December 2019

North Fork Greens Run Watershed Based Plan

Friends of the Cheat

Madison Ball, Amanda Pitzer www.CHEAT.ORG

ACKNOWLEDGEMENTS

The North Fork Greens Run Watershed Based Plan Project was made possible by a §319 grant from the West Virginia Department of Environmental Protection Nonpoint Source Program. Friends of the Cheat would like to give special thanks to the mentorship and guidance given by Martin Christ, Tim Craddock, and Tiff Hilton in the use of AMDTreat. We would like to thank Jon Knight, Sheila Vukovich, and Ladd Williams for their help with data acquisition and site location. Thank you to the landowners for welcoming us and guiding us onto their properties. Thank you to West Virginia University for offering their services with three single pass electrofishing surveys to better understand the aquatic community present in North Fork Greens Run, as well as Nick Murray for training Friends of the Cheat in WVDEP WAB benthic macroinvertebrate sampling protocol. Thank you to WV DNR, WVDEP WIB and WVDEP WAB for providing input on sharing critical information about Greens Run with FOC.

Table of Contents

1.	Introduction	2
2.	Identification of causes and sources of Impairment	3
3.	Expected Load Reductions	7
4.	Proposed Management Measures	10
5.	Technical and Financial Assistance Needs	17
6.	Information, Education, and Public Participation	19
7.	Schedule and Milestones	20
8.	Load Reduction Evaluation Criteria	21
9.	Monitoring Component	22
10.	References	23
11.	Appendix	24
А	PPENDIX A: TMDL SEEP DATA	
А	PPENDIX B: MAPS OF SUBWATERSHEDS	
А	PPENDIX C: LANDOWNERS	
A	PPENDIX D: FISH DATA	
А	PPENDIX E: AMDTreat CAPITAL COST CALCULATIONS	

1. INTRODUCTION

1.1 Purpose

This Watershed Based Plan covers the North Fork of Greens Run watershed in West Virginia, including all tributaries (Figure 1). North Fork of Greens Run and its tributaries are impaired by Fe, Al, pH, and CNA-biological. This document serves as a plan for Friends of the Cheat (FOC) and partnering agencies to implement projects that improve the water quality in the North Fork of Greens Run and its tributaries. Funding for these projects will come from the Environmental Protection Agency under the Clean Water Act Section 319, Office of Surface Mining and Reclamation (OSMRE), West Virginia Department of Environmental Protection (WVDEP), non-government organizations, in-kind donations from interested persons, and volunteers.

This document outlines a restoration plan for the North Fork of Greens Run watershed based on the United States Environmental Protection Agency's Nine Elements of a Watershed Based Plan (1), focusing on the most significant water quality problem, acid mine drainage (AMD).

Figure 1: North Fork Greens Watershed Map

1.2 Background

From its headwaters in Randolph and Pocahontas Counties, West Virginia, the Cheat River flows 157 miles north to the Pennsylvania state line through Tucker and Preston counties. In its lower 20 miles, the river has been severely polluted by acid mine drainage. Much of this damage has been caused by coal mines that were abandoned before the passage of the Surface Mining Control and Reclamation Act in 1977. Despite efforts by Friends of the Cheat and its partners with support from US EPA, WV DEP, and US Office of Surface Mining, the legacy of AMD persists through the loss of habitat

and wildlife, deteriorated aesthetic value of polluted waterways, degraded drinking water, and economic losses from diminished opportunities for recreation such as boating and fishing.

The North Fork of Greens Run, which is a tributary to the Cheat River, currently hosts species of fish and there is community support in favor of restoring North Fork of Greens Run into a viable trout fishery. For these reasons, Friends of the Cheat and its partners have targeted North Fork of Greens Run to create a Watershed Based Plan to assess and address sources of point and nonpoint pollution within the watershed. Previous AMD remediation projects include "Railroad Refuse" and "Dinkenburger" projects. These projects were implemented with CWA §319 funds and have improved water quality within the watershed.

In the past FOC has chosen project sites based primarily on landowner interest. While still considering landowner interest, this plan is designed to make the stream system meet water quality standards based on the goals set by the 2011 Cheat River Basin TMDL. This plan will act as a guide for FOC to prioritize restoration efforts based on feasibility and projected water quality success. Landowners in priority restoration sites are listed in Appendix C.

2. IDENTIFICATION OF CAUSES AND SOURCES OF IMPAIRMENT

The Clean Water Act section 303(d) requires states to identify and list streams that do not meet water quality standards. Water quality standards are based on the designated uses of the stream. The numeric water quality standards in **Error! Reference source not found.** are relevant for the pollution problems addressed by this watershed-based plan. Impairments in the North Fork of Greens Run Watershed include pH, dissolved Al, Fe, and CNA biological. Fe, Al, and pH impairments are commonly a result of AMD (acid mine drainage) in this region. This watershed-based plan focuses on these AMD - caused impairments, which may also cause the CNA biological listing. Table 2 lists the streams designated as impaired by pH, dissolved Al, or Fe on the 303(d) list of impaired streams in the North Fork of Greens Run Watershed reductions of pollutants from AMLs. Figure 2 highlights these streams in red.

Pollutant	Designated Use							
	Aquatic Life			Human Health				
	Warmwater	Fisheries	Trout Waters		Contact Recreation & Public			
	Acute ^a Chronic ^b		Acute ^a Chronic ^b		Water Supply			
Aluminum, dissolved (µg/L)	750	750	750	87				
Iron, total (mg/L)		1.5		0.5	1.5			
рН	No values below 6.0 or above 9.0	No values below 6.0 or above 9.0						

Table 1: West Virginia State Water Quality Criteria

^a One-hour average concentration not to be exceeded more than once every 3 years on the average.

^b Four-day average concentration not to be exceeded more than once every 3 years on the average.

Source: 47 CSR, Series 2, Legislative Rules, Department of Environmental Protection: Requirements Governing Water Quality Standards (2).

Table 2: Impaired Streams in North Fork of Greens Watershed

Stream Name	NHD Code	Stream Code	SWS Code	HUC 12 Code	рН	Fe	Al	Bio
Greens Run	WV-MC-38	WVMC-16	SWS 254	050200040705	Х	Х	Х	Х
Greens Run	WV-MC-38	WVMC-16	SWS 256	050200040705	Х	Х	Х	Х
Greens Run	WV-MC-38	WVMC-16	SWS 257	050200040705	Х	Х	Х	Х

An "x" identifies parameters that impair the stream. Source: All are from the 2014 303(d) list Supplemental Tables B and E (WVDEP, 2014a). This table also includes the WV Stream Code used in the 2011 Cheat TMDL and NHD codes in the 2014 303(d) list (3).

Figure 2: pH, Fe, and/or AI Impaired Streams in the North Fork of Greens Watershed

A total maximum daily load (TMDL) is the maximum amount of pollution a stream can receive and meet water quality standards. The goal of this watershed based plan is to meet required reductions of Fe, Al, and acidity loads from AML seeps set by the 2011 Cheat River Basin TMDL, developed by the West Virginia Department of Environmental Protection. The endpoint goals of the TMDL are shown in Table 3. The TMDL accounts for waste load allocations (WLA) from permitted point sources and load allocations (LA) from nonpoint sources. The TMDL includes a margin of safety (MOS) to account for uncertainty in the TMDL process. The TMDL is expressed as, TMDL = Σ WLA + Σ LA + MOS (4).

Water Quality Criterion	Designated Use	Criterion Value	TMDL Endpoint
Total Iron	Aquatic life, warm water fisheries	1.5 mg/L (4-day average)	1.425 mg/L (4-day average)
Dissolved Aluminum	Aquatic life, trout waters	0.087 mg/L (4-day average)	0.0827 mg/L (4-day average)

TMDL Endpoints are used to establish the TMDL and are based on water quality standard 47 CSR, Series 2, Legislative Rules, Department of Environmental Protection: Requirements Governing Water Quality Standards (3).

