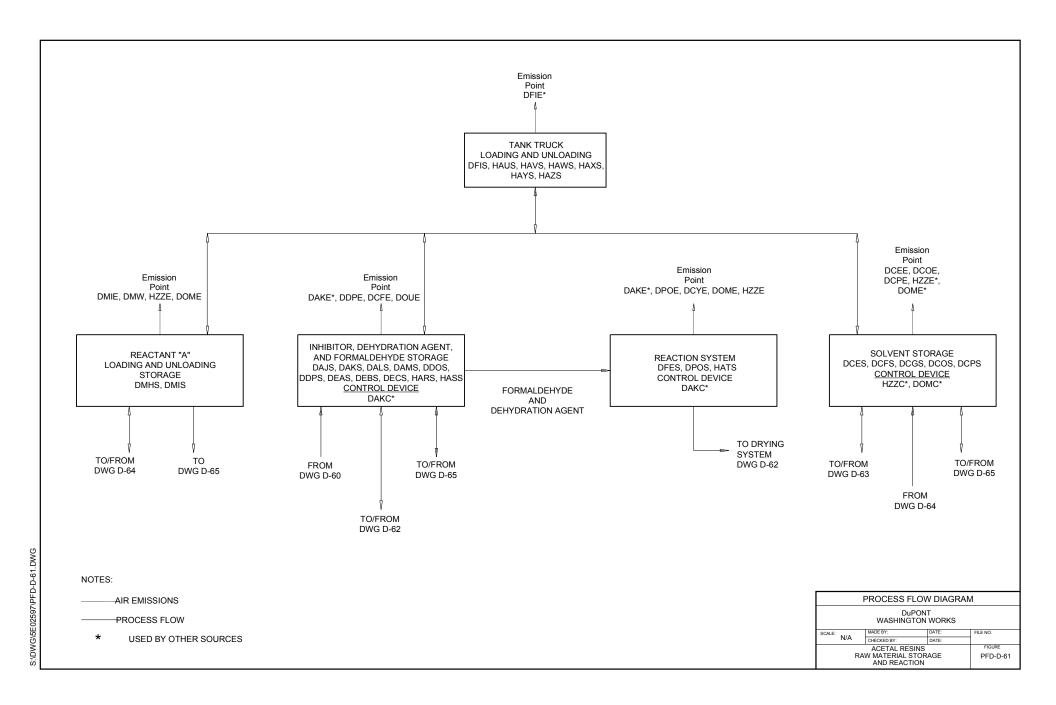




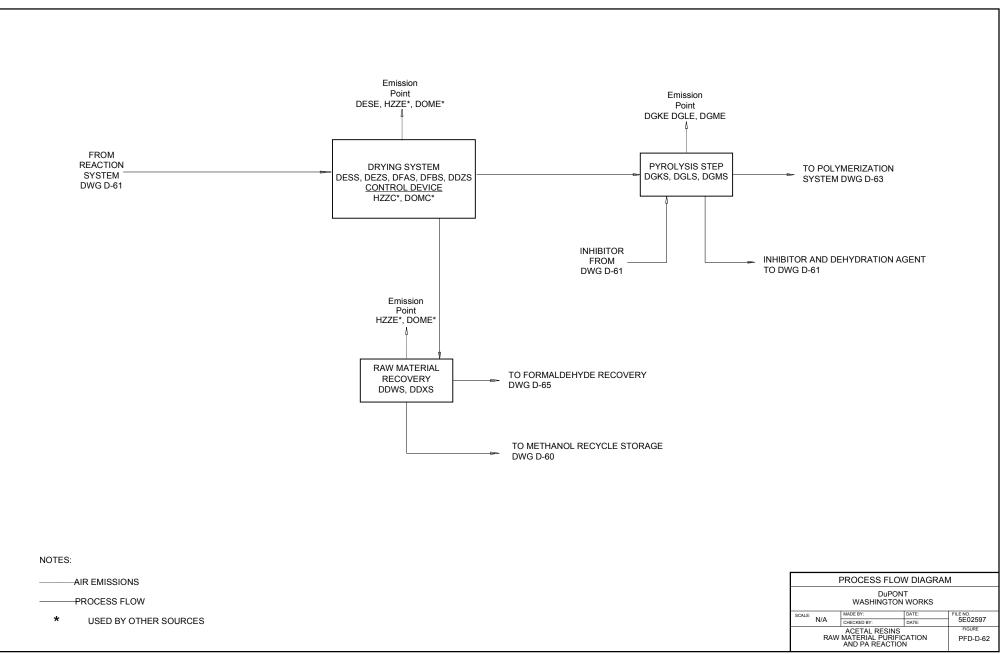

Page 33 of 814

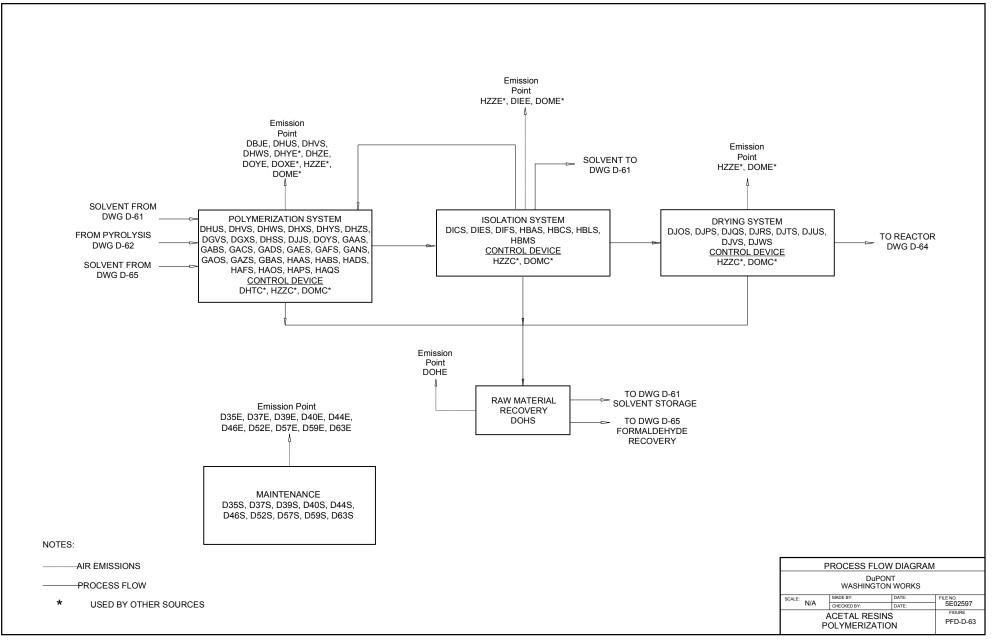


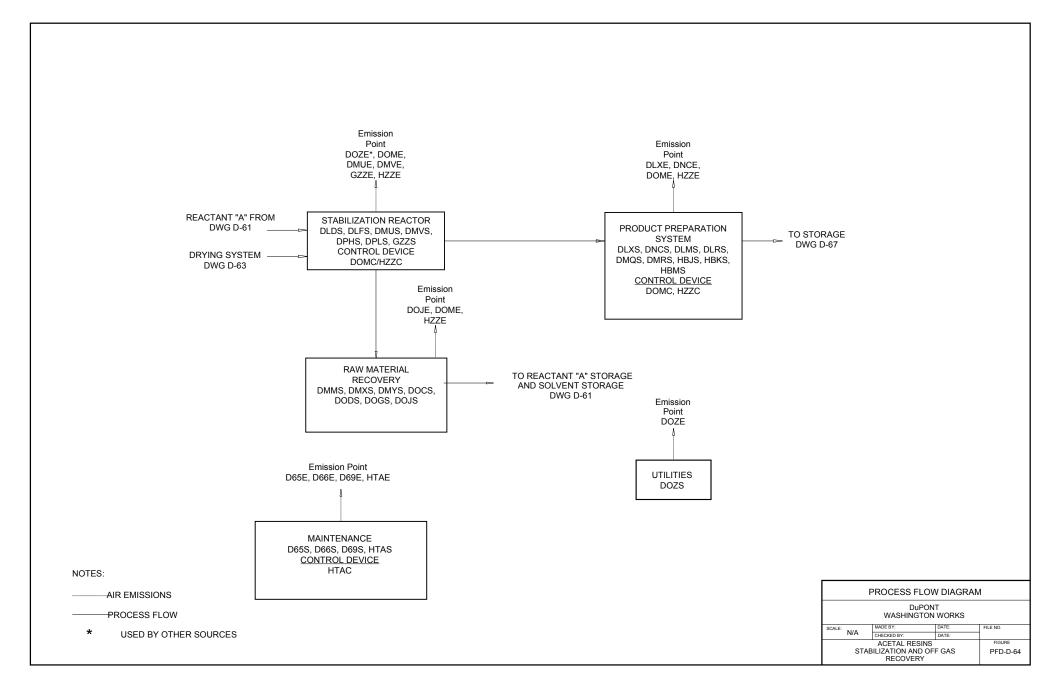

DUPONT ACETAL RESIN

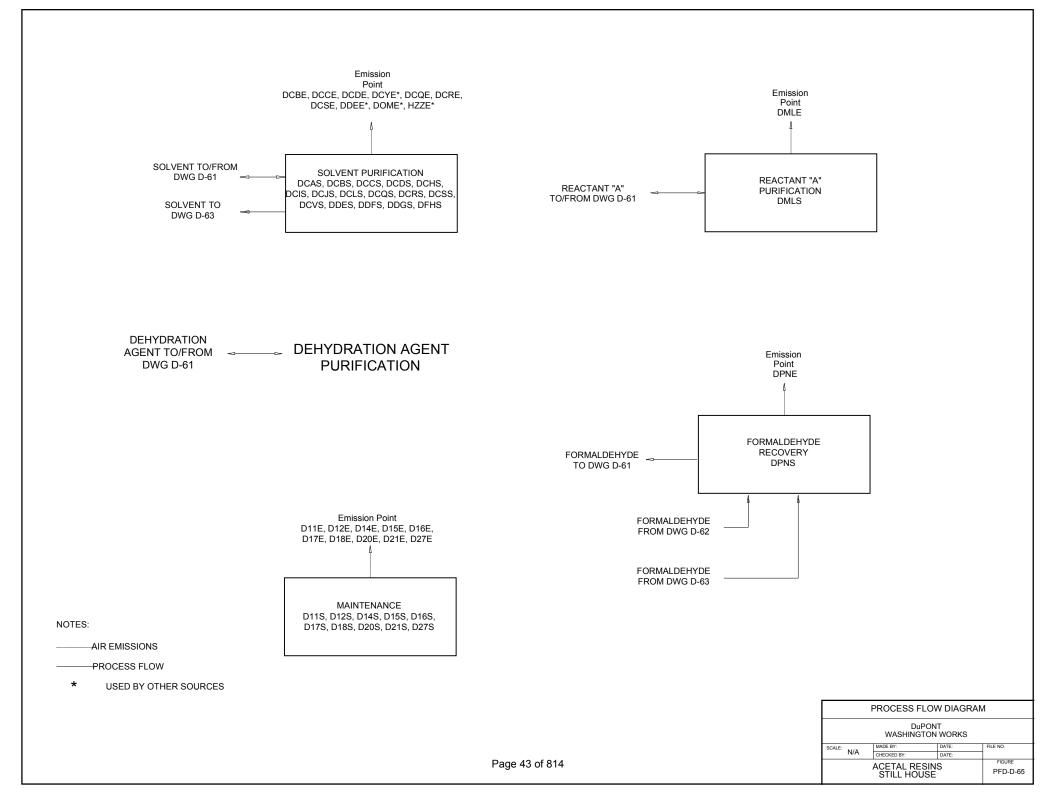

FINISHING AREA PERMIT PLOT PLAN
DAVE DRENNEN 5-13-11 SCALE: 1"=60'

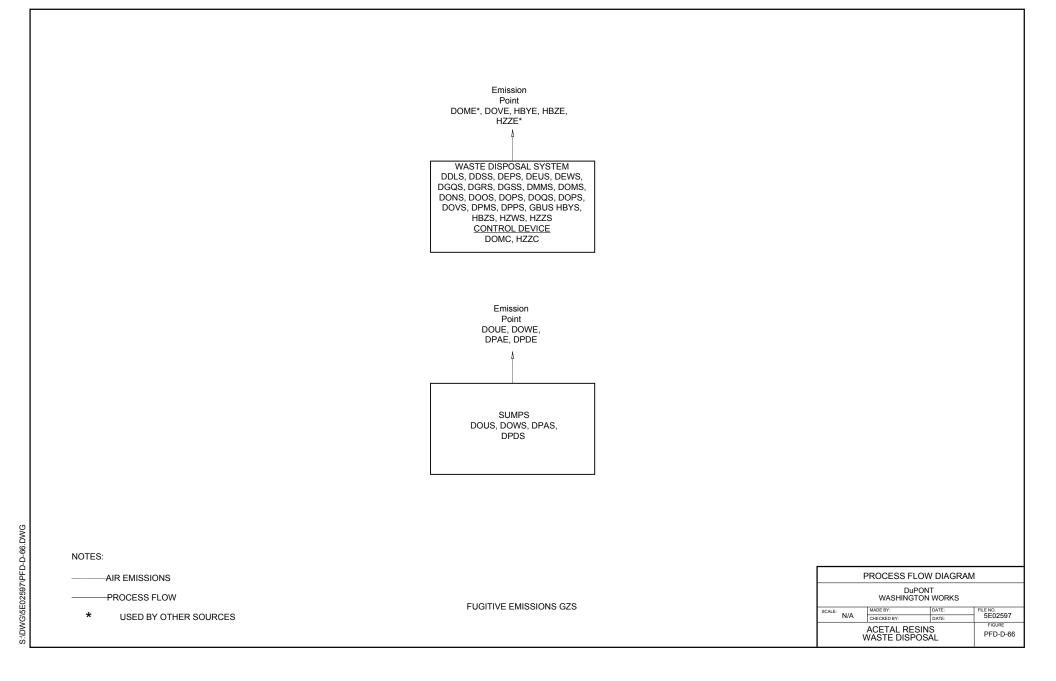
ATTACHMENT C

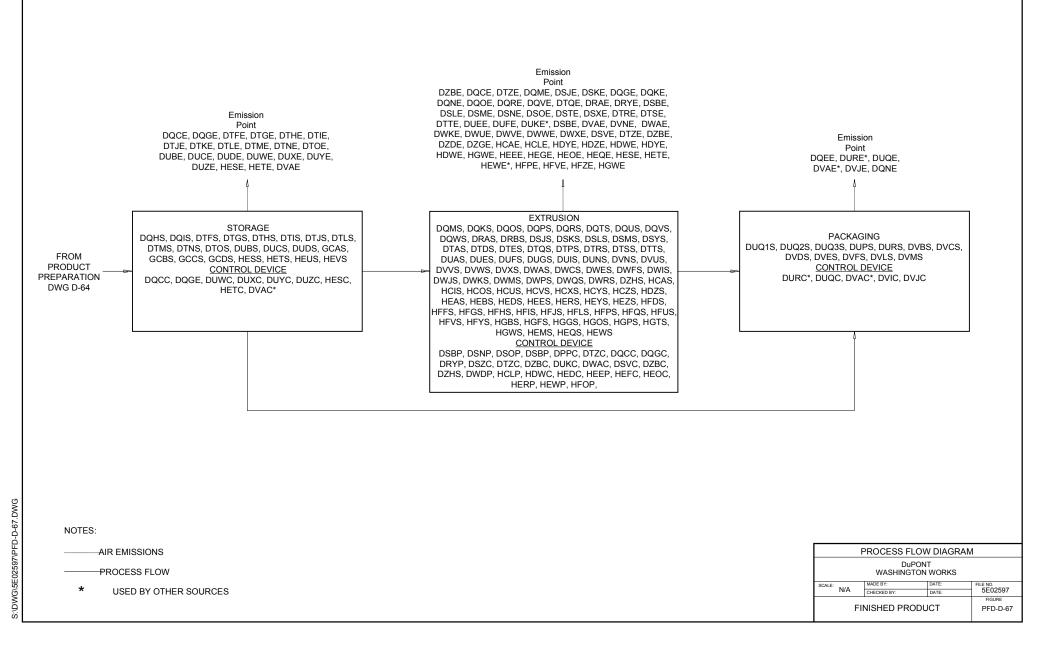

Process Flow Diagrams

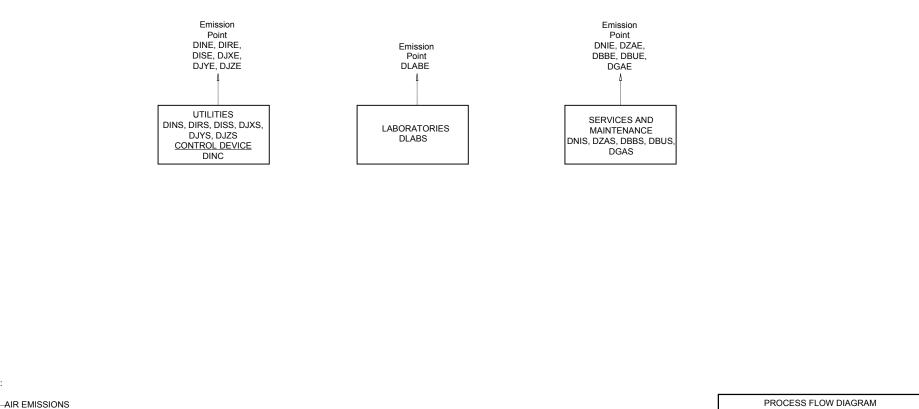







Page 39 of 814





DuPONT WASHINGTON WORKS

DATE:

DATE:

FILE NO. 5E02597

FIGURE

PFD-D-68

MADE BY:

CHECKED BY:

UTILITIES AND SERVICES

SCALE: N/A

NOTES:

*

-PROCESS FLOW

USED BY OTHER SOURCES

ATTACHMENT D

Equipment Table

ATTACHMENT D - Emission Units Table

(includes all emission units at the facility except those designated as insignificant activities in Section 4, Item 24 of the General Forms)

		Formaldehyde U	Jnit		
Emission Unit ID1	Emission Point ID1	Emission Unit Description	Year Installed/ Modified	Design Capacity	Control Device
D02S	D02E	"B" Formaldehyde Day Tank RV Change	1988	Conf.	
D04S	D04E	Dilute Formaldehyde Storage RV Change	1988	Conf.	
D09S	D09E	Dowtherm Storage Tank RV Change	1988	Conf.	
D70S	D70E	"A" Formaldehyde Day Tank RV Change	1988	Conf.	
DABC	DABE	"A" Methanol Storage Tank	1988	Conf.	DABC
DABS/DACS	DAGE	Methanol Tank Truck Unloading for DAB and DAC	1990	Conf.	DAGC
DACS	DACE	"B" Methanol Storage Tank	1988	Conf.	DACC
DADS	DADE	Methanol Feed Filters	1988	Conf.	
DAES	DAGE	"A" Formaldehyde Tank	1988	Conf.	DAGC
DAFS	DAGE	"B" Formaldehyde Day Tank	1988	Conf.	DAGC
DAHS	DAGE	Dilute Formaldehyde Storage Tank	1988	Conf.	DAGC
DANS	DANE	Formaldehyde Plant Cooling Tower	1988	Conf.	DANC
DAOS	DANE	Heat Exchanger for Formaldehyde Cooling in Product Recovery	1988	Conf.	
DAPS	DAPE	Cooling Tower Sulfuric Acid Storage Tank	2001	Conf.	
DAQS	DBJE	Formaldehyde Reactor Train #1	1988	Conf.	DBJC
DARS	DBJE	Formaldehyde Reactor Train #2	1988	Conf.	DBJC
DASS	DBJE	Formaldehyde Reactor Train #3	1988	Conf.	DBJC
DATS	DATE	Cooling Tower Bleach Storage Tank	2001	Conf.	
DAUS	DAUE	Cooling Tower Scale Inhibitor Tank	1988	Conf.	
DBAS	DBAE	Boiler Water Treatment Additive Storage Tank	1988	Conf.	
DBHS	DBJE	T-2 AND T-1 Absorber Product Recovery	1988	Conf.	DBJC
DBIS	DBJE	T-1 Packed Bed Absorber	1988	Conf.	DBJC
DBKS	DBKE	Dowtherm Storage Tank	1988	Conf.	DBKC
DBLS	DBLE	Recycle Methanol Tank	1988	Conf.	
DBMS	DBME	Oxygen Analyzer	1988	Conf.	
DBOS	DAGE	Formaldehyde Tank Truck Unloading	2002	Conf.	DAGC
DBPS	DBKE	Dowtherm Tank Truck Unloading	1988	Conf.	
DPBS	DPBE	Formaldehyde Plant Process Sump	1988	Conf.	
DPCS	DPCE	Fromaldehyde Tank Farm Sump	1988	Conf.	
HAIS	DABE	"A" Methanol Tank Clean Out and Inspection	1988	Conf.	
HAJS	DACE	"B" Methanol Tank Clean Out and Inspection	1988	Conf.	

	Formaldehyde Unit							
Emission Unit	Emission Point ID1	Emission Unit Description	-		Control Device1			
ID1	Point ID1		Modified					
HAKS	DAGE	"A" Formaldehyde Day Tank Clean Out and Inspection	1988		DAGC			
HALS	DAGE	"B" Formaldehyde Day Tank Clean Out and Inspection	1988	Conf.				
HAMS	DAGE	"F" Formaldehyde Day Tank Clean Out and Inspection	1988	Conf.				
HAOS	DBJE	#1 Reactor GC Analyzer	1988	Conf.	DBJC			
HAPS	DBJE	#2 Reactor GC Analyzer	1988	Conf.	DBJC			
HAQS	DBJE	#3 Reactor GC Analyzer	1988	Conf.	DBJC			
HTAS	HTAE	Reactor Catalyst Change Out	1997	Conf.	HTAC			

ATTACHMENT D - Emission Units Table

(includes all emission units at the facility except those designated as insignificant activities in Section 4, Item 24 of the General Forms)

		Polymerization U	J nit		
Emission Unit ID1	Emission Point ID1	Emission Unit Description	Year Installed/ Modified	Design Capacity	Control Device
D11S	D11E	Solvent Column Upper Layer Tank RV Change Out	1959		
D12S	D12E	Solvent Column Decanter RV Change Out	1959		
D14S	D14E	Recycle Solvent Storage Tank RV Change Out	1965		
D15S	D15E	Solvent Storage Tank RV Change Out	1965		
D16S	D16E	Silica Gel Bed "A" RV Change Out	1959		
D17S	D17E	Silica Gel Bed "B" RV Change Out	1959		
D18S	D18E	Silica Gel Bed "C" RV Change Out	1959		
D20S	D20E	Solvent Column Decanter RV Change Out	1959		
D21S	D21E	Solvent Column Upper Layer Tank RV Change Out	1959		
D27S	D27E	LBC Column Distillate Receiver RV Changeout	1963		
D35S	D35E	#1 Slurry Feed Tank RV Changeout	1959		
D37S	D37E	#1 Centrifuge RV Changeout	1959		
D39S	D39E	#1 Centrifuge Receiver Tank RV Change Out	1959		
D40S	D40E	#2 Centrifuge Receiver Tank RV Change Out	1959		
D44S	D44E	#1 Dryer Decanter Upper Layer Tank RV Change Out	1959		
D46S	D46E	#2 Dryer Decanter Upper Layer Tank RV Change Out	1959		
D52S	D52E	VRS Steam Stripper Distillate Tank RV Change Out	1959		
D57S	D57E	"A" RP Silo RV Change Out	1959		
D59S	D59E	"C" RP Silo RV Change Out	1959		
D63S	D63E	#2 Centrifuge RV Change Out	1959		
D65S	D65E	#1 Capper RV Change Out	1959		
D66S	D66E	#2 Capper RV Change Out	1981		
D69S	D69E	Catalyst Mix Tank RV Change Out	1959		
DALS	DOME/HZZE	"E" Formaldehyde Tank	1980	Confidential	DOMC/HZZC
DCAS	DOME/HZZE	Column Decanter Tank	1959	Confidential	DOMC/HZZC
DCBS	DCBE	Recycle Solvent Decant Filter		Confidential	
DCCS	DCCE	Recycle Solvent Decant Filter		Confidential	
DCDS	DCDE	Recycle Solvent Decant Filter		Confidential	
DCES	DCEE	Solvent Decanter Lower Layer Tank	1959	Confidential	
DCFS	DOME/HZZE	Recycle Solvent Tank	1965	Confidential	DOMC/HZZC
DCGS	DOME/HZZE	Solvent Storage Tank	1965	Confidential	DOMC/HZZC
DCHS	DCYE	A Silica Gel Bed Regeneration	1959	Confidential	DCMC

DCIS	DCYE	B Silica Gel Bed Regeneration	1959	Confidential	DCMC
DCJS	DCYE	C Silica Gel Bed Regeneration	1959	Confidential	DCMC
DCLS	DCYE	Distillation Column	1959	Confidential	
DCOS	DCOE	South Solvent Tails Filter	1959	Confidential	
DCPS	DCPE	North Solvent Tails Filter	1959	Confidential	
DCQS	DCQE	Solvent Regeneration Column Calandria Filter	1959	Confidential	
DCRS	DCRE	North Solvent Regeneration Feed Filter	1959	Confidential	
DCSS	DCSE	South Solvent Regeneration Feed Filter	1959	Confidential	
DCVS	DCYE	Silica Gel Bed Regeneration Condenser	1959	Confidential	
DDES	DDEE	Silica Gel Regeneratl Receiving Tank	1959	Confidential	
DDFS	DCYE	Column Decanter Tank	1959	Confidential	
DDGS	DCYE	Distillation Upper Layer Tank	1959	Confidential	
DDJS	DOME/HZZE	Purge Tank	1959	Confidential	DOMC/HZZC
DDLS	DOME/HZZE	HBR Distillation Column	1988	Confidential	DOMC/HZZC
DDOS	DOME	Recycle Alchohol Tank	1969	Confidential	DOMC/HZZC
DDPS	DDPE	Alcohol Storage Tank	1965	Confidential	
DDSS	DOME/HZZE	LBR Column	1983	Confidential	DOMC/HZZC
DDWS	DOME/HZZE	Low Boiler Column Feed Tank	1959	Confidential	DOMC/HZZC
DDXS	DOME/HZZE	Alcohol Decanter	1959	Confidential	DOMC/HZZC
DDZS	DOME/HZZE	LBR Column Distillate Receiver	1983	Confidential	DOMC/HZZC
DEAS	DOME/HZZE	Pyro Feed Tank	1958	Confidential	DOMC/HZZC
DEBS	DOME/HZZE	Dehy Feed Tank	1958	Confidential	DOMC/HZZC
DECS	DOME/HZZE	Acid Storage Tank	1959	Confidential	DOMC/HZZC
DEPS	DOME/HZZE	LPD Column	1988	Confidential	DOMC/HZZC
DENG-603	DENG-603E	Emergency Diesel Engine (8hp)	1997	Confidential	
DESS	DESE	Dehydrator Feed Filter		Confidential	
DEUS	DOME/HZZE	HPD Column	1988	Confidential	DOMC/HZZC
DEWS	DOME/HZZE	Reagent Recovery Column and Condenser	1983	Confidential	DOMC/HZZC
DEZS	DOME/HZZE	Concentrator Hold Up Tank	1984	Confidential	DOMC/HZZC
DFAS	DOME/HZZE	Concentrator Distillate Receiver	1959	Confidential	DOMC/HZZC
DFBS	DOME/HZZE	Neutralization/Concentrator Feed Tank	1984	Confidential	DOMC/HZZC
DFES	DOME/HZZE	Extraction Column		Confidential	DOMC/HZZC
DFHS	DDEE	Solvent Column Water Analyzer	1959	Confidential	
DFIS	DFIE	Weak Formaldehyde Tank Truck Loading	1965	Confidential	
DGKS	DGKE	#1 PC Lump Pot	1959	Confidential	
DGLS	DGLE	#2 PC Lump Pot	1959	Confidential	
DGMS	DGME	#3 PC Lump Pot	1959	Confidential	
DGQS	DOME/HZZE	#1 P/PC System	1990	Confidential	DOMC/HZZC
DGRS	DOME/HZZE	#2 P/PC System	1990	Confidential	DOMC/HZZC
DGSS	DOME/HZZE	#3 P/PC System	1990	Confidential	DOMC/HZZC
DGVS	DOME/HZZE	PC Steamout Condenser	1983	Confidential	DOMC/HZZC
DGXS	DOME/HZZE	Monomer Absorber	1983	Confidential	DOMC/HZZC

				1	1
DHSS	DOME/HZZE	Poly Steamout Decanter Tank	1959	Confidential	DOMC/HZZC
DHUS	DHUE	Reactor Sampling	1959	Confidential	
DHVS	DHVE	Reactor Sampling	1959	Confidential	
DHWS	DHWE	Reactor Sampling	1959	Confidential	
DHXS	DHZE	Catalyst Hold-Up Tank	1959	Confidential	
DHYS	DHYE	Catalyst Storage Tank	1959	Confidential	
DHZS	DHZE	Catalyst Mix Tank	1959	Confidential	
DICS	DOME/HZZE	Slurry Feed Tank	1959	Confidential	DOMC/HZZC
DIES	DOME/HZZE	Isolation System Vent	1980	Confidential	DOMC/HZZC
DIFS	DOME/HZZE	Isolation Liquid Receiver Tank	1959	Confidential	DOMC/HZZC
DINS	DINE	Warm Brine Tank	1996	Confidential	DINC
DISS	DISE	Chilled Water Brine Tank	1959	Confidential	
DJOS	DOME/HZZE	Decanter Tank (Upper Layer)	1959	Confidential	DOMC/HZZC
DJPS	DOME/HZZE	Decanter Tank (Lower Layer)	1959	Confidential	DOMC/HZZC
DJQS	DOME/HZZE	Decanter Tank (Upper Layer)	1995	Confidential	DOMC/HZZC
DJRS	DOME/HZZE	Decanter Tank (Lower Layer)	1995	Confidential	DOMC/HZZC
DJTS	DOME/HZZE	Dryer Blower Loop	1968	Confidential	DOMC/HZZC
DJUS	DOME/HZZE	Dryer Blower Loop	1995	Confidential	DOMC/HZZC
DJVS	DOME/HZZE	Conveyor Blower	1959	Confidential	DOMC/HZZC
DJWS	DOME/HZZE	Conveyor Blower	1979	Confidential	DOMC/HZZC
DJXS	DJXE	Chilled Water Brine Truck Loading	1959	Confidential	
DJYS	DJYE	Low Temperature Brine Truck Loading	1959	Confidential	
DJZS	DJZE	Warm Brine Tank Truck Loading	1959	Confidential	
DLDS	DOZE	#1 Secondary Condenser Steamout	1989	Confidential	
DLFS	DOZE	#2 Secondary Condenser Steamout	1989	Confidential	
DLMS	DOME/HZZE	Sparger	1963	Confidential	DOMC/HZZC
DLRS	DOME/HZZE	Sparger	1963	Confidential	DOMC/HZZC
DLXS	DLXE	Sparger Lump Pot	1963	Confidential	
DMHS	DOME/HZZE	Recycle AA Storage Tank	2000	Confidential	DOMC/HZZC
DMIS	DMIE	Refined AA Tank	1958	Confidential	
DMLS	DMLE	Refiner Distillation Column	1989	Confidential	DMLC
DMMS	DOME/HZZE	Reagent Purification Column	1989	Confidential	DOMC/HZZC
DMQS	DOME/HZZE	Polymer Conveyor Vent	Mid 1980s	Confidential	DOMC/HZZC
DMRS	DOME/HZZE	Polymer Conveyor Vent	Mid 1980s	Confidential	DOMC/HZZC
DMUS	DMUE	Vaporizer Boilout	1959	Confidential	
DMVS	DMVE	Vaporizer Boilout	1959	Confidential	
DMXS	DOME/HZZE	IRS Solvent Mix Tank	1995	Confidential	DOMC/HZZC
DMYS	DOME/HZZE	IRS Divert to CFB	1995	Confidential	DOMC/HZZC
DNCS	DNCE	Sparger Lump Pot	1981	Confidential	
DOA	DOME/HZZE	VRS Oil Scrubber	2013	Confidential	DOMC/HZZC
DOCS	DOME/HZZE	VRS - Oil Scrubber Bypass	1995	Confidential	DOMC/HZZC
DODS	DOME/HZZE	VRS Bypass	1995	Confidential	DOMC/HZZC
DOGS	DOME/HZZE	VRS Steam Stripper Distillate Decanter	1972	Confidential	DOMC/HZZC
DOHS	DOHE	Oil Storage Tank	1988	Confidential	

DOJS	DOJE	Emergency Divert from Knock-Out Pot	1995		
DOMS	DOME	CFB Liquid VOCs	2001	Confidential	DOMC
DONS	DOME/HZZE	"B" Organic Waste Feed Tank	2001	Confidential	DOMC/HZZC
DOOS	DOME/HZZE	"A" Organic Waste Feed Tank	1988	Confidential	DOMC/HZZC
DOPS	DOME/HZZE	"A" Aqueous Waste Water Tank	1963	Confidential	DOMC/HZZC
DOQS	DOME/HZZE	Aqueous Wastewater Decanter	2001	Confidential	DOMC/HZZC
DOUS	DOUE	Tank Farm Sump	1959	Confidential	
DOVS	DOVE	Furnace/Flare Emergency Divert	1995		
DOWS	DOWE	Stillhouse Sump	1959	Confidential	
DOXS	DOME/HZZE	Poly Building East Sump	1959	Confidential	DOMC/HZZC
DOYS	DOYE	Poly Building West Sump	1959	Confidential	
DOZS	DOZE	B209 Sump	1959	Confidential	
DPAS	DPAE	B206 Sump	1959	Confidential	
DPHS	DOME/HZZE	Capper	1959	Confidential	DOMC/HZZC
DPLS	DOME/HZZE	Capper	1981	Confidential	DOMC/HZZC
DPMS	DOME/HZZE	TEHOF Reactor	2001	Confidential	DOMC/HZZC
DPOS	DPOE	ColumnTails Analyzer	1983	Confidential	
DPPS	DOME/HZZE	TEHOF Reactor Decanter	1981	Confidential	DOMC/HZZC
GAAS	DOME/HZZE	#1 Poly Reactor	1988	Confidential	DOMC/HZZC
GABS	DOME/HZZE	#2 Poly Reactor	1988	Confidential	DOMC/HZZC
GACS	DOME/HZZE	#3 Poly Reactor	1988	Confidential	DOMC/HZZC
GADS	DOXE	Reactor F/C Steamout	1959	Confidential	DHTC1/DHTC2
GAES	DOXE	Reactor F/C Steamout	1959	Confidential	DHTC1/DHTC2
GAFS	DOXE	Reactor F/C Steamout	1959	Confidential	DHTC1/DHTC2
GANS	DOME/HZZE	Intermediate Polymer Silo (Solvent)	1959	Confidential	DOMC/HZZC
GAOS	DOME/HZZE	Intermediate Polymer Silo (Formaldehyde)	1959	Confidential	DOMC/HZZC
GAZS	DOME/HZZE	Intermediate Polymer Silo (Solvent)	1959	Confidential	DOMC/HZZC
GBAS	DOME/HZZE	Intermediate Polymer Silo (Formaldehyde)	1995	Confidential	DOMC/HZZC
GBUS	DOME/HZZE	LBR Distillation Column	1988	Confidential	DOMC/HZZC
GZZ	DEME	Maintenance Jet	2011		DEM-OH
GZZS	GZZE	Capper Maintenance Jet	1986	Confidential	GZZC
HAAS	DOME/HZZE	Virtual Source for Condenser Mass Balance	1959	Confidential	DOMC/HZZC
HABS	DOME/HZZE	Virtual Source for Condenser Mass Balance	1981	Confidential	DOMC/HZZC
HADS	DOME/HZZE	Virtual Source for Condenser Mass Balance	1959	Confidential	DOMC/HZZC
HAFS	DOME/HZZE	Virtual Source for Condenser Mass Balance	1959	Confidential	DOMC/HZZC
HAHS	DOME/HZZE	Virtual Source for Condenser Mass Balance	1959	Confidential	DOMC/HZZC
HANS	DOME/HZZE	"E" Tank Cleanout	1980	Confidential	DOMC/HZZC
HARS	DCFE	Recycle Storage Tank Cleanout	1965	Confidential	
HASS	DOUE	Storage Tank Cleanout	1965	Confidential	1
HATS	DCYE	Column and Condenser Cleanout	1959	Confidential	1
HAVS	DFIE	"A" Reagent Tank Truck Loading	1965	Confidential	1

HAWS	DFIE	Alcohol Tank Truck Loading	1965	Confidential	
HAXS	DFIE	Formic Acid Truck Loading	1965	Confidential	
HAYS	DFIE	Solvent Truck Loading	1965	Confidential	
HAZS	DFIE	Hemiformal Solution Tank Truck Loading	1965	Confidential	
HBAS	DOME/HZZE	Slurry Feed Tank	1959	Confidential	DOMC/HZZC
HBCS	DIEE	Isolation Change-Out Vent	1959	Confidential	
HBJS	DOME/HZZE	Sparger Condenser Wash	1959	Confidential	DOMC/HZZC
HBKS	DOME/HZZE	Sparger Condenser Wash	1959	Confidential	DOMC/HZZC
HBLS	DIEE	Isolation Change-Out Vent	1995	Confidential	
HBMS	DOME/HZZE	Isolation System Vent	1995	Confidential	DOMC/HZZC
HBYS	HBYE	CF Fuels Tank Truck Loading	1988	Confidential	
HBZS	HBZE	Tank Truck Loading from "A" Aqueous Tank	1988	Confidential	
HZWS	HZZE	John Zink Flare	1995	Confidential	HZZC

WVDEP R30 Title V Renewal Form D - Equipment Table

Emission Point ID	Control Device	Emission Unit ID	Emission Unit Description	CONFIDENTIAL Design Capacity	Installed/Moo ied
DBB-E	Integral to unit	DBB-S	Maintenance Bead Blaster	CONFIDENTIAL	2000
DBU-E	None	DBU-S	Electrically Heated Burnout Oven	CONFIDENTIAL	1985
DFR-E	DFR-P/DFR-C	DFR-S	Bulk Fluff Return Conveyor	CONFIDENTIAL	approx. 1988
DGA-E	None	DGA-S	Solvent Cleaning Station	CONFIDENTIAL	2000
DLAB-E	None	DLAB-S	Delrin Lab Hoods	CONFIDENTIAL	1960's
DQC-E	DQC-C	HCR-S	Additive Preparation Equipment	CONFIDENTIAL	2007
DQC-E	DQC-C	DQH-S	#6 Ext. Fluff Bin	CONFIDENTIAL	1960
DQC-E	DQC-C	DQI-S	#3 Ext. Fluff Bin	CONFIDENTIAL	1960
DQC-E	DQC-C	DQJ-S	#4 Ext. Fluff Bin	CONFIDENTIAL	1972
DQC-E	DQC-C	DTE-S	Capped Ribbon Blender	CONFIDENTIAL	1960
DQC-E	DQC-C	DWQ-S	#4 Ext. Wax Blender	CONFIDENTIAL	1972
DQC-E	DQC-C	HCO-S	#3 Ext. Wax Blender	CONFIDENTIAL	1989
DTH-E	None	DTH-S	"A" Product Silo	CONFIDENTIAL	1960
DTI-E	None	DTI-S	"B" Product Silo	CONFIDENTIAL	1960
DTJ-E	None	DTJ-S	"C" Product Silo	CONFIDENTIAL	1960
DTK-E	None	DTK-S	"D" Product Silo	CONFIDENTIAL	1960
DTL-E	None	DTL-S	"E" Product Silo	CONFIDENTIAL	1971
DTM-E	None	DTM-S	"F" Product Silo	CONFIDENTIAL	1971
DTN-E	None	DTN-S	"G" Product Silo	CONFIDENTIAL	1976
DTO-E	None	DTO-S	"H" Product Silo	CONFIDENTIAL	1976
DQE-E	DQE-P/DQE-C	DUP-S	Misc Bulk Cube Return Conveyor	CONFIDENTIAL	1998
DUS-E	DUS1-C/DUS2-C	DUS-S	Central Vac System	CONFIDENTIAL	<1985
DQM-E	None	HFI-S	#1 Ext. Sparge Bin	CONFIDENTIAL	1997
DQN-E	None	DWB-S	#3 Ext. Sparge Bin	CONFIDENTIAL	1960
DQR-E	None	DQR-S	#3 Ext. Die Hood	CONFIDENTIAL	1970
DQV-E	None	DQV-S	#6 Ext. Die Hood	CONFIDENTIAL	2004
DRY-E	DRY-P	DVU-S	D6 Sparger Cube Feed Conveyor	CONFIDENTIAL	2004
DSN-E	DSN-P	DVV-S	D3 Sparger Cube Feed Conveyor	CONFIDENTIAL	1960
DSZ-E	DSX-P	DUA-S	#4 Ext. Conc. Transfer	CONFIDENTIAL	1972
DTF-E	DTF-P/DTF-C	DTF-S	CD Blower System	CONFIDENTIAL	1980's
DTG-E	DTG-P/DTG-C	DTG-S	GH Blower System	CONFIDENTIAL	1988
DTZ-E	DTZ-C	HCX-S	#5 Ext. Wax Blender	CONFIDENTIAL	1981
DTZ-E	DTZ-C	DQK-S	#4 Ext. Sparger Bin	CONFIDENTIAL	1972
DTZ-E	DTZ-C	DQM-S	#5 Ext. Sparge Bin	CONFIDENTIAL	1981
DTZ-E	DTZ-C	DQL-S	#5 Ext. Fluff Bin	CONFIDENTIAL	1981
DTZ-E	DTZ-C	HCZ-S	#5 Ext. Ribbon Blender	CONFIDENTIAL	1981
DTZ-E	DSB-P/DTZ-C	DVX-S	#5 Extruder D4 Sparger Cube Feed	CONFIDENTIAL	1981
DTZ-E	DSO-P/DTZ-C	DVW-S	Conveyor	CONFIDENTIAL	1972
DUB-E	None	DUB-S	"E" Fluidizing Blower Vent	CONFIDENTIAL	Early 1970
DUC-E	None	DUC-S	"K" Fluidizing Blower Vent	CONFIDENTIAL	Early 1970
DUD-E	None	DUD-S	"J" Fluidizing Blower Vent	CONFIDENTIAL	2007
DZB-E	DZB-C	DQU-S	#4 Ext. Cube Blender	CONFIDENTIAL	1971
DZB-E	DZB-C	DUI-S	#5 Ext. Cube Blender	CONFIDENTIAL	1981
DZB-E	DZB-C	DBC-S	Bulk Cube Silo	CONFIDENTIAL	<1988
DZB-E	DZB-C	HOP-S	Hopper Truck Unloading	CONFIDENTIAL	<1988
DUK-E	DUL-C	DTP-S	#3 Ext. Prod. Hopper	CONFIDENTIAL	1989
DUK-E	DUL-C	HFL-S	#1 Ext. Prod. Hopper	CONFIDENTIAL	1997
DUK-E	DUK-C	DUG-S	#6 Ext. Cube Blender	CONFIDENTIAL	2004
DUK-E	DUK-C	DUN-S	#4 Ext. Prod. Hopper	CONFIDENTIAL	1988

WVDEP R30 Title V Renewal Form D - Equipment Table

Emission Point ID	Control Device	Emission Unit ID	Emission Unit Description	CONFIDENTIAL Design Capacity	rear Installed/Mod ied
DUQ-E	DUQ-C	DUQ3-S	BF Dumping Station	CONFIDENTIAL	1998
DUQ-E	DUQ-C	DUQ1-S	BF Loading Station	CONFIDENTIAL	1970
DUQ-E	DUQ-C	DUQ2-S	BF Loading Station	CONFIDENTIAL	1970
DUR-E	DUR-P/DUR-C	DUR-S	Fluff PackOut Transfer	CONFIDENTIAL	1970
DUR-E	DUR-P/DUR-C	DUE-S	"A" PackOut Bin	CONFIDENTIAL	1961
DUR-E	DUR-P/DUR-C	DUF-S	"B" PackOut Bin	CONFIDENTIAL	1961
DUS-E	DUS1-C/DUS2-C	DRL-S	Bulk Cube Railcar Loading	CONFIDENTIAL	<1988
DUW-E	DUW-C	GCA-S	#1 BF Stor. Silo F-Vent	CONFIDENTIAL	1989
DUX-E	DUX-C	GCB-S	#2 BF Stor. Silo F-Vent	CONFIDENTIAL	1989
DUY-E	DUY-C	GCC-S	#3 BF Stor. Silo F-Vent	CONFIDENTIAL	1989
DUZ-E	DUZ-C	GCD-S	#4 BF Stor. Silo F-Vent	CONFIDENTIAL	1989
HES-E	HES-C	HES-S	#5 BF Stor. Silo F-Vent	CONFIDENTIAL	1998
HET-E	HET-C	HET-S	#6 BF Stor. Silo F-Vent	CONFIDENTIAL	1998
DVA-E	DVA-P/DVA-C	DSS-S	SS Transfer Loop	CONFIDENTIAL	1988
DVB-E	DVB-P/DVB-C	DVO-S	North Bulk Fluff Truck PackOut Station	CONFIDENTIAL	1988
DVB-E	DVB-P/DVB-C	DVP-S	SouthBulk Fluff Truck PackOut Station	CONFIDENTIAL	1988
DVI-E	DVI-C	DVL-S	North Load Out Silo	CONFIDENTIAL	1989
DVJ-E	DVJ-C	DVM-S	South Load Out Silo	CONFIDENTIAL	1989
DVN-E	None	DVN-S	East D6 Sparger	CONFIDENTIAL	2004
DWA-E	DWA-P	DWA-S	Vacuum Unloading	CONFIDENTIAL	1980's
DWK-E	None	DWK-S	#4 Ext. Fines Screener	CONFIDENTIAL	1971
DWU-E	None	DSJ-S	#6 Ext. Dryer	CONFIDENTIAL	2004
DWV-E	None	DSK-S	#3 Ext. Dryer	CONFIDENTIAL	1970
DWW-E	None	DSL-S	#4 Ext. Dryer	CONFIDENTIAL	1971
DWX-E	None	DSM-S	#5 Ext. Dryer	CONFIDENTIAL	1981
DZD-E	None	DQW-S	#4 Ext. Die Hood	CONFIDENTIAL	1971
DZG-E/DZI-E	DWD-P	DWM-S	#5 Ext. Conc. Blower	CONFIDENTIAL	1981
DZG-E/DZI-E	HED-P	HEZ-S	#1 Ext. Conc. Transfer	CONFIDENTIAL	1997
DZG-E/DZI-E	HEW-P	HFX-S	#5 TPU Transfer	CONFIDENTIAL	1991
DZG-E/DZI-E	HDW-P, HDW-C	HFY-S	#1 Ext. TPU Bin/Charge Sys.	CONFIDENTIAL	1997
HCA-E	None	HCA-S	West D6 Sparger	CONFIDENTIAL	2004
HDW-E	HDW-C	HGT-S	#1 Ext. Feed Hopper	CONFIDENTIAL	1981
HDW-E	HDW-C	HEM-S	#1 Ext. Side Feeder	CONFIDENTIAL	1997
HDW-E	HDW-C	HFG-S	#1 Ext. Conc. Blender	CONFIDENTIAL	1997
HDY-E	None	HEY-S	#1 Ext. Dryer	CONFIDENTIAL	1997
HDY-E	None	HEB-S	#1 Ext. Screener	CONFIDENTIAL	1997
HEE-E	HEE-P	HFD-S	D1 Sparger Cube Feed Conveyor	CONFIDENTIAL	1997
HEG-E	HEF-C	HEE-S	#1 Snake Skin Stripper	CONFIDENTIAL	2005
HEO-E	HEO-C	HFH-S	#1 Ext. Cube Blender	CONFIDENTIAL	1997
HEQ-E HFP-E	None HFO-P	HFJ-S HFP-S	#1 Ext. Fluff Bin #1 Ext. Black Conc. Conveyor	CONFIDENTIAL	1997
HFV-E	None	HFV-S	#1 Ext. Die Hood	CONFIDENTIAL	1997
HRB-E	HRB-P/HRB-C	HRB-S	CRB Transfer Loop	CONFIDENTIAL	1960
HGW-E	None	DWF-S	#5 Ext. Screener	CONFIDENTIAL	1981
DQO-E	None	DQO-S	#6 Ext. Screw Conveyor	CONFIDENTIAL	2004
DQT-E	None	DQT-S	#4 Ext. Conc. Blender	CONFIDENTIAL	1988
DRA-E	None	DRA-S	#3 Ext. Screw Conv.	CONFIDENTIAL	1960
DRB-E	None	DRB-S	#4 Ext. Screw Conveyor	CONFIDENTIAL	1972
DRD-E	None	DRD-S	#5 Ext. Screw Conveyor	CONFIDENTIAL	1981
DTD-E	None	DTD-S	#3 Ext. Add. Feeder	CONFIDENTIAL	1989
DTQ-E	None	DTQ-S	#6 Ext. Melt Cut. Tank	CONFIDENTIAL	2004
DTR-E	None	DTR-S	#3 Ext. Melt Cut Tank	CONFIDENTIAL	1960
DTS-E	None	DTS-S	#4 Ext. Melt Cut. Tank	CONFIDENTIAL	1972
DTT-E DUO-E	None	DTT-S	#5 Ext. Melt Cut Tank	CONFIDENTIAL	1981
	None	DUO-S	#3 Ext. Net Wt. Hopper	CONFIDENTIAL	1989

WVDEP R30 Title V Renewal Form D - Equipment Table

Emission Point ID	Control Device	Emission Unit ID	Emission Unit Description	CONFIDENTIAL Design Capacity	rear Installed/Modif ied
DWH-E	None	DWH-S	#3 Ext. Screener	CONFIDENTIAL	1960
DWI-E	None	DWI-S	#6 Ext. Feed Hopper	CONFIDENTIAL	2004
DWJ-E	None	DWJ-S	#4 Ext. Feed Hopper	CONFIDENTIAL	1972
DWL-E	None	DWL-S	#4 Ext. Fines Drum	CONFIDENTIAL	1972
DWP-E	None	DWP-S	#5 Ext. Mix Conveyor	CONFIDENTIAL	1981
HCU-E	None	HCU-S	#5 Ext. Add. Feeder	CONFIDENTIAL	1981
HCV-E	None	HCV-S	#5 Ext. Blender Valve	CONFIDENTIAL	1981
HCY-E	None	HCY-S	#5 Ext. Wax Feeder	CONFIDENTIAL	1981
HDZ-E	None	HDZ-S	#1 Ext. Melt Cut. Tank	CONFIDENTIAL	1997
HEA-E	None	HEA-S	#1 Ext. Wax Feeder	CONFIDENTIAL	1997
HED-E	None	HED-S	#1 Ext. Screw Conveyor	CONFIDENTIAL	1997
HFQ-E	None	HFQ-S	#1 Ext. Net Wt. Hopper	CONFIDENTIAL	1997
HFW-E	None	HFW-S	#1 Ext. Screener Waste Drum	CONFIDENTIAL	1997
HGB-E	None	HGB-S	#5 Ext. Feed Hopper	CONFIDENTIAL	1981
HGD-E	None	HGD-S	#5 Ext. Longs Drum	CONFIDENTIAL	1981
HGF-E	None	HGF-S	#4 Ext. Wax Feeder	CONFIDENTIAL	1972
HGG-E	None	HGG-S	#4 Ext. Add. Feeder	CONFIDENTIAL	1972
HGK-E	None	HGK-S	#6 Ext. Screener Box	CONFIDENTIAL	2004
HGL-E	None	HGL-S	#3 Ext. Fines Box	CONFIDENTIAL	1960
HGO-E	None	HGO-S	#6 Ext. Wax Feeder	CONFIDENTIAL	2004
HGP-E	None	HGP-S	#3 Ext. Wax Feeder	CONFIDENTIAL	1989
HGW-E	None	HGW-S	#5 Die Head Vent	CONFIDENTIAL	1981

ATTACHMENT E

Emission Unit Forms

A]	TACHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number: D02S	Emission unit name: "B" Formaldehyde Day Tank RV Change	List any control devices asso with this emission unit:	ociated
Provide a description of the emission	on unit (type, method of operation, de	sign parameters, etc.):	
"B" For	naldehyde Day Tank RV Change -Vents	s through D02E	
		Dedacted Conv	
		Redacted Copy Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	J
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1988	N/A	
Maximum Hourly Throughput: Fuel Usage Data (fill out all applic	Maximum Annual Throughput: able fields)	Maximum Operating Sched 8760 hr/yr	ule:
Does this emission unit combust fu	el? 🔽 Yes 🔽 No	If yes, is it? Direct Fired India	rect Fired
Maximum design heat input and/o	r maximum horsepower rating:	Type and Btu/hr rating of b	ourners:
	N/A	N/A	
List the primary fuel type(s) and if maximum hourly and annual fuel t	applicable, the secondary fuel type(s) usage for each.). For each fuel type listed, pr	ovide the
Describe each fuel expected to be u	sed during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data				
Criteria Pollutants	Pot	tential Emissions		
	РРН	TPY		
Carbon Monoxide (CO)		1	Т	
Nitrogen Oxides (NO _X)		1	1	
Lead (Pb)		+	+	
Particulate Matter (PM _{2.5})		+	+	
Particulate Matter (PM ₁₀)		+	+	
Total Particulate Matter (TSP)			+	
Sulfur Dioxide (SO ₂)		+	+	
Volatile Organic Compounds (VOC)	0.5	0.01	+	
Hazardous Air Pollutants		tential Emissions		
	PPH	TPY		
Formaldehyde	0.26	0.00	01	
Methanol	0.21	0.001		
Regulated Pollutants other than Criteria and HAP	Potential Emissions			
	PPH	TPY		
Volatile Organic Compounds (VOC)	0.5	0.01		
		1		
List the method(s) used to calculate the potenti	ial emissions (include da	tes of any stack tests conducte	ed. versions	
of software used, source and dates of emission			·····	
Engineering Estimate				

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1596D

AT	TACHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number: D04S	Emission unit name: Dilute Formaldehyde Storage RV	List any control devices asso with this emission unit:	ociated
UTU UTU	Change		
Provide a description of the emission	n unit (type, method of operation, de	sign parameters, etc.):	
Dilute For	maldehyde Storage RV Change -Vents	through D04E	
		Redacted Copy	_
		Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	J
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1988	N/A	
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched 6 hr/yr	ule:
<i>Fuel Usage Data</i> (fill out all applica)	ble fields)		
Does this emission unit combust fuel	? Ves V No	If yes, is it? Direct Fired Indir	ect Fired
Maximum design heat input and/or	maximum horsepower rating:	Type and Btu/hr rating of b	urners:
Ν	//A	N/A	
List the primary fuel type(s) and if a maximum hourly and annual fuel us	applicable, the secondary fuel type(s) sage for each.	. For each fuel type listed, pr	ovide the
Describe each fuel expected to be us	ed during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Potential Emissions		
PPH	TPY	
	1	
	+	1
	+	+
	+	+
	+	+
	+	+
	+	+
0.1	0.01	+
Pote	ntial Emissions	
РРН	TPY	
0.06	0.0)01
	1	
	1	
	1	
Poter	ntial Emissions	
PPH	TPY	
0.1	0.01	
	+	
	+	
" I minima (include det	6 stack tasts conduct	1iong
	es of any stack tests conduct	ed, versions
1actors, c.c.,.		
	PPH 0.1 Pote PPH 0.06 Pote Pote	PPH TPY Image: Constraint of the second s

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1596D

ATT	EACHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
D09S	Dowtherm Storage Tank RV Change		
Provide a description of the emission	unit (type, method of operation, de	sign parameters, etc.):	
Dowther	rm Storage Tank RV Change -Vents th	nrough D09E	
		Redacted Copy Claim of Confident	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1988	N/A	
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched 6 hr/yr	ule:
Fuel Usage Data (fill out all applicab	ble fields)		
Does this emission unit combust fuel	? Ves V No	If yes, is it? Direct Fired India	rect Fired
Maximum design heat input and/or r	naximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/	Ά	N/A	
List the primary fuel type(s) and if a maximum hourly and annual fuel us). For each fuel type listed, pr	ovide the
Describe each fuel expected to be use	ed during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Potential Emissions		
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	1.7	0.01	
Hazardous Air Pollutants	Pe	otential Emissions	
	PPH	TPY	
Regulated Pollutants other than Criteria and HAP	er than Criteria Potential Emissions		
	PPH	TPY	
Volatile Organic Compounds (VOC)	1.7	0.01	
List the method(s) used to calculate the poten of software used, source and dates of emission		ates of any stack tests conducted	l, versions
or soleware used, source and dates of emission	1 1act015, ctc. <i>j</i> .		
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1596D

ATT	ACHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
D70S	"A" Formaldehyde Day Tank RV Change		
Provide a description of the emission	unit (type, method of operation, de	sign parameters, etc.):	
"A" Formal	dehyde Day Tank RV Change -Vents	through D70E	
		Redacted Copy Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1988	N/A	
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched 6 hr/yr	ule:
<i>Fuel Usage Data</i> (fill out all applicabl	e fields)		
Does this emission unit combust fuel?	TYes Vo	If yes, is it? □ Direct Fired □ India	ect Fired
Maximum design heat input and/or m	aximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A	A	N/A	
List the primary fuel type(s) and if ap maximum hourly and annual fuel usa		. For each fuel type listed, pr	ovide the
Describe each fuel expected to be used	l during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Potential Emissions		
	РРН	TPY	
Carbon Monoxide (CO)			Т
Nitrogen Oxides (NO _X)			1
Lead (Pb)		1	+
Particulate Matter (PM _{2.5})		1	+
Particulate Matter (PM ₁₀)		1	+
Total Particulate Matter (TSP)			+
Sulfur Dioxide (SO ₂)			+
Volatile Organic Compounds (VOC)	3.4	0.02	1
Hazardous Air Pollutants	Pot	tential Emissions	
	PPH	TPY	
Formaldehyde	0.59	0.002	
Methanol	0.80	0.003	
		_	
	D		
Regulated Pollutants other than Criteria and HAP	Potential Emissions		
	PPH	TPY	
Volatile Organic Compounds (VOC)	3.4	0.02	
		-	
List the method(s) used to calculate the potenti	ial emissions (include da	ntes of any stack tests conduct	d. versions
of software used, source and dates of emission			
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1596D

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DABC	"A" Methanol Storage Tank	DABC	
Provide a description of the emission u	l nit (type, method of operation, de	sign parameters, etc.):	
"A" M	ethanol Storage Tank -Vents throug	h DABE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1988	N/A	
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL Maximum Annual Throughput: CLAIMED CONFIDENTIAL	Maximum Operating Sched 8760 hr/yr	ule:
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes V No	If yes, is it? Direct Fired Indirect	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data				
Criteria Pollutants	Pot	tential Emissions	sions	
	РРН	TPY		
Carbon Monoxide (CO)				
Nitrogen Oxides (NO _X)			1	
Lead (Pb)			1	
Particulate Matter (PM _{2.5})			1	
Particulate Matter (PM ₁₀)			1	
Total Particulate Matter (TSP)			1	
Sulfur Dioxide (SO ₂)			1	
Volatile Organic Compounds (VOC)	0.1	0.61	1	
Hazardous Air Pollutants		tential Emissions		
	PPH	TPY		
Methanol	0.07	0.6	08	
Regulated Pollutants other than Criteria and HAP	Pot	tential Emissions		
· · · · · · · · · · · · · · · · · · ·	PPH	TPY		
Volatile Organic Compounds (VOC)	0.1	0.61		
List the method(s) used to calculate the potenti	ial emissions (include da	tes of any stack tests conduct	ed. versions	
of software used, source and dates of emission		-		
Engineering Estimate				

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1596D

AT	TACHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DABS/DACS	Methanol Tank Truck Unloading for DAB and DAC	DAGC	
Provide a description of the emission	on unit (type, method of operation, des	sign parameters, etc.):	
Methanol Tank	Truck Unloading for DAB and DAC -V	ents through DAGE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1990	N/A	
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched	ule:
<i>Fuel Usage Data</i> (fill out all application)	able fields)		
Does this emission unit combust fue	el? Ves V No	If yes, is it? □ Direct Fired □ Indir	ect Fired
Maximum design heat input and/or	maximum horsepower rating:	Type and Btu/hr rating of b	urners:
I	N/A	N/A	
List the primary fuel type(s) and if maximum hourly and annual fuel u	applicable, the secondary fuel type(s) isage for each.	. For each fuel type listed, pro	ovide the
Describe each fuel expected to be us	sed during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants		Potential Emissions	
	PPH	TPY	ζ
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)			
Hazardous Air Pollutants		Potential Emissions	
	PPH	TPY	ľ
Regulated Pollutants other than Criteria and HAP		Potential Emissions	
	PPH	TPY	ζ
List the method(s) used to calculate the potent of software used, source and dates of emission		dates of any stack tests con	ducted, versions

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1596D

ATTA	ACHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
DACS	"B" Methanol Storage Tank	DACC	
Provide a description of the emission u	unit (type, method of operation, de	sign parameters, etc.):	
"B" N	Iethanol Storage Tank -Vents throug	h DACE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1988	N/A	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons):		
	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schedu	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	e fields)		
Does this emission unit combust fuel?	Ves Vo	If yes, is it?	
			ect Fired
Maximum design heat input and/or m	aximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A	х	N/A	
List the primary fuel type(s) and if ap maximum hourly and annual fuel usag		For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

+
+
+
+
+
+
+
608
ted, versions
c

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1596D

AT	TACHMENT E - Emission U	Jnit Form	
Emission Unit Description			
Emission unit ID number: DADS	Emission unit name: Methanol Feed Filters	List any control devices ass with this emission unit:	ociated
Provide a description of the emissio	n unit (type, method of operation, o	design parameters, etc.):	
]	Methanol Feed Filters - Vents through	n DADE	
		Redacted Copy Claim of Confident	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1988	N/A	
Maximum Hourly Throughput:	Maximum Annual Throughpu	t: Maximum Operating Scheen hr/yr	lule:
<i>Fuel Usage Data</i> (fill out all applica	ble fields)		
Does this emission unit combust fue	l? Ves V No	If yes, is it? □ Direct Fired □ Indi	rect Fired
Maximum design heat input and/or	maximum horsepower rating:	Type and Btu/hr rating of	burners:
И	J/A	N/A	
List the primary fuel type(s) and if a maximum hourly and annual fuel us		(s). For each fuel type listed, p	rovide the
Describe each fuel expected to be us	sed during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A
		+	

Pote	ential Emissions	
PPH	TPY	
		Τ
	1	+
		+
		1
		1
		+
		+
0.7	0.01	+
PPH	TPY	
0.63	0.0)02
Pote	ential Emissions	
PPH	TPY	
0.7	0.01	
ial emissions (include dat	tes of any stack tests conduct	ed. versions
factors, etc.).	-	
	PPH 0.7 Pote PPH 0.63 PPH 0.63 Pote PPH 0.7	0.7 0.01 Potential Emissions PPH TPY 0.63 0.0 0.63 0.0 0.63 0.0 0.63 0.0 0.7 0.01 0.63 0.0 0.7 0.01 0.63 0.0 0.7 0.01 0.7 0.01 0.7 0.01 0.7 0.01 0.7 0.01 0.7 0.01 0.7 0.01 0.7 0.01 0.7 0.01

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1596D

ATTA	CHMENT E - Emission U	nit Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
DAES	"A" Formaldehyde Tank	DAGC	
Provide a description of the emission u	nit (type, method of operation, d	lesign parameters, etc.):	
"A"]	Formaldehyde Tank -Vents throug	h DAGE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1988	N/A	
Maximum Hourly Throughput:	CLAIMED CONFIDENTIAL	_	ule:
<i>Fuel Usage Data</i> (fill out all applicable	e fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	ect Fired
Maximum design heat input and/or ma	aximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		s). For each fuel type listed, pr	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Pote	ential Emissions	
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	8.2	2.5	
Hazardous Air Pollutants	Potential Emissions		
	PPH	TPY	
Formaldehyde	4.70	1.	327
Methanol	3.50		
Regulated Pollutants other than Criteria	Dot	ential Emissions	
and HAP	100		
	PPH	TPY	
List the method(s) used to calculate the potent		tes of any stack tests conduc	ted, versions
of software used, source and dates of emission	factors, etc.).		
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1596D

ATT	ACHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
DAFS	"B" Formaldehyde Day Tank	DAGC	
Provide a description of the emission	unit (type, method of operation, de	esign parameters, etc.):	
"B" F	Formaldehyde Day Tank -Vents throu	gh DAGE	
		Redacted Copy Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1988	N/A	
Maximum Hourly Throughput:	CLAIMED CONFIDENTIAL Maximum Annual Throughput:	Maximum Operating Sched 8760 hr/yr	ule:
Fuel Usage Data (fill out all applicab	le fields)		
Does this emission unit combust fuel?	Yes 🔽 No	If yes, is it?	rect Fired
Maximum design heat input and/or n	naximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/	A	N/A	
List the primary fuel type(s) and if a maximum hourly and annual fuel usa). For each fuel type listed, pr	ovide the
Describe each fuel expected to be use	d during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data				
Criteria Pollutants	utants Potential Emissions			
	PPH	TPY		
Carbon Monoxide (CO)				
Nitrogen Oxides (NO _X)				
Lead (Pb)				
Particulate Matter (PM _{2.5})				
Particulate Matter (PM ₁₀)				
Total Particulate Matter (TSP)				
Sulfur Dioxide (SO ₂)				
Volatile Organic Compounds (VOC)	8.2	2.61		
Hazardous Air Pollutants		otential Emissions		
	PPH	TPY		
Formaldehyde	4.68	1.3	27	
Methanol	3.46	1.178	8	
	-			
Regulated Pollutants other than Criteria and HAP	Po	otential Emissions		
	РРН	TPY		
List the method(s) used to calculate the potent	ial emissions (include d	ates of any stack tests conducte	ed, versions	
of software used, source and dates of emission		v	,	
Engineering Estimate				

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1596D

ATT	ACHMENT E - Emission Uni	t Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DAHS	Dilute Formaldehyde Storage Tank	DAGC	
Provide a description of the emission u	unit (type, method of operation, des rmaldehyde Storage Tank -Vents thro		
Difute Fo	rmaidenyde Storage Tank - vents und	ough DAGE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1988	N/A	
Maximum Hourly Throughput:	CLAIMED CONFIDENTIAL Maximum Annual Throughput:	Maximum Operating Sched 8760 hr/yr	ule:
<i>Fuel Usage Data</i> (fill out all applicabl	e fields)		
Does this emission unit combust fuel?	Yes V No	If yes, is it? Direct Fired Indir	ect Fired
Maximum design heat input and/or m	aximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A	x	N/A	
List the primary fuel type(s) and if ap maximum hourly and annual fuel usa		For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Pot	tential Emissions	
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)		1	1 1
Lead (Pb)		1	
Particulate Matter (PM _{2.5})		1	
Particulate Matter (PM ₁₀)		1	
Total Particulate Matter (TSP)		+	
Sulfur Dioxide (SO ₂)		1	
Volatile Organic Compounds (VOC)	9.9	3.36	
Hazardous Air Pollutants	Pot	tential Emissions	
	PPH	TPY	
Formaldehyde	5.21	1.77	/4
Methanol	3.89	1.576	
		1	
		1	
<u> </u>		1	
		+	
		+	
<u> </u>			
Regulated Pollutants other than Criteria and HAP	Pot	tential Emissions	
	PPH	ТРҮ	
Volatile Organic Compounds (VOC)	9.9	3.36	
List the method(s) used to calculate the poten of software used, source and dates of emission		tes of any stack tests conducted	d, versions
of software used, source and dates of emission	1 factors, etc.j.		
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1596D

