# West Virginia Nonpoint Source Program Annual Report 2019





http://www.dep.wv.gov/nonpoint



### Division of Water and Waste Management Watershed Improvement Branch Nonpoint Source Program

### Nonpoint Source Program Annual Report

Submitted March 27, 2020

### STATEMENT OF POLICY REGARDING THE EQUAL OPPORTUNITY TO USE AND PARTICIPATE IN PROGRAMS

It is the policy of the West Virginia Department of Environmental Protection (WVDEP) to provide its facilities, services and programs to all persons without regard to sex, race, color, age, religion, national origin or handicap. Proper licenses/registration and compliance with official rules and regulations are the only sources of restrictions for facility use or program participation. WVDEP is an equal opportunity employer.



West Virginia's Nonpoint Source (NPS) Program is funded by a Clean Water Act §319 Grant administered by the U.S. Environmental Protection Agency (USEPA).

Report prepared by Timothy Craddock, NPS Program Coordinator

Acknowledgements: <u>Watershed Improvement Branch</u> (WIB) §319 Program acknowledges the efforts of all staff, partners and multiple stakeholders that contributed information in this report, and those who have played roles in projects, monitoring, outreach etc. The names and organizations are too numerous to mention but if you would like to know more about organizations in your area contact: <u>timothy.d.craddock@wv.gov</u>.

### **Table of Contents**

| Executive summary                                       | 3  |
|---------------------------------------------------------|----|
| Implementation                                          | 3  |
| Best management practices                               | 3  |
| Pollutant load reductions                               | 3  |
| Chesapeake Bay Program                                  | 4  |
| Partnerships                                            | 5  |
| WIB and WVCA highlights                                 | 7  |
| Watershed project highlights                            | 12 |
| YMCA Barren Lands                                       | 13 |
| Valley Highwall Phase 3                                 | 15 |
| Mill Creek (Opequon) Implementation                     | 17 |
| Watershed plan highlights                               | 18 |
| Elks Run watershed plan                                 | 19 |
| Second Creek watershed plan                             | 21 |
| Tuscarora Creek watershed plan                          | 23 |
| Management Plan updates                                 | 25 |
| Success Stories                                         | 25 |
| Muddy Creek Restoration Project                         | 26 |
| Reclamation and AMD treatment improves Deckers Creek    | 29 |
| Appendix 1. BMP Implementation                          | 32 |
| Appendix 2. Pollutant load reductions                   | 33 |
| Appendix 3. §319 project status                         | 34 |
| Appendix 4. Second Creek WBP implementation             | 36 |
| Appendix 5. Tuscarora Creek and Elks Run WBP reductions | 37 |
| Appendix 6. West Virginia's 2020 §319 grant proposal    | 38 |
| Tables and Figures                                      |    |
| Table 1. §319 Program project categories                | 3  |
| Table 2. 2019 BMP implementation.                       | 3  |
| Figure 1. Pollutant reductions that occurred in 2019.   | 4  |
| Table 3. Progress towards reducing CB pollutants goals. | 4  |
| Figure 2. BMPs and load reductions in HUC12 basins.     | 5  |
| Table 4. Partners active in 2019.                       | 6  |

| Figure 3. Google map showing YMCA project area                                | 13 |
|-------------------------------------------------------------------------------|----|
| Table 5. YMCA barren lands project - load reduction actual v estimated        | 13 |
| Table 6. YMCA project financial contribution from partners and §319.          | 14 |
| Figure 4. Kanes Creek location within the larger Deckers Creek watershed      | 15 |
| Figure 5. Photos of VH3 upgraded settling ponds                               | 16 |
| Table 7. VH3 final expenditures.                                              | 16 |
| Figure 6. Mill Creek (Opequon) watershed.                                     | 17 |
| Table 8. Mill Creek workplan adjustments.                                     | 17 |
| Table 9. Mill Creek (Opequon) load reductions.                                | 18 |
| Table 10. Mill Creek expenditure comparison                                   | 18 |
| Table 11. 2019 WBP development.                                               | 18 |
| Table 12. 2019 §319-NWQI Indian Creek implementation                          | 18 |
| Figure 7. Elks Run watershed project locations.                               | 19 |
| Table 13. Reductions from Elks Run Phase I-II implementation.                 | 20 |
| Table 14. Elks Run §319-CBIG project expenditures                             | 20 |
| Figure 8. Second Creek watershed.                                             | 21 |
| Figure 9. WQ improvements in Second Creek                                     | 22 |
| Table 15. Second Creek WBP funding summary                                    | 22 |
| Figure 10. Tuscarora Creek watershed                                          | 23 |
| Figure 11. Before and after photos of the Tuscarora Creek stream restoration. | 24 |
| Table 16. Tuscarora Creek expenditures (all sources)                          | 24 |
| Table 17. WVMP load reduction progress 2014-2018.                             | 25 |
| Figure 12. Muddy Creek restoration project map                                | 26 |
| Figure 14. Pre- and post-treatment WVSCI scores                               | 27 |
| Table 18. Pre- and post-treatment fish community survey results               | 28 |
| Figure 15. Deckers Creek projects                                             | 29 |

### Photo credits and other contributors

<u>Cover</u>: Riparian tree planting along the main stem of Elks Run in Shenandoah Junction – Kristen Bisom, WV Conservation Agency (WVCA). Other photos within this document are courtesy of Danielle Stewart, Brian Hurley, Kristen Bisom, Kristin Mielcarek, Philip Pack, Alana Hartman, Martin Christ, Tomi Bergstrom, Jennifer Liddle, Malden Elementary and Jason Crowder.

Alana Hartman, Sebastian Donner, Danielle Stewart, Brian Hurley, Kristen Mielcarek, Dennis Burns, Philip Pack, Jeffery Bailey for the Muddy Creek story, Martin Christ and Jason Crowder. The annual report is not possible without contributions from WIB staff and variety of partners through their semi-annual reports and other summaries/information requested by the NPS Coordinator. The cooperation from ALL is outstanding. Although many contributed to the report contents, I would like to specifically acknowledge the persons listed in the box for their contributions.

### **Executive summary**

In 2019 West Virginia's NPS Program provided technical and financial support to 92 programs and projects ranging from general administration to outreach, planning, monitoring and a wide variety of implementation. Most of the projects focus on priority areas identified within our watershed based plans (WBPs), but other partners and stakeholders implement projects in non-priority areas using their required matching funds, or by taking advantage of <u>additional grant opportunities</u> (AGOs). *Table 1* provides a summary.

Table 1. §319 Program project categories.

| FY | §319-NP | §319-WP | Complete |
|----|---------|---------|----------|
| 15 | 4/11    | 9       | 24       |
| 16 | 4/13    | 7       | 15       |
| 17 | 4/9     | 9       | 5        |
| 18 | 2/8     | 10      | 0        |
| 19 | 3/0     | 8       | 0        |

100% of the FY15 projects were completed on-time, and several were under budget. FY16 62% are complete; FY17 24% are complete; FY18 and 19 zero projects are complete. *Appendix 3* provides additional information.

Note: NP (Nonpoint); WP (Watershed projects). AGOs are included in the NP category.

### Implementation

### **Best management practices (BMPs)**

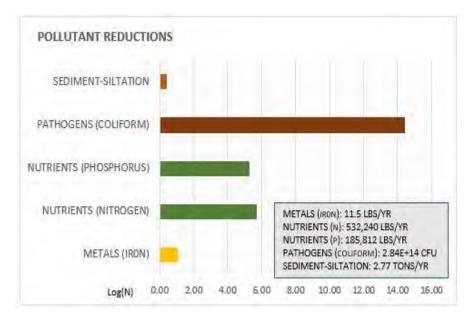
BMP implementation and NPS pollutant reduction are the major goals of our watershed projects. The efforts of our dedicated staff, partners and local stakeholders have made significant impacts in restoring and protecting our watersheds impacted and threatened by NPS pollution. In 2019 BMP implementation occurred in <u>24 different HUC12</u> <u>watersheds</u>. The WV Conservation Agency (WVCA) contributed significantly due to their statewide <u>agriculture</u> <u>enhancement programs</u> (AgE). <u>Table 2</u> summaries 2019 BMP implementation. Additional details are provided on <u>Figure 2</u> and <u>Appendix 1</u>.

Table 2. 2019 BMP implementation.

| BMP IMPLEMENTATION     | Q      | U    |
|------------------------|--------|------|
| ALTERNATIVE WATER      | 5      | IU   |
| WATER WELL             | 6      | IU   |
| CONSERVATION EASEMENT  | 155    | AC   |
| FENCING                | 18,981 | FT   |
| HEAVY USE PROTECTION   | 1,000  | SQFT |
| IRRIGRATION PIPLINE    | 1,084  | FT   |
| NUTRIENT MANAGEMENT    | 1,750  | AC   |
| PRESCRIBED GRAZING     | 504    | AC   |
| SEPTIC (NEW/EXSISTING) | 24     | IU   |
| SEPTIC (PUMPOUT)       | 42     | IU   |
| STREAM RESTORATION     | 1,115  | FT   |
| OUTREACH/EDUCATION     | 6,732  | IU   |

Q (quantity), U ( (units), IU (individual unit), AC (acres), FT (feet), SQFT (square-feet)

Septic systems include new installation, repairs and pumping. Fencing includes pasture, division and streamside. Nutrient management often includes a wide variety of practices specific to the situation. Water systems include a variety of alternate water options and their components such as piping, trenches and wells. More specifics can be found in the appendices of this report and in USEPA's Grant Record Tracking System (GRTS).


### Pollutant load reductions

In West Virginia bacteria and pollutants associated with AMD are the two largest contributors of nonpoint sources accounting for approximately 70 percent of the impairments.

Most of the bacteria loads come from agriculture and failing septic, whereas the AMD pollutants (acidity and heavy metals etc.) are associated with abandoned mining. Note: WV did not report any AMD related reductions in 2019. In addition to the West Virginia priorities, EPA's National §319 Program promotes the reduction of nutrients and sediment, which are the leading causes of NPS impairment nationwide. Although nutrients and sediment are not our primary focus, we have exceeded our 2014 Management Plan goals. Note: West Virginia's NPS Management Plan was revised in 2019. Learn more on page 25.

Figure 1 provides a snapshot of §319 and AgE pollutant reductions from projects completed in 2019. The bar graph compares the amount of reduction from each major category. A log conversion was used to normalize the data for the graphical comparison.

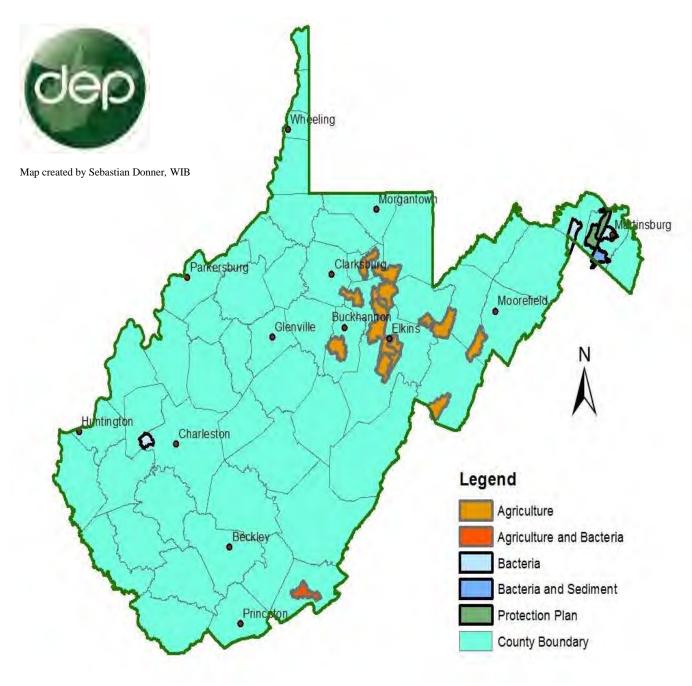
Figure 1. Pollutant reductions that occurred in 2019.



These reductions are a result of projects implemented in 24 HUC12 watersheds. WVCA's AgE Program provided a significant contribution in the nutrient sector. Log conversion was used so that the numbers could be compared graphically. The method does not reflect real-differences due to units.

Figure 2 provides a map of the HUC12 watersheds where BMPs were implemented and pollution reductions occurred. Appendix 2 provides additional details.

### **Chesapeake Bay Program**


Nutrient reductions are important for restoration of the Chesapeake Bay (CB) watershed, and West Virginia is on track to meet the goals and objectives of its <u>Watershed Implementation Plan</u> (WIP). In 2019 West Virginia completed Phase III of the WIP, which includes program and practice goals needed by 2025 in order to meet the CB TMDL.

*Table 3.* Progress towards reducing CB pollutants goals.

| Pollutant  | Category           | Progress<br>(Baseline) | Progress<br>2018 | Progress<br>2019 | WV WIP3          |
|------------|--------------------|------------------------|------------------|------------------|------------------|
|            | Agriculture        | 3.22                   | 3.13             | 3.14             | not<br>specified |
|            | Urban Runoff       | 1.21                   | 1.21             | 1.21             |                  |
| A114-1-1-1 | Wastewater+CSO     | 0.7                    | 0.5              | 0.52             |                  |
| Nitrogen   | Septic             | 0.33                   | 0.33             | 0.33             |                  |
|            | Natural+Deposition | 2.6                    | 2.56             | 2.57             |                  |
|            | All Sources        | 8.06                   | 7.72             | 7.77             | 7.5              |
| Phosphorus | Agriculture        | 0.13                   | 0.12             | 0.13             | not<br>specified |
|            | Urban Runoff       | 0.06                   | 0.06             | 0.06             |                  |
|            | Wastewater+CSO     | 0.14                   | 0.04             | 0.04             |                  |
|            | Septic             | 0                      | 0                | 0                |                  |
|            | Natural+Deposition | 0.21                   | 0.2              | 0.2              |                  |
|            | All Sources        | 0.56                   | 0.43             | 0.43             | 0.38             |

Table 3 shows historic, recent and WIP3 loads of nutrient pollutants. WVDEP attributes the increase in modeled wastewater loads to the heavy rain events, which caused more than the typical number of Combined Sewer Overflow events. Progress is ongoing in the other sectors but appears to be dampened in the model due to the expiration of some previouslyreported practices over time. CB partners are renewing efforts to verify and maintain these older practices in order to keep them active in the model.