2.1 WLAs – Permitted Sources of Pollution

Wasteload allocations are for specific point sources, which require National Pollutant Discharge Elimination System (NPDES) permits. While many of these sites contribute significant amounts of AMD, they are not discussed in detail in this watershed-based plan as the focus is on nonpoint sources that do not have a responsible party for treatment. FOC expects that WVDEP, through its enforcement branches, will work with permittees to prevent permitted discharges from exceeding wasteload allocations.

Bond Forfeiture Sites

Bond Forfeiture (BF) sites are sites on which the operator did not sufficiently reclaim the land or water after mining. These occur when the operator abandons the property prior to reclamation, or when, due to violations, WVDEP forces operations to cease prior to reclamation. BF sites are considered to be point sources and are assigned wasteload allocations.

Table 4 lists bond forfeiture sites in the North Fork of Greens Run watershed that have load reduction goals in the TMDL. A GIS database from WVDEP Office of Special Reclamation (OSR) was used to check whether BF sites are meeting the TMDL reduced load goal according to the latest data from 2018.

Figure 3 shows the single bond forfeiture site in the watershed as of 2019. The results of court decision West Virginia Highlands Conservancy and West Virginia Rivers Coalition vs. Randy Huffman, known as the "The Keeley Decision", requires these bond forfeiture sites to be treated to meet water quality standards by OSR. Therefore, this watershed based plan will not provide pricing or restoration plans for these BF sites and will assume that these will meet required reduction.

Stream Code	Stream Name	SWS	Permit	Metal	Baseline Load (lbs/yr)	Reduced Load (lbs/yr)	Data Source	Status
WV-MC-38	Greens Run	257	40-81	Aluminum	469	469.48	TMDL	Active
				Iron	1155	541.57		

Active Mining Permits

There are no current active mining permits with NPDES permits in the North Fork Greens watershed. Other point sources include non-mining NPDES permits (Table 5).

Active Non-Mining Permits

Other point sources include active non-mining NPDES permits, listed below (Table 5).

Table 5: Active Non-mining WLAs within North Fork of Greens Run watershed from 2011 Cheat River Basin TMDL

Stream Code	Stream	Metal	SWS	PERMIT	Baseline	Allocated	Permit Type
	Name				Load	Load	
					(lbs/yr)	(lbs/yr)	
WV-MC-38	Greens Run	Iron	254	WVG610152	3	3	Stormwater
							Industrial
WV-MC-38	Greens Run	Iron	257	WVG610880	8	8	Stormwater
							Industrial

2.2 Nonpoint Source Impairments

The model used to develop the 2011 Cheat River Basin TMDL considers land use and known features in order to estimate the pH, Al, and Fe runoff from nonpoint sources like abandoned mines, harvested forest, oil and gas, barren

land, urban areas, and roads. "Other nonpoint sources" and stream bank erosion are also considered in the total baseline load but excluded in the calculations of required load reduction (4).

According to the 2011 Cheat River Basin TMDL load allocations spreadsheet, the acidity, Fe, and Al loads from abandoned mines comprise the highest percentage of the nonpoint source baseline load of Fe and Al (other than the aforementioned "other nonpoint sources" and stream bank erosion) and require the highest reductions. Therefore, this watershed-based plan aims to accomplish the total required reduction from AMLs in the stream as set by the 2011 Cheat Basin TMDL in order to remove the stream from the 303(d) list. This plan will only accomplish the load allocation for abandoned mine lands as set by the TMDL. Any remaining impairment will be addressed by a second phase of restoration to be guided with a new WBP focusing on fecal coliforms, sediment, stream bank protection, and other types of measures.

Abandoned Mine Lands

Discharges from the 2011 Cheat River Basin TMDL and seeps from the FOC database were assessed in order to form the following list of all of the known seeps in the North Fork of Greens Run watershed (Table 6). The baseline load and reduced loads are from the 2011 Cheat River Basin TMDL. The required reduction was calculated using the baseline load and reduced load (4). If the seeps were not listed on the 2011 Cheat River Basin TMDL, the baseline load was calculated from FOC data and the required reduction is listed as 100%. Appendix B displays maps of each SWS watershed, known TMDL AMD sources, as well as FOC discovered seeps (Unnamed Seep to North Fork Greens Run, shown in Figures 4, 5, and 6).

Table 6: Causes and Sources of Impairment from Abandoned Mine Lands in North Fork of Greens Watershed

*indicates that the seep is not listed on the TMDL. Baseline Load was created by averaging FOC water quality data. Because seep is not described in TMDL, FOC assumes Required Reduction is 100% of load.

WV NHD	Stream Name	SWS	Seep Name	Metal	Baseline	Reduced	Required
Stream Code					Load	Load	Reduction
					(lbs/yr)	(lbs/yr)	(lbs/yr)
WV-MC-38	Greens Run	257	MC38-100-1	Al	1286	19	1267
				Fe	2581	38	2543
WV-MC-38-F	Greens Run	257	MC38-300-1	Al	1767	28	1739
				Fe	1762	56	1706
WV-MC-38-F	Greens Run	257	MC38-300-2	Al	514	5	509
				Fe	228	10	218
WV-MC-38-G	Greens Run	257	MC38-350-1	Al	245	92	153
				Fe	189	184	5
WV-MC-38-F	Greens Run	257	Unnamed	Al	509	0	509
			Source*	Fe	103	0	103

3. EXPECTED LOAD REDUCTIONS

Load reductions, or "required reductions" are an estimate of how much of the current pollutant load must be removed in order for the pollutant loads to meet the load allocations set by the TMDL for the Cheat River watershed. The required reductions for the seeps in the impaired SWSs are set by the 2011 Cheat River Basin TMDL to eliminate the excess load in that SWS. Therefore, load reduction goals are set by the load reductions of each seep on the TMDL and expected load reductions are listed for each seep and summed for each SWS in Table 7 and Table 8.

It is important to note that according to FOC's water quality data several SWSs met water quality standards despite being classified as 'Impaired' in West Virginia Department of Environmental Protection's Integrated Report for pH, Fe, AI. There are no functional AMD treatment sites to contribute this improvement in water quality to. The perceived improvement in water quality may be due to the fact that some of the SWSs were modeled for impairment without physical data, or several years have passed since the most recent state sample event. Data was collected between 2006 and 2007 for the SWSs of North Fork Greens Run for the 2011 Cheat River Basin TMDL, allowing the possibility of changes in water quality conditions since 2007.

No reductions are planned for SWSs where mouth data collected by FOC showed that water quality standards were met specifically for Fe, Al, and pH. However, FOC plans to work with the WVDEP Watershed Improvement Branch and WVDEP Watershed Assessment Branch to continue to assess for future listing decisions for SWSs of North Fork Greens Run by WVDEP in regard to Fe, Al, and pH.

For those seeps and SWSs where intervention is clearly needed, treatments are sized to reduce 100% of dissolved Al and total Fe for seeps for which FOC was able to gather water quality data. Proposed treatment measures are sized to remove 100% of total Fe and total Al for seeps for which FOC was not able to gather water data, because the TMDL data that are available for each seep only list total Al. Treatment to remove 100% of total Al will remove 100% of dissolved Al to meet WV water quality standards.

2011 Cheat River Basin TMDL states, "TMDLs for pH impairments were developed using a surrogate approach where it was assumed that reducing instream metal (iron and aluminum) concentrations allows for attainment of pH water quality criteria." (4) This watershed based plan outlines plans to treat to the required reduction of metals set by 2011 Cheat River Basin TMDL, with the understanding that this will also treat the pH.