AT	TACHMENT E - Emission Un	nit Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
DANS	Formaldehyde Plant Cooling Tower	DANC	
Provide a description of the emissio	n unit (type, method of operation, de	esign parameters, etc.):	
Formal	dehyde Plant Cooling Tower -Vents th	rough DANE	
		Redacted Copy Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1988	N/A	
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched 8760 hr/yr	ule:
<i>Fuel Usage Data</i> (fill out all applica	ble fields)		
Does this emission unit combust fue	l? Yes No	If yes, is it? □ Direct Fired □ India	rect Fired
Maximum design heat input and/or	maximum horsepower rating:	Type and Btu/hr rating of b	urners:
Ν	J/A	N/A	
List the primary fuel type(s) and if a maximum hourly and annual fuel u	applicable, the secondary fuel type(s sage for each.). For each fuel type listed, pr	ovide the
Describe each fuel expected to be us	ed during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A
		4	

Potential Emissions		
PPH	TPY	
0.3		
0.3	0	
0.1	0.01	
Potential Emissions		
PPH	TPY	
0.01	0.001	
0.01	0.001	
Poter	ntial Emissions	
ррн	TPV	
0.3	11 1	
0.3		
0.1	0.01	
	PPH 0.3 0.3 0.1 Poter PPH 0.01 0.01 PPH 0.01 Poter PPH 0.01 0.01 0.01 0.01 0.01 0.01	PPH TPY 0.3 0 0.3 0 0.3 0 0.1 0.01 POtential Emissions PPH TPY 0.01 0.001 0.01 0.001 0.01 0.001 0.01 0.001 PPH TPY 0.01 0.001 0.01 0.001 0.01 0.001 0.01 0.001 0.01 0.001 0.01 0.001 0.01 0.001 0.03 TPY

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1596D

AT	TACHMENT E - Emission U	nit Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices ass with this emission unit:	ociated
DAOS	Heat Exchanger for Formaldehyc Cooling in Product Recovery	de	
Provide a description of the emission	on unit (type, method of operation, d	esign parameters, etc.):	
Heat Exchanger for F	Formaldehyde Cooling in Product Reco	overy -Vents through DANE	
		Redacted Copy	
		Claim of Confident	iality
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1988	N/A	
Maximum Hourly Throughput:	Maximum Annual Throughput	8760 hr/yr	lule:
<i>Fuel Usage Data</i> (fill out all applica	adie fields)		
Does this emission unit combust fue	l? 🔽 Yes 🔽 No	If yes, is it? □ Direct Fired □ Indi	rect Fired
Maximum design heat input and/or	maximum horsepower rating:	Type and Btu/hr rating of b	ourners:
1	N/A	N/A	
List the primary fuel type(s) and if maximum hourly and annual fuel u	applicable, the secondary fuel type(s sage for each.	s). For each fuel type listed, p	covide the
Describe each fuel expected to be us	sed during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

missions Data			
riteria Pollutants	Pote	ential Emissions	
	PPH	TPY	
arbon Monoxide (CO)			
itrogen Oxides (NO _X)		1	1
ead (Pb)		1	1
articulate Matter (PM _{2.5})		1	1
articulate Matter (PM ₁₀)		1	1
otal Particulate Matter (TSP)		+	+
ulfur Dioxide (SO ₂)		1	+
olatile Organic Compounds (VOC)	0.1	0.01	+
Hazardous Air Pollutants	Potential Emissions		
	PPH	TPY	
ormaldehyde	0.01	0.0	01
lethanol	0.01	0.001	
		1	
		1	
		1	
Regulated Pollutants other than Criteria and HAP	Pote	ential Emissions	
	PPH	TPY	
olatile Organic Compounds (VOC)	0.1	0.01	
		1	J
ist the method(s) used to calculate the potenti	al emissions (include dat	es of any stack tests conduct	ed. versions
f software used, source and dates of emission f			
and HAP folatile Organic Compounds (VOC) ist the method(s) used to calculate the potentia	PPH 0.1 al emissions (include date	TPY 0.01	ed

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1596D

АТТ	ACHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number: DAPS	Emission unit name: Cooling Tower Sulfuric Acid Storage Tank	List any control devices ass with this emission unit:	ociated
Provide a description of the emission	unit (turns mothed of suspection de	aion nonomotora, oto).	
	ver Sulfuric Acid Storage Tank -Vent		
		Redacted Copy Claim of Confident	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	2001	N/A	
Maximum Hourly Throughput:	CLAIMED CONFIDENTIAL Maximum Annual Throughput:	Maximum Operating Scheo hr/yr 24	lule:
Fuel Usage Data (fill out all applicab	le fields)		
Does this emission unit combust fuel?	Yes V No	If yes, is it? ☐ Direct Fired ☐ Indi	rect Fired
Maximum design heat input and/or n	naximum horsepower rating:	Type and Btu/hr rating of b	ourners:
CLAIMED CO	NFIDENTIAL	N/A	
List the primary fuel type(s) and if a maximum hourly and annual fuel usa N/A	age for each.). For each fuel type listed, p	covide the
Describe each fuel expected to be use	d during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Criteria Pollutants Carbon Monoxide (CO) Nitrogen Oxides (NO _X) Lead (Pb) Particulate Matter (PM _{2.5}) Particulate Matter (PM ₁₀) Total Particulate Matter (TSP)	РРН	Potential Emissions	TPY
Nitrogen Oxides (NO _X) Lead (Pb) Particulate Matter (PM _{2.5}) Particulate Matter (PM ₁₀)	РРН		TPY
Nitrogen Oxides (NO _X) Lead (Pb) Particulate Matter (PM _{2.5}) Particulate Matter (PM ₁₀)			
Lead (Pb) Particulate Matter (PM _{2.5}) Particulate Matter (PM ₁₀)			
Particulate Matter (PM _{2.5}) Particulate Matter (PM ₁₀)			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
rotur rundedide matter (ror)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)			
Hazardous Air Pollutants		Potential Emissions	
	PPH		TPY
Regulated Pollutants other than Criteria and HAP	Potential Emissions		
	PPH		TPY
List the method(s) used to calculate the potential emi of software used, source and dates of emission factor		e dates of any stack tes	ts conducted, versions
second construction of the second construction and the sec	.,		
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1596D

ATT	ACHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DAQS	Formaldehyde Reactor Train #1	DBJC	
Provide a description of the emission u	unit (type, method of operation, de	sign parameters, etc.):	
	dehyde Reactor Train #1 -Vents through		
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1988	N/A	
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL Maximum Annual Throughput:	Maximum Operating Schedo 8760 hr/yr	ule:
<i>Fuel Usage Data</i> (fill out all applicabl	e fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	ect Fired
Maximum design heat input and/or m	aximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A	N/A N/A		
List the primary fuel type(s) and if ap maximum hourly and annual fuel usa		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	l during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Poter	ntial Emissions	
	РРН	TPY	
Carbon Monoxide (CO)	917.2	4016.94	
Nitrogen Oxides (NO _X)		<u>† </u>	
Lead (Pb)		1	
Particulate Matter (PM _{2.5})		1	
Particulate Matter (PM ₁₀)		+ + + + + + + + + + + + + + + + + + + +	
Total Particulate Matter (TSP)		+ +	
Sulfur Dioxide (SO ₂)		+ +	
Volatile Organic Compounds (VOC)	8719.9	38192.78	
Hazardous Air Pollutants	Potential Emissions		
	PPH	TPY	
Benzene	0.00		
Formaldehyde	7699.28	33722.842	
Methanol	444.01	1944.759	
Toluene	0.00		
Regulated Pollutants other than Criteria and HAP	Polei	ntial Emissions	
	PPH	TPY	
Carbon Monoxide (CO)	917.2	4016.94	
Volatile Organic Compounds (VOC)	8719.9	38192.78	
1			
1			
List the method(s) used to calculate the poten	tial emissions (include date	es of any stack tests conducted, vers	sions
of software used, source and dates of emission	ı factors, etc.).		
Engineering Estimate			
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1596D

ATTA	ACHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DARS	Formaldehyde Reactor Train #2	DBJC	
Provide a description of the emission u	Init (type, method of operation, des	sign parameters, etc.):	
Formale	dehyde Reactor Train #2 -Vents throu	1gh DBJE	
		Padastad Conv	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1988	6/18/1905	
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL <i>Fuel Usage Data</i> (fill out all applicable	CLAIMED CONFIDENTIAL Maximum Annual Throughput: e fields)	Maximum Operating Sched 8760 hr/yr	ıle:
Does this emission unit combust fuel?		If yes, is it?	
Does this chassion and compust fuer.	Yes Vo		ect Fired
Maximum design heat input and/or m	aximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A	X .	N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Potential Emissions		
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)			
Hazardous Air Pollutants		Potential Emissions	
	PPH	TPY	
Regulated Pollutants other than Criteria and HAP	Potential Emissions		
	PPH	TPY	
List the method(s) used to calculate the potent of software used, source and dates of emission		e dates of any stack tests conducte	ed, versions
or solution as a source and dates of emission			
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1596D

AT	TACHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
DASS	Formaldehyde Reactor Train #3	DBJC	
Dravida a description of the amission	n unit (type, method of operation, de	sign novemeters, etc.).	
-	aldehyde Reactor Train #3 -Vents thro		
		Padactad Copy	
		Redacted Copy Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1988	6/18/1905	
Design Capacity (examples: furnace	s - tons/hr, tanks - gallons): CLAIMED CONFIDENTIAL		
		Mariana Oran da Calad	-1
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL		8760 hr/yr	
Fuel Usage Data (fill out all applica	ble fields)		
Does this emission unit combust fuel	? 🔽 Yes 🔽 No	If yes, is it?	
		🗖 Direct Fired 🔲 Indir	ect Fired
Maximum design heat input and/or	maximum horsepower rating:	Type and Btu/hr rating of b	urners:
Ν	I/A	N/A	
List the primary fuel type(s) and if a maximum hourly and annual fuel us	applicable, the secondary fuel type(s) sage for each.	. For each fuel type listed, pr	ovide the
Describe each fuel expected to be us	ed during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Potential Emissions		
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)			
Hazardous Air Pollutants		Potential Emissions	
	PPH	TPY	
Regulated Pollutants other than Criteria and HAP		Potential Emissions	
	PPH	TPY	
List the method(s) used to calculate the potent of software used, source and dates of emission		e dates of any stack tests conducte	ed, versions
or solution as a source and dates of emission			
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1596D

ATT	ACHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number: DATS	Emission unit name: Cooling Tower Bleach Storage Tank	List any control devices asso with this emission unit:	ociated
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
-	ower Bleach Storage Tank -Vents th		
		Redacted Copy Claim of Confident	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	2001	N/A	
Maximum Hourly Throughput:	CLAIMED CONFIDENTIAL Maximum Annual Throughput:	Maximum Operating Sched 8760 hr/yr	ule:
<i>Fuel Usage Data</i> (fill out all applicable	e fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it? □ Direct Fired □ Indi	rect Fired
Maximum design heat input and/or m	aximum horsepower rating:	Type and Btu/hr rating of b	ourners:
N/A	x	N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pr	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Potential Emissions		
	PPH	ТРҮ	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)			
Hazardous Air Pollutants]	Potential Emissions	
	PPH	TPY	
Chlorine	0.03	0.099	
Regulated Pollutants other than Criteria and HAP]	Potential Emissions	
	PPH	TPY	
List the method(s) used to calculate the potent	tial emissions (include	dates of any stack tests conducted, version	ns
of software used, source and dates of emission	factors, etc.).		
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1596D

ATT	ACHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number: DAUS	Emission unit name: Cooling Tower Scale Inhibitor Tank	List any control devices ass with this emission unit:	ociated
Provide a description of the emission	unit (type, method of operation, de	sign parameters, etc.):	
Cooling T	Cower Scale Inhibitor Tank -Vents thr	rough DAUE	
		Redacted Copy Claim of Confident	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1988	N/A	
Design Capacity (examples: furnaces Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schee	lule:
		8760 hr/yr	
Fuel Usage Data (fill out all applicabl	e fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it? Direct Fired Indi	rect Fired
Maximum design heat input and/or m	aximum horsepower rating:	Type and Btu/hr rating of b	ourners:
N/A	A	N/A	
List the primary fuel type(s) and if ap maximum hourly and annual fuel usa		. For each fuel type listed, p	rovide the
Describe each fuel expected to be used	l during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Potential Emissions		
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	0.1	0.01	
Hazardous Air Pollutants	Р	otential Emissions	
	PPH	TPY	
Regulated Pollutants other than Criteria and HAP	Р	otential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	0.1	0.01	
1			
List the method(s) used to calculate the potent	ial emissions (include d	lates of any stack tests conducted	l. versions
of software used, source and dates of emission		.	
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1596D

AT	TACHMENT E - Emission U	nit Form	
Emission Unit Description			
Emission unit ID number: DBAS	Emission unit name: Boiler Water Treatment Additiv Storage Tank	List any control devices ass with this emission unit: ⁷ e	ociated
Provide a description of the emission	unit (type, method of operation, d	lesign parameters, etc.):	
Boiler Water	Treatment Additive Storage Tank -V	ents through DBAE	
		Redacted Copy Claim of Confident	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1988	N/A	
Maximum Hourly Throughput:	CLAIMED CONFIDENTIAL	-	lule:
<i>Fuel Usage Data</i> (fill out all applical	ole fields)		
Does this emission unit combust fuel	? Tyes Ves No	If yes, is it? □ Direct Fired □ Indi	rect Fired
Maximum design heat input and/or a	maximum horsepower rating:	Type and Btu/hr rating of b	ourners:
N	/A	N/A	
List the primary fuel type(s) and if a maximum hourly and annual fuel us		s). For each fuel type listed, pr	rovide the
Describe each fuel expected to be use	ed during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A
			<u> </u>

Emissions Data			
Criteria Pollutants	Potential Emissions		
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	zero		
Hazardous Air Pollutants		Potential Emissions	
	PPH	TPY	
Regulated Pollutants other than Criteria and HAP		Potential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	zero		
List the method(s) used to calculate the potent	tial emissions (include	e dates of any stack tests conduct	ed, versions
of software used, source and dates of emission			
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1596D

ATTA	ACHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DBHS	T-2 AND T-1 Absorber Product Recovery	DBJC	
Provide a description of the emission u	mit (type, method of operation, des	sign parameters, etc.):	
T-2 AND T-	1 Absorber Product Recovery -Vents	through DBJE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1988	N/A	
Maximum Hourly Throughput:	CLAIMED CONFIDENTIAL Maximum Annual Throughput:	Maximum Operating Sched 8760 hr/yr	ule:
<i>Fuel Usage Data</i> (fill out all applicable	e fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it? □ Direct Fired □ Indir	ect Fired
Maximum design heat input and/or ma	aximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Potential Emissions		
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	zero		
Hazardous Air Pollutants		Potential Emissions	
	PPH	TPY	
		Potential Emissions	
Regulated Pollutants other than Criteria and HAP		Potential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	zero		
List the method(s) used to calculate the potent	ial emissions (includ	e dates of any stack tests condu	ucted versions
of software used, source and dates of emission		e dates of any stack tests cond	ucteu, versions
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1596D

АТТ	CACHMENT E - Emission U	nit Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
DBIS	T-1 Packed Bed Absorber	DBJC	
Provide a description of the emission	unit (type, method of operation, d	esign parameters, etc.):	
- T-1	Packed Bed Absorber - Vents throug	gh DBJE	
		Redacted Copy Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1988	N/A	
Maximum Hourly Throughput:	CLAIMED CONFIDENTIAL Maximum Annual Throughput	: Maximum Operating Sched 8760 hr/yr	ule:
Fuel Usage Data (fill out all applicab	le fields)		
Does this emission unit combust fuel:	Yes Vo	If yes, is it? □ Direct Fired □ Indir	ect Fired
Maximum design heat input and/or r	naximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/	A	N/A	
List the primary fuel type(s) and if a maximum hourly and annual fuel usa		s). For each fuel type listed, pr	ovide the
Describe each fuel expected to be use	d during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Potential Emissions		
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	zero		
Hazardous Air Pollutants		Potential Emissions	
	PPH	TPY	
Regulated Pollutants other than Criteria and HAP		Potential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	zero		
			, ,
List the method(s) used to calculate the potent of software used, source and dates of emission		e dates of any stack tests conducte	ed, versions
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1596D

ATT	ACHMENT E - Emission U	nit Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
DBKS	Dowtherm Storage Tank	DBKC	
Provide a description of the emission			
Dov	vtherm Storage Tank -Vents throug	h DBKE	
		Redacted Copy	-
		Claim of Confidenti	ality
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1988	N/A	
Maximum Hourly Throughput:	CLAIMED CONFIDENTIAL Maximum Annual Throughput		ule:
Fuel Usage Data (fill out all applicabl	e fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it? Direct Fired India	ect Fired
Maximum design heat input and/or m	aximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A	Δ	N/A	
List the primary fuel type(s) and if ap maximum hourly and annual fuel usa		s). For each fuel type listed, pr	ovide the
Describe each fuel expected to be used			
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A
		+	

Emissions Data			
Criteria Pollutants	Potential Emissions		
	РРН	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	0.1	0.03	
Hazardous Air Pollutants	P	otential Emissions	
	PPH	TPY	
Regulated Pollutants other than Criteria and HAP	Р	otential Emissions	
	PPH	TPY	
List the method(s) used to calculate the potent		lates of any stack tests conducted	l, versions
of software used, source and dates of emission	1actors, etc.).		
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1596D

ATT	ACHMENT E - Emission U	nit Form	
Emission Unit Description			
Emission unit ID number: DBLS	Emission unit name: Recycle Methanol Tank	List any control devices asso with this emission unit:	ociated
Provide a description of the emission	unit (type method of operation d	lesion narameters, etc.).	
	cycle Methanol Tank -Vents through		
		Redacted Copy Claim of Confident	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1988	N/A	
Maximum Hourly Throughput:	Maximum Annual Throughput	t: Maximum Operating Sched 8760 hr/yr	ule:
<i>Fuel Usage Data</i> (fill out all applicab	le fields)		
Does this emission unit combust fuel?	Yes V No	If yes, is it? Direct Fired Indi	rect Fired
Maximum design heat input and/or n	naximum horsepower rating:	Type and Btu/hr rating of b	ourners:
N/	A	N/A	
List the primary fuel type(s) and if a maximum hourly and annual fuel usa		s). For each fuel type listed, pr	ovide the
Describe each fuel expected to be use	d during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Criteria Pollutants Carbon Monoxide (CO) Nitrogen Oxides (NO _X) Lead (Pb) Particulate Matter (PM _{2.5}) Particulate Matter (PM ₁₀) Total Particulate Matter (TSP)	РРН	Potential Emissions	TPY
Nitrogen Oxides (NO _X) Lead (Pb) Particulate Matter (PM _{2.5}) Particulate Matter (PM ₁₀)	РРН		TPY
Nitrogen Oxides (NO _X) Lead (Pb) Particulate Matter (PM _{2.5}) Particulate Matter (PM ₁₀)			
Lead (Pb) Particulate Matter (PM _{2.5}) Particulate Matter (PM ₁₀)			
Particulate Matter (PM _{2.5}) Particulate Matter (PM ₁₀)			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
rotur rundedide matter (ror)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)			
Hazardous Air Pollutants	Hazardous Air Pollutants Potential Emissions		
	PPH		TPY
Regulated Pollutants other than Criteria and HAP		Potential Emissions	
	PPH		TPY
List the method(s) used to calculate the potential emi of software used, source and dates of emission factor		e dates of any stack tes	ts conducted, versions
second construction of the second construction and the sec	.,		
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1596D

AT	TACHMENT E - Emission	Unit Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices ass with this emission unit:	ociated
DBMS	Oxygen Analyzer		
Provide a description of the emission	on unit (type, method of operation,	, design parameters, etc.):	
	Oxygen Analyzer -Vents through	DBME	
		Redacted Copy Claim of Confident	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1988	N/A	
Maximum Hourly Throughput:	CLAIMED CONFIDENTIA Maximum Annual Throughp		lule:
<i>Fuel Usage Data</i> (fill out all applica	able fields)		
Does this emission unit combust fue	el? Ves V No	If yes, is it? □ Direct Fired □ Indi	rect Fired
Maximum design heat input and/or	• maximum horsepower rating:	Type and Btu/hr rating of b	ourners:
1	N/A	N/A	
List the primary fuel type(s) and if maximum hourly and annual fuel u		e(s). For each fuel type listed, p	rovide the
Describe each fuel expected to be us	sed during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A
	+		
	1		

Emissions Data			
Criteria Pollutants	Pote	ntial Emissions	
	PPH	TPY	
Carbon Monoxide (CO)	0.1	0.03	
Nitrogen Oxides (NO _X)		1	
Lead (Pb)		1	
Particulate Matter (PM _{2.5})		1	
Particulate Matter (PM ₁₀)			1
Total Particulate Matter (TSP)		1	
Sulfur Dioxide (SO ₂)		1	1
Volatile Organic Compounds (VOC)	0.1	0.02	
Hazardous Air Pollutants	Pote	Potential Emissions	
	PPH	TPY	
Formaldehyde	0.01	0.00	1
Methanol	0.01	0.003	
		1	
		1	
Regulated Pollutants other than Criteria and HAP	Pote	ntial Emissions	
	PPH	TPY	
Carbon Monoxide (CO)	0.1	0.03	
Volatile Organic Compounds (VOC)	0.1	0.02	
List the method(s) used to calculate the potent	-	es of any stack tests conducted	l, versions
of software used, source and dates of emission	factors, etc.).		
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1596D

ATTA	ACHMENT E - Emission U	nit Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
DBOS	Formaldehyde Tank Truck Unloading	DAGC	
Provide a description of the emission u	unit (type, method of operation, d	esign parameters, etc.):	
Formaldeh	yde Tank Truck Unloading -Vents t	hrough DAGE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	2002	N/A	
Maximum Hourly Throughput:	CLAIMED CONFIDENTIAL Maximum Annual Throughput	: Maximum Operating Sched 8760 hr/yr	ule:
Fuel Usage Data (fill out all applicable	e fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it? □ Direct Fired □ Indir	ect Fired
Maximum design heat input and/or m	aximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A	X.	N/A	
List the primary fuel type(s) and if ap maximum hourly and annual fuel usag		s). For each fuel type listed, pr	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			1
Criteria Pollutants	Pot	tential Emissions	
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			l
Particulate Matter (PM _{2.5})			l
Particulate Matter (PM ₁₀)		· · · · · · · · · · · · · · · · · · ·	
Total Particulate Matter (TSP)		+	
Sulfur Dioxide (SO ₂)		· + · · · · · · · · · · · · · · · · · ·	
Volatile Organic Compounds (VOC)	3.9	5.67	
Hazardous Air Pollutants	Potential Emissions		·
	PPH	TPY	
Formaldehyde	2.16	3.143	
Methanol	1.74	2.527	
Regulated Pollutants other than Criteria and HAP	Pot	tential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	3.9	5.67	
		1	
List the method(s) used to calculate the potenti		ites of any stack tests conducted,	, versions
of software used, source and dates of emission	factors, etc.).		
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1596D

A	FTACHMENT E - Emission U	J nit Form	
Emission Unit Description			
Emission unit ID number: DBPS	Emission unit name: Dowtherm Tank Truck Unloadi	List any control devices asso with this emission unit:	ociated
_	on unit (type, method of operation, therm Tank Truck Unloading -Vents the		
		Redacted Copy Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1988	N/A	
Maximum Hourly Throughput:	Maximum Annual Throughpu	t: Maximum Operating Sched	ule:
<i>Fuel Usage Data</i> (fill out all applic	cable fields)		
Does this emission unit combust fu		If yes, is it?	
Does this emission unit compust in	el? 🔽 Yes 🔽 No	· ·	ect Fired
Maximum design heat input and/o	r maximum horsepower rating:	Type and Btu/hr rating of b	urners:
	N/A	N/A	
List the primary fuel type(s) and if maximum hourly and annual fuel t	f applicable, the secondary fuel type usage for each.	(s). For each fuel type listed, pr	ovide the
Describe each fuel expected to be u	used during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Potential Emissions TPY
TPY
0.01
Potential Emissions
TPY
Potential Emissions
ТРҮ
0.01

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1596D

AT	FACHMENT E - Emission	Unit Form	
Emission Unit Description			
Emission unit ID number: DPBS	Emission unit name: Formaldehyde Plant Process S	List any control devices ass with this emission unit: ump	ociated
Provide a description of the emissior Formal	a unit (type, method of operation dehyde Plant Process Sump -Vents		
		Redacted Copy Claim of Confident	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1988	N/A	
Design Capacity (examples: furnace	CLAIMED CONFIDENTIA	AL	
Maximum Hourly Throughput:	Maximum Annual Throughp	out: Maximum Operating Sched 8760 hr/yr	lule:
<i>Fuel Usage Data</i> (fill out all applical	ble fields)		
Does this emission unit combust fuel	? 🔽 Yes 🔽 No	If yes, is it? □ Direct Fired □ Indi	rect Fired
Maximum design heat input and/or	maximum horsepower rating:	Type and Btu/hr rating of b	ourners:
Ν	/A	N/A	
List the primary fuel type(s) and if a maximum hourly and annual fuel us		e(s). For each fuel type listed, p	ovide the
Describe each fuel expected to be use	ed during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Pot	tential Emissions	
. — —	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)		+	-
Lead (Pb)		+	+
Particulate Matter (PM _{2.5})		+	-
Particulate Matter (PM ₁₀)		+	+
Total Particulate Matter (TSP)		+	
Sulfur Dioxide (SO ₂)		+	+
Volatile Organic Compounds (VOC)	0.3	0.9	-
Hazardous Air Pollutants		tential Emissions	
	PPH	TPY	
Formaldehyde	0.06	0.252	
Methanol	0.15	0.643	
		1	
		1	
		+	
		+	
1		+	
i		+	
Regulated Pollutants other than Criteria and HAP	Pot	tential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	0.3	0.90	
		1	
1		+	
List the method(s) used to calculate the poten	tial emissions (include da	ates of any stack tests condu-	cted, versions
of software used, source and dates of emission			
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1596D

АТТ	ACHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
DPCS	Fromaldehyde Tank Farm Sump		
Provide a description of the emission Froma	unit (type, method of operation, de Idehyde Tank Farm Sump -Vents thro		
		Redacted Copy Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1988	N/A	
Maximum Hourly Throughput:	CLAIMED CONFIDENTIAL Maximum Annual Throughput:	Maximum Operating Sched 8760 hr/yr	ule:
Fuel Usage Data (fill out all applicab	le fields)		
Does this emission unit combust fuel?	Yes V No	If yes, is it? Direct Fired India	rect Fired
Maximum design heat input and/or n	naximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/	A	N/A	
List the primary fuel type(s) and if a maximum hourly and annual fuel usa). For each fuel type listed, pr	ovide the
Describe each fuel expected to be use	d during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	a Pollutants Potential Emissions		
	PPH	TPY	
Carbon Monoxide (CO)		1	
Nitrogen Oxides (NO _X)		+	+
Lead (Pb)		+	+
Particulate Matter (PM _{2.5})		+	
Particulate Matter (PM ₁₀)		+	+
Total Particulate Matter (TSP)		+	1
Sulfur Dioxide (SO ₂)		+	1
Volatile Organic Compounds (VOC)	0.1	0.01	-
Hazardous Air Pollutants		otential Emissions	
	PPH	TPY	
Formaldehyde	0.01	0.0	001
Methanol	0.01	0.001	
		-	
		-	
Regulated Pollutants other than Criteria and HAP	Por	otential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	0.1	0.01	
		+	
_			
$\mathbf{x} \in \{1, \dots, n\}$ the $\mathbf{x}(\mathbf{x})$ model to coloridate the notation	· · · ································	f for the start conduct	· 1iong
List the method(s) used to calculate the potent of software used, source and dates of emission		ates of any stack tests conduct	ted, versions
of software used, source and dates of emission	factors, etc.).		
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1596D

A	FTACHMENT E - Emission U	Unit Form	
Emission Unit Description			
Emission unit ID number: HAIS	Emission unit name: "A" Methanol Tank Clean Out Inspection	List any control devices ass with this emission unit: and	ociated
	inspection		
Provide a description of the emissi	on unit (type, method of operation,	design parameters, etc.):	
"A" Metha	nol Tank Clean Out and Inspection -	Vents through DABE	
		Redacted Copy Claim of Confident	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1988	N/A	
Maximum Hourly Throughput:	Maximum Annual Throughpu	ut: Maximum Operating Sched 91 hr/yr	lule:
<i>Fuel Usage Data</i> (fill out all applic	cable fields)		
Does this emission unit combust fu	el? 🔽 Yes 🔽 No	If yes, is it? □ Direct Fired □ Indi	rect Fired
Maximum design heat input and/o	r maximum horsepower rating:	Type and Btu/hr rating of h	ourners:
	N/A	N/A	
List the primary fuel type(s) and if maximum hourly and annual fuel t	f applicable, the secondary fuel type usage for each.	e(s). For each fuel type listed, pi	ovide the
Describe each fuel expected to be u	used during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A
		1	

Emissions Data			
Criteria Pollutants	Potential Emissions		
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	0.1	0.01	
Hazardous Air Pollutants	Р	otential Emissions	
	PPH	TPY	
Methanol	0.04	0.	002
Regulated Pollutants other than Criteria and HAP	Р	otential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	0.1	0.01	
List the method(s) used to calculate the potent		lates of any stack tests conduc	ted, versions
of software used, source and dates of emission	factors, etc.).		
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1596D

A]	TTACHMENT E - Emission U	Jnit Form	
Emission Unit Description			
Emission unit ID number: HAJS	Emission unit name: "B" Methanol Tank Clean Out a Inspection	List any control devices ass with this emission unit: and	ociated
Provide a description of the emissi	on unit (type, method of operation,	design narameters etc.):	
-	nol Tank Clean Out and Inspection -V	- · · ·	
		Redacted Copy Claim of Confident	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1988	N/A	
Maximum Hourly Throughput:	Maximum Annual Throughpu	ut: Maximum Operating Sched 91 hr/yr	ule:
<i>Fuel Usage Data</i> (fill out all applic	able fields)		
Does this emission unit combust fu	el? 🔽 Yes 🔽 No	If yes, is it? □ Direct Fired □ Indi	rect Fired
Maximum design heat input and/o	r maximum horsepower rating:	Type and Btu/hr rating of b	ourners:
	N/A	N/A	
List the primary fuel type(s) and if maximum hourly and annual fuel t	applicable, the secondary fuel type usage for each.	e(s). For each fuel type listed, pr	ovide the
Describe each fuel expected to be u	used during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
teria Pollutants Potential Emissions		tential Emissions	
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	0.1	0.01	
Hazardous Air Pollutants	Po	tential Emissions	
	PPH	TPY	
Methanol	0.05	0.00	03
Regulated Pollutants other than Criteria	De	otential Emissions	
and HAP	10	Central Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	0.1	0.01	
			, ,
List the method(s) used to calculate the potent of software used, source and dates of emission		ates of any stack tests conducte	d, versions
or sortware used, source and dates of emission	101015, 610.).		
Engineering Estimate			
Zugueening Zounate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1596D

AT	TACHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
HAKS	"A" Formaldehyde Day Tank Clean Out and Inspection	DAGC	
Provide a description of the emission	on unit (type, method of operation, de	esign parameters, etc.):	
"A" Formaldehy	de Day Tank Clean Out and Inspection	-Vents through DAGE	
		Redacted Copy Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1988	N/A	
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched 67 hr/yr	ule:
<i>Fuel Usage Data</i> (fill out all application)	able fields)		
Does this emission unit combust fue	el? 🔽 Yes 🔽 No	If yes, is it? Direct Fired Indir	ect Fired
Maximum design heat input and/or	maximum horsepower rating:	Type and Btu/hr rating of b	urners:
I	N/A	N/A	
List the primary fuel type(s) and if maximum hourly and annual fuel u	applicable, the secondary fuel type(s) isage for each.). For each fuel type listed, pr	ovide the
Describe each fuel expected to be u	sed during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

PPH Carbon Monoxide (CO) Nitrogen Oxides (NO _X) Lead (Pb)	TPY
Carbon Monoxide (CO) Nitrogen Oxides (NO _X) Lead (Pb)	TPY
Carbon Monoxide (CO) Nitrogen Oxides (NO _X) Lead (Pb) Particulate Matter (PM _{2.5})	
Lead (Pb)	
Particulate Matter (PM _{2.5})	
-	1
Particulate Matter (PM ₁₀)	<u>├─── </u>
Total Particulate Matter (TSP)	<u>├───</u>
Sulfur Dioxide (SO ₂)	1
Volatile Organic Compounds (VOC)2.3	0.08
Hazardous Air Pollutants Poten	ntial Emissions
РРН	ТРҮ
Formaldehyde 0.65	0.022
Methanol 1.66	0.056
	1
	1
	1
	
	
	+
	<u> </u>
Regulated Pollutants other than Criteria Poten and HAP	atial Emissions
РРН	TPY
Volatile Organic Compounds (VOC)2.3	0.08
	1
	1
<u> </u>	
List the method(s) used to calculate the potential emissions (include dates	s of any stack tests conducted, versions
of software used, source and dates of emission factors, etc.).	5 01 any stack uses conducted, express

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1596D

AT	TACHMENT E - Emission Un	nit Form	
Emission Unit Description			
Emission unit ID number: HALS	Emission unit name: "B" Formaldehyde Day Tank Clean Out and Inspection	List any control devices ass with this emission unit:	ociated
Provide a description of the emissio	on unit (type, method of operation, de	esign parameters, etc.):	
-	de Day Tank Clean Out and Inspection		
		Redacted Copy Claim of Confident	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1988	N/A	
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched 67 hr/yr	ule:
<i>Fuel Usage Data</i> (fill out all applica	able fields)		
Does this emission unit combust fue	el? Yes No	If yes, is it?	rect Fired
Maximum design heat input and/or	maximum horsepower rating:	Type and Btu/hr rating of b	ourners:
1	N/A	N/A	
List the primary fuel type(s) and if maximum hourly and annual fuel u	applicable, the secondary fuel type(s) isage for each.). For each fuel type listed, pr	ovide the
Describe each fuel expected to be us	sed during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A
		1	Ī

Emissions Data		
Criteria Pollutants	Pote	ntial Emissions
. –	PPH	TPY
Carbon Monoxide (CO)		
Nitrogen Oxides (NO _X)		
Lead (Pb)		+
Particulate Matter (PM _{2.5})		+
Particulate Matter (PM ₁₀)		+
Total Particulate Matter (TSP)		+
Sulfur Dioxide (SO ₂)		+ +
Volatile Organic Compounds (VOC)		+ + + + + + + + + + + + + + + + + + + +
Hazardous Air Pollutants	Pote	ntial Emissions
	PPH	TPY
Formaldehyde	0.65	0.022
Methanol	1.66	0.056
Regulated Pollutants other than Criteria and HAP	Poter	ntial Emissions
	PPH	TPY
Volatile Organic Compounds (VOC)	2.3	0.08
List the method(s) used to calculate the potent	ial emissions (include date	es of any stack tests conducted, versions
of software used, source and dates of emission		es of any stack tests conducted, versions
Engineering Estimate		

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1596D

AT	TACHMENT E - Emission Ur	nit Form	
Emission Unit Description			
Emission unit ID number: HAMS	Emission unit name: "F" Formaldehyde Day Tank Clean Out and Inspection	List any control devices asso with this emission unit:	ociated
Provide a description of the emissio	n unit (type, method of operation, de	esign parameters, etc.):	
-	le Day Tank Clean Out and Inspection		
		Redacted Copy Claim of Confident	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1988	N/A	
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched 67128 hr/yr	ule:
<i>Fuel Usage Data</i> (fill out all applica	ble fields)		
Does this emission unit combust fue	l? Yes No	If yes, is it?	rect Fired
Maximum design heat input and/or	maximum horsepower rating:	Type and Btu/hr rating of b	ourners:
Ν	J/A	N/A	
List the primary fuel type(s) and if a maximum hourly and annual fuel us	applicable, the secondary fuel type(s sage for each.). For each fuel type listed, pr	ovide the
Describe each fuel expected to be us	ed during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	P	Potential Emissions	
	РРН	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)			
Hazardous Air Pollutants	P	Potential Emissions	
	PPH	TPY	
Formaldehyde	4.63	0.297	
Methanol	11.92	0.763	
Regulated Pollutants other than Criteria and HAP	P	Potential Emissions	
	РРН	TPY	
Volatile Organic Compounds (VOC)	16.6	1.06	
· · · · · · · · · · · · · · · · · · ·			
List the method(s) used to calculate the potent	ial emissions (include (dates of any stack tests conducted, versions	
of software used, source and dates of emission	,		
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1596D

AT	TACHMENT E - Emission U	nit Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices ass with this emission unit:	ociated
HAOS	#1 Reactor GC Analyzer	DBJC	
-	on unit (type, method of operation, d		
7	[‡] 1 Reactor GC Analyzer -Vents throug	gh DBJE	
		Redacted Copy Claim of Confident	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1988	N/A	
Maximum Hourly Throughput:	Maximum Annual Throughput	t: Maximum Operating Sched 8760 hr/yr	ule:
<i>Fuel Usage Data</i> (fill out all application)	able fields)		
Does this emission unit combust fue	el? Ves V No	If yes, is it?	rect Fired
Maximum design heat input and/or	maximum horsepower rating:	Type and Btu/hr rating of b	ourners:
I	N/A	N/A	
List the primary fuel type(s) and if maximum hourly and annual fuel u	applicable, the secondary fuel type(isage for each.	s). For each fuel type listed, pr	ovide the
Describe each fuel expected to be u	sed during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	F	Potential Emissions	
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	Trace		
Hazardous Air Pollutants		Potential Emissions	
	PPH	TPY	
Formaldehyde	Trace		
Methanol	Trace		
Regulated Pollutants other than Criteria and HAP	F	Potential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	Trace		
	tial and asian a (in alm da		
List the method(s) used to calculate the poten of software used, source and dates of emission		dates of any stack tests conducted, vers	ions
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1596D

AT	TACHMENT E - Emission U	nit Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
HAPS	#2 Reactor GC Analyzer	DBJC	
Provide a description of the emission	n unit (type, method of operation, c	lesign parameters, etc.):	
#2	2 Reactor GC Analyzer -Vents throug	gh DBJE	
		Redacted Copy Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1988	N/A	
Maximum Hourly Throughput:	Maximum Annual Throughpu	t: Maximum Operating Sched 8760 hr/yr	ule:
<i>Fuel Usage Data</i> (fill out all application)	ble fields)		
Does this emission unit combust fuel	? Ves V No	If yes, is it?	rect Fired
Maximum design heat input and/or	maximum horsepower rating:	Type and Btu/hr rating of b	ourners:
N	//A	N/A	
List the primary fuel type(s) and if a maximum hourly and annual fuel us		(s). For each fuel type listed, pr	ovide the
Describe each fuel expected to be us	ed during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Pe	Potential Emissions TPY	
PPH	ТРҮ	
		. <u></u>
		. <u></u>
trace		
P	otential Emissions	
PPH	TPY	
trace		
trace		
P	otential Emissions	
PPH	TPY	
trace		
omissions (include (datas of any stack tasts conducted	vorcions
	PPH trace trace P P P PPH trace	POtential Emissions PPH TPY trace Instant of the second se

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1596D

A'	FTACHMENT E - Emission U	Unit Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices ass with this emission unit:	ociated
HAQS	#3 Reactor GC Analyzer	DBJC	
Provide a description of the omissi	ion unit (type, method of operation,	design parameters atc.).	
-	#3 Reactor GC Analyzer -Vents throu		
		Redacted Copy	-
		Claim of Confident	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1988	N/A	
Maximum Hourly Throughput:	Maximum Annual Throughpu	at: Maximum Operating Sched 8760 hr/yr	lule:
<i>Fuel Usage Data</i> (fill out all applied	cable fields)		
Does this emission unit combust fu	uel? 🔽 Yes 🔽 No	If yes, is it? □ Direct Fired □ Indi	rect Fired
Maximum design heat input and/o	or maximum horsepower rating:	Type and Btu/hr rating of b	ourners:
	N/A	N/A	
List the primary fuel type(s) and i maximum hourly and annual fuel	f applicable, the secondary fuel type usage for each.	e(s). For each fuel type listed, p	ovide the
Describe each fuel expected to be	used during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants]	Potential Emissions	
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	trace		
Hazardous Air Pollutants		Potential Emissions	
	PPH	ТРҮ	
Formaldehyde	trace		
Methanol	trace		
Regulated Pollutants other than Criteria and HAP]	Potential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	trace		
		dates of any stack tests conducted,	versions
Engineering Estimate			
List the method(s) used to calculate the potent of software used, source and dates of emission Engineering Estimate		dates of any stack tests conducted,	versio

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1596D

AT	FACHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
HTAS	Reactor Catalyst Change Out	HTAC	
Provide a description of the emission	n unit (type, method of operation, de	esign parameters, etc.):	
Read	ctor Catalyst Change Out -Vents through	gh HTAE	
		Redacted Copy Claim of Confident	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1997	N/A	
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched	ule:
<i>Fuel Usage Data</i> (fill out all applica	ble fields)		
Does this emission unit combust fuel	? Yes V No	If yes, is it? Direct Fired India	rect Fired
Maximum design heat input and/or	maximum horsepower rating:	Type and Btu/hr rating of b	urners:
CLAIMED CC	ONFIDENTIAL	N/A	
List the primary fuel type(s) and if a maximum hourly and annual fuel us N/A	age for each.). For each fuel type listed, pr	ovide the
Describe each fuel expected to be use			-
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

	ntial Emissions	
PPH	TPY	
	1 1	
	1 1	
	1 1	
	1 1	
4.2	18.4	
	1 1	
	1 1	
Poter	ntial Emissions	
PPH	TPY	
		_
Poter	ntial Emissions	
PPH	TPY	
4.2	18.40	
	1	
	+	
-1insiana (includo dot.		
	es of any stack tests conducted,	versions
	Poter PPH Poter Poter Poter Poter Poter	Potential Emissions PPH TPY PH TPY POtential Emissions POtential Emissions PPH TPY 4.2 18.40

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1596D

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
D11S	Solvent Column Upper Layer Tan RV Change Out	k	
Provide a description of the emission u	nit (type, method of operation, de	esign parameters, etc.):	
Solvent Column U	pper Layer Tank RV Change Out -	Vents through D11E	
		Redacted Copy Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL	Maximum Annual Throughput: CLAIMED CONFIDENTIAL	Maximum Operating Sched 120 hr/yr	ule:
<i>Fuel Usage Data</i> (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes V No	If yes, is it?	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag). For each fuel type listed, pr	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A
			

Emissions Data			
Criteria Pollutants	Pot	tential Emissions	
	РРН	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	0.2	0.01	
Hazardous Air Pollutants		tential Emissions	
	PPH	TPY	
Regulated Pollutants other than Criteria and HAP	Pot	tential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	0.2	0.01	
		_	
List the method(s) used to calculate the potenti		ates of any stack tests conducted,	version
of software used, source and dates of emission	factors, etc.).		
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATT	ACHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices ass with this emission unit:	ociated
D12S	Solvent Column Decanter RV Change Out		
Provide a description of the emission	unit (type, method of operation, de	sign parameters, etc.):	
Solvent Colu	umn Decanter RV Change Out -Vents	s through D12E	
		Redacted Copy Claim of Confident	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL	Maximum Annual Throughput: CLAIMED CONFIDENTIAL	Maximum Operating Sched 120 hr/yr	lule:
<i>Fuel Usage Data</i> (fill out all applicabl	e neids)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it? Direct Fired Indi	rect Fired
Maximum design heat input and/or m	aximum horsepower rating:	Type and Btu/hr rating of b	ourners:
N/A	A	N/A	
List the primary fuel type(s) and if ap maximum hourly and annual fuel usa		. For each fuel type listed, pi	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Ро	otential Emissions	
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	0.3	0.02	
Hazardous Air Pollutants	Ро	otential Emissions	
	PPH	ТРҮ	
Regulated Pollutants other than Criteria and HAP	Ро	otential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	0.3	0.02	
List the method(s) used to calculate the poten of software used, source and dates of emission		ates of any stack tests conducted	l, versions
er seren are abea, source and dates of emission			
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	ACHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices ass with this emission unit:	ociated
D14S	Recycle Solvent Storage Tank RV Change Out		
Provide a description of the emission u	nit (type, method of operation, des	sign parameters, etc.):	
Recycle Solver	nt Storage Tank RV Change Out -Ver	nts through D14E	
		Redacted Copy Claim of Confident	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1965	N/A	
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL	Maximum Annual Throughput: CLAIMED CONFIDENTIAL	Maximum Operating Schee 120 hr/yr	lule:
<i>Fuel Usage Data</i> (fill out all applicable	e fields)		
Does this emission unit combust fuel?	TYes Vo	If yes, is it?	rect Fired
Maximum design heat input and/or ma	aximum horsepower rating:	Type and Btu/hr rating of	ourners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		For each fuel type listed, p	rovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Ро	tential Emissions	
PPH	TPY	
		Т
		1
		+
		1
		+
		+
		+
1.4	0.08	+
PPH	TPY	
Po	tential Emissions	
PPH	TPY	
1.4	0.08	
ial emissions (include da	ates of any stack tests conducted	d versions
factors, etc.).	atto of any states to be consucced	1, 1010101
	PPH 1.4 Po PPH	1.4 0.08 Potential Emissions PPH TPY Image: Constraint of the second s

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devi with this emission un	
D15S	Solvent Storage Tank RV Change Out		
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
Solvent Stor	rage Tank RV Change Out -Vents th	hrough D15E	
		Redacted C Claim of Conf	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	Ą
Construction date:	Installation date:	Modification date(s)	:
N/A	1965	N/A	¥
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL	Maximum Annual Throughput: CLAIMED CONFIDENTIAL	Maximum Operating 120 h	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	Indirect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rati	ing of burners:
N/A		N/A	Ą
List the primary fuel type(s) and if app maximum hourly and annual fuel usage		. For each fuel type lis	sted, provide the
Describe each fuel expected to be used (luring the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Conte	ent BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Pot	tential Emissions	
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	0.6	0.04	
Hazardous Air Pollutants	Pot	tential Emissions	
	PPH	TPY	
P			
_			
_			
Regulated Pollutants other than Criteria and HAP	Pot	tential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	0.6	0.04	
List the method(s) used to calculate the potent		ites of any stack tests conducted,	versions
of software used, source and dates of emission	lactors, etc.).		
Engineering Estimate			
List the method(s) used to calculate the potent of software used, source and dates of emission Engineering Estimate		ites of any stack tests conducted,	

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number: D16S	Emission unit name:	List any control devices a with this emission unit:	ssociated
0103	Silica Gel Bed "A" RV Change Out		
Provide a description of the emission u	nit (type, method of operation, des	sign parameters, etc.):	
Silica Gel	Bed "A" RV Change Out -Vents thr	rough D16E	
		Redacted Cop	V -
		Claim of Confide	·····
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sch	edule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	120 hr/yr	
Fuel Usage Data (fill out all applicable			
	fields)	•	
Does this emission unit combust fuel?	fields)	If yes, is it?	direct Fired
	Yes Vo	Direct Fired In	direct Fired
Does this emission unit combust fuel? Maximum design heat input and/or ma	Yes Vo	•	
	Yes Vo	Direct Fired In	
Maximum design heat input and/or ma	☐ Yes ☑ No aximum horsepower rating:	Direct Fired In Type and Btu/hr rating o N/A	f burners:
Maximum design heat input and/or ma N/A List the primary fuel type(s) and if app	☐ Yes	Direct Fired In Type and Btu/hr rating o N/A	f burners:
Maximum design heat input and/or ma N/A List the primary fuel type(s) and if app maximum hourly and annual fuel usag	☐ Yes	Direct Fired In Type and Btu/hr rating o N/A	f burners:
Maximum design heat input and/or ma N/A List the primary fuel type(s) and if app maximum hourly and annual fuel usag Describe each fuel expected to be used	☐ Yes No eximum horsepower rating: Solicable, the secondary fuel type(s). e for each. during the term of the permit.	Direct Fired In Type and Btu/hr rating on N/A . For each fuel type listed,	f burners: provide the BTU
Maximum design heat input and/or ma N/A List the primary fuel type(s) and if app maximum hourly and annual fuel usag Describe each fuel expected to be used Fuel Type	 ☐ Yes I No Aximum horsepower rating: Additional of the secondary fuel type(s). a for each. Aduring the term of the permit. Max. Sulfur Content 	Direct Fired In Type and Btu/hr rating o N/A . For each fuel type listed, Max. Ash Content	f burners: provide the BTU Value

Emissions Data			
Criteria Pollutants	Po	tential Emissions	
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	0.1	0.01	
Hazardous Air Pollutants	Po	otential Emissions	
	PPH	TPY	
Regulated Pollutants other than Criteria and HAP	Po	tential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	0.1	0.01	
List the method(s) used to calculate the poten of software used, source and dates of emission		ates of any stack tests conducte	d, versions
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
D178	Silica Gel Bed "B" RV Change Out		
Provide a description of the emission u	nit (type, method of operation, des	sign parameters, etc.):	
Silica Gel	Bed "B" RV Change Out -Vents thr	ough D17E	
		De la stal Carra	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL	Maximum Annual Throughput: CLAIMED CONFIDENTIAL	Maximum Operating Schedu 120 hr/yr	ule:
<i>Fuel Usage Data</i> (fill out all applicable	fields)		
		70 1.10	
Does this emission unit combust fuel?	Yes Vo	If yes, is it? Direct Fired Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag	· · · · · · · · · · · · · · · · · · ·	. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Po	tential Emissions	
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	0.1	0.01	
Hazardous Air Pollutants	Po	otential Emissions	
	PPH	TPY	
Regulated Pollutants other than Criteria and HAP	Po	tential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	0.1	0.01	
List the method(s) used to calculate the poten of software used, source and dates of emission		ates of any stack tests conducte	d, versions
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATT	ACHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number: D18S	Emission unit name: Silica Gel Bed "C" RV Change	List any control devices asso with this emission unit:	ociated
	Out		
Provide a description of the emission	unit (type, method of operation, de	sign parameters, etc.):	
Silica Ge	el Bed "C" RV Change Out -Vents the	rough D18E	
		Redacted Copy	_
		Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched	ulo:
Maximum Hourry Throughput.		Maximum Operating Scieu	uic.
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	120 hr/yr	
Fuel Usage Data (fill out all applicable	le fields)		
Does this emission unit combust fuel?	Ves Vo	If yes, is it?	
		Direct Fired Indir	ect Fired
Maximum design heat input and/or m	aximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A	A	N/A	
List the primary fuel type(s) and if ap maximum hourly and annual fuel usa		. For each fuel type listed, pr	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Pot	tential Emissions	
	PPH	TPY	
Carbon Monoxide (CO)			Τ
Nitrogen Oxides (NO _X)			╂────
Lead (Pb)			
Particulate Matter (PM _{2.5})			╂────
Particulate Matter (PM ₁₀)		-	╂────
Total Particulate Matter (TSP)			╂────
Sulfur Dioxide (SO ₂)		+	╂───
Volatile Organic Compounds (VOC)	0.1	0.01	╂────
Hazardous Air Pollutants		tential Emissions	<u> </u>
	PPH	TPY	
Regulated Pollutants other than Criteria and HAP	Pot	tential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	0.1	0.01	
		+	
List the method(s) used to calculate the potenti	ial amissions (include da	etos of any stack tests conducted	versions
of software used, source and dates of emission		ICS OF any stack uses conducted	, 101 510115
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number: D20S	Emission unit name: Solvent Column Decanter RV	List any control devices ass with this emission unit:	ociated
	Change Out		
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
Solvent Colu	mn Decanter RV Change Out -Vents	s through D20E	
		Redacted Copy	_
		Claim of Confident	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schee	lule•
	musilium minum moughput	Selection of the select	luic.
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	120 hr/yr	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
		Direct Fired Indi	rect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of I	ourners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, p	rovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A
		}	

Pot	tential Emissions	
PPH	TPY	
	+	
	+ +	
	+	
	+ +	
	+	
	++	
0.5	0.03	
Pot	tential Emissions	
PPH	TPY	
Pot	tential Emissions	
PPH	TPY	
0.5	0.03	
ial amissions (include da	too of one stock tosts conducted v	regions
	ites of any stack tests conducted, v	ersions
	РРН 0.5 Роб РРН О.5 Роб	Image: Constraint of the second of the se

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	ACHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices ass with this emission unit:	sociated
D21S	Solvent Column Upper Layer Tanl RV Change Out	κ.	
Provide a description of the emission u	mit (type, method of operation, de	sign parameters, etc.):	
Solvent Column U	Upper Layer Tank RV Change Out -	Vents through D21E	
		Redacted Copy Claim of Confident	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL	Maximum Annual Throughput: CLAIMED CONFIDENTIAL	Maximum Operating Schee 120 hr/yr	lule:
<i>Fuel Usage Data</i> (fill out all applicable	e fields)		
Does this emission unit combust fuel?	Tyes Ves No	If yes, is it? □ Direct Fired □ Ind	irect Fired
Maximum design heat input and/or ma	aximum horsepower rating:	Type and Btu/hr rating of	burners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, p	rovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A
		1	

Emissions Data				
Criteria Pollutants	Potential Emissions			
	PPH	TPY	TPY	
Carbon Monoxide (CO)				
Nitrogen Oxides (NO _X)				
Lead (Pb)				
Particulate Matter (PM _{2.5})				
Particulate Matter (PM ₁₀)				
Total Particulate Matter (TSP)				
Sulfur Dioxide (SO ₂)				
Volatile Organic Compounds (VOC)	0.3	0.02		
Hazardous Air Pollutants	Р	Potential Emissions		
	PPH	TPY		
Regulated Pollutants other than Criteria and HAP	Р	Potential Emissions		
	PPH	TPY		
Volatile Organic Compounds (VOC)	0.3	0.02		
List the method(s) used to calculate the potent	ial amissions (include	dates of any stack tests conducted	vorciona	
of software used, source and dates of emission		uates of any stack tests conducted	, versions	
Engineering Estimate				
Engineering Estimate				

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

Emission Unit Description			
	ion unit name:	List any control devices asso with this emission unit:	ociated
D27S LBC	Column Distillate Receiver RV Changeout		
Provide a description of the emission unit (typ	e, method of operation, des	ign parameters, etc.):	
LBC Column Distillate	Receiver RV Changeout -Ver	nts through D27E	
		Redacted Copy Claim of Confidenti	
Manufacturer: Mode	l number:	Serial number:	
N/A	N/A	N/A	
Construction date: Instal	lation date:	Modification date(s):	
N/A	1963	N/A	
	mum Annual Throughput: AIMED CONFIDENTIAL	Maximum Operating Sched 120 hr/yr	ule:
<i>Fuel Usage Data</i> (fill out all applicable fields)			
Does this emission unit combust fuel?	Yes Vo	If yes, is it? Direct Fired India	rect Fired
Maximum design heat input and/or maximum	horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if applicable maximum hourly and annual fuel usage for ea		For each fuel type listed, pr	ovide the
Describe each fuel expected to be used during	the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Ро	otential Emissions	
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	0.2	0.01	
Hazardous Air Pollutants	Po	otential Emissions	
	РРН	ТРҮ	
Regulated Pollutants other than Criteria and HAP	Po	otential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	0.2	0.01	
List the method(s) used to calculate the potent	ial emissions (include d	ates of any stack tests conducted	l, versions
of software used, source and dates of emission			
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTACHMENT E - Emission Unit Form			
Emission Unit Description			
Emission unit ID number: D35S	Emission unit name: #1 Slurry Feed Tank RV Changeout	List any control devices asso with this emission unit:	ociated
	Changeout		
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
#1 Slurry	Feed Tank RV Changeout -Vents th	rough D35E	
		Redacted Copy	_
		Claim of Confident	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	120 hr/yr	
Fuel Usage Data (fill out all applicable	e fields)	-	
Does this emission unit combust fuel?	Tyes Ves No	If yes, is it?	
		Direct Fired Indi	rect Fired
Maximum design heat input and/or ma	aximum horsepower rating:	Type and Btu/hr rating of b	ourners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag	· · · · · · · · · · · · · · · · · · ·	For each fuel type listed, pr	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A
	ļ		

Emissions Data			
Criteria Pollutants	Ро	tential Emissions	
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	0.7	0.04	
Hazardous Air Pollutants	Ро	tential Emissions	
	PPH	TPY	
		_	
Regulated Pollutants other than Criteria and HAP	Ро	tential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	0.7	0.04	
List the method(s) used to calculate the poten		ates of any stack tests conducte	d, versions
of software used, source and dates of emission	i factors, etc.).		
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTACHMENT E - Emission Unit Form			
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
D37S	#1 Centrifuge RV Changeout		
Provide a description of the emission	unit (type, method of operation, de	sign parameters, etc.):	
#1 Ce	entrifuge RV Changeout -Vents throu	gh D37E	
		Redacted Copy Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	anty
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Design Capacity (examples: furnaces			
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	120 hr/yr	
Fuel Usage Data (fill out all applicab	le fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
		Direct Fired Indir	ect Fired
Maximum design heat input and/or n	naximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/2	A	N/A	
List the primary fuel type(s) and if ap maximum hourly and annual fuel usa		For each fuel type listed, pr	ovide the
Describe each fuel expected to be used	d during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A
		1	

Emissions Data			
Criteria Pollutants	Potential Emissions		
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	0.4	0.02	
Hazardous Air Pollutants	Pc	otential Emissions	
	PPH	ТРҮ	
Regulated Pollutants other than Criteria and HAP	Ро	otential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	0.4	0.02	
List the method(s) used to calculate the poten	tial emissions (include d	ates of any stack tests conducted	d, versions
of software used, source and dates of emission		-	
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	ACHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices ass with this emission unit:	ociated
D398	#1 Centrifuge Receiver Tank RV Change Out		
Provide a description of the emission u	mit (type, method of operation, des	sign parameters, etc.):	
#1 Centrifuge	Receiver Tank RV Change Out -Ven	ts through D39E	
		Redacted Copy Claim of Confident	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL	Maximum Annual Throughput: CLAIMED CONFIDENTIAL	Maximum Operating Sched 120 hr/yr	lule:
Fuel Usage Data (fill out all applicable	e fields)		
Does this emission unit combust fuel?	Ves Vo	If yes, is it?	rect Fired
Maximum design heat input and/or ma	aximum horsepower rating:	Type and Btu/hr rating of b	ourners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pi	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Po	otential Emissions	
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	1.1	0.07	
Hazardous Air Pollutants	Ро	otential Emissions	
	PPH	TPY	
Regulated Pollutants other than Criteria and HAP	Ро	otential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	1.1	0.07	
List the method(s) used to calculate the poten of software used, source and dates of emission		ates of any stack tests conducted	, versions
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices ass with this emission unit:	ociated
D40S	#2 Centrifuge Receiver Tank RV Change Out		
Provide a description of the emission u	mit (type, method of operation, des	sign parameters, etc.):	
#2 Centrifuge	Receiver Tank RV Change Out -Ven	ts through D40E	
		Redacted Copy Claim of Confident	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL Fuel Usage Data (fill out all applicable	Maximum Annual Throughput: CLAIMED CONFIDENTIAL	Maximum Operating Sched 120 hr/yr	lule:
<i>Fuel Usage Data</i> (in out an applicable	e fictus)		
Does this emission unit combust fuel?	TYes Vo	If yes, is it? Direct Fired Indi	rect Fired
Maximum design heat input and/or ma	aximum horsepower rating:	Type and Btu/hr rating of b	ourners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		For each fuel type listed, pi	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A
	<u> </u>		

Potential Emissions		
PPH	TPY	
		Τ
		1
		+
		1
		+
		†
		1
1.1	0.07	1
PPH	TPY	
Por	tential Emissions	
PPH	TPY	
1.1	0.07	
ial amissions (include da	atas of any stack tests conducted	a versions
factors, etc.).	ales of any stack usis conduction	1, 101 510115
	РРН 1.1 Ро РРН РРН Ро РРН 1.1 Ро Ро РРН 1.1	PPH TPY Image: Image

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
D44S	#1 Dryer Decanter Upper Layer Tank RV Change Out		
Provide a description of the emission u	nit (type, method of operation, des	sign parameters, etc.):	
#1 Dryer Decanter	Upper Layer Tank RV Change Out	-Vents through D44E	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL	Maximum Annual Throughput: CLAIMED CONFIDENTIAL	Maximum Operating Sched 120 hr/yr	ule:
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Potential Emissions		
⊢	PPH	TPY	
Carbon Monoxide (CO)			Τ
Nitrogen Oxides (NO _X)			†
Lead (Pb)			1
Particulate Matter (PM _{2.5})			†
Particulate Matter (PM ₁₀)			1
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	0.7	0.04	
Hazardous Air Pollutants		tential Emissions	<u> </u>
	PPH	TPY	
Regulated Pollutants other than Criteria and HAP	Pot	tential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	0.7	0.04	
·			
\mathbf{I} is the method (a) wood to coloulate the notant	-1 amianiana (includo de	to af any stack tasts conducted	
List the method(s) used to calculate the potent of software used, source and dates of emission		ites of any stack tests conducted	, versions
	14000 , 1		
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTACHMENT E - Emission Unit Form			
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
D46S	#2 Dryer Decanter Upper Layer Tank RV Change Out		
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
#2 Dryer Decanter	Upper Layer Tank RV Change Out	-Vents through D46E	
		Redacted Copy Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL	Maximum Annual Throughput: CLAIMED CONFIDENTIAL	Maximum Operating Sched 120 hr/yr	ule:
Fuel Usage Data (fill out all applicable	e fields)		
Does this emission unit combust fuel?	Yes V No	If yes, is it?	ect Fired
Maximum design heat input and/or m	aximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pr	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A
		<u> </u>	

Emissions Data			
Criteria Pollutants	Potential Emissions		
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	0.7	0.05	
Hazardous Air Pollutants	Po	otential Emissions	
	PPH	TPY	
Regulated Pollutants other than Criteria and HAP	Pe	otential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	0.7	0.05	
<u> </u>			
List the method(s) used to calculate the potent	ial emissions (include d	ates of any stack tests conducted	, versions
of software used, source and dates of emission			
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTACHMENT E - Emission Unit Form			
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices ass with this emission unit:	ociated
D52S	VRS Steam Stripper Distillate Tank RV Change Out		
Provide a description of the emission u	unit (type, method of operation, de	sign parameters, etc.):	
VRS Steam Strip	per Distillate Tank RV Change Out -	Vents through D52E	
		Redacted Copy Claim of Confident	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL Fuel Usage Data (fill out all applicabl	Maximum Annual Throughput: CLAIMED CONFIDENTIAL	Maximum Operating Schee 120 hr/yr	lule:
	e neius)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it? □ Direct Fired □ Indi	rect Fired
Maximum design heat input and/or m	aximum horsepower rating:	Type and Btu/hr rating of l	ourners:
N/A	Δ	N/A	
List the primary fuel type(s) and if ap maximum hourly and annual fuel usag		For each fuel type listed, p	rovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Potential Emissions		
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	0.7	0.04	
Hazardous Air Pollutants	Po	otential Emissions	
	PPH	ТРҮ	
Regulated Pollutants other than Criteria and HAP	Po	otential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	0.7	0.04	
List the method(s) used to calculate the potent	ial emissions (include d	ates of any stack tests conducted	l, versions
of software used, source and dates of emission		·	,
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTACHMENT E - Emission Unit Form			
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
D578	"A" RP Silo RV Change Out		
Provide a description of the emission u	unit (type, method of operation, de	sign parameters, etc.):	
"A" R	P Silo RV Change Out -Vents throug	gh D57E	
		Padastad Conv	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	120 hr/yr	
Fuel Usage Data (fill out all applicable	e fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
		Direct Fired Indir	ect Fired
Maximum design heat input and/or m	aximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Potential Emissions		
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)			
Hazardous Air Pollutants		Potential Emissions	
	PPH	TPY	
Regulated Pollutants other than Criteria and HAP		Potential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	0.0		
List the method(s) used to calculate the potent of software used, source and dates of emission		e dates of any stack tests condu	cted, versions
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTACHMENT E - Emission Unit Form			
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
D59S	"C" RP Silo RV Change Out		
Provide a description of the emission u	nit (type, method of operation, des	sign parameters, etc.):	
-	P Silo RV Change Out -Vents throug		
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL	Maximum Annual Throughput: CLAIMED CONFIDENTIAL	Maximum Operating Sched 120 hr/yr	ule:
<i>Fuel Usage Data</i> (fill out all applicable	fields)		
Does this emission unit combust fuel?	TYes Ves No	If yes, is it? Direct Fired Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pr	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Potential Emissions		
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)			
Hazardous Air Pollutants		Potential Emissions	
	PPH	TPY	
Regulated Pollutants other than Criteria and HAP		Potential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	0.0		
List the method(s) used to calculate the potent	ial emissions (includ	e dates of any stack tests conducte	ed, versions
of software used, source and dates of emission	factors, etc.).		
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTACHMENT E - Emission Unit Form			
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
D63S	#2 Centrifuge RV Change Out		
Provide a description of the emission u	unit (type, method of operation, des	sign parameters, etc.):	
#2 Cen	trifuge RV Change Out -Vents throu	igh D63E	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	120 hr/yr	
<i>Fuel Usage Data</i> (fill out all applicable	e fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	ect Fired
Maximum design heat input and/or ma	aximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Potential Emissions		
├──	РРН	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)		1 1	
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)		+ +	
Sulfur Dioxide (SO ₂)		++	
Volatile Organic Compounds (VOC)	0.5	0.03	
Hazardous Air Pollutants		tential Emissions	
	РРН	TPY	
Regulated Pollutants other than Criteria and HAP	Pote	tential Emissions	
	РРН	TPY	
Volatile Organic Compounds (VOC)	0.5	0.03	
		+	
		+	
<u> </u>			
List the method(s) used to calculate the potenti	ial emissions (include da	tes of any stack tests conducted, ve	ersi
of software used, source and dates of emission	factors, etc.).		
De sine - Entimata			
of software used, source and dates of emission Engineering Estimate	factors, etc.).		