Figure 2. BMPs and load reductions in HUC12 basins.



See Appendix 1 and Appendix 2 for more details.

### **Partnerships**

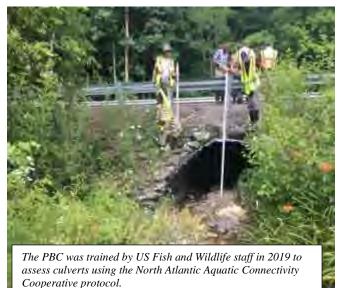
Partners, staff, local landowners and many other stakeholders are the KEY to past, current and future success of West Virginia's Nonpoint Source Program. Without their dedication the majority of project implementation is not possible. *Table 4* provides a list of partners by fiscal year (FY) active in 2019, alphabetized in each FY.

To learn more about a particular group, contact the NPS Coordinator.

Table 4. Partners active in 2019.

| FY 15 projects                                      | Туре |
|-----------------------------------------------------|------|
| Buckhannon River Watershed Association BRWA         | WG   |
| Canaan Valley Institute <sup>CVI</sup>              | NGO  |
| Elks Run Watershed Association ERWA                 | WG   |
| Experience Learning                                 | NGO  |
| Friends of Hughes River FOHR                        | WG   |
| Friends of the Cheat FOC                            | WG   |
| Local landowners                                    | WG   |
| Piney Creek Watershed Association PCWA              | LO   |
| US Environmental Protection Agency USEPA            | WG   |
| WV Conservation Agency WVCA                         | AG   |
| WVDEP-Watershed Improvement Branch WIB              | AG   |
| National Mineland Reclamation Center NMLRC          | CO   |
| FY 17 projects                                      | Туре |
| Friends of Blackwater FOB                           | WG   |
| Friends of Deckers Creek FODC                       | WG   |
| Friends of the Cheat FOC                            | WG   |
| Guardians of the West Fork <sup>GWF</sup>           | WG   |
| Local landowners                                    | WG   |
| Morris Creek Watershed Association MCWA             | LO   |
| Piney Creek Watershed Association PCWA              | WG   |
| US Environmental Protection Agency USEPA            | WG   |
| WV Conservation Agency WVCA                         | AG   |
| WV Rivers Coalition WVRC                            | AG   |
| WVDEP-Office of Abandoned Minelands <sup>OAML</sup> | NGO  |
| WVDEP-Office of Special Reclamation OSR             | AG   |
| WVDEP-Watershed Improvement Branch WIB              | AG   |
| National Mineland Reclamation Center NMLRC          | AG   |
| FY 19 projects                                      | Туре |
| Buckhannon River Watershed Association BRWA         | WG   |
| Friends of Deckers Creek FODC                       | WG   |
| Friends of the Cheat <sup>FOC</sup>                 | WG   |
| Local landowners                                    | LO   |
| Piney Creek Watershed Association PCWA              | AG   |
| Save the Tygart Watershed Association STTWA         | WG   |
| US Environmental Protection Agency USEPA            | AG   |
| WV Conservation Agency WVCA                         | AG   |
| WV Rivers Coalition <sup>WVRC</sup>                 | NGO  |
| WVDEP-Watershed Improvement Branch WIB              | AG   |
| National Mineland Reclamation Center NMLRC          | CO   |

| FY 16 projects                              | Туре |
|---------------------------------------------|------|
| Blue Heron Environmental Network BHEN       | WG   |
| Canaan Valley Institute <sup>CVI</sup>      | NGO  |
| City of Charleston Stormwater Dept.         | TO   |
| Coal River Group <sup>CRG</sup>             | WG   |
| Friends of Blackwater <sup>FOB</sup>        | WG   |
| Friends of Deckers Creek FODC               | WG   |
| Friends of the Cheat <sup>FOC</sup>         | WG   |
| Goodnews Mountaineer Garage                 | BU   |
| Local landowners                            | LO   |
| Save the Tygart Watershed Association STTWA | WG   |
| Sleepy Creek Watershed Association SCWA     | WG   |
| US Environmental Protection Agency USEPA    | AG   |
| WV Conservation Agency WVCA                 | AG   |
| WVDEP-Watershed Improvement Branch WIB      | AG   |
| WV Rivers Coalition WVRC                    | NGO  |
| FY 18 projects                              | Type |
| Blue Heron Environmental Network BHEN       | WG   |
| Coal River Group <sup>CRG</sup>             | WG   |
| Experience Learning                         | NGO  |
| Friends of Blackwater <sup>FOB</sup>        | WG   |
| Friends of Deckers Creek FODC               | WG   |
| Friends of the Cheat <sup>FOC</sup>         | WG   |
| Local landowners                            | LO   |
| Piney Creek Watershed Association PCWA      | WG   |
| Save the Tygart Watershed Association STTWA | WG   |
| US Environmental Protection Agency USEPA    | AG   |
| WV Conservation Agency WVCA                 | AG   |
| WV Rivers Coalition WVRC                    | NGO  |
| WVDEP-Office of Abandoned Minelands OAML    | AG   |
| WVDEP-Office of Special Reclamation OSR     | AG   |
| WVDEP-Watershed Improvement Branch WIB      | AG   |
| National Mineland Reclamation Center NMLRC  | CO   |


### Legend (types)

AG: Agency (State/Federal), BU: Business, CO: Colleges/University, LO: Local landowners, NGO: Nongovernmental organization, TO: City/Town, and WG: Watershed groups

Click-Here to learn more

### **WIB and WVCA highlights**

### **Potomac Basin**



WIB's Potomac Basin Coordinator (PBC) supervised a summer intern who assessed eroding streambanks and other aspects of the two remaining major tributaries of Back Creek, completing this task as identified in the Back Creek Protection Plan. The PBC continued to co-facilitate Tuscarora Creek project meetings and was a technical lead for a CB-funded culvert analysis project in Tuscarora and Mill Creek watersheds, where Cacapon Institute prioritized those where improvements would benefit fish and reduce sediment loads. She served as a project liaison for a spring tree planting event and an intensive Green Infrastructure analysis and charette in the Town of Romney. She taught students about aquatic organisms and water chemistry at Hampshire County 4-H camp, a kindergarten field trip, a homeschool field trip with Save Our Streams, and two Envirothon training sessions. The PBC continued to facilitate meetings of the CB Tributary Team and to submit BMP data from various sources to the

CB Program. This year, the PBC coordinated the responses to public comments for the Phase 3 Watershed Implementation Plan. The PBC also presented details of Cacapon River's algae impairment at a local workgroup meeting hosted by the Natural Resources Conservation Service staff in Moorefield, WV.

### **Northern Basin**



WIB's Northern Basin Coordinator (NBC) continued to support several Non-Governmental Organization partners in carrying out the work of eliminating nonpoint source pollution. He invited Somerset Environmental Services to visit a site of interest to the Guardians of the West Fork to experiment with an aeration system that might help treat their mine drainage. He supported the Friends of the Cheat by attending a pre-proposal visit to their Dream Mountain project for potential project design engineers. He met with Friends of Deckers Creek and one of their project engineers for a final walk-through and calibration of the Valley Highwall #3 project. He assisted Save the Tygart Watershed Association as they monitored Beaver Creek of the Tygart with limestone sand. He led a monitoring trip to Swamp Run of the Buckhannon River to confirm that one of the Buckhannon River Watershed Association's projects will address the only remaining

untreated mine-drainage impaired tributary. He helped Friends of Blackwater monitor for fecal coliform pollution in Sand Run of the North Fork of the Blackwater.

In addition to field work, the NBC continuously advised all these groups on carrying out their projects to eliminate nonpoint source pollution. The work included reviewing and editing project proposals, quality assurance project plans, and watershed-based plans. The work also included attending problem-solving meetings, phone calls, and emails as groups encountered problems such as high contractor bids and very long permit reviews. The NBC also helped maintain information in the GRTS database and transferred information from projects to the WQX-Web database.



Friends of Deckers Creek and the NBC met with the engineer to learn the operation of the Valley Highwall #3 site.

### **Western Basin**



The Western Basin Coordinator (WBC) worked with Friends of the Hughes River Watershed to complete their baseline water quality monitoring project above their drinking water intake on the North Fork of the Hughes River. She assisted Morris Creek Watershed Association with reporting on their lavender planting project and the installation of structures and trees to reduce erosion along Morris Creek. She worked with Coal River Group to submit an additional proposal for their successful Browns Creek Septic Remediation Project. The project has pumped out several tanks and replaced 14 failing septic systems, ongoing monitoring is already showing a reduction of fecal coliforms. The WBC worked with several partners on the Cane Fork Acid Mine Drainage project to amend the proposal and deploy two sondes. She supervises an assistant that has been involved with routinely retrieving data from the sondes. Her assistant is also working with Fourpole Creek Watershed Association to form a project committee for the Fourpole Creek WBP.

The WBC and her assistant are involved in dozens of outreach events across the state. They presented at and helped organize 15 water festivals, discussed water monitoring at two summer camps, spoke on stormwater pollution at MS4 outreach events, and taught flow, macroinvertebrate sampling, and ecology at two Trout Unlimited 'STREAM GIRLS' badges with the Black Diamond Girl Scouts. Partnering with the City of Charleston Stormwater Department, the WBC worked with the Watershed Improvement Branch to sponsor a FestivALL event as a single-use plastic free event to highlight plastic and stormwater pollution, set up booths at the children's art fair and provide information at the Water Dance. She also hosted five rain barrel workshops, sharing stormwater education with over 100 citizens of the Kanawha Valley. Additionally, her assistant initiated a Rain Barrel in Schools program, the rain barrels are scheduled to be installed in the spring of 2020.





Successful septic replacements - Browns Creek

### **Southern Basin**



There are many watershed group and Agency funded §319 projects in the southern basin. The *Southern Basin Coordinator* (SBC) worked with Piney Creek Watershed Association (PCWA) and Plateau Action Network (PAN). I have worked with PAN on Summerlee Phase 3 monitoring for the next design phase conducting monthly sampling. WVDEP's AML program is going to take on this project and I am the point of contact between AML and Special Reclamation who is also advising on sampling protocols and design treatment options. The PCWA closed out one of their 319 projects and has transitioned to a new Executive Director.

Working with Project WET Coordinator, four Water Festivals in the Southern Basin reached over 1000 5<sup>th</sup> grade students. I worked closely with Friends of the Second Creek Watershed Association (FOTSC) helping with grant applications for them to hold the Monroe

County Water Festival in 2020. The Greenbrier County Water Festival is being coordinated with the Greenbrier River Watershed Association and the Fish and Wildlife Service Fish Hatchery in White Sulphur Springs and has been well received by the Board of Education already approving the transportation funds for the students to attend Earth Day 2020.

<u>Training</u>: Project WOW, Project WET, Project Learning Tree, Project Little Feet, SOS Certified; attended Rain barrel workshop; WVRAM training, AMD treatment with Special Reclamation; Partnering with In Lieu Fee program on stream restoration project in Huff Creek and taking opportunities to learn from their current construction projects, observed pipeline stormwater inspection.

### **Project Wet**

The West Virginia *Project WET Coordinator* had a productive year attending over 26 outreach events and reaching around 1,900 West Virginians across the state. She hosted, organized, and presented with her partners at 15 water festivals which were focused in Kanawha, Cabell, Nicholas, Ritchie, Fayette, Wetzel, Pocahontas, Wyoming, and Raleigh counties and reached over 3,400 students. Project WET K-12 Educator, Pre-K – 2 Getting Little Feet Wet, and K-12 WOW! The Wonders of Wetlands workshops were held in 14 different counties, certifying 324 educators age

appropriate guidebooks to teach water education. The coordinator also presented at the West Virginia Science Teachers Conference.



### Stormwater Assistance

The Stormwater Specialist works with other state agencies, local government, developers, engineers, Home Owner Associations, and interested parties on implementing BMPs to reduce and treat stormwater runoff. The goal is to improve the water quality in our streams by reducing pollutants and the quantity of developed lands runoff. While assisting statewide, his primary service area is the Potomac watershed. Goals of the Chesapeake Bay grants and §319

funding overlap in a number of aspects. Whenever possible the SWS tries to direct projects to Bay funding instead of the more limited §319 funds. Being funded through the Chesapeake Bay program, he tries to leverage local investments with Chesapeake Bay grant funding for implementation efforts in the Potomac watershed.

### **Save Our Streams**

part of a variety of events promoting the WIB mission statement. There is a truly meaningful word within our mission statement of being empower. One is not truly empowered without knowledge. SOS rises to this challenge in a way that is needed. To empower is a gift, one in which SOS does not falter in giving.

WVDEP's Save Our Streams Coordinator (SOS) has been a

SOS mentors school groups across the state, Here the Coordinator is with Malden Elementary who's students have worked on projects in Morris Creek for many years.

Over 18 workshops were conducted ranging from watershed groups, academia of all ages, and agency partnerships. Beyond that over a dozen water festivals were attended reaching 100's of WV students, all part of assisting Basin Coordinators. Also, in assisting Basin Coordinators, benthic classes and chemistry presentations have been conducted. SOS has a great relationship with Trout Unlimited (TU), assisting and leading trips regarding Trout in the Classroom and project management statewide. 2020 is shaping up to be a busy year. Projects lie waiting for sample season with WV watershed groups, TU, WVCA, WVDNR's Master Naturalist, Envirothon, Project Healing Waters, Rivers of Recovery, Mayfly Project, and of course multiple SOS projects. This year will see the start of Stream Stories, a place to tell our stream's story.