WV NHD Stream Code	Stream Name	SWS	Discharge Number	Required Reduction of Seep (Ibs/yr) as listed in TMDL	Reduction of Seep (Ibs/yr) from Mgmt. Measures	% Reductio n	Notes
WV-MC-38	Greens Run	257	MC38-100-1	1,267	1,267	Treated 100%	FOC 'Railroad Refuse' Passive Treatment Site
WV-MC-38- F	Greens Run	257	MC38-300-1	1,739	1,739	100%	Existing FOC 'Dinkenberger' Passive Treatment Site – Priority Improvement Project Site
WV-MC-38- F	Greens Run	257	MC38-300-2	512	512	Treated 100%	Seep is believed to be collected and treated by 'Hallelujah' Bond Forfeiture Site. Unable to find on ground except for concrete channel leading to 'Hallelujah' BF SI.
WV-MC-38- G	Greens Run	257	MC38-350-1	153	0	No reductio n planned	Low Priority—Low flow that is funneled into landowner's livestock pond. No obvious outlet or

							direct connectivity to North Fork of Greens Run, nearest tributary unimpaired.
WV-MC-38- F	Greens Run	257	Unnamed Source*	509	509	100%	High Priority Future Treatment Site
WV-MC-38	Greens Run	257	TOTAL of all required seep reductions	4,180	4,027	96%	

Table 8: Total Iron Allocations, reductions required, and reductions achieved

WV NHD Stream Code	Stream Name	SW S	Discharge Number	Required Reductio n of Seep (Ibs/yr) as listed in TMDL	Reduction of Seeps (lbs/yr) from Mgmt. Measures	% Reduction	Notes
WV-MC- 38	Greens Run	257	MC38- 100-1	2,543	2,543	Treated 100%	FOC 'Railroad Refuse' Passive Treatment Site
WV-MC- 38-F	Greens Run	257	MC38- 300-1	1,706	1,706	100%	Existing FOC 'Dinkenberger' Passive Treatment Site – High Priority Site - Improvement Project Site
WV-MC- 38-F	Greens Run	257	MC38- 300-2	218	218	Treated 100%	Seep is believed to be collected and treated by 'Hallelujah' Bond Forfeiture Site.
WV-MC- 38-G	Greens Run	257	MC38- 350-1	5	0	No reduction planned	Low Priority—Low flow that is funneled into landowner's livestock pond. No obvious outlet or direct connectivity to North Fork of Greens Run.
WV-MC- 38-F	Greens Run	257	Unnamed Source*	103	103	100%	High Priority Future Treatment Site
WV-MC- 38	Greens Run	257	TOTAL of all required seep reductions	4,575	4,570	99%	

4. PROPOSED MANAGEMENT MEASURES

4.1 AMDTreat Calculations

AMDTreat (5.0.2 + PHREEQ) was used to estimate cost for each of the AML discharges in the North Fork Greens Run watershed identified in the 2011 Cheat River Basin TMDL and for which FOC determined reductions were necessary (5). Although the program is capable of designing both active and passive treatment systems, only passive treatment was considered in this plan (Table 10).

AMDTreat contains default values for various components used in the cost estimations.

For high priority sites, water quality data were collected at least two times. For other sites, water quality data for each AML discharge were obtained from the 2011 Cheat River Basin TMDL report (Appendix A). The flow (discharge) was converted to gallons per minute (GPM) and was input as the *Typical Flow*. The *Typical Flow* was multiplied by a 3x safety factor to estimate the *Design Flow*. *Total Iron, Total Aluminum, Manganese, pH,* and *Sulfate* were entered into the program. Both Lab results and flow were averaged to use as inputs for *Typical Flow, Total Iron, Total Aluminum, Manganese, pH, Alkalinity and Sulfate* in AMDTreat. Lab results without corresponding flow data were not included in the average, and only samples collected from 2014 – 2019 were considered, except data regarding MC38-300-2, which was provided by the 2011 Cheat River Basin TMDL. Data used to input into AMDTreat can be found in the 'AMDTreat Input' tab in the 'North Fork Greens Run Watershed Based Plan Master Spreadsheet' Excel File. AMDTreat Capital Cost Estimates per site can be found in Appendix E: AMDTreat Capital Cost Calculations.

4.2 Capital Cost Estimations

For each AML discharge, a theoretical passive treatment was designed to contain a 100-ft oxic limestone channel, a limestone bed, and a settling pond. The limestone bed was sized based on the estimated tons of limestone required *based on acidity neutralization*, plus the estimated tons of limestone required *based on retention time*, entered as the estimated tons of limestone *based on tons of limestone entered*. This sizing method ensures the limestone bed maintains a retention time of 16 hours and adequate acidity neutralization capabilities for a 10-year system life. Additionally, a synthetic liner and AMDTreat Piping Costs were included to the capital cost for each limestone bed. Future site assessment may deem a liner unnecessary for individual systems. A settling pond was sized for a 48 hour retention time. A synthetic liner was also included in the cost estimation.

4.3 Other Cost Estimations

In addition to the oxic limestone channel, limestone bed, and settling pond included in the capital cost estimate, a contingency cost of 10% of the capital cost was added to allow for variable economic fluctuations. Additionally, engineering cost was estimated as 10% of the capital cost.

Ancillary costs are included as a percentage of the estimated capital costs, based on site characterization (Table 10). Sites that are more remote and undeveloped require more ancillary cost than previously established sites. These costs include construction costs such as access road construction, clearing and grubbing, culverts and ditching, fencing and gates, incidental stone, mobilization, piping, regrading and revegetation, sediment control, etc. Cost estimates were also determined for remaining planned/ low priority sites (Table 11) and sites where no treatment is currently planned (Table 12) using the above methods.

% of estimated capital	Description
60%	New site; poor access; no AML activity anticipated
50%	Established access; no AML activity anticipated
40%	AML reclamation anticipated or completed
30%	Retrofit/improvements required to an existing treatment system

Table 2: Proposed Treatment Costs of High Priority Sites

Stream	SWS	Discharge	Capital Cost	Ancillary Cost	Contingency Cost	Engineering Cost	Total Cost			
Greens Run	257	MC38-300-1	\$185,421.00	\$55,626.30	\$18,542.10	\$18,542.10	\$278,131.50			
Greens Run	257	Unnamed Source	\$95,754.00	\$57,452.40	\$9,575.40	\$9,575.40	\$172,357.20			
Total Treatment Cost for High Priority Sites										

Table 12: Treatment Costs of sites with no planned treatment in the North Fork of Greens Run watershed

Stream	SWS	Discharge	Ancillary %	Capital Cost	Ancillary Cost	Contingency Cost	Engineering Cost	Total Cost			
Greens											
Run	257	MC38-300-2	50%	\$25,443.00	\$12,721.50	\$2,544.30	\$2,544.30	\$43,253.10			
Greens											
Run	257	MC38-350-1	60%	\$34,287.00	\$20,572.20	\$3,428.70	\$3,428.70	\$61,716.60			
Total Treatment Cost for Unplanned Sites											

4.4 Existing Treatment Sites

Functioning FOC treatment sites (Railroad Refuse) in the North Fork of Greens Run watershed will require maintenance eventually, but calculated costs and methods are not outlined in this plan.

4.5 High Priority Treatment Implementation Areas

Treatment of seeps in the following subwatersheds is planned and prioritized because:

- A. The 303(d) list lists these streams as impaired by Fe, dissolved Al, or pH.
- B. The TMDL lists required reductions of Fe or dissolved Al from AMLs in these subwatersheds.
- C. FOC data supports the stream impairments stated in the 303(d) list.

High Priority seeps selected for treatment have the following characteristics:

A. The landowner is interested in partnership.*

- B. The seep is accessible for construction.
- C. There is space and topsoil available for construction.
- D. The seep flow is significant.
- E. The pollutant load from the seep is significant.

Table 13 summarizes the known seeps in the sub-watersheds identified as priority treatment areas.

*Landowners designated as "interested in partnership" are designated as such because they were open to the discussion of treatment. We did not go any further with developing partnership, because often the landowners expect a big project to be completed quickly and it can take much longer than they anticipate. Also, communications about projects is difficult when there is Monitoring Coordinator/Project Manager turnover at FOC. It has been most successful to maintain communication, but to develop the partnership relationship closer to the start of the project. Landowner information can be found in Appendix C.

High Priority Subwatershed – SWS 257

All North Fork Greens AML seeps, including the Unnamed Source, occur in SWS 257. Priority Seeps for treatment in SWS 257 include MC38-300-1 and an Unnamed Source, upstream of MC38-300-1 on WV-MC-38-F. An existing FOC treatment site named 'Dinkenberger' has historically treated MC38-300-1, however a Site Improvements project is in need.