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTACHMENT E - Emission Unit Form			
Emission Unit Description			
Emission unit ID number: D65S	Emission unit name: #1 Capper RV Change Out	List any control devices asso with this emission unit:	ociated
Provide a description of the emission u			
#1 C	apper RV Change Out -Vents throug	Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Design Capacity (examples: furnaces - Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	120 hr/yr	
Fuel Usage Data (fill out all applicable	e fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it? Direct Fired Indir	ect Fired
Maximum design heat input and/or ma	aximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag). For each fuel type listed, pr	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Po	otential Emissions	
	РРН	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)		1 1	
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)		+	
Total Particulate Matter (TSP)		++	
Sulfur Dioxide (SO ₂)		++	
Volatile Organic Compounds (VOC)	0.8	0.05	
Hazardous Air Pollutants	Ро	otential Emissions	
	РРН	ТРҮ	
			_
Regulated Pollutants other than Criteria and HAP	Po	otential Emissions	
	PPH	ТРҮ	·
Volatile Organic Compounds (VOC)	0.8	0.05	
List the method(s) used to calculate the potenti		ates of any stack tests conducted, ver	rsions
of software used, source and dates of emission	factors, etc.).		
Engineering Estimate			
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATT	ACHMENT E - Emission Un	iit Form	
Emission Unit Description			
Emission unit ID number: D66S	Emission unit name: #2 Capper RV Change Out	List any control devices ass with this emission unit:	ociated
Provide a description of the emission u		- · · ·	
#2 C	apper RV Change Out -Vents throug	gh D66E	
		Redacted Copy	_
		Claim of Confident	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1981	N/A	
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL	Maximum Annual Throughput: CLAIMED CONFIDENTIAL	Maximum Operating Schee 120 hr/yr	lule:
		120 m/yi	
<i>Fuel Usage Data</i> (fill out all applicable	e fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	rect Fired
Maximum design heat input and/or m	aximum horsepower rating:	Type and Btu/hr rating of	ourners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag). For each fuel type listed, p	rovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Potential Emissions		
	РРН	ТРҮ	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})		- 	
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	0.8	0.05	
Hazardous Air Pollutants		Potential Emissions	
	PPH	TPY	
Regulated Pollutants other than Criteria and HAP	<u> </u>	Potential Emissions	
·	PPH	TPY	
Volatile Organic Compounds (VOC)	0.8	0.05	
List the method(s) used to calculate the potent	ial emissions (include (dates of any stack tests conducted, v	versions
of software used, source and dates of emission		-	
			_
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Ur	nit Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices as with this emission unit:	sociated
D69S	Catalyst Mix Tank RV Change O	ut	
Provide a description of the emission un	nit (type, method of operation, de	esign parameters, etc.):	
Catalyst M	ix Tank RV Change Out -Vents th	rough D69E	
		Redacted Copy Claim of Confident	
Manufacturer:	Model number:	Serial number:	lianty
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Design Capacity (examples: furnaces - 1			
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sche	dule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	120 hr/yr	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	irect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of	burners:
N/A		N/A	
List the primary fuel type(s) and if appl maximum hourly and annual fuel usage). For each fuel type listed, p	rovide the
Describe each fuel expected to be used o	luring the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Ро	Potential Emissions		
PPH	TPY		
		Τ	
		1	
		+	
		1	
		1	
		†	
		1	
0.2	0.02	1	
PPH	TPY		
Ро	tential Emissions		
PPH	TPY		
0.2	0.02		
ial amissions (include de	ates of any stack tests conducted	- vorcions	
factors, etc.).	ales of any stack itsis conduction	1, 101 510115	
	PPH 0.2 Po PPH PPH 0.2 Po	PPH TPY Image: Constraint of the second s	

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DALS	"E" Formaldehyde Tank	DOMC/HZZC	
Provide a description of the emission u	nit (type mothed of operation de	sign noromotors at a).	
-	naldehyde Tank -Vents through DO		
		Redacted Copy -	
		Claim of Confidenti	ality
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1980	N/A	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons):	-	
	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Ves Vo	If yes, is it?	
		Direct Fired Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag	· · · · · · · · · · · · · · · · · · ·	For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Pote	ntial Emissions	
РРН	TPY	
	1	
	+	-
	+	
	+	-
	+	
	+	+
	+	+
0.2	0.8	+
Potential Emissions		
PPH	TPY	
0.11	0.	.446
0.09	0.351	
	1	
	1	
Potes	ntial Emissions	
PPH	TPY	
0.2	0.80	
	1	
	+	
	+	
tial amissions (include dat	as of any stack tests conduc	tod versions
	es of any stack tests conduc	ted, versions
	PPH 0.2 Pote PPH 0.11 0.09	0.2 0.8 Potential Emissions PPH TPY 0.11 0. 0.09 0.351 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
DCAS	Column Decanter Tank	DOMC/HZZC	
Provide a description of the emission u			
Column	Decanter Tank -Vents through DO	ME/HZZE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons):		
	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
<i>Fuel Usage Data</i> (fill out all applicable	e fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
		Direct Fired Indir	ect Fired
Maximum design heat input and/or ma	aximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pr	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A
	1		

0.001
0.001
ļ
)
lucted, versions
ucieu, vei sions

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ΑΤΤΑ	CHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DCBS	Recycle Solvent Decant Filter		
Provide a description of the emission u	nit (type, method of operation, des	sign parameters, etc.):	
Recycle	Solvent Decant Filter - Vents throug	gh DCBE	
		Redacted Copy -	-
		Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	N/A	N/A	
Design Capacity (examples: furnaces -	CLAIMED CONFIDENTIAL	_	
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schedu	ıle:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
		Direct Fired Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usage	· · · · · · · · · · · · · · · · · · ·	. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Criteria Pollutants Potential		
РРН	TPY	
	1	\neg
	1	1
	1	1
	+	
	+	
	+	-
	+	-
9	0.27	
Potential Emissions		
PPH	TPY	
0.01	0.0	001
0.01	0.001	
0.01	0.001	
	1	
	1	
	1	
Pote	ntial Emissions	
РРН	TPY	
9.0	0.27	
	+	
	+	
	es of any stack tests conduc	ted, versio
factors, etc.).		
	PPH 9 Pote PPH 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0	9 0.27 Potential Emissions PPH TPY 0.01 0.01 0.01 0.001 0.01 0.001 0.027

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
DCCS	Recycle Solvent Decant Filter		
Provide a description of the emission u	nit (type, method of operation, des	sign parameters, etc.):	
Recycle	Solvent Decant Filter - Vents throug	gh DCCE	
		Redacted Copy -	_
		Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	N/A	N/A	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons):		
	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	fields)	•	
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
		🗖 Direct Fired 🛛 🗍 Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usage	· · · · · · · · · · · · · · · · · · ·	. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used (during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Nitrogen Oxides (NOx)Image: constraint of the sector of the s	ta			
Carbon Monoxide (CO) Image: Constraint of the second s	ints	Potential Emissions		
Nitrogen Oxides (NOx)Image: constraint of the sector of the s		РРН	TPY	
Lead (Pb) Image: Constraint of the sector of t	ide (CO)		1	Т
Particulate Matter (PM2.5)Image: Constraint of the sector of	es (NO _X)		1	1
Particulate Matter (PM10)Image: Composite of the sector of th			1	1
Total Particulate Matter (TSP)Image: Compounds (VOC)90.27Sulfur Dioxide (SO2)90.27Volatile Organic Compounds (VOC)90.27Hazardous Air PollutantsPotentiatissionsPPHTPYFormaldehyde0.010.001Hexane0.010.001Toluene0.010.001Toluene0.010.001Image: Compound (Compound (Compo	tter (PM _{2.5})		1	1
Sulfur Dioxide (SO2)Image: Compounds (VOC)90.27Volatile Organic Compounds (VOC)90.27Hazardous Air PollutantsPotentil EmissionsPPHTPYFormaldehyde0.010.001Hexane0.010.001Toluene0.010.001Toluene0.010.001Image: Compound Compo	tter (PM ₁₀)		1	1
Volatile Organic Compounds (VOC)90.27Hazardous Air PollutantsPotential EmissionsFormaldehyde0.010.001Hexane0.010.001Toluene0.010.001Toluene0.010.001Image: Compound (Compound	te Matter (TSP)		1	†
Hazardous Air Pollutants Potentil Emissions PPH TPY Formaldehyde 0.01 0.001 Hexane 0.01 0.001 Toluene 0.01 0.001	(SO ₂)		1	†
Hazardous Air PollutantsPotenti EmissionsPPHTPYFormaldehyde0.010.001Hexane0.010.001Toluene0.010.001Toluene0.010.001Image: State	ic Compounds (VOC)	9	0.27	†
Formaldehyde0.010.001Hexane0.010.001Toluene0.010.001Image: Constraint of the second of t	lous Air Pollutants	Potential Emissions		
Hexane0.010.001Toluene0.010.001Toluene0.010.001Image: Image:				
Toluene 0.01 0.001 Image: Constraint of the strength of the strengt of the strength of the strength of the stre		0.01	0.00	1
Image: Constraint of the sector of the se		0.01	0.001	
and HAP		0.01	0.001	
and HAP				
		Pote	ential Emissions	
РРН ТРҮ		PPH	TPY	
Volatile Organic Compounds (VOC)9.00.27	ic Compounds (VOC)			
1 1			1	
			+	
	 		+	
List the method(s) used to calculate the potential emissions (include dates of any stack tests conducted,	$\frac{1}{2}$		tes of any stock tests conducted	Juorgions

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ΑΤΤΑ	CHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
DCDS	Recycle Solvent Decant Filter		
Provide a description of the emission u	l nit (type, method of operation, des	sign parameters, etc.):	
Recycle	Solvent Decant Filter -Vents throug	gh DCDE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	N/A	N/A	
Maximum Hourly Throughput:	CLAIMED CONFIDENTIAL Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
		Direct Fired Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usage	· · · · · · · · · · · · · · · · · · ·	For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Potential Emissions		
РРН	TPY	
	1	\neg
	1	1
	1	1
	+	
	+	
	+	-
	+	-
9	0.27	
Potential Emissions		
PPH	TPY	
0.01	0.0	001
0.01	0.001	
0.01	0.001	
	1	
	1	
	1	
Pote	ntial Emissions	
РРН	TPY	
9.0	0.27	
	+	
	+	
	es of any stack tests conduc	ted, versio
factors, etc.).		
	PPH 9 Pote PPH 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0	PPH TPY Image: Constraint of the second s

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	ACHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
DCES	Solvent Decanter Lower Layer Tank		
Provide a description of the emission u	mit (type, method of operation, des	sign parameters, etc.):	
Solvent D	ecanter Lower Layer Tank -Vents the	rough DCEE	
		Redacted Copy -	-
		Claim of Confidenti	ality
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons):		
	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	e fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
		🗖 Direct Fired 🛛 🗖 Indir	ect Fired
Maximum design heat input and/or ma	aximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A
		1	

Emissions Data			
Criteria Pollutants	Potential Emissions		
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)		1	
Lead (Pb)		1	
Particulate Matter (PM _{2.5})		1	
Particulate Matter (PM ₁₀)		1	
Total Particulate Matter (TSP)		1	1
Sulfur Dioxide (SO ₂)		1	
Volatile Organic Compounds (VOC)	1.6	6.61	
Hazardous Air Pollutants	Pote	Potential Emissions	
	PPH	TPY	
Formaldehyde	0.01	0.	004
Regulated Pollutants other than Criteria and HAP	Pote	ential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	1.6	6.61	
		+	
List the method(s) used to calculate the potent	ial amissions (includa dat	tog of any stock tests conduc	tod vorcions
of software used, source and dates of emission		es of any stack tests conduct	tea, versions
of Software used, source and dates of competence	lactors, cic.,.		
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DCFS	Recycle Solvent Tank	DOMC/HZZC	
Provide a description of the emission u	nit (type, method of operation, des	sign parameters, etc.):	
Recycle	Solvent Tank -Vents through DOM	IE/HZZE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1965	N/A	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons): CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schedu	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	TYes Vo	If yes, is it?	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag	· · · · · · · · · · · · · · · · · · ·	. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Potential Emissions		
. – – – – – – – – – – – – – – – – – – –	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			+
Lead (Pb)			<u> </u>
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	0.1	0.17	
Hazardous Air Pollutants	Pote	Potential Emissions	
	PPH	TPY	
Hexane	0.01	0.002	
Toluene	0.01	0.001	
		1	
		1	
Regulated Pollutants other than Criteria and HAP	Pote	ential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	0.1	0.17	
		1	
List the method(s) used to calculate the potent	ial emissions (include dat	tes of any stack tests conduct	ed. versions
of software used, source and dates of emission		to of any seach costs contacted	

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DCGS	Solvent Storage Tank	DOMC/HZZC	
Provide a description of the emission up			
Solvent	Storage Tank -Vents through DOM	IE/HZZE	
		Redacted Copy -	
		Claim of Confidenti	ality
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1965	N/A	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons):		
	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schedu	1]0•
Waximum Houriy Throughput.		Waxinum Operating Scheu	iic.
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
		🗖 Direct Fired 🛛 🗖 Indire	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usage		. For each fuel type listed, pro	ovide the
	1 • 41 4 • 641 • 4		
Describe each fuel expected to be used of Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU
i dei Type	inak bunu content	intern Fibil Content	Value
N/A	N/A	N/A	N/A

Nitrogen Oxides (NOx)Image: Constraint of the second s	
Carbon Monoxide (CO) Image: Constraint of the second s	
Hazardous Air Pollutants Potentil Emissions PPH TPY Hexane 0.01 0.00 Toluene 0.01 0.001 Toluene 0.01 0.001 <t< td=""><td></td></t<>	
Lead (Pb) Image: Constraint of the second secon	
Particulate Matter (PM2.5) Image: mathematical state (PM10) Particulate Matter (PM10) Image: mathematical state (PM10) Total Particulate Matter (TSP) Image: mathematical state (PM10) Sulfur Dioxide (SO2) Image: mathematical state (PM10) Volatile Organic Compounds (VOC) 0.1 0.06 Hazardous Air Pollutants Image: mathematical state (PM10) 0.00 Hexane 0.01 0.00 Toluene 0.01 0.00 Image: mathematical state (PM10) Image: mathematical state (PM10) Image: mathematical state (PM10) Image: mathematical state (PM10) 0.01 0.06 Image: mathematical state (PM10) Image: mathematical state (PM10) Image: mathematical state (PM10) Image: mathematical state (PM10) Image: mathematical state (PM10) Image: mathematical state (PM10) Image: mathematical state (PM10) Image: mathematical state (PM10) Image: mathematical state (PM10) Image: mathematical state (PM10) Image: mathematical state (PM10) Image: mathematical state (PM10) Image: mathematical state (PM10) Image: mathematical state (PM10) Image: mathematical state (PM10) Image: mathmatemathmatical state (PM10) Image:	1
Particulate Matter (PM10)Image: constraint of the second sec	1
Total Particulate Matter (TSP) Image: Composition of the sector of t	1
Sulfur Dioxide (SO2) Image: Compounds (VOC) 0.1 0.06 Hazardous Air Pollutants POtential Emissions TPY Hexane 0.01 0.00 Toluene 0.01 0.001 Image: Compound (VOC) 0.01 0.00 Hexane 0.01 0.00 Toluene 0.01 0.001 Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: C	1
Volatile Organic Compounds (VOC) 0.1 0.06 Hazardous Air Pollutants Potentil Emissions PPH TPY Hexane 0.01 0.00 Toluene 0.01 0.001 Toluene 0.01 0.001 </td <td>+</td>	+
Hazardous Air Pollutants Potential Emissions PPH TPY Hexane 0.01 0.00 Toluene 0.01 0.001	1
PPH TPY Hexane 0.01 0.00 Toluene 0.01 0.001 Image: Constraint of the second seco	1
Hexane 0.01 0.00 Toluene 0.01 0.001 Image: Constraint of the second	
Toluene 0.01 0.001 Image: Constraint of the second secon	
Image: Constraint of the second se)1
Regulated Pollutants other than Criteria	
Regulated Pollutants other than Criteria	
Regulated Pollutants other than Criteria Potential Emissions	
Regulated Pollutants other than Criteria Potential Emissions	
Regulated Pollutants other than Criteria Potential Emissions	
Regulated Pollutants other than Criteria Potential Emissions	
Regulated Pollutants other than Criteria Potential Emissions	
Regulated Pollutants other than Criteria Potential Emissions	
and HAP	
РРН ТРҮ	
Volatile Organic Compounds (VOC)0.10.06	
List the method(s) used to calculate the potential emissions (include dates of any stack tests conducte	d. versions
of software used, source and dates of emission factors, etc.).	······································
Engineering Estimate	

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DCHS	A Silica Gel Bed Regeneration	DCMC	
Provide a description of the emission u	I nit (type, method of operation, des	sign parameters, etc.):	
A Silica	Gel Bed Regeneration - Vents through	gh DCYE	
		Redacted Copy -	
		Claim of Confidenti	ality
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons):		
	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schedu	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	2100 hr/yr	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
		🗖 Direct Fired 🔲 Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag	· · · · · · · · · · · · · · · · · · ·	. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Potential Emissions		
	PPH	TPY	
Carbon Monoxide (CO)			Τ
Nitrogen Oxides (NO _X)		1	1
Lead (Pb)		1	1
Particulate Matter (PM _{2.5})		1	1
Particulate Matter (PM ₁₀)		1	1
Total Particulate Matter (TSP)		+	1
Sulfur Dioxide (SO ₂)		1	1
Volatile Organic Compounds (VOC)	215.3	226.01	1
Hazardous Air Pollutants	Pote	Potential Emissions	
	PPH	TPY	
Toluene	0.24	0.251	1
1		+	
· · · · · · · · · · · · · · · · · · ·			
Regulated Pollutants other than Criteria and HAP	Pote	tential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	215.3	226.01	
1			
	· - · · / · ·		•
List the method(s) used to calculate the potent of software used, source and dates of emission		tes of any stack tests conducted	l, versions
Of Software used, source and dates of emission	1actors, etc.,.		
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DCIS	B Silica Gel Bed Regeneration	DCMC	
Provide a description of the emission u	Init (type, method of operation, des	sign parameters, etc.):	
-	Gel Bed Regeneration -Vents throu		
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Design Capacity (examples: furnaces -	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	2100 hr/yr	
Fuel Usage Data (fill out all applicable	e fields)		
Does this emission unit combust fuel?	Ves Vo	If yes, is it? □ Direct Fired □ Indir	ect Fired
Maximum design heat input and/or ma	aximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

tants Potential Emissions		
PPH	TPY	
		+
		1
		+
		1
		1
		1
215.3	226.01	
Potential Emissions		-
PPH	TPY	
0.24	0.2	52
Pot	tential Emissions	
PPH	TPY	
215.3	226.01	
ial emissions (include da	tes of anv stack tests conducte	d. versions
factors, etc.).		
	PPH 215.3 Pot PPH 0.24 Pot PPH 215.3	PPH TPY Image: PPH Image: PPH 215.3 226.01 POtential Emissions PPH O.24 0.2: Image: PPH TPY 0.24 0.2: Image: PPH TPY O.24 0.2: Image: PPH TPY Image: PPH TPY

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DCJS	C Silica Gel Bed Regeneration	DCMC	
Provide a description of the emission u	nit (type, method of operation, des	sign parameters, etc.):	
C Silica	Gel Bed Regeneration -Vents throu	gh DCYE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Maximum Hourly Throughput:	CLAIMED CONFIDENTIAL Maximum Annual Throughput:	Maximum Operating Sched	ıle:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	2100 hr/yr	
<i>Fuel Usage Data</i> (fill out all applicable	e fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	ect Fired
Maximum design heat input and/or ma	aximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Potential Emissions		
├──	РРН	TPY	
Carbon Monoxide (CO)			Τ
Nitrogen Oxides (NO _X)		1	1
Lead (Pb)		1	1
Particulate Matter (PM _{2.5})		1	1
Particulate Matter (PM ₁₀)		+	†
Total Particulate Matter (TSP)			1
Sulfur Dioxide (SO ₂)			1
Volatile Organic Compounds (VOC)	215.3	226.01	1
Hazardous Air Pollutants	Pot	tential Emissions	
	PPH	TPY	
Toluene	0.24	0.252	2
 			
		<u> </u>	
_			
		┨───	
_			
Regulated Pollutants other than Criteria and HAP	Pote	tential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	215.3	226.01	
		<u> </u>	
List the method(s) used to calculate the potent	ial emissions (include da	tes of any stack tests conducted	l. versions
of software used, source and dates of emission			•, • • •
Engineering Estimate			
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DCLS	Distillation Column		
Provide a description of the emission u	I nit (type, method of operation, de	sign parameters, etc.):	
	0 -Vents through DCYE		
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Maximum Hourly Throughput:	CLAIMED CONFIDENTIAL Maximum Annual Throughput:	Maximum Operating Sched	ıle:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
<i>Fuel Usage Data</i> (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes V No	If yes, is it?	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Potential Emissions		
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)		+	1
Lead (Pb)		+	1
Particulate Matter (PM _{2.5})		+	+
Particulate Matter (PM ₁₀)		+	+
Total Particulate Matter (TSP)		+	+
Sulfur Dioxide (SO ₂)		+	1
Volatile Organic Compounds (VOC)	3.6	15.55	1
Hazardous Air Pollutants		ntial Emissions	
	PPH	TPY	
Formaldehyde	0.01	0.005	
Hexane	0.01	0.020	
Toluene	0.01	0.044	
Regulated Pollutants other than Criteria and HAP	Poter	ntial Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	3.6	15.55	
		1	
List the method(s) used to calculate the potent		es of any stack tests conducted	l, versions
of software used, source and dates of emission	factors, etc.).		
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Ur	nit Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
DCOS	South Solvent Tails Filter		
Provide a description of the emission u	nit (type, method of operation, do	esign parameters, etc.):	
South	Solvent Tails Filter -Vents through	h DCOE	
		Redacted Copy Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Maximum Hourly Throughput:	CLAIMED CONFIDENTIAL Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	101 hr/yr	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Tyes Ves No	If yes, is it? Direct Fired Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usage). For each fuel type listed, pr	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Pollutants Potential Emissions		
РРН	TPY	
	1	
	1	
	+	1
	1	1
	+	1
	+	1
	+	
23.7	1.2	1
		I
PPH	TPY	
0.01	0.	.001
0.04	0.003	
0.04	0.003	
	+	
	+	
	+	
	+	
	+	
	+	
Poter	ntial Emissions	
PPH	TPY	
23.7	1.20	
	1	
	1	
	+	
tial emissions (include date	es of anv stack tests conduc	ted. versions
n factors, etc.).	· · · ·	
	PPH 23.7 Poter PPH 0.01 0.04 0.04 0.04 0.04 Poter PPH 23.7	PPH TPY Image: Constraint of the second s

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ΑΤΤΑ	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DCPS	North Solvent Tails Filter		
Provide a description of the emission u	nit (type, method of operation, de	esign parameters, etc.):	
North	Solvent Tails Filter - Vents through	h DCPE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL Maximum Annual Throughput: CLAIMED CONFIDENTIAL	Maximum Operating Sched 101 hr/yr	ule:
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag). For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

H I	Emissions TPY 1.2 Emissions	
7 Potential	1.2 Emissions	
7 Potential	1.2 Emissions	
Potential	Emissions	
Potential	Emissions	
Potential I	Emissions	
	TPY	
1	0.001	
4	0.003	
4	0.003	
Potential	Emissions	
ł	ТРҮ	
7	1.20	
s (include dates of	any stack tests conducte	d. versions
).		
	A A A A A A A A A A A A A A A A A A A	I 0.00 I 0.003 I 0.

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number: DCQS	Emission unit name: Solvent Regeneration Column Calandria Filter	List any control devices asso with this emission unit:	ociated
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
Solvent Regener	ation Column Calandria Filter -Ven	ts through DCQE	
		Redacted Copy -	-
		Claim of Confidenti	ality
Manufacturer:	Model number:	Serial number:	-
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Design Capacity (examples: furnaces - 1	tons/hr, tanks - gallons):		
	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	35 hr/yr	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
		Direct Fired Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usage		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used (luring the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A
		ļ	

Poter PPH 9	ntial Emissions TPY	
9		
9		
9		
9		
9		
9		
9		
9		-
	0.16	<u> </u>
Poter	ntial Emissions	
'PH	TPY	
0.01	0.001	
0.01	0.001	
0.01	0.001	
	1	
Poter	ntial Emissions	
РН	TPY	
9.0	0.16	
ons (include date	es of any stack tests conducted	versions
	s of any stack tests conducted,	, versions
	Poter PPH 0.01 0.01 0.01 0.01 Poter Poter Poter PPH 9.0	Potential Emissions PPH TPY 0.01 0.001 0.01 0.016 0.01 0.16 0.01 0.16 0.01 0.016

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number: DCRS	Emission unit name: North Solvent Regeneration Feed	List any control devices asso with this emission unit:	ociated
	Filter		
Provide a description of the emission u	nit (type, method of operation, des	sign parameters, etc.):	
North Solver	nt Regeneration Feed Filter -Vents th	nrough DCRE	
		Redacted Copy -	-
		Claim of Confidenti	ality
Manufacturer:	Model number:	Serial number:	-
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Design Capacity (examples: furnaces - 1	tons/hr, tanks - gallons):		
	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	12 hr/yr	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
		🗌 Direct Fired 🛛 🗌 Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usage		For each fuel type listed, pr	ovide the
Describe each fuel expected to be used (luring the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

PPH TPY Carbon Monoxide (CO) Image: Component of the second of	Emissions Data			
Carbon Monoxide (CO) Image: Constraint of the second sec	Criteria Pollutants	Pote	ential Emissions	
Carbon Monoxide (CO) Image: Constraint of the second sec	_ 	РРН	TPY	
Lead (Pb) Image: constraint of the section of the sectio	Carbon Monoxide (CO)		1	
Particulate Matter (PM _{3.5}) Image: mathematication of the sector of t	Nitrogen Oxides (NO _X)		1	1
Particulate Matter (PM10)Image: Constraint of the sector of t	Lead (Pb)		1	1
Total Particulate Matter (TSP) Image: Constraint of the sector of the sect	Particulate Matter (PM _{2.5})		1	1
Sulfur Dioxide (SO2) Image: Compounds (VOC) 9 0.06 Hazardous Air Pollutants POtential Emissions Image: Compounds (VOC) 9 0.06 Image: Compounds (VOC) 1 Image: Compounds (VOC) 1 1 Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) 1 Image: Compounds (VOC) Im	Particulate Matter (PM ₁₀)		+	+
Volatile Organic Compounds (VOC) 9 0.06 Hazardous Air Pollutants Potent=Emissions PPH TPY Formaldehyde 0.01 0.001 Haxane 0.01 0.001 Hexane 0.01 0.001 Toluene PPH TPY Regulated Pollutants other than Criteria and HAP PPH TPY Volatile Organic Compounds (VOC) 9.0 0.06 Toluene Intententententententententententententen	Total Particulate Matter (TSP)		+	+
Hazardous Air Pollutants Potentissions Formaldehyde O.01 TPY Formaldehyde O.01 O.001 Hexane O.01 O.001 Toluene O.01 O.001 Regulated Pollutants other than Criteria and HAP PPH TPY Volatile Organic Compounds (VOC) 9.0 O.06 PPH TPY O.06 Image: State of the sta	Sulfur Dioxide (SO ₂)		+	+
Hazardous Air Pollutants Potentifications PPH TPY Formaldehyde 0.01 0.001 Hexane 0.01 0.001 Toluene 0.01 0.001 Regulated Pollutants other than Criterai and HAP PPH TPY Volatile Organic Compounds (VOC) 9.0 0.06 Year Incluente Incluente Incluente Incluente Incluente Incluente Incluente	Volatile Organic Compounds (VOC)	9	0.06	†
Formaldehyde0.010.001Hexane0.010.001Toluene0.010.001Image: Compounds (VOC)Image: Compounds (VOC)Ima	Hazardous Air Pollutants		ential Emissions	
Hexane 0.01 0.001 Toluene 0.01 0.001 Toluene 0.01 0.001 Image: Compound source Image: Compound source Image: Compound source Image: Compound source 9.0 0.06		PPH	TPY	
Toluene 0.01 0.001 Toluene 0.01 0.001 Image: Composition of the second	Formaldehyde	0.01	0.00	1
Image: constraint of the sector of the sec	Hexane	0.01	0.001	
and HAP PPH TPY Volatile Organic Compounds (VOC) 9.0 0.06 Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) 9.0 0.06 Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC)	Toluene	0.01	0.001	
and HAP PPH TPY			1	
and HAP PPH TPY Volatile Organic Compounds (VOC) 9.0 0.06 Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) 9.0 0.06 Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC)			1	
and HAP PPH TPY Volatile Organic Compounds (VOC) 9.0 0.06 Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC)				
and HAP PPH TPY Volatile Organic Compounds (VOC) 9.0 0.06 Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC)				
and HAP PPH TPY Volatile Organic Compounds (VOC) 9.0 0.06 Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) 9.0 0.06 Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC)				
and HAP PPH TPY Volatile Organic Compounds (VOC) 9.0 0.06 Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) 9.0 0.06 Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC)			1	
Volatile Organic Compounds (VOC) 9.0 0.06 Image: Compounds (VOC) 0.06 0.06	-	Pote	ential Emissions	
Volatile Organic Compounds (VOC) 9.0 0.06 Image: Compounds (VOC) 0.06 0.06	I	PPH	TPY	
I ist the method(s) used to coloulate the notantial amissions (include dates of any stack tests conducted, versio	Volatile Organic Compounds (VOC)			
Tist the method(s) used to colculate the notantial emissions (include dates of any stack tests conducted, versions)				
List the method(s) used to calculate the notantial emissions (include dates of any stack tests conducted, versio			+	
I set the method(s) used to calculate the notential emissions (include dates of any stack tests conducted, version				
A WATWAATAT HEAT TA MAMMATA THA NATANTISI AMICCIMIC COMPUTE DISTES OF SUV SUSCE IPSIS COMUNCIPUL VEINO	List the method (a) wood to coloulate the notan	tial amissions (include de	ter of any stack tosts conductor	waraiona
of software used, source and dates of emission factors, etc.).			tes of any stack tests conducted	l, versio
	Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
DCSS	South Solvent Regeneration Feed Filter		
Provide a description of the emission u	nit (type, method of operation, des	sign parameters, etc.):	
South Solve	nt Regeneration Feed Filter -Vents t	hrough DCSE	
		Redacted Copy Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL <i>Fuel Usage Data</i> (fill out all applicable	CLAIMED CONFIDENTIAL Maximum Annual Throughput: CLAIMED CONFIDENTIAL fields)	Maximum Operating Sched 12 hr/yr	ule:
Does this emission unit combust fuel?	Ves Vo	If yes, is it? Direct Fired India	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pr	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Poter	ntial Emissions	
PPH	TPY	
		\neg
	+	+
	+	+
	+	+
	+	+
	+	+
	+	+
9	0.06	+
PPH	TPY	
0.01	0.0	001
0.01	0.001	
0.01	0.001	
	+	
	+	
	+	
	+	
	+	
	+	
Poter	ntial Emissions	
עסט	тру	
2.0		
	───	
	s of any stack tests conduct	ted, versions
	9 Poter PPH 0.01 0.01 0.01 0.01 0.01 Poter Poter Poter Poter	9 0.06 Potential Emissions PPH TPY 0.01 0.01 0.01 0.001 0.01 0.001 0.01 0.001 POtential Emissions Potential Emissions Potential Emissions Potential Emissions Image: Potential Emissions POtential Emissions Image: Potential Emissions Image: Potential Emissions

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number: DCVS	Emission unit name: Silica Gel Bed Regeneration Condenser	List any control devices asso with this emission unit:	ociated
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
Silica Gel Be	ed Regeneration Condenser -Vents t	hrough DCYE	
		Redacted Copy Claim of Confident	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL Maximum Annual Throughput: CLAIMED CONFIDENTIAL	Maximum Operating Sched 2190 hr/yr	ule:
<i>Fuel Usage Data</i> (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pr	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Po	otential Emissions	
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	87.5	95.82	
Hazardous Air Pollutants	Ро	otential Emissions	
	PPH	TPY	
Regulated Pollutants other than Criteria and HAP	Po	otential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	87.5	95.82	
1			
List the method(s) used to calculate the potent of software used, source and dates of emission		ates of any stack tests conducted	, versions
,	1 1		
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ΑΤΤΑ	CHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number: DDES	Emission unit name: Silica Gel Regeneratl Receiving	List any control devices asso with this emission unit:	ociated
	Tank		
Provide a description of the emission un Silica Gel R	nit (type, method of operation, des degeneratl Receiving Tank -Vents th	-	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Design Capacity (examples: furnaces -	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
<i>Fuel Usage Data</i> (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
			ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usage	· · · · · · · · · · · · · · · · · · ·	. For each fuel type listed, pr	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Pot	tential Emissions	
F	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)		1	1
Lead (Pb)		1	1
Particulate Matter (PM _{2.5})		1	1
Particulate Matter (PM ₁₀)		1	1
Total Particulate Matter (TSP)		+	+
Sulfur Dioxide (SO ₂)		1	+
Volatile Organic Compounds (VOC)	0.7	2.85	+
Hazardous Air Pollutants	Pot	tential Emissions	
	PPH	TPY	
Hexane	0.01	0.0	004
Toluene	0.01	0.004	
		<u> </u>	
	Det		
Regulated Pollutants other than Criteria and HAP	Put	tential Emissions	
. –	PPH	TPY	
Volatile Organic Compounds (VOC)	0.7	2.85	
		1	
i i			
 		+	
List the method(s) used to calculate the potent	tial emissions (include da	tes of any stack tests conduct	ted. versions
of software used, source and dates of emission			·····
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DDFS	Column Decanter Tank		
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
Col	umn Decanter Tank -Vents through	DCYE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Maximum Hourly Throughput:	CLAIMED CONFIDENTIAL Maximum Annual Throughput:	Maximum Operating Schedu	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it? Direct Fired Indirect	ect Fired
Maximum design heat input and/or ma	aximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Pote	ential Emissions	
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)		1	-
Lead (Pb)			
Particulate Matter (PM _{2.5})		1	
Particulate Matter (PM ₁₀)		+	
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			1
Volatile Organic Compounds (VOC)	6.3	27.23	
Hazardous Air Pollutants	Pote	ential Emissions	
	PPH	TPY	
Hexane	0.01	0.0)32
Toluene	0.01 0.039		
Regulated Pollutants other than Criteria and HAP	Pote	ential Emissions	
l —	PPH	TPY	
Volatile Organic Compounds (VOC)	6.3	27.23	
		1	
1			
1		+	
List the method(s) used to calculate the potent		tes of any stack tests conduct	ed, versions
of software used, source and dates of emission	factors, etc.).		
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DDGS	Distillation Upper Layer Tank		
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
Distillat	ion Upper Layer Tank -Vents throu	gh DCYE	
		Redacted Copy -	
		Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons): CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
<i>Fuel Usage Data</i> (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
		🗖 Direct Fired 🛛 🗍 Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Pote	ential Emissions	
	РРН	TPY	
Carbon Monoxide (CO)		1	Т
Nitrogen Oxides (NO _X)		1	1
Lead (Pb)		1	1
Particulate Matter (PM _{2.5})		1	1
Particulate Matter (PM ₁₀)		+	1
Total Particulate Matter (TSP)		+	1
Sulfur Dioxide (SO ₂)		1	1
Volatile Organic Compounds (VOC)	3.1	13.36	1
Hazardous Air Pollutants	Pote	ential Emissions	
	PPH	TPY	
Hexane	0.01	0.0	18
Toluene	0.01	0.019	
		1	
		1	
		1	
		1	
		1	
		1	
Regulated Pollutants other than Criteria and HAP	Pote	ential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	3.1	13.36	
		1	
List the method(s) used to calculate the potenti	ial amissions (include dat	tee of any stack tests conduct:	ad versions
of software used, source and dates of emission			
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DDJS	Purge Tank	DOMC/HZZC	
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
-	rge Tank -Vents through DOME/HZ		
		Dedacted Conv	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons):		
	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schedu	ıle:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
		🗖 Direct Fired 🛛 🗖 Indire	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	irners:
CLAIMED CONFIDENTIAL N/A			
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pro	ovide the
N/A Describe each fuel expected to be used (during the term of the normit		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Ро	tential Emissions	
	РРН	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	3.1	13.19	
Hazardous Air Pollutants	Ро	tential Emissions	
	PPH	TPY	
Regulated Pollutants other than Criteria and HAP	Ро	tential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	3.1	13.19	
List the method(s) used to calculate the poten	tial emissions (include da	ates of any stack tests conducted.	versions
of software used, source and dates of emission			, er storig
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DDLS	HBR Distillation Column	DOMC/HZZC	
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
	tillation Column -Vents through DC		
		Redacted Copy -	
		Claim of Confidenti	anty
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1988	N/A	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons): CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schedu	ıle:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Tyes Ves No	If yes, is it?	
			ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag	· · · · · · · · · · · · · · · · · · ·	. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used during the term of the permit.			
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Potential Emissions		
	PPH	TPY	
Carbon Monoxide (CO)			\top
Nitrogen Oxides (NO _X)			1
Lead (Pb)		1	1
Particulate Matter (PM _{2.5})		1	1
Particulate Matter (PM ₁₀)		1	1
Total Particulate Matter (TSP)		1	1
Sulfur Dioxide (SO ₂)		1	1
Volatile Organic Compounds (VOC)	614.6	2691.95	1
Hazardous Air Pollutants		tential Emissions	
	PPH	TPY	
Formaldehyde	3.00	13.14	40
Regulated Pollutants other than Criteria and HAP	Pot	tential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	614.6	2691.95	
List the method(s) used to calculate the potent	tiol omissions (include da	tos of any stack tests conducte	d versions
of software used, source and dates of emission		uts of any stack toto conduct	
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DDOS	Recycle Alchohol Tank	DOMC/HZZC	
Provide a description of the emission u	I nit (type, method of operation, de	sign parameters, etc.):	
Recy	cle Alchohol Tank -Vents through l	DOME	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1969	N/A	
Design Capacity (examples: furnaces -	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schedu	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	fields)	-	
Does this emission unit combust fuel?	TYes Vo	If yes, is it?	
			ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag	· · · · · · · · · · · · · · · · · · ·	For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	P	otential Emissions	
	РРН	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	0.3	0.9	
Hazardous Air Pollutants	P	otential Emissions	
	PPH	TPY	
Formaldehyde	0.01	0.	043
	<u>م</u>		
Regulated Pollutants other than Criteria and HAP	P	otential Emissions	
	PPH	TPY	
	РГП	IPI	
	ial antiquiana (in alm da d	later of own stools to sto on June	to d monotoma
List the method(s) used to calculate the potent of software used, source and dates of emission		lates of any stack tests conduc	ted, versions
,	/ //		
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Ur	nit Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
DDPS	Alcohol Storage Tank		
Provide a description of the emission u	nit (type, method of operation, do	esign parameters, etc.):	
Alc	ohol Storage Tank -Vents through	DDPE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1965	N/A	
Design Capacity (examples: furnaces - Maximum Hourly Throughput:	CLAIMED CONFIDENTIAL Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag). For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Potential Emissions		
├──	PPH	TPY	
Carbon Monoxide (CO)		1	Τ
Nitrogen Oxides (NO _X)			1
Lead (Pb)			1
Particulate Matter (PM _{2.5})			1
Particulate Matter (PM ₁₀)			1
Total Particulate Matter (TSP)			1
Sulfur Dioxide (SO ₂)			1
Volatile Organic Compounds (VOC)	3.5	0.18	1
Hazardous Air Pollutants		tential Emissions	
	PPH	TPY	
Formaldehyde	1.93	0.10)1
Regulated Pollutants other than Criteria and HAP	Po	otential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	3.5	0.18	
List the method(s) used to calculate the potenti	ial emissions (include da	ates of any stack tests conducte	d versions
of software used, source and dates of emission			u, , ers
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
DDSS	LBR Column	DOMC/HZZC	
Provide a description of the emission u	nit (type, method of operation, des	sign parameters, etc.):	
	0 -Vents through DOME/HZZE		
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1983	N/A	
Maximum Hourly Throughput:	CLAIMED CONFIDENTIAL Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	fields)	•	
Does this emission unit combust fuel?	TYes Vo	If yes, is it? Direct Fired Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag	· · · · · · · · · · · · · · · · · · ·	. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Ро	tential Emissions		
РРН	TPY		
	1		
	+	1	
	+		
65.7	287.46		
PPH	ТРҮ	. <u> </u>	
0.02	0.	062	
65.60	287.328	3	
Ро	otential Emissions		
PPH	TPY		
65.7	287.46		
e-1	- t	4-J	
	ates of any stack tests conuuc	ted, versions	
1acioi 5, cic.).			
	PPH 65.7 PO PPH 0.02 65.60 PO PO PO PO PO PO	65.7 287.46 Potential Emissions PPH TPY 0.02 0. 65.60 287.328 0 0 0 0 0 0 0 0 0 0 0 0 0	

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DDWS	Low Boiler Column Feed Tank	DOMC/HZZC	
Provide a description of the emission u	l nit (type, method of operation, des	ign parameters, etc.):	
Low Boiler	Column Feed Tank -Vents through I	DOME/HZZE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons): CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schedu	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	fields)	•	
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usage		For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Pote	ential Emissions	
PPH	TPY	
	1	Т
		1
		1
		1
0.2	986.38	
PPH	TPY	
0.01	17.5	20
0.11	907.536	
Pote	ential Emissions	
PPH	TPY	
0.2	986.38	
	1	
	+	
ial amissions (include dat	tes of any stack tests conduct	ad versions
factors, etc.).	tes of any stack usis conduct	<i>cu, versions</i>
	PPH 0.2 Pote PPH 0.01 0.11 Pote Pote Pote Pote Pote Pote Pote Pote	0.2 986.38 Potential Emissions PPH TPY 0.01 17.5 0.11 907.536 Potential Emissions Potential Emissions PPH O.11 POtential Emissions Potential Emissions Image: Physical emissions

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DDXS	Alcohol Decanter	DOMC/HZZC	
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
Alco	hol Decanter -Vents through DOME	/HZZE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Design Capacity (examples: furnaces -	CLAIMED CONFIDENTIAL		-
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schedu	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
<i>Fuel Usage Data</i> (fill out all applicable	e fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	ect Fired
Maximum design heat input and/or ma	aximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Pot	tential Emissions	
РРН	TPY	
		1
		1
		1
		1
		+
		╉────
0.2	0.56	1
Potential Emissions		
PPH	TPY	
0.01	0.01	7
Pot	ential Emissions	
PPH	TPY	
0.2	0.56	
	_	
ial amissions (includa da	too of any stock tests conductor	vorsions
	Its of any stark usis conduction	1, 101 510115
1actors, etc.).		
	PPH 0.2 Pot PPH 0.01 PPH 0.01	0.2 0.56 Potential Emissions PPH TPY 0.01 0.01 Potential Emissions PPH TPY 0.01 Potential Emissions PPH TPY 0.2 0.56 IIIII Emissions

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Uni	t Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DDZS	LBR Column Distillate Receiver	DOMC/HZZC	
Provide a description of the emission u	l nit (type, method of operation, des	ign parameters, etc.):	
-	Distillate Receiver -Vents through		
		Redacted Copy -	
		Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1983	6/5/1905	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons):		
	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schedu	ıle:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
		Direct Fired Indire	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit. Max. Sulfur Content	Man Ash Contract	ואדע
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Pote	ential Emissions	
	PPH	TPY	
Carbon Monoxide (CO)		1	Τ
Nitrogen Oxides (NO _X)		1	1
Lead (Pb)		1	1
Particulate Matter (PM _{2.5})		1	1
Particulate Matter (PM ₁₀)		1	1
Total Particulate Matter (TSP)		1	1 1
Sulfur Dioxide (SO ₂)		1	1
Volatile Organic Compounds (VOC)	4.4	18.94	1
Hazardous Air Pollutants	Potential Emissions		_
	РРН	TPY	
Formaldehyde	0.01	0.00)5
Methanol	4.32	18.922	
		1	
		1	
		+	
		+	
Regulated Pollutants other than Criteria and HAP	Pote	ential Emissions	
l —	PPH	TPY	
Volatile Organic Compounds (VOC)	4.4	18.94	
		1	
		1	
		+	
List the method(s) used to calculate the potent	ial emissions (include dat	tes of any stack tests conducte	d. versions
of software used, source and dates of emission			
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DEAS	Pyro Feed Tank	DOMC/HZZC	
Provide a description of the emission u	nit (type, method of operation, des	sign parameters, etc.):	
-	Feed Tank -Vents through DOME/		
		Redacted Copy -	
		Claim of Confidenti	ality
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1958	N/A	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons): CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schedu	ıle:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
<i>Fuel Usage Data</i> (fill out all applicable	fields)	•	
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
		🗖 Direct Fired 🛛 🗖 Indire	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Po	tential Emissions	
	РРН	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	0.1	0.37	
Hazardous Air Pollutants	Potential Emissions		
	PPH	TPY	
Formaldehyde	0.01	0.	001
Regulated Pollutants other than Criteria and HAP	Potential Emissions		
	PPH	TPY	
List the method(s) used to calculate the potent	tial emissions (include da	ates of any stack tests conduc	ted, versions
of software used, source and dates of emission		v	,
Encineering Estimate			
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DEBS	Dehy Feed Tank	DOMC/HZZC	
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
Dehy	Feed Tank -Vents through DOME	/HZZE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1958	N/A	
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL Maximum Annual Throughput: CLAIMED CONFIDENTIAL	Maximum Operating Sched 8760 hr/yr	ule:
Fuel Usage Data (fill out all applicable			
		T 0 1 1/0	
Does this emission unit combust fuel?	Yes Vo	If yes, is it? Direct Fired Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

H	tial Emissions TPY		
	TPY		
		+	
1	0.36	+	
Potential Emissions			
Н	TPY		
6	0.248		
3	0.109		
	1		
	1		
	1		
Potent	tial Emissions		
Н	TPY		
1	0.36		
	1		
	t		
s (include dates	of any stack tests conduct	ed, versions	
.).	•	, 	
	H 6 3 Potent H I	H TPY 6 0.2 3 0.109 Potential Emissions H TPY 1 0.36 ss (include dates of any stack tests conduct	

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ΑΤ	TACHMENT E - Emission U	Unit Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices ass with this emission unit:	ociated
DECS	Acid Storage Tank	DOMC/HZZC	
Provide a description of the emission	n unit (type, method of operation,	design parameters, etc.):	
Ac	id Storage Tank -Vents through DO	ME/HZZE	
		Redacted Copy Claim of Confident	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Maximum Hourly Throughput:	CLAIMED CONFIDENTIAI		lule:
<i>Fuel Usage Data</i> (fill out all applica	ble fields)		
Does this emission unit combust fue	l? 🔽 Yes 🔽 No	If yes, is it? □ Direct Fired □ Indi	rect Fired
Maximum design heat input and/or	maximum horsepower rating:	Type and Btu/hr rating of b	ourners:
Ν	I/A	N/A	
List the primary fuel type(s) and if a maximum hourly and annual fuel us		e(s). For each fuel type listed, pr	ovide the
Describe each fuel expected to be us	ed during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Potential Emissions		
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	9.9	42.96	
Hazardous Air Pollutants	Р	otential Emissions	
	PPH	TPY	
Regulated Pollutants other than Criteria	р	otential Emissions	
and HAP			
	PPH	TPY	
List the method(s) used to calculate the potent		dates of any stack tests conducted	, versions
of software used, source and dates of emission	factors, etc.).		
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DEPS	LPD Column	DOMC/HZZC	
Provide a description of the emission u	nit (type, method of operation, des	sign parameters, etc.):	
-	D Column -Vents through DOME/H		
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1988	N/A	
Design Capacity (examples: furnaces - Maximum Hourly Throughput:	CLAIMED CONFIDENTIAL Maximum Annual Throughput:	Maximum Operating Schedu	ıle:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Potential Emissions		
РРН	TPY	
	1	Τ
	+	+
	+	+
	+	+
	+	+
	+	+
	+	+
25.9	113.18	+
PPH	TPY	
0.36	1.577	
0.01	0.001	
25.40	111.252	
0.01	0.001	
PPH	TPY	
25.9	113.18	
	es of any stack tests conduct	ed, versions
n factors, etc.).		
	PPH 25.9 Pote PPH 0.36 0.01 25.40 0.01 25.40 0.01 Pote PPH 25.9 Pote	PPH TPY Image: Constraint of the second s

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DESS	Dehydrator Feed Filter		
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
Deh	ydrator Feed Filter -Vents through l	DESE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	N/A	N/A	
Design Capacity (examples: furnaces - 1	CLAIMED CONFIDENTIAL	• • • • • • • • • • • • • • • • • • • •	
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	30 hr/yr	
<i>Fuel Usage Data</i> (fill out all applicable	fields)		
Does this emission unit combust fuel?	TYes Ves No	If yes, is it?	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usage		. For each fuel type listed, pr	ovide the
Describe each fuel expected to be used o	· · ·		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Pot	tential Emissions	
	PPH	TPY	
Carbon Monoxide (CO)		1	
Nitrogen Oxides (NO _X)		1	1
Lead (Pb)		1	1
Particulate Matter (PM _{2.5})		1	
Particulate Matter (PM ₁₀)		1	
Total Particulate Matter (TSP)		1	1
Sulfur Dioxide (SO ₂)		1	
Volatile Organic Compounds (VOC)	0.2	0.01	
Hazardous Air Pollutants		tential Emissions	
	PPH	TPY	
Formaldehyde	0.03	0.0	01
Regulated Pollutants other than Criteria and HAP	Pot	tential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	0.2	0.01	
List the method(s) used to calculate the potenti		tes of any stack tests conducte	ed, versions
of software used, source and dates of emission	factors, etc.).		
Engineering Estimate			
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DEUS	HPD Column	DOMC/HZZC	
Provide a description of the emission u	nit (type, method of operation, des	sign parameters, etc.):	
НР	D Column -Vents through DOME/H	IZZE	
		Redacted Copy -	-
		Claim of Confidenti	ality
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1988	N/A	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons): CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schedu	ıle:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	fields)	•	
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
		Direct Fired Indire	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data				
Criteria Pollutants	Pote	Potential Emissions		
	PPH	TPY		
Carbon Monoxide (CO)				
Nitrogen Oxides (NO _X)				
Lead (Pb)				
Particulate Matter (PM _{2.5})				
Particulate Matter (PM ₁₀)				
Total Particulate Matter (TSP)				
Sulfur Dioxide (SO ₂)				
Volatile Organic Compounds (VOC)	9.6	42.05		
Hazardous Air Pollutants		ntial Emissions		
	PPH	TPY		
Formaldehyde	0.95	4.1	.61	
Hexane	0.01	0.001		
Methanol	0.34	1.490		
Toluene	0.01	0.001		
		1		
		1		
		1		
		1		
		1		
Regulated Pollutants other than Criteria and HAP	Pote	ntial Emissions		
	PPH	TPY		
Volatile Organic Compounds (VOC)	9.6	42.05		
List the method(s) used to calculate the potent		es of any stack tests conduct	ed, versions	
of software used, source and dates of emission	factors, etc.).			
Engineering Estimate				

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DEWS	Reagent Recovery Column and Condenser	DOMC/HZZC	
Provide a description of the emission u	nit (type, method of operation, des	sign parameters, etc.):	
Reagent Recovery	Column and Condenser -Vents thro	ough DOME/HZZE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1983	6/5/1905	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons):		
	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schedu	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
<i>Fuel Usage Data</i> (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it? □ Direct Fired □ Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag	· · · · · · · · · · · · · · · · · · ·	. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Poter	ntial Emissions	
	PPH	TPY	
Carbon Monoxide (CO)		1	
Nitrogen Oxides (NO _X)		+	
Lead (Pb)		+	
Particulate Matter (PM _{2.5})		+	+
Particulate Matter (PM ₁₀)		+	+
Total Particulate Matter (TSP)		+	+
Sulfur Dioxide (SO ₂)		+	+
Volatile Organic Compounds (VOC)	0.6	2.33	+
Hazardous Air Pollutants		ntial Emissions	
	PPH	TPY	
Formaldehyde	0.17	0.745	
Hexane	0.01	0.001	
Methanol	0.05	0.219	
Toluene	0.01	0.001	
Regulated Pollutants other than Criteria and HAP	Poter	ntial Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	0.6	2.33	
		1	
		+	
		es of any stack tests conduct	ad monstore

Engineering Estimate

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DEZS	Concentrator Hold Up Tank	DOMC/HZZC	
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
Concentrat	tor Hold Up Tank -Vents through D	OME/HZZE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1984	6/6/1905	
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL Fuel Usage Data (fill out all applicable	CLAIMED CONFIDENTIAL Maximum Annual Throughput: CLAIMED CONFIDENTIAL fields)	Maximum Operating Schedu 8760 hr/yr	ıle:
Does this emission unit combust fuel?	Yes Vo	If yes, is it? Direct Fired Indire	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Poter	ntial Emissions	
PPH	TPY	
	<u>† </u>	
	+	
	+	
	+	
	+	
	+	
	+	
0.4	1.58	
PPH	TPY	
0.03	0.132	
0.07	0.307	
0.01	0.002	
	1	
Poter	ntial Emissions	
PPH	TPY	
0.4	1.58	
	s of any stack tests conducted, ver	sions
ı factors, etc.).		
	PPH 0.4 Poter PPH 0.03 0.07 0.01	Image: Constraint of the second se

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Uni	t Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DFAS	Concentrator Distillate Receiver	DOMC/HZZC	
Provide a description of the emission u	l nit (type, method of operation, des	ign parameters, etc.):	
Concentrator	Distillate Receiver -Vents through	DOME/HZZE	
		Redacted Copy - Claim of Confidentia	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Maximum Hourly Throughput:	CLAIMED CONFIDENTIAL Maximum Annual Throughput:	Maximum Operating Schedu	ıle:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	Continuous 8760	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of bu	
CLAIMED CONF	FIDENTIAL	N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usage N/A	· · · · · · · · · · · · · · · · · · ·	For each fuel type listed, pro	ovide the
Describe each fuel expected to be used o	luring the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Poter	ntial Emissions	
PPH	TPY	
	1	—
	1	+
	1	<u> </u>
	1	╂────
	1	
	+	+
	+	+
0.4	1.45	-
		<u> </u>
PPH	TPY	
0.25	1.095	5
0.01	0.001	
0.06	0.263	
0.01	0.002	
PPH	TPY	
0.4	1.45	
ial emissions (include date	s of any stack tests conducted	, versions
	5 01 mily 500001 10502 102 102	, , , , , , , , , , , , , , , , , , , ,
	PPH 0.4 Poter PPH 0.25 0.01 0.06 0.01 Poter PPH 0.25 0.01 0.06 0.01 0.06 0.01 0.06 0.01	0.4 1.45 Potential Emissions PPH TPY 0.25 1.095 0.01 0.001 0.06 0.263 0.01 0.002 Potential Emissions Potential Emissions Potential Emissions Potential Emissions Image: Philodow Potential Emissions Potential Emissions Image: Philodow Potential Emissions Image:

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Uni	t Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
DFBS	Neutralization/Concentrator Feed Tank	DOMC/HZZC	
Provide a description of the emission u	nit (type, method of operation, des	ign parameters, etc.):	
Neutralization/C	oncentrator Feed Tank -Vents throu	gh DOME/HZZE	
		Redacted Copy Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1984	6/6/1905	
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL Fuel Usage Data (fill out all applicable	CLAIMED CONFIDENTIAL Maximum Annual Throughput: CLAIMED CONFIDENTIAL fields)	Maximum Operating Sched 8760 hr/yr	ule:
Does this emission unit combust fuel?	Ves Vo	If yes, is it?	
		• •	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag	· · · · · · · · · · · · · · · · · · ·	For each fuel type listed, pr	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Poten	ntial Emissions	
I	PPH	TPY	
Carbon Monoxide (CO)		†	
Nitrogen Oxides (NO _X)		+	
Lead (Pb)		+	
Particulate Matter (PM _{2.5})		+	
Particulate Matter (PM ₁₀)		+	
Total Particulate Matter (TSP)		+	
Sulfur Dioxide (SO ₂)		+	
Volatile Organic Compounds (VOC)	0.6	2.5	
Hazardous Air Pollutants		ntial Emissions	I
I F	PPH	TPY	
Formaldehyde	0.10	0.4	438
Methanol	0.11	0.482	
Toluene	0.01	0.005	
		1	
		1	
		1	
		1	
г — Т		 	
г — Т		 	
Regulated Pollutants other than Criteria and HAP	Poten	tial Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	0.6	2.50	
		1	
[]		<u> </u>	
· · · · · · · · · · · · · · · · · · ·		1	
List the method(s) used to calculate the potent	tial emissions (include date	s of any stack tests conduct	ed. versions
of software used, source and dates of emission		y of any stuck vests conduct	eu, versions

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DFES	Extraction Column	DOMC/HZZC	
Provide a description of the emission u	nit (type, method of operation, des	sign parameters, etc.):	
Extrac	tion Column -Vents through DOME	E/HZZE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	N/A	N/A	
Maximum Hourly Throughput:	CLAIMED CONFIDENTIAL Maximum Annual Throughput:	Maximum Operating Schedu	ıle:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	fields)	•	
Does this emission unit combust fuel?	Yes Vo	If yes, is it? □ Direct Fired □ Indire	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Potential Emissions		
	PPH	TPY	
Carbon Monoxide (CO)		1	
Nitrogen Oxides (NO _X)		1	
Lead (Pb)		+	+
Particulate Matter (PM _{2.5})		1	1
Particulate Matter (PM ₁₀)		+	
Total Particulate Matter (TSP)		+	+
Sulfur Dioxide (SO ₂)		+	
Volatile Organic Compounds (VOC)	1.2	4.87	+
Hazardous Air Pollutants		ential Emissions	
	PPH	TPY	
Formaldehyde	0.58	2.	541
Methanol	0.10	0.438	
		1	
		1	
		1	
Regulated Pollutants other than Criteria and HAP	Pote	ential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	1.2	4.87	
		1	
		1	
		+	
I ist the wethod(e) used to calculate the notan	tal amissions (include de	too of any stools tasts conduc	tad vargions
List the method(s) used to calculate the potent of software used, source and dates of emission		tes of any stack tests conduc	ted, versions
	·		

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	ACHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number: DFHS	Emission unit name: Solvent Column Water Analyzer	List any control devices asso with this emission unit:	ciated
Provide a description of the emission u	nit (tune method of energian de	ion novemeters, etc.).	
-	Column Water Analyzer -Vents through		
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Design Capacity (examples: furnaces - Maximum Hourly Throughput:	CLAIMED CONFIDENTIAL Maximum Annual Throughput:	Maximum Operating Schedu	10.
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL		uic.
CLAIMED CONFIDEN HAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
<i>Fuel Usage Data</i> (fill out all applicable	e fields)		
Does this emission unit combust fuel?	Tyes Ves No	If yes, is it?	ect Fired
Maximum design heat input and/or ma	aximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A
		ļ	

Emissions Data				
Criteria Pollutants	Potential Emissions			
	PPH	TPY		
Carbon Monoxide (CO)		+		
Nitrogen Oxides (NO _X)		+		
Lead (Pb)		+		
Particulate Matter (PM _{2.5})		+		
Particulate Matter (PM ₁₀)				
Total Particulate Matter (TSP)				
Sulfur Dioxide (SO ₂)				
Volatile Organic Compounds (VOC)	0.1	0.01	1	
Hazardous Air Pollutants		ntial Emissions		
	PPH	TPY		
Hexane	0.01	0.	.001	
Toluene	0.01	0.001		
		1		
		1		
		1		
		1		
		+		
Regulated Pollutants other than Criteria and HAP	Pote	ntial Emissions		
· – –	PPH	TPY		
Volatile Organic Compounds (VOC)	0.1	0.01		
		1		
		+		
List the method(s) used to calculate the potent		es of any stack tests conduc	ted, versions	
of software used, source and dates of emission	factors, etc.).			
Engineering Estimate				

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	ACHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number: DFIS	Emission unit name: Weak Formaldehyde Tank Truck	List any control devices ass with this emission unit:	ociated
	Loading		
Provide a description of the emission u	init (type, method of operation, de	sign parameters, etc.):	
Weak Forma	Idehyde Tank Truck Loading -Vents	s through DFIE	
		Redacted Copy Claim of Confident	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1965	N/A	
Design Capacity (examples: furnaces -			
	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched	lule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	10.5 hr/yr	
<i>Fuel Usage Data</i> (fill out all applicable	e fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
		Direct Fired Indi	rect Fired
Maximum design heat input and/or ma	aximum horsepower rating:	Type and Btu/hr rating of b	ourners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pr	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Potential Emissions		
	PPH	TPY	
Carbon Monoxide (CO)		1	
Nitrogen Oxides (NO _X)		1	
Lead (Pb)		1	1
Particulate Matter (PM _{2.5})		1	
Particulate Matter (PM ₁₀)		+	1 1
Total Particulate Matter (TSP)		+	1 1
Sulfur Dioxide (SO ₂)		+	1 1
Volatile Organic Compounds (VOC)	2.3	0.02	1
Hazardous Air Pollutants	Pote	ential Emissions	
	PPH	TPY	
Formaldehyde	0.20	0.00)2
Methanol	1.80	0.010	
		1	
		1	
		1	
		+	
		+	
1		+	
Regulated Pollutants other than Criteria and HAP	Pote	ential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	2.3	0.02	
List the method(s) used to calculate the poter of software used, source and dates of emissio		tes of any stack tests conducted	d, versions
UI Soltwalt used, source and dutes of emission	II lactors, cic. <i>j</i> .		
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number: DGKS	Emission unit name: #1 PC Lump Pot	List any control devices asso with this emission unit:	ociated
Provide a description of the emission u	nit (type, method of operation, de	sion narameters, etc.):	
-	1 PC Lump Pot -Vents through DG		
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Design Capacity (examples: furnaces -	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	251 hr/yr	
<i>Fuel Usage Data</i> (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pr	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Potential Emissions		
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	0.7	0.09	
Hazardous Air Pollutants	Potential Emissions		
	PPH	TPY	
Formaldehyde	0.60	0.0	75
Regulated Pollutants other than Criteria and HAP	Ро	tential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	0.7	0.09	
List the method(s) used to calculate the potent		ates of any stack tests conducte	ed, versions
of software used, source and dates of emission	factors, etc.).		
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DGLS	#2 PC Lump Pot		
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
#	² PC Lump Pot -Vents through DG	LE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Maximum Hourly Throughput:	CLAIMED CONFIDENTIAL Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	251 hr/yr	
<i>Fuel Usage Data</i> (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes V No	If yes, is it?	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A
		1	

Emissions Data			
Criteria Pollutants	Potential Emissions		
├──	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)		+	1
Lead (Pb)		+	1
Particulate Matter (PM _{2.5})		1	1
Particulate Matter (PM ₁₀)		+	1
Total Particulate Matter (TSP)		+	1
Sulfur Dioxide (SO ₂)		+	†
Volatile Organic Compounds (VOC)	0.7	0.09	1
Hazardous Air Pollutants		otential Emissions	
	PPH	TPY	
Formaldehyde	0.60	0.075	5
 			
			
Regulated Pollutants other than Criteria and HAP	Po	otential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	0.7	0.09	
		-	
List the method(s) used to calculate the potenti		ates of any stack tests conducted	l, versions
of software used, source and dates of emission	factors, etc.).		
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Ur	nit Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
DGMS	#3 PC Lump Pot		
Provide a description of the emission u		-	
#:	3 PC Lump Pot -Vents through DG	BME	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL Maximum Annual Throughput CLAIMED CONFIDENTIAL	Maximum Operating Sched 251 hr/yr	ule:
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Ves Vo	If yes, is it?	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usage). For each fuel type listed, pr	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

	Potential Emissions TPY	
Carbon Monoxide (CO) Nitrogen Oxides (NO _X)	TPY	
Carbon Monoxide (CO)		
Nitrogen Oxides (NO _X)	-	
		1
Lead (Pb)		+
Particulate Matter (PM _{2.5})		1
Particulate Matter (PM ₁₀)		1
Total Particulate Matter (TSP)		+
Sulfur Dioxide (SO ₂)		+
Volatile Organic Compounds (VOC) 0.7	0.09	1
Hazardous Air Pollutants	Potential Emissions	
PPH	TPY	
Formaldehyde 0.60	0.	076
Regulated Pollutants other than Criteria and HAP	Potential Emissions	
РРН	TPY	
Volatile Organic Compounds (VOC) 0.7	0.09	
List the method(s) used to calculate the potential emissions (includ	le dates of any stack tests conduc	ted, versions
of software used, source and dates of emission factors, etc.).		
Engineering Estimate		

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATT	ACHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DGQS	#1 P/PC System	DOMC/HZZC	
Provide a description of the emission u	unit (type, method of operation, de	sign parameters, etc.):	
#1]	P/PC System -Vents through DOME/	HZZE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1990	N/A	
Maximum Hourly Throughput:	CLAIMED CONFIDENTIAL Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
<i>Fuel Usage Data</i> (fill out all applicabl	e fields)		
Does this emission unit combust fuel?	Tes Ves No	If yes, is it?	
		Direct Fired Indir	ect Fired
Maximum design heat input and/or m	aximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A	Δ	N/A	
List the primary fuel type(s) and if ap maximum hourly and annual fuel usa		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data		
Criteria Pollutants	Pote	ential Emissions
├─	РРН	TPY
Carbon Monoxide (CO)		
Nitrogen Oxides (NO _X)		1
Lead (Pb)		+
Particulate Matter (PM _{2.5})		1
Particulate Matter (PM ₁₀)		+
Total Particulate Matter (TSP)		+
Sulfur Dioxide (SO ₂)		+
Volatile Organic Compounds (VOC)	10338.6	45283.07
Hazardous Air Pollutants		ential Emissions
	PPH	TPY
Formaldehyde	9682.60	42409.788
Hexane	0.01	0.014
Methanol	0.78	3.417
Toluene	0.48	2.103
· · · · · · · · · · · · · · · · · · ·		
		+
Regulated Pollutants other than Criteria and HAP	Poter	ential Emissions
	PPH	TPY
Volatile Organic Compounds (VOC)	10338.6	45283.07
·		
		+
List the method(s) used to calculate the potent of software used, source and dates of emission		es of any stack tests conducted, versions
Engineering Estimate		

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DGRS	#2 P/PC System	DOMC/HZZC	
Provide a description of the emission u	I nit (type, method of operation, des	sign parameters, etc.):	
-	/PC System -Vents through DOME/		
		Dedasted Conv	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1990	N/A	
Design Capacity (examples: furnaces - Maximum Hourly Throughput:	CLAIMED CONFIDENTIAL Maximum Annual Throughput:	Maximum Operating Schedu	ıle:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
		•	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data		
Criteria Pollutants	Pote	ential Emissions
	РРН	TPY
Carbon Monoxide (CO)		
Nitrogen Oxides (NO _X)		1 1
Lead (Pb)		+
Particulate Matter (PM _{2.5})		+
Particulate Matter (PM ₁₀)		+
Total Particulate Matter (TSP)		+ +
Sulfur Dioxide (SO ₂)		+
Volatile Organic Compounds (VOC)	10338.6	45283.07
Hazardous Air Pollutants	Pote	ential Emissions
	PPH	TPY
Formaldehyde	9682.60	42409.788
Hexane	0.01	0.014
Methanol	0.78	3.417
Toluene	0.01	0.002
		1
		+
		+
Regulated Pollutants other than Criteria and HAP	Pote	ential Emissions
	PPH	TPY
Volatile Organic Compounds (VOC)	10338.6	45283.07
List the method(s) used to calculate the poten	tial emissions (include dat	es of any stack tests conducted, versions
of software used, source and dates of emission	1 factors, etc.).	
Engineering Estimate		

