Chapter 16: Benthic Stream Algae Distribution and Structure

Christopher Eisler Tennessee Tech. University

What are Algae?

- Algae are photosynthetic organisms that are primary producers in streams.
 - An alga or algae are organisms lacking true tissues and multi cellular gametangia and containing chlorophyll a, and their colorless relatives.

What are Algae?

 The term algae is used to group several evolutionarily distant organisms together into a single ecological group.

- Some algal divisions can also be classified as bacteria, protozoa, but most are classified as protista.
- Only green algae are true plants in the evolutionary sense.

Classification of Algae

- Taxonomic classification uses four major characteristics:
- 1. Pigmentation
- 2. Storage Products
- 3. Cell Wall
- 4. Flagellation

5 Types of Algae

The five algal phyla are: Bacillariophyta (Diatoms) Chlorophyta (Green Algae) Cyanopyta (Blue-Green Algae) Chrysophyta (Yellow-Green Algae) Rhodophyta (Red Algae)

TABLE 16.1 Pa Fla Fr	atterns of Pigment Con agellation Among the eshwater Periphyton.	ntent, Cell Wall Ch Divisions of Algae	emistry, Storage Most Commonly	e Chemistry, and y Encountered in
Division	Pigmentation	Cell Wall	Storage Products	Flagellae
Bacillariophyta (diatoms)	Chlorophylls <i>a</i> and <i>c</i> but with carotenoid pigments dominant; cells usually gold to brown in color	Mostly SiO ₂ and composed of two overlapping halves	Oil and leucosin	Absent vegetatively
Chlorophyta (green algae)	Chlorophylls <i>a</i> and <i>b</i> dominant	Cellulose and pectin	Plant starch	Usually 2–4 of equal length when present
Cyanophyta (blue-green algae)	Chlorophyll <i>a</i> and phycobilins; blue-green to olive-green in color	Peptidoglycan, gram-negative	Glycogen-like	Absent
Chrysophyta (yellow-green algae)	Chlorophylls <i>a</i> and <i>c</i> ; yellow-green in color	Pectin and cellulose	Oil and leucosin	Absent vegetatively
Rhodophyta (red algae)	Chlorophyll <i>a</i> and phycoerythrin; olive-green to maroon in color	Mannans and xylans (slimy)	Glycogen-like	Absent

Diatoms (Bacillariophyta)

- Widespread
- Produce a brownish to gold color in the field.
 - Cell wall is formed from silica.
 - Petri dish example
 - Valve single, Frustiule double
 - Punctae in rows called striae.
 - Motile and non motile.

Diatoms (Bacillariophyta)

Cymbella

wfrc.usgs.gov

Gyrosigma

Coscinodiscus

Cocconeis

Green Algae (Chlorophyta)

- Grass green color.
- Usually filamentous but not always.
- Can be branching
- Rarely will single cell colonies dominate.
- Most like plants
- Can be motile
- Chaetophora strands

Green Algae (Chlorophyta)

Draparnaldia

Chaetophora

Bulbochaete

Tetraspora

Blue-Green Algae (Cyanopyta)

- Cyanobacteria since they are prokaryotic
- Olive green, bluish green, brown.

• Smell musty

• Filamentous forms most common

• Nutrient Enrichment

Blue-Green Algae (Cyanopyta)

Oscillatoria

Nostoc

Yellow-Green Algae (Chrysophyta)

- Yellowish green
- Only a few genera
- All are filamentous.
- Oil is the storage product.
 - Vaucheria-felt like feel

Yellow-Green Algae (Chrysophyta)

Vaucheria

Ecological Classifications

- Epilithion- on top of rocks usually, fast current areas. Most algae are tightly attached in this habitat.
- Epidendron or Epixylon- on top of woody debris or submerged woody tissue
- Epipelon- on top of fine sediment in low current areas. These alga are usually highly mobile.

Ecological Classifications

• Epiphyton- on top of plants either filamentous algae or macrophytes, tightly attached.

• Epipsammon- on top of sand.

• Epizoon- on top of animals with ridged shell like turtles, snails, clams, midges, or even caddis fly cases.

Physogamy

• Structure in algal communities is present and can be compared to a terrestrial forest.

• Must think small though.

• This in turn can affect other algae, invertebrates, fish, and amphibian larva.

Ecosystem Roles of Algae

- Production of oxygen.
- They are the base of the food web and generate food for many other organisms.
 - They can enter the food web directly from the substratum and also be collected by filter feeders.
- Algae can also act as indicators of water quality.

Site Selection for Collecting

- When sampling for algae look for a variety of current speeds, substrates, light intensities, and depths.
 - Qualitative- general species composition.
- Quantitative sampling- bio volume and cells per centimeter.

Laboratory

• Microscope is usually needed for most algal identification.

• Cleaning Diatoms

• When keying out use several different fields