### **WV Conservation Agency**

WVCA provides a significant amount of services to agricultural (Ag) communities, watershed groups, academia and the public through AgE programs, outreach and §319 project management. 2019 highlights are provided here.

- 1. AgE programs are a major tool for improving agricultural landscapes and providing technical assistance statewide. AgE efforts are managed through local Conservation Districts. AgE programs helped producers implement a variety of BMPs the major focus to improve nutrient management. AgE specialist also provided technical assistance. A total of 964 producers were assisted. These activities are the primary source of state match for WVCA's annual §319 request, which is part of WVDEP's Nonpoint Program grant.
- 2. WVCA commits significant time and effort to outreach/education focusing on sustainable and high-quality Ag programs, nonpoint source information, water quality etc. In 2019 28 outreach programs occurred providing education to > 6,500 participants. This included presentations, school activities, special events/programs, camps, Envirothon, Ag field days, Soil Tunnel demonstrations etc. WVCA partners with WVDEP and other agencies and NGOs to support the <u>Stream Partners</u> Program. WVCA also participated in planning and organizing workshops for West Virginia's annual Construction EXPO.
- 3. WVCA is dedicated to improving watersheds impacted by Ag-related NPS pollution. In 2019 WVCA specialists provided project management support for 13 §319 watershed projects. These activities include planning, developing and writing project proposals and WBPs, technical assistance, right-of-entry agreements, contracts/bids, tracking, reporting, monitoring and more.

To learn more visit: <a href="http://www.wvca.us/">http://www.wvca.us/</a>





Heavy use protection BMPs in Berkeley County - Before and after photos.

### Watershed project highlights

In 2019 10 watershed, six AGO and eight nonpoint projects were completed. This next section will highlight three completed projects. Final project summaries from the other categories (i.e. AGOs) are available upon request. Additional project information is available from USEPA's GRTS *public access portal*.

See Appendix 3 for a project list and status update.



The map above provides the locations of the watershed projects, watershed plans and success stories highlighted in the next sections of this report. Map is courtesy of *Sebastian Donner*, WVDEP's stormwater specialist.

### **YMCA Barren Lands**

Piney Creek Watershed Association (PCWA)
Contact(s): Danielle Stewart and Jennifer Liddle

### Watershed information

HUC8 05050004 – Lower New River

HUC12 050500040102 – Headwaters Piney Creek

Stream code WVKN-26 GRTS #7

### Introduction

*Figure 3.* Google map showing YMCA project area.



Piney Creek is in the northwestern portion of the New River watershed in Raleigh County, West Virginia and drains approximately 136 square miles. Its basin includes three HUC12's: Headwaters of Piney Creek, Beaver Creek and Outlet of Piney Creek. The *Piney Creek WBP* was approved in 2012 to address impairments for iron, fecal coliform and sedimentation. The YMCA project targeted sediment and iron runoff from barren lands adjacent to the YMCA soccer fields.

### Project highlights

The project involved landscape grading that emphasizes new and improved drainage features, wetland creation, re-vegetating barren areas and trail construction with signage to highlight the project. YMCA of Beckley and PCWA have a maintenance agreement to maintain and evaluate the site. Additional notable highlights include:

- 1. Coordination with the City of Beckley and YMCA to find and spread the best top soil for quick and healthy vegetation coverage.
- 2. PCWA contracted with the Southern Conservation District to help with most of the project management, as well as project construction. This partnership saved a significant amount of funds.
- 3. PCWA and volunteers partnered with WVDEP's REAP program and completed multiple site clean-ups. 50 abandoned tires and a significant amount of debris were removed from the site.
- 4. PCWA and local volunteers created a butterfly garden on-site; and
- 5. An extensive trail network on the perimeter of the site and into the Piney Creek gorge was created.

### Results

| Pollutant | LR actual    | LR estimates |
|-----------|--------------|--------------|
| Sediment  | 0.25 tons/yr | 0.27 tons/yr |
| Iron      | 11.5 lbs/yr  | (None)       |

Implemented BMPs reduced sediment from the site, which was deposited in the detention pond. The pond undergoes periodic maintenance per an MOU agreement with YMCA

*Table 5*. YMCA barren lands project - load reduction actual v estimated.

Pre-monitoring photos below showed the amount of sediment leaving the site before it was vegetated. Land re-shaping, re-grading and vegetation made a huge difference. Although no photo evidence is shown here the amount of sediment in the detention pond barely registered above zero following BMP implementation.





Project site March 2016





### Partners and funding

Partners, such as work of the Southern Conservation District, in-kind volunteer efforts from PCWA and local volunteers through the multiple clean-ups, trail building, maintenance etc. and commitments from the local landowner (YMCA) resulted in significant dollar contributions.

Table 6. YMCA project financial contribution from partners and §319.

| Partners                       |          | §319     |
|--------------------------------|----------|----------|
| Southern Conservation District | \$25,189 | \$20,139 |
| YMCA of Beckley                | \$36,529 |          |
| PCWA volunteer in-kind         | \$2,850  |          |
| Sub-total                      | \$64,568 | \$20,139 |
| Overall total                  | \$84,707 |          |

### **Valley Highwall Phase 3**

Friends of Deckers Creek (FODC)

Contact(s): Brian Hurley and Martin Christ

### Watershed information

HUC8 05020003 – Upper Monongahela

HUC12 050200030201 – Headwaters Deckers Creek

Stream code WVM-8I-0.9 GRTS #12

### Introduction

The Deckers Creek watershed drains approximately 64 square miles within the Monongahela Watershed throughout Monongalia and Preston Counties in north-central West Virginia. Deckers Creek and its tributary, Kanes Creek, are both on West Virginia's 303(d) list due to impairment by pH, iron, manganese, and aluminum resulting from acid mine drainage (AMD) from abandoned coal mines. The *Deckers Creek WBP* was approved in 2015.



FODC completed the Valley Highwall #3 (VH3) project in 2011. The system utilized active calcium hydroxide dosing to treat an unnamed tributary to Kanes Creek. As a consequence of delivering calcium hydroxide with a tipping bucket doser, incomplete mixing and accumulation of metal sludge precipitated along the effluent stream channel. This caused issues for landowners and as a result, the doser was taken offline until a means to more efficiently treat the acid water and prevent precipitates was established. FODC received 2015 §319 funding to upgrade the VH3 site by installing BMPs that will improve the reaction of the lime with AMD while simultaneously creating a space to separate and manage the metal precipitates.

Figure 4. Kanes Creek location within the larger Deckers Creek watershed.

### Project highlights

This project was designed so that the flow from the mine first deposits into a siphon pool, when the pool fills, it triggers the bell siphon effectively emptying the bay for treatment. The water goes through a tromp creating air to power the mixing well. Water then flows through the dosing silo and triggers the tipping bucket which distributes hydrated lime. It is then piped to the mixing well and stirred to create even lime dissolution. After treatment, the water moves into multiple settling ponds that provide additional time and treatment, before exiting the system into the unnamed tributary (UNT) to Kanes Creek.

The site also features a large sludge collection pond so that settling ponds can be pumped often thus increasing retention time. The metals precipitated are contained to the site and not suspending in clean water exiting the system.

### Results

FODC have yet to collect data from the outfall of the active system. When the system has been calibrated FODC will provide WVDEP with follow up data. Initial inspections and tests of the site shows that the system will work as intended. The upgrade is expected to eliminate approximately 90% of the AMD loads resulting in a potential decrease of acidity by 23,182 lbs/year, aluminum by 1,121 lbs/year and iron by 2,386 lbs/year.

Figure 5. Photos of VH3 upgraded settling ponds.





VH3 settling pond #2

VH3 settling pond #1 and mixer

### Partners and funding

The Valley Highwall #3 active treatment site was completed in September of 2019 through the cooperative efforts of FODC, WVDEP-WIB, and Office of Surface Mining's Watershed Cooperative Agreement Program (WCAP). WCAP funds and in kind contributions from FODC covered construction costs and match. Table X provides a breakdown of the final costs.

Table 7. VH3 final expenditures.

| Funding source   | Projected | Actual    |
|------------------|-----------|-----------|
| §319             | \$170,500 | \$170,500 |
| WCAP             | \$ 93,600 | \$93,600  |
| FODC and in-kind | \$19,833  | \$28,450  |
| Total            | \$283,933 | \$292,550 |

### Mill Creek (Opequon) Implementation

### Canaan Valley Institute (CVI)

Contact(s): Kristen Mielcarek and Alana Hartman

### Watershed information

HUC8 02070004 – Conococheague-Opequon

HUC12 050700040907 – Mill Creek Stream code WVP-4-M <u>GRTS #6</u>

### Introduction

Figure 6. Mill Creek (Opequon) watershed.



USEPA approved the <u>Mill Creek</u> <u>WBP</u> in 2008. The plan focuses on nonpoint sources of pollutants identified in the 2008 Potomac Direct Drains TMDL, which include fecal coliform, sedimentation and biological impairments.

### Project highlights/results

This project's original focus was fecal coliform reductions from repair/replacement of failing septic systems, pumping systems that required that maintenance, outreach and education, and monitoring. The major goals were not met due to lack of interest in the community. Thus, a shift in goals and spending was needed to move the project forward.

Although the original load reduction goals were not met the changes implemented resulted in a successful project. These adjustments are described in *Table 8*.


Table 8. Mill Creek workplan adjustments.

| Original workplan                                                                                                                                | Revised workplan                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Upgrade/replace 10 septic systems in the western portion of the basin, which was identified as a priority in the WBP. Two septics were upgraded. | CVI used the remaining funds to complete a design for a future 800 ft stream restoration project. The projected sediment reduction is 52 tons/year.                   |
| 25 coupons were advertised that provided 50% discount from the cost of septic system pumping. 10 systems were pumped.                            | CVI used the remaining funds for a riparian buffer enhancement. CVI coordinated with WVDOF and volunteers to plant trees/shrubs along two acres of riparian corridor. |

### Table 8 continued:

| Original workplan                                    | Revised workplan                                     |
|------------------------------------------------------|------------------------------------------------------|
| Monitoring was planned to occur downstream of septic | This task was not completed due to the low number of |
| repairs/replacements at six month and one-year       | septic system repairs and pumping, as well as their  |
| timeframes.                                          | locations in the watershed.                          |

**Repairs were made to a phase-1 project on the Conley property.** Approximately 600 feet of eroding streambanks in the downstream section of a previously completed streambank stabilization project was repaired to meet original design and sediment reduction goals. The bed, riffles and pools were raised to the proper elevation to reduce channel entrenchment and increase access to the floodplain. Log vanes and in-stream structures were modified to function



properly at the new bed elevations and deflect high flows from fragile banks. Native riparian vegetation, including trees, shrubs and bioengineering materials were planted to protect fragile banks.

Two Watershed celebration events were conducted. Working with Opequon Creek Project Team (OCPT), Eastern Panhandle Conservation District (EPCD), WV Division of Forestry (WVDF), Cacapon Institute (CI), WVDEP-WIB, Berkeley County Health Dept. (BCHD), and CVI coordinated two watershed celebration events focused on informing local citizens on stormwater and wastewater management practices. Topics included: effects of wastewater pollution on a watershed, proper maintenance and care of septic systems, alternative options to traditional wastewater systems, available financial assistance, rain barrel and stormwater management demonstrations, and benthic macroinvertebrate sampling and identification.

Pollutant reductions from the Mill Creek project are provided in *Table 9*.

Table 9. Mill Creek (Opequon) load reductions.

| Practices              | Q  | Goal | Result | LR-goal  | LR-result | Units      |
|------------------------|----|------|--------|----------|-----------|------------|
| Septic upgrades        | IU | 25   | 2      | 5.90E+13 | 1.18E+13  | CFU/100 mL |
| Riparian buffer        | AC | NA   | 2      | -        | 1.92E+10  | CFU/100 mL |
| Load reduction totals: |    |      |        |          | 1.18E+13  | CFU/100 mL |

Partners and funding

**WVDEP/USEPA** provides funding and technical support regarding grant management etc. **OCPT**, the local nonprofit watershed group was actively engaged

in activities throughout Tuscarora and Mill Creek watersheds. CI and others partnered with CVI on planning and watershed celebration events. BCHD informed citizens of septic pumping, repair and replacement programs in eligible areas, and provided information about the Onsite Loan Program (OSLP). WV Housing Development Fund's OSLP was offered to assist landowners in funding septic upgrades that are not covered by the grant. BCHD staff also provided technical support and oversight of contractors who installed/repaired septic systems.

Table 10. Mill Creek expenditure comparison

| Described.                | §319 expenditures |                                                                       |            |  |  |  |
|---------------------------|-------------------|-----------------------------------------------------------------------|------------|--|--|--|
| Practice                  | Actual            | ctual Invoiced<br>49,844 \$26,214<br>64,633 \$66,197<br>2,463 \$1,566 | Difference |  |  |  |
| Septic upgrade/pumping    | \$49,844          | \$26,214                                                              | \$23,630   |  |  |  |
| Stream repair (Conley)    | \$64,633          | \$66,197                                                              | -\$1,564   |  |  |  |
| Watershed celebration     | \$2,463           | \$1,566                                                               | \$897      |  |  |  |
| Fecal monitoring          | \$3,450           | \$0                                                                   | \$3,450    |  |  |  |
| Stream restoration design | \$15,295          | \$9,947                                                               | \$5,348    |  |  |  |
| Buffer planting           | \$5,527           | \$3,426                                                               | \$2,101    |  |  |  |
| Project management        | \$3,489           | \$3,194                                                               | \$295      |  |  |  |
| Totals                    | \$144,701         | \$110,544                                                             | \$34,157   |  |  |  |

### Watershed plan highlights

2019 was another active year for watershed based plan (WBP) development. Six WBPs were submitted to USEPA, and all but one has been approved (*Table 7*). In this report Elks Run, Second Creek and Tuscarora Creek WBPs are highlighted.