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	ACHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DGSS	#3 P/PC System	DOMC/HZZC	
Provide a description of the emission u	nit (type, method of operation, des	sign parameters, etc.):	
#3 F	P/PC System -Vents through DOME/	HZZE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1990	N/A	
Maximum Hourly Throughput:	CLAIMED CONFIDENTIAL Maximum Annual Throughput:	Maximum Operating Sched	ıle:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
<i>Fuel Usage Data</i> (fill out all applicable	e fields)		
Does this emission unit combust fuel?	Yes V No	If yes, is it? □ Direct Fired □ Indir	ect Fired
Maximum design heat input and/or ma	aximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Potential Emissions		
	PPH	TPY	
Carbon Monoxide (CO)		1	
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)		+	
Total Particulate Matter (TSP)		+	
Sulfur Dioxide (SO ₂)		+	
Volatile Organic Compounds (VOC)	10338.6	45283.07	
Hazardous Air Pollutants		45285.07 ntial Emissions	
	PPH	TPY	
Formaldehyde	9682.60	42409.2	788
Hexane	0.01	0.014	
Methanol	0.78	3.417	
Toluene	0.48	2.103	
		1	
		1	
		1	
		1	
		1	
Regulated Pollutants other than Criteria and HAP	Poter	ntial Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	10338.6	45283.07	
		1	
List the method(s) used to calculate the poter	ntial emissions (include date	es of any stack tests conduct	ted, versions
of software used, source and dates of emissio			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	ACHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
DGVS	PC Steamout Condenser	DOMC/HZZC	
Provide a description of the emission u	nit (type, method of operation, de	esign parameters, etc.):	
PC Stea	mout Condenser -Vents through DC	ME/HZZE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1983	N/A	
Maximum Hourly Throughput:	CLAIMED CONFIDENTIAL Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
<i>Fuel Usage Data</i> (fill out all applicable	e fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it? Direct Fired Indir	ect Fired
Maximum design heat input and/or ma	aximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag). For each fuel type listed, pr	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Potential Emissions		
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	396.2	1735.36	
Hazardous Air Pollutants		ential Emissions	
	PPH	TPY	
Formaldehyde	222.70	975.4	26
Regulated Pollutants other than Criteria	Pote	ential Emissions	
and HAP			
	PPH	TPY	
Volatile Organic Compounds (VOC)	396.2	1735.36	
List the method(s) used to calculate the poten	tial emissions (include dat	tes of any stack tests conduct	ed, versions
of software used, source and dates of emission		-	
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DGXS	Monomer Absorber	DOMC/HZZC	
Provide a description of the emission u	nit (type, method of operation, des	sign parameters, etc.):	
Monor	ner Absorber -Vents through DOMI	E/HZZE	
		Redacted Copy -	
		Claim of Confidenti	ality
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1983	N/A	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons):		
	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schedu	ıle:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
		Direct Fired Indire	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Pote	ential Emissions	
РРН	TPY	
	1	1
		1
		1
		+
817	3578.46	
Potential Emissions		
PPH	TPY	
3.80	16.0	544
0.21	0.920	
3.40	14.892	
16.50	72.270	
Pote	ntial Emissions	
PPH	TPY	
817.0	3578.46	
tial emissions (include date	es of any stack tests conduct	ted, versions
	•	
	PPH 817 Pote PPH 3.80 0.21 3.40 16.50 Pote PPH 817.0	817 3578.46 Potential Emissions PPH TPY 3.80 16.0 0.21 0.920 3.40 14.892 16.50 72.270 PPH TPY 817 3578.46 0.21 0.920 3.40 14.892 16.50 72.270 Potential Emissions Potential Emissions POtential Emissions TPY 817.0 3578.46 Image: State tests conduct Image: State tests conduct Image: State tests conduct Image: State tests conduct

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
DHSS	Poly Steamout Decanter Tank	DOMC/HZZC	
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
Poly Steamo	out Decanter Tank -Vents through I	DOME/HZZE	
		Redacted Copy Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL Fuel Usage Data (fill out all applicable	CLAIMED CONFIDENTIAL Maximum Annual Throughput: CLAIMED CONFIDENTIAL fields)	Maximum Operating Sched 8760 hr/yr	ule:
i act Osage Data (ini out an appicable	licius)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it? Direct Fired Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usage	· · · · · · · · · · · · · · · · · · ·	. For each fuel type listed, pr	ovide the
Describe each fuel expected to be used o	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Poter	ntial Emissions	
├──	РРН	TPY	
Carbon Monoxide (CO)		1	
Nitrogen Oxides (NO _X)		1	1
Lead (Pb)		+	1
Particulate Matter (PM _{2.5})		+	1
Particulate Matter (PM ₁₀)		+	+
Total Particulate Matter (TSP)		+	
Sulfur Dioxide (SO ₂)		+	
Volatile Organic Compounds (VOC)	2.9	12.58	1
Hazardous Air Pollutants	Pote	ntial Emissions	
	PPH	TPY	
Formaldehyde	0.01	0.001	
Hexane	0.01	0.018	
Toluene	0.01	0.018	
		1	
		1	
		1	
		1	
		1	
Regulated Pollutants other than Criteria and HAP	Poter	ntial Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	2.9	12.58	
		1	
i		+	
List the method(s) used to calculate the potent	tial emissions (include date	es of any stack tests conduc	ted, versions
of software used, source and dates of emission			icu,

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
DHUS	Reactor Sampling		
Provide a description of the emission u	nit (type, method of operation, des	sign parameters, etc.):	
Re	eactor Sampling -Vents through DH	UE	
		Redacted Copy -	-
		Claim of Confidenti	ality
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Design Capacity (examples: furnaces - 1	tons/hr, tanks - gallons):		
	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	4380 hr/yr	
Fuel Usage Data (fill out all applicable	fields)	-	
Does this emission unit combust fuel?	Yes Vo	If yes, is it? □ Direct Fired □ Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if appl maximum hourly and annual fuel usage		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used o	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

		Emissions Data
Potential Emissions		Criteria Pollutants
PH TPY	PPH	⊢
		Carbon Monoxide (CO)
		Nitrogen Oxides (NO _X)
		Lead (Pb)
		Particulate Matter (PM _{2.5})
		Particulate Matter (PM ₁₀)
		Total Particulate Matter (TSP)
		Sulfur Dioxide (SO ₂)
3.7 8.11	3.7	Volatile Organic Compounds (VOC)
Potential Emissions		Hazardous Air Pollutants
PH TPY	PPH	
.03 0.066	0.03	Formaldehyde
.01 0.005	0.01	Hexane
.67 1.468	0.67	Toluene
i		
Potential Emissions		Regulated Pollutants other than Criteria and HAP
PH TPY	PPH	
8.11	3.7	Volatile Organic Compounds (VOC)
and finalude dates of any stack tests conducted versions	-tial amissions (include	T ist the method(s) used to calculate the note:
•		List the method(s) used to calculate the poter of software used, source and dates of emission
•		List the method(s) used to calculate the poter of software used, source and dates of emission Engineering Estimate

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
DHVS	Reactor Sampling		
Provide a description of the emission u	hit (type, method of operation, de	sign parameters, etc.):	
Re	eactor Sampling -Vents through DH	IVE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL Maximum Annual Throughput: CLAIMED CONFIDENTIAL	Maximum Operating Sched 4380 hr/yr	ule:
<i>Fuel Usage Data</i> (fill out all applicable	fields)		
Does this emission unit combust fuel?	TYes Ves No	If yes, is it? □ Direct Fired □ Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usage		For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Pote	ntial Emissions	
РРН	TPY	
	1	
	1	
	+	1
	+	-
	+	-
	+	
	+	+
3.7	8.11	-
Pote	ntial Emissions	
PPH	TPY	
0.03	0.	.066
0.01	0.005	
0.67	1.468	
	1	
Poter	ntial Emissions	
PPH	ТРҮ	
3.7	8.11	
	-	
	+	
	es of any stack tests conduc	ted, versions
1acio15, cic. <i>j</i> .		
	PPH 3.7 Poter PPH 0.03 0.01 0.67	3.7 8.11 3.7 8.11 Potential Emissions 7 PPH TPY 0.03 0. 0.01 0.005 0.67 1.468 Potential Emissions Potential Emissions Potential Emissions Potential Emissions Image: Performed and the solution of the solution

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DHWS	Reactor Sampling		
Provide a description of the emission u	Init (type, method of operation, de	sign parameters, etc.):	
R	eactor Sampling -Vents through DH	WE	
		Redacted Copy -	_
		Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Design Capacity (examples: furnaces - Maximum Hourly Throughput:	CLAIMED CONFIDENTIAL Maximum Annual Throughput:	Maximum Operating Schedu	alo:
Maximum Houriy Throughput:	Maximum Annual Enroughput:	Maximum Operating Sched	uie:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	4380 hr/yr	
<i>Fuel Usage Data</i> (fill out all applicable	e fields)		
Does this emission unit combust fuel?	Ves Vo	If yes, is it? □ Direct Fired □ Indir	ect Fired
Maximum design heat input and/or ma	aximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag	· · · · · · · · · · · · · · · · · · ·	For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A
	ļ		

Emissions Data			
Criteria Pollutants	Potential Emissions		
	РРН	TPY	
Carbon Monoxide (CO)		1	
Nitrogen Oxides (NO _X)		†	
Lead (Pb)		1	
Particulate Matter (PM _{2.5})		1	
Particulate Matter (PM ₁₀)		1	
Total Particulate Matter (TSP)		+	
Sulfur Dioxide (SO ₂)		+	
Volatile Organic Compounds (VOC)	3.7	8.11	
Hazardous Air Pollutants		ntial Emissions	
	PPH	TPY	
Ethylene Glycol	0.03	0.0	066
Formaldehyde	0.01	0.005	
Toluene	0.67	1.468	
		1	
Regulated Pollutants other than Criteria and HAP	Pote	ntial Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	3.7	8.11	
List the method(s) used to calculate the potent		es of any stack tests conduct	ted, versions
of software used, source and dates of emission	factors, etc.).		
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DHXS	Catalyst Hold-Up Tank		
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
Cata	lyst Hold-Up Tank -Vents through	DHZE	
		Redacted Copy -	_
		Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons): CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:		Marinum Oranating Sahad	-las
waximum nourly rinoughput:	Maximum Annual Throughput:	Maximum Operating Sched	uie:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
<i>Fuel Usage Data</i> (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
		Direct Fired Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Ро	otential Emissions	
	dential Emissions	
PPH	TPY	
	1	1
		1
		+
		+
		\neg
1.8	7.6	+
Potential Emissions		
PPH	TPY	
0.17	0.	719
0.01	0.002	
0.11	0.476	
Ро	otential Emissions	
PPH	TPY	
1.8	7.60	
ial amissions (include de	ates of any stack tests conduc	tod versions
	ates of any stack tests conduc	ted, versions
	1.8 Pc PPH 0.17 0.01 0.11 0.11 Pc Pc PH 1.8	Image: constraint of the second se

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
DHYS	Catalyst Storage Tank		
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
Cat	alyst Storage Tank -Vents through I	DHYE	
		Redacted Copy -	-
		Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	-
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Design Capacity (examples: furnaces -	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	4380 hr/yr	
<i>Fuel Usage Data</i> (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
		Direct Fired Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		For each fuel type listed, pr	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A
		1	

Emissions Data			
Criteria Pollutants	Pote	ential Emissions	
	РРН	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)		1	
Lead (Pb)		1	1
Particulate Matter (PM _{2.5})		1	1
Particulate Matter (PM ₁₀)		+	
Total Particulate Matter (TSP)		1	
Sulfur Dioxide (SO ₂)		1	
Volatile Organic Compounds (VOC)	2.2	4.65	
Hazardous Air Pollutants	Pote	ential Emissions	
	PPH	TPY	
Hexane	1.28	2.2	784
Methanol	0.30	0.638	
Toluene	0.56	1.227	
Regulated Pollutants other than Criteria and HAP	Pote	ential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	2.2	4.65	
List the method(s) used to calculate the potent	tial emissions (include dat	es of any stack tests conduc	ted, versions
of software used, source and dates of emission			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DHZS	Catalyst Mix Tank		
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
C	atalyst Mix Tank -Vents through DF	IZE	
		Redacted Copy	
		Claim of Confidenti	ality
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons):		
	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
		Direct Fired Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag	· · · · · · · · · · · · · · · · · · ·	. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Pote	ential Emissions	
	РРН	TPY	
Carbon Monoxide (CO)		1	
Nitrogen Oxides (NO _X)		1	
Lead (Pb)		1	1
Particulate Matter (PM _{2.5})		1	
Particulate Matter (PM ₁₀)		1	
Total Particulate Matter (TSP)		+	1 1
Sulfur Dioxide (SO ₂)		1	1 1
Volatile Organic Compounds (VOC)	1.7	7.27	
Hazardous Air Pollutants	Pote	ential Emissions	
	PPH	TPY	
Hexane	0.16	0.688	}
Methanol	0.01	0.002	
Toluene	0.11	0.455	
Regulated Pollutants other than Criteria and HAP	Pote	ential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	1.7	7.27	
List the method(s) used to calculate the potent		tes of any stack tests conducted	, versions
of software used, source and dates of emission	factors, etc.).		
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATT	ACHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
DICS	Slurry Feed Tank	DOMC/HZZC	
Provide a description of the emission	unit (type, method of operation, de	sign parameters, etc.):	
Slu	rry Feed Tank -Vents through DOME	HZZE	
		Redacted Copy -	
		Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Design Capacity (examples: furnaces	- tons/hr, tanks - gallons):		
	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicab	le fields)		
Does this emission unit combust fuel?	Ves Vo	If yes, is it?	
		Direct Fired Indir	ect Fired
Maximum design heat input and/or n	naximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/.	A	N/A	
List the primary fuel type(s) and if ap maximum hourly and annual fuel usa		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be use	d during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Potential Emissions		
├──	PPH	TPY	
Carbon Monoxide (CO)		1	
Nitrogen Oxides (NO _X)		1	1
Lead (Pb)		+	
Particulate Matter (PM _{2.5})		+	
Particulate Matter (PM ₁₀)		+	
Total Particulate Matter (TSP)		+	+
Sulfur Dioxide (SO ₂)		+	+
Volatile Organic Compounds (VOC)	30.5	133.24	
Hazardous Air Pollutants		ential Emissions	l
	PPH	TPY	
Formaldehyde	0.14	0.0	614
Hexane	0.18	0.789	
Toluene	0.02	0.088	
		1	
		1	
		1	
		+	
		+	
		+	
Regulated Pollutants other than Criteria and HAP	Poter	ential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	30.5	133.24	
		+	
List the method(s) used to calculate the potent	tial emissions (include dat	es of any stack tests conduct	ted versions
of software used, source and dates of emission		to of any stuck tests to	.cu, version

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DIES	Isolation System Vent	DOMC/HZZC	
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
Isolatio	n System Vent -Vents through DOM	IE/HZZE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1980	6/2/1905	
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL Maximum Annual Throughput: CLAIMED CONFIDENTIAL	Maximum Operating Schedu 8760 hr/yr	ıle:
		8700 m/yi	
<i>Fuel Usage Data</i> (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes V No	If yes, is it? □ Direct Fired □ Indire	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used			
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Potential Emissions		
	PPH	TPY	
Carbon Monoxide (CO)		1	
Nitrogen Oxides (NO _X)		+	1
Lead (Pb)		+	+
Particulate Matter (PM _{2.5})		+	+
Particulate Matter (PM ₁₀)		+	+
Total Particulate Matter (TSP)		+	
Sulfur Dioxide (SO ₂)		+	
Volatile Organic Compounds (VOC)	238.4	1044.2	
Hazardous Air Pollutants	Potential Emissions		
	PPH	TPY	
Formaldehyde	1.05	4.599	
Hexane	1.40	6.132	
Toluene	0.17	0.745	
		1	
		1	
		1	
		1	
		1	
		1	
Regulated Pollutants other than Criteria and HAP	Poter	ential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	238.4	1044.20	
		1	
İ		+	
List the method(s) used to calculate the poten	tial emissions (include date	es of any stack tests conduct	ted versions
of software used, source and dates of emission		to of any stack tests conden.	Cu, VI DIOLLO

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTACHMENT E - Emission Unit Form			
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DIFS	Isolation Liquid Receiver Tank	DOMC/HZZC	
Provide a description of the emission u	Init (type, method of operation, des	sign parameters, etc.):	
Isolation Lic	quid Receiver Tank -Vents through I	DOME/HZZE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons):		
	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schedu	ıle:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

0 · · · D 11 · · ·			
Criteria Pollutants	Potential Emissions		
	PPH	TPY	
Carbon Monoxide (CO)		1	
Nitrogen Oxides (NO _X)		+	
Lead (Pb)		+	
Particulate Matter (PM _{2.5})		+	
Particulate Matter (PM ₁₀)		+	
Total Particulate Matter (TSP)		+	
Sulfur Dioxide (SO ₂)		+	
Volatile Organic Compounds (VOC)	22.2	97.24	
Hazardous Air Pollutants		ntial Emissions	I
	PPH	TPY	
Formaldehyde	0.01	0	0.004
Hexane	0.01	0.044	
Toluene	0.02	0.088	
Regulated Pollutants other than Criteria and HAP	Poter	ntial Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	22.2	97.24	
		1	
List the method(s) used to calculate the potenti	al emissions (include date	es of any stack tests conduc	cted, versions

Engineering Estimate

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DINS	Warm Brine Tank	DINC	
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
v	Varm Brine Tank - Vents through DI	NE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1996	N/A	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons):		
	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched	ıle:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
<i>Fuel Usage Data</i> (fill out all applicable	e fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
		Direct Fired Indir	ect Fired
Maximum design heat input and/or ma	aximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A
	 		
		<u> </u>	

Emissions Data			
Criteria Pollutants	Potential Emissions		
	PPH	TPY	
Carbon Monoxide (CO)			Т
Nitrogen Oxides (NO _X)		1	1
Lead (Pb)		1	1
Particulate Matter (PM _{2.5})		1	1
Particulate Matter (PM ₁₀)		1	1
Total Particulate Matter (TSP)		1	1
Sulfur Dioxide (SO ₂)		1	1
Volatile Organic Compounds (VOC)	5.5	1.76	1
Hazardous Air Pollutants		otential Emissions	
	PPH	TPY	
Methanol	5.50	1.75	52
		1	
1			
Regulated Pollutants other than Criteria and HAP	Ро	otential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	5.5	1.76	
List the method(s) used to calculate the potent	ial emissions (include d:	ates of any stack tests conducte	d versions
of software used, source and dates of emission			
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number: DISS	Emission unit name: Chilled Water Brine Tank	List any control devices asso with this emission unit:	ciated
Provide a description of the emission u			
Chill	ed Water Brine Tank -Vents throug	h DISE	
		Redacted Copy -	-
		Claim of Confidenti	ality
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons):		
	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schedu	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
<i>Fuel Usage Data</i> (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
		Direct Fired Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag). For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Pe	otential Emissions	
├──	РРН	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			1
Lead (Pb)			1
Particulate Matter (PM _{2.5})			1
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			1
Sulfur Dioxide (SO ₂)			1
Volatile Organic Compounds (VOC)	0.6	2.55	1
Hazardous Air Pollutants	Pe	otential Emissions	
	PPH	TPY	
Methanol	0.58	2.5	41
			
Regulated Pollutants other than Criteria and HAP	Pe	otential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	0.6	2.55	
List the method(s) used to calculate the potent	l amissions (include d	1-ton of any stack tasts conduct	- J rorgiong
List the method(s) used to calculate the potent of software used, source and dates of emission		lates of any stack tests conduct	a, versions
n bortonic about source and a source and	lucions, erec.		
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTACHMENT E - Emission Unit Form			
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DJOS	Decanter Tank (Upper Layer)	DOMC/HZZC	
Provide a description of the emission up	nit (type, method of operation, de	sign parameters, etc.):	
Decanter Ta	ank (Upper Layer) -Vents through D	DOME/HZZE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons): CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schedu	ıle:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
		🗖 Direct Fired 🔲 Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Potential Emissions		
├ ─	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)		1	1
Lead (Pb)		1	1
Particulate Matter (PM _{2.5})		1	1
Particulate Matter (PM ₁₀)		1	1
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)		1	1
Volatile Organic Compounds (VOC)	5.6	24.53	
Hazardous Air Pollutants		tential Emissions	
	PPH	TPY	
Formaldehyde	0.01	0.00	05
i			
Regulated Pollutants other than Criteria and HAP	Ро	otential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	5.6	24.53	
List the method(s) used to calculate the potent	ial amissions (include da	ator of any stark tests conducte	d versions
of software used, source and dates of emission		tto of any stack tools conduct	u,
G Solution C about Solution C and C about Solution	1400013, 0000,		
Engineering Estimate			
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DJPS	Decanter Tank (Lower Layer)	DOMC/HZZC	
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
- Decanter T	ank (Lower Layer) -Vents through I	DOME/HZZE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons):		
	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
<i>Fuel Usage Data</i> (fill out all applicable	fields)		
Does this emission unit combust fuel?	TYes Ves No	If yes, is it?	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Nitrogen Oxides (NOx)Image: Constant of the second sec	
Carbon Monoxide (CO)Image: Constraint of the sector of the se	
Carbon Monoxide (CO)Image: Constraint of the sector of the se	
Lead (Pb)Image: Constant of the second s	
Particulate Matter (PM2.5)Image: Composition of the sector of	1
Particulate Matter (PM10)Image: Composition of the sector of	
Total Particulate Matter (TSP) Image: Compound (SO2) Volatile Organic Compounds (VOC) 0.1 Hazardous Air Pollutants 0.01 PPH TPY	
Sulfur Dioxide (SO ₂) Image: Compounds (VOC) Volatile Organic Compounds (VOC) 0.1 Hazardous Air Pollutants Image: Compound Im	
Volatile Organic Compounds (VOC) 0.1 0.01 Hazardous Air Pollutants Potential Emissions PPH TPY	1
Hazardous Air Pollutants Potential Emissions PPH TPY	1
PPH TPY	
Formaldehyde 0.01 0. Image: Constraint of the second seco	
	.001
Regulated Pollutants other than Criteria and HAP Potential Emissions	
РРН ТРҮ	
Volatile Organic Compounds (VOC)0.10.01	
List the method(s) used to calculate the potential emissions (include dates of any stack tests conduc	ted, versions
of software used, source and dates of emission factors, etc.).	
Engineering Estimate	

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DJQS	Decanter Tank (Upper Layer)	DOMC/HZZC	
Provide a description of the emission u	l nit (type, method of operation, de	sign parameters, etc.):	
Decanter Ta	ank (Upper Layer) -Vents through D	DOME/HZZE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1995	N/A	
Design Capacity (examples: furnaces -	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schedu	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
<i>Fuel Usage Data</i> (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
		🗖 Direct Fired 🛛 🗖 Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		For each fuel type listed, pro	ovide the
Describe each fuel expected to be used during the term of the permit.			
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Pote	ential Emissions	
	PPH	TPY	
Carbon Monoxide (CO)		1	
Nitrogen Oxides (NO _X)		+	4
Lead (Pb)		+	1
Particulate Matter (PM _{2.5})		+	1
Particulate Matter (PM ₁₀)		+	+
Total Particulate Matter (TSP)		+	}
Sulfur Dioxide (SO ₂)		+	
Volatile Organic Compounds (VOC)	5.6	24.53	4
Hazardous Air Pollutants		ential Emissions	
	PPH	ТРҮ	
Formaldehyde	0.01	0.001	
Hexane	0.01	0.044	
Toluene	0.01	0.001	
Regulated Pollutants other than Criteria and HAP	Pote	ential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	5.6	24.53	
List the method(s) used to calculate the potent		tes of any stack tests conducted	l, versions
of software used, source and dates of emission	factors, etc.).		
List the method(s) used to calculate the potent of software used, source and dates of emission		tes of any stack tests conducted	l, versio

Engineering Estimate

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTACHMENT E - Emission Unit Form			
Emission Unit Description			
Emission unit ID number: DJRS	Emission unit name:	List any control devices asso with this emission unit: DOMC/HZZC	ciated
DIKS	Decanter Tank (Lower Layer)	DOMC/HZZC	
Provide a description of the emission u			
Decanter Ta	ank (Lower Layer) -Vents through [DOME/HZZE	
		Redacted Copy -	
		Claim of Confidenti	ality
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1995	N/A	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons):		
	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schedu	ıle:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
<i>Fuel Usage Data</i> (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
		🗖 Direct Fired 🔲 Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used during the term of the permit.			
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	nts Potential Emissions		
— —	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	0.1	0.05	
Hazardous Air Pollutants	Pe	otential Emissions	
	PPH	TPY	
Formaldehyde	0.01	0.0	005
Regulated Pollutants other than Criteria and HAP	Po	otential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	0.1	0.05	
List the method(a) used to coloulate the notant	ial amiaziana (includa d	ates of any stack tasts conduct	ad varaiona
List the method(s) used to calculate the potent of software used, source and dates of emission		lates of any stack tests conduct	eu, versions
	, ,		
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	ACHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DJTS	Dryer Blower Loop	DOMC/HZZC	
Provide a description of the emission u	unit (type, method of operation, de	sign parameters, etc.):	
Dryer	Blower Loop -Vents through DOM	E/HZZE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1968	5/21/1905	
Maximum Hourly Throughput:	CLAIMED CONFIDENTIAL Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
<i>Fuel Usage Data</i> (fill out all applicable	e fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it? □ Direct Fired □ Indir	ect Fired
Maximum design heat input and/or ma	aximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag). For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Criteria Pollutants Potential Emissions		
PPH	ТРҮ	
	1	
	1	
	1	
	1	
	1	
2974.5	13028.31	
	ntial Emissions	
PPH	TPY	
109.50	479.610	
1.43	6.264	
7.16	31.361	
	1	
	+	
	+	
Poter	ntial Emissions	
PPH	TPY	
2974.5	13028.31	
	PPH 2974.5 Poter PPH 109.50 1.43 7.16 Poter PPH	PPH TPY Image: Constraint of the second s

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTACHMENT E - Emission Unit Form			
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DJUS	Dryer Blower Loop	DOMC/HZZC	
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
Dryer	Blower Loop -Vents through DOM	E/HZZE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1995	N/A	
Design Capacity (examples: furnaces - Maximum Hourly Throughput:	CLAIMED CONFIDENTIAL Maximum Annual Throughput:	Maximum Operating Schedu	10.
Waximum Houriy Throughput.	Maximum Annuar Throughput.	Waxinum Operating Scieut	iic.
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
<i>Fuel Usage Data</i> (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes V No	If yes, is it?	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Potential Emissions		
РРН	TPY	
	+	
	+	
	+	
	+ +	
	+	
2974.5	13028.31	
Pote	ential Emissions	
PPH	TPY	
109.50	479.610	
1.43	6.264	
7.15	31.317	
	1	
	1	
	1	
	1	
	1	
	1	
Pote	ntial Emissions	
PPH	TPY	
2974.5	13028.31	
	1	
	+	
tial emissions (include dat	es of any stack tests conducted, versio	ms
		11.5
	PPH 2974.5 Pote PPH 109.50 1.43 7.15 Pote PPH 2974.5	PPH TPY Image: Constraint of the second s

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DJVS	Conveyor Blower	DOMC/HZZC	
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
Therm	al Incinerator -Vents through DOM	E/HZZE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL Maximum Annual Throughput: CLAIMED CONFIDENTIAL	Maximum Operating Schedu 8760 hr/yr	ıle:
<i>Fuel Usage Data</i> (fill out all applicable	fields)		
Does this emission unit combust fuel?	TYes Vo	If yes, is it?	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used during the term of the permit.			
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Potential Emissions		
 	PPH	TPY	
Carbon Monoxide (CO)		1	
Nitrogen Oxides (NO _X)		1	
Lead (Pb)		1	
Particulate Matter (PM _{2.5})		1	
Particulate Matter (PM ₁₀)		1	+
Total Particulate Matter (TSP)		1	+
Sulfur Dioxide (SO ₂)		1	1
Volatile Organic Compounds (VOC)	22.6	98.99	
Hazardous Air Pollutants	Poter	ntial Emissions	
	PPH	TPY	
Formaldehyde	2.00	8.760	
Hexane	0.01	0.044	
Toluene	0.05	0.219	
Regulated Pollutants other than Criteria and HAP	Poter	ntial Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	22.6	98.99	
		1	
List the method(s) used to calculate the potent		• • • -1- 4aata oonduu	· • •

Engineering Estimate

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DJWS	Conveyor Blower	DOMC/HZZC	
Provide a description of the emission u	nit (time method of energian des	ion nonometers, etc.).	
-	al Incinerator -Vents through DOM		
		Redacted Copy -	-
		Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1979	N/A	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons):		
	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schedu	ıle:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
		• /	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag	· · · · · · · · · · · · · · · · · · ·	. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Pote	Potential Emissions	
·	РРН	TPY	
Carbon Monoxide (CO)			1
Nitrogen Oxides (NO _X)			†
Lead (Pb)			1
Particulate Matter (PM _{2.5})			1
Particulate Matter (PM ₁₀)			1
Total Particulate Matter (TSP)		+	+
Sulfur Dioxide (SO ₂)			+
Volatile Organic Compounds (VOC)	2.8	12.27	1
Hazardous Air Pollutants	Pote	ential Emissions	
	PPH	TPY	
Formaldehyde	0.25	1.095	5
Hexane	0.01	0.005	
Toluene	0.01	0.027	
Regulated Pollutants other than Criteria and HAP	Pote	ential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	2.8	12.27	
		1	
List the method(s) used to calculate the potent	tial emissions (include dat	tes of any stack tests conducted	l. versions
of software used, source and dates of emission			
List the method(s) used to calculate the potent of software used, source and dates of emission Engineering Estimate		es of any stack tests conducted	l, ver

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number: DJXS	Emission unit name: Chilled Water Brine Truck Loading	List any control devices asso with this emission unit:	ociated
Provide a description of the emission u	nit (type, method of operation, de	esign parameters, etc.):	
Chilled W	ater Brine Truck Loading -Vents th	rough DJXE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL Maximum Annual Throughput: CLAIMED CONFIDENTIAL	Maximum Operating Sched 10 hr/yr	ule:
<i>Fuel Usage Data</i> (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it? □ Direct Fired □ Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag). For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data				
Criteria Pollutants	Pot	Potential Emissions		
	PPH	TPY		
Carbon Monoxide (CO)				
Nitrogen Oxides (NO _X)				
Lead (Pb)				
Particulate Matter (PM _{2.5})				
Particulate Matter (PM ₁₀)				
Total Particulate Matter (TSP)				
Sulfur Dioxide (SO ₂)				
Volatile Organic Compounds (VOC)	0.4	0.01		
Hazardous Air Pollutants	Pot	ential Emissions		
	PPH	TPY		
Methanol	0.40	0.0	02	
Regulated Pollutants other than Criteria and HAP	Pot	ential Emissions		
	PPH	TPY		
Volatile Organic Compounds (VOC)	0.4	0.01		
		tes of any stack tests conduct	ed, versions	
of software used, source and dates of emission	n factors, etc.).			
Engineering Estimate				
List the method(s) used to calculate the poten of software used, source and dates of emission Engineering Estimate		tes of any stack tests conduct	ed, v	

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
DJYS	Low Temperature Brine Truck Loading		
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
Low Tempe	rature Brine Truck Loading -Vents	through DJYE	
		Redacted Copy Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL Fuel Usage Data (fill out all applicable	CLAIMED CONFIDENTIAL Maximum Annual Throughput: CLAIMED CONFIDENTIAL fields)	Maximum Operating Sched 10 hr/yr	ule:
		-	
Does this emission unit combust fuel?	Yes Vo	If yes, is it? Direct Fired Indir	rect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pr	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A
			

Emissions Data			
Criteria Pollutants	Pot	Potential Emissions	
	PPH	TPY	
Carbon Monoxide (CO)		1	Т
Nitrogen Oxides (NO _X)		1	1
Lead (Pb)		1	1
Particulate Matter (PM _{2.5})		1	1
Particulate Matter (PM ₁₀)		1	1
Total Particulate Matter (TSP)		1	1
Sulfur Dioxide (SO ₂)		1	1
Volatile Organic Compounds (VOC)	0.2	0.01	1
Hazardous Air Pollutants		tential Emissions	
	PPH	TPY	
Methanol	0.20	0.0	01
		_	
		_	
Regulated Pollutants other than Criteria and HAP	Pot	tential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	0.2	0.01	
·			
List the method(s) used to calculate the potenti	ial omissions (include da	tog of any stack tests conducts	d versior
of software used, source and dates of emission			<u> </u>
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number: DJZS	Emission unit name: Warm Brine Tank Truck Loading	List any control devices asso with this emission unit:	ociated
Provide a description of the emission u	nit (type, method of operation, des	sign parameters, etc.):	
	ine Tank Truck Loading -Vents thro		
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL Maximum Annual Throughput: CLAIMED CONFIDENTIAL	Maximum Operating Sched 10 hr/yr	ule:
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usage	· · · · · · · · · · · · · · · · · · ·	. For each fuel type listed, pr	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Potential E	Emissions TPY	
	ТРҮ	$\overline{+}$
		\top
\rightarrow		1
		1
		1
		1
		1
	0.02	+
Potential I		
I	TPY	
	0.02	20
		
_		
Potential F	Emissions	
	TPY	
	0.02	
<u> </u>		
		
(include dates of a	anv stack tests conducte	d. versions
(Potential I	Potential Emissions TPY 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	ACHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DLDS	#1 Secondary Condenser Steamou	t	
Provide a description of the emission u	mit (type method of operation de	sion noromotors atc.).	
-	dary Condenser Steamout -Vents thr		
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1989	N/A	
Maximum Hourly Throughput:	CLAIMED CONFIDENTIAL Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	630 hr/yr	
		050° m/yr	
<i>Fuel Usage Data</i> (fill out all applicable	e fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
		Direct Fired Indir	ect Fired
Maximum design heat input and/or ma	aximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		For each fuel type listed, pr	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Potential Emissions		
РРН	TPY	
0.4	0.11	
Por	tential Emissions	
PPH	TPY	
0.01	0.0	02
Pot	tential Emissions	
PPH	TPY	
0.4	0.11	
ial emissions (include da	ates of any stack tests conducte	ed, versions
	-	
	РРН 0.4 Ро РРН 0.01 Ро РРН 0.4	PPH TPY Image: Constraint of the second s

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DLFS	#2 Secondary Condenser Steamou	t	
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
-	lary Condenser Steamout -Vents thr		
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1989	N/A	
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL Maximum Annual Throughput: CLAIMED CONFIDENTIAL	Maximum Operating Sched 630 hr/yr	ule:
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes V No	If yes, is it? Direct Fired Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag	· · · · · · · · · · · · · · · · · · ·	For each fuel type listed, pr	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

tential Emissions TPY	
TPY	$\overline{1}$
—	
+	
-	+
1	+
+	+
+	+
0.11	+
tential Emissions	
TPY	······
0.	.002
1	
1	
1	
1	
+	
+	
tential Emissions	
TPY	
0.11	
1	
+	
ites of any stack tests conduc	ted, versions
	•••••
t	tential Emissions TPY O. O. Comparison TPY TPY TPY TPY TPY TPY TPY TP

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	ACHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
DLMS	Sparger	DOMC/HZZC	
Provide a description of the emission u	nit (type, method of operation, des	sign parameters, etc.):	
-	Sparger -Vents through DOME/HZZ		
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1963	N/A	
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL Maximum Annual Throughput: CLAIMED CONFIDENTIAL	Maximum Operating Sched 8760 hr/yr	ule:
Fuel Usage Data (fill out all applicable	e fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it? □ Direct Fired □ Indir	ect Fired
Maximum design heat input and/or ma	aximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag	· · · · · · · · · · · · · · · · · · ·	. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Potential Emissions		
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)	86	376.68	
Total Particulate Matter (TSP)	86	376.68	
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	519.8	2276.73	
Hazardous Air Pollutants	Potential Emissions		
	PPH	TPY	
Formaldehyde	20.00	87.60	0
Hexane	0.01	0.014	
Toluene	0.02	0.075	
Regulated Pollutants other than Criteria and HAP	Pote	ntial Emissions	
	PPH	TPY	
Particulate Matter (PM10)	86.0	376.68	
Total Particulate Matter (TSP)	86.0	376.68	
Volatile Organic Compounds (VOC)	519.8	2276.73	
1			
List the method(s) used to calculate the poten	tial emissions (include date	s of any stack tests conducted	versio

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTACHMENT E - Emission Unit Form			
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DLRS	Sparger	DOMC/HZZC	
Provide a description of the emission u	nit (type, method of operation, des	sign parameters, etc.):	
S	Sparger - Vents through DOME/HZZ	Έ	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1963	N/A	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons): CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schedu	ıle:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usage	· · · · · · · · · · · · · · · · · · ·	For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Criteria Pollutants	Poter	ntial Emissions	
	РРН ТРҮ		
Carbon Monoxide (CO)			Т
Nitrogen Oxides (NO _X)			+
Lead (Pb)			+
Particulate Matter (PM _{2.5})			1
Particulate Matter (PM ₁₀)	128.9	564.59	
Total Particulate Matter (TSP)	128.9	564.59	
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	779.2	3412.9	
Hazardous Air Pollutants	Poter	ntial Emissions	
	PPH	TPY	
Formaldehyde	30.00	131.40)0
Hexane	0.01	0.022	
Toluene	0.03	0.132	
Regulated Pollutants other than Criteria and HAP	Poter	ntial Emissions	
	PPH	TPY	
Particulate Matter (PM10)	128.9	564.59	
Total Particulate Matter (TSP)	128.9	564.59	
Volatile Organic Compounds (VOC)	779.2	3412.90	
		1	
List the method(s) used to calculate the potent		es of any stack tests conducte	d, version
of software used, source and dates of emission	factors, etc.).		

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DLXS	Sparger Lump Pot		
Provide a description of the emission u	Init (type, method of operation, de	sign parameters, etc.):	
S	parger Lump Pot -Vents through DL	XE	
		Redacted Copy -	_
		Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1963	N/A	
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL Fuel Usage Data (fill out all applicable	CLAIMED CONFIDENTIAL Maximum Annual Throughput: CLAIMED CONFIDENTIAL fields)	Maximum Operating Sched 219 hr/yr	ule:
Does this emission unit combust fuel?		If yes, is it?	
Does this emission unit compust ruct.	Yes Vo	•	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag	,	. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Pote	ntial Emissions	
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)	1	0.11	
Total Particulate Matter (TSP)	1	0.11	
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	5.6	0.61	
Hazardous Air Pollutants	Potential Emissions		-
	PPH	TPY	
Formaldehyde	0.22	0.0	24
Hexane	0.01	0.001	
Toluene	0.01	0.001	
Regulated Pollutants other than Criteria	Pote	ntial Emissions	
and HAP			
	PPH	TPY	
Particulate Matter (PM10)	1.0	0.11	
Total Particulate Matter (TSP)	1.0	0.11	
Volatile Organic Compounds (VOC)	5.6	0.61	
List the method(s) used to calculate the potent	ial emissions (include date	es of any stack tests conducte	ed, version
of software used, source and dates of emission		es of any stack tests conduct	,
or sole-nare used, source and dates of emission	14010109 00011		
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DMHS	Recycle AA Storage Tank	DOMC/HZZC	
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
Recycle A	A Storage Tank -Vents through DC	OME/HZZE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	•
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	2000	N/A	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons):		
	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schedu	ıle:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Tyes Ves No	If yes, is it?	
		Direct Fired 🔲 Indire	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag	· · · · · · · · · · · · · · · · · · ·	. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Pote	ntial Emissions	
	РРН	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)		+	
Lead (Pb)		+ + + + + + + + + + + + + + + + + + + +	
Particulate Matter (PM _{2.5})		+	
Particulate Matter (PM ₁₀)		+ +	
Total Particulate Matter (TSP)		+ +	
Sulfur Dioxide (SO ₂)		+ +	
Volatile Organic Compounds (VOC)	0.1	0.02	
Hazardous Air Pollutants		ntial Emissions	
	PPH	TPY	
Formaldehyde	0.01	0.005	
Hexane	0.01	0.001	
Toluene	0.01	0.002	
		1	
		1	
		1	
		1	
		1	
		1	
Regulated Pollutants other than Criteria and HAP	Pote	ntial Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	0.1	0.02	
		1	
List the method(s) used to calculate the potent	tial emissions (include dat	es of any stack tests conducted, version	ns
of software used, source and dates of emission		-	
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ΑΤΤΑ	CHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DMIS	Refined AA Tank		
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
R	Refined AA Tank -Vents through DM	11E	
		Redacted Copy -	_
		Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1958	N/A	
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL Maximum Annual Throughput: CLAIMED CONFIDENTIAL	Maximum Operating Schedu 8760 hr/yr	ule:
Fuel Usage Data (fill out all applicable		-	
Does this emission unit combust fuel?	Yes Vo		ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag	· · · · · · · · · · · · · · · · · · ·	. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	° •		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Po	otential Emissions	
PPH	TPY	
0.3	1.25	
Po	otential Emissions	<u> </u>
PPH	TPY	
Pe	otential Emissions	
PPH	TPY	
0.3	1.25	
- 1iariaa (inaluda d	- to a conducted	
	lates of any stack tests conducted,	versions
	0.3 P PPH PPH PPH 0.3	0.3 1.25 Potential Emissions PPH TPY O.3 1.25 Potential Emissions PPH TPY O.3 1.25

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTACHMENT E - Emission Unit Form			
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DMLS	Refiner Distillation Column	DMLC	
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
Refine	r Distillation Column -Vents through	n DMLE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1989	N/A	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons):		
	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schedu	ıle:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	fields)	•	
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Potential Emissions		
	РРН	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	201.8	883.63	
Hazardous Air Pollutants	Po	tential Emissions	
	PPH	TPY	
Regulated Pollutants other than Criteria and HAP	Ро	tential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	201.8	883.63	
List the method(s) used to calculate the potent of software used, source and dates of emission		ates of any stack tests conducted,	versions
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTACHMENT E - Emission Unit Form			
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DMMS	Reagent Purification Column	DOMC/HZZC	
Provide a description of the emission u	I nit (type, method of operation, de	sign parameters, etc.):	
Reagent Pu	rification Column -Vents through D	OME/HZZE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1989	N/A	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons): CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schedu	ıle:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	fields)	•	
Does this emission unit combust fuel?	TYes Vo	If yes, is it?	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usage		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Pote	ntial Emissions	
РРН	TPY	
	1	
	1	
	1	1
	1	1
	1	1
	+	
	+	
803.5	3519.33	1
Pote	ential Emissions	
PPH	TPY	
7.30	31.9	974
0.01	0.036	
0.01	0.044	
Pote	ntial Emissions	
PPH	TPY	
803.5	3519.33	
tial emissions (include dat	es of any stack tests conduc	ted, versions
n factors, etc.).		
	PPH 803.5 Pote PPH 7.30 0.01 0.01 0.01 Pote PPH 803.5 Pote	803.5 3519.33 Potential Emissions PPH TPY 7.30 31. 0.01 0.036 0.01 0.044 Image: Constraint of the second

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DMQS	Polymer Conveyor Vent	DOMC/HZZC	
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
-	Conveyor Vent - Vents through DO		
		Redacted Copy -	
		Claim of Confidenti	ality
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	Mid 1980s	N/A	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons): CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schedu	ıle:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
		· ·	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag). For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Ро	tential Emissions	
PPH	TPY	
		1
		1
		1
		1
		1
		1
1.5	6.57	1
Ро	tential Emissions	
PPH	TPY	
0.33	1.42	20
Ро	tential Emissions	
PPH	TPY	
1.5	6.57	
	ates of any stack tests conducte	d, versions
actors, etc.).		
	1.5 Pc PPH 0.33 Pc PPH 1.5	Image: constraint of the second decision of the second decis

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DMRS	Polymer Conveyor Vent	DOMC/HZZC	
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
Polymer	Conveyor Vent -Vents through DO	ME/HZZE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	Mid 1980s	N/A	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons):		
	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schedu	ıle:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Pot	tential Emissions	
	РРН	TPY	
Carbon Monoxide (CO)		1	Т
Nitrogen Oxides (NO _X)		1	1
Lead (Pb)		1	1
Particulate Matter (PM _{2.5})		1	1
Particulate Matter (PM ₁₀)		1	1
Total Particulate Matter (TSP)			+
Sulfur Dioxide (SO ₂)			+
Volatile Organic Compounds (VOC)	0.6	2.63	1
Hazardous Air Pollutants	Potential Emissions		
	PPH	TPY	
Formaldehyde	0.14	0.61	14
Regulated Pollutants other than Criteria	Pot	tential Emissions	
and HAP		•	
	PPH	TPY	
Volatile Organic Compounds (VOC)	0.6	2.63	
· · · · · · · · · · · · · · · · · · ·			
Tist the method (a) used to coloulate the notant	l amiasiona (includo do	ton of any stack tosts conducts	
List the method(s) used to calculate the potenti of software used, source and dates of emission		tes of any stack tests conducte	a, versions
of software used, source and dates of emission	factors, etc.).		
Engineering Estimate			
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATT	ACHMENT E - Emission Un	iit Form	
Emission Unit Description			
Emission unit ID number: DMUS	Emission unit name:	List any control devices asso with this emission unit:	ciated
DMUS	Vaporizer Boilout		
Provide a description of the emission			
T.	Vaporizer Boilout -Vents through DN	ЛUE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	j
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL Fuel Usage Data (fill out all applicabl	CLAIMED CONFIDENTIAL Maximum Annual Throughput: CLAIMED CONFIDENTIAL le fields)	Maximum Operating Sched 24 hr/yr	ule:
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
		• •	ect Fired
Maximum design heat input and/or m	aximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A	Ą	N/A	
List the primary fuel type(s) and if ap maximum hourly and annual fuel usa). For each fuel type listed, pr	ovide the
Describe each fuel expected to be used	· ·		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A
		+	<u> </u>

Pc	otential Emissions	
РРН	TPY	
		1
		1
		1
		1
		1
	+	
0.1	0.36	†
Pc	otential Emissions	J
PPH	TPY	
Po	tential Emissions	
PPH	TPY	
0.1	0.36	
ial emissions (include d	ates of any stack tests conducted	versions
factors, etc.).		,
	PPH 0.1 P PPH P PPH P P P P P P P P I	0.1 0.36 Potential Emissions PPH TPY Image: Construct of the second se

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
DMVS	Vaporizer Boilout		
Provide a description of the emission u			
V	aporizer Boilout -Vents through DN	AVE	
		Redacted Copy Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL Maximum Annual Throughput: CLAIMED CONFIDENTIAL	Maximum Operating Sched 24 hr/yr	ule:
<i>Fuel Usage Data</i> (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it? Direct Fired India	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag). For each fuel type listed, pr	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data				
Criteria Pollutants	Criteria Pollutants Potential Emissi		sions	
	PPH	TPY		
Carbon Monoxide (CO)				
Nitrogen Oxides (NO _X)				
Lead (Pb)				
Particulate Matter (PM _{2.5})				
Particulate Matter (PM ₁₀)				
Total Particulate Matter (TSP)				
Sulfur Dioxide (SO ₂)				
Volatile Organic Compounds (VOC)	0.1	0.36		
Hazardous Air Pollutants	F	Potential Emissions		
	PPH	TPY		
Regulated Pollutants other than Criteria and HAP	P	Potential Emissions		
	PPH	TPY		
Volatile Organic Compounds (VOC)	0.1	0.36		
List the method(s) used to calculate the potent	ial amissions (include	dates of any stack tests conductor	. vorsions	
of software used, source and dates of emission		uales of any stack lests conducted	i, versions	
Engineering Estimate				
Engineering Estimate				

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DMXS	IRS Solvent Mix Tank	DOMC/HZZC	
Provide a description of the emission u	nit (type method of operation de	sign parameters atc.).	
r rovide a description of the emission of	0 -Vents through DOME/HZZE	sign parameters, etc.).	
		Redacted Copy -	
		Claim of Confidenti	ality
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1995	6/17/1905	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons):	-	
	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schedu	ıle:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
<i>Fuel Usage Data</i> (fill out all applicable	fields)		
Does this emission unit combust fuel?	🗌 Yes 🔽 No	If yes, is it?	
		Direct Fired Indire	ect Fired
Maximum design heat input and/or ma	aximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Pote	ential Emissions	
	РРН	TPY	
Carbon Monoxide (CO)		1	
Nitrogen Oxides (NO _X)		1	
Lead (Pb)		+	1
Particulate Matter (PM _{2.5})		+	
Particulate Matter (PM ₁₀)		+	1
Total Particulate Matter (TSP)		+	1
Sulfur Dioxide (SO ₂)		+	
Volatile Organic Compounds (VOC)	0.6	2.63	
Hazardous Air Pollutants	Potential Emissions		
	PPH	TPY	
Hexane	0.01	0.0	04
Toluene	0.01	0.004	
Regulated Pollutants other than Criteria and HAP	Pote	ential Emissions	
	РРН	TPY	
Volatile Organic Compounds (VOC)	0.6	2.63	
<u> </u>			
<u> </u>		+	
		+	
List the method(s) used to calculate the potent	ial emissions (include da	tes of any stack tests conduct	ed versions
of software used, source and dates of emission		tes of any stack tests conduct	.u, versions
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DMYS	IRS Divert to CFB	DOMC/HZZC	
Provide a description of the emission u IRS D	ivert to CFB -Vents through DOME		
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1995	6/17/1905	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons):		
	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schedu	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
		Direct Fired Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag	· · · · · · · · · · · · · · · · · · ·	. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Pote	ntial Emissions	
	РРН	TPY	
Carbon Monoxide (CO)		1	
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	3843.4	16834.1	
Hazardous Air Pollutants	Pote	ntial Emissions	
	PPH	TPY	
Formaldehyde	3120.00	13665.60	0
Hexane	1.60	7.008	
Toluene	1.40	6.132	
Regulated Pollutants other than Criteria and HAP	Pote	ntial Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	3843.4	16834.10	
List the method(s) used to calculate the poter of software used, source and dates of emissio		es of any stack tests conducted	l, versions
of software used, source and dates of emission	11 Iactors, cu.,.		
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DNCS	Sparger Lump Pot		
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
S	parger Lump Pot -Vents through DN	ICE	
		Padastad Conv	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1981	N/A	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons):		
	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
<i>Fuel Usage Data</i> (fill out all applicable	fields)		
Does this emission unit combust fuel?	Ves Vo	If yes, is it?	
		Direct Fired Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag	,	. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Poter	ntial Emissions	
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)	1.6	6.87	
Fotal Particulate Matter (TSP)	1.6	6.87	
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	9.5	41.5	
Hazardous Air Pollutants	Potential Emissions		
	PPH	TPY	
Formaldehyde	0.37	1.5	93
Hexane	0.01	0.001	
Toluene	0.01	0.002	
Regulated Pollutants other than Criteria and HAP	Poter	ntial Emissions	
	PPH	TPY	
Particulate Matter (PM10)	1.6	6.87	
Fotal Particulate Matter (TSP)	1.6	6.87	
Volatile Organic Compounds (VOC)	9.5	41.50	
List the method(s) used to calculate the potent	ial amissions (include date	a of any stack tasts cond	d voncio-
list the method(s) used to calculate the potent of software used, source and dates of emission		es of any stack tests conducte	ea, version

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	ACHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
DOCS	VRS - Oil Scrubber Bypass	DOMC/HZZC	
Provide a description of the emission u	Init (type, method of operation, de	sign parameters, etc.):	
VRS - Oi	l Scrubber Bypass -Vents through D	OME/HZZE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1995	N/A	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons):		
	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
<i>Fuel Usage Data</i> (fill out all applicable	e fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	ect Fired
Maximum design heat input and/or ma	aximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Pote	ntial Emissions	
РРН	TPY	
	1	
	1	
	+	
	+	┼───
2236.2	9794.56	
		<u> </u>
PPH	TPY	
1.10	4.818	}
1.10	4.818	
5.70	24.966	
	1	
	1	
	1	
	1	
	1	
	1	
Poter	ntial Emissions	
PPH	TPY	
2236.2	9794.56	
	1	
	+	
tial amissions (include dat	an of any stock tests conducted	vorcions
i factors, etc.).	25 OI ally Stack tests conducted	, 101 510115
	PPH 2236.2 POTE PPH 1.10 1.10 5.70 Potes PPH 2236.2 Potes PPH 2236.2	2236.2 9794.56 Potential Emissions PPH TPY 1.10 4.818 1.10 4.818 5.70 24.966 Potential Emissions Potential Emissions Potential Emissions Potential Emissions Image: state of any stack tests conducted at the state of at the state of any stack tests conducted at the state of any stack tests conducted at the state of at the st

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DODS	VRS Bypass	DOMC/HZZC	
Provide a description of the emission u	l nit (type, method of operation, des	sign parameters, etc.):	
- VF	RS Bypass -Vents through DOME/H	ZZE	
		Padacted Conv	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1995	N/A	
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL Maximum Annual Throughput: CLAIMED CONFIDENTIAL	Maximum Operating Schedu 8760 hr/yr	ıle:
<i>Fuel Usage Data</i> (fill out all applicable	fields)		
Does this emission unit combust fuel?		If yes, is it?	
Does this emission unit compust fuer.	Yes Vo	•	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Pote	ntial Emissions	
PPH	ТРҮ	
		1
3145.5	13777.29	
Pote	ntial Emissions	
PPH	TPY	
173.60	760.36	8
1.20	5.256	
7.40	32.412	
Poter	ntial Emissions	
PPH	TPY	
3145.5	13777.29	
	es of any stack tests conducted	l, versions
i factors, etc.).		
	PPH 3145.5 Pote PPH 173.60 1.20 7.40	3145.5 13777.29 Potential Emissions PPH TPY 173.60 760.36 1.20 5.256 7.40 32.412 Potential Emissions PPH TPY 13777.29 10 Potential Emissions 10 Potential Emissions 10 POtential Emissions 112 Image: Potential Emissions 112 Image: Potential Emissions 113777.29 Image: Potential Emissions 113777.29 Image: Potential Emissions (include dates of any stack tests conducted by the stack test conducted by the stack

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DOGS	VRS Steam Stripper Distillate Decanter	DOMC/HZZC	
Provide a description of the emission u	nit (type, method of operation, des	sign parameters, etc.):	
VRS Steam Strip	oper Distillate Decanter -Vents throu	igh DOME/HZZE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1972	6/10/1905	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons): CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schedu	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	fields)	•	
Does this emission unit combust fuel?	Yes Vo	If yes, is it? Direct Fired Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Poter	ntial Emissions	
PPH	TPY	
	1	Т
	1	+
	+	+
	1	+
	+	+
	+	+
	+	+
1.7	7.34	+
PPH	TPY	
0.01	0.00	01
0.01	0.009	
0.01	0.009	
	1	
	1	
	1	
	1	
	1	
	1	
Poter	ntial Emissions	
PPH	TPY	
1.7	7.34	
	1	
tial emissions (include date	es of any stack tests conducte	d, versions
n factors, etc.).		
	s of any stack tests conducte	d, versio
	PPH 1.7 Poter PPH 0.01 0.01 0.01 0.01 0.01 Poter PPH 1.7 Poter PPH 1.7	Image: constraint of the second se

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number: DOHS	Emission unit name: Oil Storage Tank	List any control devices asso with this emission unit:	ciated
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
C	il Storage Tank -Vents through DO	HE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1988	6/10/1905	
Maximum Hourly Throughput:	CLAIMED CONFIDENTIAL Maximum Annual Throughput:	Maximum Operating Schedu	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
<i>Fuel Usage Data</i> (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes V No	If yes, is it?	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Pote	ential Emissions	
·	РРН	TPY	
Carbon Monoxide (CO)			\neg
Nitrogen Oxides (NO _X)		1	1
Lead (Pb)		+	+
Particulate Matter (PM _{2.5})		+	+
Particulate Matter (PM ₁₀)		+	
Total Particulate Matter (TSP)		+	
Sulfur Dioxide (SO ₂)		+	
Volatile Organic Compounds (VOC)	0.5	2.19	
Hazardous Air Pollutants		ential Emissions	
	PPH	TPY	
Formaldehyde	0.01	0.0	018
Hexane	0.01	0.002	
Toluene	0.01	0.003	
		1	
		1	
		1	
		1	
Regulated Pollutants other than Criteria and HAP	Pote	ential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	0.5	2.19	
		1	
List the method(s) used to calculate the potent	tial emissions (include dat	es of any stack tests conduc	ted. versions
of software used, source and dates of emission		10 01 mill 00000 00000 00000	icu, ,

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

AT	TACHMENT E - Emission Un	iit Form	
Emission Unit Description			
Emission unit ID number: DOJS	Emission unit name: Emergency Divert from Knock-	List any control devices asso with this emission unit:	ociated
	Out Pot		
-	on unit (type, method of operation, de	-	
Emerger	ncy Divert from Knock-Out Pot -Vents	through DOJE	
		Redacted Copy	_
		Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1995	N/A	
Design Capacity (examples: furnace			
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched	ule:
Fuel Usage Data (fill out all applica	able fields)		
Does this emission unit combust fue	el? 🔽 Yes 🔽 No	If yes, is it?	
		🗖 Direct Fired 🛛 India	rect Fired
Maximum design heat input and/or	maximum horsepower rating:	Type and Btu/hr rating of b	urners:
1	N/A	N/A	
List the primary fuel type(s) and if maximum hourly and annual fuel u	applicable, the secondary fuel type(s) sage for each.). For each fuel type listed, pr	ovide the
Describe each fuel expected to be us	sed during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A
			<u> </u>

Emissions Data			
Criteria Pollutants		Potential Emissions	
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			1
Particulate Matter (PM ₁₀)			-
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			-
Volatile Organic Compounds (VOC)			1
Hazardous Air Pollutants		Potential Emissions	
	PPH	TPY	
Regulated Pollutants other than Criteria and HAP		Potential Emissions	
	PPH	TPY	
List the method(s) used to calculate the potent		e dates of any stack tests conduc	cted, versions
of software used, source and dates of emission	factors, etc.).		
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATT	ACHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DOMS	CFB Liquid VOCs	DOMC	
Provide a description of the emission v	unit (type, method of operation, de	sign parameters, etc.):	
C	CFB Liquid VOCs -Vents through DC	OME	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
Process Combustion Corporation	Custom	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	2001	N/A	
Design Capacity (examples: furnaces Maximum Hourly Throughput:	CLAIMED CONFIDENTIAL Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicabl	e fields)		
Does this emission unit combust fuel?	✓ Yes	If yes, is it?	ect Fired
Maximum design heat input and/or m	aximum horsepower rating:	Type and Btu/hr rating of b	urners:
CLAIMED CON	IFIDENTIAL	CLAIMED CONFIDEN	TIAL
List the primary fuel type(s) and if ap maximum hourly and annual fuel usa N/A		. For each fuel type listed, pr	ovide the
Describe each fuel expected to be used	<u> </u>		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
Comparable Fuel	0.018	0.01	5,800-
			1

Criteria Pollutants	Potential Emissions		
	PPH	TPY	
Carbon Monoxide (CO)	4.4	19.1	
Nitrogen Oxides (NO _X)	12.1	52.92	
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)	0.9	3.82	
Fotal Particulate Matter (TSP)	0.8	3.42	
Sulfur Dioxide (SO ₂)	0.5	1.93	
Volatile Organic Compounds (VOC)	17.7	77.44	
Hazardous Air Pollutants	Poter	ntial Emissions	
	PPH	TPY	
Regulated Pollutants other than Criteria and HAP	Poter	ntial Emissions	
	PPH	TPY	
Carbon Monoxide (CO)	4.4	19.10	
Nitrogen Oxides (NOX)	12.1	52.92	
Sulfur Dioxide (SO2)	0.5	1.93	
Particulate Matter (PM10)	0.9	3.82	
List the method(s) used to calculate the potent	tial emissions (include date	es of any stack tests conducted. v	ersion

Engineering Estimate

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G	This source combines the sources GBQ, GBRS, GBSS, and
	GBTS.

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DONS	"B" Organic Waste Feed Tank	DOMC/HZZC	
Provide a description of the emission ur	iit (type, method of operation, de	sign parameters, etc.):	
"B" Organic	Waste Feed Tank -Vents through I	DOME/HZZE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	2001	N/A	
Design Capacity (examples: furnaces - t	cons/hr, tanks - gallons): CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schedu	ıle:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	ect Fired
Maximum design heat input and/or max	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if appl maximum hourly and annual fuel usage		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used o	luring the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Criteria Pollutants	Potential Emissions		
	РРН	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	3.7	2.41	
Hazardous Air Pollutants	Poter	tial Emissions	
	PPH	TPY	
Benzene	0.01	0.00)1
Formaldehyde	0.05	0.022	
Hexane	0.03	0.014	
Methanol	0.15	0.092	
Toluene	0.02	0.009	
Regulated Pollutants other than Criteria and HAP	Poter	tial Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	3.7	2.41	
List the method(s) used to calculate the potent of software used, source and dates of emission		s of any stack tests conducte	d, versioi
of software used, source and dates of emission	factors, etc.).		