Treatment for the Unnamed Source is also a priority. There is a possibility due to the proximity of both seeps to one another to treat these sources with one system, however the current landowner is concerned about the treatment footprint on his property. For the purposes of this plan, cost estimations were done separately for MC38-300-1 and the Unnamed Source, although treating both with one system would likely result in lower cost.

By treating these seeps at 100%, FOC will accomplish 96% of the required load reduction for dissolved Al and 99% of the required load reduction for total Fe within SWS 257, improving water quality downstream, such as at the mouth of SWS 257. Overall, treating these seeps in conjunction with the ongoing treatment of MC38-100-1 (FOC site 'Railroad Refuse') and MC38-300-2 (believed to be funneled into Bond Forfeiture Site 'Hallelujah') would remove 4027 lbs/yr of dissolved Al and 4570 lbs/yr total Fe from SWS 257 and ultimately North Fork of Greens Run.

FOC water quality data shows that the mouth of Nork Fork of Greens Run (SWS 254) has consistently met water quality standards since sampling from 2005. An electrofishing survey through assistance from West Virginia University revealed Creek Chub (*Semotilus atromaculatus*) in multiple age classes are utilizing this reach of North Fork Greens Run, evidence that water quality at the mouth can support aquatic life. Results of electrofishing Survey can be found in Appendix D. FOC is confident by treating MC38-300-1 and the Unnamed Source in MC-WV-38-F, as well as continued treatment of MC38-100-1 and MC38-300-2 that water quality will improve at SWS 257 Mouth to meet water quality standards, and likely improve water quality for SWS 256 and SWS 254. FOC water quality data has shown that SWS 254, SWS 255, and SWS 256, and SWS 258 are not impaired for pH, dissolved Al, or total Fe.

FOC will conduct post monitoring after completion of priority sites in order to assess success and will work with WVDEP WIB and WAB to assess future listing decisions of SWS 254, SWS 256, and SWS 257 if supported by data.

MC38-300-1

This seep has historically been treated by an FOC passive treatment system—the "Dinkenberger" site. This site has been underperforming since 2013, and little treatment has occurred in more recent sampling, with only slight improvement from Dinkenberger System In to Dinkenberger System Out. Cause of treatment failure is thought to be due to limitations in the size of the limestone leach bed for current concentrations. The current landowner historically has been open to communication, but hesitant in increasing the size of the treatment system footprint on his property. However, new technology may be available since the last improvement project (2012) and FOC will continue to work with the landowner to reach a goal of treating MC38-300-1. The WV DEP Office of Abandoned Mine Lands is also

interested in repairing the berm of the existing limestone bed that once treated MC38-300-1. This seep is the major untreated source of acidity, dissolved AI, and total Fe for the entire North Fork Greens Run watershed and thus is FOC's highest priority site.

Unnamed Source

Upstream of MC38-300-1 water quality remains poor in WV-MC-38-F. Monitoring Coordinator Madison Ball walked the remainder of MC38-300-1 until the channel morphology becomes ephemeral, with poor water quality throughout the stream reach. By looking at LIDAR imagery (Figure 4) as well as USGS topography Kingwood WV quadrant (Figure 5) and aerial imagery (Figure 6) it is clear mining has occurred in the area, although an exact seep location has not been historically described. There appears to be no direct AMD source or seep, although once the channel morphology changes to intermittent the water quality remains poor throughout the stream reach. FOC proposes a passive treatment site for the Unnamed Source of acid mine drainage. FOC will work with an engineer and the landowner to determine the best treatment options available for this site. Although acidity, dissolved Al and total Fe loads are estimated using FOC data, they are noteworthy and treatment of both MC38-300-1 and the Unnamed Source would lead to much improved water quality of WV-MC-38-F, and remediate the two largest untreated sources of acidity, Al, and Fe to SWS 257 and the greater North Fork of Greens Run watershed.

Figure 4: LIDAR imagery of Unnamed Seep

MC38-300-2

FOC and WV DEP Department of Special Reclamation believe MC38-300-2 is being treated by the neighboring bond forfeiture site "Hallelujah" (Permit 40-81). FOC Monitoring Coordinator Madison Ball tracked the seep via GPS coordinates provided by WV DEP Watershed Improvement Branch and found no prevailing source that was not being collected via a drainage ditch to and treated by the "Hallelujah" Bond Forfeiture Site. Because of this, MC38-300-2 is not a priority site for this plan. Data obtained from the 2011 Cheat River Basin TMDL report also reveals very little flow from this seep. Disregarding the issue of location, MC38-300-2 would be a low priority for FOC due to low flow (<1.5 gpm).

MC38-350-1

Seep MC38-350-1 is a low priority site. FOC water quality data reveals relatively low concentrations of acidity, Fe, and Al, as well as low flows from this seep. The seep drains across Dinkenberger Rd (CR 7/10) via a culvert which then feeds a landowner's livestock pond. There does not appear to be any direct connectivity between MC38-350-1 and the nearest North Fork Greens Run tributary, WV-MC-38-G, which has met water quality standards for pH, Fe, and Al for every FOC sampling effort. Thus, MC38-350-1 is a low priority for the restoration of North Fork Green Run.

MC38-100-1

MC38-100-1 is currently being treated by the FOC passive treatment site "Railroad Refuse" since 2015 and is actually adding alkalinity to SWS 257. The lowest pH recorded for the system out, "RR WL OUT" was 7.08. Dissolved Al is often non-detect at system out, and the highest recording was 0.0822 mg/L. Total Fe is at times non-detect at system out, and the highest recording was 0.0822 mg/L. Total Fe have consistently been below the water quality criteria limits for aquatic life at "RR WL OUT". FOC considers this site a success story and will maintain the site as needed now and into perpetuity.

Stream Code	Stream Name	SWS	Discharge numbers	Notes
WV-MC-38-F	UNT/GREENS RUN RM 6.44	257	MC38-300-1	Failing FOC passive treatment project, "Dinkenberger"
WV-MC-38-F	UNT/GREENS RUN RM 6.44	257	Unnamed Source	Undescribed source
WV-MC-38-F	UNT/GREENS RUN RM 6.44	257	MC38-300-2	Treated by Bond Forfeiture Site "Hallelujah"
WV-MC-38-G	UNT/GREENS RUN RM 6.88	257	MC38-350-1	Low Priority Treatment Site
WV-MC-38	GREENS RUN	257	MC38-100-1	Current successful FOC passive treatment project, "Railroad Refuse"

Table 13: Known Seeps in the North Fork Greens Watershed

Low Priority Subwatersheds

Table 14 lists the low priority subwatersheds of North Fork Greens Run, some without any listed impairments, and others listed for pH, Fe, Al, and CNA Biological. The TMDL is produced using a model and limited samples, monitoring of which primarily occurred between June 2006 and June 2007. In Table 15, the following streams have measured impairments and/or modeled impairments in the 2014 303(d) list, but FOC analysis at the SWS mouths indicate that the streams have consistently met water quality standards for pH, Fe, and Al. There are no known AML discharges or AMD seeps within the below SWSs for either tables.

Table 14: Low Priority Subwatersheds

WV NHD Stream Code	Stream Name	Impairment	SWS	Lowest FOC lab pH	Highest FOC dissolved Al (mg/L)	Highest FOC total Fe (mg/L)
WV-MC-38	GREENS RUN	pH, Fe, Al	254	6.12	0.62	0.401
WV-MC-38-D	UNT/GREENS RUN RM 3.79	None	255	7.37	Non- detect	0.77
WV-MC-38	GREENS RUN	pH, Fe, Al	256	6.54	Non- detect	0 .596
WV-MC-38-C	UNT/GREENS RUN RM 4.42	None	258	6.54	Non- detect	0.226

WV NHD Stream Code	Stream Name	SWS
WV-MC-38	Greens Run	254
WV-MC-38	Greens Run	256

Table 15: SWSs with required reductions for AMLs but without known AMD Seeps

SWS 254 - Greens Run

SWS 254 is assigned load reductions for Fe and Al in the current TMDL. However, lowest recorded pH from FOC data at SWS 254 Mouth was 6.12, highest dissolved Al was 0.62 mg/L, and highest total Fe was 0.401 mg/L, all within water quality criteria for aquatic life. FOC believes that SWS 254 meets criteria for pH, dissolved Al, and total Fe and will work in conjunction with the WVDEP Watershed Improvement Branch and the WVDEP Watershed Assessment Branch to assess future listing decisions moving forward. FOC in partnership with West Virginia University conducted an electrofishing survey in SWS 254 in which two fish species were present, Creek Chub (*Semotilus atromaculatus*) and Green Sunfish (*Lepomis cyanellus*). For *S. atromaculatus*, multiple life stages were present in the survey, indicating that the population is healthy enough to reproduce, and water quality is stable enough to support aquatic life. The data collected in the electrofishing survey helps support FOC's stance that water quality in SWS 254 is no longer impaired for pH, dissolved Al, and total Fe, although more studies may need to occur to consider removing SWS 254 from the Impaired Streams list for pH, dissolved Al, and total Fe. Fish Data can be found in Appendix D.