Table 11. 2019 WBP development.



Table 12. 2019 §319-NWQI Indian Creek implementation.

| HUC name           | <u>BMP</u>           | #     | Unit | <u>Date</u> | Program |
|--------------------|----------------------|-------|------|-------------|---------|
| Indian Creek       | Alternative Water    | 1     |      | Mar-19      | NWQI    |
| Indian Creek       | Alternative Water    | 1     |      | Sep-19      | §319    |
| Indian Creek       | Alternative Water    | 2     |      | Sep-19      | NWQI    |
| Indian Creek       | Alternative Water    | 1     |      | Sep-19      | §319    |
| Upper Indian Creek | Fencing              | 5,722 | FT   | Sep-19      | NWQI    |
| Upper Indian Creek | Fencing              | 5,700 | FT   | Sep-19      | §319    |
| Upper Indian Creek | Fencing              | 795   | FT   | Sep-19      | NWQI    |
| Upper Indian Creek | Fencing              | 1,144 | FT   | Sep-19      | §319    |
| Upper Indian Creek | Heavy Use Protection | 500   | SQFT | Sep-19      | NWQI    |
| Upper Indian Creek | Heavy Use Protection | 500   | SQFT | Sep-19      | §319    |
| Upper Indian Creek | Irrigation Pipeline  | 850   | FT   | Sep-19      | NWQI    |
| Upper Indian Creek | Irrigation Pipeline  | 234   | FT   | Sep-19      | 5319    |
| Upper Indian Creek | Prescribed Grazing   | 214   | AC   | Sep-19      | §319    |
| Upper Indian Creek | Prescribed Grazing   | 290   | AC.  | Sep-19      | §319    |
| Upper Indian Creek | Water Well           | 1     | IU   | Sep-19      | NWQI    |
| Upper Indian Creek | Water Well           | 1     | IU   | Sep-19      | §319    |
| Upper Indian Creek | Water Well           | 2     | IU   | Mar-19      | §319    |
| Upper Indian Creek | Water Well           | 1     | IU   | Sep-19      | §319    |

NRCS has continued to support the National Water Quality Initiative (NWQI). In West Virginia the effort has moved from Knapp Creek to Indian Creek. A significant amount of implementation occurred in 2019 taking advantage of NWQI and §319 funding.

Several local project teams (PTs) are working to revise WBPs. In the Eastern Panhandle PTs are making progress towards the first WBP-Source Water Protection Plan (SWPP) integration. Multiple meetings have occurred in the and project teams have developed a matrix that compares the goals from WBP-SWPP to determine where the overlaps are, and which goals are more appropriate for the integration.

The project team have also developed a list of implementation projects that can be accomplished in the short-term, prior to the final document's development.

### Elks Run watershed plan

### Watershed information

HUC8: 02070004 – Conococheague-Opequon

HUC12: 020700041107 - Elks Run

Sponsor: WV Conservation Agency, Elks Run Watershed Association

### Watershed description

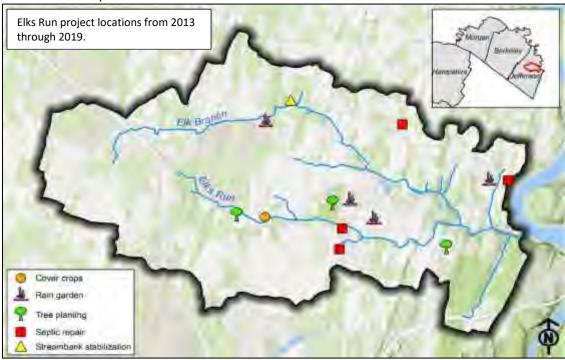



Figure 7. Elks Run watershed project locations.

The Elks Run watershed, located in Jefferson County, WV, is part of the Potomac Direct Drains and Chesapeake Bay watersheds. It drains approximately 18 square miles consisting mostly of grasslands (both agricultural and residential) and forests. Urban pervious and impervious are also significant land uses due to increasing development in the area. There are scattered areas of high population density within the watershed that rely on private septic systems. Elks Run serves as the drinking water source for the towns of Harpers Ferry and Bolivar.

### Goals

The 2008 TMDL developed for Elks Run identifies fecal coliform bacteria and biological criteria as the major impairments for Elks Run and its major tributary Elk Branch. The biological criteria are linked to sedimentation and organic enrichment, for which fecal coliform levels serve as a surrogate. Approved in 2013, the <u>Elks Run WBP</u> identifies major sources of fecal coliform bacteria and sediment and proposes practices that will reduce the levels of these pollutants in the watershed.

### Project highlights

Under the Phase I and Phase II 319 projects, four septic systems were repaired, an eroding streambank on Elk Branch was stabilized, 6.85 acres of trees were planted, and 100 acres of cover crops were planted. Additional activities under these projects included the refinement of a septic risk model for the watershed, an assessment of streambank erosion for Elks Run and Elk Branch, a pet waste campaign, a septic installers workshop, and monitoring that included molecular source tracking.





Visually the improvement to the streambank's condition is obvious. However, the results have not yet been quantified as the project needs time to mature. The habitat and biological response will be evaluated in the near future.

Before and after streambank stabilization on Elk Branch.

Table 13. Reductions from Elks Run Phase I-II implementation.

| Practice                 | Units     | Fecal<br>coliform<br>(CFU/100 ml) | Sediment<br>(tons/yr) |
|--------------------------|-----------|-----------------------------------|-----------------------|
| Septic system repair     | 4 systems | 6.27E+13                          | n/a                   |
| Streambank stabilization | 57 ft     | -                                 | 1.5                   |
| Forest buffer planting   | 2.75 ac   | 3.80E+10                          | 2.9                   |
| Urban tree planting      | 4.1 ac    | 5.63E+10                          | 4.3                   |
| Cover crops              | 100 ac    | n/a                               | 32.6                  |
| To                       | 6.28E+13  | 41.3                              |                       |

Under the CBIG project, two demonstration rain gardens and two residential rain gardens treating 4.5 acres were installed. A rain barrel workshop was held and three videos highlighting rain barrels, rain gardens, and septic systems were created to assist with homeowner education. Future projects in the watershed will utilize the septic risk model, streambank assessment, and water monitoring results to prioritize practice implementation. WVRC <u>Safe Waters</u> Harpers Ferry initiative will also be used as a guide to

target practices that will achieve the goals of both the WBP and the SWPP. Thus far, watershed projects have reduced approximately 1.7% of the fecal load and 1.3% of the sediment load. See *Appendix 5* for details.

### Partnerships and funding

WVCA and WVDEP have partnered with the Elks Run Watershed Group (ERWG), which includes the utility Harpers Ferry Water Works, and private landowners to implement the WBP. Since its approval in 2013, two §319 projects and one Chesapeake Bay Implementation Grant (CBIG) project have been completed. These projects were matched with local funds and in-kind contributions in addition to WVCA state funds, including the Jefferson County Water Quality Improvement Project, which offers livestock exclusion and septic pumping cost-share programs to county residents. WVCA's AgE and USDA Farm Bill Programs are also implemented throughout the watershed.

Table 14. Elks Run §319-CBIG project expenditures.

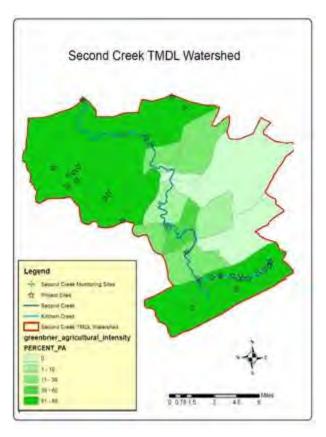
| Elks Run projects | §319                                  | Match     |
|-------------------|---------------------------------------|-----------|
| Phase 1 (FY13)    | \$32,326 (\$22,674)                   | \$16,976  |
| Phase 2 (FY16)    | \$64,019 ( <mark>\$981</mark> )       | \$48,377  |
| CBIG              | \$109,273                             | \$101,826 |
| Totals            | <b>\$205, 618</b> ( <b>\$23,655</b> ) | \$167,179 |

Un-spent: §319 phase-1 experienced difficulty with septic program sign-ups but this improved dramatically during phase-2.

### **Second Creek watershed plan**

### **Watershed** information

HUC8: 05050003 – Greenbrier River


HUC12: 050500030701 – Upper Second Creek, 050500030702 – Middle Second Creek, 050500030703 – Lower

Second Creek

Sponsor: WV Conservation Agency

### Introduction

Figure 8. Second Creek watershed.



Second Creek (WVKNG-23) is located in the southern portion of the Greenbrier River watershed in Monroe County (89%) and Greenbrier County (11%). The drainage area is approximately 124 square miles, 79,346 acres. Dominant land use in the watershed consists of 59% forest, 5% grassland, and 4% pasture, 26% karst pasture, and 5% karst cropland. Less than 1% of the watershed is urban. According to the Greenbrier River Watershed TMDL, impaired streams located in the Second Creek sub-watershed demonstrated the highest levels of fecal coliform as compared to other sub-watersheds, Upon approval of the 2009 WBP, work began on an upstream tributary known as Kitchen Creek. This area had the highest agricultural intensity directly on the stream and the highest concentrations of fecal coliform according to the TMDL.

### Project highlights

Between 2009 and 2014, 11 alternative livestock watering systems were put in place to allow for the development of over 100 acres of riparian buffer along six miles of stream.

In 2013 work began downstream along the mainstem of Second Creek. This included exclusion fence along six miles of stream for more than 100 acres of buffer, 11 alternative livestock watering systems, three waste storage facilities, and

an alternative livestock feeding facility. Downstream along the mainstem of Second Creek an additional alternative livestock feeding facility, two alternative livestock watering systems, and 25+ acres riparian buffer were installed.

The karst area of the watershed was addressed beginning in 2014. These projects included many of the same practices with a focus on managed grazing systems and nutrient management to prevent bacteria-laden runoff from concentrating in sinkholes, caves, and other karst features. While these areas do not have open surface water running through the farms, continuously moving livestock to new grazing units prevents concentration of nutrients and bacteria from running off into the karst system. Two of the farms in these project areas were awarded 2016 and 2018 <u>Conservation Farm of the Year</u>.

Other practices implemented throughout the years included stabilized stream crossings, tree planting, pond and spring developments, solar and wind powered water pumping systems, livestock waste storage facilities, livestock exclusion and pasture division fencing. Additionally, other programs such as the United States Department of Agriculture's Conservation Reserve Enhancement Program (CREP) and Environmental Quality Incentive Program (EQIP), and WVCA's AgE Program were also used to help fund best management practices installed in the watershed.

Figure 9. WQ improvements in Second Creek

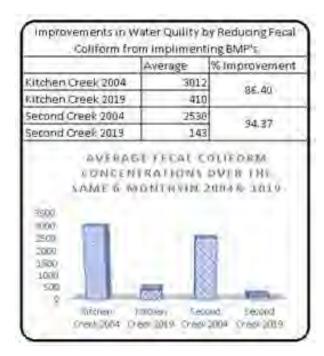



Table 15. Second Creek WBP funding summary.

### Results

While water quality data along Kitchen and Second Creek has been collected throughout the implementation phase of the plan, consistent monthly sampling began in the spring of 2019. Preliminary results from this sampling indicate a significant reduction in fecal coliform bacteria concentrations along both streams. Compared to the water quality data collected for the TMDL development in 2004, the 2019 data suggest an 86.4% reduction in fecal coliform bacteria along Kitchen Creek and a 94.4% reduction in fecal coliform bacteria along Second Creek. Details are provided in *Appendix 4*.

### Partners and funding

Funding for these projects have totaled \$1,132,088.00 of §319 funds over the past 10 years. In 2020, the <u>Second Creek WBP</u> will be revised so that progress can continue within the basin.

| §319 projects                  | §319 funds   | Fiscal year<br>funded |
|--------------------------------|--------------|-----------------------|
| Kitchen Creek/Second Creek     | \$108,523    | 2009                  |
| Back Creek agricultural BMPs   | \$145,428    | 2010                  |
| Kitchen Creek 2                | \$49,520     | 2011                  |
| Kitchen Creek 3: Phase 1       | \$130,000    | 2010                  |
| Kitchen Creek 3: Phase 2       | \$98,000     | 2010                  |
| Kitchen Creek 3                | \$70,517     | 2012                  |
| Second Creek - Karnes          | \$182,000    | 2014                  |
| Kitchen Creek 4                | \$100,000    | 2013                  |
| Second Creek agricultural BMPs | \$120,500    | 2015                  |
| Second Creek Karst             | \$\$127,600  | 2016                  |
| §319: \$1,132,088              | Match: \$754 | 1,726                 |
| Total funds                    | \$1,886,814  |                       |

Kitchen Creek riparian buffer.



### **Tuscarora Creek watershed plan**

### Watershed information

HUC8: 02070004 – Conococheague-Opequon HUC12: 020700040907 – Tuscarora Creek

Sponsor: Canaan Valley Institute

### Watershed description

Figure 10. Tuscarora Creek watershed



Tuscarora Creek, a tributary of Opequon Creek, is located in Berkeley County in the **Potomac Direct Drains** Watershed of West Virginia (Figure 10). It drains approximately 26 square miles and is approximately 11.7 miles long. Its major tributary, Dry Run, is 5 miles long. It is part of the Ridge and Valley physiographic province. It is characterized by karst terrain, so springs, sinkholes, and discontinuous drainage patterns are common. Kilmer Spring, occurring very close to the Tuscarora Creek mainstem, is a significant source of drinking water for the City of Martinsburg.