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTACHMENT E - Emission Unit Form			
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DOOS	"A" Organic Waste Feed Tank	DOMC/HZZC	
Provide a description of the emission u	Init (type, method of operation, des	sign parameters, etc.):	
"A" Organic	Waste Feed Tank -Vents through I	DOME/HZZE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1988	6/10/1905	
Design Capacity (examples: furnaces -	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schedu	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
		🗖 Direct Fired 🛛 🗖 Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usage		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used o	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Criteria Pollutants	Poter	Potential Emissions	
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	23.4	102.5	
Hazardous Air Pollutants	Poter	ntial Emissions	
	PPH	TPY	
Benzene	0.01	0.00)5
Formaldehyde	0.32	1.376	
Hexane	0.14	0.605	
Methanol	0.92	3.995	
Toluene	0.11	0.452	
Regulated Pollutants other than Criteria and HAP	Poter	ntial Emissions	
	РРН	TPY	
Volatile Organic Compounds (VOC)	23.4	102.50	
List the method(s) used to calculate the poter of software used, source and dates of emissio		es of any stack tests conducte	d, versio

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Uni	t Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DOPS	"A" Aqueous Waste Water Tank	DOMC/HZZC	
Provide a description of the emission u	nit (type_method of operation_des	ion narameters, etc.).	
-	Waste Water Tank -Vents through		
		Redacted Copy -	-
		Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1963	N/A	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons): CLAIMED CONFIDENTIAL		
Martineau II. and a Thursday base 4	-	Martinen Oranatina Calad	-1
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schedu	ine:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
			ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Poter	ntial Emissions	
	PPH	ТРҮ	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)		1 1	
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	11.6	1.86	
Hazardous Air Pollutants		ntial Emissions	
I	PPH	TPY	
Formaldehyde	0.10	0.014	
Hexane	0.01	0.002	
Methanol	3.07	0.491	
Toluene	0.42	0.066	
		1	
		1	
		1	
Regulated Pollutants other than Criteria and HAP	Poter	ntial Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	11.6	1.86	
List the method(s) used to calculate the potent	tial emissions (include date	es of any stack tests conducted,	versions
of software used, source and dates of emission	factors, etc.).		
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DOQS	Aqueous Wastewater Decanter	DOMC/HZZC	
Provide a description of the emission u	nit (type, method of operation, des	sign parameters, etc.):	
Aqueous Wa	astewater Decanter -Vents through I	DOME/HZZE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	2001	N/A	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons): CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it? □ Direct Fired □ Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usage		For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Pote	ential Emissions	
РРН	TPY	
	1	1
	1	1
		1
	1	
	+	
		+
23.2	101.62	-
РРН	TPY	· · · · · · · · · · · · · · · · · · ·
0.20	0.8	863
0.02	0.066	
6.17	27.008	
0.84	3.662	
Pote	ential Emissions	
PPH	TPY	
23.2	101.62	
tial emissions (include dat	tes of any stack tests conduct	ted, versions
ı factors, etc.).		
	PPH 23.2 Pote PPH 0.20 0.02 6.17 0.84 Pote PPH 23.2 tial emissions (include dat	23.2 101.62 Potential Emissions PPH TPY 0.20 0.066 6.17 27.008 0.84 3.662 Potential Emissions PPH TPY 0.20 0.066 6.17 27.008 0.84 3.662 Potential Emissions Potential Emissions Potential Emissions TPY 23.2 101.62 Image: Potential Emissions Image: Potential Emissions Potential Emissions Image: Potential Emissions Image: Potential Emis

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTACHMENT E - Emission Unit Form			
Emission Unit Description			
Emission unit ID number: DOUS	Emission unit name: Tank Farm Sump	List any control devices associated with this emission unit:	
Provide a description of the emission unit (type, method of operation, design parameters, etc.): Tank Farm Sump -Vents through DOUE			
		Redacted Copy - Claim of Confidentiality	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Design Capacity (examples: furnaces - tons/hr, tanks - gallons): CLAIMED CONFIDENTIAL			
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schedule:	
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
<i>Fuel Usage Data</i> (fill out all applicable	fields)		
Does this emission unit combust fuel?	Ves Vo	If yes, is it?	
		Direct Fired Indirect Fired	
Maximum design heat input and/or maximum horsepower rating:		Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag	· · · · · · · · · · · · · · · · · · ·	. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

nissions Data			
iteria Pollutants	Pote	ential Emissions	
├──	РРН	TPY	
rbon Monoxide (CO)			\neg
trogen Oxides (NO _X)		1	1
ad (Pb)			1
rticulate Matter (PM _{2.5})			1
rticulate Matter (PM ₁₀)			
tal Particulate Matter (TSP)			+
lfur Dioxide (SO ₂)			
olatile Organic Compounds (VOC)	0.5	1.84	
Hazardous Air Pollutants		ential Emissions	
	PPH	TPY	
rmaldehyde	0.01	0.0	001
exane	0.01	0.003	
luene	0.01	0.027	
egulated Pollutants other than Criteria and HAP	Pote	ential Emissions	
	PPH	TPY	
olatile Organic Compounds (VOC)	0.5	1.84	
<u> </u>			
st the method(s) used to calculate the notent	ial emissions (include dat	tes of any stack tests conduct	ted versions
software used, source and dates of emission		tes of any stack tests contact.	
and HAP blatile Organic Compounds (VOC) st the method(s) used to calculate the potential	PPH 0.5 ial emissions (include dat	TPY 1.84	ted,

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

AT	FACHMENT E - Emission	Unit Form	
Emission Unit Description			
Emission unit ID number: DOVS	Emission unit name: Furnace/Flare Emergency Div	List any control devices asso with this emission unit: /ert	ociated
Provide a description of the emission	1 unit (type, method of operation,	, design parameters, etc.):	
Furnad	ce/Flare Emergency Divert -Vents t	hrough DOVE	
		Redacted Copy Claim of Confident	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1995	N/A	
Maximum Hourly Throughput:	Maximum Annual Throughp	ut: Maximum Operating Sched	ule:
<i>Fuel Usage Data</i> (fill out all applica	ble fields)		
Does this emission unit combust fuel	? Ves Vo	If yes, is it? □ Direct Fired □ India	rect Fired
Maximum design heat input and/or	maximum horsepower rating:	Type and Btu/hr rating of b	urners:
Ν	//A	N/A	
List the primary fuel type(s) and if a maximum hourly and annual fuel us		e(s). For each fuel type listed, pr	ovide the
Describe each fuel expected to be us	ed during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Potential Emissions		
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)			
Hazardous Air Pollutants		Potential Emissions	
	PPH	TPY	
Regulated Pollutants other than Criteria and HAP	Potential Emissions		
	PPH	TPY	
List the method(s) used to calculate the potent		dates of any stack tests conducte	d, versions
of software used, source and dates of emission	iactors, etc.).		
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	iit Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
DOWS	Stillhouse Sump		
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
S	tillhouse Sump -Vents through DO	WE	
		Redacted Copy Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Design Capacity (examples: furnaces - Maximum Hourly Throughput:	CLAIMED CONFIDENTIAL Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Ves Vo	If yes, is it?	rect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag). For each fuel type listed, pr	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A
		-	

Emissions Data			
Criteria Pollutants	Pote	ntial Emissions	
 	РРН	TPY	
Carbon Monoxide (CO)		1	
Nitrogen Oxides (NO _X)		1	1
Lead (Pb)		1	1
Particulate Matter (PM _{2.5})		1	1
Particulate Matter (PM ₁₀)		1	1
Total Particulate Matter (TSP)		+	+
Sulfur Dioxide (SO ₂)		+	+
Volatile Organic Compounds (VOC)	7.8	34.17	+
Hazardous Air Pollutants	Pote	ntial Emissions	
	PPH	TPY	
Formaldehyde	0.02	0.057	
Hexane	0.01	0.040	
Toluene	0.01	0.044	
		1	
Regulated Pollutants other than Criteria and HAP	Pote	ntial Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	7.8	34.17	
		1	
		1	
List the method(s) used to calculate the potent	tial emissions (include dat	es of any stack tests conduct	ted, versions
of software used, source and dates of emission		-	

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
DOYS	Poly Building West Sump		
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
Poly E	Building West Sump -Vents through	DOYE	
		Redacted Copy -	_
		Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons):		
	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	fields)	-	
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
		Direct Fired Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usage	· · · · · · · · · · · · · · · · · · ·	. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used (luring the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Poter	ntial Emissions	
	РРН	TPY	
Carbon Monoxide (CO)		1	
Nitrogen Oxides (NO _X)		+	1
Lead (Pb)		+	
Particulate Matter (PM _{2.5})		+	
Particulate Matter (PM ₁₀)		+	
Total Particulate Matter (TSP)		+	+
Sulfur Dioxide (SO ₂)		+	+
Volatile Organic Compounds (VOC)	9.7	42.4	+
Hazardous Air Pollutants	Pote	ntial Emissions	
	PPH	TPY	
Formaldehyde	0.01	0.0	014
Hexane	0.02	0.060	
Methanol	0.16	0.681	
Toluene	0.10	0.412	
		1	
		1	
		1	
Regulated Pollutants other than Criteria and HAP	Poter	ntial Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	9.7	42.40	
		1	
		+	
<u>†</u>		1	
List the method(s) used to calculate the poten	tial emissions (include date	es of any stack tests conduct	ed, versions
of software used, source and dates of emission			,
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	ACHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DOZS	B209 Sump		
Provide a description of the emission u	nit (type, method of operation, des	sign parameters, etc.):	
	B209 Sump -Vents through DOZE		
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Design Capacity (examples: furnaces - Maximum Hourly Throughput:	CLAIMED CONFIDENTIAL Maximum Annual Throughput:	Maximum Operating Schedu	ıle:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL		
		8760 hr/yr	
<i>Fuel Usage Data</i> (fill out all applicable	e fields)		
Does this emission unit combust fuel?	Yes V No	If yes, is it?	ect Fired
Maximum design heat input and/or ma	aximum horsenower rating.	Type and Btu/hr rating of b	
Wuximum ucsign neut input unu/or in	axinum norsepower runng.	Type and Dealin Facing of St	
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag	· · · · · · · · · · · · · · · · · · ·	. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A
		1	

Emissions Data			
Criteria Pollutants	Pote	ential Emissions	
	РРН	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)		1	1
Lead (Pb)		1	+
Particulate Matter (PM _{2.5})		1	+
Particulate Matter (PM ₁₀)		1	+
Total Particulate Matter (TSP)		+	+
Sulfur Dioxide (SO ₂)		+	1
Volatile Organic Compounds (VOC)	8.4	36.8	1
Hazardous Air Pollutants	Pote	ential Emissions	
	PPH	TPY	
Formaldehyde	0.02	0.	088
Hexane	0.01	0.040	
Toluene	0.01	0.044	
		1	
		1	
		1	
Regulated Pollutants other than Criteria and HAP	Potes	ential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	8.4	36.80	
		1	
		+	
List the method(s) used to calculate the potent	tial emissions (include dat	es of any stack tests conduc	ted, versions
of software used, source and dates of emission		5 of any stack tests terms	ltu, + 01 0-0

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATT	ACHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
DPAS	B206 Sump		
Provide a description of the emission u			
	B206 Sump -Vents through DPAE	2	
		Redacted Copy	-
		Claim of Confidenti	ality
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons):		
	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
<i>Fuel Usage Data</i> (fill out all applicable	e fields)	-	
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
		🗖 Direct Fired 🛛 🗖 Indir	ect Fired
Maximum design heat input and/or m	aximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A	х	N/A	
List the primary fuel type(s) and if app		. For each fuel type listed, pr	ovide the
maximum hourly and annual fuel usag	ge for each.		
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A
		ļ	

Po	otential Emissions	
PPH	TPY	
	1	Т
	1	1
	+	1
	+	1
	+	+
	+	+
	+	+
5.2	22.78	+
PPH	TPY	
0.01	0.0	144
0.03	0.132	
0.04	0.176	
	1	
	1	
	1	
	1	
	+	
Pot	tential Emissions	
PPH	TPY	J
5.2	22.78	
	1	
		J
emissions (include da	ates of any stack tests conduct	ed. versions
ctors, etc.).	tes of any such tests conduct.	, verbione
	PPH 0.01 0.03 0.04 Pot PPH 5.2 emissions (include da	Potential Emissions PPH TPY 0.01 0.0 0.03 0.132 0.04 0.176 0.04 0.176 0.04 0.176 0.05 0.04 0.04 0.176 0.05 0.04 0.04 0.176 0.05 0.00 0.04 0.176 0.05 0.00 0.04 0.176 0.05 0.00 0.06 0.0176 0.076 0.0176 0.09 0.0176 0.0176 0.0176 0.0176 0.0176 0.0176 0.0176 0.0176 0.0176 0.0176 0.0176 0.0176 0.0176 0.0176 0.0176 0.0176 0.0176 0.0176 0.0176 0.0176 0.0176 0.0176 0.0176 0.0176 0.0176 0.0176

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ΑΤΤΑ	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DPHS	Capper	DOMC/HZZC	
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
	Capper -Vents through DOME/HZZ	ΣE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Maximum Hourly Throughput:	CLAIMED CONFIDENTIAL Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
<i>Fuel Usage Data</i> (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
		·	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usage		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Criteria Pollutants	Pollutants Potential Emissions		
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			†
Particulate Matter (PM ₁₀)	116.9	512.03	1
Total Particulate Matter (TSP)	116.9	512.03	\vdash
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	7189.9	31491.77	
Hazardous Air Pollutants	Potential Emissions		
	PPH	TPY	
Formaldehyde	1632.40	7149.912	2
Hexane	6.60	28.908	
Toluene	69.20	303.096	
Regulated Pollutants other than Criteria and HAP	Poter	ntial Emissions	
	PPH	TPY	
Particulate Matter (PM10)	116.9	512.03	
Total Particulate Matter (TSP)	116.9	512.03	
Volatile Organic Compounds (VOC)	7189.9	31491.77	
List the method(s) used to calculate the poten of software used, source and dates of emission		es of any stack tests conducted	, versior

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTACHMENT E - Emission Unit Form				
Emission Unit Description				
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated	
DPLS	Capper	DOMC/HZZC		
Provide a description of the emission u	nit (type, method of operation, des	sign parameters, etc.):		
	Capper -Vents through DOME/HZZ	E		
		Redacted Copy - Claim of Confidenti		
Manufacturer:	Model number:	Serial number:		
N/A	N/A	N/A		
Construction date:	Installation date:	Modification date(s):		
N/A	1981	N/A		
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons): CLAIMED CONFIDENTIAL			
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schedu	ule:	
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr		
Fuel Usage Data (fill out all applicable	fields)			
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	ect Fired	
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:	
N/A		N/A		
List the primary fuel type(s) and if applicable, the secondary fuel type(s). For each fuel type listed, provide the maximum hourly and annual fuel usage for each.				
Describe each fuel expected to be used during the term of the permit.				
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value	
N/A	N/A	N/A	N/A	

Criteria Pollutants	Potential Emissions		
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)	173.8	761.25	
Total Particulate Matter (TSP)	173.8	761.25	
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	7704.9	33747.47	
Hazardous Air Pollutants	Poter	ntial Emissions	
	PPH	TPY	
Formaldehyde	457.40	2003.412	2
Hexane	0.24	1.052	
Toluene	7.10	31.098	
Regulated Pollutants other than Criteria and HAP	Poter	ntial Emissions	
	PPH	TPY	
Particulate Matter (PM10)	173.8	761.25	
Total Particulate Matter (TSP)	173.8	761.25	
Volatile Organic Compounds (VOC)	7704.9	33747.47	
List the method(s) used to calculate the poten	tial amissions (includa data	e of any stack tests conducted	versio

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTACHMENT E - Emission Unit Form				
Emission Unit Description				
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated	
DPMS	TEHOF Reactor	DOMC/HZZC		
Provide a description of the emission u	I unit (type, method of operation, de	sign parameters, etc.):		
-	IOF Reactor -Vents through DOME/			
		De de sée d'Os ses		
		Redacted Copy - Claim of Confidenti		
			anty	
Manufacturer: N/A	Model number: N/A	Serial number: N/A		
1 1/2 1	14/73	1 1/2 X		
Construction date:	Installation date:	Modification date(s):		
N/A	2001	N/A		
Design Capacity (examples: furnaces -	tons/hr. tanks - gallons).			
Design Capacity (examples, furnaces -	tons/m, tanks - ganons).			
	CLAIMED CONFIDENTIAL			
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schedu	ıle:	
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr		
<i>Fuel Usage Data</i> (fill out all applicable	e fields)			
Does this emission unit combust fuel?	Yes Vo	If yes, is it?		
		•	ect Fired	
Maximum design heat input and/or ma	aximum horsepower rating:	Type and Btu/hr rating of b	urners:	
N/A		N/A		
List the primary fuel type(s) and if app	plicable, the secondary fuel type(s)	. For each fuel type listed, pro	ovide the	
maximum hourly and annual fuel usag	e for each.			
Describe each fuel expected to be used during the term of the permit.				
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value	
N/A	N/A	N/A	N/A	

Pot	tential Emissions	
PPH	TPY	
	-	
	-	
0.5	1.89	
		<u> </u>
PPH	TPY	
0.30	1.314	1
Pot	cential Emissions	
DDLI	TDV	
0.5	1.07	
	tes of any stack tests conducted	l, versions
actors, etc.).		
	PPH 0.5 Pot PPH 0.30 PPH 0.5 Pot PPH 0.30	PPH TPY Image: Constraint of the second s

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Ur	nit Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
DPOS	ColumnTails Analyzer		
Provide a description of the emission u	nit (type, method of operation, do	esign parameters, etc.):	
Colu	umnTails Analyzer -Vents through	DPOE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1983	N/A	
Design Capacity (examples: furnaces - Maximum Hourly Throughput:	CLAIMED CONFIDENTIAL Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Tyes Ves No	If yes, is it?	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag). For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Pote	ential Emissions	
	PPH	TPY	
Carbon Monoxide (CO)		1	Τ
Nitrogen Oxides (NO _X)		+	1
Lead (Pb)		+	+
Particulate Matter (PM _{2.5})		+	1
Particulate Matter (PM ₁₀)		+	1
Total Particulate Matter (TSP)		+	+
Sulfur Dioxide (SO ₂)		+	1
Volatile Organic Compounds (VOC)	0.1	0.01	1
Hazardous Air Pollutants	Pot	ential Emissions	
	PPH	TPY	
Formaldehyde	0.01	0.0	01
Methanol	0.01	0.001	
		1	
		1	
		+	
		<u> </u>	
Regulated Pollutants other than Criteria and HAP	Pote	ential Emissions	
l —	PPH	TPY	
Volatile Organic Compounds (VOC)	0.1	0.01	
		1	
1		+	
List the method(s) used to calculate the potent	ial emissions (include dat	tes of any stack tests conduct	ed, versions
of software used, source and dates of emission		·	,
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTACHMENT E - Emission Unit Form				
Emission Unit Description				
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated	
DPPS	TEHOF Reactor Decanter	DOMC/HZZC		
Provide a description of the emission u	l nit (type, method of operation, de	sign parameters, etc.):		
TEHOF R	Reactor Decanter -Vents through DC	OME/HZZE		
		Redacted Copy - Claim of Confidenti		
Manufacturer:	Model number:	Serial number:		
N/A	N/A	N/A		
Construction date:	Installation date:	Modification date(s):		
N/A	1981	N/A		
Design Capacity (examples: furnaces -	CLAIMED CONFIDENTIAL			
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schedu	ıle:	
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr		
Fuel Usage Data (fill out all applicable	fields)			
Does this emission unit combust fuel?	Yes Vo	If yes, is it?		
		Direct Fired Indir	ect Fired	
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:	
N/A		N/A		
List the primary fuel type(s) and if applicable, the secondary fuel type(s). For each fuel type listed, provide the maximum hourly and annual fuel usage for each.				
Describe each fuel expected to be used	during the term of the permit.			
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value	
N/A	N/A	N/A	N/A	

Emissions Data			
Criteria Pollutants	P	Potential Emissions	
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			l
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	0.9	3.59	
Hazardous Air Pollutants	P	Potential Emissions	
	PPH	TPY	
Regulated Pollutants other than Criteria and HAP	Р	Potential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	0.9	3.59	
List the method(s) used to calculate the potent	tial emissions (include (dates of any stack tests conducted,	versions
of software used, source and dates of emission			
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
GAAS	#1 Poly Reactor	DOMC/HZZC	
Provide a description of the emission u	nit (type method of operation, dee	sign narameters etc.).	
-	oly Reactor -Vents through DOME/		
		Redacted Copy -	-
		Claim of Confidenti	ality
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1988	6/10/1905	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons):		
	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	fields)	•	
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
		🗖 Direct Fired 🛛 🗖 Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag	· · · · · · · · · · · · · · · · · · ·	. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Pote	ntial Emissions	
├──	РРН	TPY	
Carbon Monoxide (CO)		1	
Nitrogen Oxides (NO _X)		+	
Lead (Pb)		+	
Particulate Matter (PM _{2.5})		+	
Particulate Matter (PM ₁₀)		+ +	
Total Particulate Matter (TSP)		+ +	
Sulfur Dioxide (SO ₂)		+ +	
Volatile Organic Compounds (VOC)	100332.4	439455.92	
Hazardous Air Pollutants		ntial Emissions	
	PPH	TPY	
Formaldehyde	586.10	2567.118	
Hexane	49.90	218.562	
Toluene	249.40	1092.372	
		1	
		1	
		1	—
		1	
Regulated Pollutants other than Criteria and HAP	Poter	ntial Emissions	
	РРН	TPY	
Volatile Organic Compounds (VOC)	100332.4	439455.92	
		1	
1		+	
List the method(s) used to calculate the poten	tial emissions (include date	es of any stack tests conducted, versig	ons
of software used, source and dates of emission)
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTACHMENT E - Emission Unit Form				
Emission Unit Description				
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated	
GABS	#2 Poly Reactor	DOMC/HZZC		
Provide a description of the emission u	nit (type, method of operation, des	sign parameters, etc.):		
#2 P	oly Reactor -Vents through DOME/	HZZE		
		Redacted Copy - Claim of Confidenti		
Manufacturer:	Model number:	Serial number:		
N/A	N/A	N/A		
Construction date:	Installation date:	Modification date(s):		
N/A	1988	6/10/1905		
Maximum Hourly Throughput:	CLAIMED CONFIDENTIAL Maximum Annual Throughput:	Maximum Operating Sched	ule:	
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr		
<i>Fuel Usage Data</i> (fill out all applicable	fields)			
Does this emission unit combust fuel?	Yes Vo	If yes, is it?		
		Direct Fired Indir	ect Fired	
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:	
N/A		N/A		
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pro	ovide the	
Describe each fuel expected to be used during the term of the permit.				
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value	
N/A	N/A	N/A	N/A	

1
67.118
52
72
.12
lucted, versions
uttu, versions

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
GACS	#3 Poly Reactor	DOMC/HZZC	
Provide a description of the emission u	nit (type method of operation dee	sign narameters, etc.).	
-	bly Reactor -Vents through DOME/		
		Redacted Copy -	
		Claim of Confidenti	ality
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1988	6/10/1905	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons):		
	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schedu	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
		🗖 Direct Fired 🔲 Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usage	· · · · · · · · · · · · · · · · · · ·	. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Poter	ntial Emissions	
	РРН	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	100332.4	439455.92	
Hazardous Air Pollutants	Potential Emissions		
	PPH	TPY	
Formaldehyde	586.10	2567.118	
Hexane	49.90	218.562	
Toluene	249.40	1092.372	
Regulated Pollutants other than Criteria and HAP	Poter	ntial Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	100332.4	439455.92	
List the method(s) used to calculate the poten of software used, source and dates of emission		es of any stack tests conducted, versio	ns
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
GADS	Reactor F/C Steamout	DHTC1/DHTC2	
Provide a description of the emission u	nit (type, method of operation, des	sign parameters, etc.):	
-	ctor F/C Steamout -Vents through D		
		Redacted Copy -	_
		Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons):		
	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	1560 hr/yr	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
		Direct Fired Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

ssions Data			
ria Pollutants	Pote	ential Emissions	
├──	PPH	TPY	
on Monoxide (CO)		1	
ogen Oxides (NO _X)		1	1
(Pb)		1	1
culate Matter (PM _{2.5})		1	1
culate Matter (PM ₁₀)		+	1
l Particulate Matter (TSP)		+	1
ur Dioxide (SO ₂)		+	1
tile Organic Compounds (VOC)	230.3	179.63	1
Hazardous Air Pollutants	Potential Emissions		
	PPH	TPY	
naldehyde	102.02	79.57	16
ine	0.07	0.051	
ene	0.33	0.251	
ulated Pollutants other than Criteria and HAP	Pote	ential Emissions	
	PPH	TPY	
tile Organic Compounds (VOC)	230.3	179.63	
		+	
the method(s) used to calculate the potential	emissions (include dat	tes of any stack tests conducte	d. versions
ftware used, source and dates of emission fac			u, ,
neering Estimate			
the method(s) used to calculate the potential ftware used, source and dates of emission fac	230.3 I emissions (include dat	179.63	

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
GAES	Reactor F/C Steamout	DHTC1/DHTC2	
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
Rea	ctor F/C Steamout -Vents through I	DOXE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL Fuel Usage Data (fill out all applicable	CLAIMED CONFIDENTIAL Maximum Annual Throughput: CLAIMED CONFIDENTIAL fields)	Maximum Operating Sched 1560 hr/yr	ıle:
i we chage Daw (in out an appreade			
Does this emission unit combust fuel?	Yes V No	If yes, is it? Direct Fired Indirect	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usage). For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Pote	ential Emissions	
	PPH	TPY	
Carbon Monoxide (CO)		1	Τ
Nitrogen Oxides (NO _X)		+	1
Lead (Pb)		1	1
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			+
Total Particulate Matter (TSP)		1	1
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	230.3	179.63	
Hazardous Air Pollutants	Potential Emissions		_
	PPH	TPY	
Formaldehyde	102.02	79.5	76
Hexane	0.07	0.051	
Toluene	0.33	0.251	
Regulated Pollutants other than Criteria and HAP	Pote	ential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	230.3	179.63	
List the method(s) used to calculate the poter		es of any stack tests conducte	ed, versions
of software used, source and dates of emissio	n factors, etc.).		
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ΑΤΤΑ	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
GAFS	Reactor F/C Steamout	DHTC1/DHTC2	
Provide a description of the emission u	ait (type method of operation des	rian noromotors, ata):	
_	ctor F/C Steamout -Vents through D		
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Maximum Hourly Throughput:	CLAIMED CONFIDENTIAL Maximum Annual Throughput:	Maximum Operating Schedu	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	1560 hr/yr	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
			ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Poter	ntial Emissions	
PPH	TPY	
		+
	+	+
	1	+
	1	-
	+	+
	+	+
230.3	179.63	+
PPH	TPY	
102.02	79.	576
0.07	0.051	
0.33	0.251	
	1	
Poter	ntial Emissions	
PPH	TPY	
230.3	179.63	
	1	
tial amissions (include date	as of any stack tests conduc	ted versions
	25 OF any Stack itsis conduc	ieu, vei sions
· ·		
	PPH 230.3 Pote PPH 102.02 0.07 0.33	230.3 179.63 Potential Emissions PPH TPY 102.02 79. 0.07 0.051 0.33 0.251 0 0.33 Potential Emissions Potential Emissions PH TPY 102.02 79. 0.07 0.051 0.33 0.251 Output Description Potential Emissions TPY 230.3 179.63 Image: Physical emissions TPY 230.3 179.63 Image: Physical emissions TPY Potential Emissions T

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
GANS	Intermediate Polymer Silo (Solvent)	DOMC/HZZC	
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
Intermediate P	olymer Silo (Solvent) -Vents throug	gh DOME/HZZE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL Maximum Annual Throughput: CLAIMED CONFIDENTIAL	Maximum Operating Sched 8760 hr/yr	ule:
<i>Fuel Usage Data</i> (fill out all applicable	fields)		
Does this emission unit combust fuel?	TYes Ves No	If yes, is it? □ Direct Fired □ Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag). For each fuel type listed, pr	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Poter	ntial Emissions	
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)		1 1	
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	2471.6	10825.61	
Hazardous Air Pollutants	Potential Emissions		
	PPH	TPY	
Hexane	2.60	11.388	
Toluene	3.70	16.206	
		1	
1			
l			
<u> </u>	-	+	
Regulated Pollutants other than Criteria and HAP	Poter	ntial Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	2471.6	10825.61	
		1	
1			
		+	
List the method(s) used to calculate the potent of software used, source and dates of emission		es of any stack tests conducted,	versions
of software used, source and dates of emission	lactors, etc.).		
Engineering Estimate			
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
GAOS	Intermediate Polymer Silo (Formaldehyde)	DOMC/HZZC	
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
Intermediate Poly	mer Silo (Formaldehyde) -Vents thr	ough DOME/HZZE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Design Capacity (examples: furnaces - Maximum Hourly Throughput:	CLAIMED CONFIDENTIAL Maximum Annual Throughput:	Maximum Operating Sched	ıle•
iviaxinani iloariy Throughput.	Maximum Annuar Annoughput.	Waxinani Operating Scieu	inc.
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it? □ Direct Fired □ Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag	· · · · · · · · · · · · · · · · · · ·	. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Potential Emissions		
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)			
Hazardous Air Pollutants	Р	otential Emissions	
	PPH	TPY	
Formaldehyde	29.20	127.896	
Regulated Pollutants other than Criteria	Р	Potential Emissions	
and HAP			
	PPH	ТРҮ	
List the method(s) used to calculate the potent		lates of any stack tests conducted, version	ıs
of software used, source and dates of emission	tactors, etc.).		
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form		
Emission Unit Description				
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated	
GAZS	Intermediate Polymer Silo (Solvent)	DOMC/HZZC		
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):		
Intermediate P	olymer Silo (Solvent) -Vents throug	h DOME/HZZE		
		Redacted Copy - Claim of Confidenti		
Manufacturer:	Model number:	Serial number:		
N/A	N/A	N/A		
Construction date:	Installation date:	Modification date(s):		
N/A	1959	N/A		
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons):			
	CLAIMED CONFIDENTIAL			
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schedu	ule:	
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr		
Fuel Usage Data (fill out all applicable	fields)			
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	ect Fired	
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:	
N/A	N/A N/A			
List the primary fuel type(s) and if app maximum hourly and annual fuel usag	· · · · · · · · · · · · · · · · · · ·	For each fuel type listed, pro	ovide the	
Describe each fuel expected to be used	during the term of the permit.			
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value	
N/A	N/A	N/A	N/A	

Emissions Data			
Criteria Pollutants	Poter	ntial Emissions	
	РРН	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)		1 1	
Lead (Pb)		1 1	
Particulate Matter (PM _{2.5})		1 1	
Particulate Matter (PM ₁₀)		1 1	
Total Particulate Matter (TSP)		1	
Sulfur Dioxide (SO ₂)		1 1	
Volatile Organic Compounds (VOC)	2471.6	10825.61	
Hazardous Air Pollutants		ntial Emissions	
	PPH	TPY	
Hexane	2.60	11.388	
Toluene	3.70	16.206	
		1	
		1	
		1	
·		+	
		+	
Regulated Pollutants other than Criteria and HAP	Poter	ntial Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	2471.6	10825.61	
		1	
l			
		+	
List the method(s) used to calculate the potent of software used, source and dates of emission		es of any stack tests conducted, v	versions
of software used, source and dates of emission	1actors, etc.).		
Engineering Estimate			
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
GBAS	Intermediate Polymer Silo (Formaldehyde)	DOMC/HZZC	
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
Intermediate Poly	mer Silo (Formaldehyde) -Vents thr	ough DOME/HZZE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1995	N/A	
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL <i>Fuel Usage Data</i> (fill out all applicable	CLAIMED CONFIDENTIAL Maximum Annual Throughput: CLAIMED CONFIDENTIAL fields)	Maximum Operating Schedu 8760 hr/yr	ule:
Does this emission unit combust fuel?	Ves Vo	If yes, is it? Direct Fired Indirect	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Potential Emissions		
	РРН	ТРҮ	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)			
Hazardous Air Pollutants	I	Potential Emissions	
	PPH	TPY	
Formaldehyde	29.20	127.896	
Regulated Pollutants other than Criteria and HAP	Ι	Potential Emissions	
	PPH	TPY	
List the method(s) used to calculate the potent	ial emissions (include	dates of any stack tests conducted, versions	
of software used, source and dates of emission	factors, etc.).		
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
GBUS	LBR Distillation Column	DOMC/HZZC	
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
LBR Dis	tillation Column -Vents through DO	ME/HZZE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1988	N/A	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons):		
	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
		Direct Fired Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A	N/A N/A		
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Po	tential Emissions	
	PPH	TPY	
Carbon Monoxide (CO)			Т
Nitrogen Oxides (NO _X)		1	1
Lead (Pb)		1	1
Particulate Matter (PM _{2.5})		1	1
Particulate Matter (PM ₁₀)		1	1
Total Particulate Matter (TSP)			1
Sulfur Dioxide (SO ₂)		1	1
Volatile Organic Compounds (VOC)	9.7	42.45	1
Hazardous Air Pollutants	Por	tential Emissions	
	PPH	TPY	
Formaldehyde	0.01	0.00)5
Methanol	9.69	42.443	
		1	
		1	
		1	
Regulated Pollutants other than Criteria and HAP	Pot	tential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	9.7	42.45	
List the method(s) used to calculate the potent	ial emissions (include da	ates of any stack tests conducte	d versions
of software used, source and dates of emission		itto of any stack tosts comments	u,
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTACHMENT E - Emission Unit Form				
Emission Unit Description				
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated	
GZZS	Capper Maintenance Jet	GZZC		
Provide a description of the emission u	l nit (type, method of operation, de	sign parameters, etc.):		
Capp	per Maintenance Jet -Vents through	GZZE		
		Redacted Copy - Claim of Confidenti		
Manufacturer:	Model number:	Serial number:		
N/A	N/A	N/A		
Construction date:	Installation date:	Modification date(s):		
N/A	1986	N/A		
Design Capacity (examples: furnaces - Maximum Hourly Throughput:	CLAIMED CONFIDENTIAL Maximum Annual Throughput:	Maximum Operating Schedu	10.	
Waximum Houriy Throughput.	Maximum Annuar Enroughput.	Waxmum Operating Scheut		
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	36 hr/yr		
Fuel Usage Data (fill out all applicable	fields)			
Does this emission unit combust fuel?	Yes Vo	If yes, is it? Direct Fired Indirect	ect Fired	
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:	
N/A	N/A N/A			
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pro	ovide the	
Describe each fuel expected to be used	during the term of the permit.			
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value	
N/A	N/A	N/A	N/A	

Nitrogen Oxides (NO _X) Image: matrix of the second s	Emissions Data			
Carbon Monoxide (CO) Image: Constraint of the second s	Criteria Pollutants	Potential Emissions		
Carbon Monoxide (CO) Image: Constraint of the sector of the		PPH	TPY	
Lead (Pb) Image: constraint of the sector of t	Carbon Monoxide (CO)			
Particulate Matter (PM2,5)Image: constraint of the sector of	Nitrogen Oxides (NO _X)		1	+
Particulate Matter (PM10) Image: mathematical state stat	Lead (Pb)		1	+
Total Particulate Matter (TSP) Image: mathematical state	Particulate Matter (PM _{2.5})		1	+
Sulfur Dioxide (SO ₂) Image: Compounds (VOC) 8515.2 153.28 Hazardous Air Pollutants PPH TPY PPH 0.16 0.003 Formaldehyde 0.16 0.003 Hazardous Air Pollutants 0.16 0.003 Formaldehyde 0.16 0.003 Hazardous Air Pollutants 0.16 0.003 Formaldehyde 0.16 0.003 Hazane 0.16 0.003 Toluene 7.37 0.133 Toluene Image: Compound (Compound (Compo	Particulate Matter (PM ₁₀)			+
Volatile Organic Compounds (VOC) 8515.2 153.28 Hazardous Air PollutantsPotentiustinsionsPPHTPYFormaldehyde1227.54Hexane0.160.160.003Toluene7.370.1330.133Toluene7.370.1330.133Image: State St	Total Particulate Matter (TSP)			
Hazardous Air Pollutants Potential Emissions PPH TPY Formaldehyde 1227.54 22.096 Hexane 0.16 0.003 Toluene 7.37 0.133 Toluene 1 1 Toluene 1 1 Toluene 1 1 Toluene 1 1 1 Toluene 1 1 1 Toluene 1 1 1 1 Toluene 1	Sulfur Dioxide (SO ₂)			+
Hazardous Air Pollutants Potential Emissions PPH TPY Formaldehyde 0.16 0.003 Hexane 0.16 0.003 Toluene 7.37 0.133 Toluene 7.37 0.133 Image: Comparison of the term of	Volatile Organic Compounds (VOC)	8515.2	153.28	+
Formaldehyde1227.5422.096Hexane0.160.003Toluene7.370.133Toluene7.370.133Toluene11Toluene <t< td=""><td>Hazardous Air Pollutants</td><td></td><td></td><td></td></t<>	Hazardous Air Pollutants			
Hexane 0.16 0.003 Toluene 7.37 0.133 Image: Constraint of the state of the s	 	PPH	TPY	
Toluene7.370.133Toluene7.370.133Image: Composition of the structure of	Formaldehyde	1227.54	22.096	
Image: constraint of the sector of the sec	Hexane	0.16	0.003	
and HAP PPH TPY Volatile Organic Compounds (VOC) 8515.2 153.28 Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (V	Toluene	7.37	0.133	
and HAP PPH TPY Volatile Organic Compounds (VOC) 8515.2 153.28 Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (V				
and HAP PPH TPY Volatile Organic Compounds (VOC) 8515.2 153.28 Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (V				
and HAP PPH TPY Volatile Organic Compounds (VOC) 8515.2 153.28 Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Imag				
and HAP PPH TPY Volatile Organic Compounds (VOC) 8515.2 153.28 Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Image: Compound (VOC) Imag			1	
and HAP PPH TPY Volatile Organic Compounds (VOC) 8515.2 153.28 Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (V				
and HAP PPH TPY Volatile Organic Compounds (VOC) 8515.2 153.28 Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (VOC) Image: Compounds (V			1	
Volatile Organic Compounds (VOC) 8515.2 153.28 List the method(s) used to calculate the potential emissions (include dates of any stack tests conducted, versions)		Poten	ntial Emissions	
List the method(s) used to calculate the potential emissions (include dates of any stack tests conducted, versions		PPH	TPY	
	Volatile Organic Compounds (VOC)	8515.2	153.28	
of software used, source and dates of emission factors, etc.).	List the method(s) used to calculate the poten	tial emissions (include date	s of any stack tests conduct	ed, versions
	of software used, source and dates of emission	1 factors, etc.).		
Engineering Estimate	Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATT	ACHMENT E - Emission U	Jnit Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
GZZ	Maintenance Jet	DEM-OH	
Provide a description of the emission	unit (type, method of operation, o	design parameters, etc.):	
Mai	ntenance Jet Scrubber - Vents throu	gh DEME	
		Redacted Copy Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
Custom Built	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	2011	N/A	
Maximum Hourly Throughput:	Maximum Annual Throughpu	t: Maximum Operating Sched	ule:
<i>Fuel Usage Data</i> (fill out all applicab	le fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	ect Fired
Maximum design heat input and/or n	naximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/2	A	N/A	
List the primary fuel type(s) and if ap maximum hourly and annual fuel usa		(s). For each fuel type listed, pr	ovide the
Describe each fuel expected to be use	d during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Criteria Pollutants	Poten	tial Emissions	
F	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	491	8.84	
Hazardous Air Pollutants	Poten	tial Emissions	
	PPH	TPY	
Formaldehyde	58.22	1.048	
Hexane	1.51	0.028	
Гoluene	0.61	0.011	
Regulated Pollutants other than Criteria and HAP	Poten	tial Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	491.0	8.84	

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

Measure the scrubber liquor flowrate while the maintenance jet scrubber is in operation. N/A N/A N/A

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
HAAS	Virtual Source for Condenser Mass Balance	DOMC/HZZC	
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
Virtual Source for	Condenser Mass Balance -Vents the	rough DOME/HZZE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons):		
	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
<i>Fuel Usage Data</i> (fill out all applicable	fields)		
Does this emission unit combust fuel?	Tyes Ves No	If yes, is it?	
		🗖 Direct Fired 🛛 🗖 Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pr	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A
		1	

,
-
18
lucted, versions
lucted, versions

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
HABS	Virtual Source for Condenser Mass Balance	DOMC/HZZC	
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
Virtual Source for	Condenser Mass Balance -Vents the	rough DOME/HZZE	
		Redacted Copy -	
		Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1981	N/A	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons): CLAIMED CONFIDENTIAL		
			_
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schedu	ıle:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
		Direct Fired Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	atants Potential Emissions		
	РРН	ТРҮ	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	1861.7	8154.25	
Hazardous Air Pollutants	Ро	tential Emissions	
	PPH	TPY	
Regulated Pollutants other than Criteria and HAP	Ро	tential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	1861.7	8154.25	
List the method(s) used to calculate the poten of software used, source and dates of emission		ates of any stack tests conducted, v	ersions
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
HADS	Virtual Source for Condenser Mass Balance	DOMC/HZZC	
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
Virtual Source for	Condenser Mass Balance -Vents the	rough DOME/HZZE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Design Capacity (examples: furnaces - Maximum Hourly Throughput:	CLAIMED CONFIDENTIAL Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
<i>Fuel Usage Data</i> (fill out all applicable	fields)		
Does this emission unit combust fuel?	TYes Vo	If yes, is it? Direct Fired Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		For each fuel type listed, pr	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A
		<u> </u>	

Emissions Data			
Criteria Pollutants	Pollutants Potential Emissions		
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	24877.5	108963.45	
Hazardous Air Pollutants	Potential Emissions		
	PPH	TPY	
Hexane	12.40	54.31	2
Toluene	62.20	272.436	
Regulated Pollutants other than Criteria and HAP	Pote	ential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	24877.5	108963.45	
List the method(s) used to calculate the poter	ntial emissions (include dat	es of any stack tests conducte	d, versions
of software used, source and dates of emissio		•	
Engineering Estimate			
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
HAFS	Virtual Source for Condenser Mass Balance	DOMC/HZZC	
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
Virtual Source for	Condenser Mass Balance -Vents the	rough DOME/HZZE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL Maximum Annual Throughput: CLAIMED CONFIDENTIAL	Maximum Operating Sched 8760 hr/yr	ule:
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usage		. For each fuel type listed, pr	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Poter	Potential Emissions	
PPH	TPY	
	1	Т
	1	+
	1	1
	1	1
	+	+
	+	+
	+	+
24877.5	108963.45	+
	ntial Emissions	
PPH	TPY	
12.40	54.31	12
62.20	272.436	
]
	1	
	1	
	1	
Poter	ntial Emissions	
PPH	TPY	
24877.5	108963.45	
	-	
	es of any stack tests conducte	d, versions
	PPH 24877.5 Pote PPH 12.40 62.20 62.20 Pote Pote	PPH TPY Image: PPH Image: PPH 24877.5 108963.45 POtential Emissions PPY 12.40 54.31 62.20 272.436 Image: PPH TPY 12.40 108963.45 Image: PPH TPY 108963.45 108963.45 Image: PPH TPY 24877.5 108963.45 Image: PPH TPY 24877.5 108963.45

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
HAHS	Virtual Source for Condenser Mass Balance	DOMC/HZZC	
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
Virtual Source for	Condenser Mass Balance -Vents the	ough DOME/HZZE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	-
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons):		
	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
			ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usage		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Potential Emissions		
PPH	TPY	
24877.5	108963.45	
	ential Emissions	
PPH	TPY	
12.40	54.312	2
62.20	272.436	
Pote	ential Emissions	
PPH	TPY	
24877.5	108963.45	
tial emissions (include dat	tes of any stack tests conducted	, versions
	j	,
	PPH 24877.5 Pote PPH 12.40 62.20 Pote PPH 24877.5	PPH TPY Image: Constraint of the second s

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
HANS	"E" Tank Cleanout	DOMC/HZZC	
Provide a description of the emission u	nit (type method of operation de	ign parameters at a).	
-	ank Cleanout -Vents through DOME		
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	un of
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1980	N/A	
Design Capacity (examples: furnaces -	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schedu	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
<i>Fuel Usage Data</i> (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
		Direct Fired Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag	· · · · · · · · · · · · · · · · · · ·	. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Pot	tential Emissions	
PPH	TPY	
	1 1	
	1 1	
	1 1	
	- 	
	1 1	
7	30.66	
PPH	TPY	
2.00	8.760	
5.00	21.900	
	+	
Pot	tential Emissions	
PPH	TPY	
7.0	30.66	
tal amissions (include de	tee of any stack tasts conducted	vorcions
factors, etc.).	Ites of any stack tests conducting	VCI 510115
	PPH 7 Pot PPH 2.00 5.00 PPH 2.00 5.00	Image: second start sta

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ΑΤΤΑ	CHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number: HARS	Emission unit name: Recycle Storage Tank Cleanout	List any control devices asso with this emission unit:	ciated
Provide a description of the emission u	nit (type method of operation dee	sign narameters, etc.).	
-	Storage Tank Cleanout -Vents throu		
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1965	N/A	
Design Capacity (examples: furnaces -	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schedu	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	112.5 hr/yr	
<i>Fuel Usage Data</i> (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it? □ Direct Fired □ Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag	· · · · · · · · · · · · · · · · · · ·	For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Poter	ential Emissions TPY	
PPH	TPY	
	+	
	++	
10.7	0.61	
Pote	ential Emissions	
PPH	TPY	
0.01	0.001	
0.03	0.002	
0.23	0.013	
Poter	ntial Emissions	
PPH	TPY	
10.7	0.61	
	1	
	+	
•	- f ata ale tosta conducted v	iong
	es of any stack tests conducted, v	ersions
	Pote PPH 0.01 0.03 0.23 Pote PPH 10.7	Potential Emissions PPH TPY 0.01 0.001 0.03 0.002 0.23 0.013 Image: Construct of the second sec

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
HASS	Storage Tank Cleanout		
Provide a description of the emission u	l nit (type, method of operation, de	esign parameters, etc.):	
Stor	age Tank Cleanout -Vents through	DOUE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1965	N/A	
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL Maximum Annual Throughput: CLAIMED CONFIDENTIAL	Maximum Operating Sched	ule:
Fuel Usage Data (fill out all applicable		112.0 11, 91	
	,	_	
Does this emission unit combust fuel?	Ves V No	If yes, is it? Direct Fired Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag). For each fuel type listed, pr	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	eria Pollutants Potential Emissions		
. –	PPH	ТРҮ	
Carbon Monoxide (CO)		1	
Nitrogen Oxides (NO _X)		1	\neg
Lead (Pb)		+	
Particulate Matter (PM _{2.5})		+	
Particulate Matter (PM ₁₀)			\neg
Total Particulate Matter (TSP)			\neg
Sulfur Dioxide (SO ₂)			\dashv
Volatile Organic Compounds (VOC)	10.7	0.61	+
Hazardous Air Pollutants	Pote	ential Emissions	
	PPH	TPY	
Hexane	0.03	0.	.002
Toluene	0.09	0.006	
		1	
		1	
Regulated Pollutants other than Criteria and HAP	Pote	ential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	10.7	0.61	
		1	
1			
List the method(s) used to calculate the potent	ial amissions (include dat	tes of any stack tests conduc	ted versions
of software used, source and dates of emission		to of any stack resus conduct	ttu, ve 510115
of software used, source and dates of emission	factors, etc.).		
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ΑΤΤΑ	CHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number: HATS	Emission unit name: Column and Condenser Cleanout	List any control devices asso with this emission unit:	ciated
Provide a description of the emission u	nit (type method of operation dee	ign norometers atc.).	
-	nd Condenser Cleanout -Vents throu		
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Design Capacity (examples: furnaces -	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schedu	ıle:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	18 hr/yr	
<i>Fuel Usage Data</i> (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usage		For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Potential Emissions		
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)		1	1
Lead (Pb)		1	1
Particulate Matter (PM _{2.5})		1	1
Particulate Matter (PM ₁₀)		+	1
Total Particulate Matter (TSP)		+	+
Sulfur Dioxide (SO ₂)		+	1
Volatile Organic Compounds (VOC)	14.4	0.13	1
Hazardous Air Pollutants	Pote	ential Emissions	
	PPH	TPY	
Hexane	0.01	0.00)1
Toluene	0.32	0.003	
Regulated Pollutants other than Criteria and HAP	Pote	ential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	14.4	0.13	
List the method(s) used to calculate the potenti	ial emissions (include dat	tes of any stack tests conducte	d, versions
of software used, source and dates of emission	factors, etc.).		
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number: HAVS	Emission unit name: "A" Reagent Tank Truck Loading	List any control devices asso with this emission unit:	ociated
Provide a description of the emission u	nit (type, method of operation, des	sign parameters, etc.):	
"A" Reag	gent Tank Truck Loading -Vents thro	ough DFIE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1965	N/A	
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL Maximum Annual Throughput: CLAIMED CONFIDENTIAL	Maximum Operating Sched 14 hr/yr	ule:
<i>Fuel Usage Data</i> (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it? □ Direct Fired □ Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Y
Y
Y
0.001
)1
)1
Ŷ
5
ducted, versions
)5

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	ACHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number: HAWS	Emission unit name:	List any control devices asso with this emission unit:	ociated
	Alcohol Tank Truck Loading		
Provide a description of the emission u	init (type, method of operation, de	sign parameters, etc.):	
Alcoh	ol Tank Truck Loading -Vents throu	gh DFIE	
		Redacted Copy -	_
		Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	•
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1965	N/A	
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL Fuel Usage Data (fill out all applicable	CLAIMED CONFIDENTIAL Maximum Annual Throughput: CLAIMED CONFIDENTIAL e fields)	Maximum Operating Sched 14 hr/yr	ule:
	,	-	
Does this emission unit combust fuel?	TYes No		ect Fired
Maximum design heat input and/or ma	aximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A	L.	N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		For each fuel type listed, pr	ovide the
Describe each fuel expected to be used	6		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A
	<u> </u>	1	

Emissions Data			
Criteria Pollutants Potential Em		Potential Emissions	
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	0.1	0.01	
Hazardous Air Pollutants	F	Potential Emissions	
	PPH	TPY	
Regulated Pollutants other than Criteria and HAP	F	Potential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	0.1	0.01	
List the method(s) used to calculate the potent of software used, source and dates of emission		dates of any stack tests conducte	d, versions
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number: HAXS	Emission unit name: Formic Acid Truck Loading	List any control devices asso with this emission unit:	ociated
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
Formi	c Acid Truck Loading -Vents throug	gh DFIE	
		Redacted Copy Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1965	N/A	
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL Maximum Annual Throughput: CLAIMED CONFIDENTIAL	Maximum Operating Sched 14 hr/yr	ule:
<i>Fuel Usage Data</i> (fill out all applicable	neids)		
Does this emission unit combust fuel?	Yes V No	If yes, is it? Direct Fired Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pr	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A
			ļ

F	Potential Emissions		
PPH	TPY		
0.5	0.01		
	Potential Emissions		
PPH	TPY		
F	Potential Emissions		
PPH	TPY		
0.5	0.01		
		1	
	dates of any stack tests conducte	d, versions	
	РРН 0.5 F PPH PPH F PPH 0.5	PPH TPY Image: Constraint of the second s	

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	ACHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number: HAYS	Emission unit name: Solvent Truck Loading	List any control devices asso with this emission unit:	ciated
Provide a description of the emission u Sol	unit (type, method of operation, de		
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1965	N/A	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons): CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schedu	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	14 hr/yr	
<i>Fuel Usage Data</i> (fill out all applicable	e fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	ect Fired
Maximum design heat input and/or ma	aximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag). For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Potential Emissions		
PPH	TPY	
	1	
	1	
	1	
	1	
	1	
	+	
	+	
23.5	0.17	
PPH	TPY	
0.01	0.	001
0.30	0.003	
0.03	0.001	
	1	
	1	
	1	
	1	
Poter	ntial Emissions	
PPH	TPY	
23.5	0.17	
	1	
	1	
al emissions (include date	s of any stack tests conduc	ted. versions
	PPH 23.5 Poter PPH 0.01 0.30 0.03	PPH TPY Image: Constraint of the second s

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Uni	it Form	
Emission Unit Description			
Emission unit ID number: HAZS	Emission unit name: Hemiformal Solution Tank Truck Loading	List any control devices asso with this emission unit:	ciated
Provide a description of the emission u	nit (type, method of operation, des	sign parameters, etc.):	
-	Solution Tank Truck Loading -Vents		
		Redacted Copy Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1965	N/A	
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL Fuel Usage Data (fill out all applicable	CLAIMED CONFIDENTIAL Maximum Annual Throughput: CLAIMED CONFIDENTIAL fields)	Maximum Operating Sched 14 hr/yr	ule:
i act osuge Data (ini out un appreusie	inclus)		
Does this emission unit combust fuel?	TYes Vo	If yes, is it? Direct Fired Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pr	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A
			

Potential Emissions TPY	
ТРҮ	
0.04	
Potential Emissions	
TPY	
0	.001
Potential Emissions	
TPY	
0.04	
ide dates of any stack tests condu	tad varsions
fue dates of any stack tests conduc	cicu, vei sions
	Potential Emissions TPY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	ACHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
HBAS	Slurry Feed Tank	DOMC/HZZC	
D		· · · · · · · · · · · · · · · · · · ·	
Provide a description of the emission u	ry Feed Tank -Vents through DOME		
Siuri			
		Redacted Copy -	
		Claim of Confidenti	ality
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons):		
	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched	ıle:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
<i>Fuel Usage Data</i> (fill out all applicable	e fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	
		Direct Fired Indir	ect Fired
Maximum design heat input and/or ma	aximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app		. For each fuel type listed, pro	ovide the
maximum hourly and annual fuel usag	ge for each.		
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Pote	ential Emissions	
РРН	TPY	
	1	Τ
	1	1
	1	1
	1	1
	1	1
	1	+
	1	1
55.2	241.78	1
Potential Emissions		
PPH	TPY	
0.01)14
0.04	0.176	
	1	
	1	
	+	
	+	
	+	
	+	
Pote	ential Emissions	
PPH	TPY	
55.2	241.78	
	1	
	1	
	+	
tial amissions (include dat	tog of any stack tests conduct	od versions
factors, etc.).	CS UI any stack topos contact.	cu, versione
· ·		
	PPH 55.2 Pote PPH 0.01 0.04 PPH 0.01 Pote PPH 55.2	S5.2 241.78 S5.2 241.78 Potential Emissions PPH 0.01 0.0 0.04 0.176 0.04 0.176 0.04 0.176 0.05 0.04 0.04 0.176 0.05 0.04 0.06 0.04 0.076 0.176 0.08 0.176 0.09 0.176 0.01 0.00 0.04 0.176 0.05 0.176 0.06 0.176 0.07 0.01 0.08 0.176 0.09 0.176 0.01 0.176 0.01 0.176 0.02 0.176 0.03 0.176 0.04 0.176 0.05 0.176 0.06 0.176 0.07 0.176 0.08 0.176 0.09 0.176 0.01 0.176 0.01 0.176 0.01 0.176<

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ociated
HBCS	Isolation Change-Out Vent		
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
Isolat	ion Change-Out Vent -Vents throug	h DIEE	
		Redacted Copy -	-
		Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Design Capacity (examples: furnaces -	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schedu	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	31 hr/yr	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Tyes Ves No	If yes, is it?	
		Direct Fired Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Pote	ential Emissions	
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)		1	
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			1
Total Particulate Matter (TSP)			-
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	1.4	0.01	1
Hazardous Air Pollutants	Pote	ential Emissions	
	PPH	TPY	
Formaldehyde	0.01	0.0	01
		_	
Regulated Pollutants other than Criteria and HAP	Pote	ential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	1.4	0.01	
List the method (a) most to coloulate the notant		ter - f anne staalt tosta oondust	- 1
List the method(s) used to calculate the potent of software used, source and dates of emission		tes of any stack tests conducu	ed, versions
of software used, source and dates of emission	Tactors, etc.).		
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
HBJS	Sparger Condenser Wash	DOMC/HZZC	
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
Sparger C	Condenser Wash -Vents through DO	ME/HZZE	
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Design Capacity (examples: furnaces -	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Schedu	ıle:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	TYes Vo	If yes, is it?	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usage		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Potential Emissions		
	PPH	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)		+	
Lead (Pb)		+	
Particulate Matter (PM _{2.5})		+	
Particulate Matter (PM ₁₀)		+	
Total Particulate Matter (TSP)		+	
Sulfur Dioxide (SO ₂)		+	
Volatile Organic Compounds (VOC)	1575	6898.5	
Hazardous Air Pollutants		ntial Emissions	I
· · · · · · · · · · · · · · · · · · ·	PPH	TPY	
Formaldehyde	8.90	38.9	082
Hexane	0.01	0.022	
Toluene	0.01	0.036	
		1	
		1	
		1	
		1	
		1	
Regulated Pollutants other than Criteria and HAP	Poter	ntial Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	1575.0	6898.50	
		1	
		1	
List the method(s) used to calculate the poten	tial amissions (include date	or of any stock tasts conduct	ad varsions
of software used, source and dates of emission		28 OI any stack tests conduct	ea, versions
of software used, some et and autos of entrance.	(lactor by etc.).		
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
HBKS	Sparger Condenser Wash	DOMC/HZZC	
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
	0 -Vents through DOME/HZZE		
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1959	N/A	
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons):		
	CLAIMED CONFIDENTIAL		
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Pot	ential Emissions	
	PPH	TPY	
Carbon Monoxide (CO)		1	
Nitrogen Oxides (NO _X)		1	
Lead (Pb)		1	
Particulate Matter (PM _{2.5})		1	
Particulate Matter (PM ₁₀)		1	
Total Particulate Matter (TSP)		1	
Sulfur Dioxide (SO ₂)		+	
Volatile Organic Compounds (VOC)	1575	6898.5	
Hazardous Air Pollutants		ential Emissions	
	PPH	TPY	
Formaldehyde	8.90	38.9	82
Hexane	0.01	0.022	
Toluene	0.01	0.036	
Regulated Pollutants other than Criteria and HAP	Pote	ential Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	1575.0	6898.50	
List the method(s) used to calculate the poter of software used, source and dates of emissio		tes of any stack tests conducto	ed, versions
of software used, source and dates of emissio	n lactors, etc.).		
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form	
Emission Unit Description			
Emission unit ID number:	Emission unit name:	List any control devices asso with this emission unit:	ciated
HBLS	Isolation Change-Out Vent		
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):	
-	ion Change-Out Vent -Vents throug		
		Redacted Copy - Claim of Confidenti	
Manufacturer:	Model number:	Serial number:	
N/A	N/A	N/A	
Construction date:	Installation date:	Modification date(s):	
N/A	1995	N/A	
Maximum Hourly Throughput:	CLAIMED CONFIDENTIAL Maximum Annual Throughput:	Maximum Operating Sched	ule:
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	31 hr/yr	
Fuel Usage Data (fill out all applicable	fields)		
Does this emission unit combust fuel?	Yes Vo	If yes, is it? □ Direct Fired □ Indir	ect Fired
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:
N/A		N/A	
List the primary fuel type(s) and if app maximum hourly and annual fuel usag). For each fuel type listed, pro	ovide the
Describe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
N/A	N/A	N/A	N/A

Emissions Data			
Criteria Pollutants	Pot	ential Emissions	
. –	PPH	TPY	
Carbon Monoxide (CO)		1	
Nitrogen Oxides (NO _X)		+	1
Lead (Pb)		+	+
Particulate Matter (PM _{2.5})		+	+
Particulate Matter (PM ₁₀)		+	+
Total Particulate Matter (TSP)		+	+
Sulfur Dioxide (SO ₂)		+	+
Volatile Organic Compounds (VOC)	1.4	0.03	+
Hazardous Air Pollutants	Pot	ential Emissions	
	PPH	TPY	
Formaldehyde	0.01	0.0)01
		1	
		1	
		1	
		1	
Regulated Pollutants other than Criteria and HAP	Pote	ential Emissions	
· · · · · · · · · · · · · · · · · · ·	PPH	TPY	
Volatile Organic Compounds (VOC)	1.4	0.03	
		1	
		+	
List the method(s) used to calculate the potent	ial emissions (include da	tes of any stack tests conduct	ed. versions
of software used, source and dates of emission			
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	ACHMENT E - Emission Un	it Form			
Emission Unit Description					
Emission unit ID number:	Emission unit name:	List any control devices associated with this emission unit:			
HBMS	Isolation System Vent	DOMC/HZZC			
Provide a description of the emission u	nit (type method of operation de	sign noromotors ata):			
_	on System Vent -Vents through DON				
		Redacted Copy -	-		
		Claim of Confidenti	ality		
Manufacturer:	Model number:	Serial number:			
N/A	N/A	N/A			
Construction date:	Installation date:	Modification date(s):			
N/A	1995	N/A			
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons):	•			
	CLAIMED CONFIDENTIAL				
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched	ule:		
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr			
Fuel Usage Data (fill out all applicable	e fields)				
Does this emission unit combust fuel?	Yes Vo	If yes, is it?			
		Direct Fired Indir	ect Fired		
Maximum design heat input and/or ma	aximum horsepower rating:	Type and Btu/hr rating of b	urners:		
N/A		N/A			
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		For each fuel type listed, pro	ovide the		
Describe each fuel expected to be used	during the term of the permit.				
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value		
N/A	N/A	N/A	N/A		
	1				

Nitrogen Oxides (NO _X) Image: Composition of the second state of the second sta	TPY				
Carbon Monoxide (CO)Image: Constraint of the second se	1135.43 hissions				
Carbon Monoxide (CO)Image: Constraint of the second se	1135.43 hissions				
Lead (Pb)Image: Constraint of the second	hissions				
Particulate Matter (PM2.5) Particulate Matter (PM10) Particulate Matter (PM10) Total Particulate Matter (TSP) Sulfur Dioxide (SO2) 259.3 Volatile Organic Compounds (VOC) 259.3 Hazardous Air Pollutants Potential Em PPH 1.15	hissions				
Particulate Matter (PM10)Image: Composition of the second sec	hissions				
Total Particulate Matter (TSP) Image: Compound (TSP) Sulfur Dioxide (SO2) 259.3 Volatile Organic Compounds (VOC) 259.3 Hazardous Air Pollutants Potential Em PPH 1.15	hissions				
Sulfur Dioxide (SO ₂) 259.3 Volatile Organic Compounds (VOC) 259.3 Hazardous Air Pollutants Potential Em PPH 1.15	hissions				
Volatile Organic Compounds (VOC) 259.3 Hazardous Air Pollutants Potential Em PPH PPH Formaldehyde 1.15	hissions				
Hazardous Air Pollutants Potential Em Formaldehyde 1.15	hissions				
PPHFormaldehyde1.15					
Formaldehyde 1.15					
	TPY				
Hexane 1.49	5.037				
	6.527				
Toluene 0.19	0.833				
Regulated Pollutants other than Criteria Potential Em and HAP	Potential Emissions				
РРН	TPY				
Volatile Organic Compounds (VOC)259.3	1135.43				
List the method(s) used to calculate the potential emissions (include dates of any	y stack tests conducted, versio				
of software used, source and dates of emission factors, etc.).					
Engineering Estimate					

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Uni	it Form			
Emission Unit Description					
Emission unit ID number: HBYS	Emission unit name: CF Fuels Tank Truck Loading	List any control devices associated with this emission unit:			
Describe a description of the emission w	nit (type method of exercise des	ion nonomotore ata):			
Provide a description of the emission u CF Fuel	s Tank Truck Loading -Vents through				
		Redacted Copy - Claim of Confidenti			
Manufacturer:	Model number:	Serial number:			
N/A	N/A	N/A			
Construction date:	Installation date:	Modification date(s):			
N/A	1988	N/A			
Design Capacity (examples: furnaces - Maximum Hourly Throughput:	CLAIMED CONFIDENTIAL Maximum Annual Throughput:	Maximum Operating Schedu	ıle:		
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	18 hr/yr			
Fuel Usage Data (fill out all applicable	fields)				
Does this emission unit combust fuel?	Yes Vo	If yes, is it?	ect Fired		
Maximum design heat input and/or ma	vinum horconowor roting.	Type and Btu/hr rating of b			
Maximum design neat input and/or ma	xinium norsepower rating.	Type and Dtu/III Taung of D	ui iici 5.		
N/A		N/A			
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pro	ovide the		
Describe each fuel expected to be used	during the term of the permit.				
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value		
N/A	N/A	N/A	N/A		

Criteria Pollutants	Poter	ntial Emissions	
	РРН	TPY	
Carbon Monoxide (CO)			
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)	54.7	0.33	
Hazardous Air Pollutants	Poter	ntial Emissions	
	PPH	TPY	
Formaldehyde	0.70	0.0	005
Hexane	0.30	0.002	
Methanol	4.00	0.024	
Toluene	0.20	0.002	
Regulated Pollutants other than Criteria and HAP	Poter	ntial Emissions	
	PPH	TPY	
Volatile Organic Compounds (VOC)	54.7	0.33	
List the method(s) used to calculate the potent of software used, source and dates of emission		es of any stack tests conduct	ed, versior
Engineering Estimate			

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	CHMENT E - Emission Un	it Form		
Emission Unit Description				
Emission unit ID number:	Emission unit name:	List any control devices associated with this emission unit:		
HBZS	Tank Truck Loading from "A" Aqueous Tank			
Provide a description of the emission u	nit (type, method of operation, de	sign parameters, etc.):		
Tank Truck Loa	ading from "A" Aqueous Tank -Ven	ts through HBZE		
		Redacted Copy Claim of Confidenti		
Manufacturer:	Model number:	Serial number:		
N/A	N/A	N/A		
Construction date:	Installation date:	Modification date(s):		
N/A	1988	N/A		
Maximum Hourly Throughput: CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL Maximum Annual Throughput: CLAIMED CONFIDENTIAL	Maximum Operating Sched 50 hr/yr	ule:	
Fuel Usage Data (fill out all applicable	fields)			
Does this emission unit combust fuel?	Yes V No	If yes, is it?	ect Fired	
Maximum design heat input and/or ma	ximum horsepower rating:	Type and Btu/hr rating of b	urners:	
N/A		N/A		
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pr	ovide the	
Describe each fuel expected to be used	during the term of the permit.			
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value	
N/A	N/A	N/A	N/A	
		<u> </u>		

Poter	ntial Emissions			
PPH	TPY			
	1			
	1	1		
	+			
	1	-		
	+			
	+			
	+			
17.6	0.44			
Potential Emissions				
PPH	TPY			
0.20	0.	005		
0.01	0.001			
4.60	0.115			
0.60	0.015			
	1			
	1			
	1			
	1			
	1			
Poter	ntial Emissions			
PPH	TPY			
17.6	0.44			
	1			
ial emissions (include date	s of any stack tests conduc	ted, versions		
	s of any states to a state	<u> </u>		
	PPH 17.6 Poter PPH 0.20 0.01 4.60 0.60 Poter PPH 17.6	Image: constraint of the second consecond conseconstraint of the second constraint of the		

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G

ATTA	ACHMENT E - Emission Un	it Form			
Emission Unit Description					
Emission unit ID number:	Emission unit name:	List any control devices associated with this emission unit:			
HZWS	John Zink Flare	HZZC			
Provide a description of the emission u	mit (type, method of operation, de	sign noromotors at a).			
-	John Zink Flare -Vents through HZZ	- · · ·			
		Redacted Copy -			
		Claim of Confidenti	ality		
Manufacturer:	Model number:	Serial number:			
N/A	N/A	N/A			
Construction date:	Installation date:	Modification date(s):			
N/A	1995	N/A			
Design Capacity (examples: furnaces -	tons/hr, tanks - gallons):	•			
	CLAIMED CONFIDENTIAL				
Maximum Hourly Throughput:	Maximum Annual Throughput:	Maximum Operating Sched	ule:		
CLAIMED CONFIDENTIAL	CLAIMED CONFIDENTIAL	8760 hr/yr			
Fuel Usage Data (fill out all applicable	e fields)				
Does this emission unit combust fuel?	🗌 Yes 🔽 No	If yes, is it?			
		Direct Fired Indir	ect Fired		
Maximum design heat input and/or ma	aximum horsepower rating:	Type and Btu/hr rating of b	urners:		
N/A		N/A			
List the primary fuel type(s) and if app maximum hourly and annual fuel usag		. For each fuel type listed, pro	ovide the		
Describe each fuel expected to be used	during the term of the permit.				
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value		
N/A	N/A	N/A	N/A		
	<u> </u>				

Criteria Pollutants	Potential Emissions					
	PPH	TPY				
Carbon Monoxide (CO)	12.2	50				
Nitrogen Oxides (NO _X)	6.6	24.6				
Lead (Pb)						
Particulate Matter (PM _{2.5})						
Particulate Matter (PM ₁₀)	0.5	1.3				
Fotal Particulate Matter (TSP)	0.5	1.3				
Sulfur Dioxide (SO ₂)	0.2	0.3				
Volatile Organic Compounds (VOC)	78.4	56.2				
Hazardous Air Pollutants	Poten	tial Emissions				
	PPH	TPY				
Formaldehyde	10.96	4.70	0			
Hexane	0.14	0.290				
Methanol	0.19	0.030				
Toluene	0.25 0.100					
Regulated Pollutants other than Criteria and HAP	Poten	tial Emissions				
	PPH	TPY				
Carbon Monoxide (CO)	12.2	50.00				
Nitrogen Oxides (NOX)	6.6	24.60				
Sulfur Dioxide (SO2)	0.2	0.30				
Particulate Matter (PM10)	0.5	1.30				

Engineering Estimate

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

See Attached List for all Applicable Requirements.

Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

See WV Regulation 13 construction permit # 1849G	This will combine and include sources HZXS, HZYS, AND
	HZZS

							Emission Unit D	escription				
Emission Unit ID	Emission Unit Name	Control Device	Emission Unit Description	Manufacturer	Model Number	Serial Number	Construction Date	Installation Date	Modification Date(s)	Design Capacity	Maximum Hourly Throughput	Maximum Annual Throughput
DBB-S	Maintenance Bead Blaster	Integral to unit	Zero Blast-N-Peen , model BNP-220-1	Zero Blast-N-	DND 220 4			2000		CONDIFENTIAL	CONDIFENTIAL	CONF
				Peen	BNP-220-1					CONDIFENTIAL	CONDIFENTIAL	CONF
DBU-S	Electrically Heated Burnout	None	Electrically heated Burn Out Oven,					1985		CONDIFENTIAL	CONDIFENTIAL	CONF
	Oven		Beringer Co., Model 3468	Beringer Co	3468					CONDIFENTIAL	CONDIFENTIAL	CONF
DFR-S	Bulk Fluff Return Conveyor		Bulk Fluff Return Conveyor Intermittent Operation, 24 hr/day, 7 days/week, 52 weeks/yea					approx. 1988		CONDIFENTIAL	CONDIFENTIAL	CONF
				Custom made for DuPont						000055050		
	Solvent Cleaning Station	None	Solvent Cleaning Station		varies w/					CONDIFENTIAL	CONDIFENTIAL	CONF
DGA-S	-		-	(rental)	contract			2000		CONDIFENTIAL	CONDIFENTIAL	CONF
	Delrin Lab Hoods	None	Delrin Lab Hood							CONDIFENTIAL	CONDIFENTIAL	CONF
DLAB-S			Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	(multiple)	(varies)			1960's		CONDIFENTIAL	CONDIFENTIAL	CONF
	Additive Preparation Equipment	DOC-C	Concentrate Room Emissions: Filling							CONDIFENTIAL	CONDIFENTIAL	CONF
HCR-S			Blenders Continuous Operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made				2007		CONDIFENTIAL	CONDIFENTIAL	CONF
	#6 Ext. Fluff Bin	0	#6 Extruder Fluff Bin	for DuPont						CONDIFENTIAL	CONDIFENTIAL	CONF
DQH-S		0	Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made				1960		CONDIFENTIAL	CONDIFENTIAL	CONF
	#3 Ext. Fluff Bin	0	#3 Extruder Fluff Bin	for DuPont						CONDIFENTIAL	CONDIFENTIAL	CONF
DQI-S	#3 EXI. FIUII DIII		24 hr/day, 7 days/week, 52 weeks/year	Custom made				1960		CONDIFENTIAL	CONDIFENTIAL	CONF
				for DuPont						CONDIFENTIAL	CONDIFENTIAL	CONF
DQJ-S	#4 Ext. Fluff Bin		#4 Extruder Fluff Bin Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made				1972		CONDIFENTIAL	CONDIFENTIAL	CONF
	Conned Dikkon Diander	0	Conned Fluff Dibbon Diander	for DuPont						CONDIFENTIAL	CONDIFENTIAL	CONF
DTE-S	Capped Ribbon Blender		Capped Fluff Ribbon Blender Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made				1960		CONDIFENTIAL	CONDIFENTIAL	CONF
				for DuPont						CONDIFENTIAL	CONDIFENTIAL	CONF

				Fuel Usage Data										
	Maximu	um Operating S	chedule								Term of the Permit			
Emission Unit ID	Hours/Day	Days/Week	Weeks/Year	Does This Emission Unit Combust Fuel? (Yes/No)	If Yes, is it? (Indirect Fired/Direct Fired)	Maximum Design Heat Input and/or Maximum	Type and Btu/hr Rating of Burners	List the Primary Fuel Type(s) and Secondary Fuel Type(s).	For Each Fuel Type Listed, Provide the Maximum Hourly and Annual Fuel Usage.	Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value	
DBB-S	1	1	52	No										
DBU-S	6	1	52	No										
DFR-S	24	7	52	No										
DGA-S	N/A	N/A	N/A	No									-	
DLAB-S	24	7	52	No										
HCR-S	24	7	52	Yes										
DQH-S	24	7	52	No										
DQI-S	24	7	52	No										
DQJ-S	24	7	52	No										
DTE-S	24	7	52	No										

						Emi	ssion Data			
		Potential	Emissions		Potential	Emissions		Potential	Emissions	
Emission Unit ID	Critera Pollutants	РРН	ТРҮ	Hazardous Air Pollutants	PPH	ТРҮ	Regulated Pollutants other than Criteria and HAP	PPH	ТРҮ	List the method(s) used to calculate the potential emissions (include dates of any stack tests conducted, versions of software used, source and dates of emission factors, etc.).
DBB-S	PM10		0.00E+00	Formaldehyde		0.00E+00	Acetic Acid		0.00E+00	
0000	VOCs		0.005.00	Mathemat		0.005.00				
	PM10		0.00E+00 0.00E+00	Methanol Formaldehyde		0.00E+00 0.00E+00	Acetic Acid		0.00E+00	
DBU-S			0.002100	ronnaldongdo		0.002.000	/ locito / loid		0.002100	
	VOCs		0.00E+00	Methanol		0.00E+00				
	PM10	9.00E-04	7.94E-04	Formaldehyde	9.82E-05	8.66E-05	Acetic Acid		0.00E+00	EE
DFR-S										
	VOCs	4.65E-03	4.10E-03	Methanol	1.88E-03	1.66E-03				
DCAC	PM10		0.00E+00	Formaldehyde		0.00E+00	Acetic Acid		0.00E+00	
DGA-S										
	VOCs PM10	0.00E+00	0.00E+00 0.00E+00	Methanol	2.00E-05	0.00E+00	0 11 - 0 - 11	1.00E-05	0.00E+00	FF
DLAB-S	PMIU	0.00E+00	0.00E+00	Formaldehyde	2.00E-05	8.76E-05	Acetic Acid	1.00E-05	0.00E+00	EE
	VOCs	3.00E-05	1.31E-04	Methanol		0.00E+00				
	PM10	3.87E-05	1.70E-04	Formaldehyde	0.00E+00	0.00E+00	Acetic Acid		0.00E+00	EE
HCR-S										
	VOCs	0.00E+00	0.00E+00	Methanol	0.00E+00	0.00E+00				
DQH-S	PM10	1.32E-04	5.62E-05	Formaldehyde	1.97E-04	6.14E-05	Acetic Acid		0.00E+00	
	VOCs	9.32E-03	2.91E-03	Methanol	3.77E-03	1.18E-03				
	PM10	1.32E-04	2.83E-05	Formaldehyde	1.97E-04	3.10E-05	Acetic Acid		0.00E+00	
DQI-S										
	VOCs	9.32E-03	1.47E-03	Methanol	3.77E-03	5.94E-04				
	PM10	1.32E-04	5.30E-05	Formaldehyde	1.97E-04	5.80E-05	Acetic Acid		0.00E+00	
DQJ-S										
	VOCs	9.32E-03	2.74E-03	Methanol	3.77E-03	1.11E-03				
DTE-S	PM10	1.06E-05	4.65E-05	Formaldehyde	6.37E-03	2.79E-02	Acetic Acid		0.00E+00	
	VOCs	8.49E-03	3.72E-02	Methanol	0.00E+00	0.00E+00				

				Applicable Requirements
			F	or all applicable requirements listed above, provide monitoring/testing/
Emission	List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (<i>Note: Title V permit condition numbers alone are not the underlying applicable requirements</i>). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.	Permit Shield	Monitoring	Recordkeeping
DBB-S	See appendix.	Upon application submittal	No specific monitoring is proposed.	No specific recordkeeping proposed
DBU-S	See appendix.	Upon application submittal	No specific monitoring is proposed.	No specific recordkeeping proposed
DFR-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DFR-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DFR-E. Method 9 opacity tests at associated emission point DFR-E, if necessary.
DGA-S	See appendix.	Upon application submittal	No specific monitoring is proposed.	No specific recordkeeping proposed
DLAB-S	See appendix.	Upon application submittal	No specific monitoring is proposed.	No specific recordkeeping proposed
HCR-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DQC-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DQC-E. Method 9 opacity tests at associated emission point DQC-E, if necessary.
DQH-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DQC-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DQC-E. Method 9 opacity tests at associated emission point DQC-E, if necessary.
DQI-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DQC-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DQC-E. Method 9 opacity tests at associated emission point DQC-E, if necessary.
DQJ-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DQC-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DQC-E. Method 9 opacity tests at associated emission point DQC-E, if necessary.
DTE-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DQC-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DQC-E. Method 9 opacity tests at associated emission point DQC-E, if necessary.

	ecordkeeping/reporting which shall be used to demonstrate complian	ce.	
Emission Unit ID	Reporting	Testing	Are you in compliance with all applicable requirements for this emission unit? (Yes/No)
DBB-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DBU-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DFR-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DGA-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DLAB-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
HCR-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DQH-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DQI-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DQJ-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DTE-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES

							Emission Unit D	escription				
Emission Unit ID	Emission Unit Name	Control Device	Emission Unit Description	Manufacturer	Model Number	Serial Number	Construction Date	Installation Date	Modification Date(s)	Design Capacity	Maximum Hourly Throughput	Maximum Annual Throughput
	#4 Ext. Wax Blender	0	#4 Extruder Surface Coating Wax									
DWQ-S			Blender Continuous operation 24 hr/day, 7 days/week, 52 weeks/year					1972		CONDIFENTIAL	CONDIFENTIAL	CONF
										CONDIFENTIAL	CONDIFENTIAL	CONF
HCO-S	#3 Ext. Wax Blender	0	#3 Extruder Surface Coating Wax Blender Continuous operation 24 hr/day, 7 days/week, 52 weeks/year					1989		CONDIFENTIAL	CONDIFENTIAL	CONF
	A # Decident Office	Nee	TAIL Day days Cile							CONDIFENTIAL	CONDIFENTIAL	CONF
DTH-S	*A* Product Silo	None	*A* Product Silo Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made				1960		CONDIFENTIAL	CONDIFENTIAL	CONF
				for DuPont						CONDIFENTIAL	CONDIFENTIAL	CONF
DTI-S	*B* Product Silo	None	"B" Product Silo Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made for DuPont				1960		CONDIFENTIAL	CONDIFENTIAL	CONF
DTJ-S	*C* Product Silo	None	"C" Product Silo Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made				1960		CONDIFENTIAL	CONDIFENTIAL	CONF
				for DuPont						CONDIFENTIAL	CONDIFENTIAL	CONF
DTK-S	*D* Product Silo	None	[*] D* Product Silo Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made				1960		CONDIFENTIAL	CONDIFENTIAL	CONF
				for DuPont						CONDIFENTIAL	CONDIFENTIAL	CONF
DTL-S	"E" Product Silo	None	"E" Product Silo Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made				1971		CONDIFENTIAL	CONDIFENTIAL	CONF
				for DuPont						CONDIFENTIAL	CONDIFENTIAL	CONF
DTM-S	*F* Product Silo	None	"F" Product Silo Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made				1971		CONDIFENTIAL	CONDIFENTIAL	CONF
				for DuPont						CONDIFENTIAL	CONDIFENTIAL	CONF

				Fuel Usage Data									
	Maximu	um Operating S	chedule				1				Term of th	e Permit	T
Emission Unit ID	Hours/Day	Days/Week		Does This Emission Unit Combust Fuel? (Yes/No)	If Yes, is it? (Indirect	Maximum Design Heat Input and/or Maximum Horsepower Rating	Type and Btu/hr Rating of Burners	List the Primary Fuel Type(s) and Secondary Fuel Type(s).	For Each Fuel Type Listed, Provide the Maximum Hourly and Annual Fuel Usage.	Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
DWQ-S	24	7	52	No									
HCO-S	24	7	52	No									
DTH-S	24	7	30	No									
DTI-S	24	7	30	No									
DTJ-S	24	7	30	No									
DTK-S	24	7	30	No									
DTL-S	24	7	30	No									
DTM-S	24	7	30	No									

						Emis	ssion Data			
		Potential	Emissions		Potential	Emissions		Potential	Emissions	
Emission Unit ID	Critera Pollutants	РРН	ТРҮ	Hazardous Air Pollutants	PPH	ТРҮ	Regulated Pollutants other than Criteria and HAP	PPH	ТРҮ	List the method(s) used to calculate the potential emissions (include dates of any stack tests conducted, versions of software used, source and dates of emission factors, etc.).
	PM10	7.15E-06	2.41E-05	Formaldehyde	1.30E-04	4.38E-04	Acetic Acid		0.00E+00	MB
DWQ-S										
	VOCs	4.55E-04	1.53E-03	Methanol	0.00E+00	0.00E+00				
	PM10	7.15E-07	2.41E-06	Formaldehyde	5.20E-04	1.75E-03	Acetic Acid		0.00E+00	EE
HCO-S										
	VOCs	5.20E-04	1.75E-03	Methanol	0.00E+00	0.00E+00				
	PM10	1.75E-02	7.65E-02	Formaldehyde	1.00E-05	4.38E-05	Acetic Acid		0.00E+00	ST
DTH-S										
	VOCs	8.70E-04	3.81E-03	Methanol	1.90E-04	8.32E-04				
	PM10	1.75E-02	7.65E-02	Formaldehyde	1.00E-05	4.38E-05	Acetic Acid		0.00E+00	ST
DTI-S										
	VOCs PM10	8.70E-04 1.75E-02	3.81E-03 7.65E-02	Methanol Formaldehyde	1.90E-04 1.00E-05	8.32E-04 4.38E-05	Acetic Acid		0.00E+00	ST
DTJ-S	PWIU	1.73E-02	7.65E-02	ronnaidenyde	1.002-05	4.30E-03	ACEIC ACIU		0.002+00	31
	VOCs	8.70E-04	3.81E-03	Methanol	1.90E-04	8.32E-04				
	PM10	1.75E-02	7.65E-02	Formaldehyde	1.00E-05	4.38E-05	Acetic Acid		0.00E+00	ST
DTK-S										
	VOCs	8.70E-04	3.81E-03	Methanol	1.90E-04	8.32E-04				
	PM10	1.75E-02	7.65E-02	Formaldehyde	1.00E-05	4.38E-05	Acetic Acid		0.00E+00	ST
DTL-S										
	VOCs	8.70E-04	3.81E-03	Methanol	1.90E-04	8.32E-04				
	PM10	1.75E-02	7.65E-02	Formaldehyde	1.00E-05	4.38E-05	Acetic Acid		0.00E+00	ST
DTM-S										
	VOCs	8.70E-04	3.81E-03	Methanol	1.90E-04	8.32E-04				

				Applicable Requirements
			F	or all applicable requirements listed above, provide monitoring/testing
Emission	List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (<i>Note: Title V permit condition numbers alone are not the underlying applicable requirements</i>). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.	Permit Shield	Monitoring	Recordkeeping
	See appendix.	Upon application	Monthly visible emission observation monitoring at emission	Records of monthly visible emissions observations at
DWQ-S		submittal	point DQC-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	associated emission point DQC-E. Method 9 opacity tests at associated emission point DQC-E, if necessary.
HCO-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DQC-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DQC-E. Method 9 opacity tests at associated emission point DQC-E, if necessary.
DTH-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DTH-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DTH-E. Method 9 opacity tests at associated emission point DTH-E, if necessary.
DTI-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DTI-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DTI-E. Method 9 opacity tests at associated emission point DTI-E, if necessary.
DTJ-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DTJ-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DTJ-E. Method 9 opacity tests at associated emission point DTJ-E, if necessary.
DTK-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DTK-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DTK-E. Method 9 opacity tests at associated emission point DTK-E, if necessary.
DTL-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DTL-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DTL-E. Method 9 opacity tests at associated emission point DTL-E, if necessary.
DTM-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DTM-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DTM-E. Method 9 opacity tests at associated emission point DTM-E, if necessary.

	ecordkeeping/reporting which shall be used to demonstrate complian	ce.	
Emission Unit ID	Reporting	Testing	Are you in compliance with all applicable requirements for this emission unit? (Yes/No
DWQ-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
HCO-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DTH-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DTI-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DTJ-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DTK-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DTL-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DTM-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES

							Emission Unit D	escription				
Emission Unit ID	Emission Unit Name	Control Device	Emission Unit Description	Manufacturer	Model Number	Serial Number	Construction Date	Installation Date	Modification Date(s)	Design Capacity	Maximum Hourly Throughput	Maximum Annual Throughput
	"G" Product Silo	None	"G" Product Silo									
DTN-S			Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made for DuPont				1976		CONDIFENTIAL	CONDIFENTIAL	CONF
	"H" Product Silo	None	"H" Product Silo							CONDIFENTIAL	CONDIFENTIAL	CONF
DTO-S	H Ploduct Silo	None	Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made for DuPont				1976		CONDIFENTIAL	CONDIFENTIAL	CONF
										CONDIFENTIAL	CONDIFENTIAL	CONF
	Misc Bulk Cube Return Conveyor	DQE-P/DQE-C	Misc Bulk Cube Return Conveyor Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made for DuPont				1998		CONDIFENTIAL	CONDIFENTIAL	CONF
										CONDIFENTIAL	CONDIFENTIAL	CONF
HFI-S	#1 Ext. Sparge Bin	None	#1 Extruder Sparger Bin Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made for DuPont				1997		CONDIFENTIAL	CONDIFENTIAL	CONF
										CONDIFENTIAL	CONDIFENTIAL	CONF
DWB-S	#3 Ext. Sparge Bin	None	#3 Extruder Sparger Bin Continuous Operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made for DuPont				1960		CONDIFENTIAL	CONDIFENTIAL	CONF
	#3 Ext. Die Hood	None	#3 Extruder Die Hood Vent									
DQR-S			Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made for DuPont				1970		CONDIFENTIAL	CONDIFENTIAL	CONF
	#6 Ext. Die Hood	Nepe	#6 Extruder Die Hood Vent							CONDIFENTIAL	CONDIFENTIAL	CONF
DQV-S	#6 EXI. DIE HOOD	None	24 hr/day, 7 days/week, 52 weeks/year	Custom made for DuPont				2004		CONDIFENTIAL	CONDIFENTIAL	CONF
										CONDIFENTIAL	CONDIFENTIAL	CONF
	D6 Sparger Cube Feed Conveyor	DRY-P	D6 Sparger Cube Feed Conveyor Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made for DuPont				2004		CONDIFENTIAL	CONDIFENTIAL	CONF
										CONDIFENTIAL	CONDIFENTIAL	CONF
	D3 Sparger Cube Feed Conveyor	DSN-P	D3 Sparger Cube Feed Conveyor Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made for DuPont				1960		CONDIFENTIAL	CONDIFENTIAL	CONF
										CONDIFENTIAL	CONDIFENTIAL	CONF

				Fuel Usage Data									
	Maximu	um Operating S	chedule		1	1	I	, in the second se	1		Term of th	e Permit	T
Emission Unit ID	Hours/Day	Days/Week	Weeks/Year	Does This Emission Unit Combust Fuel? (Yes/No)	If Yes, is it? (Indirect	Maximum Design Heat Input and/or Maximum Horsepower Rating	Type and Btu/hr Rating of Burners	List the Primary Fuel Type(s) and Secondary Fuel Type(s).	For Each Fuel Type Listed, Provide the Maximum Hourly and Annual Fuel Usage.	Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
DTN-S	24	7	30	No									
DTO-S	24	7	30	No									
DUP-S	24	7	52	No									
HFI-S	24	7	52	No									
DWB-S	24	7	52	No									
DQR-S	24	7	52	No									
DQV-S	24	7	52	No									
DVU-S	24	7	52	No									
DVV-S	24	7	52	No									

							ssion Data			1
		Potential	Emissions		Potential	Emissions		Potential	Emissions	
Emission Unit ID	Critera Pollutants	РРН	ТРҮ	Hazardous Air Pollutants	РРН	ТРҮ	Regulated Pollutants other than Criteria and HAP	PPH	ТРҮ	List the method(s) used to calculate the potential emissions (include dates of any stack tests conducted, versions of software used, source and dates of emission factors, etc.).
	PM10	1.75E-02	7.65E-02	Formaldehyde	1.00E-05	4.38E-05	Acetic Acid		0.00E+00	ST
DTN-S										
	VOCs	8.70E-04	2.015.02	Methanol	1.90E-04	8.32E-04				
	PM10	8.70E-04 1.75E-02	3.81E-03 7.65E-02	Formaldehyde	1.90E-04 1.00E-05	4.38E-05	Acetic Acid		0.00E+00	MB
DTO-S										
	VOCs	8.70E-04	3.81E-03	Methanol	1.90E-04	8.32E-04				
	PM10	3.28E-05	1.42E-05	Formaldehyde	2.04E-04	8.78E-05	Acetic Acid		0.00E+00	EE
DUP-S										
	VOCs	4.05E-02	1.75E-02	Methanol	2.04E-04	6.88E-04				
	PM10	1.22E-01	4.11E-01	Formaldehyde	2.96E-02	9.97E-02	Acetic Acid		0.00E+00	EE
HFI-S										
	VOCs	2.48E-01	8.36E-01	Methanol	2.01E-03	6.75E-03			0.005.00	
DWB-S	PM10	1.66E-02	5.61E-02	Formaldehyde	1.07E-02	3.61E-02	Acetic Acid		0.00E+00	MB
	VOCs PM10	1.33E-02	4.49E-02 0.00E+00	Methanol Formaldehyde	1.27E-03 1.43E-04	4.28E-03 4.82E-04	Acetic Acid		0.00E+00	
DQR-S			0.002+00	Tormaldenyde	1.432-04	4.022-04			0.002+00	
	VOCs PM10	1.95E-04	6.57E-04 0.00E+00	Methanol	1.43E-04	0.00E+00 4.82E-04	Acetic Acid		0.00E+00	
DQV-S	PMIU		0.00E+00	Formaldehyde	1.43E-04	4.82E-04	Acelic Acid		0.00E+00	
	VOCs	1.95E-04	6.57E-04	Methanol		0.00E+00				
	PM10	5.86E-05	1.97E-04	Formaldehyde	3.98E-02	1.34E-01	Acetic Acid		0.00E+00	MB
DVU-S										
	VOCs	3.98E-02	1.34E-01	Methanol		0.00E+00				
	PM10	4.17E-03	1.40E-02	Formaldehyde	2.10E-03	7.07E-03	Acetic Acid		0.00E+00	MB
DVV-S										
	VOCs	2.10E-03	7.07E-03	Methanol		0.00E+00				

				Applicable Requirements
			F	or all applicable requirements listed above, provide monitoring/testing/
	List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (<i>Note: Title V permit condition numbers alone are not the underlying applicable requirements</i>). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.	Permit Shield	Monitoring	Recordkeeping
DTN-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DTN-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DTN-E. Method 9 opacity tests at associated emission point DTN-E, if necessary.
DTO-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DTO-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DTO-E. Method 9 opacity tests at associated emission point DTO-E, if necessary.
DUP-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DQE-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DQE-E. Method 9 opacity tests at associated emission point DQE-E, if necessary.
HFI-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DQM-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DQM-E. Method 9 opacity tests a associated emission point DQM-E, if necessary.
DWB-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DQN-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DQN-E. Method 9 opacity tests at associated emission point DQN-E, if necessary.
DQR-S	See appendix.	Upon application submittal	No specific monitoring is proposed.	No specific recordkeeping proposed
DQV-S	See appendix.	Upon application submittal	No specific monitoring is proposed.	No specific recordkeeping proposed
DVU-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DRY-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DRY-E. Method 9 opacity tests at associated emission point DRY-E, if necessary.
DVV-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DSN-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DSN-E. Method 9 opacity tests at associated emission point DSN-E, if necessary.

	ecordkeeping/reporting which shall be used to demonstrate complian	ce.	
Emission Unit ID	Reporting	Testing	Are you in compliance with all applicable requirements for this emission unit? (Yes/No
DTN-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DTO-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DUP-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
HFI-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DWB-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DQR-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DQV-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DVU-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DVV-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES

							Emission Unit De	escription				
Emission Unit ID	Emission Unit Name	Control Device	Emission Unit Description	Manufacturer	Model Number	Serial Number	Construction Date	Installation Date	Modification Date(s)	Design Capacity	Maximum Hourly Throughput	Maximum Annual Throughput
	#4 Ext. Conc. Transfer	DSX-P	#4 Extruder Concentrate Transfer System Semi-batch operation									
DUA-S			24 hr/day, 7 days/week, 52 weeks/year	Custom made for DuPont				1972		CONDIFENTIAL	CONDIFENTIAL	CONF
	CD Blauer Custom		CD Lean Conveyor							CONDIFENTIAL	CONDIFENTIAL	CONF
DTF-S	CD Blower System	DTF-P/DTF-C	CD Loop Conveyor Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made for DuPont				1980's		CONDIFENTIAL	CONDIFENTIAL	CONF
	CIL Discos Costor	DTC D/DTC O								CONDIFENTIAL	CONDIFENTIAL	CONF
DTG-S	GH Blower System	D1G-P/D1G-C	GH Loop Conveyor Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made				1988		CONDIFENTIAL	CONDIFENTIAL	CONF
				for DuPont						CONDIFENTIAL	CONDIFENTIAL	CONF
HCX-S	#5 Ext. Wax Blender	DTZ-C	#5 Extruder Screw Conveyor Wax Blender Continuous operation 24 hr/day, 7 days/week, 52 weeks/year					1981		CONDIFENTIAL	CONDIFENTIAL	CONF
										CONDIFENTIAL	CONDIFENTIAL	CONF
DQK-S	#4 Ext. Sparger Bin	0	#4 Extruder Sparger Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made				1972		CONDIFENTIAL	CONDIFENTIAL	CONF
				for DuPont						CONDIFENTIAL	CONDIFENTIAL	CONF
DQM-S	#5 Ext. Sparge Bin	0	#5 Extruder Sparger Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made for DuPont				1981		CONDIFENTIAL	CONDIFENTIAL	CONF
				TOT DUPOIL						CONDIFENTIAL	CONDIFENTIAL	CONF
DQL-S	#5 Ext. Fluff Bin	0	#5 Extruder Fluff Bin Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made				1981		CONDIFENTIAL	CONDIFENTIAL	CONF
				for DuPont						CONDIFENTIAL	CONDIFENTIAL	CONF
HCZ-S	#5 Ext. Ribbon Blender	0	#5 Extruder Concentrate Feed Blender Continuous operation 24 hr/day, 7 days/week, 52 weeks/year					1981		CONDIFENTIAL	CONDIFENTIAL	CONF
										CONDIFENTIAL	CONDIFENTIAL	CONF

	Fuel Usage Data												
	Maximu	um Operating S	chedule				1				Term of th	e Permit	T
Emission Unit ID	Hours/Day	Days/Week		Does This Emission Unit Combust Fuel? (Yes/No)	If Yes, is it? (Indirect	Maximum Design Heat	Type and Btu/hr Rating of Burners	List the Primary Fuel Type(s) and Secondary Fuel Type(s).	For Each Fuel Type Listed, Provide the Maximum Hourly and Annual Fuel Usage.	Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
DUA-S	24	7	52	No									
DTF-S	24	7	30	No									
DTG-S	24	7	30	No									
HCX-S	24	7	52	No									
DQK-S	24	7	52	No									
DQM-S	24	7	52	No									
DQL-S	24	7	52	No									
HCZ-S	24	7	52	No									

	2 Southed Endedours					Emis	ssion Data			
		Potential	Emissions		Potential	Emissions		Potential	Emissions	
Emission Unit ID	Critera Pollutants	РРН	ТРҮ	Hazardous Air Pollutants	РРН	ТРҮ	Regulated Pollutants other than Criteria and HAP	РРН	ТРҮ	List the method(s) used to calculate the potential emissions (include dates of any stack tests conducted, versions of software used, source and dates of emission factors, etc.).
	PM10	4.16E-03	1.82E-02	Formaldehyde		0.00E+00	Acetic Acid		0.00E+00	
DUA-S										
	VOCs		0.00E+00	Methanol		0.00E+00				
	PM10	9.00E-04	1.74E-03	Formaldehyde	4.51E-02	2.47E-02	Acetic Acid		0.00E+00	
DTF-S										
	VOCs	4.51E+00	2.47E+00	Methanol	1.35E+00	7.41E-01				
	PM10	5.09E-04	5.41E-04	Formaldehyde	2.61E-02	2.85E-02	Acetic Acid		0.00E+00	
DTG-S										
	VOCs	2.61E+00	2.85E+00	Methanol	7.82E-01	8.56E-01				
	PM10	7.15E-06	2.41E-05	Formaldehyde	1.30E-04	4.38E-04	Acetic Acid		0.00E+00	EE
HCX-S										
	VOCs PM10	4.94E-04 1.66E-05	1.67E-03 5.61E-05	Methanol Formaldehyde	0.00E+00 1.07E-02	0.00E+00 3.61E-02	Acetic Acid		0.00E+00	
DQK-S	PWITU	1.00E-03	5.0TE-05	romaidenyde	1.07E-02	3.0TE-02	ACEIL ACIU		0.00E+00	
	VOCs	1.33E-02	4.49E-02	Methanol	1.27E-03	4.28E-03				
	PM10	1.66E-05	5.61E-05	Formaldehyde	1.07E-02	3.61E-02	Acetic Acid		0.00E+00	
DQM-S										
	VOCs	1.33E-02	4.49E-02	Methanol	1.27E-03	4.28E-03				
	PM10	1.32E-04	4.72E-05	Formaldehyde	1.97E-04	5.17E-05	Acetic Acid		0.00E+00	
DQL-S										
	VOCs	9.32E-03	2.45E-03	Methanol	3.77E-03	9.91E-04				
HCZ-S	PM10	8.03E-06	3.51E-05	Formaldehyde	0.00E+00	0.00E+00	Acetic Acid		0.00E+00	EE
	VOCs	0.00E+00	0.00E+00	Methanol	0.00E+00	0.00E+00				

				Applicable Requirements				
			F	or all applicable requirements listed above, provide monitoring/testin				
	List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (<i>Note: Title V permit condition numbers alone are not the underlying applicable requirements</i>). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.	Permit Shield	Monitoring	Recordkeeping				
DUA-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DSZ-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DSZ-E. Method 9 opacity tests at associated emission point DSZ-E, if necessary.				
DTF-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DTF-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DTF-E. Method 9 opacity tests at associated emission point DTF-E, if necessary.				
DTG-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DTG-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DTG-E. Method 9 opacity tests at associated emission point DTG-E, if necessary.				
HCX-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DTZ-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DTZ-E. Method 9 opacity tests at associated emission point DTZ-E, if necessary.				
DQK-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DTZ-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DTZ-E. Method 9 opacity tests at associated emission point DTZ-E, if necessary.				
DQM-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DTZ-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DTZ-E. Method 9 opacity tests at associated emission point DTZ-E, if necessary.				
DQL-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DTZ-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DTZ-E. Method 9 opacity tests at associated emission point DTZ-E, if necessary.				
HCZ-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DTZ-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DTZ-E. Method 9 opacity tests at associated emission point DTZ-E, if necessary.				

	ecordkeeping/reporting which shall be used to demonstrate complian	ce.	
mission Unit ID	Reporting	Testing	Are you in compliance with all applicable requirements for this emission unit? (Yes/No
DUA-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DTF-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DTG-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
HCX-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DQK-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DQM-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DQL-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
HCZ-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES

							Emission Unit D	escription				
Emission Unit ID	Emission Unit Name	Control Device	Emission Unit Description	Manufacturer	Model Number	Serial Number	Construction Date		Modification Date(s)	Design Capacity	Maximum Hourly Throughput	Maximum Annual Throughput
DVX-S	#5 Extruder	DSB-P/DTZ-C	D5 Sparger Cube Feed Conveyor Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made for DuPont				1981		CONDIFENTIAL	CONDIFENTIAL	CONF
	D4 Sparger Cube Feed Conveyor	DSO-P/DTZ-C	D4 Sparger Cube Feed Conveyor Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made for DuPont				1972		CONDIFENTIAL	CONDIFENTIAL	CONF
DUB-S	*E* Fluidizing Blower Vent	None	"E" Fluidizer Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made for DuPont				Early 1970's		CONDIFENTIAL	CONDIFENTIAL	CONF
DUC-S	*K* Fluidizing Blower Vent	None	"K" Fluidizer Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made for DuPont				Early 1970's		CONDIFENTIAL	CONDIFENTIAL	CONF
DUD-S	*J* Fluidizing Blower Vent	None	*J" Fluidizer Continuous operation 24 hr/day, 7 days/week, 52 weeks/year.	Custom made for DuPont				2007		CONDIFENTIAL	CONDIFENTIAL	CONF
DQU-S	#4 Ext. Cube Blender	DZB-C	#4 Extruder Cube Blender Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made for DuPont				1971		CONDIFENTIAL	CONDIFENTIAL	CONF CONF
DUI-S	#5 Ext. Cube Blender	DZB-C	#5 Extruder Cube Blender Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made for DuPont				1981		CONDIFENTIAL	CONDIFENTIAL	CONF
DBC-S	Bulk Cube Silo	0	Bulk Cube Silo Semi-Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made for DuPont				<1988		CONDIFENTIAL	CONDIFENTIAL	CONF
										CONDIFENTIAL	CONDIFENTIAL	CONF

			Fuel Usage Data											
	Maximu	um Operating S	chedule				1				Term of th	e Permit	T	
Emission Unit ID	Hours/Day	Days/Week		Does This Emission Unit Combust Fuel? (Yes/No)	If Yes, is it? (Indirect	Maximum Design Heat	Type and Btu/hr Rating of Burners	List the Primary Fuel Type(s) and Secondary Fuel Type(s).	For Each Fuel Type Listed, Provide the Maximum Hourly and Annual Fuel Usage.	Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value	
DVX-S	24	7	52	No										
DVW-S	24	7	52	No										
DUB-S	24	7	52	No										
DUC-S	24	7	52	No										
DUD-S	24	7	52	No										
DQU-S	24	7	52	No										
DUI-S	24	7	52	No										
DBC-S	24	7	52	No										

						Emis	ssion Data			
		Potential	Emissions		Potential	Emissions		Potential	Emissions	
Emission Unit ID	Critera Pollutants	РРН	ТРҮ	Hazardous Air Pollutants	PPH	ТРҮ	Regulated Pollutants other than Criteria and HAP	PPH	ТРҮ	List the method(s) used to calculate the potential emissions (include dates of any stack tests conducted, versions of software used, source and dates of emission factors, etc.).
	PM10	6.97E-05	3.05E-04	Formaldehyde	3.15E-02	1.38E-01	Acetic Acid		0.00E+00	MB
DVX-S										
	VOCs	3.60E-02	1.58E-01	Methanol		3.33E-03				
DVW-S	PM10	5.30E-05	2.32E-04	Formaldehyde	2.40E-02	1.05E-01	Acetic Acid		0.00E+00	MB
	VOCs PM10	2.40E-02 7.82E-05	1.05E-01 3.43E-04	Methanol Formaldehyde	1.71E-01	0.00E+00 7.48E-01	Acetic Acid		0.00E+00	EE
DUB-S	TWIG	7.02E-03	3.432-04	i omalachyac	1.712-01	7.402-01			0.002+00	L
	VOCs	3.79E-01	1.66E+00	Methanol		0.00E+00				
	PM10	7.41E-04	3.25E-03	Formaldehyde	1.08E-01	4.73E-01	Acetic Acid		0.00E+00	EE
DUC-S										
	VOCs	2.40E-01	1.05E+00	Methanol	1.005.04	0.00E+00	0	0.005.00	0.005.00	
DUD-S	PM10	4.50E-06	1.97E-05	Formaldehyde	1.00E-04	4.38E-04	Acetic Acid	0.00E+00	0.00E+00	EE
	VOCs	2.00E-04	8.76E-04	Methanol		0.00E+00				
	PM10	7.20E-06	2.42E-05	Formaldehyde	9.69E-02	3.26E-01	Acetic Acid		0.00E+00	
DQU-S										
	VOCs	1.49E-01	5.01E-01	Methanol	71/5 00	0.00E+00	A solid A stat		0.005.00	
	PM10	7.20E-06	2.42E-05	Formaldehyde	7.16E-02	2.41E-01	Acetic Acid		0.00E+00	EE
DUI-S										
	VOCs	1.56E-01	5.26E-01	Methanol	0.00E+00	0.00E+00				
DBC-S	PM10	1.55E-05	2.42E-05	Formaldehyde	1.12E-04	7.73E-05	Acetic Acid		0.00E+00	
	VOCs	2.23E-02	1.54E-02	Methanol	8.79E-04	6.05E-04				

		1	Applicable Requirements	
			F	or all applicable requirements listed above, provide monitoring/testing
	List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (<i>Note: Title V permit condition numbers alone are not the</i> <i>underlying applicable requirements</i>). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.	Permit Shield	Monitoring	Recordkeeping
	See appendix.	Upon application	Monthly visible emission observation monitoring at emission	Records of monthly visible emissions observations at
DVX-S		submittal	point DTZ-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	associated emission point DTZ-E. Method 9 opacity tests at associated emission point DTZ-E, if necessary.
)VW-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DTZ-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DTZ-E. Method 9 opacity tests at associated emission point DTZ-E, if necessary.
OUB-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DUB-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DUB-E. Method 9 opacity tests a associated emission point DUB-E, if necessary.
UC-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DUC-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DUC-E. Method 9 opacity tests a associated emission point DUC-E, if necessary.
UD-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DUD-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DUD-E. Method 9 opacity tests a associated emission point DUD-E, if necessary.
OQU-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DZB-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DZB-E. Method 9 opacity tests at associated emission point DZB-E, if necessary.
DUI-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DZB-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DZB-E. Method 9 opacity tests at associated emission point DZB-E, if necessary.
DBC-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DZB-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DZB-E. Method 9 opacity tests at associated emission point DZB-E, if necessary.

	ecordkeeping/reporting which shall be used to demonstrate complian	ce.	
mission Unit ID	Reporting	Testing	Are you in compliance with all applicable requirements for this emission unit? (Yes/No
DVX-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DVW-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DUB-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DUC-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DUD-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DQU-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DUI-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DBC-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES

							Emission Unit De	escription				
Emission Unit ID	Emission Unit Name	Control Device	Emission Unit Description	Manufacturer	Model Number	Serial Number	Construction Date	Installation Date	Modification Date(s)	Design Capacity	Maximum Hourly Throughput	Maximum Annual Throughput
	Hopper Truck Unloading	0	Hopper Truck Unloading Intermittent operation									
HOP-S			24 hr/day, 7 days/week, 52 weeks/year	Custom made for DuPont				<1988		CONDIFENTIAL	CONDIFENTIAL	CONF
	#3 Ext. Prod. Hopper	DUL-C	#3 Ext. Prod. Hopper							CONDIFENTIAL	CONDIFENTIAL	CONF
DTP-S			Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made				1989		CONDIFENTIAL	CONDIFENTIAL	CONF
	#1 Evt Dred Henner	0	#1 Extender Draduet Llappor	for DuPont						CONDIFENTIAL	CONDIFENTIAL	CONF
HFL-S	#1 Ext. Prod. Hopper	U	#1 Extruder Product Hopper Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made				1997		CONDIFENTIAL	CONDIFENTIAL	CONF
				for DuPont						CONDIFENTIAL	CONDIFENTIAL	CONF
DUG-S	#6 Ext. Cube Blender	DUK-C	#6 Extruder Cube Blender Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made				2004		CONDIFENTIAL	CONDIFENTIAL	CONF
				for DuPont						CONDIFENTIAL	CONDIFENTIAL	CONF
DUN-S	#4 Ext. Prod. Hopper	0	#4 Extruder Product Hopper Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made				1988		CONDIFENTIAL	CONDIFENTIAL	CONF
				for DuPont						CONDIFENTIAL	CONDIFENTIAL	CONF
DWC-S	#5 Ext. Prod. Hopper	0	#5 Extruder Product Hopper Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made				1988		CONDIFENTIAL	CONDIFENTIAL	CONF
				for DuPont						CONDIFENTIAL	CONDIFENTIAL	CONF
DUQ3-S	BF Dumping Station	DUQ-C	Box Fluff Dumping Station Continuous operation 24 hr/day, 7 days/week, 30 weeks/year					1998		CONDIFENTIAL	CONDIFENTIAL	CONF
										CONDIFENTIAL	CONDIFENTIAL	CONF
DUQ1-S	BF Loading Station	0	Box Fluff Loading Station Continuous operation 24 hr/day, 7 days/week, 30 weeks/year					1970		CONDIFENTIAL	CONDIFENTIAL	CONF
										CONDIFENTIAL	CONDIFENTIAL	CONF

	Fuel Usage Data												
	Maximu	um Operating S	chedule				1				Term of th	e Permit	T
Emission Unit ID	Hours/Day	Days/Week		Does This Emission Unit Combust Fuel? (Yes/No)	If Yes, is it? (Indirect	Maximum Design Heat	Type and Btu/hr Rating of Burners	List the Primary Fuel Type(s) and Secondary Fuel Type(s).	For Each Fuel Type Listed, Provide the Maximum Hourly and Annual Fuel Usage.	Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
HOP-S	24	7	52	No									
DTP-S	24	7	52	No									
HFL-S	24	7	52	No									
DUG-S	24	7	52	No									
DUN-S	24	7	52	No									
DWC-S	24	7	52	No									
DUQ3-S	24	7	30	No									
DUQ1-S	24	7	30	No									

						Emis	ssion Data			
		Potential	Emissions		Potential	Emissions		Potential	Emissions	
Emission Unit ID	Critera Pollutants	РРН	ТРҮ	Hazardous Air Pollutants	PPH	ТРҮ	Regulated Pollutants other than Criteria and HAP	РРН	ТРҮ	List the method(s) used to calculate the potential emissions (include dates of any stack tests conducted, versions of software used, source and dates of emission factors, etc.).
	PM10	0.00E+00	0.00E+00	Formaldehyde	0.00E+00	0.00E+00	Acetic Acid	0.00E+00	0.00E+00	EE
HOP-S										
	VOCs	0.00E+00	0.00E+00	Methanol	0.00E+00	0.00E+00				
	PM10	6.88E-06	3.01E-05	Formaldehyde	2.05E-02	8.99E-02	Acetic Acid		0.00E+00	MB
DTP-S										
	VOCs	2.05E-02	8.99E-02	Methanol		0.00E+00				
	PM10	7.20E-06	2.42E-05	Formaldehyde	7.16E-02	2.41E-01	Acetic Acid		0.00E+00	EE
HFL-S										
	VOCs	1.56E-01	5.26E-01	Methanol	0.00E+00	0.00E+00				
	PM10	7.20E-06	2.42E-05	Formaldehyde	9.69E-02	3.26E-01	Acetic Acid		0.00E+00	EE
DUG-S										
	VOCs PM10	1.49E-01 7.20E-06	5.01E-01 2.42E-05	Methanol	9.69E-02	0.00E+00 3.26E-01	Acetic Acid		0.00E+00	EE
DUN-S	PWIU	7.20E-00	2.42E-03	Formaldehyde	9.09E-02	3.20E-01	ACEIC ACIU		0.002+00	E
	VOCs	1.49E-01	5.01E-01	Methanol	0.00E+00	0.00E+00				
	PM10	6.51E-06	2.19E-05	Formaldehyde	5.23E-02	1.76E-01	Acetic Acid		0.00E+00	MB
DWC-S										
	VOCs	5.99E-02	2.02E-01	Methanol	0.00E+00	0.00E+00				
	PM10	3.42E-02	1.50E-01	Formaldehyde	2.28E-05	9.99E-05	Acetic Acid		0.00E+00	EE
DUQ3-S										
	VOCs	7.99E-05	3.50E-04	Methanol		0.00E+00				
	PM10	4.45E-02	1.95E-01	Formaldehyde	2.97E-05	1.30E-04	Acetic Acid		0.00E+00	EE
DUQ1-S										
	VOCs	1.04E-04	4.55E-04	Methanol		0.00E+00				

				Applicable Requirements
			F	or all applicable requirements listed above, provide monitoring/testin
	List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (<i>Note: Title V permit condition numbers alone are not the underlying applicable requirements</i>). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.	Permit Shield	Monitoring	Recordkeeping
	See appendix.	Upon application	Monthly visible emission observation monitoring at emission	Records of monthly visible emissions observations at
HOP-S		submittal	point DZB-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	associated emission point DZB-E. Method 9 opacity tests a associated emission point DZB-E, if necessary.
DTP-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DUK-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DUK-E. Method 9 opacity tests a associated emission point DUK-E, if necessary.
HFL-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DUK-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DUK-E. Method 9 opacity tests a associated emission point DUK-E, if necessary.
DUG-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DUK-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DUK-E. Method 9 opacity tests a associated emission point DUK-E, if necessary.
DUN-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DUK-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DUK-E. Method 9 opacity tests a associated emission point DUK-E, if necessary.
DWC-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DUK-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DUK-E. Method 9 opacity tests a associated emission point DUK-E, if necessary.
DUQ3-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DUQ-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DUQ-E. Method 9 opacity tests a associated emission point DUQ-E, if necessary.
DUQ1-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DUQ-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DUQ-E. Method 9 opacity tests a associated emission point DUQ-E, if necessary.

	ecordkeeping/reporting which shall be used to demonstrate complian		Are you in compliance with all applicable
Emission Unit ID	Reporting	Testing	requirements for this emission unit? (Yes/No
HOP-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DTP-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
HFL-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DUG-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DUN-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DWC-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DUQ3-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DUQ1-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES

							Emission Unit D	escription				
Emission Unit ID	Emission Unit Name	Control Device	Emission Unit Description	Manufacturer	Model Number	Serial Number	Construction Date	Installation Date	Modification Date(s)	Design Capacity	Maximum Hourly Throughput	Maximum Annual Throughput
DUQ2-S	BF Loading Station	0	Box Fluff Loading Station Continuous operation 24 hr/day, 7 days/week, 30 weeks/year					1970		CONDIFENTIAL	CONDIFENTIAL	CONF
	Fluff PackOut Transfer	DUR-P/DUR-C	Bulk Fluff Packout Transfer							CONDIFENTIAL	CONDIFENTIAL	CONF
DUR-S			Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made				1970		CONDIFENTIAL	CONDIFENTIAL	CONF
	*A" PackOut Bin	0	"A" Packout Bin	for DuPont						CONDIFENTIAL	CONDIFENTIAL	CONF
DUE-S			Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made				1961		CONDIFENTIAL	CONDIFENTIAL	CONF
	"B" PackOut Bin	0	"B" Packout Bin	for DuPont						CONDIFENTIAL	CONDIFENTIAL	CONF
DUF-S			Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made				1961		CONDIFENTIAL	CONDIFENTIAL	CONF
	Central Vac System	DUS1-C/DUS2-	Central Vac System	for DuPont						CONDIFENTIAL	CONDIFENTIAL	CONF
DUS-S		С	Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made				<1985		CONDIFENTIAL	CONDIFENTIAL	CONF
	Bulk Cube Railcar Loading	0	Bulk Cube Railcar Loading	for DuPont						CONDIFENTIAL	CONDIFENTIAL	CONF
DRL-S			Semi-Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made for DuPont				<1988		CONDIFENTIAL	CONDIFENTIAL	CONF
	#1 BF Stor. Silo F-Vent	DUW-C	#1 Bulk Fluff Storage Silo Filtered Vent	for Dupont						CONDIFENTIAL	CONDIFENTIAL	CONF
GCA-S			Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made				1989		CONDIFENTIAL	CONDIFENTIAL	CONF
	#2 BF Stor. Silo F-Vent	DUX-C	#2 Bulk Fluff Storage Silo Filtered Vent	for DuPont						CONDIFENTIAL	CONDIFENTIAL	CONF
GCB-S			Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made				1989		CONDIFENTIAL	CONDIFENTIAL	CONF
				for DuPont						CONDIFENTIAL	CONDIFENTIAL	CONF

								Fuel Usage	Data				
	Maximu	um Operating S	chedule				1				Term of th	e Permit	T
Emission Unit ID	Hours/Day	Days/Week	Weeks/Year	Does This Emission Unit Combust Fuel? (Yes/No)	If Yes, is it? (Indirect	Maximum Design Heat	Type and Btu/hr Rating of Burners	List the Primary Fuel Type(s) and Secondary Fuel Type(s).	For Each Fuel Type Listed, Provide the Maximum Hourly and Annual Fuel Usage.	Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
DUQ2-S	24	7	30	No									
DUR-S	24	7	52	No									
DUE-S	24	7	52	No									
DUF-S	24	7	52	No									
DUS-S	24	7	52	No									
DRL-S	24	7	52	No									
GCA-S	24	7	52	No									
GCB-S	24	7	52	No									

Emission Unit ID DUQ2-S DUQ2-S DUR-S DUR-S DUR-S DUE-S DUF-S	nts) 4 s 1	Potential E PPH 4.45E-02 1.04E-04	Emissions TPY 1.95E-01	Hazardous Air Pollutants Formaldehyde	Potential PPH 2.97E-05	Emissions	Regulated Pollutants other than Criteria	Potential	Emissions	List the method(s) used to calculate the potential emissions (include dates of any stack tests
Unit ID Pollutants PM10 DUQ2-S PM10 DUQ3-S PM10 DUR-S PM10 DUR-S PM10 DUE-S PM10 DUE-S PM10 DUE-S PM10 DUF-S VOCS DUF-S VOCS DUF-S VOCS DUF-S VOCS DUF-S VOCS	nts) 4 s 1	4.45E-02				ТРҮ	other than Criteria			emissions (include dates of any stack tests
DU02-S VOCS PM10 DUR-S PM10 VOCS PM10 DUE-S PM10 VOCS PM10 DUF-S PM10 DUS-S PM10 DUS-S PM10 VOCS PM10 PM10	s 1		1.95E-01	Formaldehyde	2.97E-05		and HAP	PPH	ТРҮ	conducted, versions of software used, source and dates of emission factors, etc.).
UUR-S PM10 PM10 PM10 PM10 PM10 PM10 PM10 PM10 PM10 PM10 PM10 PM10 PM10 PM10		1.04E-04				1.30E-04	Acetic Acid		0.00E+00	EE
PM10 DUR-S PM10 DUE-S PM10 DUE-S PM10 DUF-S PM10 DUS-S PM10 DUS-S VOCs PM10 DUS-S VOCs PM10 VOCs PM10		1.04E-04								
DUR-S VOCS PM10 DUE-S PM10 DUE-S PM10 DUF-S PM10 DUF-S PM10 DUS-S PM10 DUS-S PM10 DRL-S PM10) 9		4.55E-04	Methanol		0.00E+00				
UUE-S PM10 DUE-S PM10 PM10 PM10 PM10 PM10 PM10 PM10 PM10 PM10 PM10 PM10 PM10 PM10		9.00E-04	3.59E-02	Formaldehyde	9.80E-04	9.82E-05	Acetic Acid		0.00E+00	MB
DUE-S PM10 DUE-S PM10 DUF-S VOCs VOCs PM10 DUS-S PM10 DUS-S PM10 DRL-S PM10 VOCs PM10										
DUE-S PM10 DUE-S PM10 DUF-S VOCs VOCs PM10 DUS-S PM10 DUS-S PM10 DRL-S PM10 VOCs PM10	s 4	4.65E-03	4.65E-03	Methanol	1.90E-03	1.88E-03				
UUF-S PM10 DUF-S PM10 PM10 PM10 DUS-S PM10 DUS-S PM10 DRL-S PM10		2.03E-03	8.89E-03	Formaldehyde	0.00E+00	0.00E+00	Acetic Acid		0.00E+00	EE
DUF-S PM10 DUF-S PM10 DUS-S VOCs VOCs PM10 DRL-S VOCs PM10										
DUF-S PM10 DUF-S PM10 DUS-S VOCs VOCs PM10 DRL-S VOCs PM10	s 4	4.10E-04	1.80E-03	Methanol	0.00E+00	6.13E-04				
VOCs PM10 DUS-S PM10 VOCs PM10 DRL-S VOCs PM10		1.69E-03	7.40E-03	Formaldehyde	0.00E+00	0.00E+00	Acetic Acid		0.00E+00	EE
DUS-S VOCs PM10 DRL-S VOCs PM10 DRL-S PM10										
DUS-S VOCS PM10 DRL-S VOCS VOCS PM10		3.42E-04	1.50E-03	Methanol	0.00E+00	5.00E-04				
DRL-S VOCs PM10) 1.	1.00E+00	2.00E-02	Formaldehyde		0.00E+00	Acetic Acid		0.00E+00	EE
DRL-S VOCs PM10	s		0.00E+00	Methanol		0.00E+00				
VOCs PM10		3.99E-03	3.15E-04	Formaldehyde	1.11E-03	8.78E-05	Acetic Acid	0.00E+00	0.00E+00	
PM10										
		2.21E-01	1.75E-02	Methanol	8.71E-03	6.88E-04				
CCAS) 1	1.35E-08	5.91E-08	Formaldehyde	8.00E-08	3.50E-07	Acetic Acid		0.00E+00	EE
GCA-S										
VOCs	s 6	6.20E-07	2.72E-06	Methanol		0.00E+00				
PM10) 1	1.35E-08	5.91E-08	Formaldehyde	8.00E-08	3.50E-07	Acetic Acid		0.00E+00	EE
GCB-S										
VOCs		6.20E-07	2.72E-06	Methanol		0.00E+00				

				Applicable Requirements
			F	or all applicable requirements listed above, provide monitoring/testin
	List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (<i>Note: Title V permit condition numbers alone are not the underlying applicable requirements</i>). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.	Permit Shield	Monitoring	Recordkeeping
	See appendix.	Upon application	Monthly visible emission observation monitoring at emission	Records of monthly visible emissions observations at
DUQ2-S		submittal	point DUQ-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	associated emission point DUQ-E. Method 9 opacity tests a associated emission point DUQ-E, if necessary.
DUR-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DUR-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DUR-E. Method 9 opacity tests al associated emission point DUR-E, if necessary.
DUE-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DUR-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DUR-E. Method 9 opacity tests at associated emission point DUR-E, if necessary.
DUF-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DUR-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DUR-E. Method 9 opacity tests a associated emission point DUR-E, if necessary.
DUS-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DUS-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DUS-E. Method 9 opacity tests a associated emission point DUS-E, if necessary.
DRL-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DUS-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DUS-E. Method 9 opacity tests a associated emission point DUS-E, if necessary.
GCA-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DUW-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DUW-E. Method 9 opacity tests a associated emission point DUW-E, if necessary.
GCB-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DUX-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DUX-E. Method 9 opacity tests at associated emission point DUX-E, if necessary.

	ecordkeeping/reporting which shall be used to demonstrate complian	ce.	
Emission Unit ID	Reporting	Testing	Are you in compliance with all applicable requirements for this emission unit? (Yes/No
DUQ2-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DUR-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DUE-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DUF-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DUS-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DRL-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
GCA-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
GCB-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES

							Emission Unit De	escription				
Emission Unit ID	Emission Unit Name	Control Device	Emission Unit Description	Manufacturer	Model Number	Serial Number	Construction Date		Modification Date(s)	Design Capacity	Maximum Hourly Throughput	Maximum Annual Throughput
	#3 BF Stor. Silo F-Vent	DUY-C	#3 Bulk Fluff Storage Silo Filtered Vent									
GCC-S			Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made for DuPont				1989		CONDIFENTIAL	CONDIFENTIAL	CONF
	#4 DE Ohen Olle E Mant	DU7.0	#4 Dulls Els# Olana an Olla Ellison d March							CONDIFENTIAL	CONDIFENTIAL	CONF
GCD-S	#4 BF Stor. Silo F-Vent	DUZ-C	#4 Bulk Fluff Storage Silo Filtered Vent Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made for DuPont				1989		CONDIFENTIAL	CONDIFENTIAL	CONF
										CONDIFENTIAL	CONDIFENTIAL	CONF
HES-S	#5 BF Stor. Silo F-Vent	HES-C	#5 Bulk Fluff Storage Silo Filtered Vent Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made				1998		CONDIFENTIAL	CONDIFENTIAL	CONF
				for DuPont						CONDIFENTIAL	CONDIFENTIAL	CONF
HET-S	#6 BF Stor. Silo F-Vent	HET-C	#6 Bulk Fluff Storage Silo Filtered Vent Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made for DuPont				1998		CONDIFENTIAL	CONDIFENTIAL	CONF
	SS Transfer Loop	DVA-P/DVA-C	SS Loop Conveyor							CONDIFENTIAL	CONDIFENTIAL	CONF
DSS-S				Custom made				1988		CONDIFENTIAL	CONDIFENTIAL	CONF
				for DuPont						CONDIFENTIAL	CONDIFENTIAL	CONF
	North Bulk Fluff Truck PackOut Station	DVB-P/DVB-C	North Bulk Fluff Truck PackOut Station Batch 24 hr/day, 7 days/week, 52 weeks/year	Custom made for DuPont				1988		CONDIFENTIAL	CONDIFENTIAL	CONF
										CONDIFENTIAL	CONDIFENTIAL	CONF
	SouthBulk Fluff Truck PackOut Station	U	South Bulk Fluff Truck PackOut Station Batch 24 hr/day, 7 days/week, 52 weeks/year	Custom made				1988		CONDIFENTIAL	CONDIFENTIAL	CONF
				for DuPont						CONDIFENTIAL	CONDIFENTIAL	CONF
DVL-S	North Load Out Silo	DVI-C	North Load Out Silo Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made				1989		CONDIFENTIAL	CONDIFENTIAL	CONF
				for DuPont						CONDIFENTIAL	CONDIFENTIAL	CONF

								Fuel Usage	Data	·			
	Maximu	um Operating S	chedule				1				Term of th	e Permit	T
Emission Unit ID	Hours/Day	Days/Week	Weeks/Year	Does This Emission Unit Combust Fuel? (Yes/No)	If Yes, is it? (Indirect	Maximum Design Heat	Type and Btu/hr Rating of Burners	List the Primary Fuel Type(s) and Secondary Fuel Type(s).	For Each Fuel Type Listed, Provide the Maximum Hourly and Annual Fuel Usage.	Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
GCC-S	24	7	52	No									
GCD-S	24	7	52	No									
HES-S	24	7	52	No									
HET-S	24	7	52	No									
DSS-S	24	7	52	No									
DVO-S	24	7	52	No									
DVP-S	24	7	52	No									
DVL-S	24	7	52	No									

						Emis	ssion Data			
		Potential	Emissions		Potential	Emissions		Potential	Emissions	
Emission Unit ID	Critera Pollutants	РРН	ТРҮ	Hazardous Air Pollutants	PPH	ТРҮ	Regulated Pollutants other than Criteria and HAP	РРН	ТРҮ	List the method(s) used to calculate the potential emissions (include dates of any stack tests conducted, versions of software used, source and dates of emission factors, etc.).
	PM10	1.35E-08	5.91E-08	Formaldehyde	8.00E-08	3.50E-07	Acetic Acid		0.00E+00	EE
GCC-S										
	VOCs	6.20E-07	2.72E-06	Methanol		0.00E+00				
	PM10	1.35E-08	5.91E-08	Formaldehyde	8.00E-08	3.50E-07	Acetic Acid		0.00E+00	EE
GCD-S										
	VOCs	6.20E-07	2.72E-06	Methanol		0.00E+00				
	PM10	1.35E-08	5.91E-08	Formaldehyde	8.00E-08	3.50E-07	Acetic Acid		0.00E+00	EE
HES-S										
	VOCs	6.20E-07	2.72E-06	Methanol		0.00E+00				
	PM10	1.35E-08	5.91E-08	Formaldehyde	8.00E-08	3.50E-07	Acetic Acid		0.00E+00	EE
HET-S										
	VOCs PM10	6.20E-07 3.79E-04	2.72E-06 5.38E-04	Methanol Formaldehyde	3.37E-02	0.00E+00 7.38E-05	Acetic Acid		0.00E+00	
DSS-S	FWIO	J./7L=04	0.30E-04	r unnaluenyue	3.37 E-02	7.30L-03			0.002+00	
	VOCs	5.90E+00	1.29E-02	Methanol	6.46E-01	1.41E-03				
	PM10	1.25E-02	4.32E-04	Formaldehyde	9.09E-04	3.14E-05	Acetic Acid		0.00E+00	MB
DVO-S										
	VOCs	4.31E-03	1.49E-04	Methanol	1.74E-03	6.03E-05				
	PM10	1.25E-02	4.32E-04	Formaldehyde	9.09E-04	3.14E-05	Acetic Acid		0.00E+00	MB
DVP-S										
	VOCs	4.31E-03	1.49E-04	Methanol	1.74E-03	6.03E-05				
DVL-S	PM10	2.44E-06	1.07E-05	Formaldehyde	2.09E-04	9.15E-04	Acetic Acid		0.00E+00	MB
	VOCs	1.71E-03	7.47E-03	Methanol		0.00E+00				

				Applicable Requirements
	List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u>		F	or all applicable requirements listed above, provide monitoring/testing
	with the condition number. (<i>Note: Title V permit condition numbers alone are not the underlying applicable requirements</i>). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.	Permit Shield	Monitoring	Recordkeeping
	See appendix.	Upon application	Monthly visible emission observation monitoring at emission	Records of monthly visible emissions observations at
GCC-S		submittal	point DUY-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	associated emission point DUY-E. Method 9 opacity tests at associated emission point DUY-E, if necessary.
GCD-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DUZ-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DUZ-E. Method 9 opacity tests at associated emission point DUZ-E, if necessary.
IES-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point HES-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point HES-E. Method 9 opacity tests at associated emission point HES-E, if necessary.
IET-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point HET-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point HET-E. Method 9 opacity tests at associated emission point HET-E, if necessary.
SS-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DVA-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DVA-E. Method 9 opacity tests at associated emission point DVA-E, if necessary.
VO-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DVB-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DVB-E. Method 9 opacity tests at associated emission point DVB-E, if necessary.
DVP-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DVB-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DVB-E. Method 9 opacity tests at associated emission point DVB-E, if necessary.
DVL-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DVI-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DVI-E. Method 9 opacity tests at associated emission point DVI-E, if necessary.

	ecordkeeping/reporting which shall be used to demonstrate complian	ce.	
Emission Unit ID	Reporting	Testing	Are you in compliance with all applicable requirements for this emission unit? (Yes/No
GCC-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
GCD-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
HES-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
HET-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DSS-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DVO-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DVP-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DVL-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES

							Emission Unit D	escription				
Emission Unit ID	Emission Unit Name	Control Device	Emission Unit Description	Manufacturer	Model Number	Serial Number	Construction Date	Installation Date	Modification Date(s)	Design Capacity	Maximum Hourly Throughput	Maximum Annual Throughput
	South Load Out Silo	DVJ-C	South Load Out Silo									
DVM-S			Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made for DuPont				1989		CONDIFENTIAL	CONDIFENTIAL	CONF
	East D6 Sparger	None	East D6 Sparger							1		
DVN-S			Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made for DuPont				2004		CONDIFENTIAL	CONDIFENTIAL	CONF
	Veeuum Unlooding	DWA D	Veeuum Heleoding							CONDIFENTIAL	CONDIFENTIAL	CONF
DWA-S	Vacuum Unloading	DWA-P	Vacuum Unloading Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made				1980's		CONDIFENTIAL	CONDIFENTIAL	CONF
				for DuPont						CONDIFENTIAL	CONDIFENTIAL	CONF
DWK-S	#4 Ext. Fines Screener	None	#4 Extruder Fines Screener Continuous operation 24 hr/day, 7 days/week, 52 weeks/year.					1971		CONDIFENTIAL	CONDIFENTIAL	CONF
										CONDIFENTIAL	CONDIFENTIAL	CONF
DSJ-S	#6 Ext. Dryer	None	#6 Extruder Dryer Continuous operation 24 hr/day, 7 days/week, 52 weeks/year					2004		CONDIFENTIAL	CONDIFENTIAL	CONF
										CONDIFENTIAL	CONDIFENTIAL	CONF
DSK-S	#3 Ext. Dryer	None	# 3 Extruder Dryer Continuous operation 24 hr/day, 7 days/week, 52 weeks/year					1970		CONDIFENTIAL	CONDIFENTIAL	CONF
		News	#4 Extended Deven							CONDIFENTIAL	CONDIFENTIAL	CONF
DSL-S	#4 Ext. Dryer	None	#4 Extruder Dryer Continuous operation 24 hr/day, 7 days/week, 52 weeks/year					1971		CONDIFENTIAL	CONDIFENTIAL	CONF
										CONDIFENTIAL	CONDIFENTIAL	CONF
DSM-S	#5 Ext. Dryer	None	#5 Extruder Dryer Continuous operation 24 hr/day, 7 days/week, 52 weeks/year					1981		CONDIFENTIAL	CONDIFENTIAL	CONF
										CONDIFENTIAL	CONDIFENTIAL	CONF
DQW-S	#4 Ext. Die Hood	None	#4 Extruder Die Hood Vent Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made for DuPont				1971		CONDIFENTIAL	CONDIFENTIAL	CONF
										CONDIFENTIAL	CONDIFENTIAL	CONF

				Fuel Usage Data									
	Maximu	im Operating S	chedule			1	1	-			Term of th	e Permit	
Emission Unit ID	Hours/Day	Days/Week	Weeks/Year	Does This Emission Unit Combust Fuel? (Yes/No)	If Yes, is it? (Indirect Fired/Direct Fired)	Input and/or Maximum	Type and Btu/hr Rating of Burners	List the Primary Fuel Type(s) and Secondary Fuel Type(s).	For Each Fuel Type Listed, Provide the Maximum Hourly and Annual Fuel Usage.	Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
DVM-S	24	7	52	No									
DVN-S	24	7	52	No									
DWA-S	24	7	52	No									
DWK-S	24	7	52	No									
DSJ-S	24	7	52	No									
DSK-S	24	7	52	No									
DSL-S	24	7	52	No									
DSM-S	24	7	52	No									
DQW-S	24	7	52	No									

						Emi	ssion Data			
		Potential	Emissions		Potential	Emissions		Potential	Emissions	
Emission Unit ID	Critera Pollutants	РРН	ТРҮ	Hazardous Air Pollutants	РРН	ТРҮ	Regulated Pollutants other than Criteria and HAP	PPH	ТРҮ	List the method(s) used to calculate the potential emissions (include dates of any stack tests conducted, versions of software used, source and dates of emission factors, etc.).
	PM10	2.44E-06	1.07E-05	Formaldehyde	2.09E-04	9.15E-04	Acetic Acid		0.00E+00	MB
DVM-S										
	VOCs	1.71E-03	7.47E-03	Methanol		0.00E+00				
DVN-S	PM10	1.66E-02	5.61E-02	Formaldehyde	1.07E-02	3.61E-02	Acetic Acid		0.00E+00	MB
	VOCs PM10	1.33E-02 3.00E-04	4.49E-02 1.10E-03	Methanol Formaldehyde	1.27E-03 1.00E-04	4.28E-03 4.38E-04	Acetic Acid		0.00E+00	MB
DWA-S	TWIG	3.00E-04	1.102-03	i omaluchyde	1.002-04	4.30L-04			0.002+00	UNIC .
	VOCs	2.00E-04	8.76E-04	Methanol		0.00E+00				
	PM10	1.63E-03	5.50E-03	Formaldehyde	2.42E-02	8.15E-02	Acetic Acid		0.00E+00	MB
DWK-S										
	VOCs	2.42E-02	8.15E-02	Methanol		0.00E+00				
DSJ-S	PM10	6.76E-03	2.28E-02	Formaldehyde	4.06E-02	1.37E-01	Acetic Acid		0.00E+00	
	VOCs	4.20E-02	1.42E-01	Mothanal	1.48E-03	4.99E-03				
	PM10	4.20E-02 6.71E-03	2.26E-02	Methanol Formaldehyde	1.48E-03 4.03E-02	4.99E-03 1.36E-01	Acetic Acid		0.00E+00	
DSK-S		0.772.00		. c.indexigue	1002 02	1002 01			0.002.000	
	VOCs	4.17E-02	1.41E-01	Methanol	1.47E-03	4.95E-03				
DSL-S	PM10	3.32E-03	1.12E-02	Formaldehyde	1.99E-02	6.70E-02	Acetic Acid		0.00E+00	
	VOCs	2.71E-02	9.14E-02	Methanol	7.24E-03	2.44E-02				
	PM10	4.77E-02	1.61E-01	Formaldehyde	2.72E-02	9.15E-02	Acetic Acid		0.00E+00	
DSM-S										
	VOCs	2.96E-02	9.96E-02	Methanol	9.88E-04	3.33E-03				
DQW-S	PM10		0.00E+00	Formaldehyde	1.43E-04	4.82E-04	Acetic Acid		0.00E+00	
	VOCs	1.95E-04	6.57E-04	Methanol		0.00E+00				

				Applicable Requirements
			F	or all applicable requirements listed above, provide monitoring/testing/r
Emission	List an applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> , with the condition number. (<i>Note: Title V permit condition numbers alone are not the underlying applicable requirements</i>). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.	Permit Shield	Monitoring	Recordkeeping
	See appendix.	Upon application	Monthly visible emission observation monitoring at emission	Records of monthly visible emissions observations at
DVM-S		submittal	point DVJ-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	associated emission point DVJ-E. Method 9 opacity tests at
DVN-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DVN-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DVN-E. Method 9 opacity tests at associated emission point DVN-E, if necessary.
DWA-S	See appendix.		Monthly visible emission observation monitoring at emission point DWA-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DWA-E. Method 9 opacity tests at associated emission point DWA-E, if necessary.
DWK-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DWK-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DWK-E. Method 9 opacity tests at associated emission point DWK-E, if necessary.
DSJ-S	See appendix.	submittal	Monthly visible emission observation monitoring at emission point DWU-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DWU-E. Method 9 opacity tests at associated emission point DWU-E, if necessary.
DSK-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DWV-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DWV-E. Method 9 opacity tests at associated emission point DWV-E, if necessary.
DSL-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DWW-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DWW-E. Method 9 opacity tests at associated emission point DWW-E, if necessary.
DSM-S	See appendix.	submittal	Monthly visible emission observation monitoring at emission point DWX-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point DWX-E. Method 9 opacity tests at associated emission point DWX-E, if necessary.
DQW-S	See appendix.	Upon application submittal	No specific monitoring is proposed.	No specific recordkeeping proposed

	ecordkeeping/reporting which shall be used to demonstrate complian	ce.	
Emission Unit ID	Reporting	Testing	Are you in compliance with all applicable requirements for this emission unit? (Yes/No
DVM-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DVN-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DWA-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DWK-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DSJ-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DSK-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DSL-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DSM-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DQW-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES

	-		-				Emission Unit D	escription	_		-	
Emission Unit ID	Emission Unit Name	Control Device	Emission Unit Description	Manufacturer	Model Number	Serial Number	Construction Date		Modification Date(s)	Design Capacity	Maximum Hourly Throughput	Maximum Annual Throughput
DWM-S	#5 Ext. Conc. Blower	DWD-P	#5 Extruder Concentrate Transfer System Semi-Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made				1981		CONDIFENTIAL	CONDIFENTIAL	CONF
	#1 Ext. Conc. Transfer	HED-P	#1 Extruder Concentrator Transfer	for DuPont						CONDIFENTIAL	CONDIFENTIAL	CONF
HEZ-S			System Semi-continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made for DuPont				1997		CONDIFENTIAL	CONDIFENTIAL	CONF
	#5 TPU Transfer	HEW-P	#5 Ext. TPU Transfer							CONDIFENTIAL	CONDIFENTIAL	CONF
HFX-S			Semi - Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made				1991		CONDIFENTIAL	CONDIFENTIAL	CONF
	#1 Ext. TPU Bin/Charge Sys.	HDW-P. HDW-	#1 Ext. TPU Transfer	for DuPont						CONDIFENTIAL	CONDIFENTIAL	CONF
HFY-S		с	Semi - Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made				1997		CONDIFENTIAL	CONDIFENTIAL	CONF
	West D6 Sparger	None	West D6 Sparger	for DuPont						CONDIFENTIAL	CONDIFENTIAL	CONF
HCA-S			Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made				2004		CONDIFENTIAL	CONDIFENTIAL	CONF
	#1 Eut Food Hoppor	HDW-C	#1 Fubruder Food Llennor	for DuPont						CONDIFENTIAL	CONDIFENTIAL	CONF
HGT-S	#1 Ext. Feed Hopper	nDw-C	#1 Extruder Feed Hopper Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made				1981		CONDIFENTIAL	CONDIFENTIAL	CONF
	#1 Ext. Side Feeder	0	#1 Extruder Die Hood Vent #1 Ext. Side	for DuPont						CONDIFENTIAL	CONDIFENTIAL	CONF
HEM-S			Feeder Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made				1997		CONDIFENTIAL	CONDIFENTIAL	CONF
	#1 Ext. Conc. Blender	0	#1 Extruder Concentrate Feed Ribbon	for DuPont						CONDIFENTIAL	CONDIFENTIAL	CONF
HFG-S		0	Blender Continuous operation 24 hr/day, 7 days/week, 52 weeks/year					1997		CONDIFENTIAL	CONDIFENTIAL	CONF
										CONDIFENTIAL	CONDIFENTIAL	CONF