SWS 255 – UNT/Greens Run RM 3.79

SWS 255 is not assigned any load reductions in the current TMDL. FOC water quality data supports this conclusion as lowest lab pH recorded was 7.37, all samples have had non-detect levels of dissolved AI, and the highest total Fe was 0.77 mg/L.

SWS 256 – Greens Run

SWS 256 is assigned load reductions for Fe and Al in the current TMDL. Lowest recorded pH from FOC data was 6.54, dissolved Al has consistently been non-detect, and highest total Fe was 0.596 mg/L, all within water quality criteria for aquatic life. FOC believes SWS 256 meets criteria for pH, dissolved Al, and total Fe and will work in conjunction with the WVDEP Watershed Improvement Branch and the WVDEP Watershed Assessment Branch to assess future listing decisions moving forward.

SWS 258 – UNT/Greens Run RM 4.42

SWS 258 is not assigned any load reductions in the current TMDL. FOC water quality supports this conclusion as lowest lab pH was 6.54, all samples have had non-detect levels of dissolved AI, and highest total Fe was 0.226 mg/L. FOC Monitoring Coordinator Madison Ball has also sighted undetermined species of fish utilizing SWS 258 as habitat in summer months.

5. TECHNICAL AND FINANCIAL ASSISTANCE NEEDS

Technical and financial assistance is needed for water sample analysis at AMD sources for designing treatment projects and measuring the effectiveness of the projects, creating conceptual designs and detailed engineering designs, and managing the projects through bidding, construction, operation, and maintenance. Financial assistance is needed to design and build the selected remediation projects. Many funding sources are available for nonpoint source AMD remediation on AMLs and for water quality monitoring, including:

- Section 319 funds,
- Abandoned Mine Reclamation (AMR) Fund, including money in the AMD Set-Aside Fund,
- Watershed Cooperative Agreement Program grants,
- Stream Partners Program grants,
- Private Foundation grant opportunities,
- local government contributions,
- business contributions,
- service donations from businesses,
- private donations

OSM grants specifically for AMD remediation projects on AMLs are available through the WCAP, part of the Appalachian Clean Streams Initiative. Grants of up to \$100,000 are awarded to not-for-profit organizations that have developed cooperative agreements with other entities to reclaim AML sites (6). A match from 319 funds is required to receive these grants and is sometimes met with money from the AMR Fund or WVDEP's Stream Restoration Fund.

Two WVDEP divisions will provide technical assistance. The Division of Water and Waste Management provides technical assistance for the use of BMPs, educates the public and land users on nonpoint source issues, enforces water quality laws that affect nonpoint sources, and restores impaired watersheds through its Watershed Improvement Branch (6).

Clean Water Act Section 319 funds are provided by USEPA to WVDEP and can be used for reclamation of nonpoint source AMD discharges. This watershed-based plan is being developed so that these funds can be allocated to the North Fork Greens Run Watershed. WVDEP's Watershed Improvement Branch sets priorities and administers the state Section 319 program (6).

A second division within WVDEP, the Office of Abandoned Mine Lands and Reclamation (OAMLR), directs technical resources to watersheds to address AMLs.

OAMLR also funds AML remediation projects via the AMR Fund. Before 1977 when the Surface Mining Control and Reclamation Act was enacted, coal mines generally did not manage acid-producing material to prevent AMD or treat the AMD that was produced. These "pre-law" mines continue to be significant AMD sources and are treated as nonpoint sources under the Clean Water Act.

To reclaim these AMLs, the Act established the AMR Fund. This fund, supported by a per-ton tax on mined coal, is allocated to coal mining states for remediation projects. WVDEP has funded many AMD remediation projects on AMLs, but these projects are typically not designed to meet stringent water quality goals. The agency typically uses a small number of cost-effective techniques, such as OLCs, and chooses the layout for these measures based on how much land is available (for example, the distance between a mine portal and the boundary of properties for which the agency has right-of-entry agreements). The AMR Fund is slated to sunset in 2022, meaning that Fund allocations may not be sufficient to reclaim many AML sites—even for safety issues.

OAMLR also administers a closely linked source of funding: the AMD Set-Aside Fund. In the past, up to 10% of states' annual AMR Fund allocations could be reserved as an endowment for use on water quality projects. States can now reserve up to 30%. These funds are critically important, because while regular AMR Fund allocations can only be spent on capital costs, AMD Set-Aside Fund allocations can be spent on O&M.

Office of Surface Mining, Reclamation, and Enforcement

OSM has helped place summer interns and AmeriCorps*Volunteers in Service to America (OSM/VISTA) volunteers to assist with AMD-related projects.

OSM grants specifically for AMD remediation projects on AMLs are available through the WCAP, part of the Appalachian Clean Streams Initiative. Grants of up to \$100,000 are awarded to not-for-profit organizations that have developed cooperative agreements with other entities to reclaim AML sites (11). A match from 319 funds is required to receive these grants and is sometimes met with money from the AMR Fund or WVDEP's Stream Restoration Fund.

Stream Partners Program

The Stream Partners Program offers grants of up to \$5,000 to watershed organizations in West Virginia. Grants can be used for range of projects including small watershed assessments and water quality monitoring, public education, stream restoration, and organizational development. Stream Partners grants will be pursued in the future to compliment nonpoint source research, education, and reclamation projects in the watershed as well as possibly fund research to support new listing status for SWSs FOC believes should no longer be listed as 'Impaired' for pH, AI, or Fe.

6. INFORMATION, EDUCATION, AND PUBLIC PARTICIPATION

State of the Cheat River Watershed Outreach Event Series

Friends of the Cheat completed a three part series of outreach events for the public called the State of the Cheat River Watershed. This outreach initiative aimed to educate the public about past challenges, current successes, and future goals to restore, preserve, and promote the watershed. The series highlighted remediation efforts including treatment projects and watershed based plans and asked landowners to report known AMD on their property. Friends of the Cheat plans to continue this series annually.

Cheat River Festival

Every spring, for 25 years, FOC has been hosting the Cheat River Festival. This is FOC's largest outreach and fundraising event. Thousands of patrons come to learn about all aspects of FOC's mission, including restoration initiatives. FOC will have information regarding restoration successes and plans at the informational area in the festival. FOC also invited landowners and other restoration stake holders to learn more about how they can be involved and to teach the public about their current involvement in restoration.

Newsletters

FOC newsletters are distributed in print every quarter. They are also available online. Newsletters will continue to update readers about planned nonpoint source remediation projects and about remediation priorities.

Youth education

FOC has developed curriculum to teach youth about the Cheat River Watershed, its tributaries, and the importance of stream health. In summer of 2018 FOC partnered with the U.S. Forest Service to host three snorkel outreach events among the local community to foster stewardship and appreciation of the Cheat's unique freshwater ecological resources The Cheat River Snorkel Program continued into 2019 to host 3 events. FOC visits a local 4-H camp each year and attends many music festivals to teach participants about ecology and pollution in streams. Hosting outreach and education events to youth and the general public is one effective strategy FOC utilizes for building long-term support for the watershed's remediation priorities.

Web site

FOC also maintains a website, <u>www.cheat.org</u> with information about remediation projects and priorities.