### Goals

The 2008 TMDL developed for Tuscarora Creek identifies fecal coliform bacteria and biological criteria as the major impairments for Tuscarora Creek and its major tributary Dry Run. The biological criteria are linked to sedimentation and organic enrichment, for which fecal coliform levels serve as a surrogate. Approved in 2013, the <u>Tuscarora Creek WBP</u> identifies major sources of fecal coliform bacteria and sediment and proposes practices that will reduce the levels of these pollutants in the watershed.

### Project highlights

The Tuscarora Creek project was developed to reduce a portion of the fecal coliform loads primarily through septic system upgrades and incentives for pumping septic systems. During the grant period, 13 septic systems were pumped and 3 failing systems were replaced or repaired, accounting for a reduction in fecal coliform of 1.88E+13 cfu/year. In addition, a Norweco Singulair Denitrifying Septic System was installed at Poor House Farm Park near the headwaters of Tuscarora Creek. This project replaced the traditional septic system at the facility with a more advanced system that added nitrogen removal capabilities. The project helps achieve the WIP goal of 100 denitrifying septic systems in West Virginia's Chesapeake Bay drainage. This project also serves as an education and outreach opportunity on BMPs for bacteria and nutrient reductions to our waterways.

The natural stream design of a 950-foot section of the stream experiencing high levels of erosion was completed which included the re-routing of the stream around an existing dam which acted as a fish passage barrier. This site was dominated by streambanks with moderate Bank Erosion Hazard Index (BEHI) scores. Restoration of this site reduced sediment loads to the creek by 19 tons/year. Thus far, watershed projects have reduced approximately 1.3% of the fecal load and 2.6% of the sediment load. See *Appendix 5* for details.

Figure 11. Before and after photos of the Tuscarora Creek stream restoration.





Eroding banks and dam at the stream restoration project site pre-construction.





Stream restoration project site post-construction.

The restoration/dam removal project is maturing, but habitat response is too soon to ascertain. Habitat and BEHI will be evaluated in the near future. The benthic community has responded positively to the improvements. The §319 Tuscarora Creek *Success Story* provides additional details.

### Partners and funding

| Implementation | §319      | Match     |
|----------------|-----------|-----------|
| Phase 1        | \$46,229  | \$25,451  |
| Phase 2        | \$42,991  | \$37,776  |
| §319 totals    | \$89,220  | \$63,227  |
| CBIG           | \$109,225 | \$13,387  |
| NFWF           | \$184,101 | \$60,584  |
| Overall totals | \$382,546 | \$137,198 |

*Table 16.* Tuscarora Creek expenditures (all sources)

CVI partnered with multiple organizations/agencies on the §319 and CBIG projects. Project partners included WVDEP, WVDF, BCHD, EPCD, and the OCPT. Additional tree plantings were funded by other programs such as the CommuniTree Program. CVI secured a National Fish & Wildlife Foundation (NFWF) Small Watershed Grant to complete the construction of a natural stream design and dam removal, which was a barrier to aquatic organism movement.

Volunteers from OCPT, city of Martinsburg and county partners assessed Dry Run for future opportunities to install sediment and stormwater. Once compiled, the information will be available for future implementation opportunities.

### Management Plan updates



Clean Water Act (CWA) §319 quidelines require that all State NPS Programs revise their management plan every five-years. West Virginia's NPS Management Plan (WVMP) was revised and submitted in late spring 2019. After several iterations it was approved in December 2019.

The 2019 WVMP document can be downloaded HERE.

WVMP provides an overview of NPS programs, partners and the tools the program uses to continue to reduce the threats from nonpoint sources of pollution. In addition to CWA requirement, the document provides the public and partners a clear vision of West Virginia's NPS future goals and objectives.

West Virginia's 2014 management plan was the first in quite some time. It was a labor of love and required an extensive amount of time and partner involvement. Feedback from USEPA, partner agencies, WVDEP programs, watershed groups and others were critical to its success; and it was successful.

Short term goals and objectives are provided to USEAP with each §319 workplan and have remained consistent for multiple years,

other than some minor changes that describe specifics in each grant year. West Virginia has been and continues to be successful in meeting these administrative goals.

Long-term goals for the previous WVMP were based on an analysis of past program trends in implementation, pollutant reductions etc. Over the past five-years, West Virginia's §319 Program continues to provide results that exceed expectations. For example, the 2014 WVMP exceeded pollution reduction goals by an average of 25.7 percent. *Table 17* compares pollutant reduction progress of the 2014 WVMP.

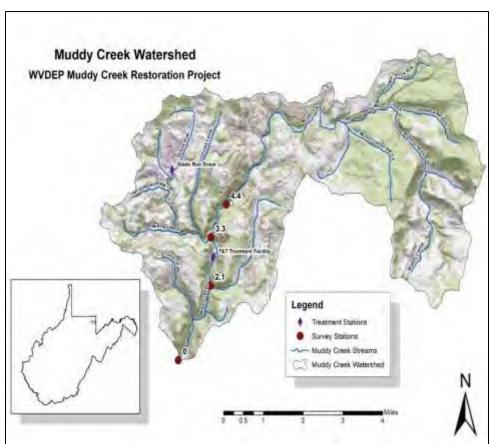
Table 17. WVMP load reduction progress 2014-2018.

| Poll      | utants:  | Acidity | Metals (total) | Nitrogen  | Phosphorus | Sediment | Fecal coliform |           |
|-----------|----------|---------|----------------|-----------|------------|----------|----------------|-----------|
| 2014 WVM  | P load   | tons/yr | lbs/yr         | lbs/yr    | lbs/yr     | tons/yr  | cfu            |           |
| reduction | goals    | 300     | 140,000        | 280,000   | 220,000    | 6,000    | 1.70E+15       |           |
| ALC: N    | 2014     | 46.5    | 25,042         | 262,963   | 129,369    | 7,803    | 2.28E+15       | 1         |
|           | 2015     | 97.4    | 49,017         | 397,811   | 381,282    | 7,878    | 9.64E+13       |           |
| Resutls   | 2016     | 161     | 102,667        | 853,890   | 344,793    | 11,287   | 6.20E+13       |           |
|           | 2017     | 27.8    | 20,689         | 141,217   | 17,654     | 2,963    | 1.07E+13       |           |
|           | 2018     | 22.3    | 24,046         | 120,902   | 43,777     | 3,340    | 8.82E+15       |           |
| Cum       | ılative: | 355     | 221,461        | 1,776,783 | 916,875    | 33,271   | 1.13E+16       | Av. %Diff |
| % Diffe   | erence:  | 4.2     | 11.3           | 36.4      | 30.7       | 34.7     | 36.9           | 25.7      |

### Success Stories

Included here is an update on the Muddy Creek restoration efforts and WIB's most recent §319 approved Success Story.

### Introduction

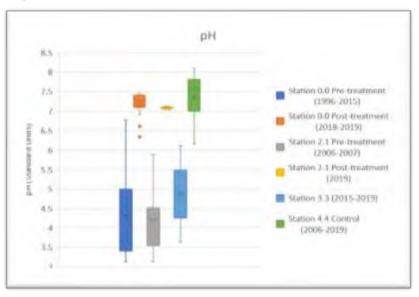

For decades, acid mine drainage (AMD) from pre- and post-law mining practices has negatively affected water quality in Muddy Creek. Water associated with past mining activities within the lower portion of the watershed severely degraded the biological community within the mainstem. This was especially apparent below the confluence of Martin Creek, which provides a significant source of AMD to Muddy Creek. The process of mining opens rock strata containing several constituents that when exposed to oxygen and water, creates a highly toxic effluent. This highly acidic effluent contains metals such as iron and aluminum that have deleterious effects on biological organisms.

To improve water quality, a sophisticated AMD treatment facility was built along Muddy Creek to treat multiple sources of AMD. The treatment facility began operating in March of 2018. This brief summary focuses on a few aspects of pre- and post-treatment data collected on the Muddy Creek mainstem by Watershed Assessment Branch (WAB) staff of the West Virginia Dept. of Environmental protection (WVDEP). The comprehensive report on the Muddy Creek restoration project is available <u>HERE</u>.

### Project study area

Figure 12. Muddy Creek restoration project map.

The Muddy Creek watershed spans 21,487 acres in West Virginia. Beginning near the community of Afton, WV, the creek flows to its confluence with the Cheat River near Albright, WV. Members of the WAB set up multiple assessment stations in the lower reaches of Muddy Creek to monitor biological conditions and their response to AMD treatment. These stations are 0.0, 2.1, 3.3, and 4.4. Stations 0.0, 2.1, and 3.3 were placed below AMD impacts. Station 4.4 was placed above the impacts to act as a control station. Figure 11 is a watershed map that contains the locations of sample stations and AMD treatment stations.

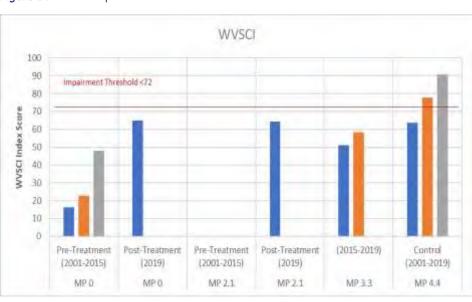



### **Results**

### Water Quality

WAB staff has collected 119 individual samples among the survey stations. These samples vary from simple field parameter discrete readings to comprehensive lab water quality analyses. Overall, water quality has been greatly improved by the installation and operation of the treatment system. A significant improvement in pH has occurred at stations 0.0 and 2.1 following the onset of treatment. Post-treatment pH values at stations 0.0 and 2.1 closely resemble station 4.4 values. Median pretreatment pH values at station 0.0 were 4.32. Station 2.1 showed a pretreatment pH median of 4.2. Post-

Figure 13. Pre- and post-treatment pH results.




treatment pH medians at these stations were significantly higher. Station 0.0 and 2.1 median pH values were 7.3 and 7.1, respectively. In comparison, station 4.4 pH median was 7.6. *Figure 12* is a box and whisker plot which shows the differences between pre-and post-treatment pH values. These higher pH values have in turn reduced the amount of metals present in the water like iron and aluminum. The improvement in pH and reduction of metals has greatly increased the ability for aquatic life to live within Muddy Creek.

### Benthic Macroinvertebrates

WAB uses the West Virginia Stream Condition Index (WVSCI) to assess the biological condition of streams. The WVSCI (range 0-100) summarizes family level identifications of benthic macro-invertebrate assemblages to assess the biological condition of wadeable streams with riffle/run habitats. This index includes six biological metrics that represent elements of the structure and composition of benthic macroinvertebrate communities. Because larval macroinvertebrates are

Figure 14. Pre- and post-treatment WVSCI scores.



relatively stationary, they are susceptible to changes in water quality. This makes them an excellent indicator for stream health. It is important to note that benthic communities are very complex and are susceptible to many environmental factors including stream discharge, stream habitat in relation to sedimentation, localized disturbances, and even life history strategies of different families.

Figure 13 shows WVSCI Index Scores from the sample stations. The impairment threshold for WVSCI is 72. This means that any score less than 72 is considered impaired, and sites scoring over 72 are considered unimpaired. At station 0.0, the WVSCI score improved from a pre-treatment median score of 22.7 to a post-treatment score of 64.9. Lower scores, like 22.7 for example, are considered severely impaired. The station 2.1 post treatment WVSCI score was 64.3. The sample median WVSCI score for station 4.4 was 77.7. It is important to note that pre-treatment WVSCI scores from stations 0.0, 3.3, and post-treatment scores from station 2.1 had benthic densities below 100 organisms, a result of severe impacts by AMD. The WVSCI requires samples to have at least 100 organisms for accurate scoring. Although displayed within this summary, WVSCI scores at stations with less than 100 organisms may score higher than expected, and likely do not fully represent the severity of impact by AMD.

### Fish communities

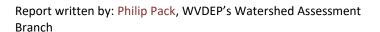
Six fish community surveys have been completed between the Muddy Creek sample stations. Two surveys at station 0.0, one survey at station 2.1, one survey at station 3.3 and two surveys at 4.4. A pretreatment survey was not taken at station 2.1 and a post-treatment survey was not taken at station 3.3 due to site relocation.