				Fuel Usage Data						-			
	Maximu	um Operating S	chedule				1	, Ť			Term of th	e Permit	T
Emission Unit ID	Hours/Day	Days/Week	Weeks/Year	Does This Emission Unit Combust Fuel? (Yes/No)	If Yes, is it? (Indirect Fired/Direct Fired)	Input and/or Maximum	Type and Btu/hr Rating of Burners	List the Primary Fuel Type(s) and Secondary Fuel Type(s).	For Each Fuel Type Listed, Provide the Maximum Hourly and Annual Fuel Usage.	Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
DWM-S	24	7	52	No									
HEZ-S	24	7	52	No									
HFX-S	24	7	52	No									
HFY-S	24	7	52	No									
HCA-S	24	7	52	No									
HGT-S	24	7	52	No									
HEM-S	24	7	52	No									
HFG-S	24	7	52	No									

Regulated Pollutants emissions (include dates of any sta					sion Data							
Entring of length Optimization of charge PPH TPV Regulated Polititants of the main of the main			Emissions	Potential		Emissions	Potential		Emissions	Potential		
DWM.S Image: section of the section of th	y stack tests re used, source and	List the method(s) used to calculate emissions (include dates of any star conducted, versions of software usu dates of emission factors, etc.).		РРН	other than Criteria	ТРҮ	РРН	Hazardous Air Pollutants	ТРҮ	РРН		
VOCs 3.00E-04 1.31E-03 Methanol 1.21E-04 5.32E-04 Accit: Acid 0.00E+00 Accit: Acid 0.00E+00 EE HEZ.5 VOCs 0.00E+00 Methanol 1.21E-04 0.00E+00 Accit: Acid 0.00E+00 EE VOCs 0.00E+00 Methanol 0.00E+00 Accit: Acid 0.00E+00 EE PM10 0.00E+00 Methanol 0.00E+00 Accit: Acid 0.00E+00 EE HFX.5 0.00E+00 Methanol 0.00E+00 Accit: Acid 0.00E+00 EE HFX.5 0.00E+00 Methanol 0.00E+00 Accit: Acid 0.00E+00 EE HFX.5 0.00E+00 Methanol 0.00E+00 Accit: Acid 0.00E+00 EE HFY.5 0.00E+00 Methanol 0.00E+00 Accit: Acid 0.00E+00 EE HFY.5 0.00E+00 Methanol 1.07E+02 3.61E-02 Accit: Acid 0.00E+00 EE HCA-5 1.38E-04 1.66E-03 Methanol		MB	0.00E+00		Acetic Acid	2.77E-05	6.33E-06	Formaldehyde	7.35E-01		PM10	
PM10 1.86E-02 8.13E-02 Formaldehyde 0.00E+00 Acelic Acid 0.00E+00 EE HEZ.S VOCs 0.00E+00 Methanol 0.00E+00 Acelic Acid 0.00E+00 EE VOCs 0.00E+00 Formaldehyde 0.00E+00 Acelic Acid 0.00E+00 EE VOCs 0.00E+00 Methanol 0.00E+00 Acelic Acid 0.00E+00 EE VOCs 0.00E+00 Methanol 0.00E+00 Acelic Acid 0.00E+00 EE VOCs 0.00E+00 Methanol 0.00E+00 Acelic Acid 0.00E+00 EE HFY-S VOCs 0.00E+00 Methanol 0.00E+00 Acelic Acid 0.00E+00 EE HFY-S VOCs 0.00E+00 Methanol 1.07E-02 3.61E-02 Acelic Acid 0.00E+00 EE HCA-S VOCs 1.38E-02 4.49E-02 Methanol 1.07E-02 3.61E-02 Acelic Acid 0.00E+00 EE HGT-S VOCs 1.38E-04 1.												DWM-S
PM10 186E-02 8.13E-02 Formaldehyde 0.00E+00 Acelic Acid 0.00E+00 EE HEZ-S VOCs 0.00E+00 Methand 0.00E+00 0.00E+00 EE PM10 0.00E+00 Formaldehyde 0.00E+00 Acelic Acid 0.00E+00 EE VOCs 0.00E+00 Methand 0.00E+00 Acelic Acid 0.00E+00 EE VOCs 0.00E+00 Methand 0.00E+00 Acelic Acid 0.00E+00 EE VOCs 0.00E+00 Methand 0.00E+00 Acelic Acid 0.00E+00 EE HFY-S VOCs 0.00E+00 Methand 0.00E+00 Acelic Acid 0.00E+00 EE HFY-S VOCs 0.00E+00 Methand 1.07E-02 3.61E-02 Acelic Acid 0.00E+00 EE HGY-S VOCs 1.38E-02 4.49E-02 Methand 1.27E-03 4.28E-03 OLDE+00 EE HGT-S VOCs 4.24E-03 Methand 0.00E+00 OLDE+00						5.32E-04	1.21E-04	Methanol	1.31E-03	3.00E-04	VOCs	
VOCs 0.00E+00 Methanol 0.00E+00 Acetic Acid 0.00E+00 EE HFXS PM10 0.00E+00 Formaldehyde 0.00E+00 Acetic Acid 0.00E+00 EE VOCs 0.00E+00 Methanol 0.00E+00 Acetic Acid 0.00E+00 EE HFXS 0.00E+00 Methanol 0.00E+00 Acetic Acid 0.00E+00 EE HFY-S 0.00E+00 Methanol 0.00E+00 Acetic Acid 0.00E+00 EE HFY-S 0.00E+00 Methanol 0.00E+00 Acetic Acid 0.00E+00 EE HFY-S 0.00E+00 Methanol 1.07E+02 3.61E+02 Acetic Acid 0.00E+00 EE HGY-S 1.36E+02 5.61E+02 Formaldehyde 1.07E+02 3.61E+02 Acetic Acid 0.00E+00 EE HCA-S 1.33E+02 4.49E+04 1.66E+03 Formaldehyde 1.30E+04 4.38E+04 Acetic Acid 0.00E+00 EE HGT-S - - - -<		EE	0.00E+00		Acetic Acid							
PM10 0.00E+00 Formaldehyde 0.00E+00 Acetic Acid 0.00E+00 EE HFX.S 0.00E+00 Methanol 0.00E+00 0.00E+00 0.00E+00 EE VOCs 0.00E+00 Methanol 0.00E+00 Acetic Acid 0.00E+00 EE HFY-S PM10 2.37E-07 1.04E-06 Formaldehyde 0.00E+00 Acetic Acid 0.00E+00 EE VOCs 0.00E+00 Methanol 0.00E+00 Acetic Acid 0.00E+00 EE VOCs 0.00E+00 Methanol 0.00E+00 Acetic Acid 0.00E+00 EE VOCs 0.00E+00 Methanol 1.07E-02 3.61E-02 Acetic Acid 0.00E+00 EE HCA-S PM10 7.15E-06 2.41E-05 Formaldehyde 1.30E-04 4.28E-03												HEZ-S
PM10 0.00E+00 Formaldehyde 0.00E+00 Acelic Acid 0.00E+00 EE HFX.S 0.00E+00 Methanol 0.00E+00 Acelic Acid 0.00E+00 EE VOCs 0.00E+00 Methanol 0.00E+00 Acelic Acid 0.00E+00 EE HFY-S PM10 2.37E-07 1.04E-06 Formaldehyde 0.00E+00 Acelic Acid 0.00E+00 EE VOCs 0.00E+00 Methanol 0.00E+00 Acelic Acid 0.00E+00 EE VOCs 0.00E+00 Methanol 0.00E+00 Acelic Acid 0.00E+00 EE VOCs 1.38E-02 4.49E-02 Methanol 1.27E-03 4.28E-03 - HGT-S PM10 7.15E-06 2.41E-05 Formaldehyde 1.30E-04 4.38E-04 Acelic Acid 0.00E+00 EE HGT-S PM10 7.15E-06 2.41E-05 Formaldehyde 0.00E+00 Acelic Acid 0.00E+00 EE VOCs 4.94E-04 1.66E-03 Methanol						0.00F+00		Methanol	0.00F+00		VOCs	
HFX-S VOCs 0.00E+00 Methanol 0.00E+00 Acetic Acid 0.00E+00 EE HFY-S PM10 2.37E-07 1.04E-06 Formaldehyde 0.00E+00 Acetic Acid 0.00E+00 EE HFY-S PM10 1.06E-02 5.01E-02 Formaldehyde 0.00E+00 Acetic Acid 0.00E+00 EE VOCs 0.00E+00 Methanol 0.00E+00 Acetic Acid 0.00E+00 EE VOCs 0.00E+00 Methanol 1.07E-02 3.61E-02 Acetic Acid 0.00E+00 EE HCA-S PM10 1.66E-02 5.61E-02 Formaldehyde 1.07E-02 3.61E-02 Acetic Acid 0.00E+00 EE HCA-S PM10 7.15E-06 2.41E-05 Formaldehyde 1.30E-04 4.38E-04 Acetic Acid 0.00E+00 EE HGT-S PM10 7.15E-06 2.41E-05 Formaldehyde 1.30E-04 4.38E-04 Acetic Acid 0.00E+00 EE HGT-S PM10 7.15E-06 1.42E-05 Formaldehyde 0.00E+00 Acetic Acid 0.00E+00 EE		EE	0.00E+00		Acetic Acid							
PM10 2.37E-07 1.04E-06 Formaldehyde 0.00E+00 Acetic Acid 0.00E+00 EE HFY-S 0.00E+00 Methanol 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 EE HCA-S PM10 1.66E-02 5.61E-02 Formaldehyde 1.07E-02 3.61E-02 Acetic Acid 0.00E+00 EE HCA-S PM10 7.15E-06 2.41E-05 Formaldehyde 1.27E-03 4.28E-03 0.00E+00 EE HGT-S PM10 7.15E-06 2.41E-05 Formaldehyde 1.30E-04 4.38E-04 Acetic Acid 0.00E+00 EE HGT-S PM10 7.15E-06 1.49E-03 Methanol 0.00E+00 0.00E+00 EE HGT-S PM10 4.23E-06 1.49E-05 Formaldehyde 0.00E+00 Acetic Acid 0.00E+00 EE HEM-S OCCs 4.94E-04 1.66E-03 Methanol 0.00E+00 Acetic Acid 0.00E+00 EE HEM-S PM10												HFX-S
PM10 2.37E-07 1.04E-06 Formaldehyde 0.00E+00 Acetic Acid 0.00E+00 EE HFY-S VOCs 0.00E+00 Methanol 0.00E+00 0.00E+00 0.00E+00 EE HCA-S PM10 1.66E-02 5.61E-02 Formaldehyde 1.07E-02 3.61E-02 Acetic Acid 0.00E+00 EE HCA-S VOCs 1.33E-02 4.49E-02 Methanol 1.27E-03 4.28E-03						0.00E+00		Methanol	0.00E+00		VOCs	
VOCs 0.00E+00 Methanol 0.00E+00 Acelic Acid 0.00E+00 EE HCA-S PM10 1.66E-02 5.61E-02 Formaldehyde 1.07E-03 3.61E-02 Acelic Acid 0.00E+00 EE HCA-S VOCs 1.33E-02 4.49E-02 Methanol 1.27E-03 4.28E-03		EE	0.00E+00		Acetic Acid					2.37E-07		
PM10 1.66E-02 5.61E-02 Formaldehyde 1.07E-02 3.61E-02 Acetic Acid 0.00E+00 EE HCA-S VOCs 1.33E-02 4.49E-02 Methanol 1.27E-03 4.28E-03 -<												HFY-S
HCA-S VOCs 1.33E-02 4.49E-02 Methanol 1.27E-03 4.28E-03												
VOCs 1.33E-02 4.49E-02 Methanol 1.27E-03 4.28E-03 Acetic Acid 0.00E+00 EE HGT-S PM10 7.15E-06 2.41E-05 Formaldehyde 1.30E-04 4.38E-04 Acetic Acid 0.00E+00 EE HGT-S VOCs 4.94E-04 1.66E-03 Methanol 0.00E+00 EE HGT-S VOCs 4.94E-04 1.66E-03 Methanol 0.00E+00 <		EE	0.00E+00		Acetic Acid	3.61E-02	1.07E-02	Formaldehyde	5.61E-02	1.66E-02	PM10	
PM10 7.15E-06 2.41E-05 Formaldehyde 1.30E-04 4.38E-04 Acetic Acid 0.00E+00 EE HGT-S VOCs 4.94E-04 1.66E-03 Methanol 0.00E+00 EE PM10 4.23E-06 1.42E-05 Formaldehyde 0.00E+00 Acetic Acid 0.00E+00 EE HEM-S VOCs 0.00E+00 Methanol 0.00E+00 Acetic Acid 0.00E+00 EE PM10 7.42E-06 3.25E-05 Formaldehyde 0.00E+00 Acetic Acid 0.00E+00 EE												HCA-S
HGT-S VOCs 4.94E-04 1.66E-03 Methanol 0.00E+00 Acetic Acid 0.00E+00 EE PM10 4.23E-06 1.42E-05 Formaldehyde 0.00E+00 Acetic Acid 0.00E+00 EE VOCs 0.00E+00 Methanol 0.00E+00 Acetic Acid 0.00E+00 EE						4.28E-03	1.27E-03	Methanol	4.49E-02	1.33E-02	VOCs	
VOCs 4.94E-04 1.66E-03 Methanol 0.00E+00 Acetic Acid 0.00E+00 EE HEM-S PM10 4.23E-06 1.42E-05 Formaldehyde 0.00E+00 Acetic Acid 0.00E+00 EE VOCs 0.00E+00 Methanol 0.00E+00 O.00E+00 Constant EE VOCs 0.00E+00 Methanol 0.00E+00 O.00E+00 EE VOCs 0.00E+00 Methanol 0.00E+00 Acetic Acid 0.00E+00 EE		EE	0.00E+00		Acetic Acid	4.38E-04	1.30E-04	Formaldehyde	2.41E-05	7.15E-06	PM10	
PM10 4.23E-06 1.42E-05 Formaldehyde 0.00E+00 Acetic Acid 0.00E+00 EE HEM-S VOCs 0.00E+00 Methanol 0.00E+00 Acetic Acid 0.00E+00 EE VOCs 0.00E+00 Methanol 0.00E+00 Acetic Acid 0.00E+00 EE PM10 7.42E-06 3.25E-05 Formaldehyde 0.00E+00 Acetic Acid 0.00E+00 EE												HGT-S
HEM-S VOCs 0.00E+00 Methanol 0.00E+00 Acetic Acid 0.00E+00 EE PM10 7.42E-06 3.25E-05 Formaldehyde 0.00E+00 Acetic Acid 0.00E+00 EE								Methanol	1.66E-03			
VOCs 0.00E+00 Methanol 0.00E+00 Acetic Acid 0.00E+00 EE PM10 7.42E-06 3.25E-05 Formaldehyde 0.00E+00 Acetic Acid 0.00E+00 EE		EE	0.00E+00		Acetic Acid	0.00E+00		Formaldehyde	1.42E-05	4.23E-06	PM10	
PM10 7.42E-06 3.25E-05 Formaldehyde 0.00E+00 Acetic Acid 0.00E+00 EE												HEM-S
PM10 7.42E-06 3.25E-05 Formaldehyde 0.00E+00 Acetic Acid 0.00E+00 EE						0.00E+00		Methanol	0.00E+00		VOCs	
HFG-S		EE	0.00E+00		Acetic Acid					7.42E-06		
												HFG-S
VOCs 0.00E+00 Methanol 0.00E+00						0.00E - 00		Methanol	0.00E · 00		VOCs	

				Applicable Requirements
			F	or all applicable requirements listed above, provide monitoring/testing/r
	List an applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (<i>Note: Title V permit condition numbers alone are not the underlying applicable requirements</i>). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.	Permit Shield	Monitoring	Recordkeeping
DWM-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DZG-E/DZI-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72- hours.	Records of monthly visible emissions observations at associated emission point DZG-E/DZI-E. Method 9 opacity tests at associated emission point DZG-E/DZI-E, if necessary.
HEZ-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point DZG-E/DZI-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72- hours.	Records of monthly visible emissions observations at associated emission point DZG-E/DZI-E. Method 9 opacity tests at associated emission point DZG-E/DZI-E, if necessary.
HFX-S	See appendix.	submittal	Monthly visible emission observation monitoring at emission point DZG-E/DZI-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72- hours.	Records of monthly visible emissions observations at associated emission point DZG-E/DZI-E. Method 9 opacity tests at associated emission point DZG-E/DZI-E, if necessary.
HFY-S	See appendix.	submittal	Monthly visible emission observation monitoring at emission point DZG-E/DZI-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72- hours.	Records of monthly visible emissions observations at associated emission point DZG-E/DZI-E. Method 9 opacity tests at associated emission point DZG-E/DZI-E, if necessary.
HCA-S	See appendix.		Monthly visible emission observation monitoring at emission point HCA-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point HCA-E. Method 9 opacity tests at associated emission point HCA-E, if necessary.
HGT-S	See appendix.	submittal	Monthly visible emission observation monitoring at emission point HDW-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point HDW-E. Method 9 opacity tests at associated emission point HDW-E, if necessary.
HEM-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point HDW-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point HDW-E. Method 9 opacity tests at associated emission point HDW-E, if necessary.
HFG-S	See appendix.	submittal	Monthly visible emission observation monitoring at emission point HDW-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point HDW-E. Method 9 opacity tests at associated emission point HDW-E, if necessary.

	ecordkeeping/reporting which shall be used to demonstrate complian	ce.	
Emission Unit ID	Reporting	Testing	Are you in compliance with all applicable requirements for this emission unit? (Yes/No
DWM-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
HEZ-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
HFX-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
HFY-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
HCA-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
HGT-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
HEM-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
HFG-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES

							Emission Unit D	escription				
Emission Unit ID	Emission Unit Name	Control Device	Emission Unit Description	Manufacturer	Model Number	Serial Number	Construction Date	Installation Date	Modification Date(s)	Design Capacity	Maximum Hourly Throughput	Maximum Annual Throughput
	#1 Ext. Dryer	None	#1 Extruder Dryer									
HEY-S			Continuous operation 24 hr/day, 7 days/week, 52 weeks/year					1997		CONDIFENTIAL	CONDIFENTIAL	CONF
	#1 Ext. Screener	0	#1 Extruder Screener							CONDIFENTIAL	CONDIFENTIAL	CONF
HEB-S			Continuous operation 24 hr/day, 7 days/week, 52 weeks/year					1997		CONDIFENTIAL	CONDIFENTIAL	CONF
	D1 Sparger Cube Feed	HEE-P	D1 Sparger Cube Feed Conveyor							CONDIFENTIAL	CONDIFENTIAL	CONF
	Conveyor	IILL"F	Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made				1997		CONDIFENTIAL	CONDIFENTIAL	CONF
				for DuPont						CONDIFENTIAL	CONDIFENTIAL	CONF
HEE-S	#1 Snake Skin Stripper	HEF-C	# 1 Extruder Snakeskin Stripper Continuous operation 24 hr/day, 7 days/week, 52 weeks/year					2005		CONDIFENTIAL	CONDIFENTIAL	CONF
	#1 Ext. Cube Blender	HEO-C	#1 Extruder Cube Blender							CONDIFENTIAL	CONDIFENTIAL	CONF
HFH-S		neo-c	Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made				1997		CONDIFENTIAL	CONDIFENTIAL	CONF
				for DuPont						CONDIFENTIAL	CONDIFENTIAL	CONF
HFJ-S	#1 Ext. Fluff Bin	None	#1 Extruder Fluff Feed Bin Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made				1997		CONDIFENTIAL	CONDIFENTIAL	CONF
	#1 Fut Black Cana Company		#1 Extruder BLACK Concentrate Transfer	for DuPont						CONDIFENTIAL	CONDIFENTIAL	CONF
HFP-S	#1 Ext. Black Conc. Conveyor	nru-r	System Semi-batch operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made				1997		CONDIFENTIAL	CONDIFENTIAL	CONF
	#1 Fut Dia Haad	None	#1 Futeralog Die Lleen Vent	for DuPont						CONDIFENTIAL	CONDIFENTIAL	CONF
HFV-S	#1 Ext. Die Hood	None	#1 Extruder Die Hood Vent Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made for DuPont				1997		CONDIFENTIAL	CONDIFENTIAL	CONF
	CRB Transfer Loop	HRB-P/HRB-C	CRB Loop Conveyor							CONDIFENTIAL	CONDIFENTIAL	CONF
HRB-S				Custom made				1960		CONDIFENTIAL	CONDIFENTIAL	CONF
				for DuPont						CONDIFENTIAL	CONDIFENTIAL	CONF

				Fuel Usage Data									
	Maximu	im Operating S	chedule		-						Term of th	e Permit	
Emission Unit ID	Hours/Day	Days/Week	Weeks/Year	Does This Emission Unit Combust Fuel? (Yes/No)	If Yes, is it? (Indirect Fired/Direct Fired)	Input and/or Maximum	Type and Btu/hr Rating of Burners	List the Primary Fuel Type(s) and Secondary Fuel Type(s).	For Each Fuel Type Listed, Provide the Maximum Hourly and Annual Fuel Usage.	Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
HEY-S	24	7	52	No									
HEB-S	24	7	52	No									
HFD-S	24	7	52	No									
HEE-S	24	7	52	No									
HFH-S	24	7	52	No									
HFJ-S	24	7	52	No									
HFP-S	24	7	52	No									
HFV-S	24	7	52	No									
HRB-S	24	7	52	No									

						Emi	ssion Data			
		Potential	Emissions		Potential	Emissions		Potential	Emissions	
Emission Unit ID	Critera Pollutants	РРН	ТРҮ	Hazardous Air Pollutants	РРН	ТРҮ	Regulated Pollutants other than Criteria and HAP	PPH	ТРҮ	List the method(s) used to calculate the potential emissions (include dates of any stack tests conducted, versions of software used, source and dates of emission factors, etc.).
	PM10	4.65E-03	1.57E-02	Formaldehyde	2.11E-03	7.09E-03	Acetic Acid		0.00E+00	EE
HEY-S										
	VOCs	2.40E-03	8.09E-03	Methanol		0.00E+00				
	PM10	7.89E-03	1.09E-02	Formaldehyde	2.61E-02	8.81E-02	Acetic Acid		0.00E+00	EE
HEB-S										
	VOCs	4.05E-02	1.37E-01	Methanol	3.77E-03	1.27E-02				
	PM10	8.64E-05	3.79E-04	Formaldehyde	3.91E-02	1.32E-01	Acetic Acid		0.00E+00	EE
HFD-S										
	VOCs	4.21E-02	1.42E-01	Methanol		0.00E+00				
	PM10	1.51E-05	2.98E-06	Formaldehyde	1.00E-04	4.38E-04	Acetic Acid		0.00E+00	EE
HEE-S										
	VOCs	2.00E-04	8.76E-04	Methanol		0.00E+00				
HFH-S	PM10	7.20E-08	2.42E-07	Formaldehyde	7.16E-02	2.41E-01	Acetic Acid		0.00E+00	EE
	VOCs	1.20E-01	4.05E-01	Mothenel		0.00E+00				
	PM10	1.20E-01 1.32E-01	4.05E-01 3.31E-02	Methanol Formaldehyde	1.97E-04	3.62E-05	Acetic Acid		0.00E+00	EE
HFJ-S	TWIG	1.322-01	J.JTE-02	ronnauenyue	1.772-04	3.022-03			0.002+00	
	VOCs	9.32E-03	1.72E-03	Methanol	3.77E-03	6.95E-04				
HFP-S	PM10	1.86E-02	8.13E-02	Formaldehyde		0.00E+00	Acetic Acid		0.00E+00	EE
	VOCs		0.00E+00	Methanol		0.00E+00				
	PM10		0.00E+00	Formaldehyde	1.43E-04	4.82E-04	Acetic Acid		0.00E+00	EE
HFV-S	VOCs	3.38E-04	1.14E-03	Methanol		0.00E+00				
	PM10	1.08E-03	1.15E-03	Formaldehyde	4.40E-02	9.63E-05	Acetic Acid		0.00E+00	EE
HRB-S										
	VOCs	7.70E+00	1.69E-02	Methanol	8.43E-01	1.85E-03			1	

				Applicable Requirements
			F	or all applicable requirements listed above, provide monitoring/testing/r
Emission	List an applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> , with the condition number. (<i>Note: Title V permit condition numbers alone are not the</i> <i>underlying applicable requirements</i>). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.	Permit Shield	Monitoring	Recordkeeping
	See appendix.	Upon application	Monthly visible emission observation monitoring at emission	Records of monthly visible emissions observations at
HEY-S		submittal	point HDY-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	associated emission point HDY-E. Method 9 opacity tests at
HEB-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point HDY-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point HDY-E . Method 9 opacity tests at associated emission point HDY-E , if necessary.
HFD-S	See appendix.		Monthly visible emission observation monitoring at emission point HEE-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point HEE-E. Method 9 opacity tests at associated emission point HEE-E, if necessary.
HEE-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point HEG-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point HEG-E. Method 9 opacity tests at associated emission point HEG-E, if necessary.
HFH-S	See appendix.	submittal	Monthly visible emission observation monitoring at emission point HEO-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point HEO-E. Method 9 opacity tests at associated emission point HEO-E, if necessary.
HFJ-S	See appendix.		Monthly visible emission observation monitoring at emission point HEQ-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point HEQ-E. Method 9 opacity tests at associated emission point HEQ-E, if necessary.
HFP-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point HFP-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point HFP-E. Method 9 opacity tests at associated emission point HFP-E, if necessary.
HFV-S	See appendix.	Upon application submittal	No specific monitoring is proposed.	No specific recordkeeping proposed
HRB-S	See appendix.	Upon application submittal	Monthly visible emission observation monitoring at emission point HRB-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point HRB-E. Method 9 opacity tests at associated emission point HRB-E, if necessary.

	ecordkeeping/reporting which shall be used to demonstrate complian	ce.	
Emission Unit ID	Reporting	Testing	Are you in compliance with all applicable requirements for this emission unit? (Yes/No
HEY-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
HEB-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
HFD-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
HEE-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
HFH-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
HFJ-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
HFP-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
HFV-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
HRB-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES

		-		-			Emission Unit D	escription	-			
Emission Unit ID	Emission Unit Name	Control Device	Emission Unit Description		Model Number	Serial Number	Construction Date	Installation Date	Modification Date(s)	Design Capacity	Maximum Hourly Throughput	Maximum Annual Throughput
DWF-S	#5 Ext. Screener	None	#5 Extrudert Screener Continuous operation 24 hr/day, 7 days/week, 52 weeks/year					1981		CONDIFENTIAL	CONDIFENTIAL	CONF
	#5 Dis Used Mark	N	# E Estenden Die Hand Mant							CONDIFENTIAL	CONDIFENTIAL	CONF
HGW-S	#5 Die Head Vent	None	# 5 Extruder Die Hood Vent Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made for DuPont				1981		CONDIFENTIAL	CONDIFENTIAL	CONF
										CONDIFENTIAL	CONDIFENTIAL	CONF
DQO-S	#6 Ext. Screw Conveyor	None	#6 Extruder Screw Conveyor Vent Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made for DuPont				2004		CONDIFENTIAL	CONDIFENTIAL	CONF
										CONDIFENTIAL	CONDIFENTIAL	CONF
DQT-S	#4 Ext. Conc. Blender	None	#4 Extruder Concentrate Feed Blender Semi-batch operation 24 hr/day, 7 days/week, 52 weeks/year					1988		CONDIFENTIAL	CONDIFENTIAL	CONF
										CONDIFENTIAL	CONDIFENTIAL	CONF
DRA-S	#3 Ext. Screw Conv.	None	#3 Extruder Screw Conveyor Vent Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made				1960		CONDIFENTIAL	CONDIFENTIAL	CONF
				for DuPont						CONDIFENTIAL	CONDIFENTIAL	CONF
DRB-S	#4 Ext. Screw Conveyor	None	#4 Extruder Screw Conveyor Vent Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made for DuPont				1972		CONDIFENTIAL	CONDIFENTIAL	CONF
										CONDIFENTIAL	CONDIFENTIAL	CONF
DRD-S	#5 Ext. Screw Conveyor	None	Screw Conveyor Vent Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made for DuPont				1981		CONDIFENTIAL	CONDIFENTIAL	CONF
										CONDIFENTIAL	CONDIFENTIAL	CONF

			1					Fuel Usage	Data				
	Maximu	um Operating S	chedule					·			Term of th	e Permit	
Emission Unit ID		Days/Week	Weeks/Year	Does This Emission Unit Combust Fuel? (Yes/No)	If Yes, is it? (Indirect	Maximum Design Heat Input and/or Maximum Horsepower Rating	Type and Btu/hr Rating of Burners	Secondary Fuel	For Each Fuel Type Listed, Provide the Maximum Hourly and Annual Fuel Usage.	Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
DWF-S	24	7	52	No									
HGW-S	24	7	52	No									
DQO-S	24	7	52	No									
DQT-S	24	7	52	No									
DRA-S	24	7	52	No									
DRB-S	24	7	52	No									
DRD-S	24	7	52	No									

						Emis	sion Data			
		Potential	Emissions		Potential	Emissions		Potential	Emissions	
Emission Unit ID	Critera Pollutants	РРН	ТРҮ	Hazardous Air Pollutants	РРН	ТРҮ	Regulated Pollutants other than Criteria and HAP	РРН	ТРҮ	List the method(s) used to calculate the potential emissions (include dates of any stack tests conducted, versions of software used, source and dates of emission factors, etc.).
	PM10	1.63E-03	5.48E-03	Formaldehyde	1.32E-02	4.46E-02	Acetic Acid		0.00E+00	MB
DWF-S										
	VOCs	1.52E-03	5.13E-03	Methanol		0.00E+00				
HGW-S	PM10	0.00E+00	0.00E+00	Formaldehyde	1.46E-04	4.92E-04	Acetic Acid		0.00E+00	EE
	VOCs	2.47E-04	8.32E-04	Methanol		0.00E+00				
	PM10	9.36E-03	3.15E-02	Formaldehyde	1.30E-04	4.38E-04	Acetic Acid		0.00E+00	
DQO-S										
	VOCs	5.98E-04	2.01E-03	Methanol		0.00E+00				
DQT-S	PM10	9.65E-06	3.25E-05	Formaldehyde		0.00E+00	Acetic Acid		0.00E+00	
	VOCs		0.00E+00	Methanol		0.00E+00				
	PM10	7.15E-03	2.41E-02	Formaldehyde	1.30E-04	4.38E-04	Acetic Acid		0.00E+00	
DRA-S										
	VOCs	4.55E-04	1.53E-03	Methanol		0.00E+00				
	PM10	4.68E-08	2.41E-05	Formaldehyde	1.30E-04	4.38E-04	Acetic Acid		0.00E+00	
DRB-S										
	VOCs	4.55E-04	1.53E-03	Methanol		0.00E+00				
DRD-S	PM10	2.60E-04	8.76E-04	Formaldehyde	1.30E-04	4.38E-04	Acetic Acid		0.00E+00	
	VOCs	5.20E-04	1.75E-03	Methanol	0.00E+00	0.00E+00				

				Applicable Requirements
			F	or all applicable requirements listed above, provide monitoring/testing
Emission	List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (<i>Note: Title V permit condition numbers alone are not the underlying applicable requirements</i>). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.	Permit Shield	Monitoring	Recordkeeping
DWF-S	See appendix.		Monthly visible emission observation monitoring at emission point HGW-E, with no more than 45 operating days between any observations. Method 9, six-minute opacity test, if excess visible emissions are not corrected within 72-hours.	Records of monthly visible emissions observations at associated emission point HGW-E. Method 9 opacity tests at associated emission point HGW-E, if necessary.
HGW-S	See appendix.	Upon application submittal	No specific monitoring is proposed.	No specific recordkeeping proposed
DQO-S	See appendix.	Upon application submittal	No specific monitoring is proposed.	No specific recordkeeping proposed
DQT-S	See appendix.	Upon application submittal	No specific monitoring is proposed.	No specific recordkeeping proposed
DRA-S	See appendix.	Upon application submittal	No specific monitoring is proposed.	No specific recordkeeping proposed
DRB-S	See appendix.	Upon application submittal	No specific monitoring is proposed.	No specific recordkeeping proposed
DRD-S	See appendix.	Upon application submittal	No specific monitoring is proposed.	No specific recordkeeping proposed

	ecordkeeping/reporting which shall be used to demonstrate complian		
Emission Unit ID	Reporting	Testing	Are you in compliance with all applicable requirements for this emission unit? (Yes/N
	No reporting requirements unless specifically requested by	No testing requirement unless specifically requested by the	YES
DWF-S	the Director	Director.	
	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DQO-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DRA-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DRB-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DRD-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES

							Emission Unit De	escription				
Emission Unit ID	Emission Unit Name	Control Device	Emission Unit Description	Manufacturer	Model Number	Serial Number	Construction Date	Installation Date	Modification Date(s)	Design Capacity	Maximum Hourly Throughput	Maximum Annual Throughput
DTD-S	#3 Ext. Add. Feeder	None	#3 Extruder Additive Feeder/Blender Continuous operation 24 hr/day, 7 days/week, 52 weeks/year					1989		CONDIFENTIAL	CONDIFENTIAL	CONF
	#6 Ext. Melt Cut. Tank	None	#6 Extruder Melt Cutter Tank							CONDIFENTIAL	CONDIFENTIAL	CONF
DTQ-S		HUNC	Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made for DuPont				2004		CONDIFENTIAL	CONDIFENTIAL	CONF
	#3 Ext. Melt Cut Tank	None	#3 Extruder Melt Cutter Tank							CONDIFENTIAL	CONDIFENTIAL	CONF
DTR-S			Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made for DuPont				1960		CONDIFENTIAL	CONDIFENTIAL	CONF
	#4 Ext. Melt Cut. Tank	None	#4 Extruder Melt Cutter Tank							CONDIFENTIAL	CONDIFENTIAL	CONF
DTS-S		None	Continuous Operation (24 hr/day, 7 days/wk, and 52 weeks/year)	Custom made for DuPont				1972		CONDIFENTIAL	CONDIFENTIAL	CONF
	#5 Ext. Melt Cut Tank	None	#5 Extruder Melt Cutter Tank							CONDIFENTIAL	CONDIFENTIAL	CONF
DTT-S			Continuous Operation (24 hr/day, 7 days/wk, and 52 weeks/year)	Custom made for DuPont				1981		CONDIFENTIAL	CONDIFENTIAL	CONF
	#3 Ext. Net Wt. Hopper	None	#3 Extruder Net Weigh Hopper							CONDIFENTIAL	CONDIFENTIAL	CONF
DUO-S			Continuous Operation 24 hr/day, 7 day/week, 52 weeks/year					1989		CONDIFENTIAL	CONDIFENTIAL	CONF CONF
DWG-S	#6 Ext. Screener	None	#6 Extruder Screener Continuous Operation					2004		CONDIFENTIAL	CONDIFENTIAL	CONF
			24 hr/day, 7 day/week, 52 weeks/year							CONDIFENTIAL	CONDIFENTIAL	CONF
DWH-S	#3 Ext. Screener	None	#3 Extruder Screener Continuous Operation					1960		CONDIFENTIAL	CONDIFENTIAL	CONF
	#6 Ext. Feed Hopper	None	24 hr/day, 7 day/week, 52 weeks/year #6 Extruder Feed Hopper							CONDIFENTIAL	CONDIFENTIAL	CONF
DWI-S	#o exi. reeu hopper	none	Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made for DuPont				2004		CONDIFENTIAL	CONDIFENTIAL	CONF
	#4.Ext.Excellence	Neze								CONDIFENTIAL	CONDIFENTIAL	CONF
DWJ-S	#4 Ext. Feed Hopper	None		Custom made for DuPont				1972		CONDIFENTIAL	CONDIFENTIAL	CONF
	#4 Ext. Fines Drum	None	#4 Extruder Off-Grade Box							CONDIFENTIAL	CONDIFENTIAL	CONF
DWL-S			Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	disposable				1972		CONDIFENTIAL	CONDIFENTIAL	CONF
				item						CONDIFENTIAL	CONDIFENTIAL	CONF

								Fuel Usage	Data				
	Maximu	um Operating S	chedule					· · · · ·			Term of th	e Permit	
Emission Unit ID	Hours/Day	Days/Week	Weeks/Year	Does This Emission Unit Combust Fuel? (Yes/No)	If Yes, is it? (Indirect Fired/Direct Fired)	Maximum Design Heat Input and/or Maximum Horsepower Rating	Type and Btu/hr Rating of Burners	List the Primary Fuel Type(s) and Secondary Fuel Type(s).	For Each Fuel Type Listed, Provide the Maximum Hourly and Annual Fuel Usage.	Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
DTD-S	24	7	52	No									
DTQ-S	24	7	52	No									
DTR-S	24	7	52	No									
DTS-S	24	7	52	No									
DTT-S	24	7	52	No									
DUO-S	24	7	52	No									
DWG-S	24	7	52	No									
DWH-S	24	7	52	No									
DWI-S	24	7	52	No									
DWJ-S	24	7	52	No									
DWL-S	24	7	52	No									

						Emi	ssion Data			
		Potential	Emissions		Potential	Emissions		Potential	Emissions	
Emission Unit ID	Critera Pollutants	РРН	ТРҮ	Hazardous Air Pollutants	РРН	ТРҮ	Regulated Pollutants other than Criteria and HAP	PPH	ТРҮ	List the method(s) used to calculate the potential emissions (include dates of any stack tests conducted, versions of software used, source and dates of emission factors, etc.).
	PM10	5.50E-06	2.41E-05	Formaldehyde	1.00E-04	4.38E-04	Acetic Acid		0.00E+00	
DTD-S										
	VOCs	3.50E-04	1.53E-03	Methanol		0.00E+00				
	PM10		0.00E+00	Formaldehyde		0.00E+00	Acetic Acid		0.00E+00	MB
DTQ-S										
	VOCs	3.74E-04	1.26E-03	Methanol		0.00E+00				
	PM10		0.00E+00	Formaldehyde		0.00E+00	Acetic Acid		0.00E+00	MB
DTR-S										
	VOCs	3.77E-04	1.27E-03	Methanol		0.00E+00				
DTS-S	PM10		0.00E+00	Formaldehyde		0.00E+00	Acetic Acid		0.00E+00	MB
	VOCs	3.77E-04	1.27E-03	Methanol		0.00E+00				
DTT-S	PM10		0.00E+00	Formaldehyde		0.00E+00	Acetic Acid		0.00E+00	MB
	VOCs	3.77E-04	1.27E-03	Methanol		0.00E+00				
DUO-S	PM10	8.67E-03	0.00E+00	Formaldehyde	1.30E-04	4.38E-04	Acetic Acid		0.00E+00	EE
	VOCs	5.20E-04	1.75E-03	Methanol		0.00E+00				
DWG-S	PM10	1.30E-01	4.38E-01	Formaldehyde	1.26E-01	4.25E-01	Acetic Acid		0.00E+00	MB
	VOCs PM10	1.26E-01 9.10E-03	4.25E-01 3.07E-02	Methanol Formaldehyde	0.00E+00 1.26E-01	0.00E+00 4.25E-01	Acetic Acid		0.00E+00	MB
DWH-S							Acetic Aciu		0.00E+00	IVIB
	VOCs PM10	1.26E-01 7.15E-06	4.25E-01 2.41E-05	Methanol Formaldehyde	0.00E+00 1.30E-04	0.00E+00 4.38E-04	Acetic Acid		0.00E+00	MB
DWI-S	PINITO	7.13E-00	2.4TE-03	Formaldenyde	1.30E-04	4.30E-04			0.00E+00	UNIC
	VOCs	4.55E-04	1.53E-03	Methanol		0.00E+00				
	PM10	7.15E-06	2.41E-05	Formaldehyde	1.30E-04	4.38E-04	Acetic Acid		0.00E+00	MB
DWJ-S										
	VOCs	4.55E-04	1.53E-03	Methanol		0.00E+00				
DWL-S	PM10		0.00E+00	Formaldehyde		0.00E+00	Acetic Acid		0.00E+00	MB
	VOCs		0.00E+00	Methanol		0.00E+00				

				Applicable Requirements
				For all applicable requirements listed above, provide monitoring/testing
	List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (<i>Note: Title V permit condition numbers alone are not the underlying applicable requirements</i>). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.	Permit Shield	Monitoring	Recordkeeping
DTD-S	See appendix.	Upon application submittal	No specific monitoring is proposed.	No specific recordkeeping proposed
DTQ-S	See appendix.	Upon application submittal	No specific monitoring is proposed.	No specific recordkeeping proposed
DTR-S	See appendix.	Upon application submittal	No specific monitoring is proposed.	No specific recordkeeping proposed
DTS-S	See appendix.	Upon application submittal	No specific monitoring is proposed.	No specific recordkeeping proposed
DTT-S	See appendix.	Upon application submittal	No specific monitoring is proposed.	No specific recordkeeping proposed
DUO-S	See appendix.	Upon application submittal	No specific monitoring is proposed.	No specific recordkeeping proposed
DWG-S	See appendix.	Upon application submittal	No specific monitoring is proposed.	No specific recordkeeping proposed
DWH-S	See appendix.	Upon application submittal	No specific monitoring is proposed.	No specific recordkeeping proposed
DWI-S	See appendix.	Upon application submittal	No specific monitoring is proposed.	No specific recordkeeping proposed
DWJ-S	See appendix.	Upon application submittal	No specific monitoring is proposed.	No specific recordkeeping proposed
DWL-S	See appendix.	Upon application submittal	No specific monitoring is proposed.	No specific recordkeeping proposed

	ecordkeeping/reporting which shall be used to demonstrate complian	ce	
Emission Unit ID	Reporting	Testing	Are you in compliance with all applicable requirements for this emission unit? (Yes/No
DTD-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DTQ-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DTR-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DTS-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DTT-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DUO-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DWG-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DWH-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DWI-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DWJ-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
DWL-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES

							Emission Unit De	escription				
Emission Unit ID	Emission Unit Name	Control Device	Emission Unit Description	Manufacturer	Model Number	Serial Number	Construction Date	Installation Date	Modification Date(s)	Design Capacity	Maximum Hourly Throughput	Maximum Annual Throughput
DWP-S	#5 Ext. Mix Conveyor	None	#5 Extruder Mix Conveyor Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made for DuPont				1981		CONDIFENTIAL	CONDIFENTIAL	CONF
HCU-S	#5 Ext. Add. Feeder	None	#5 Extruder Additive Feeder Continuous operation 24 hr/day, 7 days/week, 52 weeks/year					1981		CONDIFENTIAL	CONDIFENTIAL	CONF
										CONDIFENTIAL	CONDIFENTIAL	CONF
HCV-S	#5 Ext. Blender Valve	None	#5 Extruder Blender Feed Valve Continuous operation 24 h/day, 7 days/week, 52 weeks/year					1981		CONDIFENTIAL	CONDIFENTIAL	CONF CONF
HCY-S	#5 Ext. Wax Feeder	None	#5 Extruder Wax Feeder Continuous operation 24 hr/day, 7 days/week, 52 weeks/year					1981		CONDIFENTIAL	CONDIFENTIAL	CONF
										CONDIFENTIAL	CONDIFENTIAL	CONF
HDZ-S	#1 Ext. Melt Cut. Tank	None	#1 Extruder Melt Cutter Tank Continuous Operation 24 hr/yday, 7 days/week, 52 weeks/year	Custom made for DuPont				1997		CONDIFENTIAL	CONDIFENTIAL	CONF
										CONDIFENTIAL	CONDIFENTIAL	CONF
HEA-S	#1 Ext. Wax Feeder	None	#1 Extruder Wax Feeder Continuous operation 24 hr/day, 7 days/week, 52 weeks/year					1997		CONDIFENTIAL	CONDIFENTIAL	CONF
										CONDIFENTIAL	CONDIFENTIAL	CONF
HED-S	#1 Ext. Screw Conveyor	None	#1 Extruder Screw Conveyor Vent Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made for DuPont				1997		CONDIFENTIAL	CONDIFENTIAL	CONF
				TOF DUPOIL						CONDIFENTIAL	CONDIFENTIAL	CONF
HFQ-S	#1 Ext. Net Wt. Hopper	None	#1 Extruder Net Weight Hopper Continuous operation 24 hr/day, 7 days/week, 52 weeks/year					1997		CONDIFENTIAL	CONDIFENTIAL	CONF
										CONDIFENTIAL	CONDIFENTIAL	CONF
HFW-S	#1 Ext. Screener Waste Drum	None	#1 Extruder Screener Waste Drum Continuous Operation 24 hr/day, 7 days/week, 52 weeks/year	disposable item				1997		CONDIFENTIAL	CONDIFENTIAL	CONF
	#5 Ext. Feed Hopper	None	#5 Extruder Feed Hopper							CONDIFENTIAL	CONDIFENTIAL	CONF
HGB-S			Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	Custom made for DuPont				1981		CONDIFENTIAL	CONDIFENTIAL	CONF
										CONDIFENTIAL	CONDIFENTIAL	CONF
HGD-S	#5 Ext. Longs Drum	None	#5 Extruder Longs Drum Continuous operation 24 hr/day, 7 days/week, 52 weeks/year	disposable item				1981		CONDIFENTIAL	CONDIFENTIAL	CONF
				item						CONDIFENTIAL	CONDIFENTIAL	CONF

								Fuel Usage	Data				
	Maximu	um Operating S	chedule					1			Term of th	e Permit	1
Emission Unit ID	Hours/Day	Days/Week	Weeks/Year	Does This Emission Unit Combust Fuel? (Yes/No)	If Yes, is it? (Indirect Fired/Direct Fired)	Maximum Design Heat Input and/or Maximum Horsepower Rating	Type and Btu/hr Rating of Burners	List the Primary Fuel Type(s) and Secondary Fuel Type(s).	For Each Fuel Type Listed, Provide the Maximum Hourly and Annual	Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
DWP-S	24	7	52	No									
HCU-S	24	7	52	No									
HCV-S	24	7	52	No									
HCY-S	24	7	52	No									
HDZ-S	24	7	52	No									
HEA-S	24	7	52	No									
HED-S	24	7	52	No									
HFQ-S	24	7	52	No									
HFW-S	24	7	52	No									
HGB-S	24	7	52	No									
HGD-S	24	7	52	No									

						Emi	ssion Data			
		Potential	Emissions		Potential	Emissions		Potential	Emissions	
Emission Unit ID	Critera Pollutants	РРН	ТРҮ	Hazardous Air Pollutants	РРН	ТРҮ	Regulated Pollutants other than Criteria and HAP	РРН	ТРҮ	List the method(s) used to calculate the potential emissions (include dates of any stack tests conducted, versions of software used, source and dates of emission factors, etc.).
	PM10	2.60E-04	8.76E-04	Formaldehyde	1.30E-04	4.38E-04	Acetic Acid		0.00E+00	MB
DWP-S										
	VOCs PM10	5.20E-04 0	1.75E-03 3.83E-05	Methanol Formaldehyde	0	0.00E+00 0.00E+00	Acetic Acid	0	0.00E+00	EE
HCU-S	T MITO	0	3.032-03	Tomadenyde	U	0.002+00		0	0.002+00	
	VOCs	0	0.00E+00	Methanol	0	0.00E+00				
HCV-S	PM10	0	4.38E-04	Formaldehyde	0	4.38E-04	Acetic Acid	0	0.00E+00	EE
	VOCs	0	1.75E-03	Methanol	0	0.00E+00				
HCY-S	PM10	8.75E-06	3.83E-05	Formaldehyde		0.00E+00	Acetic Acid		0.00E+00	EE
	VOCs	0.00E+00	0.00E+00	Methanol	0.00E+00	0.00E+00				
HDZ-S	PM10		0.00E+00	Formaldehyde	1.64E-03	5.52E-03	Acetic Acid		0.00E+00	EE
	VOCs	3.77E-04	1.27E-03	Methanol		0.00E+00				
HEA-S	PM10	1.00E-06	4.38E-06	Formaldehyde	1.00E-04	4.38E-04	Acetic Acid		0.00E+00	EE
	1000	4.005.04	1 755 00	Mathenal		0.005.00				
	VOCs PM10	4.00E-04 9.36E-06	1.75E-03 3.15E-05	Methanol Formaldehyde	1.30E-04	0.00E+00 4.38E-04	Acetic Acid		0.00E+00	EE
HED-S		1002 00	0.102 00	, on decirge	1.002 01		A local of A local		0.002.700	
	VOCs	5.98E-04	2.01E-03	Methanol		0.00E+00				
HFQ-S	PM10	7.15E-06	2.41E-05	Formaldehyde	1.30E-04	5.69E-04	Acetic Acid		0.00E+00	EE
	VOCs	4.55E-04	1.99E-03	Methanol		0.00E+00				
HFW-S	PM10	9.10E-04	3.07E-03	Formaldehyde	1.30E-04	4.38E-04	Acetic Acid		0.00E+00	EE
	VOCs	5.20E-04	1.75E-03	Methanol		0.00E+00				
HGB-S	PM10	7.15E-06	2.41E-05	Formaldehyde	1.30E-04	4.38E-04	Acetic Acid		0.00E+00	EE
	VOCs	4.94E-04	1.67E-03	Methanol	0.00E+00	0.00E+00				
	PM10	9.10E-04	3.07E-03	Formaldehyde	1.30E-04	4.38E-04	Acetic Acid		0.00E+00	EE
HGD-S										
	VOCs	5.20E-04	1.75E-03	Methanol		0.00E+00				

				Applicable Requirements
			F	or all applicable requirements listed above, provide monitoring/testing/r
Emission	List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (<i>Note: Title V permit condition numbers alone are not the underlying applicable requirements</i>). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.	Permit Shield	Monitoring	Recordkeeping
DWP-S	See appendix.	Upon application submittal	No specific monitoring is proposed.	No specific recordkeeping proposed
HCU-S	See appendix.	Upon application submittal	No specific monitoring is proposed.	No specific recordkeeping proposed
HCV-S	See appendix.	Upon application submittal	No specific monitoring is proposed.	No specific recordkeeping proposed
HCY-S	See appendix.	Upon application submittal	No specific monitoring is proposed.	No specific recordkeeping proposed
HDZ-S	See appendix.	Upon application submittal	No specific monitoring is proposed.	No specific recordkeeping proposed
HEA-S	See appendix.	Upon application submittal	No specific monitoring is proposed.	No specific recordkeeping proposed
HED-S	See appendix.	Upon application submittal	No specific monitoring is proposed.	No specific recordkeeping proposed
HFQ-S	See appendix.	Upon application submittal	No specific monitoring is proposed.	No specific recordkeeping proposed
HFW-S	See appendix.	Upon application submittal	No specific monitoring is proposed.	No specific recordkeeping proposed
HGB-S		Upon application submittal	No specific monitoring is proposed.	No specific recordkeeping proposed
HGD-S	See appendix.	Upon application submittal	No specific monitoring is proposed.	No specific recordkeeping proposed

	ecordkeeping/reporting which shall be used to demonstrate complian	ce.	
Emission Unit ID	Reporting	Testing	Are you in compliance with all applicable requirements for this emission unit? (Yes/No
DWP-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
HCU-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
HCV-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
HCY-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
HDZ-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
HEA-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
HED-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
HFQ-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
HFW-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
HGB-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
HGD-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES

						Emission Unit D	escription				
Emission Unit ID				Model Number	Serial Number	Construction Date		Modification Date(s)	Design Capacity	Maximum Hourly Throughput	Maximum Annual Throughput
HGF-S	#4 Ext. Wax Feeder	#4 Extruder Wax Feeder Continuous operation 24 hr/day, 7 days/week, 52 weeks/year					1972		CONDIFENTIAL	CONDIFENTIAL	CONF
HGG-S	#4 Ext. Add. Feeder	 #4 Extruder Additive Feeder Continuous operation 24 hr/day, 7 days/week, 52 weeks/year					1972		CONDIFENTIAL	CONDIFENTIAL	CONF
HGK-S	#6 Ext. Screener Box	 Z4 millady, 7 udys/week, 52 weeks/year	disposable item				2004		CONDIFENTIAL CONDIFENTIAL CONDIFENTIAL	CONDIFENTIAL CONDIFENTIAL CONDIFENTIAL	CONF CONF CONF
HGL-S		24 fil/day, 7 days/week, 52 weeks/year	disposable item				1960		CONDIFENTIAL	CONDIFENTIAL	CONF CONF
HGO-S	#6 Ext. Wax Feeder	#6 Extruder Wax Feeder Continuous operation 24 hr/day, 7 days/week, 52 weeks/year					2004		CONDIFENTIAL	CONDIFENTIAL	CONF
HGP-S	#3 Ext. Wax Feeder	#3 Extruder Wax Feeder Continuous operation 24 hr/day, 7 days/week, 52 weeks/year					1989		CONDIFENTIAL	CONDIFENTIAL	CONF

							Fuel Usage	Data			
	Maximu	um Operating S	chedule				·		Term of th	e Permit	
Emission Unit ID			Weeks/Year	Does This Emission Unit Combust Fuel? (Yes/No)	If Yes, is it? (Indirect	Type and Btu/hr Rating of Burners	Secondary Fuel	For Each Fuel Type Listed, Provide the Maximum Hourly and Annual Fuel Usage.	Max. Sulfur	Max. Ash	BTU Value
HGF-S	24	7	52	No							
HGG-S	24	7	52	No							
HGK-S	24	7	52	No							
HGL-S	24	7	52	Yes							
HGO-S	24	7	52	No							
HGP-S	24	7	52	No							

						Emis	ssion Data			
		Potential	Emissions		Potential	Emissions		Potential	Emissions	
Emission Unit ID	Critera Pollutants	РРН	ТРҮ	Hazardous Air Pollutants	РРН	ТРҮ	Regulated Pollutants other than Criteria and HAP	РРН	ТРҮ	List the method(s) used to calculate the potential emissions (include dates of any stack tests conducted, versions of software used, source and dates of emission factors, etc.).
	PM10	5.50E-07	2.41E-06	Formaldehyde	3.50E-04	1.99E-03	Acetic Acid		0.00E+00	EE
HGF-S										
	VOCs	1.00E-04	5.69E-04	Methanol	0.00E+00	0.00E+00				
	PM10	7.00E-07	3.07E-06	Formaldehyde	1.00E-04	4.38E-04	Acetic Acid		0.00E+00	EE
HGG-S										
	VOCs	1.00E-04	4.38E-04	Methanol		0.00E+00				
HGK-S	PM10	9.10E-04	3.07E-03	Formaldehyde	1.30E-04	4.38E-04	Acetic Acid		0.00E+00	EE
	VOCs	5.20E-04	1.75E-03	Methanol		0.00E+00				
HGL-S	PM10	9.10E-04	0.00E+00	Formaldehyde		0.00E+00	Acetic Acid		0.00E+00	EE
	VOCs		0.00E+00	Methanol		0.00E+00				
	PM10	5.50E-07	2.41E-06	Formaldehyde		0.00E+00	Acetic Acid		0.00E+00	EE
HGO-S										
	VOCs		0.00E+00	Methanol		0.00E+00				
HGP-S	PM10	5.50E-06	2.41E-05	Formaldehyde	1.00E-04	4.38E-04	Acetic Acid		0.00E+00	EE
	VOCs	3.50E-04	1.53E-03	Methanol		0.00E+00				

				Applicable Requirements
				For all applicable requirements listed above, provide monitoring/testing/
Emission	List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (<i>Note: Title V permit condition numbers alone are not the underlying applicable requirements</i>). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.	Permit Shield	Monitoring	Recordkeeping
HGF-S	See appendix.	Upon application submittal	No specific monitoring is proposed.	No specific recordkeeping proposed
	See appendix.	Upon application submittal	No specific monitoring is proposed.	No specific recordkeeping proposed
HGG-S				
HGK-S	See appendix.	Upon application submittal	No specific monitoring is proposed.	No specific recordkeeping proposed
HGL-S	See appendix.	Upon application submittal	No specific monitoring is proposed.	No specific recordkeeping proposed
HGO-S	See appendix.	Upon application submittal	No specific monitoring is proposed.	No specific recordkeeping proposed
HGP-S	See appendix.	Upon application submittal	No specific monitoring is proposed.	No specific recordkeeping proposed

	ecordkeeping/reporting which shall be used to demonstrate complian	ce.	
Emission Unit ID	Reporting	Testing	Are you in compliance with all applicable requirements for this emission unit? (Yes/N
	No reporting requirements unless specifically requested by	No testing requirement unless specifically requested by the	YES
HGF-S	the Director	Director.	
HGG-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
HGK-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
HGL-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
HGO-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES
HGP-S	No reporting requirements unless specifically requested by the Director	No testing requirement unless specifically requested by the Director.	YES

ATTACHMENT G

Air Pollution Control Device Forms

ATTACHMENT G - Air Pollution Control Device Form			
Control device ID number: DAGC	List all emission units associated with this control device. DABS/DACS, DAES, DAFS, DAHS, DBOS, HAKS, HALS, HAMS		
Manufacturer: Custom Built by Adaibra, S.A.	Model number: N/A	Installation date:	
Type of Air Pollution Control Device:			
Baghouse/Fabric Filter	Venturi Scrubber	Multiclone	
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone	
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank	
Catalytic Incinerator	Condenser	Settling Chamber	
Thermal Incinerator	Flare	Other (describe)	
Wet Plate Electrostatic Precipitator]	Dry Plate Electrostatic Precipitator	
List the pollutants for which this device	ce is intended to control and the ca	pture and control efficiencies.	
Pollutant	Capture Efficiency	Control Efficiency	
Formaldehyde	100%	90%	
Methanol	100%	90%	
Formic Acid	100%	90%	
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.). Gas Flow Rate – 1 ACFM @ 160 F and 15.1 psia Liquor Flow Rate – 15 gal/min			
Is this device subject to the CAM requ	iirements of 40 C.F.R. 64? Ye	s <u>X</u> No	
If Yes, Complete ATTACHMENT H If No, Provide justification. Continuous compliance monitoring is already specified by SOCMI HON requirements.			
Describe the parameters monitored and/or methods used to indicate performance of this control device. See WV Regulation 13 construction permit # 1596D			

ATTACHMENT G - Air Pollution Control Device Form			
Control device ID number: DBJC	List all emission units associated with this control device. DAQS, DARS, DASS, DBHS/DBIS, HAOS, HAPS, HAQS		
Manufacturer: Perstorp/Formox	Model number:	Installation date: MM/DD/YYYY	
Type of Air Pollution Control Device			
Baghouse/Fabric Filter	Venturi Scrubber	Multiclone	
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone	
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank	
X Catalytic Incinerator		Settling Chamber	
Thermal Incinerator	Flare	Other (describe)	
	_		
Wet Plate Electrostatic Precipitator	_	Dry Plate Electrostatic Precipitator	
List the pollutants for which this devi	ice is intended to control and the	e capture and control efficiencies.	
Pollutant	Capture Efficiency	Control Efficiency	
Carbon Monoxide	100%	98%	
Formaldehyde	100%	98%	
Methanol	100%	98%	
Dimethyl Ether	100%	98%	
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.). Operating Temp – 482-932 F			
Retention Time – 2.1 sec			
Is this device subject to the CAM requirements of 40 C.F.R. 64? YesX_ No If Yes, Complete ATTACHMENT H If No, Provide justification. Continuous compliance monitoring is already specified by SOCMI HON requirements.			
Describe the parameters monitored and/or methods used to indicate performance of this control device. See WV Regulation 13 construction permit # 1596D			

ATTACHMENT G - Air Pollution Control Device Form			
Control device ID number: DBKC	List all emission units associated with this control device. DBKS		
Manufacturer: DuPont Custom Design	Model number: BPF-288014	Installation date:	
Type of Air Pollution Control Device:			
Baghouse/Fabric Filter	Venturi Scrubber	Multiclone	
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone	
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank	
Catalytic Incinerator	Condenser	Settling Chamber	
Thermal Incinerator	Flare	Other (describe)	
Wet Plate Electrostatic Precipitator		Dry Plate Electrostatic Precipitator	
List the pollutants for which this devi	ce is intended to control and the ca	pture and control efficiencies.	
Pollutant	Capture Efficiency	Control Efficiency	
VOC	100%	99.9%	
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.).			
Is this device subject to the CAM requirements of 40 C.F.R. 64? <u>Yes</u> <u>X</u> No If Yes, Complete ATTACHMENT H If No, Provide justification . Emissions are less than levels requiring CAM.			
Describe the parameters monitored and/or methods used to indicate performance of this control device. See WV Regulation 13 construction permit # 1596D			

ATTACHMENT G - Air Pollution Control Device Form			
Control device ID number: HTAC	List all emission units associated with this control device. HTAS		
Manufacturer: HiVac	Model number: 230	Installation date:	
Type of Air Pollution Control Device:			
<u>X</u> Baghouse/Fabric Filter	Venturi Scrubber	Multiclone	
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone	
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank	
Catalytic Incinerator	Condenser	Settling Chamber	
Thermal Incinerator	Flare	Other (describe)	
Wet Plate Electrostatic Precipitator		Dry Plate Electrostatic Precipitator	
List the pollutants for which this devi	ce is intended to control and the ca	pture and control efficiencies.	
Pollutant	Capture Efficiency	Control Efficiency	
VOC	100%	99%	
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.). Gas Flow Rate – 244 ACFM @ 70 F and 14.7 psia Total Cloth Area – 111 ft ² Shaker			
Is this device subject to the CAM requirements of 40 C.F.R. 64? YesX_ No			
If Yes, Complete ATTACHMENT H			
If No, Provide justification. Emissions are less than levels requiring CAM.			
Describe the parameters monitored and/or methods used to indicate performance of this control device.			
See WV Regulation 13 construction permit # 1596D			

Control device ID number: DABC Manufacturer: N/A Type of Air Pollution Control Devi Baghouse/Fabric Filter Carbon Bed Adsorber Carbon Drum(s)	Model number: N/A	sociated with this control device. DABS Installation date:	
Fype of Air Pollution Control Devi Baghouse/Fabric Filter Carbon Bed Adsorber Carbon Drum(s)	ice: Venturi Scrubber		
Baghouse/Fabric Filter Carbon Bed Adsorber Carbon Drum(s)	Venturi Scrubber		
Carbon Bed Adsorber Carbon Drum(s)			
Carbon Drum(s)	Packed Tower Scrubber	Multiclone	
		Single Cyclone	
	Other Wet Scrubber	Cyclone Bank	
Catalytic Incinerator	Condenser	Settling Chamber	
Thermal Incinerator	Flare	<u>X</u> Other (describe) <u>Floating Roof</u>	
Wet Plate Electrostatic Precipita	tor	Dry Plate Electrostatic Precipitator	
ist the pollutants for which this d	avica is intended to control an	nd the capture and control efficiencies.	
Pollutant	Capture Efficiency		
VOC	100%	Control Enterency	
	10070		
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.). Is this device subject to the CAM requirements of 40 C.F.R. 64?YesX_No			
f Yes, Complete ATTACHMENT		r is already apacified by SOCMI HON	
equirements.	addas compliance monitoring	g is already specified by SOCMI HON	
Describe the parameters monitore	d and/or methods used to indi	icate performance of this control device.	
See WV Regulation 13 construction permit # 1596D			

ATTACH	ATTACHMENT G - Air Pollution Control Device Form			
C ontrol device ID number: DACC	List all emission units ass	List all emission units associated with this control device. DACS		
Manufacturer: N/A	Model number: N/A	Installation date:		
Гуре of Air Pollution Control Do	evice:			
Baghouse/Fabric Filter	Venturi Scrubber	Multiclone		
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone		
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank		
Catalytic Incinerator	Condenser	Settling Chamber		
Thermal Incinerator	Flare	<u>X</u> Other (describe) <u>Floating Roof</u>		
Wet Plate Electrostatic Precip	itator	Dry Plate Electrostatic Precipitator	r	
List the pollutants for which this	device is intended to control ar	nd the capture and control efficiencies.		
Pollutant	Capture Efficiency	-		
VOC	100%			
Explain the characteristic design bags, size, temperatures, etc.).	parameters of this control devi	ice (flow rates, pressure drops, number o	of	
s this device subject to the CAM	I requirements of 40 C.F.R. 64?	Yes <u>X</u> No		
f Yes, Complete ATTACHMEN			~ • •	
f No, Provide justification . Emi HON requirements.	ssions Continuous compliance	e monitoring is already specified by SO	CN	
Describe the parameters monito	red and/or methods used to indi	icate performance of this control device.		
See WV Regulation 13 c	onstruction permit # 1596D			

ATTACHMENT G - Air Pollution Control Device Form				
Control device ID number: DANC	List all emission units ass	List all emission units associated with this control device. DANS		
Manufacturer: N/A	Model number: N/A	Installation date:		
Type of Air Pollution Control De	vice:			
Baghouse/Fabric Filter	Venturi Scrubber	Multiclone		
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone		
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank		
Catalytic Incinerator	Condenser	Settling Chamber		
Thermal Incinerator	Flare	<u>X</u> Other (describe) <u>Mist Eliminato</u>	<u>or</u>	
Wet Plate Electrostatic Precipit	tator	Dry Plate Electrostatic Precipitat	or	
List the pollutants for which this	device is intended to control an	nd the capture and control efficiencies.		
Pollutant	Capture Efficiency	Control Efficiency		
VOC	100%			
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.).				
Is this device subject to the CAM requirements of 40 C.F.R. 64? YesX_ No If Yes, Complete ATTACHMENT H If No, Provide justification. Emissions are less than levels requiring CAM.				
Describe the parameters monitored and/or methods used to indicate performance of this control device. See WV Regulation 13 construction permit # 1596D				

ATTACHMENT G - Air Pollution Control Device Form			
Control device ID number: HZZC	List all emission units associated with this control device. DAL, DEA, DFE, DCA, DCF, DCG, DDW, DMH, GBU, DDJ, DDL, DDS, DDZ, DEP, DEU, DEW, DEZ, DFA, DFB, DGQ, DGR, DGV, DGX, DHS, DIC, DIE, DIF, DJO, DJP, DJR, DJT, DJU, DJV, DJW, DLM, DLR, DMM, DMQ, DMR, DMX, DMY, DOC, DOD, DOG, DON, DOO, DOP, DOQ, DOX, DPH, DPL, DPM, DPP, GAA, GAB, GAC, GAN, GAO, GAZ, GBA, HAA, HAB, HAF, HAH, HBA, HBJ, HBK, HBM, DDX, DGS, DJQ		
Manufacturer: John Zink	Model number: ZTOF	Installation date:	
Type of Air Pollution Control Device	:		
Baghouse/Fabric Filter	Venturi Scrubber	Multiclone	
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone	
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank	
Catalytic Incinerator	Condenser	Settling Chamber	
Thermal Incinerator	Flare	Other (describe)	
Wet Plate Electrostatic Precipitator		Dry Plate Electrostatic Precipitator	
List the pollutants for which this device is intended to control and the capture and control efficiencies.			
Pollutant	Capture Efficiency	Control Efficiency	
VOC	100%	99%	
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.). Combustion Chamber Diameter – 9 ft Combustion Chamber Length – 60 ft Retention Time – 0.5 seconds			
Is this device subject to the CAM req	uirements of 40 C.F.R. 64? _	YesX_No	
If Yes, Complete ATTACHMENT H If No, Provide justification. Continue requirements	ous compliance monitoring is	already specified by Acetal MACT	
Describe the parameters monitored a	nd/or methods used to indica	te performance of this control device.	
See WV Regulation 13 construction permit # 1849G			

ATTACHME	NT G - Air Pollution Co	ntrol Device Form
Control device ID number: DOMC	List all emission units associated with this control device. DAL, DE DFE, DCA, DCF, DCG, DDW, DMH, GBU, DDJ, DDL, DDS, DDZ, DEP, DEU, DEW, DEZ, DFA, DFB, DGQ, DGR, DGV, DGX, DHS, DIC, DIE, DIF, DJO, DJP, DJR, DJT, DJU, DJV, DJW, DLM, DLR, DMM, DMQ, DMR, DMX, DMY, DOC, DOD, DOG, DON, DOO, DOP, DOQ, DOX, DPH, DPL, DPM, DPP, GAA, GAB, GAC, GAN, GAO, GAZ, GBA, HAA, HAB, HAF, HAH, HBA, HBJ, HBK, HBM, DDX, DGS, DJQ	
Manufacturer: Process Combustion Corp	Model number: N/A	Installation date: 2000
Type of Air Pollution Control Device	:	
Baghouse/Fabric Filter	Venturi Scrubber	Multiclone
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank
Catalytic Incinerator	Condenser	Settling Chamber
X Thermal Incinerator	_ Flare Other (describe)	
Wet Plate Electrostatic Precipitator		Dry Plate Electrostatic Precipitator
List the pollutants for which this dev	ice is intended to control and	the capture and control efficiencies.
Pollutant	Capture Efficiency	Control Efficiency
Volatile Organic Compounds	100%	99.9%
Explain the characteristic design par bags, size, temperatures, etc.). Temperature >850 C	ameters of this control device	(flow rates, pressure drops, number of
Is this device subject to the CAM req	•	YesX_No
If Yes, Complete ATTACHMENT H If No, Provide justification. Continue requirements.		s already specified by Acetal MACT
Describe the parameters monitored a	nd/or methods used to indica	te performance of this control device.
See WV Regulation 13 const	ruction permit # 1849G	

ATTACHMENT G - Air Pollution Control Device Form			
Control device ID number: DINC	List all emission units associated with this control device. DINS		
Manufacturer: Helex Div. of A.C. Knox Inc.	Model number: B-50 VOC Vent Trap	Installation date:	
Type of Air Pollution Control Device:			
Baghouse/Fabric Filter	Venturi Scrubber	Multiclone	
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone	
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank	
Catalytic IncineratorX_	Condenser	Settling Chamber	
Thermal Incinerator	Flare	Other (describe)	
Wet Plate Electrostatic Precipitator]	Dry Plate Electrostatic Precipitator	
List the pollutants for which this device	ce is intended to control and the ca	pture and control efficiencies.	
Pollutant	Capture Efficiency	Control Efficiency	
Methanol	100%	95.1%	
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.). Coolant Temp – 20 C			
Is this device subject to the CAM requ	iirements of 40 C.F.R. 64? Ye	s <u>X</u> No	
If Yes, Complete ATTACHMENT H If No, Provide justification. Emissions are less than levels requiring CAM.			
Describe the parameters monitored and/or methods used to indicate performance of this control device.			
See WV Regulation 13 construction permit # 1849G			

ATTACHMENT G - Air Pollution Control Device Form			
Control device ID number: DMLC	List all emission units associated with this control device. DMLC		
Manufacturer: Southern Heat Exchanger Corp.	Model number: BPF-294602	Installation date:	
Type of Air Pollution Control Device:			
Baghouse/Fabric Filter	Venturi Scrubber	Multiclone	
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone	
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank	
Catalytic Incinerator	Condenser	Settling Chamber	
Thermal Incinerator	Flare	Other (describe)	
Wet Plate Electrostatic Precipitator		Dry Plate Electrostatic Precipitator	
List the pollutants for which this device	ce is intended to control and the ca	pture and control efficiencies.	
Pollutant	Capture Efficiency	Control Efficiency	
Acetic Anhydride	100%	97.4%	
Acetic Acid	100%	96.5%	
MDA	100%	98.5%	
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.).			
Is this device subject to the CAM requirements of 40 C.F.R. 64? Yes \underline{X} No If Yes, Complete ATTACHMENT H If No, Provide justification. Emissions are less than levels requiring CAM.			
Describe the parameters monitored and/or methods used to indicate performance of this control device.			
See WV Regulation 13 construction permit # 1849G			

ATTACHMENT G - Air Pollution Control Device Form		
Control device ID number: GZZC	List all emission units associated with this control device. GZZS	
Manufacturer: Custom Built	Model number: N/A	Installation date:
Type of Air Pollution Control Device:		
Baghouse/Fabric Filter	Venturi Scrubber	Multiclone
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone
Carbon Drum(s)X	Other Wet Scrubber	Cyclone Bank
Catalytic Incinerator	Condenser	Settling Chamber
Thermal Incinerator	Flare	Other (describe)
Wet Plate Electrostatic Precipitator	1	Dry Plate Electrostatic Precipitator
List the pollutants for which this devi	ce is intended to control and the ca	pture and control efficiencies.
Pollutant	Capture Efficiency	Control Efficiency
Acetic Acid	100%	99.9%
Acetic Anhydride	100%	99.99%
Formaldehyde	100%	99.5%
Heptane	100%	55%
Hexane	100%	65%
Toluene	100%	65%
MDA	100%	99.99%
Explain the characteristic design para bags, size, temperatures, etc.). Gas Flowrate – 700 ACFM @ 212 F and		rates, pressure drops, number of
Is this device subject to the CAM requ	irements of 40 C.F.R. 64? Ye	s <u>X</u> No
If Yes, Complete ATTACHMENT H		

If No, **Provide justification.** Emissions are less than levels requiring CAM.