Landowner Handbook

	Pre	Year 1	Year2	Year3	Year 4	Year 5	Post
Planning							
Develop WBP	<						
Collect Monitoring Data							
Assess Project Sites							
Feasibility Study							
Landowner Contact							
Apply for Funding							
Receive Funding							
Implementation							
Engineering Services							
Environmental Permitting							
Construction							
Operation and Maintenance							
Operation and Maintenance							

FOC created a handbook for landowners to describe the reclamation process and updated this book in 2017. The booklet describes monitoring, implementation, funding, and regulation to landowners and potential landowner partners.

River of Promise

River of Promise began in 1995. The premise was to bring together stakeholders including

Table 16: General example of a watershed project timeline

industry, state and federal agencies, watershed groups, and the public to share information and work on solving AMD issues. Quarterly River of Promise meetings are open to the public. Information on nonpoint source remediation projects and priorities will be freely available to all who attend these meetings.

7. SCHEDULE AND MILESTONES

FOC hopes to secure funds to address and treat all priority sites between the years 2021 - 2030 in the North Fork Greens Watershed Based Plan. After each priority site is developed, the site and the subsequent SWS will be monitored through the course of one year to ensure the pollutant loads are appropriately reduced. If loads are not appropriately reduced, low priority seeps will be revisited for proposals until proper load reduction for specific SWS is met. Sites in which landowner cooperation is not currently viable will be revisited if/when property changes ownership. Milestones for the North Fork Watershed Based Plan are as follows:

- Secure Funding For Priority Sites
- Implement Site Design and Construction of Priority Sites
- Conduct Post Monitoring of Priority Sites
- Evaluate Success of Priority Sites
- Reassess Low Priority Sites and Site Ownership
- Secure Funding for Low Priority Sites as needed for Load Reduction
- Implement Site Design and Construction for Low Priority Sites as needed
- Conduct Post Monitoring of Low Priority Sites
- Routine Sampling of Sites to Ensure System Outs are Meeting Water Quality Standards

A general example of the timeline for a watershed project is provided in Table 16. Tables 17a – 17b provide anticipated schedule for the implementation of the high priority sites. Because of FOC's North Fork Greens Run Watershed Based Plan, FOC has moved out the milestone schedule to fall after all Big Sandy Creek Watershed Based Plan High Priority Sites have been implemented. If a new funding source or additional §319 funding can be provided to complete two projects, FOC will move up the implementation schedule as needed.

There is also potential to merge passive treatment projects for MC38-300-1 and the Unnamed Source, due to proximity. If funding allows and Awarded Engineer finds feasible, FOC would move forward with merging the projects, proposing to cover both sources with one site.

Table 17a: Implementation Schedule for MC38-300-1

AMD Source	ce: MC38-300-1																	
Stream:	Greens Run																	
Project:	Dinkenberger Improvements Project																	
		2023		20	24			20	25			20)26			20)27	
Implemen	tation Schedule	Q2	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Submit§31	9 proposal	Х																
Receive §3	319 funding					Х												
Procure en	ngineer							Х	Х	Х	Х	Х	Х	Х	Х			
Apply for r	natch funding									Х								
Obtain neo	cessary landowner agreements									Х								
Water qua	lity monitoring					Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Obtain neo	cessary construction permits							Х	Х	Х	Х	Х						
Procure co	nstruction contractor											Х						
Construct t	treatment system												Х	Х	Х			
Post Const	ruction Monitoring															Х	Х	Х

Table 17b: Implementation Schedule for Unnamed Source

AMD Source	ce: Unnamed Source																	
Stream:	Greens Run																	
Project:	Dinkenberger Headwaters Project																	
		2024		20	25			20	26			20	27			20)28	
Implement	tation Schedule	Q2	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Submit§31	9 proposal	Х																
Receive §3	19 funding					Х												
Procure en	gineer							Х	Х	Х	Х	Х	Х	Х	Х			
Apply for n	natch funding									Х								
Obtain neo	essary landowner agreements									Х								
Water qua	lity monitoring					Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Obtain neo	essary construction permits							Х	Х	Х	Х	Х						
Procure co	nstruction contractor											Х						
Construct t	reatment system												Х	Х	Х			
Post Const	ruction Monitoring															Х	Х	Х

8. LOAD REDUCTION EVALUATION CRITERIA

The long-term measurable goals are to achieve required reduction for each seep set by the TMDL and verified by FOC for iron, aluminum, and pH. Achieving these goals should lend to the resolution of in-stream pH, Al, Fe, biological, and sedimentation impairments, however it might not accomplish all West Virginia water quality standards in-stream since AMD is not the only source of these impairments.

Samples will be collected and analyzed quarterly for one year after construction to assess treatment effectiveness. FOC will assess to see if required load reductions are being met at the treatment 'System Out.' SWS mouth will also be sampled quarterly to evaluate impairment. If the SWS is still impaired after all high priority projects in the SWS are completed, FOC will reconsider implementing low priority sites until load reduction is achieved.

Evaluation of load reduction will be accomplished by:

- 1. Comparing the instream water quality upstream of the seep and downstream of the seep
- 2. Comparing the pollutant loads in the water entering the system to the pollutant loads in the water exiting the system
- 3. Comparing the water quality at the SWS mouth before and after the treatment system is implemented.

9. MONITORING COMPONENT

Monitoring parameters include temperature, flow, pH, conductivity, acidity, alkalinity, sulfate, total aluminum, dissolved aluminum, total iron, dissolved iron, total manganese, and dissolved manganese. FOC will monitor water quality preconstruction, during construction, and post-construction. FOC will monitor annually until §319 or alternative funds are secured. After securing funds, during the pre-construction period FOC will collect and analyze upstream, downstream and seep samples monthly, likely straddling two fiscal years. During the construction period upstream, downstream, and seep samples will be collected and analyzed quarterly. Quarterly post construction samples will be collected and analyzed not period after each treatment component for one year, and then biannually after.

FOC uses a monitoring cost calculation spreadsheet that factors in lab fees, mileage, and staff time cost using 8 hours per sampling visit per site, which includes, preparing, driving, sampling, returning the samples to the lab, cleaning up the equipment, entering the data, and initially analyzing the data.

Table 18 outlines the monitoring plan and Table 19 outlines the monitoring budget including staff time and lab fees in order to carry out the restoration efforts, with Table 20 as reference to the constants used to calculate the monitoring budget. Each of the sites that are selected for treatment in the Priority Implementation Section are listed in Table 18 and 19.

The order of the project implementation for those listed in Table 18 and Table 19 may be subject to change, based on landowner partnerships.

Table 18: Monitoring efforts per Priority site per year

Site	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
MC38-300-1	4	1	1	1	1	6	8	4	2	2
Unnamed Source	2	1	1	1	1	1	6	8	4	2

Table 19: Monitoring Budget

Projections								Sampling (Cost												
Project Name	Mileage (Site- Office)	# Sample Sites	Sample Period (Yrs)	Sample Frequency (Visits/Year)	Travel	Travel Lab		Travel		Travel		Travel		Travel		Travel		Lab	P	ersonnel	Total
Dinkenberger Improvements Pre Construction	6	6	1	12	\$	83.52	\$	5,400.00	\$	1,035.65	\$ 6,519.17										
Dinkenberger Improvements Construction	6	6	1	4	\$	27.84	\$	1,800.00	\$	345.22	\$ 2,173.06										
Dinkenberger Improvements Post Construction	6	6	1	4	\$	27.84	\$	1,800.00	\$	345.22	\$ 2,173.06										
Dinkenberger Improvements Remaining Grant																					
Period	6	6	1	2	\$	13.92			\$	172.61	\$ 186.53										
Dinkenberger Headwaters Pre Construction	6	3	1	12	\$	83.52	\$	2,700.00	\$	712.01	\$ 3,495.53										
Dinkenberger Headwaters Construction	6	3	1	4	\$	27.84	\$	900.00	\$	237.34	\$ 1,165.18										
Dinkenberger Headwaters Post Construction	6	4	1	4	\$	27.84	\$	1,200.00	\$	273.30	\$ 1,501.14										
Dinkenberger Headwaters Remaining Grant Period	6	4	1	2	\$	13.92	\$	600.00	\$	136.65	\$ 750.57										