Pre-treatment surveys taken at mile 0.0 and 3.3 yielded no fish due to extensive AMD impacts. After treatment began, water quality conditions became favorable for fish passage into the Muddy Creek mainstem. In 2019, the fish community survey at station 0.0

Table 18. Pre- and post-treatment fish community survey results.

| Muddy Creek Fish Community Comparison Pre-treatment (2015) vs Post-treatment (2019) |           |      |                   |      |          |      |      |
|-------------------------------------------------------------------------------------|-----------|------|-------------------|------|----------|------|------|
| Mile Point                                                                          |           | 0    | 2                 | .1   | 3.3      | 4.4  |      |
| Sample Year                                                                         | 2015      | 2019 | 2015              | 2019 | 2015     | 2015 | 2019 |
| River Chub                                                                          |           | 111  |                   |      |          |      |      |
| Smallmouth Bass                                                                     |           | 12   |                   |      |          |      |      |
| Rock Bass                                                                           |           | 2    |                   |      |          |      |      |
| Rosyside Dace                                                                       |           | 1    |                   |      |          |      |      |
| Green Sunfish                                                                       |           | 3    |                   | 12   |          |      |      |
| Mottled Sculpin                                                                     |           | 1    |                   | 3    | No Fish  | 225  | 653  |
| Spotfin Shiner                                                                      | No Fish   | 1    | Did Not<br>Survey |      |          |      |      |
| Stonecat                                                                            | Collected | 2    |                   |      |          |      |      |
| Rosyface Shiner                                                                     | Conecteu  | 10   | Survey            |      | Conecteu |      |      |
| Creek Chub                                                                          |           |      |                   | 10   |          | 301  | 191  |
| Western Blacknose Dace                                                              |           |      |                   |      |          | 461  | 485  |
| White Sucker                                                                        |           |      |                   |      |          | 22   | 82   |
| Longnose Dace                                                                       |           |      |                   |      |          | 26   | 27   |
| Brown Trout                                                                         |           |      |                   |      |          | 6    | 1    |
| Rainbow Trout                                                                       |           |      |                   | 1    |          |      | 2    |
| Total Species                                                                       | 0         | 9    | 0                 | 4    | 0        | 6    | 7    |
| Total Collected                                                                     | 0         | 143  | 0                 | 26   | 0        | 1041 | 1441 |
| Fish/meter                                                                          | 0.00      | 0.48 | 0.00              | 0.09 | 0.00     | 3.79 | 5.24 |

collected 143 individual fish comprised of 9 unique species. The fish community survey at station 2.1 collected only 26 individual fish comprised of 4 unique species. In comparison, station 4.4 surveys collected 1,041 individual fish of six different species in 2015. In 2019, the survey collected 1,441 individuals of seven different species. It is important to note two interesting occurrences during the 2019 surveys at 0.0 and 2.1. Mottled sculpin was collected at each of these stations, one individual at 0.0 and three at station 2.1. Mottled sculpin thrives in cool and cold-water systems and are considered to be moderately sensitive to certain types of pollution. Collecting this species in the lower reaches of Muddy Creek is a positive sign that conditions are improving. Another sign of improvement is the presence of trout in Muddy Creek. The survey at station 2.1 collected one rainbow trout in 2019. Like mottled sculpin, rainbow trout occupy cool and cold-water streams and are moderately sensitive to pollution and temperature. It is remarkable that trout are now able to utilize the mainstem of lower Muddy Creek. Trout were present during the surveys of station 4.4 as well. *Table 18* shows results from the fish community surveys.


WAB often displays a fish per meter (fish/m) metric when describing fish communities. This is a coarse measure of abundance and can be informative in determining the effectiveness of treatment in acid mine drainage streams where fish numbers are often diminished. Pre-treatment fish/m scores at stations 0.0 and 3.3 were zero because no fish were collected. In 2019, post-treatment surveys of stations 0.0 and 2.1 yielded metric scores of 0.48 and 0.09, respectively. Station 4.4 results were much higher. In 2015, station 4.4 had a metric score of 3.71 fish/m, and in 2019 the score was even higher with 5.24 fish/m. While stations 0.0 and 2.1 had relatively low metric scores compared to station 4.4, a positive outcome was realized.


### Conclusion

Based on the findings of this study, the conditions in the lower reaches of Muddy Creek have improved substantially since the onset of AMD treatment. Notable increases in physiochemical properties like pH combined with decreases in total and dissolved metals have been observed.

A benthic macroinvertebrate sample collected at station 0.0 showed a notable increase in WVSCI score following the onset of AMD treatment. Although there was no pre-treatment score for comparing to post-treatment, the WVSCI at station 2.1 was similar to station 0.0. While some improvements were observed, neither station had WVSCI scores exceeding the unimpaired threshold. Therefore, full recovery of the benthic community has not been realized yet.

The fish community response to AMD treatment was positive. No fish were collected in the mainstem of Muddy Creek downstream of Martin Creek prior to treatment. Post-treatment surveys revealed an increase in species richness and abundance, most notably at station 0.0. Although station 2.1 did not show high richness or abundance, it did have a positive outcome. Mottled sculpin and rainbow trout were collected at this station. Seeing these moderately sensitive fish species returning to the lower reaches of Muddy Creek is significant.





Muddy Creek at Station 0.0 before AMD treatment (2015). Note the turbidity due to suspended metals.



Muddy Creek at Station 0.0 after AMD treatment (2019). The water is now clear due to upstream AMD treatment.

### **Reclamation and AMD treatment improves Deckers Creek**

Figure 15. Deckers Creek projects



As early as 1951, AMD from coal mines polluted Deckers Creek, a section of which is a well-known whitewater paddling destination. WVDEP added Deckers Creek to CWA section 303(d) list of impaired streams in 1996. Friends of Deckers Creek (FODC) and several agencies partnered on land reclamation and water treatment projects in the watershed. Over the years, water quality has significantly improved, particularly aluminum and iron. Biological conditions have also improved. Brown trout now survive in *upper portions* of the watershed.

The 2019 Deckers Creek <u>Success Story</u> is told on pages 30-31.



# **NONPOINT SOURCE SUCCESS STORY**

Implementing Mine Land Reclamation and Water Treatment Projects

# Implementing Mine Land Reclamation and Water Treatment Projects Improved Deckers Creek

Waterbody Improved

As early as 1951, acid mine drainage (AMD) from coal mines polluted Deckers Creek, a section of which is a well-known

whitewater paddling destination. The West Virginia Department of Environmental Protection (WVDEP) added Deckers Creek to the Clean Water Act (CWA) section 303(d) list of impaired streams in 1996. Friends of Deckers Creek (FODC), a nonprofit organization, and several agencies partnered on land reclamation and water treatment projects in the watershed. Water quality has significantly improved in Deckers Creek—particularly for aluminum, iron and pH. Biological conditions have also improved; for example, stocked brown trout now survive year-round in the creek.

## **Problem**

Deckers Creek flows into the Monongahela River in Morgantown, West Virginia (Figure 1). The watershed covers approximately 64 square miles and offers whitewater paddling and recreational fishing opportunities.

Coal mines abandoned before passage of the Surface Mining Control and Reclamation Act in 1977 discharge polluted water into Deckers Creek. Data collected in 1976 showed the creek violated standards for iron, manganese, aluminum and pH. WVDEP added Deckers Creek to the list of impaired streams in 1996. Fecal coliform bacteria and sediment pollution sources exist throughout the watershed.

The mines exploited the pyrite-rich Upper Freeport coal seam. When the pyrite is exposed to air and water, it generates iron and sulfuric acid. The acid also dissolves aluminum from nearby minerals. West Virginia's standards call for pH to remain between 6 and 9, and for dissolved aluminum and total iron to remain below 0.75 and 1.5 milligrams per liter (mg/L), respectively.

Low pH and high aluminum concentrations in Deckers Creek excluded fish from much of the mainstem and several tributaries for many years. Precipitation of iron on the bottom of the streams excluded all but the most tolerant of benthic invertebrates. The pollution is prodigious. One single mine adds up to two tons of acidity and 800 pounds per day of iron to the creek.

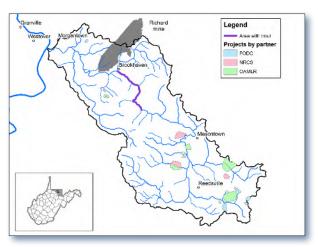



Figure 1. Multiple projects have been implemented in Deckers Creek in northern West Virginia.

# **Story Highlights**

In the mid-1990s, FODC formed to improve the natural qualities of, increase public concern for, and promote the enjoyment of the Deckers Creek watershed. FODC published a water quality inventory for the Deckers Creek watershed in 1996. FODC also petitioned WVDEP to prioritize the total maximum daily load (TMDL) for Deckers Creek; WVDEP completed the TMDL in 2002. WVDEP and the U.S. Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) made an agreement to reclaim 13 of the mine sites, each pitching in \$5 million. Under that agreement the two agencies have implemented best management practices (BMPs) at nine of the 13 abandoned coal mine sites.

FODC completed a watershed-based plan in 2006 and used funding from CWA section 319 and the U.S. Office of Surface Mining, Reclamation, and Enforcement's (OSMRE's) Watershed Cooperative Agreement Program to install eight mine drainage treatment projects. FODC operates nine AMD treatment sites throughout the watershed, including five along the tributary of Kanes Creek (for more information on these projects see the 2015 NPS Success Story, Treating Acid Mine Drainage Allows Aquatic Life to Rebound in Kanes Creek.) Multiple BMPs have been implemented at the nine project sites, including sulfate-reducing bioreactors, water-powered lime dosing devices, limestone leachbeds, anaerobic vertical flow wetlands, and settling ponds (see Figure 1 for project locations). These projects have removed dissolved metals and neutralized the water's pH over the years. The WVDEP's Office of Abandoned Mine Lands and Reclamation (OAMLR) operates additional AMD treatment projects within the Deckers Creek watershed (see Figure 1) that are outside the scope of work described here.

FODC monitors 13 sites throughout the watershed through its Clean Creek Program, which is supplemented by data gathered by FODC's Citizen Scientist Program (more than tripling the amount of sites monitored overall). Citizen Scientists sample monthly for water quality and allow FODC to have eyes and ears on the ground, enabling early detection for issues in Deckers Creek. Citizen Scientist data is compiled and used to track trends.

### Results

Since 2002 water quality has significantly improved in Deckers Creek. Average pH has increased from 6.5 to 7.19, iron has been reduced from 1.4 mg/L to 0.6 mg/L, and aluminum has decreased from 1.00 mg/L to 0.4 mg/L (Figure 2). Brown trout have been stocked in Deckers Creek since 2011, after monitoring in the mainstem showed steadily good water quality. Fish surveys found trout in 2012, 2014, 2016 and 2017. Different size classes of trout indicate survival through the entire year. The presence of other wildlife further illustrates improvement in the creek's health. Much of the improvement in Deckers Creek was caused by removing pollutant loads from its tributary Kanes Creek, which has undergone a visible transformation as its iron loads have decreased (Figure 3).

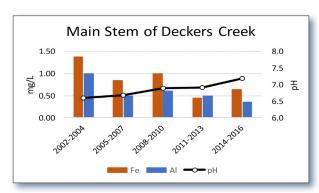



Figure 2. Decker Creek data show reductions in iron and aluminum and increases in pH levels.



Figure 3. Kanes Creek, before and after restoration.

# **Partners and Funding**

Many agencies, organizations, and individuals have carried out the Deckers Creek restoration work. WVDEP has supplied \$2.77 million in CWA section 319 watershed project funding to FODC for their work. FODC has obtained \$1.28 million from OSMRE's Watershed Cooperative Agreement Program. The U.S. Environmental Protection Agency's Brownfields program funded the engineering design of three of FODC's AMD treatment projects. WVDEP and the USDA NRCS partnered in an agreement through Public Law 566 to restore the watershed through abandoned mine reclamation. WVDEP spent \$3.85 million through OAMLR, while NRCS spent \$2.26 million through its Public Law 566 Small Watershed Program.



U.S. Environmental Protection Agency Office of Water Washington, DC

EPA 841-F-19-001RR November 2019

### For additional information contact:

**Martin Christ** 

West Virginia Department of Environmental Protection 304-368-2000 • Martin.J.Christ@wv.gov https://deckerscreek.org/clean-creek-program/

Appendix 1. BMP Implementation

| HUC name                         | ВМР                          | Q        | Unit | Date     | Program  |
|----------------------------------|------------------------------|----------|------|----------|----------|
| Indian Creek                     | Alternative Water            | 1        | IU   | Mar-19   | NWQI     |
| Indian Creek                     | Alternative Water            | 1        | IU   | Sep-19   | §319     |
| Indian Creek                     | Alternative Water            | 2        | IU   | Sep-19   | NWQI     |
| Indian Creek                     | Alternative Water            | 1        | IU   | Sep-19   | §319     |
| Elk Branch-Back Creek            | Conservation Easements       | 60       | AC   | Sep-19   | §319     |
| Elk Branch-Back Creek            | Conservation Easements       | 95       | AC   | Sep-19   | §319     |
| Upper Indian Creek               | Fencing                      | 5,620    | FT   | Sep-19   | §319     |
| Upper Indian Creek               | Fencing                      | 5,722    | FT   | Sep-19   | NWQI     |
| Upper Indian Creek               | Fencing                      | 5,700    | FT   | Sep-19   | §319     |
| Upper Indian Creek               | Fencing                      | 795      | FT   | Sep-19   | NWQI     |
| Upper Indian Creek               | Fencing                      | 1,144    | FT   | Sep-19   | §319     |
| Upper Indian Creek               | Heavy Use Protection         | 500      | SQFT | Sep-19   | NWQI     |
| Upper Indian Creek               | Heavy Use Protection         | 500      | SQFT | Sep-19   | §319     |
| Upper Indian Creek               | Irrigation Pipeline          | 850      | FT   | Sep-19   | NWQI     |
| Upper Indian Creek               | Irrigation Pipeline          | 234      | FT   | Sep-19   | §319     |
| Outlet Back Creek                | Natural Channel Restoration  | 915      | FT   | Nov-19   | §319     |
| Mill Creek                       | Stream Channel Stabilization | 200      | FT   | Jun-19   | §319     |
| Big Run-Dry Fork                 | Nutrient Management          | 39       | AC   | Apr-19   | AgE      |
| East Dry Run-South Branch        | Nutrient Management          | 187      | AC   | Apr-19   | AgE      |
| French Creek                     | Nutrient Management          | 23       | AC   | Apr-19   | AgE      |
| South Mill Creek                 | Nutrient Management          | 469      | AC   | Apr-19   | AgE      |
| Sugar Creek                      | Nutrient Management          | 101      | AC   | Apr-19   | AgE      |
| Teter Creek                      | Nutrient Management          | 95       | AC   | Apr-19   | AgE      |
| Beaver Creek-Tygart Valley River | Nutrient Management          | 106      | AC   | Oct-19   | AgE      |
| Chenoweth Creek                  | Nutrient Management          | 47       | AC   | Oct-19   | AgE      |
| Files Creek                      | Nutrient Management          | 49       | AC   | Oct-19   | AgE      |
| Headwaters Elk Creek             | Nutrient Management          | 36       | AC   | Oct-19   | AgE      |
| Laurel Creek                     | Nutrient Management          | 381      | AC   | Oct-19   | AgE      |
| Left Fork-Sandy Creek            | Nutrient Management          | 44       | AC   | Oct-19   | AgE      |
| Mill Creek-Tygart Valley River   | Nutrient Management          | 36       | AC   | Oct-19   | AgE      |
| Red Creek                        | Nutrient Management          | 29       | AC   | Oct-19   | AgE      |
| Shavers Run-Tygart Valley River  | Nutrient Management          | 58       | AC   | Oct-19   | AgE      |
| Wickwire Run-Tygart Valley River | Nutrient Management          | 51       | AC   | Oct-19   | AgE      |
| Upper Indian Creek               | Prescribed Grazing           | 214      | AC   | Sep-19   | §319     |
| Upper Indian Creek               | Prescribed Grazing           | 290      | AC   | Sep-19   | §319     |
| Tuscarora Creek                  | Septic (New/Existing)        | 6        | ΙU   | Oct-19   | §319     |
| Browns Creek-Coal River          | Septic (New/Existing)        | 11       | IU   | Sep-19   | §319     |
| Upper Sleepy Creek               | Septic (New/Existing)        | 7        | ΙU   | Apr-19   | §319-AGO |
| Mill Creek                       | Septic (Pumpout)             | 10       | IU   | Jun-19   | §319     |
| Tuscarora Creek                  | Septic (Pumpout)             | 30       | ΙU   | Jun-19   | §319     |
| Upper Sleepy Creek               | Septic (Pumpout)             | 2        | IU   | Apr-19   | §319-AGO |
| Upper Indian Creek               | Water Well                   | 1        | IU   | Mar-19   | §319     |
| Upper Indian Creek               | Water Well                   | 1        | IU   | Sep-19   | NWQI     |
| Upper Indian Creek               | Water Well                   | 1        | ΙU   | Sep-19   | §319     |
| Upper Indian Creek               | Water Well                   | 2        | ΙU   | Mar-19   | §319     |
| Upper Indian Creek               | Water Well                   | 1        | ΙU   | Sep-19   | §319     |
| Statewide (WVCA-WVDEP)           | Outreach/Education           | > 10,000 | ΙU   | ALL-2019 | §319     |