ATTACHMENT G - Air Pollution Control Device Form		
Control device ID number: DCMC	List all emission units associated with this control device. DCH, DCI, DCJ	
Manufacturer:	Model number:	Installation date:
Type of Air Pollution Control Device:		
Baghouse/Fabric Filter	Venturi Scrubber	Multiclone
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank
Catalytic IncineratorX	Condenser	Settling Chamber
Thermal Incinerator	Flare	Other (describe)
Wet Plate Electrostatic Precipitator	1	Dry Plate Electrostatic Precipitator
List the pollutants for which this devi	ce is intended to control and the ca	pture and control efficiencies.
Pollutant	Capture Efficiency	Control Efficiency
VOC	100%	
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.).		
Is this device subject to the CAM requirements of 40 C.F.R. 64? YesX_ No If Yes, Complete ATTACHMENT H If No, Provide justification. Emissions are less than levels requiring CAM.		

Control device ID number: DHTC1	List all emission units associ GADS, GAES, GAFS	List all emission units associated with this control device. GADS, GAES, GAFS	
Manufacturer: Custom Design	Model number: N/A	Installation date:	
Type of Air Pollution Control Do	evice:		
Baghouse/Fabric Filter	Venturi Scrubber	Multiclone	
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone	
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank	
Catalytic Incinerator	<u>X</u> Condenser	Settling Chamber	
Thermal Incinerator	Flare	Other (describe)	
Wet Plate Electrostatic Precipi	itator	Dry Plate Electrostatic Precipitator	
List the pollutants for which this	device is intended to control and t	he capture and control efficiencies.	
Pollutant	Capture Efficiency	Control Efficiency	
Heptane	100%	76%	
Hexane	100%	76%	
Toluene	100%	36%	
Formaldehyde	100%	99.98%	
Explain the characteristic design bags, size, temperatures, etc.).	parameters of this control device	(flow rates, pressure drops, number of	
Inlet Gas Velocity 261 ft/sec Gas Flow 1362 ACFM @ 212 F ar	nd 24.7 psia		

ATTACHMENT G - Air Pollution Control Device Form		
Control device ID number: DHTC2	List all emission units associated with this control device. GADS, GAES, GAFS	
Manufacturer: Custom Design	Model number: N/A	Installation date:
Type of Air Pollution Control Device:		
Baghouse/Fabric Filter	Venturi Scrubber]	Multiclone
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank
Catalytic IncineratorX	CondenserS	Settling Chamber
Thermal Incinerator	Flare	Other (describe)
Wet Plate Electrostatic Precipitator Dry Plate Electrostatic Precipitator		
List the pollutants for which this device	e is intended to control and the ca	pture and control efficiencies.
Pollutant	Capture Efficiency	Control Efficiency
Heptane	100%	76%
Hexane	100%	76%
Toluene	100%	36%
Formaldehyde	100%	99.98%
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.). Inlet Gas Velocity 261 ft/sec Gas Flow 1362 ACFM @ 212 F and 24.7 psia		
Is this device subject to the CAM requirements of 40 C.F.R. 64? YesX_ No If Yes, Complete ATTACHMENT H If No, Provide justification. Emissions are less than levels requiring CAM.		

ATTACHMENT G - Air Pollution Control Device Form			
Control device ID number: DEM-OH	List all emission units associated with this control device.		
Manufacturer: Custom Design	Model number: N/A	Installation date:	
Type of Air Pollution Control Device:			
Baghouse/Fabric Filter	Venturi Scrubber	Multiclone	
Carbon Bed AdsorberX	Packed Tower Scrubber	Single Cyclone	
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank	
Catalytic Incinerator	Condenser	Settling Chamber	
Thermal Incinerator	Flare	Other (describe)	
Wet Plate Electrostatic Precipitator		Dry Plate Electrostatic Precipitator	
List the pollutants for which this device	ce is intended to control and the ca	pture and control efficiencies.	
Pollutant	Capture Efficiency	Control Efficiency	
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.).			
Is this device subject to the CAM requ	Is this device subject to the CAM requirements of 40 C.F.R. 64? Yes No		
If Yes, Complete ATTACHMENT H If No, Provide justification. Emissions are less than levels requiring CAM.			
Describe the parameters monitored and/or methods used to indicate performance of this control device. See WV Regulation 13 construction permit # 1849G			

ATTACHMENT G - Air Pollution Control Device Form			
Control device ID number: DQCC	List all emission units associated with this control device. DCRS, DQHS, DQIS, DQJS, DQPS, DQQS, DQTS, DRBS, DSYS, DTDS, DTES, DWIS, DWJS, DWQS, DWRS, HCOS, HFUS, HGFS, HGGS, HGHS, HGIS, HGOS, HGPS		
Manufacturer: Pulverizing Machinery Company, Mikro-Pulsaire Collector	Model number: Model 48-6	Installation date:	
Type of Air Pollution Control Device:			
<u>X</u> Baghouse/Fabric Filter	Venturi Scrubber	Multiclone	
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone	
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank	
Catalytic Incinerator	Condenser	Settling Chamber	
Thermal Incinerator	Flare	Other (describe)	
Wet Plate Electrostatic Precipitator		Dry Plate Electrostatic Precipitator	
List the pollutants for which this devi	ce is intended to control and the ca	pture and control efficiencies.	
Pollutant	Capture Efficiency	Control Efficiency	
Particulate	100%	99.9%	
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.). Gas Flow Rate – 2500 ACFM @ 90 F and 14.9 psia Total Cloth Area – 339 ft ² Reverse Jet Stabilized static pressure 3 inches of water			
Is this device subject to the CAM requirements of 40 C.F.R. 64? Yes _X_ No If Yes, Complete ATTACHMENT H If No, Provide justification. Emissions are less than levels requiring CAM.			
Describe the parameters monitored and/or methods used to indicate performance of this control device. See WV Regulation 13 construction permit # 2381F			

ATTACHM	CNT G - Air Pollution Contr	ol Device Form
Control device ID number: DQGC	List all emission units associated with this control device. DQHS, DQIS, DQJS, DQPS, DQQS, DQTS, DRBS, DSYS, DTDS, DTES, DWIS, DWJS, DWQS, DWRS, HCOS, HFUS, HGFS, HGGS, HGHS, HGIS, HGOS, HGPS	
Manufacturer: Airodyne Machine Co	Model number: Model 14024-8	3 Installation date:
Type of Air Pollution Control Devic	e:	
X Baghouse/Fabric Filter	_ Venturi Scrubber	_ Multiclone
Carbon Bed Adsorber	_ Packed Tower Scrubber	_Single Cyclone
Carbon Drum(s)	_ Other Wet Scrubber	_Cyclone Bank
Catalytic Incinerator	_Condenser	_Settling Chamber
Thermal Incinerator	_Flare	_Other (describe)
Wet Plate Electrostatic Precipitate	r	_ Dry Plate Electrostatic Precipitator
List the pollutants for which this de	vice is intended to control and the	capture and control efficiencies.
Pollutant	Capture Efficiency	Control Efficiency
Particulate	100%	99.9%
Explain the characteristic design pa bags, size, temperatures, etc.). Gas Flow Rate – 4835 ACFM @ 90 F Total Cloth Area – 778 ft ² Reverse Jet Stabilized static pressure 3 inches of w	and 14.9 psia	ow rates, pressure drops, number of
Is this device subject to the CAM re If Yes, Complete ATTACHMENT F If No, Provide justification. Emis		
	and/or methods used to indicate n	erformance of this control device.
Describe the parameters monitored	and/or methods used to maleate p	
Describe the parameters monitored See WV Regulation 13 construction	_	
_	_	

ATTACHMENT G - Air Pollution Control Device Form			
Control device ID number: DZBC	List all emission units associated with this control device. DWCS, DUIS, DUES, DUFS, DQUSS, DWGS		
Manufacturer: Griffith	Model number:	Installation date:	
Type of Air Pollution Control Device:			
<u>X</u> Baghouse/Fabric Filter	Venturi Scrubber	Multiclone	
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone	
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank	
Catalytic Incinerator	Condenser	Settling Chamber	
Thermal Incinerator	Flare	Other (describe)	
Wet Plate Electrostatic Precipitator		Dry Plate Electrostatic Precipitator	
List the pollutants for which this devi	ce is intended to control and the ca	pture and control efficiencies.	
Pollutant	Capture Efficiency	Control Efficiency	
Particulate	100%	99.9%	
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.). Gas Flow Rate – 2200 ACFM @ 180 F and 14.9 psia Total Cloth Area – 778 ft ² Reverse Jet Stabilized static pressure 3 inches of water			
Is this device subject to the CAM requ	uirements of 40 C.F.R. 64? Ye	s <u>_X</u> _No	
If Yes, Complete ATTACHMENT H If No, Provide justification. Emissions are less than levels requiring CAM.			
Describe the parameters monitored and/or methods used to indicate performance of this control device.			
See WV Regulation 13 construction permit # 2381F			

ATTACHMENT G - Air Pollution Control Device Form			
Control device ID number: DUQC	List all emission units associated with this control device. DUQ1S, DUQ2S, DUQ3S		
Manufacturer: TORIT Filter	Model number: TD486H5	Installation date:	
Type of Air Pollution Control Device:			
<u>X</u> Baghouse/Fabric Filter	Venturi Scrubber	Multiclone	
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone	
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank	
Catalytic Incinerator	Condenser	Settling Chamber	
Thermal Incinerator	Flare	Other (describe)	
Wet Plate Electrostatic Precipitator		Dry Plate Electrostatic Precipitator	
List the pollutants for which this devic	ce is intended to control and the ca	pture and control efficiencies.	
Pollutant	Capture Efficiency	Control Efficiency	
Particulate	100%	99.9%	
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.). Gas Flow Rate – 1000 ACFM @ 75 F and 14.6 psia			
Is this device subject to the CAM requ	iirements of 40 C.F.R. 64? Ye	s <u>X</u> No	
If Yes, Complete ATTACHMENT H If No, Provide justification. Emissions are less than levels requiring CAM.			
Describe the parameters monitored and/or methods used to indicate performance of this control device.			
See WV Regulation 13 construction permit # 2381F			

ATTACHMENT G - Air Pollution Control Device Form			
Control device ID number: DTZC	List all emission units associated with this control device. DQLS, DRDS, DWES, DWPS, HCUS, HCVS, HCXS, HCYS, HCZS, HDGS, HFBS, HFCS, HGBS, DWCS,		
Manufacturer: Young Industries	Model number: 81-VM Style 1AD	Installation date:	
Type of Air Pollution Control Device:			
<u>X</u> Baghouse/Fabric Filter	Venturi Scrubber	Multiclone	
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone	
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank	
Catalytic Incinerator	Condenser	Settling Chamber	
Thermal Incinerator	Flare	Other (describe)	
Wet Plate Electrostatic Precipitator]	Dry Plate Electrostatic Precipitator	
List the pollutants for which this device	ce is intended to control and the ca	pture and control efficiencies.	
Pollutant	Capture Efficiency	Control Efficiency	
Particulate	100%	99.95%	
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.). Gas Flow Rate – 5000 ACFM @ 90 F and 14.7 psia Total Cloth Area – 784 ft ² Pulse Jet Stabilized static pressure 6 inches of water			
Is this device subject to the CAM requ	irements of 40 C.F.R. 64? Ye	s <u>X</u> No	
If Yes, Complete ATTACHMENT H If No, Provide justification. Emissions are less than levels requiring CAM.			
Describe the parameters monitored an	Describe the parameters monitored and/or methods used to indicate performance of this control device.		
See WV Regulation 13 construction permit # 2381F			

ATTACHMENT G - Air Pollution Control Device Form			
Control device ID number: HDWC	List all emission units associated with this control device. HEAS, HEDS, HEMS, HERS, HFFS, HFGS, HFQS, HGTS		
Manufacturer: TORIT Inc.	Model number: #2DF8	Installation date:	
Type of Air Pollution Control Device:			
<u>X</u> Baghouse/Fabric Filter	Venturi Scrubber	Multiclone	
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone	
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank	
Catalytic Incinerator	Condenser	Settling Chamber	
Thermal Incinerator	Flare	Other (describe)	
Wet Plate Electrostatic Precipitator	1	Dry Plate Electrostatic Precipitator	
List the pollutants for which this device	ce is intended to control and the ca	pture and control efficiencies.	
Pollutant	Capture Efficiency	Control Efficiency	
Particulate	100%	99.999%	
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.). Gas Flow Rate – 2000 ACFM @ 80 F and 14.9 psia Total Cloth Area – 2032 ft ² Pulse Jet Stabilized static pressure 3-5 inches of water			
Is this device subject to the CAM requ	iirements of 40 C.F.R. 64? Ye	s <u>X</u> No	
If Yes, Complete ATTACHMENT H If No, Provide justification. Emissions are less than levels requiring CAM.			
Describe the parameters monitored and/or methods used to indicate performance of this control device.			
See WV Regulation 13 construction permit # 2381F			

ATTACHMENT G - Air Pollution Control Device Form			
Control device ID number: HEOC	List all emission units associated with this control device. HFHS		
Manufacturer: TORIT Inc.	Model number: #BEV2255	Installation date:	
Type of Air Pollution Control Device:			
<u>X</u> Baghouse/Fabric Filter	Venturi Scrubber	Multiclone	
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone	
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank	
Catalytic Incinerator	Condenser	Settling Chamber	
Thermal Incinerator	Flare	Other (describe)	
Wet Plate Electrostatic Precipitator]	Dry Plate Electrostatic Precipitator	
List the pollutants for which this device	ce is intended to control and the ca	pture and control efficiencies.	
Pollutant	Capture Efficiency	Control Efficiency	
Particulate	100%	99.999%	
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.). Gas Flow Rate – 1000 ACFM @ 80 F and 14.9 psia Total Cloth Area – 904 ft ² Pulse Jet Stabilized static pressure 3-5 inches of water			
Is this device subject to the CAM requ	uirements of 40 C.F.R. 64? Ye	s _ <u>X</u> _No	
If Yes, Complete ATTACHMENT H If No, Provide justification. Emissions are less than levels requiring CAM.			
Describe the parameters monitored an	Describe the parameters monitored and/or methods used to indicate performance of this control device.		
See WV Regulation 13 construction	See WV Regulation 13 construction permit # 2381F		

ATTACHMENT G - Air Pollution Control Device Form			
Control device ID number: DUWC	List all emission units associated with this control device. GCAS		
Manufacturer: Ultra Industries	Model number: BB-9-36-110	Installation date:	
Type of Air Pollution Control Device:			
<u>X</u> Baghouse/Fabric Filter	Venturi Scrubber	Multiclone	
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone	
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank	
Catalytic Incinerator	Condenser	Settling Chamber	
Thermal Incinerator	Flare	Other (describe)	
Wet Plate Electrostatic Precipitator]	Dry Plate Electrostatic Precipitator	
List the pollutants for which this device	ce is intended to control and the ca	pture and control efficiencies.	
Pollutant	Capture Efficiency	Control Efficiency	
Particulate	100%	99.9%	
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.).			
Gas Flow Rate – 600 ACFM @ 100 F and 19.0 psia Total Cloth Area – 95 ft ² Stabilized static pressure 3 inches of water			
Is this device subject to the CAM requ	irements of 40 C.F.R. 64? Ye	s _ <u>X</u> _No	
If Yes, Complete ATTACHMENT H If No, Provide justification. Emissions are less than levels requiring CAM.			
Describe the parameters monitored an	Describe the parameters monitored and/or methods used to indicate performance of this control device.		
See WV Regulation 13 construction permit # 2381F			

ATTACHMENT G - Air Pollution Control Device Form		
Control device ID number: DUXC	List all emission units associated with this control device. GCBS	
Manufacturer: Ultra Industries	Model number: BB-9-36-110	Installation date:
Type of Air Pollution Control Device:		
<u>X</u> Baghouse/Fabric Filter	Venturi Scrubber	Multiclone
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank
Catalytic Incinerator	Condenser	Settling Chamber
Thermal Incinerator	Flare	Other (describe)
Wet Plate Electrostatic Precipitator		Dry Plate Electrostatic Precipitator
List the pollutants for which this devi	ce is intended to control and the ca	pture and control efficiencies.
Pollutant	Capture Efficiency	Control Efficiency
Particulate	100%	99.9%
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.). Gas Flow Rate – 600 ACFM @ 100 F and 19.0 psia Total Cloth Area – 95 ft ² Stabilized static pressure 3 inches of water		
Is this device subject to the CAM requ	iirements of 40 C.F.R. 64? Ye	s <u>X</u> No
If Yes, Complete ATTACHMENT H If No, Provide justification. Emissions are less than levels requiring CAM.		
Describe the parameters monitored and/or methods used to indicate performance of this control device.		
See WV Regulation 13 construction permit # 2381F		

ATTACHMENT G - Air Pollution Control Device Form		
Control device ID number: DUYC	List all emission units associated with this control device. GCCS	
Manufacturer: Ultra Industries	Model number: BB-9-36-110	Installation date:
Type of Air Pollution Control Device:		
<u>X</u> Baghouse/Fabric Filter	Venturi Scrubber	Multiclone
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank
Catalytic Incinerator	Condenser	Settling Chamber
Thermal Incinerator	Flare	Other (describe)
Wet Plate Electrostatic Precipitator]	Dry Plate Electrostatic Precipitator
List the pollutants for which this devic	ce is intended to control and the ca	pture and control efficiencies.
Pollutant	Capture Efficiency	Control Efficiency
Particulate	100%	99.9%
Explain the characteristic design para bags, size, temperatures, etc.).	meters of this control device (flow	rates, pressure drops, number of
Gas Flow Rate – 600 ACFM @ 100 F and 19.0 psia Total Cloth Area – 95 ft ² Stabilized static pressure 3 inches of water		
Is this device subject to the CAM requ	uirements of 40 C.F.R. 64? Ye	s _ <u>X</u> _No
If Yes, Complete ATTACHMENT H If No, Provide justification. Emissions are less than levels requiring CAM.		
Describe the parameters monitored and/or methods used to indicate performance of this control device.		
See WV Regulation 13 construction permit # 2381F		

ATTACHMENT G - Air Pollution Control Device Form		
Control device ID number: DUZC	List all emission units associated with this control device. GCDS	
Manufacturer: Ultra Industries	Model number: BB-9-36-110	Installation date:
Type of Air Pollution Control Device:		
<u>X</u> Baghouse/Fabric Filter	Venturi Scrubber	Multiclone
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank
Catalytic Incinerator	Condenser	Settling Chamber
Thermal Incinerator	Flare	Other (describe)
Wet Plate Electrostatic Precipitator		Dry Plate Electrostatic Precipitator
List the pollutants for which this devi	ce is intended to control and the ca	pture and control efficiencies.
Pollutant	Capture Efficiency	Control Efficiency
Particulate	100%	99.9%
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.). Gas Flow Rate – 600 ACFM @ 100 F and 19.0 psia Total Cloth Area – 95 ft ² Stabilized static pressure 3 inches of water		
Is this device subject to the CAM requ	iirements of 40 C.F.R. 64? Ye	s <u>X</u> No
If Yes, Complete ATTACHMENT H If No, Provide justification. Emissions are less than levels requiring CAM.		
Describe the parameters monitored and/or methods used to indicate performance of this control device.		
See WV Regulation 13 construction permit # 2381F		

ATTACHMENT G - Air Pollution Control Device Form		
Control device ID number: HESC	List all emission units associated with this control device. HESS	
Manufacturer: Sparks	Model number: F22-0008- FF120	Installation date:
Type of Air Pollution Control Device:		
<u>X</u> Baghouse/Fabric Filter	Venturi Scrubber	Multiclone
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank
Catalytic Incinerator	Condenser	Settling Chamber
Thermal Incinerator	Flare	Other (describe)
Wet Plate Electrostatic Precipitator]	Dry Plate Electrostatic Precipitator
List the pollutants for which this devic	ce is intended to control and the ca	pture and control efficiencies.
Pollutant	Capture Efficiency	Control Efficiency
Particulate	100%	99.9%
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.).		
Gas Flow Rate – 600 ACFM @ 100 F ar	nd 19.0 psia	
Is this device subject to the CAM requ	iirements of 40 C.F.R. 64? Ye	s <u>X</u> No
If Yes, Complete ATTACHMENT H		
If No, Provide justification. Emissions are less than levels requiring CAM.		
Describe the parameters monitored and/or methods used to indicate performance of this control device.		
See WV Regulation 13 construction permit # 2381F		

ATTACHMENT G - Air Pollution Control Device Form			
Control device ID number: HETC	List all emission units associated with this control device. HETS		
Manufacturer: Sparks	Model number: F22-0008- FF120	Installation date:	
Type of Air Pollution Control Device:			
<u>X</u> Baghouse/Fabric Filter	Venturi Scrubber	Multiclone	
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone	
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank	
Catalytic Incinerator	Condenser	Settling Chamber	
Thermal Incinerator	Flare	Other (describe)	
Wet Plate Electrostatic Precipitator]	Dry Plate Electrostatic Precipitator	
List the pollutants for which this devi	ce is intended to control and the ca	pture and control efficiencies.	
Pollutant	Capture Efficiency	Control Efficiency	
Particulate	100%	99.9%	
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.).			
Gas Flow Rate – 600 ACFM @ 100 F at	nd 19.0 psia		
Is this device subject to the CAM requ	uirements of 40 C.F.R. 64? Ye	s _X_No	
If Yes, Complete ATTACHMENT H			
If No, Provide justification. Emissions are less than levels requiring CAM.			
Describe the parameters monitored and/or methods used to indicate performance of this control device.			
See WV Regulation 13 construction permit # 2381F			

ATTACHMENT G - Air Pollution Control Device Form		
Control device ID number: DUKC	List all emission units associated with this control device. DTPS, DUGS, DUNS, DUOS, HCIS, HFLS, DUIS, DUES, DUFS	
Manufacturer: FlexKleen	Model number: 84-BVC-6 (III)	Installation date:
Type of Air Pollution Control Device:		
<u>X</u> Baghouse/Fabric Filter	Venturi Scrubber]	Multiclone
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank
Catalytic Incinerator	Condenser	Settling Chamber
Thermal Incinerator	Flare	Other (describe)
Wet Plate Electrostatic Precipitator	1	Dry Plate Electrostatic Precipitator
List the pollutants for which this device	ce is intended to control and the ca	pture and control efficiencies.
Pollutant	Capture Efficiency	Control Efficiency
Particulate	100%	99.9%
Explain the characteristic design para bags, size, temperatures, etc.).	meters of this control device (flow	rates, pressure drops, number of
Gas Flow Rate – 2200 ACFM @ 120 F and 14.2 psia Total Cloth Area – 379.2 ft ² Stabilized static pressure 1-8 inches of water Pulse Jet		
Is this device subject to the CAM requ	iirements of 40 C.F.R. 64? Ye	s _ <u>X</u> _No
If Yes, Complete ATTACHMENT H If No, Provide justification. Emissions are less than levels requiring CAM.		
Describe the parameters monitored and/or methods used to indicate performance of this control device.		
See WV Regulation 13 construction permit # 2381F		

ATTACHMENT G - Air Pollution Control Device Form		
Control device ID number: DVAC	List all emission units associated with this control device. DVCS, DVDS, DVES, DVFS, HEUS, HEVS	
Manufacturer: Ultra Industries	Model number: CB65-100 Arrangement III	Installation date:
Type of Air Pollution Control Device:		
<u>X</u> Baghouse/Fabric Filter	Venturi Scrubber	Multiclone
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank
Catalytic Incinerator	Condenser	Settling Chamber
Thermal Incinerator	Flare	Other (describe)
Wet Plate Electrostatic Precipitator	1	Dry Plate Electrostatic Precipitator
List the pollutants for which this devi	ce is intended to control and the ca	pture and control efficiencies.
Pollutant	Capture Efficiency	Control Efficiency
Particulate	100%	99.9%
Explain the characteristic design para bags, size, temperatures, etc.).	meters of this control device (flow	rates, pressure drops, number of
Gas Flow Rate – 2400 ACFM @ 100 F and 22.7 psia Total Cloth Area – 826 ft ² Stabilized static pressure 3-5 inches of water Pulse Jet		
Is this device subject to the CAM requ	iirements of 40 C.F.R. 64? Ye	s _ <u>X</u> _No
If Yes, Complete ATTACHMENT H If No, Provide justification. Emissions are less than levels requiring CAM.		
Describe the parameters monitored and/or methods used to indicate performance of this control device.		
See WV Regulation 13 construction permit # 2381F		

ATTACHMENT G - Air Pollution Control Device Form		
Control device ID number: DVIC	List all emission units associated with this control device. DVLS	
Manufacturer: FlexKleen	Model number: 84-BVC-6 (III)	Installation date:
Type of Air Pollution Control Device:		
X_Baghouse/Fabric Filter	Venturi Scrubber	Multiclone
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank
Catalytic Incinerator	Condenser	Settling Chamber
Thermal Incinerator	Flare	Other (describe)
Wet Plate Electrostatic Precipitator	[]	Dry Plate Electrostatic Precipitator
List the pollutants for which this devic	e is intended to control and the ca	pture and control efficiencies.
Pollutant	Capture Efficiency	Control Efficiency
Particulate	100%	99.9%
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.).		
Gas Flow Rate – 600 ACFM @ 100 F and 15.5 psia Total Cloth Area – 95 ft ² Stabilized static pressure 2-10 inches of water Pulse Jet		
Is this device subject to the CAM requirements of 40 C.F.R. 64? YesX_ No If Yes, Complete ATTACHMENT H If No, Provide justification. Emissions are less than levels requiring CAM.		
Describe the parameters monitored and/or methods used to indicate performance of this control device.		
See WV Regulation 13 construction permit # 2381F		

ATTACHMENT G - Air Pollution Control Device Form		
Control device ID number: DVJC	List all emission units associated with this control device. DVMS	
Manufacturer: FlexKleen	Model number: 84-BVC-6 (III)	Installation date:
Type of Air Pollution Control Device:		
<u>X</u> Baghouse/Fabric Filter	Venturi Scrubber	Multiclone
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank
Catalytic Incinerator	Condenser	Settling Chamber
Thermal Incinerator	Flare	Other (describe)
Wet Plate Electrostatic Precipitator	[]	Dry Plate Electrostatic Precipitator
List the pollutants for which this device	ce is intended to control and the ca	pture and control efficiencies.
Pollutant	Capture Efficiency	Control Efficiency
Particulate	100%	99.9%
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.).		
Gas Flow Rate – 600 ACFM @ 100 F and 15.5 psia Total Cloth Area – 95 ft ² Stabilized static pressure 2-10 inches of water Pulse Jet		
Is this device subject to the CAM requirements of 40 C.F.R. 64? YesX_ No If Yes, Complete ATTACHMENT H If No, Provide justification. Emissions are less than levels requiring CAM.		
Describe the parameters monitored and/or methods used to indicate performance of this control device.		
See WV Regulation 13 construction permit # 2381F		

ATTACHMENT G - Air Pollution Control Device Form			
Control device ID number: DURC	List all emission units associated with this control device. DURS, DVBS		
Manufacturer: MiKro-Pul	Model number: 23-10-220-C	Installation date:	
Type of Air Pollution Control Device:			
X_Baghouse/Fabric Filter	Venturi Scrubber	Multiclone	
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone	
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank	
Catalytic Incinerator	Condenser	Settling Chamber	
Thermal Incinerator	Flare	Other (describe)	
Wet Plate Electrostatic Precipitator	1	Dry Plate Electrostatic Precipitator	
List the pollutants for which this device	e is intended to control and the ca	pture and control efficiencies.	
Pollutant	Capture Efficiency	Control Efficiency	
Particulate	100%	99.9%	
Explain the characteristic design para bags, size, temperatures, etc.).	Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.).		
Gas Flow Rate – 600 ACFM @ 50 F and 15.5 psia Total Cloth Area – 131 ft ² Stabilized static pressure 2-10 inches of water Pulse Jet			
Is this device subject to the CAM requ	irements of 40 C.F.R. 64? Ye	s _ <u>X</u> _No	
If Yes, Complete ATTACHMENT H			
If No, Provide justification. Emissions are less than levels requiring CAM.			
Describe the parameters monitored and/or methods used to indicate performance of this control device.			
See WV Regulation 13 construction permit # 2381F			

ATTACHMENT G - Air Pollution Control Device Form		
Control device ID number: HFZP	List all emission units associated with this control device. DTAS	
Manufacturer: TORIT	Model number: 2DF4	Installation date:
Type of Air Pollution Control Device:		
<u>X</u> Baghouse/Fabric Filter	Venturi Scrubber 1	Multiclone
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank
Catalytic Incinerator	CondenserS	Settling Chamber
Thermal Incinerator	Flare	Other (describe)
Wet Plate Electrostatic Precipitator]	Dry Plate Electrostatic Precipitator
List the pollutants for which this devic	ee is intended to control and the ca	pture and control efficiencies.
Pollutant	Capture Efficiency	Control Efficiency
Particulate	100%	99.9%
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.).		
Gas Flow Rate – 1000 ACFM @ 70 F and 14.4 psia Total Cloth Area – 904 ft ² Stabilized static pressure 3-5 inches of water Pulse Jet		
Is this device subject to the CAM requ	iirements of 40 C.F.R. 64? Yes	s _ <u>X</u> _No
If Yes, Complete ATTACHMENT H If No, Provide justification. Emissions are less than levels requiring CAM.		
Describe the parameters monitored and/or methods used to indicate performance of this control device.		
See WV Regulation 13 construction permit # 2381F		

ATTACHMENT G - Air Pollution Control Device Form			
Control device ID number: HERP	List all emission units associated with this control device. HFYS		
Manufacturer: TORIT	Model number: 2DF4	Installation date:	
Type of Air Pollution Control Device:			
X_Baghouse/Fabric Filter	Venturi Scrubber 1	Multiclone	
Carbon Bed Adsorber	Packed Tower Scrubber S	Single Cyclone	
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank	
Catalytic Incinerator	Condenser	Settling Chamber	
Thermal Incinerator	Flare (Other (describe)	
Wet Plate Electrostatic Precipitator	1	Dry Plate Electrostatic Precipitator	
List the pollutants for which this device	ce is intended to control and the ca	pture and control efficiencies.	
Pollutant	Capture Efficiency	Control Efficiency	
Particulate	100%	99.9%	
Explain the characteristic design para bags, size, temperatures, etc.).	Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.).		
Gas Flow Rate – 1000 ACFM @ 70 F and 14.4 psia Total Cloth Area – 904 ft ² Stabilized static pressure 3-5 inches of water Pulse Jet			
Is this device subject to the CAM requ	iirements of 40 C.F.R. 64? Yes	s <u>X</u> No	
If Yes, Complete ATTACHMENT H If No, Provide justification. Emissions are less than levels requiring CAM.			
Describe the parameters monitored and/or methods used to indicate performance of this control device.			
See WV Regulation 13 construction permit # 2381F			

ATTACHMENT G - Air Pollution Control Device Form		
Control device ID number: DWDP	List all emission units associated with this control device. DWMS	
Manufacturer: Flex-Kleen Corp.	Model number: 84-CTCBC-42- III	Installation date:
Type of Air Pollution Control Device:		
<u>X</u> Baghouse/Fabric Filter	Venturi Scrubber	Multiclone
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank
Catalytic Incinerator	Condenser	Settling Chamber
Thermal Incinerator	Flare	Other (describe)
Wet Plate Electrostatic Precipitator	1	Dry Plate Electrostatic Precipitator
List the pollutants for which this devic	e is intended to control and the ca	pture and control efficiencies.
Pollutant	Capture Efficiency	Control Efficiency
Particulate	100%	99.9%
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.).		
Gas Flow Rate – 730 ACFM @ 120 F and 15.7 psia Total Cloth Area – 445 ft ² Stabilized static pressure 3-5 inches of water Pulse Jet		
Is this device subject to the CAM requ	irements of 40 C.F.R. 64? Ye	s _ <u>X</u> _No
If Yes, Complete ATTACHMENT H If No, Provide justification. Emissions are less than levels requiring CAM.		
Describe the parameters monitored and/or methods used to indicate performance of this control device.		
See WV Regulation 13 construction permit # 2381F		

ATTACHMENT G - Air Pollution Control Device Form			
Control device ID number: HEDP	List all emission units associated with this control device. HEZS		
Manufacturer: TORIT	Model number: 2DF8	Installation date:	
Type of Air Pollution Control Device:			
<u>X</u> Baghouse/Fabric Filter	Venturi Scrubber]	Multiclone	
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone	
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank	
Catalytic Incinerator	Condenser	Settling Chamber	
Thermal Incinerator	Flare	Other (describe)	
Wet Plate Electrostatic Precipitator	1	Dry Plate Electrostatic Precipitator	
List the pollutants for which this device	ce is intended to control and the ca	pture and control efficiencies.	
Pollutant	Capture Efficiency	Control Efficiency	
Particulate	100%	99.9%	
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.).			
Gas Flow Rate – 2000 ACFM @ 70 F and 14.2 psia Total Cloth Area – 1808 ft ² Stabilized static pressure 0.3-1.5 inches of water Pulse Jet			
Is this device subject to the CAM requ	Is this device subject to the CAM requirements of 40 C.F.R. 64? Yes No		
If Yes, Complete ATTACHMENT H If No, Provide justification. Emissions are less than levels requiring CAM.			
Describe the parameters monitored an	Describe the parameters monitored and/or methods used to indicate performance of this control device.		
See WV Regulation 13 construction permit # 2381F			

ATTACHMENT G - Air Pollution Control Device Form		
Control device ID number: HEWP	List all emission units associated with this control device. HEWS	
Manufacturer: TORIT	Model number: 2DF4	Installation date:
Type of Air Pollution Control Device:		
X_Baghouse/Fabric Filter	Venturi Scrubber 1	Multiclone
Carbon Bed Adsorber	Packed Tower Scrubber S	Single Cyclone
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank
Catalytic Incinerator	Condenser	Settling Chamber
Thermal Incinerator	Flare (Other (describe)
Wet Plate Electrostatic Precipitator	1	Dry Plate Electrostatic Precipitator
List the pollutants for which this device	ce is intended to control and the ca	pture and control efficiencies.
Pollutant	Capture Efficiency	Control Efficiency
Particulate	100%	99.9%
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.).		
Gas Flow Rate – 1000 ACFM @ 70 F and 14.4 psia Total Cloth Area – 904 ft ² Stabilized static pressure 3-5 inches of water Pulse Jet		
Is this device subject to the CAM requ	irements of 40 C.F.R. 64? Yes	s _ <u>X</u> _No
If Yes, Complete ATTACHMENT H If No, Provide justification. Emissions are less than levels requiring CAM.		
Describe the parameters monitored and/or methods used to indicate performance of this control device.		
See WV Regulation 13 construction permit # 2381F		

ATTACHMENT G - Air Pollution Control Device Form		
Control device ID number: HFOP	List all emission units associated with this control device. HFPS	
Manufacturer: Flex-Kleen Corp.	Model number: 84-CTBC-42- III	Installation date:
Type of Air Pollution Control Device:		
X_Baghouse/Fabric Filter	Venturi Scrubber	Multiclone
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank
Catalytic Incinerator	Condenser	Settling Chamber
Thermal Incinerator	Flare	Other (describe)
Wet Plate Electrostatic Precipitator]	Dry Plate Electrostatic Precipitator
List the pollutants for which this devic	ce is intended to control and the ca	pture and control efficiencies.
Pollutant	Capture Efficiency	Control Efficiency
Particulate	100%	99.9%
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.).		
Gas Flow Rate – 730 ACFM @ 120 F and 15.7 psia Total Cloth Area – 445 ft ² Stabilized static pressure 3-5 inches of water Pulse Jet		
Is this device subject to the CAM requ	iirements of 40 C.F.R. 64? Ye	s _ <u>X</u> _No
If Yes, Complete ATTACHMENT H If No, Provide justification. Emissions are less than levels requiring CAM.		
Describe the parameters monitored and/or methods used to indicate performance of this control device.		
See WV Regulation 13 construction permit # 2381F		

ATTACHMENT G - Air Pollution Control Device Form		
Control device ID number: DQEP	List all emission units associated with this control device. DUPS	
Manufacturer: Flex-Kleen	Model number: 84-CTBS-32	Installation date:
Type of Air Pollution Control Device:		
<u>X</u> Baghouse/Fabric Filter	Venturi Scrubber 1	Multiclone
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone
Carbon Drum(s)	Other Wet Scrubber 0	Cyclone Bank
Catalytic Incinerator	CondenserS	Settling Chamber
Thermal Incinerator	Flare (Other (describe)
Wet Plate Electrostatic Precipitator	1	Dry Plate Electrostatic Precipitator
List the pollutants for which this device	e is intended to control and the ca	pture and control efficiencies.
Pollutant	Capture Efficiency	Control Efficiency
Particulate	100%	99.98%
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.).		
Gas Flow Rate – 2200 ACFM @ 70 F and 22.7 psia Total Cloth Area – 528 ft ² Stabilized static pressure 3-5 inches of water Pulse Jet		
Is this device subject to the CAM requ	iirements of 40 C.F.R. 64? Ye	s _ <u>X</u> _No
If Yes, Complete ATTACHMENT H If No, Provide justification. Emissions are less than levels requiring CAM.		
Describe the parameters monitored and/or methods used to indicate performance of this control device.		
See WV Regulation 13 construction permit # 2381F		

ATTACHMENT G - Air Pollution Control Device Form		
Control device ID number: DSXP	List all emission units associated with this control device. DUAS	
Manufacturer: Flex-Kleen Corp.	Model number: 84-CTBC-42- III	Installation date:
Type of Air Pollution Control Device:		
X_Baghouse/Fabric Filter	Venturi Scrubber	Multiclone
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank
Catalytic Incinerator	Condenser	Settling Chamber
Thermal Incinerator	Flare	Other (describe)
Wet Plate Electrostatic Precipitator]	Dry Plate Electrostatic Precipitator
List the pollutants for which this devic	ce is intended to control and the ca	pture and control efficiencies.
Pollutant	Capture Efficiency	Control Efficiency
Particulate	100%	99.9%
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.).		
Gas Flow Rate – 600 ACFM @ 100 F and 14.3 psia Total Cloth Area – 148 ft ² Stabilized static pressure 0.3-1.5 inches of water Pulse Jet		
Is this device subject to the CAM requ	iirements of 40 C.F.R. 64? Ye	s _ <u>X</u> _No
If Yes, Complete ATTACHMENT H If No, Provide justification. Emissions are less than levels requiring CAM.		
Describe the parameters monitored and/or methods used to indicate performance of this control device.		
See WV Regulation 13 construction permit # 2381F		

ATTACHMENT G - Air Pollution Control Device Form			
Control device ID number: DRYP	List all emission units associated with this control device. DVUS		
Manufacturer: DuPont Custom Seperator Design	Model number: N/A	Installation date:	
Type of Air Pollution Control Device:			
Baghouse/Fabric Filter	Venturi Scrubber	Multiclone	
Carbon Bed Adsorber	Packed Tower Scrubber <u>X</u>	Single Cyclone	
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank	
Catalytic Incinerator	Condenser	Settling Chamber	
Thermal Incinerator	Flare	Other (describe)	
Wet Plate Electrostatic Precipitator]	Dry Plate Electrostatic Precipitator	
List the pollutants for which this device	ce is intended to control and the ca	pture and control efficiencies.	
Pollutant	Capture Efficiency	Control Efficiency	
Particulate	100%	99.9%	
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.).			
Gas Flow Rate – 2400 ACFM @ 140 F a	and 22.7 psia		
Is this device subject to the CAM requ	iirements of 40 C.F.R. 64? Ye	s _ <u>X</u> _No	
If Yes, Complete ATTACHMENT H			
If No, Provide justification. Emissions are less than levels requiring CAM.			
Describe the parameters monitored and/or methods used to indicate performance of this control device.			
See WV Regulation 13 construction permit # 2381F			

ATTACHMENT G - Air Pollution Control Device Form			
Control device ID number: HCLP	List all emission units associated with this control device. DVUS		
Manufacturer: DuPont Custom Seperator Design	Model number: N/A	Installation date:	
Type of Air Pollution Control Device:			
Baghouse/Fabric Filter	Venturi Scrubber	Multiclone	
Carbon Bed Adsorber	Packed Tower Scrubber <u>X</u>	Single Cyclone	
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank	
Catalytic Incinerator	Condenser	Settling Chamber	
Thermal Incinerator	Flare	Other (describe)	
Wet Plate Electrostatic Precipitator]	Dry Plate Electrostatic Precipitator	
List the pollutants for which this device	ce is intended to control and the ca	pture and control efficiencies.	
Pollutant	Capture Efficiency	Control Efficiency	
Particulate	100%	99.9%	
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.).			
Gas Flow Rate – 2400 ACFM @ 140 F a	and 22.7 psia		
Is this device subject to the CAM requ	iirements of 40 C.F.R. 64? Ye	s _ <u>X</u> _No	
If Yes, Complete ATTACHMENT H	a ara laga than layela requiring C	0.N.4	
If No, Provide justification. Emissions are less than levels requiring CAM.			
Describe the parameters monitored and/or methods used to indicate performance of this control device.			
See WV Regulation 13 construction permit # 2381F			

ATTACHMENT G - Air Pollution Control Device Form			
Control device ID number: DSBP	List all emission units associated with this control device. DVXS		
Manufacturer: DuPont Custom Seperator Design	Model number: N/A	Installation date:	
Type of Air Pollution Control Device:			
Baghouse/Fabric Filter	Venturi Scrubber	Multiclone	
Carbon Bed Adsorber	Packed Tower Scrubber <u>X</u>	Single Cyclone	
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank	
Catalytic Incinerator	Condenser	Settling Chamber	
Thermal Incinerator	Flare	Other (describe)	
Wet Plate Electrostatic Precipitator	!	Dry Plate Electrostatic Precipitator	
List the pollutants for which this device	e is intended to control and the ca	pture and control efficiencies.	
Pollutant	Capture Efficiency	Control Efficiency	
Particulate	100%	99.9%	
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.).			
Gas Flow Rate – 2400 ACFM @ 140 F and 22.7 psia			
Is this device subject to the CAM requ	iirements of 40 C.F.R. 64? Ye	s <u>X</u> No	
If Yes, Complete ATTACHMENT H			
If No, Provide justification. Emissions are less than levels requiring CAM.			
Describe the parameters monitored and/or methods used to indicate performance of this control device.			
See WV Regulation 13 construction permit # 2381F			

ATTACHMENT G - Air Pollution Control Device Form			
Control device ID number: DSNP	List all emission units associated with this control device. DVVS		
Manufacturer: DuPont Custom Seperator Design	Model number: N/A	Installation date:	
Type of Air Pollution Control Device:			
Baghouse/Fabric Filter	Venturi Scrubber	Multiclone	
Carbon Bed Adsorber	Packed Tower Scrubber <u>X</u>	Single Cyclone	
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank	
Catalytic Incinerator	Condenser	Settling Chamber	
Thermal Incinerator	Flare	Other (describe)	
Wet Plate Electrostatic Precipitator	[]	Dry Plate Electrostatic Precipitator	
List the pollutants for which this device	e is intended to control and the ca	pture and control efficiencies.	
Pollutant	Capture Efficiency	Control Efficiency	
Particulate	100%	99.9%	
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.).			
Gas Flow Rate – 2400 ACFM @ 140 F and 22.7 psia			
Is this device subject to the CAM requ	iirements of 40 C.F.R. 64? Ye	s <u>X</u> No	
If Yes, Complete ATTACHMENT H If No, Provide justification. Emissions are less than levels requiring CAM.			
Describe the parameters monitored and/or methods used to idicate performance of this control device.			
See WV Regulation 13 construction permit # 2381F			

ATTACHMENT G - Air Pollution Control Device Form			
Control device ID number: DSOP	List all emission units associated with this control device. DVWS		
Manufacturer: DuPont Custom Seperator Design	Model number: N/A	Installation date:	
Type of Air Pollution Control Device:			
Baghouse/Fabric Filter	Venturi Scrubber	Multiclone	
Carbon Bed Adsorber	Packed Tower Scrubber X	Single Cyclone	
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank	
Catalytic Incinerator	Condenser	Settling Chamber	
Thermal Incinerator	Flare	Other (describe)	
Wet Plate Electrostatic Precipitator	1	Dry Plate Electrostatic Precipitator	
List the pollutants for which this devic	e is intended to control and the ca	pture and control efficiencies.	
Pollutant	Capture Efficiency	Control Efficiency	
Particulate	100%	99.9%	
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.).			
Gas Flow Rate – 2400 ACFM @ 140 F and 22.7 psia			
Is this device subject to the CAM requ	irements of 40 C.F.R. 64? Ye	s _ <u>X</u> _No	
If Yes, Complete ATTACHMENT H			
If No, Provide justification. Emissions are less than levels requiring CAM.			
Describe the parameters monitored and/or methods used to indicate performance of this control device.			
See WV Regulation 13 construction permit # 2381F			

ATTACHMENT G - Air Pollution Control Device Form				
Control device ID number: DSTC	List all emission units associated with this control device. DUGS, DTVS			
Manufacturer: Flex-Kleen Corp.	Model number: 84-CTBC- 14(III)	Installation date:		
Type of Air Pollution Control Device:				
<u>X</u> Baghouse/Fabric Filter	Venturi Scrubber 1	Multiclone		
Carbon Bed Adsorber	Packed Tower Scrubber S	Single Cyclone		
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank		
Catalytic Incinerator	Condenser	Settling Chamber		
Thermal Incinerator	Flare (Other (describe)		
Wet Plate Electrostatic Precipitator	1	Dry Plate Electrostatic Precipitator		
List the pollutants for which this device	e is intended to control and the ca	pture and control efficiencies.		
Pollutant	Capture Efficiency	Control Efficiency		
Particulate	100%	99.9%		
Explain the characteristic design para bags, size, temperatures, etc.).	meters of this control device (flow	rates, pressure drops, number of		
Gas Flow Rate – 600 ACFM @ 100 F and 14.3 psia Total Cloth Area – 148 ft ² Stabilized static pressure 0.3-1.5 inches of water Pulse Jet				
Is this device subject to the CAM requirements of 40 C.F.R. 64? Yes _X_ No				
If Yes, Complete ATTACHMENT H If No, Provide justification. Emissions are less than levels requiring CAM.				
Describe the parameters monitored and/or methods used to indicate performance of this control device.				
See WV Regulation 13 construction permit # 2381F				

ATTACHMENT G - Air Pollution Control Device Form				
Control device ID number: DSZC	List all emission units associated with this control device. DTVS			
Manufacturer: Filtration Engineering	Model number: 12-300-20	Installation date:		
Type of Air Pollution Control Device:				
<u>X</u> Baghouse/Fabric Filter	X Baghouse/Fabric Filter Venturi Scrubber Multiclone			
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone		
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank		
Catalytic Incinerator	Condenser	Settling Chamber		
Thermal Incinerator	Flare	Other (describe)		
Wet Plate Electrostatic Precipitator]	Dry Plate Electrostatic Precipitator		
List the pollutants for which this devic	e is intended to control and the ca	pture and control efficiencies.		
Pollutant	Capture Efficiency	Control Efficiency		
Particulate	100%	99.9%		
Explain the characteristic design para bags, size, temperatures, etc.).	meters of this control device (flow	rates, pressure drops, number of		
Gas Flow Rate – 1060 ACFM @ 90 F ar	nd 14.2 psia			
Is this device subject to the CAM requirements of 40 C.F.R. 64? YesX_ No				
If Yes, Complete ATTACHMENT H				
If No, Provide justification. Emissions are less than levels requiring CAM.				
Describe the parameters monitored and/or methods used to indicate performance of this control device.				
See WV Regulation 13 construction permit # 2381F				

ATTACHMENT G - Air Pollution Control Device Form				
Control device ID number: DWAC	List all emission units associated with this control device. DWAS			
Manufacturer: Hoffman Air and Filtration Division	Model number: 30X96 Secondary Seperator	Installation date:		
Type of Air Pollution Control Device:				
<u>X</u> Baghouse/Fabric Filter	Venturi Scrubber 1	Multiclone		
Carbon Bed Adsorber	Packed Tower Scrubber S	Single Cyclone		
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank		
Catalytic Incinerator	Condenser	Settling Chamber		
Thermal Incinerator	Flare (Other (describe)		
Wet Plate Electrostatic Precipitator	1	Dry Plate Electrostatic Precipitator		
List the pollutants for which this device	ce is intended to control and the ca	pture and control efficiencies.		
Pollutant	Capture Efficiency	Control Efficiency		
Particulate	100%	99.9%		
Explain the characteristic design para bags, size, temperatures, etc.).	meters of this control device (flow	rates, pressure drops, number of		
Gas Flow Rate – 450 ACFM @ 95 F and 14.3 psia Total Cloth Area – 128 ft ² Stabilized static pressure 0.3-1.5 inches of water Pulse Jet				
Is this device subject to the CAM requ	iirements of 40 C.F.R. 64? Ye	s _ <u>X</u> _No		
If Yes, Complete ATTACHMENT H If No, Provide justification. Emissions are less than levels requiring CAM.				
Describe the parameters monitored and/or methods used to indicate performance of this control device.				
See WV Regulation 13 construction permit # 2381F				

ATTACHMENT G - Air Pollution Control Device Form				
Control device ID number: HEEP	List all emission units associated with this control device. HFDS			
Manufacturer: DuPont Custom Seperator Design	Model number: N/A	Installation date:		
Type of Air Pollution Control Device:				
Baghouse/Fabric Filter	Venturi Scrubber	Multiclone		
Carbon Bed Adsorber	Packed Tower Scrubber <u>X</u>	Single Cyclone		
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank		
Catalytic Incinerator	Condenser	Settling Chamber		
Thermal Incinerator	Flare	Other (describe)		
Wet Plate Electrostatic Precipitator	1	Dry Plate Electrostatic Precipitator		
List the pollutants for which this device	ce is intended to control and the ca	pture and control efficiencies.		
Pollutant	Capture Efficiency	Control Efficiency		
Particulate	100%	99.9%		
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.).				
Gas Flow Rate – 2400 ACFM @ 120 F a	and 15.7 psia			
Is this device subject to the CAM requ	Is this device subject to the CAM requirements of 40 C.F.R. 64? Yes _X_ No			
If Yes, Complete ATTACHMENT H If No, Provide justification. Emissions are less than levels requiring CAM.				
Describe the parameters monitored and/or methods used to indicate performance of this control device.				
See WV Regulation 13 construction permit # 2381F				

ATTACHMENT G - Air Pollution Control Device Form			
Control device ID number: HEFC	List all emission units associated with this control device. HEES		
Manufacturer: Flex-Kleen Corp	Model number: 84-CTBC- 14(III)	Installation date:	
Type of Air Pollution Control Device:			
<u>X</u> Baghouse/Fabric Filter	<u>X</u> Baghouse/Fabric Filter Venturi Scrubber Multiclone		
Carbon Bed Adsorber	Packed Tower Scrubber <u>X</u>	Single Cyclone	
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank	
Catalytic Incinerator	Condenser	Settling Chamber	
Thermal Incinerator	Flare	Other (describe)	
Wet Plate Electrostatic Precipitator		Dry Plate Electrostatic Precipitator	
List the pollutants for which this device	ce is intended to control and the ca	pture and control efficiencies.	
Pollutant	Capture Efficiency	Control Efficiency	
Particulate	100%	99.9%	
Explain the characteristic design para bags, size, temperatures, etc.).	meters of this control device (flow	rates, pressure drops, number of	
Gas Flow Rate – 2400 ACFM @ 140 F a	and 22.7 psia		
Is this device subject to the CAM requ	irements of 40 C.F.R. 64? Ye	s <u>X</u> No	
If Yes, Complete ATTACHMENT H			
If No, Provide justification. Emissions are less than levels requiring CAM.			
Describe the parameters monitored and/or methods used to indicate performance of this control device.			
See WV Regulation 13 construction permit # 2381F			

Air Pollution Control Device Form (control_device.wpd) Page 54 of 54 Revised - 3/1/04

Attachment H – CAM Rules Applicability

ATTACHMENT H - Compliance Assurance Monitoring (CAM) Plan Form

For definitions and information about the CAM rule, please refer to 40 CFR Part 64. Additional information (including guidance documents) may also be found at <u>http://www.epa.gov/ttn/emc/cam.html</u>

	CAM APPLICABILITY DETERMINATION					
sep CF app	to be the facility have a PSEU (Pollutant-Specific Emissions Unit considered parately with respect to <u>EACH</u> regulated air pollutant) that is subject to CAM (40 FR Part 64), which must be addressed in this CAM plan submittal? To determine plicability, a PSEU must meet <u>all</u> of the following criteria (<i>If No, then the mainder of this form need not be completed</i>):					
a.	The PSEU is located at a major source that is required to obtain a Title V permit;					
b.	The PSEU is subject to an emission limitation or standard for the applicable regulated air pollutant that is <u>NOT</u> exempt;					
	 <u>LIST OF EXEMPT EMISSION LIMITATIONS OR STANDARDS:</u> NSPS (40 CFR Part 60) or NESHAP (40 CFR Parts 61 and 63) proposed after 11/15/1990. Stratospheric Ozone Protection Requirements. Acid Rain Program Requirements. 					
	 Emission Limitations or Standards for which a WVDEP Division of Air Quality Title V permit specifies a continuous compliance determination method, as defined in 40 CFR §64.1. An emission cap that meets the requirements specified in 40 CFR §70.4(b)(12). 					
c.	The PSEU uses an add-on control device (as defined in 40 CFR §64.1) to achieve compliance with an emission limitation or standard;					
d.	d. The PSEU has potential pre-control device emissions of the applicable regulated air pollutant that are equal to or greater than the Title V Major Source Threshold Levels; AND					
e.	e. The PSEU is <u>NOT</u> an exempt backup utility power emissions unit that is municipally-owned.					
	BASIS OF CAM SUBMITTAL					
	lark the appropriate box below as to why this CAM plan is being submitted as part of an application for a Title V rmit:					
	<u>RENEWAL APPLICATION</u> . <u>ALL</u> PSEUs for which a CAM plan has <u>NOT</u> yet been approved need to be addressed in this CAM plan submittal.					
	<u>INITIAL APPLICATION</u> (submitted after 4/20/98). <u>ONLY</u> large PSEUs (i. e., PSEUs with potential post- control device emissions of an applicable regulated air pollutant that are equal to or greater than Major Source					

control device emissions of an applicable regulated air pollutant that are equal to or greater than Major Source Threshold Levels) need to be addressed in this CAM plan submittal.

<u>SIGNIFICANT MODIFICATION TO LARGE PSEUS</u>. <u>ONLY</u> large PSEUs being modified after 4/20/98 need to be addressed in this cam plan submittal. For large PSEUs with an approved CAM plan, <u>Only</u> address the appropriate monitoring requirements affected by the significant modification.

3) ^a BACKGROUND DATA AND INFORMATION					
Complete the following table for all PSEUs that need to be addressed in this CAM plan submittal. This section is to be used to provide background data and information for each PSEU In order to supplement the submittal requirements specified in 40 CFR §64.4. If additional space is needed, attach and label accordingly.					
PSEU DESIGNATION	DESCRIPTION	POLLUTANT	CONTROL DEVICE	^b EMISSION LIMITATION or STANDARD	° MONITORING REQUIREMENT
EXAMPLE Boiler No. 1	Wood-Fired Boiler	РМ	Multiclone	45CSR§2-4.1.c.; 9.0 lb/hr	Monitor pressure drop across multiclone: Weekly inspection of multiclone

^a If a control device is common to more than one PSEU, one monitoring plan may be submitted for the control device with the affected PSEUs identified and any conditions that must be maintained or monitored in accordance with 40 CFR §64.3(a). If a single PSEU is controlled by more than one control device similar in design and operation, one monitoring plan for the applicable control devices may be submitted with the applicable control devices identified and any conditions that must be maintained or monitored in accordance with 40 CFR §64.3(a).

^b Indicate the emission limitation or standard for any applicable requirement that constitutes an emission limitation, emission standard, or standard of performance (as defined in 40 CFR §64.1).

^c Indicate the monitoring requirements for the PSEU that are required by an applicable regulation or permit condition.

CAM MONITORING APPROACH CRITERIA				
Complete this section for EACH PSEU that needs to be addressed in this CAM plan submittal. This section may be copied as needed for each PSEU. This section is to be used to provide monitoring data and information for <u>EACH</u> indicator selected for <u>EACH</u> PSEU in order to meet the monitoring design criteria specified in 40 CFR §64.3 and §64.4. if more than two indicators are being selected for a PSEU or if additional space is needed, attach and label accordingly with the appropriate PSEU designation, pollutant, and indicator numbers.				
4a) PSEU Designation:	4b) Pollutant:	4c) ^a Indicator No. 1:	4d) ^a Indicator No. 2:	
5a) GENERAL CRITERIA Describe the <u>MONITORING APPROACH</u> used to measure the indicators:				
^b Establish the appropr <u>RANGE</u> or the procedu the indicator range wi reasonable assurance	res for establishing hich provides a			
5b) PERFORMANCE Cl Provide the <u>SPECIFICA</u> <u>OBTAINING REPRESEN</u> as detector location, i specifications, and mi accuracy:	<u>ATIONS FOR</u> <u>TATIVE DATA</u> , such nstallation			
^c For new or modified monitoring equipment, provide <u>VERIFICATION</u> <u>PROCEDURES</u> , including manufacturer's recommendations, <u>TO CONFIRM THE</u> <u>OPERATIONAL STATUS</u> of the monitoring:				
Provide <u>QUALITY ASSURANCE AND</u> <u>QUALITY CONTROL (QA/QC) PRACTICES</u> that are adequate to ensure the continuing validity of the data, (i.e., daily calibrations, visual inspections, routine maintenance, RATA, etc.):				
^d Provide the <u>MONITORING FREQUENCY</u> :				
Provide the <u>DATA COLLECTION</u> <u>PROCEDURES</u> that will be used:				
Provide the <u>DATA AVERAGING PERIOD</u> for the purpose of determining whether an excursion or exceedance has occurred:				

^a Describe all indicators to be monitored which satisfies 40 CFR §64.3(a). Indicators of emission control performance for the control device and associated capture system may include measured or predicted emissions (including visible emissions or opacity), process and control device operating parameters that affect control device (and capture system) efficiency or emission rates, or recorded findings of inspection and maintenance activities.

^b Indicator Ranges may be based on a single maximum or minimum value or at multiple levels that are relevant to distinctly different operating conditions, expressed as a function of process variables, expressed as maintaining the applicable indicator in a particular operational status or designated condition, or established as interdependent between more than one indicator. For CEMS, COMS, or PEMS, include the most recent certification test for the monitor.

^c The verification for operational status should include procedures for installation, calibration, and operation of the monitoring equipment, conducted in accordance with the manufacturer's recommendations, necessary to confirm the monitoring equipment is operational prior to the commencement of the required monitoring.

^d Emission units with post-control PTE \geq 100 percent of the amount classifying the source as a major source (i.e., Large PSEU) must collect four or more values per hour to be averaged. A reduced data collection frequency may be approved in limited circumstances. Other emission units must collect data at least once per 24 hour period.

RATIONALE AND JUSTIFICATION				
	this CAM plan submittal. This section may be copied as needed for each PSEU. ne selection of \underline{EACH} indicator and monitoring approach and \underline{EACH} indicator range 4.			
6a) PSEU Designation:	6b) Regulated Air Pollutant:			
7) INDICATORS AND THE MONITORING APPROACH: Provide the rationale and justification for the selection of the indicators and the monitoring approach used to measure the indicators. Also provide any data supporting the rationale and justification. Explain the reasons for any differences between the verification of operational status or the quality assurance and control practices proposed, and the manufacturer's recommendations. (If additional space is needed, attach and label accordingly with the appropriate PSEU designation and pollutant):				
shall indicate how EACH indicator range was selected by either a ENGINEERING ASSESSMENTS. Depending on which method is be	ication for the selection of the indicator ranges. The rationale and justification <u>COMPLIANCE OR PERFORMANCE TEST</u> , a <u>TEST PLAN AND SCHEDULE</u> , or by ing used for each indicator range, include the specific information required below ittach and label accordingly with the appropriate PSEU designation and pollutant):			
• <u>COMPLIANCE OR PERFORMANCE TEST</u> (Indicator ranges determined from control device operating parameter data obtained during a compliance or performance test conducted under regulatory specified conditions or under conditions representative of maximum potential emissions under anticipated operating conditions. Such data may be supplemented by engineering assessments and manufacturer's recommendations). The rationale and justification shall <u>INCLUDE</u> a summary of the compliance or performance test results that were used to determine the indicator range, and documentation indicating that no changes have taken place that could result in a significant change in the control system performance or the selected indicator ranges since the compliance or performance test was conducted.				
and performing any other appropriate activities prior to use of implementation plan and schedule that will provide for use of	termined from a proposed implementation plan and schedule for installing, testing, of the monitoring). The rationale and justification shall <u>INCLUDE</u> the proposed of the monitoring as expeditiously as practicable after approval of this CAM plan, and beginning operation of the monitoring exceed 180 days after approval.			
assessments and other data, such as manufacturers' design cr	procedures for establishing indicator ranges are determined from engineering riteria and historical monitoring data, because factors specific to the type of rformance testing unnecessary). The rationale and justification shall <u>INCLUDE</u> required to establish the indicator range.			
RATIONALE AND JUSTIFICATION:				