Table 20: Monitoring Budget Table of Constants

	Table of Constants													
Cost/Sample (\$)		Cost/Mile (\$)	Personnel Pay (\$/hr)	Personnel Time/Mile (min)	Personnel Prep Time (min)	Personnel Time/Sample (min)								
\$	75.00	\$ 0.58	\$ 17.98	1.5	90	30								

10. REFERENCES

- 1. United States Environmental Protection Agency. *Handbook for Developing Watershed Plans to Restore and Protect Our Waters, Chapter* 2. 2008.
- 2. Department of Environmental Protection Water Resources. 47 CSR, Series 2, Legislative Rules, Department of Environmental Protection: Requirements Governing Water Quality Standards. 2016.
- 3. West Virginia Department of Environmental Protection . 2012 Draft Section 303(d) List. 2012.
- 4. West Virginia Department of Environmental Protection. *Total Maximum Daily Loads for Selected Streams in the Cheat River Watershed, West Virginia.* s.l. : Division of Water and Waste Management, Watershed Protection Branch, TMDL Section, 2011.
- 5. Office of Surface Mining, Reclamation, and Enforcement. AMD Treat. Pittsburgh, Pennsylvania : s.n., 2014.
- 6. West Virginia Department of Environmental Protection. Nonpoint Source Web page. [Online] Division of Water and Waste Management, 2014. <u>http://www.dep.wv.gov/WWE/Programs/nonptsource/Pages/home.aspx</u>.

11. APPENDIX

APPENDIX A: TMDL SEEP DATA

Discharge	Flow_CFS_	Flow_GPM	рН	Total_Al	Total_Fe	Total_Mn	ALKALINITY	SULFATE
MC38-100-1	0.012899	4.820744	2.914615	50.615385	101.553846	3.226154	0.707692	872.076923
MC38-300-1	0.018938	7.077701	3.03	47.375	47.22	7.225	0.05	678
MC38-300-2	0.003342	1.249006	3.6	78	34.7	8.68	0.1	471
MC38-350-1	0.062384	23.31478	5.01	1.99	1.54	0.868	0.1	36

APPENDIX B: MAPS OF SUBWATERSHEDS

Greens Run SWS 254

Greens Run SWS 255

28

Greens Run SWS 258

APPENDIX C: LANDOWNERS

Discharge Number	Coordinates	Name	Mailing Address	Parcel Address	Landowner Telephone	Landowner Notes
MC38-100-1	39.5064, -79.6971	Robert and Elizabeth Peddicord	PO Box 545 Kingwood, WV 26537	Glory Dr		FOC has landowner access to reach top of Open Limestone Channel where mine water exits MC38- 100-1. Water is treated in neighboring parcel in agreement with Bruce Castle.
MC38-300-1	39.493861, -79.718944	Willard Jr. and Kathy Tasker	991 Dinkenberger Rd Kindwood, WV 26537	991 Dinkenberger Rd Kindwood, WV 26537		The Taskers have expressed concerns about expansion of treatment on their property with past FOC Dinkenberger Site Improvements. However, this site being one of the last major contributors to AMD in North Fork Greens Run may be persuading.
MC38-300-2	39.494333, -79.717583	Jasper and Mary Alice Sanders	74 W Catherine St Rowlesburg, WV 26425	Dinkenberger Rd	304-454- 9212	The Sanders have expressed concerns about expansion of treatment on their property with past FOC Dinkenberger Site Improvements. However, this site being one of the last major contributors to AMD in North Fork Greens Run may be persuading.

MC38-350-1	39.489472, -79.7245	Kyle	820 Goshen	434		Because of the proximity of
		Compton	Road,	Dinkenberger		the seep to the road
		and Kayla	Morgantown,	Rd		crossings, samples were
		Lewis	WV 26708			taken using the
						Dinkenberger Road culvert.
						Due to low priority status of
						Seep MC38-350-1, no
						contact had been issued
						with Mr. Compton or Ms.
						Lewis.
Unnamed	39.491883, -79.718475	Jasper and	74 W	Dinkenberger	304-454-	The Sanders have
Source		Mary Alice	Catherine St	Rd	9212	expressed concerns about
		Sanders	Rowlesburg,			expansion of treatment on
			WV 26425			their property with past
						FOC Dinkenberger Site
						Improvements. However,
						this site being one of the
						last major contributors to
						AMD in North Fork Greens
						Run may be persuading.

APPENDIX D: FISH DATA

Site Name	Latitude	Longitude	Date	Time	Reach Length (m)	Shocking Seconds	Common Name	Latin Name	Length (mm)
Greens Run ds Confluence	39.48925	-79.6667	07/24/2019	13:26	50	334	Hume	Latin Name	()
	55.10525	, 5.0007	0772172015	13.20	50	551	Creek Chub	Semotilus atromaculatus	102
							Creek Chub	Semotilus atromaculatus	86
NF Mouth	39.49004	-79.6675	07/24/2019	13:42	50	462			
			-,,	-		-	Creek Chub	Semotilus atromaculatus	180
							Creek Chub	Semotilus atromaculatus	84
							Green Sunfish	Lepomis cyanellus	72
							Creek Chub	Semotilus atromaculatus	92
							Creek Chub	Semotilus atromaculatus	116
							Creek Chub	Semotilus atromaculatus	139
							Creek Chub	Semotilus atromaculatus	97
							Creek Chub	Semotilus atromaculatus	126
							Creek Chub	Semotilus atromaculatus	35
							Creek Chub	Semotilus atromaculatus	115
							Creek Chub	Semotilus atromaculatus	109
							Creek Chub	Semotilus atromaculatus	40
SF Mouth	39.48976	-79.6675	07/24/2019	13:50	50	284			
							N/A		N/A
NFG DS RR	39.50794	-79.6965	07/24/2019	14:30	100	448			
							N/A		N/A
NFG US RR	39.50779	-79.6986	07/24/2019	15:00	100	994			-
							Spotted Bass	Micropterus punctulatus	35

APPENDIX E: AMDTreat CAPITAL COST CALCULATIONS

MC38-300-1

Company Nan	NE.				08/29/	
Proje	KE.				Re-	
Site Nan	10				OP.	
		o vi	AMD TREA	T	4	
Costs	AN	ID TR	REAT MAIN C	OST FORM #	MOTRERT	
Passive Treatment	A	2	111111111	Water Quality		
Vertical Flow Pand			80	Design Flow	41.34	001
Anoxic Unwrittene Drein.			80	Typical flow	13.78	
Anaerotiic Wetlande			\$D	Total Iron	97,34	m
Aerobic Wetlanda			50	Ferrous Vor	37.50	m
Manganese Revioual Bed			60	Alaminan	42.78	m
Dels Linestone Charner	1	.0	82,139	Marganese.	5.28	m
Linestone Bed	1	0	\$174.922	pH [2.76	51
BIO Reactor			\$0	Akakaity	0.00	m
Posawe Subtotal:			\$177,061	THO I	1.205	m
Active Treatment	-		anna	Colouter Net Addity		_
Causte Some			80	IE Enter Hot Asidity manually		
Hydrotest Lines			\$D	Audity	1014.97	m
Febble Guick Line			\$D	CORDER NO.	115131	
Ammonia			\$0	Saffete	T31,60	m
Owidents			\$0	Chloride	0.00	m
Sola Ash			80	Caldum [0.00	m
Active Subtotal			50	Magnessury	11.00	m
Anedlary Cost			100000	Sodium	0.00	m
- Ponda	1	0	\$8,360	Water Teraperature	20.00	¢
Hoads			\$0	Specific Conductivity	0.00	ú5
Land Accase			\$0	Total Department Solida	0.00	m
Ditching			\$0	Dissolved Oxygen	0.01	
Engineering Cost			\$0	Typical Acid Loading	30.6	00
Andillary Subtoball			\$8,360			
Other Cost (Capital Cold)	_		\$0			
Total Casital Cest	_		\$185,421			
Annual Conta	-		annun 1			
Sampling			\$0			
Labor			\$0			
Maintenance.			30			
Pumping			.90			
Diversioa) Cold			30			
Destart Chern Cest			50			
Sludge Removal			\$0			
Other Cost (Annual Cost)			\$0	Total Annual Cost: per		_
Land Access (Avrual Cost)			\$0	1000 Gal of H2O Treated \$2,000		
Total Annual Cost			80			
Other Cost	1		ammo			