Appendix 2. Pollutant load reductions

| HUC name                                 | Pollutant                       | LR       | Unit   | Date             | Program          |
|------------------------------------------|---------------------------------|----------|--------|------------------|------------------|
| Outlet Piney Creek                       | Metals (Iron)                   | 11.5     | LBS/YR | Aug-19           | §319             |
| Upper Indian Creek                       | Nitrogen                        | 301,125  | LBS/YR | Sep-19           | §319             |
| Upper Indian Creek                       | Nitrogen                        | 100,375  | LBS/YR | Sep-19           | §319             |
| Upper Indian Creek                       | Nitrogen                        | 3,332    | LBS/YR | Sep-19           | NWQI             |
| Upper Indian Creek                       | Nitrogen                        | 7,227    | LBS/YR | Sep-19           | §319             |
| Upper Indian Creek                       | Nitrogen                        | 1,807    | LBS/YR | Sep-19           | AgE              |
| Big Run-Dry Fork                         | Nitrogen                        | 3,067    | LBS/YR | Apr-19           | AgE              |
| Chenoweth Creek                          | Nitrogen                        | 3,130    | LBS/YR | Oct-19           | AgE              |
| East Dry Run-South Branch                | Nitrogen                        | 16,059   | LBS/YR | Apr-19           | AgE              |
| Files Creek                              | Nitrogen                        | 2,017    | LBS/YR | Oct-19           | AgE              |
| French Creek                             | Nitrogen                        | 1,039    | LBS/YR | Apr-19           | AgE              |
| Headwaters Elk Creek                     | Nitrogen                        | 3,322    | LBS/YR | Oct-19           | AgE              |
| Laurel Creek                             | Nitrogen                        | 26,334   | LBS/YR | Oct-19           | AgE              |
| Left Fork-Sandy Creek                    | Nitrogen                        | 3,465    | LBS/YR | Oct-19           | AgE              |
| Mill Creek-Tygart Valley River           | Nitrogen                        | 3,034    | LBS/YR | Oct-19           | AgE              |
| Red Creek                                | Nitrogen                        | 1,832    | LBS/YR | Oct-19           | AgE              |
| Shavers Run-Tygart Valley River          | Nitrogen                        | 3,083    | LBS/YR | Oct-19           | AgE              |
| South Mill Creek                         | Nitrogen                        | 28,387   | LBS/YR | Apr-19           | AgE              |
| Sugar Creek                              | Nitrogen                        | 6,079    | LBS/YR | Apr-19           | AgE              |
| Teter Creek                              | Nitrogen                        | 5,180    | LBS/YR | Apr-19           | AgE              |
| Wickwire Run-Tygart Valley River         | Nitrogen                        | 3,346    | LBS/YR | Oct-19           | AgE              |
| Tuscarora Creek                          | Pathogens (Coliform)            | 3.76E+13 | CFU    | Oct-19           | §319             |
| Browns Creek-Coal River                  | Pathogens (Coliform)            | 2.30E+13 | CFU    | Sep-19           | §319             |
|                                          | Pathogens (Coliform)            | 1.58E+14 | CFU    | Sep-19           | §319             |
| Upper Indian Creek                       | Pathogens (Coliform)            | 5.25E+13 | CFU    | Sep-19           | §319             |
| Upper Indian Creek                       | Pathogens (Coliform)            | 1.68E+12 | CFU    | Sep-19           | NWQI             |
| Upper Indian Creek                       | Pathogens (Coliform)            | 3.78E+12 | CFU    | Sep-19           | §319             |
| Upper Indian Creek                       | Pathogens (Coliform)            | 9.45E+11 | CFU    | · ·              | §319             |
| Upper Indian Creek<br>Upper Sleepy Creek |                                 | 6.23E+12 | CFU    | Sep-19           | §319-AGO         |
|                                          | Pathogens (Coliform) Phosphorus | 68,400   |        | Apr-19<br>Sep-19 | §319-AGO<br>§319 |
| Upper Indian Creek                       | Phosphorus                      | 22,800   | LBS/YR | Sep-19           | §319<br>§319     |
| Upper Indian Creek                       | Phosphorus                      | 757      | LBS/YR |                  | §319<br>§319     |
| Upper Indian Creek                       | Phosphorus                      |          | LBS/YR | Sep-19           | NMGI             |
| Upper Indian Creek                       |                                 | 1,642    | LBS/YR | Sep-19           | -                |
| Upper Indian Creek                       | Phosphorus                      | 410      | LBS/YR | Sep-19           | §319             |
| Beaver Creek-Tygart Valley River         | Phosphorus                      | 3,536    | LBS/YR | Apr-19           | §319             |
| Big Run-Dry Fork                         | Phosphorus                      | 2,243    | LBS/YR | Apr-19           | AgE              |
| Chenoweth Creek                          | Phosphorus                      | 2,289    | LBS/YR | Oct-19           | AgE              |
| East Dry Run-South Branch                | Phosphorus                      | 23,028   | LBS/YR | Apr-19           | AgE              |
| Files Creek                              | Phosphorus                      | 1,475    | LBS/YR | Oct-19           | AgE              |
| French Creek                             | Phosphorus                      | 760      | LBS/YR | Apr-19           | AgE              |
| Headwaters Elk Creek                     | Phosphorus                      | 2,430    | LBS/YR | Oct-19           | AgE              |
| Laurel Creek                             | Phosphorus                      | 19,262   | LBS/YR | Oct-19           | AgE              |
| Left Fork-Sandy Creek                    | Phosphorus                      | 2,534    | LBS/YR | Oct-19           | AgE              |
| Mill Creek-Tygart Valley River           | Phosphorus                      | 2,226    | LBS/YR | Oct-19           | AgE              |
| Red Creek                                | Phosphorus                      | 1,340    | LBS/YR | Oct-19           | AgE              |
| Shavers Run-Tygart Valley River          | Phosphorus                      | 2,255    | LBS/YR | Oct-19           | AgE              |
| South Mill Creek                         | Phosphorus                      | 17,742   | LBS/YR | Apr-19           | AgE              |
| Sugar Creek                              | Phosphorus                      | 4,447    | LBS/YR | Apr-19           | AgE              |
| Teter Creek                              | Phosphorus                      | 3,789    | LBS/YR | Apr-19           | AgE              |

| HUC name                         | Pollutant          | LR    | Unit    | Date   | Program |
|----------------------------------|--------------------|-------|---------|--------|---------|
| Wickwire Run-Tygart Valley River | Phosphorus         | 2,447 | LBS/YR  | Oct-19 | AgE     |
| Outlet Piney Creek               | Sediment-Siltation | 0.25  | TONS/YR | Aug-19 | §319    |
| Elk Branch-Back Creek            | Sediment-Siltation | 0.92  | TONS/YR | Nov-19 | §319    |
| Upper Indian Creek               | Sediment-Siltation | 1.6   | TONS/YR | Nov-19 | §319    |

### Appendix 3. §319 project status

| 2015                                      | NPS# | Requested | Spent     | Status   |
|-------------------------------------------|------|-----------|-----------|----------|
| NPS Program                               |      |           |           |          |
| DEP                                       |      | \$279,364 | \$279,364 | Complete |
| WVCA                                      | 1523 | \$116,000 | \$108,797 | Complete |
| Watershed Plan Tracking EPA in-kind       |      |           |           |          |
| FOC Big Sandy WS planning                 | 1531 | \$84,000  | \$83,314  | Complete |
| FODC Clean Creek Program                  | 1545 | \$12,000  | \$12,000  | Complete |
| WVRC Source Water Protection Planning     | 1548 | \$15,000  | \$15,000  | Complete |
| Hursher's Run Monitoring - Hughes River   | 1549 | \$1,282   | \$1,282   | Complete |
| AMD and WW research - WVU                 | 1550 | \$18,000  | \$17,994  | Complete |
| Friends of Hughes Source Water Monitoring | 1607 | \$20,000  | \$20,000  | Complete |
| Piney Creek WSA Pet Waste Campaign        | 1600 | \$4,000   | \$4,000   | Complete |
| WVCA Anthony Creek stream stabilization   | 1602 | \$20,000  | \$20,000  | Complete |
| WV DOF WVU LSCA                           | 1616 | \$10,310  |           | Complete |
| FOC Cheat River Bacteria Monitoring       | 1636 | \$12,175  | \$12,174  | Complete |
| FOH Hursher's Run monitoring              | 1651 | \$4,622   | \$4,622   | Complete |
| Experience Learning                       | 1678 | \$20,000  | \$20,000  | Complete |

| Watershed Project                   | NPS# | Requested | Spent     | Status   |
|-------------------------------------|------|-----------|-----------|----------|
| Tuscarora Creek Phase 2 - CVI       | 1540 | \$56,523  | \$46,229  | Complete |
| Mill Creek Opequon Phase 2 - CVI    | 1541 | \$161,801 | \$110,545 | Complete |
| Morris Creek Upper Mainstem         | 1529 | \$49,265  | \$48,664  | Complete |
| Pase Active Treatment - FOC         | 1530 | \$101,387 | \$101,959 | Complete |
| Valley Highwall Upgrade - FODC      | 1532 | \$170,500 | \$198,950 | Complete |
| Summerlee - Phase 2                 | 1534 | \$163,412 | \$163,412 | Complete |
| YMCA land restoration - Piney Creek | 1535 | \$20,145  | \$20,140  | Complete |
| Elks Run Watershed Phase 2 - WVCA   | 1536 | \$68,200  | \$64,050  | Complete |
| Herods Run, Buckhannon - WVU        | 1533 | \$226,145 | \$225,306 | Complete |

| 2016                                   | NPS# | Requested | Spent     | Status   |
|----------------------------------------|------|-----------|-----------|----------|
| NPS Program                            |      |           |           |          |
| DEP                                    |      | \$295,082 | \$295,062 | Complete |
| WVCA                                   | 1580 | \$131,062 | \$33,379  | On-going |
| Watershed Plan Tracking EPA in-kind    |      | \$10,000  | \$10,000  |          |
| NF Greens Run WBP - FY 15 carryover    | 1581 | \$25,516  | \$24,635  | Complete |
| Muddy Creek WBP - FY 15 carryover      | 1582 | \$60,484  | \$56,393  | On-going |
| Friends of Blackwater monitoring       | 1596 | \$12,986  | \$12,406  | Complete |
| FODC clean creek program               | 1597 | \$12,000  | \$9,086   | On-going |
| FOC state of the watershed             | 1598 | \$15,000  | \$14,275  | Complete |
| Goodnews Mtneer Garage rain gardens    | 1599 | \$3,000   | \$2,906   | Complete |
| WVRC volunteer monitoring              | 1603 | \$18,000  | \$18,000  | Complete |
| WVRC Source Water Community Engagement | 1604 | \$17,000  | \$17,000  | Complete |
| FODC Kanes Creek Study                 | 1639 | \$13,350  | \$3,522   | On-going |
| WVRC Capacity Building for WSAs        | 1634 | \$4,450   | \$4,450   | Complete |
| WVRC WV TU WVCA monitoring program     | 1635 | \$8,900   | \$8,900   | Complete |
| WVCA Howards Creek Improvements        | 1637 | \$13,350  | \$11,388  | Complete |
| CVI ALIVE education                    | 1638 | \$4,461   | \$4,461   | Complete |
| City of Charleston Rain Barrel Kits    | 1648 | \$4,075   | \$3,950   | Complete |
| WVCA Sleepy Creek septic mini grant    | 1677 | \$21,000  | \$14,093  | On-going |