Unnamed Source

Company Nan					1	
Proje	ēt.				16	
Site Nan	10.				9	
			AMD TREAT		7	
Costs			REAT MAIN CO		AMOTIREAT	t.
Paseive Treatment		8	\$0	Water Quality Design Flow	98.45	gpm
Vertical Flow Pond	_		\$0	Typical Flow	32.81	apm
Anoxic Limestone Drain	-		50	Total Iron	0.76	mg/L
Anaerobic Wetlands	-	-	\$0	Ferrous iron	0.75	mg/L
Aerobic Wetlands	-	-	\$0	Ahminum	3.69	mg/L
Manganese Removal Bed		-		Manganese	0.80	1.50
Oxic Limestone Channel	1	0	\$2,139	pH	3.83	SU
Limestone Bed	1	0	\$76,109	AlkaBrity	0.00	mg/L
BIO Reactor	_	L_	50	1.		E. T.
Passive Subtotal			\$78,248	nc	1.20	mg/L
Active Treatment		_	71111112	IF Calculate Net Acidity		5
Caustic Soda			\$0	(* Enter Hot Acidity manually		Sanan
Hydratad Lime			\$0	Acidity	30.74	mg/L
Pabble Quick Lime			\$0	Contraction (Section Section		- 11 A
Ammonia			\$0	Sulfate	61.45	100
Oxidants			\$0	Chloride	.0.00	104740
Soda Ash			\$0	Caloiam	0.00	mg/L
Active Subtotal:			50	Magnesium	0.00	0.000
Ancillary Cost	-	- 1	111111111	Sodium	0.00	mg/L
 Ponds 	1	0	\$17,506	Water Temperature	20.00	C
Roada			\$0	Specific Conductivity	0.00	
Land Access			\$0	Total Dissolved Solids	.0.00	mg/L
Ditching			\$0	Dissolved Oxygen	0.01	mg/L
Engineering Cost			\$0	Typical Acid Londing	2.2	tonsily
Ancillary Subiolai:	-		\$17,506			
Other Cost (Capital Cost)		- (\$0			
Total Capital Cost:			\$95,754			
Annual Costs		. 1	0111111			
Sampling			\$0			
Labor			\$0			
Maintenance			\$0			
Pumping			\$0			
Chemical Cost	1		50			
Oxidant Chem Coat			\$0			
Studge Removal			\$0			
Other Cost (Annual Cost)			\$0	Total Annual Cost: per		_
Land Access (Annual Cest)			\$0	1000 Gal of H2O Treated \$0.000		
Total Annual Cost:			\$0			
Other Cost	-		annon an anno 1997			

MC38-300-2

Company Nan						
Proje					Kon	
Site Nar	ne				CO)	
20.000			AMD TREAT	Concerns and a second sec	1	
Costs			REAT MAIN C	And the local distribution in the local distribution of the local dist	PMOTREP	ŕ
Passive Treatment	4	2	11111111	Water Quality		
Vertical Flow Pond			\$0	Design Flow	3.74	gpm
Anoxic Limestone Drain	_		\$0	Typical Flow	1.24	gpm
Anaerobic Weflands			\$0	Total Iron	34.70	mg/l
Aerobic Wetlands			\$0	Ferrous Iron	33.30	mg/l
Manganese Removal Bed			50	Aluminum	78.00	mg/l
Oxic Limestone Channel	1	0	\$2,139	Manganese	8.68	mg/l
Limestone Bed	. 1	0	\$18,304	pH	3.60	80
BIO Reactor			\$0	Alkalinity	0.10	mg/l
Passive Subtotal			\$20,443	TIC	1.20	mg/L
Active Treatment		-	21111112	Calculate Net Acidity		
Caustic Soda			\$0	C Enter Hot Acidity manually		1.
Hydrated Lime			\$0	Acidity	525.30	ma/L
Pebble Quick Lime	-	-	\$0			<u>ः सः</u>
Ammonia			50	Sulfate	471.00	mg/L
Oxidants	-		\$0	Chloride	0.00	mg/L
Sode Ash	1		\$0	Calcium	0.00	mgit
Active Subtotal	_		\$0	Magnesium	0.00	mg/L
Ancillary Cost			111111	Sodium	0.00	mg/L
- Ponda	1	0	\$5,000	Water Temperature	20.00	C
Roads			\$0	Specific Conductivity	0.00	uS/o
Land Access			\$0	Total Dissolved Solids	0.00	mg/L
Ditching			\$0	Dissolved Oxygen	0.05	mg/L
Engineering Cost	1		\$0	Typical Acid Loading	1.4	tons
Ancillary Subtotat			\$5,000			
Other Cost (Capital Cost)	_	- 8	\$0			
Total Capital Cost:	_	-	\$25,443			
Annual Costs	_		annin			
Sampling			\$0			
Labor			\$0			
Maintenance			\$0			
Pumping			\$0			
Chemical Cost	-		\$0			
Deidant Chem Cost	-		\$0			
Sludge Removal			\$0			
Other Cost (Annual Cost)		-	-90			
Land Access (Annual Cost)	_		50	Total Annual Cost: per 1000 Gal of H2O Treated \$0.000	é.	
Total Annual Cost:	_	-	\$0	1000 (000 (1000 (1000)) \$0,000		
TOUR APPROX COSC		-				

MC38-350-1

Company Nam	ie:			Printe	d on 08/29/	2019
Proje					-	
					160	
Site Nan	16				I.	
			AMD TREAT		1	
Costs		-	REAT MAIN CO		AWDITERT	r .
Passive Treatment	≜	2	50	Water Quality Design Flow	23.55	gpm
Vertical Flow Pond	-	-	30	Typical Flow	7.85	gpm
Anoxic Limestone Drain	-	-	30	Total Iron	6.48	
Anserobic Wetlands Aerobic Wetlands	-		50	Ferrous Iron	6.48	1000
			50	Aluminum	2.31	1000
Manganese Romoval Bed.	1	0	\$2,139	Manganese	1.46	
Oxic Limestone Channel	1	0	\$26,800	pH	6.27	
Limestone Bed.	'	u	\$20,600	Alkalinity	0.00	
BIO Reactor				TIC	1.20	9961
Passive Sublotal:	_		\$28,947	384	1,20	inder.
Active Treatment	_	_	1111111	@ Calculate Net Acidity		
Caustic Soda		-	50	C Enter Hot Acidity manually		
Hydrated Lime			\$0	Acidity	27.13	mg/L
Pebble Quick Lime			\$0	Sulfate		
Ammonia			50	Chloride	31.82	1000
Coidants	_		\$0	Calcium	0.00	15.00
Soda Ash			\$0		0.00	10.01
Active Subtotal:			\$0	Magnesium	0.00	1000
Ancillary Cost			1111111	Sodium	0.00	mg/L
 Ponda 	1	0	\$5,340	Water Temperature	20.00	
Roads		1	\$0	Specific Conductivity	0.00	
Land Access			\$0	Total Dissolved Solids	0.00	0.15
Ditching			\$0	Dissolved Oxygen	0.01	
Engineering Cast			\$0	Typical Acid Loading	0.4	tons/
Ancillary Subtotat	_		\$5,340			
Other Cost (Capital Cost)			\$0			
Total Capital Cost			\$34,287			
Annual Costa			01111110			
Sampling			\$0			
Labor			\$0			
Maintenance			\$0			
Pumping			\$0			
Chemical Cost			\$0			
Oxidant Chem Cost			\$0			
Sludge Removal	1		\$0			
Other Cost (Annual Cost)			\$0	Total Annual Cost: per		
Land Access (Annual Cost)			\$4)	1000 Gal of H2O Treated \$0.000		
Total Annual Cost:			\$0			
Other Cost	1	1	1222222222			