| Watershed Projects                  | NPS# | Requested | Spent     | Status   |
|-------------------------------------|------|-----------|-----------|----------|
| Browns Creek - Coal River           | 1583 | \$8,381   | \$8,381   | On-going |
| Beaver Creek AMD - FOC              | 1584 | \$175,100 | \$93,631  | On-going |
| Sandy Run Renovation - FODC         | 1585 | \$223,500 | \$26,940  | On-going |
| Beckley Little League - PCWA        | 1586 | \$54,291  | \$54,291  | Complete |
| Second Creek Karst                  | 1587 | \$127,600 | \$127,600 | Complete |
| Back Creek - WVCA                   | 1588 | \$209,450 | \$209,450 | Complete |
| Swamp Run #2 - WRI                  | 1589 | \$183,954 | \$78,220  | On-going |
| Browns Creek - Coal River thru WVCA | 1619 | \$94,000  | \$72,623  | On-going |

| 2017                                          | NPS# | Requested | Spent     | Status   |
|-----------------------------------------------|------|-----------|-----------|----------|
| NPS Program                                   |      |           |           |          |
| DEP                                           |      | \$324,282 | \$327,467 | Complete |
| WVCA                                          | 1605 | \$191,500 | \$31,736  | On-going |
| Watershed Plan Tracking EPA in-kind           |      | \$10,000  | \$10,000  |          |
| WV Rivers Coalition                           | 1610 | \$100,000 | \$53,820  | On-going |
| Beaver Creek WBP - FOB                        | 1647 | \$10,364  | \$10,078  | Complete |
| WVRC Building capacity for WSAs               | 1668 | \$5,000   | \$760     | On-going |
| WVRC water quality monitoring                 | 1669 | \$10,000  | \$10,000  | Complete |
| FOB Targeted Analysis of Beaver Creek         | 1670 | \$9,000   | \$3,099   | On-going |
| WVU Fisheries in treated AMD trib             | 1672 | \$12,000  | \$7,005   | On-going |
| Piney Creek monitoring and education          | 1673 | \$4,000   | \$4,000   | Complete |
| Morris Creek Lavender Patch                   | 1674 | \$5,000   | \$4,026   | On-going |
| FODC evaluating coliform                      | 1675 | \$12,000  | \$677     | On-going |
| FOC state of the watershed 2018               | 1676 | \$9,000   | \$6,548   | On-going |
| Watershed Projects                            | NPS# | Requested | Spent     | Status   |
| Summerlee AMD Phase 3A - PAN                  | 1611 | \$23,200  |           | On-going |
| New River Drive Soil Erosion - Piney Ck       | 1612 | \$32,500  |           | On-going |
| Morris Creek Rd and Stream Restoration        | 1613 | \$72,000  | \$68,186  | On-going |
| Muddy Creek Dream Mountain Improvements - FOC | 1633 | \$206,800 | \$28,337  | On-going |
| Beaver Creek AMD Addition                     | 1584 | \$115,628 |           | On-going |
| Hartman Run AMD - FODC                        | 1641 | \$185,000 | \$10,612  | On-going |
| WALD treatment - Phase 1 - FOB                | 1632 | \$149,594 | \$88,261  | On-going |
| Cane Fork Treatment - Phase 1 - WVU           | 1642 | \$149,993 | \$33,702  | On-going |
| Spring Creek - Phase 1 - WVCA                 | 1643 | \$180,000 |           | On-going |

| 2018                                         | NPS# | Requested | Spent     | Status   |
|----------------------------------------------|------|-----------|-----------|----------|
| NPS Program                                  |      |           |           |          |
| DEP                                          |      | \$332,662 | \$288,949 | On-going |
| WVCA                                         | 1646 | \$95,750  |           | On-going |
| Watershed Plan Tracking EPA in-kind          |      | \$10,000  | \$10,000  |          |
| FODC O&M AMD treatment                       | 1714 | \$12,000  |           | On-going |
| WVRC Capacity Building for WSAs              | 1715 | \$5,000   |           | On-going |
| EL AWSM Program                              | 1716 | \$15,000  |           | On-going |
| FOB Sand Run investigation                   | 1717 | \$7,500   |           | On-going |
| PCWA Data Loggers                            | 1718 | \$8,034   | \$6,372   | On-going |
| WVRC water quality monitoring                | 1719 | \$10,000  |           | On-going |
| FOC Capacity expansion                       | 1720 | \$12,000  |           | On-going |
| FODC Using GIS to improve service            | 1721 | \$10,000  |           | On-going |
| Watershed Projects                           | NPS# | Requested | Spent     | Status   |
| WALD Passive Treatment 2 - FOB               | 1680 | \$134,000 |           | On-going |
| Beaver Creek McElroy Seep - FOC              | 1681 | \$130,000 | \$12,025  | On-going |
| Dillan Creek Remediation 1 - FODC            | 1682 | \$207,000 | \$3,996   | On-going |
| Browns Creek Phase 2                         |      | \$186,000 |           | On-going |
| Barlow Portal 1 - WVU                        | 1684 | \$212,716 | \$6,207   | On-going |
| Woodrow Wilson HS Stream Restoration - Piney | 1685 | \$60,000  |           | On-going |
| Upper Indian Creek - WVCA                    | 1650 | \$100,000 | \$99,502  | On-going |
| Second Creek Tall Hickory Farms - WVCA       | 1686 | \$100,000 |           | On-going |
| Back Creek Protection - WVCA                 | 1687 | \$216,515 |           | On-going |

| 2019                                | NPS# | Requested | Spent     | Status   |
|-------------------------------------|------|-----------|-----------|----------|
| NPS Program                         |      |           |           |          |
| DEP                                 |      | \$404,932 | \$336,394 | On-going |
| WVCA                                | 1709 | \$65,000  |           | On-going |
| Watershed Plan Tracking EPA in-kind |      | \$10,000  |           | On-going |
| WVRC Integrating SW and WBP P2      | 1723 | \$80,000  |           | On-going |
| Watershed Projects                  |      |           |           |          |
| Sovern Tom Clark AMD FOC            | 1701 | \$152,000 |           | On-going |
| Marilla Park Restoration FODC       | 1702 | \$118,121 |           | On-going |
| Slabcamp Run AMD P 1 FODC           | 1703 | \$207,778 |           | On-going |
| Roaring Creek N. Portal WVU         | 1704 | \$262,195 |           | On-going |
| Crescent Elementary SW Piney Ck     | 1705 | \$90,000  |           | On-going |
| Burnside Branch Indian Ck WVCA      | 1706 | \$121,770 |           | On-going |
| Mill Creek Meadow River WVCA        | 1707 | \$111,200 |           | On-going |
| Second Creek Karst P3 WVCA          | 1708 | \$127,000 |           | On-going |

Appendix 4. Second Creek WBP implementation

| Best management practices identified in the WBP | BMP goals of the WBP | U      | BMP goals<br>achieved in<br>the WBP | Percent<br>achieved |
|-------------------------------------------------|----------------------|--------|-------------------------------------|---------------------|
| Waste storage facilities                        | 6                    | ΙU     | 5                                   | 83.3%               |
| Stream crossing                                 | 22                   | ΙU     | 19                                  | 86.4%               |
| Spring development                              | 32                   | IU     | 7                                   | 21.9%               |
| Pond                                            | 16                   | IU     | 7                                   | 43.8%               |
| Water troughs                                   | 48                   | IU     | 71                                  | 147.9%              |
| Pumping plant                                   | 24                   | IU     | 12                                  | 50.0%               |
| Pipeline                                        | 14,400               | FT     | 29,420                              | 204.3%              |
| Wetland restoration                             | 1                    | AC     | 0                                   | 0.0%                |
| Wetland development                             | 1                    | AC     | 1                                   | 100.0%              |
| Nutrient management                             | 1,550                | AC     | 1,696                               | 109.4%              |
| Nutrient management plan                        | 31                   | IU     | 25                                  | 80.6%               |
| Grazing plan                                    | 31                   | IU     | 25                                  | 80.6%               |
| Forested buffer                                 | 56                   | AC     | 104                                 | 183.6%              |
| Herbaceous buffer                               | 113                  | AC     | 123                                 | 109.0%              |
| Buffer rental                                   | 169                  | AC     | 13                                  | 7.7%                |
| Critical area planting                          | 101                  | AC     | 5                                   | 5.0%                |
| Fence                                           | 194,719              | FT     | 118,246                             | 60.7%               |
| Septic system rehab                             | 356                  | IU     | 0                                   | 0.0%                |
| Overall average E                               | MP implemen          | tation |                                     | 76.3%               |
| Streams with LR goals                           | Goal                 |        | Total LR<br>achieved                | Percent achieved    |
| Kitchen Creek                                   | 2.22E+13             | 3      | 1.92E+13                            | 86.5%               |
| Back Creek                                      | 1.88E+13             | 3      | 2.70E+12                            | 14.4%               |
| Second Creek                                    | 1.93E+14             | 1      | 1.82E+14                            | 94.3%               |

U (units), IU (individual units), AC (acres), FT (feet)

Appendix 5. Tuscarora Creek and Elks Run WBP reductions

| Tuscarora Creek septic goal |            | Failing systems | Fecal load<br>(cfu) |
|-----------------------------|------------|-----------------|---------------------|
| TMDL baseline (Fecal)       | 6.27E+12   | 713             | 4.47E+15            |
| Phase 1                     | Replaced   | 6               | 3.76E+13            |
| Phase 2                     | Replaced 3 |                 | 1.88E+13            |
|                             | To         | 5.64E+13        |                     |
| Percent of total Load       |            |                 | 1.26%               |

| Tuscarora                   | Sediment                         |        |                |
|-----------------------------|----------------------------------|--------|----------------|
| WBP sediment goal (tons/yr) |                                  | 724    | load (tons/yr) |
| All practices implemented   | Natural<br>stream<br>restoration | 950 FT | 19.0           |
|                             | Total sediment reduction         |        |                |
| Percent of total Load       |                                  |        | 2.63%          |

| Elks Run septic goals |            | Failing<br>systems | Fecal load<br>(cfu) |
|-----------------------|------------|--------------------|---------------------|
| TMDL baseline (Fecal) | 6.27E+12   | 239                | 1.50E+15            |
| Phase 1               | Replaced   | 0                  | 0.00E+00            |
| Phase 2               | Replaced 4 |                    | 2.51E+13            |
|                       | To         | 2.51E+13           |                     |
| Percent of total Load |            |                    | 1.67%               |

| Elks F                      | Sediment      |               |                |  |
|-----------------------------|---------------|---------------|----------------|--|
| WBP sediment goal (tons/yr) |               | 3,222         | load (tons/yr) |  |
| All practices implemented   | Buffer        | 2.8 AC        | 2.9            |  |
|                             | Tree          |               | 4.3            |  |
|                             | planting      | <b>4.1</b> AC |                |  |
|                             | Cover crops   | 100 AC        | 32.6           |  |
|                             | Stabilization | 57 FT         | 1.5            |  |
| Total sediment reduction    |               |               | 41.3           |  |
| Percent of total Load       |               |               | 1.28%          |  |

West Virginia's 2020 §319 workplans consist of continuous work in priority watersheds. Nonpoint funds support planning, grant management, staff and other administration task. AGOs are also offered through these funds. Watershed project funds focus on project implementation. This includes AMD remediation, sediment and bacteria reduction in urban areas, and bacteria and nutrient reduction through septic repairs and agricultural BMPs in agriculturally impacted watersheds. Sub-grantees in 2020 include Save the Tygart Watershed Association (STTWA), Friends of Blackwater (FOB), Friends of the Cheat (FOC), Friends of Deckers Creek (FODC), WVU's National Mineland Reclamation Center (NMLRC), Guardians of the West Fork (GWF) Piney Creek Watershed Association (PCWA), Sleepy Creek Watershed Association (SCWA) and the WV Conservation Agency (WVCA).

See appendix six for more details.

Appendix 6. West Virginia's 2020 §319 grant proposal

### 2020 WIB §319 Grant

| <b>Organization</b> | Nonpoint Funds                     | <u>§319</u> | <u>Match</u> | <u>Total</u> |       |
|---------------------|------------------------------------|-------------|--------------|--------------|-------|
| WVDEP               | WVDEP NPS Program                  | \$468,612   | \$314,408    | \$783,020    |       |
| WVCA                | WVCA NPS Program                   | \$68,000    | \$45,334     | \$113,334    |       |
| STTWA               | Beaver Creek WBP development       | \$10,000    | \$6,160      | \$16,160     |       |
|                     | Total Nonpoint                     | \$546,612   | \$365,902    | \$912,514    | 30.3% |
|                     | Watershed Project Funds            |             |              |              |       |
| FOB                 | Beaver Creek seep 100-02           | \$182,211   | \$121,000    | \$303,211    |       |
| FOC                 | Sovern Tom Clark passive treatment | \$212,000   | \$141,500    | \$353,500    |       |
| FODC                | Dillan Creek phase II              | \$191,500   | \$127,500    | \$319,000    |       |
| NMLRC/GWF           | Lambert Site 7 passive treatment   | \$65,252    | \$42,638     | \$107,890    |       |
| WVCA/SCWA           | Sleepy Creek                       | \$92,130    | \$64,500     | \$156,630    |       |
| PCWA                | Little League/Convention Center II | \$97,132    | \$64,750     | \$161,882    |       |
| WVCA                | Anthony Creek                      | \$150,000   | \$100,000    | \$250,000    |       |
| WVCA                | Pipestem Creek                     | \$117,663   | \$78,444     | \$196,107    |       |
| WVCA                | Cherry Fork                        | \$151,500   | \$101,002    | \$252,502    |       |
|                     | Total Watershed                    | \$1,259,388 | \$841,334    | \$2,100,722  | 69.7% |
|                     | Total Grant request                | \$1,806,000 | \$1,207,236  | \$3,013,236  |       |